2 (ase Studies in
- CGommon Lisp

Peter Norvig

Paradigms of
Artificial Intelligence
Programming:

CASE STUDIES IN COMMON LISP

Peter Norvig

ﬂ

o pr
N

An Imprint of Elsevier

MORGAN KAUFMANN PUBLISHERS © SAN FRANCISCO, CALIFORNIA

To my family. ..

All too often, the teachingd computer programming consistsd explainingthe
syntax d the chosen language, showing the student a 10-line program, and then
asking the student to write programs. In this book, we take the approach that the
best way to learn to writeisto read (and conversely, agood way to improvereading
skillsistowrite). After the briefest d introductions to Lisp, we start right off with
complex programs and ask the reader to understand and make small modifications
to these programs.

The premise d this book is that you can only write something useful and inter-
esting when you both understand what makes good writing and have something
interesting to say. Thisholds for writing programs as well asfor writing prose. As
Kernighanand Plauger put it on the cover d Software Todsin Pascd:

Good programming is not learned from generdities, but by seeing how sgnif-
icant programs can ke mede deen, easy 1o read, easy to maintain and modify,
human-engineered, efficient, and rdlicble, by the application d common sense
andgood programming practices. Careful study andimitation d good programs
leeds o better writing.

The proud craftsman is often tempted to display only the finished work, without
anyindicationd thefal sestartsand mistakesthat areanunfortunatebut unavoidable
part o the creative process. Unfortunately, this reluctance to unveil the processis
abarrier tolearning; astudent d mathematicswho sees a beautiful 10-line proof in
atextbook can marvel at its conciseness but does not |earn how to construct such a
proof. Thisbook attempts to show the compl ete programming process, “warts and
al." Each chapter startswithasimpleversiond aprogram, one that workson some
examplesbut failson others. Each chapter shows how thesefailurescan beanalyzed
to build increasingly sophisticated versions d the basic program. Thus, the reader
can not only appreciate the final result but also see how to learn from mistakesand
refineaninitiallyincompletedesign. Furthermore, thereader whofindsaparticular
chapter is becoming too difficult can skip to the next chapter, having gained some
appreciation d the problem area, and without beingoverwhelmed by the details.

This book presents a body d knowledge loosely known as “Al programming
techniques,” but it must be recognizedthat thereare no clear-cut boundariesonthis
body o knowledge. To be sure, no one can be agood Al programmer without first
being a good programmer. Thus, this book presents topics (especiallyin parts II1
and V) that are not Al per se, but are essential backgroundfor any Al practitioner.

Why Lisp? Why Common Lisp?

Lispisoned theoldest programminglanguagesstill inwidespread usetoday. There
have been many versionsd Lisp, each sharing basic features but differingin detail.
In this book we use the version called Common Lisp, which is the most widely
accepted standard. Lisp has been chosen for threereasons.

First, Lispisthe most popular languagefor Al programming, particularly in the
United States. If you're going to learn alanguage, it might as well be one with a
growingliterature, rather than adead tongue.

Second, Lisp makesit easy to capture relevant generalizationsin defining new
objects. In particular, Lisp makesit easy to define new languagesespecially targeted
to the problem at hand. Thisis especially handy in Al applications, which often
mani pul ate complex i nformation that ismost easily represented i n some novel form.
Lispisoned thefew languagesthat alowsfull flexibility in defining and manipu-
lating programsaswell asdata. All programminglanguages, by definition, provide
ameans d defining programs, but many other languageslimit thewaysinwhich a
program can be used, or limit theranged programsthat can be defined, or require
the programmer to explicitly stateirrelevant details.

Third, Lisp makesit very easy to developaworkingprogramfast. Lisp programs
areconciseand areuncluttered by low-level detail. CommmonLispoffersan unusually
large number o useful predefined objects, including over 700 functions. The pro-
grammingenvironment (suchas debuggingtools, incremental compilers, integrated
editors, and interfaces to window systems) that surround Lisp systems are usually
very good. And thedynamic, interactivenature d Lisp makesit easy to experiment
and changea programwhileit is being devel oped.

It must be mentioned that in Europe and Japan, Prolog has been as popular as
Lispfor Al work. Prolog shares most d Lisp's advantagesintermsd flexibilityand
conciseness. Recently, Lisp has gained popul arity worldwide, and Prolog is becom-
ingmorewell knownin the United States. Asaresult, theaverageAl worker todayis
likely to be bilingual. This book presentsthe key ideas behind Prolog in chapters11
and 12, and usestheseideasin subsequent chapters, particularly 20 and 21.

Thediaectd Lisp known asSchemeisalsogainingin popularity, but primarily
for teachingand experimentingwith programminglanguagedesi gn and techniques,
and not so much for writinglarge Al programs. Schemeis presented in chapters 22
and 23. Other dialectsd Lisp such as Franz Lisp, MacLisp, InterLisp, ZetaLisp,
and Standard Lisp are now considered obsolete. Theonly new dialect d Lispto be
proposed recently is EuLisp, the European Lisp. A few dialectsd Lisp liveon as
embedded extensionlanguages. For example, the Gnu Emacs text editor useselisp,
and theAutoCad computer-ai deddesi gn packageuses AutoLisp, aderivatived Xlisp.
Inthefuture, itislikely that Schemewill becomeapopular extensionlanguage, since
itissmall but powerful and has an officially sanctioned standard definition.

There is a myth that Lisp (and Prolog) are " special-purpose” languages, while
languages like Pascal and C are "general purpose."” Actudly, just the reverseis
true. Pascal and C are specia-purposelanguagesfor mani pul ating the registersand
memory d avon Neumann-stylecomputer. The mgjority d their syntax isdevoted
to arithmetic and Boolean expressions, and while they provide some facilitiesfor
forming data structures, they have poor mechanisms for procedural abstraction
or control abstraction. In addition, they are designed for the state-oriented style

d programming: computing a result by changing the value d variables through
assignment statements.

Lisp, on the other hand, has no special syntax for arithmetic. Addition and
multiplicationare no moreor lessbasic than list operationslikeappending, or string
operations like converting to upper case. But Lisp providesall you will need for
programming in general: defining data structures, functions, and the means for
combining them.

The assignment-dominated, state-oriented style d programmingis possiblein
Lisp, but in addition object-oriented, rule-based, and functional stylesare al sup-
ported within Lisp. Thisflexibility derivesfrom two key featuresd Lisp: First, Lisp
hasapowerful macrofacility, which can be used to extend the basiclanguage. When
new styles d programming were invented, other languagesdied out; Lisp simply
incorporated the new styles by defining some new macros. The macro facility is
possible because Lisp programs are composed d a simple data structure: thelist.
In the early days, when Lisp wasinterpreted, most manipulation o programswas
done through this data structure. Nowadays, Lisp is more often compiled than in-
terpreted, and programmers rely more on Lisp's second great flexiblefeature: the
function. OF course, other languageshavefunctions, but Lispisrarein allowingthe
creationd new functionswhilea programisrunning.

Ligo's flexibilityallowsit toadapt asprogrammingstyleschange, but morei mpor-
tantly, Lisp can adapt to your particular programming problem. In other languages
you fit your problem to the language; with Lisp you extend the language to fit your
problem.

Becaused itsflexibility, Lisphasbeen succesful asahigh-level languagefor rapid
prototyping in areas such as Al, graphics, and user interfaces. Lisp has also been
the dominant language for exploratory programming, where the problems are so
complex that no clear solutionisavailableat the start d theproject. Muchd Alfalls
under thisheading.

Thesized CommonL.ispcan beeither anadvantageor adi sadvantage, depending
on your outlook. In David Touretzky’s (1989)fine book for beginning programmers,
the emphasis is on smplicity. He chooses to write some programs slightly less
concisdly, rather than introduce an esoteric new feature (he cites pushnew as an
example). That approach is entirely appropriatefor beginners, but this book goes
well past thelevel d beginner. This means exposing the reader to new features d
the language whenever they are appropriate. Most d the time, new features are
described as they are introduced, but sometimes explaining the details o a low-
level function would detract from the explanation d the workings d a program.
In accepting the privilege d being treated as an "adult,” the reader also accepts a
responsibility—tolook up unfamiliar termsin an appropriate referencesource.

Outline of the Book

Thisbook isorganizedintofive parts.

Part | introduces the Common Lisp programminglanguage.

Chapter 1.givesaquick introduction by way d small examplesthat demonstrate
the novel features d Lisp. It can be safely skipped or skimmed by the experienced
programmer.

Chapter 2 is a more extended example showing how the Lisp primitives can be
put together to form a program. It should be studied carefully by the novice, and
even the experienced programmer will want to look through it to get afeel for my
programmingstyle.

Chapter 3 providesan overview d theLisp primitives. It can beskimmedonfirst
reading and used as a reference whenever an unfamiliar function is mentioned in
thetext.

Part | has beenkept intentionally brief, so that thereismoreroomfor presenting
actual AI programs. Unfortunately, that means that another text or reference book
(or online help) may be needed to clarify some o the more esoteric features d the
language. My recommendations for textsare on page xiii.

The reader may also want to refer to chapter 25, which offers some debugging
and troubleshooting hints.

Part IT covers four early Al programs that all use rule-based pattern-matching
techniques. By starting with relatively simple versions d the programs and then
improving them and moving on to more complex programs, the reader is able to
gradually acquireincreasingly advanced programmingskills.

Chapter 4 presents a reconstruction d GPS, the General Problem Solver. The
implementation followsthe StriPsapproach.

Chapter 5 describes ELizA, a program that mimics human dialogue. Thisis
followed by achapter that generalizessome of the techniques used in GPsand ELIZA
and makesthem available astool sfor usein subsequent programs.

Chapter 7 coversSTUDENT, a program that solveshigh-school -level algebraword
problems.

Chapter 8 developsasmall subset d the Macsyma program for doing symbolic
algebra, including differential and integral calculus. It may beskipped by thosewho
shy away from heavy mathematics.

Part III detours from Al for a moment to present some general tools for more
efficient programming. The reader who masters the material in this part can be
considered an advanced Lisp programmer.

Chapter 9isadetailed study o efficiency techniques, concentrating on caching,
indexing, compilation,and del ayingcomputation. Chapter 10coverslower-level effi-
ciency issuessuch as using declarations, avoidinggarbagegeneration, and choosi ng
the right data structure.

Chapter 11 presents the Prolog language. The aimis two-fold: to show how to
write an interpreter for another language, and to introduce the important features
d Prolog, so that they can be used where appropriate. Chapter 12 shows how a
compiler for Prolog can be 20 to 200 timesfaster than theinterpreter.

Chapter 13introduces object-oriented programmingingeneral , then exploresthe
CommonLisp Object System (CLOS).

Chapter 14 discusses the advantages and limitations d both logic-oriented and
object-oriented programming, and devel opsa knowl edgerepresentation formalism
usingall thetechniquesd part III.

Part IV covers some advanced Al programs.

Chapter 15 usesthe techniquesd part III to come up with amuch moreefficient
implementation d MACSYMA. It usestheidead acanonical form, and replacesthe
very general rewriterule approach with aseriesd more specificfunctions.

Chapter 16 covers the EMYCIN expert system shell, a backward chaining rule-
based system based on certainty factors. The MycIN medical expert system isalso
covered briefly.

Chapter 17 covers theWaltzline-labeling a gorithmfor polyhedra(using Huffman-
Cloweslabels). Different approaches to constraint propagation and backtracking
arediscussed.

Chapter 18 presents a program that plays an excellent game o Othello. The
technique used, al pha-betasearching, isappropriate to awidevariety d two-person
games.

Chapter 19isan introduction to natural language processing. It coverscontext-
free grammar, top-down and bottom-up parsing, chart parsing, and some semantic
interpretation and preferences.

Chapter 20extendsthelinguisticcoveraged the previouschapter andintroduces
logic grammars, using the Prolog compiler devel oped in chapter 11

Chapter 2lisafairly comprehensivegrammar d Englishusingthelogicgrammar
formalism. The problemsd goingfrom asimpleideato arealistic, comprehensive
program arediscussed.

Part V includes material that is peripheral to Al but important for any serious
Lisp programmer.

Chapter 22 presentsthe Schemedialect d Lisp. A simpleSchemeinterpreter is
developed, then aproperly tail-recursiveinterpreter, then aninterpreter that explic-
itly mani pul ates continuations and supportscall/cc. Chapter 23 presentsaScheme
compiler.

Chapter 24 presentsthefeaturesthat are uniqueto AmericanNational Standards
Institute (ANSI) Common Lisp. This includes the Toop macro, as well as error
handling, pretty printing, series and sequences, and the packagefacility.

Chapter 25isaguideto troubleshooting and debuggingLisp programs.

The bibliography lists over 200 sources, and there isa comprehensive index. In
addition, the appendix providesadirectory d publicly available Lisp programs.

How to Use This Book

Theintended audience for this book is broad: anyone who wants to become an ad-
vanced Lisp programmer, and anyonewho wants to bean advanced Al practitioner.
Thereare several recommended paths through the book:

e Inan Introductory Al Course: Concentrate on parts | and I, and at least one
examplefrom part IV.

e |nanAdvanced Al Programming Course: Concentrateonpartsl, ITandIV, skipping
chaptersthat ared lessinterestand addingasmuchd part I1I astime permits.

e Inan Advanced Programming Languages Course: Concentrate on parts | and V,
with selectionsfrom part I11. Cover chapters1land13if similar material isnot
presented with another text.

e For the Professional Lisp Programmer: Read asmuch d the book as possible, and
refer back to it often. Part III and chapter 25 are particularly important.

Supplementary Texts and Reference Books

The definitive reference source is Steele's Common Lisp the Language. From 1984
to0 1990, this unambiguously defined the language Common Lisp. However, in
1990 the picture became more complicated by the publication & Common Lisp the
Language, 2d edition. This book, also by Steele, contains the recommendations o
ANSI subcommittee X3J13, whose charter is to define a standard for Lisp. These
recommendationsinclude many minor changesand clarifications,as well as brand
new material on object-oriented programming, error condition handling, and the
loop macro. Thenew material doublesthesized the book from 465 t01029 pages.

Until the ANSI recommendations are formally accepted, Common Lisp users
arein the unfortunatesituation d having two distinct and incompatible standards:
"origind" Common Lisp and ANSI Common Lisp. Most o the codein thisbook is
compliant with both standards. Themost significant used an ANSI functionisthe
1oop macro. The ANSI map-1into, complement, and reducefunctions are also used,
athoughrarely. Definitionsfor all thesefunctionsareincluded, so eventhose using
an"origind" CommonLispsystem can till runall the codein the book.

While Common Lisp the Language is the definitivestandard, it is sometimesterse
and can be difficultfor a beginner. Common Lisp: the Reference, published by Franz
Inc., offerscompletecoveraged thelanguagewith many helpful examples. Common
LISPcraft, by Robert Wilensky, and Artificial Intelligence Programming, by Charniak

et d., also include brief summaries d the Common Lisp functions. They are not
as comprehensive, but that can be a blessing, becauseit can lead the reader more
directly to thefunctions that areimportant (atleast in theeyesd theauthor).

Itisagoodideato read thisbook with acomputer at hand, to try out the examples
and experiment with examplesd your own. A computer isalso handy becauseLisp
is self-documenting, through the functions apropos, describe, and documentation.
Many implementations also provide more extensivedocumentation through some
kind d 'help' command or menu.

Thefiveintroductory Lisp textbooks| recommend arelisted below. Thefirstis
moreelementary than the others.

