






All too often, the teaching of computer programming consists of explaining the 
syntax of the chosen language, showing the student a 10-line program, and then 
asking the student to write programs. In this book, we take the approach that the 
best way to learn to write is to read (and conversely, a good way to improve reading 
skills is to write). After the briefest of introductions to Lisp, we start right off with 
complex programs and ask the reader to understand and make small modifications 
to these programs. 

The premise of this book is that you can only write something useful and inter- 
esting when you both understand what makes good writing and have something 
interesting to say. This holds for writing programs as well as for writing prose. As 
Kernighan and Plauger put it on the cover of Software Tools in Pascal: 

Good programming is not learned from generalities, but by seeing how signif- 
icant programs can be made clean, easy to read, easy to maintain and modify, 
human-engineered, efficient, and reliable, by the application of common sense 
and good programmingpractices. Careful study and imitation of good programs 
leads to better writing. 

The proud craftsman is often tempted to display only the finished work, without 
any indication of the false starts and mistakes that are anunfortunate but unavoidable 
part of the creative process. Unfortunately, this reluctance to unveil the process is 
a barrier to learning; a student of mathematics who sees a beautiful 10-line proof in 
a textbook can marvel at its conciseness but does not learn how to construct such a 
proof. This book attempts to show the complete programming process, "warts and 
all." Each chapter starts with a simple version of a program, one that works on some 
examples but fails on others. Each chapter shows how these failures can be analyzed 
to build increasingly sophisticated versions of the basic program. Thus, the reader 
can not only appreciate the final result but also see how to learn from mistakes and 
refine an initially incomplete design. Furthermore, the reader who finds a particular 
chapter is becoming too difficult can skip to the next chapter, having gained some 
appreciation of the problem area, and without being overwhelmed by the details. 

This book presents a body of knowledge loosely known as "A1 programming 
techniques," but it must be recognized that there are no clear-cut boundaries on this 
body of knowledge. To be sure, no one can be a good A1 programmer without first 
being a good programmer. Thus, this book presents topics (especially in parts I11 
and V) that are not A1 per se, but are essential background for any A1 practitioner. 

W h y  Lisp? Why  Common Lisp? 

Lisp is one of the oldest programming languages still in widespread use today. There 
have been many versions of Lisp, each sharing basic features but differing in detail. 
In this book we use the version called Common Lisp, which is the most widely 
accepted standard. Lisp has been chosen for three reasons. 



First, Lisp is the most popular language for A1 programming, particularly in the 
United States. If you're going to learn a language, it might as well be one with a 
growing literature, rather than a dead tongue. 

Second, Lisp makes it easy to capture relevant generalizations in defining new 
objects. In particular, Lisp makes it easy to define new languages especially targeted 
to the problem at hand. This is especially handy in A1 applications, which often 
manipulate complex information that is most easily represented in some novel form. 
Lisp is one of the few languages that allows full flexibility in defining and manipu- 
lating programs as well as data. All programming languages, by definition, provide 
a means of defining programs, but many other languages limit the ways in which a 
program can be used, or limit the range of programs that can be defined, or require 
the programmer to explicitly state irrelevant details. 

Third, Lisp makes it very easy to develop a working program fast. Lisp programs 
are concise and are uncluttered by low-level detail. Common Lisp offers an unusually 
large number of useful predefined objects, including over 700 functions. The pro- 
gramming environment (such as debugging tools, incremental compilers, integrated 
editors, and interfaces to window systems) that surround Lisp systems are usually 
very good. And the dynamic, interactive nature of Lisp makes it easy to experiment 
and change a program while it is being developed. 

It must be mentioned that in Europe and Japan, Prolog has been as popular as 
Lisp for A1 work. Prolog shares most of Lisp's advantages in terms of flexibility and 
conciseness. Recently, Lisp has gained popularity worldwide, and Prolog is becom- 
ing more well known in the United States. As a result, the average A1 worker today is 
likely to be bilingual. This book presents the key ideas behind Prolog in chapters 11 
and 12, and uses these ideas in subsequent chapters, particularly 20 and 21. 

The dialect of Lisp known as Scheme is also gaining in popularity, but primarily 
for teaching and experimenting with programming language design and techniques, 
and not so much for writing large A1 programs. Scheme is presented in chapters 22 
and 23. Other dialects of Lisp such as Franz Lisp, MacLisp, InterLisp, ZetaLisp, 
and Standard Lisp are now considered obsolete. The only new dialect of Lisp to be 
proposed recently is EuLisp, the European Lisp. A few dialects of Lisp live on as 
embedded extension languages. For example, the Gnu Emacs text editor uses elisp, 
and the AutoCad computer-aided design package uses AutoLisp, a derivative of Xlisp. 
In the future, it is likely that Scheme will become a popular extension language, since 
it is small but powerful and has an officially sanctioned standard definition. 

There is a myth that Lisp (and Prolog) are "special-purpose" languages, while 
languages like Pascal and C are "general purpose." Actually, just the reverse is 
true. Pascal and C are special-purpose languages for manipulating the registers and 
memory of a von Neumann-style computer. The majority of their syntax is devoted 
to arithmetic and Boolean expressions, and while they provide some facilities for 
forming data structures, they have poor mechanisms for procedural abstraction 
or control abstraction. In addition, they are designed for the state-oriented style 



of programming: computing a result by changing the value of variables through 
assignment statements. 

Lisp, on the other hand, has no special syntax for arithmetic. Addition and 
multiplication are no more or less basic than list operations like appending, or string 
operations like converting to upper case. But Lisp provides all you will need for 
programming in general: defining data structures, functions, and the means for 
combining them. 

The assignment-dominated, state-oriented style of programming is possible in 
Lisp, but in addition object-oriented, rule-based, and functional styles are all sup- 
ported within Lisp. This flexibility derives from two key features of Lisp: First, Lisp 
has a powerful macro facility, which can be used to extend the basic language. When 
new styles of programming were invented, other languages died out; Lisp simply 
incorporated the new styles by defining some new macros. The macro facility is 
possible because Lisp programs are composed of a simple data structure: the list. 
In the early days, when Lisp was interpreted, most manipulation of programs was 
done through this data structure. Nowadays, Lisp is more often compiled than in- 
terpreted, and programmers rely more on Lisp's second great flexible feature: the 
function. Of course, other languages have functions, but Lisp is rare in allowing the 
creation of new functions while a program is running. 

Lisp's flexibility allows it to adapt as programmingstyles change, but more impor- 
tantly, Lisp can adapt to your particular programming problem. In other languages 
you fit your problem to the language; with Lisp you extend the language to fit your 
problem. 

Because of its flexibility, Lisp has been succesful as a high-level language for rapid 
prototyping in areas such as AI, graphics, and user interfaces. Lisp has also been 
the dominant language for exploratory programming, where the problems are so 
complex that no clear solution is available at the start of the project. Much of A1 falls 
under this heading. 

The size of Common Lisp can be either an advantage or a disadvantage, depending 
on your outlook. In David Touretzky's (1989) fine book for beginning programmers, 
the emphasis is on simplicity. He chooses to write some programs slightly less 
concisely, rather than introduce an esoteric new feature (he cites pushnew as an 
example). That approach is entirely appropriate for beginners, but this book goes 
well past the level of beginner. This means exposing the reader to new features of 
the language whenever they are appropriate. Most of the time, new features are 
described as they are introduced, but sometimes explaining the details of a low- 
level function would detract from the explanation of the workings of a program. 
In accepting the privilege of being treated as an "adult," the reader also accepts a 
responsibility-to look up unfamiliar terms in an appropriate reference source. 



Outline of the Book 

This book is organized into five parts. 

Part I introduces the Common Lisp programming language. 
Chapter 1 gives a quick introduction by way of small examples that demonstrate 

the novel features of Lisp. It can be safely skipped or skimmed by the experienced 
programmer. 

Chapter 2 is a more extended example showing how the Lisp primitives can be 
put together to form a program. It should be studied carefully by the novice, and 
even the experienced programmer will want to look through it to get a feel for my 
programming style. 

Chapter 3 provides an overview of the Lisp primitives. It can be skimmed on first 
reading and used as a reference whenever an unfamiliar function is mentioned in 
the text. 

Part I has been kept intentionally brief, so that there is more room for presenting 
actual A1 programs. Unfortunately, that means that another text or reference book 
(or online help) may be needed to clarify some of the more esoteric features of the 
language. My recommendations for texts are on page xiii. 

The reader may also want to refer to chapter 25, which offers some debugging 
and troubleshooting hints. 

Part I1 covers four early A1 programs that all use rule-based pattern-matching 
techniques. By starting with relatively simple versions of the programs and then 
improving them and moving on to more complex programs, the reader is able to 
gradually acquire increasingly advanced programming skills. 

Chapter 4 presents a reconstruction of GPS, the General Problem Solver. The 
implementation follows the STRIPS approach. 

Chapter 5 describes ELIZA, a program that mimics human dialogue. This is 
followed by a chapter that generalizes some of the techniques used in GPS and ELIZA 

and makes them available as tools for use in subsequent programs. 
Chapter 7 covers STUDENT, a program that solves high-school-level algebra word 

problems. 
Chapter 8 develops a small subset of the MACSYMA program for doing symbolic 

algebra, including differential and integral calculus. It may be skipped by those who 
shy away from heavy mathematics. 

Part I11 detours from A1 for a moment to present some general tools for more 
efficient programming. The reader who masters the material in this part can be 
considered an advanced Lisp programmer. 

Chapter 9 is a detailed study of efficiency techniques, concentrating on caching, 
indexing, compilation, and delaying computation. Chapter 10 covers lower-level effi- 
ciency issues such as using declarations, avoiding garbage generation, and choosing 
the right data structure. 



Chapter 11 presents the Prolog language. The aim is two-fold: to show how to 
write an interpreter for another language, and to introduce the important features 
of Prolog, so that they can be used where appropriate. Chapter 12 shows how a 
compiler for Prolog can be 20 to 200 times faster than the interpreter. 

Chapter 13 introduces object-oriented programming in general, then explores the 
Common Lisp Object System (CLOS). 

Chapter 14 discusses the advantages and limitations of both logic-oriented and 
object-oriented programming, and develops a knowledge representation formalism 
using all the techniques of part 111. 

Part IV covers some advanced A1 programs. 
Chapter 15 uses the techniques of part I11 to come up with a much more efficient 

implementation of MACSYMA. It uses the idea of a canonical form, and replaces the 
very general rewrite rule approach with a series of more specific functions. 

Chapter 16 covers the EMYCIN expert system shell, a backward chaining rule- 
based system based on certainty factors. The MYCIN medical expert system is also 
covered briefly. 

Chapter 17covers the Waltzline-labeling algorithmfor polyhedra (usingHuffman- 
Clowes labels). Different approaches to constraint propagation and backtracking 
are discussed. 

Chapter 18 presents a program that plays an excellent game of Othello. The 
technique used, alpha-beta searching, is appropriate to a wide variety of two-person 
games. 

Chapter 19 is an introduction to natural language processing. It covers context- 
free grammar, top-down and bottom-up parsing, chart parsing, and some semantic 
interpretation and preferences. 

Chapter 20 extends the linguistic coverage of the previous chapter and introduces 
logic grammars, using the Prolog compiler developed in chapter 11. 

Chapter 21 is a fairly comprehensive grammar of English using the logic grammar 
formalism. The problems of going from a simple idea to a realistic, comprehensive 
program are discussed. 

Part V includes material that is peripheral to A1 but important for any serious 
Lisp programmer. 

Chapter 22 presents the Scheme dialect of Lisp. A simple Scheme interpreter is 
developed, then a properly tail-recursive interpreter, then an interpreter that explic- 
itly manipulates continuations and supports ca 1 1 I c c .  Chapter 23 presents a Scheme 
compiler. 

Chapter 24 presents the features that are unique to American National Standards 
Institute (ANSI) Common Lisp. This includes the 1 oop macro, as well as error 
handling, pretty printing, series and sequences, and the package facility. 

Chapter 25 is a guide to troubleshooting and debugging Lisp programs. 



The bibliography lists over 200 sources, and there is a comprehensive index. In 
addition, the appendix provides a directory of publicly available'lisp programs. 

How to Use This Book 

The intended audience for this book is broad: anyone who wants to become an ad- 
vanced Lisp programmer, and anyone who wants to be an advanced A1 practitioner. 
There are several recommended paths through the book: 

In an Introductory AI  Course: Concentrate on parts I and 11, and at least one 
example from part IV. 

In an Advanced AIPvogramming Course: Concentrate on parts I, I1 andIV, skipping 
chapters that are of less interest and adding as much of part I11 as time permits. 

In an Advanced Programming Languages Course: Concentrate on parts I and V, 
with selections from part 111. Cover chapters 11 and 13 if similar material is not 
presented with another text. 

For the Professional Lisp Programmer: Read as much of the book as possible, and 
refer back to it often. Part I11 and chapter 25 are particularly important. 

Supplementary Texts and Reference Books 

The definitive reference source is Steele's Common Lisp the Language. From 1984 
to 1990, this unambiguously defined the language Common Lisp. However, in 
1990 the picture became more complicated by the publication of Common Lisp the 
Language, 2d edition. This book, also by Steele, contains the recommendations of 
ANSI subcommittee X3J13, whose charter is to define a standard for Lisp. These 
recommendations include many minor changes and clarifications, as well as brand 
new material on object-oriented programming, error condition handling, and the 
loop macro. The new material doubles the size of the book from 465 to 1029 pages. 

Until the ANSI recommendations are formally accepted, Common Lisp users 
are in the unfortunate situation of having two distinct and incompatible standards: 
"original" Common Lisp and ANSI Common Lisp. Most of the code in this book is 
compliant with both standards. The most significant use of an ANSI function is the 
1 oop macro. The ANSI map- i nto ,  compl ement, and reduce functions are also used, 
although rarely. Definitions for all these functions are included, so even those using 
an "original" Common Lisp system can still run all the code in the book. 

While Common Lisp the Language is the definitive standard, it is sometimes terse 
and can be difficult for a beginner. Common Lisp: the Reference, published by Franz 
Inc., offers complete coverage of the language with many helpful examples. Common 
LISPcraft, by Robert Wilensky, and Artificial Intelligence Programming, by Charniak 



et al., also include brief summaries of the Common Lisp functions. They are not 
as comprehensive, but that can be a blessing, because it can lead the reader more 
directly to the functions that are important (at least in the eyes of the author). 

It is a good idea to read this book with a computer at hand, to try out the examples 
and experiment with examples of your own. A computer is also handy because Lisp 
is self-documenting, through the functions apropos, describe, and documentation. 
Many implementations also provide more extensive documentation through some 
kind of 'help' command or menu. 

The five introductory Lisp textbooks I recommend are listed below. The first is 
more elementary than the others. 

a Common Lisp: A Gentle Introduction to Symbolic Computation by David Touret- 
zky. Most appropriate for beginners, including those who are not computer 
scientists. 

a A Programmer's Guide to Common Lisp by Deborah G. Tatar. Appropriate for 
those with experience in another programming language, but none in Lisp. 

a Common LISPcraft by Robert Wilensky. More comprehensive and faster paced, 
but still useful as an introduction as well as a reference. 

a Common Lisp by Wade L. Hennessey. Somewhat hit-and-miss in terms of the 
topics it covers, but with an enlightened discussion of implementation and 
efficiency issues that do not appear in the other texts. 

a LISP (3d edition) by Patrick H. Winston and Bertold Horn. Covers the most 
ground in terms of programming advice, but not as comprehensive as a refer- 
ence. May be difficult for beginners. Includes some A1 examples. 

While it may be distracting for the beginner to be continually looking at some 
reference source, the alternative-to have this book explain every new function in 
complete detail as it is introduced-would be even more distracting. Itwould interrupt 
the description of the A1 programs, which is what this book is all about. 

There are a few texts that show how to write A1 programs and tools, but none 
that go into the depth of this book. Nevertheless, the expert A1 programmer will 
want to be familiar with all the following texts, listed in rough order of increasing 
sophistication: 

a LISP (3d edition). (See above.) 

a Programming Paradigms in Lisp by Rajeev Sangal. Presents the different styles 
of programming that Lisp accommodates, illustrating them with some useful 
A1 tools. 



Programming forArtificia1 Intelligence by Wolfgang Kreutzer and Bruce McKenzie. 
Covers some of the basics of rule-based and pattern-matching systems well, 
but covers Lisp, Prolog, and Smalltalk, and thus has no time left for details in 
any of the languages. 

Artificial Intelligence Programming (2d edition) by Eugene Charniak, Christo- 
pher Riesbeck, Drew McDermott, and James Meehan. Contains 150 pages of 
Lisp overview, followed by an advanced discussion of A1 tools, but no actual 
A1 programs. 

A1 in Practice: Examples in  Pop-2 1 by Allan Ramsey and Rosalind Barrett. Ad- 
vanced, high-quality implementations of five A1 programs, unfortunately using 
a language that has not gained popularity. 

The current text combines the virtues of the last two entries: it presents both actual 
A1 programs and the tools necessary to build them. Furthermore, the presentation is 
in an incremental fashion, with simple versions presented first for clarity, followed 
by more sophisticated versions for completeness. 

A Note on Exercises 

Sample exercises are provided throughout. Readers can test their level of under- 
standing by faithfully doing the exercises. The exercises are graded on the scale [s], 
[m], [h], [dl, which can be interpreted either as a level of difficulty or as an expected 
time it will take to do the exercise: 

Code Difficulty Time to Do 
[s] Simple Seconds 
[m] Medium Minutes 
[h] Hard Hours 
[dl Difficult Days 

The time to do the exercise is measured from the point that the concepts have 
been well understood. If the reader is unclear on the underlying concepts, it might 
take hours of review to understand a [m] problem. Answers to the exercises can be 
found in a separate section at the end of each chapter. 
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PART I 

INTRODUCTION TO COMMON LISP 





CHAPTER I 
Introduction to Lisp 

You think you know when you learn, are more sure 
when you can write, even more when you can teach, 

but certain when you can program. 

-Alan Perlis 
Yale University computer scientist 

his chapter is for people with little or no experience in Lisp. Readers who feel confident 
in their Lisp programming ability can quickly skim the chapter or skip it entirely. This 
chapter necessarily moves quickly, so those with little programming experience, or any 

reader who finds this chapter tough going, should seek out a supplementary introductory text. 
My recommendations are in the preface. 

Computers allow one to carry out computations. A word processing program deals with 
words while a calculator deals with numbers, but the principles are the same. In both cases, 
you provide the input (words or numbers) and specify the operations (such as deleting a word 
or adding two numbers) to yield a result (a completed document or calculation). 

We will refer to anything that can be represented in the memory of a computer as a computa- 
tional object, or just an object. So, words, paragraphs, and numbers can be objects. And because 
the operations (deleting and adding) must be represented somewhere in the computer's memory, 
they are objects, too. 



Normally, the distinction between a computer "user" and a computer "program- 
mer" is that the user provides new input, or data (words or numbers), while the 
programmer defines new operations, or programs, as well as new types of data. Every 
new object, be it datum or operation, must be defined in terms of previously defined 
objects. The bad news is that it can be quite tedious to get these definitions right. 
The good news is that each new object can in turn be used in the definition of future 
objects. Thus, even complex programs can be built out of smaller, simpler objects. 
This book covers a number of typical A1 problems, showing how each problem can 
be broken down into manageable pieces, and also how each piece can be described in 
the programming language Common Lisp. Ideally, readers will learn enough through 
studying these examples to attack new A1 problems with style, grace, and success. 

Let's consider a simple example of a computation: finding the sum of two num- 
bers, let's say 2 and 2. If we had a calculator handy, we would type "2 + 2 =" and see 
the answer displayed. On a calculator using reverse Polish notation, we would have 
to type " 2 2 +" to see the same answer. In Lisp, as with the calculator, the user carries 
out an interactive dialog with the computer by typing in an expression and seeing the 
computer print the value of that expression. This interactive mode is different from 
many other programming languages that only offer a batch mode, wherein an entire 
program is compiled and run before any output can be seen. 

We start up a pocket calculator by flipping the on/off switch. The Lisp program 
must also be started, but the details vary from one computer to another, so I can't 
explain how your Lisp will work. Assuming we have managed to start up Lisp, we 
are likely to see a prompt of some kind. On my computer, Lisp types " > " to indicate 
it is ready to accept the next computation. So we are faced with a screen that looks 
like this: 

We may now type in our computation and see the result displayed. It turns out that 
the Lisp convention for arithemtic expressions is slightly different: a computation 
consists of a parenthesized list with the operationname first, followed by any number 
of operands, or arguments. This is called prefix notation. 

We see that Lisp has printed the answer, 4, and then another prompt, >, to indicate 
it is ready for the next computation. Throughout this book, all Lisp expressions will 
be displayed in typewriter font. Text on the same line as the ">'I prompt is input 
typed by the user, and text following it is output printed by the computer. Usually, 
input that is typed by the programmer will be in 1 owercase letters, while output that 



is printed back by the computer will be in UPPERCASE letters. Of course, with symbols 
like + and 4 there is no difference. 

To save space on the page, the output will sometimes be shown on the same line 
as the input, separated by an arrow (a), which can be read as "evaluates to," and 
can also be thought of as standing for the return or enter key that the user presses to 
complete the input: 

One advantage of parenthesized prefix notation is that the parentheses clearly mark 
the beginning and end of an expression. If we want, we can give + more than two 
arguments, and it will still add them all: 

This time we try (9000 + 900 + 90 + 9) - (5000 + 500 + 50 + 5): 

This example shows that expressions can be nested. The arguments to the - 

function are parenthesized lists, while the arguments to each + are atoms. The 
Lisp notation may look unusual compared to standard mathematical notation, but 
there are advantages to this notation; since Lisp expressions can consist of a function 
followed by any number of arguments, we don't have to keep repeating the "+." More 
important than the notation is the rule for evaluation. In Lisp, lists are evaluated 
by first evaluating all the arguments, then applying the function to the arguments, 
thereby computing the result. This rule is much simpler than the rule for evaluating 
normal mathematical expressions, where there are many conventions to remember, 
such as doing multiplications and divisions before sums and differences. We will see 
below that the actual Lisp evaluation rule is a little more complicated, but not much. 

Sometimes programmers who are familiar with other languages have preconcep- 
tions that make it difficult for them to learn Lisp. For them, three points are worth 
stressing here. First, many other languages make a distinction between statements 
and expressions. An expression, like 2 + 2, has a value, but a statement, like x = 

2 + 2, does not. Statements have effects, but they do not return values. In Lisp, 
there is no such distinction: every expression returns a value. It is true that some 
expressions have effects, but even those expressions also return values. 

Second, the lexical rules for Lisp are much simpler than the rules for other 
languages. In particular, there are fewer punctuation characters: only parentheses, 
quote marks (single, double, and backward), spaces, and the comma serve to separate 
symbols from each other. Thus, while the statement y=a*x+3 is analyzed as seven 
separate tokens in other languages, in Lisp it would be treated as a single symbol. To 



get a list of tokens, we would have to insert spaces: (y = a * x + 3 .' 
Third, while many languages use semicolons to delimit statements, Lisp has no 

need of semicolons, since expressions are delimited by parentheses. Lisp chooses 
to use semicolons for another purpose-to mark the beginning of a comment, which 
lasts until the end of the line: 

> (+ 2 2 )  ; t h i s  i s  a comment 
4 

1.1 Symbolic Computation 
+ 

All we've done so far is manipulate numbers in the same way a simple pocket 
calculator would. Lisp is more useful than a calculator for two main reasons. First, 
it allows us to manipulate objects other than numbers, and second, it allows us 
to define new objects that might be useful in subsequent computations. We will 
examine these two important properties in turn. 

Besides numbers, Lisp can represent characters (letters), strings of characters, 
and arbitrary symbols, where we are free to interpret these symbols as referring to 
things outside the world of mathematics. Lisp can also build nonatomic objects 
by combining several objects into a list. This capability is fundamental and well 
supported in the language; in fact, the name Lisp is short for LISt Processing. 

Here's an example of a computation on lists: 

> (append ' (Pa t  Kim) ' (Robin Sandy)) + (PAT KIM ROBIN SANDY) 

This expression appends together two lists of names. The rule for evaluating this 
expression is the same as the rule for numeric calculations: apply the function (in 
this case append) to the value of the arguments. 

The unusual part is the quote mark ( '), which serves to block the evaluation of the 
following expression, returning it literally. If we just had the expression ( P a t  Ki m ) ,  
it would be evaluated by considering P a t  as a function and applying it to the value of 
the expression Kim. This is not what we had in mind. The quote mark instructs Lisp 
to treat the list as a piece of data rather than as a function call: 

> ' (Pa t  Kim) + (PAT KIM) 

In other computer languages (and in English), quotes usually come in pairs: one to 
mark the beginning, and one to mark the end. In Lisp, a single quote is used to mark 

 his list of symbols is not a legal Lisp assignment statement, but it is a Lisp data object. 



the beginning of an expression. Since we always know how long a single expression 
is-either to the end of an atom or to the matching parenthesis of a list-we don't need 
an explicit punctuation mark to tell us where the expression ends. Quotes can be 
used on lists, as in ' ( P a t  K i m  1, on symbols as in ' Robi n, and in fact on anything else. 
Here are some examples: 

> ' John + JOHN 

> ' ( J ohn  Q P u b l i c )  + (JOHN Q PUBLIC) 

> ' 2 * 2  

> 2 * 2  

> ' (+  2 2 )  * (+ 2 2 )  

> ( + 2 2 )  * 4  

> John + Error: JOHN is not a bound variable 

> ( John Q P u b l i c )  + Error:JOHNisnotafunction 

Note that ' 2 evaluates to 2 because it is a quoted expression, and 2 evaluates to 2 
because numbers evaluate to themselves. Same result, different reason. In contrast, 
' John evaluates to John because it is a quoted expression, but evaluating John leads 
to an error, because evaluating a symbol means getting the value of the symbol, and 
no value has been assigned to John. 

Symbolic computations can be nested and even mixed with numeric computa- 
tions. The following expression builds a list of names in a slightly different way than 
we saw before, using the built-in function 1 i s t .  We then see how to find the number 
of elements in the list, using the built-in function 1 engt h: 

> (append ' ( P a t  Kim) ( l i s t  ' ( J o h n  Q Publ i c )  ' Sandy ) )  
(PAT KIM (JOHN Q PUBLIC) SANDY) 

> ( l e n g t h  (append ' ( P a t  Kim) ( l i s t  ' ( J o h n  Q P u b l i c )  ' S a n d y ) ) )  
4 

There are four important points to make about symbols: 

First, it is important to remember that Lisp does not attach any external signif- 
icance to the objects it manipulates. For example, we naturally think of ( Robi n 
Sandy 1 as a list of two first names, and ( John Q Publ i c 1 as a list of one person's 
first name, middle initial, and last name. Lisp has no such preconceptions. To 
Lisp, both Rob i n and xyzzy are perfectly good symbols. 

Second, to do the computations above, we had to know that append, 1 ength, 
and + are defined functions in Common Lisp. Learning a language involves 



remembering vocabulary items (or knowing where to look them up) as well 
as learning the basic rules for forming expressions and determining what they 
mean. Common Lisp provides over 700 built-in functions. At some point the 
reader should flip through a reference text to see what's there, but most of the 
important functions are presented in part I of this book. 

Third, note that symbols in Common Lisp are not case sensitive. By that I 
mean that the inputs John, j o hn, and j 0 hN all refer to the same symbol, which 
is normally printed as  JOHN.^ 

Fourth, note that a wide variety of characters are allowed in symbols: numbers, 
letters, and other punctuation marks like '+' or ' ! '. The exact rules for what con- 
stitutes a symbol are a little complicated, but the normal convention is to use 
symbols consisting mostly of letters, with words separated by a dash (-), and 
perhaps with a number at the end. Some programmers are more liberal in nam- 
ing variables, and include characters like '? ! $I<=>'. For example, a function to 
convert dollars to yen might be named with the symbol $ - t o  -yen or $ ->yen in 
Lisp, while one would use something like DollarsToYen, do l lars- to- yen or 
do1 2yen in Pascal or C. There are a few exceptions to these namingconventions, 
which will be dealt with as they come up. 

1.2 Variables 

We have seen some of the basics of symbolic computation. Now we move on to 
perhaps the most important characteristic of a programming language: the ability to 
define new objects in terms of others, and to name these objects for future use. Here 
symbols again play an important role-they are used to name variables. A variable 
can take on a value, which can be any Lisp object. One way to give a value to a 
variable is with se t f :  

> ( s e t f  p ' (John Q P u b l i c ) )  =+ (JOHN Q PUBLIC) 

> p +- (JOHN Q PUBLIC) 

> ( s e t f  x 10) + 10 

> (+ x x )  =+ 20 

> (+ x ( l e n g t h  p ) )  + 13 

After assigning the value (John Q Pub1 i c 1 to the variable named p, we can refer to 
the value with the name p. Similarly, after assigning a value to the variable named x, 
we can refer to both x and p. 

2 ~ h e  variable * p r i  n t  - case* controls how symbols will be printed. By default, the value of 
this variable is : upcase, but it can be changed to : downcase or : c a p i t a l  i ze. 



Symbols are also used to name functions in Common Lisp. Every symbol can 
be used as the name of a variable or a function, or both, although it is rare (and 
potentially confusing) to have symbols name both. For example, append and 1 eng t h 
are symbols that name functions but have no values as variables, and p i  does not 
name a function but is a variable whose value is 3.1415926535897936 (or thereabout). 

1.3 Special Forms 

The careful reader will note that s e t f  violates the evaluation rule. We said earlier 
that functions like +, - and append work by first evaluating all their arguments and 
then applying the function to the result. But s e t f  doesn't follow that rule, because 
s e t f  is not a function at all. Rather, it is part of the basic syntax of Lisp. Besides the 
syntax of atoms and function calls, Lisp has a small number of syntactic expressions. 
They are known as special forms. They serve the same purpose as statements in other 
programming languages, and indeed have some of the same syntactic markers, such 
as i f and 1 oop. There are two main differences between Lisp's syntax and other 
languages. First, Lisp's syntactic forms are always lists in which the first element is 
one of a small number of privileged symbols. s e t f  is one of these symbols, so ( s e t f  
x 10) is a special form. Second, special forms are expressions that return a value. 
This is in contrast to statements in most languages, which have an effect but do not 
return a value. 

In evaluating an to expression like ( s e t  f x ( + 1 2 1 1, we set the variable named 
by the symbol x to the value of (+ 1 2 1, which is 3. If s e t f  were a normal function, 
we would evaluate both the symbol x and the expression (+ 1 2)  and do something 
with these two values, which is not what we want at all. s e t f  is called a special form 
because it does something special: if it did not exist, it would be impossible to write 
a function that assigns a value to a variable. The philosophy of Lisp is to provide a 
small number of special forms to do the things that could not otherwise be done, and 
then to expect the user to write everthing else as functions. 

The term special form is used confusingly to refer both to symbols like s e t f  and 
expressions that start with them, like ( s e t f  x 3 1. In the book Common LISPcraft, 
Wilensky resolves the ambiguity by calling s e t  f a special function, and reserving the 
term special form for ( se t f x 3 1. This terminology implies that se t f  is just another 
function, but a special one in that its first argument is not evaluated. Such a view 
made sense in the days when Lisp was primarily an interpreted language. The 
modern view is that se t f  should not be considered some kind of abnormal function 
but rather a marker of special syntax that will be handled specially by the compiler. 
Thus, the special form ( s e t  f x ( + 2 1 ) ) should be considered the equivalent of x = 

2 + 1 in C. When there is risk of confusion, we will call s e t f  a special form operator 
and ( s e t  f x 3 a special f o m  expression. 



It turns out that the quote mark is just an abbreviation for another special form. 
The expression 'xis equivalent to (quote x), a special form expression that evaluates 
to x. The special form operators used in this chapter are: 

de f  un define function 
defparameter definespecialvariable 
s e t f  set variable or field to new value 
1 e t  bind local variable(s) 
case choose one of several alternatives 
i f  do one thing or another, depending on a test 
f u n c t i  on (# ') refer to a function 
quote ( ')  introduce constant data 

1.4 Lists 

So far we have seen two functions that operate on lists: append and 1 ength. Since 
lists are important, let's look at some more list processing functions: 

> p + (JOHN Q PUBLIC) 

> ( f i r s t  p )  + JOHN 

> ( r e s t  p )  + (Q PUBLIC) 

> (second p )  + Q 

> ( t h i r d  p )  a PUBLIC 

> ( f o u r t h  p )  a NIL 

> ( l e n g t h  p )  + 3 

The functions f i rs t ,  second, t h i  rd, and f o u r t h  are aptly named: f i r s t  returns 
the first element of a list, second gives you the second element, and so on. The 
function r e s t  is not as obvious; its name stands for "the rest of the list after the first 
element." The symbol n i  1 and the form ( are completely synonymous; they are 
both representations of the empty list. n i  1 is also used to denote the "false" value in 
Lisp. Thus, ( f o u r t h  p  is n i  1 because there is no fourth element of p. Note that lists 
need not be composed only of atoms, but can contain sublists as elements: 

> ( s e t f  x ' ( ( 1 s t  element) 2 (element 3)  ( ( 4 ) )  5 ) )  
((1ST ELEMENT) 2 (ELEMENT 3 )  ( ( 4 ) )  5) 

> ( l e n g t h  x )  + 5 

> ( f i r s t  X )  + (1ST ELEMENT) 



> (second x )  =+ 2 

> ( t h i r d  x )  + (ELEMENT 3)  

> ( f o u r t h  x )  + ( ( 4 ) )  

> ( f i r s t  ( f o u r t h  x ) )  + ( 4 )  

> ( f i r s t  ( f i r s t  ( f o u r t h  X I ) )  =+ 4 

> ( f i f t h  x )  + 5 

> ( f i r s t  X )  + (1ST ELEMENT) 

> (second ( f i r s t  x ) )  + ELEMENT 

So far we have seen how to access parts of lists. It is also possible to build up new 
lists, as these examples show: 

> p =+ (JOHN Q PUBLIC) 

> (cons ' M r  p )  + (MR JOHN Q PUBLIC) 

> (cons ( f i r s t  p )  ( r e s t  p ) )  + (JOHN Q PUBLIC) 

> ( s e t f  town ( l i s t  'Anytown 'USA)) =+ (ANYTOWN USA) 

> ( l i s t  p ' o f  town 'may 'have 'a l ready  'won!) + 
((JOHN Q PUBLIC) OF (ANYTOWN USA) MAY HAVE ALREADY WON!) 

> (append p ' ( o f )  town '(may have a l ready won!)) + 
(JOHN Q PUBLIC OF ANYTOWN USA MAY HAVE ALREADY WON!) 

> p + (JOHN Q PUBLIC) 

The function cons stands for "construct." It takes as arguments an element and 
a list,3 and constructs a new list whose first is the element and whose rest is the 
original list. 1 i s t  takes any number of elements as arguments and returns a new 
list containing those elements in order. We've already seen append, which is similar 
to 1 i st; it takes as arguments any number of lists and appends them all together, 
formingone big list. Thus, the arguments to append must belists, while the arguments 
to 1 i s t  may be lists or atoms. It is important to note that these functions create new 
lists; they don't modify old ones. When we say (append p q 1, the effect is to create 
a brand new list that starts with the same elements that were in p. p itself remains 
unchanged. 

Now let's move away from abstract functions on lists, and consider a simple 
problem: given a person's name in the form of a list, how might we extract the family 
name? For (JOHN Q P U B L I C )  we could just use the function t h i  rd, but that wouldn't 

' ~ a t e r  we will see what happens when the second argument is not a list. 



work for someone with no middle name. There is a function called 1 as t in Common 
Lisp; perhaps that would work. We can experiment: 

> (last p) + ( P U B L I C )  

> (first (last p)) ==+ PUBLIC 

It turns out that 1 a s t  perversely returns a list of the last element, rather than the 
last element itself.' Thus we need to combine f i r s t  and 1 a s t  to pick out the actual 
last element. We would like to be able to save the work we've done, and give it a 
proper description, like 1 a s t  - name. We could use s e t f  to save the last name of p, but 
that wouldn't help determine any other last name. Instead we want to define a new 
function that computes the last name of any name that is represented as a list. The 
next section does just that. 

Defining New Functions 

The special form d e f  un stands for "define function." It is used here to define a new 
function called 1 as t - name: 

(defun last-name (name) 
"Select the last name from a name represented as a list." 
(first (last name))) 

We give our new function the name 1 as t - name. It has a parameter list consisting of a 
single parameter: ( name 1. This means that the function takes one argument, which 
we will refer to as name. It also has a documentation string that states what the function 
does. This is not used in any computation, but documentation strings are crucial 
tools for debugging and understanding large systems. The body of the definition is 
( f i r s t  ( 1 a s t  name ), which is what we used before to pick out the last name of p. 
The difference is that here we want to pick out the last name of any name, not just of 
the particular name p. 

In general, a function definition takes the following form (where the documenta- 
tion string is optional, and all other parts are required): 

4 ~ n  ANSI Common Lisp, 1 ast is defined to return a list of the last n elements, where n 
defaultstol. Thus (last p) - (last p 1) = (PUBLIC),and (last p 2 )  = (Q PUBLIC).This 
may make the definition of 1 ast seem less perverse. 



( de f un function-name (parameter.. . ) 
"documentation string" 
function-body ... 

The function name must be a symbol, the parameters are usually symbols (with some 
complications to be explained later), and the function body consists of one or more 
expressions that are evaluated when the function is called. The last expression is 
returned as the value of the function call. 

Once we have defined 1 a s t  -name, we can use it just like any other Lisp function: 

7 (last-name p) =+PUBLIC 

7 (last-name '(Rear Admiral Grace Murray Hopper)) +HOPPER 

> (last-name '(Rex Morgan MD)) + MD 
> (last-name '(Spot)) + SPOT 
> ( 1  ast-name '(Aristotle) + ARISTOTLE 

The last three examples point out an inherent limitation of the programming enter- 
prise. When we say ( de f  un 1 as t - name ... ) we are not really defining what it means 
for a person to have a last name; we are just defining an operation on a representation 
of names in terms of lists. Our intuitions-that MD is a title, Spot is the first name 
of a dog, and Aristotle lived before the concept of last name was invented-are not 
represented in this operation. However, we could always change the definition of 
1 a s t  - name to incorporate these problematic cases. 

We can also define the function f i r s  t - name. Even though the definition is trivial 
(it is the same as the function f i r s  t), it is still good practice to define f i r s t  -name 
explicitly. Then we can use the function f i r s t - name when we are dealing with names, 
and f i r s t  when we are dealing with arbitrary lists. The computer will perform the 
same operation in each case, but we as programmers (and readers of programs) will 
be less confused. Another advanatge of defining specific functions like f i r s t  - name 
is that if we decide to change the representation of names we will only have to change 
the definition of f i r s  t - name. This is a much easier task than hunting through a large 
program and changing the uses of f i r s t  that refer to names, while leaving other 
uses alone. 

(defun first-name (name) 
"Select the first name from a name represented as a list." 
(first name) 

> p + (JOHN Q PUBLIC) 

> (first-name p )  + JOHN 
> (first-name '(Wilma Flintstone)) =+ WILMA 



> ( s e t f  names ' ( ( ~ o h n  Q P u b l i c )  (Malcolm X) 
(Admiral  Grace Murray Hopper) (Spot) 
( A r i s t o t l e )  (A A M i lne )  (Z Z Top) 
( S i r  La r ry  O l i v i e r )  (Miss S c a r l e t ) ) )  + 

((JOHN Q PUBLIC) (MALCOLM X I  (ADMIRAL GRACE MURRAY HOPPER) 
(SPOT) (ARISTOTLE) (A A MILNE) (Z Z TOP) (SIR LARRY OLIVIER) 
(MISS SCARLET)) 

> ( f i r s t - n a m e  ( f i r s t  names)) + JOHN 

In the last expression we used the function f i  r s t  to pick out the first element in 
a list of names, and then the function f i  rst-name to pick out the first name of 
that element. We could also have said ( f  i r s t  ( f  i r s t  names 1 1 or even ( f  i r s t  
( f  i r s t  - name names 1 and still have gotten JOHN, but we would not be accurately 
representing what is being considered a name and what is being considered a list 
of names. 

1.6 Using Functions 

One good thing about defining a list of names, as we did above, is that it makes it 
easier to test our functions. Consider the following expression, which can be used to 
test the 1 a s t  -name function: 

> (mapcar # ' las t -name names) 
(PUBLIC X HOPPER SPOT ARISTOTLE MILNE TOP OLIVIER SCARLET) 

The funny # ' notation maps from the name of a function to the function itself. This 
is analogous to ' x notation. The built-in function mapca r is passed two arguments, a 
function and a list. It returns a list built by calling the function on every element of 
the input list. In other words, the mapca r call above is equivalent to: 

( l i s t  ( last-name ( f i r s t  names)) 
( last-name (second names)) 
( last-name ( t h i r d  names)) 
. . . I  

mapcar's name comes from the fact that it "maps" the function across each of the 
arguments. The car part of the name refers to the Lisp function car, an old name for 
f i rs  t .  cdr is the old name for rest .  The names stand for "contents of the address 
register" and "contents of the decrement register," the instructions that were used in 
the first implementation of Lisp on the IBM 704. I'm sure you'll agree that f  i r s t  and 



r e s t  are much better names, and they will be used instead of car  and cdr  whenever 
we are talking about lists. However, we will continue to use car  and cdr  on occasion 
when we are considering a pair of values that are not considered as a list. Beware 
that some programmers still use car  and cdr  for lists as well. 

Here are some more examples of mapcar: 

> (mapcar # ' -  '(1 2 3 4 ) ) = . ( - 1  - 2  -3  -4)  

> (mapcar # '+  ' ( 1  2 3 4 )  ' ( 10  20 30 4 0 ) ) + ( 1 1  22 33 44) 

This last example shows that mapca r can be passed three arguments, inwhichcase the 
first argument should be a binary function, which will be applied to corresponding 
elements of the other two lists. In general, mapcar expects an n-ary function as its 
first argument, followed by n lists. It first applies the function to the argument list 
obtained by collecting the first element of each list. Thenit applies the function to the 
second element of each list, and so on, until one of the lists is exhausted. It returns a 
list of all the function values it has computed. 

Now that we understand mapcar, let's use it to test the f i r s t  -name function: 

> (mapcar # ' f i r s t - n a m e  names) 
(JOHN MALCOLM ADMIRAL SPOT ARISTOTLE A Z SIR M I S S )  

We might be disappointed with these results. Suppose we wanted a version of 
f i r s  t - name which ignored titles like Admiral and Miss, and got to the "real" first 
name. We could proceed as follows: 

(defparameter * t i t l e s *  
' (Mr Mrs Miss Ms S i r  Madam Dr Admiral  Major  General)  
"A l i s t  o f  t i t l e s  t h a t  can appear a t  t h e  s t a r t  o f  a name.") 

We've introduced another new special form, defparameter, which defines a para- 
meter-a variable that does not change over the course of a computation, but that 
might change whenwe think of new things to add (like the FrenchMme or the military 
Lt.). The de f  pa rameter form both gives a value to the variable and makes it possible 
to use the variable in subsequent function definitions. In this example we have 
exercised the option of providing a documentation string that describes the variable. 
It is a widely used convention among Lisp programmers to mark special variables by 
spelling their names with asterisks on either end. This is just a convention; in Lisp, 
the asterisk is just another character that has no particular meaning. 

We next give a new definition for f i r s  t - name, which supersedes the previous 
definit i~n.~ This definition says that if the first word of the name is a member of the 

~ u s t  as we can change the value of a variable, we can also change the value of a function 



list of titles, then we want to ignore that word and return the f  i r s t  -name of the rest 
of the words in the name. Otherwise, we use the first word, just as before. Another 
built-in function, member, tests to see if its first argument is an element of the list 
passed as the second argument. 

The special form i f has the form ( i f  test then-part else-part 1. There are many 
special forms for performing conditional tests in Lisp; i f  is the most appropriate for 
this example. An i f  form is evaluated by first evaluating the test expression. If it is 
true, the then-part is evaluated and returned as the value of the i f  form; otherwise 
the else-part is evaluated and returned. While some languages insist that the value of 
a conditional test must be either true or f  a1 se, Lisp is much more forgving. The test 
may legally evaluate to any value at all. Only the value ni 1 is considered false; all 
other values are considered true. In the definition of f i rs t - name below, the function 
member will return a non-nil (hence true) value if the first element of the name is in the 
list of titles, and will return ni 1 (hence false) if it is not. Although all non-nil values 
are considered true, by convention the constant t is usually used to represent truth. 

(defun f i r s t - n a m e  (name) 

"Se lec t  t h e  f i r s t  name from a name represented as a l i s t . "  

( i f  (member ( f i r s t  name) * t i t l e s * )  

( f i r s t - n a m e  ( r e s t  name)) 

( f i r s t  name) 1) 

When we map the new f i r s t  -name over the list of names, the results are more 
encouraging. In addition, the function gets the "right" result for ' (Madam Major 
General Paul a Jones 1 by dropping off titles one at a time. 

> (mapcar # ' f i r s t - n a m e  names) 

(JOHN MALCOLM GRACE SPOT ARISTOTLE A Z LARRY SCARLET) 

> ( f i r s t - n a m e  '(Madam Major General Paula Jones)) 

PAULA 

We can see how this works by tracing the execution of f  i r s t  -name, and seeing the 
values passed to and returned from the function. The special forms trace and 
u n t  race are used for this purpose. 

> ( t r a c e  f i  rst-name) 

( FIRST-NAME) 

in Lisp. It is not necessary to recompile everything when a change is made, as it would be in 
other languages. 



> ( f i r s t - n a m e  ' ( J o h n  Q P u b l i c ) )  
(1 ENTER F IRST- NAME:  (JOHN Q P U B L I C ) )  
(1 E X I T  F IRST- NAME:  JOHN) 
JOHN 

When f i rs t - name is called, the definition is entered with the single argument, name, 
taking on the value ( JOHN Q P U B L I C  1. The value returned is JOHN. Trace prints two 
lines indicating entry and exit from the function, and then Lisp, as usual, prints the 
final result, JOHN. 

The next example is more complicated. The function f i r s t  -name is used four 
times. First, it is entered with name bound to (Madam Major General Paul a Jones 1. 
The first element of this list is Madam, and since this is a member of the list of titles, 
the result is computed by calling f i rs t - name again on the rest of the name-( Major 
General Paul a Jones). This process repeats two more times, and we finally enter 
f i r s t  - name with name bound to ( Paul a Jones 1. Since Paul a is not a title, it becomes 
the result of this call to f i rs t - name, and thus the result of all four calls, as trace shows. 
Once we are happy with the workings of f i r s t  - name, the special form untrace turns 
off tracing. 

> ( f i r s t - n a m e  ' ( M a d a m  M a j o r  G e n e r a l  P a u l a  J o n e s ) )  + 
(1 ENTER F IRST- NAME:  (MADAM MAJOR GENERAL PAULA J O N E S ) )  

( 2  ENTER F IRST- NAME:  (MAJOR GENERAL PAULA J O N E S ) )  
(3  ENTER F IRST- NAME:  (GENERAL PAULA J O N E S ) )  

( 4  ENTER F IRST- NAME:  (PAULA J O N E S ) )  
( 4  E X I T  F IRST- NAME:  PAULA) 

( 3  E X I T  F IRST- NAME:  PAULA)  
( 2  E X I T  F IRST- NAME:  PAULA)  

(1 E X I T  F IRST- NAME:  PAULA)  
PAULA 

> ( u n t r a c e  f i r s t - n a m e )  + ( F I R S T- N A M E )  

> ( f i r s t - n a m e  ' ( M r  B l u e  J e a n s ) )  + BLUE 

The function f i r s t  - name is said to be recursive because its definition includes a call 
to itself. Programmers who are new to the concept of recursion sometimes find it 
mysterious. But recursive functions are really no different from nonrecursive ones. 
Any function is required to return the correct value for the given input(s). Another 
way to look at this requirement is to break it into two parts: a function must return 
a value, and it must not return any incorrect values. This two-part requirement is 
equivalent to the first one, but it makes it easier to think about and design function 
definitions. 

Next I show an abstract description of the f i r s t  - name problem, to emphasize 
the design of the function and the fact that recursive solutions are not tied to Lisp in 
any way: 



f u n c t i o n  first-name(name1: 

i f thefirst element of name is a title 

then do something complicated to get thefirst-name 
e l  se return thefirst element of the name 

This breaks up the problem into two cases. In the second case, we return an answer, 
and it is in fact the correct answer. We have not yet specified what to do in the first 
case. But we do know that it has something to do with the rest of the name after the 
first element, and that what we want is to extract the first name out of those elements. 
The leap of faith is to go ahead and use f i r s  t - name, even though it has not been fully 
defined yet: 

f u n c t i o n  first-name(name1: 

i f thefirst element of name is a title 

then return the f i r s t  -name of the rest of the name 
e l  se return thefirst element of the name 

Now the first case in f i  rst-name is recursive, and the second case remains un- 
changed. We already agreed that the second case returns the correct answer, and the 
first case only returns what f i r s t  - name returns. So f  i r s t  - name as a whole can only 
return correct answers. Thus, we're halfway to showing that the function is correct; 
the other half is to show that it eventually returns some answer. But every recursive 
call chops off the first element and looks at the rest, so for an n-element list there 
can be at most n recursive calls. This completes the demonstration that the function 
is correct. Programmers who learn to think this way find recursion to be a valuable 
tool rather than a confusing mystery. 

1.7 Higher-Order Functions 

Functions in Lisp can not only be "called," or applied to arguments, they can also be 
manipulated just like any other kind of object. A function that takes another function 
as an argument is called a higher-order function. mapca r is an example. To demonstrate 
the higher-order-function style of programming, we will define a new function called 
mappend. It takes two arguments, a function and a list. mappend maps the function 
over each element of the list and appends together all the results. The first definition 
follows immediately from the description and the fact that the function apply can be 
used to apply a function to a list of arguments. 



( de fun  mappend ( f n  t h e - l i s t )  
"Apply f n  t o  e ach  e lement  o f  l i s t  and append t h e  r e s u l t s . "  
( a p p l y  # 'append (mapcar f n  t h e - l i s t ) ) )  

Now we experiment a little to see how apply and mappend work. The first example 
applies the addition function to a list of four numbers. 

The next example applies append to a list of two arguments, where each argument is 
a list. If the arguments were not lists, it would be an error. 

> ( a p p l y  # 'append ' ( ( 1  2 3 )  ( a  b  c ) ) ) + ( l  2 3  A B C )  

Now we define a new function, se l  f - and-doubl e, and apply it to a variety of argu- 
ments. 

> ( de fun  s e l f - a n d - d o u b l e  ( x )  ( l i s t  x  (+ x  X I ) )  

> ( s e l f - a n d - d o u b l e  3 )  + ( 3  6 )  

> ( a p p l y  # ' s e l f - a n d - d o u b l e  ' ( 3 )  + ( 3  6 )  

If we had tried to apply se l  f -and-doubl e to a list of more than one argument, or to a 
list that did not contain a number, it would be an error, just as it would be an error to 
evaluate ( s e l  f -and-doubl e 3 4)  or ( s e l  f -and-doubl e 'Kim). Now let's return to 
the mapping functions: 

> (mapcar # ' s e l f - a n d - d o u b l e  ' ( 1  10  3 0 0 ) )  + ( ( 1  2 )  ( 10  20)  (300  6 0 0 ) )  

> (mappend # ' s e l f - a n d - d o u b l e  ' ( 1  10  3 0 0 ) )  + ( 1  2  1 0  20 300 600)  

When mapcar is passed a function and a list of three arguments, it always returns a 
list of three values. Each value is the result of calling the function on the respective 
argument. In contrast, when mappend is called, it returns one big list, which is equal 
to all the values that mapca r would generate appended together. It would be an error 
to call mappend with a function that didn't return lists, because append expects to see 
lists as its arguments. 

Now consider the following problem: given a list of elements, return a list con- 
sisting of all the numbers in the original list and the negation of those numbers. For 
example, given the list ( t e s t i n g  1 2 3 t e s t ) ,  return ( 1  -1 2 - 2  3 -3) .  This 
problem can be solved very easily using mappend as a component: 



(defun numbers-and-negations ( i n p u t )  
"Given a l i s t ,  r e t u r n  on ly  t h e  numbers and t h e i r  negat ions. "  
(mappend #'number-and-negation i n p u t ) )  

(defun number-and-negation ( x )  
" I f  x i s  a number, r e t u r n  a l i s t  o f  x and - x . "  
( i f  (numberp x )  

( l i s t  x ( -  XI) 
n i l  1) 

> (numbers-and-negations ' ( t e s t i n g  1 2 3 t e s t ) )  + (1 -1 2 -2  3 -3 )  

The alternate definition of mappend shown in the following doesn't make use of 
mapca r; instead it builds up the list one element at a time: 

(defun mappend ( f n  t h e - l i s t )  
"Apply f n  t o  each element o f  l i s t  and append t h e  r e s u l t s . "  
( i f  ( n u l l  t h e - l i s t )  

n i  1 
(append ( f u n c a l l  f n  ( f i r s t  t h e - l i s t ) )  

(mappend f n  ( r e s t  t h e - l i s t ) ) ) ) )  

f uncal 1 is similar to apply; it too takes a function as its first argument and applies the 
function to a list of arguments, but in the case of f uncal 1, the arguments are listed 
separately: 

> ( f u n c a l l  # ' +  2 3 )  + 5 

> ( f u n c a l l  # '+ ' ( 2  3 ) )  +Error:(23)isnotanumber 

These are equivalent to ( + 2 3 1, ( + 2 3 1, and ( + ' ( 2 3 1 1, respectively. 
So far, every function we have used has been either predefined in Common Lisp 

or introduced with a def un, which pairs a function with a name. It is also possible to 
introduce a function without giving it a name, using the special syntax 1 ambda. 

The name lambda comes from the mathematician Alonzo Church's notation for 
functions (Church 1941). Lisp usually prefers expressive names over terse Greek 
letters, but lambda is an exception. A better name would be make - f unct i on. Lambda 
derives from the notation in Russell and Whitehead's Principia Mathematica, which 
used a caret over bound variables: ?(x + x). Church wanted a one-dimensional 
string, so he moved the caret in front: ̂ x(x + x). The caret looked funny with nothing 
below it, so Church switched to the c-losest thing, an uppercase lambda, Ax(x + x). 
The A was easily confused with other symbols, so eventually the lowercase lambda 
was substituted: Xx(x + x). John McCarthy was a student of Church's at Princeton, 
so when McCarthy invented Lisp in 1958, he adopted the lambda notation. There 



were no Greek letters on the keypunches of that era, so McCarthy used ( 1 ambda ( x )  
( + x x 1, and it has survived to this day. In general, the form of a lambda expression is 

( 1  ambda (parameters ... body ... 1 

A lambda expression is just a nonatomic name for a function, just as append is an 
atomic name for a built-in function. As such, it is appropriate for use in the first 
position of a function call, but if we want to get at the actual function, rather than its 
name, we still have to use the # ' notation. For example: 

> ( ( l a m b d a  ( x )  (+ x  2 ) )  4 )  + 6 

To understand the distinction we have to be clear on how expressions are evaluated 
in Lisp. The normal rule for evaluation states that symbols are evaluated by looking 
up the value of the variable that the symbol refers to. So the x in (+ x 2 ) is evaluated 
by looking up the value of the variable named x. A list is evaluated in one of two 
ways. If the first element of the list is a special form operator, then the list is evaluated 
according to the syntax rule for that special form. Otherwise, the list represents a 
function call. The first element is evaluated in a unique way, as a function. This 
means it can either be a symbol or a lambda expression. In either case, the function 
named by the first element is applied to the values of the remaining elements in the 
list. These values are determined by the normal evaluation rules. If we want to refer 
to a function in a position other than the first element of a function call, we have 
to use the # ' notation. Otherwise, the expressions will be evaluated by the normal 
evaluation rule, and will not be treated as functions. For example: 

> append + Error: APPEND is not  a bound variable 

> ( 1  ambda ( x  (+ x  2  + Error: LAMBDA is not  a function 

Here are some more examples of the correct use of functions: 

> (mappend # ' ( l a m b d a  ( 1 )  ( l i s t  1  ( r e v e r s e  1 ) ) )  
' ( ( 1  2  3 )  ( a  b  c))) + 

( ( 1  2  3 )  ( 3  2 1) (A B C )  ( C  B A ) )  

Programmers who are used to other languages sometimes fail to see the point of 
lambda expressions. There are two reasons why lambda expressions are very useful. 



First, it can be messy to clutter up a program with superfluous names. Just as it 
is clearer to write ( a+b ) * ( c+d rather than to invent variable names like temp1 and 
temp2 to hold a+b and c+d, so it can be clearer to define a function as a lambda 
expression rather than inventing a name for it. 

Second, and more importantly, lambda expressions make it possible to create 
new functions at run time. This is a powerful technique that is not possible in 
most programming languages. These run-time functions, known as closuues, will be 
covered in section 3.16. 

1.8 Other Data Types 

So far we have seen just four kinds of Lisp objects: numbers, symbols, lists, and 
functions. Lisp actually defines about 25 different types of objects: vectors, arrays, 
structures, characters, streams, hash tables, and others. At this point we will intro- 
duce one more, the string. As you can see in the following, strings, like numbers, 
evaluate to themselves. Strings are used mainly for printing out messages, while 
symbols are used for their relationships to other objects, and to name variables. The 
printed representation of a string has a double quote mark (") at each end. 

> " a  s t r i n g "  + " a  s t r i n g "  

> ( l e n g t h  " a  s t r i n g " ) + 8  

> ( l e n g t h  " " 1  + O  

1.9 Summary: The Lisp Evaluation Rule 

We can now summarize the evaluation rule for Lisp. 

Every expression is either a list or an atom. 

a Every list to be evaluatedis either a special form expuession or a function application. 

Aspecial form expression is defined to be a list whose first element is a special form 
operator. The expression is evaluated according to the operator's idiosyncratic 
evaluation rule. For example, the evaluation rule for setf is to evaluate the 
second argument according to the normal evaluation rule, set the first argument 
to that value, and return the value as the result. The rule for def un is to define 
a new function, and return the name of the function. The rule for quote 
is to return the first argument unevaluated. The notation 'x is actually an 



abbreviation for the special form expression ( quote x) . Similarly, the notation 
# ' f is an abbreviation for the special form expression ( f unc t  i on f 1. 

'John = (quote John) +- JOHN 

( s e t f  p 'John) + JOHN 

(defun tw ice  ( x )  (+ x  x ) )  + TWICE 

( i f  (= 2 3 )  ( e r r o r )  (+ 5 6 ) )  + 11 

A function application is evaluated by first evaluating the arguments (the rest of 
the list) and then finding the function named by the first element of the list and 
applying it to the list of evaluated arguments. 

(+ 2 3 )  + 5 

( -  (+ 90 9 )  (+ 50 5 ( l e n g t h  ' ( P a t  K i m ) ) ) )  + 42 

Note that if ' ( Pat Kim) did not have the quote, it would be treated as a function 
application of the function p a t  to the value of the variable k i  m. 

e Every atom is either a symbol or a nonsymbol. 

A symbol evaluates to the most recent value that has been assigned to the 
variable named by that symbol. Symbols are composed of letters, and possibly 
digits and, rarely, punctuation characters. To avoid confusion, we will use 
symbols composed mostly of the letters a - z and the '-' character, with a few 
exceptions .6 

names 

P 

* p r i n t - p r e t t y *  

A nonsymbol atom evaluates to itself. For now, numbers and strings are the 
only such non-symbol atoms we know of. Numbers are composed of digits, 
and possibly a decimal point and sign. There are also provisions for scientific 
notation, rational and complex numbers, and numbers with different bases, 
but we won't describe the details here. Strings are delimited by double quote 
marks on both sides. 

 or example, symbols that denote so-called special variables usually begin and end in 
asterisks. Also, note that I did not hesitate to use the symbol won ! on page 11. 



-273.15 =+ -273.15 

" a  string" + " a  string" 

There are some minor details of Common Lisp that complicate the evaluation 
rules, but this definition will suffice for now. 

One complication that causes confusion for beginning Lispers is the difference 
between reading and evaluating an expression. Beginners often imagine that when 
they type an expression, such as 

the Lisp system first reads the (+, then fetches the addition function, then reads (*  

3 4) and computes 12, then reads (*  5 6 1 and computes 30, and finally computes 
42. In fact, what actually happens is that the system first reads the entire expression, 
the list (+ ( *  3 4) (*  5 6 ) 1. Only after it has been read does the system begin 
to evaluate it. This evaluation can be done by an interpreter that looks at the list 
directly, or it can be done by a compiler that translates the list into machine language 
instructions and then executes those instructions. 

We can see now that it was a little imprecise to say, "Numbers are composed 
of digits, and possibly a decimal point and sign." It would be more precise to say 
that the printed representation of a number, as expected by the function read and 
as produced by the function print, is composed of digits, and possibly a decimal 
point and sign. The internal representation of a number varies from one computer 
to another, but you can be sure that it will be a bit pattern in a particular memory 
location, and it will no longer contain the original characters used to represent the 
number in decimal notation. Similarly, it is the printed representation of a string 
that is surrounded by double quote marks; the internal representation is a memory 
location marking the beginning of a vector of characters. 

Beginners who fail to grasp the distinction between reading and evaluating may 
have a good model of what expressions evaluate to, but they usually have a terrible 
model of the efficiency of evaluating expressions. One student used only one-letter 
variable names, because he felt that it would be faster for the computer to look up 
a one-letter name than a multiletter name. While it may be true that shorter names 
can save a microsecond at read time, this makes no difference at all at evaluation 
time. Every variable, regardless of its name, is just a memory location, and the time 
to access the location does not depend on the name of the variable. 



1.10 What Makes Lisp Different? 

What is it that sets Lisp apart from other languages? Why is it a good language for 
A1 applications? There are at least eight important factors: 

0 Built-in Support for Lists 

Automatic Storage Management 

o Dynamic Typing 

First-Class Functions 

Uniform Syntax 

Interactive Environment 

0 Extensibility 

History 

In sum, these factors allow a programmer to delay making decisions. In the example 
dealing with names, we were able to use the built-in list functions to construct and 
manipulate names without making a lot of explicit decisions about their represen- 
tation. If we decided to change the representation, it would be easy to go back and 
alter parts of the program, leaving other parts unchanged. 

This ability to delay decisions-or more accurately, to make temporary, nonbind- 
ing decisions-is usually a good thing, because it means that irrelevant details can be 
ignored. There are also some negative points of delaying decisions. First, the less we 
tell the compiler, the greater the chance that it may have to produce inefficient code. 
Second, the less we tell the compiler, the less chance it has of noticing inconsistencies 
and warning us. Errors may not be detected until the program is run. Let's consider 
each factor in more depth, weighing the advantages and disadvantages: 

Built-in Support for Lists. The list is a very versatile data structure, and while lists 
can be implemented in any language, Lisp makes it easy to use them. Many 
A1 applications involve lists of constantly changing size, making fixed-length 
data structures like vectors harder to use. 

Earlyversions of Lisp used lists as their only aggregate data structure. Common 
Lisp provides other types as well, because lists are not always the most efficient 
choice. 

Automatic Storage Management. The Lisp programmer needn't keep track of 
memory allocation; it is all done automatically. This frees the programmer of a 
lot of effort, and makes it easy to use the functional style of programming. Other 



languages present programmers with a choice. Variables can be allocated on 
the stack, meaning that they are created when a procedure is entered, and 
disappear when the procedure is done. This is an efficient use of storage, but 
it rules out functions that return complex values. The other choice is for the 
programmer to explicitly allocate and free storage. This makes the functional 
style possible but can lead to errors. 

For example, consider the trivial problem of computing the expression a x (b + 
c), where a ,  b, and c are numbers. The code is trivial in any language; here it is 
in Pascal and in Lisp: 

/* Pascal */ 

a * (b + C) 

;;; Lisp 

( *  a (+ b c)) 

The only difference is that Pascal uses infix notation and Lisp uses prefix. Now 
consider computing a x (b + c) when a ,  b, and c are matrices. Assume we have 
procedures for matrix multiplication and addition. In Lisp the form is exactly 
the same; only the names of the functions are changed. In Pascal we have the 
choice of approaches mentioned before. We could declare temporary variables 
to hold intermediate results on the stack, and replace the functional expression 
with a series of procedure calls: 

I* Pascal * I  

var temp, result: matrix; 

add(b.c,temp); 

mult(a,temp,result); 

return( resul t) ; 

;;; Lisp 

(mult a (add b c)) 

The other choice is to write Pascal functions that allocate new matrices on the 
heap. Then one can write nice functional expressions like mu1 t ( a ,  add ( b , c )  ) 
even in Pascal. However, in practice it rarely works this nicely, because of the 
need to manage storage explicitly: 

/* Pascal */ ;;; Lisp 

var a.b.c,x,y: matrix; 



(mult a (add b c ) )  

In general, deciding which structures to free is a difficult task for the Pascal 
programmer. If the programmer misses some, then the program may run out 
of memory. Worse, if the programmer frees a structure that is still being used, 
then strange errors can occur when that piece of memory is reallocated. Lisp 
automatically allocates and frees structures, so these two types of errors can 
never occur. 

Dynamic Typing. Lisp programmers don't have to provide type declarations, 
because the language keeps track of the type of each object at run time, rather 
than figuring out all types at compile time. This makes Lisp programs shorter 
and hence faster to develop, and it also means that functions can often be 
extended to work for objects to which they were not originally intended to 
apply. In Pascal, we can write a procedure to sort an array of 100 integers, but 
we can't use that same procedure to sort 200 integers, or 100 strings. In Lisp, 
one sor t  fits all. 

One way to appreciate this kind of flexibility is to see how hard it is to achieve 
in other languages. It is impossible in Pascal; in fact, the language Modula was 
invented primarily to fix this problem in Pascal. The language Ada was de- 
signed to allow flexible generic functions, and a book by Musser and Stepanov 
(1989) describes an Ada package that gives some of the functionality of Com- 
mon Lisp's sequence functions. But the Ada solution is less than ideal: it 
takes a 264-page book to duplicate only part of the functionality of the 20-page 
chapter 14 from Steele (1 990), and Musser and Stepanov went through five Ada 
compilers before they found one that would correctly compile their package. 
Also, their package is considerably less powerful, since it does not handle vec- 
tors or optional keyword parameters. In Common Lisp, all this functionality 
comes for free, and it is easy to add more. 

On the other hand, dynamic typing means that some errors will go undetected 
until run time. The great advantage of strongly typed languages is that they are 
able to give error messages at compile time. The great frustration with strongly 
typed languages is that they are only able to warn about a small class of errors. 
They can tell you that you are mistakenly passing a string to a function that 
expects an integer, but they can't tell you that you are passing an odd number 
to a function that expects an even number. 

First-Class Functions. Afirst-class object is one that can be used anywhere and 
can be manipulated in the same ways as any other kind of object. In Pascal or C, 



for example, functions can be passed as arguments to other functions, but they 
are not first-class, because it is not possible to create new functions while the 
program is running, nor is it possible to create an anonymous function without 
giving it a name. In Lisp we can do both those things using 1 ambda. This is 
explained in section 3.16, page 92. 

a Uniform Syntax. The syntax of Lisp programs is simple. This makes the lan- 
guage easy to learn, and very little time is wasted correcting typos. In addition, 
it is easy to write programs that manipulate other programs or define whole 
new languages-a very powerful technique. The simple syntax also makes it 
easy for text editing programs to parse Lisp. Your editor program should be 
able to indent expressions automatically and to show matching parentheses. 
This is harder to do for languages with complex syntax. 

On the other hand, some people object to all the parentheses. There are two 
answers to this objection. First, consider the alternative: in a language with 
"conventional" syntax, Lisp's parentheses pairs would be replaced either by an 
implicit operator precedence rule (in the case of arithmetic and logical expres- 
sions) or by a begi nlend pair (in the case of control structures). But neither 
of these is necessarily an advantage. Implicit precedence is notoriously error- 
prone, and begi nlend pairs clutter up the page without adding any content. 
Many languages are moving away from begi nlend: C uses { and ), which are 
equivalent to parentheses, and several modern functional languages (such as 
Haskell) use horizontal blank space, with no explicit grouping at all. 

Second, many Lisp programmers have considered the alternative. There have 
been a number of preprocessors that translate from"conventiona1" syntax into 
Lisp. None of these has caught on. It is not that Lisp programmers find it 
tolerable to use all those parentheses, rather, they find it advantageous. With a 
little experience, you may too. 

It is also important that the syntax of Lisp data is the same as the syntax of 
programs. Obviously, this makes it easy to convert data to program. Less 
obvious is the time saved by having universal functions to handle input and 
output. The Lisp functions read and p r i  n t  will automatically handle any list, 
structure, string, or number. This makes it trivial to test individual functions 
while developing your program. In a traditional language like C or Pascal, you 
would have to write special-purpose functions to read and print each data type 
you wanted to debug, as well as a special-purpose driver to call the routines. 
Because this is time-consuming and error-prone, the temptation is to avoid 
testing altogether. Thus, Lisp encourages better-tested programs, and makes 
it easier to develop them faster. 

Interactive Environment. Traditionally, a programmer would write a complete 
program, compile it, correct any errors detected by the compiler, and then 



run and debug it. This is known as the batch mode of interaction. For long 
programs, waiting for the compiler occupied a large portion of the debugging 
time. In Lisp one normally writes a few small functions at a time, getting 
feedback from the Lisp system after evaluating each one. This is known as 
an interactive environment. When it comes time to make a change, only the 
changed functions need to be recompiled, so the wait is much shorter. In 
addition, the Lisp programmer can debug by typing in arbitrary expressions 
at any time. This is a big improvement over editing the program to introduce 
print statements and recompiling. 

Notice that the distinction between interactive and a batch languages is separate 
from the distinction between interpreted and compiled languages. It has often 
been stated, incorrectly, that Lisp has an advantage by virtue of being an 
interpreted language. Actually, experienced Common Lisp programmers tend 
to use the compiler almost exclusively. The important point is interaction, not 
interpretation. 

The idea of an interactive environment is such a good one that even traditional 
languages like C and Pascal are starting to offer interactive versions, so this is 
not an exclusive advantage of Lisp. However, Lisp still provides much better 
access to the interactive features. A C interpreter may allow the programmer 
to type in an expression and have it evaluated immediately, but it will not allow 
the programmer to write a program that, say, goes through the symbol table 
and finds all the user-defined functions and prints information on them. In 
C-even interpreted C-the symbol table is just a Cheshire-cat-like invention 
of the interpreter's imagination that disappears when the program is run. In 
Lisp, the symbol table is a first-class object7 that can be accessed and modified 
with functions like read, intern and do-symbol s. 

Common Lisp offers an unusually rich set of useful tools, including over 700 
built-in functions (ANSI Common Lisp has over 900). Thus, writing a new 
program involves more gathering of existing pieces of code and less writing of 
new code from scratch. In addition to the standard functions, Common Lisp 
implementations usually provide extensions for interacting with the editor, 
debugger, and window system. 

a Extensibility. When Lisp was invented in 1958, nobody could have foreseen the 
advances in programming theory and language design that have taken place in 
the last thirty years. Other early languages have been discarded, replaced by 
ones based on newer ideas. However, Lisp has been able to survive, because 
it has been able to adapt. Because Lisp is extensible, it has been changed to 
incorporate the newest features as they become popular. 

7~ctually, there can be several symbol tables. They are known as packages in Common 
Lisp. 



The easiest way to extend the language is with macros. When so-called struc- 
tured programming constructs such as case and if-then-else arose, they were 
incorporated into Lisp as macros. Rut the flexibility of Lisp goes beyond 
adding individual constructs. Brand new styles of programming can easily be 
implemented. Many A1 applications are based on the idea of rule-based pro- 
gramming. Another new style is object-oriented programming, which has been 
incorporated with the Common Lisp Object System (cLOS),~ a set of macros, 
functions, and data types that have been integrated into ANSI Common Lisp. 

To show how far Lisp has come, here's the only sample program given in the 
Lisp/MTS Programmer's Guide (Hafner and Wilcox 1974): 

(PROG ( L I S T  DEPTH TEMP R E S T L I S T )  
(SETQ R E S T L I S T  ( L I S T  (CONS (READ)  0 ) )  
A (COND 
( (NOT R E S T L I S T )  (RETURN 'DONE) 
( T  (SETQ L I S T  (UNCONS (UNCONS R E S T L I S T  

R E S T L I S T  D E P T H ) )  
(COND ( (ATOM L I S T )  
(MAPC ' P R I N 1  ( L I S T  ' "ATOM:"  L I S T  ' " , "  'DEPTH DEPTH))  
( T E R P R I  1 )  
( T  (SETQ TEMP (UNCONS L I S T  L I S T ) )  
(COND ( L I S T  
(SETQ R E S T L I S T  (CONS(C0NS L I S T  DEPTH) R E S T L I S T ) ) ) )  
(SETQ R E S T L I S T  (CONS (CONS TEMP 

( A D D 1  DEPTH))  R E S T L I S T ) )  
> > I >  
(GO A ) )  

Note the use of the now-deprecated goto (GO) statement, and the lack of consistent 
indentati~n conventions. The manual also gives a recursive version of the same 

(PROG N I L  ( 

( L A B E L  ATOMPRINT (LAMBDA ( R E S T L I S T )  
(COND ( ( N O T  R E S T L I S T )  (RETURN ' D O N E ) )  
( ( A T O M  (CAAR R E S T L I S T ) )  (MAPC ' P R I N 1  

( L I S T  ' "ATOM:"  (CAAR R E S T L I S T )  
9 I1  I1 , 'DEPTH (CDAR R E S T L I S T ) ) )  

( T E R P R I  
(ATOMPRINT (CDR R E S T L I S T ) ) )  
( T (ATOMPRINT (GRAFT 
( L I S T  (CONS (CAAAR R E S T L I S T )  ( A D D 1  (CDAR R E S T L I S T ) ) ) )  
(AND (CDAAR R E S T L I S T )  ( L I S T  (CONS (CDAAR R E S T L I S T )  

'~ronounced "see-loss." An alternate pronunciation, "klaus," seems to be losing favor. 



(CDAR RESTLIST)))) 
(CDR RESTLIST)))))))  

(LIST (CONS (READ) 0 ) ) ) )  

Both versions are very difficult to read. With our modern insight (and text editors 
that automatically indent), a much simpler program is possible: 

(defun atompr in t  (exp &op t iona l  (depth 0 ) )  
" P r i n t  each atom i n  exp, along w i t h  i t s  depth o f  nes t ing . "  
( i f  (atom exp) 

( format  t ""&ATOM: "a, DEPTH "d" exp depth) 
(do1 i s t  (element exp) 

(a tompr in t  element (+ depth 1 ) ) ) ) )  

1 .I1 Exercises 

p Exercise 1.1 [m] Define a version of 1 a s t  -name that handles "Rex Morgan MD," 
"Morton Downey, Jr.," and whatever other cases you can think of. 

p Exercise 1.2 [m] Write a function to exponentiate, or raise a number to an integer 
power. For example: (power 3 2 )  = 32 = 9. 

p Exercise 1.3 [m] Write a function that counts the number of atoms in an expression. 
For example: ( count - a toms ' ( a ( b  ) c ) ) = 3. Notice that there is something of an 
ambiguity in this: should ( a n i 1 c ) count as three atoms, or as two, because it is 
equivalent to ( a ( 1 c ) ? 

Exercise 1.4 [m] Write a function that counts the number of times an expression 
occurs anywhere within another expression. Example: ( count - anywhere ' a ' ( a 
( ( a )  b )  a ) )  -. 3. 

p Exercise 1.5 [m] Write a function to compute the dot product of two sequences 
of numbers, represented as lists. The dot product is computed by multiplying 
corresponding elements and then adding up the resulting products. Example: 

(do t -p roduc t  ' (10  20) ' ( 3  4 ) )  = 10 x 3 + 20 x 4  = 110 



1.12 Answers 

Answer 1.2 

(defun power (x n) 
"Power raises x to the nth power. N must be an integer >= 0. 
This executes in log n time, because of the check for even n." 

(cond ( (=  n 0) 1) 
((evenp n) (expt (power x ( 1  n 2)) 2)) 
(t (* x (power x ( -  n 1)))))) 

Answer 1.3 

(defun count-atoms (exp) 
"Return the total number of non-nil atoms in the expression." 
(cond ((null exp) 0) 

((atom exp) 1) 
(t (+ (count-atoms (first exp)) 

(count-atoms (rest exp)))))) 

(defun count-all-atoms (exp &optional (if-null 1)) 
"Return the total number of atoms in the expression. 
counting nil as an atom only in non-tail position." 
(cond ((null exp) if-null) 

((atom exp) 1) 
(t (+ (count-all-atoms (first exp) 1) 

(count-all-atoms (rest exp) 0))))) 

Answer 1.4 

(defun count-anywhere (item tree) 
"Count the times item appears anywhere within tree." 
(cond ((eql item tree) 1) 

((atom tree) 0) 
(t (+ (count-anywhere item (first tree)) 

(count-anywhere item (rest tree)))))) 



Answer 1.5 Here are three versions: 

(defun dot-product  (a b)  
"Compute the  mathematical do t  product o f  two vec to rs . "  
( i f  ( o r  ( n u l l  a) ( n u l l  b ) )  

0 
(+ ( *  ( f i r s t  a) ( f i r s t  b ) )  

(do t -p roduc t  ( r e s t  a)  ( r e s t  b ) ) ) ) )  

(defun do t -p roduc t  (a b )  
"Compute t h e  mathematical do t  product  o f  two vectors . "  
( l e t  ((sum 0 ) )  

(dotimes ( i  ( l e n g t h  a ) )  
( i n c f  sum ( *  ( e l t  a  i )  ( e l t  b  i ) ) ) )  

sum) 1 

(defun dot-product  (a b)  
"Compute the  mathematical do t  product  o f  two vec to rs . "  
(apply  # '+  (mapcar # ' *  a  b ) ) )  



CHAPTER 2 

A Simple Lisp Program 

Certum quod factum. 
(One is certain of on ly  what  one builds.) 

-Giovanni Battista Vico (1 668-1 744) 
Italian royal historiographer 

ou will never become proficient in a foreign language by studying vocabulary lists. 
Rather, you must hear and speak (or read and write) the language to gain proficiency. 
The same is true for learning computer languages. 

This chapter shows how to combine the basic functions and special forms of Lisp into a 
complete program. If you can learn how to do that, then acquiring the remaining vocabulary of 
Lisp (as outlined in chapter 3) will be easy. 



2.1 A Grammar for a Subset of English 
The program we will develop in this chapter generates random English sentences. 
Here is a simple grammar for a tiny portion of English: 

Sentence + Noun-Phrase + Verb-Phrase 
Noun-Phrase + Article + Noun 
Verb-Phrase + Verb + Noun-Phrase 
Article + the, a, . . . 
Noun + man, ball, woman, table. . . 
Verb + hit, took, saw, liked. . . 

To be technical, this description is called a context-free phrase-structure grammar, and 
the underlying paradigm is called generative syntax. The idea is that anywhere we 
want a sentence, we cangenerate a noun phrase followed by averb phrase. Anywhere 
a noun phrase has been specified, we generate instead an article followed by a noun. 
Anywhere an article has been specified, we generate either "the," "a," or some other 
article. The formalism is "context-free" because the rules apply anywhere regardless 
of the surrounding words, and the approach is "generative" because the rules as a 
whole define the complete set of sentences in a language (and by contrast the set of 
nonsentences as well). In the following we show the derivation of a single sentence 
using the rules: 

To get a Sentence, append  a Noun-Phrase a n d  a Verb-Phrase 
To get a Noun-Phrase, append  a n  Article a n d  a Noun 

Choose "the" for t h e  Article 
Choose "man" for the  Noun 

The resultingrNoun-Phrase i s  "the man" 
To get a Verb-Phrase, append  a Verb a n d  a Noun-Phrase 

Choose "hit" for the  Verb 
To get a Noun-Phrase, append  a n  Article a n d  a Noun 

Choose "the" for the  Article 
Choose "ball" for the  Noun 

The resulting Noun-Phrase is "the ball" 
The resulting Verb-Phrase is "hit the ball" 

The  resulting Sentence is "The man hit the ball" 

2.2 A Straightforward Solution 
We will develop a program that generates random sentences from a phrase-structure 
grammar. The most straightforward approach is to represent each grammar rule by 
a separate Lisp function: 



(defun sentence 0 (append (noun-phrase) (verb-phrase)) )  
(defun noun-phrase 0 (append ( A r t i c l e )  (Noun))) 
(defun verb-phrase 0 (append (Verb) (noun-phrase))) 
(defun A r t i c l e  0 (one-of  ' ( t h e  a ) ) )  
(defun Noun 0 (one-of  '(man b a l l  woman t a b l e ) ) )  
(defun Verb 0 (one-of  ' ( h i t  t ook  saw l i k e d ) ) )  

Each of these function definitions has an empty parameter list, ( 1. That means the 
functions take no arguments. This is unusual because, strictly speaking, a function 
with no arguments would always return the same thing, so we would use a constant 
instead. However, these functions make use of the random function (as we will see 
shortly), and thus can return different results even with no arguments. Thus, they 
are not functions in the mathematical sense, but they are still called functions in Lisp, 
because they return a value. 

All that remains now is to define the function one- of. It takes a list of possible 
choices as an argument, chooses one of these at random, and returns a one-element 
list of the element chosen. This last part is so that all functions in the grammar will 
return a list of words. That way, we can freely apply append to any category. 

(defun one-of ( s e t )  
"P ick  one element o f  se t ,  and make a 1 i s t  o f  it. " 
( l i s t  ( random-el t  s e t ) ) )  

(defun random-elt  (choices)  
"Choose an element from a l i s t  a t  random." 
( e l t  choices (random ( l e n g t h  c h o i c e s ) ) ) )  

There are two new functions here, el t and random. el t picks an element out of a list. 
The first argument is the list, and the second is the position in the list. The confusing 
part is that the positions start at 0, so (el  t choi ces 0 1 is the first element of the list, 
and (el t c hoi ces 1 1 is the second. Think of the position numbers as telling you 
how far away you are from the front. The expression ( random n 1 returns an integer 
from 0 to n-1, so that ( random 4 1 would return either 0,1,2, or 3. 

Now we can test the program by generating a few random sentences, along with 
a noun phrase and a verb phrase: 

> (sentence) + (THE WOMAN HIT THE BALL) 

> (sentence) + (THE WOMAN HIT THE MAN) 

> (sentence) + (THE BALL SAW THE WOMAN) 

> (sentence) + (THE BALL SAW THE TABLE) 

> (noun-phrase) + (THE MAN) 

> (verb-phrase)  + (LIKED THE WOMAN) 



> ( t r a c e  s e n t e n c e  n o u n - p h r a s e  v e r b - p h r a s e  a r t i c l e  n o u n  v e r b )  =+ 
(SENTENCE NOUN-PHRASE VERB-PHRASE A R T I C L E  NOUN VERB) 

> ( s e n t e n c e )  + 
(1 ENTER SENTENCE) 

(1 ENTER NOUN-PHRASE) 
(1 ENTER A R T I C L E )  
(1 E X I T  A R T I C L E :  ( T H E ) )  
(1 ENTER NOUN) 
(1 E X I T  NOUN: (MAN)) 

(1 E X I T  NOUN-PHRASE: (THE MAN)) 
(1 ENTER VERB-PHRASE) 

(1 ENTER VERB) 
(1 E X I T  VERB: ( H I T ) )  
(1 ENTER NOUN-PHRASE) 

(1 ENTER A R T I C L E )  
(1 E X I T  ARTICLE:  ( T H E ) )  
(1 ENTER NOUN) 
(1 E X I T  NOUN: ( B A L L )  

(1 E X I T  NOUN-PHRASE: (THE B A L L ) )  
(1 E X I T  VERB-PHRASE: ( H I T  THE B A L L ) )  

(1 E X I T  SENTENCE: (THE MAN H I T  THE B A L L ) )  
(THE MAN H I T  THE B A L L )  

The program works fine, and the trace looks just like the sample derivation above, 
but the Lisp definitions are a bit harder to read than the original grammar rules. 
This problem will be compounded as we consider more complex rules. Suppose we 
wanted to allow noun phrases to be modified by an indefinite number of adjectives 
and an indefinite number of prepositional phrases. In grammatical notation, we 
might have the following rules: 

Noun-Phrase =+ Article + Adj* + Noun + PP * 
Adj * + 0, Adj + Adj * 
PP* + 0,PP+PP* 
PP + Prep + Noun-Phrase 
Adj + big, little, blue, green, . . . 
Prep =+ to, in, by, with, . . . 

In this notation, 0 indicates a choice of nothing at all, a comma indicates a choice of 
several alternatives, and the asterisk is nothing special-as in Lisp, it's just part of the 
name of a symbol. However, the convention used here is that names ending in an 
asterisk denote zero or more repetitions of the underlying name. That is, PP* denotes 
zero or more repetitions of PP. This is known as "Kleene star" notation (pronounced 



"clean-E") after the mathematician Stephen Cole ~leene. '  
The problem is that the rules for Adj" and PP" contain choices that we would have 

to represent as some kind of conditional in Lisp. For example: 

(defun Adj* 0 
( i f  (= (random 2 )  0)  

ni 1 

(append (Adj (Adj*) 1)  

(defun PP* 0 
( i f  (random-elt ' ( t  n i l ) )  

(append ( P P )  (PP*)) 
nil  1)  

(defun noun-phrase ( (append (Art ic le)  (Adj*) (Noun) (PP*) 1) 
(defun P P  0 (append (Prep) (noun-phrase))) 
(defun Adj 0 (one-of ' (b ig  l i t t l e  blue green adiabat ic) ) )  
(defun Prep 0 (one-of ' ( t o  in by with o n ) ) )  

I've chosen two different implementations for Ad j* and PP*; either approach would 
work in either function. We have to be careful, though; here are two approaches that 
would not work: 

(defun Adj* 0 
"Warning - incorrect definit ion of Adjectives . " 
(one-of ' (n i l  (append (Adj) (Adj*)) ) ) )  

(defun Adj* 0 
"Warning - incorrect definit ion of Adjectives." 
(one-of ( l i s t  nil (append (Adj) (Adj*)))))  

The first definition is wrong because it could return the literal expression ( (append 
(Ad j 1 (Ad j * 1 1 1 rather than a list of words as expected. The second definition would 
cause infinite recursion, because computing the value of ( Ad j * 1 always involves a 
recursive call to (Ad j * 1. The point is that what started out as simple functions are 
now becoming quite complex. To understand them, we need to know many Lisp 
conventions-def un, ( 1, case, i f ,  quote, and the rules for order of evaluation-when 
ideally the implementation of a grammar rule should use only linguistic conventions. 
If we wanted to develop a larger grammar, the problem could get worse, because the 
rule-writer might have to depend more and more on Lisp. 

'we will soon see "Kleene plus" notation, wherein PP+ denotes one or more repetition 
of PP. 



2.3 A Rule-Based Solution 

An alternative implementation of this program would concentrate on making it easy 
to write grammar rules and would worry later about how they will be processed. 
Let's look again at the original grammar rules: 

Sentence + Noun-Phrase + Verb-Phrase 
Noun-Phrase + Article + N o u n  
Verb-Phrase + Verb + Noun-Phrase 
Article + the, a, . . . 
Noun  + man, ball, woman, table . . . 
Verb + hit, took, saw, l iked .  . . 

Each rule consists of an arrow with a symbol on the left-hand side and something on 
the right-hand side. The complication is that there can be two kinds of right-hand 
sides: a concatenated list of symbols, as in "Noun-Phrase + Article +Noun," or a list of 
alternate words, as in "Noun + man, ball, . . . " We can account for these possibilities 
by deciding that every rule will have a list of possibilities on the right-hand side, and 
that a concatenated list, for example "Article +Noun," will be represented as a Lisp list, 
f ir  example "(Art i cl e Noun 1". The list of rules can then be represented as follows: 

(defparameter *simple-grammar* 
'((sentence -> (noun-phrase verb-phrase)) 

(noun-phrase -> (Article Noun)) 
(verb-phrase -> (Verb noun-phrase)) 
(Article -> the a) 
(Noun -> man ball woman table) 
(Verb -> hit took saw liked)) 

" A  grammar for a trivial subset o f  English.") 

(defvar *grammar* *simple-grammar* 
"The grammar used by generate. Initially, this is 
*simple-grammar*, but w e  can switch t o  other grammars.") 

Note that the Lisp version of the rules closely mimics the original version. In par- 
ticular, I include the symbol " ->", even though it serves no real purpose; it is purely 
decorative. 

The special forms def va r and def pa rameter both introduce special variables 
and assign a value to them; the difference is that a variable, like *grammar*, is 
routinely changed during the course of running the program. A parameter, like 
*s i mpl e - gramma r*, on the other hand, will normally stay constant. A change to a 
parameter is considered a change to the program, not a change by the program. 

Once the list of rules has been defined, it can be used to find the possible rewrites 
of a given category symbol. The function assoc is designed for just this sort of task. 



It takes two arguments, a "key" and a list of lists, and returns the first element of the 
list of lists that starts with the key. If there is none, it returns ni 1 . Here is an example: 

> (assoc 'noun *grammar*) + ( N O U N  -> MAN B A L L  WOMAN T A B L E )  

Although rules are quite simply implemented as lists, it is a good idea to impose a 
layer of abstraction by defining functions to operate on the rules. We will need three 
functions: one to get the right-hand side of a rule, one for the left-hand side, and one 
to look up all the possible rewrites (right-hand sides) for a category. 

(defun rule-lhs ( rule)  
"The left-hand side of a rule." 
( f i r s t  rule))  

(defun rule-rhs ( rule)  
"The right-hand side of a rule." 
( res t  ( res t  ru le ) ) )  

(defun rewrites (category) 
"Return a l i s t  of the possible rewrites for this  category." 
(rule-rhs (assoc category *grammar*))) 

Defining these functions will make it easier to read the programs that use them, 
and it also makes changing the representation of rules easier, should we ever decide 
to do so. 

We are now ready to address the main problem: defining a function that will 
generate sentences (or nounphrases, or any other category). We will call this function 
generate. It will have to contend with three cases: (1) In the simplest case, generate 
is passed a symbol that has a set of rewrite rules associated with it. We choose one of 
those at random, and then generate from that. (2) If the symbol has no possible rewrite 
rules, it must be a terminal symbol-a word, rather than a grammatical category-and 
we want to leave it alone. Actually, we return the list of the input word, because, as 
in the previous program, we want all results to be lists of words. (3) In some cases, 
when the symbol has rewrites, we will pick one that is a list of symbols, and try to 
generate from that. Thus, generate must also accept a list as input, in which case 
it should generate each element of the list, and then append them all together. In 
the following, the first clause in generate handles this case, while the second clause 
handles (1) and the third handles (2). Note that we used the mappend function from 
section 1.7 (page 18). 

(defun generate (phrase) 
"Generate a random sentence or phrase" 
(cond ( ( l i s t p  phrase) 

(mappend #'generate phrase)) 



( ( r e w r i t e s  phrase) 
(generate ( random-el t  ( r e w r i t e s  ph rase) ) ) )  

( t  ( l i s t  ph rase) ) ) )  

Like many of the programs in this book, this function is short, but dense with 
information: the craft of programming includes knowing what not to write, as well 
as what to write. 

This style of programming is called data-driven programming, because the data 
(the list of rewrites associated with a category) drives what the program does next. It 
is a natural and easy-to-use style in Lisp, leading to concise and extensible programs, 
because it is always possible to add a new piece of data with a new associationwithout 
having to modify the original program. 

Here are some examples of generate in use: 

> (generate 'sentence) + (THE TABLE SAW THE BALL) 

> (generate 'sentence) =+ (THE WOMAN HIT A TABLE) 

> (generate 'noun-phrase) =+- (THE MAN) 

> (generate 'verb-phrase) =. (TOOK A TABLE) 

There are many possible ways to write generate. The following version uses i f  
instead of cond: 

(defun generate (phrase) 
"Generate a random sentence o r  phrase" 
( i f  ( l i s t p  phrase) 

(mappend #'generate phrase) 
( l e t  ( ( cho ices  ( r e w r i t e s  phrase)) )  

( i f  ( n u l l  cho ices)  
( l i s t  phrase) 
(generate ( random-el t  c h o i c e s ) ) ) ) ) )  

This version uses the special form 1 et, which introduces a new variable (in this case, 
choi ces) and also binds the variable to a value. In this case, introducing the variable 
saves us from calling the function rewrites twice, as was done in the cond version 
of generate. The general form of a 1 e t  form is: 

( l e t  ((varvalue) ...I 
body-containing-vars 

1 e t  is the most common way of introducing variables that are not parameters of 
functions. One must resist the temptation to use a variable without introducing it: 



(defun generate (phrase) 

( s e t f  choices . . . I  
. . . choices . . . 

; ; wrong! 

This is wrong because the symbol c ho i  ces now refers to a special or global variable, 
one that may be shared or changed by other functions. Thus, the function generate 
is not reliable, because there is no guarantee that choi  ces will retain the same value 
from the time it is set to the time it is referenced again. With 1 e t  we introduce a brand 
new variable that nobody else can access; therefore it is guaranteed to maintain the 
proper value. 

Exercise 2.1 [m] Write a version of generate that uses cond but avoids calling 
r e w r i t e s  twice. 

Exercise 2.2 [m] Write a version of generate that explicitly differentiates between 
terminal symbols (those with no rewrite rules) and nonterminal symbols. 

2.4 Two Paths to Follow 

The two versions of the preceding program represent two alternate approaches that 
come up time and time again in developing programs: (1) Use the most straightfor- 
ward mapping of the problem description directly into Lisp code. (2) Use the most 
natural notation available to solve the problem, and then worry about writing an 
interpreter for that notation. 

Approach (2) involves an extra step, and thus is more work for small problems. 
However, programs that use this approach are often easier to modify and expand. 
This is especially true in a domain where there is a lot of data to account for. The 
grammar of natural language is one such domain-in fact, most A1 problems fit this 
description. The idea behind approach (2) is to work with the problem as much as 
possible in its own terms, and to minimize the part of the solution that is written 
directly in Lisp. 

Fortunately, it is very easy inLisp to design new notations-in effect, new program- 
ming languages. Thus, Lisp encourages the construction of more robust programs. 
Throughout this book, we will be aware of the two approaches. The reader may 
notice that in most cases, we choose the second. 



2.5 Changing the Grammar without Changing 
the Program 

We show the utility of approach (2) by defining a new grammar that includes adjec- 
tives, prepositional phrases, proper names, and pronouns. We can then apply the 
generate function without modification to this new grammar. 

(defparameter *bigger-grammar* 
' ( (sentence -> (noun-phrase verb-phrase))  

(noun-phrase -> ( A r t i c l e  Adj* Noun PP*) (Name) (Pronoun)) 
(verb-phrase -> (Verb noun-phrase PP*)) 
(PP* -> 0 (PP PP*)) 
(Adj*  -> 0 (Adj  Ad j * ) )  
(PP -> (Prep noun-phrase)) 
(Prep -> t o  i n  by w i t h  on) 
(Adj  -> b i g  l i t t l e  b lue  green a d i a b a t i c )  
( A r t i c l e  -> t h e  a) 
(Name -> Pat Kim Lee Ter ry  Robin) 
(Noun -> man b a l l  woman t a b l e )  
(Verb -> h i t  took saw 1 i ked) 
(Pronoun -> he she i t  these those t h a t ) ) )  

> (generate 'sentence) 
(A TABLE ON A TABLE IN  THE BLUE ADIABATIC MAN SAW ROBIN 
WITH A LITTLE WOMAN) 

> (generate 'sentence) 
(TERRY SAW A ADIABATIC TABLE ON THE GREEN BALL BY THAT WITH KIM 
IN  THESE BY A GREEN WOMAN BY A LITTLE ADIABATIC TABLE I N  ROBIN 
ON LEE) 

> (generate 'sentence) 
(THE GREEN TABLE HIT I T  WITH HE) 

Notice the problem with case agreement for pronouns: the program generated "with 
he," although "with him" is the proper grammatical form. Also, it is clear that the 
program does not distinguish sensible from silly output. 

2.6 Using the Same Data for Several Programs 

Another advantage of representing information in a declarative form-as rules or 
facts rather than as Lisp functions-is that it can be easier to use the information for 
multiple purposes. Suppose we wanted a function that would generate not just the 



list of words in a sentence but a representation of the complete syntax of a sentence. 
For example, instead of the list ( a woman took a ba 1 1 1, we want to get the nested list: 

(SENTENCE (NOUN-PHRASE (ARTICLE A) (NOUN WOMAN)) 
(VERB-PHRASE (VERB TOOK) 

(NOUN-PHRASE (ARTICLE A) (NOUN BALL))))  

This corresponds to the tree that linguists draw as in figure 2.1. 

sentence 

art noun verb art noun 

I I I  I I  
a woman took a ball 

Figure 2.1: Sentence Parse Tree 

Using the "straightforward functions" approach we would be stuck; we'd have to 
rewrite every function to generate the additional structure. With the "new notation" 
approach we could keep the grammar as it is and just write one new function: a 
version of generate that produces nested lists. The two changes are to cons the 
category onto the front of each rewrite, and then not to append together the results 
but rather just list them with mapca r: 

(defun genera te - t ree  (phrase) 
"Generate a random sentence o r  phrase, 
w i t h  a complete parse t r e e . "  
(cond ( ( 1  i s t p  phrase) 

(mapcar # 'genera te - t ree  phrase) 
( ( r e w r i t e s  phrase) 

(cons phrase 
(genera te - t ree  ( random-el t  ( r e w r i t e s  p h r a s e ) ) ) ) )  

(t ( l i s t  ph rase) ) ) )  

Here are some examples: 



> (genera te - t ree  'Sentence) 
(SENTENCE (NOUN-PHRASE (ARTICLE A) 

(ADJ*) 
(NOUN WOMAN) 
(PP*) 

(VERB-PHRASE (VERB HIT) 
(NOUN-PHRASE (PRONOUN HE)) 
(PP*))) 

> (genera te - t ree  'Sentence) 
(SENTENCE (NOUN-PHRASE (ARTICLE A) 

(NOUN WOMAN)) 
(VERB-PHRASE (VERB TOOK) 

(NOUN-PHRASE (ARTICLE A) (NOUN BALL))))  

As another example of the one-data/multiple-program approach, we can develop a 
function to generate all possible rewrites of a phrase. The function generate-a1 1 
returns a list of phrases rather than just one, and we define an auxiliary function, 
combi ne - a 1 1, to manage the combination of results. Also, there are four cases instead 
of three, because we have to check for nil explicitly. Still, the complete program is 
quite simple: 

(defun genera te -a l l  (phrase) 
"Generate a l i s t  o f  a l l  poss ib le  expansions o f  t h i s  phrase." 
(cond ((nu1 1 phrase) (1  i s t  n i  1 ) 

( ( 1  i s t p  phrase) 
(combine-a l l  (genera te -a l l  ( f i r s t  phrase))  

(genera te -a l l  ( r e s t  ph rase) ) ) )  
( ( r e w r i t e s  phrase) 

(mappend # 'genera te -a l l  ( r e w r i t e s  ph rase) ) )  
( t  ( l i s t  ( l i s t  p h r a s e ) ) ) ) )  

(defun combine-al l  ( x l i s t  y l i s t )  
"Return a l i s t  of l i s t s  formed by appending a y t o  an x. 
E.g., (combine-a l l  ' ( ( a )  ( b ) )  ' ( ( 1 )  ( 2 ) ) )  
-> ( ( A  1 )  (B 1 )  (A 2) (B 211." 
(mappend # '  (1 ambda ( y )  

(mapcar #'(lambda ( x )  (append x y ) )  x l i s t ) )  
y l i s t ) )  

We can now use generate - a 1 1 to test our original little grammar. Note that a serious 
drawback of generate - a 1 1 is that it can't deal with recursive grammar rules like 
'Adj* + Adj + Adj*' that appear in *bi gger - gramma r*, since these lead to an infinite 
number of outputs. But it works fine for finite languages, like the language generated 
by *simp1 e-grammar*: 



> ( g e n e r a t e - a l l  ' A r t i c l e )  
((THE) ( A ) )  

> (genera te -a l l  'Noun) 
((MAN) (BALL) (WOMAN) (TABLE)) 

> (generate-a1 1 'noun-phrase) 
( (A  MAN) (A BALL) (A WOMAN) (A TABLE) 

(THE MAN) (THE BALL) (THE WOMAN) (THE TABLE)) 

> ( l e n g t h  ( g e n e r a t e - a l l  'sentence)) 
256 

There are 256 sentences because every sentence in this language has the form Article- 
Noun-Verb-Article-Noun, and there are two articles, four nouns and four verbs 
(2 x 4 x 4 x 2 x 4 = 256). 

2.7 Exercises 

p Exercise 2.3 [h] Write a trivial grammar for some other language. This can be a 
natural language other than English, or perhaps a subset of a computer language. 

p Exercise 2.4 [rn] One way of describing combi ne - a 1 1 is that it calculates the cross- 
product of the function append on the argument lists. Write the higher-order function 
cross-product, and define combi ne-a1 1 in terms of it. 
The moral is to make your code as general as possible, because you never know what 
you may want to do with it next. 

2.8 Answers 

Answer 2.1 

(defun generate (phrase) 
"Generate a random sentence o r  phrase" 
( l e t  ( (choices n i l  1) 

(cond ( ( l i s t p  phrase) 
(mappend # 'generate phrase))  

( ( s e t f  choices ( r e w r i t e s  phrase))  
(generate ( random-el t  cho ices ) ) )  

( t  ( l i s t  p h r a s e ) ) ) ) )  



Answer 2.2 

(defun generate (phrase) 
"Generate a  random sentence o r  phrase" 
(cond ( ( l i s t p  phrase) 

(mappend # 'generate phrase)) 
( (non- te rm ina l -p  phrase) 
(generate ( random-el t  ( r e w r i t e s  ph rase) ) ) )  

( t  ( l i s t  ph rase) ) ) )  

(defun non-termi na l  - p  (category)  
"True i f  t h i s  i s  a  category i n  t h e  grammar." 
( n o t  ( n u l l  ( r e w r i t e s  c a t e g o r y ) ) ) )  

Answer 2.4 

(defun cross-product  ( f n  x l i s t  y l i s t )  
"Return a  l i s t  of a l l  ( f n  x y )  va lues. "  
(mappend # '  (1 ambda ( y )  

(mapcar #'(lambda ( x )  ( f u n c a l l  f n  x  y ) )  
x l i s t ) )  

y l i s t ) )  

(defun combine-a l l  ( x l i s t  y l i s t )  
"Return a  l i s t  o f  l i s t s  formed by appending a  y  t o  an x "  
(cross-product  #'append x l i s t  y l i s t ) )  

Now we can use the cross  - product in other ways as well: 

> (cross-product  # '+  ' ( 1  2  3 )  ' (10  20 30) )  
(11  12 13 
21 22 23 
31 32 33) 

> (cross-product  # ' l i s t  ' ( a  b  c  d  e  f g  h)  
' ( 1  2 3  4  5  6  7  8 ) )  

( ( A  1) (B 1) (C 1) (D 1) (E 1 )  (F  1 )  (G 1 )  (H 1 )  
( A  2) (B 2) (C 2) (D 2) ( E  2) ( F  2) (G 2) (H 2) 
(A 3) (B 3 )  (C 3)  (D 3 )  (E 3)  (F  3)  (G 3)  (H 3 )  
(A 4)  (B 4 )  ( C  4)  (D 4 )  (E 4 )  (F  4 )  (G 4 )  (H 4 )  
( A  5) (B 5) ( C  5) (D 5) (E 5) (F  5) (G 5) (H 5)  
(A 6)  (B 6 )  (C 6)  (D 6 )  (E 6)  (F 6)  (G 6)  (H 6 )  
(A 7 )  (B 7)  (C 7 )  (D 7)  (E 7)  (F  7)  (G 7)  (H 7)  
(A 8 )  (B 8 )  ( C  8 )  (D 8 )  (E 8 )  (F 8 )  ( G  8 )  ( H  8 ) )  



CHAPTER 3 

Overview of Lisp 

No doubt about it. Common Lisp is a big language. 

-Guy L. Steele, Jr. 
Foreword to Koschman 1990 

his chapter briefly covers the most important special forms and functions in Lisp. It 
can be safely skipped or skimmed by the experienced Common Lisp programmer 
but is required reading for the novice Lisp programmer, or one who is new to the 

Common Lisp dialect. 

This chapter can be used as a reference source, but the definitive reference is Steele's Common 
Lisp the Language, 2d edition, which should be consulted whenever there is any confusion. Since 
that book is 25 times longer than this chapter, it is clear that we can only touch on the important 
highlights here. More detailed coverage is given later in this book as each feature is used in a 
real program. 



3.1 A Guide to Lisp Style 

The beginning Common Lisp programmer is often overwhelmed by the number of 
options that the language provides. In this chapter we show fourteen different ways 
to find the length of a list. How is the programmer to choose between them? One 
answer is by reading examples of good programs-as illustrated in this book-and 
copying that style. In general, there are six maxims that every programmer should 
follow: 

Be specific. 

Use abstractions. 

Be concise. 

Use the provided tools. 

Don't be obscure. 

Be consistent. 

These require some explanation. 
Using the most specific form possible makes it easier for your reader to understand 

your intent. For example, the conditional special form when is more specific than i f .  
The reader who sees a when knows to look for only one thing: the clause to consider 
when the test is true. The reader who sees an i f can rightfully expect two clauses: 
one for when the test is true, and one for when it is false. Even though it is possible 
to use i f when there is only one clause, it is preferable to use when, because when is 
more specific. 

One important way of being specific is using abstractions. Lisp provides very 
general data structures, such as lists and arrays. These can be used to implement 
specific data structures that your program will use, but you should not make the 
mistake of invoking primitive functions directly. If you define a list of names: 

( d e f v a r  *names* ' ( (Rober t  E. Lee) ... 1)  

then you should also define functions to get at the components of each name. To get 
at Lee, use (1 ast-name ( f i  r s t  *names*) 1, not (caddar *names*). 

Often the maxims are in concord. For example, if your code is trying to find an 
element in a list, you should use f i nd (or maybe f i nd - i f), not 1 oop or do. f i nd is 
more specific than the general constructs 1 OOP or do, it is an abstraction, it is more 
concise, it is a built-in tool, and it is simple to understand. 



Sometimes, however, the maxims are in conflict, and experience will tell you 
which one to prefer. Consider the following two ways of placing a new key/value 
pair on an association list:' 

(push (cons key val) a-list) 
(setf a-list (acons key val a-list)) 

The first is more concise. But the second is more specific, as it uses the acons 
function, which is designed specifically for association lists. The decision between 
them probably hinges on obscurity: those who find acons to be a familiar function 
would prefer the second, and those who find it obscure would prefer the first. 

A similar choice arises in the question of setting a variable to a value. Some prefer 
(setq x val 1 because it is most specific; others use (setf  x val 1, feeling that it is 
more consistent to use a single form, setf, for all updating. Whichever choice you 
make on such issues, remember the sixth maxim: be consistent. 

3.2 Special Forms 

As noted in chapter 1, "special form" is the term used to refer both to Common Lisp's 
syntactic constructs and the reserved words that mark these constructs. The most 
commonly used special forms are: 

definitions conditional variables iteration 
def u n  
defstruct 
defvar 
defparameter 
defconstant 
defmacro 
1 abel s 

and 1 e t  do 
case 1 et* do* 
cond POP do1 i s t  
i f  push dotimes 
or setf 1 oop 
unl ess i ncf 
when decf 

other 
decl a re 
f uncti on 
progn 
quote 
return 
trace 
untrace 

To be precise, only decl are, function, i f ,  1 abel s, 1 et, 1 et*, progn and quote 
are true special forms. The others are actually defined as macros that expand into 
calls to more primitive special forms and functions. There is no real difference to the 
programmer, and Common Lisp implementations are free to implement macros as 
special forms and vice versa, so for simplicity we will continue to use "special form" 
as a blanket term for both true special forms and built-in macros. 

l~ssociation lists are covered in section 3.6. 



Special Forms for Definitions 

In this section we survey the special forms that can be used to introduce new global 
functions, macros, variables, and structures. We have already seen the def u n  form 
for defining functions; the defmacro form is similar and is covered on page 66. 

( d e f  un function-name (parameter ... 1 "optional documentation" body ... 1 
( de f  macro macro-name (parameter ... " optional documentation " body ... 1 

There are three forms for introducing special variables. defvar defines a special 
variable and can optionally be used to supply an initial value and a documentation 
string. The initial value is evaluated and assigned only if the variable does not yet 
have any value. def pa rameter is similar, except that the value is required, and it will 
be used to change any existing value. defconstant is used to declare that a symbol 
will always stand for a particular value. 

( de f  va r variable-name initial-value "optional documentation" 
( de f  pa rameter variable-name value "optional documentation" 
( d e f  cons t a n t  variable-name value "optional documentation" 1 

All the def - forms define global objects. It is also possible to define local variables 
with 1 et, and to define local functions with 1 abel s, as we shall see. 

Most programming languages provide a way to group related data together into 
a structure. Common Lisp is no exception. The defstruct special form defines a 
structure type (known as a record type in Pascal) and automatically defines functions 
to get at components of the structure. The general syntax is: 

( de f  s t  r u c t  structure-name "optional documentation" slot ... 1 

As an example, we could define a structure for names: 

( d e f s t r u c t  name 
f i  r s t  
(midd le n i l )  

l a s t )  

This automatically defines the constructor function make - name, the recognizer pred- 
icate name-p, and the accessor functions name-f i rst, name-mi ddl e and name- 1 ast. 
The (mi ddl e ni 1 means that each new name built by make - name will have a middle 
name of n i 1 by default. Here we create, access, and modify a structure: 



> ( s e t f  b (make-name : f i r s t  'Barney : l a s t  'Rubble)) + 
#S(NAME :FIRST BARNEY :LAST RUBBLE) 

> (name- f i r s t  b )  + BARNEY 

> (name-middle b )  + NIL 

> (name-last b )  + RUBBLE 

> (name-p b)  + T 

> ( name- p ' Ba rney + N I L ; only the results of make-name are names 

> ( s e t f  (name-middle b )  'Q) + Q 

> b + #S(NAME :FIRST BARNEY :MIDDLE Q :LAST RUBBLE) 

The printed representation of a structure starts with a #S and is followed by a list 
consisting of the type of the structure and alternating pairs of slot names and values. 
Do not let this representation fool you: it is a convenient way of printing the structure, 
but it is not an accurate picture of the way structures are represented internally. 
Structures are actually implemented much like vectors. For the name structure, the 
type would be in the zero element of the vector, the first name in the first element, 
middle in the second, and last in the third. This means structures are more efficient 
than lists: they take up less space, and any element can be accessed in a single step. 
In a list, it takes n steps to access the nth element. 

There are options that give more control over the structure itself and the individual 
slots. They will be covered later as they come up. 

Special Formsfor Conditionals 

We have seen the special form i f, which has the form (i f test then-part else-part), 
where either the then-part or the else-part is the value, depending on the success of the 
test. Remember that only n i  1 counts as false; all other values are considered true for 
the purpose of conditionals. However, the constant t is the conventional value used 
to denote truth (unless there is a good reason for using some other value). 

There are actually quite a few special forms for doing conditional evaluation. 
Technically, i f is defined as a special form, while the other conditionals are macros, 
so in some sense i f is supposed to be the most basic. Some programmers prefer to 
use i f for most of their conditionals; others prefer cond because it has been around 
the longest and is versatile (if not particularly pretty). Finally, some programmers opt 
for a style more like English prose, and freely use when, unl ess, i f, and all the others. 

The following table shows how each conditional can be expressed in terms of 
i f and cond. Actually, these translations are not quite right, because or, case, and 
cond take care not to evaluate any expression more than once, while the translations 
with i f  can lead to multiple evaluation of some expressions. The table also has 



translations to cond. The syntax of cond is a series of cond-clauses, each consisting of 
a test expression followed by any number of result expressions: 

(cond (test result ... 1 
( test result ... 
... 1 

cond goes through the cond-clauses one at a time, evaluating each test expression. 
As soon as a test expression evaluates non-nil, the result expressions for that clause 
are each evaluated, and the last expression in the clause is the value of the whole 
cond. In particular, if a cond-clause consists of just a test and no result expressions, 
then the value of the cond is the test expression itself, if it is non-nil. If all of the test 
expressions evaluate to nil, then nil is returned as the value of the cond. A common 
idiom is to make the last cond-clause be ( t  result ... 1. 

The forms when and unl ess operate like a single cond clause. Both forms consist 
of a test followed by any number of consequents, which are evaluated if the test is 
satisfied-that is, if the test is true for when or false for unl  ess. 

The and form tests whether every one of a list of conditions is true, and o r  tests 
whether any one is true. Both evaluate the arguments left to right, and stop as soon 
as the final result can be determined. Here is a table of equivalences: 

It is considered poor style to use and and o r  for anything other than testing a 
logical condition. when, un l  ess, and i f can all be used for taking conditional action. 
For example: 

conditional 
(when test a b c) 
(unl ess  test x y) 
(and a b c )  
( o r  a b c) 
(case  a (b  c )  ( t  x ) )  

(and (> n 100) 
(pr inc  " N  i s  l a r g e . " ) )  ; Bad s ty l e !  

( o r  (<= n 100) 
( p r i n c " N i s 1 a r g e . " ) )  ; Evenwor se s ty l e !  

i f  form 
( i f  test (progn a b c ) )  
( i f  (not  test) (progn x y)  
( i f  a ( i f  b c ) )  
( i f  a a ( i f  b b c ) )  
( i f  (eql a 'b) c x)  

(cond ( (>  n 100) ; OK, but not MY preference 
(pr inc  " N  i s  l a r g e . " ) )  

cond form 
(cond (testa b c ) )  
(cond ( (no t  test) x y )  1 
(cond ( a  (cond ( b e ) ) ) )  
(cond ( a )  ( b )  ( c ) )  
(cond ( ( eq l  a 'b)  c) ( t x ) )  

(when (> n 100) 
(pr inc  "N i s  l a r g e . " ) )  ; Good s t y l e .  

When the main purpose is to return a value rather than take action, cond and i f 
(withexplicit n i  1 in the else case) are preferred over when and un1 es s, which implicitly 



return ni 1 in the else case. when and unl ess are preferred when there is only one 
possibility, i f (or, for some people, cond) when there are two, and cond when there 
are more than two: 

(de fun  t a x - b r a c k e t  ( income)  
"Determine what p e r c e n t  t a x  shou ld  be pa id  f o r  t h i s  income." 
(cond ( (<  income 10000.00) 0 .00 )  

( (<  income 30000.00) 0 .20)  
( (<  income 50000.00) 0 .25)  
( (<  income 70000.00) 0 .30)  
( t  0 . 3 5 ) ) )  

If there are several tests comparing an expression to constants, then case is appro- 
priate. A case form looks like: 

( c a s e  expvession 
(match result ... . . . 

The expression is evaluated and compared to each successive match. As soon as one 
is eql , the result expressions are evaluated and the last one is returned. Note that the 
match expressions are not evaluated. If a match expression is a list, then case tests if 
the expression is eql to any member of the list. If a match expression is the symbol 
otherwi se (or the symbol t), then it matches anything. (It only makes sense for this 
ot herwi se clause to be the last one.) 

There is also another special form, typecase, which compares the type of an 
expression against several possibilities and, like case, chooses the first clause that 
matches. In addition, the special forms ecase and etypecase are just like case and 
typecase except that they signal an error if there is no match. You can think of the e 
as standing for either "exhaustive" or "error." The forms ccase and ctypecase also 
signal errors, but they can be continuable errors (as opposed to fatal errors): the user 
is offered the chance to change the expression to something that satisfies one of the 
matches. Here are some examples of case forms and their cond equivalents: 

( c a s e  x 
( 1  1 0 )  
( 2  2 0 ) )  

( t y p e c a s e  x 
(number ( a b s  x ) )  
( l i s t  ( l e n g t h  X I ) )  

( e c a s e  x 
( 1  1 0 )  
( 2  2 0 ) )  

(cond 
( ( e q l  x 1 )  1 0 )  
( ( e q l  x 2 )  2 0 ) )  

(cond 
( ( t y p e p  x 'number) ( a b s  x ) )  
( ( t y p e p  x ' l i s t )  ( l e n g t h  X I ) )  

(cond 
( ( e q l  x 1 )  1 0 )  
( ( e q l  x 2 )  20)  
( t  ( e r r o r  "no  v a l i d  c a s e " ) ) )  



(etypecase x 
(number (abs x ) )  
( l i s t  (length X I ) )  

(cond 

((typep x 'number) (abs x ) )  
((typep x ' l i s t )  (length x ) )  
( t  (er ror  "no valid typecase")) )  

Special Forms for Dealing wi th  Variables and Places 

The special form setf is used to assign a new value to a variable or place, much as an 
assignment statement with = or : = is used in other languages. A place, or generalized 
variable is a name for a location that can have a value stored in it. Here is a table of 
corresponding assignment forms in Lisp and Pascal: 

; ; Lisp /* Pascal */ 

( se t f  x 0) x := 0; 

( se t f  (aref A i  j )  0 )  ACi , j l  := 0; 

( se t f  ( r e s t  l i s t )  nil l i s t A . r e s t  := n i l ;  

( se t f  (name-middle b )  ' Q )  bA.middle := "Q ";  

setf can be used to set a component of a structure as well as to set a variable. In 
languages like Pascal, the expressions that can appear on the left-hand side of an 
assignment statement are limited by the syntax of the language. In Lisp, the user can 
extend the expressions that are allowedina setf formusing the special forms def setf 
or def i ne - setf -met hod. These are introduced on pages 514 and 884 respectively. 

There are also some built-in functions that modify places. For example, ( rpl acd 
list nil 1 has the same effect as (setf (rest list) nil 1, except that it returns 
1 i st instead of n i 1 . Most Common Lisp programmers prefer to use the se tf forms 
rather than the specialized functions. 

If you only want to set a variable, the special form setq can be used instead. In 
this book I choose to use setf throughout, opting for consistency over specificity. 

The discussion in this section makes it seem that variables (and slots of struc- 
tures) are assigned new values all the time. Actually, many Lisp programs do no 
assignments whatsoever. It is very common to use Lisp in a functional style where 
new variables may be introduced, but once a new variable is established, it never 
changes. One way to introduce a new variable is as a parameter of a function. It 
is also possible to introduce local variables using the special form 1 et. Following 
are the general 1 et form, along with an example. Each variable is bound to the 
corresponding value, and then the body is evaluated: 



( le t  ((variable value ... ( l e t  ( ( x  40) 
body ... (y (+ 1 1 ) ) )  

(+ x y ) )  * 42 

Defining a local variable with a 1 e t  form is really no different from defining param- 
eters to an anonymous function. The former is equivalent to: 

( ( l ambda  (variable ... ((lambda ( x  y) 
body ... (+ x y ) )  

value ... 4 0  
(+ 1  1 ) )  

First, all the values are evaluated. Then they are bound to the variables (the pa- 
rameters of the lambda expression), and finally the body is evaluated, using those 
bindings. 

The special form 1 e t *  is appropriate when you want to use one of the newly 
introduced variables in a subsequent value computation. For example: 

( le t*  ( ( x  6)  
(y ( *  x X I ) )  

(+ x y ) )  * 42 

We could not have used 1 e t  here, because then the variable x would be unbound 
during the computation of y's value. 

Exercise 3.1 [m] Show a 1 ambda expression that is equivalent to the above 1 e t *  
expression. You may need more than one 1 ambda. 

Because lists are so important to Lisp, there are special forms for adding and 
deleting elements from the front of a list-in other words, for treating a list as a stack. 
If 1 i s t  is the name of a location that holds a list, then ( push x 1 i s t  1 will change 1 i s t  
to have x as its first element, and (pop 1 i s t  1 will return the first element and, as 
a side-effect, change 1 i s t  to no longer contain the first element. push and pop are 
equivalent to the following expressions: 

(push x l i s t )  = (setf  l i s t  (cons x l i s t ) )  
(pop l i s t )  G ( l e t  ( ( resu l t  ( f i r s t  l i s t ) ) )  

(setf l i s t  ( res t  l i s t ) )  
resul t 

Just as a list can be used to accumulate elements, a running sum can be used to 
accumulate numbers. Lisp provides two more special forms, i ncf and decf, that can 
be used to increment or decrement a sum. For both forms the first argument must 



be a location (a variable or other setf-able form) and the second argument, which 
is optional, is the number to increment or decrement by. For those who know C, 
( i ncf x) is equivalent to ++x, and ( i ncf x 2 is equivalent to x+=2. In Lisp the 
equivalence is: 

( i n c f  x )  = ( i n c f  x 1) = ( s e t f  x (+ x 1)) 
(decf  x )  = (decf  x 1 )  = ( s e t f  x ( -  x 1 ) )  

When the location is a complex form rather than a variable, Lisp is careful to expand 
into code that does not evaluate any subform more than once. This holds for push , 
pop, i ncf, and decf. In the following example, we have a list of players and want 
to decide which player has the highest score, and thus has won the game. The 
structure pl aye r has slots for the player's score and number of wins, and the function 
determi ne - wi nner increments the winning player's wi ns field. The expansion of the 
i ncf form binds a temporary variable so that the sort is not done twice. 

( d e f s t r u c t  p layer  (score 0 )  (wins 0 ) )  

(defun determine-winner (p layers )  
"Increment t h e  WINS f o r  t h e  p layer  w i t h  h ighes t  score." 
( i n c f  ( p l  ayer-wins ( f i r s t  ( s o r t  p laye rs  # '> 

:key # ' p l a y e r - s c o r e ) ) ) ) )  
- - - 

(defun determi ne-wi nner ( p l  ayers 1 
" Increment t h e  WINS f o r  t h e  p layer  w i t h  h ighes t  score. "  
( l e t  (( temp ( f i r s t  ( s o r t  p laye rs  # '>  :key # ' p l a y e r - s c o r e ) ) ) )  

( s e t f  (p layer-wins temp) (+ (p layer-wins temp) 1) ) ) )  

Functions and Special Forms for Repetition 

Many languages have a small number of reserved words for forming iterative loops. 
For example, Pascal has wh i 1 e, re peat, and for statements. In contrast, Common 
Lisp has an almost bewildering range of possibilities, as summarized below: 

do1 i s t  loop over elements of a list 
dotimes loop over successive integers 
do, do* general loop, sparse syntax 
1 OOP general loop, verbose syntax 
mapc, mapcar loop over elements of lists(s) 
some, every loop over list until condition 
f i nd , reduce, etc. more specific looping functions 
recursion general repetition 



To explain each possibility, we will present versions of the function 1 engt h, which 
returns the number of elements in a list. First, the special form do1 i s t  can be used 
to iterate over the elements of a list. The syntax is: 

(do1 i s t  (variable list optional-result) body ... 

This means that the body is executed once for each element of the list, with vari- 
able bound to the first element, then the second element, and so on. At the end, 
do1 i s t  evaluates and returns the optional-result expression, or nil if there is no result 
expression. 

Below is aversionof 1 engt h usingdol i s t .  The 1 e t  formintroduces anewvariable, 
1 en, which is initially bound to zero. The do1 i s t  form then executes the body once 
for each element of the list, with the body incrementing 1 en by one each time. This 
use is unusual in that the loop iteration variable, el ement, is not used in the body. 

(defun length1 ( 1  i s t )  
( l e t  ( ( l en  0 ) )  ; s t a r t  with LEN=O 

(do1 i s t  (element 1 i s t )  ; and on each i tera t ion 
(incf l e n ) )  ; increment LEN by 1 

l e n ) )  ; and return LEN 

It is also possible to use the optional result of do1 i st ,  as shown below. While many 
programmers use this style, I find that it is too easy to lose track of the result, and so 
I prefer to place the result last explictly. 

(defun lengthl.1 (1 i s t )  ; a1 ternate version: 
( l e t  ( ( l en  0 ) )  ; (not my preference) 

(do l i s t  (element l i s t  len)  ; uses len as resul t  here 
(incf l e n ) ) ) )  

The function mapc performs much the same operation as the special form do1 i s t .  In 
the simplest case, mapc takes two arguments, the first a function, the second a list. It 
applies the function to each element of the list. Here is 1 ength using mapc: 

(defun length2 (1 i s t  
( l e t  ( ( l en  0 ) )  ; s t a r t  with LEN=O 

(mapc #'(lambda (element) ; and on each i tera t ion 
(incf l en ) )  ; increment LEN by 1 

l i s t )  
l e n ) )  ; and return LEN 

There are seven different mapping functions, of which the most useful are mapc and 
mapca r. mapca r executes the same function calls as mapc, but then returns the results 



in a list. 
There is also a dot i mes form, which has the syntax: 

( d o t i  mes (variable number optional-result body ... 1 

and executes the body with variable bound first to zero, then one, all the way up to 
number-1 (for a total of number times). Of course, dotimes is not appropriate for 
implementing 1 ength, since we don't know the number of iterations ahead of time. 

There are two very general looping forms, do and 1 OOP. The syntax of do is as 
follows: 

(do ( (variable initial next 1.. .) 
( exit-test result 

body.. . 1 

Each variable is initially bound to the initial value. If exit-test is true, then result is re- 
turned. Otherwise, the body is executed and each variable is set to the corresponding 
next value and exit-test is tried again. The loop repeats until exit-test is true. If a next 
value is omitted, then the corresponding variable is not updated each time through 
the loop. Rather, it is treated as if it had been bound with a 1 e t  form. 

Here is 1 eng t h implemented with do, using two variables, 1 en to count the number 
of elements, and 1 to go down the list. This is often referred to as cdr-ing down a list, 
because on each operation we apply the function cd r to the list. (Actually, here we 
have used the more mnemonic name rest instead of cdr.) Note that the do loop has 
no body! All the computation is done in the variable initialization and stepping, and 
in the end test. 

(defun 1 ength3 (1 i s t )  
(do ( ( l e n  0 (+ l en  1 ) )  ; s t a r t  with LEN=O, increment 

(1  l i s t  ( r e s t  1 ) ) )  ; ... on each i t e r a t i o n  
( ( n u l l  1 )  l e n ) ) )  ; ( u n t i l  t h e  end of t h e  1 i s t )  

I find the do form a little confusing, because it does not clearly say that we are looping 
through a list. To see that it is indeed iterating over the list requires looking at both 
the variable 1 and the end test. Worse, there is no variable that stands for the current 
element of the list; we would need to say ( f i r s t  1 to get at it. Both do1 i s t  and 
mapc take care of stepping, end testing, and variable naming automatically. They are 
examples of the "be specific" principle. Because it is so unspecific, do will not be 
used much in this book. However, many good programmers use it, so it is important 
to know how to read do loops, even if you decide never to write one. 

The syntax of 1 oop is an entire language by itself, and a decidedly non-Lisp-like 
language it is. Rather than list all the possibilities for 1 OOP, we will just give examples 



here, and refer the reader to Common Lisp the Language, 2d edition, or chapter 24.5 for 
more details. Here are three versions of 1 ength using 1 oop: 

(defun length4 ( l i s t )  
(loop for element in 1  i s t  ; go through each element 

count t )  ; counting each one 

(defun length5 ( l i s t )  
(loop for element in l i s t  ; go through each element 

summing 1) ; adding 1 each time 

(defun length6 ( l i s t )  
(loop with len = 0 ; s t a r t  with LEN=O 

until (null l i s t )  ; and (unt i l  end of l i s t )  
for element = (pop l i s t )  ; on each i tera t ion 
do (incf len)  ; increment LEN by 1 
f ina l ly  (return l e n ) ) )  ; and return LEN 

Every programmer learns that there are certain kinds of loops that are used again 
and again. These are often called programming idioms or cliches. An example is going 
through the elements of a list or array and doing some operation to each element. 
In most languages, these idioms do not have an explicit syntactic marker. Instead, 
they are implemented with a general loop construct, and it is up to the reader of the 
program to recognize what the programmer is doing. 

Lisp is unusual in that it provides ways to explicitly encapsulate such idioms, and 
refer to them with explicit syntactic and functional forms. do1 i s t  and d o t  i mes are 
two examples of this-they both follow the" be specific" principle. Most programmers 
prefer to use a do1 i s t  rather than an equivalent do, because it cries out "this loop 
iterates over the elements of a list." Of course, the corresponding do form also says 
the same thing-but it takes more work for the reader to discover this. 

In addition to special forms like do1 i s t  and d o t i  mes, there are quite a few func- 
tions that are designed to handle common idioms. Two examples are count - i f, 
which counts the number of elements of a sequence that satisfy a predicate, and 
pos i ti on - i f, which returns the index of an element satisfying a predicate. Both 
can be used to implement 1 ength. In 1 ength7 below, count - i f gives the number of 
elements in 1 i s t  that satisfy the predicate t rue .  Since t r u e  is defined to be always 
true, this gives the length of the list. 

(defun length7 ( l i s t )  
(count-if # ' t rue  l i s t ) )  

(defun t rue  ( x )  t )  

In 1 engt h8, the function pos i ti on - i f finds the position of an element that satisfies 
the predicate true, starting from the end of the list. This will be the very last element 



of the list, and since indexing is zero-based, we add one to get the length. Admittedly, 
this is not the most straightforward implementation of 1 ength. 

(defun leng th8  ( l i s t )  
( i f  ( n u l l  l i s t )  

0 
(+ 1 ( p o s i t i o n - i f  # ' t r u e  l i s t  :from-end t ) ) ) )  

A partial table of functions that implement looping idioms is given below. These 
functions are designed to be flexible enough to handle almost all operations on 
sequences. The flexibility comes in three forms. First, functions like ma pca r can 
apply to an arbitrary number of lists, not just one: 

Second, many of the functions accept keywords that allow the user to vary the test 
for comparing elements, or to only consider part of the sequence. 

> (remove 1 ' ( 1  2 3 2 1 0  - 1 ) )  + ( 2  3 2 0 -1 )  

> (remove 1 '(1 2 3 2 1 0 -1 )  :key #'abs) + ( 2  3 2 0)  

> (remove 1 ' ( 1  2 3 2 1 0 -1 )  : t e s t  # ' < I  + ( 1  1 0 -1 )  

> (remove 1 ' ( 1  2 3 2 1 0  -1 )  : s t a r t  4)  + ( 1  2 3 2 0 -1 )  

Third, some have corresponding functions ending in - i f  or - i f  -not that take a 
predicate rather than an element to match against: 

> ( remove- i f  #'oddp ' ( 1  2 3 2 1 0 - 1 ) )  + ( 2  2 0)  

> ( remove- i f -no t  #'oddp ' ( 1  2 3 2 1 0 - 1 ) )  + ( 1  3 1 -1 )  

> ( f i n d - i f  #'evenp ' ( 1  2 3 2 1 0 - 1 ) )  + 2 

The following two tables assume these two values: 

( s e t f  x ' ( a  b c ) )  
( s e t f  y '(1 2 3 ) )  

The first table lists functions that work on any number of lists but do not accept 
keywords: 



(every #'oddp y )  + n i l  test if every element satisfies a predicate 
(some #'oddp y )  +- t test if some element satisfies predicate 
(mapca r # ' - y + ( - 1 - 2 - 3 apply function to each element and return result 
(mapc # ' p r  i n t y ) prints 1 2 3 perform operation on each element 

The second table lists functions that have - i f and - i f -not  versions and also 
accept keyword arguments: 

(member 2 y )  +- ( 2 3 see if element is in list 

(count 'b  x )  +1 count the number of matching elements 
(de le te  1 y )  + ( 2 3 ) omit matching elements 
( f i n d  2 y )  +-2 find first element that matches 
( pos i t i on  ' a  x )  =+O find index of element in sequence 
(reduce # '+  y )  + 6  apply function to succesive elements 
(remove 2 y )  + ( 1 3 ) like del ete, but makes a new copy 
( subs t i t u t e  4 2 y ) + ( 1 4 3 replace elements with new ones 

Repetition through Recursion 

Lisp has gained a reputation as a "recursive" language, meaning that Lisp encourages 
programmers to write functions that call themselves. As we have seen above, there is 
a dizzying number of functions and special forms for writing loops in Common Lisp, 
but it is also true that many programs handle repetition through recursion rather 
than with a syntactic loop. 

One simple definition of 1 engt h is "the empty list has length 0, and any other list 
has a length which is one more than the length of the rest of the list (after the first 
element)." This translates directly into a recursive function: 

(defun length9 (list) 
(if (null list) 

0 
(+ 1 (length9 (rest list))))) 

This version of 1 ength arises naturally from the recursive definition of a list: "a list 
is either the empty list or an element consed onto another list." In general, most 
recursive functions derive from the recursive nature of the data they are operating 
on. Some kinds of data, like binary trees, are hard to deal with in anything but a 
recursive fashion. Others, like lists and integers, can be defined either recursively 
(leading to recursive functions) or as a sequence (leading to iterative functions). In 
this book, I tend to use the "list-as-sequence" view rather than the "list-as-first-and- 
rest" view. The reason is that defining a list as a first and a rest is an arbitrary and 
artificial distinction that is based on the implementation of lists that Lisp happens to 
use. But there are many other ways to decompose a list. We could break it into the last 



element and all-but-the-last elements, for example, or the first half and the second 
half. The "list-as-sequence" view makes no such artificial distinction. It treats all 
elements identically. 

One objection to the use of recursive functions is that they are inefficient, because 
the compiler has to allocate memory for each recursive call. This may be true for the 
function 1 ength9, but it is not necessarily true for all recursive calls. Consider the 
following definition: 

(defun length10 (list) 
(1 engthlO-aux 1 i st 0) 

(defun lengthlo-aux (sublist len-so-far) 
(if (null sublist) 

1 en-so-far 
(lengthlo-aux (rest sublist) (+ 1 len-so-far)))) 

1 engthlO uses 1 engthl0- aux as an auxiliary function, passing it 0 as the length of the 
list so far. 1 engt h 10 - a ux then goes down the list to the end, adding 1 for each element. 
The invariant relation is that the length of the sublist plus 1 en - so - fa r always equals 
the length of the original list. Thus, when the sublist is nil, then 1 en - so - fa r is the 
length of the original list. Variables like 1 en - so - f a r  that keep track of partial results 
are called accumulators. Other examples of functions that use accumulators include 
f 1 a t  ten - a 1 1 on page 329; one - unknown on page 237; the Prolog predicates discussed 
on page 686; and anonymous - va r i a bl es - i n on pages 400 and 433, which uses two 
accumulators. 

The important difference between 1 engt h9 and 1 engt h l O  is when the addition 
is done. In 1 engt h9, the function calls itself, then returns, and then adds 1. In 
1 engthl0- aux, the function adds 1, then calls itself, then returns. There are no 
pending operations to do after the recursive call returns, so the compiler is free to 
release any memory allocated for the original call before making the recursive call. 
1 engthl0- aux is called a tail-recursive function, because the recursive call appears as 
the last thing the function does (the tail). Many compilers will optimize tail-recursive 
calls, although not all do. (Chapter 22 treats tail-recursion in more detail, and points 
out that Scheme compilers guarantee that tail-recursive calls will be optimized.) 

Some find it ugly to introduce 1 eng t h10 - a ux. For them, there are two alternatives. 
First, we could combine 1 engthlO and 1 engthl0-aux into a single function with an 
optional parameter: 

(defun lengthll (list &optional (len-so-far 0)) 
(if (null list) 

1 en-so-far 
(lengthll (rest list) (+ 1 len-so-far)))) 



Macros 

The preceding discussion has been somewhat cavalier with the term "special form." 
Actually, some of these special forms are really macros, forms that the compiler 
expands into some other code. Common Lisp provides a number of built-in macros 
and allows the user to extend the language by defining new macros. (There is no way 
for the user to define new special forms, however.) 

Macros are defined with the special form defmacro. Suppose we wanted to define 
a macro, whi 1 e, that would act like the whi 1 e loop statement of Pascal. Writing a 
macro is a four-step process: 

Decide if the macro is really necessary. 

Write down the syntax of the macro. 

Figure out what the macro should expand into. 

Use def ma c r o to implement the syntax/expansion correspondence. 

The first step in writing a macro is to recognize that every time you write one, 
you are defining a new language that is just like Lisp except for your new macro. 
The programmer who thinks that way will rightfully be extremely frugal in defining 
macros. (Besides, when someone asks, "What did you get done today?" it sounds 
more impressive to say "I defined a new language and wrote a compiler for it" than 
to say "I just hacked up a couple of macros.") Introducing a macro puts much more 
memory strain on the reader of your program than does introducing a function, 
variable or data type, so it should not be taken lightly. Introduce macros only when 
there is a clear need, and when the macro fits in well with your existing system. As 
C.A.R. Hoare put it, "One thing the language designer should not do is to include 
untried ideas of his own." 

The next step is to decide what code the macro should expand into. It is a good 
idea to follow established Lisp conventions for macro syntax whenever possible. 
Look at the looping macros (do1 i s t ,  dotimes, do- symbol s), the defining macros 
(defun, defvar, defparameter, defstruct), or the the 1/0 macros (wi th-open-fi 1 el 
with-open-stream, wi th-input-from-string), for example. If you follow the nam- 
ing and syntax conventions for one of these instead of inventing your own conven- 
tions, you'll be doing the reader of your program a favor. For w hi 1 e, a good syntax is: 

(whi 1 e test body ... 1 

The third step is to write the code that you want a macro call to expand into: 



(1  oop 
(un less test ( r e t u r n  n i  1  1)  
body 

The final step is to write the definition of the macro, using defmacro. A defmacro 
form is similar to a defun in that it has a parameter list, optional documentation 
string, and body. There are a few differences in what is allowed in the parameter list, 
which will be covered later. Here is a definition of the macro w h i  1 e, which takes a 
test and a body, and builds up the 1 oop code shown previously: 

(defmacro w h i l e  ( t e s t  & r e s t  body) 
"Repeat body w h i l e  t e s t  i s  t r u e . "  
( l i s t *  ' l oop  

( l i s t  'un less t e s t  ' ( r e t u r n  n i l ) )  
body 

(The function 1 i s t*  is like 1 i s t ,  except that the last argument is appended onto the 
end of the list of the other arguments.) We can see what this macro expands into by 
using macroexpand, and see how it runs by typing in an example: 

> (macroexpand-1 ' ( w h i l e  (< i 10) 
( p r i n t  (* i i 1)  
( s e t f  i (+ i 1 ) ) ) )  + 

(LOOP (UNLESS (< I 10) (RETURN NIL ) )  
(PRINT (* I I ) )  
(SETF I (+ 1 1 ) ) )  

> ( s e t f  i 7 )  + 7 

> ( w h i l e  (< i 10) 
( p r i n t  (* i i 1 )  
( s e t f  i (+ i 1 ) ) )  + 

4 9 
64 
81 
NIL 

Section 24.6 (page 853) describes a more complicated macro and some details on the 
pitfalls of writing complicated macros (page 855). 

Backquote Notation 

The hardest part about defining w h i  1 e is building the code that is the expansion of 
the macro. It would be nice if there was a more immediate way of building code. 
The following version of w h i  1 e following attempts to do just that. It defines the local 



variable code to be a template for the code we want, and then substitutes the real 
values of the variables t e s t  and body for the placeholders in the code. This is done 
with the function subs t; ( subs t new old tree substitutes new for each occurrence of 
old anywhere within tree. 

(defmacro w h i l e  ( t e s t  & r e s t  body) 

"Repeat body w h i l e  t e s t  i s  t r u e . "  

( l e t  ((code ' ( l o o p  (un less t e s t  ( r e t u r n  n i l ) )  . body)) )  

(subst  t e s t  ' t e s t  (subst  body 'body code) ) ) )  

The need to build up code (and noncode data) from components is so frequent that 
there is a special notation for it, the backquote notation. The backquote character 
" ' " is similar to the quote character " ' ". A backquote indicates that what follows is 
mostly a literal expression but may contain some components that are to be evaluated. 
Anything marked by a leading comma " , " is evaluated and inserted into the structure, 
and anything marked with a leading " , @ "  must evaluate to a list that is spliced into 
the structure: each element of the list is inserted, without the top-level parentheses. 
The notation is covered in more detail in section 23.5. Here we use the combination 
of backquote and comma to rewrite whi 1 e: 

(defmacro w h i l e  ( t e s t  & r e s t  body) 

"Repeat body w h i l e  t e s t  i s  t r u e . "  

' ( l o o p  (un less , t e s t  ( r e t u r n  n i l ) )  

,@body) 

Here are some more examples of backquote. Note that at the end of a list, " , @ " has the 
same effect as " . " followed by " , " . In the middle of a list, only " , @ "  is a possibility. 

> ( s e t f  t e s t 1  ' ( a  t e s t ) )  + (A TEST) 

> ' ( t h i s  i s  , tes t11  + (THIS I S  (A TEST)) 

> ' ( t h i s  i s  .@test11 + (THIS I S  A  TEST) 

> ' ( t h i s  i s  . , tes t11  + (THIS I S  A  TEST) 

> ' ( t h i s  i s  , @ t e s t 1  - -  t h i s  i s  on ly  ,@tes t11  

(THIS I S  A TEST - -  THIS I S  ONLY A  TEST) 

This completes the section on special forms and macros. The remaining sections of 
this chapter give an overview of the important built-in functions in Common Lisp. 



3.3 Functions on Lists 

For the sake of example, assume we have the following assignments: 

( s e t f  x  ' (a  b  c ) )  
( s e t f  y  ' (1  2  3 ) )  

The most important functions on lists are summarized here. The more complicated 
ones are explained more thoroughly when they are used. 

( f i r s t  X )  +a  first element of a list 
(second x )  * b  second element of a list 
( t h i r d  x )  JC third element of a list 
( n t h  0  X )  +a  nth element of a list, 0-based 
( r e s t  x )  + (b  C )  all but the first element 
( c a r  x )  + a  another name for the first element of a list 
( c d r  X )  * ( b  C )  another name for all but the first element 
( l a s t  x )  =+ ( c )  last cons cell in a list 
( l e n g t h  x )  + 3  number of elements in a list 
( reverse  x )  + ( c  b  a)  puts list in reverse order 
(cons 0  y )  = + ( O  1 2  3)  add to front of list 
( a p p e n d x y )  + ( a b c 1 2 3 )  append together elements 
( l i s t  x  y )  + ( ( a  b  C )  ( 1  2  3 ) )  makeanewlist 
( l i s t *  1 2  X)  + ( l  2  a  b C )  append last argument to others 
( n u l l  n i l )  + T  predicate is true of the empty list 
( n u l l  x )  + n i l  . . . and false for everything else 
( l i s t p  x )  + T  predicate is true of any list, including n i  1  
( l i s t p  3 )  + n i l  . . . and is false for nonlists 
(consp x )  =+ t predicate is true of non-nil lists 
(consp n i  1  1 =+ n i l  . . . and false for atoms, including n  i 1  
(equal x  x )  =+ t true for lists that look the same 
(equal x  y )  + n i l  . . . and false for lists that look different 
( s o r t  y # ' > I  + ( 3  2  1 )  sort a list according to a comparison function 
(subseq x  1 2) + ( B )  subsequence with given start and end points 

We said that ( cons a b 1 builds a longer list by adding element a to the front of list 
b, but what if b is not a list? This is not an error; the result is an object x such that 
( f i r s  t x) + a, ( r e s t  x) + b, and where x prints as ( a . b 1. This is known as dotted 
pair notation. If b is a list, then the usual list notation is used for output rather than 
the dotted pair notation. But either notation can be used for input. 

So far we have been thinking of lists as sequences, using phrases like "a list of 
three elements." The list is a convenient abstraction, but the actual implementation 
of lists relies on lower-level building blocks called cons cells. A cons cell is a data 
structure with two fields: a first and a rest. What we have been calling "a list of 
three elements" can also be seen as a single cons cell, whose first field points to 



the first element and whose rest field points to another cons cell that is a cons cell 
representing a list of two elements. This second cons cell has a rest field that is a 
third cons cell, one whose rest field is nil. All proper lists have a last cons cell whose 
rest field is nil. Figure 3.1 shows the cons cell notation for the three-element list ( one 
two three), as well as for the result of (cons 'one 'two). 

(ONE TWO THREE) (ONE. TWO) 

ONE TWO THREE 

Figure 3.1 : Cons Cell Diagrams 

ONE TWO 

a Exercise 3.2 [s] The function cons can be seen as a special case of one of the other 
functions listed previously. Which one? 

a Exercise 3.3 [m] Write a function that will print an expression in dotted pair nota- 
tion. Use the built-in function pri nc to print each component of the expression. 

a Exercise 3.4 [m] Write a function that, like the regular pri n t  function, will print an 
expression in dotted pair notation when necessary but will use normal list notation 
when possible. 

3.4 Equality and Internal Representation 

In Lisp there are five major equality predicates, because not all objects are created 
equally equal. The numeric equality predicate, =, tests if two numbers are the same. 
It is an error to apply = to non-numbers. The other equality predicates operate 
on any kind of object, but to understand the difference between them, we need to 
understand some of the internals of Lisp. 

When Lisp reads a symbol in two different places, the result is guaranteed to be 
the exact same symbol. The Lisp system maintains a symbol table that the function 
read uses to map between characters and symbols. But when a list is read (or built) 



in two different places, the results are not identically the same, even though the 
corresponding elements may be. This is because r ead  calls cons to build up the list, 
and each call to cons returns a new cons cell. Figure 3.2 shows two lists, x and y, 
which are both equal to ( one two 1, but which are composed of different cons cells, 
and hence are not identical. Figure 3.3 shows that the expression ( r e s t  x) does not 
generate new cons cells, but rather shares structure with x, and that the expression 
( cons ' ze ro  x > generates exactly one new cons cell, whose rest is x. 

(setf x '(one two)) 

I 

ONE TWO 

(setf y '(one two)) 

Figure 3.2: Equal But Nonidentical Lists 

(cons 'zero x) x (rest x) 

ZERO ONE TWO 

Figure 3.3: Parts of Lists 



When two mathematically equal numbers are read (or computed) in two places, 
they may or may not be the same, depending on what the designers of your implemen- 
tation felt was more efficient. In most systems, two equal fixnums will be identical, 
but equal numbers of other types will not (except possibly short floats). Common 
Lisp provides four equality predicates of increasing generality. All four begin with 
the letters eq, with more letters meaning the predicate considers more objects to be 
equal. The simplest predicate is eq, which tests for the exact same object. Next, 
eql tests for objects that are either eq or are equivalent numbers. equal tests for 
objects that are either eql or are lists or strings with eql elements. Finally, equal p 
is like equal except it also matches upper- and lowercase characters and numbers 
of different types. The following table summarizes the results of applying each of 
the four predicates to various values of x and y. The ? value means that the result 
depends on your implementation: two integers that are eql may or may not be eq. 

In addition, there are specialized equality predicates such as =, tree - equal, 
char - equa 1, and s t r i  ng - equal, which compare numbers, trees, characters, and 
strings, respectively. 

x Y 
* x  * x  
'0  ' 0 
' ( X I  ' ( X I  
' " x y "  ' " x y "  
' "Xy" ' "xY" 
* 0  '0.0 
'0  ' 1 

3.5 Functions on Sequences 

eq eql equal equalp 
T T T T 
? T T  T 
nil nil T T 
nil nil T T 
nil nil nil T 
nil nil nil T 
nil nil nil nil 

Common Lisp is in a transitional position halfway between the Lisps of the past 
and the Lisps of the future. Nowhere is that more apparent than in the sequence 
functions. The earliest Lisps dealt only with symbols, numbers, and lists, and 
provided list functions like append and 1 engt h. More modern Lisps added support 
for vectors, strings, and other data types, and introduced the term sequence to refer 
to both vectors and lists. (A vector is a one-dimensional array. It can be represented 
more compactly than a list, because there is no need to store the rest pointers. It 
is also more efficient to get at the nth element of a vector, because there is no need 
to follow a chain of pointers.) Modern Lisps also support strings that are vectors of 
characters, and hence also a subtype of sequence. 

With the new data types came the problem of naming functions that operated 
on them. In some cases, Common Lisp chose to extend an old function: 1 ength can 



apply to vectors as well as lists. In other cases, the old names were reserved for the 
list functions, and new names were invented for generic sequence functions. For 
example, append and mapca r only work on lists, but concatenate and map work on 
any kind of sequence. In still other cases, new functions were invented for specific 
data types. For example, there are seven functions to pick the nth element out of a 
sequence. The most general is e 1 t, which works on any kind of sequence, but there are 
specific functions for lists, arrays, strings, bit vectors, simple bit vectors, and simple 
vectors. Confusingly, n t h  is the only one that takes the index as the first argument: 

( n t h  n list) 
( e l  t sequence n 
( a r e f  array n )  
( cha r  stringn) 
( b i t  bitvectorn) 
( s b i t simple-bit vector n 
( s v r e f  simple-vector n 

The most important sequence functions are listed elsewhere in this chapter, depend- 
ing on their particular purpose. 

3.6 Functions for Maintaining Tables 

Lisp lists can be used to represent a one-dimensional sequence of objects. Because 
they are so versatile, they have been put to other purposes, such as representing 
tables of information. The association list is a type of list used to implement tables. 
An association list is a list of dotted pairs, where each pair consists of a key and a value. 
Together, the list of pairs form a table: given a key, we can retrieve the corresponding 
value from the table, or verify that there is no such key stored in the table. Here's 
an example for looking up the names of states by their two-letter abbreviation. The 
function assoc is used. It returns the key/value pair (if there is one). To get the value, 
we just take the cdr  of the result returned by assoc. 

( s e t f  s t a t e - t a b l e  
' ( ( A L  . Alabama) ( A K  . Alaska) ( A Z  . Arizona) ( A R  . Arkansas ) ) )  

> ( a s soc  'AK s t a t e - t a b l e )  + (AK . ALASKA) 

> ( c d r  ( a s s o c  'AK s t a t e - t a b l e ) )  + ALASKA 

> ( a s s o c  'TX s t a t e - t a b l e )  NIL 

If we want to search the table by value rather than by key, we can use rassoc: 

> ( r a s s o c  'Arizona t a b l e )  + (AZ . ARIZONA) 



> ( c a r  ( rassoc  'Arizona t a b l e ) )  + AZ 

Managing a table with assoc is simple, but there is one drawback: we have to search 
through the whole list one element at a time. If the list is very long, this may take 
a while. 

Another way to manage tables is with hash tables. These are designed to han- 
dle large amounts of data efficiently but have a degree of overhead that can make 
them inappropriate for small tables. The function gethas h works much like get-it 
takes two arguments, a key and a table. The table itself is initialized with a call to 
make-hash-tab1 e andmodifiedwitha setf of gethash: 

( s e t f  t ab l e  (make-hash-table) 

( s e t f  (gethash ' A L  tabl  e )  'A1 abama) 
( s e t f  (gethash 'AK tabl  e )  'A1 aska) 
( s e t f  (gethash 'AZ t a b l e )  'Arizona) 
( s e t f  (gethash ' A R  t a b l e )  'Arkansas) 

Here we retrieve values from the table: 

> (gethash 'AK t a b l e )  + ALASKA 
> (gethash 'TX t a b l e )  + NIL 

The function remhas h removes a key/value pair from a hash table, cl rhas h removes 
all pairs, and map hash can be used to map over the key/value pairs. The keys to hash 
tables are not restricted; they can be any Lisp object. There are many more details 
on the implementation of hash tables in Common Lisp, and an extensive literature 
on their theory. 

A third way to represent table is with property lists. A property list is a list of 
alternating key/value pairs. Property lists (sometimes called p-lists or plists) and 
association lists (sometimes called a-lists or alists) are similar: 

a - l i s t :  ((key1 . vall) (key2 . va12) ... (key, . val,)) 
p - l i s t :  (key1 vall key2 val;! ... key, val,) 

Given this representation, there is little to choose between a-lists and p-lists. They 
are slightly different permutations of the same information. The difference is in how 
they are normally used. Every symbol has a property list associated with it. That 
means we can associate a property/value pair directly with a symbol. Most programs 
use only a few different properties but have many instances of property/value pairs 
for each property. Thus, each symbol's p-list will likely be short. In our example, 
we are only interested in one property: the state associated with each abbreviation. 



That means that the property lists will be very short indeed: one property for each 
abbreviation, instead of a list of 50 pairs in the association list implementation. 

Property values are retrieved with the function get, which takes two arguments: 
the first is a symbol for which we are seeking information, and the second is the 
property of that symbol that we are interested in. get returns the value of that 
property, if one has been stored. Property/value pairs can be stored under a symbol 
with a setf form. A table would be built as follows: 

( s e t f  ( g e t  'AL ' s t a t e )  'Alabama) 
( s e t f  ( g e t  'AK ' s t a t e )  'Alaska) 
( s e t f  ( g e t  'AZ ' s t a t e )  'Ar izona)  
( s e t f  ( g e t  'AR ' s t a t e )  'Arkansas) 

Now we can retrieve values with get: 

> ( g e t  'AK ' s t a t e )  + ALASKA 
> ( g e t  'TX ' s t a t e )  NIL 

This will be faster because we can go immediately from a symbol to its lone property 
value, regardless of the number of symbols that have properties. However, if  a given 
symbol has more than one property, then we still have to search linearly through the 
property list. As Abraham Lincoln might have said, you can make some of the table 
lookups faster some of the time, but you can't make all the table lookups faster all 
of the time. Notice that there is no equivalent of rassoc using property lists; if you 
want to get from a state to its abbreviation, you could store the abbreviation under a 
property of the state, but that would be a separate setf form, as in: 

( s e t f  ( g e t  'Ar izona 'abbrev) 'AZ) 

In fact, when source, property, and value are all symbols, there are quite a few 
possibilities for how to use properties. We could have mimicked the a-list approach, 
and listed all the properties under a single symbol, using setf on the function 
symbol - pl i s t  (which gives a symbol's complete property list): 

( s e t f  (symbol - p l  i s t  ' s t a t e - t a b l e )  
' (AL Alabama AK Alaska AZ Arizona AR Arkansas)) 

> ( g e t  ' s t a t e - t a b l e  'AL) + ALASKA 

> ( g e t  ' s t a t e - t a b l e  'Alaska) + NIL 

Property lists have a long history in Lisp, but they are falling out of favor as new 
alternatives such as hash tables are introduced. There are two main reasons why 
property lists are avoided. First, because symbols and their property lists are global, 



it is easy to get conflicts when trying to put together two programs that use property 
lists. If two programs use the same property for different purposes, they cannot be 
used together. Even if two programs use different properties on the same symbols, 
they will slow each other down. Second, property lists are messy. There is no way to 
remove quickly every element of a table implemented with property lists. In contrast, 
this can be done trivially with cl rhash on hash tables, or by setting an association 
list to nil. 

3.7 Functions on Trees 

Many Common Lisp functions treat the expression ( ( a b 1 ( ( c ) ) ( d  e ) ) as a 
sequence of three elements, but there are a few functions that treat it as a tree with 
five non-null leaves. The function copy - t r ee  creates a copy of a tree, and t ree - eq ua l 
tests if two trees are equal by traversing cons cells, but not other complex data like 
vectors or strings. In that respect, tree-equal is similar to equal, but tree-equal is 
more powerful because it allows a : t e s t  keyword: 

> (setf tree '((a b) ((c)) (d el)) 

> (tree-equal tree (copy-tree tree)) + T 
(defun same-shape-tree (a b) 

"Are two trees the same except for the leaves?" 
(tree-equal a b :test #'true)) 

(defun true (&rest ignore) t) 

> (same-shape-tree tree '((1 2)  ((3)) (4 5))) + T 
> (same-shape-tree tree '((1 2 )  (3) (4 5))) + NIL 

Figure 3.4 shows the tree ( ( a b )  ( ( c 1 ) ( d  e 1 ) as a cons cell diagram. 
There are also two functions for substituting a new expression for an old one 

anywhere within a tree. subst substitutes a single value for another, while sub1 i s 
takes a list of substitutions in the form of an association list of (old . n e w  1 pairs. 
Note that the order of old and new in the a-list for sub1 i s is reversed from the order 
of arguments to subs t .  The name s ubl i s is uncharacteristically short and confusing; 
a better name would be subst-l i s t .  

> (subst 'new 'old '(old ((very old))) + (NEW ((VERY NEW))) 

> (sublis '((old . new)) '(old ((very old))))+ (NEW ((VERY NEW))) 

> (subst 'new 'old 'old) + 'NEW 



(defun engl ish->f rench (words) 
( s u b l i s  ' ( ( a r e  . va) (book . l i b r e )  ( f r i e n d  . ami) 

( h e l l o  . bonjour)  (how . comment) (my . mon) 
( r e d  . rouge) (you . t u ) )  

words 1 1 

> (engl ish->f rench ' ( h e l l o  my f r i e n d  - how a re  you today?) )  + 
(BONJOUR MON AM1 - COMMENT VA TU TODAY?) 

C 

Figure 3.4: Cons Cell Diagram of a Tree 



3.8 Functions on Numbers 

The most commonly used functions on numbers are listed here. There are quite a 
few other numeric functions that have been omitted. 

(+ 4 2 )  +6  add 
( -  4 2 )  + 2 subtract 
(*  4 2 )  + 8 multiply 
(1 4 2 )  + 2 divide 
(> 100 99 1 + t greater than (also >=, greater than or equal to) 
(= 100 100 ) + t equal (also I=, not equal) 
(< 99 100 ) + t less than (also <=, less than or equal to) 
( random 100 + 42 random integer from 0 to 99 
(expt 4 2 1 + 16 exponentiation (also exp, ex and 1 og) 
(sin pi)  +0.0 sinefunction(alsocos,tan,etc.) 
(asin 0) + 0.0 arcsine or sin-' function (also acos, a t a n ,  etc.) 
( mi n 2 3 4 ) + 2 minimum (also max) 
(abs -3) + 3 absolute value 
(sqr t  4) + 2 square root 
(round 4.1) + 4 roundoff (also truncate, floor, ceiling) 
( rem 11 5 1 + 1 remainder (also mod) 

3.9 Functions on Sets 

One of the important uses of lists is to represent sets. Common Lisp provides 
functions that treat lists in just that way. For example, to see what elements the sets 
r = { a ,  b, c, d )  and s = { c ,  d ,  e )  have in common, we could use: 

> ( s e t f  r ' ( a  b  c  d l )  + ( A  B C D) 
> ( s e t f  s  ' ( c  d  e l )  +- (C D  E l  
> ( i n t e r s e c t i o n  r s )  + (C D) 

This implementation returned ( C  D ) as the answer, but another might return ( D C 1. 
They are equivalent sets, so either is valid, and your program should not depend on 
the order of elements in the result. Here are the main functions on sets: 

( i n t e r s e c t i o n  r s )  + ( c  d l  find common elements of two sets 
(un ion r s )  +- ( a  b  c d  e  1 find all elements in either of two sets 
( s e t - d i f f e r e n c e  r s )  + ( a  b )  find elements in one but not other set 
(member ' d  r )  +- ( d l  check if an element is a member of a set 
(subsetp s  r )  + n i l  see if all elements of one set are in another 
( a d j o i n  ' b  s )  + (b  c  d  e  1 add an element to a set 
( a d j o i n  'c  s )  =+ ( C  d  e l  . . . but don't add duplicates 



It is also possible to represent a set with a sequence of bits, given a particular 
universe of discourse. For example, if every set we are interested in must be a subset 
of ( a  b  c  d  e  ), then we can use the bit sequence 11210 to represent ( a  b  c  d  ),00000 
to represent the empty set, and 11001 to represent ( a  b  e ) .  The bit sequence can be 
represented in Common Lisp as a bit vector, or as an integer in binary notation. For 
example, ( a  b  e )  would be the bit vector #*11001 or the integer 25, which can also 
be written as #b11001. 

The advantage of using bit sequences is that it takes less space to encode a set, 
assuming a small universe. Computation will be faster, because the computer's 
underlying instruction set will typically process 32 elements at a time. 

Common Lisp provides a full complement of functions on both bit vectors and 
integers. The following table lists some, their correspondence to the list functions. 

lists integers bit vectors 
i n t e r s e c t i o n  1  ogand bi  t - a n d  
union l o g i o r  b i t - i o r  
s e t - d i f f e r e n c e  logandc2  b i t - a n d c 2  
member l o g b i t p  b i t  
1  eng th  1  ogcount  

For example, 

( i n t e r s e c t i o n  ' ( a  b c d )  ' ( a  b e l )  + ( A  B )  
( b i t - a n d  #*11110 #*11001) =+ #*11000 
(1 ogand #b11110 #b11001) + 24 = #b11000 

3.10 Destructive Functions 

In mathematics, a function is something that computes an output value given some 
input arguments. Functions do not "do" anything, they just compute results. For 
example, if I tell you that x = 4 and y = 5 and ask you to apply the function "plus" to 
x and y, I expect you to tell me 9. If I then ask, "Now what is the value of x?" it would 
be surprising if x had changed. In mathematics, applying an operator to x can have 
no effect on the value of x. 

In Lisp, some functions are able to take effect beyond just computing the result. 
These "functions" are not functions in the mathematical sensef2 and in other lan- 
guages they are known as "procedures." Of course, most of the Lisp functions are true 
mathematical functions, but the few that are not can cause great problems. They can 

2 ~ n  mathematics, a function must associate a unique output value with each input value. 



also be quite useful in certain situations. For both reasons, they are worth knowing 
about. 

Consider the following: 

> ( s e t f  x  ' ( a  b c ) )  + (A B  C) 
> ( s e t f  y  ' ( 1  2  3 ) )  + ( 1  2 3) 
> (append x  y )  + ( A  B C 1 2  3) 

append is a pure function, so after evaluating the call to append, we can rightfully 
expect that x and y retain their values. Now consider this: 

> (nconc x  y )  + (A B C 1 2  3) 
> x + ( A B C 1 2 3 )  
> y *  ( 1  2 3 )  

The function nconc computes the same result as append, but it has the side effect 
of altering its first argument. It is called a destructive function, because it destroys 
existing structures, replacing them with new ones. This means that there is quite 
a conceptual load on the programmer who dares to use nconc. He or she must be 
aware that the first argument may be altered, and plan accordingly. This is far more 
complicated than the case with nondestructive functions, where the programmer 
need worry only about the results of a function call. 

The advantage of nconc is that it doesn't use any storage. While append must 
make a complete copy of x and then have that copy end with y, nconc does not need 
to copy anything. Instead, it just changes the rest field of the last element of x to 
point to y. So use destructive functions when you need to conserve storage, but be 
aware of the consequences. 

Besides nconc, many of the destructive functions have names that start with 
n, including nreverse, ni ntersecti on, nuni on, nset -di fference, and nsubst. An 
important exception is del ete, which is the name used for the destructive version of 
remove. Of course, the setf special form can also be used to alter structures, but it 
is the destructive functions that are most dangerous, because it is easier to overlook 
their effects. 

p Exercise 3.5 N (Exercise in altering structure.) Write a program that will play the 
role of the guesser in the game Twenty Questions. The user of the program will have 
in mind any type of thing. The program will ask questions of the user, which must 
be answered yes or no, or "it" when the program has guessed it. If the program runs 
out of guesses, it gives up and asks the user what "it" was. At first the program will 
not play well, but each time it plays, it will remember the user's replies and use them 
for subsequent guesses. 



3.11 Overview of Data Types 

This chapter has been organized around functions, with similar functions grouped 
together. But there is another way of organizing the Common Lisp world: by con- 
sidering the different data types. This is useful for two reasons. First, it gives an 
alternative way of seeing the variety of available functionality. Second, the data types 
themselves are objects in the Common Lisp language, and as we shall see, there are 
functions that manipulate data types. These are useful mainly for testing objects (as 
with the typeca s e macro) and for making declarations. 

Here is a table of the most commonly used data types: 

Type Example Explanation 
character #\c A single letter, number, or punctuation mark. 
number 4 2 The most common numbers are floats and integers. 
float 3.14159 A number with a decimal point. 
integer 4 2 A whole number, of either fixed or indefinite size: 
f ixnum 123 An integer that fits in a single word of storage. 
bi gnum 123456789 An integer of unbounded size. 
function #'sin A function can be applied to an argument list. 
symbol sin Symbols can name fns and vars, and are themselves objects. 
nu1  1 ni 1 The object ni 1 is the only object of type null. 
keyword : key Keywords are a subtype of symbol. 
sequence ( a  b c )  Sequences include lists and vectors. 
l i s t  ( a  b C )  A list is either a cons or nu1 1. 
vector # ( a  b C )  Avector is a subtype of sequence. 
cons ( a  b C )  A cons is a non-nil list. 
a t  om t An atom is anything that is not a cons. 
string "abc" A string is a type of vector of characters. 
array #1A( a b c ) Arrays include vectors and higher-dimensional arrays. 
structure #S(type . . . I  Structuresaredefinedbydefstruct. 
hash-table . . . Hash tables are created by make - has h - t a  bl e. 

Almost every data type has a recognizer predicate-a function that returns true 
for only elements of that type. In general, a predicate is a function that always 
returns one of two values: true or false. In Lisp, the false value is ni 1, and every 
other value is considered true, although the most common true value is t .  In most 
cases, the recognizer predicate's name is composed of the type name followed by 
p: cha racterp recognizes characters, numberp recognizes numbers, and so on. For 
example, ( number p 3 1 returns t because 3 is a number, but ( numbe rp "xu 1 returns 
n i 1 because " x " is a string, not a number. 

Unfortunately, Common Lisp is not completely regular. There are no recognizers 
for fixnums, bignums, sequences, and structures. Two recognizers, n u 1  1 and a tom, 
do not end in p. Also note that there is a hyphen before the p in hash - t a b 1  e- p, 
because the type has a hyphen in it. In addition, all the recognizers generated by 
defstruct have a hyphen before the p. 



The function type - of returns the type of its argument, and typep tests if an object 
is of a specified type. The function subtypep tests if one type can be determined to 
be a subtype of another. For example: 

> ( t y p e - o f  123) + FIXNUM 

> ( typep 123 ' f ixnum) + T 

> ( typep 123 'number) + T 

> ( typep 123 ' i n t e g e r )  + T 

> ( typep 123.0 ' i n t e g e r )  + NIL 

> (subtypep ' f ixnum 'number) + T 

The hierarchy of types is rather complicated in Common Lisp. As the prior example 
shows, there are many different numeric types, and a number like 123 is considered 
to be of type f i xnum, i nteger, and number. We will see later that it is also of type 
rati  ona1 and t .  

The type hierarchy forms a graph, not just a tree. For example, a vector is both 
a sequence and an array, although neither array nor sequence are subtypes of each 
other. Similarly, nu1 1 is a subtype of both symbol and 1 i s t .  

The following table shows a number of more specialized data types that are not 
used as often: 

Type Example Explanation 
t 4 2 Every object is of type t. 
n i  1 No object is of type n i  1. 
compl ex #C(O 1 )  Imaginary numbers. 
b i t  0 Zero or one. 
r a t i o n a l  213 Rationals include integers and ratios. 
r a t i o  213 Exact fractional numbers. 
s imp le -a r ray  #1A(x y) An array that is not displaced or adjustable. 
readtab l  e . . . A mapping from characters to their meanings to read. 
package ... A collection of symbols that form a module. 
pathname #P"/usr/spool/mai1" Afileordirectoryname. 
stream 

, . . . A pointer to an open file; used for reading or printing. 
random-state . . .  A state used as a seed by random. 

In addition, there are even more specializedtypes, such as short - f 1 oat, compi 1 ed - 
function, and bi t  -vector. It is also possible to construct more exact types, such as 
( vector ( i n tege r 0 3 1 100 1, which represents a vector of 100 elements, each of 
which is an integer from 0 to 3, inclusive. Section 10.1 gives more information on 
types and their use. 

While almost every type has a predicate, it is also true that there are predicates 
that are not type recognizers but rather recognize some more general condition. For 



example, oddp is true only of odd integers, and s t  r i ng - g rea t e  r p  is true if one string 
is alphabetically greater than another. 

Input in Lisp is incredibly easy because a complete lexical and syntactic parser is 
available to the user. The parser is called read. It is used to read and return a single 
Lisp expression. If you can design your application so that it reads Lisp expressions, 
then your input worries are over. Note that the expression parsed by read need not 
be a legal evaluable Lisp expression. That is, you can read ( " he1 1 o " cons zzz 1 just 
as well as (+ 2 2 1. In cases where Lisp expressions are not adequate, the function 
read - c ha r reads a single character, and read - 1 i ne reads everything up to the next 
newline and returns it as a string. 

To read from the terminal, the functions read, read-char, or read-1 i n e  (with 
no arguments) return an expression, a character, and a string up to the end of line, 
respectively. It is also possible to read from a file. The function open or the macro 
wi t h - open - s t ream can be used to open a file and associate it with a stream, Lisp's 
name for a descriptor of an input/output source. All three read functions take three 
optional arguments. The first is the stream to read from. The second, if true, causes 
an error to be signaled at end of file. If the second argument is nil, then the third 
argument indicates the value to return at end of file. 

Output in Lisp is similar to output in other languages, such as C. There are a 
few low-level functions to do specific kinds of output, and there is a very general 
function to do formatted output. The function p r i  n t  prints any object on a new line, 
with a space following it. p r i  n l  will print any object without the new line and space. 
For both functions, the object is printed in a form that could be processed by read. 
For example, the string " he1 1 o t h e r e "  would print as " he1 1 o the re " .  The function 
p r i  nc is used to print in a human-readable format. The string in question would print 
as he1 1 o t h e r e  with p r  i nc-the quote marks are not printed. This means that read 
cannot recover the original form; read would interpret it as two symbols, not one 
string. The function w r i  t e  accepts eleven different keyword arguments that control 
whether it acts like p r  i n l  or p r  i nc, among other things. 

The output functions also take a stream as an optional argument. In the following, 
we create the file " t e s t .  t e x t "  and print two expressions to it. Then we open the 
file for reading, and try to read back the first expression, a single character, and then 
two more expressions. Note that the read-char returns the character #\G, so the 
following read reads the characters OODBY E and turns them into a symbol. The final 
read hits the end of file, and so returns the specified value, eof.  
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and " -@r " prints a number as a roman numeral. The compound directive " -{ . . . -) " 
takes the next argument, which must be a list, and formats each element of the list 
according to the format string inside the braces. Finally, the directive " " ^ "  exits 
from the enclosing " -{ . . . -) I' loop if there are no more arguments. You can see that 
format, like 1 oop, comprises almost an entire programming language, which, also 
like 1 oop, is not a very Lisplike language. 

3.13 ~ e b u ~ g i n g  Tools 

In many languages, there are two strategies for debugging: (1) edit the program to 
insert print statements, recompile, and try again, or (2) use a debugging program to 
investigate (and perhaps alter) the internal state of the running program. 

Common Lisp admits both these strategies, but it also offers a third: (3) add 
annotations that are not part of the program but have the effect of automatically 
altering the running program. The advantage of the third strategy is that once 
you are done you don't have to go back and undo the changes you would have 
introduced in the first strategy. In addition, Common Lisp provides functions that 
display information about the program. You need not rely solely on looking at the 
source code. 

We have already seen how trace and untrace can be used to provide debugging 
information (page 65). Another useful tool is step, which can be used to halt execution 
before each subform is evaluated. The form ( step expression 1 will evaluate and return 
expression, but pauses at certain points to allow the user to inspect the computation, 
and possibly change things before proceeding to the next step. The commands 
available to the user are implementation-dependent, but typing a ? should give you 
a list of commands. As an example, here we step through an expression twice, the 
first time giving commands to stop at each subevaluation, and the second time giving 
commands to skip to the next function call. In this implementation, the commands 
are control characters, so they do not show up in the output. All output, including 
the symbols + and 3 are printed by the stepper itself; I have added no annotation. 

> ( s t e p  (+ 3  4  (* 5  6 ( 1  7  8 ) ) ) )  
-e ( + 3  4 (* 5  6 ( 1  7  8 ) ) )  

+ 3 * 3  
e 4 * 4  
+ (*  5  6 ( 1  7  8 ) )  

e 5 * 5  
e 6 + 6 
-+ ( 1  7  8 )  

* 7 * 7  
e 8 + 8  

-+ ( 1  7  8 )  + 718 



> ( s t e p  (+ 3 4 (* 5 6 ( 1  7 8 ) ) ) )  
e (+ 3 4 (* 5 6 ( 1  7 8 ) ) )  
I: 7 8 + 718 
*: 5 6 718 + 10514 
+: 3 4 10514 + 13314 

-e (+ 3 4 (* 5 6 ( /  7 8 ) ) )  + 13314 
13314 

The functions describe, inspect, documentation, and apropos provide information 
about the state of the current program. apropos prints information about all symbols 
whose name matches the argument: 

> (apropos ' s t r i n g )  
MAKE- STRING f u n c t i o n  (LENGTH &KEY INITIAL-ELEMENT) 
PRIN1-TO-STRING f u n c t i o n  (OBJECT) 
PRINC-TO-STRING f u n c t i o n  (OBJECT) 
STRING f u n c t i o n  ( X I  

Once you knowwhat object youareinterestedin, descri be cangive more information 
on it: 

> (desc r ibe  'make-s t r i ng )  
Symbol MAKE-STRING i s  i n  LISP package. 
The f u n c t i o n  d e f i n i t i o n  i s  #<FUNCTION MAKE-STRING -42524322>: 

NAME : MAKE - STRI NG 
ARGLIST: (LENGTH &KEY INITIAL-ELEMENT) 
DOCUMENTATION: "Creates and r e t u r n s  a s t r i n g  o f  LENGTH elements,  

a l l  s e t  t o  INITIAL-ELEMENT." 
DEFINITION: (LAMBDA (LENGTH &KEY INITIAL-ELEMENT) 

(MAKE-ARRAY LENGTH :ELEMENT-TYPE 'CHARACTER 
:INITIAL-ELEMENT (OR INITIAL-ELEMENT 

#\SPACE) 
MAKE-STRING has p r o p e r t y  INLINE: INLINE 
MAKE-STRING has p r o p e r t y  :SOURCE-FILE: #P"SYS:KERNEL; STRINGS" 

> (desc r ibe  1234.56) 
1234.56 i s  a s i n g l e - p r e c i s i o n  f l o a t i n g - p o i n t  number. 

S ign 0, exponent #0211, 2 3 - b i t  f r a c t i o n  #06450754 

If all you want is a symbol's documentation string, the function documentati on will 
do the trick: 



> (documentation ' f i r s t  ' func t ion)  + "Return the  f i r s t  element o f  LIST." 
> (documentation ' p i  ' va r iab le )  + " p i "  

If you want to look at and possibly alter components of a complex structure, 
then i nspect is the tool. In some implementations it invokes a fancy, window-based 
browser. 

Common Lisp also provides a debugger that is entered automatically when an 
error is signalled, either by an inadvertant error or by deliberate action on the part 
of the program. The details of the debugger vary between implementations, but 
there are standard ways of entering it. The function break enters the debugger 
after printing an optional message. It is intended as the primary method for setting 
debugging break points. break is intended only for debugging purposes; when a 
program is deemed to be working, all calls to break should be removed. However, 
it is still a good idea to check for unusual conditions with error, cer ror, assert, or 
check- type, which will be described in the following section. 

3.14 Antibugging Tools 

It is a good idea to include antibugging checks in your code, in addition to doing normal 
debugging. Antibugging code checks for errors and possibly takes corrective action. 

The functions error and cerror are used to signal an error condition. These are 
intended to remain in the program even after it has been debugged. The function 
error takes a format string and optional arguments. It signals a fatal error; that is, it 
stops the program and does not offer the user any way of restarting it. For example: 

(defun average (numbers) 
( i f  ( n u l l  numbers) 

( e r ro r  "Average o f  the  empty l i s t  i s  undefined.") 
(1 (reduce # '+  numbers) 

( leng th  numbers)))) 

In many cases, a fatal error is a little drastic. The function cerror stands for con- 
tinuable error. cer ror takes two format strings; the first prints a message indicating 
what happens if we continue, and the second prints the error message itself. cer ror 
does not actually take any action to repair the error, it just allows the user to signal 
that continuing is alright. In the following implementation, the user continues by 
typing : conti nue. In ANSI Common Lisp, there are additional ways of specifying 
options for continuing. 



(defun average (numbers) 
( i f  ( n u 1  1 numbers 

( progn 
(cerror "Use 0 as the average." 

"Average of the empty l i s t  i s  undefined.") 
0 

( 1  (reduce # '+  numbers) 
(length numbers)))) 

> (average ' 0 )  
Error: Average of the empty l i s t  i s  undefined. 
Error signaled by function AVERAGE.  
If continued: Use 0 as the average. 
>> :continue 
0 

In this example, adding error checking nearly doubled the length of the code. This 
is not unusual; there is a big difference between code that works on the expected 
input and code that covers all possible errors. Common Lisp tries to make it easier 
to do error checking by providing a few special forms. The form ecase stands for 
"exhaustive case" or "error case." It is like a normal case form, except that if none 
of the cases are satisfied, an error message is generated. The form ccase stands for 
"continuable case." It is like ecase, except that the error is continuable. The system 
will ask for a new value for the test object until the user supplies one that matches 
one of the programmed cases. 

To make it easier to include error checks without inflating the length of the code 
too much, Common Lisp provides the special forms check-  t y p e  and asse r t .  As 
the name implies, check-  t y p e  is used to check the type of an argument. It signals a 
continuable error if the argument has the wrong type. For example: 

(defun sqr (x)  
"Multiply x by i t s e l f . "  
(check-type x number) 
(* x X I )  

If sq r is called with a non-number argument, an appropriate error message is printed: 

> (sqr "hello") 
Error: the argument X was "hello",  which i s  not a NUMBER.  
If continued: rep1 ace X with new value 
>> :continue 4 
16 

a s s e r t  is more general than check-  type.  In the simplest form, a s s e r t  tests an 



expression and signals an error if it is false. For example: 

(defun sqr (x )  

"Mu1 t i  ply x  by i t s e l f . "  

( a s se r t  (numberp x ) )  

(* x X I )  

There is no possibility of continuing from this kind of assertion. It is also possible to 
give a s s e r t  a list of places that can be modified in an attempt to make the assertion 
true. In this example, the variable x is the only thing that can be changed: 

(defun sqr (x )  

"Mu1 t i  ply x  by i t s e l f . "  

(asser t  (numberp x)  ( X I )  

( *  x X I )  

If the assertion is violated, an error message will be printed and the user will be given 
the option of continuing by altering x. If x is given a value that satisfies the assertion, 
then the program continues. a s s e r t  always returns nil. 

Finally, the user who wants more control over the error message can provide 
a format control string and optional arguments. So the most complex syntax for 
a s s e r t  is: 

( asser t  test-form (place ... format-ctl-string format-arg ... 

Here is another example. The assertion tests that the temperature of the bear's 
porridge is neither too hot nor too cold. 

(defun eat-porridge (bear)  

(asser t  (< too-cold (temperature (bear-porridge bear) )  too-hot) 

(bear (bear-porridge bear))  

""a's porridge i s  not jus t  r ight:  "a" 

bear (hotness (bear-porridge bea r ) ) )  

( ea t  (bear-porridge bea r ) ) )  

In the interaction below, the assertion failed, and the programmer's error message 
was printed, alongwith two possibilities for continuing. The user selected one, typed 
in a call to ma ke - por  r i dge for the new value, and the function succesfully continued. 



> ( e a t - p o r r i d g e  momma-bear) 
E r ro r :  #<MOMMA BEAR>'s p o r r i d g e  i s  n o t  j u s t  r i g h t :  39 
Res ta r t  ac t ions  ( s e l e c t  us ing  :cont inue) :  

0: Supply a new va lue f o r  BEAR 
1: Supply a new va lue f o r  (BEAR-PORRIDGE BEAR) 

>> :cont inue 1 
Form t o  evaluate and use t o  rep lace (BEAR-PORRIDGE BEAR): 
(make-porr idge :temperature j u s t - r i g h t )  
n i  1 

It may seem like wasted effort to spend time writing assertions that (if all goes well) 
will never be used. However, for all but the perfect programmer, bugs do occur, and 
the time spent antibugging will more than pay for itself in saving debugging time. 

Whenever you develop a complex data structure, such as some kind of data base, 
it is a good idea to develop a corresponding consistency checker. A consistency 
checker is a function that will look over a data structure and test for all possible 
errors. When a new error is discovered, a check for it should be incorporated into 
the consistency checker. Calling the consistency checker is the fastest way to help 
isolate bugs in the data structure. 

In addition, it is a good idea to keep a list of difficult test cases on hand. That 
way, when the program is changed, it will be easy to see if the change reintroduces 
a bug that had been previously removed. This is called regression testing, and Waters 
(1991) presents an interesting tool for maintaining a suite of regression tests. But it 
is simple enough to maintain an informal test suite with a function that calls assert 
on a series of examples: 

(defun t e s t - e x  0 
"Test  t h e  program EX on a s e r i e s  o f  examples." 
( i n i t - e x )  ; I n i t i a l i z e  t h e  EX program f i r s t .  
( a s s e r t  (equal (ex 3 4) 5 ) )  
( a s s e r t  (equal (ex 5 0 )  0 ) )  
( a s s e r t  (equal (ex ' x  0 )  0 ) ) )  

Timing Tools 

A program is not complete just because it gives the right output. It must also deliver 
the output in a timely fashion. The form ( t i  me expression can be used to see how 
long it takes to execute expression. Some implementations also print statistics on the 
amount of storage required. For example: 

> (defun f (n )  (dotimes (i n)  n i l ) )  + F 



> ( t i m e  ( f  10000) )  + NIL 
Eva lua t i on  of  ( F  10000) t ook  4.347272 Seconds of  e l a p s e d  t i m e ,  
i n c l u d i n g  0 .0  seconds  of paging  t i m e  f o r  0 f a u l t s ,  Consed 27 words.  

> ( compi l e  ' f )  + F 

> ( t i m e  ( f  10000) )  + NIL 
Eva lua t i on  of ( F  10000) t ook  0.011518 Seconds of e l a p s e d  t i m e ,  
i n c l u d i n g  0 . 0  seconds  of paging  t ime  f o r  0 f a u l t s ,  Consed 0 words.  

This shows that the compiled version is over 300 times faster and uses less storage 
to boot. Most serious Common Lisp programmers work exclusively with compiled 
functions. However, it is usually a bad idea to worry too much about efficiency details 
while starting to develop a program. It is better to design a flexible program, get it to 
work, and then modify the most frequently used parts to be more efficient. In other 
words, separate the development stage from the fine-tuning stage. Chapters 9 and 
10 give more details on efficiency consideration, and chapter 25 gives more advice 
on debugging and antibugging techniques. 

3.15 Evaluation 

There are three functions for doing evaluation in Lisp: f  unca 1  1, a  ppl  y, and e v a  1 . 
f u n c a l l  is used to apply a function to individual arguments, while a p p l y  is used 
to apply a function to a list of arguments. Actually, a  ppl  y  can be given one or 
more individual arguments before the final argument, which is always a list. e v a l  
is passed a single argument, which should be an entire form-a function or special 
form followed by its arguments, or perhaps an atom. The following five forms are 
equivalent: 

> ( + I 2 3 4 1  =+ 10  
> ( f u n c a l l  # '+  1 2 3 4 )  + 10  
> ( a p p l y  # '+  ' ( 1  2 3 4 ) )  + 10 
> ( a p p l y  #'+ 1 2 ' ( 3  4 ) )  + 10 
> ( eva l  ' (+  1 2 3 4 ) )  + 10 

In the past, e v a  1  was seen as the key to Lisp's flexibility. In modern Lisps with lexical 
scoping, such as Common Lisp, e v a l  is used less often (in fact, in Scheme there is 
no e v a l  at all). Instead, programmers are expected to use 1 ambda to create a new 
function, and then app l  y  or f unca 1 1 the function. In general, if you find yourself 
using e v a l  , you are probably doing the wrong thing. 



3.16 Closures 

What does it mean to create a new function? Certainly every time a fun c t i on (or # ' ) 
special form is evaluated, a function is returned. But in the examples we have seen 
and in the following one, it is always the same function that is returned. 

Every time we evaluate the # ' ( 1 ambda . . . form, it returns the function that doubles 
its argument. However, in the general case, a function consists of the body of the 
function coupled with any free lexical variables that the function references. Such a 
pairing is called a lexical closure, or just a closure, because the lexical variables are 
enclosed within the function. Consider this example: 

(defun adder ( c )  
"Return a f u n c t i o n  t h a t  adds c t o  i t s  argument." 
#'(lambda ( x )  (+ x c ) ) )  

> (mapcar (adder 3 )  ' ( 1  3 1 0 ) )  + ( 4  6 13) 

> (mapcar (adder 10) ' ( 1  3 1 0 ) )  =. (11  13 20) 

Each time we call adder with a different value for c, it creates a different function, 
the function that adds c to its argument. Since each call to adder creates a new local 
variable named c, each function returned by adder is a unique function. 

Here is another example. The function bank-account returns a closure that can 
be used as a representation of a bank account. The closure captures the local variable 
balance. The body of the closure provides code to access and modify the local 
variable. 

(defun bank-account (balance) 
"Open a bank account s t a r t i n g  w i t h  t h e  g iven balance." 
# '  (1  ambda ( a c t i o n  amount 

(case a c t i o n  
(depos i t  ( s e t f  balance (+ balance amount))) 
(withdraw ( s e t f  balance ( -  balance amoun t ) ) ) ) ) )  

In the following, two calls to ban k-account create two different closures, each with 
a separate value for the lexical variable bal ance. The subsequent calls to the two 
closures change their respective balances, but there is no confusion between the two 
accounts. 

> ( s e t f  my-account (bank-account 500.00)) =. #<CLOSURE 52330407> 



> ( s e t f  your-account  (bank-account 250.00))  + #<CLOSURE 52331203> 

> ( f u n c a l l  my-account 'withdraw 75.00) + 425.0 

> ( f u n c a l l  your-account ' d e p o s i t  250.00) + 500.0 

> ( f u n c a l l  your-account  'withdraw 100.00) + 400.0 

> ( f u n c a l l  my-account 'withdraw 25.00) + 400.0 

This style of programming will be considered in more detail in chapter 13. 

3.17 Special Variables 

Common Lisp provides for two kinds of variables: lexical and special variables. For 
the begnner, it is tempting to equate the special variables in Common Lisp with 
global variables in other languages. Unfortunately, this is not quite correct and can 
lead to problems. It is best to understand Common Lispvariables on their own terms. 

By default, Common Lisp variables are lexical variables. Lexical variables are 
introduced by some syntactic construct like 1 e t  or de f  un and get their name from the 
fact that they may only be referred to by code that appears lexically within the body 
of the syntactic construct. The body is called the scope of the variable. 

So far, there is no difference between Common Lisp and other languages. The 
interesting part is when we consider the extent, or lifetime, of a variable. In other 
languages, the extent is the same as the scope: a new local variable is created when a 
block is entered, and the variable goes away when the block is exited. But because it 
is possible to create new functions-closures-in Lisp, it is therefore possible for code 
that references a variable to live on after the scope of the variable has been exited. 
Consider again the ban k-account function, which creates a closure representing a 
bank account: 

(defun bank-account (ba lance )  
"Open a  bank account s t a r t i n g  wi th  t h e  given balance."  
# '( lambda ( a c t i o n  amount) 

( c a s e  a c t i o n  
( d e p o s i t  ( s e t f  balance (+ balance amount)) )  
(withdraw ( s e t f  balance ( -  balance a m o u n t ) ) ) ) ) )  

The function introduces the lexical variable ba 1 ance. The scope of ba 1 ance is the 
body of the function, and therefore references to bal ance can occur only within this 
scope. What happens when bank- account is called and exited? Once the body of the 
function has been left, no other code can refer to that instance of bal ance. The scope 
has been exited, but the extent of bal  ance lives on. We can call the closure, and it 



can reference bal ance, because the code that created the closure appeared lexically 
within the scope of bal ance. 

In summary, Common Lisp lexical variables are different because they can be 
captured inside closures and referred to even after the flow of control has left their 
scope. 

Now we will consider special variables. A variable is made special by a def va  r or 
defparameter form. For example, if we say 

(defvar *counter* 0) 

then we can refer to the special variable *counter* anywhere in our program. This 
is just like a familiar global variable. The tricky part is that the global binding of 
*counterk can be shadowed by a local binding for that variable. In most languages, 
the local bindingwould introduce a local lexicalvariable, but in Common Lisp, special 
variables can be bound both locally and globally. Here is an example: 

(defun report 0 
(format t "Counter = "d " *counter*)) 

> ( repor t )  
Counter = 0 
NIL 

> ( l e t  ((*counter* 100)) 
(report  ) 

Counter = 100 
NIL 

> ( repor t )  
Counter = 0 
NIL 

There are three calls to report here. In the first and third, report prints the global 
value of the special variable *counter*. In the second call, the 1 e t  form introduces 
a new binding for the special variable "counter*, which is again printed by report. 
Once the scope of the 1 e t  is exited, the new binding is disestablished, so the final 
call to report uses the global value again. 

In summary, Common Lisp special variables are different because they have 
global scope but admit the possibility of local (dynamic) shadowing. Remember: 
A lexical variable has lexical scope and indefinite extent. A special variable has 
indefinite scope and dynamic extent. 

The function call (symbol -val ue var), where var evaluates to a symbol, can be 
used to get at the current value of a special variable. To set a special variable, the 
following two forms are completely equivalent: 



( s e t f  (symbol -va lue  var) value) 
( s e t  var value 

where both var and value are evaluated. There are no corresponding forms for 
accessing and setting lexical variables. Special variables set up a mapping between 
symbols and values that is accessible to the running program. This is unlike lexical 
variables (and all variables in traditional languages) where symbols (identifiers) 
have significance only while the program is being compiled. Once the program is 
running, the identifiers have been compiled away and cannot be used to access the 
variables; only code that appears within the scope of a lexical variable can reference 
that variable. 

p Exercise 3.6 [s] Given the following initialization for the lexical variable a and the 
special variable *b*, what will be the value of the 1 e t  form? 

( s e t f  a  'g lobal  -a 
(de fva r  *b* ' g l o b a l - b )  

( l e t  ( ( a  ' l o c a l - a )  
(*b* ' l o c a l  - b ) )  

( l i s t  a  *b* ( f n )  (symbol -va lue  ' a )  (symbol -va lue  '*b*))) 

3.18 Multiple Values 

Throughout this book we have spoken of "the value returned by a function." Histor- 
ically, Lisp was designed so that every function returns a value, even those functions 
that are more like procedures than like functions. But sometimes we want a single 
function to return more than one piece of information. Of course, we can do that by 
making up a list or structure to hold the information, but then we have to go to the 
trouble of defining the structure, building an instance each time, and then taking that 
instance apart to look at the pieces. Consider the function round. One way it can be 
used is to round off a floating-point number to the nearest integer. So ( round 5.1 1 is 
5. Sometimes, though not always, the programmer is also interested in the fractional 
part. The function round serves both interested and disinterested programmers by 
returning two values: the rounded integer and the remaining fraction: 

> (round 5 .1)  + 5 .1 

There are two values after the +- because round returns two values. Most of the time, 



multiple values are ignored, and only the first value is used. So ( * 2 ( round 5.1 1 1 
is 10, just as if round had only returned a single value. If you want to get at multiple 
values, you have to use a special form, such as mu1 t i  pl  e - va 1 ue - bi nd: 

(defun show-both ( x )  

(mu1 t i p l e -va lue -b ind  ( i n t  rem) 

(round x )  

(format t " - f  = "d + " f "  x  i n t  rem))) 

> (show-both 5.1) 

5.1 = 5  + 0 .1  

You can write functions of your own that return multiple values using the function 
val ues, which returns its arguments as multiple values: 

> (values 1 2 3)  1 2 3  

Multiple values are a good solution because they are unobtrusive until they are 
needed. Most of the time when we are using round, we are only interested in the 
integer value. If round did not use multiple values, if it packaged the two values up 
into a list or structure, then it would be harder to use in the normal cases. 

It is also possible to return no values from a function with ( val ues 1. This is 
sometimes used by procedures that are called for effect, such as printing. For 
example, descr i be is defined to print information and then return no values: 

> (describe ' x )  

Symbol X i s  i n  the USER package. 

It has no value, d e f i n i t i o n  o r  propert ies.  

However, when ( va 1 ues 1 or any other expression returning no values is nested in 
a context where a value is expected, it still obeys the Lisp rule of one-value-per- 
expression and returns n i  1. In the following example, descri be returns no values, 
but then 1 i s t  in effect asks for the first value and gets ni 1. 

> ( l i s t  (describe ' X I )  

Symbol X i s  i n  AILP package. 

It has no value, d e f i n i t i o n  or  propert ies.  

(NIL) 



3.19 More about Parameters 

Common Lisp provides the user with a lot of flexibility in specifying the parameters 
to a function, and hence the arguments that the function accepts. Following is a 
program that gives practice in arithmetic. It asks the user a series of n problems, 
where each problem tests the arithmetic operator op (which can be +, -, *, or I, or 
perhaps another binary operator). The arguments to the operator will be random 
integers from 0 to range. Here is the program: 

(defun math-quiz (op range n )  
"Ask the user a s e r i e s  of math problems." 

(dotimes ( i  n )  
(problem (random range) op (random range ) ) ) )  

(defun problem ( x  op y )  

"Ask a math problem, read a reply, and say i f  i t  i s  correc t . "  

(format t ""&How much i s  "d "a "d?" x op y)  

( i f  (eql (read) (funcall op x y ) )  

(princ "Correct!") 

(princ "Sorry, t h a t ' s  not r ight .  " 1 ) )  

and here is an example of its use: 

> (math-quiz '+ 100 2) 

How much i s  32 + 60? 92 

Correct! 

How much i s  91 + 19? 100 

Sorry, t ha t ' s  not r ight .  

One problem with the function math  - qui  z is that it requires the user to type three 
arguments: the operator, a range, and the number of iterations. The user must 
remember the order of the arguments, and remember to quote the operator. This is 
quite a lot to expect from a user who presumably is just learning to add! 

Common Lisp provides two ways of dealing with this problem. First, a program- 
mer can specify that certain arguments are optional, and provide default values for 
those arguments. For example, in math  - qui  z we can arrange to make + be the default 
operator, 100 be the default number range, and 10 be the default number of examples 
with the following definition: 



( de fun  ma th - qu i z  ( & o p t i o n a l  ( o p  '+) ( r a n g e  100 )  ( n  1 0 ) )  
"Ask t h e  u s e r  a s e r i e s  o f  math problems."  
( do t imes  ( i  n )  

(problem (random r ange )  op (random r a n g e ) ) ) )  

Now (math-quiz) means the same as (math-quiz '+ 100 10). If an optional 
parameter appears alone without a default value, then the default is ni 1 . Optional 
parameters are handy; however, what if the user is happy with the operator and 
range but wants to change the number of iterations? Optional parameters are still 
position-dependent, so the only solution is to type in all three arguments: ( m a t h  - qui z 
'+ 100 5). 

Common Lisp also allows for parameters that are position-independent. These 
keyword parameters are explicitly named in the function call. They are useful when 
there are a number of parameters that normally take default values but occasionally 
need specific values. For example, we could have defined m a t h  - qui z as: 

(de fun  ma th - qu i z  (&key ( o p  '+ I  ( r a n g e  100 )  ( n  1 0 ) )  
"Ask t h e  u s e r  a s e r i e s  of  math problems."  
( do t imes  ( i  n )  

(problem (random r ange )  op (random r a n g e ) ) ) )  

Now (math-quiz :n 5) and (math-quiz :op '+ :n 5 :range 100) meanthesame. 
Keyword arguments are specified by the parameter name preceded by a colon, and 
followed by the value. The keyword/value pairs can come in any order. 

A symbol starting with a colon is called a keyword, and can be used anywhere, 
not just in argument lists. The term keyword is used differently in Lisp than in many 
other languages. For example, in Pascal, keywords (or reserved words) are syntactic 
symbols, like i f ,  el se, begin, and end. In Lisp we call such symbols special form 
operators or just special forms. Lisp keywords are symbols that happen to reside in 
the keyword package.3 They have no special syntactic meaning, although they do 
have the unusual property of being self-evaluating: they are constants that evaluate 
to themselves, unlike other symbols, which evaluate to whatever value was stored in 
the variable named by the symbol. Keywords also happen to be used in specifying 
&key argument lists, but that is by virtue of their value, not by virtue of some syntax 
rule. It is important to remember that keywords are used in the function call, but 
normal nonkeyword symbols are used as parameters in the function definition. 

Just to make things a little more confusing, the symbols &opti onal, &rest, and 
&key are called lambda-list keywords, for historical reasons. Unlike the colon in real 
keywords, the & in lambda-list keywords has no special significance. Consider these 
annotated examples: 

'A is a symbol table: a mapping between strings and the symbols they name. 



> :xyz + :XYZ ; keywords are self-evaluating 

> &opt ional  + ; lambda-list keywords are normal symbols 
Error: the symbol &optional has n o  value 

> (defun f (&xyz) (+ &xyz &xyz) + F ; b has n o  signijkance 

> (defun f (:xyz) (+ :xyz :xyz))  + 
Error: the keyword :xyz appears i n  a variable list. 
Keywords are constants, and so cannot be used as names of variables. 

> (defun g (&key x y )  ( l i s t  x y ) )  + G 

> ( l e t  ( (keys ' ( : x  :y : z ) ) )  ; keyword args can be computed 
( g  (second keys) 1 ( f i r s t  keys) 2 ) )  + ( 2  1) 

Many of the functions presented in this chapter take keyword arguments that make 
them more versatile. For example, remember the function f i nd, which can be used 
to look for a particular element in a sequence: 

> ( f i n d  3 '(1 2 3 4 - 5  6.0)) + 3 

It turns out that f i nd takes several optional keyword arguments. For example, 
suppose we tried to find 6 in this sequence: 

> ( f i n d  6 '(1 2 3 4 - 5  6.0)) + n i l  

This fails because f i nd tests for equality with eql , and 6 is not eql to 6.0. However, 
6 is equal p to 6.0, so we could use the : t e s t  keyword: 

> ( f i n d  6 '(1 2 3 4 - 5  6.0) : t e s t  #'equalp) =+- 6.0 

In fact, we can specify any binary predicate for the : t es t  keyword; it doesn't have to 
be an equality predicate. For example, we could find the first number that 4 is less 
than: 

> ( f i n d  4 ' ( 1  2 3 4 - 5  6.0) : t e s t  #'<) + 6.0 

Now suppose we don't care about the sign of the numbers; if we look for 5, we want 
to find the - 5. We can handle this with the key keyword to take the absolute value of 
each element of the list with the a bs function: 



> (find 5 ' (1 2 3 4 -5 6.0) :key #'abs) +- -5 

Keyword parameters significantly extend the usefulness of built-in functions, and 
they can do the same for functions you define. Among the built-in functions, the most 
common keywords fall into two main groups: : test ,  : t es t  - not and : key, which are 
used for matching functions, and : s t  a r t, : end, and : from - end, which are used on 
sequence functions. Some functions accept both sets of keywords. (Common Lisp the 
Language, 2d edition, discourages the use of : t es t  -not keywords, although they are 
still a part of the language.) 

The matching functions include sub1 is, position, subst, union, intersection, 
set-di fference, remove, remove-if, subsetp, assoc, find, and member. By default, 
each tests if some item is eql to one or more of a series of other objects. This test can 
be changed by supplying some other predicate as the argument to : tes t ,  or it can be 
reversed by specifying : t es t  - not. In addition, the comparison can be made against 
some part of the object rather than the whole object by specifying a selector function 
as the : key argument. 

The sequence functions include remove, remove - i f, pos i t i  on, and f i nd. The 
most common type of sequence is the list, but strings and vectors can also be used as 
sequences. A sequence function performs some action repeatedly for some elements 
of a sequence. The default is to go through the sequence from beginning to end, but 
the reverse order can be specified with : from-end t, and a subsequence can be 
specifed by supplying a number for the : s t a r t  or : end keyword. The first element 
of a sequence is numbered 0, not 1, so be careful. 

As an example of keyword parameters, suppose we wanted to write sequence 
functions that are similar to find and f i nd- i f ,  except that they return a list of all 
matching elements rather than just the first matching element. We will call the 
new functions f i nd - a 1 1 and f i nd - a 1 1 - i f .  Another way to look at these functions 
is as variations of remove. Instead of removing items that match, they keep all the 
items that match, and remove the ones that don't. Viewed this way, we can see 
that the function f i nd - a 1 1 - i f is actually the same function as remove - i f - not. It is 
sometimes useful to have two names for the same function viewed in different ways 
(like not and nu1 1). The new name could be defined with a defun, but it is easier to 
just copy over the definition: 

(setf (symbol-function 'find-all-if) #'remove-if-not) 

Unfortunately, there is no built-in function that corresponds exactly to f i nd - a1 1, so 
we will have to define it. Fortunately, remove can do most of the work. All we have 
to do is arrange to pass remove the complement of the : t es t  predicate. For example, 
finding all elements that are equal to 1 in a list is equivalent to removing elements 
that are not equal to 1: 



> (setf nums ' (1  2 3 2 1)) + (1 2 3 2 1) 

> ( f i n d - a l l  1 nums :test # ' = I  = (remove 1 nurns :test #' I=) + (1 1) 

Now what we need is a higher-order function that returns the complement of a 
function. In other words, given =, we want to return I=. This function is called 
compl ement in ANSI Common Lisp, but it was not defined in earlier versions, so it is 
given here: 

(defun complement ( f n )  

" I f  FN returns y ,  then (complement FN) returns ( n o t  y ) . "  

;; This function is b u i l t - i n  i n  ANSI Common Lisp. 
;; b u t  is defined here for those w i t h  non-ANSI compilers. 
# ' ( lambda  (&rest args) ( n o t  ( a p p l y  f n  args))))  

When f i  nd-a1 1 is called with a given : t es t  predicate, all we have to do is call 
remove with the complement as the : t es t  predicate. This is true even when the 
: t es t  function is not specified, and therefore defaults to eql . We should also test 
for when the user specifies the : t es t  -not predicate, which is used to specify that 
the match succeeds when the predicate is false. It is an error to specify both a : t es t  
and : test-not argument to the same call, so we need not test for that case. The 
definition is: 

(defun f i n d - a l l  (item sequence &rest keyword-args 
&key (test #'eql) test-not &allow-other-keys) 

" F i n d  a l l  those elements of sequence t h a t  match item, 
according t o  the keywords. Doesn't alter sequence." 
( i f  test-not 

(app ly  #'remove item sequence 
:test-not (complement test-not) keyword-args) 

( a p p l y  #'remove item sequence 
:test (compl ement test 1 keyword-args 1) 

The only hard part about this definition is understanding the parameter list. The 
&rest  accumulates all the keyword/value pairs in the variable keyword-args. In 
addition to the &rest  parameter, two specific keyword parameters, : t es t  and 
: test-not, are specified. Any time you put a &key in a parameter list, you need 
an &a1 1 ow- ot her - keys if, in fact, other keywords are allowed. In this case we want 
to accept keywords like : s t  a r t  and : key and pass them on to remove. 

All the keyword/value pairs will be accumulated in the list keyword - a rgs, includ- 
ingthe : t es t  or :test-notvalues. Sowewillhave: 



(find-all  1 nums : t es t  # * =  :key #'abs) 
(remove 1 nums : t es t  (complement # ' = I  : t e s t  # * =  :key #'abs) 

=+ ( 1  1 )  

Note that the call to remove will contain two : tes t  keywords. This is not an error; 
Common Lisp declares that the leftmost value is the one that counts. 

Exercise 3.7 [s] Why do you think the leftmost of two keys is the one that counts, 
rather than the rightmost? 

Exercise 3.8 [m] Some versions of Kyoto Common Lisp (KCL) have a bug wherein 
they use the rightmost value when more than one keyword/value pair is specified 
for the same keyword. Change the definition of f i nd - a1 1 so that it works in KCL. 

There are two more lambda-list keywords that are sometimes used by advanced 
programmers. First, within a macro definition (but not a function definition), the 
symbol &body can be used as a synonym for &rest. The difference is that &body 
instructs certain formatting programs to indent the rest as a body. Thus, if we 
defined the macro: 

(defmacro while2 ( t e s t  &body body) 
"Repeat body while t e s t  i s  true." 
'(loop ( i f  (not , t e s t )  (return n i l ) )  

. *body) 1 

Then the automatic indentation of w h  i 1 e2 (on certain systems) is prettier than wh i 1 e: 

(while (< i 10) 
(print (* i i 1) 
(setf i (+ i 1 ) ) )  

(while2 (< i 10) 
(print (*  i i ) )  
(setf i (+ i 1 ) ) )  

Finally, an &aux can be used to bind a new local variable or variables, as if bound 
with 1 et*. Personally, I consider this an abomination, because &aux variables are 
not parameters at all and thus have no place in a parameter list. I think they should 
be clearly distinguished as local variables with a 1 et. But some good programmers 
do use &aux, presumably to save space on the page or screen. Against my better 
judgement, I show an example: 

(defun length14 ( l i s t  &aux (len 0 ) )  
(dol is t  (element l i s t  len) 

(incf l en ) ) )  



3.20 The Rest of Lisp 

There is a lot more to Common Lisp than what we have seen here, but this overview 
should be enough for the reader to comprehend the programs in the chapters to 
come. The serious Lisp programmer will further his or her education by continuing 
to consult reference books and online documentation. You may also find part V 
of this book to be helpful, particularly chapter 24, which covers advanced features 
of Common Lisp (such as packages and error handling) and chapter 25, which is a 
collection of troubleshooting hints for the perplexed Lisper. 

While it may be distracting for the beginner to be continually looking at some 
reference source, the alternative-to explain every new function in complete detail as 
it is introduced-would be even more distracting. It would interrupt the description 
of the A1 programs, which is what this book is all about. 

3.21 Exercises 

p Exercise 3.9 [m] Write a version of 1 eng t h using the function reduce. 

p Exercise 3.10 [m] Use a reference manual or descri be to figure out what the func- 
tions 1 cm and nreconc do. 

p Exercise 3.11 [m] There is a built-in Common Lisp function that, given a key, a 
value, and an association list, returns a new association list that is extended to 
include the key/value pair. What is the name of this function? 

p Exercise 3.12 [m] Write a single expression using format that will take a list of 
words and print them as a sentence, with the first word capitalized and a period after 
the last word. You will have to consult a reference to learn new format directives. 

3.22 Answers 

Answer 3.2 (consab) = ( l i s t * a b )  



Answer 3.3 

(defun dprint (x )  
"Print a n  expression in dotted pair notation." 
(cond ((atom x) (princ x ) )  

( t  (princ " ( " 1  
(dprint ( f i r s t  x ) )  
(pr -res t  ( res t  x ) )  
(princ " ) " I  
x) 1 1 

(defun pr-rest (x) 
(princ " . " 1  
(dprint x) 

Answer 3.4 Use the same dpri  n t  function defined in the last exercise, but change 
p r - r e s t .  

(defun pr-rest (x) 
(cond ((null  x ) )  

((atom x) (princ " . " 1  (princ x ) )  
( t  (princ " " 1  (dprint ( f i r s t  x ) )  (pr -res t  ( res t  x ) ) ) ) )  

Answer 3.5 We will keep a data base called *db*. The data base is organized into 
a tree structure of nodes. Each node has three fields: the name of the object it 
represents, a node to go to if the answer is yes, and a node for when the answer is no. 
We traverse the nodes until we either get an "it" reply or have to give up. In the latter 
case, we destructively modify the data base to contain the new information. 

(defstruct node 
name 
(yes nil 
(no n i l ) )  

(defvar *db* 
(make-node :name 'animal 

:yes (make-node :name 'mammal) 
:no (make-node 

:name ' vegetabl e  
:no (make-node :name 'mineral)))) 



(defun quest ions (&op t iona l  (node *db*)) 
( format  t "" &Is i t  a "a? " (node-name node)) 
(case ( read)  

( ( y  yes)  ( i f  ( n o t  ( n u l l  (node-yes node)) )  
(quest ions (node-yes node) ) 
( s e t f  (node-yes node) ( g i v e - u p ) ) ) )  

( ( n  no) ( i f  ( n o t  ( n u l l  (node-no node)) )  
(quest ions (node-no node)) 
( s e t f  (node-no node) ( g i v e - u p ) ) ) )  

( i t  'aha!) 
( t  ( format  t "Reply w i t h  YES, NO, o r  I T  i f  I have guessed i t . " )  

(quest ions node) ) ) )  

(defun g ive-up 0 
( format  t " " & I  g i v e  up - what i s  i t ?  " 1  
(make-node :name ( r e a d ) ) )  

Here it is used: 

> (quest ions)  
Is i t  a ANIMAL? yes 
I s  i t  a MAMMAL? yes 
I g i v e  up - what i s  i t ?  bear 
#S(NODE :NAME BEAR) 

> (quest ions)  
I s  i t  a ANIMAL? yes 
I s  i t  a MAMMAL? no 
I g i v e  up - what i s  i t ?  penguin 
#S(NODE :NAME PENGUIN) 

> (quest ions)  
I s  i t  a ANIMAL? yes 
I s  i t a MAMMAL? yes 
I s  i t  a BEAR? i t  
AHA! 

Answer 3.6 The value is ( LOCAL- A LOCAL- B LOCAL- B GLOBAL-A LOCAL- B 1. 
The 1 e t  form binds a lexically and *b* dynamically, so the references to a and 

*b* (including the reference to *b* within fn) all get the local values. The function 
symbol - va 1 ue always treats its argument as a special variable, so it ignores the lexical 
binding for a and returns the global binding instead. However, the symbol - va 1 ue of 
* b* is the local dynamic value. 



Answer 3.7 There are two good reasons: First, it makes it faster to search through 
the argument list: just search until you find the key, not all the way to the end. 
Second, in the case where you want to override an existing keyword and pass the 
argument list on to another function, it is cheaper to cons the new keyword/value 
pair on the front of a list than to append it to the end of a list. 

Answer 3.9 

(defun l e n g t h - r  (1 i s t )  
(reduce # '+ (mapcar #'(lambda ( x )  1) l i s t ) ) )  

or more efficiently: 

(defun l e n g t h - r  ( l i s t )  
(reduce #'(lambda ( x  y )  (+ x 1) )  l i s t  

: i n i t i a l - v a l u e  0 ) )  

or, with an ANSI-compliant Common Lisp, you can specify a : k e y  

(defun length-r (list) 
(reduce #'+ list :key #'(lambda (x) 1))) 

Answer 3.12 ( f o r m a t  t "-@(-{-a-A -).-)" ' ( t h i s  i s  a t e s t ) )  
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EARLY Al PROGRAMS 





CHAPTER 4 
GPS: The General 
Problem Solver 

There aye now in the world machines that think. 

-Herbert Simon 
Nobel Prize-winning Al researcher 

he General Problem Solver, developed in 1957 by Alan Newel1 and Herbert Simon, em- 
bodied a grandiose vision: a single computer program that could solve any problem, 
given a suitable description of the problem. GPS caused quite a stir when it was intro- 

duced, and some people in A1 felt it would sweep in a grand new era of intelligent machines. 
Simon went so far as to make this statement about his creation: 

It is not my aim to surprise or shock you. . . . But the simplest way I can summarize is to say 
that there are now in the world machines that think, that learn and create. Moreover, their 
ability to do these things is going to increase rapidly until-in a visible future-the range of 
problems they can handle will be coextensive with the range to which the human mind has 
been applied. 



Although GPS never lived up to these exaggerated claims, it was still an important 
program for historical reasons. It was the first program to separate its problem- 
solving strategy from its knowledge of particular problems, and it spurred much 
further research in problem solving. For all these reasons, it is a fitting object 
of study. 

The original GPS program had a number of minor features that made it quite 
complex. In addition, it was written in an obsolete low-level language, IPL, that added 
gratuitous complexity. In fact, the confusing nature of IPL was probably an important 
reason for the grand claims about GPS. If the program was that complicated, it must 
do something important. We will be ignoring some of the subtleties of the original 
program, and we will use Common Lisp, a much more perspicuous language than 
IPL. The result will be a version of GPS that is quite simple, yet illustrates some 
important points about AI. 

On one level, this chapter is about GPS. But on another level, it is about the process 
of developing an A1 computer program. We distinguish five stages in the develop- 
ment of a program. First is the problem description, which is a rough idea-usually 
written in English prose-of what we want to do. Second is the program specification, 
where we redescribe the problem in terms that are closer to a computable procedure. 
The third stage is the implementation of the program in a programming language 
such as Common Lisp, the fourth is testing, and the fifth is debugging and analysis. 
The boundaries between these stages are fluid, and the stages need not be completed 
in the order stated. Problems at any stage can lead to a change in the previous stage, 
or even to complete redesign or abandonment of the project. A programmer may 
prefer to complete only a partial description or specification, proceed directly to 
implementation and testing, and then return to complete the specification based on 
a better understanding. 

We follow all five stages in the development of our versions of GPS, with the hope 
that the reader will understand GPS better and will also come to understand better 
how to write a program of his or her own. To summarize, the five stages of an A1 
programming project are: 

1. Describe the problem in vague terms 

2.  Specify the problem in algorithmic terms 

3. Implement the problem in a programming language 

4. Test the program on representative examples 

5 .  Debug and analyze the resulting program, and repeat the process 



4.1 Stage 1: Description 

As our problem description, we will start with a quote from Newel1 and Simon's 1972 
book, Human Problem Solving: 

The main methods of GPS jointly embody the heuristic of means-ends analy- 
sis. Means-ends analysis is typified by the following kind of common-sense 
argument: 

I want to take my son to nursery school. What's the difference 
between what I have and what I want? One of distance. What 
changes disfance? My automobile. My automobile won't work. 
What is needed to make it work? A new battery. What has new 
batteries? An auto repair shop. I want the repair shop to put in a 
new battery; but the shop doesn't know I need one. What is the 
difficulty? One of communication. What allows communication? 
A telephone. . . and so on. 

The kind of analysis-classifying things in terms of the functions they serve and 
oscillatingamongends, functions required, and means thatperfom them-forms 
the basic system of heuristic of GPS. 

Of course, this kind of analysis is not exactly new. The theory of means-ends 
analysis was laid down quite elegantly by Aristotle 2300 years earlier in the chapter 
entitled "The nature of deliberation and its objects" of the Nicomachean Ethics (Book 
III.3,1112b): 

We deliberate not about ends, but about means. For a doctor does not deliberate 
whether he shall heal, nor an orator whether he shall persuade, nor a statesman 
whether he shall produce law and order, nor does any one else deliberate about 
his end. They assume the end and consider how and by what means it is attained; 
and i f  it seems to be produced by several means they consider by which it is 
most easily and best produced, while ifit is achieved by one only they consider 
how it will be achieved by this and by what means this will be achieved, till 
they come to thefirst cause, which in the order of discovery is last. . . and what 
is last in the order of analysis seems to befirst in the order of becoming. And i f  
we come on an impossibility, we give up the search, e.g., ifwe need money and 
this cannot be got; but ifa thing appears possible we try to do it. 

Given this description of a theory of problem solving, how should we go about 
writing a program? First, we try to understand more fully the procedure outlined in 
the quotes. The main idea is to solve a problem using a process called means-ends 
analysis, where the problem is stated in terms of what we want to happen. In Newel1 
and Simon's example, the problem is to get the kid to school, but in general we would 



like the program to be able to solve a broad class of problems. We can solve a problem 
if we can find some way to eliminate "the difference between what I have and what 
I want." For example, if what I have is a child at home, and what I want is a child 
at school, then driving may be a solution, because we know that driving leads to a 
change in location. We should be aware that using means-ends analysis is a choice: 
it is also possible to start from the current situation and search forward to the goal, 
or to employ a mixture of different search strategies. 

Some actions require the solving of preconditions as subproblems. Before we can 
drive the car, we need to solve the subproblem of getting the car in working condition. 
It may be that the car is already working, in which case we need do nothing to solve 
the subproblem. So a problem is solved either by taking appropriate action directly, 
or by first solving for the preconditions of an appropriate action and then taking 
the action. It is clear we will need some description of allowable actions, along 
with their preconditions and effects. We will also need to develop a definition of 
appropriateness. However, if we can define these notions better, it seems we won't 
need any new notions. Thus, we will arbitrarily decide that the problem description 
is complete, and move on to the problem specification. 

4.2 Stage 2: Specification 

At this point we have an idea-admittedly vague-of what it means to solve a problem 
in GPS. We can refine these notions into representations that are closer to Lisp as 
follows: 

We can represent the current state of the world-"what I haveu-or the goal 
state-"what I wantn-as sets of conditions. Common Lisp doesn't have a data 
type for sets, but it does have lists, which can be used to implement sets. Each 
condition can be represented by a symbol. Thus, a typical goal might be the list 
of two conditions ( r i  ch famous 1, and a typical current state might be ( unknown 
poor 1. 

We need a list of allowable operators. This list will be constant over the course 
of a problem, or even a series of problems, but we want to be able to change it 
and tackle a new problem domain. 

An operator can be represented as a structure composed of an action, a list 
of preconditions, and a list of effects. We can place limits on the kinds of 
possible effects by saying that an effect either adds or deletes a condition from 
the current state. Thus, the list of effects can be split into an add-list and 
a delete-list. This was the approach taken by the STRIPS' implementation of 

'STRIPS is the Stanford Research Institute Problem Solver, designed by Richard Fikes and 
Nils Nilsson (1971). 



GPS, which we will be in effect reconstructing in this chapter. The original GPS 

allowed more flexibility in the specification of effects, but flexibility leads to 
inefficiency. 

A complete problem is described to GPS in terms of a starting state, a goal state, 
and a set of known operators. Thus, GPS will be a function of three arguments. 
For example, a sample call might be: 

(GPS '(unknown poor)  ' ( r i c h  famous) l i s t - o f - o p s )  

In other words, starting from the state of being poor and unknown, achieve the 
state of being rich and famous, using any combination of the known operators. 
GPS should return a true value only if it solves the problem, and it should print 
a record of the actions taken. The simplest approach is to go through the 
conditions in the goal state one at a time and try to achieve each one. If they 
can all be achieved, then the problem is solved. 

A single goal condition can be achieved in two ways. If it is already in the 
current state, the goal is trivially achieved with no effort. Otherwise, we have 
to find some appropriate operator and try to apply it. 

An operator is appropriate if one of the effects of the operator is to add the goal 
in question to the current state; in other words, if the goal is in the operator's 
add-list. 

We can apply an operator if we can achieve all the preconditions. But this is 
easy, because we just defined the notion of achieving a goal in the previous 
paragraph. Once the preconditions have been achieved, applying an operator 
means executing the action and updating the current state in term of the oper- 
ator's add-list and delete-list. Since our program is just a simulation-it won't 
be actually driving a car or dialing a telephone-we must be content simply to 
print out the action, rather than taking any real action. 

4.3 Stage 3: Implementation 

The specification is complete enough to lead directly to a complete Common Lisp 
program. Figure 4.1 summarizes the variables, data types, and functions that make 
up the GPS program, along with some of the Common Lisp functions used to imple- 
ment it. 



(defun op-p (op) 
(and (vec to rp  op) (eq ( e l t  op 0 )  ' o p ) ) )  

( s e t f  (documentation 'op ' s t r u c t u r e )  "An o p e r a t i o n " )  

Next in the GPS program are four function definitions. The main function, GPS, is 
passed three arguments. The first is the current state of the world, the second the 
goal state, and the third a list of allowable operators. The body of the function says 
simply that if we can achieve every one of the goals we have been given, then the 
problem is solved. The unstated alternative is that otherwise, the problem is not 
solved. 

The function a c h i eve is given as an argument a single goal. The function succeeds 
if that goal is already true in the current state (in which case we don't have to do 
anything) or if we can apply an appropriate operator. This is accomplished by first 
building the list of appropriate operators and then testing each in turn until one can 
be applied. a c h i eve calls f i nd - a 1 1, which we defined on page 101. In this use, 
f i nd-a1 1 returns a list of operators that match the current goal, according to the 
predicate appropri ate-p. 

The function appropr i ate - p tests if an operator is appropriate for achieving a 
goal. (It follows the Lisp naming convention that predicates end in - p.) 

Finally, the function apply - op says that if we can achieve all the preconditions 
for an appropriate operator, then we can apply the operator. This involves printing 
a message to that effect and changing the state of the world by deleting what was in 
the delete-list and adding what was in the add-list. appl y-op is also a predicate; it 
returns t only when the operator can be applied. 

4.4 Stage 4: Test 

This sectionwill define a list of operators applicable to the "driving to nursery school" 
domain and will show how to pose and solve some problems in that domain. First, 
we need to construct the list of operators for the domain. The def s t r uc t form for the 
type op automatically defines the function make - op, which can be used as follows: 

(make-op : a c t i o n  ' d r i ve -son- to - schoo l  
:preconds ' (son-at-home car-works)  
: a d d - l i s t  ' ( son-a t - schoo l )  
:del - l i s t  ' (son-at-home)) 

This expressionreturns anoperatorwhose actionis the symbol d r i ve - son - to - school 
and whose preconditions, add-list and delete-list are the specified lists. The intent 



of this operator is that whenever the son is at home and the car works, dri  ve- son - 
to-school can be applied, changing the state by deleting the fact that the son is at 
home, and adding the fact that he is at school. 

It should be noted that using long hyphenated atoms like s o n  - a t  - home is a useful 
approach only for very simple examples like this one. A better representation would 
break the atom into its components: perhaps ( a t  s o n  home 1. The problem with 
the atom-based approach is one of combinatorics. If there are 10 predicates (such 
as at) and 10 people or objects, then there will be 10 x 10 x 10 = 1000 possible 
hyphenated atoms, but only 20 components. Clearly, it would be easier to describe 
the components. In this chapter we stick with the hyphenated atoms because it is 
simpler, and we do not need to describe the whole world. Subsequent chapters take 
knowledge representation more seriously. 

With this operator as a model, we can define other operators corresponding to 
Newel1 and Simon's quote on page 109. There will be an operator for installing a 
battery, telling the repair shop the problem, and telephoning the shop. We can fill in 
the "and so on" by adding operators for looking up the shop's phone number and for 
giving the shop money: 

(defparameter *school-ops* 
(list 

(make-op :action 'drive-son-to-school 
:preconds '(son-at-home car-works) 
:add-list '(son-at-school) 
:del -list '(son-at-home)) . 

(make-op :action 'shop-installs-battery 
:preconds '(car-needs-battery shop-knows- 
:add-list '(car-works)) 

(make-op :action 'tell -shop-probl em 
:preconds '(in-communication-with-shop) 
:add-list '(shop-knows-problem)) 

(make-op :action 'telephone-shop 
:preconds '(know-phone-number) 
:add-list '(in-communication-with-shop)) 

(make-op :action 'look-up-number 
:preconds '(have-phone-book) 
:add-list '(know-phone-number)) 

(make-op :action 'give-shop-money 
:preconds '(have-money) 
:add-list '(shop-has-money) 
:del-list '(have-money)))) 

problem shop-has-money) 

The next step is to pose some problems to GPS and examine the solutions. Following 
are three sample problems. In each case, the goal is the same: to achieve the single 
condition son - a t  - school . The list of available operators is also the same in each 



problem; the difference is in the initial state. Each of the three examples consists of 
the prompt, ">", which is printed by the Lisp system, followed by a call to GPS, " ( gps 
. . . )'I, which is typed by the user, then the output from the program, "( EXECUTING 
. . . )I1, and finally the result of the function call, which can be either SOLVED or N I L. 

> (gps '(son-at-home car-needs-battery have-money have-phone-book) 
'(son-at-school) 
*school -ops*) 

(EXECUTING LOOK-UP-NUMBER) 
(EXECUTING TELEPHONE-SHOP) 
(EXECUTING TELL-SHOP-PROBLEM) 
(EXECUTING GIVE-SHOP-MONEY) 
(EXECUTING SHOP-INSTALLS-BATTERY) 
(EXECUTING DRIVE-SON-TO-SCHOOL) 
SOLVED 

> (gps '(son-at-home car-needs-battery have-money) 
'(son-at-school 
*school -ops*) 

NIL 

> (gps '(son-at-home car-works) 
'(son-at-school 
*school -ops*) 

(EXECUTING DRIVE-SON-TO-SCHOOL) 
SOLVED 

In all three examples the goal is to have the son at school. The only operator that 
has son-at-school in its add-list is drive-son-to-school, so GPS selects that op- 
erator initially. Before it can execute the operator, GPS has to solve for the pre- 
conditions. In the first example, the program ends up working backward through 
the operators shop-install s-battery, give-shop-money, t e l l  -shop-probl em, and 
tel ephone-s hop to 1 ook-  up-number, which has no outstandingpreconditions. Thus, 
the 1 oo k - up - numbe r action can be executed, and the program moves on to the other 
actions. As Aristotle said, "What is the last in the order of analysis seems to be first 
in the order of becoming." 

The second example starts out exactly the same, but the 1 oo k-  up - number operator 
fails because its precondition, have - p hone - book, cannot be achieved. Knowing the 
phone number is a precondition, directly or indirectly, of all the operators, so no 
action is taken and GPS returns N I L. 

Finally, the third example is much more direct; the initial state specifies that the 
car works, so the driving operator can be applied immediately. 



4.5 Stage 5: Analysis, or "We Lied about the G" 

In the sections that follow, we examine the question of just how general this General 
Problem Solver is. The next four sections point out limitations of our version of GPS, 
and we will show how to correct these limitations in a second version of the program. 

