
Tamed
Agility

Matthias Book
Volker Gruhn
Rüdiger Striemer

Pragmatic Contracting and Collaboration
in Agile Software Projects

Tamed Agility

Matthias Book • Volker Gruhn
Rüdiger Striemer

Tamed Agility
Pragmatic Contracting and
Collaboration in
Agile Software Projects

123

Matthias Book
Faculty of Industrial Engineering,
Mechanical Engineering and Computer
Science

University of Iceland
Reykjavík
Iceland

Volker Gruhn
paluno - The Ruhr Institute for Software
Technology

Universität Duisburg-Essen
Essen
Germany

Rüdiger Striemer
adesso AG
Berlin
Germany

ISBN 978-3-319-41476-8 ISBN 978-3-319-41478-2 (eBook)
DOI 10.1007/978-3-319-41478-2

Library of Congress Control Number: 2016944417

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Industrial software development is one of the major success stories of the twentieth
century. Otherwise, software would not have been able to pervade other areas of life
and business, established business models of entire industries would not have been
swept away by digitalization, and the global success of Apple, Amazon, Google,
Facebook, and eBay would not have been possible.

Software engineering, i.e., the design of larger and larger software systems based
on engineering principles, enabled the development of software systems that
seemed impossible just a couple of years ago. Therefore, any kind of fundamental
denial of this success story is downright absurd (Osterweil et al. 2008). This fact
cannot be changed, not even by numerous studies on the alleged state of the
software industry, which were in some cases prepared under the flimsiest of con-
ditions, as exposed, e.g., by Eveleens and Verhoef (2010), Glass (2006), or
Jørgensen and Moløkken-Østfold (2006).

Yet, time and again, evidence is provided of projects that encounter difficulties—
sometimes because the established software development practices have not been
followed, sometimes because the individuals involved are too optimistic in their
announcements and promises, and in some instances because the numerous indi-
viduals involved in a software development project do not have a uniform picture
of the actual aim of the project.

It is astonishing that this happens relatively often and is not regarded as a rare
exception. Obviously, problems can arise in other projects, not just in software
development—airports are finished after serious delays or not at all, public con-
struction projects become more expensive than planned, and trains cannot stop at all
platforms. However, genuine project disasters, in the form of a multiplication of the
project duration or cost, or in the form of canceled or rolled-back projects, seem to
arise more frequently in software development than in other sectors.

Perhaps this is because the immaterial nature of software makes it more difficult
to estimate the project state and makes the loss associated with a cancelled project
less tangible. Perhaps it is also because software development projects (in which the
relevant investment is “only” human resource cost) are often too ambitious and not
overly concerned with lean solutions.

Perhaps it is also because the question on the nature of the software process can
still not be answered definitively. Is it primarily a production process? Then, it can

v

be structured from a Taylorist perspective, where detailed specifications are
provided, such as in the car production process on an assembly line. Or is it a purely
creative process, which is solely driven by the engineer’s design talent? In this case,
procedural specifications make little sense, in the same manner that the idea of a
precise process to create a painting makes no sense. Software engineering seems to
lie between these two poles. There are sections that must be clearly regulated and
standardized, such as certain testing activities or configuration management. Others
cannot be described using algorithms and cannot be supported by a heuristic pro-
cess method, such as the approach to identify features to be developed at an early
stage.

And then there is the phenomenon of uncertainty. Lehman (1989) provided a
convincing argument that software projects are exposed to uncertainties; i.e., that
during the course of development, situations could arise that were previously
unforeseen (or at least uncertain to occur) and for which appropriate support was
unknown. Lehman also noticed that, in most cases, these situations could not be
identified in advance. Other authors also made this observation early on:

• “Uncertainty is inherent and inevitable in software development processes and
products.”—Ziv et al.’s uncertainty principle in software engineering (1996)

• “For a new software system, the requirements will not be completely known
until after you have a working product.”—Humphrey’s requirements uncertainty
principle (1995)

• It is impossible to fully specify or test an interactive system.—Wegner’s lemma
(1997)

In light of this finding, which is confirmed in practically every software project,
terms such as “software factory” (Cusumano 1989) and titles of scientific articles
such as “Software Processes are Software too” (Osterweil 1987) seem misleading or
at least ambiguous. Software processes (at least for developing socio-technical
systems) are insight-driven processes, they are comprised of more creative than
algorithmic parts, and it is certainly the case that they are not precisely foreseeable
(Gruhn and Urbainczyk 1998).

This in no way denies the existence of types of software that can be fully
described. For example, embedded systems without human interfaces can be
completely specified and created in line with the production paradigm.

However, this does not apply for socio-technical systems, for the simple reason
that these kinds of systems do not end at the screen, but rather extend into the mind
of the user. This does not just mean that software must be prepared for unforeseen
user behavior. Rather, in socio-technical systems, the software is only a small part of
a system comprised of human and mechanical participants that work together to
perform complex processes. This interaction, into which software must seamlessly
integrate, cannot be fully described and is also subject to constant change. In par-
ticular, when dealing with innovation, with the establishment of new business
processes and services, and with the implementation of new automations, the design,
implementation, and adaptation of software is a creative process, whose purpose
requires continuous calibration. The development of these kinds of software

vi Preface

solutions is not a production process, but rather a cognitive process, which is most
likely to succeed when all stakeholders keep an eye on the common goal and pay
attention to lean solutions.

Even if these solutions are of a technical nature, the goal they must support is
anchored in the application domain and not in information technology (IT). Close
communication between enterprise IT1 and operating departments is unavoidable
and essential for success in companies that develop software. However, it is often
also characterized by different terminology and, especially, by different types of
abstraction (and abstraction capacity).

However, the constant realignment of the project idea, the continuous consul-
tation between enterprise IT and the application domain, and the rejection of the
idea of a “software factory” (which suggests a completely predictable software
production) also result in a few unpleasant conclusions. For example, the fact that
the provision of a complete advance specification is not possible (and that the quest
for this is doomed to failure), that there will be late requirements (which only arise
during development or even after), that budget allocations and cost estimates are
provisional, and that at the start of a project, it is impossible to know precisely what
can be obtained and at what cost.

But is this really still necessary? Almost 50 years after the term “software
engineering” was coined? After almost 50 years in which the “engineering”
in “software engineering” defines a claim, namely the claim of reproducibility,
reliability, and calculability? It appears to be so, as software development is still
risky, projects still encounter difficulties and, when searching for the causes, the
same reasons are constantly identified: a lack of understanding of the application
domain, incorrect prioritization, and a lack of communication between the stake-
holders (Curtis et al. 1988). Software processes are and will always be cognitive
processes, but they must satisfy the expectations of production processes.

Structure and Audience of This Book

This is the challenge that this book deals with—the cognitive nature of software
development, the necessity for a unified purpose, the concentration on lean soft-
ware, the focus on added value, and the omission of the irrelevant. It describes
specific instruments and methods enabling all stakeholders to develop a uniform
understanding of the software to be created, to determine their genuinely essential
requirements, and to deal with changes to this understanding and the requirements.

1By “enterprise IT,” we refer to a company’s enterprise IT department or to external contractors
that perform this function.

Preface vii

The Interaction Room described in Part II brings all stakeholders together for
this purpose—not to a table, but in a room where digitalization and mobilization
strategies are jointly developed, where technology potentials are evaluated
and where software projects are planned and managed. Why does this require a
dedicated room? Because stakeholders can then communicate face to face rather
than through e-mails. Because the room can be used to outline complex relation-
ships in a comprehensible manner instead of having to laboriously write them up in
great detail. Because there is only room for the most important issues. And because
insights are not lost in short-term memory or huge documents, but concisely noted
and constantly present. In short, because the Interaction Room makes projects
visible and tangible.

The adVANTAGE contract model described in Part III ensures that the
insight-driven and imprecise process of software development does not just func-
tion, but that it is allowed to flourish in a commercial environment, i.e., in a client
and contractor relationship. In this model, changes to the project flow are not a
reason for stress, but considered normal project events. The contract model ensures
that stakeholders focus on generating maximum benefits, creating lean software,
and distributing risk fairly despite (or with the aid of) all the changes.

How this can work during the day-to-day running of a project is shown in the
practical example of the development of an inventory management system for a
private health insurance company in Part IV. This is a complex system with, at first
glance, an almost unmanageable number of business requirements, statutory con-
ditions, stakeholders, and processes for general and special cases, embedded in the
organically developed IT landscape of an insurance company from North
Rhine-Westphalia. The example of the project kickoff and the first sprint shows
how employees of the company and the IT contractor developed an overview of the
project using the Interaction Room, how the design and development was managed,
and how efforts were billed.

Ultimately, the success of every single software project, independently of the
application domain and the technology used, depends on the skills of the stake-
holders. Only if the stakeholders are prepared to talk to each other, interact with
each other, respect different perceptions of value and effort drivers, reach com-
promises, pursue innovative solutions, and refrain from political maneuvers, can
instruments such as the Interaction Room and adVANTAGE fully unfold their
potential. Part V therefore finally describes the requirements profile that software
engineers as well as domain experts must satisfy today.

Even though contracting and collaboration may be grounded in two different
academic disciplines, they are inseparable in practice where all theory boils down to
enabling people to work effectively with each other toward a successful product in a
sustainable business relationship.

This book is therefore geared toward CIOs, project managers, and software
engineers in industrial software development practice who want to learn how to
deal effectively with the inevitable uncertainty of complex projects, who want to

viii Preface

achieve higher levels of understanding and cooperation in their relationships with
customers and suppliers, and who want to run their software projects at lower risk
despite their inherent uncertainty.

Acknowledgments

The authors would like to thank Simon Grapenthin for sharing his extensive
hands-on experience in facilitating Interaction Room workshops and training
Interaction Room coaches in a wide range of business domains. We would also like
to thank Sandra Delvos for countless hours of designing and revising the book’s
illustrations, and Alexander Lohberg and Anja Wintermeyer for their background
research.

Reykjavík, Iceland Matthias Book
Essen, Germany Volker Gruhn
Berlin, Germany Rüdiger Striemer

References

Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for large systems.
Comm ACM 31(11):1268–1287. doi:10.1145/50087.50089

Cusumano MA (1989) The software factory: A historical interpretation. IEEE Software 6(2):
23–30. doi:10.1109/MS.1989.1430446

Eveleens JL, Verhoef C (2010) The rise and fall of the Chaos report figures. IEEE Software
27(1):30–36. doi:10.1109/MS.2009.154

Glass RL (2006) The Standish report: Does it really describe a software crisis? Comm ACM
49(8):15–16. doi:10.1145/1145287.1145301

Gruhn V, Urbainczyk J (1998) Software process modeling and enactment: An experience report
related to problem tracking in an industrial project. In: Katayama T, Notkin D (eds) ICSE’98:
Proc 20th Intl Conf Software Engineering, pp 13–21. doi:10.1109/ICSE.1998.671098

Humphrey WS (1995) A discipline for software engineering. Addison-Wesley, p 349
Jørgensen M, Moløkken-Østvold K (2006) How large are software cost overruns? A review of the

1994 Chaos report. Information and Software Technology 48(4):297–301. doi:10.1016/j.infsof.
2005.07.002

Lehman MM (1989) Uncertainty in computer application and its control through the engineering
of software. J Software Maintenance 1(1):3–27. doi:10.1002/smr.4360010103

Osterweil LJ (1987) Software processes are software too. In: Riddle WE (ed) ICSE’87: Proc 9th

Intl Conf Software Engineering, pp 2–13
Osterweil LJ, Ghezzi C, Kramer J, Wolf AL (2008) Determining the impact of software

engineering research on practice. IEEE Computer 41(3):39–49. doi:10.1109/MC.2008.85
Wegner P (1997) Why interaction is more powerful than algorithms. Comm ACM 40(5):80–91.

doi:10.1145/253769.253801
Ziv H, Richardson DJ, Klösch R (1996) The uncertainty principle in software engineering.

Technical Report UCI-TR-96-33, University of California, Irvine. http://www.ics.uci.edu/
*ziv/papers/icse97.ps. Accessed 23 Feb 2016

Preface ix

http://dx.doi.org/10.1145/50087.50089
http://dx.doi.org/10.1109/MS.1989.1430446
http://dx.doi.org/10.1109/MS.2009.154
http://dx.doi.org/10.1145/1145287.1145301
http://dx.doi.org/10.1109/ICSE.1998.671098
http://dx.doi.org/10.1016/j.infsof.2005.07.002
http://dx.doi.org/10.1016/j.infsof.2005.07.002
http://dx.doi.org/10.1002/smr.4360010103
http://dx.doi.org/10.1109/MC.2008.85
http://dx.doi.org/10.1145/253769.253801
http://www.ics.uci.edu/~ziv/papers/icse97.ps
http://www.ics.uci.edu/~ziv/papers/icse97.ps

Contents

Part I Introduction

1 The Need for Tamed Agility . 3
1.1 A New School of IT . 3

1.1.1 Mobility. 4
1.1.2 Agility . 5
1.1.3 Elasticity . 5
1.1.4 Resulting Challenges . 6

1.2 Agile or Plan-Driven? . 7
1.3 A Pragmatic Middle Ground. 11
1.4 Tamed Agility in Practice . 13
References. 14

Part II The Interaction Room

2 A Room for Ideas . 17
2.1 Key Interaction Room Principles. 18
2.2 Involve Domain Experts . 20
2.3 Refine the Scope Continuously . 21
2.4 Favor Relevance Over Completeness 23
2.5 Favor Clarity Over Syntactic and Semantic Precision. 25
2.6 Define Value and Effort Drivers . 26
2.7 Manage Late Requirements . 27
2.8 Manage Early Requirements . 29
2.9 Reveal Uncertainties Early . 30
2.10 Make Cost Changes Transparent . 32
2.11 Analyze the Risk of Disasters . 33
2.12 Build Trust Between Stakeholders. 34
2.13 Visualize the Project’s Progress . 35
References. 36

3 Interaction Room Basics . 39
3.1 Method Overview . 40
3.2 Canvases . 41
3.3 Annotations . 43

xi

http://dx.doi.org/10.1007/978-3-319-41478-2_1
http://dx.doi.org/10.1007/978-3-319-41478-2_1
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_1#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_2
http://dx.doi.org/10.1007/978-3-319-41478-2_2
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_2#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec3

3.4 Variants . 48
3.5 Stakeholders . 51

3.5.1 Interaction Room Method Coach. 52
3.5.2 Interaction Room Domain Coach 53
3.5.3 Process Owner . 54
3.5.4 Additional Roles . 54

3.6 Workshop Preparation . 55
3.7 Results and Follow-up Activities. 56

4 Using an Interaction Room for Digitalization Strategy
Development (IR:digital) . 59
4.1 Relevant Stakeholders . 64

4.1.1 Digital Business Expert . 65
4.1.2 Digital Technology Expert . 67
4.1.3 Interaction Engineer . 68

4.2 Partner Canvas . 69
4.2.1 Methodology and Notation . 69
4.2.2 Annotations and Analysis. 72

4.3 Physical Object Canvas . 73
4.3.1 Methodology and Notation . 74
4.3.2 Annotations and Analysis. 79

4.4 Touchpoint Canvas . 81
4.4.1 Methodology and Notation . 81
4.4.2 Annotations and Analysis. 83

4.5 Cross-Canvas Analyses . 84
4.6 Workshop Structure and Follow-up Activities 86
References. 89

5 Using an Interaction Room for Software Project Scoping
(IR:scope). 91
5.1 Relevant Stakeholders . 92

5.1.1 Application Developer . 92
5.1.2 Operations Expert . 92
5.1.3 User . 93

5.2 Feature Canvas . 93
5.2.1 Methodology and Notation . 93
5.2.2 Annotations and Analysis. 94

5.3 Process Canvas . 95
5.3.1 Methodology and Notation . 96
5.3.2 Annotations and Analysis. 99

5.4 Object Canvas . 103
5.4.1 Methodology and Notation . 103
5.4.2 Annotations and Analysis. 106

xii Contents

http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_3#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_4
http://dx.doi.org/10.1007/978-3-319-41478-2_4
http://dx.doi.org/10.1007/978-3-319-41478-2_4
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec14
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec14
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec15
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Sec15
http://dx.doi.org/10.1007/978-3-319-41478-2_4#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec13

5.5 Integration Canvas . 109
5.5.1 Methodology and Notation . 110
5.5.2 Annotations and Analysis. 112

5.6 Cross-Canvas Analyses . 114
5.7 Workshop Structure and Follow-up Activities 116
Reference . 118

6 Using an Interaction Room for Mobile Application
Development (IR:mobile). 119
6.1 Relevant Stakeholders . 120

6.1.1 Mobility Expert . 121
6.1.2 Business Developer . 121

6.2 Persona Canvas . 121
6.2.1 Methodology and Visualization. 122
6.2.2 Annotations and Analysis. 123

6.3 Portfolio Canvas . 124
6.3.1 Methodology and Visualization. 124
6.3.2 Annotations and Analysis. 125

6.4 Touchpoint Canvas . 127
6.4.1 Methodology and Notation . 127
6.4.2 Annotations and Analysis. 129

6.5 Interaction Canvas. 132
6.5.1 Methodology and Notation . 132
6.5.2 Annotations and Analysis. 135

6.6 Cross-Canvas Analyses . 137
6.7 Workshop Structure and Follow-up Activities 138
References. 140

7 Using an Interaction Room for Technology Evaluation
(IR:tech). 141
7.1 Relevant Stakeholders . 142

7.1.1 Technology Expert . 142
7.1.2 Enterprise Architect . 142

7.2 Feature Canvas . 142
7.3 Process, Object, and Integration Canvases 145
7.4 Cross-Canvas Analyses . 145
7.5 Workshop Structure and Follow-up Activities 146

8 Using an Interaction Room for Agile Project Monitoring
(IR:agile) . 149
8.1 From Feature Canvas to Product Backlog. 150
8.2 Sprint Planning Workshops . 151
8.3 Requirements Exchange . 152
8.4 Risk Map. 153

Contents xiii

http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec14
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec14
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec15
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec15
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec16
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec16
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec17
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec17
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec18
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Sec18
http://dx.doi.org/10.1007/978-3-319-41478-2_5#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_6
http://dx.doi.org/10.1007/978-3-319-41478-2_6
http://dx.doi.org/10.1007/978-3-319-41478-2_6
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec14
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec14
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec15
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec15
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec16
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec16
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec17
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Sec17
http://dx.doi.org/10.1007/978-3-319-41478-2_6#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_7
http://dx.doi.org/10.1007/978-3-319-41478-2_7
http://dx.doi.org/10.1007/978-3-319-41478-2_7
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec4

8.5 Progress Control . 158
8.6 Cost Forward Progressing . 159
References. 164

9 Using Interaction Rooms Under Difficult Conditions 165
9.1 Temporary Interaction Rooms. 165
9.2 Distributed Interaction Rooms. 167
9.3 Augmented Interaction Rooms . 168
References. 169

10 Summary . 171
Reference . 174

Part III The adVANTAGE Contract Model

11 Framing Software Projects in Commercial Terms 177
Reference . 180

12 Traditional Contract Models in an Agile World 181
12.1 Fixed Price. 184
12.2 Time and Materials . 187
12.3 Pay Per Use . 188
12.4 Summary . 191
References. 193

13 Agile Contract Models . 195
13.1 Fixed Price per Iteration. 195
13.2 Fixed Price per (Whatever) Point . 196
13.3 Money for Nothing, Change for Free. 197
13.4 Shared Pain/Shared Gain . 198
13.5 Multi-stage Contract Models. 200
13.6 Summary . 201
References. 202

14 Key adVANTAGE Principles . 205
14.1 Commitment to Agility . 206
14.2 Mutual Trust . 207
14.3 Contractor’s Willingness to Assume Risk. 209
14.4 Budget Security . 210
14.5 Shared Pain . 210
14.6 Efficiency Incentives . 211
Reference . 212

15 adVANTAGE Procedures . 213
15.1 Initial Requirements Collection and Budget Estimate 213
15.2 Feature Prioritization and Sprint Definition. 215
15.3 Sprint Implementation and Controlling. 217

xiv Contents

http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_8#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_9
http://dx.doi.org/10.1007/978-3-319-41478-2_9
http://dx.doi.org/10.1007/978-3-319-41478-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_9#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_9#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_9#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_10
http://dx.doi.org/10.1007/978-3-319-41478-2_10
http://dx.doi.org/10.1007/978-3-319-41478-2_10#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_11
http://dx.doi.org/10.1007/978-3-319-41478-2_11
http://dx.doi.org/10.1007/978-3-319-41478-2_11#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_12
http://dx.doi.org/10.1007/978-3-319-41478-2_12
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_12#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_13
http://dx.doi.org/10.1007/978-3-319-41478-2_13
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_13#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_14#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_15
http://dx.doi.org/10.1007/978-3-319-41478-2_15
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec3

15.4 Sprint Inspection and Billing . 221
15.4.1 Full Completion of Sprint . 221
15.4.2 Partial Completion of Sprint 224

15.5 Planning the Next Sprint . 224
15.6 Project Termination . 226
15.7 Summary . 227
Reference . 228

16 adVANTAGE in Practice . 229
16.1 Case Study: The BERGFÜRST Crowd Investing Platform 229
16.2 Fine-Tuning adVANTAGE Parameters 233
References. 234

17 Summary . 235

Part IV A Sample Project

18 Case Study: The Cura Health Insurance Benefit System 241

19 Initial Project Scoping with the IR:scope 243
19.1 Project Vision. 243
19.2 Identification of Stakeholders and Objectives 244
19.3 Feature Canvas . 245

19.3.1 Feature Identification and Canvas Population 245
19.3.2 Annotation and Analysis . 245

19.4 Process Canvas . 248
19.4.1 Identification and Prioritization of Business

Processes . 248
19.4.2 Canvas Population. 250
19.4.3 Annotation and Analysis . 252

19.5 Object Canvas . 255
19.5.1 Canvas Population. 255
19.5.2 Annotation and Analysis . 255

19.6 Integration Canvas . 258
19.6.1 Canvas Population. 258
19.6.2 Annotation and Analysis . 259

19.7 Cross-Canvas Annotation Analysis . 260
19.8 Documentation and Follow-up Activities 261

20 Project Monitoring with the IR:agile . 263
20.1 From Feature Canvas to Product Backlog. 263
20.2 Risk Map. 265
20.3 The First Sprint . 267

20.3.1 Planning the First Sprint . 267
20.3.2 Results of the First Sprint . 267

Contents xv

http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_15#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_16
http://dx.doi.org/10.1007/978-3-319-41478-2_16
http://dx.doi.org/10.1007/978-3-319-41478-2_16#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_16#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_16#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_16#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_16#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_17
http://dx.doi.org/10.1007/978-3-319-41478-2_17
http://dx.doi.org/10.1007/978-3-319-41478-2_18
http://dx.doi.org/10.1007/978-3-319-41478-2_18
http://dx.doi.org/10.1007/978-3-319-41478-2_19
http://dx.doi.org/10.1007/978-3-319-41478-2_19
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec9
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec10
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec11
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec12
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec13
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec14
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec14
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec15
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec15
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec16
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec16
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec17
http://dx.doi.org/10.1007/978-3-319-41478-2_19#Sec17
http://dx.doi.org/10.1007/978-3-319-41478-2_20
http://dx.doi.org/10.1007/978-3-319-41478-2_20
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec5

20.4 Settlement Using adVANTAGE . 269
20.5 Cost Forward Progressing . 270
20.6 Using the Requirements Exchange . 270

21 Lessons Learned . 273

Part V Conclusion

22 The Big Picture . 281
References. 282

23 A New Skill Set . 283
23.1 General Software Technology and Methodology Skills 283
23.2 New School of IT Skills: Mobility . 284
23.3 New School of IT Skills: Agility. 287
23.4 New School of IT Skills: Flexibility 288
23.5 Business Development and Domain Knowledge 289
23.6 Knowledge of Business Processes, Business Models,

and Partnerships . 290
23.7 Insights and Experiences . 291
References. 292

24 Outlook: Twelve Hypotheses . 293

Appendix A: Interaction Room Workshop Agendas 295

Appendix B: Interaction Room Annotations . 299

Appendix C: adVANTAGE Contract Template 313

Index . 329

xvi Contents

http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_20#Sec8
http://dx.doi.org/10.1007/978-3-319-41478-2_21
http://dx.doi.org/10.1007/978-3-319-41478-2_21
http://dx.doi.org/10.1007/978-3-319-41478-2_22
http://dx.doi.org/10.1007/978-3-319-41478-2_22
http://dx.doi.org/10.1007/978-3-319-41478-2_22#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_23
http://dx.doi.org/10.1007/978-3-319-41478-2_23
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec1
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec2
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec3
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec4
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec5
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec6
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Sec7
http://dx.doi.org/10.1007/978-3-319-41478-2_23#Bib1
http://dx.doi.org/10.1007/978-3-319-41478-2_24
http://dx.doi.org/10.1007/978-3-319-41478-2_24

Part I
Introduction

1The Need for Tamed Agility

Pragmatic, value-focused support for the design and implementation of complex IT
projects appears more necessary than ever before, especially in times of ubiquitous
digitalization, as “software is eating the world” (Andreessen 2011): In increasingly
digital companies, the number of projects that is not heavily dependent on IT is
constantly falling. The implementation of organization projects, projects for
implementing regulatory requirements and merger and acquisition projects is also
practically impossible without the involvement of IT—“every budget is becoming
an IT budget” (Gartner 2012).

1.1 A New School of IT

IT has always involved automation, and IT has also always had a disruptive
influence. Business models have always changed as a result of IT. Some disap-
peared, some only became possible in the first place. So is everything the same as it
always was? Not entirely, because a number of factors are currently combining: The
world is becoming more digital, data and applications are becoming mobile, and IT
projects have to deliver quick results. Even during development, it must be possible
to adapt their focus. Long project durations are undesirable, because the world has
often changed so dramatically after a long project that it is difficult to know whether
the originally promised benefits are actually generated. This leads to a change that is
more radical than the slow progress of automation. Concepts that appeared
promising yesterday are now a hindrance. It seems that enterprise IT has a new role
and that it requires new or at least additional skills and capabilities.

Faced with technological disorder in the context of mobile technologies, broad
digital transformation and elastic, cloud-based infrastructures, IT is no longer just a
central means of production. Rather, enterprise IT is becoming an essential
co-designer and co-creator of future solutions. In order to fulfill this role, it must

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_1

3

assess the opportunities and risks of new technologies, talk to users and business
departments, and know the challenges faced by the respective industry.

As a result, enterprise IT is changing from a pure service provider to an enabler
and co-designer of business changes. Instead of just implementing an operating
department’s ideas, and instead of just providing defined services to an agreed
quality, enterprise IT is taking on a consulting role. Based on its knowledge of
technology costs and benefits, and of business challenges and opportunities,
enterprise IT now works together with the operating departments to design solu-
tions that can be implemented efficiently, that have innovation potentials, and that
provide competitive advantages.

In other words: Enterprise IT is on the move. From the basement to the
boardroom. It now has a say and takes responsibility. And it can only do this if it
understands both technology and business.

Companies are currently facing huge strategic changes triggered by three key IT
trends: mobility of clients and employees, agility in software development, and
elasticity of IT infrastructure. These are the foundations that are increasingly
defining the requirements of enterprise IT. And because an enterprise IT that satisfies
these requirements has a different structure and different competencies than tradi-
tional enterprise IT, we call it the New School of IT. This is admittedly bold, but
clearly states that the upcoming changes will go far beyond a normal level of change.

1.1.1 Mobility

Mobility is increasing across all industry sectors: Central business processes have
mobile components, or at least components that can be mobilized. Clients and
suppliers can be integrated using web-based applications or native apps and take
over important parts of the business process. Mobile solutions need to be developed
and delivered quickly. The aim is to rapidly launch new products or services on the
market, often using a range of different sales channels.

Whether the mobility of data and applications demanded by users is always
required, and whether it is socially and economically beneficial that the availability
of humans is increasing, and that parts of the business process can be outsourced, is
irrelevant for the question of whether enterprise IT must be able to develop and
operate mobile applications. The trend toward mobility is a social trend, and the
experiences gained in the private context are creating expectations in companies.

Consequently, enterprise IT must come to terms with the topic of mobility. This
is exacerbated by the fact that mobility is often also an important driver for inno-
vative applications, simply because the mobilization of data and applications can
lead to structurally different applications and entirely new use cases, which makes
the topic of mobility even more essential for enterprise IT. After all, the mastering
of technologies that have the potential to trigger the next batch of changes in
application landscapes cannot be outsourced and remains part of the enterprise IT’s
core business.

4 1 The Need for Tamed Agility

1.1.2 Agility

Innovative IT solutions can rarely be completely planned in advance and then “just”
be implemented. Rather, they are based on the idea of permanent adaptation to new or
clearer boundary conditions outlined by Ries (2011). And because the basic concepts
of agile software development—fast and frequent delivery of software, concentration
on source code as the central artifact of development, continuous communication
with clients and users, and respect for application knowledge—benefit more than just
mobile and other innovative applications, software is increasingly being developed
with agile software process elements. Virtually, no software development of a rel-
evant scale is either purely agile or entirely without agile elements (Boehm and
Turner 2003). Common sense suggests that projects can vary significantly on the
spectrum between strictly agile and strictly waterfall-oriented. Mary Poppendieck
summarized this in her keynote speech at the 35th International Conference on
Software Engineering (ICSE 2013) with the statement “agility without discipline
cannot scale, and discipline without agility cannot compete.”

Given that discipline can have different connotations, and given that a large
number of people with a range of independent perceptions are involved in software
projects of a relevant scale, certain standards are required to respond to different
perceptions of the necessary discipline and restrict these perceptions to compatible
ideas of discipline. A lack of compatible perceptions of discipline and their specific
manifestation often results in misunderstandings. These can be countered by
explicit rules and agreements, which then however represent the explicit discipline
addressed by Poppendieck, i.e., an alternative to agile, personal discipline that is
only based on a small number of principles. Overall, we are still faced with the
problem that agile development approaches have to be supplemented by elements
of requirements transparency in order to apply them to major projects in large
organizations.

Probably the most popular approach to placing a square peg in a round hole and
reconciling agility with the need for planning certainty is based on the Scaled Agile
Framework (SAFe) approach introduced by Leffingwell (2011). However, signifi-
cant doubts remain as to whether any of the original allure of agility remains in light
of the extensive expansion, and also whether the implementation of SAFe in
companies does not lead to completely erratic results, simply because SAFe is
vague and non-specific.

1.1.3 Elasticity

Elasticity is the extension of agility from application development into application
management, from the world of application software to the world of system soft-
ware, infrastructure and hardware.

Infrastructures need to be elastic so that mobile applications, applications that are
frequently extended with new functionality, and applications for end users can scale
seamlessly—i.e., that they can deal with widely fluctuating (and also sharply

1.1 A New School of IT 5

increasing) user numbers without changing their behavior so drastically that the
user is disturbed. Elasticity means that infrastructures can be scaled up as well as
down.

Elastic infrastructures are also necessary to ensure that the benefits of agile
software development do not dissipate: If agile development delivers new software
every few weeks (or even days!), it must be released into productive use (or at least
tested for its suitability to be released) just as often. If this does not happen and a
new release is deployed only every few months, the development team’s willing-
ness to deliver features at short notice will run out quite fast. Continuous integration
of software (Cusumano 1992) and the continuous release of new features—even in
heterogeneous infrastructures (Humble and Farley 2010; Duvall et al. 2007)—are
therefore required to ensure that agility will not remain restricted to the develop-
ment side only.

There are many ways to ensure elasticity. Cloud solutions of many types and
suppliers promise scalability. Security concerns about remotely hosted, externally
managed data are numerous and often quite justified. Private clouds try to reconcile
both—unlimited sovereignty over the data, and scalability as in a public cloud.

However, as is usual when trying to reconcile contrary positions, compromises
cannot be avoided: A private cloud is not as scalable as a public cloud—but possibly
sufficient for the application in question. And the complete sovereignty over all data
comes at the price of a very high vertical IT integration—but maybe not all data’s
security is equally critical. The design of suitable private clouds (or comparable
structures) therefore requires a sense of proportion, the critical consideration of killer
arguments, the rational evaluation of risks and requirements and—in the solution
domain—the automation of IT infrastructure provisioning mechanisms. Automation
is particularly important here because it is the only way to avoid the susceptibility to
errors and dependency on individual people that traditionally plagues provisioning
processes.

1.1.4 Resulting Challenges

Mobility, agility, and elasticity influence each other; they entail, overlap, and
reinforce each other: Mobile applications are subject to shorter release cycles and
therefore require more agile process elements. Agile development depends on an
elastic and easily provided infrastructure to ensure that the benefits of frequent
releases reach users immediately. This interplay fundamentally changes the way IT
works, and how it is understood.

However, this change is not just technical in nature. The New School of IT also
means that the significance of IT in companies is changing. Seeing correlations,
establishing new business models, reaching new target groups—the foundations for
this are laid ever more often in IT departments. Enterprises are increasingly “dig-
itizing” themselves, and in the process, enterprise IT increasingly emancipates itself
from its role as the operating departments’ assistant. Enterprise IT is driving the
new developments instead of being driven by them.

6 1 The Need for Tamed Agility

The New School of IT also means that enterprise IT cannot focus exclusively on
classical software systems anymore. Moore (2011) calls these systems the “systems
of records.” Systems of records are characterized by high transaction volume, clear
persistence design, and a high degree of consistence. Besides these, we increasingly
find “systems of engagement” that spill from the consumer world into the enterprise
world. These are systems that consist more of mash-up architectures than traditional
enterprise application landscapes, that are configured by users, that are easily
adapted and frequently released, that focus on the user experience, and that are
subject to a high degree of uncertainty regarding the next features that will be
requested by users.

Development and operation of systems of engagement require other skills and
approaches than systems of records. Therefore, start-ups follow other (more agile)
software processes than large digital enterprises with stable business models.
Things get difficult though when systems of records merge with systems of
engagement, when flexibility and stability need to be reconciled, when stable,
consistent, and scalable systems must be equipped with mobile interfaces. Neither
an agile nor a classical development paradigm is quite suitable for this—rather, a
mix is required: an enterprise IT from the New School of IT. This is an enterprise IT
that has mastered both paces, that is founded on stable base processes, that can
work with established technologies just as with new ones, and that can implement
safe, robust operations processes just as well as short release cycles and continuous
integration—and that has the expertise to decide which development paradigm is
best suited to which problem.

The New School of IT requires companies to rethink not just their enterprise IT,
but also their operating departments, business development, and management. The
most extensive changes, as described in the previous chapter, are of a strategic
nature. Dealing with them and taking advantage of the resulting opportunities is the
top management’s responsibility.

The New School of IT also exposes every IT project manager to uncomfortable
challenges: How are IT projects affected when the operating department is not just
sending down specifications from three levels up, but discussing with the engineers
at eye level? What does it mean if system boundaries become blurred, if clients and
suppliers become partners, if software development and business development go
hand in hand? Where are these requirements reflected in the software development
methodology?

1.2 Agile or Plan-Driven?

Traditional plan-driven approaches seem too rigid for these challenges. The attempt
to provide excessively detailed, precise, and long-term preliminary planning seems
less promising where the boundaries between strategy development and software
development become blurred, where software development has to respond quickly
to changing competitive situations and user expectations, where new technologies

1.1 A New School of IT 7

turn established service and operating models on their head. Rather, continuous
alignment with user and management expectations, a lean product without super-
fluous features, and the acceptance of continuous change is desired. This is typically
the incentive to pursue an agile development approach.

Agile approaches describe a world in which higher priority is placed on pro-
ducing working software than any other artifacts, in which communication between
stakeholders is regarded as more important than the use of tools and modeling
languages, in which the spoken word is assigned a higher value than written text,
and in which an joint understanding of discipline and common sense ensure that all
stakeholders cooperate effectively with each other (Beck et al. 2001). This departure
from the illusion of strict planning certainty may appear threatening to
number-driven managers (maybe also to seasoned IT managers), as it seems to
involve an almost complete loss of control, perhaps even careless blind confidence
in the team’s overall ability to work things out. Is this desirable?

The agile literature promises huge increases in productivity, but only for those
who unquestioningly subscribe to the agile “faith,” it seems. Virtually no
evidence-based studies are available. If an agile project works out, it is due to the
agile method, but if it does not work out, it is due to insufficient faith, the
narrow-mindedness of management, the rigidity of stakeholders, and other factors
that cannot be measured (Meyer 2014). There is a lack of clear, scientifically
founded studies on the usefulness of agile methods, especially studies that provide
evidence of the wonderful descriptions of perceived increases in productivity such
as the 90 % improvement touted by Schwaber and Sutherland (2012), to name just
one example. By contrast, experience from major projects tends to show that while
agile practices are useful, they also require a certain amount of planning certainty
and functional restriction of the features to be developed (Ambler 2001; Cohn
2010).

Agile approaches do not guarantee success. The IT landscape in which the
projects of the New School of IT operate is too complex. Excessive freedom is just
as pointless for these kinds of projects as the attempt to define every detail in
advance.

In particular, the rejection of advance detail planning, requirements elicitation
and design work that is propagated by agile methods quickly reaches its limits in
major projects in established IT landscapes: The integration requirements that are
posed by a heterogeneous system landscape, and the attention to detail that is
required for the correct implementation of established business processes, cannot be
captured in a stream of high-level user stories. In particular, it is virtually impos-
sible to arrive at correct solutions in an efficient manner, using only incremental
cycles of client feedback. Rather, developers and domain experts require a joint
overall understanding of the business processes and IT components in order to
make appropriate architecture, design and technology decisions.

From a management perspective, agile practices, such as self-organizing teams
and a lack of commitment to time and budget requirements, are problematic,
especially in IT projects that are developed in a client–contractor relationship and

8 1 The Need for Tamed Agility

not in-house: Employees in a start-up generally have sufficient intrinsic motivation
to focus on a specific goal; and in internal projects, which are not overly critical to
business, a detour here or there is forgivable (and may even promote innovation or
at least instruction) as long as it does not exceed the budget framework. However,
in complex projects, and especially in contractor relationships, a concrete idea of
the target, direction, and expected effort of the project is essential in order to limit
the economic risk for all stakeholders and ensure the smooth functioning of
ongoing business operations.

A purely agile doctrine therefore does not quite seem to fit into the world of large
companies: Giving up on detailed specifications altogether because it seems
impossible to determine precisely which features can be delivered at which price is
not acceptable for most clients. Careful advance consideration is always helpful,
even if the results are known to be preliminary. The agile belief that talking is
fundamentally better than writing may also be met with resistance in large com-
panies, especially when dealing with complex software systems that are created by
many stakeholders and supposed to be used for a long period of time. In such
circumstances, the durability of the written word has its advantages. After all,
despite a basic acceptance of the benefits of agile approaches, most clients still want
to know roughly how expensive their software will be, which features can be
delivered at what cost, and how long the development will take. As charming and
unique as agile approaches may be in theory, in commercial practice they are
quickly faced with reasonable expectations of planning certainty, coordination, and
reliability.

Many of the aforementioned problems are due to an excessively dogmatic
application of the agile principles, which does not take the reality of complex IT
projects into account. However, this dogmatic approach can be relaxed without
having to reject the key advantages of agility—responsiveness to changes and
leanness of processes and products. Ultimately, in practice, strict adherence to the
waterfall model is just as rare as the blind application of agile practices. Many
approaches from the agile world can be logically applied in almost all projects, even
in large and dispersed teams, and also in a manner that respects well-defined
processes and synchronization points (Leffingwell 2011).

Upon closer inspection, many of the seemingly “radical” ideas in the agile
literature are dampened by disclaimers not to overdo it, to communicate extensively
and to apply common sense, but without specifying what a healthy balance of
agility and planning might look like. There is certainly no panacea in this respect, as
agile approaches differ depending on the project, stakeholders, and boundary
conditions. Appealing for common sense is an obvious measure, but is unsatis-
factory from a methodological perspective. It is certainly required, but is not an
adequate condition for successful projects.

Boehm and Turner (2003) discuss dimensions of software development projects
that may provide guidance for the decision of agile versus plan-driven methods for
specific projects. These include purely local factors, such as project scale and
criticality, as well as factors that relate to the corporate environment. Specifically:

1.2 Agile or Plan-Driven? 9

• Scale: In agile projects, the focus is on the spoken word. Documents and models
beyond the source code are regarded as deviations from the strict agile doctrine.
But the spoken word has limited reach—only among small teams will the
spoken word be sufficient to create joint understanding. Large projects with
many stakeholders generally require written specifications in order to ensure that
all stakeholders know what is required when. This is more plan-driven than
agile. As a result, a general guideline is that small projects are more likely to
consistently apply agile practices.

• Criticality: Does the system deal with money, human life, or even many human
lives? If this is the case, a higher level of planning certainty, verification of
software features, and proven comprehensive testing is advisable. Proponents of
strict agility might argue that nothing can better lead to higher software quality
than agile techniques. Let us assume that this is correct for a moment. Let us
even assume that this applies not just to small, but also to large teams. Even
then, the highest probability of correct software is not sufficient when dealing
with safety-critical software. Sometimes, the correctness of the software has to
be demonstrated. To do so, it must be specified. Yet, there is no place for this in
pure agility doctrine. As a result, the following general guideline applies: The
more critical a project, the more plan-driven elements and the more “big
up-front” activities (Meyer 2014, Chap. 3) are required.

• Dynamism: The more dynamic the project context and the application environ-
ment of the software to be created, the greater the benefits provided by agile
techniques. The strengths of agile techniques are particularly pronounced when a
high level of dynamism is required. Dynamism may have completely different
triggers: It may be caused exogenously, because a company’smarket, in which the
software is to be used, is moving and it must be assumed that this movement will
have an impact on the software (during its development or subsequent use). It may
be organizational, because the company is currently being reorganized. Reasons
for dynamismmay also lie in the project, because certain requirements are fiercely
contested, conflicts are foreseeable, or simply because an inadequate amount of
domain knowledge exists. The latter form of dynamism does not necessarily have
to affect the entire software equally. Perhaps some parts are well understood and
easy to coordinate and others are not. As a result, a general guideline is that the
more dynamic the context, the more a project tends toward agile techniques.

• Personnel qualification: While it would be desirable, not every team is fit for
agile development. Agile development requires the involvement of clients,
users, and the application domain. If the team does not have the relevant skills or
know-how, the transfer of knowledge between users and developers generally
has to be managed in a non-agile manner (i.e., via extensive specification
documents), and often fails. A lack of domain knowledge by developers puts the
project in jeopardy from the very beginning. If one still wants (or has) to take
that risk, neither a purely agile or purely plan-driven approach is likely to work,
and a situational mix of both approaches is required. The following general
guideline applies: The greater the language difficulties between the development

10 1 The Need for Tamed Agility

team and users, the greater the dependence on an appropriate mix of agile and
plan-driven instruments in order to compensate for this deficit.

• Culture: Companies with the same business purpose, same size, similar prod-
ucts, and the same market may differ culturally despite their commonalities.
Cultural differences are often manifested in how errors and requirements for
change are handled. On the one hand, some companies require the minutes of
meetings to be signed by all stakeholders and, in some cases, the length of the
change histories exceed the useful part of documents. On the other hand, some
companies focus on recording just the key results. They accept the fact that
some decisions cannot be transparent for all stakeholders, that back-and-forth
discussion is required, and that decisions can simply be interpreted differently.
Depending on an individual’s perspective, these contradictions can either be
referred to as “control-focused versus pragmatic” or as “careful versus casual.”
Both are just as partisan as the contradiction between “plan-driven versus agile.”
In fact, a company’s culture often either propagates the use of agile techniques
(“agility is genuinely necessary”) or their limitation (“that level of agility is
really not acceptable here”). A general guideline is that control-focused/careful
company cultures generally tend toward plan-driven approaches and could
benefit from agile injections, while the opposite is true for pragmatic/casual
corporate cultures.

1.3 A Pragmatic Middle Ground

As we can see, the challenges of the New School of IT call for an approach that
occupies a pragmatic middle ground between traditional and agile software
development processes, i.e., an approach that does not attempt to guarantee plan-
ning certainty, trust, and value orientation based on comprehensive specifications,
but that also does not expect these qualities to emerge automatically through the
free interaction of forces.

Rather, large, digital companies require an approach of tamed agility in order to
combine the necessary flexibility with essential rough planning (budget planning,
portfolio planning, and IT controlling): Tamed agility is a middle ground for IT
projects that can benefit from the flexibility of agile approaches, but must satisfy
expectations with regard to business complexity, environment conditions, con-
tractual requirements, etc., which make stricter preliminary planning essential.

Tamed agility combines techniques from agile approaches with planning and
management methods. However, its primary aim is to ensure that all stakeholders
develop a common understanding of what the essential requirements are at the start
of a project, namely the requirements whose appropriate implementation determines
the acceptance of the software (McMenamin and Palmer 1984). But how can these
essential requirements be determined? How can they be separated from the many
other, possibly also relevant, but non-essential requirements? And how can a vision

1.2 Agile or Plan-Driven? 11

of the future system be formed based on the knowledge of the essential require-
ments? This is impossible without abstraction, without temporary omission of
irrelevant details, and a focus on the essentials—and it is especially impossible
without a readiness for compromise and respect for application knowledge.

Before we look at how this can be achieved in software development, let us first
take a step back and consider a situation that has nothing to do with software:
Imagine a CEO who would like to understand what his new company building will
look like and how it will function. He does not want to know exactly how the
heating system will work, how thick the thermal insulation is, or how much air is
exchanged by the ventilation system every hour. But he would like to know what
the building looks like, where his office is, and what the view from his office is like.
Probably, he is not aware of any of this and simply asks the project manager about
the status of the building planning. She dutifully sends him 15 PDF files that
provide information about everything: the view, the office layout, the building
services, the access concept, and much more. The manager now realizes that he did
not want this level of detail. After some back-and-forth discussion, it may turn out
that a wood model stands in the project office and that the most important building
plans have been attached to the office walls. Much better than 15 PDF files—not for
every purpose, but certainly for the purpose of giving an idea and an anchoring
point from which a range of further questions can be asked and answered.

This example shows that different communication situations require different
models. A manager requires an overview model. This does not need to be formally
precise, nor does it need to be overly detailed. Rather, it must support intuitive
understanding. The authority processing the building application requires a model
of the building to be constructed with precise dimensions and specifications. An
approximate model is not sufficient in order to evaluate things like the maximum
eaves height and compliance with clearance requirements. The building authority is
less interested in other details though, such as the technical design of the instal-
lations, but those are relevant for the heating engineer. And even other models are
obviously required for the interior design.

Software development requires models that are at least as diverse. This may be
because the final artifact, the delivered software, is itself only a model of a section
of the world. Models from which software is to be generated require a different
level of detail and precision than models that only need to clarify the purpose, the
core aim of the project, and the look and feel of the software to be created. Such
models are especially required in the early phases of software construction. And this
takes us back to the CEO who wants to understand his building: Just as 15 PDF files
cannot help him, a manager who just wants to get an idea of a software project’s
core aim and state will not learn much from a 500-page specification.

As a result, we can conclude that vague, incomplete, perhaps even inconsistent
models can be useful in the early phases of software development. In some cases,
they may even be just the right communication tool. Completeness is not the aim in
these early project phases. Instead, the aim is to find out what does and what does
not belong into the software to be created. The boundary between the actual system
and its context must be defined. And, in particular, the most important requirements

12 1 The Need for Tamed Agility

must be identified, independently of their solutions. This is not just because these
essential requirements must not be overlooked, but primarily because they clarify
the key requirements for stakeholders with no knowledge of the application
domain. Abstract models, which can be understood by all stakeholders, are par-
ticularly helpful for the initial requirements scoping of a software project.

Such an approach is most successful if the models are jointly prepared. If a
model is really prepared jointly (rather than just one person preparing everything
independently, and the others just approving the result), verbal communication and
the joint struggle to find the best solution are unbeatable in terms of efficiency.
Rough resource estimates are made based on the jointly prepared (and thus jointly
understood) models (keeping in mind that this kind of estimate can only be rough
and provisional).

Development then takes place using the necessary amount of agility, as late
requirements are inevitable and priorities may change during development. Late
requirements are exchanged for early requirements to ensure that the software being
created does not become increasingly bloated. This not only means that new
requirements are added, but that a continuous cleanup also takes place. Perhaps a bit
less software may be enough after all, and the resource estimate is adjusted with
every step toward a more solid structure and design of the software. In the design
itself, the commercial risks are fairly distributed between the client and the con-
tractor so that all sides are motivated to create the leanest possible software. This
kind of tamed agility then no longer seems threatening, not even to the IT manager.

1.4 Tamed Agility in Practice

Tamed agility is not just a buzzword for another agile philosophy. It is manifested
in specific instruments and procedures for the scoping, designing, development, and
billing of complex agile projects, which are described in the following chapters:

The Interaction Room (Part II) helps teams obtain an overall picture of the
business and technology, effort and risks, and the environment and dependencies
without getting lost in extensive specification documents. The Interaction Room is
not just a name, it is also a real, physical room. It is the central information and
communication point in the project, where the focus is on the interaction between all
stakeholders. Stakeholders outline models of the business processes to be supported
and the data to be managed as well as the relevant application landscape on the walls
of the Interaction Room. This occurs using free syntax, without specific notations, in
a way all stakeholders understand. Particularly critical elements, i.e., special value,
effort, or risk drivers, are highlighted with annotation symbols. These annotations
allow the stakeholders to point out what is important to them and why. This occurs
through personal interaction with one another, not through long-winded specifica-
tions or asynchronous communication. The live interaction results in a more direct
development of a joint understanding of the scope of the project and the expected
complexity of individual features, without the need for extensive documentation.

1.3 A Pragmatic Middle Ground 13

During the course of the project, the adVANTAGE contract model (Part III)
then ensures that the agility that all stakeholders desire does not get trapped in rigid
contracts, acceptance, and billing modalities, but that it is actually applied in
practice as part of a fair cooperation between the contractor and the client. Sprints
are planned in the Interaction Room, new and old requirements are weighed against
each other, effort estimates are refined with a view toward the “big picture,” and
actual progress is compared to plans. The adVANTAGE model controls the
sprint-based project billing and, in contrast to fixed-price or time and materials
projects, ensures that the price risks are fairly distributed between the client and the
contractor. All stakeholders are united in the goal of developing lean software,
because additional effort is split between both sides.

References

Ambler SW (2001) Agile modeling and the Rational unified process (RUP). http://www.
agilemodeling.com/essays/agileModelingRUP.htm. Accessed 23 Feb 2016

Andreessen M (2011) Why software is eating the world. Wall Street Journal, 20 Aug 2011. http://
www.wsj.com/articles/SB10001424053111903480904576512250915629460. Accessed 23
Feb 2016

BeckK et al (2001)Manifesto for agile software development. http://www.agilemanifesto.org. Accessed
23 Feb 2016

Boehm B, Turner R (2003) Balancing agility and discipline: A guide for the perplexed. Addison-
Wesley

Cohn M (2010) Succeeding with agile. Addison-Wesley, pp 166-171
Cusumano MA (1992) Shifting economies: From craft production to flexible systems and software

factories. Research Policy 21(5):453–480. doi:10.1016/0048-7333(92)90005-O
Duvall PM, Matyas S, Glover A (2007) Continuous integration: Improving software quality and

reducing risk. Addison-Wesley
Gartner, Inc. (2012) Gartner says every budget is becoming an IT budget. http://www.gartner.com/

newsroom/id/2208015. Accessed 23 Feb 2016
Humble J, Farley D (2010) Continuous delivery: Reliable software releases through build, test, and

deployment automation. Addison-Wesley
Leffingwell D (2011) Agile software requirements: Lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley
McMenamin SM, Palmer JF (1984) Essential systems analysis. Yourdon
Meyer B (2014) Agile! The good, the hype and the ugly. Springer
Moore G (2011) Systems of engagement and the future of enterprise IT: A sea change in enterprise

IT. http://www.aiim.org/futurehistory. Accessed 23 Feb 2016
Ries E (2011) The lean startup: How today’s entrepreneurs use continuous innovation to create

radically successful businesses. Crown Business
Schwaber K, Sutherland J (2012) Software in 30 days: How agile managers beat the odds, delight

their customers, and leave competitors in the dust. Wiley, p 6

14 1 The Need for Tamed Agility

http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.agilemanifesto.org
http://dx.doi.org/10.1016/0048-7333(92)90005-O
http://www.gartner.com/newsroom/id/2208015
http://www.gartner.com/newsroom/id/2208015
http://www.aiim.org/futurehistory

Part II
The Interaction Room

2A Room for Ideas

Obviously, software development is a form of modeling—after all, source code is
ultimately just a model of a world view. Modeling requires abstraction, i.e., the
omission of details. This omission does not just take place at a purely syntactic
level. Much more important (and more difficult) is omission at the functional level,
i.e., the decision on which section of reality the software should represent. The
decision to omit certain functionality requires an understanding of the benefits that
are expected from the software to be created. And it also requires a great deal of
courage—because the nature of modeling and the uncertainty of software devel-
opment mean that occasionally, the wrong things will be omitted. This courage is
essential though, because including all conceivable ideas in the model to stay on the
safe side (and implementing them in the product) leads to bloated software that is
expensive to create and expensive to maintain.

Making reasonable decisions on a software’s scope is only possible with domain
knowledge. For example, let us assume that we have no idea of what the exami-
nation system at a university looks like. It seems extremely unlikely that we would
be able to provide the correct responses to the question of what is required in an
examination information system to be used by examination offices, lawyers, and
university lecturers. In other words, a distinction between what is important and
what is unimportant requires knowledge of the application domain.

This is where the Interaction Room comes into play. It brings all people
responsible for developing the software product into the discussion. This most
likely includes developers and future users as well as technology and business
experts. They must develop a common idea of what the software to be developed
must provide, what is essential and what is expendable, what is possible using the
technology, and what should be left out. All this is necessary to ensure that the
software is not just correctly developed (developers with a certain amount of
experience can generally do this alone), but to ensure that the correct software is
developed—software that provides the greatest possible benefits given the available
resources. To evaluate this, developers must understand the objectives and priorities
of future users. To achieve this, the Interaction Room (IR) does not follow the

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_2

17

myths and rituals that are often seen in software engineering, especially those that
provide the illusion of completeness and consistency.

The Interaction Room is a physical room whose walls are covered with models
of business processes, business and physical objects, as well as user journeys and
system landscapes. It is a room in which communication is encouraged and facil-
itated, and whose finite walls make it clear that the focus must remain on what is
important. It is a room which makes it obvious that a business data model should
better contain 40 rather than 140 object types, and that 15 core business processes
can describe the purpose of the system more clearly than 50 special cases.

The work in the Interaction Room does not follow a completely closed
methodology (in the sense of a number of steps that lead from a problem to a
solution in a certain order). Rather, the following chapters describe a range of
method fragments that can be combined in different ways in different project
situations.1

An Interaction Room promotes moderated and targeted communication between
a project’s stakeholders, focuses on what is important and ensures that required
features are evaluated and prioritized in light of the desired added value. The latter
occurs using annotations, which allow every stakeholder to express their ideas of
the key objectives and features of the desired solution. An Interaction Room sup-
ports the scoping of projects as well as the pursuit of project progress at a quali-
tative and quantitative level. It creates transparency and allows stakeholders to
jointly coordinate the direction of projects, respond to risks and changing expec-
tations, and continuously work toward creating a lean software solution.

2.1 Key Interaction Room Principles

The Interaction Room ensures that the key principles of every project, namely
abstraction, value orientation, communication, and transparency, do not just remain
empty words, but instead become visible and tangible:

• The principle of abstraction demands a focus on the key relationships and
genuinely essential decisions. The aim is to leave out details at certain levels of
abstraction, while remaining aware that they will have to be filled in at a later
date and that these details may subsequently play an extremely important role.
Which details may be omitted, and where, is the subject of agreements,
methodology, pragmatism, and common sense. In particular, models overloaded
with details are more dangerous than incomplete models, especially in the early
stages.
In the Interaction Room, the abstraction requirement is manifested in the
finiteness of the walls available for model sketches. It ensures that every

1However, for the sake of practicality, we will continue to refer to the sum of the individual
method fragments as the Interaction Room method.

18 2 A Room for Ideas

stakeholder is aware that there is not enough space for every minor detail and
that there is a need to focus on what is actually important.

• The principle of value orientation demands that the key criterion for the
question of whether features are required, and the amount of effort to be spent on
their implementation, is how important these features are for value creation
within the business model to be supported by the software. Basically, this relates
to nothing more than the decision on how the expensive activities of software
development (such as specification, usability engineering, performance engi-
neering, and security engineering) are focused on different software compo-
nents. As a general rule, software is not used homogeneously (in the sense that
all parts are used with the same intensity), it is not homogeneous with regard to
risk (in the sense that all parts can cause the same losses), and it is also not
homogeneous in any other quality. Given these inhomogeneities, it is important
to keep software lean and focus efforts where they generate the most value.
In the Interaction Room, value orientation is expressed by model annotations.
They explicitly highlight particularly important features and their dimensions.
A so-called requirements exchange (Sect. 8.3) also reinforces the awareness that
all features have their price and that only the features that genuinely add value
should be implemented.

• The principle of communication demands that all stakeholders are involved in
defining the objective of a development project and in designing a software
system. It is not necessary that every individual person has to be involved in
every detail, but all groups should be represented in the relevant specifications
and decisions. This involvement ensures that individuals consider the project to
be “their” project, are committed to lean solutions, and participate actively.
The Interaction Room acts as a central communication point and ensures that
communication takes place face-to-face and at eye level, not just by exchanging
e-mails and specifications. It is used to (re-)negotiate priorities, to assess the
effects of late requirements, and to exchange early and late requirements. In
short, it is used for everything that merits actual discussion, and everything that
would remain a volatile unspoken perception rather than an explicit statement in
written communication.

• The principle of transparency demands that preliminary or final specifications
and decisions are made accessible to all relevant stakeholders (in the broadest
possible sense). The same applies for risk considerations and qualitative and
quantitative progress. Stakeholders only remain committed based on the prin-
ciple of transparency. Only then can they understand and support decisions and
interpret these appropriately during their detailed implementation.
The Interaction Room displays the current state of the project at all times and
represents the central orientation point and the basis for transparent structures
and processes in the project.

2.1 Key Interaction Room Principles 19

http://dx.doi.org/10.1007/978-3-319-41478-2_8

These principles apply for all kinds of projects. However, software projects
frequently have to deal with distinct challenges that prevent the consistent imple-
mentation of these principles. The following sections identify these challenges and
describe the strategies and specific operationalizations that are employed in the
Interaction Room in order to deal with them.

2.2 Involve Domain Experts

Curtis et al. (1988) documented that software development runs into difficulties (in
the sense of project cancelations, significant delays, or budget overruns) more
frequently the less knowledge the developers have in the application domain. In
short, if you have no idea of what is going on, you should not be developing
software. Although this realization was made more than 25 years ago and is just
common sense, there is little reason to doubt that “adequate domain knowledge” is
still not adequately considered as a factor for the success of software development.

The direct solution for the problem of inadequate domain competence seems
clear: Only individuals who have understood the application domain, who have the
same awareness of the problem, and who do not require an explanation of what is
particularly important and difficult should be allowed to develop software. Access
to genuine application domain experts should also be ensured at all times. This
would be the perfect solution in an ideal world.

However, things are obviously much more difficult in real life: Perhaps a couple
of experts who are fairly competent in the application domain are available. Perhaps
it is even possible to temporarily involve an application domain expert with
visionary foresight and an understanding of the issues. However, in most cases, a
number of developers will not be entirely familiar with the application domain. And
it is highly likely that the team’s general, rough understanding of the problem will
need to be supplemented with the details relevant to this particular project. In other
words, it is almost always necessary to define business connections.

This knowledge transfer is not a one-way street though, where the business
stakeholders hold all the solutions and the technical stakeholders just need to
implement them. Rather, both the business and the technical side may have more or
less feasible solution ideas that must be brought to a compatible level of abstraction.
In the words of requirements engineering, this means that solution-independent
requirements (i.e., based exclusively on the business application domain) and
solution-based requirements (i.e., only able to be expressed based on a technical
solution idea) have to be compared and aligned. Completely different stakeholder
terminologies and backgrounds come together at these very early stages and require
the involvement of all stakeholders in an insight-driven process.

The fundamental idea of the Interaction Room is that the application domain
knowledge required for the project should be described in the simplest possible
terms. Software engineering myths, such as completeness, consistency, and syn-
tactic accuracy, must play a secondary role. The primary aim is to ensure that the

20 2 A Room for Ideas

problem being dealt with is clearly described, that the key relationships are noted,
and that all stakeholders use the opportunity to indicate the aspects they perceive to
be particularly important, difficult, or uncertain.

To make sure that every individual is actually involved, it is important that this
communication takes place in an open environment and an atmosphere that is
conducive to brainstorming, in which all stakeholders can talk to each other and
express their ideas as they see fit, and where a hegemony of individual stakeholders
is prevented. This allows individual and role-related priorities to be balanced and
harmonized. All stakeholders, especially the business and expert representatives,
must be placed in a position to express their ideas and objectives without barriers to
entry. Being able to write and draw are the only requirements for participating in an
Interaction Room. No modeling language needs to be learned, and no tools need to
be used. The stakeholders create only box-and-line diagrams. This ensures the
lowest possible barrier to entry, and thus prevents any one person from dominating
the discussion due to their higher technical knowledge (in the form of language or
tool skills).

Project challenge: Thin spread of application domain knowledge.
Solution strategy: Involve domain experts and enable them to discuss
with technical experts.
Operationalization: The IR method describes explicit expectations of the
skills and attitudes of the stakeholders invited to the IR workshops
(Sect. 3.5) and defines simple modeling languages that can be intuitively
understood by all stakeholders (Sect. 3.1).

2.3 Refine the Scope Continuously

Systems of records must be integrated into the application landscapes of companies.
Often, these integration tasks are particularly risky and difficult to assess. This is
because the systems to be integrated are old, their interfaces are not well docu-
mented, and infrastructures that were not designed for this purpose need to fit
together. However, integration engineering techniques (Gold-Bernstein and Ruh
2004) at least provide an overview of the integration tasks and allow the desired
types of integration to be determined. This means that the boundaries of the system
to be developed, its context, and the context boundaries can be defined and
described, as shown in Fig. 2.1.

The system context is the part of the system environment that is relevant for
defining and understanding the requirements of the relevant system. It provides
useful features and systems to be integrated, which are available without having to

2.2 Involve Domain Experts 21

http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_3

be created. The system boundary separates the planned system from its environ-
ment. It isolates the part of reality that can be shaped and changed as part of the
development process from aspects in the environment that cannot be changed by
the development process. A clear picture of the system boundary is only provided
once the requirements are relatively stable. This may occasionally be the case after
the initial scoping, but often takes until well into the implementation phase. This
means that the boundary may also shift slightly in some instances: Parts of the
system context may become part of the system because the feature originally
assumed in the context is not available, or because the context cannot be adapted.
Or, parts of the system are transferred to the system context because parts that were
initially classified as “to be implemented” have been located in the context and do
not have to be built from scratch. The context boundary ultimately separates the
relevant part of a planned system environment from the irrelevant part, i.e., the part
of the environment that has no influence on the planned system and its
requirements.

But systems of records are only one side of the coin. The other side is the
systems of engagement, whose features are generally not fixed at the start of a
development project. Systems of this type tend to emerge rather than being strictly
planned. It is virtually impossible to plan how these systems will be embedded into
their environment. The integration requirements tend to grow in a similar manner to
the functional requirements during the development process. A clear separation
between the system to be developed, its context, and the external environment is not
possible; the boundaries remain blurred.

This is not a bad thing, as long as all stakeholders are prepared to bear the
resulting consequences. The consequences include the fact that the integration costs
cannot be calculated in advance, and only coarsely even during development; that
the system’s architecture and its functional design are emergent, i.e., only arise
during development; and that this means that some of the traditional planning and
controlling instruments are ineffective.

Fig. 2.1 System boundary, context, and external environment [adapted from Pohl and Rupp
(2015)]

22 2 A Room for Ideas

Project challenge: Project boundaries remain fuzzy for a long time.
Solution strategy: Explicitly show and discuss what is part of the system
and what is not.
Operationalization: The integration canvas (Sect. 5.5) provides an
explicit view of the system under development and its interfaces with the
environment.

2.4 Favor Relevance Over Completeness

In many projects, the key aspects are sprinkled over a 500-page document in which
the 250 key business processes are noted, while the object model looks like a large
wallpaper. These types of documents and artifacts are useful—for those who cre-
ated them. It is likely that the author sorted, structured, and classified the infor-
mation in the document meticulously. It is just a shame that virtually nobody is able
to use these types of documents for their required purpose. How could they? Who is
able to read 500-page documents and keep an eye on what is actually important?
Yet, these kinds of documents are still reviewed and quality assured. The results
generally get stuck at the syntactic level. Some areas have a large number of
spelling mistakes, cross-references are missing in other areas, and there will cer-
tainly be something missing from the glossary. This kind of review does not pro-
vide any real benefits. How can it? First you need to know what really matters, what
the essential requirements are. This “big picture,” this abstract view, cannot be
provided by a 500-page document.

Obviously, just outlining the “big picture” without providing any models and
specifications with the relevant details can also not work. The devil is often in the
details, and does it not seem reasonable to consider those features that appear
difficult and tedious to implement in greater detail? For all the abstraction, is it not
sensible to drill down into detail here and there? Sure, but where is the best place to
start drilling? Is it where the ground is unknown and clarifications are expected
from the drill down? Or is it not more tempting to drill where you will likely
encounter what you expected?

Industrial project experience shows that detailed drill-downs often do not focus
on the points that bear risks of disaster, but rather just those points where nothing
unforeseen can occur anyway. This quickly leads to object models with a great level
of detail in the representation of addresses and individuals, but not in areas relating
to the retroactive cancelation of active contracts (or other difficult aspects). This
may be due to the fact that humans prefer to focus on the known and because
insight-driven processes require effort. Typical computer scientists (in the broadest
sense) can model, so they model. However, they are not directly familiar with

2.3 Refine the Scope Continuously 23

http://dx.doi.org/10.1007/978-3-319-41478-2_5

retroactive contract cancelations, but they are aware of the relationship between
addresses, address supplements, and natural and legal persons (where they can even
apply inheritance). Alas, drilling down at this point is comparatively useless. It
provides no new insights and does not reveal any risks. Instead, it leads activity and
attention away from the truly difficult parts.

But it gets worse. If the modeler has now exerted all their available modeling
artistry in the address modeling, they generally want to present their model.
A business representative is now confronted with compositions, aggregations,
associations, and inheritances. After this, he has to present a typical customer
support process. It seems only human that this, too, will now involve some exag-
geration. Look at the position in which the business expert is placed. If the mod-
eling of addresses is this complicated, then the business process should certainly not
seem downright trivial? So the business expert shifts the focus from a typical
process flow to the special case of a client who has already signed but wants to
withdraw, wants to emigrate, but dies before crossing the border. The parity of
useless complexity has been achieved; business and technology are both so com-
plicated that they can never be understood by the other side. At this point, one refers
to “analysis paralysis” (Langley 1995).

In the Interaction Room, there is no requirement to describe a system at such a
level of completeness and detail. Stakeholders only need to specify the 15 key
business processes (each with a maximum of 15 activities), the 40 key object types,
and describe the 20 key systems to be integrated. Is this enough? Not only is this
enough, it can already lead to all-day discussions even at this level of abstraction,
while everything else just provides a distraction from what is important. Admit-
tedly, it does not matter whether there are 15 business processes or 17, whether
there are 40 object types or 45. But there are certainly not 150 business processes,
no wallpaper-size diagrams and no 500-page documents. This focus on what is
important works in the Interaction Room because models are sketched on white-
boards. The finite nature of whiteboards ensures that the principle of abstraction is
embedded in the room.

Detailed considerations are naturally also permitted in the Interaction Room, but
only where they promise knowledge acquisition and where they are clearly
identified as drilling down beyond the big picture. Appropriate drilling points are
identified after the abstract representation (first the abstract level, then the detail)
based on the stakeholders’ assessments of complexity and feasibility. Points are
only considered as candidates for drilling down if they are assessed as complex, not
completely understood and of uncertain feasibility by the majority of stakeholders.

Project challenge: Stakeholders get lost in discussions of details.
Solution strategy: Clearly highlight what is important and leave out what
is trivial—favor relevance over completeness.
Operationalization: The finite nature of the Interaction Room’s walls,
and the limits on the number of artifacts suggested for each canvas,

24 2 A Room for Ideas

enforces a focus on the most important points that can be modeled
(Sect. 3.1). Model annotations highlight where drilling down into detail
promises further insights (Sect. 3.3).

2.5 Favor Clarity Over Syntactic and Semantic Precision

Most software projects require the cooperation of business departments and en-
terprise IT. This sounds like communication difficulties might be involved: Dif-
ferent languages are spoken; common terms have different connotations; different
perceptions exist in relation to the purpose and aim of abstraction and structuring.
This problem is frequently aggravated by the fact that enterprise IT prescribes the
tools to use for defining the common model. A business area representative then has
to understand the difference between association, aggregation, and composition,
even if all he wants to say is that a connection exists between the application and
the contract.

Enterprise IT tends to move the modeling of application-related matters to
familiar territory, generally without any malicious intent, which leaves the business
departments in the dark. Nobody wants to learn the Unified Modeling Language
(UML) or any other language. The business departments generally feel comfortable
with box-and-line diagrams without specific syntax and semantics. This is naturally
not a permanent solution—over time, models need to become more precise,
especially at the difficult points, so they need to be assigned precise semantics. But
not necessarily from the start, when the focus should primarily be on ensuring that
no unnecessary communication barriers are established.

If the aim is to structure the communication process between enterprise IT and
the business departments such that specialists can share their expertise in the
simplest possible manner (so that every individual can express what they consider
to be important), then entry barriers to describing business relationships must be
kept as low as possible. Issues must be modeled so that application domain experts
can participate without establishing unnecessary barriers. These kinds of unnec-
essary barriers particularly include instruments and modeling languages that distract
from the content and focus on methodology and syntax.

Besides the barriers raised by modeling languages and instruments in commu-
nication between business areas and enterprise IT, it may also be the case that
business stakeholders who feel forced to deal with this kind of information com-
plexity, also feel that they must ensure that business relationships do not seem too
trivial, and so attempt to overemphasize their complexity by detailing pathological
marginal cases. This quickly leads to the escalation of complexity, which is dia-
metrically opposed to the essential focus on basic relationships in the early phases.

2.4 Favor Relevance Over Completeness 25

http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_3

The Interaction Room supports informal sketches and the use of basic cultural
techniques—drawing, writing, annotating—that do not establish barriers in the
early phases of alignment between business and IT experts.

Project challenge: Correctness and consistency requirements of many
modeling languages foster complexity and obscurity rather than clarity.
Solution strategy: Focus on content rather than syntactic correctness and
semantic precision of early models.
Operationalization: The notation used on the Interaction Room canvases
is deliberately limited to a minimum amount of syntax (Sect. 3.1).

2.6 Define Value and Effort Drivers

The first question that is almost always asked when developing software systems is:
What is essential, which features are actually required, and which ones are indis-
pensable? Indispensability in the sense of value orientation means that the features
to be provided actually contribute to the company’s value creation and that this
value creation would be lower without the features (Wohlin and Aurum 2006).
Only for very small and manageable systems can this question can be answered by
a single individual. For larger systems, a single expert who can individually assess
and decide what needs to be prioritized is generally not available. Rather, several
experts need to be asked. This naturally leads to fuzzy criteria and discussions.
Deciding whether an issue that is considered indispensable by one expert is actually
indispensable, and deciding how the various indispensable features can be weighed
against each other, requires considerable knowledge of the application domain.

And because the true value of software (anchored in the value created by the
company using the software) is virtually impossible to measure, most attempts to
measure the usefulness of software provide different results. Instead of measuring
whether the developed software adds value and whether it is worth the effort to
create the software, the productivity of the software development is assessed using
measures that do not relate to the value added. The fact that counting code lines
does not provide any information on the value of software is clear to anyone who
knows the meaning of “copy and paste.” The uselessness of function points
(Behrens 1983) and weighted function points (McConnell 2006) is not immediately
apparent, but becomes clear when you consider that the true benefit of software
means achieving a business-related objective with as little effort as possible. The
fact that the same objective can always also be reached with more user interaction
and more database access is irrelevant. More complicated software does not nec-
essarily provide greater benefits.

26 2 A Room for Ideas

http://dx.doi.org/10.1007/978-3-319-41478-2_3

Unfortunately, traditional methods of measurement are only based on quantity.
This sanctions precisely what is particularly important to us, rather than promoting
it: Lean software that fulfills its purpose has the lowest possible function points and
the least possible lines of code. However, the fulfillment of purpose in the sense of
value orientation cannot be measured algorithmically. Fulfillment of purpose can
only be assessed in light of the intended application. And this requires an under-
standing of what the user wants to achieve with the software. What is the added
value? What is genuinely essential? Questions such as these have long been dis-
cussed [e.g., essential use cases (Constantine and Lockwood 1999) or value-based
software engineering (Biffl et al. 2006)] without reaching any clear solutions.

The Interaction Room enables stakeholders to define different dimensions of
“essential.” Stakeholders from all areas indicate what they consider important and
form a joint picture of the value drivers: What are the features based on which we
are actually building the system? Who expects what from these features? What
features does this kind of system need in order to run? Are these actually needed?
This value calibration does not just occur once at the start of the project, but
continuously. In doing so, the Interaction Room helps to ensure that the focus on
values anchored in the application domain is omnipresent for stakeholders. The
value of features also plays a key role during prioritization in the adVANTAGE
contract model (Sect. 15.2).

Project challenge: Losing track of the business value.
Solution strategy: Define value and effort drivers and thus come to a joint
understanding of what are the really important requirements of the project.
Operationalization: In the Interaction Room, value, and effort drivers are
highlighted by graphic annotations that are attached to model elements
(Sect. 3.3).

2.7 Manage Late Requirements

A typical phenomenon is that of a late requirement: Regardless of the effort spent
on the initial requirements analysis for information systems, it is virtually certain
that additional requirements will arise during development; because information
systems are sociotechnical systems, because user requirements change over time, or
simply because new ideas are developed once the initial solution approaches are
defined.

2.6 Define Value and Effort Drivers 27

http://dx.doi.org/10.1007/978-3-319-41478-2_15
http://dx.doi.org/10.1007/978-3-319-41478-2_3

Changing requirements are a threat to projects [as described by Curtis et al.
(1988)] but are unfortunately also inevitable. Changing requirements are risks
inherent in software development—they cannot be prevented, they can only be
managed.

Traditional responses to this dilemma all lead to what is commonly referred to as
“change request theater”, which still causes image problems for the software
industry: Change request theater means that clients and developers split hairs over
the question of what was and was not promised, what can and cannot lead to
additional costs, and who is responsible for the additional costs.

This theater illustrates that striving for complete requirements for all stake-
holders is futile. Should requirement documents be completely eliminated then,
because it is clear that they quickly become outdated anyway? Or should we
completely eschew the requirements analysis, because it is clear that it will not be
complete and conclusive? If we leave responses tainted by agile myths to one side,
the answer is clear: Requirements must at least be recorded when they relate to
information systems that are to be used by a large number of people over a long
period of time, or if the development process has to lead to a prescribed result. If
both are not the case, then a requirement document may be dispensed with, if
possible.

In the Interaction Room, late requirements are handled so that changes are ini-
tially dealt with at an abstract level. The model sketches describe the most important
features of the software to be developed. Late requirements that are recorded at this
level are very important as they affect the basic functionality. The effects of these
kinds of changes must be discussed, both with regard to their business and technical
impact as well as their effect on budgets, deadlines, and priorities. Other late
requirements may arise, but are of a secondary nature. This does not mean that they
cannot also have a significant effect in some cases, but they affect the structure and
functionality of the system to be developed to a lesser extent.

An assessment of the impact helps evaluate the effort required for early and late
requirements. The addition of late requirements is permitted, but must be balanced
by the removal of early requirements to ensure that the project budget and schedule
remain on course.

Project challenge: Illusion of requirements completeness.
Solution strategy: Evaluate late requirements based on their effort and
include them only if they can be balanced by the removal of requirements
that require a similar amount of effort.
Operationalization: In the Interaction Room, late requirements are
managed by the requirements exchange (Sect. 8.3). The adVANTAGE
contract model addresses the risks of late requirements through different
risk distribution and budget security mechanisms (Sects. 14.3 and 14.4).