¢ Common Ligp: A Gentle Introduction to Symbolic Computation by David Touret-
zky. Most appropriate for beginners, including those who are not computer
scientists.

o A Programmer’s Guide to Common Lisp by Deborah G. Tatar. Appropriate for
those with experiencein another programminglanguage, but nonein Lisp.

e CommonLISPcraft by Robert Wilensky. Morecomprehensiveand faster paced,
but still useful asanintroduction aswell asareference.

e Common Ligp by Wade L. Hennessey. Somewhat hit-and-missin terms d the
topicsit covers, but with an enlightened discussion d implementation and
efficiencyissues that do not appear in the other texts.

o LISP (3d edition) by Patrick H. Winston and Bertold Horn. Covers the most
ground intermsd programmingadvice, but not as comprehensiveasarefer-
ence. May bedifficult for beginners. Includessome Al examples.

Whileit may be distracting for the beginner to be continually looking at some
reference source, the alternative—to have this book explain every new function in
completedetail asitisintroduced—woul doeevenmoredistracting. Itwouldinterrupt
thedescription o the AI programs, whichiswhat thisbookisall about.

There are afew texts that show how to write Al programs and tools, but none
that go into the depth d this book. Nevertheless, the expert AI programmer will
want to be familiar with al the following texts, listed in rough order d increasing
sophistication:

e LISP (3dedition). (Seeabove.)

e Programming Paradignsin Ligp by Rajeev Sangal. Presents the different styles
d programming that Lisp accommodates, illustrating them with some useful
Al tools.

o Programmingfor Artificial Intelligence by WolfgangK reutzer and BruceMcKenzie.
Coverssome d the basics of rule-based and pattern-matching systems well,
but covers Lisp, Prolog, and Smalltalk, and thus has no timeleft for detailsin
any d thelanguages.

e Artificial Intelligence Programming (2d edition) by Eugene Charniak, Christo-
pher Riesbeck, Drew McDermott, and JamesMeehan. Contains 150 pages o
Lisp overview, followed by an advanced discussion o Al tools, but no actual
Al programs.

e Alin Practice: Examplesin Pop-21 by Allan Ramsey and Rosalind Barrett. Ad-
vanced, high-qualityimplementationsd five Al programs, unfortunately using
alanguagethat has not gai ned popul arity.

Thecurrent textcombinesthevirtuesd thelast twoentries: it presentsbothactual
Al programsand thetool s necessary to build them. Furthermore, the presentation is
in anincremental fashion, with ssimpleversions presented first for clarity, followed
by more sophi sticated versionsfor completeness.

A Noteon Exercises

Sample exercises are provided throughout. Readers can test their level d under-
standing by faithfully doing the exercises. Theexercisesaregraded on the scale[q],
[m], [h], [d], which can beinterpreted either asalevel d difficultyor asan expected
timeit will taketo do the exercise:

Code Difficulty TimetoDo
[s] Simple Seconds
[m] Medium Minutes
[h] Hard Hours

[d] Difficult Days

The time to do the exerciseis measured from the point that the concepts have
beenwell understood. If the reader is unclear on the underlying concepts, it might
takehoursd review to understand a[m] problem. Answersto the exercisescan be
found in aseparate section at theend o each chapter.

Acknowledgments

A great many people contributed to this book. Firstd all | would like to thank my
students at USC and Berkdey, as well as JamesMartin's students at Colorado and
Michael Pazzani's studentsat I rvine, who course-testedearlier versionsd this book.
Useful suggestions, corrections, and additions were made by:

Nina Amenta (Berkeley), Ray S. Babcock and John Paxton (Montana State),
BryanA. Bentz (BBN),Mary P. Bodk (JohnsonControls), Michael Braverman (Berke-
ley), R Chandrasekar and M. Sasikumar (National Centrefor SoftwareTechnology,
Bombay), Mike Clancy (Berkeey),Michadl Covington (Georgia), Bruce D’ Ambrosio
(Oregon State), Piew Datta (Irvine), Shawn Dettrey (USC), J. A. Durieux (Al En-
gineering BV, Amsterdam), Joseph Faletti (ETS), Paul Fugua (Texas|nstruments),
Robert Goldman (Tulane),Marty Hall (JohnsHopkins), Marti Hearst (Berkeley),Jim
Hendler (Maryland), Phil Laird (NASA), Raymond Lang (Tulane), David D. Loef-
fler (MCC), George Luger (New Mexico), Rob MacLachlan (CMU), Barry Margolin
(ThinkingM achines),JamesMayfield (UMBC),Sanjay Manchandi (Arizona),Robert
McCartney (Connecticut),JamesMeehan (DEC),Andrew L. Resder, Robert S. Rist
(University d Technology, Sydney), Paul Snively (Apple), Peter Van Roy (Berkeley),
David Gumby Wallace (Cygnus),and J=ff Wu (Colorado).

Sam Dooley and Eric Wefad bothwrote Othell o-playi ngprogramswithout which
Iwould not havewrittenchapter18. Erical soshowed meAristotle's quotesonmeans-
endsanalysis. Tragicdly, Ericdiedin August1989. Heissorely missed by hisfriends
and colleagues. Richard Fateman made suggestionsfor chapter 8, convinced meto
write chapter 15, and, with hel p from Peter Klier, wroteasubstantial programfrom
whichl adapted somecodefor that chapter. Charley Cox (Franzinc.),JamieZawinsKi
(Lucid Inc.), and Paul Fuqua (Texas | nstruments) explained the inner workings d
their respective companies compilers. Mike Harrison, Paul Hilfinger, Marc Luria,
Ethan Munson, and Stephan Slade hel ped with ISIgX. Narciso Jarimillotested all the
codeand separated itinto thefilesthat are availableto the reader (seepage897).

During the writing of this book | was supported by a grant from the Defense
Advanced Research Projects Agency (DoD), Arpa Order No. 4871, monitored by
Space and Naval Warfare Systems Command under Contract NO0039-84-C-0089.
Special thanksto DARPA and to Robert Wilensky and the rest my colleaguesand
students at Berkeleyfor providingastimul ating environment for research, program-
ming, and writing.

Findly, thanksto Mike Morganand Y onieOverton for overseeingthe production
d the book and encouraging metofinish ontime.

Contents

Preface vii
Why Ligp? Why Common Lisp? viii
Ouitline of the Book Xi
How to Use This Book X1
Supplementary Texts and Reference Books X1
A Note on Exercises XV
Acknowledgments XV
PART | INTRODUCTION TO COMMON LISP

1 IntroductiontoLisp

11
1.2
1.3
14
15
1.6
17
1.8
19
1.10
111
112

3
Symbolic Computation 6
Variables 8
Special Forms 9
Lists 10
Defining New Functions 12
Using Functions 14
Higher-Order Functions 18
Other DataTypes 22
Summary: TheLisp Evaluation Rule 22
What MakesLisp Different? 25
Exercises 31

Answers 32

2 ASimpleLispProgram

21
22
23
24
25
26
27
28

3.1
3.2

3.3
34
35
36
3.7
3.8
3.9
3.10
311
3.12
3.13
314

315
316
3.17
3.18

A Grammar for aSubset d English
A Straightforward Solution

A Rule-Based Solution

Two Pathsto Follow

Changingthe Grammar without Changingthe Program

Using the Same Datafor Several Programs
Exercises
Answers

Overviewaof Ligp

A GuidetoLispStyle

Special Forms

Special Forms for Definitions

Special Forms for Conditionals

Special Forms for Dealing with Variablesand Places
Functionsand Special Forms for Repetition
Repetition through Recursion

Other Special Forms

Macros

Backquote Notation

Functionson Lists

Equality and Internal Representation
Functionson Sequences
Functionsfor Maintaining Tables
Functionson Trees

Functionson Numbers
Functionson Sets
DestructiveFunctions

Overviewd DataTypes
Input/Output

Debugging Tools

AntibuggingToals

Timing Tools

Evaluation

Closures

Special Variables

MultipleVaues

34
35
35
39
42
43
43
46
46

48
49
50
51
52
55
57
62
64
66
67
69
70
72
73
76
78
78
79
81
83
85
87
20
91
92
93
95

3.19
3.20
3.21
322

More about Parameters
TheRestd Lisp
Exercises

Answers

PART Il EARLY Al PROGRAMS

4 GPS The General Problem Solver

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
412
4.13
414

4,15
416
4.17
418
419
4.20
4.21
4.22
4.23

5 ELizA:
51
52
53
54
55

Stagel: Description

Stage 2: Specification

Stage 3. Implementation

Stage4: Tet

Stage5: Analysis, or "WelLiedabout the G"
The Running Around the Block Problem

The Clobbered SiblingGoal Problem

The LeapingbeforeYou Look Problem

The RecursiveSubgoal Problem

TheLack d Intermediate | nformation Problem
GPSVersion2 A MoreGeneral Problem Solver
The New Domain Problem: Monkey and Bananas
TheMaze Searching Domain
TheBlocksWorld Domain

The Sussman Anomaly

Stage5 Repeated: Analysisd Version2
TheNot Lookingafter You Don't Leap Problem
ThelLack d DescriptivePower Problem
ThePerfectInformation Problem
Thelnteracting GoalsProblem

TheEnd d GPS

History and References

Exercises

Answers

DialogwithaMachine

Describingand SpecifyingELIzA

Pattern Matching

Segment Pattern Matching

TheELIzA Program: A Rule-Based Trand ator
History and References

97
103
103
103

107

109
111
112
113
116
119
119
119
121
121
123
125
132
134
136
142
142
143
144
145
145
146
147
148
149

151
154
154
159
163
167

56 Exercises
57 Answers

BuildingSoftwareTodls
6.1 Anlnteractivelnterpreter Todl
6.2 APattern-MatchingTodl
6.3 ARule-Based Translator Tool
64 ASetd SearchingTools
Searching Trees
Guiding the Search
Search Paths
Guessing ver sus Guaranteeinga Good Solution
Searching Graphs
6.5 GPSasSearch
6.6 History and References
6.7 Exercises
6.8 Answers

STUDENT: SolvingAlgebra Word Problems
7.1 TrandatingEnglishinto Equations
7.2 SolvingAlgebraic Equations

7.3 Examples

74 History and References

75 Execises

7.6 Answers

SymbolicM athematics A SimplificationProgram
8.1 Convertinglnfix to Prefix Notation

8.2 SimplificationRules

8.3 Associativityand Commutativity

84 Logs Trig, and Differentiation

85 Limitsd Rule-BasedApproaches

8.6 Integration

8.7 History and References

88 Exercises

167
170

175
175
178
188
189
190
194
200
204
206
211
213
214
215

219
220
225
231
234
234
236

238
240
242
246
248
251
252
259
260

PART Il TOOLS AND TECHNIQUES

9 Efficiencylssues 265
9.1 CachingResultsd PreviousComputations: Memoization 269
9.2 Compiling One L anguageinto Another 275
9.3 DeayingComputation 280
94 IndexingData 288
9.5 Instrumentation: DecidingWhat to Optimize 288
96 A CaseStudy in Efficiency: The SMPLIFY Program 295

Memoization 296
Indexing 297
Compilation 298
The Sngle-RuleCompiler 300
The Rule-Set Compiler 303
9.7 History and References 307
98 Exercises 308
99 Answers 310

10 Low-Leve Efficiencylssues 315
10.1 UseDeclarations 316
10.2 Avoid Generic Functions 322
10.3 Avoid Complex Argument Lists 322
10.4 Avoid Unnecessary Consing 328

Avoid Consing: Unique Lists 334
Avoid Consing: MultipleValues 336
Avoid Consing: Resources 336
10.5 UsetheRight DataStructures 339
The Right Data Structure: Variables 339
The Right Data Structure: Queues 341
The Right Data Sructure: Tables 343
10.6 Exercises 346
10.7 Answers 347

11 Logic Programming 348
11.1 Ideal: A UniformDataBase 350
11.2 Ildea2 Unificationd LogicVariables 352

Programmingwith Prolog 358
11.3 Idea3: AutomaticBacktracking 367

Approachesto Backtracking 372

114
11.5
11.6
11.7
11.8
11.9
11.10
1l

Anonymous Vaiailes
TheZebraPuzzle

The Synergy o Backtrackingand Unification

DestructiveUnification
Prologin Prolog

Prolog Comparedto Lisp
History and References
Exercises

Answers

12 CompilingLogic Programs

121
12.2
12.3
124
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13

A Prolog Compiler

Fixingthe Errorsinthe Compiler
Improvingthe Compiler
Improvingthe Compilationd Unification
Further Improvementsto Unification
The User Interfaceto the Compiler
Benchmarking the Compiler
AddingMorePrimitives

The Cut

"Red" Prolog

History and References

Exercises

Answers

13 Object-Oriented Programming

131
13.2
13.3
134
135
13.6
13.7
13.8

13.9

13.10
13.11
13.12

Object-Oriented Programming

Objects

Generic Functions

Classes

Delegation

Inheritance

CLOS: The Common Lisp Object System
A CLOS Example: Searching Tools
Best-Frd Seerch

Is CLOSObject-Oriented?

Advantagesd Object-Oriented Programming

History and References
Exercises

372
373
376
377
380
380
382
383
386

388
390
397
399
401
407
408
411
413
420
424
426
426
429

434
435
436
439
439
441
443
445
448
451
454
455
456
459

14 KnowledgeRepresentationand Reasoning

14.1
14.2
14.3
14.4
145
14.6
14.7
14.8
14.9
14.10

14.11
14.12
14.13

A Taxonomy d Representation Languages
Predicate Calculusand its Problems

A Logical Language: Prolog

Problemswith Prolog’s Expressiveness
Problemswith Predicate Calculus's Expressiveness
Problemswith Completeness

Problemswith Efficiency: Indexing

A Solutionto the IndexingProblem

A Solution to the Compl eteness Problem
Solutionsto the ExpressivenessProblems
Higher-Order Predications

I mprovements

AFrame Language

PossibleWorlds: Truth, Negation, and Disjunction
Unification, Equality, Types, and Skolem Constants
History and References

Exercises

Answers

PART IV ADVANCED Al PROGRAMS

15 Symbolic Mathematicswith Canonical Forms

16

15.1
15.2
15.3
154
155
15.6
15.7
15.8
15.9

A Canonical Formfor Polynomials
DifferentiatingPolynomials

Converting between Infix and Prefix
Benchmarking the Polynomial Simplifier

A Canonical Formfor Rational Expressions
ExtendingRational Expressions

History and References

Exercises

Answers

Expert Systems

16.1
16.2
16.3
16.4

Dedingwith Uncertainty
Caching Derived Facts
AskingQuestions
ContextsInstead d Variables

460
462
463
465
465
468
469
472
472
482
485
485
489
493
496
502
503
504
506

507

509
510
518
519
522
526
527
528
528
529

530
532
536
538
541

16.5 Backward-ChainingRevisited 543

16.6 Interactingwith the Expert 548
16.7 Interactingwith the Client 550
16.8 MyYcCIN, A Medical Expert System 552
16.9 Alternativesto Certainty Factors 557
16.10 History and References 558
16.11 Exercises 559
16.12 Answers 562
17 Line-DiagramL abelingby Constraint Satisfaction 564
17.1 TheLine-LabdingProblem 565
17.2 CombiningConstraints and Searching 570
17.3 LabelingDiagrams 577
17.4 CheckingDiagramsfor Errors 586
17.5 History and References 594
17.6 Exercises 595
18 Searchand theGameof Othello 596
18.1 TheRulesd the Game 597
18.2 Representation Choices 599
18.3 EvaluatingPositions 607
18.4 Searching Ahead: Minimax 610
18,5 Smarter Searching: Alpha-BetaSearch 615
186 AnAnadysisd SomeGames 617
18.7 TheTournamentVersiond Othello 622
18.8 PlayingaSeriesd Games 626
18.9 MoreEfficientSearching 630
18.10 It Paysto Precycle 633
18.11 KillerMoves 634
18.12 Championship Programs: lago and Bill 637
Mobility 637

Edge Stability 638
Combining the Factors 645

18.13 Other Techniques 646
Iterative Deepening 646
Forward Pruning 647
Nonspeculative Forward Pruning 647
Aspiration Search 648