One might ask if "limitations" is just aeuphemismfor "bugs." Are we"enhancingf' 
the program, or are we "correcting" it? There are no clear answers on this point, 
because we never insisted on an unambiguous problem description or specification. 
A1 programming is largely exploratory programming; the aim is often to discover 
more about the problem area rather than to meet a clearly defined specification. This 
is in contrast to a more traditional notion of programming, where the problem is 
completely specified before the first line of code is written. 

4.6 The Running Around the Block Problem 

Representing the operator "driving from home to school" is easy: the precondition 
and delete-list includes being at home, and the add-list includes being at school. But 
suppose we wanted to represent "running around the block." There would be no 
net change of location, so does that mean there would be no add- or delete-list? If 
so, there would be no reason ever to apply the operator. Perhaps the add-list should 
contain something like "got some exercise" or "feel tired," or something more general 
like "experience running around the block." We will return to this question later. 

4.7 The Clobbered Sibling Goal Problem 

Consider the problem of not only getting the child to school but also having some 
money left over to use for the rest of the day. GPS can easily solve this problem from 
the following initial condition: 

> (gps '(son-at-home have-money car-works) 
'(have-money son-at -school )  
*school -ops*) 

(EXECUTING DRIVE-SON-TO-SCHOOL) 
SOLVED 

However, in the next example GPS incorrectly reports success, when in fact it has 
spent the money on the battery. 



> (gps '(son-at-home car-needs-bat tery  have-money have-phone-book) 
'(have-money son-a t -schoo l )  
*school -ops*) 

(EXECUTING LOOK-UP-NUMBER) 
(EXECUTING TELEPHONE-SHOP) 
(EXECUTING TELL-SHOP-PROBLEM) 
(EXECUTING GIVE-SHOP-MONEY) 
(EXECUTING SHOP-INSTALLS-BATTERY) 
(EXECUTING DRIVE-SON-TO-SCHOOL) 
SOLVED 

The "bug" is that GPS uses the expression ( e v e r y  # ' a c h i e v e  g o a l  s ) to achieve 
a set of goals. If this expression returns true, it means that every one of the 
goals has been achieved in sequence, but it doesn't mean they are all still true 
at the end. In other words, the goal (have-money s o n - a t  - s c h o o l  1, which we in- 
tended to mean "end up in a state where both have-money and son-  a t  - s c h o o l  are 
true," was interpreted by GPS to mean "first achieve have-money, and then achieve 
son  - a t  - s c h o o l  ." Sometimes achieving one goal can undo another, previously 
achieved goal. We will call this the "prerequisite clobbers sibling goal" ~ r o b l e m . ~  
That is, have -money and son - a t  - s c h o o l  are sibling goals, one of the prerequisites 
for the plan for son  - a t  - s c h o o l  is c a r  -wor  ks, and achieving that goal clobbers the 
have -money goal. 

Modifying the program to recognize the "prerequisite clobbers sibling goal" prob- 
lem is straightforward. First note that we call ( e v e r y  # ' a c h i  eve  something) twice 
within the program, so let's replace those two forms with ( a c h i  eve  - a 1 1 something). 
We can then define ac h i  eve  - a1 1 as follows: 

(defun achieve-a1 1 (goa ls )  
"T ry  t o  achieve each goal ,  then make sure they s t i l l  ho ld . "  
(and (every # 'ach ieve goals)  (subsetp goals * s t a t e * ) ) )  

The Common Lisp function s u b s e t p  returns true if its first argument is a subset of its 
second. In a c h  i eve  - a 1 1, it returns true if every one of the goals is still in the current 
state after achieving all the goals. This is just what we wanted to test. 

The introduction of a c h i  eve  - a 1 1 prevents GPS from returning true when one of 
the goals gets clobbered, but it doesn't force GPS to replan and try to recover from a 
clobbered goal. We won't consider that possibility now, but we will take it up again 
in the section on the blocks world domain, which was Sussman's primary example. 

* ~ e r a l d  Sussman, in his book A Computer Model of Skill Acquisition, uses the term "prereq- 
uisite clobbers brother goal" or PCBG. I prefer to be gender neutral, even at the risk of being 
labeled a historical revisionist. 



4.8 The Leaping before You Look Problem 

Another way to address the "prerequisite clobbers sibling goal" problem is just to be 
more careful about the order of goals in a goal list. If we want to get the kid to school 
and still have some money left, why not just specify the goal as ( son - at - school 
have-money) rather than (have-money son-at-school I ?  Let's see what happens 
when we try that: 

> (gps ' (son-at-home ca r - needs -ba t te ry  have-money have-phone-book) 
' ( son-a t - schoo l  have-money) 

*school -ops*) 
(EXECUTING LOOK-UP-NUMBER) 
(EXECUTING TELEPHONE-SHOP) 
(EXECUTING TELL-SHOP-PROBLEM) 
(EXECUTING GIVE-SHOP-MONEY) 
(EXECUTING SHOP-INSTALLS-BATTERY) 

(EXECUTING DRIVE-SON-TO-SCHOOL) 
NIL  

GPS returns nil, reflecting the fact that the goal cannot be achieved, but only after 
executing all actions up to and including driving to school. I call this the "leaping 
before you look problem, because if you asked the program to solve for the two goals 
( jump-off -cl iff 1 and- safe1 y) it would happily jump first, only to discover that it 
had no operator to land safely. This is less than prudent behavior. 

The problem arises because planning and execution are interleaved. Once the 
preconditions for an operator are achieved, the action is taken-and *state* is irrevo- 
cably changed-even if this action may eventually lead to a dead end. An alternative 
would be to replace the single global *state* with distinct local state variables, such 
that a new variable is created for each new state. This alternative is a good one for 
another, independent reason, as we shall see in the next section. 

4.9 The Recursive Subgoal Problem 

In our simulated nursery school world there is only one way to find out a phone 
number: to look it up in the phone book. Suppose we want to add an operator for 
finding out a phone number by asking someone. Of course, in order to ask someone 
something, you need to be in communication with him or her. The asking-for-a- 
phone-number operator could be implemented as follows: 



(push (make-op :ac t ion  'ask-phone-number 
:preconds ' ( in-communicat ion-wi th-shop)  
: a d d - l i s t  '(know-phone-number)) 

*school -ops*) 

(The special form (push item list) puts the item on the front of the list; it is equiv- 
alent to ( s e t f  list ( cons item list 1 1 in the simple case.) Unfortunately, something 
unexpected happens when we attempt to solve seemingly simple problems with this 
new set of operators. Consider the following: 

> (gps '(son-at-home car-needs-bat tery  have-money) 
' (son-at-school  
*school -ops*) 

>>TRAP 14877 (SYSTEM:PDL-OVERFLOW EH::REGULAR) 
The regu la r  push-down l i s t  has overf lown. 
Whi le i n  the  f u n c t i o n  ACHIEVE <- EVERY <- REMOVE 

The error message (which will vary from one implementation of Common Lisp to 
another) means that too many recursively nested function calls were made. This 
indicates either a very complex problem or, more commonly, a bug in the program 
leading to infinite recursion. One way to try to see the cause of the bug is to trace a 
relevant function, such as a c h i  eve: 

> ( t r a c e  achieve) + (ACHIEVE) 

> (gps '(son-at-home car-needs-bat tery  have-money) 
' ( son-a t - schoo l )  
*school -ops*) 

( 1  ENTER ACHIEVE: SON-AT-SCHOOL) 
( 2  ENTER ACHIEVE: SON-AT-HOME) 
( 2  EXIT ACHIEVE: ( SON-AT-HOME CAR-NEEDS-BATTERY HA%-MONEY 
( 2  ENTER ACHIEVE: CAR-WORKS) 

( 3  ENTER ACHIEVE: CAR-NEEDS-BATTERY) 
( 3  EXIT ACHIEVE: (CAR-NEEDS-BATTERY HAVE-MONEY)) 
( 3  ENTER ACHIEVE: SHOP-KNOWS-PROBLEM) 

( 4  ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP) 
( 5  ENTER ACHIEVE: KNOW-PHONE-NUMBER) 

( 6  ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP) 
(7  ENTER ACHIEVE: KNOW-PHONE-NUMBER) 

(8  ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP) 
( 9  ENTER ACHIEVE: KNOW-PHONE-NUMBER) 



The output from trace gives us the necessary clues. Newel1 and Simon talk of 
"oscillating among ends, functions required, and means that perform them." Here 
it seems we have an infinite oscillation between being in communication with the 
shop (levels 4, 6, 8, . . . ) and knowing the shop's phone number (levels 5, 7, 9, . . . ). 
The reasoning is as follows: we want the shop to know about the problem with the 
battery, and this requires being in communication with him or her. One way to get in 
communication is to phone, but we don't have a phone book to look up the number. 
We could ask them their phone number, but this requires being in communication 
with them. As Aristotle put it, "If we are to be always deliberating, we shall have to 
go on to infinity." We will call this the "recursive subgoal" problem: trying to solve 
a problem in terms of itself. One way to avoid the problem is to have achi eve keep 
track of all the goals that are being worked on and give up if it sees a loop in the 
goal stack. 

4.10 The Lack of Intermediate Information 
Problem 

When GPS fails to find a solution, it just returns ni 1 . This is annoying in cases where 
the user expected a solution to be found, because it gives no information about the 
cause of failure. The user could always trace some function, as we traced achieve 
above, but the output from trace is rarely exactly the information desired. It would 
be nice to have a general debugging output tool where the programmer could insert 
print statements into his code and have them selectively printed, depending on the 
information desired. 

The function dbg provides this capability. dbg prints output in the same way as 
format, but it will only print when debugging output is desired. Each call to dbg is 
accompanied by an identifer that is used to specify a class of debugging messages. 
The functions debug and undebug are used to add or remove message classes to the 
list of classes that should be printed. In this chapter, all the debugging output will 
use the identifier : gps. Other programs will use other identifiers, and a complex 
program will use many identifiers. 

A call to dbg will result in output if the first argument to dbg, the identifier, is one 
that was specified in a call to debug. The other arguments to dbg are a format string 
followed by a list of arguments to be printed according to the format string. In other 
words, we will write functions that include calls to dbg like: 

(dbg :gps "The current goal  i s :  "a" g o a l )  

If we have turned on debugging with (debug :gps), then calls to dbg with the 
identifier : gps will print output. The output is turned off with ( undebug : gps 1. 



debug and undebug are designed to be similar to trace and untrace, in that they turn 
diagnostic output on and off. They also follow the convention that debug with no 
arguments returns the current list of identifiers, and that unde bug with no arguments 
turns all debugging off. However, they differ from trace and un  t ra ce in that they 
are functions, not macros. If you use only keywords and integers for identifiers, then 
you won't notice the difference. 

Two new built-in features are introduced here. First, *debug - i o* is the stream 
normally used for debugging input/output. In all previous calls to format we have 
used t as the stream argument, which causes output to go to the *st anda rd - out put* 
stream. Sending different types of output to different streams allows the user some 
flexibility. For example, debugging output could be directed to a separate window, 
or it could be copied to a file. Second, the function fresh - 1 i ne advances to the next 
line of output, unless the output stream is already at the start of the line. 

(de fva r  *dbg-ids* n i l  " I d e n t i f i e r s  used by dbg") 

(defun dbg ( i d  f o r m a t - s t r i n g  & r e s t  args)  

" P r i n t  debugging i n f o  i f  (DEBUG ID)  has been s p e c i f i e d . "  

(when (member i d  *dbg-ids*) 

( f r e s h - l i n e  *debug-io*) 

(apply  # ' fo rmat  *debug-io* f o r m a t - s t r i n g  a r g s ) ) )  

(defun debug ( & r e s t  i d s )  

" S t a r t  dbg ou tpu t  on t h e  g iven i d s . "  

( s e t f  *dbg-ids* (un ion i d s  *dbg- ids*) ) )  

(defun undebug ( & r e s t  i d s )  

"Stop dbg on t h e  i d s .  With no i d s ,  s top dbga l toge ther . "  

( s e t f  *dbg-ids* ( i f  ( n u l l  i d s )  n i l  

( s e t - d i f f e r e n c e  *dbg-ids* i d s ) ) ) )  

Sometimes it is easier to view debugging output if it is indented according to some 
pattern, such as the depth of nested calls to a function. To generate indented output, 
the function dbg - i ndent is defined: 

(defun dbg- indent  ( i d  i nden t  f o r m a t - s t r i n g  & r e s t  args)  

" P r i n t  indented debugging i n f o  i f  (DEBUG ID)  has been s p e c i f i e d . "  

(when (member i d  *dbg-ids*) 

( f r e s h - l i n e  *debug-io*) 
(dot imes ( i  i nden t )  ( p r i n c  " " *debug-io*))  

(apply  # ' fo rmat  *debug-io* f o r m a t - s t r i n g  a r g s ) ) )  



4.11 GPS Version 2: A More General 
Problem Solver 

At this point we are ready to put together a new version of GPS with solutions for 
the "running around the block," "prerequisite clobbers sibling goal," "leaping before 
you look," and "recursive subgoal" problems. The glossary for the new version is in 
figure 4.2. 

Top-Level Function 
GPS Solve a goal from a state using a list of operators. 

Special Variables 
*ops* A list of available operators. 

Data Types 
0 P An operation with preconds, add-list and del-list. 

Major Functions 
achieve-a1 1  Achieve a list of goals. 
achieve Achieve an individual goal. 
appropr i  a t e  - p  Decide if an operator is appropriate for a goal. 
apply-OP Apply operator to current state. 

Auxiliary Functions 
execut ing-p  Is a condition an execu t i  ng form? 
s t a r t s  -w i  t h Is the argument a list that starts with a given atom? 
conver t -op Convert an operator to use the execu t i  ng convention. 

0 P Create an operator. 
use Use a list of operators. 
member - equal Test if an element is equal to a member of a list. 

Selected Common Lisp Functions 
member Test if an element is a member of a list. (p. 78) 
s e t  - d i  f f erence All elements in one set but not the other. 
subsetp Is one set wholly contained in another? 
union All elements in either of two sets. 
every Test if every element of a list passes a test. (p. 62) 
some Test if any element of a list passes a test. 
remove - i f Remove all items satisfying a test. 

Previously Defined Functions 
f i n d - a 1  1  A list of all matching elements. (p. 101) 
f i nd - a1 1  - i f A list of all elements satisfying a predicate. 

Figure 4.2: Glossary for Version 2 of GPS 

The most important change is that, instead of printing a message when each 
operator is applied, we will instead have GPS return the resulting state. A list of 



"messages" in each state indicates what actions have been taken. Each message is 
actually a condition, a list of the form ( execut i ng operator). This solves the "running 
around the block problem: we could call GPS with an initial goal of ( (executing 
run-around- bl ock) 1, and it would execute the run-around- bl ock operator, thereby 
satisfying the goal. The following code defines a new function, op, which builds 
operators that include the message in their add-list. 

(defun execut ing-p ( x )  
" I s  x  o f  t h e  form: (execut ing . . . I  ? "  
( s t a r t s - w i t h  x  ' execu t ing ) )  

(defun s t a r t s - w i t h  ( l i s t  x )  
" I s  t h i s  a  l i s t  whose f i r s t  element i s  x ? "  
(and (consp l i s t )  (eq l  ( f i r s t  l i s t )  X I ) )  

(defun conver t -op (op) 
"Make op conform t o  t h e  (EXECUTING op) convent ion." 
(un less (some # 'execu t ing -p  ( o p - a d d - l i s t  op ) )  

(push ( l i s t  'execut ing (op -ac t ion  op))  ( o p - a d d - l i s t  o p ) ) )  

OP 

(defun op ( a c t i o n  &key preconds a d d - l i s t  d e l - l i s t )  
"Make a new operator  t h a t  obeys the  (EXECUTING op) convent ion." 
( conver t -op  

(make-op : a c t i o n  a c t i o n  :preconds preconds 
: a d d - l i s t  a d d - l i s t  : d e l - l i s t  de l  - l i s t ) ) )  

Operators built by op will be correct, but we can convert existing operators using 
convert - op directly: 

This is an example of exploratory programming: instead of starting all over when 
we discover a limitation of the first version, we can use Lisp to alter existing data 
structures for the new version of the program. 

The definition of the variable * o ~ s *  and the structure op are exactly the same as 
before, and the rest of the program consists of five functions we have already seen: 
GPS, achieve-a1 1, achieve, appropriate-p, and apply-op. At the top level, the 
function GPS calls a c hi eve - a 1 1, which returns either nil or a valid state. From this 
we remove all the atoms, which leaves only the elements of the final state that are 
lists-in other words, the actions of the form (executi ng operator). Thus, the value 
of GPS itself is the list of actions taken to arrive at the final state. GPS no longer returns 
SOLVED when it finds a solution, but it still obeys the convention of returning nil for 
failure, and non-nil for success. In general, it is a good idea to have a program return 



a meaningful value rather than print that value, if there is the possibility that some 
other program might ever want to use the value. 

(defvar *ops* nil " A  l i s t  of available operators.") 

(defstruct op "An operation" 
(action n i l )  (preconds nil (add-list  nil 1 ( de l - l i s t  n i l ) )  

(defun GPS ( s ta te  goals &optional (*ops* *ops*)) 
"General Problem Solver: from s ta te ,  achieve goals using *ops*. " 
(remove-if #'atom (achieve-all (cons ' ( s t a r t )  s ta te)  goals n i l ) ) )  

The first major change inversion 2 is evident from the first line of the program: there 
is no *s ta te *  variable. Instead, the program keeps track of local state variables. 
This is to solve the "leaping before you look problem, as outlined before. The 
functions achi  eve, achi  eve- a1 1, and apply - op all take an extra argument which is 
the current state, and all return a new state as their value. They also must still obey 
the convention of returning nil when they fail. 

Thus we have a potential ambiguity: does nil represent failure, or does it rep- 
resent a valid state that happens to have no conditions? We resolve the ambiguity 
by adopting the convention that all states must have at least one condition. This 
convention is enforced by the function GPS. Instead of calling ( a c h i eve - a 1 1 s t a t e  
goals n i l ) ,  GPS calls (achieve-a1 1 (cons ' ( s t a r t )  s t a t e )  goals n i l ) .  So even 
if the user passes GPS a null initial state, it will pass on a state containing ( s t a r t  ) 
to achi  eve-a1 1. From then on, we are guaranteed that no state will ever become 
nil, because the only function that builds a new state is apply -op, and we can see by 
looking at the last line of apply-  op that it always appends something onto the state it 
is returning. (An add-list can never be nil, because if it were, the operator would not 
be appropriate. Besides, every operator includes the ( execut i ng . . . condition.) 

Note that the final value we return from GPS has all the atoms removed, so we end 
up reporting only the actions performed, since they are represented by conditions 
of the form ( exe cu t i ng action 1. Adding the ( s t  a r t ) condition at the beginning also 
serves to differentiate between a problem that cannot be solved and one that is solved 
without executing any actions. Failure returns nil, while a solution with no steps will 
at least include the ( s t a  r t  ) condition, if nothing else. 

Functions that return nil as an indication of failure and return some useful value 
otherwise are known as semipredicates. They are error prone in just these cases 
where nil might be construed as a useful value. Be careful when defining and using 
semipredicates: (1) Decide if nil could ever be a meaningful value. (2) Insure that 
the user can't corrupt the program by supplying nil as a value. In this program, GPS 

is the only function the user should call, so once we have accounted for it, we're 
covered. (3) Insure that the program can't supply nil as a value. We did this by seeing 
that there was only one place in the program where new states were constructed, 
and that this new state was formed by appending a one-element list onto another 



state. By following this three-step procedure, we have an informal proof that the 
semipredicates involving states will function properly. This kind of informal proof 
procedure is a common element of good program design. 

The other big change in version 2 is the introduction of a goal stack to solve the 
recursive subgoal problem. The program keeps track of the goals it is working on 
and immediately fails if a goal appears as a subgoal of itself. This test is made in the 
second clause of ac h i  eve. 

The function a c h i eve - a 1 1 tries to achieve each one of the goals in turn, setting the 
variable s t a t e 2  to be the value returned from each successive call to ach i  eve. If all 
goals are achieved in turn, and if all the goals still hold at the end (as subsetp checks 
for), then the final state is returned; otherwise the function fails, returning nil. 

Most of the work is done by achieve, which gets passed a state, a single goal 
condition, and the stack of goals worked on so far. If the condition is already in the 
state, then a c h i eve succeeds and returns the state. On the other hand, if the goal 
condition is already in the goal stack, then there is no sense continuing-we will be 
stuck in an endless loop-so ach i  eve returns nil. Otherwise, ac h i  eve looks through 
the list of operators, trying to find one appropriate to apply. 

(defun achieve-all (state goals goal-stack) 
"Achieve each goal, and make sure they still hold at the end." 
(let ((current-state state)) 

(if (and (every #'(lambda (g) 
(setf current-state 

(achieve current-state g goal-stack))) 
goal s 

(subsetp goals current-state :test #'equal)) 
current-state))) 

(defun achieve (state goal goal-stack) 
" A  goal is achieved if it a1 ready holds. 
or if there is an appropriate op for it that is applicable." 
(dbg-indent :gps (length goal-stack) "Goal:"aM goal) 
(cond ((member-equal goal state) state) 

((member-equal goal goal -stack) ni 1 
(t (some #'(lambda (op) (apply-op state goal op goal-stack)) 

(find-all goal *ops* :test #'appropriate-p) 1) 1) 

The goal ( (execu t ing  run-around-b l  ock) ) is a list of one condition, where the 
condition happens to be a two-element list. Allowing lists as conditions gives us 
more flexibility, but we also have to be careful. The problem is that not all lists that 
look alike actually are the same. The predicate equal essentially tests to see if its two 
arguments look alike, while the predicate eql  tests to see if its two arguments actually 
are identical. Since functions like member use eq l  by default, we have to specify with 
a : t e s t  keyword that we want equal instead. Since this is done several times, we 



introduce the function membe r - equa 1 . In fact, we could have carried the abstraction 
one step further and defined member-si tuati on, a function to test if a condition is 
true in a situation. This would allow the user to change the matching function from 
eql to equal, and to anything else that might be useful. 

(defun member-equal (item list) 
(member item list :test #'equal)) 

The function apply- op, which used to change the state irrevocably and print a mes- 
sage reflecting this, now returns the new state instead of printing anything. It first 
computes the state that would result from achieving all the preconditions of the 
operator. If it is possible to arrive at such a state, then appl y-op returns a new state 
derived from this state by adding what's in the add-list and removing everything in 
the delete-list. 

(defun apply-op (state goal op goal-stack) 
"Return a new, transformed state if op is applicable." 
(dbg-indent :gps (length goal-stack) "Consider: "a" (op-action op)) 
(let ((state2 (achieve-all state (op-preconds op) 

(cons goal goal -stack) 1)  
(unless (nu1 1 state21 

;; Return an updated state 
(dbg-indent :gps (length goal-stack) "Action: "a" (op-action op)) 
(append (remove-if #'(lambda (x) 

(member-equal x (op-del -1 ist op) 1) 
state21 

(op-add-list op))))) 

(defun appropriate-p (goal op) 
"An op is appropriate to a goal if it is in its add-list." 
(member-equal goal (op-add-list op))) 

There is one last complication in the way we compute the new state. In version 
1 of GPS, states were (conceptually) unordered sets of conditions, so we could use 
uni on and set  - di f f erence to operate on them. In version 2, states become ordered 
lists, because we need to preserve the ordering of actions. Thus, we have to use the 
functions append and remove- i f, since these are defined to preserve order, while 
union and set-difference are not. 

Finally, the last difference in version 2 is that it introduces a new function: use. 
This function is intended to be used as a sort of declaration that a given list of operators 
is to be used for a series of problems. 
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> ( g p s  ' ( s o n - a t -  h o m e  c a r - n e e d s - b a t t e r y  h a v e - m o n e y  h a v e - p h o n e - b o o k )  
' ( s o n - a t - s c h o o l  1 )  

( (START ) 
(EXECUTING LOOK-UP-NUMBER) 
(EXECUTING TELEPHONE-SHOP) 
( EXECUTING T E L L- S H O P-  PROBLEM) 
(EXECUTING GIVE-SHOP-MONEY) 
(EXECUTING S H O P- I N S T A L L S- B A T T E R Y )  
(EXECUTING DRIVE- SON- TO- SCHOOL) )  

> ( d e b u g  : g p s )  + (:GPS)  

> ( g p s  ' ( s o n - a t - h o m e  c a r - n e e d s - b a t t e r y  h a v e - m o n e y  h a v e - p h o n e - b o o k )  
' ( s o n - a t - s c h o o l  1 )  

G o a l  : SON-AT-SCHOOL 
C o n s i d e r :  DRIVE- SON- TO- SCHOOL 

G o a l :  SON-AT-HOME 
G o a l  : CAR-WORKS 
C o n s i d e r :  SHOP- INSTALLS- BATTERY 

G o a l :  CAR-NEEDS-BATTERY 
G o a l :  SHOP-KNOWS-PROBLEM 
C o n s i d e r :  TELL-SHOP-PROBLEM 

G o a l :  IN-COMMUNICATION-WITH-SHOP 
C o n s i d e r :  TELEPHONE-SHOP 

G o a l :  KNOW-PHONE-NUMBER 
C o n s i d e r :  ASK-PHONE-NUMBER 

G o a l :  IN- COMMUNICATION-WITH-SHOP 
C o n s i d e r :  LOOK-UP-NUMBER 

G o a l :  HAVE-PHONE-BOOK 
A c t i o n :  LOOK-UP-NUMBER 

A c t i o n :  TELEPHONE-SHOP 
A c t i o n :  TELL- SHOP- PROBLEM 
G o a l :  SHOP-HAS-MONEY 
C o n s i d e r :  GIVE-SHOP-MONEY 

G o a l  : HAVE-MONEY 
A c t i o n :  GIVE-SHOP-MONEY 

A c t i o n :  SHOP- INSTALLS- BATTERY 
A c t i o n :  DRIVE- SON- TO- SCHOOL 
( ( START 

(EXECUTING LOOK-UP-NUMBER) 
(EXECUTING TELEPHONE-SHOP) 
(EXECUTING TELL- SHOP- PROBLEM)  
(EXECUTING GIVE-SHOP-MONEY) 
(EXECUTING S H O P- I N S T A L L S- B A T T E R Y )  
(EXECUTING DRIVE- SON- TO- SCHOOL) )  

> ( u n d e b u g )  + N I L  



> (gps '(son-at-home car-works) 
' (son-at-school 1)  

( ( START 
(EXECUTING DRIVE-SON-TO-SCHOOL)) 

Now we see that version 2 can also handle the three cases that version 1 got wrong. 
In each case, the program avoids an infinite loop, and also avoids leaping before 
it looks. 

> (gps ' (son-at - home car-needs - battery have-money have-phone- book) 
' (have-money son-at-school 1) 

NIL 

> (gps '(son-at-home car-needs-battery have-money have-phone-book) 
'(son-at-school have-money)) 

NIL 

> (gps '(son-at-home car-needs-battery have-money) 
'(son-at-school 1)  

NIL 

Finally, we see that this version of GPS also works on trivial problems requiring no 
action: 

> (gps '(son-at-home) '(son-at-home)) + ((START) 

4.12 The New Domain Problem: Monkey 
and Bananas 

To show that GPS is at all general, we have to make it work in different domains. We 
will start with a "classic" A1 problem.3 Imagne the following scenario: a hungry 
monkey is standing at the doorway to a room. In the middle of the room is a bunch 
of bananas suspended from the ceiling by a rope, well out of the monkey's reach. 
There is a chair near the door, which is light enough for the monkey to push and tall 
enough to reach almost to the bananas. Just to make things complicated, assume the 
monkey is holding a toy ball and can only hold one thing at a time. 

In trying to represent this scenario, we have some flexibility in choosing what to 
put in the current state and what to put in with the operators. For now, assume we 
define the operators as follows: 

30riginally posed by Saul Amarel(1968). 



(defparameter *banana-ops* 
(1 ist 

(op 'cl imb-on-chai r 
:preconds '(chair-at-middle-room at-middle-room on-floor) 
:add-list '(at-bananas on-chair) 
:del -list '(at-middle-room on-floor)) 

(op 'push-chair-from-door-to-middle-room 
:preconds '(chair-at-door at-door) 
:add-list '(chair-at-middle-room at-middle-room) 
:del-list '(chair-at-door at-door)) 

(op 'walk-from-door-to-middle-room 
:preconds ' (at-door on-fl oor) 
:add-list '(at-middle-room) 
:del-1 ist '(at-door)) 

(op 'grasp-bananas 
:preconds '(at-bananas empty-handed) 
:add-list '(has-bananas) 
:del-list '(empty-handed)) 

(op 'drop-ball 
:preconds '(has-ball) 
:add-list '(empty-handed) 
:del-list '(has-ball)) 

(op 'eat-bananas 
:preconds '(has-bananas) 
:add-list '(empty-handed not-hungry) 
:del-list '(has-bananas hungry)))) 

Using these operators, we could pose the problem of becoming not-hungry, given 
the initial state of being at the door, standing on the floor, holding the ball, hungry, 
and with the chair at the door. GPS can find a solution to this problem: 

> (use *banana-ops*) =+ 6 
> (GPS '(at-door on-floor has-ball hungry chair-at-door) 

'(not-hungry)) 
( ( START 
(EXECUTING PUSH-CHAIR-FROM-DOOR-TO-MIDDLE-ROOM) 
(EXECUTING CLIMB-ON-CHAIR) 
(EXECUTING DROP-BALL) 
(EXECUTING GRASP-BANANAS) 
(EXECUTING EAT-BANANAS)) 

Notice we did not need to make any changes at all to the GPS program. We just used 
a different set of operators. 



4.13 The Maze Searching Domain 

Now we will consider another "classic" problem, maze searching. We will assume a 
particular maze, diagrammed here. 

It is much easier to define some functions to help build the operators for this 
domain than it would be to type in all the operators directly. The following code 
defines a set of operators for mazes in general, and for this maze in particular: 

(defun make-maze-ops (pair) 
"Make maze ops in both directions" 
(list (make-maze-op (first pair) (second pair)) 

(make-maze-op (second pair) (first pair)))) 

(defun make-maze-op (here there) 
"Make an operator to move between two places" 
(op '(move from ,here to ,there) 

:preconds '((at ,here)) 
:add-list '((at ,there)) 
:del -list '((at ,here)))) 

(defparameter *maze-ops* 
(mappend#'make-maze-ops 

'((1 2) (2 3) (3 4) ( 4  9) (9 14) (9 8) (8 7) (7 12) (12 13) 
(12 11) (11 6) (11 16) (16 17) (17 22) (21 22) (22 23) 
(23 18) (23 24) (24 19) (19 20) (20 15) (15 10) (10 5)  (20 25)))) 

Note the backquote notation, ( '). It is covered in section 3.2, page 67. 

We can now use this list of operators to solve several problems with this maze. 
And we could easily create another maze by giving another list of connections. Note 
that there is nothing that says the places in the maze are arranged in a five-by-five 
layout-that is just one way of visualizing the connectivity. 

> (use *maze-ops*) + 48 



> (gps ' ( ( a t  1 ) )  ' ( ( a t  2 5 ) ) )  

( ( START 

(EXECUTING (MOVE FROM 1 TO 2 ) )  

(EXECUTING (MOVE FROM 2 TO 3 ) )  

(EXECUTING (MOVE FROM 3 TO 4 ) )  

(EXECUTING (MOVE FROM 4 TO 9 ) )  

(EXECUTING (MOVE FROM 9 TO 8 ) )  

(EXECUTING (MOVE FROM 8 TO 7 ) )  

(EXECUTING (MOVE FROM 7 TO 1 2 ) )  

(EXECUTING (MOVE FROM 12 TO 1 1 ) )  

(EXECUTING (MOVE FROM 11 TO 1 6 ) )  

(EXECUTING (MOVE FROM 16 TO 1 7 ) )  

(EXECUTING (MOVE FROM 17 TO 2 2 ) )  

(EXECUTING (MOVE FROM 22 TO 2 3 ) )  

(EXECUTING (MOVE FROM 23 TO 24 ) )  

(EXECUTING (MOVE FROM 24 TO 1 9 ) )  

(EXECUTING (MOVE FROM 19 TO 2 0 ) )  

(EXECUTING (MOVE FROM 20 TO 25 ) )  

(AT 2 5 ) )  

There is one subtle bug that the maze domain points out. We wanted GPS to return 
a list of the actions executed. However, in order to account for the case where the 
goal can be achieved with no action, I included ( START) in the value returned by 
GPS. These examples include the START and EXECUTING forms but also a list of the 
form (AT n), for some n. This is the bug. If we go back and look at the function 
GPS, we find that it reports the result by removing all atoms from the state returned 
by achi eve - a 1 1 . This is a "punn-we said remove atoms, when we really meant 
to remove all conditions except the (START) and ( EXECUTING action) forms. Up to 
now, all these conditions were atoms, so this approach worked. The maze domain 
introduced conditions of the form (AT n 1, so for the first time there was a problem. 
The moral is that when a programmer uses puns-saying what's convenient instead 
of what's really happening-there's bound to be trouble. What we really want to do 
is not to remove atoms but to find all elements that denote actions. The code below 
says what we mean: 

(defun GPS ( s t a t e  goa ls  & o p t i o n a l  (*ops* *ops*)) 

"General Problem So lve r :  f r om s t a t e ,  ach ieve goa ls  u s i n g  *ops*." 

( f i n d - a 1  1 - i f  # ' a c t i o n - p  

( a c h i e v e - a l l  (cons ' ( s t a r t )  s t a t e )  goa ls  n i l ) ) )  



> (gps ' ( ( c  on a)  (a on t a b l e )  ( b  on t a b l e )  
(space on c )  (space on b )  (space on t a b l e ) )  

' ( ( c  on t a b l e ) ) )  
( ( START) 
(EXECUTING (MOVE C FROM A TO B) )  
(EXECUTING (MOVE C FROM B TO TABLE))) 

The solution is correct, but there is an easier solution that moves C directly to the 
table. The simpler solution was not found because of an accident: it happens that 
make - bl oc k-  ops defines the operators so that moving C from B to the table comes 
before moving C from A to the table. So the first operator is tried, and it succeeds 
provided C is on B. Thus, the two-step solution is found before the one-step solution is 
ever considered. The following example takes four steps whenit could be done in two: 

start goal 

> (gps ' ( ( c  on a)  (a  on t a b l e )  ( b  on t a b l e )  
(space on c )  (space on b )  (space on t a b l e ) )  

' ( ( c  on t a b l e )  (a on b ) ) )  
( ( START 
(EXECUTING (MOVE C FROM A TO B) )  
(EXECUTING (MOVE C FROM B TO TABLE)) 
(EXECUTING (MOVE A FROM TABLE TO C)) 
(EXECUTING (MOVE A FROM C TO 6 ) ) )  

How could we find shorter solutions? One way would be to do a full-fledged search: 
shorter solutions are tried first, temporarily abandoned when something else looks 
more promising, and then reconsidered later on. This approach is taken up in 
chapter 6, using a general searching function. A less drastic solution is to do a limited 
rearrangement of the order in which operators are searched: the ones with fewer 
unfulfilled preconditions are tried first. In particular, this means that operators with 
all preconditions filled would always be tried before other operators. To implement 
this approach, we change a c h i  eve: 

(defun achieve ( s t a t e  goal goal - s t a c k )  
"A goal i s  achieved i f  i t  a1 ready ho lds,  
o r  i f  t h e r e  i s  an appropr ia te  op f o r  i t  t h a t  i s  app l i cab le . "  
(dbg- indent  :gps ( l e n g t h  g o a l - s t a c k )  "Goal: "a" goa l )  
(cond ((member-equal goal s t a t e )  s t a t e )  

((member-equal goal goa l - s tack )  n i l )  



( t  (some #'(lambda (op) (apply-op s t a t e  goal op goal - s t a c k ) )  
(appropr ia te-ops goal s t a t e ) ) ) ) )  ;*** 

(defun appropriate-ops (goal s t a t e )  
"Return a l i s t  o f  appropr ia te operators, 
sor ted by t h e  number of u n f u l f i l l e d  p recond i t i ons . "  
( s o r t  ( c o p y - l i s t  ( f i n d - a l l  goal *ops* : t e s t  # 'appropr ia te -p ) )  # '< 

:key #'(lambda (op) 
( c o u n t - i f  #'(lambda (precond) 

(no t  (member-equal precond s t a t e ) ) )  
(op-preconds o p ) ) ) ) )  

Now we get the solutions we wanted: 

start goal 

> (gps ' ( ( c  on a) (a on t a b l e )  (b  on t a b l e )  
(space on c )  (space on b )  (space on t a b l e ) )  

' ( ( c  on t a b l e )  (a  on b ) ) )  
( (START) 
(EXECUTING (MOVE C FROM A TO TABLE)) 
(EXECUTING (MOVE A FROM TABLE TO B))) 

start goal 

> (gps ' ( ( a  on b )  (b  on c )  ( c  on t a b l e )  (space on a) (space on t a b l e ) )  
' ( ( b  on a) ( c  on b ) ) )  

( ( START 
(EXECUTING (MOVE A FROM B TO TABLE)) 
(EXECUTING (MOVE B FROM C TO A ) )  
(EXECUTING (MOVE C FROM TABLE TO B) ) )  

> (gps ' ( ( a  on b) ( b  on c )  ( c  on t a b l e )  (space on a) (space on t a b l e ) )  
' ( ( c  on b )  (b  on a ) ) )  

( ( START 1 
(EXECUTING (MOVE A FROM B TO TABLE)) 
(EXECUTING (MOVE B FROM C TO A ) )  
(EXECUTING (MOVE C FROM TABLE TO B) ) )  



The Sussman Anomaly 

Surprisingly, there are problems that can't be solved by any reordering of goals. 
Consider: 

start 
f 
goal 

This doesn't look too hard, so let's see how our GPS handles it: 

> ( s e t f  s t a r t  ' ( ( c  on a )  (a  on t a b l e )  ( b  on t a b l e )  (space on c )  
(space on b )  (space on t a b l e ) ) )  

( (C ON A) (A ON TABLE) (B ON TABLE) (SPACE ON C) 
(SPACE ON B) (SPACE ON TABLE)) 

> (gps s t a r t  ' ( ( a  on b )  ( b  on c ) ) )  + NIL 

> (gps s t a r t  ' ( ( b  on c )  (a  on b ) ) )  * NIL 

There is a "prerequisite clobbers sibling goal" problem regardless of which way we 
order the conjuncts! In other words, no combination of plans for the two individual 
goals can solve the conjunction of the two goals. This is a surprising fact, and the 
example has come to be known as "the Sussman anomaly."4 We will return to this 
problem in chapter 6. 

4.15 Stage 5 Repeated: Analysis of Version 2 

We have shown that GPS is extensible to multiple domains. The main point is that 
we didn't need to change the program itself to get the new domains to work; we 
just changed the list of operators passed to GPS. Experience in different domains 
did suggest changes that could be made, and we showed how to incorporate a few 
changes. Although version 2 is a big improvement over version 1, it still leaves much 
to be desired. Now we will discover a few of the most troubling problems. 

-- - 

4~ footnote in Waldinger 1977 says, "This problem was proposed by Allen Brown. Perhaps 
many children thought of it earlier but did not recognize that it was hard." The problem is 
named after Gerald Sussman because he popularized it in Sussman 1973. 



4.16 The Not Looking after You Don't 
Leap Problem 

We solved the "leaping before you look" problem by introducing variables to hold a 
representation of possible future states, rather than just a single variable representing 
the current state. This prevents GPS from taking an ill-advised action, but we shall 
see that even with all the repair strategies introduced in the last section, it doesn't 
guarantee that a solution will be found whenever one is possible. 

To see the problem, add another operator to the front of the *schoo l  -ops*  list 
and turn the debugging output back on: 

(use (push (op ' t a x i  -son- to-school  
:preconds '(son-at-home have-money) 
: a d d - l i s t  ' ( son-a t -schoo l )  
: d e l - l i s t  '(son-at-home have-money)) 

*school -ops*) 

(debug :gps) 

Now, consider the problem of getting the child to school without using any money: 

> (gps '(son-at-home have-money car-works)  
' (son-at -school  have-money)) 

Goal : SON-AT-SCHOOL 
Consider: TAXI-SON-TO-SCHOOL 

Goal : SON-AT-HOME 
Goal : HAVE-MONEY 

Act ion:  TAXI-SON-TO-SCHOOL 
Goal: HAVE-MONEY 
Goal : HAVE-MONEY 
Goal : SON-AT-SCHOOL 
Consider: TAXI-SON-TO-SCHOOL 

Goal: SON-AT-HOME 
Goal : HAVE-MONEY 

Act ion:  TAXI-SON-TO-SCHOOL 
NIL 

The first five lines of output succesfully solve the s o n - a t  - s c h o o l  goal with the 
TAX I - SON -TO - SCHOOL action. The next line shows an unsuccesful attempt to solve the 
have-money goal. The next step is to try the other ordering. This time, the have-money 
goal is tried first, and succeeds. Then, the son  - a t  - s c h o o l  goal is achieved again by 
the TAXI -SON-TO-SCHOOL action. But the check for consistency in a c h i  eve-each  fails, 
and there are no repairs available. The goal fails, even though there is a valid solution: 
driving to school. 



The problem is that achi  eve uses some to look at the appropr i  a t e -  ops. Thus, if 
there is some appropriate operator, a c h i eve succeeds. If there is only one goal, this 
will yield a correct solution. However, if there are multiple goals, as in this case, 
achi eve will still only find one way to fulfill the first goal. If the first solution is a bad 
one, the only recourse is to try to repair it. In domains like the block world and maze 
world, repair often works, because all steps are reversible. But in the taxi example, no 
amount of plan repair can get the money back once it is spent, so the whole plan fails. 

There are two ways around this problem. The first approach is to examine all 
possible solutions, not just the first solution that achieves each subgoal. The language 
Prolog, to be discussed in chapter 11, does just that. The second approach is to have 
a c h i  eve and a c h i  eve - a 1 1 keep track of a list of goals that must be protected. In the 
taxi example, we would trivially achieve the have -money goal and then try to achieve 
son - a t  - school, while protecting the goal have -money. An operator would only 
be appropriate if it didn't delete any protected goals. This approach still requires 
some kind of repair or search through multiple solution paths. If we tried only 
one ordering-achieving son - a t  - school and then trying to protect it while achieving 
have - money-then we would not find the solution. David Warren's WARPLAN planner 
makes good use of the idea of protected goals. 

4.17 The Lack of Descriptive Power Problem 

It would be a lot more economical, in the maze domain, to have one operator that 
says we can move from here to there if we are at "here," and if there is a connection 
from "here" to "there." Then the input to a particular problem could list the valid 
connections, and we could solve any maze with this single operator. Similarly, we 
have defined an operator where the monkey pushes the chair from the door to the 
middle of the room, but it would be better to have an operator where the monkey 
can push the chair from wherever it is to any other nearby location, or better yet, an 
operator to push any "pushable" object from one location to a nearby one, as long 
as there is no intervening obstacle. The conclusion is that we would like to have 
variables in the operators, so we could say something like: 

(op ' (push X f rom A t o  B) 
:preconds '((monkey a t  A) (X a t  A) (pushable X) (pa th  A B) )  
: a d d - l i s t  '((monkey a t  B) ( X  a t  B ) )  
: d e l - l i s t  '((monkey a t  A) (X a t  A ) ) )  

Often we want to characterize a state in terms of something more abstract than a 
list of conditions. For example, in solving a chess problem, the goal is to have the 
opponent in checkmate, a situation that cannot be economically described in terms 
of primitives like ( b l  ack k i n g  on A 41, so we need to be able to state some kind 



of constraint on the goal state, rather than just listing its components. We might 
want to be able to achieve a disjunction or negation of conditions, where the current 
formalism allows only a conjunction. 

It also is important, in many domains, to be able to state problems dealing with 
time: we want to achieve X before time To, and then achieve Y before time T2, but 
not before TI. Scheduling work on a factory floor or building a house are examples 
of planning where time plays an important role. 

Often there are costs associated with actions, and we want to find a solution 
with minimal, or near-minimal costs. The cost might be as simple as the number of 
operators required for a solution-we saw in the blocks world domain that sometimes 
an operator that could be applied immediately was ignored, and an operator that 
needed several preconditions satisfied was chosen instead. Or we may be satisfied 
with a partial solution, if a complete solution is impossible or too expensive. We may 
also want to take the cost (and time) of computation into account. 

4.18 The Perfect Information Problem 

All the operators we have seen so far have unambiguous results; they add or delete 
certain things from the current state, and GPS always knows exactly what they are 
going to do. In the real world, things are rarely so cut and dried. Going back to the 
problem of becoming rich, one relevant operator would be playing the lottery. This 
operator has the effect of consuming a few dollars, and once in a while paying off a 
large sum. But we have no way to represent a payoff "once in a while." Similarly, 
we have no way to represent unexpected difficulties of any kind. In the nursery 
school problem, we could represent the problem with the car battery by having GPS 

explicitly check to see if the car was working, or if it needed a battery, every time 
the program considered the driving operator. In the real world, we are seldom this 
careful; we get in the car, and onlywhen it doesn't start do we consider the possibility 
of a dead battery. 

4.19 The Interacting Goals Problem 

People tend to have multiple goals, rather than working on one at a time. Not only do 
I want to get the kid to nursery school, but I want to avoid getting hit by another car, 
get to my job on time, get my work done, meet my friends, have some fun, continue 
breathing, and so on. I also have to discover goals on my own, rather than work on 
a set of predefined goals passed to me by someone else. Some goals I can keep in 
the background for years, and then work on them when the opportunity presents 
itself. There is never a notion of satisfying all possible goals. Rather, there is a 



continual process of achieving some goals, partially achieving others, and deferring 
or abandoning still others. 

In addition to having active goals, people also are aware of undesirable situations 
that they are trying to avoid. For example, suppose I have a goal of visiting a friend 
in the hospital. This requires being at the hospital. One applicable operator might 
be to walk to the hospital, while another would be to severly injure myself and wait 
for the ambulance to take me there. The second operator achieves the goal just as 
well (perhaps faster), but it has an undesirable side effect. This could be addressed 
either with a notion of solution cost, as outlined in the last section, or with a list of 
background goals that every solution attempts to protect. 

Herb Simon coined the term "satisficing" to describe the strategy of satisfying a 
reasonable number of goals to a reasonable degree, while abandoning or postponing 
other goals. GPS only knows success and failure, and thus has no way of maximizing 
partial success. 

4.20 The End of GPS 

These last four sections give a hint as to the scope of the limitations of GPS. In fact, it 
is not a very general problem solver at all. It is general in the sense that the algorithm 
is not tied to a particular domain; we can change domain by changing the operators. 
But GPS fails to be general in that it can't solve many interesting problems. It is 
confined to small tricks and games. 

There is an important yet subtle reason why GPS was destined to fail, a reason 
that was not widely appreciated in 1957 but now is at the core of computer science. 
It is now recognized that there are problems that computers can't solve-not because 
a theoretically correct program can't be written, but because the execution of the 
program will take too long. A large number of problems can be shown to fall into 
the class of "NP-hard problems. Computing a solution to these problems takes 
time that grows exponentially as the size of the problem grows. This is a property 
of the problems themselves, and holds no matter how clever the programmer is. 
Exponential growth means that problems that can be solved in seconds for, say, a 
five-input case may take trillions of years when there are 100 inputs. Buying a faster 
computer won't help much. After all, if a problem would take a trillion years to solve 
on your computer, it won't help much to buy 1000 computers each 1000 times faster 
than the one you have: you're still left with a million years wait. For a theoretical 
computer scientist, discovering that a problem is NP-hard is an end in itself. But for 
an A1 worker, it means that the wrong question is being asked. Many problems are 
NP-hard when we insist on the optimal solution but are much easier when we accept 
a solution that might not be the best. 

The input to GPS is essentially a program, and the execution of GPS is the execution 
of that program. If GPS'S input language is general enough to express any program, 



then there will be problems that can't be solved, either because they take too long 
to execute or because they have no solution. Modern problem-solving programs 
recognize this fundamental limitation, and either limit the class of problems they try 
to solve or consider ways of finding approximate or partial solutions. Some problem 
solvers also monitor their own execution time and know enough to give up when a 
problem is too hard. 

The following quote from Drew McDermott's article "Artificial Intelligence Meets 
Natural Stupidity" sums up the current feeling about GPS. Keep it in mind the next 
time you have to name a program. 

Remember GPS? By now, "GPS" is a colorless term denoting a particularly stupid 
program to solve puzzles. But it  originally meant "General Problem Solver," 
which caused everybody a lot of needless excitement and distraction. It should 
have been called LFGNS-"LOC~~ Feature-Guided Network Searcher. " 

Nonetheless, GPS has been a useful vehicle for exploring programming in general, 
and A1 programming in particular. More importantly, it has been a useful vehicle 
for exploring "the nature of deliberation." Surely we'll admit that Aristotle was 
a smarter person than you or me, yet with the aid of the computational model of 
mind as a guiding metaphor, and the further aid of a working computer program 
to help explore the metaphor, we have been led to a more thorough appreciation of 
means-ends analysis-at least within the computational model. We must resist the 
temptation to believe that all thinking follows this model. 

The appeal of A1 can be seen as a split between means and ends. The end of a 
successful A1 project can be a program that accomplishes some useful task better, 
faster, or cheaper than it could be before. By that measure, GPS is a mostly a failure, 
as it doesn't solve many problems particularly well. But the means toward that end 
involved an investigation and formalization of the problem-solving process. By that 
measure, our reconstruction of GPS is a success to the degree in which it leads the 
reader to a better understanding of the issues. 

4.21 History and References 

The original GPS is documented in Newel1 and Simon's 1963 paper and in their 1972 
book, Human Problem Solving, as well as in Ernst and Newel1 1969. The implementa- 
tion in this chapter is based on the STRIPS program (Fikes and Nilsson 1971). 

There are other important planning programs. Earl Sacerdoti's ABSTRIPS program 
was a modification of STRIPS that allowed for hierarchical planning. The idea was to 
sketch out a skeletal plan that solved the entire program at an abstract level, and then 
fill in the details. David Warren's WARPLAN planner is covered in Warren 1974a,b 
and in a section of Coelho and Cotta 1988. Austin Tate's NONLIN system (Tate 1977) 



achieved greater efficiency by considering a plan as a partially ordered sequence of 
operations rather than as a strictly ordered sequence of situations. David Chapman's 
TWEAK synthesizes and formalizes the state of the art in planning as of 1987. 

All of these papers-and quite a few other important planning papers-are 
reprinted in Allen, Hendler, and Tate 1990. 

4.22 Exercises 

p Exercise 4.1 [rn] It is possible to implement dbg using a single call to fo rmat .  Can 
you figure out the format directives to do this? 

p Exercise 4.2 [m] Write a function that generates all permutations of its input. 

Exercise 4.3 [h] GPS does not recognize the situation where a goal is accidentally 
solved as part of achieving another goal. Consider the goal of eating dessert. Assume 
that there are two operators available: eating ice cream (which requires having the 
ice cream) and eating cake (which requires having the cake). Assume that we can 
buy a cake, and that the bakery has a deal where it gives out free ice cream to each 
customer who purchases and eats a cake. (1) Design a list of operators to represent 
this situation. (2) Give gps the goal of eating dessert. Show that, with the right list 
of operators, gps will decide to eat ice cream, then decide to buy and eat the cake in 
order to get the free ice cream, and then go ahead and eat the ice cream, even though 
the goal of eating dessert has already been achieved by eating the cake. (3) Fix gps so 
that it does not manifest this problem. 

The following exercises address the problems in version 2 of the program. 

p Exercise 4.4 [h] The  Not Looking after You Don't Leap Problem. Write a program that 
keeps track of the remaining goals so that it does not get stuck considering only one 
possible operation when others will eventually lead to the goal. Hint: have ac h i  eve 
take an extra argument indicating the goals that remain to be achieved after the 
current goal is achieved. achi eve should succeed only if it can achieve the current 
goal and also ac h i  eve - a 1 1 the remaining goals. 

p Exercise 4.5 [dl Write a planning program that, like Warren's WARPLAN, keeps 
track of the list of goals that remain to be done as well as the list of goals that have 
been achieved and should not be undone. The program should never undo a goal 
that has been achieved, but it should allow for the possibility of reordering steps that 



have already been taken. In this way, the program will solve the Sussman anomaly 
and similar problems. 

p Exercise 4.6 [dl The Lack of Descriptive PoweuProblem. Read chapters 5 and 6 to learn 
about pattern matching. Write a version of GPS that uses the pattern matching tools, 
and thus allows variables in the operators. Apply it to the maze and blocks world 
domains. Your program will be more efficient if, like Chapman's TWEAK program, 
you allow for the possibility of variables that remain unbound as long as possible. 

p Exercise 4.7 [dl Speculate on the design of a planner that can address the Perfect 
Information and Interacting Goals problems. 

4.23 Answers 

Answer 4.1 In this version, the format string "-&-VsT"? " breaks down as follows: 
" "&" means go to a fresh line; " "V@TM means insert spaces (@T) but use the next 
argument (V) to get the number of spaces. The " -?  " is the indirection operator: use 
the next argument as a format string, and the argument following that as the list of 
arguments for the format string. 

(defun dbg-indent (id indent format-string &rest args) 

"Print indented debugging info if (DEBUG ID) has been specified. " 
(when (member id *dbg-ids*) 

(format *debug-io* ""&"V@T"?" (* 2 indent) format-string args))) 



Answer 4.2 Here is one solution. The sophisticated Lisp programmer should also 
see the exercise on page 680. 

(defun permutations ( b a g )  
"Return a l i s t  of all  the permutations of the input." 
;; If the input i s  n i l ,  there i s  only one permutation: 
;; nil i t se l f  
( i f  ( n u l l  bag) 

' ( 0 )  
;; Otherwise, take a n  element, e ,  out of the bag.  
;; Generate a l l  permutations of the remaining elements, 
;; And add e to the front of each of these. 
;; Do this  for all  possible e to generate all  permutations. 
(mapcan # '  (1  ambda (e l  

(mapcar #'(lambda ( p )  (cons e p ) )  
(permutations 

(remove e bag :count 1 : tes t  # ' e q ) ) ) )  
b a g )  1)  



CHAPTER 3 

ELIZA: Dialog with a Machine 

It is said that to explain is to explain away. 

-Joseph Weizenbaum 
MIT computer scientist 

his chapter and the rest of part I will examine three more well-known A1 programs of 
the 1960s. ELIZA held a conversation with the user in which it simulated a psychother- 
apist. STUDENT solved word problems of the kind found in high school algebra books, 

and MACSYMA solved a variety of symbolic mathematical problems, including differential and 
integral calculus. We will develop versions of the first two programs that duplicate most of 
the essential features, but for the third we will implement only a tiny fraction of the original 
program's capabilities. 

All three programs make heavy use of a technique called pattern matching. Part I serves to 
show the versatility-and also the limitations-of this technique. 

Of the three programs, the first two process input in plain English, and the last two solve non- 
trivial problems in mathematics, so there is some basis for describing them as being "intelligent." 
On the other hand, we shall see that this intelligence is largely an illusion, and that ELIZA in 
particular was actually designed to demonstrate this illusion, not to be a "serious" A1 program. 



ELIZA was one of the first programs to feature English output as well as input. 
The program was named after the heroine of Pygmalion, who was taught to speak 
proper English by a dedicated teacher. ELIZA'S principal developer, MIT professor 
Joseph Weizenbaum, published a paper on ELIZA in the January 1966 issue of the 
Communications of the Association for Computing Machinery. The introduction to that 
paper is reproduced in its entirety here: 

It is said that to explain is to explain away. This maxim is nowhere so well 
fulfilled as in the area of computer programming, especially in what is called 
heuristic programming and artificial intelligence. For in those realms machines 
are made to behave in wondrous ways, often sufficient to dazzle even the most 
experienced observer. But once a particular program is unmasked, once its inner 
workings are explained in language sufficiently plain to induce understanding, 
its magic crumbles away; it stands revealed as a mere collection of procedures, 
each quite comprehensible. The observer says to himse$ " I could have written 
that." With that thought he moves the program in question from the shelf 
marked "intelligent," to that reserved for curios, fit to be discussed only with 
people less enlightened than he. 

The object of this paper is to cause just such a re-evaluation of the program about 
to be "ixplained." Few programs ever needed it more. 

Let me point out in passing that the main object of this book is to cause the reader 
to say to him or herself, "I could have written that." It is hoped that in some cases 
this will be because the reader has gained something, and not solely because the 
programs in question have lost their ability to dazzle. 

Let's start our investigation of ELIZA by looking at a sample dialog from the 
Weizenbaum article. ELIZA was designed to be instructed by a variety of scripts, or 
patterns of interaction. In fact it had several scripts, including ones in German and 
Welsh. But the only script that was used to any extent was in English, and it made 
ELIZA emulate a Rogerian psychoanalyst. Rogerians are "nondirective"-they try to 
let the patient reveal himself. This is an easy script for ELIZA to follow, because it 
involves being passive and reacting, rather than volunteering new information. In 
the listing that follows, the user's input is in mixed case, and ELIZA'S response is in 
capitals: 

Men a r e  a l l  a l i k e .  
IN WHAT WAY 
They're always bugging us about something o r  another.  
CAN YOU BE MORE SPECIFIC 
Well ,  my boy f r iend  made me come here. 
YOUR BOYFRIEND MADE YOU COME HERE 
He says I 'm depressed much o f  t h e  t ime.  
I AM SORRY TO HEAR YOU ARE DEPRESSED 



I t ' s  t r u e .  I am unhappy. 
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY 
I need some help,  t h a t  much seems c e r t a i n .  
WHAT WOULD I T  MEAN TO YOU I F  YOU GOT SOME HELP 
Perhaps I cou ld  l e a r n  t o  ge t  along w i t h  my mother. 
TELL ME MORE ABOUT YOUR FAMILY 

This seems quite impressive; the program is responding reasonably to a variety of 
inputs and appears to be exhibiting true "understanding." But, as Weizenbaum 
explains, this appearance is an illusion, and the program has finessed the difficult 
task of understanding by carefully recognizing, transforming, and echoing pieces 
of the input. The procedure is to look for specific patterns, based on a key word 
or words in the input. For example, whenever the program sees the words "alike" 
or "same," it prints a message asking about similarity, in this case, "IN WHAT WAY ." 
Other patterns are more complicated. In the next to last exchange, ELIZA first throws 
away everything after the comma, and then uses a pattern that looks for input of 
the form "I need X and transforms it to the output "What would it mean to you if 
you got X," where X is the phrase "some help" in this case. The great advantage of 
this approach is that the response will make sense for a variety of inputs: "I need 
a vacation" will elicit "What would it mean to you if you got a vacation." This will 
work automatically, without having to tell the program the difference between "some 
help" and "a vacation." The disadvantage is that the program will sometimes make 
silly responses: "I need this like a hole in the h e a d  will be answered with "What 
would it mean to you if you got this like a hole in the head." In fact, the program only 
makes any sense at all if it is receiving input from someone who makes sense-and 
someone who interprets its answers charitably. When given "I need gibble plix zzq," 
ELIZA would reply" What would it mean to you if you got gibble plix zzq," without any 
inkling that something is wrong. Another example of the original ELIZA program has 
it communicating with another program, PARRY, which was written by Dr. Kenneth 
Colby to mimic paranoid behavior. Part of the conversation follows, with ELIZA again 
in capitals and PARRY in mixed case: 

I don ' t  understand your  motives. 
WHY DON'T YOU UNDERSTAND MY MOTIVES? 
Shoul dn ' t I be? 
WHY DO YOU SAY THAT JUST NOW? 
That 's  j u s t  t h e  way i t  i s .  
SUPPOSE THAT'S JUST THE WAY I T  WERE NOT. 
So? 
I AM NOT SURE I UNDERSTAND YOU FULLY. 
You harp on t h e  same quest ions t o o  much. 
WHAT DOES THAT SIMILARITY SUGGEST TO YOU? 
I d o n ' t  ge t  you. 
DO YOU WISH THAT YOU DID GET I ?  



This suggests that neither ELIZA nor PARRY had a deep understanding of the dialog. 
When there is a human to take on most of the burden of carrying forth the conver- 
sation, these programs can be convincing, but when the human is taken out of the 
conversation, the weaknesses of the programs are revealed. 

5.1 Describing and Specifying ELIZA 

Now that we have an idea of what ELIZA is like, we can begin the description and spec- 
ification of the program, and eventually move to the implementation and debugging. 

The ELIZA algorithm can be described simply as: (1) read an input, (2) find a 
pattern that matches the input, (3) transform the input into a response, and (4) print 
the response. These four steps are repeated for each input. 

The specification and implementation of steps (1) and (4) are trivial: for (I), use 
the built-in read function to read a list of words, and for (4) use pri n t  to print the list 
of words in the response. 

Of course, there are some drawbacks to this specification. The user will have 
to type a real list-using parentheses-and the user can't use characters that are 
special to read, like quotation marks, commas, and periods. So our input won't 
be as unconstrained as in the sample dialog, but that's a small price to pay for the 
convenience of having half of the problem neatly solved. 

5.2 Pattern Matching 

The hard part comes with steps (2) and (3)-this notion of pattern matching and 
transformation. There are four things to be concerned with: a general pattern and 
response, and a specific input and transformation of that input. Since we have agreed 
to represent the input as a list, it makes sense for the other components to be lists 
too. For example, we might have: 

Pattern: ( i  need a  X I  
Response: (what would i t  mean t o  you i f  you go t  a  X ? )  

Input: ( i  need a  vacat ion)  
Transformation: (what would i t  mean t o  you i f  you go t  a  vacat ion ? 

The pattern matcher must match the literals i with i ,  need with need, and a with a, 
as well as match the variable X with vacati on. This presupposes that there is some 
way of deciding that X is a variable and that need is not. We must then arrange to 
substitute va  ca t i on for X within the response, in order to get the final transformation. 



Ignoring for a moment the problem of transforming the pattern into the response, 
we can see that this notion of pattern matching is just a generalization of the Lisp 
function equa 1. Below we show the function s i mpl e - equal, which is like the built-in 
function equa 1 ,' and the function p a t  - ma t c h, which is extended to handle pattern- 
matching variables: 

(defun simple-equal ( x  y )  
"Are x  and y  equal? (Don' t  check i n s i d e  s t r i n g s . ) "  
( i f  ( o r  (atom x )  (atom y ) )  

(eq l  x  y )  
(and (simple-equal ( f i r s t  x )  ( f i r s t  y ) )  

(simple-equal ( r e s t  x )  ( r e s t  y ) ) ) ) )  

(defun pat-match ( p a t t e r n  i n p u t )  
"Does p a t t e r n  match i n p u t ?  Any v a r i a b l e  can match anyth ing. "  
( i f  ( v a r i a b l e - p  p a t t e r n )  

t 
( i f  ( o r  (atom p a t t e r n )  (atom i n p u t ) )  

(eq l  p a t t e r n  i n p u t )  
(and (pat-match ( f i r s t  p a t t e r n )  ( f i r s t  i n p u t ) )  

(pat-match ( r e s t  p a t t e r n )  ( r e s t  i n p u t ) ) ) ) ) )  

p Exercise 5.1 [s] Would it be a good idea to replace the complex and  form in 
pat-match with the simpler (every #'pat-match pattern input)? 

Before we can go on, we need to decide on an implementation for pattern- 
matching variables. We could, for instance, say that only a certain set of symbols, 
such as {X,Y,Z}, are variables. Alternately, we could define a structure of type 
va r i a bl e, but then we'd have to type something verbose like (ma ke - va r i a bl e : name 
' X ) every time we wanted one. Another choice would be to use symbols, but to dis- 
tinguish variables from constants by the name of the symbol. For example, in Prolog, 
variables start with capital letters and constants with lowercase. But Common Lisp 
is case-insensitive, so that won't work. Instead, there is a tradition in Lisp-based A1 
programs to have variables be symbols that start with the question mark character. 

So far we have dealt with symbols as atoms-objects with no internal structure. 
But things are always more complicated than they first appear and, as in Lisp as 
in physics, it turns out that even atoms have components. In particular, symbols 
have names, which are strings and are accessible through the symbol -name function. 
Strings in turn have elements that are characters, accessible through the function 
char. The character '?' is denoted by the self-evaluating escape sequence #\? .  So 
the predicate va  r i  a bl e - p can be defined as follows, and we now have a complete 
pattern matcher: 

 he difference is that simp1 e-equal does not handle strings. 



(defun v a r i a b l e - p  ( x )  
" I s  x  a  v a r i a b l e  (a  symbol beginn ing w i t h  ' ? ' I ? "  
(and (symbolp x )  (equal (char  (symbol-name x )  0 )  # \ ? ) I )  

> (pat-match ' ( I  need a  ?X) ' ( I  need a  vaca t ion ) )  
T  

> (pat-match ' ( I  need a  ?XI ' ( I  r e a l l y  need a  vaca t ion ) )  
NIL 

In each case we get the right answer, but we don't get any indication of what ? X  is, so 
we couldn't substitute it into the response. We need to modify p a t  -match to return 
some kind of table of variables and correspondingvalues. In making this choice, the 
experienced Common Lisp programmer can save some time by being opportunistic: 
recognizing when there is an existing function that will do a large part of the task at 
hand. What we want is to substitute values for variables throughout the response. 
The alert programmer could refer to the index of this book or the Common Lisp 
referencemanualandfindthefunctions substitute, subst,and subl i s .  Allof these 
substitute some new expression for an old one within an expression. It turns out that 
subl i s is most appropriate because it is the only one that allows us to make several 
substitutions all at once. s ubl i s takes two arguments, the first a list of old-new pairs, 
and the second an expression in which to make the substitutions. For each one of 
the pairs, the car is replaced by the cdr. In other words, we would form each pair 
with something like ( cons 01 d new 1. (Such a list of pairs is known as an association 
list, or a-list, because it associates keys with values. See section 3.6.) In terms of the 
example above, we would use: 

> ( s u b l i s  ' ( ( ? X  . vaca t ion ) )  
' (what would i t  mean t o  you i f  you go t  a  ?X ? )  

(WHAT WOULD I T  MEAN TO YOU I F  YOU GOT A  VACATION ? )  

Now we need to arrange for pat-match to return an a-list, rather than just T for 
success. Here's a first attempt: 

(defun pat-match ( p a t t e r n  i n p u t )  
"Does p a t t e r n  match i n p u t ?  WARNING: buggy ve rs ion . "  
( i f  ( v a r i a b l e - p  p a t t e r n )  

( l i s t  (cons p a t t e r n  i n p u t ) )  
( i f  ( o r  (atom p a t t e r n )  (atom i n p u t ) )  

(eq l  p a t t e r n  i n p u t )  
(append (pat-match ( f i r s t  p a t t e r n )  ( f i r s t  i n p u t ) )  

(pat-match ( r e s t  p a t t e r n )  ( r e s t  i n p u t ) ) ) ) ) )  

This implementation looks reasonable: it returns ana-list of one element if the pattern 
is a variable, and it appends alists if the pattern and input are both lists. However, 



there are several problems. First, the test ( eq l  p a t t e r n  i nput 1 may return T, which 
is not a list, so append will complain. Second, the same test might return nil, which 
should indicate failure, but it will just be treated as a list, and will be appended to 
the rest of the answer. Third, we haven't distinguished between the case where the 
match fails-and returns nil-versus the case where everything matches, but there 
are no variables, so it returns the null a-list. (This is the semipredicate problem 
discussed on page 127.) Fourth, we want the bindings of variables to agree-if ? X  is 
used twice in the pattern, we don't want it to match two different values in the input. 
Finally, it is inefficient for p a t  -match to check both the fi r s t  and r e s t  of lists, even 
when the corresponding f i r s t  parts fail to match. (Isn't it amazing that there could 
be five bugs in a seven-line function?) 

We can resolve these problems by agreeing on two major conventions. First, it is 
very convenient to make p a t  -match a true predicate, so we will agree that it returns 
n i  1 only to indicate failure. That means that we will need a non-nil value to represent 
the empty binding list. Second, if we are going to be consistent about the values of 
variables, then the f i r s  t will have to know what the r e s t  is doing. We canaccomplish 
this by passing the binding list as a third argument to pat-match. We make it an 
optional argument, because we want to be able to say simply ( p a t  -match a b 1. 

To abstract away from these implementation decisions, we define the constants 
f a  i 1 and no - bi  nd i ngs to represent the two problematic return values. The special 
form defconstant  is used to indicate that these values will not change. (It is cus- 
tomary to give special variables names beginning and ending with asterisks, but this 
convention usually is not followed for constants. The reasoning is that asterisks 
shout out, "Careful! I may be changed by something outside of this lexical scope." 
Constants, of course, will not be changed.) 

(defconstant  f a i l  n i l  " I n d i c a t e s  pat-match f a i l u r e " )  

(defconstant  no-b ind ings ' ( ( t  . t ) )  
" I n d i c a t e s  pat-match success, w i t h  no v a r i a b l e s . " )  

Next, we abstract away from assoc by introducing the following four functions: 

(defun ge t -b ind ing  ( v a r  b ind ings )  
"F ind a ( v a r i a b l e  . value)  p a i r  i n  a  b ind ing  l i s t . "  
(assoc var  b ind ings)  

(defun b ind ing -va l  (b ind ing )  
"Get t h e  va lue p a r t  o f  a  s i n g l e  b ind ing . "  
( c d r  b i n d i n g ) )  

(defun lookup ( v a r  b ind ings )  
"Get t h e  va lue p a r t  ( f o r  v a r )  f rom a b i n d i n g  l i s t . "  
(b ind ing-va l  ( g e t - b i n d i n g  var  b ind ings )  1) 



(defun extend- b i  ndi ngs (var  val bindings 
"Add a  (var  . value) p a i r  t o  a  b inding l i s t . "  
(cons (cons var va l )  b ind ings) )  

Now that variables and bindings are defined, pat -match  is easy. It consists of five 
cases. First, if the binding list is f a i  1,  then the match fails (because some previous 
match must have failed). If the pattern is a single variable, then the match returns 
whatever match - va r i a bl e returns; either the existing binding list, an extended one, 
or f a  i 1 . Next, if both pattern and input are lists, we first call p a t  - ma t c  h  recursively 
on the first element of each list. This returns a binding list (or f a  i 1 ), which we use 
to match the rest of the lists. This is the only case that invokes a nontrivial function, 
so it is a good idea to informally prove that the function will terminate: each of the 
two recursive calls reduces the size of both pattern and input, and p a t  -match checks 
the case of atomic patterns and inputs, so the function as a whole must eventually 
return an answer (unless both pattern and input are of infinite size). If none of these 
four cases succeeds, then the match fails. 

(defun pat-match (pa t te rn  inpu t  &optional (bindings no-bindings))  
"Match pa t te rn  against inpu t  i n  the context o f  the b indings" 
(cond ( (eq  bindings f a i l )  f a i l )  

( ( va r i ab l  e-p pa t te rn )  
(match-variable pa t te rn  inpu t  b indings))  

( (eq l  pa t te rn  i npu t )  b indings)  
((and (consp pa t te rn )  (consp i n p u t ) )  

(pat-match ( r e s t  pa t te rn )  ( r e s t  i npu t )  
(pat-match ( f i r s t  pa t te rn )  ( f i r s t  i npu t )  

bindings 1) 
( t  f a i l ) ) )  

(defun match-variable (var  inpu t  b indings)  
"Does VAR match inpu t?  Uses (o r  updates) and returns bindings." 
( l e t  ( (b ind ing  (ge t -b ind ing  var b ind ings) ) )  

(cond ( ( no t  b inding)  (extend-bindings var inpu t  b indings))  
((equal inpu t  (b inding-val  b ind ing) )  b indings)  
( t  f a i l ) ) ) )  

We can now test pa t -ma tch  and see how it works: 

> (pat-match ' ( i  need a  ? X I  ' ( i  need a  vacat ion))  
((?X . VACATION) ( T  . T I )  

The answer is a list of variable bindings in dotted pair notation; each element of 
the list is a (variable . value 1 pair. The (T . TI is a remnant from no - b i  n d i  ngs. It 
does no real harm, but we can eliminate it by making ex tend-  b i  n d i  ngs a little more 
complicated: 



(defun extend-bindings (va r  va l  b ind ings)  
"Add a (va r  . value)  p a i r  t o  a b ind ing  l i s t . "  
(cons (cons var v a l )  

;; Once we add a " r e a l "  b ind ing,  
;; we can ge t  r i d  o f  t h e  dummy no-bindings 
(i f (eq b i  nd i  ngs no- b i  nd i  ngs) 

n i  1  
b i  nd i  ngs 

> ( s u b l i s  (pat-match '(i need a ?X) ' ( i  need a vaca t ion ) )  
'(what would i t  mean t o  you i f  you go t  a  ?X ? ) )  

(WHAT WOULD I T  MEAN TO YOU I F  YOU GOT A VACATION ? )  

> (pat-match ' ( i  need a ?X) '(i r e a l l y  need a vaca t ion ) )  
NIL 

> (pat-match ' ( t h i s  i s  easy) ' ( t h i s  i s  easy)) 
( ( T  . T I )  

> (pat-match '(?X i s  ?X) ' ( ( 2  + 2) i s  4 ) )  
NIL 

> (pat-match '(?X i s  ?X) ' ( ( 2  + 2) i s  (2  + 2 ) ) )  
((?X 2 + 2 ) )  

> (pat-match '(?P need . ? X )  ' ( i  need a long  vaca t ion ) )  
( (?X A LONG VACATION) ( ? P  . I ) )  

Notice the distinction between N I L and ( (T  . T ) 1. The latter means that the match 
succeeded, but there were no bindings to return. Also, remember that ( ?X 2 + 2 ) 
meansthesameas(?X . (2 + 2 ) ) .  

A more powerful implementation of p a t  -match is given in chapter 6. Yet another 
implementation is given in section 10.4. It is more efficient but more cumbersome 
to use. 

5.3 Segment Pattern Matching 

In the pattern ( ? P need . ?X 1, the variable ?X matches the rest of the input list, 
regardless of its length. This is in contrast to ?P, which can only match a single 
element, namely, the first element of the input. For many applications of pattern 
matching, this is fine; we only want to match corresponding elements. However, 
ELIZA is somewhat different in that we need to account for variables in any position 
that match a sequence of items in the input. We will call such variables segment 
variables. We will need a notation to differentiate segment variables from normal 



variables. The possibilities fall into two classes: either we use atoms to represent 
segment variables and distinguish them by some spelling convention (as we did to 
distinguish variables from constants) or we use a nonatomic construct. We will 
choose the latter, using a list of the form ( ?* variable) to denote segment variables. 
The symbol ?* is chosen because it combines the notion of variable with the Kleene- 
star notation. So, the behavior we want from p a t  -match is now: 

> (pat-match ' ( ( ? *  ?p)  need (?*  ? X I )  
'(Mr Hu lo t  and I need a  vaca t ion ) )  

( ( ? P  MR HULOT AND I )  ( ? X  A  VACATION)) 

In other words, when both pattern and input are lists and the first element of the 
pattern is a segment variable, then the variable will match some initial part of the 
input, and the rest of the pattern will attempt to match the rest. We can update 
p a t  -match  to account for this by adding a single cond-clause. Defining the predicate 
to test for segment variables is also easy: 

(defun pat-match ( p a t t e r n  i n p u t  &op t iona l  (b ind ings  no-b ind ings ) )  
"Match p a t t e r n  aga ins t  i n p u t  i n  t h e  con tex t  o f  t h e  b ind ings "  
(cond ( ( e q  b ind ings f a i l )  f a i l )  

( ( v a r i a b l e - p  p a t t e r n )  
(match-var iab le  p a t t e r n  i n p u t  b i n d i n g s ) )  

( (eq l  p a t t e r n  i n p u t  b ind ings 
( (segment-pat tern-p p a t t e r n )  . 9 *** 

(segment-match p a t t e r n  i n p u t  b i n d i n g s ) )  ; *** 
((and (consp p a t t e r n )  (consp i n p u t ) )  

(pat-match ( r e s t  p a t t e r n )  ( r e s t  i n p u t )  
(pat-match ( f i r s t  p a t t e r n )  ( f i r s t  i n p u t )  

b i n d i n g s ) ) )  
( t  f a i l ) ) )  

(defun segment-pattern-p ( p a t t e r n )  
" I s  t h i s  a  segment matching p a t t e r n :  ( ( ? *  v a r )  . p a t ) "  
(and (consp p a t t e r n )  

( s t a r t s - w i t h  ( f i r s t  p a t t e r n )  ' ? * ) ) I  

In writing segment -match, the important question is how much of the input the 
segment variable should match. One answer is to look at the next element of the 
pattern (the one after the segment variable) and see at what position it occurs in the 
input. If it doesn't occur, the total pattern can never match, and we should f a  i 1 . If 
it does occur, call its position pos. We will want to match the variable against the 
initial part of the input, up to pos. But first we have to see if the rest of the pattern 
matches the rest of the input. This is done by a recursive call to p a t  -match. Let the 
result of this recursive call be named b2. If b2 succeeds, then we go ahead and match 
the segment variable against the initial subsequence. 



The tricky part is when b2 fails. We don't want to give up completely, because 
it may be that if the segment variable matched a longer subsequence of the input, 
then the rest of the pattern would match the rest of the input. So what we want is to 
try segment -match again, but forcing it to consider a longer match for the variable. 
This is done by introducing an optional parameter, s tar t ,  which is initially 0 and is 
increased with each failure. Notice that this policy rules out the possibility of any 
kind of variable following a segment variable. (Later we will remove this constraint.) 

(defun segment-match ( p a t t e r n  i n p u t  b ind ings  &op t iona l  ( s t a r t  0 ) )  
"Match t h e  segment p a t t e r n  ( ( ? *  va r )  . p a t )  against  i n p u t . "  
( l e t  ( ( v a r  (second ( f i r s t  p a t t e r n ) ) )  

(pa t  ( r e s t  p a t t e r n ) ) )  
( i f  ( n u l l  p a t )  

(match-var i  abl e  var  i n p u t  b ind ings )  
;; We assume t h a t  p a t  s t a r t s  w i t h  a  constant  
;; I n  o the r  words, a  p a t t e r n  c a n ' t  have 2  consecut ive vars 
( l e t  ((pos ( p o s i t i o n  ( f i r s t  p a t )  i n p u t  

: s t a r t  s t a r t  : t e s t  # ' e q u a l ) ) )  
( i f  ( n u l l  pos) 

f a i l  
( l e t  ( (b2  (pat-match p a t  (subseq i n p u t  pos) b i n d i n g s ) ) )  

;; I f  t h i s  match f a i l e d ,  t r y  another longer  one 
;; I f  i t  worked, check t h a t  the  va r iab les  match 
( i f  (eq b2 f a i l )  

(segment-match p a t t e r n  i n p u t  b ind ings (+ pos 1 ) )  
(match-var iab le  var  (subseq i n p u t  0  pos) b 2 ) ) ) ) ) ) ) )  

Some examples of segment matching follow: 

> (pat-match ' ( ( ? *  ?p) need (?* ?XI) 
' (Mr Hu lo t  and I need a  vaca t ion )  

( ( ? P  MR HULOT AND I )  (?X A  VACATION)) 

> (pat-match ' ( ( ? *  ?XI i s  a  (?* ? y ) )  ' (what he i s  i s  a  f o o l ) )  
((?X WHAT HE I S )  ( ? Y  FOOL)) 

The first of these examples shows a fairly simple case: ?p  matches everything up 
to need, and ?x matches the rest. The next example involves the more complicated 
backup case. First ?x matches everything up to the first i s (this is position 2, since 
counting starts at 0 in Common Lisp). But then the pattern a fails to match the input 
i s, so segment -match tries again with starting position 3. This time everythingworks; 
i s matches i s, a matches a, and ( ?* ?y 1 matches f o o l .  



Unfortunately, thisversionof segment -match does not matchas much as it should. 
Consider the following example: 

> (pat-match ' ( ( ? *  ? X I  a  b  (?*  ? X I )  ' ( 1  2  a  b  a  b  1 2  a  b ) )  + NIL 

This fails because ?x is matched against the subsequence (1 21, and then 
the remaining pattern succesfully matches the remaining input, but the final 
call to match - va r i a bl  e fails, because ?x has two different values. The fix is to call 
match - va r i  a bl  e before testing whether the b2  fails, so that we will be sure to try 
segment -match again with a longer match no matter what the cause of the failure. 

(defun segment-match ( p a t t e r n  i n p u t  b ind ings  &op t iona l  ( s t a r t  0 ) )  

"Match t h e  segment p a t t e r n  ( (?*  v a r )  . p a t )  against  i n p u t . "  

( l e t  ( ( v a r  (second ( f i r s t  p a t t e r n ) ) )  

( p a t  ( r e s t  p a t t e r n ) ) )  

( i f  ( n u l l  p a t )  

(match-var iab le  var  i n p u t  b ind ings )  

;; We assume t h a t  p a t  s t a r t s  w i t h  a  constant  

;; I n  o the r  words, a  p a t t e r n  c a n ' t  have 2  consecut ive vars 

( l e t  ((pos ( p o s i t i o n  ( f i r s t  p a t )  i n p u t  

: s t a r t  s t a r t  : t e s t  # ' e q u a l ) ) )  

( i f  ( n u l l  pos) 

f a i  1 

( l e t  ( (b2  (pat-match 

p a t  (subseq i n p u t  pos) 

(match-var iab le  var (subseq i n p u t  0  pos) 

b i n d i n g s ) ) ) )  

;; I f  t h i s  match f a i l e d ,  t r y  another longer  one 

( i f  (eq b2 f a i l )  

(segment-match p a t t e r n  i n p u t  b ind ings  (+ pos 1 ) )  

b 2 ) ) ) ) ) ) )  

Now we see that the match goes through: 

> (pat-match ' ( ( ? *  ? X I  a  b  (?* ? X I )  ' (1  2 a  b  a  b  1 2  a  b ) )  
((?X 1 2 A B ) )  

Note that this version of segment-match tries the shortest possible match first. It 
would also be possible to try the longest match first. 



5.4 The ELIZA Program: A Rule-Based 
Translator 

Now that we have a working pattern matcher, we need some patterns to match. 
What's more, we want the patterns to be associated with responses. We can do this 
by inventing a data structure called a rul e, which consists of a pattern and one or 
more associated responses. These are rules in the sense that they assert, "If you 
see A, then respond with B or C, chosen at random." We will choose the simplest 
possible implementation for rules: as lists, where the first element is the pattern and 
the rest is a list of responses: 

(defun r u l  e - p a t t e r n  ( r u l e )  ( f i r s t  r u l e ) )  
(defun rule-responses ( r u l  e l  ( r e s t  r u l  e l  

Here's an example of a rule: 

( ( ( ? *  ?XI I want (? *  ? y ) )  
(What would i t  mean i f  you go t  ?y )  

(Why do you want ?y )  
(Suppose you go t  ?y soon)) 

When applied to the input ( I  w a n t  to t es t  t h i s  program), this rule (when in- 
terpreted by the ELIZA program) would pick a response at random, substitute in the 
valueof ?y, andrespondwith, say, (why do you w a n t  t o  t e s t  th is  program). 

Now that we know what an individual rule will do, we need to decide how to 
handle a set of rules. If ELIZA is to be of any interest, it will have to have a variety of 
responses. So several rules may all be applicable to the same input. One possibility 
would be to choose a rule at random from among the rules havingpatterns that match 
the input. 

Another possibility is just to accept the first rule that matches. This implies that 
the rules form an ordered list, rather than an unordered set. The clever ELIZA rule 
writer can take advantage of this ordering and arrange for the most specific rules to 
come first, while more vague rules are near the end of the list. 

The original ELIZA had a system where each rule had a priority number associated 
with it. The matchingrule with the highest prioritywas chosen. Note that putting the 
rules in order achieves the same effect as having a priority number on each rule: the 
first rule implicitly has the highest priority, the second rule is next highest, and so on. 

Here is a short list of rules, selected from Weizenbaum's original article, but with 
the form of the rules updated to the form we are using. The answer to exercise 5.19 
contains a longer list of rules. 



(defparameter *eliza-rules* 
' ( ( ( ( ? *  ? X I  hello (?*  ?y) )  

(How do you do.  Please s ta te  your problem.)) 
( ( ( ? *  ?XI I w a n t  (?*  ?y) )  

(What would i t  mean i f  you got ?y) 
(Why do you w a n t  ?y) (Suppose you got ?y soon)) 

( ( ( ? *  ?XI i f  (?*  ?y) )  
(Do you really think i t s  likely t h a t  ?y) (Do you wish t h a t  ?y) 
(Wha t  do you think about ?y) (Really-- i f  ?y))  

( ( ( ? *  ? X I  no (?* ?y) )  
(Why not?) (You are being a b i t  negative) 
(Are you saying " N O"  just to be negative?)) 

( ( ( ? *  ? X I  I was (?* ?y) )  
(Were you really?) (Perhaps I already knew you were ?y) 
(Why do you te l l  me you were ?y now?)) 

( ( ( ? *  ?x)  I feel (?* ?y))  
(Do you often feel ?y ? I )  

( ( ( ? *  ?XI I f e l t  (?*  ?y) )  
(Wha t  other feelings do you have?)))) 

Finally we are ready to define ELIZA proper. As we said earlier, the main program 
should be a loop that reads input, transforms it, and prints the result. Transformation 
is done primarily by finding some rule such that its pattern matches the input, and 
then substituting the variables into the rule's response. The program is summarized 
in figure 5.1. 

There are a few minor complications. We print a prompt to tell the user to 
input something. We use the function f 1 a t  ten to insure that the output won't have 
imbedded lists after variable substitution. An important trick is to alter the input 
by swapping "you" for "me" and so on, since these terms are relative to the speaker. 
Here is the complete program: 

(defun eliza 0 
"Respond to user input using pattern matching rules." 
( 1 oop 

(print 'el iza>) 
(write ( f la t ten (use-eliza-rules ( read)))  :pretty t ) ) )  

(defun use-eliza-rules (input) 
"Find some rule with which to transform the input." 
(some #'(lambda (rule)  

( l e t  ( ( resu l t  (pat-match (rule-pattern rule) input))) '  
( i f  ( n o t  (eq result f a i l ) )  

(sub1 i s  (switch-viewpoint result)  
( random-el t (rule- responses rule 1) 1) 

*el iza-rules*)) 



Top-Level Function 
el i za Respond to user input using pattern matching rules. 

Special Variables 
*el i za - rul es* A list of transformation rules. 

Data Types 
rul e An association of a pattern with a list of responses. 

Functions 
el iza  Respond to user input using pattern matching rules. 
use - el i za - r ul es Find some rule with which to transform the input. 
swi t c  h - vi ewpoi n t Change I to you and vice versa, and so on. 
f l a t t e n  Append together elements of a list. 

Selected Common Lisp Functions 
sub1 i s Substitute elements into a tree. 

Previously Defined Functions 
random-el t Pick a random element from a list. (p. 36) 
pat-match Match a pattern against an input. (p. 160) 
mappend Append together the results of a ma pca r. 

Figure 5.1: Glossary for the ELIZA Program 

(defun sw i t ch -v iewpo in t  (words) 
"Change I t o  you and v i c e  versa, and so on." 
( s u b l i s  ' ( ( 1  . you) (you . I )  (me . you) (am . a r e ) )  

words 1)  

Note the use of wri t e  with the : pret ty keyword true. This will give better formatted 
output in some cases. The program makes use of the previously defined random- el t, 
and f la t ten ,  which is defined here using mappend and mkl i s t ,  a function that is 
defined in the InterLisp dialect but not in Common Lisp. 

(defun f l a t t e n  ( t h e - l i s t )  
"Append toge ther  elements ( o r  l i s t s )  i n  t h e  l i s t . "  
(mappend # ' m k l i s t  t h e - l i s t ) )  

(defun m k l i s t  ( x )  
"Return x i f  i t  i s  a l i s t ,  o therwise (XI." 
( i f  ( l i s t p  x )  

X 

( l i s t  X I ) )  

(defun mappend ( f n  t h e - l i s t )  
"Apply f n  t o  each element o f  l i s t  and append t h e  r e s u l t s . "  
(apply  #'append (mapcar f n  the -1  i s t )  1) 



(de fun  random-e l t  ( cho i ces )  
"Choose an element f rom a l i s t  a t  random." 
( e l  t cho ices ( random (1  ength  cho ices 1) 1 )  

The actual ELIZA program had a few complications that don't show up in this version. 
First, there was an alias method for associating several words with the same pattern; 
both "mother" and "father" could be associated with the "family" pattern. There was 
also a synonym mechanism that would treat "don't" and "do not" or "everybody" and 
"everyone" the same. In the case of input with several comma-separated phrases, 
each phrase was processed separately, and the response with the highest priority 
was selected. In addition, the original ELIZA had a "memory" mechanism. When 
no pattern matched the input, it said something like "Tell me more about XI" where 
X is some input given earlier. Finally, our version has fewer rules. Despite the 
shortcomings of our version, it can occasionally hold up its end of a conversation, as 
shown below: 

> ( e l i z a )  
ELIZA> ( h e l l o  t h e r e )  
(HOW DO YOU DO. PLEASE STATE YOUR PROBLEM.) 
ELIZA> (i want t o  t e s t  t h i s  program) 
(WHAT WOULD I T  MEAN I F  YOU GOT TO TEST THIS PROGRAM) 
ELIZA> ( i  c o u l d  see i f  i t  works) 
(DO YOU REALLY THINK ITS LIKELY THAT I T  WORKS) 
ELIZA> (no n o t  r e a l l y )  
(ARE YOU SAYING "NO" JUST TO BE NEGATIVE?) 
ELIZA> (no) 
(ARE YOU SAYING "NO" JUST TO BE NEGATIVE?) 
ELIZA> ( f o r g e t  i t - -  i was wondering how general  t h e  program i s )  
(WHY DO YOU TELL ME YOU WERE WONDERING HOW GENERAL THE PROGRAM I S  NOW?) 
ELIZA> ( i  f e l t  l i k e  i t )  
(WHAT OTHER FEELINGS DO YOU HAVE?) 
ELIZA> ( i  f e e l  t h i s  i s  enough) 
(DO YOU OFTEN FEEL THIS I S  ENOUGH ? )  
ELIZA> [Abor t ]  
> 

In the end, it is the technique that is important-not the program. ELIZA has been 
"explained away" and should rightfully be moved to the curio shelf. Pattern matching 
in general remains important technique, and we will see it again in subsequent 
chapters. The notion of a rule-based translator is also important. The problem 
of understanding English (and other languages) remains an important part of AI. 
Clearly, the problem of understanding English is not solved by ELIZA. In part V, we 
will address the problem again, using more sophisticated techniques. 



5.5 History and References 

As mentioned above, the original article describing ELIZA is Weizenbaum 1966. An- 
other dialog system using similar pattern-matching techniques is Kenneth Colby's 
(1975) PARRY. This program simulated the conversation of a paranoid person well 
enough to fool several professional psychologists. Although the pattern matching 
techniques were simple, the model of belief maintained by the system was much 
more sophisticated than ELIZA. Colby has suggested that dialog programs like ELIZA, 
augmented with some sort of belief model like PARRY, could be useful tools in treat- 
ing mentally disturbed people. According to Colby, it would be inexpensive and 
effective to have patients converse with a specially designed program, one that could 
handle simple cases and alert doctors to patients that needed more help. Weizen- 
baumfs book Computer Power and Human Reason (1976) discusses ELIZA and PARRY 

and takes a very critical view toward Colby's suggestion. Other interesting early 
work dn dialog systems that model belief is reported by Allan Collins (1978) and 
Jamie Carbonell (1981). 

5.6 Exercises 

p Exercise 5.2 [m] Experiment with this version of ELIZA. Show some exchanges 
where it performs well, and some where it fails. Try to characterize the differ- 
ence. Which failures could be fixed by changing the rule set, which by changing the 
p a t  -match function (and the pattern language it defines), and which require a change 
to the el i za program itself? 

Exercise 5.3 [h] Define a new set of rules that make ELIZA give stereotypical re- 
sponses to some situation other than the doctor-patient relationship. Or, write a set 
of rules in a language other than English. Test and debug your new rule set. 

p Exercise 5.4 [s] We mentioned that our version of ELIZA cannot handle commas 
or double quote marks in the input. However, it seems to handle the apostrophe in 
both input and patterns. Explain. 

p Exercise 5.5 [h] Alter the input mechanism to handle commas and other punctu- 
ation characters. Also arrange so that the user doesn't have to type parentheses 
around the whole input expression. (Hint: this can only be done using some Lisp 
functions we have not seenyet. Lookat read-1 ine and read-from-stri ng.) 



g Exercise 5.6 [rn] Modify ELIZA to have an explicit exit. Also arrange so that the 
output is not printed in parentheses either. 

p Exercise 5.7 [m] Add the "memory mechanism" discussed previously to ELIZA. 
Also add some way of definining synonyms like "everyone" and "everybody." 

g Exercise 5.8 [h] It turns out that none of the rules in the given script uses a variable 
more than once-there is no rule of the form ( ?x . . . ?x 1. Write a pattern matcher that 
only adds bindings, never checks variables against previous bindings. Use the t i  me 
special form to compare your function against the current version. 

g Exercise 5.9 [h] Winston and Horn's book Lisp presents a good pattern-matching 
program. Compare their implementation with this one. One difference is that they 
handle the case where the first element of the pattern is a segment variable with the 
following code (translated into our notation): 

(or (pat-match (rest  pattern) ( res t  input) bindings) 
(pat-match pattern ( res t  input) bindings)) 

This says that a segment variable matches either by matching the first element of 
the input, or by matching more than the first element. It is much simpler than our 
approach using pos i  t i  on, partly because they don't update the binding list. Can 
you change their code to handle bindings, and incorporate it into our version of 
p a t  -match? Is it still simpler? Is it more or less efficient? 

p Exercise 5.10 What is wrong with the following definition of s i mpl e  - equa 1 ? 

(defun simple-equal (x y) 
"Test i f  two l i s t s  or atoms are equal." 
;; Warning - incorrect 
(or (eql x  y)  

( a n d  ( l i s t p  x)  ( l i s t p  y)  
(simple-equal ( f i r s t  x) ( f i r s t  y ) )  
(simple-equal ( res t  x) ( res t  y ) )  1 ) )  

p Exercise 5.11 [m] Weigh the advantages of changing no - b i  n d i  ngs to n i  1, and f a  i 1 
to something else. 



Exercise 5.12 [m] Weigh the advantages of making p a t  -match return multiple val- 
ues: the first would be true for a match and false for failure, and the second would 
be the binding list. 

Exercise 5.13 [m] Suppose that there is a call to segment - ma t c  h where the variable 
already has a binding. The current definition will keep making recursive calls to 
segment -match, one for each possible matching position. But this is silly-if the 
variable is already bound, there is only one sequence that it can possibly match 
against. Change the definition so that it looks only for this one sequence. 

Exercise 5.14 [m] Define aversion of mappend that, like mapca r, accepts any number 
of argument lists. 

Exercise 5.15 [m] Give an informal proof that segment-match always terminates. 

Exercise 5.16 [s] Trick question: There is an object in Lisp which, when passed to 
va r i a b l  e - p, results in an error. What is that object? 

Exercise 5.17 [m] The current version of ELIZA takes an input, transforms it ac- 
cording to the first applicable rule, and outputs the result. One can also imagine a 
system where the input might be transformed several times before the final output 
is printed. Would such a system be more powerful? If so, in what way? 

Exercise 5.18 [h] Read Weizenbaum's original article on ELIZA and transpose his 
list of rules into the notation used in this chapter. 



5.7 Answers 

Answer 5.1 No. If either the pattern or the input were shorter, but matched every 
existing element, the every expression would incorrectly return true. 

(every #'pat-match '(a b c) '(a)) 3 T 

Furthermore, if either the pattern or the input were a dotted list, then the result of the 
every would be undefined-some implementations might signal an error, and others 
might just ignore the expression after the dot. 

(every #'pat-match '(a b . c) '(a b . dl) + T, NIL, orerror. 

Answer 5.4 The expression don ' t may look like a single word, but to the Lisp reader 
it is composed of the two elements don and ' t ,  or (quote t 1. If these elements are 
used consistently, they will match correctly, but they won't print quite right-there 
will be a space before the quote mark. In fact the : pretty t argument to w r i t e is 
specified primarily to make (quote t 1 print as ' t (See page 559 of Steele's Common 
Lisp the Language, 2d edition.) 

Answer 5.5 One way to do this is to read a whole line of text with read - 1 i ne rather 
than read. Then, substitute spaces for any punctuation character in that string. 
Finally, wrap the string in parentheses, and read it back in as a list: 

(defun read-line-no-punct 0 
"Read an input 1 ine, ignoring punctuation. " 
(read-from-string 

(concatenate 'string " ( "  (substitute-if #\space#'punctuation-p 
(read-1 inel) 

")"I)> 

(defun punctuation-p (char) (find char "..;:'!?#-O\\\"")) 

This could also be done by altering the readtable, as in section 23.5, page 821. 



Answer 5.6 

(defun e l i z a  0 
"Respond t o  user i n p u t  us ing p a t t e r n  matching r u l e s . "  

( 1  oop 
( p r i n t  ' e l  iza>) 
( l e t *  ( ( i n p u t  ( read- l i ne-no-punc t ) )  

(response ( f l a t t e n  ( u s e - e l i z a - r u l e s  i n p u t ) ) ) )  
(p r in t -w i th -spaces  response) 
( i f  (equal response '(good bye))  (RETURN))))) 

(defun p r in t -w i th -spaces  ( l i s t )  
(mapc #'(lambda ( x )  ( p r i n l  x )  ( p r i n c  " "1 )  l i s t ) )  

or 
(defun p r in t -w i th -spaces  ( l i s t )  

( format  t ""{"a "1" l i s t ) )  

Answer 5.10 Hint:consider(simple-equal '0 ' ( n i l  . n i l ) ) .  

Answer 5.14 

(defun mappend ( f n  & r e s t  l i s t )  
"Apply fn  t o  each element o f  l i s t s  and append the  r e s u l t s . "  
(apply  #'append (apply  #'mapcar f n  l i s t s ) ) )  

Answer 5.16 It must be a symbol, because for nonsymbols, va r i a b l  e - p just returns 
nil. Getting the symbol -name of a symbol is just accessing a slot, so that can't cause 
an error. The only thing left is el t; if the symbol name is the empty string, then 
accessing element zero of the empty string is an error. Indeed, there is a symbol 
whose name is the empty string: the symbol . 

Answer 5.17 Among other things, arecursive transformation systemcould be used 
to handle abbreviations. That is, a form like "don't" could be transformed into "do 
not" and then processed again. That way, the other rules need only work on inputs 
matching "do not." 



Answer 5.19 The following includes most of Weizenbaum's rules: 

(defparameter *el  i za- r u l  es* 

' ( ( ( ( ? *  ? X I  h e l l o  ( ? *  ? y ) )  

(How do you do. Please s t a t e  your  problem.)) 

( ( ( ? *  ? X I  computer (?* ? y ) )  

(Do computers worry you?) (What do you t h i n k  about machines?) 

(Why do you mention computers?) 

(What do you t h i n k  machines have t o  do w i t h  your  problem?)) 

( ( ( ? *  ? X I  name (?*  ? y ) )  

( I  am n o t  i n t e r e s t e d  i n  names)) 

( ( ( ? *  ? X I  s o r r y  (?* ? y ) )  

(Please don ' t  apolog ize)  (Apologies are n o t  necessary) 

(What f e e l i n g s  do you have when you apo log ize ) )  

( (  ( ? *  ? X I  I remember (?* ?y )  

(Do you o f t e n  t h i n k  o f  ?y )  

(Does t h i n k i n g  o f  ?y b r i n g  anyth ing e l s e  t o  mind?) 

(What e l s e  do you remember) (Why do you r e c a l l  ?y r i g h t  now?) 

(What i n  the  present  s i t u a t i o n  reminds you o f  ?y )  

(What i s  t h e  connect ion between me and ? y ) )  

( ( ( ? *  ? X I  do you remember (?*  ? y ) )  

(D id  you t h i n k  I would f o r g e t  ?y ? )  

(Why do you t h i n k  I should r e c a l l  ?y now) 

(What about ?y )  (You mentioned ? y ) )  

( ( ( ? *  ? X I  i f  (?* ? y ) )  

(Do you r e a l l y  t h i n k  i t s  l i k e l y  t h a t  ?y )  (Do you wish t h a t  ?y )  

(What do you t h i n k  about ?y )  ( R e a l l y - -  i f  ? y ) )  

( ( ( ? *  ? X I  I dreamt (?* ? y ) )  

( R e a l l y - -  ?y )  (Have you ever fan tas ized  ?y w h i l e  you were awake?) 

(Have you dreamt ?y be fo re?) )  

( ( ( ? *  ? X I  dream about (?* ? y ) )  

(How do you f e e l  about ?y i n  r e a l i t y ? ) )  

( ( ( ? *  ? X I  dream (?* ? y ) )  

(What does t h i s  dream suggest t o  you?) (Do you dream o f t e n ? )  

(What persons appear i n  your  dreams?) 

(Don' t  you b e l i e v e  t h a t  dream has t o  do w i t h  your  problem?)) 

( ( ( ? *  ? X I  my mother (?* ? y ) )  

(Who e l s e  i n  your  f a m i l y  ?y)  ( T e l l  me more about your  f a m i l y ) )  

( ( ( ? *  ? X I  my f a t h e r  (?* ? y ) )  

(Your f a t h e r )  (Does he i n f l u e n c e  you s t r o n g l y ? )  

(What e l s e  comes t o  mind when you t h i n k  o f  your  f a t h e r ? ) )  



( ( ( ? *  ? X I  I want (?* ? y ) )  

(What would i t  mean if you go t  ?y )  

(Why do you want ?y )  (Suppose you go t  ?y soon)) 

( ( ( ? *  ? X I  I am g lad  (?*  ? y ) )  

(How have I helped you t o  be ?y )  (What makes you happy j u s t  now) 

(Can you e x p l a i n  why you a re  suddenly ? y ) )  

( ( ( ? *  ? X I  I am sad (?* ? y ) )  

(I am s o r r y  t o  hear you are depressed) 

( I ' m  sure i t ' s  n o t  p leasant  t o  be sad))  

( ( ( ? *  ? X I  are l i k e  (?*  ? y ) )  

(What resemblance do you see between ?x and ? y ) )  

( ( ( ? *  ? X I  i s  l i k e  (?*  ? y ) )  

( I n  what way i s  i t  t h a t  ?x i s  l i k e  ?y )  

(What resemblance do you see?) 

(Could t h e r e  r e a l l y  be some connect ion?) (How?)) 

( ( ( ? *  ? X I  a l i k e  (?*  ? y ) )  

( I n  what way?) (What s i m i l a r i t i e s  are t h e r e ? ) )  

( ( ( ? *  ? X I  same (?* ? y ) )  

(What o the r  connect ions do you see?))  

( ( ( ? *  ?x)  I was (?*  ? y ) )  

(Were you r e a l l y ? )  (Perhaps I already knew you were ?y )  

(Why do you t e l l  me you were ?y now?)) 

( (  (?*  ? X I  was I (?*  ? y ) )  

(What i f  you were ?y ? )  (Do you t h i n k  you were ?y)  

(What would i t  mean i f  you were ? y ) )  

( ( ( ? *  ? X I  I am (?*  ? y ) >  

( I n  what way a re  you ?y)  (Do you want t o  be ?y ? ) I  
( ( ( ? *  ? X I  am I (?* ? y ) )  

(Do you b e l i e v e  you a re  ?y )  (Would you want t o  be ?y )  

(You wish I would t e l l  you you a re  ?y )  

(What would i t  mean i f  you were ? y ) )  

( ( ( ? *  ? X I  am (?*  ? y ) )  

(Why do you say " A M ?" )  ( I  don ' t  understand t h a t ) )  

( ( ( ? *  ? X I  a re  you (?* ? y ) )  

(Why are you i n t e r e s t e d  i n  whether I am ?y o r  n o t ? )  

(Would you p r e f e r  i f  I weren ' t  ?y )  

(Perhaps I am ?y i n  your  f a n t a s i e s ) )  

( ( ( ? *  ?XI you a re  (?* ? y ) )  

(What makes you t h i n k  I am ?y ? I )  



( ( ( ? *  ? X I  because (? *  ? y ) )  
( I s  t h a t  t h e  rea l  reason?) (What o the r  reasons might the re  be?)  
(Does t h a t  reason seem t o  e x p l a i n  anyth ing e l s e ? ) )  

( ( ( ? *  ? X I  were you (?* ? y ) )  
(Perhaps I was ?y )  (What do you t h i n k ? )  (What i f  I had been ? y ) )  

( ( ( ? *  ? X I  I c a n ' t  (?*  ? y ) )  
(Maybe you could ?y now) (What i f  you could ?y ? )  

( ( ( ? *  ? X I  I f e e l  (?*  ? y ) )  
(Do you o f t e n  f e e l  ?y ? ) I  

( ( ( ? *  ? X I  I f e l t  (?* ? y ) )  
(What o the r  f e e l i n g s  do you have?)) 

( ( ( ? *  ? X I  I (?*  ?y )  you (?*  ? z ) )  
(Perhaps i n  your  fantasy we ?y each o t h e r ) )  

( ( ( ? *  ? X I  why don ' t  you (?* ? y ) )  
(Should you ?y y o u r s e l f ? )  
(Do you b e l i e v e  I don ' t  ?y )  (Perhaps I w i l l  ?y  i n  good t i m e ) )  

( ( ( ? *  ? X I  yes ( ? *  ? y ) )  
(You seem q u i t e  p o s i t i v e )  (You a re  sure)  ( I  understand)) 

( ( ( ? *  ? X I  no (?*  ? y ) )  
(Why n o t ? )  (You are be ing a  b i t  nega t i ve )  
(Are you say ing " N O"  j u s t  t o  be nega t i ve?) )  

( ( ( ? *  ? X I  someone (?* ? y ) )  
(Can you be more s p e c i f i c ? ) )  

( ( ( ? *  ? X I  everyone (?* ? y ) )  
( s u r e l y  n o t  everyone) (Can you t h i n k  o f  anyone i n  p a r t i c u l a r ? )  
(Who f o r  example?) (You are t h i n k i n g  of a  spec ia l  person))  

( ( ( ? *  ? X I  always (?*  ? y ) )  
(Can you t h i n k  o f  a  s p e c i f i c  example) (When?) 
(What i n c i d e n t  a re  you t h i n k i n g  o f ? )  ( R e a l l y - -  always)) 

( ( ( ? *  ? X I  what (?* ? y ) )  
(Why do you ask?) (Does t h a t  quest ion i n t e r e s t  you?) 
(What i s  i t  you r e a l l y  want t o  know?) (What do you t h i n k ? )  
(What comes t o  your  mind when you ask t h a t ? ) )  

( ( ( ? *  ? X I  perhaps (?* ? y ) )  
(You do n o t  seem q u i t e  c e r t a i n ) )  

( ( ( ? *  ?x) a r e  (?*  ? y ) )  
(Did you t h i n k  they might  n o t  be ?y )  
(Poss ib l y  they a re  ? y ) )  

( ( ( ? *  ? x ) )  
(Very i n t e r e s t i n g )  ( I  am n o t  sure I understand you f u l l y )  
(What does t h a t  suggest t o  you?) (Please cont inue)  (Go on) 
(Do you f e e l  s t r o n g l y  about d i scuss ing  such t h i n g s ? ) ) ) )  



Building Software Tools 

Man is a tool-using animal. . . . 
Without tools he is nothing, 

with tools he is all. 

-Thomas Carlyle (1 795-1 88 1 ) 

I n chapters 4 and 5 we were concerned with building two particular programs, GPS and ELIZA. 
In this chapter, we will reexamine those two programs to discover some common patterns. 
Those patterns will be abstracted out to form reusable software tools that will prove helpful 

in subsequent chapters. 

6.1 An Interactive Interpreter Tool 

The structure of the function el i za is a common one. It is repeated below: 

(defun eliza 0 
"Respond t o  user input using pattern matching rules." 
( 1 oop 

(pr int  'el iza>) 
(print ( f la t ten (use-eliza-rules ( r e a d ) ) ) ) ) )  



Many other applications use this pattern, including Lisp itself. The top level of Lisp 
could be defined as: 

(de fu n  l i s p  0 
(1 oop 

( p r i n t  ' > I  
( p r i n t  ( eva l  ( r e a d ) ) ) ) )  

The top level of a Lisp system has historically been called the "read-eval-print loop." 
Most modern Lisps print a prompt before reading input, so it should really be called 
the "prompt-read-eval-print loop," but there was no prompt in some early systems 
like MacLisp, so the shorter name stuck. If we left out the prompt, we could write a 
complete Lisp interpreter using just four symbols: 

( l o o p  ( p r i n t  ( eva l  ( r e a d ) ) ) )  

It may seem facetious to say those four symbols and eight parentheses constitute a 
Lisp interpreter. When we write that line, have we really accomplished anything? 
One answer to that question is to consider what we would have to do to write a Lisp 
(or Pascal) interpreter in Pascal. We would need a lexical analyzer and a symbol table 
manager. This is a considerable amount of work, but it is all handled by read. We 
would need a syntactic parser to assemble the lexical tokens into statements. read 
also handles this, but only because Lisp statements have trivial syntax: the syntax 
of lists and atoms. Thus read serves fine as a syntactic parser for Lisp, but would 
fail for Pascal. Next, we need the evaluation or interpretation part of the interpreter; 
eval does this nicely, and could handle Pascal just as well if we parsed Pascal syntax 
into Lisp expressions. print does much less work than read or eval, but is still 
quite handy. 

The important point is not whether one line of code can be considered an imple- 
mentation of Lisp; it is to recognize common patterns of computation. Both el i za 
and 1 i sp can be seen as interactive interpreters that read some input, transform or 
evaluate the input in some way, print the result, and then go back for more input. We 
can extract the following common pattern: 

(de fun  program ( 1 
(1 oop 

( p r i n t  prompt)  
( p r i n t  (transform ( r e a d )  1)  1 )  

There are two ways to make use of recurring patterns like this: formally and infor- 
mally. The informal alternative is to treat the pattern as a cliche or idiom that will 
occur frequently in our writing of programs but will vary from use to use. When we 



want to write a new program, we remember writing or reading a similar one, go back 
and look at the first program, copy the relevant sections, and then modify them for 
the new program. If the borrowing is extensive, it would be good practice to insert 
a comment in the new program citing the original, but there would be no "official" 
connection between the original and the derived program. 

The formal alternative is to create an abstraction, in the form of functions and per- 
haps data structures, and refer explicitly to that abstraction in each new application- 
in other words, to capture the abstraction in the form df a useable software tool. The 
interpreter pattern could be abstracted into a function as follows: 

(defun interactive-interpreter (prompt transformer) 
"Read an expression, transform it, and print the result." 
( 1 oop 
(print prompt 
(print (funcall transformer (read))))) 

This function could then be used in writing each new interpreter: 

(defun lisp 0 
(interactive-interpreter '> #'eval)) 

(defun eliza 0 
(interactive-interpreter 'eliza> 

#'(lambda (x) (flatten (use-eliza-rules x))))) 

Or, with the help of the higher-order function compose: 

(defun compose (f g) 
"Return the function that computes (f (g XI)." 
#'(lambda (x) (funcall f (funcall g x)))) 

(defun eliza 0 
(interactive-interpreter 'eliza> 

(compose #'flatten #'use-eliza-rules))) 

There are two differences between the formal and informal approaches. First, they 
look different. If the abstraction is a simple one, as this one is, then it is probably 
easier to read an expression that has the loop explicitly written out than to read one 
that calls i n t e r a c t  i ve - i n  t e r p r e t e r ,  since that requires finding the definition of 
i n t e r a c t i v e -  i n t e r p r e t e r  and understanding it as well. 

The other difference shows up in what's called maintenance. Suppose we find a 
missing feature in the definition of the interactive interpreter. One such omission is 
that the 1 oop has no exit. I have been assuming that the user can terminate the loop by 
hitting some interrupt (or break, or abort) key. Acleaner implementationwould allow 



the user to give the interpreter an explicit termination command. Another useful 
feature would be to handle errors within the interpreter. If we use the informal 
approach, then adding such a feature to one program would have no effect on the 
others. Butifweuse the formalapproach, thenimprovingi nteracti ve- i nterpreter 
would automatically bring the new features to all the programs that use it. 

The followingversionof i nteracti ve-i nterpreter adds twonewfeatures. First, 
it uses the macro handl er-case1 to handle errors. This macro evaluates its first 
argument, and normally just returns that value. However, if an error occurs, the 
subsequent arguments are checked for an error condition that matches the error that 
occurred. In this use, the case error matches all errors, and the action taken is to 
print the error condition and continue. 

This version also allows the prompt to be either a string or a function of no 
arguments that will be called to print the prompt. The function prompt-generator, 
for example, returns a function that will print prompts of the form C11, C21, and 
so forth. 

(defun i n t e r a c t i v e - i n t e r p r e t e r  (prompt t ransformer)  
"Read an expression, t rans fo rm i t ,  and p r i n t  t h e  r e s u l t . "  
( 1  oop 

(handl er-case 
( progn 

( i f  ( s t r i n g p  prompt) 
( p r i n t  prompt) 
( f u n c a l l  prompt)) 

( p r i n t  ( f u n c a l l  t ransformer  ( r e a d ) ) ) )  
;; I n  case o f  e r r o r ,  do t h i s :  
( e r r o r  ( c o n d i t i o n )  

( fo rmat  t ""&;; E r r o r  "a ignored, back t o  t o p  l e v e l . "  
c o n d i t i o n ) ) ) ) )  

(defun prompt-generator (&op t iona l  (num 0)  ( c t l - s t r i n g  " [" d l  " 1 )  
"Return a  f u n c t i o n  t h a t  p r i n t s  prompts l i k e  C11, C21, e t c . "  
#'(lambda 0 ( format  t c t l - s t r i n g  ( i n c f  num))) )  

6.2 A Pattern-Matching Tool 

The pat-match function was a pattern matcher defined specifically for the ELIZA 

program. Subsequent programs will need pattern matchers too, and rather than 
write specialized matchers for each new program, it is easier to define one general 

 h he macro handl e r  - case is only in A N S I  Common Lisp. 



pattern matcher that can serve most needs, and is extensible in case novel needs 
come up. 

The problem in designing a "general" tool is deciding what features to provide. 
We can try to define features that might be useful, but it is also a good idea to make 
the list of features open-ended, so that new ones can be easily added when needed. 

Features can be added by generalizing or specializing existing ones. For example, 
we provide segment variables that match zero or more input elements. We can 
specialize this by providing for a kind of segment variable that matches one or more 
elements, or for an optional variable that matches zero or one element. Another 
possibility is to generalize segment variables to specify a match of m ton elements, for 
any specified m and n. These ideas come from experience with notations for writing 
regular expressions, as well as from very general heuristics for generalization, such 
as "consider important special cases" and "zero and one are likely to be important 
special cases." 

Another useful feature is to allow the user to specify an arbitrary predicate that 
a match must satisfy. The notation ( ? i s  ?n numberp) could be used to match any 
expression that is a number and bind it to the variable ?n. This would look like: 

> (pat-match '(x = (?is ?n numberp)) '(x = 34)) ((?n . 34)) 
> (pat-match '(x = (?is ?n numberp)) '(x = x)) + N I L  

Since patterns are like boolean expressions, it makes sense to allow boolean operators 
on them. Following the question-mark convention, we will use ?and, ?or and ?not 
for the  operator^.^ Here is a pattern to match a relational expression with one of three 
relations. It succeeds because the < matches one of the three possibilities specified 
by (?or < = > I .  

> (pat-match ' ( ? x  (?or < = >) ?y)  ' ( 3  < 4 ) )  + ( ( ? Y  . 4) ( ? X  . 3)) 

Here is an example of an ?and pattern that checks if an expression is both a number 
and odd: 

> (pat-match '(x = (?and (?is ?n numberp) (?is ?n oddp))) 
'(x = 3)) 

( ( ? N  . 3)) 

2 ~ n  alternative would be to reserve the question mark for variables only and use another 
notation for these match operators. Keywords would be a good choice, such as : and, : or, : i s, 
etc. 



The next pattern uses ? n o t  to insure that two parts are not equal: 

> (pat-match ' ( ? x  /= (?no t  ? X I )  ' ( 3  /= 4 ) )  =. ( ( ? X  . 3 ) )  

The segment matching notation we have seen before. It is augmented to allow for 
three possibilities: zero or more expressions; one or more expressions; and zero or 
one expressions. Finally, the notation ( ? i f exp ) can be used to test a relationship 
between several variables. It has to be listed as a segment pattern rather than a single 
pattern because it does not consume any of the input at all: 

> (pat-match ' ( ? x  > ?y (? i f  (> ?x ? y ) ) )  ' ( 4  > 3 ) )  3 

( ( ? Y  . 3 )  ( ? X  . 4 ) )  

When the description of a problem gets this complicated, it is a good idea to 
attempt a more formal specification. The following table describes a grammar of 
patterns, using the same grammar rule format described in chapter 2. 

pat + var match any one expression 
constant match just this atom 
segment-pat match something against a sequence 
single-pat match something against one expression 
( p a t .  pat)  match the first and the rest 

single-pat =+ ( ? i s var  predicate 1 test predicate on one expression 
( ? o r  pat ... 1 match any pattern on one expression 
( ?and pat ... > match every pattern on one expression 
( ? n o t  pat ... 1 succeed if pattern(s) do not match 

segment-pat + ( ( ?* v a r )  ... ) match zero or more expressions 
( ( ? + v a r )  ...I match one or more expressions 
( ( ? ?  v a r )  ... 1 match zero or one expression 
( ( ? i f  e x p )  ...I test if exp (which may contain 

variables) is true 

var + ?chars 
constant -i atom 

a symbol starting with ? 
any nonvariable atom 

Despite the added complexity, all patterns can still be classified into five cases. 
The pattern must be either a variable, constant, a (generalized) segment pattern, 
a (generalized) single-element pattern, or a cons of two patterns. The following 
definition of pat  -match  reflects the five cases (along with two checks for failure): 



(defun pat-match ( p a t t e r n  i n p u t  &op t iona l  (b ind ings no-b ind ings ) )  
"Match p a t t e r n  against  i n p u t  i n  t h e  con tex t  o f  t h e  b i n d i n g s "  
(cond ( (eq  b ind ings f a i l )  f a i l )  

( ( v a r i a b l e - p  p a t t e r n )  
(match-var iab le  p a t t e r n  i n p u t  b ind ings ) )  

( (eq l  p a t t e r n  i n p u t  b ind ings  
( (segment-pat tern-p p a t t e r n )  
(segment-matcher p a t t e r n  i n p u t  b i n d i n g s ) )  

( ( s i n g l e - p a t t e r n - p  p a t t e r n )  . , *** 
(s ing le-matcher  p a t t e r n  i n p u t  b i n d i n g s ) )  ; *** 

((and (consp p a t t e r n )  (consp i n p u t ) )  
(pat-match ( r e s t  p a t t e r n )  ( r e s t  i n p u t )  

(pat-match ( f i r s t  p a t t e r n )  ( f i r s t  i n p u t )  
b i n d i n g s ) ) )  

( t  f a i l ) ) )  

For completeness, we repeat here the necessary constants and low-level functions 
from ELIZA: 

(defconstant  f a i l  n i l  " I n d i c a t e s  pat-match f a i l u r e " )  

(defconstant  no-b ind ings ' ( ( t  . t ) )  

" I n d i c a t e s  pat-match success, w i t h  no v a r i a b l e s . " )  

(defun v a r i a b l e - p  ( x )  
" I s  x  a  v a r i a b l e  (a  symbol beginn ing w i t h  ' ? ' I ? "  
(and (symbolp x )  (equal (char  (symbol-name x )  0 )  # \ ? ) I )  

(defun g e t - b i n d i n g  ( v a r  b ind ings )  
"F ind  a  ( v a r i a b l e  . value)  p a i r  i n  a  b ind ing  l i s t . "  
(assoc var  b i n d i n g s ) )  

(defun b ind ing -va r  (b ind ing )  
"Get t h e  v a r i a b l e  p a r t  o f  a  s i n g l e  b ind ing . "  
( c a r  b i n d i n g ) )  

(defun b ind ing-va l  (b ind ing )  
"Get t h e  va lue p a r t  o f  a  s i n g l e  b ind ing . "  
( c d r  b ind ing )  

(defun make-binding ( v a r  v a l )  (cons var  v a l ) )  

(defun lookup ( v a r  b ind ings )  
"Get t h e  va lue p a r t  ( f o r  v a r )  f rom a  b ind ing  l i s t . "  
( b i n d i n g - v a l  ( g e t - b i n d i n g  var b i n d i n g s ) ) )  



(defun extend- b i  ndi ngs (var  val bindings 
"Add a (var  . value) p a i r  t o  a b inding l i s t . "  
(cons (make-binding var v a l )  

;; Once we add a " r e a l "  binding, 
;; we can get r i d  o f  the  dummy no-bindings 
( i f  (eq bindings no-bindings) 

n i  1 
b i  ndi  ngs 

(defun match-variable (var  inpu t  bindings) 
"Does VAR match inpu t?  Uses (o r  updates) and returns bindings." 
( l e t  ( (b ind ing  (ge t -b ind ing  var b ind ings) ) )  

(cond ( ( no t  b inding)  (extend-bindings var i npu t  b indings))  
((equal inpu t  (b inding-val  b inding)  bindings) 
( t  f a i l ) ) ) )  

The next step is to define the predicates that recognize generalized segment and 
single-element patterns, and the matching functions that operate on them. We could 
implement segmen t -matcher and s i ngl e -matcher withcase statements that consider 
all possible cases. However, that would make it difficult to extend the matcher. A 
programmer who wanted to add a new kind of segment pattern would have to edit 
the definitions of both segment - pattern - p and segment -matcher to install the new 
feature. This by itself may not be too bad, but consider what happens when two 
programmers each add independent features. If you want to use both, then neither 
version of segment-matcher (or segment-pattern-p) will do. You'll have to edit the 
functions again, just to merge the two extensions. 

The solution to this dilemma is to write one version of segment - pattern - p and 
segment-matcher, once and for all, but to have these functions refer to a table of 
pattern/action pairs. The table would say "if you see ?* in the pattern, then use 
the function segment-match," and so on. Then programmers who want to extend 
the matcher just add entries to the table, and it is trivial to merge different exten- 
sions (unless of course two programmers have chosen the same symbol to mark 
different actions). 

This style of programming, where pattern/action pairs are stored in a table, is 
called data-driven programming. It is a very flexible style that is appropriate for writing 
extensible systems. 

There are many ways to implement tables in Common Lisp, as discussed in 
section 3.6, page 73. In this case, the keys to the table will be symbols (like ?*), 
and it is fine if the representation of the table is distributed across memory. Thus, 
property lists are an appropriate choice. We will have two tables, represented by 
the segment -match property and the s i ngl e -ma t c  h property of symbols like ?*. The 
value of each property will be the name of a function that implements the match. 
Here are the table entries to implement the grammar listed previously: 



( s e t f  (ge t  ' ? i s  's ing le-match)  'match- is)  
( s e t f  (ge t  ' ? o r  's ing le-match)  'match-or) 
( s e t f .  (ge t  '?and 's ing le-match)  'match-and) 
( s e t f  (ge t  ' ?no t  's ing le-match)  'match-not) 

( s e t f  ( g e t  '?* 'segment-match) 'segment-match) 
( s e t f  (ge t  '?+ 'segment-match) 'segment-match+) 
( s e t f  (ge t  ' ? ?  'segment-match) 'segment-match?) 
( s e t f  (ge t  ' ? i f  'segment-match) ' m a t c h - i f )  

With the table defined, we need to do two things. First, define the "glue" that holds 
the table together: the predicates and action-taking functions. A function that looks 
upadata-drivenfunctionandcallsit(suchas segment -matcher  andsi ngl  e-matcher )  

is called a dispatch function. 

(defun segment-pattern-p ( p a t t e r n )  
" I s  t h i s  a  segment-matching p a t t e r n  l i k e  ( (?*  v a r )  . p a t ) ? "  
(and (consp p a t t e r n )  (consp ( f i r s t  p a t t e r n ) )  

(symbolp ( f i r s t  ( f i r s t  p a t t e r n ) ) )  
(segment-match-fn ( f i r s t  ( f i r s t  p a t t e r n ) ) ) ) )  

(defun s i n g l e - p a t t e r n - p  ( p a t t e r n )  
" I s  t h i s  a  s i n g l  e-matchi ng p a t t e r n ?  
E.g. ( ? i s  x  p red ica te )  (?and . p a t t e r n s )  ( ? o r  . p a t t e r n s ) . "  
(and (consp p a t t e r n )  

( s ing le -match - fn  ( f i r s t  p a t t e r n ) ) ) )  

(defun segment-matcher ( p a t t e r n  i n p u t  b ind ings )  
" C a l l  t he  r i g h t  f u n c t i o n  f o r  t h i s  k i n d  o f  segment p a t t e r n . "  
( f u n c a l l  (segment-match-fn ( f i r s t  ( f i r s t  p a t t e r n ) ) )  

p a t t e r n  i n p u t  b ind ings ) )  

(defun s ing le-matcher  ( p a t t e r n  i n p u t  b ind ings )  
"Ca l l  t h e  r i g h t  f u n c t i o n  f o r  t h i s  k i n d  o f  s i n g l e  p a t t e r n . "  
( f u n c a l l  ( s ing le -match - fn  ( f i r s t  p a t t e r n ) )  

( r e s t  p a t t e r n )  i n p u t  b ind ings ) )  

(defun segment-match-fn ( x )  
"Get t h e  segment-match f u n c t i o n  f o r  x,  
i f  i t  i s  a  symbol t h a t  has one. " 
(when (symbolp x )  ( g e t  x  'segment-match))) 

(defun s i n g l  e-match- fn  ( x )  
"Get the  s ing le-match f u n c t i o n  f o r  x,  
i f  i t  i s  a  symbol t h a t  has one." 
(when (symbolp x )  (ge t  x  ' s ing le -match ) ) )  



The last thing to do is define the individual matching functions. First, the single- 
pattern matching functions: 

(defun match-is (var-and-pred input bindings) 
"Succeed and bind var if the input satisfies pred, 
where var-and-pred is the list (var pred)." 
(1 et* ((var (first var-and-pred) 

(pred (second var-and-pred)) 
(new-bindings (pat-match var input bindings))) 

(if (or (eq new-bindings fail) 
(not ( f uncal 1 pred input 1) 

fail 
new-bindings))) 

(defun match-and (patterns input bindings) 
"Succeed if all the patterns match the input." 
(cond ((eq bindings fail) fail) 

((null patterns) bindings) . 
(t (match-and (rest patterns) input 

(pat-match (first patterns) input 
bindings))))) 

(defun match-or (patterns input bindings) 
"Succeed if any one of the patterns match the input." 
(if (null patterns) 

fai 1 
(let ((new-bindings (pat-match (first patterns) 

input bindings))) 
(if (eq new-bindings fail) 

(match-or (rest patterns) input bindings) 
new-bindings)))) 

(defun match-not (patterns input bindings) 
"Succeed if none of the patterns match the input. 
This will never bind any variables." 
(if (match-or patterns input bindings) 

fai 1 
bindings 1) 

Now the segment-pattern matching functions. segment -match is similar to the ver- 
sion presented as part of ELIZA. The difference is in how we determine pos, the 
position of the first element of the input that could match the next element of the 
pattern after the segment variable. In ELIZA, we assumed that the segment variable 
was either the last element of the pattern or was followed by a constant. In the 
following version, we allow nonconstant patterns to follow segment variables. The 
function f i rs t - ma t c h - pos is added to handle this. If the following element is in fact 
a constant, the same calculation is done using pos i t i  on. If it is not a constant, then 



we just return the first possible starting position-unless that would put us past the 
end of the input, in which case we return nil to indicate failure: 

(defun segment-match ( p a t t e r n  i n p u t  b ind ings &opt ional  ( s t a r t  0 ) )  
"Match t h e  segment p a t t e r n  ( (? *  va r )  . p a t )  against  i n p u t . "  
( l e t  ( ( v a r  (second ( f i r s t  p a t t e r n ) ) )  

( p a t  ( r e s t  p a t t e r n ) ) )  
( i f  ( n u l l  p a t )  

(match-var iab l  e  var i n p u t  b ind ings)  
( l e t  ((pos ( f i r s t -match-pos  ( f i r s t  p a t )  i n p u t  s t a r t ) ) )  

( i f  ( n u l l  pos) 
f a i  1  
( l e t  ( (b2  (pat-match 

p a t  (subseq i n p u t  pos) 
(match-vari  ab l  e  var  (subseq i n p u t  0  pos) 

b i n d i n g s ) ) ) )  
;; I f  t h i s  match f a i l e d ,  t r y  another longer  one 
( i f  (eq -b2 f a i l  

(segment-match p a t t e r n  i n p u t  b ind ings (+ pos 1)) 
b 2 ) ) ) ) ) ) )  

(defun f i r s t -match-pos  ( p a t l  i n p u t  s t a r t )  
"F ind t h e  f i r s t  p o s i t i o n  t h a t  p a t l  could poss ib ly  match i n p u t ,  
s t a r t i n g  a t  p o s i t i o n  s t a r t .  I f  p a t l  i s  non-constant,  then j u s t  
r e t u r n  s t a r t . "  
(cond ( (and (atom pat11 (no t  ( v a r i a b l e - p  p a t l ) ) )  

( p o s i t i o n  p a t l  i n p u t  : s t a r t  s t a r t  : t e s t  # 'equa l ) )  
( (<  s t a r t  ( l e n g t h  i n p u t ) )  s t a r t )  
( t  n i l ) ) )  

In the first example below, the segment variable ?x matches the sequence ( b  c 1. In 
the second example, there are two segment variables in a row. The first successful 
match is achieved with the first variable, ?x, matching the empty sequence, and the 
second one, ?y, matching ( b c 1. 

> (pat-match ' (a  (?* ? X I  d) ' (a  b  c  d l )  + ((?X B C)) 

> (pat-match ' ( a  (?* ? X I  (?*  ?y)  d l  ' ( a  b  c  d l )  + ((?Y B C) ( ? X I )  

In the next example, ?x is first matched against nil and ?y against ( b c d 1, but that 
fails, so we try matching ?x against a segment of length one. That fails too, but 
finally the match succeeds with ?x matching the two-element segment ( b c 1, and ?y 
matching ( d 1. 



> (pat-match ' (a (?* ?X I  (?* ?y)  ?x ?y)  
' (a  b  c  d  (b  C )  ( d l ) )  ((?Y Dl (?X B C ) )  

Given segment -match, it is easy to define the function to match one-or-more elements 
and the function to match zero-or-one element: 

(defun segment-match+ (pa t te rn  i npu t  bindings) 
"Match one o r  more elements o f  inpu t . "  
(segment-match pa t te rn  inpu t  bindings 1) )  

(defun segment-match? (pa t te rn  i npu t  bindings) 
"Match zero or  one element o f  inpu t . "  
( l e t  ( ( va r  (second ( f i r s t  pa t te rn )  1) 

(pa t  ( r e s t  pa t t e rn ) ) )  
( o r  (pat-match (cons var pa t )  i npu t  b indings)  

(pat-match pat  inpu t  b ind ings) ) ) )  

Finally, we supply the function to test an arbitrary piece of Lisp code. It does this 
by evaluating the code with the bindings implied by the binding list. This is one of 
the few cases where it is appropriate to call eval : when we want to give the user 
unrestricted access to the Lisp interpreter. 

(defun match- i f  (pa t te rn  i npu t  b indings)  
"Test an a r b i t r a r y  expression i nvo l v i ng  var iables.  
The pa t te rn  looks l i k e  ( ( ? i f  code) . r e s t ) . "  
(and (progv (mapcar # 'car  bindings) 

(mapcar # 'cdr  b indings)  
(eval (second ( f i  r s t  pa t te rn )  1) 

(pat-match ( r e s t  pa t te rn )  i npu t  b ind ings) ) )  

Here are two examples using ?i f .  The first succeeds because (+ 3 4) is indeed 7, 
and the second fails because (> 3 4 is false. 

> (pat-match ' (?x  ?op ?y i s  ?z ( ? i f  (eql  (?op ?x ?y) ? z ) ) )  
' ( 3  + 4 i s  7 ) )  

( ( ? Z  . 7) (?Y . 4) (?OP . +) (?X . 3 ) )  

> (pat-match ' ( ?x  ?op ?y ( ? i f  (?op ?x ? y ) ) )  
' ( 3  > 4 ) )  

N I L  

The syntax we have defined for patterns has two virtues: first, the syntax is very 
general, so it is easy to extend. Second, the syntax can be easily manipulated by 
p a t  - ma t c  h. However, there is one drawback: the syntax is a little verbose, and some 
may find it ugly. Compare the following two patterns: 



Many readers find the second pattern easier to understand at a glance. We cohld 
change pa t  -match to allow for patterns of the form ?x*, but that would mean 
pat-match would have a lot more work to do on every match. An alternative is 
to leave p a t  -match as is, but define another level of syntax for use by human readers 
only. That is, a programmer could type the second expression above, and have it 
translated into the first, which would then be processed by p a t  -match. 

In other words, we will define a facility to define a kind of pattern-matcwng 
macro that will be expanded the first time the pattern is seen. It is better to do this 
expansion once than to complicate p a t  -match and in effect do the expansion every 
time a pattern is used. (Of course, if a pattern is only used once, then there is no 
advantage. But in most programs, each pattern will be used again and again.) 

We need to define two functions: one to define pattern-matching macros, and 
another to expand patterns that may contain these macros. We will only allow 
symbols to be macros, so it is reasonable to store the expansions on each symbol's 
property list: 

(defun pat-match-abbrev (symbol expansion) 
"Define symbol as a macro standing fbr a pat-match pattern." 
(setf (get symbol 'expand-pat-match-abbrev) 

(expand-pat-match-abbrev expansion)) 

(defun expand-pat-match-abbrev (pat) 
"Expand out all pattern matching abbreviations in pat." 
(cond ((and (symbolp pat) (get pat 'expand-pat-match-abbrev))) 

((atom pat) pat) 
(t (cons (expand-pat-match-abbrev (first pat)) 

(expand-pat-match-abbrev (rest pat)))))) 

We would use this facility as follows: 

> (pat-match-abbrev '?x* ' (?*  ?XI) + (?* ?X) 

> (pat-match-abbrev '?y* ' (?*  ?y)) + (?* ?Y) 

> (setf axyd (expand-pat-match-abbrev '(a ?x* ?y* dl)) + 
( A  (?* ?XI (?*  ?Y) D l  

> (pat-match axyd '(a b c d l )  + ( ( ? Y  B C) (?XI) 

Exercise 6.1 [m] Go back and change the ELIZA rules to use the abbreviation facility. 
Does this make the rules easier to read? 



p Exercise 6.2 [h] In the few prior examples, every time there was a binding of 
pattern variables that satisfied the input, that binding was found. Informally, show 
that pat  -match will always find such a binding, or show a counterexample where it 
fails to find one. 

6.3 A Rule-Based Translator Tool 

As we have defined it, the pattern matcher matches one input against one pattern. In 
el i za, we need to match each input against a number of patterns, and then return a 
result based on the rule that contains the first pattern that matches. To refresh your 
memory, here is the function use-el i za - rul es: 

(defun use-eliza-rules (input) 
"Find some rule with which to transform the input." 
(some #'(lambda (rule)  

( l e t  ( ( resu l t  (pat-match (rule-pattern rule) input) 1) 
( i f  (not (eq result f a i l ) )  

(sub1 i s  (switch-viewpoint result)  
(random-el t (rul e-responses rul el 1) 1)  

*eliza-rules*)) 

It turns out that this will be a quite common thing to do: search through a list of rules 
for one that matches, and take action according to that rule. To turn the structure of 
use - el i za - rul es into a software tool, we will allow the user to specify each of the 
following: 

a What kind of rule to use. Every rule will be characterized by an if-part and a 
then-part, but the ways of getting at those two parts may vary. 

a What list of rules to use. In general, each application will have its own list of 
rules. 

e How to see if a rule matches. By default, we will use pat  -match, but it should 
be possible to use other matchers. 

a What to do when a rule matches. Once we have determined which rule to use, 
we have to determine what it means to use it. The default is just to substitute 
the bindings of the match into the then-part of the rule. 



The rule-based translator tool now looks like this: 

(defun rule- based-trans1 ator 
(input rules &key (matcher #'pat-match) 
( rule-i f  # ' f i r s t )  (rule-then # ' res t )  (action #'sub1 i s )  

"Find the f i r s t  rule in rules t h a t  matches input, 
and apply the action to t h a t  rule." 
(some 

#'(lambda (rule)  
( l e t  ( ( resu l t  (funcall matcher (funcall rule-if  rul el 

input)))  
( i f  (not (eq result f a i l ) )  

(funcall action result (funcall rule-then r u l e ) ) ) ) )  
rules))  

(defun use-eliza-rules (input) 
"Find some rule with which to transform the input." 
(rule-based-trans1 ator input *el iza-rules* 

:action #'(lambda (bindings responses) 
(sublis (switch-viewpoint bindings) 

(random-elt responses))))) 

6.4 A Set of Searching Tools 

The GPS program can be seen as a problem in search. In general, a search problem 
involves exploring from some starting state and investigating neighboring states 
until a solution is reached. As in GPS, state means a description of any situation or 
state of affairs. Each state may have several neighbors, so there will be a choice of 
how to search. We can travel down one path until we see it is a dead end, or we can 
consider lots of different paths at the same time, expanding each path step by step. 
Search problems are called nondeterministic because there is no way to determine 
what is the best step to take next. A1 problems, by their very nature, tend to be 
nondeterministic. This can be a source of confusion for programmers who are used 
to deterministic problems. In this section we will try to clear up that confusion. 
This section also serves as an example of how higher-order functions can be used to 
implement general tools that can be specified by passing in specific functions. 

Abstractly, a search problem can be characterized by four features: 

The start state. 

The goal state (or states). 



The successors, or states that can be reached from any other state. 

The strategy that determines the order in which we search. 

The first three features are part of the problem, while the fourth is part of the 
solution. In GPS, the starting state was given, along with a description of the goal 
states. The successors of a state were determined by consulting the operators. The 
search strategy was means-ends analysis. This was never spelled out explicitly but 
was implicit in the structure of the whole program. In this section we will formulate 
a general searching tool, show how it can be used to implement several different 
search strategies, and then show how GPS could be implemented with this tool. 

The first notion we have to define is the state space, or set of all possible states. 
We can view the states as nodes and the successor relation as links in a graph. Some 
state space graphs will have a small number of states, while others have an infinite 
number, but they can still be solved if we search cleverly. Some graphs will have 
a regular structure, while others will appear random. We will start by considering 
only trees-that is, graphs where a state can be reached by only one unique sequence 
of successor links. Here is a tree: 

Searching Trees 

We will call our first searching tool tree-search, because it is designed to search 
state spaces that are in the form of trees. It takes four arguments: (1) a list of valid 
starting states, (2) a predicate to decide if we have reached a goal state, (3) a function 
to generate the successors of a state, and (4) a function that decides in what order 



to search. The first argument is a list rather than a single state so that t r e e  - sea r c  h 
can recursively call itself after it has explored several paths through the state space. 
Think of the first argument not as a starting state but as a list of possible states from 
which the goal may be reached. This lists represents the fringe of the tree that has 
been explored so far. t r e e  - search  has three cases: If there are no more states to 
consider, then give up and return f a i  1. If the first possible state is a goal state, 
then return the succesful state. Otherwise, generate the successors of the first state 
and combine them with the other states. Order this combined list according to the 
particular search strategy and continue searching. Note that t r e e  - search itself does 
not specify any particular searching strategy. 

(defun tree-search (s ta tes  goal-p successors combiner) 
"Find a s ta te  t h a t  sa t isf ies  goal-p. Start  with s ta tes ,  
and search according to  successors and combiner." 
(dbg :search ""&;; Search: "a" s ta tes)  
(cond ((null  s ta tes)  fa i l  

((funcall goal - p  ( f i r s t  s ta tes ) )  ( f i r s t  s ta tes ) )  
( t  (tree-search 

(funcall combiner 
(funcall successors ( f i r s t  s ta tes ) )  
( res t  s ta tes ) )  

goal - p  successors combiner 1) 1)  

The first strategy we will consider is called depth-first search. In depth-first search, 
the longest paths are considered first. In other words, we generate the successors 
of a state, and then work on the first successor first. We only return to one of the 
subsequent successors if we arrive at a state that has no successors at all. This 
strategy can be implemented by simply appending the previous states to the end 
of the list of new successors on each iteration. The function depth  - f i r s  t - search  
takes a single starting state, a goal predicate, and a successor function. It packages 
the starting state into a list as expected by t ree-search ,  and specifies append as the 
combining function: 

(defun depth-first-search ( s t a r t  goal-p successors) 
"Search new states f i r s t  until goal i s  reached." 
(tree-search ( l i s t  s t a r t )  goal-p successors #'append)) 

Let's see how we can search through the binary tree defined previously. First, we 
define the successor function b i  n a r y - t r e e .  It returns a list of two states, the two 
numbers that are twice the input state and one more than twice the input state. So the 
successors of 1 will be 2 and 3, and the successors of 2 will be 4 and 5. The b i na ry - t r e e  
function generates an infinite tree of which the first 15 nodes are diagrammed in our 
example. 



(defun b i n a r y - t r e e  ( x )  ( l i s t  ( *  2 x )  (+ 1 (* 2 x ) ) ) )  

To make it easier to specify a goal, we define the function i s as a function that returns 
a predicate that tests for a particular value. Note that i s does not do the test itself. 
Rather, it returns a function that can be called to perform tests: 

(defun i s  ( va lue )  #'(lambda ( x )  (eq l  x v a l u e ) ) )  

Nowwe can turnon the debuggingoutput and search through the binary tree, starting 
at 1, and looking for, say, 12, as the goal state. Each line of debugging output shows 
the list of states that have been generated as successors but not yet examined: 

> (debug :search) + (SEARCH) 

> ( d e p t h - f i r s t - s e a r c h  1 ( i s  12) # ' b i n a r y - t r e e )  
;; Search: (1 )  
;; Search: ( 2  3 )  
;; Search: ( 4  5 3 )  
;; Search: ( 8  9 5 3)  
;; Search: (16 17 9 5 3 )  
;; Search: (32 33 17 9 5 3)  
;; Search: (64 65 33 17 9 5 3 )  
;; Search: (128 129 65 33 17 9 5 3 )  
;; Search: (256 257 129 65 33 17 9 5 3)  
;; Search: (512 513 257 129 65 33 17 9 5 3 )  
;; Search: (1024 1025 513 257 129 65 33 17 9 5 3)  
;; Search: (2048 2049 1025 513 257 129 65 33 17 9 5 3)  
CAbort l  

The problem is that we are searching an infinite tree, and the depth-first search 
strategy just dives down the left-hand branch at every step. The only way to stop the 
doomed search is to type an interrupt character. 

An alternative strategy is breadth-first search, where the shortest path is extended 
first at each step. It can be implemented simply by appending the new successor 
states to the end of the existing states: 

(defun prepend ( x  y )  "Prepend y t o  s t a r t  o f  x "  (append y x ) )  

(defun b r e a d t h - f i r s t - s e a r c h  ( s t a r t  goa l -p  successors) 
"Search o l d  s t a t e s  f i r s t  u n t i l  goal i s  reached. " 
( t ree -search  ( l i s t  s t a r t )  goa l -p  successors #'prepend)) 

The only difference between depth-first and breadth-first search is the difference 
between append and prepend. Herewe see breadth-fi rst-searchinaction: 



> (breadth-first-search 1 ( i s  12) 'binary-tree) 
;; Search: (1)  
;; Search: (2 3)  
;; Search: ( 3  4 5) 
;; Search: (4 5 6 7) 
;; Search: (5 6 7 8 9) 
;; Search: ( 6  7 8 9 10 11) 
;; Search: (7 8 9 10 11 12 13) 
;; Search: ( 8  9 10 11 12 13 14 15) 
;; Search: (9 10 11 12 13 14 15 16 17) 
;; Search: (10 11 12 13 14 15 16 17 18 19) 
;; Search: (11 12 13 14 15 16 17 18 19 20 21) 
;; Search: (12 13 14 15 16 17 18 19 20 21 22 23) 
12 

Breadth-first search ends up searching each node in numerical order, and so it will 
eventually find any goal. It is methodical, but therefore plodding. Depth-first search 
will be much faster-if it happens to find the goal at all. For example, if we were 
looking for 2048, depth-first search would find it in 12 steps, while breadth-first 
would take 2048 steps. Breadth-first search also requires more storage, because it 
saves more intermediate states. 

If the search tree is finite, then either breadth-first or depth-first will eventually 
find the goal. Both methods search the entire state space, but in a different order. We 
will now show a depth-first search of the 15-node binary tree diagrammed previously. 
It takes about the same amount of time to find the goal (12) as it did with breadth-first 
search. It would have taken more time to find 15; less to find 8. The big difference is 
in the number of states considered at one time. At most, depth-first search considers 
four at a time; in general it will need to store only log, n states to search a n-node tree, 
while breadth-first search needs to store n/2 states. 

(defun f in i te-binary- t ree  ( n )  
"Return a successor function t h a t  generates a binary t r ee  
with n nodes." 
#'(lambda ( x )  

(remove-if #'(lambda (chi ld)  (> child n ) )  
(binary-tree x)  1 ) )  

> (depth-first-search 1 ( i s  12) ( f in i te-binary-t ree  15) )  
;; Search: (1) 
;; Search: (2 3)  
;; Search: (4 5 3) 
;; Search: (8  9 5 3)  
;; Search: (9 5 3)  
;; Search: (5  3)  
;: Search: (10 11 3) 
;; Search: (11 3)  



;; Search: (3 )  
;; Search: ( 6  7 )  
;; Search: (12 13 7 )  
12 

Guiding the Search 

While breadth-first search is more methodical, neither strategy is able to take advan- 
tage of any knowledge about the state space. They both search blindly. In most real 
applications we will have some estimate of how far a state is from the solution. In 
such cases, we can implement a best-first search. The name is not quite accurate; if 
we could really search best first, that would not be a search at all. The name refers to 
the fact that the state that appears to be best is searched first. 

To implement best-first search we need to add one more piece of information: a 
cost function that gives an estimate of how far a given state is from the goal. 

For the binary tree example, we will use as a cost estimate the numeric difference 
from the goal. So if we are looking for 12, then 12 has cost 0,8 has cost 4 and 2048 
has cost 2036. The higher-order function d i f f, shown in the following, returns a cost 
function that computes the difference from a goal. The higher-order function sorter 
takes a cost function as an argument and returns a combiner function that takes the 
lists of old and new states, appends them together, and sorts the result based on the 
cost function, lowest cost first. (The built-in function sort  sorts a list according to 
a comparison function. In this case the smaller numbers come first. sort  takes an 
optional : key argument that says how to compute the score for each element. Be 
careful-sort is a destructive function.) 

(defun di f f  ( n u m )  
"Return the function tha t  finds the difference from num." 
#'(lambda (x)  (abs ( -  x n u m ) ) ) )  

(defun sor ter  (cos t - fn)  
"Return a combiner function tha t  so r t s  according t o  cos t -fn . "  
#'(lambda (new old) 

( so r t  (append new old) #'< :key c o s t - f n ) ) )  

(defun bes t -f i rs t -search ( s t a r t  goal-p successors cos t -fn)  
"Search lowest cost s t a t e s  f i r s t  until goal i s  reached." 
( tree-search ( l i s t  s t a r t )  goal-p successors (sor ter  cos t - fn ) ) )  

Now, using the difference from the goal as the cost function, we can search using 
best-first search: 



> ( b e s t - f i r s t - s e a r c h  1 ( i s  12) # ' b i n a r y - t r e e  ( d i f f  1 2 ) )  
;; Search: (1) 
;; Search: ( 3  2) 
;; Search: ( 7  6  2 )  
;; Search: (14 15 6  2) 
;; Search: (15 6  2  28 29) 
;; Search: ( 6  2  28 29 30 31) 
;; Search: (12 13 2  28 29 30 31) 
12 

The more we know about the state space, the better we can search. For example, if we 
know that all successors are greater than the states they come from, then we can use 
a cost function that gives a very high cost for numbers above the goal. The function 
p r i ce - i s - r i g h t is like d i f f, except that it gives a high penalty for going over the 
goal.3 Using this cost function leads to a near-optimal search on this example. It 
makes the "mistake" of searching 7 before 6 (because 7 is closer to 12), but does not 
waste time searching 14 and 15: 

(defun p r i c e - i s - r i g h t  ( p r i c e )  
"Return a  f u n c t i o n  t h a t  measures t h e  d i f f e r e n c e  from p r i c e ,  
b u t  g ives a  b i g  pena l t y  f o r  going over p r i c e .  " 
#'(lambda ( x )  ( i f  (> x  p r i c e )  

mos t -pos i t i ve - f i xnum 
( -  p r i c e  x ) ) ) )  

> ( b e s t - f i r s t - s e a r c h  1 ( i s  12) # ' b i n a r y - t r e e  ( p r i c e - i s - r i g h t  12 ) )  
;; Search: ( 1 )  
;; Search: ( 3  2) 
;; Search: ( 7  6 2) 
;; Search: ( 6  2  14 15) 
;; Search: (12 2  13 14 15) 
12 

All the searching methods we have seen so far consider ever-increasing lists of states 
as they search. For problems where there is only one solution, or a small number of 
solutions, this is unavoidable. To find a needle in a haystack, you need to look at a 
lot of hay. But for problems with many solutions, it may be worthwhile to discard 
unpromising paths. This runs the risk of failing to find a solution at all, but it can 
save enough space and time to offset the risk. A best-first search that keeps only a 
fixed number of alternative states at any one time is known as a beam search. Think 
of searching as shining a light through the dark of the state space. In other search 

 he built-in constant most - pos i t i  ve - f i xnum is a large integer, the largest that can be 
expressed without using bignums. Its value depends on the implementation, but in most 
Lisps it is over 16 million. 



strategies the light spreads out as we search deeper, but in beam search the light 
remains tightly focused. Beam search is a variant of best-first search, but it is also 
similar to depth-first search. The difference is that beam search looks down several 
paths at once, instead of just one, and chooses the best one to look at next. But 
it gives up the ability to backtrack indefinitely. The function beam-search  is just 
like b e s t - f i  r s t - s e a r c h ,  except that after we sort the states, we then take only the 
first beam-wi d t h  states. This is done with subseq; ( subseq  list start e n d )  returns the 
sublist that starts at position start and ends just before position end .  

(defun beam-search ( s t a r t  goa l -p  successors c o s t - f n  beam-width) 
"Search h ighes t  sco r ing  s t a t e s  f i r s t  u n t i l  goal i s  reached. 
b u t  never cons ider  more than beam-width s t a t e s  a t  a t ime."  
( t ree -search  ( l i s t  s t a r t )  goa l -p  successors 

#'(lambda ( o l d  new) 
( l e t  ( ( s o r t e d  ( f u n c a l l  ( s o r t e r  c o s t - f n )  o ldnew) ) )  

( i f  (> beam-width ( l e n g t h  s o r t e d ) )  
so r ted  
(subseq s o r t e d 0  beam-width) ) ) ) ) ) -  

We can successfully search for 12 in the binary tree using a beam width of only 2: 

> (beam-search 1 ( i s  12) # ' b i n a r y - t r e e  ( p r i c e - i s - r i g h t  12) 2) 
;; Search: (1 )  
;; Search: ( 3  2) 
;; Search: (7  6) 
;; Search: ( 6  14) 
;; Search: (12 13) 
12 

However, if we go back to the scoring function that just takes the difference from 12, 
then beam search fails. When it generates 14 and 15, it throws away 6, and thus loses 
its only chance to find the goal: 

> (beam-search 1 ( i s  12) # ' b i n a r y - t r e e  ( d i f f  12) 2 )  
;; Search: (1 )  
;; Search: ( 3  2) 
;; Search: ( 7  6) 
;; Search: (14 15) 
;; Search: (15 28) 
;; Search: (28 30) 
;; Search: (30 56) 
;; Search: (56 60) 
;; Search: (60 112) 
;; Search: (112 120) 
;; Search: (120 224) 



This search would succeed if we gave a beam width of 3. This illustrates a general 
principle: we can find a goal either by looking at more states, or by being smarter 
about the states we look at. That means having a better ordering function. 

Notice that with a beam width of-infinity we get best-first search. With a beam 
width of 1, we get depth-first searchwith no backup. This could be calledl'depth-only 
search," but it is more commonly known as hill-climbing. Think of a mountaineer 
trying to reach a peak in a heavy fog. One strategy would be for the mountaineer to 
look at adjacent locations, climb to the highest one, and look again. This strategy 
may eventually hit the peak, but it may also get stuck at the top of a foothill, or local 
maximum. Another strategy would be for the mountaineer to turn back and try again 
when the fog lifts, but in AI, unfortunately, the fog rarely lifts.4 

As a concrete example of a problem that can be solved by search, consider the 
task of planning a flight across the North American continent in a small airplane, one 
whose range is limited to 1000 kilometers. Suppose we have a list of selected cities 
with airports, along with their position in longitude and latitude: 

( d e f s t r u c t  ( c i t y  ( : t ype  l i s t ) )  name long  l a t )  

(defparameter * c i t i e s *  
' ( (A t1  anta 84.23 33.45) (Los-Angeles 118.15 34.03) 

(Boston 71.05 42.21) (Memphis 90.03 35.09) 
(Chi cago 87.37 41.50) (New-York 73.58 40.47) 
(Denver 105.00 39.45) (Oklahoma-City 97.28 35.26) 
( Eugene 123.05 44.03) (P i t t sburgh  79.57 40.27) 
( F l a g s t a f f  111.41 35.13) (Quebec 71.11 46.49) 
(Grand- J c t  108.37 39.05) (Reno 119.49 39.30) 
(Houston 105.00 34.00) (San-Francisco 122.26 37.47) 
( Ind ianapo l i s  86.10 39.46) (Tampa 82.27 27.57) 
(Jacksonv i l l e  81.40 30.22) ( V i c t o r i a  123.21 48.25) 
(Kansas-City 94.35 39.06) (Wilmington 77.57 34.14))) 

This example introduces a new option to def s t r u c t .  Instead of just giving the name 
of the structure, it is also possible to use: 

( de f  s t r u c t  (structure-name ( option value ... "optional doc" slot ... 

For city, the option : type is specified as 1 i s t .  This means that cities will be imple- 
mented as lists of three elements, as they are in the initial value for * c i  t i es*. 

4 ~ n  chapter 8 we will see an example where the fog did lift: symbolic integration was once 
handled as a problem in search, but new mathematical results now make it possible to solve 
the same class of integration problems without search. 



Figure 6.1: A Map of Some Cities 

The cities are shown on the map in figure 6.1, which has connections between 
all cities within the 1000 kilometer range of each other.5 This map was drawn with 
the help of a i  r - d i  stance, a function that returns the distance in kilometers between 
two cities "as the crow flies." It will be defined later. Two other useful functions are 
n e i  g hbor s, which finds all the cities within 1000 kilometers, and c i  ty ,  which maps 
from a name to a city. The former uses f i nd - a 1 1 - i f, which was defined on page 101 
as a synonym for remove- i f -not.  

(defun neighbors (c i ty )  
"Find a1 1 c i t i es  within 1000 ki 1 ometers . " 
(find-all - i f  #'(lambda (c )  

(and (not (eq c c i t y ) )  
(< (air-distance c c i ty)  1000 

*cities*) 

(defun city (name) 
"Find the city with this  name." 
(assoc name *cities*)) 

We are now ready to plan a trip. The function t r i p takes the name of a starting and 
destination city and does a beam search of width one, considering all neighbors as 
- - 

5 ~ h e  astute reader will recognize that this graph is not a tree. The difference between trees 
and graphs and the implications for searching will be covered later. 



successors to a state. The cost for a state is the air distance to the destination city: 

(defun t r i p  ( s t a r t  des t )  

"Search f o r  a way from t h e  s t a r t  t o  dest . "  

(beam-search s t a r t  ( i s  des t )  #'neighbors 

#'(lambda ( c )  ( a i r - d i s t a n c e  c d e s t ) )  

1 ) )  

Here we plan a trip from San Francisco to Boston. The result seems to be the best 
possible path: 

> ( t r i p  ( c i t y  'san- f ranc isco)  ( c i t y  'boston)) 

;; Search: ((SAN-FRANCISCO 122.26 37.47)) 

;; Search: ((RENO 119.49 39.3)) 

;; Search: ((GRAND-JCT 108.37 39.05)) 

;; Search: ((DENVER 105.0 39.45)) 

;; Search: ((KANSAS-CITY 94.35 39.06)) 

;; Search: ((INDIANAPOLIS 86.1 39.46)) 

;; Search: ((PITTSBURGH 79.57 40.27)) 

;; Search: ((BOSTON 71.05 42.21)) 

(BOSTON 71.05 42.21) 

But look what happens when we plan the return kip. There are two detours, to 
Chicago and Flagstaff: 

> ( t r i p  ( c i t y  'boston) ( c i t y  ' san- f ranc isco) )  

;; Search: ((BOSTON 71.05 42.21)) 

; ; Search: ((PITTSBURGH 79.57 40.27) 

;; Search: ((CHICAGO 87.37 41.5)) 

;; Search: ((KANSAS-CITY 94.35 39.06)) 

;; Search: ((DENVER 105.0 39.45)) 

;; Search: ((FLAGSTAFF 111.41 35.13)) 

;; Search: ((RENO 119.49 39.3)) 

:; Search: ((SAN-FRANCISCO 122.26 37.47)) 

(SAN-FRANCISCO 122.26 37.47) 

Why did t r i  p go from Denver to San Francisco via Flagstaff? Because Flagstaff is 
closer to the destination than Grand Junction. The problem is that we are minimizing 
the distance to the destination at each step, when we should be minimizing the sum 
of the distance to the destination plus the distance already traveled. 



Search Paths 

To minimize the total distance, we need some way to talk about the path that leads 
to the goal. But the functions we have defined so far only deal with individual states 
along the way. Representing paths would lead to another advantage: we could 
return the path as the solution, rather than just return the goal state. As it is, t r i p  
only returns the goal state, not the path to it. So there is no way to determine what 
t r i p has done, except by reading the debugging output. 

The data structure p a t h  is designed to solve both these problems. A path has 
four fields: the current state, the previous partial path that this path is extending, 
the cost of the path so far, and an estimate of the total cost to reach the goal. Here is 
the structure definition for path .  It uses the : p r i  n t - f u n c t i  on option to say that all 
paths are to be printed with the function p r i  n t  -path, which will be defined below. 

( de f s t r uc t  (path ( : p r i n t - f unc t i on  p r i n t - pa th ) )  
s t a te  (previous n i l )  (cos t -so- fa r  0) ( t o t a l - c o s t  0 ) )  

The next question is how to integrate paths into the searching routines with the 
least amount of disruption. Clearly, it would be better to make one change to 
t r e e - s e a r c h  rather than to change d e p t h - f i r s t - s e a r c h ,  b r e a d t h - f i r s t - s e a r c h ,  
and beam- search. However, looking back at the definition of t r e e -  search, we see 
that it makes no assumptions about the structure of states, other than the fact that 
they can be manipulated by the goal predicate, successor, and combiner functions. 
This suggests that we can use t r e e -  search  unchanged if we pass it paths instead of 
states, and give it functions that can process paths. 

In the following redefinition of t r i  p, the beam- search  function is called with five 
arguments. Instead of passing it a city as the start state, we pass a path that has 
the city as its state field. The goal predicate should test whether its argument is a 
path whose state is the destination; we assume (and later define) a version of i s that 
accommodates this. The successor function is the most difficult. lnstead of just 
generating a list of neighbors, we want to first generate the neighbors, then make 
each one into a path that extends the current path, but with an updated cost so far 
and total estimated cost. The function p a t h  - saver  returns a function that will do just 
that. Finally, the cost function we are trying to minimize is p a t h -  t o t a l  -cost ,  and 
we provide a beam width, which is now an optional argument to t r i  p  that defaults 
to one: 

(defun t r i p  ( s t a r t  dest &optional (beam-width 1) )  
"Search f o r  the best path from the  s t a r t  t o  dest . "  
(beam-search 

(make-path :s ta te  s t a r t )  
( i s  dest :key # 'pa th-s ta te )  
(path-saver #'neighbors # ' a i r - d i s t ance  



#'(lambda ( c )  ( a i r - d i s t a n c e  c d e s t ) ) )  
# ' p a t h - t o t a l - c o s t  
beam-wi d t h  1) 

The calculation of a i r - d i s t  an ce involves some complicated conversion of longitude 
and latitude to x-y-z coordinates. Since this is a problem in solid geometry, not AI, 
the code is presented without further comment: 

(defconstant  ear th-d iameter  12765.0 
"Diameter o f  p l  anet e a r t h  i n  k i  1 ometers. " 

(defun a i r - d i s t a n c e  ( c i t y 1  c i t y 2 1  
"The g rea t  c i r c l e  d is tance  between two c i t i e s .  " 
( l e t  ( ( d  (d is tance  (xyz-coords c i t y 1 1  (xyz-coords c i t y 2 ) ) ) )  

;; d i s  the  s t r a i g h t - l i n e  chord between t h e  two c i t i e s ,  
;; The leng th  o f  t h e  subtending a rc  i s  g iven by: 
(* ear th-d iameter  ( a s i n  ( 1  d 2 ) ) ) ) )  

(defun xyz-coords ( c i t y )  
"Returns t h e  x,y,z coordinates o f  a p o i n t  on a sphere. 
The center  i s  ( 0  0 0)  and t h e  n o r t h  po le  i s  ( 0  0 11." 
( l e t  ( ( p s i  (deg->radians ( c i t y - l a t  c i t y )  1)  

(ph i  (deg->radians ( c i  t y - 1  ong c i t y )  1) 
( l i s t  (* (COS p s i )  (cos p h i ) )  

(* (COS p s i )  ( s i n  p h i ) )  
( s i n  p s i ) ) ) )  

(defun d is tance (po i  n t l  po i  n t 2 )  
"The Euclidean d is tance  between two po in ts .  
The p o i n t s  are coord inates i n  n-dimensional space." 
( s q r t  (reduce # '+ (mapcar #'(lambda (a b )  (exp t  ( -  a b) 2 ) )  

p o i n t 1  p o i n t 2 ) ) ) )  

(defun deg->radians (deg) 
"Convert degrees and minutes t o  rad ians."  
(* (+ ( t runca te  deg) (* (rem deg 1 )  100160)) p i  11180)) 

Before showing the auxiliary functions that implement this, here are some examples 
that show what it can do. Witha beamwidth of 1, the detour to Flagstaff is eliminated, 
but the one to Chicago remains. With a beam width of 3, the correct optimal path is 
found. In the following examples, each call to the new version of t r i p returns a path, 
whichisprintedbyshow-city-path: 

> (show-c i ty-path ( t r i p  ( c i t y  'san- f ranc isco)  ( c i t y  'boston) 1 ) )  
#<Path 4514.8 km: San-Francisco - Reno - Grand-Jct - Denver - 

Kansas-City - Ind ianapo l i s  - P i t t sburgh  - Boston> 



> (show-c i ty-path ( t r i p  ( c i t y  'boston) ( c i t y  'san- f ranc isco)  1)) 
#<Path 4577.3 km: Boston - P i t t sburgh  - Chicago - Kansas-City - 

Denver - Grand-Jct - Reno - San-Francisco> 

> (show-c i ty-path ( t r i p  ( c i t y  'boston) ( c i t y  'san- f ranc isco)  3 ) )  
#<Path 4514.8 km: Boston - P i t t sburgh  - Ind ianapo l i s  - 

Kansas-City - Denver - Grand-Jct - Reno - San-Francisco> 

This example shows how search is susceptible to irregularities in the search space. It 
was easy to find the correct path from west to east, but the return trip required more 
search, because Flagstaff is a falsely promising step. In general, there may be even 
worse dead ends lurking in the search space. Look what happens when we limit the 
airplane's range to 700 kilometers. The map is shown in figure 6.2. 

Figure 6.2: A Map of Cities within 700km 

If we try to plan a trip from Tampa to Quebec, we can run into problems with 
the dead end at Wilmington, North Carolina. With a beam width of 1, the path to 
Jacksonville and then Wilmington will be tried first. From there, each step of the path 
alternates between Atlanta and Wilmington. The search never gets any closer to the 
goal. But with a beam width of 2, the path from Tampa to Atlanta is not discarded, 
and it is eventually continued on to Indianapolis and eventually to Quebec. So the 
capability to back up is essential in avoiding dead ends. 

Now for the implementation details. The function i s still returns a predicate that 
tests for a value, but now it accepts : key and : test keywords: 



(defun i s  (va lue &key (key # ' i d e n t i t y )  ( t e s t  # ' e q l ) )  
"Returns a  p red ica te  t h a t  t e s t s  f o r  a  g iven value. " 
#'(lambda (path)  ( f u n c a l l  t e s t  value ( f u n c a l l  key p a t h ) ) ) )  

The path - saver function returns a function that will take a path as an argument and 
generate successors paths. pa th  - saver takes as an argument a successor function 
that operates on bare states. It calls this function and, for each state returned, builds 
up a path that extends the existing path and stores the cost of the path so far as well 
as the estimated total cost: 

(defun path-saver (successors c o s t - f n  c o s t - l e f t - f n )  
#'(lambda (o ld -pa th )  

( l e t  ( ( o l d - s t a t e  ( p a t h - s t a t e  o ld -pa th )  1) 
(mapcar 

#'(lambda (new-state) 
( l e t  ( ( o l d - c o s t  

(+ ( p a t h - c o s t - s o - f a r  o ld -pa th )  
( f u n c a l l  c o s t - f n  o l d - s t a t e  new-s ta te ) ) ) )  

(make-path 
: s t a t e  new-state 
:previous 01 d-path 
: c o s t - s o - f a r  o l d - c o s t  
: t o t a l  - cos t  (+ o l d - c o s t  ( f u n c a l l  c o s t - l e f t - f n  

new-state) 1 1 1 1 
( f u n c a l l  successors o l d - s t a t e ) ) ) ) )  

By default a path structure would be printed as #S ( PATH . . . 1 . But because each path 
has a p r e v i  ous field that is filled by another path, this outputwouldget quiteverbose. 
That is why we installed p r i  n t  - pa t h as the print function for paths when we defined 
the structure. It uses the notation #<. . . >, which is a Common Lisp convention for 
printing output that can not be reconstructed by read. The function show- ci t y  - pa t h 
prints a more complete representation of a path. We also define map - pa t h to iterate 
over a path, collecting values: 

(defun p r i n t - p a t h  (path &opt ional  (stream t )  depth) 
(dec lare ( ignore  depth))  
( format  stream "#<Path t o  -a cos t  " , l f > "  

( p a t h - s t a t e  path)  ( p a t h - t o t a l - c o s t  p a t h ) ) )  

(defun show-c i ty-path (path &opt ional  (stream t ) )  
"Show the  l e n g t h  o f  a  path, and t h e  c i t i e s  along i t . "  
( format  stream "#<Path - , l f  km: "{":("a*)-^ - ")>" 

( p a t h - t o t a l  - cos t  path)  
( reverse (map-path #'ci ty-name p a t h ) ) )  

(va lues)  



(defun map-path ( f n  path)  
"Ca l l  f n  on each s t a t e  i n  t h e  path, c o l l e c t i n g  r e s u l t s . "  
( i f  ( n u l l  path) 

n i  1  
(cons ( f u n c a l l  f n  ( p a t h - s t a t e  p a t h ) )  

(map-path f n  (path-prev ious p a t h ) ) ) ) )  

Guessing versus Guaranteeing a Good Solution 

Elementary A1 textbooks place a great emphasis on search algorithms that are guar- 
anteed to find the best solution. However, in practice these algorithms are hardly 
ever used. The problemis that guaranteeing the best solution requires looking at a lot 
of other solutions in order to rule them out. For problems with large search spaces, 
this usually takes too much time. The alternative is to use an algorithm that will 
probably return a solution that is close to the best solution, but gives no guarantee. 
Such algorithms, traditionally known as non-admissible heuristic search algorithms, 
can be much faster. 

Of the algorithms we have seen so far, best-first search almost, but not quite, 
guarantees the best solution. The problem is that it terminates a little too early. 
Suppose it has calculated three paths, of cost 90,95 and 110. It will expand the 90 
path next. Suppose this leads to a solution of total cost 100. Best-first search will 
then return that solution. But it is possible that the 95 path could lead to a solution 
with a total cost less than 100. Perhaps the 95 path is only one unit away from the 
goal, so it could result in a complete path of length 96. This means that an optimal 
search should examine the 95 path (but not the 110 path) before exiting. 

Depth-first search and beam search, on the other hand, are definitely heuristic 
algorithms. Depth-first search finds a solution without any regard to its cost. With 
beam search, picking a good value for the beam width can lead to a good, quick 
solution, while picking the wrong value can lead to failure, or to a poor solution. 
One way out of this dilemma is to start with a narrow beam width, and if that does 
not lead to an acceptable solution, widen the beam and try again. We will call this 
iterative widening, although that is not a standard term. There are many variations on 
this theme, but here is a simple one: 

(defun i te r -w ide-search  ( s t a r t  goa l -p  successors c o s t - f n  
&key (w id th  1) (max 100)) 

"Search, inc reas ing  beam w id th  from w id th  t o  max. 
Return t h e  f i r s t  s o l u t i o n  found a t  any width. "  
(dbg :search " ;  Width: "d" w id th )  
(unless (> w id th  max) 

( o r  (beam-search s t a r t  goa l -p  successors c o s t - f n  w id th )  
( i te r -w ide-search  s t a r t  goa l -p  successors c o s t - f n  



:w id th  (+ w id th  1 )  :max max) ) ) )  

Here i t e r - w i  de-search is used to search through a binary tree, failing with beam 
width 1 and 2, and eventually succeeding with beam width 3: 

> ( i t e r - w i d e - s e a r c h  1 ( i s  12) ( f i n i t e - b i n a r y - t r e e  15) ( d i f f  1 2 ) )  

; Width: 1 

;; Search: ( 1 )  

;; Search: (3 )  

;; Search: (7 )  

;; Search: (14) 

;; Search: N IL  

; Width: 2 

;; Search: (1 )  

;; Search: (3  2 )  

;; Search: (7 6 )  

;; Search: (14 15) 

;; Search: (15) 

;; Search: N I L  

; Width: 3 

;; Search: ( 1 )  

;; Search: ( 3  2) 

;; Search: (7  6 2) 

;; Search: (14 15 6)  

;; Search: (15 6) 

;; Search: (6 )  

;; Search: (12 13) 

12 

The name iterative widening is derived from the established term iterative deepening. 
Iterative deepening is used to control depth-first search when we don't know the 
depth of the desired solution. The idea is first to limit the search to a depth of 1, 
then 2, and so on. That way we are guaranteed to find a solution at the minimum 
depth, just as in breadth-first search, but without wasting as much storage space. Of 
course, iterative deepening does waste some time because at each increasing depth 
it repeats all the work it did at the previous depth. But suppose that the average 
state has ten successors. That means that increasing the depth by one results in ten 
times more search, so only 10 % of the time is wasted on repeated work. So iterative 
deepening uses only slightly more time and much less space. We will see it again in 
chapters 11 and 18. 



Searching Graphs 

So far, tree- search has been the workhorse behind all the searching routines. This 
is curious, when we consider that the city problem involves a graph that is not a tree 
at all. The reason tree- search works is that any graph can be treated as a tree, if we 
ignore the fact that certain nodes are identical. For example, the graph in figure 6.3 
can be rendered as a tree. Figure 6.4 shows only the top four levels of the tree; each 
of the bottom nodes (except the 6s) needs to be expanded further. 

Figure 6.3: A Graph with Six Nodes 

In searching for paths through the graph of cities, we were implicitly turning the 
graph into a tree. That is, if tree- search found two paths from Pittsburgh to Kansas 
City (via Chicago or Indianapolis), then it would treat them as two independent 
paths, just as if there were two distinct Kansas Cities. This made the algorithms 
simpler, but it also doubles the number of paths left to examine. If the destination is 
San Francisco, we will have to search for a path from Kansas City to San Francisco 
twice instead of once. In fact, even though the graph has only 22 cities, the tree is 
infinite, because we can go back and forth between adjacent cities any number of 
times. So, while it is possible to treat the graph as a tree, there are potential savings 
in treating it as a true graph. 

the functiongraph-search does just that. Itis similarto tree-search, but accepts 
two additional arguments: a comparison function that tests if two states are equal, 
and a list of states that are no longer being considered, but were examined in the past. 
The difference between graph-search and tree-search is in the call to new-states, 
which generates successors but eliminates states that are in either the list of states 
currently being considered or the list of old states considered in the past. 

(defun graph-search (states g o a l - p  successors combiner 
&optional (state= #'eql) 01 d-states 

"Find a state t h a t  satisfies goal-p. Start w i t h  states, 



Figure 6.4: The Corresponding Tree 

and search according to successors and combiner. 
Don't try the same s ta te  twice." 
(dbg  :search "-&;; Search: " a" s ta tes)  
(cond ((null  s ta tes)  f a i l )  

( (funcall goal -p ( f i r s t  s ta tes)  ( f i r s t  s ta tes)  
( t  (graph-search 

(funcall 
combiner 
(new-states states successors state= old-states) 
( res t  s ta tes ) )  

goal-p successors combiner state= 
(adjoin ( f i r s t  s ta tes)  old-states 

: tes t  state=) 1) ) 1 

(defun new-states (s ta tes  successors state= old-states) 
"Generate successor states t h a t  have not been seen before." 
( remove- i  f  

# '  (lambda ( s ta te )  
(or (member s ta te  states : tes t  state=) 

(member s ta te  old-states : tes t  s ta te=) ) )  
(funcall successors ( f i  r s t  s ta tes)  1) ) 

Using the successor function next2, we can search the graph shown here either as a 
tree or as a graph. If we search it as a graph, it takes fewer iterations and less storage 
space to find the goal. Of course, there is additional overhead to test for identical 



states, but on graphs like this one we get an exponential speed-up for a constant 
amount of overhead. 

(defun next2 ( x )  ( l i s t  (+ x 1) (+ x 2 ) ) )  

> ( t ree -search  ' ( 1 )  ( i s  6) # 'next2 #'prepend) 
;; Search: ( 1 )  
;; Search: ( 2  3)  
;; Search: ( 3  3 4)  
;; Search: ( 3  4 4 5)  
;; Search: ( 4  4 5 4 5)  
;; Search: ( 4  5 4 5 5 6)  
;; Search: (5  4 5 5 6 5 6)  
;; Search: ( 4  5 5 6 5 6 6 7)  
;; Search: (5  5 6 5 6 6 7 5 6)  
;; Search: (5  6 5 6 6 7 5 6 6 7)  
;; Search: ( 6  5 6 6 7 5 6 6 7 6 7)  
6 

> (graph-search ' ( 1 )  ( i s  6)  # 'next2 #'prepend) 
;; Search: (1) 
;; Search: ( 2  3)  
;; Search: ( 3  4)  
;; Search: ( 4  5)  
;; Search: (5  6 )  
;; Search: ( 6  7)  
6 

The next step is to extend the g rap h - sea r c h algorithm to handle paths. The compli- 
cation is in deciding which path to keep when two paths reach the same state. If we 
have a cost function, then the answer is easy: keep the path with the cheaper cost. 
Best-first search of a graph removing duplicate states is called A" search. 

A* search is more complicated than graph-search because of the need both to 
add and to delete paths to the lists of current and old paths. For each new successor 
state, there are three possibilities. The new state may be in the list of current paths, in 
the list of old paths, or in neither. Within the first two cases, there are two subcases. 
If the new path is more expensive than the old one, then ignore the new path-it can 
not lead to a better solution. If the new path is cheaper than a corresponding path 
in the list of current paths, then replace it with the new path. If it is cheaper than a 
corresponding path in the list of the old paths, then remove that old path, and put 
the new path in the list of current paths. 

Also, rather than sort the paths by total cost on each iteration, they are kept sorted, 
and new paths are inserted into the proper place one at a time using i n se r t - path. 
Two more functions, b e t t e r  -path  and f i nd -pa th, are used to compare paths and 
see if a state has already appeared. 



(defun a*-search (paths goa l -p  successors c o s t - f n  c o s t - l e f t - f n  

&opt ional  ( s ta te=  # ' e q l )  o ld -pa ths )  

"F ind a  path whose s t a t e  s a t i s f i e s  goal-p. S t a r t  w i t h  paths, 

and expand successors, expl o r i n g  1  east  cost  f i  r s t .  

When there  are d u p l i c a t e  s ta tes ,  keep the  one w i t h  the  

lower cost  and d iscard  t h e  o ther . "  

(dbg :search ";; Search: "a" paths) 

(cond 

( ( n u l l  paths)  f a i l )  

( ( f u n c a l l  goal -p  ( p a t h - s t a t e  ( f i r s t  pa ths ) )  

(values ( f i r s t  paths)  paths)  

( t  ( l e t *  ( ( p a t h  (pop paths))  

( s t a t e  ( p a t h - s t a t e  path)  1) 
;; Update PATHS and OLD-PATHS t o  r e f l e c t  
;; t h e  new successors o f  STATE: 

( s e t f  o ld-paths ( i n s e r t - p a t h  path o ld -pa ths ) )  

(do1 i s t  ( s t a t e 2  ( f u n c a l l  successors s t a t e ) )  

(1  e t *  ( ( c o s t  (+ (pa th ' cos t -so - fa r  path)  

( funca l l  c o s t - f n  s t a t e  s t a t e 2 ) ) )  

(cost2 ( funca l l  c o s t - l e f t - f n  state211 

(path2 (make-path 

: s t a t e  s ta te2  :previous path 

: cos t - so- fa r  cos t  

: t o t a l  - cos t  (+ cos t  cost2) 1) 
( o l d  n i l  

; ; Place t h e  new path, path2, i n  t h e  r i g h t  1  i s t :  

(cond 
\ 

( ( s e t f  o l d  ( f i nd-pa th  s ta te2  paths s tate=))  

(when ( b e t t e r - p a t h  path2 o l d )  

( s e t f  paths ( i n s e r t - p a t h  

path2 ( d e l e t e  o l d  paths) 1) 1) 
( ( s e t f  o l d  ( f i n d - p a t h  s ta te2  o ld-paths s ta te=) )  

(when ( b e t t e r - p a t h  path2 o l d )  

( s e t f  paths ( i n s e r t - p a t h  path2 pa ths ) )  

( s e t f  o ld-paths ( d e l e t e  o l d  o ld -pa ths )  1))  
( t  ( s e t f  paths ( i n s e r t - p a t h  path2 p a t h s ) ) ) ) ) )  

;; F i n a l l y ,  c a l l  A* again w i t h  t h e  updated path l i s t s :  
(a*-search paths goal -p  successors c o s t - f n  c o s t - l e f t - f n  

s tate= o ld -pa ths )  1) 1) 



Here are the three auxiliary functions: 

(defun f i n d - p a t h  ( s t a t e  paths s ta te=)  
"F ind  t h e  path w i t h  t h i s  s t a t e  among a  l i s t  o f  paths. "  
( f i n d  s t a t e  paths :key # ' p a t h - s t a t e  : t e s t  s ta te=) )  

(defun b e t t e r - p a t h  ( p a t h l  path21 
" I s  p a t h l  cheaper than path2?"  
(< ( p a t h - t o t a l - c o s t  path11 ( p a t h - t o t a l - c o s t  p a t h 2 ) ) )  

(defun i n s e r t - p a t h  (pa th  paths)  
"Put path i n t o  t h e  r i g h t  p o s i t i o n ,  so r ted  by t o t a l  cos t . "  
;; MERGE i s  a  b u i l t - i n  f u n c t i o n  
(merge ' l i s t  ( l i s t  path)  paths # '< :key # ' p a t h - t o t a l - c o s t ) )  

(defun pa th -s ta tes  (pa th )  
" C o l l e c t  t h e  s t a t e s  along t h i s  path. "  
( i f  ( n u l l  path)  

n i  1  
(cons ( p a t h - s t a t e  path)  

(pa th -s ta tes  (path-prev ious path)  1)  1)  

Below we use a*- search to search for 6 in the graph previously shown in figure 6.3. 
The cost function is a constant 1 for each step. In other words, the total cost is the 
length of the path. The heuristic evaluation function is just the difference from the 
goal. The A* algorithm needs just three search steps to come up with the optimal 
solution. Contrast that to the graph search algorithm, which needed five steps, and 
the tree search algorithm, which needed ten steps-and neither of them found the 
optimal solution. 

> (pa th -s ta tes  
(a*-search ( l i s t  (make-path : s t a t e  1 ) )  ( i s  6)  

# 'next2 #'(lambda ( x  y )  1 )  ( d i f f  6 ) ) )  
;; Search: (#<Path t o  1 cos t  0.0>) 
;; Search: (#<Path t o  3  cos t  4.0> #<Path t o  2  cos t  5.0>) 
;; Search: (#<Path t o  5  cos t  3.0> #<Path t o  4 cos t  4.0> 

#<Path t o  2  cos t  5.0>) 
;; Search: (#<Path t o  6  cos t  3.0> #<Path t o  7 cos t  4.0> 

#<Path t o  4 cos t  4.0> #<Path t o  2  cos t  5.0>) 
( 6  5 3 1 )  

It may seem limiting that these search functions all return a single answer. In some 
applications, we may want to look at several solutions, or at all possible solutions. 
Other applications are more naturally seen as optimization problems, where we 
don't know ahead of time what counts as achieving the goal but are just trying to find 
some action with a low cost. 



It turns out that the functions we have defined are not limiting at all in this respect. 
They can be used to serve both these new purposes-provided we carefully specify 
the goal predicate. To find all solutions to a problem, all we have to do is pass in a 
goal predicate that always fails, but saves all the solutions in a list. The goal predicate 
will see all possible solutions and save away just the ones that are real solutions. 
Of course, if the search space is infinite this will never terminate, so the user has 
to be careful in applying this technique. It would also be possible to write a goal 
predicate that stopped the search after finding a certain number of solutions, or after 
looking at a certain number of states. Here is a function that finds all solutions, using 
beam search: 

(defun search-all ( s t a r t  goal-p successors cost-fn beam-width) 

."Find a l l  solutions to a search problem, using beam search." 

; ; Be careful : thi s  can 1 ead to a n  inf ini te  1  oop. 

( l e t  ((solutions n i l ) )  

(beam-search 

s t a r t  #'(lambda ( X I  

(when (funcall goal-p x) (push x solutions)) 

nil 

successors cost-fn beam-width) 

solutions) 1 

6.5 GPS as Search 

The GPS program can be seen as a problem in search. For example, in the three-block 
blocks world, there are only 13 different states. They could be arranged in a graph and 
searched just as we searched for a route between cities. Figure 6.5 shows this graph. 

The function search-gps  does just that. Like the gps function on page 135, it 
computes a final state and then picks out the actions that lead to that state. But 
it computes the state with a beam search. The goal predicate tests if the current 
state satisfies every condition in the goal, the successor function finds all applicable 
operators and applies them, and the cost function simply sums the number of actions 
taken so far, plus the number of conditions that are not yet satisfied: 



Figure 6.5: The Blocks World as a Graph 

(defun search-gps ( s t a r t  goal &optional (beam-width 10))  
"Search for a sequence of operators leading to goal." 
(find-a1 1 - i f  

#'action-p 
(beam-search 

(cons ' ( s t a r t )  s t a r t )  
#'(lambda ( s ta te )  (subsetp goal s ta te  : t es t  #'equal 1)  
# ' ~ ~ s - s u c c ~ s s ~ ~ ~  
#'(lambda ( s ta te )  

(+ (count-if #'action-p s ta te )  
(count-if #'(lambda (con) 

(not (member-equal con s ta te )  1 ) 
goal 1 1 1 

beam-wi d t h  1) ) 

Here is the successor function: 

(defun gps-successors ( s ta te )  
"Return a l i s t  of states reachable from this  one using ops." 
(mapcar 

#'(lambda (op) 



( append 
( remove- i f  # ' ( lambda ( x )  

(member-equal x ( o p - d e l - l i s t  o p ) ) )  
s t a t e )  

( o p - a d d - l i s t  o p ) ) )  
(app l  i cab le - ops  s t a t e )  1 )  

(defun app l i cab le -ops  ( s t a t e )  
"Return  a l i s t  o f  a l l  ops t h a t  a r e  a p p l i c a b l e  now." 
( f i n d - a l l  - i f  

#'( lambda (op)  
(subsetp  (op-preconds op) s t a t e  : t e s t  # ' e q u a l ) )  

*ops* 

The search technique finds good solutions quickly for a variety of problems. Here 
we see the solution to the Sussman anomaly in the three-block blocks world: 

( s e t f  s t a r t  ' ( ( c  on a )  (a  on t a b l e )  ( b  on t a b l e )  (space on c )  
(space on b )  (space on t a b l e ) ) )  

> (search-gps s t a r t  ' ( ( a  on b )  ( b  on c ) ) )  
( ( START) 
(EXECUTING (MOVE C FROM A TO TABLE)) 
(EXECUT-ING (MOVE B FROM TABLE TO C) 
(EXECUTING (MOVE A FROM TABLE TO B ) ) )  

> (search-gps s t a r t  ' ( ( b  on c )  (a  on b ) ) )  
( (START 
(EXECUTING (MOVE C FROM A TO TABLE)) 
(EXECUTING (MOVE B FROM TABLE TO C) )  
(EXECUTING (MOVE A FROM TABLE TO B ) ) )  

In these solutions we search forward from the start to the goal; this is quite different 
from the means-ends approach of searching backward from the goal for an appropri- 
ate operator. But we could formulate means-ends analysis as forward search simply 
by reversing start and goal: GPS'S goal state is the search's start state, and the search's 
goal predicate tests to see if a state matches GPS'S start state. This is left as anexercise. 

6.6 History and References 

Pattern matching is one of the most important tools for AI. As such, it is cov- 
ered in most textbooks on Lisp. Good treatments include Abelson and Sussman 
(1984)' Wilensky (1986)' Winston and Horn (1988)' and Kreutzer and McKenzie 
(1990). An overview is presented in the "pattern-matching" entry in Encyclopedia of 
A1 (Shapiro 1990). 



Nilsson's Problem-Solving Methods in  Artificial Intelligence (1971) was an early text- 
book that emphasized search as the most important defining characteristic of AI. 
More recent texts give less importance to search; Winston's Artificial Intelligence 
(1984) gives a balanced overview, and his Lisp (1988) provides implementations of 
some of the algorithms. They are at a lower level of abstraction than the ones in 
this chapter. Iterative deepening was first presented by Korf (1985), and iterative 
broadening by Ginsberg and Harvey (1990). 

6.7 Exercises 

Exercise 6.3 [m] Write a version of i nteract i  ve - i nterpreter  that is more general 
than the one defined in this chapter. Decide what features can be specified, and 
provide defaults for them. 

Exercise 6.4 [m] Define a version of compose that allows any number of arguments, 
not just two. Hint: You may want to use the function reduce. 

Exercise 6.5 [m] Define a version of compose that allows any number of arguments 
but is more efficient than the answer to the previous exercise. Hint: try to make 
decisions when compose is called to build the resulting function, rather than making 
the same decisions over and over each time the resulting function is called. 

Exercise 6.6 [m] One problem with pat -match is that it gives special significance 
to symbols starting with ?, which means that they can not be used to match a literal 
pattern. Define a pattern that matches the input literally, so that such symbols can 
be matched. 

Exercise 6.7 [m] Discuss the pros and cons of data-driven programming compared 
to the conventional approach. 

Exercise 6.8 [m] Write a version of t r e e  - search using an explicit loop rather than 
recursion. 

Exercise 6.9 [m] The sor ter  function is inefficient for two reasons: it calls append, 
which has to make a copy of the first argument, and it sorts the entire result, rather 
than just inserting the new states into the already sorted old states. Write a more 
efficient sorter .  



p Exercise 6.10 [m] Write versions of graph-search and a*-search that use hash 
tables rather than lists to test whether a state has been seen before. 

Exercise 6.11 [m] Write afunction that calls beam- search to find the first n solutions 
to a problem and returns them in a list. 

Exercise 6.12 [m] On personal computers without floating-point hardware, the 
a i r - d i  stance calculation will be rather slow. If this is a problem for you, arrange 
to compute the xyz-coords of each city only once and then store them, or store 
a complete table of air distances between cities. Also precompute and store the 
neighbors of each city. 

Exercise 6.13 [dl Write a version of GPS that uses A* search instead of beam search. 
Compare the two versions in a variety of domains. 

Exercise 6.14 [dl Write a version of GPS that allows costs for each operator. For 
example, driving the child to school might have a cost of 2, but calling a limousine 
to transport the child might have a cost of 100. Use these costs instead of a constant 
cost of 1 for each operation. 

Exercise 6.15 [dl Write a version of GPS that uses the searching tools but does 
means-ends analysis. 

6.8 Answers 

Answer 6.2 Unfortunately, p a t  -match does not always find the answer. The prob- 
lem is that it will only rebind a segment variable based on a failure to match the 
rest of the pattern after the segment variable. In all the examples above, the "rest of 
the pattern after the segment variable" was the whole pattern, so p a t  -match always 
worked properly. But if a segment variable appears nested inside a list, then the rest 
of the segment variable's sublist is only a part of the rest of the whole pattern, as the 
following example shows: 

> (pat-match ' ( ( ( ? *  ? X I  (?* ? y ) )  ?x ?y) 
' ( ( a  b c d )  ( a b )  ( c d ) ) ) + - N I L  

The correct answer with ?x bound to (a b )  and ?y bound to ( c  d )  is not found 
because the inner segment match succeeds with ?x  bound to ( and ?y bound to (a 



b c d 1, and once we leave the inner match and return to the top level, there is no 
going back for alternative bindings. 

Answer 6.3 The following version lets the user specify all four components of the 
prompt-read-eval-print loop, as well as the streams to use for input and output. 
Defaults are set up as for a Lisp interpreter. 

(defun i n t e r a c t i v e - i n t e r p r e t e r  
(&key ( read # ' read)  (eva l  # ' e v a l )  ( p r i n t  # ' p r i n t )  
(prompt "> " )  ( i n p u t  t )  (ou tpu t  t ) )  

"Read an expression, eva luate it, and p r i n t  t h e  r e s u l t . "  
( 1  oop 

( f r e s h - l i n e  ou tpu t )  
( p r i n c  prompt ou tpu t )  

( f u n c a l l  p r i n t  ( f u n c a l l  eval ( f u n c a l l  read i n p u t ) )  
ou tpu t  1) 

Here is another version that does all of the above and also handles multiple values 
and binds the various "history variables" that the Lisp top-level binds. 

(defun i n t e r a c t i v e - i n t e r p r e t e r  
(&key ( read # ' read)  (eva l  # ' e v a l )  ( p r i n t  # ' p r i n t )  
(prompt "> " 1  ( i n p u t  t )  (ou tpu t  t ) )  

"Read an expression, eva luate i t ,  and p r i n t  t h e  r e s u l t ( s 1 .  
Does m u l t i p l e  values and binds: * ** *** - + ++ +++ / I /  / I / "  
( l e t  (* ** *** - + ++ +++ / / /  / / I  v a l s )  

; ; The above v a r i a b l e s  are a1 1  speci a1 , except VALS 
; ; The v a r i  abl e  - hol ds t h e  c u r r e n t  i n p u t  
;; * ** *** are t h e  3 most recent  values 
;; + ++ +++ are t h e  3 most recent  i n p u t s  
;; / / /  / I /  are t h e  3 most recent  l i s t s  o f  m u l t i p l e - v a l u e s  
( 1  oop 

( f r e s h - l i n e  ou tpu t )  
( p r i n c  prompt ou tpu t  
; ; F i r s t  read and evaluate an expression 
( s e t f  - ( f u n c a l l  read i n p u t )  

v a l s  (mu1 t i p l e - v a l u e - 1  i s t  ( f u n c a l l  eval - 1 ) )  
;; Now update t h e  h i s t o r y  va r iab les  
( s e t f  +++ ++ / I /  / /  *** ( f i r s t  / / / I  

++ + / /  / ** ( f i r s t  11) 
+ - 1 v a l s  * ( f i r s t  1 ) )  

; ; F i n a l l y  p r i n t  t h e  computed va lue(s1 
( d o l i s t  ( va lue  v a l s )  

( f u n c a l l  p r i n t  va l  ue ou tpu t  1) 1) 



Answer 6.4 

(defun compose ( & r e s t  func t ions )  
"Return t h e  f u n c t i o n  t h a t  i s  t h e  composit ion o f  a l l  t h e  args. 
i . e .  (compose f g  h)  = (lambda ( x )  ( f  ( g  ( h  x ) ) ) ) . "  
#'(lambda ( x )  

(reduce # ' f u n c a l l  f u n c t i o n s  :from-end t : i n i t i a l - v a l u e  X I ) )  

Answer 6.5 

(defun compose ( & r e s t  f u n c t i o n s )  
"Return t h e  f u n c t i o n  t h a t  i s  t h e  composit ion o f  a l l  t h e  args. 
i . e .  (compose f g  h)  = (lambda ( x )  ( f  ( g  ( h  x ) ) ) ) . "  
(case ( l e n g t h  f u n c t i o n s )  

( 0  # ' i d e n t i t y )  
(1 ( f i r s t  f u n c t i o n s ) )  
( 2  ( l e t  ( ( f  ( f i r s t  f u n c t i o n s ) )  

( g  (second f u n c t i o n s ) ) )  
#'(lambda ( x )  ( f u n c a l l  f ( f u n c a l l  g  x ) ) ) ) )  

( t  #'(lambda ( x )  
(reduce # ' f u n c a l l  f u n c t i o n s  :from-end t 

: i n i t i a l - v a l u e  x ) ) ) ) )  

Answer 6.8 

(defun t ree-search  ( s t a t e s  goa l -p  successors combiner) 
"F ind  a  s t a t e  t h a t  s a t i s f i e s  goa l -p .  S t a r t  w i t h  s ta tes ,  
and search accord ing t o  successors and combiner." 
(1 oop 

(cond ( ( n u l l  s t a t e s )  (RETURN f a i l ) )  
( ( f u n c a l l  goal - p  ( f i r s t  s t a t e s ) )  
(RETURN ( f i r s t  s t a t e s ) )  
(t ( s e t f  s t a t e s  

( f u n c a l l  combiner 
( f u n c a l l  successors ( f i r s t  s t a t e s ) )  
( r e s t  s t a t e s ) ) ) ) ) ) ) )  

Answer 6.9 

(defun s o r t e r  ( c o s t - f n )  
"Return a combiner f u n c t i o n  t h a t  s o r t s  according t o  c o s t - f n . "  
#'(lambda (new o l d )  

(merge ' l i s t  ( s o r t  new #'> :key c o s t - f n )  
o l d  #'> :key c o s t - f n ) ) )  



Answer 6.11 

(defun search-n ( s t a r t  n goal-p successors cost-fn beam-width) 
"Find n solutions to a search problem, using beam search." 
( l e t  ((solutions n i l ) )  

(beam-search 
s t a r t  #'(lambda (x)  

(cond ((not (funcall goal-p x ) )  n i l )  
( (=  n 0 )  x) 
( t  (decf n )  

(push x  solutions) 
nil 1 ) )  

successors cost-fn beam-width) 
sol uti ons 1) 



CHAPTER / 

STUDENT: Solving Algebra 
Word Problems 

[This] is an example par excellence of the power of 
using meaning to solve linguistic problems. 

-Marvin Minsky (1 968) 
MIT computer scientist 

TUDENT was another early language understanding program, written by Daniel Bobrow 
as his Ph.D. research project in 1964. It was designed to read and solve the kind of word 
problems found in high school algebra books. An example is: 

Ifthe number of customers Tom gets is twice the square of 20% of the number of advertise- 
ments he runs, and the number of advertisements is 45, then what is the number of customers 
Tom gets? 

STUDENT could correctly reply that the number of customers is 162. To do this, STUDENT must be 
far more sophisticated than ELIZA; it must process and "understand a great deal of the input, 
rather than just concentrate on a few key words. And it must compute a response, rather than 
just fill in blanks. However, we shall see that the STUDENT program uses little more than the 
pattern-matching techniques of ELIZA to translate the input into a set of algebraic equations. 
From there, it must know enough algebra to solve the equations, but that is not very difficult. 



The version of STUDENT we develop here is nearly a full implementation of the 
original. However, remember that while the original was state-of-the-art as of 1964, 
A1 has made some progress in a quarter century, as subsequent chapters will attempt 
to show. 

Translating English into Equations 

The description of STUDENT is: 

1. Break the input into phrases that will represent equations. 

2. Break each phrase into a pair of phrases on either side of the = sign. 

3. Break these phrases down further into sums and products, and so on, until 
finally we bottom out with numbers and variables. (By "variable" here, I mean 
"mathematical variable," which is distinct from the idea of a "pattern-matching 
variable" as used in p a t  - ma t c h in chapter 6). 

4. Translate each English phrase into a mathematical expression. We use the idea 
of a rule-based translator as developed for ELIZA. 

5. Solve the resulting mathematical equations, coming up with a value for each 
unknown variable. 

6. Print the values of all the variables. 

For example, we might have a pattern of the form ( I f  ? x  t hen  ?y 1, with an asso- 
ciated response that says that ?x  and ?y  will each be equations or lists of equations. 
Applying the pattern to the input above, ?y  would have the value (what  i s  t h e  
number o f  customers Tom g e t s  1. Another pattern of the form ( ? x  i s  ?y) could have 
a response corresponding to an equation where ? x  and ?y are the two sides of the 
equation. We could then make up a mathematical variable for (what  ) and another 
for ( t h e  number o f  customers Tom g e t s  1. We would recognize this later phrase as 
a variable because there are no patterns to break it down further. In contrast, the 
phrase ( t w i c e  t h e  square o f  20 p e r  c e n t  o f  t h e  number o f  adver t i sements  
he runs  ) could match a pattern of the form ( t w i  ce ?x )  and transform to ( *  2 ( t h e  
square o f  20 pe r  c e n t  o f  t h e  number o f  adver t i sements  he runs) ) ,  andby 
further applying patterns of the form ( t h e  square o f  ?x )  and ( ? x  p e r  c e n t  o f  
?y ) we could arrive at a final response of (*  2 ( e x p t  (* ( 1 20 100 ) n ) 2 1 1, where 
nisthevariablegeneratedby(thenumber o f  adver t i sements  he runs) .  

Thus, we need to represent variables, expressions, equations, and sets of equa- 
tions. The easiest thing to do is to use something we know: represent them just as 
Lisp itself does. Variables will be symbols, expressions and equations will be nested 



lists with prefix operators, and sets of equations will be lists of equations. With that 
in mind, we can define a list of pattern-response rules corresponding to the type of 
statements found in algebra word problems. The structure definition for a rule is 
repeated here, and the structure exp, an expression, is added. 1 hs and rhs stand for 
left- and right-hand side, respectively. Note that the constructor mkexp is defined as a 
constructor that builds expressions without taking keyword arguments. In general, 
the notation ( : constructor fn args 1 creates a constructor function with the given 
name and argument list.' 

( d e f s t r u c t  ( r u l e  ( : t y p e  l i s t ) )  p a t t e r n  response) 

( d e f s t r u c t  (exp ( : t ype  l i s t )  
( : cons t ruc to r  mkexp ( I h s  op r h s ) ) )  

op 1 hs rhs  

(defun exp-p ( x )  (consp x ) )  
(defun exp-args ( x )  ( r e s t  x ) )  

We ignored commas and periods in ELIZA, but they are crucial for STUDENT, so we 
must make allowances for them. The problem is that a " , " in Lisp normally can be 
used only within a backquote construction, and a " . " normally can be used only as a 
decimal point or in a dotted pair. The special meaning of these characters to the Lisp 
reader can be escaped either by preceding the character with a backslash (\ ,) or by 
surrounding the character by vertical bars ( I , I ). 

(pat-match-abbrev '?x* ' (? *  ? X I )  
(pat-match-abbrev '?y*  ' ( ? *  ? y ) )  

(defparameter *s tuden t - ru les*  (mapcar # 'expand-pat -match-abbrev  
' ( ( ( ? x *  1.1) ?x 

( ( ? x *  1 . 1  ?y*) ( ? x  ? y ) )  
( ( i f  ?x* 1 . 1  then ?y*) ( ? x  ? y ) )  
( ( i f  ?x* then ?y*) ( ? x  ? y ) )  
( ( i f  ?x* I , I  ?y*) ( ? x  ? y ) )  
( ( ? x *  1 , 1  and ?y*) ( ? x  ? y ) )  
( ( f i n d  ?x* and ?y*) ( (=  t o - f i n d - 1  ? X I  (= t o - f i n d - 2  ? y ) ) )  
( ( f i n d  ?x*) (= t o - f i n d  ? X I )  
( ( ? x *  equals ?y*) (= ?x ? y ) )  
( (?x*  same as ?y*) (= ?x ? y ) )  
( (?x*  = ?y*) (= ?x ? y ) )  
( (?x*  i s  equal t o  ?y*) (= ?x ? y ) )  
( (?x*  i s  ?y*) (= ?x ? y ) )  
( (?x*  - ?y*) ( -  ?x ? y ) )  
( ( ? x *  minus ?y*) ( -  ?x ? y ) )  

'page 316 of Common Lisp the Language says, "Because a constructor of this type operates 
By Order of Arguments, it is sometimes known as a BOA constructor." 



( ( d i f f e r e n c e  between ?x* and ?y*) ( -  ?y  ? X I )  
( ( d i f f e r e n c e  ?x* and ?y*) ( -  ?y ? X I )  
( ( ? x *  + ?y*) (+ ?x  ? y ) >  
( (?x*  p l u s  ?y*) (+ ?x  ? y ) >  
((sum ?x* and ?y*) (+ ?x  ? y ) )  
( (p roduc t  ?x* and ?y*) ( *  ?x  ? y ) )  
( ( ? x *  * ?y*) ( *  ?x  ? y ) )  
( ( ? x *  t imes ?y*) ( *  ?x  ? y ) )  
( ( ? x *  1 ?y*) ( 1  ?x ? y ) )  
( ( ? x *  per ?y*) ( 1  ?x  ? y ) )  
( (?x*  d i v i d e d  by ?y*) ( 1  ?x ? y ) )  
( ( h a l f  ?x*) ( 1  ?x 2 ) )  
( (one h a l f  ?x*) ( I  ?x  2 ) )  
( ( t w i c e  ?x*) (* 2 ? X I )  
( (square ?x*) (* ?x ? X I )  
( ( ? x *  % l e s s  than ?y*) ( *  ?y ( 1  ( -  100 ? X I  100) ) )  
( ( ? x *  % more than ?y*) (* ?y ( I  (+ 100 ? X I  100) ) )  
( ( ? x *  % ?y*) (* ( 1  ?x  100) ? y ) ) ) ) )  

The main section of STUDENT will search through the list of rules for a response, just 
as ELIZA did. The first point of deviation is that before we substitute the values of the 
p a t  -match variables into the response, we must first recursively translate the value 
of each variable, using the same list of pattern-response rules. The other difference 
is that once we're done, we don't just print the response; instead we have to solve the 
set of equations and print the answers. The program is summarized in figure 7.1. 

Before looking carefully at the program, let's try a sample problem: "If z is 3, what 
is twice z?" Applying the rules to the input gives the following trace: 

I n p u t : ( I f  z  i s  3, what i s  t w i c e  z )  
Rule: ( ( i f  ?x  I , I  ?y )  ( ? x  ? y ) )  
B i n d i n g : ( ( ? x .  ( z  i s  3 ) )  ( ? y  . (what i s  t w i c e  z ) ) )  
Input :  ( z  i s  3 )  
Rule: ( ( ?x  i s  ?y (= ?x  ? y > >  
Result: (= z  3  

Input: (what i s  t w i c e  z  ? 
Rule: ( ( ? x  i s  ?y )  (= ?x ? y ) )  
Binding: ( ( ? x  . what) ( ? y  . ( t w i c e  z ) ) )  
Input: ( t w i c e  z  
Rule: ( ( t w i  ce ?x )  ( *  2  ? X I )  
Result: (* 2 z )  

Result: (= what ( *  2  z ) )  
Result: ( (=  z  3 )  (= what (* 2 z )  1 )  

There are two minor complications. First, we agreed to implement sets of equations 
as lists of equations. For this example, everything worked out, and the response 



Top-Level Function 
student Solve certain algebra word problems. 

Special Variables 
*student- rul es* A list of pattern/response pairs. 

Data Types 
exP An operator and its arguments. 
rul e A pattern and response. 

Major Functions 
trans 1 ate - to - express i on Translate an English phrase into an equation or expression. 
trans1 ate-pai r Translate the value part of the pair into an equation or expression. 
create- 1 i st - of - equa t i ons Separate out equations embedded in nested parens. 
sol ve-equati ons Print the equations and their solution. 
sol ve Solve a system of equations by constraint propagation. 

Auxiliary Functions 
i sol ate Isolate the lone variable on the left-hand side of an expression, 
noise-word-p Is this a low-content word that can be safely ignored? 
make-variable Create a variable name based on the given list of words. 
print-equations Print a list of equations. 
inverse-op I.e., the inverse of + is -. 
unknown - p Is the argument an unknown (variable)? 
in-exp True if x appears anywhere in exp. 
no-un known Returns true if there are no unknowns in exp. 
one - un known Returns the single unknown in exp, if there is exactly one. 
commutative-p Is the operator commutative? 
solve-ari thmetic Perform arithmetic on rhs of an equation. 
bi nary-exp-p Is this a binary expression? 
prefix->i nfix Translate prefix to infix expressions. 
mkexp Make an expression. 

Previously Defined Functions 
pat-match Match pattern against an input. (p. 180) 
rul e-based-trans1 ator Applya set of rules. (p. 189) 

Figure 7.1: Glossary for the STUDENT Program 

was a list of two equations. But if nested patterns are used, the response could be 
somethinglike ( ( =  a 5 )  ( (=  b (+ a 1 ) )  (= c (+ a b)))),whichisnotalistof 
equations. The function create - 1 i s t  - of - equa t i ons transforms a response like this 
into a proper list of equations. The other complication is choosing variable names. 
Given a list of words like ( the  number of customers Tom gets 1, we want to choose 
a symbol to represent it. We will see below that the symbol customers is chosen, but 
that there are other possibilities. 

Here is the main function for STUDENT. It first removes words that have no con- 
tent, then translates the input to one big expression with trans 1 ate-  t o  - express i on, 
and breaks that into separate equations with create-1 i s t -o f  -equati ons. Finally, 
the function sol ve - equa t i  ons does the mathematics and prints the solution. 



(defun student (words) 
"Sol ve certain A1 gebra Word Problems. " 
(sol ve-equati ons 
(create-list-of-equations 
(translate-to-expression (remove-if #'noise-word-p words))))) 

The function t rans l  a te  - t o  - expressi  on is a rule-based translator. It either finds 
some rule in *student - r u l  es* to transform the input, or it assumes that the entire in- 
put represents a single variable. The function t r a n s  1 a t e  - pa i r takes a variable/value 
binding pair and translates thevalue by a recursive call to t r a n s  1 a t e  - t o  - express i on. 

(defun translate-to-expression (words) 
"Translate an English phrase into an equation or expression." 
(or (rul e-based-trans1 ator 

words *student-rules* 
: rule-if #'rule-pattern : rule-then #'rul e-response 
:action #'(lambda (bindings response) 

(sub1 is (mapcar #'trans1 ate-pai r bindings) 
response) 1 1 

(make-variable words) ) )  

(defun translate-pair (pair) 
"Translate the value part of the pair into an equation or expression." 
(cons (binding-var pair) 

(translate-to-expression (binding-val pair)))) 

The function c rea te  - 1 i s t  - o f  - equat i ons takes a single expression containing em- 
bedded equations and separates them into a list of equations: 

(defun create-list-of-equations (exp) 
"Separate out equations embedded in nested parens." 
(cond ((null exp) nil) 

((atom (first exp)) (list exp)) 
(t (append (create-list-of-equations (first exp)) 

(create-list-of-equations (rest exp)))))) 

Finally, the function make - va r i  a b l  e creates a variable to represent a list of words. 
We do that by first removing all "noise words" from the input, and then taking the 
first symbol that remains. So, for example, "the distance John traveled and "the 
distance traveled by John" will both be represented by the same variable, d i  stance, 
which is certainly the right thing to do. However, "the distance Mary traveled" will 
also be represented by the same variable, which is certainly a mistake. For ( t h e  
number o f  customers Tom gets  1, the variable will be customers, since the, o f  and 
number are all noise words. This will match ( t h e  customers menti oned above ) and 



(the number of customers), butnot (Tom's customers). For now, wewillaccept 
the first-non-noise-word solution, but note that exercise 7.3 asks for a correction. 

(defun make-var iab le  (words) 
"Create a v a r i a b l e  name based on t h e  g iven l i s t  o f  words" 
;; The l i s t  o f  words w i l l  a l ready have no ise words removed 
( f i r s t  words)) 

(defun noise-word-p (word) 
" I s  t h i s  a low-content  word t h a t  can be s a f e l y  ignored?"  
(member word ' ( a  an t h e  t h i s  number o f  $1) )  

7.2 Solving Algebraic Equations 

The next step is to write the equation-solving section of STUDENT. This is more an 
exercise in elementary algebra than in AI, but it is a good example of a symbol- 
manipulation task, and thus an interesting programming problem. 

The STUDENT program mentioned the function sol ve-equati ons, passing it one 
argument, a list of equations to be solved. sol ve-equati ons prints the list of equa- 
tions, attempts to solve them using sol ve, and prints the result. 

(defun so lve-equat ions (equat ions)  
" P r i n t  t h e  equat ions and t h e i  r so l  u t i o n "  
( p r i n t - e q u a t i o n s  "The equat ions t o  be so lved are:"  equat ions) 
( p r i n t - e q u a t i o n s  "The s o l u t i o n  i s : "  ( s o l v e  equat ions n i  1 )  1) 

The real work is done by solve, which has the following specification: (1) Find 
an equation with exactly one occurrence of an unknown in it. (2) Transform that 
equation so that the unknown is isolated on the left-hand side. This can be done if 
we limit the operators to +, -, *, and /. (3) Evaluate the arithmetic on the right-hand 
side, yielding a numeric value for the unknown. (4) Substitute the numeric value 
for the unknown in all the other equations, and remember the known value. Then 
try to solve the resulting set of equations. (5) If step (1) fails-if there is no equation 
with exactly one unknown-then just return the known values and don't try to solve 
anything else. 

The function sol ve is passed a system of equations, along with a list of known 
variable/value pairs. Initially no variables are known, so this list will be empty. 
sol ve goes through the list of equations searching for an equation with exactly one 
unknown. If it can find such an equation, it calls i sol ate to solve the equation 
in terms of that one unknown. solve then substitutes the value for the variable 
throughout the list of equations and calls itself recursively on the resulting list. Each 



time sol ve calls itself, it removes one equation from the list of equations to be solved, 
and adds one to the list of known variable/value pairs. Since the list of equations is 
always growing shorter, sol ve must eventually terminate. 

(defun so l  ve (equat ions known) 
"Solve a system o f  equat ions by c o n s t r a i n t  propagat ion. "  

;; Try t o  so lve  f o r  one equat ion, and s u b s t i t u t e  i t s  va lue i n t o  
;; the  others .  I f  t h a t  doesn ' t  work, r e t u r n  what i s  known. 
( o r  (some #'(lambda (equat ion)  

( l e t  ( ( x  (one-unknown equa t ion ) ) )  
(when x  

(1 e t  ((answer ( s o l  v e - a r i  thmet i  c  
( i s o l a t e  equat ion x ) ) ) )  

( s o l v e  (subst  (exp-rhs answer) (exp- lhs  answer) 
(remove equat ion equat ions))  

(cons answer known) ) ) ) ) )  
equat ions 

known 

isolate is passed an equation guaranteed to have one unknown. It returns an 
equivalent equation with the unknown isolated on the left-hand side. There are 
five cases to consider: when the unknown is alone on the left, we're done. The 
second case is when the unknown is anywhere on the right-hand side. Because '=' 

is commutative, we can reduce the problem to solving the equivalent equation with 
left- and right-hand sides reversed. 

Next we have to deal with the case where the unknown is in a complex expression 
on the left-hand side. Because we are allowing four operators and the unknown can 
be either on the right or the left, there are eight possibilities. Letting X stand for 
an expression containing the unknown and A and B stand for expressions with no 
unknowns, the possibilities and their solutions are as follows: 

Possibilities (1) through (4) are handled by case 111, (5) and (6) by case IV, and (7) 
and (8) by case V. In each case, the transformation does not give us the final answer, 
since X need not be the unknown; it might be a complex expression involving the 
unknown. So we have to call i sol ate again on the resulting equation. The reader 
should try to verify that transformations (1) to (8) are valid, and that cases I11 to V 
implement them properly. 



(defun i s o l a t e  ( e  x )  
" I s o l a t e  t h e  lone  x  i n  e  on t h e  l e f t - h a n d  s i d e  o f  e." 
;; Th is  assumes t h e r e  i s  e x a c t l y  one x  i n  e, 
;; and t h a t  e  i s  an equat ion. 
(cond ( ( e q  (exp- lhs  e)  x )  

;; Case I: X = A -> X = n 
e > 

( ( i n - e x p  x  (exp-rhs e l )  
;; Case 11: A = f ( X )  -> f ( X )  = A  
( i s o l a t e  (mkexp (exp-rhs e l  '= (exp- lhs  e l )  x ) )  

( ( i n - e x p  x  (exp- lhs  (exp- lhs  e l ) )  
;; Case 111: f (X)*A = B -> f ( X )  = B/A 
( i s o l a t e  (mkexp (exp- lhs  (exp- lhs  e l )  '= 

(mkexp (exp- rhs e l  
( i nve rse-op  (exp-op (exp- lhs  e l ) )  
(exp-rhs (exp- lhs  e ) ) ) )  x ) )  

((commutat ive-p (exp-op (exp- lhs  e l ) )  
- -  Case I V :  A*f(X) = B -> f ( X )  = B/A ,, 
( i s o l a t e  (mkexp (exp-rhs (exp- lhs  e l )  '= 

(mkexp (exp- rhs e )  
( i nve rse-op  (exp-op (exp- lhs  e l ) )  
(exp-1 hs (exp-1 hs e)  1)  x )  

( t  ;; Case V :  A / f (X )  = B -> f ( X )  = A/B 
( i s o l a t e  (mkexp (exp- rhs (exp- lhs  e l )  '= 

(mkexp (exp-1 hs (exp-1 hs e)  
(exp-op (exp-1 hs e)  
(exp-rhs e l ) )  x ) ) ) )  

Recall that to prove a function is correct, we have to prove both that it gives the correct 
answer when it terminates and that it will eventually terminate. For a recursive 
function with several alternative cases, we must show that each alternative is valid, 
and also that each alternative gets closer to the end in some way (that any recursive 
calls involve 'simpler' arguments). For i sol ate, elementary algebra will show that 
each step is valid-or at least nearly valid. Dividing both sides of an equation by 
0 does not yield an equivalent equation, and we never checked for that. It's also 
possible that similar errors could sneak in during the call to eval . However, if we 
assume the equation does have a single valid solution, then i sol ate performs only 
legal transformations. 

The hard part is to prove that i sol ate terminates. Case I clearly terminates, and 
the others all contribute towards isolating the unknown on the left-hand side. For 
any equation, the sequence will be first a possible use of case 11, followed by a number 
of recursive calls using cases I11 to V. The number of calls is bounded by the number 
of subexpressions in the equation, since each successive call effectively removes an 
expression from the left and places it on the right. Therefore, assuming the input is 



of finite size, we must eventually reach a recursive call to i sol ate that will use case I 
and terminate. 

When i s 01 ate returns, the right-hand side must consist only of numbers and 
operators. We could easily write a function to evaluate such an expression. However, 
we don't have to go to that effort, since the function already exists. The data structure 
exp was carefully selected to be the same structure (lists with prefix functions) used 
by Lisp itself for its own expressions. So Lisp will find the right-hand side to be an 
acceptable expression, one that could be evaluated if typed in to the top level. Lisp 
evaluates expressions by calling the function eval, so we can call eval directly and 
have it return a number. The function sol ve - a r i t hmet i c returns an equation of the 
form (= var number 1. 

Auxiliary functions for sol ve are shown below. Most are straightforward, but 
I will remark on a few of them. The function pref i x->i nf i x takes an expression 
in prefix notation and converts it to a fully parenthesized infix expression. Unlike 
i sol ate, it assumes the expressions will be implemented as lists. pref i x->i  nf i x is 
used by pri nt-equati ons to produce more readable output. 

(defun print-equations (header equations) 
"Print a list of equations." 
(format t ""%"a"{"% "{ "a")")"%" header 

(mapcar #'prefix->infix equations) 1) 

(defconstant operators-and-inverses 
' ( ( +  - 1  ( -  +) (* I> (1 *I  (= = I ) >  

(defun inverse-op (op) 
(second (assoc op operators-and-inverses))) 

(defun unknown-p (exp) 
(symbol p exp 

(defun in-exp ( x  exp) 
"True if x appears anywhere in exp" 
(or (eq x exp) 

(and (exp-p exp) 
(or (in-exp x (exp-lhs exp)) (in-exp x (exp-rhs exp)))))) 

(defun no-unknown (exp) 
"Returns true if there are no unknowns in exp." 
(cond ((unknown-p exp) nil) 

((atom exp) t) 
((no-unknown (exp-lhs exp)) (no-unknown (exp-rhs exp))) 
(t nil))) 



(defun one-unknown (exp) 
"Returns t h e  s i n g l e  unknown i n  exp, i f  t h e r e  i s  e x a c t l y  one." 
(cond ((unknown-p exp) exp) 

((atom exp) n i l  
((no-unknown (exp- lhs  exp))  (one-unknown (exp- rhs e x p ) ) )  
((no-unknown (exp-rhs exp)) (one-unknown (exp- lhs  e x p ) ) )  
( t  n i l ) ) )  

(defun commutative-p (op) 
" I s  operator  commutative?" 
(member op ' (+  * = I ) )  

(defun so l  v e - a r i  t hmet i c  (equat ion)  
"Do t h e  a r i t h m e t i c  f o r  t h e  r i g h t - h a n d  s ide .  " 
;; This  assumes t h a t  t h e  r igh t -hand  s i d e  i s  i n  t h e  r i g h t  form. 
(mkexp (exp- lhs  equat ion)  '= (eval  (exp-rhs e q u a t i o n ) ) ) )  

(defun b ina ry -exp-p  ( x )  
(and (exp-p x )  (= ( l e n g t h  (exp-args x ) )  2 ) ) )  

(defun p r e f i x - > i  n f i x  (exp) 
"T rans la te  p r e f i x  t o  i n f i x  expressions." 
( i f  (atom exp) exp 

(mapcar # ' p r e f i x - > i n f i x  
( i f  (b ina ry -exp-p  exp) 

( l i s t  (exp- lhs  exp) (exp-op exp) (exp-rhs exp))  
e x p ) ) ) )  

Here's an example of s 01 ve - equa t i ons in action, with a system of two equations. 
The reader should go through the trace, discovering which case was used at each call 
to i sol ate, and verifying that each step is accurate. 

> ( t r a c e  i s01  a t e  so lve )  
(i so l  a t e  so l  ve) 

> (so lve-equat ions ' ( ( =  (+ 3 4)  (* ( -  5 (+ 2 x ) )  7 ) )  
(= (+ ( *  3 x )  y )  1 2 ) ) )  

The equat ions t o  be solved are: 
( 3  + 4)  = ( ( 5  - (2  + X I )  * 7 )  
( ( 3  * X I  + Y )  = 12 

( 1  ENTER SOLVE: ( ( =  (+ 3 4 )  (* ( -  5 (+ 2 X I )  7 ) )  
(= (+ (* 3 X I  Y )  12 ) )  NIL) 

( 1  ENTER ISOLATE: (= (+ 3 4 )  (* ( -  5  (+ 2 X I )  7 ) )  X I  
( 2  ENTER ISOLATE: (= ( *  ( -  5  (+ 2 X I )  7 )  (+ 3 4 ) )  X )  

( 3  ENTER ISOLATE: (= ( -  5 (+ 2 X I )  ( 1  (+ 3 4 )  7 ) )  X) 
( 4  ENTER ISOLATE: (= (+ 2 X) ( -  5  ( 1  (+ 3 4) 7 ) ) )  X )  

(5  ENTER ISOLATE: (= X ( -  ( -  5 (1 (+ 3 4 )  7 ) )  2 ) )  X) 
( 5  EXIT ISOLATE: (= X ( -  ( -  5  ( I  (+ 3 4) 7 ) )  2 ) ) )  

( 4  EXIT ISOLATE: (= X ( -  ( -  5 (1 (+ 3 4) 7 ) )  2 ) ) )  



( 3  EXIT ISOLATE: (= X ( -  ( -  5 ( 1  (+ 3  4 )  7 ) )  2 ) ) )  
( 2  EXIT ISOLATE: (= X ( -  ( -  5 ( 1  (+ 3  4 )  7 ) )  2 ) ) )  

( 1  EXIT ISOLATE: ( = X  ( -  ( -  5 ( I  ( + 3 4 )  7 ) )  2 ) ) )  
( 2  ENTER SOLVE: ( ( =  (+ (* 3  2)  Y) 1 2 ) )  ( ( =  X 2 ) ) )  

(1 ENTER ISOLATE: (= (+ ( *  3  2)  Y) 12)  Y) 
( 2  ENTER ISOLATE: (= Y ( -  12 ( *  3  2 ) ) )  Y) 
( 2  EXIT ISOLATE: (= Y ( -  12 (* 3  2 ) ) ) )  

( 1  EXIT ISOLATE: (= Y ( -  12 ( *  3  2 ) ) ) )  
( 3  ENTER SOLVE: N IL  ( ( =  Y 6 )  (= X 2 ) ) )  
(3  E X I T  SOLVE: ( ( =  Y 6) (= X 2 ) ) )  

( 2  EXIT SOLVE: ( (=  Y 6 )  (= X 2 ) ) )  
( 1  EXIT SOLVE: ( ( =  Y 6 )  (= X 2 ) ) )  
The s o l u t i o n  i s :  

Y = 6  
X = 2  

N I L  

Now let's tackle the format string " "%"a"{"% "{ "a")")"%" in p r i n t - e q u a t i  ons. 
This may look like random gibberish, but there is actually sense behind it. format 
processes the string by printing each character, except that " " " indicates some special 
formatting action, depending on the following character. The combination " "% " 
prints a newline, and ""a " prints the next argument to format that has not been 
used yet. Thus the first four characters of the format string, ""%"a ", print a newline 
followed by the argument header. The combination " "{ " treats the corresponding 
argument as a list, and processes each element according to the specification between 
the " "{ " and the next " ") ". In this case, equa ti ons is a list of equations, so each one 
gets printed with a newline (" "% ") followed by two spaces, followed by the processing 
of the equation itself as a list, where each element is printed in the ""a " format and 
preceded by a blank. The t given as the first argument to format means to print to 
the standard output; another output stream may be specified there. 

One of the annoying minor holes in Lisp is that there is no standard convention on 
where to print newlines! In C, for example, the very first line of code in the reference 
manual is 

This makes it clear that newlines are printed after each line. This convention is so 
ingrained in the UNIX world that some UNIX programs will go into an infinite loop 
if the last line in a file is not terminated by a newline. In Lisp, however, the function 
p r i  n t  puts in a newline before the object to be printed, and a space after. Some Lisp 
programs carry the newline-before policy over to format, and others use the newline- 
after policy. This only becomes a problem when you want to combine two programs 
written under different policies. How did the two competing policies arise? In UNIX 
there was only one reasonable policy, because all input to the UNIX interpreter (the 



shell) is terminated by newlines, so there is no need for a newline-before. In some 
Lisp interpreters, however, input can be terminated by a matchingright parenthesis. 
In that case, a newline-before is needed, lest the output appear on the same line as 
the input. 

Exercise 7.1 [rn] Implement p r i n t - equa t i on s using only primitive printing func- 
tions such as t e  r p r i and p r i nc, along with explicit loops. 

7.3 Examples 

Now we move on to examples, taken from Bobrow's thesis. In the first example, it is 
necessary to insert a "then" before the word "what" to get the right answer: 

> (student  ' ( I f  t h e  number o f  customers Tom gets  i s  t w i c e  t h e  square o f  

20 % o f  t h e  number o f  advert isements he runs 1 , 1  

and t h e  number o f  advert isements i s  45 1 . 1  

then what i s  t h e  number o f  customers Tom gets  ? ) )  

The equat ions t o  be solved are:  

CUSTOMERS = ( 2  * ( ( ( 2 0  / 100) * ADVERTISEMENTS) * 
( (20  / 100) * ADVERTISEMENTS))) 

ADVERTISEMENTS = 45 

WHAT = CUSTOMERS 

The s o l u t i o n  i s :  

WHAT = 162 

CUSTOMERS = 162 

ADVERTISEMENTS = 45 

NIL 

Notice that our program prints. the values for all variables it can solve for, while 
Bobrow's program only printed the values that were explicitly asked for in the text. 
This is an example of "more is lessn-it may look impressive to print all the answers, 
but it is actually easier to do so than to decide just what answers should be printed. 
The following example is not solved correctly: 



> (student  '(The d a i l y  cos t  o f  l i v i n g  f o r  a group i s  t h e  overhead cos t  p l u s  
t h e  running cos t  f o r  each person t imes t h e  number o f  people i n  
t h e  group 1 . 1  Th i s  cos t  f o r  one group equals $ 100 l , l  
and t h e  number o f  people i n  t h e  group i s  40 1 . 1  
I f  t h e  overhead cos t  i s  10 t imes t h e  running cos t  I , I  
f i n d  the  overhead and running cos t  f o r  each person 1.1) )  

The equat ions t o  be so lved are: 
DAILY = (OVERHEAD + (RUNNING * PEOPLE)) 
COST = 100 
PEOPLE = 40 
OVERHEAD = (10 * RUNNING) 
TO-FIND-1 = OVERHEAD 
TO-FIND-2 = RUNNING 

The s o l u t i o n  i s :  
PEOPLE = 40 
COST = 100 

NIL 

This example points out two important limitations of our version of s tudent  as 
compared to Bobrow's. The first problem is in naming of variables. The phrases "the 
daily cost of living for a group" and "this cost" are meant to refer to the same quantity, 
but our program gives them the names da i l y  and cos t  respectively. Bobrow's 
program handled naming by first considering phrases to be the same only if they 
matched perfectly. If the resulting set of equations could not be solved, he would try 
again, this time considering phrases with words in common to be identical. (See the 
following exercises .) 