28 2 A Room for Ideas

http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_14

2.8 Manage Early Requirements

Everyone is aware that projects have to deal with late requirements. But (too) early
requirements also exist. We understand early requirements as wishes that have only
coincidentally reached the status of a valid requirement at the start of the project.
Different types of coincidences are possible:

Perhaps a project has been delayed for an extended period of time. Now, none of
the potential requirements requesters want to risk the possibility that their wishes
remain unconsidered. In some cases, a requirements race arises based on the
expectation that not everything will be implemented anyway. So every idea and
wish, no matter how irrelevant, is thrown into the requirements pot. And if no one
makes sure that ridiculous items are sorted out, this creates the beginnings of a
monster project.

Things get particularly uncomfortable if individual requesters do not participate
in the requirements race and restrict themselves to genuinely essential requirements.
These requirements are then underrepresented in an incipient monster project and
may be reduced even further if requirements are carelessly cut back. This means
that not only have we created a monster project, but one with an incorrect focus—
just because of the misguided conviction that every feature that reaches a
requirement status is important.

But it may also be the case that someone has fueled the illusion that no late
requirements will be accepted because a “final” requirements description is being
prepared, so that the focus can then turn exclusively to software development. This
is when the requirement race starts in earnest. Yet, the supposed complete
requirements description is subsequently presented, adapted, improved, etc. In the
meantime, the requesters, even those who did not want to be involved in the race,
have the opportunity for detailed reflection on further wishes and potential
software-bloating ideas.

This certainly does not lead to leaner software. Rather, the requirements pot is
filled with all kinds of requirements that do not really belong there. As a result, the
first essential step is to clean up and separate the important from the irrelevant. In
doing so, one must not lose sight of the essential requirements (McMenamin and
Palmer 1984). But even after cleaning up, the pot will still contain a number of
requirements that do not need to be implemented at the end of the project. Because
just as late requirements exist (those that are not considered necessary at the start of
the project and which are identified as necessary during the project), so do early
requirements (those that were considered necessary at the start of the project but
which turn out to be unnecessary during the course of the project).

Typically, these kinds of early requirements are only removed as the delivery
deadline approaches. Time is running out and someone finally asks: “Do we really
still need to implement this?” However, by this point, a large number of (potentially
unnecessary) requirements have already been implemented and the quantity of
requirements that can still be eliminated is quite small.

2.8 Manage Early Requirements 29

To prevent this, the Interaction Room applies the rule that an early requirement
to be eliminated must be identified for every late requirement that is added to the
pot. Naturally, this type of requirements exchange does not solve every problem
(e.g., that of an unequal requirements race remains), but it promotes a systematic
approach to two problems:

• Every requester must consider how lean the software could be at an early stage.
In the long term, this attitude means that the focus on complete, bloated software
is redirected toward value-focused, leaner software.

• Insidious software bloating due to late requirements is countered by the con-
tinuous removal of early requirements.

Project challenge: Requirements are bloated from the start of the project.
Solution strategy: Continuously identify and eliminate premature
requirements.
Operationalization: In the Interaction Room, the requirements exchange
helps to weed out too-early requirements by encouraging to swap them
against late requirements (Sect. 8.3). The adVANTAGE contract model
targets the continuous adaptation of the project scope (Sect. 14.1).

2.9 Reveal Uncertainties Early

Even the most sophisticated software development plan prepared with the greatest
care is generally not followed dogmatically. This is almost inevitable, as software
development is an insight-driven process, which is confronted with significant
inaccuracies, especially at the beginning. These inaccuracies affect the business
requirement details, system and context boundaries (Sect. 2.3), and the skills of the
stakeholders involved, their organizational corporate context, and their adherence to
and faith in the method.

All these uncertainties are eliminated during the project; assumptions are grad-
ually replaced by findings. During development, stakeholders learn what is actually
required, what is particularly important to implement, and what can be left out. In
this type of process, it is almost inevitable that new findings will lead to changes in
the plan. Ultimately, the aim of the software development process is to eliminate
inaccuracies and manage uncertainties.

The fact that uncertainty is unavoidable in every type of software project has
been accepted for decades (Boehm 1981; Lehman 1989). However, two opposing
philosophies have developed on how to correctly deal with this uncertainty:

30 2 A Room for Ideas

http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_14

Plan-driven approaches attempt to eliminate uncertainty at the start of the project
by investing a huge amount of effort in precise requirements analyses and speci-
fication and design work. The idea that this detailed examination of the material
leads to knowledge acquisition is undisputed. However, it remains questionable
whether uncertainty can be eliminated to the extent suggested by the resulting
mountain of paper; whether the effort to eliminate uncertainty has been applied
efficiently (especially at the critical points); and which part of this effort becomes
obsolete during the course of the project as the requirements change.

By contrast, agile approaches pursue the (almost fatalistic) approach that nothing
can be done to counter uncertainty a priori and that issues are best eliminated
gradually as they arise during the course of the project. Together with the principle
of only developing precisely what you (or the client) have planned for the coming
weeks and deliberately ignoring additional features, this is a perfectly consistent
and efficient approach. However, it seems to be much better suited to startups,
which develop their product fundamentals piece by piece on a clean slate, than for
developing complex business components in a highly integrated system landscape.

In this case, tamed agility means choosing a middle path: Just as it is pointless to
want to eliminate all uncertainty at the start of a project, it is also shortsighted to
only eliminate uncertainty on an ad hoc basis, in areas where it seems urgent.
Rather, the objective must be to establish an overview of where uncertainty exists at
an early stage, in order to identify where risks are present and plan how these are to
be dealt with: While a certain number of uncertainties can be eliminated by brief
examination, others may require the involvement of experts or more comprehensive
prototyping, while still others may have the potential to jeopardize the entire pro-
ject. While this itself is naturally uncertain and remains in flux over the course of
the project, it still helps to decide which uncertainties need to be eliminated at the
start of the project, and which ones only have to be considered once they become
urgent, in line with the agile model.

The prominent role of uncertainty means that one thing is certain: Uncertainty
must be defined and managed. All stakeholders should be fundamentally prepared
for the fact that uncertainty exists and that new areas of uncertainty can arise.
A general rule for managing uncertainty is: Known uncertainties must be investi-
gated (to turn uncertainty into certainty) and unknown uncertainties must be sought
out (so that no late uncertainty surprises arise).

Project challenge: New insights overturn previous plans, jeopardizing the
project’s budget, schedule, or quality.
Solution strategy: Reveal uncertainties early so they can be eliminated
and account for uncertainty in the contractual framing of the project.
Operationalization: In the Interaction Room, model elements can be
marked with uncertainty annotations in order to express the need for
clarification by stakeholders (Sect. 3.3). In the adVANTAGE contract
model, uncertainties that manifest themselves in overspends or unfinished

2.9 Reveal Uncertainties Early 31

http://dx.doi.org/10.1007/978-3-319-41478-2_3

features are no reason for stress between the contract partners. Rather,
they are an accepted project situation for which fair accounting modalities
exist (Sect. 15.4).

2.10 Make Cost Changes Transparent

The genuinely unpleasant aspect of software development is that the final devel-
opment expenses are not known at any time prior to the productive use of a full
version of the software. Despite extensive attempts at making cost estimates more
precise and reliable, despite increasing awareness of the difficulties and problems of
cost estimation by COCOMO and successors (Boehm et al. 2000), despite
numerous metrics [from McCabe (1976) to function points (Behrens 1983)] and
despite fundamental appeals to quantify software development (Denne and
Cleland-Huang 2003), the estimation of software development expenses remains
one of the main sticking points in many projects. This is true even though genuinely
risky activities, such as integrating the software into an application landscape or
migrating legacy data, are often excluded in advance, and even though it is pre-
cisely these risky activities that have a significant impact on the overall efficiency of
software development, introduction, and use.

The practice of industrial software development is still predominantly based on
the principle of expert estimates. If these experts are adequately familiar with the
technology and application domain, it is possible that they can provide the best
estimate of all possible forecasts. However, during development, it often becomes
clear that some things are more complicated than initially thought, while some may
be simpler. Late requirements are added, and early requirements are removed.
Expert estimates typically do not cover these unavoidable dynamics, as well as the
experience gained during the project.

Still, consolidation makes sense: If we have an expert estimate at the feature
level, and software development takes place iteratively based on a strictly inter-
preted Definition of Done, the unavoidable inadequacies of the initial expense
estimate can be partially compensated by comparing the actual expense to the initial
estimate and preparing appropriate projections. These numbers can then be made
transparent to all stakeholders, and the knowledge gained can be applied to the
expert estimate, so new forecasts will take into account previous forecast
deviations.

32 2 A Room for Ideas

http://dx.doi.org/10.1007/978-3-319-41478-2_15

Project challenge: Stakeholders like to believe that project costs are fixed.
Solution strategy: Make expected cost changes (and the reasons for
them) transparent.
Operationalization: The cost forward progressing technique constantly
compares the current effort investment with the estimates and provides
budget forecasts (Sect. 8.6). The adVANTAGE contract model controls
the contractual handling of fluctuating costs by treating these kinds of
fluctuations as the normal case, not as an exception (Sect. 14.1).

2.11 Analyze the Risk of Disasters

Some projects are somewhat more expensive than expected, while some are slightly
less expensive. As long as these deviations remain within a certain corridor (such
as ±10 % of the initial estimated value), they will raise eyebrows in management,
but do not threaten the existence of the project. However, it is not the moderate
deviations that pose a threat to software development projects, but the outliers:
Projects that become twice as expensive, take twice as long as planned, or are
canceled and rolled back. These kinds of situations involve significant loss
potential; they tend to lead to legal disputes.

Such disasters are made possible by the Hiob principle: Almost everyone is
aware that the success of the project is threatened, but no one is prepared to
explicitly state this knowledge. Instead, progress and risk “traffic light symbols” are
displayed in agreeable colors that can be easily communicated. Even if things look
bleak, the project’s executive-summary status indicator may be colored various
shades of yellow, but will rarely look dark red. If at all, the difficulties are discussed
at the coffee machine in a small intimate circle and without identifying any
countermeasures.

This phenomenon can be overcome by requesting joint and mutually agreed
project evaluations (which relate to both progress and feasibility as a whole): Who
has identified risks and in which area, how are the features connected, what inte-
gration and data migration requirements exist for the software?

The Interaction Room deals with all these questions in such a way that consensus
is promoted by synchronicity and that the actual problems are not ignored. An
assessment is not provided by one individual and then commented on by another so
that the first individual makes marginal changes. Otherwise, this always leads to the
same result: Average risk and at worst a pale yellow traffic light symbol.

Rather, in the Interaction Room, a number of standard questions are jointly
answered (by all stakeholders) to obtain everyone’s assessment of possible risks.
The risks are examined in various dimensions, and critical assessments are clarified.

2.10 Make Cost Changes Transparent 33

http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_14

This occurs at the start of the project and then at regular intervals. Explicit com-
munication regarding the project status is made accessible to all stakeholders.

Project challenge: Risks remain intransparent and catch the project by
surprise.
Solution strategy: Evaluate emergency indicators periodically and make
all stakeholders aware of them.
Operationalization: The Interaction Room provides the risk map
(Sect. 8.4) as an instrument for continuous risk analysis.

2.12 Build Trust Between Stakeholders

Should software development be a matter of trust? Trust does not seem to be a
component of traditional software process models; rather, software is created by the
constant refinement of specifications, from the requirements document through to
the specification and the code, where the documents to be produced by specific
departments are defined as strictly as the individuals that require these documents.

The fact that these refinement steps are not mechanical processes, that they are
creative and necessarily interdisciplinary activities to which application domain and
technology experts can both contribute in equal measure, is often concealed. In
process models such as the V model, the path from the idea to the working software
seems more like a bureaucratic marathon. Whether a document is even sufficiently
relevant and correct in order to use it as the basis for the next refinement step,
whether a document’s author and reader have understood its business and technical
implications, is overlooked. Yet, in many cases, business departments and enter-
prise IT in major companies, clients, and developers in service contracts and even
onshore and offshore parties in distributed development projects still operate as if
specifications, including schedules, can simply be set in stone, and a perfectly
functioning product can be expected by the deadline. (This naturally also displays a
certain level of trust, though of a more naive nature than what one might wish for.)

The restrictions that developers occasionally feel put under by plan-driven
software process models as a result of the specification requirements is countered by
agile methods and their essentially complete elimination of specifications. They are
replaced by close and intensive communication between all stakeholders, and
especially, frequent feedback cycles with the client on requirements, prototypes,
and releases. These feedback cycles focus on what is working and what the client
likes, not what a document indicates. This practice works best in small, manage-
able, and especially tangible (interface-intensive) applications, whose progress can
be clearly identified at the user interface. However, in large information systems, a

34 2 A Room for Ideas

http://dx.doi.org/10.1007/978-3-319-41478-2_8

great deal happens under the hood and is not directly accessible to the client, neither
for review nor for precise description, whether written or verbal. No wonder that, in
these circumstances, stakeholders from the operating area or management, who are
not IT-savvy, lack confidence and trust that this kind of process can work, let alone
that it can lead to predictable results.

Project challenge: Stakeholders from business and technical departments
can be adversaries.
Solution strategy: Build trust between the stakeholders and encourage a
feeling of joint ownership of the project.
Operationalization: Cross-department communication is encouraged by
joint project design and monitoring in all Interaction Room activities,
which explicitly require stakeholders from a variety of backgrounds
(Sect. 3.5). The adVANTAGE contract model allows clients and con-
tractors to prioritize requirements during the course of the project trans-
parently and reach mutually acceptable decisions (Sect. 15.2).

2.13 Visualize the Project’s Progress

It is often difficult enough to specify the project objective and ensure that all
stakeholders are committed to it. Constant monitoring then needs to ensure that this
direction is maintained (or adapted by mutual consent) and that all stakeholders
have the opportunity to follow the progress of the project. Without this kind of joint
progress monitoring, the initially aligned expectations often begin to diverge. This
occurs with absolutely no malicious intent by the stakeholders, simply because the
developers have acquired knowledge that they do not share with the business
stakeholders, or because the knowledge is imparted to business stakeholders and
they become uncertain as to whether the initial project objective is still valid. If one
or two misunderstandings and rumors are added to the mix, the initial harmonizing
effect is quickly lost and the expectations of the stakeholders start to diverge. This is
why central decisions must be coordinated and project progress (and regression) has
to be made transparent.

The tracking of the project progress has two dimensions: Firstly, the purely
expense-based, quantitative control of the project progress—primarily based on the
agile adVANTAGE contract model (Chap. 15)—which predominantly provides
information on the commercial side of the project. And, secondly, the
content-related, qualitative side, which provides information on when specific
features will become operational, which components are already complete and what
the upcoming deliveries will look like (Sect. 8.5).

2.12 Build Trust Between Stakeholders 35

http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_15
http://dx.doi.org/10.1007/978-3-319-41478-2_15
http://dx.doi.org/10.1007/978-3-319-41478-2_8

For business departments and future users, the qualitative dimension is often
more important than the expense figures, budget overruns, and compliance. The
business department’s ability to assess the content-related progress is important for
their expectations and confidence in the project. Without this confidence, the project
mood can quickly change, quite apart from the fact that the development then
quickly deviates from the expectations of the business departments. As a result,
what has already been completed, how previously delivered software will be
expanded in the future and how past, current, and future deliveries align with one
another must be clarified and explained.

The project state is often particularly difficult to define at the start of the project
because there is not much to see. Initial deliveries often consist of isolated dialogs
and reports whose subsequent relevance is virtually impossible to assess. An
Interaction Room supports the visualization of the project progress and the iden-
tification of the results achieved in the context of the project by pasting achieved
intermediate results (e.g., screenshots of implemented dialogs) directly onto the
model sketches. This also allows individual dialogs to be assessed in their future
context.

Project challenge: Stakeholders lack a clear picture of the project’s state
and progress.
Solution strategy: Visualize the project state continuously so all stake-
holders are aware of its qualitative progress at all times.
Operationalization: Continuous progress control—in terms of feature
completion, requirements management, and budget controlling—is sup-
ported by the methods of the IR:agile (Chap. 8).

References

Behrens CA (1983) Measuring the productivity of computer systems development activities with
function points. IEEE Transactions on Software Engineering 9(6):648–652. doi:10.1109/TSE.
1983.235429

Biffl S et al (2006) Value-based software engineering. Springer
Boehm B (1981) Software engineering economics. Prentice Hall, ch 21
Boehm B et al (2000) Software cost estimation with COCOMO II. Prentice Hall
Constantine LL, Lockwood LAD (1999) Software for use: A practical guide to the models and

methods of usage-centered design. Addison-Wesley, ch 5
Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for large systems.

Comm ACM 31(11):1268–1287. doi:10.1145/50087.50089
Denne M, Cleland-Huang J (2003) Software by numbers: Low-risk, high-return development.

Prentice Hall
Gold-Bernstein B, Ruh W (2004) Enterprise integration: The essential guide to integration

solutions. Addison-Wesley

36 2 A Room for Ideas

http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1109/TSE.1983.235429
http://dx.doi.org/10.1109/TSE.1983.235429
http://dx.doi.org/10.1145/50087.50089

Langley A (1995) Between ‘paralysis by analysis’ and ‘extinction by instinct’. Sloan Management
Review 36(3):63–76

Lehman MM (1989) Uncertainty in computer application and its control through the engineering
of software. Journal of Software Maintenance 1(1):3–27. doi:10.1002/smr.4360010103

McCabe TJ (1976) A complexity measure. IEEE Transactions on Software Engineering 2(4):308–
320

McConnell S (2006) Software estimation: Demystifying the black art. Microsoft Press, ch 18.2
McMenamin SM, Palmer JF (1984) Essential systems analysis. Yourdon
Pohl K, Rupp C (2015) Requirements engineering fundamentals: A study guide for the certified

professional for requirements engineering exam – Foundation level – IREB compliant. Rocky
Nook

Wohlin C, Aurum A (2006) Criteria for selecting software requirements to create product value:
An industrial empirical study. In: Biffl S et al (eds) Value-based software engineering.
Springer, pp 179–200

References 37

http://dx.doi.org/10.1002/smr.4360010103

3Interaction Room Basics

One of the main goals of an Interaction Room is to ensure that the abstract rela-
tionships within complex IT projects can be intuitively discussed and understood.
This is achieved by roughly modeling a range of complementary perspectives of the
project: Large model sketches on all the walls in the room display the focal points
of communication in the Interaction Room. Business and technology experts jointly
outline key application concepts, process flows, data structures, system landscapes,
and user interfaces on large whiteboards, also referred to as canvases.

The different canvases in an Interaction Room help stakeholders discuss the
structures, processes, and interfaces of an information system in the context of its
application domain in an objective, yet pragmatic manner. The parallel consider-
ation of the application domain and system from different perspectives helps
stakeholders from all departments develop a common overall understanding of the
system, identify dependencies, contradictions, and gaps, and establish mutual
respect for requirements, complexity, and boundary conditions on both the business
and technology sides.

This chapter covers three topics. Section 3.1 discusses the general method-
ological principles of the IR method, which deals with the idea of canvases (detailed
in Sect. 3.2) and their pragmatic population. It outlines the relationship between the
canvases and their use in different IR variants. Section 3.3 then presents the idea of
annotations and their use in IR population, while Sect. 3.4 provides an overview of
the IR variants. This is followed by a discussion of the stakeholder roles that are
involved in all IR variants in Sect. 3.5. Finally, Sects. 3.6 and 3.7 discuss the
preparation and follow-up activities of IR workshops.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_3

39

3.1 Method Overview

The population of an Interaction Room is not a closed method in the sense that a
series of clearly outlined activities lead from a starting point to the target state.
Rather, there are established method fragments, whose use has proven to be useful
in certain starting situations. They represent the straight population path. Besides
the straight path, exceptional situations during IR population, or even just specific
boundary conditions in the individual project situation, may necessitate a different
assembly of the project-specific approach from the individual method fragments.
Good reasons for this type of modified composition should outweigh the consistent
insistence on a defined method. However, the defined method should not just be
scrapped without reason, as it is at least useful for condensing the know-how and
experiences of numerous IR populations. A particularly liberal approach can be
taken with the proposed order of method fragments, as long as no logical depen-
dencies of the type “A must end before B, because B requires result A as an input”
are affected. Relaxing the proposed order may often become necessary when
stakeholders are stuck at a certain point, and a change of perspective (e.g., the
partial population of a different canvas) is sufficient in order to resolve a sticking
point and continue on with the original canvas.

In an ideal IR world, all models are created without any syntax specifications.
This only works if all stakeholders have at least some experience in process and
object modeling. This leads to the creation of more-or-less intuitive box-and-line
diagrams without the need for discussion about their semantics. One reason for
using a certain amount of notation specifications is that some stakeholders may
have absolutely no modeling experience and may find it difficult if no specifications
are provided. A second reason for the use of a minimum amount of notation
specifications is that this prevents discussions on specific choices of modeling
languages. These two important reasons clarify the need for a minimum amount of
specifications on the use of symbols and their relationships on the different
canvases.

This extremely pragmatic and imprecise modeling approach may be met with
resistance by experienced modelers, who are often found among the technical
stakeholders. In this case, it is important to remind all stakeholders that the canvases
cannot represent a complete and correct specification, rather they can only promote
an initial understanding of the subject matter. Notations should only be used to
enable a simple introduction, and their use requires a similar degree of pragmatism.
It is extremely likely that individual processes and structures will have to be
completely specified in greater detail during the later design and development
phases, which naturally place a greater value on the correctness of the syntax.

However, those kinds of specification are not developed in the Interaction Room
and do not contribute to the team’s overall understanding. Rather, they are used to
communicate details for specific solutions between the dedicated experts.

40 3 Interaction Room Basics

One of the basic principles of the Interaction Room is the principle of abstrac-
tion, of a focus on the key issues instead of excessive detail. In the population of
individual canvases, this principle is manifested in the form of volume rules (e.g., a
maximum of 15 business process models in the process canvas with a maximum of
15 activities per business process model, and a maximum of 40 object types in the
object canvas). These rules must not be interpreted too dogmatically. Ultimately, 17
business process models, each with 17 activities, are just as appropriate as 15 with
15 activities. However, it is important to ensure that the bending of the rules does
not get out of hand. The sections on the individual canvases provide an overview of
the specific limitations of scope.

When discussing the different canvases, stakeholders may occasionally address
business or solution aspects that should be recorded, but which interrupt or distract
the current discussion thread. In order to store this kind of information without
diverting from the actual aim of the discussion, it can be noted on index cards and
attached to a dedicated note area in the Interaction Room for subsequent consid-
eration. It may be helpful to classify these statements, e.g., into outstanding issues,
requests, detailed facts, depending on their type and number.

The IR coaches (Sects. 3.5.1 and 3.5.2) maintain the note area while populating
the other canvases, which is always used if stakeholders provide information that
needs to be recorded, but which would divert the current topic of discussion or
which cannot be appropriately assigned to other canvases. This approach improves
the cognitive freedom of stakeholders in their activities and allows them to hold
open and free discussions, i.e., without having to worry that important (but cur-
rently excessively detailed or marginal) aspects (or those that are only relevant in
special cases) are being disregarded. The note area also gives IR coaches the
opportunity to ensure that discussions remain focused without appearing to use
overly strict moderating measures and retain control over the flow of the work-
shop. Besides genuinely important statements, which may be addressed at a more
appropriate point later in the workshop, and outstanding issues, which need to be
clarified with other contact partners after the IR workshop, the Interaction Room
also allows detailed knowledge that is not specifically relevant to the workshop to
be recorded without the discussion necessarily having to return to the issue at a later
date. This also allows the IR coaches to diplomatically eliminate the disruptive
potential of irrelevant statements without frustrating stakeholders if necessary.

3.2 Canvases

Common to all IR variants is that facts are noted in an abstract and concise form.
This occurs on different canvases depending on the IR variant. These canvases are
briefly introduced in this section, while details on the canvases are then discussed
when they are first used in the IR variants. Figure 3.1 provides an overview of the
relationship between the canvases used. It shows that the different canvases are
linked to each other and that individual canvases are used for different IR variants.

3.1 Method Overview 41

• Partner canvas: The partner canvas is used to identify the partners connected
with the company to be digitalized and describes their interfaces with the
company (Sect. 4.2).

• Physical object canvas: The physical object canvas is used to identify objects
that provide the conditions or other events on the duration, directly in the
business process of the company to be digitalized, or which are to be controlled
by these business processes (Sect. 4.3).

• Touchpoint canvas: A touchpoint canvas describes the order in which a partner
of the company to be digitalized uses specific channels to contact the company
(Sects. 4.4 and 6.4).

• Feature canvas: The feature canvas describes the features and properties of a
software system. This may be an existing software system or one that is yet to be
developed (Sect. 5.2).

• Process canvas: The process canvas provides an outline of the key business
processes. The focus is on the central processes, while an abstract view is
generally taken of exceptions and special cases (Sect. 5.3).

• Object canvas: The object canvas identifies the most important types of objects
to be managed and defines correlations (Sect. 5.4).

• Integration canvas: The integration canvas identifies the software systems to be
integrated with the software system being built. It specifies the key features of
the interfaces to these systems (Sect. 5.5).

Fig. 3.1 Overview of the IR canvases and their relationships

42 3 Interaction Room Basics

http://dx.doi.org/10.1007/978-3-319-41478-2_4
http://dx.doi.org/10.1007/978-3-319-41478-2_4
http://dx.doi.org/10.1007/978-3-319-41478-2_4
http://dx.doi.org/10.1007/978-3-319-41478-2_6
http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5

• Persona canvas: Personas are descriptions of individually assumed users. They
are specifically described in great detail in order to convey a tangible image of
the assumed users (Sect. 6.2).

• Portfolio canvas: In the portfolio canvas, new services and offers to be
developed are embedded in the context of the existing company portfolio and
then reviewed to confirm whether this provides a coherent overall picture
(Sect. 6.3).

• Interaction canvas: The interaction canvas describes the interactions that take
place between the mobile software and the user (Sect. 6.5).

3.3 Annotations

Once the project material has become tangible by populating the canvases, the next
step is to identify aspects that make the software development complex, time
consuming, and uncertain or that have another critical impact. Annotations are
attached to the model elements on the individual canvases, which clarify what the
stakeholders deem important and difficult in various dimensions. This assessment is
easily missed in business process and software system models that are not qualified
in greater detail. It is often not immediately clear which aspects are particularly
relevant or critical for the success of the project and whether these are

• activities and functions that are particularly important for the value added by the
company or the software system to be developed,

• business or implementation aspects that are considered particularly complex or
not yet adequately understood, or

• business or technical boundary conditions that need to be taken into account
during implementation.

Annotations are a tool that can be used to reveal all the aspects that remain
invisible in traditional process and system models. The placement of annotations on
the canvases in the Interaction Room ensures that stakeholders are aware that the
annotated challenges must be dealt with and helps to define the identified values,
efforts, and risks at specific points in processes and systems. This helps to ensure
that they are not lost during the project. The background information recorded for
each annotation (Appendix B) also provides valuable notes on the type of annotated
challenge, which is helpful for problem-solving as well as for prioritizing and effort
estimates. It is therefore advisable to use annotations on all canvases and consider
them as part of the big picture, rather than just in isolation, in order to obtain an
impression of the effort and complexity of the entire project and ensure that no
aspects and relationships critical to the success of the project are overlooked.

3.2 Canvases 43

http://dx.doi.org/10.1007/978-3-319-41478-2_6
http://dx.doi.org/10.1007/978-3-319-41478-2_6
http://dx.doi.org/10.1007/978-3-319-41478-2_6

A key aim of the population of an Interaction Room is to raise awareness of the
individual impressions of added value, complexity, risk, and uncertainty at an early
stage in the project, to clearly display these in models and discuss them in the team.
This allows stakeholders to gain a better understanding of the project challenges
and establishes the foundation for more reliable effort estimates and prioritization.

Explicit visualization of a project’s value and effort drivers is achieved by using
annotations on the IR canvases with a range of symbols that act as “warning signs”
for aspects that need to be clarified or considered during the project. All annotations
are available to stakeholders in a physical form, as magnetic symbols, pasted
symbols, stamp symbols that can be easily placed on all relevant canvas elements.

Every annotation expresses a certain type of challenge, a quality feature, such as
safety requirements, a design feature, such as an external interface, as well as “gut
feelings,” such as a particular complexity or uncertainty.

Annotations give an impression of the significance, efforts, risks, and uncer-
tainties inherent in the individual elements of the application domain and the
desired technical solution. These assessments are particularly valuable as they
remain hidden in traditional software and process models, firstly because they do
not provide an opportunity to express this information, and secondly, because the
demand for completeness and correctness in formal modeling languages forces the
modeler to specify facts in greater detail than is actually possible at such an early
stage. Traditional modeling may lead to the active masking of complexity and
uncertainty that can lead to unforeseen additional effort at a later stage in the
project.

The annotation technique in the Interaction Room ensures that all stakeholders
explicitly discuss value, effort, and risk drivers at an early stage. It also visibly
anchors the insights generated by this discussion in the Interaction Room’s over-
view diagrams, which can be understood by all stakeholders. An annotated,
informal object canvas provides a much better picture of the project complexity
than a complete UML diagram without annotations, even for individuals who are
not familiar with the project material.

Information on what the annotation specifically relates to, its specific require-
ment, and the benefits of implementation, or the damage that may be caused if it is
not considered, are recorded in the workshop. These assessments may be used to
derive initial starting points for prioritization, more detailed business/technical
research, and the necessary specification refinements on certain points as part of the
follow-up activities to an IR workshop.

The question of “how” the implementation is to take place is deliberately
excluded when specifying the annotation (e.g., “How should the annotation be
considered as part of an implementation?”), as this would preempt a discussion in
the solution domain. It is too early to tackle this question in an IR work-
shop. A solution discussion on every annotation would also quickly exceed the
workshop timeframe. The Interaction Room exclusively aims to create an aware-
ness of the points at which detailed solutions are required for non-obvious
requirements.

44 3 Interaction Room Basics

Canvas annotations can be analyzed at an early stage. This generally leads to
suspicions and the discovery of implausibilities, rather than strict errors. The dis-
cussion of these matters often uncovers differing perceptions among stakeholders,
which can then also be promptly eliminated.

We distinguish between three key classes of annotations:

• Value drivers define aspects whose implementation is expected to influence the
system’s desired business value or user value, e.g., the potential for increases in
productivity, but also the risk of reputation damage. They express the value
delivered by certain system or process parts, whether these are values relevant to
the software provider, such as reputation or financial gain, or performance or
excitement factors perceived by the user. These value contributions are typically
not distributed equally across the system—rather, some components make key
contributions, which justify the development of the entire system in the first
place, while other components only perform a secondary or supporting function.
The business value and user value annotations can be used to highlight the key
value-added contributions from a provider or user perspective.

• Effort drivers define boundary conditions or requirements to be reflected in the
implementation of the system to be developed. These are often quality features,
such as special time or security requirements, but they can also be functional
requirements, such as the decision to perform a certain task automatically or
manually. Annotations for effort drivers give stakeholders the opportunity to
express aspects that are not as tangible as specific features, but whose imple-
mentation may be just as time consuming and whose consequences may be just
as far-reaching for design and architecture decisions. They counteract the lure of
the seeming precision of formal modeling languages. These kinds of languages
encourage stakeholders to primarily focus on describing tangible aspects of the
system: What must the system do? What data does it need to process? How
should it work? There is a danger that stakeholders will fall into the trap of an
“anything goes” mentality. Everything is relatively easy to define and plan on
paper, so the high-level design quickly becomes a request program. The efforts,
risks, and uncertainties that lurk in the implementation are quickly consigned to
the background. This ends in a model that looks solid and seemingly only has to
be programmed, but which shows no sign of its inherent complexity and con-
tradictions as well as incomplete features. For example, a component for pro-
cessing contractual modifications is quickly specified in a traditional manner and
seems relatively harmless in process and structural diagrams. However, the
information that these kinds of modifications occur more frequently at certain
reference dates and subsequently multiply the normal system load, that failures
due to system overload cannot be tolerated for reasons of reputation, and that
modifications have to take place within a legally defined timeframe means that
the component is considered in an entirely different light. It requires signifi-
cantly higher efforts than assumed at first glance and has a much more
demanding architecture, as it may require load distribution mechanisms. It is

3.3 Annotations 45

virtually impossible to represent these aspects in traditional system models.
However, annotations allow stakeholders to highlight these aspects precisely
where they occur, in the process and object models on the Interaction Room
canvases.

• Uncertainty is a special type of annotation that is used at the end of a canvas
annotation in order to allow every stakeholder to define aspects that have not yet
been adequately understood. It ensures that stakeholders can also express
impressions that are normally not even considered in software specifications.
Namely, that certain aspects are not yet understood, that they require research, or
that expertise is lacking in the team. In short, that the painstakingly prepared
specification contains gaps or that it may even be incorrect. Challenging
stakeholders to disclose this assessment is one of the keys to risk management in
the Interaction Room.

Canvases are typically annotated once the canvases have reached an initial,
stable modeling state. One canvas is annotated at any a time. This may take place in
a single or multiple annotation rounds. In each annotation round, stakeholders have
ten minutes to distribute a specific set of annotations (e.g., in the form of adhesive
or magnetic symbols) to the canvas based on their personal assessment. Generally,
no more than five symbols should be used during an annotation round, as the
meaning of the symbols may be confused otherwise. If more than five annotations
are available to annotate a canvas, separate annotation rounds with a maximum of
five symbols each are recommended. The IR coaches determine the symbols to be
affixed to the canvases in each annotation round.

This annotation process is performed independently, without comment and
completely unmoderated. Stakeholders affix annotation symbols to model elements
that they deem particularly important, time consuming, or critical. Every stake-
holder may paste any number of annotations to the annotated canvas, even if the
annotated elements already have similar or different annotations from other
stakeholders.

However, the IR method coach must note that the annotations should not be used
to define general implementation difficulties or overarching boundary conditions,
but just employed to highlight specific problem areas. For example, it is not sensible
to assign security annotations to every step in a process, as these are generally
overarching requirements, whose ubiquitous labeling with annotations does not
lead to additional insight, but just to additional modeling and interpretation over-
heads. Highlighting individual elements that involve special or additional chal-
lenges with annotations provides a much greater benefit.

While annotation symbols already provide a rough indication of the type of
challenges at the points marked in the process or system, additional information that
reflects the precise characteristics of the annotation in the specific context is
required for a solid assessment.

46 3 Interaction Room Basics

In order to learn more about these characteristics, the IR method coach looks
through all the annotation symbols following the unmoderated annotation round
and asks who affixed the annotation to the relevant element and why. The author of
the relevant annotation briefly explains their rationale for the label, and the other
stakeholders are given a brief opportunity to express objections. If the stakeholder
who placed the annotation wishes it to remain in place, it is attached to the canvas
and numbered. The specific characteristic that the stakeholder wanted to note (e.g.,
particular access peaks at particular times, indicated by a high-use annotation) is
also noted in the workshop report under this serial number. Appendix B provides an
overview of all the annotations together with typical detailed questions that should
be answered in the report. If there is a need for further discussion about an anno-
tation, it is also assigned an uncertainty symbol and discussed at a later date outside
the workshop. If no stakeholder wishes to explain an annotation (because they have
changed their mind in the meantime), or discussions lead to the conclusion that the
noted aspect is irrelevant, the annotation is removed from the canvas. This anno-
tation technique can be repeated across multiple annotation rounds that focus on
different annotations.

However, the last annotation round is always exclusively reserved for the
uncertainty annotation. This annotation should not be considered in the previous
rounds, as stakeholders may not be prepared to openly communicate uncertainty
about a system or business aspect with which they feel they should be familiar.
However, in the last annotation round for every canvas, the IR method coach states
that every stakeholder must attach at least one uncertainty annotation to the canvas.
This “mandatory annotation” prevents the effect of stigmatizing those who admit
uncertainty and also ensures that all stakeholders take the time to reflect on whether
all outstanding issues have been addressed.

Practical experience shows that uncertainty annotations are frequently also
affixed to elements that have not previously been the subject of controversial dis-
cussion, or to which different annotations were affixed, but for which all stake-
holders agree that there is a need for clarification and specification. As a result, the
uncertainty annotation can also be used to identify a potential “elephant in the
room,” i.e., a problem that no one previously wanted to address.

As is the case in the other annotation rounds, the IR method coach once again
goes through all the uncertainty annotations in succession and asks each stakeholder
to describe the perceived uncertainty. If it turns out that stakeholders in the team
clearly have the knowledge to resolve this uncertainty, the uncertainty is removed,
as this is not a problem for the entire team, but only a local lack of understanding.
The team reaches a decision on the removal or retention of the annotation (it is
definitely retained if doubt remains). If no stakeholder in the team can resolve the
uncertainty, it is noted in the report, just like the other annotations, ideally men-
tioning a responsible individual who will introduce the necessary steps to eliminate
the uncertainty (e.g., clarification of strategic issues with management, consultation
with external business, or technology experts for specific problems).

3.3 Annotations 47

3.4 Variants

In the preceding sections, we presented the basic principles of the IR method, which
we derived from the traditional challenges faced by software projects. We distin-
guished between the initial specification of the objective of a development project
and monitoring the progress of a project using an Interaction Room (scoping versus
monitoring). The use of the individual IR elements in different project situations has
resulted in the formation of five independent IR variants, which combine the IR
instruments in different ways:

• The Interaction Room for Digitalization Strategy Development (IR:digital)
is the starting point for identifying innovative projects and their scoping in the
context of a broadly understood digitalization. The interaction of experts in the
actual business domain with experts for various digitalization technologies is
crucial in this variant. This is true because many of these technologies have not
been tried and tested over a number of years so there is no uniform concept of
what it can achieve. However, they often have the potential to fundamentally
change existing business models or even enable new services. And this can only
be defined with mutual cooperation, by preparing scenarios and ultimately
assessing the business case. In the IR:digital, it is particularly important that the
feasibility and enforceability of the business model (if it is modified by the
digitalization) are systematically reviewed. Often, there are fantastic ideas for
digital services that no one wants to pay for or which require an extremely large
marketing budget. These kinds of solutions, which need to be eliminated, are
identified in the IR:digital just like the more viable ones. The IR:digital is the
starting point for the scoping of innovations and can be seen as a preliminary
stage for more specific considerations in other IR variants.

• The Interaction Room for Mobile Application Development (IR:mobile) is
based on the organization’s known business processes and focuses on the
question of the points at which these business processes and their supporting
applications and data can be usefully mobilized. This covers technical issues
(what effort is required to mobilize certain data and applications?), dedicated
mobilization risks (security, redundancy, and consistency of data), and primarily
also questions of feasibility (who can and should use a mobile application, and
does a willingness or interest even exist in view of the context in which it will be
used?). The IR:mobile requires the involvement of mobilization experts, espe-
cially those that have an idea of what can be expected of mobile users, what they
enjoy, and what they are used to from other mobile applications. The IR:mobile
gives direction to what can sometimes be vague attempts to mobilize data and
applications with different interpretations so that the stakeholders can pursue a
common goal. The IR:mobile can lead directly to an IR:scope in that the
identified mobilization potential results in specific process changes and software
designs. All instruments that are used in the IR:agile for project monitoring can
then also be used for mobile software development.

48 3 Interaction Room Basics

• The Interaction Room for Technology Evaluation (IR:tech) evaluates current
technologies, predominantly in the context of elastic infrastructures, for their
application potential to provide better technological support for existing busi-
ness processes and models. The IR:tech addresses the perceived innovation
density in the technical space and reflects on the fact that users and business
departments are increasingly thinking and reasoning in technological dimen-
sions. Examples of technologies in this context (or even just technological
buzzwords) are big data, NoSQL, and continuous integration and delivery.
These kinds of buzzwords thrown around by the popular press and tech small
talk quickly create the feeling that “we need to have a look at this.” The IR:tech
aims to support precisely this discussion, evaluate technologies based on their
potential, and potentially outline application scenarios (only if a general value
proposition appears plausible in the specific company context). In contrast to the
other IR variants, IR:tech contains a component that is clearly aligned to an
understanding of technology. It also contains the method-based element of
“taking a broader view,” which means that application scenarios in other sectors
are systematically considered for the respective technology. If a specific
potential benefit of a technology is identified in the IR:tech, the technical and
business modifications that the introduction of the technology would involve
can be detailed in a subsequent IR:scope.

• The Interaction Room for Software Project Scoping (IR:scope) starts with a
project idea and helps the stakeholders involved focus on a common goal
(scoping). The project aim (the software to be developed) typically displays
characteristics which suggest the application of elements of agile software
development. For example, it is clear that the requirements are incomplete and
that they will continue to develop during the course of the project, that human
interfaces are involved (in the form of dialogs, reports), so that late requirements
are unavoidable, and that the priorities have to constantly be adjusted to the level
of knowledge. In this kind of situation, the aim is to combine the diversity of
ideas and perceptions, reconcile the objectives, and ensure that the stakeholders
are committed to a joint idea of the software to be developed. This kind of
consensus can then be used as the starting point for the actual project, which is
ideally monitored in the IR:agile.

• The Interaction Room for Agile Project Monitoring (IR:agile) supports the
consistent monitoring of relevant phenomena for the entire duration of the
project. The IR:agile typically follows on from the IR:scope. The IR:agile
focuses on the dynamism of requirements, indicators of project disasters (and
their development over time), the planning and controlling of iterations, and
transparent cost monitoring and control. The dynamics of the number of
requirements must be monitored by the requirements exchange (Sect. 8.3) and
the adVANTAGE contract model (Sect. 15.2) for the entire duration of the
project, but often only becomes prominent and visible toward the end of the
project. Cost control is a different matter. Its application particularly leads to
interesting options for action in the initial implementation activities, while the

3.4 Variants 49

http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_15

cost control and projection options are generally less influential toward the end
of the project, but even more important as money starts to get tight at the end.

In summary, the IR:digital fulfills a particularly business-based role, as it is used
to identify digitalization potentials within or adjacent to the current business model.
These kinds of potentials often lead to the development of more mobile solutions
(which can be supported by the IR:mobile) or the desire to use specific new
technologies (which can be evaluated in the IR:tech). If the application of the IR:
digital does not point to mobile solutions or the use of new technologies, it is likely
that the reference points identified in the IR:digital point to the application of the
IR:scope. Figure 3.2 displays this relationship as a diagram. It displays the project
phases in which the different IR variants are applied. The IR:digital is used to
identify digitalization opportunities in the broadest possible sense, while the
specific configuration then provides the focal point for a digital strategy. The IR:
digital is frequently the starting point that leads to the specification of roughly
outlined ideas for software systems to be developed, mobile software systems, or
the use of elastic infrastructures. The duration of the preparation, implementation
and follow-up for an IR:digital workshop typically extends over a longer period of
time than in other IR variants.

The IR:digital is not required if the project goal is more narrowly defined from
the beginning. In this case, the IR:mobile (if an idea for mobilizing parts of a
business process exists) or the IR:tech (to investigate the opportunities for using
elasticity technology) can be used as the starting point. These two are also optional,
as the IR:scope is the ideal starting point (if an idea for a software system to be
implemented in known technology already exists) for a software development
project that does not involve any special mobile or technological challenges. What
is common to all four variants is that the starting situation is characterized by vague
perceptions by all the stakeholders involved and that the harmonization of these
perceptions can be an important step along the path in implementation projects.

Project scoping in the IR:scope can be followed by tamed agile development
with appropriate monitoring of the development in the IR:agile. This may take place
at different times in the project. The IR:agile monitoring is scaled down if stake-
holders have the impression that the requirements are stabilizing and that costs and
risks are under control. However, a “small” IR:scope workshop may need to be held
at the start of every sprint in order to define the tasks to be completed in the sprint.
In general, it is sensible to continue monitoring for the duration and simply adjust
the frequency and intensity of the monitoring to the maturity of the project situation.

Fig. 3.2 Sequence of IR variants along the life of the project

50 3 Interaction Room Basics

Although the IR variants build on each other and can naturally be linked in the
above manner, IRs can also be employed independently. The initial population of
every Interaction Room leads to results that do not necessarily have to be used as
part of software development projects, but which provide independent benefits in
different applications.

3.5 Stakeholders

The Interaction Room method is predominantly focused on providing an area for
moderated and focused discussion between the various stakeholders in order to
reach and document joint decisions. This requires the right cooperation by the right
people when populating an Interaction Room. “Right” has different dimensions in
this respect: The stakeholders must have the necessary competence. Business
experts must be familiar with their business, technical experts must be familiar with
the technologies to be applied or assessed, and developers must know the processes
and tools required for development. It is also important that stakeholders have the
necessary decision-making power. Generally speaking, they should have the
authority to reach decisions on issues that require a decision to be made. Limits to
this authority naturally exist, especially in large organizations with hierarchical
structures, where follow-up discussions are required and decisions have to remain
provisional. But this must not become the norm as it otherwise reduces IR popu-
lation to a more-or-less non-committal collection of incomplete decisions. Ulti-
mately, stakeholders must have the business expertise and the decision-making
power and must also be prepared to make decisions. Procrastinating and avoiding
commitments may be useful and prevent errors in some cases, but it must not be
allowed to get out of hand in the IR. It is just as important to ensure that stake-
holders can represent and debate their business position, but are prepared to con-
sider the perspectives of other departments and take new paths. It is clear that the
selection of stakeholders for an IR population is an extremely important step.

The population of an Interaction Room is moderated and methodologically
managed in order to ensure that the right stakeholders can cooperate effectively, that
they adhere to suitable abstraction levels, and do not get caught up in detail. The
tasks of stakeholder selection, moderation, and methodological management are
performed by two IR coaches. The IR method coach is responsible for the
methodology, while the IR domain coach has broad knowledge of the sector in
which the IR population will take place. The positions of the coaches should be
assigned externally where possible. External means that they are external to the
context of the project. If the company has a certified IR method coach, the role can
be assigned to this individual, as long as he or she is not a stakeholder in the project
context. In principle, the role of the IR domain coach can also be assigned to a
company employee, but only if all stakeholders agree that the candidate has broad
knowledge of the sector and that their view is not clouded by company politics.

3.4 Variants 51

All IR variants affect a company’s business processes, regardless of whether
digital improvement opportunities are sought (IR:digital), whether mobilization
potentials are to be identified (IR:mobile), whether software development is plan-
ned (IR:scope) or managed (IR:agile), or whether new technologies are to be
evaluated (IR:tech). Knowledge of the current and targeted business processes is
essential in every single case and is the responsibility of the process owner.

The roles of the IR coaches and the process owner are described in the following
sections, which also provide an overview of the roles that arise in the IR variants.

3.5.1 Interaction Room Method Coach

Although the activities in the Interaction Room are not based on a closed method
that defines precisely when and with whom an activity should take place, an IR
does require method knowledge, especially for the initial population. This method
knowledge is required to ensure an efficient population and allows a certified IR
method coach to coordinate the diversity of stakeholders, reconcile various inter-
ests, and reach decisions. The IR method coach obtains the required practical
experience through a certification process. His or her tasks include the following:

• Ensuring that all stakeholders in the population of the Interaction Room are
given adequate opportunity to express their perceptions and objectives, and that
all are involved in creating the canvases. Of particular importance is ensuring
and maintaining an open and fair discussion atmosphere, reining in dominant
stakeholders and encouraging reticent individuals.

• Enforcing the following communication rules:

– One item of communication at a time, even if a large number of individuals
are involved, and even if a large number of outstanding issues need to be
clarified. The discussion must allow all stakeholders to participate at all
times.

– Secondary issues are recorded, but do not dominate the discussion: The
varying stakeholder backgrounds mean that many topics will be assigned
different levels of importance. However, not all issues are equally important
for a balanced IR population. The IR method coach ensures that the topics
discussed target the workshop’s objective.

– No final assessments; every opinion is valid: In particular, annotations
should help to identify the essential requirements. The items that are deemed
essential depend on which features stakeholders consider important and why
this is the case. In order to find out, it is important that all opinions are aired.
This can only be ensured if all opinions are accepted as valid points for
discussion. In particular, the discussion of an individual opinion makes sense
if it appears far-fetched by the majority of stakeholders.

52 3 Interaction Room Basics

• Separating the important from the irrelevant in order to ensure that the canvases
provide orientation and to prevent details from being overvalued. The method
coach generally requires the support and assessment of the IR domain coach in
this respect. The method coach must support a focus on the key elements when
preparing every canvas and constantly push against the demand for
completeness.

• Ensuring the correct application of the IR method fragments to make sure that
the methodological requirements are not ignored. The open approach to the IR
method allows individual method fragments to be brought forward or skipped,
depending on the individual situation; however, limited scope exists within the
method fragments. For example, if a business process model is annotated, this
takes place in line with the annotation rules. The flexibility of the method means
that it is not always easy to strictly enforce the core principles of the method.
This is the task of the method coach.

• Managing the available time to ensure that the overall objective set for the IR
workshop is achieved. For example, this may mean that discussions are termi-
nated in order to make sure that all canvases are created. Wherever a time issue
is identified, the IR method coach is responsible for reconciling competing
objectives and working toward consensual prioritization.

3.5.2 Interaction Room Domain Coach

Whenever a company requires matters to be documented, criteria to be identified,
and assessments to be performed, there is the risk that historic frictions and
rigidities may arise, that the importance of details may be overstated, and that sight
of the big picture is lost. At the time that this risk materializes, it is often difficult to
return to a higher level of abstraction and assign details according to their relevance.

The IR domain coach ensures that the IR population does not get lost in
company-specific details, which appear important in the company context, but
which are ultimately much less relevant than assumed by the stakeholders. The
domain coach questions disputed business details by integrating them into the big
picture. This task can only be performed successfully if the other business repre-
sentatives recognize the business expertise of the domain coach and approve of the
big picture that this individual puts forward. Consequently, the domain coach must
have profound business knowledge of the sector and be in a position to convert the
jargon used by the individual company to general terminology, as well as have
rough knowledge of the current sector trends. Their task is to work together with the
IR method coach to push toward compliance with an appropriate level of
abstraction and review the validity of business arguments. In particular, patterns of
reasoning along the line of “it has always been like this here, we don’t need to
bother trying that here, the board wouldn’t approve” require a response by the IR
domain coach and a look into the underlying business substance.

3.5 Stakeholders 53

3.5.3 Process Owner

The role of process owner is often varied, given that IR populations frequently
relate to more than a single-core business process. Process owners have the power
to interpret the current processes and are aware of their structure and their asso-
ciated problems. However, a process owner must not only be able to describe the
ideal process form, rather (and much more importantly) they must be familiar with
the process from beginning to end, how it is implemented in the company, without
having to rely on process documentation or hearsay. Yet, the process owner must
still be able to describe the process with a sufficient level of abstraction. The process
owner is supported by genuine users when dealing with sensitive process details
(e.g., in the IR:mobile). Up-to-date, practical knowledge is required in all situations
and must be distinguished from vague, unconfirmed preconceptions.

3.5.4 Additional Roles

Table 3.1 lists the various roles that are required in the different IR variants.
A fundamental distinction is made between external and internal appointment. In
principle, externally assigned roles can be assigned internally, if project externality
and independent expertise are ensured. Internal appointments cannot be replaced, as
these roles involve the introduction of specific knowledge of company details. The
roles that arise in all IR variants have already been discussed above, while the roles
that are not used in all IR variants are described in the variants in which they first
arise.

Table 3.1 Stakeholder roles in the Interaction Room variants

Role External IR:digital IR:scope IR:mobile IR:tech IR:agile

IR method coach X X X X X X

IR domain coach X X X X X X

Process owner X X X X X

Business developer X X X

Application developer X X X X

Operations expert X X X X

Digital business expert X X

Digital technology expert X X

Interaction engineer X X X

User X X

Mobility expert X X

Enterprise architect X

Technology expert X

54 3 Interaction Room Basics

3.6 Workshop Preparation

There are several IR variants as well as a certain range of requirements for the
involved stakeholders. However, a number of commonalities also exist in the
preparation of IR populations. This includes the fact that the underlying project
goals need to be outlined in advance in order to ensure targeted and productive
discussion in the Interaction Room.

A simple method for providing an abstract description of the project goal is the
“press release” format. This text, with a maximum length of one page, is not
intended to be made public, but formulated so that it could be understood by any
interested layman. The text provides information on why the client wants to
develop the respective software. It focuses on the goals, can certainly be on the bold
side, and conveys the overarching goal. It also clarifies whether the project goal is
to develop something new, replace a legacy system, migrate a system, undertake
business or technical analysis, or engage in strategy development. Despite this
seeming lack of precision, the “press release” has a unifying effect, as it can be
repeatedly consulted during the IR population and the project in order to check
whether the project is still on track to achieve the goal and to ensure that all
stakeholders are committed to the goal.

The IR coaches should first discuss the following points with the project owners
in order to ensure that they can appropriately classify the context in which an IR
population takes place:

• What problems do company projects typically face (e.g., requirements man-
agement, stakeholder communication, degree of integration, user acceptance)?

• Which aspects are expected to be particularly critical in the planned project?
• What are the essential insights that the IR population needs to address (e.g.,

target definition, requirements analysis, user analysis, process analysis, archi-
tectural design, prioritization, effort assessment)?

• Do complex dependencies have to be resolved when integrating old and new
components?

• Do innovative solutions need to be developed for new services? Or is an initial
analysis required in order to identify the optimization potential of existing
processes?

• Which departments and stakeholders are likely to be the drivers, which are
likely to be the laggards, and which will be the enablers of changes?

The responses to these questions give a picture of the expectations and chal-
lenges that will be encountered in the project, and represent a logical basis for the
IR population. IR coaches classify the perceptions, fears, and areas of focus of the
individual stakeholders, while the behavior of the individual stakeholders can be
sorted in a general context.

3.6 Workshop Preparation 55

These insights can be used to adapt the canvases and the effort required for
population, annotation, and the discussion of the model elements, to the specific
starting situation. The fragments of the IR method can be combined to form an
Interaction Room workshop that is precisely tailored to the “pain points” of the
project under consideration.

In some cases, the responses to the above reflective questions also help to select
the most suitable IR variant. The IR:digital provides the ideal starting point where
the initial focus is on developing the digital business model (Chap. 4). If a specific
mobile app is to be developed, the IR:mobile is better suited to the mobile-specific
analysis and design activities (Chap. 6). And the IR:tech is the tool of choice if the
aim is to investigate the potential of new technologies, such as big data, for existing
systems (Chap. 7).

Another important measure to prepare the Interaction Room is stakeholder
selection. While the roles to be filled are generally predetermined (Sect. 3.5.4), the
individuals that fill the roles have to be identified and instructed in the IR
population.

3.7 Results and Follow-up Activities

The models created in the Interaction Room are generally documented so they can
also be converted to a specific syntax if desired. This allows the level of detail of the
documentation to be adapted so that certain canvases are documented in more or
less detail. All models are generally documented, and annotations are recorded
together with the justifications defined when discussing the annotation. Docu-
mentation ensures that results achieved and decisions reached in the Interaction
Room are permanently available. It also ensures that these results are available in
any subsequent software development or decision-making processes. For example,
the results of an IR:digital population are often used in strategic decisions or
portfolio processes, while the results of an IR:scope are frequently used in tradi-
tional specification processes. Even the natural continued use as part of an IR:agile
may require the interim retention of the IR:scope results, simply because there may
be gaps between the IR:scope and IR:agile. The documentation of IR results aims to
ensure that they can be integrated into all kinds of subsequent processes.

Figure 3.3 shows the relationships between the various IR canvases and artifacts.
The feature canvas on the left side is used to create a product backlog. Annotations
from the feature canvas and annotations from the process canvas are included in the

56 3 Interaction Room Basics

http://dx.doi.org/10.1007/978-3-319-41478-2_4
http://dx.doi.org/10.1007/978-3-319-41478-2_6
http://dx.doi.org/10.1007/978-3-319-41478-2_7

annotation documentation. Process models are digitized as part of the documen-
tation. The documentation format is flexible and can be adapted to the specific
requirements of the process model subsequently used for development.

Fig. 3.3 Relationships between IR canvases and artifacts

3.7 Results and Follow-up Activities 57

4Using an Interaction Room
for Digitalization Strategy
Development (IR:digital)

Digitalization is a multifaceted term. Digitalization includes “normal” automation,
which is the long-standing objective of IT. But digitalization also drives the
mobilization of data and applications, because once data is available in digital form,
there is a desire to access this data from anywhere—and people who have become
accustomed to ubiquitous access to data will continue to push for more digital-
ization. Digitalization thus drives mobilization and vice versa. Digitalization also
includes the direct integration of physical objects with business processes that are
based on information from the real world. Westerman et al. (2014) distinguish two
dimensions that have a significant impact on the efforts of companies in the area of
digital transformation:

• Digital capability refers to the systematic investigation of the potential for
digitalization, which ultimately clearly indicates where and how to invest in
digital transformation. This naturally requires knowledge about products, mar-
keting channels, and essential customer requirements, as well as available
implementation technology, to prevent media disruptions, automate interfaces,
and integrate objects from the real world directly into the business processes.

• Leadership capability refers to the acceptance of the emerging nature of new
solutions, and the idea that all stakeholders are aware that the transformation of a
business model with a focus on digitalization is even less plan-driven than other
IT projects. Scope must be provided for experiments, without losing focus on
digitalization. This focus must be directed from a central position, and it must be
constantly supported and continuously clarified.

For enterprise IT, this requires new methods to determine and assess digital-
ization potentials, and it must be able to convey ideas of the specific concept of
digitalization and its importance for individual user groups. It must find flexible
paths for developing emerging systems and managing the associated development
and business processes. It also has to be familiar with traditional digitalization
technologies and architectures.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_4

59

The Interaction Room for Digitalization Strategy Development (IR:digital)
supports the identification of digitalization potentials. It plays a particularly
important role for companies that may already be digital, or which are on the path
toward becoming digital companies.

By digital companies, we mean companies whose core business processes across
almost all activities are primarily dependent on correctly functioning IT and whose
products are exclusively digital.

Based on this definition, insurance companies, banks, and telecommunication
companies are all digital companies. They have no, or virtually no, physical
dependencies, and the products are almost exclusively digital (if you abstract from
marginal issues, such as printed policies, account statements, and invoices). By
contrast, logistics companies are not purely digital companies, because the trans-
portation of goods primarily depends on the physical nature of the goods. The
automotive industry is also not digital, because even though the production process
depends significantly on IT, the final product is still mostly dependent on assem-
bling physical components. It is impossible to manufacture a car without any sheet
of metal, even if you have the most cutting-edge IT.

IT and digitalization are naturally also playing an increasingly important role in
non-digital sectors. However, these are still primarily bound to the laws of physics
and physical objects. Interestingly, these residual physics (or the residual relevance
of physical objects) are a driver of digitalization beyond “normal” automation and
mobilization, as it is precisely these objects that are becoming increasingly con-
nected and integrated into purely digital communication structures. We refer to the
resulting systems as cyber-physical systems.

• Automation refers to the fact that mechanisms and activities that previously
required the intervention and cooperation of humans will be able to do without
this cooperation in the future, because decisions, data transmissions, and
inspections will be replaced by algorithms. In order to be able to pursue
automation, both the inputs (for the purpose of algorithmic processing) and the
outputs of automatic activities must be digitally represented. In other words, the
fundamental purpose of IT, namely automation, necessarily promotes
digitalization.

• Mobilization means that business process activities can be performed at dif-
ferent locations which are not yet known at the start of the process. This also
means that the information and documents required for the business activities
need to be made provided at arbitrary locations. Since those locations are not
known in advance, the provision of data must occur spontaneously. Making
information available anywhere is only possible in digital form, however. In
other words: Mobilization promotes digitalization. But the question of what is
driving the trend toward mobilization remains. This appears to be due to a
technology-induced change (at some point, telecommunication became avail-
able in the necessary quality, quantity, and at an acceptable cost) that occurred in
society and which is also attractive for parts of the population who are not
IT-savvy, thanks to attractive, easy-to-use terminal devices. Digitalization

60 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

potentials as a result of mobilization are considered in greater detail in the
IR:mobile (Chap. 6).

• Cyber-physicalization means that objects from the real world are able to
communicate digitally. Machines and devices can provide continuous infor-
mation on their status, status changes, capacity reserves, and maintenance
requirements, or communicate in another manner, using telecommunication that
is essentially available worldwide. They may communicate with each other, or
with a control system. This is also made possible by Internet-based communi-
cation. The distinctive feature is that information modeling is no longer
required: Instead of storing the status of physical objects in information systems
(which requires the models of the objects in the information system to be
updated and kept consistent with the real world using business processes,
exception handling procedures, and human interaction), a request can always be
sent to physical objects in cyber-physical systems if current information is
required. Figure 4.1 illustrates this paradigm shift.
This obviously only works in a few situations. The use of modeling is the safer
option if statements have to be made about the entirety of all objects and if these
statements have to be 100 % correct. But communication with physical objects

Fig. 4.1 Paradigm shift from traditional to cyber-physical systems

4 Using an Interaction Room for Digitalization Strategy Development (IR:digital) 61

http://dx.doi.org/10.1007/978-3-319-41478-2_6

is a realistic option if a response from 95 % of the objects is considered suffi-
cient when a request is sent to a large number of objects, and a certain amount of
imprecision is acceptable.
Ideas from the world of cyber-physical systems have shaped the term “Industry
4.0” (Schwab 2016), whose protagonists talk of the fourth industrial revolution
(after steam engines, electricity, and IT). The digital availability of information
opens up the potential for innovative features and services via a range of items
(not just industrial machines, but also alarm systems, domestic technology,
copiers, and, of course, the refrigerator) on a smaller scale, not just on an
industrial level. The fact that this data has to satisfy different consistency
requirements, that it may have different origins, that it may exhibit different
levels of reliability, and that its evaluation places great demands on business
relevance, statistical knowledge, and plausibility checks, makes its digitalization
particularly challenging. But one thing is clear: It is certainly a huge driver of
digitalization.
A variation of cyber-physical systems, with significant additional potential, is
the idea that physical objects do not just have to be physical items, but can also
be people. People count their steps, record their whereabouts, and report their
medical and vital data. Health insurers offer special rates for people who are
keen to exercise and report their movements. Data protection, privacy, and
ethical arguments naturally play an important role when developing these kinds
of services. But they will not stop the trend. Ask people whether they consider
privacy to be important, super-important, or extremely super-important. Most
will respond “extremely super-important.” Then ask whether they might con-
sider accepting a couple of limitations of privacy (in return for a discount, the
opportunity to win an iPad, a few miles in the customer loyalty program), and
you will soon see that privacy is no longer as super-important. Wearables, social
networks, and user-generated content are driving digitalization. The question is
not whether the Internet of Things will be joined by an Internet of Humans, but
rather the rules according to which it will operate (Schmidt 2015; Davies et al.
2015).

A variant of the cyber-physicalization digitalization driver exists in increasingly
digital corporate worlds in which automation and mobilization are prevalent and in
which physical objects do not play a major role (for example, in banks and lotteries,
as well as insurance companies to a limited extent). This involves the concentration
of information, which is already digitally available, for the purpose of supporting
decision making in business processes, and for the purpose of deriving recom-
mendations. One example is banks, which can be regarded as completely digital
and which have a particularly concentrated amount of information about their
clients. This information is reflected in the account statement. It allows a range of
conclusions to be drawn regarding the client’s behavior and financial position. With
very little algorithmic effort, a bank could identify that a bank client spends a
relatively high portion of their free budget on traveling, that their financial freedom
is increasing, and that a rail card may be worthwhile (admittedly with a certain

62 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

amount of uncertainty due to cash payments). Most banks currently do not do this
for reasons of trust, the assessment of the importance of privacy, and for reasons of
data protection. However, the data protection argument could be eliminated by
obtaining client consent. As always, the next level of digitalization can take place in
companies that are already digital by condensing digital information, which leads to
new services.

Different business sectors differ in their attitude toward digitalization drivers due
to the differing levels of automation of the business processes. The attitude toward
mobilization also varies from sector to sector. The differences in digitalization
affinity are also due to the different levels of importance of physical objects. In the
manufacturing industry, it is obvious that business processes control physical
objects. In service companies, physical objects must first be identified by searching
for the objects to which the services relate. Because some service companies are
entirely disconnected from the real-world objects at a certain level of abstraction,
they use condensed objects (e.g., banks) or purely artificial objects (e.g., lotteries
and discount systems); that is, their business purpose is purely virtual. There is no
upper limit to this hierarchy—while banks are detached as a whole, investment
banks are even more abstract than retail banks. The world of companies detached
from objects is not flat, but has an inherently hierarchic structure.

The distinction based on the degree of abstraction of digitalization is particularly
important because the vulnerability of the business model also increases with the
degree of digitalization. A completely digital company depends on good products,
appropriate marketing channels, and functioning IT. These factors are generally
easier to replicate (and improve!) than the non-digital portion. For example, it is
easier for a new market participant to establish an insurance company than an
automotive company. However, a range of factors protect digital companies from
these kinds of threats. These include the brand and the associated trust, widely
distributed, physical touchpoints with the client (points of sale, ATMs, local
agents), and the behavioral pattern of clients, which are slow to change.

The left side of Fig. 4.2 shows the traditional model: Information about physical
objects is stored in an information system. This information system is used to
execute business processes and reach decisions. A considerable amount of effort is
spent on ensuring that the physical object models in the information system are kept
up-to-date. Structural changes to physical objects are difficult to replicate in the
information system, since they require model modifications.

Moreover, consistency conditions, which apply to almost all physical objects,
are introduced in modeling. Dealing with exceptions related to temporary or
one-time infringements of consistency conditions, make both the persistence and
the algorithms in information systems complicated. A significant part of the effort to
create, maintain, and operate information systems is spent on dealing with these
kinds of exceptions. Often, it turns out over time that some of the original con-
sistency conditions, which were originally deemed significant, are gradually lost, or
even worse, bent out of shape. The incremental bending of data to satisfy consis-
tency checks is generally the easiest way to ensure the impossibility of maintaining

4 Using an Interaction Room for Digitalization Strategy Development (IR:digital) 63

the model, which leads to the problem of effort explosion much more quickly than
necessary and desired.

The right side of Fig. 4.2 displays the alternative model. Instead of using a
central model, the relevant real-world objects (which may also be interrelated) used
by the company are identified. They may also be proactively reported as a result of
particular status changes. However, no attempt is made to keep all information
about all objects that may be required at some point consistent at all times. This
eliminates the need for a coherent, closed model of the world and makes it clear that
no perfect concept of consistency can be forced upon the real world. Physical
objects are more diverse and colorful than their modeled replicas. This also has an
impact on the algorithms. Instead of a strict concept of consistency of the data, a
certain amount of robustness and fault tolerance is required in the algorithms. This
is generally easier to control than creating closed world assumptions by commu-
nication standards and protocols.

4.1 Relevant Stakeholders

Besides the essential IR coaches with their method and domain expertise, and the
process owners who are responsible for the business processes to analyze for
digitalization, the IR:digital also requires the assignment of the roles of digital
business expert, digital technology expert, and interaction engineer. The digital
business expert identifies the prospects for digitalization and its change potential for
complete business models across the different sectors. The digital technology expert
is familiar with the technologies used as part of digitalization projects, both those
that are more focused on the mobilization of data and applications and those that
lean more toward cyber-physical systems. The interaction engineer considers the
scenarios put up for discussion by the digital business expert and digital technology
expert from a strict user perspective. The three roles specific to the IR:digital are
discussed in the following sections.

Fig. 4.2 Modeling real-world objects in an information system

64 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

4.1.1 Digital Business Expert

Different industries introduce completely different digitalization solutions, which all
face individual digitalization challenges and questions:

• General insurance companies identify people as medically insured objects and
collect data. But how can this data be secured against unauthorized access and
against manipulation?

• Neobanks analyze the budget positions of their clients and suggest changes. But
to what extent does the client consider this to be supportive, and when does it
become invasive? Is the client prepared to pay for this kind of service? How is
the independence of recommendations ensured?

• Carmakers collect data on the usage and driving behavior of their cars and also
try to sell insurance. But do clients want a manufacturer as an insurer? Can rates
and products be calculated by carmakers? Furthermore, insurance companies are
also interested in pay-as-you-drive concepts and are removing the principle of
solidarity by pricing risks individually. Does this mean the fundamental prin-
ciple of an entire industry is up for discussion? And, if yes, how do markets
typically reshape themselves?

• Amazon, Google, eBay, and Apple are collecting so much data about the actual
behavior of people that the meaning of traditional market research is changing.

• Music publishers still exist, but they generally no longer earn money by selling
music, but rather from concerts and memorabilia. Are these cash flows enough
for them to allow the sale of music to be transferred to iTunes and others? Or is
music no longer purchased individually, but rather provided as a service via
Spotify?

• Who do clients in general accept to receive recurring bills from? Their bank,
their telecommunication provider, or their energy supplier?

• Newspaper publishers are establishing portals, often with a regional focus.
Clients are not used to paying for this content, but enjoy using it. The circulation
of regional print media is falling across the board. Is the provision of content via
paper still appropriate? Would a publisher sell more paper-based newspapers if
it offered mobile and digital content?

• Didn’t Neckermann produce the most fantastic mail-order catalogs right up the
end? During the initial e-business/e-commerce hype, wasn’t it obvious that
emotional goods, such as shoes and cars, would not be able to be sold over the
Internet?

• Germany’s national soccer league is still playing soccer. But the question of
who can afford Ronaldo either depends on the wallets of oligarchs and sheiks, or
on the question of which club can market and bill for licensing rights in Asia. In
other words, it also depends on appropriate digital monetarization.

Digital business experts are familiar with the types of questions mentioned
above. They know the answers that are currently favored in sectors and companies.

4.1 Relevant Stakeholders 65

They know the answers that were favored in the past and have investigated whether
the responses have changed over time. In short: They are aware of the opportunities
and risks of digitalization (with respect to automation, mobilization, and
cyber-physicalization) in existing business models and can transfer challenges and
solutions from other industries to the situation in question.

The digital business expert primarily operates by asking the right questions.
These questions relate to the following topics:

• Business model: Are digitalization trends threatening the current business
model? Can new sources of income be developed based on new services or
products?

• Competition: What digitalization initiatives have been implemented in the
industry? How are market leaders responding? What innovations have been
introduced by niche providers in the industry? Are there any new market par-
ticipants from outside the industry?

• Brand: How can the brand and image be transferred to new offers? (This
represents a great advantage over new market participants!) How can the current
client base be approached with new, additional services and products?

• Legacy issues: How can historic obligations be eliminated in view of new
potentials? (This is often required in order to establish simple digital solutions. If
this simplification is not successful, there is a risk that new market participants
will gain an advantage.) How can the sinecures of current client advisors and
sales channels be dealt with? How can the cannibalization between new and old
channels be avoided?

• Acceptance: Is the client prepared to accept a new digital approach and/or new
products and services? Do emotional or organizational hurdles exist? What are
the perceived data protection problems, and do plausible solutions with simple
explanations exist?

• Monetarization: Who is prepared to pay for what? Are these cash flows suf-
ficient to cover the design and operating effort? What associated income models
are conceivable? Are premium services and products available? The moneta-
rization discussion is delicate, as this is precisely where a number of business
models and services fail. A critical review must confirm whether the benefit
perceived by end customers (often measured as convenience, which is difficult
to assess) is large enough to induce them to pay. In all Internet-based businesses,
the payment hurdle is initially higher than justified by the actual price. Clients
hesitate to establish cash flow relationships with new suppliers due to trust and
uncertainty. But even if the decision is made that the payment hurdle can be
overcome, the question of whether an adequate number of clients can be reached
remains. This often requires an enormous marketing and advertising budget, or a
brand that is already strong. In short: The monetarization of end customer
businesses is difficult, especially because large Internet players can set up a
range of services. If a service is easy to replicate, its monetarization is decidedly
questionable. But, even if the business model does not target the end customer,

66 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

an eye must be kept on the distribution of the revenue between the partners, the
prices for the different types of clients, the commissions for sales partners, and
the design and operating costs. New products and services naturally change
during their development. Ries (2011) describes this phenomenon as one that is
virtually inherent in IT-based innovations. Consequently, the issue of moneta-
rization has to be answered time and again and cannot be decided conclusively
at the beginning of the digital transformation. And, unfortunately, there is
always a chance that the response may be negative.

• Introduction: How can new digital models be introduced to the market? How
can they be tested? Who is able to establish and evaluate appropriate A/B tests?
What expectations exist with regard to the development of earnings and the
customer base? Is the organization resilient enough to adapt to changes in
income and business models?

• Monitoring: How can the successes/failures of new digital solutions be mea-
sured? What are the variables and how can the associated values be automati-
cally determined? Who are these values reported to, and how?

4.1.2 Digital Technology Expert

The digital technology expert is aware of the potentials, levels of maturity, and the
key application scenarios of current digitalization technologies. This includes trends
and technologies in the context of mobile applications, in the interaction design and
in the elasticity context in the broadest possible sense. No classifications currently
exist in the context of elasticity, matching operating models, and persistence
options in the technology world. Digital technology experts obviously have to be
familiar with cloud-like structures and operating models (regardless of whether this
relates to private or public clouds). They must also be familiar with non-relational
storage concepts and be able to classify these concepts, and they must be able to
assess the application opportunities of technologies from the sphere of “big data”
(Hashem et al. 2015). The digital technology expert assesses the technical feasi-
bility of the resulting ideas. His or her tasks include the following:

• The digital technology expert checks whether automation technologies, mobi-
lization of data and applications, and cyber-physicalization, i.e., the integration
of physical objects into the business processes, can help improve these business
processes. The digital technology expert’s focus is on the applied technologies.
For the aspect of cyber-physicalization in particular, he or she considers all
real-world objects that are present in a company’s information system, and
reviews their integration and management potential.

• The digital technology expert looks at the interactions identified by the inter-
action engineer and checks which of these interactions can and should receive
mobile support. This involves the following questions:

4.1 Relevant Stakeholders 67

– Is the provision of data and applications possible from a security perspec-
tive? What is the public perception of the sector-specific security position?
Do regulatory provisions or sector-specific regulations have to be taken into
account? What potential losses and probabilities of occurrence are connected
with corruption, unauthorized access to the data, and loss of data?

– In what context do these interactions occur? In this case, “context” combines
all the associated exogenous factors, which can have a significant influence
on the correct structure of an interaction.

– Will mobile data only be read, or also recorded/manipulated? Do precautions
need to be taken in case telecommunications are unavailable? What types of
inconsistencies and which inconsistency periods may arise, and which can be
tolerated? Are competing manipulations of the data possible from an orga-
nizational perspective, and can they be eliminated?

4.1.3 Interaction Engineer

The interaction engineer is required because many of the solutions identified in the
IR:digital are new and potentially involve new interaction possibilities. This
includes gestures, voice commands, and inputs via innovative devices (wrist-
watches, glasses, etc.). The new interaction possibilities need to be coordinated to
ensure that all devices have similar modes of operation. They also need to be
coordinated with traditional interaction possibilities based on the WIMP
(Windows-Icons-Menus-Pointers) paradigm to ensure that the user experiences a
consistent as well as uniform interaction concept. Multimodal interactions are often
employed in new digitalization solutions, which are based on the opportunities
offered by cyber-physical or mobile solutions (e.g., simultaneous voice and touch
operation). The intuitiveness of these kinds of interactions must be critically
reviewed.

The interaction engineer also focuses on business processes, which often rep-
resent the overarching context of individual interactions, without being a priority
for in-house or external users. If these interactions do not have a uniform structure,
the user interface will be confusing. In all these situations, the digital solution must
be observed from the perspective of the potential users, their cognitive load must be
taken into account, and media or interaction disruptions must be critically exam-
ined. If this task is left to the technology experts, there is a risk that the focus will
drift away from the user and turn to the testing of gadgets. On the other hand, if this
task is left to application domain experts, the focus can quickly turn to business
relationships. The interaction engineer’s role ensures that the focus remains on the
user.

68 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

4.2 Partner Canvas

The IR:digital uses three canvases:

• The partner canvas is used to identify the key partners and their interfaces to
the company.

• The physical object canvas (Sect. 4.3) is used in order to identify the specific
physical objects and their integration into internal business processes.

• The touchpoint canvases (Sect. 4.4) are used in order to identify the sequence
and channels the respective partner uses to contact the company.

The partner canvas provides information on the types of partners, clients, or
users (hereinafter referred to as partners) with whom information or physical objects
are exchanged. Partners typically include clients, suppliers, and business partners.
Up to ten of the most important partners are identified when creating the partner
canvas, which contains all the business processes (without detailing them) that
occur within the company. The external interfaces for these business processes are
then identified. This reveals the data and products that are supplied externally, as
well as the data and products that are purchased externally, and specifies the
communication partners.