Think-Ahead 649

18.14
18.15
18.16

Hashing and Opening Book Moves
The Bd Gane

Metareasoning

Learning

History and References
Exercises

Answers

19 Introductionto Natural L anguage

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10

Parsing with aPhrase-Structure Grammar

Extending the Grammar and Recognizing Ambiguity
More Efficient Parsing

The Unknown-Word Problem

Parsinginto a Semantic Representation

Parsingwith Preferences

The Problemwith Context-Free Phrase-Structure Rules
History and References

Exercises

Answers

20 UnificationGrammars

20.1
20.2
20.3
204
205
20.6
20.7
20.8
20.9
20.10

Parsing as Deduction

Definite Clause Grammars

A Simple Grammar in DCG Format

A DCG Grammar with Quantifiers
Preserving Quantifier Scope Ambiguity
Long-Distance Dependencies
Augmenting DCG Rules

History and References

Exercises

Answers

21 A Grammar of English

21.1
21.2
21.3
214
215
216

Noun Phrases
Modifiers
Noun Modifiers
Determiners
Verb Phrases
Adverbs

649
649
650
651
651
652
653

655
656
660
662
664
665
670
678
679
679
680

684
685
689
692
696
700
702
704
711
712
713

715
717
718
719
721
722
723

21.7

Clauses

21.8 Sentences

219

XPs

21.10 Word Categories
21.11 TheLexicon

Verbs

Auxiliary Verbs

Nouns

Pronouns

Names

Adjectives

Adverbs

Articles

Cardinal and Ordinal Numbers
Prepositions

21.12 SupportingtheLexicon
21.13 Other Primitives
21.14 Examples

21.15 History and References
21.16 Exercises

PARTV THE REST OF LISP

22 Scheme: AnUncommonLisp

221
22.2
22.3
224
225
22.6
22.7
22.8

A Schemelnterpreter

Syntactic Extension with Macros

A Properly Tail-Recursivelnterpreter
Throw, Catch, and Call/cc
Anlnterpreter Supporting Call/cc
History and References

Exercises

Answers

23 CompilingLisp

231
232
233
234

A Properly Tail-RecursiveLisp Compiler
Introducing Call/cc

The Abstract Machine

A PeepholeOptimizer

723
725
727
730
732
734
735
736
736
737
738
738
738
739
739
739
745
746
748
749

753
756
762
766
768
773
776
778
780

784
796
810
810
817

235 Languageswith Different Lexica Conventions 821

23.6 History and References 825
23.7 Exercises 826
238 Answers 828
24 ANSI Common Lisp 834
241 Packages 834
The Seven Name Spaces 836

24.2 Conditionsand Error Handling 837
Sgnaling Errors 838
Handling Errors 838

24.3 Pretty Printing 839
244 Series 839
245 ThelLoopMacro 840
Anatomy of a Loop 843
Iteration Control (26.6) 845
End-Test Control (26.7) 847

Value Accumulation (26.8) 848
Variable Initialization (26.9) 850
Conditional Execution (26.10) 850
Unconditional Execution (26.11) 852
Miscellaneous Features (26.12) 852

24.6 SequenceFunctions 852
Once-only: A Lesson in Macrology 853

Avoid Overusing Macros 855
MAP-INTO 857
REDUCE with :key 859

247 Exercises 863
248 Answers 863
25 Troubleshooting 866
25.1 Nothing Happens 867
25.2 Changeto VariableHas No Effect 868
25.3 Changeto Function Has No Effect 869
25.4 VauesChange"by Themselves" 873
25,5 Built-InFunctions Don't Find Elements 874
25.6 Multiple VauesArelLost 874

25.7 DeclarationsArelgnored 875

258 My LispDoestheWrongThing
259 How toFindthe FunctionYau Want
25.10 Syntaxd LOOP
25.11 Syntaxd COND
2512 Syntaxd CASE
25.13 Syntaxd LET and LET*
25.14 Problemswith Macros
25.15 A StyleGuidetoLisp
Whento DeFine a Function
Whento DeFine a Special Variable
When to Bind a Lexical Variable
How to Choosea Name
Deciding on the Order of Parameters
25.16 Dealingwith Files, Packages, and Systems
25.17 Portability Problems
25.18 Exercises
25.19 Answers

Appendix: ObtainingtheCodein thisBook
Bibliography

Index

876
877
878
878
879
880
880
887
887
888
888
888
889
890
894
895
896

897

901

919

PART |

INTRODUCTION TO COMMON LISP

CHAPTER |

Introduction to Lisp

You think you know when you learn, are more sure
when you canwrite, even morewhen you can teach,
but certain when you can program.

—Alan Perlis
Yale University computer scientist

in their Lisp programming ability can quickly skim the chapter or skip it entirely. This

chapter necessarily movesquickly, so those with little programming experience, or any
reader who findsthis chapter tough going, should seek out a supplementary introductory text.
My recommendations arein the preface.

Computers allow one to carry out computations. A word processing program deals with
words while a calculator deals with numbers, but the principles are the same. In both cases,
you providethe input (wordsor numbers) and specify the operations (such as del eting aword
or adding two numbers) toyield aresult (acompleted document or cal culation).

Wewill refer to anything that can be represented in the memory o acomputer asacomputa:
tiona ogjedt, or just an object. So, words, paragraphs, and numbers can be objects. And because
theoperations (del etingand addi ng) must berepresented somewhereinthecomputer's memory,
they areobjects, too.

T hischapter isfor peoplewithlittleor no experiencein Lisp. Readerswhofed confident

Normally, the distinction between acomputer "user' and acomputer " program-
mer" is that the user provides new input, or data (words or numbers), while the
programmer defines new operations, or programs, aswell as new typesd data. Every
new object, beit datum or operation, must be defined in termsof previously defined
objects. The bad newsisthat it can be quite tedious to get these definitions right.
Thegood newsisthat each new object canin turn be used in thedefinition o future
objects. Thus, even complex programs can be built out d smaller, ssimpler objects.
This book coversanumber d typica Al problems, showing how each problem can
be brokendown into manageabl epieces, and al so how each piececan bedescribedin
the programminglanguageCommonL.isp. Idedly, readerswill learnenough through
studying these exampl esto attack new Al problemswith style, grace, and success.

Let's consider asimple exampled acomputation: finding the sum o two num-
bers, let's say 2and 2. If we had acalculator handy, wewould type"2+ 2 =" and see
the answer displayed. On acal culator using reverse Polish notation, wewould have
totype” 22+” toseethesameanswer. InLisp, aswiththecal culator,the user carries
out aninteractivedia ogwith thecomputer by typinginan expressionand seeingthe
computer print thevalued that expression. Thisinteractive modeisdifferent from
many other programminglanguagesthat only offer abatch mode, wherein an entire
program iscompiled and run beforeany output can be seen.

We start up a pocket cal culator by flipping the on/off switch. The Lisp program
must also be started, but the details vary from one computer to another, so | can't
explain how your Lispwill work. Assumingwe have managed to start up Lisp, we
arelikely to seeapromptd somekind. On my computer, Lisptypes”>" to indicate
itis ready to accept the next computation. So we are faced with a screen that |ooks
likethis:

We may now typein our computation and see the result displayed. It turns out that
the Lisp convention for arithemtic expressionsis dightly different: acomputation
consistsd aparenthesized listwiththeoperationnamefirst, followed by any number
d operands, or arguments. Thisis called prefix notation.

>(+2 2)
4

>

We see that Lisp has printed the answer, 4, and then another prompt, >, to indicate
itisready for the next computation. Throughout this book, all Lisp expressionswill
be displayedintypewriter font. Text on the sameline as the “>” prompt isinput
typed by the user, and text followingit is output printed by the computer. Usualy,
input that istyped by the programmer will bein 1ower case letters, while output that

isprinted back by thecomputer will bein UPPERCASE letters. OF course, with symbols
like+and 4 thereisno difference.

Tosavespace on the page, the output will sometimesbe shown on the sameline
as theinput, separated by an arrow (=), which can [Bread as"evaluatesto” and
can also be thought of asstandingfor thereturn or enter key that the user pressesto
completetheinput:

>(+22) =4

Oneadvantaged parenthesized prefix notationisthat the parentheses clearly mark
the beginningand end of an expression. If we want, we can give + more than two
arguments, and it will still add them all:

>(+1234567 89 10) = 55
Thistimewetry (9000+ 900+ 90+ 9) — (5000+ 500 + 50 + 5):
> (- (+ 9000 900 90 9) (+ 5000 500 50 5)) = 4444

This example shows that expressions can be nested. The arguments to the -
function are parenthesized lists, while the arguments to each + are atoms. The
Lisp notation may look unusual compared to standard mathematical notation, but
thereareadvantagesto thisnotation; sinceLispexpressionscanconsistd afunction
followed by any number d arguments, wedon't havetokeeprepeatingthe”+.” More
important than the notation is the rulefor evaluation. In Lisp, lists are evaluated
by first evaluatingal the arguments, then applying the functionto the arguments,
thereby computingtheresult. Thisruleismuch simpler than therulefor evaluating
normal mathemati cal expressions, wherethere are many conventionsto remember,
suchasdoingmultiplicationsand divisionsbeforesumsand differences. Wewill see
below that theactual Lispevaluationruleisalittlemorecomplicated, but not much.

Someti mesprogrammerswho arefamiliarwith other languageshave preconcep-
tionsthat makeit difficultfor them to learn Lisp. For them, three points are worth
stressing here. First, many other languages make a distinction between statements
and expressions. An expression, like2 + 2 hasavalue, but astatement, likex =
2 + 2 doesnot. Statements have effects, but they do not return values. In Lisp,
there is no such distinction: every expression returnsavalue. It istrue that some
expressionshave effects, but even thoseexpressionsalsoreturn values.

Second, the lexical rules for Lisp are much simpler than the rules for other
languages. In particular, there arefewer punctuation characters: only parentheses,
quotemarks(single,doubl e, and backward),spaces, andthecommaservetoseparate
symbolsfrom each other. Thus, whilethe statement y=a*x+3 is analyzed as seven
separate tokensin other languages, in Lispit would be treated asasinglesymbol. To

getalistd tokens, wewould havetoinsertspaces: (y = a * x + 3).1

Third, while many languages use semicolonsto delimit statements, Lisp hasno
need d semicolons, since expressions are delimited by parentheses. Lisp chooses
to use semicolonsfor another purpose—to mark the beginningd acomment, which
lastsuntil theend d theline:

> (+ 2 2) ; this is a comment
4

1.1 Symbolic Computation

+

All welve done so far is manipulate numbers in the same way a simple pocket
calculatorwould. Lispismore useful than acalculator for two main reasons. First,
it allows us to manipulate objects other than numbers, and second, it allows us
to define new objects that might be useful in subsequent computations. We will
examinethese two important propertiesin turn.

Besides numbers, Lisp can represent characters (letters), strings d characters,
and arbitrary symbols, wherewe arefreeto interpret these symbolsas referring to
things outside the world d mathematics. Lisp can also build nonatomic objects
by combining several objectsinto alist. This capability is fundamental and well
supported in thelanguage; infact, the nameLispisshort for LISt Processing.

Here's an exampled acomputation onlists:

> (append '(Pat Kim) ‘(Robin Sandy)) = (PAT KIM ROBIN SANDY)

This expression appends together two lists d names. The rulefor evaluating this
expression is the same as the rule for numeric calculations: apply the function (in
this case gppend) to thevalued the arguments.

Theunusual partisthequotemark (), which servestoblock theevaluationd the
followingexpression, returningit literally. f we just had the expression (Pat Kim),
it would beevaluated by considering Pat asafunction and applyingit tothevalued
theexpression Kim. Thisisnot what we had in mind. Thequote mark instructsLisp
totreat thelist asapieced datarather thanasafunction call:

> '(Pat Kim) = (PAT KIM)

In other computer languages (and in English), quotes usually comein pairs. oneto
mark the beginning, and one to mark theend. InLisp, asinglequoteisused to mark

IThis list & symbolsisnot alegal Lisp assignment statement, but itisalLisp data object.

the beginningd an expression. Sinceweawaysknow how longasingleexpression
is—either totheend d anatom or to the matching parenthesis of aliss—wedon't need
an explicit punctuation mark to tell uswhere the expression ends. Quotes can be
usedonlists, asin * (Pat Kim), onsymbolsasin * Rda n, and infacton anything el se.
Here are some examples:

> 'John = JOHN
'(John Q Public) = (JOHN Q PUBLIC)

A"

>’2 =2

>2 =2

>'(+22) = (+22)

>(+22) =4

> John = Error: JOHNisnot abound variable

> (John Q Public) = Error: JOHN is not a function

Note that *2 evaluates to 2 becauseit is a quoted expression, and 2 evaluates to 2
because numberseva uateto themselves. Sameresult, different reason. In contrast,
* John evaluatesto John becauseit isaquoted expression, but eval uating John leads
to an error, because eval uating a symbol means getting the valued the symbol, and
no valuehas been assigned to John.

Symbolic computations can be nested and even mixed with numeric computa-
tions. Thefollowingexpressionbuildsalist of namesin adlightlydifferent way than
wesaw before, using the built-infunction 1i st. Wethen see how to find the number
d elementsinthelist, using the built-infunctionlength

> (append '(Pat Kim) (list '(John Q Public) 'Sandy))
(PAT KIM (JOHN Q PUBLIC) SANDY)

> (length (append '(Pat Kim) (list '(John Q Public) 'Sandy)))
4

Therearefour important points to make about symbols:

o First,itisimportant to remember that Lisp does not attach any external signif-
icanceto the objectsit manipulates. For example, we naturally think o (Rda n
Sandy) asalistd twofirstnames, and (John Q Public) asalistd oneperson's
first name, middleinitial, and last name. Lisp has no such preconceptions. To
Lisp, both Robi n and xyzzy are perfectly good symbols.

e Second, to do the computations above, we had to know that gppend, 1ength,
and + are defined functions in Common Lisp. Learning alanguage involves

remembering vocabulary items (or knowing where to look them up) as well
aslearning the basic rulesfor forming expressionsand determining what they
mean. Common Lisp providesover 700 built-infunctions. At some point the
reader should flip through areferencetext to seewhat's there, but most o the
important functionsare presented in part | o this book.

e Third, note that symbolsin Common Lisp are not case sensitive. By that |
mean that theinputs John, john, and jOhN all refer to the same symbol, which
isnormally printed as JOHN.?

e Fourth, notethat awidevarietyd charactersareallowedinsymbols: numbers,
|etters, and other punctuation markslike’+ or'!’. Theexactrulesfor what con-
stitutes asymbol are alittlecomplicated, but the normal conventionisto use
symbolsconsisting mostly d letters, with words separated by adash (-), and
perhapswithanumber at theend. Someprogrammersare moreliberal in nam-
ingvariables,and includecharacterslike'? 1$/<=>". For example, afunctionto
convert dollarsto yen might be named with the symbol $-to-yen or $->yenin
Lisp, while one would use something likeDollarsToYen, dollars-to-yenor
do12yeninPascal or C. Thereareafew exceptionsto these namingconventions,
whichwill bedealt with as they comeup.

1.2 Variables

We have seen some d the basics o symbolic computation. Now we move on to
perhaps the most important characteristicd aprogramminglanguage: the ability to
definenew objectsintermsd others, and to name these objectsfor futureuse. Here
symbolsagain play an important role—they are used to name variables. A variable
can take on a value, which can be any Lisp object. One way to give avalueto a
variableiswith set f:

\Y

(setf p '(John Q Public)) = (JOHN Q PUBLIC)

p = (JOHN Q PUBLIC)
(setf x 10) = 10

v

\Y

\

(+xx) = 20
(+ x (length p)) = 13

A%

After assigning thevalue (John Q Public) tothevariablenamed p, we can refer to
thevaluewith the namep. Similarly, after assigningavalueto thevariablenamed X,
wecan refer to both x and p.