The other problem is in our solve function. Assuming we got the variables 
equated properly, sol ve would be able to boil the set of equations down to two: 

100 = (OVERHEAD + (RUNNING * 40) )  
OVERHEAD = (10 * RUNNING) 

This is a set of two linear equations in two unknowns and has a unique solution at 
RUNN I NG = 2, OVERHEAD = 20. But our version of sol ve couldn't find this solution, 
since it looks for equations with one unknown. Here is another example that s tudent  
handles well: 

> (student  ' (F ran 's  age d i v i d e d  by Robin's he igh t  i s  one h a l f  K e l l y ' s  I Q  I . I 
K e l l y ' s  I Q  minus 80 i s  Robin's he igh t  I .  l  
I f  Robin i s  4 f e e t  t a l l  I , I  how o l d  i s  Fran ? I )  

The equations t o  be so lved are: 
(FRAN 1 ROBIN) = (KELLY / 2 )  
(KELLY - 80) = ROBIN 
ROBIN = 4 



HOW = FRAN 

The s o l u t i o n  i s :  
HOW = 168 
FRAN = 168 
KELLY = 84 
ROBIN = 4 

NIL 

But a slight variation leads to a problem: 

> (student  ' (Fran 's  age d i v i d e d  by Robin's he igh t  i s  one h a l f  K e l l y ' s  I Q  1 . 1  
K e l l y ' s  I Q  minus 80 i s  Robin's he igh t  1 . 1  
I f  Robin i s  0  f e e t  t a l l  1 . 1  how o l d  i s  Fran ? ) I  

The equations t o  be solved are:  
(FRAN / ROBIN) = (KELLY / 2) 
(KELLY - 80) = ROBIN 
ROBIN = 0 
HOW = FRAN 

The s o l u t i o n  i s :  
HOW = 0 
FRAN = 0 
KELLY = 80 
ROBIN = 0 

NIL 

There is no valid solution to this problem, because it involves dividing by zero (Robin's 
height). But student  is willing to transform the first equation into: 

FRAN = ROBIN * (KELLY / 2) 

and then substitutes to get 0 for FRAN. Worse, dividing by zero could also come up 
inside ev a 1 : 

> (s tuden t  ' (Fran 's  age t imes Robin's he igh t  i s  one h a l f  K e l l y ' s  I Q  I . I  
K e l l y ' s  I Q  minus 80 i s  Robin's he igh t  1 . 1  
I f  Robin i s  0  f e e t  t a l l  1 . 1  how o l d  i s  Fran ? ) )  

The equat ions t o  be so lved are:  
(FRAN * ROBIN) = (KELLY / 2) 
(KELLY - 80) = ROBIN 
ROBIN = 0 
HOW = FRAN 



>>Error:There was an attempt t o  divide a number by zero 

However, one could claim that nasty examples with division by zero don't show up 
in algebra texts. 

In summary, STUDENT behaves reasonably well, doing far more than the toy 
program ELIZA. STUDENT is also quite efficient; on my machine it takes less than 
one second for each of the prior examples. However, it could still be extended to 
have more powerful equation-solving capabilities. Its linguistic coverage is another 
matter. While one could add new patterns, such patterns are really just tricks, and 
don't capture the underlying structure of English sentences. That is why the STUDENT 

approach was abandoned as a research topic. 

7.4 History and References 

Bobrow's Ph.D. thesis contains a complete description of STUDENT. It is reprinted 
in Minsky 1968. Since then, there have been several systems that address the same 
task, with increased sophistication in both their mathematical and linguistic ability. 
Wong (1981) describes a system that uses its understanding of the problem to get 
a better linguistic analysis. Sterling et al. (1982) present a much more powerful 
equation solver, but it does not accept natural language input. Certainly Bobrow's 
language analysis techniques were not very sophisticated by today's measures. But 
that was largely the point: if you know that the language is describing an algebraic 
problem of a certain type, then you don't need to know very much linguistics to get 
the right answer most of the time. 

7.5 Exercises 

Exercise 7.2 F] We said earlier that our program was unable to solve pairs of linear 
equations, such as: 

1 0 0  = (OVERHEAD + (RUNNING * 4 0 ) )  
OVERHEAD = ( 1 0  * RUNNING) 

The original STUDENT could solve these equations. Write a routine to do so. You may 
assume there will be only two equations in two unknowns if you wish, or if you are 
more ambitious, you could solve a system of n linear equations with n unknowns. 

p Exercise 7.3 F] Implement a version of Bobrow's variable-naming algorithm. In- 
stead of taking the first word of each equation, create a unique symbol, and associate 



with it the entire list of words. In the first pass, each nonequal list of words will be 
considered a distinct variable. If no solution is reached, word lists that share words 
in common are considered to be the same variable, and the solution is attempted 
again. For example, an input that contains the phrases "the rectangle's width and 
"the width of the rectangle" might assign these two phrases the variables v 1 and v2. If 
an attempt to solve the problem yields no solutions, the program should realize that 
v l  and v 2  have the words "rectangle" and "width in common, and add the equation 
(= v l  v2) and try again. Since the variables are arbitrary symbols, the printing 
routine should probably print the phrases associated with each variable rather than 
the variable itself. 

Exercise 7.4 [h] The original STUDENT also had a set of "common knowledge" equa- 
tions that it could use when necessary. These were mostly facts about conversion 
factors, such as ( 1 i nch = 2.54 cm). Also included were equations like ( d i  stance 
equa 1 s r a t e  t i  mes t i  me 1, which could be used to solve problems like "If the dis- 
tance from Anabru to Champaign is 10 miles and the time it takes Sandy to travel 
this distance is 2 hours, what is Sandy's rate of speed?" Make changes to incorporate 
this facility. It probably only helps in conjunction with a solution to the previous 
exercise. 

p Exercise 7.5 [h] Change student  so that it prints values only for those variables 
that are being asked for in the problem. That is, given the problem "X is 3. Y is 4. 
How much is X + Y?" it should not print values for X and Y. 

Exercise 7.6 [m] Try STUDENT on the following examples. Make sure you handle 
special characters properly: 

(a) The price of a radio is 69.70 dollars. If this price is 15% less than the marked 
price, find the marked price. 

(b) The number of soldiers the Russians have is one half of the number of guns 
they have. The number of guns they have is 7000. What is the number of soldiers 
they have? 

(c) If the number of customers Tom gets is twice the square of 20 % of the number 
of advertisements he runs, and the number of advertisements is 45, and the profit 
Tom receives is 10 times the number of customers he gets, then what is the profit? 

(d) The average score is 73. The maximum score is 97. What is the square of the 
difference between the average and the maximum? 

(e) Tom is twice Mary's age, and Jane's age is half the difference between Mary 
and Tom. If Mary is 18 years old, how old is Jane? 

(f) Whatis4+5 * 14 /7?  
( g ) x x b = c + d . b x c = x . x =  b+b.b=5.  



a Exercise 7.7 [h] Student's infix-to-prefix rules account for the priority of operators 
properly, but they don't handle associativity in the standard fashion. For example, 
( 1 2  - 6  - 3 )  translates to ( -  12 ( -  6  3 )  or 9,  when the usual convention is to 
interpret this as ( - ( - 12 6 )  3 )  or 3. Fix student to handle this convention. 

a Exercise 7.8 [dl Find a mathematically oriented domain that is sufficiently limited 
so that STUDENT can solve problems in it. The chemistry of solutions (calculating pH 
concentrations) might be an example. Write the necessary *student- rul es*, and 
test the resulting program. 

Exercise 7.9 [m] Analyze the complexity of one- u n  known and implement a more 
efficient version. 

a Exercise 7.10 p] Bobrow's paper on STUDENT (1968) includes an appendix that 
abstractly characterizes all the problems that his system can solve. Generate a 
similar characterization for this version of the program. 

7.6 Answers 

Answer 7.1 

(defun print-equations (header equations) 
( t e rp r i  
(pr i  nc header) 
(do l i s t  (equation equations) 

( terpr i  
( p r i n c "  "1  
(do1 i s t  (x (prefix->infix equation)) 

(princ " " 1  
(princ x ) ) ) )  



Answer 7.9 one - unknown is very inefficient because it searches each subcompo- 
nent of an expression twice. For example, consider the equation: 

To decide if this has one unknown, one - unknown will call no  - unknown on the left-hand 
side, and since it fails, call it again on the right-hand side. Although there are only 
eight atoms to consider, it ends up calling n o - u n  known 17 times and one-  unknown 4 
times. In general, for a tree of depth n, approximately 2" calls to n o -  unknown are 
made. This is clearly wasteful; there should be no need to look at each component 
more than once. 

The following version uses an auxiliary function, f i n d  - one - un known, that has an 
accumulator parameter, unknown. This parameter can take on three possible values: 
nil, indicating that no unknown has been found; or the single unknown that has 
been found so far; or the number 2 indicating that two unknowns have been found 
and therefore the final result should be nil. The function f i n d  - one - unknown has four 
cases: (1) If we have already found two unknowns, then return 2 to indicate this. (2) If 
the input expression is a nonatomic expression, then first look at its left-hand side 
for unknowns, and pass the result found in that side as the accumulator to a search 
of the right-hand side. (3) If the expression is an unknown, and if it is the second one 
found, return 2; otherwise return the unknown itself. (4) If the expression is an atom 
that is not an unknown, then just return the accumulated result. 

(defun one-unknown (exp) 
"Returns t h e  s i n g l e  unknown i n  exp, i f  t h e r e  i s  e x a c t l y  one." 
( l e t  ((answer ( f ind-one-unknown exp n i l ) ) )  

;; I f  t h e r e  were two unknowns, r e t u r n  n i l ;  
;; otherwise r e t u r n  t h e  unknown ( i f  t h e r e  was one) 
( i f  (eq l  answer 2) 

n i  1 
answer 1 1 

(defun find-one-unknown (exp unknown) 
"Assuming UNKNOWN i s  t h e  unknown(s1 found so f a r ,  decide 
i f  t h e r e  i s  e x a c t l y  one unknown i n  t h e  e n t i r e  express ion. "  
(cond ( ( e q l  unknown 2) 2) 

( (exp-p exp) 
(find-one-unknown 

(exp-rhs exp) 
( f ind-one-unknown (exp- lhs  exp) unknown))) 

((unknown-p exp) 
( i f  unknown 

2 
exp 1 1 

( t  unknown))) 



Symbolic Mathematics: 
A Simplification Program 

Our life is frittered a w a y  b y  detail. . . . 
Simplify, simplify. 

-Henry David Thoreau, W a l d e n  (1854) 

"s ymbolic mathematics" is to numerical mathematics as algebra is to arithmetic: it deals 
withvariables and expressions rather than just numbers. Computers were first developed 
primarily to solve arithmetic problems: to add up large columns of numbers, to multiply 

many-digit numbers, to solve systems of linear equations, and to calculate the trajectories of 
ballistics. Encouraged by success in these areas, people hoped that computers could also be used 
on more complex problems; to differentiate or integrate a mathematical expression and come 
up with another expression as the answer, rather than just a number. Several programs were 
developed along these lines in the 1960s and 1970s. They were used primarily by professional 
mathematicians and physicists with access to large mainframe computers. Recently, programs 
like MATHLAB, DERIVE, and MATHEMATICA have given these capabilities to the average personal 
computer user. 



It is interesting to look at some of the history of symbolic algebra, beginning 
in 1963 with SAINT, James Slagle's program to do symbolic integration. Originally, 
SAINT was heralded as a triumph of AI. It used general problem-solving techniques, 
similar in kind to GPS, to search for solutions to difficult problems. The program 
worked its way through an integration problem by choosing among the techniques 
known to it and backing up when an approach failed to pan out. SAINT'S behavior 
on such problems was originally similar to (and eventually much better than) the 
performance of undergraduate calculus students. 

Over time, the A1 component of symbolic integration began to disappear. Joel 
Moses implemented a successor to SAINT called SIN. It used many of the same tech- 
niques, but instead of relying on search to find the right combination of techniques, 
it had additional mathematical knowledge that led it to pick the right technique at 
each step, without any provision for backing up and trying an alternative. SIN solved 
more problems and was much faster than SAINT, although it was not perfect: it still 
occasionally made the wrong choice and failed to solve a problem it could have. 

By 1970, the mathematician R. Risch and others developed algorithms for indef- 
inite integration of any expression involving algebraic, logarithmic, or exponential 
extensions of rational functions. In other words, gven a "normal" function, the Risch 
algorithm will return either the indefinite integral of the function or an indication 
that no closed-form integral is possible in terms of elementary functions. Such work 
effectively ended the era of considering integration as a problem in search. 

SIN was further refined, merged with parts of the Risch algorithm, and put into the 
evolving MACSYMA' program. For the most part, refinement of MACSYMA consisted 
of the incorporation of new algorithms. Few heuristics of any sort survive. Today 
MACSYMA is no longer considered an A1 program. It is used daily by scientists and 
mathematicians, while ELIZA and STUDENT are now but historical footnotes. 

With ELIZA and STUDENT we were able to develop miniature programs that dupli- 
cated most of the features of the original. We won't even try to develop a program 
worthy of the name MACSYMA; instead we will settle for a modest program to do sym- 
bolic simplification, which we will call (simply) s i  mpl i f i er. Then, we will extend 
simp1 i f i e r  to do differentiation, and some integration problems. The idea is that 
given an expression like (2 - l)x + 0, we want the program to compute the simplified 
form x. 1 

According to the Mathematics Dictionary (James and James 1949)' the word "sim- 
plified" is "probably the most indefinite term used seriously in mathematics." The 
problem is that "simplified is relative to what you want to use the expression for 
next. Which is simpler, x2 + 32 + 2 or (x + l)(x + 2)? The first makes it easier to 

'MACSYMA is the Project MAC SYMbolic MAthematics program. Project MAC is the MIT 
research organization that was the precursor of MIT's Laboratory for Computer Science. 
MAC stood either for Machine-Aided Cognition or Multiple-Access Computer, according to 
one of their annual reports. The cynical have claimed that MAC really stood for Man Against 
Computer. 



integrate or differentiate, the second easier to find roots. We will be content to limit 
ourselves to "obvious" simplifications. For example, x is almost always preferable 
to 12 + 0. 

8.1 Converting Infix to Prefix Notation 

We will represent simplifications as a list of rules, much like the rules for STUDENT 

and ELIZA. But since each simplification rule is an algebraic equation, we will store 
each one as an exp rather than as a r u l  e. To make things more legible, we will write 
each expression in infix form, but store them in the prefix form expected by exp. This 
requires an i n f  i x->pref i x function to convert infix expressions into prefix notation. 
We have a choice as to how general we want our infix notation to be. Consider: 

( ( ( a  * ( X  A 2 ) )  + (b * X I )  + C )  
( a * x A 2 + b * x + c )  
( a x A 2 + b x + c )  
a  xA2 + b*x+c 

The first is fully parenthesized infix, the second makes use of operator precedence 
(multiplication binds tighter than addition and is thus performed first), and the third 
makes use of implicit multiplication as well as operator precedence. The fourth 
requires a lexical analyzer to break Lisp symbols into pieces. 

Suppose we only wanted to handle the fully parenthesized case. To write 
i n f i x ->p re f i x ,  one might first look at p r e f i x - > i n f i x  (on page 228) trying to adapt 
it to our new purposes. In doing so, the careful reader might discover a surprise: 
i n f i x - > p r e f i x  and p r e f i x - > i n f i x  are in fact the exact same function! Both leave 
atoms unchanged, and both transform three-element lists by swapping the exp - op 
and exp - 1  hs. Both apply themselves recursively to the (possibly rearranged) input 
list. Oncewe discover this fact, itwould be temptingto avoidwriting i n f  i x->pref i x, 
and just call p r e f  i x-> i  n f  i x instead. Avoid this temptation at all costs. Instead, de- 
fine i n f i x ->p r e f  i x as shown below. The intent of your code will be clearer: 

(defun i n f i x - > p r e f i x  ( i n f i x - e x p )  
"Convert f u l l y  parenthesized i n f i x - e x p  t o  a  p r e f i x  expression" 
;; Don't use t h i s  version for  non - fu l l y  parenthesized exps! 
( p r e f i x - > i n f i x  i n f i x - e x p ) )  

As we saw above, fully parenthesized infix can be quite ugly, with all those extra 
parentheses, so instead we will use operator precedence. There are a number of 
ways of doing this, but the easiest way for us to proceed is to use our previously 
defined tool r u l  e-based-trans1 a to r  andits subtool, pat-match. Notethat the third 



clause of infix->prefix, the one that calls rul e-based-trans1 a t o r  is unusual in 
that it consists of a single expression. Most cond-clauses have two expressions: a test 
and a result, but ones like this mean, "Evaluate the test, and if it is non-nil, return it. 
Otherwise go on to the next clause." 

(defun i n f i x - > p r e f i x  (exp) 

"T rans la te  an i n f i x  expression i n t o  p r e f i x  n o t a t i o n . "  

; ; Note we cannot do imp1 i c i  t mu1 ti p l  i c a t i o n  i n  t h i s  system 

(cond ((atom exp) exp) 

( (= ( l e n g t h  exp) 1) ( i n f i x - > p r e f i x  ( f i r s t  exp)) )  

( ( ru le -based- t rans1  a t o r  exp * i n f i x - > p r e f i x - r u l  es* 

: r u l  e - i f  # ' r u l  e - p a t t e r n  : r u l e - t h e n  # ' ru le - response  

: a c t i o n  

# '  (1 ambda (b ind ings  response) 

(sub1 i s  (mapcar 

#'(lambda ( p a i r )  

(cons ( f i r s t  p a i r )  

( i n f i x - > p r e f i x  ( r e s t  p a i r ) ) ) )  

b ind ings 

response) > > 1 

((symbol p  ( f i r s t  exp) 

( l i s t  ( f i r s t  exp) ( i n f i x - > p r e f i x  ( r e s t  e x p ) ) ) )  

( t  ( e r r o r  " I l l e g a l  e x p " ) ) ) )  

Because we are doing mathematics in this chapter, we adopt the mathematical con- 
vention of using certain one-letter variables, and redefine v a r i a bl  e - p so that vari- 
ables are only the symbols rn through z. 

(defun v a r i a b l e - p  (exp) 

"Var iab les  are t h e  symbols M through Z . "  

;; p u t  x,y,z f i r s t  t o  f i n d  them a  l i t t l e  f a s t e r  

(member exp ' ( x y  z m  n  o  p  q r s  t u  v  w ) ) )  

(pat-match-abbrev 'x+ ' (?+ x ) )  

(pat-match-abbrev 'y+ ' (?+  y ) )  

(defun r u l e - p a t t e r n  ( r u l e )  ( f i r s t  r u l e )  

(defun ru le- response ( r u l e )  (second r u l e ) )  



(defparameter * i n f i x - > p r e f i x - r u l  es* 
(mapcar # ' expand- pa t - ma tch- abb rev  

' ( ( ( x +  = y+) (= x y ) )  
( ( -  x+) ( -  X I )  
( ( +  x+) (+ XI) 
((x+  + y+) (+ x y ) )  
( ( x+  - y+) ( -  x y ) )  
( ( x+  * y+) (* x y ) )  
( ( x+  I y+) ( 1  x y ) )  
( (x+ A y+) ( *  x y ) ) ) )  

" A  l i s t  o f  r u l e s ,  ordered by precedence.") 

8.2 SimplificationRules 

Now we are ready to define the simplification rules. We use the definition of the data 
types r ul e and exp (page 221) and p ref i x - >i n f i x (page 228) from STUDENT. They 
are repeated here: 

( d e f s t r u c t  ( r u l e  ( : t ype  l i s t ) )  p a t t e r n  response) 

( d e f s t r u c t  (exp ( : t ype  l i s t )  
( : cons t ruc to r  mkexp ( l h s  op r h s ) ) )  

op 1 hs r h s )  

(defun exp-p ( x )  (consp x ) )  
(defun exp-args ( x )  ( r e s t  x ) )  

(defun p r e f i x - > i n f i x  (exp) 
"T rans la te  p r e f i x  t o  i n f i x  expressions." 
( i f  (atom exp) exp 

(mapcar # ' p r e f i x - > i n f i x  
( i f  (b ina ry -exp-p  exp) 

( l i s t  (exp - lhs  exp) (exp-op exp) (exp-rhs exp))  
e x p ) ) ) )  

(defun b ina ry -exp-p  ( x )  
(and (exp-p x )  (= ( l e n g t h  (exp-args x ) )  2 ) ) )  

We also use rul e-  based - trans1 ator  (page 188) once again, this time on a list of 
simplification rules. A reasonable list of simplification rules is shown below. This 
list covers the four arithmetic operators, addition, subtraction, multiplication, and 
division, as well as exponentiation (raising to a power), denoted by the symbol "^". 

Again, it is important to note that the rules are ordered, and that later rules will 
be applied only when earlier rules do not match. So, for example, 0 / 0 simplifies to 



undef i ned, and not to 1 or 0, because the rule for 0 / 0 comes before the other rules. 
See exercise 8.8 for a more complete treatment of this. 

(defparameter *s imp l i f i ca t ion- ru les*  (mapcar # ' i n f i x - > p r e f i x  ' (  

( x  + 0  = x )  

(0 + x  = x )  

( x + x  = 2 * x )  

( x  - 0  = x) 

( 0 - x  = - X I  

( x  - X = 0) 

( -  - x  =XI 
(x  * 1 = x)  

( 1  * x  = x )  

( x  * 0  = 0) 

( 0  * x  = 0) 
( x * x  = x A 2 )  

( X  / 0  = undefined) 
(0 / x  = 0) 

( x  / 1 = x) 

( x l x  = 1 )  

(0 " 0  = undefined) 
( x A 0  = 1 )  

(0 " x  = 0) 

(1 " x  = 1)  

( x  " 1 = x)  

( x  " -1 = 1 / x )  

( x  * ( y  / x )  = y )  

( ( y  / x )  * X = y )  

( ( y  * x )  / X = y )  
( ( x  * y )  / X = y )  
( x +  - x = O )  

( ( -  XI + x  = 0) 

( x + y  - x = y )  

1 ) )  

(defun " ( x  y )  "Exponentiation" (expt x  y ) )  

We are now ready to go ahead andwrite the simplifier. The main function, s i mpl i f i e r, 
will repeatedly print a prompt, read an input, and print it in simplified form. Input 
and output is in infix and the computation is in prefix, so we need to convert accord- 
ingly; the function simp does this, and the function s i  mpl i f y  takes care of a single 
prefix expression. It is summarized in figure 8.1. 



Top-Level Functions 
simp1 i f i e r  A read-simplify-print loop. 
simp Simplify an infix expression. 
simp1 i f y  Simplify a prefix expression. 

Special Variables 
*i n f  i x->pref  i x -  r u l  es* Rules to translate from infix to prefix. 
* s i  mpl i f i c a t  i on - r u l  es* Rules to simplify an expression. 

Data Types 
exP A prefix expression. 

Auxiliary Functions 
simp1 i f y - e x p  Simplify a non-atomic prefix expression. 
i n f i x - > p r e f i x  Convert infix to prefix notation. 
v a r i  abl e -p  The symbols m through z are variables. 

An alias for expt, exponentiation. 
eval uabl e  Decide if an expression can be numerically evaluated. 
s imp- ru le  Transform a rule into proper format. 
1 ength=l Is the argument a list of length I? 

Previous Functions 
pat-match Match pattern against an input. (p. 180) 
ru le-based- t rans1 a t o r  Applya set of rules. (p. 189) 
pat-match-abbrev Define an abbreviation for use in p a t  -match. 

Figure 8.1: Glossary for the Simplifier 

Here is the program: 

(defun simpl i f i e r  ( 1  
"Read a mathematical expression, s i m p l i f y  i t ,  and p r i n t  t h e  r e s u l t . "  
(1  oop 

( p r i n t  's impl  i f i e r > )  
( p r i n t  (simp ( r e a d ) ) ) ) )  

(defun simp ( i n f )  ( p r e f i x - > i n f i x  ( s i m p l i f y  ( i n f i x - > p r e f i x  i n f ) ) ) )  

(defun simpl i f y  (exp) 
"Simp1 i f y  an expression by f i r s t  s impl i f y i n g  i t s  components. " 
( i f  (atom exp) exp 

( s i m p l i f y - e x p  (mapcar # ' s i m p l i f y  e x p ) ) ) )  

(defun simpl i f y - e x p  (exp) 
"S imp l i f y  us ing  a r u l e ,  o r  by doing a r i t h m e t i c . "  
(cond ( ( r u l e - b a s e d - t r a n s l a t o r  exp *simp1 i f i c a t i o n - r u l e s *  

: r u l e - i f  # 'exp-1 hs : r u l e - t h e n  # 'exp-rhs 
: a c t i o n  # '  (1  ambda (b ind ings  response) 

( s i m p l i f y  ( s u b l i s  b ind ings  response) ) ) ) )  
( (eva l  uabl e  exp) (eva l  exp) 
( t  e x p ) ) )  



(defun eva luab le  ( exp)  
" I s  t h i s  an a r i t h m e t i c  expres s ion  t h a t  can be eva lua ted? "  
(and ( eve ry  #'numberp ( exp-a rgs  exp)  

( o r  (member (exp-op exp) ' (+  - * 1 ) )  
(and ( eq  (exp-op exp) ' ^ )  

( i n t e g e r p  (second ( exp-a rgs  e x p ) ) ) ) ) ) )  

The function simpl i fy assures that any compound expression will be simplified by 
first simplifying the arguments and then calling simpl i fy-exp. This latter func- 
tion searches through the simplification rules, much like use - el i za - r ul es and 
trans1 ate-to-expressi on. When it finds a match, simpl i fy-exp substitutes in the 
proper variable values and calls s i mp 1 i fy on the result. s i mpl i fy - exp also has the 
ability to call eval to simplify an arithmetic expression to a number. As in STUDENT, 
it is for the sake of this eval that we require expressions to be represented as lists in 
prefix notation. Numeric evaluation is done after checking the rules so that the rules 
can intercept expressions like ( / 1 0 and simplify them to undef i ned. If we did the 
numeric evaluation first, these expressions would yield an error when passed to eva 1 . 
Because Common Lisp supports arbitrary precision rational numbers (fractions), we 
are guaranteed there will be no round-off error, unless the input explicitly includes 
inexact (floating-point) numbers. Notice that we allow computations involving the 
four arithmetic operators, but exponentiation is only allowed if the exponent is an 
integer. That is because expressions like ( * 4 112) are not guaranteed to return 2 
(the exact square root of 4); the answer might be 2.0 (an inexact number). Another 
problem is that -2 is also a square root of 4, and in some contexts it is the correct 
one to use. 

The following trace shows some examples of the simplifier in action. First we 
show that it can be used as a calculator; then we show more advanced problems. 

> ( s i m p l i f i e r )  
SIMPLIFIER> ( 2  + 2 )  
4  
SIMPLIFIER> ( 5  * 20 + 30 + 7 )  
137 
SIMPLIFIER> ( 5  * x - (4  + 1) * X )  
0  
SIMPLIFIER> (y  / z * ( 5  * x - ( 4  + 1 )  * X I )  
0 
SIMPLIFIER> ( ( 4  - 3 )  * x + (y  / y - 1) * Z )  

X 
SIMPLIFIER> (1 * f ( x )  + 0 )  
( F  X) 
SIMPLIFIER> ( 3  * 2 * X )  
( 3  * ( 2  * X I )  
SIMPLIFIER> [Abort] 
> 



Here we have terminated the loop by hitting the abort key on the terminal. (The details 
of this mechanismvaries from one implementation of Common Lisp to another.) The 
simplifier seems to work fairly well, although it errs on the last example: ( 3 * ( 2 * 
X ) ) should simplify to ( 6 * X ) . In the next section, we will correct that problem. 

8.3 Associativity and Commutativity 

We could easily add a rule to rewrite (3  * ( 2 * X ) ) as ( (3  * 2 ) * X 1 and hence 
( 6 * X 1. The problem is that this rule would also rewrite ( X * ( 2 * 3 1 as ( ( X * 
2) * 3 1, unless we had a way to limit the rule to apply only when it would group 
numbers together. Fortunately, p a t  - ma t c h does provide just this capability, with the 
? i s pattern. We could write this rule: 

(((?is n numberp) * ((?is m numberp) * x)) = ((n * m) * x)) 

This transforms (3 * ( 2  * X I )  into ( ( 3  * 2 )  * x), and hence into (6 * x).  
Unfortunately, the problem is not as simple as that. We also want to simplify ( ( 2  * 
X) * (y * 3 to ( 6 * ( x * y ) . We can do a better job of gathering numbers together 
by adopting three conventions. First, make numbers first in products: change x * 
3 to 3 * x. Second, combine numbers in an outer expression with a number in an 
inner expression: change 3 * ( 5 * x ) to ( 3 * 5 1 * x. Third, move numbers out 
of inner expressions whenever possible: change (3  * x ) * y to 3 * ( x  * y 1. We 
adopt similar conventions for addition, except that we prefer numbers last there: x 
+ 1 insteadof 1 + x. 

;; Define n and m as numbers; s as a non-number: 

(pat-match-abbrev 'n '(?is n numberp)) 

(pat-match-abbrev 'm '(?is m numberp)) 

(pat-match-abbrev 's '(?is s not-numberp)) 

(defun not-numberp (x) (not (numberp XI)) 

(defun simp-rule (rule) 

"Transform a rule into proper format." 

(let ((exp (infix->prefix rule))) 

(mkexp (expand-pat-match-abbrev (exp-lhs exp)) 

(exp-op exp) (exp-rhs exp)))) 



( s e t f  * s i m p l i f i c a t i o n - r u l e s *  

(append * s i m p l i f i c a t i o n - r u l e s *  (mapcar # ' s imp- ru le  
' ( ( s  * n  = n  * S )  

( n  * (m * x )  = ( n  * m) * x )  

( X  * ( n  * y )  = n  * ( X  * y ) )  

( ( n  * x )  * y  = n  * ( X  * y ) )  
( n + s = s + n )  
( ( x + m ) + n = x + n + r n )  

( X  + ( y  + n )  = ( X  + y )  + n )  
( ( x  + n )  + y  = ( X  + y )  + n ) ) ) ) )  

With the new rules in place, we are ready to try again. For some problems we get just 
the right answers: 

> ( s i m p l i f i e r )  
SIMPLIFIER> ( 3  * 2 * x )  

( 6  * X) 
SIMPLIFIER> (2  * x  * x  * 3)  

( 6  * (X 2 ) )  
SIMPLIFIER> (2  * x  * 3  * y  * 4 * z * 5 * 6)  

(720 * (X * (Y * Z ) ) )  

SIMPLIFIER> ( 3  + x  + 4 + x )  

( ( 2  * X I  + 7)  
SIMPLIFIER> ( 2  * x  * 3  * x  * 4 * (1 1 x )  * 5 * 6)  

(720 * X) 

Unfortunately, there are other problems that aren't simplified properly: 

We will return to these problems in section 8.5. 

p Exercise 8.1 Verify that the set of rules just prior does indeedimplement the desired 
conventions, and that the conventions have the proper effect, and always terminate. 
As an example of a potential problem, what would happen if we used the rule ( x  * 
n = n * x)insteadoftherule(s * n = n * s ) ?  



8.4 Logs, Trig, and Differentiation 

In the previous section, we restricted ourselves to the simple arithmetic functions, 
so as not to intimidate those who are a little leery of complex mathematics. In this 
section, we add a little to the mathematical complexity, without having to alter the 
program itself one bit. Thus, the mathematically shy can safely skip to the next 
section without feeling they are missing any of the fun. 

We start off by representing some elementary properties of the logarithmic and 
trigonometric functions. The new rules are similar to the "zero and one" rules we 
needed for the arithmetic operators, except here the constants e and p i  (e = 2.71828.. . 
and ~ T T  = 3.14159.. .) are important in addition to 0 and 1. We also throw in some rules 
relating logs and exponents, and for sums and differences of logs. The rules assume 
that complex numbers are not allowed. If they were, log ex (and even xY) would have 
multiple values, and it would be wrong to arbitrarily choose one of these values. 

( s e t f  *simp1 i f i c a t i o n - r u l e s *  
(append *simp1 i f i c a t i o n - r u l e s *  (mapcar # ' s i m p - r u l e  ' (  

( l o g  1 = 0)  
( l o g  0  = undefined) 
( l o g  e = 1 )  
( s i n  0  = 0 )  
( s i n  p i  = 0)  
(cos 0  = 1 )  
(cos p i  = -1 )  
( s i n ( p i  / 2)  = 1 )  
(cos(p i  / 2) = 0 )  
( l o g  ( e  ^ x )  = x )  
(e  ^ ( l o g  x )  = x )  
( ( x  ^ y )  * ( x  ^ z )  = X ^ ( y  + z ) )  
( ( x  ^ y )  / ( x  A Z )  = X A ( y  - z ) )  
( l o g  x  + l o g  y  = l o g ( x  * y ) )  
( l o g  x  - l o g  y  = l o g ( x  / y ) )  
( ( s i n  x )  ^ 2  + (cos x )  ^ 2 = 1) 
1) 1 

Now we would like to go a step further and extend the system to handle differenti- 
ation. This is a favorite problem, and one which has historical significance: in the 
summer of 1958 John McCarthy decided to investigate differentiation as an interest- 
ing symbolic computation problem, which was difficult to express in the primitive 
programming languages of the day. This investigation led him to see the importance 
of functional arguments and recursive functions in the field of symbolic computa- 
tion. For example, McCarthy invented what we now call rnapca r to express the idea 
that the derivative of a sum is the sum of the derivative function applied to each 
argument. Further work led McCarthy to the publication in October 1958 of MIT 



A1 Lab Memo No. 1: "An Algebraic Language for the Manipulation of Symbolic 
Expressions," which defined the precursor of Lisp. 

In McCarthy's work and in many subsequent texts you can see symbolic differen- 
tiation programs with a simplification routine tacked on the end to make the output 
more readable. Here, we take the opposite approach: the simplification routine is 
central, and differentiation is handled as just another operator, with its own set of 
simplification rules. We will require a new infix-to-prefix translation rule. While 
we're at it, we'll add a rule for indefinite integration as well, although we won't write 
simplification rules for integration yet. Here are the new notations: 

math infix prefix 
d y l d x  d y l d x  ( d y x )  
J y d x  I n t  y  d x  ( i n t  y  XI 

And here are the necessary infix-to-prefix rules: 

(defparameter * i n f i x - > p r e f i x - r u l  es* 
(mapcar # 'expand-pat-match-abbrev 
' ( ( ( x +  = y+) (= x  y ) )  

( ( -  x+> ( -  X I )  
( (+ x+) (+ X I )  
( ( x+  + y+) (+ x  y ) )  
( (x+ - y+) ( -  x  y ) )  
( ( d  y+ / d  X)  (d y  X I )  ;*** New r u l e  
( ( I n t  y+ d  X)  ( i n t  y  X I )  ;*** New r u l e  
( (x+  * y+) (* x  y ) )  
( (x+ / y+) (1  x  y ) )  
( (x+ * y+) ( A  x  y ) ) ) ) )  

Since the new rule for differentiation occurs before the rule for division, there won't 
be any confusion with a differential being interpreted as a quotient. On the other 
hand, there is a potential problem with integrals that contain d as a variable. The 
user can always avoid the problem by using ( d  instead of d  inside an integral. 

Now we augment the simplification rules, by copying a differentiation table out 
of a reference book: 

( s e t f  *simp1 i f i  c a t i  on-ru l  es* 
(append * s imp l i f i ca t i on - ru l es *  (mapcar # 's imp-ru le ' (  

( d x / d x  = 1 )  . 

( d ( u + v ) / d x = ( d u / d x ) + ( d v / d x ) )  
(d ( u - V )  / d x = ( d u / d x )  - ( d v / d x ) )  
(d ( -  U) / d  x  = - (d u  / d X I )  
( d ( u * v )  / d x = u * ( d v / d x ) + v * ( d u / d x ) )  
( d  (U  / V )  I d x =  ( v *  ( d u  / d x )  - u *  ( d  v  I d x ) )  

/ v A 2 )  



( d ( u A n )  / d x = n * u A ( n - l ) * ( d u / d x ) )  
( d ( u A v )  / d x = v * u A ( v - l ) * ( d u / d x )  

+ u ^ v  * ( l o g  u) * ( d  v / d x ) )  
( d  ( l o g  u) / d x = (d  u / d x )  / u) 
( d  ( s i n  u) / d x =  (cos u)  * (d  u / d x ) )  
(d (COS U) / d x = - ( s i n  u) * (d  u / d x ) )  
( d  (e  A U)  / d x = (e  A U)  * (d  u / d X I )  
( d u / d x  = 0 ) ) ) ) )  

We have added a default rule, ( d  u / d x = 0 ); this should only apply when the 
expression u is free of the variable x (that is, when u is not a function of x). We could 
use ? i f to check this, but instead we rely on the fact that differentiation is closed over 
the list of operators described here-as long as we don't introduce any new operators, 
the answer will always be correct. Note that there are two rules for exponentiation, 
one for the case when the exponent is a number, and one when it is not. This was 
not strictly necessary, as the second rule covers both cases, but that was the way the 
rules were written in the table of differentials I consulted, so I left both rules in. 

SIMPLIFIER> (d  ( x  + x )  / d x )  
2 
SIMPLIFIER> ( d  ( a  * x A 2  + b * x + c )  1 d x )  
( ( 2  * (A * X)) + B) 
SIMPLIFIER> ( d  ( ( a  * x A 2  + b * x +  c )  / x )  / d x )  
( ( ( ( A  * (X A 2 ) )  + ( (B  * X I  + C)) - (X * ( ( 2  * (A * XI) + B ) ) )  
/ (X A 2 ) )  

SIMPLIFIER> ( l o g  ( ( d  ( x  + x )  / d x )  / 2 ) )  
0 
SIMPLIFIER> ( l og (x  + x )  - l o g  x )  
(LOG 2) 
SIMPLIFIER> ( x  A cos p i  1 
( 1  / X) 
SIMPLIFIER> ( d  (3 * x + (cos x )  / x )  / d x )  
((((COS X) - ( X  * ( -  (SIN X I ) ) )  / (X A 2 ) )  + 3)  
SIMPLIFIER> (d  ( (cos x )  / x )  / d x )  
(((COS X) - ( X  * ( -  (SIN X) ) ) )  / ( X  A 2 ) )  
SIMPLIFIER> (d  (3 * x A 2  + 2 * x + 1)  / d x )  
( ( 6  * X )  + 2) 
SIMPLIFIER> ( s i n ( x  + x )  A 2  + cos(d x A 2  / d x )  A 2) 
1 
SIMPLIFIER> ( s i n ( x  + x )  * s i n (d  x A 2  / d x )  + 

cos(2 * x )  * cos(x * d 2 * y / d y ) )  
1 

The program handles differentiation problems well and is seemingly clever in its use 
of the identity sin2 x + cos2 x = 1. 



8.5 Limits of Rule-Based Approaches 

In this section we return to some examples that pose problems for the simplifier. 
Here is a simple one: 

We would prefer 2 * ( x + y 1. The problem is that, although we went to great trouble 
to group numbers together, there was no effort to group non-numbers. We could 
write rules of the form: 

These would work for the example at hand, but they would not work for ( x  + y + z 
+ y + x 1. For that we would need more rules: 

To handle all the cases, we would need an infinite number of rules. The pattern- 
matching language is not powerful enough to express this succintly. It might help 
if nested sums (and products) were unnested; that is, if we allowed + to take an 
arbitrary number of arguments instead of just one. Once the arguments are grouped 
together, we could sort them, so that, say, all the ys appear before z and after x. Then 
like terms could be grouped together. We have to be careful, though. Consider these 
examples: 

We would want ( 3 * x ) to sort to the same place as x and ( 4  * x) so that they could 
all be combined to ( 8 * x ) . In chapter 15, we develop a new version of the program 
that handles this problem. 



8.6 Integration 

So far, the algebraic manipulations have been straightforward. There is a direct 
algorithm for computing the derivative of every expression. When we consider 
integrals, or antideri~atives,~ the picture is much more complicated. As you may 
recall from freshman calculus, there is a fine art to computing integrals. In this 
section, we try to see how far we can get by encoding just a few of the many tricks 
available to the calculus student. 

The first step is to recognize that entries in the simplification table will not be 
enough. Instead, we will need an algorithm to evaluate or "simplify" integrals. 
We will add a new case to si  mpl i f y -  exp to check each operator to see if it has a 
simplification function associated with it. These simplification functions will be 
associated with operators through the functions se t  - s i rnp - f n and s i mp - f n. If an 
operator does have a simplification function, then that function will be called instead 
of consulting the simplification rules. The simplification function can elect not to 
handle the expression after all by returning nil, in which case we continue with the 
other simplification methods. 

(defun s imp- fn  (op) ( g e t  op ' s imp- fn ) )  
(defun se t - s imp- fn  (op f n )  ( s e t f  ( g e t  op ' s imp- fn )  f n ) )  

(defun s i m p l i f y - e x p  (exp) 
" S i m p l i f y  us ing a  r u l e ,  o r  by do ing a r i t h m e t i c ,  
o r  by us ing  t h e  simp f u n c t i o n  supp l ied  f o r  t h i s  operator . "  
(cond ( ( s i m p l i f y - b y - f n  exp))  . 9 *** 

( ( ru le -based- t rans1  a t o r  exp *simp1 i f i c a t i o n - r u l e s *  
: r u l e - i f  # 'exp-1 hs : r u l e - t h e n  # 'exp-rhs 
: a c t i o n  #'(lambda (b ind ings  response) 

(simp1 i f y  (sub1 i s  b ind ings  response) 1) 1) 
( (eva luab le  exp) (eva l  exp))  
( t  exp ) ) )  

(defun s i m p l i f y - b y - f n  (exp) 
" I f  t h e r e  i s  a  s i m p l i f i c a t i o n  f n  f o r  t h i s  exp, 
and i f  app ly ing  i t  gives a  non-nu l l  r e s u l t ,  
then s i m p l i f y  t h e  r e s u l t  and r e t u r n  t h a t . "  
( l e t *  ( ( f n  ( s imp- fn  (exp-op e x p ) ) )  

( r e s u l t  ( i f  f n  ( f u n c a l l  f n  e x p ) ) ) )  
( i f  ( n u l l  r e s u l t )  

n i  1  
( s i m p l i f y  r e s u l t ) ) ) )  

Freshman calculus classes teach a variety of integration techniques. Fortunately, 
one technique-the derivative-divides technique-can be adopted to solve most of the 

2 ~ h e  term antiderivative is more correct, because of branch point problems. 



problems that come up at the freshman calculus level, perhaps 90 % of the problems 
given on tests. The basic rule is: 

As an example, consider S x sin(x2) dx. Using the substitution u = x2, we can 
differentiate to get duldx = 22. Then by applying the basic rule, we get: 

J  x sin(x2) dx = - sin(u) - dx = - sin(u) du. 
2 ' J  dx d" 2 J  

Assume we have a table of integrals that includes the rule J sin(x) dx = - cos(x). 
Then we can get the final answer: 

Abstracting from this example, the general algorithm for integrating an expres- 
sion y with respect to x is: 

1. Pick a factor of y, calling it f (u). 

2. Compute the derivative duldx. 

3. Divide y by f (u) x duldx, calling the quotient k .  

4. If k is a constant (with respect to x), then the result is k S f (u)du. 

This algorithm is nondeterministic, as there may be many factors of y. In our 
example, f (u) = sin(x2), u = x2, and duldx = 22. So k = 1, and the answer is -+ c0s(x2). 

The first step in implementing this technique is to make sure that division is done 
correctly. We need to be able to pick out the factors of y, divide expressions, and then 
determine if a quotient is free of x. The function f a c t o r  i ze does this. It keeps a list 
of factors and a running product of constant factors, and augments them with each 
call to the local function f ac. 



(defun f a c t o r i z e  (exp) 
"Return a  l i s t  o f  t h e  f a c t o r s  o f  exp

A

n, 
where each f a c t o r  i s  o f  t h e  form ( ^  y  n ) . "  
( l e t  ( ( f a c t o r s  n i l )  

(constant  1 ) )  
( l a b e l s  

( ( f a c  ( x  n )  
(cond 

((numberp x )  
( s e t f  constant  ( *  constant  (exp t  x  n ) ) ) )  

( ( s t a r t s - w i t h  x  '*) 

( f a c  (exp- lhs  x )  n )  
( f a c  (exp- rhs x )  n ) )  

( ( s t a r t s - w i t h  x  ' I )  
( f a c  (exp- lhs  x )  n )  
( f a c  (exp-rhs x )  ( -  n ) ) )  

( (and ( s t a r t s - w i t h  x  ' - 1  ( l e n g t h = l  (exp-args X I ) )  
( s e t f  constant  ( -  cons tan t ) )  
( f a c  (exp- lhs  x )  n ) )  

( (and ( s t a r t s - w i t h  x  (numberp (exp-rhs X I ) )  
( f a c  (exp- lhs  x )  ( *  n  (exp- rhs x ) ) ) )  

( t  ( l e t  ( ( f a c t o r  ( f i n d  x  f a c t o r s  :key # 'exp- lhs  
: t e s t  # ' e q u a l ) ) )  

( i f  f a c t o r  
( i n c f  (exp-rhs f a c t o r )  n )  
(push ' ( ^  ,x ,n) f a c t o r s ) ) ) ) ) ) )  

;; Body o f  f a c t o r i z e :  
( f a c  exp 1 )  
(case constant  

( 0  ' ( ( *  0 1 ) ) )  
( 1  f a c t o r s )  
( t  ' ( ( ^  ,constant 1) . , f a c t o r s > > > > ) >  

f a c t o r i  ze maps fromanexpression to alist of factors, butwe also need u n f a c t o r i  ze 
to turn a list back into an expression: 

(defun u n f a c t o r i z e  ( f a c t o r s )  
"Convert a  l i s t  o f  f a c t o r s  back i n t o  p r e f i x  form." 
(cond ( ( n u l l  f a c t o r s )  1 )  

( ( l e n g t h = l  f a c t o r s )  ( f i r s t  f a c t o r s ) )  
( t  ' ( *  , ( f i r s t  f a c t o r s )  , ( u n f a c t o r i z e  ( r e s t  f a c t o r s ) ) ) ) ) )  

The derivative-divides method requires a way of dividingtwo expressions. We do this 
by factoring each expression and then dividing by cancelling factors. There may be 
cases where, for example, two factors in the numerator could be multiplied together 



to cancel a factor in the denominator, but this possibility is not considered. It turns 
out that most problems from freshman calculus do not require such sophistication. 

(defun divide-factors (numer denom) 
"Divide a l i s t  of factors by another, producing a th i rd . "  
( l e t  ( ( r e s u l t  (mapcar # 'copy-l i s t  numer))) 

(do l i s t  (d denom) 
( l e t  ( ( f ac to r  (f ind (exp-lhs dl resul t  :key #'exp-lhs 

: t e s t  #'equal 1) 
( i f  factor 

(decf (exp-rhs fac tor)  (exp-rhs d l )  
(push ' ( *  , (exp-lhs dl , ( -  (exp-rhs d l ) )  r e s u l t ) ) ) )  

(delete 0 resul t  :key # 'exp-rhs)) )  

Finally, the predicate f ree  - of returns true if an expression does not have any occur- 
rences of a particular variable in it. 

(defun free-of (exp var) 
"True i f  expression has no occurrence of var." 
(not (find-anywhere var exp) ) )  

(defun find-anywhere (item t r e e )  
"Does item occur anywhere in t ree?  If so, return i t . "  
(cond ((eql  item t r e e )  t r e e )  

((atom t r e e )  n i l )  
((find-anywhere item ( f i r s t  t r e e ) ) )  
((find-anywhere item ( r e s t  t r e e ) ) ) ) )  

In factorize we made use of the auxiliary function 1 ength=l. The function call 
( 1 engt h = l  x) is faster than (= ( 1 engt h x 1 because the latter has to compute 
the length of the whole list, while the former merely has to see if the list has a res t  
element or not. 

(defun length=l (x)  
" I s  X a l i s t  of length l?" 
(and (consp x )  (null ( r e s t  x ) ) ) )  

Given these preliminaries, the function i ntegra t e  is fairly easy. We start with 
some simple cases for integrating sums and constant expressions. Then, we factor 
the expression and split the list of factors into two: a list of constant factors, and 
a list of factors containing x. (This is done with parti t i  on-if, a combination of 
remove-i f  and remove-i f  -not.) Finally, we call deri v-di vides, giving it a chance 
with each of the factors. If none of them work, we return an expression indicating 
that the integral is unknown. 



(defun i n t e g r a t e  (exp x )  

;; F i r s t  t r y  some t r i v i a l  cases 

(cond 

( ( f r e e - o f  exp x )  ' ( *  ,exp x ) )  ; I n t  c  dx = c*x 

( ( s t a r t s - w i t h  exp '+) ; I n t  f + g  = 

' (+  , ( i n t e g r a t e  (exp- lhs  exp) x )  ; I n t  f + I n t  g  

, ( i n t e g r a t e  (exp- rhs exp) X I ) )  

( ( s t a r t s - w i t h  exp ' - 1  

(ecase ( l e n g t h  (exp-args exp))  

(1 ( i n t e g r a t e  (exp- lhs  exp) x ) )  ; I n t  - f = - I n t  f 

( 2  ' ( -  , ( i n t e g r a t e  (exp- lhs  exp) x )  ; I n t  f - g  = 

, ( i n t e g r a t e  (exp- rhs exp) x ) ) ) ) )  ; I n t  f - I n t  g  

:; Now move t h e  constant  f a c t o r s  t o  t h e  l e f t  o f  t h e  i n t e g r a l  

( ( m u l t i p l e - v a l u e - b i n d  ( c o n s t - f a c t o r s  x - f a c t o r s )  

( p a r t i t i o n - i f  #'(lambda ( f a c t o r )  ( f r e e - o f  f a c t o r  x ) )  

( f a c t o r i z e  exp))  

(simp1 i f y  

' ( *  , ( u n f a c t o r i z e  c o n s t - f a c t o r s )  

;; And t r y  t o  i n t e g r a t e :  

,(cond ( ( n u l l  x - f a c t o r s )  x )  

((some #*( lambda ( f a c t o r )  

( d e r i v - d i v i d e s  f a c t o r  x - f a c t o r s  x ) )  

x - f a c t o r s  1)  
;; <other methods here> 

( t  ' ( i n t ?  , (un fac to r i ze  x - f a c t o r s )  . x ) ) ) ) ) ) ) ) )  

(defun p a r t i t i o n - i f  (pred l i s t )  

"Return 2  values: elements of l i s t  t h a t  s a t i s f y  pred, 

and elements t h a t  don ' t . "  

( l e t  ( ( y e s - l i s t  n i l )  

( n o - l i s t  n i l  1 )  

( d o l i s t  ( i t e m  l i s t )  

( i f  ( f u n c a l l  pred i tem)  

(push i tem y e s - l i s t )  

(push i t e m  n o - l i s t ) ) )  

(va lues (nreverse y e s - l i s t )  (nreverse n o - l i s t ) ) ) )  



Note that the place in integrate where other techniques could be added is 
marked. We will only implement the derivative-divides method. It turns out that 
the function is a little more complicated than the simple four-step algorithm outlined 
before: 

(defun der iv -d iv ides  ( f ac to r  fac to rs  x )  
(asser t  ( s t a r t s - w i t h  f ac to r  ' ^ ) I  
( l e t *  ( ( u  (exp- lhs f a c t o r ) )  ; fac to r  = unn 

(n (exp-rhs f a c t o r ) )  
( k  ( d i v i de - f ac to r s  

fac to rs  ( f ac to r i ze  ' (*  , fac to r  , (der iv  u  x ) ) ) ) ) )  
(cond ( ( f r e e - o f  k  x )  

;; I n t  k*unn*du/dx dx = k* In t  unn du 
. . , , = k*un(n+l)/(n+l) f o r  n  /= -1 . . , , = k*log(u) f o r  n  = - 1  
( i f  (= n  -1 )  

' ( *  , (un fac to r ize  k )  ( l o g  ,u))  
' ( 1  ( *  , (unfactor ize k )  ( *  ,u ,(+ n  1 ) ) )  

.(+ n  1 ) ) ) )  
((and (= n  1 )  ( i n - i n t e g r a l - t a b l e ?  u ) )  
;; I n t  y ' * f ( y )  dx = I n t  f ( y )  dy 
( l e t  ( (k2 (d i v i de - f ac to r s  

fac to rs  
( f a c t o r i z e  ' ( *  ,u , (der iv  (exp- lhs u) x ) ) ) ) ) )  

( i f  ( f r e e - o f  k2 x )  
' ( *  , ( in tegra te- f rom- tab le  (exp-op u)  (exp-lhs u ) )  

, (un fac to r ize  k2) 1) 1) 1) 

There are three cases. In any case, all factors are of the form ( A u n 1, so we separate 
the factor into a base, u, and exponent, n. If u or un evenly divides the original 
expression (here represented as factors), then we have an answer. But we need to 
check the exponent, because S undu is un+l/(n + 1) for n # -1, but it is log(u) for 
n = -1. But there is a third case to consider. The factor may be something like ( A 

( s i n ( A x 2 ) ) 1 1, in which case we should consider f (u) = sin(x2). This case is 
handled with the help of an integral table. We don't need a derivative table, because 
we can just use the simplifier for that. 

(defun de r i v  ( y  x )  ( s i m p l i f y  ' ( d  ,y , X I ) )  

(defun i n teg ra t i on - t ab le  ( r u l es )  
( d o l i s t  ( i - r u l e  ru les )  

( l e t  ( ( r u l e  ( i n f i x - > p r e f i x  i - r u l e ) ) )  
( s e t f  (ge t  (exp-op (exp-1 hs (exp-1 hs r u l e ) ) )  ' i n t )  

r u l e ) ) ) )  



(defun i n - i n t e g r a l - t a b l e ?  (exp) 
(and (exp-p exp) ( g e t  (exp-op exp) ' i n t ) ) )  

(defun i n t e g r a t e - f r o m- t a b l e  (op a rg )  
( l e t  ( ( r u l e  ( g e t  op ' i n t ) ) )  

(subst  a rg  (exp-1 hs (exp- lhs  (exp- lhs  r u l e ) ) )  (exp-rhs r u l e ) ) ) )  

( i n t e g r a t i o n - t a b l e  
' (  ( I n t  l o g ( x )  d  x  = x  * l o g ( x )  - x )  

( I n t  exp(x> d  x  = exp(x ) )  
( I n t  s i n ( x )  d  x  = - c o s ( x ) )  
( I n t  cos(x)  d  x  = s i n ( x ) )  
( I n t  t a n ( x )  d  x  = - l o g ( c o s ( x ) ) )  
( I n t  s i n h ( x )  d  x  = cosh(x) )  
( I n t  cosh(x) d  x  = s i n h ( x ) )  
( I n t  tanh(x )  d  x  = l o g ( c o s h ( x ) ) )  
1 1 

The last step is to install i ntegrate as the simplification function for the operator 
In t .  The obvious way to do this is: 

( s e t - s i m p - f n  ' I n t  ' i n t e g r a t e )  

Unfortunately, that does not quite work. The problem is that integrate expects 
two arguments, corresponding to the two arguments y and x in ( I n t  y x) . But the 
convention for simplification functions is to pass them a single argument, consisting 
of the whole expression ( I n t  y x 1. We could go back and edit s i mpl i f y  - exp to 
change the convention, but instead I choose to make the conversion this way: 

( s e t - s i m p - f n  ' I n t  #'(lambda (exp) 
( i n t e g r a t e  (exp- lhs  exp) (exp-rhs e x p ) ) ) )  

Here are some examples, taken from chapters 8 and 9 of Calculus (Loomis 1974): 

SIMPLIFIER> ( I n t  x  * s i n ( x  A 2) d  x )  
(112 * ( -  (COS (X A 2 ) ) ) )  
SIMPLIFIER> ( I n t  ( ( 3  * x  A 3)  - 1 / ( 3  * x  A 3 ) )  d  x )  
( ( 3  * ( (X  A 4)  / 4 ) )  - (113 * ( (X A -2 )  / - 2 ) ) )  
SIMPLIFIER> ( I n t  ( 3  * x  + 2) A -213 d  x )  
( ( ( 3  * X) + 2) A 1/31 
SIMPLIFIER> ( I n t  s i n ( x )  A 2  * cos(x)  d  x )  
( ( ( S I N  X I  A 3) / 3 )  
SIMPLIFIER> ( I n t  s i n ( x )  / ( 1  + cos (x ) )  d  x )  
( - 1  * (LOG ((COS X I  + 1 ) ) )  
SIMPLIFIER> ( I n t  ( 2  * x  + 1 )  / ( x  A 2  + x  - 1 )  d  x )  



(LOG ((X A 2) + (X - 1 ) ) )  
SIMPLIFIER> ( I n t  8  * x  A 2  I ( x  A 3  + 2) A 3 d x )  
( 8  * ((113 * ( ( ( X  A 3)  + 2) A - 2 ) )  1 - 2 ) )  

All the answers are correct, although the last one could be made simpler. One quick 
way to simplify such an expression is to factor and unfactor it, and then simplify 
again: 

( s e t - s i m p - f n  ' I n t  
#'(lambda (exp) 

( u n f a c t o r i  ze 
( f a c t o r i z e  

( i n t e g r a t e  (exp- lhs  exp) (exp-rhs e x p ) ) ) ) ) )  

With this change, we get: 

8.7 History and References 

A brief history is given in the introduction to this chapter. An interesting point is that 
the history of Lisp and of symbolic algebraic manipulation are deeply intertwined. 
It is not too gross an exaggeration to say that Lisp was invented by John McCarthy 
to express the symbolic differentiation algorithm. And the development of the first 
high-quality Lisp system, MacLisp, was driven largely by the needs of MACSYMA, 
one of the first large Lisp systems. See McCarthy 1958 for early Lisp history and 
the differentiation algorithm, and Martin and Fateman 1971 and Moses (1975) for 
more details on MACSYMA. A comprehensive book on computer algebra systems 
is Davenport 1988. It covers the MACSYMA and REDUCE systems as well as the 
algorithms behind those systems. 

Because symbolic differentiation is historically important, it is presented in a 
number of text books, from the original Lisp 1.5 Primer (Weissman 1967) and Allen's 
influential Anatomy of Lisp (1978) to recent texts like Brooks 1985, Hennessey 1989, 
and Tanimoto 1990. Many of these books use rules or data-driven programming, 
but each treats differentiation as the main task, with simplification as a separate 
problem. None of them use the approach taken here, where differentiation is just 
another kind of simplification. 

The symbolic integration programs SAINT and SIN are covered in Slagle 1963 and 
Moses 1967, respectively. The mathematical solution to the problem of integration 



in closed term is addressed in Risch 1969, but be warned; this paper is not for the 
mathematically naive, and it has no hints on programming the algorithm. A better 
reference is Davenport et al. 1988. 

In this book, techniques for improving the efficiency of algebraic manipulation 
are covered in sections 9.6 and 10.4. Chapter 15 presents a reimplementation that 
does not use pattern-matching, and is closer to the techniques used in MACSYMA. 

8.8 Exercises 

p Exercise 8.2 [s] Some notations use the operator ** instead of A to indicate expo- 
nentiation. Fix i nf i x->pref i x so that either notation is allowed. 

Exercise 8.3 [rn] Can the system as is deal with imaginary numbers? What are 
some of the difficulties? 

p Exercise 8.4 [h] There are some simple expressions involving sums that are not 
handled by the integrate function. The function can integrate a x x2 + b x x + c 
but not 5 x (a x x2 + b x x + c). Similarly, it can integrate x4 + 2 x x3 + x2 but not 
(x2 + x ) ~ ,  and it can do x3 + x2 + x + 1 but not (x2 + 1) x (x + 1). Modify integrate 
so that it expands out products (or small exponents) of sums. You will probably want 
to try the usual techniques first, and do the expansion only when that fails. 

p Exercise 8.5 [dl Another very general integration technique is called integration 
by parts. It is based on the rule: 

So, for example, given 

J x cos xdx 

we can take u = x, du = cos xdx. Then we can determine u = sin x by integration, 
and come up with the solution: 

It is easy to program an integration by parts routine. The hard part is to program 
the control component. Integration by parts involves a recursive call to i ntegrate, 
and of all the possible ways of breaking up the original expression into a u and a du, 



few, if any, will lead to a successful integration. One simple control rule is to allow 
integration by parts only at the top level, not at the recursive level. Implement this 
approach. 

p Exercise 8.6 [dl A more complicated approach is to try to decide which ways of 
breaking up the original expression are promising and which are not. Derive some 
heuristics for making this division, and reimplement i ntegra t e  to include a search 
component, using the search tools of chapter 6. 

Look in a calculus textbook to see how sin2 xdx is evaluated by two integrations 
by parts and a division. Implement this technique as well. 

p Exercise 8.7 [m] Write simplification rules for predicate calculus expressions. For 
example, 

(true and  x  = x) 
( fa lse  and x  = fa lse)  
(true or x  = true) 
( fa lse  or  x  = fa lse)  

p Exercise 8.8 [m] The simplification rule ( x  1 0 = undef i ned 1 is necessary to avoid 
problems with division by zero, but the treatment of undef i ned is inadequate. For 
example, the expression ( ( 0 / 0 - ( 0 / 0 1 1 will simplify to zero, when it should 
simplify to undef i ned. Add rules to propagate undef i ned values and prevent them 
from being simplified away. 

@ Exercise 8.9 [dl Extend the method used to handle undef i ned to handle + i  n f  i n i  t y  
and - i n f  i n i  t y  as well. 
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TOOLS AND TECHNIQUES 





CHAPTER Q 
Efficiency issues 

A Lisp programmer knows the value of everything, 
but the cost of nothing. 

-Alan J. Perlis 

Lisp is not inherently less efficient than other 
high-level languages. 

-Richard J. Fateman 

ne of the reasons Lisp has enjoyed a long history is because it is an ideal language for 
what is now called rapid-prototyping-developing a program quickly, with little regards 
for details. That is what we have done so far in this book: concentrated on getting a 

working algorithm. Unfortunately, when a prototype is to be turned into a production-quality 
program, details can no longer be ignored. Most "real" A1 programs deal with large amounts of 
data, and with large search spaces. Thus, efficiency considerations become very important. 

However, this does not mean that writing an efficient program is fundamentaly different 
from writing a working program. Ideally, developing an efficient program should be a three-step 
process. First, develop a working program, using proper abstractions so that the program will be 
easy to change if necessary. Second, instrument the program to determine where it is spending 
most of the time. Third, replace the slow parts with faster versions, while maintaining the 
program's correctness. 



The term efficiency will be used primarily to talk about the speed or run time of a 
program. To a lesser extent, efficiency is also used to refer to the space or amount of 
storage consumed by a program. We will also talk about the cost of a program. This 
is partly a use of the metaphor "time is money," and partly rooted in actual monetary 
costs-if a critical program runs unacceptably slowly, you may need to buy a more 
expensive computer. 

Lisp has been saddled with a reputation as an "inefficient language." Strictly 
speaking, it makes no sense to call a language efficient or inefficient. Rather, it is only 
a particular implementation of the language executing a particular program that can be 
measured for efficiency. So saying Lisp is inefficient is partly a historical claim: some 
past implementations have been inefficient. It is also partly a prediction: there are 
some reasons why future implementations are expected to suffer from inefficiencies. 
These reasons mainly stem from Lisp's flexibility. Lisp allows many decisions to be 
delayed until run time, and that can make the run time take longer. In the past decade, 
the "efficiency gap" between Lisp and "conventional languages" like FORTRAN or 
C has narrowed. Here are the reasons-some deserved, some not-behind Lisp's 
reputation for inefficiency: 

Early implementations were interpreted rather than compiled, which made 
them inherently inefficient. Common Lisp implementations have compilers, 
so this is no longer a problem. While Lisp is (primarily) no longer an interpreted 
language, it is still an interactive language, so it retains its flexibility. 

Lisp has often been used to write interpreters for embedded languages, thereby 
compounding the problem. Consider this quote from Cooper and Wogrin's 
(1988) book on the rule-based programming language OPS5: 

The  efficiency of implementations that compile rules into executable code 
compares favorably to that of programs written i n  most  sequential lan- 
guages such as FORTRAN or Pascal. Implementations that  compile rules 
into data structures to be interpreted, as do m a n y  Lisp-based ones, could be 
noticeably slower. 

Here Lisp is guilty by association. The fallacious chain of reasoning is: Lisp has 
been used to write interpreters; interpreters are slow; therefore Lisp is slow. 
While it is true that Lisp makes it very easy to write interpreters, it also makes 
it easy to write compilers. This book is the first that concentrates on using Lisp 
as both the implementation and target language for compilers. 

Lisp encourages a style with lots of function calls, particularly recursive calls. 
In some older systems, function calls were expensive. But it is now understood 
that a function call can be compiled into a simple branch instruction, and that 



many recursive calls can be made no more expensive than an equivalent itera- 
tive loop (see chapter 22). It is also possible to instruct a Common Lisp compiler 
to compile certain functions inline, so there is no calling overhead at all. 

On the other hand, many Lisp systems require two fetches instead of one to find 
the code for a function, and thus will be slower. This extra level of indirection 
is the price paid for the freedom of being able to redefine functions without 
reloading the whole program. 

a Run-time type-checking is slow. Lisp provides a repertoire of generic functions. 
For example, we can write (+ x y 1 without bothering to declare if x and y are in- 
tegers, floating point, bignums, complex numbers, rationals, or some combina- 
tion of the above, This is very convenient, but it means that type checks must be 
made at run time, so the generic +will be slower than, say, a 16-bit integer addi- 
tion with no check for overflow. If efficiency is important, Common Lisp allows 
the programmer to include declarations that can eliminate run-time checks. 

In fact, once the proper declarations are added, Lisp can be as fast or faster 
than conventional languages. Fateman (1973) compared the FORTRAN cube 
root routine on the PDP-10 to a MacLisp transliteration. The MacLisp version 
produced almost identical numerical code, but was 18 % faster overall, due to 
a superior function-calling sequence.' The epigraph at the beginning of this 
chapter is from this article. 

Berlin and Weise (1990) show that with a special compilation technique called 
partial evaluation, speeds 7 to 90 times faster than conventionally compiled code 
can be achieved. Of course, partial evaluation could be used in any language, 
but it is very easy to do in Lisp. 

The fact remains that Lisp objects must somehow represent their type, and 
even with declarations, not all of this overhead can be eliminated. Most Lisp 
implementations optimize access to lists and fixnums but pay the price for the 
other, less commonly used data types. 

a Lisp automatically manages storage, and so it must periodically stop and collect 
the unused storage, or garbage. In early systems, this was done by periodically 
sweeping through all of memory, resulting in an appreciable pause. Modern 
systems tend to use incremental garbage-collection techniques, so pauses are 
shorter and usually unnoticed by the user (although the pauses may still be too 
long for real-time applications such as controlling a laboratory instrument). 
The problem with automatic garbage collection these days is not that it is 
slow-in fact, the automatic systems do about as well as handcrafted storage 

'one could say that the FORTRAN compiler was "broken." This underscores the problem 
of defining the efficiency of a language-do we judge by the most popular compiler, by the best 
compiler available, or by the best compiler imaginable? 



allocation. The problem is that they make it convenient for the programmer 
to generate a lot of garbage in the first place. Programmers in conventional 
languages, who have to clean up their own garbage, tend to be more careful 
and use static rather than dynamic storage more often. If garbage becomes a 
problem, the Lisp programmer can just adopt these static techniques. 

Lisp systems are big and leave little room for other programs. Most Lisp sys- 
tems are designed to be complete environments, within which the programmer 
does all program development and execution. For this kind of operation, it 
makes sense to have a large language like Common Lisp with a huge set of 
tools. However, it is becoming more common to use Lisp as just one compo- 
nent in a computing environment that may include UNIX, X Windows, emacs, 
and other interacting programs. In this kind of heterogeneous environment, 
it would be useful to be able to define and run small Lisp processes that do 
not include megabytes of unused tools. Some recent compilers support this 
option, but it is not widely available yet. 

Lisp is a complicated high-level language, and it can be difficult for the pro- 
grammer to anticipate the costs of various operations. In general, the problem 
is not that an efficient encoding is impossible but that it is difficult to arrive at 
that efficient encoding. In a language like C, the experienced programmer has 
a pretty good idea how each statement will compile into assembly language 
instructions. But in Lisp, very similar statements can compile into widely dif- 
ferent assembly-level instructions, depending on subtle interactions between 
the declarations given and the capabilities of the compiler. Page 318 gives an 
example where adding a declaration speeds up a trivial function by 40 times. 
Nonexperts do not understand when such declarations are necessary and are 
frustrated by the seeming inconsistencies. With experience, the expert Lisp 
programmer eventually develops a good "efficiency model," and the need for 
such declarations becomes obvious. Recent compilers such as CMU's Python 
provide feedback that eases this learning process. 

In summary, Lisp makes it possible to write programs in a wide variety of styles, 
some efficient, some less so. The programmer who writes Lisp programs in the 
same style as C programs will probably find Lisp to be of comparable speed, perhaps 
slightly slower. The programmer who uses some of the more dynamic features of 
Lisp typically finds that it is much easier to develop a working program. Then, if 
the resulting program is not efficient enough, there will be more time to go back 
and improve critical sections. Deciding which parts of the program use the most 
resources is called instrumentation. It is foolhardy to try to improve the efficiency of 
a program without first checking if the improvement will make a real difference. 

One route to efficiency is to use the Lisp prototype as a specification and reimple- 
ment that specification in a lower-level language, such as C or C++. Some commercial 



A1 vendors are taking this route. An alternative is to use Lisp as the language for both 
the prototype and the final implementation. By adding declarations and making 
minor changes to the original program, it is possible to end up with a Lisp program 
that is similar in efficiency to a C program. 

There are four very general and language-independent techniques for speeding 
up an algorithm: 

Caching the results of computations for later reuse. 

Compiling so that less work is done at run time. 

Delaying the computation of partial results that may never be needed. 

Indexing a data structure for quicker retrieval. 

This chapter covers each of the four techniques in order. It then addresses the 
important problem of instrumentation. The chapter concludes with a case study of 
the s i mpl i f y  program. The techniques outlined here result in a 130-fold speed-up in 
this program. 

Chapter 10 concentrates on lower-level "tricks" for improving efficiency further. 

9.1 Caching Results of I3revious Computations: 
Memoization 

We start with a simple mathematical function to demonstrate the advantages of 
caching techniques. Later we will demonstrate more complex examples. 

The Fibonacci sequence is defined as the numbers 1,1,2,3,5,8, . . . where each 
number is the sum of the two previous numbers. The most straightforward function 
to compute the nth number in this sequence is as follows: 

(defun f i b  ( n )  
"Compute t h e  n t h  number i n  t h e  Fibonacci sequence." 
( i f  (<= n 1 )  1 

(+ ( f i b  ( -  n 1 ) )  ( f i b  ( -  n 2 ) ) ) ) )  

The problem with this function is that it computes the same thing over and over 
again. To compute ( f i b 5 1 means computing ( f i b 4 1 and ( f i b  3 1, but ( f i b 4 1 
also requires ( f i b  3 1, they both require ( f i b 2 1, and so on. There are ways to rewrite 
the function to do less computation, but wouldn't it be nice to write the function as 
is, and have it automatically avoid redundant computation? Amazingly, there is 
a way to do just that. The idea is to use the function f i b  to build a new function 
that remembers previously computed results and uses them, rather than recompute 



them. This process is called memoization. The function memo below is a higher-order 
function that takes a function as input and returns a new function that will compute 
the same results, but not do the same computation twice. 

(defun memo (fn) 
"Return a memo-function of fn." 
(let ((table (make-hash-table)) 

# '  ( 1  ambda (x) 
(mu1 tip1 e-val ue-bind (val found-p) 

(gethash x table) 
(if found-p 

val 
(setf (gethash x table) (funcall fn x))))))) 

The expression (memo # ' f i b )  will produce a function that remembers its results 
between calls, so that, for example, if we apply it to 3 twice, the first call will do the 
computation of ( f i b 3 1, but the second will just look up the result in a hash table. 
With f i b traced, it would look like this: 

> (setf memo-fib (memo #'fib)) + #<CLOSURE -67300731> 

> (funcall memo-fib 3) + 
(1 ENTER F I B :  3) 

(2 ENTER F I B :  2) 
(3 ENTER F I B :  1) 
(3 EXIT  F I B :  1) 
(3 ENTER F I B :  0)  

(3 EXIT  F I B :  1) 
(2 E X I T  F I B :  2) 
(2 ENTER F I B :  1) 

( 2  EXIT  F I B :  1) 
(1 E X I T  F I B :  3) 

3 

> (funcall memo-fib 3) + 3 

The second time we call memo - f i b with 3 as the argument, the answer is just retrieved 
rather than recomputed. But the problem is that during the computation of ( f i b 
3 ), we still compute ( f i b 2 multiple times. It would be better if even the internal, 
recursive calls were memoized, but they are calls to f i b, which is unchanged, not to 
memo - f i b. We can solve this problem easily enough with the function memoi ze: 



(de fun  memoize ( fn-name) 
"Replace fn-name's g l o b a l  d e f i n i t i o n  w i t h  a  memoized v e r s i o n .  " 
( s e t f  ( s y m b o l - f u n c t i o n  fn-name) (memo ( s y m b o l - f u n c t i o n  f n - name) ) ) )  

When passed a symbol that names a function, memoi ze changes the global definition 
of the function to a memo-function. Thus, any recursive calls will go first to the 
memo-function, rather than to the original function. This is just what we want. In 
the following, we contrast the memoized and unmemoized versions of f i b. First, a 
call to ( f i b 5 1 with f i b traced: 

> ( f i b  5)  + 
( 1  ENTER FIB: 5)  

( 2  ENTER FIB: 4 )  
( 3  ENTER FIB: 3 )  

( 4  ENTER FIB: 2 )  
( 5  ENTER FIB: 1 )  
( 5  EXIT FIB: 1 )  
( 5  ENTER FIB: 0 )  
( 5  EXIT FIB: 1 )  

( 4  EXIT FIB: 2 )  
( 4  ENTER FIB: 1 )  
( 4  EXIT FIB: 1 )  

( 3  EXIT FIB: 3 )  
( 3  ENTER FIB: 2 )  

( 4  ENTER FIB: 1 )  
( 4  EXIT FIB: 1 )  
( 4  ENTER FIB: 0 )  
( 4  EXIT FIB: 1 )  

( 3  EXIT FIB: 2 )  
( 2  EXIT FIB: 5)  
( 2  ENTER FIB: 3 )  

( 3  ENTER FIB: 2 )  
( 4  ENTER FIB: 1 )  
( 4  EXIT FIB: 1 )  
( 4  ENTER FIB: 0 )  
( 4  EXIT FIB: 1 )  

( 3  EXIT FIB: 2) 
( 3  ENTER FIB: 1 )  
(3 EXIT FIB: 1) 

( 2  EXIT FIB: 3 )  
( 1  EXIT FIB: 8 )  
8  

We see that ( f i b 5 1 and ( f i b 4 1 are each computed once, but ( f i b 3 is computed 
twice, ( f i b 2 1 three times, and ( f i b 1 five times. Belowwe call (memoi ze ' f i b ) and 
repeat the calculation. This time, each computation is done only once. Furthermore, 



when the computation of ( f i b 5 ) is repeated, the answer is returned immediately 
with no intermediate computation, and a further call to ( f i b 6 1 can make use of the 
valueof ( f i b  5 ) .  

> (memoize ' f i b )  + #<CLOSURE 76626607> 

> ( f i b  5 )  + 
(1 ENTER F I B :  5 )  

( 2  ENTER F I B :  4 )  
( 3  ENTER F I B :  3 )  

( 4  ENTER F I B :  2 )  
( 5  ENTER F I B :  1) 
( 5  E X I T  F I B :  1) 
( 5  ENTER F IB :  0)  
( 5  EXIT  F I B :  1) 

( 4  EXIT  F I B :  2 )  
( 3  EXIT  F I B :  3 )  

( 2  EXIT  F I B :  5 )  
(1 E X I T  F I B :  8 )  
8  

> ( f i b  5 )  + 8 

> ( f i b  6 )  + 
(1 ENTER F I B :  6 )  
(1 E X I T  F I B :  1 3 )  
1 3  

Understanding why this works requires a clear understanding of the distinction 
between functions and function names. The original ( de f un f i b . . . ) form does two 
things: builds a function and stores it as the symbol - funct i  on value of f i b. Within 
that function there are two references to f i b; these are compiled (or interpreted) as 
instructions to fetch the symbol - f unct i on of f i b and apply it to the argument. 

What memoi ze does is fetch the original function and transform it with memo to a 
function that, when called, will first look in the table to see if the answer is already 
known. If not, the original function is called, and a new value is placed in the table. 
The trick is that memoi ze takes this new function and makes it the symbol - f uncti on 
value of the function name. This means that all the references in the original function 
will now go to the new function, and the table will be properly checked on each 
recursive call. One further complication to memo: the function gethas h returns both 
the value found in the table and an indicator of whether the key was present or not. 
We use mu1 t i  pl e - va 1 ue - bi nd to capture both values, so that we can distinguish the 
case when ni 1 is the value of the function stored in the table from the case where 
there is no stored value. 

If you make a change to a memoized function, you need to recompile the original 
definition, and then redo the call to memoize. In developing your program, rather 



than saying (memoi ze ' f 1, it might be easier to wrap appropriate definitions in a 
memoi ze form as follows: 

(memoi ze 
(defun f ( x )  . . . I  

Or define a macro that combines d e f  un  and memoi ze: 

(defmacro defun-memo ( f n  args &body body) 
"Def ine a memoized f u n c t i o n . "  
'(memoize (defun , f n  ,args . ,body)))  

(defun-memo f ( x )  . . . I  

Both of these approaches rely on the fact that d e f  u n  returns the name of the function 
defined. 

Now we show a table giving the values of ( f i b n 1 for certain n, and the time in 
seconds to compute the value, before and after (memoi ze ' f i b 1. For larger values 
of n, approximations are shown in the table, although f i b actually returns an exact 
integer. With the unmemoized version, I stopped at n = 34, because the times were 
getting too long. For the memoized version, even n = 1000 took under a second. 

memoized up to 
0 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
50 

100 
200 
500 

1000 
0 

n ( f i b n 1 
25 121393 
26 196418 
27 317811 
28 514229 
29 832040 
30 1346269 
31 2178309 
32 3524578 
33 5702887 
34 9227465 
50 2.0e10 

100 5.7e20 
200 4.5e41 
500 2.2e104 

1000 7.0e208 
1000 7.0e208 
1000 7.0e208 

unmemoized memoized 
1.1 .010 
1.8 .001 
2.9 .001 
4.7 .001 
8.2 .001 

12.4 .001 
20.1 .001 
32.4 .001 
52.5 .001 
81.5 .001 
- .014 
- .031 
- .096 
- .270 
- .596 
- .001 
- 376 



Note there are three entries for ( f i b 1000 1. The first entry represents the incre- 
mental computation when the table contains the memoized values up to 500, the 
second entry shows the time for a table lookup when ( f i b 1000 is already com- 
puted, and the third entry is the time for a complete computation starting with an 
empty table. 

It should be noted that there are two general approaches to discussing the effi- 
ciency of an algorithm. One is to time the algorithm on representative inputs, as we 
did in this table. The other is to analyze the asymptotic complexity of the algorithm. For 
the f i b problem, an asymptotic analysis considers how long it takes to compute ( f i b 
n 1 as n approaches infinity. The notation O( f (n)) is used to describe the complexity. 
For example, the memoized version f i b is an O(n) algorithm because the computa- 
tion time is bounded by some constant times n, for any value of n. The unmemoized 
version, it turns out, is 0 (1.7"), meaning computing f i b of n + l  can take up to 1.7 times 
as long as f i b of n. In simpler terms, the memoized version has linear complexity, 
while the unmemoized version has exponential complexity. Exercise 9.4 (page 308) 
describes where the 1.7 comes from, and gives a tighter bound on the complexity. 

The version of memo presented above is inflexible in several ways. First, it only 
works for functions of one argument. Second, it only returns a stored value for 
arguments that are eql, because that is how hash tables work by default. For some 
applications we want to retrieve the storedvalue for arguments that are equa 1 . Third, 
there is no way to delete entries from the hash table. In many applications there are 
times when it would be good to clear the hash table, either because it has grown too 
large or because we have finished a set of related problems and are moving on to a 
new problem. 

The versions of memo and memoi ze below handle these three problems. They are 
compatible with the previous version but add three new keywords for the extensions. 
The name keyword stores the hash table on the property list of that name, so it can 
be accessed by cl ear-memoi ze. The tes t  keyword tells what kind of hash table to 
create: eq, eql, or equal. Finally, the key keyword tells which arguments of the 
function to index under. The default is the first argument (to be compatible with the 
previous version), but any combination of the arguments can be used. If you want 
to use all the arguments, specify i dent i ty as the key. Note that if the key is a list of 
arguments, then you will have to use equal hash tables. 

(defun memo (fn name key test) 
"Return a memo-function of fn." 
(let ((table (make-hash-table :test test) 1) 

(setf (get name 'memo) table) 
# '  (1  ambda (&rest args 

(let ((k (funcall key args))) 
(multiple-value-bind (val found-p) 

(gethash k table) 
(if found-p val 



( se t f  (gethash k table)  (apply fn a r g s ) ) ) ) ) ) ) )  

(defun memoize (fn-name &key (key # ' f i r s t )  ( t e s t  # ' e q l ) )  
"Replace fn-name's global definit ion with a memoized version." 
( s e t f  (symbol-function fn-name) 

(memo (symbol-function fn-name) fn-name key t e s t ) ) )  

(defun clear-memoize (fn-name) 
"Clear the hash table  from a memo function." 
( l e t  ( ( t a b l e  (get  fn-name 'memo))) 

(when table (cl rhash t a b l e ) )  1) 

9.2 Compiling One Language into Another 

In chapter 2 we defined a new language-the language of grammar rules-which was 
processed by an interpreter designed especially for that language. An interpreter is 
a program that looks at some data structure representing a "program" or sequence 
of rules of some sort and interprets or evaluates those rules. This is in contrast to a 
compiler, which translates some set of rules in one language into a program in another 
language. 

The function generate was an interpreter for the "language" defined by the set of 
grammar rules. Interpreting these rules is straightforward, but the process is some- 
what inefficient, in that generate must continually search through the "grammar* to 
find the appropriate rule, then count the length of the right-hand side, and so on. 

A compiler for this rule-language would take each rule and translate it into a func- 
tion. These functions could then call each other with no need to search through the 
*grammar*. We implement this approach with the function compi 1 e -  rul e. It makes 
use of the auxiliary functions one - of and rul e - 1 hs and rul e - rhs from page 40, 
repeated here: 

(defun rule-lhs ( ru le )  
"The left-hand side of a ru le . "  
( f i r s t  r u l e ) )  

(defun rule-rhs (rul  e l  
"The right-hand side of a ru le . "  
( r e s t  ( r e s t  r u l e ) ) )  

(defun one-of ( s e t )  
"Pick one element of s e t ,  and make a 1 i s t  of i t .  " 
( l i s t  (random-elt s e t ) ) )  



(defun random-elt (choices) 
"Choose an element from a l i s t  a t  random." 
(el  t choices ( random (1 ength choices 1) 1) 

The function compi 1 e-  r u l  e turns a rule into a function definition by building up 
Lisp code that implements all the actions that generate would take in interpreting 
the rule. There are three cases. If every element of the right-hand side is an atom, 
then the rule is a lexical rule, which compiles into a call to one - o f  to pick a word at 
random. If there is only one element of the right-hand side, then b u i  1 d - code is called 
to generate code for it. Usually, this will be a call to append to build up a list. Finally, 
if there are several elements in the right-hand side, they are each turned into code 
by b u i  1 d - code; are given a number by bu i  1 d - cases; and then a case statement is 
constructed to choose one of the cases. 

(defun compile-rule ( ru le )  
"Translate a grammar rule in to  a LISP function definit ion." 
( l e t  ( ( r h s  ( ru le-rhs  rule) 1) 

'(defun . (rule-1 hs rule) ( )  

,(cond ((every #'atom rhs) '(one-of ' , r h s ) )  
(( length=l rhs) (build-code ( f i r s t  r h s ) ) )  
( t  ' (case (random ,(length rhs ) )  

.@(build-cases 0 r h s ) ) ) ) ) ) )  

(defun build-cases (number choices) 
"Return a l i s t  of case-clauses" 
(when choices 

(cons ( l i s t  number (build-code ( f i r s t  choices)) )  
(build-cases (+ number 1) ( r e s t  cho ices ) ) ) ) )  

(defun build-code (choice) 
"Append together mu1 t i  pl e constituents" 
(cond ( (nul l  choice) n i l )  

((atom choice) ( l i s t  choice)) 
( (1  ength=l choice) choice) 
( t  '(append ,@(mapcar #'build-code c h o i c e ) ) ) ) )  

(defun length=l (x )  
" I s  X a  l i s t  of length I ?"  
(and (consp x)  (null ( r e s t  x ) ) ) )  

The Lisp code built by compi 1 e-  r u l  e must be compiled or interpreted to make it 
available to the Lisp system. We can do that with one of the following forms. 
Normally we would want to call compi 1 e, but during debugging it may be easier 
not to. 



(do1 i s t  ( r u l e  *grammar*) (eval (compi le- ru le r u l e )  1) 
( d o l i s t  ( r u l e  *grammar*) (compile (eval (compi le- ru le r u l e ) )  1) 

One frequent way to use compilation is to define a macro that expands into the code 
generated by the compiler. That way, we just type in calls to the macro and don't 
have to worry about making sure all the latest rules have been compiled. We might 
implement this as follows: 

(defmacro de f ru l  e  (&res t  r u l  e l  

"Define a  grammar r u l e "  

(compi le- ru le r u l e ) )  

( de f ru l e  Sentence -> (NP VP)) 

( de f ru l e  NP -> ( A r t  Noun)) 

( de f ru l e  VP -> (Verb NP)) 

( de f ru l  e  A r t  -> the a) 

( de f ru l e  Noun -> man b a l l  woman tab le )  

( de f ru l e  Verb -> h i t  took saw 1  i ked) 

Actually, the choice of using one big list of rules (like *g r amma r*) versus using individ- 
ual macros to define rules is independent of the choice of compiler versus interpreter. 
We could just as easilydefine def rul e simply to pushthe rule onto *grammar*. Macros 
like def rul e are useful when you want to define rules in different places, perhaps in 
several separate files. The defparameter method is appropriate when all the rules 
can be defined in one place. 

We can see the Lisp code generated by compi 1 e- rul e in two ways: by passing it 
a rule directly: 

> (compi le- ru le '(Sentence -> (NP VP))) 

(DEFUN SENTENCE 0 

(APPEND (NP) (VP))) 

> (compi le- ru le '(Noun -> man b a l l  woman t a b l e ) )  

(DEFUN NOUN 0 

(ONE-OF '(MAN BALL WOMAN TABLE))) 

or by macroexpanding a def rul e expression. The compiler was designed to produce 
the same code we were writing in our first approach to the generation problem (see 
page 35). 



> (macroexpand ' ( d e f r u l e  Adj* -> 0 Adj (Ad j  A d j * ) ) )  
(DEFUN ADJ* 0 

(CASE (RANDOM 3)  
( 0  NIL) 
( 1  (ADJ)) 
( 2  (APPEND (ADJ) (ADJ*) ) ) ) )  

Interpreters are usually easier to write than compilers, although in this case, even 
the compiler was not too difficult. Interpreters are also inherently more flexible than 
compilers, because they put off making decisions until the last possible moment. 
For example, our compiler considers the right-hand side of a rule to be a list of words 
only if every element is an atom. In all other cases, the elements are treated as 
nonterminals. This could cause problems if we extended the definition of Noun to 
include the compound noun "chow chow": 

( d e f r u l e  Noun -> man b a l l  woman t a b l e  (chow chow)) 

The rule would expand into the following code: 

(DEFUN NOUN 0 
(CASE (RANDOM 5 )  

( 0  (MAN)) 
( 1  (BALL)) 
( 2  (WOMAN)) 
( 3  (TABLE)) 
( 4  (APPEND (CHOW) (CHOW))))) 

The problem is that man and ba 1 1 and all the others are suddenly treated as functions, 
not as literal words. So we would get a run-time error notifying us of undefined 
functions. The equivalent rule would cause no trouble for the interpreter, which waits 
until it actually needs to generate a symbol to decide if it is a word or a nonterminal. 
Thus, the semantics of rules are different for the interpreter and the compiler, and 
we as program implementors have to be very careful about how we specify the actual 
meaning of a rule. In fact, this was probably a bug in the interpreter version, since 
it effectively prohibits words like "noun" and "sentence" from occurring as words if 
they are also the names of categories. One possible resolution of the conflict is to 
say that an element of a right-hand side represents a word if it is an atom, and a list 
of categories if it is a list. If we did indeed settle on that convention, then we could 
modify both the interpreter and the compiler to complywith the convention. Another 
possibility would be to represent words as strings, and categories as symbols. 

The flip side of losing run-time flexibility is gaining compile-time diagnostics. For 
example, it turns out that on the Common Lisp system I am currently using, I get 
some useful error messages when I try to compile the buggy version of Noun: 



> ( d e f r u l e  Noun -> man b a l l  woman t a b l e  (chow chow)) 
The f o l l o w i n g  func t ions  were re ferenced b u t  don ' t  seem def ined:  

CHOW referenced by NOUN 
TABLE referenced by NOUN 
WOMAN referenced by NOUN 
BALL referenced by NOUN 
MAN referenced by NOUN 

NOUN 

Another problemwith the compilation scheme outlined here is the possibility of name 
clashes. Under the interpretation scheme, the only names used were the function 
generate and the variable *grammar*. With compilation, every left-hand side of a 
rule becomes the name of a function. The grammar writer has to make sure he or 
she is not using the name of an existing Lisp function, and hence redefining it. Even 
worse, if more than one grammar is being developed at the same time, they cannot 
have any functions in common. If they do, the user will have to recompile with 
every switch from one grammar to another. This may make it difficult to compare 
grammars. The best away around this problem is to use the Common Lisp idea of 
packages, but for small exercises name clashes can be avoided easily enough, so we 
will not explore packages until section 24.1. 

The major advantage of a compiler is speed of execution, when that makes a 
difference. For identical grammars running in one particular implementation of 
Common Lisp on one machine, our interpreter generates about 75 sentences per 
second, while the compiled approach turns out about 200. Thus, it is more than twice 
as fast, but the difference is negligible unless we need to generate many thousands of 
sentences. In section 9.6 we will see another compiler with an even greater speed-up. 

The need to optimize the code produced by your macros and compilers ultimately 
depends on the quality of the underlying Lisp compiler. For example, consider the 
following code: 

> (defun f l  ( n  1 )  
( l e t  ( ( 1 1  ( f i r s t  1 ) )  

(12 (second 1 ) ) )  
(exp t  (* 1 (+ n 0 ) )  

( -  4 ( l e n g t h  ( l i s t  1 1  1 2 ) ) ) ) ) )  
F 1 

> (defun f 2  ( n  1 )  (* n n ) )  + F2 

> (disassemble ' f l )  
6 PUSH ARGlO ; N  
7 MOVEM PDL- PUSH 
8 * PDL-POP 
9 RETURN PDL-POP 

F1 



> (disassemble ' f 2 )  
6 PUSH ARGO ; N 
7 MOVEM PDL- PUSH 
8 * PDL- POP 
9 RETURN PDL-  POP 

This particular Lisp compiler generates the exact same code for f 1 and f2. Both 
functions square the argument n, and the four machine instructions say, "Take the 
0th argument, make a copy of it, multiply those two numbers, and return the result." 
It's clear the compiler has some knowledge of the basic Lisp functions. In the case 
of f l ,  it was smart enough to get rid of the local variables 11 and 1 2  (and their 
initialization), as well as the calls to f i rst, second, 1 ength, and 1 i s t  and most of the 
arithmetic. The compiler could do this because it has knowledge about the functions 
1 ength and 1 i s t  and the arithmetic functions. Some of this knowledge might be in 
the form of simplification rules. 

As a user of this compiler, there's no need for me to write clever macros or 
compilers that generate streamlined code as seen in f 2; I can blindly generate code 
with possible inefficiencies like those in f l ,  and assume that the Lisp compiler 
will cover up for my laziness. With another compiler that didn't know about such 
optimizations, I would have to be more careful about the code I generate. 

9.3 DelayingComputation 

Back on page 45, we saw a program to generate all strings derivable from a grammar. 
One drawback of this program was that some grammars produce an infinite number 
of strings, so the program would not terminate on those grammars. 

It turns out that we often want to deal with infinite sets. Of course, we can't 
enumerate all the elements of an infinite set, but we should be able to represent the 
set and pick elements out one at a time. In other words, we want to be able to specify 
how a set (or other object) is constructed, but delay the actual construction, perhaps 
doing it incrementally over time. This sounds like a job for closures: we can specify 
the set constructor as a function, and then call the function some time later. We will 
implement this approach with the syntax used in Scheme-the macro del ay builds a 
closure to be computed later, and the function force calls that function and caches 
away the value. We use structures of type del ay to implement this. A delay structure 
has two fields: the value and the function. Initially, the value field is undefined, and 
the function field holds the closure that will compute the value. The first time the 
delay is forced, the function is called, and its result is stored in the value field. The 
function field is then set to nil to indicate that there is no need to call the function 
again. The function force checks if the function needs to be called, and returns the 



value. If force is passed an argument that is not a delay, it just returns the argument. 

( d e f s t r u c t  de lay (va lue  n i l  ( f u n c t i o n  n i l  1 )  

(defmacro de lay ( & r e s t  body) 
"A computation t h a t  can be executed l a t e r  by FORCE." 
'(make-delay : f u n c t i o n  #'(lambda 0 . ,body)) )  

(defun f o r c e  ( x )  
"F ind  t h e  va lue o f  x,  by computing i f  i t  i s  a  de lay . "  
( i f  ( n o t  (de lay -p  x ) )  

X 

(progn 
(when ( d e l a y - f u n c t i o n  x )  

( s e t f  (de l  ay-va l  ue x )  
( f u n c a l l  ( d e l a y - f u n c t i o n  X I ) )  

( s e t f  ( d e l a y - f u n c t i o n  x )  n i l  1 )  
(de l  ay-va l  ue x )  1) 1 

Here's an example of the use of del ay. The list x is constructed using a combination 
of normal evaluation and delayed evaluation. Thus, the 1 is printed when x is created, 
but the 2 is not: 

> ( s e t f  x  ( l i s t  ( p r i n t  1 )  (de lay ( p r i n t  2 ) ) ) )  + 
1 
( 1  #S(DELAY :FUNCTION (LAMBDA 0 (PRINT 2 ) ) ) )  

The second element is evaluated (and printed) when it is forced. But then forcing it 
again just retrieves the cached value, rather than calling the function again: 

> ( f o r c e  (second x ) )  3 
2 
2  

> ( f o r c e  (second X I )  + 2 

Now let's see how delays can be used to build infinite sets. An infinite set will be 
considered a special case of what we will call a pipe: a list with a f i rs t component 
that has been computed, and a res t  component that is either a normal list or a 
delayed value. Pipes have also been called delayed lists, generated lists, and (most 
commonly) streams. We will use the term pipe because stream already has a meaning 
in Common Lisp. The book Artificial Intelligence Programming (Charniak et al. 1987) 



also calls these structures pipes, reserving streams for delayed structures that do not 
cache computed results. 

To distinguish pipes from lists, we will use the accessors head and t a i 1 instead 
of f i r s t  and r e s t .  We will also use empty-pi  pe instead of n i  1, ma k e - p i  pe instead 
of cons, and p i  pe - e l  t instead of e l  t. Note that ma ke - p i  pe is a macro that delays 
evaluation of the tail. 

(defmacro make-pipe (head t a i l )  
"Create a p ipe  by eva lua t ing  head and de lay ing  t a i l . "  
' (cons ,head (de lay , t a i l ) ) )  

(defconstant  empty-pipe n i l )  

(defun head (p ipe )  ( f i r s t  p i p e ) )  
(defun t a i l  (p ipe )  ( f o r c e  ( r e s t  p i p e ) ) )  

(defun p i p e - e l t  (p ipe  i )  
"The i - t h  element o f  a p ipe,  0-based" 
( i f  (= i 0)  

(head p ipe )  
( p i p e - e l t  ( t a i l  p ipe )  ( -  i 1 ) ) ) )  

Here's a function that can be used to make a large or infinite sequence of integers 
with delayed evaluation: 

(defun in tegers  (&op t iona l  ( s t a r t  0)  end) 
"A p ipe  o f  i n t e g e r s  from START t o  END. 
I f  END i s  n i l ,  t h i s  i s  an i n f i n i t e  p ipe . "  
( i f  ( o r  ( n u l l  end) (<= s t a r t  end)) 

(make-pipe s t a r t  ( i n t e g e r s  (+ s t a r t  1 )  end)) 
n i l  1) 

And here is an example of its use. The pipe c represents the numbers from 0 to in- 
finity. When it is created, only the zeroth element, 0, is evaluated. The computation 
of the other elements is delayed. 

> ( s e t f  c ( i n t e g e r s  0 ) )  =+ ( 0  . #S(DELAY :FUNCTION #<CLOSURE -77435477>)) 

> ( p i p e - e l t  c 0)  * 0 

Calling p i  pe - e l  t to look at the third element causes the first through third elements 
to be evaluated. The numbers 0 to 3 are cached in the correct positions, and further 
elements remain unevaluated. Another call to p i  pe - e l  t with a larger index would 
force them by evaluating the delayed function. 



> ( p i p e - e l t  c 3)  + 3 

> c *  

( 0  . #S(DELAY 

: VALUE 

(1 . #S(DELAY 

: VALUE 

( 2  . #S(DELAY 

: VALUE 

( 3  . #S(DELAY 

: FUNCTION 

#<CLOSURE -77432724>)) ) ) ) ) ) )  

While this seems to work fine, there is a heavy price to pay. Every delayed value must 
be stored in a two-element structure, where one of the elements is a closure. Thus, 
there is some storage wasted. There is also some time wasted, as t a i  1 or p i  pe - e l  t 
must traverse the structures. 

An alternate representation for pipes is as ( value. closure pairs, where the closure 
values are stored into the actual cons cells as they are computed. Previously we 
needed structures of type del  ay to distinguish a delayed from a nondelayed object, 
but in a pipe we know the rest can be only one of three things: nil, a list, or a delayed 
value. Thus, we can use the closures directly instead of using de l  ay structures, if we 
have some way of distinguishingclosures fromlists. Compiled closures are atoms, so 
they can always be distinguishedfromlists. But sometimes closures are implemented 
as lists beginning with 1 ambda or some other implementation-dependent symbol.2 
The built-in function f unc t  i onp is defined to be true of such lists, as well as of all 
symbols and all objects returned by compi 1 e. But using f u n c t i  onp means that we 
can not have a pipe that includes the symbol 1 ambda as an element, because it will be 
confused for a closure: 

> ( f u n c t i o n p  ( l a s t  ' ( t h e t a  i o t a  kappa lambda))) =+ T 

If we consistently use compiled functions, then we could eliminate the problem by 
testing with the built-in predicate compi 1 ed - f unct  i on - p. The following definitions 
do not make this assumption: 

(defmacro make-pipe (head t a i l )  

"Create a p ipe  by eval u a t i n g  head and de lay ing  t a i  1 . " 
' (cons .head #'(lambda 0 , t a i l ) ) )  

' I~KCL, the symbol 1 ambda - c l  osure is used, and in Allegro, it is exc l  : .1 e x i  ca l  - c l  osure. 



(defun t a i l  ( p i p e )  
"Return t a i l  o f  p ipe  o r  l i s t ,  and d e s t r u c t i v e l y  update 
t h e  t a i l  i f  i t  i s  a  f u n c t i o n . "  
( i f  ( f u n c t i o n p  ( r e s t  p i p e ) )  

( s e t f  ( r e s t  p ipe )  ( f u n c a l l  ( r e s t  p i p e ) ) )  
( r e s t  p i p e ) )  

Everything else remains the same. If we recompile i ntegers (because it uses the 
macro make - pi pe), we see the following behavior. First, creation of the infinite pipe 
c is similar: 

> ( s e t f  c  ( i n t e g e r s  0 ) )  + ( 0  . #<CLOSURE 77350123>) 

> ( p i p e - e l t  c  0 )  + 0  

Accessing an element of the pipe forces evaluation of all the intervening elements, 
and as before leaves subsequent elements unevaluated: 

> ( p i p e - e l t  c  5) + 5  

> c  + ( 0  1 2  3  4  5  . #<CLOSURE 77351636>) 

Pipes can also be used for finite lists. Here we see a pipe of length 11: 

> ( s e t f  i ( i n t e g e r s  0  1 0 ) )  + ( 0  . #<CLOSURE 77375357>) 

> ( p i p e - e l t  i 10) + 10 

> ( p i p e - e l t  i 11) + NIL 

> i  + ( 0 1 2 3 4 5 6 7 8 9 1 0 )  

Clearly, this version wastes less space and is much neater about cleaning up after 
itself. In fact, a completely evaluated pipe turns itself into a list! This efficiency was 
gained at the sacrifice of a general principle of program design. Usually we strive 
to build more complicated abstractions, like pipes, out of simpler ones, like delays. 
But in this case, part of the functionality that delays were providing was duplicated 
by the cons cells that make up pipes, so the more efficient implementation of pipes 
does not use delays at all. 

Here are some more utility functions on pipes: 

(defun enumerate (p ipe  &key count key ( r e s u l t  p ipe )  
"Go through a l l  ( o r  count) elements o f  p ipe,  
p o s s i b l y  app ly ing  t h e  KEY f u n c t i o n .  (T ry  PRINT. " 
; ; Returns RESULT, which d e f a u l t s  t o  t h e  p ipe  i t s e l f .  
( i f  ( o r  (eq p i p e  empty-pipe) (eq l  count 0 ) )  



r e s u l t  
(progn 

(un less ( n u l l  key) ( f u n c a l l  key (head p i p e ) ) )  
(enumerate ( t a i l  p ipe )  :count ( i f  count ( -  count 1 ) )  

:key key : r e s u l t  r e s u l t )  ) )  

(defun f i l t e r  (pred p ipe )  
"Keep on ly  i tems i n  p ipe  s a t i s f y i n g  pred. "  
( i f  ( f u n c a l l  pred (head p i p e ) )  

(make-pi pe (head p i  p e l  
( f i l t e r  pred ( t a i l  p i p e ) ) )  

( f i l t e r  pred ( t a i l  p i p e ) ) ) )  

And here's an application of pipes: generating prime numbers using the sieve of 
Eratosthenes algorithm: 

(defun s ieve  ( p i p e )  
(make-pipe (head p ipe )  

( f i l t e r  #'(lambda ( x )  ( /=  (mod x (headp ipe ) )  0 ) )  
( s i e v e  ( t a i l  p i p e ) ) ) ) )  

(de fva r  "primes* ( s i e v e  ( i n t e g e r s  2 ) ) )  

> (enumerate *primes* :count 10) + 
( 2  3 5 7 11 13 17 19 23 29 31 . #<CLOSURE 5224472>) 

Finally, let's return to the problem of generating all strings in a grammar. First we're 
going to need some more utility functions: 

(defun map-pipe ( f n  p ipe )  
"Map f n  over p ipe,  de lay ing  a l l  b u t  t h e  f i r s t  f n  c a l l . "  
( i f  (eq p ipe  empty-pipe) 

empty-pi  pe 
(make-pipe ( f u n c a l l  f n  (head p i p e ) )  

(map-pipe fn  ( t a i l  p i p e ) ) ) ) )  

(defun append-pipes ( x  y )  
"Return a p ipe  t h a t  appends t h e  elements o f  x and y . "  
( i f  (eq x empty-pipe) 

Y 
(make-pipe (head x )  

(append-pipes ( t a i l  x )  y ) ) ) )  



(defun mappend-pipe (fn pipe) 
"Lazily map fn over pipe, appending resul ts .  " 
( i f  (eq pipe empty-pipe) 

empty-pi pe 
( l e t  ( ( x  (funcall fn (head p i p e ) ) ) )  

(make-pipe (head x) 
(append-pipes ( t a i l  x)  

(mappend - pi pe 
fn ( t a i l  p i p e ) ) ) ) ) ) )  

Now we can rewrite genera te -  a1 1 and combi ne- a1 1 to use pipes instead of lists. 
Everything else is the same as on page 45. 

(defun generate-all (phrase) 
"Generate a random sentence or phrase" 
( i f  ( l i s t p  phrase) 

( i f  (null phrase) 
( l i s t  n i l )  
(combine-all -pipes 

(generate-all ( f i r s t  phrase)) 
(generate-all ( r e s t  ph rase ) ) ) )  

( l e t  ((choices ( ru le -rhs  (assoc phrase *grammar*)))) 
( i f  choices 

(mappend-pipe #'generate-all choices) 
( l i s t  ( l i s t  p h r a s e ) ) ) ) ) )  

(defun combi ne-a1 1 -pipes (xpi pe ypi pel 
"Return a pipe of pipes formed by appending a y t o  an x" 
;; In other words, form the cartesian product. 
(mappend-pi pe 

#'(lambda (y )  
(map-pipe #'(lambda (x )  (append-pipes x y ) )  

xpipe) 1 

ypipe) 

With these definitions, here's the pipe of all sentences from *grammar2* (from 
page 43): 

> ( se t f  s s  (generate-all  'sentence)) +- 
( (THE . #<CLOSURE 27265720>) . #<CLOSURE 27266035>) 



> (enumerate ss :count 5 )  + 
((THE . #<CLOSURE 27265720>) 

(A . #<CLOSURE 27273143>) 

(THE . #<CLOSURE 27402545>) 

(A . #<CLOSURE 27404344>) 

(THE . #<CLOSURE 27404527>) 

(A . #<CLOSURE 27405473>) . #<CLOSURE 27405600>) 

> (enumerate ss :count 5 :key #'enumerate) + 
((THE MAN HIT THE MAN) 

(A MAN HIT THE MAN) 

(THE BIG MAN HIT THE MAN) 

(A BIG MAN HIT THE MAN) 

(THE LITTLE MAN HIT THE MAN) 

(THE . #<CLOSURE 27423236>) . #<CLOSURE 27423343>) 

> (enumerate ( p i p e - e l t  ss 200)) +- 
(THE ADIABATIC GREEN BLUE MAN HIT THE MAN) 

While we were able to represent the infinite set of sentences and enumerate instances 
of it, we still haven't solved all the problems. For one, this enumeration will never 
get to a sentence that does not have "hit the man" as the verb phrase. We will see 
longer and longer lists of adjectives, but no other change. Another problem is that 
left-recursive rules will still cause infinite loops. For example, if the expansion for 
Adj* had been (Ad j*  -> (Ad j*  Ad j )  0) instead of (Adj*  -> 0 (Adj  Adj*)) ,  
then the enumeration would never terminate, because pipes need to generate a first 
element. 

We have used delays and pipes for two main purposes: to put off until later 
computations that may not be needed at all, and to have an explicit representation of 
large or infinite sets. It should be mentioned that the language Prolog has a different 
solution to the first problem (but not the second). As we shall see in chapter 11, Prolog 
generates solutions one at a time, automatically keeping track of possible backtrack 
points. Where pipes allow us to represent an infinite number of alternatives in the 
data, Prolog allows us to represent those alternatives in the program itself. 

p Exercise 9.1 [h] When given a function f and a pipe p, rnappend-pi pe returns a 
new pipe that will eventually enumerate all of ( f ( f i r s  t p ) 1, then all of ( f ( second 
p 1 1, and so on. This is deemed "unfair" if ( f ( f i r s  t p ) 1 has an infinite number of 
elements. Define a function that will fairly interleave elements, so that all of them are 
eventually enumerated. Show that the function works by changing generate - a1 1  to 
work with it. 



9.4 Indexing Data 

Lisp makes it very easy to use lists as the universal data structure. A list can represent 
a set or an ordered sequence, and a list with sublists can represent a tree or graph. 
For rapid prototyping, it is often easiest to represent data in lists, but for efficiency 
this is not always the best idea. To find an element in a list of length n will take n / 2  
steps on average. This is true for a simple list, an association list, or a property list. 
If n can be large, it is worth looking at other data structures, such as hash tables, 
vectors, property lists, and trees. 

Picking the right data structure and algorithm is as important in Lisp as it is in 
any other programming language. Even though Lisp offers a wide variety of data 
structures, it is often worthwhile to spend some effort on building just the right data 
structure for frequently used data. For example, Lisp's hash tables are very general 
and thus can be inefficient. You may want to build your own hash tables if, for 
example, you never need to delete elements, thus making open hashing an attractive 
possibility. We will see an example of efficient indexing in section 9.6 (page 297). 

9.5 Instrumentation: Deciding What 
to Optimize 

Because Lisp is such a good rapid-prototyping language, we can expect to get a 
working implementation quickly. Before we go about trying to improve the efficiency 
of the implementation, it is a good idea to see what parts are used most often. 
Improving little-used features is a waste of time. 

The minimal support we need is to count the number of calls to selected functions, 
and then print out the totals. This is called profiling the f~nc t ions .~  For each function 
to be profiled, we change the definition so that it increments a counter and then calls 
the original function. 

Most Lisp systems have some built-in profiling mechanism. If your system has 
one, by all means use it. The code in this section is provided for those who lack such 
a feature, and as an example of how functions can be manipulated. The following is 
a simple profiling facility. For each profiled function, it keeps a count of the number 
of times it is called under the prof i 1 e -  count property of the function's name. 

3 ~ h e  terms metering and monitoring are sometimes used instead of profiling. 



(defun profilel (fn-name) 
"Make the function count how often it is called" 
; ; First save away the old, unprofiled function 
;; Then make the name be a new function that increments 
;; a counter and then calls the original function 
(let ((fn (symbol-function fn-name))) 
(setf (get fn-name 'unprofiled-fn) fn) 
(setf (get fn-name 'profile-count) 0 )  
(setf (symbol-function fn-name) 

(profiled-fn fn-name fn) 
fn-name) 

(defun unprofilel (fn-name) 
"Make the function stop counting how often it is called." 
(setf (symbol-function fn-name) (get fn-name 'unprofiled-fn)) 
fn-name) 

(defun profiled-fn (fn-name fn) 
"Return a function that increments the count." 
#'(lambda (&rest args) 

(incf (get fn-name 'profile-count)) 
(apply fn args))) 

(defun profile-count (fn-name) (get fn-name 'profile-count)) 

(defun profile-report (fn-names &optional (key #'profile-count)) 
"Report profiling statistics on given functions." 
(loop for name in (sort fn-names #'> :key key) do 

(format t ""&"7D "A" (profile-count name) name))) 

That's all we need for the bare-bones functionality. However, there are a few ways 
we could improve this. First, it would be nice to have macros that, like trace and 
untrace, allow the user to profile multiple functions at once and keep track of what 
has been profiled. Second, it can be helpful to see the length of time spent in each 
function, as well as the number of calls. 

Also, it is important to avoid profiling a function twice, since that would double 
the number of calls reported without alerting the user of any trouble. Suppose we 
entered the following sequence of commands: 

(defun f ( x )  (g x ) )  
(profilel 'f) 
(profilel 'f) 

Then the definition of f would be roughly: 



(lambda (&rest args) 
(incf (get 'f 'profile-count)) 
(apply #'(lambda (&rest args) 

(incf (get 'f 'profile-count)) 
(apply #'(lambda ( x )  (g x ) )  

args 1)  
args) 

The result is that any call to f will eventually call the original f ,  but only after 
incrementing the count twice. 

Another consideration is what happens when a profiled function is redefined by 
the user. The only way we could ensure that a redefined function would continue 
profiling would be to change the definition of the macro def u n  to look for functions 
that should be profiled. Changing system functions like def u n  is a risky prospect, 
and in Common Lisp the Language, 2d edition, it is explicitly disallowed. Instead, 
we'll do the next best thing: ensure that the next call to prof i 1 e will reprofile any 
functions that have been redefined. We do this by keeping track of both the original 
unprofiled function and the profiled function. We also keep a list of all functions 
that are currently profiled. 

In addition, we will count the amount of time spent in each function. However, 
the user is cautioned not to trust the timing figures too much. First, they include the 
overhead cost of the profiling facility. This can be significant, particularly because 
the facility conses, and thus can force garbage collections that would not otherwise 
have been done. Second, the resolution of the system clock may not be fine enough 
to make accurate timings. For functions that take about 1/10 of a second or more, the 
figures will be reliable, but for quick functions they may not be. 

Here is the basic code for prof i 1 e and unprof i 1 e: 

(defvar *profiled-functions* nil 
"Function names that are currently profiled") 

(defmacro profile (&rest fn-names) 
"Profile fn-names. With no args, list profiled functions." 
'(mapcar #'profile1 

(setf *profiled-functions* 
(union *profiled-functions* '.fn-names)))) 

(defmacro unprofi 1 e (&rest fn-names) 
"Stop profiling fn-names. With no args, stop all profiling." 
' ( progn 

(mapcar #'unprofi 1 el 
.(if fn-names ",fn-names '*profiled-functions*)) 

(setf *profiled-functions* 
,(if (null fn-names) 

ni 1 



'(set-difference *profiled-functions* 
',fn-names))))) 

The idiom " ,fn-names deserves comment, since it is common but can be con- 
fusing at first. It may be easier to understand when written in the equivalent form 
' ( quote , f n -names 1. As always, the backquote builds a structure with both constant 
and evaluated components. In this case, the quote is constant and the variable 
fn-names is evaluated. In MacLisp, the function kwote was defined to serve this 
purpose: 

(defun kwote (XI (list 'quote x ) )  

Now we need to change prof i 1 el and unprof i 1 el to do the additional bookkeeping: 
For prof i 1 e 1, there are two cases. If the user does a prof i 1 e 1 on the same function 
name twice in a row, then on the second time we will notice that the current function 
is the same as the functioned stored under the prof i 1 ed - f n property, so nothing 
more needs to be done. Otherwise, we create the profiled function, store it as the 
current definition of the name under the prof i 1 ed - f n property, save the unprofiled 
function, and initialize the counts. 

(defun profile1 (fn-name) 
"Make the function count how often it is called" 
;; First save away the old, unprofiled function 
;; Then make the name be a new function that increments 
;; a counter and then calls the original function 
(let ((fn (symbol-function fn-name))) 
(unless (eq fn (get fn-name 'profiled-fn)) 
(let ((new-fn (profiled-fn fn-name fn))) 
(setf (symbol-function fn-name) new-fn 

(get fn-name 'profiled-fn) new-fn 
(get fn-name 'unprofiled-fn) fn 
(get fn-name 'profile-time) 0 
(get fn-name 'profile-count) 0))) 

fn-name) 

(defun unprofilel (fn-name) 
"Make the function stop counting how often it is called." 
(setf (get fn-name 'profile-time) 0) 
(setf (get fn-name 'profile-count) 0)  
(when (eq (symbol-function fn-name) (get fn-name 'profiled-fn)) 

;; normal case: restore unprofiled version 
(setf (symbol-function fn-name) 

(get fn-name 'unprofiled-fn) 1) 
fn-name) 



Now we look into the question of timing. There is a built-in Common Lisp func- 
tion, get - i nternal - real -ti me, that returns the elapsed time since the Lisp ses- 
sion started. Because this can quickly become a bignum, some implementations 
provide another timing function that wraps around rather than increasing forever, 
but which may have a higher resolution than get - i nte rna 1 - rea 1 -ti me. For ex- 
ample, on TI Explorer Lisp Machines, get - i nte rna 1 - rea 1 -ti me measures 1160- 
second intervals, while ti me : mi crosecond -ti me measures 1/1,000,000-second in- 
tervals, but the value returned wraps around to zero every hour or so. The func- 
tion time:mi crosecond-time-di fference is used to compare two of these num- 
bers with compensation for wraparound, as long as no more than one wraparound 
has occurred. 

In the code below, I use the conditional read macro characters #+ and # - to define 
the right behavior on both Explorer and non-Explorer machines. We have seeen 
that # is a special character to the reader that takes different action depending on 
the following character. For example, # ' f n is read as ( f unct i on f n 1. The character 
sequence #+ is defined so that #+feature expression reads as expression if the feature is 
defined in the current implementation, and as nothing at all if it is not. The sequence 
# -  acts in just the opposite way. For example, on a TI Explorer, we would get the 
following: 

> '(hi #+TI t #+Symbolics s #-Explorer e #-Mac m) =+ (HI T MI 

The conditional read macro characters are used in the following definitions: 

(defun get-fast-time 0 
"Return the elapsed time. This may wrap around; 
use FAST-TIME-DIFFERENCE to compare." 
#+Explorer (time:mi crosecond-time) ; do this on an Explorer 
#-Explorer (get-internal -real -time)) ; do this on a non-Expl orer 

(defun fast-time-difference (end start) 
"Subtract two time points." 
#+Explorer (time:microsecond-time-difference end start) 
#-Explorer ( -  end start)) 

(defun fast-time->seconds (time) 
"Convert a fast-time interval into seconds." 
#+Explorer (1 time 1000000.0) 
#-Explorer (1 time internal-time-units-per-second)) 

The next step is to update prof i 1 ed - f n to keep track of the timing data. The simplest 
way to do this would be to set a variable, say start, to the time when a function is 
entered, run the function, and thenincrement the function's time by the difference be- 
tween the current time and s t  a r t. The problem with this approach is that every func- 



tion in the call stack gets credit for the time of each called function. Suppose the func- 
tion f calls itself recursively five times, with each call and return taking place a second 
apart, so that the whole computation takes nine seconds. Then f will be charged nine 
seconds for the outer call, seven seconds for the next call, and so on, for a total of 
25 seconds, even though in reality it only took nine seconds for all of them together. 

A better algorithm would be to charge each function only for the time since the 
last call or return. Then f would only be charged the nine seconds. The variable 
*prof i 1 e- call - stackkisused to holdastackof functionname/entrytimepairs. This 
stack is manipulated by prof i 1 e - enter and prof i 1 e - exi t to get the right timings. 

The functions that are used on each call to a profiled function are declared i nl i ne. 
In most cases, a call to a function compiles into machine instructions that set up the 
argument list and branch to the location of the function's definition. With an i nl i ne 
function, the body of the function is compiled in line at the place of the function 
call. Thus, there is no overhead for setting up the argument list and branching to the 
definition. An i nl i ne declaration can appear anywhere any other declaration can 
appear. In this case, the function procl aim is used to register a global declaration. 
Inline declarations are discussed in more depth on page 317. 

(proclaim '(in1 ine profile-enter profile-exit inc-profile-time) 

(defun profiled-fn (fn-name fn) 
"Return a function that increments the count, and times." 
#'(lambda (&rest args) 

(profile-enter fn-name) 
(mu1 tiple-val ue-progl 

(apply fn args) 
(profile-exit fn-name)))) 

(defvar *profile-call-stack* nil) 

(defun profile-enter (fn-name) 
(incf (get fn-name 'profile-count)) 
(unless (nu1 1 *profi le-call -stack*) 

;; Time charged against the calling function: 
(inc-profile-time (first *profile-call -stack*) 

(car (first *profile-call -stack*) 1) 
;; Put a new entry on the stack 
(push (cons fn-name (get-fast-time)) 

*profile-call -stack*) 

(defun profile-exit (fn-name) 
;; Time charged against the current function: 
(inc-profile-time (pop *profile-call -stack*) 

fn-name) 
;; Change the top entry to reflect current time 
(unless (nu1 1 *profile-call -stack*) 

(setf (cdr (first *profile-call -stack*) 
(get-fast-time)))) 



(defun inc-profile-time (entry fn-name) 
(incf (get fn-name 'profile-time) 

(fast-time-difference (get-fast-time) (cdr entry)))) 

Finally, we need to update p r o f i  1 e-  r e p o r t  to print the timing data as well as the 
counts. Note that the default f n -  names is a copy of the global list. That is because we 
pass f n -names to sor t ,  which is a destructive function. We don't want the global list 
to be modified as a result of this sort. 

(defun profile-report (&optional 
(fn-names (copy-list *profiled-functions*)) 
(key#'profile-count)) 

"Report profiling statistics on given functions. " 
(let ((total-time (reduce # '+  (mapcar #'profile-time fn-names)))) 
(unless (nu1 1 key) 

(setf fn-names (sort fn-names #'> :key key))) 
(format t ""&Total elapsed time: "d seconds." 

(fast-time->seconds total-time)) 
(format t ""& Count Secs Time% Name") 
(loop for name in fn-names do 

(format t ""&"7D "6.2F "3d% "A" 
(profi 1 e-count name) 
(fast-time->seconds (profile-time name)) 
(round ( 1  (profile-time name) total-time) . 0 l )  
name)))) 

(defun profile-time (fn-name) (get fn-name 'profile-time)) 

These functions can be used by calling pro f  i 1 e, then doing some representative com- 
putation, then calling p r o f  i 1 e - repor t ,  and finally unprof  i 1 e. It can be convenient 
to provide a single macro for doing all of these at once: 

(defmacro with-profiling (fn-names &rest body) 
' ( progn 

(unprofi 1 e . ,fn-names) 
(profile . ,fn-names) 
(setf *profile-call -stack* nil 
(unwind-protect 

(progn . .body) 
(profile-report ',fn-names) 
(unprofile . ,fn-names)))) 

Note the use of unwi nd - p r o t e c t  to produce the report and call unprof  i 1 e even if the 
computation is aborted. unwi nd - p r o t e c t  is a special form that takes any number 
of arguments. It evaluates the first argument, and if all goes well it then evaluates 



the other arguments and returns the first one, just like prog l .  But if an error occurs 
during the evaluation of the first argument and computation is aborted, then the 
subsequent arguments (called cleanup forms) are evaluated anyway. 

9.6 A Case Study in Efficiency: The 
SIMPLIFY Program 

Suppose we wanted to speed up the simpl i fy  program of chapter 8. This sec- 
tion shows how a combination of general techniques-memoizing, indexing, and 
compiling-can be used to speed up the program by a factor of 130. Chapter 15 will 
show another approach: replace the algorithm with an entirely different one. 

The first step to a faster programis defining a benchmark, a test suite representing 
a typical work load. The following is a short list of test problems (and their answers) 
that are typical of the s i mpl i fy  task. 

(defvar * test-data* (mapcar # ' i n f i x - > p r e f i x  
' ( ( d  ( a * x A 2 + b * x + c )  / d x )  

( d  ( ( a * x A 2 + b * x + c >  1 x 1  / d x )  
( d ( ( a * x A 3 + b * x A 2 + c * x + d )  / x A 5 )  / d x )  
( ( s i n  ( x  + X I )  * ( s i n  (2  * x ) )  + (cos (d  ( x  A 2 )  / d  x ) )  A 1) 
( d  ( 3  * x  + (COS XI / X) / d  x ) ) ) )  

(defvar *answers* (mapcar # ' s i m p l i f y  * test-data*))  

The function t e s t -  i t runs through the test data, making sure that each answer is 
correct and optionally printing profiling data. 

(defun t e s t - i t  (&optional ( w i t h - p r o f i l i n g  t ) )  
"Time a  t e s t  run, and make sure the  answers are cor rec t . "  
( l e t  ((answers 

( i f  w i t h - p r o f i l i n g  
( w i t h - p r o f i l  i n g  (simpl i f y  simpl i f y - e x p  pat-match 

match-variabl e  var iab l  e-p)  
(mapcar # ' s imp l i f y  * test-data*))  

( t ime (mapcar # ' s i m p l i f y  * t es t - da ta * ) ) ) ) )  
(mapc #'assert-equal answers *answers*) 
t ) )  

(defun assert-equal ( x  y )  
" I f  x  i s  no t  equal t o  y ,  complain." 
(asser t  (equal x  y )  ( x  y )  

"Expected "a t o  be equal t o  "a" x  y ) )  

Here are the results of ( t e s t  - i t with and without profiling: 



> ( t e s t - i t  n i l )  
Eva lua t ion  o f  (MAPCAR #'SIMPLIFY *TEST-DATA*) took  6.612 seconds. 

> ( t e s t - i t  t )  
To ta l  elapsed t ime:  22.819614 seconds. 

Count Secs Time% Name 
51690 11.57 51% PAT-MATCH 
37908 8 .75  38% VARIABLE-P 

1393 0.32 1% MATCH-VARIABLE 
906 0.20 1% SIMPLIFY 
274 1 .98  9% SIMPLIFY -EXP 

Running the test takes 6.6 seconds normally, although the time triples when the 
profiling overhead is added in. It should be clear that to speed things up, we have 
to either speed up or cut down on the number of calls to p a t  -match or v a r i a bl  e - p, 
since together they account for 89 % of the calls (and 89 % of the time as well). We 
will look at three methods for achieving both those goals. 

Consider the rule that transforms ( x + x ) into ( 2 * x 1. Once this is done, we have 
to simplify the result, which involves resimplifying the components. If x were some 
complex expression, this could be time-consuming, and it will certainly be wasteful, 
because x is already simplified and cannot change. We have seen this type of problem 
before, and the solution is memoization: make s i mpl i f y  remember the work it has 
done, rather than repeating the work. We can just say: 

(memoize 'simp1 i f y  : t e s t  # 'equal 

Two questions are unclear: what kind of hash table to use, and whether we should 
clear the hash table between problems. The simplifier was timed for all four combi- 
nations of eq or equal hash tables and resetting or nonresetting between problems. 
The fastest result was equal hashing and nonresetting. Note that with eq hashing, 
the resetting version was faster, presumably because it couldn't take advantage of 
the common subexpressions between examples (since they aren't eq). 

hashing resetting time ' 

none - 6.6 

equal Yes 3.8 
equal no 3.0 
e q Yes 7.0 
e q no 10.2 



This approach makes the function s i mpl i f y  remember the work it has done, in 
a hash table. If the overhead of hash table maintenance becomes too large, there is 
an alternative: make the data remember what simplify has done. This approach was 
taken in MACSYMA: it represented operators as lists rather than as atoms. Thus, in- 
stead of ( * 2 x ), MACSYMA would use ( ( * ) 2 x ). The simplification function would 
destructively insert a marker into the operator list. Thus, the result of simplifying 22 
would be ( ( * s i mp 2 x 1. Then, when the simplifier was called recursively on this 
expression, it would notice the s i mp marker and return the expression as is. 

The idea of associatingmemoization information with the data instead of with the 
function will be more efficient unless there are many functions that all want to place 
their marks on the same data. The data-oriented approach has two drawbacks: it 
doesn't identify structures that are equa 1 but not eq, and, because it requires explicitly 
altering the data, it requires every other operation that manipulates the data to know 
about the markers. The beauty of the hash table approach is that it is transparent; no 
code needs to know that memoization is taking place. 

Indexing 

We currently go through the entire list of rules one at a time, checking each rule. This 
is inefficient because most of the rules could be trivially ruled out-if only they were 
indexed properly. The simplest indexing scheme would be to have a separate list 
of rules indexed under each operator. Instead of having s i mpl i f y  - exp check each 
member of *si mpl i f i cat i on - rul es*, it could look only at the smaller list of rules for 
the appropriate operator. Here's how: 

(defun s i m p l i f y - e x p  (exp) 

" S i m p l i f y  us ing  a  r u l e ,  o r  by do ing a r i t h m e t i c ,  

o r  by us ing  t h e  simp f u n c t i o n  supp l ied  f o r  t h i s  operator .  

Th is  ve rs ion  indexes simp1 i f i c a t i o n  r u l e s  under t h e  operator .  " 
(cond ( ( s i m p l i f y - b y - f n  exp))  

( ( r u l e - b a s e d - t r a n s l a t o r  exp ( r u l e s - f o r  (exp-op exp))  ;*** 
: r u l e - i f  # 'exp-1 hs : r u l e - t h e n  # 'exp- rhs  

: a c t i o n  #'(lambda (b ind ings  response) 

( s i m p l i f y  ( s u b l i s  b ind ings response) ) ) ) )  

( (eva l  uabl e  exp) (eva l  exp) 

( t  exp ) ) )  

(de fva r  * r u l e s - f o r *  (make-hash-table : t e s t  # 'eq ) )  

(defun main-op ( r u l e )  (exp-op (exp- lhs  r u l e ) ) )  



(defun index-rules ( rules)  
"Index all  the rules under the main op." 
(cl rhash *rules-for*) 
(do1 i s t  ( rule  rules 

;; nconc instead of push to preserve the order of rules 
(setf (gethash (main-op rule) *rules-for*) 

(nconc (gethash (main-op rule) *rules-for*) 
( l i s t  r u l e ) ) ) ) )  

(defun rules-for ( o p )  (gethash op *rules-for*)) 

(index-rul es *simp1 ification-rul es*) 

Timing the memoized, indexed version gets us to .98 seconds, down from 6.6 seconds 
for the original code and 3 seconds for the memoized code. If this hadn't helped, we 
could have considered more sophisticated indexing schemes. Instead, we move on 
to consider other means of gaining efficiency. 

p Exercise 9.2 [m] The list of rules for each operator is stored in a hash table with 
the operator as key. An alternative would be to store the rules on the property list 
of each operator, assuming operators must be symbols. Implement this alternative, 
and time it against the hash table approach. Remember that you need some way of 
clearing the old rules-trivial with a hash table, but not automatic with property lists. 

Compilation 

You can look at s i mpl i f y  - exp as an interpreter for the simplification rule language. 
One proven technique for improving efficiency is to replace the interpreter with a 
compiler. For example, the rule ( x  + x = 2 * x)  could be compiled into something 
like: 

( 1 ambda (exp 1 
( i f  ( a n d  (eq (exp-op exp) '+) (equal (exp-lhs exp) (exp-rhs exp)))  

(make-exp :op '* :lhs 2 :rhs (exp-rhs exp) ) ) )  

This eliminates the need for consing up and passing around variable bindings, and 
should be faster than the general matching procedure. When used in conjunction 
with indexing, the individual rules can be simpler, because we already know we have 
the right operator. For example, with the above rule indexed under "+", it could now 
be compiled as: 



( 1 ambda (exp 
(if (equal (exp-lhs exp) (exp-rhs exp)) 

(make-exp :op '* :1hs 2 :rhs (exp-lhs exp)))) 

It is important to note that when these functions return nil, it means that they 
have failed to simplify the expression, and we have to consider another means of 
simplification. 

Another possibility is to compile a set of rules all at the same time, so that the 
indexing is in effect part of the compiled code. As an example, I show here a small set 
of rules and a possible compilation of the rule set. The generated function assumes 
that x is not an atom. This is appropriate because we are replacing s i mpl i f y  - exp, 
not si  mpl i fy. Also, we will return nil to indicate that x is already simplified. I 
have chosen a slightly different format for the code; the main difference is the 1 e t  
to introduce variable names for subexpressions. This is useful especially for deeply 
nested patterns. The other difference is that I explicitly build up the answer with a 
call to 1 i st ,  rather than make - exp. This is normally considered bad style, but since 
this is code generated by a compiler, I wanted it to be as efficient as possible. If the 
representation of the exp data type changed, we could simply change the compiler; a 
much easier task than hunting down all the references spread throughout a human- 
written program. The comments following were not generated by the compiler. 

(lambda (x) 
(let ((xl (exp-lhs x)) 

(xr (exp-rhs XI)) 
(or (if (eql xr '1) ; ( x * l = x )  

xl 
(if (eql xl '1) ; ( l * x = x )  

xr) 
(if (eql xr '0)  ; ( x * O = O )  

'0) 
(if (eql xl '0) ; ( O * x = O )  

'0) 
(if (equal xr xl ; ( x * x = x A 2 )  

(list '̂  xl '2))))) 

I chose this format for the code because I imagined (and later show) that it would be 
fairly easy to write the compiler for it. 



The Single-Rule Compiler 

Here I show the complete single-rule compiler, to be followed by the indexed-rule-set 
compiler. The single-rule compiler works like this: 

> (comp i le - ru le  ' (=  (+ x x )  ( *  2 X I ) )  
(LAMBDA ( X I  

( I F  (OP? X '+) 

(LET ( (XL (EXP-LHS X I )  
(XR (EXP-RHS X I ) )  

( I F  (EQUAL X R  XL) 
(SIMPLIFY-EXP (LIST '* '2 X L ) ) ) ) ) )  

Given a rule, it generates code that first tests the pattern and then builds the right- 
hand side of the rule if the pattern matches. As the code is generated, correspon- 
dences are built betweenvariables in the pattern, like x, andvariables in the generated 
code, like xl . These are kept in the association list *bi ndi ngs*. The matching can be 
broken down into four cases: variables that haven't been seen before, variables that 
have been seen before, atoms, and lists. For example, the first time we run across 
x in the rule above, no test is generated, since anything can match x. But the entry 
( X  . XI ) is added to the *bi ndi ngs* list to mark the equivalence. When the second x 
is encountered, the test ( equa 1 xr xl is generated. 

Organizing the compiler is a little tricky, because we have to do three things at 
once: return the generated code, keep track of the *bi ndi ngs*, and keep track of what 
to do "nextn-that is, when a test succeeds, we need to generate more code, either 
to test further, or to build the result. This code needs to know about the bindings, 
so it can't be done before the first part of the test, but it also needs to know where it 
should be placed in the overall code, so it would be messy to do it after the first part 
of the test. The answer is to pass in a function that will tell us what code to generate 
later. This way, it gets done at the right time, and ends up in the right place as well. 
Such a function is often called a continuation, because it tells us where to continue 
computing. In our compiler, the variable consequent is a continuation function. 

The compiler is called compi 1 e-  rul e. It takes a rule as an argument and returns 
a lambda expression that implements the rule. 

(de fva r  *bindings* n i l  
"A l i s t  o f  b ind ings used by t h e  r u l e  comp i le r . " )  

(defun comp i le - ru le  ( r u l e )  
"Compile a  s i n g l e  r u l e . "  
( l e t  ( ( *b ind ings*  n i l ) )  

'(lambda ( x )  
,(compile-exp ' x  (exp- lhs  r u l e )  ; x i s  t h e  lambda parameter 

(de lay ( b u i l d - e x p  (exp-rhs r u l e )  



All the work is done by compi 1 e-  exp, which takes three arguments: a variable that 
will represent the input in the generated code, a pattern that the input should be 
matched against, and a continuation for generating the code if the test passes. There 
are five cases: (1) If the pattern is a variable in the list of bindings, then we generate 
an equality test. (2) If the pattern is a variable that we have not seen before, then 
we add it to the binding list, generate no test (because anything matches a variable) 
and then generate the consequent code. (3) If the pattern is an atom, then the match 
succeeds only if the input is eql  to that atom. (4) If the pattern is a conditional like 
( ?i s n numberp 1, then we generate the test (numberp n 1. Other such patterns could 
be included here but have not been, since they have not been used. Finally, (5)  if the 
pattern is a list, we check that it has the right operator and arguments. 

(defun compile-exp (va r  p a t t e r n  consequent) 
"Compile code t h a t  t e s t s  t h e  expression, and does consequent 
i f  i t  matches. Assumes b ind ings i n  *bindings*." 
(cond ( ( g e t -  b i  nd i  ng p a t t e r n  *bindings*) 

;; Test  a p rev ious ly  bound v a r i a b l e  
' ( i f  (equal ,var , (1 ookup p a t t e r n  *bindingsk) 

, ( f o r c e  consequent 1) 
( ( v a r i a b l e - p  p a t t e r n )  
;; Add a new b indings;  do type  checking i f  needed. 
(push (cons p a t t e r n  va r )  *bindings*) 
( f o r c e  consequent)) 

((atom p a t t e r n )  
; ; Match a l i t e r a l  atom 
' ( i f  (eq l  ,var ' , pa t te rn )  

, ( f o r c e  consequent) 1) 
( ( s t a r t s - w i t h  p a t t e r n  ' ? i s )  

(push (cons (second p a t t e r n )  va r )  *bindings*) 
' ( i f  ( , ( t h i r d  p a t t e r n )  ,vat-) 

, ( f o r c e  consequent))) 
;; So, f a r ,  on ly  t h e  ? i s  p a t t e r n  i s  covered, because 
;; i t  i s  the  on ly  one used i n  s i m p l i f i c a t i o n  r u l e s .  
; ; Other pa t te rns  could be compiled by adding code here. 
;; Or we could sw i tch  t o  a da ta -d r i ven  approach. 
( t  ;; Check t h e  operator and arguments 
' ( i f  (op? ,var ',(exp-op p a t t e r n ) )  

,(compile-args var p a t t e r n  consequent) ) ) ) )  

The function compi 1 e- a rgs  is used to check the arguments to a pattern. It generates 
a 1 e t  form binding one or two new variables (for a unary or binary expression), and 
then calls compi 1 e - exp to generate code that actually makes the tests. It just passes 
along the continuation, consequent, to compi 1 e - exp. 



(defun compile-args ( v a r  p a t t e r n  consequent) 
"Compile code t h a t  checks t h e  a rg  o r  args, and does consequent 
i f  the  a rg (s )  match." 
;; F i r s t  make up v a r i a b l e  names f o r  t h e  a r g ( s ) .  
( l e t  ( ( L  (symbol var ' L ) )  

(R (symbol var 'R ) ) )  
( i f  (exp-rhs p a t t e r n )  

;; two a rg  case 
' ( l e t  ( ( , L  (exp- lhs  ,vat-)) 

(,R (exp-rhs , v a r ) ) )  
, (compile-exp L (exp- lhs  p a t t e r n )  

(de l  ay 
(compile-exp R (exp-rhs p a t t e r n )  

consequent) ) ) )  
; ; one a rg  case 
' ( l e t  ( (  ,L (exp- lhs  , v a r ) ) )  

, (compile-exp L (exp- lhs  p a t t e r n )  consequent) ) ) ) )  

The remaining functions are simpler. bui 1 d - exp generates code to build the right- 
hand side of a rule, op? tests if its first argument is an expression with a given 
operator, and symbol constructs a new symbol. Also given is new-symbol, although 
it is not used in this program. 

(defun b u i l d - e x p  (exp b ind ings )  
"Compile code t h a t  w i l l  b u i l d  t h e  exp, g iven t h e  b ind ings . "  
(cond ((assoc exp b ind ings )  ( r e s t  (assoc exp b i n d i n g s ) ) )  

( ( v a r i a b l e - p  exp) 
( e r r o r  "Var iab le  "a occurred on r igh t -hand  side,"  

b u t  n o t  l e f t . "  exp))  
((atom exp) ",exp) 
( t  ( l e t  ((new-exp (mapcar #'(lambda ( x )  

( b u i l d - e x p  x  b i n d i n g s ) )  
exp> 1 1 

' ( s i m p l i f y - e x p  ( l i s t  . ,new-exp)) ) ) ) )  

(defun op? (exp op) 
"Does t h e  exp have t h e  g iven op as i t s  operator?"  
(and (exp-p exp) (eq (exp-op exp) o p ) ) )  

(defun symbol ( & r e s t  args)  
"Concatenate symbols o r  s t r i n g s  t o  form an i n t e r n e d  symbol" 
( i n t e r n  ( format  n i l  ""{"a")" a r g s ) ) )  

(defun new-symbol ( & r e s t  args)  
"Concatenate symbols o r  s t r i n g s  t o  form an un interned symbol" 
(make-symbol ( format  n i l  ""{"a")" args)  1) 



Here are some examples of the compiler: 

> ( c o m p i l e - r u l e  ' (=  ( l o g  ( A  e x ) )  x ) )  
(LAMBDA ( X I  

( I F  (OP? X 'LOG) 
(LET ( (XL (EXP-LHS X I ) )  

( I F  (OP? XL "'1 
(LET ( (XLL (EXP-LHS XL)) 

(XLR (EXP-RHS XL) ) )  
(IF (EQL X L L ' ' E )  

XLR) ) ) ) ) )  

> ( c o m p i l e - r u l e  ( s i m p - r u l e  '(n * (rn * x )  = (n * m) * X I ) )  
(LAMBDA ( X I  

( I F  (OP? X '*) 

(LET ( ( X L  (EXP-LHS X I )  
(XR (EXP-RHS X I ) )  

( I F  (NUMBERP XL) 
( I F  (OP? XR '*) 

(LET ((XRL (EXP-LHS XR)) 
(XRR (EXP-RHS XR))) 

( I F  (NUMBERP XRL) 
(SIMPLIFY -EXP 

(L IST '* 
(SIMPLIFY-EXP (L IST '* XL XRL)) 
X R R ) ) ) ) ) ) ) ) )  

The Rule-Set Compiler 

The next step is to combine the code generated by this single-rule compiler to generate 
more compact code for sets of rules. We'll divide up the complete set of rules into 
subsets based on the main operator (as we did with the rul es - f o r  function), and 
generate one big function for each operator. We need to preserve the order of the 
rules, so only certain optimizations are possible, but if we make the assumption 
that no function has side effects (a safe assumption in this application), we can 
still do pretty well. We'll use the s i  mp - f n facility to install the one big function for 
each operator. 

The function compi 1 e - r ul e - s e t  takes an operator, finds all the rules for that oper- 
ator, and compiles each rule individually. (It uses compi 1 e - i ndexed - rul e rather than 
comp i 1 e - r ul e, because it assumes we have already done the indexing for the main op- 
erator.) After each rule has been compiled, they are combined with combi ne- rul es, 
which merges similar parts of rules and concatenates the different parts. The result 
is wrapped in a 1 ambda expression and compiled as the final simplification function 
for the operator. 



(defun compile-rule-set (op) 
"Compile a1 1 rules indexed under a given main op, 
and make them into the simp-fn for that op." 
(set-simp-fn op 
(compile nil 

'(lambda (x) 
,(reduce #'combine-rules 

(mapcar #'compile-indexed-rule 
(rules-for op) > > ) > > >  

(defun compile-indexed-rule (rule) 
"Compile one rule into lambda-less code, 
assuming indexing of main op." 
(let ((*bindings* nil)) 

(compi 1 e-args 
'x (exp-lhs rule) 
(delay (build-exp (exp-rhs rule) *bindings*))))) 

Here are two examples of what compi 1 e - i ndexed - r u l  e generates: 

> (compile-indexed-rule ' ( =  (log 1) 0)) 
(LET ((XL (EXP-LHS XI)) 
(IF (EQL XL '1) 

' 0 )  

> (compile-indexed-rule ' (=  (log ( ^  e x)) x)) 
(LET ((XL (EXP-LHS XI)) 
(IF (OP? XL ' * I  

(LET ((XLL (EXP-LHS XL)) 
(XLR (EXP-RHS XL))) 

(IF (EQL XLL 'El 
XLR)))) 

The next step is to combine several of these rules into one. The function comb i ne - r u 1 es 
takes two rules and merges them together as much as possible. 

(defun combine-rul es (a b) 
"Combine the code for two rules into one, maintaining order." 
;; In the default case, we generate the code (or a b). 
;; but we try to be cleverer and share common code. 
;; on the assumption that there are no side-effects. 
(cond ((and (listp a) (listp b) 

(= (length a) (length b) 3) 
(equal (first a) (first b)) 
(equal (second a) (second b))) 

;; a=(f x y), b=(f x z) => (f x (combine-rules y z)) 
;; This can apply when f=IF or f=LET 



( l i s t  ( f i r s t  a)  (second a)  
(combine-rules ( t h i r d  a)  ( t h i r d  b ) ) ) )  

( ( m a t c h i n g - i f s  a b )  
' ( i f  ,(second a)  . (combine-rules ( t h i r d  a)  ( t h i r d  b )  

,(combine-rules ( f o u r t h  a) ( f o u r t h  b ) ) ) )  
( ( s t a r t s - w i t h  a ' o r )  
;; a=(or ... ( i f  p y ) ) ,  b = ( i f  p z) => . . , ,  ( o r  . . . ( i f  p (combine-rules y z ) ) )  
; ; e l s e  
;; a=(or . . . I  b => ( o r  ... b )  
( i f  (ma tch ing- i f s  ( l a s t l  a)  b )  

(append (but1 a s t  a) 
( l i s t  (combine-rules ( l a s t l  a) b ) ) )  

(append a ( l i s t  b ) ) ) )  
( t  ;; a, b => ( o r  a b)  

' ( o r  ,a . b > > > >  

(defun m a t c h i n g - i f s  (a b )  
"Are a and b if statements w i t h  t h e  same p red ica te?"  
(and ( s t a r t s - w i t h  a ' i f )  ( s t a r t s - w i t h  b ' i f )  

(equal (second a)  (second b ) ) ) )  

(defun l a s t l  ( l i s t )  
"Return t h e  l a s t  element ( n o t  l a s t  cons c e l l  o f  l i s t "  
( f i r s t  ( l a s t  l i s t ) ) )  

Here is what combi n e -  r u l  e s  does with the two rules generated above: 

> (combine-rules 
' ( l e t  ( ( x l  (exp - lhs  X I ) )  ( i f  (eq l  x l  '1 )  ' 0 ) )  
' ( l e t  ( ( x l  (exp - lhs  X I ) )  

( i f  (op? x l  ' ^ I  
( l e t  ( ( x l l  (exp - lhs  x l ) )  

( x l r  (exp-rhs x l ) ) )  
( i f  (eq l  x l l  ' e l  x l r ) ) ) ) )  

(LET ((XL (EXP-LHS X I ) )  
(OR ( I F  (EQL XL '1)  '0 )  

( I F  (OP? XL ' ^ I  
(LET ((XLL (EXP-LHS XL)) 

(XLR (EXP-RHS XL))) 
( I F  (EQL XLL ' E l  XLR)) ) ) )  

Now we run the compiler by calling cornpi 1 e -  a1 1 - r u l  e s  - i ndexed and show the 
combined compiled simplification function for 1 og. The comments were entered by 
hand to show what simplification rules are compiled where. 



(defun compi 1  e - a l l  - r u l  es- indexed ( r u l e s )  
"Compile a  separate f n  f o r  each operator ,  and s t o r e  i t  
as t h e  s imp- fn o f  t h e  opera to r . "  
( index-  r u l  es r u l  es 
( l e t  ( (a1  1  -ops (de le te -dup l  i c a t e s  (mapcar #'main-op r u l e s )  1) 

(mapc # ' comp i le - ru le - se t  a l l - o p s ) ) )  

> ( c o m p i l e - a l l  - ru les - indexed  * s i m p l i f i c a t i o n - r u l e s * )  
(SIN COS LOG * * / - + Dl  

> (s imp- fn  ' l o g )  
( LAMBDA ( X I  

(LET ((XL (EXP-LHS X I ) )  
(OR ( I F  (EQL XL '1) 

'0 )  ; log1 = o  
( I F  (EQL XL '0 )  

'UNDEFINED) ; log 0 = undefined 
( I F  (EQL XL ' E l  

'1) ; l oge=  1  
( I F  (OP? XL ' ^ I  

(LET ((XLL (EXP-LHS XL)) 
(XLR (EXP-RHS XL)) )  

( I F  (EQL XLL ' E l  
XLR) ) ) ) ) )  ; logex = x 

If we want to bypass the rule-based simplifier altogether, we can change s i mpl i f y  - exp 
once again to eliminate the check for rules: 

(defun s i m p l i f y - e x p  (exp) 
" S i m p l i f y  by doing a r i t h m e t i c ,  o r  by us ing t h e  simp f u n c t i o n  
supp l ied  f o r  t h i s  operator .  Do n o t  use r u l e s  o f  any k ind . "  
(cond ( ( s i m p l i f y - b y - f n  exp))  

( (eva luab le  exp) (eva l  exp))  
( t  exp ) ) )  

At last, we are in a position to run the benchmark test on the new compiled code; the 
function t e s t  - i t runs in about .15 seconds with memoization and .05 without. Why 
would memoization, which helped before, now hurt us? Probably because there is a 
lot of overhead in accessing the hash table, and that overhead is only worth it when 
there is a lot of other computation to do. 

We've seen a great improvement since the original code, as the following table 
summarizes. Overall, the various efficiency improvements have resulted in a 130- 
fold speed-up-we can do now in a minute what used to take two hours. Of course, 
one must keep in mind that the statistics are only good for this one particular set of 



test data on this one machine. It is an open question what performance you will get 
on other problems and on other machines. 

The following table summarizes the execution time and number of function calls 
on the test data: 

original memo memo+index memo+comp comp 
run time (secs) 6.6 3.0 -98 .15 .05 
speed-up - 2 7 44 130 
calls 
pat -match  51690 20003 5159 0 0 
v a r i a b l e - p  37908 14694 4798 0 0 
match - va r i ab l  e 1393 551 551 0 0 
simp1 i f y  906 408 408 545 906 
simp1 i f y - e x p  274 118 118 118 274 

9.7 History and References 

The idea of memoization was introduced by Donald Michie 1968. He proposed 
using a list of values rather than a hash table, so the savings was not as great. In 
mathematics, the field of dynamic programming is really just the study of how to 
compute values in the proper order so that partial results will already be cached away 
when needed. 

A large part of academic computer science covers compilation; Aho and Ullman 
1972 is just one example. The technique of compiling embedded languages (such as 
the language of pattern-matchingrules) is one that has achieved much more attention 
in the Lisp community than in the rest of computer science. See Emanuelson and 
Haraldsson 1980, for an example. 

Choosing the right data structure, indexing it properly, and defining algorithms 
to operate on it is another important branch of computer science; Sedgewick 1988 is 
one example, but there are many worthy texts. 

Delaying computation by packaging it up in a 1 ambda expression is an idea that 
goes back to Algol's use of thunks-a mechanism to implement call-by-name parame- 
ters, essentially by passing functions of no arguments. The name thunk comes from 
the fact that these functions can be compiled: the system does not have to think 
about them at run time, because the compiler has already thunk about them. Peter 
Ingerman 1961 describes thunks in detail. Abelson and Sussman 1985 cover delays 
nicely. The idea of eliminating unneeded computation is so attractive that entire lan- 
guages have built around the concept of lazy evaluation-don't evaluate an expression 
until its value is needed. See Hughes 1985 or Field and Harrison 1988. 



9.8 Exercises 

Exercise 9.3 [dl In this chapter we presented a compiler for s i mpl i fy. It is not too 
much harder to extend this compiler to handle the full power of pat  -match. Instead 
of looking at expressions only, allow trees with variables in any position. Extend and 
generalize the definitions of compi 1  e  - r u l  e  and compi 1 e - r u l  e  - se t  so that they can 
be used as a general tool for any application program that uses pat-match and/or 
r u l  e-  based- trans1 ator .  Make sure that the compiler is data-driven, so that the 
programmer who adds a new kind of pattern to pat-match can also instruct the 
compiler how to deal with it. One hard part will be accounting for segment variables. 
It is worth spending a considerable amount of effort at compile time to make this 
efficient at run time. 

a Exercise 9.4 [m] Define the time to compute (fib n) without memoization as T,. 
Write a formula to express Tn. Given that T25 = 1.1 seconds, predict Tloo. 

a Exercise 9.5 [m] Consider a version of the game of Nim played as follows: there is 
a pile of n tokens. Two players alternate removing tokens from the pile; on each turn 
a player must take either one, two, or three tokens. Whoever takes the last token 
wins. Write a program that, given n, returns the number of tokens to take to insure 
a win, if possible. Analyze the execution times for your program, with and without 
memoization. 

Exercise 9.6 [m] A more complicated Nim-like game is known as Grundy's game. 
The game starts with a single pile of n tokens. Each player must choose one pile and 
split it into two uneven piles. The first player to be unable to move loses. Write a 
program to play Grundy's game, and see how memoization helps. 

Exercise 9.7 p] This exercise describes a more challenging one-person game. In 
this game the player rolls a six-sided die eight times. The player forms four two-digit 
decimal numbers such that the total of the four numbers is as high as possible, but 
not higher than 170. A total of 171 or more gets scored as zero. 

The game would be deterministic and completely boring if not for the requirement 
that after each roll the player must immediately place the digt in either the ones or 
tens column of one of the four numbers. 

Here is a sample game. The player first rolls a 3 and places it in the ones column 
of the first number, then rolls a 4 and places it in the tens column, and so on. On the 
last roll the player rolls a 6 and ends up with a total of 180. Since this is over the limit 
of 170, the player's final score is 0. 



roll 
lstnum. 
2ndnum. 

Write a function that allows you to play a game or a series of games. The function 
should take as argument a function representing a strategy for playing the game. 

3 4 6 6 3 5  3 6  
-3 43 43 43 43 43 43 43 
- - -6 -6 36 36 36 36 

4thnum. 
total 

a Exercise 9.8 b ]  Define a good strategy for the dice game described above. (Hint: 
my strategy scores an average of 143.7.) 

- - - - - -5 -5 65 
03 43 49 55 85 90 120 0 

p Exercise 9.9 [m] One problem with playing games involving random numbers is 
the possibility that a player can cheat by figuring out what random is going to do next. 
Read the definition of the function random and describe how a player could cheat. 
Then describe a countermeasure. 

a Exercise 9.10 [rn] On page 292 we saw the use of the read-time conditionals, #+and 
# - , where #+ is the read-time equivalent of when, and # - is the read-time equivalent 
of unless. Unfortunately, there is no read-time equivalent of case. Implement one. 

a Exercise 9.11 N Write a compiler for ELIZA that compiles all the rules at once into 
a single function. How much more efficient is the compiled version? 

a Exercise 9.12 [dl Write some rules to simplify Lisp code. Some of the algebraic 
simplification rules will still be valid, but new ones will be needed to simplify nonal- 
gebraic functions and special forms. (Since ni 1 is a valid expression in this domain, 
you will have to deal with the semipredicate problem.) Here are some example rules 
(using prefix notation): 

(= (+ x 0) XI 
(= ' n i l  n i l )  
(= (car  (cons x y ) )  x )  
(= (cdr  (cons x y ) )  y )  
(= ( i f  t x y )  X)  
(= ( i f  n i l  x  y )  y )  
(= ( leng th  n i l  1 0) 
(= (expt  y  ( ? i f  x  numberp)) (expt  (expt  y  ( /  x  2 ) )  2 ) )  



Exercise 9.13 [m] Consider the following two versions of the sieve of Eratosthenes 
algorithm. The second explicitly binds a local variable. Is this worth it? 

(defun s ieve  (p ipe)  
(make-pi pe (head p i  p e l  

( f i l t e r  #'(lambda ( x )  ( /=  (mod x  (headpipe))  0 ) )  
( s ieve  ( t a i l  p i p e ) ) ) ) )  

(defun s ieve  (p ipe)  
( l e t  ( ( f i r s t - n u m  (head p i p e ) ) )  

(make-pipe f i r s t - n u m  
( f i l t e r  #'(lambda ( x )  ( /= (mod x  f i r s t - n u m )  0 ) )  

( s ieve  ( t a i l  p i p e ) ) ) ) ) )  

9.9 Answers 

Answer 9.4 Let Fn denote ( f i b n 1. Then the time to compute Fn, T,, is a small 
constant for n i. 1, and is roughly equal to TnP1 plus Tn-2 for larger n. Thus, Tn is 
roughly proportional to Fn: 

m 

We could use some small value of Ti to calculate Tloo if we knew Floe. Fortunately, 
we can use the equation: 

F n  6n 
where q5 = (1 + fi5))/2 = 1.618. This equation was derived by de Moivre in 1718 
(see Knuth, Donald E. Fundamental Algorithms, pp. 78-83), but the number q5 has a 
long interesting history. Euclid called it the "extreme and mean ratio," because the 
ratio of A to B is the ratio of A + B to A if A/B is 4. In the Renaissance it was called 
the "divine proportion," and in the last century it has been known as the "golden 
ratio," because a rectangle with sides in this ratio can be divided into two smaller 
rectangles that both have the same ratio between sides. It is said to be a pleasing 
proportion when employed in paintings and architecture. Putting history aside, 
given T25 = l.lsec we can now calculate: 

which is roughly 150 million years. We can also see that the timing data in the table 
fits the equation fairly well. However, we would expect some additional time for 
larger numbers because it takes longer to add and garbage collect bignums than 
fixnums . 



Answer 9.5 First we'll define the notion of a forced win. This occurs either when 
there are three or fewer tokens left or when you can make a move that gives your 
opponent a possible loss. A possible loss is any position that is not a forced win. If 
you play perfectly, then a possible loss for your opponent will in fact be a win for you, 
since there are no ties. See the functions win and 1 oss below. Now your strategy 
should be to win the game outright if there are three or fewer tokens, or otherwise 
to choose the largest number resulting in a possible loss for your opponent. If there 
is no such move available to you, take only one, on the grounds that your opponent 
is more likely to make a mistake with a larger pile to contend with. This strategy is 
embodied in the function n i m below. 

(defun win ( n )  
"Is  a pile of n tokens a win for the player to move?" 
(or (<= n 3) 

(loss ( -  n 1 ) )  
(loss ( -  n 2 ) )  
( loss ( -  n 3 ) ) ) )  

(defun loss ( n )  (not (win n ) ) )  

(defun nim ( n )  
"Play Nim: a player must take 1-3; taking the las t  one wins." 
(cond ((<= n 3) n )  ; a n  immediate win 

( ( loss  ( -  n 3 ) )  3) ; a n  eventual win 
( ( loss  ( -  n 2 ) )  2 )  ; a n  eventual win 
( ( loss  ( -  n 1 ) )  1)  ; a n  eventual win 
( t  1 ) ) )  ; a loss; the 1 i s  arbitrary 

(memoize ' loss)  

From this we are able to produce a table of execution times (in seconds), with and 
without memoization. Only 1 oss need be memoized. (Why?) Do you have a good 
explanation of the times for the unmemoized version? What happens if you change 
the order of the loss clauses in w i  n and/or n i  m? 

Answer 9.6 We start by defining a function, moves, which generates all possible 
moves from a given position. This is done by considering each pile of n tokens within 
a set of piles s. Any pile bigger than two tokens can be split. We take care to eliminate 
duplicate positions by sorting each set of piles, and then removing the duplicates. 

(defun moves ( s )  
"Return a l i s t  of a l l  possible moves in Grundy's game" 
;; S i s  a l i s t  of integers giving the sizes of the piles 
( remove-dupl i  cates 

(loop for n in s append (make-moves n s ) )  
: t es t  #'equal 1) 



(defun make-moves ( n  s )  
(when (>= n 2) 

( l e t  ( ( s in  (remove n s  :count 1 ) ) )  
(loop for i  from 1 to ( -  (ceiling n 2 )  1 )  

collect (sort* ( l i s t *  i  ( -  n i )  s in )  
# ' > > > > > >  

(defun sort* (seq pred &key key) 
"Sort without altering the sequence" 
(sor t  (copy-seq seq) pred :key key)) 

This time a loss is defined as a position from which you have no moves, or one from 
which your opponent can force a win no matter what you do. A winning position 
is one that is not a loss, and the strategy is to pick a move that is a loss for your 
opponent, or if you can't, just to play anything (here we arbitrarily pick the first move 
generated). 

(defun loss ( s )  
( l e t  ((choices (moves s ) ) )  

(or (null choices) 
(every #'win choices 1) 

(defun win ( s )  (not (loss s ) ) )  

(defun grundy ( s )  
( l e t  ((choices (moves s ) ) )  

(or (find-if  # ' loss choices) 
( f i r s t  choices)))) 

Answer 9.7 The answer assumes that a strategy function takes four arguments: 
the current die roll, the score so far, the number of remaining positions in the tens 
column, and the number of remaining positions in the ones column. The strategy 
function should return 1 or 10. 

(defun play-games (&optional (n-games 10) (player 'make-move)) 
" A  driver for a simple dice game. In th i s  game the player 
rol ls  a six-sided die eight times. The player forms four 
two-digit decimal numbers such t h a t  the total of the four 
numbers i s  as high as possible. b u t  not higher t h a n  170. 
A total of 171 or more gets scored as zero. After each die 
i s  rolled, the player must decide where to p u t  i t .  
This function returns the player's average score." 
( 1  (loop repeat n-games summing (play-game player 0 4 4 ) )  

( f loat  n-games))) 



(defun play-game (player &optional (total 0) (tens 4) (ones 4 ) )  
(cond ( (or  (> total 170) (< tens 0) (< ones 0 ) )  0) 

( ( a n d  (= tens 0) (= ones 0) total 
( t  ( l e t  ( ( d i e  ( r o l l -d i e ) ) )  

(case (funcall player die total tens ones) 
(1  (play-game player (+ total die) 

tens ( -  ones 1 ) )  1 
(10 (play-game player (+ total (* 10 d i e ) )  

( -  tens 1 )  ones)) 
( t  0 ) ) ) ) ) )  

(defun roll-die 0 (+ 1 (random 6 ) ) )  

So, the expression ( pl ay - games 5 # 'make -move 1 would play five games with a 
strategy called ma ke-move. This returns only the average score of the games; if you 
want to see each move as it is played, use this function: 

(def u n  show ( pl ayer 
"Return a player t h a t  prints out each move i t  makes." 
#'(lambda (die total tens ones) 

(when (= total 0) ( f resh-l ine))  
( l e t  ((move (funcall player die t o t a l  tens ones))) 

(incf t o t a l  (* die move)) 
(format t ""2d->"3d I "@[*"I" (* move die) total (> total 170)) 
move) 1 > 

and call (pl  ay-games 5 (show #'ma ke-moves 11. 

Answer 9.9 The expression ( random 6 (make- random- sta t e  1 1 returns the next 
number that ro l l  -di e will return. To guard against this, we can make ro l l  -di e use 
a random state that is not accessible through a global variable: 

( l e t  ( ( s t a t e  (make-random-state t ) ) )  
(defun roll-die 0 (+ 1 (random 6 s t a t e ) ) ) )  

Answer 9.10 Because this has to do with read-time evaluation, it must be imple- 
mented as a macro or read macro. Here's one way to do it: 

(defmacro read-time-case (f i rs t -case &rest other-cases) 
"Do the f i r s t  case, where normally cases are 
specified with #+ or possibly # -  marks." 
(declare (ignore other-cases)) 
f i  rst-case) 



A fanciful example, resurrecting a number of obsolete Lisps, follows: 

(defun get-fast-time 0 
(read-time-case 

#+Expl orer (time:mi crosecond-time) 
#+Franz (sys:time) 
#+(or PSL UCI) (time) 
#+Y KT (currenttime) 
#+MTS (status 39) 
#+Inter1 isp (clock 1) 
#+Li spl .5 (tempus-fugit) 
; ; otherwise 

(get-internal -real -time) 1) 

Answer 9.13 Yes. Computing ( head p i  p e l  may be a trivial computation, but it 
will be done many times. Binding the local variable makes sure that it is only done 
once. In general, things that you expect to be done multiple times should be moved 
out of delayed functions, while things that may not be done at all should be moved 
inside a delay. 



CHAPTER I O  
Low-Level 
Efficiency Issues 

There are only two qualities in the world: efficiency 
and inefficiency; and only two sorts of people: the 

efficient and the inefficient. 

-George Bernard Shaw 
John Bull's Other Island (1904) 

T he efficiency techniques of the previous chapter all involved fairly significant changes 
to an algorithm. But what happens when you already are using the best imaginable 
algorithms, and performance is still a problem? One answer is to find what parts of the 

program are used most frequently and make micro-optimizations to those parts. This chapter 
covers the following six optimization techniques. If your programs all run quickly enough, then 
feel free to skip this chapter. But if you would like your programs to run faster, the techniques 
described here can lead to speed-ups of 40 times or more. 



Use declarations. 

Avoid generic functions. 

e Avoid complex argument lists. 

0 Provide compiler macros. 

o Avoid unnecessary consing. 

0 Use the right data structure. 

10.1 Use Declarations 

On general-purpose computers running Lisp, much time is spent on type-checking. 
You can gain efficiency at the cost of robustness by declaring, or promising, that 
certain variables will always be of a given type. For example, consider the following 
function to compute the sum of the squares of a sequence of numbers: 

(defun sum-squares (seq) 
( l e t  ((sum 0 ) )  

(dot imes ( i  ( l e n g t h  seq))  
( i n c f  sum (square ( e l t  seq i ) ) ) )  

sum) 1 

(defun square ( x )  ( *  x x ) )  

If this function will only be used to sumvectors of fixnums, we can make it a lot faster 
by adding declarations: 

(defun sum-squares ( v e c t )  
(dec la re  ( t y p e  (s imp le -a r ray  f ixnum *) v e c t )  

( i n l i n e  square) (op t im ize  speed ( s a f e t y  0 ) ) )  
( l e t  ((sum 0 ) )  

(dec la re  ( f ixnum sum)) 
(dot imes ( i  ( l e n g t h  v e c t ) )  

(dec la re  ( f ixnum i 1) 
( i n c f  sum ( t h e  f ixnum (square ( s v r e f  vec t  i ) ) ) ) ) ) )  

sum) 1 

The fixnum declarations let the compiler use integer arithmetic directly, rather than 
checking the type of each addend. The ( t h e  f i xnum . . . 1 special form is a promise 
that the argument is a fixnum. The ( o p t i  mi ze speed ( s a f e t y  0 1 1 declaration tells 
the compiler to make the function run as fast as possible, at the possible expense of 



making the code less safe (by ignoring type checks and so on). Other quantities that 
can be optimized are compi 1 a t i  on-speed, space and in ANSI Common Lisp only, 
debug (ease of debugging). Quantities can be given a number from 0 to 3 indicating 
how important they are; 3 is most important and is the default if the number is left out. 

The ( i n l  i ne square declaration allows the compiler to generate the multipli- 
cation specified by square right in the loop, without explicitly making a function 
call to square. The compiler will create a local variable for ( s v r e f  vect  i and will 
not execute the reference twice-inline functions do not have any of the problems 
associated with macros as discussed on page 853. However, there is one drawback: 
when you redefine an inline function, you may need to recompile all the functions 
that call it. 

You should declare a function i n l  i ne when it is short and the function-calling 
overhead will thus be a significant part of the total execution time. You should not 
declare a function i n l  i ne when the function is recursive, when its definition is likely 
to change, or when the function's definition is long and it is called from many places. 

In the example at hand, declaring the function i n l  i ne saves the overhead of 
a function call. In some cases, further optimizations are possible. Consider the 
predicate s t a r t s - w i  th :  

(defun starts-with ( l i s t  x )  
"I s  this  a l i s t  whose f i r s t  element i s  x?" 
( a n d  (consp l i s t )  (eql ( f i r s t  l i s t )  X I ) )  

Suppose we have a code fragment like the following: 

( i f  (consp l i s t )  (starts-with l i s t  x )  ... 1 

If s t a  r t  s - wi t h is declared i n l  i ne this will expand to: 

( i f  (consp l i s t )  (and (consp l i s t )  (eql ( f i r s t  l i s t )  x ) )  . . . I  

which many compilers will simplify to: 

( i f  (consp l i s t )  (eql ( f i r s t  l i s t )  x)  . . . I  

Very few compilers do this kind of simplification across functions without the hint 
provided by i n l  i ne. 

Besides eliminating run-time type checks, declarations also allow the compiler 
to choose the most efficient representation of data objects. Many compilers support 
both boxed and unboxed representations of data objects. A boxed representation 
includes enough information to determine the type of the object. An unboxed 
representation is just the "raw bits" that the computer can deal with directly. Consider 



the following function, which is used to clear a 1024 x 1024 array of floating point 
numbers, setting each one to zero: 

(defun c lea r -m-ar ray  ( a r r a y )  
(dec la re  (op t im ize  (speed 3 )  ( s a f e t y  0 ) ) )  
(dec la re  ( t y p e  (s imp le -a r ray  s i n g l e - f l o a t  (1024 1024)) a r r a y ) )  
(dot imes ( i  1024) 

(dot imes (j 1024) 
( s e t f  ( a r e f  a r r a y  i j )  0 . 0 ) ) ) )  

In Allegro Common Lisp on a Sun SPARCstation, this compiles into quite good code, 
comparable to that produced by the C compiler for an equivalent C program. If the 
declarations are omitted, however, the performance is about 40 times worse. 

The problem is that without the declarations, it is not safe to store the raw floating 
point representation of 0.0 in each location of the array. Instead, the program 
has to box the 0.0, allocating storage for a typed pointer to the raw bits. This 
is done inside the nested loops, so the result is that each call to the version of 
cl ea r -rn - a r r a y  without declarations calls the floating-point-boxingfunction 1048567 
times, allocating a megaword of storage. Needless to say, this is to be avoided. 

Not all compilers heed all declarations; you should check before wasting time 
with declarations your compiler may ignore. The function d i sass ernbl e can be used 
to show what a function compiles into. For example, consider the trivial function to 
add two numbers together. Here it is with and without declarations: 

(defun f ( x  y )  
(dec la re  ( f ixnum x y )  (op t im ize  ( s a f e t y  0)  (speed 3 ) ) )  
( t h e  f ixnum (+ x y ) ) )  

(defun g ( x  y )  (+ x  y ) )  

Here is the disassembled code for f from Allegro Common Lisp for a Motorola 
68000-series processor: 

> (disassemble ' f )  
;; disassembling #<Function f @ #x83ef79> 
;; formals :  x  y  
; ; code vec to r  @ #x83eP44 
0 : l i n k  a6,#0 
4 : move.1 a2,-(a71 
6 : move.1 a5,-(a71 
8 : move.1 7(a2) ,a5 
12: move.1 8(a6),d4 ; y 
16: add.1 12(a6),d4 ; x 
20: move.1 # l , d l  



22 : move.1 -8(a6) .a5 
26: unl k a6 
28 : rtd #8 

This may look intimidating at first glance, but you don't have to be an expert at 68000 
assembler to gain some appreciation of what is going on here. The instructions 
labeled 0-8 (labels are in the leftmost column) comprise the typical function preamble 
for the 68000. They do subroutine linkage and store the new function object and 
constant vector into registers. Since f uses no constants, instructions 6, 8, and 22 
are really unnecessary and could be omitted. Instructions 0,4, and 26 could also be 
omitted if you don't care about seeing this function in a stack trace during debugging. 
More recent versions of the compiler will omit these instructions. 

The heart of function f is the two-instruction sequence 12-16. Instruction 12 
retrieves y, and 16 adds y to x, leaving the result in d4, which is the "result" register. 
Instruction 20 sets dl, the "number of values returned register, to 1. 

Contrast this to the code for g, which has no declarations and is compiled at 
default speed and safety settings: 

> (disassemble 'g) 
;; disassembling #<Function g @ #x83dbdl> 
;; formals: x y  
;; code vector @ #x83db64 
0 : add.1 #8,31(a2) 
4 : sub.w #2,dl 
6 : beq.s 12 
8: jmp 16(a4) ; wnaerr 
12: link a6,#0 
16: move.1 a2,-(a71 
18: move.1 a5,-(a71 
20: move.1 7(a2),a5 
24 : tst.b -208(a4) ; signal-hit 
28: beq.s 34 
30: jsr 872(a4) ; process-sig 
34: move.1 8(a6),d4 ; y  
38 : move.1 12(a6),d0 ; x 
42 : or.1 d4.dO 
44 : and.b #7,d0 
48 : bne.s 62 
50: add.1 12(a6),d4 ; x 
54: bvc.s 76 
56: jsr 696(a4) ; add-overfl ow 
60: bra.s 76 
62 : move.1 12(a6),-(a7) ; x 
66: move.1 d4,-(a71 
68 : move.1 #2.dl 



70: move.1 -304(a4),aO ; +-2op 
74 : jsr (a41 
76: move.1 #l.dl 
78: move. 1 -8(a6) ,a5 
82 : unl k a6 
84 : rtd #8 

See how much more work is done. The first four instructions ensure that the right 
number of arguments have been passed to g . If not, there is a jump to wn a e r r (wrong- 
number-of-arguments-error). Instructions 12-20 have the argument loading code 
that was at 0-8 in f .  At 24-30 there is a check for asynchronous signals, such as the 
user hitting the abort key. After x and y are loaded, there is a type check (42-48). If 
the arguments are not both fixnums, then the code at instructions 62-74 sets up a 
call to +-2op, which handles type coercion and non-fixnum addition. If all goes well, 
we don't have to call this routine, and do the addition at instruction 50 instead. But 
even then we are not done-just because the two arguments were fixnums does not 
mean the result will be. Instructions 54-56 check and branch to an overflow routine 
if needed. Finally, instructions 76-84 return the final value, just as in f .  

Some low-quality compilers ignore declarations altogether. Other compilers 
don't need certain declarations, because they can rely on special instructions in the 
underlying architecture. On a Lisp Machine, both f and g compile into the same 
code: 

6 PUSH ARGlO ; X  
7 + ARGll ; Y  
8 RETURN PDL- POP 

The Lisp Machine has a microcoded + instruction that simultaneously does a fixnum 
add and checks for non-fixnum arguments, branching to a subroutine if either argu- 
ment is not a fixnum. The hardware does the work that the compiler has to do on a 
conventional processor. This makes the Lisp Machine compiler simpler, so compil- 
ing a function is faster. However, on modern pipelined computers with instruction 
caches, there is little or no advantage to microcoding. The current trend is away from 
microcode toward reduced instruction set computers (RISC). 

On most computers, the following declarations are most likely to be helpful: 

f i xnum and f 1 oat. Numbers declared as fixnums or floating-point numbers 
can be handled directly by the host computer's arithmetic instructions. On 
some systems, f l  oat by itself is not enough; you have to say si ngl e-fl  o a t  
or doubl e - f 1 oat. Other numeric declarations will probably be ignored. For 
example, declaring a variable as i nteger does not help the compiler much, 
because bignums are integers. The code to add bignums is too complex to put 



inline, so the compiler will branch to a general-purpose routine (like +-2op in 
Allegro), the same routine it would use if no declarations were given. 

1 i s t  and a r ray. Many Lisp systems provide separate functions for the list- and 
array- versions of commonly used sequence functions. For example, (del e te  
x ( the  l i s t  1 ) )  compilesinto (sys:delete-l ist-eql  x 1 )  onaTIExplorer 
Lisp Machine. Another function, sys : del e te  - vector, is used for arrays, and 
the generic function del e te  is used only when the compiler can't tell what type, 
the sequence is. So if you know that the argument to a generic function is either 
a 1 i s t  or an array, then declare it as such. 

s i mpl e - vector and s i mpl e - a rray. Simple vectors and arrays are those that 
do not share structure with other arrays, do not have fill pointers, and are 
not adjustable. In many implementations it is faster to a ref a s i mpl e - vect or 
than a vector. It is certainly much faster than taking an el t of a sequence of 
unknown type. Declare your arrays to be simple (if they in fact are). 

( array type 1. It is often important to specialize the type of array elements. For 
example, an ( a r r ay short - f 1 oat may take only half the storage of a general 
array, and such a declaration will usually allow computations to be done using 
the CPU's native floating-point instructions, rather than converting into and 
out of Common Lisp's representation of floating points. This is very important 
because the conversion normally requires allocating storage, but the direct 
computation does not. The specifiers ( s i  rnpl e-  array type) and ( vector type) 
should be used instead of (array type) when appropriate. A very common 
mistake is to declare ( s i mpl e -vector type 1. This is an error because Common 
Lisp expects ( s i  mpl e- vector size)-don't ask me why. 

( a r ray * dimensions 1. The full form of an array or s i rnpl e - a r ray type specifier 
is (array type dimensions). So, for example, (array b i t  (*  * I )  is a two- 
dimensional bit array, and ( a r r ay bi t ( 1024 1024 ) ) is a 1024 x 1024 bit array. 
It is very important to specify the number of dimensions when known, and less 
important to specify the exact size, although with multidimensional arrays, 
declaring the size is more important. The format for a vector type specifier is 
(vector type size). 

Note that several of these declarations can apply all at once. For example, in 

(position # \ .  (the simple-string file-name) 

the variable f i  1 ename has been declared to be a vector, a simple array, and a se- 
quence of type s t  r i ng - c ha r. All three of these declarations are helpful. The type 
simple-string is an abbreviation for (simp1 e-array str ing-char) .  



This guide applies to most Common Lisp systems, but you should look in the 
implementation notes for your particular system for more advice on how to fine-tune 
your code. 

10.2 Avoid Generic Functions 

Common Lisp provides functions with great generality, but someone must pay the 
price for this generality. For example, if you write (el t x 0 1, different machine 
instruction will be executed depending on if x is a list, string, or vector. Without 
declarations, checks will have to be done at runtime. You can either provide decla- 
rations, as in ( el t ( the 1 i s t  x ) 0 1, or use a more specific function, such as ( f i rs t 
X )  inthecaseof lists, (char x 0) for strings, (aref x0)  forvectors, and (svref x 
0) for simple vectors. Of course, generic functions are useful-I wrote random-el t 
as shown following to work on lists, when I could have written the more efficient 
random-mem instead. The choice paid off when I wanted a function to choose a ran- 
dom character from a string-random- el t does the job unchanged, while random- mem 
does not. 

(de fun  r andom- e l t  ( s )  ( e l t  s (random ( l e n g t h  s ) ) ) )  
( de fun  random-mem ( 1 )  ( n t h  (random ( l e n g t h  ( t h e  l i s t  1 ) ) )  1 ) )  

This example was simple, but in more complicated cases you can make your sequence 
functions more efficient by having them explicitly check if their arguments are lists 
or vectors. See the definition of map- i nto on page 857. 

10.3 Avoid Complex Argument Lists 

Functions with keyword arguments suffer a large degree of overhead. This may also 
be true for optional and rest arguments, although usually to a lesser degree. Let's 
look at some simple examples: 

(de fun  r e g  ( a  b c d )  ( l i s t  a  b c d l )  
( de fun  rs t  ( a  b c &res t  d )  ( l i s t *  a  b c d l )  
( de fun  o p t  ( & o p t i o n a l  a  b ( c  1 )  ( d  ( s q r t  a ) ) )  ( l i s t  a  b c  d l )  
( de fun  key (&key a  b ( c  I )  ( d  ( s q r t  a ) ) )  ( l i s t  a  b c d l )  

We can see what these compile into for the TI Explorer, but remember that your 
compiler may be quite different. 



> ( d i s a s s e m b l e  ' r e g )  
8 PUSH ARGlO ; A  
9 PUSH A R G l l  ; B  

1 0  PUSH ARG12 ; C  
11 PUSH ARG13 ; D  
1 2  T A I L - R E C  C A L L - 4  F E F 1 3  ; # ' L I S T  

> ( d i  sassembl e  ' r s t  
8 PUSH ARGlO ; A  
9 PUSH A R G l l  ; B  

1 0  PUSH ARG12 ; C  
11 PUSH LOCAL1 0 ; D 
1 2  RETURN C A L L - 4  F E F 1 3  ; # ' L I S T *  

With the regular argument list, we just push the four variables on the argument stack 
and branch to the list function. (Chapter 22 explains why a tail-recursive call is just 
a branch statement.) 

With a rest argument, things are almost as easy. It turns out that on this machine, 
the microcode for the calling sequence automatically handles rest arguments, storing 
them in local variable 0. Let's compare with optional arguments: 

(de fun  o p t  ( & o p t i o n a l  a  b  ( c  1) ( d  ( s q r t  a ) ) )  ( l i s t  a  b c  d l )  

> ( d i s a s s e m b l e  ' o p t )  
2 4  DISPATCH F E F 1 5  ; LO+-25;1+25;2+25;3=+-27;ELSE+301 
2 5  PUSH-NUMBER 1 
2 6  POP ARG12 ; C  
2 7  PUSH ARGlO ; A  
2 8  PUSH C A L L - 1  F E F 1 3  ; #'SQRT 
2 9  POP ARG13 ; D 
3 0  PUSH ARGlO ; A  
3 1  PUSH A R G l l  ; B  
3 2  PUSH ARG12 ; C  
3 3  PUSH ARG13 ; D  
3 4  T A I L - R E C  C A L L - 4  F E F I  4 ; # ' L I S T  

Although this assembly language may be harder to read, it turns out that optional 
arguments are handled very efficiently. The calling sequence stores the number of 
optional arguments on top of the stack, and the DISPATCH instruction uses this to 
index into a table stored at location FEF 15 (an offset five words from the start of 
the function). The result is that in one instruction the function branches to just the 
right place to initialize any unspecified arguments. Thus, a function with optional 
arguments that are all supplied takes only one more instruction (the dispatch) than 
the "regular" case. Unfortunately, keyword arguments don't fare as well: 

(de fun  key (&key a  b  ( c  1) ( d  ( s q r t  a ) ) )  ( l i s t  a  b  c d l )  



> ( d i  sassembl e 'key)  
14 PUSH-NUMBER 1 
15 POP LOCAL13 ; C 
16 PUSH FEF 13 ; SYS: : KEYWORD-GARBAGE 
17 POP LOCAL 1 4 
18 TEST LOCAL I 0  
19 BR-NULL 24 
20 PUSH FEF14 ; ' ( :A  :B :C :D) 
21 SET-NIL PDL-PUSH 
22 PUSH-LOC LOCAL I1 ; A 
23 (AUX) %STORE-KEY-WORD-ARGS 
24 PUSH LOCAL I1 ; A 
25 PUSH LOCAL1 2 ; B 
26 PUSH LOCAL1 3 ; C 
27 PUSH LOCAL 1 4 
28 EQ FEF13 ; SYS::KEYWORD-GARBAGE 
29 BR-NULL 33 
30 PUSH LOCAL11 ; A 
3 1  PUSH CALL-1 FEF15 ; #'SQRT 
32 RETURN CALL-4 FEFI 6 ; # 'L IST 
33 PUSH LOCAL 1 4 
34 RETURN CALL-4 FEFI 6 ; # 'L IST 

It is not important to be able to read all this assembly language. The point is that there 
is considerable overhead, even though this architecture has a specific instruction 
(%STORE- KEY -WORD-ARGS) to help deal with keyword arguments. 

Now let's look at the results on another system, the Allegro compiler for the 
68000. First, here's the assembly code for reg, to give you an idea of the minimal 
calling sequence:' 

> ( d i  sassembl e ' r e g  
;; d isassembl ing #<Funct ion r e g  @ #x83db59> 
;; fo rma ls :  a b c d 
;; code v e c t o r  @ #x83dblc 
0 : l i n k  a6,#0 
4 : move.1 a2,-(a71 
6 : move.1 a5, - (a71 
8: move.1 7(a2),a5 
12: move.1 20(a6) , - (a7)  ; a 
16: move.1 16 (a6 ) , - (a7 )  ; b  
20: move.1 12(a6) , - (a71 ; c 
24: move.1 8 (a6 ) , - (a7 )  ; d 
28: move.1 #4 ,d l  
30 : j s r  848(a4) ; l i s t  
- - 

l ~ h e s e  are all done with safety 0 and speed 3. 



34: move.1 -8(a6) ,a5 
38: unlk a6 
40 : rtd #10 

Now we see that &res t  arguments take a lot more code in this system: 

> (disassemble 'rst) 
;; disassembling #<Function rst @ #x83de89> 
;; formals: a b c &rest d 
;; code vector @ #x83de34 
0: sub.w #3,dl 
2 : bge.s 8 
4 : jmp 16(a4) ; wnaerr 
8 : move.1 (a7)+,al 
10: move.1 d3,-(a71 ; nil 
12: sub.w #l,dl 
14: b1t.s 38 
16: move.1 a1,-52(a4) ; c-protected-retaddr 
20 : jsr 40(a4> ; cons 
24: move.1 d4,-(a71 
26: dbra d1.20 
30 : move.1 -52(a4) ,a1 ; c-protected-retaddr 
34 : clr.1 -52(a4) ; c-protected-retaddr 
38 : move.1 a1,-(a71 
40 : link a6.#0 
44 : move.1 a2,-(a71 
46 : move.1 a5,-(a71 
48: move.1 7(a2),a5 
52: move.1 -332(a4).a0 ;list* 
56 : move.1 -8(a6),a5 
60 : unl k a6 
62 : move.1 #4.dl 
64 : jmp (a41 

The loop from 20-26 builds up the &res t  list one cons at a time. Part of the difficulty 
is that cons could initiate a garbage collection at any time, so the list has to be built 
in a place that the garbage collector will know about. The function with optional 
arguments is even worse, taking 34 instructions (104 bytes), and keywords are worst 
of all, weighing in at 71 instructions (178 bytes), and including a loop. The overhead 
for optional arguments is proportional to the number of optional arguments, while 
for keywords it is proportional to the product of the number of parameters allowed 
and the number of arguments actually supplied. 

A good guideline to follow is to use keyword arguments primarily as an interface 
to infrequently used functions, and to provide versions of these functions without 
keywords that can be used in places where efficiency is important. Consider: 



(p roc la im ' ( i n l i n e  key))  
(defun key (&key a b ( c  1 )  ( d  ( s q r t  a ) ) )  (*no-key a b c d l )  
(defun *no-key (a b c d l  ( l i s t  a b c d l )  

Here the function key is used as an interface to the function no  - key, which does the 
real work. The inline proclamation should allow the compiler to compile a call to key 
as a call to n o  - key with the appropriate arguments: 

> (disassemble #'(lambda ( x  y )  (key :b x :a y ) ) )  
10 PUSH ARGll ; Y  

11 PUSH ARGlO ; X  

12 PUSH-NUMBER 1 

13 PUSH ARGll ; Y  

14 PUSH CALL-1 FEFI 3 ; #'SQRT 
15 TAIL-REC CALL-4 FEF14 ; #'NO-KEY 

The overhead only comes into play when the keywords are not known at compile 
time. In the following example, the compiler is forced to call key, not n o  - key, because 
it doesn't know what the keyword k will be at run time: 

> (disassemble #'(lambda ( k  x y )  (key k x :a y ) ) )  
10 PUSH ARGlO ; K  
11 PUSH ARGll ; X  

12 PUSH FEF13 ; ' : A  
13 PUSH ARG12 ; Y  

14 TAIL-REC CALL-4 FEF14 ; #'KEY 

Of course, in this simple example I could have replaced n o -  key with 1 i st, but in 
general there will be some more complex processing. If I had proclaimed n o -  key 
inline as well, then I would get the following: 

> (disassemble #'(lambda ( x  y )  (key :b x :a y ) ) )  

10 PUSH ARGll ; Y  

11 PUSH ARGlO ; X  

12 PUSH-NUMBER 1 

13 PUSH ARGll ; Y  

14 PUSH CALL-1 FEFI 3 ; #'SQRT 
15 TAIL-REC CALL-4 FEF14 ; #'LIST 

If you like, you can define amacro to automatically define the interface to the keyword- 
less function: 



(defmacro defun* (fn-name a r g - l i s t  & r e s t  body) 
"Def ine two func t ions ,  one an i n t e r f a c e  t o  a &keyword-less 
vers ion.  Procl aim t h e  i n t e r f a c e  f u n c t i o n  i n 1  i n e .  " 
( i f  (and (member '&key a r g - l i s t )  

( n o t  (member ' & r e s t  a r g - l i s t ) ) )  
( l e t  ((no-key-fn-name (symbol fn-name ' *no-key))  

(args (mapcar # ' f i r s t - o r - s e l f  
( s e t - d i f f e r e n c e  

arg-1 i s t  
1 ambda - 1 i s t  - keywords 1) 1) 

' (progn 
(p roc la im ' ( i n l i n e  ,fn-name)) 
(defun ,no-key-fn-name ,args 

. , body 
(defun ,fn-name , a r g - l i s t  

( ,no-key-fn-name . ,a rgs ) ) )  
' (defun ,fn-name , a r g - l i s t  

. ,body) 1) 

> (macroexpand ' (defun*  key (&key a b ( c  1) ( d  ( s q r t  a ) ) )  
( l i s t  a b c d l ) )  

(PROGN (PROCLAIM '(INLINE KEY)) 
(DEFUN KEY*NO-KEY (A B C D) (LIST A B C D l )  
(DEFUN KEY (&KEY A B (C 1) (D (SQRT A ) ) )  

(KEY*NO-KEY A B C D l ) )  

> (macroexpand ' (defun*  reg (a  b c d l  ( l i s t  a b c d l ) )  
(DEFUN REG ( A  B C D l  (LIST A B C D l )  

There is one disadvantage to this approach: a user who wants to declare key inline 
or not inline does not get the expected result. The user has to know that key is 
implemented with key*no - key, and declare key*no - key inline. 

An alternative is just to proclaim the function that uses &key to be inline. Rob 
MacLachlan provides an example. In CMU Lisp, the function member has the follow- 
ing definition, which is proclaimed inline: 

(defun member ( i t e m  l i s t  &key (key # ' i d e n t i t y )  
( t e s t  # 'eq l  t e s t p )  ( t e s t - n o t  n i l  n o t p ) )  

(do ( ( l i s t  l i s t  ( c d r  l i s t ) ) )  
( ( n u l l  l i s t )  n i l )  

( l e t  ( ( c a r  ( c a r  l i s t ) ) )  
( i f  (cond 

( t e s t p  
( f u n c a l l  t e s t  i t e m  

( f u n c a l l  key c a r ) ) )  
(no tp  
( n o t  



(funcall test-not item 
(funcall key car) 1)  

(t 
(funcall test item 

(funcall key car)))) 
(return list))))) 

Acalllike(mernber ch 1 :key # ' f i r s t - l e t t e r  : t es t  #'char=)expandsintothe 
equivalent of the following code. Unfortunately, not all compilers are this clever with 
inline declarations. 

(do ((list list (cdr list))) 
((null list) nil) 

(let ((car (car list))) 
(if (char= ch (first-letter car)) 

(return list)))) 

This chapter is concerned with efficiency and so has taken a stand against the use 
of keyword parameters in frequently used functions. But when maintainability 
is considered, keyword parameters look much better. When a program is being 
developed, and it is not clear if a function will eventually need additional arguments, 
keyword parameters may be the best choice. 

10.4 Avoid Unnecessary Consing 

The cons function may appear to execute quite quickly, but like all functions that 
allocate new storage, it has a hidden cost. When large amounts of storage are 
used, eventually the system must spend time garbage collecting. We have not 
mentioned it earlier, but there are actually two relevant measures of the amount of 
space consumed by a program: the amount of storage allocated, and the amount of 
storage retained. The difference is storage that is used temporarily but eventually 
freed. Lisp guarantees that unused space will eventually be reclaimed by the garbage 
collector. This happens automatically-the programmer need not and indeed can not 
explicitly free storage. The problem is that the efficiency of garbage collection can 
vary widely. Garbage collection is particularly worrisome for real-time systems, 
because it can happen at any time. 

The antidote to garbage woes is to avoid unnecessary copying of objects in often- 
used code. Try using destructive operations, like nreverse, del ete, and nconc, 
rather than their nondestructive counterparts, (like reverse, remove, and append) 
whenever it is safe to do so. Or use vectors instead of lists, and reuse values rather 
than creating copies. As usual, this gain in efficiency may lead to errors that can 



be difficult to debug. However, the most common kind of unnecessary copying 
can be eliminated by simple reorganization of your code. Consider the following 
version of f 1 a tten, which returns a list of all the atoms in its input, preserving order. 
Unlike the version in chapter 5, this version returns a single list of atoms, with no 
embedded lists. 

( d e f u n  f l a t t e n  ( i n p u t )  
" R e t u r n  a  f l a t  l i s t  o f  t h e  a toms  i n  t h e  i n p u t .  
Ex: ( f l a t t e n  ' ( ( a )  ( b  ( c )  d l ) )  => ( a  b  c  d l . "  
( c o n d  ( ( n u l l  i n p u t )  n i l )  

( ( a t o m  i n p u t )  ( l i s t  i n p u t ) )  
( t  (append  ( f l a t t e n  ( f i r s t  i n p u t ) )  

( f l a t t e n  ( rest  i n p u t ) ) ) ) ) )  

This definition is quite simple, and it is easy to see that it is correct. However, each 
call to append requires copying the first argument, so this version can cons 0(n2) cells 
on an input with n atoms. The problem with this approach is that it computes the 
list of atoms in the f i r s t  and rest of each subcomponent of the input. But the f i r s t  
sublist by itself is not part of the final answer-that's why we have to call append. We 
could avoid generating garbage by replacing append with nconc, but even then we 
would still be wasting time, because nconc would have to scan through each sublist 
to find its end. 

The version below makes use of an accumulator to keep track of the atoms that 
have been collected in the rest, and to add the atoms in the f i r s t  one at a time with 
cons, rather than building up unnecessary sublists and appending them. This way 
no garbage is generated, and no subcomponent is traversed more than once. 

( d e f u n  f l a t t e n  ( i n p u t  & o p t i o n a l  a c c u m u l a t o r )  
" R e t u r n  a  f l a t  l i s t  o f  t h e  a toms  i n  t h e  i n p u t .  
Ex: ( f l a t t e n  ' ( ( a )  ( b  ( c )  d l ) )  => ( a  b  c  d l . "  
(cond  ( ( n u l l  i n p u t )  a c c u m u l a t o r )  

( ( a t o m  i n p u t )  ( c o n s  i n p u t  a c c u m u l a t o r ) )  
( t  ( f l a t t e n  ( f i r s t  i n p u t )  

( f l a t t e n  ( rest  i n p u t )  a c c u m u l a t o r ) ) ) ) )  

The version with the accumulator may be a little harder to understand, but it is far 
more efficient than the original version. Experienced Lisp programmers become 
quite skilled at replacing calls to append with accumulators. 

Some of the early Lisp machines had unreliable garbage-collection, so users 
just turned garbage collection off, used the machine for a few days, and rebooted 
when they ran out of space. With a large virtual memory system this is a feasible 
approach, because virtual memory is a cheap resource. The problem is that real 
memory is still an expensive resource. When each page contains mostly garbage 



and only a little live data, the system will spend a lot of time paging data in and out. 
Compacting garbage-collection algorithms can relocate live data, packing it into a 
minimum number of pages. 

Some garbage-collection algorithms have been optimized to deal particularly well 
with just this case. If your system has an ephemeral or generational garbage collector, 
you need not be so concerned with short-lived objects. Instead, it will be the medium- 
aged objects that cause problems. The other problem with such systems arises when 
an object in an old generation is changed to point to an object in a newer generation. 
This is to be avoided, and it may be that reverse is actually faster than n rever se in 
such cases. To decide what works best on your particular system, design some test 
cases and time them. 

As an example of efficient use of storage, here is a version of p a t  -match that 
eliminates (almost) all consing. The original version of p a t  -match, as used in ELIZA 

(page 180), used an association list of variable/value pairs to represent the binding 
list. This version uses two sequences: a sequence of variables and a sequence of 
values. The sequences are implemented as vectors instead of lists. In general, vectors 
take half as much space as lists to store the same information, since half of every list 
is just pointing to the next element. 

In this case, the savings are much more substantial than just half. Instead of 
building up small binding lists for each partial match and adding to them when the 
match is extended, we will allocate a sufficiently large vector of variables and values 
just once, and use them over and over for each partial match, and even for each 
invocation of p a t  -match. To do this, we need to know how many variables we are 
currently using. We could initialize a counter variable to zero and increment it each 
time we found a new variable in the pattern. The only difficulty would be when the 
counter variable exceeds the size of the vector. We could just give up and print an 
error message, but there are more user-friendly alternatives. For example, we could 
allocate a larger vector for the variables, copy over the existing ones, and then add in 
the new one. 

It turns out that Common Lisp has a built-in facility to do just this. When a 
vector is created, it can be given afill pointer. This is a counter variable, but one that 
is conceptually stored inside the vector. Vectors with fill pointers act like a cross 
between a vector and a stack. You can push new elements onto the stack with the 
functionsvector-push or vector-push-extend. Thelatterwillautomaticallyallocate 
a larger vector and copy over elements if necessary. You can remove elements with 
vector - pop, or you can explicitly look at the fill pointer with f i 1 1 -poi nter, or change 
it with a set  f. Here are some examples (with *pr i n t  - a r ray* set to t so we can see 
the results): 

> (setf a (make-array 5 :fill-pointer 0 ) )  + #O 
> (vector-push 1 a )  + 0  



> (vector-push 2 a) + 1 

> (vector-pop a) + 2 

> (dotimes (i  10) (vector-push-extend 'x a)) + N I L  

> (fill-pointer a) + 11 
> (setf (fill-pointer a) 1) + 1 

> (find 'x a) + N I L  N I L  ; F I N D  can' t f ind past the fill pointer 

> (aref a 2) + X ; But  AREF can see beyond the  fill pointer 

Using vectors with fill pointers in p a t  -matc h, the total storage for binding lists is 
just twice the number of variables in the largest pattern. I have arbitrarily picked 
10 as the maximum number of variables, but even this is not a hard limit, because 
vector-push-extend can increase it. In any case, the total storage is small, fixed 
in size, and amortized over all calls to pat-match. These are just the features that 
indicate a responsible use of storage. 

However, there is a grave danger with this approach: the value returned must 
be managed carefully. The new p a t  -match returns the value of success when it 
matches. success is bound to a cons of the variable and value vectors. These can be 
freely manipulated by the calling routine, but only up until the next call to p a t  -match. 
At that time, the contents of the two vectors can change. Therefore, if any calling 
function needs to hang on to the returned value after another call to pat-match, it 
should make a copy of the returned value. So it is not quite right to say that this 
version of p a t  -match eliminates all consing. It will cons when vector - pus h - extend 
runs out of space, or when the user needs to make a copy of a returned value. 

Here is the new definition of p a t  -match. It is implemented by closing the defi- 
nition of p a t  -match and its two auxilliary functions inside a 1 e t  that establishes the 
bindings of va  rs, va 1 s, and success, but that is not crucial. Those three variables 
could have been implemented as global variables instead. Note that it does not sup- 
port segment variables, or any of the other options implemented in the p a t  -match 
of chapter 6. 

(let* ((vars (make-array 10 :fill-pointer 0 :adjustable t)) 
(val s (make-array 10 :fill -pointer 0 :adjustable t)) 
(success (cons vars vals))) 



(defun efficient-pat-match (pattern input) 
"Match pattern against input." 
(setf (fill-pointer vars) 0) 
(setf (fill-pointer vals) 0) 
(pat-match-1 pattern input)) 

(defun pat-match-1 (pattern input) 
(cond ((variable-p pattern) (match-var pattern input)) 

((eql pattern input) success) 
((and (consp pattern) (consp input)) 
(and (pat-match-1 (first pattern) (first input)) 

(pat-match-1 (rest pattern) (rest input)))) 
(t fail))) 

(defun match-var (var input) 
"Match a single variable against input." 
(let ((i (position var vars))) 

(cond ((null i) 
(vector-push-extend var vars) 
(vector-push-extend input vals) 
success 1 

((equal input (aref vals i)) success) 
(t fail))))) 

An example of its use: 

> (efficient-pat-match '(?x + ?x = ?y . ?z) 
'(2 + 2 = (3 + 1) is true)) 

( # ( ? X  ?Y  ? Z )  . #(2 (3 + 1) (IS TRUE)) )  

Extensible vectors with fill pointers are convenient, and much more efficient than 
consing up lists. However, there is some overhead involved in using them, and for 
those sections of code that must be most efficient, it is best to stick with simple 
vectors. The following version of e f  f i ci en t - pat -match explicitly manages the size 
of the vectors and explicitly replaces them with new ones when the size is exceeded: 

(let* ((current-size 0) 
(max-size 1) 
(vars (make-array max-size)) 
(val s (make-array max-size) 
(success (cons vars va1.s))) 

(declare (simp1 e-vector vars val s) 
(fixnum current-size max-size)) 



(defun e f f i c i e n t - p a t - m a t c h  ( p a t t e r n  i n p u t )  

"Match p a t t e r n  against  i n p u t . "  

( s e t f  c u r r e n t - s i z e  0)  

(pat-match-1 p a t t e r n  i n p u t ) )  

;; pat-match-1 i s  unchanged 

(defun match-var ( v a r  i n p u t )  

"Match a  s i n g l e  v a r i a b l e  aga ins t  i n p u t . "  

( l e t  ( ( i  ( p o s i t i o n  var v a r s ) ) )  

(cond 

( ( n u l l  i )  

(when (= c u r r e n t - s i z e  max-size) 

;; Make new vec to rs  when we run ou t  o f  space 
( s e t f  max-size (* 2 max-size) 

vars ( rep lace  (make-array max-size) vars)  

va l  s  (rep1 ace (make-array max-size) va l  s)  

success (cons vars v a l s ) ) )  

;; Store var  and i t s  va lue i n  vectors  

( s e t f  ( a r e f  vars c u r r e n t - s i z e )  v a r )  

( s e t f  ( a r e f  v a l s  c u r r e n t - s i z e )  i n p u t )  

( i n c f  c u r r e n t - s i z e )  

success 1 
( (equal  i n p u t  ( a r e f  v a l s  i ) )  success) 

( t  f a i l ) ) ) ) )  

In conclusion, replacing lists with vectors can often save garbage. But when you 
must use lists, it pays to use a version of cons that avoids consing when possible. The 
following is such a version: 

( p r o c l  aim ' ( i  n l  i n e  reuse-cons 1)  

(defun reuse-cons ( x  y x - y )  

"Return (cons x  y ) ,  o r  j u s t  x - y  i f  i t  i s  equal t o  (cons x  y ) . "  

( i f  (and (eq l  x  ( ca r  x - y ) )  (eq l  y  ( c d r  x - y ) ) )  

x-Y 
(cons x  y > > >  

The trick is based on the definition of subst in Steele's Common Lisp the  Language. 
Here is a definition for a version of remove that uses reuse - cons: 



(defun remq (item l i s t )  
"Like REMOVE, b u t  uses EQ, and only works on 1 i s t s . "  
(cond ((null  l i s t )  n i l )  

((eq item ( f i r s t  l i s t ) )  (remq item ( res t  l i s t ) ) )  
( t  (reuse-cons ( f i r s t  1 i s t )  

(remq item ( res t  l i s t ) )  
l i s t ) ) ) )  

Avoid Consing: Unique Lists 

Of course, reuse - cons only works when you have candidate cons cells around. That 
is, ( reuse - cons a b c ) only saves space when c is (or might be) equal to ( cons a b ) . 
For some applications, it is useful to have a version of cons that returns a unique cons 
cell without needing c as a hint. We will call this version ucons for "unique cons." 
ucons maintains a double hash table: *uni q - cons - tab1 e* is a hash table whose keys 
are the cars of cons cells. The value for each car is another hash table whose keys 
are the cdrs of cons cells. The value of each cdr in this second table is the original 
cons cell. So two different cons cells with the same ca r and cd r will retrieve the same 
value. Here is an implementation of ucons: 

(defvar *uniq-cons-table* (make-hash-table : tes t  # 'eq)) 

(defun ucons (x y )  
"Return a cons s . t .  (eq (ucons x y )  (ucons x y ) )  i s  t rue. " 
( l e t  ( (car -table  (or (gethash x *uniq-cons-table*) 

(setf (gethash x *uniq-cons-table*) 
(make-hash-table : t es t  # ' e q ) ) ) ) )  

(or (gethash y car-table) 
(setf (gethash y car-table) (cons x y ) ) ) ) )  

ucons, unlike cons, is a true function: it will always return the same value, given 
the same arguments, where "same" is measured by eq. However, if ucons is given 
arguments that are equal but not eq, it will not return a unique result. For that 
we need the function uni que. It has the property that ( uni  que x) is eq to ( uni que 
y )  whenever x and y  are equal. unique uses a hash table for atoms in addition to 
the double hash table for conses. This is necessary because strings and arrays can 
be equal without being eq. Besides unique, we also define u l  i s t  and uappend for 
convenience. 

(defvar *uniq-atom-table* (make-hash-table : t es t  #'equal)) 



(defun unique (exp) 
"Return a canonical rep resen ta t ion  t h a t  i s  EQUAL t o  exp, 
such t h a t  (equal x y )  i m p l i e s  (eq (unique x )  (unique y ) ) . "  
( typecase exp 

(symbol exp) 
( f ixnum exp) ;; Remove i f  fixnums are n o t  eq i n  your  L i s p  
(atom ( o r  (gethash exp *un iq-atom-tab le*)  

( s e t f  (gethash exp *uniq-atom-table*) exp ) ) )  
(cons (unique-cons (ca r  exp) ( c d r  e x p ) ) ) ) )  

(defun unique-cons ( x  y )  
"Return a cons s . t .  (eq (ucons x y )  (ucons x2 y 2 ) )  i s  t r u e  
whenever (equal x x2) and (equal y y2 )  a re  t r u e . "  
(ucons (unique x )  (unique y ) ) )  

(defun u l i s t  ( & r e s t  args)  
" A  u n i q u i f i e d  l i s t . "  
(unique a rgs ) )  

(defun uappend ( x  y) 
" A  unique l i s t  equal t o  (append x y ) . "  
( i f  ( n u l l  x )  

(unique y )  
(ucons ( f i r s t  x )  (uappend ( r e s t  x )  y ) ) ) )  

The above code works, but it can be improved. The problem is that when u n i q u e  is 
applied to a tree, it always traverses the tree all the way to the leaves. The function 
u n i q u e - c o n s  is like ucons, except that u n i q u e - c o n s  assumes its arguments are not 
yet unique. We can modify u n i  que - cons so that it first checks to see if its arguments 
are unique, by looking in the appropriate hash tables: 

(defun unique-cons ( x  y)  
"Return a cons s . t .  (eq (ucons x y )  (ucons x2 y 2 ) )  i s  t r u e  
whenever (equal x x2) and (equal y y2 )  are t r u e . "  
( l e t  ( (ux )  (uy ) )  ; unique x and y 

( l e t  ( ( c a r - t a b l e  
( o r  (gethash x *un iq-cons- tab le*)  

(gethash ( s e t f  ux (unique x ) )  *un iq-cons- tab le*)  
( s e t f  (gethash ux *un iq-cons- tab le*)  

(make-hash-table : t e s t  # * e q ) ) ) ) )  
( o r  (gethash y c a r - t a b l e )  

(gethash ( s e t f  uy (unique y ) )  c a r - t a b l e )  
( s e t f  (gethash uy c a r - t a b l e )  

(cons ux u y ) ) ) ) ) )  

Another advantage of u n i q u e  is that it can help in indexing. If lists are unique, 
then they can be stored in an e q  hash table instead of a e q u a l  hash table. This can 



lead to significant savings when the list structures are large. An eq hash table for 
lists is almost as good as a property list on symbols. 

Avoid Consing: Multiple Values 

Parameters and multiple values can also be used to pass around values, rather than 
building up lists. For example, instead of: 

( d e f s t r u c t  p o i n t  " A  p o i n t  i n  3-D c a r t e s i a n  space." x  y  z )  

(defun s c a l e - p o i n t  ( k  p t )  
" M u l t i p l y  a  p o i n t  by a  constant ,  K." 
(make-point : x  (* k ( p o i n t - x  p t ) )  

:y ( *  k ( p o i n t - y  p t ) )  
:z  (* k ( p o i n t - z  p t ) ) ) )  

one could use the following approach, which doesn't generate structures: 

(defun s c a l e - p o i n t  ( k  x  y z )  
" M u l t i p l y  t h e  p o i n t  (x,y,z) by a  constant ,  K."  
(va lues ( *  k x )  (* k y )  ( *  k z ) ) )  

Avoid Consing: Resources 

Sometimes it pays to manage explicitly the storage of instances of some data type. A 
pool of these instances may be called a resource. Explicit management of a resource 
is appropriate when: (1) instances are frequently created, and are needed only 
temporarily; (2) it is easy/possible to be sure when instances are no longer needed; 
and (3) instances are fairly large structures or take a long time to initialize, so that it 
is worth reusing them instead of creating new ones. Condition (2) is the crucial one: 
If you deallocate an instance that is still being used, that instance will mysteriously 
be altered when it is reallocated. Conversely, if you fail to deallocate unneeded 
instances, then you are wasting valuable memory space. (The memory management 
scheme is said to leak in this case.) 

The beauty of using Lisp's built-in memory management is that it is guaranteed 
never to leak and never to deallocate structures that are in use. This eliminates two 
potential bug sources. The penalty you pay for this guarantee is some inefficiency of 
the general-purpose memory management as compared to a custom user-supplied 
management scheme. But beware: modern garbage-collection techniques are highly 
optimized. In particular, the so-called generation scavenging or ephemeral garbage 
collectors look more often at recently allocated storage, on the grounds that recently 
made objects are more likely to become garbage. If you hold on to garbage in your 
own data structures, you may end up with worse performance. 



With all these warnings in mind, here is some code to manage resources: 

(defmacro defresource (name &key constructor (initial-copies 0) 
(size (max initial -copies 10))) 

(let ((resource (symbol name '-resource)) 
(deallocate (symbol 'deallocate- name)) 
(allocate (symbol 'a1 locate- name)) 

'(let ((.resource (make-array ,size :fill-pointer 0))) 
(defun ,allocate 0 

"Get an element from the resource pool, or make one." 
( i f  (= (fill-pointer ,resource) 0) 

,constructor 
(vector-pop , resource) 1) 

(defun .deal 1 ocate ( ,name) 
"Place a no-longer-needed element back in the pool . "  
(vector-push-extend ,name ,resource)) 

,(if (> initial-copies 0) 
'(mapc #',deallocate (loop repeat ,initial-copies 

collect (,allocate)))) 
' .name> 1 

Let's say we had some structure called a buffer which we were constantly making 
instances of and then discarding. Furthermore, suppose that buffers are fairly 
complex objects to build, that we know we'll need at least 10 of them at a time, and 
that we probably won't ever need more than 100 at a time. We might use the buffer 
resource as follows: 

(defresource buffer :constructor (make-buffer) 
:size 100 :initial-copies 10) 

This expands into the following code: 

(let ((buffer-resource (make-array 100 :fill-pointer 0))) 
(defun allocate-buffer 0 

"Get an element from the resource pool, or make one." 
(if (= (fill-pointer buffer-resource) 0) 
(make-buffer) 
(vector-pop buffer-resource))) 

(defun deallocate-buffer (buffer) 
"Place a no-1 onger-needed element back in the pool . " 
(vector-push-extend buffer buffer-resource)) 

(mapc #'deallocate-buffer 
(loop repeat 10 collect (allocate-buffer))) 

'buffer) 



We could then use: 

(let ((b (allocate-buffer))) 
. . . 
(process b) 
. . . 
(deallocate-buffer b))) 

The important thing to remember is that this works only if the buffer b really can 
be deallocated. If the function process stored away a pointer to b somewhere, 
then it would be a mistake to deallocate b, because a subsequent allocation could 
unpredictably alter the stored buffer. Of course, if process stored a copy of b, then 
everything is alright. This pattern of allocation and deallocation is so common that 
we can provide a macro for it: 

(defmacro with-resource ((var resource &optional protect) &rest body) 
"Execute body with VAR bound to an instance of RESOURCE." 
(1 et ( (a1 1 ocate (symbol 'a1 1 ocate- resource) 

(deallocate (symbol 'deallocate- resource))) 
(if protect 

'(let ((,var nil)) 
(unwind-protect 
(progn (setf ,var (,allocate)) ,@body) 
(unless (null ,var) (,deallocate ,var)))) 

'(let ((.var (,allocate))) 
,@body 
(,deallocate ,var))))) 

The macro allows for an optional argument that sets up an unwi nd-protect environ- 
ment, so that the buffer gets deallocated even when the body is abnormally exited. 
The following expansions should make this clearer: 

> (macroexpand '(with-resource ( b  buffer) 
"..." (process b) " . . . " ) )  

(let ((b (allocate-buffer))) 
11 I1 . . . 
(process b) 

11 11 . . . 
(deallocate-buffer b ) )  

> (macroexpand ' (wi th-resource (b buffer t) 
I . . . "  (process b) " . . . " ) )  

(let ((b nil)) 
(unwind-protect 

(progn (setf b (a1 1 ocate-buffer) 
I1 11 . . . 



( p r o c e s s  b )  

( u n l e s s  ( n u l l  b )  
( dea l  l o c a t e - b u f f e r  b )  1)  

An alternative to full resources is to just save a single data object. Such an approach 
is simpler because there is no need to index into a vector of objects, but it is sufficient 
for some applications, such as a tail-recursive function call that only uses one object 
at a time. 

Another possibility is to make the system slower but safer by having the 
dea 1  1  oca t e function check that its argument is indeed an object of the correct type. 

Keep in mind that usingresources may put you at odds with the Lisp system's own 
storage management scheme. In particular, you should be concerned with paging 
performance on virtual memory systems. A common problem is to have only a few 
live objects on each page, thus forcing the system to do a lot of paging to get any work 
done. Compacting garbage collectors can collect live objects onto the same page, but 
using resources may interfere with this. 

10.5 Use the Right Data Structures 

It is important to implement key data types with the most efficient implementation. 
This can vary from machine to machine, but there are a few techniques that are 
universal. Here we consider three case studies. 

The Right Data Structure: Variables 

As an example, consider the implementation of pattern-matching variables. We saw 
from the instrumentationof s i mpl i f y  that va r i a b l  e - p was one of the most frequently 
used functions. In compiling the matching expressions, I did away with all calls to 
va r i  a bl e - p, but let's suppose we had an application that required run-time use of 
variables. The specification of the data type va r i  a bl e will include two operators, 
the recognizer va r  i a bl e - p, and the constructor make - va r i a b l  e, which gives a new, 
previously unused variable. (This was not needed in the pattern matchers shown so 
far, but will be needed for unification with backward chaining.) One implementation 
of variables is as symbols that begin with the character #\?: 

( de fun  v a r i a b l e - p  ( x )  
" I s  x  a  v a r i a b l e  ( a  symbol beg inn ing  w i t h  ' ? ' I ? "  
(and  (symbolp x )  ( equa l  ( e l t  (symbol-name x )  0 )  # \ ? I ) )  



(defun make-variable 0 "Generate a  new variable" (gentemp " ? " I )  

We could try to speed things up by changing the implementation of variables to be 
keywords and making the functions inline: 

(proclaim ' ( in l ine  variable-p make-variable)) 
(defun variable-p (x)  " I s  x  a  variable?" (keywordp x ) )  
(defun make-variable 0 (gentemp " X "  #.(find-package " K E Y W O R D " ) ) )  

(The reader character sequence #.  means to evaluate at read time, rather than at 
execution time.) On my machine, this implementation is pretty fast, and I accepted 
it as a viable compromise. However, other implementations were also considered. 
One was to have variables as structures, and provide a read macro and print function: 

(defs t ruct  (variable ( :print-function print-variable) name) 

(defvar *vars* (make-hash-table)) 

(set-macro-character # \ ?  
#'(lambda (stream char) 

;; Find an old var, or make a new one with the given name 
(declare (ignore char) )  
( l e t  ((name (read stream t nil t ) ) )  

(or  (gethash name *vars*) 
( se t f  (gethash name *vars*) (make-variable :name name))) ) ) )  

(defun print-variable (var stream depth) 
(declare (ignore depth)) 
(format stream "?"a" (var-name v a r ) ) )  

It turned out that, on all three Lisps tested, structures were slower than keywords 
or symbols. Another alternative is to have the ? read macro return a cons whose 
first is, say, : var.  This requires a special output routine to translate back to the ? 
notation. Yet another alternative, which turned out to be the fastest of all, was to 
implement variables as negative integers. Of course, this means that the user cannot 
use negative integers elsewhere in patterns, but that turned out to be acceptable for 
the application at hand. The moral is to know which features are done well in your 
particular implementation and to go out of your way to use them in critical situations, 
but to stick with the most straightforward implementation in noncritical sections. 

Lisp makes it easy to rely on lists, but one must avoid the temptation to overuse 
lists; to use them where another data structure is more appropriate. For example, if 
you need to access elements of a sequence in arbitrary order, then a vector is more 
appropriate than list. If the sequence can grow, use an adjustable vector. Consider 
the problem of maintaining information about a set of people, and searching that set. 
A naive implementation might look like this: 



(defvar *people* nil "Will hold a list of people") 

(defstruct person name address id-number) 

(defun person-with-id (id) 
(find id *people* :key #'person-id-number)) 

In a traditional language like C, the natural solution is to include in the person 
structure a pointer to the next person, and to write a loop to follow these pointers. 
Of course, we can do that in Lisp too: 

(defstruct person name address id-number next) 

(defun person-with-id (id) 
(loop for person = *people* then (person-next person) 

until (null person) 
do (when (eql id (person-id-number person)) 

(RETURN person)))) 

This solution takes less space and is probably faster, because it requires less memory 
accesses: one for each person rather than one for each person plus one for each 
cons cell. So there is a small price to pay for using lists. But Lisp programmers feel 
that price is worth it, because of the convenience and ease of coding and debugging 
afforded by general-purpose functions like f i nd. 

In any case, if there are going to be a large number of people, the list is definitely 
the wrong data structure. Fortunately, Lisp makes it easy to switch to more efficient 
data structures, for example: 

(defun person-with-id (id) 
(get hash i d *peopl e* 

The Right Data Structure: Queues 

A queue is a data structure where one can add elements at the rear and remove them 
from the front. This is almost like a stack, except that in a stack, elements are both 
added and removed at the same end. 

Lists can be used to implement stacks, but there is a problem in using lists to 
implement queues: adding an element to the rear requires traversing the entire list. 
So collecting n elements would be 0 (n2) instead of 0 (n) . 

An alternative implementation of queues is as a cons of two pointers: one to the 
list of elements of the queue (the contents), and one to the last cons cell in the list. 
Initially, both pointers would be nil. This implementation in fact existed in BBN Lisp 
and UCI Lisp under the function name t conc: 



;;; A queue is a (contents . last) pair 

(defun tconc (item q) 
"Insert item at the end of the queue." 
(setf (cdr q) 

(if (null (cdr q)) 
(setf (car q) (cons item nil)) 
(setf (rest (cdr q)) 

(cons item nil))))) 

The tconc implementation has the disadvantage that adding the first element to 
the contents is different from adding subsequent elements, so an i f  statement is 
required to decide which action to take. The definition of queues given below avoids 
this disadvantage with a clever trick. First, the order of the two fields is reversed. 
The car of the cons cell is the last element, and the cdr is the contents. Second, the 
empty queue is a cons cell where the cdr (the contents field) is nil, and the car (the 
last field) is the cons itself. In the definitions below, we change the name tconc to 
the more standard enqueue, and provide the other queue functions as well: 

;;; A queue is a (last . contents) pair 

(proclaim '(inline queue-contents make-queue enqueue dequeue 
front empty-queue-p queue-nconc) 

(defun queue-contents (q) (cdr q)) 

(defun make-queue 0 
"Build a new queue, with no elements." 
(let ((q (cons nil nil))) 
(setf (car q) q))) 

(defun enqueue (item q) 
"Insert item at the end of the queue." 
(setf (car q) 

(setf (rest (car q)) 
(cons item nil))) 

4) 

(defun dequeue (q) 
"Remove an item from the front of the queue." 
(pop (cdr q)) 
(if (null (cdr q)) (setf (car q) q)) 
q) 

(defun front (q) (first (queue-contents q) 1)  

(defun empty-queue-p (q) (null (queue-contents q))) 



(defun queue-nconc ( q  l i s t )  
"Add the elements of LIST to the end of the queue." 
(setf (car q)  

( l a s t  (setf  ( res t  (car q ) )  l i s t ) ) ) )  

The Right Data Structure: Tables 

A table is a data structure to which one can insert a key and associate it with a value, 
and later use the key to look up the value. Tables may have other operations, like 
counting the number of keys, clearing out all keys, or mapping a function over each 
key/value pair. 

Lisp provides a wide variety of choices to implement tables. An association list 
is perhaps the simplest: it is just a list of key/value pairs. It is appropriate for small 
tables, up to a few dozen pairs. The hash table is designed to be efficient for large 
tables, but may have significant overhead for small ones. If the keys are symbols, 
property lists can be used. If the keys are integers in a narrow range (or can be 
mapped into them), then a vector may be the most efficient choice. 

Here we implement an alternative data structure, the trie. A trie implements a 
table for keys that are composed of a finite sequence of components. For example, 
if we were implementing a dictionary as a trie, each key would be a word, and 
each letter of the word would be a component. The value of the key would be the 
word's definition. At the top of the dictionary trie is a multiway branch, one for each 
possible first letter. Each second-level node has a branch for every possible second 
letter, and so on. To find an n-letter word requires n reads. This kind of organization 
is especially good when the information is stored on secondary storage, because a 
single read can bring in a node with all its possible branches. 

If the keys can be arbitrary list structures, rather than a simple sequence of letters, 
we need to regularize the keys, transforming them into a simple sequence. One way 
to do that makes use of the fact that any tree can be written as a linear sequence 
of atoms and cons operations, in prefix form. Thus, we would make the following 
transformation: 

( a  ( b  C )  d )  = 
(cons a (cons (cons b (cons c n i l ) )  (cons d n i l ) ) )  = 
(cons a cons cons b cons c ni 1 cons d ni 1 

In the implementation of tries below, this transformation is done on the fly: The four 
user-level functions are ma ke - t r  i  e  to create a new trie, put - t r  i  e  and get - t r  i e  to 
add and retrieve key/value pairs, and del e t e -  t r i  e  to remove them. 

Notice that we use a distinguished value to mark deleted elements, and that 
get - t r i  e  returns two values: the actual value found, and a flag saying if anything 



was found or not. This is consistent with the interface to gethash and f i n d ,  and 
allows us to store null values in the trie. It is an inobtrusive choice, because the 
programmer who decides not to store null values can just ignore the second value, 
and everything will work properly. 

( d e f s t r u c t  t r i e  ( va lue  n i l  (a rcs  n i l  1 )  
(defconstant  t r i e - d e l  e ted "de le ted"  

(defun p u t - t r i e  (key t r i e  va lue)  
"Set t h e  va lue o f  key i n  t r i e . "  
( s e t f  ( t r i e - v a l u e  ( f i n d - t r i e  key t t r i e ) )  v a l u e ) )  

(defun g e t - t r i e  (key t r i e )  
"Return t h e  va lue f o r  a  key i n  a  t r i e ,  and t l n i l  i f  found." 
( l e t *  ( ( k e y - t r i e  ( f i n d - t r i e  key n i l  t r i e ) )  

( v a l  ( i f  k e y - t r i e  ( t r i e - v a l  ue k e y - t r i e )  1) 
( i f  ( o r  ( n u l l  k e y - t r i e )  (eq va l  t r i e - d e l e t e d ) )  

( v a l  ues n i  1  n i  1  
(va lues va l  t ) ) ) )  

(defun d e l e t e - t r i e  (key t r i e )  
"Remove a  key from a  t r i e . "  
( p u t - t r i e  key t r i e  t r i e - d e l e t e d ) )  

(defun f i n d - t r i e  (key extend? t r i e )  
"F ind  t h e  t r i e  node f o r  t h i s  key. 
I f  EXTEND? i s  t r u e ,  make a  new node i f  need be." 
(cond ( ( n u l l  t r i e )  n i l )  

((atom key) 
( f o l l  ow-arc key extend? t r i e )  

( t  ( f i n d - t r i e  
( c d r  key) extend? 
( f i n d - t r i e  

( c a r  key) extend? 
( f i n d - t r i e  

"." extend? t r i e ) ) ) ) ) )  

(defun f o l l o w - a r c  (component extend? t r i e )  
"F ind  t h e  t r i e  node f o r  t h i s  component o f  t h e  key. 
I f  EXTEND? i s  t r u e ,  make a  new node i f  need be." 
( l e t  ( ( a r c  (assoc component ( t r i e - a r c s  t r i e ) ) ) )  

(cond ( ( n o t  ( n u l l  a r c ) )  ( c d r  a r c ) )  
( ( n o t  extend?) n i l )  
( t  ( l e t  ( ( n e w - t r i e  ( m a k e - t r i e ) ) )  

(push (cons component n e w- t r i e )  
( t r i e - a r c s  t r i e )  1 

n e w - t r i e )  1 1 



There are a few subtleties in the implementation. First, we test for deleted entries 
with an eq comparison to a distinguished marker, the string t ri e - del eted. No other 
object will be eq to this string except t r i e - del eted itself, so this is a good test. We 
also use a distinguished marker, the string " . ", to mark cons cells. Components are 
implicitly compared against this markerwith an eql test by the assoc in fol 1 ow-arc. 
Maintaining the identity of this string is crucial; if, for example, you recompiled 
the definition of f i nd - t ri e (without changing the definition at all), then you could 
no longer find keys that were indexed in an existing trie, because the " . " used by 
f i nd - t ri e would be a different one from the " . " in the existing trie. 

Artificial Intelligence Programming (Charniak et al. 1987) discusses variations on 
the trie, particularly in the indexing scheme. If we always use proper lists (no non-null 
cdrs), then a more efficient encoding is possible. As usual, the best type of indexing 
depends on the data to be indexed. It should be noted that Charniak et al. call the trie 
a discrimination net. In general, that term refers to any tree with tests at the nodes. 