4.2.1 Methodology and Notation

Partner interfaces are classified into input and output interfaces. On the partner
canvas, all interfaces are noted on an ellipse that represents the organization’s
boundary. The interfaces between the organization and the outside world are added
to this ellipse as circles. They are linked to the business process activities that the
interfaces supply, or from which they obtain information. Internal parts of the
business process are not displayed. All partners who have access to the interfaces
and who contribute to the interfaces are noted outside the ellipse. Figure 4.3 shows
an example of a partner canvas.

To populate the partner canvas, the organization’s core business processes are
considered one by one, and the interfaces involved are recorded in order to identify
all the relevant interfaces. The interfaces are then investigated in order to determine
whether physical objects are affected by an interface. In Fig. 4.3, for example, the
interface between broker and rates on the left boundary can be described as follows:

Rates are provided to brokers in the BiPRO XY4001 format. This occurs monthly and is
generated proactively by the insurance company. The exchange of rate information is
documented and archived.

This description indicates the object being exchanged, the exchange format, how
often the exchange takes place, and the additional regulations that apply. This
specific example may be a reason for automation, however, no physical object,
whose integration in the business processes may be worthwhile, can be identified.

4.2 Partner Canvas 69

For another example, an interface similar to the following example may arise in
the manufacturing industry:

Machines are delivered to clients, including the operating instructions, a description of the
technical features, and a maintenance agreement. Everything is provided by the company
and made available online. Access to the information is not recorded.

This description once again indicates the typical information on how an interface
is handled. It also confirms that a machine is delivered. This is certainly a physical
object. The use of life cycle information about this object within the internal
business processes requires further investigation.

Every partner touchpoint with the company is recorded based on the following
categories, in order to ensure the systematic collection of interfaces:

• Partner: Which partners are involved?

– Example: An insurance company that wants to identify its digitalization
potentials identifies the roles of all the individuals that it contacts. This may
include policyholders, sales representatives, brokers, and lawyers.

Fig. 4.3 Simplified partner canvas for an insurance company

70 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

• Interfaces: Which partners use which interfaces?

– Example: Brokers and interested parties access the product information.

• Business process: Which business processes is the partner involved in? How
are the interfaces accessed and supplied?

– Example: A broker interacts with the insurance company in various business
processes, such as in the consulting/pricing, contract conclusion, commission
settlement, and claims settlement processes.

• Frequency: How often does this type of interaction occur?

– Example: The broker has a monthly interface for commission settlement and
is more frequently involved in contract conclusions than claims settlement.
Contracts are either concluded in the broker’s office or (more often) at the
policyholder’s location.

• Terminals/Media: What types of terminals are involved in the interaction, and
what types of input/output media are important?

– Example: In some cases, the consulting/pricing and contract conclusion
processes may be mobile processes and are executed using tablets. Other-
wise, laptops and desktop PCs are used.

• Skills: Can it be assumed that the interacting individuals are only occasionally
involved in the process (and therefore require a great deal of support and
training), or do they quickly become experts and expect maximum efficiency?

– Example: A broker quickly reaches the status of an expert in the
consulting/pricing and contract conclusion processes (due to the process
frequency). The same is true for the provision settlement process (due to the
special interest). However, more assistance must be provided in claims
processes.

• Communication properties: What types and formats of objects and documents
are exchanged, and in which direction? Does this take place in analog or digital
format? How often is an interface used, and what service levels and response
times have to be ensured? Do security requirements exist? Does the exchange
have to be documented?
A company’s partners identified this way are then naturally classified into
partner groups. For example, an insurance company has insured individuals,
sales representatives, and brokers, which are identified in the interface
descriptions. This represents an initial differentiation of a company’s outside
world, without having to specify personas, as is the case in design thinking

4.2 Partner Canvas 71

(Brown 2009) or in the IR:mobile. Yet, the additional division of partner groups
may be prudent in certain situations. Perhaps large and small brokers exist,
which should be kept separate for the purposes of the partner canvas. However,
in contrast to personas, the subdivision continues to provide homogeneous
groups of partners. Any further breakdown does not occur in the IR:digital, as
no specific services are established for specific target groups. This kind of
detailing takes place in the IR:mobile (Chap. 7).

4.2.2 Annotations and Analysis

The annotations in Table 4.1, which relate to interface/partner pairs, are used to
annotate the partner canvas.

In the analysis of the partner canvas, the following points should be examined:

• Have all relevant interfaces to every partner been recorded, or do gaps exist?
This may particularly occur along the chain of defined interfaces. If a partner
receives information via an interface, this poses the question of what the partner

Table 4.1 Annotations for interface/partner pairs on the partner canvas

Symbol Name Interpretation

High use Information may be exchanged across the individual interfaces at different
frequencies. The more often an interface is used, the greater the focus on
the interface. The high use annotation indicates that an interface is
frequently used, or at least that a large number of objects occasionally use
this interface to communicate.

Accuracy Some, generally commercial and contractually based relationships require
the exchange of absolutely precise information. The consistency of
information exchanged over these kinds of interfaces is extremely
important, as inconsistencies lead to misunderstandings and can lead to
economic losses. Other interfaces focus on providing information on
issues and events without the need for a correct description. The accuracy
annotation indicates which interfaces need to satisfy high accuracy
requirements.

Reliability The interfaces/partner pair has to satisfy certain service levels. This may
relate to the speed of communication via the interface or even the
importance of ensuring that information exchanged using this interface is
not lost. The reliability annotation provides information on these and
associated relationships. The type of reliability is then covered in the
detailed discussion of the annotations.

Security Security has many aspects. The type of security requirement must
therefore be identified when addressing security concerns. The security
annotation at a partner/interface pair can be used to indicate that the
individual stakeholder considers a certain interface to be critical to
security. The discussion of the annotation then identifies the nature of the
individual security concern. This may relate to data integrity
requirements, protection against unauthorized access, or the integrity of
content.

72 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

http://dx.doi.org/10.1007/978-3-319-41478-2_7

then does with the information and whether a response is provided. If a response
is provided, this response has to return to the company via another interface.

• If the number of interfaces with a partner leads to a diverse range of annotations,
this situation must be explicitly discussed with the partner to make sure that they
are aware of this variation. It may be perfectly fine and proper for one interface
to be extremely critical to security, while another is not. A plausibility check
should take place in the case of large annotation ranges in order to correct any
annotation gaps/errors.

• If a model element has been assigned at least three of the four attributes used, a
detailed review is required to check whether any feasible technical solutions
exist to guarantee the necessary qualities.

• If intensive back-and-forth interfaces exist with a partner (i.e., an interface to
supply goods to a partner, another for receipts, and yet another for additional
deliveries), a plausibility check must confirm whether the splitting of the
overarching business process is desirable and unavoidable.

4.3 Physical Object Canvas

Many digitalization opportunities arise due to the fact that information about
physical objects no longer has to be transmitted in models (typically information
systems). Instead, real, physical objects can be requested directly, or data can reveal
their status. In this section, we use the term “object of interest” (OoI) in order to
clarify the digitalization driver for the integration of physical objects into business
processes. An object of interest refers to an object whose direct integration into a
company’s business processes has the potential to significantly simplify these
business processes. In the vast majority of cases, an OoI is a physical object, but it
may also be an individual, who is prepared to provide information on status,
location, and context. In rare cases, an OoI may also be a purely virtual object that
effectively acts as a proxy for a physical object. It is distinguished by the fact that it
delivers status data (either continuously or on request) for evaluation at a different
point, and its ability to receive control data.

OoIs are identified and described using the physical object canvas. It identifies
up to ten of the most important OoIs, whose direct integration into the business
processes can lead to significant simplifications or new business models, as well as
consider their life cycle and identify events that could lead to data deliveries. To
identify the ten key OoIs, it may be necessary to define additional candidates and
then gradually reduce the larger quantity down to the most important candidates.

An OoI may also be a human, for the continuous delivery of data, or on request.
Equipped with wearables, watches, or other mobile devices, human actors deliver
data that generally only has to be evaluated, not stored, in order to respond to
certain situations or introduce other measures.

4.2 Partner Canvas 73

4.3.1 Methodology and Notation

The IR:digital is not focused on detailing how business processes change due to the
direct integration of OoIs. Rather, it is more important to determine the extent of the
impact of OoIs on the process landscape and identify business processes that may
benefit from OoIs (potentially also from different types of OoIs). As a result, these
dependencies are primarily accessed via the OoIs and not via the business
processes.

OoIs are initially determined based on the partner canvas. This involves the
consideration of all interfaces between the company and the outside world identi-
fied in the partner canvas. The first category of objects includes those that are
explicitly produced and delivered, and those that are explicitly supplied to the
company externally. This type of physical object tends to play an important role for
producing companies.

However, OoIs that are indirectly dependent on the services provided by a
company can also be identified, especially if the service (such as home insurance, or
the provision of a printing service) relates to a relevant physical object (such as to a
residential building or a printer). In this case, we use the term “service-based OoI.”

In some purely digital companies, OoIs cannot be identified by interface analysis
or by service-based considerations (as is the case for banks and lottery companies,
for example). These kinds of companies are completely disconnected from
real-world objects, and their operations are based exclusively on virtual objects. In
this case, reference is made to the objects that condense the physical objects or
processes. A bank does not have any physical objects, and a bank’s services are also
only based on virtual constructs. But the central “account” object does exist. And
this object condenses information on a perspective of the real “human” object (the
perspective that is defined in cash flows). Changes to this condensed object can be
identified as status changes, which may result in the introduction of certain mea-
sures, just like status changes in physical OoIs. These are referred to as virtual,
condensed OoIs.

Interface analysis and the systematic observation of these interfaces for physical
OoIs, service-based OoIs, and condensed OoIs enable a basic number of OoIs to be
identified, even if they do not directly relate to standard types of interfaces.

OoIs that are directly related to physical objects are generally easy to identify
because they are either delivered by suppliers or to clients. They occur as a standard
type at a specific interface. This includes OoIs that have a direct impact on the
company as products (cars, refrigerators, and machines).

Service-based OoIs can be identified by observing the objects purchased for
service products: What is the object to which business interruption insurance
relates? This will generally be a piece of equipment, in which case the insured
object is a physical OoI. Cars are OoIs, i.e., physical objects, to which the service
“third-party vehicle insurance” provided by an insurance company relates. The
service “maintenance of the heating system” relates to a heating system, while the
service “managed printer” relates to printers.

74 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

This collection of OoIs along the external interfaces allows the vast majority of
OoIs to be identified. Certain additional OoI candidates may be concealed within
the internal business processes. This may include machines and plants in a pro-
ducing company. While they generally have to be delivered at some point, these
kinds of deliveries may not be included in the partner canvas because machine
deliveries are rare. They can be identified by searching for physical objects under
internal administration. This will generally only lead to the identification of a small
number of new OoIs, but this addition makes sense in order to complete the set
objects identified via the tour of the interfaces. The additional use of the object
canvas is recommended (Sect. 5.4) if this addition leads to the impression that a
large number of relevant OoIs have been detected internally. A review of the
objects in the object canvas for their OoI potential also leads to the systematic
identification of internal digitalization potentials.

Two additional objects are automatically included in the number of objects of
interest to be investigated:

• The “client” object, as relevant events may occur during the client’s life cycle
that connect him or her with the company’s products and services. These may
also be identified by considering the products (and should be identified at the
company interfaces and so already be included in the number of OoIs to be
investigated). However, this minor methodological redundancy is accepted in
order to prevent gaps at central points.

• Therefore, the second default OoI is the “product” object. With service- and
product-oriented companies, this OoI is highly likely to appear in the interfaces
in any case. But with companies whose objects are entirely disconnected from
the real world, it can easily happen that the actual product does not appear in the
examination of the interface; therefore, its examination is explicitly requested.

For companies disconnected from real objects, it often happens that the total
number of objects to be examined is actually limited to the two default objects
“product” and “client.”

A sufficiently complete number of OoIs should exist after this step. Each OoI is
examined to determine whether it could generate data about its state during its life
cycle that could be relevant, legally usable, and profitable for the company’s
business processes. Key indications are supplied by the following life cycle
questions:

• What location changes is the object subject to during its life cycle?
• What state changes does the object experience during its life cycle?
• What context information for the object exists at runtime? Can this be collected

digitally?
• What important events occur during the life cycle of the object?
• What happens at the end of the object’s life cycle, and what causes it to be

dissolved?

4.3 Physical Object Canvas 75

http://dx.doi.org/10.1007/978-3-319-41478-2_5

• What other objects does the OoI being examined come into contact with, and
does this result in direct communication situations?

All situations in which people are the objects of interest are subject to especially
close examination, based on the privacy questions that follow.

• What data is automatically collected about the behavior of people (movement
behavior, navigation behavior, usage behavior in regard to devices)? Such data
may already be in concentrated form. One example is the “account” object in the
context of a bank. Such an object can be viewed as the concentration of account
holder behavior.

• For what purpose is this data used? Is the type of use transparent for the person
whose data is used, and does the person agree?

• What benefits for the data owner can be generated with this data? Are there
services, discounts, or status changes that are offered to the data owner? To what
extent do these services or discounts make the client relationship stronger?

• How can abuse be prevented? What risks are associated with prohibited access
to the data (image impairment, financial damage, loss of confidence)?

• Is it possible to comply with all requirements and directives for handling per-
sonal data?

• Does the (partial) anonymization of personal data ensure adequate data privacy
on the one hand, and does it still permit meaningful use on the other hand? What
type of anonymization can be carried out automatically?

After these two sets of questions are examined, OoIs with a high OoI potential
and without excessive privacy concerns are left. These are examined to determine
whether the OoIs are technically capable of providing information about their state
in the broadest sense, and how expensive their configuration could become. How
this information could be used in the current business processes is examined.
Whether new business processes become possible based on this information and
whether this data could be exploited in other ways, possibly also externally, is
examined as well. Here a review is required—typically by the digital technology
expert—to determine how to deal with the fact that not all objects of interest may be
accessible at all times, how the volume of information supplied by multiple OoIs
can be statistically summarized, what telecommunication means are required, what
telecommunication costs may be incurred, and what security issues need to be taken
into account.

After all determining factors are examined, a number of OoIs remain that can be
considered for integration into the business processes. Which business processes
may be affected is examined for each of these OoIs. This is done by free association
based on the question: How can current information about the state of an object (for
example, a machine, usage behavior of a person, navigation behavior of a person,
location behavior of a person, wind power station, car, solar cell, alarm system, or
salesperson consulting behavior) be supplied to the company’s business processes
at any time?

76 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

We will discuss some examples of OoIs and their potential in the following:

• A person—considered here as an OoI for a health insurer—undergoes a medical
examination with the use of medical devices. The devices used in the process are
able to supply diagnostic and administrative information directly for diagnostics
and cost settlement, with no media breaks. This means a magnetic resonance
tomography (MRT) device can report directly to the health insurer, indicating
what body region of which patient was examined with an MRT and for how
long.

• An MRT—considered here as an OoI for a manufacturer of medical devices—
transmits its operating times to the manufacturer for the purpose of monitoring
maintenance intervals and scheduling service personnel in a timely manner.

• An MRT—considered here as an OoI in the sense of hospital equipment—
automatically transmits the result data to the responsible medical specialist with
reference to the patient who was examined.

• A building air dryer—considered here as an object supplied by a facility
management company—transmits its location to the company every 30 min so
it always knows what unit is located where. If the device is in motion (its
location is currently changing), a message is sent to the recipient when the
device is being moved. The message includes the location, time, and distance to
the destination, so the recipient does not have to reserve half days for receiving
the device. The device is also subject to relevant state changes (for example, the
condensate reservoir is almost full). This state change is sent to the current
operator as a reminder to empty the reservoir.

• A forklift—considered here as an object supplied by a forklift manufacturer—
supplies information about its use (driving characteristics and lifting perfor-
mance) to the manufacturer, enabling the development of new services such as
“lifting as a service” and preventive maintenance. Individual pricing for these
services is possible depending on the respective user behavior.

• A dog—considered here as an OoI of a dog food manufacturer (identified by
examining the life cycle of the OoI “dog food”)—supplies vital signs. These are
offered to the dog owner in concentrated form. The dog owner can control the
whereabouts and exercise profile of his dog.

• Construction machines—considered as OoIs in the sense of operating equip-
ment of a construction company—report their location when they are moved. If
this happens within a certain window, for example at night, an alarm is
triggered.

• A car—considered as an OoI supplied by an automobile manufacturer—reports
details regarding signs of wear to the authorized dealer. This enables the dealer
to offer tailor-made maintenance services. Sales is informed when signs of wear
exceed a certain frequency. After a certain service life, the life cycle is assumed
to end soon and sales efforts are intensified.

• A car—considered as an OoI supplied by an automobile manufacturer—reports
the intensity of use for certain features (such as park heating, steering wheel
heating, and driving mode selection). If it turns out that they are frequently

4.3 Physical Object Canvas 77

ordered by the basic population of clients but rarely used, then this information
is not relevant for the individual “car” object but may be relevant for adver-
tising, marketing, pricing, and even usability engineering.

• Amachine—considered as anOoI supplied by amachine manufacturer—supplies
information about the ambient temperature, relative humidity, and other context
parameters. Based on this information and the information about maintenance
intervals, the manufacturer can make applicable improvements to its products.

• A machine—considered as an OoI of an operator—reports available production
capacities to a platform used to assign orders and participates in order auctions.

• A photovoltaic system—considered as an OoI operated by an energy company—
supplies information about its state in order to optimize maintenance intervals
and verify the plausibility of supply remuneration settlements.

• A person—considered as an OoI of an insurer—reports his vital data to the
health insurer. Depending on the state of health, immediate therapeutic measures
or also just statistics can be derived.

• The central “account” object is an OoI in a bank. While an account is not a real
object, it has the greatest proximity to the “client” object out of all objects
managed by the bank. The “account” object in a way reflects a dimension of the
actual OoI “client”, being the dimension of the client’s behavior that results in
transactions.

After the population of the physical object canvas, OoIs have to be identified for
which the relevant events, the data to be supplied and the affected business pro-
cesses are specified. One also has to note whether the OoIs proactively report
individual events to supply data or whether they have to be queried (reactive from
the OoI perspective). Figure 4.4 shows a corresponding list for the OoI “machine”
of a machine manufacturer.

In addition to the effect on existing business processes, one also needs to
examine what additional business processes that did not even exist without the new,
broad data base now become possible. Processes in product engineering based on
usage behavior or client complaints are an example. Sometimes new products or
services are also conceivable based on the newly developed data sources. For
example, it is typically possible to not only sell a machine but to offer service
models focusing on the performance of the machine. This, however, is only pos-
sible—and in particular, can only be priced in a meaningful way—if information is
available stating which machines are used how and in what situations. This can vary
significantly depending on the context and client. Furthermore, the only way to
easily determine this is with machines that send regular reports about how they are
used. Therefore, such business models only become possible in the first place when
detailed information about OoIs is collected. Other business models can consist of
selling data that is collected, or making it available for statistical purposes. Special
attention should be paid to data privacy and proprietary rights with all these sup-
plementary business models.

78 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

4.3.2 Annotations and Analysis

The annotation of OoIs on the physical object canvas is performed with the help of
the annotations in Table 4.2.

In the overall view, the following competing annotations are considered suspect—
OoIs annotated this way should be examined in view of these conflicts:

• High use and time constraint: The high-use annotation means that many of the
OoIs can occur at the same time. The time constraint annotation means that the
information supplied by the OoIs requires further processing within a defined
time. Together these factors impose a scalability requirement on the central
infrastructure. One needs to examine whether this can be achieved with rea-
sonable means.

• Reliability and flexibility: The reliability annotation means that the OoIs are
outside the full control of the central system and that the assumed probability of
failure for the OoIs could be a problem for the functionality of the overall
system. The flexibility annotation means that the formats of the data to be
supplied are expected to change. Both together can mean that data deliveries—
especially after format changes—could be prone to error. In such situations,
each change should be covered by a suitable test strategy as a minimum.

Fig. 4.4 Example of an object of interest described on a physical objects canvas

4.3 Physical Object Canvas 79

Table 4.2 Annotations for objects of interest on the physical object canvas

Symbol Name Interpretation

Business
value

The value creation potential of the OoI is considered to be
particularly high—whether through the creation of new products or
services, by optimizing existing processes, or through derived
business models such as the resale of collected data.

User value The resulting solution would serve the requirements of clients or
partners particularly well, so that interacting with the OoI would
become especially attractive or practical for them.

High use The annotated OoI may (at least at certain times) appear in
especially high numbers, or the information supplied by this object
may cause a high data volume and/or a high delivery frequency. An
example could be wind turbines in a region which all suddenly
report that they are now shutting down due to adverse weather
conditions.

Time
constraint

Data supplied by the annotated object requires further processing in
fixed, defined, and usually also short time periods. One example is a
car that sends an emergency call triggered by the sensor of the
activated air bag. This information has to be processed quickly and
asynchronous wait time must be avoided.

Reliability OoIs are decentralized elements of an overall system. They have
different origins and play roles of different importance in the overall
system. Whether the assumed probability of failure for the
individual occurrences of the OoI is considered problematic for the
overall system is specified for each OoI. Mobile traffic light systems
that respond to events and report when the signals change are an
example. If complete monitoring is considered important, and it is
assumed that too many errors will occur during data transmission,
this can be emphasized by this annotation.

Accuracy The data to be supplied by the OoI, which tends to contain errors
due to its diverse origins, needs to be adjusted to meet the
correctness requirements of the internal business processes prior to
further processing. An example may be vitals data of persons
covered by health insurance that needs to be reviewed in regard to
relevance for discounted premiums: Such data comes from many
different persons and is generated and transmitted by numerous
different devices and apps. One can expect many different versions
and deviations from defined formats here. A need for adjustments
prior to further processing has to be taken into account.

Flexibility The corresponding objects are intended to supply defined data
according to their life cycle analysis, but the content, format, and
frequency of data deliveries can be expected to change sometimes
based on technology, regulatory, or data privacy changes.

Complexity Integrating the OoI would lead to especially complex solutions.
This may be due to the fact that data is difficult to capture at the
OoI, the data structure makes evaluation difficult or integrating the
OoI in a digital system poses special design challenges for other
reasons.

80 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

• High use and accuracy: A scalable data volume that requires adjustments prior
to processing can indicate a potential performance problem. Therefore, the
calculation complexity of the adjustment should be examined.

4.4 Touchpoint Canvas

The purpose of the touchpoint canvas is to analyze, for a maximum of five partners,
what probable contact sequences exist, which events trigger the contacts, and on what
channels or in what contexts they occur. This means the interfaces from the partner
canvas are arranged in typical perception sequences in reference to a specific partner.

There is a separate touchpoint canvas for each of the most important partners up
to a total of five. Every touchpoint canvas lists up to ten so-called touchpoint events.
A touchpoint event is an event that triggers a contact. Each touchpoint canvas
differentiates five to ten access channels or contexts in which contacts can occur.
The information shown here is also referred to as a customer safari or customer
journey map by other approaches [which are in turn loosely derived from service
blueprints (Shostack 1984)] that focus on the client as well.

4.4.1 Methodology and Notation

The objective of the touchpoint canvas is to determine potential interaction breaks
from the perspective of the most important partners, up to a maximum of five, and
to determine whether the individual service for and touchpoints with each partner
form a coherent and plausible picture. Requiring the partner to select different
access channels depending on the touchpoint is to be avoided. The interaction with
the company should appear consistent to the partner. Special attention is paid to
those touchpoints where there is a risk that the interaction may be terminated
because the partner is irritated, unable or unwilling to overcome a usability hurdle.
These touchpoints are called trust points.

For the five most important partners (one of these is always the partner “client”),
the touchpoint events that cause the partner to come into contact with the company
in question are placed on a timeline (the horizontal axis of the canvas). Here, the
term timeline is not to be interpreted in terms of a strict linearization of the contacts.
It can branch and also bend back, for example, when an exception occurs at a
touchpoint requiring the return to a previous touchpoint. However, documenting a
complete sequence of contacts that reflect the handling of all exceptions is not the
goal, as it would mask the regular flow too much.

A notation is made for each touchpoint event, documenting through what channel
and in what context the contact can be supported. Here it is possible that more than
one channel can be considered for a touchpoint event. If this is the case, choosing the
channel is up to the partner as a rule. At least the assigned interfaces from the partner
canvas have to show up for each partner. Channels and contexts can be noted along

4.3 Physical Object Canvas 81

the vertical axis using so-called touchpoint lanes. While access channels in particular
are noted in the lanes within the scope of the IR:digital, context information primarily
appears as lanes when the touchpoint canvas is used in the IR:mobile (Sect. 6.4). We
typically differentiate the following touchpoint lanes:

• Real objects: This lane is chosen when OoIs are exchanged.
• Paper: This lane is chosen when paper is exchanged.
• Electronic messages: This lane is chosen when electronic messages are

exchanged.
• Web: This lane is chosen when a partner obtains information on the organi-

zation’s Web site. It is possible to differentiate between mobile and stationary
Web access (especially in the context of the IR:mobile).

• Social media: This lane is chosen when information is obtained or exchanged
using social media.

The number of touchpoint lanes can be expanded. An insurance company may,
e.g., add the lane “client service center” for clients, while a bank may add the lane
“ATM.”

The touchpoints are entered in the coordinate system as simple circles. They
show which channels support the touchpoint events. Placing a touchpoint event on
the canvas indicates a contact that takes place in the context named by the lane or
using the named access channel (which usually designates a certain media class
such as Web and mobile). Trust points, i.e., touchpoints with a risk of terminating
the interaction, are marked by double circles.

By default, one of the five partners to be examined is the partner “client.” For
this partner, the life cycle of the OoI “client” examined in the physical object canvas
corresponds to the label of the horizontal axis on the partner touchpoint canvas for
the partner “client.”

Figure 4.5 shows an example of the touchpoint canvas. Interfaces from the
partner canvas are sorted according to two dimensions. Two of the touchpoints are
identified as trust points.

Fig. 4.5 Example of touchpoint canvas for a client buying a car

82 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

http://dx.doi.org/10.1007/978-3-319-41478-2_6

4.4.2 Annotations and Analysis

Instead of assigning value and effort annotations, each recorded touchpoint is
evaluated from the partner perspective on an emotion scale encompassing the
attributes “tedious,” “necessary,” “practical,” “desirable,” and “emotional”:

• Tedious: The partner perceives touchpoints as tedious that require interaction
where this is not necessary from the partner’s perspective. Touchpoints that are
considered necessary can still easily be perceived as tedious if they are poorly
implemented though. This means it takes longer to use them than it should from
the partner’s perspective, they are not perceived as robust or reliable, or they
cause uncertainty for the partner (“Did it work correctly?”). When all employees
have to respond to the registration for a company event (and not just the
expected ten percent not attending), that is tedious, because it is perceived as not
necessary. A conference system where the reviewer remains uncertain whether
his opinion was recorded, until he receives an e-mail a few minutes later, is
tedious, because it is poorly implemented.

• Necessary: Some touchpoints are necessary and accepted as such. When the
client wants to buy something in an online shop, he has to identify himself and
enter a delivery address. A good implementation ensures that the client is
willing to accept this “bureaucratic” step.

• Practical: Necessary touchpoints are perceived as practical, especially at the start
of their implementation, if they make other activities obsolete. Paying a parking
fine for an American rental car can be quite difficult, because the foreign renter
usually does not have a check he can just put in the mail. On the other hand, if
there is a QR-code-based mobile app for paying parking tickets by credit card, the
convenience of this application may even overshadow the unpleasant occasion.

• Desirable: Some touchpoints do not even exist yet with full functionality, but
are desired by the partner. This results in a genuine touchpoint expansion
request. For example, a client may have the idea that informing his bank once of
a change of address should automatically inform all companies with direct debit
authorization of the changed address. The touchpoint “client informs bank of
address change” exists in such a situation. However, the expanded functionality
is not available yet. This makes “desirable” a difficult classification because it
mixes the evaluation of existing with the desire for future functionality. It is,
however, especially useful as well, since it provides a direct indication of
potential for improvement.

• Emotional: The partner is emotionally involved in some touchpoints. This can
have various reasons, whether one is calling a complaint hotline, picking up a
new car from the manufacturer, checking into a hotel after a long journey, or
rebooking a flight because of a missed connection. Ideally, such touchpoints
need to be especially robust with a friendly user interface.

Figure 4.5 shows the partner touchpoint canvas of an automobile manufacturer’s
client. It begins with interest in the product, which can manifest itself through

4.4 Touchpoint Canvas 83

numerous channels, and continues with a test drive, which includes a real object
(the car in the test drive). The purchase takes place on site. The “service” touchpoint
can occur through four lanes: On the one hand, the service appointment is made by
telephone or Web, on the other hand, the actual service is performed at the deal-
ership and involves a real object (the car). “Repair” is also listed as a touchpoint.
The attributes listed on the emotional scale exhibit a significant spread. At least the
purchase is perceived as pleasant and emotional for most buyers, and emotional
involvement of the client can be expected on occasion for the repair as well. Even
this simple annotation shows that, from the perspective of the automobile manu-
facturer, the goal is to follow the initial positive touchpoints with other positive
ones in order to maintain client loyalty beyond the life cycle of a car. The classi-
fication of the “information” touchpoint as a trust point is interesting: If the client
fails to obtain enticing information about products and their configuration, or is
unable to determine prices quickly enough, there is a risk the customer may lose the
desire to buy so the budding business relationship fails to be consummated.

The analysis of touchpoint canvases usually does not result in any identification
of problems. Instead, their examination provides indications of suspicious facts that
require closer analysis. Typical suspicious facts are as follows:

• A lot of back and forth between the touchpoint lanes, which can disrupt the
uniform impression or indicate media, breaks in the execution of actions.

• Numerous selection options at individual touchpoint events (vertical lines that
intersect several lanes), since this can confront the partner with the cognitive
burden of selecting the right channel or recalling which one was chosen last.

• Many interfaces classified as “desirable,” since this indicates functional gaps.
• Many Web-based interfaces classified as “emotional” since there is a risk of the

company being blamed for access problems caused by a lack of telecommu-
nications coverage. In particular when the client is emotionally involved, this
can lead to annoyance which is virtually impossible to rectify.

• Any interface classified as “tedious.” If the partner perceives an interface as
tedious, it should either be eliminated or automated, or its necessity should be
made clear.

• Any tedious trust point since terminating the interaction is an immediate threat
here.

4.5 Cross-Canvas Analyses

During population of the IR, the analysis of the individual canvases used in the IR:
digital has usually led to suspicions and self-evident improvements. Preparing and
improving the models is followed by a second analysis step, in which an analysis
across the various canvases is performed. We differentiate between completeness
analysis, annotation analysis, and the verification of plausibility.

84 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

The completeness analysis examines whether the model elements determined in
a canvas are picked up in other canvases. This does not have to be done for all
model elements, only for the essential ones. There may be good reasons if certain
model elements are not examined further even though they appear relevant from the
perspective of an individual canvas. The completeness analysis merely intends to
verify that there are good reasons for perceived gaps. Some examples for suspicion
of incompleteness are as follows:

• Do important partners (with many and intensively used interfaces) appear in the
partner canvas, but their life cycle is not described in a touchpoint canvas?
Typically, the most important partners should appear as anchor points of
touchpoint canvases.

• Do objects occur in numerous or at least intensively used interfaces without
being shown on the physical object canvas? If this is the case, supplementing the
physical object canvas should typically be considered.

• If there are OoIs with many relevant events, do these events also appear in
touchpoint canvases? If this is not the case, it indicates that the examined
touchpoint canvases are not sufficiently focused on the OoIs’ potential. In this
case, it can be useful to consider in what touchpoint canvas scopes the OoIs
would appear, and to describe these (even if we are probably not going to
implement them anytime soon).

The annotation analysis examines whether the interplay of annotations used in
partner, physical object, and partner touchpoint canvases indicates suspicious facts
and inconsistencies. The following constellations could indicate the need for
clarification:

• Combinations of annotations on interfaces and annotations on OoIs are almost
always suspect if they are not well coordinated:

– An interface that supposedly has to withstand a high load, and an OoI
exchanged over the interface that does not generate a high load do not fit
together. The actual load and performance requirements should be examined.

– A security–critical interface used to exchange an OoI for which high flexi-
bility is assumed also appears awkward, since the security mechanisms
potentially have to be adapted for every change of the OoI. In this case, it
usually makes sense to describe the security requirements in detail.

– An interface to be used for handling a high load, and an OoI to be exchanged
over this interface where strict time restrictions have to be met does not fit
together at first glance. The load scenarios should typically be examined
more closely.

– An interface for which high reliability is demanded and an OoI that is
marked as critical regarding the probability of failure (using the reliability
annotation) may not fit together from the perspective of overall system
reliability.

4.5 Cross-Canvas Analyses 85

• If an OoI is annotated with a high business value, and the events named for the
OoI do not appear in at least one partner touchpoint canvas, one should question
how the assumed business value will be realized.

• Events from the life cycle of OoIs with attractiveness annotations can appear in
partner touchpoint canvases. If the corresponding touchpoints there are anno-
tated as “tedious,” this begs the question for whom it is attractive to use the OoI?
Such annotation combinations often conceal situations that are not equally
attractive for all stakeholders. Often, attractiveness for the organization in fact
contradicts attractiveness for the user. This can be the case, e.g., when data
capture is externalized. While this can mean savings for the company, it may be
tedious for the user. Measures are typically required to establish a balance of
attractiveness between the stakeholders.

In the verification of plausibility, several questions are asked where the answers
can provide indications of additional improvement potential:

• Is it possible that the information collected through the interfaces is easy to
digitize, while the internal business processes themselves are not the object of
automation?

• Should activities be automated, but not all their inputs/outputs be digitized?
• Do the annotations on the OoIs match the business process activities requesting

them? (This can only be examined if corresponding details were captured in
addition on the process canvas).

These analyses and the verification of plausibility can uncover gaps, contra-
dictions, and possible inconsistencies. They cannot be eliminated through algo-
rithms as a rule. The main goal of the overall analysis is to point out improvement
potential early on.

4.6 Workshop Structure and Follow-up Activities

The presentation of the canvases in the IR:digital in the preceding sections was
accompanied by notes on how to populate them individually. The interplay
involved in populating the canvases of the IR:digital has not been discussed yet.
This is not merely a question of the sequence, but especially a question of inter-
relationships since it is helpful to collect and record knowledge directly on another
canvases as it comes to light while populating a canvas. This interrelationship and
integration is among the benefits of synchronous modeling in the Interaction Room.
In order to achieve it, a workshop in the IR:digital should follow the method
described below. A suitable agenda for the population of the IR:digital over the
course of two days is found in Sect. A.1.

86 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

• Classification of the company being examined to make it clear how the OoIs can
be identified on the physical object canvas.

– Result: type of company in terms of digitalization

• Creation of the partner canvas with collection of all OoIs that appear while
describing the interface.

– Result: partner canvas, initial entries on the physical object canvas

• Annotation of the partner canvas in one annotation cycle and analysis

– Result: annotated partner canvas and indications of suspicion

• Determination of the five most important partners on the partner canvas.
A touchpoint canvas is later created for at least these five partners. The
touchpoint canvas for the partner “client” is always among these.

• Consideration of available technologies to obtain an overview of what is tech-
nically feasible. Such a consideration is necessary because the possibilities of
many digitalization technologies (especially those related to the trends of
mobilization, cyber-physicalization, and the evaluation of summarized life cycle
objects) often cannot be assessed by the stakeholders in an IR:digital workshop,
so that an excursion into the solution domain can help to inspire ideas about
digitalization potential in the application domain.

• Creation of the physical object canvas through a systematic consideration of all
interfaces, taking into account the OoI “product” and the OoI “client.”

– Result: initial physical object canvas

• If applicable, determination of additional OoIs through consideration of all
elements on the object canvas, and their abstraction. This means that when few
OoIs can be identified through the partner canvas and it is suspected that
additional OoIs are concealed in the information systems, an object canvas
(Sect. 5.4) is created and a search for OoIs is performed there.

– Result: physical object canvas

• Annotation of the physical object canvas, and analysis of annotations

– Result: annotated physical object canvas and indications of suspicion

• Reduction of the physical object canvas to the ten most important OoIs.
• Examination of the OoI life cycles and determination of the information that can

be supplied, as well as its use in the partner canvas (data from which OoIs are
supplied to which business processes; where can OoIs be controlled?).

4.6 Workshop Structure and Follow-up Activities 87

http://dx.doi.org/10.1007/978-3-319-41478-2_5

– Result: detailed description of the OoIs that were identified in the physical
object canvas

• Creation of touchpoint canvas

– Population of touchpoint canvas for the partner “client”
– Annotation and analysis of the touchpoint canvas for the partner “client”
– Result: annotated client canvases and indications of suspicion

• Creation of touchpoint canvas, at most for the four most important partners from
the partner canvas

– Annotation and analysis of each touchpoint canvas
– Result: annotated touchpoint canvas and indications of suspicion

• Higher-level analysis of the canvases that were created

– Completeness analysis
– Annotation analysis
– Verification of plausibility
– Result: indications of suspicion resulting from overall IR:digital population

• Deriving the digitalization focal points from the touchpoint canvases and their
analysis, establishing key activities and priorities for the subsequent approach,
ranking the OoIs, interface characteristics, implementation objectives

– Result: ranking of digitalization approaches

• Formulating “press release”-style summaries for the top five implementation
suggestions.

– Result: brief descriptions of project ideas

At the end of IR:digital population, prioritized and evaluated proposals for key
activities and/or projects have been defined in the context of digitalization. These
fall into the category of mobile-driven, technology-driven, or classic development
projects. In the first two cases, more detailed specification using the IR:mobile or
IR:tech is meaningful if there is a defined risk structure and the analysis results in
heterogeneous stakeholder objectives. In case of a classic development project, it
makes sense to set limits with the help of the IR:scope, thereby establishing the
requirements for development support using the IR:agile.

Other ways to proceed are also conceivable: Obviously, it is possible to develop
a project outline identified in the IR:digital further using other methods than an IR.
The documentation resulting from an IR population can serve as valuable input for

88 4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)

virtually any requirements, design, or architecture work. Subsequent process steps
should only be aware that the results of the IR:digital are abstract, may still include
inconsistencies, and that further refinement will be required further down the road.

References

Brown T (2009) Change by design: How design thinking transforms organizations and inspires
innovation. HarperBusiness

Davies N et al (2015) Security and Privacy Implications of Pervasive Memory Augmentation.
IEEE Pervasive Computing 14(1):44–53. doi:10.1109/MPRV.2015.13

Hashem IAT et al (2015) The rise of “big data” on cloud computing: Review and open research
issues. Information Systems 47:98–115. doi:10.1016/j.is.2014.07.006

Ries E (2011) The lean startup: How today’s entrepreneurs use continuous innovation to create
radically successful businesses. Crown Business

Schmidt A (2015) Societal discussion required? Ubicomp products beyond Weiser’s vision. IEEE
Pervasive Computing 14(1):8–10. doi:10.1109/MPRV.2015.15

Schwab K (2016) The fourth industrial revolution. World Economic Forum
Shostack GL (1984) Designing services that deliver. Harvard Business Review 62(1):133–139
Westerman G, Bonnet D, McAfee A (2014) Leading digital: Turning technology into business

transformation. Harvard Business Review Press

4.6 Workshop Structure and Follow-up Activities 89

http://dx.doi.org/10.1109/MPRV.2015.13
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1109/MPRV.2015.15

5Using an Interaction Room
for Software Project Scoping
(IR:scope)

While agile process models encourage frequent communication with stakeholders,
they are relatively silent on how to ensure that this communication will lead to
valuable, actionable insights. The Interaction Room for Software Project Scoping
(IR:scope) fills this methodical gap in agile process models: It provides a com-
munication forum for all stakeholders in the project, enables the business and
technical substance to be made visible and comprehensible, documents ideas and
risks, and offers methodology guidelines to focus communication on the project
aspects that are actually critical. All of this is accomplished in a deliberately
pragmatic framework that does not add methodical ballast but integrates naturally
with the agile approach.

As described in Sect. 2.1, one of the main objectives of an Interaction Room is to
make the complexities of large IT projects intuitively comprehensible. This is
accomplished by sketching out models of various, complementary perspectives of
the project: Large model sketches on all walls of the room are at the center of all
communication in the Interaction Room. Business and technology experts jointly
map the key system and user interfaces, process sequences, and data structures on
large whiteboards.

The various canvases of an Interaction Room help stakeholders deal with the
structures, processes, and interfaces of an information system in the context of its
business domain in a guided but pragmatic way. Parallel views of the business
domain and technical systems help stakeholders from different backgrounds to
develop a joint understanding of the system. Dependencies, contradictions, and
uncertainties can be identified, and mutual respect is established for requirements,
context, and complexity, both on the business and on the technology side.

Once the project material has been made comprehensible this way, the next step
is to identify aspects that make system development complex, costly or uncertain.
Annotations are added to the sketches for this purpose and analyzed to derive
recommendations for detailed requirements analysis and risk management.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_5

91

http://dx.doi.org/10.1007/978-3-319-41478-2_2

The IR:scope supports the development of a joint understanding of the initial
business and technical situation as well as the value-driven documentation of
requirements and their critical discussion. To achieve this, representatives of all
project stakeholders (Sect. 3.5) join in the Interaction Room in a series of
workshops.

5.1 Relevant Stakeholders

In addition to the IR coaches and the process owner as representatives of the
business side (Sects. 3.5.1–3.5.3), the technical stakeholders who will build and
operate the system—application developers and operations experts—also have to
be taken on board in the IR:scope. The business side includes user representatives
as well. Their roles are described in the following sections.

5.1.1 Application Developer

The application developer is one of the key representatives of the technical
stakeholders on the team and ensures that questions regarding the software process
and implementation technology can be answered competently. To fill this role, it is
not that important whether this stakeholder is an actual software developer on the
project team, or an outside expert who has in-depth knowledge of software engi-
neering in general and the company architecture in particular. It is crucial, however,
that the application developer is able to classify apparently infeasible ideas as such
in a timely manner. He consistently monitors the feasibility of planned software
solutions, in terms of whether they can be created and integrated. Together with the
operations expert, he is responsible for making sure that the imagination of process
owners, business developers, and technology experts does not run wild.

5.1.2 Operations Expert

Like the application developer, the role of the operations expert is a restraining one.
He is responsible for evaluating whether proposed software solutions can be put
into productive operation in a timely manner. The operations expert keeps an eye on
costs even more than the application developer. For example, he points out early on
if certain service levels for certain platforms/base systems can become expensive, if
they deviate from the organization’s IT strategy specifications or entail other risks.
Depending on the organization, the application developer and operations expert
may be the same person.

92 5 Using an Interaction Room for Software Project Scoping (IR:scope)

http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_3

5.1.3 User

In addition to the process owners for the affected business processes, the IR:scope
should also include users of the software being created who are familiar with the
business processes in day-to-day practice. They know to what extent the defined
processes deviate from the practiced ones, what exceptions often occur in practice,
and which steps require particular effort. Furthermore, they are able to provide
feedback as to how well the planned solutions address concrete application prob-
lems, conform to the reality of their work, and so on.

5.2 Feature Canvas

Documenting the requirements for the software being created is the first step in the
population of an IR:scope. This is done on the feature canvas, a wall used to collect
and prioritize the requirements to be implemented in the project.

The stakeholders typically collect several dozen requirements to be implemented
in the project from their perspective. No more than half a dozen core aspects are
then selected from this collection for a detailed discussion in the IR:scope, as
described in the following sections.

5.2.1 Methodology and Notation

In order to establish a consensus between the workshop participants about the scope
of the software to be developed in the project, the requirements of all stakeholders
are collected on the feature canvas. The IR coaches invite the stakeholders to note
their requirements for the project and the problem areas they perceive in the project
on index cards and to pin them to the canvas.

The phrasing of these requirements does not need to be as complete and precise
as user stories (not to mention the documentation of requirements in classic
requirements engineering). This is because concrete implementation tasks are not
yet being derived at this stage. The goal is merely to develop an overview of the
general requirements that need to be implemented in the project. Noting keywords
and phrases describing certain business processes or application functions that need
to be supported or considered by the planned system is sufficient.

In pinning the cards to the feature canvas, the stakeholders are asked to con-
solidate their contributions as pragmatically as possible by removing cards with
duplicate information and grouping cards related to aspects of the same business
processes. The IR coaches can support this process by identifying conceivable
clusters of requirements and/or core processes in cooperation with the stakeholders
responsible for the project while preparing for the workshop and placing appro-
priate cluster headlines on the feature canvas at the outset.

5.1 Relevant Stakeholders 93

Once all stakeholders have contributed their cards in such an unstructured brain-
storming session, the requirements are discussed by the stakeholders to make sure
everyone interprets them in the same way. Next, the requirements are prioritized
according to where the stakeholders see the most urgent need for clarification and
refinement. The annotations presented in the following section assistwith this process.

5.2.2 Annotations and Analysis

The stakeholders first add the annotations in Table 5.1 to all cards on the canvas
(not only their own) which they consider especially worthy of discussion.

The annotations pinned to the canvases are subsequently discussed and stated
more precisely by the stakeholders—for example, the user value can be classified
according to Kano (1984) depending on user expectations:

• Must-be qualities are fundamentally expected by the user. While their presence
is not perceived positively, the user would be disappointed if they were lacking.

• One-dimensional qualities are utilized by the user to differentiate between
offers. The quality of their implementation can have both a positive and a
negative impact on user satisfaction.

Table 5.1 Annotations for requirements on the feature canvas

Symbol Name Interpretation

Business
value

The requirement is very valuable from a business perspective. For
example, the requirement may make a special contribution to productivity,
the external image, sales figures, or similar. A cross-selling function, for
instance, can be of special business value for an online shop (“other clients
also bought…”).

User value The requirement has a high value from the user perspective—for example
because it expresses a fundamental expectation and covers a key
requirement of the user (making it a reason to use the software being
created), or because it makes a special contribution to the satisfaction of
users with the software. For example, the requirement to enter and view
product reviews can be a key driver of user value for an online shop.

Complexity Implementing the requirement poses special business or technical
challenges. This may mean that the business domain is subject to
complicated process or structural specifications, that the integration of
technical components is complicated, or that developing algorithms is
especially difficult. One example in an online shop may be the
requirement to display the most helpful product reviews for the user first.

Uncertainty There is uncertainty regarding the background or embodiment of central
business or technical aspects of the requirement. This uncertainty may be
related to specific points, such as clarifying whether an online shop will
accept only debit or also credit cards. It may also be of an overall nature,
for example stating that the legal regulations for returning goods in
international trade are still unclear and their impact on the software being
developed has to be determined.

94 5 Using an Interaction Room for Software Project Scoping (IR:scope)

• Attractive qualities are not expected by the user—while their lack is not
viewed negatively, the user is impressed if they are present.

These annotations help better identify value, cost, and risk drivers: Business and
user value are clearly value drivers, while the complexity and uncertainty annota-
tions at least indicate a higher cost, but usually also a higher risk.

The annotations are especially useful for prioritizing the requirements for dis-
cussion in the IR:scope:

• Cards with one or more value driver annotations should be given a higher
priority because they describe features that are the reason for developing the
software in the first place, or the reason why users choose this software at all.
Understanding them is essential for project success.

• Cards that are not only marked as value drivers but also marked as cost and risk
drivers (e.g., in the combination of user value and complexity) are especially
critical: Here the expected use of the feature is endangered by the risk that the
complexity of the business material could lead to unsatisfactory or incorrect
solutions. This makes it all the more important to understand the material, state
the requirement precisely if applicable, and test the solution thoroughly fol-
lowing its development.

• However, the combination of complexity and uncertainty annotations also
indicates that a requirement should be discussed in greater detail in the Inter-
action Room since these points pose a special risk for the success of the project.
Not only is the implementation expected to be difficult, but some of its details
are not known yet.

That being said, the priority of the requirements is not determined merely by the
number and type of annotations. It is determined by the stakeholders using a
prioritization method such as card sorting. Here the stakeholders gradually arrange
the requirement cards in order of priority by taking turns inserting a card into the
sequence or changing the position of a card in the row. This gradual addition and
repositioning of one card at a time per stakeholder continues until none of the
stakeholders see any further need to change a card position, which means a con-
sensus regarding the prioritization has been found.

The features assigned the highest priority in this manner are then examined in
more detail in the IR:scope from the perspectives of the other canvases, as described
in the sections that follow.

5.3 Process Canvas

The process canvas is dedicated to visualizing the business processes that are
relevant for the software system under development. Domain experts sketch out the
processes that the system supposed to support, automate, or participate in.

5.2 Feature Canvas 95

A process canvas is not intended to precisely and fully specify every business
process. What is important is to reach a consensus among the participating business
experts with regard to how a process is typically handled in practice (or how it
should be handled), what data is produced, and which interfaces exist to partici-
pating system components, roles, and subsequent processes. To keep the presen-
tation concise, and to prevent the discussion from being sidetracked by
non-constructive details, the scope of the process canvas should not exceed a
maximum of 15 processes with up to 15 steps each.

Frequently, this step (which initially is not even about a technical implemen-
tation and/or support of the processes) bears considerable potential for discussion.
For example, officially specified processes may deviate from those actually fol-
lowed in the company, or processes may have never been formally documented, but
just established or evolved over time. Establishing a consensus regarding these
process sequences is the first step toward understanding the requirements for IT,
evaluating the design or strategy decisions and choosing technical solution options.
The process canvas supports this as described in the following sections.

5.3.1 Methodology and Notation

Stakeholders with very different experiences in process modeling come together in
an Interaction Room. These stakeholders typically include both technology experts,
for whom abstract models are an everyday form of communication, and domain
experts, who are able to deal with complex case situations but have no experience
with documenting them in abstract diagrams. In order to equally involve both sides
in the population of the process canvas and utilize all of their knowledge, the
method’s participation threshold was kept purposely low.

The IR method coach merely explains the purpose of the process canvas at the
outset and then selects the processes to be sketched together with the stakeholders,
based on the requirements previously prioritized on the feature canvas (Sect. 5.2).

The processes are then sketched jointly by the stakeholders. Ideally, the stake-
holders work together on the whiteboard to get the discussion going. However, it
may be useful if the IR domain coach takes care of modeling based on the stake-
holders’ input until the stakeholders overcome their apprehension of shared mod-
eling and gain experience with the desired level of abstraction.

No specific notation such as UML or BPMN is prescribed to sketch the pro-
cesses. Whatever notation is intuitively understood by all stakeholders or agreed on
ad hoc is permitted. In practice, this usually leads to the use of a greatly simplified
version of UML activity diagrams that express the essential concepts of process
sequences (Fig. 5.1):

• Individual process steps (activities) are shown by rectangles.
• The sequence of activities (control flow) is indicated by arrows.
• Execution alternatives (branches) are indicated by labeling the arrows with

conditions.

96 5 Using an Interaction Room for Software Project Scoping (IR:scope)

For the clearer presentation of more complex processes, the IR method coach
can also introduce the following symbols as needed:

• A bar perpendicular to the control flow direction indicates the beginning or end
of a parallel process.

• A black disk marks the beginning of the process.
• A circled black disk marks the end of the process.

To keep the modeling flow as intuitive as possible, and avoid disrupting it with
syntax specifications or diagram refactoring, strict compliance with UML require-
ments (such as branching only on diamond symbols, bringing all branches back
together with equivalent symbols) is omitted since the process semantics usually
become clear from the context anyway.

Figure 5.2 shows an example of a simple process canvas, which was developed
by a mixed team of business and technology experts without the explicit intro-
duction of a notation in order to develop a joint understanding of a process for
regular rate reviews by a health insurer.

Here the process was outlined at a high level, showing the steps required for rate
restructuring including possible alternatives without specifying the exact imple-
mentation of the individual steps in detail. Even though it will be necessary to refine
the details in the course of the subsequent implementation (e.g., to specify how the
restructuring criteria will be reviewed in concrete terms), the existing presentation is
sufficient as orientation for business and IT experts in discussing the fundamental
requirements for the individual steps.

The IR coaches moderate modeling in multiple ways: They ensure that an
abstraction level is maintained that is suitable for comprehension by all stakeholders—
the presentation must not become so trivial that the characteristic structures, points of
contact, and uncertainties are concealed, but neither should the sketches be so detailed
that specialized knowledge is required to understand them. In choosing the right
abstraction level for any IR canvas, it must always be avoided that the stakeholders
“cannot see the forest for the trees.”

Fig. 5.1 Notation for process canvases

5.3 Process Canvas 97

In order to achieve this, the coaches not only make sure that the process steps are
described with a meaningful granularity (in particular, the stakeholders should not
succumb to the temptation of modeling every interaction step with the information
system as an individual process step). The IR domain coach in particular also curbs
discussions that lose themselves in technical details or specialized business cases
and ensures that the process canvases primarily reflect the standard case for han-
dling a process. Handling exceptions and other special situations are not necessarily
required for the desired fundamental understanding of a process and are often
actually counterproductive in obtaining that understanding. They should therefore
only be modeled if they occur frequently and if they are expected to have a sig-
nificant influence on subsequent design decisions. That being said, it is often more
helpful to merely point out the underlying “disruption factors” with an annotation
(Sect. 3.3), so the problem can be explored later.

However, the IR coaches should definitely follow up if they perceive points in
the course of modeling where the stakeholders fail to communicate clearly—
whether these are uncertainties about process details, contradictions/gaps in process

Fig. 5.2 Example of a business process sketched on a process canvas

98 5 Using an Interaction Room for Software Project Scoping (IR:scope)

http://dx.doi.org/10.1007/978-3-319-41478-2_3

conditions, misunderstandings or diverging model interpretations, or process seg-
ments nobody “dares” to model. These communication weaknesses often result in
comprehension gaps which can lead to problems in the subsequent course of the
project. Here the IR coaches have to put their finger on the problem early on and
encourage the stakeholders to close the identified gap by either correcting or
expanding the model outline, or adding a suitable annotation to indicate the need for
further discussion.

Furthermore, the IR method coach in particular is responsible for involving all
stakeholders equally in the discussion—which not only means encouraging quieter
stakeholders to participate in the discussion in order to benefit from their knowl-
edge, but especially also restraining overly dominant stakeholders to prevent them
from controlling the formation of independent opinions.

Finally, the IR method coach is also responsible for maintaining an overview of
the relationships between the process canvas and the other canvases and for
monitoring the consistency of the contents. In keeping with the pragmatic modeling
approach, the consistency requirement is not to be understood dogmatically: Not
every structural detail affected by a process also has to appear on an object or
integration canvas. However, the obviously important elements should be found in
both views in order to emphasize which system components are integrated into
what process and which data structures are handled by the processes.

This different standard is also reflected by the scope of the process diagrams
produced in the Interaction Room, which is limited by the space available on the
whiteboards on the one hand and the cognitive capacity of the stakeholders on the
other hand: A process canvas typically will not contain more than 15 processes with
up to 15 steps. More complex canvases cannot really be developed in the course of
an individual IR population workshop. If the business domain is more complex, it
should be developed in a series of workshops that each focus on specific sections of
the process landscape.

5.3.2 Annotations and Analysis

The process canvas describes the essential sequences in the business processes
being examined but (just like classic modeling languages) does not provide clues on
how to evaluate the individual process steps: Which steps are especially complex?
Which ones are especially time critical? Which ones are subject to special con-
straints? Which steps are not understood yet?

Business experts who deal with these processes on a daily basis have uncon-
sciously internalized all of this additional information, while it is entirely unknown
to the technical stakeholders, who also have no way to simply derive it from any
formal models. At the same time, the business experts do not recognize where
technical pitfalls may be in the implementation of the processes, while those are
often obvious to technical stakeholders at a glance.

In order to make this qualitative business and technical knowledge explicit to the
whole team, the IR:scope provides all stakeholders the opportunity to add

5.3 Process Canvas 99

annotations to the elements of the process canvas, in order to highlight particular
value and effort drivers. Table 5.2 shows the spectrum of annotations for process
steps on the process canvas.

Only five to seven annotations out of this palette should be provided to the
stakeholders at a time, in order to avoid overwhelming them with a choice of too
many annotations. For the first annotation round, recommended annotations include
business value, user value, policy constraint, complexity, and one or two other
effort-driven annotations matching the type of business (e.g., the high use and time
constraint annotations, or the security and flexibility annotations). If the IR domain
coach has the impression that other aspects are relevant for the processes being
annotated, additional annotation rounds with up to five other annotations each can
follow. However, the uncertainty annotation is only assigned in a final, dedicated
annotation round as described in Sect. 3.3.

Following the annotation of the process canvas, the stakeholders explain and
discuss the annotations they have assigned to the process steps. Detailed knowledge
about constraints, value, and effort drivers that would normally remain concealed in
the minds of individual stakeholders is thereby explicitly stated and recorded. The
form in Fig. B.4 can be used to record the precise localization, characteristics, and
motivation for each annotation.

The analysis of the individual annotations and combinations of annotations
spanning several process steps provides valuable insights for prioritizing and esti-
mating the effort required for the process steps’ IT support:

• Isolated business value or user value annotations on process steps not car-
rying any effort annotations show that a process step is central for the provider
or user of the system, but does not appear to be associated with complicated
implementation requirements. Therefore, it can be considered a “quick win” that
can be realized without major difficulty.

• Isolated effort annotations obviously constitute warnings of particularly high
conceptual or implementation requirements. The effort needed to implement
them should be especially carefully considered when no value annotation
associates particular priority with the process step.

• Combinations of various annotations should be viewed critically, since they
can increase risk as well as effort. The combination of value and effort anno-
tations, e.g., is always considered particularly risky, since an especially valuable
part of the process is subject to particularly high complexity. When a process
step is marked with both the automation and business value annotations, it can
be assumed that the desired automation will not only required above-average
effort to realize, but that it also needs to be of especially high quality in order to
actually produce the business value expected from the process step. Failing to
obtain the required quality bears the risk that the desired business value (and
therefore one of the key objectives for building the application in the first place)
will not be achieved. This constitutes a risk which needs to be explicitly
monitored in the course of project risk management.

100 5 Using an Interaction Room for Software Project Scoping (IR:scope)

http://dx.doi.org/10.1007/978-3-319-41478-2_3

Table 5.2 Annotations for process sequences on process canvases

Symbol Name Interpretation

Business value The process step generates or supports particular value for the
company. Or the process step is one of the reasons why the process as
a whole is being executed in the first place. The risk assessment in the
course of an insurance company’s quotation process is an example of
such a step.

User value The process step is of particular value for the person executing it. This
value can be aligned with the values and objectives of the company
(e.g., an immediate confirmation of coverage in response to an
insurance application saves both the insured and the insurer
time-consuming inquiries and discussions), but the value may also be
contrary to the company’s business objectives (e.g., a potential client
wants the validity period for an offer to be as long as possible, while a
company wants it to be as short as possible).

High use The process step is performed particularly often and therefore
demands an above-average amount of resources (such as personnel,
materials, or IT). High use may constitute continuously high demand
or intermittent peaks in demand. This may include plannable events
such as handling the holiday business in the retail sector or the cutoff
date for renewing motor vehicle insurance at the end of November, or
unplannable events such as lottery jackpots or natural phenomena.

Time constraint The process step has to meet specific time constraints such as fixed
processing times or deadlines. Even though information systems are
seldom subject to real-time requirements, it is common for certain
process sequences to be subject to deadlines, compliance with which
should be enforced or at least supported by the software. Examples are
cancelation and payment deadlines in electronic commerce.

Security The process step has to meet special security requirements, such as
restrictions on participants who are authorized to carry out the step,
the sensitivity of the data being processed, or the personal assignment
and non-repudiation of the action that is carried out. In the
maintenance of patient files for example, a requirement may be that
only certain roles are permitted to view these files and that any
changes can be traced to their author.

Reliability The process step has to be carried out with especially high reliability,
which means errors are not permitted in its execution, and the
possibility to execute it has to be guaranteed at all times. This can
mean, for example, that the principle of dual control is applied to
ensure a step is carried out correctly, or that substitution rules are in
place in case the participant who is primarily responsible for the step
is absent.

Flexibility It is foreseeable that the process step will not always be executed
exactly as specified, but that it will have to adapt to new conditions in
the future and/or will be adjusted by the performer depending on the
situation. This may, for example, be the case in health care, where
treatment or rehabilitation processes cannot be firmly defined but
depend on individual diagnoses, or in other business domains where,
e.g., legal changes, the introduction of new products, or the
discontinuation of old payment methods can be foreseen.

(continued)

5.3 Process Canvas 101

Table 5.2 (continued)

Symbol Name Interpretation

Mobility The process step is to be executed on mobile devices. This annotation
is helpful when the mobilization of a process is planned in the
Interaction Room. It allows the stakeholders to identify early on which
elements are to be provided on mobile devices and what continues to
be available through classic channels. For a public transport company
for example, this could apply to process steps such as purchasing and
validating passenger tickets.

Automation The process step is to be automated. In digitalization projects in
particular, this annotation can be used to indicate which process steps
currently taking place off-line will be supported by IT in the future.
This may, for example, include simple processes such as address
changes, but also more complex functions such as automatic
confirmation of coverage in an insurance company.

Manual task The process step can and will not be automated. Even in the course of
ongoing digitalization, there will be process steps that require human
expertise, for example to make decisions based on numerous criteria
and to handle exceptions. Examples of such processes include
underwriting complex risks in reinsurance and making decisions about
therapy measures in rehabilitation.

Policy
constraint

The process step is subject to certain legal or organizational
constraints that have to be taken into account in the redesign or
technical implementation. A variety of such policy constraints is
possible, such as consumer protection rules for investment
transactions prescribed by the Markets in Financial Instruments
Directive (MiFID) and international directives for handling goodwill
cases.

Complexity Executing the process step is more complex than it may appear at first
glance. Experts have to be involved in order to carry it out (or
technically support it). The complexity of the process step will usually
manifest itself in business aspects (such as calculating duties for
international trade).

Need for
improvement

The process step is to be redesigned in order to optimize it or adapt it
to new requirements. Many motivations are possible for this change.
The improvement may be the core of the planned project because it is
necessary to enable other conversions, or it may be an opportunity
when a process is being modernized anyway.

External
resource

The process step is carried out by a participant outside the own
organization. For example, e-commerce providers may use third-party
providers to obtain information about client creditworthiness. The
annotation indicates risks arising from depending on third-party
providers, such as occasional non-availability or changing contract
models.

Uncertainty There is uncertainty regarding central aspects of executing or
supporting the process step. This may include rather precise questions
for which answers still need to be obtained (e.g., up to what delivery
weight an online shop wants to offer free shipping of orders), or
broader issues that remain unresolved (such as how certain youth
protection directives will be implemented in shipping). The difference
between the complexity and uncertainty annotations is that a complex
problem has already been largely understood and identified as
elaborate, but in contrast to uncertainty, no essential questions remain
unanswered.

102 5 Using an Interaction Room for Software Project Scoping (IR:scope)

• Process steps that not only have a value and/or effort annotation but also an
uncertainty annotation are considered especially critical. In this case, the value
and/or effort symbolized by the annotation is combined with the risk that the
process step and/or requirement for it has not been adequately understood by the
team yet. This can lead to delays in realization or even incorrect implementation
if the uncertainty is not adequately resolved.

Besides examining the process steps individually, it is just as important to
examine several semantically related and interdependent steps. An potentially critical
combination such as an external resource that delivers an essential business value not
only exists in this perspective when the corresponding annotations are attached to the
same element, but also, for example, when a value creation activity in a process
canvas follows an activity carried out by an external participant. If the external
resource is not available, this affects downstream activities. In case of activities
identified as adding especially high value, this can lead to undesirable function or
quality impairments. One should therefore always examine whether upstream
activities introduce specific challenges that are no longer taken into account down-
stream. For example, a policy constraint highlighted by an annotation in one process
step may impose specific data privacy requirements—in this case, stakeholders
should make sure that downstream steps are marked with corresponding security
annotations, to make sure the privacy requirements will be considered there.

5.4 Object Canvas

While the process canvas presents the dynamic process sequences of the application
domain, the focus of the object canvas is on the business data and artifacts that are
handled by these processes. Rather than presenting a complete and precise object
model, the object canvas shall provide a high-level overview that enables all
stakeholders to understand the involved data structures as intuitively as possible.
With a scope of no more than 40 object types, the object canvas does not need to
reach the level of detail of a traditional class diagram, but just provide an overview
of the information landscape for the application domain. A pragmatic methodology
and notation similar to the process canvas are used to establish this overview.

5.4.1 Methodology and Notation

Various strategies for pragmatically outlining the object canvas are possible
depending on the application domain and project focus:

If the domain and project are primarily defined by data structures (e.g., when the
processes largely consist of reading and writing data), it is recommended to begin
population of the IR:scope with an object canvas. In an initial brainstorming ses-
sion, a handful of data objects that are considered especially central for the project

5.3 Process Canvas 103

is collected from the stakeholders. Using these as a starting point, the stakeholders
then identify additional, related objects until they have the impression that a suf-
ficiently complete picture of the project-relevant data structures has been drawn.

If, however, the domain and project are more strongly defined by the actions of
various participants, i.e., by business processes, then modeling should begin with
the process canvas as described in Sect. 5.3. All objects affected by the process
steps are noted on the object canvas—initially only as a loose, disconnected col-
lection. After the process canvas is complete, the stakeholders begin to structure the
terms on the object canvas by including relationships, adding more objects, and
removing irrelevant and/or redundant terms.

A formal notation such as UML class diagrams is deliberately eschewed for the
sketching of the object canvas, to keep the learning curve as flat as possible and
allow stakeholders who are not familiar with formal modeling languages to par-
ticipate without fear of syntax requirements. Instead, stakeholders are encouraged to
use the minimal notation shown in Fig. 5.3 with the following elements:

• Rectangles represent object types that are relevant in the application domain.
• Lines represent non-directional relationships between the data.

These very generic semantics were chosen to avoid assumptions about the type
of data described in the sketches. The data symbolized by a rectangle may be a class
in the sense of object-oriented analysis, but also an attribute of such a class (it is
premature to decide at this point which data will ultimately be implemented as a
class and which as an attribute). The rectangle may also represent a document that
contains unstructured information, or an abstract concept with no direct equivalent
in the implemented information system.

The representation of the relationships between data as plain lines is just as
generic. Arrowheads are purposely omitted from the basic notation since their
semantics in data structures are not as clear as in process sequences: An arrow
between two model elements could be interpreted as “is part of” or “contains,”
alternatively as “generated by,” “influenced by,” or “depends on,” or have other
contradictory meanings. The undirected line merely expresses an intuitively iden-
tified relationship which needs to be stated in concrete terms in more detailed
models to be created later in the project. However, it does not suggest a specific
meaning (which would vary between the various objects anyway).

Fig. 5.3 Notation for object canvases

104 5 Using an Interaction Room for Software Project Scoping (IR:scope)

If necessary, object canvases can, however, be refined with additional notation
elements, in order to clarify relationships in especially complex data structures:

• Directed relationships can be represented by lines with open arrowheads. In this
case, the semantics of the relationship should be noted on the arrow in verb form
(e.g., “includes”).

• Inheritance relationships can be represented by lines with closed arrowheads,
with the arrow pointing to the superclass, similar to UML.

Inheritance relationships and multiplicities should be used sparingly and only
where necessary to clarify relationships between certain data structures. An object
canvas can and should not be refined into a detailed class diagram in an IR:scope.

Even in the expanded notation, the specification of aggregation and composition
relationships is discouraged since the syntax and semantics of the UML notation for
these concepts can be easily misunderstood by stakeholders with no modeling
experience. Where necessary, aggregation or composition relationships can be
shown by correspondingly labeled directional links or appropriate multiplicities.

Figure 5.4 shows an example of a simple object canvas that was developed by a
mixed team of business and technology experts in order to establish a common
understanding of the concepts and elements of a portfolio management system for a
health insurance company.

This canvas gives an overview of the most important concepts needed to
describe insurance rates, but without specifying a concrete implementation (e.g., in
the form of an object-oriented or relational structure). While information such as
“price level” and “tax deductibility” will probably be modeled as simple attributes
of a “rate” object, the “insurance terms” and “service description” are likely
unstructured text documents that cannot be captured in object structures. However,
all that matters in this presentation is to show the domain-specific data and rela-
tionships that need to be represented in the software under development.

The IR coaches have two tasks while outlining such an object canvas: Firstly, they
have to ensure that all stakeholders have the same understanding of the terms used on
the object canvas. Stakeholders from different domains frequently have slightly dif-
ferent interpretations of a certain term without being aware that other interpretations
may exist. If this becomes apparent in the course of the discussion, the IR domain
coach is responsible for establishing a common definition with the stakeholders.

Secondly and especially for areas of the application domain that are already well
understood (and where everyone can join the discussion), it is typically very
tempting to record too many trivial details on the canvas. In contrast, the sketches
for aspects that are less well understood are often quite superficial. This poses the
risk of misunderstandings down the road: When the model is examined later, it is no
longer clear whether the areas that appear deceptively manageable actually have
such a simple structure, or whether the creators of the model lacked knowledge of
their actual complexity. Areas of the model that appear very dense at first glance
can also suggest a level of complexity that does not exist upon closer examination.
It is the responsibility of the IR coaches to keep an eye on such imbalances and

5.4 Object Canvas 105

focus the discussion on aspects that are especially complex or not sufficiently
understood yet.

5.4.2 Annotations and Analysis

Supposedly simple object models often conceal a considerable amount of domain
knowledge, constraints, uncertainty, and stakeholders’ gut feelings that cannot be
explicitly expressed in formal modeling languages such as the UML. However, this
informal additional information is at least as important for the correct implemen-
tation of the data structures as the details specified in an object model. In order to

Fig. 5.4 Example of a simple object canvas

106 5 Using an Interaction Room for Software Project Scoping (IR:scope)

express such valuable background knowledge explicitly, the stakeholders can add
the annotations shown in Table 5.3 to the object canvas.

The annotation of the object canvas typically begins with the business value,
user value, policy constraint, and complexity annotations along with one or two
other effort annotations related to the application domain (such as the accuracy,
security, flexibility, and external resource annotations). Additional annotations can
be assigned to the model in subsequent rounds as needed.

Following the annotation of the object canvas, the IR domain coach asks the
stakeholders to explain and discuss the annotations they assigned to the model
elements. The detailed comments made in this process are recorded, so they are
available later in the project. The analysis of the individual annotations and their
combinations on various data structures also provide insights for prioritizing and
estimating the implementation effort. In addition to the obvious effort implied by
annotations such as accuracy, security, and flexibility, not only combinations of
value and effort drivers but also combinations of certain effort drivers have to be
considered as especially effort- or risk-intensive:

• While the combination of the flexibility and manual task annotations, for
example, appears unproblematic (and in fact, each of these annotations may
suggest adding the other), the combination of the flexibility and automation
annotations is particularly critical: While data is to be captured and/or processed
automatically on the one hand, structural changes to this data are already
foreseeable. This is expected to require additional effort either to design suffi-
ciently flexible data structures in advance or to adapt them again later—with the
added risk of incompatibilities or errors creeping in during flexible design or
subsequent alterations.

• Conflicts between annotations can also be considered warning signals: A data
structure marked with the invariability or deprecation annotations as well as a
value or effort annotation such as flexibility, mobility, or business value is
expected to realize a (new?) functional requirement or business value on the one
hand, but is apparently classified as a legacy component on the other hand, for
which no further development seems reasonable. This requires either the real-
ization of elaborate adaptation or replacement mechanisms for the affected data
structures, or a reassessment of the strategic value of the legacy system.

• Beyond the combinations and collisions of individual annotations, examining
the canvas as a whole can also be revealing: Larger areas without annotations
are suspect—rather than assuming that everything is clear to all stakeholders in
this area, it often appears more likely that none of the stakeholders thought hard
about such areas and identified challenges that may still be concealed there. This
sometimes becomes clear in the course of an uncertainty annotation round, when
question marks are suddenly placed in model regions that were previously
lacking annotations.

• The informative value of annotations assigned too ubiquitously also has to be
considered critically: At the start of an annotation round, the IR method coach
points out that a correctness requirement naturally applies to all data, but that the

5.4 Object Canvas 107

Table 5.3 Annotations for data structures on the object canvas

Symbol Name Interpretation

Business value The data is of particular value for the provider of the software
system. This can apply, e.g., to client user profiles in an online shop.

User value The data is of particular value for users of the software system.
Customer ratings in an online shop are an example of this.

Accuracy The data is subject to particularly high requirements with regard to
timeliness, precision, or consistency. Typical examples include the
timeliness of prices for securities, the precision of sensor data, or the
consistency of cached data.

Security The data is particularly sensitive and therefore needs to be protected
against unauthorized access or loss. Protection can take a variety of
forms such as encrypted transmission, creating backups, or
electronic signatures.

Flexibility The data is subject to foreseeable structural changes, for example
due to technical or legal evolution. Such flexibility is especially
important for companies offering purely digital products: Insurance
companies, for example, have to maintain numerous contract
variants for several product generations in parallel. The situation is
similar, e.g., for mobile telecommunication service providers,
although they can handle the conversion of legacy contracts to
current contracts more pragmatically.

Mobility The data is to be obtained or made available on mobile devices. This
annotation is especially relevant when the data volume for the
mobile devices is high or subject to demanding timeliness
requirements, or when transmitting data captured on mobile devices
to a central back-end is critical.

Automation Data capture or processing is to be automated. This annotation is
especially relevant for digitalization projects when legacy data is to
be made accessible for digital processing.

Manual task The data is available in a format that is not suitable for automatic
processing. Examples include text documents or other unstructured
data sources where preparation for automated processing is not
possible due to their semantic complexity or not desirable since the
process in question will continue to be handled manually.

Policy
constraint

Obtaining, processing, or storing the data is subject to particular
business or technical basic conditions. Examples include retention
periods and requirements for the type of data that needs to be
captured for executing a process (e.g., bookkeeping and accounting
regulations).

Complexity The structure or processing of the data is more complex than it
would appear at first glance. This annotation is helpful when
stakeholders are tempted to model complex data structures in detail
in the Interaction Room instead of limiting themselves to the big
picture. The annotation can indicate which of the model elements
that all appear simple at first glance harbor especially high
complexity.

(continued)

108 5 Using an Interaction Room for Software Project Scoping (IR:scope)

accuracy annotation should only be applied to structures requiring unusually
high attention. Yet some stakeholders tend to be generous when assigning
annotations. If annotations are assigned to more than a third of the model
elements, the IR coaches should question which elements are actually special
value or effort drivers that demand above-average attention.

5.5 Integration Canvas

The integration canvas shows the system under development in the context of its
neighboring systems. This clarifies communication with and dependency on other
components of the system landscape. Typically, the canvas has a star-shaped
structure with the software system under development in the middle, connected to
the related systems by arrows. Like the other canvases, the integration canvas has to
remain manageable rather than getting out of hand and becoming a complete
infrastructure model. Therefore, it presents the software being developed in the
context of at most 20 important related systems.

Table 5.3 (continued)

Symbol Name Interpretation

Invariability The data structure can/must not be changed (e.g., because it comes
from an unchangeable legacy system). Especially in migration or
adaptation projects where “greenfield” software development is not
possible because of constraints established by an existing software
landscape, it is important to maintain an overview of where there is
design freedom and where existing structures have to be respected.

Deprecation The data will not be available anymore in the future (e.g., because
the data source will cease to exist). This annotation is used mainly
in migration and adaptation projects to indicate which data
structures have to be replaced by new structures in the future and
what data will no longer be available to the new system.

Need for
improvement

The data requires structural or qualitative revision (e.g., to enable
new types of analyses). Altering existing data structures is a drastic
change that can be highlighted early on with this annotation. Among
other things, it requires careful deliberation about the migration of
data in old structures and the adaptation of all components working
with this data.

External
resource

The data comes from an external source. This means it is necessary
to take into account that this source (e.g., an external currency
converter) may not always be available, or that the influence on its
quality and business model may be limited.

Uncertainty There is uncertainty about central aspects of the data structure or
content. This uncertainty may be of a specific nature (e.g., regarding
value ranges or validation rules for certain data types), but it can
also affect larger parts of the design, for instance when it remains
unclear in a logistics system what data is needed to describe
international freight traffic.

5.4 Object Canvas 109

5.5.1 Methodology and Notation

While the stakeholders sketch the process and object canvases, the integration
canvas is typically filled in parallel: External components or organizations that play
a role in process steps are arranged on the integration canvas around the software
being developed. Data that is produced or consumed in process steps and
exchanged with external participants is recorded on the object canvas in the form of
data objects and as arrows systems on the integration canvas.

The notation of the integration canvas is limited to a minimum syntax as shown
in Fig. 5.5:

• Rectangles represent components of the system landscape or other components that
the system under development (shown in the center) needs to communicate with.

• Arrows represent the direction of data flows between the components. The
transmitted data entities are noted as arrow labels.