2The variable *prin t-case* controlshow symbolswill be printed. By default, thevalue d
thisvariableis :upcase, butit can bechanged to :downcase or :capital ize.

Symbols are also used to name functions in Common Lisp. Every symbol can
be used as the name o a variable or afunction, or both, although it is rare (and
potentially confusing) to have symbol sname both. For example, appendand length
are symbolsthat name functions but have no valuesas variables, and p i does not
nameafunction butisavariablewhoseval ueis3.1415926535897936(or thereabourt).

1.3 Specia Forms

The careful reader will note that setf violatesthe evaluation rule. We said earlier
that functions like+ - and append work by first evaluating all their arguments and
then applying the function to the result. But setf doesn't follow that rule, because
setfisnotafunctionat al. Rather, itispart o the basicsyntaxd Lisp. Besdesthe
syntaxd atomsand functioncalls, Lisphasasmall number d syntacticexpressions.
They areknown as special forms. They serve the same purpose asstatementsin other
programminglanguages, and indeed havesomed the same syntactic markers, such
asif and loop. There are two main differences between Ligp's syntax and other
languages. First, Lisp's syntacticformsare awayslistsinwhich thefirst elementis
oned asmall number d privilegedsymbols. setfisoned thesesymbols,so (setf
X 10) isaspecial form. Second, special forms are expressions that return avalue.
Thisisin contrast to statementsin most languages, which have an effect but do not
returnavalue.

Inevaluatingantoexpressionlike (setf x (+ 1 2)), weset thevariablenamed
by the symbol X to thevalued (+1 2), whichis3. If setf wereanormal function,
wewould evaluate both the symbol x and the expression (+1 2) and do something
with thesetwo values, whichisnot what wewant at all. setfiscalledaspecia form
becauseit does something special: if it did not exist, it would beimpossibletowrite
afunction that assigns avalueto avariable. The philosophy o Lispisto providea
small number d special formsto do the thingsthat could not otherwise bedone, and
then to expect the user towrite everthing elseasfunctions.

Theterm special formis used confusingly to refer both to symbolslikesetf and
expressions that start with them, like (setf X 3). Inthe book Common LISPcraft,
Wilensky resolvesthe ambiguity by callings e tf aspecial function, and reserving the
term special formfor (setf x 3). Thisterminologyimpliesthat setf is just another
function, but a special onein that itsfirst argument is not evaluated. Such aview
made sense in the days when Lisp was primarily an interpreted language. The
modernview isthat setf should not be considered somekind d abnormal function
but rather a marker of special syntax that will be handled specialy by the compiler.
Thus, the special form (setf x (+ 2 1)) should beconsidered theequivalentd x =
2 + 1in C. When thereisrisk o confusion, wewill call setfaspecial formoperator
and (setf x 3)aspecial form expression.

It turns out that the quote mark is just an abbreviation for another special form.
Theexpression'xis equivalent to (quote x), aspecial form expression that evaluates
tox. The special form operators used in thischapter are:

defun definefunction

defparameter definespecialvariable

setf set variableor field to new value

let bind local variable(s)

case chooseoned several alternatives

if do onething or another, dependingon atest
function (#') refertoafunction

quote (") introduce constant data

1.4 Lists

So far we have seen two functions that operate on lists: append and Tength. Since
listsareimportant, let's look at some morelist processingfunctions:

> p = (JOHN Q PUBLIC)
> (first p) = JOHN

> (rest p) = (Q PUBLIC)

> (second p) = Q

> (fourth p) = NIL

(
(

> (third p) = PUBLIC
(

> (

length p) = 3

The functions first, second, third, and fourth are aptly named: first returns
the first element o alist, second gives you the second element, and so on. The
functionrestisnot asobvious; itshamestands for "therest o thelist after thefirst
element."” The symbol nil and the form () are completely synonymous; they are
both representations d theempty list. nil isalso used to denote the"'false" valuein
Lisp. Thus, (fourth p)isnil becausethereisnofourthelementd p. Notethat lists
need not be composed only d atoms, but can contain sublists aselements:

> (setf x *((lst element) 2 (element 3) ((4)) 5))
((1ST ELEMENT) 2 (ELEMENT 3) ((4)) 5)
> (length x) = 5

> (first x) = (1ST ELEMENT)

\%

(second x) = 2

\%

(third x) = (ELEMENT 3)

\

(fourth x) = ((4))

v

(first (fourth x)) = (4)

\%

(first (first (fourth x))) = 4

\

fifth x) = 5

v

(
(first x) = (1ST ELEMENT)
(

v

second (first x)) = ELEMENT

So far we have seen how to access parts o lists. Itisalso possibleto build up new
lists, as these examplesshow:

> p = (JOHN Q PUBLIC)

> (cons 'Mr p) = (MR JOHN Q PUBLIC)

> (cons (first p) (rest p)}) = (JOHN Q PUBLIC)

> (setf town (list Anytown 'USA)) = (ANYTOWN USA)

> (list p 'of town 'may 'have ‘'already 'won!) =
(JOHN Q PUBLIC) OF (ANYTOWN USA) MAY HAVE ALREADY WON)

> (append p '(of) town ‘(may have already won!)) =
(JOHN Q PUBLIC OF ANYTOWN USA MAY HAVE ALREADY WON!)

> p = (JOHN Q PUBLIC)

Thefunction cons stands for" construct." It takes as arguments an element and
alist,® and constructs a new list whose first is the element and whose rest is the
origina list. 1ist takesany number d elements as arguments and returns a new
list containing those elementsin order. Weve already seen append, whichissimilar
to list; it takes as arguments any number of lists and appends them al together,
formingonebiglist. Thus, theargumentsto gopend must belists, whilethearguments
toli st may belistsor atoms. Itisimportant to note that thesefunctions create new
lists; they don't modify old ones. Whenwe say (append p q), the effectisto create
abrand new list that starts with the same elements that werein p. p itsaf remains
unchanged.

Now let's move away from abstract functions on lists, and consider a simple
problem: givenaperson's nameintheformd alist, how might weextract thefamily
name? For (JOHN Q PUBLIC) wecould just usethefunctionthi rd, but that wouldn't

3Later wewill seewhat happenswhen the second argument is not alist.

work for someonewith no middlename. Thereisafunction called1ast in Common
Lisp; perhapsthat would work. We can experiment:

> (last p) = (PUBLIC)

> (first (last p)) = PUBLIC

It turns out that 1ast perversely returns alist d the last element, rather than the
last element itsalf.' Thuswe need tocombinefirstand last to pick out the actual
last element. We would like to be able to save the work weve done, and giveit a
proper description, likelast-name. Wecould uses e tf to savethelast named p, but
that wouldn't help determine any other last name. | nstead wewant to defineanew
function that computes the last name d any name that isrepresented asalist. The
next section does just that.

1.5 Defining New Functions

The special form defun stands for "definefunction.” It isused here to define a new
function called 1ast - name:

(defun | ast-name (name)
"Select the last name from a name represented as a list."
(first (last name)))

Wegive our new function the name last-name. It hasa paramger list consistingd a
single parameter: (name). Thismeansthat the function takes one argument, which
wewill refer toasname. It also hasa documentationgring that stateswhat thefunction
does. Thisis not used in any computation, but documentation strings are crucial
toolsfor debuggingand understanding largesystems. The body o the definitionis
(first(Tast name)), which iswhat we used before to pick out thelast named p.
Thedifferenceisthat here wewant to pick out thelast name d any name, not just d
the particular name p.

Ingeneral, afunction definition takes the foll owingform (wherethe documenta-
tionstringisoptional, and all other partsare required):

*In ANS Common Lisp, 1ast is defined to return alig o the last n dements, wheren
defaultsto 1. Thus(last p)=(last p 1)=(PUBLIC),and(last p 2)=(Q PUBLIC). This
mey mekethedefinitiond ast ssemlessperverse.

(def un function-name (parameter...)
"docunentationstring'
functi on-body...)

Thefunction name must beasymbol, the parameters are usually symbol s(withsome
complicationsto be explainedlater), and the function body consists d one or more
expressions that are evaluated when the function is called. Thelast expressionis
returned asthevaued thefunction call.

Oncewe havedefined 1ast-name, wecan useit just likeany other Lispfunction:

7 (last-name p) =+PUBLIC

7 (last-name '(Rear Admiral Grace Mirray Hopper)) +HOPPER
> (last-name '(Rex Morgan MD)) =3 M

> (last-name '(Spot)) =a SPOT

> (last-name ’(Aristotle)) = ARISTOTLE

Thelast three examplespoint out an inherent limitation d the programming enter-
prise. Whenwesay (defun last-name...) we are not realy definingwhat it means
for aperson to havealast name; weare just definingan operation onarepresentation
d namesintermsd lists. Our intuitions—that MD is atitle, Spot isthefirst name
d adog, and Aristotlelived before the concept d last name was invented—are not
represented in this operation. However, we could always change the definition d
Tast-name toincorporate these problematiccases.

Wecan alsodefinethefunctionf i rst-name. Eventhough thedefinitionistrivia
(itisthe same as the function first), itisstill good practiceto define first-name
explicitly. Thenwecanusethefunction fi r st -name whenwearedealingwith names,
and firstwhenwearedealingwith arbitrary lists. The computer will perform the
same operation i neach case, but we as programmers (andreadersd programs) will
belessconfused. Another advanatged defining specificfunctionslikefirst-name
isthat if wedecidetochangetherepresentation d nameswewill only havetochange
thedefinitiond first-name. Thisisamuch easier task than hunting through alarge
program and changing the uses o first that refer to names, while leaving other
usesalone.

(defun first-name (nane)
"Select the first name froma name represented as a list."
(first name))

>p = (JOHN Q PUBLIC)
> (first-name p) =3 JOHN
> (first-name '(Wlm Flintstone)) =3 WLMA

> (setf names *((John Q Public) (Malcolm X)

(Admiral Grace Murray Hopper) (Spot)

(Aristotle) (A A Milne) (Z Z Top)

(Sir Larry Olivier) (Miss Scarlet))) =
(JOHN Q PUBLIC) (MALCOLM X) (ADMIRAL GRACE MURRAY HOPPER)
(SPOT) (ARISTOTLE) (A A MILNE) (Z Z TOP) (SIR LARRY OLIVIER)
(MISS SCARLET))

> (first-name (first names)) = JOHN

In the last expression we used the function first to pick out the first element in
alist & names, and then the function first-name to pick out the first name o
that element. We could aso have said (first (first names)) or even (first
(first-name names)) and still have gotten JOHN, but we would not be accurately
representing what is being considered a name and what is being considered alist
d names.

1.6 UsngFunctions

One good thing about defining alist d names, as we did above, is that it makesit
easier totest our functions. Consider thefollowingexpression, whichcan beused to
test the 1ast-namefunction:

> (mapcar #'last-name names)
(PUBLIC X HOPPER SPOT ARISTOTLE MILNE TOP OLIVIER SCARLET)

Thefunny #* notation maps from the name o afunction to thefunctionitself. This
isanalogousto ' x notation. The built-infunction mapcar is passed two arguments, a
function and alist. It returnsalist built by callingthe function on every element o
theinputlist. In other words, the mgpcar call aboveisequivalent to:

(list (last-name (first names))
(last-name (second names))
(last-name (third names))

e)

mapcar’s nhame comes from the fact that it "maps"” the function across each o the
arguments. Thecar part d the namerefersto theLispfunction car, an old namefor
first. cdristhe old namefor rest. The names stand for "contentsd the address
register” and " contentsd the decrement register,” theinstructions that wereusedin
thefirstimplementation d LispontheIBM 704. I'm sureyou'll agreethat firstand

re st are much better names, and they will beused instead d car and cdr whenever
wearetalkingabout lists. However, wewill continueto usecar and cdr on occasion
whenwe are considering a pair d values that are not considered as alist. Beware
that some programmersstill usecar and cdr for listsaswell.

Hereare somemoreexamplesd mapcar:

> (mapcar #'- (1 23 4))=(-1 -2 -3 -4)
> (mapcar #°+ "(1 2 3 4) *(10 20 30 40)) = (11 22 33 44)

Thislast exampleshowsthatmapcar can be passed threearguments, i nwhichcase the
first argument should be a binary function, which will be applied to corresponding
elements d the other two lists. In general, mapcar expectsan n-ary function asits
first argument, followed by n lists. It first applies the function to the argument list
obtained by collectingthefirst element o eachlist. Thenit appliesthefunctiontothe
second element o eachlist, and soon, until oned thelistsisexhausted. Itreturnsa
listof all thefunctionvaluesit hascomputed.
Now that we understand mapcar, let's useit to test the fi r s t-name function:

> (mapcar #'first-name names)
(JOHN MALCOLM ADMIRAL SPOT ARISTOTLE A Z SIR MISS)

We might be disappointed with these results. Suppose we wanted a version d
first-name which ignored titles like Admiral and Miss, and got to the "rea" first
name. We could proceed asfollows:

(defparameter *titles*
>(Mr Mrs Miss Ms Sir Madam Dr Admiral Major General)
"Alist of titles that can appear at the start of a name.")

We've introduced another new special form, defparameter, which defines a para-
meter—a variable that does not change over the course d a computation, but that
might changewhen we think d newthingstoadd (liketheFrench Mme or themilitary
Lt.). Thedefparameter form both givesavalueto thevariableand makesit possible
to use the variable in subsequent function definitions. In this example we have
exercised theoption d providingadocumentation stringthat describesthevariable.
Itisawidely used convention among Lisp programmersto mark special variables by
spelling their names with asterisks on either end. Thisis just aconvention;in Lisp,
theasterisk is just another character that has no particular meaning.

We next give a new definition for first-name, which supersedes the previous
definition.’ Thisdefinitionsaysthat if thefirst word o the nameisamember o the

*Just aswe can change thevalue d avariable, we can also change thevalue d afunction

listdf titles, then wewant to ignorethat word and return the fi rst-named therest
d thewordsin the name. Otherwise, we usethe firstword, just as before. Another
built-in function, mamber, tests to seeif itsfirst argument is an element d the list
passed asthe second argument.

The special form i f hastheform (if test then-part dse-part). There are many
specia formsfor performingconditional testsin Lisp; i f isthe most appropriatefor
thisexample. Ani f formisevaluated by firstevaluating the test expression. If itis
true, the then-partis evaluated and returned as the valued thei f form; otherwise
thedse-partisevaluated and returned. Whilesomelanguagesinsist that thevalued
aconditional test must beeither true or false, Lispismuchmoreforgiving. Thetest
may legally evaluate to any valueat all. Only the valueni 1 is considered false; all
other valuesare considered true. Inthedefinitionof f i rst- remebdow, thefunction
mamba will returnanon-nil (hencetrue) valueif thefirst element d thenameisinthe
list o titles, and will return ni 1 (hencefalse) if itisnot. Althoughall non-nil values
areconsidered true, by convention the constant t isusually used to represent truth.

(defun first-name (name)
"Select the first name from a name represented as a list."
(if (member (first name) *titles*)
(first-name (rest name))
(first name)))

When we map the new first-name over the list names, the results are more
encouraging. In addition, the function gets the "right" result for ' (Madan Mgor
General Paula Jones) by dropping off titlesoneat atime.

> (mapcar #'first-name names)
(JOHN MALCOLM GRACE SPOT ARISTOTLE A Z LARRY SCARLET)

> (first-name '(Madam Major General Paula Jones))
PAULA

We can see how this works by tracing the execution of fi rst-name, and seeing the
values passed to and returned from the function. The special forms trace and
untraceare used for this purpose.

> (trace first-name)
(FIRST-NAME)

inLisp. Itisnot necessary to recompileeverythingwhen achangeis made, asit would bein
other languages.