A trie is, of course, a kind of tree, but there are cases where it pays to convert a trie 
into a dag-a directed acyclic graph. A dag is a tree where some of the subtrees are 
shared. Imagine you have a spelling corrector program with a list of some 50,000 or 
so words. You could put them into a trie, each word with the value t. But there would 
be many subtrees repeated in this trie. For example, given a word list containing look, 
looks, looked, and looking as well as show, shows, showed, and showing, there would 
be repetition of the subtree containing -s, -ed and -ing. After the trie is built, we 
could pass the whole trie to uni que, and it would collapse the shared subtrees, saving 
storage. Of course, you can no longer add or delete keys from the dag without risking 
unintended side effects. 

This process was carried out for a 56,000 word list. The trie took up 3.2Mbytes, 
while the dagwas 1.1Mbytes. This was still deemed unacceptable, so a more compact 
encoding of the dag was created, using a .2Mbytes vector. Encoding the same word 
list in a hash table took twice this space, even with a special format for encoding 
suffixes. 

Tries work best when neither the indexing key nor the retrieval key contains 
variables. They work reasonably well when the variables are near the end of the 
sequence. Consider looking up the pattern "ye1 1 o? " in the dictionary, where the " ? " 
character indicates a match of any letter. Following the branches for "ye 1 1 o " leads 
quickly to the only possible match, "ye1 1 ow". In contrast, fetching with the pattern 
" ? ? I 1  ow" is much less efficient. The table lookup function would have to search all 
26 top-level branches, and for each of those consider all possible second letters, and 
for each of those consider the path " 1 1 ow". Quite a bit of searching is required before 
arriving at the complete set of matches: bellow, billow, fallow, fellow, follow, hallow, 
hollow, mallow, mellow, pillow, sallow, tallow, wallow, willow, and yellow. 

We will return to the problem of discrimination nets withvariables in section 14.8, 
page 472. 



10.6 Exercises 

a Exercise 10.1 [h] Define the macro deftabl e, such that (deftabl e person assoc) 
will act much like a def s t r uct-it will define a set of functions for manipulating a 
table of people: get-person, put-person, cl ear-person, andmap-person. The table 
should be implemented as an association list. Later on, you can change the represen- 
tation of the table simply by changing the form to (deftabl e person hash 1, without 
having to change anything else in your code. Other implementation options include 
property lists and vectors. deftabl e should also take three keyword arguments: 
i nl i ne, s i  ze and tes t .  Here is a possible macroexpansion: 

> (macroexpand '(deftableperson hash :inline t :size 100)) = 
(progn 

(proclaim ' ( inl ine get-person put-person map-person)) 
(defparameter *person-table* 

(make-hash-table : t es t  #'eql :size 100) 
(defun get-person (x &optional default) 

(gethash x *person-table* default))  
(defun put-person (x value) 

(setf (gethash x *person-table*) value)) 
(defun clear-person 0 (clrhash *person-table*)) 
(defun map-person (fn)  (maphash fn *person-table*)) 
(defsetf get-person put-person) 
'person 1 

p Exercise 10.2 [rn] We can use the :type option to defstruct to define structures 
implemented as lists. However, often we have a two-field structure that we would 
like to implement as a cons cell rather than a two-element list, thereby cutting storage 
in half. Since def struct does not allow this, define a new macro that does. 

a Exercise 10.3 [m] Use reuse - cons to write a version of f 1 a t  ten (see page 329) that 
shares as much of its input with its output as possible. 

a Exercise 10.4 N Consider the data type set. A set has two main operations: adjoin 
an element and test for membership. It is convenient to also add a map-over-elements 
operation. With these primitive operations it is possible to build up more complex 
operations like union and intersection. 

As mentioned in section 3.9, Common Lisp provides several implementations 
of sets. The simplest uses lists as the underlying representation, and provides the 



functions adjoin, member, union, intersection, and set-di fference. Another uses 
bit vectors, and a similar one uses integers viewed as bit sequences. Analyze the 
time complexity of each implementation for each operation. 

Next, show how sorted lists can be used to implement sets, and compare the 
operations on sorted lists to their counterparts on unsorted lists. 

10.7 Answers 

Answer 10.2 

(defmacro d e f - c o n s - s t r u c t  (cons ca r  cdr  &op t iona l  i n l i n e ? )  
"Def ine a l i a s e s  f o r  cons, car  and cd r . "  
' (progn (p roc la im ' ( , ( i f  i n l i n e ?  ' i n l i n e  ' n o t i n l i n e )  

,car ,cdr ,cons)) 
(defun ,car ( x )  ( c a r  x ) )  
(defun ,cdr ( x )  ( c d r  x ) )  
( d e f s e t f  .car ( X I  ( v a l )  ' ( s e t f  ( c a r  ,XI , v a l ) )  
( d e f s e t f  ,cdr ( x )  ( v a l )  ' ( s e t f  ( c d r  ,XI , v a l ) )  
(defun .cons ( x  y )  (cons x  y ) ) ) )  

Answer 10.3 

(defun f l a t t e n  (exp &op t iona l  ( s o - f a r  n i l  l a s t - c o n s )  
"Return a  f l a t  l i s t  o f  t h e  atoms i n  t h e  i n p u t .  
Ex: ( f l a t t e n  ' ( ( a )  ( b  ( c )  d l ) )  => (a b c  d l . "  
(cond ( ( n u l l  exp) s o - f a r )  

((atom exp) (reuse-cons exp s o - f a r  l a s t - c o n s ) )  
( t  ( f l a t t e n  ( f i r s t  exp) 

( f l a t t e n  ( r e s t  exp) s o - f a r  exp) 
exp) 1 ) )  



CHAPTER I I  
Logic Programming 

A language that doesn't affect the way you think 
about programming is not worth knowing. 

-Alan Perlis 

isp is the major language for A1 work, but it is by no means the only one. The other 
strong contender is Prolog, whose name derives from "programming in logic."' The idea 
behind logic programming is that the programmer should state the relationships that 

describe a problem and its solution. These relationships act as constraints on the algorithms 
that can solve the problem, but the system itself, rather than the programmer, is responsible for 
the details of the algorithm. The tension between the "programming" and "logic" will be covered 
in chapter 14, but for now it is safe to say that Prolog is an approximation to the ideal goal of logic 
programming. Prolog has arrived at a comfortable niche between a traditional programming 
language and a logical specification language. It relies on three important ideas: 

' ~ c t u a l l ~ ,  programmation en logzque, since it was invented by a French group (see page 382). 



e Prolog encourages the use of a single uniform data base. Good compilers provide 
efficient access to this data base, reducing the need for vectors, hash tables, 
property lists, and other data structures that the Lisp programmer must deal 
with in detail. Because it is based on the idea of a data base, Prolog is relational, 
while Lisp (and most languages) are functional. In Prolog we would represent 
a fact like "the population of San Francisco is 750,000" as a relation. In Lisp, 
we would be inclined to write a function, popul a t i  on, which takes a city as 
input and returns a number. Relations are more flexible; they can be used not 
only to find the population of San Francisco but also, say, to find the cities with 
populations over 500,000. 

o Prolog provides logic variables instead of "normal" variables. A logic variable is 
bound by unification rather than by assignment. Once bound, a logic variable 
can never change. Thus, they are more like the variables of mathematics. The 
existence of logic variables and unification allow the logic programmer to state 
equations that constrain the problem (as in mathematics), without having to 
state an order of evaluation (as with assignment statements). 

Prolog provides automatic backtracking. InLisp eachfunctioncallreturns a single 
value (unless the programmer makes special arrangements to have it return 
multiple values, or a list of values). In Prolog, each query leads to a search for 
relations in the data base that satisfy the query. If there are several, they are 
considered one at a time. If a query involves multiple relations, as in "what city 
has a population over 500,000 and is a state capital?," Prolog will go through 
the popul a t  i on relation to find a city with a population over 500,000. For each 
one it finds, it then checks the c a p i t a l  relation to see if the city is a capital. If 
it is, Prolog prints the city; otherwise it backtracks, trying to find another city 
in the popul a t i  on relation. So Prolog frees the programmer from worrying 
about both how data is stored and how it is searched. For some problems, the 
naive automatic search will be too inefficient, and the programmer will have to 
restate the problem. But the ideal is that Prolog programs state constraints on 
the solution, without spelling out in detail how the solutions are achieved. 

This chapter serves two purposes: it alerts the reader to the possibility of writing 
certain programs in Prolog rather than Lisp, and it presents implementations of the 
three important Prolog ideas, so that they may be used (independently or together) 
within Lisp programs. Prolog represents an interesting, different way of looking 
at the programming process. For that reason it is worth knowing. In subsequent 
chapters we will see several useful applications of the Prolog approach. 



11.1 Idea 1: A Uniform Data Base 

The first important Prolog idea should be familiar to readers of this book: manip- 
ulating a stored data base of assertions. In Prolog the assertions are called clauses, 
and they can be divided into two types: facts, which state a relationship that holds 
between some objects, and rules, which are used to state contingent facts. Here 
are representations of two facts about the population of San Francisco and the cap- 
ital of California. The relations are popul a t  i on and capi t a  1, and the objects that 
participate in these relations are SF, 7 50000, Sac ramen t o, and CA: 

(popu la t ion  SF 750000) 
( c a p i t a l  Sacramento C A I  

We are using Lisp syntax, because we want a Prolog interpreter that can be imbedded 
in Lisp. The actual Prolog notation would be popul a t i  on ( s f ,  750000 ) . Here are 
some facts pertaining to the 1 i kes relation: 

( l i k e s  Kim Robin) 
(1 i kes Sandy Lee) 
( l i k e s  Sandy Kim) 
(1 i kes Robin ca ts )  

These facts could be interpreted as meaning that Kim likes Robin, Sandy likes both 
Lee and Kim, and Robin likes cats. We need some way of telling Lisp that these are 
to be interpreted as Prolog facts, not a Lisp function call. We will use the macro <- to 
mark facts. Think of this as an assignment arrow which adds a fact to the data base: 

(<- ( l i k e s  Kim Robin)) 
(<- (1 i kes  Sandy Lee)) 
(<- ( l i k e s  Sandy Kim)) 
(<- ( l i k e s  Robin c a t s ) )  

One of the major differences between Prolog and Lisp hinges on the difference 
between relations and functions. In Lisp, we would define a function 1 i kes, so 
that ( 1 i kes ' Sandy ) would return the list ( Lee Ki m 1. If we wanted to access the 
information the other way, we would define another function, say, 1 i ke rs  - of, so 
that ( 1 i kers - o f  ' Lee ) returns ( Sandy 1. In Prolog, we have a single 1 i kes relation 
instead of multiple functions. This single relation can be used as if it were multiple 
functions by posing different queries. For example, the query ( 1 i kes Sandy ?who ) 
succeeds with ?who bound to Lee or Kim, and the query ( 1 i kes ?who Lee) succeeds 
with ?who bound to Sandy. 



The second type of clause in a Prolog data base is the rule. Rules state contingent 
facts. For example, we can represent the rule that Sandy likes anyone who likes cats 
as follows: 

(<- ( l i k e s  Sandy ?x )  ( l i k e s  ?x  c a t s ) )  

This can be read in two ways. Viewed as a logical assertion, it is read, "For any x, 
Sandy likes x if x likes cats." This is a declarative interpretation. Viewed as a piece 
of a Prolog program, it is read, "If you ever want to show that Sandy likes some x, 
one way to do it is to show that x likes cats." This is a procedural interpretation. 
It is called a backward-chaining interpretation, because one reasons backward from 
the goal (Sandy likes x) to the premises (x likes cats). The symbol <- is appropriate 
for both interpretations: it is an arrow indicating logical implication, and it points 
backwards to indicate backward chaining. 

It is possible to give more than one procedural interpretation to a declarative form. 
(We did that in chapter 1, where grammar rules were used to generate both strings 
of words and parse trees.) The rule above could have been interpreted procedurally 
as "If you ever find out that some x likes cats, then conclude that Sandy likes x." This 
would be forward chaining: reasoning from a premise to a conclusion. It turns out 
that Prolog does backward chaining exclusively. Many expert systems use forward 
chaining exclusively, and some systems use a mixture of the two. 

The leftmost expression in a clause is called the head, and the remaining ones are 
called the body. In this view, a fact is just a rule that has no body; that is, a fact is true 
no matter what. In general, then, the form of a clause is: 

(<- head body  ... 1 

A clause asserts that the head is true only if all the goals in the body are true. For 
example, the following clause says that Kim likes anyone who likes both Lee and 
Kim: 

(<- ( l i k e s  Kim ? X I  ( l i k e s  ?x  Lee) ( l i k e s  ?x Kim)) 

This can be read as: 

For a n y  x, deduce tha t  Ki  m  1  i kes x  

if i t  can be proved that  x  1 i kes Lee and x  1 i kes Ki  m  . 



11.2 Idea 2: Unification of Logic Variables 

Unification is a straightforward extension of the idea of pattern matching. The 
pattern-matching functions we have seen so far have always matched a pattern 
(an expression containing variables) against a constant expression (one with no 
variables). In unification, two patterns, each of which can contain variables, are 
matched against each other. Here's an example of the difference between pattern 
matching and unification: 

> (pat-match ' ( ?x  + ?y)  ' ( 2  + 1 ) )  + ((?Y . 1)  (?X . 2 ) )  

> (uni fy  ' ( ?x  + 1) ' ( 2  + ?y ) )  =. ((?Y . 1)  ( ? X  . 2 ) )  

Within the unification framework, variables (such as ?x and ?y above) are called logic 
variables. Like normal variables, a logic variable can be assigned a value, or it can 
be unbound. The difference is that a logic variable can never be altered. Once it is 
assigned a value, it keeps that value. Any attempt to unify it with a different value 
leads to failure. It is possible to unify a variable with the same value more than once, 
just as it was possible to do a pattern match of ( ?x + ? X I  with ( 2 + 2 1. 

The difference between simple pattern matching and unification is that unifica- 
tion allows two variables to be matched against each other. The two variables remain 
unbound, but they become equivalent. If either variable is subsequently bound to 
a value, then both variables adopt that value. The following example equates the 
variables ?x and ?y by binding ?x to ?y: 

> (un i f y  ' ( f  ? X I  ' ( f  ?y ) )  + ((?X . ?Y)) 

Unification can be used to do some sophisticated reasoning. For example, if we have 
two equations, a + a = 0 and x + y = y, and if we know that these two equations 
unify, then we can conclude that a ,  x, and y are all 0. The version of uni f y  we will 
define shows this result by binding ?y to 0, ?x to ?y, and ?a  to ?x. We will also 
define the function uni f i er, which shows the structure that results from unifying 
two structures. 

> (un i f y  ' (?a  + ?a = 0) ' ( ? x  + ?y = ?y ) )  3 

((?Y . 0) (?X . ?Y) ( ? A  . ?XI)  

> ( u n i f i e r  ' (?a  + ?a = 0) ' ( ? x  + ?y = ?y)) + (0 + 0 = 0) 

To avoid getting carried away by the power of unification, it is agood idea to take stock 
of exactly what unification provides. It does provide a way of stating that variables 
are equal to other variables or expressions. It does not  provide a way of automatically 
solving equations or applying constraints other than equality. The following example 



makes it clear that unification treats the symbol + only as an uninterpreted atom, not 
as the addition operator: 

> ( u n i f i e r  ' ( ? a  + ? a  = 2 )  ' ( ? x  + ? y  = ? y ) )  + ( 2  + 2  = 2 )  

Before developing the code for u n  i fy,  we repeat here the code taken from the pattern- 
matching utility (chapter 6): 

( d e f c o n s t a n t  f a i l  n i l  " I n d i c a t e s  p a t - m a t c h  f a i l u r e " )  

( d e f c o n s t a n t  n o - b i n d i n g s  ' ( ( t  . t ) )  
" I n d i c a t e s  p a t - m a t c h  s u c c e s s ,  w i t h  no  v a r i a b l e s . " )  

( d e f u n  v a r i a b l e - p  ( x )  
" I s  x  a  v a r i a b l e  ( a  symbol b e g i n n i n g  w i t h  ' ? ' ) ? "  
( a n d  ( symbolp  x )  ( e q u a l  ( c h a r  (symbol-name x )  0 )  # \ ? I ) )  

( d e f u n  g e t - b i n d i n g  ( v a r  b i n d i n g s )  
"F i n d  a  ( v a r i a b l e  . v a l u e )  p a i r  i n  a  b i n d i n g  l i s t . "  
( a s s o c  v a r  b i n d i n g s ) )  

( d e f u n  b i n d i n g - v a l  ( b i n d i n g )  
"Get  t h e  v a l u e  p a r t  o f  a  s i n g l e  b i n d i n g . "  
( c d r  b i n d i n g ) )  

( d e f u n  l o o k u p  ( v a r  b i n d i n g s )  
"Get  t h e  v a l u e  p a r t  ( f o r  v a r )  f rom a  b i n d i n g  l i s t . "  
( b i n d i n g - v a l  ( g e t - b i n d i n g  v a r  b i n d i n g s ) ) )  

( d e f u n  e x t e n d - b i n d i n g s  ( v a r  v a l  b i n d i n g s )  
"Add a  ( v a r  . v a l u e )  p a i r  t o  a  b i n d i n g  l i s t . "  
( c o n s  ( c o n s  v a r  v a l )  

; ; Once we add a  " r e a l  " b i n d i n g ,  
;; we c a n  g e t  r i d  o f  t h e  dummy n o - b i n d i n g s  
( i f  ( a n d  ( e q  b i n d i n g s  n o - b i n d i n g s ) )  

n i  1  
b i n d i n g s ) )  

( d e f u n  m a t c h - v a r i a b l e  ( v a r  i n p u t  b i n d i n g s )  
"Does VAR match i n p u t ?  Uses ( o r  u p d a t e s )  and r e t u r n s  b i n d i n g s . "  
( l e t  ( ( b i n d i n g  ( g e t - b i n d i n g  v a r  b i n d i n g s ) ) )  

(cond  ( ( n o t  b i n d i n g )  ( e x t e n d - b i n d i n g s  v a r  i n p u t  b i n d i n g s ) )  
( ( e q u a l  i n p u t  ( b i n d i n g - v a l  b i n d i n g ) )  b i n d i n g s )  
( t  f a i l ) ) ) )  

The u n i  f y  function follows; it is identical to p a t  -match (as defined on page 180) 
except for the addition of the line marked ***. The function un i fy -  v a r i  abl e also 
follows match-var i  abl e closely: 



(defun u n i f y  ( x  y  &optional (bindings no-bindings))  
"See i f  x  and y  match w i t h  given b indings."  
(cond ( (eq bindings f a i l  f a i l  

( ( va r i ab le -p  x )  ( un i f y - va r i ab le  x  y  bindings) 
( ( va r i ab le -p  y )  ( un i f y - va r i ab le  y  x  b indings))  ;*** 
( (eq l  x  y )  bindings) 
((and (consp x )  (consp y ) )  
( u n i f y  ( r e s t  x )  ( r e s t  y )  

( u n i f y  ( f i r s t  x )  ( f i r s t  y )  b ind ings) ) )  
( t  f a i l  1 ) )  

(defun un i f y - va r i ab le  (var  x  bindings) 
"Uni fy  var w i t h  x, using (and maybe extending) b indings."  
;; Warning - buggy version 
( i f  (get-b inding var b indings)  

( u n i f y  (lookup var bindings) x  bindings) 
(extend-bindings var x  b ind ings) ) )  

Unfortunately, this definition is not quite right. It handles simple examples: 

> ( u n i f y  ' ( ? x  + 1)  ' ( 2  + ? y ) )  + ((?Y . 1)  (?X . 2 ) )  

> ( u n i f y  '?x  '?y )  + ((?X . ?Y)) 

> ( u n i f y  ' ( ?x  ? X I  ' ( ?y  ?y) )  + ((?Y . ?Y) ( ? X  . ?Y)) 

but there are several pathological cases that it can't contend with: 

> ( u n i f y  ' ( ? x  ?x ?x)  ' ( ?y  ?y ? y ) )  
>>Trap #043622 (PDL-OVERFLOW REGULAR) 
The regular  push-down l i s t  has overflowed. 
While i n  the  func t ion  GET-BINDING -+ UNIFY-VARIABLE e UNIFY 

The problem here is that once ?y gets bound to itself, the call to unify inside 
uni f y  - va r i  a bl e leads to an infinite loop. But matching ?y against itself must al- 
ways succeed, so we can move the equality test in uni f y  before thevariable test. This 
assumes that equal variables are eql , a valid assumption for variables implemented 
as symbols (but be careful if you ever decide to implement variables some other way). 

(defun u n i f y  ( x  y  &optional (bindings no-bindings))  
"See i f  x  and y  match w i t h  given b indings."  
(cond ( (eq bindings f a i l )  f a i l )  

( ( eq l  x  y )  bindings) ;*** moved t h i s  l i n e  
( (var iab le -p  x )  ( un i f y - va r i ab le  x  y  bindings) 
( ( va r i ab le -p  y )  ( un i f y - va r i ab le  y  x  b indings))  
((and (consp x)  (consp y ) )  

( u n i f y  ( r e s t  x )  ( r e s t  y )  



( u n i f y  ( f i r s t  x )  ( f i r s t  y )  b i n d i n g s ) ) )  
( t  f a i l ) ) )  

Here are some test cases: 

> ( u n i f y  ' ( ? x  ? X I  ' ( ? y  ? y ) )  + ((?X . ?Y))  

> ( u n i f y  ' ( ? x  ?x ?x)  ' ( ? y  ?y ? y ) )  + ((?X . ?Y))  

> ( u n i f y  ' ( ? x  ?y )  ' ( ? y  ? x ) )  =. ( ( ? Y  . ? X )  ( ? X  . ?Y))  

> ( u n i f y  ' ( ? x  ?y a) ' ( ? y  ?x  ? X I )  
>>Trap #043622 (PDL-OVERFLOW REGULAR) 
The regu la r  push-down l i s t  has overf lowed. 
Whi le i n  t h e  f u n c t i o n  GET-BINDING += UNIFY-VARIABLE e UNIFY 

We have pushed off the problem but not solved it. Allowing both ( ?Y . ?X and 
( ? X  . ?Y in the same binding list is as bad as allowing ( ? Y  . ?Y 1. To avoid the 
problem, the policy should be never to deal with bound variables, but rather with 
their values, as specified in the binding list. The function un  i fy - va r i a bl e fails to 
implement this policy. It does have a check that gets the binding for va  r when it is a 
bound variable, but it should also have a check that gets the value of x, when x is a 
bound variable: 

(defun u n i f y - v a r i a b l e  (va r  x  b ind ings )  
" U n i f y  var w i t h  x,  us ing (and maybe extending)  b ind ings . "  
(cond ( ( g e t - b i n d i n g  var b ind ings )  

( u n i f y  ( lookup var  b ind ings )  x  b i n d i n g s ) )  
( (and ( v a r i a b l e - p  x )  ( g e t - b i n d i n g  x  b i n d i n g s ) )  ;*** 

( u n i f y  var ( lookup x  b ind ings )  b i n d i n g s ) )  ;*** 
( t  (extend-b ind ings var  x  b i n d i n g s ) ) ) )  

Here are some more test cases: 

( u n i f y  ' ( ? x  ?y )  ' ( ? y  ? X I )  ( (?X . ?Y))  

> ( u n i f y  ' ( ? x  ?y a) ' ( ? y  ?x ? X I )  ( (?Y  . A) (?X . ?Y))  

It seems the problem is solved. Now let's try a new problem: 

> ( u n i f y  ' ? x  ' ( f  ? X I )  + ((?X F  ?XI )  

Here((?X F ?X))reallymeans ( (?X.  ( ( F  ?X)))) ,so?Xisboundto ( F  ?X).This 
represents a circular, infinite unification. Some versions of Prolog, notably Prolog I1 
(Giannesini et al. 1986), provide an interpretation for such structures, but it is tricky 
to define the semantics of infinite structures. 



The easiest way to deal with such infinite structures is just to ban them. This 
ban can be realized by modifying the unifier so that it fails whenever there is an 
attempt to unify a variable with a structure containing that variable. This is known in 
unification circles as the occurs check. In practice the problem rarely shows up, and 
since it can add a lot of computational complexity, most Prolog systems have ignored 
the occurs check. This means that these systems can potentially produce unsound 
answers. In the final version of uni fy following, a variable is provided to allow the 
user to turn occurs checking on or off. 

(defparameter *occurs-check* t "Should we do the  occurs check?") 

(defun u n i f y  ( x  y  &optional (bindings no-bindings) 
"See i f  x and y match w i t h  given b indings."  
(cond ( (eq  bindings f a i l )  f a i l )  

( (eq l  x  y )  bindings) 
( (var iab le -p  x )  ( un i f y - va r i ab le  x y  b indings))  
( ( va r i ab le -p  y )  ( un i f y - va r i ab le  y x  b indings))  
((and (consp x )  (consp y ) )  

( un i f y  ( r e s t  x )  ( r e s t  y )  
( u n i f y  ( f i r s t  x )  ( f i r s t  y )  b ind ings) ) )  

( t  f a i l ) ) )  

(defun un i f y - va r i ab le  (var  x  bindings) 
"Uni fy  var w i t h  x, using (and maybe extending) b indings."  
(cond ( (ge t -b ind ing  var b indings)  

(uni  f y  (1 ookup var b i  ndi ngs x b i  ndi ngs 1) 
((and (var iab le -p  x )  (ge t -b ind ing  x b indings))  

( un i f y  var (lookup x bindings) b indings))  
((and *occurs-check* (occurs-check var x b indings))  
f a i l  

( t  (extend-bindings var x  b i nd ings ) ) ) )  

(defun occurs-check (var  x  b indings)  
"Does var occur anywhere ' ins ide x?"  
(cond ((eq var x )  t )  

((and (var iab le -p  x )  (ge t -b ind ing  x b ind ings) )  
(occurs-check var (lookup x bindings) b ind ings) )  

((consp x )  ( o r  (occurs-check var ( f i r s t  x )  b indings)  
(occurs-check var ( r e s t  x )  b ind ings) ) )  

( t  n i l ) ) )  

Now we consider how unify will be used. In particular, one thing we want is a 
function for substituting a binding list into an expression. We originally chose 
association lists as the implementation of bindings because of the availability of the 
function su bl i s. Ironically, s ubl i s won't work any more, because variables can 
be bound to other variables, which are in turn bound to expressions. The function 
subst - bi ndi ngs acts like sub1 i s, except that it substitutes recursive bindings. 



(defun subst-b ind ings (b ind ings x )  
" S u b s t i t u t e  t h e  va lue o f  va r iab les  i n  b ind ings i n t o  x,  
t a k i n g  r e c u r s i v e l y  bound va r iab les  i n t o  account. " 
(cond ( (eq  b ind ings  f a i l )  f a i l )  

( (eq  b ind ings no-b ind ings)  x )  
( (and ( v a r i a b l e - p  x )  ( g e t - b i n d i n g  x  b ind ings ) )  

(subst-b ind ings b ind ings (1 ookup x  b ind ings )  1) 
((atom x )  x )  
( t  (reuse-cons (subs t -b ind ings  b ind ings (ca r  x ) )  

( subs t -b ind ings  b ind ings  ( c d r  x ) )  
x ) ) ) )  

Now let's try uni f y  on some examples: 

> ( u n i f y  ' ( ? x  ?y a)  ' ( ? y  ?x ? X I )  + ((?Y . A) ( ? X  . ?Y))  

> ( u n i f y  ' ? x  ' ( f  ?XI) + NIL 

> ( u n i f y  ' ( ? x  ?y )  ' ( ( f  ?y )  ( f  ? X I ) )  + NIL 

> ( u n i f y  ' ( ? x  ?y ?z)  ' ( ( ? y  ?z )  ( ? x  ?z )  ( ? x  ? y ) ) )  =+ NIL 

> ( u n i f y  'a 'a)  + ( ( T  . T I )  

Finally, the function uni f i er  calls uni f y  and substitutes the resulting binding list 
into one of the arguments. The choice of x is arbitrary; an equal result would come 
from substituting the binding list into y. 

(defun u n i f i e r  ( x  y )  
"Return something t h a t  u n i f i e s  w i t h  bo th  x  and y  ( o r  f a i l ) . "  
( subs t -b ind ings  ( u n i f y  x  y )  x ) )  

Here are some examples of un  i f i e r: 

> ( u n i f i e r  ' ( ? x  ?y a)  ' ( ? y  ?x ?XI) + (A A A)  

> ( u n i f i e r  ' ( ( ? a  * ?x  A 2)  + (?b  * ?x)  + ? c )  
' ( ? z  + ( 4  * 5) + 3 ) )  * 

((?A * 5 A 2 )  + ( 4  * 5)  + 3)  



When *occurs - check* is false, we get the following answers: 

> (unify '?x '(f ?XI) + ((?X F ?XI) 

> (unify '(?x ?y) '((f ?y) (f ?XI)) + 
((?Y F ?X) (?X F ?Y)) 

> (unify '(?x ?y ?z) '((?y ? z )  (?x ?z) (?x ?y))) =. 
( ( ? Z  ?X ?Y) ( ? Y  ?X ? Z )  (?X ?Y ? Z ) )  

Programming with Prolog 

The amazing thing about Prolog clauses is that they can be used to express relations 
that we would normally think of as "programs," not "data." For example, we can 
define the member relation, which holds between an item and a list that contains that 
item. More precisely, an item is a member of a list if it is either the first element of the 
list or a member of the rest of the list. This definition can be translated into Prolog 
almost verbatim: 

(<- (member ?item (?item . ?rest))) 
( c -  (member ?item (?x . ?rest)) (member ?item ?rest)) 

Of course, we can write a similar definition in Lisp. The most visible difference is that 
Prolog allows us to put patterns in the head of a clause, so we don't need recognizers 
like consp or accessors like f i r s t  and r e s t .  Otherwise, the Lisp definitionis ~irni lar :~ 

(defun lisp-member (item list) 
(and (consp list) 

(or (eql item (first list)) 
(lisp-member item (rest list))))) 

If we wrote the Prolog code without taking advantage of the pattern feature, it would 
look more like the Lisp version: 

(<- (member ?item ?list) 
(= ?list (?item . ?rest))) 

2~ctually, this is more like the Lisp find than the Lisp member. In this chapter we have 
adopted the traditional Prolog definition of member. 



(<- (member ? i t e m  ? l i s t )  
(= ? l i s t  (?x  . ? r e s t ) )  
(member ? i t e m  ? r e s t ) )  

If we define or in Prolog, we would write a version that is clearly just a syntactic 
variant of the Lisp version. 

(c- (member ? i  tem ? l  i s t )  
(= ? l i s t  ( ? f i r s t  . ? r e s t ) )  
( o r  (= ? i t e m  ? f i r s t )  

(member ? i t e m  ? r e s t ) ) )  

Let's see how the Prolog version of member works. Imagine that we have a Prolog 
interpreter that can be given a query using the macro ? -, and that the definition of 
member has been entered. Then we would see: 

> ( ? -  (member 2 ( 1  2 3 ) ) )  
Yes; 

> ( ? -  (member 2 ( 1  2 3 2 1 ) ) )  
Yes; 
Yes; 

The answer to the first query is "yes" because 2 is a member of the rest of the list. In 
the second query the answer is 'yes" twice, because 2 appears in the list twice. This 
is a little surprising to Lisp programmers, but there still seems to be a fairly close 
correspondence between Prolog's and Lisp's member. However, there are things that 
the Prolog member can do that Lisp cannot: 

> ( ? -  (member ?x ( 1  2 3 ) ) )  
?X = 1; 
?X = 2; 
?X = 3; 

Here member is used not as a predicate but as a generator of elements in a list. 
While Lisp functions always map from a specified input (or inputs) to a specified 
output, Prolog relations can be used in several ways. For member, we see that the 
first argument, ?x, can be either an input or an output, depending on the goal that 
is specified. This power to use a single specification as a function going in several 
different directions is a very flexible feature of Prolog. (Unfortunately, while it works 
very well for simple relations like member, in practice it does not work well for large 
programs. It is very difficult to, say, design a compiler and automatically have it work 
as a disassembler as well.) 



Now we turn to the implementation of the Prolog interpreter, as summarized in 
figure 11.1. The first implementation choice is the representation of rules and facts. 
We will build a single uniform data base of clauses, without distinguishingrules from 
facts. The simplest representation of clauses is as a cons cell holding the head and 
the body. For facts, the body will be empty. 

;; Clauses are represented as (head . body) cons cells 
(defun clause-head (clause) ( f i r s t  clause)) 
(defun clause-body (clause) ( res t  clause)) 

The next question is how to index the clauses. Recall the procedural interpretation 
of a clause: when we want to prove the head, we can do it by proving the body. This 
suggests that clauses should be indexed in terms of their heads. Each clause will be 
stored on the property list of the predicate of the head of the clause. Since the data 
base is now distributed across the property list of various symbols, we represent the 
entire data base as a list of symbols stored as the value of *db- predi cates*. 

;; Clauses are stored on the predicate's p l i s t  
(defun get-clauses (pred) (get pred 'clauses)) 
(defun predicate (relation) ( f i r s t  relation)) 

(defvar *db-predicates* nil 
" A  l i s t  of all  predicates stored in the database.") 

Now we need a way of adding a new clause. The work is split up into the macro <-, 
which provides the user interface, and a function, add-cl ause, that does the work. 
It is worth defining a macro to add clauses because in effect we are defining a new 
language: Prolog-In-Lisp. This language has only two syntactic constructs: the <- 
macro to add clauses, and the ? - macro to make queries. 

(defmacro <- (&rest  clause) 
"Add a clause to the d a t a  base." 
'(add-clause ' ,c lause))  

(defun add-cl ause (cl ause) 
"Add a clause to  the data base, indexed by head's predicate." 
;; The predicate must be a non-variable symbol. 
( l e t  ((pred (predicate (clause-head clause))))  

(assert  ( a n d  (symbolp pred) (not (variable-p pred))))  
(pushnew pred *db-predicates*) 
(setf (get pred 'clauses) 

(nconc (get-clauses pred) ( l i s t  clause))) 
pred) 

Now all we need is a way to remove clauses, and the data base will be complete. 



Top-Level Macros 
<- Add a clause to the data base. 
? - Prove a query and print answer(s). 

Special Variables 
*db-predicates* A list of all predicates. 
*occurs-check* Should we check for circular unifications? 

Data Types 
cl ause Consists of a head and a body. 
variable A symbol starting with a ?. 

Major Functions 
add-cl ause Add a clause to the data base. 
prove Return a list of possible solutions to goal. 
prove-a1 1 Return a list of solutions to the conjunction of goals. 
top-1 eve1 -prove Prove the goals, and print variables readably. 

Auxiliary Functions 
get-cl auses Find all the clauses for a predicate. 
predicate Pick out the predicate from a relation. 
cl ear-db Remove all clauses (for all predicates) from the data base. 
cl ear-predi cate Remove the clauses for a single predicate. 
rename-variables Replace all variables in x with new ones. 
uni que - f i nd - anywhere - i f Find all unique leaves satisfying predicate. 
show-pro1 og-sol uti ons Print the variables in each of the solutions. 
show-pro1 og-vars Print each variable with its binding. 
variables-in Return a list of all the variables in an expression. 

Previowsly Defined Constants 
fai 1 An indication that unification has failed. 
no- bi ndi ngs A succesful unification with no variables. 

Previowsly Defined Functions 
unify Return bindings that unify two expressions (section 11.2). 
unify-variabl e Unify a variable against an expression. 
occurs-check See if a particular variable occurs inside an expression. 
subst-bindi ngs Substitute bindings into an expression. 
get-binding Get the ( var . val) binding for a variable. 
1 ookup Get the value for a variable. 
extend-bindings Add a new variable/value pair to a binding list. 
variabl e-p Is the argument a variable? 
reuse-cons Like cons, except will reuse an old value if possible. 

Figure 11.1: Glossary for the Prolog Interpreter 



(defun clear-db 0 
"Remove all  clauses (for all  predicates) from the d a t a  base." 
(mapc #'clear-predicate *db-predicates*)) 

(defun clear-predicate (predicate) 
"Remove the clauses for a single predicate." 
(setf (get predicate 'clauses) n i l ) )  

A data base is useless without a way of getting data out, as well as putting it in. The 
function prove will be used to prove that a given goal either matches a fact that is in 
the data base directly or can be derived from the rules. To prove a goal, first find all 
the candidate clauses for that goal. For each candidate, check if the goal unifies with 
the head of the clause. If it does, try to prove all the goals in the body of the clause. 
For facts, there will be no goals in the body, so success will be immediate. For rules, 
the goals in the body need to be proved one at a time, making sure that bindings from 
the previous step are maintained. The implementation is straightforward: 

(defun prove (goal bindings) 
"Return a 1 i s t  of possi bl e sol uti ons to goal . " 
(mapcan # '  ( 1  ambda (clause) 

( l e t  ((new-clause (rename-variables clause))) 
(prove-a1 1 (cl ause-body new-cl ause) 

(unify goal (clause-head new-clause) bindings)))) 
(get-clauses (predicate goa l ) ) ) )  

(defun prove-a1 1 (goals bindings) 
"Return a l i s t  of solutions to the conjunction of goals.'" 
(cond ((eq bindings f a i l )  f a i l )  

((null  goals) ( l i s t  bindings)) 
( t  (mapcan #'(lambda (goal 1-sol ution) 

(prove-a1 1 ( res t  goals) goal 1-sol ution) 
(prove ( f i r s t  goals) bindings))))) 

The tricky part is that we need some way of distinguishing a variable ?x in one 
clause from another variable ?x in another clause. Otherwise, a variable used in two 
different clauses in the course of a proof would have to take on the same value in 
each clause, which would be a mistake. Just as arguments to a function can have 
different values in different recursive calls to the function, so the variables in a clause 
are allowed to take on different values in different recursive uses. The easiest way to 
keep variables distinct is just to rename all variables in each clause before it is used. 
The function rename- va r i  abl e s  does thix3 

3 ~ e e  exercise 11.12 for an alternative approach. 



(defun rename-variables ( x )  
"Replace a1 1  va r iab les  i n  x  w i t h  new ones." 
( s u b l i s  (mapcar #'(lambda ( v a r )  (cons var (gensym ( s t r i n g  v a r ) ) ) )  

( v a r i a b l e s - i n  x ) )  
XI 1 

Rename - va r i a bl  es makes use of gensym, a function that generates a new symbol each 
time it is called. The symbol is not interned in any package, which means that there 
is no danger of a programmer typing a symbol of the same name. The predicate 
va r i a bl  es - i n and its auxiliary function are defined here: 

(defun v a r i a b l e s - i n  (exp) 
"Return a  l i s t  o f  a l l  t h e  v a r i a b l e s  i n  E X P . "  
(un ique- f ind -anywhere- i f  # ' v a r i a b l e - p  exp))  

(defun un ique- f i nd-anywhere - i f  ( p r e d i c a t e  t r e e  
&op t iona l  found-so- fa r )  

"Return a  l i s t  o f  leaves o f  t r e e  s a t i s f y i n g  p red ica te ,  
w i t h  dupl i cates removed. " 
( i f  (atom t r e e )  

( i f  ( f u n c a l l  p red ica te  t r e e )  
( a d j o i n  t r e e  found-so - fa r )  
found-so- fa r )  

(un ique- f ind -anywhere - i f  
p red ica te  
( f i r s t  t r e e )  
(un ique- f i nd-anywhere- i f  p red ica te  ( r e s t  t r e e )  

found-so- fa r )  1) 

Finally, we need a nice interface to the proving functions. We will use ? - as a macro 
to introduce a query. The query might as well allow a conjunction of goals, so ? - will 
call prove-  a1 1 .  Together, <- and ? - define the complete syntax of our Prolog-In-Lisp 
language. 

(defmacro ? -  ( & r e s t  goals)  ' ( p r o v e - a l l  ' ,goals no -b ind ings ) )  

Now we can enter all the clauses given in the prior example: 

(<- ( l i k e s  Kim Robin)) 
(<- ( l i k e s  Sandy Lee)) 
(<- ( l i k e s  Sandy Kim)) 
(<- ( l i k e s  Robin c a t s ) )  
(<- ( l i k e s  Sandy ?x )  (1 i kes ?x  c a t s ) )  
(<- ( l i k e s  Kim ? X I  ( l i k e s  ?x Lee) ( l i k e s  ?x Kim)) 
(<- ( l i k e s  ?x  ? X I )  



To ask whom Sandy likes, we would use: 

> ( ? -  ( l i k e s  Sandy ?who)) 
(((?WHO . LEE) )  

((?WHO . K I M ) )  

((?X2856 . ROBIN) (?WHO . ?X2856)) 
((?X2860 . CATS) (?X2857 . CATS) (?X2856 . SANDY) (?WHO . ?X2856)) 
((?X2865 . CATS) (?X2856 . ?X2865) (?WHO . ?X2856)) 
((?WHO . SANDY) (?X2867 . SANDY))) 

Perhaps surprisingly, there are six answers. The first two answers are Lee and Kim, 
because of the facts. The next three stem from the clause that Sandy likes everyone 
who likes cats. First, Robin is an answer because of the fact that Robin likes cats. 
To see that Robin is the answer, we have to unravel the bindings: ?who is bound to 
?x2856, which is in turn bound to Robin. 

Now we're in for some surprises: Sandy is listed, because of the following reason- 
ing: (1) Sandy likes anyone/thing who likes cats, (2) cats like cats because everyone 
likes themself, (3) therefore Sandy likes cats, and (4) therefore Sandy likes Sandy. 
Cats is an answer because of step (2), and finally, Sandy is an answer again, because 
of the clause about liking oneself. Notice that the result of the query is a list of 
solutions, where each solution corresponds to a different way of proving the query 
true. Sandy appears twice because there are two different ways of showing that 
Sandy likes Sandy. The order in which solutions appear is determined by the order 
of the search. Prolog searches for solutions in a top-down, left-to-right fashion. The 
clauses are searched from the top down, so the first clauses entered are the first ones 
tried. Within a clause, the body is searched left to right. In using the ( 1 i kes K i  rn ?x 1 
clause, Prolog would first try to find an x who likes Lee, and then see if x likes Kim. 

The output from prove - a 1 1 is not very pretty. We can fix that by defining a new 
function, top- 1 evel -prove, which calls prove - a1 1 as before, but then passes the 
list of solutions to show- pro1 og - sol uti ons, which prints them in a more readable 
format. Note that show-pro1 og-sol uti ons returns novalues: (val ues 1. This means 
the read-eval-print loop will not print anything when (val ues 1 is the result of a 
top-level call. 

(defmacro ? -  ( & r e s t  goals)  
' ( t o p - l e v e l - p r o v e  ' , goa ls ) )  

(defun top-1  evel -prove (goal s )  
"Prove t h e  goals ,  and p r i n t  va r iab les  readably. " 
(show-pro1 og-so l  u t i o n s  

( v a r i a b l e s - i n  goals)  
( p r o v e - a l l  goals no -b ind ings ) ) )  



( de fun  show-pro1 og- so l  u t i  ons  ( v a r s  s o l  u t i  ons  

" P r i n t  t h e  v a r i a b l e s  i n  each  o f  t h e  s o l u t i o n s . "  

( i f  (nu1 1  s o l  u t i  ons  

( f o r m a t  t ""&No.") 

(mapc # ' ( lambda ( s o l u t i o n )  ( show- p ro log - va r s  v a r s  s o l u t i o n ) )  

s o l  u t i  o n s )  

( va l  ues  

( de fun  show- p ro log - va r s  ( v a r s  b i n d i n g s )  

" P r i n t  e ach  v a r i a b l e  w i t h  i t s  b i n d i n g .  " 
( i f  ( n u l l  v a r s )  

( f o r m a t  t ""&Yesu) 

( d o l i s t  ( v a r  v a r s )  

( f o r m a t  t ""&"a = "a" v a r  

( s u b s t - b i n d i n g s  b i n d i n g s  v a r ) ) ) )  

( p r i n c  " ; " ) )  

Now let's try some queries: 

> ( ? -  ( l i k e s  Sandy ?who)) 

?WHO = L E E ;  

?WHO = KIM; 

?WHO = ROBIN; 

?WHO = SANDY; 

?WHO = CATS; 

?WHO = SANDY; 

> ( ? -  ( l i k e s  ?who Sandy ) )  

?WHO = SANDY; 

?WHO = KIM; 

?WHO = SANDY; 

> ( ? -  ( l i k e s  Robin Lee ) )  

No. 

The first query asks again whom Sandy likes, and the second asks who likes Sandy. 
The third asks for confirmation of a fact. The answer is "no," because there are no 
clauses or facts that say Robin likes Lee. Here's another example, a list of pairs of 
people who are in a mutual liking relation. The last answer has an uninstantiated 
variable, indicating that everyone likes themselves. 



> ( ? -  ( l i k e s  ?x ?y )  ( l i k e s  ?y ? X I )  

?Y = KIM 

?X = SANDY; 

?Y = SANDY 

?X = SANDY; 

?Y = SANDY 

?X = SANDY; 

?Y = SANDY 

?X = KIM; 

?Y = SANDY 

?X = SANDY; 

?Y = ?X3251 

?X = ?X3251; 

It makes sense in Prolog to ask open-ended queries like "what lists is 2 a member of?" 
or even "what items are elements of what lists?" 

( ? -  (member 2 ? l i s t ) )  

( ? -  (member ? i tem ? l i s t ) )  

These queries are valid Prolog and will return solutions, but there will be an infinite 
number of them. Since our interpreter collects all the solutions into a single list 
before showing any of them, we will never get to see the solutions. The next section 
shows how to write a new interpreter that fixes this problem. 

g Exercise 11.1 [m] The representation of relations has been a list whose first element 
is a symbol. However, for relations with no arguments, some people prefer to write 
(c- p q r 1 rather than (c- ( p 1 ( q ) ( r 1 1. Make changes so that either form is 
acceptable. 

g Exercise 11.2 [m] Some people find the <- notation difficult to read. Define macros 
rul e and f ac t  so that we can write: 

( f a c t  ( l i k e s  Robin c a t s ) )  

( r u l e  ( l i k e s  Sandy ? X I  i f  ( l i k e s  ?x  c a t s ) )  



11.3 Idea 3: Automatic Backtracking 

The Prolog interpreter implemented in the last section solves problems by returning a 
list of all possible solutions. We'll call this a batch approach, because the answers are 
retrieved in one uninterrupted batch of processing. Sometimes that is just what you 
want, but other times a single solution will do. In real Prolog, solutions are presented 
one at a time, as they are found. After each solution is printed, the user has the 
option of asking for more solutions, or stopping. This is an incremental approach. 
The incremental approach will be faster when the desired solution is one of the first 
out of many alternatives. The incremental approach will even work when there is an 
infinite number of solutions. And if that is not enough, the incremental approach can 
be implemented so that it searches depth-first. This means that at any point it will 
require less storage space than the batch approach, which must keep all solutions in 
memory at once. 

In this section we implement an incremental Prolog interpreter. One approach 
would be to modify the interpreter of the last section to use pipes rather than lists. 
With pipes, unnecessary computation is delayed, and even infinite lists can be 
expressed in a finite amount of time and space. We could change to pipes simply by 
changingthemapcan in prove and prove-a1 1 tomappend-pipe (page286). The books 
by Winston and Horn (1988) and by Abelson and Sussman (1985) take this approach. 
We take a different one. 

The first step is a version of prove and prove-a1 1 that return a single solution 
rather than a list of all possible solutions. This should be reminiscent of achi eve and 
achieve-a1 1 from gps (chapter 4). Unlike gps, recursive subgoals and clobbered 
sibling goals are not checked for. However, prove is required to search systematically 
through all solutions, so it is passed an additional parameter: a list of other goals to 
achieve after achieving the first goal. This is equivalent to passing a continuation to 
prove. The result is that if prove ever succeeds, it means the entire top-level goal has 
succeeded. If it fails, it just means the program is backtracking and trying another 
sequence of choices. Note that prove relies on the fact that fai 1 is ni 1, because of 
the way it uses some. 

(defun prove-a1 1  ( g o a l s  b ind ings )  
"Find a  s o l u t i o n  t o  t h e  con junc t ion  of g o a l s .  " 
(cond ( ( e q  bindings  f a i l )  f a i l )  

( (nu1 1  g o a l s )  b ind ings )  
( t  (prove ( f i r s t  g o a l s )  b indings  ( r e s t  g o a l s ) ) ) ) )  

(defun prove (goal b indings  o the r - goa l  s 
"Return a  1  i  s t  of p o s s i b l e  s o l u t i o n s  t o  goal . " 
(some #'(lambda ( c l a u s e )  

( l e t  ( (new-cl ause  (rename-vari  a b l e s  c l a u s e )  1) 
( p r o v e - a l l  

(append (c lause-body new-clause)  o t h e r - g o a l s )  



(unify goal (cl ause-head new-cl ause) bindings)) ) ) 
(get-clauses (predicate goa l ) ) ) )  

If prove does succeed, it means a solution has been found. If we want more solutions, 
we need some way of making the process fail, so that it will backtrack and try again. 
One way to do that is to extend every query with a goal that will print out the variables, 
and ask the user if the computation should be continued. If the user says yes, then 
the goal fails, and backtracking starts. If the user says no, the goal succeeds, and since 
it is the final goal, the computation ends. This requires a brand new type of goal: one 
that is not matched against the data base, but rather causes some procedure to take 
action. In Prolog, such procedures are called primitives, because they are built-in to 
the language, and new ones may not be defined by the user. The user may, of course, 
define nonprimitive procedures that call upon the primitives. 

In our implementation, primitives will be represented as Lisp functions. A 
predicate can be represented either as a list of clauses (as it has been so far) or as a 
single primitive. Here is a version of prove that calls primitives when appropriate: 

(defun prove (goal bindings other-goals) 
"Return a 1 i s t  of possible solutions to  goal . " 
(1 e t  ( (cl auses (get -cl auses (predi cate goal ) 1) 

( i f  ( l i s t p  clauses) 
(some 

# '  (1 ambda (cl ause) 
( l e t  ((new-cl ause (rename-variables clause) 1)  

(prove-a1 1 
(append (clause-body new-clause) other-goals) 
(unify goal (cl ause-head new-cl ause) bindings) 1)  

cl auses 
;; The predicate's "clauses" can be a n  atom: 
; ; a primitive function to  call 
(funcall cl auses ( res t  goal bindings 

other-goals)))) 

Hereistheversionof top-1 evel -provethataddstheprimitivegoalshow-pro1 og-vars 
to theendof thelist of goals. Note that thisversionneednot calls how - pro1 og - sol u t  i ons 
itself, since the printing will be handled by the primitive for show - pro1 og - va rs. 

(defun top-1 evel -prove (goal s )  
(prove-all '(.@goals (show-prolog-vars ,@(variables-in goals))) 

no- bi ndi ngs) 
(format t ""&No.") 
(values) 

Here we define the primitive show-pro1 og- vars. All primitives must be functions of 



three arguments: a list of arguments to the primitive relation (here a list of variables 
to show), a binding list for these arguments, and a list of pending goals. A primitive 
should either return fa  i 1 or call prove - a1 1 to continue. 

(defun show-prolog-vars (vars bindings other-goals) 

"Print each variable with i t s  binding. 

Then ask the user i f  more solutions are desired." 

( i f  (null vars) 

(format t ""&Yes") 

(dol is t  (var vars) 

(format t ""&"a = "a" var 

(subst-bindings bindings var) 1) 

( i f  (continue-p) 

fai  1 

(prove-all other-goals bindings))) 

Since primitives are represented as entries on the clauses  property of predicate 
symbols, we have to register s how-pro1 og-vars as a primitive like this: 

(setf (get 'show-prolog-vars 'clauses) 'show-prolog-vars) 

Finally, the Lisp predicate conti  nue- p asks the user if he or she wants to see more 
solutions: 

(defun continue-p 0 

"Ask user i f  we should continue looking for solutions." 

(case (read-char) 

( # \ ;  t )  

( # \ .  n i l )  

(#\newline (continue-p)) 

(otherwi se 

(format t " Type ; to see more or . to  stop") 

(continue-p)))) 

This version works just as well as the previous version on finite problems. The only 
difference is that the user, not the system, types the semicolons. The advantage is 
that we can now use the system on infinite problems as well. First, we'll ask what 
lists 2 is a member of: 



> ( ? -  (member 2 ? l i s t ) )  
?LIST = ( 2  . ?REST3302); 
?LIST = (?X3303 2 . ?REST3307); 
?LIST = (?X3303 ?X3308 2 . ?REST3312); 

?LIST = (?X3303 ?X3308 ?X3313 2 . ?REST3317). 

No. 

The answers mean that 2 is a member of any list that starts with 2, or whose second 
element is 2, or whose third element is 2, and so on. The infinite computation was 
halted when the user typed a period rather than a semicolon. The "no" now means 
that there are no more answers to be printed; it will appear if there are no answers at 
all, if the user types a period, or if all the answers have been printed. 

We can ask even more abstract queries. The answer to the next query says that 
an item is an element of a list when it is the the first element, or the second, or the 
third, or the fourth, and so on. 

> ( ? -  (member ? i t e m  ? l i s t ) )  
?ITEM = ?ITEM3318 
?LIST = (?ITEM3318 . ?REST3319); 
?ITEM = ?ITEM3323 

?LIST = (?X3320 ?ITEM3323 . ?REST3324); 
?ITEM = ?ITEM3328 

?LIST = (?X3320 ?X3325 ?ITEM3328 . ?REST3329); 
?ITEM = ?ITEM3333 
?LIST = (?X3320 ?X3325 ?X3330 ?ITEM3333 . ?REST3334). 

No. 

Now let's add the definition of the relation 1 ength: 

(<- ( l e n g t h  0 0 ) )  

(<- ( l e n g t h  ( ?x  . ? y )  (1+ ? n ) )  ( l e n g t h  ?y ?n) )  

Here are some queries showing that 1 engt h can be used to find the second argument, 
the first, or both: 

> ( ? -  ( l e n g t h  ( a  b c d l  ? n ) )  
?N = (1+ (1+ (1+ (1+ 0 ) ) ) ) ;  
No. 

> ( ? -  ( l e n g t h  ? l i s t  (1+ (1+ 0 ) ) ) )  
?LIST = (?X3869 ?X3872); 
No. 



> ( ? -  ( l e n g t h  ? l i s t  ? n ) )  

?LIST = NIL 

?N = 0; 

?LIST = (?X3918) 

?N = (1+ 0 ) ;  

?LIST = (?X3918 ?X3921) 
?N = (1+ (1+ 0 ) ) .  

No. 

The next two queries show the two lists of length two with a as a member. Both 
queries give the correct answer, a two-element list that either starts or ends with a .  
However, the behavior after generating these two solutions is quite different. 

> ( ? -  ( l e n g t h  ?1 (1+ (1+ 0 ) ) )  (member a ? I ) )  

?L = (A ?X4057); 

?L = (?Y4061 A); 

No. 

> ( ? -  (member a ?1) ( l e n g t h  ?1 (1+ (1+ 0 )  1) 
?L = (A ?X4081); 

? L  = (?Y4085 A);CAbort l  

In the first query, 1 ength only generates one possible solution, the list with two 
unbound elements. member takes this solution and instantiates either the first or the 
second element to a.  

In the second query, member keeps generating potential solutions. The first two 
partial solutions, where a is the first or second member of a list of unknown length, 
are extended by 1 ength to yield the solutions where the list has length two. After 
that, member keeps generating longer and longer lists, which 1 engt h keeps rejecting. 
It is implicit in the definition of member that subsequent solutions will be longer, but 
because that is not explicitly known, they are all generated anyway and then explicitly 
tested and rejected by 1 ength. 

This example reveals the limitations of Prolog as a pure logic-programming lan- 
guage. It turns out the user must be concerned not only about the logic of the problem 
but also with the flow of control. Prolog is smart enough to backtrack and find all 
solutions when the search space is small enough, but when it is infinite (or even 
very large), the programmer still has a responsibility to guide the flow of control. 
It is possible to devise languages that do much more in terms of automatic flow of 
contr01.~ Prolog is a convenient and efficient middle ground between imperative 
languages and pure logic. 

4 ~ e e  the MU-Prolog and NU-Prolog languages (Naish 1986). 



Approaches to Backtracking 

Suppose you are asked to make a "small" change to an existing program. The 
problem is that some function, f, which was thought to be single-valued, is now 
known to return two or more valid answers in certain circumstances. In other words, 
f is nondeterministic. (Perhaps f is sqrt, and we now want to deal with negative 
numbers). What are your alternatives as a programmer? Five possibilities can be 
identified: 

Guess. Choose one possibility and discard the others. This requires a means 
of making the right guesses, or recovering from wrong guesses. 

Know. Sometimes you can provide additional information that is enough to 
decide what the right choice is. This means changing the calling function(s) to 
provide the additional information. 

Return a list. This means that the calling function(s) must be changed to expect 
a list of replies. 

Return a pipe, as defined in section 9.3. Again, the calling function(s) must be 
changed to expect a pipe. 

Guess and save. Choose one possibility and return it, but record enough 
information to allow computing the other possibilities later. This requires 
saving the current state of the computation as well as some information on the 
remaining possibilities. 

The last alternative is the most desirable. It is efficient, because it doesn't require 
computing answers that are never used. It is unobtrusive, because it doesn't require 
changing the calling function (and the calling function's calling function) to expect a 
list or pipe of answers. Unfortunately, it does have one major difficulty: there has 
to be a way of packaging up the current state of the computation and saving it away 
so that it can be returned to when the first choice does not work. For our Prolog 
interpreter, the current state is succinctly represented as a list of goals. In other 
problems, it is not so easy to summarize the entire state. 

We will see in section 22.4 that the Scheme dialect of Lisp provides a function, 
c a l l  -wi th-current-conti nuati on, that does exactly what we want: it packages the 
current state of the computation into a function, which can be stored away and 
invoked later. Unfortunately, there is no corresponding function in Common Lisp. 

Anonymous Variables 

Before moving on, it is useful to introduce the notion of an anonymous variable. 
This is a variable that is distinct from all others in a clause or query, but which the 



programmer does not want to bother to name. In real Prolog, the underscore is used 
for anonymous variables, but we will use a single question mark. The definition of 
member that follows uses anonymous variables for positions within terms that are not 
needed within a clause: 

(<- (member ? i tem ( ? i t e m  . ? ) I )  
(<- (member ? i tem ( ?  . ? r e s t ) )  (member ? i tem ? r e s t ) )  

However, we also want to allow several anonymous variables in a clause but still be 
able to keep each anonymous variable distinct from all other variables. One way to 
do that is to replace each anonymous variable with a unique variable. The function 
rep1 ace - ? - va rs  uses gensym to do just that. It is installed in the top-level macros <- 
and ? - so that all clauses and queries get the proper treatment. 

(defmacro <- ( & r e s t  c lause)  
"Add a  c lause t o  t h e  data base." 
' (add-c lause ' ' ( r e p l a c e - ? - v a r s  c l a u s e ) ) )  

(defmacro ? -  ( & r e s t  goals)  
"Make a  query and p r i n t  answers." 
' ( t o p - l e v e l  -prove ' ,  ( rep lace-?-va rs  goals)  1) 

(defun rep lace-? -va rs  (exp) 
"Replace any ? w i t h i n  exp w i t h  a  var o f  t h e  form ?123." 
(cond ( ( e q  exp ' ? )  (gensym " ? " ) )  

((atom exp) exp) 
( t  (reuse-cons ( rep lace-?-va rs  ( f i r s t  exp))  

( rep lace-?-va rs  ( r e s t  exp))  
exp) 1) 

A named variable that is used only once in a clause can also be considered an 
anonymous variable. This is addressed in a different way in section 12.3. 

11.4 The Zebra Puzzle 

Here is an example of something Prolog is very good at: a logic puzzle. There are 
fifteen facts, or constraints, in the puzzle: 

1. There are five houses in a line, each with an owner, a pet, a cigarette, a drink, 
and a color. 

2. The Englishman lives in the red house. 

3. The Spaniard owns the dog. 



4. Coffee is drunk in the green house. 

5. The Ukrainian drinks tea. 

6. The green house is immediately to the right of the ivory house. 

7. The Winston smoker owns snails. 

8. Kools are smoked in the yellow house. 

9. Milk is drunk in the middle house. 

10. The Norwegian lives in the first house on the left. 

11. The man who smokes Chesterfields lives next to the man with the fox. 

12. Kools are smoked in the house next to the house with the horse. 

13. The Lucky Strike smoker drinks orange juice. 

14. The Japanese smokes Parliaments. 

15. The Norwegian lives next to the blue house. 

The questions to be answered are: who drinks water and who owns the zebra? To 
solve this puzzle, we first define the relations nextto (for "next to") and i r i  g h t  (for 
"immediately to the right of'). They are closely related to member, which is repeated 
here. 

(<- (member ? i tem ( ? i t e m  . ? r e s t ) ) )  
(<- (member ? i tem ( ? x  . ? r e s t ) )  (member ? i tem ? r e s t ) )  

(<- ( n e x t t o  ?x ?y ? l i s t )  ( i r i g h t  ?x ?y ? l i s t ) )  
(<- ( n e x t t o  ?x  ?y ? l i s t )  ( i r i g h t  ?y ?x ? l i s t ) )  

(<- ( i r i g h t  ? l e f t  ? r i g h t  ( ? l e f t  ? r i g h t  . ? r e s t ) ) )  
(<- ( i r i g h t  ? l e f t  ? r i g h t  ( ? x  . ? r e s t ) )  

( i  r i g h t  ? l e f t  ? r i g h t  ? r e s t )  

We also defined the identity relation, =. It has a single clause that says that any x is 
equal to itself. One might think that this implements eq or equal. Actually, since 
Prolog uses unification to see if the two arguments of a goal each unify with ?x, this 
means that = is unification. 

Now we are ready to define the zebra puzzle with a single (long) clause. The 
variable ? h represents the list of five houses, and each house is represented by a term 
of the form ( house nationality pet cigarette drink color).  The variable ?w is the water 
drinker, and ?z is the zebra owner. Each of the 15 constraints in the puzzle is listed 



in the body of zebra, although constraints 9 and 10 have been combined into the 
first one. Consider constraint 2, "The Englishman lives in the red house." This is 
interpreted as "there is a house whose nationality is Englishman and whose color is 
red, and which is a member of the list of houses": in other words, (member (house 
eng 1 i s hma n ? ? ? red 1 ? h 1. The other constraints are similarly straightforward. 

(<- (zebra ?h ?w ?z )  
;; Each house i s  o f  t h e  form: 
;; (house n a t i o n a l i t y  p e t  c i g a r e t t e  d r i n k  house-co lor )  
(= ?h ((house norwegian ? ? ? ? )  ;1.10 

? 
(house ? ? ? m i l k  ? )  ? ? ) )  ; 9 

(member (house englishman ? ? ? red )  ?h)  ; 2 
(member (house spaniard dog ? ? ? )  ?h) ; 3 
(member (house ? ? ? c o f f e e  green) ?h) ; 4 
(member (house u k r a i n i a n  ? ? tea  ? )  ?h) ; 5 
( i  r i g h t  (house ? ? ? ? i v o r y )  ; 6 

(house ? ? ? ? green) ?h)  
(member (house ? s n a i l s  winston ? ? )  ?h) ; 7 
(member (house ? ? kool s ? ye1 low) ?h) ; 8 
( n e x t t o  (house ? ? c h e s t e r f i e l d  ? ? )  : 11 

(house ? f o x  ? ? ? )  ?h) 
( n e x t t o  (house ? ? kools  ? ? )  ; 12  

(house ? horse ? ? ? )  ?h) 
(member (house ? ? l u c k y s t r i k e  o range- ju i ce  ? )  ?h);13 
(member (house japanese ? par l iaments ? ? )  ?h) ;14 
( n e x t t o  (house norwegian ? ? ? ? )  ; 15 

(house ? ? ? ? b lue )  ?h) 
;; Now f o r  t h e  quest ions:  
(member (house ?w ? ? water ? )  ?h) ; Q1 
(member (house ?z zebra ? ? ? )  ?h ) )  ; Q2 

Here's the query and solution to the puzzle: 

> ( ? -  (zebra ?houses ?wate r -d r inke r  ?zebra-owner)) 
?HOUSES = ((HOUSE NORWEGIAN FOX KOOLS WATER YELLOW) 

(HOUSE UKRAINIAN HORSE CHESTERFIELD TEA BLUE) 
(HOUSE ENGLISHMAN SNAILS WINSTON MILK RED) 
(HOUSE SPANIARD DOG LUCKYSTRIKE ORANGE-JUICE IVORY) 
(HOUSE JAPANESE ZEBRA PARLIAMENTS COFFEE GREEN)) 

?WATER-DRINKER = NORWEGIAN 
?ZEBRA-OWNER = JAPANESE. 
No. 

This took278 seconds, and profiling (see page 288) reveals that the function prove was 
called 12,825 times. A call to prove has been termed a logzcal inference, so our system 



is performing 128251278 = 46 logical inferences per second, or LIPS. Good Prolog 
systems perform at 10,000 to 100,000 LIPS or more, so this is barely limping along. 

Small changes to the problem can greatly affect the search time. For example, 
the relation nextto holds when the first house is immediately right of the second, or 
when the second is immediately right of the first. It is arbitrary in which order these 
clauses are listed, and one might think it would make no difference in which order 
they were listed. In fact, if we reverse the order of these two clauses, the execution 
time is roughly cut in half. 

11.5 The Synergy of Backtracking and 
Unification 

Prolog's backward chaining with backtracking is a powerful technique for generating 
the possible solutions to a problem. It makes it easy to implement a generate-and-test 
strategy, where possible solutions are considered one at a time, and when a candidate 
solution is rejected, the next is suggested. But generate-and-test is only feasible when 
the space of possible solutions is small. 

In the zebra puzzle, there are five attributes for each of the five houses. Thus 
there are 5! 5, or over 24 billion candidate solutions, far too many to test one at a time. 
It is the concept of unification (with the corresponding notion of a logic variable) that 
makes generate-and-test feasible on this puzzle. Instead of enumerating complete 
candidate solutions, unification allows us to specify partial candidates. We start out 
knowing that there are five houses, with the Norwegian living on the far left and 
the milk drinker in the middle. Rather than generating all complete candidates that 
satisfy these two constraints, we leave the remaining information vague, by unifying 
the remaining houses and attributes with anonymous logic variables. The next 
constraint (number 2) places the Englishman in the red house. Because of the way 
member is written, this first tries to place the Englishman in the leftmost house. This 
is rejected, because Englishman and Norwegian fail to unify, so the next possibility is 
considered, and the Englishman is placed in the second house. But no other features 
of the second house are specified-we didn't have to make separate guesses for the 
Englishman's house being green, yellow, and so forth. The search continues, filling 
in only as much as is necessary and backing up whenever a unification fails. 

For this problem, unification serves the same purpose as the delay macro 
(page 281). It allows us to delay deciding the value of some attribute as long as 
possible, but to immediately reject a solution that tries to give two different values 
to the same attribute. That way, we save time if we end up backtracking before the 
computation is made, but we are still able to fill in the value later on. 

It is possible to extend unification so that it is doing more work, and backtracking 
is doing less work. Consider the following computation: 



( ? -  ( leng th  ?1 4 )  
(member d ?1) (member a ? I )  (member c ?1) (member b ?1) 
(= ?1 (a b c d l ) )  

The first two lines generate permutations of the list ( d  a c b 1, and the third line 
tests for a permutation equal to ( a b c d 1. Most of the work is done by backtracking. 
An alternative is to extend unification to deal with lists, as well as constants and 
variables. Predicates like 1 ength and member would be primitives that would have to 
know about the representation of lists. Then the first two lines of the above program 
would set ?1 to something like #s ( 1 i s t  : 1 ength 4 :members ( d  a c d 1 1. The 
third line would be a call to the extended unification procedure, which would further 
specify ?1 to be something like: 

By making the unification procedure more complex, we eliminate the need for back- 
tracking entirely. 

p Exercise 11.3 [s] Would a unification algorithm that delayed member tests be a good 
idea or a bad idea for the zebra puzzle? 

11.6 Destructive Unification 

As we saw in section 11.2, keeping track of a binding list of variables is a little tricky. 
It is also prone to inefficiency if the binding list grows large, because the list must 
be searched linearly, and because space must be allocated to hold the binding list. 
An alternative implementation is to change u n i f y  to a destructive operation. In 
this approach, there are no binding lists. Instead, each variable is represented as 
a structure that includes a field for its binding. When the variable is unified with 
another expression, the variable's binding field is modified to point to the expression. 
Such variables will be called va rs to distinguish them from the implementation of 
variables as symbols starting with a question mark. vars are defined with the 
following code: 

(defconstant unbound "Unbound") 

( de f s t r uc t  var name (b inding unbound)) 

(defun bound-p (var )  (no t  (eq (var -b ind ing  var)  unbound))) 

The macro de r e f  gets at the binding of a variable, returning its argument when it is an 



unbound variable or a nonvariable expression. It includes a loop because a variable 
can be bound to another variable, which in turn is bound to the ultimate value. 

Normally, it would be considered bad practice to implement d e r e f  as a macro, 
since it could be implemented as an inline function, provided the caller was willing 
to write ( s e t f  x  ( d e r e f  x ) )  instead of ( d e r e f  x).  However, d e r e f  will appear 
in code generated by some versions of the Prolog compiler that will be presented in 
the next section. Therefore, to make the generated code look neater, I have allowed 
myself the luxury of the de r e f  macro. 

(defmacro d e r e f  (exp) 
" Fol 1  ow po i  n t e r s  f o r  bound v a r i  abl es . " 
' (progn ( l o o p  w h i l e  (and ( v a r - p  ,exp) (bound-p ,exp)) 

do ( s e t f  .exp ( v a r - b i n d i n g  .exp) ) )  
, exp ) 

The function uni f y  ! below is the destructive version of u n i  f y .  It is a predicate 
that returns true for success and false for failure, and has the side effect of altering 
variable bindings. 

(defun u n i f y !  ( x  y )  
" D e s t r u c t i v e l y  u n i f y  two expressions" 
(cond ( ( e q l  ( d e r e f  x )  ( d e r e f  y ) )  t )  

( ( v a r - p  x )  ( s e t - b i n d i n g !  x  y ) )  
( ( v a r - p  y )  ( s e t - b i n d i n g !  y  x ) )  
( (and (consp x )  (consp y ) )  

(and ( u n i f y !  ( f i r s t  x )  ( f i r s t  y ) )  
( u n i f y !  ( r e s t  x )  ( r e s t  y ) ) ) )  

( t  n i l ) ) )  

(defun se t -b ind ing !  ( v a r  va lue)  
"Set  va r ' s  b ind ing  t o  value. Always succeeds ( r e t u r n s  t ) . "  
( s e t f  ( v a r - b i n d i n g  va r )  va lue)  
t 

To make va rs  easier to read, we can install a : pri n t - f u n c t i  on: 

( d e f s t r u c t  ( v a r  ( : p r i n t - f u n c t i o n  p r i n t - v a r ) )  
name (b ind ing  unbound)) 

(defun p r i n t - v a r  ( v a r  stream depth) 
( i f  ( o r  (and (numberp * p r i n t - 1  eve l* )  

(>= depth * p r i n t - l e v e l * ) )  
( v a r - p  (de re f  v a r ) ) )  

( format  stream "?"a" (var-name v a r ) )  
( w r i t e  va r  :stream st ream)))  



This is the first example of a carefully crafted : pr i n t - f unc t i on. There are three things 
to notice about it. First, it explicitly writes to the stream passed as the argument. 
It does not write to a default stream. Second, it checks the variable depth against 
*p r i n t - 1 eve1 *, and prints just the variable name when the depth is exceeded. Third, 
it uses wr i t e  to print the bindings. This is because w r i t e  pays attention to the current 
valuesof *pri n t  -escape*, *pri n t  - pretty*, andsoon. Other printingfunctions such 
as pr i n 1 or pr i n t do not pay attention to these variables. 

Now, for backtracking purposes, we want to make s e t  - b i nd i ng ! keep track of 
the bindings that were made, so they can be undone later: 

( d e f v a r  * t r a i l *  ( m a k e - a r r a y  200 : f i l l - p o i n t e r  0  : a d j u s t a b l e  t ) )  

( d e f u n  s e t - b i n d i n g !  ( v a r  v a l u e )  
" S e t  v a r ' s  b i n d i n g  t o  v a l u e ,  a f t e r  s a v i n g  t h e  v a r i a b l e  
i n  t h e  t r a i l .  Always r e t u r n s  t . "  
( u n l e s s  (eq v a r  v a l u e )  

( v e c t o r - p u s h - e x t e n d  v a r  * t r a i l * )  
( s e t f  ( v a r - b i n d i n g  v a r )  v a l u e ) )  

t 1 

( d e f u n  u n d o- b i n d i n g s !  ( o l d - t r a i l )  
"Undo a l l  b i n d i n g s  back  t o  a  g i v e n  p o i n t  i n  t h e  t r a i l . "  
(1  oop u n t i l  (= ( f i l l  - p o i n t e r  * t r a i l * )  o l d - t r a i l  1 

d o  ( s e t f  ( v a r - b i n d i n g  ( v e c t o r - p o p  * t r a i l * ) )  u n b o u n d ) ) )  

Now we need a way of making new variables, where each one is distinct. That could 
be done by gensym-ing a new name for each variable, but a quicker solution is just to 
increment a counter. The constructor function ? is defined to generate a new variable 
with a name that is a new integer. This is not strictly necessary; we could have just 
used the automatically provided constructor make - va r. However, I thought that the 
operation of providing new anonymous variable was different enough from providing 
a named variable that it deserved its own function. Besides, make - va r may be less 
efficient, because it has to process the keyword arguments. The function ? has no 
arguments; it just assigns the default values specified in the slots of the va r structure. 

( d e f v a r  * v a r - c o u n t e r *  0 )  

( d e f s t r u c t  ( v a r  ( : c o n s t r u c t o r  ? 0) 
( : p r i n t - f u n c t i o n  p r i n t - v a r ) )  

(name ( i n c f  * v a r - c o u n t e r * ) )  
( b i n d i n g  unbound) )  

A reasonable next step would be to use destructive unification to make a more 
efficient interpreter. This is left as an exercise, however, and instead we put the 
interpreter aside, and in the next chapter develop a compiler. 



As stated at the start of this chapter, Prolog has many of the same features that 
make Lisp attractive for program development. Just as it is easy to write a Lisp 
interpreter in Lisp, it is easy to write a Prolog interpreter in Prolog. The following 
Prologmetainterpreter has three main relations. The relation cl ause is used to store 
clauses that make up the rules and facts that are to be interpreted. The relation 
prove is used to prove a goal. It calls prove-a1 1, which attempts to prove a list of 
goals. prove- a1 1 succeeds in two ways: (1) if the list is empty, or (2) if there is some 
clause whose head matches the first goal, and if we can prove the body of that clause, 
followed by the remaining goals: 

(<- (prove ?goa l )  ( p r o v e - a l l  ( ? g o a l ) ) )  

(<- (prove-a1 1 n i  1  1)  
(<- ( p r o v e - a l l  (?goal . ?goa ls ) )  

(c lause (<- ?goal . ?body)) 
(concat ?body ?goals ?new-goals) 
( p r o v e - a l l  ?new-goals)) 

Now we add two clauses to the data base to define the member relation: 

(<- (c lause (<- (mem ?x ( ? x  . ? y ) > ) ) )  
(<- (c lause (<- (mem ?x ( ?  . ? z ) )  (mem ?x  ? z ) ) ) )  

Finally, we can prove a goal using our interpreter: 

( ? -  (prove (mem ?x  ( 1  2 3 ) ) ) )  
?X = 1; 
?X = 2; 
?X = 3; 
No. 

11.8 Prolog Compared to Lisp 

Many of the features that make Prolog a succesful language for A1 (and for program 
development in general) are the same as Lisp's features. Let's reconsider the list of 
features that make Lisp different from conventional languages (see page 25) and see 
what Prolog has to offer: 



Built-in Support for Lists (and other data types). New data types can be created 
easily using lists or structures (structures are preferred). Support for reading, 
printing, and accessing components is provided automatically. Numbers, 
symbols, and characters are also supported. However, because logic variables 
cannot be altered, certain data structures and operations are not provided. For 
example, there is no way to update an element of a vector in Prolog. 

Automatic Storage Management. The programmer can allocate new objects with- 
out worrying about reclaiming them. Reclaiming is usually faster in Prolog than 
in Lisp, because most data can be stack-allocated instead of heap-allocated. 

Dynamic Typing. Declarations are not required. Indeed, there is no standard 
way to make type declarations, although some implementations allow for them. 
Some Prolog systems provide only fixnums, so that eliminates the need for a 
large class of declarations. 

First-Class Functions. Prolog has no equivalent of 1 ambda, but the built-in pred- 
icate ca l l  allows a term-a piece of data-to be called as a goal. Although 
backtracking choice points are not first-class objects, they can be used in a way 
very similar to continuations in Lisp. 

e Uniform Syntax. Like Lisp, Prolog has a uniform syntax for both programs and 
data. This makes it easy to write interpreters and compilers in Prolog. While 
Lisp's prefix-operator list notation is more uniform, Prolog allows infix and 
postfix operators, which may be more natural for some applications. 

Interactive Environment. Expressions can be immediately evaluated. High- 
quality Prolog systems offer both a compiler and interpreter, along with a host 
of debugging tools. 

Extensibility. Prolog syntax is extensible. Because programs and data share 
the same format, it is possible to write the equivalent of macros in Prolog and 
to define embedded languages. However, it can be harder to ensure that the 
resulting code will be compiled efficiently. The details of Prolog compilation 
are implementation-dependent. 

To put things in perspective, consider that Lisp is at once one of the highest-level 
languages available and a universal assembly language. It is a high-level language 
because it can easily capture data, functional, and control abstractions. It is a good 
assembly language because it is possible to write Lisp in a style that directly reflects 
the operations available on modern computers. 

Prolog is generally not as efficient as an assembly language, but it can be more 
concise as a specification language, at least for some problems. The user writes 
specifications: lists of axioms that describe the relationships that can hold in the 
problem domain. If these specifications are in the right form, Prolog's automatic 



backtracking can find a solution, even though the programmer does not provide an 
explicit algorithm. For other problems, the search space will be too large or infinite, 
or Prolog's simple depth-first search with backup will be too inflexible. In this case, 
Prolog must be used as a programming language rather than a specification language. 
The programmer must be aware of Prolog's search strategy, using it to implement an 
appropriate algorithm for the problem at hand. 

Prolog, like Lisp, has suffered unfairly from some common myths. It has been 
thought to be an inefficient language because early implementations were inter- 
preted, and because it has been used to write interpreters. But modern compiled 
Prolog can be quite efficient (see Warren et al. 1977 and Van Roy 1990). There is a 
temptation to see Prolog as a solution in itself rather than as a programming language. 
Those who take that view object that Prolog's depth-first search strategy and basis in 
predicate calculus is too inflexible. This objection is countered by Prolog program- 
mers who use the facilities provided by the language to build more powerful search 
strategies and representations, just as one would do in Lisp or any other language. 

11.9 History and References 

Cordell Green (1968) was the first to articulate the view that mathematical results 
on theorem proving could be used to make deductions and thereby answer queries. 
However, the major technique in use at the time, resolution theorem proving (see 
Robinson 1965), did not adequately constrain search, and thus was not practical. 
The idea of goal-directed computing was developed in Carl Hewitt's work (1971) on 
the PLANNER language for robot problem solving. He suggested that the user provide 
explicit hints on how to control deduction. 

At about the same time and independently, Alain Colmerauer was developing 
a system to perform natural language analysis. His approach was to weaken the 
logical language so that computationally complex statements (such as logical dis- 
junctions) could not be made. Colmerauer and his group implemented the first 
Prolog interpreter using Algol-W in the summer of 1972 (see Roussel1975). It was 
Roussel's wife, Jacqueline, who came up with the name Prolog as an abbreviation 
for "programmation en logique." The first large Prolog program was their natural 
language system, also completed that year (Colmerauer et al. 1973). For those who 
read English better than French, Colmerauer (1985) presents an overview of Prolog. 
Robert Kowalski is generally considered the coinventer of Prolog. His 1974 article 
outlines his approach, and his 1988 article is a historical review on the early logic 
programming work. 

There are now dozens of text books on Prolog. In my mind, six of these stand 
out. Clocksin and Mellish's Programming i n  Prolog (1987) was the first and remains 
one of the best. Sterling and Shapiro's The Art  of Prolog (1986) has more substantial 
examples but is not as complete as a reference. An excellent overview from a slightly 



more mathematical perspective is Pereira and Shieber's Prolog and Natural-Language 
Analysis (1987). The book is worthwhile for its coverage of Prolog alone, and it also 
provides a good introduction to the use of logic programming for language under- 
standing (see part V for more on this subject). O'Keefe's The Craft of Prolog (1990) 
shows a number of advanced techinques. O'Keefe is certainly one of the most influ- 
ential voices in the Prolog community. He has definite views on what makes for good 
and bad coding style and is not shy about sharing his opinions. The reader is warned 
that this book evolved from a set of notes on the Clocksin and Mellish book, and the 
lack of organization shows in places. However, it contains advanced material that 
can be found nowhere else. Another collection of notes that has been organized into 
a book is Coelho and Cotta's Prolog by  Example. Published in 1988, this is an update 
of their 1980 book, How to Solve it in  Prolog. The earlier book was an underground 
classic in the field, serving to educate a generation of Prolog programmers. Both 
versions include a wealth of examples, unfortunately with little documentation and 
many typos. Finally, Ivan Bratko's Prolog Programming for Artificial Intelligence (1990) 
covers some introductory A1 material from the Prolog perspective. 

Maier and Warren's Computing with Logic (1988) is the best reference for those 
interested in implementing Prolog. It starts with a simple interpreter for a variable- 
free version of Prolog, and then moves up to the full language, adding improvements 
to the interpreter along the way. (Note that the second author, David S. Warren of 
Stonybrook, is different from David H. D. Warren, formerly at Edinburgh and now 
at Bristol. Both are experts on Prolog.) 

Lloyd's Foundations of Logic Programming (1987) provides a theoretical explanation 
of the formal semantics of Prolog and related languages. Lassez et al. (1988) and 
Knight (1989) provide overviews of unification. 

There have been many attempts to extend Prolog to be closer to the ideal of Logic 
Programming. The language MU-Prolog and NU-Prolog (Naish 1986) and Prolog I11 
(Colmerauer 1990) are particularly interesting. The latter includes a systematic 
treatment of the # relation and an interpretation of infinite trees. 

11.10 Exercises 

p Exercise 11.4 [m] It is somewhat confusing to see "no" printed after one or more 
valid answers have appeared. Modify the program to print "no" only when there are 
no answers at all, and "no more" in other cases. 

a Exercise 11.5 [h] At least six books (Abelson and Sussman 1985, Charniak and 
McDermott 1985, Charniaket al. 1986, Hennessey 1989, Wilensky1986, and Winston 
and Horn 1988) present unification algorithms with a common error. They all have 
problems unifying ( ?x ?y a 1 with ( ?Y ?x ?x 1. Some of these texts assume that u n i  f y  



will be called in a context where no variables are shared between the two arguments. 
However, they are still suspect to the bug, as the following example points out: 

> ( u n i f y  ' ( f  ( ?x  ?y a) (?y  ?x ? X I )  ' ( f  ?z ? z ) )  
((?Y . A) ( ? X  . ?Y) ( ? Z  ?X ?Y A)) 

Despite this subtle bug, I highly recommend each of the books to the reader. It is 
interesting to compare different implementations of the same algorithm. It turns out 
there are more similarities than differences. This indicates two things: (1) there is a 
generally agreed-upon style for writing these functions, and (2) good programmers 
sometimes take advantage of opportunities to look at other's code. 

The question is: Can you give an informal proof of the correctness of the algorithm 
presented in this chapter? Start by making a clear statement of the specification. 
Apply that to the other algorithms, and show where they go wrong. Then see if you 
can prove that the un i f y  function in this chapter is correct. Failing a complete proof, 
can you at least prove that the algorithm will always terminate? See Norvig 1991 for 
more on this problem. 

p Exercise 11.6 [h] Since logic variables are so basic to Prolog, we would like them 
to be efficient. In most implementations, structures are not the best choice for small 
objects. Note that variables only have two slots: the name and the binding. The 
binding is crucial, but the name is only needed for printing and is arbitrary for most 
variables. This suggests an alternative implementation. Each variable will be a 
cons cell of the variable's binding and an arbitrary marker to indicate the type. This 
marker would be checked by va r i  a b l  e - p. Variable names can be stored in a hash 
table that is cleared before each query. Implement this representation for variables 
and compare it to the structure representation. 

Exercise 11.7 [m] Consider the following alternative implementation for anony- 
mous variables: Leave the macros <- and ? - alone, so that anonymous variables 
are allowed in assertions and queries. Instead, change uni f y  so that it lets anything 
match against an anonymous variable: 

(defun u n i f y  ( x  y  &optional (bindings no- b i  ndi ngs ) 

"See i f  x  and y  match w i t h  given b indings."  
(cond ( (eq  bindings f a i l )  f a i l )  

( ( eq l  x  y )  bindings) 
( ( o r  (eq x  ' ? )  (eq y  ' ? I )  bindings) . *** ' 
( ( va r i ab le -p  x )  ( un i f y - va r i ab le  x  y b indings)  
( ( va r i ab le -p  y) ( un i f y - va r i ab le  y  x  b indings))  
((and (consp x )  (consp y ) )  

( u n i f y  ( r e s t  x )  ( r e s t  y )  



( u n i f y  ( f i r s t  x )  ( f i r s t  y )  b i n d i n g s ) ) )  
( t  f a i l ) ) )  

Is this alternative correct? If so, give an informal proof. If not, give a counterexample. 

p Exercise 11.8 [h] Write a version of the Prolog interpreter that uses destructive 
unification instead of binding lists. 

p Exercise 11.9 [m] Write Prolog rules to express the terms father, mother, son, 
daughter, and grand- versions of each of them. Also define parent, child, wife, 
husband, brother, sister, uncle, and aunt. You will need to decide which relations 
are primitive (stored in the Prolog data base) and which are derived by rules. 

For example, here's a definition of grandfather that says that G is the grandfather 
of C if G is the father of some P, who is the parent of C: 

(<- (grandfather  ?g ?c )  
( f a t h e r  ?g ? p )  
(parent  ? p  ? c ) )  

p Exercise 11.10 [m] The following problem is presented in Wirth 1976: 

I married a widow (let's call her W) who has a grown-up daughter (call her 
D). My father (F), who visited us often, fell in love with my step-daughter and 
married her. Hence my father became my son-in-law and my step-daughter 
became my mother. Some months later, my wife gave birth to a son (S1), who 
became the brother-in-law of my father, as well as  my uncle. The wife of my 
father, that is, my step-daughter, also had a son (S2). 

Represent this situation using the predicates defined in the previous exercise, 
verify its conclusions, and prove that the narrator of this tale is his own grandfather. 

p Exercise 11.11 [dl Recall the example: 

> ( ? -  ( l e n g t h  (a b c  d l  ? n ) )  
?N = ( I +  (1+ ( I +  (1+ 0 ) ) ) ) ;  

It is possible to produce 4 instead of ( 1+ ( 1+ ( 1+ ( 1+ 0 1 1 1 1 by extending the notion 
of unification. Ai't-Kaci et al. 1987 might give you some ideas how to do this. 



p Exercise 11.12 N The function rename-vari a b l  es was necessary to avoid confu- 
sion between the variables in the first argument to uni f y  and those in the second 
argument. An alternative is to change the uni  f y  so that it takes two binding lists, one 
for each argument, and keeps them separate. Implement this alternative. 

11.11 Answers 

Answer 11.9 We will choose as primitives the unary predicates ma1 e and f emal e 
and the binary predicates ch i  1 d and ma r r i ed. The former takes the child first; the 
latter takes the husband first. Given these primitives, we can make the following 
definitions: 

(<- ( f a t h e r  ? f  ? c )  (male  ? f )  ( p a r e n t  ? f  ? c ) )  
(<- (mother  ?m ? c )  ( f e m a l e  ?m) ( p a r e n t  ?m ? c )  
(<- ( son  ? s  ? p )  (male  ? s )  ( p a r e n t  ? p  ? s ) )  
(<- ( d a u g h t e r  ? s  ? p )  (male  ? s )  ( p a r e n t  ?p  ? s ) )  

(<- ( g r a n d f a t h e r  ?g ? c )  ( f a t h e r  ?g  ? p )  ( p a r e n t  ?p  ? c ) )  
(<- (grandmother  ?g  ? c )  (mother  ?g ? p )  ( p a r e n t  ?p  ? c ) )  
(<- (grandson ? g s  ?gp)  ( son  ? g s  ? p )  ( p a r e n t  ?gp  ? p ) )  
(<- ( g r anddaugh t e r  ?gd ?gp )  ( d a u g h t e r  ?gd ? p )  ( p a r e n t  ?gp  ? p ) )  

(<- ( p a r e n t  ? p  ? c )  ( c h i l d  ? c  ? p ) )  
(<- ( w i f e  ?w ? h )  ( m a r r i e d  ?h ?w)) 
(<- (husband ?h ?w) ( m a r r i e d  ?h ?w))  

(<- ( s i b l i n g  ?x  ? y )  ( p a r e n t  ? p  ? x )  ( p a r e n t  ?p  ? y ) )  
(<- ( b r o t h e r  ?b  ? x )  (male  ? b )  ( s i b l i n g  ? b  ? X I )  
(<- ( s i s t e r  ? s  ? x )  ( f e m a l e  ? s )  ( s i b l i n g  ? s  ? X I )  
(<- ( u n c l e  ?u ? n )  ( b r o t h e r  ?u ? p )  ( p a r e n t  ?p  ? n ) )  
(<- ( a u n t  ? a  ? n )  ( s i s t e r  ?a ? p )  ( p a r e n t  ? p  ? n ) )  

Note that there is no way in Prolog to express a true definition. We would like to say 
that "P is the parent of C if and only if Cis the child of P," but Prolog makes us express 
the biconditional in one direction only. 



Answer 11.10 Because we haven't considered step-relations in the prior defini- 
tions, we have to extend the notion of parent to include step-parents. The definitions 
have to be written very carefully to avoid infinite loops. The strategy is to structure 
the defined terms into a strict hierarchy: the four primitives are at the bottom, then 
pa r e n t  is defined in terms of the primitives, then the other terms are defined in terms 
of pa r e n t  and the primitives. 

We also provide a definition for son-in-law: 

(<- (parent ?p ?c)  (married ?p ?w) (child ?c ?w)) 
( c -  (parent ?p ?c )  (married ?h ?p) (child ?c ?w)) 
(<- (son-in-law ?s  ?p) (parent ?p ?w) (married ?s  ?w)) 

Now we add the information from the story. Note that we only use the four primitives 
male, female, married, and child: 

( c -  (male I ) )  (<- (male F ) )  ( c -  (male S1)) ( c -  (male S2)) 
( c -  (female W )  (<- (female Dl 
(<- (married I  W ) )  
(<- (married F Dl) 
( c -  (child D W ) )  
( c -  (child I  F ) )  
( c -  (child S1 I ) )  
(<- (child S2 F ) )  

Now we are ready to make the queries: 

> ( ? -  (son-in-law F I ) )  
Yes. 

> ( ? -  (mother D I ) )  
Yes. 

> ( ? -  (uncle S1 I ) )  
Yes. 

> ( ? -  (grandfather I  I ) )  
Yes. 



Programs 

he end of chapter 11 introduced a new, more efficient representation for logic variables. 
It would be reasonable to build a new version of the Prolog interpreter incorporating 
this representation. However, chapter 9 has taught us that compilers run faster than 

interpreters and are not that much harder to build. Thus, this chapter will present a Prolog 
compiler that translates from Prolog to Lisp. 

Each Prolog predicate will be translated into a Lisp function, and we will adopt the convention 
that a predicate called with a different number of arguments is a different predicate. If the symbol 
p can be called with either one or two arguments, we will need two Lisp functions to implement 
the two predicates. Following Prolog tradition, these will be called p/  1 and p/  2. 

The next step is to decide what the generated Lisp code should look like. It must unify 
the head of each clause against the arguments, and if the unification succeeds, it must call the 
predicates in the body. The difficult part is that the choice points have to be remembered. If 
a call to a predicate in the first clause fails, we must be able to return to the second clause and 
try again. 



This can be done by passing in a success continuation as an extra argument to 
every predicate. This continuation represents the goals that remain unsolved, the 
other - goa 1 s argument of prove. For each clause in the predicate, if all the goals in a 
clause succeed, then we should call the success continuation. If a goal fails, we don't 
do anything special; we just go on to the next clause. There is one complication: after 
failing we have to undo any bindings made by uni f y  ! . Consider an example. The 
clauses 

(<- ( l i k e s  Robin c a t s ) )  
(<- ( l i k e s  Sandy ? X I  ( l i k e s  ?x c a t s ) )  
(<- ( l i k e s  Kim ? X I  ( l i k e s  ?x  Lee) ( l i k e s  ?x  Kim)) 

could be compiled into this: 

(defun l i k e s 1 2  ( ? a r g l  ?arg2 con t )  
; ; F i r s t  c lause: 
( i f  (and ( u n i f y !  ? a r g l  'Robin) ( u n i f y !  ?arg2 ' c a t s ) )  

( f u n c a l l  c o n t ) )  
(undo-b ind ings)  
; ; Second clause: 
( i f  ( u n i f y !  ? a r g l  'Sandy) 

( l i k e s 1 2  ?arg2 ' ca ts  c o n t ) )  
(undo-b ind ings)  
;; T h i r d  clause: 
( i f  ( u n i f y !  ? a r g l  'Kim) 

(1  i kes12 ?arg2 'Lee 
#'(lambda 0 ( l i k e s 1 2  ?arg2 'Kim cant)))))) 

In the first clause, we just check the two arguments and, if the unifications succeed, 
call the continuation directly, because the first clause has no body. In the second 
clause, 1 i kesl2 is called recursively, to see if ?arg2 likes cats. If this succeeds, then 
the original goal succeeds, and the continuation cont is called. In the third clause, 
we have to call 1 i kesI2 recursively again, this time requesting that it check if ?a rg2 
likes Lee. If this check succeeds, then the continuation will be called. In this case, 
the continuation involves another call to 1 i kes12, to check if ?arg2 likes Kim.  If this 
succeeds, then the original continuation, cont, will finally be called. 

Recall that in the Prolog interpreter, we had to append the list of pending goals, 
other - goal s, to the goals in the body of the clause. In the compiler, there is no need 
to do an append. Instead, the continuation cont represents the other-goals, and the 
body of the clause is represented by explicit calls to functions. 



Note that the code for 1 i kes12 given before has eliminated some unnecessary 
calls to uni  f y  ! . The most obvious implementation would have one call to un i  f y  ! for 
each argument. Thus, for the second clause, we would have the code: 

( i f  (and ( u n i f y !  ? a r g l  'Sandy) ( u n i f y !  ?arg2 ? X I )  
( l i k e s 1 2  ?x  ' ca ts  c o n t ) )  

where we would need a suitable 1 e t  binding for the variable ?x. 

12.1 A Prolog Compiler 

This section presents the compiler summarized in figure 12.1. At the top level is 
the function p r o l  og-  compi 1 e, which takes a symbol, looks at the clauses defined for 
that symbol, and groups the clauses by arity. Each symbol/arity is compiled into a 
separate Lisp function by compi 1 e - p red i  ca te .  

(defun p r o l  og-compi 1  e  (symbol &op t iona l  
( c l  auses ( g e t - c l  auses symbol 1) 

"Compile a  symbol; make a  separate f u n c t i o n  f o r  each a r i t y . "  
(un l  ess (nu1 1  c l  auses) 

( l e t  ( ( a r i t y  ( r e l a t i o n - a r i t y  (clause-head ( f i r s t  c lauses)  1) 1)  
; ; Compile t h e  clauses w i t h  t h i s  a r i t y  
(compi le-pred icate 

symbol a r i t y  ( c l a u s e s - w i t h - a r i t y  clauses # '= a r i t y ) )  
; ; Compile a l l  t h e  clauses w i t h  any o the r  a r i t y  
( p r o l  og-compi 1  e  

symbol ( c l a u s e s - w i t h - a r i t y  clauses #'I= a r i t y ) )  1 ) )  

Three utility functions are included here: 

(defun c l a u s e s - w i t h - a r i t y  (c lauses t e s t  a r i  t y )  
"Return a l l  c lauses whose head has g iven a r i t y . "  
( f i n d - a l l  a r i t y  clauses 

:key #'(lambda (c lause)  
( r e l a t i o n - a r i t y  (clause-head c lause)  1) 

: t e s t  t e s t ) )  
(defun re1 a t i o n - a r i t y  ( re1  a t i o n )  

"The number o f  arguments t o  a  r e l a t i o n .  
Example: ( r e l a t i o n - a r i t y  ' ( p  a  b  c ) )  => 3"  
( l e n g t h  (args r e l a t i o n ) ) )  

(defun args ( x )  "The arguments o f  a  r e l a t i o n "  ( r e s t  x ) )  

The next step is to compile the clauses for a given predicate with a fixed arity into a 



Top-Level Functions 
? - Make a query, but compile everything first. 

Special Variables 
*trai 1 * A list of all bindings made so far. 

Data Types 
var A box for a variable; can be destructively modified. 

Major Functions 
top-1 eve1 -prove New version compiles everything first. 
run-pro1 og Compile everything and call a Prolog function. 
prolog-compile-symbols CompilealistofPrologsymbols. 
pro1 og-compi 1 e Compile a symbol; make a separate function for each arity. 
compi 1 e-predi cate Compile all the clauses for a given symbol/arity. 
compi 1 e-cl ause Transform away the head and compile the resulting body. 
compi 1 e - body Compile the body of a clause. 
compi le-call Compile a call to a Prolog predicate. 
compile-arg Generate code for an argument to a goal in the body. 
compile-unify Return code that tests if var and term unify. 

Awdliary Functions 
cl auses-wi th-ari ty Return all clauses whose head has given arity. 
re1 ation-arity The number of arguments to a relation. 
a rgs The arguments of a relation. 
make-parameters Build a list of parameters. 
make-predi cate Build a symbol of the form namela ri ty. 
ma ke-= Build a unification relation. 
def-prolog-compiler-macro DefineacompilermacroforProlog. 
pro1 og-compi 1 er-macro Fetch the compiler macro for a Prolog predicate. 
has-variable-p Is there a variable anywhere in the expression x? 
proper-1 i stp Is x a proper (non-dotted) list? 
maybe-add-undo-bindings Undoanybindingsthatneedundoing. 
bi nd-unbound-vars Add a 1 et if needed. 
ma ke-anonymous Replace variables that are only used once with ?. 
anonymous-variables-in Alistofanonymousvariables. 
compile-if Compile an IF form. No else-part allowed. 
compi 1 e- uni fy-vari abl e Compile the unification of a var. 
bind-variables-in Bind all variables in exp to themselves. 
foll ow-binding Get the ultimate binding of var according to bindings. 
bind-new-variables Extend bindings to include any unbound variables. 
ignore Do nothing-ignore the arguments. 

Previously Defined Functions 
unify ! Destructive unification (see section 11.6). 
undo- bi ndi ngs! Use the trail to backtrack, undoing bindings. 
binding-val Pick out the value part of a var/val binding. 
symbol Create or find an interned symbol. 
new-symbol Create a new uninterned symbol. 
find-anywhere Does item occur anywhere in tree? 

Figure 12.1: Glossary for the Prolog Compiler 



Lisp function. For now, that will be done by compiling each clause indepently and 
wrapping them in a 1 ambda with the right parameter list. 

(defun compi 1 e-predicate (symbol ari ty clauses) 
"Compile all  the clauses for a given symbol Iarity 
into a single LISP function." 
( l e t  ((predicate (make-predicate symbol a r i ty )  

(parameters (make-parameters a r i t y ) ) )  
(compi 1 e  

(eval 
' (defun 'predicate ( ,@parameters cont) 

. , (mapcar # '  (1  ambda (cl ause) 
(compile-clause parameters clause 'cont)) 

c lauses ) ) ) ) ) )  

(defun make-parameters (a r i ty )  
"Return the l i s t  (?argl ?arg2 ... ?arg-arity)" 
(loop for i  from 1 to ar i ty  

coll ect (new-symbol '?arg i  1) 

(defun make-predicate (symbol a r i ty )  
"Return the symbol : symbollarity" 
(symbol symbol ' I  a r i t y ) )  

Now for the hard part: we must actually generate the code for a clause. Here again 
is an example of the code desired for one clause. We'll start by setting as a target the 
simple code: 

(<- (likes Kim ?XI (likes ?x Lee) ( l ikes  ?x Kim)) 

(defun likes12 (?argl ?arg2 cont) 
... 
( i f  ( a n d  (unify! ?argl 'Kim) (unify! ?arg2 ?XI 

( 1  i  kes12 ?arg2 ' Lee 
#'(lambda 0 (likes12 ?x 'Kim)))) 

. . . I  

but we'll also consider the possibility of upgrading to the improved code: 

(defun likes12 (?argl ?arg2 cont) 
. . . 
( i f  (unify! ?argl 'Kim) 

( l i  kes12 ?arg2 'Lee 
#'(lambda 0 ( l i  kes12 ?arg2 'Kim)))) 

. . . I  

One approach would be to write two functions, cornpi 1 e - head and compi 1 e - body, 



and then combine them into the code ( i f head body). This approach could easily 
generate the prior code. However, let's allow ourselves to think ahead a little. If we 
eventually want to generate the improved code, we will need some communication 
between the head and the body. We will have to know that the head decided not 
to compile the unification of ?arg2 and ?x, but because of this, the body will have 
to substitute ?arg2 for ?x. That means that the compi 1 e- head function conceptually 
returns two values: the code for the head, and an indication of substitutions to 
perform in the body. This could be handled by explicitly manipulating multiple 
values, but it seems complicated. 

An alternate approachis to eliminate compi 1 e- head and just write compi 1 e- body. 
This is possible if we in effect do a source-code transformation on the clause. Instead 
of treating the clause as: 

(<- (likes Kim ?XI 

(likes ?x Lee) (likes ?x Kim)) 

we transform it to the equivalent: 

(<- (likes ?argl ?arg2) 

(= ?argl Kim) (= ?arg2 ?x) (likes ?x Lee) (likes ?x Kim)) 

Now the arguments in the head of the clause match the arguments in the function 
1 i kesI2, so there is no need to generate any code for the head. This makes things 
simpler by eliminating compi 1 e- head, and it is a better decomposition for another 
reason: instead of adding optimizations to compi 1 e- head, we will add them to the 
code in compi 1 e - body that handles =. That way, we can optimize calls that the user 
makes to =, in addition to the calls introduced by the source-code transformation. 

To get an overview, the calling sequence of functions will turn out to be as follows: 

pro1 og - compi 1 e 

compile-predicate 

compi 1 e-cl ause 

compi 1 e-body 

compi 1 e-cal 1 

compile-arg 

compile-unify 

compil e-arg 

where each function calls the ones below it that are indented one level. We have al- 
ready defined the first two functions. Here thenis our first versionof compi 1 e - cl a use: 



( de fun  c o m p i l e - c l a u s e  (parms c l a u s e  c o n t )  
"Transform away t h e  head ,  and compi l e  t h e  r e s u l t i n g  body." 
(compi le-body 

(nconc  
(mapcar #'make-= parms ( a r g s  ( c l a u s e - h e a d  c l a u s e ) ) )  
( c l  ause-body c l a u s e )  

c o n t  

( de fun  make-= ( x  y )  ' (=  , x  . Y ) )  

The bulk of the work is in compi 1 e - body, which is a little more complicated. There are 
three cases. If there is no body, we just call the continuation. If the body starts with 
a call to =, we compile a call to uni fy ! . Otherwise, we compile a call to a function, 
passing in the appropriate continuation. 

However, it is worthwhile to think ahead at this point. If we want to treat = 

specially now, we will probably want to treat other goals specially later. So instead 
of explicitly checking for =, we will do a data-driven dispatch, looking for any pred- 
icate that has a prol og - compi 1 er -macro property attached to it. Like Lisp compiler 
macros, the macro can decline to handle the goal. We will adopt the convention that 
returning :pass means the macro decided not to handle it, and thus it should be 
compiled as a normal goal. 

(de fun  compile-body (body c o n t )  
"Compile t h e  body o f  a c l a u s e . "  
( i f  ( n u l l  body) 

' ( f u n c a l l  ,cant) 

( l e t *  ( ( g o a l  ( f i r s t  body ) )  
(macro ( p r o l  og-compi 1 e r - mac ro  ( p r e d i c a t e  goal  1) 
(macro-val  ( i f  macro 

( f u n c a l l  macro goal  ( r e s t  body) cant)))) 

( i f  (and  macro ( n o t  ( e q  macro-va l  : p a s s ) ) )  
macro-val  
(compi 1 e - c a l  1 

(make- p red i ca t e  ( p r e d i c a t e  goal  
( r e l a t i o n - a r i t y  goal  1) 

(mapcar # ' ( lambda ( a r g )  ( c o m p i l e - a r g  a r g ) )  
( a r g s  g o a l ) )  

( i f  ( n u l l  ( r e s t  body ) )  
c o n t  
'# ' ( lambda 0 

, (compi 1 e-body ( r e s t  body) c o n t )  1) 1)  1) 1 

( de fun  c o m p i l e - c a l l  ( p r e d i c a t e  a r g s  c o n t )  
"Compile a c a l l  t o  a p r o l o g  p r e d i c a t e . "  
' ( , p r e d i c a t e  , @ a r g s  . c o n t  1) 



( de fun  p ro log - compi l e r - mac ro  (name) 
"Fe t ch  t h e  compi l e r  macro f o r  a  P ro log  p r e d i c a t e . "  
;; Note NAME i s  t h e  raw name, n o t  t h e  n a m e l a r i t y  
( g e t  name 'p ro1  og-compi 1  e r - mac ro )  

(defmacro de f -p ro log -comp i le r -mac ro  (name a r g l i s t  &body body) 
"De f ine  a  compi 1  e r  macro f o r  Pro1 og.  " 
' ( s e t f  ( g e t  ' ,name ' p ro log - compi l e r - mac ro )  

# ' ( lambda ' a r g l i s t  . , b o d y ) ) )  

(def-pro log-compi ler -macro = ( goa l  body c o n t )  
( l e t  ( ( a r g s  ( a r g s  g o a l ) ) )  

( i f  ( I =  ( l e n g t h  a r g s )  2 )  
: p a s s  
' ( i f  , ( c o m p i l e - u n i f y  ( f i r s t  a r g s )  ( s econd  a r g s ) )  

, ( comp i l e - body  body cant))))) 

(de fun  compi l e - un i fy  ( x  y )  
"Return  code  t h a t  t e s t s  i f  v a r  and t e rm  u n i f y . "  
' ( u n i f y !  , ( c o m p i l e - a r g  x )  , ( c o m p i l e - a r g  y ) ) )  

All that remains is compi 1 e - a rg, a function to compile the arguments to goals in the 
body. There are three cases to consider, as shown in the compilation to the argument 
of q below: 

1 (<- ( p  ?XI  ( q  ? X I )  ( q l l  ?x  c o n t )  
2  (<- ( p  ? x )  ( q  ( f  a  b ) ) )  ( q l l  ' ( f  a  b )  c o n t )  
3 (<- ( p  ?XI  ( q  ( f  ?x  b ) ) )  ( q l l  ( l i s t  ' f  ?x  ' b )  c o n t )  

In case 1, the argument is a variable, and it is compiled as is. In case 2, the argument 
is a constant expression (one without any variables) that compiles into a quoted 
expression. In case 3, the argument contains a variable, so we have to generate code 
that builds up the expression. Case 3 is actually split into two in the list below: one 
compiles into a call to 1 i s t ,  and the other a call to cons. It is important to remember 
that the goal ( q ( f ?x b 1 1 does not involve a call to the function f .  Rather, it involves 
the term ( f ?x b 1, which is just a list of three elements. 

(de fun  c o m p i l e - a r g  ( a r g )  
"Gene ra t e  code  f o r  an argument t o  a  goa l  i n  t h e  body." 
(cond ( ( v a r i a b l e - p  a r g )  a r g )  

( ( n o t  ( h a s - v a r i a b l e - p  a r g ) )  " , a r g )  
( ( p r o p e r - l i s t p  a r g )  

' ( l i s t  . , (mapca r  # ' comp i l e - a rg  a r g ) ) )  
( t  ' ( c o n s  . ( c o m p i l e - a r g  ( f i r s t  a r g ) )  

. ( c o m p i l e - a r g  ( r e s t  a r g )  1 ) )  1) 



(defun has -va r iab le -p  ( x )  
" I s  t h e r e  a  v a r i a b l e  anywhere i n  t h e  expression x?"  
( f i n d - i f - a n y w h e r e  # ' v a r i a b l e - p  x )  

(defun p r o p e r - l i s t p  ( x )  
" I s  x  a  proper (non-dot ted)  l i s t ? "  
( o r  ( n u l l  x )  

(and (consp x )  ( p r o p e r - l i s t p  ( r e s t  x ) ) ) ) )  

Let's see how it works. We will consider the following clauses: 

( c -  ( l i k e s  Robin c a t s ) )  
(<- ( l i k e s  Sandy ? X I  ( l i k e s  ?x  c a t s ) )  
(<- ( l i k e s  Kim ?x )  ( l i k e s  ?x  Lee) ( l i k e s  ?x  Kim)) 

(<- (member ? i tem ( ? i t e m  . ? r e s t ) ) )  
( c -  (member ? i tem ( ? x  . ? r e s t ) )  (member ? i tem ? r e s t ) )  

Here's what pro1 og - compi 1 e gives us: 

(DEFUN LIKES12 (?ARGl ?ARG2 CONT) 
( I F  (UNIFY! ?ARG1 'ROBIN) 

( I F  (UNIFY! ?ARG2 'CATS) 
( FUNCALL CONT) 1)  

( I F  (UNIFY! ?ARG1 'SANDY) 
( I F  (UNIFY! ?ARG2 ?XI 

(LIKES12 ?X 'CATS CONT))) 
( I F  (UNIFY! ?ARG1 'KIM) 

( I F  (UNIFY! ?ARG2 ?X) 
(LIKES12 ?X 'LEE (LAMBDA ( 1  

(LIKES12 ?X 'KIM CONT)))))) 

(DEFUN MEMBER12 (?ARGl ?ARG2 CONT) 
( I F  (UNIFY! ?ARG1 ?ITEM) 

( I F  (UNIFY! ?ARG2 (CONS ?ITEM ?REST)) 
(FUNCALL CONTI)) 

( I F  (UNIFY! ?ARG1 ?ITEM) 
( I F  (UNIFY! ?ARG2 (CONS ?X ?REST)) 

(MEMBER12 ?ITEM ?REST CONT)))) 



Fixing the Errors in the Compiler 

There are some problems in this version of the compiler: 

We forgot to undo the bindings after each call to uni  f y  ! . 

e The definition of undo - b i n d i n g s ! defined previously requires as an argument 
an index into the *t r a  i 1 * array. So we will have to save the current top of the 
trail when we enter each function. 

e Local variables, such as ?x, were used without being introduced. They should 
be bound to new variables. 

Undoing the bindings is simple: we add a single line to comp i 1 e - p r ed i c a t  e, 
a call to the function maybe- add- undo- b i  n d i  ngs. This function inserts a call to 
undo - b i  n d i  ngs ! after every failure. If there is only one clause, no undoing is neces- 
sary, because the predicate higher up in the calling sequence will do it when it fails. 
If there are multiple clauses, the function wraps the whole function body in a 1 e t  
that captures the initial value of the trail's fill pointer, so that the bindings can be 
undone to the right point. Similarly, we can handle the unbound-variable problem 
by wrapping a call to b i  nd - unbound - va r s  around each compiled clause: 

(defun compi 1 e-predicate (symbol ari t y  clauses) 
"Compile all  the clauses for a given symbol Iar i ty  
into a single LISP function." 
( l e t  ((predicate (make-predicate symbol a r i ty )  1 

(parameters (make-parameters a r i t y ) ) )  
( compi 1 e 

(eval 
'(defun ,predicate (.@parameters cont) 

.,(maybe-add-undo-bindings 
(mapcar # '  ( 1  ambda (clause) 

(compi 1 e-cl ause parameters 
cl ause 'cont 1) 

cl auses > 1 > 1) 1 1 

(defun compi 1 e-cl ause (parms cl ause cont 1 
"Transform away the head, and  compile the resulting body." 
(bi nd-unbound-vars . , *** 

pa rms . , *** 
(compile-body 

(nconc 
(mapcar #'make-= parms (args (clause-head clause))) 
(cl ause- body cl ause) ) 

cont)) 



(defun maybe-add-undo-bindings (compiled-exps) 

"Undo any b ind ings t h a t  need undoing. 

I f  t h e r e  are any, b i n d  t h e  t r a i l  be fo re  we s t a r t . "  

( i f  ( l eng th= l  compiled-exps) 

compi 1  ed - exps 

' ( ( l e t  ( ( o l d - t r a i l  ( f i l l  - p o i n t e r  * t r a i l * )  1 )  
' ( f i r s t  compiled-exps) 

,@( loop f o r  exp i n  ( r e s t  compiled-exps) 

c o l l e c t  ' (undo-b ind ings!  o l d - t r a i l )  

c o l l e c t  e x p ) ) ) ) )  

(defun bind-unbound-vars (parameters exp) 

" I f  t h e r e  are any v a r i a b l e s  i n  exp (besides t h e  parameters) 

then b i n d  them t o  new vars . "  

( l e t  ( (exp -va rs  ( s e t - d i f f e r e n c e  ( v a r i a b l e s - i n  exp) 

parameters) ) )  

( i f  exp-vars 

' ( l e t  '(mapcar #'(lambda ( v a r )  ' ( , va r  ( ? ) I )  
exp-vars 1 

. exp 

exp) 1)  

With these improvements, here's the code we get for 1 i kes and member: 

(DEFUN LIKES12 (?ARGl ?ARG2 CONT) 

(LET ((OLD-TRAIL (FILL-POINTER *TRAIL*) 1)  
( I F  (UNIFY! ?ARGl 'ROBIN) 

( I F  (UNIFY! ?ARG2 'CATS) 

( FUNCALL CONT) 1) 
(UNDO-BINDINGS! OLD-TRAIL) 

(LET ((?X ( ? ) I )  
( I F  (UNIFY! ?ARG1 'SANDY) 

( I F  (UNIFY! ?ARG2 ?X) 

(LIKES12 ?X 'CATS CONT)))) 

(UNDO-BINDINGS! OLD-TRAIL) 

(LET ( (?X ( ? ) I )  
( I F  (UNIFY! ?ARGl 'KIM) 

( I F  (UNIFY! ?ARG2 ?X) 

(LIKES12 ?X 'LEE (LAMBDA ( 1  
(LIKES12 ?X 'KIM CONT))) ) ) ) ) )  



(DEFUN MEMBER12 (?ARGl ?ARG2 CONT) 
(LET ((OLD-TRAIL (FILL-POINTER *TRAIL*))) 

(LET ((?ITEM ( ? I )  
(?REST ( ? ) I )  

( I F  (UNIFY! ?ARGl ?ITEM) 
( I F  (UNIFY! ?ARG2 (CONS ?ITEM ?REST)) 

(FUNCALL CONT)))) 
(UNDO-BINDINGS! OLD-TRAIL) 
(LET ((?X ( ? I )  

(?ITEM ( ? ) I  
(?REST ( ? I ) )  

( I F  (UNIFY! ?ARGl ?ITEM) 
( I F  (UNIFY! ?ARG2 (CONS ?X ?REST)) 

(MEMBER12 ?ITEM ?REST CONT)))))) 

12.3 Improving the Compiler 

This is fairly good, although there is still room for improvement. One minor improve- 
ment is to eliminate unneeded variables. For example, ? r e s t  in the first clause of 
member and ?x in the second clause are bound to new variables-the result of the ( ? ) 
call-and then only used once. The generated code could be made a little tighter by 
just putting ( ? inline, rather than binding it to a variable and then referencing that 
variable. There are two parts to this change: updating compi 1 e - a r g  to compile an 
anonymous variable inline, and changing the <- macro so that it converts all variables 
that only appear once in a clause into anonymous variables: 

(defmacro <- ( & r e s t  c lause)  
"Add a clause t o  t h e  data base." 
' (add-c lause ',(make-anonymous c l a u s e ) ) )  

(defun compi le-arg ( a r g )  
"Generate code f o r  an argument t o  a  goal i n  t h e  body." 
(cond ( (eq  a rg  ' ? I  ' ( ? I )  , . *** 

( ( v a r i a b l e - p  a rg )  arg)  
( ( n o t  (has -va r iab le -p  a r g ) )  " ,arg)  
( ( p r o p e r - l i s t p  arg)  

' ( l i s t  ..(mapcar # 'compi le-arg a r g ) ) )  
( t  ' (cons , (compi le-arg ( f i r s t '  a r g ) )  

, (compi le-arg ( r e s t  a r g ) ) ) ) ) )  
(defun make-anonymous (exp &op t iona l  

(anon-vars (anonymous-variables- in exp) ) )  
"Replace va r iab les  t h a t  a re  o n l y  used once w i t h  ? . "  
(cond ( (consp exp) 

(reuse-cons (make-anonymous ( f i r s t  exp) anon-vars) 



(make-anonymous ( r e s t  exp) anon-vars) 
exp 

((member exp anon-vars) ' ? )  
( t  exp ) ) )  

Finding anonymous variables is tricky. The following function keeps two lists: the 
variables that have been seen once, and the variables that have been seen twice 
or more. The local function w a l  k is then used to walk over the tree, recursively 
considering the components of each cons cell and updating the two lists as each 
variable is encountered. This use of local functions should be remembered, as well 
as an alternative discussed in exercise 12.23 on page 428. 

(defun anonymous-variables- in ( t r e e )  
"Return a l i s t  o f  a l l  va r iab les  t h a t  occur on ly  once i n  t r e e . "  
( l e t  ((seen-once n i l )  

(seen-more n i l ) )  
( l a b e l s  ( (wa lk  ( x )  

(cond 
( ( v a r i a b l e - p  x )  

(cond ((member x seen-once) 
( s e t f  seen-once ( d e l e t e  x seen-once)) 
(push x seen-more)) 

((member x seen-more) n i l )  
( t  (push x seen-once))))  

((consp x )  
(walk ( f i r s t  x ) )  
(walk ( r e s t  x ) )  1 ) )  

(walk t r e e )  
seen-once))) 

Now member compiles into this: 

(DEFUN MEMBER12 (?ARGl ?ARG2 CONT) 
(LET ((OLD-TRAIL (FILL-POINTER *TRAIL*) 1)  

(LET ((?ITEM ( ? ) ) I  
( I F  (UNIFY! ?ARG1 ?ITEM) 

( I F  (UNIFY! ?ARG2 (CONS ?ITEM ( ? I ) )  
(FUNCALL CONTI))) 

(UNDO-BINDINGS! OLD-TRAIL) 
(LET ((?ITEM ( ? I )  

(?REST ( ? ) ) I  
( I F  (UNIFY! ?ARG1 ?ITEM) 

( I F  (UNIFY! ?ARG2 (CONS ( ? I  ?REST)) 
(MEMBER12 ?ITEM ?REST CONT)))))) 



12.4 Improving the Compilation of Unification 

Now we turn to the improvement of compi 1 e - un i fy. Recall that we want to eliminate 
certain calls to uni  f y  ! so that, for example, the first clause of member: 

(<- (member ? i t e m  ( ? i t e m  . ? r e s t ) ) )  

compiles into: 

(LET ((?ITEM ( ? ) I )  
( I F  (UNIFY! ?ARG1 ?ITEM) 

( I F  (UNIFY! ?ARG2 (CONS ?ITEM ( ? ) ) I  
( FUNCALL CONT) ) ) 

when it could compile to the more efficient: 

( I F  (UNIFY! ?ARG2 (CONS ?ARG1 ( ? ) ) I  
( FUNCALL CONT) 

Eliminating the unification in one goal has repercussions in other goals later on, so 
we will need to keep track of expressions that have been unified together. We have 
a design choice. Either compi 1 e- un i  f y  can modify a global state variable, or it can 
return multiple values. On the grounds that global variables are messy, we make the 
second choice: compi 1 e- un i  f y  will take a binding list as an extra argument and will 
return two values, the actual code and an updated binding list. We will expect that 
other related functions will have to be modified to deal with these multiple values. 

When cornpi 1 e- un i  f y  is first called in our example clause, it is asked to unify 
?a r g l  and ? i tern. We want it to return no code (or more precisely, the trivially true 
test, t). For the second value, it should return a new binding list, with ? i  tern bound 
to ?a r g 1. That binding will be used to replace ? i tern with ?a r g  1 in subsequent code. 

How do we know to bind ? i tern to ?a r g  1 rather than the other way around? 
Because ?a r g l  is already bound to something-the value passed in to member. We 
don't know what this value is, but we can't ignore it. Thus, the initial binding list will 
have to indicate that the parameters are bound to something. A simple convention 
is to bind the parameters to themselves. Thus, the initial binding list will be: 

We saw in the previous chapter (page 354) that binding a variable to itself can lead to 
problems; we will have to be careful. 

Besides eliminating unifications of new variables against parameters, there are 
quite a few other improvements that can be made. For example, unifications involv- 



ing only constants can be done at compile time. The call (= ( f a  ) ( f a  ) always 
succeeds, while (= 3  4) always fails. In addition, unification of two cons cells can 
be broken into components at compile time: (= ( f ?x ) ( f a  1 reduces to (= ?x 
a  ) and (= f f 1, where the latter trivially succeeds. We can even do some occurs 
checking at compile time: (= ?x ( f ?x ) should fail. 

The following table lists these improvements, along with a breakdown for the 
cases of unifyinga bound (?a r g  1 ) or unbound (?x) variable agains another expression. 
The first column is the unification call, the second is the generated code, and the third 
is the bindings that will be added as a result of the call: 

Unification Code Bindings 
1 (= 3  3) t - 
2 (= 3  4) n i  1 - 
3 (= ( f  ? X I  (?p 3 ) )  t ( ? x .  3)  ( ? p .  f )  
4 (= ?a rg l  ?y)  t (?y . ? a r g l )  
5 (= ? a r g l  ?arg2) ( un i f y !  ? a r g l  ?arg2) ( ? a r g l  . ?arg2) 
6 (= ?a rg l  3) ( un i f y !  ? a r g l  3) ( ? a r g l  . 3)  
7 (= ? a r g l  ( f  ? y ) )  ( un i f y !  ? a r g l  . . . )  (?y . ?y) 
8 ( = ? x ? y )  t (?x  . ?y) 
9 ( = ? x 3 )  t (?x  . 3) 

10 (= ?x ( f  ? y > >  (un i f y !  ?x . . . I  (?y  . ?y) 
11 (= ?x ( f  ? X I )  n i  1 
12 (= ?x ? )  t - 

From this table we can craft our new version of compi 1 e- uni fy .  The first part 
is fairly easy. It takes care of the first three cases in this table and makes sure 
that compi 1 e - uni  f y  - va r i  a  bl e is called with a variable as the first argument for the 
other cases. 

(defun compi le-uni fy  ( x  y  bindings) 
"Return 2 values: code t o  t e s t  i f  x and y un i fy .  
and a new binding l i s t . "  
(cond 

;; Un i fy  constants and conses: ; Case 
( ( no t  ( o r  (has-var iable-p x )  (has-var iable-p y ) )  ; 1.2 

(values (equal x  y )  bindings) 
((and (consp x )  (consp y ) )  ; 3 

(mu1 t i p 1  e-val  ue-bind (codel b ind ings l )  
(compi le-uni fy  ( f i r s t  x )  ( f i r s t  y )  bindings) 

(mu1 ti p l  e-val  ue-bi nd (code2 b i nd i  ngs2) 
(compi 1 e -un i f y  ( r e s t  x )  ( r e s t  y )  b ind ings l )  

(va l  ues (compi 1 e- i f code1 code2 b i  ndi  ngs2) 
;; Here x or  y  i s  a var iable.  Pick the r i g h t  one: 
( ( va r i ab le -p  x )  (compi le-uni fy-var iable x y  b indings))  
( t  (compi le -un i fy -var iab le  y x b ind ings) ) ) )  



(defun compi le - i f  (pred then-par t )  
"Compile a  L isp I F  form. No e lse-par t  allowed." 
(case pred 

( ( t )  then-par t )  
( ( n i l )  n i l )  
(otherwise ' ( i f  .pred , t hen -pa r t ) ) ) )  

The function compi 1 e-  uni fy - va r i  a bl e following is one of the most complex we have 
seen. For each argument, we see if it has a binding (the local variables xb and yb), 
and then use the bindings to get the value of each argument (xl and y 1). Note that for 
either an unbound variable or one bound to itself, x will equal x l  (and the same for y 
and yl). If either of the pairs of values is not equal, we should use the new ones (xl or 
yl), and the clause commented d e r e f  does that. After that point, we just go through 
the cases, one at a time. It turns out that it was easier to change the order slightly from 
the preceding table, but each clause is commented with the corresponding number: 

(defun compi l e -un i f y - va r i ab le  ( x  y  b indings)  
" X  i s  a  var iable,  and Y may be." 
( l e t *  ( (xb  ( fo l low-binding x,bindings)) 

( x l  ( i f  xb (cdr  xb) X I )  
(yb ( i f  ( var iab le -p  y )  ( fo l low-b ind ing  y  b ind ings) ) )  
( y l  ( i f  yb (cdr  yb) y ) ) )  

(cond ; Case: 
( ( o r  (eq x  ' ? )  (eq y  ' ? I )  (values t bindings))  ; 12 
( ( no t  (and (equal x  x l )  (equal y  y l ) ) )  ; deref  

(compi 1  e-uni f y  x l  y l  b indings)  1 
((f ind-anywhere x l  y l )  (values n i l  b indings))  ; 11 
( (consp y l )  ; 7,lO 
(values ' ( un i f y !  , x l  ,(compile-arg y l  b indings))  

(b ind-var iab les- in  y l  b ind ings) ) )  
( ( n o t  ( n u l l  xb))  
;; i . e .  x  i s  an ?arg var iab le  
( i f  (and (var iab le -p  y l )  ( n u l l  yb ) )  

(values 't (ex tend -b ind ingsy l  x l  b indings))  ; 4 
(values ' (un i f y !  , x l  , (compi 1  e-arg y l  bindings) ) 

(extend-bindings x l  y l  b i nd ings ) ) ) )  ; 5.6 
( ( no t  ( n u l l  yb ) )  

(compi le -un i fy -var iab le  y l  x l  b indings))  
( t  (values 't (extend-bindings x l  y l  b i nd ings ) ) ) ) ) )  ; 8.9 

Take some time to understand just how this function works. Then go on to the 
following auxiliary functions: 



( d e f u n  b i n d - v a r i a b l e s - i n  ( e x p  b i n d i n g s )  
"Bind  a l l  v a r i a b l e s  i n  e x p  t o  t h e m s e l v e s ,  and add t h a t  t o  
b i n d i n g s  ( e x c e p t  f o r  v a r i a b l e s  a l r e a d y  b o u n d ) . "  
( d o l i s t  ( v a r  ( v a r i a b l e s - i n  e x p ) )  

( u n l e s s  ( g e t - b i n d i n g  v a r  b i n d i n g s )  
( s e t f  b i n d i n g s  ( e x t e n d - b i n d i n g s  v a r  v a r  b i n d i n g s ) ) ) )  

b i  n d i  n g s  

( d e f u n  f o l l o w - b i n d i n g  ( v a r  b i n d i n g s )  
"Get  t h e  u l t i m a t e  b i n d i n g  o f  v a r  a c c o r d i n g  t o  b i n d i n g s . "  
( l e t  ( ( b  ( g e t - b i n d i n g  v a r  b i n d i n g s ) ) )  

( i f  ( e q  ( c a r  b )  ( c d r  6 ) )  
b  
( o r  ( f o l l o w - b i n d i n g  ( c d r  b )  b i n d i n g s )  

b ) ) ) )  

Now we need to integrate the new cornpi 1 e -  uni f y  into the rest of the compiler. The 
problem is that the new version takes an extra argument and returns an extra value, 
so all the functions that call it need to be changed. Let's look again at the calling 
sequence: 

pro1  og-compi 1  e  
compi 1  e - p r e d i  c a t e  

compi 1  e - c l  a u s e  
compi 1  e -  body 

compi 1  e - c a l l  
compi 1  e - a r g  

compi l e - u n i f y  
compi 1  e - a r g  

First, going downward, we see that compi 1 e - a rg  needs to take a binding list as an 
argument, so that it can look up and substitute in the appropriate values. But it will 
not alter the binding list, so it still returns one value: 

( d e f u n  c o m p i l e - a r g  ( a r g  b i n d i n g s )  
" G e n e r a t e  c o d e  f o r  an  a rgument  t o  a  g o a l  i n  t h e  body." 
( c o n d  ( ( e q  a r g  ' ? )  ' ( ? I )  

( ( v a r i  a b l  e - p  a r g )  
( l e t  ( ( b i n d i n g  ( g e t - b i n d i n g  a r g  b i n d i n g s ) ) )  

( i f  ( a n d  ( n o t  ( n u l l  b i n d i n g ) )  
( n o t  ( e q  a r g  ( b i n d i n g - v a l  b i n d i n g ) ) ) )  

(compi 1  e - a r g  ( b i n d i n g - v a l  b i n d i n g )  b i n d i n g s )  
a r g )  1 

( ( n o t  ( f i n d - i f - a n y w h e r e  # ' v a r i a b l e - p  a r g ) )  " , a r g )  
( ( p r o p e r - l i s t p  a r g )  

' ( l i s t  . , ( m a p c a r  # ' ( l a m b d a  ( a )  ( c o m p i l e - a r g  a  b i n d i n g s ) )  



a r g )  1) 
( t  ' ( c o n s  , ( c o m p i l e - a r g  ( f i r s t  a r g )  b i n d i n g s )  

, ( c o m p i l e - a r g  ( r e s t  a r g )  b i n d i n g s ) ) ) ) )  

Now, going upward, cornpi 1 e-body needs to take a binding list and pass it on to 
various functions: 

(de fun  compile-body (body c o n t  b i n d i n g s )  
"Compile t h e  body o f  a c l a u s e . "  
(cond 

( ( n u l l  body) 
' ( f u n c a l l  ,cant)) 

( t  ( l e t *  ( ( g o a l  ( f i r s t  body))  
(macro (p ro log- compi l e r - mac ro  ( p r e d i c a t e  g o a l ) ) )  
(macro-val  ( i f  macro 

( f u n c a l l  macro goal  ( r e s t  body) 
c o n t b i n d i n g s ) ) ) )  

( i f  (and  macro ( n o t  ( e q  macro-val  : p a s s ) ) )  
macro-va l  
(compi 1 e - c a l  1 

( m a k e - p r e d i c a t e  ( p r e d i c a t e  goa l  
( r e l a t i o n - a r i t y  goa l  1) 

(mapcar # ' ( l ambda  ( a r g )  
( c o m p i l e - a r g  a r g  b i n d i n g s ) )  

( a r g s  goal  1)  
( i f  ( n u l l  ( r e s t  body ) )  

c o n t  
'# ' ( lambda 0 

, (compi 1 e -  body 
( r e s t  body) c o n t  
( b i n d - n e w - v a r i a b l e s  b i n d i n g s  g o a l ) ) ) ) ) ) ) ) ) )  

The function bi nd - new - va r i a bl es takes any variables mentioned in the goal that 
have not been bound yet and binds these variables to themselves. This is because 
the goal, whatever it is, may bind its arguments. 

(de fun  b ind - new- va r i  ab l  es ( b i n d i n g s  goal  
"Extend b i n d i n g s  t o  i  nc l  ude any unbound v a r i a b l e s  i n  goa l  . " 
( l e t  ( ( v a r i a b l e s  ( r emove- i f  # ' ( lambda ( v )  ( a s s o c  v b i n d i n g s ) )  

( v a r i a b l e s - i n  goa l  ) ) ) )  

(nconc  (mapcar # ' s e l f - c o n s  v a r i a b l e s )  b i n d i n g s ) ) )  

( de fun  s e l f - c o n s  ( x )  ( c o n s  x x ) )  

One of the functions that needs to be changed to accept a binding list is the compiler 
macro for =: 



(def-prolog-compiler-macro = (goal body cont  b ind ings )  
"Compile a goal which i s  a c a l l  t o  =." 

( l e t  ( (a rgs  (args g o a l ) ) )  
( i f  ( I =  ( l e n g t h  args)  2 )  

:pass ;; d e c l i n e  t o  handle t h i s  goal 
(mu1 t i p l e - v a l  ue-b ind (codel  b ind ings11 

(comp i le -un i f y  ( f i r s t  args)  (second args)  b ind ings )  
( c o m p i l e - i f  

code1 
(compile-body body cont  b i n d i n g s l ) ) ) ) ) )  

The last step upward is to change compi 1 e -  cl ause so that it starts everything off by 
passing in to compi 1 e - body a binding list with all the parameters bound to themselves: 

(defun compile-clause (parms clause con t )  
"Transform away t h e  head, and compile t h e  r e s u l t i n g  body." 
(bind-unbound-vars 

pa rms 
(compi 1 e -  body 

(nconc 
(mapcar #'make-= parms (args (clause-head c l a u s e ) ) )  
( c l  ause-body c l  ause) 

cont  
(mapcar # ' s e l f - c o n s  parms)) ) )  . . *** 

Finally, we can see the fruits of our efforts: 

(DEFUN MEMBER12 (?ARGl ?ARG2 CONT) 
(LET ( (OLD-TRAIL (FILL-POINTER *TRAIL*) 1) 

( I F  (UNIFY! ?ARG2 (CONS ?ARG1 ( ? ) I )  
( FUNCALL CONT) 

(UNDO-BINDINGS! OLD-TRAIL) 
(LET ((?REST ( ? ) ) I  

( I F  (UNIFY! ?ARG2 (CONS ( ? I  ?REST)) 
(MEMBER12 ?ARG1 ?REST CONT))))) 

(DEFUN LIKES12 (?ARGl ?ARG2 CONT) 
(LET ( (OLD-TRAIL (FILL-POINTER *TRAIL*) 1) 

( I F  (UNIFY! ?ARG1 'ROBIN) 
( I F  (UNIFY! ?ARG2 'CATS) 

(FUNCALL CONT))) 
(UNDO-BINDINGS! OLD-TRAIL) 
( I F  (UNIFY! ?ARG1 'SANDY) 

(LIKES12 ?ARG2 'CATS CONT)) 
(UNDO-BINDINGS! OLD-TRAIL) 
( I F  (UNIFY! ?ARGl 'KIM) 

(LIKES12 ?ARG2 'LEE (LAMBDA ( 1  
(LIKES12 ?ARG2 'KIM CONT)))))) 



12.5 FurtherImprovementstoUnification 

Could compi 1  e - u n i f y  be improved yet again? If we insist that it call unify!, it 
seems that it can't be made much better. However, we could improve it by in effect 
compiling unify!. This is a key idea in the Warren Abstract Machine, or WAM, 
which is the most commonly used model for Prolog compilers. 

We call uni f y  ! in four cases (5,6,7, and lo), and in each case the first argument 
is a variable, and we know something about the second argument. But the first 
thing uni f y  ! does is redundantly test if the first argument is a variable. We could 
eliminate unnecessary tests by calling more specialized functions rather than the 
general-purpose function u n  i  f y  ! . Consider this call: 

(unify! ?arg2 (cons ?argl ( ? ) ) I  

If ?a rg2 is an unbound variable, this code is appropriate. But if ?a rg2 is a constant 
atom, we should fail immediately, without allowing cons and ? to generate garbage. 
We could change the test to: 

(and (consp-or-variable-p ?arg2) 
(un i fy - f i r s t !  ?arg2 ?argl )  
(unify-rest!  ?arg2 ( ? ) ) I  

with suitable definitions for the functions referenced here. This change should 
speed execution time and limit the amount of garbage generated. Of course, it makes 
the generated code longer, so that could slow things down if the program ends up 
spending too much time bringing the code to the processor. 

p Exercise 12.l[h] Writedefinitionsforconsp-or-variable-p,unify-first!,and 
un  i  f y  - r e s t  !, and change the compiler to generate code like that outlined previously. 
You might want to look at the function compi 1 e -  ru l  e  in section 9.6, starting on 
page 300. This function compiled a call to pa t  -match into individual tests; now we 
want to do the same thing to uni f y  ! . Run some benchmarks to compare the altered 
compiler to the original version. 

p Exercise 12.2 [h] We can gain some more efficiency by keeping track of which 
variables have been dereferenced and calling an appropriate unification function: 
either one that dereferences the argument or one that assumes the argument has 
already been dereferenced. Implement this approach. 

Exercise 12.3 [rn] What code is generatedfor (= ( f  ( CJ ?x) ?y)  ( f  ?y ( ?p  a 1) I ?  



What more efficient code represents the same unification? How easy is it to change 
the compiler to get this more efficient result? 

p Exercise 12.4 [h] In retrospect, it seems that binding variables to themselves, as 
in ( ?argl . ?argl 1, was not such a good idea. It complicates the meaning of 
bindings, and prohibits us from using existing tools. For example, I had to use 
f i nd-anywhere instead of occur-check for case 11, because occur-check expects 
a noncircular binding list. But f i  nd-anywhere does not do as complete a job as 
occur - chec k. Write a version of compi 1 e - uni fy that returns three values: the code, 
a noncircular binding list, and a list of variables that are bound to unknown values. 

p Exercise 12.5 [h] An alternative to the previous exercise is not to use binding lists at 
all. Instead, we could pass in a list of equivalence classes-that is, a list of lists, where 
each sublist contains one or more elements that have been unified. In this approach, 
the initial equivalence class list would be ( ( ?a rgl 1 ( ?a rg2 1 1. After unifying ?a rgl 
with?x,?arg2with?y,and?xwith4,thelistwouldbe((4 ?argl ?XI (?arg2 ?y)). 
This assumes the convention that the canonical member of an equivalence class (the 
one that will be substituted for all others) comes first. Implement this approach. 
What advantages and disadvantages does it have? 

12.6 The User Interface to the Compiler 

The compiler can translate Prolog to Lisp, but that does us no good unless we can 
conveniently arrange to compile the right Prolog relations and call the right Lisp 
functions. In other words, we have to integrate the compiler with the <- and ? 
macros. Surprisingly, we don't need to change these macros at all. Rather, we 
will change the functions these macros call. When a new clause is entered, we will 
enter the clause's predicate in the list *uncompi 1 ed*. This is a one-line addition to 
add-cl ause: 

(defvar *uncompiled* nil 
"Prolog symbols t h a t  have not beencornpiled.") 

(defun add-clause (clause) 
"Add a clause to the d a t a  base, indexed by head's predicate." 
;; The predicate must be a non-variable symbol. 
( l e t  ((pred (predicate (clause-head clause))))  

(assert  ( a n d  (symbolp pred) (not (variable-p pred))))  
(pushnew pred *db-predicates*) 
(pushnew pred *uncompiled*) . . *** 
(setf (get pred 'clauses) 



(nconc (get-clauses pred) ( l i s t  c l ause ) ) )  
pred 1 

Now when a query is made, the ? - macro expands into a call to t o p -  1 evel  -prove. 
The list of goals in the query, along with the show- pro1 og - va rs goal, is added as the 
sole clause for the relation t o p  - 1 evel -query. Next, that query, along with any others 
that are on the uncompiled list, are compiled. Finally, the newly compiled top-level 
query function is called. 

(defun top- 1 evel -prove (goal s  
"Prove the l i s t  of goals by compiling and call ing i t . "  
; ; Fi r s t  redefine top-1 evel -query 
(clear-predicate 'top-level-query) 
( l e t  ( (va r s  (dele te  ' ?  (variables-in g o a l s ) ) ) )  

(add-clause ' (( top-level-query) 
,@goal s  
(show-prolog-vars ,(mapcar #'symbol-name vars) 

, v a r s > > > >  
;; Now run i t  
(run-pro1 og 'top-1 evel -query/O #'ignore) 
(format t ""&No.") 
(values) 1 

(defun run-prolog (procedure cont) 
" R u n  a  0-ary prolog procedure with a given continuation." 
; ; Firs t  compile anything e lse  tha t  needs i t  
(prolog-compile-symbols) 
;; Reset the t r a i l  and the new variable counter 
( se t f  ( f i l l  -pointer * t ra i l*)  0)  
( se t f  *var-counter* 0)  
; ; Finally, call  the query 
(catch 'top-1 evel -prove 

(funcall procedure cant))) 

(defun pro1 og-compi 1 e-symbol s  (&optional (symbol s  *uncompi 1 ed*) 
"Compile a 1 i s t  of Prolog symbols. 
By default ,  the l i s t  i s  a l l  symbols tha t  need i t . "  
(mapc #'prolog-compile symbols) 
( se t f  *uncompiled* (set-difference *uncompiled* symbols))) 

(defun ignore (&res t  args) 
(declare (ignore a rgs ) )  
nil 1 

Note that at the top level, we don't need the continuation to do anything. Arbitrarily, 
we chose to pass in the function ignore,  which is defined to ignore its arguments. 



This function is useful in a variety of places; some programmers will proclaim it 
inline and then use a call to i g n o r e  in place of an ignore declaration: 

(defun t h i r d - a r g  ( x  y z )  
( i gnore  x y )  
z 1 

The compiler's calling convention is different from the interpreter, so the primitives 
need to be redefined. The old definition of the primitive show - p r o 1  og - va r s  had three 
parameters: the list of arguments to the goal, a binding list, and a list of pending 
goals. The new definition of show- p r o 1  o g  - va r s l 2  also has three parameters, but that 
is just a coincidence. The first two parameters are the two separate arguments to the 
goal: a list of variable names and a list of variable values. The last parameter is a 
continuation function. To continue, we call that function, but to fail, we throw to the 
catch point set up in t o p -  1 eve1 - p rove .  

(defun show-prolog-vars12 (var-names vars con t )  
"D isp lay  t h e  va r iab les ,  and prompt t h e  user t o  see 
i f  we should cont inue. I f  no t ,  r e t u r n  t o  t h e  t o p  l e v e l . "  
( i f  ( n u l l  vars)  

( format  t ""&Yes") 
( l o o p  f o r  name i n  var-names 

f o r  var  i n  vars do 
( format  t ""&"a = "a" name (dere f -exp  v a r ) ) ) )  

( i f  ( con t inue-p )  
( f uncal 1 cont  
( throw ' t o p - l e v e l  -prove n i l  1 )  

(defun deref -exp (exp) 
" B u i l d  something equ iva len t  t o  EXP w i t h  va r iab les  dereferenced." 
( i f  (atom ( d e r e f  exp) )  

exp 
(reuse-cons 

(de re f -exp  ( f i r s t  exp) 
(de re f -exp  ( r e s t  exp))  
exp) 1 1 

With these definitions in place, we can invoke the compiler automatically just by 
making a query with the ? - macro. 

Exercise 12.6 [m] Suppose you define a predicate p, which calls q, and then define 
q. In some implementations of Lisp, when you make a query like ( ? - ( p ?x 1 1, you 
may get awarningmessage like "f u n c t i  on  q l l  u n d e f  i ned" before getting the correct 



answer. The problem is that each function is compiled separately, so warnings de- 
tected during the compilation of p /  1 will be printed right away, even if the function 
qll will be defined later. In ANSI Common Lisp there is a way to delay the printing 
of warnings until a series of compilations are done: wrap the compilation with the 
macro wi t h - compi 1 a t  i on - un i t. Even if your implementation does not provide this 
macro, it may provide the same functionality under a different name. Find out if t 
w i  t h - compi 1 a t  i on - un i t is already defined in your implementation, or if it can be 
defined. 

12.7 Benchmarking the Compiler 

Our compiled Prolog code runs the zebra puzzle in 17.4 seconds, a 16-fold speed-up 
over the interpreted version, for a rate of 740 LIPS. 

Another popular benchmark is Lisp's reverse function, which we can code as 
the rev  relation: 

(<- ( r e v  0 0 ) )  
(<- ( r e v  ( ? x  . ?a) ?b) ( r e v  ?a ?c )  (concat ?c ( ? X I  ? b ) )  

rev  uses the relation concat, which stands for concatenation. ( concat ?a ? b  ?c 1 is 
true when ?a  concatenated to ?b yields ?c. This relationlike name is preferred over 
more procedural names like append. But rev  is very similar to the following Lisp 
definitions: 

(defun rev (1  1 
( i f  ( n u l l  1 )  

n i  1  
(app ( r e v  ( r e s t  1 ) )  

( l i s t  ( f i r s t  1 ) ) ) ) )  

(defun app ( x  y )  
( i f  ( n u l l  x )  

Y  
(cons ( f i r s t  x )  

(app ( r e s t  x )  y ) ) ) )  

Both versions are inefficient. It is possible to write an iterative version of reverse 
that does no extra consing and is tail-recursive: 



(<- ( i r e v  ?1 ? r )  ( i r e v 3  ? I  0 ? r ) )  
(<- ( i r e v 3  ( ? x  . ?1)  ? s o - f a r  ? r )  ( i r e v 3  ?1 ( ? x  . ? s o - f a r )  ? r ) )  
(<- ( i r e v 3  0 ? r  ? r ) )  

The Prolog i rev is equivalent to this Lisp program: 

(defun i r e v  ( l i s t )  ( i r e v 2  l i s t  n i l ) )  

(defun i r e v 2  ( l i s t  s o - f a r )  
( i f  (consp l i s t )  

( i r e v 2  ( r e s t  l i s t )  (cons ( f i r s t  l i s t )  s o - f a r ) )  
s o - f a r )  

The following table shows times in seconds to execute these routines on lists of length 
20 and 100, for both Prolog and Lisp, both interpreted and compiled. (Only compiled 
Lisp could execute rev on a 100-element list without running out of stack space.) 
Times for the zebra puzzle are also included, although there is no Lisp version of 
this program. 

This benchmark is too small to be conclusive, but on these examples the Prolog 
compiler is 16 to 181 times faster than the Prolog interpreter, slightly faster than 
interpreted Lisp, but still 17 to 90 times slower than compiled Lisp. This suggests 
that the Prolog interpreter cannot be used as a practical programming tool, but the 
Prolog compiler can. 

Before moving on, it is interesting to note that Prolog provides for optional argu- 
ments automatically. Although there is no special syntax for optional arguments, an 
often-used convention is to have two versions of a relation, one with n arguments 
and one with n - 1. A single clause for the n - 1 case provides the missing, and 
therefore "optional," argument. In the following example, i rev12 can be considered 
as a version of i rev13 where the missing optional argument is ( 1. 

Interp. Comp. 
Problem Prolog Prolog Speed-up 
zebra 278.000 17.241 16 
rev 20 4.24 .208 20 
rev 100 - - - 

i rev 20 .22 .010 22 
irev 100 9.81 .054 181 

(<- ( i r e v  ?1 ? r )  ( i r e v  ?1 0 ? r ) )  
(<- ( i r e v  ( ? x  . ?1) ? s o - f a r  ? r )  ( i r e v  ?1 ( ? x  . ? s o - f a r )  ? r ) )  
(<- ( i r e v  0 ? r  ? r ) )  

Interp. Comp. 
Lisp Lisp 
- - 

.241 .0023 
- .0614 

.028 .0005 

.I39 .0014 

This is roughly equivalent to the following Lisp verison: 



(defun i r e v  (1 i s t  &op t iona l  ( s o - f a r  n i l  1 )  
( i f  (consp l i s t )  

( i r e v  ( r e s t  l i s t )  (cons ( f i r s t  l i s t )  s o - f a r ) )  
s o - f a r )  

12.8 Adding More Primitives 

Just as a Lisp compiler needs machine instructions to do input/output, arithmetic, 
and the like, so our Prolog systemneeds to be able to perform certain primitive actions. 
For the Prolog interpreter, primitives were implemented by function symbols. When 
the interpreter went to fetch a list of clauses, if it got a function instead, it called that 
function, passing it the arguments to the current relation, the current bindings, and 
a list of unsatisfied goals. For the Prolog compiler, primitives can be installed simply 
by writing a Lisp function that respects the convention of taking a continuation as 
the final argument and has a name of the form symbollarity. For example, here's an 
easy way to handle input and output: 

(defun read11 (exp con t )  
( i f  ( u n i f y !  exp ( read) )  

( f uncal 1  cont  

(defun w r i t e l l  (exp con t )  
( w r i t e  (de re f -exp  exp) : p r e t t y  t )  
( f u n c a l l  c o n t ) )  

Calling ( w r i t e  ?XI will always succeed, so the continuation will always be called. 
Similarly, one could use ( r e a d  ?XI to read a value and unify it with ?x. If ?x is 
unbound, this is the same as assigning the value. However, it is also possible to make 
a call like ( read  ( ?x + ?y I I, which succeeds only if the input is a three-element list 
with + in the middle. It is an easy extension to define read 12 and wr i t e / 2 as relations 
that indicate what stream to use. To make this useful, one would need to define 
open12 as a relation that takes a pathname as one argument and gives a stream back 
as the other. Other optional arguments could also be supported, if desired. 

The primitive nl outputs a newline: 

(defun n110 ( c o n t )  ( t e r p r i )  ( f u n c a l l  c o n t ) )  

We provided special support for the unification predicate, =. However, we could 
have simplified the compiler greatly by having a simple definition for =/2: 



(defun =/2 ( ? a r g l  ?arg2 con t )  
( i f  ( u n i f y !  ? a r g l  ?arg2) 

( f u n c a l l  cant))) 

In fact, if we give our compiler the single clause: 

it produces just this code for the definition of =/2. There are other equality predicates 
to worry about. The predicate = =/2  is more like equal in Lisp. It does no unification, 
but instead tests if two structures are equal with regard to their elements. A variable 
is considered equal only to itself. Here's an implementation: 

(defun =/2 ( ? a r g l  ?arg2 con t )  
"Are t h e  two arguments EQUAL w i t h  no u n i f i c a t i o n ,  
b u t  w i t h  dereferenc ing? I f  so, succeed." 
( i f  (deref -equal  ? a r g l  ?arg2) 

( f u n c a l l  cant))) 

(defun deref -equal  ( x  y )  
"Are the  two arguments EQUAL w i t h  no u n i f i c a t i o n ,  
b u t  w i t h  dereferenc ing?"  
( o r  (eq l  (de re f  x )  (de re f  y ) )  

(and (consp x )  
(consp y )  
(deref -equal  ( f i r s t  x )  ( f i r s t  y ) )  
(deref -equal  ( r e s t  x )  ( r e s t  y ) ) ) ) )  

One of the most important primitives is call . Like f uncal 1 in Lisp, call allows us 
to build up a goal and then try to prove it. 

(defun c a l l 1 1  (goal cont )  
"T ry  t o  prove goal by c a l l i n g  i t . "  
( d e r e f  goal 
(apply  (make-predicate ( f i r s t  goal 

(1  ength (args goal 1)  
(append (args goa l )  ( l i s t  cant)))) 

This version of call will give a run-time error if the goal is not instantiated to a list 
whose first element is a properly defined predicate; one might want to check for that, 
and fail silently if there is no defined predicate. Here's an example of call where the 
goal is legal: 



> ( ? -  (= ? p  member) ( c a l l  ( ? p  ? x  ( a  b  c ) ) ) )  
?P = MEMBER 
?X = A; 
?P = MEMBER 
?X = B ;  
?P = MEMBER 
?X = C; 
No. 

Now that we have call, a lot of new things can be implemented. Here are the logical 
connectives and and or: 

(<- ( o r  ?a ? b )  ( c a l l  ? a ) )  
(<- ( o r  ?a ? b )  ( c a l l  ? b ) )  

(<- (and  ?a  ? b )  ( c a l l  ? a )  ( c a l l  ? b ) )  

Note that these are only binary connectives, not the n-ary special forms used in Lisp. 
Also, this definition negates most of the advantage of compilation. The goals inside 
an and or or will be interpreted by call, rather than being compiled. 

We can also define not ,  or at least the normal Prolog not, which is quite distinct 
from the logical not. In fact, in some dialects, not is written \+, which is supposed to 
be reminiscent of the logical symbol Y, that is, "cannot be derived." The interpretation 
is that if goal G can not be proved, then (not G 1 is true. Logically, there is a difference 
between ( not G 1 being true and being unknown, but ignoring that difference makes 
Prolog a more practical programming language. See Lloyd 1987 for more on the 
formal semantics of negation in Prolog. 

Here's an implementation of not 11. Since it has to manipulate the trail, and we 
may have other predicates that will want to do the same, we'll package up what was 
done in maybe-add-undo- bi ndi ngs into the macro wi th-undo- bi ndi ngs: 

(defmacro  w i th - undo- b ind ings  (&body body) 
"Undo b i n d i n g s  a f t e r  e ach  e x p r e s s i o n  i n  body e x c e p t  t h e  l a s t . "  
( i f  ( l e n g t h = l  body) 

( f i r s t  body) 
' ( l e t  ( ( o l d - t r a i l  ( f i l l  - p o i n t e r  * t r a i l * ) ) )  

, ( f i r s t  body) 
. @ ( l o o p  f o r  exp  i n  ( r e s t  body) 

c o l l e c t  ' ( undo- b ind ings !  o l d - t r a i l )  
c o l l e c t  e x p ) ) ) )  

( de fun  n o t 1 1  ( r e l a t i o n  c o n t )  
"Negat ion  by f a i l u r e :  I f  you c a n ' t  p rove  G ,  t h e n  ( n o t  GI t r u e . "  
; ; E i t h e r  way, undo t h e  b i n d i n g s .  
(w i th - undo- b ind ings  

( c a l l 1 1  r e l a t i o n  # ' ( lambda 0 ( r e t u r n - f r o m  n o t 1 1  n i l ) ) )  
( f u n c a l l  cant))) 



Here's an example where no t  works fine: 

> ( ? -  (member ?x ( a  b c ) )  (not (= ?x b ) ) )  

? X  = A ;  
? X  = C ;  
No. 

Now see what happens when we simply reverse the order of the two goals: 

> ( ? -  (not (= ?x b ) )  (member ?x ( a  b c ) ) )  
No. 

The first example succeeds unless ?x is bound to b. In the second example, ?x is 
unbound at the start, so (= ?x b 1 succeeds, the not fails, and the member goal is never 
reached. So our implementation of n o t  has a consistent procedural interpretation, 
but it is not equivalent to the declarative interpretation usually given to logical nega- 
tion. Normally, one would expect that a and c would be valid solutions to the query, 
regardless of the order of the goals. 

One of the fundamental differences between Prolog and Lisp is that Prolog is 
relational: you can easily express individual relations. Lisp, on the other hand, is 
good at expressing collections of things as lists. So far we don't have any way of 
forming a collection of objects that satisfy a relation in Prolog. We can easily iterate 
over the objects; we just can't gather them together. The primitive bagof is one way 
of doing the collection. In general, ( bag of ?x ( p ?x 1 ?bag 1 unifies ?bag with a list 
of all ?x's that satisfy ( p ?x 1. If there are no such ?x's, then the call to ba gof fails. A 
bag is an unordered collection with duplicates allowed. For example, the bag { a ,  b, a )  
is the same as the bag { a ,  a ,  b), but different from { a ,  b). Bags stands in contrast to 
sets, which are unordered collections with no duplicates. The set { a ,  b) is the same 
as the set {b, a ) .  Here is an implementation of bag of: 

(defun bagof13 (exp goal result cont) 
"Find a1 1 solutions to  GOAL, and for each solution, 
collect the value of EXP into the 1 i s t  RESULT." 
;; Ex: Assume (p 1)  ( p  2)  ( p  3 ) .  Then: 
;; ( b a g o f ? x ( p ? x ) ? 1 ) = > ? 1 = ( 1 2 3 )  

( l e t  ((answers n i l ) )  
(call11 goal #'(lambda 0 

(push (deref-copy exp) answers))) 
( i f  ( a n d  (not (null answers)) 

(unify! result (nreverse answers))) 
(funcall cant)))) 



( def  un deref - copy ( exp) 
"Copy the expressi on, rep1 acing va r i  abl es w i t h  new ones. 
The p a r t  wi thout  var iables can be returned as i s . "  
( sub l i s  (mapcar #'(lambda (var )  (cons (deref  var)  ( ? ) I  

(unique- f ind-anywhere- i f  # ' var -p  exp)) 
exp 1 ) 

Below we use ba gof to collect a list of everyone Sandy likes. Note that the result is a 
bag, not a set: Sandy appears more than once. 

> ( ? -  (bagof ?who ( l i k e s  Sandy ?who) ?bag)) 
?WHO = SANDY 
?BAG = (LEE KIM ROBIN SANDY CATS SANDY); 
No. 

In the next example, we form the bag of every list of length three that has A and B as 
members: 

> ( ? -  (bagof ?1 (and ( leng th  ?1 ( I +  ( I +  (1+ 0 ) ) ) )  
(and (member a ?1) (member b ? I ) ) )  

?bag) 1 
?L = ( ? 5  ?8 ?11 ?68 ?66) 
?BAG = ((A B ?17) (A ?21 B) (B A ?31) (?38 A B) (B ?48 A) (?52 B A)) 
No. 

Those who are disappointed with a bag containing multiple versions of the same 
answer may prefer the primitive setof, which does the same computation as bagof 
but then discards the duplicates. 

(defun setof13 (exp goal r e s u l t  cont) 
"Find a l l  unique so lu t ions  t o  GOAL, and f o r  each so lu t ion .  
c o l l e c t  the  value o f  EXP i n t o  the  l i s t  RESULT." 
;; Ex: Assume (p 1 )  (p  2)  (p 3 ) .  Then: 
;; (se to f  ?x (p ? X I  ?1) => ?1 = ( 1  2 3) 
( l e t  ((answers n i l ) )  

( c a l l 1 1  goal #'(lambda 0 
(push (deref-copy exp) answers))) 

( i f  (and (no t  ( n u l l  answers)) 
( un i f y !  r e s u l t  (del  ete-dupl i cates 

answers 
: t e s t  #'deref-equal 1) 

( f unca l l  cant)))) 

Prolog supports arithmetic with the operator i s . For example, ( i s ?x ( + ?y 1 1 1 
unifies ?x with the value of ?y plus one. This expression fails if ?y is unbound, and it 



gives a run-time error if ?y is not a number. For our version of Prolog, we can support 
not just arithmetic but any Lisp expression: 

(defun is12 (var exp cont) 
;; Example: ( i s  ?x (+ 3 (* ?y (+ ?z 4 ) ) ) )  
;; Or even: ( i s  (?x ?y ?XI (cons ( f i r s t  ?z)  ? I ) )  
( i f  (and (not (find-if-anywhere #'unbound-var-p exp)) 

(unify! var (eval (deref-exp e x p ) ) ) )  
(funcall cant))) 

(defun unbound-var-p (exp) 
" I s  EXP an unbound var?" 
(and (var-p exp) (not (bound-p e x p ) ) ) )  

As an aside, we might as well give the Prolog programmer access to the function 
unbound - va r - p. The standard name for this predicate is va  r / 1: 

(defun var l l  (?argl  cont) 
"Succeeds i f  ?argl i s  an uninstantiated variable." 
( i f  (unbound-va,r-p ?argl )  

(funcall cant))) 

The i s primitive fails if any part of the second argument is unbound. However, there 
are expressions with variables that can be solved, although not with a direct call to 
eval . For example, the following goal could be solved by binding ?x to 2: 

(solve (= 12 (* (+ ?x 1) 4 ) ) )  

We might want to have more direct access to Lisp from Prolog. The problem with 
i s is that it requires a check for unbound variables, and it calls eval to evaluate 
arguments recursively. In some cases, we just want to get at Lisp's apply, without 
going through the safety net provided by i s. The primitive 1 i sp does that. Needless 
to say, 1 i s p is not a part of standard Prolog. 

(defun lisp12 (? resu l t  exp cont) 
"Apply ( f i r s t  exp) t o  ( r e s t  exp), and return the resul t . "  
( i f  (and (consp (deref exp)) 

(unify! ?resul t  (apply ( f i r s t  exp) ( r e s t  e x p ) ) ) )  
(funcall cant))) 

p Exercise 12.7 [m] Define the primitive sol vell, which works like the function 
solve used in student (page 225). Decide if it should take a single equation as 
argument or a list of equations. 



p Exercise 12.8 [h] Assume we had a goal of the form ( sol ve (= 1 2  ( * (+ ?x 1 ) 
4)  ) 1. Rather than manipulate the equation when sol ve/l is called at run time, we 
might prefer to do part of the work at compile time, treating the call as if it were 
( sol ve (= ?x 2 1 1. Write a Prolog compiler macro for sol ve. Notice that even when 
you have defined a compiler macro, you still need the underlying primitive, because 
the predicate might be invoked through a ca 1 1 / 1. The same thing happens in Lisp: 
even when you supply a compiler macro, you still need the actual function, in case 
of a funcall or apply. 

Exercise 12.9 [h] Which of the predicates call, and, or, no t ,  or repeat could 
benefit from compiler macros? Write compiler macros for those predicates that 
could use one. 

p Exercise 12.10 [m] You might have noticed that call 11 is inefficient in two impor- 
tant ways. First, it calls ma ke-predi cate, which must build a symbol by appending 
strings and then look the string up in the Lisp symbol table. Alter ma ke-predi cate 
to store the predicate symbol the first time it is created, so it can do a faster lookup 
on subsequent calls. The second inefficiency is the call to append. Change the whole 
compiler so that the continuation argument comes first, not last, thus eliminating 
the need for append in call .  

p Exercise 12.11 [s] The primitive true10 always succeeds, and f ai 1 10 always fails. 
Define these primitives. Hint: the first corresponds to a Common Lisp function, and 
the second is a function already defined in this chapter. 

Exercise 12.12 [s] Would it be possible to write = =/2 as a list of clauses rather than 
as a primitive? 

p Exercise 12.13 [m] Write a version of deref - copy that traverses the argument ex- 
pression only once. 



In Lisp, it is possible to write programs that backtrack explicitly, although it can 
be awkward when there are more than one or two backtrack points. In Prolog, 
backtracking is automatic and implicit, but we don't yet know of any way to avoid 
backtracking. There are two reasons why a Prolog programmer might want to disable 
backtracking. First, keeping track of the backtrack points takes up time and space. 
A programmer who knows that a certain problem has only one solution should be 
able to speed up the computation by telling the program not to consider the other 
possible branches. Second, sometimes a simple logical specification of a problem 
will yield redundant solutions, or even some unintended solutions. It may be that 
simply pruning the search space to eliminate some backtracking will yield only 
the desired answers, while restructuring the program to give all and only the right 
answers would be more difficult. Here's an example. Suppose we wanted to define 
a predicate, maxI3, which holds when the third argument is the maximum of the 
first two arguments, where the first two arguments will always be instantiated to 
numbers. The straightforward definition is: 

Declaratively, this is correct, but procedurally it is a waste of time to compute the < 
relation if the >= has succeeded: in that case the < can never succeed. The cut symbol, 
written !, can be used to stop the wasteful computation. We could write: 

The cut in the first clause says that if the first clause succeeds, then no other clauses 
will be considered. So now the second clause can not be interpreted on its own. 
Rather, it is interpreted as "if the first clause fails, then the max of two numbers is the 
second one." 

In general, a cut can occur anywhere in the body of a clause, not just at the end. 
There is no good declarative interpretation of a cut, but the procedural interpretation 
is two-fold. First, when a cut is "executed as a goal, it always succeeds. But in 
addition to succeeding, it sets up a fence that cannot be crossed by subsequent 
backtracking. The cut serves to cut off backtracking both from goals to the right of 
the cut (in the same clause) and from clauses below the cut (in the same predicate). 
Let's look at a more abstract example: 



In processing the first clause of p, backtracking can occur freely while attempting 
to solve q and r. Once r is solved, the cut is encountered. From that point on, 
backtracking can occur freely while solving s and t, but Prolog will never backtrack 
past the cut into r, nor will the second clause be considered. On the other hand, if 
q or r failed (before the cut is encountered), then Prolog would go on to the second 
clause. 

Now that the intent of the cut is clear, let's think of how it should be implemented. 
We'll look at a slightly more complex predicate, one with variables and multiple cuts: 

We have to arrange it so that as soon as we backtrack into a cut, no more goals 
are considered. In the first clause, when q / l  fails, we want to return from p12 
immediately, rather than considering the second clause. Similarly, the first time s 11 
fails, we want to return from pI2, rather than going on to consider other solutions to 
r 11. Thus, we want code that looks something like this: 

(defun p/2 ( a r g l  arg2 con t )  

( l e t  ( ( o l d - t r a i l  ( f i l l  - p o i n t e r  * t r a i l * ) ) )  

( i f  ( u n i f y !  arg2 'a)  

(progn ( q / l  a r g l  con t )  

( r e t u r n - f r o m  p/2 n i l ) ) )  

(undo-bindings! o l d - t r a i l )  

( i f  ( u n i f y !  arg2 'b)  

( r / l  a r g l  #'(lambda 0 

(progn ( s / l  a r g l  con t )  

( r e t u r n - f r o m  p/2 n i l ) ) ) ) ) ) )  

We can get this code by making a single change to compi 1 e - body: when the first goal 
in a body (or what remains of the body) is the cut symbol, then we should generate a 
progn that contains the code for the rest of the body, followed by a return - from the 
predicate being compiled. Unfortunately, the name of the predicate is not available 
to compi 1 e - body. We could change compi 1 e - cl a use and cornpi 1 e - body to take the 
predicate name as an extra argument, or we could bind the predicate as a special 
variable in compi 1 e - predi ca te. I choose the latter: 

(de fva r  *pred icate*  n i l  

"The Pro1 og p red ica te  c u r r e n t l y  be ing compi 1  ed" 



(defun compi 1  e -p red ica te  (symbol a r i  t y  c lauses)  
"Compile a l l  t h e  clauses f o r  a  g iven symbol I a r i t y  
i n t o  a  s i n g l e  L I S P  f u n c t i o n . "  
( l e t  ( ( *p red ica te*  (make-predicate symbol a r i t y ) )  ;*** 

(parameters (make-parameters a r i t y ) ) )  
(compi 1  e  

(eva l  
' (defun .*predicate* (,@parameters cont )  , . *** 

.,(maybe-add-undo-bindings 
(mapcar #'(lambda (c lause)  

(compi le-c lause parameters 
clause 'cont  ) 

c l  auses > 1 1 1)  

(defun compile-body (body cont  b ind ings )  
"Compile t h e  body o f  a  clause." 
(cond 

( ( n u l l  body) 
' ( f u n c a l l  ,cant)) 

( (eq  ( f i r s t  body) ' ! )  , . * ~ r *  

' (progn , (compi 1  e-body ( r e s t  body) cont  b ind ings )  ;*** 
( r e t u r n - f r o m  ,*pred icate*  n i l  ) )  . , *** 

( t  ( l e t *  ( (goa l  ( f i r s t  body)) 
(macro (pro log-compi ler -macro (p red ica te  g o a l ) ) )  
(macro-val ( i f  macro 

( f u n c a l l  macro goal ( r e s t  body) 
con t  b ind ings 1) 1) 

( i f  (and macro ( n o t  (eq macro-val :pass ) ) )  
macro-val 
' ( , (make-predicate (p red ica te  goa l )  

( re1  a t i o n - a r i  t y  goal 1) 
,@(mapcar # '  (1  ambda (a rg )  

(compi le-arg arg b ind ings ) )  
(args goal 

, ( i f  ( n u l l  ( r e s t  body)) 
cont  
'# ' ( lambda 0 

, ( compi 1  e  - body 
( r e s t  body) cont  
(b ind-new-var iab les b ind ings  g o a l ) ) ) ) ) ) ) ) ) )  

p Exercise 12.14 [m] Given the definitions below, figure out what a call to t e s t  - cut 
will do, and what it will write: 

(<- ( t e s t - c u t )  (p  a)  (p  b)  ! ( p  c )  ( p  d l )  
(<- ( t e s t - c u t )  ( p  e l )  



(<- ( p  ?XI (write (?x 1 ) ) )  
(<- (p ?XI (write (?x 2 ) ) )  

Another way to use the cut is in a repeat/fail loop. The predicate repeat is defined 
with the following two clauses: 

(<- ( repeat) )  
(<- (repeat)  ( repeat) )  

An alternate definition as a primitive is: 

(defun repeat10 (cont)  
(loop (funcall cant))) 

Unfortunately, repeat is one of the most abused predicates. Several Prolog books 
present programs like this: 

(<- (main) 
(write "He1 1 o. " 
( repeat 
(write "Command: " 1  
(read ?command) 
(process ?command) 
(= ?command ex i t )  
(write "Good bye."))  

The intent is that commands are read one at a time, and then processed. For each 
command except exit, process takes the appropriate action and then fails. This 
causes a backtrack to the repeat goal, and a new command is read and processed. 
When the command is exi t, the procedure returns. 

There are two reasons why this is a poor program. First, it violates the principle of 
referential transparency. Things that look alike are supposed to be alike, regardless 
of the context in which they are used. But here there is no way to tell that four of the six 
goals in the body comprise a loop, and the other goals are outside the loop. Second, 
it violates the principle of abstraction. A predicate should be understandable as a 
separate unit. But here the predicate process can only be understood by considering 
the context in which it is called: a context that requires it to fail after processing each 
command. As Richard O'Keefe 1990 points out, the correct way to write this clause 
is as follows: 



(<- (main) 
(write "Hello.") 
(repeat 

(write "Command: " 
(read ?command) 
(process ?command) 
(or (= ?command e x i t )  ( f a i l ) )  

1 

(write "Good bye."))  

The indentation clearly indicates the limits of the repeat loop. The loop is terminated 
by an explicit test and is followed by a cut, so that a calling program won't accidently 
backtrack into the loop after it has exited. Personally, I prefer a language like Lisp, 
where the parentheses make constructs like loops explicit and indentation can be 
done automatically. But O'Keefe shows that well-structured readable programs can 
be written in Prolog. 

The if-then and if-then-else constructions can easily be written as clauses. Note 
that the if-then-else uses a cut to commit to the then part if the test is satisfied. 

(<- ( i f  ? t e s t  ?then) ( i f  ?then ?e lse  ( f a i l ) ) )  

(<- ( i f  ? t e s t  ?then ?e lse)  
(call  ? t e s t )  
I 

(ca l l  ?then) 

(<- ( i f  ? t e s t  ?then ?e lse)  
(call  ?e lse)  

The cut can be used to implement the nonlogical not.  The following two clauses are 
often given before as the definition of not.  Our compiler succesfully turns these two 
clauses into exactly the same code as was given before for the primitive n o t  / 1: 

(<- (not ?p) (ca l l  ? p )  ! ( f a i l ) )  
(<- (not ? p ) )  

12.10 "Real" Prolog 

The Prolog-In-Lisp system developed in this chapter uses Lisp syntax because it is 
intended to be embedded in a Lisp system. Other Prolog implementations using 
Lisp syntax include micro-Prolog, Symbolics Prolog, and LMI Prolog. 



However, the majority of Prolog systems use a syntax closer to traditional math- 
ematical notation. The following table compares the syntax of "standard Prolog to 
the syntax of Prolog-In-Lisp. While there is currently an international committee 
working on standardizing Prolog, the final report has not yet been released, so dif- 
ferent dialects may have slightly different syntax. However, most implementations 
follow the notation summarized here. They derive from the Prolog developed at the 
University of Edinburgh for the DEC-10 by David H. D. Warren and his colleagues. 
The names for the primitives in the last section are also taken from Edinburgh Prolog. 

Prolog Pr olog-In-Lis p 
atom 1 ower cons t 
variable Upper ?va r 
anonymous - ? 
goal p(Var,const) (p ?var const) 
rule p(X) : - q(X). (<- (p ?XI (q ?XI) 
fact p(a). (<- (p a)) 
query ? -  p(X). ( ? -  (p ?XI) 
list Ca,b.cl (a b C) 
cons [a l Rest1 (a . ?rest) 
nil C 1 ( 1  
and p(X), q(X) (and (p ?XI (q ?XI) 
or p(X); q(X) (or ( p  ?XI (q ?XI) 
not \+ p(X) (not (p ?XI) 

We have adopted Lisp's bias toward lists; terms are built out of atoms, variables, 
and conses of other terms. In real Prolog cons cells are provided, but terms are 
usually built out of structures, not lists. The Prolog term p ( a, b 1 corresponds to the 
Lisp vector # ( p12 a b 1, not the list ( P a b 1. A minority of Prolog implementations 
use structure sharing. In this approach, every non-atomic term is represented by 
a skeleton that contains place holders for variables and a header that points to the 
skeleton and also contains the variables that will fill the place holders. With structure 
sharing, making a copy is easy: just copy the header, regardless of the size of the 
skeleton. However, manipulating terms is complicated by the need to keep track of 
both skeleton and header. See Boyer and Moore 1972 for more on structure sharing. 

Another major difference is that real Prolog uses the equivalent of failure contin- 
uations, not success continuations. No actual continuation, in the sense of a closure, 
is built. Instead, when a choice is made, the address of the code for the next choice 
is pushed on a stack. Upon failure, the next choice is popped off the stack. This is 
reminiscent of the backtracking approach using Scheme's call lcc facility outlined 
on page 772. 



p Exercise 12.15 [rn] Assuming an approach using a stack of failure continuations 
instead of success continuations, show what the code for p and member would look 
like. Note that you need not pass failure continuations around; you can just push 
them onto a stack that t o p -  1  eve1 -prove will invoke. How would the cut be imple- 
mented? Did we make the right choice in implementing our compiler with success 
continuations, or would failure continuations have been better? 

12.11 History and References 

As described in chapter 11, the idea of logic programming was fairly well understood 
by the mid-1970s. But because the implementations of that time were slow, logic 
programming did not catch on. It was the Prolog compiler for the DEC-10 that made 
logic programming a serious alternative to Lisp and other general-purpose languages. 
The compiler was developed in 1977 by David H. D. Warren with Fernando Pereira 
and Luis Pereira. See the paper by Warren (1979) and by all three (1977). 

Unfortunately, David H. D. Warren's pioneering work on compiling Prolog has 
never been published in a widely accessible form. His main contribution was the 
description of the Warren Abstract Machine (WAM), an instruction set for compiled 
Prolog. Most existing compilers use this instruction set, or a slight modification 
of it. This can be done either through byte-code interpretation or through macro- 
expansion to native machine instructions. Ait-Kaci 1991 provides a good tutorial on 
the WAM, much less terse than the original (Warren 1983). The compiler presented in 
this chapter does not use the WAM. Instead, it is modeled after Mark Stickel's (1988) 
theorem prover. A similar compiler is briefly sketched by Jacques Cohen 1985. 

12.12 Exercises 

p Exercise 12.16 [m] Change the Prolog compiler to allow implicit call s. That is, if 
a goal is not a cons cell headed by a predicate, compile it as if it were a call. The 
clause: 

should be compiled as if it were: 

(<- ( p  ?x ?y)  ( c a l l  ( ?x  c ) )  ( c a l l  ? y ) )  



Exercise 12.17 [h] Here are some standard Prolog primitives: 

a get / 1 Read a single character and unify it with the argument. 

a put11 Print a single character. 

a nonva  r 11, /=, /= = The opposites of va  r, = and = = , respectively. 

a i n t ege r / 1 True if the argument is an integer. 

a atom11 True if the argument is a symbol (like Lisp's symbol p). 

a a t  omi c / 1 True if the argument is a number or symbol (like Lisp's a t  om). 

a <, >, = <, > = Arithmetic comparison; succeeds when the arguments are both 
instantiated to numbers and the comparison is true. 

a 1 i s t i  ng/O Print out the clauses for all defined predicates. 

a 1 i s t  i ng/ 1 Print out the clauses for the argument predicate. 

Implement these predicates. In each case, decide if the predicate should be 
implemented as a primitive or a list of clauses, and if it should have a compiler 
macro. 

There are some naming conflicts that need to be resolved. Terms like atom have 
one meaning in Prolog and another in Lisp. Also, in Prolog the normal notation is \= 
and \= =, not /= and /= =. For Prolog-In-Lisp, you need to decide which notations to 
use: Prolog's or Lisp's. 

p Exercise 12.18 [s] In Lisp, we are used to writing n-ary calls like (< 1 n 10 ) or (= 

x y z 1. Write compiler macros that expand n-ary calls into a series of binary calls. 
Forexample, (< 1 n 10) shouldexpandinto ( a n d  (< 1 n )  (< n 10)) .  

p Exercise 12.19 [m] One feature of Lisp that is absent in Prolog is the quote mech- 
anism. Is there a use for quote? If so, implement it; if not, explain why it is not 
needed. 

p Exercise 12.20 [h] Write a tracing mechanism for Prolog. Add procedures p - t ra ce 
and p - u n t  race to trace and untrace Prolog predicates. Add code to the compiler to 
generate calls to a printing procedure for goals that are traced. In Lisp, we have to 
trace procedures when they are called and when they return. In Prolog, there are 
four cases to consider: the call, successful completion, backtrack into subsequent 
clauses, and failure with no more clauses. We will call these four cases call, exi t ,  



redo, and fa i 1, respectively. If we traced member, we would expect tracing output to 
look something like this: 

> ( ? -  ( m e m b e r  ?x ( a  b c d l )  ( f a i l ) )  
C A L L  MEMBER: ? 1  ( A  B C D )  
E X I T  MEMBER: A ( A  B C D )  
REDO MEMBER: ? 1  ( A  B C D )  

C A L L  MEMBER: ? 1  ( B  C D l  
E X I T  MEMBER: B ( B  C D )  
REDO MEMBER: ? 1  ( B  C D) 

C A L L  MEMBER: ? 1  ( C  D l  
E X I T  MEMBER: C ( C  D )  
REDO MEMBER: ? 1  ( C  D )  

C A L L  MEMBER: ? 1  ( D )  
E X I T  MEMBER: D ( D l  
REDO MEMBER: ? 1  ( D l  

C A L L  MEMBER: ? 1  N I L  
REDO MEMBER: ? 1  N I L  
F A I L  MEMBER: ? 1  N I L  

F A I L  MEMBER: ? 1  ( D l  
F A I L  MEMBER: ? 1  ( C  D )  

F A I L  MEMBER: ? 1  ( B  C D )  
F A I L  MEMBER: ? 1  ( A  B C D l  

No.  

p Exercise 12.21 [m] Some Lisp systems are very slow at compiling functions. KCL 
is an example; it compiles by translating to C and then calling the C compiler and 
assembler. In KCL it is best to compile only code that is completely debugged, and 
run interpreted while developing a program. 

Alter the Prolog compiler so that calling the Lisp compiler is optional. In all cases, 
Prolog functions are translated into Lisp, but they are only compiled to machine 
language when a variable is set. 

Exercise 12.22 [dl Some Prolog systems provide the predicate freeze to "freeze" a 
goal until its variables are instantiated. For example, the goal (freeze x (> x 0 1 1 
is interpreted as follows: if x is instantiated, then just evaluate the goal (> x 0 1, and 
succeed or fail depending on the result. However, if x is unbound, then succeed and 
continue the computation, but remember the goal (> x 0 1 and evaluate it as soon as 
x becomes instantiated. Implement freeze. 

p Exercise 12.23 [m] Write a recursive version of anonymous - va  r i a bl es - i n that does 
not use a local function. 



12.13 Answers 

Answer 12.6 Here's a version that works for Texas Instruments and Lucid imple- 
mentations: 

(defmacro with-compilation-unit (options &body body) 
"Do the body, but delay compiler warnings until the end." 
;; This is defined in Common Lisp the Language, 2nd ed. 
'(,(read-time-case 

#+TI 'compiler:compiler-warnings-context-bind 
#+Lucid 'with-deferred-warnings 

'progn) 
. ,body)) 

(defun prol og-compi 1 e-symbol s (&optional (symbol s *uncompi 1 ed*) 
"Compile a list of Prolog symbols. 
By default, the list is all symbols that need it." 
(with-compilation-uni t ( 1  

(mapc # 'prol og - compi 1 e symbol s ) 
(setf *uncompiled* (set-difference *uncompiled* symbols)))) 

Answer 12.9 Macros for and and or are very important, since these are commonly 
used. The macro for and is trivial: 

(def-prolog-compiler-macro and (goal body cont bindings) 
(compile-body (append (args goal) body) cont bindings)) 

The macro for or is trickier: 

(def-prolog-compiler-macro or (goal body cont bindings) 
(let ((disjuncts (args goal))) 
(case (length disjuncts) 

( 0  fail) 
(1 (compile-body (cons (first disjuncts) body) cont bindings)) 
(t (let ((fn (gensym " F " ) ) )  

'(flet ((,fn 0 ,(compile-body body cont bindings))) 
..(maybe-add-undo-bindings 

(loop for g in disjuncts collect 
(compile-body (list g) '#',fn 

bindings))))))))) 



Answer 12.11 true10 is f uncal 1 : when a goal succeeds, we call the continuation. 
f a  i 1 10 is i gnore: when a goal fails, we ignore the continuation. We could also define 
compiler macros for these primitives: 

(def-prolog-compiler-macro t rue  (goal body cont bindings) 
(compile-body body cont bindings)) 

(def -pro1 og-compi 1 er-macro fa i  1 (goal body cont bindings) 
(decl are (ignore goal body cont bindings 1) 
nil  

Answer 12.13 

(def un deref - copy (exp 
"Build a copy of the expression, which may have variables. 
The part without variables can be returned as i s . "  
( l e t  ( ( v a r - a l i s t  nil 1) 

( labels  
((walk (exp) 

(deref exp) 
(cond ((consp exp) 

(reuse-cons (walk ( f i r s t  exp)) 
(walk ( r e s t  exp)) 
exp 1 

( (var-p  exp) 
( l e t  ( (ent ry  (assoc exp v a r - a l i s t ) ) )  

( i f  (not (null en t ry ) )  
(cdr entry) 
( l e t  ((var-copy ( ? ) I )  

(push (cons exp var-copy) v a r - a l i s t )  
var-copy))))  

( t  e x p ) ) ) )  
(wal k exp) 1) 



Answer 12.14 In the first clause of t es t  - cut, all four calls to p will succeed via the 
first clause of p. Then backtracking will occur over the calls to ( p c 1 and ( p d 1. All 
four combinations of 1 and 2 succeed. After that, backtracking would normally go 
back to the call to ( p b ) . But the cut prevents this, and the whole ( t es t  - cut 1 goal 
fails, without ever considering the second clause. Here's the actual output: 

( ? -  ( t es t -cu t ) )  
( A  1)(B 1)(C 1)(D 1 )  
Yes; 
( D  2 )  
Yes; 
( C  2 ) ( D  1) 
Yes; 
( D  2 )  
Yes; 
No. 

Answer 12.17 For example: 

(defun > / 2  (x y cont) 
( i f  (and (numberp (deref x ) )  (numberp (deref y ) )  (> x y ) )  

(funcall cont)))  

(defun numberpll ( x  cont) 
( i f  (numberp (deref x ) )  

(funcall cant))) 

Answer 12.19 Lisp uses quote in two ways: to distinguish a symbol from the value 
of the variable represented by that symbol, and to distinguish a literal list from the 
value that would be returned by evaluating a function call. The first distinction Prolog 
makes by a lexical convention: variables begin with a question mark in our Prolog, 
and they are capitalized in real Prolog. The second distinction is not necessary 
because Prolog is relational rather than functional. An expression is a goal if it is a 
member of the body of a clause, and is a literal if it is an argument to a goal. 



Answer 12.20 Hint: Here's how member could be augmented with calls to a pro- 
cedure, prol og - t race, which will print information about the four kinds of tracing 
events : 

(defun member12 (?argl  ?arg2 cont) 

( l e t  ( ( o l d - t r a i l  ( f i l l  -pointer * t r a i l* ) )  

(exit-cont #'(lambda 0 
(prolog-trace 'exi t  'member ?argl ?arg2 

(funcall cant)))) 

(prolog-trace 'call  'member ?argl ?arg2) 

( i f  (unify! ?arg2 (cons ?argl ( ? ) I )  
(funcall exi t -cont) )  

(undo-bindings! o ld-t ra i  1  

(prolog-trace 'redo 'member ?argl ?arg2) 

( l e t  ( ( ? r e s t  ( ? I ) )  
( i f  (unify! ?arg2 (cons ( ? I  ? r e s t ) )  

(member12 ?argl  ? re s t  exit-cant))) 

(prolog-trace ' f a i l  'member ?argl  ?arg2)) )  

The definition of prol og- t race is: 

(defvar *prolog-trace-indent* 0 )  

(defun prolog-trace (kind predicate &res t  args) 

( i f  (member kind ' ( c a l l  redo)) 

( incf *prolog-trace-indent* 3 ) )  

(format t ""&"VT"a "a:"{ "a")" 

*prolog-trace-indent* kind predicate args) 

( i f  (member kind ' ( f a i l  e x i t ) )  

(decf *prolog-trace-indent* 3 ) ) )  



Answer 12.23 

(defun anonymous-variables-in (tree) 
"Return a list of all variables that occur only once in tree." 
(values (anon-vars-in tree nil nil 1 ) )  

(defun anon-vars-in (tree seen-once seen-more) 
"Walk the data structure TREE, returning a list of variables 
seen once, and a list of variables seen more than once." 
(cond 
((consp tree) 
(multiple-value-bind (new-seen-once new-seen-more) 

(anon-vars-in (first tree) seen-once seen-more) 
(anon-vars-in (rest tree) new-seen-once new-seen-more))) 

((not (variable-p tree)) (values seen-once seen-more)) 
((member tree seen-once) 
(values (delete tree seen-once) (cons tree seen-more))) 
((member tree seen-more) 
(values seen-once seen-more)) 
(t (values (cons tree seen-once) seen-more)))) 



CHAPTER 13 
Object-Oriented 
Programming 

he programs in this book cover a wide range of problems. It is only natural that a 
wide range of programming styles have been introduced to attack these problems. One 
style not yet covered that has gained popularity in recent years is called object-oriented 

programming. To understand what object-oriented programming entails, we need to place it in 
the context of other styles. 

Historically, the first computer programs were written in an imperative programming style. A 
program was construed as a series of instructions, where each instruction performs some action: 
changing the value of a memory location, printing a result, and so forth. Assembly language is 
an example of an imperative language. 

As experience (and ambition) grew, programmers looked for ways of controlling the complex- 
ity of programs. The invention of subroutines marked the algorithmic or procedural programming 
style, a subclass of the imperative style. Subroutines are helpful for two reasons: breaking 
up the problem into small pieces makes each piece easier to understand, and it also makes it 
possible to reuse pieces. Examples of procedural languages are FORTRAN, C, Pascal, and Lisp 
with setf .  



Subroutines are still dependent on global state, so they are not completely sep- 
arate pieces. The use of a large number of global variables has been criticized as a 
factor that makes it difficult to develop and maintain large programs. To eliminate 
this problem, the functional programming style insists that functions access only the 
parameters that are passed to them, and always return the same result for the same 
inputs. Functional programs have the advantage of being mathematically clean-it 
is easy to prove properties about them. However, some applications are more natu- 
rally seen as taking action rather than calculating functional values, and are therefore 
unnatural to program in a functional style. Examples of functional languages are FP 
and Lisp without se t  f . 

In contrast to imperative languages are declarative languages, which attempt to 
expressl'what to do" rather thanUhow to do it." One type of declarative programming 
is rule-based programming, where a set of rules states how to transform a problem 
into a solution. Examples of rule-based systems are ELIZA and STUDENT. 

An important kind of declarative programmingis logicprograrnrning, where axioms 
are used to describe constraints, and computation is done by a constructive proof of 
a goal. An example of logic language is Prolog. 

Object-oriented programming is another way to tame the problem of global state. 
Instead of prohibiting global state (as functional programming does), obj ec t-oriented 
programming breaks up the unruly mass of global state and encapsulates it into small, 
manageable pieces, or objects. This chapter covers the object-oriented approach. 

13.1 Object-Oriented Programming 
Object-oriented programming turns the world of computing on its side: instead 
of viewing a program primarily as a set of actions which manipulate objects, it is 
viewed as a set of objects that are manipulated by actions. The state of each object 
and the actions that manipulate that state are defined once and for all when the 
object is created. This can lead to modular, robust systems that are easy to use and 
extend. It also can make systems correspond more closely to the "real world," which 
we humans perceive more easily as being made up of objects rather than actions. 
Examples of object-oriented languages are Simula, C++, and CLOS, the Common 
Lisp Object System. This chapter will first introduce object-oriented programming 
in general, and then concentrate on the Common Lisp Object System. 

Many people are promoting object-oriented programming as the solution to the 
software development problem, but it is hard to get people to agree on just what 
object-orientation means. Peter Wegner 1987 proposes the following formula as a 
definition: 

Object-orientation = Objects + Classes + Inheritance 



Briefly, objects are modules that encapsulate some data and operations on that data. 
The idea of information hiding-insulating the representation of that data from opera- 
tions outside of the object-is an important part of this concept. Classes are groups 
of similar objects with identical behavior. Objects are said to be instances of classes. 
Inheritance is a means of definingnew classes as variants of existing classes. The new 
class inherits the behavior of the parent class, and the programmer need only specify 
how the new class is different. 

The object-oriented style brings with it a new vocabulary, which is summarized in 
the following glossary. Each term will be explained in more detail when it comes up. 

class: A group of similar objects with identical behavior. 
class variable: A variable shared by all members of a class. 
delegation: Passing a message from an object to one of its components. 
generic function: A function that accepts different types or classes of 

arguments. 
inheritance: A means of defining new classes as variants of existing 

classes. 
instance: An instance of a class is an object. 
instance variable: A variable encapsulated within an object. 
message: A name for an action. Equivalent to generic function. 
method: A means of handling a message for a particular class. 
multimethod: A method that depends on more than one argument. 
multiple inheritance: Inheritance from more than one parent class. 
object: An encapsulation of local state and behavior. 

13.2 Objects 
Object-oriented programming, by definition, is concerned with objects. Any datum 
that can be stored in computer memory can be thought of as an object. Thus, the 
number 3, the atom x, and the string " he1 1 o" are all objects. Usually, however, the 
term object is used to denote a more complex object, as we shall see. 

Of course, all programming is concerned with objects, and with procedures 
operating on those objects. Writing a program to solve a particular problem will 
necessarily involve writing definitions for both objects and procedures. What dis- 
tinguishes object-oriented programming is that the primary way of decomposing the 
problem into modules is based on the objects rather than on the procedures. The 
difference can best be seen with an example. Here is a simple program to create bank 
accounts and keep track of withdrawals, deposits, and accumulation of interest. 
First, the program is written in traditional procedural style: 

(defstruct account 
(name " " 1  (balance 0.00) (interest-rate .06) )  



(defun account-withdraw (account amt) 
"Make a withdrawal from this account." 
(if (<= amt (account-balance account)) 

(decf (account-balance account) amt) 
'insufficient-funds)) 

(defun account-deposit (account amt) 
"Make a deposit to this account." 
(incf (account-balance account) amt)) 

(defun account-interest (account) 
"Accumulate interest in this account." 
(incf (account-balance account) 

(* (account-interest-rate account) 
(account-balance account)))) 

We can create new bank accounts with make-account and modify them with 
account-wi  thdraw, account-deposi  t, and accoun t - i  n t e r e s t .  This is asimpleprob- 
lem, and this simple solution suffices. Problems appear when we change the spec- 
ification of the problem, or when we envision ways that this implementation could 
be inadvertently used in error. For example, suppose a programmer looks at the 
account structure and decides to use (dec f  (account-  ba l  ance account 1) directly 
instead of going through the account - wi t hd raw function. This could lead to negative 
account balances, which were not intended. Or suppose that we want to create a 
new kind of account, where only a certain maximum amount can be withdrawn at 
one time. There would be no way to ensure that account-wi  thdraw would not be 
applied to this new, limited account. 

The problem is that once we have created an account, we have no control over 
what actions are applied to it. The object-oriented style is designed to provide that 
control. Here is the same program written in object-oriented style (using plain Lisp): 

(defun new-account (name &optional (balance 0.00) 
(interest-rate .06) )  

"Create a new account that knows the following messages:" 
# '  (1 ambda (message) 

(case message 
(withdraw #'(lambda (amt) 

(if (<= amt balance) 
(decf bal ance amt 
'insufficient-funds) 1)  

(deposit #'(lambda (amt) (incf balance amt))) 
(balance #'(lambda 0 balance)) 
(name #'(lambda 0 name)) 
(interest # '  (1 ambda ( 

(i ncf bal ance 
(* interest-rate balance))))))) 



The function new-account creates account objects, which are implemented as clo- 
sures that encapsulate three variables: the name, balance, and interest rate of the 
account. An account object also encapsulates functions to handle the five messages 
to which the object can respond. An account object can do only one thing: receive a 
message and return the appropriate function to execute that message. For example, 
if you pass the message wi thdraw to an account object, it will return a function that, 
when applied to a single argument (the amount to withdraw), will perform the with- 
drawal action. This function is called the method that implements the message. The 
advantage of this approach is that account objects are completely encapsulated; the 
information corresponding to the name, balance, and interest rate is only accessible 
through the five messages. We have a guarantee that no other code can manipulate 
the information in the account in any other way.' 

The function get -met hod finds the method that implements a message for a given 
object. The function send gets the method and applies it to a list of arguments. The 
name send comes from the Flavors object-oriented system, which is discussed in the 
history section (page 456). 

(defun get-method (object message) 
"Return the method that implements message for this object." 
(funcall object message) 

(defun send (object message &rest args) 
"Get the function to implement the message, 
and apply the function to the args." 
(apply (get-method object message) args)) 

Here is an example of the use of new-account and send: 

> (setf acct (new-account " J .  Random Customer" 1000.00)) + 
#<CLOSURE 23652469 

> (send acct 'withdraw 500.00) + 500.0 
> (send acct 'deposit 123.45) + 623.45 
> (send acct 'name) " J .  Random Customer" 

> (send acct 'balance) + 623.45 

   ore accurately, we have a guarantee that there is no way to get at the inside of a closure 
using portable Common Lisp code. Particular implementations may provide debugging tools 
for getting at this hidden information, such as inspect. So closures are not perfect at hiding 
information from these tools. Of course, no information-hiding method will be guaranteed 
against such covert channels-even with the most sophisticated software security measures, 
it is always possible to, say, wipe a magnet over the computer's disks and alter sensitive data. 



13.3 Generic Functions 

The send syntax is awkward, as it is different from the normal Lisp function-calling 
syntax, and it doesn't fit in with the other Lisp tools. For example, we might like to 
say (mapcar ' ba l  ance accounts 1, butwithmessageswewould have towrite that as: 

(mapcar # '  (1 ambda (acct )  (send acct 'balance) accounts) 

We can fix this problem by defining generic functions that find the right method to 
execute a message. For example, we could define: 

(defun withdraw (object  &res t  args) 
"Define withdraw as a  generic function on objects." 
(apply (get-method object 'withdraw) a rgs ) )  

and then write (wi thdraw acc t  x )  instead of (send acc t  'wi thdraw x) .  The 
function withdraw is generic because it not only works on account objects but also 
works on any other class of object that handles the wi t hd raw message. For example, 
we might have a totally unrelated class, army, which also implements a withdraw 
method. Thenwe could say (send 5th-army 'wi thdraw) or (wi thdraw 5th-army) 
and have the correct method executed. So object-oriented programming eliminates 
many problems with name clashes that arise in conventional programs. 

Many of the built-in Common Lisp functions can be considered generic functions, 
in that they operate on different types of data. For example, s q r t  does one thing 
when passed an integer and quite another when passed an imaginary number. The 
sequence functions (like f i nd or del ete) operate on lists, vectors, or strings. These 
functions are not implemented like wi t hd raw, but they still act like generic  function^.^ 

13.4 Classes 

It is possible to write macros to make the object-oriented style easier to read and 
write. The macro de f  i ne - c l  ass defines a class with its associated message-handling 
methods. It also defines a generic function for each message. Finally, it allows the 
programmer to make a distinction between variables that are associated with each 
object and those that are associated with a class and are shared by all members of the 
class. For example, you might want to have all instances of the class account share 
the same interest rate, but you wouldn't want them to share the same balance. 
- 

2 ~ h e r e  is a technical sense of "generic function" that is used within CLOS. These functions 
are not generic according to this technical sense. 



(defmacro de f ine -c lass  ( c l a s s  i n s t - v a r s  c lass -va rs  &body methods) 
"Def ine a  c lass  f o r  o b j e c t - o r i e n t e d  programming." 
;; Def ine cons t ruc to r  and gener ic  func t ions  f o r  methods 
' ( l e t  , c lass -va rs  

(mapcar # 'ensure-gener i c - fn  ',(mapcar # ' f i r s t  methods)) 
(defun ,c lass . i n s t - v a r s  

# '  (1  ambda (message) 
(case message 

.@(mapcar #'make-clause methods) ) ) ) ) )  

(defun make-clause (c lause)  
"T rans la te  a  message from d e f i n e - c l a s s  i n t o  a  case clause." 
' ( . ( f i r s t  c lause)  #'(lambda ,(second c lause)  . , ( r e s t 2  c l a u s e ) ) ) )  

(defun ensure-gener ic- fn  (message) 
"Def ine an o b j e c t - o r i e n t e d  d ispa tch  f u n c t i o n  f o r  a  message, 
unless i t  has a1 ready been de f ined  as one." 
(un less ( g e n e r i c - f n - p  message) 

( l e t  ( ( f n  #'(lambda ( o b j e c t  & r e s t  args)  
(apply  (get-method o b j e c t  message) a r g s ) ) ) )  

( s e t f  (symbol- funct ion message) f n )  
( s e t f  (ge t  message ' g e n e r i c - f n )  f n ) ) ) )  

(defun g e n e r i c - f n - p  (fn-name) 
" I s  t h i s  a  gener ic  f u n c t i o n ? "  
(and (fboundp fn-name) 

(eq ( g e t  fn-name ' g e n e r i c - f n )  ( symbo l - func t ion  fn-name)) ) )  

Now we define the class account with this macro. We make i nteres t - ra te  a class 
variable, one that is shared by all accounts: 

( d e f i n e - c l a s s  account (name &op t iona l  (balance 0.00))  
( ( i n t e r e s t - r a t e  .06)) 

(wi thdraw (amt) ( i f  (<= amt balance) 
(decf  balance amt) 
' i n s u f f i c i e n t - f u n d s )  

(depos i t  (amt) ( i n c f  balance amt)) 
(ba l  ance ( ba l  ance) 
(name ( 1  name) 
( i n t e r e s t  0 ( i n c f  balance (* i n t e r e s t - r a t e  ba lance) ) ) )  

Here we use the generic functions defined by this macro: 

> ( s e t f  acct2 (account "A. User" 2000.00)) =+ #<CLOSURE 24003064> 

> (depos i t  acct2 42.00) +- 2042.0 

> ( i n t e r e s t  acct2)  + 2164.52 



> (balance acct2) + 2164.52 
> (balance acct) + 623.45 

In this last line, the generic function bal ance is applied to acct, an object that was 
created before we even defined the account class and the function balance. But 
bal ance still works properly on this object, because it obeys the message-passing 
protocol. 

13.5 Delegation 

Suppose we want to create a new kind of account, one that requires a password for 
each action. We can define a new class, password - account, that has two message 
clauses. The first clause allows for changing the password (if you have the original 
password), and the second is an ot herwi se clause, which checks the password given 
and, if it is correct, passes the rest of the arguments on to the account that is being 
protected by the password. 

The definition of password-account takes advantage of the internal details of 
def i ne-cl ass in two ways: it makes use of the fact that otherwi se can be used 
as a catch-all clause in a case form, and it makes use of the fact that the dispatch 
variable is called message. Usually, it is not a good idea to rely on details about the 
implementation of a macro, and soon we will see cleaner ways of defining classes. 
But for now, this simple approach works: 

(define-class password-account (password acct) 0 
(change-password (pass new-pass) 

(if (equal pass password) 
(setf password new-pass) 
'wrong-password)) 

(otherwise (pass &rest args) 
(if (equal pass password) 

(apply message acct args) 
'wrong-password) 1) 

Now we see how the class password-account can be used to provide protection for 
an existing account: 

(setf acct3 (password-account "secret" acct2)) + #<CLOSURE 33427277> 
> (balance acct3 "secret") + 2164.52 
> (withdraw acct3 "guess" 2000.00) + WRONG-PASSWORD 
> (withdraw acct3 "secret" 2000.00) + 164.52 

Now let's try one more example. Suppose we want to have a new class of account 



where only a limited amount of money can be withdrawn at any time. We could 
define the class 1 i m i  ted-account:  

(define-class limited-account (limit acct) 0 
(withdraw (amt) 

(if (> amt limit) 
'over-1 imi t 
(withdraw acct amt))) 

(otherwise (&rest args) 
(apply message acct args))) 

This definition redefines the wi t hd r aw message to check if the limit is exceeded before 
passing on the message, and it uses the otherwi  se clause simply to pass on all other 
messages unchanged. In the following example, we set up an account with both a 
password and a limit: 

> (setf acct4 (password-account "pass" 
(limited-account 100.00 

(account "A. Thrifty Spender" 500.00)))) + 
#<CLOSURE 34136775B 

> (withdraw acct4 "pass" 200.00) + OVER-LIMIT 
> (withdraw acct4 "pass" 20.00) + 480.0 
> (withdraw acct4 "guess" 20.00) + WRONG-PASSWORD 

Note that functions like withdraw are still simple generic functions that just find the 
right method and apply it to the arguments. The trickis that each class defines a differ- 
ent way to handle the withdraw message. Calling wi thdraw with acct4  as argument 
results in the following flow of control. First, the method in the password-account 
class checks that the password is correct. If it is, it calls the method from the 
1 i mi t e d  - account class. If the limit is not exceeded, we finally call the method from 
the account class, which decrements the balance. Passing control to the method of 
a component is called delegation. 

The advantage of the object-oriented style is that we can introduce a new class 
by writing one definition that is localized and does not require changing any existing 
code. If we had written this in traditional procedural style, we would end up with 
functions like the following: 

(defun withdraw (acct amt &optional pass) 
(cond ((and (typep acct 'password-account) 

(not (equal pass (account-password acct)))) 
'wrong-password) 

((and (typep acct 'limited-account) 



(> amt (account-limit account))) 
'over-1 imit) 

( (> amt bal ance) 
'insufficient-funds) 
( t  (decf balance amt)))) 

There is nothing wrong with this, as an individual function. The problem is that 
when the bank decides to offer a new kind of account, we will have to change this 
function, along with all the other functions that implement actions. The "definition" 
of the new account is scattered rather than localized, and altering a bunch of existing 
functions is usually more error prone than writing a new class definition. 

13.6 Inheritance 

In the following table, data types (classes) are listed across the horizontal axis, and 
functions (messages) are listed up and down the vertical axis. A complete program 
needs to fill in all the boxes, but the question is how to organize the process of filling 
them in. In the traditional procedural style, we write function definitions that fill in 
a row at a time. In the object-oriented style, we write class definitions that fill in a 
column at a time. A third style, the data-driven or generic style, fills in only one box at 
a time. 

In this table there is no particular organization to either axis; both messages and 
classes are listed in random order. This ignores the fact that classes are organized hi- 
erarchically: both limited-account and password-account are subclasses of account. 
This was implicit in the definition of the classes, because both 1 i mi ted - account and 
password - account contain accounts as components and delegate messages to those 
components. But it would be cleaner to make this relationship explicit. 

The def s t  ruct mechanism does allow for just this kind of explicit inheritance. If 
we had defined account as a structure, then we could define 1 i m i  ted-account with: 



(defstruct (limited-account (:include account)) limit) 

Two things are needed to provide an inheritance facility for classes. First, we should 
modify d e f i  ne -c l  ass so that it takes the name of the class to inherit from as the 
second argument. This will signal that the new class will inherit all the instance 
variables, class variables, and methods from the parent class. The new class can, of 
course, define new variables and methods, or it can shadow the parent's variables and 
methods. In the form below, we define 1 i m i  t e d  - account to be a subclass of account 
that adds a new instance variable, 1 i m i  t, and redefines the wi thdraw method so that 
it checks for amounts that are over the limit. If the amount is acceptable, then it uses 
the function c a l l  -next-method (not yet defined) to get at the withdraw method for 
the parent class, account. 

(define-class limited-account account (limit) 0 
(withdraw (amt 

(if (> amt limit) 
'over-limit 
(call-next-method)))) 

If inheritance is a good thing, then multiple inheritance is an even better thing. For 
example, assuming we have defined the classes 1 i m i  t ed - account and 
pa s swo r d  - account, it is very convenient to define the following class, which inherits 
from both of them: 

(define-class limited-account-with-password 
(password-account limited-account)) 

Notice that this new class adds no new variables or methods. All it does is combine 
the functionality of two parent classes into one. 

Exercise 13.1 [dl Define a version of d e f i  n e - c l  ass that handles inheritance and 
c a l l  -next-method. 

Exercise 13.2 [dl Define a version of de f  i ne - c l  ass that handles multiple inheri- 
tance. 



13.7 CLOS: The Common Lisp Object System 

So far, we have developed an object-oriented programming system using a macro, 
def i ne - cl ass, and a protocol for implementing objects as closures. There have 
been many proposals for adding object-oriented features to Lisp, some similar to 
our approach, some quite different. Recently, one approach has been approved to 
become an official part of Common Lisp, so we will abandon our ad hoc approach 
and devote the rest of this chapter to CLOS, the Common Lisp Object System. The 
correspondence between our system and CLOS is summarized here: 

o w  system CLOS 
defi ne-cl ass defcl ass 
methods defined in class defmet hod 
class-name make-instance 
call-next-method call-next-method 
ensure-generic-fn ensure-generic-function 

Like most object-oriented systems, CLOS is primarily concerned with defining 
classes and methods for them, and in creating instances of the classes. In CLOS the 
macro defcl ass defines a class, defmethod defines a method, and make-instance 
creates an instance of a class-an object. The general form of the macro def cl ass is: 

(def cl ass class-name (superclass ... (slot-specifier ... optional-class-option ... 

The class-options are rarely used. defcl ass can be used to define the class account: 

(defcl ass account ( 

((name : in i targ  :name :reader name) 
(balance : in i targ  :balance :initform 0.00 :accessor balance) 
( in t e res t - r a t e  :al location :class :initform .06 

:reader i n t e r e s t - r a t e ) ) )  

In the definition of account, we see that the list of superclasses is empty, because 
account does not inherit from any classes. There are three slot specifiers, for the 
name, bal ance, and interest-rate slots. Eachslotnamecanbefollowedbyoptional 
keyword/value pairs defining how the slot is used. The name slot has an : i ni targ 
option, which says that the name can be specified when a new account is created 
with make-instance. The :reader slot creates a method called name to get at the 
current value of the slot. 

The ba 1 ance slot has three options: another : i n i t a rg, saying that the balance 
can be specified when a new account is made; an : i ni tform, which says that if 
the balance is not specified, it defaults to 0.00, and an : accessor, which creates a 



method for getting at the slot's value just as : reader does, and also creates a method 
for updating the slot with setf .  

The i nterest - rate slot has an : i ni tform option to give it a default value and an 
: a 1 1 oca t i on option to say that this slot is part of the class, not of each instance of the 
class. 

Here we see the creation of an object, and the application of the automatically 
defined methods to it. 

> (setf a1 (make-instance 'account :balance 5000.00 
:name "Fred")) + WACCOUNT 26726272> 

> (name all + "Fred" 
> (balance all + 5000.0 
> (interest-rate all + 0.06 

CLOS differs from most object-oriented systems in that methods are defined sepa- 
rately from classes. To define a method (besides the ones defined automatically by 
:reader, :writer, or :accessor options) we use the defmethod macro. It is similar 
to def un  in form: 

(defmethod method-name (parameter ... body ... 

Required parameters to a defmethod can be of the form (var class), meaning that 
this is a method that applies only to arguments of that class. Here is the method for 
withdrawing from an account. Note that CLOS does not have a notion of instance 
variable, only instance slot. So we have to use the method (bal ance acct rather 
than the instance variable ba 1 ance: 

(defmethod withdraw ((acct account) amt) 
(if (< amt (balance acct)) 

(decf (balance acct) amt) 
'i nsuffi ci ent-funds) 

With CLOS it is easy to define a 1 imi ted-account as a subclass of account, and to 
define the wi thdrawmethodfor 1 imi ted-accounts: 

(defclass limited-account (account) 
((limit :initarg :limit :reader limit))) 

(defmethod withdraw ((acct limited-account) amt) 
(if (> amt (limit acct)) 

'over-1 imit 
(call -next-method) 1) 



Note the use of c a l l  -next-method to invoke the withdraw method for the account 
class. Also note that all the other methods for accounts automatically work on 
instances of the class limited-account, because it is defined to inherit from account. In 
the following example, we show that the name method is inherited, that the wi thdraw 
method for 1 i m i  ted-account is invoked first, and that the withdraw method for 
account is invoked by the c a l l  -next-method function: 

> ( s e t f  a2 (make-instance ' l im i ted-accoun t  
:name "A. T h r i f t y  Spender" 
:balance 500.00 : l i m i t  100.00)) + 

#<LIMITED-ACCOUNT 24155343> 

> (name a21 + "A. T h r i f t y  Spender" 

> (withdraw a2 200.00) + OVER-LIMIT 

> (withdraw a2 20.00) + 480.0 

Ingeneral, there may be several methods appropriate to a givenmessage. In that case, 
all the appropriate methods are gathered together and sorted, most specific first. The 
most specific method is then called. That is why the method for 1 i mi t e d  - account is 
called first rather than the method for account. The function ca 1 1 -next  -met hod can 
be used within the body of a method to call the next most specific method. 

The complete story is actually even more complicated than this. As one example 
of the complication, consider the class a ud i  t e d  - account, which prints and keeps 
a trail of all deposits and withdrawals. It could be defined as follows using a new 
feature of CLOS, : before and : a f t e r  methods: 

(de fc lass  audited-account (account) 
( ( a u d i t - t r a i l  : i n i t f o r m  n i l  :accessor a u d i t - t r a i l ) ) )  

(defmethod withdraw :before ( ( a c c t  audi ted-account)  amt) 
(push ( p r i n t  ' (w i thdrawing .amt)) 

( a u d i t - t r a i l  a c c t ) ) )  

(defmethod withdraw : a f t e r  ( ( a c c t  audi ted-account)  amt) 
(push ( p r i n t  ' (w i thdrawal  (,amt) done)) 

( a u d i t - t r a i l  a c c t ) ) )  

Now a call to withdraw with a audi ted-account as the first argument yields three 
applicable methods: the primary method from account and the : be fo re  and : a f t e r  
methods. In general, there might be several of each kind of method. In that case, 
all the :before  methods are called in order, most specific first. Then the most 
specific primary method is called. It may choose to invoke c a l l  - nex t  -met hod to 
get at the other methods. (It is an error for a :before  or : a f t e r  method to use 
c a l l  - nex t  -met hod.) Finally, all the : a f t e r  methods are called, least specific first. 



The values from the : be fo re  and : a f t e r  methods are ignored, and the value from 
the primary method is returned. Here is an example: 

> ( s e t f  a3 (make-instance 'audi ted-account  :balance 1000.00)) 
#<AUDITED-ACCOUNT 335551607> 

> (withdraw a3 100.00) 
(WITHDRAWING 100.0) 
(WITHDRAWAL (100.0) DONE) 
900.0 

> ( a u d i t - t r a i l  a3) 
((WITHDRAWAL (100.0) DONE) (WITHDRAWING 100.0)) 

> ( s e t f  ( a u d i t - t r a i l  a31 n i l )  
NIL 

The last interaction shows the biggest flaw in CLOS: it fails to encapsulate informa- 
tion. In order to make the a ud i t - t r a i 1 accessible to the wi t hd r a w methods, we had 
to give it accessor methods. We would like to encapsulate the writer function for 
audi t - t r a i  1 so that it can only be used with depos i t  and withdraw. But once the 
writer function is defined it can be used anywhere, so an unscrupulous outsider can 
destroy the audit trail, setting it to nil or anything else. 

13.8 A CLOS Example: Searching Tools 

CLOS is most appropriate whenever there are several types that share related behav- 
ior. A good example of an application that fits this description is the set of searching 
tools defined in section 6.4. There we defined functions for breadth-first, depth- 
first, and best-first search, as well as tree- and graph-based search. We also defined 
functions to search in particular domains, such as planning a route between cities. 

If we had written the tools in a straightforward procedural style, we would have 
ended up with dozens of similar functions. Instead, we used higher-order functions 
to control the complexity. In this section, we see how CLOS can be used to break up 
the complexity in a slightly different fashion. 

We begin by defining the class of search problems. Problems will be classified 
according to their domain (route planning, etc.), their topology (tree or graph) and 
their search strategy (breadth-first or depth-first, etc.). Each combination of these 
features results in a new class of problem. This makes it easy for the user to add a new 
class to represent a new domain, or a new search strategy. The basic class, prob l  em, 
contains a single-instance variable to hold the unexplored states of the problem. 



(defcl ass probl em ( 

( ( s ta tes  : initarg :states :accessor problem-states))) 

The function searcher is similar to the function t ree -search  of section 6.4. The 
main difference is that searcher uses generic functions instead of passing around 
functional arguments. 

(defmethod searcher ((prob problem)) 
"Find a s ta te  t h a t  solves the search problem." 
(cond ((no-states-p prob) f a i l )  

((goal-p prob) (current-state prob)) 
( t  ( l e t  ((current (pop-state prob))) 

(setf  (problem-states prob) 
(probl em-combiner 

prob 
(problem-successors prob current) 
(problem-states prob)))) 

(searcher prob))))  

searcher does not assume that the problem states are organized in a list; rather, it 
uses the generic function no- s t a t e s  - p to test if there are any states, pop- sta t e  to 
remove and return the first state, and current  - s t a t e  to access the first state. For the 
basic probl em class, we will in fact implement the states as a list, but another class of 
problem is free to use another representation. 

(defmethod current-state ((prob problem)) 
"The current s ta te  i s  the f i r s t  of the possible s ta tes . " 
( f i  r s t  (probl em-states prob) 1) 

(defmethod pop-state ((prob problem)) 
"Remove and return the current s ta te . " 
(pop (problem-states prob))) 

(defmethod no-states-p ((prob problem)) 
"Are there any more unexplored states?" 
( n u 1  1 (probl em-states prob) 1)  

In t r e e  - search, we included a statement to print debugging information. We can do 
that here, too, but we can hide it in a separate method so as not to clutter up the main 
definition of searcher.  It is a : before method because we want to see the output 
before carrying out the operation. 



(defmethod searcher :before ( ( p r o b  problem)) 
(dbg 'search ""&;; Search: "a" (prob lem-states p r o b ) ) )  

The generic functions that remain to be defined are goa 1 - p, p r o b l  em- combi ner,  and 
p r o b l  em-successors.  We will address g o a l  - p  first, by recognizing that for many 
problems we will be searching for a state that is e q l  to a specified goal state. We 
define the class e q l  - p r o b l  em to refer to such problems, and specify g o a l  - p  for that 
class. Note that we make it possible to specify the goal when a problem is created, 
but not to change the goal: 

( d e f c l  ass eq l  -problem (problem) 
( (goal : i n i  t a r g  :goal :reader p rob l  em-goal ) 1) 

(defmethod goal -p ( (p rob  eq l -prob lem))  
(eq l  ( c u r r e n t - s t a t e  prob)  (problem-goal p r o b ) ) )  

Now we are ready to specify two search strategies: depth-first search and 
breadth-first search. We define problem classes for each strategy and specify the 
p r o b l  em-combi n e r  function: 

( d e f c l  ass d f s - p r o b l  em (problem) ( 

(:documentation " D e p t h - f i r s t  search prob lem." ) )  

( d e f c l  ass b f s - p r o b l  em (problem) ( 

(:documentation " B r e a d t h - f i r s t  search problem."))  

(defmethod problem-combiner ( (p rob  dfs-problem) new o l d )  
" D e p t h - f i r s t  search looks  a t  new s t a t e s  f i r s t . "  
(append new o l d ) )  

(defmethod problem-combiner ( (p rob  bfs-prob lem) new o l d )  
" D e p t h - f i r s t  search looks a t  o l d  s t a t e s  f i r s t . "  
(append o l d  new)) 

While this code will be sufficient for our purposes, it is less than ideal, because it 
breaks aninformation-hiding barrier. It treats the set of old states as a list, whichis the 
default for the p r o b l  em class but is not necessarily the implementation that every class 
willuse. It would have beencleaner to define generic functions a d d - s t a t e s - t o - e n d  
and a d d - s t a t e s - t o - f r o n t  and then define them with append in the default class. 
But Lisp providis such nice list-manipulation primitives that it is difficult to avoid 
the temptation of using them directly. 

Of course, the user who defines a new implementation for p r o b l  em- s t a  t e s  
could just redefine p r o b l  em-combi n e r  for the offending classes, but this is precisely 
what object-oriented programming is designed to avoid: specializing one abstrac- 
tion (states) should not force us to change anything in another abstraction (search 
strategy). 



The last step is to define a class that represents a particular domain, and define 
probl em- successors for that domain. As the first example, consider the simple 
binary tree search from section 6.4. Naturally, this gets represented as a class: 

(defcl ass binary-tree-probl em (problem) ( 1  

(defmethod problem-successors ((prob binary-tree-problem) s t a t e )  
( l e t  ( ( n  (*  2 s t a t e ) ) )  

( l i s t  n (+ n 1 ) ) ) )  

Now suppose we want to solve a binary-tree problem with breadth-first search, 
searching for a particular goal. Simply create a class that mixes in 
binary- tree-probl em, eql -probl em and bfs -probl em, create an instance of that 
class, and call sea rc her on that instance: 

(defcl ass binary-tree-eql -bfs-problem 
(binary-tree-problem eql -problem bfs-problem) ( 1  

> ( se t f  pl (make-instance 'binary-tree-eql-bfs-problem 
: s t a t e s  '(1) :goal 12 ) )  

#<BINARY -TREE- EQL-BFS- PROBLEM 26725536> 

> (searcher p l )  
;; Search: (1) 
;; Search: (2 3)  
;; Search: ( 3  4 5) 
;; Search: (4  5 6 7)  
;; Search: ( 5  6 7 8 9) 
;; Search: (6  7 8 9 10 11) 
;; Search: (7 8 9 10 11 12 13) 
;; Search: (8  9 10 11 12 13 14 15) 
;; Search: (9  10 11 12 13 14 15 16 17) 
;; Search: (10 11 12 13 14 15 16 17 18 19) 
;; Search: (11 1 2  13 14 15 16 17 18 19 20 21) 
;; Search: (12 13 14 15 16 17 18 19 20 21 22 23) 
12 

Best-First Search 

It should be clear how to proceed to define best-first search: define a class to represent 
best-first search problems, and then define the necessary methods for that class. 
Since the search strategy only affects the order in which states are explored, the only 
method necessary will be for probl em-combi ner. 



(defcl ass best-probl em (problem) ( 

(:documentation " A  Best-first search problem.")) 

(defmethod problem-combiner ((prob best-problem) new old) 
"Best-first search sorts new and old according to cost-fn." 
(sort (append new old) #'< 

:key #'(lambda (state) (cost-fn prob state)))) 

This introduces the new function cost - f n; naturally it will be a generic function. The 
following is a cost - f n that is reasonable for any eql - probl em dealing with numbers, 
but it is expected that most domains will specialize this function. 

(defmethod cost-fn ((prob eql -problem) state) 
(abs ( -  state (problem-goal prob) 1) 

Beam search is a modification of best-first search where all but the best b states are 
thrown away on each iteration. A beam search problem is represented by a class 
where the instance variable beam-wi d t h  holds the parameter b. If this nil, then full 
best-first search is done. Beam search is implemented by an : around method on 
probl em- combi ner. It calls the next method to get the list of states produced by 
best-first search, and then extracts the first b elements. 

(defcl ass beam-probl em (probl em) 
((beam-width :initarg :beam-width :initform nil 

:reader problem-beam-width))) 

(defmethod problem-combiner :around ((prob beam-problem) new old) 
(let ((combined (call-next-method))) 

(subseq combined 0 (min (problem-beam-width prob) 
(length combined) 1) 1) 

Now we apply beam search to the binary-tree problem. As usual, we have to make 
up another class to represent this type of problem: 

(defcl ass bi nary-tree-eql -best-beam-probl em 
(binary-tree-problem eql -problem best-problem beam-problem) 
0) 

> (setf p3 (make-instance 'binary-tree-eql-best-beam-problem 
:states '(1) :goal 12 :beam-width 3)) 

#<BINARY-TREE-EQL-BEST-BEAM-PROBLEM 27523251> 

> (searcher p3) 
;; Search: (1) 
;; Search: (3 2)  
;; Search: (7 6 2) 
;; Search: (14 15 6) 
;; Search: (15 6 28) 



;; Search: ( 6  28 30) 
;; Search: (12 13 28) 
12 

So far the case for CLOS has not been compelling. The code in this section duplicates 
the functionality of code in section 6.4, but the CLOS code tends to be more verbose, 
and it is somewhat disturbing that we had to make up so many long class names. 
However, this verbosity leads to flexibility, and it is easier to extend the CLOS code by 
adding new specialized classes. It is useful to make a distinction between the systems 
programmer and the applications programmer. The systems programmer would 
supply a library of classes like dfs-prob l  em and generic functions like searcher. 
The applications programmer then just picks what is needed from the library. From 
the following we see that it is not too difficult to pick out the right code to define a 
trip-planning searcher. Compare this with the definition of t r  i p on page 198 to see 
if you prefer CLOS in this case. The main difference is that here we say that the cost 
function is a i  r - d i  stance and the successors are the n e i  ghbors by definingmethods; 
in t r i  p we did it by passing parameters. The latter is a little more succint, but the 
former may be more clear, especially as the number of parameters grows. 

( d e f c l  ass t r i p - p r o b l  em ( b i n a r y - t r e e - e q l  -best-beam-probl em) 
((beam-width : i n i t f o r m  1 ) ) )  

(defmethod c o s t - f n  ( (p rob  t r i p - p r o b l e m )  c i t y )  
( a i  r - d i  stance (p rob l  em-goal prob) c i t y )  

(defmethod problem-successors ( ( p r o b  t r i p - p r o b l e m )  c i t y )  
(neighbors c i t y )  

With the definitions in place, it is easy to use the searching tool: 

> ( s e t f  p4 (make-instance ' t r i p - p r o b l e m  
: s t a t e s  ( l i s t  ( c i t y  'new-york)) 
:goal ( c i t y  ' san- f ranc isco )  1) 

#<TRIP-PROBLEM 31572426> 

> (searcher p4) 
;; Search: ((NEW-YORK 73.58 40.47)) 
;; Search: ((PITTSBURG 79.57 40.27)) 
;; Search: ((CHICAGO 87.37 41.5) )  
;; Search: ((KANSAS-CITY 94.35 39.06)) 
;; Search: ((DENVER 105.0 39.45)) 
;; Search: ((FLAGSTAFF 111.41 35.13)) 
;; Search: ((RENO 119.49 39.3)) 
;; Search: ((SAN-FRANCISCO 122.26 37.47)) 
(SAN-F,RANCISCO 122.26 37.47) 



13.9 Is CLOS Object-Oriented? 

There is some argument whether CLOS is really object-oriented at all. The arguments 
are: 

CLOS is an object-oriented system because it provides all three of the main criteria 
for object-orientation: objects with internal state, classes of objects with specialized 
behavior for each class, and inheritance between classes. 

CLOS is not an object-oriented system because it does not provide modular 
objects with information-hiding. In the a  ud i  t e d  - account example, we would like to 
encapsulate the audi t - t r a i  1  instance variable so that only the withdraw methods 
can change it. But because methods are written separately from class definitions, 
we could not do that. Instead, we had to define an accessor for a  ud i  t - t r a  i 1 . That 
enabled us to write the withdraw methods, but it also made it possible for anyone 
else to alter the audit trail as well. 

CLOS is moregeneral than an object-oriented system because it allows for methods 
that specialize on more than one argument. In true object-oriented systems, methods 
are associated with objects of a particular class. This association is lexically obvious 
(and the message-passing metaphor is clear) when we write the methods inside the 
definition of the class, as in our de f  i ne - c l  ass macro. The message-passing metaphor 
is still apparent when we write generic functions that dispatch on the class of their 
first argument, which is how we've been using CLOS so far. 

But CLOS methods can dispatch on the class of any required argument, or any 
combination of them. Consider the following definition of conc, which is like append 
except that it works for vectors as well as lists. Rather than writing conc using 
conditional statements, we can use the multimethod dispatch capabilities of CLOS 
to define the four cases: (1) the first argument is nil, (2) the second argument is nil, 
(3) both arguments are lists, and (4) both arguments are vectors. Notice that if one of 
the arguments is nil there will be two applicable methods, but the method for nu1 1  
will be used because the class nu1 1 is more specific than the class 1  i s t .  

(defmethod conc ((x null) y) y) 

(defmethod conc (x (y null)) x) 

(defmethod conc ((x list) (y list)) 
(cons (first x) (conc (rest x) y))) 

(defmethod conc ((x vector) (y vector)) 
(let ((vect (make-array (+ (length x) (length y))))) 

(rep1 ace vect x) 
(replace vect y :start1 (length x)))) 



Here we see that this definition works: 

> (conc nil '(a b c)) +- (A B C) 

> (conc ' ( a  b c) nil) + (A B C) 

> (conc '(a b c) '(d e f)) + (A B C D E F) 

> (conc '#(a b c) '#(d e f ) )  + #(A B C D E F) 

It works, but one might well ask: where are the objects? The metaphor of passing a 
message to an object does not apply here, unless we consider the object to be the list 
of arguments, rather than a single privileged argument. 