Even though the appearance of the integration canvas is largely defined by the
data flow arrows, it differs from classic data flow diagrams in several ways.

For one thing, the purpose of this canvas is merely to show what data is
exchanged with which components, but not to model all data flows in the system
landscape. For this reason, data flows between the related systems are omitted,
putting the focus on data exchanged with the software system under development.

Whether the communicating components are internal or external to the organi-
zation, and whether they are technical, institutional, or human communication
partners, is also not differentiated. The aim of the integration canvas is just to create
awareness of the relationships, so the stakeholders can form an overall under-
standing of the dependencies and responsibilities between the components.

The types of data that can be exchanged with these communication partners are
correspondingly broad: The arrow labels can describe structured or unstructured
data of any kind. However, stakeholders should ensure that any data noted here is
reflected on the object canvas as well, to arrive at a comprehensive picture of the
system’s data structures.

Fig. 5.5 Notation for
integration canvases

110 5 Using an Interaction Room for Software Project Scoping (IR:scope)

In the spirit of pragmatic modeling, the data flow arrows in the integration
canvas do not depict the exact communication protocol but limit themselves to the
main direction of the data delivery (if the component in the project focus, for
example, requests creditworthiness data from an external rating agency, only the
incoming arrow with the label “credit report” is drawn, but no outgoing “credit
report request” arrow).

Figure 5.6 shows an example of a simple integration canvas for a health
insurer’s portfolio management system which was created by business and tech-
nology experts in the course of an IR:scope population.

Fig. 5.6 Example of an integration canvas

5.5 Integration Canvas 111

The related systems shown here are both components internal to the insurance
company (such as the commission and benefits systems) and external participants
and services such as the tax office and insurance associations. Communication with
the related systems is therefore quite varied. It may consist of the structured, auto-
mated exchange of data (access to rate descriptions in the product table for instance)
or the manual transfer of unstructured data (such as reports to insurance associa-
tions). At the abstraction level of the interaction canvas, the only relevant aspect for
the stakeholders is what data is exchanged with which components. The concrete
exchange formats and protocols are precisely specified in the system design later on.

Parallel modeling of the process, object, and integration canvases ensures that
the business world to be supported by information technology is examined from
three complementary perspectives: What processes occur, what data is processed by
them, and with what external components is this data exchanged? The IR coaches
are tasked with maintaining an overview of the content in these three canvases and
pointing out gaps or contradictions that arise.

5.5.2 Annotations and Analysis

Stakeholders can mark especially critical aspects that will need to be observed
during the integration of the various system components, using the annotations
listed in Table 5.4.

The integration canvas is initially annotated with the annotations policy con-
straint, complexity, external resource, invariability, and need for improvement. If
necessary, the IR domain coach can let the stakeholders add further annotations for
other challenges in the course of subsequent annotation rounds.

The ensuing explanation and discussion of the annotations provides background
knowledge and reveals requirements and constraints that often remain concealed in
classic presentations of a system landscape. Using the integration canvas, they can
be made explicit in the minds of the stakeholders responsible for integration or
operation. Analyzing the individual annotations and their combinations on various
components also provides insights about the effort and risks of integrating them.

In addition to the effort and risks already represented by the individual annotations
(such as the risk that an external resource provider may change its interface at short
notice, or the effort required to react to the failure of a critical external resource),
combinations of different annotations in turn indicate especially great effort:

• A combination of the high use and external resource annotations implies an
especially high risk: Not only is the developed system subject to a high load—
this load is in fact transferred to an external component over which the operation
has no control. If the external resource fails, a high number of users are affected
with potentially serious consequences.

112 5 Using an Interaction Room for Software Project Scoping (IR:scope)

Table 5.4 Annotations for components on the integration canvas

Symbol Name Interpretation

High use The component or interface is continuously or occasionally subject to
heavy loads. This is typically the case when a process step involving
an external contractor or participant is executed particularly often, for
example when reports are exchanged regularly between social
insurance organizations.

Security The component or interface has to meet special requirements to protect
its functionality or data against attacks or loss. Depending on the
conceivable dangers or attacks, it may, for example, be necessary to
encrypt communication to protect against unauthorized access, or to
design the external components redundantly.

Reliability The component is subject to especially high availability requirements.
Depending on the concrete requirements of the software being
developed, this may mean that the duration and frequency of failures
are not permitted to exceed a certain threshold, or that the component
must be designed with redundancy to switch to a backup component in
case of failure. This may result in additional requirements to ensure
data consistency between the redundant components.

Mobility The component needs to be available on mobile devices. This
annotation is useful to represent the distribution of the system
components across mobile devices and the back-end using the
integration canvas. Components with a mobile availability requirement
typically result in higher development and testing effort to ensure
compatibility with various mobile platforms.

Policy
constraint

The component or interface is subject to special business or technical
constraints. These could, e.g., include legal restrictions on the location
where cloud applications are hosted.

Complexity Handling the component or interface is more complex than it appears
at first glance. The annotation indicates that integrating the component
requires special effort—for example because data formats have to be
converted, or because the exchange format or communication protocol
being used is particularly complex.

Invariability The component or interface can/must not be changed (for example
because it is a legacy system). This restriction is often found in
enterprise IT landscapes that developed organically. Their legacy
systems are to remain unchanged since adaptation and quality
assurance would demand excessive effort (provided that the required
expertise still exists within the company).

Deprecation The component will no longer be available in the future. In migration
and adaptation projects in particular, this annotation can be assigned to
components that are to be replaced in the course of the project or will
be eliminated in the future.

Need for
improvement

Certain aspects of the component or interface have to be adapted or
optimized. This need for improvement can consist of work required to
make the main project objective possible, or optimizations that can be
realized in the course of conversion work which is planned anyway.

(continued)

5.5 Integration Canvas 113

• Combinations of the mobility and complexity annotations appear critical as well:
If the mobile connection of a certain component as such represents a major
technical and process challenge, the mobilization of a component already iden-
tified as complex appears especially critical. Taking a closer look at the challenges
associated with this mobilization project in an IR:mobile could be worthwhile.

5.6 Cross-Canvas Analyses

The annotations provide initial indications of where difficulties might lurk in the
course of the project, where additional expertise needs to be developed, and what
areas leave little room for compromise.

In addition to examining individual canvases, an overall view of all canvases in
the Interaction Room is worthwhile as well. The annotation patterns described in
the preceding sections can be applied here again. Semantically related or interde-
pendent model elements with colliding or mutually reinforcing annotations may not
just be found on the same canvas, but also on different canvases: For example, if a
process step is annotated with high business value on a process canvas while the
system responsible for data provision to that step is marked for deprecation on the
integration canvas, alternative solution for obtaining the required data in the future
must be discussed.

In addition to such annotation combinations and collisions distributed over more
than one canvas, the individual canvases should also be examined for possible
challenges that are not taken into account in the corresponding place on another
canvas—for example, if a certain data structure is marked as security-critical on the
object canvas even though no corresponding annotations appear on the process

Table 5.4 (continued)

Symbol Name Interpretation

External
resource

The component is an external resource, so there is limited influence on
its availability and quality. At what point a component is considered
external depends on the possibilities for influence within the scope of
the planned project: Even components that are managed within the
company but not part of the planned project may need to be designated
as external. In other situations, it may be sufficient to only designate
components as external if they are actually operated by independent
organizations. The annotation is recommended in both cases if a loss
of control and reliability risks are expressed due to the externality of
the component.

Uncertainty There is uncertainty about central aspects of the component or
interface, for example regarding concrete details of the communication
protocol or more general questions regarding the ways and means to
integrate an external service.

114 5 Using an Interaction Room for Software Project Scoping (IR:scope)

canvas, and no need for corresponding security precautions in the respective
components is indicated on the integration canvas.

The following combinations of concrete annotations send strong signals for
looming future problems, some of which may manifest themselves in the course of
the system’s development, while others may only become apparent when the
system is put into operation. While these annotations could easily be identified as
critical combinations when applied to the same model element, their combination is
often not apparent when examining an overall canvas or relationships between
several canvases. Therefore, an overarching review of all canvases should explicitly
consider the following combinations of annotations:

• Security and flexibility: Recurring difficulties or at least additional effort can be
expected in the system’s life cycle in order to adapt the security precautions to
changeable processes, architectures, technologies, and so on. Strategies should
be developed to isolate the security infrastructures from the changeable elements
of the system as far as possible.

• Security and external resource: All stakeholders need to be aware that typi-
cally, security can only be guaranteed within the boundaries of their own
component, but is expected by the user of the system as a whole. Measures need
to be developed to minimize the loss of control at the system boundary as far as
possible.

• Deprecation and business/user value: The stakeholders need to ensure that the
identified value can be provided even after the component is replaced. There is,
however, a risk that the annotated value aspects may be restricted at least
temporarily.

• External resource and business/user value: The stakeholders need to be aware
that the value emphasized by the annotation is provided by a component on
which the organization has limited influence. There is a risk that the corre-
sponding function may later be provided in a manner that no longer meets the
requirements for creating value. The stakeholders therefore need to consider
whether the corresponding function could also be provided by components
operated internally with greater control.

• Complexity and business/user value: The emphasized value is to be provided
by a component that is more difficult to implement than the average component.
This leads to a higher risk, and sufficient resources should be provided to
mitigate the risk.

• Flexibility and business/user value: The emphasized value is to be created by a
component for which the requirements and realization are expected to be subject
to significant change. This bears the risk that the value cannot be provided with
adequate quality anymore after future changes.

Finally, the combination of uncertainty annotations with other annotations is
considered especially risky: In this case, a value, effort, or risk driver is already
known, but an uncertainty associated with this challenge (or another challenge that

5.6 Cross-Canvas Analyses 115

could affect the realization of the element) may lead to unforeseen problems or
additional effort.

Some annotations are in direct opposition to each other—if they are combined,
the constellation should be critically reviewed, potential misunderstandings should
be clarified, and an alternative representation should be sought:

• Invariability, deprecation, and need for improvement: Each of these anno-
tations excludes the other two, since simultaneously retaining, changing, and
replacing a system is not reasonable.

• Invariability and flexibility: The challenges emphasized by these two anno-
tations are incompatible, indicating either a misunderstanding between the
stakeholders or the need to reclassify the affected business aspect or technical
component.

Such inconsistencies, especially when examining several canvases in combina-
tion, are quite common due to the pragmatic modeling processes of the IR:scope.
The IR coaches should not attempt to interrupt the cognitive flow with constant
consistency requests during the modeling and annotation rounds, but strive to
resolve them during the subsequent discussion of annotations. It can also be helpful
to transfer the annotations from one canvas to the linked elements of another canvas
in especially critical areas during a more intensive subsequent analysis of the
overall picture.

5.7 Workshop Structure and Follow-up Activities

The process of populating an IR:scope with models and annotations is relatively
flexible and not subject to a large number of rules. In general, the initial definition
of project objectives culminates in the writing of a fictitious “press release” that can
be used by the IR domain coach to refocus the stakeholders whenever the dis-
cussion tends to get sidetracked. Then, the requirements are collected and priori-
tized in more detail on the feature canvas.

What happens next depends on the project and the orientation of the partici-
pating stakeholders: The process, object, and integration canvases have to be filled
in order to develop the business domain and IT landscape in which the project will
take place. However, the sequence in which this happens is not fixed but depends
on which canvas promises the most intuitive path to understanding the domain.

For many information systems, the simplest approach is to access the domain by
outlining the business processes on the process canvas, while the object and inte-
gration canvases are filled loosely “on the side” whenever insights about data and
system structures are gained in the course of process modeling. If the system being
developed is more back-end-centric, less user-oriented, or even involves system or
data migration, it may be more helpful to approach the requirements through the
objects that will be managed by the system. In this case, the stakeholders need to

116 5 Using an Interaction Room for Software Project Scoping (IR:scope)

ask, while modeling the object canvas, which related systems supply this data (to be
sketched on the integration canvas) and which processes deliver and handle the data
(to be sketched on the process canvas). This approach can be easier for the
stakeholders, especially when the business experts tend to grasp their domain by
examining concrete cases, forms, and documents rather than by reasoning about
generic business processes. Using the integration canvas as the primary canvas is
less common, but indicated, for example, when the project focus is on replacing a
legacy component with a new solution.

While the primary canvas is outlined cohesively as the stakeholders, for
example, move through a process step by step, the content of the other canvases
populated on the side initially remains fragmentary. The other canvases are com-
pleted when work on the primary canvas is finished, and missing data structures and
relationships are added.

Selecting a “leading” canvas for the stakeholders to focus their modeling efforts
on while populating the other two canvases in parallel and subsequently completing
them has proven itself as an efficient way to obtain a sufficiently complete and
consistent description of the domain—without asking the stakeholders (who are
usually less skilled in modeling) to complete three separate modeling cycles.

Stakeholders with classic modeling experience may object that continuously
keeping all three views (processes, objects, and integration) consistent with each
other and discussing them in the overall view is complex and hardly realistic. This
objection is certainly justified when working with detailed, formal models (e.g., in
the UML). However, giving up the completeness and precision requirements in the
Interaction Room and radically simplifying the notation syntax and modeling depth
makes a parallel examination possible. Especially in the early project phase, this
high-level view delivers more valuable insights than attempting to model all aspects
in detail.

The annotations assigned by the stakeholders after the process, object, and
integration models are sketched also make an essential contribution to these
insights. In several annotation rounds, annotations are first added to the primary
canvas and then to the other canvases, as described in Sect. 3.3.

The parallel examination of processes, data, and system components, as well as
the annotation of important value and effort drivers, leads to the development of a
high-level overall understanding of the system relationships by all stakeholders.
Misunderstandings about structures and processes are avoided, while inconsisten-
cies, gaps, and redundancies become apparent early on. This overall understanding
is not just essential for deriving reliable recommendations for the subsequent
project phases, but also helps to highlight unanswered questions, existing risks, and
important basis conditions more completely and concretely.

Completing the IR:scope population marks the transition from project scoping to
project implementation. At the end of such a workshop, a high-level list of
requirements and a high-level system model have been developed. While these are
not yet complete, they are supported by all stakeholders, and all of the stakeholders
should have the impression that at least the most critical points have been resolved,

5.7 Workshop Structure and Follow-up Activities 117

http://dx.doi.org/10.1007/978-3-319-41478-2_3

the most essential questions have been answered, and the major uncertainties have
been identified.

In other words, a more detailed specification of some aspects is likely still
required, and more questions are sure to arise during the conceptual design and
development process, but there should be no more big surprises or major conflicts.
Above all, the value, effort, and uncertainty annotations identify what aspects
subsequent refinement steps should focus on, so that precise modeling results in
genuine insights rather than merely constituting a diligent but routine piece of work.
Assigning, explaining, discussing, and recording the annotations can therefore be
viewed as the most important step for gaining insights in the IR:scope. No other
modeling technique can achieve insights so early and document them as precisely.

Depending on the project’s complexity and constraints, detailing the model
sketches developed in the IR:scope can take place in the course of a classic
requirements engineering and specification process. The advantage is that the effort
can now be invested precisely on the aspects previously annotated as critical,
instead of being poured indiscriminately into the creation of a system specification
of full breadth and depth. Agile project management with the help of the IR:agile
can follow directly as well. Here the refinement of the requirements and specifi-
cations is realized from sprint to sprint (Sect. 8.2).

Reference

Kano N et al (1984) Attractive quality and must-be quality. J Japanese Society for Quality Control
14(2):39–48, ISSN 0386-8230 (in Japanese)

118 5 Using an Interaction Room for Software Project Scoping (IR:scope)

http://dx.doi.org/10.1007/978-3-319-41478-2_8

6Using an Interaction Room for Mobile
Application Development (IR:mobile)

Expectations for mobile applications have changed significantly in the last few
years. The simple urge to “have an app too” has grown into the strategic question of
how mobile applications can contribute to the success of a company.

This strategic question is based on the realization that the information and
communication patterns of employees and customers have changed over the years:
Accessing information and completing transactions anytime and anywhere has
become an everyday reality. Like our keys and wallet, the smart phone is always
with us, and always online. Access speeds and costs, device performance and
usability no longer constitute obstacles—neither for demanding tasks nor for
recreation. People organize a significant part of their economic and social com-
munication using mobile devices today.

Private experiences with mobile applications establish expectations among
customers and employees that are transferred to the business domain: The possi-
bility of mobile support results in an expectation of mobile support, even if there is
no intrinsically mobile aspect in the business. How these expectations can be met
economically—and especially how entirely new business models can be developed
through the innovative use of the mobile channel—is the great, disruptive challenge
that digital companies face today.

Leveraging the potential of mobile applications for the success of a company
requires

• Consistently focusing on the users’ needs, expectations, and altered behaviors;
• Effectively putting the new technical capabilities of mobile devices to use;
• Taking the company’s existing structures and processes into account, and

thinking through the required adaptations.

This means that the challenges of mobile application development cannot be
boiled down to technical questions such as “Web-based or native app?” or choosing
the “right” mobile operating system. They mainly lie in the critical examination of

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_6

119

suitable product variations, entirely new forms of addressing and supporting cus-
tomers, and changes to the company’s business processes and business models.

New information and communication patterns enabled by mobility are, however,
still clashing with proven patterns of product and service offerings, established
marketing approaches and business processes, both in the business departments and
enterprise IT. Established patterns have made the company successful in the past
and are therefore deeply anchored in the minds of decision makers and company
structures.

Even the relatively young companies of the Internet economy occasionally have
a difficult time responding to the expectations and demands of users in the mobile
world. This is illustrated by Facebook’s long search for monetization options for its
mobile application (Carmody 2012). Large companies from traditional industries
such as banking, insurance, media, and health care exhibit even greater inertia.

Initiating the changes required for the mobilization of processes and business
models in established companies requires equal amounts of business expertise,
conceptual skills, creativity and technical know-how. Experience has shown that
the various stakeholders in a company can only contribute their respective expertise
to the development of a mobile strategy or concrete applications in a joint, highly
interactive process without working against or past each other. The Interaction
Room for Mobile Application Development (IR:mobile) offers the corresponding
methodical framework.

The objective of an IR:mobile is to develop the vision of a mobile application
that is tailored to the needs and requirements of the targeted user groups. Due to the
special opportunities and challenges associated with mobile devices, but especially
because of the wide variety of contexts in which a mobile app can be used, its
development requires much more intensive preparation and awareness of the users
and fields of application than what is required for the development of classic
information systems. The conceptual design of a mobile application can therefore
usually not be realized in an IR:scope (Chap. 5), but requires the methods of the
IR:mobile.

6.1 Relevant Stakeholders

An IR:mobile mainly requires the roles that are also used in the IR:scope: The IR
method coach (Sect. 3.5.1) is skilled in applying the IR:mobile methodology and
leads the discussion while the IR domain coach (Sect. 3.5.2) is familiar with the
business domain and ensures that the IR elements are used as effectively as possible
to answer the most difficult questions of the domain. In addition to these external
experts, several internal experts are essential: The process owner (Sect. 3.5.3) is
responsible for the business processes targeted by the mobile solution. Application
developers (Sect. 5.1.1) and operations experts (Sect. 5.1.2) are in charge of
developing and maintaining the solution. Among these, the representatives of the
developer side in particular should already have mobile implementation know-how.

120 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5

The same applies to the interaction engineer (Sect. 4.1.3) who, in addition to
general usability expertise, mainly has to be familiar with the interaction possi-
bilities and limitations of mobile devices.

In addition, however, discussion in the IR:mobile also requires special mobility
and business development know-how. This is why the roles of mobility expert and
business developer described in the following sections are added.

6.1.1 Mobility Expert

The mobility expert is one of the team’s innovation drivers. He or she is familiar
with the technical possibilities of mobile devices, knows what functions are
available on which devices, and how mature and useful they are in practice. The
mobility expert is far from being a hardware nerd or platform evangelist: It is much
more important for this role to have an intuitive feel for the new possibilities offered
to the user by the technology, to know what makes mobile users tick, how they act
and entertain themselves, and what they expect. The mobility expert works closely
with the business developer and usability expert—with the former to discover and
develop new economic potential of mobility for the company and with the latter to
not only make the mobile solution user friendly, but to make even demanding
mobile users enthusiastic about it.

6.1.2 Business Developer

The business developer has to be familiar with the company’s business strategy. He
or she has to know the composition of the clientele and the strategic requirements
for the further development of products and services. The business developer has to
be familiar with the market in order to assess the planned further developments of
competitors’ business models. Based on this knowledge and expertise, the business
developer participates in the IR:mobile in order to identify digitalization potential
and mobilization solutions. The role’s tasks also include comparing ideas for new
products, services and customer groups directly to the company’s strategic direction
and helping to prioritize them.

6.2 Persona Canvas

Work in the IR:mobile focuses mainly on the strategic and conceptual preparation
for the development of a mobile application, rather than on examining concrete
processes, data structures, and technologies. In order to understand the initial sit-
uation, the users, and their needs, and to derive an interaction concept from this, the
stakeholders in the IR:mobile work on four canvases:

6.1 Relevant Stakeholders 121

http://dx.doi.org/10.1007/978-3-319-41478-2_4

• The persona canvas examines the various user groups who will work with the
mobile application and elaborates their individual needs.

• The portfolio canvas (Sect. 6.3) examines the market environment of the
company’s own and competitors’ services against which the new mobile
application will have to assert itself.

• The touchpoint canvas (Sect. 6.4) shows how users will work with the mobile
application in various day-to-day business situations.

• The interaction canvas (Sect. 6.5) serves to visualize the first drafts of dialogs
that shall implement the planned functionality.

Like any Interaction Room, work in the IR:mobile begins with the definition of
the project objective in order to focus the subsequent discussions. The stakeholders
prepare a statement for this purpose at the abstraction level of a fictitious “press
release” (Sect. 3.6), outlining the initial situation and requirements for the mobile
application being developed.

To align the business and user value of the planned mobile app closely with the
needs of the target group(s), the future users are the first focal point of the
IR:mobile: What are their preferences, what annoys them, what are their wishes and
needs?

6.2.1 Methodology and Visualization

In contrast to the development of classic business information systems, whose
target groups (employees and/or business partners of the company) are compara-
tively homogeneous and well known, and whose representatives can be invited
directly into the team (Sect. 5.1.3), the target groups for mobile applications are
often more fragmented, and not all of them can be represented on the team.

In order to make the users present and alive in the design process anyway, the
workshop participants develop personas (Cooper 2004). These are detailed profiles
of fictitious users representing the typical user groups. A persona is more than an
anonymous participant in a sample scenario. It includes a back story that allows the
stakeholders to put themselves in the person’s position and phrase requirements
from that person’s perspective. The detailed back story is intended to help a
stakeholder go beyond just nominally putting himself in the place of “the user”
while subconsciously projecting the stakeholder’s own opinions onto the user.
Instead, the stakeholders shall be made aware of how the users are different from
them, and what differing requirements the users could therefore have.

The stakeholders explore the personas through a number of guiding questions:
What is relevant for the assumed users? How are they connected? How do they
communicate privately, how in business? What are the different users’ life situa-
tions like? What are their general and relevant needs?

While everyone usually participates in a joint discussion in the IR:mobile, it can
be helpful to let the stakeholders work in small groups to develop the personas.

122 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_5

Experience has shown that this leads to a more diverse spectrum of different per-
sonas than a discussion in a large group, whose creativity is quickly channeled into
common patterns. To focus the work on the most important target groups, no more
than five personas should be developed in the IR:mobile.

The characteristics of each persona are recorded in a “portrait” summarizing the
persona’s personality and expectations:

• Basics: Name, age, marital status, and occupation.
• Profile: Demographic information, personality, specific technical knowledge,

and special skills.
• Activities: Responsibilities and typical activities at work, private activities

(volunteering, recreation); interaction partners and interaction channels at work
and in private life; and ways to procure information, use of media, and
expectations for (technical) products.

• Needs: Need for information, security, and recognition.
• Values: Ideals, demands on self and others, and positive and negative factors

influencing decisions.
• Personal goals: Intrinsic motivation, role models, and aims in life.

After the personas are developed in small groups, they should be presented to all
stakeholders and discussed as a team so all stakeholders can familiarize themselves
with all personas. In order to do so, the portraits are posted on the persona canvas in
poster form. Feedback from the discussion is then integrated into the persona
descriptions.

6.2.2 Annotations and Analysis

Usually, not all types of users will use the planned mobile application to the same
extent. Depending on the application domain, the primary target group will tend to
consist of new or experienced users, technology or business-minded users, and
occasional or power users. Therefore, the relevance of the individual personas
should be weighted, indicating how critical the requirements and expectations of
each group are expected to be for the overall design of the mobile application.

In order to accomplish this, the relevance of the personas is evaluated with
business value annotations by the stakeholders in the course of the discussion, as
described in Table 6.1.

The number of annotations assigned to each persona provides a first impression
of the stakeholders’ assessment of that group’s relevance. The final weighting of the
personas is performed based on this background in the course of a brief team
discussion.

During the later annotation of the other canvases, care should be taken to assign
user-related annotations such as user value mainly from the perspective of those
personas that received the highest weighting in this step.

6.2 Persona Canvas 123

6.3 Portfolio Canvas

The stakeholders in the IR:mobile next explore the desired scope of the mobile
application’s functionality by analyzing the current service and product landscape
of their own company and the industry.

Agreement should also be reached regarding the fundamental ambitions for the
mobile solution: What are the activities of competitors in this field? What level of
innovation is desired? Does the company want to establish novel, mobile-specific
service offerings, or even business models, or is a mobile presence and keeping up
with the offers of competitors the primary objective? Both can constitute successful
strategies, but the desired result has to be clear. Otherwise, there is a risk of
prioritizing resources incorrectly, or of various stakeholder groups’ differing
ambitions leading to conflicts and frustration.

6.3.1 Methodology and Visualization

Initially, the stakeholders obtain an overview of the competition—not in the form of
abstract market figures, but by exploration and visualization of various service
offerings. They take a critical, distanced look at the services currently offered by
their own company. In large companies in particular, employees may be more
familiar with their own intranet than with the breadth and depth of the information
and services provided to customers.

Printed screenshots of apps and Web sites, printouts of service offerings, printed
forms, and brochures—everything that is suitable for making the current landscape
of the company’s own and competing services tangible is used to visualize the
various offerings. The illustrative material is posted on the portfolio canvas, clus-
tered by topics and providers as shown in Fig. 6.1. Up to six clusters (for the own
company and up to five competitors) with a maximum of six artifacts each should
be formed in order to maintain an overview and focus on the most important players
in the market.

The participants then discuss which existing and new services will be offered
additionally or exclusively through mobile applications. Even at this stage, different
stakeholders with varying levels of business expertise and technology affinity will
have different expectations that need to be weighed.

Table 6.1 Prioritizing personas with value annotations

Symbol Name Interpretation

Business
value

The persona is one of the primary target groups for the mobile
application. In a marketplace application, for example, registered
buyers and sellers of goods can constitute two different primary
target groups while unregistered (anonymous) users and
administrators are secondary target groups.

124 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

6.3.2 Annotations and Analysis

To facilitate these deliberations, the stakeholders add annotations to the artifacts on
the portfolio canvas, highlighting what appears valuable to them and where they see
innovation potential, a need for changes or gaps. The annotations in Table 6.2 are
used for this purpose.

These annotations can be added to visualizations of both the company’s own and
third-party offerings on the portfolio canvas, in order to not only highlight aspects
of the own offering that can be improved, but also draw inspiration from competing
offerings.

Analyzing the annotations assigned to the portfolio canvas provides a first
impression of the scope and benefits of the identified mobilization opportunities:

• The business value and user value annotations identify specific value drivers
that can arise from mobilization in the company’s own service portfolio or that
may already have been realized in competing offerings. Effort annotations are
deliberately not yet assigned to them at this point, so as to initially focus the
discussion on expectations rather than concrete solutions.

• The innovation annotation sends a mixed signal: On the one hand, offering an
innovative feature that was previously unavailable in the market but provides a
special added value for users is a powerful value driver. But on the other hand,
innovations are typically associated with a higher implementation and accep-
tance risk.

• The need for improvement annotation also serves as an indicator of additional
effort. It identifies business or technical aspects that have to be adapted in order
to support mobilization. This annotation, however, is initially not to be under-
stood as a restrictive counterpart to the value annotations, but merely as an

Fig. 6.1 Example of a simple portfolio canvas

6.3 Portfolio Canvas 125

indication of which other process elements must not be disregarded during the
later development of a concrete solution (and only then will it possible to
estimate the corresponding effort).

Identifying the mobilization needs and opportunities is, however, just one
function of the portfolio canvas. Identifying and discussing possible innovations
and process adjustments also tests the willingness of the company to engage in the
changes that mobilization brings with it. Both supportive and restrictive conditions
in the company are discussed.

In the flow of brainstorming, the discussion can easily drift too far from possible
changes in the current portfolio to the solution domain. New processes for new
features are quickly suggested off the cuff, while other ideas are nipped in the bud
with the killer argument of established policy constraints. It is therefore the
responsibility of the IR coaches to initially keep the discussion on the level of

Table 6.2 Annotations for artifacts on the portfolio canvas

Symbol Name Interpretation

Business
value

The mobilization of the annotated element makes an important
contribution to the company’s business objectives. Field
service technicians of an energy supplier, for example, can
record descriptions and location data of power line and
transformer faults more precisely and efficiently using a
mobile application than on paper.

User value The mobilization of the annotated element creates a special
benefit for the users. A public transport company, for
example, can enhance client convenience by selling electronic
tickets using a mobile application.

Innovation The mobilization of the annotated element promises or
realizes a particular innovation potential. This means the
annotation identifies the “highlights” of the mobilization
project. These are often entirely new services that only
become possible through mobile access or the technical
capabilities of the mobile device. An example is the ability to
show additional information related to a camera image taken
with the mobile device, making orientation easier for tourists
in a foreign city.

Mobility The annotated element (such as a service, information, process
etc.) shall be mobilized. This annotation identifies artifacts on
the portfolio canvas that illustrate processes or data which are
currently not available for mobile use but where mobilization
is desired.

Need for
improvement

The annotated element has to be changed in order to support
mobilization desired here or at another point. Mobilizing
processes is not always possible directly. It may require
adaptations in the process being examined, as well as in
related processes. For example, mobilizing the ticket booking
process of a public transport company also requires
mobilization of the ticket validation process.

126 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

building awareness of the opportunities, obstacles, and objectives of mobilization in
light of the current service portfolio. A more detailed examination of users and
usage contexts on the persona and touchpoint canvases is required before diving
into the solution domain.

6.4 Touchpoint Canvas

With the insights from the portfolio and persona canvases, the picture of the initial
situation and target groups for the planned mobile app is complete. The next step is
to understand how the system can support users in various activity phases. On the
touchpoint canvas, the stakeholders mentally follow the personas step by step in the
course of so-called user journeys and analyze their needs at each step: When does
the user interact with the company’s services? What are the conditions at these
points like? What motivates the user to access the mobile application? What options
does the mobile app offer to the user? Which factors determine whether a user will
“stay with us” or is lost?

6.4.1 Methodology and Notation

These user journeys are drawn up for one to five of the most important personas,
and outlined on touchpoint canvas: The stakeholders describe in which situations
(touchpoints) the user comes into contact with the business domain and/or the
company, and how a mobile application can support the user at these points. The
stakeholders look for answers to a number of questions at each touchpoint:

• When/how often is the touchpoint visited (timing, trigger)?
• What does the touchpoint look like, what are the conditions there (location)?
• What communication options exist at the touchpoint?
• What are the user’s questions and needs?
• Is this a trust point, meaning that this is where the user decides whether or not to

continue using the service?

In particular, when the touchpoint is a trust point, i.e., a point where the user
could terminate the interaction with the application, additional questions have to be
answered:

• What aspects make the touchpoint a trust point?
• What needs of the user require special attention here?
• Are these needs due to the mobile interaction, or of a more fundamental nature?

Identifying the various stations along the user journey not only requires an
examination of how the currently offered services are utilized by the user. The

6.3 Portfolio Canvas 127

stakeholders should also identify new contact situations where the user gains the
opportunity to access the service through the particular features of the mobile
channel. These can include contacts initiated by the user out of personal interest, and
contacts that are initiated by the company through the mobile application in new
usage contexts. The mobile app should therefore not be viewed as a complementary
communication channel that exists in parallel to the existing contact options, but as an
expansion of these. The stakeholders are therefore asked to develop ideas for con-
crete mobile services that provide the best possible support for users: At what points
of the user journey is it possible to better respond to user needs, where can added
value be created for them, where can new services be offered to them, and where may
it be possible for them to have new positive experiences?

The sequence of user interactions is recorded on the touchpoint canvas of the
Interaction Room as described in (Sect. 4.4). As in the IR:digital, up to ten
touchpoints per user journey are arranged in a coordinate system of touchpoint
events and touchpoint lanes that describe the interaction triggers and interaction
channels. The situation is briefly described for each touchpoint: Where is the user
located? What is the user doing? What are the ambient conditions?

Figure 6.2 shows an example of a simple touchpoint canvas with user journeys
for a passenger and train conductor.

Fig. 6.2 Example of a simple touchpoint canvas

128 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

http://dx.doi.org/10.1007/978-3-319-41478-2_4

Both use different channels to prepare for the train trip through different activ-
ities—on the passenger’s side, from trip planning to booking a ticket, from
boarding at the correct platform to ticket inspection and ultimate disembarkation,
and on the conductor’s side, from shift planning to multiple departures and ticket
inspections to the end of the shift. The touchpoints are described with the ambient
conditions. At the time of ticket inspection, for example, conditions on the train are
often crowded, a network may not be available, and the inspection is bothersome
for the travelers since it interrupts other activities.

The booking step also constitutes a trust point for the traveler. Another means of
transport could be chosen for the trip at this point (e.g., because taking the train
appears more expensive but no faster than traveling by car, or because there are no
more attractive connections to the desired destination). Both personas are involved
in the touchpoint event “validation,” which means this is a personal interaction but
with the use of mobile devices (insofar as mobile booking was used).

The IR coaches should ensure that the detail level of touchpoints does not get out
of hand, resulting in the precise modeling of a business process: On the touchpoint
canvas, the focus is not on modeling a concrete process sequence (which will be
examined in a later step) but on how a certain persona experiences a specific
activity (such as a train ride), and in what situations the persona comes into contact
with the planned mobile application.

6.4.2 Annotations and Analysis

After outlining the user journeys, the annotations in Table 6.3 are assigned to the
touchpoints in order to highlight critical aspects that need to be observed at these
points of contact.

The annotations are debated in a discussion moderated by the IR domain coach,
and their precise characteristics and backgrounds are documented according to the
schema in Appendix B. They constitute an important starting point for the initial
estimation of effort and prioritization of features in later stages of software
development.

Even at this stage, examining the overall picture of the annotated user journeys
for the various personas reveals points that deserve special attention in the detailed
conceptual design phase:

• The user journeys of different personas will typically converge in some
touchpoints but diverge in others. For touchpoints included in the user journeys
of more than one persona, the degree to which the annotations match should be
examined:

– When different personas visit the same touchpoint for the same reason, they
usually perform the same activity there (e.g., a regular and occasional
traveler purchasing tickets). The corresponding touchpoints should have the

6.4 Touchpoint Canvas 129

Table 6.3 Annotations for touchpoints on the touchpoint canvas

Symbol Name Interpretation

Business value Particular value is created from a business perspective at the
touchpoint. Such a value driver will often be the motivation to
consider the development of a mobile application at all. For a media
company, it may for example be worthwhile to develop an app that
informs users live about events in the course of football games.
Even if this function has no immediate monetary benefit, it can
ensure that the user does turn to other media providers to satisfy his
mobile information needs but remains loyal to the brand which he is
already familiar with on classic channels.

User value Particular value is created from the user’s perspective at the
touchpoint. Such added value for the user can take many forms,
ranging from a uniquely mobile feature (such as a navigation aid in
an unfamiliar city) to a function that conveniently covers a user’s
spontaneous need for information or service (such as booking a
cinema ticket).

Innovation A novel form of interaction or business transaction is realized at the
touchpoint. This innovation can be based on the technical
possibilities of the mobile device (e.g., augmenting a live camera
image by displaying additional information), or it can consist of a
novel business channel (such as identifying a rented car by a printed
barcode and transmitting the access code by text messaging).

Reliability The reliability of interaction at the touchpoint is of particular
importance. This is especially crucial at trust points (touchpoints
where the user may terminate use of the mobile service or turn to a
competing service), since disruptions can have a massive impact on
the entire user journey. If, e.g., the mobile purchase or validation of
a train ticket does not work reliably, the entire user journey for the
use of public transportation is at risk or associated with high
frustration potential.

Attractiveness A special usage incentive should be offered at the touchpoint.
Measures to increase attractiveness are especially interesting for
touchpoints that users tend to resist visiting—either because the
interaction step is unavoidable (such as paying for a
pay-and-display ticket) or because it is voluntary but bothersome
(such as participating in a survey). If high business value depends
on the touchpoint (e.g., collecting insights about user preferences),
incentive measures should be considered. These can make the
touchpoint more attractive or valuable for the user—for example, by
making the interaction playful, awarding loyalty points, or through
other mechanisms.

Need for
improvement

The interaction at an existing touchpoint should be improved. This
annotation can be used in particular when the existing mobile
support of touchpoints shall be enhanced in a project (e.g., replacing
static public transport schedule information with an application that
takes the current position of buses and trains into account), or when
the business processes underlying the touchpoint have to be adapted
in order to their mobilization.

Uncertainty Some aspects of the touchpoint are not yet adequately understood.
Examples include local ambient conditions, or the concrete
information needs of the user in the respective situation.

130 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

same annotations in this situation. If this is not the case, possible reasons for
the deviations should be examined (e.g., the business value of the touchpoint
may be much higher for the frequent traveler and therefore annotated only in
his user journey).

– When different personas visit the same touchpoint for related reasons, they
often perform complimentary activities there, which means they interact
with each other (e.g., validation of a passenger’s ticket by the conductor). In
this case, it is not unusual for the touchpoint annotations in the user journeys
to be different. However, one should review whether the complimentary
aspects of the interaction are meaningful in relation to each other.

– When different personas visit the same touchpoint for different reasons and
carry out different activities there, one should examine whether this is
actually the same touchpoint or whether different touchpoints for the
respective activities should be defined in the individual user journeys.

• The combination of the value annotations business value and user value
indicates a touchpoint of especially high priority:

– When the business value and user value annotations are combined on
touchpoints in the same user journey, the interests of the provider and user
converge. This is an especially strong argument in favor of mobilizing the
corresponding aspects (e.g., the ability to book tickets online means greater
convenience for travelers and lower costs for the public transport operator).

– When the same touchpoints with value annotations are found in the user
journeys of different personas, this also implies a special priority because
more than one target group can be satisfied by implementing the corre-
sponding feature.

• Innovations are usually only worthwhile if they offer a concrete benefit,
because they are inherently risky:

– Innovation annotations should ideally occur in combination with business or
user value annotations, or at least contribute to the attractiveness of the
system.

– Innovation annotations that stand on their own need to be critically examined
to determine whether the assumed effort to implement the innovation is
justified.

– Innovation at touchpoints that require especially high reliability are also
worthy of examination, since ensuring reliability alone often requires sig-
nificant effort already. This is likely to be increased to an extent which
cannot be estimated reliably when implementing a risky innovation.

The user journeys outlined on the touchpoint canvas lead to a number of
requirements for the mobile application being developed. Instead of noting these
directly on the feature canvas of an IR:scope, thereby launching the detailed

6.4 Touchpoint Canvas 131

planning stage of software development, it is worthwhile to first utilize the more
in-depth understanding of the user perspective obtained by the IR:mobile stake-
holders to sketch initial outlines of the user’s interaction with the mobile applica-
tion, as described in the following section.

6.5 Interaction Canvas

The interaction canvas offers stakeholders the opportunity to roughly outline the
user experience (UX) that the planned mobile application will offer, based on the
ideas they developed during the population of the touchpoint canvas. Like all
canvases of an Interaction Room, the interaction canvas does not claim to produce a
complete interaction concept and sophisticated screen design. This is and remains
the responsibility of specialized UX designers. Based on the preceding detailed
consideration of personas and user journeys, the IR:mobile stakeholders do, how-
ever, have a comprehensive picture of the usage contexts in which the application
will be typically accessed. This puts them in an ideal position to outline possible
solutions for the user interaction, which can later be refined by UX experts.

6.5.1 Methodology and Notation

The stakeholders outline their vision of the dialogs that the user shall interact with
by drawing “storyboards” on the interaction canvas. Depending on the technology
of the mobile app, a dialog may refer to a Web page (in Web apps) or a screen (in
native apps).

Each dialog is visualized as a rectangle, representing a section of the screen or the
entire length of a Web page. Within the dialogs, the desired content and/or input
elements (text, input fields, buttons, and illustrations) are sketched simply and
without a formal notation. The layout of the elements in a dialog plays may serve as
an initial suggestion for future screen layouts. Rather than defining exactly what the
dialog will look like and where which elements will be placed, the goal is to develop
a feeling for how many user interface elements can reasonably fit on the screen.

This approach of sketching user interface mockups or storyboards is not new.
However, the dialogs of modern applications are rarely static—some dialog ele-
ments may change depending on user interactions, without switching to a whole
new dialog (e.g., by loading a new Web page). Simple notes and symbols such as
arrows can be added to the sketch to indicate such localized changes. Since
dynamic user interfaces come in infinitely diverse forms, and a precise specification
of the interface is not our goal at this point, the IR:mobile deliberately does not
define a set of methods or symbols for this step. Instead, any symbols understood in
the same way by all stakeholders can be used to show how a dialog should change.

If the changes within a dialog are so extensive that presenting them in the same
sketch would become too confusing, several versions of the dialog can also be

132 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

outlined and linked by arrows. A dotted line is drawn around the various sketches
of the same screen to emphasize these are different views of the same dialog, rather
than independent dialogs.

Figure 6.3 shows an example of a dialog for planning and booking a train
journey. As indicated by the arrows, the dialog “plan your trip” changes when users
check the “return journey” box, adding a selection box for the return journey date.
The dialogs “your ticket” and “your journey” are independent dialogs though (i.e.,
separate Web pages, if this was implemented as a Web-based mobile app).

For clarity, the modelers have refrained from explicitly showing further navi-
gation and interaction options here, such as opening a menu by tapping the top right

Fig. 6.3 Interaction canvas with the storyboard view of a changeable dialog

6.5 Interaction Canvas 133

corner, or backtracking along the dialog. The rationale is that such interaction
options are more easily made understood by describing that, e.g., “it must be
possible to return to the home screen from any dialog,” rather than spelling out all
the necessary arrows and thereby obfuscating the application-specific interaction
options that may not be obvious to every stakeholder.

To ensure that the stakeholders focus on the essentials in the course of modeling,
the interaction canvas should not contain more than ten dialogs and no more than
three versions of changeable dialogs should be outlined.

The interaction canvas can under some circumstances serve as an alternative to
the process canvas. It may especially be helpful as the primary driver for gaining
insights into the application domain when the stakeholders (all pragmatism
notwithstanding) have a difficult time with the comparatively abstract presentation
of the process canvas. This may be because they are accustomed to thinking and
acting in concrete business transactions based on existing paper forms. In particular,
for the development of new mobile applications that are highly defined by the
design of their user interface, initiating modeling through the interaction canvas can
be easier than through the process canvas.

In the initial modeling of interaction and process canvases, and in deriving one
of these canvases from the other, an important task of the IR method coach is to
make the stakeholders aware of the subtle differences between process and dialog
sequences, which are important for finding an efficient solution:

• Business processes typically encompass sequences extending over hours, days,
or weeks, with several participants working together. Parallel sequences are not
uncommon and may be affected by external influences.

• Interaction processes on the other hand only encompass sequences extending
over minutes or at most hours, with only one participant interacting with a user
interface. Parallel actions or external interventions in the dialog sequence are not
common.

Even though these differences seem apparent at first glance, it has been shown
that consistently maintaining the right abstraction level while outlining processes of
either kind is not easy in practice (especially for stakeholders with little modeling
experience). In modeling business processes, the level of detail quickly moves to
individual dialog steps, especially when the stakeholders are feeling their way
through the new development of a process step by step, guided by their personal
vision of the planned IT system.

When the IR method coach recognizes that the granularity of a process canvas is
moving to the dialog flow level, he can either attempt to guide modeling back to the
process level (if he has the impression that the dialog details are not contributing
any new insights), or suggest actually modeling the dialog flow first instead of the
process (if he has the impression that the stakeholders find it easier to approach the
domain this way).

The reverse case (choosing too high of an abstraction level for modeling an
interaction canvas) tends to occur rarely. At most it can indicate that the

134 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

stakeholders consider the details of the interaction steps insignificant and want to
mentally explore the overall process in particular. If the IR method coach has the
impression that the desire to suppress interface details stems from wanting to avoid
an uncomfortable examination of domain details that are not understood yet, he
should attempt to motivate the stakeholders to explore precisely those details. If on
the other hand the IR method coach has the impression that the interface details are
viewed merely as a time-consuming manifestation of process details which are
already known, he should suggest moving directly to process modeling in order to
focus on the big picture.

A more common problem in the modeling of interaction canvases is that the
stakeholders lose themselves in irrelevant details, for example, when discussions
erupt about the placement of individual dialog elements on the storyboards. Similar
to object canvases, there is a risk with interaction canvases that trivialities are
extensively illustrated since their modeling is seductively simple and seemingly
productive. Meanwhile though, the actually challenging elements (such as the
visualization of complex information relationships or the realization of intuitive
gesture control) are not examined in sufficient depth. Here, the IR method coach is
responsible for noting early on when the discussion strays into irrelevant details,
and for guiding it back to the exploration of interaction aspects that are not yet
sufficiently understood.

6.5.2 Annotations and Analysis

The annotations in Table 6.4 can be used by the stakeholders to highlight especially
critical aspects on the interaction canvas.

In the first annotation round, the IR coaches offer the stakeholders only the
business value, user value, and comprehensibility annotations plus one or two
additional annotations that appear to be especially relevant for the application
domain. The focus can be expanded to include additional annotations in subsequent
annotation rounds as needed.

Unlike the annotations on the remaining IR:mobile canvases, the annotations on
the interaction canvas are not intended primarily to support strategic decisions about
the direction of the mobile application. Instead, they identify concrete value and
effort drivers that will have to be considered in the course of implementation. The
detailed discussion and documentation of the characteristics and background of
these annotations should therefore follow the schema in Appendix B.

The annotations on the interaction canvas also illustrate the points that require
special attention during the later refinement of the dialog outlines:

• Clearly the dialog elements annotated with the correctness, comprehensibility,
attractiveness, and/or flexibility effort drivers require an especially detailed UX
design, since challenges that go beyond fundamental usability requirements
have been identified here.

6.5 Interaction Canvas 135

Table 6.4 Annotations for elements on the interaction canvas

Symbol Name Interpretation

Business
value

The dialog, feature, or dialog element makes an essential contribution
to the value of the mobile application for the operator. This
annotation is used to identify model elements for which the mobile
application is being realized in the first place, differentiating them
from purely supportive features.

User value The dialog, feature, or dialog element is especially desirable for users
and/or has the potential to invoke great enthusiasm among users. This
annotation can be used to identify model elements that are expected to
cause users to work with the mobile application. The high-quality
implementation of such elements is especially critical at trust points to
avoid losing users.

Innovation The dialog, feature or dialog element constitutes a special business or
technical innovation. In addition to business innovations such as
providing a novel, location-based service, this annotation can also
identify technical innovations such as the use of gesture control in the
mobile application. It therefore symbolizes both above-average
enthusiasm potential and possible higher risks related to
implementing the function.

Accuracy Ensuring correct input in the dialog (element) is of special
importance. While robustness to prevent incorrect input is a
fundamental requirement and therefore normally not annotated, this
annotation can be used, e.g., to identify input that needs to be verified
with special care, or particularly complex input validations. The
annotation can also point out that, when sensor data is used, e.g.,
GPS-based location data may be unavailable or of limited accuracy.

Usability The comprehensible presentation of and/or the intuitive interaction
with the dialog (element) is of special importance. This annotation
should be used to highlight special usability challenges that go
beyond the common, basic requirements for the user friendliness of
interactive systems. Examples are the input or visualization of
especially complex data.

Attractiveness The form of presentation or interaction with the dialog (element) is
intended to create a special incentive to use the feature. This
annotation picks up the attractiveness annotation on the touchpoint
canvas to identify points where a special incentive to execute certain
process steps should be created, for example, through the use of
gamification techniques (Deterding et al. 2011).

Flexibility The presentation and/or function of the dialog (element) must be
adaptable to various usage contexts. These may consist of different
target groups with varying requirements or abilities (e.g., different
fields of responsibility, languages or skills), but also different usage
situations (e.g., at work, during leisure time). Suitable adaptation of
the presentation or functionality is required for these cases.

Uncertainty The design of this feature is associated with especially high
uncertainty. On the interaction canvas, this typically consists of more
comprehensive questions regarding the exact business requirements
for the dialog (e.g., what data exactly needs to be requested). Design
uncertainty of the kind “in what corner should this button be” is
deliberately ignored on the interaction canvas, since visual design is
only defined in concrete terms later on by a UX designer.

136 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

• Special care is particularly required for dialog elements that were not only
annotated with effort drivers, but also with the value drivers business value
and/or user value.

• The innovation annotation combined with the effort drivers mentioned above
indicates especially high risk. Innovation annotations that stand on their own
should be examined similarly to the examination of touchpoints. The innovation
annotation should always appear together with another annotation as a rule,
which justifies the implementation of an innovative technology and the asso-
ciated additional effort.

6.6 Cross-Canvas Analyses

In addition to the insights gained from the population of the individual canvases (as
described in the preceding sections), a number of insights can also be derived from
the cross-canvas examination of the sketches and annotations in the IR:mobile:

• During population of the canvases, the extent to which the previously defined
characteristics of the personas are reflected in the user journeys and dialog
sketches should be repeatedly reviewed. It is all too easy for stakeholders to
argue primarily from their own perspective in the course of the discussion, rather
than putting themselves in the position of the personas. In particular, for the
annotation with value drivers, care should be taken to relate the stated user
and/or business values to concrete personas.

• Regular reviews should also be performed to determine how the mobile appli-
cation that emerges during the population of the touchpoint canvas and inter-
action canvas integrates into the market landscape described on the portfolio
canvas: Does it depict features that were identified as particularly important and
value-adding? Does it contain features that were perceived as “challenging” in
practical tests, and should therefore be realized in a different, better way? Does it
encompass features that differentiate the own offering from that of competitors?

• Following the annotation of the user journeys, briefly assessing the benefits is
worthwhile: How difficult does it seem to implement the user journeys of the
various personas?

– User journeys that contain virtually no value drivers and are possibly even
assigned to personas of low relevance may be sources of premature
requirements. Their implementation would be associated with great effort but
fail to make a major value contribution for most users. It should be examined
whether they can be put on hold.

– User journeys that suggest a high effort (e.g., because of the need for various
changes or innovations on their touchpoints) are most likely justified when
they are assigned to personas of high relevance. Persona relevance is
therefore an essential criterion for prioritizing touchpoints that otherwise
have comparable value and effort ratings.

6.5 Interaction Canvas 137

• A similar benefit assessment is also recommended for the interaction canvas:
Dialogs that are elaborate to realize should only have a high priority if they
implement touchpoints of personas with a high relevance. Otherwise, putting
them on hold is recommended.

• The consistency of annotations between the interaction canvas and touchpoint
canvas also has to be examined:

– Since the dialogs sketched on the interaction canvas outline the concrete
characteristics of the interaction on the touchpoints, the value and effort
annotations on the touchpoint canvas should be found on the interaction
canvas. This consistency does not have to be exact, complete, and precise,
since not all requirements for a touchpoint can be broken down to specific
dialog elements. But if the requirements for the dialog and touchpoint
deviate from each other significantly, the plausibility of the annotations
should be reviewed.

– While the user journeys are persona-specific, the dialogs of a mobile
application often will not be separated strictly by personas but combine the
requirements of all personas. After outlining the dialogs, one should there-
fore ensure that the requirements of all personas (according to their weights)
are meaningfully combined on the interaction canvas. Since an interaction
canvas only illustrates sections of the mobile application’s interface as a rule,
special attention should be paid to inconsistencies in the implementation of
requirements.

• The annotations on the interaction canvas are assessments assigned at the most
detailed level of the IR:mobile, which means they are on an abstraction level
comparable to the annotations used in the IR:scope. When an IR:mobile is
followed by an IR:scope, the annotations on the interaction canvas should
therefore be included in the cross-canvas annotation analysis of the IR:scope as
well. This means one should examine whether value and effort annotations on
the interaction canvas are consistent with the process and object canvases of the
IR:scope.

6.7 Workshop Structure and Follow-up Activities

Clarifying the project vision, the outset and the orientation points of each Inter-
action Room discussion is of special importance in the IR:mobile. The mere
impulse that “we also need an app” is too vague, while focusing on the mobilization
of specific processes right away (without more detailed considerations regarding
value contributions and user groups) is too hasty. In contrast to classic software
solutions that cover numerous requirements, a mobile application focuses on cov-
ering a handful of closely described requirements as effectively as possible. The

138 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

legwork has to be completed with corresponding diligence to avoid investing a lot
of effort into an application that fails to meet the needs of the market.

Using the previously described canvases, the vision of the mobile application is
defined in concrete terms step by step during the discussion of user types, the
service portfolio, usage contexts, and interaction techniques. The corresponding
methodology can be summarized as follows:

• Mapping and weighting personas to represent the intended target groups for the
mobile application,

– Result: Insights about the characteristics and needs of the most important
user groups;

• Exploration of the current service landscape, using the organization’s own
service portfolio and the services of the leading competitors as examples,

– Result: Visual overview of the interfaces (paper forms or software dialogs)
for the service offerings of the most important market participants on the
portfolio canvas;

• Annotation of the portfolio canvas with value and effort drivers in the various
interface implementations,

– Result: Suggestions for worthwhile strategic directions of the organization’s
own mobile application;

• Outlining the user journeys of the most important personas on the touchpoint
canvas and identification of the personas’ touchpoints with the service portfolio,

– Result: Understanding of the user activity sequence and ambient situation at
the touchpoints; ideas for required features of the mobile application that
cover the users’ needs at the touchpoints;

• Annotation of the touchpoint canvas with value and effort drivers on the various
touchpoints,

– Result: Initial insights regarding recommended priorities and expected
development challenges;

• Outlining dialogs for the most important touchpoints on the interaction canvas,

– Result: Initial solution ideas for the interaction requirements of the users
under the ambient conditions identified on the touchpoints;

6.7 Workshop Structure and Follow-up Activities 139

• Annotation of the interaction canvas with value and effort drivers on the various
dialogs,

– Result: Initial insights about setting priorities and expected development
challenges for the UX of the mobile application.

The actual implementation of the application conceived in this manner then is a
software project—the IR:mobile therefore transitions into an IR:scope, with the
focus shifting from the definition of requirements to the concrete effects on pro-
cesses, data structures, and system components, as well as the value and effort
drivers that have to be known for project planning and risk management.

For the transition between the IR:mobile and IR:scope, the requirements that can
be derived from the touchpoint canvas and interaction canvas therefore serve as the
starting point for the population of the feature canvas. The annotations on the
touchpoints and dialogs can already be used for an initial prioritization and to
estimate the effort required for the features.

Processes, data, and backend interfaces of the mobile application are then
planned in more detail using the tools of the IR:scope. To what extent existing
business processes have to be redesigned or expanded and how to handle data
required and generated by the mobile application are examples of questions that
arise in this process.

The user journeys and dialog outlines previously created in the IR:mobile should
be carried over into the IR:scope. They make the application vision tangible for the
stakeholders on the one hand and, on the other hand, ensure that the processes and
data are based on the intended usability of the mobile application, rather than
constraining the user experience by the underlying process and data structures.

References

Carmody T (2012) Facebook: The last great company of the desktop age, playing catch-up in a
mobile world. Wired, 2 Jul 2012. http://www.wired.com/2012/02/facebook-mobile/. Accessed
23 Feb 2016

Cooper A (2004) The inmates are running the asylum: Why high tech products drive us crazy and
how to restore the sanity. Pearson Education, Chap. 9

Deterding S, Dixon D, Khaled R, Nacke L (2011) From game design elements to gamefulness:
Defining “gamification”. In: Lugmayr et al (eds) MindTrek’11: Proc 15th Intl Academic
MindTrek Conf: Envisioning Future Media Environments, pp 9–15. doi:10.1145/2181037.
2181040

140 6 Using an Interaction Room for Mobile Application Development (IR:mobile)

http://www.wired.com/2012/02/facebook-mobile/
http://dx.doi.org/10.1145/2181037.2181040
http://dx.doi.org/10.1145/2181037.2181040

7Using an Interaction Room
for Technology Evaluation (IR:tech)

In order to succeed in the long term, a company must not just continuously adapt to
business challenges and opportunities, but also keep on top of relevant technical
innovations. It can afford neither to be left behind by technical progress, nor to
blindly follow every trend. The continuous evaluation of new technologies there-
fore is a significant strategic task: The company has to analyze the business value
that would be added by adopting a new technology, but also needs to consider what
investments are required to implement it, and whether this effort would be justified
by the expected benefits.

What makes this analysis problematic is that it cannot be performed by any
department in the company on its own. While the enterprise IT has the necessary
know-how to identify promising technologies and estimate their integration effort
from a technical perspective, it lacks the domain expertise to assess the business
value of the technology, let alone to identify potential business innovation it
enables. Conversely, the business department (even if it has already heard of
buzzwords such as cloud computing or big data) lacks the expertise to assess how
such technologies could realistically alter its business, or what technical basic
conditions and restrictions would have to be observed during their introduction.

The consequence is that promising topics are either not pursued further because
neither side recognizes the full potential, or that an attempt is made to implement an
ad hoc solution that realizes the potential poorly and leads to unnecessary effort,
frustration, and possibly even abandonment of a technology initiative that would
actually have been beneficial.

In fact, the adequate evaluation of technologies requires cooperation between
operating departments and enterprise IT, enabling both sides to obtain an overview
of the possibilities, requirements, and basic conditions of the other side. This makes
it possible reach a substantiated decision on whether and how the new technology
should be implemented. The Interaction Room for Technology Evaluation (IR:tech)
provides a suitable infrastructure and methodology tool to answer these questions
purposefully and with minimal effort.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_7

141

7.1 Relevant Stakeholders

In addition to the IR coaches, business and technology representatives work
together in an IR:tech. These obviously include the application developers and
operations officers on the IT side, in addition to the previously described roles of the
business developer and process owner for the processes expected to be affected on
the business side. In the IR:tech, these are complemented by the role of the tech-
nology expert who can provide an objective picture of the possibilities and limits of
the new technology, and the enterprise architect who maintains an overview of the
company’s entire system landscape. The latter roles are described in more detail in
the following sections.

7.1.1 Technology Expert

The technology expert has a broad overview of the state of the art and current trends
in enterprise IT. In particular, he has experience with the practical use of the new
technology being analyzed and is able to provide the other stakeholders with an
assessment of the implementation scenarios it is suited for and the prerequisites that
have to be met. Filling the technology expert role externally is recommended so that
he can make suggestions on the use of technology unimpeded by company politics
or organizational blindness, even when they collide with established processes and
ways of thinking.

7.1.2 Enterprise Architect

The enterprise architect is responsible for analyzing and optimizing the company’s
architecture, i.e., the processes actually used in the company and the IT systems that
support them. His goal is to make the business processes as efficient and flexible as
possible with the help of IT support. Together with the business developer and
process owners of the specific processes that are targeted, the enterprise architect in
the IR:tech helps evaluate new technologies and assess their benefits.

7.2 Feature Canvas

Analyzing the application potential of new technologies as well as adaptations
required to adopt them in business processes requires an examination of process,
data, and integration structures. The canvases of the IR:scope are therefore also
used in the IR:tech, albeit in a slightly different way.

142 7 Using an Interaction Room for Technology Evaluation (IR:tech)

Similar to the IR:scope, the feature canvas in the IR:tech serves to clarify the
project contents and define expectations for the new technology. The methodology
used for collecting, clustering, and prioritizing the requirements is the same as in the
IR:scope. However, the feature canvas of an IR:tech with a maximum of 30
requirements is typically less comprehensive than one in an IR:scope, since the
fields of application for the new technology are usually more narrowly defined.

The only difference is the number of annotations available to highlight the
requirements: While only the business and user value as well as the complexity and
uncertainty of the planned features are annotated in an IR:scope, a larger selection
of annotations is available in the IR:tech. This makes it possible to highlight aspects
directly that are to be supported or considered by the new technology. The available
annotations are shown in Table 7.1.

Table 7.1 Annotations for requirements on the feature canvas of the IR:tech

Symbol Name Interpretation

Business
value

The feature is of high value from the company’s perspective. In
the IR:tech, this annotation is mainly used to highlight functions
that are optimized or made possible in the first place by the
technology being evaluated. For a transport company for
example, this could be the ability to schedule vehicles on
secondary lines more economically by recording and evaluating
passenger streams more precisely using big data technologies.

User value The feature is of high value from a user perspective. In the IR:
tech, this annotation also applies primarily to delight and
performance requirements that become possible based on the
technology being evaluated. For a vehicle owner for example,
this can be a system that derives the load on vehicle components
from a variety of sensor data and then recommends individually
tailored maintenance intervals.

Innovation Using the new technology in this feature facilitates a special
functional or business innovation. This annotation identifies
features that could not be realized without the technology being
evaluated, but that are also associated with special effort and risks
because they are so new. A decision for or against the new
technology can often be based on a cost/benefit assessment of
these features.

High use The high load to which this feature is exposed continuously or
temporarily (e.g., due to a high frequency of use), or that would
be caused in downstream systems by using the technology (e.g.,
due to recording and processing a large number of events or a
high volume of sensor data), has to be taken into account.

Time
constraint

Time restrictions have to be considered when applying the
technology under evaluation. These could be business
requirements (such as response times), or they could be inherent
in the new technology (e.g., the validity period of predictions
derived from sensor data).

(continued)

7.2 Feature Canvas 143

In an initial annotation round, the stakeholders should focus on adding the
business value, user value, innovation, basic condition, and complexity annotations
to the canvas. Additional annotation symbols can be offered by the IR coaches for
marking the canvas in subsequent rounds, based on likely technology or domain
challenges.

In the context of the IR:tech, the innovation annotation which identifies an
especially innovative system aspect is of special importance. It combines the
semantics of several annotations: On the one hand, it promises a high business
value (e.g., regarding company image and/or productivity) and also a high user
value (in the form of one of the software solution’s performance characteristics).

Table 7.1 (continued)

Symbol Name Interpretation

Security Special security requirements have to be considered when using
the technology under evaluation. These requirements may have
to be satisfied independently of the new technology (such as data
privacy requirements), or they may be added or intensified by the
technology (e.g., privacy requirements for insights derived from
aggregated user data).

Reliability Special reliability requirements have to be considered when using
the technology under evaluation. These requirements may have
to be satisfied by the feature independently of the new technology
(such as availability, which may be delegated to third parties
using a cloud solution), or may be introduced by the technology
(such as the informativeness of prediction data that downstream
systems rely on).

Flexibility Special functional or structural flexibility must be provided by
the technology under evaluation. In a big data solution for
example, this could be a requirement to interface with numerous
different sensors or data sources whose quantity and availability
fluctuates at runtime.

Policy
constraint

Special legal or organizational conditions have to be met by the
technology under evaluation. For example, the evaluation of a
cloud solution may be subject to restrictions regarding the
countries in which data centers may be located, and which
organizations and authorities have access to the data.

Complexity Realizing the feature poses special business or technical
challenges. Typically, this annotation in the IR:tech points out
complexity that results from using the new technology in a
certain feature in the first place. It can also used to emphasize one
of the above annotations, or to point out a different challenge
which is not covered by these annotations.

Uncertainty There is uncertainty regarding the implementation of business or
technical aspects of using the technology for this feature.
Examples include specific open questions (such as the sizing of a
cloud solution) or more fundamental issues (such whether
sufficient data can be captured by a big data solution to derive
informative insights).

144 7 Using an Interaction Room for Technology Evaluation (IR:tech)

But it also implies a significant risk, since by definition, there is no practical
experience with using the new technology for the planned purpose yet, so that effort
and benefit estimates will be very inaccurate. Finally, innovations are always
associated with a high degree of uncertainty as well, which is also implied by this
annotation.

7.3 Process, Object, and Integration Canvases

The central elements of the IR:tech are the process, object, and integration canvases
for modeling the processes, data structures, and related systems affected by the
introduction of the new technology. The modeling methodology and notation of
these canvases correspond to the IR:scope, but the modeling focus—other than in
the IR:scope—is not on the overall process and system landscape, but on the
specific structures that can benefit from using the new technology. The sketches on
these canvases are correspondingly compact.

Which of the canvases is the “leading” canvas and focal point of modeling, and
which canvases are populated on the side, mainly depends on which perspective is
influenced most by the technology being evaluated. When it comes to recording and
evaluating big data in the company, the object canvas appears to be a suitable
starting point. If greater flexibility is to be established on the basis of cloud com-
puting, the integration canvas can help identify candidates. And when the out-
sourcing of complex functionality using a software-as-a-service model is under
debate, the process canvas is the best place to start.

The modeling, annotation, and interpretation of the canvases are largely the same
as in the IR:scope. But assigning and analyzing the annotations in the IR:tech
mainly focus on value and effort drivers that are conditional on the new technology,
or are intensified in its context. In the analysis of big data technologies, for
example, these could be annotations on the aspects of capacity utilization, cor-
rectness, flexibility, and external interfaces.

7.4 Cross-Canvas Analyses

The main aspect to observe in the cross-canvas analysis is where challenges or
potential marked on one canvas affect other canvases, and what effects they have
there.

If the IR:tech is, e.g., used to evaluate a company’s possible fields of application
for big data technologies, then the corresponding data structures will likely be
modeled and annotated mainly on the object canvas. Here it is important to
remember that this innovation does not only take place on the data level, but also
requires non-trivial functionality for recording and evaluating the data at the process
level. Data is recorded in certain process steps (which requires a corresponding set

7.2 Feature Canvas 145

of software components for data recording, aggregation, and storage). The data is
evaluated and used for decision making in other process steps (which requires
corresponding evaluation and decision-making algorithms).

Ultimately, analyzing the canvases from an overall perspective has to answer the
question of whether introducing the new technology actually promises a monetiz-
able business model, rather than merely leading to a technically interesting “gim-
mick” that creates little added value. The value and effort annotations distributed
across the canvases can serve as valuable indicators for this.

7.5 Workshop Structure and Follow-up Activities

At first glance, the work in the IR:tech appears identical to that of the IR:scope—the
stakeholders use the feature canvas to communicate about the project requirements
and then outline the most important business and system structures on the process,
object, and integration canvases. But there are two essential methodical differences
compared to the IR:scope:

• For one thing, the IR:tech does not focus on presenting the overall system, but
only those aspects that are most affected by the new technology. Following the
definition of the project objectives on the feature canvas, the stakeholders
therefore mainly examine those processes and data structures on the other
canvases in which the objectives can be implemented with the new technology.

• For another, the IR:tech explicitly differentiates between modeling the target and
current states: After the population of the feature canvas, the current state of the
relevant process, data, and system structures is initially outlined on the process,
object, and integration canvases. Annotations are then added to these models in
order to highlight the opportunities and challenges of the new technology.

Based on these insights, the stakeholders now discuss approaches for the new
technology. If, for example, the application potential for big data is to be evaluated,
the stakeholders first identify the data required to achieve the desired objectives.
This data is then localized on the object canvas—either it is already recorded there
(in this case, the team needs to investigate whether the current data source is
adequate or if measures to make it more precise are required), or it is not being
recorded yet (in this case, the team needs to establish how this data can be captured
and related to already established data structures). If the data does not originate
from business processes, software systems, or other digital sources, but manifests
itself in physical objects, it can be helpful to first outline a physical object canvas
like the one used in the IR:digital to correctly localize the data sources (Sect. 4.3).
The stakeholders then discuss the process steps in which the data is produced,
recorded, and processed.

146 7 Using an Interaction Room for Technology Evaluation (IR:tech)

http://dx.doi.org/10.1007/978-3-319-41478-2_4

The insights from this evaluation process are outlined on the current state can-
vases, transforming them into representations of the target state: On the process,
object, and integration canvases, the stakeholders outline how data structures,
processes, and component links have to change in order to implement the solutions
that were just developed for the objectives formulated initially. Annotations are
then again assigned to the resulting target representations, but now with a focus on
the feasibility of implementing the proposed solutions.

This leads to the result of the IR:tech—the business and IT stakeholders develop
a joint understanding of how a new technology can meet the expectations estab-
lished for it, what changes this would require in the process and system landscape,
and whether the expected benefit would justify the implementation effort.

These insights can lead to a better-substantiated technology recommendation for
management. The annotated canvases clearly illustrate what the solution would look
like, what the associated opportunities and challenges are, what effort can be
expected, and what the starting points for introducing the technology are. If a
decision to implement the new technology is made on this basis, the canvases created
in the IR:tech can serve directly as the starting point for a more in-depth examination
of the business and technical implementation in the IR:scope (Chap. 5).

7.5 Workshop Structure and Follow-up Activities 147

http://dx.doi.org/10.1007/978-3-319-41478-2_5

8Using an Interaction Room for Agile
Project Monitoring (IR:agile)

An Interaction Room is often used in the earliest project phases in order to
understand the problem domain, prioritize problem aspects, conceive solution
strategies, and prioritize their implementation steps. As shown in the preceding
chapters, an IR:scope or IR:mobile can initially assist with project scoping, which
means helping to establish a joint understanding of the project domain and a shared
vision of the solution among all stakeholders: What business processes are we
talking about? How do they have to be adapted? Into what system landscape does
the solution have to be integrated? What compromises does this require? What
usage contexts have to be considered? How can business and user expectations be
combined most profitably for both sides? The Interaction Room then helps state a
concrete vision for the solution, develop target processes and structures for it, and
identify and resolve dependencies and conflicts between components, but also
between business and technology aspects.

Such an initial Interaction Room population results in a requirements document
and an initial system specification. While these documents are not yet complete,
they are supported by all stakeholders, all of which have the impression that at least
the most critical points of conflict have been resolved, the most essential questions
have been answered, and the major uncertainties have been identified. In other
words, the specification definitely has to become more detailed, and questions are
sure to arise in the conceptual design and development process, but there should not
be any major surprises and conflicts.

In the subsequent course of the project, the Interaction Room is now transformed
from a scoping into a monitoring tool: It helps to focus the work of the team,
maintain risk and requirement management, keep an eye on the budget and assess
the progress. This is accomplished in the IR:agile, as described in the following
sections.

Modeling work on the canvases is not as prominent in the IR:agile. While the
models remain present in the room along with their annotations (as results of the IR:
scope), they mostly serve as a visible orientation in the overall project and a
constant reminder of value and effort drivers. But aside from refining points in the

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_8

149

course of sprint planning meetings (Sect. 8.2), the canvases stabilize—while design
work continues at a fine-grained level, this is done using classic modeling tools.
The Interaction Room meanwhile represents the big picture.

In the transition from the IR:scope to the IR:agile, elements for monitoring and
controlling the project become more prominent instead—these instruments include
the requirements exchange (Sect. 8.3), risk map (Sect. 8.4), cost forward pro-
gressing (Sect. 8.6), and adVANTAGE (Chap. 15). The extent to which these
instruments are used depends on the scope and maturity of the project—as soon as
the stakeholders have the impression that the requirements are largely stable, the
risk monitoring instruments of the IR:agile are often scaled down. The requirements
exchange and adVANTAGE, meanwhile, are both fundamentally relevant during
the entire course of the project, but usually gain most prominence and visibility as
the end of the project approaches. Conversely, cost forward progressing yields most
interesting insights during the initial implementation activities in particular, but
becomes less influential toward the end of the project. In keeping with ongoing
reprioritization, IR:scope activities may occasionally be inserted into an IR:agile to
better understand the details of individual sprints, e.g., when the next agile iteration
(sprint) is prepared. The insights obtained in these IR:scope segments are then
adapted to inform the risk and cost monitoring tools of the IR:agile.

8.1 From Feature Canvas to Product Backlog

In preparation for agile project management methods such as Scrum, the feature
canvas created in a preceding IR:scope or IR:mobile is transformed into a product
backlog. This requires an elaboration and completion of the listed features, as well
as an estimation of efforts per feature. In both of these steps, stakeholders need to be
aware that the number of features and the effort estimates are still likely to change.

• Elaboration and completion of features: Before agile development with the
help of the IR:agile can begin, the features collected on the feature canvas have
to be reviewed for completeness. Of course, this does not mean entertaining the
illusion that the feature list can be finalized, but only that all features which are
known and have already been discussed up to this point are actually docu-
mented, which may not have been done diligently as part of the IR:scope or
IR:mobile since the focus was merely on collecting the most important features.
It is also possible that the population of the other canvases helped identify new
features without consistently recording them on the feature canvas. But before
agile development begins, it is time to clean up and compile everything that is
already known. Therefore, the feature canvas is updated according to the current
state of knowledge, in order to establish a starting point for development.

• Effort classifications: The effort per feature is estimated in person-days as
precisely as possible at this point. Estimates can be omitted in certain cases (e.g.,
when they depend on a technology choice that is yet to be made). In such cases,

150 8 Using an Interaction Room for Agile Project Monitoring (IR:agile)

http://dx.doi.org/10.1007/978-3-319-41478-2_15

justification is required for the entire unestimated feature, stating why an esti-
mate was not possible. If this exception is made for several features, the team
should, however, consider whether the transition to development was perhaps
premature, and if the uncertainties should be resolved first.

The transition from the feature canvas to the backlog does not mean that the
features have to be elaborated to the point of writing user stories. This step is
deliberately omitted to avoid that format specifications prevent anyone from
defining desired features. Rather, the possibly reduced precision of features (com-
pared to user stories) is accepted in order to keep the barrier for defining features as
low as possible.

A set of features that either have estimates or reasons why they could not be
estimated then forms the backlog, which is used as an important starting point for
further work in the IR:agile.

8.2 Sprint Planning Workshops

The overall processes and system structures outlined in the initial scoping phase is
now refined in each sprint to facilitate the upcoming implementation. Still, devel-
oping complete, precise class, and process models is not the goal of the Interaction
Room. Instead, the IR:agile ensures that the stakeholders maintain an integrated
view of the business and technology, structure and dynamics, integration and
interaction aspects as they explore the implementation of specific features in more
detail.

In the course of sprint planning, the IR:agile mainly helps with the task
breakdown, i.e., the segmentation of the initially recorded, higher-level features or
user stories into fine-grained, concrete development tasks. If this step would
completed by the IT stakeholders alone, the developers could easily be tempted to
focus on detailed technical solutions, without being aware of business questions
that may also require clarification. The IR:agile therefore ensures awareness of the
tasks on both sides: On the canvases transferred from the IR:scope, the stakeholders
define their understanding of the features coming up in the next sprint in concrete
terms by refining the model sketches. The separate examination of processes, data,
and interfaces along with the annotation of value and effort drivers (in the same
manner as in the IR:scope) helps to plan necessary work on all these levels as
explicit tasks and to estimate the related effort in more detail.

As demonstrated in practice, ongoing work in the Interaction Room leads to
continuous focus on the value to be created by the software, based on the target
vision for the project, a more informed task breakdown, and therefore to more
realistic estimates of work effort (Grapenthin et al. 2014). This reduces unplanned
effort and unexpected conflicts, thereby lowering the project risk.

8.1 From Feature Canvas to Product Backlog 151

8.3 Requirements Exchange

The idea of the requirements exchange is that late requirements are only added
when early requirements can be omitted. Even though late requirements are
unavoidable, the requirements exchange counteracts “fattening” of the software
being developed by encouraging the elimination of features. Late requirements are
approved more readily the more solidly they are “financed”: When a late require-
ment with an estimated scope of n person-days appears, it is accepted without
objection if a requirement with a scope of n person-days which has not been
realized yet is considered eligible for omission. Such an elimination decision must
of course be supported by the stakeholders who previously introduced the
requirement which shall now be omitted. The process becomes really simple when
the stakeholder for the late requirement is also the stakeholder for the requirement
swapped out in return—then the stakeholder can almost decide the exchange alone
(the product manager who is ultimately responsible for creating a coherent piece of
software, all exchanges notwithstanding, still has to agree).