> (first-name '(John Q Public))

(1 ENTER FIRST-NAME: (JOHN Q PUBLIC))
(1 EXIT FIRST-NAME: JOHN)

JOHN

Whenfi rst- rareiscaled, the definitionisentered with the singleargument, name,
takingon thevalue (-N Q PUBLIC). Thevaluereturned is JOHN Trace prints two
linesindicating entry and exit from the function, and then Lisp, as usual, printsthe
final result, OH\

The next example is more complicated. The function f1irst-nameis used four
times. First, itisentered with remebound to (Madam Mgor General Paul a Jones).
Thefirst element d thislistis Madan, and since thisisamember d thelist d titles,
the result is computed by calling fi rst- rame again on therest o the name—{(Mgor
Genera Paula Jones). This process repeats two more times, and we finally enter
first-ramewith nameboundto (Paul a Jones). SincePaul aisnot atitle, it becomes
theresult o thiscall tof i rst - name and thustheresultd all four calls, astraceshows.
Onceweare happy with theworkingsd f i r st - name the special form untrace turns
off tracing.

> (first-name '(Madam Major General Paula Jones)) =
(1 ENTER FIRST-NAME: (MADAM MAJOR GENERAL PAULA JONES))
(2 ENTER FIRST-NAME: (MAJOR GENERAL PAULA JONES))
(3 ENTER FIRST-NAME: (GENERAL PAULA JONES))
(4 ENTER FIRST-NAME: (PAULA JONES))
(4 EXIT FIRST-NAME: PAULA)
(3 EXIT FIRST-NAME: PAULA)
(2 EXIT FIRST-NAME: PAULA)
(1 EXIT FIRST-NAME: PAULA)
PAULA

> (untrace first-name) = (FIRST-NAME)

> (first-name '(Mr Blue Jeans)) = BLUE

Thefunction fi rst-nareissaid to be recursive becauseits definition includes a call
toitself. Programmers who are new to the concept d recursion sometimesfind it
mysterious. But recursivefunctions are really no different from nonrecursive ones.
Any functionisrequired to return the correct valuefor the given input(s). Another
way tolook at this requirement isto break it into two parts: afunction must return
avaue, and it must not return any incorrect values. This two-part requirement is
equivalent to thefirst one, but it makesit easier to think about and design function
definitions.

Next | show an abstract description of the fi rst- rare problem, to emphasize
thedesign d thefunction and thefact that recursivesolutionsare not tiedto Lispin

any way:

function first-name(name):
if the first lement o nameisatitle
then do something complicated to get thefirst-name
else return the first ement of the name

Thisbreaksup the probleminto two cases. Inthe second case, wereturn an answer,
and itisinfact the correct answer. We have not yet specifiedwhat todoin thefirst
case. But we do know that it has something to do with therest o the name after the
first element, and that what wewant istoextract thefirst nameout o thoseelements.
Theleapd faithistogoahead and usef irst-name, eventhoughit hasnot beenfully
defined yet:

function first-name(name):
if the first element of nameisatitle
then returnthefirst-name of the rest of thename
else return the first ement of the name

Now the first casein first-name is recursive, and the second case remains un-
changed. Wealready agreed that the second casereturnsthecorrect answer, and the
first caseonly returnswhat fir s t-name returns. So fir s t-name asawholecan only
return correct answers. Thus, we're halfway to showing that the function is correct;
the other haf isto show that it eventually returns someanswer. But every recursive
call chops df thefirst element and looks at the rest, so for an n-element list there
can beat most n recursivecalls. Thiscompletesthe demonstration that the function
iscorrect. Programmerswho learn to think thisway find recursion to be avauable
tool rather than aconfusing mystery.

1.7 Higher-Order Functions

Functionsin Lisp can not only be" called," or applied to arguments, they can also be
manipulated justlikeany other kindd object. A function that takesanother function
asanargument iscalled ahigher-orderfunction. mapcar isanexample. Todemonstrate
the higher-order-functionstyled programming, wewill defineanewfunction called
mappend. It takestwo arguments, afunction and alist. mappend maps the function
over eachelement o thelist and appends together al theresults. Thefirst definition
followsimmediately from the description and thefact that thefunction apply canbe
used to apply afunctiontoalist d arguments.

(defun mappend (fn the-list)
"Apply fn to each element of list and append the results."
(apply #'append (mapcar fn the-list)))

Now we experiment alittle to see how apply and mappend work. Thefirst example
appliesthe addition function to alist d four numbers.

> (apply #'+ (1 2 3 4))=10

The next exampleappliesappend toalistd two arguments, where each argument is
alist. If theargumentswerenot lists, it would bean error.

> (apply #'append "((1 23) (abc)))=(123ABC)

Now we define a new function, self -and-double, and apply it to avariety d argu-
ments.

> (defun self-and-double (x) (list x (+ x x)))
> (self-and-double 3) = (3 6)

> (apply #'self-and-double ’(3)) = (3 6)

if wehad tried to apply self -and-doubl e toalistd morethan oneargument, or toa
list that did not contain anumber, it would bean error, just asit would bean error to
evauate (self -and-double 3 4) or (self -and-double 'Kim). Now let's return to
the mapping functions:

> (mapcar #'self-and-double *(1 10 300)) = ((1 2) (10 20) (300 600))

> (mappend #'self-and-double ’(1 10 300))=-(1 2 10 20 300 600)

When mapcar is passed afunction and alist o threearguments, it alwaysreturns a
list o threevalues. Eachvalueistheresult o calling the function on the respective
argument. In contrast, whenmappendiscalled, it returnsone biglist, whichisequal
toall thevauesthat mapcar would generate appended together. It would bean error
to call mappend with afunction that didn't return lists, becauseappend expectsto see
listsasitsarguments.

Now consider the followingproblem: given alist o elements, return alist con-
sistingd al the numbersintheoriginal list and the negation o those numbers. For
example, given thelist (testing 1 2 3 test), return (1 -1 2 -2 3 -3). This
problem can be solved very easily usingmappend as a component:

(defun numbers-and-negations (input)
"Given a list, return only the numbers and their negations."
(mappend #'number-and-negation input))

(defun number-and-negation (x)
"If x is a number, return alist of x and -x."
(if (numberp x)
(list x (- x))
nil))

> (numbers-and-negations '(testing 1 2 3 test)) = (1 -1 2 -2 3 -3)

The alternate definition o mappend shown in the following doesn't make use d
mapcal; instead it buildsup thelist one element at atime:

(defun mappend (fn the-list)
"Apply fn to each element of list and append the results."
(if (null the-list)
nit
(append (funcall fn (first the-list))
(mappend fn (rest the-list)))))

f unca 1 issimilartoapply; it too takesafunction asitsfirst argument and appliesthe
function to alist d arguments, but in the cased funcall, the argumentsarelisted

separately:

> (funcall #+ 23) = 5
> (apply #'+ (2 3)) = &

> (funcall #’+ *(2 3)) = Error: (2 3) is not a number

Theseareequivalentto (+ 2 3), (+ 2 3),and (+ "(2 3)), respectively.

Sofar, every function we have used has been either predefined in CommonLisp
or introduced with adef un, which pairsafunction withaname. Itisalso possibleto
introduce afunction without givingit aname, using the special syntax 1ambda.

The name lambda comes from the mathematician Alonzo Church's notation for
functions (Church1941). Lisp usually prefers expressive names over terse Greek
letters, but lambdaisan exception. A better namewould bemake - f uncti on. Lambda
derivesfrom the notation in Russell and Whitehead's Principia Mathematica, which
used a caret over bound variables: #(z +x). Church wanted a one-dimensional
string, so hemoved thecaretinfront: “z(z+x). Thecaretlooked funny with nothing
below it, so Church switched to the closest thing, an uppercase lambda, Az{z + X).
The A was easily confused with other symbols, so eventually the lowercaselambda
was substituted: Az(z *x). JohnMcCarthy wasastudent o Church's at Princeton,
so when McCarthy invented Lispin 1958, he adopted the lambda notation. There

wereno Greek | etters on the keypunches of that era, so McCarthy used (1ambda (x)
(+ XX)),andithassurvivedtothisday. Ingeneral, theformd alambdaexpressionis

(Tambda (parameters..) body...)

A lambda expressionis just a nonatomic name for afunction, just as append isan
atomic name for a built-in function. Assuch, it is appropriate for use in the first
positionof afunctioncall, but if wewant to get at the actual function, rather thanits
name, we still have to usethe #' notation. For example:

> ((lambda (x) (+ x 2)) 4) = 6
> (funcall #'(lambda (x) (+ x 2)) 4) = 6@

To understand the distinction we haveto be clear on how expressionsare evaluated
inLisp. Thenormal rulefor eval uation states that symbolsare eval uated by looking
upthevaued thevariablethat thesymbol refersto. Sothexin (+ X 2) isevaluated
by looking up the value d the variable named x. A listisevauated in oned two
ways. If thefirstelementd thelistisaspecial formoperator, thenthelistisevaluated
according to the syntax rule for that special form. Otherwise, thelist represents a
function call. Thefirst element is evaluated in a unique way, as a function. This
meansit can either be asymbol or alambda expression. In either case, thefunction
named by thefirst element isapplied to the valuesd the remaining elementsin the
list. Thesevaluesaredetermined by the normal evaluationrules. If wewant to refer
to afunction in a position other than the first element a function cal, we have
tousethe #' notation. Otherwise, the expressionswill be evaluated by the normal

evaluationrule, and will not be treated asfunctions. For example:

> append = Error; APPENDIsnota bound variable

> (lambda (x) (+ x 2)) = Error: LAMBDAisnotafunction

Hereare some moreexamplesd the correct used functions:

> (mapcar #'(lambda (x) (+ x x))
'(12345)) =
(246810

> (mappend #'(lambda (1) (list 1 (reverse 1)))
(1 23)(abe))) =
((123)(321) ABC) (CBA)

Programmers who are used to other languages sometimes fail to see the point o
lambdaexpressions. Therearetwo reasonswhy lambdaexpressionsarevery useful.

Firgt, it can be messy to clutter up a program with superfluous names. Just as it
is clearer to write (a+b)*(c+d) rather than to invent variable nameslike templ and
t enp2 to hold at+b and c+d, so it can be clearer to define a function as a lambda
expressionrather than inventing a namefor it.

Second, and more importantly, lambda expressions make it possible to create
new functionsat run time. Thisis a powerful technique that is not possible in
most programminglanguages. Theserun-timefunctions, known as closures, will be
coveredin section 3.16.

1.8 Other DataTypes

So far we have seen just four kinds d Lisp objects: numbers, symboals, lists, and
functions. Lisp actually defines about 25 different typesd objects: vectors, arrays,
structures, characters, streams, hash tables, and others. At this point wewill intro-
duce one more, the string. Asyou can see in the following, strings, like numbers,
evaluate to themselves. Strings are used mainly for printing out messages, while
symbolsare used for their rel ationships to other objects, and to namevariables. The
printed representation o astring has adouble quote mark (") at each end.

> "a string" = "a string"
> (length "a string") =8

> (length "") =0

1.9 Summary: ThelLisp EvaluationRule

We can now summarizethe evaluationrulefor Lisp.

e Every expressioniseither alist or an atom.
¢ Everylisttobeeval uatediseither aspediaform expression or afunction gpplication.

o Agpecid form expressionisdefined tobealistwhosefirst elementisaspecial form
operator. Theexpressionisevaluated accordingto theoperator's idiosyncratic
evaluation rule. For example, the evaluation rulefor set f is to evaluate the
second argument accordingtothenormal eval uationrule, set thefirstargument
to that value, and return the valueas theresult. Therulefor def un istodefine
a new function, and return the name d the function. The rule for quot e
is to return the first argument unevaluated. The notation ’x is actualy an

abbreviationfor thespecial formexpression (quotex). Similarly, thenotation
#' fisan abbreviationfor the special formexpression (f uncti on f).

‘John = (quote John) = JOHN
(setf p 'John) = JOHN

(defun twice (x) (+ x x)) = TWICE
(if (=23) (error) (+56)) =11

¢ Afunctionapplicationisevaluated by firsteval uating the arguments (therest o
thelist) and thenfinding thefunction named by thefirst element o thelistand
applyingittothelistd evaluated arguments.

(+23) =5
(- (+ 90 9) (+ 50 5 (length '(Pat Kim)))) = 42

Notethatif ' (Pat Kim) did not havethequote, it would betreated asafunction
applicationd thefunctionpat to thevaueof thevariablekim.

¢ Everyatomiseither a symbol or anonsymbal.

e A symbal evaluates to the most recent value that has been assigned to the
variablenamed by that symbol. Symbolsarecomposed d |etters, and possibly
digits and, rarely, punctuation characters. To avoid confusion, we will use
symbolscomposed mostly d the letters a-z and the’-’ character, with afew
exceptions®

names

P
print-pretty

e A nonsymbol atom evaluates to itself. For now, numbers and strings are the
only such non-symbol atoms we know of. Numbers are composed d digits,
and possibly adecimal point and sign. Thereare also provisionsfor scientific
notation, rational and complex numbers, and numbers with different bases,
but wewon't describethe details here. Strings are delimited by double quote
markson both sides.

For example, symbols that denote so-called special variables usually begin and end in
asterisks. Also, notethat | did not hesitate to use the symbol won! on pagell.

42 = 42
-273.15 = -273.15

"a string" = "a string"

There are some minor details d Common Lisp that complicate the evaluation
rules, but thisdefinition will sufficefor now.

One complicationthat causes confusion for beginning Lispersisthe difference
between reading and evaluating an expression. Beginnersoften imagine that when
they typean expression, such as

>(+(*34) (*56))

the Lisp systemfirst reads the (+, then fetches the addition function, then reads (*
3 4) and computes12, thenreads(* 5 6) and computes 30, and finally computes
42. Infact, what actually happensisthat the systemfirst readstheentireexpression,
thelist (+ (* 3 4) (* 5 6)). Only after it has been read does the system begin
to evaluateit. This evaluation can be done by an interpreter that looks at the list
directly, or it can bedone by acompiler that trand ates thelist into machinelanguage
instructions and then executesthoseinstructions.

We can see now that it was a little imprecise to say, ""Numbers are composed
d digits, and possibly adecimal point and sign.” It would be more precise to say
that the printed representation d a number, as expected by the function read and
as produced by the function print, is composed o digits, and possibly a decimal
point and sign. Theinternal representation d a number variesfrom one computer
to another, but you can be sure that it will be a bit pattern in a particular memory
location, and it will no longer contain the original characters used to represent the
number in decimal notation. Similarly, it is the printed representation d a string
that issurrounded by double quote marks; the internal representation isamemory
location marking the beginningd avector d characters.

Beginnerswhofail to grasp the distinction between reading and eval uating may
haveagood model o what expressions evaluateto, but they usually have aterrible
model o theefficiency d evaluatingexpressions. One student used only one-letter
variable names, because he felt that it would be faster for the computer to look up
aone-letter name than a multiletter name. Whileit may be true that shorter names
can save a microsecond at read time, this makes no differenceat al at evaluation
time. Every variable, regardlessd its name, is just amemory location, and the time
to accessthelocationdoes not depend on the name d thevariable.

1.10 What MakesLisp Different?

What isit that sets Lisp apart from other languages? Why isit agood languagefor
Al applications? Thereare at | east eightimportant factors:

e Built-inSupportfor Lists

¢ Automatic StorageM anagement
¢ DynamicTyping

e First-ClassFunctions

e Uniform Syntax

e InteractiveEnvironment

e Extensbility

e History

Insum, thesefactorsalow aprogrammer to delay makingdecisions. In theexample
dealing with names, we were able to use the built-inlist functions to construct and
mani pulate names without making alot d explicit decisions about their represen-
tation. If we decided to change the representation, it would be easy to go back and
alter partsd the program, leavingother parts unchanged.