It is striking that this style of method definition is very similar to the style used 
in Prolog. As another example, compare the following two definitions of 1 en, a 
relation/function to compute the length of a list: 

;; CLOS %% Prolog 
(defmethod len ( ( x  null 1) 0)  len(C1,O). 

(defmethod len ( ( x  cons)) 
(+ 1 (len (rest x ) ) ) )  

13.10 Advantages of Object-Oriented 
Programming 

Bertrand Meyer, in his book on the object-oriented language Eiffel (1988), lists five 
qualities that contribute to software quality: 

Correctness. Clearly, a correct program is of the upmost importance. 

Robustness. Programs should continue to function in a reasonable manner even 
for input that is beyond the original specifications. 

Extendability. Programs should be easy to modify when the specifications 
change. 

Reusability. Program components should be easy to transport to new programs, 
thus amortizing the cost of software development over several projects. 

Compatibility. Programs should interface well with other programs. For exam- 
ple, a spreadsheet program should not only manipulate numbers correctly but 
also be compatible with word processing programs, so that spreadsheets can 
easily be included in documents. 



Here we list how the object-oriented approach in general and CLOS in particular 
can effect these measures of quality: 

Correctness. Correctness is usually achieved in two stages: correctness of 
individual modules and correctness of the whole system. The object-oriented 
approach makes it easier to prove correctness for modules, since they are 
clearly defined, and it may make it easier to analyze interactions between 
modules, since the interface is strictly limited. CLOS does not provide for 
information-hiding the way other systems do. 

Robustness. Generic functions make it possible for a function to accept, at run 
time, a class of argument that the programmer did not anticipate at compile 
time. This is particularly true in CLOS, because multiple inheritance makes it 
feasible to write default methods that can be used by a wide range of classes. 

Extendability. Object-oriented systems with inheritance make it easy to define 
new classes that are slight variants on existing ones. Again, CLOS's multiple 
inheritance makes extensions even easier than in single-inheritance systems. 

Reusability. This is the area where the object-oriented style makes the biggest 
contribution. Instead of writing each new program from scratch, object- 
oriented programmers can look over a library of classes, and either reuse 
existing classes as is, or specialize an existing class through inheritance. Large 
libraries of CLOS classes have not emerged yet. Perhaps they will when the 
language is more established. 

e Compatibility. The more programs use standard components, the more they will 
be able to communicate with each other. Thus, an object-oriented program will 
probably be compatible with other programs developed from the same library 
of classes. 

13.11 History and References 

The first object-oriented language was Simula, which was designed by Ole-Johan 
Dahl andKrystenNygaard (1966, Nygaard and Dahl1981) as an extension of Algol 60. 
It is still in use today, mostly in Norway and Sweden. Simula provides the ability to 
define classes with single inheritance. Methods can be inherited from a superclass 
or overridden by a subclass. It also provides coroutines, class instances that execute 
continuously, saving local state in instance variables but periodically pausing to let 
other coroutines run. Although Simula is a general-purpose language, it provides 
special support for simulation, as the name implies. The built-in class s i mu1 a t  i on 
allows a programmer to keep track of simulated time while running a set of processes 
as coroutines. 



In 1969 Alan Kay was a graduate student at the University of Utah. He became 
aware of Simula and realized that the object-oriented style was well suited to his 
research in graphics (Kay 1969). A few years later, at Xerox, he joined with Adele 
Goldberg and Daniel Ingalls to develop the Smalltalk language (see Goldberg and 
Robinson 1983). While Simula can be viewed as an attempt to add object-oriented 
features to strongly typed Algol 60, Smalltalk can be seen as an attempt to use the 
dynamic, loosely typed features of Lisp, but with methods and objects replacing 
functions and s-expressions. In Simula, objects existed alongside traditional data 
types like numbers and strings; in Smalltalk, every datum is an object. This gave 
Smalltalk the feel of anintegrated Lisp environment, where the user caninspect, copy, 
or edit any part of the environment. In fact, it was not the object-oriented features of 
Smalltalk per se that have made a lasting impression but rather the then-innovative 
idea that every user would have a large graphical display and could interact with the 
system using a mouse and menus rather than by typing commands. 

Guy Steele's LAMBDA: The Ultimate Declarative (1976a and b) was perhaps the 
first paper to demonstrate how object-oriented programming can be done in Lisp. As 
the title suggests, it was all done using 1 arnbda, in a similar way to our def i ne- cl ass 
example. Steele summarized the approach with the equation "Actors = Closures 
(mod Syntax)," refering to Carl Hewitt's "Actors" object-oriented formalism. 

In 1979, the MIT Lisp Machine group developed the Flavors system based on this 
approach but offering considerable extensions (Cannon 1980, Weinreb 1980, Moon 
et al. 1983). "Flavor" was a popular jargon word for "type" or "kind at MIT, so it was 
natural that it became the term for what we call classes. 

The Flavor system was the first to support multiple inheritance. Other languages 
shunned multiple inheritance because it was too dynamic. With single inheritance, 
each instance variable and method could be assigned a unique offset number, and 
looking up a variable or method was therefore trivial. But with multiple inheritance, 
these computations had to be done at run time. The Lisp tradition enabled pro- 
grammers to accept this dynamic computation, when other languages would not. 
Once it was accepted, the MIT group soon came to embrace it. They developed 
complex protocols for combining different flavors into new ones. The concept of 
mix-ins was developed by programmers who frequented Steve's Ice Cream parlor in 
nearby Davis Square. Steve's offered a list of ice cream flavors every day but also 
offered to create new flavors-dynamically-by mixing in various cookies, candies, 
or fruit, at the request of the individual customer. For example, Steve's did not have 
chocolate-chip ice cream on the menu, but you could always order vanilla ice cream 
with chocolate chips mixed in.3 

This kind of "flavor hacking" appealed to the MIT Lisp Machine group, who 

3~lavor fans will be happy to know that Steve's Ice Cream is now sold nationally in the 
United States. Alas, it is not possible to create flavors dynamically. Also, be warned that 
Steve's was bought out by his Teal Square rival, Joey's. The original Steve retired from the 
business for years, then came back with a new line of stores under his last name, Harrell. 



adopted the metaphor for their object-oriented programming system. All flavors 
inherited from the top-most flavor in the hierarchy: vanilla. In the window system, for 
example, the flavor bas i  c -wi  ndow was defined to support the minimal functionality 
of all windows, and then new flavors of window were defined by combining mix-in 
flavors such as s c r o l l  - bar-mixin,  1 abel -mi x i  n, and border-mix i  n. These mix-in 
flavors were used only to define other flavors. Just as you couldn't go into Steve's and 
order "crushed Heath bars, hold the ice cream," there was a mechanism to prohibit 
instantiation of mix-ins. 

A complicated repetoire of method combinations was developed. The default 
method combination on Flavors was similar to CLOS: first do all the : be fo re  meth- 
ods, then the most specific primary method, then the : a f t e r  methods. But it was 
possible to combine methods in other ways as well. For example, consider the 
i n s i  de -wi d t  h method, which returns the width in pixels of the usuable portion of a 
window. A programmer could specify that the combined method for i ns i de - wi d t h 
was to be computed by calling all applicable methods and summing them. Then an 
i n s i  de-wi d t  h method for the bas i  c -wi  ndow flavor would be defined to return the 
width of the full window, and each mix-in would have a simple method to say how 
much of the width it consumed. For example, if borders are 8 pixels wide and scroll 
bars are 12 pixels wide, then the i n s i d e - w i d t h  method for border-mix i  n returns -8 
and s c r o l l  -bar  -mi x i  n returns - 12. Then any window, no matter how many mix-ins 
it is composed of, automatically computes the proper inside width. 

In 1981, Symbolics came out with a more efficient implementation of Flavors. 
Objects were no longer just closures. They were still funcallable, but there was 
additional hardware support that distinguished them from other functions. After a 
few years Symbolics abandoned the (send object message) syntax in favor of a new 
syntax based on generic functions. This system was known as New Flavors. It had a 
strong influence on the eventual CLOS design. 

The other strong influence on CLOS was the CommonLoops system developed 
at Xerox PARC. (See Bobrow 1982, Bobrow et al. 1986, Stefik and Bobrow 1986.) 
CommonLoops continued the New Flavors trend away from message passing by 
introducing multimethods: methods that specialize on more than one argument. 

As of summer 1991, CLOS itself is in a state of limbo. It was legitimitized by its 
appearance in Common Lisp the Language, 2d edition, but it is not yet official, and an 
important part, the metaobject protocol, is not yet complete. A tutorial on CLOS is 
Keene 1989. 

We have seen how easy it is to build an object-oriented system on top of Lisp, 
using 1 ambda as the primary tool. An interesting alternative is to build Lisp on top of 
an object-oriented system. That is the approach taken in the Oaklisp system of Lang 
and Perlmutter (1988). Instead of defining methods using 1 ambda as the primitive, 
Oaklisp has add-method as a primitive and defines 1 ambda as a macro that adds a 
method to an anonymous, empty operation. 

Of course, object-oriented systems are thriving outside the Lisp world. With the 



success of UNIX-based workstations, C has become one of the most widely available 
programming languages. C is a fairly low-level language, so there have been several 
attempts to use it as a kind of portable assembly language. The most succesful of 
these attempts is C*, a language developed by Bjarne Stroustrup of AT&T Bell Labs 
(Stroustrup 1986). C++ provides a number of extensions, including the ability to 
define classes. However, as an add-on to an existing language, it does not provide as 
many features as the other languages discussed here. Crucially, it does not provide 
garbage collection, nor does it support fully generic functions. 

Eiffel (Meyer 1988) is an attempt to define an object-oriented system from the 
ground up rather than tacking it on to an existing language. Eiffel supports multiple 
inheritance and garbage collection and a limited amount of dynamic dispatching. 

So-called modern languages like Ada and Modula support information-hiding 
through generic functions and classes, but they do not provide inheritance, and thus 
can not be classified as true object-oriented languages. 

Despite these other languages, the Lisp-based object-oriented systems are the 
only ones since Smalltalk to introduce important new concepts: multiple inheritance 
and method combination from Flavors, and multimethods from CommonLoops. 

13.12 Exercises 

p Exercise 13.3 [m] Implement depos i t and i n te res  t methods for the account class 
using CLOS . 

p Exercise 13.4 [m] Implement the password - account class using CLOS. Can it be 
done as cleanly with inheritance as it was done with delegation? Or should you use 
delegation within CLOS? 

p Exercise 13.5 [h] Implement graph searching, search paths, and A* searching as 
classes in CLOS. 

p Exercise 13.6 [h] Implement a priority queue to hold the states of a problem. In- 
stead of a list, the prob l  em-states will be a vector of lists, each initially null. Each 
new state will have a priority (determined by the generic function p r i  o r i  t y )  which 
must be an integer between zero and the length of the vector, where zero indicates the 
highest priority. A new state with priority p is pushed onto element p of the vector, 
and the state to be explored next is the first state in the first nonempty position. As 
stated in the text, some of the previously defined methods made the unwarranted 
assumption that p r  obl em- s t a t e s  would always hold a list. Change these methods. 



Knowledge Representation 
and Reasoning 

Knowledge itself is power. 

-Francis Bacon (1 561-1 626) 

T h e  power resides i n  the knowledge. 

-Edward Feigenbaum 
Stanford University Heuristic Programming Project 

Knowledge is Knowledge, and vice versa. 

-Tee shirt 
Stanford University Heuristic Programming Project 

I n the 1960s, much of A1 concentrated on search techniques. In particular, a lot of work was 
concerned with theorem proving: stating a problem as a small set of axioms and searching for 
a proof of the problem. The implicit assumption was that the power resided in the inference 

mechanism-if we could just find the right search technique, then all our problems would be 
solved, and all our theorems would be proved. 



Starting in the 1970s, this began to change. The theorem-proving approach failed 
to live up to its promise. A1 workers slowly began to realize that they were not going 
to solve NP-hard problems by coming up with a clever inference algorithm. The 
general inferencing mechanisms that worked on toy examples just did not scale up 
when the problem size went into the thousands (or sometimes even into the dozens). 

The expert-system approach offered an alternative. The key to solving hard prob- 
lems was seen to be the acquisition of special-case rules to break the problem into 
easier problems. According to Feigenbaum, the lesson learned from expert systems 
like MYCIN (which we will see in chapter 16) is that the choice of inferencing mech- 
anism is not as important as having the right knowledge. In this view it doesn't 
matter very much if MYCIN uses forward- or backward-chaining, or if it uses certainty 
factors, probabilities, or fuzzy set theory. What matters crucially is that we know 
pseudomonas is a gram-negative, rod-shaped organism that can infect patients with 
compromised immune systems. In other words, the key problem is acquiring and 
representing knowledge. 

While the expert system approach had some successes, it also had failures, and 
researchers were interested in learning the limits of this new technology and under- 
standing exactly how it works. Many found it troublesome that the meaning of the 
knowledge used in some systems was never clearly defined. For example, does the 
assertion ( col  o r  appl e red 1 mean that a particular apple is red, that all apples are 
red, or that some/most apples are red? The field of knowledge representation concen- 
trated on providing clear semantics for such representations, as well as providing 
algorithms for manipulating the knowledge. Much of the emphasis was on finding a 
good trade-off between expressiveness and efficiency. An efficient language is one for 
which all queries (or at least the average query) can be answered quickly. If we want 
to guarantee that queries will be answered quickly, then we have to limit what can 
be expressed in the language. 

In the late 1980s, a series of results shed doubt on the hopes of finding an efficient 
language with any reasonable degree of expressiveness at all. Using mathematical 
techniques based on worst-case analysis, it was shown that even seemingly trivial 
languages were intractable-in the worst case, it would take an exponential amount of 
time to answer a simple query. 

Thus, in the 1990s the emphasis has shifted to knowledge representation and reason- 
ing, a field that encompasses both the expressiveness and efficiency of languages but 
recognizes that the average case is more important than the worst case. No amount 
of knowledge can help solve an intractable problem in the worse case, but in practice 
the worst case rarely occurs. 



14.1 A Taxonomy of Representation Languages 

A1 researchers have investigated hundreds of knowledge representation languages, 
trying to find languages that are convenient, expressive, and efficient. The languages 
can be classified into four groups, depending onwhat the basic unit of representation 
is. Here are the four categories, with some examples: 

a Logical Formulae (Prolog) 

a Networks (semantic nets, conceptual graphs) 

a Objects (scripts, frames) 

a Procedures (Lisp, production systems) 

We have already dealt with logic-based languages like Prolog. 
Network-based languages can be seen as a syntactic variation on logical languages. 

A link L between nodes A and B is just another way of expressing the logical rela- 
tion L(A, B). The difference is that network-based languages take their links more 
seriously: they are intended to be implemented directly by pointers in the computer, 
and inference is done by traversing these pointers. So placing a link L between A 
and B not only asserts that L(A, B) is true, but it also says something about how the 
knowledge base is to be searched. 

Object-oriented languages can also be seen as syntactic variants of predicate cal- 
culus. Here is a statement in a typical slot-filler frame language: 

(a person 
(name = Jan) 
(age = 3 2 ) )  

This is equivalent to the logical formula: 

The frame notation has the advantage of being easier to read, in some people's 
opinion. However, the frame notation is less expressive. There is no way to say that 
the person's name is either Jan or John, or that the person's age is not 34. In predicate 
calculus, of course, such statements can be easily made. 

Finally, procedural languages are to be contrasted with representation languages: 
procedural languages compute answers without explicit representation of knowl- 
edge. 

There are also hybrid representation languages that use different methods to 
encode different kinds of knowledge. The KL-ONE family of languages uses both 
logical formulae and objects arranged into a network, for example. Many frame 



languages allow procedural attachment, a technique that uses arbitrary procedures to 
compute values for expressions that are inconvenient or impossible to express in the 
frame language itself. 

14.2 Predicate Calculus and its Problems 

So far, many of our representations have been based on predicate calculus, a notation 
with a distinguished position in AI: it serves as the universal standard by which other 
representations are defined and evaluated. The previous section gave an example 
expression from a frame language. The frame language may have many merits in 
terms of the ease of use of its syntax or the efficiency of its internal representation of 
data. However, to understand what expressions in the language mean, there must be 
a clear definition. More often than not, that definition is given in terms of predicate 
calculus. 

A predicate calculus representation assumes a universe of individuals, with re- 
lations and functions on those individuals, and sentences formed by combining 
relations with the logical connectives and, or, and n o t .  Philosophers and psycholo- 
gists will argue the question of how appropriate predicate calculus is as a model of 
human thought, but one point stands clear: predicate calculus is sufficient to repre- 
sent anything that can be represented in a digital computer. This is easy to show: 
assuming the computer's memory has n bits, and the equation b; = 1 means that bit 
i is on, then the entire state of the computer is represented by a conjunction such as: 

(bo = 0) A (bl = 0) A (b2 = 1) A - . . A (b, = 0) 

Once we can represent a state of the computer, it becomes possible to represent 
any computer program in predicate calculus as a set of axioms that map one state onto 
another. Thus, predicate calculus is shown to be a sufficient language for representing 
anything that goes on inside a computer-it can be used as a tool for analyzing any 
program from the outside. 

This does not prove that predicate calculus is an appropriate tool for all applica- 
tions. There are good reasons why we may want to represent knowledge in a form 
that is quite different from predicate calculus, and manipulate the knowledge with 
procedures that are quite different from logical inference. But we should still be able 
to describe our system in terms of predicate calculus axioms, and prove theorems 
about it. To do any less is to be sloppy. For example, we may want to manipulate 
numbers inside the computer by using the arithmetic instructions that are built into 
the CPU rather than by manipulating predicate calculus axioms, but when we write 
a square-root routine, it had better satisfy the axiom: 



Predicate calculus also serves another purpose: as a tool that can be used by a 
program rather than on a program. All programs need to manipulate data, and some 
programs will manipulate data that is considered to be in predicate calculus notation. 
It is this use that we will be concerned with. 

Predicate calculus makes it easy to start writing down facts about a domain. But 
the most straightforward version of predicate calculus suffers from a number of 
serious limitations: 

a Decidability-given a set of axioms and a goal, it may be that neither the goal nor 
its negation can be derived from the axioms. 

Tractability-even when a goal is provable, it may take too long to find the proof 
using the available inf erencing mechanisms. 

a Uncertainty-it can be inconvenient to deal with relations that are probable to a 
degree but not known to be definitely true or false. 

a Monotonicity-in pure predicate calculus, once a theorem is proved, it is true 
forever. But we would like a way to derive tentative theorems that rely on 
assumptions, and be able to retract them when the assumptions prove false. 

a Consistency-pure predicate calculus admits no contradictions. If by accident 
both P and 1 P  are derived, then any theorem can be proved. In effect, a single 
contradiction corrupts the entire data base. 

a Omniscience-it can be difficult to distinguishwhat is provable fromwhat should 
be proved. This can lead to the unfounded assumption that an agent believes 
all the consequences of the facts it knows. 

a Expressiveness-the first-order predicate calculus makes it awkward to talk 
about certain things, such as the relations and propositions of the language 
itself. 

The view held predominantly today is that it is best to approach these problems 
witha dual attack that is bothwithin and outside of predicate calculus. It is considered 
a good idea to invent new notations to address the problems-both for convenience 
and to facilitate special-purpose reasoners that are more efficient than a general- 
purpose theorem prover. However, it is also important to define scrupulously the 
meaning of the new notation in terms of familiar predicate-calculus notation. As 
Drew McDermott put it, "No notation without denotation!" (1978). 

In this chapter we show how new notations (and their corresponding meanings) 
can be used to extend an existing representation and reasoning system. Prolog is 
chosen as the language to extend. This is not meant as an endorsement for Prolog as 
the ultimate knowledge representation language. Rather, it is meant solely to give us 
a clear and familiar foundation from which to build. 



14.3 A Logical Language: Prolog 

Prolog has been proposed as the answer to the problem of programming in logic. Why 
isn't it accepted as the universal representation language? Probably because Prolog 
is a compromise between a representation language and a programming language. 
Given two specifications that are logically equivalent, one can be an efficient Prolog 
program, while the other is not. Kowalski's famous equation "algorithm = logic + 
control" expresses the limits of logic alone: logic = algorithm - control. Many problems 
(especially in AI) have large or infinite search spaces, and if Prolog is not given some 
advice on how to search that space, it will not come up with the answer in any 
reasonable length of time. 

Prolog's problems fall into three classes. First, in order to make the language 
efficient, its expressiveness was restricted. It is not possible to assert that a person's 
name is either Jan or John in Prolog (although it is possible to ask if the person's 
name is one of those). Similarly, it is not possible to assert that a fact is false; 
Prolog does not distinguish between false and unknown. Second, Prolog's inference 
mechanism is neither sound nor complete. Because it does not check for circular 
unification, it can give incorrect answers, and because it searches depth-first it can 
miss correct answers. Third, Prolog has no good way of adding control information 
to the underlying logic, making it inefficient on certain problems. 

If Prolog is programming in logic, it is not the full predicate logic we are familiar with. 
The main problem is that Prolog can't express certain kinds of indefinite facts. It can 
represent definite facts: the capital of Rhode Island is Providence. It can represent 
conjunctions of facts: the capital of Rhode Island is Providence and the capital of 
California is Sacramento. But it can not represent disjunctions or negations: that the 
capital of California is not Los Angeles, or that the capital of New York is either New 
York City or Albany. We could try this: 

(<- ( n o t  ( c a p i t a l  LA CAI)) 
(<- ( o r  ( c a p i t a l  Albany NY) ( c a p i t a l  NYC NY))) 

but note that these last two facts concern the relation n o t  and or, not the relation 
c a p i  t a  1 . Thus, they will not be considered when we ask a query about c a p i  t a  1 . For- 
tunately, the assertion "Either NYC or Albany is the capital of NY" can be rephrased 
as two assertions: "Albany is the capital of NY if NYC is not" and "NYC is the capital 
of NY if Albany is not:'' 



(<- ( c a p i t a l  A1 bany NY) ( n o t  ( c a p i t a l  NYC NY))) 
(<- ( c a p i t a l  NYC NY) ( n o t  ( c a p i t a l  A1 bany NY))) 

Unfortunately, Prolog's not is different from logic's not. When Prolog answers "no" 
to a query, it means the query cannot be proven from the known facts. If everything 
is known, then the query must be false, but if there are facts that are not known, the 
query may in fact be true. This is hardly surprising; we can't expect a program to 
come up with answers using knowledge it doesn't have. But in this case, it causes 
problems. Given the previous two clauses and the query (capi ta 1 ?c NY 1, Prolog 
will go into an infinite loop. If we remove the first clause, Prolog would fail to prove 
that Albany is the capital, and hence conclude that NYC is. If we remove the second 
clause, the opposite conclusion would be drawn. 

The problem is that Prolog equates "not proven" with "false." Prolog makes what 
is called the closed world assumption-it assumes that it knows everything that is true. 
The closed world assumption is reasonable for most programs, because the program- 
mer does know all the relevant information. But for knowledge representation in 
general, we would like a system that does not make the closed world assumption 
and has three ways to answer a query: "yes," "no," or "unknown." In this example, 
we would not be able to conclude that the capital of NY is or is not NYC, hence we 
would not be able to conclude anything about Albany. 

As another example, consider the clauses: 

(<- (damned) ( d o ) )  
(<- (damned) ( n o t  ( d o ) ) )  

With these rules, the query ( ? (damned 1 1 should logically be answered "yes." 
Furthermore, it should be possible to conclude (damned 1 without even investigating 
if ( do 1 is provable or not. What Prolog does is first try to prove ( do 1. If this succeeds, 
then ( damned 1 is proved. Either way, Prolog then tries again to prove ( do 1, and this 
time if the proof fails, then (damned 1 is proved. So Prolog is doing the same proof 
twice, when it is unnecessary to do the proof at all. Introducing negation wrecks 
havoc on the simple Prolog evaluation scheme. It is no longer sufficient to consider 
a single clause at a time. Rather, multiple clauses must be considered together if we 
want to derive all the right answers. 

Robert Moore 1982 gives a good example of the power of disjunctive reasoning. 
His problem concerned three colored blocks, but we will update it to deal with three 
countries. Suppose that a certain Eastern European country, El has just decided if it 
will remain under communist rule or become a democracy, but we do not know the 
outcome of the decision. E is situated between the democracy D and the communist 
country C: 



The question is: Is there a communist country next to a democracy? Moore points 
out that the answer is "yes," but discovering this requires reasoning by cases. If E is 
a democracy then it is next to C and the answer is yes. But if E is communist then 
it is next to D and the answer is still yes. Since those are the only two possibilities, 
the answer must be yes in any case. Logical reasoning gives us the right answer, but 
Prolog can not. We can describe the problem with the following seven assertions 
and one query, but Prolog can not deal with the or in the final assertion. 

(<- (next-to D El) (<- (next-to E D ) )  
(<- (next-to E C ) )  (<- (next-to C El) 
(<- (democracy D l )  (<- (communist C ) )  
(<- (or (democracy E l  (communist El)) 

( ? -  (next-to ?A ?B) (democracy ?A) (communist ?B)) 

We have seen that Prolog is not very good at representing disjunctions and negations. 
It also has difficulty representing existentials. Consider the following statement in 
English, logic, and Prolog: 

Jan likes everyone. 
'd x person(x) + likes(Jan,x) 
(<- (likes Jan ?x) (person ?x)) 

The Prolog translation is faithful. But there is no good translation for "Jan likes 
someone." The closest we can get is: 

Jan likes someone. 
3 x person(%) + likes(Jan,x) 
(<- (likes Jan pl)) 
(<- (person pl) 

Here we have invented a new symbol, p l f  to represent the unknown person that Jan 
likes, and have asserted that p l  is a person. Notice that p l  is a constant, not avariable. 
This use of a constant to represent a specific but unknown entity is called a Skolem 
constant, after the logician Thoralf Skolem (1887-1963). The intent is that p  1  may be 
equal to some other person that we know about. If we find out that Adrian is the 
person Jan likes, then in logic we can just add the assertion pl  = Adrian. But that does 
not work in Prolog, because Prolog implicitly uses the unique name assumption-all 
atoms represent distinct individuals. 

A Skolem constant is really just a special case of a Skolem function-an unknown 
entity that depends on one or more variable. For example, to represent "Everyone 
likes someone" we could use: 



Everyone likes someone. 
b' y 3 x person(x) + likes(y, x) 
(<- ( l i k e s  ?y (p2  ? y ) ) )  
(<- ( p e r s o n  (p2  ? y ) ) )  

Here p2 is a Skolem function that depends on the variable ?y. In other words, 
everyone likes some person, but not necessarily the same person. 

14.5 Problems with Predicate Calculus's 
Expressiveness 

In the previous section we saw that Prolog has traded some expressiveness for 
efficiency. This section explores the limits of predicate calculus's expressiveness. 

Suppose we want to assert that lions, tigers, and bears are kinds of animals. In 
predicate calculus or in Prolog we could write an implication for each case: 

(<- (an imal  ?XI  ( l i o n  ? X I )  
( c -  (an imal  ?XI  ( t i g e r  ? X I )  
( c -  (an imal  ? x )  ( b e a r  ? X I )  

These implications allow us to prove that any known lion, tiger, or bear is in fact 
an animal. However, they do not allow us to answer the question "What kinds of 
animals are there?" It is not hard to imagine extending Prolog so that the query 

( ? -  (<- (an imal  ? x )  ? p r o p o s i t i o n ) )  

would be legal. However, this happens not to be valid Prolog, and it is not even 
valid first-order predicate calculus (or FOPC). In FOPC the variables must range over 
constants in the language, not over relations or propositions. Higher-order predicate 
calculus removes this limitation, but it has a more complicated proof theory. 

It is not even clear what the values of ?propos i t i  on should be in the query above. 
Surely (lion ?x) wouldbeavalidanswer,butsowould (animal ?XI, (or ( t iger  
?X ) ( bea r ?x ) ) , and an infinite number of other propositions. Perhaps we should 
have two types of queries, one that asks about "kinds," and another that asks about 
propositions. 

There are other questions that we might want to ask about relations. Just as it is 
useful to declare the types of parameters to a Lisp function, it can be useful to declare 
the types of the parameters of a relation, and later query those types. For example, 
we might say that the 1 i kes relation holds between a person and an object. 

In general, a sentence in the predicate calculus that uses a relation or sentence as 
a term is called a higher-order sentence. There are some quite subtle problems that 



come into play when we start to allow higher-order expressions. Allowing sentences 
in the calculus to talk about the truth of other sentences can lead to a paradox: is the 
sentence "This sentence is false" true or false? 

Predicate calculus is defined in terms of a universe of individuals and their 
properties and relations. Thus it is well suited for a model of the world that picks out 
individuals and categorizes them-a person here, a building there, a sidewalk between 
them. But how well does predicate calculus fare in a world of continuous substances? 
Consider a body of water consisting of an indefinite number of subconstituents that 
are all water, with some of the water evaporatinginto the air and rising to form clouds. 
It is not at all obvious how to define the individuals here. However, Patrick Hayes 
has shown that when the proper choices are made, predicate calculus can describe 
this kind of situation quite well. The details are in Hayes 1985. 

The need to define categories is a more difficult problem. Predicate calculus 
works very well for crisp, mathematical categories: x is a triangle if and only if x is 
a polygon with three sides. Unfortunately, most categories that humans deal with 
in everyday life are not defined so rigorously. The category friend refers to someone 
you have mostly positive feelings for, whom you can usually trust, and so on. This 
"definition" is not a set of necessary and sufficient conditions but rather is an open- 
ended list of ill-defined qualities that are highly correlated with the category friend. 
We have a prototype for what an ideal friend should be, but no clear-cut boundaries 
that separate friend from, say, acquaintance. Furthermore, the boundaries seem to 
vary from one situation to another: a person you describe as a good friend in your 
work place might be only an acquaintance in the context of your home life. 

There are versions of predicate calculus that admit quantifiers like "most" in 
addition to "for all" and "there exists," and there have been attempts to define 
prototypes and measure distances from them. However, there is no consensus on 
the way to approach this problem. 

14.6 Problems with Completeness 

Because Prolog searches depth-first, it can get caught in one branch of the search 
space and never examine the other branches. This problem can show up, for example, 
in trying to define a commutative relation, like s i bl i ng: 

(<- (sibling lee kirn)) 
(<- (sibling ?x ?y) (sibling ?y ?XI) 

With these clauses, we expect to be able to conclude that Lee is Kim's sibling, and 
Kim is Lee's. Let's see what happens: 



> ( ? -  (sibling ?x ?y)) 
?X = LEE 
?Y = KIM;  
?X = K I M  
?Y = LEE; 
?X = LEE 
?Y = KIM;  
?X = K I M  
?Y = LEE. 
No. 

We get the expected conclusions, but they are deduced repeatedly, because the 
commutative clause for siblings is applied over and over again. This is annoying, but 
not critical. Far worse is when we ask ( ? - ( si bl i ng f red ?XI 1. This query loops 
forever. Happily, this particular type of example has an easy fix: just introduce two 
predicates, one for data-base level facts, and one at the level of axioms and queries: 

(<- (sib1 ing-fact lee kim) 
(<- (sibling ?x ?y) (sibling-fact ?x ?y)) 
(<- (sibling ?x ?y) (sibling-fact ?y ?XI) 

Another fix would be to change the interpreter to fail when a repeated goal was de- 
tected. This was the approach taken in GPS. However, even if we eliminated repeated 
goals, Prolog can still get stuck in one branch of a depth-first search. Consider the 
example: 

(<- (natural 0)) 
(<- (natural (1+ ?n)) (natural ?n)) 

These rules define the natural numbers (the non-negative integers). We can use 
the rules either to confirm queries like ( na tura 1 ( 1+ ( 1+ ( 1+ 0 ) ) 1 ) or to generate 
the natural numbers, as in the query ( na t u r a 1 ? n  1. So far, everything is fine. But 
suppose we wanted to define all the integers. One approach would be this: 

(<- (integer 0)) 
(<- (integer ?n) (integer (1+ ?n))) 
(<- (integer (1+ ?n)) (integer ?n)) 

These rules say that 0 is an integer, and any n is an integer if n + 1 is, and n + 1 is 
if n is. While these rules are correct in a logical sense, they don't work as a Prolog 
program. Asking ( i nteger x) will result in an endless series of ever-increasing 
queries: ( i nteger ( 1+ x) 1, ( i nteger ( 1+ ( 1+ x) ) 1, and so on. Each goal is 
different, so no check can stop the recursion. 



The occurs check may or may not introduce problems into Prolog, depending on 
your interpretation of infinite trees. ~ o s t  prdlog systems do not do the occurs check. 
The reasoning is that unifying a variable with some value is the Prolog equivalent of 
assigning a value to a variable, and programmers expect such a basic operation to be 
fast. With the occurs check turned off, it will in fact be fast. With checking on, it 
takes time proportional to the size of the value, which is deemed unacceptable. 

With occurs checking off, the programmer gets the benefit of fast unification but 
can run into problems with circular structures. Consider the following clauses: 

(<- (parent  ?x (mother-of  ? X I ) )  

(<- (parent  ?x ( f a t h e r - o f  ? X I ) )  

These clauses say that, for any person, the mother of that person and the father of 
that person are parents of that person. Now let us ask if there is a person who is his 
or her own parent: 

> ( ?  (parent  ?y ? y ) )  

?Y = [Abor t ]  

The system has found an answer, where ?y = (mot her - of ?y 1. The answer can't be 
printed, though, because deref (or subst - bi ndi ngs in the interpreter) goes into an 
infinite loop trying to figure out what ?y is. Without the printing, there would be no 
infinite loop: 

(<- ( s e l f - p a r e n t )  (parent  ?y ? y ) )  

> ( ?  ( s e l f - p a r e n t ) )  

Yes; 

Yes; 

No. 

The sel f  -parent query succeeds twice, once with the mother clause and once with 
the father clause. Has Prolog done the right thing here? It depends on your interpre- 
tation of infinite circular trees. If you accept them as valid objects, then the answer 
is consistent. If you don't, then leaving out the occurs check makes Prolog unsound: 
it can come up with incorrect answers. 

The same problem comes up if we ask if there are any sets that include themselves 
as members. The query (member ?se t  ?se t  1 will succeed, but we will not be able to 
print the value of ? se t  . 



14.7 Problems with Efficiency: Indexing 

Our Prolog compiler is designed to handle "programlike" predicates-predicates 
with a small number of rules, perhaps with complex bodies. The compiler does 
much worse on "tablelike" predicates-predicates with a large number of simple 
facts. Consider the predicate pb, which encodes phone-book facts in the form: 

(pb (name Jan Doe) (num 4 1 5  555 1212)) 

Suppose we have a few thousand entries of this kind. A typical query for this data 
base would be: 

(pb (name Jan Doe) ?num) 

It would be inefficient to search through the facts linearly, matching each one against 
the query. It would also be inefficient to recompile the whole pb/2 predicate every 
time a new entry is added. But that is just what our compiler does. 

The solutions to the three problems-expressiveness, completeness, and index- 
ing-will be considered in reverse order, so that the most difficult one, expressiveness, 
will come last. 

14.8 A Solution to the Indexing Problem 

A better solution to the phone-book problem is to index each phone-book entry in 
some kind of table that makes it easy to add, delete, and retrieve entries. That is what 
we will do in this section. We will develop an extension of the trie or discrimination 
tree data structure built in section 10.5 (page 344). 

Making a discrimination tree for Prolog facts is complicated by the presence of 
variables in both the facts and the query. Either facts with variables in them will have 
to be indexed in several places, or queries with variables will have to look in several 
places, or both. We also have to decide if the discrimination tree itself will handle 
variable binding, or if it will just return candidate matches which are then checked by 
some other process. It is not clear what to store in the discrimination tree: copies of 
the fact, functions that can be passed continuations, or something else. More design 
choices will come up as we proceed. 

It is difficult to make design choices when we don't know exactly how the system 
will be used. We don't know what typical facts will look like, nor typical queries. 
Therefore, we will design a fairly abstract tool, forgetting for the moment that it will 
be used to index Prolog facts. 



We will address the problem of a discrimination tree where both the keys and 
queries are predicate structures with wild cards. A wild card is a variable, but with 
the understanding that)here is no variable binding; each instance of a variable can 
match anything. A predicate structure is a list whose first element is a nonvariable 
symbol. The discrimination tree supports three operations: 

i ndex-add a key/value pair to the tree 

a f e t  c h-find all values that potentially match a given key 

uni ndex-remove all key/value pairs that match a given key 

To appreciate the problems, we need an example. Suppose we have the following 
six keys to index. For simplicity, the value of each key will be the key itself: 

1 ( p  a  b )  
2 ( p  a  C )  
3 ( p  a  ?XI 
4 ( p  b  C) 
5 ( p  b  ( f  c ) )  
6 ( p a  ( f  . ?XI) 

Now assume the query ( p ?y c 1. This should match keys 2,3, and 4. How could 
we efficiently arrive at this set? One idea is to list the keylvalue pairs under every 
atom that they contain. Thus, all six would be listed under the atom p, while 2, 
4, and 5 would be listed under the atom c. A unification check could eliminate 5, 
but we still would be missing 3. Key 3 (and every key with a variable in it) could 
potentially contain the atom c. So to get the right answers under this approach, 
we will need to index every key that contains a variable under every atom-not an 
appealing situation. 

An alternative is to create indices based on both atoms and their position. So now 
we would be retrieving all the keys that have a c in the second argument position: 2 
and 4, plus the keys that have a variable as the second argument: 3. This approach 
seems to work much better, at least for the example shown. To create the index, we 
essentially superimpose the list structure of all the keys on top of each other, to arrive 
at one big discrimination tree. At each position in the tree, we create an index of the 
keys that have either an atom or a variable at that position. Figure 14.1 shows the 
discrimination tree for the six keys. 

Consider the query ( p ?y c 1. Either the p or the c could be used as an index. 
The p in the predicate position retrieves all six keys. But the c in the second argument 
position retrieves only three keys: 2 and 4, which are indexed under c itself, and 3, 
which is indexed under the variable in that position. 

Now consider the query ( p ?y ( f ?z  1. Again, the p serves as an index to all 
six keys. The f serves as an index to only three keys: the 5 and 6, which are indexed 



Figure 14.1: Discrimination Tree with Six Keys 

directly under f in that position, and 3, which is indexed under the variable in a 
position along the path that lead to f. In general, all the keys indexed under variables 
along the path must be considered. 

The retrieval mechanism can overretrieve. Given the query ( p a  ( f ?x 1 1, the 
atom p  will again retrieve all six keys, the atom a  retrieves 1,2,3, and 6, and f again 
retrieves 5, 6, and 3. So f retrieves the shortest list, and hence it will be used to 
determine the final result. But key 5 is ( p b ( f c 1 1, which does not match the query 
( pa  ( f  ?XI) .  

We could eliminate this problem by intersecting all the lists instead of just taking 
the shortest list. It is perhaps feasible to do the intersection using bit vectors, but 
probably too slow and wasteful of space to do it using lists. Even if we did intersect 
keys, we would still overretrieve, for two reasons. First, we don't use n i  1 as an index, 
so we are ignoring the difference between ( f ?x 1 and ( f . ?x 1. Second, we are 
using wild-card semantics, so the query ( p ?x ?x 1 would retrieve all six keys, when 



it should only retrieve three. Because of these problems, we make a design choice: 
we will first build a data base retrieval function that retrieves potential matches, and 
later worry about the unification process that will eliminate mismatches. 

We are ready for a more complete specification of the indexing strategy: 

a The value will be indexed under each non-nil nonvariable atom in the key, with 
a separate index for each position. For example, given the preceding data base, 
the atom a in the first argument position would indexvalues 1,2,3, and 6, while 
the atom b in the second argument position would index value 4 and 5. The 
atom p in the predicate position would index all six values. 

a In addition, we will maintain a separate index for variables at each position. For 
example, value 3 would be stored under the indexl'variable in second argument 
position." 

a "Position" does not refer solely to the linear position in the top-level list. For 
example, value 5 would be indexed under atom f in the caadd r  position. 

It follows that a key with n atoms will be indexed in n different ways. 

For retrieval, the strategy is: 

a For each non-nil nonvariable atom in the retrieval key, generate a list of possible 
matches. Choose the shortest such list. 

a Each list of possible matches will have to be augmented with the values indexed 
under avariable at every position"above." For example, f in the caadd r position 
retrieves value 5, but it also must retrieve value 3, because the third key has a 
variable in the cadd r position, and cadd r  is "above" caad-dr. 

a The discrimination tree may return values that are not valid matches. The 
purpose of the discrimination tree is to reduce the number of values we will 
have to unify against, not to determine the exact set of matches. 

It is important that the retrieval function execute quickly. If it is slow, we might 
just as well match against every key in the table linearly. Therefore, we will take 
care to implement each part efficiently. Note that we will have to compare the length 
of lists to choose the shortest possibility. Of course, it is trivial to compare lengths 
using 1 ength, but 1 ength requires traversing the whole list. We can do better if we 
store the length of the list explicitly. A list with its length will be called an n l  i s t .  
It will be implemented as a cons cell containing the number of elements and a list 
of the elements themselves. An alternative would be to use extensible vectors with 
fill pointers. 



;; An n l i s t  i s  implemented as a (count  . elements) p a i r :  
(defun make-empty-n l is t  0 

"Create a new, empty n l i s t . "  
(cons 0 n i l ) )  

(defun n l i s t - n  ( x )  "The number o f  elements i n  an n l i s t . "  ( c a r x ) )  
(defun n l i s t - l i s t  ( x )  "The elements i n  an n l i s t . "  ( c d r  x ) )  

(defun n l i s t - p u s h  ( i t e m  n l i s t )  
"Add a new element t o  an n l i s t . "  
( i n c f  ( c a r  n l i s t ) )  
(push i t e m  ( c d r  n l i s t ) )  
n l  i s t )  

Now we need a place to store these nlists. We will build the data base out of 
discrimination tree nodes called d t r e e  nodes. Each d t r e e  node has a field to hold 
the variable index, the atom indices, and pointers to two subnodes, one for the f i rs t 
and one for the r e s t .  We implement dtrees as vectors for efficiency, and because we 
will never need a d  t ree - p predicate. 

( d e f s t r u c t  ( d t r e e  ( : t ype  v e c t o r ) )  
( f i r s t  n i l )  ( r e s t  n i l )  (atoms n i l )  ( v a r  (make-empty -n l i s t ) ) )  

A separate dtree will be stored for each predicate. Since the predicates must be 
symbols, it is possible to store the dtrees on the predicate's property list. In most 
implementations, this will be faster than alternatives such as hash tables. 

(1 e t  ( (p red ica tes  n i  1  1) 

(defun g e t - d t r e e  (p red ica te )  
"Fetch ( o r  make) t h e  d t r e e  f o r  t h i s  p red ica te . "  
(cond ( ( g e t  p red ica te  ' d t r e e )  

(t (push p red ica te  p red ica tes  
( s e t f  ( g e t  p red ica te  ' d t r e e )  (make-d t ree ) ) ) ) )  

(defun c l e a r - d t r e e s  0 
"Remove a l l  t h e  d t rees  f o r  a l l  t h e  p red ica tes . "  
(do1 i s t  (p red ica te  p red ica tes  

( s e t f  ( g e t  p red ica te  ' d t r e e )  n i l ) )  
( s e t f  p red ica tes  n i l ) ) )  

The function i ndex takes a relation as key and stores it in the dtree for the predicate 
of the relation. It calls d t r e e  - i ndex to do all the work of storing a value under the 
proper indices for the key in the proper dtree node. 

The atom indices are stored in an association list. Property lists would not 
work, because they are searched using eq and atoms can be numbers, which are not 



necessarily eq. Association lists are searched using eql by default. An alternative 
would be to use hash tables for the index, or even to use a scheme that starts with 
association lists and switches to a hash table when the number of entries gets large. I 
use 1 ookup to look up the value of a key in a property list. This function, and its se t f  
method, are defined on page 896. 

(defun index (key) 
"S to re  key i n  a  d t r e e  node. Key must be ( p r e d i c a t e  . args ) ;  
i t  i s  s to red  i n  t h e  p red ica te ' s  d t r e e . "  
(d t ree- index  key key ( g e t - d t r e e  ( p r e d i c a t e  k e y ) ) ) )  

(defun d t ree- index  (key va lue d t r e e )  
" Index va lue under a l l  atoms o f  key i n  d t ree . "  
(cond 

((consp key) ; index on both f i r s t  and r e s t  
(d t ree - index  ( f i r s t  key) va lue 

( o r  ( d t r e e - f i r s t  d t r e e )  
( s e t f  ( d t r e e - f i r s t  d t r e e )  (make-dt ree)) ) )  

(d t ree - index  ( r e s t  key) va lue 
( o r  ( d t r e e - r e s t  d t r e e )  

( s e t f  ( d t r e e - r e s t  d t ree )  (make-dt ree)) ) ) )  
( ( n u l l  key ) )  ; don ' t  index on n i l  
( ( v a r i a b l e - p  key) ; index a  v a r i a b l e  
( n l i s t - p u s h  va lue ( d t r e e - v a r  d t r e e ) ) )  

( t  ;; Make sure t h e r e  i s  an n l i s t  f o r  t h i s  atom, and add t o  i t  
( n l i s t - p u s h  va lue ( lookup-atom key d t r e e ) ) ) ) )  

(defun lookup-atom (atom d t r e e )  
"Return ( o r  c rea te )  t h e  n l i s t  f o r  t h i s  atom i n  d t r e e . "  
( o r  ( lookup atom (dtree-atoms d t r e e ) )  

( l e t  ((new (make-empty -n l i s t ) ) )  
(push (cons atom new) (dtree-atoms d t r e e ) )  
new))) 

Now we define a function to test the indexing routine. Compare the output with 
figure 14.1. 

(defun t e s t - i n d e x  0 
( l e t  ( (props ' ( ( p  a  b )  ( p  a  c )  (p  a  ? X I  (p  b  c )  

( p  b  ( f  c ) )  ( p  a  ( f  . ? x ) ) ) ) )  
( c l e a r - d t r e e s )  
(mapc # ' i ndex  props) 
( w r i t e  ( l i s t  props ( g e t - d t r e e  ' p ) )  

: c i r c l e  t :a r ray  t : p r e t t y  t )  
( v a l u e s ) ) )  



> ( t e s t  - i ndex) 
( ( # l = ( P  A B) 

#2=(P A C )  
#3=(P A ?X) 
#4=(P B  C) 
#5=(P B  (F C)) 
#6=(P A ( F  . ? X I ) )  

# (# (N IL  NIL (P ( 6  #6# #5# #4# #3# #2# # I # ) )  ( 0 ) )  
#(#(NIL NIL (B (2  #5# #4#) A ( 4  #6# #3# #2# #I#)) ( 0 ) )  

# ( # ( # ( N I L  NIL (F ( 2  #6# #5#) )  ( 0 ) )  
# (# (N IL  NIL (C ( 1  #5#) )  ( 0 ) )  

#(NIL NIL NIL ( 0 ) )  NIL (1 #6#) )  
(C ( 2  #4# #2#) B  ( 1  # I # ) )  
(1 #3#) )  

#(NIL NIL NIL ( 0 ) )  
NIL ( 0 ) )  

NIL ( 0 ) )  
NIL ( 0 ) ) )  

The next step is to fetch matches from the dtree data base. The function f e t c h  takes 
a query, which must be a valid relation, as its argument, and returns a list of possible 
matches. It calls d t  ree -  f e t c h  to do the work: 

(defun f e t c h  (query)  
"Return a l i s t  o f  buckets p o t e n t i a l l y  matching t h e  query, 
which must be a  r e l a t i o n  o f  form (p red ica te  . a r g s ) . "  
( d t r e e - f e t c h  query ( g e t - d t r e e  ( p r e d i c a t e  query ) )  

n i l  0  n i l  mos t -pos i t i ve - f i xnum) )  

d t r e e -  f e t c h  must be passed the query and the dtree, of course, but it is also passed 
four additional arguments. First, we have to accumulate matches indexed under 
variables as we are searching through the dtree. So two arguments are used to pass 
the actual matches and a count of their total number. Second, we want d t  ree -  f e t c h  
to return the shortest possible index, so we pass it the shortest answer found so far, 
and the size of the shortest answer. That way, as it is making its way down the tree, 
accumulating values indexed under variables, it can be continually comparing the 
size of the evolving answer with the best answer found so far. 

We could use nlists to pass around count/values pairs, but nlists only support a 
push operation, where one new item is added. We need to append together lists of 
values coming from the variable indices with values indexed under an atom. Append 
is expensive, so instead we make a list-of-lists and keep the count in a separate 
variable. When we are done, d  t r e e  - f e t c h  and hence f e t c h  does a multiple-value 
return, yielding the list-of-lists and the total count. 



There are four cases to consider in d t ree - fetch. If the dtree is null or the query 
pattern is either null or a variable, then nothing will be indexed, so we should just 
return the best answer found so far. Otherwise, we bind va r - n and va r - 1 i st to 
the count and list-of-lists of variable matches found so far, including at the current 
node. If the count v a r - n  is greater than the best count so far, then there is no 
sense continuing, and we return the best answer found. Otherwise we look at the 
query pattern. If it is an atom, we use d t ree - a  tom- fetch to return either the current 
index (along with the accumulated variable index) or the accumulated best answer, 
whichever is shorter. If the query is a cons, then we use dt ree - f et c h on the first 
part of the cons, yielding a new best answer, which is passed along to the call of 
dtree-fetch on the rest of the cons. 

(defun d t r e e - f e t c h  ( p a t  d t r e e  v a r - l i s t - i n  v a r - n - i n  b e s t - l i s t  bes t -n )  
"Return two values: a  l i s t - o f - l i s t s  o f  p o s s i b l e  matches t o  pat .  
and t h e  number o f  elements i n  t h e  l i s t - o f - l i s t s . "  
( i f  ( o r  ( n u l l  d t r e e )  ( n u l l  p a t )  ( v a r i a b l e - p  p a t ) )  

(va lues b e s t - l i s t  bes t -n )  
( l e t *  ( ( v a r - n l i s t  ( d t r e e - v a r  d t r e e ) )  

( v a r - n  (+ v a r - n - i n  ( n l i s t - n  v a r - n l i s t ) ) )  
( v a r - l i s t  ( i f  ( n u l l  ( n l i s t - l i s t  v a r - n l i s t ) )  

va r -1  i s t - i n  
(cons ( n l i s t - l i s t  v a r - n l i s t )  

v a r - l i s t - i n ) ) ) )  
(cond 

((>= var -n  bes t -n )  (va lues b e s t - l i s t  b e s t - n ) )  
((atom p a t )  (d t ree -a tom- fe tch  p a t  d t r e e  v a r - l i s t  va r -n  

b e s t - l i s t  b e s t - n ) )  
( t  (mu1 t i p l e - v a l u e - b i n d  (1  i s t l  n l )  

( d t r e e - f e t c h  ( f i r s t  p a t )  ( d t r e e - f i r s t  d t r e e )  
v a r - l i s t  v a r - n  b e s t - l i s t  bes t -n )  

( d t r e e - f e t c h  ( r e s t  p a t )  ( d t r e e - r e s t  d t r e e )  
v a r - l i s t  va r -n  l i s t 1  n l ) ) ) ) ) ) )  

(defun d t ree-a tom- fe tch  (atom d t r e e  v a r - l i s t  va r -n  b e s t - l i s t  bes t -n )  
"Return t h e  answers indexed a t  t h i s  atom (a long w i t h  t h e  va rs ) ,  
o r  r e t u r n  t h e  prev ious best  answer, i f  i t  i s  b e t t e r . "  
( l e t  ( ( a t o m - n l i s t  ( lookup atom (dtree-atoms d t r e e ) ) ) )  

(cond 
( ( o r  ( n u l l  a t o m - n l i s t )  ( n u l l  ( n l i s t - l i s t  a t o m - n l i s t ) ) )  
(va lues v a r - l i s t  v a r - n ) )  

( (and a t o m - n l i s t  (< ( i n c f  va r -n  ( n l i s t - n  a t o m - n l i s t ) )  b e s t - n ) )  
(va lues (cons ( n l i s t - l i s t  a t o m - n l i s t )  v a r - l i s t )  v a r - n ) )  
(t (va lues b e s t - l i s t  b e s t - n ) ) ) ) )  

Here we see a call to fetch on the data base created by test- i ndex. It returns two 
values: a list-of-lists of facts, and the total number of facts, three. 



> ( f e t c h  ' ( p  ? c ) )  
( ( ( P  B C) (P A C)) 

( (P  A ? X I ) )  
3 

Now let's stop and see what we have accomplished. The functions f e t c h  and 
d t r e e -  f e t c h  fulfill their contract of returning potential matches. However, we still 
need to integrate the dtree facility with Prolog. We need to go through the potential 
matches and determine which candidates are actual matches. For simplicity we will 
use theversion of uni  f y  with bindinglists defined in section 11.2. (It is also possible to 
construct a more efficient version that uses the compiler and the destructive function 
uni fy ! . )  

The function mapc - r e t  r i  eve calls f e t c h  to get a list-of-lists of potential matches 
and then calls u n i f y  to see if the match is a true one. If the match is true, it calls 
the supplied function with the binding list that represents the unification as the 
argument. mapc- r e t  r i  eve is proclaimed i n l  i ne so that functions passed to it can 
also be compiled in place. 

(p roc la im ' ( i n l i n e  mapc- re t r i eve ) )  

(defun mapc-ret r ieve ( f n  query) 
"For every f a c t  t h a t  matches t h e  query, 
apply t h e  f u n c t i o n  t o  t h e  b ind ing  l i s t . "  
( d o l i s t  (bucket ( f e t c h  query ) )  

( d o l i s t  (answer bucket )  
(1 e t  ( (b ind ings ( u n i f y  query answer 1) 

(un less (eq b ind ings  f a i l )  
( f u n c a l l  f n  b i n d i n g s ) ) ) ) ) )  

There are many ways to use this retriever. The function r e t  r i  eve returns a list of the 
matching binding lists, and r e t  r i eve -matches substitutes each binding list into the 
original query so that the result is a list of expressions that unify with the query. 

(defun r e t r i e v e  (query)  
"F ind a l l  f a c t s  t h a t  match query. Return a l i s t  o f  b ind ings . "  
( l e t  ((answers n i l ) )  

(mapc- ret r ieve #'(lambda (b ind ings )  (push b ind ings  answers)) 
query) 

answers 1 1 

(defun re t r ieve-matches (query)  
"F ind  a l l  f a c t s  t h a t  match query. 
Return a l i s t  o f  expressions t h a t  match t h e  query." 
(mapcar # '  (1 ambda (b ind ings )  ( subs t -b ind ings  b ind ings  query)  

( r e t r i e v e  query) 1) 



There is one further complication to consider. Recall that in our original Prolog 
interpreter, the function prove had to rename the variables in each clause as it 
retrieved it from the data base. This was to insure that there was no conflict between 
the variables in the query and the variables in the clause. We could do that in 
r e t r i e v e .  However, if we assume that the expressions indexed in discrimination 
trees are tablelike rather than rulelike and thus are not recursive, then we can get 
away with renaming the variables only once, when they are entered into the data 
base. This is done by changing i ndex: 

(defun index (key)  

"Store key i n  a  d t r e e  node. Key must be (p red ica te  . args ) ;  

i t  i s  s to red  i n  t h e  p red ica te ' s  d t ree . "  

(d t ree - index  key (rename-variables key) ; s t o r e  unique vars 

( g e t - d t r e e  (p red ica te  k e y ) ) ) )  

With the new i ndex in place, and after calling t e s t  - i ndex to rebuild the data base, 
we are now ready to test the retrieval mechanism: 

> ( f e t c h  ' ( p  ?x c ) )  

( ( ( P  B  C) (P A  C)) 

( ( P  A  ?X3408))) 

3  

> ( r e t r i e v e  ' ( p  ?x c ) )  

(((?X3408 . C) (?X . A))  

( (?X  . A)) 

( (?X . B ) ) )  

> ( re t r ieve-matches ' ( p  ?x  c ) )  

( (P A  C) (P A  C )  (P B  C)) 

> ( re t r ieve-matches ' ( p  ?x ( ? f n  c ) ) )  

( (P  A  (?FN C)) (P A  (F C)) (P B ( F  C ) ) )  

Actually, it is better to use mapc - r e t  r i  eve when possible, since it doesn't cons up 
answers the way r e t r i e v e  and re t r ieve-matches do. The macro query-b ind is 
provided as a nice interface to mapc - r e t  r i eve. The macro takes as arguments a list of 
variables to bind, a query, and one or more forms to apply to each retrieved answer. 
Within this list of forms, the variables will be bound to the values +hat satisfy the 
query. The syntax was chosen to be the same as mu1 ti p l  e - va 1 ue - b i  nd. Here we see 
a typical use of query - b i  nd, its result, and its macro-expansion: 



> (query-b ind ( ? x  ? f n )  ' ( p  ?x ( ? f n  c ) )  
( format  t ""&P holds between "a and "a o f  c . "  ?x ? f n ) )  + 

P holds between B and F o f  c. 
P holds between A and F o f  c. 
P holds between A and ?FN o f  c. 
N I L  

E (mapc-ret r ieve 
#'(lambda (#:bindings63691 

( l e t  ( ( ? x  (subst-b ind ings #:bindings6369 '?XI) 
( ? f n  (subst-b ind ings #:bindings6369 ' ? f n ) ) )  

( format  t ""&P holds between "a and "a o f  c . "  ?x ? f n ) ) )  
' ( p  ?x ( ? f n  c ) ) )  

Here is the implementation: 

(defmacro query-b ind ( v a r i a b l e s  query &body body) 
"Execute t h e  body f o r  each match t o  the  query. 
Wi th in  the  body, b i n d  each v a r i a b l e . "  
( l e t *  ( (b ind ings  (gensym "BINDINGS")) 

(vars-and-vals  
(mapcar 

#'(lambda ( v a r )  
( l i s t  var ' ( subs t -b ind ings  ,bindings ' , v a r ) ) )  

va r iab les  1) ) 
' (mapc-ret r ieve 

# '  (1 ambda ( , b i  nd i  ngs 1 
( l e t  .vars-and-vals 

.@body ) 1 
.query> 1 > 

14.9 A Solution to the Completeness Problem 

We saw in chapter 6 that iterative deepening is an efficient way to cover a search 
space without falling into an infinite loop. Iterative deepening can also be used to 
guide the search in Prolog. It will insure that all valid answers are found eventually, 
but it won't turn an infinite search space into a finite one. 

In the interpreter, iterative deepening is implemented by passing an extra argu- 
ment to prove and prove- a1 1 to indicate the depth remaining to be searched. When 
that argument is zero, the search is cut off, and the proof fails. On the next iteration 
the bounds will be increased and the proof may succeed. If the search is never cut off 
by a depth bound, then there is no reason to go on to the next iteration, because all 



proofs have already been found. The special variable *sea rch - cut - off * keeps track 
of this. 

( d e f v a r  * s e a r c h - c u t - o f f *  n i l  "Has t h e  s e a r c h  been s t o p p e d ? " )  

( de fun  p r o v e - a l l  ( g o a l s  b i n d i n g s  d e p t h )  

"F ind  a  s o l u t i o n  t o  t h e  c o n j u n c t i o n  o f  g o a l s . "  

;; T h i s  v e r s i o n  j u s t  p a s s e s  t h e  dep th  on t o  PROVE. 

(cond ( ( e q  b i n d i n g s  f a i l  f a i l  

( (nu1 1  goal  s  b i n d i n g s  

( t  ( p rove  ( f i r s t  g o a l s )  b i n d i n g s  ( r e s t  g o a l s )  d e p t h ) ) ) )  

( de fun  prove  (goa l  b i n d i n g s  o t h e r - g o a l s  d e p t h )  

"Return  a  1  i s t  o f  p o s s i b l e  s o l u t i o n s  t o  goal  . " 
;; Check i f  t h e  d e p t h  bound has  been exceeded  

( i f  (= d e p t h  0)  , . **-it. 
(progn ( s e t f  * s e a r c h - c u t - o f f *  t )  . . *** 

f a i l  . . *** 
( l e t  ( ( c l a u s e s  ( g e t - c l  a u s e s  ( p r e d i c a t e  goa l  1)  1 )  

( i f  ( l i s t p  c l a u s e s )  

(some 

# ' ( lambda ( c l a u s e )  

( l e t  ( ( n e w - c l a u s e  ( r e n a m e - v a r i a b l e s  c l a u s e )  1)  

( p r o v e - a l l  

(append ( c l ause - body  new- c l ause )  o t h e r - g o a l s )  

( u n i f y  goal  ( c l  ause-head  new-cl a u s e )  b i n d i n g s )  

( -  dep th  1)))) , . *** 
c l  a u s e s  

;; The p r e d i c a t e ' s  " c l a u s e s "  can  be an atom: 

;; a  p r i m i t i v e  f u n c t i o n  t o  c a l l  

( f u n c a l l  c l a u s e s  ( r e s t  goa l  b i n d i n g s  

o t h e r - g o a l s  d e p t h ) ) ) ) )  ;*** 

prove and prove - a 1 1 now implement search cutoff, but we need something to control 
the iterative deepening of the search. First we define parameters to control the 
iteration: one for the initial depth, one for the maximum depth, and one for the 
increment between iterations. Setting the initial and increment values to one will 
make the results come out in strict breadth-first order, but will duplicate more effort 
than a slightly larger value. 



(defparameter *dep th -s ta r t *  5 
"The depth o f  t h e  f i r s t  round o f  i t e r a t i v e  search. " )  

(defparameter *dep th - inc r *  5 
" Increase each i t e r a t i o n  o f  t h e  search by t h i s  amount.") 

(defparameter *depth-max* mos t -pos i t i ve - f i xnum 
"The deepest we w i l l  ever search. " )  

A new version of top- 1 evel -prove will be used to control the iteration. It calls 
prove - a 1 1 for all depths from the starting depth to the maximum depth, increasing 
by the increment. However, it only proceeds to the next iteration if the search was 
cut off at some point in the previous iteration. 

(defun top -1  evel -prove (goal s  
( l e t  ( ( a l l  -goals  

' ( ,@goals (show-prolog-vars , @ ( v a r i a b l e s - i n  goals)  1 ) )  
( l oop  f o r  depth from *dep th -s ta r t *  t o  *depth-max* by *dep th - inc r *  

w h i l e  ( l e t  ( ( *search -cu t -o f f *  n i l  1) 
(prove-a1 1  a1 1  -goal s  no-b ind ings depth) 
* s e a r c h - c u t - o f f * ) ) )  

( format  t ""&No.") 
( va lues ) )  

There is one final complication. When we increase the depth of search, we may 
find some new proofs, but we will also find all the old proofs that were found on the 
previous iteration. We can modify show- pro1 og - va rs to only print proofs that are 
found with a depth less than the increment-that is, those that were not found on the 
previous iteration. 

(defun show-prolog-vars (va rs  b ind ings o the r -goa ls  depth) 
" P r i n t  each v a r i a b l e  w i t h  i t s  b ind ing .  
Then ask t h e  user i f  more s o l u t i o n s  a re  des i red.  " 
( i f  (> depth *dep th - inc r * )  

f a i  1  
(progn 

( i f  ( n u l l  vars)  
( format  t ""&YesM) 
( d o l i s t  ( v a r  vars)  

( format  t ""&"a = "a" var  
( subs t -b ind ings  b ind ings  v a r ) ) ) )  

( i f  (con t inue-p )  
f a i  1  
(prove-a1 1  other-goal  s  b ind ings  depth) 1) 1) 

To test that this works, try setting *depth-max* to 5 and running the following 
assertions and query. The infinite loop is avoided, and the first four solutions 
are found. 



(<- (na tu ra l  0 ) )  
(<- (na tu ra l  (1+ ? n ) )  (na tu ra l  ?n)> 

> ( ? -  (na tu ra l  ? n ) )  
?N = 0;  
?N = ( I +  0 ) ;  
?N = (1+ (1+ 0 ) ) ;  
?N = (1+ (I+ (I+ 0 ) ) ) ;  
No. 

14.10 Solutions to the Expressiveness Problems 

In this section we present solutions to three of the limitations described above: 

Treatment of (limited) higher-order predications. 

Introduction of a frame-based syntax. 

Support for possible worlds, negation, and disjunction. 

We also introduce a way to attach functions to predicates to do forward-chaining 
and error detection, and we discuss ways to extend unification to handle Skolem 
constants and other problems. 

Higher-Order Predications 

First we will tackle the problem of answering questions like "What kinds of animals 
are there?" Paradoxically, the key to allowing more expressiveness in this case is to 
invent a new, more limited language and insist that all assertions and queries are 
made in that language. That way, queries that would have been higher-order in the 
original language become first-order in the restricted language. 

The language admits three types of objects: categories, relations, and individuals. 
A category corresponds to a one-place predicate, a relation to a two-place predicate, 
and an individual to constant, or zero-place predicate. Statements in the language 
must have one of five primitive operators: sub, re1 , i nd , v a l  , and and.  They have 
the following form: 

( sub subcategory supercategory) 
( re1 relation domain-category range-category 1 
( i nd individual category 1 
( va 1 relation individual value 1 
( and assertion ... 



The following table gives some examples, along with English translations: 

(sub dog animal ) Dog is a kind of animal. 
( re1 bi rthday ani ma1 date ) The birthday relation holds between each animal 

and some date. 
(ind fido dog) The individual Fido is categorized as a dog. 
(val birthday fido july-1) ThebirthdayofFidoisJuly-1. 
(and AB) Both A and B are true. 

For those who feel more comfortable with predicate calculus, the following table 
gives the formal definition of each primitive. The most complicated definition is for 
re1 . The form ( re1 R  A B )  means that every R holds between an individual of A  
and an individual of B, and furthermore that every individual of A  participates in at 
least one R relation. 

( s u b A B )  V x : A ( x ) > B ( x )  
(re1 R A  B )  VX, y  : R(x, y) 3 A(x) A B(y)  

AVXA(X) 3 39 : R(x, y) 
( i n d I C )  C ( I )  
(val R I  V) R(I ,V)  
(and P Q... ) P A Q... 

Queries in the language, not surprisingly, have the same form as assertions, 
except that they may contain variables as well as constants. Thus, to find out what 
kinds of animals there are, use the query ( sub ? k i  nd a n  i  ma 1 1. To find out what 
individual animals there are, use the query (i nd ?x animal 1. To find out what 
individual animals of what kinds there are, use: 

(and (sub ?kind animal) ( i n d  ?x ?k ind) )  

The implemention of this new language can be based directly on the previous im- 
plementation of dtrees. Each assertion is stored as a fact in a dtree, except that 
the components of an and assertion are stored separately. The function add-fact 
does this: 

(defun add-fact  ( f a c t )  
"Add the f a c t  t o  the data base." 
( i f  (eq (predicate f a c t )  'and) 

(mapc # 'add- fact  (args f a c t ) )  
( index f a c t ) ) )  

Querying this new data base consists of querying the dtree just as before, but with 
a special case for conjunctive (and) queries. Conceptually, the function to do this, 
re t  r i  eve - fact, should be as simple as the following: 



(defun retrieve-fact (query) 
"Find all  facts t h a t  match query. Return a l i s t  of bindings. 
Warning! ! this  version i s  incomplete. " 
( i f  (eq (predicate query) ' a n d )  

(retrieve-conjunction (args query)) 
(retrieve query bindings) 1) 

Unfortunately, there are some complications. Think about what must be done in 
retr ieve-conjunct ion.  It is passed a list of conjuncts and must return a list of 
binding lists, where each binding list satisfies the query. For example, to find out 
what people were born on July lst, we could use the query: 

( a n d  (val birthday ?p july-1) (ind ?p person)) 

re t r ieve-conjunct ion could solve this problem by first calling r e t r i eve - f ac t  on 
( val bi  rthday ?p j  ul y -  1). Once that is done, there is onlyone conjunct remaining, 
but in general there could be several, so we need to call r e t  r i  eve - con j  unct i  on recur- 
sivelywith two arguments: the remainingconjuncts, and the result that r e t  r  i eve - f a c t  
gave for the first solution. Since r e t  r i  eve - f a c t  returns a list of binding lists, it will 
be easiest if r e t r i  eve-conjuncti on accepts such a list as its second argument. Fur- 
thermore, when it comes time to call r e t  r  i  eve - f a c t  on the second conjunct, we will 
want to respect the bindings set up by the first conjunct. So r e t r i eve - f ac t  must 
accept a binding list as its second argument. Thus we have: 

(defun retrieve-fact (query &optional (bindings no-bindings)) 
"Find all  facts t h a t  match query. Return a l i s t  of bindings." 
( i f  (eq (predicate query) ' a n d )  

(retrieve-conjunction (args query) ( l i s t  bindings)) 
(retrieve query bindings) 1) 

(defun retrieve-conjunction (conjuncts bindings-lists) 
"Return a l i s t  of binding l i s t s  satisfying the conjuncts." 
(mapcan 

#'(lambda (bindings) 
(cond ((eq bindings f a i l )  n i l )  

((null  conjuncts) ( l i s t  bindings)) 
( t  (retrieve-conjunction 

( res t  conjuncts) 
(retrieve-fact 

(subst-bindings bindings ( f i r s t  conjuncts)) 
bindings))))) 

bindings-lists)) 

Notice that r e t  r  i  eve and therefore mapc - r e t  r i  eve now also must accept a binding 
list. The changes to them are shown in the following. In each case the extra argument 



is made optional so that previously written functions that call these functions without 
passing in the extra argument will still work. 

(defun mapc- ret r ieve ( f n  query &op t iona l  (b ind ings  no-b ind ings ) )  
"For every f a c t  t h a t  matches t h e  query, 
apply t h e  f u n c t i o n  t o  t h e  b i n d i n g  l i s t . "  
( d o l i s t  (bucket ( f e t c h  query ) )  

( d o l i s t  (answer bucket) 
( l e t  ((new-bindings ( u n i f y  query answer b i n d i n g s ) ) )  

(un less (eq new-bindings f a i  1  
( f u n c a l l  f n  new-b ind ings ) ) ) ) ) )  

(defun r e t r i e v e  (query &op t iona l  (b ind ings  no-b ind ings)  
"F ind a l l  f a c t s  t h a t  match query. Return a l i s t  o f  b ind ings . "  
( l e t  ((answers n i l ) )  

(mapc-ret r ieve #'(lambda (b ind ings )  (push b ind ings  answers)) 
query b i  nd i  ngs 

answers 1 1 

Now add - f  act and re t  r i  eve-f act comprise all we need to implement the language. 
Here is a short example where add-fact is used to add facts about bears and dogs, 
both as individuals and as species: 

> ( a d d - f a c t  ' (sub dog animal ) )  + T 
> ( a d d - f a c t  ' (sub bear an imal ) )  +- T 
> (add- fact  ' ( i n d  F ido dog))  + T 
> ( a d d - f a c t  ' ( i n d  Yogi bear ) )  + T 
> ( a d d - f a c t  ' ( v a l  c o l o r  Yogi brown)) +- T 
> (add- fact  ' ( v a l  c o l o r  Fido go lden))  + T 
> (add- fac t  ' ( v a l  la t in-name bear u r s i d a e ) )  + T 
> (add- fact  ' ( v a l  la t in-name dog c a n i s - f a m i l i a r i s ) )  + T 

Now re t r i  eve-fact is used to answer three questions: What kinds of animals are 
there? What are the Latin names of each kind of animal? and What are the colors of 
each individual bear? 

> ( r e t r i e v e - f a c t  ' (sub ?k ind  an imal ) )  
(((?KIND . DOG)) 

((?KIND . BEAR))) 

> ( r e t r i e v e - f a c t  ' (and (sub ?k ind  animal) 
( v a l  la t in-name ? k i n d  ? l a t i n )  1)  

(((?LATIN . CANIS-FAMILIARIS) (?KIND . DOG)) 
((?LATIN . URSIDAE) (?KIND . BEAR))) 



> ( r e t r i e v e - f a c t  ' (and ( i n d  ?x bear)  ( v a l  c o l o r  ?x ? c ) ) )  
( ( ( ? C  . BROWN) ( ? X  . YOGI))) 

There are quite a few improvements that can be made to this system. One direction 
is to provide different kinds of answers to queries. The following two functions 
are similar to retri eve-matches in that they return lists of solutions that match the 
query, rather than lists of possible bindings: 

(defun re t r i eve-bago f  (query)  
"F ind a l l  f a c t s  t h a t  match query. 
Return a l i s t  o f  quer ies w i t h  b ind ings  f i l l e d  i n . "  
(mapcar #'(lambda (b ind ings )  ( subs t -b ind ings  b ind ings query ) )  

( r e t r i e v e - f a c t  query ) ) )  

(defun r e t r i e v e - s e t o f  (query)  
"F ind a l l  f a c t s  t h a t  match query. 
Return a l i s t  o f  unique quer ies w i t h  b ind ings  f i l l e d  i n . "  
(remove-dupl icates ( r e t r i e v e - b a g o f  query) : t e s t  # 'equa l ) )  

Another direction to take is to provide better error checking. The current system 
does not complain if a fact or query is ill-formed. It also relies on the user to input all 
facts, even those that could be derived automatically from the semantics of existing 
facts. For example, the semantics of s u b  imply that if ( sub bea r an i ma 1 1 and ( s u b 
pol ar-bear bear 1 are true, then (sub pol ar-bear animal 1 must also be true. This 
kind of implication can be handled in two ways. The typical Prolog approach would 
be to write rules that derive the additional sub facts by backward-chaining. Then 
every query would have to check if there were rules to run. The alternative is to use 
a forward-chaining approach, which caches each new s u b  fact by adding it to the data 
base. This latter alternative takes more storage, but because it avoids rederiving the 
same facts over and over again, it tends to be faster. 

The following version of add - f a ct does error checking, and it automatically 
caches facts that can be derived from existing facts. Both of these things are done by 
a set of functions that are attached to the primitive operators. It is done in a data- 
driven style to make it easier to add new primitives, should that become necessary. 

The function add - fact checks that each argument to a primitive relation is a 
nonvariable atom, and it also calls fact-present-p to check if the fact is already 
present in the data base. If not, it indexes the fact and calls run - a ttached - f n to do 
additional checking and caching: 

(defparameter * p r i m i t i v e s *  ' (and sub i n d  re1 va l  1) 



(defun add- fac t  ( f a c t )  

"Add t h e  f a c t  t o  t h e  data base." 

(cond ( ( e q  (p red ica te  f a c t )  'and) 

(mapc # ' a d d - f a c t  (args f a c t ) ) )  

( ( o r  ( n o t  (every #'atom (args f a c t ) ) )  

(some # ' v a r i a b l e - p  (args f a c t ) )  

( n o t  (member (p red ica te  f a c t )  * p r i m i t i v e s * ) ) )  

( e r r o r  "111-formed f a c t :  "a" f a c t ) )  

( ( n o t  ( f a c t - p r e s e n t - p  f a c t ) )  

( i ndex  f a c t )  

( run -a t tached- fn  f a c t ) ) )  

(defun f a c t - p r e s e n t - p  ( f a c t )  

" I s  t h i s  f a c t  present  i n  t h e  data base?" 

( r e t r i e v e  f a c t ) )  

The attached functions are stored on the operator's property list under the indicator 
at tached- fn :  

(defun run -a t tached- fn  ( f a c t )  

"Run t h e  f u n c t i o n  assoc ia ted w i t h  t h e  p red ica te  o f  t h i s  f a c t . "  

(app ly  (ge t  (p red ica te  f a c t )  'a t tached- fn)  (args f a c t ) ) )  

(defmacro de f -a t tached- fn  (pred args &body body) 

"Def ine t h e  at tached f u n c t i o n  f o r  a  p r i m i t i v e . "  

' ( s e t f  (ge t  ' .pred 'a t tached- fn )  

#'(lambda ,args . ,body)))  

The attached functions for i nd and va l  are fairly simple. If we know ( sub bear 
an i  ma1 1, then when ( i nd Yogi bear 1 is asserted, we have to also assert ( i nd Yogi 
an i ma 1  1. Similarly, the values in a va 1  assertion must be individuals of the categories 
intherelation's re1 assertion. Thatis,if ( re1  b i r t h d a y  animal date)  is afactand 
( v a l  b i r t h d a y  Lee july-l)isadded,thenwecanconclude(ind Lee a n i m a l l a n d  
( i nd j u l  y  - 1 date  1. The following functions add the appropriate facts: 

( d e f - a t t a c h e d - f n  i n d  ( i n d i v i d u a l  category)  

;; Cache f a c t s  about i n h e r i t e d  categor ies 

(query -b ind  (?super)  ' (sub ,category ?super) 

( a d d - f a c t  ' ( i n d , . i n d i v i d u a l  ,?super ) ) ) )  



(def-attached-fn val (relation indl ind2) 
;; Make sure the individuals are the right kinds 
(query-bind (?cat1 ?cat21 '(re1 ,relation ?cat1 ?cat21 

(add-fact '(ind ,indl ,?catl)) 
(add-fact '(ind ,ind2 ,?cat2)))) 

The attached function for re1 simply runs the attached function for any individual of 
the givenrelation. Normally one would make all re1 assertions before i nd assertions, 
so this will have no effect at all. But we want to be sure the data base stays consistent 
even if facts are asserted in an unusual order. 

(def-attached-fn re1 (relation cat1 cat21 
;; Run attached function for any IND9s of this relation 
(query-bind (?a ?b) '(ind ,relation ?a ?b) 

(run-attached-fn '(ind ,relation ,?a ,?b)))) 

The most complicated attached function is for sub. Adding a fact such as ( sub bear 
an i ma 1 1 causes the following to happen: 

e All of a n  i ma 1 's supercategories (such as 1 i v i ng - t hi ng) become supercate- 
gories of all of bear's subcategories (such as pol a r - bea r 1. 

e ani ma 1 itself becomes a supercategory all of bear's subcategories. 

bear itself becomes a subcategory of all of a n  i ma1 's supercategories. 

e All of the individuals of bear become individuals of a n  i ma 1 and its supercate- 
gories. 

The following accomplishes these four tasks. It does it with four calls to 
i ndex-new- f act, which is used instead of add - f act  because we don't need to run 
the attached function on the new facts. We do, however, need to make sure that we 
aren't indexing the same fact twice. 

(def-attached-fn sub (subcat supercat) 
;; Cache SUB facts 
(query-bind (?super-super) '(sub ,supercat ?super-super) 

(index-new-fact '(sub ,subcat ,?super-super)) 
(query-bind (?sub-sub) '(sub ?sub-sub ,subcat) 

(index-new-fact '(sub ,?sub-sub ,?super-super)))) 
(query-bind (?sub-sub) '(sub ?sub-sub ,subcat) 

(index-new-fact '(sub ,?sub-sub ,supercat))) 
;; Cache IND facts 
(query-bind (?super-super) '(sub ,subcat ?super-super) 

(query-bind (?sub-sub) '(sub ?sub-sub ,supercat) 
(query-bind (?indl '(ind ?ind ,?sub-sub) 

(index-new-fact '(ind ,?ind ,?super-super)))))) 



(defun index-new- fact  ( f a c t )  
" Index t h e  f a c t  i n  t h e  data base unless i t  i s  a l ready t h e r e . "  
(un less ( f a c t - p r e s e n t - p  f a c t )  

( i ndex  f a c t ) ) )  

The following function tests the attached functions. It shows that adding the single 
fact ( s u b  b e a r  a n i  ma1 to the given data base causes 18 new facts to be added. 

(defun t e s t - b e a r s  0 
( c l e a r - d t r e e s )  
(mapc # 'add- fac t  

' ( ( sub  animal l i v i n g - t h i n g )  
(sub l i v i n g - t h i n g  t h i n g )  (sub po la r -bear  bear)  
(sub g r i z z l y  bear)  ( i n d  Yogi bear)  ( i n d  Lars p o l a r - b e a r )  
( i n d  Helga g r i z z l y ) ) )  

( t r a c e  index)  
( a d d - f a c t  ' (sub bear an imal ) )  
(un t race  i n d e x ) )  

> ( t e s t - b e a r s )  
( 1  ENTER INDEX: (SUB BEAR ANIMAL)) 
(1 EXIT INDEX: T I  
( 1  ENTER INDEX: (SUB BEAR THING)) 
(1 EXIT INDEX: T I  
( 1  ENTER INDEX: (SUB GRIZZLY THING)) 
( 1  EXIT INDEX: T I  
( 1  ENTER INDEX: (SUB POLAR-BEAR THING)) 
( 1  EXIT INDEX: T I  
( 1  ENTER INDEX: (SUB BEAR LIVING-THING)) 
( 1  EXIT INDEX: T) 
( 1  ENTER INDEX: (SUB GRIZZLY LIVING-THING)) 
(1 EXIT INDEX: T I  
( 1  ENTER INDEX: (SUB POLAR-BEAR LIVING-THING)) 
( 1  EXIT INDEX: T I  
( 1  ENTER INDEX: (SUB GRIZZLY ANIMAL)) 
( 1  EXIT INDEX: T) 
( 1  ENTER INDEX: (SUB POLAR-BEAR ANIMAL)) 
( 1  EXIT INDEX: T) 
( 1  ENTER INDEX: (IND LARS LIVING-THING)) 
( 1  EXIT INDEX: T I  
( 1  ENTER INDEX: (IND HELGA LIVING-THING)) 
( 1  EXIT INDEX: T I  
( 1  ENTER INDEX: (IND Y O G I  LIVING-THING)) 
( 1  EXIT INDEX: T I  
( 1  ENTER INDEX: (IND LARS THING)) 
(1 EXIT INDEX: T I  
( 1  ENTER INDEX: (IND HELGA THING)) 



( 1  EXIT INDEX: T) 
( 1  ENTER INDEX: (IND Y O G I  THING)) 
( 1  EXIT INDEX: T I  
( 1  ENTER INDEX: (IND LARS ANIMAL)) 
(1 EXIT INDEX: T I  
( 1  ENTER INDEX: (IND HELGA ANIMAL)) 
( 1  EXIT INDEX: T I  
( 1  ENTER INDEX: (IND Y O G I  ANIMAL)) 
( 1  EXIT INDEX: T I  
(INDEX) 

A Frame Language 

Another direction we can take is to provide an alternative syntax that will be easier 
to read and write. Many representation languages are based on the idea of frames, 
and their syntax reflects this. A frame is an object with slots. We will continue to use 
the same data base in the same format, but we will provide an alternative syntax that 
considers the individuals and categories as frames, and the relations as slots. 

Here is an example of the frame syntax for individuals, which uses the operator 
a.  Note that it is more compact than the equivalent notation using the primitives. 

(a person (name Joe) (age 27)) r 

(and ( i n d  personl  person) 
( v a l  name personl  Joe) 
( v a l  age personl  27) 

The syntax also allows for nested expressions to appear as the values of slots. Notice 
that the Skolem constant personl was generated automatically; an alternative is 
to supply a constant for the individual after the category name. For example, the 
following says that Joe is a person of age 27 whose best friend is a person named Fran 
who is 28 and whose best friend is Joe: 

(a person p l  (name Joe) (age 27) 
( b e s t - f r i e n d  (a person (name Fran) (age 28) 

( b e s t - f r i e n d  p l ) ) ) )  = 
(and ( i n d  p l  person) ( v a l  name p l  j oe )  ( v a l  age p l  27) 

( i n d  person2 person) ( v a l  name person2 f r a n )  
( v a l  age person2 28) ( v a l  b e s t - f r i e n d  person2 p l )  
( v a l  b e s t - f r i e n d  p l  person2)) 



The frame syntax for categories uses the operator each. For example: 

(each person (isa animal) (name person-name) (age integer)) = 
(and (sub person animal) 

(re1 name person person-name) 
(re1 age person integer)) 

The syntax for queries is the same as for assertions, except that variables are used 
instead of the Skolem constants. This is true even when the Skolem constants are 
automatically generated, as in the following query: 

(a person (age 27)) 5 (AND (IND ?3 PERSON) (VAL AGE ?3 27)) 

To support the frame notation, we define the macros a and each to make assertions 
and ? ? to make queries. 

(defmacro a (&rest args) 
"Define a new individual and assert facts about it in the data base." 
'(add-fact ',(translate-exp (cons 'a args)))) 

(defmacro each (&rest args) 
"Define a new category and assert facts about it in the data base." 
'(add-fact ',(translate-exp (cons 'each args)))) 

(defmacro ?? (&rest queries) 
"Return a list of answers satisfying the query or queries." 
'(retrieve-setof 
"(translate-exp (maybe-add 'and (replace-?-vars queries)) 

:query) 1) 

All three of these macros call on trans 1 a t e  - exp to translate from the frame syntax to 
the primitive syntax. Note that an a or each expression is computing a conjunction of 
primitive relations, but it is also computing a term when it is used as the nested value 
of a slot. It would be possible to do this by returning multiple values, but it is easier to 
build transl  a te -  exp as a set of local functions that construct facts and push them on 
the local variable con j uncts. At the end, the list of con j uncts is returned as the value 
of the translation. The local functions t ransl a t e  - a and t ransl a t e  - each return the 
atom that represents the term they are translating. The local function transl  a t e  
translatesanykindof expression, transl a te -s l  o t  handlesaslot, and col1 ec t - f ac t  
is responsible for pushing a fact onto the list of conjuncts. The optional argument 
query -mode - p tells what to do if the individual is not provided in an a expression. If 
query -mode - p is true, the individual will be represented by a variable; otherwise it 
will be a Skolem constant. 



(defun translate-exp (exp &optional query-mode-p) 
"Translate exp into a conjunction of the four primitives." 
( l e t  ((conjuncts n i l ) )  

(labels 
( (col lect -fact  (&rest  terms) (push terms conjuncts)) 

(transl ate (exp) 
;; Figure out w h a t  kind of expression this  i s  
(cond 

((atom exp) exp) 
((eq ( f i r s t  exp) ' a )  ( translate-a ( res t  exp))) 
((eq ( f i r s t  exp) 'each) (translate-each ( res t  exp) ) )  

( t  (apply #'collect-fact exp) exp))) 

(transl ate-a (args) 
; ; translate ( A  category Cindl (re1 f i l l e r )* )  
( 1  et* ( (category (pop args 1) 

(self (cond ( ( a n d  args (atom ( f i r s t  a rgs ) ) )  
(pop args))  

(query-mode-p (gentemp " ? " ) )  

( t  (gentemp (string category))))))  
(collect-fact 'ind self category) 
(dolist  ( s lo t  args) 

(translate-sl  ot 'val self s lo t )  
sel f  1) 

(translate-each (args) 
;; translate (EACH category C(isa cat*)] ( s lo t  cat)*) 
( l e t*  ((category (pop a rgs ) ) )  

(when (eq (predicate ( f i r s t  args)) ' i sa )  
(dol is t  (super ( res t  (pop a rgs ) ) )  

(col lect-fact 'sub category super) 1) 
(dol is t  ( s lo t  args) 

(translate-slot 're1 category s l o t ) )  
category) 

(transl ate-slot (primitive self s lo t )  
;; translate (relation value) into a REL or SUB 
(assert  (= (length s l o t )  2 ) )  
(col lect-fact primitive ( f i r s t  s lo t )  self 

(transl ate (second s lo t )  1) 1 )  

;; Body of translate-exp: 
(translate exp) ;; Build up the l i s t  of conjuncts 
(maybe-add ' a n d  (nreverse conjuncts))))) 



The auxiliary functions maybe - add and rep1 ace - ? - v a  rs are shown in the following: 

(defun maybe-add (op exps &optional i f - n i l )  
"For example, (maybe-add 'and exps t )  returns 
t i f  exps i s  n i l ,  ( f i r s t  exps) i f  there i s  only one, 
and (and expl exp2 . . . I  i f  there are several exps." 
(cond ( (nul l  exps) i f - n i l )  

(( length=l exps) ( f i r s t  exps)) 
( t  (cons op exps ) ) ) )  

(defun length=l (x )  
" I s  x a l i s t  of length I?"  
(and (consp x)  (null (cdr x ) ) ) )  

(defun replace-?-vars (exp) 
"Replace each ? in exp with a temporary var: ?123" 
(cond ((eq exp ' ? )  (gentemp " ? " ) )  

((atom exp) exp) 
( t  (reuse-cons (replace-?-vars ( f i r s t  exp)) 

(replace-?-vars ( r e s t  exp)) 
e x p ) ) ) )  

Possible Worlds: Truth, Negation, and Disjunction 

In this section we address four problems: distinguishing unknown from fa 1 se, rep- 
resenting negations, representing disjunctions, and representing multiple possible 
states of affairs. It turns out that all four problems can be solved by introducing 
two new techniques: possible worlds and negated predicates. The solution is not 
completely general, but it is practical in a wide variety of applications. 

There are two basic ways to distinguish unknown from false. The first possibility 
is to store a truth value-t rue or f a1 se-along with each proposition. The second 
possibility is to include the truth value as part of the proposition. There are several 
syntactic variations on this theme. The following table shows the possibilities for 
the propositions "Jan likes Dean is true" and "Jan likes Ian is false:" 

Approach True Prop. False Prop. 

(1) (likes Jan Dean) - -  true (l ikes Jan I a n )  - -  false 
(24 (l ikes true Jan Dean) ( 1  i kes false Jan I a n )  
(2b) ( 1  i kes Jan Dean (not (l ikes Jan Dean)) 
(24 ( 1  i kes Jan Dean 1 (-1 i kes Jan Dean) 

The difference between (1) and (2) shows up when we want to make a query. 
With (I), we make the single query ( 1 i kes Jan Dean (or perhaps ( 1 i kes Jan ?XI), 
and the answers will tell us who Jan does and does not like. With (2), we make one 



query to find out what liking relationships are true, and another to find out which 
ones are false. In either approach, if there are no responses then the answer is truly 
unknown. 

Approach (1) is better for applications where most queries are of the form "Is 
this sentence true or false?" But applications that include backward-chaining rules 
are not like this. The typical backward-chaining rule says "Conclude X is true if Y is 
true." Thus, most queries will be of the type "Is Y true?" Therefore, some version of 
approach (2) is preferred. 

Representing true and false opens the door to a host of possible extensions. First, 
we could add multiple truth values beyond the simple "true" and "false." These 
could be symbolic values like "probably-true" or "false-by-default" or they could be 
numeric values representing probabilities or certainty factors. 

Second, we could introduce the idea of possible worlds. That is, the truth of a 
proposition could be unknown in the current world, but true if we assume p, and 
false if we assume q .  In the possible world approach, this is handled by calling the 
current world W, and then creating a new world Wl, which is just like W except 
that p is true, and W2, which is just like W except that q is true. By doing reasoning 
in different worlds we can make predictions about the future, resolve ambiguitites 
about the current state, and do reasoning by cases. 

For example, possible worlds allow us to solve Moore's communism/democracy 
problem (page 466). We create two new possible worlds, one where E is a democracy 
and one where it is communist. In each world it is easy to derive that there is 
a democracy next to a communist country. The trick is to realize then that the 
two worlds form a partition, and that therefore the assertion holds in the original 
"real" world as well. This requires an interaction between the Prolog-based tactical 
reasoning going on within a world and the planning-based strategic reasoning that 
decides which worlds to consider. 

We could also add a truth maintenance system (or TMS) to keep track of the as- 
sumptions or justifications that lead to each fact being considered true. A truth 
maintenance system can lessen the need to backtrack in a search for a global solu- 
tion. Although truth maintenance systems are an important part of A1 programming, 
they will not be covered in this book. 

In this section we extend the dtree facility (section 14.8) to handle truth values 
and possible worlds. With so many options, it is difficult to make design choices. We 
will choose a fairly simple system, one that remains close to the simplicity and speed 
of Prolog but offers additional functionality when needed. We will adopt approach 
(2c) to truth values, using negated predicates. For example, the negated predicate of 
1 i kes is -1 i kes, which is pronounced "not likes." 

We will also provide minimal support for possible worlds. Assume that there is 
always a current world, W, and that there is a way to create alternative worlds and 
change the current world to an alternative one. Assertions and queries will always be 
made with respect to the current world. Each fact is indexed by the atoms it contains, 



just as before. The difference is that the facts are also indexed by the current world. 
To support this, we need to modify the notion of the numbered list, or nl i s t ,  to 
include a numbered association list, or n a 1 i s t  . The following is an n a 1 i s t showing 
six facts indexed under three different worlds: WO, W 1, and W2: 

The fetching routine will remain unchanged, but the postfetch processing will have 
to sort through the nalists to find only the facts in the current world. It would also be 
possible for fetch to do this work, but the reasoning is that most facts will be indexed 
under the "real world," and only a few facts will exist in alternative, hypothetical 
worlds. Therefore, we should delay the effort of sorting through the answers to 
eliminate those answers in the wrong world-it may be that the first answer fetched 
will suffice, and then it would have been a waste to go through and eliminate other 
answers. The following changes to i ndex and d t  ree - i ndex add support for worlds: 

(de fva r  *world* 'WO "The c u r r e n t  wor ld  used by index and f e t c h . " )  

(defun index (key &op t iona l  (wor ld  *wor ld*) )  

"Store key i n  a  d t r e e  node. Key must be (p red ica te  . args ) ;  
i t  i s  s to red  i n  t h e  d t ree ,  indexed by t h e  wor ld . "  
(d t ree- index  key key wor ld  ( g e t - d t r e e  (p red ica te  k e y ) ) ) )  

(defun d t ree- index  (key va lue wor ld  d t r e e )  
" Index va lue under a l l  atoms o f  key i n  d t ree . "  
(cond 

((consp key) ; index on bo th  f i r s t  and r e s t  
(d t ree- index  ( f i r s t  key) va lue wor ld  

( o r  ( d t r e e - f i r s t  d t r e e )  
( s e t f  ( d t r e e - f i r s t  d t r e e )  (make-dt ree)) ) )  

(d t ree - index  ( r e s t  key) va lue wor ld  

( o r  ( d t r e e - r e s t  d t r e e )  
( s e t f  ( d t r e e - r e s t  d t r e e )  (make-d t ree ) ) ) ) )  

( ( n u l l  key))  ; don ' t  index on n i l  

( ( v a r i a b l e - p  key) ; index a  v a r i a b l e  
( n a l i s t - p u s h  wor ld  va lue ( d t r e e - v a r  d t r e e ) ) )  

( t  ;; Make sure t h e r e  i s  an n l i s t  f o r  t h i s  atom, and add t o  i t  
(na l  i s t - p u s h  wor ld  va lue ( lookup-atom key d t r e e )  1 ) ) )  

The new function na 1 i s t  - pus h adds a value to an nalist, either by inserting the value 
in an existing key's list or by adding a new key/value list: 



(defun nalist-push (key val n a l i s t )  
"Index val under key in a  numbered a l i s t . "  
;; An na l i s t  i s  of the form (count (key val*)*) 
;; Ex: ( 6  (nurns 1 2 3)  ( l e t t e r s  a  b c ) )  
( incf (car n a l i s t ) )  
( l e t  ( ( p a i r  (assoc key (cdr n a l i s t ) ) ) )  

( i f  pair 
(push val (cdr p a i r ) )  
(push ( l i s t  key val)  (cdr n a l i s t ) ) ) ) )  

In the following, fetch is used on the same data base created by t e s t  - i ndex, indexed 
under the world NO. This time the result is a list-of-lists of world/values a-lists. The 
count, 3, is the same as before. 

> (fetch ' ( p  ?x c ) )  
( ( ( W O  ( P  B C )  ( P  A C ) ) )  

( ( N O  ( P  A ? X ) ) ) )  
3 

So far, worlds have been represented as symbols, with the implication that different 
symbols represent completely distinct worlds. That doesn't make worlds very easy 
to use. We would like to be able to use worlds to explore alternatives-create a 
new hypothetical world, make some assumptions (by asserting them as facts in the 
hypothetical world), and see what can be derived in that world. It would be tedious 
to have to copy all the facts from the real world into each hypothetical world. 

An alternative is to establish an inheritance hierarchy among worlds. Then a fact 
is considered true if it is indexed in the current world or in any world that the current 
world inherits from. 

To support inheritance, we will implement worlds as structures with a name field 
and a field for the list of parents the world inherits from. Searching through the 
inheritance lattice could become costly, so we will do it only once each time the user 
changes worlds, and mark all the current worlds by setting the current field on or 
off. Here is the definition for the world structure: 

(defs t ruct  (world ( :print-function print-world)) 
name parents current 

We will need a way to get from the name of a world to the world structure. Assuming 
names are symbols, we can store the structure on the name's property list. The 
function get -worl d gets the structure for a name, or builds a new one and stores it. 
get - worl d can also be passed a world instead of a name, in which case it just returns 
the world. We also include a definition of the default initial world. 



(defun get-world (name &optional current (parents ( l i s t  *world*))) 
"Look u p  or create the world with this  name. 
If the world i s  new, give i t  the l i s t  of parents." 
(cond ((world-p name) name) ; ok i f  i t  already i s  a world 

((get  name 'world)) 
( t  (setf (get name 'world) 

(make-world :name name:parents parents 
:current cur ren t ) ) ) ) )  

(defvar *world* (get-world 'WO nil nil 
"The current world used by index and  fetch.") 

The function use-worl d is used to switch to a new world. It first makes the current 
world and all its parents no longer current, and then makes the new chosen world and 
all its parents current. The function use- new-worl d is more efficient in the common 
case where you want to create a new world that inherits from the current world. It 
doesn't have to turn any worlds off; it jus t creates the new world and makes it current. 

(defun use-worl d (worl d )  
"Make this  world current. " 
;; If passed a name, look up the world i t  names 
(setf world (get-world world)) 
(unless (eq world *world*) 

;; Turn the old world(s1 off and the new one(s) on, 
; ; unless we are a1 ready using the new world 
(set-worl d-current *worl d* ni 1 
(set-world-current world t )  
(setf *world* worl d )  1) 

(defun use-new-world 0 
"Make up a new world and use i t .  
The world inherits from the current world. " 
(setf *world* (get-world (gensym " W " ) ) )  
(setf  (worl d-current *world*) t )  
*world*) 

(defun set-world-current (world onloff) 
"Set the current field of world and i t s  parents on or off . "  
;; nil i s  off ,  anything else i s  on. 
(setf (world-current world) on/off) 
(dol is t  (parent (world-parents world)) 

(set-world-current parent onloff)))  

We also add a print function for worlds, which just prints the world's name. 



(defun p r i n t - w o r l d  (wor ld  &opt ional  (stream t )  depth) 
(dec la re  ( i gnore  dep th ) )  
( p r i n l  (world-name wor ld )  stream) ) 

The format of the dtree data base has changed to include worlds, so we need 
new retrieval functions to search through this new format. Here the functions 
m a p c - r e t r i e v e ,  r e t r i e v e ,  and r e t r i e v e - b a g o f  are modified to give new versions 
that treat worlds. To reflect this change, the new functions all have names ending in 
- i n - w o r l  d: 

(defun mapc- re t r i eve- in -wor ld  ( f n  query) 
"For every f a c t  i n  t h e  c u r r e n t  wor ld  t h a t  matches t h e  query, 
apply t h e  f u n c t i o n  t o  t h e  b i n d i n g  1 i s t .  " 
( d o l i s t  (bucket ( f e t c h  query ) )  

(do1 i s t  (wor l  d l e n t r i e s  bucket 
(when (wor l  d - c u r r e n t  ( f i r s t  w o r l d l e n t r i e s )  ) 

( d o l i s t  (answer ( r e s t  w o r l d l e n t r i e s ) )  
( l e t  ( (b ind ings  ( u n i f y  query answer)))  

(un less (eq b ind ings  f a i l  
( f u n c a l l  f n  b i n d i n g s ) ) ) ) ) ) ) )  

(defun r e t r i e v e - i n - w o r l  d  (query)  
"F ind a l l  f a c t s  t h a t  match query. Return a l i s t  o f  b ind ings . "  
( l e t  ((answers n i l ) )  

(mapc- re t r i eve - in -wor ld  
#'(lambda (b ind ings )  (push b ind ings answers)) 
query) 

answers 1 1 

(defun r e t r i e v e - b a g o f - i n - w o r l d  (query)  
"F ind a l l  f a c t s  i n  t h e  c u r r e n t  wor ld  t h a t  match query. 
Return a l i s t  o f  quer ies w i t h  b ind ings  f i l l e d  i n . "  
(mapcar #'(lambda (b ind ings )  ( subs t -b ind ings  b ind ings  query ) )  

( r e t r i e v e - i n - w o r l d  query ) ) )  

Now let's see how these worlds work. First, in WO we see that the facts from 
t e s t  - i ndex  are still in the data base: 

> ( r e t r i e v e - b a g o f - i n - w o r l d  ' ( p  ?z c ) )  + 
( ( P  A C) (P A C) (P B C)) 



Now we create and use a new world that inherits from WO. Two new facts are added 
to this new world: 

> (use-new-world) a W7031 

> (index '(p new c)) + T 
> (index '("p b b)) + T 

We see that the two new facts are accessible in this world: 

> (retrieve-bagof-in-world ' ( p  ?z c ) )  + 
((PAC) ( P A C )  (P B C) (P NEW C)) 

> (retrieve-bagof-in-world '("p ?x ?y)) a 
(("P B B)) 

Now we create another world as an alternative to the current one by first switching 
back to the original WO, then creating the new world, and then adding some facts: 

> (use-world 'WO) + WO 
> (use-new-world) + W7173 
> (index '(p newest c)) + T 
> (index ' ( "p c newest)) =+ T 

Here we see that the facts entered in W7031 are not accessible, but the facts in the new 
world and in WO are: 

> (retrieve-bagof-in-world '(p ?z c)) + 
((P A C) (P A C) (P B C) (P NEWEST C)) 

> (retrieve-bagof-in-world '("p ?x ?y)) 3 
(("P C NEWEST)) 

Unification, Equality, Types, and Skolem Constants 

The lesson of the zebra puzzle in section 11.4 was that unification can be used to 
lessen the need for backtracking, because an uninstantiated logic variable or partially 
instantiated term can stand for a whole range of possible solutions. However, this 
advantage can quickly disappear when the representation forces the problem solver 
to enumerate possible solutions rather than treatinga whole range of solutions as one. 
For example, consider the following query in the frame language and its expansion 
into primitives: 



( a  p e r s o n  (name F r a n ) )  
= ( a n d  ( i n d  ? p  p e r s o n )  ( v a l  name ?p  f r a n ) )  

The way to answer this query is to enumerate all individuals ?p of type person and 
then check the name slot of each such person. It would be more efficient if ( i nd ?p 
person) did not act as an enumeration, but rather as a constraint on the possible 
values of ?p. This would be possible if we changed the definition of variables (and 
of the unification function) so that each variable had a type associated with it. In 
fact, there are at least three sources of information that have been implemented as 
constraints on variables terms: 

The type or category of the term. 

e The members or size of a term considered as a set or list. 

e Other terms this term is equal or not equal to. 

Note that with a good solution to the problem of equality, we can solve the problem 
of Skolem constants. The idea is that a regular constant unifies with itself but no 
other regular constant. On the other hand, a Skolem constant can potentially unify 
with any other constant (regular or Skolem). The equality mechanism is used to keep 
track of each Skolem variable's possible bindings. 

14.11 History and References 

Brachman and Levesque (1985) collect thirty of the key papers in knowledge repre- 
sentation. Included are some early approaches to semantic network based (Quillian 
1967) and logic-based (McCarthy 1968) representation. Two thoughtful critiques 
of the ad hoc use of representations without defining their meaning are by Woods 
(1975) and McDermott (1978). It is interesting to contrast the latter with McDermott 
1987, which argues that logic by itself is not sufficient to solve the problems of AI. 
This argument should not be surprising to those who remember the slogan logic = 
algorithm - control. 

Genesereth and Nilsson's textbook (1987) cover the predicate-calculus-based ap- 
proach to knowledge representation and A1 in general. Ernest Davis (1990) presents 
a good overview of the field that includes specialized representations for time, space, 
qualitative physics, propositional attitudes, and the interaction between agents. 

Many representation languages focus on the problem of defining descriptions for 
categories of objects. These have come to be known as term-subsumption languages. 
Examples include KL-ONE (Schmolze and Lipkis 1983) and KRYPTON (Brachman, 
Fikes, and Levesque 1983). See Lakoff 1987 for much more on the problem of 
categories and prototypes. 



Hector Levesque (1986) points out that the areas Prolog has difficulty with- 
disjunction, negation, and existentials-all involve a degree of vagueness. In his 
term, they lack vividness. A vivid proposition is one that could be represented 
directly in a picture: the car is blue; she has a martini in her left hand; Albany is the 
capital of New York. Nonvivid propositions cannot be so represented: the car is not 
blue; she has a martini in one hand; either Albany or New York City is the capital 
of New York. There is interest in separating vivid from nonvivid reasoning, but no 
current systems are actually built this way. 

The possible world approach of section 14.10 was used in the MRS system (Russell 
1985). More recent knowledge representation systems tend to use truth maintenance 
systems instead of possible worlds. This approach was pioneered by Doyle (1979) 
and McAllester (1982). Doyle tried to change the name to "reason maintenance," in 
(1983), but it was too late. The version in widest used today is the assumption-based 
truth maintenance system, or ATMS, developed by de Kleer (1986a,b,c). Charniak 
et al. (1987) present a complete Common Lisp implementation of a McAllester- 
style TMS. 

There is little communication between the logic programming and knowledge 
representation communities, even though they cover overlapping territory. Colmer- 
auer (1990) and Cohen (1990) describe Logic Programming languages that address 
some of the issues covered in this chapter. Key papers in equality reasoning include 
Galler and Fisher 1974, Kornfeld 1983,' Jaffar, Lassez, and Maher 1984, and van 
Emden and Yukawa 1987. Holldobler's book (1987) includes an overview of the area. 
Papers on extending unification in ways other than equality include kt-Kaci et al. 
1987 and Staples and Robinson 1988. Finally, papers on extending Prolog to cover 
disjunction and negation (i.e., non-Horn clauses) include Loveland 1987, Plaisted 
1988, and Stickel 1988. 

14.12 Exercises 

p Exercise 14.1 [m] Arrange to store dtrees in a hash table rather than on the property 
list of predicates. 

p Exercise 14.2 [m] Arrange to store the d t  ree - a toms in a hash table rather than in 
an association list. 

p Exercise 14.3 [m] Change the d t  ree code so that n i 1 is used as an atom index. Time 
the performance on an application and see if the change helps or hurts. 

'A commentary on this paper appears in Elcock and Hoddinott 1986. 



Exercise 14.4 [m] Consider the query ( p a b c d  e  f g 1. If the index under a 
returns only one or two keys, then it is probably a waste of time for d t  ree -  f e t c h  
to consider the other keys in the hope of finding a smaller bucket. It is certainly 
a waste if there are no keys at all indexed under a .  Make appropriate changes to 
d t r e e - f e t c h .  

Exercise 14.5 [h] Arrange to delete elements from a d t  ree. 

Exercise 14.6 [h] Implement iterative-deepening search in the Prolog compiler. 
You will have to change each function to accept the depth as an extra argument, and 
compile in checks for reaching the maximum depth. 

Exercise 14.7 [dl Integrate the Prolog compiler with the dtree data base. Use 
the dtrees for predicates with a large number of clauses, and make sure that each 
predicate that is implemented as a dtree has a Prolog primitive accessing the dtree. 

Exercise 14.8 [dl Add support for possible worlds to the Prolog compiler with 
dtrees. This support has already been provided for dtrees, but you will have to 
provide it for ordinary Prolog rules. 

Exercise 14.9 [h] Integrate the language described in section 14.10 and the frame 
syntax from section 14.10 with the extended Prolog compiler from the previous 
exercise. 

Exercise 14.10 [dl Build a strategic reasoner that decides when to create a possible 
world and does reasoning by cases over these worlds. Use it to solve Moore's problem 
(page 466). 



14.13 Answers 

Answer 14.1 

( l e t  ((dtrees (make-hash-table : t es t  # ' eq) ) )  

(defun get-dtree (predicate) 
"Fetch (or make) the dtree for this  predicate." 
(setf (gethash predicate dtrees) 

(or (gethash predicate dtrees) 
(make-dtree)))) 

(defun clear-dtrees 0 
"Remove all  the dtrees for a l l  the predicates." 
(cl rhash dtrees) ) 

Answer 14.5 Hint: here is the code for n l  i s t  - del ete. Now figure out how to find 
all the nlists that an item is indexed under. 

(defun nl ist-del ete ( i  tem nl i  s t  1 
"Remove a n  element from a n  nl i s t .  
Assumes t h a t  item i s  present exactly once." 
(decf (car n l i s t ) )  
(setf (cdr n l i s t )  (delete item (cdr n l i s t )  :count 1 ) )  
n l i s t )  



PART IV 

ADVANCED Al PROGRAMS 





CHAPTER 15 
Symbolic Mathematics 
with Canonical Forms 

Anything simple always interests me. 

-David Hockney 

hapter 8 started with high hopes: to take an existing pattern matcher, copy down some 
mathematical identities out of a reference book, and come up with a usable symbolic 
algebra system. The resulting system was usable for some purposes, and it showed 

that the technique of rule-based translation is a powerful one. However, the problems of 
section 8.5 show that not everything can be done easily and efficiently within the rule-based 
pattern matching framework. 

There are important mathematical transformations that are difficult to express in the rule- 
based approach. For example, dividing two polynomials to obtain a quotient and remainder is 
a task that is easier to express as an algorithm-a program-than as a rule or set of rules. 



In addition, there is a problem with efficiency. Pieces of the input expressions are 
simplified over and over again, and much time is spent interpreting rules that do not 
apply. Section 9.6 showed some techniques for speeding up the program by a factor 
of 100 on inputs of a dozen or so symbols, but for expressions with a hundred or so 
symbols, the speed-up is not enough. We can do better by designing a specialized 
representation from the ground up. 

Serious algebraic manipulation programs generally enforce a notion of canonical 
simplification. That is, expressions are converted into a canonical internal format that 
may be far removed from the input form. They are then manipulated, and translated 
back to external form for output. Of course, the simplifier we have already does this 
kind of translation, to some degree. It translates (3  + x  + - 3  + y 1 into (+ x y 1 
internally, and then outputs it as ( x  + y 1. But a canonical representation must have 
the property that any two expressions that are equal have identical canonical forms. 
In our system the expression ( 5 + y + x  + - 5 1 is translated to the internal form (+ 

y x  1, which is not identical to (+ x  y 1, even though the two expressions are equal. 
Thus, our system is not canonical. Most of the problems of the previous section stem 
from the lack of a canonical form. 

Adhering to canonical form imposes grave restrictions on the representation. For 
example, x2 - 1 and (x - l)(x + 1) are equal, so they must be represented identically. 
One way to insure this is to multiply out all factors and collect similar terms. So 
(x - l ) (x  + 1) is x2 - x + x - 1, which simplifies to x2 

- 1, in whatever the canonical 
internal form is. This approach works fine for x2 - 1, but for an expression like 
(x - l)looO, multiplying out all factors would be quite time- (and space-) consuming. 
It is hard to find a canonical form that is ideal for all problems. The best we can do is 
choose one that works well for the problems we are most likely to encounter. 

15.1 A Canonical Form for Polynomials 

This section will concentrate on a canonical form for polynomials. Mathematically 
speaking, a polynomial is a function (of one or more variables) that can be computed 
using only addition and multiplication. We will speak of a polynomial's main variable, 
coefficents, and degree. In the polynomial: 

the main variable is x, the degree is 3 (the highest power of x), and the coefficients 
are 5, b, c and 1. We can define an input format for polynomials as follows: 

1. Any Lisp number is a polynomial. 

2. Any Lisp symbol is a polynomial. 



3. If p and q are polynomials, so are (p + q 1 and (p * q ) 

4. If p is a polynomial and n is a positive integer, then (p A n 1 is a polynomial. 

However, the input format cannot be used as the canonical form, because it would 
admitboth(x + y)and (y  + x),andboth4and(2 + 2 ) .  

Before considering a canonical form for polynomials, let us see why polynomials 
were chosen as the target domain. First, the volume of programming needed to sup- 
port canonical forms for a larger class of expressions grows substantially. To make 
things easier, we have eliminated complications like log and trig functions. Polyno- 
mials are a good choice because they are closed under addition and multiplication: 
the sum or product of any two polynomials is a polynomial. If we had allowed divi- 
sion, the result would not be closed, because the quotient of two polynomials need 
not be a polynomial. As a bonus, polynomials are also closed under differentiation 
and integration, so we can include those operators as well. 

Second, for sufficiently large classes of expressions it becomes not just difficult 
but impossible to define a canonical form. This may be surprising, and we don't 
have space here to explain exactly why it is so, but here is an argument: Consider 
what would happen if we added enough functionality to duplicate all of Lisp. Then 
"converting to canonical form" would be the same as "running a program." But it 
is an elementary result of computability theory that it is in general impossible to 
determine the result of running an arbitrary program (this is known as the halting 
problem). Thus, it is not surprising that it is impossible to canonicalize complex 
expressions. 

Our task is to convert a polynomial as previously defined into some canonical 
form.' Much of the code and some of the commentary on this format and the routines 
to manipulate it was written by Richard Fateman, with some enhancements made 
by Peter Klier . 

The first design decision is to assume that we will be dealing mostly with dense 
polynomials, rather than sparse ones. That is, we expect most of the polynomials 
to be like ax3 + bx2 + cx + d, not like ax100 + bx50 + c. For dense polynomials, 
we can save space by representing the main variable (x in these examples) and the 
individual coefficients (a, b, c, and d in these examples) explicitly, but representing 
the exponents only implicitly, by position. Vectors will be used instead of lists, to 
save space and to allow fast access to any element. Thus, the representation of 
5x3 + lox2 + 20x + 30 will be the vector: 

'1n fact, the algebraic properties of polynomial arithmetic and its generalizations fit so well 
with ideas in data abstraction that an extended example (in Scheme) on this topic is provided 
in Structure and Interpretation of Computer Programs by Abelson and Sussman (see section 2.4.3, 
pages 153-166). We'll pursue a slightly different approach here. 



The main variable, x, is in the 0th element of the vector, and the coefficient of the 
ith power of x is in element i + 1 of the vector. A single variable is represented as a 
vector whose first coefficient is 1, and a number is represented as itself: 

# ( x 30 20 10 5) represents 5x3 + lox2 + 202 + 30 
# ( x  0 1 )  represents x 
5 represents 5 

The fact that a number is represented as itself is a possible source of confusion. The 
number 5, for example, is a polynomial by our mathematical definition of polyno- 
mials. But it is represented as 5, not as a vector, so ( typep 5 ' pol ynomi a1 1 will be 
false. The word "polynomial" is used ambiguously to refer to both the mathematical 
concept and the Lisp type, but it should be clear from context which is meant. 

A glossary for the canonical simplifier program is given in figure 15.1. 
The functions defining the type pol ynomi a1 follow. Because we are concerned 

with efficiency, we proclaim certain short functions to be compiled inline, use the 
specific function svref (simple-vector reference) rather than the more general a ref, 
and provide declarations for the polynomials using the special form the. More details 
on efficiency issues are given in Chapter 9. 

(proclaim ' ( i n l i n e  main-var degree coef 
var= var> poly make-poly)) 

(deftype polynomi a1 ( 'simp1 e-vector)  

(defun main-var (p )  (svref ( the  polynomial p) 0 ) )  
(defun coef (p  i )  (svref ( the  polynomial p) (+ i  1 ) ) )  
(defun degree (p )  ( -  (length ( the  polynomial p ) )  2 ) )  

We had to make another design decision in defining coef, the function to extract a 
coefficient from a polynomial. As stated above, the ith coefficient of a polynomial is 
in element i + 1 of the vector. If we required the caller of coef to pass in i + 1 to get 
i, we might be able to save a few addition operations. The design decision was that 
this would be too confusing and error prone. Thus, coef expects to be passed i and 
does the addition itself. 

For our format, we will insist that main variables be symbols, while coefficients 
can be numbers or other polynomials. A "production" version of the program might 
have to account for main variables like ( s i n x 1, as well as other complications like + 
and * with more than two arguments, and noninteger powers. 

Now we can extract information from a polynomial, but we also need to build 
and modify polynomials. The function pol y takes a variable and some coefficients 
and builds a vector representing the polynomial. make - pol y takes a variable and a 
degree and produces a polynomial with all zero coefficients. 



Top-Level Functions 
canon - s  i mpl i f i er  A read-canonicalize-print loop. 
canon Canonicalize argument and convert it back to infix. 

Data Types 
pol ynomi a1 A vector of main variable and coefficients. 

Major Functions 
pref ix->canon Convert a prefix expression to canonical polynomial. 
canon ->pref i x Convert a canonical polynomial to a prefix expression. 
pol Y + P O ~  Y Add two polynomials. 
pol Y * P O ~  Y Multiply two polynomials. 
pol yAn  Raise polynomial p to the nth power, n> =O. 
de r i v -po l y  Return the derivative, dp/dx, of the polynomial p. 

Auxiliary Functions 
pol Y Construct a polynomial with given coefficients. 
make-poly Construct a polynomial of given degree. 
coef Pick out the ith coefficient of a polynomial. 
main-var The main variable of a polynomial. 
degree The degree of a polynomial; ( degree x2 = 2. 
va r= Are two variables identical? 
va r>  Is one variable ordered before another? 
P O ~ Y +  Unary or binary polynomial addition. 
~ 0 1 ~ -  Unary or binary polynomial subtraction. 
k-tpol y  Add a constant k to a polynomial p. 
k*pol y  Multiply a polynomial p by a constant k. 
pol y+same Add two polynomials with the same main variable. 
pol y*same Multiply two polynomials with the same main variable. 
norma 1 i ze - po l  y  Alter a polynomial by dropping trailing zeros. 
exponent ->pref i x Used to convert to prefix. 
args->pref ix  Used to convert to prefix. 
rat-numerator Select the numerator of a rational. 
rat-denomi na to r  Select the denominator of a rational. 
r a t * r a t  Multiply two rationals. 
r a t+ ra t  Add two rationals. 
r a t h a t  Divide two rationals. 

Figure 15.1: Glossary for the Symbolic Manipulation Program 



(defun p o l y  ( x  & r e s t  coe fs )  
"Make a polynomial w i t h  main v a r i a b l e  x 
and c o e f f i c i e n t s  i n  i nc reas ing  o rder . "  
(apply  # ' v e c t o r  x c o e f s ) )  

(defun make-poly ( x  degree) 
"Make t h e  polynomial 0 + O*x + 0*xA2 + ... O*xAdegree" 
( l e t  ( ( p  (make-array (+ degree 2) : i n i t i a l  -element 0 ) ) )  

( s e t f  (main-var p )  x )  

P )  

A polynomial can be altered by setting its main variable or any one of its coefficients 
using the following def se t f forms. 

( d e f s e t f  main-var (p )  ( v a l )  
' ( s e t f  ( s v r e f  ( t h e  polynomial ,p) 0)  , v a l ) )  

( d e f s e t f  coef ( p  i ( v a l  
' ( s e t f  ( s v r e f  ( t h e  polynomial ,p) (+ ,i 1) )  , v a l ) )  

The function pol y constructs polynomials in a fashion similar to 1 i s t  or vector: with 
an explicit list of'the contents. ma ke - pol y, on the other hand, is like ma ke - a r ray: it 
makes a polynomial of a specified size. 

We provide se t f  methods for modifying the mainvariable and coefficients. Since 
this is the first use of def setf ,  it deserves some explanation. A def se t f  form takes 
a function (or macro) name, an argument list, and a second argument list that must 
consist of a single argument, the value to be assigned. The body of the form is an 
expression that stores the value in the proper place. So the def se t f  for ma i n - va r says 
that ( se t f  (main-var p) val)  isequivalentto ( se t f  (svref ( the  polynomial p) 
0 ) va 1 1. A def se t f  is much like a defma c ro, but there is a little less burden placed 
on the writer of def s e t f .  Instead of passing p and va 1 directly to the s e t  f method, 
Common Lisp binds local variables to these expressions, and passes those variables 
to the se t f  method. That way, the writer does not have to worry about evaluating 
the expressions in the wrong order or the wrong number of times. It is also possible 
to gain finer control over the whole process with def i ne-setf -method, as explained 
on page 884. 

The functions pol y+pol y, pol y*pol y and pol y ̂ n  perform addition, multiplica- 
tion, and exponentiation of polynomials, respectively. They are defined with several 
helping functions. k*pol y multiplies a polynomial by a constant, k, which may 
be a number or another polynomial that is free of polynomial p's main variable. 
pol y*same is used to multiply two polynomials with the same main variable. For 
addition, the functions k+pol y and pol y+same serve analogous purposes. With that 
in mind, here's the function to convert from prefix to canonical form: 



(defun pref ix ->canon ( x )  
"Convert a p r e f i x  L i s p  expression t o  canonical form. 
Exs: (+ ( ^  x 2) ( *  3 XI) => # ( x  0 3 1 )  

( -  ( *  ( -  x 1) (+ x 1 ) )  ( -  ( ^  x 2) 1 ) )  => 0"  
(cond ((numberp x )  x )  

((symbolp x )  ( p o l y  x 0 1 ) )  
( (and (exp-p x )  ( g e t  (exp-op x )  'pref ix ->canon))  

(apply  ( g e t  (exp-op x )  'pref ix ->canon)  
(mapcar # 'pref ix->canon (exp-args x ) ) ) )  

( t  ( e r r o r  "Not a polynomial:  "a" x ) ) ) )  

It is data-driven, based on the pref i x->canon property of each operator. In the 
following we install the appropriate functions. The existing functions pol y*pol y 
and pol yAn can be used directly. But other operators need interface functions. The 
operators + and - need interface functions that handle both unary and binary. 

( d o l i s t  ( i t e m  ' ( ( +  poly+) ( -  p o l y - 1  (* poly*poly)  
( A  p o l y A n )  (D d e r i v - p o l y ) ) )  

( s e t f  ( g e t  ( f i r s t  i t em)  'pref ix ->canon)  (second i t e m ) ) )  

(defun po ly+ ( & r e s t  args)  
"Unary o r  b ina ry  polynomial a d d i t i o n .  " 
(ecase (1 ength args)  

( 1  ( f i r s t  a r g s ) )  
( 2  (po ly+poly  ( f i r s t  args)  (second a r g s ) ) ) ) )  

(defun p o l y -  ( & r e s t  args)  
"Unary o r  b ina ry  polynomial sub t rac t ion .  " 
(ecase (1 ength args)  

( 1  (po ly*poly  -1 ( f i r s t  a r g s ) ) )  
( 2  (po ly+poly  ( f i r s t  args)  (po ly*poly  -1 (second a r g s ) ) ) ) ) )  

The function prefix->canon accepts inputs that were not part of our definition of 
polynomials: unary positive and negation operators and binary subtraction and 
differentiation operators. These are permissible because they can all be reduced to 
the elementary + and * operations. 

Remember that our problems with canonical form all began with the inability to 
decide which was simpler: (+ x y > or (+ y x > . In this system, we define a canonical 
form by imposing an ordering on variables (we use alphabetic ordering as defined by 
s t  ri ng>). The rule is that a polynomial p can have coefficients that are polynomials 
in a variable later in the alphabet than p's main variable, but no coefficients that 
are polynomials in variables earlier than p's main variable. Here's how to compare 
variables: 

(defun var= ( x  y )  (eq x y ) )  
(defun var> ( x  y )  ( s t r i n g >  x y ) )  



The canonical form of the variable x  will be # ( x  0 1 1, which is 0 x xO + 1 x zl. The 
canonical formof (+ x  y )  is #(x  #(y 0 1) 1) .  Itcouldn'tbe #(y  # ( x  0 1) 11, 
because then the resulting polynomial would have a coefficient with a lesser main 
variable. The policy of ordering variables assures canonicality, by properly grouping 
like variables together and by imposing a particular ordering on expressions that 
would otherwise be commutative. 

Here, then, is the code for adding two polynomials: 

(de fun  poly+poly  ( p  q )  
"Add two pol ynomi a1 s . " 
(normal i z e - p o l y  

(cond 
((numberp p )  (k+poly  p q ) )  
((numberp q )  (k+poly  q p ) )  
( ( v a r =  (ma in - va r  p )  (ma in - va r  q ) )  (poly+same p q ) )  
( ( v a r >  (ma in - va r  q )  (ma in - va r  p ) )  (k+poly  q p ) )  
( t  (k+poly  p q ) ) ) ) )  

( d e f u n  k+poly ( k  p )  
"Add a c o n s t a n t  k t o  a polynomial  p . "  
(cond ( ( e q l  k 0 )  p )  ; ; O + p = p  

( ( a n d  (numberp k)  (numberp p ) )  
(+ k p ) )  ;; Add numbers 

( t  ( l e t  ( ( r  (copy-p01y p ) ) )  ;; Add k t o  xAO t e rm  o f  p 
( s e t f  ( c o e f  r 0 )  (poly+poly  ( c o e f  r 0 )  k ) )  
r ) ) ) )  

( de fun  poly+same ( p  q )  
"Add two po lynomia l s  w i t h  t h e  same main v a r i a b l e . "  
;; F i r s t  a s s u r e  t h a t  q i s  t h e  h i g h e r  d e g r e e  polynomial  
( i f  (> ( d e g r e e  p )  ( d e g r e e  q ) )  

(poly+same q p )  
; ; Add each  e l emen t  o f  p i n t o  r (which i s  a copy o f  q )  . 
( l e t  ( ( r  (copy-p01y q ) ) )  

( l o o p  f o r  i from 0 t o  ( d e g r e e  p )  do  
( s e t f  ( c o e f  r i )  ( po ly+po ly  ( c o e f  r i )  ( c o e f  p i ) ) ) )  

r )  1)  

( d e f u n  copy- po ly  ( p )  
"Make a copy a polynomial  . " 
( copy- seq  p ) )  



and the code for multiplying polynomials: 

(defun  poly*poly ( p  q )  
"Mul t i p ly  two po lynomia l s . "  
( n o r m a l i z e - p o l y  

(cond 
((numberp p )  (k*poly p q ) )  
( (numberp  q )  (k*poly q p ) )  
( ( v a r =  (ma in - va r  p )  (ma in - va r  q ) )  (poly*same p q ) )  
( ( v a r >  (ma in - va r  q )  (ma in - va r  p ) )  (k*poly q p ) )  
( t  (k*poly p q ) ) ) ) )  

( de fun  k*poly ( k  p )  
" M u l t i p l y  a polynomial  p by a c o n s t a n t  f a c t o r  k . "  
(cond 

( ( e q l  k 0 )  0 ;; O * p = O  
( ( e q l  k 1) P ;; l * p = p  
( ( a n d  (numberp k)  

(numberp p ) )  (*  k p ) )  ;; M u l t i p l y  numbers 
( t  ;; M u l t i p l y  each  c o e f f i c i e n t  

( l e t  ( ( r  (make-poly  (ma in - va r  p )  ( d e g r e e  p ) ) ) )  
;; Accumulate r e s u l t  i n  r ;  r C i l  = k*pCil 
( l o o p  f o r  i from 0 t o  ( d e g r e e  p )  do 

( s e t f  ( c o e f  r  i )  (poly*poly  k ( c o e f  p i ) ) ) )  
r ) ) ) )  

The hard part is multiplying two polynomials with the same main variable. This 
is done by creating a new polynomial, r, whose degree is the sum of the two input 
polynomials p and q. Initially, all of r's coefficients are zero. A doubly nested 
loop multiplies each coefficient of p and q and adds the result into the appropriate 
coefficient of r. 

(de fun  poly*same ( p  q )  
" M u l t i p l y  two polynomia ls  w i t h  t h e  same v a r i a b l e . "  
;; rC i1  = pCOl*qCil + pClI*qCi-11 + ... 
( l e t *  ( ( r - d e g r e e  (+ ( d e g r e e  p )  ( d e g r e e  q ) ) )  

( r  (make-poly  (ma in - va r  p )  r - d e g r e e ) ) )  
( l o o p  f o r  i  from 0 t o  ( d e g r e e  p )  do  

( u n l e s s  ( e q l  ( c o e f  p i  0 )  
( l o o p  f o r  j from 0 t o  ( d e g r e e  q )  do  

( s e t f  ( c o e f  r (+ i  j ) )  
( po ly+po ly  ( c o e f  r (+ i  j ) )  

( po l  y*pol y ( c o e f  p i  
( coe f  q j ) ) ) ) ) ) )  



Both pol y+pol y and pol y*pol y make use of the function normal i ze-pol  y to "nor- 
malize" the result. The idea is that ( - ( ̂  x 5 ) ( ̂  x 5)  ) should return 0, not 
# ( x 0 0 0 0 0 0 1. Note that norma 1 i ze - pol y is a destructive operation: it calls 
del  ete,  which can actually alter its argument. Normally this is a dangerous thing, 
but since normal i ze - pol y is replacing something with its conceptual equal, no harm 
is done. 

(de fun  no rma l i ze - po ly  ( p )  
"A1 t e r  a  polynomi a1 by d ropp ing  t r a i  1  i ng z e r o s .  " 
( i f  (numberp p )  

P  
( l e t  ( ( p - d e g r e e  ( -  ( p o s i t i o n  0  p  : t e s t  (complement # ' e q l )  

: f rom-end t )  
1) 1 

(cond ((<= p- deg ree  0 )  ( n o r m a l i z e - p o l y  ( c o e f  p  0 ) ) )  
( (<  p- deg ree  ( d e g r e e  p ) )  

( d e l e t e  0  p  : s t a r t  p - d e g r e e ) )  
( t  p ) ) ) ) )  

There are a few loose ends to clean up. First, the exponentiation function: 

(de fun  po lyAn  ( p  n )  
" R a i s e  polynomial  p  t o  t h e  n t h  power, n>=O." 
( c h e c k - t y p e  n  ( i n t e g e r  0  * ) I  
(cond ( ( =  n 0 )  ( a s s e r t  ( n o t  ( e q l  p  0 ) ) )  1) 

( ( i n t e g e r p  p )  ( e x p t  p  n ) )  
( t  (poly*poly  p  ( p o l y A n  p  ( -  n 1 ) ) ) ) ) )  

15.2 Differentiating Polynomials 

The differentiation routine is easy, mainly because there are only two operators (+ 
and *) to deal with: 

(de fun  d e r i v - p o l y  ( p  x )  
"Re tu rn  t h e  d e r i v a t i v e ,  d p l d x ,  o f  t h e  polynomial  p . "  
;; I f  p i s  a  number o r  a  polynomial  w i t h  ma in - va r  > x, 
;; t h e n  p i s  f r e e  of  x, and t h e  d e r i v a t i v e  i s  z e r o ;  
; ; o t h e r w i s e  do r e a l  work. 
;; But f i r s t ,  make s u r e  X i s  a  s i m p l e  v a r i a b l e ,  
;; of  t h e  form # ( X  0  1 ) .  
( a s s e r t  (and  ( t y p e p  x  ' po lynomia l )  (= ( d e g r e e  x )  1) 

( e q l  ( c o e f  x 0 )  0 )  ( e q l  ( c o e f  x  1) 1))) 



(cond 
((numberp p)  0)  
( ( va r>  (main-var p )  (main-var x ) )  0 )  
( ( va r=  (main-var p)  (main-var x ) )  
;; d(a + bx + cx A2 + dxA3) /dx = b  + 2cx + 3dxA2 
; ; So, s h i f t  t h e  sequence p  over by 1, then 
; ; p u t  x  back i n ,  and m u l t i p l y  by t h e  exponents 
( l e t  ( ( r  (subseq p  1 ) ) )  

( s e t f  (main-var r )  (main-var x ) )  
( l oop  f o r  i from 1 t o  (degree r )  do 

( s e t f  (coef  r i )  (po ly*poly  (+ i 1) (coef  r i ) ) ) )  
(normal i z e - p o l y  r )  1) 

( t  ;; Otherwise some c o e f f i c i e n t  may con ta in  x .  Ex: 
;; d ( z  + 3x + 3zxA2 + zA2xA3) /dz 
;; = 1 + 0 + 3xA2 + 2zx

A

3 
;; So copy p, and d i f f e r e n t i a t e  t h e  c o e f f i c i e n t s .  
( l e t  ( ( r  (copy-p01y P I ) )  

( l o o p  f o r  i from 0  t o  (degree p )  do 
( s e t f  (coef  r i) ( d e r i v - p o l y  (coef  r i) XI)) 

(norma l i ze -po ly  r ) ) ) ) )  

p Exercise 15.1 [h] Integrating polynomials is not much harder than differentiating 
them. For example: 

Write a function to integrate polynomials and install it in pref i x->canon. 

Exercise 15.2 [m] Add support for definite integrals, such as  by dx. You will 
need to make up a suitable notation and properly install it in both i nf i x->pref i x 
and pref i x ->canon. A full implementation of this feature would have to consider 
infinity as a bound, as well as the problem of integrating over singularities. You need 
not address these problems. 

15.3 Converting between Infix and Prefix 

All that remains is converting from canonical form back to prefix form, and from 
there back to infix form. This is a good point to extend the prefix form to allow 
expressions with more than two arguments. First we show an updated version of 
pref i x->i nf i x that handles multiple arguments: 



(defun prefix->infix (exp) 
"Trans1 a te  prefix t o  in f ix  expressions. 
Handles operators with any number of args." 
( i f  (atom exp) 

exp 
(intersperse 

(exp-op exp) 
(mapcar # 'prefix->infix (exp-args e x p ) ) ) ) )  

(defun intersperse (op args) 
"Place op between each element of args. 
Ex: ( intersperse '+ ' ( a  b c ) )  => ' ( a  + b + c ) "  
( i f  (length=l args) 

( f i r s t  args) 
( r e s t  (loop for  arg in args 

col lec t  op 
col lec t  a r g ) ) ) )  

Now we need only convert from canonical form to prefix: 

(defun canon->prefix (p )  
"Convert a canonical polynomial t o  a l i s p  expression." 
( i f  (numberp p )  

P 
(args ->pref i x 

'+ 0 
(loop for i from (degree p) downto 0 

col 1 ect  (args ->pref i x 
' *  1 
( l i s t  (canon->prefix (coef p i 1)  

(exponent->prefix 
(main-var p) i 1)  1)  1)  1 

(defun exponent->prefix (base exponent) 
"Convert canonical baseAexponent t o  prefix form. " 
(case exponent 

(0  1) 
(1 base) 
( t  ' ( ^  'base ,exponent))))  

(defun args->prefix (op identi ty args) 
"Convert argl  op arg2 op ... t o  prefix form." 
( l e t  ((useful-args (remove identi ty a r g s ) ) )  

(cond ( (nul l  useful-args) ident i ty)  
((and (eq op '*I (member 0 a rgs ) )  0) 
(( length=l args) ( f i r s t  useful-args))  
( t  (cons op (mappend 

#'(lambda (exp) 



( i f  ( s t a r t s - w i t h  exp op) 
(exp-args exp) 
( l i s t  exp ) ) )  

use fu l  -args)  1)  1) 

Finally, here's a top level to make use of all this: 

(defun canon ( i n f i x - e x p )  
"Canonica l ize argument and conver t  i t  back t o  i n f i x "  
( p r e f i x - > i n f i x  

(canon->pref i x  
( p r e f  ix->canon 

( i n f i x - > p r e f i x  i n f i x - e x p ) ) ) ) )  

(defun canon-simp1 i f i e r  ( 1  
"Read an expression, canon ica l i ze  it, and p r i n t  t h e  r e s u l t . "  
(1 oop 

( p r i n t  'canon>) 
( p r i n t  (canon ( r e a d ) ) ) ) )  

and an example of it in use: 

> (canon-simp1 i f i e r )  
CANON> ( 3  + x  + 4  - x )  
7  
CANON> ( x  + y  + y  + x )  
( ( 2  * X I  + ( 2  * Y))  
CANON> ( 3  * x  + 4  * x )  
(7  * X) 
CANON> ( 3  * x  + y  + x  + 4  * x )  
( ( 8  * X I  + Y) 
CANON> (3 * x + y  + z + x  + 4  * x )  
( ( 8  * X) + (Y + Z ) )  
CANON> ( ( x  + 1 )  A 10) 
( (X A 10) + (10 * (X ^ 9 ) )  + (45 * (X A 8 ) )  + (120 * (X A 7 ) )  
+ (210 * (X A 6 ) )  + (252 * (X A 5 ) )  + (210 * ( X  A 4 ) )  
+ (120 * (X ^ 3 ) )  + (45 * (X A 2 ) )  + (10 * X I  + 1 )  

CANON> ( ( x  + 1 )  A 10 + ( x  - 1 )  A 10) 
( ( 2  * (X A 10 ) )  + (90 * (X A 8 ) )  + (420 * (X A 6 ) )  
+ (420 * ( X  * 4 ) )  + (90 * (X ^ 2 ) )  + 2) 

CANON> ( ( x  + 1 )  A 10 - ( x  - 1 )  A 10) 
( (20  * (X A 8 ) )  + (240 * (X A 7 ) )  + (504 * (X ^ 5 ) )  
+ (240 * (X A 3 ) )  + (20 * X I )  

C A N O N > ( 3 * x A 3 + 4 * x * y *  ( x  - 1 )  + x A 2 *  ( x + y ) )  
( ( 4  * (X ^ 3 ) )  + ( ( 5  * Y) * (X A 2 ) )  + ( ( - 4  * Y )  * X I )  
C A N O N > ( 3 * x A 3 + 4 * x * w *  ( x  - 1 ) + x A 2 *  ( x + w ) )  
( ( ( ( 5  * (X A 2 ) )  + ( - 4  * X I )  * W )  + ( 4  * (X A 3 ) ) )  



15.4 Benchmarking the Polynomial Simplifier 

Unlike the rule-based program, this version gets all the answers right. Not only is the 
program correct (at least as far as these examples go), it is also fast. We can compare 
it to the canonical simplifier originally written for MACSYMA by William Martin (circa 
1968), and modified by Richard Fateman. The modifiedversion was used by Richard 
Gabriel in his suite of Common Lisp benchmarks (1985). The benchmark program 
is called frpol y, because it deals with polynomials and was originally written in 
the dialect Franz Lisp. The f rpol y benchmark encodes polynomials as lists rather 
than vectors, and goes to great lengths to be efficient. Otherwise, it is similar to the 
algorithms used here (although the code itself is quite different, using progs and gos 
and other features that have fallen into disfavor in the intervening decades). The 
particular benchmark we will use here is raising 1 + x + y + z to the 15th power: 

(defun r15-test  0 
( l e t  ( ( r  (prefix->canon ' (+  1 (+ x (+ y z ) ) ) ) ) )  

(time (polyAn r 1 5 ) )  
nil 1) 

This takes .97 seconds on our system. The equivalent test with the original f rpol y 
code takes about the same time: .98 seconds. Thus, our program is as fast as 
production-quality code. In terms of storage space, vectors use about half as much 
storage as lists, because half of each cons cell is a pointer, while vectors are all useful 
data.2 

How much faster is the polynomial-based code than the rule-based version? 
Unfortunately, we can't answer that question directly. We can time (simp ' ( (1 
+ x + y + Z )  15 ) ) 1. This takes only a tenth of a second, but that is because 
it is doing no work at all-the answer is the same as the input! Alternately, we 
can take the expression computed by ( pol y "n r 15 1, convert it to prefix, and pass 
that to si  mpl i fy. simp1 i fy takes 27.8 seconds on this, so the rule-based version is 

2 ~ o t e :  systems that use "cdr-coding" take about the same space for lists that are allocated 
all at once as for vectors. But cdr-coding is losing favor as RISC chips replace microcoded 
processors. 



much slower. Section 9.6 describes ways to speed up the rule-based program, and a 
comparison of timing data appears on page 525. 

There are always surprises when it comes down to measuring timing data. For 
example, the alert reader may have noticed that the version of pol y ̂ n  defined above 
requires n multiplications. Usually, exponentiation is done by squaring a value when 
the exponent is even. Such an algorithm takes only log n multiplications instead of 
n. We can add a line to the definition of pol y * n to get an 0 (log n) algorithm: 

(de fun  po ly
A

n  ( p  n )  

" R a i s e  polynomial  p  t o  t h e  n t h  power, n>=O." 

( c h e c k - t y p e  n  ( i n t e g e r  0  * ) I  
(cond ( (=  n 0 )  ( a s s e r t  ( n o t  ( e q l  p  0 ) ) )  1) 

( ( i n t e g e r p  p )  ( e x p t  p  n ) )  

( ( e v e n p  n )  ( p o l y n 2  ( p o l y A n  p  ( 1  n 2 ) ) ) )  ;*** 
( t  (poly*poly  p  ( p o l y n n  p  ( -  n 1 ) ) ) ) ) )  

(defun  po ly
A

2  ( p )  (poly*poly  p  p ) )  

The surprise is that this takes longer to raise *r* to the 15th power. Even though it 
does fewer pol y*pol y operations, it is doing them on more complex arguments, and 
there is more work altogether. If we use this version of pol yAn, then r15 - t e s t  takes 
1.6 seconds instead of .98 seconds. 

By the way, this is a perfect example of the conceptual power of recursive func- 
tions. We took an existing function, pol ynn, added a single cond clause, and changed 
it from an O(n) to O(1ogn) algorithm. (This turned out to be a bad idea, but that's 
beside the point. It would be a good idea for raising integers to powers.) The rea- 
soning that allows the change is simple: First, p" is certainly equal to (pn/2)2 when 
n is even, so the change can't introduce any wrong answers. Second, the change 
continues the policy of decrementing n on every recursive call, so the function must 
eventually terminate (when n = 0). If it gives no wrong answers, and it terminates, 
then it must give the right answer. 

In contrast, making the change for an iterative algorithm is more complex. The 
initial algorithm is simple: 

(de fun  po ly
A

n  ( p  n )  

( l e t  ( ( r e s u l t  1 ) )  

( l o o p  r e p e a t  n  do ( s e t f  r e s u l t  (poly*poly  p  r e s u l t ) ) )  

r e s u l  t 1)  

But to change it, we have to change the r e p e a t  loop to a whi 1 e loop, explicitly put in 
the decrement of n, and insert a test for the even case: 



(defun polyAn (p n )  
( l e t  ( ( r e s u l t  1 ) )  

(loop while (> n 0) 
d o  ( i f  (evenp n )  

( s e t f  p (polyA2 p )  
n ( I  n 2 ) )  

( se t f  resul t  (poly*poly p resul t )  
n ( -  n 1 ) ) ) )  

resul t 1) 

For this problem, it is clear that thinking recursively leads to a simpler function that 
is easier to modify. 

It turns out that this is not the final word. Exponentiation of polynomials can be 
done even faster, with a little more mathematical sophistication. Richard Fateman's 
1974 paper on Polynomial Multiplication analyzes the complexity of a variety of 
exponentiation algorithms. Instead of the usual asymptotic analysis (e.g. O(n) 
or 0(n2)), he uses a fine-grained analysis that computes the constant factors (e.g. 
1000 x n or 2 x n2). Such analysis is crucial for small values of n. It turns out that for a 
variety of polynomials, an exponentiation algorithm based on the binomial theorem 
is best. The binomial theorem states that 

for example, 

We can use this theorem to compute a power of a polynomial all at once, instead 
of computing it by repeated multiplication or squaring. Of course, a polynomial will 
in general be a sum of more than two components, so we have to decide how to split it 
into the a and b pieces. There are two obvious ways: either cut the polynomial in half, 
so that a and b will be of equal size, or split off one component at a time. Fateman 
shows that the latter method is more efficient in most cases. In other words, a 
polynomial klxn + lc2xn-I + k3xn-* + - .  will be treated as the sum a + b where 
a = klxn and b is the rest of the polynomial. 

Following is the code for binomial exponentiation. It is somewhat messy, because 
the emphasis is on efficiency. This means reusing some data and using p - add - i n t o  ! 
instead of the more general pol y+pol y . 

(defun polyAn (p n )  
"Raise polynomial p t o  the n t h  power, n>=O." 
; ; Uses the binomial theorem 
(check-type n ( integer 0 * I )  
(cond 

( (=  n 0) 1) 



( ( i n t e g e r p  p )  (expt  p  n ) )  

( t  ; ; F i r s t :  sp l  i t  t h e  polynomial p  = a + b, where 

;; a = k*x
A

d and b i s  t h e  r e s t  o f  p  
( l e t  ( ( a  (make-poly (main-var p )  (degree p ) ) )  

( b  (normal ize-poly  (subseq p 0 ( -  ( l e n g t h  p )  1 ) ) ) )  

;; A l l o c a t e  ar rays o f  powers o f  a  and b: 
(ann (make-array (+ n 1 ) ) )  

(bnn (make-array (+ n 1 ) ) )  
;; I n i t i a l i z e  t h e  r e s u l t :  

( r e s u l t  (make-poly (main-var p )  ( *  (degree p )  n ) ) ) )  
( s e t f  ( coe f  a  (degree p ) )  ( coe f  p  (degree p ) ) )  

;; Second: Compute powers o f  a
A

i  and b
A

i  f o r  i up t o  n  

( s e t f  ( a r e f  a
A

n 0 )  1) 
( s e t f  ( a r e f  b

n

n 0 )  1 )  

( l o o p  f o r  i from 1 t o  n do 

( s e t f  ( a r e f  a
n

n i )  (po ly*poly  a  ( a r e f  a
A

n ( -  i 1 ) ) ) )  

( s e t f  ( a r e f  b
n

n i )  (po ly*poly  b  ( a r e f  b
A

n ( -  i 1 ) ) ) ) )  

;; Th i rd :  add t h e  products i n t o  t h e  r e s u l t ,  

;; so t h a t  r e s u l t C i 1  = (n choose i )  * a
A

i  * b n ( n - i )  

( l e t  ( ( c  1 ) )  ;; c he lps compute ( n  choose i) inc rementa l l y  

( l o o p  f o r  i from 0 t o  n  do 

(p -add- in to !  r e s u l t  c  

(po l  y*pol y  ( a r e f  ann i ) 

( a r e f  b
A

n ( -  n  i ) ) ) )  

( s e t f  c  ( 1  ( *  c ( -  n  i ) )  (+ i 1 ) ) ) ) )  
(normal i z e - p o l y  r e s u l t ) ) ) ) )  

(defun p -add- in to !  ( r e s u l t  c  p )  

" D e s t r u c t i v e l y  add c*p i n t o  r e s u l t . "  

( i f  ( o r  (numberp p)  

( n o t  (var= (main-var p)  (main-var r e s u l t ) ) ) )  
( s e t f  (coef  r e s u l t  0 )  

(po ly+poly  (coef r e s u l t  0)  (po ly*poly  c  p ) ) )  
( l o o p  f o r  i from 0 t o  (degree p )  do 

( s e t f  ( coe f  resu l  t i ) 

(po ly+poly  ( coe f  r e s u l t  i )  (po ly*poly  c  (coef  p  i ) ) ) ) ) )  
resu l  t 

Using this version of pol yAn, r l 5  - t e s t  takes only .23 seconds, four times faster than 
the previous version. The following table compares the times for r l 5 -  t e s t  with 
the three versions of pol y ̂ n, along with the times for applying s  i mpl y to the r 1 5  

polynomial, for various versions of s  i mpl i fy: 



program secs speed-up 
rule-based versions 

1 original 27.8 - 

2 memoization 7.7 4 
3 memo+index 4.0 7 
4 compilation only 2.5 11 
5 memo+compilation 1.9 15 

canonical versions 
6 squaringpolyAn 1.6 17 
7 iterative pol y *n  .98 28 
8 binomialpolyAn .23 120 

As we remarked earlier, the general techniques of memoization, indexing, and 
compilation provide for dramatic speed-ups. However, in the end, they do not lead 
to the fastest program. Instead, the fastest version was achieved by throwing out the 
original rule-based program, replacing it with a canonical-form-based program, and 
fine-tuning the algorithms within that program, using mathematical analysis. 

Now that we have achieved a sufficiently fast system, the next two sections 
concentrate on making it more powerful. 

15.5 A Canonical Form for Rational Expressions 

A rational number is defined as a fraction: the quotient of two integers. A rational 
expression is hereby defined as the quotient of two polynomials. This section presents 
a canonical form for rational expressions. 

First, a number or polynomial will continue to be represented as before. The 
quotient of two polynomials will be represented as a cons cells of numerator and 
denominator pairs. However, just as Lisp automatically reduces rational numbers 
to simplest form (6/8 is represented as 3/4), we must reduce rational expressions. 
So, for example, (x2 - l)/(x - 1) must be reduced to x + 1, not left as a quotient of 
two polynomials. 

The following functions build and access rational expressions but do not reduce 
to simplest form, except in the case where the denominator is a number. Building up 
the rest of the functionality for full rational expressions is left to a series of exercises: 

(defun make-rat (numerator denominator) 
"Build a rational: a quotient of two polynomials." 
(if (numberp denominator) 

(k*poly ( 1  1 denominator) numerator) 
(cons numeratordenominator))) 



(defun ra t -numerator  ( r a t )  
"The numerator o f  a r a t i o n a l  express ion. "  
( typecase r a t  

(cons ( c a r  r a t ) )  
(number (numerator r a t ) )  
( t  r a t ) ) )  

(defun rat-denominator ( r a t )  
"The denominator o f  a r a t i o n a l  expression." 
( typecase r a t  

(cons (cd r  r a t ) )  
(number (denominator r a t ) )  

( t  1 ) ) )  

Exercise 15.3 [s] Modify pref i x->ca non to accept input of the form x I y and to 
return rational expressions instead of polynomials. Also allow for input of the form 

h x - n .  

Exercise 15.4 [m] Add arithmetic routines for multiplication, addition, and divi- 
sion of rational expressions. Call them ra t*rat, rat+rat, and ra t  / ra t  respectively. 
They will call upon poly*poly, pol y-tpoly and a new function, polylpoly, which is 
defined in the next exercise. 

Exercise 15.5 [h] Define pol y-gcd, which computes the greatest common divisor 
of two polynomials. 

Exercise 15.6 [h] Using pol y - gcd, define the function pol y /pol y, which will im- 
plement division for polynomials. Polynomials are closed under addition and multi- 
plication, so pol y-tpol y and pol y*pol y both returned polynomials. Polynomials are 
not closed under division, so pol ylpol y will return a rational expression. 

15.6 Extending Rational Expressions 

Now that we can divide polynomials, the final step is to reinstate the logarithmic, 
exponential, and trigonometric functions. The problem is that if we allow all these 
functions, we get into problems with canonical form again. For example, the follow- 
ing three expressions are all equivalent: 



If we are interested in assuring we have a canonical form, the safest thing is to 
allow only ex and log(x). All the other functions can be defined in terms of these two. 
With this extension, the set of expressions we can formis closedunder differentiation, 
and it is possible to canonicalize expressions. The result is a mathematically sound 
construction known as a differentiable field. This is precisely the construct that is 
assumed by the Risch integration algorithm (Risch 1969,1979). 

The disadvantage of this minimal extension is that answers may be expressed in 
unfamiliar terms. The user asks for d sin(x2)/dx, expecting a simple answer in terms 
of cos, and is surprised to see a complex answer involving em. Because of this prob- 
lem, most computer algebra systems have made more radical extensions, allowing 
sin, cos, and other functions. These systems are treading on thin mathematical ice. 
Algorithms that would be guaranteed to work over a simple differentiable field may 
fail when the domain is extended this way. In general, the result will not be a wrong 
answer but rather the failure to find an answer at all. 

15.7 History and References 

A brief history of symbolic algebra systems is given in chapter 8. Fateman (1979), 
Martin and Fateman (1971), and Davenport et al. (1988) give more details on the MAC- 
SYMA system, on which this chapter is loosely based. Fateman (1991) discusses the 
f rpol y benchmark and introduces the vector implementation used in this chapter. 

15.8 Exercises 

p Exercise 15.7 [h] Implement an extension of the rationals to include logarithmic, 
exponential, and trigonometric functions . 

a Exercise 15.8 [rn] Modify deri v to handle the extended rational expressions. 

Exercise 15.9 [dl Adapt the integration routine from section 8.6 (page 252) to the 
rational expression representation. Davenport et al. 1988 may be useful. 



Exercise 15.10 [s] Give several reasons why constant polynomials, like 3, are rep- 
resented as integers rather than as vectors. 

15.9 Answers 

Answer 15.4 

(defun r a t * r a t  ( x  y )  
" M u l t i p l y  r a t i o n a l s :  a/b * c /d  = a*c/b*dU 
( p o l y l p o l y  (po ly*poly  ( ra t -numerator  x )  

( ra t -numerator  y ) )  
(po ly*poly  ( ra t -denominator  x )  

( ra t -denominator  y ) ) ) )  

(defun r a t + r a t  ( x  y )  
"Add r a t i o n a l s :  a/b + c / d  = (a*d + c*b)/b*dM 
( l e t  ( ( a  ( ra t -numerator  X I )  

(b  ( ra t -denominator  x ) )  
(C ( ra t -numerator  y ) )  
( d  ( ra t -denominator  y ) ) )  

( p o l y l p o l y  (poly+poly (po ly*poly  a  d l  (po ly*poly  c b ) )  
(po ly*poly  b  d ) ) ) )  

(defun r a t l r a t  ( x  y )  
"D iv ide  r a t i o n a l s :  a l b  / c / d  = a*d/b*cn 
( r a t * r a t  x  (make-rat ( ra t -denominator  y )  ( ra t -numerator  y ) ) ) )  

Answer 15.6 

(defun p o l y l p o l y  ( p  q )  
"D iv ide  p by q: i f  d i s  t h e  g rea tes t  common d i v i s o r  o f  p  and q 
then p l q  = (p/d)  / (q /d ) .  Note i f  q = l ,  then p l q  = p." 
( i f  (eq l  q  1) 

P 
( l e t  ( ( d  (po ly-gcd p q ) ) )  

(make-rat (po ly /po ly  p  d) 
( p o l y / p o l y  q  d ) ) ) ) )  

Answer 15.10 (1) An integer takes less time and space to process. (2) Representing 
numbers as a polynomial would cause an infinite regress, because the coefficients 
would be numbers. (3) Unless a policy was decided upon, the representation would 
not be canonical, since # (x  3 1 and # ( y 3 ) both represent 3. 



Expert Systems 

A n  expert is one who  knows more and more 
about less and less. 

-Nicholas Murray Butler (1 862-1 947) 

n the 1970s there was terrific interest in the area of knowledge-based expert systems. An expert 
system or knowledge-based system is one that solves problems by applying knowledge 
that has been garnered from one or more experts in a field. Since these experts will not in 

general be programmers, they will very probably express their expertise in terms that cannot 
immediately be translated into a program. It is the goal of expert-system research to come up 
with a representation that is flexible enough to handle expert knowledge, but still capable of 
being manipulated by a computer program to come up with solutions. 



A plausible candidate for this representation is as logical facts and rules, as in 
Prolog. However, there are three areas where Prolog provides poor support for a 
general knowledge-based system: 

a Reasoning with uncertainty. Prolog only deals with the black-and-white world 
of facts that are clearly true or false (and it doesn't even handle false very well). 
Often experts will express rules of thumb that are "likely" or "90% certain." 

a Explanation. Prolog gives solutions to queries but no indication of how those 
solutions were derived. A system that can explain its solutions to the user in 
understandable terms will be trusted more. 

Flexible flow of control. Prolog works by backward-chaining from the goal. In 
some cases, we may need more varied control strategy. For example, in medical 
diagnosis, there is a prescribed order for acquiring certain information about 
the patient. A medical system must follow this order, even if it doesn't fit in 
with the backward-chaining strategy. 

The early expert systems used a wide variety of techniques to attack these prob- 
lems. Eventually, it became clear that certain techniques were being used frequently, 
and they were captured in expert-system shells: specialized programming environ- 
ments that helped acquire knowledge from the expert and use it to solve problems 
and provide explanations. The idea was that these shells would provide a higher 
level of abstraction than just Lisp or Prolog and would make it easy to write new 
expert sys tems. 

The MYCIN expert system was one of the earliest and remains one of the best 
known. It was written by Dr. Edward Shortliffe in 1974 as an experiment in medical 
diagnosis. MYCIN was designed to prescribe antibiotic therapy for bacterial blood 
infections, and when completed it was judged to perform this task as well as experts 
in the field. Its name comes from the common suffix in drugs it prescribes: ery- 
thromycin, clindamycin, and so on. The following is a slightly modified version of 
one of MYCIN'S rules, along with an English paraphrase generated by the system: 

( d e f r u l e  52 

i f  ( s i t e  c u l t u r e  i s  b lood)  
(gram organism i s  neg) 

(morphology organism i s  rod )  
(burn p a t i e n t  i s  se r ious )  

then .4 

( i d e n t i t y  organism i s  pseudomonas)) 



Rule 52: 
I f  

1) THE SITE OF THE CULTURE I S  BLOOD 
2 )  THE GRAM OF THE ORGANISM I S  NEG 
3)  THE MORPHOLOGY OF THE ORGANISM I S  ROD 
4)  THE BURN OF THE PATIENT I S  SERIOUS 

Then t h e r e  i s  weakly sugges t i ve  ev idence (0.4) t h a t  
1) THE IDENTITY OF THE ORGANISM I S  PSEUDOMONAS 

MYCIN lead to the development of the EMYCIN expert-system shell. EMYCIN stands 
for "essential MYCIN," although it is often mispresented as "empty MYCIN." Either 
way, the name refers to the shell for acquiring knowledge, reasoning with it, and 
explaining the results, without the specific medical knowledge. 

EMYCIN is a backward-chaining rule interpreter that has much in common with 
Prolog. However, there are four important differences. First, and most importantly, 
EMYCIN deals with uncertainty. Instead of insisting that all predications be true or 
false, EMYCIN associates a certainty factor with each predication. Second, EMYCIN 

caches the results of its computations so that they need not be duplicated. Third, 
EMYCIN provides an easy way for the system to ask the user for information. Fourth, 
it provides explanations of its behavior. This can be summed up in the equation: 

EMYCIN = Prolog + uncertainty + caching + questions + explanations 

We will first cover the ways EMYCIN is different from Prolog. After that we will 
return to the main core of EMYCIN, the backward-chaining rule interpreter. Finally, 
we will show how to add some medical knowledge to EMYCIN to reconstruct MYCIN. 
A glossary of the program is in figure 16.1. 

EMYCIN deals with uncertainty by replacing the two boolean values, true and false, 
with a range of values called certainty factors. These are numbers from -1 (false) to 
+1 (true), with 0 representing a complete unknown. In Lisp: 

(de fcons tan t  t r u e  +1.0) 
(de fcons tan t  f a l s e  -1.0) 
(de fcons tan t  unknown 0.0) 

To define the logic of certainty factors, we need to define the logical operations, 
such as and, or, and not. The first operation to consider is the combination of two 
distinct pieces of evidence expressed as certainty factors. Suppose we are trying to 



Top-Level Functions for the Client 
emyci n Run the shell on a list of contexts representing a problem. 
myci n Run the shell on the microbial infection domain. 

Top-Level Functions for the Expert 
defcontext Define a context. 
def pa rm Define a parameter. 
def rul e Define a rule. 

Constants 
true A certainty factor of +1. 
fa1 se A certainty factor of -1. 
unknown A certainty factor of 0. 
cf-cut-off Below this certainty we cut off search. 

Data Types 
context A subdomain concerning a particular problem. 
pa rm A parameter. 
rule A backward-chainingrule with certainty factors. 
yes/no The type with members yes and no. 

Major Functions within Emycin 
get-context-data Collect data and draw conclusions. 
find-out Determine values by knowing, asking, or using rules. 
get-db Retrieve a fact from the data base. 
use-rul es Apply all rules relevent to a parameter. 
use- rul e Apply one rule. 
new-instance Create a new instance of a context. 
report -f i ndi ngs Print the results. 

AwdliaryFunctions 
cf-or Combine certainty factors (CFs) with OR. 
cf -and Combine certainty factors (CFs) with AND. 
true-p Is this CF true for purposes of search? 
fa1 se-p Is this CF false for purposes of search? 
cf-p Is this a certainty factor? 
put-db Place a fact in the data base. 
clear-db Clear all facts from the data base. 
get-vals Get value and CF for a parameter/instance. 
get -cf Get CF for a parameter/instance/value triplet. 
update-cf Change CF for a parameter/instance/value triplet. 
ask-val s Ask the user for value/CF for a parameter/instance. 
prompt - and - read - val s Print a prompt and read a reply. 
i nst-name The name of an instance. 
check- reply See if reply is valid list of CF/values. 
parse-reply Convert reply into list of CF/values. 
parm- type Values of this parameter must be of this type. 
get-parm Find or make a parameter structure for this name. 
put-rul e Add a new rule, indexed under each conclusion. 
get-rul es Retrieve rules that help determine a parameter. 
clear-rul es Remove all rules. 
satisfy-premises Calculate the combined CF for the premises. 
eval -condition Determine the CF for a condition. 
reject-premise Rule out a premise if it is clearly false. 
conclude Add a parameter/instance/value/CF to the data base. 
is An alias for equal. 
check-condi tions Make sure a rule is valid. 
print-rule Print a rule. 
print-condi ti ons Print a list of conditions. 
print-condition Print a single condition. 
cf ->engl i sh Convert .7 to "suggestive evidence," etc. 
print-why Say why a rule is being used. 

Figure 16.1: Glossary for the EMYCIN Program 



determine the chances of a patient having disease X. Assume we have a population 
of prior patients that have been given two lab tests. One test says that 60% of the 
patients have the disease and the other says that 40% have it. How should we 
combine these two pieces of evidence into one? Unfortunately, there is no way to 
answer that question correctlywithout knowing more about the dependence of the two 
sources on each other. Suppose the first test says that 60% of the patients (who all 
happen to be male) have the disease, and the second says that 40% (who all happen 
to be female) have it. Then we should conclude that 100% have it, because the two 
tests cover the entire population. On the other hand, if the first test is positive only 
for patients that are 70 years old or older, and the second is positive only for patients 
that are 80 or older, then the second is just a subset of the first. This adds no new 
information, so the correct answer is 60% in this case. 

In section 16.9 we will consider ways to take this kind of reasoning into account. 
For now, we will present the combination method actually used in EMYCIN. It is 
defined by the formula: 

combine (A, B) = 

A + B  
otherwise 

1 - min(lA1, IBI)' 

According to this formula, combine(.60,.40) = .76, which is a compromise between 
the extremes of .60 and 1.00. It is the same as the probability p(A or B), assuming that 
A and B are independent. 

However, it should be clear that certainty factors are not the same thing as 
probabilities. Certainty factors attempt to deal with disbelief as well as belief, but 
they do not deal with dependence and independence. The EMYCIN combination 
function has a number of desirable properties: 

It always computes a number between -1 and +1 

Combining unknown (zero) with anything leaves it unchanged. 

Combining true with anything (except false) gives true. 

Combining true and false is an error. 

Combining two opposites gives unknown. 

Combining two positives (except true) gives a larger positive. 

Combining a positive and a negative gives something in between. 



So far we have seen how to combine two separate pieces of evidence for the same 
hypothesis. In other words, if we have the two rules: 

and we know A with certainty factor (cf) .6 and B with cf .4, then we can conclude C 
with cf .76. But consider a rule with a conjunction in the premise: 

Combining A and B in this case is quite different from combining them when they are 
in separate rules. EMYCIN chooses to combine conjunctions by taking the minimum of 
each conjunct's certainty factor. If certainty factors were probabilities, this would be 
equivalent to assumming dependence between conjuncts in a rule. (If the conjuncts 
were independent, then the product of the probabilities would be the correct answer.) 
So EMYCIN is making the quite reasonable (but sometimes incorrect) assumption that 
conditions that are tied together in a single rule will be dependent on one another, 
while conditions in separate rules are independent. 

The final complication is that rules themselves may be uncertain. That is, MYCIN 

accommodates rules that look like: 

to say that A and B imply C with .9 certainty. EMYCIN simply multiplies the rule's cf 
by the combined cf of the premise. So if A has cf .6 and B has cf .4, then the premise 
as a whole has cf .4 (the minimum of A and B), which is multiplied by .9 to get .36. 
The .36 is then combined with any exisiting cf for C. If Cis previously unknown, then 
combining .36 with 0 will give .36. If C had a prior cf of .76, then the new cf would be 
.36 + .76 - (.36 x .76) = .8464. 

Here are the EMYCIN certainty factor combination functions in Lisp: 

(de fun  c f - o r  ( a  b )  
"Combine t h e  c e r t a i n t y  f a c t o r s  f o r  t h e  formula  ( A  o r  B ) .  
T h i s  i s  used when two r u l e s  s u p p o r t  t h e  same c o n c l u s i o n . "  
(cond ( ( a n d  (> a  0 )  (> b  0 ) )  

(+ a  b  ( *  -1 a  b ) ) )  
( ( a n d  (< a  0 )  (< b  0 ) )  
(+ a  b  ( *  a  b ) ) )  

( t  ( 1  (+ a  b )  
( -  1 (min ( a b s  a )  ( a b s  b ) ) ) ) ) ) )  

( de fun  c f - a n d  ( a  b )  
"Combine t h e  c e r t a i n t y  f a c t o r s  f o r  t h e  formula  ( A  and B ) . "  
(min a  b ) )  

Certainty factors can be seen as a generalization of truth values. EMYCIN is a 



backward-chaining rule system that combines certainty factors according to the 
functions laid out above. But if we only used the certainty factors t rue  and f a 1  se, 
then EMYCIN would behave exactly like Prolog, returning only answers that are defi- 
nitely true. It is only when we provide fractional certainty factors that the additional 
EMYCIN mechanism makes a difference. 

Truth values actually serve two purposes in Prolog. They determine the final 
answer, yes, but they also determine when to cut off search: if any one of the 
premises of a rule is false, then there is no sense looking at the other premises. If 
in EMYCIN we only cut off the search when one of the premises was absolutely false, 
then we might have to search through a lot of rules, only to yield answers with very 
low certainty factors. Instead, EMYCIN arbitrarily cuts off the search and considers a 
premise false when it has a certainty factor below .2. The following functions support 
this arbitrary cutoff point: 

(defconstant  c f - c u t - o f f  0.2 
"Below t h i s  c e r t a i n t y  we c u t  o f f  search. " )  

(defun t r u e - p  ( c f )  
" I s  t h i s  c e r t a i n t y  f a c t o r  considered t r u e ? "  
(and ( c f - p  c f )  (> c f  c f - c u t - o f f ) ) )  

(defun f a l s e - p  ( c f )  
" I s  t h i s  c e r t a i n t y  f a c t o r  considered f a l s e ? "  
(and ( c f - p  c f )  (< cf ( -  c f - c u t - o f f  1 . 0 ) ) ) )  

(defun c f - p  ( x )  
" I s  X a  v a l i d  numeric c e r t a i n t y  f a c t o r ? "  
(and (numberp x )  (<= f a l s e  x t r u e ) ) )  

Exercise 16.1 [m] Suppose you read the headline "Elvis Alive in Kalamazoo" in a 
tabloid newspaper to which you attribute a certainty factor of .01. If you combine cer- 
tainties using EMYCIN'S combination rule, how many more copies of the newspaper 
would you need to see before you were .95 certain Elvis is alive? 

16.2 CachingDerivedFacts 

The second thing that makes EMYCIN different from Prolog is that EMYCIN caches all 
the facts it derives in a data base. When Prolog is asked to prove the same goal twice, 
it performs the same computation twice, no matter how laborious. EMYCIN performs 
the computation the first time and just fetches it the second time. 



We can implement a simple data base by providing three functions: p u t  - d b to add 
an association between a key and a value, ge t  - d b to retrieve a value, and c 1 ea r - d b 
to empty the data base and start over: 

( l e t  ( ( d b  (make-hash-table : t es t  # 'equal)))  
(defun get-db (key) (gethash key d b ) )  
(defun p u t - d b  (key val 1 (setf  (gethash key d b )  val 1) 
(defun clear-db 0 (cl rhash d b ) ) )  

This data base is general enough to hold any association between key and value. 
However, most of the information we will want to store is more specific. EMYCIN 
is designed to deal with objects (or instances) and attributes (or parameters) of those 
objects. For example, each patient has a name parameter. Presumably, the value of 
this parameter will be known exactly. On the other hand, each microscopic organism 
has an i d e n t i t y  parameter that is normally not known at the start of the consulta- 
tion. Applying the rules will lead to several possible values for this parameter, each 
with its own certainty factor. In general, then, the data base will have keys of the 
form (parameter instance 1 with values of the form ( ( vall cfl 1 ( va12 cf2 1 . . . 1 . In the 
following code, ge t  - v a l  s returns the list of value/cf pairs for a given parameter and 
instance, ge t  - cf returns the certainty factor for a parameter/instance/value triplet, 
and update - cf changes the certainty factor by combining the old one with a new one. 
Note that the first time update- cf is called on a given parameter/instance/value 
triplet, ge t  - cf will return unknown (zero). Combining that with the given cf yields cf 
itself. Also note that the data base has to be an equal hash table, because the keys 
may include freshly consed lists. 

(defun get-vals (parm ins t )  
"Return a l i s t  of (val c f )  pairs for this  (parm in s t ) . "  
(get-db ( l i s t  parm i n s t ) ) )  

(defun get-cf (parm inst v a l )  
"Look u p  the certainty factor or return unknown." 
(or (second (assoc v a l  (get-vals parm i n s t ) ) )  

unknown) 

(defun update-cf (parm inst  v a l  c f )  
"Change the certainty factor for (parm inst i s  v a l ) ,  
by combining the given cf with the old." 
( l e t  ((new-cf (cf-or cf (get-cf parm inst v a l ) ) ) )  

(put-db ( l i s t  parm ins t )  
(cons ( l i s t  v a l  new-cf) 

(remove val (get-db ( l i s t  parm in s t ) )  
:key # ' f i r s t ) ) ) ) )  

The data base holds all information related to an instance of a problem. For example, 



in the medical domain, the data base would hold all information about the current 
patient. When we want to consider a new patient, the data base is cleared. 

There are three other sources of information that cannot be stored in this data 
base, because they have to be maintained from one problem to the next. First, the 
rule base holds all the rules defined by the expert. Second, there is a structure to 
define each parameter; these are indexed under the name of each parameter. Third, 
we shall see that the flow of control is managed in part by a list of contexts to consider. 
These are structures that will be passed to the myci n function. 

16.3 Asking Questions 

The third way that EMYCIN differs from Prolog is in providing an automatic means of 
asking the user questions when answers cannot be derived from the rules. This is not 
a fundamental difference; after all, it is not too hard to write Prolog rules that print 
a query and read a reply. EMYCIN lets the knowledge-base designer write a simple 
declaration instead of a rule, and will even assume a default declaration if none is 
provided. The system also makes sure that the same question is never asked twice. 

The following function ask- val s prints a query that asks for the parameter of an 
instance, and reads from the user the value or a list of values with associated certainty 
factors. The function first looks at the data base to make sure the question has not 
been asked before. It then checks each value and certainty factor to see if each is of 
the correct type, and it also allows the user to ask certain questions. A ? reply will 
show what type answer is expected. Rul e will show the current rule that the system 
is working on. Why also shows the current rule, but it explains in more detail what the 
system knows and is trying to find out. Finally, he1 p prints the following summary: 

(defconstant  h e l p - s t r i n g  
""&Type one o f  t h e  f o l l o w i n g :  

? - t o  see poss ib le  answers f o r  t h i s  parameter 
r u l e  - t o  show t h e  c u r r e n t  r u l e  
why - t o  see why t h i s  quest ion i s  asked 
he lp  - t o  see t h i s  l i s t  
xxx - ( f o r  some s p e c i f i c  xxx)  i f  t h e r e  i s  a  d e f i n i t e  answer 
(xxx .5  yyy .4) - I f  t h e r e  are several answers w i t h  

d i f f e r e n t  c e r t a i n t y  f a c t o r s . " )  

Here is as k - v a 1 s . Note that the why and r ul e options assume that the current rule has 
been stored in the data base. The functions pri n t  -why, parm- type, and check- rep1 y 
will be defined shortly. 



(defun ask-vals (parm ins t )  
"Ask the user for the value(s1 of ins t ' s  parm parameter, 
unless this  has already been asked. Keep asking until the 
user types U N K N O W N  (return n i l )  or a valid reply (return t ) . "  
(unless (get-db '(asked ,parm , i n s t ) )  

(put-db '(asked ,parm , i n s t )  t )  
( 1 oop 

( l e t  ((ans (prompt-and-read-vals parm i n s t ) ) )  
(case ans 

(help (format t help-string)) 
(why (print-why (get-db 'current-rule) parm)) 
( rule  (princ (get-db 'current-rule) 1)  
( ( u n k  unknown) (RETURN n i l ) )  
( ?  (format t ""&A "a must be of type " a" 

parm (parm-type parm)) n i l )  
( t  ( i f  (check-reply ans parm ins t )  

(RETURN t )  
(format t ""&Illegal reply. " 

Type ? to  see legal o n e s . " ) ) ) ) ) ) ) )  

The following is prompt - and - r e a d  - v a l  s, the function that actually asks the query and 
reads the reply. It basically calls f o r m a t  to print a prompt and r e a d  to get the reply, but 
there are a few subtleties. First, it calls f i n i s h - o u t p u t .  Some Lisp implementations 
buffer output on a line-by-line basis. Since the prompt may not end in a newline, 
f i n i  s h - o u t p u t  makes sure the output is printed before the reply is read. 

So far, all the code that refers to a parm is really referring to the name of a 
parameter-a symbol. The actual parameters themselves will be implemented as 
structures. We use g e t  -parm to look up the structure associated with a symbol, and 
the selector functions parm-prompt to pick out the prompt for each parameter and 
pa rm- r e a d e r  to pick out the reader function. Normally this will be the function read ,  
but r e a d  - 1 i n e  is appropriate for reading string-valued parameters. 

The macro d e f  pa rm (shown here) provides a way to define prompts and readers 
for parameters. 

(defun prompt-and-read-vals (parm ins t )  
"Print the prompt for this  parameter (or make one u p )  and 
read the reply. " 
(fresh-1 ine) 
(format t (parm-prompt (get-parm parm)) (inst-name ins t )  parm) 
(princ " " 1  
(finish-output) 
(funcall (parm-reader (get-parm parm)))) 



(defun inst-name ( i n s t )  
"The name o f  t h i s  ins tance."  
;; The s to red  name i s  e i t h e r  l i k e  ( ( " J a n  Doe" 1 . 0 ) )  o r  n i l  
( o r  ( f i r s t  ( f i r s t  ( g e t - v a l s  'name i n s t ) ) )  

i n s t ) )  

The function check- r e p l  y uses parse  - r e p l  y to convert the user's reply into a canon- 
ical form, and then checks that each value is of the right type, and that each certainty 
factor is valid. If so, the data base is updated to reflect the new certainty factors. 

(defun check-rep ly  ( r e p l y  parm i n s t )  
" I f  r e p l y  i s  v a l i d  f o r  t h i s  parm, update t h e  DB. 
Reply should be a va l  o r  ( v a l l  c f l  va12 c f 2  . . . ) .  

Each va l  must be o f  t h e  r i g h t  t ype  f o r  t h i s  parm." 
( l e t  ((answers (pa rse - rep ly  r e p l y ) ) )  

(when (every #'(lambda ( p a i r )  
(and ( typep ( f i r s t  p a i r )  (parm-type parm)) 

( c f - p  (second p a i r ) ) ) )  
answers 1 

;; Add r e p l i e s  t o  t h e  data base 
( d o l i s t  ( p a i r  answers) 

(upda te -c f  parm i n s t  ( f i r s t  p a i r )  (second p a i r ) ) )  
answers)))  

(defun parse - rep ly  ( r e p l y )  
"Convert t h e  r e p l y  i n t o  a  l i s t  o f  ( va lue  c f )  p a i r s . "  
(cond ( ( n u l l  r e p l y )  n i l )  

((atom r e p l y )  ' ( ( , r e p l y  , t r u e ) ) )  
( t  (cons ( l i s t  ( f i r s t  r e p l y )  (second r e p l y ) )  

(pa rse - rep ly  ( r e s t 2  r e p l y ) ) ) ) ) )  

Parameters are implemented as structures with six slots: the name (a symbol), the 
context the parameter is for, the prompt used to ask for the parameter's value, 
a Boolean that tells if we should ask the user before or after using rules, a type 
restriction describing the legal values, and finally, the function used to read the 
value of the parameter. 

Parameters are stored on the property list of their names under the pa rm property, 
so getting the pa rm- t y p e  of a name requires first getting the parm structure, and then 
selecting the type restriction field. By default, a parameter is given type t, meaning 
that any value is valid for that type. We also define the type yeslno, which comes in 
handy for Boolean parameters. 

We want the default prompt to be "What is the PARM of the INST?" But most 
user-defined prompts will want to print the inst, and not the parm. To make it easy 
to write user-defined prompts, prompt-and- read- va l  s makes the instance be the 
first argument to the format string, with the parm second. Therefore, in the default 



prompt we need to use the format directive " "*" to skip the instance argument, and 
"-2 : *" to back up two arguments to get back to the instance. (These directives are 
common in cerror calls, where one list of arguments is passed to two format strings.) 

def pa rm is a macro that calls new- pa rm, the constructor function defined in the 
pa rm structure, and stores the resulting structure under the pa rm property of the 
parameter's name. 

( d e f s t r u c t  (parm ( : cons t ruc to r  
new-parm (name &op t iona l  c o n t e x t t y p e - r e s t r i c t i o n  

prompt a s k - f i  r s t  reader) 1) 
name (con tex t  n i l )  (prompt ""&What i s  the  "*"a o f  "2:*"a?") 
( a s k - f i r s t  n i l )  ( t y p e - r e s t r i c t i o n  t )  ( reader  ' read) )  

(defmacro defparm (parm & r e s t  args)  
"Def ine a parameter." 
' ( s e t f  ( g e t  ',parm 'parm) (apply  #'new-parm ',parm ' , a r g s ) ) )  

(defun parm-type (parm-name) 
"What t ype  i s  expected f o r  a  va lue o f  t h i s  parameter?" 
( p a r m - t y p e - r e s t r i c t i o n  (get-parm parm-name))) 

(defun get-parm (parm-name) 
"Look up t h e  parameter s t r u c t u r e  w i t h  t h i s  name." 
;; I f  t h e r e  i s  none, make one 
( o r  ( g e t  parm-name 'parm) 

( s e t f  ( g e t  parm-name 'parm) (new-parm parm-name)))) 

(de f t ype  yes lno 0 '(member yes n o ) )  

16.4 Contexts Instead of Variables 

Earlier we gave an equation relating EMYCIN to Prolog. That equation was not quite 
correct, because EMYCIN lacks one of Prolog's most important features: the logic 
variable. Instead, EMYCIN uses contexts. So the complete equation is: 

EMYCIN = Prolog + uncertainty + caching + questions + explanations 
+ contexts - variables 

A context is defined by the designers of MYCIN as a situation within which the 
program reasons. But it makes more sense to think of a context simply as a data 
type. So the list of contexts supplied to the program will determine what types of 
objects can be reasoned about. The program keeps track of the most recent instance 
of each type, and the rules can refer to those instances only, using the name of the 



type. In our version of MYCIN, there are three types or contexts: patients, cultures, 
and organisms. Here is an example of a rule that references all three contexts: 

( d e f r u l e  52 
i f  ( s i t e  c u l t u r e  i s  b lood)  

(gram organism i s  neg) 
(morphology organism i s  rod )  
(burn p a t i e n t  i s  se r ious )  

then .4 
( i d e n t i t y  organism i s  pseudomonas)) 

Ignoring certainty factors for the moment, this MYCIN rule is equivalent to a Prolog 
rule of the form: 

(<- ( i d e n t i t y  ?o ?pseudomonas) 
(and ( c u l t u r e  ?c )  ( s i t e  ?c b lood)  

(organism ?o) (gram ?o neg) (morphology ?o rod )  
( p a t i e n t  ?p) (burn ?p s e r i o u s ) ) )  

The context mechanism provides sufficient flexibility to handle many of the cases 
that would otherwise be handled by variables. One important thing that cannot 
be done is to refer to more than one instance of the same context. Only the most 
recent instance can be referred to. Contexts are implemented as structures with the 
following definition: 

( d e f s t r u c t  con tex t  
" A  context  i s  a  sub-domain, a  type. "  
name (number 0 )  i n i t i a l  -data goals)  

(defmacro de fcon tex t  (name &op t iona l  i n i t i a l - d a t a  goals)  
"Def ine a con tex t . "  
' (make-context :name ',name : i n i t i a l - d a t a  ' , i n i t i a l - d a t a  

:goals ' , goa ls ) )  

The name field is something like pat i ent or organi sm. Instances of contexts are 
numbered; the number field holds the number of the most recent instance. Each 
context also has two lists of parameters. The i ni t i  a1 -data parameters are asked for 
when each instance is created. Initial data parameters are normally known by the 
user. For example, a doctor will normally know the patient's name, age, and sex, and 
as a matter of training expects to be asked these questions first, even if they don't 
factor into every case. The goa 1 parameters, on the other hand, are usually unknown 
to the user. They are determined through the backward-chaining process. 

The following function creates a new instance of a context, writes a message, and 
stores the instance in two places in the data base: under the key current - i ns tance, 



and also under the name of the context. The contexts form a tree. In our example, 
the pat i en t context is the root of the tree, and the current patient is stored in the data 
base under the key pat i ent. The next level of the tree is for cultures taken from the 
patient; the current culture is stored under the cul ture key. Finally, there is a level 
for organisms found in each culture. The current organism is stored under both the 
organi sm and current - i nstance keys. The context tree is shown in figure 16.2. 

(defun new-instance (context) 
"Create a new instance of this context." 
(let ((instance (format nil ""a-"d" 

(context-name context) 
(incf (context-number context))))) 

(format t " " & - - - - - -  "a - - - - - - " & "  instance) 
(put-db (context-name context) instance) 
(put-db 'current-instance instance))) 

I Patient: Sylvia Fischer 1 

Figure 16.2: A Context Tree 

Now that we have seen how EMYCIN is different from Prolog, we are ready to tackle 
the way in which it is the same: the backward-chaining rule interpreter. Like Prolog, 
EMYCIN is given a goal and applies rules that are appropriate to the goal. Applying a 
rule means treating each premise of the rule as a goal and recursively applying rules 
that are appropriate to each premise. 



There are still some remaining differences. In Prolog, a goal can be any expression, 
and appropriate rules are those whose heads unify with the goal. If any appropriate 
rule succeeds, then the goal is known to be true. In EMYCIN, a rule might give a goal 
a certainty of .99, but we still have to consider all the other rules that are appropriate 
to the goal, because they might bring the certainty down below the cutoff threshold. 
Thus, EMYCIN always gathers all evidence relating to a parameter/instance pair first, 
and only evaluates the goal after all the evidence is in. For example, if the goal was 
( temp pat  i  en t  > 98.6 1, EMYCIN would first evaluate all rules with conclusions about 
the current patient's temperature, and only then compare the temperature to 98.6. 

Another way of looking at it is that Prolog has the luxury of searching depth-first, 
because the semantics of Prolog rules is such that if any rule says a goal is true, then it 
is true. EMYCIN must search breadth-first, because a goal with certainty of .99 might 
turn out to be false when more evidence is considered. 

We are now ready to sketch out the design of the EMYCIN rule interpreter: To 
f  i  nd - out a parameter of an instance: If the value is already stored in the data base, 
use the known value. Otherwise, the two choices are using the rules or asking the 
user. Do these in the order specified for this parameter, and if the first one succeeds, 
don't bother with the second. Note that ask-val s  (defined above) will not ask the 
same question twice. 

To use- rul es, find all the rules that concern the given parameter and evaluate 
them with use - rul e. After each rule has been tried, if any of them evaluate to true, 
then succeed. 

To use- rul e  a rule, first check if any of the premises can be rejected outright. If 
we did not have this check, then the system could start asking the user questions that 
were obviously irrelevant. So we waste some of the program's time (checking each 
premise twice) to save the more valuable user time. (The function eva 1  - cond i  t i  on 
takes an optional argument specifying if we should recursively ask questions in trying 
to accept or reject a condition.) 

If no premise can be rejected, then evaluate each premise in turn with 
eval uate-condi t i  on, keeping track of the accumulated certainty factor with cf -and 
(which is currently just mi n), and cutting off evaluation when the certainty factor 
drops below threshold. If the premises evaluate true, then add the conclusions to 
the data base. The calling sequence looks like this. Note that the recursive call to 
f i  nd - out is what enables chaining to occur: 

find-out ; To find out a parameter for an instance: 
get - d b  ; See if it is cached in the data base 
ask-val s  ; See if the user knows the answer 
use- rul es ; See if there is a rule for it: 

reject - premi se ; See if the rule is outright false 
sat  i  sfy - premi ses ; Or see if each condition is true: 

eval -condition ; Evaluate each condition 
find-out 9 By finding the parameter's values 



Before showing the interpreter, here is the structure definition for rules, along with 
the functions to maintain a data base of rules: 

(defs t ruct  ( ru l e  ( :print-function pr in t -ru le)  1 
number premises conclusions c f )  

( l e t  ( ( ru le s  (make-hash-table))) 

(defun put-rule ( ru le )  
" P u t  the rule in a  table ,  indexed under each 
parm in the conclusion." 
(do1 i  s t  (concl (rul  e-concl usi ons rule) 1 

(push rule (gethash ( f i r s t  concl r u l e s ) ) )  
rule)  

(defun get-rules (parm) 
" A  l i s t  of rules tha t  help determine t h i s  parameter." 
(gethash parm ru les ) )  

(defun clear-rules 0 (clrhash r u l e s ) ) )  

Here, then, is the interpreter, f i nd-out.  It can find out the value(s) of a parameter 
three ways. First, it looks to see if the value is already stored in the data base. Next, 
it tries asking the user or using the rules. The order in which these two options are 
tried depends on the pa rm- as k - f i rs t property of the parameter. Either way, if an 
answer is determined, it is stored in the data base. 

(defun find-out (parm &optional ( i n s t  (get-db 'current - ins tance)) )  
"Find the value(s1 of t h i s  parameter for th i s  instance, 
unl ess the val ues are a1 ready known. 
Some parameters we ask f i r s t ;  others we use rules f i r s t .  " 
(or (get-db '(known ,parm . i n s t ) )  

(put-db '(known ,parm , i n s t )  
( i f  (parm-ask-first (get-parm parm)) 

(or (ask-vals parm i n s t )  (use-rules parm)) 
(or  (use-rules parm) (ask-vals parm i n s t ) ) ) ) ) )  

(defun use-rul es (parm) 
"Try every rule associated with t h i s  parameter. 
Return t rue  i f  one of the rules returns t rue . "  
(some #' true-p (mapcar # 'use-rule (get - ru les  parm)))) 



(defun use-rule ( ru le )  
"Apply a  rule t o  the current s i tua t ion. "  
;; Keep track of the rule for  the explanation system: 
(put-db 'current-rul e  rul e l  
;; If any premise i s  known fa l se ,  give up. 
;; If every premise can be proved t rue ,  then 
;; draw conclusions (weighted with the certainty f ac to r ) .  
(unless (some #'reject-premise (rul  e-premi ses rul e )  

( l e t  ( ( c f  (satisfy-premises (rule-premises rule) t r u e ) ) )  
(when ( t rue-p  c f )  

(do1 i s t  (concl usion (rul  e-concl usions rul e l  
(conclude conclusion ( *  cf (rul  e-cf rul e l  1) 

c f ) ) ) )  

(defun satisfy-premises (premises cf -so-far )  
" A  l i s t  of premises i s  s a t i s f i ed  i f  they are a l l  t rue.  
A combined cf i s  returned." 
;; cf-so-far  i s  an accumulator of certainty factors 
(cond ( (nul l  premises) c f -so - fa r )  

( (not  ( t rue-p  c f - so - fa r ) )  f a l se )  
( t  (satisfy-premises 

( r e s t  premises) 
(cf-and cf -so-far  

(eval-condition ( f i r s t  p remises ) ) ) ) ) ) )  

The function eval  - c o n d i t i o n  evaluates a single condition, returning its certainty 
factor. If f i nd - o u t  - p is true, it first calls f i nd - out,  which may either query the user 
or apply appropriate rules. If f i nd - o u t  - p is false, it evaluates the condition using 
the current state of the data base. It does this by looking at each stored value for 
the parameter/instance pair and evaluating the operator on it. For example, if the 
condition is (temp pa t i  e n t  > 98.6 ) and the values for temp for the current patient 
are ( ( 9 8  .3 1 (99  .6 1 ( 100 .1) 1, then eval  - condi t i  on will test each of the values 
98,99, and 100 against 98.6 using the > operator. This test will succeed twice, so the 
resulting certainty factor is .6 + .1 = .7. 

The function r e j e c t  -premi s e  is designed as a quick test to eliminate a rule. As 
such, it calls eval  - condi t i  on with f i nd - o u t  - p nil, so it will reject a premise only if it 
is clearly false without seeking additional information. 

If a rule's premises are true, then the conclusions are added to the data base by 
conc 1 ude. Note that i s is the only operator allowed in conclusions. i s is just an alias 
for equa 1 . 

(defun eval-condition (condition &optional (f ind-out-p t ) )  
"See i f  t h i s  condition i s  t rue ,  optionally using FIND-OUT 
t o  determine unknown parameters." 
(mu1 tip1 e-value-bind (parm i n s t  op val 1 

(parse-condition condition) 



(when find-out-p 
(find-out parm i n s t ) )  

;; Add up a l l  the (val c f )  pairs tha t  s a t i s fy  the t e s t  
(loop for pair in (get-vals parm i n s t )  

when (funcall op ( f i r s t  pa i r )  val 1 
sum (second p a i r ) ) ) )  

(defun reject-premise (premise) 
" A  premise i s  rejected i f  i t  i s  known fa l se ,  without 
needing to  call  find-out recursively. " 
( fa lse-p  (eval -condition premise nil  1) 

(defun concl ude (concl usion cf 
"Add a  conclusion ( w i t h  specified certainty fac tor)  t o  D B . "  
(mu1 tiple-value-bind (parm i n s t  op val 

(parse-condition conclusion) 
(update-cf parm ins t  val c f ) ) )  

(defun i s  (a b )  (equal a  b ) )  

All conditions are of the form: (parameter instance operator value). For example: 
(morphology organism is rod). The function parse-condi tion turns a list of this 
form into four values. The trick is that it uses the data base to return the current 
instance of the context, rather than the context name itself: 

(defun parse-condition (condition) 
" A  condition i s  of the form (parm ins t  op va l ) .  
So for  (age patient  i s  211, we would return 4 values: 
(age patient-1 i s  211, where patient-1 i s  the current pa t ient . "  
(values ( f i r s t  condition) 

(get-db (second condition)) 
( th i rd  condition) 
(fourth condition) 1) 

At this point a call like ( f i nd - out ' identity ' organi sm- 1) would do the right 
thing only if we had somehow entered the proper information on the current patient, 
culture, and organism. The function get - context - da ta makes sure that each context 
is treated in order. First an instance is created, then f i nd -out is used to determine 
both the initial data parameters and the goals. The findings for each goal are printed, 
and the program asks if there is another instance of this context. Finally, we also 
need a top-level function, emycin, which just clears the data base before calling 
get-context-data. 



(defun emycin (contexts) 
"An Expert-System Shell. Accumulate data for instances of each 
context, and solve for goals. Then report the findings." 
(clear-db) 
(get-context-data contexts)) 

(defun get-context-data (contexts) 
"For each context, create an instance and try to find out 
required data. Then go on to other contexts, depth first, 
and finally ask if there are other instances of this context." 
(unl ess (nu1 1 contexts 1 
(let* ((context (first contexts)) 

(inst (new-instance context))) 
(put-db 'current-rule 'initial) 
(mapc #'find-out (context-initial-data context)) 
(put-db 'current-rule 'goal 
(mapc #'find-out (context-goals context)) 
(report-findings context inst) 
(get-context-data (rest contexts)) 
(when (y-or-n-p "Is there another "a?" 

(context-name context)) 
(get-context-data contexts))))) 

16.6 Interacting with the Expert 

At this point all the serious computational work is done: we have defined a backward- 
chaining rule mechanism that deals with uncertainty, caching, questions, and con- 
texts. But there is still quite a bit of work to do in terms of input/output interaction. A 
programming language needs only to interface with programmers, so it is acceptable 
to make the programmer do all the work. But an expert-system shell is supposed to 
alleviate (if not abolish) the need for programmers. Expert-system shells really have 
two classes of users: the experts use the shell when they are developing the system, 
and the end users or clients use the resulting expert system when it is completed. 
Sometimes the expert can enter knowledge directly into the shell, but more often 
it is assumed the expert will have the help of a knowledge engineer-someone who is 
trained in the use of the shell and in eliciting knowledge, but who need not be either 
an expert in the domain or an expert programmer. 

In our version of EMYCIN, we provide only the simplest tools for making the 
expert's job easier. The macros def  con t e x t  and def pa rm, defined above, are a little 
easier than calling make - context  and ma ke - pa r m  explicitly, but not much. The macro 
def  r u l  e defines a rule and checks for some obvious errors: 



(defmacro de f ru l e  (number &body body) 
"Define a r u l e  w i t h  condi t ions,  a ce r t a i n t y  f ac to r ,  and 
concl us i  ons . Example: (def  r u l  e ROO1 i f  . . . then .9 . . . ) " 
(asser t  (eq ( f i r s t  body) ' i f ) )  
( l e t *  ( ( then-par t  (member ' then body)) 

(premises ( l d i f f  ( r e s t  body) then-par t ) )  
(conclusions ( res t2  then-par t ) )  
( c f  (second then-par t ) ) )  

;; Do some e r ro r  checking: 
(check-condit ions number premises 'premise) 
(check-condi t i ons  number conclusions 'concl usion) 
(when (no t  ( c f - p  c f ) )  

(warn "Rule "a: I l l e g a l  ce r t a i n t y  f ac to r :  "a" number c f ) )  
; ; Now bui  1 d the  ru l e :  
' ( pu t - r u l e  

(make-rule :number ''number : c f  ,cf:premises ',premises 
:conclusions ' .conclusions) 1) 

The function check-condi ti ons makes sure that each rule has at least one premise 
and conclusion, that each condition is of the right form, and that the value of the 
condition is of the right type for the parameter. It also checks that conclusions use 
only the operator i s: 

(defun check-condit ions (rule-num condi t ions k ind)  
"Warn i f  any condi t ions are i nva l i d . "  
(when (nu1 1 condi t ions)  

(warn "Rule "a: Missing "a" rule-num k ind ) )  
( d o l i s t  (cond i t ion  condi t ions)  

(when (no t  (consp cond i t ion) )  
(warn "Rule "a: I l l e g a l  "a: -a" rule-num k ind  cond i t ion) )  

(mu1 t i p l e - v a l  ue-bind (parm i n s t  op val 
(parse-condi t ion condi t ion)  

(declare ( ignore i n s t )  1 
(when (and (eq k ind  'conclusion) (no t  (eq op ' i s ) ) )  

(warn "Rule "a: I l l e g a l  operator ("a) i n  conclusion: "a" 
rule-nurn op cond i t ion) )  

(when (no t  (typep val (parm-type parm) 1) 
(warn "Rule "a: I l l e g a l  value ("a) i n  "a: "a" 

rule-num val  k ind  condi t ion)  1) 1) 

The real EMYCIN had an interactive environment that prompted the expert for each 
context, parameter, and rule. Randall Davis (1977, 1979, Davis and Lenat 1982) 
describes the TEIRESIAS program, which helped experts enter and debug rules. 



16.7 Interacting with the Client 

Once the knowledge is in, we need some way to get it out. The client wants to run 
the system on his or her own problem and see two things: a solution to the problem, 
and an explanation of why the solution is reasonable. EMYCIN provides primitive 
facilities for both of these. The function report - f i ndi  ngs prints information on all 
the goal parameters for a given instance: 

(defun r e p o r t - f i n d i n g s  (con tex t  i n s t )  
" P r i n t  f i n d i n g s  on each goal f o r  t h i s  ins tance."  
(when (con tex t -goa ls  con tex t )  

( format  t ""&Findings f o r  "a:" ( inst-name i n s t ) )  
( d o l i s t  (goal ( con tex t -goa ls  c o n t e x t ) )  

( l e t  ( ( va lues  ( g e t - v a l s  goal i n s t ) ) )  

;; I f  t h e r e  are any values f o r  t h i s  goal ,  
;; p r i n t  them sor ted  by c e r t a i n t y  f a c t o r .  
( i f  values 

( format  t ""& "a:"{"{ "a ( " , 3 f )  ")")" goal 
( s o r t  ( c o p y - l i s t  va lues)  # '> :key #'second)) 

( format  t ""& "a: unknown" g o a l ) ) ) ) ) )  

The only explanation facility our version of EMYCIN offers is a way to see the current 
rule. If the user types rul e in response to a query, a pseudo-English translation of 
the current rule is printed. Here is a sample rule and its translation: 

( d e f r u l e  52 
i f  ( s i t e  c u l t u r e  i s  b lood)  

(gram organism i s  neg) 
(morphology organism i s  rod )  
(burn p a t i e n t  i s  se r ious )  

then .4 
( i d e n t i t y  organism i s  pseudomonas)) 

Rule 52: 
I f  

1) THE SITE OF THE CULTURE I S  BLOOD 
2 )  THE GRAM OF THE ORGANISM I S  NEG 
3 )  THE MORPHOLOGY OF THE ORGANISM I S  ROD 
4 )  THE BURN OF THE PATIENT I S  SERIOUS 

Then t h e r e  i s  weakly suggest ive evidence (0.4) t h a t  
1) THE IDENTITY OF THE ORGANISM I S  PSEUDOMONAS 

The function pri n t  - rul e generates this translation: 



(defun p r i n t - r u l  e  ( r u l e  &op t iona l  (stream t )  depth) 

(dec la re  ( i gnore  depth) )  
( format  stream ""&Rule "a:"& I f "  (rule-number r u l e ) )  

( p r i n t - c o n d i  t i o n s  ( r u l  e-premi ses r u l e )  stream) 
( format  stream ""& Then "a ("a) t h a t "  

( c f  ->engl i s h  ( r u l  e - c f  r u l  e l  1 ( r u l  e - c f  r u l  e)  

( p r i n t - c o n d i t i o n s  ( ru le - conc lus ions  r u l e )  s t ream))  

(defun p r i  n t - cond i  t i  ons (cond i t i ons  &op t iona l  

(stream t )  (num 1 ) )  

" P r i n t  a  l i s t  o f  numbered cond i t i ons . "  

( d o l i s t  ( c o n d i t i o n  c o n d i t i o n s )  
( p r i n t - c o n d i t i o n  c o n d i t i o n  stream num))) 

(defun p r i n t - c o n d i t i o n  ( c o n d i t i o n  stream number) 

" P r i n t  a  s i n g l e  c o n d i t i o n  i n  pseudo-Engl i s h .  " 
( format  stream ""& "dl"{  "a")" number 

( l e t  ((parm ( f i r s t  c o n d i t i o n ) )  

( i n s t  (second c o n d i t i o n )  
(op ( t h i r d  c o n d i t i o n ) )  

( v a l  ( f o u r t h  c o n d i t i o n ) ) )  

(case va l  
(YES ' ( t h e  , i n s t  ,op .parm)) 

(NO ' ( t h e  . i n s t  ,op n o t  .parm)) 

( T  ' ( t h e  ,parm o f  t h e  . i n s t  ,op , v a l ) ) ) ) ) )  

(defun c f ->eng l i sh  ( c f )  

"Convert a  c e r t a i n y  f a c t o r  t o  an Eng l i sh  phrase." 
(cond ( (=  c f  1.0) " t h e r e  i s  c e r t a i n  ev idence")  

( (>  c f  .8) " t h e r e  i s  s t r o n g l y  suggest ive evidence") 
( (>  c f  .5) " t h e r e  i s  suggest ive evidence") 

( (>  c f  0.0) " t h e r e  i s  weakly suggest ive evidence") 

( ( =  c f  0.0) " t h e r e  i s  NO evidence e i t h e r  way") 

( (<  c f  0.0) (concatenate ' s t r i n g  (c f ->eng l i sh  ( -  c f ) )  
" AGAINST t h e  c o n c l u s i o n " ) ) ) )  

If the user types why in response to a query, a more detailed account of the same 
rule is printed. First, the premises that are already known are displayed, followed 
by the remainder of the rule. The parameter being asked for will always be the first 
premise in the remainder of the rule. The cur rent - rul e is stored in the data base by 
use- rul e whenever a rule is applied, but it is also set by get -context -data to the 
atom i ni t i  a 1 or goal when the system is prompting for parameters. pri n t - why 
checks for this case as well. Note the use of the pa r t  i t i  on - i f function from page 256. 



(defun print-why ( ru le  parm) 
"Tell why th i s  rule i s  being used. Print what i s  known, 
what we are trying t o  find out, and what we can conclude." 
(format t ""&[Why i s  the value of "a being asked for?]" parm) 
( i f  (member rule ' ( i n i t i a l  goal 1)  

(format t ""&"a i s  one of the "a parameters." 
parm rule) 

(mu1 tip1 e-val ue-bind (knowns unknowns) 
(pa r t i t i on - i f  #'(lambda (premise) 

( t rue-p  (eval-condition premise n i l ) ) )  
( rul e-premi ses rul e l  

(when knowns 
(format t ""&It i s  known t h a t : " )  
(print-condi t ions knowns) 
(format t ""&Therefore,")) 

( l e t  ((new-rule (copy-rule r u l e ) ) )  
( se t f  (rul  e-premises new-rul e l  unknowns) 
(p r in t  new-rule) 1)  1) 

That completes the definition of emyci n.  We are now ready to apply the shell to a 
specific domain, yielding the beginnings of an expert system. 

16.8 MYCIN, A Medical Expert System 

This section applies emyci n to MYCIN'S original domain: infectious blood disease. 
In our version of MYCIN, there are three contexts: first we consider a patient, then 
any cultures that have been grown from samples taken from the patient, and finally 
any infectious organisms in the cultures. The goal is to determine the identity of 
each organism. The real MYCIN was more complex, taking into account any drugs 
or operations the patient may previously have had. It also went on to decide the 
real question: what therapy to prescribe. However, much of this was done by 
special-purpose procedures to compute optimal dosages and the like, so it is not 
included here. The original MYCIN also made a distinction between current versus 
prior cultures, organisms, and drugs. All together, it had ten contexts to consider, 
while our version only has three: 

(defun mycin 0 
"Determine what organism i s  infecting a pat ient . "  
(emyci n 

( l i s t  (defcontext patient  (name sex age) 0 )  
(defcontext culture ( s i t e  days-old) 0 )  
(defcontext organism 0 ( i d e n t i t y ) ) ) ) )  



These contexts declare that we will first ask each patient's name, sex, and age, and 
each culture's site and the number of days ago it was isolated. Organisms have no 
initial questions, but they do have a goal: to determine the identity of the organism. 

The next step is to declare parameters for the contexts. Each parameter is given 
a type, and most are given prompts to improve the naturalness of the dialogue: 

;;; Parameters f o r  p a t i e n t :  
(defparm name p a t i e n t  t " P a t i e n t ' s  name: " t r e a d - l i n e )  
(defparm sex p a t i e n t  (member male female) "Sex:" t )  
(defparm age p a t i e n t  number "Age:" t )  
(defparm burn p a t i e n t  (member no m i l d  se r ious )  

" I s  "a a burn p a t i e n t ?  I f  so, m i l d  o r  se r ious?"  t )  
(defparm compromised-host p a t i e n t  yes lno 

" I s  "a a compromised h o s t ? " )  

;;; Parameters f o r  c u l t u r e :  
(defparm s i t e  c u l t u r e  (member b lood)  

"From what s i t e  was t h e  specimen f o r  "a taken?" t )  
(defparm days-01 d c u l t u r e  number 

"How many days ago was t h i s  c u l t u r e  ("a) obta ined?"  t )  

;;; Parameters f o r  organism: 
(defparm i d e n t i t y  organism 

(member pseudomonas k l e b s i e l l a  enterobacter iaceae 
staphylococcus bactero ides s t reptococcus)  

"Enter  t h e  i d e n t i t y  (genus) o f  " a:" t )  
(defparm gram organism (member a c i d - f a s t  pos neg) 

"The gram s t a i n  o f  "a:" t )  
(defparm morphology organism (member rod  coccus) 

" I s  "a a rod  o r  coccus ( e t c . ) : " )  
(defparm a e r o b i c i t y  organism (member aerobic  anaerobic) )  
(defparm growth-conformation organism 

(member chains p a i r s  clumps)) 

Now we need some rules to help determine the identity of the organisms. The 
following rules are taken from Shortliffe 1976. The rule numbers refer to the pages 
on which they are listed. The real MYCIN had about 400 rules, dealing with a much 
wider variety of premises and conclusions. 

( c l e a r - r u l e s )  

( d e f r u l e  52 
i f  ( s i t e  c u l t u r e  i s  b lood)  

(gram organism i s  neg) 
(morphology organism i s  rod )  
(burn p a t i e n t  i s  se r ious )  

then .4 
( i d e n t i t y  organism i s  pseudomonas)) 



( d e f r u l e  71 
i f  (gram organism i s  pos) 

(morphology organism i s  coccus) 
(growth-conformation organism i s  clumps) 

then .7 
( i d e n t i t y  organism i s  staphylococcus)) 

( d e f r u l e  73 
i f  ( s i t e  c u l t u r e  i s  b lood)  

(gram organism i s  neg) 
(morphology organism i s  rod )  
( a e r o b i c i t y  organism i s  anaerobic) 

then .9 
( i d e n t i t y  organism i s  bac te ro ides ) )  

( d e f r u l e  75 
i f  (gram organism i s  neg) 

(morphology organism i s  rod )  
(compromised-host p a t i e n t  i s  yes)  

then .6 
( i d e n t i t y  organism i s  pseudomonas)) 

( d e f r u l e  107 
i f  (gram organism i s  neg) 

(morphol ogy organism i s  rod  
(aerobi  c i  t y  organism i s  ae rob ic )  

then .8 
( i d e n t i t y  organism i s  en te robac te r i  aceae) 

( d e f r u l e  165 
i f  (gram organism i s  pos) 

(morphology organism i s  coccus) 
(growth-conformat ion organism i s  chains)  

then .7 
( i d e n t i t y  organism i s  s t reptococcus))  

Here is an example of the program in use: 

> (mycin) 
- - - - - -  PATIENT-1 - - - - - -  

P a t i e n t ' s  name: S y l v i a  F ischer  
Sex: female 
Age: 27 
- - - - - -  CULTURE-1 - - - - - -  

From what s i t e  was t h e  specimen f o r  CULTURE-1 taken? b lood 
How many days ago was t h i s  c u l t u r e  (CULTURE-1) obtained? 3 
- - - - - -  ORGANISM-1 - - - - - -  

Enter  t h e  i d e n t i t y  (genus) o f  ORGANISM-1: unknown 
The gram s t a i n  o f  ORGANISM-1: ? 



A GRAM must be o f  t y p e  (MEMBER ACID-FAST POS NEG) 
The gram s t a i n  o f  ORGANISM-1: neg 

The user typed ? to see the list of valid responses. The dialog continues: 

I s  ORGANISM-1 a r o d  o r  coccus ( e t c . ) :  r o d  
What i s  t h e  AEROBICITY o f  ORGANISM-I? why 
CWhy i s  t h e  va lue  o f  AEROBICITY be ing  asked f o r ? ]  
It i s  known t h a t :  

1 )  THE GRAM OF THE ORGANISM I S  NEG 
2)  THE MORPHOLOGY OF THE ORGANISM I S  ROD 

Therefore ,  
Rule 107: 

I f  
1 )  THE AEROBICITY OF THE ORGANISM I S  AEROBIC 

Then t h e r e  i s  sugges t i ve  ev idence (0 .8)  t h a t  
1 )  THE IDENTITY OF THE ORGANISM I S  ENTEROBACTERIACEAE 

The user wants to know why the system is asking about the organism's aerobicity. 
The reply shows the current rule, what is already known about the rule, and the fact 
that if the organism is aerobic, then we can conclude something about its identity. In 
this hypothetical case, the organism is in fact aerobic: 

What i s  t h e  AEROBICITY o f  ORGANISM-l? ae rob i c  
I s  S y l v i a  F i sche r  a compromised hos t?  yes 
I s  S y l v i a  F i sche r  a burn p a t i e n t ?  I f  so, m i l d  o r  se r i ous?  why 
CWhy i s  t h e  va lue  o f  BURN be ing  asked f o r ? ]  
It i s  known t h a t :  

1 )  THE SITE OF THE CULTURE I S  BLOOD 
2)  THE GRAM OF THE ORGANISM I S  NEG 
3 )  THE MORPHOLOGY OF THE ORGANISM I S  ROD 

Therefore ,  
Rule 52: 

I f  
1 )  THE BURN OF THE PATIENT I S  SERIOUS 

Then t h e r e  i s  weakly sugges t i ve  evidence (0.4) t h a t  
1 )  THE IDENTITY OF THE ORGANISM I S  PSEUDOMONAS 

I s  S y l v i a  F i sche r  a burn p a t i e n t ?  I f  so, m i l d  o r  se r i ous?  s e r i o u s  
F ind ings  f o r  ORGANISM-1: 

IDENTITY: ENTEROBACTERIACEAE (0.800) PSEUDOMONAS (0.760) 

The system used rule 107 to conclude the identity might be enterobacteriaceae. 
The certainty is .8, the certainty for the rule itself, because all the conditions were 
known to be true with certainty. Rules 52 and 75 both support the hypothesis of 
pseudomonas. The certainty factors of the two rules, .6 and .4, are combined by the 



formula .6 + .4 - (.6 x .4) = .76. After printing the findings for the first organism, 
the system asks if another organism was obtained from this culture: 

I s  t h e r e  another  ORGANISM? (Y o r  N) Y 
- - - - - -  ORGANISM-2 - - - - - -  
Enter  t h e  i d e n t i t y  (genus) o f  ORGANISM-2: unknown 
The gram s t a i n  o f  ORGANISM-2: (neg .8 pos .2)  
I s  ORGANISM-2 a r o d  o r  coccus ( e t c . ) :  r o d  
What i s  t h e  AEROBICITY o f  ORGANISM-2? anaerob ic  

For the second organism, the lab test was inconclusive, so the user entered a qualified 
answer indicating that it is probably gram-negative, but perhaps gram-positive. This 
organism was also a rod but was anaerobic. Note that the system does not repeat 
questions that it already knows the answers to. In considering rules 75 and 52 
it already knows that the culture came from the blood, and that the patient is a 
compromised host and a serious burn patient. In the end, rule 73 contributes to the 
bacteroides conclusion, and rules 75 and 52 again combine to suggest pseudomonas, 
although with a lower certainty factor, because the neg finding had a lower certainty 
factor: 

F ind ings  f o r  ORGANISM-2: 
IDENTITY: BACTEROIDES (0.720) PSEUDOMONAS (0.646) 

Finally, the program gives the user the opportunity to extend the context tree with 
new organisms, cultures, or patients: 

I s  t h e r e  another  ORGANISM? (Y o r  N )  N 
I s  t h e r e  another  CULTURE? (Y o r  N) N 
I s  t h e r e  another  PATIENT? (Y o r  N) N 

The set of rules listed above do not demonstrate two important features of the 
system: the ability to backward-chain, and the ability to use operators other than i s 
in premises. 

If we add the following three rules and repeat the case shown above, then eval- 
uating rule 75 will back-chain to rule 1, 2, and finally 3 trying to determine if the 
patient is a compromised host. Note that the question asked will be "What is Sylvia 
Fischer's white blood cell count?" and not "Is the white blood cell count of Sylvia 
Fischer < 2.5?" The latter question would suffice for the premise at hand, but it 
would not be as useful for other rules that might refer to the WBC. 

(defparm wbc p a t i e n t  number 
"What i s  " a's w h i t e  b lood  c e l l  coun t? " )  



( d e f r u l e  1 
i f  (immunosuppressed p a t i e n t  i s  yes)  
then 1.0 (compromised-host p a t i e n t  i s  yes ) )  

( d e f r u l  e  2 
i f  ( leukopenia p a t i e n t  i s  yes)  
then 1.0 (immunosuppressed p a t i e n t  i s  yes ) )  

( d e f r u l e  3 
i f  (wbc p a t i e n t  < 2.5)  
then .9 ( leukopenia p a t i e n t  i s  yes ) )  

16.9 Alternatives to Certainty Factors 

Certainty factors are a compromise. The good news is that a system based on rules 
with certainty factors requires the expert to come up with only a small set of numbers 
(one for each rule) and will allow fast computation of answers. The bad news is that 
the answer computed may lead to irrational decisions. 

Certainty factors have been justified by their performance (MYCIN performed as 
well or better than expert doctors) and by intuitive appeal (they satisfy the criteria 
listed on page 534). However, they are subject to paradoxes where they compute 
bizarre results (as in Exercise 16.1, page 536). If the rules that make up the knowledge 
base are designed in a modular fashion, then problems usually do not arise, but it is 
certainly worrisome that the answers may be untrustworthy. 

Before MYCIN, most reasoning with uncertainty was done using probability the- 
ory. The laws of probability-in particular, Bayes's law-provide a well-founded 
mathematical formalism that is not subject to the inconsistencies of certainty fac- 
tors. Indeed, probability theory can be shown to be the only formalism that leads 
to rational behavior, in the sense that if you have to make a series of bets on some 
uncertain events, combining information with probability theory will give you the 
highest expected value for your bets. Despite this, probability theory was largely set 
aside in the mid-1970s. The argument made by Shortliffe and Buchanan (1975) was 
that probability theory required too many conditional probabilities, and that people 
were not good at estimating these. They argued that certainty factors were intuitively 
easier to deal with. Other researchers of the time shared this view. Shafer, with later 
refinements by Dempster, created a theory of belief functions that, like certainty 
factors, represented a combination of the belief for and against an event. Instead of 
representing an event by a single probability or certainty, Dempster-Shafer theory 
maintains two numbers, which are analagous to the lower and upper bound on the 
probability. Instead of a single number like .5, Dempster-Shafer theory would have 
an interval like [.4,.6] to represent a range of probabilities. A complete lack of knowl- 
edge would be represented by the range [O,l]. A great deal of effort in the late 1970s 



and early 1980s was invested in these and other nonprobabilistic theories. Another 
example is Zadeh's fuzzy set theory, which is also based on intervals. 

There is ample evidence that people have difficulty with problems involving 
probability. In a very entertaining and thought-provoking series of articles, Tversky 
and Kahneman (1974,1983,1986) show how people make irrational choices when 
faced with problems that are quite simple from a mathematical viewpoint. They 
liken these errors in choice to errors in visual perception caused by optical illusions. 
Even trained doctors and statisticians are subject to these errors. 

As an example, consider the following scenario. Adrian and Dominique are to be 
married. Adrian goes for a routine blood test and is told that the results are positive 
for a rare genetic disorder, one that strikes only 1 in 10,000 people. The doctor 
says that the test is 99% accurate-it gives a false positive reading in only 1 in 100 
cases. Adrian is despondent, being convinced that the probability of actually having 
the disease is 99%. Fortunately, Dominique happens to be a Bayesian, and quickly 
reassures Adrian that the chance is more like 1 %. The reasoning is as follows: Take 
10,001 people at random. Of these, only 1 is expected to have the disease. That 
person could certainly expect to test positive for the disease. But if the other 10,000 
people all took the blood test, then 1 % of them, or 100 people would also test positive. 
Thus, the chance of actually having the disease given that one tests positive is 1/101. 
Doctors are trained in this kind of analysis, but unfortunately many of them continue 
to reason more like Adrian than Dominique. 

In the late 1980s, the tide started to turn back to subjective Bayesian probability 
theory. Cheeseman (1985) showed that, while Dempster-Shafer theory looks like 
it can, in fact it cannot help you make better decisions than probability theory. 
Heckerman (1986) re-examined MYCIN'S certainty factors, showing how they could 
be interpreted as probabilities. Judea Pearl's 1988 book is an eloquent defense of 
probability theory. He shows that there are efficient algorithms for combining and 
propagating probabilities, as long as the network of interdependencies does not 
contain loops. It seems likely that uncertain reasoning in the 1990s will be based 
increasingly on Bayesian probability theory. 

16.10 History and References 

The MYCIN project is well documented in Buchanan and Shortliffe 1984. An earlier 
book, Shortliffe 1976, is interesting mainly for historical purposes. Good introduc- 
tions to expert systems in general include Weiss and Kulikowski 1984, Waterman 
1986, Luger and Stubblefield 1989, and Jackson 1990. 

Dempster-Shafer evidence theory is presented enthusiastically in Gordon and 
Shortliffe 1984 and in a critical light in Pearl 1989/1978. Fuzzy set theory is presented 
in Zadeh 1979 and Dubois and Prade 1988. 



Pearl (1988) captures most of the important points that lead to the renaissance 
of probability theory. Shafer and Pearl 1990 is a balanced collection of papers on all 
kinds of uncertain reasoning. 

16.11 Exercises 

Exercise 16.2 [s] Suppose the rule writer wanted to be able to use symbolic certainty 
factors instead of numbers. What would you need to change to support rules like 
this: 

(defrule 100 i f  ... then t rue  . . . I  
(defrule 101 i f  ... then probably . . . I  

Exercise 16.3 [m] Change prompt-and-read-val s so that it gives a better prompt 
for parameters of type yes /no. 

Exercise 16.4 [m] Currently, the rule writer can introduce a new parameter without 
definingit first. That is handy for rapid testing, but it means that the user of the system 
won't be able to see a nice English prompt, nor ask for the type of the parameter. In 
addition, if the rule writer simply misspells a parameter, it will be treated as a new 
one. Make a simple change to fix these problems. 

Exercise 16.5 [dl Write rules in a domain you are an expert in, or find and interview 
an expert in some domain, and write down rules coaxed from the expert. Evaluate 
your resulting system. Was it easier to develop your system with EMYCIN than it 
would have been without it? 

Exercise 16.6 [s] It is said that an early version of MYCIN asked if the patient was 
pregnant, even though the patient was male. Write a rule that would fix this problem. 

Exercise 16.7 [m] To a yes/no question, what is the difference between yes and ( no 
- 1 I ?  What does this suggest? 

Exercise 16.8 [m] What happens if the user types why to the prompt about the 
patient's name? What happens if the expert wants to have more than one context 
with a name parameter? If there is a problem, fix it. 



The remaining exercises discuss extensions that were in the original EMYCIN, but 
were not implemented in our version. Implementing all the extensions will result in a 
system that is very close to the full power of EMYCIN. These extensions are discussed 
in chapter 3 of Buchanan and Shortliffe 1984. 

p Exercise 16.9 [h] Add a spelling corrector to as k - va 1 s . If the user enters an invalid 
reply, and the parameter type is a member expression, check if the reply is "close" in 
spelling to one of the validvalues, and if so, use that value. That way, the user can type 
just entero instead of enterobacteri aceae. You may experiment with the definition 
of "close," but you should certainly allow for prefixes and at least one instance of a 
changed, missing, inserted, or transposed letter. 

Exercise 16.10 [m] Indent the output for each new branch in the context tree. In 
other words, have the prompts and findings printed like this: 

- - - - - - PATIENT-1 - - - - - -  
P a t i e n t ' s  name: S y l v i a  F i  scher 
Sex: female 
Age: 27 

- - - - - - CULTURE-1 - - - - - - 

From what s i t e  was the  specimen f o r  CULTURE-1 taken? b lood 
How many days ago was t h i s  c u l t u r e  (CULTURE-1) obtained? 3 

- - - - - -  ORGANISM-1 - - - - - -  

Enter t h e  i d e n t i t y  (genus) o f  ORGANISM-1: unknown 
The gram s t a i n  o f  ORGANISM-1: neg 
... 
Find ings f o r  ORGANISM-1: 

IDENTITY: ENTEROBACTERIACEAE (0.800) PSEUDOMONAS (0.760) 
I s  t h e r e  another ORGANISM? (Y o r  N) N 

I s  t h e r e  another CULTURE? (Y o r  N) N 
I s  t h e r e  another PATIENT? ( Y  o r  N )  N 

p Exercise 16.11 b] We said that our emycin looks at all possible rules for each 
parameter, because there is no telling how a later rule may affect the certainty factor. 
Actually, that is not quite true. If there is a rule that leads to a conclusion with 
certainty 1, then no other rules need be considered. This was called a unity path. 
Modify the program to look for unity paths first. 

p Exercise 16.12 [m] Depending on whether a parameter is in i ni t i  a1 -data or not, 
all the relevant rules are run either before or after asking the user for the value 
of the parameter. But there are some cases when not all initial data parameters 



should be asked for. As an example, suppose that i dent i ty and gram were initial 
data parameters of organi sm. If the user gave a positive answer for i denti ty, then it 
would be wasteful to ask for the gram parameter, since it could be determined directly 
from rules. After receiving complaints about this problem, a system of antecedent 
rules was developed. These rules were always run first, before asking questions. 
Implement antecedent rules. 

Exercise 16.13 [h] It is useful to be able to write default rules that fill in a value after 
all other rules have failed to determine one. A default rule looks like this: 

(defrule n i f  (parm inst  unknown) then (parm inst i s  default))  

It may also have other conjuncts in the premise. Beside details like writing the 
unknown operator, the difficult part is in making sure that these rules get run at the 
right time (after other rules have had a chance to fill in the parameter), and that 
infinite loops are avoided. 

Exercise 16.14 [h] The context tree proved to be a limitation. Eventually, the need 
arose for a rule that said, "If any of the organisms in a culture has property X I  then the 
culture has property Y." Implement a means of checking for some or every instance 
of a context. 

Exercise 16.15 [m] As the rule base grew, it became increasingly hard to remember 
the justification for previous rules. Implement a mechanism that keeps track of the 
author and date of creation of each rule, and allows the author to add documentation 
explaining the rationale for the rule. 

Exercise 16.16 [m] It is difficult to come up with the perfect prompt for each pa- 
rameter. One solution is not to insist that one prompt fits all users, but rather to allow 
the expert to supply three different prompts: a normal prompt, a verbose prompt (or 
reprompt) for when the user replies with a ?, and a terse prompt for the experienced 
user. Modify defpa rm to accommodate this concept, add a command for the user to 
ask for the terse prompts, and change ask- val s to use the proper prompt. 

The remaining exercises cover three additional replies the user can make: how, 
stop, and change. 

Exercise 16.17 [dl In addition to why replies, EMYCIN also allowed for how questions. 
The user can ask how the value of a particular parameter/instance pair was deter- 
mined, and the system will reply with a list of rules and the evidence they supplied for 



or against each value. Implement this mechanism. It will require storing additional 
information in the data base. 

Exercise 16.18 [m] There was also a stop command that immediately halted the 
session. Implement it. 

p Exercise 16.19 [dl The original EMYCIN also had a change command to allow the 
user to change the answer to certain questions without startingall over. Eachquestion 
was assigned a number, which was printed before the prompt. The command change, 
followed by a list of numbers, causes the system to look up the questions associated 
with each number and delete the answer to these questions. The system also throws 
away the entire context tree and all derived parameter values. At that point the 
entire consultation is restarted, using only the data obtained from the unchanged 
questions. Although it may seem wasteful to start over from the beginning, it will 
not be wasteful of the user's time, since correct answers will not be asked again. 

Identify what needs to be altered to implement change and make the alterations. 

Exercise 16.20 F] Change the definition of cf - and and cf - or to use fuzzy set theory 
instead of certainty factors. Do the same for Dempster-Shafer theory. 

16.12 Answers 

Answer 16.1 Because EMYCIN assumes independence, each reading of the same 
headline would increase the certainty factor. The following computation shows 
that 298 more copies would be needed to reach .95 certainty. A more sophisticated 
reasoner would realize that multiple copies of a newspaper are completely dependent 
on one another, and would not change the certainty with each new copy. 

> (loop for cf = .O1 then (cf-or .O1 cf) 
until (> cf .95) 
count t) 

298 

Answer 16.2 The defrul e expands to (make- rul e :number '101 : cf true . . . 1; 
that is, the certainty factor is unquoted, so it is already legal to use t rue  as a certainty 
factor! To support proba bl y and other hedges, just define new constants. 



Answer 16.4 Just make the default parameter type be ni 1 (by changing t to ni 1 
in parm- type). Then any rule that uses an undefined parameter will automatically 
generate a warning. 

Answer 16.6 

(defrule 4 
i f  (sex patient  i s  male) 
then -1 (pregnant patient  i s  yes ) )  

Answer 16.7 Logically, there should be no difference, but to EMYCIN there is a big 
difference. EMYCIN would not complain if you answered (yes 1 no 1 1. This suggests 
that the system should have some way of dealing with mutually exclusive answers. 
One way would be to accept only yes responses for Boolean parameters, but have the 
input routine translate no to (yes - 1 ) and ( no cfl to (yes 1-cf 1. Another possibility 
would be to have update - cf check to seeif anycertaintyfactor ona mutuallyexclusive 
value is 1, and if so, change the other values to -1. 

Answer 16.18 Add the clause (stop (throw 'stop ni 1 11 to the case statement 
inask-valsandwrapa(catch 'stop ... ) aroundthecodeinemycin. 



CHAPTER 17 

Labeling by Constraint 
Satisfaction 

It is wrong to think of Waltz's work only as a 
statement of the epistemology of line drawings of 

polyhedra. Instead I think it is an  elegant case study 
of a paradigm w e  can expect to see again and again. 

-Patrick Winston 
The Psychology of Computer Vision (1 975) 

his book touches only the areas of A1 that deal with abstract reasoning. There is another 
side of AI, the field of robotics, that deals with interfacing abstract reasoning with the real 
world through sensors and motors. A robot receives input from cameras, microphones, 

sonar, and touch-sensitive devices, and produces "ouput" by moving its appendages or generat- 
ing sounds. The real world is a messier place than the abstract worlds we have been covering. 
A robot must deal with noisy data, faulty components, and other agents and events in the world 
that can affect changes in the environment. 