The simplicity and charm of the requirements exchange and the underlying
assumption that early and late requirements can be kept in balance is obviously a
simplification. A number of problems can occur:

• Early requirements may already have been implemented and—even if they are
identified as eligible for omission—cannot be used to “finance” late require-
ments anymore. This can in fact happen easily if early, superfluous requirements
are not identified until late in the process. It is especially vexing since effort was
not only expended for the realization of requirements that could be omitted, but
because they have already been implemented in the software and therefore also
need to be tested and then tested again in subsequent releases. The idea of the
requirements exchange is to continuously search for what can be eliminated by
having individual late requirements trigger this search. This ensures that the
search for early requirements will not be postponed until the remaining project
time clearly becomes too short. The requirements exchange instrument therefore
means the search is conducted as early as possible. The only better way would
be if requirements that can be omitted would not be assigned the requirement
status in the first place.

• Some stakeholders want late requirements and propose other stakeholders’
earlier requirements as financing. Permitting this can easily lead to fights among
the team members. Financing requires a consensus, and sometimes the IR
coaches together with the product manager have to help find this consensus. In
general, nothing is omitted without the approval of the relevant stakeholders.

• Late requirements are financed by omissible early requirements, but the product
manager views the omission as putting the software at risk. This is difficult for
the product manager. If the stakeholders agree to the exchange (whether one
stakeholder is exchanging within his set of requirements or several stakeholders
are willing to exchange among each other), but the product manager does not

152 8 Using an Interaction Room for Agile Project Monitoring (IR:agile)

agree because he believes the requirement that is up for omission to be essential,
then the exchange is not permissible. How to deal with the late requirement
remains open. Looking for other financing is the first step. If this is unsuccessful,
the product manager can easily be obligated to examine a requirement that is not
financed and to provide additional financing if necessary.

• There is no more financing potential because there are simply more late
requirements than early requirements which are eligible for omission. This can
happen since there is, after all, no natural balance between early and late
requirements. It is important for the originator of the late requirement to actively
look for financing. The standard mechanisms for handling late requirements
apply after that. Effects on the budget and schedule are made transparent, and
sponsors are sought for the necessary additional budget.

These problems show that there cannot be an algorithmic solution that consis-
tently ensures that late and early requirements balance out in the sense of an
invisible hand of the market. Yet the requirements exchange makes a significant
contribution to preventing software fattening, simply because the originator of a late
requirement is prompted to think about what can be omitted. Since omitting
requirements is offset at the effort level, requirement proposers will even start to
think about how their late requirement can be designed so their implementation
requires only little effort, which makes financing easier. For solution-specific
requirements in particular, which is what we are increasingly dealing with in the
course of development, striving for requirements that are easy to implement can be
an important tool for creating lean software.

The requirements exchange is integrated into the IR:agile through the dynamics
of the backlog. Based on the estimated person-days, a late requirement can only be
exchanged for one or more requirements being omitted if the estimate for the late
requirement is less than or equal to the sum of estimates for the requirements being
omitted. This instrument is an important element of the adVANTAGE contract
model (Sect. 15.5).

8.4 Risk Map

Software projects that get somewhat more expensive than planned are annoying but
usually not the end of the world. Things get difficult when a project becomes
disastrous, that is to say it takes twice as long, costs twice as much or reaches a
point where planning reliability becomes nonexistent. Fortunately, projects do not
reach such a state all of a sudden. Numerous indicators can warn of an impending
disaster before it occurs.

The risk map of the IR:agile illustrates the risk of a project disaster. Initially, it
comprises the following dimensions, which are evaluated based on the insights and
experiences from the population of the IR:scope:

8.3 Requirements Exchange 153

http://dx.doi.org/10.1007/978-3-319-41478-2_15

• Accessibility of (internal) client (internal coordination, sponsorship, decisive-
ness, and decision-making ability): If the client (whether an actual external or an
internal client) has complicated decision-making processes that are not com-
prehensible from the outside, sponsorship for the project is not pronounced, and
the client generally has difficulty making reliable decisions promptly, this is
considered a disaster indicator. Whether this is the case can often be deduced
from impressions gathered over the course of the IR:scope population. Major
discussions about minor details, tedious decision-making processes and exten-
sive involvement of stakeholders from across the organizational chart are sus-
picious characteristics.

• Focus on most important business processes: If agreeing on the 15 most
important business processes (one of the early steps in the population of the
process canvas) has been difficult because the stakeholders had highly diverging
views all along, this is considered a disaster driver. If the diverging ideas only
existed at the beginning of the IR:scope population, but could then be resolved
in the course of the IR population, the disaster risk has been mitigated by the IR:
scope. Ultimately, it is up to the IR coaches to assess whether a sufficient
understanding has been reached, or whether ideas continue to diverge under the
surface, so an increased risk of disaster remains.

• Consensus about system boundaries: A review of the integration canvas
sketched in the IR:scope can help to evaluate whether the system boundaries
have been clearly established. If this is the case, the required effort can be
estimated much more reliably than if the system boundaries are vague. If
stakeholders’ opinions on which features belong in the software diverge and
cannot be fully aligned in the Interaction Room, there is an elevated risk of
disaster.

• Coverage of essential features: The collection of features on the feature canvas
is usually limited by the time spent on this step in the IR:scope workshop—the
more time is given to stakeholders, the more features they will come up with.
Even if the list of features is still incomplete, the stakeholders should, however,
have the feeling that the essence of the system is covered. As long as this is not
the case, the collection of features should continue. Otherwise, the incom-
pleteness of the list of essential features must be considered a disaster driver.

• Consensus about feature benefits: If the user value and business value
annotations on the feature canvas indicate highly divergent stakeholder opinions
on which features provide which benefits, the stakeholders are obviously not in
agreement about the objective that shall be achieved by the project. This is a
major disaster driver.

• Consensus about feature effort: The effort required to implement the listed
features should be estimated in person-days before transitioning from the IR:
scope to the IR:agile. If this turns out to be very difficult, or if it takes a long
time to reach a consensus, this may indicate that the stakeholders’ understanding
of the features is not uniform. This is a disaster driver.

• Consistency of annotations: As described in Sect. 5.6, the annotations of all
canvases populated in the IR:scope should be analyzed on an

154 8 Using an Interaction Room for Agile Project Monitoring (IR:agile)

http://dx.doi.org/10.1007/978-3-319-41478-2_5

element-by-element, canvas-by-canvas, and cross-canvas level. If an excep-
tionally high number of potential improvements, ambiguities, and suspicious
constellations are found in this analysis, this is a disaster indicator insofar as
such issues indicate unconsolidated stakeholder perceptions regarding the sys-
tem tasks and benefits.

While the above indicators can be assessed right at the beginning of an IR:agile,
based on the experiences from the IR:scope, the following additional indicators are
initially set to neutral values, and evaluated only later in the course of continuous
project monitoring with the IR:agile:

• Use of requirements exchange: As described above, the inclusion or rejection
of requirements that are introduced after the project’s initial stages is facilitated
by the IR:agile’s requirements exchange. While the requirements exchange
helps to prevent a runaway project scope, its constant use until late into the
project can also indicate a risk factor—namely that the client is lacking a reliable
vision of which features exactly the project resources should be invested in. This
risk dimension is especially critical when new requirements of significant scope
are added but “financing” (in terms of early requirements to be swapped out)
cannot be found. On the other hand, an entirely static set of requirements (i.e.,
no use of the requirements exchange at all) can also indicate a communication
problem: Possibly there is nobody on the client side who is really caring about
the software being developed, and there are no late requirements due to a sheer
lack of interest.

• Structural changes to the canvas contents: The IR:scope is all about outlining
the big picture of the system being developed. Upon the transition to the IR:
agile, this picture is expected to have reached a certain degree of stability. But if
the canvas contents continue to change significantly even in the IR:agile, then it
appears that a consensus has not yet been reached regarding the system fun-
damentals. This criterion continues to gain importance as the project progresses.

• Difficulties with sprint planning: The planning of each sprint or iteration in the
IR:agile is based on the product backlog and the canvases sketched in the IR:
scope. To derive reliable technical implementation tasks from these, the stake-
holders need to have the same perception of risks, value drivers, and benefits of
the software being created. Difficult and protracted sprint planning is a disaster
indicator.

• Divergence in cost forward progressing: Cost forward progressing (Sect. 8.6)
provides continuous forecasts and extrapolations of effort estimates to the team,
based on their previous performance. If the two series of forecasts produced by
cost forward progressing do not converge toward one value, there is a risk of
disaster.

Other dimensions that can indicate a project disaster are not IR-specific and have
little to do with the chosen development approach. They include the experience and
knowledge of the project team (especially the project manager) in the application

8.4 Risk Map 155

domain and chosen technology, and the question of how well the team’s level of
agility matches the level of agility that would be appropriate for the project. Both
too much and too little agility can put a project at significant risk. In the first case,
stakeholders may push for final decisions that nobody wants to make. In the second
case, excessive insistence on consistent documents can cause stakeholders launch
battles about documents and lose sight of timely software development.

Figure 8.1 shows the general outline of the risk map, including the
above-mentioned criteria. On each of the eleven axes, the disaster points can be
allocated in the respective dimension on a scale of 0–10. The overall map area
indicates how high the risk of disaster is considered to be. There are no algorithmic
rules for assigning or evaluating disaster points though—rather, they serve as an
informal indicator to raise awareness and track the development of risk factors as
the project progresses.

Figure 8.2 shows the risk map for a project after the initial IR:scope population.
In addition to this initial assessment, the criteria have to be reviewed periodically as
the project progresses. As an example, Fig. 8.3 shows the risk map of the same
project at a later time. At this time, values have also been assigned to the dimen-
sions which were neutral in Fig. 8.2.

Fig. 8.1 General outline of a risk map

156 8 Using an Interaction Room for Agile Project Monitoring (IR:agile)

The sum of disaster points can be calculated for Figs. 8.2 and 8.3. Even though
there are some changes regarding specific risks, the total remains at 67 points.
Project managers should take care not to assign too much formal value to this
number, however: Since the assignment of disaster values is purely qualitative, the
absolute number of disaster points is quite meaningless. But if it is high from the
outset, if the assessments for specific disaster dimensions change drastically, or if
gradual but sustained trends are observed, then examining the contributing risk
factors in more detail is definitely recommended.

Obviously, continuous maintenance of a risk map should not be the only risk
management technique employed in a project—Moran (2014), e.g., suggests a
broad spectrum of additional techniques for risk identification and management.
The risk map, meanwhile, is a simple tool that helps stakeholders to stay aware of
issues that could otherwise remain ignored for too long while the team just
“muddles through.” Striving to bring the sum of the disaster points down sprint
after sprint provides a motivation to deal with structural issues that require
long-term commitment to remedy.

Fig. 8.2 Risk map for a project after initial Interaction Room population

8.4 Risk Map 157

8.5 Progress Control

In the course of the IR:scope, the Interaction Room is initially populated with
high-level sketches of the process, object, and integration canvases that make up the
project framework. Parts of this big picture subsequently take concrete form during
the sprint planning meetings in the IR:agile: Processes and data structures are
refined, requirements become user stories, and user stories become tasks. The
canvases in the Interaction Room reflect this development:

• While the initial sketches were still defined by a high degree of uncertainty, the
architecture decisions become more concrete over time. The more parts of the
system are cast in code, the more stable the design becomes. This is made clear
on the canvases by attaching finished artifacts (such as screenshots of imple-
mented dialogs, or detailed diagrams of modeled processes and data structures)
to the sketches on the canvases. These attached artifacts show at a glance which
parts of the system have already been built and which ones are still in the
planning stage.

Fig. 8.3 Risk map for a project at a later stage

158 8 Using an Interaction Room for Agile Project Monitoring (IR:agile)

• Design and realization changes can also be represented this way: When a new
version of an artifact is released (such as a revised dialog), its printout can be
attached to the canvas on top of the previous version. This not only makes it
possible to trace the version history of key artifacts by leafing through the
printouts—the thickness of the stacks of printouts also indicates parts of the
system that are subject to ongoing changes (a potential trouble spot for the
stability and quality of adjacent components), and which parts of the design are
already solid.

Obviously, the printouts attached to the canvases cannot replace a version control
system for the detailed management of all project artifacts. They merely serve as
rough points of orientation for the implementation progress and change history, and
therefore form a tangible index of the most important project artifacts—a tool that
visualizes the project progress intuitively, beyond the abstract burndown charts.

8.6 Cost Forward Progressing

The cost of software projects is characterized by certain dynamics. Estimates
change, expended efforts turn out differently than estimated, and late requirements
are added so that a higher overall budget is needed. The total costs of a project are
only known exactly at the end—and even then it can be hard to define when exactly
a project has actually ended.

Experience has shown that every assessment of project costs is an inaccurate
snapshot, as it merely represents the current state of the situation. In contrast, a
series of estimates over time is usually more reliable than any individual estimate,
since a series makes it easier to see whether the estimates converge, or whether the
probability of meeting a forecast is even sufficiently high. The Interaction Room
helps to improve the quality of estimates by eliciting risk and complexity drivers
about the features to be implemented (in the form of annotations). In addition, the
adVANTAGE contract model encourages consistent tracking of effort estimates and
actual expenditures (Sect. 15.3). The IR:agile combines these inputs in the cost
forward progressing method to derive extrapolations and a series of qualitative,
comparable estimates.

The calculations of cost forward progressing work with three types of parameters
of differing credibility:

• IE fið Þ is the initial estimate of the effort for a feature fi (where i is the identi-
fying number of the feature), which has only been sketched roughly in the IR:
scope. This estimate is made during the transition from the IR:scope to the IR:
agile when the product backlog is derived from the feature canvas and the initial
estimates are added. It is informed by the “big picture” and annotations on the
canvases.

8.5 Progress Control 159

http://dx.doi.org/10.1007/978-3-319-41478-2_15

• DE fið Þ is the detailed estimate of the effort for a feature fi before it is imple-
mented. This estimate is made in the course of a sprint planning meeting in the
IR:agile, when the sprint backlog is compiled for the next sprint. It is informed
by the considerations that go into the task breakdown for each feature, as well as
experiences from any previous sprints.

• AE fið Þ is the actual effort that was invested into implementing a feature fi. This
value is recorded after the end of a sprint, when the feature has been completed
and accepted by the client.

Of these parameter types, only the initial estimates IE fið Þ for all features are
defined at the start of a project, while the detailed estimates DE fið Þ and actual efforts
AE fið Þ remain undefined initially. Formally speaking, if we assume that F repre-
sents the set of all features in the project and the dom operator yields a mapping’s
domain, the following applies initially:

dom IE ¼ F; dom DE ¼ ;; dom AE ¼ ;

Now let us assume that 100 features were identified in an IR:agile—i.e.,
F ¼ f1; . . .; f100f g—for which initial estimates were made as shown in Table 8.1.

Let us assume that the sum of all these initial effort estimates in the example is

X

fi2dom IE

IE fið Þ ¼ 2000 person-days ðPDÞ:

If a detailed estimate is now made for five features at the start of a sprint, the
corresponding DE fið Þ are assigned concrete values, as shown in Table 8.2.

The estimate of the total effort can therefore be rendered more precisely by
adding up the most current defined values for all features. Since

dom IE ¼ f1; . . .; f100f g; dom DE ¼ f1; f2; f3; f4; f5f g; dom AE ¼ ;

now applies for the domains of our estimates, we can define the overall estimate OE
as the sum of the most current known values, i.e., as

Table 8.1 Initial estimates
for a sample project

i IE fið Þ DE fið Þ AE fið Þ
1 10

2 20

3 10

4 20

5 10

6 25

7 30

…

160 8 Using an Interaction Room for Agile Project Monitoring (IR:agile)

• the sum of the initial estimates IE known from the outset, insofar as they have
not been superseded by detailed estimates, plus

• the sum of the detailed estimates DE that are already known, insofar as they
have not been superseded by actual efforts, plus

• the sum of actual efforts AE that have already been expended.

In the example, the updated overall estimate is therefore

OE ¼
X

fi2dom IEndom DE

IE fið Þþ
X

fi2dom DEndom AE

DE fið Þþ
X

fi2dom AE

AE fið Þ:

The calculation above can be viewed as a “computer scientist’s forecast”: It is
based on the assumption that any deviation is a local phenomenon, which does not
imply conclusions regarding the estimates for the other features.

However, the detailed estimate for a sprint not only provides more precise infor-
mation of the effort expected in the current sprint. It also shows how far off the initial
estimate was. Accordingly, it seems plausible to correct the initial estimates of all
features according to the deviation between the initial and the recent detailed estimate.

In the example, the initial estimate for the first five features was 50 person-days.
This was rendered more precisely as 100 person-days in the detailed estimate
(presumably based on a more in-depth examination of the requirements and chal-
lenges as part of the task breakdown). While the straightforward addition in the
“computer scientist’s forecast” leads to a revised total effort of 2050 person-days,
one would have to assume a total effort of 4000 instead of 2000 person-days based
on the revision of the initial estimates, since a sprint appears to take twice as long as
initially estimated.

In general, this “statistician’s extrapolation” can be calculated as follows: For all
features for which we have detailed estimates, we first calculate the average
deviation DIE between the detailed and initial estimate:

DIE ¼
P

fi2dom DE DE fið Þ=IE fið Þ
dom DEj j

Table 8.2 Detailed
estimates added in the course
of sprint planning

i IE fið Þ DE fið Þ AE fið Þ
1 10 20

2 15 25

3 5 15

4 10 25

5 10 15

6 25

7 30

… …

8.6 Cost Forward Progressing 161

The initial estimates of all features that do not have detailed estimates yet are
multiplied by this factor. This results in the revised initial estimates

8fi 2 dom IEndom DE : IE0 fið Þ ¼ IE fið Þ � DIE:

As the project progresses, the actual effort expended in a sprint can be used to
revise the detailed estimates of features that have not been implemented yet in the
same manner:

8fi 2 dom DEndom AE:DE0 fið Þ ¼ DE fið Þ � DDE

where DDE ¼
P

fi2def AE AE fið Þ=DE fið Þ
def AEj j

The “statistician’s extrapolation,” i.e., the overall effort forecast corrected for
estimation errors, is therefore calculated as

• the sum of the revised initial estimates IE0, insofar as they have not been
superseded by detailed estimates, plus

• the sum of the revised, known detailed estimates DE0, insofar as they have not
been superseded by actual efforts, plus

• the sum of the efforts already expended AE

or in brief:

OE0 ¼
X

fi2dom IEndom DE

IE0 fið Þþ
X

fi2dom DEndom AE

DE0 fið Þþ
X

fi2dom AE

AE fið Þ:

Tables 8.3 and 8.4 show an example of four features initially estimated at 20, 25,
15, and 10 person-days. In Table 8.3, we see how these values develop with
progressing detailed estimates and implementation. The respective most current
values (bold) are added up to calculate the “computer scientist’s forecast.”

In Table 8.3, we see the calculation of the IE and DE deviations. Their appli-
cation in Table 8.4 leads to corrected estimates IE0 fið Þ and DE0 fið Þ. Adding up the

Table 8.3 Cost forward progressing with “computer scientist’s forecast”

i IE fið Þ DE fið Þ AE fið Þ i IE fið Þ DE fið Þ AE fið Þ i IE fið Þ DE fið Þ AE fið Þ
1 20 1 20 1 20 30
2 25 2 25 50 2 25 50 60
3 15 3 15 3 15
4 10 4 10 4 10
OE = 20 + 25 + 15 + 10 =
70 PD

OE = 20 + 50 + 15 + 10 =
95 PD

OE = 30 + 60 + 15 + 10 =
115 PD

DIE ¼ 50
25 ¼ 2 DIE ¼ 30

20 þ 50
25

� ��
2 ¼ 1:75

DDE ¼ 60
50 ¼ 1:2

162 8 Using an Interaction Room for Agile Project Monitoring (IR:agile)

respective most current values (bold) in Table 8.4 results in the “statistician’s
extrapolation,” i.e., the revised overall estimate.

By applying both the “computer scientist’s forecast” and the “statistician’s
extrapolation” to the total feature set, the effects of changes to the feature set caused by
late requirements can also be represented: As long as proper “financing” is maintained
using the methods of the requirements exchange, the total effort does not change due
to changes to the feature set. Forecast changes result only if precise “financing” of late
requirements by swapping out early requirements cannot be achieved.

Figure 8.4 shows the development of the two predictions obtained through cost
forward progressing for a project in progress. We see the initial estimate at the
transition from the IR:scope to the IR:agile as the anchor point, as well as eight
additional measuring points. At two of these measuring points, we have expansions
in the form of late requirements that could not be financed by swapping out early
requirements (once with an initial estimate, once with a detailed estimate).

Overall, we see that the “computer scientist’s forecast” increases moderately at
first (while the “statistician’s extrapolation” increases dramatically). A stable level
appears to have been reached starting at the fifth measuring point. At the final
measuring point, we see the effect of a detailed estimate turning out to be signifi-
cantly below the initial estimate. This effect has a mild impact on the forecast and a
pronounced impact on the extrapolation. In the subsequent course of the project,

Table 8.4 Cost forward progressing with “statistician’s extrapolation”

i IE fið Þ i IE fið Þ IE0 fið Þ DE fið Þ i IE fið Þ IE0 fið Þ DE fið Þ DE0 fið Þ AE fið Þ
1 20 1 20 40 1 20 35 30 36

2 25 2 25 50 50 2 25 43.75 50 60 60

3 15 3 15 30 3 15 26.25

4 10 4 10 20 4 10 17.5

OE = 70 PD OE′ = 40 + 50 + 30 + 20 = 140 PD OE′ = 36 + 60 + 26.25 + 17.5 = 139.75 PD

Fig. 8.4 Development of extrapolations and forecasts over time

8.6 Cost Forward Progressing 163

when the overall uncertainty decreases, the “computer scientist’s forecast” therefore
may be the more plausible prediction since it does not have as great an impact on
the overall estimate. Overall, the actual effort likely lies in a corridor between the
two predictions. However, does not seem likely that the actual efforts will drop back
to the initially estimated level.

References

Grapenthin S, Poggel S, Book M, Gruhn V (2014) Facilitating task breakdown in sprint planning
meeting 2 with an Interaction Room: An experience report. In: Rabiser R, Torkar R
(eds) SEAA’14: Proc 40th Euromicro Conf on Software Engineering and Advanced
Applications, pp 1–8. doi:10.1109/SEAA.2014.71

Moran A (2014) Agile Risk Management. Springer

164 8 Using an Interaction Room for Agile Project Monitoring (IR:agile)

http://dx.doi.org/10.1109/SEAA.2014.71

9Using Interaction Rooms Under
Difficult Conditions

The preceding chapters have shown that an Interaction Room in its different vari-
ations is a valuable tool for the orientation and alignment of interests of all
stakeholders, from the earliest preliminary stages of a project to its conclusion.
Setting up a separate Interaction Room for each project will, however, not be
possible in many companies for practical reasons—perhaps there are insufficient
meeting rooms available exclusively, or the team members work in geographically
separate locations, or a complete Interaction Room does not appear necessary to
solve the problem in question.

However, the individual elements of an Interaction Room are modular and
lightweight enough to be customized to various project and room situations. The
following sections provide suggestions for dealing with typical situations where
setting up a complete Interaction Room seems infeasible.

9.1 Temporary Interaction Rooms

The most common objection to using an Interaction Room is that the organization
cannot spare a dedicated room for the entire project term. This objection may be
justified depending on the project scope and complexity. However, complex pro-
jects with strategic objectives, major integration challenges, and numerous stake-
holders are usually exposed to such high cost and quality risks that reserving a room
for the project is a worthwhile investment.

At least the initial workshops which only take a few days—usually an IR:digital
for strategy development and an IR:mobile or IR:scope for project scoping, for
example—should definitely be held in dedicated room. Ideally, this is a conference
room equipped as an Interaction Room. This means it has large whiteboards on all
walls and annotations as magnetic or self-adhesive symbols. It should be located on
as neutral ground as possible—i.e., not in the heart of the IT or operating depart-
ment, so the workshop does not turn into a “home game” for either side. Both sides

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_9

165

should engage with each other. Equipping some conference rooms as Interaction
Rooms is worthwhile for all companies that frequently deal with complex IT
projects.

If a conference room equipped as an Interaction Room is not available, a room
can also be temporarily “upgraded” to an IR with mobile whiteboards or
self-adhesive whiteboard film. However, this solution typically does not provide as
much freedom for sketching as a dedicated Interaction Room, which may sub-
consciously dampen the creativity of the stakeholders.

If the Interaction Room is only available for the scoping phase but not for the
entire course of the project in the form of the IR:agile, the most important question
is how to preserve and further develop the insights from an IR:digital, IR:mobile,
IR:tech, or IR:scope. These insights are twofold in nature: For one, the analysis of
the model sketches and annotations following an IR population typically results in a
document with recommended actions. It identifies the major value, effort, and risk
drivers as well as uncertainties and makes recommendations on how to take them
into account in the subsequent course of the project (Sect. 3.7). This document
should be made available to all stakeholders. Project management has to ensure that
the points listed there are actually implemented or resolved.

In addition, taking high-resolution photographs of all canvases after each day of
an IR workshop is recommended. These serve as the starting point for the concrete
modeling of especially critical system elements and process steps. Often it is helpful
to neatly reproduce the handwritten canvases including the annotations in a mod-
eling tool, to make them easier to read (but without any interpretation or further
development!). To avoid losing the overall impression of these annotated model
sketches in the course of the project, printing out the photographs or reproduced
canvases in poster size, and posting them in a room where they are present for as
many stakeholders as possible is recommended (if mobile whiteboards or white-
board film were used, the originals can be used directly). This may be the developer
team room, or even a kitchenette or corridor, making it possible to spontaneously
gather in front of the canvases in order to discuss current issues with the overall
project context as a backdrop. However, transferring the canvases to another
whiteboard in the team room is also conceivable, where they can be developed
further in the course of the project.

The result is a visual excerpt of an Interaction Room in the team room. While
this may only offer a perspective on a part of the project (when there is not enough
space to transfer all the canvases), and editing is perhaps not as convenient (if only
printed posters are available instead of whiteboards), it does at least serve as a
central communication platform for the project stakeholders. Orientation in the
project, the identification of design decisions and their effects, and perhaps most
importantly, retaining the knowledge of all annotated value, effort, and risk drivers
are facilitated this way.

The team can also decide to hold the regular sprint planning meetings as small
IR:scope workshops in order to better understand the business and technical aspects
of the features that will be tackled next. Instead of holding the sprint planning
meeting with the limited resources of the IR excerpts in the team room, using a fully

166 9 Using Interaction Rooms Under Difficult Conditions

http://dx.doi.org/10.1007/978-3-319-41478-2_3

equipped Interaction Room with its generous space for half a day is recommended.
The posters in the team room should be updated at this time as well, so the new
sprint starts with a fresh overview of the entire project and the focal points of the
current sprint. The team room posters collected from one iteration to the next in this
manner, together with the burndown charts of the sprints, constitute a readily
accessible summary of the work performed by the team. This also makes them
suitable as a starting point for sprint and project retrospectives.

9.2 Distributed Interaction Rooms

As described in the previous section, an Interaction Room should ideally be
available to the entire team for the duration of the project term. This makes the
project with its objectives, context, challenges, and current status tangible to all
stakeholders at all times and facilitates discussions.

But often, this ideal situation cannot be realized when various team members
work in different places. Even in the simple case described above, when a project
does not have a dedicated Interaction Room but posters of the canvases are put up
in a team room after the workshops, the question arises which perspectives belong
in which team room. Do the process canvases go to the business experts and the
integration canvases to the developers? Do only the developers get all of the
canvases, since they ultimately have to build the system? Or do both sides get a
copy of all canvases? How are they posted at the different locations, and how are all
canvases subsequently kept consistent?

These problems worsen when the project stakeholders are not just located in
different departments within the same building, but are distributed across various
sites, making it impossible to just drop in on your colleagues to discuss a problem
in front of the canvases.

Concrete strategies for transferring the Interaction Room methodology to dis-
tributed teams are highly dependent on the team composition at the various sites,
and on the required closeness of cooperation. Some guidelines can, however, help
to support communication as effectively as possible, even under these difficult
conditions:

Communication between the stakeholders is most important at the outset of any
project. In the early phases, when the project objective and substance are being
defined, the stakeholders who will have to work together for the project are usually
just getting to know each other better. Developing a collaborative general atmo-
sphere is essential in this phase, so that company departments do not isolate
themselves from each other and formulate adversarial expectations, but instead
jointly define a product and project while becoming familiar with and respecting the
challenges faced by each other, so that possible solutions are developed in coop-
eration. However, such a basic attitude of joint project ownership and a creative
atmosphere that promotes innovative solutions cannot develop over a distance but
only through personal communication. This means there is no way around a

9.1 Temporary Interaction Rooms 167

personal, joint workshop for the initial Interaction Rooms—an IR:digital, IR:mo-
bile, IR:tech, or IR:scope. Even when this means some stakeholders have to travel,
the resulting team spirit and common understanding of problems and solutions is
definitely worth the investment, especially in complex projects.

Following these workshops, the question arises how the insights that were
jointly developed in the Interaction Room can be utilized and further developed
most effectively at the various sites. Reproducing the visualizations from the joint
Interaction Room at the various sites forms the foundation—ideally again in ded-
icated Interaction Rooms equipped with whiteboards, if necessary only by putting
up posters in distributed team rooms (Sect. 9.1). To provide a complete picture of
the project at each location, all canvases should, however, be reproduced at all sites.
Even if the team at a certain site is only responsible for a certain area (an operating
department for example will likely have little to do with integration questions), a
complete overview helps to maintain awareness of the dependencies between one’s
own area and those of the other teams. Everyone also sees the complete picture
during teleconferences this way.

The model sketches on the canvases of the local Interaction Rooms are going to
develop separately according to the main activities of the various teams. This is
intentional and natural on the one hand—each team can use its Interaction Room to
better visualize the parts of the project it is responsible for. However, it is essential
to ensure that the planning and development remain compatible with each other.
Mutual visits between the teams are therefore recommended at regular intervals, in
order to coordinate the state of work and subsequent planning and to align the
sketches in the Interaction Rooms with each other at the key structural joints.

It is apparent that such a distributed approach does not lend itself to the same
close cooperation and direct communication about effort, dependencies, and
potential solutions that is possible in a common Interaction Room. However, at
least the function of an orientation framework for the entire project and a visual-
ization instrument for local design planning and the local project progress are
supported more effectively even by distributed Interaction Rooms than if the teams
only use classic means of communication such as a central issue tracking software.

9.3 Augmented Interaction Rooms

As described above, the effectiveness of working in distributed Interaction Rooms
is primarily restricted by separating the modeling work of the teams at the various
sites. While occasional reconciliation meetings can keep the rough overall frame-
work consistent, this is tedious and error-prone. Hidden dependencies are often
missed, especially in major projects.

Digitizing the Interaction Rooms is a convenient way to enable a more
straightforward exchange and reconciliation of models between the various sites.
So-called Augmented Interaction Rooms (AugIRs) use large-scale interactive dis-
plays instead of whiteboards (Kleffmann et al. 2014a). These can be marked with

168 9 Using Interaction Rooms Under Difficult Conditions

electronic pens like a whiteboard, making them as intuitive to use as classic
whiteboards. In fact, the displays surpass classic whiteboards when it comes to
drawing convenience, since they support the straightforward, gesture-controlled
movement of drawing elements or the entire drawing area, making the restructuring
of sketches and the flexible use of space much simpler compared to classic
whiteboards.

When Augmented Interaction Rooms are available to the teams at the various
sites, digitally prepared sketches can be easily exchanged between different loca-
tions. Conference calls are also supported, allowing distributed teams to work on
the same canvases simultaneously. Asynchronous work is simplified as well (with
corresponding AugIR software): While the teams work with “their” canvases
locally, they can be notified automatically of collisions or the violation of depen-
dencies with the canvases of remote teams.

Setting up an Augmented Interaction Room is worthwhile even when all of a
company’s teams work at the same site, since this solves the problem of individual
teams requiring the exclusive use of rooms. Since the sketches and annotations are
no longer prepared physically but digitally, the current state of a whole Interaction
Room can be saved and later restored at the push of a button (Kleffmann et al.
2014b). This allows several teams to use an AugIR in parallel (in different time
slots), instead of having to make do with photographic records and printed posters.

Clearly, the infrastructure required for a digital Interaction Room with several
interactive displays in whiteboard size is no small investment. It does, however,
offer the greatest number of project teams the opportunity to benefit from the
Interaction Room methodology. The more constructive, risk-aware, and
value-oriented project work enabled by this should lead to improved product
quality, which soon offsets the infrastructure investment.

References

Kleffmann M, Book M, Gruhn V (2014a) Supporting collaboration of heterogeneous teams in an
augmented team room. In: Lanubile F, Ali R (eds) SSE’14: Proc 6th Intl Workshop on Social
Software Engineering, pp 9–16. doi:10.1145/2661685.2661688

Kleffmann M, Book M, Hebisch E, Gruhn V (2014b) Automated versioning and temporal
navigation for model sketches on large interactive displays. In: Kim S, Hung CC, Hong J
(eds) SAC’14: Proc 29th Annual ACM Symp on Applied Computing, pp 161–168. doi:10.
1145/2554850.2563668

9.3 Augmented Interaction Rooms 169

http://dx.doi.org/10.1145/2661685.2661688
http://dx.doi.org/10.1145/2554850.2563668
http://dx.doi.org/10.1145/2554850.2563668

10Summary

The Interaction Room serves as a platform for communication between all project
stakeholders. While this is of central importance in agile process models, it is
usually hardly organized and usually focuses entirely on technical details. In the
Interaction Room on the other hand, the perspectives of all stakeholders—domain
experts, developers, operations experts, managers, and users—are expressed,
recorded, and jointly discussed. Shared modeling and annotation provokes and
channels exactly the discussion that is required by all agile methods as a central
element, but hardly promoted by their methodology.

Different Interaction Room variants lend themselves to different project situa-
tions. Figure 10.1 illustrates the characteristics of software development projects
that suggest high usefulness of an IR:scope or IR:agile. The top half of the figure
shows the criteria for a project’s affinity for scoping in an IR:scope, while the
bottom half shows the criteria that determine a project’s affinity for monitoring with
the help of an IR:agile. The less dominant a project is in a certain dimension, the
less need there is for using an Interaction Room. None of these criteria result in the
strict inapplicability of the Interaction Room, nor in a strict necessity of its use.
These are merely rough guidelines that may need to be overridden by specific
characteristics of individual projects.

The following criteria are used in Fig. 10.1 to ascertain a project’s Interaction
Room affinity:

• Centrality: A software development project can be carried out with various
degrees of centrality. Here the question is how the persons involved in devel-
opment are distributed across sites. Having all persons at one location is a fully
central model, enabling communication between the stakeholders at any time
without expending travel time and incurring costs. The Interaction Room as a
means of personal communication benefits from such a central organization. In
more decentralized organizations, the application experts may be in a different
location than the developers, or the developers at a different location than the
specifiers and architects. Using the Interaction Room is nevertheless possible in

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_10

171

such situations, but usually demands greater logistics, organizational and other
efforts, as discussed in Sect. 9.2.

• Innovativeness: Software can support novel business processes or administer
new products and clients. It can also enable fundamentally new business
models. The software being developed is associated with business innovations
in all of these situations. Corresponding software development is defined by the
fact that innovations on the business side go hand in hand with previously
unknown software structures. On the other side are software development
projects that supplement existing software systems while retaining their struc-
ture. Innovation plays a minor role here; what needs to happen is usually readily
conceivable. In between there is a large variety of projects with specific inno-
vation focal points, those intended to adapt off-the-shelf software to company
specifics and those that “only” support a release change from one software

I

I
l i i

i

l

l

ll
l

li
l l

i i

il

li

l

l i i

i

i

l i

i

i
i
i

Fig. 10.1 Suitability of a
project for the IR:scope or
IR:agile

172 10 Summary

http://dx.doi.org/10.1007/978-3-319-41478-2_9

version to the next. Generally, the more innovative the business domain, the
more important it is to coordinate the features and structure of the new software
with all stakeholders—and the more useful it is to support precisely this coor-
dination with an IR.

• Design freedom: Closely related but nevertheless distinguishable from inno-
vativeness is the freedom to design the software being developed. Even software
that is not innovative from a business perspective can offer significant design
freedom in its details, which requires coordination. This may relate to the
structure of the business processes that have to be supported, the organization
model and also the interfaces. When deciding whether an Interaction Room will
be useful for the project, it is therefore also important to consider whether such
the design freedom requires coordination between various participating groups
and persons. If this is the case, then the Interaction Room is a suitable
instrument.

• Project size: The size of the software being developed influences the commu-
nication intensity of the software process. “The larger the software, the greater
the number of stakeholders” may not be accurate in special cases, but works as a
general guideline. An Interaction Room may constitute excessive overhead for
the development of a software that can be built by a few developers within a few
weeks. Meaningful scoping of software that is developed by dozens of devel-
opers over the course of a year or more, on the other hand, may not be possible
with just one Interaction Room, but require the IR instruments to be applied to
hierarchically structured subprojects.

• Interface intensity: Whenever software has numerous interfaces to users, the
coordination of these interfaces is crucial for acceptance. In other words, real-
izing a printer driver usually requires less back and forth than realizing an
interface to a human user. Interfaces to humans not only include dialogs, but
also reports and documents of many kinds. When software is defined by many
such interfaces, a variety of late and competing requirements is likely. These
interfaces as a set also require the establishment of an interaction paradigm.
Should user guidance be optimized, should users even have the opportunity to
record inconsistent data? Should they be supported to achieve maximum effi-
ciency, or is a pleasant user experience most important? In short, the more
interface-intensive the application, the more does its design depend on having
the stakeholders agree on an interaction paradigm. The Interaction Room can
contribute to this (e.g., with the interaction canvas). To state the argument from
the opposite perspective: when we are talking about a purely technical software
with no user interaction, there is hardly a starting point for the IR instruments.

• Likelihood of manifold late requirements: Late requirements are virtually
unavoidable in any project. Nevertheless, the question of how undefined and
potentially change-intensive the initial requirements are is relevant for estab-
lishing the appropriate agility level. In largely clear situations, it makes sense to
put more effort into the initial requirements documentation than in cases where a
variety of requirements that cannot be foreseen precisely is expected.

10 Summary 173

• Overall novelty: Software that is functionally and structurally novel is virtually
impossible to specify in advance. Here Ries’ (2011) paradigm applies—the
purpose of the software only becomes clear during development, so that a
meandering development process must be permitted in order to obtain the
maximum possible benefit. Clinging to the initially planned purpose of the
software is often harmful in such innovative situations, since it impedes moving
toward something even more useful. When software is not only innovative in
specific details, but even in its core goals, this has a significant influence on the
dynamics and volatility of even fundamental requirements.

In addition to these dimensions that make using the Interaction Room more or
less attractive, there are some strict exclusion criteria. These include the unavail-
ability of domain experts, a strictly plan-driven conceptual world (even though this
should no longer exist today), and clients who simply do not want to be bothered
during the development process. This is because gaining new insights through
interdisciplinary communication, or permitting the vagueness and flexibility that
make the Interaction Room such an effective communication catalyst, are not
possible under those circumstances.

Reference

Ries E (2011) The lean startup: How today’s entrepreneurs use continuous innovation to create
radically successful businesses. Crown Business

174 10 Summary

Part III
The adVANTAGE Contract Model

11Framing Software Projects
in Commercial Terms

As described in the preceding chapters, the Interaction Room offers a number of
practical instruments for stakeholders in software projects. At their core, they all
revolve around the challenge of dealing with uncertainty in various phases of
software development. While uncertainty is unavoidable, it can be effectively
addressed in teams through communication. In Chap. 2.1, we discussed why
communication is almost certainly the central task in software projects: because
people have different levels of understanding of a domain, because they usually
lack a clear vision at the outset, because they easily get lost in details and do not
have a clear idea of the drivers that determine the value and cost of the software
being developed, and because requirements are never permanently stable (if they
appear to be precisely known at all).

The Interaction Room is an expression of the conviction that facing these
conditions is preferable to pretending that we can adequately specify software in
one go (especially for socio-technical systems). As a framework for systematic but
not formal communication in agile software projects, the Interaction Room has
proven itself in numerous project situations. It serves as the central, physical forum
and methodic guideline of the agile project village—in the form of the IR:digital,
IR:mobile, or IR:tech in the early strategy development phases, in the form of the
IR:scope for concrete project scoping and in the form of the IR:agile during project
implementation.

While the Interaction Room addresses the key constructive aspects of a software
project, we have however not yet addressed the general commercial conditions
under which agile software projects take place. In this chapter, we will examine
these conditions in more detail and show how they can be addressed to deal with the
unavoidable uncertainty in software projects.

First off, we need to be aware that there are not only differences between how
plan-driven or agile methods affect the economic aspects of a software project, but
also in how company boundaries (i.e., boundaries between legally independent
economic units) influence project activities.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_11

177

http://dx.doi.org/10.1007/978-3-319-41478-2_2

Figure 11.1 illustrates various commercial situations, depending on the character
and cooperation model of the software project. Let us examine the project character
first; in other words, let us look at both ends of the spectrum between a plan-driven
and an agile approach from a business perspective:

• In a plan-driven approach, we assume that some documents (product briefs,
specifications, or similar artifacts) exist in the early phases of the software
project, providing a reasonably reliable, stable basis for calculating the real-
ization effort. These types of projects cannot be disregarded, even in a book on
the topic of tamed agility, since they do of course still exist quite commonly.
Consider purely technical systems, especially for critical applications: Surely, it
would be preferable to clearly specify the software for pacemakers and
driverless cars before the programmers and then the testers get to work on them.
Late, surprising requirements should not occur at all or at least very rarely in
such systems, or at least be so non-critical that they can be postponed to future
releases. But examples for reasonable plan-driven development can be found in
socio-technical systems as well: Many software products are developed this way
(with long-term advance product management, where the product characteristics
for numerous different future use cases are clearly specified). Commercial
aspects play an important but not all too complicated role in all these cases. As
long as a basis for estimating the required realization effort exists, we are dealing
with “normal” estimation uncertainty that depends on numerous factors
(Jørgensen and Moløkken-Østvold 2004)—the quality and detail level of the
underlying documents (product brief, specification), the experience of the esti-
mator, and so on. The risk associated with this estimation uncertainty lies with
the developing company, according to the cooperation model (see below).

• Agile methods take into account the fact that software development is a process
of gaining insights. Here, it is an accepted basic assumption that software cannot
be specified conclusively or that this specification would have to be so elaborate
that the software might as well be realized in the same timeframe. In fact, it is
the essential characteristic of agile methods that usable systems are developed

i

l
i i

i

l
l

l i il

Fig. 11.1 Possible commercial settings of software projects

178 11 Framing Software Projects in Commercial Terms

quickly in short cycles, which can then be provided to the clients for feedback
that forms the basis for development of the next iteration. Skipping the prepa-
ration of comprehensive documents does however also lead to the difficulty that
an informative advance estimate cannot be prepared. This is not a problem as
such, since a calculation basis in the form of a product brief full of holes would
be highly unsound anyway, leading to nothing but unreliable estimates of effort
that are more like guesswork. Either way, we are dealing with risk which is
often significant.

The mode of dealing with the cost risks that arise from the “normal” estimate
uncertainty in the plan-driven process, or associated with the inherent unpre-
dictability of future developments in agile process models, depends to a large extent
on the type of cooperation model between software users and software developers.

• The simplest case is that of in-house development. Users and developers work
for the same company in this scenario. The company’s internal application
development is commissioned by one or more operating departments. Regard-
less of the chosen method, risks arising from the project are borne entirely by the
company realizing the project. Management will be interested in an assessment
of the risks, but the investment decision is not going to depend on how these
risks are virtually distributed between the departments.

• This book mainly examines the case of an external service provider, which
means an external company is commissioned to build the software. Choosing
the method (plan-driven vs. agile) is of crucial importance in this case. If a
plan-driven process is chosen and a somewhat reliable calculation basis exists,
the risks are clearly distributed: The client bears the risk of late or changing
requirements, and the contractor bears the general software development risk.
This includes, for example, insufficiently qualified staff deployed in the project,
resulting poor quality of results and high cost of rework, liability risk in case of
gross negligence, and so on. In contracts for these types of projects, everything
is ultimately decided by the quality of the product brief. It is consulted and
interpreted in case of disputes, for example, to determine whether features that
were not implemented are described there or not. The legal consequences are
clearly defined depending on the evaluation of the content. That is also why
suppliers are able to offer building software at fixed prices in such scenarios.
They believe they can estimate their general software development risk. All that
remains is the question of whether the product brief is considered detailed
enough to use it as a calculation base. Agile situations are much more difficult to
assess in this regard, since detailed product briefs do not exist here by definition,
so a calculation base is lacking. We will examine various contract types based
on this background in the next chapter.

• The cooperative performance structure is an even more complex case, for
example, when developers of a supplier work in mixed teams with developers of
the client. Surely, the simplest way to deal with this situation would be for the
client to bear all risks, merely purchasing resources from the contractor in the

11 Framing Software Projects in Commercial Terms 179

form of “body leasing.” The billing model for this is very straightforward and
has been used thousands of times. But there are also cases where the client
would prefer somewhat more responsibility and readiness to assume risk on the
part of the contractor. We will see later that this is a special case of the external
service provider model with a few special rules.

Reference

Jørgensen M, Moløkken-Østvold K (2004) Reasons for software effort estimation error: Impact of
respondent role, information collection approach, and data analysis method. IEEE TSE 30
(12):993–1007. doi:10.1109/TSE.2004.103

180 11 Framing Software Projects in Commercial Terms

http://dx.doi.org/10.1109/TSE.2004.103

12Traditional Contract Models
in an Agile World

First, we want to examine typical contract models that are familiar from plan-driven
software projects. We initially assume a classic external service provider model,
which means a project structure with a client who is both user and creator of the
requirements and a contractor who is the developer and supplier. The client and
contractor are separated by a company boundary. This is important in the exami-
nation of various contract models, since such a company boundary separates

• two different legal entities: We are examining various contract models here.
Contracts are not only intended to describe the rules of working together, but
also to define the consequences that result if at least one of the contractual
partners does not abide by the agreed rules. A legal dispute is the result when
this occurs. Initially, it can be negotiated between the persons in charge at the
two companies, possibly with the involvement of legal advisors. When this fails,
the entire organization structure of the relevant legal system is available to help
the adversaries assert their rights and to balance their interests. In contrast to
in-house development, the client and contractor do not depend on resolution
between the conflicting parties. If the matter is not resolved, the parties can
petition the courts and ask an independent judge to render a binding decision.

• two different economic units: While there is one management structure in case
of in-house development, combining both sets of interests (the user and
requirements author, and the developer) and being able to prioritize and there-
fore resolve conflicts in case of disputes, this is not the case with the external
service provider model. Here the client and contractor each have their own
company management, with their own respective objectives focusing on their
own company. Rather than focusing on the overall best solution in case of a
conflict, the focus will be on satisfying the respective local interests.

However, let us first examine the positive case of proper and successful com-
pletion of the contractually agreed software project. Here the contract serves to
define the relationship between the contractual partners, their respective obligations

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_12

181

and the objectives of working together. Contracts for custom software development
therefore typically cover at least the following:

• Project objective: What is the intended result of implementing the project?
What type of software is supposed to be developed and by when? Where (in
what referenced document) is the desired project result described?

• Roles of the contractual partners: What are the respective responsibilities of
the client and contractor? How are these responsibilities defined positively (by
naming work tasks) or negatively (by excluding tasks)?

• Obligations of the contractual partners: What delivery obligations arise from
the roles mentioned above? Obligations are by no means limited to the con-
tractor side (creating and delivering the product, i.e., the software), they also
exist on the side of the client (duty to cooperate in the project and pay the project
price, see the various compensation models below). The duties of the client to
cooperate are frequently discussed in particular, even in projects that go well.
A “receiving” rather than “providing” mentality often develops on the client
side. This is psychologically comprehensible since the client is the customer or
buyer of the delivery object. However, this delivery object has to be created in
the course of custom software projects, a process which requires the client’s
involvement. Regulating this in detail and as conclusively as possible in the
contract is therefore not just a legal requirement, it also promotes an under-
standing of the project character from the outset.

• Compensation model: Usually included under the client’s obligations, the
compensation model can at times be defined in a separate section of a contract
for software projects—all the more because simple compensation models are
often unsuitable for agile projects, as we will see below. The more agile the
project and the less the project results are defined in advance, the more complex
the models for compensating the work of the contractor usually become.

• Legal consequences in case of actions that violate the contract: Software
project contracts are normally within the context of the general legal framework
for contracts of work and labor in the respective jurisdiction. This means that
many fundamental rules for dealing with actions that violate the contract as well
as liability issues are already established in detail. Naturally, the contracting
parties can agree on other provisions that define concrete requirements or
deviate from discretionary aspects of contract law. In agile software projects, for
which the delivery object is naturally defined poorly or not at all, the question of
defective delivery is of major importance. Cases in which the client can refuse
acceptance of the delivery object have to be defined. This is associated with
legal consequences such as supplementary performance, replacement, abate-
ment, the payment of damages, and so on. If describing the delivery object with
sufficient clarity is not possible (the normal case in agile projects), taking this
into account correspondingly in the contract is all the more important. A classic
contract of work and labor is often out of the question here. Instead, the project
has the nature of providing a service, which does not have to mean however that
the contractor assumes no risk whatsoever in regard to project success.

182 12 Traditional Contract Models in an Agile World

We have to differentiate between service contracts and contracts for work and
labor. Fixed price contracts are often equated to contracts for work and labor, and
the other way around. But a contract for work and labor does not have to call for a
fixed price compensation model. Neither are service contracts always settled on a
time and materials basis (although this is common and popular). In fact, the relation
between the compensation model and contractual framework is orthogonal, as
shown in Fig. 12.1.

According to the freedom of contract principle, the client and contractor can
agree on virtually any provisions within this coordinate system. The commercial
dimension leaves even more design freedom than the legal one, where the laws of
most countries at least specify the general outlines for the design of contracts.

As long as the planned project implementation process is not disrupted and the
services are provided by the contractor according to the contract, meaning the
project proceeds positively, the choice of the contract type is economically neutral
and therefore largely insignificant. However, the two contract types—contract for
work and labor versus service contract—distribute risk entirely differently between
the client and contractor. In practice, this is mainly revealed by errors in the cal-
culation and by defective performance.

In case of a contract for work and labor, the contractor owes the delivery of a
certain result in the form of creating a work with specific, contractually established
characteristics. We are talking about (IT) projects in which certain requirements
have to be fully implemented at a fixed (or maximum) price and by a fixed date (and
the legal consequences under a contract for work and labor are not waived). If the
contractor is unable to achieve performance as contractually agreed, thereby cul-
pably violating a performance obligation, the contractor legally has to put the client
into the same position that the client would have been in, if the contractor had met
its service performance obligations according to the contract. This can have very
unfavorable economic consequences for the contractor. In addition to the planned,
additional costs to create the work (such as rectification, costs for replacement) or
the (also entire) waiving of compensation (abatement, withdrawal), additional

i i i li

i

l

Fig. 12.1 Contract types in legal and commercial dimensions

12 Traditional Contract Models in an Agile World 183

consequential damages due to defects or delays and even lost profits may have to be
paid. The economic risks of meeting the specified deadline, and therefore the
responsibility for the success of the projects, are therefore borne solely by the
contractor under a contract for work and labor.

In case of an (IT) service contract on the other hand, the contractor owes (in-
dependent) services, which means purely an activity and therefore effort but not
certain results. The contractor has to ensure that the activity is performed within the
specified time frame, that the personnel which is deployed has the necessary (and/or
contractual) qualifications, that the activity is performed as agreed and at least
average in terms of quality and efficiency. The legal consequences of culpable
defective performance are regulated in much less detail by law compared to the
contract for work and labor. Due to the reduced responsibility of the provider to the
customer, these are correspondingly limited. Under a service contract, the activity
itself and not the success of the project is warranted. This means the consequences
in practice are essentially limited to rectification (performing the activity) and a
reduction of compensation. Both the risk of violating the performance obligations
and the economic consequences are much less severe for the contractor under a
service contract compared to a contract for work and labor.

A straight service contract often fails to meet the economic requirements for the
distribution of responsibilities between the contracting parties. As a result, it is
rarely used for software development IT projects. The economic dependency of the
client on the contractor, usually with dominant business knowledge, would be too
great. Conversely, the choice of a (straight) contract for work and labor demands
that (all) requirements for the work have to be defined in advance. Otherwise, the
already high risk of the contractor significantly increases even further. However,
(fully) establishing the requirements in advance is not always possible or desirable
in practice. The contractor would compensate for this circumstance by adding
uneconomical risk surcharges to the offer.

In practice, fairly and equitably sharing responsibility between the client and
contractor can only be achieved with suitable mixed contract forms. In the fol-
lowing, we will largely distance ourselves from the question of the contract type in
this legal dimension since we are mainly interested in the commercial basic con-
ditions for contracts in agile project situations. As already hinted at in Fig. 12.1, we
are going to introduce the adVANTAGE model as a contract template that lies
somewhere in the middle on the spectrum between a fixed price and compensation
on a time and materials basis. First, we will examine the two ends of the spectrum
in regard to how they can be applied in agile project situations.

12.1 Fixed Price

The world used to be quite simple when it was usual for custom software projects
under the external service provider model to be strictly plan-driven: The client put a
lot of effort into a product brief, describing what was needed in the greatest possible

184 12 Traditional Contract Models in an Agile World

detail. The contractor was able to calculate its effort on this basis and the detailed
specification was jointly developed—usually after the contract was awarded. Then
the world either still looked similar to what the product brief said, so everything
was good, or changes were required that led to additional demands. Based on the
specifications, communication about these demands was usually quite good. Fixed
prices and corresponding plan-based contracts were the means of choice in this
world. Since extensive descriptions of the delivery object at various levels of detail
were on hand, the contractor felt confident because the development goals were
clear. The only commercial risks were the general risks of software development
briefly mentioned above, such as poorly qualified or unproductive personnel,
technological complexity or remaining, minor leeway for interpretation. A risk
surcharge was included in the calculation to cover these “residual risks.”

Naturally, such situations still occur today and nothing speaks against
approaching them on the basis of a fixed price contract. The commercial risk for the
client—assuming corresponding creditworthiness of the contractor—can be prac-
tically disregarded, which is precisely why this contract type is so popular. For the
contractor, commercial success largely depends on the accuracy of the estimated
effort, which we will not explore further here. A good overview is found for
example in Boehm et al. (2000).

The contract provisions for a fixed price project are often agreed on the basis of
work packages, although this does not have to be the case, as illustrated above. Not
too much needs to be defined in terms of the compensation model: The software
corresponding to the respective document referenced in the contract, such as a
product brief or specification, has to be supplied by the contractor before a certain
date and the client has to pay a fixed price for it.

Leeway for adjusting the established fixed price is essentially found at exactly
one point—during the project, when late requirements become known that are
clearly outside the previously specified context, which means they could not be
included in the original calculation. Handling such change requests has to be
covered by the contract provisions, otherwise there is potential for conflict. On the
one hand, the contractor has to be protected against the excessive expansion of the
delivery object resulting from overly client-friendly interpretation. When it comes
to the question of whether a certain feature was included in the product brief, only
not in as much detail, smart clients like to point to the cornucopia of subsequent
orders one would naturally prefer to award to a cooperative partner who already
knows the ropes. The extent to which this leverage, which is clearly applied outside
the letter of the contract, leads to success ultimately depends on the supplier’s tactic
and of course its arguments with regard to content.

If one agrees that a certain change request is exactly that, rather than stating a
specified feature in concrete terms, the client in turn now has to be protected—
against an overly ample estimate of the required implementation effort and the
resulting (fixed) price payable for the change request. This in fact often constitutes a
back door in practice for a supplier who may have had to offer the project at a cut
price in order to win the contract. It does not even have to occur with dishonest

12.1 Fixed Price 185

intent. In certain market contexts, it is common to offer large work packages at low
base prices and make money through subsequent change requests or even later in
the maintenance phase.

Unfortunately, contract provisions do not prevent the inherent back and forth in
the negotiation of change requests. If one could clearly define whether a feature
constitutes a change request or not, it would probably have been included in the
product brief. This is exactly where disputes arise in case of doubt. Once the
question is resolved, the consequence is clear: Payment is either required or not.
Then the amount can also be disputed, which is another problem that is difficult to
handle contractually. While daily rates as the calculation basis can be established,
this does not solve the problem of estimating the required effort. Ultimately, this
gap can only be filled through negotiation, which should be successful as long as no
party to the contract exaggerates.

So much for the theory. In practice, it has been shown that fixed price projects
often create a false sense of certainty that does not exist in reality. On the client
side, the wolf of uncertainty is disguised in the sheep’s clothing of the product brief.
The assumption that socio-technical systems can be described on paper is also false
as a rule. A product brief is an appealing document that can provide a high-level
statement of intent. It normally fails to describe the subsequent system. We have
described why this is in detail in Sect. 2.1, so that we are simply acknowledging
here that change request processes—other than by skillful or insidious suppliers—
are mainly caused by the fact that late requirements are quite simply normal and of
course increase the total price for the software. Experienced project managers on the
client side plan corresponding budgets for this purpose. This is where the uncer-
tainty inherent in a project is uncovered—how high should such a budget rea-
sonably be? If a halfway reasonable estimate were possible, the product brief (or
any other contractually relevant estimating basis) would define what needs to be
developed for this amount.

Because this cannot be accomplished, agile methods have been developed that
do not assume in the first place that a reliable estimating basis can be defined in
advance. Not only because late requirements are just a fact of life, but because
everything ultimately depends on an unpredictable moment: The moment when the
originator of the requirements sees the result for the first time—the finished soft-
ware, or parts of it. Often this is the moment that ends with the words: “That’s not
what I meant, of course I meant something quite different.” The later this moment
arrives, the more expensive it gets. This is why agile methods strive to avoid a lot of
specification in the first place, focusing instead on creating software as quickly as
possible so the discussion is not about paper but about the result. But eliminating
the basis of estimation disturbs the contractually established balance of power
between the client and contractor. A fixed price in the literal sense would mean that
the contractor would have to implement anything and everything at a fixed price—
an option no reasonable supplier will agree to. Or that the price may be fixed, but
the client does not know what will be delivered in return for the budget—hardly a
satisfying prospect for the user.

186 12 Traditional Contract Models in an Agile World

http://dx.doi.org/10.1007/978-3-319-41478-2_2

12.2 Time and Materials

Time and materials (T&M) contracts lie at the opposite end of the spectrum for
commercial models in custom software development by an external service pro-
vider. They are often but not necessarily used in service contexts, that is, in situa-
tions where project success is by and large not legally owed. Naturally, the
compensation under a T&M contract can in principle also be negotiated in case of a
work package. One way or another, payment by the client is based on the personnel
and material actually deployed and used, with the former naturally accounting for
the largest share by far in case of software development. Therefore, this is a rela-
tively simple compensation model where the contractor assumes virtually no risk
because it is compensated for its actual effort, unless any restrictive rules are
specified. When corresponding daily rates are agreed, the profit margin is fixed and
not subject to any fluctuations. Contingency agreements are often negotiated,
specifying that a minimum number of person-days will be used within a certain
period of time. This eliminates the risk of short-term unemployment for the supplier
in case of a sudden project stop. In exchange, the contractor assures the availability
of qualified and trained personnel, along with fixed prices for the duration of the
contingency agreement. If there are no contingency agreements, the contractual
obligations of the partners are significantly less compared to classic fixed price
contexts and can usually be revoked at short notice. However, this does not apply in
case of a contract for work and labor with T&M compensation. All obligations
including a corresponding warranty that typically define a work package apply here.

In case of plan-driven software development methods, not much speaks for a
T&M-based compensation model for the client as a rule. If work has already been
invested in preparing a product brief or when this is part of the project anyway, the
client will be very interested in agreeing on a fixed price in case of doubt. Other-
wise, the client would bear all risks—in T&M projects, the client not only bears the
risk of late requirements, but usually also the general risks such as a lack of
qualifications or technical complexity. Nevertheless, it occurs more often than one
would expect that even projects with existing artifacts that can be estimated are
implemented on a T&M basis. This happens for instance when successful coop-
eration with the supplier has been proven over many years, so that confidence in the
supplier’s performance and understanding of the business domain is high. The
client’s underlying motive may simply be to eliminate the risk surcharge which the
supplier would include in a fixed price project. Comparatively straightforward and
rapid contract design can be a good argument in favor of T&M compensation for
plan-driven methods in certain cases as well.

In agile projects, there often appears to be no alternative to settlement on a time
and materials basis. As outlined above, balancing the interests of the client and
contractor is difficult on the basis of a fixed price in agile projects. This is mainly
due to the unequal distribution of risk in one or the other direction, depending on
how the fixed price is defined. Then the easy way out often lies in applying a T&M

12.2 Time and Materials 187

model. If there is no basis for estimating then an estimate is just not possible, and
without an estimate, there is also no assumption of risk by the supplier. As we will
see later, more creative and differentiated models exist to shift the risk somewhat in
the direction of the contractor even in agile situations. With pure T&M models on
the other hand, the client has no choice but to pay for the music that was ordered,
even if it is played badly.

In choosing between fixed price and T&M contracts for agile projects, the
following assessment of risk distribution serves as an interim conclusion and rough
abstraction: The fundamental problem in the agile context is that there is no suf-
ficiently detailed basis for a halfway reliable estimation of effort. If we disregard the
general software development risks (which are not specific to agile projects), the
risk is that the development effort for the implementation of the target system is not
foreseeable. To put it briefly: One (only) has a high-level vision of what is going to
be built and no idea how much work (money) this is going to take. When a
contractor offering a fixed price finds itself in this situation, it thereby assumes the
full risk. In case of a T&M contract on the other hand, the full risk is borne by the
client. Both are unappealing risk distributions because they are unbalanced.

Resourceful clients therefore develop supposedly more balanced mixed forms
with titles like “T&M with cap” or “T&M with cost ceiling.” For the contractor,
these are nothing more than the worst of both worlds. Yet it sounds so fair: The
contractor is paid on a T&M basis, which means the incurred effort is compensated,
but accepts an upper limit to limit the risk of the client. In reality, even a pure fixed
price project would be better for the contractor, since it would have the chance of
staying below the calculated budget and making a profit. The contractor does not
have that chance in a “T&M with cap” model, since it is paid exactly for the
expended person-days if it stays below the budget. If the budget is exceeded, the
contractor does not get a cent more and therefore bears the full risk without having
the corresponding opportunity. This compensation model does not constitute a good
solution for anything. There are better solutions for agile projects.

12.3 Pay Per Use

Paying for software according to actual use is not a particularly new model.
Usage-based contract models are especially common in software-as-a-service
(SaaS) models, where the application system is operated by an external contractor
(and not the user). Settlement is usually either according to units of time or the
number of transactions, and various scopes of functionality can be booked in
addition in some cases. SaaS models became fashionable as the acceptance of cloud
applications increased, especially in case of standard software such as Office 365
from Microsoft or the offerings of Salesforce.com.

While SaaS models remain uncommon in custom software development under
the external service provider model examined here, they can constitute a reasonable
alternative for certain project situations. In this case, we refer to pay-per-use

188 12 Traditional Contract Models in an Agile World

contracts, because the term SaaS implies that the application is operated by the
contractor which is not necessarily the case in our context. On the contrary, where
the application is operated is initially irrelevant for the compensation model. The
fundamental idea is to calculate part of the compensation for the software being
developed depending on actual use. Only in very rare cases will this proportion be
100 % for custom software development by an external provider, since that would
unreasonably shift the risk sharing profile in one direction as illustrated by the
following discussion.

Applying the model of a usage-based price adds another risk component to our
previous examination. Once again disregarding the general risks of software
development, we previously dealt primarily with the risk of realization effort which
is difficult to estimate. Differently put, the risk which has to be fairly shared
between the client and contractor arose from the question “how expensive will it be
to build the software?” Depending on the classic compensation model that was
chosen (fixed price or T&M), the risk was borne either by the client or contractor.

Now we are adding another question which can result in new risk: “To what
extent is the software going to be used?” Naturally, this question existed previously
as well, but it was always assumed that the risk of developing software that would
subsequently be used less than planned or not at all is borne by the client. Of late
this assumption is being overturned here and there, which is due to the changed role
of contractors in the New School of IT (Sect. 1.1). In the context of our exami-
nation of agile projects under the external service provider model, a fully
usage-dependent price (a pure pay-per-use contract) is usually out of the question,
since it shifts the risk even more in the direction of the contractor than an already
unbalanced fixed price model does. The contractor would not only bear the risk that
development, which cannot be estimated realistically, gets significantly more
expensive, but also the risk that the software is ultimately used little or not at all. On
the other hand, a combination of both (fixed price and pay per use) can constitute a
fair alternative. For example, the contractor could bear the fixed price risk (in case
of doubt, requiring more effort for developing the finished application than initially
“guessed”) but gain the opportunity to generate profitable business over the period
of use. Such a mixed model is attractive for the client as well, since it has the
certainty of a fixed price (which is rather unusual in case of an agile model) and
subsequently pays a fee for actual use (which should not be a problem if the fee is
reasonable).

Comparatively good experiences have been made with such models in some past
cases, mainly in situations where the way an application has to be designed in order
to be successful is not entirely clear (so they call for agility), and where potential
clients are therefore uncertain in regard to the resulting cost risks. The drebis
platform is an example (adesso 2013). It handles the exchange of information
between law offices and defense insurance providers based on meaningfully
structured business documents and information components, which therefore serve
to optimize and automate the processes between the stakeholders. The exact design

12.3 Pay Per Use 189

http://dx.doi.org/10.1007/978-3-319-41478-2_1

of the processes and structure of the business documents was unclear at the outset,
but it was foreseeable that the processes to be supported could be handled much
more efficiently with the use of a central portal in any case. Therefore, the con-
tractor adesso assumed the realization of the system in an agile process for a fixed
price (thereby accepting the risk of an uneconomical project at the time of go-live).
On the other hand, the legal defense insurers originally involved were able to share
the costs established in advance so they did not have to assume risk. Now they pay
an amount per case actually processed through the platform under a pay-per-use
model which is below the cost savings. The contractor generates a return on the
fixed price risk it assumed.

This model can be considered an example for a trend in the IT service sector.
Table 12.1 shows maturity levels of contractors, which they can reach in the course
of their company history by accumulating experience and through purposeful
business development. While technical expertise, later combined with business
expertise, in the form of employees with corresponding experience largely deter-
mines the service portfolio in the first two maturity levels, more complex projects
can be implemented under personal responsibility in higher maturity levels (ma-
turity levels 3 and 4).

When a contractor reaches a higher maturity level (far right in Table 12.1), it is
able to handle complex client processes, which is usually done on the basis of a
pay-per-use contract. In addition to technical and business expertise, this requires

Table 12.1 Maturity levels of contractors

1. Technology
sourcing

2. Technology
sourcing with
business
knowledge

3. Work
packages

4. Agile work
packages

5. Business
process
outsourcing

Technical
expertise

X X X X X

Method
expertise

X X X X X

Process
expertise

X X X X

Business
expertise

X X X

Scope
expertise

X X

Optimization
expertise

X

Operations
expertise

X

Contract
model

Time and
materials

Time and materials Fixed
price

Risk sharing
with fixed price
components

Transaction
based

190 12 Traditional Contract Models in an Agile World

optimization expertise and—if the corresponding application system is operated by
the contractor—hosting and application management expertise. The more of the
client’s requirements for expertise the contractor can cover, the more willing it will
be to assume risk, and the greater is the contractor’s chance to generate corre-
sponding revenue through transaction-based billing models according to the
pay-per-use contract model in exchange for the assumed risk.

12.4 Summary

Before exploring contract types for agile contexts in the following chapter, let us
briefly summarize the traditional approaches for contract models described above,
based on two simple questions and an equally simple classification (Fig. 12.2).

We differentiate the contract types according to the variability of the two contract
parameters “scope” and “price” (deliberately ignoring the existence of the typical
third parameter “time,” in part because it typically offers the least leeway for
contract design). Furthermore, we want to differentiate the three traditional contract
types based on the distribution of risk between the client and contractor. Here we
limit ourselves to two core questions that are relevant in this context:

i i

i i

i l

i
i

i i

i

l

Fig. 12.2 Classification of traditional contract types, based on Opelt et al. (2013)

12.3 Pay Per Use 191

• First, who bears the risk whether the right software is built? This refers to the
risk that the resulting software in the end provides the features and interfaces
that are “needed,” i.e., that have business value. Therefore, we call this the value
risk.

• Second, who bears the risk whether the software is built correctly? This in turn
means the risk whether the software is developed in an economically efficient
manner. It includes the general software development risks addressed above,
which is why we speak of development risk.

The three contract models discussed so far are evaluated in the three dimensions
as follows:

• As the name implies, the price in the fixed price contract is established in
advance, which also makes it especially well-suited for situations in which the
scope is established as well. Typically, the latter is achieved by preparing a
somewhat reliable basis for estimation before the contract is concluded,
describing the scope of the project. Accordingly, the value risk is generally
borne by the client, who according to the fixed price contract concept has to
ensure that the requirements with a sufficient business value are described in
advance, and that useless or low-value requirements are eliminated. The con-
tractor has little interest in this. On the other hand, the contractor has to assume
the development risk under this contract model, since the client in turn does not
care whether higher costs are incurred to implement the requirements in the end
than the amount paid. Cost forward progressing (Sect. 8.6) is a useful method to
at least determine whether costs will be exceeded early on.

• Time and material contracts are found in the opposite quadrant because they
are typically used when the scope cannot be established exactly, which means
the business value can only be estimated approximately in advance or not at all.
Therefore, the client pays for every hour of work, without knowing what
business value will be obtained in the end, thereby assuming both the value risk
and the development risk. Whether increased effort is caused by unclear
requirements or unqualified developers makes no difference under a classic
T&M contract.

• For application cases where the scope can be more or less established in
advance, pay-per-use contracts offer an interesting risk distribution alternative:
While the development risk is usually borne by the contractor (since imple-
mentation is at a fixed price or not compensated at all), the value risk is shared
albeit not entirely balanced. If the software provides a desired value and is
therefore used extensively, the payment is higher than for a flop when the
software is used little or not at all. Under this model, the contractor therefore
assumes partial responsibility for generating business value for the client. This
may be a template for agile contract models.

192 12 Traditional Contract Models in an Agile World

http://dx.doi.org/10.1007/978-3-319-41478-2_8

References

adesso AG (2013) drebis – Claims Management System. https://www.adesso.de/en/leistungen/
loesungen_sub_leistungen/drebis/index.html. Accessed 1 Mar 2016

Boehm B, Abts C, Chulani S (2000) Software development cost estimation approaches – A
survey. J Annals of Software Engineering 10(1–4):177–205. doi:10.1023/A:1018991717352

Opelt A et al (2013) Agile contracts: Creating and managing successful projects with Scrum.
Wiley

References 193

https://www.adesso.de/en/leistungen/loesungen_sub_leistungen/drebis/index.html
https://www.adesso.de/en/leistungen/loesungen_sub_leistungen/drebis/index.html
http://dx.doi.org/10.1023/A:1018991717352

13Agile Contract Models

Various suggestions have been made in the past with the objective of better bal-
ancing the interests of clients and contractors in agile software projects. We are
going to present some of these as examples in this chapter, briefly discussing them
based on the three dimensions that we introduced earlier (variability of price and
scope as well as risk sharing). One should keep in mind that an unlimited number of
mixed forms is not merely conceivable but actually occurs in practice. The
examples that follow are sufficient for our purpose, which is to determine the
criteria that a fair model should meet.

13.1 Fixed Price per Iteration

When one thinks about agile software development and the challenging basic
conditions of the business environment, one might think that nothing is fixed.
Naturally this is particularly true of the scope. If we were able to describe it with
sufficient accuracy in advance, then we probably would not consider anything other
than a fixed price contract anyway. That is why compensation models that appear to
take this initial situation into account—by making the price variable as well; T&M
models in other words—seem to suggest themselves as an initial approach. But
there are problems. Not only is the distribution of risk unfair, as illustrated above
(because there is no risk distribution; the full risk is borne by the client)—another
imbalance is built in as well: The contractor has an incentive to expend as much
effort as possible, regardless of the result that is achieved, because it is paid for
every person-day expended. It may be very late in the game before the client
suspects that the supplier’s team is rather inefficient. But by that time, it is usually
too late to engage in discussions about efficiency. Such a contract model trains the
supplier to develop an interest in bloated software.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_13

195

Fortunately, one of the characteristics of agile software projects is that they work
with iterations, i.e. sub-projects providing results within defined time periods. This
forms the basis of a rather simple contract design model—contracts according to the
principle of a fixed price per iteration. The idea is simple: A fixed price is paid per
iteration, the basic assumption being that every iteration takes the same amount of
time and the development team is kept constant. Let us assume the team consists of
five developers and a project manager. A rate of 800 € per person-day was agreed.
This means a two-week iteration (or sprint) costs 10 working days × 5 per-
sons × 800 €, which equals 48,000 €. Based on this calculation, one might think
this is no different from a simple T&M model. Superficially and from a purely
contractual perspective, this may be true, since the supplier makes no commitment
about the attainable scope with this model, so both the value risk and development
risk are borne by the client.

However, commercial reality often lies outside the legal construct. In this case,
the simple fact is that the existence of iterations with defined time limits permits the
frequent verification of success and promotes quick reviews and evaluations. The
shorter the iteration and the smaller the team, the clearer the objective of the
iteration is going to be before the start of the sprint. This means the client will be
that much more disappointed if this objective is not achieved. Maybe not after the
first, but most likely after the second and definitely after the third iteration, the
discussion will not only turn to underestimated complexity in this scenario but also
to the efficiency of the team. While the risks formally remain on the client side, the
contractor will develop a vital interest in measures that improve efficiency and
quality—especially when the client not only looks disappointed but angry as well.
Certainly it becomes more difficult for the client to change suppliers the further the
project has progressed (which is the actual threat and therefore the motivator for the
contractor). However, the contract model with a fixed price per iteration [also
known as “progressive contracts” (Larman and Vodde 2010)] ensures that it is
unlikely to be “too late” to change suppliers, because early escalation is built into
the model. Insofar as this mechanism lying outside the legal framework works, it
will ensure that at least some of the development risk is shifted to the contractor
side, and perhaps even some of the value risk.

13.2 Fixed Price per (Whatever) Point

Under the fixed price per iteration model, we have a discrepancy between the
formal contract provisions and the resulting commercial behavior of the parties to
the contract. Ultimately this can lead to the desired effect of shifting part of the risk
to the contractor. Therefore, would it not make sense to find a more direct way of
accomplishing this, putting into place contract provisions to ensure that the con-
tractor earns less if it builds software of lesser quality, and more if it delivers better
software? (Or, since “worse quality” and “better quality” are difficult to define
clearly in a contract, if the supplier achieves a greater or lesser scope per iteration?)

196 13 Agile Contract Models

However, this too is more difficult to measure than one might think. Surely, giving
the contractor an incentive (with whatever contractual provisions) to produce many
lines of code cannot be a sensible construct. What we really want is a model that
rewards efficiency or cost-effectiveness, that is to say the ratio between the invested
effort and the resulting output. This has led to contract models that attempt to
evaluate the output produced in an iteration (while the effort is already well defined
with the fixed price per iteration), and to establish commercial provisions on this
basis.

While this is a nice idea, it poses a virtually unsolvable problem. One might
think of using function points as a measure of the output produced in an iteration. If
this were a meaningful measurement, we would have found an excellent com-
pensation model in the form of a “price per function point” (or a hundred or
thousand function points), regardless of the effort that was required in the iteration
to realize this scope of functionality. The function point method is after all stan-
dardized. There are certified function point analysts and one could shift the
development risk to the supplier fairly according to the completed function points.
The supplier is only paid for the scope actually delivered and is therefore very much
interested in working efficiently. Such models are in fact used, but they do not
constitute an elegant solution. This is because nobody needs function points. What
one really needs in order to distribute the second risk fairly as well is business
value, but that is even more difficult to measure. Constructs such as story points or
feature points (or generally “units of work”) are supposed to relativize this, but
often turn out to be measurements of effort rather than value in practice (Larman
and Vodde 2010).

With the Interaction Room and value annotations, however, we have an instru-
ment available to determine the value of a feature, a process or an application in a
structured manner, at least within the stakeholders’ frame of reference (Sect. 3.3).
Ultimately this does not yet provide us with a usable unit for a contract provision,
since the Interaction Room does not supply a value in euros either. If it did, deter-
mining a fair price per “unit of work” would be easy, since it would already be
established and the contractor could consider whether it can realize this unit of work
at the specified price. Nevertheless, the value annotations from the Interaction Room
provide us with indications of value relationships between features, processes or
applications within the given frame of reference for the project. This will form the
basis for deriving the adVANTAGE model in Chap. 15.