Thisability to delay decisions—or more accurately, to make temporary, nonbind-
ingdecisions—isusually agood thing, becauseit meansthat irrel evant detail scan be
ignored. Thereareal sosome negativepointsd delayingdecisions. First, thelesswe
tell the compiler, the greater the chancethat it may haveto produceinefficientcode.
Second, thelesswetell thecompiler, thelesschanceithasd noticinginconsistencies
and warning us. Errorsmay not be detected until the programisrun. Let's consider
each factor in moredepth, weighing the advantages and disadvantages:

e Built-in Qupport for Lists. Thelistisavery versatiledatastructure, and whilelists
can be implemented in any language, Lisp makesit easy to use them. Many
Al applicationsinvolvelists of constantly changing size, makingfixed-length
data structureslikevectorsharder to use.

Earlyversionsd Lispusedlistsastheir only aggregatedatastructure. Common
Lispprovidesother typesaswell, becauselistsare not al waysthe most efficient
choice.

¢ Automatic Sorage Management. The Lisp programmer needn't keep track o
memory alocation; itisall doneautomatically. Thisfreesthe programmer o a
lotd effort,and makesit easy tousethefunctional styled programming. Other

languages present programmerswith achoice. Variablescan be allocated on
the stack, meaning that they are created when a procedure is entered, and
disappear when the procedureisdone. Thisisan efficientuse d storage, but
it rules out functions that return complex values. The other choiceisfor the
programmer to explicitly allocateand free storage. This makesthe functional
stylepossiblebut canlead toerrors.

For example, consider thetrivial problemof computingtheexpressiona x (b+
c), wherea, b, and ¢ are numbers. Thecodeistrivial in any language; hereitis
inPasca andinLisp:

/* Pascal */ ;55 Lisp

a*(b+o (*a (+bc)

Theonly differenceisthat Pascal usesinfixnotationand Lisp uses prefix. Now
consider computinga X (b+ c)whena,b,and care matrices. Assumewe have
proceduresfor matrix multiplicationand addition. In Lisp theform is exactly
the same; only the names d the functions are changed. In Pascal we havethe
choiced approaches mentioned before. Wecould declaretemporary variables
toholdintermediate resultson thestack, and replacethefunctional expression
withaseriesd procedurecalls:

/* Pascal */ ;35 Lisp

var temp, result: matrix;

add(b,c,temp); (mult a (add b c¢))
mult(a,temp,result);

return(resul tJ;

The other choiceistowrite Pascal functions that allocatenew matriceson the
heap. Then one can write nicefunctional expressionslikemuit(a, add(b,c))
evenin Pascal. However, in practiceit rarely worksthis nicely, becaused the
need to manage storageexplicitly:

/* Pascal */ ;53 Lisp

var a,b,c,x,y: matrix;

x = add(b,c); (muTt a (add b c))
y :=mult(a,x);

free(x);

return(y);

In general, deciding which structuresto free is a difficult task for the Pascal
programmer. If the programmer misses some, then the program may run out
d memory. Worsg, if the programmer freesastructurethat isstill beingused,
then strange errors can occur when that pieced memory isreallocated. Lisp
automatically allocates and frees structures, so these two types d errors can
never occur.

Dynamic Typing. Lisp programmers don't have to provide type declarations,
becausethelanguagekeepstrack d thetyped each object at run time, rather
than figuringout all typesat compiletime. This makesLisp programsshorter
and hence faster to develop, and it also means that functions can often be
extended to work for objects to which they were not originally intended to
apply. In Pascal, we can writea procedure to sort an array d 100 integers, but
we can't use that same procedure to sort 200 integers, or 100 strings. In Lisp,
onesortfitsall.

Oneway to appreciate thiskind d flexibilityisto seehow hard itisto achieve
in other languages. Itisimpossiblein Pascal; infact, thelanguageModulawas
invented primarily to fix this problem in Pascal. The language Ada was de-
signed to allow flexiblegenericfunctions, and abook by M usser and Stepanov
(1989) describes an Ada package that givessome d thefunctionality d Com-
mon Ligp's sequence functions. But the Ada solution is less than ideal: it
takesa 264-pagebook to duplicate only part d thefunctionality d the 20-page
chapter 14from Steel e (2990), and M usser and Stepanov went throughfiveAda
compilers before they found one that would correctly compiletheir package.
Also, their packageis considerably less powerful, sinceit does not handlevec-
tors or optional keyword parameters. In Common Lisp, all thisfunctionality
comesfor free, anditiseasy toadd more.

On the other hand, dynamic typing meansthat someerrorswill go undetected
until runtime. Thegreat advantaged strongly typed languagesisthat they are
abletogiveerror messagesat compiletime. Thegreat frustration with strongly
typed languagesisthat they are only ableto warn about asmall classd errors.
They can tell you that you are mistakenly passing a string to a function that
expectsan integer, but they can't tell you that you are passing an odd number
toafunction that expectsan even number.

Firg-Class Functions. A first-class object isone that can be used anywhere and
can bemanipulated i nthe samewaysasany other kind d object. InPascal or C,

for example, functions can be passed asarguments to other functions, but they
are not first-class, becauseit is not possibleto create new functions whilethe
programisrunning, nor isit possibleto createan anonymousfunction without
givingit aname. In Lisp we can do both those thingsusing Tambda. Thisis
explainedin section 3.16, page 92.

o UniformSyntax. The syntax of Lisp programsissimple. This makes the lan-
guageeasy tolearn, and very littletimeiswasted correctingtypos. Inaddition,
it is easy to write programs that manipulate other programs or define whole
new languages—avery powerful technique. The simple syntax also makesit
easy for text editing programs to parse Lisp. Your editor program should be
able to indent expressions automatically and to show matching parentheses.
Thisis harder todofor languageswith complex syntax.

On the other hand, some people object to all the parentheses. There are two
answers to this objection. First, consider the alternative: in alanguagewith
"conventiona" syntax, Ligp's parenthesespairswould bereplaced either by an
implicitoperator precedencerule (inthe cased arithmetic and logica expres-
sions) or by abegin/end pair (inthe case d control structures). But neither
d theseisnecessarily an advantage. Implicit precedenceis notoriously error-
prone, and begin/end pairs clutter up the page without adding any content.
Many languagesare moving away from begin/end: C uses { and }, whichare
equivalent to parentheses, and several modern functional languages (such as
Haskell) use horizontal blank space, with no explicitgrouping at all.

Second, many Lisp programmers have considered the alternative. Therehave
beenanumber d preprocessorsthat translate from “conventional” syntaxinto
Lisp. None d these has caught on. It is not that Lisp programmers find it
tolerable to use all those parentheses, rather, they find it advantageous. With a
littleexperience, you may too.

It is also important that the syntax of Lisp data is the same as the syntax o
programs. Obvioudy, this makesit easy to convert data to program. Less
obviousis the time saved by having universal functions to handle input and
output. TheLispfunctionsread and p rint will automatically handle any list,
structure, string, or number. This makesit trivial to test individual functions
whiledevel opingyour program. Inatraditional languagelike C or Pascal, you
would havetowrite special - purposefunctions to read and print each data type
you wanted to debug, as well as a special-purposedriver to call the routines.
Because this is time-consuming and error-prone, the temptation is to avoid
testing altogether. Thus, Lisp encourages better-tested programs, and makes
it easier to developthemfaster.

o Interactive Environment. Traditionally, a programmer would write a complete
program, compileit, correct any errors detected by the compiler, and then

run and debugit. Thisis known as the batch mode o interaction. For long
programs, waitingfor the compiler occupiedalarge portion d the debugging
time. In Lisp one normally writes a few small functionsat a time, getting
feedback from the Lisp system after evaluating each one. Thisis known as
an interactive environment. When it comes time to make a change, only the
changed functions need to be recompiled, so the wait is much shorter. In
addition, the Lisp programmer can debug by typing in arbitrary expressions
at any time. Thisisabigimprovement over editing the program to introduce
print statements and recompiling.

Noticethat thedi stinction betweeninteractiveand abatchlanguagesisseparate
from the distinction betweeninterpreted and compiled languages. It has often
been stated, incorrectly, that Lisp has an advantage by virtue d being an
interpreted language. Actudlly, experienced Common Lisp programmerstend
to use the compiler a most exclusively. Theimportant pointisinteraction, not
interpretation.

Theidead aninteractiveenvironment issuchagood onethat eventraditional
languageslike C and Pascd are starting to offer interactiveversions, so thisis
not an exclusiveadvantaged Lisp. However, Lisp still provides much better
access to theinteractivefeatures. A Cinterpreter may allow the programmer
totypeinan expressionand haveit evaluatedimmediately, butit will not allow
the programmer to write a program that, say, goes through the symbol table
and finds all the user-defined functions and prints information on them. In
C—even interpreted C—the symbol table is just a Cheshire-cat-likeinvention
d theinterpreter's imagination that disappears when the programisrun. In
Lisp, thesymbol tableisafirst-classobject’ that can be accessed and modified
withfunctionslike read, intern and do-symbolss.

Common Lisp offersan unusually rich set d useful tools, including over 700
built-in functions (ANSI Common Lisp has over 900). Thus, writing a new
programinvolvesmoregatheringd existing piecesd codeand lesswriting of
new codefrom scratch. In addition to the standard functions, Common Lisp
implementations usually provide extensions for interacting with the editor,
debugger, and window system.

a Extensibility. WhenLispwasinventedin1958, nobody could haveforeseenthe
advancesin programmingtheory and languagedesignthat havetaken placein
thelast thirty years. Other early languageshave been discarded, replaced by
ones based on newer ideas. However, Lisp has been ableto survive, because
it has been ableto adapt. BecauseLispisextensible, it has been changed to
incorporatethe newest features as they become popular.

7 Actually, there can be several symbol tables. They are known as packagesin Common
Lisp.

The easiest way to extend the languageis with macros. When so-called struc-
tured programming constructs such as case and if-then-elsearose, they were
incorporated into Lisp as macros. Rut the flexibility of Lisp goes beyond
addingindividual constructs. Brand new stylesd programming can easily be
implemented. Many Al applications are based on the idea d rule-based pro-
gramming. Another new styleis object-orientedprogramming, which has been
incorporated with the Common Lisp Object System (CLOS),? aset d macros,
functions, and data typesthat have beenintegrated into ANS Common Lisp.

To show how far Lisp has come, here's the only sample program given in the
Lisp/MTS Programmer's Guide (Haf ner and Wilcox1974):

(PROG (LIST DEPTH TEMP RESTLIST)

(SETQ RESTLIST (LIST (CONS (READ) 0)))

A (COND

((NOT RESTLIST) (RETURN 'DONE))

(T (SETQ LIST (UNCONS (UNCONS RESTLIST
RESTLIST) DEPTH))

COND ((ATOM LIST)

(

(MAPC *PRINI (LIST "ATOM:" LIST ""," 'DEPTH DEPTH))
(TERPRI))

(T (SETQ TEMP (UNCONS LIST LIST))

(COND (LIST
(SETQ RESTLIST (CONS(CONS LIST DEPTH) RESTLIST))))
(SETQ RESTLIST (CONS (CONS TEMP
(ADD1 DEPTH)) RESTLIST))
1))
(GO A))

Note the use d the now-deprecated goto (GO) statement, and the lack d consistent
indentation conventions. The manual also gives a recursiveversion d the same
program:

(PROG NIL (
(LABEL ATOMPRINT (LAMBDA (RESTLIST)
(COND ((NOT RESTLIST) (RETURN 'DONE))
((ATOM (CAAR RESTLIST)) (MAPC 'PRIN1

(LIST "ATOM:" (CAAR RESTLIST)

%" 'DEPTH (CDAR RESTLIST)))

(TERPRI)
(ATOMPRINT (CDR RESTLIST)))
(T (ATOMPRINT (GRAFT
(LIST (CONS (CAAAR RESTLIST) (ADD1 (CDAR RESTLIST))))
(AND (CDAAR RESTLIST) (LIST (CONS (CDAAR RESTLIST)

8Pronounced "see-loss" An alternate pronunciation, "klaus," seemsto belosingfavor.

(CDAR RESTLIST))))
(CDR RESTLIST)))))))
(LIST (CONS (READ) 0))))

Both versions are very difficult to read. With our modern insight (and text editors
that automaticallyindent), amuch simpler programis possible;

(defun atomprint (exp &optional (depth 0))
"Print each atom in exp, along with its depth of nesting."
(if (atom exp)
(format t "'&ATOM: "a, DEPTH ~d" exp depth)
(dolist (element exp)
(atomprint element (+ depth 1)))))

111 Exercises

Exercise 1.1[m] Defineaversion of 1ast-name that handles "Rex Morgan MD,"
""Morton Downey, Jr.,” and whatever other casesyou can think of.

Exercise 1.2[m] Writeafunction to exponentiate, or raiseanumber to an integer
power. For example: (power 3 2) =32 =09.

Exercise 1.3[m] Writeafunction that countsthe number d atomsinanexpression.
For example: (count-atoms '(a (b) c¢)) = 3. Noticethat thereissomething d an
ambiguity in this: should (a nil c¢) count asthree atoms, or as two, becauseitis
equivalentto(a () ¢)?

Exercise 1.4[m] Writeafunctionthat counts the number d times an expression
occurs anywhere within another expression. Example: (count-anywhere 'a *(a
((a) b) a)) = 3.

Exercise 1.5[m] Write afunction to compute the dot product d two sequences
d numbers, represented as lists. The dot product is computed by multiplying
corresponding elements and then adding up the resulting products. Example:

(dot-product *(10 20) *(3 4)) = 10x3 + 20x4 = 110

1.12 Answers

Answve 1.2

(defun power (x n)
"Power raises x to the nth power. N nust be an integer >= 0.
This executes in log n tine, because of the check for even n."
(cond ((=no0)1)
((evenp n) (expt(power Xx (/ n 2)) 2))
(t (* x(power x (- n1)NN

Answve 1.3

(defun count-atons (exp)
"Return the total nunber of non-nil atons in the expression.’
(cond ((null exp) 0)
((atom exp) 1)
(t (+(count-atons (first exp))
(count-atoms (rest exp))))))

(defun count-all-atoms (exp &optional (if-null 1))
"Return the total nunber of atons in the expression.
counting nil as an atomonly in non-tail position."
(cond ((null exp) if-null)

((atom exp) 1)
(t (+(count-all-atons (first exp) 1)
(count-al | -atoms (rest exp) 0)))))

Answve 1.4

(defun count-anywhere (item tree)
"Count the times item appears anywhere within tree."
(cond ((eql itemtree) 1)
((atom tree) 0)
(t (+(count-anywhere item(first tree))
(count-anywhere item(rest tree))))))

Ansnver 1.5 Herearethreeversions:

(defun dot-product (a b)
"Compute the mathematical dot product of two vectors."”
(if Cor (null a) (null b))
0
(+ (* (first a) (first b))
(dot-product (rest a) (rest b)))))

(defun dot-product (a b)
"Compute the mathematical dot product of two vectors."”
(let ((sum 0))
(dotimes (i (length a))
(incf sum (* (elt a i) (elt b 1))))
sum))

(defun dot-product (a b)
"Compute the mathematical dot product of two vectors.”
(apply #'+ (mapcar #°'* a b)))

CHAPTER 2

A Simple Lisp Program

Certum quod factum.
(Oneiscertainof onlywhat one builds.)

—Giovanni Battista Vico (1668-1744)
Italian royal historiographer

Rather, you must hear and speak (or read and write) the language to gain proficiency.

Y ou will never become proficient in a foreign language by studying vocabulary lists.
Thesameistruefor learning computer languages.

This chapter shows how to combine the basic functions and special forms d Lispinto a
completeprogram. If you canlearn how to do that, then acquiring the remaining vocabulary o
Lisp (asoutlined in chapter 3) will be easy.

2.1 A Grammar for aSubset d English

The program we will develop in this chapter generates random English sentences.
Hereisasimplegrammar for atiny portiond English:

Sentence = Noun-Phrase + Verb-Phrase
Noun-Phrase=> Article+ Noun
Verb-Phrase= Verb+ Noun-Phrase
Article=the, a ...