Computer vision is the subfield of robotics that deals with interpreting visual 
information. Low-level vision takes its input directly from a camera and detects 
lines, regions and textures. We will not be concerned with this. High-level vision 
uses the findings of the low-level component to build a three-dimensional model of 
the objects depicted in the scene. This chapter covers one small aspect of high-level 
vision. 

17.1 The Line-Labeling Problem 

In this chapter we look at the line-diagram labeling problem: Given a list of lines and 
the vertexes at which they intersect, how can we determine what the lines represent? 
For example, given the nine lines in figure 17.1, how can we interpret the diagram as 
a cube? 

Figure 17.1: A Cube 

Before we can arrive at an interpretation, we have to agree on what the candidates 
are. After all, figure 17.1 could be just a hexagon with three lines in the middle. For 
the purposes of this chapter, we will consider only diagrams that depict one or more 
polyhedra-three-dimensional solid figures whose surfaces are flat faces bounded by 
straight lines. In addition, we will only allow trihedral vertexes. That is, each vertex 
must be formed by the intersection of three faces, as in the corner of a cube, where 
the top, front, and side of the cube come together. A third restriction on diagrams is 
that no so-called accidental vertexes are allowed. For example, figure 17.1 might be 
a picture of three different cubes hanging in space, which just happen to line up so 
that the edge of one is aligned with the edge of another from our viewpoint. We will 
assume that this is not the case. 



Given a diagram that fits these three restrictions, our goal is to identify each line, 
placing it in one of three classes: 

1. A convex line separates two visible faces of a polyhedron such that a line from 
one face to the other would lie inside the polyhedron. It will be marked with a 
plus sign: +. 

2. A concave line separates two faces of two polyhedra such that a line between 
the two spaces would pass through empty space. It will be marked with a 
minus sign: -. 

3. A boundary line denotes the same physical situation as a convex line, but the 
diagram is oriented in such a way that only one of the two faces of the poly- 
hedron is visible. Thus, the line marks the boundary between the polyhedron 
and the background. It will be marked with an arrow: +. Traveling along the 
line from the tail to the point of the arrow, the polyhedron is on the right, and 
the background is on the left. 

Figure 17.2 shows a labeling of the cube using these conventions. Vertex A is 
the near corner of the cube, and the three lines coming out of it are all convex lines. 
Lines GD and DF are concave lines, indicating the junction between the cube and 
the surface on which it is resting. The remaining lines are boundary lines, indicating 
that there is no physical connection between the cube and the background there, but 
that there are other sides of the cube that cannot be seen. 

Figure 17.2: A Line-labeled Cube 

The line-labeling technique developed in this chapter is based on a simple idea. 
First we enumerate all the possible vertexes, and all the possible labelings for each 



vertex. It turns out there are only four different vertex types in the trihedral polygon 
world. We call them L, Y, W, and T vertexes, because of their shape. The Y and W 
vertexes are also known as forks and arrows, respectively. The vertexes are listed in 
figure 17.3. Each vertex imposes some constraints on the lines that compose it. For 
example, in a W vertex, the middle line can be labeled with a + or -, but not with 
an arrow. 

Figure 17.3: The Possible Vertexes and Labels 

Each line connects two vertexes, so it must satisfy both constraints. This suggests 
a simple algorithm for labeling a diagram based on constraint propagation: First, 
label each vertex with all the possible labelings for the vertex type. An L vertex has 
six possibilities, Y has five, T has four, and W has three. Next, pick a vertex, V. 
Consider a neighboring vertex, N (that is, N and V are connected by a line). N will 
also have a set of possible labelings. If N and V agree on the possible labelings for the 
line between them, then we have gained nothing. But if the intersection of the two 
possibility sets is smaller than V's possibility set, then we have found a constraint on 



the diagram. We adjust N and V's possible labelings accordingly. Every time we add 
a constraint at a vertex, we repeat the whole process for all the neighboring vertexes, 
to give the constraint a chance to propagate as far as possible. When every vertex 
has been visited at least once and there are no more constraints to propagate, then 
we are done. 

Figure 17.4 illustrates this process. On the left we start with a cube. All vertexes 
have all possible labelings, except that we know line GD is concave (-), indicating that 
the cube is resting on a surface. This constrains vertex D in such a way that line DA 
must be convex (+). In the middle picture the constraint on vertex D has propagated 
to vertex A, and in the right-hand picture it propagates to vertex B. Soon, the whole 
cube will be uniquely labeled. 

Figure 17.4: Propagating Constraints 

Many diagrams will be labeled uniquely by this constraint propagation process. 
Some diagrams, however, are ambiguous. They will still have multiple labelings 
after constraint propagation has finished. In this case, we can search for a solution. 
Simply choose an ambiguous vertex, choose one of the possible labelings for that 
vertex, and repeat the constraint propagation/search process. Keep going until the 
diagram is either unambiguous or inconsistent. 

That completes the sketch of the line-labeling algorithm. We are now ready to 
implement a labeling program. It's glossary is in figure 17.5. 

The two main data structures are the d i  agram and the v e r t e x .  It would have been 
possible to implement a data type for 1 i nes, but it is not necessary: lines are defined 
implicitly by the two vertexes at their end points. 

A diagram is completely specified by its list of vertexes, so the structure d i  agram 
needs only one slot. A vertex, on the other hand, is a more complex structure. Each 
vertex has an identifying name (usually a single letter), a vertex type (L, Y, W, or T), a 



Top-Level Functions 1 

p r i n t - 1  abel i ngs  Label the diagram by propagating constraints and then searching. 
Data Types 

diagram A diagram is a list of vertexes. 
ver tex  A vertex has a name, type, and list of neighbors and labelings. 

Major Functions 
f i n d - 1  abel i ngs  Do the same constraint propagation, but don't print anything. 
propagate - cons t r a  i n t s  Reduce the number of labelings on vertex by considering neighbors. 
consi s t e n t  - 1 abel i ngs Return the set of labelings that are consistent with neighbors. 
search-so l  u t i  ons Try all labelings for one ambiguous vertex, and propagate. 
defdiagram (macro) Define a diagram. 
diagram Retrieve a diagram stored by name. 
ground Attach the line between the two vertexes to the ground. 

Auxiliary Functions 
1 abel s - f o r  Return all the labels for the line going to vertex. 
reverse-  1 abel Reverse left and right on arrow labels. 
ambiguous - v e r t e x -  p A vertex is ambiguous if it has more than one labeling. 
number - o f  - 1 a be1 i ngs Number of labels on a vertex. 
f i n d - v e r t e x  Find the vertex with the given name. 
mat r i x - t ranspose  Turn a matrix on its side. 
poss i  b l  e-  1 abel i ngs The list of possible labelings for a given vertex type. 
p r i  n t - v e r t e x  Print a vertex in the short form. 
show-vertex Print a vertex in a long form, on a new line. 
show-diagram Print a diagram in a long form. Include a title. 
const ruct -d iagram Build a new diagram from a set of vertex descriptions. 
c o n s t r u c t - v e r t e x  Build a new vertex from a vertex description. 
make-copy-diagram Make a copy of a diagram, preserving connectivity. 
check-di  agram Check if the description appears consistent. 

Figure 17.5: Glossary for the Line-Labeling Program 

list of neighboringvertexes, and a list of possible labelings. A labeling is a list of line 
labels. For example, a Y vertex will initially have a list of five possible labelings. If it 
is discovered that the vertex is the interior of a concave corner, then it will have the 
single labeling ( - - - 1. We give type information on the slots of vertex because it 
is a complicated data type. The syntax of def s t ruc t  is such that you cannot specify 
a : type without first specifying a default value. We chose L as the default value for 
the type slot at random, but note that it would have been an error to give n i  1 as the 
default value, because n i  1 is not of the right type. 

( d e f s t r u c t  diagram " A  diagram i s  a l i s t  o f  ver texes."  ver texes)  
( d e f s t r u c t  ( v e r t e x  ( : p r i n t - f u n c t i o n  p r i n t - v e r t e x ) )  

(name n i l  : type atom) 

( t ype  ' L  : type (member L Y W T ) )  
(neighbors n i l  : type l i s t )  ; o f  ve r tex  
( l a b e l i n g s  n i l  : type l i s t ) )  ; o f  l i s t s  o f  (member + - L R))))) 



An ambiguous vertex will have several labelings, while an unambiguous vertex has 
exactly one, and a vertex with no labelings indicates an impossible diagram. Initially 
we don't know which vertexes are what, so they all start with several possible label- 
ings. Note that a labeling is a list, not a set: the order of the labels is significant and 
matches the order of the neighboring vertexes. The function pos s i b l  e - 1 a be1 i ngs 
gives a list of all possible labelings for each vertex type. We use R and L instead of 
arrows as labels, because the orientation of the arrows is significant. An R means 
that as you travel from the vertex to its neighbor, the polyhedron is on the right and 
the background object is on the left. Thus, an R is equivalent to an arrow pointing 
away from the vertex. The L is just the reverse. 

(defun ambiguous-vertex-p ( v e r t e x )  
"A ve r tex  i s  ambiguous i f  i t  has more than one l a b e l i n g . "  
(> (number-of - label ings '  ve r tex )  1))  

(defun number-of - label ings ( v e r t e x )  
( l e n g t h  ( v e r t e x - l a b e l i n g s  v e r t e x ) ) )  

(defun imposs ib le - ve r tex -p  ( v e r t e x )  
"A ve r tex  i s  imposs ib le  i f  i t  has no 1  abel i n g .  " 
( n u l l  ( v e r t e x - l a b e l i n g s  v e r t e x ) ) )  

(defun impossible-diagram-p (diagram) 
"An impossi b l e  diagram i s  one w i t h  an imposs ib le  ver tex.  " 
(some # ' imposs ib le -ve r tex -p  (diagram-vertexes d iagram)))  

(defun poss i  b l  e-1 abel i n g s  ( v e r t e x - t y p e )  
"The l i s t  o f  poss ib le  l a b e l i n g s  f o r  a  g iven ve r tex  t ype . "  
;; I n  these l a b e l i n g s ,  R means an arrow p o i n t i n g  away from 
;; t h e  ve r tex ,  L  means an arrow p o i n t i n g  towards i t. 
(case ve r tex - t ype  

( ( L I S ( ( R L )  ( L R )  ( + R )  ( L + )  ( - L )  ( R - 1 ) )  
((Y) ' ( ( +  + +) ( -  - - 1  ( L  R - 1  ( -  L  R) (R - L ) ) )  
( ( T I  ' ( ( R  L +) (R L  - 1  (R L  L) (R L  R) ) )  
( ( W )  ' ( ( L  R  +) ( -  - +) (+ + - ) ) ) ) I  

17.2 Combining Constraints and Searching 

The main function p r i n t  - 1 a be1 i ngs takes a diagram as input, reduces the number 
of labelings on each vertex by constraint propagation, and then searches for all 
consistent interpretations. Output is printed before and after each step. 



(defun p r i n t - l a b e l i n g s  (diagram) 
"Label t h e  diagram by propagat ing c o n s t r a i n t s  and then 
searching f o r  s o l u t i o n s  i f  necessary. P r i n t  r e s u l t s .  " 
(show-diagram diagram ""&The i n i t i a l  diagram i s : " )  
(every  # 'p ropaga te -cons t ra in ts  (diagram-vertexes diagram)) 
(show-diagram diagram 

""2&Af ter  c o n s t r a i n t  propagat ion t h e  diagram i s : " )  
(1 e t *  ( ( s o l u t i o n s  ( i f  ( impossi b l  e-diagram-p diagram) 

n i  1  
( search -so lu t ions  d iagram)))  

( n  (1 ength so l  u t i  ons 
(un less (= n  1) 

( format  t ""2&There a re  "r so1ut ion":p:" n )  
(mapc #'show-diagram s o l u t i o n s ) ) )  

( va lues ) )  

The function p r o p a g a t e  - c o n s  t r a  i n t s  takes a vertex and considers the constraints 
imposed by neighboringvertexes to get a list of all the c o n s  i s t e n t  - 1  a  be1 i ngs for the 
vertex. If the number of consistent labelings is less than the number bef ore we started, 
then the neighbors' constraints have had an effect on this vertex, so we propagate the 
new-found constraints on this vertex back to each neighbor. The function returns 
nil and thus immediately stops the propagation if there is an impossible vertex. 
Otherwise, propagation continues until there are no more changes to the labelings. 

The whole propagation algorithm is started by a call to e v e r y  in p  r i n t  - 1  a  be1 i ngs, 
which propagates constraints from each vertex in the diagram. But it is not obvious 
that this is all that is required. After propagating from each vertex once, couldn't 
there be another vertex that needs relabeling? The only vertex that could possibly 
need relabeling would be one that had a neighbor changed since its last update. 
But any such vertex would have been visited by p r o p a g a t e  - c o n s  t r a  i n t ,  since we 
propagate to all neighbors. Thus, a single pass through the vertexes, compounded 
with recursive calls, will find and apply all possible constraints. 

The next question worth asking is if the algorithm is guaranteed to terminate. 
Clearly, it is, because p r o p a g a t e  - c o n s  t r a  i n t s  can only produce recursive calls when 
it removes a labeling. But since there are a finite number of labelings initially (no more 
than six per vertex), there must be a finite number of calls to p r o p a g a t e  - c o n s  t r a  i n  ts.  

(defun propagate-const ra in ts  ( v e r t e x )  
"Reduce t h e  l a b e l i n g s  on ve r tex  by cons ide r ing  neighbors. 
I f  we can reduce, propagate t h e  c o n s t r a i n t s  t o  each neighbor." 
;; Return n i l  on ly  when t h e  c o n s t r a i n t s  l e a d  t o  an i m p o s s i b i l i t y  
( l e t  ( (o ld-num (number-of - label ings v e r t e x ) ) )  

( s e t f  ( v e r t e x - l a b e l i n g s  ve r tex )  ( c o n s i s t e n t - l a b e l i n g s  v e r t e x ) )  
(un less ( impossi b l  e - v e r t e x - p  v e r t e x )  

(when (< (number-of - label ings ve r tex )  old-num) 
(every # 'p ropaga te -cons t ra in ts  (ver tex-ne ighbors v e r t e x ) ) )  

t ) ) )  



The function consi stent  - 1 abel i ngs is passed a vertex. It gets all the labels for this 
vertex from the neighboring vertexes, collecting them in nei g h bo r - 1 a be1 s. It then 
checks all the labels on the current vertex, keeping only the ones that are consistent 
with all the neighbors' constraints. The auxiliary function 1 a be1 s - for finds the 
labels for a particular neighbor at a vertex, and reverse - 1 a be1 accounts for the fact 
that L and R labels are interpreted with respect to the vertex they point at. 

(defun consistent-labelings (vertex) 
"Return the set of labelings that are consistent with neighbors." 
(let ((neighbor-labels 

(mapcar #'(lambda (neighbor) (labels-for neighbor vertex)) 
(vertex-neighbors vertex)))) 

;; Eliminate labelings that don't have all lines consistent 
;; with the corresponding line's label from the neighbor. 
; ; Account for the L-R mismatch with reverse-1 abel . 
(find-all -if 

#'(lambda (labeling) 
(every #'member (mapcar #'reverse-label labeling) 

neighbor-labels)) 
(vertex-labelings vertex)))) 

Constraint propagation is often sufficient to yield a unique interpretation. But some- 
times the diagram is still underconstrained, and we will have to search for solutions. 
The function search-sol uti ons first checks to see if the diagram is ambiguous, by 
seeing if it has an ambiguous vertex, V. If the diagram is unambiguous, then it is a 
solution, and we return it (in a list, since search-sol uti ons is designed to return a 
list of all solutions). Otherwise, for each of the possible labelings for the ambiguous 
vertex, we create a brand new copy of the diagram and set v's labeling in the copy to 
one of the possible labelings. In effect, we are guessing that a labeling is a correct one. 
We call propagate - const ra i nts; if it fails, then we have guessed wrong, so there are 
no solutions with this labeling. But if it succeeds, then we call search - sol uti ons 
recursively to give us the list of solutions generated by this labeling. 

(defun search-solutions (diagram) 
"Try all labelings for one ambiguous vertex, and propagate." 
;; If there is no ambiguous vertex, return the diagram. 
;; If there is one, make copies of the diagram trying each of 
;; the possible labelings. Propagate constraints and append 
; ; a1 1 the solutions together. 
(let ((v (find-if #'ambiguous-vertex-p 

(diagram-vertexes diagram)))) 
(if (null v) 

(1 i st diagram) 
(mapcan 
#'(lambda (v-labeling) 



( l e t *  ((diagram2 (make-copy-diagram diagram)) 
(v2 ( f i n d - v e r t e x  (vertex-name v )  d iagram2)) )  

( s e t f  ( v e r t e x - l a b e l i n g s  v2) ( l i s t  v - l a b e l i n g ) )  
( i f  (p ropaga te -cons t ra in ts  v2) 

( search-so lu t ions  diagram21 
n i l  1 ) )  

( v e r t e x - l a b e l i n g s  v ) ) ) ) )  

That's all there is to the algorithm; all that remains are some auxiliary functions. 
Here are three of them: 

(defun l a b e l s - f o r  ( v e r t e x  from) 
"Return a l l  t h e  l a b e l s  f o r  t h e  l i n e  going t o  ve r tex . "  
( l e t  ((pos ( p o s i t i o n  from (ver tex-neighbors v e r t e x ) ) ) )  

(mapcar #'(lambda ( l a b e l i n g )  ( n t h  pos l a b e l i n g ) )  
( v e r t e x - l a b e l i n g s  v e r t e x ) ) ) )  

(defun reverse-1 abel (1 abel 1 
"Account f o r  t h e  f a c t  t h a t  one ve r tex ' s  r i g h t  i s  another 's  l e f t . "  
(case l a b e l  ( L  'R) (R ' L )  (o therwise l a b e l  1 ) )  

(defun f i n d - v e r t e x  (name diagram) 
"F ind  t h e  ve r tex  i n  t h e  g iven diagram w i t h  t h e  g iven name." 
( f i n d  name (diagram-vertexes diagram) :key #'vertex-name)) 

Here are the printing functions. pri n t  - vertex prints a vertex in short form. It obeys 
the pr i n t convention of returning the first argument. The functions show - vertex and 
show - d i  ag r am print more detailed forms. They obey the convention for descr i be-like 
functions of returning no values at all. 

(defun p r i n t - v e r t e x  ( v e r t e x  stream depth) 
" P r i n t  a  ve r tex  i n  t h e  s h o r t  form."  
(dec l  a re  ( i gnore  depth 
( fo rmat  stream ""a/"dU (vertex-name ver tex )  

(number-of - label ings v e r t e x ) )  
ve r tex )  

(defun show-vertex ( v e r t e x  &op t iona l  (stream t ) )  
" P r i n t  a  v e r t e x  i n  a  long  form, on a  new l i n e . "  
( format  stream ""& "a "d:" ve r tex  ( v e r t e x - t y p e  v e r t e x ) )  
(mapc # '  (1  ambda (neighbor 1  abel s )  

( format stream " "a"a=C"{"a")l" (vertex-name ver tex )  
(vertex-name neighbor 1  abel s  1) 

(ver tex-neighbors v e r t e x )  
(mat r i x - t ranspose  ( v e r t e x - l a b e l i n g s  v e r t e x ) ) )  

( va lues )  



(defun show-diagram (diagram &op t iona l  ( t i t l e  ""Z&Diagram:") 
(stream t ) )  

" P r i n t  a  diagram i n  a  long  form. Inc lude  a t i t l e . "  
( format  stream t i t l e )  
(mapc #'show-vertex (diagram-vertexes diagram)) 

( l e t  ( ( n  (reduce # ' *  (mapcar # 'number-of - label ings 
(diagram-vertexes d iag ram) ) ) ) )  

(when (> n 1) 
( format  stream ""&For ":d in te rp re ta t ion " :p . "  n ) )  

( va lues ) )  1 

Note that mat  r i x- t ranspose  is called by show - v e r t e x  to turn the matrix of labelings 
on its side. It works like this: 

> ( p o s s i b l e - l a b e l i n g s  ' Y )  

( ( +  + +) 

( -  - - 1  
( L  R - 1  
( -  L  R) 
(R - L ) )  

> (matr ix - t ranspose (poss i  b l  e-1 abel i ngs  ' Y  1) 
((+ - L  - R) 

(+ - R L  - 1  
(+ - - R L ) )  

The implementation of mat  r i x- t r a n s p o s e  is surprisingly concise. It is an old Lisp 
trick, and well worth understanding: 

(defun matr ix- t ranspose ( m a t r i x )  
"Turn a m a t r i x  on i t s  s ide . "  
( i f  m a t r i x  (app ly  #'mapcar # ' l i s t  m a t r i x ) ) )  

The remaining code has to do with creating diagrams. We need some handy way of 
specifying diagrams. One way would be with a line-recognizing program operating 
on digitized input from a camera or bitmap display. Another possibility is an interac- 
tive drawing program using a mouse and bitmap display. But since there is not yet a 
Common Lisp standard for interacting with such devices, we will have to settle for a 
textual description. The macro d e f  d i  agram defines and names a diagram. The name 
is followed by a list of vertex descriptions. Each description is a list consisting of 
the name of a vertex, the vertex type (Y, A, L, or T), and the names of the neighboring 
vertexes. Here again is the d e f d i  agram description for the cube shown in figure 17.6. 



(defdiagram cube 
(a Y b c dl 
(b W g e a) 
(C W e f a) 
(d W f g a) 
(e L c b) 
(f L d C) 
(g L b d l )  

Figure 17.6: A Cube 

The macro d e f d i  agram calls cons t ruc t  - d i  agram to do the real work. It would 
be feasible to have d e f d i  agram expand into a defvar, making the names be special 
variables. But then it would be the user's responsibility to make copies of such a 
variable before passing it to a destructive function. Instead, I use p u t  - d i  agram and 
d i  agram to put and get diagrams in a table. d i  agram retrieves the named diagram 
and makes a copy of it. Thus, the user cannot corrupt the original diagrams stored in 
the table. Another possibility would be to have d e f d i  agram expand into a function 
definition for name that returns a copy of the diagram. I chose to keep the diagram 
name space separate from the function name space, since names like cube make 
sense in both spaces. 

(defmacro defdiagram (name &rest vertex-descriptors) 
"Define a diagram. A copy can be gotten by (diagram name)." 
'(put-diagram ',name (construct-diagram ',vertex-descriptors))) 

(let ((diagrams (make-hash-table) 1) 



(defun diagram (name) 
"Get a fresh copy of the diagram with this name." 
(make-copy-diagram (gethash name diagrams))) 

(defun put-diagram (name diagram) 
"Store a diagram under a name." 
(setf (gethash name diagrams) diagram) 
name 1 1 

The function construct - di agr am translates each vertex description, using 
construct -vertex, and then fills in the neighbors of eachvertex. 

(defun construct-diagram (vertex-descriptors) 
"Build a new diagram from a set of vertex descriptor." 
(let ((diagram (make-diagram))) 

;; Put in the vertexes 
(setf (diagram-vertexes diagram) 

(mapcar #'construct-vertex vertex-descriptors)) 
;; Put in the neighbors for each vertex 
(dolist (v-d vertex-descriptors) 
(setf (vertex-neighbors (find-vertex (first v-d) diagram)) 

(mapcar #'(lambda (neighbor) 
(find-vertex neighbor diagram)) 

(v-d-neighbors v-dl))) 
di agram) 

(defun construct-vertex (vertex-descriptor) 
"Build the vertex corresponding to the descriptor." 
;; Descriptors are like: (x L y z )  

(make-vertex 
:name (fi rst vertex-descriptor) 
:type (second vertex-descriptor) 
:label ings (possi bl e-1 abel ings (second vertex-descriptor) 1 ) )  

(defun v-d-neighbors (vertex-descriptor) 
"The neighboring vertex names in a vertex descriptor." 
(rest (rest vertex-descriptor))) 

The def st ruct for di agram automatically creates the function copy -di agram, but it 
just copies each field, without copying the contents of each field. Thus we need 
make- copy-di agram to create a copy that shares no structure with the original. 



(defun make-copy-diagram (diagram) 
"Make a copy o f  a diagram, p reserv ing  c o n n e c t i v i t y . "  
( l e t *  ((new (make-diagram 

:vertexes (mapcar # 'copy-ver tex 
(diagram-vertexes d iag ram) ) ) ) )  

;; Put i n  t h e  neighbors f o r  each ve r tex  
( d o l i s t  ( v  (diagram-vertexes new)) 

( s e t f  (ver tex-ne ighbors v )  
(mapcar #'(lambda (ne ighbor)  

( f i n d - v e r t e x  (vertex-name neighbor)  new)) 
(ver tex-neighbors v ) ) ) )  

new 1 1 

17.3 Labeling Diagrams 

We are now ready to try labeling diagrams. First the cube: 

> ( p r i n t - l a b e l  i ngs  (diagram 'cube)) 
The i n i t i a l  diagram i s :  

A15 Y : AB=C+- L- Rl  AC=C+- RL- I AD=[+- -RLI 
B/3 W: BG=CL-+I BE=CR-+I BA=C++-I 
C/3 W: CE=CL-+I CF=CR-+I CA=C++-I 
Dl3 W: DF=CL-+I DG=CR-+I DA=C++-I 
E/6 L: EC=CRL+L-Rl EB=[LRR+L-I 
F l 6  L: FD=CRL+L-RI FC=C LRR+L- I 
G/6 L: GB=CRL+L- R l  GD=C LRR+L- I 

For 29,160 i n t e r p r e t a t i o n s .  

A f t e r  c o n s t r a i n t  propagat ion t h e  diagram i s :  
A11 Y :  AB=C+I AC=C+I AD=[+] 
B/2 W :  BG=CL-I BE=CR-I BA=C++l 
C/2 W: CE=CL-I CF=CR-I CA=C++l 
D/2 W: DF=CL-I DG=CR-I DA=C++I 
E l3  L: EC=CR-RI EB=CLL-I 
F/3 L: FD=CR-RI FC=CLL-I 
G/3 L: GB=CR-Rl GD=CLL-I 

For 216 i n t e r p r e t a t i o n s .  

There a re  f o u r  s o l u t i o n s :  



D i  a g r a m :  

A 1 1  Y: AB=C+I AC=C+I AD=[+] 

B 1 1  W: BG=CLI BE=CRI BA=C+l 

C 1 1  W :  CE=CLI CF=CRI CA=C+I 
D l 1  W :  DF=CLI DG=CRI DA=C+I 

E l 1  L :  EC=CRI EB=CLl 

F 1 1  L :  FD=CRI FC=CLI 

G I 1  L :  GB=CRI GD=CLI 

D i a g r a m :  

A 1 1  Y: AB=C+I AC=C+I AD=[+] 

B 1 1  W :  BG=CLI BE=CRI BA=C+I 

C 1 1  W :  CE=CLI CF=CRI CA=C+I 

D l 1  W :  DF=C- I  DG=C-I DA=C+I 

E l 1  L :  EC=CRI EB=CLI 

F 1 1  L :  FD=C-I  FC=CLI 

G I 1  L :  GB=CRI GD=C-I 

D i a g r a m :  

A 1 1  Y: AB=C+I AC=C+I AD=[+] 

B 1 1  W :  BG=CLI BE=CRI BA=C+I 

C 1 1  W :  CE=C-I  CF=C- I  CA=C+I 

D l 1  W :  DF=CLI DG=CRI DA=C+I 

E l 1  L :  EC=C-I  EB=CLI 

F 1 1  L :  FD=CRI FC=C -I 
G I 1  L :  GB=CRI GD=CLI 

D i a g r a m :  

A 1 1  Y: AB=C+l AC=C+l AD=[+] 

B 1 1  W :  BG=C-I  BE=[- ]  BA=C+I 

C 1 1  W: CE=CLI CF=CRI CA=C+I 

D l 1  W: DF=CLI DG=CRI DA=C+I 

E l 1  L :  EC=CRI EB=C- I  

F 1 1  L :  FD=CRI FC=CLI 

G I 1  L :  GB=C-I  GD=CLI 

The four interpretations correspond, respectively, to the cases where the cube is free 
floating, attached to the floor (GD and DF = -), attached to a wall on the right (EC 
and CF = -), or attached to a wall on the left (BG and BE = -). These are shown in 
figure 17.7. It would be nice if we could supply information about where the cube is 
attached, and see if we can get a unique interpretation. The function ground takes a 
diagram and modifies it by making one or more lines be grounded lines-lines that 
have a concave (-) label, corresponding to a junction with the ground. 



Figure 17.7: Four Interpretations of the Cube 

(defun ground (diagram ver tex -a  ve r tex -b )  
"A t tach  t h e  l i n e  between t h e  two vertexes t o  t h e  ground. 
That i s ,  l a b e l  t h e  l i n e  w i t h  a  - "  
( l e t *  ( (A  ( f i n d - v e r t e x  ve r tex -a  diagram)) 

(B ( f i n d - v e r t e x  v e r t e x - b  diagram)) 
( i  ( p o s i t i o n  B  (ver tex-neighbors A ) ) ) )  

(asser t  ( n o t  ( n u l l  i ) ) )  
( s e t f  ( v e r t e x - l a b e l i n g s  A) 

( f i n d - a l l - i f  #'(lambda (1 )  (eq ( n t h  i 1 )  ' - 1 )  
( v e r t e x - 1  abel i ngs  A) 1) 

d i  agram) 



We can see how this works on the cube: 

Figure 17.8: Cube on a Plate 

> ( p r i n t - l a b e l  i n g s  (ground (diagram 'cube) ' g  ' d l  1 
The i n i t i a l  diagram i s :  

A/5 Y :  AB=C+-L-RI AC=C+-RL-I AD=[+--RLI 
B l 3  W: BG=CL-+I BE=CR-+I BA=C++-I 
C/3 W: CE=CL-+I CF=CR-+I CA=C++-I 
D l3  W: DF=CL-+I DG=CR-+I DA=C++-I 
E l 6  L: EC=CRL+L- RI EB=C LRR+L- I 
F/6 L: FD=CRL+L- RI FC=CLRR+L-I 
G I 1  L: GB=CRI GD=C-I 

For 4,860 i n t e r p r e t a t i o n s .  

A f t e r  c o n s t r a i n t  propagat ion t h e  diagram i s :  
A/1 Y :  AB=C+I AC=C+I AD=[+] 
B11 W: BG=CLI BE=CRI BA=C+I 
C / 1  W: CE=CLI CF=CRI CA=C+I 
D l 1  W: DF=C-I DG=C-I DA=C+I 
E l 1  L: EC=CRI EB=CLI 
F/1 L: FD=C-I FC=CLI 
GI1 L: GB=CRI GD=C-I 



Note that the user only had to specify one of the two ground lines, GD. The program 
found that DF is also grounded. Similarly, in programming ground - 1 i ne, we only 
had to update one of the vertexes. The rest is done by constraint propagation. 

The next example yields the same four interpretations, in the same order (free 
floating, attached at bottom, attached at right, and attached at left) when interpreted 
ungrounded. The groundedversion yields the unique solution shownin the following 
output and in figure 17.9. 

Figure 17.9: Labeled Cube on a Plate 

(defdiagram cube-on-p la te  
(a  Y b  c d )  
( b  W g  e  a)  
(C W e  f a)  
( d  W f g  a)  
( e  L c b )  
( f  Y d  c  i) 
( g  Y b  d  h)  
( h  W 1  g  j) 
(i W f m j) 
( j  Y h  i k )  
( k  W m 1 j )  
( 1  L h  k )  



> ( p r i n t - l a b e l  i ngs  (ground (diagram 'cube-on-pl a t e )  ' k  'm) 
The i n i t i a l  diagram i s :  

A15 Y : AB=C+- L- RI AC=C+-RL- I AD=[+- - RLI 
B/3 W: BG=CL-+I BE=CR-+I BA=C++-I 
Cl3 W: CE=CL-+I CF=CR-+I CA=C++-I 
D l3  W: DF=CL-+I DG=CR-+I DA=C++-I 
E l 6  L: EC=CRL+L-RI EB=CLRR+L- I 
F l 5  Y :  FD=C+- L- R I  FC=C+- RL- I FI=C+- -RLI 
GI5 Y : GB=C+- L- R I  GD=C+- RL- I GH=C+- -RLI 
HI3 W :  HL=CL-+I HG=CR-+I HJ=C++-I 
I 1 3  W: IF=CL-+I IM=CR-+I IJ=C++-I 
J/5 Y :  JH=[+-L-RI JI=C+-RL-I JK=C+--RLI 
K11 W: KM=C-I KL=C-I KJ=C+I 
L l 6  L: LH=CRL+L-RI LK=CLRR+L-I 
MI6 L: MK=CRL+L-RI MI=CLRR+L-I 

For 32,805,000 i n t e r p r e t a t i o n s .  

A f t e r  c o n s t r a i n t  propagat ion t h e  diagram i s :  
A11 Y :  AB=C+I AC=C+I AD=[+] 
B11 W :  BG=CLI BE=CRI BA=C+I 
C 1 1  W: CE=CLI CF=CRI CA=C+I 
D l 1  W: DF=C-I DG=C-I DA=C+I 
E l 1  L: EC=CRI EB=CLI 
F11 Y :  FD=C-I FC=CLI FI=CRI 
G I 1  Y :  GB=CRI GD=C-I GH=CLI 
H I 1  W: HL=CLI HG=CRI HJ=C+I 
I11 W: IF=CLI IM=CRI IJ=C+I 
J11 Y :  JH=C+I JI=C+I JK=C+I 
K11 W: KM=C-I KL=C - I KJ=C+I 
L11 L: LH=CRI LK=C-I 
M I 1  L: MK=C-I MI=CLI 

It is interesting to try the algorithm on an "impossible" diagram. It turns out the 
algorithm correctly finds no interpretation for this well-known illusion: 

(defdiagram p o i u y t  
(a L b g )  
(b  L j a)  
( C  L d  1 )  
( d  L h C )  
( e  L f i) 
( f  L k e) 
( g  L a  1 )  
( h  L 1 d) 
( i  L e k )  
( j  L k b )  



Figure 17.10: An Impossible Figure (A Poiuyt) 

> ( p r i n t - l a b e l i n g s  (diagram ' p o i u y t ) )  
The i n i t i a l  d iagram i s :  

A16 L: AB=CRL+L-RI AG=CLRR+L-I 
B/6 L: BJ=CRL+L- RI BA=C LRR+L- I 
C/6 L: CD=CRL+L-RI CL=CLRR+L-I 
D l6  L: DH=CRL+L- RI DC=C LRR+L- I 
E/6 L: EF=CRL+L-RI EI=CLRR+L-I 
F/6 L: FK=CRL+L- RI FE=CLRR+L-I 
GI6 L: GA=CRL+L-RI GL=CLRR+L-I 
HI6  L: HL=CRL+L-Rl HD=CLRR+L-I 
116 L: IE=CRL+L-RI IK=CLRR+L-I 
J / 6  L: JK=CRL+L-Rl JB=CLRR+L-I 
K/3 W: KJ=CL-+I KI=CR-+I KF=C++-I 
L/3 W :  LH=CL-+I LG=CR-+I LC=[++-] 

For 544,195,584 i n t e r p r e t a t i o n s .  

A f t e r  c o n s t r a i n t  p ropaga t ion  t h e  diagram i s :  
A15 L: AB=CRL+- RI AG=C LRRL- I 
B/5 L: BJ=CRLL-RI BA=CLR+L-I 
C/2 L: CD=CLRI CL=C+-I 
D l3  L: DH=CRL-I DC=CLRLI 
E l 3  L: EF=CRLRI EI=CLR-I 
F/2 L: FK=C+-I FE=CRLI 



GI4 L: GA=CRL-Rl GL=CL+L-I 
HI4 L: HL=CR+-Rl HD=CLRL-I 
I 1 4  L: IE=CRL-Rl IK=CL+L-I 
514 L: JK=CR+-RI JB=CLRL-I 
K l3  W: KJ=CL-+I KI=CR-+I KF=C++-I 
L l 3  W: LH=CL-+I LG=CR-+I LC=[++-] 

For 2,073.600 i n t e r p r e t a t i o n s .  

There are zero so lu t ions :  

Now we try a more complex diagram: 

( d e f d i  agram tower 
(a Y b c d)  ( n  L q 01 
( b W g e a )  ( o W y  j n )  
( C  W e f a) (p  L r i )  
( d W f g a )  ( q W n s w )  
(e  L c b )  ( r  W s p x )  
( f Y d c i )  ( ~ L r q )  
( g Y  b d h )  ( t W w x z )  
( h W  1 g j )  ( u W X ~ Z )  
( i  W f r n p )  ( ~ W y w z )  
( j Y h o k )  ( ~ Y t v q )  
( k W r n 1  j )  ( x Y  r u t )  
(1  L h k )  ( y  Y v u 0 )  
(rn L k i )  ( Z  Y t u v ) )  

> ( p r i n t - 1  abel i ngs  (ground (diagram ' tower) '1 ' k )  
The i n i t i a l  diagram i s :  

A15 Y :  AB=C+-L-RI AC=C+-RL-I AD=[+--RLI 
B l3  W: BG=CL-+I BE=CR-+I BA=C++-I 
Cl3 W: CE=CL-+I CF=CR-+I CA=C++-I 
Dl3 W: DF=CL-+I DG=CR-+I DA=C++-I 
E l6  L: EC=CRL+L- RI EB=C LRR+L- I 
F l 5  Y : FD=C+- L- RI FC=C+- RL- I FI=C+- - RLI 
GI5 Y :  GB=C+-L-RI GD=C+-RL-I GH=C+--RLI 
HI3 W: HL=CL-+I HG=CR-+I HJ=C++-I 
I 1 3  W: IF=CL-+I IM=CR-+I IP=C++-I 
515 Y :  JH=C+- L-Rl  JO=C+-RL-I JK=C+- -RLI 
K l3  W: KM=CL-+I KL=CR-+I KJ=C++-I 
L11 L: LH=CRI LK=C-I 
MI6 L: MK=CRL+L-RI MI=CLRR+L-I 
Nl6 L: NQ=CRL+L-RI NO=CLRR+L- I 
013 W: OY=CL-+I OJ=CR-+I ON=[++-I 
PI6 L: PR=CRL+L-RI PI=CLRR+L-I 
Ql3 W: QN=CL-+I QS=CR-+I QW=C++-I 
R13 W :  RS=CL-+I RP=CR-+I RX=C++-I 
S l6  L: SR=CRL+L- Rl  SQ=C LRR+L- I 



TI3 W: TW=CL-+I TX=CR-+I TZ=C++-1 
Ul3 W: UX=CL-+I UY=CR-+I UZ=C*-I 
Vl3 W: VY=CL-+I VW=CR-+I VZ=C++-I 
Wl5 Y: WT=C+-L-RI WV=C+-RL-I WQ=C+--RLI 
X/5 Y: XR=[+-L-RI XU=[+-RL-I XT=C+--RLI 
Yl5 Y: YV=C+- L-RI YU=C+-RL- I YO=[+- -RLI 
215 Y : ZT=[+- L- RI ZU=C+- RL- I ZV=C+- - RLI 

For 1,614,252,037,500,000 i n t e r p r e t a t i o n s .  

Figure 17.11: A Tower 

After constraint propagation the diagram is: 
A/1 Y: AB=[+] AC=[+] AD=[+] 
B/1 W: BG=[L] BE=[R] BA=[+] 
C/1 W: CE=[L] CF=[R] CA=[+] 
D/1 W: DF=[-] DG=[-] DA=[+] 
E/1 L: EC=[R] EB=[L] 
F/1 Y: FD=[-] FC=[L] FI=[R] 
G/1 Y: GB=[R] GD=[-] GH=[L] 
H/1 W: HL=[L] HG=[R] HJ=[+] 
I/1 W: IF=[L] IM=[R] IF'=[+] 
J/1 Y: JH=[+] JO=[+] JK=[+] 



We see that the algorithmwas able to arrive at a single interpretation. Moreover, even 
though there were a large number of possibilities-over a quadrillion-the computa- 
tion is quite fast. Most of the time is spent printing, so to get a good measurement, 
we define a function to find solutions without printing anything: 

(defun find-labelings (diagram) 
"Return a list of all consistent labelings o f  the diagram." 
(every #'propagate-constraints (diagram-vertexes diagram)) 
(search-sol uti ons diagram) 

When we t i  me the application of f i nd - 1 abel  i ngs to the grounded tower and the 
poiuyt, we find the tower takes 0.11 seconds, and the poiuyt 21 seconds. This is over 
180 times longer, even though the poiuyt has only half as many vertexes and only 
about half a million interpretations, compared to the tower's quadrillion. The poiuyt 
takes a long time to process because there are few local constraints, so violations are 
discovered only by considering several widely separated parts of the figure all at the 
same time. It is interesting that the same fact that makes the processing of the poiuyt 
take longer is also responsible for its interest as an illusion. 

17.4 Checking Diagrams for Errors 

This section considers one more example, and considers what to do when there are 
apparent errors in the input. The example is taken from Charniak and McDermott's 
Introduction to Artificial Intelligence, page 138, and shown in figure 17.12. 



Figure 17.12: Diagram of an arch 

(defd iagram a rch  
( a  W e  b  C) ( p  L  o  q)  
( b  L d  a) ( q  T p  i r )  
( ~ Y a d g )  ( r T j s q )  
( d  Y c  b  m) ( S  L r t) 
( e L a f )  ( t W v s k )  
( f  T  e g  n) ( U  L t 1 )  
( g  W h  f C )  ( V  L 2  4 )  
( h T g i  O) ( w W x 1 y )  
(i T h j q)  ( X  L  w Z )  

( j T i  k r )  ( y Y w 2 z )  
( k T  j 1 t )  ( z W 3 x y )  
(1 T k m v )  ( 1 T n o w )  
(m L 1  d )  ( 2  W v  3  y )  
(n L f 1) ( 3  L z 2)  
( O  W p  1 h )  ( 4  T u 1  v ) )  

Unfortunately, running this example results in no consistent interpretations after 
constraint propagation. This seems wrong. Worse, when we try to ground the 
diagram on the line XZ and call p r i n t - 1 a be1 i ngs on that, we get the following error: 



>>>ERROR: The f i r s t  argument t o  NTH was o f  t h e  wrong type.  
The f u n c t i o n  expected a  f ixnum >= zero. 
Whi le i n  t h e  f u n c t i o n  LABELS-FOR + CONSISTENT-LABELINGS 

Debugger entered w h i l e  i n  t h e  f o l l o w i n g  func t ion :  

LABELS-FOR (P.C. = 23) 
Arg 0 (VERTEX): U l6  
Arg 1 (FROM): 414 

What has gone wrong? A good guess is that the diagram is somehow inconsistent- 
somewhere an error was made in transcribing the diagram. It could be that the 
diagram is in fact impossible, like the poiuyt. But that is unlikely, as it is easy for us 
to provide an intuitive interpretation. We need to debug the diagram, and it would 
also be a good idea to handle the error more gracefully. 

One property of the diagram that is easy to check for is that every line should be 
mentioned twice. If there is a line between vertexes A and B, there should be two 
entries in the vertex descriptors of the following form: 

Here the symbol I'?" means we aren't concerned about the type of the vertexes, only 
with the presence of the line in two places. The following code makes this check 
when a diagram is defined. It also checks that each vertex is one of the four legal 
types, and has the right number of neighbors. 

(defmacro defdiagram (name & r e s t  v e r t e x - d e s c r i p t o r s )  
"Def ine a  diagram. A  copy can be go t ten  by (diagram name)." 
' (put-d iagram ''name (const ruct -d iagram 

(check-diagram ' . v e r t e x - d e s c r i p t o r s ) ) ) )  

(defun check-diagram ( v e r t e x - d e s c r i p t o r s )  
"Check i f  t h e  diagram d e s c r i p t i o n  appears c o n s i s t e n t . "  
( l e t  ( ( e r r o r s  0 ) )  

( d o l i s t  ( v - d  v e r t e x - d e s c r i p t o r s )  
;; v - d  i s  l i k e :  (a Y b  c  d )  
( l e t  ( (A  ( f i r s t  v - d l )  

( v - t y p e  (second v - d l ) )  
;; Check t h a t  t h e  number o f  neighbors i s  r i g h t  f o r  
;; t h e  ve r tex  type (and t h a t  t h e  ve r tex  t ype  i s  l e g a l  1 
(when ( /=  ( l e n g t h  (v-d-ne ighbors v - d l )  

(case v - t y p e  ((W Y T I  3) ( ( L )  2 )  ( t  - 1 ) ) )  
(warn " I 1  1 egal t y p e l n e i  ghbor combo: "a" v - d l  
( i n c f  e r r o r s ) )  

;; Check t h a t  each neighbor B  i s  connected t o  



;; t h i s  ve r tex ,  A, e x a c t l y  once 
( d o l i s t  (B (v-d-ne ighbors v - d l )  

(when ( /=  1 ( c o u n t - i f  
#'(lambda (v -d2 )  

(and (eq l  ( f i r s t  v -d2)  B) 
(member A (v-d-ne ighbors v - d 2 ) ) ) )  

v e r t e x - d e s c r i p t o r s ) )  
(warn " I n c o n s i s t e n t  ve r tex :  "a-"a" A B) 
( i n c f  e r r o r s ) ) ) ) )  

(when (> e r r o r s  0)  
( e r r o r  " I n c o n s i s t e n t  diagram. "d t o t a l  e r ro r " :p . "  

e r r o r s  1 1 1 
ve r tex -desc r i  p t o r s  

Now let's try the arch again: 

(defdiagram arch 
(a  W e  b C )  (p  L o  q )  
( b  L d  a)  ( q  T  p  i r )  
( ~ Y a d g )  ( r T j  s q )  
( d  Y c  b  m) ( S  L r t )  
( e  L a  f )  ( t  W v  s  k )  
( f  T  e  g  n )  ( U  L t 1 )  
( g  W h  f C )  ( V  L 2  4 )  
( h T g i  01 ( w W x 1 y )  
( i  T  h  j q )  ( X  L w  z )  
( j T i  k r )  ( y Y w 2 z )  
( k T j 1  t )  ( z W 3 x y )  
(1  T k m v )  ( 1 T n o w )  
(m L 1  d l  ( 2  W v  3  y )  
( n  L f 1 )  ( 3  L z 2) 
( O  W p  1 h)  ( 4  T  u  1  v ) )  

Warning: I n c o n s i s t e n t  ve r tex :  T-V 
Warning: I n c o n s i s t e n t  ve r tex :  U-T 
Warning: I n c o n s i s t e n t  ve r tex :  U-L 
Warning: I n c o n s i s t e n t  ve r tex :  L-V 
Warning: I n c o n s i s t e n t  ve r tex :  4-U 
Warning: I n c o n s i s t e n t  ve r tex :  4 - L  

>>ERROR: I n c o n s i s t e n t  diagram. 6 t o t a l  e r r o r s .  

The def d i  a g  ram was transcribed from a hand-labeled diagram, and it appears that the 
transcription has fallen prey to one of the oldest problems in mathematical notation: 
confusing a "u" with a "v." The other problem was in seeing the line U-L as a single 
line, when in fact it is broken up into two segments, U-4 and 4-L. Repairing these 
bugs gives the diagram: 



(defdiagram arch 
(a W e b C) (p L o q) 
(b L d a) (q  T p i r) 
( c Y  a d g )  ( r T j  s q )  
(d Y c b m) (S L r t) 
(e L a f) (t W u s k) ;t-unott-v 
(f T e g n) (U L t 4) ; u-4 not u-1 
(g W h f C) (V L 2 4) 
( h T g i  01 ( w W x 1 y )  
(i T h j q) (X L w Z) 
( j T i  k r )  ( y Y w 2 z )  
( k T  j 1 t) ( z W 3 x y )  
(1  T k m 4) (1 T n o W) ;l-4notl-v 
(m L 1 dl (2 W v 3 y) 
(n L f 1) (3 L z 2) 
( O W  p 1 h) (4 T u 1 v)) 

Thistimetherearenoerrorsdetectedbycheck-di agram,butrunningprint-1 abel ings 
again still does not give a solution. To get more information about which constraints 
are applied, I modified propagate - const ra i nts to print out some information: 

(defun propagate-constraints (vertex) 
"Reduce the number of labelings on vertex by considering neighbors. 
If we can reduce, propagate the new constraint to each neighbor." 
;; Return nil only when the constraints lead to an impossibility 
(let ((old-num (number-of-labelings vertex))) 

(setf (vertex-labelings vertex) (consistent-labelings vertex)) 
(unless (impossible-vertex-p vertex) 
(when (< (number-of-labelings vertex) old-num) 

(format t ""&; "a: "14a "a" vertex . . *** 
(vertex-neighbors vertex) . , *** 
(vertex-labelings vertex)) . , *** 

(every #'propagate-constraints (vertex-neighbors vertex))) 
vertex) 1) 

Running the problem again gives the following trace: 

> (print-labelings (ground (diagram 'arch) 'x 'z)) 
The initial diagram is: 

A/3 W: AE=CL-+I AB=[R-+I AC=Ctr--1 
P/6 L: PO=CRL+L-RI PQ=CLRR+L-I 
B/6 L: BD=CRL+L- RI BA=CLRR+L- I 
Q/4 T: QP=CRRRRI QI=CLLLLI QR=C+-LRI 
C/5 Y: CA=C+-L-RI CD=C+-RL-I CG=C+--RLI 
R/4 T: RJ=[RRRRI RS=C LLLLI RQ=C+- LRI 
Dl5 Y : DC=C+- L-Rl DB=C+- RL- I DM=[+- - RLI 



S l 6  L: SR=CRL+L- RI  ST=[ LRR+L- I 
E l 6  L: EA=CRL+L-RI EF=CLRR+L-I 
T I 3  W: TU=CL-+I TS=CR-+I TK=C++-I 
F l 4  T: FE=CRRRRI FG=C LLLLI FN=C+- LRI 
U/6 L: UT=CRL+L- RI U4=C LRR+L- I 
GI3 W: GH=CL-+I GF=CR-+I GC=C++-I 
V/6 L: V2=CRL+L- RI  V4=C LRR+L- I 
HI4 T: HG=CRRRRI HI=CLLLLI HO=C+-LRI 
W/3 W: WX=CL-+I Wl=CR-+I MY=[++-I 
I 1 4  T: IH=CRRRRI IJ=CLLLLI IQ=C+-LRI 
X I 1  L: XW=CRI XZ=C-I 
514 T: JI=CRRRRI JK=CLLLLI JR=C+-LRI 
Y/5 Y :  YW=C+- L-RI  Y2=C+-RL-I YZ=C+- -RLI 
K l 4  T: KJ=C RRRRI KL=C LLLLI KT=[+- LRI 
213 W: Z3=CL-+I ZX=[R-+I ZY=C++-I 
L/4 T: LK=CRRRRI LM=C LLLLI L4=[+- LRI 
114 T: lN=CRRRRI 10=CLLLLI lW=C+- LRI 
MI6 L: ML=CRL+L- RI  MD=C LRR+L- I 
213 W: 2V=CL-+I 23=CR-+I 2Y=C++-I 
N/6 L: NF=CRL+L-RI Nl=CLRR+L-I 
316 L: 3Z=CRL+L- RI  32=C LRR+L- 1 
013 W: OP=CL-+I Ol=CR-+I OH=[++-] 
414 T: 4U=CRRRRI 4L=CLLLLI 4V=C+-LRI 

For 2,888,816,545,234,944,000 i n t e r p r e t a t i o n s .  
; P12: (013 Ql4)  ( (R  L)  ( -  L ) )  
; 011: ( P I 2  114 HI41 ( ( L  R + ) I  
; PI1: (011 (214) ( (R  L ) )  
; 113: (N l6  011 Wl3) ( (R  L +) (R L - 1  (R L L ) )  
; N12: ( F l 4  1 /31 ( (R  L) ( -  L ) )  
; F12: ( E l 6  GI3 N12) ( ( R  L - 1  (R L L ) )  
; E/2: (A13 F/2) ( ( R  L) ( -  L ) )  
; A12: ( E l 2  B/6 C15) ( ( L  R + )  ( -  - + I )  
; Bl3 :  (D l5  A121 ( ( R  L) ( -  L) (R -1 )  
; D/3: ( C / 5 B / 3 M / 6 )  ( ( -  - - 1  ( -  L R )  ( R -  L ) )  
; 1 :  X / 3  5 ( ( L  R + ) )  
; 1 2 0 1 ( (R  L L ) )  
; Y l l :  (W11 213 2/31 ((+ + + I )  
; 212: ( V l 6  316 Y / 1 )  ( ( L  R +) ( -  - + I )  
; v13: (212 4/41 ( (R  L) ( -  L) (R -1 )  
; 412: (U/6 L/4 V l3 )  ( (R  L - 1  (R L R)) 
; U12: ( T I 3  4 /21 ( (R  L)  ( -  L ) )  
; T/2: (U12 S/6 K l 4 )  ( ( L  R +) ( -  - + I )  
; S12: (R/4 T I21  ( (R  L)  (R - 1 )  
; K/1: (514 L/4 T I21  ( (R  L + ) I  
; I :  1 / 4 K  4 ( (R  L L ) )  
; 1 H I  J l / 4  ( (R  L R)) 
; L/1: (K /1  MI6 412) ( (R  L R)) 
; M12: ( L I 1  Dl31 ( (R  L) (R -1 )  



; 313: (213 2/21 ( (R L1 ( -  L1 (R -11 
; Z l l :  (313 X I 1  Y l l 1  ( ( -  - +11 
; 311: (Z /1  2/21 ( ( -  L11 
; 211: 3 3 I ( ( L  R +11 
; v12: (211 4/21 ( (R  L1 (R -11 

A f t e r  c o n s t r a i n t  p ropaga t ion  t h e  diagram i s :  
A10 W: 
P I 1  L: PO=CRI PQ=CLI 
BIO L: 
Q l4  T: QP=CRRRRI QI=C LLLLI QR=C+- LRI 
C/O Y:  
R l4  T : RJ=C RRRRI RS=C LLLLI RQ=C+- LRI 
D l 0  Y :  

S12 L: SR=CRRI ST=CL-I 
E l 2  L: EA=CR-I EF=CLLI 
T I 2  W: TU=CL-I TS=CR-I TK=C++I 
F/2 T: FE=CRRI FG=CLLI FN=C-LI 
U12 L: UT=CR-I U4=CLLI 
GI0 W: 
V12 L: V2=CRRI V4=CL-I 
H I0  T: 
W11 W :  WX=CLI Wl=CRI WY=C+I 
I11 T: IH=CRI IJ=CLI IQ=CRI 
X I 1  L: XW=CRI XZ=C-I 
J11  T: JI=CRI JK=CLI JR=CLI 
Y / 1  Y :  YW=C+I Y2=C+l YZ=C+I 
K11 T: KJ=CRI KL=CLI KT=[+] 
Z11 W: Z3=C-1 ZX=C-I ZY=C+I 
L / 1  T: LK=CRI LM=CLI L4=CRI 
111 T: lN=CRI 10=CLl lW=CLI 
MI2 L: ML=CRRI MD=CL-I 
211 W: 2V=CL1 23=CR1 2Y=C+1 
N12 L: NF=CR-I Nl=CLLI 
311 L: 3Z=C-1 32=CL1 
011 W: OP=CLI Ol=CRI OH=[+] 
412 T: 4U=CRRI 4L=CLLI 4V=C-RI 

From the diagram after constraint propagationwe can see that thevertexes A,B,C,D,G, 
and H have no interpretations, so they are a good place to look first for an error. From 
the trace generated by propagate - cons t rai nts (the lines beginning with a semi- 
colon), we see that constraint propagation started at P and after seven propagations 
reached some of the suspect vertexes: 



A and B look acceptable, but look at the entry for vertex D. It shows three interpre- 
tations, and it shows that the neighbors are C, B, and M. Note that line DC, the first 
entry in each of the interpretations, must be either -, - or R. But this is an error, 
because the "correct" interpretation has DC as a + line. Looking more closely, we 
notice that D is in fact a W-type vertex, not a Y vertex as written in the definition. We 
should have: 

(defd iagram a rch  

(a  W e  b C )  ( p  L o  q )  
( b  L d  a )  ( q  T  p  i r )  

( c Y  a d g )  ( r T  j s q )  

( d  W b m C )  (S L r t )  ; d i s a W n o t Y  
( e  L a  f )  ( t  W u  s  k )  

( f  T  e g  n )  ( U  L  t 4 )  

( g  W h  f C )  ( V  L  2  4 )  

( h T g i  01 ( w W x 1 y )  

( i  T h  j q )  ( X  L  w  Z )  

( j T i  k r )  ( y Y w 2 z )  

( k T  j 1 t) ( z W 3 x y )  

(1 T  k m 4 )  ( 1 T n o w )  

(m L  1  d )  ( 2  W v  3  y)  

( n  L f 1) ( 3  L  z  2)  

( O W  p  1 h )  ( 4  T  u  1 v ) )  

By running the problem again and inspecting the trace output, we soon discover the 
real root of the problem: the most natural interpretation of the diagram is beyond the 
scope of the program! There are many interpretations that involve blocks floating in 
air, but if we ground lines OP, TU and XZ, we run into trouble. Remember, we said 
that we were considering trihedral vertexes only. But vertex 1 would be a quad-hedral 
vertex, formed by the intersection of four planes: the top and back of the base, and 
the bottom and left-hand side of the left pillar. The intuitively correct labeling for the 
diagram would have 01 be a concave (-) line and A1 be an occluding line, but our 
repertoire of labelings for T vertexes does not allow this. Hence, the diagram cannot 
be labeled consistently. 

Let's go back and consider the error that came up in the first version of the 
diagram. Even though the error no longer occurs on this diagram, we want to make 
sure that it won't show up in another case. Here's the error: 



>>>ERROR: The f i r s t  argument t o  NTH was o f  t h e  wrong type.  
The f u n c t i o n  expected a f ixnum >= zero. 
Whi le i n  the  f u n c t i o n  LABELS-FOR e CONSISTENT-LABELINGS 

Debugger entered w h i l e  i n  t h e  f o l l o w i n g  func t ion :  

LABELS-FOR (P.C. = 23) 
Arg 0 (VERTEX): U / 6  
Arg 1 (FROM) : 414 

Looking at the definition of 1 a be1 s -for, we see that it is looking for the from vertex, 
which in this case is 4, among the neighbors of U. It was not found, so pos became n i 1, 
and the function n t h  complained that it was not given an integer as an argument. So 
this error, if we had pursued it earlier, would have pointed out that 4 was not listed 
as a neighbor of U, when it should have been. Of course, we found that out by other 
means. In any case, there is no bug here to fix-as long as a diagram is guaranteed to 
be consistent, the 1 a be1 s - for bug will not appear again. 

This section has made two points: First, write code that checks the input as 
thoroughly as possible. Second, even when input checking is done, it is still up to 
the user to understand the limitations of the program. 

17.5 HistoryandReferences 

Guzman (1968) was one of the first to consider the problem of interpreting line 
diagrams. He classified vertexes, and defined some heuristics for combining infor- 
mation from adjacent vertexes. Huffman (1971) and Clowes (1971) independently 
came up with more formal and complete analyses, and David Waltz (1975) extended 
the analysis to handle shadows, and introduced the constraint propagation algo- 
rithm to cut down on the need for search. The algorithm is sometimes called "Waltz 
filtering" in his honor. With shadows and nontrihedral angles, there are thousands 
of vertex labelings instead of 18, but there are also more constraints, so the constraint 
propagation actually does better than it does in our limited world. Waltz's approach 
and the Huffman-Clowes labels are covered in most introductory A1 books, including 
Rich and Knight 1990, Charniak and McDermott 1985, and Winston 1984. Waltz's 
original paper appears in The Psychology of Computer Vision (Winston 1975), an in- 
fluential volume collecting early work done at MIT. He also contributed a summary 
article on Waltz filtering (Waltz 1990). 

Many introductory A1 texts give vision short coverage, but Charniak and McDer- 
mott (1985) and Tanimoto (1990) provide good overviews of the field. Zucker (1990) 
provides an overview of low-level vision. 

Ramsey and Barrett (1987) give an implementation of a line-recognition program. 
It would make a good project to connect their program to the one presented in this 
chapter, and thereby go all the way from pixels to 3-D descriptions. 



17.6 Exercises 

This chapter has solved the problem of line-labeling for polyhedra made of trihedral 
vertexes. The following exercises extend this solution. 

p Exercise 17.1 [h] Use the line-labeling to produce a face labeling. Write a function 
that takes a labeled diagram as input and produces a list of the faces (planes) that 
comprise the diagram. 

p Exercise 17.2 [h] Use the face labeling to produce a polyhedron labeling. Write 
a function that takes a list of faces and a diagram and produces a list of polyhedra 
(blocks) that comprise the diagram. 

p Exercise 17.3 [dl Extend the system to include quad-hedral vertexes and/or shad- 
ows. There is no conceptual difficulty in this, but it is a very demanding task to find 
all the possible vertex types and labelings for them. Consult Waltz 1975. 

p Exercise 17.4 [dl Implement a program to recognize lines from pixels. 

Exercise 17.5 [dl If you have access to a workstation with a graphical interface, 
implement a program to allow a user to draw diagrams with a mouse. Have the 
program generate output in the form expected by construct - d i  agram. 



Search and the 
Game of Othello 

In the beginner's mind there are 
endless possibilities; 

in the expert's there are few. 

-Suzuki Roshi, Zen Master 

ame playing has been the target of much early work in A1 for three reasons. First, 
the rules of most games are formalized, and they can be implemented in a computer 
program rather easily. Second, in many games the interface requirements are trivial. 

The computer need only print out its moves and read in the opponent's moves. This is true for 
games like chess and checkers, but not for ping-pong and basketball, where vision and motor 
skills are crucial. Third, playing a good game of chess is considered by many an intellectual 
achievement. Newell, Shaw, and Simon say, "Chess is the intellectual game par excellence," and 
Donald Michie called chess the "Drosophila melanogaster of machine intelligence," meaning that 
chess is a relatively simple yet interesting domain that can lead to advances in AI, just as study 
of the fruit fly served to advance biology. 



Today there is less emphasis on game playing in AI. It has been realized that 
techniques that work well in the limited domain of a board game do not necessarily 
lead to intelligent behavior in other domains. Also, as it turns out, the techniques 
that allow computers to play well are not the same as the techniques that good 
human players use. Humans are capable of recognizing abstract patterns learned 
from previous games, and formulating plans of attack and defense. While some 
computer programs try to emulate this approach, the more succesful programs 
work by rapidly searching thousands of possible sequences of moves, making fairly 
superficial evaluations of the worth of each sequence. 

While much previous work on game playing has concentrated on chess and 
checkers, this chapter demonstrates a program to play the game of 0thello.l Othello 
is a variation on the nineteenth-century game Reversi. It is an easy game to program 
because the rules are simpler than chess. Othello is also a rewarding game to 
program, because a simple search technique can yield an excellent player. There 
are two reasons for this. First, the number of legal moves per turn is low, so the 
search is not too explosive. Second, a single Othello move can flip a dozen or more 
opponent pieces. This makes it difficult for human players to visualize the long-range 
consequences of a move. Search-based programs are not confused, and thus do well 
relative to humans. 

The very name "Othello" derives from the fact that the game is so unpredictable, 
like the Moor of Venice. The name may also be an allusion to the line, "Your daughter 
and the Moor are now making the beast with two backsfn2 since the game pieces 
do indeed have two backs, one white and one black. In any case, the association 
between the game and the play carries over to the name of several programs: Cassio, 
Iago, and Bill. The last two will be discussed in this chapter. They are equal to or 
better than even champion human players. We will be able to develop a simplified 
version that is not quite a champion but is much better than beginning players. 

The Rules of the Game 

Othello is played on a 8-by-8 board, which is initially set up with four pieces in the 
center, as shown in figure 18.1. The two players, black and white, alternate turns, 
with black playing first. On each turn, a player places a single piece of his own color 
on the board. No piece can be moved once it is placed, but subsequent moves may 
flip a piece from one color to another. Each piece must be placed so that it brackets 
one or more opponent pieces. That is, when black plays a piece there must be a 
line (horizontal, vertical, or diagonal) that goes through the piece just played, then 
through one or more white pieces, and then to another black piece. The intervening 

lothello is a registered trademark of CBS Inc. Gameboard design @ 1974 CBS Inc. 
20thello, [I. i. 1171 William Shakespeare. 



white pieces are flipped over to black. If there are bracketed white pieces in more 
than one direction, they are all flipped. Figure 18.2 (a) indicates the legal moves for 
black with small dots. Figure 18.2 (b) shows the position after black moves to square 
b4. Players alternate turns, except that a player who has no legal moves must pass. 
When neither player has any moves, the game is over, and the player with the most 
pieces on the board wins. This usually happens because there are no empty squares 
left, but it occasionally happens earlier in the game. 

a b c d e f g h  

1 

Figure 18.1: The Othello Board 
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a b c d e f g h  
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Figure 18.2: Legal Othello Moves 



18.2 Representation Choices 

In developing an Othello program, we will want to test out various strateges, playing 
those strategies against each other and against human players. We may also want 
our program to allow two humans to play a game. Therefore, our main function, 
othel 1 o, will be a monitoring function that takes as arguments two strategies. It 
uses these strategies to get each player's moves, and then applies these moves to a 
representation of the game board, perhaps printing out the board as it goes. 

The first choice to make is how to represent the board and the pieces on it. The 
board is an 8-by-8 square, and each square can be filled by a black or white piece or 
can be empty. Thus, an obvious representation choice is to make the board an 8-by-8 
array, where each element of the array is the symbol bl ac k, whi te, or n i  1. 

Notice what is happening here: we are following the usual Lisp convention of 
implementing an enumerated type (the type of pieces that can fill a square) as a set 
of symbols. This is an appropriate representation because it supports the primary 
operation on elements of an enumerated type: test for equality using eq. It also 
supports input and output quite handily. 

In many other languages (such as C or Pascal), enumerated types are implemented 
as integers. In Pascal one could declare: 

t ype  p iece  = ( b l a c k ,  whi te ,  empty) ; 

to define p i  ece as a set of three elements that is treated as a subtype of the integers. 
The language does not allow for direct input and output of such types, but equality 
can be checked. An advantage of this approach is that an element can be packed into 
a small space. In the Othello domain, we anticipate that efficiency will be important, 
because one way to pick a good move is to look at a large number of possible sequences 
of moves, and choose a sequence that leads toward a favorable result. Thus, we are 
willing to look hard at alternative representations to find an efficient one. It takes 
only two bits to represent one of the three possible types, while it takes many more 
(perhaps 32) to represent a symbol. Thus, we may save space by representing pieces 
as small integers rather than symbols. 

Next, we consider the board. The two-dimensional array seems like such an 
obvious choice that it is hard to imagine a better representation. We could consider 
an 8-element list of 8-element lists, but this would just waste space (for the cons 
cells) and time (in accessing the later elements of the lists). However, we will have to 
implement two other abstract data types that we have not yet considered: the square 
and the direction. We will need, for example, to represent the square that a player 
chooses to move into. This will be a pair of integers, such as 4,5. We could represent 
this as a two-element list, or more compactly as a cons cell, but this still means that 
we may have to generate garbage (create a cons cell) every time we want to refer 
to a new square. Similarly, we need to be able to scan in a given direction from a 



square, looking for pieces to flip. Directions will be represented as a pair of integers, 
such as +I,-1. One clever possibility is to use complex numbers for both squares and 
directions, with the real component mapped to the horizontal axis and the imaginary 
component mapped to the vertical axis. Then moving in a given direction from a 
square is accomplished by simply adding the direction to the square. But in most 
implementations, creating new complex numbers will also generate garbage. 

Another possibility is to represent squares (and directions) as two distinct inte- 
gers, and have the routines that manipulate them accept two arguments instead of 
one. This would be efficient, but it is losing an important abstraction: that squares 
(and directions) are conceptually single objects. 

A way out of this dilemma is to represent the board as a one-dimensional vector. 
Squares are represented as integers in the range 0 to 63. In most implementations, 
small integers (fixnums) are represented as immediate data that can be manipulated 
without generating garbage. Directions can also be implemented as integers, repre- 
senting the numerical difference between adjacent squares along that direction. To 
get a feel for this, take a look at the board: 

You can see that the direction +1 corresponds to movement to the right, +7 corre- 
sponds to diagonal movement downward and to the left, +8 is downward, and +9 is 
diagonally downward and to the right. The negations of these numbers (-1, -7, -8, -9) 
represent the opposite directions. 

There is one complication with this scheme: we need to know when we hit the 
edge of the board. Starting at square 0, we can move in direction +1 seven times to 
arrive at the right edge of the board, but we aren't allowed to move in that direction 
yet again to arrive at square 8. It is possible to check for the edge of the board by 
considering quotients and remainders modulo 8, but it is somewhat complicated and 
expensive to do so. 

A simpler solution is to represent the edge of the board explicitly, by using a 100- 
element vector instead of a 64-element vector. The outlying elements are filled with a 
marker indicating that they are outside the board proper. This representation wastes 
some space but makes edge detection much simpler. It also has the minor advantage 
that legal squares are represented by numbers in the range 11-88, which makes them 
easier to understand while debugging. Here's the new 100-element board: 



The horizontal direction is now 1 1, vertical is f 10, and the diagonals are 1 9  and 
111. We'll tentatively adopt this latest representation, but leave open the possibility 
of changing to another format. With this much decided, we are ready to begin. 
Figure 18.3 is the glossary for the complete program. A glossary for a second version 
of the program is on page 623. 

What follows is the code for directions and pieces. We explicitly define the type 
pi ece to be a number from empty to outer (0 to 3), and define the function name - of 
to map from a piece number to a character: a dot for empty, @ for black, 0 for white, 
and a question mark (which should never be printed) for outer. 

(defconstant a l l - d i r e c t i o n s  ' ( - 1 1  -10 -9  - 1  1 9 10 1 1 ) )  

(defconstant  empty 0 "An empty square") 
(defconstant  b lack  1 "A b lack  p iece" )  
(defconstant  w h i t e  2 "A w h i t e  p i e c e " )  
(defconstant ou te r  3 "Marks squares ou ts ide  t h e  8x8 board")  

(def type p iece 0 ' ( i n t e g e r  ,empty , o u t e r ) )  

(defun name-of (p iece)  (char  " .@0?" p i e c e ) )  

(defun opponent ( p l a y e r )  ( i f  (eq l  p layer  b lack )  wh i te  b l a c k ) )  

And here is the code for the board. Note that we introduce the function bref, 
for "board reference" rather than using the built-in function a ref. This facilitates 
possible changes to the representation of boards. Also, even though there is no 
contiguous range of numbers that represents the legal squares, we can define the 
constant a 1 1 - squa res to be a list of the 64 legal squares, computed as those numbers 
from 11 to 88 whose value mod 10 is between 1 and 8. 

(de f t ype  board 0 ' ( s imp le -a r ray  p iece (100) ) )  

(defun b r e f  (board square) ( a r e f  board square))  
( d e f s e t f  b r e f  (board square) ( v a l )  

' ( s e t f  ( a r e f  ,board ,square) , v a l ) )  



Top-Level Function 
o t h e l l  o  Play a game of Othello. Return the score. 

Constants 
empty 0 represents an empty square. 
b lack  1 represents a black piece. 
whi te  2 represents a white piece. 
ou te r  3 represents a piece outside the 8 x 8 board. 
a1 1 - d i  r e c t i  ons A list of integers representing the eight directions. 
a1 1 -squares A list of all legal squares. 
winning-va l  ue The best possible evaluation. 
1 os ing-va l  ue The worst possible evaluation. 

Data Types 
piece An integer from empty to outer .  
board A vector of 100 pieces. 

Major Functions 
g e t  -move Call the player's strategy function to get a move. 
ma ke-move Update board to reflect move by player. 
human A strategy that prompts a human player. 
random-strategy Make any legal move. 
maximi ze-d i  f f e rence  A strategy that maximizes the difference in pieces. 
maxi mi zer Return a strategy that maximizes some measure. 
weighted-squares Sum of the weights of player's squares minus opponent's. 
modi f i ed -wei ghted-squa res Like above, but treating corners better. 
minimax Find the best move according to EVAL-FN, searching PLY levels. 
mi nimax-searcher Return a strategy that uses mi n i  max to search. 
a1 pha - beta Find the best move according to EVAL-FN, searching PLY levels. 
alpha-beta-searcher  Return a strategy that uses a1 pha - beta to search. 

Auxiliary Functions 
b r e f  Reference to a position on the board. 
copy-board Make a new board. 
i n i t i a l  -board Return a board, empty except for four pieces in the middle. 
p r i n t - b o a r d  Print a board, along with some statistics. 
coun t -d i f fe rence  Count player's pieces minus opponent's pieces. 
name-of A character used to print a piece. 
opponent The opponent of black is white, and vice-versa. 
va l  i d - p  A syntactically valid square. 
l e g a l  - p  A legal move on the board. 
make- f l  i p s  Make any flips in the given direction. 
w o u l d - f l  i p ?  Would this move result in any flips in this direction? 
f i n d - b r a c k e t i n g - p i e c e  Return the square number of the bracketing piece. 
any- 1 egal -move? Does player have any legal moves in this position? 
n e x t - t o - p l  ay Compute the player to move next, or NIL if nobody can move. 
1 egal -moves Returns a list of legal moves for player. 
f i n a l  - va lue  Is this a win, loss, or draw for player? 
neighbors Return a list of all squares adjacent to a square. 
swi t c h - s t r a t e g i e s  Play one strategy for a while, then switch. 

Previously Defined Functions 
random- e l  t Choose a random element from a sequence. (pg. 36) 

Figure 18.3: Glossary for the Othello Program 



(defun copy-board (board) 

(copy-seq board))  

(defconstant  a l l - squares  

( l o o p  f o r  i from 11 t o  88 when (<= 1 (mod i 10) 8 )  c o l l e c t  i ) )  

(defun i n i t i a l - b o a r d  0 

"Return a board, empty except f o r  f o u r  pieces i n  t h e  middle. "  

;; Boards are 100-element vectors ,  w i t h  elements 11-88 used, 

;; and t h e  others  marked w i t h  t h e  s e n t i n e l  OUTER. I n i t i a l l y  

;; t h e  4 center  squares are taken, t h e  others  empty. 

( l e t  ( (board (make-array 100 :element-type 'p iece 

: i n i  ti a1 - e l  ehent ou te r )  ) 

( d o l i s t  (square a l l - s q u a r e s )  

( s e t f  ( b r e f  board square) empty)) 

( s e t f  ( b r e f  board 44) wh i te  ( b r e f  board 45) b lack  

( b r e f  board 54) b lack  ( b r e f  board 55) wh i te )  

board) 

(defun p r i n t - b o a r d  (board) 

" P r i n t  a  board, along w i t h  some s t a t i s t i c s . "  

( fo rmat  t ""2& 1 2 3 4 5 6 7 8 C"c="2a "c="2a ( "@dl ] "  

(name-of b lack )  (count  b lack  board) 

(name-of wh i te )  (count  wh i te  board) 

( c o u n t - d i f f e r e n c e  b lack  board))  

( l o o p  f o r  row from 1 t o  8 do 

( fo rmat  t ""& "d " ( *  10 row)) 

( l o o p  f o r  co l  f rom 1 t o  8 

f o r  p iece = ( b r e f  board (+ co l  (* 10 row) 1) 

do ( fo rmat  t ""c " (name-of p i e c e ) ) ) )  

( format  t " "2&" ) )  

(defun coun t -d i f fe rence  (p layer  board) 

"Count p l a y e r ' s  pieces minus opponent's p ieces."  

( -  (count  p layer  board) 

(count  (opponent p l a y e r )  board ) ) )  

Now let's take a look at the initial board, as it is printed by p r  i n t - boa rd, and by a raw 
w r i  t e  (I added the line breaks to make it easier to read): 



> ( w r i t e  ( i n i t i a l - b o a r d )  > ( p r i n t - b o a r d  ( i n i t i a l - b o a r d ) )  
:a r ray  t )  

# ( 3 3 3 3 3 3 3 3 3 3  1 2  3 4 5 6 7 8 C@=2 0=2 (+0)1 
3 0 0 0 0 0 0 0 0 3  10 . . . . . . . .  
3 0 0 0 0 0 0 0 0 3  20 . . . . . . . .  
3 0 0 0 0 0 0 0 0 3  30 . . . . . . . .  
3 0 0 0 2 1 0 0 0 3  4 0 . .  . O @ .  . .  
3 0 0 0 1 2 0 0 0 3  5 0 .  . . @  O . . .  
3 0 0 0 0 0 0 0 0 3  60 . . . . . . . .  
3 0 0 0 0 0 0 0 0 3  70 . . . . . . . .  
3 0 0 0 0 0 0 0 0 3  80 . . . . . . . .  
3 3 3 3 3 3 3 3 3 3 )  

#<ART-2B-100 -72570734> N I L  

Notice that pr i n t  - boa rd provides some additional information: the number of pieces 
that each player controls, and the difference between these two counts. 

The next step is to handle moves properly: given a board and a square to move 
to, update the board to reflect the effects of the player moving to that square. This 
means flipping some of the opponent's pieces. One design decision is whether the 
procedure that makes moves, ma ke-move, will be responsible for checking for error 
conditions. My choice is that make - move assumes it will be passed a legal move. That 
way, a strategy can use the function to explore sequences of moves that are known to 
be valid without slowing make -move down. Of course, separate procedures will have 
to insure that a move is legal. Here we introduce two terms: a valid move is one that 
is syntactically correct: an integer from 11 to 88 that is not off the board. A legal move 
is a valid move into an empty square that will flip at least one opponent. Here's the 
code: 

(defun v a l i d - p  (move) 
" V a l i d  moves are numbers i n  t h e  range 11-88 t h a t  end i n  1 -8 . "  
(and ( i n t e g e r p  move) (<= 11 move 88) (<= 1 (mod move 10) 8 ) ) )  

(defun 1 egal - p  (move p l  ayer board) 
" A  Legal move must be i n t o  an empty square, and i t  must 
f l  i p a t  1 east  one opponent p i  ece. " 
(and (eq l  ( b r e f  board move) empty) 

(some #'(lambda ( d i r )  ( w o u l d - f l i p ?  move p layer  board d i r ) )  
a l l  - d i r e c t i o n s ) ) )  

(defun make-move (move p layer  board) 
"Update board t o  r e f l e c t  move by p l a y e r "  
;; F i r s t  make t h e  move, then make any f l i p s  
( s e t f  ( b r e f  board move) p l a y e r )  
(do1 i s t  ( d i  r a1 1 - d i r e c t i o n s )  

(make- f l i ps  move p layer  board d i r ) )  
board 



Now all we need is to ma k e - f l  ips .  To do that, we search in all directions for a 
bracketing piece: a piece belonging to the player who is making the move, which 
sandwiches a string of opponent pieces. If there are no opponent pieces in that 
direction, or if an empty or outer piece is hit before the player's piece, then no flips 
are made. Note that woul  d - f 1 i p? is a semipredicate that returns false if no flips 
would be made in the given direction, and returns the square of the bracketing piece 
if there is one. 

(defun make- f l i ps  (move p layer  board d i r )  
"Make any f l i p s  i n  t h e  g iven d i r e c t i o n . "  
( l e t  ( (b racke te r  ( w o u l d - f l  i p ?  move p layer  board d i r ) ) )  

(when b racke te r  
( l oop  f o r  c  from (+ move d i r )  by d i r  u n t i l  (eq l  c  b racke te r )  

do ( s e t f  ( b r e f  board c )  p l a y e r ) ) ) ) )  

(defun woul d - f l  i p? (move p l  ayer board d i  r 
"Would t h i s  move r e s u l t  i n  any f l i p s  i n  t h i s  d i r e c t i o n ?  
I f  so, r e t u r n  t h e  square number o f  t h e  b racke t ing  p iece . "  
;; A f l i p  occurs i f ,  s t a r t i n g  a t  t h e  ad jacent  square, c, t h e r e  
;; i s  a  s t r i n g  o f  a t  l e a s t  one opponent pieces, bracketed by 
; ; one o f  p l  ayer ' s  p i  eces 
( l e t  ( ( c  (+ move d i r ) ) )  

(and (eq l  ( b r e f  board c )  (opponent p l a y e r ) )  
( f i n d - b r a c k e t i n g - p i e c e  (+ c  d i r )  p laye r  board d i r ) ) ) )  

(defun f i n d - b r a c k e t i n g - p i e c e  (square p layer  board d i r )  
"Return t h e  square number o f  t h e  b racke t ing  p iece . "  
(cond ( ( e q l  ( b r e f  board square) p l a y e r )  square) 

( ( e q l  ( b r e f  board square) (opponent p l a y e r ) )  
( f i n d - b r a c k e t i n g - p i e c e  (+ square d i r )  p laye r  board d i r ) )  

( t  n i l ) ) ) '  

Finally we can write the function that actually monitors a game. But first we are 
faced with one more important choice: how will we represent a player? We have 
already distinguished between black and white's pieces, but we have not decided 
how to ask black or white for their moves. I choose to represent player's strategies 
as functions. Each function takes two arguments: the color to move (black or white) 
and the current board. The function should return a legal move number. 

(defun o t h e l l o  ( b l - s t r a t e g y  wh-st ra tegy &op t iona l  ( p r i n t  t ) )  
"P lay a  game o f  O the l lo .  Return t h e  score, where a  p o s i t i v e  
d i f f e r e n c e  means b lack  ( t h e  f i r s t  p l a y e r )  wins. " 
( l e t  ( (board ( i n i t i a l  -board ) ) )  

( l o o p  f o r  p layer  = b lack  
then ( n e x t - t o - p l a y  board p layer  p r i n t )  

f o r  s t r a t e g y  = ( i f  (eq l  p layer  b lack )  



b l  - s t r a t e g y  

wh-st ra tegy)  

u n t i l  (nu1 1 p l a y e r )  

do (get-move s t r a t e g y  p layer  board p r i n t ) )  

(when p r i n t  

( format  t ""&The game i s  over.  F ina l  r e s u l t :  " 
( p r i n t - b o a r d  board))  

( coun t -d i f fe rence  b lack  board ) ) )  

We need to be able to determine who plays next at any point. The rules say that 
players alternate turns, but if one player has no legal moves, the other can move 
again. When neither has a legal move, the game is over. This usually happens 
because there are no empty squares left, but it sometimes happens earlier in the 
game. The player with more pieces at the end of the game wins. If neither player has 
more, the game is a draw. 

(defun n e x t - t o - p l a y  (board p rev ious -p layer  p r i n t )  

"Compute t h e  p layer  t o  move next ,  o r  N I L  i f  nobody can move." 

( l e t  ((opp (opponent p r e v i o u s - p l a y e r ) ) )  

(cond ( (any- legal -move? opp board) opp) 

( (any-1 egal -move? p rev ious-p l  ayer board) 

(when p r i n t  

( fo rmat  t ""&"c has no moves and must pass." 

(name-of opp)) )  

prev ious - p l  ayer 

( t  n i l ) ) ) )  

(defun any-1 egal -move? ( p l  ayer board) 

"Does p layer  have any l e g a l  moves i n  t h i s  p o s i t i o n ? "  

(some # '  (1 arnbda (move) (1 egal - p  move p layer  board) 

a1 1 -squares 1) 

Note that the argument p r  i  n t (of othel  1 o, next  - t o -  pl  ay, and below, get  -move) 
determines if information about the progress of the game will be printed. For an 
interactive game, p r i  n t  should be true, but it is also possible to play a "batch game 
with p r i  n t set to false. 

In get  -move below, the player's strategy function is called to determine his move. 
Illegal moves are detected, and proper moves are reported when p r i  n t  is true. The 
strategy function is passed a number representing the player to move (black or white) 
and a copy of the board. If we passed the real game board, the function could cheat 
by changing the pieces on the board! 



(defun get-move ( s t r a t e g y  p layer  board p r i n t )  
"Ca l l  t h e  p layer ' s  s t ra tegy  f u n c t i o n  t o  ge t  a move. 
Keep c a l l i n g  u n t i l  a l e g a l  move i s  made." 
(when p r i n t  ( p r i n t - b o a r d  board))  
( l e t  ((move ( f u n c a l l  s t ra tegy  p layer  (copy-board b o a r d ) ) ) )  

(cond 
((and ( v a l i d - p  move) ( l e g a l - p  move p layer  board)) 
(when p r i n t  

( format  t ""&"c moves t o  "d." (name-of p layer )  move)) 
(make-move move p layer  board))  

( t  (warn " I l l e g a l  move: "d" move) 
(get-move s t ra tegy  p layer  board p r i n t ) ) ) ) )  

Here we define two simple strategies: 

(defun human (p layer  board) 
" A  human p layer  f o r  t h e  game o f  Othel l o "  
(dec la re  ( ignore  board)) 
( format  t ""&"c t o  move: " (name-of p l a y e r ) )  
( read)  1 

(defun random-strategy (p layer  board) 
"Make any l e g a l  move." 
(random-el t ( l e g a l  -moves p layer  board) 1) 

(defun 1 egal -moves ( p l  ayer board) 
"Returns a 1 i s t  o f  l e g a l  moves f o r  p layer "  
( loop  f o r  move i n  a1 1 -squares 

when (1 egal - p move p l  ayer board co l  1 e c t  move 1 

We are now in a position to play the game. The expression 
( ot he1 1 o # * human # ' human will let two people play against each other. Alternately, 
(othell o # 'random-strategy #*human) will allow us to match our wits against a 
particularly poor strategy. The rest of this chapter shows how to develop a better 
strategy. 

18.3 Evaluating Positions 

The random-move strategy is, of course, a poor one. We would like to make a good 
move rather than a random move, but so far we don't know what makes a good 
move. The only positions we are able to evaluate for sure are final positions: when 
the game is over, we know that the player with the most pieces wins. This suggests a 
strategy: choose the move that maximizes count - d i  f f erence, the piece differential. 



the functionmaximize-difference does just that. It callsmaximizer, a higher-order 
function that chooses the best move according to an arbitrary evaluation function. 

(defun maximize-difference (player board) 
" A  strategy that  maximizes the difference in pieces." 
(funcall (maximizer #'count-difference) player board)) 

(defun maximizer (eval - fn )  
"Return a strategy tha t  will consider every legal move, 
apply EVAL- FN t o  each result ing board, and choose 
the move for  which E V A L- F N  returns the best score. 
FN takes two arguments: the player-to-move and board" 
#'(lambda (player board) 

(1 et* ( (moves ( 1 egal -moves pl ayer board 1) 
(scores (mapcar # '  (1 ambda (move) 

(funcall 
eval -fn 
pl ayer 
(make-move move player 

(copy-board board)) ) )  
moves 1 1 

(best  (apply #'max sco res ) ) )  
( e l t  moves (position best s c o r e s ) ) ) ) )  

Exercise 18.1 Playsomegameswithmaximize-differenceagainstrandom-strategy 
and human. How goodis maximize-difference? 

Those who complete the exercise will quickly see that the maxi mi ze - di f f erence 
player does better than random, and may even beat human players in their first game 
or two. But most humans are able to improve, learning to take advantage of the 
overly greedy play of maxi mi ze - d i f f e ren ce. Humans learn that the edge squares, 
for example, are valuable because the player dominating the edges can surround the 
opponent, while it is difficult to recapture an edge. This is especially true of corner 
squares, which can never be recaptured. 

Using this knowledge, a clever player can temporarily sacrifice pieces to obtain 
edge and corner squares in the short run, and win back pieces in the long run. 
We can approximate some of this reasoning with the wei ghted-squares evaluation 
function. Like count-di fference, it adds up all the player's pieces and subtracts 
the opponents, but each piece is weighted according to the square it occupies. Edge 
squares are weighted highly, corner squares higher still, and squares adjacent to the 
corners and edges have negative weights, because occupying these squares often 
gives the opponent a means of capturing the desirable square. Figure 18.4 shows 
the standard nomenclature for edge squares: X, A, B, and C. In general, X and C 



squares are to be avoided, because taking them gives the opponent a chance to take 
the corner. The wei  g hted - squares evaluation function reflects this. 

a b c d e f g h  

Figure 18.4: Names for Edge Squares 

(defparameter *weights* 
'#(O 0 0 0 0 0 0 0 0 0  

0 120 -20 20 5 5 20 -20 120 0 
0 -20 -40 -5 -5  -5  -5  -40 -20 0 
0 20 - 5 1 5  3 3 1 5  -5 2 0 0  
0 5 - 5 3 3 3 3 - 5  5 0  
0 5 - 5 3 3 3 3 - 5  5 0  
0 20 - 5  15 3 3 15 - 5  20 0 
0 -20 -40 -5 -5  -5 -5  -40 -20 0 
0 120 -20 20 5 5 20 -20 120 0 
0 0 0 0 0 0 0  0 0 0 ) )  

(defun weighted-squares (p layer  board) 
"Sum o f  t h e  weights o f  p l a y e r ' s  squares minus opponent's." 
( l e t  ( (opp (opponent p l a y e r ) ) )  

( l o o p  f o r  i i n  a l l - s q u a r e s  
when (eq l  ( b r e f  board i p l a y e r )  
sum ( a r e f  *weights* i )  
when (eq l  ( b r e f  board i) opp) 
sum ( -  ( a r e f  *weights* i ) ) ) ) I  

p Exercise 18.2 Compare strategies by evaluating the two forms below. What hap- 
pens? Is this a good test to determine which strategy is better? 



( o t h e l l o  (maximizer #'weighted-squares) 
(maximizer # ' coun t -d i f fe rence)  n i l )  

( o t h e l l o  (maximizer # ' c o u n t - d i f f e r e n c e )  
(maximizer #'weighted-squares) n i l )  

18.4 Searching Ahead: Minimax 

Even the weighted-squares strategy is no match for an experienced player. There 
are two ways we could improve the strategy. First, we could modify the evaluation 
function to take more information into account. But even without changing the 
evaluation function, we can improve the strategy by searching ahead. Instead of 
choosing the move that leads immediately to the highest score, we can also consider 
the opponent's possible replies, our replies to those replies, and so on. By searching 
through several levels of moves, we can steer away from potential disaster and find 
good moves that were not immediately apparent. 

Anotherway tolookat themaxi mi zer functionis as a search function that searches 
only one level, or ply, deep: 

The top of the tree is the current board position, and the squares below that indicate 
possible moves. The maxi mi zer function evaluates each of these and picks the best 
move, which is underlined in the diagram. 

Now let's see how a 3-ply search might go. The first step is to apply maxi mi ze r to 
the positions just above the bottom of the tree. Suppose we get the followingvalues: 



Each position is shown as having two possible legal moves, which is unrealistic 
but makes the diagram fit on the page. In a real game, five to ten legal moves per 
position is typical. The values at the leaves of the tree were computed by applying 
the evaluation function, while the values one level up were computed by maxi mi zer. 
The result is that we know what our best move is for any of the four positions just 
above the bottom of the tree. 

Going up a level, it is the opponent's turn to move. We can assume the opponent 
will choose the move that results in the minimal value to us, which would be the 
maximal value to the opponent. Thus, the opponent's choices would be the 10- and 
9-valued positions, avoiding the 20- and 23-valued positions. 



Now it is our turn to move again, so we apply m a x i  m i  zer once again to get the final 
value of the top-level position: 

If the opponent plays as expected, we will always follow the left branch of the tree 
and end up at the position with value 10. If the opponent plays otherwise, we will 
end up at a position with a better value. 

This kind of search is traditionally called a minimax search, because of the alternate 
application of the m a x i  m i  ze r and a hypothetical m i  n i m i  ze r function. Notice that only 
the leaf positions in the tree are looked at by the evaluation function. The value of all 
other positions is determined by minimizing and maximizing. 

We are almost ready to code the minimax algorithm, but first we have to make 
a few design decisions. First, we could write two functions, m i  n i m a x  and m a x i  m i  n, 
which correspond to the two players' analyses. However, it is easier to write a single 
function that maximizes the value of a position for a particular player. In other words, 
by adding the player as a parameter, we avoid having to write two otherwise identical 
functions. 

Second, we have to decide if we are going to write a general minimax searcher 
or an Othello-specific searcher. I decided on the latter for efficiency reasons, and 
because there are some Othello-specific complications that need to be accounted for. 
First, it is possible that a player will not have any legal moves. In that case, we want 
to continue the search with the opponent to move. If the opponent has no moves 
either, then the game is over, and the value of the position can be determined with 
finality by counting the pieces. 

Third, we need to decide the interaction between the normal evaluation function 
and this final evaluation that occurs when the game is over. We could insist that 



each evaluation function determine when the game is over and do the proper com- 
putation. But that overburdens the evaluation functions and may lead to wasteful 
checking for the end of game. Instead, I implemented a separate f i n a l  - v a l  ue eval- 
uation function, which returns 0 for a draw, a large positive number for a win, and 
a large negative number for a loss. Because fixnum arithmetic is most efficient, the 
constants m o s t - p o s i  t i  v e - f i x n u m  and m o s t - n e g a t i  v e - f  i xnum are used. The evalu- 
ation functions must be careful to return numbers that are within this range. All 
the evaluation functions in this chapter will be within range if fixnums are 20 bits 
or more. 

In a tournament, it is not only important who wins and loses, but also by how 
much. If we were trying to maximize the margin of victory, then f i n a  1 -Val  ue would 
be changed to include a small factor for the final difference. 

( d e f c o n s t a n t  w inn ing- va lue  m o s t - p o s i t i v e - f i x n u m )  
( d e f c o n s t a n t  l o s i n g - v a l u e  mos t - nega t i ve - f i xnum)  

(de fun  f i n a l - v a l u e  ( p l a y e r  boa rd )  
" I s  t h i s  a  win ,  l o s s ,  o r  draw f o r  p l a y e r ? "  
( c a s e  (signum ( c o u n t - d i f f e r e n c e  p l a y e r  b o a r d ) )  

( -1  l o s i n g - v a l u e )  
( 0 0 )  
(+1 winning-val  u e )  1)  

Fourth, and finally, we need to decide on the parameters for the minimax function. 
Like the other evaluation functions, it needs the player to move and the current board 
as parameters. It also needs an indication of how many ply to search, and the static 
evaluation function to apply to the leaf positions. Thus, minimax will be a function 
of four arguments. What will it return? It needs to return the best move, but it also 
needs to return the value of that move, according to the static evaluation function. 
We use multiple values for this. 

(de fun  minimax ( p l  a y e r  board  p l y  eva l  - f n )  
"F ind  t h e  b e s t  move, f o r  PLAYER, acco rd ing  t o  EVAL-FN, 
s e a r c h i n g  PLY l e v e l s  deep  and back ing  up v a l u e s . "  
( i f  (= p l y  0 )  

( f u n c a l l  e v a l - f n  p l a y e r  boa rd )  
(1 e t  ( (moves (1  ega l  -moves pl a y e r  boa rd )  1)  

( i f  ( n u l l  moves) 
( i f  ( any - l ega l - move?  (opponent  p l a y e r )  boa rd )  

( -  (minimax (opponent  p l a y e r )  board  
( -  p l y  1) e v a l - f n ) )  

( f i n a l  - v a l u e  p l a y e r  boa rd )  1 
( l e t  ( ( be s t - move  n i l )  

( b e s t - v a l  n i  1  1)  
( d o l i s t  (move moves) 



( le t*  ((board2 (make-move move player 
(copy- board board) 1)  

( v a l  ( -  (minimax 
(opponent p1 ayer board2 
( -  ply 1 )  eva l - fn) ) ) )  

(when (or (nu1 1 best-val ) 
(> val best-val)) 

(setf best-val val) 
(setf best-move move)))) 

(values best-val best-move)))))) 

The mi n i  max function cannot be used as a strategy function as is, because it takes too 
many arguments and returns too many values. The functional mi n i  max - searcher 
returns an appropriate strategy. Remember that a strategy is a function of two 
arguments: the player and the board. get -move is responsible for passing the right 
arguments to the function, so the strategy need not worry about where the arguments 
come from. 

(defun minimax-searcher (ply eval -fn) 
"A strategy t h a t  searches PLY levels and then uses EVAL-FN." 
# '  ( 1  ambda (player board) 

(mu1 tiple-val ue-bind (value move) 
(minimax player board ply eval-fn) 

(declare (ignore value) 
move) 1 ) 

We can test the minimax strategy, and see that searching ahead 3 ply is indeed better 
than looking at only 1 ply. I show only the final result, which demonstrates that it is 
indeed an advantage to be able to look ahead: 

> (othello (minimax-searcher 3 #'count-difference) 
(maximizer #'count-difference)) 

The game i s  over. Final result: 



18.5 Smarter Searching: Alpha-Beta Search 

The problem with a full minimax search is that it considers too many positions. It 
looks at every line of play, including many improbable ones. Fortunately, there is a 
way to find the optimal line of play without looking at every possible position. Let's 
go back to our familiar search tree: 

Here we have marked certain positions with question marks. The idea is that the 
whole search tree evaluates to 10 regardless of the value of the positions labeled ?i. 
Consider the position labeled It does not matter what this position evaluates to, 
because the opponent will always choose to play toward the 10-position, to avoid the 
possibility of the 15. Thus, we can cut off the search at this point and not consider 
the ?-position. This kind of cutoff has historically been called a beta cutoff. 

Now consider the position labeled ?4. It does not matter what this position 
evaluates to, because we will always prefer to choose the 10 position at the left 
branch, rather than giving the opponent a chance to play to the 9-position. This is an 
alpha cutoff. Notice that it cuts off a whole subtree of positions below it (labeled ?2 

and ?3). 

In general, we keep track of two parameters that bound the true value of the 
current position. The lower bound is a value we know we can achieve by choosing a 
certain line of play. The idea is that we need not even consider moves that will lead 
to a value lower than this. The lower bound has traditionally been called alpha, but 
we will name it a c h i eva bl e. The upper bound represents a value the opponent can 
achieve by choosing a certain line of play. It has been called beta, but we will call it 
cutoff. Again, the idea is that we need not consider moves with a higher value than 
this (because then the opponent would avoid the move that is so good for us). The 



alpha-beta algorithm is just minimax, but with some needless evaluations pruned by 
these two parameters. 

In deeper trees with higher branching factors, many more evaluations can be 
pruned. In general, a tree of depth d and branching factor b requires bd evaluations 
for full minimax, and as few as bdI2 evaluations with alpha-beta minimax. 

To implement alpha-beta search, we add two more parameters to the function 
m i  nimax and rename it a1 pha - beta. achi evabl e  is the best score the player can 
achieve; it is what we want to maximize. The c u t o f f  is a value that, when exceeded, 
will make the opponent choose another branch of the tree, thus making the rest of 
the current level of the tree irrelevant. The test u n t i  1  (>= achi eva b l  e  c u t o f f  in 
the penultimate line of minimax does the cutoff; all the other changes just involve 
passing the parameters around properly. 

(de fun  a l p h a - b e t a  ( p l a y e r  board  a c h i e v a b l e  c u t o f f  p l y  e v a l - f n )  
"F ind  t h e  b e s t  move, f o r  PLAYER, acco rd ing  t o  EVAL-FN, 
s e a r c h i n g  PLY l e v e l s  deep  and back ing  up v a l u e s ,  
u s i n g  c u t o f f s  whenever p o s s i b l e . "  
( i f  (= p l y  0 )  

( f u n c a l l  e v a l - f n  p l a y e r  boa rd )  
( 1  e t  ((moves (1 ega l  -moves p l a y e r  boa rd )  1)  

( i f  ( n u l l  moves) 
( i f  (any-1  ega l  -move? (opponent  pl a y e r )  boa rd )  

( -  ( a l p h a - b e t a  (opponent  p l a y e r )  board  
( -  c u t o f f )  ( -  a c h i e v a b l e )  
( -  p l y  1) e v a l - f n ) )  

( f i n a l - v a l u e  p l a y e r  b o a r d ) )  
( l e t  ( ( be s t - move  ( f i r s t  moves ) ) )  

( l o o p  f o r  move i n  moves do  
(1  et* ( ( boa rd2  (ma ke-move move pl a y e r  

( copy- boa rd  b o a r d ) ) )  
( v a l  ( -  ( a l p h a - b e t a  

(opponent  pl a y e r  boa rd2  
( -  c u t o f f )  ( -  a c h i e v a b l e )  
( -  p l y  1) e v a l - f n ) ) ) )  

(when (> val  a c h i e v a b l e )  
( s e t f  a c h i e v a b l e  va l  
( s e t f  best-move move ) ) )  

u n t i l  (>= a c h i e v a b l e  c u t o f f  1)  
( v a l u e s  a c h i e v a b l e  b e s t - m o v e ) ) ) ) ) )  

( de fun  a l p h a - b e t a - s e a r c h e r  ( d e p t h  e v a l - f n )  
" A  s t r a t e g y  t h a t  s e a r c h e s  t o  DEPTH and t h e n  u se s  EVAL-FN." 
# '  (1 ambda ( pl a y e r  board  

( m u l t i p l e - v a l u e - b i n d  ( v a l u e  move) 
(a1  pha- be t a  p l a y e r  board  1  o s i n g - v a l  ue winning-val  ue 

dep th  eva l  - f n )  



(declare (ignore value)) 
move) 1 

It must be stressed that a 1 pha -beta computes the exact same result as the full-search 
version of mi n i  max. The only advantage of the cutoffs is making the search go faster 
by considering fewer positions. 

18.6 An Analysis of Some Games 

Now is a good time to stop and analyze where we have gone. We've demonstrated a 
program that can play a legal game of Othello, and some strategies that may or may 
not play a good game. First, we'll look at some individual games to see the mistakes 
made by some strategies, and then we'll generate some statistics for series of games. 

Is the weighted-squares measure a good one? We can compare it to a strategy of 
maximizing the number of pieces. Such a strategy would of course be perfect if it 
could look ahead to the end of the game, but the speed of our computers limits us 
to searching only a few ply, even with cutoffs. Consider the following game, where 
black is maximizing the difference in the number of pieces, and white is maximizing 
the weighted sum of squares. Both search to a depth of 4 ply: 

> (othello (alpha-beta-searcher 4 #'count-difference) 
(alpha-beta-searcher 4 #'weighted-squares)) 

Black is able to increase the piece difference dramatically as the game progresses. 
After 17 moves, white is down to only one piece: 

Although behind by 19 points, white is actually in a good position, because the piece 
in the corner is safe and threatens many of black's pieces. White is able to maintain 
good position while being numerically far behind black, as shown in these positions 
later in the game: 



After some give-and-take, white gains the advantage for good by capturing eight 
pieces on a 8 5  move to square on the third-to-last move of the game: 

0 moves t o  85. 

@ moves t o  86. 



0 moves to 87. 
The game is over. Final result: 

White ends up winning by 16 pieces. Black's strategy was too greedy: black was 
willing to give up position (all four corners and all but four of the edge squares) for 
temporary gains in material. 

Increasing the depth of search does not compensate for a faulty evaluation func- 
tion. In the following game, black's search depth is increased to 6 ply, while white's 
is kept at 4. The same things happen, although black's doom takes a bit longer to 
unfold. 

> (othell o (a1 pha-beta-searcher 6 #'count-difference) 
(alpha-beta-searcher 4 #'weighted-squares)) 

Black slowly builds up an advantage: 



But at this point white has clear access to the upper left corner, and through that 
corner threatens to take the whole top edge. Still, black maintains a material edge as 
the game goes on: 

But eventually white's weighted-squares strategy takes the lead: 

and is able to hold on to win: 

This shows that brute-force searching is not a panacea. While it is helpful to be able 
to search deeper, greater gains can be made by making the evaluation function more 
accurate. There are many problems with the weighted-squares evaluation function. 
Consider again this position from the first game above: 



Here white, playing the weighted-squares strategy, chose to play 66. This is probably 
a mistake, as 13 would extend white's dominance of the top edge, and allow white to 
play again (since black would have no legal moves). Unfortunately, white rejects this 
move, primarily because square 12 is weighted as -20. Thus, there is a disincentive 
to taking this square. But 12 is weighted -20 because it is a bad idea to take such a 
square when the corner is empty-the opponent will then have a chance to capture 
the corner, regaining the 12 square as well. Thus, we want squares like 12 to have a 
negative score when the corner is empty, but not when it is already occupied. The 
modi f i ed-wei ghted-squares evaluation function does just that. 

(defun modi f i  ed-weighted-squares (pl ayer board) 
"Like WEIGHTED-SQUARES, but don't take off for moving 
near an occupied corner." 
( l e t  ( ( w  (weighted-squares player board)))  

(do l i s t  (corner ' (11 18 81 88))  
(when (not (eql (bref board corner) empty)) 

(do l i s t  ( c  (neighbors corner))  
(when (not (eql (bref board c )  empty)) 

( incf w (*  ( -  5 (aref *weights* c ) )  
( i f  (eql (bref board c )  player) 

+1 - 1 ) ) ) ) ) ) )  
w )  1 

( l e t  ((neighbor-table (make-array 100 : i n i t i a l  -element nil 1) 
; ; Ini t i  a1 ize the neighbor table 
(do l i s t  (square al l-squares) 

(do1 i s t  ( d i r  a1 1 -directions) 
( i f  (valid-p (+ square d i r ) )  

(push (+ square d i r )  
(aref neighbor-table s q u a r e ) ) ) ) )  

(defun neighbors (square) 
"Return a l i s t  of a l l  squares adjacent t o  a square." 
(aref neighbor-table square)) )  



18.7 The Tournament Version of Othello 

While the othel 1 o function serves as a perfectly good moderator for casual play, 
there are two points that need to be fixed for tournament-level play. First, tournament 
games are played under a strict time limit: a player who takes over 30 minutes total 
to make all the moves forfeits the game. Second, the standard notation for Othello 
games uses square names in the range a1 to h8, rather than in the 11 to 88 range that 
we have used so far. a1 is the upper left corner, a8 is the lower left corner, and h8 is 
the lower right corner. We can write routines to translate between this notation and 
the one we were using by creating a table of square names. 

(1  e t  ( (square-names 
(cross -product  #'symbol 

' ( ? a b c d e f g h ? )  
' ( ?  1 2  3 4 5 6 7 8 ? I ) ) )  

(defun h8->88 ( s t r )  
"Convert f rom alphanumeric t o  numeric square n o t a t i o n . "  
( o r  ( p o s i t i o n  ( s t r i n g  s t r )  square-names : t e s t  # ' s t r i n g - e q u a l )  

s t r )  

(defun 88->h8 (num) 
"Convert f rom numeric t o  alphanumeric square n o t a t i o n . "  
( i f  ( v a l i d - p  num) 

( e l t  square-names num) 
num) 1 1 

(defun cross-product  ( f n  x l i s t  y l i s t )  
"Return a l i s t  o f  a l l  ( f n  x y )  va lues. "  
(mappend #'(lambda ( y )  

(mapcar #'(lambda ( x )  ( f u n c a l l  f n  x y ) )  
x l i s t ) )  

y l i s t ) )  

Note that these routines return their input unchanged when it is not one of the 
expected values. This is to allow commands other than moving to a particular 
square. For example, we will add a feature that recognizes resi gn  as a move. 

The human player needs to be changed slightly to read moves in this format. While 
we're at it, we'll also print the list of possible moves: 

(defun human (p layer  board) 
" A  human p layer  f o r  t h e  game o f  O t h e l l o "  
( fo rmat  t ""&"c t o  move "a: " (name-of p l a y e r )  

(mapcar #'88->h8 ( legal-moves p layer  board ) ) )  
(h8->88 ( r e a d ) ) )  



Top-Level Functions 
othel 1 o-series Play a series of N games. 
random-othel 1 o-seri es Play a series of games, starting from a random position. 
round- robi n Play a tournament among strategies. 

Special Variables 
*c1 ock* A copy of the game clock (tournament version only). 
*board* A copy of the game board (tournament version only). 
*move-number* Number of moves made (tournament version only). 
*ply- boards* A vector of boards; used as a resource to avoid consing. 

Data Structures 
node Holds a board and its evaluation. 

Main Functions 
a1 pha - beta2 Sorts moves by static evaluation. 
a1 pha- beta-searcher2 Strategy using a1 pha-beta2. 
a1 pha-beta3 Uses the killer heuristic. 
a1 pha-beta-searcher3 Strategyusing a1 pha-beta3. 
Iago-eval Evaluation function based on Rosenbloom's program. 
I ago Strategy using Iago-eval . 

Auxiliary Functions 
h8->88 Convert from alphanumeric to numeric square notation. 
88 ->h8 Convert from numeric to alphanumeric square notation. 
time-string Convert internal time units to a mm:ss string. 
switch-strategies Play one strategy for a while, then another. 
mobi 1 i ty A strategy that counts the number of legal moves. 
1 egal -nodes A list of legal moves sorted by their evaluation. 
negate-node Set the value of a node to its negative. 
put-fi rst Put the killer move first, if it is legal. 

Previously Defined Functions 
cross-product Apply fn to all pairs of arguments. (pg. 47) 
symbol Build a symbol by concatenating components. 

Figure 18.5: Glossary for the Tournament Version of Othello 

The othel 1 o function needn't worry about notation, but it does need to monitor the 
time. We make up a new data structure, the clock, which is an array of integers 
saying how much time (in internal units) each player has left. For example, ( a ref 
cl ock bl ack) is the amount of time black has left to make all his moves. In Pascal, 
we would declare the clock array as a r r ay C bl a c k . . w h i t e I, but in Common Lisp all 
arrays are zero-based, so we need an array of three elements to allow the subscript 
bl ack, which is 2. 

The clock is passed to get - move and pr i n t - boa rd but is otherwise unused. I could 
have complicated the main game loop by adding tests for forfeits because of expired 
time and, as we shall see later, resignation by either player. However, I felt that would 
add a great deal of complexity for rarely used options. Instead, I wrap the whole game 
loop, along with the computation of the final score, in a catch special form. Then, if 



get -move encounters a forfeit or resignation, it can throw an appropriate final score: 
64 or -64, depending on which player forfeits. 

(defvar *move-number* 1 "The number of the move t o  be played") 

(defun othello (b l -s t ra tegy wh-strategy 
&optional (p r in t  t )  (minutes 30))  

"Play a game of othello.  Return the score, where a positive 
difference means black, the f i r s t  player, wins." 
( l e t  ((board ( i n i t i a l  -board)) 

(clock (make-array (+ 1 (max black white))  
: i n i t i a l  -element 
(* minutes 60 

internal-t ime-units-per-second))))  
(catch 'game-over 

(loop for  *move-number* from 1 
for  player = black then (next-to-play board player p r in t )  
for  strategy = ( i f  (eql player black) 

bl -strategy 
wh-strategy) 

until (null player) 
do (get-move strategy player board print  clock)) 

(when pr in t  
(format t ""&The game i s  over. Final r e su l t : ")  
(print-board board clock) 

(count-difference black board)) ) )  

Strategies now have to comply with the time-limit rule, so they may want to look at 
the time remaining. Rather than passing the clock in as an argument to the strategy, I 
decided to store the clock in the special variable *cl oc k*. The new version of ot he1 1 o 
also keeps track of the *move-number*. This also could have been passed to the 
strategy functions as a parameter. But adding these extra arguments would require 
changes to all the strategies we have developed so far. By storing the information in 
special variables, strategies that want to can look at the clock or the move number, 
but other strategies don't have to know about them. 

We still have the security problem-we don't want a strategy to be able to set the 
opponent's remaining time to zero and thereby win the game. Thus, we use *cl oc k* 
only as a copy of the "real" game clock. The furiction rep1 ace copies the real clock 
into *cl oc k*, and also copies the real board into *board*. 

(defvar *clock* (make-array 3)  " A  copy of the game clock") 
(defvar *board* ( in i t ia l -board)  " A  copy of the game board") 



(defun get-move ( s t r a t e g y  p layer  board p r i n t  c l o c k )  
"Ca l l  t h e  p l a y e r ' s  s t r a t e g y  f u n c t i o n  t o  ge t  a  move. 
Keep c a l l  i n g  u n t i l  a  l e g a l  move i s  made. " 
;; Note we don ' t  pass t h e  s t r a t e g y  f u n c t i o n  t h e  REAL board. 
;; I f  we d i d ,  i t  could cheat by changing t h e  pieces on t h e  board. 
(when p r i n t  ( p r i n t - b o a r d  board c l o c k ) )  
(rep1 ace *c l  ock* c l  ock) 
( l e t *  ( ( t o  ( g e t - i n t e r n a l  - r e a l  - t i m e ) )  

(move ( f u n c a l l  s t r a t e g y  p layer  ( rep lace  *board* board ) ) )  
( t l  ( g e t - i n t e r n a l  - r e a l  - t ime)  1) 

(dec f  ( e l t  c l o c k  p l a y e r )  ( -  t l  t o ) )  
(cond 

( ( <  ( e l t  c l o c k  p l a y e r )  0)  
( format  t ""&"c has no t ime  l e f t  and f o r f e i t s . "  

(name-of p l a y e r ) )  
(THROW 'game-over ( i f  (eq l  p layer  b lack )  -64 6 4 ) ) )  

( (eq  move ' r e s i g n )  
(THROW 'game-over ( i f  (eq l  p layer  b l a c k )  -64 6 4 ) ) )  

((and ( v a l i d - p  move) ( l e g a l - p  move p layer  board))  
(when p r i n t  

( fo rmat  t ""&"c moves t o  "a." 
(name-of p l a y e r )  (88->h8 move))) 

(make-move move p layer  board))  
( t  (warn " I l l e g a l  move: "a" (88->h8 move)) 

(get-move s t r a t e g y  p layer  board p r i n t  c l o c k ) ) ) ) )  

Finally, the function p r  i  n t - boa rd needs to print the time remaining for each player; 
this requires an auxiliary function to get the number of minutes and seconds from an 
internal-format time interval. Note that we make the arguments optional, so that in 
debugging one can say just ( pri n t  - boa rd 1 to see the current situation. Also note the 
esoteric f o r m a t  option: " -2 ,  ' Od " prints a decimal number using at least two places, 
padding on the left with zeros. 

(defun p r i n t - b o a r d  (&op t iona l  (board *board*) c l o c k )  
" P r i n t  a  board, along w i t h  some s t a t i s t i c s . "  
;; F i r s t  p r i n t  t h e  header and t h e  c u r r e n t  score 
( fo rmat  t ""2& a  b  c  d  e  f g  h  C"c="2a "c="2a ( " @ d ) l U  

(name-of b lack )  (count  b lack  board) 
(name-of wh i te )  (count  w h i t e  board) 
( c o u n t - d i f f e r e n c e  b lack  board))  

;; P r i n t  t h e  board i t s e l f  
( l o o p  f o r  row from 1 t o  8  do 

( fo rmat  t ""& "d " row) 
( l o o p  f o r  co l  f rom 1 t o  8 

f o r  p iece = ( b r e f  board (+ co l  ( *  10 row) ) )  
do ( format  t ""c " (name-of p i e c e ) ) ) )  



;; Finally print  the time remaining for each player 
(when clock 

(format t " C"c="a "c="a1"2&" 
(name-of black) ( t ime-str ing (el  t clock black) 
(name-of white) ( t ime-str ing (el  t clock white) 1) 1) 

(defun time-string (time) 
"Return a s t r ing  representing t h i s  internal time in min:secs." 
(mu1 t iple-val  ue-bind (min sec) 

( f loor  (round time internal-time-units-per-second) 60) 
(format nil ""2d:"2,'0d" min s e c ) ) )  

A single game is not enough to establish that one strategy is better than another. The 
following function allows two strategies to compete in a series of games: 

(defun othello-series (strategy1 strategy2 n-pai rs )  
"Play a ser ies  of 2*n-pairs games, swapping s ides . "  
(1 e t  ( (scores (1 oop repeat n-pai r s  

col lec t  (othello s t ra tegyl  strategy2 n i l )  
col lec t  ( -  (othello strategy2 strategyl n i l ) ) ) ) )  

;; Return the number of wins, (112 for  a t i e ) ,  
;; the to ta l  of thepoint  differences,and the 
;; scores themselves, a l l  from s t ra tegyl ' s  point of view. 
(values (+ (count-if  #'pl usp scores) 

(1 (count-if #'zerop scores) 2 ) )  
(apply # '+  scores) 
scores 1 1 

Let's see what happens when we use it to pit the two weighted-squares functions 
against each other in a series of ten games: 

> (othell  o-series 
(alpha-beta-searcher 2 #'modified-weighted-squares) 
(alpha-beta-searcher 2 #'weighted-squares) 5 )  

Something is suspicious here-the same scores are being repeated. A little thought 
reveals why: neither strategy has a random component, so the exact same game 
was played five times with one strategy going first, and another game was played 



five times when the other strategy goes first! A more accurate appraisal of the two 
strategies' relative worth would be gained by starting each game from some random 
position and playing from there. 

Think for a minute how you would design to run a series of games starting from a 
random position. One possibility would be to change the function o t h e l  1  o  to accept 
an optional argument indicating the initial state of the board. Then o t h e l l  o  - s e r i  es 
could be changed to somehow generate a random board and pass it to o t  he1 1  o. While 
this approach is feasible, it means changing two existing working functions, as well 
as writing another function, genera te  - random- boa rd .  But we couldn't generate just 
any random board: it would have to be a legal board, so it would have to call o t  he1 1  o  
and somehow get it to stop before the game was over. 

An alternative is to leave both o t h e l l  o  and o t h e l l  o - s e r i e s  alone and build 
another function on top of it, one that works by passing in two new strategies: 
strategies that make a random move for the first few moves and then revert to 
the normal specified behavior. This is a better solution because it uses existing 
functions rather than modifying them, and because it requires no new functions 
besides swi t c h  - s t r a t e g i  es, which could prove useful for other purposes, and 
random-othe l l  o - s e r i  es, which does nothing more than call o t h e l l  o - s e r i  es with 
the proper arguments. 

(defun random-othe l lo-ser ies ( s t r a t e g y l  s t ra tegy2  

n -pa i  r s  &op t iona l  (n-random 10) ) 

"P lay a  s e r i e s  o f  2*n games, s t a r t i n g  from a  random p o s i t i o n . "  

( o t h e l  1  o - se r ies  

( s w i t c h - s t r a t e g i e s  #'random-strategy n-random s t r a t e g y l )  

( s w i t c h - s t r a t e g i e s  #'random-strategy n-random s t ra tegy21  

n -pa i  r s )  1 

(defun s w i t c h - s t r a t e g i e s  ( s t r a t e g y l  m  s t ra tegy21  

"Make a  new s t r a t e g y  t h a t  p lays  s t r a t e g y l  f o r  m  moves, 

then p lays  according t o  s t ra tegy2 . "  

#'(lambda (p layer  board) 

( f u n c a l l  ( i f  (<= *move-number* m) s t r a t e g y l  s t ra tegy21  

p layer  b o a r d ) ) )  

There is a problem with this kind of series: it may be that one of the strategies just 
happens to get better random positions. A fairer test would be to play two games 
from each random position, one with the each strategy playing first. One way to 
do that is to alter o t h e l  1  o - s e r i  es so that it saves the random state before playing 
the first game of a pair, and then restores the saved random state before playing the 
second game. That way the same random position will be duplicated. 



(defun o t h e l l o - s e r i e s  ( s t r a t e g y 1  s t ra tegy2  n - p a i r s )  
"Play a s e r i e s  o f  2*n-pai rs  games, swapping s ides. "  
( l e t  ( ( sco res  

(1 oop repeat n -pa i  r s  
f o r  random-state = (make-random-state) 
c o l l e c t  ( o t h e l l o  s t r a t e g y l  s t ra tegy2  n i l )  
do ( s e t f  *random-state* random-state) 
c o l l e c t  ( -  ( o t h e l l o  s t ra tegy2  s t r a t e g y l  n i l ) ) ) ) )  

;; Return t h e  number o f  wins (1 /2  f o r  a  t i e ) .  
;; the  t o t a l  o f  t h e  p b i n t  d i f f e r e n c e s ,  and t h e  
;; scores themselves, a l l  f rom s t r a t e g y l ' s  p o i n t  o f  view. 
(va lues (+ ( c o u n t - i f  # ' p l  usp scores) 

( /  ( c o u n t - i f  # 'zerop scores) 2 ) )  
(apply  # '+  scores) 
scores 1 1 1 

Now we are in a position to do a more meaningful test. In the following, the weighted- 
squares strategy wins 4 out of 10 games against the modified strategy, losing by a 
total of 76 pieces, with the actual scores indicated. 

> (random-othel l  o - s e r i e s  
(a lpha-beta-searcher  2  #'weighted-squares) 
(a lpha-beta-searcher  2#'modified-weighted-squares) 
5 

4  
- 76 
( - 8  -40 22 -30 10 -10 12 -18 4 -18) 

The random- o t  he1 1 o -  ser i es function is useful for comparing two strategies. When 
there are more than two strategies to be compared at the same time, the following 
function can be useful: 

(defun round- rob in  ( s t r a t e g i e s  n -pa i  r s  &opt ional  
(n-random 10) (names s t r a t e g i e s ) )  

"P lay a tournament among t h e  s t r a t e g i e s .  
N-PAIRS = games each s t ra tegy  p lays  as each c o l o r  against  
each opponent. So w i t h  N s t r a t e g i e s ,  a  t o t a l  o f  
N*(N-1)*N-PAIRS games are played." 
( l e t *  ((N ( l e n g t h  s t r a t e g i e s ) )  

( t o t a l s  (make-array N : i n i t i a l  -element 0 ) )  
(scores (make-array ( l i s t  N N) 

: i n i t i a l  -element 0 ) ) )  
; ; Play t h e  games 
(dot imes ( i  N) 

( l oop  f o r  j from (+ i 1 )  t o  ( -  N 1) do 
(1 e t *  ( (wins ( random-othel l  o - s e r i e s  



( e l t  s t r a t e g i e s  i 
( e l  t s t r a t e g i e s  j 
n-pa i  r s  n-random) 

( losses ( -  ( *  2 n - p a i r s )  w i n s ) ) )  
( i n c f  ( a r e f  scores i j )  wins) 
( i n c f  ( a r e f  scores j i )  losses)  
( i n c f  ( a r e f  t o t a l s  i )  wins) 
( i n c f  ( a r e f  t o t a l s  j )  l o s s e s ) ) ) )  

; ; P r i n t  t h e  r e s u l t s  
(dotimes ( i  N) 

( format  t ""&"a"20T "4 f :  " ( e l  t names i ( e l t  t o t a l s  i 1)  
(dotimes ( j  N )  

( format  t " "4 f  " ( i f  (= i j )  ' - - -  

( a r e f  scores i j ) ) ) ) ) ) )  

Here is a comparison of five strategies that search only 1 ply: 

(defun m o b i l i t y  (p layer  board) 
"The number o f  moves a p layer  has." 
(1 ength ( l e g a l  -moves p layer  board) 1)  

> ( round-rob in  
( l i s t ( m a x i m i z e r  # ' c o u n t - d i f f e r e n c e )  

(maximizer #'mobi 1 i t y )  
(maximizer #'weighted-squares) 
(maximizer # 'modi f ied-weighted-squares)  
# '  random-strategy) 

5 10 
' ( c o u n t - d i f f e r e n c e  m o b i l i t y  weighted modi f ied-weighted random)) 

COUNT-DIFFERENCE 12.5: - - -  3.0 2.5 0.0 7.0 
MOB1 LITY 20.5: 7.0 - - -  1.5 5.0 7.0 
WEIGHTED 28.0: 7.5 8.5 - - -  3.0 9.0 
MODIFIED-WEIGHTED 31.5: 10.0 5.0 7.0 - - -  9.5 
RANDOM 7.5: 3.0 3.0 1.0 0.5 - - -  

The parameter n - p a i  rs is 5, meaning that each strategy plays five games as black 
and five as white against each of the other four strategies, for a total of 40 games 
for each strategy and 100 games overall. The first line of output says that the count- 
difference strategywon 12.5 of its 40 games, including3 against the mobility strategy, 
2.5 against the weighted strategy, none against the modified weighted, and 7 against 
the random strategy. The fact that the random strategy manages to win 7.5 out of 40 
games indicates that the other strategies are not amazingly strong. Now we see what 
happens when the search depth is increased to 4 ply (this will take a while to run): 



> (round-robin 
(list (alpha-beta-searcher 4 #'count-difference) 

(alpha-beta-searcher 4 #'weighted-squares) 
(alpha-beta-searcher 4 #'modified-weighted-squares) 
# '  random-strategy) 

5 10 
'(count-difference weighted modified-weighted random)) 

COUNT-DIFFERENCE 12.0: - - -  2.0 0.0 10.0 
WEIGHTED 23.5: 8.0 - - -  5.5 10.0 
MODIFIED-WEIGHTED 24.5: 10.0 4.5 - - -  10.0 
RANDOM 0.0: 0.0 0.0 0.0 - - -  

Here the random strategy does not win any games-an indication that the other 
strategies are doing something right. Notice that the modified weighted-squares 
has only a slight advantage over the weighted-squares, and in fact it lost their head- 
to-head series, four games to five, with one draw. So it is not clear which strategy 
is better. 

The output does not break down wins by black or white, nor does it report the 
numerical scores. I felt that that would clutter up the output too much, but you're 
welcome to add this information. It turns out that white wins 23 (and draws 1) of 
the 40 games played between 4-ply searching strategies. Usually, Othello is a fairly 
balanced game, because black has the advantage of moving first but white usually 
gets to play last. It is clear that these strategies do not play well in the opening game, 
but for the last four ply they play perfectly. This may explain white's slight edge, or 
it may be a statistical aberration. 

18.9 More Efficient Searching 

The alpha-beta cutoffs work when we have established a good move and another 
move proves to be not as good. Thus, we will be able to make cutoffs earlier if we 
ensure that good moves are considered first. Our current algorithm loops through 
the list of 1 egal -moves, but 1 egal -moves makes no attempt to order the moves in any 
way. We will call this the random-ordering strategy (even though the ordering is not 
random at all-square 11 is always considered first, then 12, etc.). 

One way to try to generate good moves first is to search highly weighted squares 
first. Since 1 egal -moves considers squares in the order defined by a1 1 -squares, all 
we have to do is redefine the list a1 1 - squa res3: 

3~emember, when a constant is redefined, it may be necessary to recompile any functions 
that use the constant. 



(defconstant  a l l - s q u a r e s  
( s o r t  ( l o o p  f o r  i from 11 t o  88 

when (<= 1 (mod i 10) 8) c o l l  e c t  i 
# '>  :key #'(lambda (sq)  ( e l t  *weights* s q ) ) ) )  

Now the corner squares will automatically be considered first, followed by the other 
highlyweighted squares. We call this the static-ordering strategy, because the ordering 
is not random, but it does not change depending on the situation. 

A more informed way to try to generate good moves first is to sort the moves 
according to the evaluation function. This means making more evaluations. Previ- 
ously, only the boards at the leaves of the search tree were evaluated. Now we need 
to evaluate every board. In order to avoid evaluating a board more than once, we 
make up a structure called a node, which holds a board, the square that was taken to 
result in that board, and the evaluation value of that board. The search is the same 
except that nodes are passed around instead of boards, and the nodes are sorted by 
their value. 

( d e f s t r u c t  (node) square board va lue)  

(defun a lpha-beta-searcher2 (depth e v a l - f n )  
"Return a  s t r a t e g y  t h a t  does A-B search w i t h  so r ted  moves." 
# ' ( 1  ambda ( p l  ayer board 

( m u l t i p l e - v a l u e - b i n d  (va lue  node) 
(a1 pha-beta2 

p layer  (make-node :board board 
:va lue ( f u n c a l l  e v a l - f n  p layer  board))  

l o s i n g - v a l  ue winn ing-va l  ue depth eval - f n )  
(dec la re  ( i gnore  va lue ) )  
(node-square node) ) ) )  

(defun a1 pha-beta2 ( p l a y e r  node achievable c u t o f f  p l y  eval - f n )  
"A-B search, s o r t i n g  moves by e v a l - f n "  
;; Returns two values: ach ievable-va lue and move-to-make 
( i f  (= p l y  0 )  

(va lues (node-value node) node) 
( l e t *  ( (board (node-board node)) 

(nodes ( legal -nodes p layer  board e v a l - f n ) ) )  
( i f  ( n u l l  nodes) 

( i f  (any-legal-move? (opponent p l a y e r )  board) 
(va lues ( -  (a lpha-beta2 (opponent p l a y e r )  

(negate-va lue node) 
( -  c u t o f f )  ( -  ach ievable)  
( -  p l y  1 )  e v a l - f n ) )  

n i l  
(va lues ( f i n a l - v a l u e  p layer  board) n i l ) )  

( l e t  ( (best-node ( f i r s t  nodes)) )  
(1 oop f o r  move i n nodes 



f o r  val  = ( -  ( a l p h a - b e t a 2  
(opponent  pl a y e r  
( n e g a t e - v a l u e  move) 
( -  c u t o f f )  ( -  a c h i e v a b l e )  
( -  p l y  1) e v a l - f n ) )  

do (when (> val  a c h i e v a b l e )  
( s e t f  a c h i e v a b l e  va l  
( s e t f  b e s t - n o d e  move))  

u n t i  1  (>= a c h i e v a b l e  c u t o f f  1)  
( v a l u e s  a c h i e v a b l e  b e s t - n o d e ) ) ) ) ) )  

( de fun  n e g a t e - v a l u e  (node )  
" S e t  t h e  v a l u e  o f  a  node t o  i t s  n e g a t i v e . "  
( s e t f  ( node- va lue  node)  ( -  ( n o d e - v a l u e  n o d e ) ) )  
node 

( d e f u n  1  ega l  -nodes  ( pl a y e r  board  eva l  - f n  
"Re tu rn  a  l i s t  o f  l e g a l  moves, e ach  one  packed i n t o  a  node . "  
(1 e t  ( (moves (1 ega l  -moves pl a y e r  boa rd )  1) 

( s o r t  ( m a p - i n t o  
moves 
# ' ( lambda (move) 

( l e t  ( (new-board  (make-move move p l a y e r  
(copy-board  b o a r d ) ) ) )  

(make-node 
: s q u a r e  move :board  new-board 
: v a l u e  ( f u n c a l l  e v a l - f n  p l a y e r  n e w - b o a r d ) ) ) )  

moves 1 
# '> :key # ' n o d e - v a l u e ) ) )  

(Note the use of the function map - i n t o. This is part of ANSI Common Lisp, but if it 
is not a part of your implementation, a definition is provided on page 857.) 

The following table compares the performance of the random-ordering strategy, 
the sorted-ordering strategy and the static-ordering strategy in the course of a single 
game. All strategies search 6 ply deep. The table measures the number of boards 
investigated, the number of those boards that were evaluated (in all cases the evalua- 
tion function was modi f i ed - wei ghted - squares) and the time in seconds to compute 
a move. 



The last two lines of the table give the averages and the averages normalized to the 
random-ordering strategy's performance. The sorted-ordering strategy takes only 
62% of the time of the random-ordering strategy, and the static-ordering takes 63%. 
These times are not to be trusted too much, because a large-scale garbage collection 
was taking place during the latter part of the game, and it may have thrown off the 
times. The board and evaluation count may be better indicators, and they both show 
the static-ordering strategy doing the best. 

We have to be careful how we evaluate these results. Earlier I said that alpha-beta 
search makes more cutoffs when it is presented first with better moves. The actual 
truthis that it makes more cutoffs when presented first with moves that the evaluation 
function thinks are better. In this case the evaluation function and the static-ordering 
strategy are in strong agreement on what are the best moves, so it is not surprising 
that static ordering does so well. As we develop evaluation functions that vary from 
the weighted-squares approach, we will have to run experiments again to see if the 
static-ordering is still the best. 

random order 
boards evals secs 
13912 10269 69 

9015 6751 56 
9820 7191 46 
4195 3213 20 

10890 7336 60 
13325 9679 63 
13163 9968 58 
16642 12588 70 
18016 13366 80 
23295 17908 104 
34120 25895 143 
56117 43230 224 
53573 41266 209 
43943 33184 175 
51124 39806 193 
24743 18777 105 

1.0 1.0 1.0 

18.10 It Pays to Precycle 

The progressive city of Berkeley, California, has a strong recycling program to reclaim 
glass, paper, and aluminum that would otherwise be discarded as garbage. In 1989, 

sorted order 
boards evals secs 

5556 5557 22 
6571 6572 25 

11556 11557 45 
5302 5303 17 

10709 10710 38 
6431 6432 24 
9014 9015 32 
9742 9743 33 

11002 11003 37 
15290 15291 48 
22994 22995 75 
46883 46884 150 
62252 62253 191 
31039 31040 97 
45709 45710 135 
20003 20004 65 

.81 1.07 .62 

static order 
boards evals secs 

2365 1599 19 
3081 2188 18 
5797 3990 31 
2708 2019 15 
3743 2401 23 
4222 2802 24 
6657 4922 31 

10421 7488 51 
9508 7136 41 

26435 20282 111 
20775 16280 78 
48415 36229 203 
37803 28902 148 
33180 24753 133 
19297 15064 69 
15627 11737 66 

.63 .63 .63 



Berkeley instituted a novel program of precycling: consumers are encouraged to avoid 
buying products that come in environmentally wasteful packages. 

Your Lisp system also has a recycling program: the Lisp garbage collector auto- 
matically recycles any unused storage. However, there is a cost to this program, and 
you the consumer can get better performance by precycling your data. Don't buy 
wasteful data structures when simpler ones can be used or reused. You, the Lisp 
programmer, may not be able to save the rain forests or the ozone layer, but you can 
save valuable processor time. 

We saw before that the search routines look at tens of thousands of boards per 
move. Currently, each board position is created anew by copy - boa rd and discarded 
soon thereafter. We could avoid generatingall this garbage by reusing the same board 
at each ply. We'd still need to keep the board from the previous ply for use when 
the search backs up. Thus, a vector of boards is needed. In the following we assume 
that we will never search deeper than 40 ply. This is a safe assumption, as even the 
fastest Othello programs can only search about 15 ply before running out of time. 

( d e f v a r  *ply-boards*  
( a p p l y  # ' v e c t o r  ( l o o p  r e p e a t  40 c o l l e c t  ( i n i t i a l - b o a r d ) ) ) )  

Now that we have sharply limited the number of boards needed, we may want to 
reevaluate the implementation of boards. Instead of having the board as a vector of 
pieces (to save space), we may want to implement boards as vectors of bytes or full 
words. In some implementations, accessing elements of such vectors is faster. (In 
other implementations, there is no difference.) 

An implementation using the vector of boards will be done in the next section. 
Note that there is another alternative: use only one board, and update it by making 
and retracting moves. This is a good alternative in a game like chess, where a move 
only alters two squares. In Othello, many squares can be altered by a move, so 
copying the whole board over and making the move is not so bad. 

It should be mentioned that it is worth looking into the problem of copying a 
position from one board to another. The function rep1 a c e  copies one sequence (or 
part of it) into another, but it is a generic function that may be slow. In particular, if 
each element of a board is only 2 bits, then it may be much faster to use displaced 
arrays to copy 32 bits at a time. The advisability of this approach depends on the 
implementation, and so it is not explored further here. 

18.11 Killer Moves 

In section 18.9, we considered the possibility of searching moves in a different 
order, in an attempt to search the better moves first, thereby getting more alpha-beta 
pruning. In this section, we consider the killer heuristic, which states that a move that 



has proven to be a good one in one line of play is also likely to be a good one in another 
line of play. To use chess as perhaps a more familiar example, suppose I consider 
one move, and it leads to the opponent replying by capturing my queen. This is a 
killer move, one that I would like to avoid. Therefore, when I consider other possible 
moves, I want to immediately consider the possibility of the opponent making that 
queen-cap turing move. 

The function a 1 pha - beta3 adds the parameter k i  1 1 er, which is the best move 
found so far at the current level. After we determine the 1 egal -moves, we use 
put-f i  r s t  to put the killer move first, if it is in fact a legal move. When it comes 
time to search the next level, we keep track of the best move in k i  11 er2. This 
requires keeping track of the value of the best move in k i  1 1 er2 - val . Everything else 
is unchanged, except that we get a new board by recycling the *pl y - boa rds* vector 
rather than by allocating fresh ones. 

(defun a1 pha -beta3 ( p l  ayer board achievabl e  c u t o f f  p l y  eval - f n  
k i l l e r )  

" A - B  search, p u t t i n g  k i l l e r  move f i r s t . "  
( i f  (= p l y  0)  

( f u n c a l l  e v a l - f n  p layer  board) 
(1  e t  ((moves ( p u t - f i  r s t  k i  11 e r  (1  egal -moves p layer  board) 1) 1 

( i f  ( n u l l  moves) 
( i f  (any-legal-move? (opponent p l a y e r )  board) 

( -  (a lpha-beta3 (opponent p l a y e r )  board 
( -  c u t o f f )  ( -  ach ievable)  
( -  p l y  1 )  e v a l - f n  n i l ) )  

( f i n a l  -va lue p layer  board))  
( l e t  ((best-move ( f i r s t  moves)) 

(new-board ( a r e f  *ply-boards* p l y ) )  
( k i l l e r 2  n i l  
( k i l l e r 2 - v a l  winn ing-va l  ue) 

(1 oop f o r  move i n moves 
do (mu1 t i p l e - v a l u e - b i n d  ( v a l  r e p l y )  

(a1 pha-beta3 
( opponent p l  ayer 
(make-move move p layer  

( rep lace  new-board board))  
( -  c u t o f f )  ( -  ach ievable)  
( -  p l y  1 )  e v a l - f n  k i l l e r 2 1  

( s e t f  va l  ( -  v a l ) )  
(when (> va l  ach ievable)  

( s e t f  ach ievable va l  
( s e t f  best-move move)) 

(when (and r e p l y  (< va l  k i  11 er2-val )) 

( s e t f  k i l l e r 2  r e p l y )  
( s e t f  k i  11 e r2 -va l  va l  1) 

u n t i l  (>= achievable c u t o f f ) )  



(va lues achievable bes t -move) ) ) ) ) )  

(defun alpha-beta-searcher3 (depth e v a l - f n )  
"Return a  s t r a t e g y  t h a t  does A - B  search w i t h  k i l l e r  moves." 
#'(lambda (p layer  board) 

( m u l t i p l e - v a l u e - b i n d  (va lue  move) 
(a1 pha-beta3 p layer  board 1  os ing -va l  ue winn ing-va l  ue 

depth eval - f n  n i  1 )  
(dec la re  ( i gnore  va lue)  
move) 1 1 

(defun p u t - f i r s t  ( k i l l e r  moves) 
"Move t h e  k i l l e r  move t o  t h e  f r o n t  o f  moves, 
i f  t h e  k i l l e r  move i s  i n  f a c t  a  l e g a l  move." 
( i f  (member k i l l e r  moves) 

(cons k i  11 e r  (de l  e t e  k i  11 e r  moves 1) 
moves 1 1 

Another experiment on a single game reveals that adding the killer heuristic to static- 
ordering search (again at 6-ply) cuts the number of boards and evaluations, and the 
total time, all by about 20%. To summarize, alpha-beta search at 6 ply with random 
ordering takes 105 seconds per move (in our experiment), adding static-ordering cuts 
it to 66 seconds, and adding killer moves to that cuts it again to 52 seconds. This 
doesn't include the savings that alpha-beta cutoffs give over full minimax search. At 
6 ply with a branching factor of 7, full minimax would take about nine times longer 
than static ordering with killers. The savings increase with increased depth. At 
7 ply and a branching factor of 10, a small experiment shows that static-ordering 
with killers looks at only 28,000 boards in about 150 seconds. Full minimax would 
evaluate 10 million boards and take 350 times longer. The times for full minimax are 
estimates based on the number of boards per second, not on an actual experiment. 

The algorithm in this section just keeps track of one killer move. It is of course 
possible to keep track of more than one. The Othello program Bill (Lee and Mahajan 
1990b) merges the idea of killer moves with legal move generation: it keeps a list of 
possible moves at each level, sorted by their value. The legal move generator then 
goes down this list in sorted order. 

It should be stressed once again that all this work on alpha-beta cutoffs, ordering, 
and killer moves has not made any change at all in the moves that are selected. We 
still end up choosing the same move that would be made by a full minimax search to 
the given depth, we are just doing it faster, without looking at possibilities that we 
can prove are not as good. 



18.12 Championship Programs: Iago and Bill 

As mentioned in the introduction, the unpredictability of Othello makes it a difficult 
game for humans to master, and thus programs that search deeply can do compar- 
atively well. In fact, in 1981 the reigning champion, Jonathan Cerf, proclaimed "In 
my opinion the top programs . . . are now equal (if not superior) to the best human 
players." In discussing Rosenbloom's Iago program (1982), Cerf went on to say "I 
understand Paul Rosenbloom is interested in arranging a match against me. Unfor- 
tunately my schedule is very full, and I'm going to see that it remains that way for the 
foreseeable future." 

In 1989, another program, Bill (Lee and Mahajan 1990) beat the highest rated 
American Othello player, Brian Rose, by a score of 56-8. Bill's evaluation function is 
fast enough to search 6-8 ply under tournament conditions, yet it is so accurate that 
it beats its creator, Kai-Fu Lee, searching only 1 ply. (However, Lee is only a novice 
Othello player; his real interest is in speech recognition; see Waibel and Lee 1991.) 
There are other programs that also play at a high level, but they have not been written 
up in the A1 literature as Iago and Bill have. 

In this section we present an evaluation function based on Iago's, although it also 
contains elements of Bill, and of an evaluation functionwritten by Eric Wefald in 1989. 
The evaluation function makes use of two main features: mobilityand edge stability. 

Mobility 

Both Iago and Bill make heavy use of the concept of mobility. Mobility is a measure of 
the ability to make moves; basically, the more moves one can make, the better. This 
is not quite true, because there is no advantage in being able to make bad moves, 
but it is a useful heuristic. We define current mobility as the number of legal moves 
available to a player, and potential mobility as the number of blank squares that are 
adjacent to opponent's pieces. These include the legal moves. A better measure of 
mobility would try to count only good moves. The following function computes both 
current and potential mobility for a player: 

(de fun  m o b i l i t y  ( p l a y e r  boa rd )  
" C u r r e n t  m o b i l i t y  i s  t h e  number o f  l e g a l  moves. 
P o t e n t i a l  m o b i l i t y  i s  t h e  number o f  b l ank  s q u a r e s  
a d j a c e n t  t o  an opponent  t h a t  a r e  n o t  l e g a l  moves. 
Re tu rn s  c u r r e n t  and p o t e n t i a l  m o b i l i t y  f o r  p l a y e r . "  
( l e t  ( ( o p p  (opponent  p l a y e r ) )  

( c u r r e n t  0 )  ; p l a y e r ' s  c u r r e n t  m o b i l i t y  
( p o t e n t i a l  0)  1 ; p l a y e r ' s  p o t e n t i a l  m o b i l i t y  

( d o l i s t  ( s q u a r e  a l l - s q u a r e s )  
(when ( e q l  ( b r e f  board  s q u a r e )  empty) 

(cond ( ( l e g a l - p  s q u a r e  p l a y e r  boa rd )  



( i n c f  c u r r e n t ) )  
((some #'(lambda (sq)  (eq l  ( b r e f  board sq) opp)) 

(neighbors square)) 
( i n c f  p o t e n t i a l ) ) ) ) )  

(va lues c u r r e n t  (+ c u r r e n t  p o t e n t i a l ) ) ) )  

Edge Stability 

Success at Othello often hinges around edge play, and both Iago and Bill evaluate 
the edges carefully. Edge analysis is made easier by the fact that the edges are fairly 
independent of the interior of the board: once a piece is placed on the edge, no 
interior moves can flip it. This independence allows a simplifying assumption: to 
evaluate a position's edge strength, evaluate each of the four edges independently, 
without consideration of the interior of the board. The evaluation can be made more 
accurate by considering the X-squares to be part of the edge. 

Even evaluating a single edge is a time-consuming task, so Bill and Iago compile 
away the evaluation by building a table of all possible edge positions. An "edge" 
according to Bill is ten squares: the eight actual edge squares and the two X-squares. 
Since each square can be black, white, or empty, there are 3'' or 59,049 possible edge 
positions-a large but manageable number. 

The value of each edge position is determined by a process of succesive approx- 
imation. Just as in a minimax search, we will need a static edge evaluation function 
to determine the value of a edge position without search. This static edge evaluation 
function is applied to every possible edge position, and the results are stored in a 
59,049 element vector. The static evaluation is just a weighted sum of the occupied 
squares, with different weights given depending on if the piece is stable or unstable. 

Each edge position's evaluation can be improved by a process of search. Iago 
uses a single ply search: given a position, consider all moves that could be made 
(including no move at all). Some moves will be clearly legal, because they flip pieces 
on the edge, but other moves will only be legal if there are pieces in the interior of 
the board to flip. Since we are only considering the edge, we don't know for sure if 
these moves are legal. They will be assigned probabilities of legality. The updated 
evaluation of a position is determined by the values and probabilities of each move. 
This is done by sorting the moves by value and then summing the product of the 
value times the probability that the move can be made. This process of iterative 
approximation is repeated five times for each position. At that point, Rosenbloom 
reports, the values have nearly converged. 

In effect, this extends the depth of the normal alpha-beta search by including an 
edge-only search in the evaluation function. Since each edge position with n pieces 
is evaluated as a function of the positions with n + 1 pieces, the search is complete-it 
is an implicit 10-ply search. 



Calculating edge stability is a bit more complicated than the other features. The 
first step is to define a variable, *edge - t a  bl e*, which will hold the evaluation of each 
edge position, and a constant, edge-and-x- 1 i  s ts ,  which is a list of the squares on 
each of the four edges. Each edge has ten squares because the X-squares are included. 

(de fva r  *edge-table* (make-array (exp t  3 10 ) )  
"Array o f  values t o  p l  ayer-to-move f o r  edge p o s i t i o n s .  " 1 

(defconstant  e d g e - a n d - x - l i s t s  
' ( ( 2 2  11 12 13 14 15 16 17 18 27) 

(72 81 82 83 84 85 86 87 88 77) 
(22 11 21 31 41 51 61 71 8 1  72) 
(27 18 28 38 48 58 68 78 88 77) )  

"The f o u r  edges ( w i t h  t h e i r  X-squares) . " )  

Now for each edge we can compute an index into the edge table by building a 10-digit 
base3 number, where each digit is 1 if the corresponding edge square is occupied by 
the player, 2 if by the opponent, and 0 if empty. The function edge - i ndex computes 
this, and edge- s t a b i  1  i t y  sums the values of the four edge indexes. 

(defun edge-index ( p l a y e r  board squares) 
"The index counts 1 f o r  p layer ;  2 f o r  opponent, 
on each square---summed as a base 3 number." 
( l e t  ( ( i n d e x  0 ) )  

( d o l i s t  (sq squares) 
( s e t q  index (+ ( *  index 3)  

(cond ( ( e q l  ( b r e f  board sq) empty) 0)  
( ( e q l  (b re f  board sq) p l a y e r )  1 )  
( t  2 ) ) ) ) )  

index)  

(defun e d g e - s t a b i l i t y  (p layer  board) 
"To ta l  edge eva lua t ion  f o r  p layer  t o  move on board. " 
( l o o p  f o r  e d g e - l i s t  i n  e d g e - a n d - x - l i s t s  

sum ( a r e f  *edge-tab1 e* 
(edge-index p l a y e r  board e d g e - l i s t ) ) ) )  

The function edge - s t a  b i  1  i t y  is all we will need in Iago's evaluation function, but we 
still need to generate the edge table. Since this needs to be done only once, we don't 
have to worry about efficiency. In particular, rather than invent a new data structure 
to represent edges, we will continue to use complete boards, even though they will 
be mostly empty. The computations for the edge table will be made on the top edge, 
from the point of view of black, with black to play. But the same table can be used for 
white, or for one of the other edges, because of the way the edge index is computed. 

Each position in the table is first initialized to a static value computed by a kind 
of weighted-squares metric, but with different weights depending on if a piece is in 



danger of being captured. After that, each position is updated by considering the 
possible moves that can be made from the position, and the values of each of these 
moves. 

(defconstant top-edge (first edge-and-x-lists)) 

(defun init-edge-table 0 
"Initialize *edge-table*, starting from the empty board." 
;; Initialize the static values 
(loop for n-pieces from 0 to 10 do 

(map-edge-n-pieces 
#'(lambda (board index) 

(setf (aref *edge-table* index) 
(static-edge-stability black board))) 

black (initial -board) n-pieces top-edge 0)) 
;; Now iterate five times trying to improve: 
(dotimes (i 5)  

;; Do the indexes with most pieces first 
(loop for n-pieces from 9 downto 1 do 

(map-edge-n-pieces 
#'(lambda (board index) 

(setf (aref *edge-table* index) 
(possi bl e-edge-moves-val ue 
black board index))) 

black (initial-board) n-pieces top-edge 0)))) 

The function map - edge - n -pi eces iterates through all edge positions with a total of 
n pieces (of either color), applying a function to each such position. It also keeps a 
running count of the edge index as it goes. The function should accept two arguments: 
the board and the index. Note that a single board can be used for all the positions 
because squares are reset after they are used. The function has three cases: if the 
number of squares remainingis less than n, then it will be impossible to place n pieces 
on those squares, so we give up. If there are no more squares then n must also be 
zero, so this is a valid position, and the function f n  is called. Otherwise we first try 
leaving the current square blank, then try filling it with player's piece, and then with 
the opponent's piece, in each case calling map - edge - n -pi eces recursively. 

(defun map-edge-n-pieces (fn player board n squares index) 
"Call fn on all edges with n pieces." 
;; Index counts 1 for player; 2 for opponent 
(cond 

( (<  (length squares) n) nil) 
((null squares) (funcall fn board index)) 
(t (let ((index3 (* 3 index)) 

(sq (first squares))) 
(map-edge-n-pieces fn player board n (rest squares) index31 



(when (and (> n 0 )  (eq l  ( b r e f  board sq) empty)) 
( s e t f  ( b r e f  board sq) p l a y e r )  
(map-edge-n-pieces f n  p layer  board ( -  n 1) ( r e s t  squares) 

(+ 1 i ndex3) ) 
( s e t f  ( b r e f  board sq) (opponent p l a y e r ) )  
(map-edge-n-pieces f n  p layer  board ( -  n 1) ( r e s t  squares) 

(+ 2 index311 
( s e t f  ( b r e f  board sq) e m p t y ) ) ) ) ) )  

The function p o s s i  b l  e-edge-moves - v a l  ue searches through all possible moves to 
determine an edge value that is more accurate than a static evaluation. It loops 
through every empty square on the edge, calling poss  i bl e - edge -move to return a 
(probabili ty va lue )  pair. Since it is also possible for a player not to make any move at 
all on an edge, the pair ( 1 .0 current-value is also included. 

(defun possible-edge-moves-value (p layer  board index)  
"Consider a l l  poss ib le  edge moves. 
Combine t h e i r  values i n t o  a s i n g l e  number. " 
(combine-edge-moves 

(cons 
( l i s t  1.0 ( a r e f  *edge-table* i ndex ) )  ;; no move 
( l o o p  f o r  sq i n  top-edge ; ; poss ib le  moves 

when (eq l  ( b r e f  board sq) empty) 
co l  1 e c t  ( poss i  b l  e-edge-move p l  ayer board sq 1) 

p l  ayer 1) 

The value of each position is determined by making the move on the board, then 
looking up in the table the value of the resulting position for the opponent, and 
negating it (since we are interested in the value to us, not to our opponent). 

(defun poss i  b l  e-edge-move ( p l  ayer board sq 
"Return a (prob v a l )  p a i r  f o r  a poss ib le  edge move." 
( l e t  ((new-board ( rep lace  ( a r e f  *ply-boards* p l a y e r )  b o a r d ) ) )  

(make-move sq p layer  new-board) 
( l i s t  (edge-move-probabi l i ty  p layer  board sq) 

( -  ( a r e f  *edge-table* 
(edge-index (opponent p l a y e r )  

new-board t o p - e d g e ) ) ) ) ) )  

The possible moves are combined with combi ne - edge -moves, which sorts the moves 
best-first. (Since i n i t - edge - t a b l  e started from black's perspective, black tries to 
maximize and white tries to minimize scores.) We then go down the moves, increas- 
ing the total value by the value of each move times the probability of the move, and 
decreasing the remaining probability by the probability of the move. Since there will 



always be a least one move (pass) with probability 1.0, this is guaranteed to converge. 
In the end we round off the total value, so that we can do the run-time calculations 
with fixnums. 

(defun combine-edge-moves (possibili t ies player) 
"Combine the best moves." 
( l e t  ((prob 1.0) 

( v a l  0.0) 
(fn ( i f  (eql player black) #'> # ' < ) I )  

(loop for pair in (sor t  possibili t ies fn :key #'second) 
while (>= prob 0.0) 
do (incf val (* prob ( f i r s t  pair) (second pa i r ) ) )  

(decf prob (* prob ( f i r s t  p a i r ) ) ) )  
(round va l ) ) )  

We still need to compute the probability that each possible edge move is legal. These 
probabilities should reflect things such as the fact that it is easy to capture a corner 
if the opponent is in the adjacent X-square, and very difficult otherwise. First we 
define some functions to recognize corner and X-squares and relate them to their 
neighbors: 

( l e t  ((corner/xsqs ' ( (11  . 22) (18 . 27) (81. 72) (88 . 7 7 ) ) ) )  
(defun corner-p (sq) (assoc sq cornerlxsqs)) 
(defun x-square-p (sq) (rassoc sq corner/xsqs)) 
(defun x-square-for (corner) (cdr (assoc corner corner/xsqs))) 
(defun corner-for (xsq) (car (rassoc xsq corner/xsqs)))) 

Now we consider the probabilities. There are four cases. First, since we don't 
know anything about the interior of the board, we assume each player has a 50% 
chance of being able to play in an X-square. Second, if we can show that a move 
is legal (because it flips opponent pieces on the edge) then it has 100% probability. 
Third, for the corner squares, we assign a 90% chance if the opponent occupies the 
X-square, 10% if it is empty, and only . l%  if we occupy it. Otherwise, the probability 
is determined by the two neighboring squares: if a square is next to one or more 
opponents it is more likely we can move there; if it is next to our pieces it is less likely. 
If it is legal for the opponent to move into the square, then the chances are cut in half 
(although we may still be able to move there, since we move first). 

(defun edge-move-probability (player board square) 
"What's the probability t h a t  player can move to this  square?" 
(cond 

((x-square-p square) .5)  ;; X-squares 
((legal-p square player board) 1.0) ;; immediate capture 
((corner-p square) ;; move to  corner depends on X-square 



( l e t  ( ( x - s q  ( x - s q u a r e - f o r  s q u a r e ) ) )  
(cond 

( ( e q l  ( b r e f  board x - s q )  empty) . 1 )  
( ( e q l  ( b r e f  board x - s q )  p l a y e r )  0 .001)  
( t  . 9 ) ) ) )  

( t  ( 1  ( a r e f  
' #2A( ( .1  .4 . 7 )  

( . 0 5  .3 *) 

( . 0 1  * * I )  
( coun t - edge- ne ighbor s  p l a y e r  board s q u a r e )  
( coun t - edge - ne ighbor s  (opponent  p l a y e r )  board s q u a r e ) )  

( i f  ( l e g a l - p  s q u a r e  (opponent  p l a y e r )  boa rd )  2 1 ) ) ) ) )  

( de fun  coun t - edge- ne ighbor s  ( p l a y e r  board s q u a r e )  
"Count t h e  ne ighbor s  of  t h i s  s q u a r e  occupied  by p l a y e r . "  
( c o u n t - i f  # '( lambda ( i n c )  

( eq l  ( b r e f  board (+ s q u a r e  i n c ) )  p l a y e r ) )  
' (+I  - 1 ) ) )  

Now we return to the problem of determining the static value of an edge position. 
This is computed by a weighted-squares metric, but the weights depend on the 
sfability of each piece. A piece is called stable if it cannot be captured, unstable if 
it is in immediate danger of being captured, and semistable otherwise. A table of 
weights follows for each edge square and stability. Note that corner squares are 
always stable, and X-squares we will call semistable if the adjacent corner is taken, 
and unstable otherwise. 

(de fpa rame te r  * s t a t i c - e d g e - t a b l e *  
' #2A( ; s t ab  semi un 

( * 0 - 2 O O O ) ; X  
( 700 * *) ; c o r n e r  
(1200 200 -25 )  ; C 
(1000 200 75 )  ; A 
(1000 200 50 )  ; B 
(1000 200 50 )  ; B 
(1000 200 75 )  ; A  
(1200 200 -25 )  ; C 
( 700 * *) ; c o r n e r  
( * 0 - 2 O O O ) ; X  
1 1 



The static evaluation then just sums each piece's value according to this table: 

(defun static-edge-stabili ty (player board) 
"Compute this  edge's s ta t i c  s tabi l i ty" 
(loop for sq in top-edge 

for i  from 0 
sum (cond 

((eql (bref board sq) empty) 0) 
((eql (bref board sq) player) 
(aref *static-edge-table* i 

(piece-stabili ty board s q ) ) )  
( t  ( -  (aref *static-edge-table* i  

(piece-stabili ty board s q ) ) ) ) ) ) )  

The computation of stability is fairly complex. It centers around finding the two 
"pieces," p l  and p2, which lay on either side of the piece in question and which are 
not of the same color as the piece. These "pieces" may be empty, or they may be off 
the board. A piece is unstable if one of the two is empty and the other is the opponent; 
it is semistable if there are opponents on both sides and at least one empty square to 
play on, or if it is surrounded by empty pieces. Finally, if either p l  or p2 is nil then 
the piece is stable, since it must be connected by a solid wall of pieces to the corner. 

( l e t  ( (s table  0)  (semi-stable 1 )  (unstable 2 ) )  

(defun piece-stability (board sq) 
(cond 

((corner-p sq) stable) 
((x-square-p sq) 
( i f  (eql (bref board (corner-for sq) )  empty) 

unstable semi -s table))  
( t  ( le t*  ((player (bref board sq ) )  

(opp (opponent pl ayer 
( p l  (find player board :test-not #'eql 

: s ta r t  sq :end 19))  
(p2 (find player board :test-not #'eql 

: s ta r t  11 :end sq 
:from-end t ) ) )  

(cond 
;; unstable pieces can be captured immediately 
;; by playing in the empty square 
( (o r  (and (eql p l  empty) (eql p2 opp)) 

( a n d  (eql p2 empty) (eql p l  opp))) 
unstabl el 

; ; semi -stab1 e  pieces might be captured 
((and (eql p l  opp) (eql p2 opp) 



(find empty board :start 11 :end 19)) 
semi -stab1 el 

((and (eql pl empty) (eql p2 empty)) 
semi -stab1 el 
;; Stable pieces can never be captured 
(t stable))))))) 

The edge table can now be built by a call to i n i t  - edge- t a  b l  e. After the table is built 
once, it is a good idea to save it so that we won't need to repeat the initialization. We 
could write simple routines to dump the table into a file and read it back in, but it is 
faster and easier to use existing tools that already do this job quite well: compi 1 e - f i 1 e 
and 1 oad. All we have to do is create and compile a file containing the single line: 

The #. read macro evaluates the following expression at read time. Thus, the 
compiler will see and compile the current edge table. It will be able to store this more 
compactly and 1 oad it back in more quickly than if we printed the contents of the 
vector in decimal (or any other base). 

Corn bining the Factors 

Now we have a measure of the three factors: current mobility, potential mobility, and 
edge stability. All that remains is to find a good way to combine them into a single 
evaluation metric. The combination function used by Rosenbloom (1982) is a linear 
combination of the three factors, but each factor's coefficient is dependent on the 
move number. Rosenbloom's features are normalized to the range [-1000,1000]; we 
normalize to the range [-I, 11 by doing a division after multiplying by the coefficient. 
That allows us to use fixnuums for the coefficients. Since our three factors are 
not calculated in quite the same way as Rosenbloom's, it is not surprising that his 
coefficients are not the best for our program. The edge coefficient was doubled and 
the potential coefficient cut by a factor of five. 

(defun Iago-eval (player board) 
"Combine edge-stability, current mobility and 
potential mobility to arrive at an evaluation." 
;; The three factors are multiplied by coefficients 
; ; that vary by move number: 
(let ((c-edg (+ 312000 (* 6240 *move-number*))) 

(c-cur ( i f  (< *move-number* 25) 
(+ 50000 ( *  2000 *move-number*)) 
(+ 75000 (*  1000 *move-number*)))) 

(c-pot 20000)) 



(mu1 t i p l e - v a l  ue - b ind  ( p - c u r  p - p o t )  
(mobi 1  i t y  pl a y e r  boa rd )  

(mu1 t i p l e - v a l  ue - b ind  ( 0 - c u r  o - p o t )  
(mobi 1  i  t y  (opponent  pl a y e r )  boa rd )  

;; Combine t h e  t h r e e  f a c t o r s  i n t o  one sum: 
(+ ( round (* c - edg  ( e d g e - s t a b i l i t y  p l a y e r  b o a r d ) )  32000)  

( round (* c - c u r  ( -  p - c u r  o - c u r ) )  (+ p - c u r  o - c u r  2 ) )  
( round (* c - p o t  ( -  p - p o t  o - p o t ) )  (+ p - p o t  o - p o t  2 )  1 ) I )  1) 

Finally, we are ready to code the I ago  function. Given a search depth, I ago  returns a 
strategy that will do alpha-beta search to that depth using the I a g o - e v a l  evaluation 
function. This version of Iago was able to defeat the modified weighted-squares 
strategy in 8 of 10 games at 3 ply, and 9 of 10 at 4 ply. On an Explorer II,4-ply search 
takes about 20 seconds per move. At 5 ply, many moves take over a minute, so the 
program runs the risk of forfeiting. At 3 ply, the program takes only a few seconds 
per move, but it still was able to defeat the author in five straight games, by scores 
of 50-14, 64-0, 51-13, 49-15 and 36-28. Despite these successes, it is likely that the 
evaluation function could be improved greatly with a little tuning of the parameters. 

(de fun  I ago  ( d e p t h )  
"Use an app rox ima t ion  o f  I a g o ' s  e v a l u a t i o n  f u n c t i o n . "  
( a l p h a - b e t a - s e a r c h e r 3  d e p t h  # ' i a g o - e v a l ) )  

18.13 OtherTechniques 

There are many other variations that can be tried to speed up the search and improve 
play. Unfortunately, choosing among the techniques is a bit of a black art. You will 
have to experiment to find the combination that is best for each domain and each 
evaluation function. Most of the following techniques were incorporated, or at least 
considered and rejected, in Bill. 

Iterative Deepening 

We have seen that the average branching factor for Othello is about 10. This means 
that searching to depth n + 1 takes roughly 10 times longer than search to depth 
n. Thus, we should be willing to go to a lot of overhead before we search one level 
deeper, to assure two things: that search will be done efficiently, and that we won't 
forfeit due to running out of time. A by-now familiar technique, iterative deepening 
(see chapters 6 and 14), serves both these goals. 



Iterative deepening is used as follows. The strategy determines how much of the 
remaining time to allocate to each move. A simple strategy could allocate a constant 
amount of time for each move, and a more sophisticated strategy could allocate more 
time for moves at crucial points in the game. Once the time allocation is determined 
for a move, the strategy starts an iterative deepening alpha-beta search. There are 
two complications: First, the search at n ply keeps track of the best moves, so that 
the search at n + 1 ply will have better ordering information. In many cases it will be 
faster to do both the n and n + 1 ply searches with the ordering information than to 
do only the n + 1 ply search without it. Second, we can monitor how much time has 
been taken searching each ply, and cut off the search when searching one more ply 
would exceed the allocated time limit. Thus, iterative-deepening search degrades 
gracefully as time limits are imposed. It will give a reasonable answer even with a 
short time allotment, and it will rarely exceed the allotted time. 

Forward Pruning 

One way to cut the number of positions searched is to replace the legal move generator 
with a plausible move generator: in other words, only consider good moves, and never 
even look at moves that seem clearly bad. This technique is called forward pruning. 
It has fallen on disfavor because of the difficulty in determining which moves are 
plausible. For most games, the factors that would go into a plausible move generator 
would be duplicated in the static evaluation function anyway, so forward pruning 
would require more effort without much gain. Worse, forward pruning could rule 
out a brilliant sacrifice-a move that looks bad initially but eventually leads to a gain. 

For some games, forward pruning is a necessity. The game of Go, for example, is 
played on a 19 by 19 board, so the first player has 361 legal moves, and a 6-ply search 
would involve over 2 quadrillion positions. However, many good Go programs can 
be viewed as not doing forward pruning but doing abstraction. There might be 30 
empty squares in one portion of the board, and the program would treat a move to 
any of these squares equivalently. 

Bill uses forward pruning in a limited way to rule out certain moves adjacent to 
the corners. It does this not to save time but because the evaluation function might 
lead to such a move being selected, even though it is in fact a poor move. In other 
words, forward pruning is used to correct a bug in the evaluation function cheaply. 

Nonspeculative Forward Pruning 

This technique makes use of the observation that there are limits in the amount the 
evaluation function can change from one position to the next. For example, if we 
are using the count difference as the evaluation function, then the most a move can 
change the evaluation is +37 (one for placing a piece in the corner, and six captures 
in each of the three directions). The smallest change is 0 (if the player is forced to 



pass). Thus, if there are 2 ply left in the search, and the backed-up value of position 
A has been established as 38 points better than the static value of position B, then it 
is useless to expand position B. This assumes that we are evaluating every position, 
perhaps to do sorted ordering or iterative deepening. It also assumes that no position 
in the search tree is a final position, because then the evaluation could change by 
more than 37 points. In conclusion, it seems that nonspeculative forward pruning is 
not very useful for Othello, although it may play a role in other games. 

Aspira tion Search 

Alpha-beta search is initated with the achievable and cutoff boundaries set to 
1 os i ng - val ue and w i  nni ng - val ue, respectively. In other words, the search assumes 
nothing: the final position may be anything from a loss to a win. But suppose we are 
in a situation somewhere in the mid-game where we are winning by a small margin 
(say the static evaluation for the current position is 50). In most cases, a single move 
will not change the evaluation by very much. Therefore, if we invoked the alpha- 
beta search with a window defined by boundaries of, say, 0 and 100, two things can 
happen: if the actual backed-up evaluation for this position is in fact in the range 0 
to 100, then the search will find it, and it will be found quickly, because the reduced 
window will cause more pruning. If the actual value is not in the range, then the 
value returned will reflect that, and we can search again using a larger window. This 
is called aspiration search, because we aspire to find a value within a given window. 
If the window is chosen well, then often we will succeed and will have saved some 
search time. 

Pearl (1984) suggests an alternative called zero-window search. At each level, the 
first possible move, which we'll call m, is searched using a reasonably wide window 
to determine its exact value, which we'll call u. Then the remaining possible moves 
are searched using u as both the lower and upper bounds of the window. Thus, the 
result of the search will tell if each subsequent move is better or worse than m, but 
won't tell how much better or worse. There are three outcomes for zero-window 
search. If no move turns out to be better than m, then stick with m. If a single move is 
better, then use it. If several moves are better than m, then they have to be searched 
again using a wider window to determine which is best. 

There is always a trade-off between time spent searching and information gained. 
Zero-window search makes an attractive trade-off: we gain some search time by 
losing information about the value of the best move. We are still guaranteed of 
finding the best move, we just don't know its exact value. 

Bill's zero-window search takes only 63% of the time taken by full alpha-beta 
search. It is effective because Bill's move-ordering techniques ensure that the first 
move is often best. With random move ordering, zero-window search would not be 
effective. 



Think-Ahead 

A program that makes its move and then waits for the opponent's reply is wasting 
half the time available to it. A better use of time is to compute, or think-ahead while 
the opponent is moving. Think-ahead is one factor that helps Bill defeat Iago. While 
many programs have done think-ahead by choosing the most likely move by the 
opponent and then starting an iterative-deepening search assuming that move, Bill's 
algorithm is somewhat more complex. It can consider more than one move by the 
opponent, depending on how much time is available. 

Hashing and Opening Book Moves 

We have been treating the search space as a tree, but in general it is a directed acyclic 
graph (dag): there may be more than one way to reach a particular position, but there 
won't be any loops, because every move adds a new piece. This raises the question 
we explored briefly in section 6.4: should we treat the search space as a tree or a 
graph? By treating it as a graph we eliminate duplicate evaluations, but we have the 
overhead of storing all the previous positions, and of checking to see if a new position 
has been seen before. The decision must be based on the proportion of duplicate 
positions that are actually encountered in play. One compromise solution is to store 
in a hash table a partial encoding of each position, encoded as, say, a single fixnum 
(one word) instead of the seven or so words needed to represent a full board. Along 
with the encoding of each position, store the move to try first. Then, for each new 
position, look in the hash table, and if there is a hit, try the corresponding move first. 
The move may not even be legal, if there is an accidental hash collision, but there is 
a good chance that the move will be the right one, and the overhead is low. 

One place where it is clearly worthwhile to store information about previous 
positions is in the opening game. Since there are fewer choices in the opening, it is a 
good idea to compile an opening"book of moves and to play by it as long as possible, 
until the opponent makes a move that departs from the book. Book moves can be 
gleaned from the literature, although not very much has been written about Othello 
(as compared to openings in chess). However, there is a danger in following expert 
advice: the positions that an expert thinks are advantageous may not be the same as 
the positions from which our program can play well. It may be better to compile the 
book by playing the program against itself and determining which positions work 
out best. 

The End Game 

It is also a good idea to try to save up time in the midgame and then make an all-out 
effort to search the complete game tree to completion as soon as feasible. Bill can 
search to completion from about 14 ply out. Once the search is done, of course, the 



most promising lines of play should be saved so that it won't be necessary to solve 
the game tree again, 

Me tareasoning 

If it weren't for the clock, Othello would be a trivial game: just search the complete 
game tree all the way to the end, and then choose the best move. The clock imposes 
a complication: we have to make all our moves before we run out of time. The 
algorithms we have seen so far manage the clock by allocating a certain amount of 
time to each move, such that the total time is guaranteed (or at least very likely) to 
be less than the allotted time. This is a very crude policy. A finer-grained way of 
managing time is to consider computation itself as a possible move. That is, at every 
tick of the clock, we need to decide if it is better to stop and play the best move we 
have computed so far or to continue and try to compute a better move. It will be 
better to compute more only in the case where we eventually choose a better move; 
it will be better to stop and play only in the case where we would otherwise forfeit 
due to time constraints, or be forced to make poor choices later in the game. An 
algorithm that includes computation as a possible move is called a metareasoning 
system, because it reasons about how much to reason. 

Russell and Wefald (1989) present an approach based on this view. In addition to 
an evaluation function, they assume a variance function, which gives an estimate of 
how much a given position's true value is likely to vary from its static value. At each 
step, their algorithm compares the value and variance of the best move computed so 
far and the second best move. If the best move is clearly better than the second best 
(taking variance into account), then there is no point computing any more. Also, if the 
top two moves have similar values but both have very low variance, then computing 
will not help much; we can just choose one of the two at random. 

For example, if the board is in a symmetric position, then there may be two 
symmetric moves that will have identical value. By searching each move's subtree 
more carefully, we soon arrive at a low variance for both moves, and then we can 
choose either one, without searching further. Of course, we could also add special- 
case code to check for symmetry, but the metareasoning approach will work for 
nonsymmetric cases as well as symmetric ones. If there is a situation where two 
moves both lead to a clear win, it won't waste time choosing between them. 

The only situation where it makes sense to continue computing is when there 
are two moves with high variance, so that it is uncertain if the true value of one 
exceeds the other. The metareasoning algorithm is predicated on devoting time to 
just this case. 



Learning 

From the earliest days of computer game playing, it was realized that a championship 
program would need to learn to improve itself. Samuel (1959) describes a program 
that plays checkers and learns to improve its evaluation function. The evaluation 
function is a linear combination of features, such as the number of pieces for each 
player, the number of kings, the number of possible forks, and so on. Learning is 
done by a hill-climbing search procedure: change one of the coefficients for one of 
the features at random, and then see if the changed evaluation function is better than 
the original one. 

Without some guidance, this hill-climbing search would be very slow. First, the 
space is very large-Samuel used 38 different features, and although he restricted 
the coefficients to be a power of two between 0 and 20, that still leaves 2 1 ~ ~  possible 
evaluation functions. Second, the obvious way of determining the relative worth of 
two evaluation functions-playing a series of games between them and seeing which 
wins more often-is quite time-consuming. 

Fortunately, there is a faster way of evaluating an evaluation function. We can 
apply the evaluation function to a position and compare this static value with the 
backed-up value determined by an alpha-beta search. If the evaluation function is 
accurate, the static value should correlate well with the backed-upvalue. If it does not 
correlate well, the evaluation function should be changed in such a way that it does. 
This approach still requires the trial-and-error of hill-climbing, but it will converge 
much faster if we can gain information from every position, rather than just from 
every game. 

In the past few years there has been increased interest in learning by a process 
of guided search. Neural nets are one example of this. They have been discussed 
elsewhere. Another example is genetic learning algorithms. These algorithms start 
with several candidate solutions. In our case, each candidate would consist of a set 
of coefficients for an evaluation function. On each generation, the genetic algorithm 
sees how well each candidate does. The worst candidates are eliminated, and the 
best ones "mate" and "reproduceu-two candidates are combined in some way to 
yield a new one. If the new offspring has inherited both its parents' good points, then 
it will prosper; if it has inherited both its parents' bad points, then it will quickly die 
out. Either way, the idea is that natural selection will eventually yield a high-quality 
solution. To increase the chances of this, it is a good idea to allow for mutations: 
random changes in the genetic makeup of one of the candidates. 

18.14 History and References 

Lee and Mahajan (1986,1990) present the current top Othello program, Bill. Their 
description outlines all the techniques used but does not go into enough detail to allow 



the reader to reconstruct the program. Bill is based in large part on Rosenbloom's 
Iago program. Rosenbloom's article (1982) is more thorough. The presentation in 
this chapter is based largely on this article, although it also contains some ideas from 
Bill and from other sources. 

The journal Othello Quarterly is the definitive source for reports on both human 
and computer Othello games and strategies. 

The most popular game for computer implementationis chess. Shannon (1950a,b) 
speculated that a computer might play chess. In a way, this was one of the boldest 
steps in the history of AI. Today, writing a chess program is a challenging but feasible 
project for an undergraduate. But in 1950, even suggesting that such a program 
might be possible was a revolutionary step that changed the way people viewed 
these arithmetic calculating devices. Shannon introduced the ideas of a game tree 
search, minimaxing, and evaluation functions-ideas that remain intact to this day. 
Marsland (1990) provides a good short introduction to computer chess, and David 
Levy has two books on the subject (1976,1988). It was Levy, an international chess 
master, who in 1968 accepted a bet from John McCarthy, Donald Michie, and others 
that a computer chess program would not beat him in the next ten years. Levy won 
the bet. Levy's Heuristic Programming (1990) and Computer Games (1988) cover a vari- 
ety of computer game playing programs. The studies by DeGroot (1965,1966) give a 
fascinating insight into the psychology of chess masters. 

Knuth and Moore (1975) analyze the alpha-beta algorithm, and Pearl's book 
Heuristics (1984) covers all kinds of heuristic search, games included. 

Samuel (1959) is the classic work on learning evaluation function parameters. It 
is based on the game of checkers. Lee and Mahajan (1990) present an alternative 
learning mechanism, using Bayesian classification to learn an evaluation function 
that optimally distinguishes winning positions from losing positions. Genetic algo- 
rithms are discussed by L. Davis (1987,1991) and Goldberg (1989). 

18.15 Exercises 

p Exercise 18.3 [s] How many different Othello positions are there? Would it be 
feasible to store the complete game tree and thus have a perfect player? 

p Exercise 18.4 [m] At the beginning of this chapter, we implemented pieces as an 
enumerated type. There is no built-in facility in Common Lisp for doing this, so 
we had to introduce a series of def constant forms. Define a macro for defining 
enumerated types. What else should be provided besides the constants? 

p Exercise 18.5 [h] Add fixnum and speed declarations to the Iago evaluation func- 



tion and the alpha-beta code. How much does this speed up Iago? What other 
efficiency measures can you take? 

p Exercise 18.6 [h] Implement an iterative deepening search that allocates time for 
each move and checks between each iteration if the time is exceeded. 

p Exercise 18.7 [h] Implement zero-window search, as described in section 18.13. 

p Exercise 18.8 [dl Read the references on Bill (Lee and Mahajan 1990, and 1986 if 
you can get it), and reimplement Bill's evaluation function as best you can, using the 
table-based approach. It will also be helpful to read Rosenbloom 1982. 

p Exercise 18.9 [dl Improve the evaluation function by tuning the parameters, using 
one of the techniques described in section 18.13. 

p Exercise 18.10 [h] Write move-generation and evaluation functions for another 
game, such as chess or checkers. 

18.16 Answers 

Answer 18.2 The wei ghted - squa res  strategy wins the first game by 20 pieces, 
but when coun t -d i  f f e r e n c e  plays first, it captures all the pieces on its fifth move. 
These two games alone are not enough to determine the best strategy; the function 
o t h e l  1  o - s e r i  es on page 626 shows a better comparison. 

Answer 18.3 364 = 3,433,683,820,292,512,484,657,849,089,281. No. 



Answer 18.4 Besides the constants, we provide a def type for the type itself, and 
conversion routines between integers and symbols: 

(defmacro def ine-enumerated-type ( t y p e  & r e s t  elements) 
"Represent an enumerated t ype  w i t h  i n t e g e r s  0-n. "  
' ( progn 

(de f t ype  . type ( ) ' ( i n t e g e r  0 , ( -  ( l e n g t h  elements) 1) 1) 
( d e f  un , (symbol type ' ->symbol ) ( , type 

( e l t  ' ,elements , t y p e ) )  
(def un , (symbol ' symbol -> type  (symbol 

( p o s i t i o n  symbol * ,e lements) )  
,@( loop f o r  element i n  elements 

f o r  i from 0 
co l  1 e c t  ' (defconstant  ,e l  ement , i 1)  1) 

Here's how the macro would be used to define the piece data type, and the code 
produced: 

> (macroexpand 
'(def ine-enumerated-type p iece 

empty b l  ack wh i te  ou te r  1 )  

( PROGN 
(DEFTYPE PIECE 0 '(INTEGER 0 3 ) )  
(DEFUN PIECE->SYMBOL (PIECE) 

(ELT '(EMPTY BLACK WHITE OUTER) PIECE)) 
(DEFUN SYMBOL->PIECE (SYMBOL) 

(POSITION SYMBOL '(EMPTY BLACK WHITE OUTER))) 
(DEFCONSTANT EMPTY 0 )  
(DEFCONSTANT BLACK 1) 
(DEFCONSTANT WHITE 2 )  
(DEFCONSTANT OUTER 3 ) )  

A more general facility would, like defstruct, provide for several options. For 
example, it might allow for a documentation string for the type and each constant, 
and for a : conc - name, so the constants could have names like pi ece - empty instead 
of empty. This would avoid conflicts with other types that wanted to use the same 
names. The user might also want the ability to start the values at some number other 
than zero, or to assign specific values to some of the symbols. 



CHAPTER 19 
Introduction to 
Natural Language 

Language is everywhere. It permeates our thoughts, 
mediates our relations with others, and even creeps 
into our dreams. The overwhelming bulk of human 

knowledge is stored and transmitted in language. 
Language is so ubiquitous that we take it forgranted, 

but without it, society as we know it would 
be impossible. 

-Ronand Langacker 
Language and its Structure (1967) 

natural language is a language spoken by people, such as English, German, or Taga- 
log. This is in opposition to artificial languages like Lisp, FORTRAN, or Morse code. 
Natural language processing is an important part of A1 because language is intimately 

connected to thought. One measure of this is the number of important books that mention 
language and thought in the title: in AI, Schank and Colby's Computer Models of Thought 
and Language; in linguistics, Whorf's Language, Thought, and Reality (and Chomsky's Language 
and Mind;) in philosophy, Fodor's The Language of Thought; and in psychology, Vygotsky's 
Thought and Language and John Anderson's Language, Memory, and Thought. Indeed, language is 



the trait many think of as being the most characteristic of humans. Much controversy 
has been generated over the question of whether animals, especially primates and 
dolphins, can use and "understand language. Similar controversy surrounds the 
same question asked of computers. 

The study of language has been traditionally separated into two broad classes: 
syntax, or grammar, and semantics, or meaning. Historically, syntax has achieved 
the most attention, largely because on the surface it is more amenable to formal and 
semiformal methods. Although there is evidence that the boundary between the two 
is at best fuzzy, we still maintain the distinction for the purposes of these notes. We 
will cover the "easier" part, syntax, first, and then move on to semantics. 

A good artificial language, like Lisp or C, is unambiguous. There is only one 
interpretation for a valid Lisp expression. Of course, the interpretation may depend 
on the state of the current state of the Lisp world, such as the value of global variables. 
But these dependencies can be explicitly enumerated, and once they are spelled out, 
then there can only be one meaning for the expression.' 

Natural language does not work like this. Natural expressions are inherently 
ambiguous, depending on any number of factors that can never be quite spelled out 
completely. It is perfectly reasonable for two people to disagree on what some other 
person meant by a natural language expression. (Lawyers and judges make their 
living largely by interpreting natural language expressions-laws-that are meant to 
be unambiguous but are not.) 

This chapter is a brief introduction to natural language processing. The next 
chapter gives a more thorough treatment from the point of view of logic grammars, 
and the chapter after that puts it all together into a full-fledged system. 

19.1 Parsing with a Phrase-Structure Grammar 

To parse a sentence means to recover the constituent structure of the sentence-to 
discover what sequence of generation rules could have been applied to come up with 
the sentence. In general, there may be several possible derivations, in which case 
we say the sentence is grammatically ambiguous. In certain circles, the term "parse" 
means to arrive at an understanding of a sentence's meaning, not just its grammatical 
form. We will attack that more difficult question later. 

'some erroneous expressions are underspecified and may return different results in dif- 
ferent implementations, but we will ignore that problem. 



We start with the grammar defined on page 39 for the generate program: 

(de fva r  *grammar* "The grammar used by GENERATE.") 

(defparameter *grammarl* 
' ( (Sentence -> (NP VP)) 

(NP -> ( A r t  Noun)) 
(VP -> (Verb NP)) 
( A r t  -> the  a)  
(Noun -> man b a l l  woman t a b l e )  
(Verb -> h i t  t ook  saw 1 i ked) 1) 

Our parser takes as input a list of words and returns a structure containing the parse 
tree and the unparsed words, if any. That way, we can parse the remaining words 
under the next category to get compound rules. For example, in parsing "the man 
saw the table," we would first parse "the man," returning a structure representing 
the noun phrase, with the remaining words "saw the table." This remainder would 
then be parsed as a verb phrase, returning no remainder, and the two phrases could 
then be joined to form a parse that is a complete sentence with no remainder. 

Before proceeding, I want to make a change in the representation of grammar 
rules. Currently, rules have a left-hand side and a list of alternative right-hand sides. 
But each of these alternatives is really a separate rule, so it would be more modular 
to write them separately. For the generate program it was fine to have them all to- 
gether, because that made processing choices easier, but now I want a more flexible 
representation. Later on we will want to add more information to each rule, like the 
semantics of the assembled left-hand side, and constraints between constituents on 
the right-hand side, so the rules would become quite large indeed if we didn't split up 
the alternatives. I also take this opportunity to clear up the confusion between words 
and category symbols. The convention is that a right-hand side can be either an 
atom, in which case it is a word, or a list of symbols, which are then all interpreted as 
categories. To emphasize this, I include "noun" and "verb" as nouns in the grammar 
*gramma r3*, which is otherwise equivalent to the previous *grammarl*. 

(defparameter *grammar3* 
' ((Sentence -> (NP VP)) 

(NP -> ( A r t  Noun)) 
(VP -> (Verb NP)) 
( A r t  -> t h e )  ( A r t  -> a) 
(Noun -> man) (Noun -> b a l l  (Noun -> woman) (Noun -> tab1 e l  
(Noun -> noun) (Noun -> verb)  
(Verb -> h i t )  (Verb -> took )  (Verb -> saw) (Verb -> l i k e d ) ) )  

I also define the data types rul el parse, and tree, and some functions for getting 



at the rules. Rules are defined as structures of type list with three slots: the left- 
hand side, the arrow (which should always be represented as the literal ->) and the 
right-hand side. Compare this to the treatment on page 40. 

(defstruct (rule (:type l i s t ) )  lhs -> rhs) 

(defstruct (parse) " A  parse tree and a remainder." tree rem) 

;; Trees are of the form: (Ihs . rhs) 
(defun new-tree (cat rhs) (cons cat rhs))  
(defun tree-lhs ( t ree )  ( f i r s t  t r e e ) )  
(defun tree-rhs ( t ree )  ( res t  t ree ) )  

(defun parse-lhs (parse) ( t ree-lhs  (parse-tree parse))) 

(defun 1 exical -rules (word) 
"Return a l i s t  of rules with word on the right-hand side." 
(find-all  word *grammar* :key #'rule-rhs : t es t  #'equal)) 

(defun rules-starting-with (ca t )  
"Return a l i s t  of rules where cat s ta r t s  the rhs." 
(find-all  cat *grammar* 

:key #'(lambda (rule)  ( f i r s t -o r -n i l  (rule-rhs r u l e ) ) ) ) )  

(defun f i rs t -or-ni l  ( x )  
"The f i r s t  element of x  i f  i t  i s  a l i s t ;  else n i l . "  
( i f  (consp x) ( f i r s t  x)  n i l ) )  

Now we're ready to define the parser. The main function parser  takes a list of 
words to parse. It calls parse, which returns a list of all parses that parse some 
subsequence of the words, starting at the beginning. parser  keeps only the parses 
with no remainder-that is, the parses that span all the words. 

(defun parser (words) 
"Return all  complete parses of a l i s t  of words." 
(mapcar #'parse-tree (complete-parses (parse words)))) 

(defun complete-parses (parses) 
"Those parses t h a t  are complete (have no remainder)." 
(find-all  - i f  # ' n u l l  parses :key #'parse-rein)) 

The function parse looks at the first word and considers each category it could be. It 
makes a parse of the first word under each category, and calls extend - pa r s e  to try to 
continue to a complete parse. parse uses mapcan to append together all the resulting 
parses. As an example, suppose we are trying to parse "the man took the ball." pa r s e  
would find the single lexical rule for "the" and call extend - pa r s e  with a parse with 
tree ( A r t  t h e  ) and remainder "man took the ball," with no more categories needed. 



extend - pa rse has two cases. If the partial parse needs no more categories to be 
complete, then it returns the parse itself, along with any parses that can be formed 
by extending parses starting with the partial parse. In our example, there is one rule 
starting with Art, namely (NP -> ( A r t  Noun ), so the function would try to extend 
the parse tree ( NP ( A r t  the  1 1 with remainder "man took the ball," with the category 
Noun needed. That call to extend-parse represents the second case. We first parse 
"man took the ball," and for every parse that is of category Noun (there will be only 
one), we combine with the partial parse. In this case we get (NP ( A r t  the )  (Noun 
man ) 1. This gets extended as a sentence with a VP needed, and eventually we get a 
parse of the complete list of words. 

(defun parse (words) 
"Bottom-up parse, returning all  parses of any prefix of words." 
(unless (null words) 

(mapcan # ' ( l a m b d a  ( rule)  
(extend-parse (rule-1 hs rule) ( 1  i s t  ( f i r s t  words) 

( res t  words) n i l ) )  
(lexical-rules ( f i r s t  words))))) 

(defun extend-parse (1  hs rhs rem needed 
"Look for the categories needed to complete the parse." 
( i f  ( n u 1  1 needed) 

;; If nothing needed, return parse and  upward extensions 
( l e t  ((parse (make-parse : t ree  (new-tree lhs rhs) :rem rem))) 

(cons parse 
(mapcan 

#'(lambda (rule)  
(extend-parse (rule-1 hs rule) 

( l i s t  (parse-tree parse)) 
rem ( res t  (rule-rhs r u l e ) ) ) )  

(rules-starting-with 1 h s ) ) ) )  
;; otherwise t ry  to extend rightward 
(mapcan 

#'(lambda ( p )  
( i f  (eq (parse-lhs p )  ( f i r s t  needed)) 

(extend-parse lhs (appendl rhs (parse-tree p ) )  
(parse-rem p )  ( res t  needed)))) 

(parse rem)))) 

This makes use of the auxiliary function appendl : 

(defun appendl (items item) 
"Add item to end of l i s t  of items." 
(append items ( l i s t  i tem))) 



Some examples of the parser in action are shown here: 

> (parser  ' ( t h e  t a b l e ) )  
((NP (ART THE) (NOUN TABLE))) 

> (parser  ' ( t h e  b a l l  h i t  t h e  t a b l e ) )  
((SENTENCE (NP (ART THE) (NOUN BALL)) 

(VP (VERB HIT) 
(NP (ARTTHE) (NOUN TABLE))))) 

> (parser  ' ( t h e  noun took t h e  ve rb ) )  
((SENTENCE (NP (ART THE) (NOUN NOUN)) 

(VP (VERB TOOK) 
(NP (ARTTHE) (NOUN VERB))))) 

19.2 Extending the Grammar and 
Recognizing Ambiguity 

Overall, the parser seems to work fine, but the range of sentences we can parse is 
quite limited with the current grammar. The following grammar includes a wider 
variety of linguistic phenomena: adjectives, prepositional phrases, pronouns, and 
proper names. It also uses the usual linguistic conventions for category names, 
summarized in the table below: 

Category Examples 
S Sentence John likes Mary 
NP Noun Phrase John; a blue table 
VP Verb Phrase likes Mary; kit the ball 
PP Prepositional Phrase to Mary; with the man 
A Adjective little; blue 
A+ A list of one or more adjectives little blue 
D Determiner the; a 
N Noun ball; table 
Name Proper Name John; Mary 
P Preposition to; with 
Pro Pronoun you; me 
V Verb liked; hit 



Here is the grammar: 

(defparameter *grammar4* 
' ( ( S  -> (NP VP)) 

(NP -> (D N)) 
(NP -> (D A+ N))  
(NP -> (NP PP)) 
(NP -> (Pro ) )  
(NP -> (Name)) 
(VP -> (V NP)) 
(VP -> (V) )  
(VP -> (VP PP)) 
(PP -> (P NP)) 
(A+ -> (A) )  
(A+ -> (A A+)) 
(Pro -> I )  (Pro -> you) (Pro -> he) (Pro -> she) 
(Pro -> i t )  (Pro -> me) (Pro -> him) (Pro -> her )  
(Name -> John) (Name -> Mary) 
(A -> b i g )  (A -> l i t t l e )  (A -> o l d )  (A -> young) 
(A -> b lue )  (A -> green) (A -> orange) (A -> perspicuous) 
(D -> t h e )  (D -> a)  (D -> an) 
(N -> man) (N -> b a l l )  (N -> woman) (N -> t a b l e )  (N -> orange) 
(N -> saw) (N -> saws) (N -> noun) (N -> verb)  
(P -> w i t h )  (P -> f o r )  (P -> a t )  (P -> on) (P -> by)  (P -> o f )  (P -> i n )  
(V -> h i t )  (V -> took )  (V -> saw) (V -> l i k e d )  (V -> saws))) 

Now we can parse more interesting sentences, and we can see a phenomenon that 
was not present in the previous examples: ambiguous sentences. The sentence "The 
man hit the table with the ball" has two parses, one where the ball is the thing that 
hits the table, and the other where the ball is on or near the table. parser finds both 
of these parses (although of course it assigns no meaning to either parse): 

> (parser  '  he man h i t  t h e  t a b l e  w i t h  t h e  b a l l )  
( ( S  (NP (D THE) (N MAN)) 

(VP (VP (V HIT) (NP (D THE) (N TABLE))) 
(PP (P WITH) (NP (DTHE) (N BALL)) ) ) )  

(S (NP (D THE) (N MAN)) 
(VP (V HIT) 

(NP (NP (D THE) (N TABLE)) 
(PP (P WITH) (NP (DTHE) (N BALL) ) ) ) ) ) )  

Sentences are not the only category that can be ambiguous, and not all ambiguities 
have to be between parses in the same category. Here we see a phrase that is 
ambiguous between a sentence and a noun phrase: 



> (parser  ' ( t h e  orange saw)) 
( ( S  (NP (D THE) (N ORANGE)) (VP (V SAW))) 

(NP (D THE) (A+ (A ORANGE)) ( N  SAW))) 

19.3 More Efficient Parsing 

With more complex grammars and longer sentences, the parser starts to slow down. 
The main problem is that it keeps repeating work. For example, in parsing "The 
man hit the table with the ball," it has to reparse "with the ball" for both of the 
resulting parses, even though in both cases it receives the same analysis, a PP. We 
have seen this problem before and have already produced an answer: memoization 
(see section 9.6). To see how much memoization will help, we need a benchmark: 

> ( s e t f  s (generate ' s ) )  
(THE PERSPICUOUS BIG GREEN BALL BY A BLUE WOMAN WITH A BIG MAN 
HIT A TABLE BY THE SAW BY THE GREEN ORANGE) 

> ( t ime  ( l e n g t h  (parser  s ) ) )  
Evaluat ion o f  (LENGTH (PARSER S) )  took  33.11 Seconds o f  elapsed t ime.  
10 

The sentence S has 10 parses, since there are two ways to parse the subject NP and 
five ways to parse the VP. It took 33 seconds to discover these 10 parses with the 
parse function as it was written. 

We can improve this dramatically by memoizing parse (along with the table- 
lookup functions). Besides memoizing, the only change is to clear the memoization 
table within pa rse r. 

(memoize ' l e x i c a l  - r u l e s )  
(memoize ' r u l  e s - s t a r t i n g - w i  t h )  
(memoize 'parse : t e s t  # 'eq)  

(defun parser  (words) 
"Return a l l  complete parses o f  a l i s t  o f  words." 
(clear-memoize 'parse) ;*** 
(mapcar # 'pa rse - t ree  (complete-parses (parse words ) ) ) )  

In normal human language use, memoization would not work very well, since the 
interpretation of a phrase depends on the context in which the phrase was uttered. 
But with context-free grammars we have a guarantee that the context cannot affect the 
interpretation. The call ( pa rse words must return all possible parses for the words. 
We are free to choose between the possibilities based on contextual information, but 



context can never supply a new interpretation that is not in the context-free list of 
parses. 

The function use is introduced to tell the table-lookup functions that they are out 
of date whenever the grammar changes: 

(defun use (grammar) 

"Switch to a new grammar." 

(cl ear-memoize 'rul es-starting-with) 

(cl ear-memoize '1 exical -rules) 

(length (setf *grammar* grammar))) 

Now we run the benchmark again with the memoized version of parse: 

> (time (length (parser s))) 

Evaluation of (LENGTH (PARSER S 'S)) took .13 Seconds of elapsed time. 

10 

By memoizing pa rs e we reduce the parse time from33 to .13 seconds, a 250-fold speed- 
up. We can get a more systematic comparison by looking at a range of examples. 
For example, consider sentences of the form "The man hit the table [with the ball]"" 
for zero or more repetitions of the PP "with the ball." In the following table we 
record N, the number of repetitions of the PP, along with the number of resulting 
parses2, and for both memoized and unmemoized versions of parse, the number 
of seconds to produce the parse, the number of parses per second (PPS), and the 
number of recursive calls to parse. The performance of the memoized version is 
quite acceptable; for N=5, a 20-word sentence is parsed into 132 possibilities in .68 
seconds, as opposed to the 20 seconds it takes in the unmemoized version. 

2 ~ h e  number of parses of sentences of this kind is the same as the number of bracketings 
of a arithmetic expression, or the number of binary trees with a given number of leaves. The 
resulting sequence (1,2,5,14,42, . . . ) is known as the Catalan Numbers. This kind of ambiguity 
is discussed by Church and Patil(1982) in their article Coping with Syntactic Ambiguity, or How 
to Put the Block in the Box on the Table. 



Exercise 19.1 [h] It seems that we could be more efficient still by memoizing with 
a table consisting of a vector whose length is the number of words in the input (plus 
one). Implement this approach and see if it entails less overhead than the more 
general hash table approach. 

N Parses 
0 1 
1 2 
2 5 
3 14 
4 42 
5 132 
6 429 
7 1430 
8 4862 

19.4 The Unknown-Word Problem 

As it stands, the parser cannot deal with unknown words. Any sentence containing 
a word that is not in the grammar will be rejected, even if the program can parse all 
the rest of the words perfectly. One way of treating unknown words is to allow them 
to be any of the "open-class" categories-nouns, verbs, adjectives, and names, in our 
grammar. An unknown word will not be considered as one of the "closed-class" 
categories-prepositions, determiners, or pronouns. This can be programmed very 
simply by having 1 ex i  ca 1 - rul es return a list of these open-class rules for every word 
that is not already known. 

Memoized 
Secs PPS Calls 
0.02 60 4 
0.02 120 11 
0.05 100 21 
0.10 140 34 
0.23 180 50 
0.68 193 69 
1.92 224 9 1 
5.80 247 116 

20.47 238 144 

(defparameter *open-categories* ' (N V A Name) 
"Categories t o  cons ider  f o r  unknown words") 

Unmemoized 
Secs PPS Calls 
0.02 60 17 
0.07 30 96 
0.23 21 381 
0.85 16 1388 
3.17 13 4999 

20.77 6 18174 
- 
- 

- 

(defun l e x i c a l - r u l e s  (word) 
"Return a l i s t  o f  r u l e s  w i t h  word on t h e  r igh t -hand  s ide . "  
( o r  ( f i n d - a l l  word *grammar* :key # ' r u l e - r h s  : t e s t  # 'equa l )  

(mapcar #'(lambda ( c a t )  ' ( , c a t  -> ,word)) *open-categor ies*) ) )  

With memoization of 1 ex i  cal - rul es, this means that the lexicon is expanded every 
time an unknown word is encountered. Let's try this out: 

> (parser  ' (John l i k e d  Mary)) 
( ( S  (NP (NAME JOHN)) 

(VP ( V  LIKED) (NP (NAME MARY))))) 



> ( p a r s e r  ' ( D a n a  l i k e d  D a l e ) )  
( ( S  (NP (NAME DANA)) 

(VP (V  L IKED)  (NP (NAME D A L E ) ) ) ) )  

> ( p a r s e r  ' ( t h e  r a b  z a g g l e d  t h e  w o o g l y  q u a x ) )  
( ( S  (NP ( D  THE) ( N  RAB))  

(VP (V ZAGGLED) (NP ( D  THE) (A+ ( A  WOOGLY)) ( N  Q U A X ) ) ) ) )  

We see the parser works as well with words it knows (John and Mary) as with new 
words (Dana and Dale), which it can recognize as names because of their position 
in the sentence. In the last sentence in the example, it recognizes each unknown 
word unambiguously. Things are not always so straightforward, unfortunately, as 
the following examples show: 

> ( p a r s e r  ' ( t h e  s l  i t h y  t o v e s  g y m b l e d )  
( ( S  (NP ( D  THE) ( N  S L I T H Y ) )  (VP (V  TOVES) (NP (NAME GYMBLED))))  

( S  (NP ( D  THE) (A+ ( A  S L I T H Y ) )  ( N  TOVES)) (VP (V  GYMBLED))) 
(NP ( D  THE) (A+ ( A  SL ITHY)  (A+ ( A  TOVES)) )  ( N  GYMBLED))) 

> ( p a r s e r  ' ( t h e  s l i t h y  t o v e s  g y m b l e d  o n  t h e  w a b e ) )  
( ( S  (NP ( D  THE) ( N  S L I T H Y ) )  

(VP (VP (V  TOVES) (NP (NAME GYMBLED))) 
(PP ( P  ON) (NP ( D  THE) ( N  WABE) ) ) ) )  

( S  (NP ( D  THE) ( N  S L I T H Y ) )  
(VP (V  TOVES) (NP (NP (NAME GYMBLED)) 

(PP ( P  ON) (NP ( D  THE) ( N  W A B E ) ) ) ) ) )  
( S  (NP ( D  THE) (A+ ( A  S L I T H Y ) )  ( N  TOVES)) 

(VP  (VP (V  GYMBLED)) (PP ( P  ON) (NP ( D  THE) ( N  WABE) ) ) ) )  
(NP (NP ( D  THE) (A+ ( A  SL ITHY)  (A+ ( A  TOVES)) )  ( N  GYMBLED)) 

(PP ( P  ON) (NP ( D  THE) (N  WABE) ) ) ) )  

If the program knew morphology-that a y at the end of a word often signals an 
adjective, an s a plural noun, and an ed a past-tense verb-then it could do much 
better. 

19.5 Parsing into a Semantic Representation 

Syntactic parse trees of a sentence may be interesting, but by themselves they're not 
very useful. We use sentences to communicate ideas, not to display grammatical 
structures. To explore the idea of the semantics, or meaning, of a phrase, we need 
a domain to talk about. Imagine the scenario of a compact disc player capable of 
playing back selected songs based on their track number. Imagine further that this 
machine has buttons on the front panel indicating numbers, as well as words such as 
"play," "to," "and," and "without." If you then punch in the sequence of buttons "play 



1 to 5 without 3," you could reasonably expect the machine to respond by playing 
tracks 1,2,4, and 5. After a few such successful interactions, you might say that the 
machine "understands" a limited language. The important point is that the utility of 
this machine would not be enhanced much if it happened to display a parse tree of 
the input. On the other hand, you would be justifiably annoyed if it responded to 
"play 1 to 5 without 3" by playing 3 or skipping 4. 

Now let's stretch the imagination one more time by assuming that this CD player 
comes equipped with a full Common Lisp compiler, and that we are now in charge 
of writing the parser for its input language. Let's first consider the relevant data 
structures. We need to add a component for the semantics to both the rule and tree 
structures. Once we've done that, it is clear that trees are nothing more than instances 
of rules, so their definitions should reflect that. Thus, I use an : i ncl ude defstruct 
to define trees, and I specify no copier function, because copy - t ree is already a 
Common Lisp function, and I don't want to redefine it. To maintain consistency 
with the old new- tree function (and to avoid having to put in all those keywords) I 
definetheconstructornew-tree. Thisoptiontodefstructmakes (new-tree a b c )  
equivalentto (make-tree :lhs a :sem b : rhsc) .  

(defs t ruct  ( ru l e  ( : type l i s t ) )  
lhs -> rhs sem) 

(defs t ruct  ( t r e e  ( : type l i s t )  (:include ru le)  ( : cop ie rn i l )  
(:constructor new-tree ( lhs  sem r h s ) ) ) )  

We will adopt the convention that the semantics of a word can be any Lisp object. For 
example, the semantics of the word "1" could be the object 1, and the semantics of 
"without" could be the function set  - di f f erence. The semantics of a tree is formed 
by taking the semantics of the rule that generated the tree and applying it (as a 
function) to the semantics of the constituents of the tree. Thus, the grammar writer 
must insure that the semantic component of rules are functions that expect the right 
number of arguments. For example, given the rule 

( N P  -> ( N P  CONJ NP) inf ix-funcal l )  

then the semantics of the phrase "1 to 5 without 3" could be determined by first deter- 
mining the semantics of "1 to 5" to be ( 1 2 3 4 5 ), of "without"to be set  - di f f erence, 
and of "3" to be (3  1. After these sub-constituents are determined, the rule is applied 
by calling the function i nf i x - f unca 1 1 with the three arguments ( 1 2 3 4 5 1, 
set-difference, and ( 3 ) .  Assuming that infix-funcall is defined to apply its 
second argument to the other two arguments, the result will be ( 1 2 4 5 1. 

This may make more sense if we look at a complete grammar for the CD player 
problem: 



(use 

'((NP -> (NP CONJ NP) i n f i x - f u n c a l l )  

(NP -> (N) l i s t )  

(NP -> (N P  N) i n f i x - f u n c a l l  

(N -> ( D I G I T )  i d e n t i t y )  

(P -> t o  in tegers  

(CONJ -> and uni  on 

(CONJ -> w i thou t  s e t - d i f f e r e n c e )  

(N -> 1 1 )  (N -> 2  2 )  (N -> 3  3)  (N -> 4 4 )  (N -> 5  5) 

(N -> 6  6 )  (N -> 7 7 )  (N -> 8  8 )  (N -> 9  9)  (N -> 0  0 ) ) )  

(defun i n t e g e r s  ( s t a r t  end) 

" A  l i s t  o f  a l l  t h e  i n t e g e r s  i n  t h e  range [ s t a r t  ... end1 i n c l u s i v e . "  

( i f  (> s t a r t  end) n i l  

(cons s t a r t  ( i n t e g e r s  (+ s t a r t  1) e n d ) ) ) )  

(defun i n f i x - f u n c a l l  ( a r g l  f u n c t i o n  arg2) 

"Apply t h e  f u n c t i o n  t o  t h e  two arguments" 

( f u n c a l l  f u n c t i o n  a r g l  a rg2 ) )  

Consider the first three grammar rules, which are the only nonlexical rules. The first 
says that when two NPs are joined by a conjunction, we assume the translation of 
the conjunction will be a function, and the translation of the phrase as a whole is 
derived by calling that function with the translations of the two NPs as arguments. 
The second rule says that a single noun (whose translation should be a number) 
translates into the singleton list consisting of that number. The third rule is similar 
to the first, but concerns joining Ns rather than NPs. The overall intent is that the 
translation of an NP will always be a list of integers, representing the songs to play. 

As for the lexical rules, the conjunction "and" translates to the uni on function, 
"without" translates to the function that subtracts one set from another, and "to" 
translates to the function that generates a list of integers between two end points. 
The numbers "0" to "9" translate to themselves. Note that both lexical rules like 
"CON J -> and" and nonlexical rules like "NP -> ( N P N 1" can have functions as 
their semantic translations; in the first case, the function will just be returned as the 
semantic translation, whereas in the second case the function will be applied to the 
list of constituents. 

Only minor changes are needed to pa rse to support this kind of semantic process- 
ing. As we see in the following, we add a s em argument to extend - pa r s e and arrange 
to pass the semantic components around properly. When we have gathered all the 
right-hand-side components, we actually do the function application. All changes 
are marked with ***. We adopt the convention that the semantic value n i 1 indicates 
failure, and we discard all such parses. 



(defun parse (words) 
"Bottom-up parse, returning all  parses of any prefix of words. 
This version has semantics." 
(unl ess ( n u 1  1 words 

(mapcan # '  ( 1  ambda (rul el 
(extend-parse (rule-1 hs rule) (rule-sem rule) ;*** 

( l i s t  ( f i r s t  words)) ( res t  words) nil 1)  
(lexical-rules ( f i r s t  words))))) 

(defun extend-parse ( lhs  sem rhs rem needed) ;*** 
"Look for the categories needed to complete the parse. 
This version has semantics." 
( i f  ( n u 1  1 needed) 

;; I f  nothing i s  needed, return this  parse and upward extensions, 
;; unless the semantics f a i l s  
( l e t  ((parse (make-parse :tree (new-tree Ihs sem rhs) :rem rem))) 

(unless (null (apply-semantics (parse-tree parse))) ;*** 
(cons parse 

(mapcan 
#'(lambda (rule)  

(extend-parse (rule-1 hs rule) (rule-sem rule) ;*** 
( l i s t  (parse-tree parse)) rem 
( res t  (rule-rhs rule) 1) 

(rules-starting-with I h s ) ) ) ) )  
;; otherwise t ry  to extend rightward 
(mapcan 

# ' ( l a m b d a  ( p )  
( i f  (eq (parse-lhs p )  ( f i r s t  needed)) 

(extend-parse lhs sem (append1 rhs (parse-tree p ) )  ;*** 
(parse-rem p )  ( res t  needed)))) 

(parse rem)))) 

We need to add some new functions to support this: 

(defun apply-semantics ( t ree )  
"For terminal nodes, just fetch the semantics. 
Otherwise, apply the sem function to i t s  constituents." 
( i f  (terminal -tree-p t ree)  

(tree-sem tree)  
(setf (tree-sem tree)  

(apply (tree-sem tree)  
(mapcar #'tree-sem (tree-rhs t r e e ) ) ) ) ) )  

(defun terminal-tree-p ( t ree )  
"Does this  tree have a single word on the rhs?" 
(and (length=l (tree-rhs t r e e ) )  

(atom ( f i r s t  (tree-rhs t r e e ) ) ) ) )  



(defun meanings (words) 
"Return a l l  poss ib le  meanings o f  a  phrase. Throw away t h e  s y n t a c t i c  p a r t . "  
(remove-dupl icates (mapcar # ' t ree-sem (parser  words)) : t e s t  # 'equa l ) )  

Here are some examples of the meanings that the parser can extract: 

> (meanings '(1 t o  5  w i t h o u t  3 ) )  
( ( 1  2  4 5 ) )  

> (meanings ' ( 1  t o  4 and 7 t o  9 ) )  
( ( 1  2 3  4 7 8 9 ) )  

> (meanings ' ( 1  t o  6  w i t h o u t  3  and 4 ) )  
( ( 1  2  4 5 6)  

( 1  2 5 6 ) )  

The example "( 1 t o  6 wi thout  3 and 4)" is ambiguous. The first reading cor- 
responds to "((1 to 6) without 3) and 4," while the second corresponds to "(1 to 6) 
without (3 and 4)." The syntactic ambiguity leads to a semantic ambiguity-the two 
meanings have different lists of numbers in them. However, it seems that the second 
reading is somehow better, in that it doesn't make a lot of sense to talk of adding 4 to 
a set that already includes it, which is what the first translation does. 

We can upgrade the lexicon to account for this. The following lexicon insists 
that "and conjoins disjoint sets and that "without" removes only elements that were 
already in the first argument. If these conditions do not hold, then the translation 
will return nil, and the parse will fail. Note that this also means that an empty list, 
such as "3 t o  2," will also fail. 

The previous grammar only allowed for the numbers 0 to 9. We can allow larger 
numbers by stringing together digits. So now we have two rules for numbers: a 
number is either a single digit, in which case the value is the digit itself (the i dent i t y  
function), or it is a number followed by another digit, in which case the value is 10 
times the number plus the digit. We could alternately have specified a number to be 
a digit followed by a number, or even a number followed by a number, but either of 
those formulations would require a more complex semantic interpretation. 

(use 
'((NP -> (NP CONJ NP) i n f i x - f u n c a l l )  

(NP -> (N) l i s t )  
(NP -> (N P  N) i n f i x - f u n c a l l  
(N -> (DIGIT) i d e n t i t y )  
(N -> (N DIGIT) 10*N+D) 
(P -> t o  i n t e g e r s  
(CONJ -7 and un i  on*) 
(CONJ -> w i thou t  s e t - d i f f  
(DIGIT -> 1 1 )  (DIGIT -> 2  2) (DIGIT -> 3  3 )  



(DIGIT -> 4 4) (DIGIT -> 5 5 )  (DIGIT -> 6 6) 
(DIGIT -> 7 7 )  (DIGIT -> 8 8) (DIGIT -> 9 9) 
(DIGIT -> 0 0))) 

(defun union* (x y) (if (null (intersection x y)) (append x y))) 
(defun set-diff (x y) (if (subsetp y x) (set-difference x y))) 
(defun 10*N+D ( N  Dl (+ (* 10 N )  Dl) 

With this new grammar, we can get single interpretations out of most reasonable 
inputs: 

> (meanings '(1 to 6 without 3 and 4 ) )  
((1 2 5 6)) 

> (meanings '(1 and 3 to 7 and 9 without 5 and 6)) 
((1 3 4 7 9)) 

> (meanings '(1 and 3 to 7 and 9 without 5 and 2)) 
((1 3 4 6 7 9 2)) 

> (meanings '(1 9 8 to 2 0 1)) 
((198 199 200 201)) 

> (meanings ' (1  2 3)) 
(123 (123)) 

The example "1 2 3" shows an ambiguity between the number 123 and the list (123), 
but all the others are unambiguous. 

19.6 Parsing with Preferences 

One reason we have unambiguous interpretations is that we have a very limited 
domain of interpretation: we are dealing with sets of numbers, not lists. This is 
perhaps typical of the requests faced by a CD player, but it does not account for 
all desired input. For example, if you had a favorite song, you couldn't hear it 
three times with the request "1 and 1 and 1" under this grammar. We need some 
compromise between the permissive grammar, which generated all possible parses, 
and the restrictive grammar, which eliminates too many parses. To get the "best" 
interpretation out of an arbitrary input, we will not only need a new grammar, we 
will also need to modify the program to compare the relative worth of candidate 
interpretations. In other words, we will assign each interpretation a numeric score, 
and then pick the interpretation with the highest score. 

We start by once again modifying the rule and tree data types to include a score 
component. As with the sem component, this will be used to hold first a function to 
compute a score and then eventually the score itself. 



(defstruct (rule (:type l i s t )  
(:constructor 
rule ( 1  hs -> rhs &optional sem score) 1)  

Ihs -> rhs sem score) 

(defstruct ( t ree  (:type l i s t )  (:include rule) ( :copierni l )  
(:constructor new-tree (Ihs sem score r h s ) ) ) )  

Note that we have added the constructor function rul e. The intent is that the sem 
and score component of grammar rules should be optional. The user does not have 
to supply them, but the function use will make sure that the function rul e is called 
to fill in the missing sem and score values with n i 1 . 

(defun use (grammar) 
"Switch to  a new grammar." 
(clear-memoize 'rules-starting-with) 
(clear-memoize ' lexical-rules) 
(length (setf *grammar* 

(mapcar #'(lambda ( r )  (apply #'rule r ) )  
grammar)))) 

Now we modify the parser to keep track of the score. The changes are again minor, 
and mirror the changes needed to add semantics. There are two places where we 
put the score into trees as we create them, and one place where we apply the scoring 
function to its arguments. 

(defun parse (words) 
"Bottom-up parse, returning all  parses of any prefix of words. 
This version has semantics and preference scores." 
(unless ( n u 1  1 words 1 

(mapcan # '  ( 1  ambda ( rul el 
(extend-parse 

(rule-1 hs rule) (rule-sem rule) 
(rule-score rule) (1  i s t  ( f i r s t  words) ;*** 
( res t  words) n i l ) )  

(lexical-rules ( f i r s t  words))))) 

(defun extend-parse ( lhs  sem score rhs rem needed) ;*** 
"Look for the categories needed to complete the parse. 
This version has semantics a n d  preference scores." 
( i f  ( n u 1  1 needed) 

;; If nothing i s  needed, return this  parse and upward extensions, 
; ; unless the semantics f a i l s  
( l e t  ((parse (make-parse :tree (new-tree Ihs sem score rhs) ;*** 

:rem rem))) 
(unless ( n u 1  1 (apply-semanti cs (parse-tree parse) 1) 



(apply-scorer (parse-tree parse)) ;*** 
(cons parse 

(mapcan 
#'(lambda (rule) 

(extend-parse 
(rule-l hs rule) (rule-sem rule) 
(rule-score rule) (list (parse-tree parse)) ;*** 
rem (rest ( rul e-rhs rul el ) 

(rules-starting-with 1 hs))) 1) 
;; otherwise try to extend rightward 
(mapcan 
#'(lambda (p) 

(if (eq (parse-lhs p) (first needed)) 
(extend-parse lhs sem score 

(append1 rhs (parse-tree p)) ;*** 
(parse-rem p) (rest needed)))) 

(parse rem)))) 

Again we need some new functions to support this. Most important is app l  y - scorer, 
which computes the score for a tree. If the tree is a terminal (a word), then the function 
just looks up the score associated with that word. In this grammar all words have 
a score of 0, but in a grammar with ambiguous words it would be a good idea to 
give lower scores for infrequently used senses of ambiguous words. If the tree is 
a nonterminal, then the score is computed in two steps. First, all the scores of the 
constituents of the tree are added up. Then, this is added to a measure for the tree 
as a whole. The rule associated with each tree will have either a number attached to 
it, which is added to the sum, or a function. In the latter case, the function is applied 
to the tree, and the result is added to obtain the final score. As a final special case, if 
the function returns nil, then we assume it meant to return zero. This will simplify 
the definition of some of the scoring functions. 

(defun apply-scorer (tree) 
"Compute the score for this tree." 
(let ((score (or (tree-score tree) 0))) 

(setf (tree-score tree) 
(if (terminal -tree-p tree) 

score 
;; Add up the constituent's scores, 
;; along with the tree's score 
(+ (sum (tree-rhs tree) #'tree-score-or-0) 

(if (numberp score) 
score 
(or (apply score (tree-rhs tree)) 0))))))) 

Here is an accessor function to pick out the score from a tree: 



(defun tree-score-or-0 (tree) 
(if (numberp (tree-score tree)) 

(tree-score tree) 
0) 1 

Here is the updated grammar. First, I couldn't resist the chance to add more features 
to the grammar. I added the postnominal adjectives "shuffled," which randomly 
permutes the list of songs, and "reversed," which reverses the order of play. I also 
added the operator "repeat," as in "1 to 3 repeat 5," which repeats a list a certain 
number of times. I also added brackets to allow input that says explicitly how it 
should be parsed. 

(use 
'((NP -> (NP CONJ NP) infix-funcall infix-scorer) 
(NP -> (N P N) infix-funcall infix-scorer) 
(NP -> (N) list) 
( N P - > ( C N P I )  arg2) 
(NP -> (NP ADJ) rev-funcall rev-scorer) 
(NP -> (NP OP N) infix-funcall) 
(N -> (Dl identity) 
(N -> (N D) 10*N+D 
(P -> to integers prefer<) 
(C - > C  C 1 
(1 - > I  1 1 
(OP -> repeat repeat 
(CONJ -> and append prefer-di sjoint) 
(CONJ -> without set-difference prefer-subset) 
(ADJ -> reversed reverse inv-span) 
(ADJ -> shuffled permute prefer-not-sing1 eton) 
(D -> 1 1) (D -> 2 2) (D -> 3 3) (D -> 4 4) (D -> 5 5) 
(D -> 6 6) (D -> 7 7) (D -> 8 8) (D -> 9 9) (D -> 0 0))) 

The following scoring functions take trees as inputs and compute bonuses or penal- 
ties for those trees. The scoring function prefer<, used for the word "to," gives a 
one-point penalty for reversed ranges: "5 to 1" gets a score of -1, while "1 to 5" gets 
a score of 0. The scorer for "and," prefer-di s joi nt, gives a one-point penalty for 
intersecting lists: "1 to 3 and 7 to 9" gets a score of 0, while "1 to 4 and 2 to 5" gets -1. 
The "x without y" scorer, prefer - subset, gives a three-point penalty when the y list 
has elements that aren't in the x list. It also awards points in inverse proportion to the 
length (in words) of the x phrase. The idea is that we should prefer to bind "without" 
tightly to some small expression on the left. If the final scores come out as positive 
or as nonintegers, then this scoring component is responsible, since all the other 
components are negative intgers. The "x shuffled scorer, prefer - not - s i ngl eton, 
is similar, except that there the penalty is for shuffling a list of less than two songs. 



(defun p re fe r<  ( x  y )  
( i f  (>= (sem x )  (sem y ) )  - 1 ) )  

(defun p r e f e r - d i s j o i n t  ( x  y )  
( i f  ( i n t e r s e c t i o n  (sem x )  (sem y ) )  - 1 ) )  

(defun p re fe r - subse t  ( x  y )  
(+ ( inv-span x )  ( i f  (subsetp (sem y )  (sem x ) )  0  - 3 ) ) )  

(defun p r e f e r - n o t - s i n g l e t o n  ( x )  
(+ ( inv-span x )  ( i f  (< ( l e n g t h  (sem x ) )  2) - 4  0 ) ) )  

The i n f i  x - s c o r e r  and rev-scorerfunctionsdon'taddanythingnew, theyjustassure 
that the previously mentioned scoring functions will get applied in the right place. 

(defun i n f i x - s c o r e r  ( a r g l  scorer  arg2) 
( f u n c a l l  ( t r e e - s c o r e  sco re r )  a r g l  arg2))  

(defun rev -score r  ( a r g  sco re r )  ( f u n c a l l  ( t r e e - s c o r e  sco re r )  a r g ) )  

Here are the functions mentioned in the grammar, along with some useful utilities: 

(defun arg2 (a1  a2 & r e s t  a -n )  (dec la re  ( i g n o r e  a1 a - n ) )  a21 

(defun r e v - f u n c a l l  ( a r g  f u n c t i o n )  ( f u n c a l l  f u n c t i o n  a r g ) )  

(defun repeat ( l i s t  n )  
"Append l i s t  n  t imes."  
( i f  (= n  0)  

n i  1  
(append l i s t  ( repeat  l i s t  ( -  n  1 ) ) ) ) )  

(defun span- length ( t r e e )  
"How many words are i n  t r e e ? "  
( i f  ( t e r m i n a l - t r e e - p  t r e e )  1 

(sum ( t r e e - r h s  t r e e )  # ' span- leng th ) ) )  

(defun inv-span ( t r e e )  ( 1  1 (span- length t r e e ) ) )  

(defun sem ( t r e e )  ( t ree-sem t r e e ) )  

(defun i n t e g e r s  ( s t a r t  end) 
"A l i s t  o f  a l l  t h e  i n t e g e r s  i n  t h e  range [ s t a r t  ... e n d l i n c l u s i v e .  
Th is  ve rs ion  a l l ows  s t a r t  > end." 
(cond ( (<  s t a r t  end) (cons s t a r t  ( i n t e g e r s  (+ s t a r t  1 )  end) ) )  

( (>  s t a r t  end) (cons s t a r t  ( i n t e g e r s  ( -  s t a r t  1) end) ) )  
( t  ( l i s t  s t a r t ) ) ) )  

(defun sum (numbers &op t iona l  f n )  
"Sum t h e  numbers, o r  sum (mapcar f n  numbers)." 
( i f  f n  

( l o o p  f o r  x  i n  numbers sum ( f u n c a l l  f n  x ) )  
( l o o p  f o r  x  i n  numbers sum XI)) 



(defun permute (bag) 
"Return  a  random pe rmu ta t i on  o f  t h e  g i ven  i n p u t  l i s t . "  
( i f  ( n u l l  bag) 

n i  1  
( l e t  ( ( e  ( random-e l t  b a g ) ) )  

(cons e  (permute (remove e  bag :count  1 : t e s t  # ' e q ) ) ) ) ) )  

We will need a way to show off the preference rankings: 

(defun a l l - p a r s e s  (words) 
( f o rma t  t ""%Score Semantics"25T-a" words) 
( format  t ""%- --=="~~T====-==I__===--T""/~I) 

( l o o p  f o r  t r e e  i n  ( s o r t  (pa rse r  words) # '> : k e y # ' t r e e - s c o r e )  
do ( fo rma t  t " " 5 , l f  "9a"25T"a"%" ( t r e e - s c o r e  t r e e )  ( t ree -sem t r e e )  

( b r a c k e t i n g  t r e e ) ) )  
( va lues )  

(defun b r a c k e t i n g  ( t r e e )  
" E x t r a c t  t h e  t e r m i n a l s ,  bracketed w i t h  parens."  
(cond ( (a tom t r e e )  t r e e )  

( ( l e n g t h = l  ( t r e e - r h s  t r e e ) )  
( b r a c k e t i n g  ( f i r s t  ( t r e e - r h s  t r e e ) ) ) )  

(t (mapcar # ' b r a c k e t i n g  ( t r e e - r h s  t r e e ) ) ) ) )  

Now we can try some examples: 

> ( a l l - p a r s e s  ' ( 1  t o  6  w i t h o u t  3  and 4 ) )  
Score Semantics ( 1  TO 6  WITHOUT 3  AND 4 )  
-- 

-A- p-- 
- ------------ 

0.3 ( 1  2  5  6 )  ( ( 1  TO 6 )  WITHOUT ( 3  AND 4 ) )  
-0.7 ( 1  2  4  5  6  4 )  ( ( ( 1  TO 6 )  WITHOUT 3 )  AND 4)  

> ( a l l - p a r s e s  ' ( 1  and 3  t o  7  and 9  w i t h o u t  5  and 6 ) )  
Score Semantics ( 1  AND 3  TO 7  AND 9  WITHOUT 5  AND 6 )  
---- --- ----- ----- 

0.2 ( 1  3  4  7  9 )  ( 1  AND ( ( ( 3  TO 7 )  AND 9 )  WITHOUT ( 5  AND 6 ) ) )  
0.1 ( 1 3  4  7  9 )  ( ( ( 1  AND ( 3  TO 7 ) )  AND 9 )  WITHOUT (5  AND 6 ) )  
0.1 (1 3  4  7  9 )  ( ( 1  AND ( ( 3  TO 7 )  AND 9 ) )  WITHOUT (5  AND 6 ) )  

-0.8 (1 3  4 6  7  9  6 )  ( ( 1  AND ( ( ( 3  TO 7 )  AND 9 )  WITHOUT 5 ) )  AND 6 )  
-0 .8  ( 1  3  4 6  7  9  6 )  ( 1  AND ( ( ( ( 3  TO 7 )  AND 9)  WITHOUT 5) AND 6 ) )  
-0 .9  ( 1  3  4  6  7  9  6 )  ( ( ( ( 1  AND ( 3  TO 7 ) )  AND 9)  WITHOUT 5) AND 6)  
-0.9 ( 1  3  4  6  7  9  6 )  ( ( ( 1  AND ( ( 3  TO 7 )  AND 9 ) )  WITHOUT 5) AND 6)  
-2.0 ( 1  3  4  5  6  7  9 )  ( ( 1  AND ( 3  TO 7 ) )  AND (9  WITHOUT (5  AND 6 ) ) )  
-2 .0  ( 1  3  4 5  6  7  9 )  ( 1  AND ( ( 3  TO 7 )  AND ( 9  WITHOUT (5  AND 6 ) ) ) )  
-3.0 ( 1  3  4  5  6  7  9  6 )  ( ( ( 1  AND ( 3  TO 7 ) )  AND ( 9  WITHOUT 5 ) )  AND 6)  
-3.0 ( 1  3  4  5  6  7  9  6 )  ( (1  AND ( 3  TO 7 ) )  AND ( ( 9  WITHOUT 5 )  AND 6 ) )  
-3.0 ( 1  3  4  5  6  7  9  6 )  ( (1  AND ( ( 3  TO 7 )  AND ( 9  WITHOUT 5 ) ) )  AND 6)  



-3.0 ( 1  3  4 5  6  7  9  6 )  (1 AND ( ( ( 3  TO 7)  AND (9  WITHOUT 5 ) )  AND 6 ) )  
-3.0 ( 1  3  4 5  6  7  9  6) ( 1  AND ( ( 3  TO 7)  AND ( ( 9  WITHOUT 5) AND 6 ) ) )  

> ( a l l - p a r s e s  ' ( 1  and 3  t o  7  and 9  w i thou t  5  and 2 ) )  
Score Semantics ( 1  AND 3  TO 7  AND 9  WITHOUT 5  AND 2) 

0.2 ( 1  3  4 6  7  9  2) ( ( 1  AND ( ( ( 3  TO 7)  AND 9) WITHOUT 5 ) )  AND 2) 
0.2 ( 1  3  4 6  7  9  2) ( 1  AND ( ( ( ( 3  TO 7)  AND 9) WITHOUT 5) AND 2 ) )  
0 .1 ( 1  3  4 6  7  9  2) ( ( ( ( 1  AND ( 3  TO 7 ) )  AND 9) WITHOUT 5) AND 2) 
0.1 ( 1  3  4 6  7  9  2) ( ( ( 1  AND ( ( 3  TO 7)  AND 9 ) )  WITHOUT 5 )  AND 2) 

-2.0 ( 1  3  4 5  6  7  9 2) ( ( ( 1  AND (3  TO 7 ) )  AND (9  WITHOUT 5 ) )  AND 2) 
-2.0 ( 1  3  4 5  6  7 9  2) ( ( 1  AND ( 3  TO 7 ) )  AND ( ( 9  WITHOUT 5) AND 2 ) )  
-2.0 (1 3  4 5  6  7  9 )  ( ( 1  AND ( 3  TO 7 ) )  AND (9  WITHOUT (5  AND 2 ) ) )  
-2.0 (1 3  4 5  6  7  9  2)  ( ( 1  AND ( ( 3  TO 7)  AND (9  WITHOUT 5 ) ) )  AND 2) 
-2.0 (1 3  4 5  6  7  9  2) ( 1  AND ( ( ( 3  TO 7)  AND (9  WITHOUT 5 ) )  AND 2 ) )  
-2.0 ( 1  3  4 5  6  7  9  2)  ( 1  AND ( ( 3  TO 7)  AND ( ( 9  WITHOUT 5) AND 2 ) ) )  
-2.0 ( 1  3  4 5  6  7  9 )  ( 1  AND ( ( 3  TO 7)  AND (9  WITHOUT ( 5  AND 2 ) ) ) )  
-2.8 ( 1  3  4 6  7  9 )  ( 1  AND ( ( ( 3  TO 7)  AND 9)  WITHOUT (5  AND 2 ) ) )  
-2.9 ( 1  3  4 6  7  9) ( ( ( 1  AND (3  TO 7 ) )  AND 9) WITHOUT (5  AND 2 ) )  
-2.9 ( 1  3  4 6  7  9 )  ( ( 1  AND ( ( 3  TO 7)  AND 9 ) )  WITHOUT (5  AND 2 ) )  

In each case, the preference rules are able to assign higher scores to more reasonable 
interpretations. It turns out that, in each case, all the interpretations with positive 
scores represent the same set of numbers, while interpretations with negative scores 
seem worse. Seeing all the scores in gory detail may be of academic interest, but what 
we really want is something to pick out the best interpretation. The following code 
is appropriate for many situations. It picks the top scorer, if there is a unique one, 
or queries the user if several interpretations tie for the best score, and it complains 
if there are no valid parses at all. The query- user function may be useful in many 
applications, but note that meani ng uses it only as a default; a program that had some 
automatic way of deciding could supply another t i  e - brea ker function to meani ng. 