13.3 Money for Nothing, Change for Free

The model “money for nothing, change for free” (Sutherland 2008) also belongs in
the category of contract models that have more of a fixed price character, but are
designed to shift part of the risk to the contractor. Aside from the agreeable name,
this model actually has a certain charm and interesting background mechanisms. It
is based on the fixed price per iteration model (Sect. 13.1), adding two simple rules.

13.2 Fixed Price per (Whatever) Point 197

http://dx.doi.org/10.1007/978-3-319-41478-2_3
http://dx.doi.org/10.1007/978-3-319-41478-2_15

Once again the starting point is the assumption that the implementation team is
stable, the length of the iterations stays more or less the same and—in addition—
there is a list of features (or user stories, or some other kind of work and value
units). These also have to be planned for iterations in a product backlog at a very
high level.

Now the client can exchange features between two iterations at any time, similar
to our requirements exchange (Sect. 8.3). Based on the assumption that features
have approximately the same magnitude (and therefore similar development effort),
the client can perform such exchanges without changing the price (change for free).
The idea behind this rule is comparatively simple: From iteration to iteration, the
client keeps gaining a better feeling for the value of individual features thanks to
actual user feedback. This is because an actual working version of the software
realized thus far is available after each iteration in the best agile sense. Therefore,
the client will shift the features for which the highest business value is expected to
early versions of the software.

Eventually a point is reached where only features with a low business value
remain in the backlog. Now the client can decide at any time to terminate devel-
opment because additional effort (in the form of the fixed price per iteration) will no
longer generate a lot of additional business value. The fundamental mechanism of
this model is that the contractor is interested in this as well, since it gets a termi-
nation premium corresponding to 20 % of the saved effort without having to
continue working (money for nothing). Of course, this is particularly attractive
when the developers can be subsequently deployed in a new project without idle
time.

When the typical margins of third-party software providers in the custom
development business are taken into account, terminating such a project is in fact
lucrative which means the interest of the client and contractor is aligned. Both are
very much interested in creating business value as quickly as possible (and they
share the value risk if this is not accomplished). Just like with the fixed price per
iteration model, the development risk is contractually/formally borne by the client.
However, the supplier too will strive to work as efficiently as possible here, since
this leads to the desired project termination by the client that much sooner. Cer-
tainly the idea of considering the termination of a project by the client a success
takes some getting used to. But that does not change the charm of this contract
model. Admittedly the assumption that features have approximately the same
magnitude is a weak point of this model, which is why we will come back to it
when discussing the adVANTAGE model later on.

13.4 Shared Pain/Shared Gain

The goal to share risk in case a project gets more expensive than planned (in the
form of value risk or development risk) can generally be achieved in two ways. One
can put the greatest possible value on a fixed price and then either build variable

198 13 Agile Contract Models

http://dx.doi.org/10.1007/978-3-319-41478-2_8

elements directly into the contract or select contractual constructs that provide
incentives for corresponding behavior of the provider. Or one approaches the
problem by choosing the T&M model (which fundamentally increases risk on the
client side) and then builds in elements intended to prevent the contractor from
having an elevated interest in expending as much effort as possible, regardless of
what the result is. The shared pain/shared gain model falls into this category. It is a
mix of a pure T&M approach and a model incorporating the realization of a certain
number of “points” (with all the resulting problems, as described in Sect. 13.2).
Since it was proposed by Martin (2004), it is also referred to as “Bob Martin’s
idea”.

The model is based on the initial evaluation of the software being developed, in
two dimensions—first in points (such as function points) to assess the output
produced, and second in person-days as the usual way to measure the effort
expected to be expended in order to produce the intended output. Let us assume the
desired result is software with a scope of complexity of 10,000 points, and the
estimated implementation effort is 1000 person-days. If we also assume an agreed
daily rate of 1000 € per person-day, the theoretical fixed price for the project would
be 1 million €. Since we are in a T&M-based context here, this means nothing
other than the payment of 1 million € if the team delivers a perfect result. In this
idealized world where we are not only able to estimate the effort but the software
can also be evaluated in points, one could, however, also say that the price per point
is 100 €. If the team builds the desired features exactly in the end (reaching pre-
cisely 10,000 points), 1 million € would also be payable under a fixed price per
point model (Sect. 13.2).

Let us briefly stay with the T&M example. In this case, reduced effort by, say,
20 % would cause the price to drop to 800,000 €. Increased effort by the same
percentage would lead to a price of 1.2 million €. Simple so far. The idea of shared
pain/shared gain is to mitigate the effects of increased or reduced effort, giving the
contractor an incentive to develop as efficiently as possible. This is where the points
come into play along with a discount on both the daily rate and the fixed price per
point. According to the model, not only the effort but the actual output also plays a
role in pricing, for example by paying 500 € instead of 1000 € per person-day but
then adding a premium of 50 € per point earned (instead of the arithmetical 100 €).
In case of perfect performance, this means that the price stays exactly the same at
1 million € (1000 person-days × 500 € + 10,000 points × 50 €). If the team
requires 20 % less effort (with the same output), the resulting price is 900,000 €
while the price increases to 1.1 million € if the effort is exceeded by 20 %. As a
result, the contractor is interested in the most efficient possible development since
this leads to a higher yield.

The problem with this model is readily apparent—evaluating the software in
points (however, they may be defined), both ex ante and ex post—a difficult
problem that cannot even be handled identically before and after the project.

13.4 Shared Pain/Shared Gain 199

13.5 Multi-stage Contract Models

So far we have placed a lot of emphasis on the “fair” distribution of risks in the
discussion of various contract types for agile software projects. Different contract
models make it possible to handle risk distribution in various ways—that is to say,
dealing with the question of who incurs what costs in the end, which is open at the
outset. Clearly an essential aspect plays into managing such risk positions, which
means dealing with uncertainty: trust. If there was unlimited trust between the
parties to the contract, we might not need contracts at all. At the very least, we
would have to give far less thought to the ultimate distribution of the costs and risks
resulting from uncertainty. Clearly and for understandable reasons, however, the
trust between companies in a client/supplier relationship is anything but unlimited,
and that is why simple models such as pure fixed price or T&M contracts are not
suitable. No rational contractor will agree to a fixed price in case of great uncer-
tainty regarding the system scope to be realized, since this would require maximum
trust in the client. Otherwise the client could expand the scope endlessly and the
supplier would have to include all those many ideas in the software at the fixed
price. Conversely many clients shy away from pure T&M situations since they
cannot trust the contractor not to exploit the situation, filling gaps in the specifi-
cations with unnecessary features in more and more person-days.

Some of the contract models described above are already quite well suited for
handling such entirely normal trust deficits. Mixed forms that address this issue
even better have in some cases already been developed from these in practice and in
the literature. Multi-stage contract models or multi-phase contract models are one
such category (Larman and Vodde 2010). These are forms of cooperation that
stagger different contract types over time in order to account for the fact that
uncertainty is usually greater at the outset than in the middle of a project. The client
and contractor also get to know each other better in the course of a project, grad-
ually building trust, which may justify a change in the contract model during the
project term.

This game can be played in entirely different directions depending on the
negotiating power, trust position and experience of the partners involved, as well as
the degree of uncertainty and the type of project. Let us examine two examples:

• If both partners agree that the scope is largely open, the fixed price per iteration
model is suitable for the first phase. This allows the parties to jointly learn
through experience what the true scope of the project is during the initial iter-
ations. In this first phase, the client is advancing trust by financing a few
iterations at fixed prices without knowing the result that will be delivered. Then
the model is turned around after a while, once the parties are sufficiently familiar
with each other, trust has been established and the understanding of what is
actually supposed to be built is much better. If a backlog that can be planned and
estimated has been developed in the meantime, the second half of the project
could be implemented using the fixed price per feature model. Now the

200 13 Agile Contract Models

contractor advances trust by assuming that the client will not subsequently
inflate the scope in detail.

• If at least specific features out of the overall scope can be adequately evaluated,
the client can also argue that the contractor should prove its performance in the
first few releases. Typical fixed prices per feature would then be in order during
the initial phase. In this case, the supplier advances trust, delivers the desired
features at a fixed price and makes the actual effort transparent. The client gains
trust in the contractor’s ability to perform, and the less clear features can be
implemented based on a T&M order or fixed price per iteration in a second
phase.

Strictly speaking, multi-stage contract models cannot be viewed as a separate
contract type but as a combination of “simple” contract types in a series over time.
They make it possible to manage risks and build trust over a period of time and are
an option in particular when the client and contractor want to work together for a
longer period of time or at least intend to implement a larger scope together.
Whether the design of the second phase is described in detail at the outset, con-
tractually defined or merely discussed as a possible option is solely at the discretion
of the parties to the contract.

13.6 Summary

In Fig. 13.1 we arranged the agile contract types discussed so far in the schema
from Fig. 12.2. It is based on the high-level differentiation that agile contract types
either tend to have a fixed price orientation with the integration of variable ele-
ments, or follow the concept of T&M contracts with the addition of elements to
reduce costs. The second group includes the shared pain/shared gain model in
particular, which is why it is found in the bottom left quadrant of Fig. 13.1.

Weakening the pure T&M model, the shared pain/shared gain approach has
elements that “tame” variability both in regards to the scope and the price. The latter
is obviously less variable, since that is precisely what the settlement model intends.
If the supplier exceeds the effort, the price per unit of performance drops. Due to the
fact that evaluating the scope is mandatory with this model in the form of “points”
(of whatever type), which means the scope is discussed in detail early on, somewhat
less uncertainty can generally be expected.

Among the contract types more akin to the fixed price world, the fixed price per
iteration model is surely the one that most clearly represents the top left quadrant
which previously remained open. The client has price certainty since the cost of an
iteration is precisely defined, but the scope is largely open since there is no guar-
antee what features will actually be implemented and therefore what business value
will be generated. In order to mitigate precisely this, the fixed price per point model
and the “money for nothing, change for free” model were developed. Since the
latter approach offers somewhat more content flexibility because the scope can be

13.5 Multi-stage Contract Models 201

http://dx.doi.org/10.1007/978-3-319-41478-2_12

changed at no cost, it was placed slightly more in the variable scope direction in
Fig. 13.1 and, due to the possibility of terminating the project at any time, further
away from the fixed price.

With the contract types that were discussed, we therefore have a rather broad
spectrum of possibilities for designing the legal and economic relationships
between the partners in agile software projects. Some of them, like the fixed price
per iteration model, are practical, easy to implement and proven many times, but
offer little certainty for the client and fail to achieve balanced risk participation by
the contractor. Others like the shared pain/shared gain model share the risk far
better, but experience has shown that they lack practicality since they are based on
difficult-to-capture “points”. With the adVANTAGE model, we will next present an
additional alternative that shares the risk fairly, is easy to use and enables good
control by the client. Obviously such an alternative can only be realized on the basis
of more trust.

References

Larman C, Vodde B (2010) Practices for scaling lean & agile development: Large, multisite, and
offshore product development with large-scale Scrum. Addison Wesley

Martin R (2004) Estimating costs up front. Post in comp.software.extreme-programming, https://
groups.google.com/d/msg/comp.software.extreme-programming/egY-zCgthSo/Y9Pzha0_IJoJ.
Accessed 1 Mar 2016

i i i i
iii

i

i l

i
i l

i

i l i

i

ii

i i

i

Fig. 13.1 Classification of traditional and agile contract types, based on Opelt et al. (2013)

202 13 Agile Contract Models

https://groups.google.com/d/msg/comp.software.extreme-programming/egY-zCgthSo/Y9Pzha0_IJoJ
https://groups.google.com/d/msg/comp.software.extreme-programming/egY-zCgthSo/Y9Pzha0_IJoJ

Opelt A et al (2013) Agile contracts: Creating and managing successful projects with Scrum.
Wiley

Sutherland J (2008) Agile 2008 – Money for nothing. https://www.scruminc.com/agile-2008-
money-for-nothing-2/. Accessed 1 Mar 2016

References 203

https://www.scruminc.com/agile-2008-money-for-nothing-2/
https://www.scruminc.com/agile-2008-money-for-nothing-2/

14Key adVANTAGE Principles

In this chapter, we introduce the adVANTAGE contract model that can serve as a
framework for agile software projects undertaken by external contractors. In this
name, “ad” stands for “agile development”, and the whole term aims to indicate that
both parties to the contract should gain an advantage compared with conventional
approaches and the contract models they typically involve. This advantage can take
many forms. It depends on:

• the application of an agile method (fast start of development activity, omission
of costly advance specifications, fast availability of software that can be
demonstrated, close collaboration between users and developers, flexible
adaptation of requirements, acceptance of late requirements, etc.), and

• the application of a fair contract model that represents the agile method (elim-
inating inflated costs for specification work, billing according to features actu-
ally delivered, fair distribution of risks, fair distribution of opportunities).

From a high-level perspective, adVANTAGE consists of three elements: a price
model, a contract model, and procedures that can be applied in the Interaction
Room. In short, adVANTAGE = price + contract + procedures. Like the Interac-
tion Room, adVANTAGE is shaped by the recognition that custom software
development by an external contractor model always involves considerable
uncertainty. The exact result of the project is not known in advance, there are many
ways that the product could be built, and nobody can predict exactly how expensive
the whole project be in the end. Accepting this is the core idea behind adVAN-
TAGE. The model has been tested and adapted many times in practice, resulting in
a framework for pragmatically handling the economic aspects which can (and
should) be adapted to the individual situation of every new project.

The adVANTAGEmodel supplies general provisions for the legal and commercial
aspects that have to be regulated between the client and contractor in an agile custom
development project. Accordingly, Appendix C.1 provides a concrete template for an
actual contract document. However, it is much more important to illuminate the

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_14

205

fundamental principles underlying the adVANTAGE model. For one thing, we
recommend adaptation to concrete project situations, and for another, we believe that
it is far more important to develop a good feeling for the compatibility of cultures
of the client and contractor than to establish legal certainty down to every detail.

While the adVANTAGE model is a very good fit for some project types, it may
not be suitable for others. This chapter therefore introduces some general principles
underlying adVANTAGE and discusses whether the application of adVANTAGE
is suitable for a certain project constellation. These principles are a willingness of
the supplier to assume risk, mutual trust, budget certainty, shared pain, rewarding
efficiency, and of course agility. If the organizational cultures of the partners in a
project match these principles (discussed in more detail in the following sections),
the adVANTAGE model should be considered. When a partner’s culture clashes
with some of the principles, the model is better not used.

For example, we will see that the adVANTAGE model would lose its foundation
without the supplier’s willingness to assume a certain measure offinancial risk (which
is not solely within the supplier’s control). There are however contractors in the IT
sector whose risk management policies are so strict that getting them to sign an
adVANTAGE contract would be simply impossible. This may be desirable if com-
pany policy demands a choice of one of the less risky contract types described above.

14.1 Commitment to Agility

Making agility a core principle of a contract model for agile projects may sound
very much like a tautology. However, one should actually seriously consider
whether the project for which one is seeking a legal-commercial framework can
truly be realized best using an agile approach. If a detailed specification that sup-
ports estimates is already available for example, with a lot of groundwork having
been done and leaving little uncertainty regarding the characteristics of the devel-
opment results, then why not use a classic plan-driven development approach and
agree on a fixed price? But perhaps all stakeholders agree that they want to be as
free as possible, deciding again from iteration to iteration on how to continue—
these are indications in favor of an agile method.

Deciding in favor of agility in the partnership between a client and contractor
does not however mean establishing an agile process model such as Scrum. It
mainly assumes the readiness to accept uncertainty—not just uncertainty regarding
the resulting software product, but also regarding

• the number of iterations required to achieve an adequate, acceptable, or desir-
able result,

• the capabilities of the chosen technology and the resulting technology risk,
• the productivity of the development team and its progression over time, possibly

through numerous iterations,

206 14 Key adVANTAGE Principles

• the obtainable quality measured by the number and severity of errors that occur,
and the work required to identify and eliminate them,

• the effort per iteration, including overhead such as project management and
communication,

• the total effort for the project as a whole,

and other circumstances that cannot be estimated exactly or at all in advance. The
decision in favor of agility means that such uncertainty is not only acknowledged,
not only accepted, but understood as an essential characteristic of this concrete
impending project. This applies to other areas as well. At least in an external service
provider context, agility not only affects the development team, but the entire
organization: A new way of thinking is required from Purchasing to Legal to
Controlling. Agility in this context is the answer to uncertainty. But this does not
mean that agility makes uncertainty go away—it merely forces all stakeholders to
deal with it consciously and based on clear rules. But since rules always leave
loopholes for egoistic action, mutual trust is essential.

14.2 Mutual Trust

Mutual trust between a client and contractor, i.e., between legally and economically
independent organizations that each serve their own goals—is that possible? Is trust
not more of a human affair? Yes and no. For one thing, all organizations, including
the contractual partners in software projects, consist of people. For another, eco-
nomic science does in fact define the term of inter-organizational trust (Lane and
Bachmann 2000) as the concept of a company fundamentally assuming fairness in
the actions of another company or its staff. In agile software projects under the
adVANTAGE model, this is absolutely essential. Unlike some of the contract
models outlined above, the adVANTAGE model leaves some leeway and flexibility
for responding to specific project situations, which always means freedom to
negotiate on a small scale as well—that is to say, within the framework of a signed
contract. This becomes obvious for example with the question of whether a certain
feature is “done.” In the description of the adVANTAGE procedures that follows
(Chap. 15), a lot will depend on whether the implementation of a feature X planned
for a sprint has been concluded (whether the feature is “done”). Depending on how
this question is answered, other mechanisms apply for planning the next sprint but
also for the settlement of the sprint that has just ended. As we will see, “done” can
mean various things ranging from “a feature that could be called X exists as a result
of the sprint” to “a feature exists which more than adequately represents X, takes all
exceptions and special cases into account, has been tested, and is free of defects as
far as discernible.”

We have purposely left the Definition of Done (DoD) open in the adVAN-
TAGE model. In doing so, we have built in the risk that the parties to the con-
tract will not be able to agree, or only after protracted discussions, whether a

14.1 Commitment to Agility 207

http://dx.doi.org/10.1007/978-3-319-41478-2_15

feature in a specific case is done or completed so that money is owed. There are
two reasons for this:

• The attempt to establish a DoD that is comprehensible and as detailed as pos-
sible, and therefore preferably a degree of completion that can be determined by
an algorithm, appears diametrically opposite to the agile philosophy. Those who
choose an agile software development method because they accept uncertainty
should also tolerate the fact that common sense has to decide on what is “done”
in specific cases. If this is not acceptable, one should decide whether writing a
detailed specification first is perhaps preferable after all. That is not to say that
there should be no DoD. It should exist, but one should not fall victim to the
illusion of having established an unambiguous decision-making basis.

• If the contractual partners suspect that the risk of leaving the DoD open will lead
to disagreements, or even legal disputes, then working together in an agile
project is not recommended in the first place. When one doubts one’s own
willingness to compromise, or fears the other side cheat when given a chance,
trust is lacking either way.

The problem with the DoD is just one of many examples of the need for trust in
agile projects. Of course, there would be numerous reasons not to trust each other in
agile software projects. The client could accuse the contractor of

• tending to deploy the second-rate software developers for the project while
reserving the best for the risky fixed-price projects,

• sticking as closely as possible to the letter of the features in the backlog,
implementing them without attempting to generate business value,

• actually focusing on optimizing his own capacity utilization even though a
certain price risk is assumed,

and much more. Conversely, the contractor could accuse the client of

• dragging its feet when it comes to the client’s duties to cooperate, because
business operations always take priority,

• attempting to stuff as much functionality as possible into every little feature,
which may only be outlined in broad strokes, or

• deliberately delaying acceptance procedures and approval of the next sprint in
order to get more performance.

All of that can happen, since the project participants are after all employed either
by the client or by the contractor. Yet all these cases merely represent a very
short-sighted view of optimizing personal benefits. In most cases, both sides should
have a vital interest in long-term cooperation. The closer a client/supplier rela-
tionship in custom software development is and the longer it lasts, the more efficient
it becomes. Not only do the teams develop a shared understanding of the business
relationships in the course of time, they also use the same vocabulary, have shared

208 14 Key adVANTAGE Principles

experiences and learned from them, and have experienced success and worked out
the crucial reasons for that success in retrospect. In short, the longer teams work
together in such a relationship, the less room there is for misunderstandings and
other effects that reduce efficiency.

14.3 Contractor’s Willingness to Assume Risk

In Table 12.1, we illustrated the various maturity levels of contractors in the IT
sector and discussed these in the context of pay-per-use models. The central theory
was that contractors with a high maturity level (and the associated in-depth,
broad-based business experience) tend to be more willing to accept
transaction-based business models. With such models, compensation for software
development is not determined as a fixed price or depending on the effort expended
for realization, but depends solely on the actual use of the system. Highly mature
contractors are generally more willing to accept risk in such a relationship because
they are in a good position to assess the business value of the software. This is
similar when it comes to the willingness to assume the risk associated with the
adVANTAGE model.

A key element of the willingness to assume risk based on experience is the
absence of knowledge gaps in business contexts. When a contractor has been active
in a certain business domain for years, it will have numerous business experts
among its employees who know exactly how a medical risk assessment for the
reinsurance of life insurance contracts has to be implemented, or what the detailed
process for central profit determination in a lottery has to look like. The more
experience, the less uncertainty. This is why the maturity of a contractor often
enables its willingness to assume risk. Of course, there are exceptions as well,
namely contractors that have developed increasingly efficient risk management
processes in the course of their evolution, and are hardly willing to accept
imponderabilities without T&M protection.

The willingness of the contractor to assume risk is essential for the adVAN-
TAGE model. A vital element of the model is to share the risk arising from
uncertainty between the two sides. This means part of the risk always lands on the
supplier’s side. Those unable to accept this risk should not consider entering into an
adVANTAGE contract with a client. Those who have some courage on the other
hand may find that adVANTAGE is a construct that can be used to win clients with
the argument that the contractor assumes part of the general risk. Aside from
extensive experience in the business domain relevant for the project, the following
points can promote the supplier’s willingness to assume risk:

• A company culture that generally recognizes opportunities in addition to risks
and takes a long-term view

• The availability of teams that are stable over the long term, have already
implemented numerous projects together, and work smoothly together

14.2 Mutual Trust 209

http://dx.doi.org/10.1007/978-3-319-41478-2_12

• Extensive expertise in the various technical domains in order to minimize
technology risks

• Previous good experience with the client, as a foundation for a high level of
trust.

14.4 Budget Security

In discussing the various contract types for agile projects, we have already noted
that absolute budget security does not exist—certainly not with T&M-oriented
approaches—and residual uncertainty remains even with fixed-price constructs.
One way or another, features can be forgotten or described with clearly insufficient
complexity. Any resourceful supplier will quickly open a change request in such
cases, so the original budget immediately goes out the window. So if absolute
budget certainty does not exist, we should at least implement mechanisms that
make it likely that the budget will not be exceeded to an intolerable extent. The
adVANTAGE model uses various constructs to achieve this. One of them is the
adoption of cost forward progressing (Sect. 8.6), and another is the use of the risk
map (Sect. 8.4). A third element is daily rates at which the supplier actually does
not really want to work, as discussed in the following section.

14.5 Shared Pain

A central element, if not the central element of the adVANTAGE model, is shared
pain. In brief, this means that the contractor suffers (almost) as much as the client
from the risks that materialize in the project.

In classic software development contract models—as shown above—some effort
is made to clearly assign the two general risks to one of the two parties. The value
risk, i.e., the risk whether the desired business value is achieved and at what cost, is
preferably (mostly) handed to the client. This is where one expects the greatest
business expertise and responsibility for a reasonable description of what needs to
be built. The development risk, on the other hand, is (mostly) handed to the con-
tractor in most models, since it can be assumed that the contractor is responsible for
the hiring of competent employees, conducting adequate and accurate tests, and
mastering the technology.

The core problem with this assignment of risks and the related costs is the fact
that, if the risks materialize, each side attempts to keep its own risks in check. The
risks of the other partner are of very little interest. In case of doubt, worsening the
risk position of the other side is accepted if this improves one’s own position. The
greatest benefit would however be achieved if both parties focused on avoiding a
project disaster, which costs both sides a lot of money, effort, and aggravation. But

210 14 Key adVANTAGE Principles

http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_8

as long as both sides are busy keeping a close eye on their own risks, there is no
room for cooperative disaster avoidance. The adVANTAGE model attempts to
solve this problem by imposing all risks equally on both parties. It simply does not
differentiate whether the additional effort for realizing a certain feature or an entire
iteration results from lack of developer skills or imprecise functional specification.
All discussions of this kind simply do not take place under the adVANTAGE
model. Not only does this save a lot of work and is easier on the nerves, it also
encourages reasonable behavior. But how? The simple mechanism that enables this
consists of two daily rates for calculating the price to be paid, combined with a
calculation procedure that is established at the start of the project and then left
unchanged.

Chapter 15 describes this process in detail. For an understanding of shared pain,
this much can be said here in advance: Based on a list of features (mostly just
named but not described in detail), the estimated effort for each feature is negotiated
at the start of the project. Methods such as planning poker can be used to make an
initial estimate that is obviously subject to uncertainty. Both parties know that
excessive, petty haggling about this estimate is not only meaningless but appears
downright ridiculous due to the uncertainty—this has been agreed on, otherwise an
adVANTAGE project would not be carried out. These initial (highly uncertain)
estimates per feature are never touched again. New estimates are only made in case
of entirely new features that crop up during the project. Two different daily rates are
negotiated next. One is the “regular” daily rate and should be in line with the
market, including a profit margin. The second, “reduced” daily rate should be set to
a “painful” level so it does not ruin the supplier, but also so the supplier is not
interested in working for this daily rate. In practice, this second daily rate will be
somewhere close to the cost of production. Fine-tuning it is important for the
success of the model. Once these parameters have been negotiated, between the
client and contractor, the project can proceed. At the end of each iteration, the effort
estimated in advance is billed at the “normal” daily rate. Effort that exceeds the
previously negotiated effort for a feature (or the iteration) is billed at the “painful”
daily rate. There is no discussion, especially regarding the cause of exceeding the
budget, since the pain is shared: The client has to pay, but the supplier is not
making a profit. The client and supplier share a common destiny; they do not
discuss the past and both have exactly the same interest: meeting the estimated
effort.

14.6 Efficiency Incentives

The principle of shared pain establishes an important mechanism to encourage
aligned behavior. To further boost this effect (and to add vocabulary with a positive
connotation), a gain can also be shared under the adVANTAGE model (or at least
allocated fairly). A gain in a software project always results from a budget excess at
the end of an iteration. Various ways of handling the reduction in effort and

14.5 Shared Pain 211

http://dx.doi.org/10.1007/978-3-319-41478-2_15

therefore the monetary savings are conceivable here. An agreement should be
reached at the start of the project or during the contract negotiations. An iteration
could be billed at the planned budget as a minimum, regardless of whether it was
actually used up. This encourages the contractor to achieve the greatest possible
budget savings. It does nothing for the client. Therefore, the client will likely want
the cost savings to be fairly distributed. For example, half of the amount could be
paid out as a bonus to the contractor, and the other half could be saved by the client.

It is also conceivable (and sometimes practiced) to relate such bonuses to the
total effort for the project rather than individual features or iterations. This assumes
that the bonus was negotiated in advance or is simply determined as the sum of the
budgets for individual features. While it does not change a lot on the bottom line, it
encourages looking at the big picture. That is after all the aim of the adVANTAGE
model: For both partners to have their eye on the same goal.

Reference

Lane C, Bachmann R (eds) (2000) Trust within and between organizations: Conceptual issues and
empirical applications. Oxford University Press

212 14 Key adVANTAGE Principles

15adVANTAGE Procedures

In this chapter, we provide a detailed description of the adVANTAGE model for the
cooperation between contractual partners in agile custom development projects.
The following sections cover the individual project phases from project initiation
via development to project completion and take a particularly close look at how the
individual development iterations are planned, monitored, and billed.

15.1 Initial Requirements Collection and Budget Estimate

In many cases, not much more than an idea exists in the earliest stage of the project
(as in the example in Sect. 16.1). The first step in an agile software project therefore
is to determine the initial requirements and describe them in a list of features. This
step is well supported by the IR:scope and IR:agile, since they promote the dis-
cussion and evaluation of features and their assignment to sprints over the entire
course of the project. We have described the initial preparation of a feature canvas
in Sect. 5.2, which now becomes the basis for the first activity described by the
adVANTAGE contract model: the initial budget estimate. During the transition
from the feature canvas to the product backlog (Sect. 8.1), we estimated efforts for
the individual features in person-days. These are our initial estimates (IE) of the
pure development effort. This restriction is important, since the adVANTAGE
model differentiates between two different types of effort that are handled
differently:

• The pure development effort is the number of person-days expended by the
developers and architects for implementing and testing a feature within a sprint.

• This is distinct from the overhead for planning the sprints, the work of the
scrum master, the daily scrum meetings, and other activities not associated
directly with implementation.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_15

213

http://dx.doi.org/10.1007/978-3-319-41478-2_16
http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_8

This differentiation is important for the adVANTAGE model because the second
effort category is billed at a base rate which is fixed per sprint and negotiated at the
start of the project. This constitutes a fixed price component within the commercial
model. The following costs of the contractor are intended to be covered by the base
rate (BR):

• All effort for planning a sprint. This includes prioritizing the features and
establishing the extent and scope of the sprint. Generally, this is done in a
workshop with the client.

• Effort for the work of the scrum master. This role’s activities should be
deliberately kept out of the T&M-based settlement component because the
scrum master is responsible for establishing and enforcing the agile framework,
rather than directly adding value in development. Depending on the size of the
project, a full-time scrum master is not always necessary, especially with
experienced teams.

• Effort for attending regular meetings. This primarily refers to the daily scrum
and other regular meetings. Billing this effort through the base rate mainly aims
to prevent discussions about the meetings’ necessity at the end of a sprint. Either
we believe that these meetings are important or not, in which case they should
be omitted (although we strongly advise against this).

• Warranty effort. While a certain percentage surcharge on the total price is
normally applied in classic fixed price projects (between five and 15 %,
depending on risk and complexity based on experience), the warranty in
T&M-based models is somewhat more difficult to handle. Adding a percentage
surcharge to the actual effort expended means a significant uncertainty risk for
the client on the one hand and is not necessarily reasonable on the other hand.
Just because more effort was expended on development, this does not neces-
sarily result in more warranty cases. The opposite is possible as well. Therefore,
the adVANTAGE model calls for including warranty provisions in the base rate.
Since the size of the development team and the duration of the sprints are
known, an experienced estimator can determine an amount that is adequate for
the company’s risk policy. After all, warranty provisions are no more than
qualified guesswork on the basis of empirical knowledge anyway.

Once the base rate has been negotiated between the parties to the contract at the
start of the project, it remains fixed and is not touched or discussed again—unless
there are significant changes to the project setup. A major change in the sprint
volume, for example, by adjusting the sprint duration or altering the size of the
team, can constitute such an exception. However, one should resist the temptation
to start a debate about the base rate with every small change. This would not
promote trust, which we have already argued to be the most valuable asset in an
adVANTAGE project.

As part of our initial budget estimate, we now have to multiply the base rate by
the number of expected sprints. If the N features fi in the product backlog have an
initial estimate IEðfiÞ and we know the planned team size and sprint duration, the

214 15 adVANTAGE Procedures

number of sprints S results in an initial approximation by simple division. Then, the
initial budget IB is quite simple to determine:

IB ¼
X

1� i�N

IEðfiÞ � DR1 þ S� BR

Here, DR1 is the “normal” daily rate agreed between the client and contractor in
case of meeting the budget (Sect. 14.5). Whether and to what extent this initial
budget can already serve as a benchmark for incentives is discussed in Sect. 14.6.
Initially, it is just a value assumed by the client and contractor to approximately
equal the effort required to realize the project. Neither side has forgotten that this is
subject to great uncertainty and that things may develop differently than planned. At
first though, the parties to the contract reach an agreement that contains the fol-
lowing provisions (a concrete draft contract can be found in Appendix C.1):

• An agile custom development project is carried out in a client/supplier rela-
tionship. The approach, roles, and obligations to cooperate as well as the
respective tasks are agreed and regulated.

• Both parties assume that S sprints will be carried out to realize the target system.
The initial team size and therefore the numeric scope of an average sprint are
established.

• The base rate BR is defined and established as a fixed price per sprint. Two daily
rates DR are agreed on as well, with DR1 applying to effort expended within the
calculated budget per feature, and DR2 applying to effort required in addition.
There is no differentiation between the realization of value risk or development
risk as the cause for the additional effort.

• Each sprint is planned jointly and the scope is established based on a product
backlog, i.e., a sorted list of features that is prioritized by the client. An effort has
been estimated for each feature.

• Settlement takes place at the end of a sprint (more details below), also in the
literal sense—an invoice is issued and paid. The acceptance of the corre-
sponding features is a prerequisite. After the sprint, the client can reprioritize
and establish the scope of the next sprint (the sprint backlog) or terminate/end
the project.

These are the basic rules of the adVANTAGE model. The details are described
in the following sections.

15.2 Feature Prioritization and Sprint Definition

After a well-filled product backlog has been collected in the IR:agile, with an
estimated pure development effort assigned to each feature, and after the client and
contractor have agreed on the base amount, the number and extent of the sprints,

15.1 Initial Requirements Collection and Budget Estimate 215

http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_14

and therefore the overall budget, the features have to be prioritized and the scope of
the first sprint (i.e., the sprint backlog) has to be established. The annotations placed
on the canvases of the IR:agile are an important tool in this process. A cluster of
these annotations (which we have summarized into two categories in the following)
should ensure that a high priority is assigned to a feature so that it is implemented in
an early sprint.

• Value (business value/user value): Annotations from this category mark fea-
tures that promise increased value creation if they are implemented. The strategy
behind this principle is to quickly create value that is recognized as such by all
stakeholders. Not only does this improve project acceptance and therefore the
probability of success, it can even reduce costs. This is because the features that
accumulate at the bottom end of the sorted list do not add any particular value,
and may not need to be implemented at all in the end. More about this is
explained in Sect. 15.6.

• Risk (complexity/uncertainty): Annotations from this category indicate a high
level of risk, which results in greater effort if it materializes or makes imple-
mentation impossible in the worst case. This may be due to technical or business
reasons. As the case may be, development teams tend to put such features on the
back burner and hope for the usual miracle at the end of the project—“don’t
worry, it will be ok.” Since things do not usually work out that way, identifying
such risks early on is a good idea. Therefore, high-risk features should be
included in early sprints as well, if only either to eliminate the risk or to
understand it precisely and manage it.

Based on the annotations, a moderated discussion process for prioritization
follows. The goal is to bring all features into a linear sequence. Features with the
corresponding value and risk annotations are candidates for a high priority.
Low-priority candidates are those which are not necessarily required in the first
release in order to put the system into operation. There are often more of these
features than one might think, and it is a good idea to be very critical in reviewing
whether a feature belongs in the initial-release category after all. Features applying
only to a small number of exotic business scenarios can be bumped to a later
release, and sometimes remain in that limbo forever—which is a good thing.

The IR coaches play a special role in the feature prioritization phase. They have
to ensure that the argumentation for a production release is strictly based on value,
risk and requirements. On the other hand, they have to make sure nobody suffers
too much because none of their favorite features are assigned a high priority. This is
no easy task depending on the mix of stakeholders. The negotiation process ends
with a sorted list of features (the prioritized product backlog), which is shown
schematically in Fig. 15.1.

Simple addition is sufficient to get a suggestion for the scope of the first sprint.
The first n requirements for which the sum of the effort estimates is just barely less
than or equal to the specified sprint scope are planned for the release. The sprint
scope is simply the sprint duration times the number of developers.

216 15 adVANTAGE Procedures

For example, if our team had four developers and the sprint duration was four
weeks, the sprint scope would be 80 person-days and the first five requirements
from Fig. 15.1 could be implemented in an initial sprint—provided the team agrees
on exactly this scope (the sprint backlog is the result of a moderated negotiation,
although compromise is generally promoted by the methodology). Let us further
assume the daily rate DR1 is 1000 € and the agreed base rate BR is 22,000 €. This
makes the initial budget for the first sprint according to the above formula

IB1 ¼ ð18þ 7þ 42þ 3þ 10Þ � 1000 €þ 22;000 € ¼ 102;000 €:

15.3 Sprint Implementation and Controlling

Now comes the implementation. The developers go to work, so does the product
owner, and the scrum master makes sure everything happens within the specified
organizational framework. But before the coding begins, the effort for the individual

i i i
i

i l

l

l

Fig. 15.1 Initial prioritized
product backlog

15.2 Feature Prioritization and Sprint Definition 217

features to be implemented in the sprint is estimated in detail. The method for this
estimate is up to the team—they may prepare a detailed specification first or con-
tinue to accept some uncertainty. From the commercial perspective, it is not rele-
vant how the team prepares the detailed estimate, but that it does make an effort to
refine the initial estimates on a sprint-by-sprint basis.

A detailed estimate is made for each feature in the sprint backlog, so that we now
have an initial estimate IEðfiÞ and a detailed estimate DEðfiÞ for each feature fi:
What is the meaning of any difference between these two values? Only the initial
estimate is commercially relevant for the settlement between the client and con-
tractor, since the parties to the contract agreed to this budget at the beginning of the
project. The detailed estimate on the other hand is made far later in the project,
possibly in a late sprint, and is therefore based on far more experience and
knowledge of the project and the underlying business relationships. There is reason
to assume that this figure is more accurate and closer to the actual effort. The
detailed estimates are therefore used for sprint planning. They also have a statistical
function and are quite likely to offer additional insights in the course of cost forward
progressing (Sect. 8.6). This is the case, for example, when we note that the average
difference between IEðfiÞ and DEðfiÞ grows from sprint to sprint. If this is the case,
we should urgently take a look at the risk map (Sect. 8.4) to see what may be
sources of the problem.

In the course of implementation, all stakeholders also record their actual effort
AEðfiÞ per feature fi: In addition to working on the features however, we also need
to complete some tasks that cannot be assigned to concrete features but are covered
by the base rate (Sect. 15.1). It is of great interest for controlling (not for settlement)
to establish an effort budget for the base rate as well and to determine the actual
effort expended. The latter is straightforward and results in the value AEðBRÞ: But
what is the initially estimated budget IEðBRÞ of the base rate activities? In order to
establish this, we need to take a look at the calculation documents used to establish
the base rate. This is usually accomplished with assumptions about the frequency of
meetings, the extent of availability for a scrum master (e.g., 0.5 full-time equiva-
lents in smaller projects), and so on. Explicitly excluding the warranty provision,
this results in a calculated value for IEðBRÞ in person-days (PD), so that we can
perform pragmatic controlling for these activities as well.

Project controlling now becomes very simple. As long as all team members keep
daily records (although weekly recording is often sufficient as well), we can
determine the economic position of our project at any time. Figure 15.2 shows a
diagram that can be used to determine the current effort situation during a sprint.

The bars are read as follows: An initial budget of IEðBRÞ ¼ 22 PD was esti-
mated for the base rate; 12 PD have already been expended to date. Feature f2
already went into overspend (OS), since the initially estimated budget IEðf2Þ ¼
7 PD has already been exceeded by 2 PD. The other features are still in underspend,
since the actual effort of, e.g., AEðf3Þ ¼ 36 PD is still below the initial estimate
IEðf3Þ ¼ 42 PD:

218 15 adVANTAGE Procedures

http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_8

In the course of a properly conducted earned value analysis (Cabri and Griffiths
2006), another value is now recorded for each feature at least on a weekly basis: the
estimated remaining effort RE(fi). To obtain this, the developers are asked how
much work they estimate they will still have to put into each feature in order to
complete it. Added up across all features in a sprint, this may, for example, result in
the picture shown in Fig. 15.3.

The sum of all initial feature estimates in this sprint is 80 PD. A total of 70 PD
have already been expended, and the sum of the estimated remaining effort for all
features is 15 PD. This means an overspend of 5 PD is predicted. Meanwhile, we
see that the project manager expects an underspend (US) of 3 PD on the base rate
activities, since only 12 PD of the initially estimated 22 PD have been expended so
far, and only 7 PD will likely remain.

We should emphasize that these figures constitute an internal review by the
contractor; i.e., they are used for project controlling. Whether and to what extent
these figures—beyond the information required for invoicing—are made trans-
parent for the client depends on the corresponding agreements. For example,
whether overspending and underspending on the base rate is disclosed to the client
is up to the contractor. After all, this is a fixed price component, and the risk is
borne entirely by the contractor. On the other hand, greater transparency increases
trust, which we like to encourage in adVANTAGE projects.

A possible example of project controlling at the end of a project is shown in
Fig. 15.4.

Fig. 15.2 Determination of
effort in a sprint with five
features

15.3 Sprint Implementation and Controlling 219

The last sprint S7 is still going on in this example and will likely end in an
overspend, just like most previous sprints. On the other hand, the base rate appears
to be rather generously estimated since initially estimated effort is often not needed,
resulting in underspends there.

Fig. 15.3 Project controlling with estimated remaining effort during a sprint

Fig. 15.4 Example for effort controlling per sprint at the end of the project

220 15 adVANTAGE Procedures

15.4 Sprint Inspection and Billing

For the client, the project controlling figures from Fig. 15.4 would be presented as
shown in Fig. 15.5.

The solid black bars show the fixed compensation of the base rate, which is
22,000 € per sprint in this example. The dark gray bars show compensation for
work that is within the respective agreed budget IEðfiÞ for the individual features
and therefore completed at the regular daily rate DR1 (here, 1000 €), i.e., IEðfiÞ �
DR1 for each feature. Bars with a solid outline represent amounts for work com-
pleted at the reduced daily rate DR2 (here, 600 €), i.e., AEðfiÞ � IEðfiÞð Þ � DR2 for
each feature that went into overspend. This presentation for the client does not
reveal whether the fixed price for the base rate was sufficient or not.

So how is the settlement of individual sprints accomplished? This depends on
the progress achieved in each sprint, as the following sections show.

15.4.1 Full Completion of Sprint

Let us start by examining the straightforward case where the sprint was finished
completely. This means all features planned for the sprint have been realized,
tested, and accepted. The adVANTAGE model in fact assumes the acceptance of

Fig. 15.5 Example of commercial billing of sprints

15.4 Sprint Inspection and Billing 221

individual features at the end of a sprint. However, the definition of acceptance is
not necessarily equivalent to the legal meaning under a contract for work and labor.
In the adVANTAGE model, acceptance of a feature means that the client confirms
that the desired feature has been realized, that it is complete in terms of content (that
the scope of the feature meets expectations; i.e., the feature is “done”), and that it is
of sufficient quality. The final point is important and requires explanation. With the
acceptance of a feature at the end of a sprint under the adVANTAGE model, the
client is not confirming freedom from defects but completeness in terms of content.
This is important for differentiating between billable and non-billable rework in the
future:

• If it turns out in the future that an accepted feature should have been imple-
mented differently or that something is missing, a change request is created,
which means a new feature is added to the product backlog. The implementation
is billed as a new feature according to the adVANTAGE model (which means
the client will pay for it).

• If it turns out in the future that an accepted feature is defective with regard to the
given specification, which means it was not implemented correctly, the defect
has to be rectified free of charge. This means the costs are borne by the
contractor.

Of course, a gray area remains between a change request and the rectification of
defects, as it does in other software projects as well. This is one of the reasons we
talked about trust as a basic requirement in Sect. 14.2. The adVANTAGE model
does not offer a solution for this gray area. However, it clearly regulates the transfer
of responsibility and the risk of warranty cases in agile development projects. It
therefore accomplishes the differentiation between value risk and development risk
introduced in Sect. 12.4. The former is about the question of whether the correct
software was built (this risk should be borne primarily by the client), while the latter
is about the question of whether the software was built correctly (free of defects).
This risk should be borne primarily by the contractor. Once a feature has been
accepted, the subsequent risk is distributed exactly according to this requirement.

In case of full delivery of the sprint, the settlement procedure is as follows. If all
features have been realized and accepted, the budget is compared to the actual
effort. In the example from Fig. 15.1, the total budget IB was 102,000 €, composed
of the base rate of 22,000 € and the monetary equivalent of the initial estimate for
the five planned features:

IEðf1Þ ¼ 18 PD; IEðf2Þ ¼ 7 PD; IEðf3Þ ¼ 42 PD; IEðf4Þ ¼ 3 PD; IEðf5Þ ¼ 10 PD

222 15 adVANTAGE Procedures

http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_12

This adds up to an initial effort estimate of 80 PD at an agreed regular daily rate
DR1 of 1000 €, which corresponds to a budget of 80,000 €. Let us further assume
that the actually expended effort is as follows:

AE f1ð Þ ¼ 18 PD; AE f2ð Þ ¼ 14 PD; AE f3ð Þ ¼ 40 PD; AE f4ð Þ ¼ 3 PD; AE f5ð Þ ¼ 10 PD

This means feature f2 was significantly overspent, feature f3 slightly underspent,
and the other features were realized exactly on budget. The total actual effort isP
i¼1...5

AEðfiÞ ¼ 85 PD: Under the assumption that the reduced daily rate DR2 is

600 €, the amount invoiced for sprint S1 is:

Inv S1ð Þ ¼ BRþ
X

1� i� 5

IE fið Þ � DR1 þ
X

1� i� 5

AE fið Þ �
X

1� i� 5

IE fið Þ
 !

� DR2

¼ 22;000 €þ 80� 1000 €þ 85� 80ð Þ � 600 € ¼ 105;000 €

This calculation applies for overspending. The principle of shared pain estab-
lished in Sect. 14.5 is implemented by the reduced daily rate for work on features
that ran into overspend. This example uses 600 €—the parties should negotiate a
reduced daily rate at which the contractor would prefer not to work (since this
manpower could be used more profitably in other projects at the full daily rate), but
that at least covers all or part of the costs.

The principle of shared gain manifests itself in efficiency incentives (Sect. 14.6)
that apply in an underspending situation, i.e., when

P
AEðfiÞ\

P
IEðfiÞ: This

could be the case, e.g., in the following situation:

AEðf1Þ ¼ 14 PD; AEðf2Þ ¼ 10 PD; AEðf3Þ ¼ 34 PD; AEðf4Þ ¼ 3 PD; AEðf5Þ ¼ 9 PD

The handling of this situation depends on what the parties agreed on for sharing
any budget savings. In general, the invoice amount is determined by

Inv ðS1Þ ¼ BRþ
X

1� i� 5

AEðfiÞ � DR1 þ
X

1� i� 5

IEðfiÞ �
X

1� i� 5

AEðfiÞ
 !

� DR1 � EI

where the efficiency incentive EI is the ratio of sharing the savings, which can be
any value between 0 and 1. If the effort actually expended for the release was 70 PD
in our example, and the client and contractor had parameterized the adVANTAGE
model so cost savings were shared equally by both parties (i.e., EI ¼ 0:5), the
resulting invoice amount would be

Inv S1ð Þ ¼ 22;000 €þ 70� 1000 €þð80� 70Þ � 1000 €� 0:5 ¼ 97;000 €:

15.4 Sprint Inspection and Billing 223

http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_14

15.4.2 Partial Completion of Sprint

The more complex case of settlement for a sprint occurs when the results are
incomplete. Possible reasons for this could be that not all features could be (fully)
realized within the sprint’s time box, or that some features were delivered but not
accepted by the customer.

Figure 15.6 shows a schematic of such a mixed outcome.
Feature 5 was not delivered, and feature 2 was delivered but not accepted by the

client. Both features are removed from the examination and settlement of the
current sprint and carried forward to a subsequent sprint (i.e., they are put back into
the product backlog, with the effort already expended being noted). Now only
features 1, 3, and 4 are relevant for the settlement. The sum of actual effort (AE)
expended for these features is 61 person-days, which represents a slight under-
spending since the initial estimates (IE) for the three accepted features totaled 63
person-days. If we once again assume that cost savings are shared equally, the
resulting settlement for the sprint is:

Inv S1ð Þ ¼ 22;000 €þ 61� 1000 €þ 63� 61ð Þ � 1000 €� 0:5 ¼ 84;000 €:

15.5 Planning the Next Sprint

Once a sprint has been properly settled, the product backlog has to be re-sorted and
the next sprint needs to be prepared. Figure 15.7 shows the situation at the end of
the sprint in our example of partial acceptance.

The first column contains the features 1, 3, and 4 which are done and settled.
They are no longer relevant for planning the next sprint. The second column
contains features 2 and 5, which were not completed or accepted in the previous

Fig. 15.6 Example of incomplete sprint results

224 15 adVANTAGE Procedures

sprint. They are candidates for continued implementation. The first two columns
together constitute the sprint backlog of the sprint that was just completed. The third
column lists the features that were planned initially but have not yet been realized.
Finally, the last column lists two new features that were added during the last sprint.
As we have emphasized several times, late requirements are no accident but a
normal occurrence in agile projects. These may constitute entirely new features or
also changes to the content of older features, which are treated as change requests
and therefore appear as new features. Initial estimates have already been assigned to
the two new features in this example. As long as no features are eliminated, col-
umns 2, 3, and 4 constitute the current product backlog.

l l l

Fig. 15.7 Example of a feature canvas after the completion of a sprint

15.5 Planning the Next Sprint 225

Now another prioritization workshop is held in the IR:agile as described in
Sect. 8.2, in order to plan the next sprint. This can be preceded by a backlog
reprioritization with the client, using the requirements exchange (Sect. 8.3). In
determining a newly prioritized product backlog, various courses of action are
possible on this basis:

• Features left over from the previous product backlog (the third column) can be
reprioritized, for example, to reflect new insights about value or risk.

• Features from the previous product backlog can also be eliminated entirely, for
example, if they have proven superfluous or if their content has changed so that
they are replaced by new features.

• New features with an initial estimate may be added. They are prioritized
according to their value and risk and positioned accordingly in the product
backlog.

• Features left over from preceding sprints can be assigned a detailed estimate
according to the latest insights; they are prioritized and positioned accordingly
in the product backlog as well.

At the end of this discussion and exchange process, there should be a newly
sorted product backlog—a sorted list of prioritized features. The candidates for the
next sprint backlog are once again quite simply determined as the first n features for
which the total effort is equal to or just less than the sprint scope. It is important to
note that starting with the second sprint, we not only have an initial effort IEðfiÞ and
a detailed estimate DEðfiÞ per feature fi; but the actual efforts AEðfiÞ already
expended for not-yet-accepted features are also known. These are transferred to the
next spring as starting values for the features’ actual effort counts. In the example
above, features 2 and 5 are going into the next sprint and their already expended
efforts of 14 PD and 10 PD are transferred accordingly.

15.6 Project Termination

An important objective of the adVANTAGE model is to generate economic benefits
for both sides (i.e., for the client and the contractor), in contrast to plan-driven and
fixed price models. A key aspect is that an agile project can be terminated at the end
of each sprint. There are generally two possible reasons for this. For one, termi-
nating the project may become necessary because the goal proves to be unattain-
able. The economically reasonable continuation of the project may be impossible
for technical or other reasons. If features are prioritized by value and (in particular)
the expected risk of realization, the probability of project termination in late sprints
should be minimized since the greatest risks ought to materialize early on.

The more pleasant reason for project termination is reaching an adequate busi-
ness value, thereby accomplishing the project objective. Whether this goal has been
reached needs to be discussed after each sprint, based on the results achieved so far.

226 15 adVANTAGE Procedures

http://dx.doi.org/10.1007/978-3-319-41478-2_8
http://dx.doi.org/10.1007/978-3-319-41478-2_8

If prioritization was effective, sometime during the project a point will be reached
where all the remaining features in the product backlog only promise a very low
additional value. Ideally, the software produced thus far is already being used in
production at this point, and the users have learned to value the benefits of the new
system. It is even better if nobody is bothered by the fact that the final 10 % of
features do not exist yet. This effect can be observed in many agile projects: While
the laboriously developed detailed specification is also implemented down to the
details in plan-driven projects, production software is produced more quickly using
agile methods. Cases where nobody needs the final features from the product
backlog anymore, or a decision is made not to invest the additional effort to build
them, are quite realistic here.

The benefit for the client is apparent. When future sprints do not have to be
realized anymore, the costs are lower as well. In keeping with the efficiency
incentive principle however, a construct should exist to also make it appealing for
the contractor to generate sufficient business value early on so the project can be
ended accordingly. An elegant way to accomplish this is to pay a premium for
budget savings compared to the total initial budget (IB). For example, paying
x percent of the budget savings as a completion premium could be agreed. This
means the contractor will not be upset about a termination, since it receives a
payment without incurring additional costs (at least starting at the time when the
development team can be assigned to a new project). In practice, x will be sig-
nificantly below 50 % as a rule.

15.7 Summary

The adVANTAGE model is intended as a framework for legal and commercial
rules that support the successful realization of agile software projects. How “suc-
cessful” is defined on a case-by-case basis clearly depends on the respective project.
If an agile method is chosen, much speaks in favor of generating a certain business
value as quickly as possible with the least possible effort, relinquishing certainty in
exchange for getting assessable results instead of paper early on. The parties
involved should reap a benefit compared to conventional methods. Agility is rep-
resented by the adVANTAGE model insofar as

• the entire body of rules is tailored to the processes of typical agile methods such
as Scrum,

• late and changing requirements are considered normal,
• the work is performed in iterations, which keep being adapted to the latest

insights, and
• settlement is closely corresponding to the actual generation of business value.

15.6 Project Termination 227

The method is based on mutual trust at a crucial point—the question of whether
the functionality intended for a sprint (i.e., a feature) is “done” in the sense of being
complete but perhaps not free of defects. Subsequent progress, the commercial
settlement, and therefore the success of the project depend on how this question is
answered (the model deliberately does not provide any additional assistance here).
If both parties live up to the trust placed in them, the model is economically
attractive for both sides due to its principles of shared pain and efficiency incen-
tives. In addition, the client’s risk is limited by the principle of two daily rates and
settlement based on the actually produced business value. It gives the contractor an
incentive to accept a more risky approach—compared to plan-driven methods—
since the contractor is reimbursed at least for its costs (or part of them). The
possibility of participating in reduced effort without incurring additional costs
provides an added incentive to work as efficiently as possible. This in turn improves
budget certainty for the client, since it can rely on the fact that none of the
stakeholders are interested in generating increased effort.

The attentive reader will of course have noted that the construction of the
adVANTAGE model is by no means rocket science. But that applies to agility in
general. A few principles, which are followed all the more strictly, and trust that the
persons and organizations will behave reasonably, form the basis of agile process
models as well as the proposed commercial model.

Reference

Cabri A, Griffiths M (2006) Earned value and agile reporting. In: Maurer F, Melnik G
(eds) AGILE 2006: Agile Conference, pp 17–22. doi:10.1109/AGILE.2006.21

228 15 adVANTAGE Procedures

http://dx.doi.org/10.1109/AGILE.2006.21

16adVANTAGE in Practice

The description of the adVANTAGE model in the preceding chapter was based on
the typical, iterative approach in agile projects. A few sample parameters were
chosen, and a prototypical process was assumed. Highly specific situations often
arise in practice, so that answers which deviate from the prototypical process have
to be found. We will therefore discuss some practical aspects for the application of
the adVANTAGE model in this chapter. These include for example establishing the
model parameters, but also a fundamental discussion of the model with a potential
client.

16.1 Case Study: The BERGFÜRST Crowd
Investing Platform

We will start by outlining a case study from an actual project. The client was the
start-up company BERGFÜRST, which intended to establish a new business model
based on crowd-funding in the market. Crowd-funding is the procurement of equity
or financial means similar to equity from numerous small investors, each of whom
acquires a (usually silent) share in the company being financed (Ordanini et al.
2011). In addition to companies, social or art projects can be financed as well. In
order to establish contact between these projects or companies and potential
investors, platforms similar to a marketplace are usually operated the way they are
also used in e-business. The fundamental idea behind the crowd-funding model is
that projects can be financed for which an individual investor would not likely be
found because the risk is too high, or because the business model cannot (yet) be
described in as structured and reliable a manner as expected by conventional
venture capitalists. On the other hand, the risk in crowd-funding is manageable for
the individual investor due to the limited investment. Often, there is an additional
incentive that goes beyond the investment calculation as such. For example,

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_16

229

investors may want to support a project because they find the idea personally
attractive and want to see it implemented.

In our case study, since trust in the capability of the contractor had been
established through personal contact, since a lot of positive experiences had been
made with agile software projects, and since the geographical proximity at the
Berlin site promised close collaboration, the IT service provider adesso was chosen
as the contractor for the realization of the BERGFÜRST crowd investing platform.
The decision in favor of an agile process model was apparent from the outset. There
was no exact description of a business model, nor a concept of the individual
processes and features needed for the platform. This ruled out a plan-driven method
based on a specification prepared in advance, if one did not want to lose precious
time before the development team could start working. However, a fast start to
development was essential since a short time to market was desired. This was a
classic situation calling for an agile method: unclear requirements, little time before
the start of development, and a client who wants to evaluate real software as quickly
as possible.

After a detailed presentation of the model and after reaching a fundamental
agreement regarding the project objectives, the parties agreed on the adVANTAGE
contract model. What mattered most was the model characteristics that align the
interests of both parties with the same goal: generating business value quickly while
keeping the development effort as low as possible. The desired business value could
only be outlined as a high-level vision at first. A platform should exist where
companies and investors could find each other, and that would handle all processes
required for financing. After the adVANTAGE parameters were established in the
course of a negotiation session and a corresponding contract was concluded based
on the sample contract described in Appendix C.1, the first workshop was carried
out in the IR:scope. The goal was to prepare a feature canvas to obtain an initial
overview of the stakeholders for the planned platform. Figure 16.1 shows an
example from the IR:scope and a section of the first context model.

In addition to the context model, a system of targets influencing the course of the
project was established. An excerpt from this target system is shown in Table 16.1.

Weiteres Umfeld

Umgebungssystem
Systemkontext

Aktiengesetz
<<Stakeholder>>

HGB
<<Stakeholder>>

KWG
<<Stakeholder>>

e-crowd

Emittent
<<Nutzer>>

Treuhänder
<<Nutzer>>

Market Maker
e-crowd

<<Nutzer>>

Registrierter
Investor

<<Nutzer>>

Soziale Netze
<<System>>

Interessierter
Investor

<<Nutzer>>

Wirtschaftsprüfer
e-crowd

<<Nutzer>>

Interessierter
Emittent

<<Nutzer>>

Aktiver
Investor

<<Nutzer>>

Emittentenservice
e-crowd

<<Nutzer>>

Buchhaltung
e-crowd

<<Nutzer>>

Kommunikations-
dienstleister
<<System>>

Marketing/CRM
e-crowd

<<Nutzer>>

PayPal
<<System>>

Payment Provider
<<System>>

Investors Relation
e-crowd

<<Nutzer>>

BGB
<<Stakeholder>>

Finanzamt
<<Stakeholder>>

Bank des
Treuhänders

<<Stakeholder>>

Wirtschaftsprüfer
d. Emittenten

<<Stakeholder>>

Altgesellschafter
<<Stakeholder>>

Fig. 16.1 Interaction Room with context model and feature canvas for the BERGFÜRST project

230 16 adVANTAGE in Practice

Based on the target system and context model, a list of about 65 features was
then derived, put through the initial estimation process described previously and
prioritized. Various estimating methods such as expert estimation, planning poker,
and relativizing estimates were combined due to the high level of uncertainty. The
sum of the initial estimates for all features (the entire product backlog) was over
500 person-days at the end of this process. Eight sprints with a duration of three
weeks each were planned. The initial team consisted of three developers, a scrum
master assigned to the project half-time and a proxy product owner who, together
with the product owner on the client side, assumed responsibility for the product
backlog maintained in the IR:agile and for acceptance of the completed features.

Only a few weeks elapsed between the fundamental agreement on the contract
model and the start of development. The team was able to begin with the production
of presentable and usable software quickly. As previously noted, the basic condi-
tions were anything but stable. The exact business model was not established until
halfway through the project. While the focus was exclusively on company financing
at the outset, support for financing real estate funds was to be enabled as well in a
later phase. Changes were also made repeatedly to the features at the detailed level.
For example, it was not clear at the outset how to handle the reservation of pay-
ments: As long as a crowd-funding project has not found the minimum number of
investors, whether it will be realized at all remains uncertain. Once this threshold is
exceeded, one needs to ensure that all investors actually make their financing
contribution. However, reserving funds through a variety of payment methods is a
process that can require a banking license in certain cases. Such uncertainty needed
to be resolved, and decisions had to be made in the course of the project while
software development proceeded at top speed. Imponderables also existed at the
technical level. The first version of the portal ran in the cloud under Amazon Web
Services to enable the fastest and especially most flexible possible response to
future requirements for the production environment. Later, it turned out in the
course of discussions with the BaFin (the German Federal Financial Supervisory
Authority) that this does not comply with the applicable security regulations in
regard to processing certain financial transactions.

Table 16.1 An excerpt from the BERGFÜRST target system

Target 1: Companies (issuers) want to offer shares as own issues to obtain capital

Target 1.1 The book building method is to be used for the issue

Target 1.2 The issuer wants to generate predefined minimum proceeds

Target 1.3 The number of shares issued is to be established before the issue

Target 1.4 The price range for a share is to be established before the issue

Target 1.5 The issuer wants to issue a minimum volume of shares

Target 1.6 The issue process is to be confirmed by an auditor

Target 1.7 Only one issue process is to be carried out at one time

16.1 Case Study: The BERGFÜRST Crowd Investing Platform 231

In short: BERGFÜRST was a truly agile project with uncertainties from many
perspectives. This made adVANTAGE downright ideal as a contract model, and the
corresponding requirements were met as well, with mutual trust between the
partners being first and foremost. Both sides noted that this trust was justified after
just a few sprints: The contractor dealt reasonably with change requests, while the
client displayed understanding for less than optimal productivity at the outset due to
the uncertainties and rapid changes. In parameterizing the adVANTAGE model,
besides the regular and reduced daily rates DR1 and DR2, a special daily rate DRPO

was agreed for the work of the proxy product owner. The base rate BR was initially
set quite low and not raised later even when the team was expanded, since it turned
out that the overhead in the closely cooperating team of the two contractual partners
was extremely (and favorably) low, and because the sprint duration was shortened
to two weeks in return. An efficiency incentive was not defined.

The adaptations of the business model during the course of the project and the
resulting changes and additional features in the product backlog ultimately led to 13
sprints instead of the eight calculated originally. Instead of slightly over 500
person-days calculated from the initial estimate, a total of approximately 650
person-days of actual effort was recorded. One particularity was the composition of
the team over time. While all software experts were originally from the contractor
adesso, developers from the client’s team were gradually added. This was therefore
a cooperative performance structure in the sense of Fig. 11.1. These employees
initially operated outside the budget and, after corresponding training, were treated
like developers of the supplier except that their work did not appear on the invoice

Fig. 16.2 The BERGFÜRST crowd investing platform

232 16 adVANTAGE in Practice

http://dx.doi.org/10.1007/978-3-319-41478-2_11

in the end. Enabling long-term further development and maintenance by the client
was the goal, which has also been fully implemented in the meantime. The resulting
portal (Fig. 16.2) is being further developed and maintained by BERGFÜRST
under its sole responsibility today.

16.2 Fine-Tuning adVANTAGE Parameters

In the presentation of the general adVANTAGE model and the preceding
description of the example, the values for the typical parameters of the settlement
model were not discussed in detail. However, the exact parameterization of the
model is anything but unimportant in a practical project context. We are talking
about the following variables in particular:

• Sprint scope,
• Sprint duration,
• Base rate,
• Regular daily rate,
• Reduced daily rate, and
• Efficiency incentive.

The first two parameters, sprint scope and sprint duration, will not be influenced
to a significant extent by commercial aspects of the adVANTAGE model in
practice. Rather, they will be determined according to practical considerations
based on comparable projects. The sprint scope is the maximum number of
person-days that can be used in a sprint for the implementation of features. It is
roughly determined by multiplying the number of developers by the sprint duration
in working days. But since the developers cannot spend 100 percent of their time
programming features, but also have to perform overhead tasks paid by the base
rate, the product has to be multiplied by a productivity factor (such as 85 percent
depending on empirical values) to determine the actual, realistic sprint scope.
Regarding a sensible team size, i.e., the number of developers that can collaborate
efficiently on an agile project, we refer e.g. to Lindvall et al. (2002).

The sprint duration not only affects the sprint scope for a given team size, but
also has a direct impact on the base rate. Insofar, it clearly has commercial effects.
But as long as we assume that sprints in agile development processes should not be
longer or shorter than a few weeks, the commercial effects become rather blurred.
This is why choosing the sprint duration should be guided less by economic and
more by practical empirical values. One should not be afraid to change the sprint
duration either (in the course of the project, not during a sprint)—of course this
means adjusting the base rate if applicable.

16.1 Case Study: The BERGFÜRST Crowd Investing Platform 233

We listed the essential components of the base rate in Sect. 15.1. They are also
the cost drivers that form the basis of a corresponding calculation. Ultimately, this is
the estimated effort for the scrum master, regular meetings, and planning tasks
multiplied by a daily rate as the calculation base, as well as the establishment of a
warranty surcharge that can be estimated as a percentage of the sprint budget. Here,
a supplier should calculate soundly but also not be too fearful. By far, the greater
share of the settlement, which therefore has more leverage, will consist of the effort
for realizing the features.

Agreeing on the regular and reduced daily rates is therefore of vital importance.
The simplest case is when the contractor and client have already worked together
successfully in other projects on a T&M basis. A regular daily rate that considers
the expectations and pain thresholds of both parties has already been established in
this case. The reduced daily rate on the other hand is more difficult to determine. It
needs to be set so that the supplier does not really want to work at that daily rate,
but does not suffer an economic disaster either. A price that is close to the cost of
production for the work has repeatedly proven itself as negotiable in practice.
Fine-tuning will be largely limited to a range of a few percentage points above or
below this threshold. The client may be very interested in seeing the contractor
“suffer” if the budget per feature is exceeded. However, the client should consider
that every percentage point below the cost of production not only increases the
inclination to inflate the estimated effort, which leads to more discussion in the
project, but also that the supplier will demand a higher efficiency incentive in return
as well.

The efficiency incentive in the standard model represents a share of the reduced
effort for implementing the respective feature compared to the initial estimate. If the
contractor remains below the agreed budget, it can bill a percentage of the differ-
ence anyway. As usual, the higher the risk, the greater the opportunity—as long as
the parties deal fairly with each other. In practice, the rate is between 10 and 50 %,
depending on the values of the remaining parameters since an overall package is
negotiated.

References

Lindvall M et al (2002) Empirical findings in agile methods. In: Wells D, Williams L (eds) Proc
2nd XP Universe and 1st Agile Universe Conf on Extreme Programming and Agile Methods.
Lecture Notes in Computer Science, vol 2418. Springer, pp 197–207. doi:10.1007/3-540-
45672-4_19

Ordanini A et al (2011) Crowd-funding: Transforming customers into investors through innovative
service platforms. J Service Management 22(4):443–470. doi:10.1108/09564231111155079

234 16 adVANTAGE in Practice

http://dx.doi.org/10.1007/978-3-319-41478-2_15
http://dx.doi.org/10.1007/3-540-45672-4_19
http://dx.doi.org/10.1007/3-540-45672-4_19
http://dx.doi.org/10.1108/09564231111155079

17Summary

A sample contract for adVANTAGE projects is found in Appendix C.1. It is
intended to outline the basic legal conditions for a project where the two parties to
the contract have decided on a very special cooperation model—a model that
accepts uncertainty as given and distributes the opportunities and risks fairly on this
basis. However, the most important principle cannot be guaranteed, even by con-
tracts that are negotiated in detail and cleverly phrased: trust. This is why we
postulated that mutual trust is an essential, core principle of adVANTAGE in
Sect. 14.2. Trust is so important because both parties assume risks in the course of
an agile project that result from inherent uncertainty. This uncertainty refers to the
fact that estimated effort always remains an estimate, as much as validation is
desired. However, the adVANTAGE contract model is an instrument to align the
economic interests of the contractual partners with the same objective, which is to
adhere as closely as possible to a cost budget agreed in advance.

However, this contractual (legal and/or commercial) aspect is only one side of
the coin. The other is derived from the methodic framework which is provided by
the Interaction Room, and especially its IR:scope and IR:agile variants. In the IR:
scope, the two parties to the contract find an opportunity to discuss and establish the
scope for the intended project. On this basis, the IR:agile then makes it possible to
repeatedly review the intrinsic value of the agile development project across all
phases. It therefore provides the tools for managing the entire life cycle. Managing
uncertainty is supported by the division into manageable sprints as well as
feature-based controlling and settlement. Insofar the concepts of the Interaction
Room and the adVANTAGE contract model go hand in hand.

Whether and when adVANTAGE is the right model for cooperation between
two contractual partners can be discussed on a case-by-case basis. Figure 17.1
illustrates the dimensions relevant for such a discussion.

The dimensions of interface intensity and likelihood of manifold late require-
ments were already discussed previously in Chap. 10. The following dimensions
are added in the context of the adVANTAGE model:

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_17

235

http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_10

• Vertical integration: adVANTAGE is based on the assumption of continuous
management of changing requirements, making it especially well suited when
such flexibility is permitted. This makes it unsuitable when, for example, large
work packages are to be developed externally at fixed prices or off-shoring
models are to be applied.

• Reliability of Definition of Done: adVANTAGE is based on the continuous
reprioritization of features and the completion of individual features in the
shortest possible realization cycles. Both make sense, provided it is clear when a
feature is considered done. Why we accept that a formally determinable DoD
does not exist in the adVANTAGE model was discussed in Sect. 14.2. Nev-
ertheless, the parties to the contract should have compatible expectations to
mutually support an assessment of the state of completion with reasonable
reliability.

• Importance of economic transparency: adVANTAGE is intended to benefit
both parties to the contract, also economically. The observation of economic
efficiency is therefore an essential means to check whether the initial goals can
still be reached or have been reached already. However, the level of detail
required for information about the economic efficiency of an ongoing project
can vary widely. It can range from a general prediction (“everything is looking
fine, we are within the cost budget”) to current forecasts and projections on a
feature basis. Cost and budget transparency should be granted to those who
exchange and re-prioritize requirements in projects according to the adVAN-
TAGE model, since this is the only way they can evaluate the economic effects
of their own actions.

• Importance of risk sharing: A key characteristic of the adVANTAGE model
is the special approach to the management of software development risks.

i li
l

l
i i

i
i l

l i i

i

l

li ili
ii

l
i i

i i

i l i i

Fig. 17.1 Suitability of adVANTAGE for a concrete project

236 17 Summary

http://dx.doi.org/10.1007/978-3-319-41478-2_14

The contract model supports a fair distribution and sharing of these risks. The
more important the issue of risk sharing is for the parties to the contract, the
more suitable the adVANTAGE model.

In Chap. 14, we introduced the brief adVANTAGE formula “price + con-
tract + procedures.” Compared to the contract models for agile software projects
discussed in Chap. 13, adVANTAGE in combination with the Interaction Room
offers a comprehensive framework—consisting of commercially (price) and legally
(contract) effective elements as well as concrete methodology support for project
activities (procedures). How this can look like in concrete terms will be illustrated
by the example in the following part.

17 Summary 237

http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_13

Part IV
A Sample Project

18Case Study: The Cura Health Insurance
Benefit System

To put the methods we presented in the previous chapters into a larger context, and
give an idea of an appropriate modeling volume and level of abstraction as the
project progresses from its initial setup to operations, we present a visual docu-
mentation of the models that evolved in the Interaction Room over the course of an
actual project. After a brief introduction to the project, the examples from the
project scoping phase using the IR:scope are provided with commentary explaining
both the project domain and the IR coaches’ choices, as well as references to
preceding chapters for a more detailed description of the respective modeling
techniques. We then explain the process of monitoring the project with the help of
the IR:agile and present lessons that could be learned from the application of the IR:
scope and IR:agile in this project.

The example we are using to demonstrate the IR:scope, IR:agile, and their
interplay is the development of a private health insurance benefit system (HIB).
Such a system supports all processes related to serving policyholders as briefly
outlined below.

Prior to the treatment by a doctor which may lead to insurance benefits (i.e., the
reimbursement of costs to the policyholder), prequalification may occur (e.g.,
prequalification to determine whether and what proportion of certain dental treat-
ments that could also be due to cosmetic reasons would be reimbursed). Therapy
plans may be the subject of prequalification as well. These are used in case of
certain diagnoses to commission dedicated Personal Injury Managers for moni-
toring, controlling, and intervention. The actual granting of insurance benefits then
follows the treatment based on invoices and receipts that are submitted. All sorts of
investigations are conducted prior to the actual granting of benefits. These pertain
among other things to violations of disclosure requirements before the contract was
concluded, insurance exclusions, and the appropriateness of the services provided
based on type, scope, and fees. All communication related to benefits must be
recorded in order to avoid future misunderstandings and so that disputes can be
examined in the overall context.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_18

241

On the one hand, all of this needs to be done quickly and in a user-friendly
manner in modern benefit systems such as the HIB system described here, so that
customer dissatisfaction is avoided. On the other hand, there should be no payment
of benefits that are not required according to the contract. All of this should happen
reliably and, in view of the challenging economic situation faced by health insurers,
with as much automation as possible. Intervention by administrators shall only take
place when their technical expertise is required.

The HIB system was developed in close coordination of the private health
insurer Cura AG1 and the contractor adesso. The health insurer assumed the role of
the requirements originator and participated in development with its own personnel.
Most of the development work was to be handled by adesso. The software system
being developed was to be integrated into Cura’s application landscape and would
be operated by Cura. It was clear to the stakeholders that the new development of a
benefit system is subject to the risk of simply replicating the existing production
system, without taking advantage of the opportunity for functional optimization and
innovations. They wanted to avoid this risk. The stakeholders were aware that there
would be late requirements and agreed to omit the preparation of the most complete
possible specification. Instead, they intended to compile the functionality and
describe it as concisely as possible. Only functionality with a high potential for
misunderstandings was to be described in more detail. Even though the initial
descriptions would largely be brief, the effort was to be estimated at the feature
level. The two companies used the IR:scope to establish the scope of the system
being developed. They agreed to establish a requirements exchange in order to
continuously swap late requirements for early ones, to regularly use the risk map
and to apply adVANTAGE in order to share risks between Cura and adesso.

1The company and stakeholder names have been changed to protect the client’s anonymity.

242 18 Case Study: The Cura Health Insurance Benefit System

19Initial Project Scoping with the IR:scope

This chapter describes the initial population of the IR:scope in the HIB project.
Beside the models on the IR canvases, a few additional artifacts played a role in the
preparation and follow-up of the IR population.

19.1 Project Vision

In order to describe the target state of the project, the stakeholders in the IR:scope
initially prepared the fictitious “press release” shown below, as recommended in
Sect. 3.6:

Cura insurance introduces new benefit system

Massively improving service for policyholders while reducing costs

Cura AG has introduced a new benefit system for private health insurance, supporting
a high level of automation and simultaneously making a contribution to providing
much better service to the policyholders. Benefits will be settled within 36 h in cases
where there are no inquiries. Clients will be able to contact the insurer through mobile
apps, social media, e-mail or regular mail. This is made possible by the introduction
of the new HIB system, which provides optimum support today for the digital
transformation that has begun. That means media breaks are eliminated as early as
possible and the entire process is fully supported electronically. Operation of the
system is largely automated in the background; 75 % automatic processing is the goal
for future system operation. The fact that minor individual cases will be settled with
no manual review is deliberately accepted, achieving high overall efficiency as a
result. This results in great simplification for the policyholders and the administrators
at Cura. The new system supports benefits for full health insurance and supple-
mentary insurance. It is flexible in regards to future new and innovative health
insurance products in the broadest sense. Benefit management processes can easily be

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_19

243

http://dx.doi.org/10.1007/978-3-319-41478-2_3

added later, without having to fundamentally alter the system structure. “With the
new system, our clerks can handle standard cases independently, mostly closing
them, without extended training periods,” says Cura IT director Dirk Kalker. Full
integration with related systems has also been considered, making it possible to
support automated business processes across system boundaries. Company-specific
rules can be stored and used through parameterization. Kalker: “I’m so happy.”

19.2 Identification of Stakeholders and Objectives

According to the recommendations in Sect. 5.1, the following roles were identified
as stakeholders in the IR:scope on the side of the health insurer:

• Project manager,
• Benefits business expert,
• Clerks (two),
• Benefits department manager A-K and benefits department manager L-Z,
• Director of patients/benefits,
• Software architect, and
• Operations officer.

The following stakeholder roles were identified on the side of the contractor
adesso:

• Project manager,
• Head developer, and
• Software architect.