Noun = man, ball, woman, table. ..
Verb = hit, took, saw, liked. ..

To be technical, this description is call ed a context-free phrase-structuregrammar, and
the underlying paradigm is called generativesyntax. The ideais that anywhere we
wantasentence, wecangenerateanoun phrasefollowed by averb phrase. Anywhere
anoun phrase has been specified, wegenerateinstead an articlefollowedby anoun.
Anywherean articlehas been specified, we generateeither "the," "'a" or someother

article. Theformalismis" context-free' becausethe rulesapply anywhere regardless
d the surrounding words, and the approach is" generative'" because therulesas a
wholedefine the completeset of sentencesin alanguage (and by contrast the set d

nonsentences aswell). In thefollowingwe show the derivation d asingle sentence
usingtherules:

Toget a Sentence, append a Noun-Phrase and a Verb-Phrase
Toget aNoun-Phrase, append anArticleand aNoun
Choose"the" for theArticle
Choose"man" for theNoun
Theresulting Noun-Phrase i s" the man"
Toget a Verb-Phrase, append a Verband aNoun-Phrase
Choose"hit" forthe Verb
Toget aNoun-Phrase, append anArticleand aNoun
Choose"the" for theArticle
Choose"ball" for theNoun
Theresulting Noun-Phraseis" the ball"
Theresulting Verb-Phrase is" hit the ball"
Theresulting Sentence is" The man hit the ball"

2.2 A Straightforward Solution

Wewill devel opa programthat generates random sentencesfrom aphrase-structure
grammar. The most straightforwardapproach isto represent each grammar rule by
aseparate Lispfunction:

append (noun-phrase) (verb-phrase)))
(defun noun-phrase () (append (Article) (Noun)))
(defun verb-phrase () (append (Verb) (noun-phrase)))

(defun sentence () (
(
(
(defun Article () (one-of '(the a)))
(
(

(defun Noun () one-of '(man ball woman table)))
(defun Verb O one-of "(hit took saw liked)))

Each d these function definitions has an empty parameter list, (). That meansthe
functions take no arguments. Thisisunusual because, strictly speaking, afunction
with no arguments would alwaysreturn the same thing, so wewould use aconstant
instead. However, these functions make use d the r andomfunction (aswewill see
shortly), and thus can return different results even with no arguments. Thus, they
arenotfunctionsinthe mathematical sense, but they arestill calledfunctionsinLisp,
becausethey return avalue.

All that remains now is to define the function one-of . It takesalist d possible
choicesas an argument, choosesone d these at random, and returns a one-element
list o the element chosen. Thislast part isso that all functionsin the grammar will
returnalist d words. That way, we can freely apply append toany category.

(defun one-of (set)
"Pick one element of set, and make a list of it."
(list (random-elt set)))

(defun random-elt (choices)
"Choose an element from a list at random."
(elt choices (random (length choices))))

Therearetwo new functionshere, el tandrandom el t picksanelement out o alist.
Thefirst argument isthelist, and the second isthe positionin thelist. Theconfusing
partisthat the positionsstart at 0, so (el t choi ces 0) isthefirst element o thelist,
and(el t choi ces 1)isthesecond. Think d the position numbers as tellingyou
how far away you arefrom thefront. Theexpression (random n) returnsaninteger
from0ton-1, sothat (random 4) would return either 0,1,2, or 3.

Now we can test the program by generating afew random sentences, alongwith
anoun phraseand averb phrase:

> (sentence) = (THE WOMAN HIT THE BALL)

> (sentence) = (THE WOMAN HIT THE MAN)
sentence) = (THE BALL SW THE WOVAN)
sentence) = (THE BALL SW THE TABLE)
noun-phrase) = (THE MAN)

verb-phrase) = (LIKED THE WOVAN)

>
>
>

(
(
(
(
(
(

>

> (trace sentence noun-phrase verb-phrase article noun verb) =
(SENTENCE NOUN-PHRASE VERB-PHRASE ARTICLE NOUN VERB)

> (sentence) =
(1 ENTER SENTENCE)
(1 ENTER NOUN-PHRASE)
(1 ENTER ARTICLE)
(1 EXIT ARTICLE: (THE))
(1 ENTER NOUN)
(1 EXIT NOUN: (MAN))
(1 EXIT NOUN-PHRASE: (THE MAN))
(1 ENTER VERB-PHRASE)
(1 ENTER VERB)
(1 EXIT VERB: (HIT))
(1 ENTER NOUN-PHRASE)
(1 ENTER ARTICLE)
(1 EXIT ARTICLE: (THE))
(1 ENTER NOUN)
(1 EXIT NOUN: (BALL))
(1 EXIT NOUN-PHRASE: (THE BALL))
(1 EXIT VERB-PHRASE: (HIT THE BALL))
(1 EXIT SENTENCE: (THE MAN HIT THE BALL))
(THE MAN HIT THE BALL)

The program worksfine, and the tracelooks just like the sample derivation above,
but the Lisp definitions are a bit harder to read than the original grammar rules.
This problemwill be compounded aswe consider more complex rules. Supposewe
wanted to allow noun phrases to be modified by an indefinitenumber o adjectives
and an indefinite number of prepositional phrases. In grammatical notation, we
might havethefollowingrules:

Noun-Phrase = Article+ Adj* + Noun+ PP*
Adj* = 0, Adj +Adj*

PP* = ¢, PP+ PP*

PP = Prep+ Noun-Phrase

Adj =- big, little, blue, green, ...

Prep = to, in, by, with, ...

In thisnotation, 0indicates achoiced nothing at all, acommaindicatesachoiced
severa aternatives, and theasterisk isnothing specid —asin Lisp, it’s just part d the
named asymbol. However, the convention used here is that names endingin an
asteri sk denote zeroor morerepetitionsd theunderlyingname. Thatis, PP* denotes
zero or morerepetitionsd PP. Thisisknown as“Kleene star' notation (pronounced

"dean-E") after the mathematician Stephen ColeKleene.!

Theproblemisthat therulesfor Adj" and PP contain choi cesthat wewould have
torepresent assomekind d conditional in Lisp. For example:

(defun Adi* ()
(if (= (random 2) 0)
nil
(append (Adj) (Adj*))))

(defun PP ()
(if (random-elt ’(t nil))
(append (PP) (PP*))
nil))

(defun noun-phrase () (append (Article) (Adj*) (Noun) (PP*)))
(defun PP () (append (Prep) (noun-phrase)))

(defun Adj () (one-of '(big little blue green adiabatic)))
(defun Prep () (one-of '(to in by with on)))

I've chosen two different implementations for Adj* and PP*; either approach would
work in either function. Wehaveto becareful, though; here are two approaches that
would not work:

(defun Adj* ()
"Warning - incorrect definition of Adjectives."
(one-of '(nil (append (Adj) (Adj*)))))

(defun Adi* O
"Warning - incorrect definition of Adjectives."
(one-of (list nil (append (Adj) (Adj*)))))

Thefirst definitioniswrong becauseit could return theliteral expression ((append
(Adj) (Adj*))) rather thanalist of words asexpected. Thesecond definitionwould
cause infinite recursion, because computing the valued (Adj*) alwaysinvolvesa
recursivecall to (Adj*). The point isthat what started out as simplefunctions are
now becoming quite complex. To understand them, we need to know many Lisp
conventions—def un, (), case, i f, quote, and therulesfor order o evaluation—when
ideally theimplementation of agrammar ruleshould useonly | ingi sti ¢ conventions.
if wewanted to developalarger grammar, the problem could get worse, becausethe
rule-writer might have to depend moreand moreon Lisp.

'We will soon see"Kleene plus" notation, wherein PP+ denotes one or more repetition
d PP.

2.3 A Rule-Based Solution

Analternativeimplementationd this programwould concentrateon makingit easy
to write grammar rules and would worry later about how they will be processed.
Let's look again at the original grammar rules:

Sentence = Noun-Phrase+ Verb-Phrase
Noun-Phrase = Article+ Noun
Verb-Phrase=-Verb+ Noun-Phrase
Article=-the, a,...

Noun=- man, ball, woman, table. ..
Verb = hit, took, saw, liked. ..

Eachruleconsistsd an arrow with asymbol on theleft-hand sideand something on
the right-hand side. The complication isthat there can be two kinds d right-hand
sides: aconcatenatedlistd symbols, asin' Noun-Phrase=> Artide+Noun," or alistd
aternatewords, asin'Noun = men, kdl, . . .” We can account for these possibilities
by decidingthat every rulewill havealistd possibilitieson theright-handside, and
that aconcatenatedlist,for exanple Artide+Noun,” will berepresented asaLisplist,
for example™ (Article Nan)”. Thelistd rulescan then berepresented asfollows:

(defparameter *sinple-grammar*

"((sentence ->(noun-phrase verh-phrase))
(noun-phrase ->(Article Noun))
(verb-phrase ->(Verb noun-phrase))
(Article ->the a)

(Noun -> man ball woman table)
(Verb -> hit took saw liked))
"A grammar for a trivial subset of English.")

(defvar *grammar* *sinple-grammar*
"The grammar used by generate. Initially, this is
simple-grammar, but we can switch to other grammars.")

Note that the Lisp versiond the rules closely mimics the original version. In par-
ticular, | include thesymbol "'->", eventhoughit servesno real purpose; itis purely
decorative.

The special forms def var and def parameter both introduce special variables
and assign a value to them; the differenceis that a varigble, like *grammar*, is
routinely changed during the course d running the program. A parameer, like
simple-grammar, on the other hand, will normally stay constant. A changeto a
parameter isconsidered achange to the program, not achange by the program.

Oncethelist o ruleshasbeendefined, it can beused tofind the possiblerewrites
d agivencategory symbol. Thefunction associsdesigned for just thissort o task.

It takestwo arguments, a"key" and alist o lists, and returnsthefirst element o the
listd liststhat startswiththekey. If thereisnone, it returnsnil. Hereisanexample:

> (assoc 'noun *gramma*) = (NOUN -> MAN BALL WOMAN TABLE)

Althoughrules are quite ssimply implemented aslists, it isagood idea to impose a
layer o abstraction by definingfunctionsto operate ontherules. Wewill need three
functions: oneto get theright-hand side d arule, onefor theleft-handside, and one
tolook up al the possiblerewrites (right-handsides) for acategory.

(defun rule-lhs (rule)
"The left-hand side of a rule."
(first rule))

(defun rule-rhs (rule)
"The right-hand side of a rule."
(rest (rest rule)))

(defun rewrites (category)
"Return a list of the possible rewrites for this category."
(rule-rhs (assoc category *grammar*)))

Defining these functions will make it easier to read the programs that use them,
and it also makeschanging therepresentation d ruleseasier, should weever decide
todoso.

We are now ready to address the main problem: defining a function that will
generatesentences(or nounphrases, or any other category). Wewill call thisfunction
generate. Itwill haveto contend with threecases: (Dinthe simplest case, generate
ispassed asymbol that hasaset d rewriterulesassociatedwithit. Wechooseoned
thoseat random, and thengeneratefromthat. (2) If thesymbol hasno possiblerewrite
rules, it must beaterminal symbol —aword, rather than agrammati cal category—and
wewant to leaveit alone. Actualy, wereturn thelist d the input word, because, as
in the previous program, wewant al results to belists d words. (3) In some cases,
when the symbol has rewrites, we will pick one that isalist d symbols, and try to
generate from that. Thus, generate must also accept alist asinput, in which case
it should generate each element d the list, and then append them all together. In
thefollowing, thefirst clausein generate handlesthiscase, whilethe second clause
handles (1)and the third handles (2). Note that we used the mgppend function from
section1.7 (pagel8).

(defun generate (phrase)
"Generate a random sentence or phrase”
(cond ((Tistp phrase)

(mappend #'generate phrase))

((rewrites phrase)
(generate (random-elt (rewrites phrase))))
(t (list phrase))))

Like many o the programs in this book, this function is short, but dense with
information: the craft d programmingincludes knowingwhat not to write, as well
aswhat towrite.

Thisstyled programmingis called data-driven programming, because the data
(thelistd rewritesassociated with acategory)driveswhat the program does next. It
isanatural and easy-to-usestylein Lisp, |leading to conciseand extensibleprograms,
becauseitisawayspossibletoadd anew pieceof datawith anew associationwithout
having to modify the original program.

Hereare some examplesd generatein use:

> (generate 'sentence) = (THE TABLE SW THE BALL)
> (generate 'sentence) = (THE WOMMAN HIT A TABLE)
> (generate 'noun-phrase) = (THE MAN)

> (generate 'verb-phrase) = (TOOK A TABLE)

There are many possible ways to write generate. The followingversion uses i f
instead d cond:

(defun generate (phrase)
"Generate a random sentence or phrase"
(if (Tistp phrase)
(mappend #'generate phrase)
(let ((choices (rewrites phrase)))
(if (null choices)
(list phrase)
(generate (random-elt choices))))))

Thisversionusesthe specia formlet, whichintroduces anew variable(inthis case,
choi ces) and also bindsthevariabletoava ue. Inthiscase, introducing the variable
saves usfrom callingthe function rewrites twice, aswasdonein the cond version
d generate. Thegenera formd aletformis:

(let ({varwvalue)...)
body-containing-vars)

let isthe most common way d introducing variables that are not parameters d
functions. One must resist the temptation to use avariablewithout introducing it:

(defun generate (phrase)
(setf choices ...) ;3 wrong!
. choices ...)

Thisiswrong becausethe symbol choices now refersto aspecial or global variable,
onethat may be shared or changed by other functions. Thus, thefunction generate
isnot reliable, becausethereisno guaranteethat choices will retain the samevalue
fromthetimeitissettothetimeitisreferencedagain. Withle t weintroduceabrand
new variable that nobody el se can access; thereforeit isguaranteed to maintain the
proper value.

Exercise 2.1 [m] Write aversion d generate that uses cond but avoids calling
rewrites twice.

Exercise 2.2[m] Writeaversiond generate that explicitly differentiates between
terminal symbols(thosewith no rewriterules) and nonterminal symbols.

2.4 Two Pathsto Follow

Thetwoversionsd the preceding program represent two alternate approaches that
come up time and time againin developing programs: (1)Use the most straightfor-
ward mapping o the problem description directly into Lisp code. (2) Usethe most
natural notation available to solve the problem, and then worry about writing an
interpreter for that notation.

Approach (2)involvesan extra step, and thusis morework for small problems.
However, programs that use this approach are often easier to modify and expand.
Thisis especially true in adomain where thereisalot d data to account for. The
grammar d natural languageis one such domain—infact, most Al problemsfit this
description. Theidea behind approach (2) is to work with the problem as much as
possiblein its own terms, and to minimizethe part d the solution that is written
directlyinLisp.

Fortunately,itisvery easyin Lisp todesignnew notations—ineffect, new program-
ming languages. Thus, Lisp encouragesthe construction d more robust programs.
Throughout this book, we will be aware d the two approaches. The reader may
noticethat in most cases, we choose the second.

2.5 Changing the Grammar without Changing
the Program

We show the utility of approach (2) by defininganew grammar that includes adjec-
tives, prepositional phrases, proper names, and pronouns. We can then apply the
generatefunction without modificationto this new grammar.