(defun meaning (words &opt ional  ( t i e - b r e a k e r  # 'query-user) )  
"Choose t h e  s i n g l e  top- rank ing  meaning f o r  t h e  words." 
( l e t *  ( ( t r e e s  ( s o r t  (parser  words) # '> :key # ' t ree-score ) )  

(best-score ( i f  t rees  ( t r e e - s c o r e  ( f i r s t  t r e e s ) )  0 ) )  
(bes t - t rees  ( d e l e t e  best -score t r e e s  

:key # ' t ree-score  : t e s t - n o t  # ' e q l ) )  
(best-sems (de le te -dup l i ca tes  (mapcar #' tree-sem b e s t - t r e e s )  

: t e s t  #'equal 1) 
(case ( l e n g t h  best-serns) 

( 0  ( format  t ""&Sorry. I d i d n ' t  understand t h a t . " )  n i l )  
(1 ( f i r s t  best-sems)) 
( t  ( f u n c a l l  t i e - b r e a k e r  best -sems)) ) ) )  



(defun query-user (choices &op t iona l  
(header - s t r  ""&Please p i c k  one:")  
( f o o t e r - s t r  ""&Your choice? " 1 )  

"Ask user t o  make a  choice. " 
( format  *query- i  o* header - s t r )  
( l o o p  f o r  choice i n  choices f o r  i from 1 do 

( format  *query- io*  ""&"3d: "a" i cho ice ) )  
( format  *query- io*  f o o t e r - s t r )  
( n t h  ( -  ( read)  1 )  cho ices ) )  

Here we see some final examples: 

> (meaning ' ( 1  t o  5  w i t h o u t  3  and 4 ) )  
( 1  2  5) 

> (meaning ' ( 1  t o  5  w i t h o u t  3  and 6 ) )  
( 1  2  4  5  6)  

> (meaning ' ( 1  t o  5  w i thou t  3  and 6  s h u f f l e d ) )  
( 6  4  1 2  5) 

> (meaning '(C 1 t o  5  w i t h o u t  C 3  and 6  1 1 reversed))  
(5  4  2  1 )  

> (meaning '(1 t o  5  t o  9 ) )  
Sorry ,  I d i d n ' t  understand t h a t .  
NIL 

> (meaning ' ( 1  t o  5 w i t h o u t  3  and 7  repeat  2 ) )  
Please p i c k  one: 

1: ( 1 2 4 5 7 1 2 4 5 7 )  
2: ( 1  2  4  5 7  7)  

Your choice? 1 
( 1 2 4 5 7 1 2 4 5 7 )  

> ( a l l - p a r s e s  ' ( 1  t o  5  w i t h o u t  3  and 7  repeat  2 ) )  
Score Semantics ( 1  TO 5  WITHOUT 3  AND 7  REPEAT 2) 
-- -- ------ -- 

0.3 ( 1  2  4  5  7  1 2  4  5  7)  ( ( ( ( 1  TO 5) WITHOUT 3 )  AND 7 )  REPEAT 2) 
0.3 ( 1  2  4  5  7  7 )  ( ( ( 1  TO 5) WITHOUT 3 )  AND (7 REPEAT 2 ) )  

-2.7 ( 1  2  4 5  1 2  4  5)  ( ( ( 1  TO 5)  WITHOUT ( 3  AND 7 ) )  REPEAT 2) 
-2.7 ( 1  2  4  5) ( ( 1  TO 5)  WITHOUT ( ( 3  AND 7)  REPEAT 2 ) )  
-2.7 (1 2  4  5)  ((1 TO 5)  WITHOUT ( 3  AND (7 REPEAT 2 ) ) )  

This last example points out a potential problem: I wasn't sure what was a good 
scoring function for "repeat," so I left it blank, it defaulted to 0, and we end up 
with two parses with the same score. This example suggests that "repeat" should 
probably involve i nv - span like the other modifiers, but perhaps other factors should 
be involved as well. There can be a complicated interplay between phrases, and it 



is not always clear where to assign the score. For example, it doesn't make much 
sense to repeat a "without" phrase; that is, the bracketing ( x  w i thou t  (y repeat 
n ) ) is probably a bad one. But the scorer for "without" nearly handles that already. 
It assigns a penalty if its right argument is not a subset of its left. Unfortunately, 
repeated elements are not counted in sets, so for example, the list (1 2 3 1 2 3) is a 
subset of (1 2 3 4). However, we could change the scorer for "without" to test for 
s ub - bag - p (not a built-in Common Lisp function) instead, and then "repeat" would 
not have to be concerned with that case. 

19.7 The Problem with Context-Free 
Phrase-Structure Rules 

The fragment of English grammar we specified in section 19.2 admits a variety of 
ungrammatical phrases. For example, it is equally happy with both "I liked her" and 
"me liked she." Only the first of these should be accepted; the second should be 
ruled out. Similarly, our grammar does not state that verbs have to agree with their 
subjects in person and number. And, since the grammar has no notion of meaning, 
it will accept sentences that are semantically anomalous (or at least unusual), such 
as "the table liked the man." 

There are also some technical problems with context-free grammars. For exam- 
ple, it can be shown that no context-free grammar can be written to account for the 
language consisting of just the strings ABC, AABBCC, AAABBBCCC, and so forth, 
where each string has an equal number of As, Bs, and Cs. Yet sentences roughly of 
that form show up (admittedly rarely) in natural languages. An example is "Robin 
and Sandy loved and hated Pat and Kim, respectively." While there is still disagree- 
ment over whether it is possible to generate natural languages with a context-free 
grammar, clearly it is much easier to use a more powerful grammatical formalism. 
For example, consider solving the subject-predicate agreement problerrk. It is pos- 
sible to do this with a context-free language including categories like singular-NP, 
plural-NP, singular-VP, and plural-VP, but it is far easier to augment the grammatical 
formalism to allow passing features between constituents. 

It should be noted that context-free phrase-structure rules turned out to be very 
useful for describing programming languages. Starting with Algol 60, the formalism 
has been used under the name Backus-Naur Form (BNF) by computer scientists. In this 
book we are more interested in natural languages, so in the next chapter we will see a 
more powerful formalism known as unification grammar that can handle the problem 
of agreement, as well as other difficulties. Furthermore, unification grammars allow a 
natural way of attaching semantics to a parse. 



19.8 History and References 

There is a class of parsing algorithms known as chart parsers that explicitly cache 
partial parses and reuse themin constructing larger parses. Earley's algorithm (1970) 
is the first example, and Martin Kay (1980) gives a good overview of the field and 
introduces a data structure, the chart, for storing substrings of a parse. Winograd 
(1983) gives a complex (five-page) specification of a chart parser. None of these 
authors have noticed that one can achieve the same results by augmenting a simple 
(one-page) parser with memoization. In fact, it is possible to write a top-down parser 
that is even more succinct. (See exercise 19.3 below.) 

For a general overview of natural language processing, my preferences (in order) 
are Allen 1987, Winograd 1983 or Gazdar and Mellish 1989. 

19.9 Exercises 

p Exercise 19.2 [m-h] Experiment with the grammar and the parser. Find sentences 
it cannot parse correctly, and try to add new syntactic rules to account for them. 

p Exercise 19.3 [m-h] The parser works in a bottom-up fashion. Write a top-down 
parser, and compare it to the bottom-up version. Can both parsers work with the 
same grammar? If not, what constraints on the grammar does each parsing strategy 
impose? 

p Exercise 19.4 p] Imagine an interface to a dual cassette deck. Whereas the CD 
player had one assumedverb, "play," this unit has three explicit verb forms: "record," 
"play," and "erase." There should also be modifiers "from" and "to," where the object 
of a "to" is either 1 or 2, indicating which cassette to use, and the object of a "from" 
is either 1 or 2, or one of the symbols PHONO, CD, or AUX. It's up to you to design 
the grammar, but you should allow input something like the following, where I have 
chosen to generate actual Lisp code as the meaning: 

> (meaning ' ( p l a y  1 t o  5 from CD s h u f f l e d  and 
record 1 t o  5 from CD and 1 and 3 and 7 from 1 ) )  

(PROGN (PLAY ' ( 1  5 2 3 4) :FROM 'CD) 
(RECORD ' ( 1  2 3 4 5) :FROM 'CD) 
(RECORD ' ( 1  3 7)  :FROM ' 1 ) )  

This assumes that the functions pl ay and record take keyword arguments (with 
defaults) for : from and : to. You could also extend the grammar to accommodate an 
automatic timer, with phrases like "at 3:OO." 



Exercise 19.5 [m] In the definition of permute, repeated here, why is the : test  
# ' eq needed? 

(defun permute (bag) 
"Return a random permutation of the given input l i s t . "  
( i f  (null bag)  

ni 1 
( l e t  ( ( e  (random-elt b a g ) ) )  

(cons e (permute (remove e bag :count 1 : tes t  # ' e q ) ) ) ) ) )  

Exercise 19.6 [m] The definition of permute takes 0(n2) .  Replace it by an O(n) 
algorithm. 

Answers 

Answer 19.1 

(defun parser (words) 
"Return all  complete parses of a l i s t  of words." 
( l e t*  ( ( table  (make-array (+ (length words) 1) : ini t ia l  -element 0 ) )  

(parses (parse words (length words) t ab le ) ) )  
(mapcar #'parse-tree (complete-parses parses))))  

(defun parse (words num-words table) 
"Bottom-up parse, returning all  parses of any prefix of words." 
(unl ess ( n u 1  1 words 

( l e t  ((ans (aref table num-words))) 
( i f  (not (eq ans 0 ) )  

ans 
(setf (aref table num-words) 

(mapcan # '  (1 ambda ( rule)  
(extend-parse (rul e-1 hs rule) 

( l i s t  ( f i rs twords))  
( res t  words) nil 
( -  num-words 1) table))  

(lexical -rules ( f i r s t  words) ) ) ) ) ) ) )  



(defun extend-parse ( l h s  rhs  rem needed num-words t a b l e )  
"Look f o r  t h e  ca tegor ies  needed t o  complete t h e  parse." 
( i f  (nu1 1 needed) 

;; I f  no th ing  i s  needed, r e t u r n  t h i s  parse and upward extens ions 
( l e t  ( (pa rse  (make-parse : t r e e  (new- t ree l h s  r h s )  :rem rem)))  

(cons parse 
(mapcan 

#'(lambda ( r u l e )  
(extend-parse ( r u l  e-1 hs r u l e )  

( l i s t  (pa rse - t ree  parse ) )  
rem ( r e s t  ( r u l e - r h s  r u l e ) )  
num-words tab1 e l  

( r u l e s - s t a r t i n g - w i t h  l h s ) ) ) )  
;; otherwise t r y  t o  extend r igh tward  
(mapcan 

#'(lambda (p )  
( i f  (eq (pa rse- lhs  p )  ( f i r s t  needed)) 

(extend-parse l h s  (append1 rhs  (pa rse - t ree  p ) )  
(parse-rem p )  ( r e s t  needed) 
( l e n g t h  (parse-rem p ) )  t a b l e ) ) )  

(parse rem num-words t a b l e ) ) ) )  

It turns out that, for the Lisp system used in the timings above, this version is no 
faster than normal memoization. 

Answer 19.3 Actually, the top-down parser is a little easier (shorter) than the 
bottom-up version. The problem is that the most straightforward way of imple- 
menting a top-down parser does not handle so-called left recursive rules-rules of the 
form ( X  -> ( X  . . . ) I .  Thisincludesruleswe'veused,like ( N P  -> (NP and NP)). 
The problem is that the parser will postulate an NP, and then postulate that it is of 
the form ( NP and NP 1, and that the first NP of that expression is of the form ( NP and 
NP 1, and so on. An infinite structure of NPs is explored before even the first word is 
considered. 

Bottom-up parsers are stymied by rules with null right-hand sides: ( X -> ( 1. 
Note that I was careful to exclude such rules in my grammars earlier. 

(defun parser  (words &op t iona l  ( c a t  ' S ) )  
"Parse a l i s t  o f  words; r e t u r n  o n l y  parses w i t h  no remainder." 
(mapcar # ' p a r s e - t r e e  (complete-parses (parse words c a t ) ) ) )  

(defun parse (tokens s ta r t - symbo l )  
"Parse a l i s t  o f  tokens, r e t u r n  parse t r e e s  and remainders." 
( i f  (eq ( f i r s t  tokens) s ta r t - symbo l )  

( l i s t  (make-parse : t r e e  ( f i r s t  tokens) :rem ( r e s t  tokens) ) )  
(mapcan # '  (1 ambda ( r u l e )  

(extend-parse (1  hs r u l e )  n i l  tokens ( r h s  r u l e )  1) 
( r u l e s - f o r  s tar t -symbol  1)  1 )  



(defun extend-parse (Ihs rhs rem needed) 
"Parse the remaining needed symbols." 
( i f  (null needed) 

( l i s t  (make-parse : t r ee  (cons Ihs rhs) :rem rem)) 
(mapcan 

#'(lambda (p )  
(extend-parse lhs (append rhs ( l i s t  (parse-tree p ) ) )  

(parse-rem p) ( r e s t  needed))) 
(parse rem ( f i r s t  needed))) ) )  

(defun rules-for ( c a t )  
"Return a l l  the rules with category on Ihs" 
( f ind-a l l  cat  *grammar* :key # ' ru l e - lhs ) )  

Answer 19.5 If it were omitted, then : t e s t  would default to # ' eql , and it would be 
possible to remove the "wrong" element from the list. Consider the list ( 1.0 1.0 in 
an implementation where floating-point numbers are eql but not eq. if random- el t 
chooses the first 1 .0 first, then everything is satisfactory-the result list is the same 
as the input list. However, if random-el t chooses the second 1.0, then the second 
1.0 will be the first element of the answer, but remove will remove the wrong 1.0 ! It 
will remove the first 1.0, and the final answer will be a list with two pointers to the 
second 1 . 0  and none to the first. In other words, we could have: 

> (member ( f i r s t  x)  (permute x) : t e s t  # 'eq) 
NIL 

Answer 19.6 

(defun permute (bag) 
"Return a random permutation of the bag." 
;; I t  i s  done by converting the bag t o  a vector, but the 
;; resul t  i s  always the same type as the input bag. 
( l e t  ((bag-copy (replace (make-array (length bag)) bag)) 

(bag-type ( i f  ( l i s t p  bag) ' l i s t  (type-of bag) ) ) )  
(coerce (permute-vector! bag-copy) bag-type)))  

(defun permute-vector! (vector)  
"Destructively permute (shuff le)  the vector." 
(loop for i from (length vector) downto 2 do 

( ro ta tef  (aref vector ( -  i 1)) 
(aref vector (random i l l ) )  

vector 

The answer uses rota tef ,  a relative of se t f  that swaps 2 or more values. That is, 
( rotatef  a b )  is like: 



( l e t  ((temp a ) )  
(setf a b )  
(setf b temp) 
nil 

Rarely, rot  a t  ef is used with more than two arguments. ( rot  a te f  a  b c > is like: 

( l e t  ((temp a ) )  
(setf a b )  
(setf  b c )  
(setf c temp) 
nil 



CHAPTER 20 
- 

Unification Grammars 

rolog was invented because Alain Colmerauer wanted a formalism to describe the gram- 
mar of French. His intuition was that the combination of Horn clauses and unification 
resulted in a language that was just powerful enough to express the kinds of constraints 

that show up in natural languages, while not as powerful as, for example, full predicate calculus. 
This lack of power is important, because it enables efficient implementation of Prolog, and 
hence of the language-analysis programs built on top of it. 

Of course, Prolog has evolved and is now used for many applications besides natural lan- 
guage, but Colmerauer's underlying intuition remains a good one. This chapter shows how 
to view a grammar as a set of logic programming clauses. The clauses define what is a legal 
sentence and what isn't, without any explicit reference to the process of parsing or generation. 
The amazing thing is that the clauses can be defined in a way that leads to a very efficient 
parser. Furthermore, the same grammar can be used for both parsing and generation (at least 
in some cases). 



20.1 Parsing as Deduction 

Here's how we could express the grammar rule "A sentence can be composed of a 
noun phrase followed by a verb phrase" in Prolog: 

The variables represent strings of words. As usual, they will be implemented as lists 
of symbols. The rule says that a given string of words ?s is a sentence if there is a string 
that is noun phrase and one that is a verb phrase, and if they can be concatenated to 
form ?s. Logically, this is fine, and it would work as a program to generate random 
sentences. However, it is a very inefficient program for parsing sentences. It will 
consider all possible noun phrases and verb phrases, without regard to the input 
words. Only when it gets to the conca t goal (defined on page 411) will it test to see if 
the two constituents can be concatenated together to make up the input string. Thus, 
a better order of evaluation for parsing is: 

The first version had NP and V P guessing strings to be verified by conca t .  In most 
grammars, there will be a very large or infinite number of NPs and VPs. This second 
version has concat guessing strings to be verified by NP and VP. If there are n words 
in the sentence, then concat can only make n + 1 guesses, quite an improvement. 
However, it would be better still if we could in effect have conca t and NP work together 
to make a more constrained guess, which would then be verified by VP. 

We have seen this type of problem before. In Lisp, the answer is to return multiple 
values. NP would be a function that takes a string as input and returns two values: 
an indication of success or failure, and a remainder string of words that have not yet 
been parsed. When the first value indicates success, then VP would be called with 
the remaining string as input. In Prolog, return values are just extra arguments. So 
each predicate will have two parameters: an input string and a remainder string. 
Following the usual Prolog convention, the output parameter comes after the input. 
In this approach, no calls to concat are necessary, no wild guesses are made, and 
Prolog's backtracking takes care of the necessary guessing: 



This rule can be read as "The string from so to s2 is a sentence if there is an sl such 
that the string from so to sl is a noun phrase and the string from sl to s2 is a verb 
phrase." 

A sample query would be ( ? -  ( S  (The boy a t e  t h e  app le )  0)). With 
suitable definitions of NP and VP, this would succeed, with the following bindings 
holding within S: 

?SO = (The boy ate the apple) 

?sl = (ate the apple) 

?s2 = ( 1  

Another way of reading the goal ( N P ? s 0 ? s 1 1, for example, is as "IS the list ? s 0 
minus the list ? s l  a noun phrase?" In this case, ?SO minus ? s l  is the list (The boy).  
The combination of two arguments, an input list and an output list, is often called a 
difference list, to emphasize this interpretation. More generally, the combination of an 
input parameter and output parameter is called an accumulator. Accumulators, par- 
ticularly difference lists, are an important technique throughout logic programming 
and are also used in functional programming, as we saw on page 63. 

In our rule for S, the concatenation of difference lists was implicit. If we prefer, 
we could define a version of conca t for difference lists and call it explicitly: 

(<- (S ?s-in ?s-rem) 

(NP ?np-in ?np-rem) 

( V P  ?vp-in ?vp-rem) 

(concat ?np-in ?np-rem ?vp-in ?vp-rem ?s-in ?s-rem)) 

Because this version of concat  has a different arity than the old version, they can 
safely coexist. It states the difference list equation ( a  - b)  + ( b  - c)  = ( a  - c).  

In the last chapter we stated that context-free phrase-structure grammar is incon- 
venient for expressing things like agreement between the subject and predicate of a 
sentence. With the Horn-clause-based grammar formalism we are developing here, 
we can add an argument to the predicates NP and VP to represent agreement. In 
English, the agreement rule does not have a big impact. For all verbs except be, the 
difference only shows up in the third-person singular of the present tense: 



Thus, the agreement argument will take on one of the two values 3 s g  or "3sg to 
indicate third-person-singular or not-third-person-singular. We could write: 

(<- (NP 3sg (he . ? s )  ? s ) )  
(<- (NP "3sg ( t h e y  . ?s )  ? s ) )  

(<- (VP 3sg ( s leeps  . ?s )  ? s ) )  
(<- (VP "3sg ( s leep  . ?s )  ? s ) )  

This grammar parses just the right sentences: 

> ( ? -  (S (He s leeps )  0 ) )  
Yes. 

> ( ? -  (S (He s leep )  0)) 
No. 

Let's extend the grammar to allow common nouns as well as pronouns: 

(<- (Det ?any ( t h e  . ? s )  ? s ) )  
(<- (N 3sg (boy . ? s )  ? s ) )  
(<- (N 3sg ( g i r l  . ?s )  ? s ) )  

The same grammar rules can be used to generate sentences as well as parse. Here 
are all possible sentences in this trivial grammar: 

> ( ? -  (S ?words 0 ) )  
?WORDS = (HE SLEEPS); 
?WORDS = (THEY SLEEP); 
?WORDS = (THE BOY SLEEPS); 
?WORDS = (THE GIRL SLEEPS); 
No. 

So far all we have is a recognizer: a predicate that can separate sentences from 



nonsentences. But we can add another argument to each predicate to build up the 
semantics. The result is not just a recognizer but a true parser: 

(<- (NP 3sg ( t h e  male) (he . ?s )  ? s ) )  
(<- (NP "3sg (some o b j e c t s )  ( they  . ?s )  ? s ) )  

(<- (VP 3sg s leep (s leeps . ?s )  ? s ) )  
(<- (VP "3sg s leep (s leep  . ?s )  ? s ) )  

(<- (Det ?any t h e  ( t h e  . ?s )  ? s ) )  
(<- (N 3sg (young male human) (boy . ?s )  ? s ) )  
(<- (N 3sg (young female human) ( g i r l  . ?s )  ? s ) )  

The semantic translations of individual words is a bit capricious. In fact, it is not too 
important at this point if the translation of boy is (young ma1 e human or just boy. 
There are two properties of a semantic representation that are important. First, it 
should be unambiguous. The representation of orange the fruit should be different 
from orange the color (although the representation of the fruit might well refer to 
the color, or vice versa). Second, it should express generalities, or allow them to 
be expressed elsewhere. So either sleep and sleeps should have the same or similar 
representation, or there should be an inference rule relating them. Similarly, if the 
representation of boy does not say so explicitly, there should be some other rule 
saying that a boy is a male and a human. 

Once the semantics of individual words is decided, the semantics of higher-level 
categories (sentences and noun phrases) is easy. In this grammar, the semantics of 
a sentence is the application of the predicate (the verb phrase) to the subject (the 
noun phrase). The semantics of a compound noun phrase is the application of the 
determiner to the noun. 

This grammar returns the semantic interpretation but does not build a syntactic 
tree. The syntactic structure is implicit in the sequence of goals: S calls NP and VP, 
and NP can call Det and N. If we want to make this explicit, we can provide yet another 
argument to each nonterminal: 

(<- (NP 3sg ( t h e  male) (np he) (he . ?s )  ? s ) )  
(<- (NP "3sg (some o b j e c t s )  (np they )  ( they  . ?s)  ? s ) )  



(<- (VP 3sg s leep (vp  s leeps)  (s leeps . ?s )  ? s ) )  
(<- (VP "3sg s leep (vp s leep)  ( s leep  . ?s )  ? s ) )  

(<- (Det ?any t h e  ( d e t  t h e )  ( t h e  . ?s )  ? s ) )  
(<- (N 3sg (young male human) ( n  boy) (boy . ?s )  ? s ) )  
(<- (N 3sg (young female human) ( n  g i r l  ( g i r l  . ?s )  ? s ) )  

This grammar can still be used to parse or generate sentences, or even to enumerate 
all syntax/semantics/sentence triplets: 

;; Parsing: 
> ( ? -  (S ?sem ?syn (He s leeps)  0 ) )  
?SEM = (SLEEP (THE MALE)) 
?SYN = (S (NP HE) (VP SLEEPS)). 

;; Generating: 
> ( ? -  (S (s leep  ( t h e  male) )  ? ?words 0 ) )  
?WORDS = (HE SLEEPS) 

;; Enumerating: 
> ( ? -  (S ?sem ?syn ?words 0)) 
?SEM = (SLEEP (THE MALE)) 
?SYN = (S (NP HE) (VP SLEEPS)) 
?WORDS = (HE SLEEPS); 

?SEM = (SLEEP (SOME OBJECTS)) 
?SYN = (S (NP THEY) (VP SLEEP)) 
?WORDS = (THEY SLEEP): 

?SEM = (SLEEP (THE (YOUNG MALE HUMAN))) 
?SYN = (S (NP (DET THE) (N BOY)) (VP SLEEPS)) 
?WORDS = (THE BOY SLEEPS): 

?SEM = (SLEEP (THE (YOUNG FEMALE HUMAN))) 
?SYN = (S (NP (DET THE) (N GIRL)) (VP SLEEPS)) 
?WORDS = (THE GIRL SLEEPS); 

No. 

20.2 Definite Clause Grammars 

We now have a powerful and efficient tool for parsing sentences. However, it is 
getting to be a very messy tool-there are too many arguments to each goal, and it 



is hard to tell which arguments represent syntax, which represent semantics, which 
represent in/out strings, and which represent other features, like agreement. So, 
we will take the usual step when our bare programming language becomes messy: 
define a new language. 

Edinburgh Prologrecognizes assertions called definite clausegrammar (DCG) rules. 
The term definite clause is just another name for a Prolog clause, so DCGs are also 
called "logic grammars.'' They could have been called "Horn clause grammars" or 
"Prolog grammars" as well. 

DCG rules are clauses whose main functor is an arrow, usually written - ->. They 
compile into regular Prolog clauses with extra arguments. In normal DCG rules, only 
the string arguments are automatically added. But we will see later how this can be 
extended to add other arguments automatically as well. 

We will implement DCG rules with the macro rul e and an infix arrow. Thus, we 
want the expression: 

( r u l e  (S) - -> (NP) (VP)) 

to expand into the clause: 

While we're at it, we may as well give rul e the ability to deal with different types of 
rules, each one represented by a different type of arrow. Here's the rul e macro: 

(defmacro r u l e  (head &op t iona l  (arrow ' : - I  &body body) 
"Expand one o f  several types o f  l o g i c  r u l e s  i n t o  pure Pro log."  
;; This  i s  da ta -d r i ven ,  d i spa tch ing  on t h e  arrow 
( f u n c a l l  ( g e t  arrow ' r u l e - f u n c t i o n )  head body)) 

As an example of a rule function, the arrow : - will be used to represent normal Prolog 
clauses. That is, the form ( rul e head : - body will be equivalent to (<- head b o d y ) .  

( s e t f  ( g e t  ' : - ' r u l e - f u n c t i o n )  
#'(lambda (head body) '(<- ,head . ,body)) )  

Before writing the rule function for DCG rules, there are two further features of the 
DCG formalism to consider. First, some goals in the body of a rule may be normal 
Prolog goals, and thus do not require the extra pair of arguments. In Edinburgh 
Prolog, such goals are surrounded in braces. One would write: 



s(Sem) - -> np(Subj1, vp(Pred1, 

{combine(Subj, Pred ,Sem)). 

where the idea is that combi ne  is not a grammatical constituent, but rather a Prolog 
predicate that could do some calculations on S u b j  and Pred to arrive at the proper 
semantics, Sem. We will mark such a test predicate not by brackets but by a list 
headed by the keyword : test ,  as in: 

( r u l e  (S ?sem) - ->  (NP ?sub j )  (VP ?pred) 

( : t e s t  (combine ?subj  ?pred ?sem))) 

Second, we need some way of introducing individual words on the right-hand side, 
as opposed to categories of words. In Prolog, brackets are used to represent a word 
or list of words on the right-hand side: 

verb --> Csleepsl.  

We will use a list headed by the keyword :word: 

( r u l e  (NP ( t h e  male) 3sg) - ->  (:word he) )  

( r u l e  (VP sleeps 3sg) - -> (:word s leeps) )  

The following predicates test for these two special cases. Note that the cut is also 
allowed as a normal goal. 

(defun dcg-normal-goal-p ( x )  ( o r  ( s t a r t s - w i t h  x : t e s t )  (eq x ' ! I ) )  

(defun d c g - w o r d - l i s t - p  ( x )  ( s t a r t s - w i t h  x ' :word))  

At last we are in a position to present the rule function for DCG rules. The function 
make - dcg inserts variables to keep track of the strings that are being parsed. 

( s e t f  ( g e t  ' - - >  ' r u l e - f u n c t i o n )  'make-dcg) 

(defun make-dcg (head body) 

( l e t  ( ( n  ( c o u n t - i f  (complement # 'dcg-normal -goal -p)  body) ) )  

'(<- (,@head ?SO ,(symbol ' ?s  n ) )  

..(make-dcg-body body 0 ) ) ) )  



( de fun  make-dcg-body (body n )  
"Make t h e  body o f  a D e f i n i t e  C l ause  Grammar (DCG) c l a u s e .  
Add ? s t r i n g - i n  and - o u t  v a r i a b l e s  t o  e ach  c o n s t i t u e n t .  
Goals  1 i  ke ( : t e s t  goal  a r e  o r d i n a r y  P ro log  g o a l s ,  
and g o a l s  1 i  ke ( :word h e l l o )  a r e  l i t e r a l .  words t o  be p a r s e d . "  
( i f  ( n u l l  body) 

n i  1 
( l e t  ( ( g o a l  ( f i r s t  b o d y ) ) )  

(cond 
( ( e q  goal  ' ! )  ( c o n s  ' !  (make-dcg-body ( r e s t  body) n ) ) )  
( (dcg-normal -goal  - p  goa l  

(append ( r e s t  goal  
(make-dcg-body ( r e s t  body) n ) ) )  

( (dcg-word-1  i s t - p  goal  
( cons  

' (=  , (symbol ' ? s  n )  
( , @ ( r e s t  goa l  . , ( symbol  ' ? s  (+ n 1 ) ) ) )  

(make-dcg-body ( r e s t  body) (+ n 1 ) ) ) )  
( t  ( c o n s  

(append goal  
( l i s t  (symbol ' ? s  n )  

(symbol ' ? s  (+ n 1 ) ) ) )  
(make-dcg-body ( r e s t  body) (+ n 1 ) ) ) ) ) ) ) )  

p Exercise 20.1 [m] make - dcg violates one of the cardinal rules of macros. What does 
it do wrong? How would you fix it? 

20.3 A Simple Grammar in DCG Format 

Here is the trivial grammar from page 688 in DCG format. 

( r u l e  ( S  ( ? p r e d  ? s u b j  1) - ->  
(NP ? a g r  ? s u b j )  
( V P  ? a g r  ? p r e d ) )  

( r u l e  (NP ? a g r  ( ? d e t  ? n ) )  - ->  
(De t  ? a g r  ? d e t )  
(N ? a g r  ? n ) )  



( r u l e  (NP 3sg ( t h e  male) )  - -> (:word he) )  
( r u l e  (NP "3sg (some o b j e c t s ) )  - -> (:word t h e y ) )  
( r u l e  (VP 3sg s leep)  - ->  (:word s leeps) )  
( r u l e  (VP "3sg s leep)  - ->  (:word s leep) )  
( r u l e  (Det ?any the )  - -> (:word t h e ) )  
( r u l e  (N 3sg (young male human)) - ->  (:word boy))  
( r u l e  (N 3sg (young female human)) - ->  (:word g i r l ) )  

This grammar is quite limited, generating only four sentences. The first way we will 
extend it is to allow verbs with objects: in addition to "The boy sleeps," we will allow 
"The boy meets the girl." To avoid generating ungrammatical sentences like "* The 
boy meets,"' we will separate the category of verb into two subcategories: transitive 
verbs, which take an object, and intransitive verbs, which don't. 

Transitive verbs complicate the semantic interpretation of sentences. We would 
like the interpretation of "Terry kisses Jean" to be ( k i  s s Terry Jean 1. The interpreta- 
tion of the noun phrase "Terry" is just Terry, but then what should the interpretation 
of the verb phrase "kisses Jean" be? To fit our predicate application model, it must 
be something equivalent to ( 1 ambda (XI ( k i  ss  x Jean 1 1. When applied to the 
subject, we want to get the simplification: 

((lambda ( x )  ( k i s s  x Jean)) Te r ry )  + ( k i s s  Ter ry  Jean) 

Such simplification is not done automatically by Prolog, but we can write a predicate 
to do it. We will call it f unca 1 1, because it is similar to the Lisp function of that name, 
although it only handles replacement of the argument, not full evaluation of the 
body. (Technically, this is the lambda-calculus operation known as beta-reduction.) 
The predicate f uncal1 is normally used with two input arguments, a function and its 
argument, and one output argument, the resulting reduction: 

(<- ( f u n c a l l  (lambda ( ? X I  ?body) ?x  ?body)) 

With this we could write our rule for sentences as: 

( r u l e  ( S  ?sem) - ->  
(NP ?agr ?sub j )  
( V P  ?agr ?pred) 
( : t e s t  ( f u n c a l l  ?pred ?subj  ?sem))) 

An alternative is to, in effect, compile away the call to fun ca 1 1 . Instead of having the 
semantic representation of V P  be a single lambda expression, we can represent it as 

l ~ h e  asterisk at the start of a sentence is the standard linguistic notation for an utterance 
that is ungrammatical or otherwise ill-formed. 



two arguments: an input argument, ?sub j, which acts as a parameter to the output 
argument, ?pred, which takes the place of the body of the lambda expression. By 
explicitly manipulating the parameter and body, we can eliminate the call to f unca 1 1 . 
The trick is to make the parameter and the subject one and the same: 

(rule  ( S  ?pred) - ->  
( N P  ?agr ?subj 
( V P  ?agr ?subj ?pred)) 

One way of reading this rule is "To parse a sentence, parse a noun phrase followed 
by a verb phrase. If they have different agreement features then fail, but otherwise 
insert the interpretation of the noun phrase, ?sub j, into the proper spot in the 
interpretation of the verb phrase, ?pred, and return ?pred as the final interpretation 
of the sentence." 

The next step is to write rules for verb phrases and verbs. Transitive verbs are 
listed under the predicate Verb/ t r, and intransitive verbs are listed as Verb/ i n t r. 
The semantics of tenses (past and present) has been ignored. 

(rule ( V P  ?agr ?subj ?pred) - ->  
(Verb/tr ?agr ?subj ?pred ?obj) 
( N P  ?any-agr ?obj))  

( rule  ( V P  ?agr ?subj ?pred) - ->  
(Verb/intr ?agr ?subj ?pred)) 

( rule  (Verbltr "3sg ?x (kiss ?x ?y) ?y) - ->  (:word kiss))  
(rule (Verbltr 3sg ?x (kiss ?x ?y) ?y) - ->  (:word kisses)) 
(rule (Verbltr ?any ?x (kiss ?x ?y)  ?y) - -> (:word kissed)) 

(rule (Verblintr "3sg ?x (sleep ?XI)  - ->  (:word sleep)) 
(rule (Verb/intr 3sg ?x (sleep ?XI)  - -> (:word sleeps)) 
( rule  (Verb/intr ?any ?x (sleep ?XI)  - -> (:word s l ep t ) )  

Here are the rules for noun phrases and nouns: 

(rule (NP ?agr ?sem) - ->  
(Name ?agr ?sem)) 

(rule ( N P  ?agr (?det-sem ?noun-sem)) - ->  

(Det ?agr ?det-sem) 
(Noun ?agr ?noun-sem)) 

( rule  (Name 3sg Terry) --> (:word Terry)) 
(rule (Name 3sg Jean) - ->  (:word Jean)) 



( r u l e  (Noun 3sg (young male human)) - -> (:word boy ) )  
( r u l e  (Noun 3sg (young female human)) - -> (:word g i r l ) )  
( r u l e  (Noun "3sg (group (young male human))) --> (:word boys))  
( r u l e  (Noun "3sg (group (young female human))) - -> (:word g i r l s ) )  

( r u l e  (Det ?any t h e )  - -> (:word t h e ) )  
( r u l e  (Det 3sg a)  - ->  (:word a ) )  

This grammar and lexicon generates more sentences, although it is still rather limited. 
Here are some examples: 

> ( ? -  (S ?sem (The boys k i s s  a g i r l )  0 ) )  
?SEM = (KISS (THE (GROUP (YOUNG MALE HUMAN))) 

(A (YOUNG FEMALE HUMAN) 1) .  

> ( ? -  (S ?sem (The g i r l s  k issed t h e  g i r l s )  0 ) )  
?SEM = (KISS (THE (GROUP (YOUNG FEMALE HUMAN))) 

(THE (GROUP (YOUNG FEMALE HUMAN)))). 

> ( ? -  (S ?sem (Ter ry  k issed t h e  g i r l  0)) 
?SEM = (KISS TERRY (THE (YOUNG FEMALE HUMAN))). 

> ( ? -  (S ?sem (The g i r l s  k isses t h e  boys) 0 ) )  
No. 

> ( ? -  (S ?sem (Ter ry  k i ssed  a g i r l s )  0)) 
No. 

> ( ? -  (S ?sem (Ter ry  sleeps Jean) 0 ) )  
No. 

The first three examples are parsed correctly, while the final three are correctly 
rejected. The inquisitive reader maywonder just what is going onin the interpretation 
of a sentence like "The girls kissed the girls." Do the subject and object represent the 
same group of girls, or different groups? Does everyone kiss everyone, or are there 
fewer kissings going on? Until we define our representationmore carefully, there is no 
way to tell. Indeed, it seems that there is a potential problem in the representation, in 
that the predicate k i  ss sometimes has individuals as its arguments, and sometimes 
groups. More careful representations of "The girls kissed the girls" include the 
following candidates, using predicate calculus: 

VxVy xegirls r\ yegirls 3 kiss(x,y) 
VxVy xegirls r\ yegirls r\ x#y + kiss(x,y) 
Vx3y,z xegirls r\ yegrls r\ zcgirls + kiss(x,y) A kiss(z,x) 
Vx3y xegirls A yegirls 3 kiss(x,y) v kiss(y,x) 

The first of these says that every girl kisses every other girl. The second says the same 
thing, except that a girl need not kiss herself. The third says that every girl kisses 



and is kissed by at least one other girl, but not necessarily all of them, and the fourth 
says that everbody is in on at least one kissing. None of these interpretations says 
anything about who "the girls" are. 

Clearly, the predicate calculus representations are less ambiguous than the rep- 
resentation produced by the current system. On the other hand, it would be wrong 
to choose one of the representations arbitrarily, since in different contexts, "The girls 
kissed the girls" can mean different things. Maintaining ambiguity in a concise form 
is useful, as long as there is some way eventually to recover the proper meaning. 

20.4 A DCG Grammar with Quantifiers 

The problem in the representation we have been using becomes more acute when we 
consider other determiners, such as "every." Consider the sentence "Every picture 
paints a story." The preceding DCG, if given the right vocabulary, would produce 
the interpretation: 

(pa in t s  (every p ic ture)  (a  s t o r y ) )  

This can be considered ambiguous between the following two meanings, in predicate 
calculus form: 

The first says that for each picture, there is a story that it paints. The second says that 
there is a certain special story that every picture paints. The second is an unusual 
interpretation for this sentence, but for "Every U.S. citizen has a president," the 
second interpretation is perhaps the preferred one. In the next section, we will see 
how to produce representations that can be transformed into either interpretation. 
For now, it is a useful exercise to see how we could produce just the first representation 
above, the interpretation that is usually correct. First, we need to transcribe it into 
Lisp: 

( a l l  ?x ( ->  ( p i c tu r e  ?XI ( e x i s t s  ?y (and ( s t o ry  ?y) ( pa in t  ?x ? y ) ) ) ) )  

The first question is how the a1 1 and ex i  s  t s  forms get in there. They must come from 
the determiners, "every" and "a." Also, it seems that a 1 1 is followed by an implication 
arrow, ->, while exi s t s  is followed by a conjunction, and .  So the determiners will 
have translations looking like this: 



( r u l e  (Det ?any ?x  ?p ?q ( t h e  ?x (and ?p ? q ) ) )  - -> (:word t h e ) )  

( r u l e  (Det 3sg ?x ?p ?q ( e x i s t s  ?x (and ?p ? q ) ) )  - ->  (:word a ) )  

( r u l e  (Det 3sg ?x ?p ?q ( a l l  ?x  ( ->  ?p ? q ) ) )  - ->  (:word every ) )  

Once we have accepted these translations of the determiners, everything else follows. 
The formulas representing the determiners have two holes in them, ?p and ?q. The 
first will be filled by a predicate representing the noun, and the latter will be filled 
by the predicate that is being applied to the noun phrase as a whole. Notice that a 
curious thing is happening. Previously, translation to logical form was guided by 
the sentence's verb. Linguisticly, the verb expresses the main predicate, so it makes 
sense that the verb's logical translation should be the main part of the sentence's 
translation. In linguistic terms, we say that the verb is the head of the sentence. 

With the new translations for determiners, we are in effect turning the whole 
process upside down. Now the subject's determiner carries the weight of the whole 
sentence. The determiner's interpretation is a function of two arguments; it is applied 
to the noun first, yielding a function of one argument, which is in turn applied to the 
verb phrase's interpretation. This primacy of the determiner goes against intuition, 
but it leads directly to the right interpretation. 

The variables ?p and ?q can be considered holes to be filled in the final interpre- 
tation, but the variable ?x fills a quite different role. At the end of the parse, ?x will 
not be filled by anything; it will still be a variable. But it will be referred to by the 
expressions filling ?p and ?q. We say that ?x is a metavariable, because it is a variable 
in the representation, not a variable in the Prolog implementation. It just happens 
that Prolog variables can be used to implement these metavariables. 

Here are the interpretations for each word in our target sentence and for each 
intermediate constituent: 

Every = ( a l l  ?x  ( ->  ? p l  ? q l ) )  

p i c t u r e  = ( p i c t u r e  ?XI 
p a i n t s  = ( p a i n t  ?x  ?y )  

a  = ( e x i s t s  ?y (and ?p2 ?q2))  

s t o r y  = ( s t o r y  ?y )  

Every p i c t u r e  = ( a l l  ?x  ( ->  ( p i c t u r e  ? X I  ? q l )  

a  s t o r y  = ( e x i s t s  ?y (and ( s t o r y  ?y )  ?q2))  

p a i n t s  a  s t o r y  = ( e x i s t s  ?y (and ( s t o r y  ?y )  ( p a i n t  ?x ? y ) ) )  

The semantics of a noun has to fill the ?p hole of a determiner, possibly using the 
metavariable ?x. The three arguments to the Noun predicate are the agreement, the 
metavariable ?x, and the assertion that the noun phrase makes about ?x: 



( ru le  (Noun 3sg ?x (picture ? X I )  - -> (:word pic ture))  
( ru l e  (Noun 3sg ?x (story ? X I )  - ->  (:word s to ry ) )  
( ru le  (Noun 3sg ?x (and (young ?x) (male ?x) (human ? X I ) )  - -> 

(:word boy)) 

The NP predicate is changed to take four arguments. First is the agreement, then 
the metavariable ?x. Third is a predicate that will be supplied externally, by the verb 
phrase. The final argument returns the interpretation of the NP as a whole. As we 
have stated, this comes from the determiner: 

( ru le  ( N P  ?agr ?x ?pred ?pred) - ->  
(Name ?agr ?name)) 

; ( r u l e  ( N P  ?agr ?x ?pred ?np) --> 
; (Det ?agr ?x ?noun ?pred ?np) 
; (Noun ?agr ?x ?noun)) 

The rule for an NP with determiner is commented out because it is convenient to 
introduce an extended rule to replace it at this point. The new rule accounts for 
certain relative clauses, such as "the boy that paints a picture": 

( ru le  ( N P  ?agr ?x ?pred ?np) - -> 
(Det ?agr ?x ?noun&rel ?pred ?np) 
(Noun ?agr ?x ?noun) 
(re1 -clause ?agr ?x ?noun ?noun&rel)) 

( ru l e  (re1 -clause ?agr ?x ?np ?np) - ->  
( ru le  (re1 -cl ause ?agr ?x ?np (and ?np ?re1 1)  - ->  

(:word t h a t )  
( V P  ?agr ?x ?re1 1) 

The new rule does not account for relative clauses where the object is missing, such 
as "the picture that the boy paints." Nevertheless, the addition of relative clauses 
means we can now generate an infinite language, since we can always introduce a 
relative clause, which introduces a new noun phrase, which in turn can introduce 
yet another relative clause. 

The rules for relative clauses are not complicated, but they can be difficult to 
understand. Of the four arguments to re1 -clause, the first two hold the agree- 
ment features of the head noun and the metavariable representing the head noun. 
The last two arguments are used together as an accumulator for predications about 
the metavariable: the third argument holds the predications made so far, and the 
fourth will hold the predications including the relative clause. So, the first rule for 
re1 - cl ause says that if there is no relative clause, then what goes in to the accumu- 
lator is the same as what goes out. The second rule says that what goes out is the 
conjunction of what comes in and what is predicated in the relative clause itself. 



Verbs apply to either one or two metavariables, just as they did before. So we can 
use the definitions of Verb/ t r and Verb/ i n t r unchanged. For variety, I've added a 
few more verbs: 

( r u l e  ( V e r b l t r  "3sg ?x ?y ( p a i n t  ?x ? y ) )  - -> (:word p a i n t ) )  
( r u l e  ( V e r b l t r  3sg ?x ?y ( p a i n t  ?x ? y ) )  - ->  (:word p a i n t s ) )  
( r u l e  ( V e r b l t r  ?any ?x  ?y ( p a i n t  ?x ? y ) )  - ->  (:word p a i n t e d ) )  

( r u l e  ( V e r b l i n t r  "3sg ?x (s leep  ? X I )  - ->  (:word s leep) )  
( r u l e  ( V e r b l i n t r  3sg ?x (s leep  ? X I )  - ->  (:word s leeps) )  
( r u l e  ( V e r b l i n t r  ?any ?x  (s leep  ? X I )  - -> (:word s l e p t ) )  

( r u l e  ( V e r b l i n t r  3sg ?x ( s e l l s  ? X I )  - ->  (:word s e l l s ) )  
( r u l e  ( V e r b l i n t r  3sg ?x ( s t i n k s  ? X I )  - ->  (:word s t i n k s ) )  

Verb phrases and sentences are almost as before. The only difference is in the call to 
NP, which now has extra arguments: 

( r u l e  (VP ?agr ?x ?vp) - ->  
( V e r b l t r  ?agr ?x  ?ob j  ?verb)  
(NP ?any-agr ?ob j  ?verb ?vp) )  

( r u l e  (VP ?agr ?x ?vp) - ->  
( V e r b l i n t r  ?agr ?x  ?vp) )  

( r u l e  (S ?np) - -> 
(NP ?agr ?x  ?vp ?np) 
(VP ?agr ?x ?vp) )  

With this grammar, we get the following correspondence between sentences and 
logical forms: 

Every p i c t u r e  p a i n t s  a  s t o r y .  
(ALL ?3 ( ->  (PICTURE ?3) 

(EXISTS ?14 (AND (STORY ? I 4 1  (PAINT ?3 ? 1 4 ) ) ) ) )  

Every boy t h a t  p a i n t s  a  p i c t u r e  sleeps. 
(ALL ?3 ( ->  (AND (AND (YOUNG ?3) (MALE ?3)  (HUMAN ? 3 ) )  

(EXISTS ?19 (AND (PICTURE ? I 9 1  
(PAINT ?3 ? 1 9 ) ) ) )  

(SLEEP ? 3 ) ) )  

Every boy t h a t  sleeps p a i n t s  a  p i c t u r e .  
(ALL ?3 ( ->  (AND (AND (YOUNG ?3) (MALE ? 3 )  (HUMAN ?3) )  

(SLEEP ? 3 ) )  
(EXISTS ?22 (AND (PICTURE ?22) (PAINT ?3 ? 2 2 ) ) ) ) )  



Every boy t h a t  p a i n t s  a p i c t u r e  t h a t  s e l l s  
p a i n t s  a p i c t u r e  t h a t  s t i n k s .  
(ALL ?3 ( ->  (AND (AND (YOUNG ?3)  (MALE ?3) (HUMAN ? 3 ) )  

(EXISTS ?19 (AND (AND (PICTURE ? I 9 1  (SELLS ?19) )  
(PAINT ?3 ? 1 9 ) ) ) )  

(EXISTS ?39 (AND (AND (PICTURE ?39) (STINKS ?39))  
(PAINT ?3 ? 3 9 ) ) ) ) )  

20.5 Preserving Quantifier Scope Ambiguity 

Consider the simple sentence "Every man loves a woman." This sentence is ambigu- 
ous between the following two interpretations: 

The first interpretation is that every man loves some woman-his wife, perhaps. 
The second interpretation is that there is a certain woman whom every man loves- 
Natassja Kinski, perhaps. The meaning of the sentence is ambiguous, but the struc- 
ture is not; there is only one syntactic parse. 

In the last section, we presented a parser that would construct one of the two 
interpretations. In this section, we show how to construct a single interpretation 
that preserves the ambiguity, but can be disambiguated by a postsyntactic process. 
The basic idea is to construct an intermediate logical form that leaves the scope of 
quantifiers unspecified. This intermediate form can then be rearranged to recover 
the final interpretation. 

To recap, here is the interpretation we would get for "Every man loves a woman," 
given the grammar in the previous section: 

( a l l  ?m ( ->  (man ?m) ( e x i s t s  ?w) (and (woman ?w) ( l oves  ?m ? w ) ) ) )  

We will change the grammar to produce instead the intermediate form: 

(and ( a l l  ?m (man ?m)) 
( e x i s t s  ?w (wowan ?w)) 
( l oves  ?m ?w)) 

The difference is that logtcal components are produced in smaller chunks, with 
unscoped quantifiers. The typical grammar rule will build up an interpretation by 
conjoining constituents with and, rather than by fitting pieces into holes in other 



pieces. Here is the complete grammar and a just-large-enough lexicon in the new 
format: 

( r u l e  ( S  (and ?np ?vp) )  - -> 
(NP ?agr ?x ?np) 
(VP ?agr ?x ?vp) )  

( r u l e  (VP ?agr ?x  (and ?verb ? o b j ) )  - ->  
( V e r b l t r  ?agr ?x ?o ?verb)  
(NP ?any-agr ?o ? o b j ) )  

( r u l e  (VP ?agr ?x ?verb)  - -> 
( V e r b l i n t r  ?agr ?x  ?verb ) )  

( r u l e  (NP ?agr ?name t )  - -> 
(Name ?agr ?name)) 

( r u l e  (NP ?agr ?x ?de t )  - ->  
(Det ?agr ?x  (and ?noun ?re11 ?de t )  
(Noun ?agr ?x ?noun) 
( re1  - c l  ause ?agr ?x ?re1 1) 

( r u l e  ( re1  - c l  ause ?agr ?x  t )  - -> 
( r u l e  ( re1  -c lause ?agr ?x ?re1 - -> 

(:word t h a t )  
(VP ?agr ?x  ?re1 1)  

( r u l e  (Name 3sg Ter ry )  - -> (:word T e r r y ) )  
( r u l e  (Name 3sg Jean) - -> (:word Jean)) 
( r u l e  (Det 3sg ?x  ? r e s t r  ( a l l  ?x  ? r e s t r ) )  - -> (:word every ) )  
( r u l e  (Noun 3sg ?x  (man ? X I )  - -> (:word man)) 
( r u l e  ( V e r b l t r  3sg ?x ?y ( l o v e  ?x ?y)) - ->  (:word l o v e s ) )  
( r u l e  ( V e r b l i n t r  3sg ?x  ( l i v e s  ? X I )  - ->  (:word l i v e s ) )  
( r u l e  (Det 3sg ?x  ?res ( e x i s t s  ?x ? r e s ) )  - ->  (:word a ) )  
( r u l e  (Noun 3sg ?x  (woman ? x ) )  - ->  (:word woman)) 

This gives us the following parse for "Every man loves a woman": 

(and ( a l l  ?4 (and (man ?4) t ) )  
(and ( l o v e  ?4 ?12) ( e x i s t s  ?12 (and (woman ?12) t ) ) ) )  

If we simplified this, eliminating the t s  and joining ands, we would get the desired 
representation: 

(and ( a l l  ?m (man ?m)) 
( e x i s t s  ?w (wowan ?w)) 
( l oves  ?m ?w)) 

From there, we could use what we know about syntax, in addition to what we know 



about men, woman, and loving, to determine the most likely final interpretation. 
This will be covered in the next chapter. 

20.6 Long-Distance Dependencies 

So far, every syntactic phenomena we have considered has been expressible in a 
rule that imposes constraints only at a single level. For example, we had to impose 
the constraint that a subject agree with its verb, but this constraint involved two 
immediate constituents of a sentence, the noun phrase and verb phrase. We didn't 
need to express a constraint between, say, the subject and a modifier of the verb's 
object. However, there are linguistic phenomena that require just these kinds of 
constraints. 

Our rule for relative clauses was avery simple one: arelative clause consists of the 
word "that" followed by a sentence that is missing its subject, as in "every man that 
loves a woman." Not all relative clauses follow this pattern. It is also possible to form 
a relative clause by omitting the object of the embedded sentence: "every man that a 
woman loves u." In this sentence, the symbol indicates a gap, which is understood 
as being filled by the head of the complete noun phrase, the man. This has been 
called afiller-gap dependency. It is also known as a long-distance dependency, because 
the gap can occur arbitrarily far from the filler. For example, all of the following are 
valid noun phrases: 

The person that Lee likes 
The person that Kim thinks Lee likes 
The person that Jan says Kim thinks Lee likes 

In each case, the gap is filled by the head noun, the person. But any number of relative 
clauses can intervene between the head noun and the gap. 

The same kind of filler-gap dependency takes place in questions that begin with 
"who," "what," "where," and other interrogative pronouns. For example, we can ask 
a question about the subject of a sentence, as in"Who likes Lee?", or about the object, 
as in "Who does Kim like ,,?" 

Here is a grammar that covers relative clauses with gapped subjects or objects. 
The rules for S, VP, and NP are augmented with a pair of arguments representing 
an accumulator for gaps. Like a difference list, the first argument minus the second 
represents the presence or absence of a gap. For example, in the first two rules for 
noun phrases, the two arguments are the same, ?gO and ?go. This means that the rule 
as a whole has no gap, since there can be no difference between the two arguments. 
In the third rule for NP, the first argument is of the form (gap . . . 1, and the second 
is nogap. This means that the right-hand side of the rule, an empty constituent, can 
be parsed as a gap. (Note that if we had been using true difference lists, the two 



arguments would be ( ( gap  . . . ? gO and ?go. But since we are only dealing with 
one gap per rule, we don't need true difference lists.) 

The rule for S says that a noun phrase with gap ?gO minus ? g l  followed by a verb 
phrase with gap ? g l  minus ?g2  comprise a sentence with gap ?gO minus ?g2. The 
rule for relative clauses finds a sentence with a gap anywhere; either in the subject 
position or embedded somewhere in the verb phrase. Here's the complete grammar: 

( r u l e  (S ?gO ?g2 (and ?np ?vp) )  - -> 
(NP ?gO ? g l  ?agr ?x  ?np) 
(VP ? g l  ?g2 ?agr ?x  ?vp) )  

( r u l e  (VP ?gO ? g l  ?agr ?x (and ?ob j  ?ve rb ) )  - ->  
( V e r b l t r  ?agr ?x ?o ?verb)  
(NP ?gO ? g l  ?any-agr ?o ? o b j ) )  

( r u l e  (VP ?gO ?gO ?agr ?x ?verb)  - ->  
( V e r b l i n t r  ?agr ?x ?verb ) )  

( r u l e  (NP ?gO ?gO ?agr ?name t )  - -> 
(Name ?agr ?name)) 

( r u l e  (NP ?gO ?gO ?agr ?x  ?de t )  - ->  
(Det ?agr ?x (and ?noun ?re11 ?de t )  
(Noun ?agr ?x ?noun) 
( re1  -c lause ?agr ?x ?re1 1) 

( r u l e  (NP (gap NP ?agr ?x )  nogap ?agr ?x t )  - ->  

( r u l e  ( re1  - c l  ause ?agr ?x  t )  - -> 

( r u l e  ( re1  -c lause ?agr ?x ?re1 - ->  
(:word t h a t )  
(S (gap NP ?agr ?x )  nogap ?re111 

Here are some sentence/parse pairs covered by this grammar: 

Every man t h a t  u l o v e s  a woman l i k e s  a person. 
(AND (ALL ?28 (AND (MAN ?28) 

(AND T (AND (LOVE ?28 ?30) 
(EXISTS ?30 (AND (WOMAN ?30) 

T ) ) ) ) ) )  
(AND (EXISTS ?39 (AND (PERSON ?39) T I )  (LIKE ?28 ? 3 9 ) ) )  

Every man t h a t  a woman loves u l i k e s  a person. 
(AND (ALL ?37 (AND (MAN ?37) 

(AND (EXISTS ?20 (AND (WOMAN ?20) T I )  
(AND T (LOVE ?20 ?37) 1) 1) 

(AND (EXISTS ?39 (AND (PERSON ?39) T I )  (LIKE ?37 ? 3 9 ) ) )  



Every man t h a t  l oves  a b i r d  t h a t  u f l i e s  l i k e s  a person. 

(AND (ALL ?28 (AND (MAN ?28) 

(AND T (AND (EXISTS ?54 

(AND (BIRD ?54) 

(AND T (FLY ? 5 4 ) ) ) )  

(LOVE ?28 ? 5 4 ) ) ) ) )  

(AND (EXISTS ?60 (AND (PERSON ?60) T I )  (LIKE ?28 ? 6 0 ) ) )  

Actually, there are limitations on the situations in which gaps can appear. In partic- 
ular, it is rare to have a gap in the subject of a sentence, except in the case of a relative 
clause. In the next chapter, we will see how to impose additional constraints on gaps. 

20.7 Augmenting DCG Rules 

In the previous section, we saw how to build up a semantic representation of a 
sentence by conjoining the semantics of the components. One problem with this 
approach is that the semantic interpretation is often something of the form (and 
( and t a 1 b 1, when we would prefer ( and a b 1. There are two ways to correct 
this problem: either we add a step that takes the final semantic interpretation and 
simplifies it, or we complicate each individual rule, making it generate the simplified 
form. The second choice would be slightly more efficient, but would be very ugly 
and error prone. We should be doing all we can to make the rules simpler, not more 
complicated; that is the whole point of the DCG formalism. This suggests a third 
approach: change the rule interpreter so that it automatically generates the semantic 
interpretation as a conjunction of the constituents, unless the rule explicitly says 
otherwise. This section shows how to augment the DCG rules to handle common 
cases like this automatically. 

Consider again a rule from section 20.4: 

( r u l e  (S (and ?np ?vp ) )  - -> 

(NP ?agr ?x ?np) 

(VP ?agr ? x  ? v p ) )  

If we were to alter this rule to produce a simplified semantic interpretation, it would 
look like the following, where the predicate and* simplifies a list of conjunctions into 
a single conjunction: 



( r u l e  (S ?sem) - ->  
(np ?agr ?x ?np) 
(vp ?agr ?x ?vp) 
( : t e s t  (and* (?np ?vp) ?sem) 1)  

Many rules will have this form, so we adopt a simple convention: if the last argument 
of the constituent on the left-hand side of a rule is the keyword : sem, then we will 
build the semantics by replacing : sem with a conjunction formed by combining all 
the last arguments of the constituents on the right-hand side of the rule. A = => arrow 
will be used for rules that follow this convention, so the following rule is equivalent 
to the one above: 

( r u l e  (S :sem) ==> 
(NP ?agr ?x ?np) 
(VP ?agr ?x ?vp) )  

It is sometimes useful to introduce additional semantics that does not come from one 
of the constituents. This can be indicated with an element of the right-hand side that 
is a list starting with : sem. For example, the following rule adds to the semantics the 
fact that ?x is the topic of the sentence: 

( r u l e  (S :sem) ==> 
(NP ?agr ?x ?np) 
(VP ?agr ?x ?vp) 
(:sem ( t o p i c  ? X I ) )  

Before implementing the rule function for the = => arrow, it is worth considering if 
there are other ways we could make things easier for the rule writer. One possibility is 
to provide a notation for describingexamples. Examples make it easier to understand 
what a rule is designed for. For the S rule, we could add examples like this: 

( r u l e  (S :sem) ==> 
(:ex "John l i k e s  Mary" "He s leeps" )  
(NP ?agr ?x  ?np) 
(VP ?agr ?x  ?vp))  

These examples not only serve as documentation for the rule but also can be stored 
under S and subsequently run when we want to test if S is in fact implemented 
properly. 

Another area where the rule writer could use help is in handling left-recursive 
rules. Consider the rule that says that a sentence can consist of two sentences joined 
by a conjunction: 



( rule  ( S  (?conj ? s l  ?s2))  ==> 
(:ex "John likes Mary and  Mary likes John") 
( S  ? s l )  
(Conj ?conj) 
( S  ?s2))  

While this rule is correct as a declarative statement, it will run into difficulty when 
run by the standard top-down depth-first DCG interpretation process. The top-level 
goal of parsing an S will lead immediately to the subgoal of parsing an S, and the 
result will be an infinite loop. 

Fortunately, we know how to avoid this kind of infinite loop: split the offending 
predicate, S, into two predicates: one that supports the recursion, and one that is at 
a lower level. We will call the lower-level predicate S-. Thus, the following rule says 
that a sentence can consist of two sentences, where the first one is not conjoined and 
the second is possibly conjoined: 

(rule  (S (?conj ? s l  ?s2))  ==> 
(S- ? s l )  
(Conj ?conj) 
(S ?s2))  

We also need a rule that says that a possibly conjoined sentence can consist of a 
nonconjoined sentence: 

(rule  (S ?sem) ==> (S- ?sem) 

To make this work, we need to replace any mention of S in the left-hand side of a rule 
with ST. References to S in the right-hand side of rules remain unchanged. 

(rule  (S- ?sem) ==> . . . 

To make this all automatic, we will provide a macro, conj - rul el that declares a 
category to be one that can be conjoined. Such a declaration will automatically 
generate the recursive and nonrecursive rules for the category, and will insure that 
future references to the category on the left-hand side of a rule will be replaced with 
the corresponding lower-level predicate. 

One problem with this approach is that it imposes a right-branching parse on 
multiple conjoined phrases. That is, we will get parses like "spaghetti and (meatballs 
and salad)" not "(spaghetti and meatballs) and salad." Clearly, that is the wrong 
interpretation for this sentence. Still, it can be argued that it is best to produce 
a single canonical parse, and then let the semantic interpretation functions worry 
about rearranging the parse in the right order. We will not attempt to resolve this 



debate but will provide the automatic conjunction mechanism as a tool that can be 
convenient but has no cost for the user who prefers a different solution. 

We are now ready to implement the extended DCG rule formalism that handles 
: sem, : ex, and automatic conjunctions. The function make - augmented - dcg, stored 
under the arrow = =>, will be used to implement the formalism: 

(setf (get '==> 'rule-function) 'make-augmented-dcg) 

(defun make-augmented-dcg (head body) 
"Build an augmented DCG rule that handles :sem, :ex, 
and automatic conjunctiontive constituents." 
(if (eq (last1 head) :sem) 

; ; Hand1 e : sem 
(let* ((?sem (gensym " ? S E M " ) ) )  
(make-augmented-dcg 

' ( ,@(but1 ast head) ,?sem) 
'(,@(remove :sem body :key #'first-or-nil) 

(:test ,(collect-sems body ?sem))))) 
;; Separate out examples from body 
(multiple-value-bind (exs new-body) 

(partition-if #'(lambda (x) (starts-with x :ex)) body) 
;; Handle conjunctions 
(let ((rule '(rule , (handle-conj head) - -> .@new-body) 1)  
(if (null exs) 

rule 
'(progn (:ex ,head .,(mappend #'rest exs)) 

,rule>>>)>> 

First we show the code that collects together the semantics of each constituent and 
conjoins them when : sem is specified. The function col 1 ec t  -sems picks out the 
semantics and handles the trivial cases where there are zero or one constituents on 
the right-hand side. If there are more than one, it inserts a call to the predicate and*. 

(defun collect-sems (body ?sem) 
"Get the semantics out of each constituent in body, 
and combine them together into ?sem." 
(let ((sems (loop for goal in body 

unless (or (dcg-normal-goal-p goal) 
(dcg-word-list-p goal 
(starts-wi th goal :ex) 
(atom goal 1)  

coll ect (1 astl goal 1) 1)  
(case (length sems) 

( 0  ' (=  ,?sem t)) 
(1 ' (=  ,?sem ,(first sems))) 
(t '(and* ,sems ,?sem))))) 



We could have implemented and* with Prolog clauses, but it is slightly more efficient 
to do it directly in Lisp. A call to con j uncts collects all the conjuncts, and we then 
add an and if necessary: 

(defun and*/2 ( i n  ou t  con t )  
" I N  i s  a l i s t  o f  conjuncts  t h a t  are conjo ined i n t o  OUT." 
;; E.g.: (and* (t (and a b )  t (and c d l  t )  ?x )  ==> 
. . 
s s ?x = (and a b c d )  
( i f  ( u n i f y !  ou t  (maybe-add 'and (con junc ts  (cons 'and i n ) )  t ) )  

( f u n c a l l  cant))) 

(defun conjuncts  (exp) 
"Get a l l  t h e  conjuncts  from an expression." 
( d e r e f  exp) 
(cond ( (eq  exp t )  n i l )  

((atom exp) ( l i s t  exp ) )  
( (eq  ( d e r e f  ( f i r s t  exp))  ' n i l )  n i l )  
( (eq  ( f i r s t  exp) 'and) 

(mappend # 'conjuncts  ( r e s t  e x p ) ) )  
( t  ( l i s t  e x p ) ) ) )  

The next step is handling example phrases. The code in make - augmented - dcg turns 
examples into expressions of the form: 

( :ex ( S  ?sem) "John l i k e s  Mary" "He s leeps" )  

To make this work, : ex will have to be a macro: 

(defmacro :ex ( ( ca tegory  . args)  &body examples) 
"Add some example phrases, indexed under t h e  category."  
'(add-examples ' ,category ' ,args ',examples)) 

: ex calls add - exampl es to do all the work. Each example is stored in a hash table 
indexed under the the category. Each example is transformed into a two-element list: 
the example phrase string itself and a call to the proper predicate with all arguments 
supplied. The function add - exampl es does this transformation and indexing, and 
run-exampl es retrieves the examples stored under a category, prints each phrase, 
and calls each goal. The auxiliary functions get  - exampl es and c l  ea r - exampl es are 
provided to manipulate the example table, and remove - punct i on, punctua ti on - p 
and s t  r i ng ->1 i s t  are used to map from a string to a list of words. 

(de fva r  *examples* (make-hash-table : t e s t  # 'eq ) )  

(defun get-examples (category)  (gethash category *examples*)) 

(defun c l  ear-exampl es ( ( c l  rhash *examp1 es*) ) 



(defun add-examples (category args examples) 
"Add these example s t r i n g s  t o  t h i s  category, 
and when i t  comes t ime  t o  run them, use t h e  args." 
( do1 i s t  ( exampl e exampl es 

(when ( s t r i n g p  example) 
( l e t  ( ( e x  '(,example 

(,category ,@args 
, ( s t r i n g - > l  i s t  

(remove-punctuat ion example)) 0)))) 
(un less (member ex (get-examples category)  

: t e s t  # 'equal 
( s e t f  (gethash category *examples*) 

(nconc (get-examples category)  ( l i s t  e x ) ) ) ) ) ) ) )  

(defun run-exampl es (&op t iona l  category)  
"Run a l l  t h e  example phrases s to red  under a category. 
With no category, run ALL t h e  examples." 
(pro1 og-compi 1 e-symbol s 
( i f  ( n u l l  category)  

(maphash #'(lambda ( c a t  va l  
(dec l  are ( i gnore  va l  
( format  t ""Z&Examples o f  "a:"&" c a t )  
( run-exampl es c a t  1) 

*examp1 es*) 
(do1 i s t  ( exampl e ( g e t  -examp1 es category)  

( fo rmat  t ""Z&EXAMPLE: "{"a"&"9T"a")" exampl e l  
( t o p - l e v e l - p r o v e  ( c d r  example)) ) ) )  

(defun remove-punctuat ion ( s t r i n g )  
"Rep1 ace punctuat ion w i t h  spaces i n  s t r i n g .  " 
( s u b s t i t u t e - i f  #\space # 'punc tua t ion-p  s t r i n g ) )  

(defun s t r i n g - > l i s t  ( s t r i n g )  
"Convert a s t r i n g  t o  a l i s t  o f  words." 
( r e a d - f r o m- s t r i n g  (concatenate ' s t r i n g  " ( "  s t r i n g  " 1 " ) ) )  

(defun punc tua t ion -p  (char )  ( f i n d  char "*-.,;:'!?#-O\\\"")) 

The final part of our augmented DCG formalism is handling conjunctive constituents 
automatically. We already arranged to translate category symbols on the left-hand 
side of rules into the corresponding conjunctive category, as specified by the function 
hand1 e-  con j. We also want to generate automatically (or as easily as possible) rules 
of the following form: 

( r u l e  (S (?con j  ? s l  ?s2 ) )  ==> 
(S- ? s l )  
(Conj ?con j )  
( S  ?s2 ) )  



( ru le  (S ?sem) ==> (S- ?sem)) 

But before we generate these rules, let's make sure they are exactly what we want. 
Consider parsing a nonconjoined sentence with these two rules in place. The first 
rule would parse the entire sentence as a S, and would then fail to see a Con j, and thus 
fail. The second rule would then duplicate the entire parsing process, thus doubling 
the amount of time taken. If we changed the order of the two rules we would be able 
to parse nonconjoined sentences quickly, but would have to backtrack on conjoined 
sentences. 

The following shows a better approach. A single rule for S parses a sentence 
with S, and then calls Con j 5, which can be read as "either a conjunction followed 
by a sentence, or nothing." If the first sentence is followed by nothing, then we just 
use the semantics of the first sentence; if there is a conjunction, we have to form a 
combined semantics. I have added . . . to show where arguments to the predicate 
other than the semantic argument fit in. 

( ru le  (S ... ?s-combined) ==> 
(S- . .. ?semi) 

(Conj-S ?seml ?s-combined)) 

( ru le  (Conj-S ?seml (?conj ?seml ?sem2)) ==> 
(Conj ?conj) 
(S ... ?sem2)) 

( ru le  (Conj-S ?seml ?semi) ==>I  

Now all we need is a way for the user to specify that these three rules are desired. 
Since the exact method of building up the combined semantics and perhaps even 
the call to Con j may vary depending on the specifics of the grammar being defined, 
the rules cannot be generated entirely automatically. We will settle for a macro, 
con j - rul e, that looks very much like the second of the three rules above but expands 
into all three, plus code to relate S- to S. So the user will type: 

(conj-rule (Conj-S ?seml (?conj ?seml ?sem2)) ==> 
(Conj ?conj 
(S ?a ?b ?c ?sem2)) 

Here is the macro definition: 

(defmacro conj-rule ((conj-cat  seml combined-sem) ==> 
conj ( ca t  . a rgs ) )  

"Define t h i s  category as an automatic conjunction." 
' ( progn 

( se t f  (get  ' , c a t  'conj-cat)  ',(symbol cat  ' -1) 



( ru le  ( , ca t  ,@(bu t l a s t  args) ?combined-sem) ==> 
( ,(symbol cat  '-1 ,@(but las t  ,args) ,semi) 
( ,conj-ca t  ,seml ?combined-sem)) 

( ru le  ( ,conj-ca t  ,seml ,combined-sem) ==> 
, con j 
( , c a t  ,@args))  

( ru le  ( ,conj-ca t  ?seml ?semi) = = > ) ) I  

and here we define handl  e - con j to substitute S- for S in the left-hand side of rules: 

(defun handl e-conj (head) 
"Replace (Cat . . . I  with (Cat- . . . I  i f  Cat i s  declared 
as a conjunctive category." 
( i f  (and ( l i s t p  head) (conj-category (predicate head)))  

(cons (conj-category (predicate head)) (args head)) 
head 

(defun conj-category (predicate) 
" I f  t h i s  i s  a conjunctive predicate, return the Cat- symbol." 
(get  predicate 'conj-category)) 

20.8 History and References 

As we have mentioned, Alain Colmerauer invented Prolog to use in his grammar of 
French (1973). His metamorphosisgrammar formalism was more expressive but much 
less efficient than the standard DCG formalism. 

The grammar in section 20.4 is essentially the same as the one presented in Fer- 
nando Pereira and David H. D. Warren's 1980 paper, which introduced the Definite 
Clause Grammar formalism as it is known today. The two developed a much more 
substantial grammar and used it in a very influential question-answering system 
called Chat-80 (Warren and Pereira, 1982). Pereira later teamed with Stuart Shieber 
on an excellent book covering logic grammars in more depth: Prolog and Natural- 
Language Analysis (1987). The book has many strong points, but unfortunately it does 
not present a grammar anywhere near as complete as the Chat-80 grammar. 

The idea of a compositional semantics based on mathematical logic owes much 
to the work of the late linguist Richard Montague. The introduction by Dowty, Wall, 
and Peters (1981) and the collection by Rich Thomason (1974) cover Montague's 
approach. 

The grammar in section 20.5 is based loosely on Michael McCord's modular logic 
grammar, as presented in Walker et al. 1990. 

It should be noted that logic grammars are by no means the only approach to 
natural language processing. Woods (1970) presents an approach based on the 



augmented transition network, or ATN. A transition network is like a context-free 
grammar. The augmentation is a way of manipulating features and semantic values. 
This is just like the extra arguments in DCGs, except that the basic operations are 
setting and testingvariables rather thanunification. So the choice between ATNs and 
DCGs is largely a matter of what programming approach you are most comfortable 
with: procedural for ATNs and declarative for DCGs. My feeling is that unification is 
a more suitable primitive than assignment, so I chose to present DCGs, even though 
this required bringing in Prolog's backtracking and unification mechanisms. 

In either approach, the same linguistic problems must be addressed-agreement, 
long-distance dependencies, topicalization, quantifier-scope ambiguity, and so on. 
Comparing Woods's (1970) ATN grammar to Pereira and Warren's (1980) DCG gram- 
mar, the careful reader will see that the solutions have much in common. The analysis 
is more important than the notation, as it should be. 

20.9 Exercises 

p Exercise 20.2 [m] Modify the grammar (from section 20.4, 20.5, or 20.6) to allow 
for adjectives before a noun. 

p Exercise 20.3 [m] Modify the grammar to allow for prepositional phrase modifiers 
on verb and noun phrases. 

p Exercise 20.4 [m] Modify the grammar to allow for ditransitive verbs-verbs that 
take two objects, as in "give the dog a bone." 

p Exercise 20.5 Suppose we wanted to adopt the Prolog convention of writing DCG 
tests and words in brackets and braces, respectively. Write a function that will alter 
the readtable to work this way. 

p Exercise 20.6 [m] Define a rule function for a new type of DCG rule that automati- 
cally builds up a syntactic parse of the input. For example, the two rules: 

( ru le  ( s )  => (np) (vp))  
( ru le  (np) => (:word he))  

- should be equivalent to: 



( r u l e  ( s  ( s  ?1 ?2) )  - ->  (np ?1) ( v p  ? 2 ) )  
( r u l e  (np (np he) )  - ->  (:word he) )  

Exercise 20.7 [m] There are advantages and disadvantages to the approach that 
Prolog takes in dividing predicates into clauses. The advantage is that it is easy to 
add a new clause. The disadvantage is that it is hard to alter an existing clause. If 
you edit a clause and then evaluate it, the new clause will be added to the end of the 
clause list, when what you really wanted was for the new clause to take the place 
of the old one. To achieve that effect, you have to call cl ear -predi cate, and then 
reload all the clauses, not just the one that has been changed. 

Write a macro named- rul e that is just like rul e, except that it attaches names to 
clauses. When a named rule is reloaded, it replaces the old clause rather than adding 
a new one. 

p Exercise 20.8 [h] Extend the DCG rule function to allow or goals in the right-hand 
side. To make this more useful, also allow and  goals. For example: 

( r u l e  (A) - ->  ( B )  ( o r  ( C )  (and ( D l  ( E l ) )  ( F ) )  

should compile into the equivalent of: 

(<- (A ?SO ?S4) 
(B ?SO ?S1) 
(OR (AND ( C  ?S1 ?S2) (= ?S2 ?S3)) 

(AND (D ?S1 ?S2) ( E  ?S2 ?S3)) )  
(F  ?S3 ?S4)) 

20.10 Answers 

Answer 20.1 It uses local variables (?so, ? s l  . . . ) that are not guaranteed to be 
unique. This is a problem if the grammar writer wants to use these symbols anywhere 
in his or her rules. The fix is to gensym symbols that are guaranteed to be unique. 



Answer 20.5 

(defun setup-braces (&op t iona l  (on? t )  ( read tab l  e  "readtab1 e*) 
"Make [a b l  read as (:word a b )  and {a b) as ( : t e s t  a  b  c )  
i f  ON? i s  t r u e ;  o therwise r e v e r t  {[I)  t o  normal . "  
( i f  ( n o t  on?) 

(map n i l  #'(lambda ( c )  
(set -macro-character  c  (get-macro-character  # \a )  

t readtabl  e l  1 
l l { c l ) l l  > 

( progn 
(set -macro-character  

# \ I  (get -macro-character  # \ ) I  n i l  read tab le )  
(set-macro-character  

# \ )  (get -macro-character  # \  1 )  n i  1  readtab l  e l  
(set -macro-character  

# \ [  #'(lambda ( s  i gnore )  
(cons :word ( r e a d - d e l i m i t e d - l i s t  #\I s t ) ) )  

n i  1  readtab l  e l  
(set -macro-character  

# \ {  #'(lambda ( s  i gnore )  
(cons : t e s t  ( r e a d - d e l i m i t e d - l i s t  # \ )  s  t ) ) )  

n i  1  readtab l  e)  1) 



CHAPTER 21 
A Grammar of English 

Prefer geniality to grammar. 

-Henry Watson Fowler 
The King's English (1 906) 

he previous two chapters outline techniques for writing grammars and parsers based on 
those grammars. It is quite straightforward to apply these techniques to applications 
like the CD player problem where input is limited to simple sentences like "Play 1 to 

8 without 3." But it is a major undertaking to write a grammar for unrestricted English input. 
This chapter develops a grammar that covers all the major syntactic constructions of English. It 
handles sentences of much greater complexity, such as "Kim would not have been persuaded 
by Lee to look after the dog." The grammar is not comprehensive enough to handle sentences 
chosen at random from a book, but when augmented by suitable vocabulary it is adequate for a 
wide variety of applications. 

This chapter is organized as a tour through the English language. We first cover noun 
phrases, then verb phrases, clauses, and sentences. For each category we introduce examples, 
analyze them linguistically, and finally show definite clause grammar rules that correspond to 
the analysis. 



As the last chapter should have made clear, analysis more often results in com- 
plication than in simplification. For example, starting with a simple rule like ( S  
- -> NP V P ) ,  we soon find that we have to add arguments to handle agreement, se- 
mantics, and gapping information. Figure 21.1 lists the grammatical categories and 
their arguments. Note that the semantic argument, sem, is always last, and the gap 
accumulators, g a p l  and gap2, are next-to-last whenever they occur. All single-letter 
arguments deriote metavariables; for example, each noun phrase (category NP) will 
have a semantic interpretation, sem, that is a conjunction of relations involving the 
variable x. Similarly, the h in modi f i ers  is a variable that refers to the head-the thing 
that is being modified. The other arguments and categories will be explained in turn, 
but it is handy to have this figure to refer back to. 

Category Arguments 
Preterminals 

name a g r  name 
v e r b  v e r b  i n f l e c t i o n  s l o t s  v  sem 
re1 - p r o  c a s e  t y p e  
pronoun a g r  c a s e  wh x sem 
a r t  a g r  q u a n t  
a d j  x sem 
c a r d i n a l  number a g r  
o r d i n a l  number 
P r ep  p r e p  sem 
noun a g r  s l o t s  x sem 
a  ux i n f l  e c t i  on n e e d s - i n f l  e c t i  on v  sem 
adve rb  x sem 

Nonterminals 
S s sem 
a u x - i n v - S  s u b j e c t  s  sem 
c l  a u s e  i n f l e c t i o n  x  i n t - s u b j  v  gap1 gap2 sem 
s u b j e c t  a g r  x  s u b j - s l o t  i n t - s u b j  gap1 gap2 sem 
V P  i n f l e c t i o n  x  s u b j e c t - s l o t  v  gap1 gap2 vp 
N P  a g r  c a s e  wh x gap1 gap2 np 
NP2 a g r  c a s e  x gap1 gap2 sem 
P P  p r e p  r o l e  wh np x  gap1 gap2 sem 
X P s l o t  c o n s t i t u e n t  wh x gap1 gap2 sem 
Det a g r  wh x r e s t r i c t i o n  sem 
re1  - c l a u s e  a g r  x  sem 
m o d i f i e r s  p r e l p o s t  c a t  i n f o  s l o t s  h gap1 gap2 sem 
complement c a t  i n f o  s l o t  h g a p l  gap2 sem 
a d j u n c t  p r e l p o s t  c a t  i n f o  h gap1 gap2 sem 
adv p  wh x gap1 gap2 sem 

Figure 21.1: Grammatical Categories and their Arguments 



21.1 Noun Phrases 

The simplest noun phrases are names and pronouns, such as "Kim" and "them." 
The rules for these cases are simple: we build up a semantic expression from a name 
or pronoun, and since there can be no gap, the two gap accumulator arguments are 
the same (? g 1). Person and number agreement is propagated in the variable ?a g r, 
and we also keep track of the case of the noun phrase. English has three cases that 
are reflected in certain pronouns. In the first person singular, "I" is the nominative or 
subjective case, "me" is the accusative or objective case, and "my" is thegenitive case. To 
distinguish them from the genitive, we refer to the nominative and the objective cases 
as the common cases. Accordingly, the three cases will be marked by the expressions 
( common norn), ( common ob j 1, and gen, respectively. Many languages of the world 
have suffixes that mark nouns as being one case or another, but English does not. 
Thus, we use the expression ( common ? 1 to mark nouns. 

We also distinguish between noun phrases that can be used in questions, like 
"who," and those that cannot. The ?wh variable has the value +wh for noun phrases 
like "who" or "which one" and - wh for nonquestion phrases. Here, then, are the rules 
for names and pronouns. The predicates name and pronoun are used to lookup words 
in the lexicon. 

( r u l e  (NP ?agr (common ? )  -wh ?x ? g l  ? g l  ( t h e  ?x (name ?name ? X I ) )  ==> 
(name ?agr ?name)) 

( r u l e  (NP ?agr ?case ?wh ?x  ? g l  ? g l  ?sem) ==> 
(pronoun ?agr ?case ?wh ?x ?sem)) 

Plural nouns can stand alone as noun phrases, as in "'dogs," but singular nouns need 
a determiner, as in "the dog" or "Kim's friend's biggest dog." Plural nouns can also 
take a determiner, as in "the dogs." The category Det is used for determiners, and 
NP2 is used for the part of a noun phrase after the determiner: 

( r u l e  (NP ( -  - - +) ?case -wh ?x ? g l  ?g2 (group ?x  ?sem)) ==> 
(:ex "dogs") ; P l u r a l  nouns d o n ' t  need a determiner 
(NP2 ( -  - - +) ?case ?x  ? g l  ?g2 ?sem)) 

( r u l e  (NP ?agr (common ? )  ?wh ?x ? g l  ?g2 ?sem) ==> 
(:ex "Every man" "The dogs on t h e  beach") 
(Det ?agr ?wh ?x  ? r e s t r i c t i o n  ?sem) 
(NP2 ?agr (common ? )  ?x  ? g l  ?g2 ? r e s t r i c t i o n ) )  

Finally, a noun phrase may appear externally to a construction, in which case the 
noun phrase passed in by the first gap argument will be consumed, but no words 
from the input will be. An example is the in "Whom does Kim like u?" 



( r u l e  (NP ? a g r  ? c a s e  ?wh ?x  (gap  (NP ? a g r  ? c a s e  ? X I )  ( gap  n i l )  t )  
==> . , . , Gapped NP 
1 

Now we address the heart of the noun phrase, the NP2 category. The lone rule for NP2 
says that it consists of a noun, optionally preceded and followed by modifiers: 

( r u l e  (NP2 ? a g r  (common ? )  ?x  ? g l  ?g2 :sem) ==> 
( m o d i f i e r s  p r e  noun ? a g r  0 ?x  (gap  n i l )  ( gap  n i l )  ? p r e )  
(noun ? a g r  ? s l o t s  ?x  ?noun)  
( m o d i f i e r s  p o s t  noun ? a g r  ? s l o t s  ?x  ? g l  ?g2 ? p o s t ) )  

21.2 Modifiers 

Modifiers are split into type types: Complements are modifiers that are expected by the 
head category that is beingmodified; they cannot stand alone. Adjuncts are modifiers 
that are not required but bring additional information. The distinction is clearest 
with verb modifiers. In "Kim visited Lee yesterday," "visited is the head verb, "Lee" 
is a complement, and "yesterday" is an adjunct. Returning to nouns, in "the former 
mayor of Boston," "mayor" is the head noun, "of Boston" is a complement (although 
an optional one) and "former" is an adjunct. 

The predicate modi f i ers takes eight arguments, so it can be tricky to understand 
them all. The first two arguments tell if we are before or after the head (pre or 
post) and what kind of head we are modifying (noun, verb, or whatever). Next is 
an argument that passes along any required information-in the case of nouns, it 
is the agreement feature. The fourth argument is a list of expected complements, 
here called ? s 1 ot s. Next is the metavariable used to refer to the head. The final 
three arguments are the two gap accumulators and the semantics, which work the 
same way here as we have seen before. Notice that the lexicon entry for each Noun 
can have a list of complements that are considered as postnoun modifiers, but there 
can be only adjuncts as prenoun modifiers. Also note that gaps can appear in the 
postmodifiers but not in the premodifiers. For example, we can have "What is Kevin 
the former mayor of ,?," where the answer might be "Boston." But even though 
we can construct a noun phrase like "the education president," where "education" 
is a prenoun modifier of "president," we cannot construct "* What is George the 
president?," intending that the answer be "education." 

There are four cases for modification. First, a complement is a kind of modifier. 
Second, if a complement is marked as optional, it can be skipped. Third, an adjunct 
can appear in the input. Fourth, if there are no complements expected, then there 
need not be any modifiers at all. The following rules implement these four cases: 



( r u l e  ( m o d i f i e r s  ? p r e / p o s t  ? c a t  ? i n f o  ( ? s l o t  . ? s l o t s )  ?h 
? g l  ?g3  :sem) ==> 

(complement ? c a t  ? i n f o  ? s l o t  ? h  ? g l  ?g2 ?mod) 
( m o d i f i e r s  ? p r e / p o s t  ? c a t  ? i n f o  ? s l o t s  ?h ?g2 ?g3  ?mods))  

( r u l e  ( m o d i f i e r s  ? p r e / p o s t  ? c a t  ? i n f o  ( ( ?  ( ? I  ? )  . ? s l o t s )  ?h 
? g l  ?g2 ?mods) ==> 

( m o d i f i e r s  ? p r e / p o s t  ? c a t  ? i n f o  ? s l o t s  ?h ? g l  ?g2 ?mods))  

( r u l e  ( m o d i f i e r s  ? p r e / p o s t  ? c a t  ? i n f o  ? s l o t s  ?h ? g l  ?g3  :sem) ==> 
( a d j u n c t  ? p r e / p o s t  ? c a t  ? i n f o  ?h ? g l  ?g2 ? a d j u n c t )  
( m o d i f i e r s  ? p r e / p o s t  ? c a t  ? i n f o  ? s l o t s  ?h ?g2 ?g3  ?mods))  

( r u l e  ( m o d i f i e r s  ? ? ? 0 ? ? g l  ? g l  t )  ==> 

We need to say more about the list of complements, or slots, that can be associated 
with words in the lexcion. Each slot is a list of the form (role number form 1, where 
the role refers to some semantic relation, the number indicates the ordering of the 
complements, and the form is the type of constituent expected: noun phrase, verb 
phrase, or whatever. The details will be covered in the following section on verb 
phrases, and compl ement will be covered in the section on XPs. For now, we give a 
single example. The complement list for one sense of the verb "visit" is: 

This means that the first complement, the subject, is a noun phrase that fills the agent 
role, and the second complement is also a noun phrase that fills the object role. 

21.3 Noun Modifiers 

There are two main types of prenoun adjuncts. Most common are adjectives, as 
in "big slobbery dogs." Nouns can also be adjuncts, as in "water meter" or "desk 
lamp." Here it is clear that the second noun is the head and the first is the modifier: 
a desk lamp is a lamp, not a desk. These are known as noun-noun compounds. In 
the following rules, note that we do not need to say that more than one adjective is 
allowed; this is handled by the rules for modi f i e r s. 

( r u l e  ( a d j u n c t  p r e  noun ? i n f o  ? x  ?gap  ?gap  ?sem) ==> 
( a d j  ?x  ? sem) )  

( r u l e  ( a d j u n c t  p r e  noun ? i n f o  ?h ?gap  ?gap  :sem) ==> 
(:sem (noun-noun ?h ? X I )  
(noun ? a g r  0 ?x  ?sem))  

After the noun there is a wider variety of modifiers. Some nouns have complements, 



which are primarily prepositional phrases, as in "mayor of Boston." These will be 
covered when we get to the lexical entries for nouns. Prepositional phrases can be 
adjuncts for nouns or verbs, as in "man in the middle" and "slept for an hour." We 
can write one rule to cover both cases: 

( r u l e  (ad junc t  pos t  ? c a t  ? i n f o  ?x  ? g l  ?g2 ?sem) ==> 
(PP ?prep ?prep ?wh ?np ?x ? g l  ?g2 ?sem)) 

Here are the rules for prepositional phrases, which can be either a preposition 
followed by a noun phrase or can be gapped, as in "to whom are you speaking u?" 

The object of a preposition is always in the objective case: "with him" not "*with he." 

( r u l e  (PP ?prep ? r o l e  ?wh ?np ?x ? g l  ?g2 :sem) ==> 
(prep ?prep t )  
(:sem ( ? r o l e  ?x  ?np))  
(NP ?agr (common o b j )  ?wh ?np ? g l  ?g2 ?np-sem)) 

( r u l e  (PP ?prep ? r o l e  ?wh ?np ?x  
(gap (PP ?prep ? r o l e  ?np ? X I )  (gap n i l )  t )  ==> 

Nouns can be modified by present participles, past participles, and relative clauses. 
Examples are "the man eating the snack," "the snack eaten by the man," and "the 
man that ate the snack," respectively. We will see that each verb in the lexicon is 
marked with an inflection, and that the marker - i ng is used for present participles 
while - e n  is used for past participles. The details of the cl a u s e  will be covered later. 

( r u l e  (ad junc t  pos t  noun ?agr ?x  ?gap ?gap ?sem) ==> 
( :ex  ( t h e  man) " v i s i t i n g  me" ( t h e  man) " v i s i t e d  by me") 
( : t e s t  (member ? i n f l  ( - i n g  pass ive ) ) )  
(c lause ? i n f l  ?x  ? ?v (gap (NP ?agr ? ? X I )  (gap n i l )  ?sem)) 

( r u l e  (ad junc t  pos t  noun ?agr ?x  ?gap ?gap ?sem) ==> 
( re1  - c l  ause ?agr ?x  ?sem) 

It is possible to have a relative clause where it is an object, not the subject, that the 
head refers to: "the snack that the man ate." In this kind of relative clause the relative 
pronoun is optional: "The snack the man ate was delicious." The following rules say 
that if the relative pronoun is omitted then the noun that is being modified must be 
an object, and the relative clause should include a subject internally. The constant 
i n t - s u b j indicates this. 

( r u l e  ( re1  -c lause ?agr ?x  :sem) ==> 
( :ex  ( t h e  man) " t h a t  she l i k e d "  " t h a t  l i k e d  her "  

" t h a t  I know Lee l i k e d " )  



(opt- re1 -pronoun ?case ?x ? i n t - s u b j  ?re1 -sem) 
(clause ( f i n i t e  ? ? )  ? ? i n t - s u b j  ?v 

(gap (NP ?agr ?case ?x ) )  (gap n i l )  ?clause-sem)) 

( r u l e  (opt- re l -pronoun ?case ?x ? i n t - s u b j  (?type ? X I )  ==> 
( :word ?re1 -pro)  
( : t es t  (word ?re1 -pro re1 -pro ?case ?type) ) 

( r u l e  (opt-re l -pronoun (common ob j )  ?x i n t - s u b j  t )  ==> 1 

It should be noted that it is rare but not impossible to have names and pronouns 
with modifiers: "John the Baptist," "lovely Rita, meter maid," "Lucy in the sky with 
diamonds," "Sylvia in accounting on the 42nd floor," "she who must be obeyed." 
Here and throughout this chapter we will raise the possibility of such rare cases, 
leaving them as exercises for the reader. 

21.4 Determiners 

We will cover three kinds of determiners. The simplest is the article: "a dog" or "the 
dogs." We also allow genitive pronouns, as in "her dog," and numbers, as in "three 
dogs." The semantic interpretation of a determiner-phrase is of the form (quantifier 
variable restriction). For example, ( a  ?x (dog ?XI I or ((number 3 )  ?x (dog ?XI 1. 

( r u l e  (Det ?agr ?wh ?x ? r e s t r i c t i o n  ( ? a r t  ?x ? r e s t r i c t i o n ) )  ==> 
(:ex " the"  "every")  
( a r t  ?agr ? a r t )  
( : t e s t  ( i f  (= ? a r t  wh) (= ?wh +wh) (= ?wh -wh))) )  

( r u l e  (Det ?agr ?wh ?x ? r  ( the  ?x ? r e s t r i c t i o n ) )  ==> 
(:ex "h i s "  "her " )  
(pronoun ?agr gen ?wh ?y ?sem) 
( : t es t  (and* ( ( gen i t i ve  ?y ? X I  ?sem ? r )  ? r e s t r i c t i o n ) ) )  

( r u l e  (Det ?agr -wh ?x ? r  ((number ?n) ?x ? r ) )  ==> 
(:ex " th ree" )  
(card inal  ?n ?agr))  

These are the most important determiner types, but there are others, and there are 
pre- and postdeterminers that combine in restricted combinations. Predeterminers 
include all, both, half, double, twice, and such. Postdeterminers include every, 
many, several, and few. Thus, we can say "all her many good ideas" or "all the King's 
men." But we can not say ""all much ideas" or ""the our children." The details are 
complicated and are omitted from this grammar. 



21.5 Verb Phrases 

Now that we have defined modi f ie rs ,  verb phrases are easy. In fact, we only need 
two rules. The first says a verb phrase consists of a verb optionally preceded and 
followed by modifiers, and that the meaning of the verb phrase includes the fact that 
the subject fills some role: 

(rule ( V P  ?infl ?x ?subject-slot ?v ?gl ?g2 :sem) ==> 
(:ex "sleeps" "quickly give the dog a bone") 
(modifiers pre verb ? ( 1  ?v (gap n i l )  (gap nil ?pre-sem) 
(:sem (?role ? v  ?XI)  ( : t es t  (= ?subject-slot (?role 1 ? ) I )  
(verb ?verb ?infl (?subject-slot . ?slots)  ?v ?v-sem) 
(modifiers post verb ? ?slots ?v ?gl ?g2 ?mod-sem)) 

The VP category takes seven arguments. The first is an inflection, which represents 
the tense of the verb. To describe the possibilities for this argument we need a quick 
review of some basic linguistics. A sentence must have a finite verb, meaning a 
verb in the present or past tense. Thus, we say "Kim likes Lee," not "*Kim liking 
Lee." Subject-predicate agreement takes effect for finite verbs but not for any other 
tense. The other tenses show up as complements to other verbs. For example, the 
complement to "want" is an infinitive: "Kim wants to like Lee" and the complement 
to the modal auxiliary verb "would is a nonfinite verb: "Kim would like Lee." If this 
were in the present tense, it would be "likes," not "like." The inflection argument 
takes on one of the forms in the table here: 

Expression Type Example 
( f i n i t e  ?agr present  ) present tense eat, eats 
( f i n i t e  ?agr pas t )  past tense ate 
nonf i n i  t e  nonfinite eat 
i n f i n i t i v e  infinitive to eat 
-en past participle eaten 
- i n g  present participle eating 

The second argument is a metavariable that refers to the subject, and the third is 
the subject's complement slot. We adopt the convention that the subject slot must 
always be the first among the verb's complements. The other slots are handled by 
the postverb modifiers. The fourth argument is a metavariable indicating the verb 
phrase itself. The final three are the familiar gap and semantics arguments. As an 
example, if the verb phrase is the single word "slept," then the semantics of the verb 
phrase will be ( and ( pas t  ? v  ) ( s  l eep ? v  ) 1. Of course, adverbs, complements, 
and adjuncts will also be handled by this rule. 

The second rule for verb phrases handles auxiliary verbs, such as "have," "is" 
and "would." Each auxiliary verb (or a ux) produces a verb phrase with a particular 



inflection when followed by a verb phrase with the required inflection. To repeat 
an example, "would produces a finite phrase when followed by a nonfinite verb. 
"Have" produces a nonfinite when followed by a past participle. Thus, "would have 
liked is a finite verb phrase. 

We also need to account for negation. The word "not" can not modify a bare main 
verb but can follow an auxiliary verb. That is, we can't say "*Kim not like Lee," but 
we can add an auxiliary to get "Kim does not like Lee." 

( r u l e  (VP ? i n f l  ?x  ? s u b j e c t - s l o t  ?v ? g l  ?g2 :sem) ==> 
( :ex " i s  s leeping"  "would have g iven a  bone t o  t h e  dog." 

" d i d  n o t  s leep"  "was g iven a  bone by t h i s  o l d  man") 
;; An aux verb, fo l l owed  by a  VP 
(aux ? i n f l  ?needs- in f l  ?v ?aux) 
( m o d i f i e r s  pos t  aux ? 0 ?v (gap n i l )  (gap n i l )  ?mod) 
(VP ?needs- in f l  ?x  ? s u b j e c t - s l o t  ?v ? g l  ?g2 ?vp) )  

( r u l e  (ad junc t  pos t  aux ? ?v ?gap ?gap ( n o t  ? v ) )  ==> 
(:word n o t ) )  

21.6 Adverbs 

Adverbs can serve as adjuncts before or after a verb: "to boldly go," "to go boldly." 
There are some limitations on where they can occur, but it is difficult to come up 
with firm rules; here we allow any adverb anywhere. We define the category advp 
for adverbial phrase, but currently restrict it to a single adverb. 

( r u l e  (ad junc t  ?pre/post  verb ? i n f o  ?v ? g l  ?g2 ?sem) ==> 
(advp ?wh ?v ? g l  ?g2 ?sem)) 

( r u l e  (advp ?wh ?v ?gap ?gap ?sem) ==> 
(adverb ?wh ?v ?sem)) 

( r u l e  (advp ?wh ?v (gap (advp ? v ) )  (gap n i l )  t )  ==> 

21.7 Clauses 

A clause consists of a subject followed by a predicate. However, the subject need not 
be realized immediately before the predicate. For example, in "Alice promised Bob 
to lend him her car" there is an infinitive clause that consists of the predicate "to lend 
him her car" and the subject "Alice." The sentence as a whole is another clause. In 



our analysis, then, a clause is a subject followed by a verb phrase, with the possibility 
that the subject will be instantiated by something from the gap arguments: 

( rule  (clause ?infl ?x ?int-subj ?v ?gap1 ?gap3 :sem) ==> 
(subject ?agr ?x ?subj-slot ?int-subj ?gap1 ?gap2 ?subj-sem) 
( V P  ?infl ?x ?subj-slot ?v ?gap2  ?gap3 ?pred-sem) 
( : t es t  (subj-pred-agree ?agr ? i n f l ) ) )  

There are now two possibilities for subject.  In the first case it has already been 
parsed, and we pick it up from the gap list. If that is so, then we also need to find the 
agreement feature of the subject. If the subject was a noun phrase, the agreement will 
be present in the gap list. If it was not, then the agreement is third-person singular. 
An example of this is "That the Red Sox won surprises me," where the italicized phrase 
is a non-NP subject. The fact that we need to use "surprises" and not "surprise" 
indicates that it is third-person singular. We will see that the code ( - - + - is used 
for this. 

(rule (subject ?agree ?x ?subj-slot ext-subj 
( g a p  ?subj) ( g a p  nil t )  ==> 

;; Externally realized subject (the normal case for S )  

( : t es t  (slot-constituent ?subj-slot ?subj ?x ? )  

( i f  (= ?subj ( N P  ?agr ?case ? X I )  
(= ?agree ?agr) 
(= ?agree ( -  - + - ) ) ) ) )  ;Non-NP subjects are 3sing 

In the second case we just parse a noun phrase as the subject. Note that the fourth 
argument to subject is either ext - sub j or i n t  - sub j depending on if the subject is 
realized internally or externally. This will be important when we cover sentences in 
the next section. In case it was not already clear, the second argument to both cl a use 
and sub j ec t  is the metavariable representing the subject. 

(rule (subject ?agr ?x (?role 1  ( N P  ? X I )  int-subj ?gap ?gap ?sem) 
= => 

( N P  ?agr (common nom) ?wh ?x ( g a p  n i l )  ( g a p  n i l )  ?sem)) 

Finally, the rules for subject-predicate agreement say that only finite predicates need 
to agree with their subject: 

(<- (subj-pred-agree ?agr ( f i n i t e  ?agr ? ) ) I  
(<- (subj-pred-agree ? ? inf l )  (atom ? i n f l ) )  



21.8 Sentences 

In the previous chapter we allowed only simple declarative sentences. The current 
grammar supports commands and four kinds of questions in addition to declarative 
sentences. It also supports thematic fronting: placing a nonsubject at the beginning of 
a sentence to emphasize its importance, as in "Smith he says his name is" or "Murder, 
she wrote" or "In God we trust." In the last example it is a prepositional phrase, not a 
noun phrase, that occurs first. It is also possible to have a subject that is not a noun 
phrase: "That the dog didn't bark puzzled Holmes." To support all these possibilities, 
we introduce a new category, XP, which stands for any kind of phrase. A declarative 
sentence is then just an XP followed by a clause, where the subject of the clause may 
or may not turn out to be the XP: 

( r u l e  ( S  ?s :sem) ==> 
(:ex "Kim l i k e s  Lee" "Lee. I l i k e  -" "In\ god, we t r u s t  -" 

"Who l i k e s  Lee?" "Kim l i k e s  who?") 
( X P  ?k ind  ? c o n s t i t u e n t  ?wh ?x (gap n i l )  (gap n i l )  ? top ic-sem) 
(c lause ( f i n i t e  ? ? I  ?x ? ?s (gap ? c o n s t i t u e n t )  (gap n i l )  ?sem)) 

As it turns out, this rule also serves for two types of questions. The simplest kind 
of question has an interrogative noun phrase as its subject: "Who likes Lee?" or 
"What man likes Lee?" Another kind is the so-called echo question, which can be 
used only as a reply to another statement: if I tell you Kim likes Jerry Lewis, you 
could reasonably reply "Kim likes who?" Both these question types have the same 
structure as declarative sentences, and thus are handled by the same rule. 

The following table lists some sentences that can be parsed by this rule, showing 
the XP and subject of each. 

Sentence XP Subject 
Kim likes Lee Kim Kim 
Lee, Kim likes Lee Kim 
In god, we trust In god we 
That Kim likes Lee amazes That Kim likes Lee That Kim likes Lee 
Who likes Lee? Who Who 

The most common type of command has no subject at all: "Be quiet" or "Go to 
your room." When the subject is missing, the meaning is that the command refers 
to you, the addressee of the command. The subject can also be mentioned explicitly, 
and it can be "you," as in "You be quiet," but it need not be: "Somebody shut the 
door" or "Everybody sing along." We provide a rule only for commands with subject 
omitted, since it can be difficult to distinguish a command with a subject from a 
declarative sentence. Note that commands are always nonfinite. 



( r u l e  (S ?s :sem) ==> 

;; Commands have i m p l i e d  second-person sub jec t  

( :ex "Give t h e  dog a bone.") 

(:sem (command ? s ) )  

(:sem ( l i s t e n e r  ? X I )  

(c lause n o n f i n i t e  ?x e x t - s u b j  ?s 

(gap ( N P  ? ? ? X I )  (gap n i l )  ?sem)) 

Another form of command starts with "let," as in "Let me see what I can do" and 
"Let us all pray." The second word is better considered as the object of "let" rather 
than the subject of the sentence, since the subject would have to be "I" or "we." This 
kind of command can be handled with a lexical entry for "let" rather than with an 
additional rule. 

We now consider questions. Questions that can be answered by yes or no have 
the subject and auxiliary verb inverted: "Did you see him?" or "Should I have been 
doing this?" The latter example shows that it is only the first auxiliary verb that 
comes before the subject. The category aux- i nv-  S is used to handle this case: 

( r u l e  (S ?s (yes-no ?s ?sem)) ==> 

(:ex "Does Kim l i k e  Lee?" " I s  he a d o c t o r ? " )  

(aux - inv -S  n i l  ?s ?sem)) 

Questions that begn with a wh-phrase also have the auxiliaryverb before the subject, 
as in "Who did you see?" or "Why should I have been doing this?" The first 
constituent can also be a prepositional phrase: "For whom am I doing this?" The 
following rule parses an XP that must have the +wh feature and then parses an 
aux- i nv - S to arrive at a question: 

( r u l e  ( S  ?s :sem) ==> 

(:ex "Who does Kim l i k e  -?"  "To whom d i d  he g i v e  i t  -?" 

"What dog does Kim l i k e  -? " )  

( X P  ? s l o t  ? c o n s t i t u e n t  +wh ?x  (gap n i l )  (gap n i l )  ?subj-sem) 

(aux - inv -S  ? c o n s t i t u e n t  ?s ?sem)) 

A question can also be signaled by rising intonation in what would otherwise be a 
declarative statement: "You want some?" Since we don't have intonation informa- 
tion, we won't include this kind of question. 

The implementation for a ux- i nv - S is straightforward: parse an auxiliary and 
then a clause, pausing to look for modifiers in between. (So far, a "not" is the only 
modifier allowed in that position.) 



(rule (aux-inv-S ?constituent ? v  :sem) ==> 
(:ex "Does Kim like Lee?" (who) "would Kim have liked") 
(aux ( f i n i t e  ?agr ?tense) ?needs-infl ?v ?aux-sem) 
(modifiers post aux ? 0 ? v  ( g a p  n i l )  ( g a p  n i l )  ?mod) 
(clause ?needs-infl ?x int-subj ?v  (gap ?constituent) ( g a p  ni 1)  

?cl ause-sem) 

There is one more case to consider. The verb "to be" is the most idiosyncratic in 
English. It is the onlyverb that has agreement differences for anything besides third- 
person singular. And it is also the only verb that can be used in an a ux- i n v  - S without 
a main verb. An example of this is "Is he a doctor?," where "is" clearly is not an 
auxiliary, because there is no main verb that it could be auxiliary to. Other verb can 
not be used in this way: ""Seems he happy?" andi'*Did they it?" are ungrammatical. 
The only possibility is "have," as in "Have you any wool?," but this use is rare. 

The following rule parses a verb, checks to see that it is a version of "be," and then 
parses the subject and the modifiers for the verb. 

(rule (aux-inv-S ?ext ?v :sem) ==> 
(:ex "Is  he a doctor?") 
(verb ?be ( f i n i t e  ?agr ? )  ( (? ro le  ?n ?xp) . ?slots)  ?v ?sem) 
( : t es t  (word ?be be)) 
(subject ?agr ?x (?role ?n ?xp) int-subj 

(gap n i l )  (gap n i l )  ?subj-sem) 
(:sem (?role ?v ?XI)  
(modifiers post verb ? ?slots ?v ( g a p  ?ext) ( g a p  n i l )  ?mod-sem)) 

21.9 XPs 

All that remains in our grammar is the XP category. XPs are used in two ways: First, 
a phrase can be extraposed, as in "In god we trust," where "in g o d  will be parsed as 
an XP and then placed on the gap list until it can be taken off as an adjunct to "trust." 
Second, a phrase can be a complement, as in "He wants to be a fireman," where the 
infinitive phrase is a complement of "wants." 

As it turns out, the amount of information that needs to appear in a gap list 
is slightly different from the information that appears in a complement slot. For 
example, one sense of the verb "want" has the following complement list: 

( (ag t  1 (NP ?XI)  (con 3 ( V P  infinitive ? X I ) )  

This says that the first complement (the subject) is a noun phrase that serves as the 
agent of the wanting, and the second is an infinitive verb phrase that is the concept of 



the wanting. The subject of this verb phrase is the same as the subject of the wanting, 
so in "She wants to go home," it is she who both wants and goes. (Contrast this to 
"He persuaded her to go home," where it is he that persuades, but she that goes.) 

But when we put a noun phrase on a gap list, we need to include its number and 
case as well as the fact that it is an NP and its metavariable, but we don't need to 
include the fact that it is an agent. This difference means we have two choices: either 
we can merge the notions of slots and gap lists so that they use a common notation 
containing all the information that either can use, or we need some way of mapping 
between them. I made the second choice, on the grounds that each notation was 
complicated enough without bringing in additional information. 

The relation sl  ot-consti tuent maps between the slot notation used for com- 
plements and the constituent notation used in gap lists. There are eight types of 
complements, five of which can appear in gap lists: noun phrases, clauses, preposi- 
tional phrases, the word "it" (as in "it is raining"), and adverbial phrases. The three 
phrases that are allowed only as complements are verb phrases, particles (such as 
"up" in "look up the number"), and adjectives. Here is the mapping between the two 
notations. The *** indicates no mapping: 

(<- (slot-constituent (?role ?n (NP ?XI) 
(NP ?agr ?case ?x) ?x ?h)) 

(<- (slot-constituent (?role ?n (clause ?word ?infl)) 
(clause ?word ?infl ?v) ?v ?h)) 

(<- (slot-constituent (?role ?n (PP ?prep ?np)) 
(PP ?prep ?role ?np ?h) ?np ?h)) 

(<- (slot-consti tuent (?role ?n it) ( i t ?  ? ?XI ?X ? I )  
(<- (slot-constituent (manner 3 (advp ?XI) (advp ?v) ? ?v)) 
(<- (slot-constituent (?role ?n (VP ?infl ?XI) *** ? ? ) I  
(<- (slot-constituent (?role ?n (Adj ?XI) *** ?x ? 1)  
(<- (slot-constituent (?role ?n (P ?particle)) *** ? ? I )  

We are now ready to define complement. It takes a slot descrption, maps it into a 
constituent, and then calls XP to parse that constituent: 

(rule (complement ?cat ?info (?role ?n ?xp) ?h ?gap1 ?gap2 :sem) 
= => 

;; A complement is anything expected by a slot 
(:sem (?role ?h ?XI) 
(:test (slot-constituent (?role ?n ?xp) ?constituent ?x ?h)) 
( X P  ?xp ?constituent ?wh ?x ?gap1 ?gap2 ?sem)) 

The category XP takes seven arguments. The first two are the slot we are trying 
to fill and the constituent we need to fill it. The third is used for any additional 
information, and the fourth is the metavariable for the phrase. The last three supply 
gap and semantic information. 



Here are the first five XP categories: 

( r u l e  (XP (PP ?prep ?np) (PP ?prep ? r o l e  ?np ?h)  ?wh ?np 
?gap1 ?gap2 ?sem) ==> 

(PP ?prep ? r o l e  ?wh ?np ?h ?gap1 ?gap2 ?sem)) 

( r u l e  (XP (NP ? X I  (NP ?agr ?case ?x )  ?wh ?x  ?gap1 ?gap2 ?sem) ==> 
(NP ?agr ?case ?wh ?x ?gap1 ?gap2 ?sem)) 

( r u l e  (XP i t  ( i t  ? ? ? X I  -wh ?x ?gap ?gap t )  ==> 
(:word i t ) )  

( r u l e  (XP (c lause ?word ? i n f l )  (c lause ?word ? i n f l  ?v )  -wh ?v 
?gap1 ?gap2 ?sem) ==> 

(:ex (he t h i n k s )  " t h a t  she i s  t a l l " )  
(opt-word ?word) 
(c lause ? i n f l  ?x  i n t - s u b j  ?v ?gap1 ?gap2 ?sem)) 

( r u l e  (XP ( ? r o l e  ?n (advp ? v ) )  (advp ?v )  ?wh ?v ?gap1 ?gap2 ?sem) 
= => 

(advp ?wh ?v ?gap1 ?gap2 ?sem)) 

The category opt-word parses a word, which may be optional. For example, one 
sense of "know" subcategorizes for a clause with an optional "that": we can say 
either "I know that he's here" or "I know he's here." The complement list for "know" 
thus contains the slot ( con 2 ( cl ause ( t h a t  ) ( f i n i  t e  ? ? 1 1 1. If the "that" had 
been obligatory, it would not have parentheses around it. 

( r u l e  (opt-word ?word) ==> (:word ?word)) 
( r u l e  (opt -word (?word)) ==> (:word ?word)) 
( r u l e  (opt-word (?word) ==>I  

Finally, here are the three XPs that can not be extraposed: 

( r u l e  (XP (VP ? i n f l  ?x )  *** -wh ?v ?gap1 ?gap2 ?sem) ==> 
( :ex (he promised her )  " t o  s leep" )  
(VP ? i n f l  ?x  ? s u b j - s l o t  ?v  ?gap1 ?gap2 ?sem)) 

( r u l e  (XP (Adj  ?x)  *** -wh ? x  ?gap ?gap ?sem) ==> 
(Adj  ?x  ?sem)) 

( r u l e  (XP (P ? p a r t i c l e )  *** -wh ?x ?gap ?gap t )  ==> 
(prep ? p a r t i c l e  t ) )  



21.10 Word Categories 

Each word category has a rule that looks words up in the lexicon and assigns the right 
features. The relation word is used for all lexicon access. We will describe the most 
complicated word class, verb, and just list the others. 

Verbs are complex because they often are polysemous-they have many meanings. 
In addition, each meaning can have several different complement lists. Thus, an 
entry for a verb in the lexicon will consist of the verb form, its inflection, and a list 
of senses, where each sense is a semantics followed by a list of possible complement 
lists. Here is the entry for the verb "sees," indicating that it is a present-tense verb with 
three senses. The understand sense has two complement lists, which correspond to 
"He sees'' and "He sees that you are right." The 1 ook sense has one complement list 
corresponding to "He sees the picture," and the da t i ng sense, corresponding to "He 
sees her (only on Friday nights)," has the same complement list. 

> ( ? -  (word sees verb ? i n f l  ?senses)) 
?INFL = (FINITE ( -  - + - 1  PRESENT) 
?SENSES = ((UNDERSTAND ((AGT 1 (NP ? 3 ) ) )  

((EXP 1 (NP ? 4 ) )  
(CON 2 (CLAUSE (THAT) (FINITE ?5  ? 6 ) ) ) ) )  

(LOOK ((AGT 1 (NP ? 7 ) )  (OBJ 2 (NP ? 8 ) ) ) )  
(DATING ((AGT 1 (NP ? 9 ) )  (OBJ 2 (NP ? 1 0 ) ) ) ) )  

The category ve rb  takes five arguments: the verb itself, its inflection, its complement 
list, its metavariable, and its semantics. The member relations are used to pick a sense 
from the list of senses and a complement list from the list of lists, and the semantics 
is built from semantic predicate for the chosen sense and the metavariable for the 
verb: 

( r u l e  (ve rb  ?verb ? i n f l  ? s l o t s  ?v :sem) ==> 
(:word ?verb)  
( : t e s t  (word ?verb verb ? i n f l  ?senses) 

(member (?sem . ?subcats) ?senses) 
(member ? s l o t s  ?subcats) 
(tense-sem ? i n f l  ?v ?tense-sem)) 

(:sem ?tense-sem) 
(:sem (?sem ? v ) ) )  

It is difficulty to know how to translate tense information into a semantic interpre- 
tation. Different applications will have different models of time and thus will want 
different interpretations. The relation t ense  - sem gives semantics for each tense. 
Here is a very simple definition of tense - sem: 



(<- (tense-sem ( f i n i t e  ? ?tense) ?v (? tense ? v ) ) )  
(<- (tense-sem - i n g  ?v (p rogress ive  ? v ) ) )  
(<- (tense-sem -en ?v ( p a s t - p a r t i c i p l e  ? v ) ) )  
(<- (tense-sem i n f i n i t i v e  ?v t ) )  
(<- (tense-sem n o n f i n i t e  ?v t ) )  
(<- (tense-sem pass ive ?v (pass ive ? v ) ) )  

Auxiliary verbs and modal verbs are listed separately: 

( r u l e  (aux ? i n f l  ?needs- in f l  ?v ?tense-sem) ==> 
(:word ?aux) 
( : t e s t  (word ?aux aux ? i n f l  ?needs- in f l  

(tense-sem ? i n f l  ?v ?tense-sem))) 

( r u l e  (aux ( f i n i t e  ?agr ?tense) n o n f i n i t e  ?v (?sem ? v ) )  ==> 
( :word ?modal 
( : t e s t  (word ?modal modal ?sem ? tense) ) )  

Nouns, pronouns, and names are also listed separately, although they have much 
in common. For pronouns we use quantifier wh or pro, depending on if it is a wh- 
pronoun or not. 

( r u l e  (noun ?agr ? s l o t s  ?x  (?sem ? X I  ==> 
(:word ?noun) 
( : t e s t  (word ?noun noun ?agr ? s l o t s  ?sem))) 

( r u l e  (pronoun ?agr ?case ?wh ?x (?quant ?x  (?sem ? X I ) )  ==> 
(:word ?pro)  
( : t e s t  (word ?pro pronoun ?agr ?case ?wh ?sem) 

( i f  (= ?wh +wh) (= ?quant wh) (= ?quant p r o ) ) ) )  

( r u l e  (name ?agr ?name) ==> 
(:word ?name) 
( : t e s t  (word ?name name ? a g r ) ) )  

Here are the rules for the remaining word classes: 

( r u l e  ( a d j  ?x (?sem ? X I  ==> 
(:word ? a d j )  
( : t e s t  (word ?ad j  a d j  ?sem))) 

( r u l e  ( a d j  ?x ( ( n t h  ?n) ? X I )  ==> ( o r d i n a l  ? n ) )  

( r u l e  ( a r t  ?agr ?quant) ==> 
(:word ? a r t )  
( : t e s t  (word ? a r t  a r t  ?agr ?quan t ) ) )  



( ru le  (prep ?prep t )  ==> 
(:word ?prep) 
( : t e s t  (word ?prep prep)) )  

( ru l e  (adverb ?wh ?x ?sem) ==> 
(:word ?adv) 
( : t e s t  (word ?adv adv ?wh ?pred) 

( i f  (= ?wh +wh) 
(= ?sem (wh ?y (?pred ?x ? y ) ) )  
(= ?sem (?pred ?XI )  1) 

( ru le  (cardinal ?n ?agr) ==> 
( :ex "f ive ")  
(:word ?num) 
( : t e s t  (word ?num cardinal ?n ? a g r ) ) )  

( ru l e  (cardinal ?n ?agr) ==> 
(:ex " 5 " )  
( :word ?n 
( : t e s t  (numberp ?n) 

( i f  (= ?n 1) 
(= ?agr ( -  - + - 1 )  ;3sing 
(= ?agr ( -  - - + I ) ) ) )  ;3plur 

( ru le  (ordinal ?n) ==> 
( :ex " f i f t h " )  
(:word ?num) 
( : t e s t  (word ?num ordinal ? n ) ) )  

21.11 The Lexicon 

The lexicon itself consists of a large number of entries in the word relation, and it 
would certainly be possible to ask the lexicon writer to make a long list of word facts. 
But to make the lexicon easier to read and write, we adopt three useful tools. First, 
we introduce a system of abbreviations. Common expressions can be abbreviated 
with a symbol that will be expanded by word. Second, we provide the macros verb 
and noun to cover the two most complex word classes. Third, we provide a macro 
word that makes entries into a hash table. This is more efficient than compiling a 
word relation consisting of hundreds of Prolog clauses. 

The implementation of these tools is left for the next section; here we show the 
actual lexicon, starting with the list of abbreviations. 

The first set of abbreviations defines the agreement features. The obvious way to 
handle agreement is with two features, one for person and one for number. So first- 
person singular might be represented ( 1 s i ng ). A problem arises when we want 



to describe verbs. Every verb except "be" makes the distinction only between third- 
person singular and all the others. We don't want to make five separate entries in the 
lexicon to represent all the others. One alternative is to have the agreement feature be 
a set of possible values, so all the others would be a single set of five values rather than 
five separate values. This makes a big difference in cutting down on backtracking. 
The problem with this approach is keeping track of when to intersect sets. Another 
approach is to make the agreement feature be a list of four binary features, one each 
for first-person singular, first-person plural, third-person singular, and third-person 
plural. Then "all the others" can be represented by the list that is negative in the third 
feature and unknown in all the others. There is no way to distinguish second-person 
singular from plural in this scheme, but English does not make that distinction. Here 
are the necessary abbreviations: 

(abbrev l s i n g  (+ - - -1 )  
(abbrev l p l  u r  ( -  + - - 1 )  
(abbrev 3s ing  ( -  - + -1 )  
(abbrev 3p l  u r  (.. - - + I  1 
(abbrev 2pers ( -  - - - 1 )  
(abbrev "3sing ( ?  ? - ? I )  

The next step is to provide abbreviations for some of the common verb complement 
lists: 

(abbrev v l i n t r a n s  ( ( a g t  1 (NP ? ) I ) )  
(abbrev v l t r a n s  ( ( a g t  1 (NP ? I )  ( o b j  2 (NP ? I ) ) )  
(abbrev v l d i t r a n s  ( ( a g t  1 (NP ? ) I  (goal 2 (NP ? I )  ( o b j  3 (NP ? ) ) I )  
(abbrev v I t r a n s 2  ( ( a g t  1 (NP ? ) I  ( o b j  2 (NP ? I )  (goal 2 (PP t o  ? ) I ) )  
(abbrev v l t r a n s 4  ( ( a g t  1 (NP ? I )  ( o b j  2 (NP ? I )  (ben 2 (PP f o r  ? I ) ) )  
(abbrev v l i t - n u l l  ( ( n i l  1 i t ) ) )  
(abbrev v l o p t - t h a t  ( (exp  1 (NP ? I )  (con 2 (c lause ( t h a t )  ( f i n i t e  ? ? I ) ) ) )  
(abbrev v l s u b j - t h a t  ( ( con  1 (c lause t h a t  ( f i n i t e  ? ? I ) )  (exp 2 (NP ? ) ) I )  
(abbrev v l i t - t h a t  ( ( n i l  1 i t )  (exp 2 (NP ? I )  

(con 3 (c lause t h a t  ( f i n i t e  ? ? ) ) ) I )  
(abbrev v l i n f  ( ( a g t  1 (NP ? X I )  (con 3 (VP i n f i n i t i v e  ? x ) ) ) )  
(abbrev v lpromise ( ( a g t  1 (NP ? x ) )  (goal (2 )  (NP ? y ) )  

(con 3 (VP i n f i n i t i v e  ? x ) ) ) )  
(abbrev vlpersuade ( ( a g t  1 (NP ? X I )  (goal 2 (NP ? y ) )  

(con 3 (VP i n f i n i t i v e  ? y ) ) ) )  
(abbrev v lwant  ( ( a g t  1 (NP ? X I )  (con 3 (VP i n f i n i t i v e  ? x ) ) ) )  
(abbrev v l p - u p  ( ( a g t  1 (NP ? I )  ( p a t  2 (NP ? I )  ( n i l  3 (P u p ) ) ) )  
(abbrev v l p p - f o r  ( ( a g t  1 (NP ? I )  ( p a t  2 (PP f o r  ? ) I ) )  
(abbrev v l p p - a f t e r  ( ( a g t  1 (NP ? ) I  ( p a t  2 (PP a f t e r  ? I ) ) )  



Verbs 

The macro verb allows us to list verbs in the form below, where the spellings of each 
tense can be omitted if the verb is regular: 

( verb ( base past-tense past-participle present-participle present-plural 
(semantics complement-list. . . . . . 

For example, in the following list "ask is regular, so only its base-form spelling is 
necessary. "Do," on the other hand, is irregular, so each form is spelled out. The 
haphazard list includes verbs that are either useful for examples or illustrate some 
unusual complement list. 

( ve rb  (ask)  (query v l d i t r a n s ) )  
( ve rb  ( d e l e t e )  ( d e l e t e  v l t r a n s ) )  
(verb (do d i d  done doing does) (per form v l t r a n s ) )  
( ve rb  ( e a t  a t e  eaten) ( e a t  v l t r a n s ) )  
( ve rb  ( g i v e  gave g iven g i v i n g )  ( g i v e - 1  v I t r a n s 2  v l d i t r a n s )  

(donate v l t r a n s  v l i n t r a n s ) )  
( ve rb  (go went gone going goes)) 
( ve rb  (have had had having has) (possess v l t r a n s ) )  
(verb (know knew known) (know-that v l o p t - t h a t )  (know-of v l t r a n s ) )  
( ve rb  (1 i ke) ( 1  i ke-1  v l t r a n s )  
(verb ( l o o k )  ( l ook-up  v/p-up) (search v l p p - f o r )  

( take -ca re  v l p p - a f t e r )  ( l o o k  v l i n t r a n s ) )  
(verb (move moved moved moving moves) 

( s e l f - p r o p e l  v l i n t r a n s )  ( t r a n s f e r  v I t r a n s 2 ) )  
( ve rb  (persuade) (persuade v lpersuade))  
( ve rb  (promise) (promise v lp romise ) )  
( ve rb  ( p u t  p u t  p u t  p u t t i n g ) )  
( ve rb  ( r a i n )  ( r a i n  v l i t - n u l l ) )  
( ve rb  (saw) (cu t -w i th - saw v l t r a n s  v l i n t r a n s ) )  
( ve rb  (see saw seen seeing) (understand v l i n t r a n s  v l o p t - t h a t )  

(1 ook v l t r a n s )  ( d a t i n g  v l t r a n s )  
( ve rb  (s leep  s l e p t )  ( s leep  v l i n t r a n s ) )  
(verb ( s u r p r i s e )  ( s u r p r i s e  v l s u b j - t h a t  v l i t - t h a t ) )  
( ve rb  ( t e l l  t o1  d )  ( t e l l  v lpersuade) 
( ve rb  ( t r u s t )  ( t r u s t  v l t r a n s  ( ( a g t  1 (NP ? I )  ( o b j  2  (PP i n  ? ) ) ) ) )  

(verb ( t r y  t r i e d  t r i e d  t r y i n g  t r i e s )  (a t tempt  v / i n f ) )  
(verb ( v i s i t )  ( v i s i t  v l t r a n s ) )  
( ve rb  (want) ( d e s i r e  vlwant v lpersuade))  



Auxiliary Verbs 

Auxiliaryverbs are simple enough to be described directlywith the word macro. Each 
entry lists the auxiliary itself, the tense it is used to construct, and the tense it must 
be followed by. The auxiliaries "have" and "do" are listed, along with "to," which is 
used to construct infinitive clauses and thus can be treated as if it were an auxiliary. 

(word have aux nonfinite -en) 
(word have aux ( f i n i t e  "3sing present) -en) 
(word has aux ( f i n i t e  3sing present) -en) 
(word had aux ( f i n i t e  ? past) -en) 
(word having aux -ing -en) 

(word do aux ( f in i te  "3sing present) nonfinite) 
(word does aux ( f i n i t e  3sing present) nonfini t e )  
(worddid aux ( f i n i t e  ? past) nonfinite) 

(word t o  aux infinitive nonfinite) 

The auxiliary "be" is special: in addition to its use as both an auxiliary and main 
verb, it also is used in passives and as the main verb in aux-inverted sentences. The 
function copul a is used to keep track of all these uses. It will be defined in the next 
section, but you can see it takes two arguments, a list of senses for the mainverb, and 
a list of entries for the auxiliary verb. The three senses correspond to the examples 
"He is a fool," "He is a Republican," and "He is in Indiana," respectively. 

(copul a 
' ( ( n i l  

( i s -a  
( is -loc 

' ( (be  
(been 
(being 
(am 
( i s  
(are 
(were 
(was 

( (n i l  1  ( N P  ? X I )  (nil  2 ( A d j  ? x ) ) ) )  
((exp 1 ( N P  ?XI)  (arg2 2 ( N P  ?y)))) 
((exp 1 ( N P  ?x))  (?prep 2 ( P P  ?prep ? ) ) ) I )  
nonfinite -ing) 
-en -ing) 
-ing -en) 
( f i n i t e  lsing present) -ing) 
( f i n i t e  3sing present) -ing) 
( f i n i t e  2pers present) -ing) 
( f i n i t e  ( -  - ? ? )  past) -ing) ; 2nd sing or p l  

( f i n i t e  ( ?  - ? - 1  past) - ing) ) )  ; 1st or 3rd sing 

Following are the modal auxiliary verbs. Again, it is difficult to specify semantics 
for them. The word "not" is also listed here; it is not an auxiliary, but it does modify 
them. 



(word can modal 
(word cou ld  modal 
(word may modal 
(word might  modal 
(word s h a l l  modal 
(word shou ld  modal 
(word w i l l  modal 
(word would modal 
(word must modal 

(word n o t  n o t )  

a b l e  p a s t  1 
a b l e  p r e s e n t  1 
p o s s i b l e  p a s t  1 
p o s s i b l e  p r e s e n t  ) 
mandatory p a s t  1 
mandatory p r e s e n t  ) 
expec t ed  p a s t )  
expec t ed  p r e s e n t )  
n e c e s s a r y  p r e s e n t  1 

Nouns 

No attempt has been made to treat nouns seriously. We list enough nouns here to 
make some of the examples work. The first noun shows a complement list that is 
sufficient to parse "the destruction of the city by the enemy." 

(noun d e s t r u c t i o n  * d e s t r u c t i o n  
( p a t  ( 2 )  (PP of ? ) I  ( a g t  ( 2 )  ( P P  by ? ) I )  

(noun beach)  
(noun bone) 
(noun box boxes )  
(noun c i t y  c i t i e s )  
(noun c o l o r )  
(noun cube )  
(noun d o c t o r )  
(noun dog dogs )  
(noun enemy enemi e s  ) 
(noun f i l e )  
(noun f r i e n d  f r i e n d s  f r i e n d  ( f r i e n d - o f  ( 2 )  ( P P  o f  ? ) I )  
(noun f u r n i t u r e  *) 

(noun h a t  1 
(noun man men) 
(noun saw) 
(noun woman women) 

Pronouns 

Here we list the nominative, objective, and genitive pronouns, followed by interrog- 
ative and relative pronouns. The only thing missing are reflexive pronouns, such as 
"myself ." 



(word I pronoun l s i n g  (common nom) -wh s p e a k e r )  
( w o r d w e  p r o n o u n l p l u r  (common nom) -wh s p e a k e r + o t h e r )  
(word you pronoun 2 p e r s  (common ? )  -wh l i s t e n e r )  
(word he  pronoun 3 s i n g  (common nom) -wh male)  
(word s h e  pronoun 3 s i n g  (common nom) -wh f ema le )  
(word i t  pronoun 3 s i n g  (common ? )  -wh a n y t h i n g )  
(word t h e y  pronoun 3 p l u r  (common nom) -wh a n y t h i n g )  

(word me pronoun l s i n g  (common o b j )  -wh s p e a k e r )  
(word us  pronoun l p l u r  (common o b j )  -wh s p e a k e r + o t h e r )  
(word him pronoun 3 s i n g  (common o b j  -wh ma le )  
(word h e r  pronoun 3 s i n g  (common o b j )  -wh f e m a l e )  
(word them pronoun 3 p l u r  (common o b j )  -wh a n y t h i n g )  

(word my pronoun l s i n g  gen -wh s p e a k e r )  
(word ou r  pronoun l p l u r  gen -wh s p e a k e r + o t h e r )  
(word you r  pronoun 2 p e r s  gen -wh l i s t e n e r )  
(word his pronoun 3 s i n g  gen -wh male)  
(word h e r  pronoun 3 s i n g  gen -wh f e m a l e )  
(word i t s  pronoun 3 s i n g  gen -wh a n y t h i n g )  
(word t h e i r  pronoun 3 p l u r  gen -wh a n y t h i n g )  
(word whose pronoun 3 s i n g  gen +wh a n y t h i n g )  

(word who pronoun ? (common ? )  +wh p e r s o n )  
(word whom pronoun ? (common o b j )  +wh p e r s o n )  
(word what pronoun ? (common ? )  +wh t h i n g )  
(word which pronoun ? (common ? )  +wh t h i n g )  

(word who re1  - p r o  ? p e r s o n )  
(word which r e l - p r o  ? t h i n g )  
(word t h a t  r e1  - p r o  ? t h i n g )  
(word whom re1  - p r o  (common o b j  p e r s o n )  

Names 

The following names were convenient for one example or another: 

(word God name 3 s i n g )  (word Lynn name 3 s i n g )  
(word J a n  name 3 s i n g )  (word Mary name 3 s i n g )  
(word John name 3 s i n g )  (word NY name 3 s i n g )  
(word K i m  name 3 s i n g )  (word LA name 3 s i n g )  
(word Lee name 3 s i n g )  (word SF name 3 s i n g )  



Adjectives 

Here are a few adjectives: 

(word b i g  a d j  b i g )  (word bad a d j  bad) 
(word o l d  a d j  o l d )  (word smart a d j  smart) 
(word green a d j  green) (word red  a d j  red)  
(word t a l l  ad j  t a l l )  (word f u n  a d j  fun )  

Adverbs 

The adverbs covered here include interrogatives: 

(word q u i c k l y  adv -wh q u i c k l y )  
(word s low ly  adv -wh s l o w l y )  

(word where adv +wh 1 oc) 
(word when adv +wh t ime)  
(word why adv +wh reason) 
(word how adv +wh manner) 

Articles 

The common articles are listed here: 

(word t h e  a r t  3s ing t h e )  
(word t h e  a r t  3 p l u r  group) 
(word a a r t  3s ing a)  
(word an a r t  3s ing  a)  
(word every a r t  3s ing every)  
(word each a r t  3s ing  each) 
(word a l l  a r t  3s ing a l l  
(wordsome a r t ?  some) 

(word t h i s  a r t  3s ing  t h i s )  
(word t h a t  a r t  3s ing  t h a t )  
(word these a r t  3 p l u r  t h i s )  
(word those a r t  3 p l u r  t h a t )  

(wordwhat  a r t ?  wh) 
(word which a r t  ? wh) 



Cardinal and Ordinal Numbers 

We can take advantage of format's capabilities to fill up the lexicon. To go beyond 
20, we would need a subgrammar of numbers. 

;; This  puts  i n  numbers up t o  twenty, as i f  by 
; ; (word f i v e  ca rd ina l  5 3p l  u r )  
;; (word f i f t h  o r d i n a l  5)  

(dot imes ( i  21) 
(add-word ( r e a d - f r o m- s t r i n g  ( format  n i l  " " r "  i ) )  

' ca rd ina l  i ( i f  (= i 1 )  ' 3s ing  ' 3 p l u r ) )  
(add-word ( r e a d - f r o m- s t r i n g  ( fo rmat  n i l  " " : rH  i ) )  ' o r d i n a l  i ) )  

Prepositions 

Here is a fairly complete list of prepositions: 

(word above prep)  (word about prep)  (word around prep)  
(word across prep)  (word a f t e r  prep)  (word against  prep)  
(word along prep)  (word a t  prep)  (word away prep)  
(word be fo re  prep)  (word behind prep)  (word below prep)  
(word beyond prep)  (word by prep) (word down prep)  
(word f o r  prep)  (word f rom prep)  (word i n  prep)  
(word o f  prep)  (word off  prep)  (word on prep)  
( w o r d o u t p r e p )  ( w o r d o v e r p r e p )  ( w o r d p a s t p r e p )  
(word s ince  prep)  (word through prep)(word throughout prep)  
(word till prep)  (word t o  prep)  (word under prep)  
(word u n t i l  prep) (word up prep) (word w i t h  prep)  
(word w i t h o u t  prep)  

21.12 Supporting the Lexicon 

This section describes the implementation of the macros word, verb, noun, and 
a bbrev. Abbreviations are storedina hash table. The macro a bbrev and the functions 
get-abbrev and clear-abbrevs define the interface. We will see how to expand 
abbreviations later. 



(de fva r  *abbrevs* (make-hash-table)) 

(defmacro abbrev (symbol d e f i n i t i o n )  
"Make symbol be an abbrev ia t ion  f o r  d e f i n i t i o n .  " 
' ( s e t f  (gethash ',symbol *abbrevs*) ' , d e f i n i t i o n ) )  

(defun c lear-abbrevs 0 ( c l r h a s h  *abbrevs*)) 
(defun get-abbrev (symbol) (gethash symbol *abbrevs*)) 

Words are also stored in a hash table. Currently, words are symbols, but it might 
be a better idea to use strings for words, since then we could maintain capitalization 
information. The macro word or the function add-word adds a word to the lexicon. 
When used as an index into the hash table, each word returns a list of entries, where 
the first element of each entry is the word's category, and the other elements depend 
on the category. 

(de fva r  *words* (make-hash-table : s i z e  500)) 

(defmacro word (word c a t  & r e s t  i n f o )  
"Put  word, w i t h  category and subcat i n f o ,  i n t o  l e x i c o n . "  
' (add-word ',word ' , ca t  .,(mapcar #'kwote i n f o ) ) )  

(defun add-word (word c a t  & r e s t  i n f o )  
"Put word, w i t h  category and o the r  i n f o ,  i n t o  l e x i c o n . "  
(push (cons c a t  (mapcar # ' expand-abbrevs -and- va r i ab le s  i n f o ) )  

(gethash word *words*)) 
word 1 

(defun kwote ( x )  ( l i s t  'quote x ) )  

The function expand - a bbrevs -and - va ri a bl es expands abbreviations and substi- 
tutes variable structures for symbols beginning with ?. This makes it easier to make 
a copy of the structure, which will be needed later. 

(defun expand-abbrevs-and-var iables  (exp) 
"Replace a l l  va r iab les  i n  exp w i t h  vars ,  and expand abbrevs." 
( l e t  ( (b ind ings  n i l  ) )  

( l a b e l s  
((expand (exp) 

(cond 
( ( lookup exp b i n d i n g s ) )  
( (eq  exp ' ? )  ( ? ) I  
( ( v a r i a b l e - p  exp) 

( l e t  ( ( v a r  ( ? I > >  
(push (cons exp v a r )  b ind ings )  
v a r ) )  

( (consp exp) 
(reuse-cons (expand ( f i r s t  exp))  



(expand ( r e s t  e x p ) )  
exp  1 1 

( t  ( m u l t i p l e - v a l u e - b i n d  ( expans ion  found? )  
( g e t - a b b r e v  exp )  

( i f  found?  
(expand-abbrevs-and-var iab les expans ion )  
e x p ) ) ) ) ) )  

(expand e x p ) ) ) )  

Now we can store words in the lexicon, but we need some way of getting them out. 
The function wordln takes a word (which must be instantiated to a symbol) and a 
category and optional additional information and finds the entries in the lexicon for 
that word that unify with the category and additional information. For each match, 
it calls the supplied continuation. This means that wordln is a replacement for a long 
list of word facts. There are three differences: wordln hashes, so it will be faster; it is 
incremental (you can add a word at a time without needing to recompile); and it can 
not be used when the word is unbound. (It is not difficult to change it to handle an 
unbound word using map h a s h, but there are better ways of addressing that problem.) 

(de fun  wordln (word c a t  c o n t  & r e s t  i n f o )  
" R e t r i e v e  a  word from t h e  l e x i c o n . "  
( u n l e s s  (unbound-var-p  ( d e r e f  word ) )  

( l e t  ( ( o l d - t r a i l  ( f i l l  - p o i n t e r  * t r a i l * ) ) )  
( d o l i s t  ( o l d - e n t r y  ( g e t h a s h  word *words*)) 

( l e t  ( ( e n t r y  ( d e r e f - c o p y  o l d - e n t r y ) )  
(when (and  ( consp  e n t r y )  

( u n i f y !  c a t  ( f i r s t  e n t r y ) )  
( u n i f y !  i n f o  ( r e s t  e n t r y ) ) )  

( f u n c a l l  cant))) 

(undo- b ind ings !  o l d - t r a i l ) ) ) ) )  

Note that word/n does not follow our convention of putting the continuation last. 
Therefore, we will need the following additional functions: 

(de fun  word12 (w c a t  c o n t )  (wordln  w  c a t  c o n t ) )  
( de fun  word13 (w c a t  a  c o n t )  (wordln  w  c a t  c o n t  a ) )  
( de fun  word14 (w c a t  a  b  c o n t )  (wordln  w  c a t  c o n t  a  b ) )  
( de fun  word15 (w c a t  a  b  c  c o n t )  (wordln  w  c a t  c o n t  a  b  c ) )  
( de fun  word16 (w c a t  a  b  c  d  c o n t )  (wordln  w  c a t  c o n t  a  b  c  d l )  

We could create the whole lexicon with the macro word, but it is convenient to create 
specific macros for some classes. The macro noun is used to generate two entries, one 
for the singular and one for the plural. The arguments are the base noun, optionally 
followed by the plural (which defaults to the base plus "s"), the semantics (which 



defaults to the base), and a list of complements. Mass nouns, like "furniture," have 
only one entry, and are marked by an asterisk where the plural would otherwise be. 

(defmacro noun (base & r e s t  args)  
"Add a noun and i t s  p l u r a l  t o  t h e  lex i con .  " 
' (add-noun-form ',base ,@(mapcar #'kwote a r g s ) ) )  

(defun add-noun-form (base &op t iona l  ( p l u r a l  (symbol base ' s ) )  
(sem base) & r e s t  s l o t s )  

( i f  (eq p l u r a l  ' *)  

(add-word base 'noun ' ?  s l o t s  sem) 
( progn 

(add-word base 'noun '3s ing  s l o t s  sem) 
(add-word p l u r a l  'noun '3p l  u r  s l o t s  sem) 1 ) 

Verbs are more complex. Each verb has seven entries: the base or nonfinite, the 
present tense singular and plural, the past tense, the past-participle, the present- 
participle, and the passive. The macro verb automatically generates all seven entries. 
Verbs that do not have all of them can be handled by individual calls to word. We 
automatically handle the spelling for the simple cases of adding "s," "ing," and 'led," 
and perhaps stripping a trailing vowel. More irregular spellings have to be specified 
explicitly. Here are three examples of the use of verb: 

(verb (do d i d  done doing does) (per form v l t r a n s ) )  
( ve rb  ( e a t  a t e  eaten) ( e a t  v l t r a n s ) )  
( ve rb  ( t r u s t )  ( t r u s t  v l t r a n s  ( ( a g t  1 (NP ? ) I  ( o b j  2 (PP i n  ? ) ) ) ) I  

And here is the macro definition: 

(defmacro verb ((base & r e s t  forms) &body senses) 
"Enter  a verb i n t o  t h e  1 e x i  con. " 
' (add-verb ',senses ' 'base ,@(mapcar #'kwote ( m k l i s t  f o r m s ) ) ) )  

(defun add-verb (senses base &op t iona l  
(pas t  (symbol ( s t r i p - v o w e l  base) ' ed ) )  
( p a s t - p a r t  pas t )  
( p r e s - p a r t  (symbol ( s t r i p - v o w e l  base) ' i n g ) )  
( p l u r a l  (symbol base ' s ) ) )  

"Enter  a verb i n t o  t h e  1 exicon. " 
(add-word base ' ve rb  ' n o n f i n i t e  senses) 
(add-word base 'verb ' ( f i n i t e  "3sing p resen t )  senses) 
(add-word pas t  'verb ' ( f i n i t e  ? p a s t )  senses) 
(add-word p a s t - p a r t  'verb ' -en  senses) 
(add-word p r e s - p a r t  'verb ' - i n g  senses) 
(add-word p l u r a l  'verb ' ( f i n i t e  3s ing  present)  senses) 
(add-word p a s t - p a r t  'verb 'pass ive 



(mapcar #'passivize-sense 
(expand-abbrevs-and-var iables senses))))  

This uses a few auxiliary functions. First, s t  r i p - vowel removes a vowel if it is the 
last character of the given argument. The idea is that for a verb like "fire," stripping 
the vowel yields "fir," from which we can get "fired and "firing" automatically. 

(defun strip-vowel (word) 
"Strip off a t ra i l ing vowel from a string." 
( le t*  ( ( s t r  (string word)) 

(end ( -  (length s t r )  1 ) ) )  
( i f  (vowel-p (char s t r  end)) 

(subseq s t r  0 end) 
s t r )  1 1 

(defun vowel-p (char) (find char "aeiou" : t e s t  #'char-equal)) 

We also provide a function to generate automatically the passive sense with the 
proper complement list(s). The idea is that the subject slot of the active verb becomes 
an optional slot marked by the preposition "by," and any slot that is marked with 
number 2 can be promoted to become the subject: 

(defun passivize-sense (sense) 
;; The f i r s t  element of sense i s  the semantics; rest  are s lots  
(cons ( f i r s t  sense) (mapcan #'passivize-subcat ( res t  sense) ) ) )  

(defun passivize-subcat ( s lo t s )  
"Return a l i s t  of passivizations of this  subcat frame." 
;; Whenever the 1 s lot  i s  of the form (?any 1 ( N P  ? ) I ,  
;; demote the 1 to  a (31, and  promote any 2 to  a 1. 
(when ( a n d  (eql (slot-number ( f i r s t  s l o t s ) )  1 )  

(starts-with (third ( f i r s t  s l o t s ) )  ' N P ) )  

( l e t  ( (old-1 ' ( ' ( f i r s t  ( f i r s t  s l o t s ) )  (3)  ( P P  by ? I ) ) )  
(loop for s lot  in s lots  

when (eql (slot-number s l o t )  2 )  

collect ' ( ( . ( f i r s t  s l o t )  1 , ( third s l o t ) )  
,@(remove s lot  ( res t  s l o t s ) )  
, o l d -1 ) ) ) ) )  

(defun slot-number ( s l o t )  ( f i r s t -o r -se l f  (second s l o t ) ) )  

Finally, we provide a special function just to define the copula, "be." 



(defun copula (senses en t r i e s )  
"Copula ent r ies  are both aux and main verb." 
;; They also are used in passive verb phrases and aux-inv-S 
(do1 i s t  (entry en t r i e s )  

(add-word ( f i r s t  entry) 'aux (second entry) ( th i rd  ent ry))  
(add-word ( f i r s t  entry) 'verb (second entry) senses) 
(add-word ( f i r s t  entry) 'aux (second entry) 'passive) 
(add-word ( f i r s t  entry) ' b e ) ) )  

The remaining functions are used for testing, debugging, and extending the grammar. 
First, we need functions to clear everything so that we can start over. These functions 
can be placed at the top of the lexicon and grammar files, respectively: 

(defun clear-lexicon 0 
(cl  rhash *words*) 
(c l  ear-abbrevs)) 

(defun clear-grammar 0 
(clear-examples) 
(c lear-db))  

Testing could be done with run -examp1 es, but it is convenient to provide another 
interface, the macro t r y  (and its corresponding function, t r y  - dcg). Both macro and 
function can be invoked three ways. With no argument, all the examples stored by 
: ex are run. When the name of a category is given, all the examples for that category 
alone are run. Finally, the user can supply both the name of a category and a list of 
words to test whether those words can be parsed as that category. This option is only 
available for categories that are listed in the definition: 

(defmacro t r y  (&optional cat  &res t  words) 
"Tries t o  parse WORDS as a constituent of category CAT. 
With no words, runs a l l  the :ex examples for category. 
With no ca t ,  runs a l l  the examples." 
' ( t ry-dcg ' , c a t  ' 'words)) 

(defun try-dcg (&optional cat  words) 
"Tries to  parse WORDS as a constituent of category CAT. 
With no words, runs a l l  the :ex examples for category. 
With no c a t ,  runs a l l  the examples." 
( i f  (null words) 

(run-examples ca t )  
( l e t  ( (args  ' ( (gap n i l )  (gap n i l )  ?sem 'words 0 ) ) )  

(mapc #'test-unknown-word words) 
(top-level -prove 

(ecase ca t  
(np ' ( (np  ? ? ?wh ?x ,@args ) ) )  



( v p  ' ( ( v p  ?infl ?x ?sl ?v ,@args)))  
( p p  ' ( ( p p  ?prep ?role ?wh ?x ,@args)))  
(xp ' ( (xp ?slot ?constituent ?wh ?x ,@args)))  
( S  ' ( ( s  ? ?sem ,words 0 ) ) )  
(re1 -cl ause ' ( (re1 -cl ause ? ?x ?sem ,words ( ) 1) 
(clause '((clause ?infl ?x ?int-subj ? v  ?gl ?g2 

?sem .words 0 ) ) ) ) ) ) ) )  

(defun test-unknown-word (word) 
"Print a warning message i f  th i s  i s  a n  unknown word." 
(unless (or (gethash word *words*) (numberp word)) 

(warn ""&Unknown word: "a" word))) 

21.13 Other Primitives 

To support the : t e s t  predicates made in various grammar rules we need definitions 
of the Prolog predicates i f, member, =, numberp, and atom. They are repeated here: 

(<- ( i f  ? tes t  ?then) ( i f  ?then ?else ( f a i l ) ) )  
(<- ( i f  ? tes t  ?then ?else) (call  ? t e s t )  ! (call ?then)) 
(<- ( i f  ? tes t  ?then ?else) (call  ?e l se ) )  

(<- (member ?item (?item . ? r e s t ) ) )  
(<- (member ?item (?x . ? r e s t ) )  (member ?item ? r e s t ) )  

(defun numberpll (x cont) 
(when (numberp (deref x ) )  

(funcall cant))) 

(defun atom11 (x cont) 
(when (atom (deref x ) )  

(funcall cant))) 

(defun call11 (goal cont) 
"Try to  prove goal by call ing i t .  " 
(deref goal 
(apply (make-predicate ( f i r s t  goal  

(length (args goal)))  
(append (args goal) ( l i s t  cant)))) 



21.14 Examples 

Here are some examples of what the parser can handle. I have edited the output 
by changing variable names like ?I68 to more readable names like ?J. The first 
two examples show that nested clauses are supported and that we can extract a 
constituent from a nested clause: 

> ( t r y  S J o h n  p r o m i s e d  K i m  t o  p e r s u a d e  L e e  t o  s l e e p )  
?SEM = (AND ( T H E  ? J  (NAME JOHN ? J ) )  (AGT ? P  ? J )  

( P A S T  ? P )  (PROMISE ? P )  

(GOAL ?P ?K )  ( T H E  ? K  (NAME K I M  ? K ) )  
(CON ? P  ?PER)  (PERSUADE ?PER) (GOAL ?PER ? L )  

( T H E  ? L  (NAME LEE ? L ) )  (CON ?PER ? S )  ( S L E E P  ? S ) ) ;  

> ( t r y  S Who d i d  J o h n  p r o m i s e  K i m  t o  p e r s u a d e  t o  s l e e p )  

?SEM = (AND (WH ?W (PERSON ?W))  ( P A S T  ? P )  

( T H E  ? J  (NAME JOHN ? J ) )  (AGT ?P ? J )  
(PROMISE ? P I  (GOAL ?P ? K )  

( T H E  ? K  (NAME K I M  ? K ) )  (CON ? P  ?PER)  
(PERSUADE ?PER) (GOAL ?PER ?W) 

(CON ?PER ? S )  ( S L E E P  ? S ) ) ;  

In the next example, the "when" can be interpreted as asking about the time of any of 
the three events: the promising, the persuading, or the sleeping. The grammar finds 
all three. 

> ( t r y  S When d i d  J o h n  p r o m i s e  K i m  t o  p e r s u a d e  L e e  t o  s l e e p )  

?SEM = (AND (WH ?W ( T I M E  ? S  ? W ) )  ( P A S T  ? P )  

( T H E  ? J  (NAME JOHN ? J ) )  (AGT ? P  ? J )  
(PROMISE ? P I  (GOAL ?P ? K )  

( T H E  ? K  (NAME K I M  ? K ) )  (CON ? P  ?PER) 
(PERSUADE ?PER) (GOAL ?PER ? L )  

( T H E  ? L  (NAME LEE ? L ) )  (CON ?PER ? S )  
( S L E E P  ? S ) ) ;  

?SEM = (AND (WH ?W ( T I M E  ?PER ?W))  ( P A S T  ? P )  
( T H E  ? J  (NAME JOHN ? J ) )  (AGT ? P  ? J )  

(PROMISE ? P I  (GOAL ? P  ? K )  

( T H E  ? K  (NAME K I M  ? K ) )  (CON ? P  ?PER) 

(PERSUADE ?PER) (GOAL ?PER ? L )  
( T H E  ? L  (NAME LEE ? L ) )  (CON ?PER ? S )  

( S L E E P  ? S ) ) :  



?SEM = (AND (WH ?W ( T I M E  ? P  ?W))  (PAST ? P )  
(THE ?J (NAME JOHN ? J ) )  (AGT ?P ? J )  
(PROMISE ? P I  (GOAL ? P  ? K )  
(THE ? K  (NAME K I M  ? K ) )  (CON ?P ?PER) 
(PERSUADE ?PER) (GOAL ?PER ? L )  
(THE ? L  (NAME LEE ? L ) )  (CON ?PER ? S )  
(SLEEP ? S ) ) .  

The next example shows auxiliary verbs and negation. It is ambiguous between 
an interpretation where Kim is searching for Lee and one where Kim is looking at 
something unspecified, on Lee's behalf. 

> ( t r y  S K i m  w o u l d  n o t  h a v e  b e e n  1 o o k i n g  f o r  L e e )  
?SEM = (AND (THE ? K  (NAME K I M  ? K ) )  (AGT ? S  ? K )  

(EXPECTED ? S )  (NOT ? S )  ( P A S T- P A R T I C I P L E  ? S )  
(PROGRESSIVE ? S )  (SEARCH ? S )  ( P A T  ? S  ? L )  
( P A T  ? S  ? L )  (THE ? L  (NAME LEE ? L ) ) ) ;  

?SEM = (AND (THE ? K  (NAME K I M  ? K ) )  (AGT ? 2  ? K )  
(EXPECTED ? 2 )  (NOT ? 2 )  ( P A S T- P A R T I C I P L E  ?LOOK) 
(PROGRESSIVE ?LOOK) (LOOK ?LOOK) (FOR ?LOOK ? L )  
(THE ? L  (NAME LEE ? L ) ) ) ;  

The next two examples are unambiguous: 

> ( t r y  s It s h o u l d  n o t  s u r p r i s e  y o u  t h a t  K i m  d o e s  n o t  l i k e  L e e )  
?SEM = (AND (MANDATORY ? 2 )  (NOT ? 2 )  (SURPRISE ? 2 )  (EXP ? 2  ?YOU) 

(PRO ?YOU ( L I S T E N E R  ?YOU)) (CON ? 2  ? L I K E )  
(THE ? K  (NAME K I M  ? K ) )  (AGT ? L I K E  ? K )  
(PRESENT ? L I K E )  (NOT ? L I K E )  ( L I K E - 1  ? L I K E )  
(OBJ ? L I K E  ? L )  (THE ? L  (NAME LEE ? L ) ) ) ;  

> ( t r y  s K i m  d i d  n o t  w a n t  L e e  t o  k n o w  t h a t  t h e  man k n e w  h e r )  
?SEM = (AND (THE ? K  (NAME K I M  ? K ) )  (AGT ?W ? K )  (PAST ?W) 

(NOT ?W) ( D E S I R E  ?W) (GOAL ?W ? L )  
(THE ? L  (NAME LEE ? L ) )  (CON ?W ?KN) 
(KNOW-THAT ?KN) (CON ?KN ?KN2)  
(THE ?M (MAN ? M I )  (AGT ?KN2 ? M I  (PAST ?KN2)  
(KNOW-OF ?KN2)  (OBJ ?KN2 ?HER) 
(PRO ?HER (FEMALE ? H E R ) ) ) .  

The final example appears to be unambiguous, but the parser finds four separate 
parses. The first is the obvious interpretation where the looking up is done quickly, 
and the second has quickly modifying the surprise. The last two interpretations are 
the same as the first two; they are artifacts of the search process. A disambiguation 
procedure should be equipped to weed out such duplicates. 



> ( t r y  s T h a t  K i m  l o o k e d  h e r  u p  q u i c k l y  s u r p r i s e d  me)  
?SEM = (AND (THE ? K  (NAME K I M  ? K ) )  (AGT ? L U 1  ? K )  (PAST ? L u l l  

(LOOK-UP ? L u l l  ( P A T  ? L U 1  ? H )  (PRO ?H (FEMALE ? H I )  
(QUICKLY ? L u l l  (CON ? S  ? L u l l  (PAST ? S )  (SURPRISE ? S )  
(EXP ? S  ?ME11 (PRO ?ME1 (SPEAKER ? M E l ) ) ) ;  

?SEM = (AND (THE ? K  (NAME K I M  ? K ) )  (AGT ? L U 2  ? K )  (PAST ? L U 2 )  
(LOOK-UP ? L U 2 )  (PAT ? L U 2  ? H I  (PRO ?H (FEMALE ? H I )  
(CON ? S  ? L U 2 )  (QUICKLY ? S )  (PAST ? S )  (SURPRISE ?S)  
(EXP ? S  ?ME21 (PRO ?ME2 (SPEAKER ? M E 2 ) ) ) ;  

?SEM = (AND (THE ? K  (NAME K I M  ? K )  (AGT ? L U 3  ? K )  (PAST ? L U 3 )  
(LOOK-UP ? L U 3 )  ( P A T  ? L U 3  ? H I  (PRO ?H (FEMALE ? H I )  
(QUICKLY ? L U 3 )  (CON ? S  ? L U 3 )  (PAST ? S )  (SURPRISE ? S )  
(EXP ? S  ?ME31 (PRO ?ME3 (SPEAKER ? M E 3 ) ) ) ;  

?SEM = (AND (THE ? K  (NAME K I M  ? K ) )  (AGT ? L U 4  ? K )  (PAST ? L U 4 )  
(LOOK-UP ? L U 4 )  (PAT ? L U 4  ? H I  (PRO ?H (FEMALE ? H I )  
(CON ? S  ? L U 4 )  (QUICKLY ? S )  (PAST ? S )  (SURPRISE ? S )  
(EXP ? S  ?ME41 (PRO ?ME4 (SPEAKER ? M E 4 ) ) ) ;  

21.15 History and References 

Chapter 20 provides some basic references on natural language. Here we will con- 
centrate on references that provide: 

1. A comprehensive grammar of English. 

2. A complete implementation. 

There are a few good textbooks that partially address both issues. Both Winograd 
(1983) and Allen (1987) do a good job of presenting the major grammatical features of 
English and discuss implementation techniques, but they do not provide actual code. 

There are also a few textbooks that concentrate on the second issue. Ramsey and 
Barrett (1987) and Walker et al. (1990) provide chapter-length implementations at 
about the same level of detail as this chapter. Both are recommended. Pereira and 
Shieber 1987 and Gazdar and Mellish 1989 are book-length treatments, but because 
they cover a variety of parsing techniques rather than concentrating on one in depth, 
they are actually less comprehensive. 

Several linguists have made serious attempts at addressing the first issue. The 
largest is the aptly named A Comprehensive Grammar of Contemporary English by Quirk, 
Greenbaum, Leech and Svartik (1985). More manageable (although hardly concise) 
is their abridged edition, A Concise Grammar of Contemporary English. Both editions 
contain a gold mine of examples and facts about the English langauge, but the authors 



do not attempt to write rigorous rules. Harris (1982) and Huddleston (1984) offer 
less complete grammars with greater linguistic rigor. 

Naomi Sager (1981) presents the most complete computerized grammar ever 
published. The grammar is separated into a simple, neat, context-free component 
and a rather baroque augmentation that manipulates features. 

21.16 Exercises 

p Exercise 21.1 [m] Change the grammar to account better for mass nouns. The cur- 
rent grammar treats mass nouns by making them vague between singular and plural, 
which is incorrect. They should be treated separately, since there are determiners 
such as "much that work only with mass nouns, and other determiners such as 
"these" that work only with plural count nouns. 

p Exercise 21.2 [m] Change the grammar to make a distinction between attributive 
andpredicative adjectives. Most adjectives fall into both classes, but some can be used 
only attributively, as in "an utter fool" but not ""the fool is utter." Other adjectives can 
only be used predicatively, as in "the woman was loath to admit it" but not "*a loath 
(to admit it) woman." 

p Exercise 21.3 [h] Implement complement lists for adjectives, so that "loath would 
take an obligatory infinitive complement, and "proud would take an optional ( P P  
o f  1 complement. In connection to the previous exercise, note that it is rare if not 
impossible for attributive adjectives to take complements: "he is proud," "he is proud 
of his country" and "a proud citizen" are all acceptable, but "*a proud of his country 
citizen" is not. 

p Exercise 21.4 [m] Add rules to advp to allow for adverbs to modify other adverbs, 
as in 'Iextremely likely" or "very strongly." 

p Exercise 21.5 b ]  Allow adverbs to modify adjectives, as in "very good or "really 
delicious." The syntax will be easy, but it is harder to get a reasonable semantics. 
While you're at it, make sure that you can handle adjectives with so-called noninter- 
sective semantics. Some adjectives can be handled by intersective semantics: a red 
circle is something that is red and is a circle. But for other adjectives, this model 
does not work: a former senator is not something that is former and is a senator-a 
former senator is not a senator at all. Similarly, a toy elephant is not an elephant. 



The semantics should be represented by something closer to ( ( t o y  e l  e p h a n t )  ?x) 
rather than (and ( t o y  ?XI ( e l e p h a n t  ?XI 1. 

Exercise 21.6 [m] Write a function that notices punctuation instead of ignoring it. 
It should work something like this: 

> (s t r ing->words "Who asked Lee, Kim and John?") 
(WHO ASKED LEE 1 . 1  K I M  AND JOHN / ? I )  

p Exercise 21.7 [m] Change the grammar to allow optional punctuation marks at the 
end of sentences and before relative clauses. 

p Exercise 21.8 [m] Change the grammar to allow conjunction with more than two 
elements, using commas. Can these rules be generated automatically by con j - ru l  e? 

p Exercise 21.9 [h] Make a distinction between restrictive and nonrestrictive relative 
clauses. In "The truck that has Pwheel drive costs $5000," the italicized relative clause 
is restrictive. It serves to identify the truck and thus would be part of the quantifier's 
restriction. The complete sentence might be interpreted as: 

(and ( t h e  ?x (and ( t r u c k  ?x )  (4 -whee l -d r i ve  ? X I ) )  
( cos ts  ?x  $5000)) 

Contrast this to "The truck, which has 4-wheel drive, costs $5000." Here the relative 
clause is nonrestrictive and thus belongs outside the quantifier's restriction: 

(and ( t h e  ?x ( t r u c k  ?XI)  
(4 -whee l -d r i ve  ?x )  ( cos ts  ?x  $5000)) 



PART V 

THE REST OF LISP 





CHAPTER 22 
Scheme: An Uncommon Lisp 

The best laid schemes o' mice an' men 

-Robert Burns ( 1  759 -1 796) 

his chapter presents the Scheme dialect of Lisp and an interpreter for it. While it is not 
likely that you would use this interpreter for any serious programming, understanding 
how the interpreter works can give you a better appreciation of how Lisp works, and 

thus make you a better programmer. A Scheme interpreter is used instead of a Common Lisp 
one because Scheme is simpler, and also because Scheme is an important language that is worth 
knowing about. 

Scheme is the only dialect of Lisp besides Common Lisp that is currently flourishing. Where 
Common Lisp tries to standardize all the important features that are in current use by Lisp 
programmers, Scheme tries to give a minimal set of very powerful features that can be used to 
implement the others. It is interesting that among all the programming languages in the world, 
Scheme is one of the smallest, while Common Lisp is one of the largest. The Scheme manual 
is only 45 pages (only 38 if you omit the example, bibliography, and index), while Common Lisp 
the Language, 2d edition, is 1029 pages. Here is a partial list of the ways Scheme is simpler than 
Common Lisp: 



1. Scheme has fewer built-in functions and special forms. 

2. Scheme has no special variables, only lexical variables. 

3. Scheme uses the same name space for functions andvariables (and everything 
else). 

4. Scheme evaluates the function part of a function call in exactly the same way 
as the arguments. 

5. Scheme functions can not have optional and keyword parameters. However, 
they can have the equivalent of a &rest  parameter. 

6. Scheme hasno b l  ock, return, go, or throw; asinglefunction(cal1 /cc)replaces 
all of these (and does much more). 

7. Scheme has no packages. Lexical variables can be used to implement package- 
like structures. 

8. Scheme, as a standard, has no macros, althoughmost implementations provide 
macros as an extension. 

9. Scheme has no special forms for looping; instead it asks the user to use recursion 
and promises to implement the recursion efficiently. 

The five main special forms in Scheme are quote and i f ,  which are just as in 
Common Lisp; begin and set!, which are just different spellings for progn and 
setq; and 1 ambda, which is as in Common Lisp, except that it doesn't require a 
# ' before it. In addition, Scheme allows variables, constants (numbers, strings, and 
characters), and function calls. The function call is different because the function 
itself is evaluated in the same way as the arguments. In Common Lisp, ( f x 1 means 
to look up the function binding of f and apply that to the value of x. In Scheme, ( f x 
means to evaluate f (in this case by looking up the value of the variable f), evaluate 
x (by looking up the value of the variable in exactly the same way) and then apply 
the function to the argument. Any expression can be in the function position, and 
it is evaluated just like the arguments. Another difference is that Scheme uses #t 
and #f for true and false, instead of t and ni 1. The empty list is denoted by ( 1, and 
it is distinct from the false value, #f. There are also minor lexical differences in the 
conventions for complex numbers and numbers in different bases, but these can be 
ignored for all the programs in this book. Also, in Scheme a single macro, def i ne, 
serves to define both variables and functions. 



Scheme Common Lisp 
var var 
constant constant 
(quote x )  or ' x  (quote x> or ' x  
(begin x... ) ( progn x... 1 
(set!  varx) (setq varx)  
( i f  pa b )  ( i f p a  b )  
( 1 ambda parms x... > # ' ( 1 ambda parms x... ) 
( f n  arg ... 1 ( f n  arg ... > or ( funcall fn arg ... > 
#t t 
#f ni 1 
( 1  ni 1 
(def i ne var exp ) (defparameter var exp) 
(define (fnparm ... 1 body) (defun fn (parm ... ) body) 

p Exercise 22.1 [s] What does the following expression evaluate to in Scheme? How 
many errors does it have as a Common Lisp expression? 

( ( i f  (= (+ 2 2 )  4) 
( lambda ( x  y )  (+ (* x y )  1 2 ) )  

cons  1 

A great many functions, such as car, cdr, cons, append, +, *, and 1 i s t  are 
the same (or nearly the same) in both dialects. However, Scheme has some spelling 
conventions that are different from Common Lisp. Most Scheme mutators, like 
set  ! , end in ' ! '. Common Lisp has no consistent convention for this; some mutators 
start with n (nreverse, ns ubs t, ni ntersect i on) while others have idiosyncratic 
names (del ete versus remove). Scheme would use consistent names-reverse ! and 
remove !-if these functions were defined at all (they are not defined in the standard). 
Most Scheme predicates end in '?', not 'p'. This makes predicates more obvious 
and eliminates the complicated conventions for adding a hyphen before the p.' The 
only problem with this convention is in spoken language: is equal ? pronounced 
""equal-question-mark" or "equal-q" or perhaps equal, with rising intonation? This 
would make Scheme a tone language, like Chinese. 

'one writes nurnberp because there is no hyphen in number but random- s t a t e - p  because 
there is a hyphen in random- state.  However, d e f  s t r u c t  concatenates -p  in all its predicates, 
regardless of the presence of a hyphen in the structure's name. 



In Scheme, it is an error to apply car or cdr to the empty list. Despite the fact that 
Scheme has cons, it calls the result a pai r  rather than a cons cell, so the predicate is 
pai r?, not consp. 

Scheme recognizes not all lambda expressions will be "functions" according to 
the mathematical definition of function, and so it uses the term "pr~cedure'~ instead. 
Here is a partial list of correspondences between the two dialects: 

Scheme Procedure Common Lisp Function 
char-ready? 1 is ten 
char? characterp 
eq? e q 
equal ? equal 
eqv? eq 1 
even? evenp 
for-each mapc 
integer? i  ntegerp 
1 i s t ->s t r ing  coerce 
l i s t ->vector  coerce 
l i s t - r e f  n t h  
l i s t - t a i l  nthcdr 
map mapcar 
negative? mi nusp 
pai r?  consp 
procedure? f  uncti onp 
se t !  setq 
se t -car !  rep1 aca 
vector-set! se t f  
s t r ing-se t !  se t f  

22.1 A Scheme Interpreter 

As we have seen, an interpreter takes a program (or expression) as input and returns 
the value computed by that program. The Lisp function eval is thus an interpreter, 
and that is essentially the function we are trying to write in this section. We have 
to be careful, however, in that it is possible to confuse the notions of interpreter and 
compiler. A compiler takes a program as input and produces as output a translation 
of that program into some other language-usually a language that can be directly 
(or more easily) executed on some machine. So it is also possible to write eval by 
compiling the argument and then interpreting the resulting machine-level program. 
Most modern Lisp systems support both possibilities, although some only interpret 



code directly, and others compile all code before executing it. To make the distinction 
clear, we will not write a function called eval . Instead, we will write versions of two 
functions: i nterp, a Scheme interpreter, and, in the next chapter, comp, a Scheme 
compiler. 

An interpreter that handles the Scheme primitives is easy to write. In the in- 
terpreter interp, the main conditional has eight cases, corresponding to the five 
special forms, symbols, other atoms, and procedure applications (otherwise known 
as function calls). For the moment we will stick with t and ni 1 instead of #t and 
#f. After developing a simple interpreter, we will add support for macros, then 
develop a tail-recursive interpreter, and finally a continuation-passing interpreter. 
(These terms will be defined when the time comes.). The glossary for i n t e  r p is in 
figure 22.1. 

Top-Level Functions 
scheme A Scheme read-interp-print loop. 
interp Interpret (evaluate) an expression in an environment. 
def-scheme-macro Define a Scheme macro. 

Special Variables 
*scheme-procs* Some procedures to store in the global environment. 

Auxiliary Functions 
set-var! Set a variable to a value. 
get-var Get the value of a variable in an environment. 
set-gl obal -var! Set a global variable to a value. 
get-gl obal -var Get the value of a variable fron the global environment. 
extend-env Add some variables and values to an environment. 
i n i t - scheme - i n ter p Initialize some global variables. 
i ni t - scheme - proc Define a primitive Scheme procedure. 
scheme-macro Retrieve the Scheme macro for a symbol. 
scheme -mac ro - expand Macro-expand a Scheme expression. 
maybe - add Add an element to the front of a non-singleton list. 
print-proc Print a procedure. 

Data Type (tail-recursive version only) 
proc A Scheme procedure. 

Functions (continuation version only) 
interp-begin Interpret a begi n expression. 
i nterp-cal 1 Interpret a function application. 
map-interp Map i nterp over a list. 
call /cc call with current continuation. 

Previously Defined Functions 
1 astl Select the last element of a list. 
1 ength=l Is this a list of length I? 

Figure 22.1: Glossary for the Scheme Interpreter 



The simple interpreter has eight cases to worry about: (1) If the expression is a 
symbol, look up its value in the environment. (2) If it is an atom that is not a symbol 
(such as a number), just return it. Otherwise, the expression must be a list. (3) If it 
starts with quote, return the quoted expression. (4) If it starts with begi n, interpret 
each subexpression, and return the last one. (5) If it starts with set!, interpret the 
value and then set the variable to that value. (6) If it starts with i f ,  then interpret 
the conditional, and depending on if it is true or not, interpret the then-part or the 
else-part. (7) If it starts with 1 ambda, build a new procedure-a closure over the cur- 
rent environment. (8) Otherwise, it must be a procedure application. Interpret the 
procedure and all the arguments, and apply the procedure value to the argument 
values. 

(defun i n t e r p  ( x  &op t iona l  env) 
" I n t e r p r e t  (eva luate)  t h e  expression x i n  t h e  environment env." 
(cond 

((symbolp x )  ( g e t - v a r  x env))  
((atom x )  x )  
( (case ( f i r s t  x )  

(QUOTE (second x ) )  
(BEGIN ( l a s t 1  (mapcar #'(lambda ( y )  ( i n t e r p  y env))  

( r e s t  x ) ) ) )  
(SET! ( s e t - v a r !  (second x )  ( i n t e r p  ( t h i r d  x )  env) env))  
( I F  ( i f  ( i n t e r p  (second x )  env) 

( i n t e r p  ( t h i r d  x )  env) 
( i n t e r p  ( f o u r t h  x )  env ) ) )  

(LAMBDA ( l e t  ((parms (second x ) )  
(code (maybe-add 'begin ( r e s t 2  x ) ) ) )  

# '  (1  ambda ( & r e s t  args)  
( i n t e r p  code (extend-env parms args e n v ) ) ) ) )  

( t  ; ; a procedure a p p l i c a t i o n  
(apply  ( i n t e r p  ( f i r s t  x )  env) 

(mapcar #'(lambda ( v )  ( i n t e r p  v env))  
( r e s t  x > > > > > > > >  

An environment is represented as an association list of variable/value pairs, ex- 
cept for the global environment, which is represented by values on the gl obal -val 
property of symbols. It would be simpler to represent the global environment 
in the same way as local environments, but it is more efficient to use property 
lists than one big global a-list. Furthermore, the global environment is distinct 
in that every symbol is implicitly defined ; L~ the global environment, while local 
environments only contain variables that je explicitly mentioned (in a 1 ambda ex- 
pression). 



As an example, suppose we interpret the function call ( f 1 2 3 ), and that the 
functions f has been defined by the Scheme expression: 

( se t !  f  (lambda (a b  c )  (+ a  ( g  b  c ) ) ) )  

Then we will interpret ( f 1 2 3 by interpreting the body of f with the environment: 

Scheme procedures are implemented as Common Lisp functions, and in fact all the 
Scheme data types are implemented by the corresponding Common Lisp types. I 
include the function i n i  t - scheme - i nterp to initialize a few global values and repeat 
the definitions of 1 as t 1 and 1 engt h = l :  

(defun set-var!  (var val env) 
"Set a  variable t o  a  value, in the given or global environment." 
( i f  (assoc var env) 

( se t f  (second (assoc var env)) val)  
(set-global -var! var val 1)  

val 

(defun get-var (var env) 
"Get the value of a  variable, from the given or global environment." 

( i f  (assoc var env) 
(second (assoc var env)) 
(get-global-var v a r ) ) )  

(defun set-global -var! (var val 1 
( se t f  (get  var 'global -val )  val 1)  

(defun get-global-var (var)  
( l e t*  ( (defaul t  "unbound") 

(val (get  var 'global -val d e f a u l t ) ) )  
( i f  (eq val default)  

(er ror  "Unbound scheme variable: "a" var) 
val 1 ) )  

(defun extend-env (vars vals env) 
"Add some variables and values to  an environment." 
(nconc (mapcar # ' l i s t  vars vals)  env)) 

(defparameter *scheme-procs* 
' (+  - * / = < > <= >= cons car cdr not append l i s t  read member 

(nul l?  nu l l )  (eq? eq) (equal? equal) (eqv? eql )  
(write p r in l )  (display princ) (new1 ine terpr i  1) 



(defun i n i t - s c h e m e- i n t e r p  0 
" I n i t i a l  i z e  t h e  scheme i n t e r p r e t e r  w i t h  some g loba l  va r iab les .  " 
;; Def ine Scheme procedures as CL func t ions :  
(mapc # ' i n i t - scheme-proc  *scheme-procs*) 
;; Def ine t h e  Boolean 'constants ' .  Un fo r tuna te ly ,  t h i s  won't  
;; stopsomeone from saying: ( s e t !  t n i l )  
( s e t - g l o b a l  - va r !  t t )  
( s e t - g l o b a l - v a r !  n i l  n i l  1) 

(defun in i t -scheme-proc ( f )  
"Def ine a  Scheme procedure as a  corresponding CL f u n c t i o n . "  
( i f  ( l i s t p  f )  

( s e t - g l o b a l - v a r !  ( f i r s t  f )  (symbol- funct ion (second f ) ) )  
( s e t - g l  obal - va r !  f (symbol - f u n c t i o n  f 1) 1) 

(defun maybe-add (op exps &op t iona l  i f - n i l )  
"For example, (maybe-add 'and exps t) r e t u r n s  
t i f  exps i s  n i l ,  exps i f  t h e r e  i s  on ly  one, 
and (and e x p l  exp2 . . . I  i f  t h e r e  a re  several exps." 
(cond ( ( n u l l  exps) i f - n i l )  

( ( l e n g t h = l  exps) ( f i r s t  exps))  
( t  (cons op e x p s ) ) ) )  

(defun leng th= l  ( x )  
" I s  x  a  l i s t  o f  l e n g t h  I ? "  
(and (consp x )  ( n u l l  ( c d r  x ) ) ) )  

(defun l a s t 1  ( l i s t )  
"Return t h e  1  a s t  element ( n o t  1  a s t  cons c e l l )  o f  1 i s t "  
( f i r s t  ( l a s t  l i s t ) ) )  

To test the interpreter, we add a simple read-eval-print loop: 

(defun scheme 0 
" A  Scheme r e a d - e v a l - p r i n t  l oop  (us ing  i n t e r p ) "  
( i n i t - s c h e m e - i n t e r p )  
( l o o p  ( format  t ""&==> " 1  

( p r i n t  ( i n t e r p  ( read)  n i l ) ) ) )  

And now we're ready to try out the interpreter. Note the Common Lisp prompt is 
"> , " while the Scheme prompt is "= =>." 

> (scheme) 
==> (+ 2  2) 
4  

==> ( ( i f  (= 1 2) * +) 3 4 )  
7 



==> ( ( i f  (= 1 1 )  * +) 3 4 )  

12 

==> ( s e t !  f a c t  (lambda ( n )  
( i f  (= n 0 )  1 

(* n ( f a c t  ( -  n 1 ) ) ) ) ) )  
#<DTP-LEXICAL-CLOSURE 36722615B 

==> ( f a c t  5 )  
120 

==> ( s e t !  t a b l e  (lambda ( f  s t a r t  end) 
( i f  (<= s t a r t  end) 

(beg i  n 
( w r i t e  ( l i s t  s t a r t  ( f  s t a r t ) ) )  
(new1 i n e )  
( t a b l e  f (+ s t a r t  1 )  e n d ) ) ) ) )  

#<DTP-LEXICAL-CLOSURE 41072172> 

==> ( t a b l e  f a c t  1 10) 
( 1  1 )  
( 2  2 )  
( 3  6 )  
( 4  24) 
( 5  120) 
( 6  720) 
(7  5040) 
( 8  40320) 
(9  362880) 
(10 3628800) 
N IL  

==> ( t a b l e  (lambda ( x )  ( *  x x x ) )  5 10)  
(5  125) 
( 6  216) 
(7  343) 
( 8  512) 
( 9  729) 
(10 1000) 
N IL  

==> CABORTI 



22.2 Syntactic Extension with Macros 

Scheme has a number of other special forms that were not listed above. Actually, 
Scheme uses the term"syntax" where we have been using"specia1 form." The remain- 
ing syntax can be defined as "derived expressions" in terms of the five primitives. 
The Scheme standard does not recognize a concept of macros, but it is clear that a 
"derived expression" is like a macro, and we will implement them using macros. The 
following forms are used (nearly) identically in Scheme and Common Lisp: 

l e t  l e t *  and or  do cond case 

One difference is that Scheme is less lenient as to what counts as a binding in 1 et ,  
1 et* and do. Every binding must be ( var init 1 ; just ( var 1 or var is not allowed. In do, 
a binding can be either ( var init step 1 or ( var init 1. Notice there is no do*. The other 
difference is in case and cond. Where Common Lisp uses the symbol t or o t  herwi se 
to mark the final case, Scheme uses el se. The final three syntactic extensions are 
unique to Scheme: 

(def ine  var val) or (def ine  (proc-namearg ...I body ...I 
( del ay expression 1 
(1 e t r e c  ( (var init) ...I body ... ) 

define is a combination of defun and defparameter. In its first form, it assigns a 
value to a variable. Since there are no special variables in Scheme, this is no different 
than using set!.  (There is a difference when the define is nested inside another 
definition, but that is not yet considered.) In the second form, it defines a function. 
del ay is used to delay evaluation, as described in section 9.3, page 281. 1 e t rec  is 
similar to 1 e t .  The difference is that all the init forms are evaluated in an environment 
that includes all the vars. Thus, 1 e t  rec can be used to define local recursive functions, 
just as 1 abel s does in Common Lisp. 

The first step in implementing these syntactic extensions is to change i nterp to 
allow macros. Only one clause has to be added, but we'll repeat the whole definition: 

(defun i n t e rp  (x  &optional env) 
" I n t e rp r e t  (eva lua te )  the  expression x in  the  environment env. 
This version handles macros." 
(cond 

((symbolp x )  (ge t -var  x env))  
((atom x )  x>  
((scheme-macro ( f i r s t  x ) )  . , *** 

( i n t e r p  (scheme-macro-expand x)  env) )  ;*** 
( ( c a se  ( f i r s t  x )  

(QUOTE (second x ) )  



(BEGIN ( l a s t 1  (mapcar #'(lambda ( y )  ( i n t e r p  y env)) 

( r e s t  x )  1) 1 
(SET! ( s e t - v a r !  (second x )  ( i n t e r p  ( t h i r d  x )  env) env))  
( I F  ( i f ( i n t e r p ( s e c o n d x ) e n v )  

( i n t e r p  ( t h i r d  x )  env) 
( i n t e r p  ( f o u r t h  x )  env ) ) )  

(LAMBDA ( l e t  ((parms (second x )  

(code (maybe-add 'begin ( r e s t 2  x ) ) ) )  
# '  (1  ambda ( & r e s t  args 

( i n t e r p  code (extend-env parms args e n v ) ) ) ) )  
( t  ; ; a procedure a p p l i c a t i o n  

(apply  ( i n t e r p  ( f i r s t  x )  env) 
(mapcar #'(lambda ( v )  ( i n t e r p  v env))  

( r e s t  x ) ) ) ) ) ) ) )  

Now we provide a mechanism for defining macros. The macro definitions can be in 
any convenient language; the easiest choices are Scheme itself or Common Lisp. I 
have chosen the latter. This makes it clear that macros are not part of Scheme itself but 
rather are used to implement Scheme. If we wanted to offer the macro facility to the 
Scheme programmer, we would make the other choice. (But then we would be sure to 
add the backquote notation, which is so useful in writing macros.) d e f  - scheme -macro 
(which happens to be a macro itself) provides a way of adding new Scheme macros. 
It does that by storing a Common Lisp function on the scheme-macro property of 
a symbol. This function, when given a list of arguments, returns the code that the 
macro call should expand into. The function scheme -macro tests if a symbol has a 
macro attached to it, and scheme - ma c r o  -expand does the actual macro-expansion: 

(defun scheme-macro (symbol) 
(and (symbolp symbol) ( g e t  symbol 'scheme-macro))) 

(defmacro def-scheme-macro (name p a r m l i s t  &body body) 
"Def ine a Scheme macro." 
' ( s e t f  ( g e t  '.name 'scheme-macro) 

#'(lambda ' p a r m l i s t  . .body)))  

(defun scheme-macro-expand ( x )  
"Macro-expand t h i s  Scheme expression." 
( i f  (and ( l i s t p  x )  (scheme-macro ( f i r s t  X I ) )  

(scheme-macro-expand 

(app ly  (scheme-macro ( f i  r s t  x ) )  ( r e s t  x ) )  
XI > 



Here are the definitions of nine important macros in Scheme: 

(def-scheme-macro l e t  (bindings &rest body) 
'((lambda .(mapcar # ' f i r s t  bindings) . ,body) 

.,(mapcar #'second bindings))) 

(def-scheme-macro let* (bindings &rest body) 
( i f  (null bindings) 

'(begin .,body) 
' ( l e t  ( , ( f i r s t  bindings)) 

( l e t*  , ( r e s t  bindings) . ,body)))) 

(def-scheme-macro and (&rest  args) 
(cond ((null  args) ' T I  

((length=l args) ( f i r s t  args)) 
( t  ' ( i f  , ( f i r s t  args) 

( a n d  . , ( r e s t  a r g s ) ) ) ) ) )  

(def-scheme-macro or (&rest  args) 
(cond ((null args) ' n i l )  

((length=l args) ( f i r s t  args)) 
( t  ( l e t  ((var (gensym))) 

' ( l e t  ( ( , va r  , ( f i r s t  a rgs ) ) )  
( i f  ,var ,var (or . , ( r e s t  a r g s ) ) ) ) ) ) ) )  

(def-scheme-macro cond (&rest  clauses) 
(cond ((null clauses) n i l )  

((length=l ( f i r s t  clauses)) 
' (or  , ( f i r s t  clauses) (cond . , ( r e s t  c lauses))))  

((starts-with ( f i r s t  clauses) 'else) 
'(begin . , ( r e s t  ( f i r s t  clauses) ) )  

( t  ' ( i f  , ( f i r s t  ( f i r s t  clauses)) 
(begin . , ( r e s t  ( f i r s t  clauses))) 
(cond . . ( r e s t  c l au se s ) ) ) ) ) )  

(def-scheme-macro case (key &rest clauses) 
( l e t  ((key-val (gensym "KEY" 1 ) )  

' ( l e t  ((,key-val ,key)) 
(cond ,@(mapcar 

# '  (1  ambda (clause) 
( i f  (starts-with clause 'else) 

cl ause 
'((member ,key-val ' , ( f i r s t  clause) 

. , ( res t  clause) 1)  
c lauses ) ) ) ) )  

(def-scheme-macro define (name &rest body) 
( i f  (atom name) 

'(begin (set!  ,name . ,body) ',name) 
'(define . ( f i r s t  name) 

(lambda , ( res t  name) . ,body)))) 



(def-scheme-macro de lay (computat ion) 
' (1 ambda ( ,computation) ) 

(def-scheme-macro l e t r e c  (b ind ings  & r e s t  body) 
' ( l e t  ,(mapcar #'(lambda ( v )  ( l i s t  ( f i r s t  v )  n i l ) )  b ind ings )  

,@(mapcar #'(lambda ( v )  ' ( s e t !  . , v ) )  b ind ings )  
. ,body) 

We can test out the macro facility: 

> (scheme-macro-expand '(and p q ) )  + ( I F  P (AND Q)) 

> (scheme-macro-expand '(and q ) )  + Q 
> (scheme-macro-expand ' ( l e t  ( ( x  1) ( y  2 ) )  (+ x y ) ) )  +- 
((LAMBDA (X Y )  (+ X Y ) )  1 2) 

> (scheme-macro-expand 
' ( l e t r e c  

((even? (lambda ( x )  ( o r  (= x 0 )  (odd? ( -  x 1 ) ) ) ) )  
(odd? (lambda ( x )  (even? ( -  x 1 ) ) ) ) )  

(even? z ) ) )  =. 
(LET ((EVEN? NIL) 

(ODD? NIL ) )  
(SET! EVEN? (LAMBDA ( X I  (OR (= X 0 )  (ODD? ( -  X 1 ) ) ) ) )  
(SET! ODD? (LAMBDA ( X I  (EVEN? ( -  X 1 ) ) ) )  
(EVEN? Z )  

> (scheme) 
==> ( d e f i n e  ( reverse 1 )  

( i f  ( n u l l ?  1 )  n i l  
(append ( reverse  ( c d r  1 ) )  ( l i s t  ( c a r  1 ) ) ) ) )  

REVERSE 

-- --> ( reverse  ' (a  b c d l )  
(D C B A) 

==> ( l e t *  ( ( x  5) ( y  (+ x X I ) )  
( i f  ( o r  (= x 0)  (and (< 0 y )  (< y 2 0 ) ) )  

( l i s t  x y )  
(+ y X I ) )  

(5  10) 

The macro def i ne is just like set !, except that it returns the symbol rather than the 
value assigned to the symbol. In addition, def i ne provides an optional syntax for 
defining functions-it serves the purposes of both def un and def va r. The syntax 
(def i ne (fn . args) . body)  is an abbreviation for (def i ne fn ( 1 ambda args . body 1. 



In addition, Scheme provides a notation where def i  ne can be used inside a function 
definition in a way that makes it work like 1 e t  rather than se t  ! . 

The advantage of the macro-based approach to special forms is that we don't have 
to change the interpreter to add new special forms. The interpreter remains simple, 
even while the language grows. This also holds for the compiler, as we see in the next 
section. 

22.3 A Properly Tail-Recursive Interpreter 

Unfortunately, the interpreter presented above can not lay claim to the name Scheme, 
because a true Scheme must be properly tail-recursive. Our interpreter is tail- 
recursive only when run in a Common Lisp that is tail-recursive. To see the problem, 
consider the following Scheme procedure: 

(define ( t raverse  l y s t )  
( i f  l y s t  ( t raverse  (cdr  l y s t ) ) ) )  

Trace the function interp and execute ( in terp  ' ( traverse ' ( a  b c d l  ) ). The 
nested calls to i  nterp go 16 levels deep. In general, the level of nesting is 4 plus 3 
times the length of the list. Each call to i  nterp requires Common Lisp to allocate 
some storage on the stack, so for very long lists, we will eventually run out of storage. 
To earn the name Scheme, a language must guarantee that such a program does not 
run out of storage. 

The problem, in this example, lies in two places. Everytime we interpret an i  f 
form or a procedure call, we descend another recursive level into i  nterp. But that 
extra level is not necessary. Consider the i f  form. It is certainly necessary to call 
i  nterp recursively to decide if the test is true or not. For the sake of argument, let's 
say the test is true. Then we call i  nterp again on the then part. This recursive call will 
return a value, which will then be immediately returned as the value of the original 
call as well. 

The alternative is to replace the recursive call to interp with a renaming of 
variables, followed by a goto statement. That is, instead of calling i  nterp and thereby 
binding a new instance of the variable x to the then part, we just assign the then part 
to x, and branch to the top of the i  nterp routine. This works because we know we 
have no more use for the old value of x. A similar technique is used to eliminate the 
recursive call for the last expression in a begi n form. (Many programmers have been 
taught the "structured programming" party line that goto statements are harmful. In 
this case, the goto is necessary to implement a low-level feature efficiently.) 



The final thing we need to do is explicitly manage Scheme procedures. Instead 
of implementing Scheme procedures as Common Lisp closures, we will define a 
structure, proc, to contain the code, environment, parameter list, and optionally the 
name of the procedure. Then when we are evaluating a procedure call, we can assign 
the body of the procedure to x rather than recursively calling i n t e  rp. 

( d e f s t r u c t  (proc ( : p r i n t - f u n c t i o n  p r i n t - p r o c ) )  
"Represent a  Scheme procedure" 
code (env n i l )  (name n i l )  (parms n i l ) )  

The following is a properly tail-recursive interpreter. The macro prog sets up a 
tagbody within which we can use go statements to branch to labels, and it also sets 
up a bl ock from which we can return a value. It can also bind variables like 1 et, 
although in this usage, the variable list is empty. Any symbol within the body of a 
prog is considered a label. In this case, the label : I NTERP is the target of the branch 
statements ( G O  : I NTERP 1. I use uppercase to indicate that go-to statements are being 
used, but this convention has not been widely adopted. 

(defun i n t e r p  ( x  &op t iona l  env) 
"Evaluate t h e  expression x  i n  t h e  environment env. 
Th is  ve rs ion  i s  p r o p e r l y  t a i l  - recu rs i ve .  " 
(prog 0 

: I NTERP 
( r e t u r n  

(cond 
((symbolp x )  ( g e t - v a r  x  env))  
((atom x )  x )  
((scheme-macro ( f i r s t  x ) )  

( s e t f  x  (scheme-macro-expand x ) )  (go :INTERPI) 
( (case ( f i r s t  x )  

(QUOTE (second x ) )  
(BEGIN (pop x )  ; pop o f f  t h e  BEGIN t o  ge t  a t  t h e  args 

;; Now i n t e r p r e t  a l l  b u t  t h e  l a s t  expression 
( l o o p  w h i l e  ( r e s t  x )  do ( i n t e r p  (pop x )  env))  
;; F i n a l l y ,  rename t h e  l a s t  expression as x  
( s e t f  x  ( f i r s t  x ) )  
(GO :INTERPI) 

(SET! ( s e t - v a r !  (second x )  ( i n t e r p  ( t h i r d  x )  env) env))  
( I F  ( s e t f  x  ( i f  ( i n t e r p  (second x )  env) 

( t h i r d  x )  
( f o u r t h  X I ) )  

;; That i s ,  rename t h e  r i g h t  expression as x  
(GO :INTERPI) 

(LAMBDA (make-proc :env env :parms (second x )  
:code (maybe-add 'begin ( r e s t 2  x ) ) ) )  



; ; a procedure application 
( l e t  ((proc ( in terp  ( f i r s t  x) env)) 

(args (mapcar #'(lambda ( v )  ( in terp  v env)) 
( r e s t  X I ) ) )  

( i f  (proc-p proc) 
;; Execute procedure with rename+goto 
(progn 

( se t f  x (proc-code proc)) 
( se t f  env (extend-env (proc-parms proc) args 

(proc-env proc)) )  
( G O  :INTERPI) 

;; e l se  apply primitive procedure 
(apply proc a r g s ) ) ) ) ) ) ) ) ) )  

(defun print-proc (proc &optional (stream *standard-output*) depth) 
(declare (ignore depth)) 
(format stream "{"a)" (or (proc-name proc) ' ? ?  1) 

By tracing the tail-recursive version of i n terp, you can see that calls to traverse 
descend only three recursive levels of i nterp, regardless of the length of the list 
traversed. 

Note that we are not claiming that this interpreter allocates no storage when 
it makes tail-recursive calls. Indeed, it wastes quite a bit of storage in evaluating 
arguments and building environments. The claim is that since the storage is allocated 
on the heap rather than on the stack, it can be reclaimed by the garbage collector. So 
even if traverse is applied to an infinitely long list (i.e., a circular list), the interpreter 
will never run out of space-it will always be able to garbage-collect and continue. 

There are many improvements that could be made to this interpreter, but effort 
is better spent in improving a compiler rather than an interpreter. The next chapter 
does just that. 

22.4 Throw, Catch, and Call/cc 

Tail-recursion is crucial to Scheme. The idea is that when the language is guaranteed 
to optimize tail-recursive calls, then there is no need for special forms to do iteration. 
All loops can be written using recursion, without any worry of overflowing the run- 
time stack. This helps keep the language simple and rules out the goto statement, the 
scourge of the structured programming movement. However, there are cases where 
some kind of nonlocal exit is the best alternative. Suppose that some unexpected 
event happens deep inside your program. The best action is to print an error message 
and pop back up to the top level of your program. This could be done trivially with a 
goto-like statement. Without it, every function along the calling path would have to 



be altered to accept either a valid result or an indication of the exceptional condition, 
which just gets passed up to the next level. 

In Common Lisp, the functions throw and catch are provided for this kind of 
nonlocal exit. Scott Zimmerman, the perennial world Frisbee champion, is also 
a programmer for a Southern California firm. He once told me, "I'm starting to 
learn Lisp, and it must be a good language because it's got th row and catch in it." 
Unfortunately for Scott, throw and catch don't refer to Frisbees but to transfer of 
control. They are both special forms, with the following syntax: 

(catch tag body ...) 
( throw tag value 

The first argument to catch is a tag, or label. The remaining arguments are evaluated 
one at a time, and the last one is returned. Thus, catch is much like progn. The 
difference is that if any code in the dynamic extent of the body of the catch evaluates 
the special form throw, then control is immediately passed to the enclosing catch 
with the same tag. 

For example, the form 

(catch 'tag 
(print 1) (throw 'tag 2 )  (print 3)) 

prints 1 and returns 2, without going on to print 3. A more representative example 
is: 

(defun print-table (1 
(catch 'not-a-number (mapcar #'print-sqrt-abs 1 ) ) )  

(defun print-sqrt-abs (x) 
(print (sqrt (abs (must-be-number x))))) 

(defun must-be-number (x) 
(if (numberp x) x 

(throw 'not-a-number "huh?"))) 

> (print-table '(1 4 -9 x 10 20)) 
1 
2 
3 
"huh?" 

Hereprint-tablecallsprint-sqrt-abs,whichcallsmust-be-number. Thefirstthree 
times all is fine and the values 1,2,3 get printed. The next time x is not a number, so 
the value " huh? " gets thrown to the tag n o t  - a  -number established by catch in f .  The 



throw bypasses the pending calls to abs, sqr t ,  and pr in t ,  as well as the rest of the 
call to mapca r.  

This kind of control is provided in Scheme with a very general and powerful 
procedure, ca l l  -wi th -cur ren t  -conti  nuati  on, which is often abbreviated ca l l  /cc. 
c a l l  / cc is a normal procedure (not a special form like throw and catch) that takes 
a single argument. Let's call the argument computation. computation must be a 
procedure of one argument. When ca l l  /cc  is invoked, it calls cornput a t  i  on, and 
whatever compu t a t i on returns is the value of the call to ca 1 1 1 cc. The trick is that the 
procedure computati on also takes an argument (which we'll call cc) that is another 
procedure representing the current continuation point. If cc is applied to some value, 
that value is returned as the value of the call to ca l l  /cc. Here are some examples: 

> (scheme) 

=> (+ 1 ( c a l l l c c  (lambda ( c c )  (+ 20 3 0 0 ) ) ) )  

321 

This example ignores cc and just computes (+  1 (+ 20 300 1 1. More precisely, it is 
equivalent to: 

((lambda ( v a l )  (+ 1 v a l ) )  

(+ 20 300) 

The next example does make use of cc: 

=> (+ 1 ( c a l l l c c  (lambda ( c c )  (+ 20 ( c c  3 0 0 ) ) ) ) )  

301 

This passes 300 to cc, thus bypassing the addition of 20. It effectively throws 300 out 
of the computation to the catch point established by ca l l  /cc. It is equivalent to: 

((lambda ( v a l )  (+ 1 v a l ) )  

300 

or to: 

((lambda ( v a l )  (+ 1 v a l ) )  

( c a t c h  ' cc  

((lambda ( v )  (+ 20 v ) )  

( throw ' cc  3 0 0 ) ) ) )  



Here's how the throwhatch mechanism would look in Scheme: 

(define (print-table 1 )  
(call /cc 

(1 ambda (escape) 
(set! not-a-number escape) 
(map print-sqrt-abs 1 )  1) 

(define (print-sqrt-abs x) 
(write (sqrt (abs (must-be-number XI)))) 

(define (must-be-number x) 
(if (numberp x) x 

(not-a-number "huh?"))) 

(define (map fn 1) 
(if (null? 1) 

' 0  
(cons (fn (first 1)) 

(map fn (rest 1 1)  1) ) 

The ability to return to a pending point in the computation is useful for this kind of 
error and interrupt handling. However, the truly amazing, wonderful thing about 
call /cc is the ability to return to a continuation point more than once. Consider a 
slight variation: 

=> (+ 1 (calllcc (lambda (cc) 
(set! old-cc cc) 
(+ 20 (cc 300))))) 

=> (old-cc 500) 
501 

Here, we first computed 301, just as before, but along the way saved cc in the global 
variable 01 d - cc. Afterward, calling ( 01 d - cc 500 returns (for the second time) to the 
point in the computation where 1 is added, this time returning 501. The equivalent 
Common Lisp code leads to an error: 

> (+ 1 (catch 'tag (+ 20 (throw 'tag 300)))) 
301 

> (throw 'tag 500) 
Error: there was  no  pending CATCH for the tag TAG 

In other words, call /cc's continuations have indefinite extent, while throw/catch 
tags only have dynamic extent. 



We can use ca 1 1 I cc to implement automatic backtracking (among other things). 
Suppose we had a special form, amb, the "ambiguous" operator, which returns one of 
its arguments, chosen at random. We could write: 

( d e f i n e  ( i n t e g e r )  (amb 1 (+ 1 ( i n t e g e r ) ) ) )  

and a call to integer would return some random positive integer. In addition, 
suppose we had a function, fai 1, which doesn't return at all but instead causes 
execution to continue at a prior arnb point, with the other choice taken. Then we could 
write succinct2 backtracking code like the following: 

( d e f i n e  (pr ime)  

( l e t  ( ( n  ( i n t e g e r ) ) )  
( i f  (pr ime? n )  n  ( f a i l ) ) ) )  

If prime? is a predicate that returns true only when its argument is a prime number, 
then prime will always return some prime number, decided by generating random 
integers. While this looks like a major change to the language-adding backtracking 
and nondeterminism-it turns out that arnb and fa i 1 can be implemented quite easily 
with call Icc. First, we need to make arnb be a macro: 

(def-scheme-macro arnb ( x  y )  

'(random-choice (1  ambda ( 1  ,x) (lambda ( 1  ,y) 1)  

The rest is pure Scheme. We maintain a list of backtrack-poi nts, which are im- 
plemented as functions of no arguments. To backtrack, we just call one of these 
functions. That is what fa i 1 does. The function choose - f i r s t takes two functions 
and pushes the second, along with the proper continuation, on backtrack- poi nts, 
and then calls the first, returning that value. The function random-choi ce is what 
arnb expands into: it decides which choice is first, and which is second. (Note that 
the convention in Scheme is to write global variables like backtrack- poi nts without 
asterisks.) 

( d e f i n e  backt rack-poi  n t s  n i  1  

( d e f i n e  ( f a i l )  

( l e t  ( ( l a s t - c h o i c e  ( c a r  b a c k t r a c k - p o i n t s ) ) )  

( s e t !  back t rack-po in ts  ( c d r  back t rack-po in ts ) )  

( 1  a s t  -choi  ce) ) 

*although inefficient 



( d e f i n e  (random-choice f g )  
( i f  (= 1 (random 2 ) )  

( c h o o s e - f i r s t  f g )  
( choose- f i  r s t  g  f 1 )  ) 

( d e f i n e  ( c h o o s e - f i r s t  f g) 
( c a l l  /cc 

(lambda ( k )  
( s e t !  back t rack-po in ts  

(cons (lambda 0 ( k  ( g ) ) )  back t rack-po in ts ) )  
( f > > > >  

This implements chronological backtracking, as in Prolog. However, we actually 
have the freedom to do other kinds of backtracking as well. Instead of having fa i 1 
take the first element of bac ktrack-poi nts, we could choose a random element 
instead. Or, we could do some more complex analysis to choose a good backtrack 
point. 

call /cc can be used to implement a variety of control structures. As another 
example, many Lisp implementations provide a reset function that aborts the current 
computation and returns control to the top-level read-eval-print loop. reset can be 
defined quite easily using call /cc. The trick is to capture a continuation that is at 
the top level and save it away for future use. The following expression, evaluated at 
the top level, saves the appropriate continuation in the value of reset: 

( c a l l l c c  (lambda ( c c )  ( s e t !  r e s e t  (lambda 0 
(CC "Back t o  t o p  l e v e l  " 1) 1) 

p Exercise 22.2 [m] Can you implement call /cc in Common Lisp? 

p Exercise 22.3 [s] Can you implement amb and fa i 1 in Common Lisp? 

Exercise 22.4 [m] fa i 1 could be written 
(define ( fa i l  ((pop backtrack-points))) ifwe had the popmacroinscheme. 
Write pop. 

22.5 An Interpreter Supporting Call/cc 

It is interesting that the more a host language has to offer, the easier it is to write 
an interpreter. Perhaps the hardest part of writing a Lisp interpreter (or compiler) 
is garbage collection. By writing our interpreter in Lisp, we bypassed the problem 



all together-the host language automatically collects garbage. Similarly, if we are 
using a Common Lisp that is properly tail-recursive, then our interpreter will be too, 
without taking any special steps. If not, the interpreter must be rewritten to take care 
of tail-recursion, as we have seen above. 

It is the same with call Icc. If our host language provides continuations with 
indefinite extent, then it is trivial to implement call Icc. If not, we have to rewrite 
the whole interpreter, so that it explicitly handles continuations. The best way to do 
this is to make i n t e rp a function of three arguments: an expression, an environment, 
and a continuation. That means the top level will have to change too. Rather than 
having i nterp return a value that gets printed, we just pass it the function print  as 
a continuation: 

(defun scheme 0 
" A  Scheme read-eval-print loop (using interp). 
Hand1 es call /cc by expl i ci tly passing continuations . " 
(ini t-scheme-interp) 
(loop (format t ""&==> " 1  

(interp (read) nil #'print))) 

Now we are ready to tackle i n t e rp. For clarity, we will base it on the non-tail-recursive 
version. The cases for symbols, atoms, macros, and quote are almost the same as 
before. The difference is that the result of each computation gets passed to the 
continuation, cc, rather than just being returned. 

The other cases are all more complex, because they all require explicit represen- 
tation of continuations. That means that calls to i nterp cannot be nested. Instead, 
we call i nterp with a continuation that includes another call to i nterp. For example, 
to interpret ( i f  p x y), we first call i nterp on the second element of the form, 
the predicate p. The continuation for this call is a function that tests the value of 
p and interprets either x or y accordingly, using the original continuation for the 
recursive call to i nterp. The other cases are similar. One important change is that 
Scheme procedures are implemented as Lisp functions where the first argument is 
the continuation: 

(defun interp ( x  env cc) 
"Evaluate the expression x in the environment env, 
and pass the result to the continuation cc." 
(cond 

((symbolp x) (funcall cc (get-var x env))) 
((atom x >  (funcall cc x ) )  
((scheme-macro (first x)) 
(interp (scheme-macro-expand x) env cc)) 

((case (first x) 
(QUOTE (funcall cc (second x))) 
(BEGIN (interp-begin (rest x) env cc)) 



(SET! (interp (third x) env 
#'(lambda (val) 

(funcall cc (set-var! (second x) 
val env))))) 

(IF (interp (second x) env 
#'(lambda (pred) 

(interp (if pred (third x) (fourth x)) 
env cc)))) 

(LAMBDA (let ((parms (second x)) 
(code (maybe-add 'begin (rest2 x)))) 

(funcall 
C C 

# '  (1 ambda (cont &rest args 
(interp code 

(extend-env parms args env) 
cant))))) 

(t (interp-call x env cc)))))) 

A few auxiliary functions are defined, in the same continuation-passing style: 

(defun interp-begin (body env cc) 
"Interpret each element of BODY, passing the last to CC." 
(interp (first body) env 

#'(lambda (val) 
(if (null (rest body)) 

(funcall cc val) 
(interp-begin (rest body) env cc))))) 

(defun interp-call (call env cc) 
"Interpret the call (f x...) and pass the result to CC." 
(map-interp call env 

#'(lambda (fn-and-args) 
(apply (first fn-and-args) 

CC 

(rest fn-and-args))))) 

(defun map-interp (list env cc) 
"Interpret each element of LIST, and pass the list to C C . "  
(if (null list) 

(funcall cc nil) 
(interp (first list) env 

#'(lambda (x) 
(map-interp (rest list) env 

#'(lambda (y) 
(funcall cc (cons x y)))))))) 



Because Scheme procedures expect a continuation as the first argument, we need to 
redefine init-scheme-proc to install procedures that accept and apply the 
continuation: 

(defun init-scheme-proc (f) 
"Define a Scheme primitive procedure as a CL function." 
(if (listp f) 

(set-global-var! (first f) 
# '  (1 ambda (cont &rest args) 

(funcall cont (apply (second f) args)))) 
(init-scheme-proc (list f f)))) 

We also need to define ca 1 1 /cc. Think for a moment about what ca 1 1 / cc must do. 
Like all Scheme procedures, it takes the current continuation as its first argument. 
The second argument is a procedure-a computation to be performed. call /cc 
performs the computation by calling the procedure. This is just a normal call, 
so it uses the current continuation. The tricky part is what call /cc passes the 
computation as its argument. It passes an escape procedure, which can be invoked 
to return to the same point that the original call to call /cc would have returned to. 
Once the working of ca 1 1 /cc is understood, the implementation is obvious: 

(defun calllcc (cc computation) 
"Make the continuation accessible to a Scheme procedure." 
( funcall computation cc 

;; Package up CC into a Scheme function: 
# '  (1 ambda (cont val 

(declare (ignore cont)) 
(funcall cc val)))) 

; ; Now instal 1 call /cc in the global environment 
(set-gl obal -var! 'call /cc #'call /cc) 
(set-global-var! 'call-with-current-continuation #'call/cc) 

22.6 History and References 

Lisp interpreters and A1 have a long history together. MIT A1 Lab Memo No. 1 
(McCarthy 1958) was the first paper on Lisp. McCarthy's students were working 
on a Lisp compiler, had written certain routines-read, print, etc.-in assembly 



language, and were trying to develop a full Lisp interpreter in assembler. Sometime 
around the end of 1958, McCarthy wrote a theoretical paper showing that Lisp was 
powerful enough to write the universal function, e v a  1 . A programmer on the project, 
Steve Russell, saw the paper, and, according to McCarthy: 

Steve Russell said, look, why don't Iprogram this e v a l  and-you remember the 
interpreter-and I said to him, ho, ho, you're confusing theory with practice, this 
e v a l  is intended for reading not for computing. But he went ahead and did it. 
That is, he compiled the e v a l  in my paper into 704 machine code fixing bugs 
and then advertised this as a Lisp interpreter, which it certainly was.3 

So the first Lisp interpreter was the result of a programmer ignoring his boss's 
advice. The first compiler was for the Lisp 1.5 system (McCarthy et al. 1962). The 
compiler was written in Lisp; it was probably the first compiler written in its own 
language. 

Allen's Anatomy of Lisp (1978) was one of the first overviews of Lisp implemen- 
tation techniques, and it remains one of the best. However, it concentrates on the 
dynamic-scoping Lisp dialects that were in use at the time. The more modern view 
of a lexically scoped Lisp was documented in an influential pair of papers by Guy 
Steele (1976a,b). His papers "Lambda: the ultimate goto" and "Compiler optimiza- 
tion based on viewing lambda as rename plus goto" describe properly tail-recursive 
interpreters and compilers. 

The Scheme dialect was invented by Gerald Sussman and Guy Steele around 
1975 (see their MIT A1 Memo 349). The l3evised4 Report on the Algorithmic Language 
Scheme (Clinger et al. 1991) is the definitive reference manual for the current version 
of Scheme. 

Abelson and Sussman (1985) is probably the best introduction to computer sci- 
ence ever written. It may or may not be a coincidence that it uses Scheme as the 
programming language. It includes a Scheme interpreter. Winston and Horn's Lisp 
(1989) also develops a Lisp interpreter. 

The amb operator for nondeterministic choice was proposed by John McCarthy 
(1963) and used in SCHEMER (Zabih et al. 1987), a nondeterministic Lisp. Ruf 
and Weise (1990) present another implementation of backtracking in Scheme that 
incorporates all of logic programming. 

3 ~ c ~ a r t h y ' s  words from a talk on the history of Lisp, 1974, recorded by Stoyan (1984). 



22.7 Exercises 

a Exercise 22.5 [m] While Scheme does not provide full-blown support for optional 
and keyword arguments, it does support rest parameters. Modify the interpreter to 
support the Scheme syntax for rest parameters: 

Scheme Common Lisp 
(1 ambda x body) (lambda (&rest x) body) 
(lambda (x y . z )  body) (lambda (x y &rest z )  body) 

a Exercise 22.6 N The representation of environments is somewhat wasteful. Cur- 
rently it takes 3n cons cells to represent an environment with n variables. Change 
the representation to take less space. 

a Exercise 22.7 [m] As we've implemented macros, they need to be expanded each 
time they are encountered. This is not so bad for the compiler-you expand the 
source code and compile it, and then never refer to the source code again. But for 
the interpreter, this treatment of macros is most unsatisfactory: the work of macro- 
expansion must be done again and again. How can you eliminate this duplicated 
effort? 

a Exercise 22.8 [m] It turns out Scheme allows some additional syntax in 1 et and 
cond. First, there is the "named-let" expression, which binds initial values for vari- 
ables but also defines a local function that can be called within the body of the 1 et. 
Second, cond recognizes the symbol =>when it is the second element of a cond clause, 
and treats it as a directive to pass the value of the test (when it is not false) to the 
third element of the clause, which must be a function of one argument. Here are two 
examples: 

(define (fact  n )  
;; Iterative factor ia l ;  does not  grow the stack 
( l e t  loop ( ( resu l t  1 )  ( i  n ) )  

( i f  (= i  0)  result (loop (* result i )  ( -  i  1 ) ) ) ) )  

(define (lookup key a l i s t )  
;; Find key's value in a l i s t  
(cond ((assoc key a l i s t )  => cdr) 

(else # f ) ) )  

These are equivalent to: 



(define ( f ac t  n )  
( 1 e t rec  

(( loop (lambda ( r e su l t  i )  
( i f  (= i  0) 

resul t  
(loop (*  resul t  i )  ( -  i  1 ) ) ) ) ) )  

(loop 1 n ) ) )  

(define (lookup key a l i s t )  
( l e t  ((go030 (assoc key a l i s t ) ) )  

( i f  go030 
(cdr go0301 
# f ) ) )  

Write macro definitions for 1 e t  and cond allowing these variations. 

a Exercise 22.9 F] Some Scheme implementations permit def i  ne statements inside 
the body of a 1 ambda (and thus of a define, 1 e t ,  1  et*, or 1 e t r ec  as well). Here is an 
example: 

(define (length 1 )  
(define (len 1 n )  

( i f  (nul l?  1 )  n ( len (cdr 1 )  (+ n 1 ) ) ) )  
(len 1 0 ) )  

The internal definition of len is interpreted not as defining a global name but rather 
as defining a local name as if with 1 etrec.  The above definition is equivalent to: 

(define (length 1 )  
( l e t r e c  ( ( l e n  (lambda (1 n )  

( i f  (nul l?  1 )  n ( len (cdr 1 )  (+ n 1 ) ) ) ) ) )  
( len 1 0 ) ) )  

Make changes to the interpreter to allow this kind of internal definition. 

Exercise 22.10 Scheme programmers are often disdainful of the f  uncti on or # ' 

notation in Common Lisp. Is it possible (without changing the compiler) to make 
Common Lisp accept ( 1  ambda ( ) . . . I  instead of # '  (1 ambda ( ) . . . 1 and fn 
instead of # ' f  n? 

a Exercise 22.11 [m] The top level of the continuation-passing version of scheme 
includes thecall: ( i n t e rp  (read) ni l  # ' p r i n t ) .  Will this alwaysresultinsome 



value being printed? Or is it possible that the expression read might call some escape 
function that ignores the value without printing anything? 

Exercise 22.12 b] What would have to be added or changed to turn the Scheme 
interpreter into a Common Lisp interpreter? 

p Exercise 22.13 b] How would you change the interpreter to allow for multiple 
values? Explain how this would be done both for the first version of the interpreter 
and for the continuation-passing version. 

22.8 Answers 

Answer 22.2 There is no way to implement a full ca 1 1 lcc to Common Lisp, but the 
following works for cases where the continuation is only used with dynamic extent: 

(defun c a l l l c c  (computation) 
"Cal l  computation, passing i t  the  cur ren t  cont inuat ion.  
The cont inuat ion has only dynamic extent . "  
( f unca l l  computation #'(lambda (x )  ( re tu rn- f rom c a l l  /cc x ) ) ) )  

Answer 22.3 No. f a i  1 requires continuations with dynamic extent. 

Answer 22.5 We need only modify extend - env to know about an atomic va rs list. 
While we're at it, we might as well add some error checking: 

(defun extend-env (vars vals  env) 
"Add some var iables and values t o  an environment." 
(cond ((nu1 1  vars) 

(asser t  ( n u l l  va ls )  0 "Too many arguments suppl ied")  
env > 

((atom vars) 
(cons ( l i s t  vars va ls )  env)) 

( t  (asser t  ( r e s t  va ls )  0 "Too few arguments suppl ied")  
(cons ( l i s t  ( f i r s t  vars) ( f i r s t  va l s ) )  

(extend-env ( r e s t  vars) ( r e s t  va ls )  env ) ) ) ) )  



Answer 22.6 Storing the environment as an association list, ( (var val I . . .  1, makes 
it easy to look up variables with assoc. We could save one cons cell per variable 
just by changing to ( (var . val I. . .  1. But even better is to switch to a different 
representation, one presented by Steele and Sussman in The Art of the Interpreter 
(1978). In this representation we switch from a single list of var/val pairs to a list of 
frames, where each frame is a var-list/val-list pair. It looks like this: 

Now extend - env is trivial: 

(defun extend-env (vars vals env) 
"Add some variables and values to an environment." 
(cons (cons vars vals) env)) 

The advantage of this approach is that in most cases we already have a list of 
variables (the procedure's parameter list) and values (from the mapca r of i n t e r p  
over the arguments). So it is cheaper to just cons these two lists together, rather than 
arranging them into pairs. Of course, g e t  - va r and s e t  - va r ! become more complex. 

Answer 22.7 One answer is to destructively alter the source code as it is macro- 
expanded, so that the next time the source code is interpreted, it will already be 
expanded. The following code takes care of that: 

(defun scheme-macro-expand (x) 
(displace x (apply (scheme-macro ( f i r s t  x ) )  ( res t  x ) ) ) )  

(defun displace (old new) 
"Destructively change old cons-cell to  new value." 
( i f  (consp new) 

(progn (setf (car old) (car new)) 
(setf  (cdr old) (cdr new)) 
01 d )  

(displace old '(begin ,new) 1) ) 

One drawback to this approach is that the user's source code is actually changed, 
which may make debugging confusing. An alternative is to expand into something 
that keeps both the original and macro-expanded code around: 



(defun d i s p l a c e  ( o l d  new) 
" D e s t r u c t i v e l y  change o l d  t o  a DISPLACED s t r u c t u r e . "  
( s e t f  ( ca r  o l d )  'DISPLACED) 
( s e t f  ( c d r  o l d )  ( l i s t  new o l d ) )  
o l d )  

This means that DISPLACED is a new special form, and we need a clause for it in the 
interpreter. It would look something like this: 

(case ( f i r s t  x )  
. . . 
(DISPLACED ( i n t e r p  (second x )  env ) )  

We'd also need to modify the printing routines to print just 01 d  whenever they see 
( d i s p l a c e d  o l d  new). 

Answer 22.8 

(def-scheme-macro l e t  ( va rs  & r e s t  body) 
( i f (symbol p  vars 

; ; named l e t  
( l e t  ( ( f  vars)  ( va rs  ( f i r s t  body)) (body ( r e s t  body)) )  

' ( l e t r e c  ( ( , f  (lambda ,(mapcar # ' f i r s t  vars)  . ,body)))  
( , f  .,(mapcar #'second v a r s ) ) ) )  

;; " r e g u l a r "  l e t  
'((lambda ,(mapcar # ' f i r s t  va rs )  . ,body) 

. ,(mapcar #'second v a r s ) ) ) ) )  

(def-scheme-macro cond ( & r e s t  c lauses)  
(cond ( ( n u l l  c lauses)  n i l )  

( ( l e n g t h = l  ( f i r s t  c lauses))  
' ( o r  , ( f i r s t  c lauses)  (cond . , ( r e s t  c l a u s e s ) ) ) )  

( ( s t a r t s - w i t h  ( f i r s t  c lauses)  ' e l s e )  
' (beg in  . . ( r e s t  ( f i r s t  c l a u s e s ) ) ) )  

( (eq (second ( f i  r s t  c l  auses) '=>I 
( a s s e r t  (= ( l e n g t h  ( f i r s t  c lauses ) )  3 ) )  
( l e t  ( ( v a r  (gensym))) 

' ( l e t  ( ( , v a r  , ( f i r s t  ( f i r s t  c l a u s e s ) ) ) )  
( i f  ,var ( . ( t h i r d  ( f i r s t  c lauses ) )  ,var )  

(cond . . ( r e s t  c l a u s e s ) ) ) ) ) )  
( t  ' ( i f  , ( f i r s t  ( f i r s t  c lauses ) )  

(begin . , ( r e s t  ( f i r s t  c lauses)  1)  
(cond . . ( r e s t  c l a u s e s ) ) ) ) ) ) )  



Answer 22.10 It is easy to define 1 ambda as a macro, eliminating the need for 
#'(lambda . . .):  

(defmacro lambda ( a r g s  & r e s t  body) 
' ( f u n c t i o n  (lambda , a r g s  , @ b o d y ) ) )  

If this were part of the Common Lisp standard, I would gladly use it. But because it 
is not, I have avoided it, on the grounds that it can be confusing. 

It is also possible to write a new function-defining macro that would do the 
following type of expansion: 

( d e f n  doub l e  ( x )  (* 2 x ) )  + 
( de fpa r ame te r  doub l e  ( de fun  doub l e  (x )  (* 2 X I ) )  

This makes dou bl e a special variable, so we can write dou bl e instead of # ' doubl e. 
But this approach is not recommended-it is dangerous to define special variables 
that violate the asterisk convention, and the Common Lisp compiler may not be able 
to optimize special variable references the way it can f uncti on special forms. Also, 
this approach would not interact properly with f 1 et and 1 a be1 s. 



Compiling Lisp 

any textbooks show simple interpreters for Lisp, because they are simple to write, 
and because it is useful to know how an interpreter works. Unfortunately, not as 
many textbooks show how to write a compiler, even though the same two reasons 

hold. The simplest compiler need not be much more complex than an interpreter. 
One thing that makes a compiler more complex is that we have to describe the output of 

the compiler: the instruction set of the machine we are compiling for. For the momen! let's 
assume a stack-based machine. The calling sequence on this machine for a function call with 
n arguments is to push the n arguments onto the stack and then push the function to be called. 
A " CALL n" instruction saves the return point on the stack and goes to the first instruction of 
the called function. By convention, the first instruction of a function will always be "ARGS n", 
which pops n arguments off the stack, putting them in the new function's environment, where 
they can be accessed by LVAR and LSET instructions. The function should return with a RETURN 
instruction, which resets the program counter and the environment to the point of the original 
CALL instruction. 