Twelve persons were identified to represent the three most important stakeholder
groups: business, development, and operations. They were at various levels of the
hierarchy. Eight future users and the process owner were included. The ratio was
balanced along the client/contractor axis as well.

The following were identified as explicit goals of the leading stakeholders:

• The director of benefits wants to be able to exchange benefit administrators
between the divisions depending on the workload.

• The director of IT wants to drive digitalization of the company under the
umbrella of the project.

• The clerks want to automate data capture processes with a high number of
repetitions.

244 19 Initial Project Scoping with the IR:scope

http://dx.doi.org/10.1007/978-3-319-41478-2_5

• The clerks want access to all relevant information at a glance for difficult cases
under review.

• The enterprise IT wants to demonstrate that using agile techniques leads to
suitable software which can be deployed automatically.

Notwithstanding these individual goals, all stakeholders were able to agree on
the higher-level objective described in the “press release.”

19.3 Feature Canvas

19.3.1 Feature Identification and Canvas Population

In the course of the initial population of the IR:scope, the feature canvas shown in
Fig. 19.1 was developed as described in Sect. 5.2.1.

19.3.2 Annotation and Analysis

Following the collection of the features, the feature canvas was annotated, using all
annotations from the set of feature canvas annotations (Sect. 5.2.2). Figure 19.2
shows the feature canvas including the annotations.

Several circumstances were noted regarding the annotations on the feature canvas:

• The features related to quotation preparation were thinly annotated. Together
with the straightforward identification of these features, this was cause to sus-
pect that these features existed in a very similar form (or were at least known
from other systems). By and large, it seemed that these features were expected
as basic functionality without assigning a special benefit for the user or company
to them. Conversely, it could be assumed that their lack would be perceived as a
substantial defect. The existing quotation system was examined in more detail as
a result. The users were asked about potential for improvements.

• The features in the context of personal injury management were annotated much
more densely. Here, the mix of annotations was very lively. Multiple user and
business value annotations appeared on the one hand and combined with
complexity and uncertainty annotations on the other hand. This mix is typical
for new functionality, which is initially associated with vague expectations. As a
result of this mix, the personal injury management processes were examined
more intensively and some circumstances were studied in greater detail so that
expectations could be stated in concrete terms.

• The feature “determination of similar healing/therapy plans” in particular was
assigned a variety of annotations. Here, the annotations user value, business value,
complexity, and uncertainty were applied. This was a clear indication that imagi-
native expectations could encounter significant realization difficulties. In fact, the

19.2 Identification of Stakeholders and Objectives 245

http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5

word “similar” harbored major interpretation potential. Ultimately, the relation
“similar” for healing and therapy plans had to be defined, which in turn only
succeeded after the object type “healing/therapy plan”was defined in concrete terms.

Fig. 19.1 Initial feature canvas of the HIB system

246 19 Initial Project Scoping with the IR:scope

Fig. 19.2 Feature canvas with annotations

19.3 Feature Canvas 247

• As an individual feature, “review of previous medical history in case of sus-
picion” was especially dubious, receiving fully three uncertainty annotations.
Following a more detailed analysis, it turned out that the stakeholders did in fact
have a compatible concept of what the feature was supposed to do, but no idea
whatsoever regarding the question of how it could be realized. This example
shows that the complexity and uncertainty annotations are not always used with
specific appropriateness. Apparently, there was a tendency toward complexity
when the person proposing the annotation had an idea of how this could be
realized (where this had nothing to do with whether this usually vague idea
would somehow assert itself). If such an idea was lacking, the stakeholders
tended to use the uncertainty annotation instead.

• The fact that the feature “preparation of printed document for policyholder,”
which appears simple at first glance, was assigned double complexity is striking.
This annotation became comprehensible later when it turned out during the
population of the integration canvas that the printing system was being replaced
at the same time. This in turn was urgently required due to recurring problems
with mass printing. Therefore, the feature was assessed as complex because the
printing system being used, which was used as a mental point of reference, was
perceived as cumbersome.

The Kano classification which was carried out as a refinement of the user value
annotations is not reproduced here, since it had no particular influence on the
prioritization and grouping of features for sprints.

19.4 Process Canvas

19.4.1 Identification and Prioritization of Business Processes

The most important business processes were identified based on the feature canvas
and its annotations. Here, the approach was largely heuristic. While it could be
assumed on the one hand that most of the features identified as important could also
be assigned to the important business processes, some important features were in
fact not covered by the most important business processes. The next step on the
way to the important business processes was clustering the features (grouping
the features having a business relationship). On the basis of such a clustering, the
following business processes were identified as especially important:

• Mailing classification,
• Receipt identification,
• Review for violation of precontractual disclosure requirement,
• Benefit review,
• Granting of benefit,

248 19 Initial Project Scoping with the IR:scope

• Rejection,
• Fraud detection,
• Rate statistics,
• Determination of sales potential,
• Determination of information for product engineering,
• Personal injury management,
• Consulting, and
• Receipt splitting.

Prior to detailed modeling, these processes were initially described according to
their high-level input/output behavior, their purpose, and by assigning a name.
Examples of such an abstract description are presented below:

• Mailing classification

– Purpose: A random incoming document is classified by type. Possible
document types are cost plan, healing plan, receipt, drug, and device
settlement.

– Inputs: Document in electronic form (PDF).
– Outputs: Document in electronic form (PDF), tagged as a document type.

• Receipt identification

– Purpose: A submitted receipt is classified automatically. Achieving a high
level of automation is the goal. In case of classification peculiarities, the
result is transferred to manual post-processing.

– Inputs: A document identified as a receipt is transferred to an automated
identification process.

– Outputs: Structured information, at least with the characteristics “name of
policyholder,” “date,” “policy number,” and “ICD classification.”

• Receipt splitting

– Purpose: A receipt can apply to more than one settlement period. For proper
cost allocation, it needs to be split into more than one receipt for unique
assignment to a settlement period.

– Input: Receipt.
– Output: Two or more logically related subreceipts.

• Review of receipt for violation of precontractual disclosure requirement

– Purpose: Incoming receipts are examined in view of the question whether
they give grounds for suspicion that the policyholder failed to truthfully
answer all risk questions in the course of the application process.

19.4 Process Canvas 249

– Input: Receipt.
– Output: Suspicion: yes/no; if yes, notification that a manual review is

required.

• Consulting

– Purpose: Consulting for a lead, and presenting and pricing suitable products.
– Input: Client lead, identification of the sales channel through which the lead

was generated.
– Output: Quotation.

19.4.2 Canvas Population

A maximum of 15 activities were identified for each identified business process
during the population of the process canvas (Sect. 5.3). Often the features identified
on the feature canvas appeared as activities, but it was also permitted to introduce
activities in the course of modeling that had not appeared as features. This was
essential; otherwise, an arduous back and forth between the feature and process
canvases would have resulted, which would have been good for nothing other than
syntactic consistency between the two canvases. Conversely, some features that
were previously identified did not appear in the process models. This could be
meaningful, if only because the appearance of new activities during process
modeling and the quantity restriction caused features to fall victim to abstraction. In
such cases, the annotations of the features were examined to ensure there was no
unreasonable loss of information. If such a case occurred, the features were marked
on the feature canvas and examined again later. In case significantly more than 15
features were identified, the quantity restriction came into force, which led to
focusing on those activities occurring in the normal process (not dominated by
handling exceptions). Here, the features were referenced wherever possible. The
activities of a process were arranged by means of the data and control flow. In case
of the data flow, the types of exchanged objects/documents/information were
named and transferred to the candidate list for the object canvas.

Figures 19.3, 19.4, 19.5, and 19.6 show the initial models of the processes
“consulting,” “review for violation of precontractual disclosure requirement,”
“benefits review,” and “personal injury management.” Some syntax questions
arose: For example, the activity “monitoring healing/therapy plan” occurred in the
personal injury management process model with three different inputs. The process
sequence makes it seem likely that the activity can be started as soon as a start is
triggered by one of the incoming control flows. In fact, this is how it was intended.
Here, the syntax would have required a merge connecting node, which was not
forced due to the concrete modeling dynamics. Such carelessness was rectified in
the course of documentation post-processing.

250 19 Initial Project Scoping with the IR:scope

http://dx.doi.org/10.1007/978-3-319-41478-2_5

Fig. 19.3 Process canvas with process model “consulting”

Fig. 19.4 Process canvas with process model “review for violation of precontractual disclosure
requirement”

19.4 Process Canvas 251

19.4.3 Annotation and Analysis

In this section, we present the results of four annotation rounds for the process
models “consulting” (Fig. 19.7) and “review for violation of precontractual dis-
closure requirement” (Fig. 19.8).

A few circumstances stand out regarding the annotation of these two process
models:

• In the “consulting” process model, the annotations mainly concentrated on the
activities “classify risk affinity/cost sensitivity” and “health questions,” Both
were annotated at least three times. There were two uncertainty annotations in

Fig. 19.5 Process canvas with process model “benefits review”

252 19 Initial Project Scoping with the IR:scope

Fig. 19.6 Process canvas with process model “personal injury management”

Fig. 19.7 Annotated process model “consulting”

19.4 Process Canvas 253

the first case, indicating that things were unclear regarding the realization
possibilities. Regarding the activity “health questions,” the business value,
security, and policy constraint annotation mix indicated a certain sensitivity
regarding the basic legal conditions, which was also reflected by security con-
cerns in the concrete case.

• A number of additional weakly annotated activities were found in the “con-
sulting” process model. This indicated that while they were necessary for the
consulting process, the success or acceptance of the overall process did not
depend on them. For the subsequent realization, this information was relevant
insofar as the focus was on activities with extensive annotations. Ultimately, this
proved reasonable although the activity “quotation preparation” would have
deserved more attention than indicated based on examining the annotations.
This was only determined after a few sprints.

• Two activities occurred in the “consulting” process model where the automation
annotation appeared surprising at first glance, since they would have been
automated in readily apparent ways. The explicit automation annotation was due

Fig. 19.8 Annotated process model “review for violation of precontractual disclosure
requirement”

254 19 Initial Project Scoping with the IR:scope

to the fact that the predecessor system exhibited automation gaps at precisely
this point. Since these gaps were previously perceived as bothersome, the
desired automation was made explicit with the annotation.

• In the process model “review for violation of precontractual disclosure
requirement,” some policy constraint and accuracy annotations occurred at the
interface to the policyholder. It turned out in the course of detailed documen-
tation of these annotations that there had been problems in the past with the
proper legal phrasing of notices and inquiries. The annotations in question were
aimed at precisely this problem, which was easy to address by involving a legal
specialist in drafting the documents in question. In addition to the immediate
benefit on the factual level, this was particularly beneficial since it helped
eliminate vague reservations and worries.

19.5 Object Canvas

19.5.1 Canvas Population

Some of the object types recorded on the object canvas were already identified in
the preceding step based on the business processes: The inputs and outputs of the
business processes were fully reflected on the object canvas. This also applied for
the inputs and outputs of the important features and the activities of the important
business processes. Still, it was meaningful and possible to identify the additional
important object types as described in Sect. 5.4.1 in the business context of the
previously identified entries on the object canvas. Numerous other measures for
identification of the relevant objects are of course possible as well. Suitable mea-
sures include examining existing systems, studying specifications, and interviewing
experts. However, such measures were not applied in this example.

Figure 19.9 shows the object canvas for the process models that were discussed.

19.5.2 Annotation and Analysis

The part of the object canvas shown in the previous section was annotated in two
rounds, as described in Sect. 5.4.2. Figure 19.10 shows the object model that forms
the basis of the process models discussed. In the analysis of this model, it turned out
that the object model was initially too coarse-grained and required ongoing
refinement in order to serve as the basis for feature realization planning. This was
noted in the course of preparing for realization, since large numbers of character-
istics were identified per object type. That was viewed as a clear indication that
extensive refinement was required for the meaningful specification of data handling
by specific features or business processes.

19.4 Process Canvas 255

http://dx.doi.org/10.1007/978-3-319-41478-2_5
http://dx.doi.org/10.1007/978-3-319-41478-2_5

Analyzing the annotations on the object canvas resulted in the following cir-
cumstances that called for further inquiry:

• A cluster of annotations was seen around the quotation/application/contract trio.
There were a few user value annotations on the one hand, and the correctness of
quotations and contracts played an important role on the other hand. The
mobilization of quotations was desired as well. This cluster indicates that
in-depth consideration is required here in order to determine what could and had
to be expected of the user, with what degree of completeness and consistency.
Too high a level of consistency and completeness could act as a deterrent since
too much data would have to be collected in advance. Too low a level could
contradict the desired level of precision and correctness. In fact, it was observed
in the subsequent course of the project that intensive discussions regarding the
desired level of usability kept recurring at exactly this point and that user
interfaces were frequently adapted.

• The relationship between the therapy plan and personal injury manager (in
combination with the annotations that were applied) indicated from the start of
the project that preparing the therapy plan would be a critical activity. On the
one hand, the therapy plan was important in regard to user value, and on the

Fig. 19.9 Object canvas of the HIB system

256 19 Initial Project Scoping with the IR:scope

other hand, it required manual intervention and an external Personal Injury
Manager was involved as well. In fact, it was precisely at this point that one of
the fundamental and structural innovations came into play, which remained
poorly defined for a very long time. This could only be corrected by defining the
therapy plan in concrete terms and establishing the algorithmic elements for
generating it. The combination of annotations indicated this need from the
outset.

• The combination of the accuracy and complexity annotations indicated an
impending disaster in the sense of having to expend a lot of effort. This com-
bination can be seen on the model element “receipt split” in Fig. 19.10. Cor-
rectly splitting receipt was essential to avoid excess benefits or large numbers of
complaints. The perceived complexity was based on the assumption that the
combination of various triggers for splitting a receipt (more than one period,
more than one benefit type, relationships with more than one contract) would
lead to significant diversity and a whole series of special cases. Splitting receipt
was in fact difficult, but ultimately, it would be well managed following a

Fig. 19.10 Annotated object canvas of the HIB system

19.5 Object Canvas 257

systematic examination of all trigger combinations. Analyzing the combinations
here put the focus on a potential problem, which was solved reliably through
intensive examination.

19.6 Integration Canvas

19.6.1 Canvas Population

Systems to be integrated appeared here and there during preparation of the process
canvas. Candidate systems for integration were also found during the population of
the object canvas. These candidates were collected and entered on the integration
canvas (Sect. 5.5). The stakeholders also had additional ideas regarding the systems
that had to be considered during the population of the integration canvas.

Figure 19.11 shows the integration canvas for the HIB system, which comprises
a number of systems that are logically closely related. Typical examples are the
portfolio, clearing center, products, and associations. There were also numerous
interdisciplinary systems that had to be integrated with virtually all central systems.
These included partners, e-mail, and disbursements.

Fig. 19.11 Integration canvas of the HIB system

258 19 Initial Project Scoping with the IR:scope

http://dx.doi.org/10.1007/978-3-319-41478-2_5

19.6.2 Annotation and Analysis

Figure 19.12 shows the integration canvas after the annotation process. Two of the
interfaces that needed to be considered were considered unmodifiable (associations,
statistics). While the interface to “associations” did in fact turn out to be entirely
unchangeable (since it is an external interface that requires strict compliance), the
assessment of the interface to statistics as supposedly unmodifiable turned out to be
a—understandable—misinterpretation. The architects and developers responsible
for the statistics system did in fact actively defend against any kind of changes to
“their” interface. This created the impression that it was unmodifiable. In actuality,
however, essential changes were in fact pushed through successfully. Figure 19.12
also illustrates a number of interfaces considered critical in terms of security, as
well as a system in the process of being replaced—the printing system. There was
uncertainty regarding the integration with the business intelligence system. An
especially complex interface existed to the health insurance portfolio system, which
was readily comprehensible due to the close dependency of content and the
interdisciplinary business processes between benefits and the portfolio.

To manage the integration risk between the HIB and the portfolio system, a
decision was made to promptly realize a technical spike prototype in order to collect
experience with the system interface. This spike prototype did in fact turn out to be

Fig. 19.12 Annotated integration canvas of the HIB system

19.6 Integration Canvas 259

extremely useful in order to illuminate the problems of technical communication
between the two systems. Furthermore, it was examined in advance whether the
delineation of the two systems was consistent and clear for both sides. Here, it was
revealed that the features “benefit confirmation” and “benefit exclusions” were
required by both systems but not considered for realization in either.

The uncertainty annotation on interface to the business intelligence system was
clarified early on. This was done by using the business processes from the process
canvas to act out what data was to be exchanged at what time over the “uncertain”
interface. At least the first expansion stage of communication with the business
intelligence system was clarified in this way.

19.7 Cross-Canvas Annotation Analysis

Analyzing the individual canvases indicated potential discrepancies and suspicious
facts related to the model elements and annotations on a canvas. The model ele-
ments of the feature canvas, process canvas, object canvas, and integration canvas,
however, also related to each other (Sect. 5.6). Activities in business processes, for
example, resulted in objects of types that occurred on the object canvas. Types of
objects appeared as the labels of interfaces on the integration canvas. Numerous
discrepancies were noted in the IR:scope itself because the canvases could be
examined simply by looking around the room. Further suspicious facts across
canvases were found by analyzing the annotations of all canvases in the IR. The
corresponding analysis led to the following results:

• The object types “application” and “offer” each had at least one user value
annotation. Objects of these types came from the sales/agency system among
others. This system was annotated with “need for improvement.” Due to this
combination, the question arose whether the desired user value could be
achieved through the current project or whether an accompanying improvement
to the sales/agency system was required. In this case, the improvement to the
sales/agency system was considered essential in order to achieve the desired
user value.

• The object type “offer” and the activity “prepare offer” in the “consulting”
process model were marked with user value and business value annotations.
This was a good indication of an actual opportunity to create value for the user
and the company. Whether quote preparation was to be mobilized appeared to
be unclear. A corresponding annotation was lacking, but mobility of the quo-
tations was explicitly required. This was not necessarily a contradiction, since it
was possible that the activity was exclusively stationary, with mobile avail-
ability required only for the result. Whether it was actually meant this way had
to be examined. In the concrete case, it turned out that quote preparation was to
be mobilized as well.

260 19 Initial Project Scoping with the IR:scope

http://dx.doi.org/10.1007/978-3-319-41478-2_5

• Numerous annotations (business value, complexity, and twice uncertainty) were
applied to the activity “classify risk affinity/cost sensitivity” in the annotated
“consulting” process model. These annotations were not reflected in the cor-
responding object types “application” and “offer.” The question of what criteria
to use in order to select the applicable rate was therefore not considered equally
difficult from all perspectives.

• The activity “review medical history” in the annotated process model “review
for violation of precontractual disclosure requirement” had numerous annota-
tions (manual processing, uncertainty, accuracy). The term “medical history”
appeared neither on the integration canvas nor in the process model. In the
course of the project, this incongruence led to the addition of the “benefit
history” and its refinement “medical history” to the object model.

• On the feature canvas, the entry “preparation of printed document for policy-
holder” bore a double complexity annotation. The interface to the printing
system was identified on the integration canvas as being replaced. This led to the
question of whether the feature was as complex as it was perceived to be such,
or whether it merely appeared complex because the current interface was dif-
ficult to use (which after all could have been the reason why it was being
replaced). In the course of the project, it turned out that most of the difficulties
with the current printing system could be eliminated by the replacement. On the
other hand, the parallel introduction of a printing system and health insurance
benefit system meant extensive effort was required for testing related to this
interface.

19.8 Documentation and Follow-up Activities

After the initial population, all canvases were drawn again cleanly on the white-
board for documentation purposes. This documentation (which was also the source
of the translated figures in the preceding sections) formed the starting point for a
context and system specification subject to further development throughout the
course of the project. The annotations were recorded in detail using the form in
Fig. B.4. These descriptions were used frequently in the course of the project in
order to look up the reasons for using a specific annotation. The results of analyzing
the individual canvases and the cross-canvas analysis were also documented and
addressed over the course of the project.

19.7 Cross-Canvas Annotation Analysis 261

20Project Monitoring with the IR:agile

This chapter relates the core activities undertaken in the HIB project during the
transition from the IR:scope to the IR:agile. First, the effort for the features in the
backlog was estimated, then the risk map was filled and the first sprint was outlined.
After completion of the first sprint, settlement occurred according to the adVAN-
TAGE model. Cost forward progressing was first employed after the first sprint, and
the requirements exchange after the second sprint, as discussed in the following
sections.

20.1 From Feature Canvas to Product Backlog

The product backlog was initially derived from the feature canvas of the IR:scope,
as described in Sect. 8.1. Some features were added in this process and others were
omitted since they had been identified as superfluous in the course of working in the
IR:scope.

An initial estimate for all features was obtained through expert estimates using
the planning poker method. There were only a few very large deviations in the
estimated realization effort of individual features by the experts. An estimated value
was quickly agreed on for most features. The remaining features were discussed
again in detail until all estimators had a good impression of the complexity and
business content of the feature. This procedure made it possible to quickly establish
a product backlog with a broadly accepted estimate of the realization effort for each
feature. In case an initial estimate was not possible after all, the reason was noted
for future refinement. Table 20.1 shows the items of the resulting product backlog.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_20

263

http://dx.doi.org/10.1007/978-3-319-41478-2_8

Table 20.1 Product backlog of the HIB system with initial estimates

Product backlog item Initial estimate [person-days]

Rate information 8

Determination of changeable rates 12

Determination of client master data,
including family master data

5

Determination of client risk affinity 10

Calculation of the monthly rate 4

Presentation of the health questions 12

Preliminary review of potentially
required surcharges

5

Calculation of the total price 5

Acceptance review 3

Display of healing/therapy plan 3

Determination of similar
healing/therapy plans

25

Resubmission, control of healing
progress by the deadline

5

Determination of illnesses matching
the receipt

? (Little effort expected, but it is possible that
algorithms similar to an expert system are expected,
which can get quite complicated)

Reduction to illnesses having to do
with the disclosure requirement

6

If any are left over: reconciliation with
precontractual information

8

In case of suspicious facts: review of
previous medical history

? (Annotations indicate there is no clear concept of
this. The ideas fluctuate between a complete review
and analysis of the medical history to merely
displaying previous illnesses)

If suspicious facts are confirmed:
phrasing the inquiry

8

Flagging the policyholder as
“suspicious”

4

Transfer of information to company
health insurance

? (The company health insurance interface to be used
for integration is entirely unclear)

Display of last five benefit claims 12

Receipts that extend over more than
one period or rate shall be split

20

Review for violation of precontractual
disclosure obligation

18

Review of the rates 10

Review of the costs 25
(continued)

264 20 Project Monitoring with the IR:agile

20.2 Risk Map

Figure 20.1 shows the risk map after initial population in the IR:scope (Sect. 8.4). It
was apparent that the question of integrating the system being developed with the
systems related to it and the issue of estimating the required effort were considered
particular disaster indicators. The sum of 75 disaster points indicates some prob-
lems in the project setup. The highly valued disaster indicators were examined in
particular detail and discussed with the stakeholders, which led to the definition of
the countermeasures and also allowed them to be verified.

Figure 20.2 shows a later risk map (after the first eight sprints). We can see that
most disaster indicators have developed in the right direction (the risk of disaster is
considered lower compared to the start of the project). It is also apparent that the
cost side of the project could have become a relevant problem, since convergence
did not occur in the predictions of the cost forward progressing even after eight
sprints, so that a serious problem could be suspected here.

Figure 20.3 shows the development of the disaster points over time. Each
assessment was obtained after concluding the planning of a sprint.

Table 20.1 (continued)

Product backlog item Initial estimate [person-days]

Assignment of each accepted benefit
to a rate, storage in statistics

12

Prognosis of policyholder benefit
class

4

Review of suitability for personal
injury management

2

Assignment to personal injury
manager

2

Message to personal injury manager
referencing medical history

2

Notice to care provider in case of
repeated expensive benefit

2

Preparation of the personal benefit
history

10

Preparation of printed document for
policyholder

25

Review of printed document on a
sampling basis prior to printing

2

Evaluation of success rate of personal
injury manager

20

20.2 Risk Map 265

http://dx.doi.org/10.1007/978-3-319-41478-2_8

Fig. 20.1 Initial risk map for the HIB project

Fig. 20.2 Risk map after the first eight sprints

266 20 Project Monitoring with the IR:agile

20.3 The First Sprint

20.3.1 Planning the First Sprint

Planning of the first sprint was based on the initial version of the product backlog
presented in Sect. 20.1, under consideration of the previously added annotations.

The maximum sprint scope in was determined as follows: A sprint duration of
three weeks was agreed with the client. The core development team (excluding the
scrum master and product owner) comprised seven persons who were included in
the calculation with an average of 70 % pure development effort. This meant a total
of approximately 75 person-days in development capacity was available for the first
sprint.

After some discussion, the features listed in Table 20.2 were committed to for
the first sprint, and more detailed effort estimates were prepared for them. The
feature “determination of similar healing/therapy plans” in particular led to a lively
discussion and was ultimately accepted into the sprint with the argument that, while
it added little value, this would allow a comparatively high-risk feature to be
implemented right away in order to quickly develop a feeling for the complexity.

20.3.2 Results of the First Sprint

Three weeks later, at the end of the first sprint, the results of the work appeared as
shown in Table 20.3.

Most features were delivered, passed an acceptance test by the client, and were
accepted. Previously, the client and supplier had agreed on a pragmatic Definition

Fig. 20.3 Development of disaster points over time

20.3 The First Sprint 267

of Done which roughly corresponded to that in Sect. 15.4.1. Accordingly to this, a
feature is accepted when it exists with its full functionality and works correctly
aside from small cosmetic flaws.

The feature “determination of similar healing/therapy plans” failed to meet this
definition, since its realization was only rudimentary. There were two crucial rea-
sons for this: Other features had taken more effort than planned, so that less effort
within the available time box could be expended on this feature. The previously
suspected complexity had materialized as well and the corresponding risk was
realized. For these two reasons, only an approximation of the feature was delivered
and therefore it could not be accepted. The effort of 15 person-days already
expended was documented.

The remaining functionality from the sprint backlog was completed to the cli-
ent’s satisfaction, but somewhat more expensively than planned. Instead of the 48
person-days estimated for the first six features, 60 person-days were needed for
them, which corresponded to statistical overspending of 25 %. While this sounded

Table 20.2 Sprint backlog for first sprint with detailed estimates

Sprint #1 backlog item Detailed estimate
[person-days]

Determination of client master data, including family master
data

5

Determination of client risk affinity 10

Calculation of the monthly rate 4

Presentation of the health questions 21

Preliminary review of potentially required surcharges 3

Calculation of the total price 5

Determination of similar healing/therapy plans 23

Total effort 71

Table 20.3 Results of first sprint

Sprint #1 backlog item Detailed estimate
[person-days]

Actual effort
[person-days]

Accepted
by client

Determination of client master data,
including family master data

5 7 Yes

Determination of client risk affinity 10 13 Yes

Calculation of the monthly rate 4 6 Yes

Presentation of the health questions 21 20 Yes

Preliminary review of potential
surcharges

3 6 Yes

Calculation of the total price 5 8 Yes

Total effort (accepted items) 48 60
Determination of similar
healing/therapy plans

23 15 No

Total effort (all items) 71 75

268 20 Project Monitoring with the IR:agile

http://dx.doi.org/10.1007/978-3-319-41478-2_15

high at first glance, it was clear to all stakeholders that a learning curve had to be
expected. For the settlement of the first sprint, 48 person-days were therefore billed
at the regular daily rate and 12 person-days at the reduced daily rate. The agreed
base rate was added. The feature “determination of similar healing/therapy plans”
was not delivered in its final version until the third sprint and ultimately required an
effort of 35 person-days. However, the assessment of all stakeholders agreed that
the early realization of this feature helped overcome complexity and favored more
accurate sprint planning in later iterations.

20.4 Settlement Using adVANTAGE

At the commercial–contractual level, the HIB project was managed quite closely
along the lines of the adVANTAGE model described in Chap. 15. A few partic-
ularities are worth mentioning:

• Gauging the effort compensated by the base rate turned out to be more difficult
than expected, since the scrum master’s and product owner’s work, as well as
the time invested into the meetings, initially fluctuated widely from sprint
to sprint. However, the effort appeared to settle at a mean value after a few
iterations, and the client was willing to increase the base rate by approximately
20 %.

• The accuracy of the detailed estimates for specific features obtained at the start
of each sprint improved steadily and continuously. While the initial budget
estimated at the start of the project was exceeded, controlling improved in the
course of time since the accuracy of estimating the realistic content of individual
sprints kept improving.

• One reason for modestly exceeding the initial budget was the fact that entirely
new requirements (partly due to legal constraints) were added in the course of
the project. While a few lower-priority features were ultimately not imple-
mented, saving some effort, this effect did not balance out the additional
features.

• Since the composition of the team could be kept stable and the estimates kept
getting more accurate, it was decided about halfway through the project to
moderately increase the staffing in order to gain development speed. While a
linear increase in productivity could not be achieved, the scope per release was
boosted significantly while maintaining the level of quality.

Both parties to the contract drew satisfactory conclusions at the end of the
realization phase. The project was a success from the user perspective. While the
initial budget was exceeded, the magnitude of the overspending clearly within the
accepted tolerance range for projects of this size, not to mention that requirements
added in the course of the project were covered as well.

20.3 The First Sprint 269

http://dx.doi.org/10.1007/978-3-319-41478-2_15

20.5 Cost Forward Progressing

After the first sprint, it turned out that 60 person-days had actually been needed for
realizing the accepted features, as opposed to the estimate of 48 person-days.
60 instead of 48 person-days for the realization of the first sprint does not sound all
that alarming at first glance, although a factor of 1.25 on the detailed estimate was
of a magnitude that had to be summarily taken into account. The precise DDE
deviation in the sense of cost forward progressing (Sect. 8.6) does not calculate the
deviation of actual effort from the detailed estimates as a quotient of the sum of
actual effort and detailed effort estimates, but as the mean of the feature-specific
deviations. The value of the DDE deviation for the first sprint was 1.45. In the
“computer scientist’s forecast”, the 12 additional person-days of effort expended
were disregarded entirely. The “statistician’s extrapolation” appeared less promis-
ing due to its consideration of the DDE deviation though. Since this was the first
sprint which is typically encumbered by a certain orientation effort, an effect that is
alleviated in subsequent sprints, this value did not need to be overemphasized but
did provide cause for further observation.

The situation surrounding the feature “determination of similar healing/therapy
plans” at the end of the first sprint was more interesting. Fully 15 person-days
compared to a detailed estimate of 23 person-days were expended here without
leading to acceptance of the feature. This could be entirely unsuspicious, especially
since the estimated remaining effort for this feature did not exceed eight
person-days. Even if the estimated remaining effort had been between 8 and 0:45�
23þ 8 � 18 person-days, this would still be unsuspicious since a DDE deviation of
1.45 means that the effort according to the currently applicable calculations was
exceeded by a factor of 0.45. An even higher estimate of remaining effort on the
other hand would have had to be considered suspicious. For example, an estimated
remaining effort for this feature in the magnitude of 23 person-days would have
meant that 15 person-days had already been expended without coming closer to
acceptance at all.

20.6 Using the Requirements Exchange

The requirements exchange was first used after the second sprint, with the addition
of the following new features:

• Personal injury manager clustering (initial estimate: five person-days)

– Motivation: A cluster of personal injury managers was to be formed for each
type of personal injury and assigned to exactly this type of injury. This
would support the optimum selection of suitable personal injury managers.

270 20 Project Monitoring with the IR:agile

http://dx.doi.org/10.1007/978-3-319-41478-2_8

• Updating personal injury types based on annual personal injury manage-
ment statistics (initial estimate: eight person-days)

– Motivation: The initial clustering based on types of personal injuries was
basically just a guess. Therefore, it was not certain whether the assumed
clusters were meaningful. An annual review was to be performed to deter-
mine which types of personal injuries occur with what frequency, and the
clustering structure was to be adapted.

Removal of the feature “evaluation of success rate, personal injury manager”
from the product backlog was proposed as financing for the new features. Initially,
the product manager responsible for the HIB system had major concerns, since he
considered the personal success rates of the personal injury managers a key indi-
cator relevant for controlling. After some discussion, it turned out that the proce-
dures for determining and quantifying personal rates were comparatively unclear,
leading to an agreement to exchange the two new features for the success rate
feature. This exchange left a certain aftertaste, since it created the impression that
the success rate feature was (and remained) fundamentally desired and that it was
only omitted because it was unclear on the one hand and a convenient replacement
candidate on the other hand. In fact, this feature was subsequently discussed again
several times, but was not added back into the feature backlog.

With this exchange, the 20 person-days initially estimated for the success rate
feature was offset against the 13 person-days initially estimated for the two new
features. The calculated reduction of seven person-days had no relevant effect—
even at a DIE deviation of 1.15 applicable at the time and a DDE deviation of 1.2
(which mathematically results in a reduction of the estimated effort by nearly ten
person-days for the seven days).

20.6 Using the Requirements Exchange 271

21Lessons Learned

Based on the experiences described above, we can reflect on the lessons learned by
the client’s and supplier’s team members in the course of applying the Interaction
Room and adVANTAGE model in practice. Specifically, we review the learning
curve experienced by the team members, courses of action that did not work out,
compromises that had to be made in adopting these methods, and the observed
benefits and drawbacks.

In addition to the reflections based on the example of the HIB project, we also
make observations based on numerous other applications of the Interaction Room.

• Problems with incompleteness and uncertainty: The underlying philosophy
of the Interaction Room, i.e., the acceptance of incomplete information (espe-
cially at the beginning of a project) and the explicit identification of uncertainty,
can be hard to accept for some stakeholders in the course of IR workshops. This
is particularly true for stakeholders who, due to insufficient experience with
software projects, still believe that software can be described completely in
advance. Yet other stakeholders are sometimes not comfortable with explicitly
“admitting” uncertainty. In such situations, the IR coaches have no choice but to
repeatedly emphasize the unavoidability of initial incompleteness and the
opportunities of explicitly identifying uncertainty.

• Benefits of focusing on business aspects: The benefits of initially focusing on
business aspects are usually clear to all stakeholders in IR workshops. Never-
theless, sticking to the business level is difficult on occasion. This is under-
standable, since it does make sense to discuss solution-related requirements as
well. From there, moving to the discussion of solution details is only a small
step. But such discussions must not be permitted to dominate; otherwise, the
business aspects fade too far into the background. This risk appears to be
especially high when the business representatives have IT knowledge, even if
they merely understand (or think they understand) the current implementation in
its structure or technical details. The IR coaches can counteract this tendency by

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_21

273

suppressing discussions that stray too far from the business aspects, consistently
steering the discussion back to business matters.

• Usefulness of the integration canvas: The usefulness of the integration canvas
is questioned regularly. It is created with significantly less effort than virtually
any other canvas, changes rarely during development, and also appears less
closely integrated with the other canvases at first glance than they are integrated
with each other. Yet the integration canvas plays an important role—illustrating
the purely technical complexity of the project. This complexity results from the
set of systems that have to be integrated and the interfaces that have to be
satisfied. Omitting this view entirely causes the stakeholders to lose sight of a
significant part of the required effort, and the relevant risks cannot be anchored
on the canvases. Therefore, the IR coaches should consistently assert their
methodology authority and insist on the population of the integration canvas.

• Difficulties compiling the feature canvas: Problems repeatedly arise during the
population of the feature canvas in regard to the desired level of abstraction.
Surprisingly however, the trend here is not clearly in the direction of wanting to
note too many details (as is usually the case on the object canvas and process
canvas). Rather, there is an equal trend toward excessive abstraction on the
feature canvas. In fact, population of the feature canvas often starts out with too
much detail, and pointing out the volume restriction (a few dozen features) then
causes only the very highest level requirements to be named (tending to be at the
level of the business processes that have to be supported). In this yo-yo situa-
tion, the IR coaches have to keep pushing for a suitable balance in the level of
abstraction.

• Desire to record more information on the object canvas: The object canvas is
perceived as the simplest element for anyone who has been involved in mod-
eling before. The volume restriction is easy to explain and so is the focus on
business relationships. Once the most important object types have been recor-
ded, there is often a desire to consider cardinalities, association types, and the
optionality of relationships. Experience has shown that such considerations in
the early phases of the IR:scope tend to be unreliable; i.e., they do not result in a
relevant gain of information. Yet rigorously suppressing this discussion is not
always expedient. Sometimes, it needs to be given a bit of room, if only to
ensure that all stakeholders remain mentally involved. However, the IR coaches
have to consistently avoid distraction from the business relationships.

• Difficulties preparing the partner canvas: While many of the canvases are
familiar from other modeling situations, the partner canvas is usually new for the
stakeholders in an IR population. Determining the input/output relationships at
the company level and naming the types of information exchanged and the real
objects involved can be quite challenging. Here, the IR coaches have to offer
methodology support and name the first interfaces themselves. If this is not
sufficient, it may be useful to link the preparation of the partner canvas and
physical object canvas. Then, it becomes clear to the stakeholders sooner how
the results of the partner canvas will be subsequently used.

274 21 Lessons Learned

• Inconvenience of the OoI descriptions on the physical object canvas: In
many cases, the stakeholders only see the benefits of describing the details of
objects of interest (OoIs) in the course of preparing the physical object canvas
once they recognize what those details are used for. They are used in the course
of the discussion of how an OoI can send information to ongoing business
processes or be controlled by ongoing business processes. Without this context,
preparing the physical object canvas often appears technocratic and is frequently
performed halfheartedly. So if the interdependency is not apparent at the outset,
the IR coaches should specify a particularly suitable OoI from the project in
question at a high level and use it as an example to demonstrate how the
information can be used.

• Inaccuracy of the touchpoint canvas: During the population of the touchpoint
canvas, situations are frequently encountered where the weakly defined specifi-
cations for the syntax and semantics encounter their limits. The stakeholders
want to express certain circumstances and have the impression that this cannot
succeed with the simple model elements of the touchpoint canvas. This
impression is may be comprehensible, even though it is often questionable
whether the specific circumstances that the stakeholders wish to express have to
be noted necessarily. This is where the IR coaches need to proceed with particular
tact: Sometimes, it makes sense to introduce additional symbols; sometimes, it
makes sense to note details with text labels on model elements; and sometimes,
the details being examined are not relevant and should be left out. Generally
however, it must be noted that the population of the touchpoint canvas tends
toward a more individual syntax than the population of all the other canvases.

• Excessive annotation precision: It is usually easy to explain the fundamental
benefits of the various annotation rounds. The precise meaning of the annota-
tions, on the other hand, can often lead to discussions. Terms such as “security”
and “reliability” in particular can have various meanings and are understood in
different ways. The attempt to define differences in understanding often leads to
a desire for creating additional annotations. Introducing additional annotations
should however be prevented in order not to overwhelm stakeholders. The
existing set of annotations has proven sufficient so far. Possible semantic dif-
ferences or special meanings can be documented in the individual descriptions
of the symbols applied to the model elements. Even though the use of anno-
tations is systematic, it must remain clear that the interactive annotation process
is prone to error. An annotation that has been attached to a model element is not
normative; it can also be removed again. Discussing the annotations can lead to
new insights. This means annotations are always qualitative references as well,
and a strictly quantitative perspective to evaluating them is rarely appropriate.

• Using the volume rules to prevent the population process from getting out
of hand: The volume rules of how many model elements are allowed on each
canvas are usually not plausible for most stakeholders at first glance. They want
to quickly, completely, and precisely document their knowledge and ideas about
the software system being developed, making sure they do not forget anything
and that no gaps remain. Rules imposed on the upper limit of model elements

21 Lessons Learned 275

interfere with that. Therefore, the IR coaches are well advised to explain and
enforce the volume rules and to point out from the outset that they will do so.
Otherwise, too much information and especially excessive, initially unimportant
details are virtually impossible to avoid.

• Transition to the concrete specification: We described an immediate transition
from the IR:scope to the IR:agile in the example of the HIB project. Often
however, established software process models require the preparation of addi-
tional artifacts, such as a specification document. The results of the IR:scope can
in principle be transferred to such artifacts without losses. Dealing with the
deliberate incompleteness of the IR:scope results however remains awkward. It
makes little sense to transfer the explicitly incomplete knowledge after the end of
the IR:scope to a specification format which is basically geared toward com-
pleteness and invariability. Difficulties are regularly encountered at this point,
since amendments are desired that are aimed at closing the gaps identified in the
IR. Managing the process of closing these gaps is not the responsibility of the IR
coach anymore, but of a selected team of business and technology experts.

• Estimates required for the transition from the IR:scope to the IR:agile:
During the transition from the IR:scope to the IR:agile, the individual features
have to be estimated in person-days. Quantitatively estimating the features at
this point is often difficult however, and many stakeholders feel more com-
fortable with a classification into “small,” “medium,” and “large” categories. In
fact, it is often understandable that the estimate in person-days is challenging.
Yet this should be done, since estimating all features is essential for the
requirements exchange on the one hand and to assess the overall scope on the
other hand. In case of great vagueness, a workshop to define groups of logically
related features more precisely can help establish a basis for estimation.

• Corridor between the “computer scientist’s forecast” and the “statistician’s
extrapolation”: The significance of the “computer scientist’s forecast” and the
“statistician’s extrapolation” obtained through cost forward progressing is fre-
quently discussed in projects. While the extrapolation makes a more reasoned
impression overall, there are also situations (e.g., when a specific feature was
incorrectly estimated due to a wrong assumption) where the forecast provides
the better indication of the effort actually required. Generally, both values
should be understood as what they are: indications of the effort expected to be
required that change over time. Like all values determined solely by algorithms,
they have to be interpreted in the larger project context.

• Desire for a differentiated extrapolation of the estimate deviations: Cost
forward progressing develops extrapolations by applying the deviations to date
to all estimated values. The desire for better differentiation has often been
expressed in this context. A typical line of thinking, e.g., is “these concrete
deviations are related to the development of interfaces, so only the effort that has
to do with interface development should be extrapolated.” While this desire is
comprehensible, its consistent application leads to individual decision making
for every deviation regarding the extent to which it is extrapolated and suggests
a higher level of precision than the approach can actually provide. The more

276 21 Lessons Learned

straightforward high-level extrapolation and forecast as described in Sect. 8.6
should therefore remain unchanged (with full awareness that it does not deliver
the most precise values). When there is an urgent need, this can be supple-
mented with calculations that have to be justified on a case-by-case basis. This
ensures that a high-level orientation based on the values of cost forward pro-
gressing which are always determined the same way remains possible at all
times.

• Overestimating the requirements exchange: The requirements exchange is
frequently the object of suggestions for greater precision. Perhaps the idea is to
carry minor differences forward for future financing (e.g., “if a new requirement
with an effort of 20 person-days is exchanged for an old requirement with a
scope of 22 person-days, the two “saved” person-days should be noted for future
exchanges”). Or perhaps the deviations that arise for new requirements in the
future should be separately recorded in order to measure whether the desire for
suitable financing leads to corrupt estimations of effort. Or perhaps groups of
requirements should be formed, where exchanges within these groups do not
constitute a problem, while exchanges between groups are supposed to balance
out over defined periods of time. While these and some other suggestions all
appear reasonable and well-intended, they overestimate the algorithmic effect of
the requirements exchange. The purpose of the requirements exchange is to
prevent the bloating of software and anchor the concept of elimination in the
minds of the stakeholders. However, its algorithmic institutionalization and
regulation must not be taken too far. In the end, the actors have to make a
qualitative decision, determining which requirements are actually indispensable.
It is precisely this responsibility for lean software that cannot be delegated to
rules and algorithms.

• Usefulness of the requirements exchange: After a brief acclimatization period,
the requirements exchange has proven itself as an important instrument to put
the emphasis on lean software in virtually all application situations. Most sta-
keholders quickly grasped that some requirements can safely be eliminated, and
that a lean implementation is worth striving for. Often, this went so far (espe-
cially in the HIB project) that business representatives supported an imple-
mentation that afforded somewhat reduced convenience but could be realized
with significantly less effort. The focus on software that is “good enough” has
turned out to be a major cost control factor.

• Usefulness of the risk map: The informative value of quantitative disaster
points determined by populating the risk map is limited, since they depend on
personal estimates and do not correspond directly to quantifiable cost or effort.
Two considerations are useful in interpreting the risk map however:

– Taking into account the reasons of the stakeholders in assessing the risk
dimensions.

– Determining the disaster points periodically and observing their development
over time.

21 Lessons Learned 277

http://dx.doi.org/10.1007/978-3-319-41478-2_8

Suggestions for the more precise assignment of disaster points per dimension
have been frequently discarded since the situation is different for each project.
This makes it impossible to compare disaster points between projects, but they
are useful as a relative measure of the evolution of risk within a project. Usually,
the risk map values tend to change very little once the project has reached a
certain maturity. When this is the case, updating the risk map can stop, with full
awareness that exogenous events may still lead to a need to re-evaluate the risks.

Applicability of adVANTAGE: adVANTAGE often appears complex at the
start of an IR:agile. This impression has evaporated after the second sprint in every
single application situation. On the other hand, the desire for refinement in regard to
several special situations often develops (e.g., the handling of features that are
reported as ready for acceptance while the client does not want to test them until
later, warranty on accepted features, combining features from different sprints into
releases, and so on). All of these discussions need to be permitted, and some
refinements actually make sense for specific projects. In general, it has proven
useful to maintain the simplicity of adVANTAGE.

278 21 Lessons Learned

Part V
Conclusion

22The Big Picture

In the preceding chapters, we explored the novel role of enterprise IT as the enabler
and designer of new business models, the resulting requirements for the domain
expertise, communication skills, value orientation and flexibility of enterprise IT,
and methodical and contractual instruments that can help to complete such projects
pragmatically and effectively.

To conclude, we finally discuss the experiences with the different versions of the
Interaction Room in the larger context of the New School of IT discussed at the
outset. For this purpose, we first summarize the insights we were able to gain about
the Interaction Room so far. In order to implement the New School of IT with the
extensive support of the Interaction Room in practice, the acting persons must have
qualifications they may not have needed in the established world of enterprise IT.
These are discussed in Chap. 23. They range from general software engineering and
methodology requirements to essential domain and process knowledge and the
requirements of the New School of IT (mobility, agility, and flexibility). Chapter 24
then closes with an outlook on the impact of the New School of IT, concisely
expressed in 12 hypotheses.

Three topics kept coming up in the preceding discussions: complexity of the
business domain, business and user value orientation, and awareness of unavoidable
uncertainty. None of these aspects are revolutionary—Curtis et al. already lamented
the “thin spread of application domain knowledge” in 1988, Lehman formulated his
“uncertainty principle for computer application” in 1989, and Boehm has been
advocating value orientation in software development since 1981.

Plan-driven and agile software process models approach this challenge with
different philosophies—on the one hand, by attempting to understand and describe
the system and context as completely as possible at the outset, and on the other
hand, by following a step-by-step approach where smaller individual problems are
resolved ad hoc. Both approaches have their strengths and weaknesses. Therefore, it
is no surprise that the key is finding a suitable middle ground between the exces-
sively dogmatic interpretations of both sides.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_22

281

http://dx.doi.org/10.1007/978-3-319-41478-2_23
http://dx.doi.org/10.1007/978-3-319-41478-2_24

But finding this middle ground is not easy—using common sense is easy to say
but not a reliable methodology. Therefore, the instruments introduced in the pre-
ceding chapters offer a pragmatic way to find this middle ground in practice.

The Interaction Room provides an environment where the stakeholders, in
keeping with the agile credo, can communicate face-to-face and without a heavy
methodology or formal superstructure. At the same time, however, it also offers the
permanence and structure that provides for the appeal of the plan-driven approach.
As an additional benefit offered neither by plan-driven nor agile approaches alone,
an Interaction Room yields insights about “soft” factors such as complexity, basic
conditions, value drivers, and uncertainty. In contrast to other software models, the
stakeholders can explicitly record these on the IR canvases with annotations.

The adVANTAGE contract model ensures that an agile approach—based on the
insights gained from the Interaction Room—can be actually put into practice in the
course of the project and that its flexibility is not destroyed by excessively rigid
contract structures. The contractor and client have the flexibility to respond to new
requirements and new value assessments without having to argue about the dis-
tribution of effort or cost risks, and without needing to be concerned about the
initial time and budget specifications getting entirely out of control.

This prepares projects for a value-oriented, pragmatic approach to complex
business aspects that only become apparent piece by piece—and especially for the
novel understanding of roles required from enterprise IT by the New School of IT.

References

Boehm B (1981) Software engineering economics. Prentice-Hall
Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for large systems.

Comm ACM 31(11):1268–1287. doi:10.1145/50087.50089
Lehman MM (1989) Uncertainty in computer application and its control through the engineering

of software. J Software Maintenance 1(1):3–27. doi:10.1002/smr.4360010103

282 22 The Big Picture

http://dx.doi.org/10.1145/50087.50089
http://dx.doi.org/10.1002/smr.4360010103

23A New Skill Set

To operate in the world of tamed agility, establish the correct extent of agility
depending on the basic conditions for the project and also to effectively use the
instruments presented in this book, enterprise IT needs a number of skills.

23.1 General Software Technology and Methodology
Skills

Enterprise IT in the New School of IT obviously needs a number of software
technology skills. These include:

• Requirements management: Dynamic requirements management plays a
particularly important role in software development using tamed agility (espe-
cially for the development of software in the context of mobilization and dig-
italization). In addition to the technical skills [e.g., according to IREB (2016)],
the ability to differentiate between essential and non-essential requirements is
especially important.

• Business analysis and modeling: Most software systems are intended to pro-
vide commercial benefits. This means it is essential that enterprise IT under-
stands business relationships, is able to structure them, and documents them at a
suitable abstraction level. These descriptions must abstain from making any
technical decisions. From a methodology perspective, this requires process and
object modeling knowledge. A command of corresponding modeling languages
is needed.

• Architecture management: The management of enterprise architectures (the
architectures of entire application landscapes) is a classic component of enter-
prise IT. However, emergent architectures are often encountered in the context
of mobile applications and the digitalization of business processes. They are
difficult to plan but have to be integrated into the application landscape anyway.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_23

283

This is challenging at interfaces. Even though classic architecture management
models and processes that tend to count on plannability and long-term further
development are not made for this, the emergent architectures nevertheless have
to be managed and their further development must be planned and realized. This
requires knowledge of traditional architecture management on the one hand
(models, languages, processes) and, on the other hand, the insight that certain
systems have to be integrated in spite of characteristics that do not “fit.”

• Automation and digitalization techniques: Ultimately, many IT projects are
about automating processes or supporting manual activities in order to boost
productivity. Numerous techniques and methods are used here, which are
subject to technology changes. Knowledge of these techniques is essential.
Detailed knowledge of specific techniques is required along with assessing the
lifecycle of related technologies. Techniques for the synchronous and asyn-
chronous linking of heterogeneous systems, bus systems, various types of
middleware systems, and protocols to connect distributed and mobile systems
are currently part of the dominant technology canon.

23.2 New School of IT Skills: Mobility

While the mobility of data and applications is only one dimension defining the New
School of IT, it plays an important role—if only because mobility cannot be
abstracted away. Development methods and instruments that encapsulate the
mobility of data and applications in a layer, so that classic, non-mobile program-
ming models are maintained, simply do not exist yet—and neither is such a solution
foreseeable. Applications have to be mobile-friendly. The architect has to decide in
the course of designing applications what parts of them have to be available on
mobile devices, and developers have to take into account in the course of devel-
opment that telecommunication connections are unreliable in practice. But this is
not the only reason the mobility dimension is relevant. Mobile applications are also
operated in various usage contexts and potentially have to run on many different
devices, and testing mobile systems poses a number of specific challenges. In the
following, we discuss the skills of enterprise IT that are required due to the
increasing demand for data and application mobility.

• Usability engineering and user experience design: Users are familiar with
mobile systems. By and large, they are accustomed to appealing and easy to use
interfaces. Their experiences define their expectations of everything mobile.
Appealing applications that can be learned without effort are intuitive to use and
efficient are expected. This alone means the requirements for the usability of
mobile applications are extremely high. But making things nice and colorful is
not sufficient for usability. Usability engineering needs to be taken into account
systematically in the development process. This requires usability engineers

284 23 A New Skill Set

who know what usability is, how the interfaces on the various platforms have to
be designed, and how usability is measured and evaluated. Usability engineering
is not limited to usability in the narrower sense. Integrated usability engineering
goes beyond that, not only evaluating the usability of an application against
usability criteria but also including the usage context of the user. Fundamentally,
good usability may not be sufficient for a positive user experience if the user
interacts with the application under a high cognitive load. On the other hand,
technically poor usability may actually be sufficient if the user can complete a
bothersome process quickly and reliably. And perhaps the entire user experience
does not depend on usability alone, but on the context, annoyance factor of the
process being handled and cross-application characteristics. Enterprise IT
should include experts who have mastered usability engineering in the details
and at a high level and who evaluate applications strictly from a client
perspective.

• Interface technologies: Nothing changes as often and fundamentally as inter-
face technologies. This happens in a recurring cycle with the increased or
reduced centrality of software systems. The issue of what can be handled
decentrally and how much server-side control is required changes over time,
simply because both ends of the spectrum appear plausible. Central systems
have the advantage that they can be centrally controlled and monitored.
Dependencies on decentralized devices are eliminated. These benefits were
already realized during the era of mainframe computers and in times when the
browser was the only decentralized software. But the disadvantage of centrality
is that local input on the decentralized device has to be sent to the server, where
it must be validated and processed. This means a decentralized architecture has
advantages as well: A lot of local processing by devices is possible and their
performance can reduce the load on central infrastructures. Much of the com-
munication between clients and servers is eliminated as well. Another appeal of
native apps on mobile devices is that they are easily made available through app
stores and marketplaces, and can be updated virtually as desired. But then there
is the question of integration with the local sensor technology, which is not
standardized—so that decentralized testing is required again after all. The back
and forth continues. With this back and forth, the question of how decentralized
interfaces can be realized changes. Pure HTML? Or better JavaScript too?
Perhaps not such lean clients after all? Or angular? Here, the world remains
colorful and unsorted, and can be expected to remain that way for some time. As
long as this is the case, enterprise IT has to have knowledge of common
interface techniques and their lifecycles.

• Telecommunication protocols: Mobile data and applications require commu-
nication between application components. This takes place based on the con-
nections between these components and telecommunication protocols that
establish the technical level on which communication takes place. Different
telecommunication protocols are associated with various bandwidths, service

23.2 New School of IT Skills: Mobility 285

levels, and costs. Which of these protocols will be used in what application is of
central importance for system acceptance. Some applications only exchange low
volumes of data but have to do so with absolute reliability. Others are more
talkative. Others again may be non-critical, which means the user is not that
concerned if the connection should fail at times. Perhaps the user even wants to
decide: large bandwidth and high reliability in exchange for additional costs.
Both the question of which data and applications must be available offline and
the question of what telecommunication integration is required demands
knowledge of the applicable situation on the one hand and of the possible
telecommunication protocols and their integration in software on the other hand.

• Knowledge of important device classes and their management possibilities:
In some situations, the mobile devices that will be used can simply be pre-
scribed. This occurs as a rule when the user operates in a self-contained context
or the devices are centrally procured and financed. In such situations, the mobile
devices often have to be centrally managed as well: What software (in which
version) is running on which device? Where is the device? What user has which
usage rights? Is there a need to centrally block specific devices? When is that
supposed to happen? How are software and hardware exchanged? However,
such tight management is not possible in many other situations. This is obvious
as soon as end customers come into play, but a heterogeneous device landscape
is unavoidable in case of mixed partner landscapes as well. Explicitly estab-
lishing the device classes to support is mandatory for mobile applications as a
result. Enterprise IT therefore has to be familiar with the common device classes
and types.

• Platforms and corresponding processes: Depending on the chosen platform
(e.g., iOS or Android), the rigidity of processes offered by the application
delivery platform for validation, security, and advance verification differs. These
mechanisms and processes must be known to enterprise IT, since they influence
testability, release cycles, and possible monetization.

• Implementation strategies: Whether web-based mobile systems or native apps
are going to dominate the mobile experience is still undecided. The trend
appears to be heading in the direction of hybrid systems. Questions about the
role of cross-platform approaches, of generated and interpretive approaches, also
fall into this context. As long as a de facto standard has not been established
here, enterprise IT should know the advantages and disadvantages of the dif-
ferent realization versions.

• Security: Security plays a greater role in distributed systems than central ones,
and a greater role in mobile systems than in distributed ones. Techniques for the
secure transmission of data and protection against unauthorized access and
falsification are basic elements of mobile systems. In addition, security
requirements are tending to gain importance but are also subject to social
change. Accordingly, enterprise IT has to be familiar with the solutions to
common security problems, if only to effectively counter the use of security as a
killer argument against process innovations.

286 23 A New Skill Set

• Test automation: Stationary information systems are rarely tested in full in the
sense of source code coverage. With the increasing spread of test automation
techniques and the management of suitable test case sets however, stationary
testing has become manageable in the meantime. Testing mobile systems
remains a different matter. Input vectors explode because location data and the
use of different telecommunication protocols and providers are added (Griebe
and Gruhn 2014). In general, every sensor used to exchange data with the
environment has to be included in testing. This quickly becomes too much to
handle manually. Furthermore, there are annoying differences between actual
systems and sensor emulations. As a result, testing mobile systems is not highly
systematic yet. Yet a lot can be gained in this area. Those who can reliably test
mobile applications more quickly gain leeway in the market by being able to
deliver new features sooner. This means it is unavoidable for enterprise IT deal
with this area as well.

23.3 New School of IT Skills: Agility

Agility affects the whole company and not just the application developers. Pur-
chasers, controllers, and legal practitioners are affected by agile development, at
least when suppliers and contractors have to be integrated. Since agility originates
in technology, enterprise IT must be familiar with the fundamental concepts of
agility because this is the only way it can formulate the requirements for the other
functional units. This knowledge is of course essential to apply tamed agility. The
required knowledge includes:

• Principles and measures of agility: Agile development techniques encompass
numerous reasonable elements but also some ideological ones. They have to be
applied according to the project situation. In the New School of IT, it is nec-
essary to determine at the outset how agile the approach will be and which agile
best practices are going to be applied. This can only work if those making these
choices are familiar with the canon of agile best practices and able to assess the
techniques. Knowledge of Scrum and Kanban is indispensable, and field reports
on their benefits and risks should be known. The techniques of the more
plan-driven process models should be known as well, since both practices from
both worlds likely have to be combined.

• Techniques of continuous delivery/integration: Agility does not stop at the
limits of application development but affects all of enterprise IT. This means
enterprise IT has to be familiar with the concepts and architectures of continuous
delivery and integration (Duval et al. 2007), since ultimately it is not enough to
deliver software in foreseeable increments. It also has to be made available for
production as early and as often as possible.

23.2 New School of IT Skills: Mobility 287

23.4 New School of IT Skills: Flexibility

Flexible infrastructures, data outsourcing, and application management are buz-
zwords associated with significant benefits and potential savings. Whether and
when what shift and scaling is applied depends to a large extent on the specific case,
whether data protection and autonomy play a special role, and also how often
changing the basic conditions quickly has to be possible. In order to assess the
potential of scalable infrastructures and the risks and opportunities of using certain
technologies, enterprise IT should have knowledge of the following technologies:

• Cloud technologies: Whether infrastructures and applications are shifted to
public clouds or not depends on numerous regulatory conditions and risk
assessments. But even when this is not done, using cloud-like structures and
mechanisms can make sense in order to meet the requirements of flexible
scaling. Whether this is a full-blown private cloud or merely the implementation
of automated delivery processes does not play a role. Enterprise IT must be
familiar with corresponding mechanisms and has to be able to generate and
operate suitable structures.

• Big data technologies: Big data technologies in the broadest sense are a driver
of flexible infrastructures. We are talking about collecting, summarizing, and
storing large volumes of data in different formats and of various origins. In order
to be able to do that, enterprise IT requires knowledge of digitalization tech-
niques. It has to master the handling and inclusion of real objects and their more
or less continuous delivery of data. It must be familiar with various persistence
techniques since all the incoming data, which may be differently structured,
cannot be processed in relational structures quickly enough and in a meaningful
manner (both regarding its storage and its evaluation).

• Statistics: Large volumes of data have to be evaluated. This always has to
happen at runtime, since the detour using extraction, transformation, and loading
processes only delivers results after days or even weeks in many cases—often
too late for business processes with customer contact. The fast evaluation of
large data volumes and immediate feedback to operational business processes
means that patterns have to be recognized in data, the data must be summarized,
and relationships relevant for business need to be identified. In order to
accomplish this, enterprise IT requires statistics know-how and has to fill the
role of the data scientist (Davenport and Patil 2012).

Rapid further development is taking place in all of these areas, so that it is not
sufficient for enterprise IT to develop the right competencies at a given moment.
Even more so than in other fields, the flexibility dimension requires the continuous
observation of market trends and technology developments along with the evalu-
ation of their potential.

288 23 A New Skill Set

23.5 Business Development and Domain Knowledge

The content of a largely stable software system, subject only to gradual and con-
tinuous further development and based on stable technology, can be driven by
users. This is true for most systems of records. The situation is different when it
comes to a new software system. Here, “new” means “structurally new.”We are not
talking about the exact replacement of legacy systems with new systems. Struc-
turally new systems are developed for new business models or when novel tech-
nologies enable entirely new solutions.

The availability of reliable, ubiquitous telecommunications, for example, led to
entirely new, partly mobile business processes and corresponding software systems.
Which mobile solutions make sense can only be evaluated when one understands
the potential of mobile technologies. This cannot be assessed without specialized IT
knowledge. Of course, this knowledge gradually becomes mainstream; until at
some point, the potential of a technology is also clear to the users so that they can
develop new application ideas based on their domain knowledge. But by then, the
technology is no longer new and disruptive. In short, the future business potential of
new technologies can only be assessed with expert IT knowledge.

The convergence of systems of records with systems of engagement is leading to
entirely new technology mixes. As long as this is the case, business development
also has to take place in IT departments. This means IT is no longer just a service
provider but actively participates in the product design. The more domain knowl-
edge is available in the IT department, and the more effectively IT and users are
engaged in productive discussions, the better this role can be filled. The phe-
nomenon that the performance of traditional enterprise IT in view of digital
transformation in companies is often considered low, so that parallel organizations
are set up, is described by Westerman et al. (2014). It goes on to discuss that
companies known as digital masters (i.e., companies with a high level of leadership
capability and digital capability) refrain from doing exactly that. Instead they ensure
their enterprise IT obtains the necessary qualifications and bring it close to business.
In short, enterprise IT should be positioned so it can participate in business
development.

In order to do so, enterprise IT has to understand the domain and its language,
and be able to discuss it. This means the fundamental relationships in the respective
industry as well as the industry-specific terminology must be understood. Enter-
prise IT should also understand the company, the way it functions and its market
position, challenges, and strategy. It should be familiar with the regulatory context
and understand likely exogenous influencing factors. While this is not required for
developing and operating software in the narrow sense, it makes the development of
new business models easier and simplifies communication between operating
departments and enterprise IT. Efficient and cooperative business development is
only possible if this communication flows smoothly.

23.5 Business Development and Domain Knowledge 289

23.6 Knowledge of Business Processes, Business Models,
and Partnerships

The New School of IT means focusing on lean software. Building as little software
as possible is the goal. Rather than automating everything, the goal is to automate
only what needs to be automated in order to become more productive and
cost-effective in the interest of adding value to a company.

This can also mean that some activities, which only occur rarely, still have to be
performed manually or that some reports that are rarely needed are no longer
created. Perhaps it is not even possible to capture all data versions with dialogs, and
one accepts that rare cases become actual exceptions with corresponding individual
treatment. This follows the principle of data frugality (Akella et al. 2009). In order
to consider where automation is sensible and where it is not, many things need to be
known about the business processes being supported. What volume of business is
being conducted where, what drives client and user satisfaction, what data incon-
sistencies can incur costs, how many administrators work with what functionality
how often?

But even knowledge of all these relationships is not enough to assess whether
delivering certain functionality is worthwhile. The costs of preparation and oper-
ation also have to be known to assess economic efficiency. It is essential for this
reason alone that those stakeholders familiar with the application domain, and in
particular with the operational handling of the business processes being supported,
work together with software architects, developers, and operating experts. Great
opportunities arise if they actually engage with each other. Such a cross-disciplinary
team may, for example, identify that the desired functionality is too expensive and
that minimal changes that could still be acceptable from a business perspective lead
to more low-priced, economical solutions.

Truly lean software is the result: Developers and operating experts understand
the essential requirements of the users and conceive lean implementations in
cooperation with them—a lot of added value with little software. This requires the
various competencies described above and the willingness to engage in an inter-
disciplinary debate to find the best solution. In fact, one not merely needs coop-
eration between development (Dev) and operation (Ops) according to the DevOps
model (Bass et al. 2015), but also an understanding of the business. In other words,
the New School of IT is not satisfied with DevOps but demands BizDevOps (Gruhn
and Schäfer 2015).

Yet sometimes cooperation between enterprise IT and operating departments is
not sufficient to improve support for business processes. Specialized knowledge is
required in some cases to develop new business models. Perhaps customer behavior
has to be observed and evaluated, and perhaps new products need to be delivered or
maybe the pricing schema has to be adapted. Maybe unusual requirements apply in
terms of security, mobility, or the user experience. Perhaps there is a trend in favor
of service-based transaction models. Enterprise IT may not have all the required
competencies in such situations. Here, it may be wise to get partners involved rather

290 23 A New Skill Set

than developing the missing competencies from the ground up. If they provide
support for central aspects and understand the business domain, the question arises
whether they should not merely act as suppliers but as true partners—partners who
participate in the potential business success but then also bear part of the risk. Of
course this is no panacea. Maintaining sole control of a new business model is often
more important than sharing the risks and opportunities. Sometimes, new business
models are also used for practice. Many suppliers are not eligible as partners. But in
the time of the New School of IT with its focus on new business models and the
convergence of systems of records with systems of engagement, involving partners
(formerly called suppliers) more closely should at least be considered. Possibly
some business models are easier to establish when all competencies are exploited so
they focus solely on the success of the business model. In general, this consider-
ation is more applicable the more it falls into the context of the digital transfor-
mation [the use of technologies to fully digitalize aspects of the business
(Westerman et al. 2014)].

23.7 Insights and Experiences

An enterprise IT department with all the knowledge discussed above appears to be
perfectly equipped to practice tamed agility and the New School of IT. But it is also
useful for the enterprise IT department—or a sufficient number of its members—to
have gained experience and learned some lessons, including the following:

• No one-size-fits-all projects: Every project is different. This does not mean that
no generally applicable methods and instruments exist. However, it means that
changes are required every now and then, that flexibility is essential, and that
there is no reason for method and process dogmatism.

• Central importance of expectation management: People want to know what
awaits them, even if we are only talking about new software. This means one
has to explain what is happening to them. Expectations are only adjusted if the
explanations are also understood. Expectation management therefore means to
explain circumstances as long and as thoroughly as it takes to make them
understood, and not only as long as it should take to make them understood.

• Lean and good-enough software: Ideal solutions cannot be built, especially not
at first try. Most of all they are too expensive. Software that fulfills its purpose is
entirely sufficient, pays off more quickly, and is readily used. Additional
financial resources may then be made available in order to get closer to ideal
software, even though this is usually unattainable in the end.

• People want to be valued and included: In the end, people do the work in a
project. People want to be appreciated for their contribution to project work, and
they want to know how their contributions are integrated into the overall system.

23.6 Knowledge of Business Processes, Business Models, and Partnerships 291

• Communication is the key: Whether we are talking about delays or quality
problems, project success, or sensitive measures—at least half of a project’s
success depends on appropriate communication. Being able to talk to the right
people in the right order and suitable tonality is eminently important.

All experience shows that software projects succeed or fail with the ability of all
stakeholders to correctly grasp, understand, assess, and implement the system
context and system requirements. Especially in socio-technical systems in the
context of the New School of IT, which are closely interwoven with existing
business process and technology landscapes, the ability of the team members to
communicate is central: Based on the most well-founded possible technology and
domain knowledge, they have to make the right decisions about prioritizing
requirements, designing system structures, adapting business processes and the
integration of many different components and interfaces.

With the Interaction Room, we have introduced a method that supports the
understanding, evaluation, and discussion of many different aspects of a system.
True to the agile philosophy, it encourages healthy pragmatism with a focus on the
aspects that are essential for understanding the project and ensures that value and
risk drivers remain in view during the entire project term. The adVANTAGE
contract model ensures that such a pragmatic, agile approach does not remain a
theoretical ideal that is forced back into an advance planning corset by classic
delivery contracts. Since adVANTAGE gives both the client and the supplier lee-
way for adjustments but fairly distributes risks at the same time, the contract model
ensures that agility can actually be practiced in a flexible innovation process guided
by value and risk considerations.

References

Akella J, Buckow H, Rey S (2009) IT architecture: Cutting costs and complexity. http://www.
mckinsey.com/business-functions/business-technology/our-insights/it-architecture-cutting-
costs-and-complexity. Accessed 1 Mar 2016

Bass L, Weber I, Zhu L (2015) DevOps: A software architect’s perspective. Addison-Wesley
Davenport TH, Patil DJ (2012) Data scientist: The sexiest job of the 21st century. Harvard

Business Review 90(10):70–76
Duvall PM, Matyas S, Glover A (2007) Continuous integration: Improving software quality and

reducing risk. Addison-Wesley
Griebe T, Gruhn V (2014) A model-based approach to test automation for context-aware mobile

applications. In: Kim S, Hung CC, Hong J (eds) SAC 2014: Proc 29th Annual ACM
Symposium on Applied Computing, pp 420–427. doi:10.1145/2554850.2554942

Gruhn V, Schäfer C (2015) BizDevOps: Because DevOps is not the end of the story. In: Fujita H,
Guizzi G (eds) SoMet 2015: Proc 14th Intl Conf on Intelligent Software Methodologies, Tools
and Techniques. Communications in Computer and Information Science, vol 532. Springer,
pp 388–398. doi:10.1007/978-3-319-22689-7_30

IREB e.V. (2016) Certified professional for requirements engineering (CPRE). https://www.ireb.
org/en/cpre/basics/. Accessed 1 Mar 2016

Westerman G, Bonnet D, McAfee A (2014) Leading digital: Turning technology into business
transformation. Harvard Business Review Press

292 23 A New Skill Set

http://www.mckinsey.com/business-functions/business-technology/our-insights/it-architecture-cutting-costs-and-complexity
http://www.mckinsey.com/business-functions/business-technology/our-insights/it-architecture-cutting-costs-and-complexity
http://www.mckinsey.com/business-functions/business-technology/our-insights/it-architecture-cutting-costs-and-complexity
http://dx.doi.org/10.1145/2554850.2554942
http://dx.doi.org/10.1007/978-3-319-22689-7_30
https://www.ireb.org/en/cpre/basics/
https://www.ireb.org/en/cpre/basics/

24Outlook: Twelve Hypotheses

Enterprise IT must and will undergo tremendous change. This change is not trig-
gered by one single megatrend, buzzword, or idea. Rather, numerous developments
are intertwining, jointly causing radical change. This change can be formulated in
twelve hypotheses:

• IT is no longer driven, but becomes the driver: The importance of IT in the
company will grow beyond merely supporting business. It is going to determine
new business models. More and more often, new products and services will be
the result of new possibilities in IT. All of a sudden, business development takes
place in enterprise IT.

• The world goes mobile: The centralist world view of IT starts to totter.
Infrastructure and applications are needed where business happens, not the other
way around. Mobility will not merely constitute a specialization of IT, but
become the basic pattern for the (further) development of IT.

• Application development for the mobile world is a new discipline: IT for
mobility is far more than bridging the physical distance between mobile devices
and companies. Software engineering for mobile applications is more difficult
than software engineering for stationary software. Complexity increases and has
to be managed.

• Neat interfaces are not just for games: A pleasant user experience will not be
reserved for consumer applications and gaming. Users have become accustomed
to elegant, well-functioning interfaces, and expect these in business life and
daily work as well.

• What is “in” today is “out” tomorrow: The boundaries between enterprise IT
and external contractors are going to shift significantly. More and more often,
the risks of application development and operations are being passed on to
contractors. They become specialists in the industry of the client. Internal IT
becomes specialized in technically driven business development, requirements
engineering, and test management.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_24

293

• The client and contractor share joy and pain: New cooperation models will
define relationships with contractors. The client and contractor become partners
and commit to lean processes, lean software, and lean operating models. Risks
and opportunities are shared. The price is not determined by the size and
complexity of the application, but by efficiency as the ratio between effort and
benefits.

• Everything in software development becomes agile, including the price: The
change in cooperation between the client and contractor in custom development
leads to new commercial models. The time and materials basis is too risky for
the client. Fixed prices are not affordable due to high risk surcharges. As a
result, commercial models are designed based on agile development processes.

• Software development becomes value-oriented: There is only one true mea-
sure of productivity in application development: few function points per desired
functionality. This becomes the control quantity in portfolio planning and the
determination of success. Efficiency is the ratio of the benefits achieved to the
effort expended. This leads to a focus on value-added features.

• Software development increasingly becomes a process of gaining insights:
All progress in software engineering notwithstanding, specifying information
systems fully is not possible and therefore will not be attempted. Instead one has
to accept that some insights and requirements will not be known until late in the
process.

• Knowledge becomes a central element of application development: The
knowledge in the minds of the people in the business and IT departments is
complementary. Value-added applications are created when both sides are
willing and able to exchange and combine this knowledge. This requires mutual
respect and communication skills.

• Development and operations become one: The increasing agility of applica-
tion development radiates to deployment and operation. Short iteration cycles
and the rapid availability of new software versions are only useful if they can be
put into production quickly as well. The divides between application develop-
ment and operations are bridged by necessity. Development operation organi-
zations will be created for particularly dynamic domains.

• IT remains human—but differently: Automation, increased efficiency,
mobility, agility, and flexibility—all the changes and evolution in IT also mean
that the role of people in IT is going to be transformed. Social, communication,
and creative skills are needed in addition to technical expertise in order to handle
the new opportunities and reap the full benefits.

The New School of IT is a novel challenge and new responsibility rolled into
one for enterprise IT. Rising to the challenge requires not only pragmatic methods
and instruments, but also most of all capable people such as domain and technology
experts who contribute their ideas, talk to each other, respond to each other, and
look for new business and technical solutions.

294 24 Outlook: Twelve Hypotheses

Appendix A
Interaction Room Workshop Agendas

A.1 Interaction Room Workshop Agendas

The agendas suggested below can serve as guidelines for conducting Interaction
Room workshops. The specified timeframe should only be interpreted as a rough
orientation. Depending on the complexity of the project and which questions have
to be resolved most urgently, it is conceivable to only apply certain elements of the
methodology, or to spread the workshops over several days or even weeks. For
example, it can be helpful to plan dedicated workshop days for the population of
individual canvases, conducted at intervals of several days to give the stakeholders
time for reflection, more in-depth understanding and preparation between the
workshops.

A.1.1 IR:digital Workshop Agenda

Day 1

9:00 a.m. Introduction of the stakeholders, overview of the IR:digital
methodology

9:30 a.m. Establishing the workshop objective
10:30 a.m. Population of the partner canvas
12:00 p.m. Lunch break
1:00 p.m. Annotation of the partner canvas, discussion, and establishment of no

more than the five most important partners
2:00 p.m. Technology overview (presentation)
3:00 p.m. Population of the physical object canvas (focus on identification of

the OoIs)
4:30 p.m. Annotation of the physical object canvas, discussion, and establish-

ment of no more than the ten most important OoIs
5:00 p.m. Summary of the day, establishing the focal points for day two
5:15 p.m. Conclusion of the day.

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2

295

Day 2

9:00 a.m. Population of the physical object canvas (focus on life cycles of the
most important OoIs)

11:00 a.m. Technology overview (presentation)
12:00 p.m. Lunch break
1:00 p.m. Population of the touchpoint canvas for the five most important

partners (including establishment of the touchpoint lanes)
2:30 p.m. Annotation of the touchpoint canvas, discussion
3:30 p.m. Establishing the top five digitalization proposals
4:00 p.m. Parallel preparation of “press releases” for the top five realization

proposals
5:00 p.m. Presentation of the “press releases”
5:30 p.m. Summary of the results, feedback session
6:00 p.m. Conclusion of the day.

A.1.2 IR:scope Workshop Agenda

Day 1

9:00 a.m. Introduction of the stakeholders, overview of the IR:scope
methodology

9:30 a.m. Establishing the workshop objective, formulating the “press release”
10:30 a.m. Population of the feature canvas, annotation and prioritization of the

features
12:00 p.m. Lunch break
1:00 p.m. Population of the process canvas1

3:00 p.m. Coffee break
3:30 p.m. Annotation and discussion of the process canvas
4:45 p.m. Brief summary of the insights, establishing the focal points for day 2
5:00 p.m. Conclusion of the day.

Day 2

9:00 a.m. Recap of key insights from day 1 and plan for day 2
9:15 a.m. Completion of the object canvas
10:30 a.m. Annotation and discussion of the object canvas
12:00 p.m. Lunch break
1:00 p.m. Completion of the integration canvas
2:00 p.m. Annotation and discussion of the integration canvas
3:00 p.m. Coffee break

1Depending on the project requirements, another canvas may also be chosen as the leading canvas.

296 Appendix A: Interaction Room Workshop Agendas

3:30 p.m. Analysis of the overall picture, elimination of gaps/inconsistencies,
first more in-depth examinations

4:30 p.m. Summary of the insights, establishing the next steps
5:00 p.m. Conclusion of the day.

A.1.3 IR:mobile Workshop Agenda

Day 1

9:00 a.m. Introduction of the stakeholders, overview of the IR:mobile
methodology

9:30 a.m. Establishing the workshop objective, formulating the “press release”
10:30 a.m. Formulating, presenting, and weighting the personas
12:00 p.m. Lunch break
1:00 p.m. Population of the portfolio canvas
3:00 p.m. Coffee break
3:30 p.m. Annotation and discussion of the portfolio canvas
4:45 p.m. Brief summary of the insights, establishing the focal points for day 2
5:00 p.m. Conclusion of the day.

Day 2

9:00 a.m. Recap of the key insights from day 1 and the plan for day 2
9:15 a.m. Population of the touchpoint canvas
11:00 a.m. Annotation and discussion of the touchpoint canvas
12:00 p.m. Lunch break
1:00 p.m. Population of the interaction canvas
3:00 p.m. Coffee break
3:30 p.m. Annotation and discussion of the interaction canvas
4:30 p.m. Summary of the insights, establishing the next steps
5:00 p.m. Conclusion of the day.

A.1.4 IR:tech Workshop Agenda

Day 1

9:00 a.m. Introduction of the stakeholders, overview of the IR:tech methodology
9:30 a.m. Establishing the workshop objective
10:30 a.m. Population, annotation, and discussion of the feature canvas
12:00 p.m. Lunch break

Appendix A: Interaction Room Workshop Agendas 297

1:00 p.m. Population of the object,2 integration, and process canvas (current
state)

3:00 p.m. Coffee break
3:30 p.m. Annotation and discussion of the canvases (current state)
4:45 p.m. Brief summary of the insights, establishing the focal points for day 2
5:00 p.m. Conclusion of the day.

Day 2

9:00 a.m. Recap of the key insights from day 1 and the plan for day 2
9:15 a.m. Population of the object canvas (target state)
10:30 a.m. Population of the integration canvas (target state)
12:00 p.m. Lunch break
1:00 p.m. Population of the process canvas (target state)
2:30 p.m. Annotation of the target canvases
3:00 p.m. Coffee break
3:30 p.m. Discussion of the canvases, deriving technology implementation

potential and hurdles
4:30 p.m. Summary of the insights, establishing the next steps
5:00 p.m. Conclusion of the day.

2Depending on the project requirements, another canvas may also be chosen as the leading canvas.

298 Appendix A: Interaction Room Workshop Agendas

Appendix B
Interaction Room Annotations

B.1 Interaction Room Annotations

The annotations that were briefly introduced in the chapters on the individual
canvases are presented and explained in more detail in the following sections. This
list is intended to help the IR coaches choose the most suitable annotations for a
specific context. In addition to describing the meanings of the annotations, detailed
questions are also listed to help coaches with precisely pinpointing and specifying
the annotated issues in their project context.

B.1.1 Value Drivers

Value drivers are indicated by the symbols shown in Fig. B.1.

B.1.1.1 Business Value
From a service provider’s perspective, value creation by a system or process
element can express itself in many ways. While financial contributions to the sales
objective are the most obvious and easiest to measure (e.g., sales via a shop
platform), contributions to other business objectives can be more difficult to
comprehend, which means they can be easily lost in prioritization approaches.
Contributions to objectives such as customer loyalty, the external image, or quality
are difficult to measure may not be directly attributable to concrete features. The
business value annotation encourages the explicit exploration of these points.

Business value User value Innovation

Fig. B.1 Value driver annotations

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2

299

The following questions can be used to state the annotated business value more
precisely:

• What system/process element has a particular influence on the business value?
• What company objectives are positively influenced by the annotated element,

which ones negatively? (customer loyalty/sales/competition/market share/
external image/marketing/sustainability/company development/costs/quality/
productivity/other);

• What is required to achieve a positive influence or prevent a negative influence?

B.1.1.2 User Value
A question of added value also arises from the perspective of the system’s user.
While the expectations of the user and service provider may complement each other
in some cases (e.g., the user benefits from a certain function, the provider from the
usage fee), they may also contradict each other in other cases (if the user expects a
function that is unattractive for the provider, e.g., the link to a comparison portal).
To uncover such areas of conflict, the perception of the user is highlighted by the
distinct user value annotation.

Since value dimensions as clear and generally applicable as the various company
objectives used for the business value annotation typically cannot be defined for
users, the Kano (1984) classification is used here. The intensity of value creation is
defined according to whether the annotated system or process element is a must-be,
one-dimensional, or attractive quality, i.e., a characteristic that is expected as a
matter of course, one that is perceived to improve performance, or one that
positively surprises the user and may enhance acceptance of the system.

To state this assessment more precisely, the following questions should be
answered for each user value annotation:

• What system/process element has a special influence on user value?
• What are the expectations for this element? (basic/performance/enthusiasm

characteristic);
• What is required to achieve a positive influence or prevent a negative influence?

B.1.1.3 Innovation
The innovation annotation identifies process sections, system elements, features, or
general ideas that are especially innovative, for instance novel from a business or
technical perspective. It therefore constitutes an interface between value and effort
drivers:

Innovation implies a special business value on the one hand—if there was no
prospect of this, onewould hardly be inclined to expend the effort and accept the risk of
the innovation (see below). The innovation annotation usually also identifies a user
value, often even in the sense of anenthusiasmcharacteristic. The featureoffers anovel
function or realizes a known function in a new way that positively surprises the user,
thereby differentiating itself from the competition and improving user acceptance.

300 Appendix B: Interaction Room Annotations

But on the other hand, the innovation annotation also implies effort: Implementing
an innovative solution is usually more resource-consuming than using established
solution templates, since new approaches to solutions first have to be developed and
evaluated. Risks are also inherent in every innovation—regarding the feasibility of
the technical implementation, the time and budget required for implementation, and
the ultimate acceptance by the user.

This combination of characteristics makes the innovation annotation an
important anchor point for discussions. It requires especially diligent estimates of
effort and prioritization as well as particularly competent development and quality
assurance.

For a more precise definition, the following questions should be answered for
every innovation annotation:

• What system/process element constitutes a special innovation?
• What is the innovation in this element?
• Is it a technology or business innovation? Is it disruptive in nature?

B.1.2 Effort Drivers

Effort drivers are indicated by the symbols shown in Fig. B.2.

High use Time constraint Accuracy Reliability

Security Usability Attractiveness Flexibility

Mobility Automation Manual task Policy constraint

Complexity Invariability Deprecation Need for improvement

External resource

Fig. B.2 Effort driver annotations

Appendix B: Interaction Room Annotations 301

B.1.2.1 High Use
Parts of a system may be permanently or temporarily subject to high use—perhaps
due to a high number of users, voluminous batch processing, spikes due to deadlines
or unforeseen events. Architectural and infrastructure precautions have to be taken in
order to be prepared for such cases and ensure reliable functioning of the system even
under heavy load. For example, usage peaks require a flexible infrastructure that can
adapt to different load levels, rather than permanently providing resources for a peak
load that is only required rarely. Providing such a scalable architecture is not only a
question of hardware, but can have far-reaching consequences, for example, on the
conceptual design of replication mechanisms, ensuring data and code portability.
The conceptual design of this infrastructure, its implementation and testing requires
significant effort which can be identified by the high use annotation.

The type of requirement—and therefore also the subsequent solution—is
essentially based on how the load is distributed over time and what system
components it is concentrated on. Therefore, the stakeholders are asked to answer
the following questions in the annotation discussion:

• What system/process component is expected to be subject to high use?
• What is the type of load? When, how often, and for how long is it expected?
• What would the effects of overloading be?

B.1.2.2 Time Constraint
Time constraints in information systems typically apply to prescribed processing or
response times (e.g., the maximum time required to make a decision, or the deadline
for filing an application). The time-constraint annotation can therefore indicate that
developers have to meet real-time requirements or that certain business deadlines
have to be observed by the system.

In view of later finding a solution, one has to differentiate whether the time limit
is expressed as a deadline (point in time) or a window. Both are recorded as
subtypes of the annotation. The following questions also have to be answered:

• What is the required time frame?
• What is supposed to happen within the time frame?
• What would the effects of exceeding the time frame be?

B.1.2.3 Accuracy
Accuracy appears a trivial requirement at first glance, which should be met by all
components of a system.But although correctness in the implementation is an obvious
goal, especially high requirements for the precision, timeliness, or consistency of the
processed data apply to certain components. For example, components that calculate
interest or life insurance premiums decades in advance have to round monetary
amounts according to precise specifications, and different implementations (such as a
premium calculator in the insurance’s back-end system and one in the mobile app at
the point-of-sale) have to deliver exactly the same results. High requirements for the
timeliness of data also apply, e.g., to the processing of securities prices. In designing

302 Appendix B: Interaction Room Annotations

user interfaces in particular, there is often a need to ensure the correctness of data input
through suitable validations aswell. These requirements (and the risks associatedwith
the failure to meet them) are indicated by the accuracy annotation which is
differentiated into the subtypes precision, timeliness, and consistency.

The following questions should also be answered when discussing the
annotation:

• What processes/data are supposed to be as precise/timely/consistent as possible?
• What degree of precision/timeliness/consistency is required?
• What is the expected benefit of precision/timeliness/consistency?

B.1.2.4 Reliability
Reliability also sounds like a basic requirement that should be satisfied by any
software system. In fact, however, the same reliability standards do not usually
apply to all parts of a system: While it is always annoying when an expected system
function is not available, the actual consequences can be more or less dramatic. In
the most harmless case, there is merely a delay in executing a function. In more
critical cases, data is lost. How critical such a loss of time or even data is depends
on its severity and the application domain: Delays or the loss of messages can be
tolerated in a chat application, but may cause damages in the millions in a financial
application. This annotation is therefore intended to identify system elements where
reliability is especially critical to support the business domain.

The following questions should also be answered when discussing the
annotation:

• What processes/data need to be as reliable as possible?
• What degree of availability is required?
• What benefits are expected from the high reliability?

B.1.2.5 Security
The nature of security requirements can vary widely. For example, they include the
digital signing of datasets in order to guarantee authenticity and non-repudiation,
the anonymization of datasets prior to evaluation or ensuring the confidentiality of
certain datasets. Implementing these requirements often affects both business
processes and data structures. The security annotation symbolizes process and
system components where specific security precautions have to be taken that go
beyond the company’s normal security standards. They are differentiated into the
subcategories protection against unauthorized access and protection against data
loss.

The following questions also have to be answered for a more precise definition:

• What is to be protected against unauthorized access/loss?
• What is the type of threat? How strong is the protection supposed to be?
• What would the effects of a lack of protection be?

Appendix B: Interaction Room Annotations 303

B.1.2.6 Usability
Clearly, any software system with a user interface should meet fundamental
usability requirements. It should be as intuitive as possible to understand, easy to
use, suitable for the tasks of the user and so on. Yet there are often process steps or
components that pose special usability challenges for business or technical reasons
—perhaps because especially complex material has to be displayed (visualization
subtype) or because special operating steps or user interface elements are required
(interaction subtype), for example, gesture control on a touch screen. The
challenges that require special attention in the interaction design (but possibly also
in the process design) are identified by the usability annotation.

To define the usability requirement more precisely, the following questions have
to be answered:

• What is supposed to be as understandable/easy to use as possible?
• What makes usability a special challenge in this element?
• What benefits are expected from usability in this element?

B.1.2.7 Attractiveness
The desire to make certain system or process elements as attractive as possible is
related to the usability requirement at first glance. However, the attractiveness
annotation can be used to identify a requirement that goes beyond an appealing user
interface design. In some cases, a special incentive should be created to execute
certain activities—whether this is through technical or business means. Examples
are bonus systems or gamification techniques that reward certain activities beyond
the fundamentally positive user experience.

The definition of attractiveness can be stated in more concrete terms by
answering the following questions:

• What is supposed to be especially attractive?
• How is this incentive supposed to be created?
• What benefits are expected from the incentive?

B.1.2.8 Flexibility
For some process or system elements, it is already known at the time of conception
that a single implementation cannot cover all requirements of the users, usage
contexts, and basic conditions. An adequate measure of flexibility has to be planned
in these cases, which can be achieved in various ways:

Minor adaptations of the system functionality to user-specific requirements or
changed basic conditions can be realized through a suitable configuration of the
system at runtime without requiring additional development effort (configurability
subtype).

In other systems, certain (mainly technical) basic conditions may require
realizing more than one version of a system from the outset to cover different
applications. The versions are mutually independent instances of the system but

304 Appendix B: Interaction Room Annotations

typically developed in close dependency on each other—for example, the
realization of an Android and an iOS version of a mobile app (variability subtype).

Finally, it may already be known in the design phase of a system that the current
implementation will have to be adapted or replaced in the foreseeable future (e.g.,
when changes in legal regulations are pending). The future change should be taken
into account in the system from the outset in this situation—both in regard to the
architecture and in allocating effort to future obsolete functions (design for change
subtype).

The following specifying questions serve to improve understanding of the
background that makes flexibility necessary:

• What system/process element needs to be designed for flexibility?
• What configurations/variants/evolution paths are required?
• What would the effects of inflexibility be at this point?

B.1.2.9 Mobility
Accessing an information system or executing a business process using a mobile
device such as a smart phone poses a number of challenges for the mobile
components, which are not as prominent in classic information systems. In addition
to the diversity of platforms already discussed under the flexibility annotation, the
primary mobile effort drivers are mainly the unreliability of the network connection
and the inclusion of location data (including fallback mechanisms if these are not
available).

The mobility annotation is therefore stated more precisely by the following
subtypes: mobile availability (to identify functions or process segments where
mobile availability is desired), off-line availability (to identify functions that are
supposed to work even if a network connection is lacking) and location dependence
(to identify functions that depend on location information).

The mobility requirements are defined in more concrete terms with the following
specifying questions:

• What system/process element is to be available in mobile use, off-line, or
location-dependently?

• Under what circumstances can functionality restrictions be expected?
• What are the expected benefits of mobility/off-line availability/location

dependence?

B.1.2.10 Automation
The objective of developing information systems is often the automation of process
segments that were previously performed (semi-)manually. Such an automation
project brings up a number of business and technical questions. Automation is
usually no trivial mapping of activities to a technical solution, but requires the
adaptation of processes and data, the definition of interfaces and—often the most
difficult—establishing the extent of automation: To what degree will the process be

Appendix B: Interaction Room Annotations 305

automated? What special cases or errors are to be handled automatically, which
ones are supposed to prompt for human intervention? What interfaces are used for
such intervention? How can the process be simplified to avoid special cases as far as
possible? Clarifying these questions and the resulting implementation requires
significant effort and upheaval, which is highlighted by the automation annotation
in the diagram.

For motivation and to state these requirements more precisely, the following
questions should be discussed:

• What is to be automated?
• What degree of automation is desired?
• What does the user expect from the automation?

B.1.2.11 Manual task
The counterpart to the automation annotation is the manual task annotation. It
indicates that a certain process segment will continue to be performed manually
since it is not suitable for automated processing. This may be because specific
expert knowledge is required, because it is based on an expert assessment that
cannot be implemented algorithmically, or because human processing is preferable
to automation for social reasons. Even a manually executed process step is a
challenge for the realization of the information system, since one has to consider
how manually and automatically processed data and process steps will be linked.

To define the requirements for manual processing steps more precisely, the
following questions have to be asked:

• What requires human action/decision-making capability?
• How can the interface between the human and the system support/integrate

manual tasks as well as possible?
• What effects would errors in manual processing have?
• Why is manual processing preferable to automation of this task?

B.1.2.12 Policy Constraint
Both the development and the operation of software systems take place in a project
context that usually defines a number of different constraints. In general, most of
these constraints are not formulated as dedicated requirements. This may be
because they are assumed to be known to all stakeholders, or conversely because
they are not known to any of the stakeholders, or they may be formulated
somewhere but not be actually practiced or enforced.

The approach of not formulating all constraints as explicit requirements is
initially due to a certain pragmatism. Since it is obvious that a patient file
management system for a health insurance company has to comply with the
applicable legal regulations, one is not going to include the entire text of the law in
the requirements documentation. Yet it is important for the project stakeholders to
be aware at what points in a process or system special attention must be paid to

306 Appendix B: Interaction Room Annotations

certain constraints—especially those that express more of a quality than a functional
requirement.

Beyond that, projects are often subject to a number of constraints that cannot be
formulated as product requirements, but rather define specifications for the system’s
design process—these may be technology decisions specified by existing system
landscapes or quality assurance measures that apply throughout the organization.

The policy constraint annotation serves to highlight system or process elements
where taking such constraints into account for the conceptual design or operation is
especially critical or resource-consuming. According to the preceding discussion,
one can differentiate legal, technical, and organizational constraints.

The following questions serve to state the constraint and its implications more
precisely:

• What system/process element is subject to a constraint?
• What constraint has to be observed?
• Can this become a show stopper?

Since respecting any existing constraints is typically unavoidable, the question
examining benefits is replaced by a risk-focused question for this annotation: A
constraint may impose requirements that cannot be adequately implemented within
the scope of the project and therefore endanger the success of the project. The
question of the show-stopping character of a constraint helps identify such
fundamental risks early on, which provides an opportunity to manage them.

B.1.2.13 Complexity
Some system or process segments that make a comparatively simple impression in
the model can actually harbor a high degree of complexity which is not apparent to
all stakeholders at first glance. This may be business complexity such as extensive
calculation or decision rules, but also technical complexity such as major
conversion or integration challenges. Such complexity may only be foreseen by a
few domain experts or experienced developers, while stakeholders who are less
familiar with the business or technology specifics typically underestimate the
inherent effort and risks. The complexity annotation can be used to let all
stakeholders know that the implementation of a certain system or process element
requires expert knowledge and possibly extensive research or prototyping effort.

In stating the complexity annotation more precisely, one differentiates between
the business and technical complexity subtypes since the solution typically requires
the involvement of different stakeholder groups. The following specifying
questions should be posed as well:

• What system/process element is especially complex?
• What does the complexity consist of?
• Can this become a show stopper?

Appendix B: Interaction Room Annotations 307

B.1.2.14 Invariability
In extensive, organic system landscapes, there are typically numerous dependencies
between components in different life cycle stages and with different development
histories, technologies, and interfaces. While some legacy systems can be
maintained and further developed, others may be facing imminent replacement.

A development stop may be imposed on especially critical legacy systems. Even
though they continue to be used in productive operations, changes to the system are
no longer permitted. This decision may, for example, be made because the system
continues to work reliably, but certain decades-old knowledge about
implementation specifics has eroded over time so that the effort and risk of
re-engineering and adaptation of the code (which may, e.g., be written in COBOL)
is considered unreasonably high. The invariability annotation can be used to notify
all stakeholders that an existing system cannot be adapted to new conditions (e.g.,
in the course of process changes or the integration of additional components), but
has to be encapsulated with suitable adapters.

To define the background and effects of the invariability decision more
precisely, the following questions should be answered by stakeholders when this
annotation is used:

• What system/process element is supposed to remain unchanged?
• How is this element supposed to be integrated into the changed system/process

landscape?
• Why and on whose initiative is this element supposed to remain unchanged?

B.1.2.15 Deprecation
While some legacy components have to be considered invariable, other components
may be easier to replace. Components slated for replacement or elimination can be
identified with the deprecation annotation in the models. It indicates that the
respective component will no longer be available in the future, so that the system
under development cannot rely on it. Procedural or technical alternatives have to be
developed for the deprecated component instead.

To state the background and effects of a component’s deprecation more
precisely, the following questions have to be answered:

• What system/process component is deprecated?
• How will its tasks be implemented in the future (if at all)?
• Why and on whose initiative is the component designated as deprecated?

B..1.2.16 Need for Improvement
In the course of the maintenance, adaptation or new development of system
components, changing existing functions or processes is sometimes expedient in
order to optimize them or adapt them to new conditions. This may involve
adaptation, expansion, or simplification of a business or technical nature. In all of
these cases, the “need for improvement” annotation indicates that work is required

308 Appendix B: Interaction Room Annotations

on a certain component or process step, thereby giving the stakeholders an
overview in especially complex system landscapes of where “construction sites” are
located and what areas remain stable.

The background of the planned improvement can be captured more precisely by
answering the following questions:

• What system/process element is supposed to be adapted/expanded/simplified?
• What change is planned?
• Why and on whose initiative is this change being made?

B.1.2.17 External Resource
Interfaces to external resources often constitute effort drivers for two reasons: When
the system being developed provides services for external components, the interface
has to be designed with special care to optimize it for the current purpose but also
be prepared for future expansions. When an existing interface is being expanded,
one has to ensure that components already using this interface are not affected by
the adaptations.

If the system being developed depends on external components, one should
consider what happens if these components are temporarily or permanently
unavailable, if their interfaces are altered or the technical or business conditions for
their use change (e.g., regarding terms and conditions of use, prices etc.). In
addition to the need to clarify these questions, the external resource annotation
indicates that a fundamental make or buy decision regarding the externally linked
functionality may have to be made.

External resources also prompt the question of the possibilities for influence on
the resource provider. This is an important aspect since possible integration
problems are much easier to solve through collaboration with the provider instead
of assuming that the external interface cannot be changed.

• To what external resource does an interface exist?
• What information is exchanged with the external resource?
• What is the benefit/purpose of the connection for us and for the resource

provider?
• What are the possibilities for influence on the resource provider?

B.1.3 Uncertainty

Uncertainty is indicated by the symbol shown in Fig. B.3.

Uncertainty

Fig. B.3 Uncertainty
annotation

Appendix B: Interaction Room Annotations 309

The annotations introduced in the previous sections serve to highlight challenges
of which at least some team members are already aware. However, it is just as
important to be aware of points where there is still uncertainty in the team. These
may be business aspects that are not fully understood yet, or open questions about
the technical implementation. Such uncertainty is normal in any team, especially in
early project phases. In classic system models, however, there is no possibility of
expressing it. Quite to the contrary, the formality and precision of the modeling
language suggest certainty about the modeled aspects which may not actually exist
in the team. Once circumstances are modeled, they may no longer be sufficiently
questioned even when they merely constitute initial ideas born out of uncertainty.

The uncertainty annotation addresses this problem by allowing all team members
to clearly define the points of a system or process design where they still see a need
for clarification. The respective uncertainties usually cannot be clarified immediately
in the Interaction Room. Rather, they serve as an indication of where more extensive
research is required or where hidden effort and risks may lurk.

Unlike the specifying questions for the preceding annotations, the focus with
uncertainty is on strategies to record and clarify the points in question:

• What is the topic of uncertainty?
• What has to be done to eliminate the uncertainty?

B.4 Documenting Annotations

In practice, pads with self-adhesive annotation symbols have proven useful for
conducting the annotation rounds in practice. The annotation characteristics (what
does the annotation mean, where is it localized, why is it important) can be
documented with forms like the one shown in Fig. B.4.3

For each annotation that is affixed to an element on a canvas, the IR domain
coach records associated background information in one of these forms:

• In the “annotation ID” field in the top right corner, the annotation is numbered.
This number is also noted on the annotation symbol affixed to the canvas.

• Next to the “stakeholders” heading, the name(s) of the stakeholder(s) who
proposed this annotation are recorded in the “pro” field. If there are stakeholders
opposing the annotation, their names are noted as well in the “con” field. This
information is helpful for returning to these stakeholders later in the project for
more information on dealing with the annotation.

• Under the “value drivers,” “effort drivers,” or “uncertainty driver” heading, the
IR domain coach marks the type of annotation that is being documented. For
most annotations, a subtype that provides more information on the nature of the
challenge can be marked. (The preceding sections provide more information on
categorizing these subtypes.)

3Annotation stickers and documentation forms are available at www.interaction-room.de.

310 Appendix B: Interaction Room Annotations

• In case we are dealing with a business value annotation, the IR domain coach
can indicate whether the aspect that the stakeholder wanted to highlight has a
positive (+) or negative (–) influence on a number of business goals.

• For each annotations, the three boxes in the lower half of the form should be
filled with notes regarding

STAKEHOLDERS pro: con: Annot. ID:

VALUE DRIVERS

Business value User value Innovation
Customer loyalty Sustainability Must-be quality Business
Sales Company development One-dimensional quality Technology
Competitiveness Costs Attractive quality disruptive
Market share Quality
External image Productivity
Marketing other: _________________

EFFORT DRIVERS

High use Time constraint Accuracy Reliability
Deadline Precision
Window Timeliness

Consistency

Security Usability Attractiveness Flexibility
Access protection Visualization Configurability
Loss protection Interaction Variability

Design for change

Mobility Automation Manual task Policy constraint
Mobile availability Legal
Offline availability Technical
Location dependence Organizational

Complexity Invariability Deprecation Need for improvement
Business Adaptation
Technology Expansion

Simplification

External resource UNCERTAINTY DRIVER Uncertainty

Which system or process ELEMENT is affected by the annotation?

Which REQUIREMENT or CHALLENGE is expressed by the annotation?

Which BENEFIT is sought or which RISK is impending?

Potential benefit/risk: Frequency: Difficulty:

Fig. B.4 Template for the documentation of annotation characteristics

Appendix B: Interaction Room Annotations 311

– in the “element” box, the precise model element (i.e., system component,
process step or similar) that the annotation is referring to, e.g., “submission
of previous period’s transaction data to regulatory authority”;

– in the “requirement/challenge” box, the precise challenge or requirement that
the annotation conveys, e.g., “data must be submitted by 20th of the month,
or the preceding weekday if the 20th falls on a weekend or holiday”;

– in the “benefit/risk” box, the positive or negative consequences of heeding or
ignoring the annotation (whatever the dominant aspect is), e.g., “late filing of
data will lead to significant fines.”

The IR domain coach should obtain this information from the stakeholders as
they are discussing the annotation.

• In the three groups of fields on the bottom of the form, the IR domain coach
should record

– the team’s impression of the magnitude of the benefit or risk associated with
this annotation,

– the prevalence of the annotated challenge (e.g., its frequency of occurrence
in a process—this might be every time the process is executed, or only in
rare instances), and

– the expected difficulty of addressing the annotated challenge.

Since these impressions can only be “gut feelings,” they are just indicated in the
three qualitative categories “small,” “medium,” and “large” rather than attempting
to quantify them. If there is significant disagreement over the qualification of some
criteria, the IR domain coach can choose to mark all options that different
stakeholder groups are arguing for (e.g., “S” and “L”, thereby indicating that the
annotation is subject to particular contention and needs to be analyzed in more
detail.

Together, these three criteria can be valuable indicators of an annotation’s
impact and the priority with which it should be addressed, and thus help in project
planning.

The documentations of all annotations should be made available to the team
together with photographic records of the annotated canvas. This will help the
stakeholders later in the project to refer back to the knowledge recorded with the
annotations and consider it in their search for appropriate solutions.

References

Kano et al (1984) Attractive quality and must-be quality. J Japanese Society for Quality Control 14
(2):39–48, ISSN 0386-8230 (in Japanese)

312 Appendix B: Interaction Room Annotations

Appendix C
adVANTAGE Contract Template

C.1 adVANTAGE Contract Template

This chapter presents a contract template for projects conducted according to the
adVANTAGE model. We point out that the contract model described in detail in
Chaps. 14 and 15 is a template that can be used as a foundation for concrete projects
but that considerable adaptations may also make sense, depending on the project
requirements or partner constellation. Therefore, the following contract template
should not only be reviewed and negotiated by a legal practitioner, but also by the
persons in charge of commercial and technical matters for the client and contractor.
The contract was developed for the German legal system, which naturally means it
needs to be adapted if it is to be applied in a different legal system.

Section 1: Object of the Contract

1. The object of this contract is the development of custom software and the
granting of usage rights to this software by the contractor.

2. The individual software development steps—from determining the requirements
to specification, design, and implementation to delivery to the client—are being
performed in an agile development process.

Section 2: Agile Process Model

The parties have agreed on the application of an agile, iterative project model for
software development. The adVANTAGE model applied for the performance of
this contract is based on the following principles:

1. Proceeding in sprints
The design and implementation of the software takes place in several cycles called
sprints. Specific requirements jointly defined by the parties are implemented in a

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2

313

http://dx.doi.org/10.1007/978-3-319-41478-2_14
http://dx.doi.org/10.1007/978-3-319-41478-2_15

sprint. The requirements are derived from features and refined in the conceptual
design. Working software is delivered at the end of each sprint.

2. Service descriptions
Before design and implementation commences in the project, the parties roughly
establish the features desired by the client. This description must be established
in sufficient detail so the effort needed for the development of the features can
be estimated. A detailed description and specification of the requirements to be
developed in a sprint is prepared at the beginning of each sprint.

3. Prioritizing the functions for the sprint
The features to be developed in the respective sprint are prioritized by the client
before the start of the sprint. This means the client decides which requirements
corresponding to the features will be designed and implemented in which sprint.
The client can change the prioritization of the features again before each sprint
and therefore define the features to be developed in the next sprint after the end
of a sprint.
If more features are added in the course of the project, the total effort budget is
increased accordingly. The parties jointly establish whether these features are
implemented in an additional sprint (the team size established in advance
remains unchanged). Replacing features with others of the same or lower value
is possible after each sprint without affecting the budget. The principles for the
addition of new features apply when features are replaced with others of higher
value.

4. Flexibility
After the end of a sprint, the client can terminate the project, define new fea-
tures, or decide whether specific features will be developed or not. The client
therefore has flexibility in responding to new insights and possibly changed
requirements in the course of the project.

5. Duties to cooperate
Even more so than other project models, the adVANTAGE project model
requires the active participation of the client. The approach and influence the
client can exert on design and implementation in the course of the project
require a high level of client availability and participation.

6. Settlement after every sprint
Settlement of the services provided takes place after every sprint. The com-
pensation is made up of a base rate for analysis and project management, and
effort-based compensation for feature development.

Section 3: High-Level Specification at the Start of the Project

1. At the start of the project, the parties jointly prepare a high-level specification
for the software being developed. The high-level specification defines the pur-
pose, field of application, function, future users, and similar parameters of the
software being developed in general terms.

314 Appendix C: adVANTAGE Contract Template

2. The business and (if applicable) also the technical requirements of the client are
roughly described in the high-level specification in the form of features. A fea-
ture encompasses one or more functions of the software and can in principle be
used on its own or together with one or more other features.

3. Features have to be described in sufficient detail so the contractor can estimate
the design and implementation effort. Whether the initial high-level specifica-
tion already meets these requirements or a more detailed specification is required
has to be decided by the contractor for each feature. The contractor shall notify
the client what information is required for the purpose of estimating. Should
establishing a sufficient level of detail not be possible, the parties shall establish
the compensation model for the respective feature by mutual agreement.

4. The contractor shall provide the client with an estimate of the design and
implementation effort for each feature based on the high-level specification.
This estimate shall be in person-days.

5. The contractor shall coordinate the high-level specification and estimated effort
with the client. The high-level specification and estimated effort are part of this
contract and form the basis for subsequent contractual performance. The
high-level specification is included with this contract as Attachment 1, the
estimated effort as Attachment 2.

6. If the high-level specification and/or estimated effort has already been prepared,
coordinated, and approved by the parties before this contract is concluded (e.g.,
in the course of the quotation process, in the context of a workshop conducted in
advance of the project or as the result of a proof of concept), the provisions of
the two preceding subsections nevertheless apply correspondingly. The
high-level specification and corresponding estimated effort agreed in this way,
that is to say the documents containing them, are included with this contract as
Attachment 1 and 2, respectively.

Section 4: Sprints: Prioritization, Target Budgets, and Detailed Specification

1. The features described in the high-level specification are prioritized by the client
following the approval of the high-level specification, estimated effort, and base
rate. In coordination with the contractor, the client decides which features are
most important to the client and which ones are assigned a lower priority. While
the client is largely free to assign the priorities, possible business and technical
dependencies between different features must be taken into account. The con-
tractor supports the client in establishing a reasonable prioritization. The result
of this prioritization is recorded by the parties in a list. This list is included with
the contract as Attachment 3 and is therefore part of the contract.

2. The features (currently) having the highest priority are developed in the course
of each sprint.

Appendix C: adVANTAGE Contract Template 315

3. After this (initial) establishment, each sprint is assigned a fixed duration as well
as the budget derived from the base rate and estimated effort for developing the
features of the respective sprint.

4. At the start of each sprint, the features assigned to the sprint are established in
concrete terms and detail in a detailed specification. For the second and all
subsequent sprints this is done by the product owner during the currently
ongoing sprint as far as this is possible.

5. The contractor designs and implements the requirements derived from the
features in the detailed specification during the respective sprint and tests
whether the software meets the requirements. Then, the contractor provides the
software to the client for testing. The client tests the software and confirms
acceptance. Acceptance is also deemed to be declared if the client puts the
software into operation without reservations.

6. At the end of the project, after the final sprint is concluded and following the
handover to the client, the client is given the opportunity to perform a final
review and final comprehensive test. Once this is concluded, the client declares

• that the project is complete,
• that the software conforms to the contract, or
• if deviations are noted, the desired rectification of defects.

7. The duration of the respective sprint and therefore the time budget for delivery
for testing are fixed (known as time boxing). This means an individual sprint is
not extended under any circumstances. Instead features for which requirements
were not implemented in the software are shifted to another sprint, usually the
following one (referred to as “carryover” in the following sections).

Section 5: Subcontractors

The contractor is authorized to employ one ormore subcontractors in the performance
of this contract.

Section 6: Principles of Cooperation, Project Organization, and Escalation

1. The success of the project depends on close cooperation between the parties and
a constructive communication culture. Therefore, the parties within the scope of
the applicable legal regulations declare their unrestricted readiness for mutual
consideration, comprehensive information, precautionary warning of risks, joint
and constructive resolution of differences in opinion and protection against
disruptive third-party influences. This does not make the parties affiliated under
company law.

2. The responsible product owner on the contractor side is named in Attachment 5
to this contract. The contractor may change the product owner and will inform
the client accordingly if this is the case.

316 Appendix C: adVANTAGE Contract Template

3. The responsible project manager on the client side and its deputy are also named
in Attachment 5 to this contract. Both the project manager and deputy must have
the required business and technical expertise for the tasks to be performed by
them in the course of project implementation.

4. The contractor shall perform the design and implementation work pursuant to
the contract at its own premises. However, performance may also be on site with
the client or at the location of the hardware to prepare for delivery for the
purpose of review and testing.

5. The project language is German.
6. Differences in opinion and disputes that arise or develop in the course of the

project and that may endanger the successful realization of the project are
initially discussed and clarified at the level of the contractor’s project owner and
the client’s project manager. The resulting arrangements and agreements are
jointly recorded immediately and exchanged in text form as a minimum. If
timely resolution cannot be achieved at this level, the matter is immediately
escalated to the steering committee for the project. The members of the steering
committee are listed in Attachment 5 to this contract and are asked to resolve
difficulties that arise promptly and in good faith.

Section 7: Duties to Cooperate

1. Active participation of the client is of particular importance under the chosen
project model. The client therefore not only considers this a project of the
contractor, but also its own project and is aware that adequate own resources of
the client have to be scheduled on an ongoing basis for the successful real-
ization of the project. The parties agree that the duties of the client to cooperate
are actual obligations to perform.

2. The client obligates itself to promptly and at all times provide the business and
technical information, deliver the documentation, and perform the acts required
for the realization of the project, especially for the preparation of the detailed
specifications for the individual sprints, for development and programming of
the features and for testing.

3. The project manager and deputy are always available to the contractor for all
questions related to the realization of the project. They can be reached by the
contractor at any time by e-mail and telephone on working days between 8:00
a.m. and 8:00 p.m. and are authorized—to the extent obligated—to make all
required decisions for the realization of the project.
The client is authorized to replace the project manager or deputy with another
person having equal qualifications and availability. However, the contractor
must be notified of such measures in advance. Replacing the project manager
and deputy at the same time is excluded.

4. In view of the fixed schedule for each sprint (time boxing), the parties agree to
respond to inquiries and requests of the contractor within no more than 24

Appendix C: adVANTAGE Contract Template 317

hours and to provide the respective information, take the required actions or
make decisions. In cases where neither the client’s project manager nor deputy
meets this obligation in a timely manner, or if neither the project manager nor
deputy is deployed at the respective time contrary to the obligations, the con-
tractor shall make all decisions and take actions that are due itself subject to the
principle of good faith. Decisions made in this way are binding for the parties.

5. In addition, the client’s project manager or deputy is available to the contrac-
tor’s staff responsible for the project, in particular for preparation of the detailed
specification for the next respective sprint, and shall develop this detailed
specification jointly with the contractor and approve it following coordination.

6. Furthermore, the client shall prepare and deliver to the contractor all data
required for development, programming, and conducting functional verifica-
tions and tests of the software. This applies in particular to test datasets and test
content to verify the functions of the respective software. The client shall also
generate corresponding test cases in coordination with the contractor.

7. By request of the contractor, the client shall also enable the contractor to test the
implemented software in a production equivalent test environment of the client
prior to delivery for testing. The client shall provide corresponding access for
this purpose.

8. The client shall promptly report failures, disruptions, and impairments in the
operation of the software, including an error description, whether before or after
testing.

9. Failed, late, defective, or incomplete performance of the duties to cooperate
shall be borne by the client. The contractor shall notify the client in case of
default on duties to cooperate contrary to duty, if applicable with a grace period
to make up or repeat performance by the client. Due to the strict schedule for
the sprints, verbal notification is sufficient.
If the client fails to meet the respective duty to cooperate within the grace
period, the contractor is authorized to provide the service based on the infor-
mation already available or to proceed according to subsection 7.4, sentences
two and three of this contract. If neither one nor the other is possible, the
contractor can stop the corresponding work until the duty to cooperate is met.
Damages incurred by the contractor due to failure to meet the contractual duties
to cooperate, in particular by keeping resources available (especially in the form
of wait times by employees scheduled for the project), are billed to the client at
the regular daily rates pursuant to Attachment 7 to this contract. In this context,
the parties agree that the contractor based on the chosen project model is not
able to otherwise deploy the employees assigned to the project in the course of
an ongoing sprint.
Features that could not be completed in the respective sprint due to the failed,
late, defective, or incomplete performance of duties to cooperate are transferred
to the following sprint. The effort-based budget for the features is also trans-
ferred on a pro-rata basis, but without impairing the rights of the contractor
pursuant to subsection 7.9, second paragraph, sentences three and four of this
contract. The corresponding delays in the project are fully borne by the client.

318 Appendix C: adVANTAGE Contract Template

10. The client is solely responsible for the adequate, if applicable continuous backup
of its data according to the importance of the respective data. In particular, the
client in this context has to ensure that all possible affected data is backed up
again on an external system or data carrier prior to all previously announced
work of the contractor performed on the systems of the client as intended.

Section 8: Usage Rights

1. Custom development

(a) The client acquires all exclusive usage rights to the software being devel-
oped as well as the documentation that is prepared, in particular the rights to
duplication, dissemination, making available to the public and editing
including the unrestricted exploitation of editing using all and even
unknown exploitation methods. The contractor shall provide the client with
the source code on one or more conventional data carriers.

(b) The client can transfer these usage rights to third parties in whole or in part,
and/or grant simple usage rights to them to third parties, without additional
consent of the contractor.

2. Third-party software
The type, contents, and scope of usage rights granted to the client by the
provider of third-party software are determined by the provisions agreed
between the provider and the client.

Section 9: Compensation and Payment Terms

1. Compensation for performance and its settlement is based on the following
principles according to the chosen project model:

(a) A total effort budget for the project is established before the start of the
project. It is based among other things on the number and duration of the
sprints, size of the project team and estimated effort for the realization of the
features.

(b) Before the start of each sprint, the amount of compensation is established
together with the joint estimate of effort in reference to the specific feature.

(c) Settlement takes place after the conclusion of each sprint.
(d) Compensation for the services provided in a sprint always consists of:

(i) The fixed base rate, which covers all services of project management
(product owner), the scrum master, developing and preparing the
detailed specification, the development and integration tests performed
by the contractor and preparation of the release, and the warranty
and

Appendix C: adVANTAGE Contract Template 319

(ii) Effort-based compensation for the conceptual design and development
work in the sprint, which was previously estimated by the contractor
and approved by the client

The base rate and approved estimated effort constitute the sprint budget.

Definition of roles:

The product owner is the business and organizational contact person for the
client. S/he then provides the team with the requirements to be realized in
the form of features and is available for business questions.
The scrum master ensures the optimization of the process, transparency, and
improving the productivity of the team.
A team member develops the requirements of the corresponding features
and actively implements value-oriented solutions in the course of the
sprints. This results in usable software.

(e) In principle, compensation is paid for all design and implementation effort
expended during the sprint for software that has been tested or made
available for testing.
This includes effort that goes beyond the estimated effort and therefore
exceeds the target budget, and/or for possible error corrections and com-
parable activities. However, the parties agree on three different daily rates
based on this background, namely:

(i) A regular daily rate for effort of the product owner expended within
the target budget,

(ii) A regular daily rate for effort of the Team Members expended within
the target budget,
and

(iii) A lower daily rate for all effort that goes beyond the estimated effort
[OPTIONAL: and for all design and implementation effort expended
in the course of error correction and similar measures during an
iteration]. The reference value for determining deviations is the
respective feature.

All effort within the approved estimated effort is deemed to be within the
target budget. Features completed within the target budget are settled at the
regular daily rate according to the effort actually expended.
Effort that goes beyond the jointly estimated effort is settled according to
the effort actually expended. The contractor informs the client if the target
budget for a feature is exceeded.
This differentiation between the regular and lower daily rate also applies
when a feature is not pursued further in the project (e.g., if it was not
completed at the end of a sprint and not added to the next sprint).

320 Appendix C: adVANTAGE Contract Template

The lower daily rate applies for additional effort expended after the con-
clusion of the last sprint (see section 4.6).

(f) After the conclusion of a sprint, settlement in addition to the base rate is
only for the features that were tested or made available for testing. Carry-
overs are also transferred to the next sprint in regard to the time already
expended.

2. The agreed daily rates are established in Attachment 7 to this contract.
A person-day is defined as 8 working hours. Fewer or more hours worked on the
respective day are settled on a pro-rata basis. Settlement is based on perfor-
mance records. With the invoice, the client receives a printout of the activities of
the corresponding employees recorded in the contractor’s IT system for review.
Once two weeks have elapsed since submission with no objections, the activity
report is deemed to be approved.

3. [OPTIONAL: Bonus provision
The contractor receives a bonus payment for on-time delivery.
The total amount of the bonus is [AMOUNT] percent of the billed services.
The contractor is entitled to payment of the bonus when the following
requirements are met:

• Meeting the deadline [DATE].
• Readiness for acceptance of the services to be provided by the specified

dates.
Upon meeting the deadline [DATE], the contractor is entitled to an installment
payment of [AMOUNT] € plus VAT as required by law. The installment
payment is deducted from the bonus payment.
The entitlement to the bonus payment is not eliminated in case of failure to meet
the deadlines because the client fails to meet its contractual duties to cooperate.
In this case, the deadlines are postponed accordingly.]

4. Travel to the registered office of the client is already included in the quotation.
Travel costs and expenses incurred for travel to other deployment locations by
request of the client are reimbursed upon the presentation of vouchers or at the
respective maximum amount according to tax laws.
[ALTERNATIVE: Travel and incidental costs required for the performance of
the contact are reimbursed to the contractor by the client upon the presentation
of vouchers. Travel time expended is billed to the client at 50 percent of the
daily rate pursuant to this contract.]

5. The requirement for payment is the submission of a verifiable invoice in proper
form. Invoices are due for payment 30 days after the invoice is received by the
client. A three percent discount may be deducted in case of payment within eight
days. The due date of incorrect invoices is delayed accordingly.
[ALTERNATIVE: Invoices are generally due for payment within 30 days after
receipt of a verifiable invoice, with no deductions.]

Appendix C: adVANTAGE Contract Template 321

Section 10 Termination

1. Ordinary termination of this project contract by the client is permitted pursuant
to Section 649, sentence one of the German Civil Code (BGB). The following
applies in this case:

(a) Compensation paid for sprints that have already been completed remains
with the contractor in any case.

(b) If compensation has not been paid yet for a sprint that was already com-
pleted, this compensation is due for payment immediately upon receipt of a
corresponding invoice from the contractor.

(c) If requirements for features have already been implemented in software that
has been made available for testing at the time termination takes effect, but
testing by the client is still pending, the client has to perform these tests
notwithstanding termination and declare acceptability if the conditions are
met. If the client fails to do so even after the contractor grants a period of
grace, it is assumed that the corresponding requirements were properly
implemented. This also applies if the client puts the software to use without
reservations. In this case, the contractor is authorized to bill for the com-
pleted features of the ongoing sprint; the client is obligated to pay the
corresponding compensation.

(d) For ongoing sprints, the client compensates the contractor for effort already
expended at the time termination takes effect, according to the agreed daily
rates in Attachment 7 to this contract and the base rate for the current sprint.
The contractor provides proof of employee deployment by submitting
corresponding activity records and delivers the software at the current state
of development to the client.

(e) For services not yet provided, the client pays additional compensation equal
to the planned effort to be expended until the end of the current sprint
according to the daily rates agreed for the sprint in Attachment 7. The
actually expended effort for any carryovers from previous sprints has to be
compensated in addition. However, the contractor has to permit the
deduction of any savings realized by the contractor by the waiver of per-
formance, and any proceeds gained or maliciously failed to be gained by
otherwise deploying its employees.

2. Either party has the right to extraordinary cancellation if the respective legal
conditions are met. In regard to compensation for services already provided in
whole or in part, the preceding sections of this contract apply correspondingly.
Subsection 10.1.d, however, applies subject to the limitation that compensation
is waived in regard to services for which the client states within four weeks after
the notice of cancellation that they are of no interest to the client.

3. A notice of cancellation must be in written form in order to be effective. Sub-
mitting the notice by fax does not meet this written form requirement.

322 Appendix C: adVANTAGE Contract Template

Section 11: Warranty for Material Defects

1. The contractor warrants that the software meets the contractually agreed
characteristics.

2. The warranty term is one year. This short warranty term does not apply to claims
for compensation based on a material defect pursuant to Section 634,
No. 4 BGB in case of intent or the malicious concealment of a defect by the
contractor, in case of the loss of life, physical injury, or the impairment of
health, or in case of claims pursuant to the Product Liability Act (ProdHaftG).

3. Defects not already listed in the declaration of acceptance have to be reported by
the client to the contractor promptly and no later than within two weeks after
they are discovered. If a notice is not submitted in a timely manner, the object of
performance is deemed to be approved in regard to this defect. Insofar asserting
warranty claims is excluded.

4. As far as possible and to the extent reasonable for the client in view of the
effects of the defect, the contractor is authorized to provide an interim solution
to work around the defect until it is rectified. Such an interim solution blocks
possible rights of the client pursuant to Section 634, No. 2–4 BGB.

5. The warranty obligation is waived if the client alters the object of performance
itself or has it altered by third parties, unless the defect is not due to the
alterations that were made.

6. If the contractor is not able to rectify a material defect after two attempts, the
client is authorized to assert the additional statutory warranty claims.

Section 12: Warranty for Defects of Title

1. The contractor warrants that the software is free of third-party proprietary rights
and that, to the best knowledge of the contractor, no other rights exist that limit
or exclude use by the client pursuant to the contract.

2. In warranty cases, the contractor to an extent reasonable for the client has the
right to either modify the software so that it no longer falls within the protection
of the asserted right but still meets the requirements pursuant to the contract, or
to obtain authorization so it can be used without restrictions pursuant to the
contract and without additional costs for the client.

3. The warranty period is one year and begins with acceptance. However, in
Subsection 11.2, sentence two of this contract applies correspondingly.

4. The parties shall inform each other promptly in writing if claims for the vio-
lation of proprietary rights are asserted against them.

Section 13: Liability

1. For damages of the client caused by intent or gross negligence, the lack of a
guaranteed characteristic, a culpable violation of essential contractual obliga-
tions (known as cardinal duties), a culpable impairment of health, physical
injury or the loss of life, or in case of liability pursuant to the Product Liability

Appendix C: adVANTAGE Contract Template 323

Act (ProdHaftG), the contractor is liable pursuant to the applicable legal
regulations.

2. Cardinal duties are contractual duties, the performance of which makes the
proper performance of the contract possible in the first place, for which the
contractual partner is entitled to trust in regular performance, and the violation
of which endangers achieving the purpose of the contract by the other side.

3. If a cardinal duty is violated, liability insofar as damages are based merely on
simple negligence and not on death, physical injury, or the impairment of health
is limited to damages that can be typically expected to occur within the scope of
a contractual relationship such as this one.

4. In case of simple negligence, liability insofar as damages are not based on death,
physical injury, or the impairment of health nor a promised guarantee is also
fundamentally limited to an amount of 2 million €.

5. Any other liability is excluded regardless of the cause in law, both on the part of
the contractor and its assistants and vicarious agents.

6. In case of damages incurred by the client due to the loss of data, the contractor is
only liable insofar as the damages would not have been prevented by a backup
of all relevant data by the client as described in subsection 7.10 of this contract.

Section 14: Confidentiality

1. In regard to all information about the respective other party that has become or
becomes known to them in the context of this contract, identified as confidential
or identifiable as business or trade secrets of the respective other party based on
other circumstances, the parties are obligated to permanently maintain secrecy
even after the end of this contract and to refrain from dissemination to third
parties, recording or any other form of exploitation, unless the affected party has
consented to disclosure or exploitation expressly in writing.

2. Insofar as legally possible, the parties through suitable contractual agreements
with their employees and all other persons working for them shall ensure that
these persons also refrain from any disclosure, exploitation, dissemination, or
recording of the confidential information.

Section 15: Data Privacy

1. The parties shall observe the applicable legal regulations for the collection,
processing, and use of personal data within the scope of this contract.

2. [OPTIONAL: Test data used by the client may not include actual personal
data.]

3. Should a situation corresponding to Section 11, Paragraph 5 of the Federal Data
Protection Act (BDSG) arise in the course of performance pursuant to this
contract, the parties shall conclude a job-order data processing agreement
according to the requirements of Section 11 BDSG.

324 Appendix C: adVANTAGE Contract Template

Section 16: Advertising and Investor Relations

1. With the consent of the client and no sooner than after the commencement of
operation, the contractor is authorized to issue a press release regarding con-
clusion of the contract. The client shall not refuse consent without justifiable
cause.

2. With the consent of the client and no sooner than after the commencement of
operation, the contractor is authorized to name the client on the Web site and at
the exhibition stands of the contractor as a client and to use the client’s company
logo for these purposes. The client shall not refuse consent without justifiable
cause.

3. Furthermore, the client with consent and no sooner than after the commence-
ment of operation permits the publication of a project report. The client shall not
refuse consent without justifiable cause. The client shall also be available to
future prospects of the contractor as a reference contact.

Section 17: Choice of Law, Jurisdiction, and Place of Performance

1. For this contract and in regard to all legal relationships arising from the contract,
the parties agree on the application of the laws of the Federal Republic of
Germany. The application of the United Nations Convention on the Interna-
tional Sale of Goods as well as German and European international civil law is
excluded.

2. The jurisdiction for all disputes arising from or in the context of this contract,
and the place of performance, is [PLACE].

Section 18: Ranking

1. The ranking of the contractual agreements is as follows:

(a) Individual amendments and/or endorsements to this contract after it is
concluded

(b) This contract without attachments
(c) Attachment 4 to this contract with the appendices to Attachment 4 and all

documents equivalent to these appendices
(d) All other attachments to this contract

2. In case of contradictions, the provisions named first always take precedence
over those named last. Gaps are filled by the respective subordinate provision.
The same applies to amendments contained in the subordinate provisions. In
case of documents with the same ranking, the more recent document takes
precedence over the older document.

Appendix C: adVANTAGE Contract Template 325

Section 19: Final Provisions

1. This contract including its attachments contains the entire agreement between
the parties regarding the object of the contract. In particular, the general business
terms and conditions of the parties do not apply.

2. Amendments or endorsements as well as the cancellation of this contract must
be in written form. This also applies to the waiver of the written form
requirement itself.

3. Should provisions of this contract become ineffective in whole or in part, the
remaining provisions of this contact shall remain unaffected. The ineffective,
incomplete, or infeasible provision shall be replaced by the applicable laws. If a
suitable regulation or suitable legal principle to amend the contract is lacking,
and eliminating the clause does not offer a solution that protects the interests of
the parties, the gap shall be filled by the supplementary interpretation of the
contract. In this case, a provision is deemed to be agreed that comes as close as
possible to the original object and purpose of the ineffective, incomplete, or
infeasible provision.

Signatures

Attachment 1: High-Level Specification

[…]

Attachment 2: Initial Estimate of Effort and Base Rate

[…]

Attachment 3: Prioritization of the Features

If the prioritization of the requirements formulated in the features changes by
request of the client or if new features are added, the changes are recorded in an
appendix to this Attachment 3. The parties agree that the prioritization details
required for the sprints can also be recorded in other documents on a case-by-case
basis and that these documents do not necessarily have to be physically connected
to this Attachment 3 to the project contract insofar as they expressly or implicitly
refer to this Attachment 3 to the project contract.

[…]

326 Appendix C: adVANTAGE Contract Template

Attachment 4: Duration, Planned Budget, and Detailed Specification for the
Individual Sprints

For each sprint, the appendices attached to this Attachment 4 to the project contract
contain:

1. The duration of the sprint
2. The planned budget for the sprint
3. If applicable, a description of the features for the sprint

The parties agree that the information required for the sprint can also be recorded
in other documents on a case-by-case basis and that these documents do not
necessarily have to be physically connected to this Attachment 4 to the project
contract, insofar as they expressly or implicitly refer to this Attachment 4 of the
project contract or Section 4 of the project contract.

[…]

Attachment 5: Project Organization

1. The project manager on the contractor side is Mr./Ms. [NAME].
2. The project manager on the client side is Mr./Ms. [NAME].

His/her deputy is Mr./Ms. [NAME].
3. The members of the steering committee are:

Mr./Ms. [NAME]
Mr./Ms. [NAME]
[…]

Attachment 6: Software and Corresponding Licenses Provided by the Client

[…]

Attachment 7: Daily Rates

1. As the regular daily rate for all development and programming effort within the
target budget, the parties agree on the net amount of [AMOUNT] €.

2. As the reduced daily rate for all development and programming effort expended
outside the target budget and all error correction and similar measures during an
iteration, the parties agree on the net amount of [AMOUNT] €.

[ALTERNATIVE: The daily rates according to the quotation apply.]

Appendix C: adVANTAGE Contract Template 327

Index

A
Abstraction, 17, 18, 41
Accuracy (annotation), 302

on interaction canvas, 136
on object canvas, 108
on partner canvas, 72
on physical object canvas, 80

Actual effort, 160, 218, 268
adVANTAGE, 205

applicability, 236, 278
example, 229, 269
principles, 206
procedures, 213

AE. See actual effort
Agile development, 8, 49, 150, 178, 205
Agility, 5, 206, 287, 294
Annotation, 43, 56, 154, 299

analysis, 45, 260
documentation, 310
in IR:digital, 84
in IR:mobile, 137
in IR:scope, 114
in IR:tech, 145
method, 46, 275
on feature canvas in IR:scope, 94, 245
on feature canvas in IR:tech, 143
on integration canvas in IR:scope, 112, 259
on interaction canvas, 135
on object canvas in IR:scope, 106, 255
on partner canvas, 72
on persona canvas, 123
on physical object canvas, 79
on portfolio canvas, 125
on process canvas in IR:scope, 99, 252
on touchpoint canvas in IR:mobile, 83, 129

Application developer, 92
Architecture, 283
Attractiveness (annotation), 304

on interaction canvas, 136
on touchpoint canvas in IR:mobile, 130

AugIR. See Interaction Room, augmented
Automation, 60, 284
Automation (annotation), 305

on object canvas, 108
on process canvas, 102

B
Backlog, 56
Base rate, 214, 218, 234, 269
Big data, 288
Billing, 221, 269
BizDevOps, 290
BR. See base rate
Business data, 103
Business department, 25
Business developer, 121
Business object, 103
Business process, 69, 78, 95, 134, 154
Business value (annotation), 299

on feature canvas in IR:scope, 94
on feature canvas in IR:tech, 143
on interaction canvas, 136
on object canvas, 108
on persona canvas, 124
on physical object canvas, 80
on portfolio canvas, 126
on process canvas, 101
on touchpoint canvas in IR:mobile, 130

C
Canvas, 41, 56, 155, 168, 275

in IR:digital, 84
in IR:mobile, 137
in IR:scope, 114
in IR:Tech, 145

Change request, 185, 210, 222, 232
Channel, 81
Clarity, 25
Client, 154, 179, 181, 294
Client object, 75

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2

329

Cloud computing, 3, 6, 288
Coach, 51

Domain expert. See domain coach
Method expert. See method coach

Communication, 19, 25, 167, 171, 292
Company boundary, 177, 181
Completeness, 23
Complexity (annotation), 307

on feature canvas in IR:scope, 94
on feature canvas in IR:tech, 144
on integration canvas, 113
on object canvas, 108
on physical object canvas, 80
on process canvas, 102

Computer scientist’s forecast, 161, 270, 276
Context boundary (of system), 22
Context (of touchpoint), 81
Continuous integration, 6, 287
Contract for work and labor, 183
Contract model

agile, 195, 202
multi-stage, 200
traditional, 181, 191

Contractor, 179, 181, 190, 294
Cooperative performance structure, 179
Cost forward progressing, 33, 155, 159, 270,

276
Customer journey map, 81
Customer safari, 81
Cyber-physical system, 61

D
Daily rate, 211, 232, 269

reduced, 221, 223, 234
regular, 215, 234

Daily scrum, 214
DE. See detailed estimate
ΔDE. See deviation (average), between AE and

DE
Definition of Done, 207, 222, 236, 268
Deprecation (annotation), 308

on integration canvas, 113
on object canvas, 109

Detailed estimate, 160, 218, 267, 269
Development risk, 192, 210, 222
Deviation (average), 276

between AE and DE, 162, 270
between DE and IE, 161, 271

Device, 286
DevOps, 290, 294
Dialog, 132
Dialog flow, 134
Digital business expert, 65
Digital company, 60, 74

Digitalization, 3, 48, 59, 284
Digital technology expert, 67
Disaster, 33, 153
Disaster point, 157, 265, 277
Display, 168
DoD. See definition of done
Domain coach, 53
Domain knowledge, 20, 273, 289, 294
DR1. See daily rate, regular
DR2. See daily rate, reduced

E
Earned value analysis, 219
Efficiency incentive, 211, 223, 234
Effort, 154

actual. See actual effort
detailed estimate. See detailed estimate
initial estimate. See initial estimate
overall estimate. See overall estimate
remaining. See remaining effort

Effort driver, 26, 45, 301
Effort tracking, 218
EI. See efficiency incentive
Elasticity, 3, 5, 49
Enterprise architect, 142
Enterprise IT, vii, 3, 25, 283, 289, 291, 293
Estimate, 218, 276

detailed (effort). See detailed estimate
initial (budget). See initial budget
initial (effort). See initial estimate
overall (effort). See overall estimate

External resource (annotation), 309
on integration canvas, 114
on object canvas, 109
on process canvas, 102

External service provider, 179

F
Feature, 159
Feature canvas, 274

example, 245
in IR:agile, 150
in IR:scope, 93
in IR:tech, 142

Feature point, 197
Fixed price, 183, 190

per iteration, 195, 201
per point, 196, 201
per project, 184, 192

Flexibility, 288
Flexibility (annotation), 304

on feature canvas in IR:tech, 144
on interaction canvas, 136
on object canvas, 108

330 Index

on physical object canvas, 80
on process canvas, 101

Follow-up activities
example, 261
IR:digital, 86
IR:mobile, 138
IR:scope, 116
IR:Tech, 146

Function point, 197, 199

H
Health insurance benefit system, 241
HIB system. See health insurance benefit

system
High use (annotation), 302

on feature canvas in IR:tech, 143
on integration canvas, 113
on partner canvas, 72
on physical object canvas, 80
on process canvas, 101

I
IB. See initial budget
IE. See initial estimate
ΔIE. See deviation (average), between DE and

IE
Improvement, need for (annotation). See need

for improvement (annotation)
Industry 4.0, 62
Information technology, vii
In-house development, 179
Initial budget, 215, 269
Initial estimate, 159, 213, 218, 263
Innovation (annotation), 300

on feature canvas in IR:tech, 143
on interaction canvas, 136
on portfolio canvas, 126
on touchpoint canvas in IR:mobile, 130

Insurance benefit, 241
Integration, 287
Integration canvas, 132, 274

example, 258
in IR:scope, 109
in IR:tech, 145

Interaction channel, 128
Interaction engineer, 68
Interaction process, 134
Interaction Room, 17, 40

applicability, 172
augmented, 168
coach, 51
distributed, 167, 169

follow-up activities, 56
for agile project monitoring, 49, 149, 263
for digitalization strategy development, 48,

59
for mobile application development, 48,

119
for software project scoping, 49, 91, 243
for technology evaluation, 49, 141
layout, 18, 165
method, 40
principles, 18
results, 56, 276
temporary, 165
variant, 48, 171
workshop, 55, 295

Interaction trigger, 128
Interface, 69
Invariability (annotation), 308

on integration canvas, 113
on object canvas, 109

IR. See Interaction Room
IR:agile. See Interaction Room, for agile

project monitoring
IR:digital. See Interaction Room, for

digitalization strategy development
IR:mobile. See Interaction Room, for mobile

application development
IR:scope. See Interaction Room, for software

project scoping
IR:tech. See Interaction Room, for technology

evaluation
IT. See information technology
Iteration, 196

K
Kano model, 94

L
Lean software, v, 8, 13, 18, 27, 29, 153, 277,

290, 291

M
Manual task (annotation), 306

on object canvas, 108
on process canvas, 102

Maturity level, 190
Method coach, 46, 52
Mobility, 3, 4, 48, 60, 119, 284, 293
Mobility (annotation), 305

on integration canvas, 113
on object canvas, 108
on portfolio canvas, 126

Index 331

on process canvas, 102
Mobility expert, 121
Modeling, 23
Money for nothing, change for free, 197, 201
Monitoring, 35, 49, 149
Multi-stage contract model, 200

N
Need for improvement (annotation), 308

on integration canvas, 113
on object canvas, 109
on portfolio canvas, 126
on process canvas, 102
on touchpoint canvas in IR:mobile, 130

New School of IT, 3, 6, 283, 291, 293
Note area, 41

O
Object canvas, 274

example, 255
in IR:scope, 103
in IR:tech, 145

Object of interest, 73, 275
OE. See overall estimate
OoI. See object of interest
Operations expert, 92
OS. See overspend
Overall estimate, 161
Overhead, 213
Overspend, 218, 268

P
Partner, 69, 81

contractual, 181
Partner canvas, 69, 274
Pay per use, 188, 192
PD. See person-day
Persona, 122, 127
Persona canvas, 121
Personal injury manager, 241
Person-day, 233, 267
Physical object, 74
Physical object canvas, 73, 275
Plan-driven development, 7, 34, 178
Planning poker, 263
Platform, 286
Policy constraint (annotation), 306

on feature canvas in IR:tech, 144
on integration canvas, 113
on object canvas, 108
on process canvas, 102

Portfolio canvas, 124
Pragmatism, 12, 23, 25
Precision, 25

Press release, 55, 243
Price, 294

in adVANTAGE contracts, 210, 211
in agile contract models, 201
in fixed price contracts, 186
in fixed price per iteration contracts, 196
in fixed price per point contracts, 197
in Money for Nothing, Change for Free

contracts, 198
in pay-per-use contracts, 189
in shared pain/shared gain contracts, 199
in time and materials contracts, 187
in traditional contract models, 183, 191

Prioritization, 95, 216, 226
Process canvas

example, 248
in IR:scope, 95
in IR:tech, 145

Process owner, 54
Product backlog, 159, 215, 263

in IR:agile, 150
Product brief, 178, 186
Product object, 75
Product owner, 269
Progressive contracts, 196
Progress tracking, 158
Project controlling, 219
Project vision, 243

Q
Quality (Kano model), 94

R
RE. See remaining effort
Relevance, 23
Reliability (annotation), 303

on feature canvas in IR:tech, 144
on integration canvas, 113
on partner canvas, 72
on physical object canvas, 80
on process canvas, 101
on touchpoint canvas in IR:mobile, 130

Remaining effort, 219
Requirement, 93, 95, 154, 186, 213, 283

early, 29, 152, 277
late, vii, 27, 152, 185, 225, 277

Requirements exchange, 30, 152, 155, 198,
226, 270, 277

Risk, 23, 33, 179
in adVANTAGE contracts, 209, 210, 222,

228
in agile contract models, 202
in contracts for work and labor, 183
in fixed price contracts, 185

332 Index

in fixed price per iteration contracts, 195
in fixed price per point contracts, 196
in Money for Nothing, Change for Free

contracts, 197
in multi-stage contracts, 200
in pay-per-use contracts, 189
in service contracts, 184
in shared pain/shared gain contracts, 198
in time and materials contracts, 187
in traditional contract models, 191

Risk driver, 216
Risk management, 157
Risk map, 34, 153, 263, 265, 277
Role, 52, 54

S
SaaS. See software-as-a-service
Scope, 21
Scrum master, 214, 269
Security, 286
Security (annotation), 303

on feature canvas in IR:tech, 144
on integration canvas, 113
on object canvas, 108
on partner canvas, 72
on process canvas, 101

Semantics, 25
Service blueprint, 81
Service contract, 183
Settlement, 221, 269

fully completed sprint, 222
partially completed sprint, 224

Shared pain/shared gain, 198, 201
Skill, 283
Socio-technical system, vi, 177, 186, 292
Software, v
Software-as-a-service, 188
Software development. See software

engineering
Software engineering, v, 283
Software metrics, 27
Software process, vi
Sprint, 160, 196
Sprint backlog, 160, 216, 267
Sprint completion

full, 221
partial, 224

Sprint planning, 151, 155, 160, 166, 226, 267
Sprint scope, 216, 233, 267
Stakeholder, 51, 54, 167, 283, 291, 294

example, 244
in IR:digital, 64
in IR:mobile, 120

in IR:scope, 92
in IR:tech, 142

Statistician’s extrapolation, 161, 270, 276
Storyboard, 132
Story point, 197
Supplier, 179, 181
System

boundary, 22, 154
context, 21
of engagement, 22
of records, 21

T
T&M. See time and materials
Tailoring, 56
Tamed agility, 9, 11, 13, 291
Team, 51

distributed, 167
Team room, 166
Technology expert, 142
Telecommunication, 285
Termination, 198, 226
Testing, 287
Time and materials, 183, 187, 190, 192
Time constraint (annotation), 302

on feature canvas in IR:tech, 143
on physical object canvas, 80
on process canvas, 101

Timeline, 81
Touchpoint, 81, 127
Touchpoint canvas, 275

in IR:digital, 81
in IR:mobile, 127

Touchpoint event, 81
Touchpoint lane, 82
Transparency, 19
Trust, 34, 200, 207, 222, 228, 230
Trust point, 81, 127

U
Uncertainty, vi, 30, 177, 273
Uncertainty (annotation), 46, 47, 309

on feature canvas in IR:scope, 94
on feature canvas in IR:tech, 144
on integration canvas, 114
on interaction canvas, 136
on object canvas, 109
on process canvas, 102
on touchpoint canvas in IR:mobile, 130

Underspend, 218
US. See underspend
Usability (annotation), 304

on interaction canvas, 136

Index 333

User, 93
User experience, 132, 284, 285, 293
User journey, 127
User value (annotation), 300

on feature canvas in IR:scope, 94
on feature canvas in IR:tech, 143
on interaction canvas, 136
on object canvas, 108
on physical object canvas, 80
on portfolio canvas, 126
on process canvas, 101
on touchpoint canvas in IR:mobile, 130

UX. See user experience

V
Value, 19, 26
Value driver, 26, 45, 154, 197, 216, 294, 299
Value risk, 192, 210, 222

W
Whiteboard, 39, 168
Workshop, 165, 168, 295

IR:digital, 86, 295
IR:mobile, 138, 297
IR:scope, 116, 296
IR:tech, 146, 297
preparation, 55

334 Index

	Preface
	Structure and Audience of This Book
	Acknowledgments
	References

	Contents
	Introduction
	1 The Need for Tamed Agility
	1.1 A New School of IT
	1.1.1 Mobility
	1.1.2 Agility
	1.1.3 Elasticity
	1.1.4 Resulting Challenges

	1.2 Agile or Plan-Driven?
	1.3 A Pragmatic Middle Ground
	1.4 Tamed Agility in Practice
	References

	The Interaction Room
	2 A Room for Ideas
	2.1 Key Interaction Room Principles
	2.2 Involve Domain Experts
	2.3 Refine the Scope Continuously
	2.4 Favor Relevance Over Completeness
	2.5 Favor Clarity Over Syntactic and Semantic Precision
	2.6 Define Value and Effort Drivers
	2.7 Manage Late Requirements
	2.8 Manage Early Requirements
	2.9 Reveal Uncertainties Early
	2.10 Make Cost Changes Transparent
	2.11 Analyze the Risk of Disasters
	2.12 Build Trust Between Stakeholders
	2.13 Visualize the Project’s Progress
	References

	3 Interaction Room Basics
	3.1 Method Overview
	3.2 Canvases
	3.3 Annotations
	3.4 Variants
	3.5 Stakeholders
	3.5.1 Interaction Room Method Coach
	3.5.2 Interaction Room Domain Coach
	3.5.3 Process Owner
	3.5.4 Additional Roles

	3.6 Workshop Preparation
	3.7 Results and Follow-up Activities

	4 Using an Interaction Room for Digitalization Strategy Development (IR:digital)
	4.1 Relevant Stakeholders
	4.1.1 Digital Business Expert
	4.1.2 Digital Technology Expert
	4.1.3 Interaction Engineer

	4.2 Partner Canvas
	4.2.1 Methodology and Notation
	4.2.2 Annotations and Analysis

	4.3 Physical Object Canvas
	4.3.1 Methodology and Notation
	4.3.2 Annotations and Analysis

	4.4 Touchpoint Canvas
	4.4.1 Methodology and Notation
	4.4.2 Annotations and Analysis

	4.5 Cross-Canvas Analyses
	4.6 Workshop Structure and Follow-up Activities
	References

	5 Using an Interaction Room for Software Project Scoping (IR:scope)
	5.1 Relevant Stakeholders
	5.1.1 Application Developer
	5.1.2 Operations Expert
	5.1.3 User

	5.2 Feature Canvas
	5.2.1 Methodology and Notation
	5.2.2 Annotations and Analysis

	5.3 Process Canvas
	5.3.1 Methodology and Notation
	5.3.2 Annotations and Analysis

	5.4 Object Canvas
	5.4.1 Methodology and Notation
	5.4.2 Annotations and Analysis

	5.5 Integration Canvas
	5.5.1 Methodology and Notation
	5.5.2 Annotations and Analysis

	5.6 Cross-Canvas Analyses
	5.7 Workshop Structure and Follow-up Activities
	Reference

	6 Using an Interaction Room for Mobile Application Development (IR:mobile)
	6.1 Relevant Stakeholders
	6.1.1 Mobility Expert
	6.1.2 Business Developer

	6.2 Persona Canvas
	6.2.1 Methodology and Visualization
	6.2.2 Annotations and Analysis

	6.3 Portfolio Canvas
	6.3.1 Methodology and Visualization
	6.3.2 Annotations and Analysis

	6.4 Touchpoint Canvas
	6.4.1 Methodology and Notation
	6.4.2 Annotations and Analysis

	6.5 Interaction Canvas
	6.5.1 Methodology and Notation
	6.5.2 Annotations and Analysis

	6.6 Cross-Canvas Analyses
	6.7 Workshop Structure and Follow-up Activities
	References

	7 Using an Interaction Room for Technology Evaluation (IR:tech)
	7.1 Relevant Stakeholders
	7.1.1 Technology Expert
	7.1.2 Enterprise Architect

	7.2 Feature Canvas
	7.3 Process, Object, and Integration Canvases
	7.4 Cross-Canvas Analyses
	7.5 Workshop Structure and Follow-up Activities

	8 Using an Interaction Room for Agile Project Monitoring (IR:agile)
	8.1 From Feature Canvas to Product Backlog
	8.2 Sprint Planning Workshops
	8.3 Requirements Exchange
	8.4 Risk Map
	8.5 Progress Control
	8.6 Cost Forward Progressing
	References

	9 Using Interaction Rooms Under Difficult Conditions
	9.1 Temporary Interaction Rooms
	9.2 Distributed Interaction Rooms
	9.3 Augmented Interaction Rooms
	References

	10 Summary
	Reference

	The adVANTAGE Contract Model
	11 Framing Software Projects in Commercial Terms
	Reference

	12 Traditional Contract Models in an Agile World
	12.1 Fixed Price
	12.2 Time and Materials
	12.3 Pay Per Use
	12.4 Summary
	References

	13 Agile Contract Models
	13.1 Fixed Price per Iteration
	13.2 Fixed Price per (Whatever) Point
	13.3 Money for Nothing, Change for Free
	13.4 Shared Pain/Shared Gain
	13.5 Multi-stage Contract Models
	13.6 Summary
	References

	14 Key adVANTAGE Principles
	14.1 Commitment to Agility
	14.2 Mutual Trust
	14.3 Contractor’s Willingness to Assume Risk
	14.4 Budget Security
	14.5 Shared Pain
	14.6 Efficiency Incentives
	Reference

	15 adVANTAGE Procedures
	15.1 Initial Requirements Collection and Budget Estimate
	15.2 Feature Prioritization and Sprint Definition
	15.3 Sprint Implementation and Controlling
	15.4 Sprint Inspection and Billing
	15.4.1 Full Completion of Sprint
	15.4.2 Partial Completion of Sprint

	15.5 Planning the Next Sprint
	15.6 Project Termination
	15.7 Summary
	Reference

	16 adVANTAGE in Practice
	16.1 Case Study: The BERGFÜRST Crowd Investing Platform
	16.2 Fine-Tuning adVANTAGE Parameters
	References

	17 Summary
	A Sample Project
	18 Case Study: The Cura Health Insurance Benefit System
	19 Initial Project Scoping with the IR:scope
	19.1 Project Vision
	19.2 Identification of Stakeholders and Objectives
	19.3 Feature Canvas
	19.3.1 Feature Identification and Canvas Population
	19.3.2 Annotation and Analysis

	19.4 Process Canvas
	19.4.1 Identification and Prioritization of Business Processes
	19.4.2 Canvas Population
	19.4.3 Annotation and Analysis

	19.5 Object Canvas
	19.5.1 Canvas Population
	19.5.2 Annotation and Analysis

	19.6 Integration Canvas
	19.6.1 Canvas Population
	19.6.2 Annotation and Analysis

	19.7 Cross-Canvas Annotation Analysis
	19.8 Documentation and Follow-up Activities

	20 Project Monitoring with the IR:agile
	20.1 From Feature Canvas to Product Backlog
	20.2 Risk Map
	20.3 The First Sprint
	20.3.1 Planning the First Sprint
	20.3.2 Results of the First Sprint

	20.4 Settlement Using adVANTAGE
	20.5 Cost Forward Progressing
	20.6 Using the Requirements Exchange

	21 Lessons Learned
	Conclusion
	22 The Big Picture
	References

	23 A New Skill Set
	23.1 General Software Technology and Methodology Skills
	23.2 New School of IT Skills: Mobility
	23.3 New School of IT Skills: Agility
	23.4 New School of IT Skills: Flexibility
	23.5 Business Development and Domain Knowledge
	23.6 Knowledge of Business Processes, Business Models, and Partnerships
	23.7 Insights and Experiences
	References

	24 Outlook: Twelve Hypotheses
	Appendix AInteraction Room Workshop Agendas
	Appendix BInteraction Room Annotations
	Appendix CadVANTAGE Contract Template
	Index