In addition, our machine has three JUMP instructions; one that branches unconditionally, and 
two that branch depending on if the top of the stack is nil or non-nil. There is also an instruction 
for popping unneeded values off the stack, and for accessing and altering global variables. The 
instruction set is shown in figure 23.1. A glossary for the compiler program is given in figure 23.2. 
A summary of a more complex version of the compiler appears on page 795. 



Figure 23.1: Instruction Set for Hypothetical Stack Machine 

opcode 
CONST 
LVAR 
GVAR 
L S  ET 
GSET 
POP 
TJUMP 
FJUMP 
JUMP 
RETURN 
ARGS 
C A L L  

F N 

As an example, the procedure 

(lambda 0 ( i f  (= x  y )  ( f  ( g  x ) )  ( h  x  y  (h  1 2 ) ) ) )  

args 
x 

i,j 
sym 
i,j 
sym 

label 
label 
label 

n 
n 

fn  

should compile into the following instructions: 

description 
push a constant on the stack 
push a local variable's value 
push a global variable's value 
store top-of-stack in a local variable 
store top-of-stack in a global variable 
pop the stack 
go to label if top-of-stack is non-nil; pop stack 
go to label if top-of-stack is nil; pop stack 
go to label (don't pop stack) 
go to last return point 
move n arguments from stack to environment 
go to start of function, saving return point 
n is the number of arguments passed 
create a closure from argument and current environment 
and push it on the stack 

ARGS 
GVAR 
GVAR 
GVAR 
CALL 
FJUMP 
GVAR 
GVAR 
CALL 
GVAR 
CALL 
JUMP 

L 1 :  GVAR 
GVAR 
CONST 
CONST 
GVAR 
CALL 



GVAR H 
CALL 3 

L2 : RETURN 

Top-Level Functions 
comp - show Compile an expression and show the resulting code. 
compi 1 e r  Compile an expression as a parameterless function. 

Special Variables 
*l abel -num* Number for the next assembly language label. 
* p r i m i t i v e - f n s *  Listofbuilt-inschemefunctions. 

Data Types 
f n  A Scheme function. 

Major Functions 
camp Compile an expression into a list of instructions. 
comp- begi n Compile a sequence of expressions. 
comp- i f Compile a conditional ( i  f )  expression. 
comp - 1 ambda Compile a lambda expression. 

Auxiliary Functions 
gen Generate a single instruction. 
seq Generate a sequence of instructions. 
gen - 1 a be1 Generate an assembly language label. 
gen-var Generate an instruction to reference a variable. 
gen-set Generate an instruction to set a variable. 
name! Set the name of a function to a given value. 
p r i n t - f n  Print a Scheme function (just the name). 
show-fn Print the instructions in a Scheme function. 
l a b e l  -p  Is the argument a label? 
i n - env-p  Is the symbol in the environment? If so, where? 

Figure 23.2: Glossary for the Scheme Compiler 

The first version of the Scheme compiler is quite simple. It mimics the structure 
of the Scheme evaluator. The difference is that each case generates code rather than 
evaluating a subexpression: 

(defun comp ( x  env) 
"Compile t h e  expression x i n t o  a 1 i s t  o f  i n s t r u c t i o n s .  " 
(cond 

((symbolp x )  (gen-var x env))  
((atom x )  (gen 'CONST x ) )  
((scheme-macro ( f i r s t  x ) )  (comp (scheme-macro-expand x )  env))  
( (case ( f i r s t  x )  



(QUOTE (gen 'CONST (second x ) ) )  
(BEGIN (comp-begin ( r e s t  x )  env))  
(SET! (seq (comp ( t h i r d  x )  env) (gen-set  (second x )  env) ) )  

( I F  (comp- i f  (second x )  ( t h i r d  x )  ( f o u r t h  x )  env)) 
(LAMBDA (gen 'FN (comp-lambda (second x )  ( r e s t  ( r e s t  x ) )  env) 1) 
; ; Procedure appl i cat ion :  
; ; Compile args, then fn ,  then t h e  c a l l  
( t  (seq (mappend #'(lambda ( y )  (comp y env))  ( r e s t  x ) )  

(comp ( f i r s t  x )  env) 
(gen ' c a l l  ( l e n g t h  ( r e s t  x ) ) ) ) ) ) ) ) )  

The compiler comp has the same nine cases-in fact the exact same structure-as 
the interpreter i n t e r p  from chapter 22. Each case is slightly more complex, so the 
three main cases have been made into separate functions: comp - begi  n, comp - i f, and 
comp - 1 ambda. A begi n expression is compiled by compiling each argument in turn 
but making sure to pop each value but the last off the stack after it is computed. The 
last element in the begi n stays on the stack as thevalue of the whole expression. Note 
that the function gen generates a single instruction (actually a list of one instruction), 
and seq makes a sequence of instructions out of two or more subsequences. 

(defun comp-begin (exps env) 
"Compile a sequence o f  expressions, popping a1 1 b u t  t h e  l a s t .  " 
(cond ( ( n u l l  exps) (gen 'CONST n i l ) )  

( ( l e n g t h = l  exps) (comp ( f i r s t  exps) env))  
( t  (seq (comp ( f i r s t  exps) env) 

(gen 'POP) 
(comp-begin ( r e s t  exps) e n v ) ) ) ) )  

An i f expression is compiled by compiling the predicate, then part, and else part, 
and by inserting appropriate branch instructions. 

(defun comp- i f  (pred then e l s e  env) 
"Compile a c o n d i t i o n a l  expression." 
( l e t  ( ( L 1  ( g e n - l a b e l ) )  

(L2 ( g e n - l a b e l ) ) )  
(seq (comp pred env) (gen 'FJUMP L1) 

(comp then env) (gen 'JUMP L2) 
( l i s t  L1) (comp e l s e  env) 
( l i s t  L 2 ) ) ) )  

Finally, a 1 ambda expression is compiled by compiling the body, surrounding it with 
one instruction to set up the arguments and another to return from the function, and 



then storing away the resulting compiled code, along with the environment. The 
data type f n  is implemented as a structure with slots for the body of the code, the 
argument list, and the name of the function (for printing purposes only). 

( de f s t r uc t  ( f n  ( : p r i n t - f unc t i on  p r i n t - f n ) )  
code (env n i l )  (name n i l )  (args n i l ) )  

(defun comp-lambda (args body env) 
"Compile a 1 ambda form i n t o  a c losure w i t h  compiled code. " 
(asser t  (and ( l i s t p  args) (every #'symbolp args))  0 

"Lambda a r g l i s t  must be a l i s t  o f  symbols, not  "a" args) 
;; For now, no &res t  parameters. 
;; The next vers ion w i l l  support Scheme's vers ion o f  &res t  
(make-fn 

:env env :args args 
:code (seq (gen 'ARGS ( leng th  args))  

(comp-begin body (cons args env)) 
(gen 'RETURN)))) 

The advantage of compiling over interpreting is that much can be decided at compile 
time. For example, the compiler can determine if a variable reference is to a global 
or lexical variable, and if it is to a lexical variable, exactly where that lexical variable 
is stored. This computation is done only once by the compiler, but it has to be done 
each time the expression is encountered by the interpreter. Similarly, the compiler 
can count up the number of arguments once and for all, while the interpreter must 
go through a loop, counting up the number of arguments, and testing for the end of 
the arguments after each one is interpreted. So it is clear that the compiler can be 
more efficient than the interpreter. 

Another advantage is that the compiler can be more robust. For example, in 
comp- 1 ambda, we check that the parameter list of a lambda expression is a list con- 
taining only symbols. It would be too expensive to make such checks in aninterpreter, 
but in a compiler it is a worthwhile trade-off to check once at compile time for error 
conditions rather than checking repeatedly at run time. 

Before we show the rest of the compiler, here's a useful top-level interface to comp: 

(defvar  *label-num* 0 )  

(defun compi 1 e r  ( x )  
"Compile an expression as i f  i t  were i n  a parameterless lambda. " 
( s e t f  *label-num* 0)  
(comp-lambda '0 ( l i s t  x )  n i l ) )  



(defun comp-show (x)  
"Compile an expression and show the resulting code" 

(show-fn (compiler x ) )  
(values)) 

Now here's the code to generate individual instructions and sequences of instruc- 
tions. A sequence of instructions is just a list, but we provide the function seq rather 
than using append directly for purposes of data abstraction. A label is just an atom. 

(defun gen (opcode &rest args) 
"Return a one-element 1 i s t  of the specified instruction. " 
( l i s t  (cons opcode a rgs ) ) )  

(defun seq (&rest  code) 
"Return a sequence of instructions" 
(apply #'append code)) 

(defun gen-label (&optional (label ' L ) )  
"Generate a label (a symbol of the form L n n n ) "  
(intern (format nil ""a"dU label (incf *label -num*) 1) 

Environments are now represented as lists of frames, where each frame is a sequence 
of variables. Local variables are referred to not by their name but by two integers: 
the index into the list of frames and the index into the individual frame. As usual, 
the indexes are zero-based. For example, given the code: 

( l e t  ( ( a  2.0) 
( b  2.1)) 

( l e t  ( ( c  1 .0)  
( d  1 .1))  

( l e t  ( ( e  0.0)  
( f  0 . 1 ) )  

(+ a b c d e f ) ) ) )  

the innermost environment is ( ( e f 1 ( c d ) ( a b 1. The function i n - env - p tests 
if a variable appears in an environment. If this environment were called env, then 
(in-env-p ' f  env) wouldreturn ( 2  1) and (in-env-p ' x  env) wouldreturnnil. 



(defun gen-var (var env) 
"Generate an instruction to reference a variable's value." 
(let ((p (in-env-p var env))) 

(if p 
(gen 'LVAR (first p) (second p) ";" var) 
(gen 'GVAR var)))) 

(defun gen-set (var env) 
"Generate an instruction to set a variable to top-of-stack." 
(let ((p (in-env-p var env))) 

(if p 
(gen 'LSET (first p) (second p) ";" var) 
(gen 'GSET var)))) 

Finally, we have some auxiliary functions to print out the results, to distinguish 
between labels and instructions, and to determine the index of a variable in an 
environment. Scheme functions now are implemented as structures, which must 
have a field for the code, and one for the environment. In addition, we provide 
a field for the name of the function and for the argument list; these are used only 
for debugging purposes, We'll adopt the convention that the def i ne macro sets the 
function's name field, by calling name ! (which is not part of standard Scheme). 

(def-scheme-macro define (name &rest body) 
(if (atom name) 

'(name! (set! ,name . ,body) ''name) 
(scheme-macro-expand 

'(define ,(first name) 
(lambda ,(rest name) . ,body))))) 

(defun name! (fn name) 
"Set the name field of fn, if it is an un-named fn." 
(when (and (fn-p fn) (null (fn-name fn))) 

(setf (fn-name fn) name)) 
name 1 

;; This should also go in init-scheme-interp: 
(set-global-var! 'name! #'name!) 

(defun print-fn (fn &optional (stream *standard-output*) depth) 
(declare (ignore depth)) 
(format stream "{"a)" (or (fn-name fn) ' ? ? I ) )  



(defun show-fn (fn &optional (stream *standard-output*) (depth 0 ) )  
"Print  a l l  the instructions in a function. 
If  the argument i s  not a function, just  princ i t ,  
but in a column a t  l eas t  8 spaces wide. " 
( i f  (not (fn-p f n ) )  

(format stream ""8a" fn )  
(progn 

(fresh-1 ine)  
( incf depth 8)  
(do l i s t  ( i n s t r  (fn-code f n ) )  

( i f  ( label -p  i n s t r )  
(format stream ""a:" i n s t r )  
(progn 

(format stream ""VT" depth) 
(do l i s t  (arg i n s t r )  

(show-fn arg stream depth)) 
( f r e s h - l i n e ) ) ) ) ) ) )  

(defun label-p (x )  " I s  x a label?" (atom x ) )  

(defun in-env-p (symbol env) 
"I f  symbol i s  in the environment, return i t s  index numbers." 
( l e t  ((frame (find symbol env : t e s t  # ' f i n d ) ) )  

( i f  frame ( l i s t  (position frame env) (position symbol f r ame) ) ) ) )  

Now we are ready to show the compiler at work: 

> (comp-show ' ( i f  (= x y )  ( f  ( g  x ) )  ( h  x y ( h  1 2 ) ) ) )  
ARGS 0 
GVAR X 
GVAR Y 
GVAR = 

CALL 2 
FJUMP L1  
GVAR X 
GVAR G 
CALL 1 
GVAR F 
CALL 1 
JUMP L2 

L1: GVAR X 
GVAR Y 
CONST 1 
CONST 2 
GVAR H 
CALL 2 
GVAR H 
CALL 3 

L2 : RETURN 



This example should give the reader a feeling for the code generated by the compiler. 

Another reason a compiler has an advantage over an interpreter is that the com- 
piler can afford to spend some time trying to find a more efficient encoding of an 
expression, while for the interpreter, the overhead of searching for a more efficient 
interpretation usually offsets any advantage gained. Here are some places where 
a compiler could do better than an interpreter (although our compiler currently 
does not): 

> (comp-show ' ( b e g i n  "doc " ( w r i t e  x)  y)) 

ARGS 0 

CONST doc 
POP 
GVAR X 
GVAR W R I T E  
CALL 1 
POP 
GVAR Y 
RETURN 

In this example, code is generated to push the constant "doc"  on the stack and then 
immediately pop it off. If we have the compiler keep track of what expressions are 
compiled "for valuen-as y is the value of the expression above-and which are only 
compiled "for effect," then we can avoid generating any code at all for a reference to 
a constant or variable for effect. Here's another example: 

> (comp-show ' ( b e g i n  (+ ( *  a x)  ( f  x ) )  x ) )  

ARGS 0 

GVAR A 
GVAR X 
GVAR * 
CALL 2 
GVAR X 
GVAR F 

CALL 1 
GVAR + 

CALL 2 
POP 
GVAR X 
RETURN 



In this expression, if we can be assured that + and * refer to the normal arithmetic 
functions, then we can compile this as if it were ( beg i  n ( f x) x) . Furthermore, it 
is reasonable to assume that + and * will be instructions in our machine that can be 
invoked inline, rather than having to call out to a function. Many compilers spend 
a significant portion of their time optimizing arithmetic operations, by taking into 
account associativity, commutativity, distributivity, and other properties. 

Besides arithmetic, compilers often have expertise in conditional expressions. 
Consider the following: 

> (comp-show ' ( i f  (and p q )  x y ) )  
ARGS 0 
GVAR P 
FJUMP L3 
GVAR Q 
JUMP L4 

L3 : GVAR NIL  
L4 : FJUMP L1 

GVAR X 
JUMP L2 

L1: GVAR Y 
L2 : RETURN 

Note that ( and  p q macro-expands to ( i f P q n i  1 1. The resulting compiled code 
is correct, but inefficient. First, there is an unconditional jump to L4, which labels 
a conditional jump to L1. This could be replaced with a conditional jump to L1. 
Second, at L3 we load N I L and then jump on nil to L1. These two instructions could 
be replaced by an unconditional jump to L1. Third, the FJUMP to L3 could be replaced 
by an FJUMP to L1, since we now know that the code at L3 unconditionally goes to L1. 

Finally, some compilers, particularly Lisp compilers, have expertise in function 
calling. Consider the following: 

> (comp-show ' ( f  ( g  x y ) ) )  
ARGS 0 
GVAR X 
GVAR Y 
GVAR G 
CALL 2 
GVAR F 
CALL 1 
RETURN 



Here we call g and when g returns we call f, and when f returns we return from this 
function. But this last return is wasteful; we push a return address on the stack, and 
then pop it off, and return to the next return address. An alternative function-calling 
protocol involves pushing the return address before calling g, but then not pushing 
a return address before calling f; when f returns, it returns directly to the calling 
function, whatever that is. 

Such an optimization looks like a small gain; we basically eliminate a single 
instruction. In fact, the implications of this new protocol are enormous: we can 
now invoke a recursive function to an arbitrary depth without growing the stack at 
all-as long as the recursive call is the last statement in the function (or in a branch 
of the function when there are conditionals). A function that obeys this constraint 
on its recursive calls is known as a properly tail-recursive function. This subject was 
discussed in section 22.3. 

All the examples so far have only dealt with global variables. Here's an example 
using local variables: 

> (comp-show '((lambda (x) ((lambda (y z )  ( f  x y  z ) )  3 x)) 4)) 
ARGS 0 
CONST 4 
F N 

ARGS 1 
CONST 3 
LVAR 0 0 , 

F N 
ARGS 2 
LVAR 1 0 
LVAR 0 0 
LVAR 0 1 
GVAR F 
C A L L  3 
RETURN 

C A L L  2 
RETURN 

C A L L  1 
RETURN 

The code is indented to show nested functions. The top-level function loads the 
constant 4 and an anonymous function, and calls the function. This function loads 
the constant 3 and the local variable x, which is the first (0th) element in the top 
(0th) frame. It then calls the double-nested function on these two arguments. This 
function loads x, y, and z: x is now the 0th element in the next-to-top (1st) frame, 
and y and z are the 0th and 1st elements of the top frame. With all the arguments in 



place, the function f is finally called. Note that no continuations are stored-f can 
return directly to the caller of this function. 

However, all this explicit manipulation of environments is inefficient; in this case 
we could have compiled the whole thing by simply pushing 4,3, and 4 on the stack 
and calling f .  

Top-Level Functions 
scheme A read-compile-execute-print loop. 
comp - go Compile and execute an expression. 
machine Run the abstract machine. 

Data Types 
prim A Scheme primitive function. 
ret-addr A return address (function, program counter, environment). 

Auxiliary Functions 
arg-count Report an error for wrong number of arguments. 
comp-1 ist Compile a list of expressions onto the stack. 
comp-const Compile a constant expression. 
comp-var Compile a variable reference. 
comp-funcal 1 Compile a function application. 
primi tive-p Is this function a primitive? 
i n i t - scheme - comp Initialize primitives used by compiler. 
gen-args Generate code to load arguments to a function. 
make - t rue - 1 i st Convert a dotted list to a nondotted one. 
new-fn Build a new function. 
i s Predicate is true if instructions opcode matches. 
optimize A peephole optimizer. 
genl Generate a single instruction. 
target The place a branch instruction branches to, 
next-instr The next instruction in a sequence. 
quasi -q Expand a quasiquote form into append, cons, etc. 

Functions for the Abstract Machine 
assembl e Turn a list of instructions into a vector. 
asm - f i rs t - pa s s Find labels and length of code. 
asm- second - pass Put code into the code vector. 
opcode The opcode of an instruction. 
a rgs The arguments of an instruction. 
a rgi For i = 1 , 2 , 3  - select ith argument of instruction. 

Figure 23.3: Glossary of the Scheme Compiler, Second Version 



23.1 A Properly Tail-Recursive Lisp Compiler 

In this section we describe a new version of the compiler, first by showing examples 
of its output, and then by examining the compiler itself, which is summarized in 
figure 23.3. The new version of the compiler also makes use of a different function 
calling sequence, using two new instructions, CALLJ and SAVE. As the name implies, 
SAVE saves a return address on the stack. The CALLJ instruction no longer saves 
anything; it can be seen as an unconditional jump-hence the J in its name. 

First, we see how nested function calls work: 

> (comp-show '(f (g  X I ) )  
ARGS 0 
SAVE K 1  
GVAR X 
GVAR G 
C A L L J  1 

K1:  GVAR F 
C A L L J  1 

The continuation point K1 is saved so that g can return to it, but then no continuation 
is saved for f, so f returns to whatever continuation is on the stack. Thus, there is 
no need for an explicit RETURN instruction. The final CALL is like an unconditional 
branch. 

The following example shows that all functions but the last (f) need a continuation 
point: 

> (comp-show '(f ( g  (h x) (h y ) ) ) )  
ARGS 0 
SAVE K 1  
SAVE K 2  
GVAR X 
GVAR H 
C A L L J  1 

K 2  : SAVE K 3  
GVAR Y 
GVAR H 
C A L L J  1 

K 3 :  GVAR G 
C A L L J  2 

K1:  GVAR F 
C A L L J  1 



This code first computes ( h x 1 and returns to K2. Then it computes ( h y 1 and returns 
to K3. Next it calls g on these two values, and returns to K 1  before transferring to f .  
Since whatever f returns will also be the final value of the function we are compiling, 
there is no need to save a continuation point for f to return to. 

In the next example we see that unneeded constants and variables in begin 
expressions are ignored: 

> (comp-show ' (beg in  "doc" x  ( f  x)  y ) )  
ARGS 0 
SAVE K 1  
GVAR X 
GVAR F 
C A L L J  1 

K1:  POP 
GVAR Y 
RETURN 

One major flaw with the first version of the compiler is that it could pass data 
around, but it couldn't actually do anything to the data objects. We fix that problem 
by augmenting the machine with instructions to do arithmetic and other primitive 
operations. Unneeded primitive operations, like variables constants, and arithmetic 
operations are ignored when they are in the nonfinal position within beg i ns. Contrast 
the following two expressions: 

> (comp-show ' (beg in  (+ ( *  a x )  ( f  x ) )  x ) )  
ARGS 0 
SAVE K 1  
GVAR X 
GVAR F 
C A L L J  1 

K 1 :  POP 
GVAR X 
RETURN 

> (comp-show ' (beg in  (+ ( *  a x )  ( f  x ) ) ) )  
ARGS 0 
GVAR A 
GVAR X 
* 
SAVE K 1  
GVAR X 
GVAR F 
C A L L J  1 

K1:  + 
RETURN 



The first version of the compiler was context-free, in that it compiled all equivalent ex- 
pressions equivalently, regardless of where they appeared. A properly tail-recursive 
compiler needs to be context-sensitive: it must compile a call that is the final value of 
a function differently than a call that is used as an intermediate value, or one whose 
value is ignored. In the first version of the compiler, cornp - 1 arnbda was responsible for 
generating the RETURN instruction, and all code eventually reached that instruction. 
To make sure the RETURN was reached, the code for the two branches of i f expressions 
had to rejoin at the end. 

In the tail-recursive compiler, each piece of code is responsible for inserting its 
own RETURN instruction or implicitly returning by calling another function without 
saving a continuation point. 

We keep track of these possibilities with two flags. The parameter v a l  ? is true 
when the expression we are compiling returns a value that is used elsewhere. The 
parameter more? is false when the expression represents the final value, and it is true 
when there is more to compute. In summary, there are three possibilities: 

The code for the compiler employing these conventions follows: 

(defun comp ( x  env v a l ?  more?) 
"Compile t h e  expression x i n t o  a l i s t  o f  i n s t r u c t i o n s . "  

(cond 
((member x ' ( t  n i l ) )  (comp-const x v a l ?  more?)) 
((symbolp x )  (comp-var x env v a l ?  more?)) 
((atom x )  (comp-const x v a l ?  more?)) 

((scheme-macro ( f i r s t  x ) )  (comp (scheme-macro-expand x )  env v a l ?  more?)) 
( (case ( f i r s t  x )  

(QUOTE (arg-count  x 1) 
(comp-const (second x )  v a l ?  more?) 

(BEGIN (comp-begin ( r e s t  x )  env v a l ?  more?)) 
(SET! (arg-count  x 2 )  

( a s s e r t  (symbolp (second x ) )  ( x )  
"Only symbols can be se t ! ,  n o t  "a i n  "a" 
(second x )  x )  

(seq (comp ( t h i r d  x )  env t t )  
(gen-set  (second x )  env) 
( i f  ( n o t  v a l ? )  (gen 'POP)) 
(un less more? (gen 'RETURN)))) 



( I F  (a rg -coun t  x  2 3 )  

( comp- i f  (second x )  ( t h i r d  x )  ( f o u r t h  x )  

env v a l ?  more?) 

(LAMBDA (when v a l ?  

( l e t  ( ( f  (comp-lambda (second x )  ( r e s t 2  x )  e n v ) ) )  

(seq (gen 'FN f )  (un less more? (gen 'RETURN)))))) 

( t  (comp-funcal l  ( f i r s t  x )  ( r e s t  x )  env v a l ?  m o r e ? ) ) ) ) ) )  

Here we've added one more case: t and ni 1 compile directly into primitive instruc- 
tions, rather than relying on them being bound as global variables. (In real Scheme, 
the Booleanvalues are #t and #f, whichneed not be quoted, the empty list is ( 1, which 
must be quoted, and t and ni 1 are ordinary symbols with no special significance.) 

I've also added some error checking for the number of arguments supplied to 
quote, se t  ! and i f .  Note that it is reasonable to do more error checkingin a compiler 
than in an interpreter, since the checking need be done only once, not each time 
through. The function to check arguments is as follows: 

(defun arg-count  ( fo rm min &op t iona l  (max m in ) )  

"Report an e r r o r  i f  form has wrong number o f  args." 

( l e t  ( ( n - a r g s  ( l e n g t h  ( r e s t  f o r m ) ) ) )  

( a s s e r t  (<= min n-args max) ( form) 

"Wrong number o f  arguments f o r  "a i n  "a: 

"d suppl ied,  "d"@C t o  "d-I  expected" 

( f i r s t  form) form n-args min ( i f  ( /=  min max) max) ) ) )  

p Exercise 23.1 [m] Modify the compiler to check for additional compile-time errors 
suggested by the following erroneous expression: 

( c d r  (+ ( l i s t  x  y )  ' y  ( 3  X)  ( c a r  3 X I ) )  

The tail-recursive compiler still has the familiar nine cases, but I have introduced 
comp-var, cornp- const, cornp- i f, and cornp- f uncal 1 to handle the increased complex- 
ity introduced by the va  r? and more? parameters. 

Let's go through the cornp- functions one at a time. First, cornp- begi n and 
comp- 1 i s t  just handle and pass on the additional parameters. comp- 1 i s t  will be 
used in cornp- f uncal 1 , a new function that will be introduced to compile a procedure 
application. 



(defun comp-begin (exps env v a l ?  more?) 
"Compile a sequence o f  expressions, 
r e t u r n i n g  t h e  l a s t  one as t h e  va lue. "  
(cond ( ( n u l l  exps) (comp-const n i l  v a l ?  more?)) 

( ( l e n g t h = l  exps) (comp ( f i r s t  exps) env v a l ?  more?)) 
( t  (seq (comp ( f i r s t  exps) env n i l  t )  

(comp-begin ( r e s t  exps) env v a l ?  m o r e ? ) ) ) ) )  

(defun c o m p - l i s t  (exps env) 
"Compile a l i s t ,  l e a v i n g  them a1 1 on t h e  s tack. "  
( i f  ( n u l l  exps) n i l  

(seq (comp ( f i r s t  exps) env t t )  
( c o m p - l i s t  ( r e s t  exps) e n v ) ) ) )  

Then there are two trivial functions to compile variable access and constants. If the 
value is not needed, these produce no instructions at all. If there is no more to be 
done, then these functions have to generate the return instruction. This is a change 
from the previous version of cornp, where the caller generated the return instruction. 
Note I have extended the machine to include instructions for the most common 
constants: t, nil, and some small integers. 

(defun comp-const ( x  v a l ?  more?) 
"Compile a constant  express ion. "  
( i f  v a l ?  (seq ( i f  (member x ' ( t  n i l  -1 0 1 2 ) )  

(gen x )  
(gen 'CONST x ) )  

(un less more? (gen 'RETURN))))) 

(defun comp-var ( x  env v a l ?  more?) 
"Compi 1 e a v a r i a b l e  re ference.  " 
( i f  v a l ?  (seq (gen-var  x env) (un less more? (gen 'RETURN))))) 

The remaining two functions are more complex. First consider cornp - i f. Rather than 
blindly generating code for the predicate and both branches, we will consider some 
special cases. First, it is clear that ( i f t x  y 1 can reduce to x  and ( i f n i  1 x  y ) 
can reduce to y. It is perhaps not as obvious that ( i f p x  x)  can reduce to ( begi n  
p x 1, or that the comparison of equality between the two branches should be done 
on the object code, not the source code. Once these trivial special cases have been 
considered, we're left with three more cases: ( i f p x  n i  1 1, ( i f p n i  1 y 1, and ( i f 
p x  y 1. The pattern of labels and jumps is different for each. 



(defun comp- i f  (pred then e l s e  env v a l ?  more?) 
"Compile a  c o n d i t i o n a l  ( I F )  expression. " 
(cond 

( ( n u l l  pred) ; ( i f  n i l  x  y )  ==> y 
(comp e l s e  env v a l ?  more?)) 

( (constantp pred)  ; ( i f  t x y )  ==> x 
(comp then env v a l ?  more?)) 

( (and ( l i s t p  pred)  ; ( i f  ( n o t  p )  x  y )  ==> ( i f  p  y  x )  
( l eng th= l  ( r e s t  p red) )  
( p r i m i t i v e - p  ( f i r s t  pred) env 1 )  
(eq (prim-opcode ( p r i m i t i v e - p  ( f i r s t  pred) env 1 ) )  ' n o t ) )  

(comp- i f  (second pred)  e l s e  then env v a l ?  more?)) 
( t  ( l e t  ((pcode (comp pred env t t ) )  

( tcode (comp then env v a l ?  more?)) 
(ecode (comp e l s e  env v a l ?  more?)) )  

(cond 
( (equal  tcode ecode! ; ( i f  p x  x )  ==> (begin p x )  

(seq (comp pred env n i l  t )  ecode)) 
( ( n u l l  tcode) ; ( i f  p  n i l  y )  ==> p (TJUMP L2) y  L2: 

( l e t  ( (L2  ( g e n - l a b e l ) ) )  
(seq pcode (gen 'TJUMP L2) ecode ( l i s t  L2) 

(un less more? (gen 'RETURN))))) 
( ( n u l l  ecode) ; ( i f  p  x )  ==> p (FJUMP L1) x  L1: 

( l e t  ( ( L 1  ( g e n - l a b e l ) ) )  
(seq pcode (gen 'FJUMP L1) tcode ( l i s t  L1) 

(un less more? (gen 'RETURN))))) 
( t  ; ( i f  p  x y )  ==> p (FJUMP L1) x  L1: y  

; o r  p  (FJUMP L1) x  (JUMP L2) L1: y  L2: 
( l e t  ( ( L 1  ( g e n - l a b e l ) )  

(L2 ( i f  more? (gen- label  ) ) ) I  
(seq pcode (gen 'FJUMP L1) tcode 

( i f  more? (gen 'JUMP L2))  
( l i s t  L1) ecode ( i f  more? ( l i s t  L 2 ) ) ) ) ) ) ) ) ) )  

Here are some examples of i f expressions. First, a very simple example: 

> (comp-show ' ( i f  p  (+ x  y )  ( *  x y ) ) )  
ARGS 0 
GVAR P 
FJUMP L1 
GVAR X 
GVAR Y 
+ 
RETURN 

L1: GVAR X 
GVAR Y 
* 
RETURN 



Each branch has its own RETURN instruction. But note that the code generated is 
sensitive to its context. For example, if we put the same expression inside a begin 
expression, we get something quite different: 

> (comp-show ' (beg in  ( i f  p (+ x y )  ( *  x y ) )  z)) 
ARGS 0 
GVAR Z 
RETURN 

What happens here is that ( + x y 1 and ( * x y 1, when compiled in a context where 
the value is ignored, both result in no generated code. Thus, the i f  expression 
reduces to ( i f p n i  1 n i  1 ), which is compiled like ( begi n p n i  1 1, which also 
generates no code when not evaluated for value, so the final code just references 
z. The compiler can only do this optimization because it knows that + and * are 
side-effect-free operations. Consider what happens when we replace + with f :  

> (comp-show ' (beg in  ( i f  p ( f  x)  ( *  x x ) )  z ) )  
ARGS 0 
GVAR P 
FJUMP L 2  
SAVE K 1  
GVAR X 
GVAR F 
C A L L J  1 

K 1 :  POP 
L 2  : GVAR Z 

RETURN 

Here we have to call ( f x )  if p is true (and then throw away the value returned), but 
we don't have to compute ( * x x ) when p is false. 

These examples have inadvertentlyrevealed some of the structure of comp - f unca 1 1 
which handles five cases. First, it knows some primitive functions that have corre- 
sponding instructions and compiles these instructions inline when their values are 
needed. If the values are not needed, then the function can be ignored, and just the 
arguments can be compiled. This assumes true functions with no side effects. If 
there are primitive operations with side effects, they too can be compiled inline, but 
the operation can never be ignored. The next case is when the function is a lambda 
expression of no arguments. We can just compile the body of the lambda expression 
as if it were a begin expression. Nonprimitive functions require a function call. 
There are two cases: when there is more to compile we have to save a continuation 



point, and when we are compiling the final value of a function, we can just branch to 
the called function. The whole thing looks like this: 

(defun comp-funcall ( f  args env val? more?) 
"Compile an application of a function t o  arguments." 
( l e t  ((prim (primitive-p f  env (length a r g s ) ) ) )  

(cond 
(prim ; function compilable to  a primitive instruction 
( i f  (and (not val?)  (not (prim-side-effects prim)))  

;; Side-effect f ree  primitive when value unused 
(comp-begin args env nil more?) 
; ; Primitive with value or call needed 
(seq (comp-list args env) 

(gen (prim-opcode prim)) 
(unless val? (gen ' P O P ) )  
(unless more? (gen ' R E T U R N ) ) ) ) )  

((and (s tar ts -wi th  f  'lambda) (null (second f ) ) )  
;; ((lambda 0 body)) => (begin body) 
( a s se r t  (null args) 0 "Too many arguments supplied") 
(comp-begin ( res t2  f )  env val? more?)) 

(more? ; Need t o  save the continuation point 
( l e t  ( ( k  (gen-label ' k ) ) )  

(seq (gen 'SAVE k )  
(comp-list args env) 
(comp f env t t )  
(gen 'CALLJ (length a rgs ) )  
( l i s t  k) 
( i f  (not val?) (gen ' P O P ) ) ) ) )  

( t  ; function call as rename plus goto 
(seq (comp-list args env) 

(comp f env t t )  
(gen 'CALLJ (length a r g s ) ) ) ) ) ) )  

The support for primitives is straightforward. The p r i m data type has five slots. The 
first holds the name of a symbol that is globally bound to a primitive operation. The 
second, n - a rgs, is the number of arguments that the primitive requires. We have to 
take into account the number of arguments to each function because we want (+ x 
y 1 to compile into a primitive addition instruction, while (+ x y z 1 should not. It 
will compile into a call to the + function instead. The opcode slot gives the opcode 
that is used to implement the primitive. The a1 ways field is t r u e  if the primitive 
always returns non-nil, f a  1 se if it always returns nil, and nil otherwise. It is used in 
exercise 23.6. Finally, the s i de - e f f ec t s  field says if the function has any side effects, 
like doing 1/0 or changing the value of an object. 



(defstruct (prim (:type l i s t ) )  
symbol n-args opcode a1 ways si  de-effects 

(defparameter *primitive-fns* 
' ( ( +  2 + true) ( -  2 - true) ( *  2 * true) ( /  2 / true) 

(< 2 <) (> 2 >) (<= 2 <=) (>= 2 >=) ( /=  2 /=) (= 2 =) 

(eq? 2 eq) (equal? 2 equal) (eqv? 2 eql) 
(not 1 not) (null? 1 not) 
(car 1 car) (cdr 1 cdr) (cadr 1 cadr) (cons 2 cons true) 
( l i s t  1 l i s t l  true) ( l i s t  2 l i s t 2  true) ( l i s t  3 l i s t 3  true) 
(read 0 read nil t )  (write 1 write nil t )  (display 1 display nil t )  
(newline 0 newline nil t )  (compiler 1 compiler t )  
(name! 2 name! true t )  (random 1 random true n i l ) ) )  

(defun primitive-p ( f  env n-args) 
" F  i s  a primitive i f  i t  i s  in the table, and i s  not shadowed 
by something in the environment, and has the right number of args." 
( a n d  (not (in-env-p f env)) 

(find f *primitive-fns* 
: t es t  #'(lambda ( f  prim) 

(and (eq f (prim-symbol prim)) 
(= n-args (prim-n-args p r im) ) ) ) ) ) )  

(defun l i s t l  (x)  ( l i s t  x ) )  
(defun l i s t 2  (x y) ( l i s t  x y ) )  
(defun l i s t 3  (x y z )  ( l i s t  x y z ) )  
(defun display (x) (princ x ) )  
(defun newline 0 ( t e rp r i ) )  

These optimizations only work if the symbols are permanently bound to the global 
values given here. We can enforce that by altering gen-set  to preserve them as 
constants: 

(defun gen-set (var env) 
"Generate a n  instruction to set  a variable to  top-of-stack." 
( l e t  ( ( p  (in-env-p var env))) 

( i f  p 
(gen 'LSET ( f i r s t  p )  (second p) ";" var) 
( i f  (assoc var *primitive-fns*) 

(error " C a n ' t  a l ter  the constant " a" var) 
(gen 'GSET v a r ) ) ) ) )  



Now an expression like (+ x 1) will be-properly compiled using the + instruction 
rather than a subroutine call, and an expression like (set ! + * 1 will be flagged as 
an error when + is a global variable, but allowed when it has been locally bound. 
However, we still need to be able to handle expressions like ( s e t  ! add +) and then 
( add x y 1. Thus, we need some function object that + will be globally bound to, even 
if the compiler normally optimizes away references to that function. The function 
i n i t - s c h e m e  - c o m p  takes care of this requirement: 

(defun init-scheme-comp 0 

"Initialize the primitive functions. " 
(do1 ist (prim *primitive-fns*) 

(setf (get (prim-symbol prim) 'global -val) 

(new-fn :env nil :name (prim-symbol prim) 

:code (seq (gen 'PRIM (prim-symbol prim)) 

(gen 'RETURN)))))) 

There is one more change to make-rewriting c o m p - 1 ambda. We still need to get the 
arguments off the stack, but we no longer generate a RETURN instruction, since that is 
done by comp- begi n, if necessary. At this point we'll provide a hook for a peephole 
optimizer, which will be introduced in section 23.4, and for an assembler to convert 
the assembly language to machine code. n e w  - f n provides this interface, but for now, 
n e w -f n  acts just like make-fn. 

We also need to account for the possibility of rest arguments in a lambda list. A 
new function, gen-args, generates the single instruction to load the arguments of 
the stack. It introduces a new instruction, ARGS., into the abstract machine. This 
instruction works just like ARGS, except it also conses any remaining arguments on 
the stack into a list and stores that list as the value of the rest argument. With this 
innovation, the new version of c o m p  - 1 ambda looks like this: 



(defun comp-lambda (args body env) 
"Compile a lambda form i n t o  a c losu re  w i t h  compiled code. " 
(new-fn :env env :args args 

:code (seq (gen-args args 0 )  
(comp- begi n body 

(cons ( m a k e - t r u e - l i s t  a r g s l e n v )  
t n i l ) ) ) )  

(defun gen-args (args n - s o - f a r )  
"Generate an i n s t r u c t i o n  t o  load  t h e  arguments." 
(cond ( ( n u l l  args)  (gen 'ARGS n - s o - f a r ) )  

((symbolp args)  (gen 'ARGS. n - s o - f a r ) )  
( (and (consp args)  (symbolp ( f i r s t  a r g s ) ) )  

(gen-args ( r e s t  args)  (+ n - s o - f a r  1 ) ) )  
( t  ( e r r o r  " I l l e g a l  argument l i s t " ) ) ) )  

(defun m a k e - t r u e - l i s t  ( d o t t e d - l i s t )  
"Convert a p o s s i b l y  d o t t e d  l i s t  i n t o  a t r u e ,  non-dot ted l i s t . "  
(cond ((nu1 1 do t ted -1  i s t )  n i  1 ) 

((atom d o t t e d - l i s t )  ( l i s t  d o t t e d - l i s t ) )  
( t  (cons ( f i r s t  d o t t e d - l i s t )  

( m a k e - t r u e - l i s t  ( r e s t  d o t t e d - l i s t ) ) ) ) ) )  

(defun new-fn (&key code env name args)  
" B u i l d  a new f u n c t i o n . "  
(assemble (make-fn :env env :name name :args args 

:code (op t im ize  c o d e ) ) ) )  

new - f n includes calls to an assembler and an optimizer to generate actual machine 
code. For the moment, both will be identity functions: 

(defun op t im ize  (code) code) 
(defun assemble ( f n )  f n )  

Here are some more examples of the compiler at work: 

> (comp-show ' ( i f  ( n u l l ?  ( c a r  1 ) )  ( f  (+ (* a x )  b ) )  
( g  ( 1  x 2 ) ) ) )  

ARGS 0 
GVAR L 
CAR 
FJUMP L1 
GVAR X 
2 

GVAR G 
CALLJ 1 

L1: GVAR A 



GVAR X 
* 
GVAR B 

+ 
GVAR F 

C A L L J  1 

There is no need to save any continuation points in this code, because the only calls to 
nonprimitive functions occur as the final values of the two branches of the function. 

> (comp-show '(define ( l a s t l  1 )  

( i f  (nu l l ?  (cdr 1 ) )  (car  1 )  

( l a s t l  (cdr 1 ) ) ) ) )  

ARGS 0 

F N 

ARGS 1 

LVAR 0 0 , L 

CDR 

FJUMP L 1  

LVAR 0 0 . L 

CDR 

GVAR L A S T l  

C A L L J  1 

LVAR 0 0 , L 

CAR 

RETURN 

GSET L A S T l  

CONST L A S T l  

NAME! 

RETURN 

The top-level function just assigns the nested function to the global variable 1 as t 1. 
Since 1 as t 1 is tail-recursive, it has only one return point, for the termination case, 
and just calls itself without saving continuations until that case is executed. 

Contrast that to the non-tail-recursive definition of 1 ength below. It is not tail- 
recursive because before it calls 1 engt h recursively, it must save a continuation point, 
K1, so that it will know where to return to to add 1. 



> (comp-show '(define (length 1 )  
( i f  (nul l?  1 )  0  (+ 1 (length (cdr 1 ) ) ) ) ) )  

ARGS 0  
F N 

ARGS 1  
LVAR 0  0  , L 
FJUMP L 2  
1  
SAVE K1 
LVAR 0  0  f 

CDR 
GVAR LENGTH 
C A L L J  1  

K1: + 
RETURN 

L 2  : 0  
RETURN 

GSET LENGTH 
CONST LENGTH 
NAME! 
RETURN 

Of course, it is possible to write 1 ength in tail-recursive fashion: 

> (comp-show '(define (length 1 )  
( l e t r e c  ( ( l e n  (lambda (1 n )  

( i f  (nul l?  1 )  n 
( len ( r e s t  1 )  (+ n 1 ) ) ) ) ) )  

( len  1  0 ) ) ) )  
ARGS 0  
F N 

ARGS 1  
N I L  
F N 

ARGS 1  
FN 

ARGS 2 
LVAR 0  0  , L 
FJUMP L 2  
SAVE K 1  
LVAR 0  0  f L 
GVAR REST 
C A L L J  1  

K1: LVAR 0  1  , N 
1 
+ 
LVAR 1  0  , LEN 



CALLJ 2 

LVAR 0 1 

RETURN 

LSET 0 0 . 
POP 

LVAR 1 0 . 
0 

LVAR 0 0 , 

CALLJ 2 

CALLJ 1 

GSET LENGTH 

CONST LENGTH 

NAME! 

RETURN 

Let's look once again at an example with nested conditionals: 

> (cornp-show ' ( i f  (not (and p q (not r ) ) )  x y ) )  

ARGS 0 

GVAR P 

FJUMP L3 

GVAR Q 
FJUMP L1 

GVAR R 

NOT 

JUMP L2 

L1: N IL  

L2 : JUMP L4 

L3 : N IL  

L4: FJUMP L5 

GVAR Y 

RETURN 

L5 : GVAR X 

RETURN 

9 N 

LEN 

L 

LEN 

Here the problem is with multiple JUMPS and with not recognizing negation. If p is 
false, then the and expression is false, and the whole predicate is true, so we should 
return x. The code does in fact return x, but it first jumps to L3, loads N I L, and then 
does an FJUMP thatwill always jump to L5. Other branches have similar inefficiencies. 
A sufficiently clever compiler should be able to generate the following code: 



ARGS 0 
GVAR P 
FJUMP L1 
GVAR Q 
FJUMP L 1  
GVAR R 
TJUMP L 1  
GVAR Y 
RETURN 

L 1 :  GVAR X 
RETURN 

Introducing Call/cc 

Now that the basic compiler works, we can think about how to implement call lcc 
in our compiler. First, remember that call lcc is a normal function, not a special 
form. So we could define it as a primitive, in the manner of car and cons. However, 
primitives as they have been defined only get to see their arguments, and call lcc 
will need to see the run-time stack, in order to save away the current continuation. 
One choice is to install call lcc as a normal Scheme nonprimitive function but to 
write its body in assembly code ourselves. We need to introduce one new instruction, 
CC, which places on the stack a function (to which we also have to write the assembly 
code by hand) that saves the current continuation (the stack) in its environment, and, 
when called, fetches that continuation and installs it, by setting the stack back to that 
value. This requires one more instruction, SET- CC. The details of this, and of all the 
other instructions, are revealed in the next section. 

23.3 The Abstract Machine 

So far we have defined the instruction set of a mythical abstract machine and gen- 
erated assembly code for that instruction set. It's now time to actually execute the 
assembly code and hence have a useful compiler. There are several paths we could 
pursue: we could implement the machine in hardware, software, or microcode, or 
we could translate the assembly code for our abstract machine into the assembly 
code of some existing machine. Each of these approaches has been taken in the past. 

Hardware. If the abstract machine is simple enough, it can be implemented di- 
rectly in hardware. The Scheme-79 and Scheme-81 Chips (Steele and Sussman 1980; 
Batali et al. 1982) were VLSI implementations of a machine designed specifically to 
run Scheme. 



Macro-Assembler. In the translation or macro-assembler approach, each in- 
struction in the abstract machine language is translated into one or more instructions 
in the host computer's instruction set. This can be done either directly or by gener- 
ating assembly code and passing it to the host computer's assembler. In general this 
will lead to code expansion, because the host computer probably will not provide 
direct support for Scheme's data types. Thus, whereas in our abstract machine we 
could write a single instruction for addition, with native code we might have to exe- 
cute a series of instructions to check the type of the arguments, do an integer add if 
they are both integers, a floating-point add if they are both floating-point numbers, 
and so on. We might also have to check the result for overflow, and perhaps convert 
to bignum representation. Compilers that generate native code often include more 
sophisticated data-flow analysis to know when such checks are required and when 
they can be omitted. 

Microcode. The MIT Lisp Machine project, unlike the Scheme Chip, actually 
resulted in working machines. One important decision was to go with microcode 
instead of a single chip. This made it easy to change the system as experienced was 
gained, and as the host language was changed from ZetaLisp to Common Lisp. The 
most important architectural feature of the Lisp Machine was the inclusion of tag 
bits on each word to specify data types. Also important was microcode to implement 
certain frequently used generic operations. For example, in the Symbolics 3600 
Lisp Machine, the microcode for addition simultaneously did an integer add, a 
floating-point add, and a check of the tag bits. If both arguments turned out to 
be either integers or floating-point numbers, then the appropriate result was taken. 
Otherwise, a trap was signaled, and a converison routine was entered. This approach 
makes the compiler relatively simple, but the trendinarchitecture is away from highly 
microcoded processors toward simpler (RISC) processors. 

Software. We can remove many of these problems with a technique known as 
byte-code assembly. Here we translate the instructions into a vector of bytes and then 
interpret the bytes with a byte-code interpreter. This gives us (almost) the machine 
we want; it solves the code expansion problem, but it may be slower than native code 
compilation, because the byte-code interpreter is written in software, not hardware 
or microcode. 

Each opcode is a single byte (we have less than 256 opcodes, so this will work). 
The instructions with arguments take their arguments in the following bytes of the 
instruction stream. So, for example, a CALL instruction occupies two bytes; one for 
the opcode and one for the argument count. This means we have imposed a limit 
of 256 arguments to a function call. An LVAR instruction would take three bytes; 
one for the opcode, one for the frame offset, and one for the offset within the frame. 
Again, we have imposed 256 as the limit on nesting level and variables per frame. 
These limits seem high enough for any code written by a human, but remember, 
not only humans write code. It is possible that some complex macro may expand 
into something with more than 256 variables, so a full implementation would have 



some way of accounting for this. The GVAR and CONST instructions have to refer to an 
arbitrary object; either we can allocate enough bytes to fit a pointer to this object, or 
we can add a constants field to the f n  structure, and follow the instructions with a 
single-byte index into this vector of constants. This latter approach is more common. 

We can now handle branches by changing the program counter to an index into 
the code vector. (It seems severe to limit functions to 256 bytes of code; a two-byte 
label allows for 65536 bytes of code per function.) In summary, the code is more 
compact, branching is efficient, and dispatching can be fast because the opcode is a 
small integer, and we can use a branch table to go to the right piece of code for each 
instruction. 

Another source of inefficiency is implementing the stack as a list, and consing up 
new cells every time something is added to the stack. The alternative is to implement 
the stack as a vector with a fill-pointer. That way a push requires no consing, only a 
change to the pointer (and a check for overflow). The check is worthwhile, however, 
because it allows us to detect infinite loops in the user's code. 

Here follows an assembler that generates a sequence of instructions (as a vector). 
This is a compromise between byte codes and the assembly language format. First, 
we need some accessor functions to get at parts of an instruction: 

(defun opcode ( i n s t r )  ( i f  (label-p ins t r )  :label ( f i r s t  i n s t r ) ) )  
(defun args ( i n s t r )  ( i f  ( l i s t p  ins t r )  ( res t  i n s t r ) ) )  
(defun argl ( i n s t r )  ( i f  ( l i s t p  ins t r )  (second i n s t r ) ) )  
(defun arg2 ( ins t r )  ( i f  ( l i s t p  ins t r )  (third i n s t r ) ) )  
(defun arg3 ( ins t r )  ( i f  ( l i s t p  ins t r )  (fourth i n s t r ) ) )  

(defsetf argl ( ins t r )  (val)  ' ( se t f  (second , i n s t r )  ,va l ) )  

Now we write the assembler, which already is integrated into the compiler with a 
hook in new-fn. 

(defun assemble (fn)  
"Turn a l i s t  of instructions into a vector." 
(mu1 tiple-value-bind (length labels) 

(asm-first-pass (fn-code fn ) )  
(setf (fn-code fn) 

(asm-second-pass (fn-code fn) 
length labels))  

fn)  

(defun asm-first-pass (code) 
"Return the labels and the total code length." 
( l e t  ((length 0 )  

(labels nil 1)  
(dol is t  ( ins t r  code) 

( i f  (label-p ins t r )  



(push (cons ins t r  length) labels)  
( incf l eng th ) ) )  

(val ues length 1  abel s )  1)  

(defun asm-second-pass (code length labels)  
" P u t  code into code-vector, adjusting for labels . "  
( l e t  ((addr 0)  

(code-vector (make-array l eng th ) ) )  
(do l i s t  ( i n s t r  code) 

(unless (1 abel -p i n s t r )  
( i f  ( i s  i n s t r  '(JUMP TJUMP FJUMP SAVE) 

( se t f  (argl  i n s t r )  
(cdr (assoc (argl  i n s t r )  l a b e l s ) ) ) )  

( se t f  (aref code-vector addr) i n s t r )  
( incf addr) ) )  

code-vector)) 

If we want to be able to look at assembled code, we need a new printing function: 

(defun show-fn (fn &optional (stream *standard-output*) (indent 2 ) )  
"Print  a l l  the instructions in a  function. 
If the argument i s  not a  function, jus t  princ i t ,  
but in a  column a t  l eas t  8  spaces wide." 
;; This version handles code tha t  has been assembled into a  vector 
( i f  (not ( fn-p  f n ) )  

(format stream ""8a" fn )  
( progn 

(fresh-1 ine) 
(dotimes ( i  (length (fn-code f n ) ) )  

( l e t  ( ( i n s t r  ( e l t  (fn-code fn )  i ) ) )  
( i f  ( label -p  i n s t r )  

(format stream ""a:" i n s t r )  
(progn 

(format stream ""VT"2d: " indent i )  
(do l i s t  (arg i n s t r )  

(show-fn arg stream (+ indent 8 ) ) )  
( f r e s h - l i n e ) ) ) ) ) ) ) )  

(defs t ruct  ret-addr fn pc env) 

(defun i s  ( i n s t r  op) 
"True i f  i n s t r ' s  opcode i s  O P ,  or one of O P  when O P  i s  a  l i s t . "  
( i f  ( l i s t p  op) 

(member (opcode i n s t r )  op) 
(eq (opcode i n s t r )  o p ) ) )  

(defun top (stack) ( f i r s t  s tack))  



(defun machine ( f )  
"Run t h e  a b s t r a c t  machine on t h e  code f o r  f . "  
( l e t *  ((code ( fn-code f ) )  

(PC 0)  
(env n i  1 )  
( s tack  n i  1  
(n-args 0)  
( i n s t r ) )  

( 1  oop 
( s e t f  i n s t r  ( e l t  code p c ) )  
( i n c f  pc)  
(case (opcode i n s t r )  

; ; Var i  abl e l s t a c k  manipu la t ion i n s t r u c t i o n s :  
(LVAR (push ( e l t  ( e l t  env ( a r g l  i n s t r ) )  (arg2 i n s t r ) )  

s tack)  
(LSET ( s e t f  ( e l t  ( e l t  env ( a r g l  i n s t r ) )  (arg2 i n s t r ) )  

( t o p  s t a c k ) ) )  
(GVAR (push ( g e t  ( a r g l  i n s t r )  ' g l o b a l - v a l )  s t a c k ) )  
(GSET ( s e t f  ( g e t  ( a r g l  i n s t r )  ' g l o b a l - v a l )  ( t o p  s t a c k ) ) )  
(POP (pop s t a c k ) )  
(CONST (push ( a r g l  i n s t r )  s tack ) )  

; ; Branching i n s t r u c t i o n s :  
(JUMP ( s e t f  pc ( a r g l i n s t r ) ) )  
(FJUMP ( i f  ( n u l l  (pop s t a c k ) )  ( s e t f  pc ( a r g l  i n s t r ) ) ) )  
(TJUMP ( i f  (pop s tack )  ( s e t f  pc ( a r g l  i n s t r ) ) ) )  

; ; Funct ion c a l l  / r e t u r n  i n s t r u c t i o n s :  
(SAVE (push (make-ret-addr :pc ( a r g l  i n s t r )  

: f n  f :env env) 
s tack )  

(RETURN ;; r e t u r n  va lue i s  t o p  o f  s tack;  r e t - a d d r  i s  second 
( s e t f  f ( r e t - a d d r - f n  (second s t a c k ) )  

code (fn-code f )  
env ( re t -addr -env  (second s t a c k ) )  
pc ( r e t - a d d r - p c  (second s t a c k ) ) )  

;; Get r i d  o f  t h e  r e t - a d d r ,  b u t  keep t h e  va lue 
( s e t f  s tack  (cons ( f i r s t  s tack )  ( r e s t 2  s t a c k ) ) ) )  

(CALLJ (pop env) ; d isca rd  t h e  t o p  frame 
( s e t f  f (pop s tack )  

code ( fn -code  f )  
env ( fn -env  f )  

PC 0  
n-args ( a r g l  i n s t r ) ) )  

(ARGS ( a s s e r t  (= n-args ( a r g l  i n s t r ) )  0 



"Wrong number o f  arguments:" 
"d expected. "d supp l ied "  
( a r g l  i n s t r )  n -a rgs )  

(push (make-array ( a r g l  i n s t r ) )  env) 
( l o o p  f o r  i from ( -  n-args 1 )  downto 0  do 

( s e t f  ( e l t  ( f i r s t  env) i )  (pop s t a c k ) ) ) )  
(ARGS. ( a s s e r t  (>= n-args ( a r g l  i n s t r ) )  0 

"Wrong number o f  arguments:" 
"d o r  more expected, "d supp l ied"  
( a r g l  i n s t r )  n -a rgs )  

(push (make-array (+ 1 ( a r g l  i n s t r ) ) )  env) 
( l o o p  repeat ( -  n-args ( a r g l  i n s t r ) )  do 

(push (pop s tack )  ( e l t  ( f i r s t  env) ( a r g l  i n s t r ) ) ) )  
( l o o p  f o r  i from ( -  ( a r g l  i n s t r )  1 )  downto 0  do 

( s e t f  ( e l t  ( f i r s t  env) i )  (pop s t a c k ) ) ) )  
(FN ( p u s h ( m a k e - f n : c o d e ( f n - c o d e ( a r g 1 i n s t r ) )  

:env env) s t a c k ) )  
(PRIM (push (apply  ( a r g l  i n s t r )  

( l o o p  w i t h  args = n i l  repeat  n-args 
do (push (pop s tack )  args)  
f i n a l l y  ( r e t u r n  a r g s ) ) )  

s tack )  

; ; Cont inuat ion i n s t r u c t i o n s :  
(SET-CC ( s e t f  s tack  ( t o p  s t a c k ) ) )  
(CC (push (make-fn 

:env ( l i s t  ( v e c t o r  s t a c k ) )  
:code '((ARGS 1) (LVAR 1 0  " ;" s tack )  (SET-CC) 

(LVAR 0  0)  (RETURN))) 
s tack )  

; ; Nu1 1  a ry  operat ions:  
((SCHEME-READ NEWLINE) 

(push ( f u n c a l l  (opcode i n s t r ) )  s t a c k ) )  

; ; Unary operat ions:  
((CAR CDR CADR NOT LIST1 COMPILER DISPLAY WRITE RANDOM) 

(push ( f u n c a l l  (opcode i n s t r )  (pop s t a c k ) )  s t a c k ) )  

; ; Binary  operat ions:  
((+ - * / < > <= >= /= = CONS LIST2 NAME! EQ EQUAL EQL) 
( s e t f  s tack  (cons ( f u n c a l l  (opcode i n s t r )  (second s tack )  

( f i r s t  s tack )  
( r e s t 2  s t a c k ) ) ) )  



;; Ternary operat ions:  
( LIST3 

( s e t f  s tack  (cons ( f u n c a l l  (opcode i n s t r )  ( t h i r d  s tack )  
(second s tack )  ( f i r s t  s t a c k ) )  

( r e s t 3  s t a c k ) ) ) )  

;; Constants: 
( ( T  NIL -1 0 1 2)  
(push (opcode i n s t r )  s t a c k ) )  

;; Other: 
((HALT) (RETURN ( t o p  s t a c k ) ) )  
(o therwise ( e r r o r  "Unknown opcode: "a" i n s t r ) ) ) ) ) )  

'defun init-scheme-comp 0 
" I n i t i a l i z e  values ( i n c l u d i n g  c a l l  / cc )  f o r  t h e  Scheme compi ler .  " 
( s e t - g l o b a l  - va r !  ' e x i t  

(new-fn :name ' e x i t  :args ' ( v a l )  :code ' ( (HALT)) ) )  
( s e t - g l  obal - va r !  ' c a l l  /cc  

(new-fn :name ' c a l l / c c  :args ' ( f )  
:code '((ARGS 1) (CC) (LVAR 0 0 ";" f )  (CALLJ 1 ) ) ) )  

(do1 i s t  ( p r i m  *pr imi  t i v e - f n s * )  
( s e t f  ( g e t  (prim-symbol p r im)  ' g l  obal - v a l )  

(new-fn :env n i  1 :name (prim-symbol pr im)  
:code (seq (gen 'PRIM (prim-symbol pr im)  

(gen 'RETURN)))))) 

Here's the Scheme top level. Note that it is written in Scheme itself; we compile 
the definition of the read-eval-print loop,' load it into the machine, and then start 
executing it. There's also an interface to compile and execute a single expression, 
comp-go. 

(defconstant  scheme-top- level 
' (begin ( d e f i n e  (scheme) 

(new1 i n e )  
( d i s p l a y  "=> " 
( w r i t e  ( ( comp i le r  ( r e a d ) ) ) )  
(scheme) 

(scheme))) 

(defun scheme 0 
"A compi 1 ed Scheme read-eval - p r i n t  1 oop" 
( ini t -scheme-comp) 
(machine (compi 1 e r  scheme-top- level 1)  

'strictly speaking, this is a read-compile-funcall-write loop. 



(defun comp-go (exp) 

"Compile and execute t h e  express ion. "  

(machine (compi ler  ' ( e x i t  , e x p ) ) ) )  

p Exercise 23.2 [m] This implementation of the machine is wasteful in its represen- 
tation of environments. For example, consider what happens in a tail-recursive 
function. Each ARG instruction builds a new frame and pushes it on the environment. 
Then each CALL pops the latest frame off the environment. So, while the stack does 
not grow with tail-recursive calls, the heap certainly does. Eventually, we will have 
to garbage-collect all those unused frames (and the cons cells used to make lists out 
of them). How could we avoid or limit this garbage collection? 

23.4 A Peephole Optimizer 

In this section we investigate a simple technique that will generate slightly better 
code in cases where the compiler gives inefficient sequences of instructions. The 
idea is to look at short sequences of instructions for prespecified patterns and replace 
them with equivalent but more efficient instructions. 

In the following example, comp - i f has already done some source-level optimiza- 
tion, such as eliminating the ( f x 1 call. 

> (comp-show ' (beg in  ( i f  ( i f  t 1 ( f  x ) )  ( s e t !  x  2 ) )  x ) )  

0: ARGS 0 

1: 1 

2: FJUMP 6 

3: 2  

4:GSET X 

5: POP 

6: GVAR X 

7 : RETURN 

But the generated code could be made much better. This could be done with more 
source-level optimizations to transform the expression into ( set  ! x 2 1. Alterna- 
tively, it could also be done by looking at the preceding instruction sequence and 
transforming local inefficiencies. The optimizer presented in this section is capable 
of generating the following code: 



> (comp-show ' (beg in  ( i f  ( i f  t 1 ( f  x ) )  ( s e t !  x  2 ) )  x ) )  
0: ARGS 0  
1: 2  
2:  GSET X 
3: RETURN 

The function opt imize is implemented as a data-driven function that looks at 
the opcode of each instruction and makes optimizations based on the following 
instructions. To be more specific, o p t i  mi ze takes a list of assembly language instruc- 
tions and looks at each instruction in order, trying to apply an optimization. If any 
changes at all are made, then optirni ze will be called again on the whole instruction 
list, because further changes might be triggered by the first round of changes. 

(defun op t im ize  (code) 
"Perform peephole o p t i m i z a t i o n  on assembly code." 
( l e t  ((any-change n i l ) )  

;; Optimize each t a i l  
( l o o p  f o r  c o d e - t a i l  on code do 

( s e t f  any-change ( o r  ( o p t i m i z e - 1  c o d e - t a i l  code) 
any-change))) 

;; I f  any changes were made, c a l l  op t im ize  again 
( i f  any-change 

(op t im ize  code) 
code) 1 

The function o p t i  m i  ze- 1 is responsible for each individual attempt to optimize. It 
is passed two arguments: a list of instructions starting at the current one and going 
to the end of the list, and a list of all the instructions. The second argument is 
rarely used. The whole idea of a peephole optimizer is that it should look at only a 
few instructions following the current one. opt  i mi ze - 1 is data-driven, based on the 
opcode of the first instruction. Note that the optimizer functions do their work by 
destructively modifying the instruction sequence, not by consing up and returning a 
new sequence. 

(defun op t im ize-1  (code a l l - c o d e )  
"Perform peephole o p t i m i z a t i o n  on a  t a i l  o f  t h e  assembly code. 
I f  a  change i s  made, r e t u r n  t r u e . "  
;; Data-dr iven by t h e  opcode o f  t h e  f i r s t  i n s t r u c t i o n  
( l e t *  ( ( i n s t r  ( f i r s t  code)) 

( o p t i m i z e r  ( g e t - o p t i m i z e r  (opcode i n s t r ) ) ) )  
(when op t im ize r  

( f u n c a l l  op t im ize r  i n s t r  code a1 1  -code) 1 )  



We need a table to associate the individual optimizer functions with the opcodes. 
Since opcodes include numbers as well as symbols, an eql hash table is an appropriate 
choice: 

( l e t  ( ( o p t i m i z e r s  ( m a k e - h a s h - t a b l e  : t e s t  # ' e q l ) ) )  

( de fun  g e t - o p t i m i z e r  ( opcode )  
"Get  t h e  assembly  l anguage  o p t i m i z e r  f o r  this  opcode . "  
( g e t h a s h  opcode o p t i m i z e r s ) )  

( de fun  p u t - o p t i m i z e r  (opcode  f n )  
" S t o r e  an assembly  l anguage  o p t i m i z e r  f o r  t h i s  opcode ."  
( s e t f  ( g e t h a s h  opcode o p t i m i z e r s )  f n ) ) )  

We could now build a table with p u t  -optimi zer, but it is worth defining a macro to 
make this a little neater: 

(defmacro  d e f - o p t i m i z e r  (opcodes  a r g s  &body body) 
"De f ine  assembly  l anguage  o p t i m i z e r s  f o r  t h e s e  opcodes . "  
( a s s e r t  (and  ( l i s t p  opcodes )  ( l i s t p  a r g s )  (= ( l e n g t h  a r g s )  3 ) ) )  
' ( d o l i s t  ( op  ' , o p c o d e s )  

( p u t - o p t i m i z e r  op # ' ( lambda , a r g s  . , b o d y ) ) ) )  

Before showing example optimizer functions, we will introduce three auxiliary func- 
tions. genl generates a single instruction, target finds the code sequence that a 
jump instruction branches to, and next - i ns t r finds the next actual instruction in a 
sequence, skipping labels. 

(de fun  g e n l  ( & r e s t  a r g s )  "Gene ra t e  a  s i n g l e  i n s t r u c t i o n "  a r g s )  
( de fun  t a r g e t  ( i n s t r  code )  ( s econd  (member ( a r g l  i n s t r )  c o d e ) ) )  
( de fun  n e x t - i n s t r  ( c o d e )  ( f i n d - i f  (complement # ' l a b e l - p )  c o d e ) )  

Here are six optimizer functions that implement a few important peephole optimiza- 
tions. 

( d e f - o p t i m i z e r  ( : L A B E L )  ( i n s t r  code  a l l - c o d e )  
. . ,, ... L . . .  => ... ... ; i f  no r e f e r e n c e  t o  L  
(when ( n o t  ( f i n d  i n s t r  a l l - c o d e  :key # ' a r g l ) )  

( s e t f  ( f i r s t  code )  ( s econd  code )  
( r e s t  code )  ( r e s t 2  c o d e ) )  

t ) )  



(de f -op t im ize r  (GSET LSET) ( i n s t r  code a l l - c o d e )  

;; ex: (begin ( s e t !  x y )  ( i f  x z ) )  

;; (SET X I  (POP) (VAR X) ==> (SET X) 

(when (and ( i s  (second code) 'POP) 

( i s  ( t h i r d  code) '(GVAR LVAR)) 

(eq ( a r g l  i n s t r )  ( a r g l  ( t h i r d  code) ) ) )  

( s e t f  ( r e s t  code) (n thcdr  3 code)) 

t ) )  

(de f -op t im ize r  (JUMP CALL CALLJ RETURN) ( i n s t r  code a l l - c o d e )  

; ; (JUMP L1) . . .dead code. . . L2 ==> (JUMP L1) L2 

( s e t f  ( r e s t  code) (member-if # ' l a b e l  - p  ( r e s t  code) ) )  

;; (JUMP L1) ... L1 (JUMP L2) ==> (JUMP L2) . . .  L1 (JUMP L2) 

(when (and ( i s  i n s t r  'JUMP) 

( i s  ( t a r g e t  i n s t r  code) '(JUMP RETURN)) 

( s e t f  ( f i r s t  code) ( c o p y - l i s t  ( t a r g e t  i n s t r  code) ) )  

t ) ) )  

( d e f - o p t i m i z e r  (TJUMP FJUMP) ( i n s t r  code a l l - c o d e )  

;; (FJUMP L1) . . .  L1 (JUMP L2) ==> (FJUMP L2) ... L1 (JUMP L2) 

(when ( i s  ( t a r g e t  i n s t r  code) 'JUMP) 

( s e t f  (second i n s t r )  ( a r g l  ( t a r g e t  i n s t r  code)) )  

t ) )  

(de f -op t im ize r  (T -1 0 1 2) ( i n s t r  code a l l - c o d e )  

(case (opcode (second code)) 

(NOT ;; ( T I  (NOT) ==> NIL 

( s e t f  ( f i r s t  code) (gen l  'NIL) 

( r e s t  code) ( r e s t 2  code)) 

t 1 
(FJUMP ;; ( T I  (FJUMP L) ... => .. . 

( s e t f  ( f i r s t  code) ( t h i r d  code) 

( r e s t  code) ( r e s t 3  code)) 

t 
(TJUMP ; ; ( T I  (TJUMP L) . . . => (JUMP L) . . . 

( s e t f  ( f i r s t  code) (gen l  'JUMP ( a r g l  ( n e x t - i n s t r  c o d e ) ) ) )  

t ) ) )  



( d e f - o p t i m i z e r  (NIL)  ( i n s t r  code a l l - c o d e )  
(case (opcode (second code)) 

(NOT ;; (NIL)  (NOT) ==> T  
( s e t f  ( f i r s t  code) (gen l  ' T I  

( r e s t  code) ( r e s t 2  code)) 
t 1 

(TJUMP ;; (NIL)  (TJUMP L) ... => ... 
( s e t f  ( f i r s t  code) ( t h i r d  code) 

( r e s t  code) ( r e s t 3  code)) 

t 1 
(FJUMP ; ; (NIL)  (FJUMP L) ==> (JUMP L)  

( s e t f  ( f i r s t  code) (gen l  'JUMP ( a r g l  ( n e x t - i n s t r  c o d e ) ) ) )  
t ) ) )  

23.5 Languages with Different Lexical 
Conventions 

This chapter has shown how to evaluate a language with Lisp-like syntax, by writing 
a read-eval-print loop where only the eval needs to be replaced. In this section we 
see how to make the read part slightly more general. We still read Lisp-like syntax, 
but the lexical conventions can be slightly different. 

The Lisp function read is driven by an object called the readfable, which is stored 
in the special variable *readtab1 e*. This table associates some action to take with 
each of the possible characters that can be read. The entry in the readtable for the 
character # \  (, for example, would be directions to read a list. The entry for # \  ; would 
be directions to ignore every character up to the end of the line. 

Because the readtable is stored in a special variable, it is possible to alter com- 
pletely the way read works just by dynamically rebinding this variable. 

The new function scheme- read temporarily changes the readtable to a new one, 
the Scheme readtable. It also accepts an optional argument, the stream to read 
from, and it returns a special marker on end of file. This can be tested for with the 
predicate eof - ob j ect?. Note that once scheme - read is installed as the value of the 
Scheme symbol read we need do no more-scheme- read will always be called when 
appropriate (by the top level of Scheme, and by any user Scheme program). 

(defconstant  eo f  "EoF") 
(defun e o f - o b j e c t ?  ( x )  (eq x  e o f ) )  
(de fva r  *scheme-readtable* ( copy- read tab le ) )  



(defun scheme-read (&op t iona l  (stream *standard- input* ) )  
(1  e t  ( ( *readtab1 e* *scheme- readtabl  e*) 

( read stream n i l  e o f ) ) )  

The point of having a special e o f  constant is that it is unforgeable. The user cannot 
type in a sequence of characters that will be read as something eq to e o f  . In Common 
Lisp, but not Scheme, there is an escape mechanism that makes e o f  forgable. The 
user can type # . e o f  to get the effect of an end of file. This is similar to the ^D 
convention in UNIX systems, and it can be quite handy. 

So far the Scheme readtable is just a copy of the standard readtable. The next step 
in implementing scheme - r e a d  is to alter *scheme - r e a d t a  b l  e*, adding read macros 
for whatever characters are necessary. Here we define macros for # t  and # f  (the true 
and false values), for # d  (decimal numbers) and for the backquote read macro (called 
quasiquote in Scheme). Note that the backquote and comma characters are defined 
as read macros, but the @ in , @ is processed by reading the next character, not by a 
read macro on @. 

(set-d ispatch-macro-character  # \ #  #\t 
#'(lambda ( & r e s t  i gnore )  t )  
*scheme-readtabl e*) 

(set-d ispatch-macro-character  # \ #  #\f 
# '  ( 1 ambda ( & r e s t  i gnore) n i  1 
*scheme- readtabl e*) 

(set-d ispatch-macro-character  # \ #  # \d 
;; I n  both Common L isp  and Scheme, 
;; #x, #o and #b are  hexidecimal,  o c t a l ,  and b inary,  
;; e.g. # x f f  = +Yo377 = # b l l l l l l l l  = 255 
;; I n  Scheme only .  #d255 i s  decimal 255. 
#'(lambda (stream & r e s t  ignore )  

( l e t  ((*read-base* 10) )  (scheme-read st ream)))  
*scheme-readtabl e*) 

(set-macro-character # \ '  

#'(lambda (s  ignore )  ( l i s t  'quasiquote (scheme-read s ) ) )  
n i  1 *scheme-readtabl e*) 

( s e t  -macro-character # \  , 
#'(lambda (stream ignore )  

( l e t  ( ( c h  (read-char stream) 1) 
( i f  (char= ch #\a) 

( l i s t  ' unquo te-sp l i c ing  ( read stream)) 
(progn (unread-char ch stream) 

(1 i s t  'unquote ( read stream) 1)  1)  
n i  1 *scheme-readtabl e*) 

Finally, we install scheme- r e a d  and e o f  - o b j e c t ?  as primitives: 



(defparameter *primitive-fns* 
' ( (+  2 + true n i l )  ( -  2 - true n i l )  (* 2 * true n i l )  ( 1  2 / true n i l )  

(< 2 < nil n i l )  (> 2 > nil n i l )  (<= 2 <= nil n i l )  (>= 2 >= nil n i l )  
( /= 2 /= nil n i l )  (= 2 = nil n i l )  
(eq? 2 eq nil nil (equal? 2 equal nil nil (eqv? 2 eql nil nil 
( n o t  1 n o t  nil n i l )  (null? 1 not  nil n i l )  (cons 2 cons true n i l )  
(car 1 car nil n i l )  (cdr 1 cdr nil n i l )  (cadr 1 cadr nil n i l )  
( l i s t  1 l i s t 1  true n i l )  ( l i s t  2 l i s t 2  true n i l )  ( l i s t  3 l i s t 3  true n i l )  
(read 0 read nil t )  (write 1 write nil t )  (display 1 display nil t )  
(newline 0 newline nil t )  (compiler 1 compiler t n i l )  
(name! 2 name! true t )  (random 1 random true n i l ) ) )  

Here we test scheme- read. The characters in italics were typed as a response to the 
scheme-read. 

> (scheme-read) #t 
T 

> (scheme-read) #f 
NIL 

> (scheme-read) '(a,b,@c d) 
(QUASIQUOTE ( A  (UNQUOTE B) (UNQUOTE-SPLICING C )  D l )  

The final step is to make quasi  quote a macro that expands into the proper sequence 
of calls to cons, 1 i st, and append. The careful reader will keep track of the difference 
between the form returned by scheme- read (something starting with quasi quote), 
the expansion of this form with the Scheme macro quasi quote (which is imple- 
mented with the Common Lisp function quas i - q), and the eventual evaluation of the 
expansion. In an environment where b is bound to the number 2 and c is bound to 
the list ( c l  c2 1, we might have: 

Typed: ' ( a  ,b ,@c d)  
Read: (quasiquote (a (unquote b )  (unquo te -sp l i c ing  c )  d l )  
Expanded: (cons 'a (cons b (append c ' ( d ) ) ) )  
Evaluated: ( a 2 c l  c2 d 

The implementation of the qua s i quote macro is modeled closely on the one given 
in Charniak et al.'s Artificial Intelligence Programming. I added support for vectors. In 
combi ne-quasi  quote I add the trick of reusing the old cons cell x rather than consing 
together 1 e f t  and r i g h t  when that is possible. However, the implementation still 
wastes cons cells-a more efficient version would pass back multiple values rather 
than consing quote onto a list, only to strip it off again. 



(setf (scheme-macro 'quasiquote) 'quasi-q) 

(defun quasi-q (x)  
"Expand a quasiquote form into append, l i s t ,  and  cons cal ls . "  
(cond 

((vectorp x) 
( l i s t  'apply 'vector (quasi-q (coerce x ' l i s t ) ) ) )  

((atom x) 
( i f  (constantp x) x  ( l i s t  'quote X I ) )  

((starts-with x 'unquote) 
(assert  (and ( res t  x) ( n u l l  (rest2 x ) ) ) )  
(second x ) )  

((starts-with x 'quasiquote) 
(assert  ( a n d  ( res t  x) ( n u l l  (rest2 x ) ) ) )  
(quasi-q (quasi-q (second x ) ) ) )  

((starts-with ( f i r s t  x) 'unquote-splicing) 
( i f  (null ( res t  X I )  

(second ( f i r s t  x ) )  
( l i s t  'append (second ( f i r s t  x ) )  (quasi-q ( res t  x ) ) ) ) )  

( t  (combine-quasiquote (quasi-q (car x ) )  
(quasi-q (cdr x ) )  
x ) ) ) )  

(defun combine-quasiquote ( l e f t  right x) 
"Combine l e f t  and  right (car and  cdr) ,  possibly re-using x." 
(cond ( ( a n d  (constantp l e f t )  (constantp r ight))  

( i f  ( a n d  (eql (eval l e f t )  ( f i r s t  x ) )  
(eql (eval right) ( res t  X I ) )  

( l i s t  'quote x) 
( l i s t  'quote (cons (eval l e f t )  (eval r i g h t ) ) ) ) )  

((null  right) ( l i s t  ' l i s t  l e f t ) )  
((starts-with right '1 i s t )  
( l i s t *  ' l i s t  l e f t  ( res t  r i gh t ) ) )  

( t  ( l i s t  'cons l e f t  r i gh t ) ) ) )  

Actually, there is a major problem with the quasi quote macro, or more accurately, in 
the entire approach to macro-expansion based on textual substitution. Suppose we 
wanted a function that acted like this: 

> (extrema ' ( 3  1 1 0  5 20 2 ) )  
((max 20) (min 1)) 



We could write the Scheme function: 

( d e f i n e  (ex t rema l i s t )  
;; Given a  l i s t  o f  numbers, r e t u r n  an a - l i s t  
;; w i t h  max and min v a l u e s  
' ( (max  , ( a p p l y  max l i s t ) )  (min , ( a p p l y  min l i s t ) ) ) )  

After expansion of the quasiquote, the definition of e x t  rema will be: 

( d e f i n e  ex t rema 
(lambda (1 i s t )  

( l i s t  ( l i s t  'max ( a p p l y  max l i s t ) )  
( l i s t  'min ( a p p l y  min l i s t ) ) ) ) )  

The problem is that 1 i s t  is an argument to the function e x t  rema, and the argument 
shadows the global definition of 1 i s t  as a function. Thus, the function will fail. One 
way around this dilemma is to have the macro-expansion use the global value of 1 i s t  
rather than the symbol 1 i s t  itself. In other words, replace the ' 1 i s t  in quasi - q with 
( ge t  - g l  oba 1 - va r ' 1 i s t  1. Then the expansion can be used even in an environment 
where 1 i s t  is locally bound. One has to be careful, though: if this tack is taken, then 
comp - f uncal1 should be changed to recognize function constants, and to do the right 
thing with respect to primitives. 

It is problems like these that made the designers of Scheme admit that they 
don't know the best way to specify macros, so there is no standard macro definition 
mechanism in Scheme. Such problems rarely come up in Common Lisp because 
functions and variables have different name spaces, and because local function 
definitions (with f 1 e t  or 1 abel s) are not widely used. Those who do define local 
functions tend not to use already established names like 1 i s t  and append. 

23.6 History and References 

Guy Steele's 1978 MIT master's thesis on the language Scheme, rewritten as Steele 
1983, describes an innovative and influential compiler for Scheme, called  RABBIT.^ 
A good article on an "industrial-strength Scheme compiler based on this approach 
is described in Kranz et al.'s 1986 paper on ORBIT, the compiler for the T dialect of 
Scheme. 

Abelson and Sussman's Structure and Interpretation of Computer Programs (1985) 
contains an excellent chapter on compilation, using slightly different techniques and 
compiling into a somewhat more confusing machine language. Another good text 

2 ~ t  the time, the MacLisp compiler dealt with something called "lisp assembly code" or 
LAP. The function to input LAP was called 1  a p i  n. Those who know French will get the pun. 



is John Allen's Anatomy of Lisp (1978). It presents a very clear, simple compiler, 
although it is for an older, dynamically scoped dialect of Lisp and it does not address 
tail-recursion or ca 1 1 / cc. 

The peephole optimizer described here is based on the one in Masinter and 
Deutsch 1980. 

23.7 Exercises 

Exercise 23.3 [h] Scheme's syntax for numbers is slightly different from Common 
Lisp's. In particular, complex numbers are written like 3+4i rather than #c (3  4).  
How could you make scheme - read account for this? 

Exercise 23.4 [m] Is it possible to make the core Scheme language even smaller, 
by eliminating any of the five special forms (quote, begi n, se t  ! , i f, 1 ambda) and 
replacing them with macros? 

Exercise 23.5 [m] Add the ability to recognize internal defines (see page 779). 

Exercise 23.6 [h] In comp - i f we included a special case for ( i f t x y ) and ( i f 
n i  1 x y ). But there are other cases where we know the value of the predicate. For 
example, ( i f ( *  a b ) x y ) can also reduce to x. Arrange for these optimizations to 
be made. Note the p r  i m- a1 ways field of the p r  i m structure has been provided for this 
purpose. 

Exercise 23.7 [m] Consider the following version of the quicksort algorithm for 
sorting a vector: 

( d e f i n e  ( s o r t - v e c t o r  v e c t o r  t e s t )  
( d e f i n e  ( s o r t  l o  h i )  

( i f  (>= l o  h i )  
v e c t o r  
( l e t  ( ( p i v o t  ( p a r t i t i o n  v e c t o r  l o  h i  t e s t ) ) )  

( s o r t  l o  p i v o t )  
( s o r t  (+ p i v o t  1) h i ) ) ) )  

( s o r t  0 ( -  ( v e c t o r - l e n g t h  v e c t o r  1 ) ) ) )  

Here the function pa r t i  ti on takes a vector, two indices into the vector, and a com- 
parison function, t e s t .  It modifies the vector and returns an index, p i  vot, such that 
all elements of the vector below p i v o t  are less than all elements at p i v o t  or above. 



It is well known that quicksort takes time proportional to n log n to sort a vector of 
n elements, if the pivots are chosen well. With poor pivot choices, it can take time 
proportional to n2. 

The question is, what is the space required by quicksort? Besides the vector itself, 
how much additional storage must be temporarily allocated to sort a vector? 

Now consider the following modified version of quicksort. What time and space 
complexity does it have? 

(define (sort-vector vector t e s t )  
(define ( so r t  l o  hi 

( i f  (>= l o  h i )  
vector 
( l e t  ( (p ivot  (par t i t ion  vector lo  h i ) ) )  

( i f  (> ( -  hi pivot) ( -  pivot l o ) )  
(begin ( so r t  l o  pivot) 

( so r t  (+ pivot 1) h i ) )  
(begin ( so r t  (+ pivot 1) hi 

( so r t  l o  p i v o t ) ) ) ) ) )  
( so r t  0 ( -  (vector-length vector 1 ) ) ) )  

The next three exercises describe extensions that are not part of the Scheme 
standard. 

p Exercise 23.8 [h] The s e t  ! special form is defined only when its first argument is 
a symbol. Extend s e t  ! to work like se t f  when the first argument is a list. That is, 
( se t !  (car  x)  y )  shouldexpandintosomethinglike ( ( s e t t e r  car )  y x),where 
( s e t t e r  car evaluates to the primitive procedure s e t  -car!. You will need to add 
some new primitive functions, and you should also provide a way for the user to 
define new se t !  procedures. One way to do that would be with a s e t t e r  function 
for s e t  ! , for example: 

( se t !  ( s e t t e r  th i rd )  
(lambda (val l i s t )  ( se t -car!  (cdr (cdr l i s t ) )  v a l ) ) )  

Exercise 23.9 [rn] It is a curious asymmetry of Scheme that there is a special notation 
for lambda expressions within def i ne expressions, but not within 1 e t .  Thus, we see 
the following: 

(define square (lambda (x )  ( *  x X I ) )  ; is the same as 
(define (square x) ( *  x x ) )  



( l e t  ((square (lambda (x )  (* x x ) ) ) )  . . . I  ; i s n o t t h e s a m e a s  
( l e t  (((square x) (* x X I ) )  . . . I  ; e illegal! 

Do you think this last expression should be legal? If so, modify the macros for 
1 et, 1 et*, and 1 etrec to allow the new syntax. If not, explain why it should not be 
included in the language. 

p Exercise 23.10 [rn] Scheme does not define f unca 1 1, because the normal function- 
call syntax does the work of funcall. This suggests two problems. (1) Is it possible 
to define f uncal 1 in Scheme? Show a definition or explain why there can't be one. 
Would you ever have reason to use f uncal 1 in a Scheme program? (2) Scheme does 
define apply, as there is no syntax for an application. One might want to extend the 
syntaxtomake (+ . numbers) equivalentto (apply + numbers). Wouldthisbea 
good idea? 

p Exercise 23.11 [dl Write a compiler that translates Scheme to Common Lisp. This 
will involve changing the names of some procedures and special forms, figuring out 
a way to map Scheme's single name space into Common Lisp's distinct function and 
variable name spaces, and dealing with Scheme's continuations. One possibility is 
to translate a ca 1 1 1 cc into a catch and t h row, and disallow dynamic continuations. 

23.8 Answers 

Answer 23.2 We can save frames by making a resource for frames, as was done 
on page 337. Unfortunately, we can't just use the def resource macro as is, because 
we need a separate resource for each size frame. Thus, a two-dimensional array or 
a vector of vectors is necessary. Furthermore, one must be careful in determining 
when a frame is no longer needed, and when it has been saved and may be used again. 
Some compilers will generate a special calling sequence for a tail-recursive call where 
the environment can be used as is, without discarding and then creating a new frame 
for the arguments. Some compilers have varied and advanced representations for 
environments. An environment may never be represented explicitly as a list of 
frames; instead it may be represented implicitly as a series of values in registers. 



Answer 23.3 We could read in Scheme expressions as before, and then convert any 
symbols that looked like complex numbers into numbers. The following routines do 
this without consing. 

(defun scheme- read (&op t iona l  (stream *standard- i  nput*) 
( l e t  ( ( * readtab le*  *scheme-readtable*)) 

(convert-numbers ( read stream n i l  e o f ) ) ) )  

(defun convert-numbers ( x )  
"Rep1 ace symbol s t h a t  1 ook 1 i ke Scheme numbers w i t h  t h e i  r va l  ues. " 
;; Don't  copy s t r u c t u r e ,  make changes i n  p lace.  
( typecase x 

(cons ( s e t f  ( ca r  x )  (convert-numbers ( c a r  X I ) )  
( s e t f  ( c d r  x )  (convert-numbers ( c d r  X I ) )  
x 1 

(symbol ( o r  (convert-number x )  x ) )  
( vec to r  (dotimes ( i  ( l e n g t h  x ) )  

( s e t f  ( a r e f  x i )  (convert-numbers ( a r e f  x i l l ) )  
x 1 

(t X I ) )  

(defun convert-number (symbol) 
" I f  s t r  l ooks  l i k e  a complex number, r e t u r n  t h e  number." 
( l e t *  ( ( s t r  (symbol-name symbol)) 

(pos ( p o s i t i o n - i f  # ' s i g n - p  s t r ) )  
(end ( -  ( l e n g t h  s t r )  1))) 

(when (and pos (char-equal  (char  s t r  end) # \ i ) )  
( l e t  ( ( r e  ( r e a d - f r o m- s t r i n g  s t r  n i l  n i l  : s t a r t  0 :end pos))  

( im  ( r e a d - f r o m- s t r i n g  s t r  n i l  n i l  : s t a r t  pos :end end)) )  
(when (and (numberp r e )  (numberp im) )  

(complex r e  i m ) ) ) ) ) )  

(defun s i g n - p  (char)  ( f i n d  char "+ - "1 )  

Actually, that's not quite good enough, because a Scheme complex number can have 
multiple signs in it, as in 3.4e- 5+6.7e+8iI and it need not have two numbers, as in 
3i or 4+i or just +i . The other problem is that complex numbers can only have a 
lowercase i ,  but read does not distinguish between the symbols 3+4i and 3+4I. 



Answer 23.4 Yes, it is possible to implement begi n as a macro: 

( se t f  (scheme-macro 'begin) 
#'(lambda (&res t  exps) '((lambda 0 . , e x p s ) ) ) )  

With some work we could also eliminate quote. Instead of 'x, we could use 
( s t r i  ng ->symbol " X u  1, and instead of ' ( 1 2 1, we could use something like ( 1 i s t  1 
2 ) . The problem is in knowing when to reuse the same list. Consider: 

=> (define (one-two) ' (1 2 ) )  
ONE-TWO 

=> (eq? (one-two) (one-two)) 
T 

=> (eq? ' ( 1  2 )  ' (1  2 ) )  
NIL 

A clever memoized macro for quote could handle this, but it would be less efficient 
than having quote as a special form. In short, what's the point? 

It is also (nearly) possible to replace i f with alternate code. The idea is to replace: 

( i  f  test then-part else-part) 

with 

(test (del ay then-part) (del ay else-part 

Now if we are assured that any test returns either #t or #f, then we can make the 
following definitions: 

(define #t (1 ambda (then-part  e lse-par t )  (force then-part)  1)  
(define #f (lambda (then-part  e lse-par t )  (force e l s e - p a r t ) ) )  

The only problem with this is that any value, not just #t, counts as true. 
This seems to be a common phenomenon in Scheme compilers: translating 

everything into a few very general constructs, and then recognizing special cases of 
these constructs and compiling them specially. This has the disadvantage (compared 
to explicit use of many special forms) that compilation may be slower, because all 
macros have to be expanded first, and then special cases have to be recognized. It 
has the advantage that the optimizations will be applied even when the user did not 
have a special construct in mind. Common Lisp attempts to get the advantages of 
both by allowing implementations to play loose with what they implement as macros 
and as special forms. 



Answer 23.6 We define the predicate a1 ways and install it in two places in comp - i f: 

(defun always (pred env) 
"Does p red ica te  always evaluate t o  t r u e  o r  f a l s e ? "  
(cond ( (eq  pred t )  ' t r u e )  

( (eq pred n i l  ' f a l s e )  
((symbolp pred)  n i l )  
((atom pred)  ' t r u e )  
((scheme-macro ( f i r s t  p red ) )  
(always (scheme-macro-expand pred)  env))  

( (case ( f i r s t  pred) 
(QUOTE ( i f  ( n u l l  (second p red) )  ' f a l s e  ' t r u e ) )  
(BEGIN ( i f  ( n u l l  ( r e s t  p red) )  ' f a l s e  

(always ( l a s t 1  pred)  env ) ) )  
(SET! (always ( t h i r d  pred) env)) 
( I F  ( l e t  ( ( t e s t  (always (second p red) )  env) 

( then  (always ( t h i r d  p red) )  env) 
( e l s e  (always ( f o u r t h  p red) )  env))  

(cond ( ( e q  t e s t  ' t r u e )  then)  
( (eq  t e s t  ' f a l s e )  e l s e )  
( ( e q  then e l s e )  t h e n ) ) ) )  

(LAMBDA ' t r u e )  
( t  ( l e t  ( ( p r i m  ( p r i m i t i v e - p  ( f i r s t  pred)  env 

( l e n g t h  ( r e s t  p r e d ) ) ) ) )  
( i f  p r im  (pr im-always p r i m ) ) ) ) ) ) ) )  

(defun comp- i f  (pred then e l s e  env v a l ?  more?) 
(case (always pred env) 

( t r u e  ; ( i f  n i l  x  y )  ==> y ; *** 
(comp then env v a l ?  more?)) . . *** 

(fa1 se ; ( i f  t x y )  = = > x  ; *** 
(comp e l s e  env v a l ?  more?)) . . *** 

(otherwi  se 
( l e t  ((pcode (comp pred env t t ) )  

( tcode (comp then env v a l ?  more?) 
(ecode (comp e l s e  env v a l ?  more?)) )  

(cond 
((and ( l i s t p  pred) ; ( i f  ( n o t  p )  x  y )  ==> ( i f  p  y  x )  

( l eng th= l  ( r e s t  p red) )  
( p r i m i t i v e - p  ( f i r s t  pred)  env 1 )  
(eq (prim-opcode ( p r i m i t i v e - p  ( f i r s t  pred)  env 1 ) )  

' no t  1 1 
(comp-i f  (second pred) e l s e  then env v a l ?  more?)) 

( (equal  tcode ecode) ; ( i f  p  x  x )  ==> (begin p x )  
(seq (comp pred env n i l  t )  ecode)) 

( ( n u l l  tcode) ; ( i f  p  n i l  y )  ==> p (TJUMP L2) y  L2: 
( l e t  ( (L2  ( g e n - l a b e l ) ) )  

(seq pcode (gen 'TJUMP L2) ecode ( l i s t  L2) 



(un less more? (gen 'RETURN))))) 
( ( n u l l  ecode) ; ( i f  p X)  ==> p (FJUMP L1) x L1: 

( l e t  ( ( L 1  ( g e n - l a b e l ) ) )  
(seq pcode (gen 'FJUMP L1) tcode ( l i s t  L1) 

(un less more? (gen 'RETURN) 1) 1) 
( t  ; ( i f  p x y )  ==> p (FJUMP L1) x L1: y 

; o r  p (FJUMP L1) x (JUMP L2) L1: y L2: 
( l e t  ( ( L 1  ( g e n - l a b e l ) )  

(L2 ( i f  more? ( g e n - l a b e l ) ) ) )  
(seq pcode (gen 'FJUMP L1) tcode 

( i f  more? (gen 'JUMP L2))  
( l i s t  L1) ecode ( i f  more? ( l i s t  L 2 ) ) ) ) ) ) ) ) ) )  

Development note: originally, I had coded a1 ways as a predicate that took a Boolean 
value as input and returned true if the expression always had that value. Thus, you 
had to ask first if the predicate was always true, and then if it was always false. Then 
I realized this was duplicating much effort, and that the duplication was exponential, 
not just linear: for a triply-nested conditional I would have to do eight times the 
work, not twice the work. Thus I switched to the above formulation, where a1 ways 
is a three-valued function, returning true, f a  1 s e, or n i 1 for none-of-the-above. But 
to demonstrate that the right solution doesn't always appear the first time, I give my 
original definition as well: 

(defun a1 ways (bool ean pred env) 
"Does p red ica te  always evaluate t o  boolean i n  env?" 
( i f  (atom pred)  

(and (constantp pred)  (equiv  boolean p red) )  
(case ( f i r s t  pred) 

(QUOTE (equiv  boolean p red) )  
(BEGIN ( i f  ( n u l l  ( r e s t  p red) )  (equiv  boolean n i l )  

(always boolean (1 a s t l  pred) env) 1) 
(SET!  (always boolean ( t h i r d  pred)  env)) 
( I F  ( o r  (and (always t (second pred)  env) 

(a1 ways bool ean ( t h i  r d  pred)  env) 
(and (always n i l  (second pred)  env) 

(always boolean ( f o u r t h  pred)  env))  
(and (always boolean ( t h i r d  pred)  env) 

(always boolean ( f o u r t h  pred)  e n v ) ) ) )  
(LAMBDA (equiv  boolean t )  
( t  ( l e t  ( ( p r i m  ( p r i m i t i v e - p  ( f i r s t  pred)  env 

( l e n g t h  ( r e s t  p r e d ) ) ) ) )  
(and p r i m  

(eq (pr im-always pr im)  
( i f  boolean ' t r u e  ' f a l s e ) ) ) ) ) ) ) )  

(defun equiv ( x  y )  "Boolean equivalence" (eq ( n o t  x )  ( n o t  y ) ) )  



Answer 23.7 The original version requires O(n) stack space for poorly chosen 
pivots. Assuming a properly tail-recursive compiler, the modified version will never 
require more than O(1og n) space, because at each step at least half of the vector is 
being sorted tail-recursively. 

Answer 23.10 (1) ( d e f u n  ( f u n c a l l  f n  . a r g s )  ( a p p l y  f n  a r g s ) )  
(2) Suppose you changed the piece of code (+ . numbers > to (+ . (map s q  r t  
numbers 1. The latter is the same expression as (+ map s q r t  numbers 1, which is 
not the intended result at all. So there would be an arbitrary restriction: the last 
argument in an apply form would have to be an atom. This kind of restriction goes 
against the grain of Scheme. 



ANSI Common Lisp 

his chapter briefly covers some advanced features of Common Lisp that were not used 
in the rest of the book. The first topic, packages, is crucial in building large systems but 
was not covered in this book, since the programs are concise. The next four topics-error 

handling, pretty printing, series, and the loop macro-are covered in Common Lisp the Language, 
2d edition, but not in the first edition of the book. Thus, they may not be applicable to your Lisp 
compiler. The final topic, sequence functions, shows how to write efficient functions that work 
for either lists or vectors. 

24.1 Packages 

A package is a symbol table that maps from strings to symbols named by those strings. When 
read is confronted with a sequence of characters like 1 i s t ,  it uses the symbol table to determine 
that this refers to the symbol 1 i s t .  The important point is that every use of the symbol name 
1 i s t  refers to the same symbol. That makes it easy to refer to predefined symbols, but it also 
makes it easy to introduce unintended name conflicts. For example, if I wanted to hook up the 
emyci n expert system from chapter 16 with the parser from chapter 19, there would be a conflict 
because both programs use the symbol def rul e to mean different things. 



Common Lisp uses the package system to help resolve such conflicts. Instead of 
a single symbol table, Common Lisp allows any number of packages. The function 
read always uses the current package, which is defined to be the value of the special 
variable *package*. By default, Lisp starts out in the common - 1 i sp- user package.' 
That means that if we type a new symbol, like zxv@! ?+qw, it will be entered into 
that package. Converting a string to a symbol and placing it in a package is called 
interning. It is done automatically by read, and can be done by the function i n t e r n  
if necessary. Name conflicts arise when there is contention for names within the 
common-1 i sp-user package. 

To avoid name conflicts, simply create your new symbols in another package, one 
that is specific to your program. The easiest way to implement this is to split each 
systeminto at least two files-one to define the package that the system resides in, and 
the others for the system itself. For example, the emyci n system should start with a 
file that defines the emyci n package. The following form defines the emyci n package 
to use the 1 i sp package. That means that when the current package is emyci n, you 
can still refer to all the built-in Lisp symbols. 

(make-package "EMYCIN" :use ' ( " L I S P " ) )  

The file containing the package definition should always be loaded before the rest 
of the system. Those files should start with the following call, which insures that all 
new symbols will be interned in the emyci n package: 

( in-package "EMYCIN") 

Packages are used for information-hiding purposes as well as for avoiding name 
clashes. A distinction is made between internal and external symbols. External 
symbols are those that a user of a system would want to refer to, while internal 
symbols are those that help implement the system but are not needed by a user of the 
system. The symbol r u l  e would probably be internal to both the emyci n and pa r s  e r 
package, but de f  r u l  e would be external, because a user of the ernyci n system uses 
d e f  r u l  e to define new rules. The designer of a system is responsible for advertising 
which symbols are external. The proper call is: 

(expor t  ' (emycin d e f r u l e  de fcon tex t  defparm yes/no yes no i s ) )  

Now the user who wants to refer to symbols in the emyci n package has four choices. 
First, he or she can use the package prefix notation. To refer to the symbol de f  r u l  e 
in the ernyci n package, type emyci n : de f  rul e. Second, the user can make emyci n 
be the current package with ( in-package "EMYCIN"  1. Then, of course, we need 

'or in the user package in non-ANSI systems. 



only type de f r u 1 e. Third, if we only need part of the functionality of a system, we 
can import specific symbols into the current package. For example, we could call 
( impor t  ' emyci n : d e f  r u l  e 1. From then on, typing d e f  r u l  e (in the current package) 
will refer to emyci n : de f  r u l  e. Fourth, if we want the full functionality of the system, 
we call ( use - pac kage " EMY C I N " 1. This makes all the external symbols of the emyci n 
package accessible in the current package. 

While packages help eliminate name conflicts, i mport and use - pac kage allow 
them to reappear. The advantage is that there will only be conflicts between external 
symbols. Since a carefully designed package should have far fewer external than 
internal symbols, the problem has at least been reduced. But if two packages both 
have an external d e f  r u l  e symbol, then we cannot use-package both these packages, 
nor i mpo r t both symbols without producing a genuine name conflict. Such conflicts 
can be resolved by shadowing one symbol or the other; see Common Lisp the Language 
for details. 

The careful reader may be confused by the distinction between " EMY C I N " and 
emyci n. In Common Lisp the Language, it was not made clear what the argument 
to package functions must be. Thus, some implementations signal an error when 
given a symbol whose print name is a package. In ANSI Common Lisp, all package 
functions are specified to take either a package, a package name (a string), or a 
symbol whose print name is a package name. In addition, ANSI Common Lisp adds 
the convenient d e f  pa c kage macro. It can be used as a replacement for separate calls 
to ma ke-package, use-package, import, and expor t .  Also note that ANSI renames 
the 1 i sp package as common - 1 i sp. 

(defpackage emycin 
( :use common-lisp) 
( :expor t  emycin d e f r u l e  de fcon tex t  defparm yes/no yes no i s ) )  

For more on packages and building systems, see section 25.16 or Common Lisp the 
Language. 

The Seven Name Spaces 

One important fact to remember about packages is that they deal with symbols, and 
only indirectly deal with the uses those symbols might have. For example, you may 
think of ( expo r t  ' pa r se 1 as exporting the function pa r se, but really it is exporting 
the symbol parse, which may happen to have a function definition associated with 
it. However, if the symbol is put to another use-perhaps as a variable or a data 
type-then those uses are made accessible by the expor t  statement as well. 

Common Lisp has at least seven name spaces. The two we think of most often 
are (1) for functions and macros and (2) for variables. We have seen that Scheme 



conflates these two name spaces, but Common Lisp keeps them separate, so that in 
a function application like ( f 1 the function/macro name space is consulted for the 
value of f,  but in (+ f 1, f is treated as a variable name. Those who understand the 
scope and extent rules of Common Lisp know that (3) special variables form a distinct 
name space from lexical variables. So the f in (+ f 1 is treated as either a special or 
lexical variable, depending on if there is an applicable speci a1 declaration. There 
is also a name space (4) for data types. Even if f is defined as a function and/or a 
variable, it can also be defined as a data type with def s t ruc t  , deftype, or def cl ass. 
It can also be defined as (5) a label for go statements within a tagbody or (6) a block 
name for return - f rom statements within a bl ock. Finally, symbols inside a quoted 
expression are treated as constants, and thus form name space (7). These symbols 
are often used as keys in user-defined tables, and in a sense each such table defines 
a new name space. One example is the tag name space, used by catch and throw. 
Another is the package name space. 

It is a good idea to limit each symbol to only one name space. Common Lisp will 
not be confused if a symbol is used in multiple ways, but the poor human reader 
probably will be. 

In the following example f ,  can you identify which of the twelve uses of f refer to 
which name spaces? 

(defun f ( f )  
(b lock  f 

(tagbody 
f (catch ' f  

( i f  ( typep f ' f )  
( throw ' f  (go f ) ) )  

( f u n c a l l  # ' f  ( g e t  (symbol -va lue ' f )  ' f ) ) ) ) ) )  

24.2 Conditions and Error Handling 

An extraordinary feature of ANSI Common Lisp is the facility for handling errors. 
In most languages it is very difficult for the programmer to arrange to recover from 
an error. Although Ada and some implementations of C provide functions for error 
recovery, they are not generally part of the repertoire of most programmers. Thus, 
we find C programs that exitwith the ungraceful message Segmenta t i on vi 01 a t  i on : 
core dumped. 

Common Lisp provides one of the most comprehensive and easy-to-use error- 
handling mechanism of any programming language, which leads to more robust 
programs. The process of error handling is divided into two parts: signaling an error, 
and handling it. 



Signaling Errors 

An error is a condition that the program does not know how to handle. Since the 
program does not know what to do, its only recourse is to announce the occurrence of 
the error, with the hope that some other program or user will know what to do. This 
announcement is called signaling an error. An error can be signaled by a Common 
Lisp built-in function, as when ( / 3 0 1 signals a divide-by-zero error. Errors can also 
be signaled explicitly by the programmer, as in a call to ( error " I1 1 ega 1 va 1 ue . " 1. 

Actually, it is a bit of a simplification to talk only of signaling errors. The precise 
term is signaling a condition. Some conditions, like end-of-file, are not considered 
errors, but nevertheless they are unusual conditions that must be dealt with. The 
condition system in Common Lisp allows for the definition of all kinds of conditions, 
but we will continue to talk about errors in this brief discussion, since most conditions 
are in fact error conditions. 

Handling Errors 

By default, signaling an error invokes the debugger. In the following example, the >> 
prompt means that the user is in the debugger rather than at the top level. 

> ( 1  3 0) 
E r r o r :  An at tempt  was made t o  d i v i d e  by zero.  
>> 

ANSI Common Lisp provides ways of changing this default behavior. Conceptually, 
this is done by setting up an error handler which handles the error in some way. Error 
handlers are bound dynamically and are used to process signaled errors. An error 
handler is much like a catch, and signaling an error is like a throw. In fact, in many 
systems catch and throw are implemented with the error-condition system. 

The simplest way of handling an error is with the macro i gno re - errors . If no error 
occurs, ignore-errors is just like progn. But if an error does occur, ignore-errors 
will return n i  1 as its first value and t as its second, to indicate that an error has 
occurred but without doing anything else: 

> ( i g n o r e - e r r o r s  ( 1  3 1))  + 3 N I L  

> ( i g n o r e - e r r o r s  (1  3 0 ) )  + NIL T 

i gnore - errors is averycoarse-grain tool. Inaninteractiveinterpreter, i gnore - er rors 
can be used to recover from any and all errors in the response to one input and get 
back to the read-process-print loop for the next input. If the errors that are ignored 
are not serious ones, this can be a very effective way of transforming a buggy program 
into a useful one. 



But some errors are too important to ignore. If the error is running out of memory, 
then ignoringit will not help. Instead, we need to find some way of freeing up memory 
and continuing. 

The condition-handling system can be used to handle only certain errors. The 
macro handl er - case, is a convenient way to do this. Like case, its first argument is 
evaluated and used to determine what to do next. If no error is signaled, then the 
value of the expression is returned. But if an error does occur, the following clauses 
are searched for one that matches the type of the error. In the following example, 
hand 1 e r - case is used to handle division by zero and other arithmetic errors (perhaps 
floating-point underflow), but it allows all other errors to pass unhandled. 

(defun d i v  ( x  y )  
(handler-case ( 1  x y )  

( d i v i s i o n - b y - z e r o  0 most-posi t ive- f ixnum) 
( a r i t h m e t i c - e r r o r  0 0 ) ) )  

> ( d i v  'xyzzy 1) 
Er ro r :  The value o f  NUMBER, XYZZY, should be a number 

Through judicious use of handl er - case, the programmer can create robust code that 
reacts well to unexpected situations. For more details, see chapter 29 of Common Lisp 
the Language, 2d edition. 

24.3 Pretty Printing 

ANSI Common Lisp adds a facility for user-controlled pretty printing. In general, 
pretty printing refers to the process of printing complex expressions in a format that 
uses indentation to improve readability. The function ppr i  n t  was always available, 
but before ANSI Common Lisp it was left unspecified, and it could not be extended 
by the user. Chapter 27 of Common Lisp the Language, 2d edition presents a pretty- 
printing facility that gives the user fine-grained control over the printing of all types 
of objects. In addition, the facility is integrated with the format function. 

24.4 Series 

The functional style of programming with higher-order functions is one of the at- 
tractions of Lisp. The following expression to sum the square roots of the positive 
numbers in the list nums is clear and concise: 



(reduce #'+ (mapcar # 'sqr t  ( f ind -a l l - i f  #'plusp nums))) 

Unfortunately, it is inefficient: both f i nd - a 1 1 - i f and mapca r cons up intermediate 
lists that are not needed in the final sum. The following two versions using 1 oop and 
do1 i s t  are efficient but not as pretty: 

;; Using Loop 
(loop for num in nums 

when (pl usp num) 
sum (sqrt  num))  

;; Using dolist  
( l e t  ((sum 0 ) )  

(dolist  (num nums sum) 
(when (pl usp num) 

(incf sum n u m > > > )  

A compromise between the two approaches is provided by the series facility, defined 
in appendix A of Common Lisp the Language, 2d edition. The example using series 
would look like: 

(collect-sum (#Msqrt (choose-if #'plusp nums))) 

This looks very much like the functional version: only the names have been changed. 
However, it compiles into efficient iterative code very much like the do1 i s t  version. 

Like pipes (see section 9.3), elements of a series are only evaluated when they 
are needed. So we can write ( scan - range : from 0 to indicate the infinite series of 
integers starting from 0, but if we only use, say, the first five elements of this series, 
then only the first five elements will be generated. 

The series facility offers a convenient and efficient alternative to iterative loops 
and sequence functions. Although the series proposal has not yet been adopted as an 
official part of ANSI Common Lisp, its inclusion in the reference manual has made 
it increasingly popular. 

24.5 The Loop Macro 

The original specification of Common Lisp included a simple 1 oop macro. The body 
of the loop was executed repeatedly, until a return was encountered. ANSI Common 
Lisp officially introduces a far more complex 1 oop macro, one that had been used in 
ZetaLisp and its predecessors for some time. This book has occasionally used the 
complex 1 oop in place of alternatives such as do, dotimes, do1 i s t ,  and the mapping 
functions. 

If your Lisp does not include the complex 1 oop macro, this chapter gives a defini- 
tion that will run all the examples in this book, although it does not support all the 
features of 1 oop. This chapter also serves as an example of a complex macro. As with 



any macro, the first thing to do is to look at some macro calls and what they might 
expand into. Here are two examples: 

( l o o p  f o r  i from 1 t o  n do ( p r i n t  ( s q r t  i 1 ) )  = 
(LET* ( ( I  1 )  

(TEMP N)) 
(TAGBODY 
LOOP 

( I F  (> I TEMP) 
(GO END)) 

(PRINT (SQRT I ) )  
(SETF I (+ I 1 ) )  
(GO LOOP) 

END) 

( l o o p  f o r  v i n  l i s t  do ( p r i n t  v ) )  G 

(LET* ( ( I N  LIST) 
(V (CAR I N ) ) )  

(TAGBODY 
LOOP 

( I F  (NULL IN )  
(GO END)) 

(PRINT V) 
(SETF I N  (CDR I N ) )  
(SETF V (CAR I N ) )  
(GO LOOP) 

END) 

Each loop initializes some variables, then enters a loop with some exit tests and a 
body. So the template is something like: 

( 1 e t *  (variables ... 
( tagbody 
1 oop 

( i f exit-tests 
(go end))  

body 
(go l o o p )  

end 1) 

Actually, there's more we might need in the general case. There may be a prologue 
that appears before the loop but after the variable initialization, and similarly there 
may be an epilogue after the loop. This epilogue may involve returning a value, and 
since we want to be able to return from the loop in any case, we need to wrap a bl  oc k 
around it. So the complete template is: 



(1 e t *  (variables ... 
( b l o c k  name 

prologue 
( t agbody  
1  oop 

body 
( g o  l o o p )  

end 
epilogue 
( r e t u r n  result) 1 1) 

To generate this template from the body of a 1 oop form, we will employ a structure 
with fields for each of the parts of the template: 

( d e f s t r u c t  l o o p  
"A s t r u c t u r e  t o  ho ld  p a r t s  o f  a  l o o p  a s  i t  i s  b u i l t . "  
( v a r s  n i l  ( p r o l o g u e  n i l  (body n i l  ( s t e p s  n i l  
( e p i l o g u e  n i l )  ( r e s u l t  n i l )  (name n i l ) )  

Now the 1 oop macro needs to do four things: (1) decide if this is a use of the simple, 
non-keyword 1 oop or the complex ANSI 1 oop. If it is the latter, then (2) make an 
instance of the 1 oop structure, (3) process the body of the loop, filling in apprpriate 
fields of the structure, and (4) place the filled fields into the template. Here is the 
1 oop macro: 

(defmacro  l o o p  ( & r e s t  e x p s )  
"Suppo r t s  bo th  ANSI and s i m p l e  LOOP. 
Warning: Not e v e r y  l o o p  keyword i s  s u p p o r t e d . "  
( i f  ( e v e r y  # ' l i s t p  e x p s )  

;; No keywords i m p l i e s  s i m p l e  l oop :  
' ( b l o c k  n i l  ( t agbody  l o o p  ,@exps  ( g o  l o o p ) ) )  
;; o t h e r w i s e  p r o c e s s  l o o p  keywords: 
( l e t  ( ( 1  ( m a k e - l o o p ) ) )  

( p a r s e - 1  oop-body 1  e x p s )  
( f i l l  - l o o p - t e m p l a t e  1  ) I ) )  

( de fun  f i l l - l o o p - t e m p l a t e  ( 1 )  
"Use a  l o o p - s t r u c t u r e  i n s t a n c e  t o  f i l l  t h e  t e m p l a t e . "  
' ( l e t *  . ( n r e v e r s e  ( l o o p - v a r s  1 )  

( b l o c k  . ( loop-name 1 )  
, @ ( n r e v e r s e  (1  oop-pro1 ogue 1  1) 
( t agbody  
1  oop 

, @ ( n r e v e r s e  ( l oop- body  1 ) )  
, @ ( n r e v e r s e  (1 o o p - s t e p s  1  1) 
( g o  l o o p )  



end 
, @ ( n r e v e r s e  (1  oop-epi  1  ogue 1  1) 
( r e t u r n  , ( l o o p - r e s u l t  1 ) ) ) ) ) )  

Most of the work is in writing parse- 1 oop- body, which takes a list of expressions 
and parses them into the proper fields of a loop structure. It will use the following 
auxiliary functions: 

(de fun  add-body (1 exp )  ( push  exp  ( l oop - body  1 ) ) )  

( de fun  a d d - t e s t  (1 t e s t )  
"Pu t  i n  a  t e s t  f o r  l o o p  t e r m i n a t i o n . "  
(push  ' ( i f  , t e s t  ( g o  e n d ) )  ( l oop- body  1 ) ) )  

( de fun  add- va r  (1  v a r  i n i t  & o p t i o n a l  ( u p d a t e  n i l  u p d a t e ? ) )  
"Add a  v a r i a b l e ,  maybe i n c l u d i n g  an upda t e  s t e p . "  
( u n l e s s  ( a s s o c  v a r  ( l o o p - v a r s  1 ) )  

( push  ( l i s t  v a r  i n i t )  ( l o o p - v a r s  1 ) ) )  
(when upda t e?  

(push  ' ( s e t q  , v a r  , u p d a t e )  ( l o o p - s t e p s  1 ) ) ) )  

There are a number of alternative ways of implementing this kind of processing. One 
would be to use special variables: *pro1 ogue*, *body*, *epi 1 ogue*, and so on. This 
would mean we wouldn't have to pass around the loop structure 1, but there would 
be significant clutter in having seven new special variables. Another possibility is to 
use local variables and close the definitions of 1 oop, along with the add - functions in 
that local environment: 

(1  e t  (body pro1 ogue e p i  1  ogue s t e p s  v a r s  name r e s u l t  
(defmacro  1  oop . . . 
( de fun  add-body . . . I  
( de fun  a d d - t e s t  . . . I  
( de fun  a d d - v a r  ... 1) 

This is somewhat cleaner style, but some early Common Lisp compilers do not 
support embedded def uns, so I chose to write in a style that I knew would work in 
all implementations. Another design choice would be to return multiple values for 
each of the components and have parse- 1 oop- body put them all together. This is in 
fact done in one of the Lisp Machine implementations of 1 oop, but I think it is a poor 
decision: seven components are too many to keep track of by positional notation. 

Anatomy ofa Loop 

All this has just been to set up for the real work: parsing the expressions that make 
up the loop with the function parse - 1 oop - body. Every loop consists of a sequence of 



clauses, where the syntax of each clause is determined by the first expression of the 
clause, which should be a known symbol. These symbols are called loop keywords, 
although they are not in the keyword package. 

The loop keywords will be defined in a data-driven fashion. Every keyword has 
a function on its property list under the 1 oop- f n indicator. The function takes three 
arguments: the 1 oop structure being built, the very next expression in the loop body, 
and a list of the remaining expressions after that. The function is responsible for up- 
dating the 1 oop structure (usually by making appropriate calls to the add - functions) 
and then returning the unparsed expressions. The three-argument calling conven- 
tion is used because many of the keywords only look at one more expression. So 
those functions see that expression as their first argument, and they can conveniently 
return their second argument as the unparsed remainder. Other functions will want 
to look more carefully at the second argument, parsing some of it and returning 
the rest. 

The macro def  1 oop is provided to add new loop keywords. This macro enforces 
the three-argument calling convention. If the user supplies only two arguments, then 
a third argument is automatically added and returned as the remainder. Also, if the 
user specifies another symbol rather than a list of arguments, this is taken as an alias, 
and a function is constructed that calls the function for that keyword: 

(de fun  pa r s e - loop- body  (1  e x p s )  
" P a r s e  t h e  exps  based  on t h e  f i r s t  exp  be ing  a  keyword. 
Cont inue  u n t i l  a l l  t h e  exps  a r e  p a r s e d . "  
( u n l e s s  ( n u l l  e x p s )  

( p a r s e - 1  oop-body 
1  ( c a l l - l o o p - f n  1  ( f i r s t  e x p s )  ( r e s t  e x p s ) ) ) ) )  

( de fun  c a l l  - l o o p - f n  (1 key e x p s )  
"Return  t h e  l o o p  p a r s i n g  f u n c t i o n  f o r  t h i s  keyword." 
( i f  (and  (symbolp key)  ( g e t  key ' l o o p - f n ) )  

( f u n c a l l  ( g e t  key ' l o o p - f n )  1  ( f i r s t  e x p s )  ( r e s t  e x p s ) )  
( e r r o r  "Unknown l o o p  key: "a" k e y ) ) )  

(defmacro  d e f l o o p  (key  a r g s  & r e s t  body) 
"De f ine  a  new LOOP keyword." 
;; I f  t h e  a r g s  do  n o t  have a  t h i r d  a r g ,  one  i s  s u p p l i e d .  
;; Also ,  we can d e f i n e  an  a l i a s  w i t h  ( d e f l o o p  key o t h e r - k e y )  
' ( s e t f  ( g e t  ' , k e y  ' l o o p - f n )  

, ( cond  ( ( a n d  (symbolp a r g s )  ( n u l l  body ) )  
'# ' ( lambda (1  x  y )  

( c a l l - l o o p - f n  1  ' . a r g s  ( c o n s  x  y ) ) ) )  
( ( a n d  ( l i s t p  a r g s )  (= ( l e n g t h  a r g s )  2 ) )  

' # ' ( l ambda  ( , @ a r g s  - exps -1  ,@body - e x p s - 1 )  
( t  ' # ' ( lambda , a r g s  , @ b o d y ) ) ) ) )  

Now we are ready to define some 1 OOP keywords. Each of the following sections 



refers to (and implements the loop keywords in) a section of chapter 26 of Common 
Lisp the Language, 2d edition. 

Iteration Control (26.6) 

Here we define keywords for iterating over elements of a sequence and for stopping 
the iteration. The following cases are covered, where uppercase words represent 
loop keywords: 

(LOOP REPEAT n . . . )  

(LOOP FOR i FROM s TO e BY i n c  . . . I  
(LOOP FOR v IN 1 . . . I  
(LOOP FOR v ON 1 . . . I  
(LOOP FOR v = expr CTHEN s t e p l  . . . I  

The implementation is straightforward, although somewhat tedious for complex 
keywords like f o r .  Take the simpler keyword, repeat.  To handle it, we generate a 
new variable that will count down the number of times to repeat. We call add - va r to 
add that variable, with its initial value, to the loop structure. We also give this variable 
an update expression, which decrements the variable by one each time through the 
loop. Then all we need to do is call a d d - t e s t  to insert code that will exit the loop 
when the variable reaches zero: 

(de f loop  repeat  (1 t imes)  
"(LOOP REPEAT n . . . I  does loop  body n t imes. "  
(1  e t  ( ( i  (gensym "REPEAT" 1) ) 

(add-var  1 i times ' ( -  ,i 1))  
( a d d - t e s t  1 '(<= .i 0 ) ) ) )  

The loop keyword f o r  is more complicated, but each case can be analyzed in the 
same way as repeat:  

(de f loop  as f o r )  ;; AS i s  t h e  same as FOR 

(de f loop  f o r  (1  var exps) 
"4  o f  t h e  7 cases f o r  FOR are  covered here: 
(LOOP FOR i FROM s TO e BY i n c  . . . )  does a r i t h e m t i c  i t e r a t i o n  
(LOOP FOR v IN  1 . . . 1 i t e r a t e s  f o r  each element o f  1 
(LOOP FOR v ON 1 . . . 1 i t e r a t e s  f o r  each t a i  1 o f  1 
(LOOP FOR v = expr CTHEN s t e p l )  i n i t i a l i z e s  and i t e r a t e s  v "  
( l e t  ( ( key  ( f i r s t  exps))  

(source (second exps)) 
( r e s t  ( r e s t 2  exps ) ) )  

(ecase key 



( ( f r o m  downfrom upfrom t o  downto upto by)  
( l o o p - f o r - a r i t h m e t i c  1  var exps))  

( i n  ( l e t  ( ( v  (gensym " I N " ) ) )  
(add-var 1  v  source ' ( c d r  , v ) )  
(add-var 1  var ' ( c a r  , v )  ' ( c a r  , v ) )  
(add- tes t  1  ' ( n u l l  , v ) )  
r e s t  1) 

(on (add-var  1  var source ' ( c d r  ,vat-)) 
( a d d - t e s t  1  ' ( n u l l  , v a r ) )  
r e s t  

(= ( i f  (eq ( f i r s t  r e s t )  ' t hen)  
(progn 

(pop r e s t )  
(add-var 1  var  source (pop r e s t ) ) )  

(progn 
(add-var 1  var n i l  
(add-body 1  ' ( s e t q  ,var , source ) ) ) )  

r e s t  
;; ACROSS, BEING clauses omi t ted  

(defun l o o p - f o r - a r i t h m e t i c  (1  var exps) 
"Parse loop  expressions o f  t h e  form: 
(LOOP FOR var  [FROMIDOWNFROMIUPFROM e x p l l  CTOIDOWNTOIUPTO exp21 

[BY exp31" 
;; The p repos i t i ons  BELOW and ABOVE are  omi t ted  
( l e t  ( ( e x p l  0 )  

(exp2 n i l  
(exp3 1 )  
(down? n i l  1) 

; ; Parse t h e  keywords: 
(when (member ( f i r s t  exps) ' ( f r o m  downfrom upfrom)) 

( s e t f  e x p l  (second exps) 
down? (eq ( f i r s t  exps) 'downfrom) 
exps ( r e s t 2  exps ) ) )  

(when (member ( f i r s t  exps) ' ( t o  downto u p t o ) )  
( s e t f  exp2 (second exps) 

down? ( o r  down? (eq ( f i r s t  exps) 'downto)) 
exps ( r e s t 2  exps ) ) )  

(when (eq ( f i r s t  exps) 'by)  
( s e t f  exp3 (second exps) 

exps ( r e s t 2  exps ) ) )  
; ; Add v a r i a b l e s  and t e s t s :  
(add-var 1  var e x p l  

' ( . ( i f  down? ' -  '+) ,var  ,(maybe-temp 1  exp3)) )  
(when exp2 

( a d d - t e s t  1  ' ( , ( i f  down? '< ' > I  ,var ,(maybe-temp 1  exp2) ) ) )  
;; and r e t u r n  t h e  remaining expressions: 



exps 

(defun maybe-temp (1 exp) 
"Generate a  temporary v a r i a b l e ,  i f  needed. " 
( i f  (constantp exp) 

exp 
( l e t  (( temp (gensym "TEMP"))) 

(add-var 1  temp exp) 
temp) 1) 

End-Test Control (26.7) 

In this section we cover the following clauses: 

( LOOP UNTIL t e s t  . . . 
(LOOP WHILE t e s t  . . . I  
( LOOP ALWAYS condi ti on . . . ) 
(LOOP NEVER c o n d i t i o n  . . . ) 
(LOOP THEREIS c o n d i t i o n  . . . I  
(LOOP ... (LOOP-FINISH) . . . I  

Each keyword is quite simple: 

(de f loop  u n t i l  (1 t e s t )  ( a d d - t e s t  1  t e s t ) )  

(de f loop  w h i l e  (1 t e s t )  (add- tes t  1  ' ( n o t  , t e s t ) ) )  

(de f loop  always (1 t e s t )  
( s e t f  ( l o o p - r e s u l t  1 )  t )  
(add-body 1  ' ( i f  ( n o t  , t e s t )  ( r e t u r n  n i l ) ) ) )  

(de f loop  never (1  t e s t )  
( s e t f  ( l o o p - r e s u l t  1 )  t )  
(add-body 1  ' ( i f  , t e s t  ( r e t u r n  n i l ) ) ) )  

(de f loop  t h e r e i s  (1  t e s t )  (add-body 1  ' ( r e t u r n - i f  , t e s t ) ) )  

(defmacro r e t u r n - i f  ( t e s t )  
"Return TEST i f  i t  i s  n o n - n i l  . "  
(once-only  ( t e s t )  

' ( i f  , t e s t  ( r e t u r n  . t e s t ) ) ) )  

(defmacro l o o p - f i n i s h  0 ' (go end)) 



Value Accumulafion (26.8) 

The col 1 ec t  keyword poses another challenge. How do you collect a list of expres- 
sions presented one at a time? The answer is to view the expressions as a queue, one 
where we add items to the rear but never remove them from the front of the queue. 
Then we can use the queue functions defined in section 10.5. 

Unlike the other clauses, value accumulation clauses can communicate with each 
other. There can be, say, two col 1 ec t and an append clause in the same loop, and 
they all build onto the same list. Because of this, I use the same variable name for the 
accumulator, rather than gensyming a new variable for each use. The name chosen 
is stored in the global variable *acc*. In the official 1 oop standard it is possible for 
the user to specify the variable with an in to  modifier, but I have not implemented 
that option. The clauses covered are: 

(LOOP COLLECT i t e m  . . . I  
(LOOP NCONC i tern . . . 
(LOOP APPEND i tern . . . 
(LOOP COUNT i tem . . . 
(LOOP SUM i tern . . . 
(LOOP MAXIMIZE i tern . . . 
(LOOP MINIMIZE i tern . . . ) 

The implementation is: 

(defconstant  *acc* (gensyrn "ACC") 
"Var iab le  used f o r  va lue accumulat ion i n  LOOP.") 

;;; INTO p r e p o s i t i o n  i s  omi t ted  

(de f loop  c o l l e c t  (1 exp) 
(add-var 1 *acc* '(make-queue)) 
(add-body 1 '(enqueue ,exp ,*act*)) 

( s e t f  ( l o o p - r e s u l t  1 )  ' (queue-contents .*act*))) 

( d e f  1 oop nconc (1 exp 
(add-var 1 *acc* '(make-queue)) 
(add-body 1 '(queue-nconc ,*acc* ,exp)) 
( s e t f  ( l o o p - r e s u l t  1 )  ' (queue-contents ,*act*))) 

( d e f l  oop append (1 exp exps) 
( c a l l - l o o p - f n  1 'nconc ' ( ( c o p y - l i s t  ,exp) . ,exps)) )  

(de f loop  count (1  exp) 
(add-var 1 *acc* 0)  
(add-body 1 '(when ,exp ( i n c f  ,*act*))) 

( s e t f  (1  oop-resul  t 1 *act*) 



(defloop sum (1 exp) 
(add-var 1  *acc* 0)  
(add-body 1 ' ( i nc f  ,*acc* ,exp) )  
( s e t f  (1 oop-resul t 1  *act*) 

(def l  oop maximize (1 exp) 
(add-var 1  *acc* n i l )  
(add-body 1  ' ( s e t f  ,*acc* 

( i f  ,*acc* 
(max ,*acc* .exp) 
.exp) 1 1 

( s e t f  ( loop-resu l t  1 )  *act*)) 

(defloop minimize (1  exp) 
(add-var 1  *acc* n i l )  
(add-body 1  ' ( s e t f  ,*acc* 

( i f  ,*acc* 
(min ,*acc* ,exp> 
,exp>> > 

( s e t f  (1 oop-resul t 1  *act*) 

(def 1 oop col 1  e c t i  ng col 1 e c t  
(def 1  oop nconci ng nconc 
(def 1  oop appendi ng append 
(def 1  oop count i  ng count 
(def l  oop summing sum) 
(def 1  oop maxi m i  z i  ng maxi mi ze 
(defloop minimizing minimize) 

p Exercise 24.1 1 oop lets us build aggregates (lists, maximums, sums, etc.) over the 
body of the loop. Sometimes it is inconvenient to be restricted to a single-loop body. 
For example, we might want a list of all the nonzero elements of a two-dimensional 
array. One way to implement this is with a macro, wi t h - col 1  e c t  i  on, that sets up and 
returns a queue structure that is built by calls to the function col 1 ect .  For example: 

> ( l e t  ( ( A  ' # 2 a ( ( l  0  0 )  (0  2 4 )  (0  0 3 ) ) ) )  
(with-col l ec t ion  

( loop fo r  i  from 0  t o  2 do 
( loop fo r  j from 0 t o  2 do 

( i f  (> ( a r e f  a  i  j )  0)  
( c o l l e c t  (a re f  A i  j ) ) ) ) ) ) )  

(1 2 4  3)  

Implement wi th-col1 ect ion and col l  ec t .  



Variable Initialization (26.9) 

The w i t h  clause allows local variables-I have included it, but recommend using a 
1 e t  instead. I have not included the and preposition, which allows the variables to 
nest at different levels. 

. , , . , . . , 26.9. Var iab le  I n i t i a l  i z a t i o n s  ( "and"  omi t ted )  

( d e f l  oop w i t h  (1  var exps) 
( l e t  ( ( i n i t  n i l ) )  

(when (eq ( f i r s t  exps) '=) 

( s e t f  i n i t  (second exps) 
exps ( r e s t 2  exps ) ) )  

(add-var 1 var i n i t )  

exps ) 

Conditional Execution (2 6.1 0) 

1 oop also provides forms for conditional execution. These should be avoided when- 
ever possible, as Lisp already has a set of perfectly good conditional macros. How- 
ever, sometimes you want to make, say, a c o l  l e c t  conditional on some test. In that 
case, loop conditionals are acceptable. The clauses covered here are: 

(LOOP WHEN t e s t  ... CELSE ... 1)  ; IFisasynonymforWHEN 
(LOOP UNLESS t e s t  ... CELSE ... 1) 

Here is an example of when: 

> ( l o o p  f o r  x from 1 t o  10 
when (oddp x )  

c o l l e c t  x 
e l s e  c o l l e c t  ( -  x ) )  

(1 -2  3 -4  5 - 6  7 - 8  9 -10) 

Of course, we could have said c01 1 e c t  ( i f (oddp x )  x  ( - x )  and done without 
the conditional. There is one extra feature in loop's conditionals: the value of the test 
is stored in the variable i t  for subsequent use in the THEN or ELSE parts. (This is 
just the kind of feature that makes some people love 1 oop and others throw up their 
hands in despair.) Here is an example: 



> ( loop  f o r  x  from 1 t o  10 
when (second (assoc x  ' ( (1  one) ( 3  t h r e e )  ( 5 f i v e ) ) ) )  
c o l l e c t  i t )  

(ONE THREE FIVE) 

The conditional clauses are a little tricky to implement, since they involve parsing 
other clauses. The idea is that call -1  oop-fn parses the THEN and ELSE parts, 
adding whatever is necessary to the body and to other parts of the loop structure. 
Then add-  body is used to add labels and go statements that branch to the labels as 
needed. This is the same technique that is used to compile conditionals in chapter 23; 
see the function comp - i f on page 787. Here is the code: 

( d e f l  oop when (1 t e s t  exps 
( loop-unless 1  ' ( n o t  , (maybe-se t - i t  t e s t  exps))  exps)) 

(de f loop  unless (1 t e s t  exps) 
( loop-unless 1  (maybe-se t - i t  t e s t  exps) exps))  

(defun maybe-se t - i t  ( t e s t  exps) 
"Return value, b u t  i f  the  v a r i a b l e  I T  appears i n  exps, 
then r e t u r n  code t h a t  sets  I T  t o  va lue. "  
( i f  ( f ind-anywhere ' i t  exps) 

' ( s e t q  i t  , t e s t )  
t e s t  1 1 

(de f loop  i f  when) 

(defun loop-unless (1  t e s t  exps) 
( l e t  ( ( l a b e l  (gensym " L " ) ) )  

(add-var 1  ' i t  n i l  
;; Emit code f o r  t h e  t e s t  and t h e  THEN p a r t  
(add-body 1  ' ( i f  , t e s t  (go , l abe l  1 ) )  
( s e t f  exps ( c a l l - l o o p - f n  1  ( f i r s t  exps) ( r e s t  exps ) ) )  
;; O p t i o n a l l y  emi t  code f o r  t h e  ELSE p a r t  
( i f  (eq ( f i r s t  exps) ' e l s e )  

( progn 
( l e t  ( ( l a b e l 2  (gensym " L " ) ) )  

(add-body 1  ' (go , label211 
(add-body 1  l a b e l )  
( s e t f  exps ( c a l l - l o o p - f n  1  (second exps) ( r e s t 2  exps ) ) )  
(add-body 1 l a b e l 2 ) ) )  

(add-body 1  l a b e l ) ) )  
exps > 



Unconditional Execution (2 6.1 1) 

The unconditional execution keywords are do and return: 

( d e f  1  oop do (1 exp exps  
(add-body 1  exp )  
(1 oop ( i f  (symbol p  ( f i r s t  e x p s )  (RETURN e x p s )  

(add-body 1  (pop e x p s ) ) ) )  

( d e f l o o p  r e t u r n  (1  exp )  (add-body 1  ' ( r e t u r n  , e x p ) ) )  

Miscellaneous Features (26.1 2) 

Finally, the miscellaneous features include the keywords i n i t i  a 1 1 y and f i n a 1 1 y, 
which define the loop prologue and epilogue, and the keyword named, which gives 
a name to the loop for use by a return-from form. I have omitted the data-type 
declarations and destructuring capabilities. 

( d e f l o o p  i n i t i a l l y  (1 exp  e x p s )  
( push  exp ( l o o p - p r o l o g u e  1 ) )  
( l o o p  ( i f  (symbolp ( f i r s t  e x p s ) )  (RETURN e x p s ) )  

(push  (pop  e x p s )  ( l o o p - p r o l o g u e  1 ) ) ) )  

( d e f l o o p  f i n a l l y  (1  exp  e x p s )  
( push  exp ( l o o p - e p i l o g u e  1 ) )  
(1  oop ( i f  (symbol p  ( f i r s t  e x p s )  (RETURN e x p s )  

(push  (pop e x p s )  ( l o o p - e p i l o g u e  1 ) ) ) )  

( d e f l o o p  named (1  exp )  ( s e t f  ( loop-name 1 )  e x p ) )  

24.6 Sequence Functions 

Common Lisp provides sequence functions to make the programmer's life easier: 
the same function can be used for lists, vectors, and strings. However, this ease of 
use comes at a cost. Sequence functions must be written very carefully to make sure 
they are efficient. There are three main sources of indeterminacy that can lead to 
inefficiency: (1) the sequences can be of different types; (2) some functions have 
keyword arguments; (3) some functions have a &rest  argument. Careful coding 
can limit or eliminate these sources of inefficiency, by making as many choices as 
possible at compile time and making the remaining choices outside of the main loop. 



In this section we see how to implement the new ANSI sequence function 
map- i nto and the updated function reduce efficiently. This is essential for those 
without an ANSI compiler. Even those who do have access to an ANSI compiler will 
benefit from seeing the efficiency techniques used here. 

Before defining the sequence functions, the macro once - on 1 y is introduced. 

Once-only: A Lesson in Macrology 

The macro once - on 1 y has been around for a long time on various systems, although 
it didn't make it into the Common Lisp standard. I include it here for two reasons: 
first, it is used in the following f uncal 1 - i f macro, and second, if you can understand 
how to write and when to use once - on1 y, then you truly understand macro. 

First, you have to understand the problem that once- on1 y addresses. Suppose 
we wanted to have a macro that multiplies its input by i t ~ e l f : ~  

(defmacro square ( x )  ' ( *  ,x , X I )  

This definition works fine in the following case: 

> (macroexpand '(square z ) )  + (*  Z Z )  

But it doesn't work as well here: 

> (macroexpand '(square ( p r i n t  ( i n c f  i)))) 
(* (PRINT (INCF I ) )  (PRINT (INCF 1 ) ) )  

The problem is that i will get incremented twice, not once, and two different values 
will get printed, not one. We need to bind ( pr i n t ( i ncf i 1 1 to a local variable before 
doing the multiplication. On the other hand, it would be superfluous to bind z to a 
local variable in the previous example. This is where once - on1 y comes in. It allows 
us to write macro definitions like this: 

(defmacro square ( X I  (once-only ( X I  ' ( *  ,x , X I ) )  

and have the generated code be just what we want: 

> (macroexpand '(square z ) )  
( *  z Z )  

2 ~ s  was noted before, the proper way to do this is to proclaim square as an inline function, 
not a macro, but please bear with the example. 



> (macroexpand '(square ( p r i n t  ( i n c f  i ) ) ) )  
(LET ((G3811 (PRINT (INCF I ) ) ) )  

( *  63811 63811)) 

You have now learned lesson number one of once - on1 y: you know how macros differ 
from functions when it comes to arguments with side effects, and you now know how 
to handle this. Lesson number two comes when you try to write (or even understand) 
a definition of once - on1 y-only when you truly understand the nature of macros will 
you be able to write a correct version. As always, the first thing to determine is what 
a call to once - on1 y should expand into. The generated code should test the variable 
to see if it is free of side effects, and if so, generate the body as is; otherwise it should 
generate code to bind a new variable, and use that variable in the body of the code. 
Here's roughly what we want: 

> (macroexpand ' (once-only  ( x )  ' ( *  ,x ,XI)) 
( i f  ( s i d e - e f f e c t - f r e e - p  x )  

' ( *  ,X ,XI 
' ( l e t  ( (9001 , X I )  

, ( l e t  ( ( x  'g001)) 
' ( *  ,x , x > > ) >  

where go01 is a new symbol, to avoid conflicts with the x or with symbols in the 
body. Normally, we generate macro bodies using backquotes, but if the macro body 
itself has a backquote, then what? It is possible to nest backquotes (and appendix C of 
Common Lisp the Language, 2d edition has a nice discussion of doubly and triply nested 
backquotes), but it certainly is not trivial to understand. I recommend replacing the 
inner backquote with its equivalent using 1 i s t  and quote: 

( i f  ( s i d e - e f f e c t - f r e e - p  x )  
' ( *  ,X ,XI 
( l i s t  ' l e t  ( l i s t  ( l i s t  'go01 x ) )  

( l e t  ( ( x  'g001)) 
' ( *  .x , x ) > > >  

Now we can write once - on1 y. Note that we have to account for the case where there 
is more than one variable and where there is more than one expression in the body. 

(defmacro once-only ( v a r i a b l e s  & r e s t  body) 
"Returns t h e  code b u i l t  by BODY. I f  any o f  VARIABLES 
might  have s ide  ef fects ,  they are evaluated once and s to red  
i n  temporary va r iab les  t h a t  a re  then passed t o  BODY." 
( a s s e r t  (every  #'symbol p  v a r i a b l e s )  
(1 e t  ((temps (1  oop repeat (1 ength v a r i a b l e s )  c o l l  e c t  (gensym) 1) 

' ( i f  (every  # ' s i d e - e f f e c t - f r e e - p  ( l i s t  . , v a r i a b l e s ) )  



(progn .,body) 
( l i s t  ' l e t  

, ' ( l i s t  ,@(mapcar #'(lambda (tmp va r )  
' ( l i s t  ',tmp ,vat-)) 

temps v a r i a b l e s ) )  
( l e t  ,(mapcar #'(lambda ( v a r  tmp) ' (  ,var ' , tmp)) 

v a r i  abl  es temps 
. ,body ) ) ) ) )  

(defun s i d e - e f f e c t - f r e e - p  (exp) 
" I s  exp a  constant ,  v a r i a b l e ,  o r  func t ion ,  
o r  of t h e  form (THE type x )  where x  i s  s i d e - e f f e c t - f r e e ? "  
( o r  (constantp exp) (atom exp) ( s t a r t s - w i t h  exp ' f u n c t i o n )  

(and ( s t a r t s - w i t h  exp ' t h e )  
( s i d e - e f f e c t - f r e e - p  ( t h i r d  e x p ) ) ) ) )  

Here we see the expansion of the call to once - on1 y and a repeat of the expansions of 
two calls to square: 

> (macroexpand ' (once-only  ( x )  ' ( *  ,x , x ) ) )  
( I F  (EVERY #'SIDE-EFFECT-FREE-P (LIST X I )  

( PROGN 
' ( *  ,X ,XI )  

(LIST 'LET (LIST (LIST '63763 X I )  
(LET ( (X '637631) 

' ( *  ' X  , X ) ) > >  

> (macroexpand '(square z ) )  
( *  z Z )  

> (macroexpand '(square ( p r i n t  ( i n c f  i ) ) ) )  
(LET ((63811 (PRINT (INCF I ) ) ) )  

( *  63811 63811)) 

This output was produced with * p r i  n t  - gensym* set to n i 1 . When this variable 
is non-nil, uninterned symbols are printed with a prefix # : , as in # : 6381 1. This 
insures that the symbol will not be interned by a subsequent read. 

It is worth noting that Common Lisp automatically handles problems related to 
multiple evaluation of subforms in se tf methods. See page 884 for an example. 

Avoid Overusing Macros 

A word to the wise: don't get carried away with macros. Use macros freely to 
represent your problem, but shy away from new macros in the implementation of 
your solution, unless absolutely necessary. So, it is good style to introduce a macro, 



say, def rul el which defines rules for your application, but adding macros to the 
code itself may just make things harder for others to use. 

Here is a story. Before i f was a standard part of Lisp, I defined my ownversion of 
i f .  Unlike the simple i f, my version took any number of test/result pairs, followed 
by an optional el se result. In general, the expansion was: 

( i f  a b c d  ... x )  => (cond ( a b )  ( c d )  ... ( T x ) )  

My i f also had one more feature: the symbol 't h a  t' could be used to refer to the value 
of the most recent test. For example, I could write: 

( i f  (assoc i t e m  a - l i s t )  

(process ( c d r  t h a t ) ) )  

which would expand into: 

( LET (THAT) 

(COND 

((SETQ THAT (ASSOC ITEM A-LIST)) (PROCESS (CDR THAT)))))  

This was a convenient feature (compare it to the => feature of Scheme's cond, as 
discussed on page 778), but it backfired often enough that I eventually gave up on 
my version of i f .  Here's why. I would write code like this: 

( i f  ( t o t a l  -score x )  

( p r i n t  (1 t h a t  n u m b e r - o f - t r i a l s ) )  

( e r r o r  "No scores " ) )  

and then make a small change: 

( i f  ( t o t a l  -score x )  

( i f  *p r in t - sco res*  ( p r i n t  ( 1  t h a t  n u m b e r - o f - t r i a l s ) ) )  

( e r r o r  "No scores" ) )  

Theproblemisthatthevariablethatnowrefersto*print-scores*,not (total  -score 
XI, as it did before. My macro violates referential transparency. In general, that's 
the whole point of macros, and it is why macros are sometimes convenient. But in 
this case, violating referential transparency can lead to confusion. 



MA P-INTO 

The function m a p - i n t o  is used on page 632. This function, added for the ANSI 
version of Common Lisp, is like map, except that instead of building a new sequence, 
the first argument is changed to hold the results. This section describes how to write 
a fairly efficient version of map- i nto,  using techniques that are applicable to any 
sequence function. We'll start with a simple version: 

(defun map-into ( resu l t -sequence f u n c t i o n  & r e s t  sequences) 
"D e s t r u c t i v e l y  s e t  elements o f  RESULT-SEQUENCE t o  t h e  r e s u l t s  
o f  app ly ing  FUNCTION t o  respec t i ve  elements o f  SEQUENCES." 
( rep lace  resu l t -sequence (apply  #'map ' l i s t  f u n c t i o n  sequences))) 

This does the job, but it defeats the purpose of map - i nto,  which is to avoid generating 
garbage. Here's a version that generates less garbage: 

(defun map-into ( resu l t -sequence f u n c t i o n  & r e s t  sequences) 
" D e s t r u c t i v e l y  s e t  elements o f  RESULT-SEQUENCE t o  t h e  r e s u l t s  
o f  app ly ing  FUNCTION t o  respec t i ve  elements o f  SEQUENCES." 
( l e t  ( ( n  ( l o o p  f o r  seq i n  (cons resu l t -sequence sequences) 

minimize ( l e n g t h  seq) 1) 
(dot imes ( i  n)  

( s e t f  ( e l  t resu l  t-sequence i 
(apply  f u n c t i o n  

(mapcar #'(lambda (seq) ( e l t  seq i ) )  
sequences 1) 1) 1 1 

There are three problems with this definition. First, it wastes space: mapcar creates 
a new argument list each time, only to have the list be discarded. Second, it wastes 
time: doing a s e t f  of the ith element of a list makes the algorithm 0(n2)  instead of 
O(n), where n is the length of the list. Third, it is subtly wrong: if r e s  u l  t - sequence 
is avector with a fill pointer, thenmap- i n t o  is supposed to ignore r e s u l  t - sequence's 

current length and extend the fill pointer as needed. The following version fixes 
those problems: 

(defun map- in to  ( resu l t -sequence func t ion  & r e s t  sequences) 
" D e s t r u c t i v e l y  s e t  elements o f  RESULT-SEQUENCE t o  t h e  r e s u l t s  
o f  app ly ing  FUNCTION t o  respec t i ve  elements o f  SEQUENCES." 
( l e t  ( ( a r g l i s t  ( m a k e - l i s t  ( l e n g t h  sequences))) 

( n  ( i f  ( l i s t p  resu l t -sequence)  
mos t -pos i t i ve - f i xnum 
(ar ray-d imension resu l t -sequence 0 ) ) ) )  

;; a r g l i s t  i s  made i n t o  a  l i s t  o f  args f o r  each c a l l  
; ; n  i s  t h e  l e n g t h  o f  t h e  longes t  vec to r  



(when sequences 
( s e t f  n  (min n  ( l o o p  f o r  seq i n  sequences 

minimize ( l e n g t h  s e q ) ) ) ) )  
;; Def ine some shared func t ions :  
( f l e t  

( (do-one-ca l l  ( i  
( l o o p  f o r  seq on sequences 

f o r  arg on a r g l i s t  
do ( i f  ( l i s t p  ( f i r s t  seq))  

( s e t f  ( f i r s t  a rg )  
(pop ( f i r s t  seq) ) )  

( s e t f  ( f i r s t  arg)  
( a r e f  ( f i r s t  seq) i 1 ) ) )  

(apply  f u n c t i o n  a rg l  i s t )  
(do - resu l  t ( i  

( i f  (and (vec to rp  resu l t -sequence)  
( a r r ay - has - f i l l - po in t e r - p  resu l t -sequence))  

( s e t f  ( f i  11 - p o i n t e r  resu l  t -sequence) 
(max i ( f i l l - p o i n t e r  resu l t - sequence) ) ) ) ) )  

(dec la re  ( i n l i n e  do-one-ca l l  1) 
;; Decide i f  t h e  r e s u l t  i s  a  l i s t  o r  vector ,  
; ; and loop  through each element 
( i f  (1 i s t p  resu l  t-sequence) 

( l oop  f o r  i from 0 t o  ( -  n  1 )  
f o r  r on resu l  t -sequence 
do ( s e t f  ( f i r s t  r )  

(do-one-ca l l  i 1)  
( l oop  f o r  i from 0 t o  ( -  n  1 )  

do ( s e t f  ( a r e f  result-sequence i )  
(do -one-ca l l  i 1) 

f i n a l l y  ( d o - r e s u l t  n ) ) ) )  
resu l  t -sequence) 

There are several things worth noticing here. First, I split the main loop into two 
versions, one where the result is a list, and the other where it is a vector. Rather 
than duplicate code, the local functions do-one-call and do-resul t are defined. 
The former is declared inline because it it called often, while the latter is not. The 
arguments are computed by looking at each sequence in turn, taking the ith element 
if it is a vector, and popping the sequence if it is a list. The arguments are stored 
into the list argl i s t ,  which has been preallocated to the correct size. All in all, we 
compute the answer fairly efficiently, without generating unnecessary garbage. 

The application could be done more efficiently, however. Think what apply 
must do: scan down the argument list, and put each argument into the location 
expected by the function-calling conventions, and then branch to the function. Some 
implementations provide a better way of doing this. For example, the TI Lisp Machine 
provides two low-level primitive functions, %push and %ca 1 1, that compile into single 



instructions to put the arguments into the right locations and branch to the function. 
With these primitives, the body of do - one - ca 1 1 would be: 

(loop for seq on sequences 
do (if (listp (first seq)) 

(%push (pop (first seq))) 
(%push (aref (first seq) i)))) 

(%call function length-sequences) 

There is a remaining inefficiency, though. Each sequence is type-checked each time 
through the loop, even though the type remains constant once it is determined the 
first time. Theoretically, we could code separate loops for each combination of types, 
just as we coded two loops depending on the type of the result sequence. But that 
would mean 2" loops for n sequences, and there is no limit on how large n can be. 

It might be worth it to provide specialized functions for small values of n, and 
dispatch to the appropriate function. Here's a start at that approach: 

(defun map-into (result function &rest sequences) 
(apply 
(case (length sequences) 

(0 (if (listp result) #'map-into-list-0 #'map-into-vect-0)) 
(1 (if (listp result) 

(if (listp (first sequences)) 
#'map-into-list-1-list #'map-into-list-1-vect) 

(if (1 i stp ( f i rst sequences 
#'map-into-vect-1-list #'map-into-vect-1-vect))) 

( 2  (if (listp result) 
(if (1 istp (first sequences)) 

(if (listp (second sequences)) 
#'map-into-1 ist-2-1 ist-1 ist 
# ' m a p - i n t o - l i s t - 2 - l i s t - v e c t )  

... 1 ) )  
(t (if (listp result) #'map-into-list-n #'map-into-vect-n))) 

resul t function sequences 1) 

The individual functions are not shown. This approach is efficient in execution 
time, but it takes up a lot of space, considering that map- i n t o  is a relatively obscure 
function. If map - i n t o is declared i n l  i ne and the compiler is reasonably good, then 
it will produce code that just calls the appropriate function. 

REDUCE with :key 

Another change in the ANSI proposal is to add a : key keyword to reduce. This is a 
useful addition-in fact, for years I had been using a reduce - by function that provided 



just this functionality. In this section we see how to add the : key keyword. 
At the top level, I define reduce as an interface to the keywordless function 

reduce*. They are both proclaimed inline, so there will be no overhead for the 
keywords in normal uses of reduce. 

(proclaim ' ( i n l i n e  reduce reduce*)) 

(defun reduce* (fn seq from-end s t a r t  end key i n i t  i n i t -p )  
(funcall ( i f  ( l i s t p  seq) # ' reduce- l i s t  #'reduce-vect) 

fn seq from-end (or s t a r t  0) end key i n i t  i n i t - p ) )  

(defun reduce (function sequence &key f  rom-end s t a r t  end key 
( in i t i a l -va lue  nil i n i t i a l -va lue -p ) )  

(reduce* function sequence from-end s t a r t  end 
key i n i t i a l  -value i n i t i a l  -value-p))  

The easier case is when the sequence is a vector: 

(defun reduce-vect (fn seq from-end s t a r t  end key i n i t  i n i t - p )  
(when (null end) ( se t f  end (length s e q ) ) )  
(asser t  (<= 0  s t a r t  end (length seq))  ( s t a r t  end) 

"I l legal  subsequence of "a - - -  : s t a r t  "d :end "d" 
seq s t a r t  end) 

(case ( -  end s t a r t )  
(0 ( i f  i n i t -p  i n i t  (funcall f n ) ) )  
( 1  ( i f  i n i t - p  

(funcall fn i n i t  ( funcal l - i f  key (aref seq s t a r t ) ) )  
( funcal l - i f  key (aref seq s t a r t ) ) ) )  

( t  ( i f  (not from-end) 
( l e t  ( ( r e s u l t  

( i f  i n i t -p  
( f  uncal 1  

fn i n i t  
( funcal l - i f  key (aref seq s t a r t ) ) )  

( f  uncal 1  
f  n 
( funcal l - i f  key (aref seq s t a r t ) )  
( funcal l - i f  key (aref seq (+ s t a r t  1 ) ) ) ) ) ) )  

(loop for i  from (+ s t a r t  ( i f  i n i t - p  1 2 ) )  
t o  ( -  end 1) 
do ( se t f  resul t  

(funcall 
fn resul t  
(funcall - i f  key (aref seq i  ) ) ) I )  

resul t  1 
( l e t  ( ( r e s u l t  

( i f  i n i t -p  



(funcall 
f  n 
(funcall-if  key (aref seq ( -  end 1 ) ) )  
i n i t )  

(funcall 
f  n 
(funcall-if  key (aref seq ( -  end 2 ) ) )  
(funcall-if  key (aref seq ( -  end 1 ) ) ) ) ) ) )  

(loop for i  from ( -  end ( i f  in i t -p  2 3 ) )  downto s t a r t  
do (setf result 

( f  uncal 1  
f  n 
(funcall-if  key (aref seq i ) )  
resul t 1)  

r e s u l t ) ) ) ) )  

When the sequence is a list, we go to some trouble to avoid computing the length, 
since that is an O(n)  operation on lists. The hardest decision is what to do when the 
list is to be traversed from the end. There are four choices: 

recurse. We could recursively walk the list until we hit the end, and then 
compute the results on the way back up from the recursions. However, some 
implementations may have fairly small bounds on the depths of recursive calls, 
and a system function like reduce should never run afoul of such limitations. 
In any event, the amount of stack space consumed by this approach would nor- 
mally be more than the amount of heap space consumed in the next approach. 

reverse. We could reverse the list and then consider from- end true. The only 
drawback is the time and space needed to construct the reversed list. 

nreverse. We could destructivelyreverse the list in place, do the reduce compu- 
tation, and then destructively reverse the list back to its original state (perhaps 
with an unwind-protect added). Unfortunately, this is just incorrect. The list 
may be bound to some variable that is accessible to the function used in the 
reduction. If that is so, the function will see the reversed list, not the original 
list. 

coerce. We could convert the list to a vector, and then use reduce-vect. This 
has an advantage over the reverse approach in that vectors generally take only 
half as much storage as lists. Therefore, this is the approach I adopt. 

(defmacro funcall-if  (fn arg) 
(once-only (fn)  

' ( i f  ,fn (funcall .fn ,arg) . a rg) ) )  



(defun reduce-list (fn seq from-end s t a r t  end key i n i t  ini t -p)  
(when (null end) (setf end most-positive-fixnum)) 
(cond ( (>  s t a r t  0) 

(reduce-list fn (nthcdr s t a r t  seq) from-end 0 
( -  end s t a r t )  key i n i t  i n i t - p ) )  

( ( o r  (null seq) (eql s t a r t  end)) 
( i f  ini t -p  i n i t  (funcall f n ) ) )  

( (=  ( -  end s t a r t )  1) 
( i f  in i t -p  

(funcall fn i n i t  (funcall-if  key ( f i r s t  seq)))  
(funcall-if  key ( f i r s t  s eq ) ) ) )  

(from-end 
(reduce-vect fn (coerce seq 'vector) t s t a r t  end 

key i n i t  i n i t - p ) )  
((null ( res t  seq)) 
( i f  ini t -p  

(funcall fn i n i t  (funcall-if  key ( f i r s t  seq) ) )  
(funcall - i f  key ( f i r s t  seq) ) )  

( t  ( l e t  ( ( resu l t  
( i f  in i t -p  

(funcall 
fn i n i t  
(funcall-if  key (pop seq) ) )  

( f uncal 1 
f n 
(funcall-if  key (pop seq)) 
(funcall-if  key ( p o p  s e q ) ) ) ) ) )  

( i f  end 
(loop repeat ( -  end ( i f  in i t -p  1 2 ) )  while seq 

do (setf result 
( f uncal 1 

fn result 
(funcall - i f  key (pop seq) 1) 1) 

(1 oop while seq 
do (setf result 

( f uncal 1 
fn result 
(funcall - i f  key (pop  s e q ) ) ) ) )  

r e s u l t ) ) ) ) )  



24.7 Exercises 

p Exercise 24.2 [m] The function reduce is a very useful one, especially with the key 
keyword. Write nonrecursive definitions for append and 1 eng t h using reduce. What 
other common functions can be written with reduce? 

p Exercise 24.3 The so-calledloop keywords are not symbols in the keyword package. 
The preceding code assumes they are all in the current package, but this is not quite 
right. Change the definition of 1 oop so that any symbol with the same name as a loop 
keyword acts as a keyword, regardless of the symbol's package. 

p Exercise 24.4 Can there be a value for e x p  for which the following expressions are 
not equivalent? Either demonstrate such an e x p  or argue why none can exist. 

(loop for x in list collect exp) 
(mapcar #'(lambda (x )  exp) list)) 

p Exercise 24.5 The object-oriented language Eiffel provides two interesting 1 oop 
keywords: i nva r i ant and va r i ant . The former takes a Boolean-valued expression 
that must remain true on every iteration of the loop, and the latter takes a integer- 
valued expression that must decrease on every iteration, but never becomes negative. 
Errors are signaled if these conditions are violated. Use def 1 oop to implement these 
two keywords. Make them generate code conditionally, based on a global flag. 

24.8 Answers 

Answer 24.1 

(defvar *queue*) 

(defun collect (item) (enqueue item *queue*)) 

(defmacro with-collection (&body body) 
'(let ((*queue* (make-queue))) 

,@body 
(queue-contents *queue*))) 

Here's another version that allows the collection variable to be named. 
more than one collection can be going on at the same time. 

That way, 



(defun collect (item &optional (queue *queue*)) 
(enqueue item queue)) 

(defmacro with-collection ((&optional (queue '*queue*)) 
&body body) 

'(let ((,queue (make-queue))) 
,@body 
(queue-contents ,queue))) 

Answer 24.2 

(defun append-r (x y) 
(reduce #'cons x :initial-value y :from-end t)) 

(defun length-r (1 ist) 
(reduce #'+ list :key #'(lambda (x) 1 ) ) )  

Answer 24.4 The difference between 1 oop and mapcar is that the former uses only 
one variable x, while the latter uses a different x each time. If x's extent is no bigger 
than its scope (as it is in most expressions) then this makes no difference. But if any 
x is captured, giving it a longer extent, then a difference shows up. Consider exp = 

#'(lambda 0 x). 

> (mapcar #'funcall (loop for x in ' (1  2 3) collect 
#'(lambda 0 XI)) 

( 3  3 3) 

Answer 24.5 

(defvar *check-invariants* t 
"Should VARIANT and INVARIANT clauses in LOOP be checked?") 

(defloop invariant (1 exp) 
(when *check-invariants* 

(add-body 1 '(assert ,exp 0 "Invariant violated.")))) 

(defloop variant (1 exp) 
(when *check-invariants* 
(let ((var (gensym "INV"))) 
(add-var 1 var nil 
(add-body 1 '(setf ,var (update-variant ,var .exp)))))) 



(defun upda te -va r ian t  ( o l d  new) 
(asser t  ( o r  ( n u l l  o l d )  (< new o l d ) )  0 

"Var ian t  i s  n o t  monotonica l ly  decreas ing")  
( a s s e r t  (> new 0)  0 "Var ian t  i s  no longer  p o s i t i v e " )  
new 1 

Here's an example: 

(defun gcd2 (a b)  
"Greatest  common d i v i s o r .  For two p o s i t i v e  i n t e g e r  arguments." 
(check- type a  ( i n t e g e r  1) )  
(check- type b  ( i n t e g e r  1))  
( l oop  w i t h  x  = a  w i t h  y  = b  

i n v a r i a n t  (and (> x  0)  (> y 0 ) )  ;; (= (gcd x  y )  (gcd a b ) )  
v a r i a n t  (max x  y )  
u n t i l  (= x  y )  
do ( i f  (> x  y )  (decf  x  y )  (dec f  y  X I )  
f i n a l l y  ( r e t u r n  X I ) )  

Here the invariant is written semi-informally. We could include the calls to gcd, but 
that seems to be defeating the purpose of gcd2, so that part is left as a comment. 
The idea is that the comment should help the reader prove the correctness of the 
code, and the executable part serves to notify the lazy reader when something is 
demonstrably wrong at run time. 



Troubleshooting 

Perhaps ifwe wrote programs from childhood on, 
as adults we'd be able to read them. 

-Alan Perlis 

w hen you buy a new appliance such as a television, it comes with an instruction 
booklet that lists troubleshooting hints in the following form: 

PROBLEM: Nothing works. 

Diagnosis: Power is off. 

Remedy: Plug in outlet and turn on power switch. 

If your Lisp compiler came without such a handy instruction booklet, this chapter may be of 
some help. It lists some of the most common difficulties that Lisp programmers encounter. 



25.1 Nothing Happens 

PROBLEM: You type an expression to Lisp's read-eval-print loop and get no re- 
sponse-no result, no prompt. 

Diagnosis: There are two likelyreasons why output wasn't printed: either Lisp is still 
doing read or it is still doing eval  . These possibilities can be broken down further 
into four cases: 

Diagnosis: If the expression you type is incomplete, Lisp will wait for more input 
to complete it. An expression can be incomplete because you have left off a right 
parenthesis (or inserted an extra left parenthesis). Or you may have started a string, 
atom, or comment without finishing it. This is particularly hard to spot when the error 
spans multiple lines. A string begins and ends with double-quotes: " s t r i n g " ;  an 
atom containing unusual characters can be delimited by vertical bars: I AN ATOM I ; 
and a comment can be of the form # I a comment I #. Here are four incomplete 
expressions: 

(+ (*  3 ( s q r t  5 )  1) 
( format  t ""&X="a, Y="a. x y )  
( g e t  ' Is t range-atom 'prop)  
( i f  (= x 0 )  # I  t e s t  i f  x i s  zero 

Y 
x 

Remedy: Add a 1, ", I , and I #, respectively. Or hit the interrupt key and type the 
input again. 

Diagnosis: Your program may be waiting for input. 

Remedy: Never do a ( read 1 without first printing a prompt of some kind. If the 
prompt does not end with a newline, a call to f i n i  s h - ou tpu t  is also in order. In fact, 
it is a good idea to call a function that is at a higher level than read. Several systems 
define the function prompt - and - read. Here is one version: 

(defun prompt-and-read ( c t l - s t r i n g  & r e s t  args)  
" P r i n t  a prompt and read a r e p l y . "  
(apply  # ' fo rmat  t c t l - s t r i n g  args)  
( f i n i s h - o u t p u t )  
( read) )  

Diagnosis: The program may be caught in an infinite loop, either in an explicit 1 oop 
or in a recursive function. 



Remedy: Interrupt the computation, get a back trace, and see what functions are 
active. Check the base case and loop variant on active functions and loops. 

Diagnosis: Even a simple expression like (mapc # ' s q r t  1 i s t  or ( 1 ength 1 i s t )  
will cause an infinite loop if 1 i s t  is an infinite list-that is, a list that has some tail 
that points back to itself. 

Remedy: Be very careful any time you modify a structure with nconc, de l  ete, se t f ,  
and so forth. 

PROBLEM: You get a new prompt from the read-eval-print loop, but no output was 
printed. 

Diagnosis: The expression you evaluated must have returned no values at all, that 
is, the result ( va 1 ues 1. 

25.2 Change to Variable Has No Effect 

PROBLEM: You redefined a variable, but the new value was ignored. 

Diagnosis: Altering a variable by editing and re-evaluating a de f  va r form will not 
change the variable's value. de f  va r only assigns an initial value when the variable is 
unbound. 

Remedy: Use se t f  to update the variable, or change the de f  va r to a d e f  pa rameter. 

Diagnosis: Updating a locally bound variable will not affect a like-named variable 
outside that binding. For example, consider: 

(defun check-ops (*ops*) 
( i f  ( n u l l  *ops*) 

( s e t f  *ops* *defaul t -ops*))  
(mapcar #'check-op *ops*)) 

If check- ops is calledwithanull argument, the *ops* that is aparameter of check- ops 
will be updated, but the global *ops* will not be, even if it is declared special. 

Remedy: Don't shadow variables you want to update. Use a different name for the 
local variable. It is important to distinguish special and local variables. Stick to the 
naming convention for special variables: they should begin and end with asterisks. 
Don't forget to introduce a binding for all local variables. The following excerpt from 
a recent textbook is an example of this error: 



(defun tes t  0 
(setq x ' tes t -data)  
(solve-problem x ) )  

; Warning! 
; Don't do this. 

This function should have been written: 

(defun tes t  0 
( l e t  ( ( x  ' t e s t -da ta ) )  ; Do this instead. 

(sol ve-probl em x) 1) 

25.3 Change to Function Has No Effect 

PROBLEM: You redefined a function, but the change was ignored. 

Diagnosis: When you change a macro, or a function that has been declared inline, 
the change will not necessarily be seen by users of the changed function. (It depends 
on the implementation.) 

Remedy: Recompile after changing a macro. Don't use inline functions until every- 
thing is debugged. (Use ( dec 1 a re ( not i n 1 i ne f ) ) to cancel an inline declaration). 

Diagnosis: If you change a normal (non-inline) function, that change will be seen by 
code that refers to the function by name, but not by code that refers to the old value 
of the function itself. Consider: 

(defparameter *scorer* #'score-fn) 
(defparameter *printer* 'print-fn) 

(defun show (values) 
(funcall *printer* 

(funcall *scorer* val ues 1 
(reduce #'better values))) 

Now suppose that the definitions of score- f n, pri n t  - f n, and better are all changed. 
Does any of the prior code have to be recompiled? The variable *pr i n ter* can stay 
as is. When it is funcalled, the symbol pri n t  - f n will be consulted for the current 
functional value. Within show, the expression # ' better is compiled into code that 
will get the current version of better, so it too is safe. However, the variable *scorer* 
must be changed. Its value is the old definition of score - f n. 

Remedy: Re-evaluate the definition of *scorer*. It is unfortunate, but this problem 
encourages many programmers to use symbols where they really mean functions. 
Symbols will be coerced to the global function they name when passed to f uncal 1 



or apply, but this can be the source of another error. In the following example, the 
symbol 1 ocal - f n  will not refer to the locally bound function. One needs to use 
# ' l  ocal - f n  to refer to it. 

( f l e t  ( ( l o c a l - f n  ( x )  ... 1)  
(mapcar ' l o c a l  - f n  1 i s t )  

Diagnosis: If you changed the name of a function, did you change the name every- 
where? For example, if you decide to change the name of p r i n t - f n to p r i n  t - fun c t i on 
but forget to change the value of *pri nter*, then the old function will be called. 

Remedy: Use your editor's global replace command. To be even safer, redefine 
obsolete functions to call error. The following function is handy for this purpose: 

(defun make-obsolete (fn-name) 
" P r i n t  an e r r o r  i f  an obsolete f u n c t i o n  i s  c a l l e d . "  
( s e t f  (symbol - funct ion fn-name) 

#'(lambda ( & r e s t  args)  
(dec la re  ( i gnore  a r g s ) )  
( e r r o r  "Obsolete f u n c t i o n . " ) ) ) )  

Diagnosis: Are you using 1 abel s and f l  e t  properly? Consider again the function 
rep1 ace-? -vars, which was defined in section 11.3 to replace an anonymous logic 
variable with a unique new variable. 

(defun rep lace-? -va rs  (exp) 
"Replace any ? w i t h i n  exp w i t h  a  var o f  t h e  form ?123."  
(cond ( ( e q  exp ' ? I  (gensym " ? " ) )  

((atom exp) exp) 
( t  (cons ( rep lace-? -va rs  ( f i r s t  exp))  

( rep lace-? -va rs  ( r e s t  e x p ) ) ) ) ) )  

It might occur to the reader that gensyming a different variable each time is wasteful. 
The variables must be unique in each clause, but they can be shared across clauses. 
So we could generate variables in the sequence ?l, ?2, ..., intern them, and thus 
reuse these variables in the next clause (provided we warn the user never to use 
such variable names). One way to do that is to introduce a local variable to hold the 
variable number, and then a local function to do the computation: 



(defun replace-?-vars (exp) 
"Replace any ? within exp with a var of the form ?123." 
;; *** Buggy Version *** 
(let ((n 0)) 
(flet 
((replace-?-vars (exp) 

(cond ((eq exp ' ? )  (symbol ' ?  (incf n))) 
((atom exp) exp) 
(t (cons (replace-?-vars (first exp)) 

(replace-?-vars (rest exp))))))) 
(repl ace-?-vars exp) 1 ) )  

This version doesn't work. The problem is that f 1 et, like 1 et, defines a new function 
within the body of the f 1 e t  but not within the new function's definition. So two 
lessons are learned here: use 1 abel s instead of f 1 e t  to define recursive functions, 
and don't shadow a function definition with a local definition of the same name (this 
second lesson holds for variables as well). Let's fix the problem by changing 1 abel s 
to f 1 e t  and naming the local function recurse: 

(defun replace-?-vars (exp) 
"Replace any ? within exp with a var of the form ?123." 
;; *** Buggy Version *** 
(let ((n 0)) 
(labels 

( ( recurse (exp) 
(cond ((eq exp ' ? )  (symbol ' ?  (incf n))) 

((atom exp) exp) 
(t (cons (replace-?-vars (first exp)) 

(replace-?-vars (rest exp))))))) 
(recurse exp)))) 

Annoyingly, this version still doesn't work! This time, the problem is carelessness; 
we changed the repl ace-?-vars to recurseintwoplaces, but notin the two calls in 
the body of recurse. 

Remedy: In general, the lesson is to make sure you call the right function. If there 
are two functions with similar effects and you call the wrong one, it can be hard to 
see. This is especially true if they have similar names. 

PROBLEM: Your closures don't seem to be working. 

Diagnosis: You may be erroneously creating a lambda expression by consing up 
code. Here's an example from a recent textbook: 



(defun make-specialization ( c )  
(1 e t  (pred newc) 

... 
( se t f  (get  newc 'predicate) 

'(lambda (obj)  ; Warning! 
(and , (cons pred ' (obj ; Don't do this. 

(apply ' . (ge t  c  'predicate) ( l i s t  o b j ) ) ) ) )  
. . I )  

Strictly speaking, this is legal according to Common Lisp the Language, although in 
ANSI CommonLisp it will not be legal to use alist beginningwith 1 arnbda as a function. 
But in either version, it is a bad idea to do so. A list beginning with 1 arnbda is just that: 
a list, not a closure. Therefore, it cannot capture lexical variables the way a closure 
does. 

Remedy: The correct way to create a closure is to evaluate a call to the special form 
f uncti on, or its abbreviation, # ' . Here is a replacement for the code beginning with 
' ( 1  arnbda . . . . Note that it is a closure, closed over pred and c. Also note that it gets 
the predi cate each time it is called; thus, it is safe to use even when predicates are 
being changed dynamically. The previous version would not work when a predicate 
is changed. 

#'(lambda (obj)  
(and (funcall pred obj)  

(funcall (get  c  'predicate) o b j ) ) )  

; Do this instead. 

It is important to remember that functi on (and thus # ') is a special form, and thus 
onlyreturns the right value when it is evaluated. A common error is to use # ' notation 
in positions that are not evaluated: 

(defvar *obscure-fns* ' ( # ' c i s  #'cash #'ash # 'b i t -o rc2 ) )  ; wrong 

This does not create a list of four functions. Rather, it creates a list of four sublists; 
the first sublist is ( f uncti on ci s 1. It is an error to funcall or apply such an object. 
The two correct ways to create a list of functions are shown below. The first assures 
that each function special form is evaluated, and the second uses function names 
instead of functions, thus relying on f unca 1 1 or a ppl y to coerce the names to the 
actual functions. 

(defvar *obscure-fns* ( l i s t  # ' c i s  #'cash #'ash # 'b i t -orc2))  
(defvar *obscure-fns* ' ( c i s  cosh ash bi t -orc2))  

Another common error is to expect # ' i f or # ' or to return a function. This is an error 



because special forms are just syntactic markers. There is no function named i f or 
or; they should be thought of as directives that tell the compiler what to do with a 
piece of code. 

By theway, the functionma ke-speci a1 i zati on aboveis badnot onlyfor its lackof 
f unct i on but also for its use of backquote. The following is a better use of backquote: 

'(lambda ( o b j )  
(and ( , pred o b j  

( . ( g e t  c  ' p red ica te )  o b j ) ) )  

25.4 Values Change "by Themselves" 

PROBLEM: You deleted/removed something, but it didn't take effect. For example: 

> ( s e t f  numbers ' ( 1  2  3 4 5 ) )  + ( 1  2 3 4 5)  

> (remove 4 numbers) + ( 1  2  3 5) 

> numbers + ( 1  2  3 4 5 )  

> ( d e l e t e  1 numbers) + ( 2  3 4 5 )  

> numbers + ( 1  2  3 4 5 )  

Remedy: Use (setf  numbers (del ete 1 numbers) 1. Note that remove is a non- 
destructive function, so it will never alter its arguments. del ete is destructive, but 
when asked to delete the first element of a list, it returns the rest of the list, and thus 
does not alter the list itself. That is why setf is necessary. Similar remarks hold for 
nconc, sort, and other destructive operations. 

PROBLEM: You created a hundred different structures and changed a field in one of 
them. Suddenly, all the other ones magically changed! 

Diagnosis: Different structures may share identical subfields. For example, suppose 
you had: 

( d e f s t r u c t  b l  ock 
(poss i  b l  e - c o l  ors  ' ( r e d  green b lue )  
. . . I  



( s e t f  b l  (make-block)) 
( s e t f  b2 (make-block)) 
. . . 
( d e l e t e  'green ( b l  ock-possi b l  e - co l  o rs  b l )  

Both b l  and b2 share the initial list of possible colors. The del ete function modifies 
this shared list, so green is deleted from b2's possible colors list just as surely as it is 
deleted from bl's. 

Remedy: Don't share pieces of data that you want to alter individually. In this case, 
either use remove instead of del ete, or allocate a different copy of the list to each 
instance: 

( d e f s t r u c t  b lock  
(poss ib le - co lo rs  (1 i s t  ' red  'green 'b lue )  
. . . I  

Remember that the initial value field of a defstruct is an expression that is evaluated 
anew each time make- bl ock is called. It is incorrect to think that the initial form is 
evaluated once when the def s t  ruct is defined. 

25.5 Built-In Functions Don't Find Elements 

PROBLEM: You tried ( f i nd i tem 1 i s t  1, and you know it is there, but it wasn't 
found. 

Diagnosis: By default, many built-in functions use eql as an equality test. f i nd is 
one of them. If i tem is, say, a list that is equal but not eql to one of the elements of 
1 i s t ,  it will not be found. 

Remedy:Use(find item l i s t  : t e s t  #'equal) 

Diagnosis: If the i tem is nil, then nil will be returned whether it is found or not. 

Remedy: Use member or posi t i  on instead of f i nd whenever the item can be nil. 

25.6 Multiple Values Are Lost 

PROBLEM: You only get one of the multiple values you were expecting. 

Diagnosis: In certain contexts where a value must be tested by Lisp, multiple values 
are discarded. For example, consider: 



(or (mv-1 x) (mv-2 x)) 
(and (mv-1 x) (mv-2 x)) 
(cond ((mv-1 x)) 

(t (mv-2 XI)) 

In each case, if mv - 2 returns multiple values, they will all be passed on. But if mv - 1 
returns multiple values, only the first value will be passed on. This is true even in 
the last clause of a cond. So, while the final clause ( t ( mv - 2 x 1 1 passes on multiple 
values, the final clause ( ( mv - 2 x 1 1 would not. 

Diagnosis: Multiple values can be inadvertently lost in debugging as well. Suppose 
I had: 

(multiple-value-bind (a b c) 
(mv-1 x)  
. . . I  

Now, if I become curious as to what mv - 1 returns, I might change this code to: 

(multiple-value-bind (a b c) 
(print (mv-1 x)) ;*** debugging output 
. . . I  

Unfortunately, p r  i  n t will see only the first value returned by mv - 1, and will return 
only that one value to be bound to the variable a. The other values will be discarded, 
and b and c will be bound to ni 1. 

25.7 Declarations Are Ignored 

PROBLEM: Your program uses 1024 x 1024 arrays of floating-point numbers. But 
you find that it takes 15 seconds just to initialize such an array to zeros! Imagine how 
inefficient it is to actually do any computation! Here is your function that zeroes an 
array: 

(defun zero-array (arr) 
"Set the1024x1024 array to all zeros." 
(declare (type (array float) arr) 
(dotimes (i  1024) 

(dotimes (j 1024) 
(setf (aref arr i j) 0.0)))) 

Diagnosis: The main problem here is an ineffective declaration. The type ( a r r a y  



f 1 oat ) does not help the compiler, because the array could be displaced to an array 
of another type, and because f 1 oat encompasses both single- and double-precision 
floating-point numbers. Thus, the compiler is forced to allocate storage for a new 
copy of the number 0.0 for each of the million elements of the array. The function is 
slow mainly because it generates so much garbage. 

Remedy: The following version uses a much more effective type declaration: a 
simple array of single-precision numbers. It also declares the size of the array and 
turns safety checks off. It runs in under a second on a SPARCstation, which is slower 
than optimized C, but faster than unoptimized C. 

(defun ze ro -a r ray  ( a r r )  
"Set t h e  a r r a y  t o  a1 1  zeros." 
(dec la re  ( t y p e  (s imp le -a r ray  s i n g l e - f l o a t  (1024 1024)) a r r )  

(op t im ize  (speed 3)  ( s a f e t y  0 ) ) )  
(dotimes ( i  1024) 

(dotimes ( j  1024) 
( s e t f  ( a r e f  a r r  i j )  0 . 0 ) ) ) )  

Another common error is to use something like ( s i  mpl e - vector f i  xnum) as a type 
specifier. It is a quirk of Common Lisp that the simpl e-vector type specifier only 
accepts a size, not a type, while the array, vector and s i rnpl e - a r ray specifiers all 
accept an optional type followed by an optional size or list of sizes. To specify a 
simple vector of fixnums, use ( s i rnpl e - a r r ay f i  xn um ( * 1 ) . 

To be precise, s i  rnpl e- vector means ( s i  rnpl e-ar  ray t (*I ). This means that 
simpl e-vector cannot be used in conjunction with any other type specifier. A 
commonmistakeis to think that the type ( a n d  simple-vector (vector fixnum)) 
is equivalent to ( s i rnpl e - a r ray f i  xn um ( * ) 1, a simple, one-dimensional vector 
of fixnums. Actually, it is equivalent to ( s i rnpl e- a r ray t ( * ) 1, a simple one- 
dimensional array of any type elements. To eliminate this problem, avoid s i rnpl e - 
vector altogether. 

25.8 My Lisp Does the Wrong Thing 

When all else fails, it is tempting to shift the blame for an error away from your own 
code and onto the Common Lisp implementation. It is certainly true that errors are 
found in existing implementations. But it is also true that most of the time, Common 
Lisp is merely doing something the user did not expect rather than something that is 
in error. 

For example, a common "bug report" is to complain about read - from- s t  r i ng. A 
user might write: 



(read-from-string "a b c "  :start 2 )  

expecting the expression to start reading at position 2 and thus return b. In fact, this 
expression returns a. The angry user thinks the implementation has erroneously 
ignored the : start argument and files a bug report,' only to get back the following 
explanation: 

The function read - f rom- s t ri ng takes two optional arguments, eof - er rorp and 
eof -val ue, in addition to the keyword arguments. Thus, in the expression above, 
:start is taken as thevalue of eof-errorp, with 2 as thevalue of eof-value. The 
correct answer is in fact to read from the start of the string and return the very first 
form, a. 

The functions read-from-string and parse-namestring are the only built-in 
functions that have this problem, because they are the only ones that have both 
optional and keyword arguments, with an even number of optional arguments. 
The functions wr i te - 1 i ne and wr i te - st r i ng have keyword arguments and a single 
optional argument (the stream), so if the stream is accidently omitted, an error will 
be signaled. (If you type ( wr i t e - 1 i ne st r : st a r t 4 1, the system will complain 
either that : s ta rt is not a stream or that 4 is not a keyword.) 

The moral is this: functions that have both optional and keyword arguments 
are confusing. Take care when using existing functions that have this problem, and 
abstain from using both in your own functions. 

25.9 How to Find the Function You Want 

Veteran Common Lisp programmers often experience a kind of software dkjti vu: 
they believe that the code they are writing could be done by a built-in Common Lisp 
function, but they can't remember the name of the function. 

Here's an example: while coding up a problem I realized I needed a function that, 
given the lists ( a b c d 1 and ( c d 1, would return ( a b 1, that is, the part of the first 
list without the second list. I thought that this was the kind of function that might 
be in the standard, but I didn't know what it would be called. The desired function 
is similar to set - d i f f e r en ce, so I looked that up in the index of Common Lisp the 
Language and was directed to page 429. I browsed through the section on "using lists 
as sets" but found nothing appropriate. However, I was reminded of the function 
but1 ast, which is also similar to the desired function. The index directed me to 
page 422 for but 1 as t, and on the same page I found 1 d i f f, which was exactly the 
desired function. It might have been easier to find (and remember) if it were called 
1 i st - d i f f erence, but the methodology of browsing near similar functions paid off. 

 his misunderstanding has shown up even in published articles, such as Baker 1991. 



If you think you know part of the name of the desired function, then you can 
use apropos to find it. For example, suppose I thought there was a function to push 
a new element onto the front of an array. Looking under a r ray, push - a r ray, and 
a r ray- pus h in the index yields nothing. But I can turn to Lisp itself and ask: 

> (apropos "push") 
PUSH Macro (VALUE PLACE), p l i s t  
PUSHNEW Macro (VALUE PLACE &KEY ... 1, p l i s t  
VECTOR- PUSH func t ion  (NEW-ELEMENT VECTOR), p l i s t  
VECTOR-PUSH-EXTEND f u n c t i o n  (DATA VECTOR &OPTIONAL ... 1, p l i s t  

This should be enough to remind me that vector - pus h is the answer. If not, I can get 
more information from the manual or from the online functions documentati on or 
describe: 

> (documentation 'vector-push ' f u n c t i o n )  
"Add NEW-ELEMENT as an element a t  t h e  end o f  VECTOR. 
The f i l l  p o i n t e r  ( l eader  element 0)  i s  t h e  index o f  t h e  nex t  
element t o  be added. I f  t h e  a r ray  i s  f u l l ,  VECTOR-PUSH r e t u r n s  
NIL and t h e  a r ray  i s  unaf fected;  use VECTOR-PUSH-EXTEND ins tead  
i f  you want t h e  a r ray  t o  grow au tomat i ca l l y . "  

Another possibility is to browse through existing code that performs a similar pur- 
pose. That way, you may find the exact function you want, and you may get additional 
ideas on how to do things differently. 

25.10 Syntax of LOOP 

1 oop by itself is a powerful programming language, one with a syntax quite different 
from the rest of Lisp. It is therefore important to exercise restraint in using 1 oop, lest 
the reader of your program become lost. One simple rule for limiting the complexity 
of 1 oops is to avoid the with and and keywords. This eliminates most problems 
dealing with binding and scope. 

When in doubt, macro-expand the loop to see what it actually does. But if you 
need to macro-expand, then perhaps it would be clearer to rewrite the loop with more 
primitive constructs. 

25.11 Syntax of COND 

For many programmers, the special form cond is responsible for more syntax errors 
than any other, with the possible exception of 1 oop. Because most cond-clause start 



with two left parentheses, beginners often come to the conclusion that every clause 
must. This leads to errors like the following: 

( l e t  ( (ent ry  (assoc item l i s t ) ) )  
(cond ( (ent ry  (process e n t r y ) ) )  

. . . 1) 

Here entry is a variable, but the urge to put in an extra parenthesis means that the 
cond-clause attempts to call entry as a function rather than testing its value as a 
variable. 

The opposite problem, leaving out a parenthesis, is also a source of error: 

(cond (lookup item l i s t )  
( t  n i l ) )  

In this case, 1 ookup is accessed as a variable, when the intent was to call it as a 
function. In Common Lisp this will usually lead to an unbound variable error, but in 
Scheme this bug can be very difficult to pin down: the value of 1 ookup is the function 
itself, and since this is not null, the test will succeed, and the expression will return 
1 i s t  without complaining. 

The moral is to be careful with cond, especially when using Scheme. Note that 
i f is much less error prone and looks just as nice when there are no more than two 
branches. 

25.12 Syntax of CASE 

In a case special form, each clause consists of a key or list of keys, followed by the 
value of that case. The thing to watch out for is when the key is t, otherwi se, or ni 1 .  
For example: 

(case 1 e t t e r  
( s  . . . I  
( t  ... ) 
( u  ... 1) 

Here the t is taken as the default clause; it will always succeed, and all subsequent 
clauses will be ignored. Similarly, using a ( 1 or n i 1 as a key will not have the desired 
effect: it will be interpreted as an empty key list. If you want to be completely safe, 
you can use a list of keys for every ~ l a u s e . ~  This is a particularly good idea when you 

2~cheme requires a list of keys in each clause. Now you know why. 



write a macro that expands into a case. The following code correctly tests for t and 
n i 1 keys: 

(case letter 
((s) . . . I  
( ( t )  ... 1 
( ( u )  ... 1 
((nil) ... 1)  

25.13 Syntax:of LET and LET* 

A common error is leaving off a layer of parentheses in 1 et, just like in cond. Another 
error is to refer to a variable that has not yet been bound in a 1 et.  To avoid this 
problem, use 1 et* whenever a variable's initial binding refers to a previous variable. 

25.14 Problems with Macros 

In section 3.2 we described a four-part approach to the design of macros: 

Decide if the macro is really necessary. 

Write down the syntax of the macro. 

Figure out what the macro should expand into. 

Use de f  ma c r o  to implement the syntax/expansion correspondence. 

This section shows the problems that can arise in each part, starting with the first: 

Decide if the macro is really necessary. 

Macros extend the rules for evaluating an expression, while function calls obey the 
rules. Therefore, it can be a mistake to define too many macros, since they can make 
it more difficult to understand a program. A common mistake is to define macros 
that do not violate the usual evaluation rules. One recent book on A1 programming 
suggests the following: 

(defmacro binding-of (binding) ; Warning! 
'(cadr ,binding)) ; Don't do this. 

The only possible reason for this macro is an unfounded desire for efficiency. Always 
use an i n l  i ne function instead of a macro for such cases. That way you get the 



efficiency gain, you have not introduced a spurious macro, and you gain the ability to 
apply or map the function # ' bi ndi ng - of, something you could not do with a macro: 

(proclaim ' ( i n l i n e  b i nd ing -o f ) )  
(defun b ind ing-o f  (b inding)  ; Do this instead. 

(second b i  ndi ng ) 

Write down the syntax of the macro. 

Try to make your macro follow conventions laid down by similar macros. For ex- 
ample, if your macro defines something, it should obey the conventions of def va r, 
def struct, defmacro, and therest: startwith theletters def, take thename of the thing 
to be defined as the first argument, then a lambda-list if appropriate, then a value or 
body. It would be nice to allow for optional declarations and documentation strings. 

If your macro binds some variables or variablelike objects, use the conventions 
laid down by 1 et, 1 et*, and 1 abel s: allow for a list of variable or (variable init-val) 
pairs. If you are iterating over some kind of sequence, follow doti mes and do1 i s t .  
For example, here is the syntax of a macro to iterate over the leaves of a tree of conses: 

(defmacro dotree ( ( va r  t r e e  &optional r e s u l t )  &body body) 
"Perform body w i t h  var bound t o  every l e a f  o f  t ree ,  
then re tu rn  r e s u l t .  Return and Go can be used i n  body." 
. . . I  

Figure out what the macro should expand into. 

Use def ma cr o to implement the syntax/expansion correspondence. 

There are a number of things to watch out for in figuring out how to expand a macro. 
First, make sure you don't shadow local variables. Consider the following definition 
for pop - end, a function to pop off and return the last element of a list, while updating 
the list to no longer contain the last element. The definition uses 1 as t 1, which was 
defined on page 305 to return the last element of a list, and the built-in function 
n b u t  1 as t returns all but the last element of a list, destructively altering the list. 

(defmacro pop-end (p lace)  ; Warning! Buggy! 
"Pop and re tu rn  l a s t  element o f  the l i s t  i n  PLACE." 
' ( l e t  ( ( r e s u l t  ( l a s t 1  .p lace)))  

( s e t f  ,place (nbut las t  ,p lace))  
resul  t ) 

This will do the wrong thing for (pop-end result), or for other expressions that 
mention the variable res ul t .  The solution is to use a brand new local variable that 
could not possibly be used elsewhere: 



(defmacro pop-end (place) ; Less buggy 
"Pop and return l a s t  element of the l i s t  in PLACE."  
( l e t  ( ( r e s u l t  (gensym))) 

' ( l e t  ( ( . r e s u l t  ( l a s t 1  ,p l ace ) ) )  
( se t f  .pl ace (nbutl a s t  . pl ace) 
. r e s u l t ) ) )  

There is still the problem of shadowing local functions. For example, a user who 
writes: 

( f l e t  ( ( l a s t 1  ( x )  ( sq r t  X I ) )  
(pop-end l i s t )  
... 1 

will be in for a surprise. pop - end will expand into code that calls 1 as t 1, but since 
1 as t 1 has been locally defined to be something else, the code won't work. Thus, the 
expansion of the macro violates referential transparency. To be perfectly safe, we 
could try: 

(defmacro pop-end (place) ; Less buggy 
"Pop and return l a s t  element of the l i s t  in P L A C E . "  
(1 e t  ( ( r e s u l t  (gensym) 1)  

' ( l e t  ( ( , r e s u l t  (funcall , # ' l a s t 1  ,p l ace ) ) )  
( se t f  ,place (funcall ,#'nbutl a s t  ,place) 
. r e s u l t ) ) )  

This approach is sometimes used by Scheme programmers, but Common Lisp pro- 
grammers usually do not bother, since it is rarer to define local functions in Common 
Lisp. Indeed, in Common Lisp the Language, 2d edition, it was explicitly stated (page 
260) that a user function cannot redefine or even bind any built-in function, variable, 
or macro. Even if it is not prohibited in your implementation, redefining or binding 
a built-in function is confusing and should be avoided. 

Common Lisp programmers expect that arguments will be evaluated in left-to- 
right order, and that no argument is evaluated more than once. Our definition of 
pop - end violates the second of these expectations. Consider: 

(pop-end (aref l i s t s  ( incf i ) ) )  = 
(LET ((#:G3096 (LAST1 ( A R E F  LISTS (INCF I ) ) ) ) )  

(SETF ( A R E F  LISTS (INCF I ) )  (NBUTLAST ( A R E F  LISTS (INCF I ) ) ) )  
# : 63096 

This increments i three times, when it should increment it only once. We could fix 
this by introducing more local variables into the expansion: 



( l e t *  (( temp1 ( i n c f  i ) )  
(temp2 (AREF LISTS temp111 
(temp3 (LAST1 temp2))) 

( s e t f  ( a r e f  l i s t s  temp11 ( n b u t l a s t  temp211 
temp3 

This kind of left-to-right argument processingvia localvariables is done automatically 
by the Common Lisp se t f  mechanism. Fortunately, the mechanism is easy to use. 
We can redefine pop - end to call pop directly: 

(defmacro pop-end (p lace)  
"Pop and r e t u r n  l a s t  element o f  t h e  l i s t  i n  PLACE." 
' (pop ( l a s t  , p l a c e ) ) )  

Now all we need to do is define the se t f  method for 1 as t .  Here is a simple definition. 
It makes use of the function 1 ast2, which returns the last two elements of a list. In 
ANSI Common Lisp we could use ( 1 as t 1 i s t  2 1, but with a pre-ANSI compiler we 
need to define 1 as t 2: 

( d e f s e t f  l a s t  (p lace)  ( va lue )  
' ( s e t f  ( c d r  ( l a s t 2  ,p lace) )  , va lue ) )  

(defun l a s t 2  ( l i s t )  
"Return t h e  l a s t  two elements o f  a 1 i s t . "  
( i f  ( n u l l  ( r e s t 2  l i s t ) )  

1 i s t  
( l a s t 2  ( r e s t  l i s t ) ) ) )  

Here are some macro-expansions of calls to pop-end and to the se t f  method for 
1 ast .  Different compilers will produce different code, but they will always respect 
the left-to-right, one-evaluation-only semantics: 

> (pop-end ( a r e f  ( f o o  l i s t s )  ( i n c f  i l l )  = 
(LET ((60128 (AREF (FOO LISTS) (SETQ I (+ I 1 ) ) ) ) )  

(PRO61 
(CAR ( LAST 60128) 
(SYS:SETCDR (LAST2 60128) (CDR (LAST 60128) ) ) ) )  

> ( s e t f  ( l a s t  (append x y ) )  'end) = 
(SYS:SETCDR (LAST2 (APPEND X Y))  'END) 

Unfortunately, there is an error in the se t f  method for 1 as t .  It assumes that the 
list will have at least two elements. If the list is empty, it is probably an error, but if 
a list has exactly one element, then ( s e t  f  ( 1 as t list val) should have the same 
effect as ( se t f  list val). But there is no way to do that with def setf ,  because the 



setf method defined by def setf never sees list itself. Instead, it sees a local variable 
that is automatically bound to the value of list. In other words, def setf evaluates the 
list and val for you, so that you needn't worry about evaluating the arguments out of 
order, or more than once. 

To solve the problem we need to go beyond the simple def setf macro and delve 
into the complexities of defi ne-setf -method, one of the trickiest macros in all of 
Common Lisp. def i ne-setf -method defines a setf method not by writing code 
directly but by specifying five values that will be used by Common Lisp to write the 
code for a call to setf. The five values give more control over the exact order in 
which expressions are evaluated, variables are bound, and results are returned. The 
five values are: (1) a list of temporary, local variables used in the code; (2) a list of 
values these variables should be bound to; (3) a list of one variable to hold the value 
specified in the call to setf; (4) code that will store the value in the proper place; (5) 
code that will access the value of the place. This is necessary for variations of setf 
like i ncf and pop, which need to both access and store. 

In the following setf method for 1 ast, then, we are defining the meaning of 
(setf ( 1 ast pl ace) val ue 1. We keep track of all the variables and values needed 
to evaluate pl ace, and add to that three more local variables: 1 ast2-var will hold 
the last two elements of the list, 1 as t 2 - p will be true only if there are two or more 
elements in the list, and 1 as t - va r will hold the form to access the last element of the 
list. We also make up a new variable, res ul t, to hold the va 1 ue. The code to store 
the value either modifies the cd r of 1 as t 2 - va r, if the list is long enough, or it stores 
directly into pl ace. The code to access the value just retrieves 1 ast - var. 

(define-setf-method 1 ast (place) 
(multiple-value-bind (temps vals stores store-form access-form) 

(get-setf-method place) 
(1  et ( (result (gensym) 1 

( 1  ast2-var (gensym) 1 
(1 ast2-p (gensym) 
(last-var (gensym))) 

;; Return 5 vals: temps vals stores store-form access-form 
(val ues 
'(,@temps ,last2-var ,last2-p ,last-var) 
' ( ,@vals (1  ast2 ,access-form) 

(= (length ,last2-var) 2) 
(if ,last2-p (rest ,last2-var) ,access-form)) 

(list result) 
'(if ,last2-p 

(setf (cdr ,last2-var) ,result) 
(let ((,(first stores) ,result)) 

,store-form)) 
last-var) 1) 



It should be mentioned that s e t f  methods are very useful and powerful things. It 
is often better to provide a s e t f  method for an arbitrary function, f, than to define 
a special setting function, say, s e t  - f. The advantage of the s e t f  method is that it 
can be used in idioms like i n c f  and pop, in addition to s e t f  itself. Also, in ANSI 
Common Lisp, it is permissible to name a function with # ' ( s e t f  f 1, so you can also 
use map or apply the s e t f  method. Most s e t f  methods are for functions that just 
access data, but it is permissible to define s e t f  methods for functions that do any 
computation whatsoever. As a rather fanciful example, here is a s e t f  method for the 
square-root function. It makes ( s e t f  ( sq r t  x ) 5 ) be almost equivalent to ( s e t f  x 
(* 5 5 ) ); the difference is that the first returns 5 while the second returns 25. 

(de f ine-se t f -method  s q r t  (num) 
( m u l t i p l e - v a l u e - b i n d  (temps v a l s  s to res  s to re - fo rm access-form) 

(get-set f -method num) 
( l e t  ( ( s t o r e  (gensym))) 

( va l  ues temps 
va l  s  
( l i s t  s t o r e )  
' ( l e t  ( ( , ( f i r s t  s t o r e s )  (* ,s to re  , s t o r e ) ) )  

, s to re - fo rm 
,s to re  

' ( s q r t  ,access- fo rm) ) ) ) )  

Turning from s e t f  methods back to macros, another hard part about writing portable 
macros is anticipating what compilers might warn about. Let's go back to the d o t  r e e  
macro. Its definition might look in part like this: 

(defmacro do t ree  ( ( v a r  t r e e  &op t iona l  r e s u l t )  &body body) 
"Perform body w i t h  var  bound t o  every l e a f  o f  t r e e ,  
then r e t u r n  r e s u l t .  Return and Go can be used i n  body." 
' ( l e t  (( ,vat->> 

Now suppose a user decides to count the leaves of a tree with: 

( l e t  ( ( coun t  0 ) )  
(do t ree  ( l e a f  t r e e  count) 

( i n c f  c o u n t ) ) )  

The problem is that the variable 1 e a f  is not used in the body of the macro, and 
a compiler may well issue a warning to that effect. To make matters worse, a 
conscientious user might write: 



( l e t  ((count 0 ) )  
(dotree ( leaf  t r ee  count) 

(declare (ignore 1  eaf 1) 
(incf count) ) )  

The designer of a new macro must decide if declarations are allowed and must make 
sure that compiler warnings will not be generated unless they are warranted. 

Macros have the full power of Lisp at their disposal, but the macro designer must 
remember the purpose of a macro is to translate macro code into primitive code, 
and not to do any computations. Consider the following macro, which assumes that 
t r a n s 1  a t e -  r u l  e -  body is defined elsewhere: 

(defmacro defrule (name &body body) ; Warning! buggy! 
"Define a  new rule with the given name." 
( s e t f  (get  name ' ru l e )  

'#'(lambda 0 , ( translate-rule-body body))))  

The idea is to store a function under the r u l  e property of the rule's name. But this 
definition is incorrect because the function is stored as a side effect of expanding the 
macro, rather than as an effect of executing the expanded macro code. The correct 
definition is: 

(defmacro defrule (name &body body) 
"Define a  new rule with the given name." 
' ( s e t f  (get  ',name ' ru le)  

#'(lambda 0 , ( translate-rule-body body)))) 

Beginners sometimes fail to see the difference between these two approaches, be- 
cause they both have the same result when interpreting a file that makes use of 
d e f  r u l  e. But when the file is compiled and later loaded into a different Lisp image, 
the difference becomes clear: the first definition erroneously stores the function 
in the compiler's image, while the second produces code that correctly stores the 
function when the code is loaded. 

Beginning macro users have asked, "How can I have a macro that expands into 
code that does more than one thing? Can I splice in the results of a macro?" 

If by this the beginner wants a macro that just does two things, the answer is 
simply to use a p r ogn. There will be no efficiency problem, even if the p rogn forms 
are nested. That is, if macro-expansion results in code like: 

(progn (progn (progn a b )  c )  (progn d e l )  

the compiler will treat it the same as ( progn  a b c d e l .  



On the other hand, if the beginner wants a macro that returns two values, the 
proper form is v a l  ues, but it must be understood that the calling function needs to 
arrange specially to see both values. There is no way around this limitation. That is, 
there is no way to write a macro-or a function for that matter-that will "splice in" its 
results to an arbitrary call. For example, the function f 1 oor returns two values (the 
quotient and remainder), as does i ntern (the symbol and whether or not the symbol 
already existed). But we need a special form to capture these values. For example, 
compare: 

> ( l i s t  (floor 11 5) (intern 'XI) =+ ( 2  X I  

> (mu1 tiple-val ue-call # ' l i s t  
(floor 11 5) (intern ' x ) )  + ( 2  1  X :INTERNAL) 

25.15 A Style Guide to Lisp 

In a sense, this whole book is a style guide to writing quality Lisp programs. But this 
section attempts to distill some of the lessons into a set of guidelines. 

When to Define a Function 

Lisp programs tend to consist of many short functions, in contrast to some languages 
that prefer a style usingfewer, longer functions. New functions should be introduced 
for any of the following reasons: 

1. For a specific, easily stated purpose. 

2. To break up a function that is too long. 

3. When the name would be useful documentation. 

4. When it is used in several places. 

In (2), it is interesting to consider what "too long" means. Charniak et al. (1987) 
suggested that 20 lines is the limit. But now that large bit-map displays have replaced 
24-line terminals, function definitions have become longer. So perhaps one screenful 
is a better limit than 20 lines. The addition of f l  e t  and 1 abel s also contributes to 
longer function definitions. 



W h e n  to Define a Special Variable 

In general, it is a good idea to minimize the use of special variables. Lexical variables 
are easier to understand, precisely because their scope is limited. Try to limit special 
variables to one of the following uses: 

1. For parameters that are used in many functions spread throughout a program. 

2. For global, persistant, mutable data, such as a data base of facts. 

3. For infrequent but deeply nested use. 

An example of (3) might be a variable like *standard - output*, which is used by 
low-level priniting functions. It would be confusing to have to pass this variable 
around among all your high-level functions just to make it available to pr i n t .  

W h e n  to Bind a Lexical Variable 

In contrast to special variables, lexical variables are encouraged. You should feel free 
to introduce a lexical variable (with a 1 et, 1 ambda or def un)  for any of the following 
reasons: 

1. To avoid typing in the same expression twice. 

2. To avoid computing the same expression twice. 

3. When the name would be useful documentation. 

4. To keep the indentation manageable. 

H o w  to  Choose a N a m e  

Your choice of names for functions, variables, and other objects should be clear, 
meaningful, and consistent. Some of the conventions are listed here: 

1. Use mostly letters and hyphens, and use full words: del ete- f i 1 e 

2. You can introduce an abbreviation if you are consistent: get -dtree, dtree- 
fetch. For example, this book uses fn consistently as the abbreviation for 
"function." 

3. Predicates end in -p (or ? in Scheme), unless the name is already a predicate: 
variable-p, occurs-in. 

4. Destructive functions start with n (or end in ! in Scheme): nreverse. 



5. Generalized variable-setting macros end in f: setf , i ncf. (Push is an excep- 
tion.) 

6. Slot selectors created by defstruct are of the form type-slot. Use this for 
non-defstruct selectors as well: char-bi ts. 

7. Many functions have the form action-object: copy- 1 i st, del ete- f i 1 e. 

8. Other functions have the form object-modifier: 1 i st - 1 ength, char - 1 essp. Be 
consistent in your choice between these two forms. Don't have p r i nt - edge 
and vertex - pr i n t in the same system. 

9. A function of the form modulename-functionname is an indication that packages 
areneeded. Useparser:print-treeinsteadof parser-print-tree. 

10. Special variables have asterisks: *db*, *pr i n t - 1 engt h*. 

11. Constants do not have asterisks: pi, most-posi ti ve-f i xnum. 

12. Parameters are named by type: (defun 1 ength (sequence) . . . or by pur- 
pose: (defun subsetp (subset superset . . . or both: (defun 1 (number 
&rest denominator-numbers) ... ) 

13. Avoid ambiguity. A variable named 1 as t - node could have two meanings; use 
previ ous-node or final -node instead. 

14. A name like propaga te - cons t ra in t s - to -ne ighbor ing - ve r texes  is too long, 
while prp- con is too short. In deciding on length, consider how the name will 
be used: propagate-constrai nts is just right, because a typical call will be 
(propagate-constraints vertex), so it will be obvious what the constraints 
are propagating to. 

Deciding o n  the Ovdev of Parameters 

Once you have decided to define a function, you must decide what parameters it will 
take, and in what order. In general, 

1. Put important parameters first (and optional ones last). 

2. Make it read like prose if possible: ( push el ement stack). 

3. Group similar parameters together. 

Interestingly, the choice of a parameter list for top-level functions (those that the 
user is expected to call) depends on the environment in which the user will function. 
In many systems the user can type a keystroke to get back the previous input to the top 



level, and can then edit that input and re-execute it. In these systems it is preferable 
to have the parameters that are likely to change be at the end of the parameter list, so 
that they can be easily edited. On systems that do not offer this kind of editing, it is 
better to either use keyword parameters or make the highly variable parameters first 
in the list (with the others optional), so that the user will not have to type as much. 

Many users want to have required keyword parameters. It turns out that all 
keyword parameters are optional, but the following trick is equivalent to a required 
keyword parameter. First we define the function r eq u i red to signal an error, and 
then we use a call to requi red as the default value for any keyword that we want to 
make required: 

(defun required ( 1  
(error " A  required keyword argument was not supplied.")) 

(defun fn ( x  &key (y (required))) 
. . . I  

25.16 Dealingwith Files, Packages, and Systems 

While this book has covered topics that are more advanced than any other Lisp text 
available, it is still concerned only with programming in the small: a single project at 
a time, capable of being implemented by a single programmer. More challenging is 
the problem of programming in the large: building multiproject, multiprogrammer 
systems that interact well. 

This section briefly outlines an approach to organizing a larger project into man- 
ageable components, and how to place those components in files. 

Every system shouId have a separate file that defines the other files that comprise 
the system. I recommend defining any packages in that file, although others put 
package definitions in separate files. 

The following is a sample file for the mythical system Project-X. Each entry in the 
file is discussed in turn. 

1. The first line is a comment known as the mode line. The text editor emacs will 
parse the characters between -*- delimiters to discover that the file contains 
Lisp code, and thus the Lisp editing commands should be made available. The 
dialect of Lisp and the package are also specified. This notation is becoming 
widespread as other text editors emulate emacs's conventions. 

2. Each file should have a description of its contents, along with information on 
the authors and what revisions have taken place. 



Comments with four semicolons (; ; ; ;) denote header lines. Many text editors 
supply a command to print all such lines, thus achieving an outline of the major 
parts of a file. 

The first executable form in every file should be an i n - pac  kage. Here we use 
the u s e r  package. We will soon create the p r o j e c t - x  package, and it will be 
used in all subsequent files. 

We want to define the Project-X system as a collection of files. Unfortunately, 
Common Lisp provides no way to do that, so we have to load our own system- 
definition functions explicitly with a call to 1 oad. 

The call to d e f  i ne - s y s  tern specifies the files that make up Project-X. We provide 
a name for the system, a directory for the source and object files, and a list of 
modules that make up the system. Each module is a list consisting of the module 
name (a symbol) followed by a one or more files (strings or pathnames). We 
have used keywords as the module names to eliminate any possible name 
conflicts, but any symbol could be used. 

The call to d e f  pac  kage defines the package p r o j e c t  -x.  For more on packages, 
see section 24.1. 

The final form prints instructions on how to load and run the system. 

;;; -*- Mode: L isp;  Syntax: Common-Lisp; Package: User -* - 

;;; ( B r i e f  d e s c r i p t i o n  o f  system here. )  

.... ,,,, Def ine t h e  Pro jec t -X  system. 

( in-package "USER") 

( l o a d  "/usr/norvig/defsys.lisp") ; load  def ine-system 

(def ine-system ;; Def ine t h e  system Pro jec t -X  
:name : p r o j e c t - x  
: source-d i r  "/usr/norvig/project-x/*.lispM 
: o b j e c t - d i r  "/usr/norvig/project-x/*.binM 
:modules '((:macros "header" "macros") 

(:main "pa rse r "  " t rans fo rmer "  " o p t i m i z e r "  
"commands" "database" " o u t p u t " )  

(:windows "xwindows" " c l x "  " c l i e n t " ) ) )  

(defpackage : p r o j e c t - x  ;; Def ine t h e  package Pro jec t -X  
( :expor t  "DEFINE-X" "DO-X" "RUN-Xu) 
(:nicknames "PX") 
(:use common-lisp)) 



( format  *debug-io* ""& To load  t h e  Pro jec t -X  system, t ype  
(make-system :name : p r o j e c t - x )  

To run t h e  system, t ype  
( p r o j e c t - x : r u n - X I " )  

Each of the files that make up the system will start like this: 

;;; -*- Mode: L i sp ;  Syntax: Common-Lisp; Package: P ro jec t -X  -*- 

( in-package "PROJECT-Xu) 

Now we need to provide the system-definition functions, def i ne - sys tem 
and ma ke-system. The idea is that def i ne-system is used to define the files that 
make up a system, the modules that the system is comprised of, and the files that 
make up each module. It is necessary to group files into modules because some 
files may depend on others. For example, all macros, special variables, constants, 
and inline functions need to be both compiled and loaded before any other files that 
reference them are compiled. In Project-X, all defvar, defparameter, defconstant, 
and defstruct3 forms are put in the file header, and all defmacro forms are put in the 
file macros. Together these two files form the first module, named : macros, which 
will be loaded before the other two modules (: mai n and : wi ndows) are compiled and 
loaded. 

def i ne-system also provides a place to specify a directory where the source 
and object files will reside. For larger systems spread across multiple directories, 
def i ne - sys tern will not be adequate. 

Here is the first part of the file defsys.lisp, showing the definition of 
def i ne-system and the structure sys. 

;;; -*- Mode: L i sp ;  Syntax: Common-Lisp; Package: User -*- 

.... ,,,, A F a c i l i t y  f o r  De f in ing  Systems and t h e i r  Components 

( in-package "USER") 

(de fva r  *systems* n i l  " L i s t  o f  a l l  systems d e f i n e d . " )  

( d e f s t r u c t  sys 
" A  system con ta in ing  a  number o f  source and o b j e c t  f i l e s . "  
name source-d i  r o b j e c t - d i  r modules) 

3 d e f s t r u c t  forms are put here because they may create inline functions. 



(defun def ine-system (&key name source-d i r  o b j e c t - d i r  modules) 
"Def ine a new system." 
;; Delete any o l d  system o f  t h i s  name, and add t h e  new one. 
( s e t f  *systems* ( d e l e t e  name *systems* : t e s t  # ' s t r i n g - e q u a l  

:key #'sys-name) 
(push (make-sys 

:name ( s t r i n g  name) 
:source-d i r  (pathname source-d i r )  
: o b j e c t - d i r  (pathname o b j e c t - d i r )  
:modules ' ( ( : a l l  . , (mapcar # ' f i r s t  modules) . ,modules)) 

*systems* 
name) 

The functionma ke - sys tem is used to compile and/or load a previously defined system. 
The name supplied is used to look up the definition of a system, and one of three 
actions is taken on the system. The keyword : cl oad means to compile and then load 
files. : 1 oad means to load files; if there is an object (compiled) file and it is newer than 
the source file, then it will be loaded, otherwise the source file will be loaded. Finally, 
: update means to compile just those source files that have been changed since their 
corresponding source files were last altered, and to load the new compiled version. 

(defun make-system (&key (module : a l l )  ( a c t i o n  :cload) 
(name (sys-name ( f i r s t  *systems*))))  

"Compile and/or load  a system o r  one o f  i t s  modules." 
( l e t  ((system ( f i n d  name *systems* :key #'sys-name 

: t e s t  # ' s t r ing-equa l  1 ) )  
(check-type system (no t  n u l l ) )  
(check-type a c t i o n  (member :cload :update : l oad) )  
( w i t h - c o m p i l a t i o n - u n i t  0 ( sys -ac t ion  module system a c t i o n ) )  

(defun sys-ac t ion  ( x  system a c t i o n )  
"Perform t h e  s p e c i f i e d  a c t i o n  t o  x i n  t h i s  system. 
X can be a module name (symbol 1, f i l e  name ( s t r i n g )  
o r  a l i s t . "  
(typecase x 

(symbol ( l e t  ( ( f i l e s  ( r e s t  (assoc x (sys-modules sys tem) ) ) ) )  
( i f  ( n u l l  f i l e s )  

(warn "No f i l e s  f o r  module "a" x )  
( s y s - a c t i o n  f i l e s  system a c t i o n ) ) ) )  

( l i s t  ( d o l i s t  ( f i l e  x )  
( sys -ac t ion  f i l e  system a c t i o n )  1) 

( ( s t r i n g  pathname) 
(1 e t  ( (source (merge-pathnames 

x (sys -source-d i r  system))) 
( o b j e c t  (merge-pathnames 

x ( s y s - o b j e c t - d i r  system))) )  
(case a c t i o n  



(:cload (compile-file source) (load object)) 
(:update (unless (newer-file-p object source) 

(compile-file source)) 
(1  oad object 1) 

(:load (if (newer-file-p object source) 
(1  oad object) 
(load source)))))) 

(t (warn "Don't know how to "a "a in system "a" 
action x system)))) 

To support this, we need to be able to compare the write dates on files. This is not 
hard to do, since Common Lisp provides the function f i 1 e  - wr i t e  - da te .  

(defun newer-file-p (filel file21 
"Is filel newer than (written later than) file2?" 
(>-num (if (probe-file file11 (file-write-date file111 

(if (probe-file file21 (file-write-date file2)))) 

(defun >-num (x y) 
"True if x and y are numbers, and x > y." 
(and (numberp x)  (numberp y) (> x y))) 

25.17 Portability Problems 

Programming is difficult. All programmers know the frustration of trying to get a 
program to work according to the specification. But one thing that really defines the 
professional programmer is the ability to write portable programs that will work on 
a variety of systems. A portable program not only must work on the computer it 
was tested on but also must anticipate the difference between your computer and 
other ones. To do this, you must understand the Common Lisp specification in the 
abstract, not just how it is implemented on your particular machine. 

There are three ways in which Common Lisp systems can vary: in the treatment 
of "is an error" situations, in the treatment of unspecified results, and in extensions 
to the language. 

Common Lisp the Language specifies that it "is an error" to pass a non-number to 
an arithmetic function. For example, it is an error to evaluate (+ n i  1 1 1. However, 
it is not specified what should be done in this situation. Some implementations may 
signal an error, but others may not. An implementation would be within its right to 
return 1, or any other number or non-number as the result. 

An unsuspecting programmer may code an expression that is an error but still 
computes reasonable results in his or her implementation. A common example is 
applying get to a non-symbol. This is an error, but many implementations will 



just return nil, so the programmer may write ( g e t  x 'p rop)  when ( i f  (symbol p 
X )  ( g e t  x 'p rop)  n i  1 is actually needed for portable code. Another common 
problem is with subseq and the sequence functions that take : end keywords. It is an 
error if the : end parameter is not an integer less than the length of the sequence, but 
many implementations will not complain if : end is nil or is an integer greater than 
the length of the sequence. 

The Common Lisp specification often places constraints on the result that a 
function must compute, without fully specifying the result. For example, both of the 
following are valid results: 

> (union ' ( a  b c )  ' ( b  c d l )  + (A B C D l  
> (union ' ( a  b c )  ' ( b  c d l )  + ( D  A B C )  

A program that relies on one order or the other will not be portable. The same warning 
applies to i n t e r s e c t i  on and s e t  - d i  f f e r e n c e .  Many functions do not specify how 
much the result shares with the input. The following computation has only one 
possible printed result: 

> (remove ' x  ' (a  b c  d l )  + ( A  B C D) 

However, it is not specified whether the output is eq or only equal to the second 
input. 

Input/output is particularly prone to variation, as different operating systems 
can have very different conceptions of how 1/0 and the file system works. Things 
to watch out for are whether read-  cha r echoes its input or not, the need to include 
f i n i s h - output ,  andvariation inwhere newlines are needed, particularlywithrespect 
to the top level. 

Finally, many implementations provide extensions to Common Lisp, either by 
adding entirely new functions or by modifying existing functions. The programmer 
must be careful not to use such extensions in portable code. 

25.18 Exercises 

p Exercise 25.1 [h] On your next programming project, keep a log of each bug you 
detect and its eventual cause and remedy. Classify each one according to the taxon- 
omy given in this chapter. What kind of mistakes do you make most often? How 
could you correct that? 

p Exercise 25.2 [s-dl Take a Common Lisp program and get it to work with a different 
compiler on a different computer. Make sure you use conditional compilation read 



macros (#+ and #- )  so that the program will work on both systems. What did you 
have to change? 

a Exercise 25.3 [m] Write a s e t f  method for i f that works like this: 

( s e t f  ( i f  t e s t  ( f i r s t  x )  y )  (+ 2 3 ) )  r 
( l e t  ((temp (+ 2 3 ) ) )  

( i f  t e s t  
( s e t f  ( f i r s t  x )  temp) 
( s e t f  y  temp))) 

You will need to use de f i ne - se t f - me thod ,  not d e f s e t f .  (Why?) Make sure you 
handle the case where there is no else part to the i f. 

p Exercise 25.4 [h] write a s e t  f method for 1 oo kup, a function to get the value for a 
key in an association list. 

(defun lookup (key a l i s t )  
"Get t h e  cdr  o f  key's e n t r y  i n  t h e  assoc ia t ion  l i s t . "  
( c d r  (assoc key a l i s t ) ) )  

25.19 Answers 
Answer 25.4 Here is the s e t f  method for 1 oo kup. It looks for the key in the a-list, 
and if the key is there, it modifies the c d r  of the pair containing the key; otherwise it 
adds a new key/value pair to the front of the a-list. 

(de f ine-se t f -method  lookup (key a l i s t - p l a c e )  
( m u l t i p l e - v a l u e - b i n d  (temps v a l s  s to res  s t o r e - f o r m  access-form) 

(ge t -se t f -method  a l i s t - p l a c e )  
( l e t  ( ( key-va r  (gensym)) 

( p a i r - v a r  (gensym)) 
( r e s u l  t (gensym) 1)  

( v a l  ues 
' ( , key -va r  ,@temps , p a i r - v a r )  
' ( ,key ,@val s  (assoc , key-var  , access-form) 1  
' ( . r e s u l t )  
' ( i f  , p a i r - v a r  

( s e t f  ( c d r  , p a i r - v a r )  , r e s u l t )  
( l e t  ( ( , ( f i r s t  s t o r e s )  

(acons ,key-var , r e s u l t  ,access- form)) )  
, s to re - fo rm . r e s u l t  1) 

' (cd r  ,pai r - v a r )  1 )  1 )  



Appendix: 
Obtaining the Code 
in this Book 

FTP: The File Transfer Protocol 

FTP is a file transfer protocol that is widely accepted by computers around the world. FTP 
makes it easy to transfer files between two computers on which you have accounts. But more 
importantly, it also allows a user on one computer to access files on a computer on which he or 
she does not have an account, as long as both computers are connected to the Internet. This is 
known as anonymous FTP. 

All the code in this book is available for anonymous FTP from the computer mkp . com in files 
in the directory publno r v i  g. The hle README in that directory gives further instructions on using 
the hles. 

In the session below, the user smi th  retrieves the files from mkp. com. Smith's input is in 
slanted font. The login name must be anonymous, and Smith's own mail address is used as the 
password. The command cd pub/norvig changes to that directory, and the command Is lists 
all the files. The command mget * retrieves all files (the m stands for "multiple"). Normally, 
there would be a prompt before each file asking if you do indeed want to copy it, but the prompt 
command disabled this. The command bye ends the FTP session. 

% ftp rnkp.com ( o r  ftp 199.182.55.2) 
Name (mkp . com : smi t h  : anonymous 
331 Guest l o g i n  ok ,  send i d e n t  a s  password 
Password : smith@cs.stateu.edu 
230 Guest l o g i n  ok,  access  r e s t r i c t i o n s  apply  
f t p >  cd pub/norvig 



250 CWD command successful. 
ftp> Is 
. . . 
ftp> prompt 
Interactive mode off.  
ftp> mget * 
. . . 
ftp> bye 
% 

Anonymous FTP is a privilege, not a right. The site administrators at mkp . corn and 
at other sites below have made their systems available out of a spirit of sharing, but 
there are real costs that must be paid for the connections, storage, and processing 
that makes this sharing possible. To avoid overloading these systems, do not FTP 
from 7:00 a.m. to 6:00 p.m. local time. This is especially true for sites not in your 
country. If you are using this book in a class, ask your professor for a particular piece 
of software before you try to FTP it; it would be wasteful if everybody in the class 
transferred the same thing. Use common sense and be considerate: none of us want 
to see sites start to close down because a few are abusing their privileges. 

If you do not have FTP access to the Internet, you can still obtain the files from 
this book by contacting Morgan Kaufmann at the following: 

Morgan Kaufmann Publishers, Inc. 
340 Pine Street, Sixth Floor 
San Francisco, CA 94104-3205 
USA 
Telephone 415/392-2665 
Facsimile 415/982-2665 
Internet mkp@mkp.com 
(800) 745-7323 

Make sure to specify which format you want: 

Macintosh diskette ISBN 1-55860-227-5 
DOS 5.25 diskette ISBN 1-55860-228-3 
DOS 3.5 diskette ISBN 1-55860-229-1 

Available Software 

In addition to the program from this book, a good deal of other software is available. 
The tables below list some of the relevant AI/Lisp programs. Each entry lists the 
name of the system, an address, and some comments. The address is either a 
computer from which you can FTP, or a mail address of a contact. Unless it is stated 
that distribution is by email or Floppy or requires a license, then you can FTP from the 
contact's home computer. In some cases the host computer and/or directory have 



been provided in italics in the comments field. However, in most cases it should 
be obvious what files to transfer. First do an 1 s command to see what files and 
directories are available. If there is a file called README, follow its advice: do a g e t  
README and then look at the file. If you still haven't found what you are looking for, 
be aware that most hosts keep their public software in the directory pub. Do a cd pub 
and then another 1 s, and you should find the desired files. 

If a file ends in the suffix . Z, then you should give the FTP command b i  n a r y  before 
transferring it, and then give the UNIX command un comp r e s  s to recover the original 
file. Files with the suffix . t a r  contain several files that can be unpacked with the 
t a r  command. If you have problems, consult your local documentation or system 
administrator. 

System 
Babbler 
BACK 
Belief 
Classic 
Fol Getfol 
Framekit 
Frame Work 
Frobs 
Knowbel 
MVL 
OPS 
PARKA 
Parmenides 
Rhetorical 
SB-ONE 
SNePS 
SPI 
YAK 

Knowledge Representation 
Address Comments 

email; Markov chains/NLP 
3.5/'floppy; KL-ONE family 
belief networks 
license; KL-ONE family 
tape; Weyrauch's FOL system 
floppy; frames 
a.gp.cs.crnu.edu:/usr/mkant/Public; frames 
frames 
sorted/temporal logc 
multivalued logics 
Forgy's OPS-5 language 
frames (designed for connection machine) 
frames 
planning, time logic 
license; in German; KL-ONE family 
license; semantic net/NLP 
Probabilistic inference 
KL-ONE family 



System 
COBWEB/3 
MATS 
MICRO-xxx 
Nonlin 
Prodigy 
PROTOS 
SNLP 
SOAR 
THE0 
Tileworld 
Tile World 

Planning and Learning 
Address Comments 

email; concept formation 
license; temporal constraints 
case-based reasoning 
Tate's planner in Common Lisp 
license; planning and learning 
knowledge acquisition 
nonlinear planner 
license; integrated architecture 
frames, learning 
planning testbed 
planning testbed 

Mathematics 
System Address Comments 
JACAL jaff er@altdorf .ai.mit .edu algebraic manipulation 
Maxima rascal.ics.utexas.edu version of Macsyma; also proof-checker, nqthm 
MMA fateman@cs.berkeley.edu peoplesparc. berkeley.edu:pu b/mma. *; algebra 

I XLispStat umnstat.stat.umn.edu Statistics; also S Bayes 

Compilers and Utilities 
System Address Comments 
AKCL rascal.ics.utexas.edu Austin Koyoto Common Lisp 
CLX, CLUE export.lcs.mit.edu Common Lisp interface to X Windows 
Gambit gambit@cs.brandeis.edu acorn.cs. brandeis.edu:dist/gambit *; Scheme compiler 
IS1 Grapher isi.edu Graph displayer; also NLP word lists 
PCL arisia.xerox.com Implementation of CLOS 
Prolog aisunl .ai.uga.edu Prolog-based utilities and NLP programs 
PYTHON ram+@cs.cmu.edu a.gp.cs.cmu.edu: Common Lisp Compiler and tools 
SBProlog arizona.edu Stony Brook Prolog, Icon, Snob01 
Scheme altdorf.ai.mit.edu Scheme utilities and compilers 
Scheme scheme@nexus.yorku.ca Scheme utilities and programs 
SIOD bu.edu users/gjc; small scheme interpreter 
Utilities a.gp.cs.cmu.edu /usr/rnkant/Pu blic; profiling, defsystem, etc. 
XLisp cs.orst.edu Lisp interpreter 
XScheme tut.cis.ohio-state.edu Also mitscheme compiler; sbprolog 
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