(defparameter *bigger-grammar*

‘((sentence -> (noun-phrase verb-phrase))
(noun-phrase -> (Article Adj* Noun PP*) (Name) (Pronoun))
(verb-phrase -> (Verb noun-phrase PP*))
(PP* -> () (PP PP*))

(Adj* -> () (Ad] Adj*))

(PP -> (Prep noun-phrase))

(Prep -> to in by with on)

(Adj -> big little blue green adiabatic)
(Article -> the a)

(Name -> Pat Kim Lee Terry Robin)

(Noun -> man ball woman table)

(Verb -> hit took saw Tiked)

(Pronoun -> he she it these those that)))

(setf *grammar* *bigger-grammar#*)

> (generate 'sentence)

(A TABLE ON A TABLE IN THE BLUE ADIABATIC MAN SW ROBIN

WITH A LITTLE WOVAN)

> (generate 'sentence)

(TERRY SW A ADIABATIC TABLE ON THE GREEN BALL BY THAT WITH KIM

IN THESE Br A GREEN WOMAN BY A LITTLE ADIABATIC TABLE IN ROBIN
N LEE)

> (generate 'sentence)
(THE GREEN TABLE HIT IT WITH HE)

Noticethe problemwith caseagreement for pronouns:. the programgenerated"with
he," although "with him" is the proper grammatical form. Also, it isclear that the
programdoes not distinguish sensiblefrom silly output.

2.6 Usingthe Same Datafor Several Programs

Another advantage o representing information in a declarative form—as rules or
factsrather than as Lispfunctions—isthat it can be easier to use theinformation for
multiple purposes. Suppose wewanted afunction that would generate not just the

list of wordsin asentence but arepresentation d the completesyntax d asentence.
For example, instead d thelist (a waren took a ball), wewant togetthenested list:

(SENTENCE (NOUN-PHRASE (ARTICLE A) (NOUN WOMAN))
(VERB-PHRASE (VERB TOOK)
(NOUN-PHRASE (ARTICLE A) (NOUN BALL))))

Thiscorresponds to the treethat linguistsdraw asinfigure2.1.

sentence
VP
NP NP
/\ /\
art noun verb art noun
e|1 wor'nan tolok L bLII

Figure2.1: Sentence ParseTree

Usingthe" straightforwardfunctions" approach wewould be stuck; we'd haveto
rewriteevery function togenerate theadditional structure. With the" new notation"
approach we could keep the grammar as it is and just write one new function: a
version d generate that produces nested lists. The two changes are to cons the
category onto the front o each rewrite, and then not to gppend together the results
but rather just list themwith mapcar:

(defun generate-tree (phrase)

"Generate a random sentence or phrase,

with a complete parse tree."

(cond ((listp phrase)
(mapcar #'generate-tree phrase))
((rewrites phrase)
(cons phrase

(generate-tree (random-elt (rewrites phrase)))))

(t (list phrase))))

Hereare someexamples:

> (generate-tree 'Sentence)

(SENTENCE (NOUN-PHRASE (ARTICLE A)
(ADJ*)
(NOUN WOMAN)
(PP*))

(VERB-PHRASE (VERB HIT)

(NOUN-PHRASE (PRONOUN HE))
(PP*)))

> (generate-tree 'Sentence)
(SENTENCE (NOUN-PHRASE (ARTICLE A)
(NOUN WOMAN))
(VERB-PHRASE (VERB TOOK)
(NOUN-PHRASE (ARTICLE A) (NOUN BALL))))

As another exampled the one-data/multiple-program approach, we can develop a
function to generate all possible rewrites of a phrase. The function generate-alil
returnsalist d phrases rather than just one, and we define an auxiliary function,
combi ne-al1, tomanagethecombinationof results. Also, therearefour casesinstead
d three, becausewe have to check for nil explicitly. Still, the complete programiis
quitesimple:

(defun generate-all (phrase)
"Generate a list of all possible expansions of this phrase."
(cond ((null phrase) (Tist nil))
((listp phrase)
(combine-all (generate-all (first phrase))
(generate-all (rest phrase))))
((rewrites phrase)
(mappend #'generate-all (rewrites phrase)))
(t (list (list phrase)))))

(defun combine-all (xlist ylist)
"Return a list of lists formed by appending ay to an x.
E.g., (combine-all *((a) (b)) *((1) (2)))
> ((A1) (B1) (A2) (B2)."
(mappend #°(Tambda (y)
(mapcar #'(lambda (x) (append x y)) xlist))
ylist))

Wecan now usegenerate-all totest our original littlegrammar. Notethat aserious
drawback o generate-all isthat it can't deal with recursive grammar rules like
'‘Adi* = Adj + Adj*' that appear in*bigger-grammar*, sincetheselead toaninfinite
number d outputs. Butit worksfineforfinitelanguages, likethelanguagegenerated
by *simp1e-grammar*:

> (generate-all 'Article)
((THE) (A))

> (generate-all 'Noun)

(MAN) (BALL) (WOMAN) (TABLE))

> (generate-all 'noun-phrase)
((A MAN) (A BALL) (A WOVAN) (A TABLE)
(THE MAN) (THE BALL) (THE WOVAN (THE TABLE))

> (length (generate-all 'sentence))
256

Thereare 256 sentences becauseevery sentencein thislanguagehastheform Article-
Noun-Verb-Article-Noun, and there are two articles, four nouns and four verbs
(2X4X4X2X4=256).

2.7 EXercises

Exercise 2.3[nh] Write atrivia grammar for some other language. This can be a
natural languageother than English, or perhapsasubset d acomputer language.

Exercise 2.4[rn] Oneway d describingcombi ne-allisthat it calculatesthe cross-
product d thefunction gppend ontheargument lists. Writethehigher-orderfunction
cross-product, and definecombi ne-all intermsd it.

Themoral isto makeyour codeasgeneral as possible, becauseyou never know what
you may want todo withit next.

2.8 Answers

Answer 2.1

(defun generate (phrase)
"Generate a random sentence or phrase"
(let ((choices nil))
(cond ((listp phrase)
(mappend #'generate phrase))
((setf choices (rewrites phrase)
(generate (random-elt choices))
(t (list phrase)))))

)
)

Answer 2.2

(defun generate (phrase)
"Generate a random sentence or phrase”
(cond ((1istp phrase)
(mappend #'generate phrase))
((non-terminal-p phrase)
(generate (random-elt (rewrites phrase))))
(t (list phrase))))

(defun non-terminal -p (category)
"True if this is a category in the grammar."
(not (null (rewrites category))))

Answer 2.4

(defun cross-product (fn xlist ylist)
"Return a list of all (fn x y) values."
(mappend #’(Tambda (y)
(mapcar #'(lambda (x) (funcall fn x y))
xlist))
ylist))

(defun combine-all (xlist ylist)
"Return a list of lists formed by appending ay to an x"
(cross-product #'append xlist ylist))
Now we can use the cross- product in other waysaswell:

> (cross-product #°+ *(1 2 3) (10 20 30))

(11 12 13

21 22 23

31 32 33)

> (cross-product #°1ist '‘(a bcde f g h)
(1234567 8))

((AD) B MDD ED (LD (G HD
(A2) (B2) (C2) (D2) (E2) (F2)(G2) (H2)
(A3) (B3) (C3)(D3)(E3) (F3)(G3) (HI
(A4) (B4) (C4) (D4) (E4) (F4 (6G4) (H4H
(A5) (B5) (C5) (D5)(E5) (F5) (G5) (H5)
(A 6) (B6) (C6) (D6) (E6) (F6)(G6) (HE)
(A7) B7Y (W T7) (D7TY(ET) (F7)Y (GT7)Y (H7)
(A 8) (B8) (C8) (D8) (E8) (F8) (G8) (H8))

CHAPTER 3

Overview of Lisp

No doubt aboutit. Common Ligpisa biglanguage.

—Guy L. Steele, Jr.
Foreword to Koschman 1990

can be safely skipped or skimmed by the experienced Common Lisp programmer
but is required reading for the novice Lisp programmer, or one who is new to the
Common Lispdialect.

T his chapter briefly covers the most important special forms and functionsin Lisp. It

Thischapter can beused asareferencesource, but thedefinitivereferencei sSteel €'s Common
Ligp the Language, 2d edition, which should be consulted whenever thereisany confusion. Since
that book is 25 timeslonger than thischapter, itisclear that we can only touch on theimportant

highlightshere. More detailed coverageis given later in this book as each featureisused ina
real program.

3.1 A GuidetoLispStyle

The beginning Common Lisp programmer is often overwhelmed by the number o
optionsthat thelanguageprovides. In thischapter we show fourteendifferent ways
tofind thelength d alist. How isthe programmer to choose between them? One
answer is by reading examples of good programs—asillustrated in this book—and
copying that style. In general, there are Sx maximsthat every programmer should
follow:

e Begpecific.
e Useabstractions.

Beconcise.

Usethe provided tools.

Don't be obscure.

Beconsistent.

Theserequire some explanation.

Usingthemost specificform possiblemakesit easi er for your reader tounderstand
your intent. For example, the conditional specia formwhenismore specificthani f.
Thereader who sees awhen knowsto look for only one thing: the clause to consider
when the test is true. Thereader who seesan i f can rightfully expect two clauses:
onefor when the test istrue, and onefor whenitisfalse. Eventhoughitispossible
touse if when thereisonly one clause, it is preferable to use when, becausewhmn is
more specific.

One important way d being specific is using abstractions. Lisp providesvery
general data structures, such aslists and arrays. These can be used to implement
specific data structures that your program will use, but you should not make the
mistaked invokingprimitivefunctionsdirectly. if you definealistd names:

(defvar *names* '((Robert E. Lee) ...))

then you should also definefunctions to get at the components d each name. To get
at Leg use(last-name (first *names*)), not (caddar *names*).

Often the maximsarein concord. For example, if your codeistryingtofind an
elementinalist, you should usefind (or maybefind-if), not loopordo. findis
more specific than the general constructs 1oop or do, it isan abstraction, it is more
concisg, itisabuilt-intool, and itissimpleto understand.

Sometimes, however, the maxims are in conflict, and experiencewill tell you
which one to prefer. Consider the following two ways d placing a new key/value
pair on an associationlist:'

(push (cons key val) a-list)
(setf a-list (acons key val a-list))

The first is more concise. But the second is more specific, as it uses the acons
function, whichis designed specifically for associationlists. The decision between
them probably hinges on obscurity: those who find acons to be afamiliar function
would prefer the second, and those whofind it obscurewould prefer thefirst.

Asimilar choicearisesinthequestion d settingavariabletoavalue. Someprefer
(setq X va) becauseitismost specific; others use (setf x va), feelingthat itis
more consistent to use asingleform, setf, for all updating. Whichever choice you
make on such issues, remember the sixth maxim: be consistent.

3.2 Specia Forms

Asnoted inchapter 1," specia form" isthe term used torefer both to CommonLisp's
syntactic constructs and the reserved words that mark these constructs. The most
commonly used special formsare:

definitions conditional variables iteration other

def un and let do decl are
defstruct case let* do* f uncti n
defvar cond POP dolist progn
defparameter i f push dotimes quote
defconstant or setf Toop return
defmacro unl ess i ncf trace
Tabel s whan decf untrace

To be precise, only decl are, function, if, labdl s, tet, let*, progn and quote
are true specia forms. The others are actually defined as macros that expand into
callstomore primitivespecial formsand functions. Thereisnoreal differencetothe
programmer, and Common Lisp implementations are free to implement macrosas
special formsand viceversa, sofor simplicity wewill continue to use' specia form"
asablanket termfor both true specia forms and built-in macros.

! Association lists are coveredin section 3.6.

Special Forms for Definitions

In this sectionwe survey the special formsthat can be used to introduce new global
functions, macros, variables, and structures. We have already seen the def un form
for definingfunctions; the defmacroformissimilar and iscovered on page 66.

(defun function-name (parameter...) "optional documentation” body...)
(defmacro macro-name (parameter...) "optional documentation" body...)

There are three forms for introducing special variables. defvar defines a special
variableand can optionally be used to supply aninitial value and adocumentation
string. Theinitial valueis evaluated and assigned only if the variable does not yet
haveany value. def parameter issimilar, except that thevalueisrequired, and it will
be used to change any existingvalue. defconstant isused to declare that a symbol
will alwaysstand for aparticular value.

(defvar variable-nameinitial-value"optional documentation")
(defparameter variable-namevalue "optional documentation")
(defconstant variable-namevalue"optional documentation”)

All the def - forms define global objects. It isalso possibleto definelocal variables
with let, and to definelocal functionswith 1abel s, aswe shall see.

Most programming languages provide away to group related data together into
astructure. Common Lispis no exception. Thedefstruct special form defines a
structure type (knownasarecord typein Pascal) and automati cally definesfunctions
toget at componentsd thestructure. Thegeneral syntaxis:

(defs truct structure-name"optional documentation’ dot...)

Asan example, we could defineastructurefor names:

(defstruct name
first
(middle nil)
last)

Thisautomatically definesthe constructor function meke- name the recogni zer pred-
icate name-p, and the accessor functions namefi rst, namemi ddl e and name-1ast.
The (middl e ni 1) meansthat each new name built by meke- rarewill haveamiddle
named Ni 1 by default. Herewe create, access, and modify astructure:

> (setf b (make-name :first 'Barney :last 'Rubble)) =
#S(NAME :FIRST BARNEY :LAST RUBBLE)

> (name-first b) = BARNEY
> (name-middle b) = NIL

> (name-last b) = RUBBLE

\%

(name-p b) = T

> (name-p ’Barney) = NIL ; only the results of make-nameare names

\Y

(setf (name-middle b) 'Q) = Q

\%

b = #S(NAME :FIRST BARNEY :MIDDLE Q :LAST RUBBLE)

The printed representation d a structure starts with a #S and isfollowed by alist
consistingd thetyped the structureand alternating pairsd slot namesand values.
Donotlet thisrepresentation fool you: itisaconvenientway d printingthestructure,
but it is not an accurate picture d the way structures are represented internally.
Structuresare actually implemented much likevectors. For the name structure, the
typewould bein the zero element d thevector, thefirst namein thefirst element,
middleinthe second, and last i n the third. Thismeans structuresare moreefficient
thanlists: they take up less space, and any element can be accessed in asinglestep.
Inalist, it takesn steps to accessthe nth element.

Thereareoptionsthat givemorecontrol over thestructureitsdf and theindividual
slots. They will be covered later as they comeup.

Special Forms for Conditionals

We have seen the special form i f, which hasthe form (if test then-part €l se-part),
whereeither the then-part or thedse-patistheval ue, dependingon the successd the
test. Remember that only nil countsasfalse; all other valuesare considered truefor
the purposed conditionals. However, the constant t isthe conventional value used
to denotetruth (unlessthereisagood reason for using someother value).

There are actually quite a few special forms for doing conditional evaluation.
Technically, i f isdefined as aspecial form, whilethe other conditional sare macros,
soinsomesensei f issupposed to be the most basic. Some programmers prefer to
useif for most d their conditionals; others prefer cond becauseit has been around
thelongestandisversatile(if not particul arly pretty). Finaly, some programmersopt
for astylemorelikeEnglish prose, and freely usewhen, unl ess, i f, and al theothers.

The following table shows how each conditional can be expressed in terms o
i f and cond. Actually, these translations are not quite right, because or, case, and
cond take care not to eval uateany expression more than once, whilethe trand ations
with i f can lead to multiple evaluation & some expressions. The table also has

trandations to cond. Thesyntax of cond isaseriesof cond-clauses, each consisting o
atest expressionfollowed by any number o result expressions:

(cond (testresult...)
(test result...)
)

cond goes through the cond-clausesone at a time, evaluating each test expression.
Assoon as atest expression eval uates non-nil, the result expressions for that clause
are each evaluated, and the last expression in the clauseis the value d the whole
cond. Inparticular,if acond-clauseconsistsd just atest and no result expressions,
thenthevalued thecond isthetest expressionitsdf, if itisnon-nil. if all o thetest
expressionsevaluateto nil, then nil isreturned asthevalued the cond. A common
idiomisto makethelast cond-clausebe (t result...).

Theformswhen and unl ess operatelikeasingle cond clause. Both forms consist
d atest followed by any number o consequents, which are evaluated if thetestis
satisfied—thatis, if thetest istruefor when or falsefor unless.

Theand form tests whether every oned alist conditionsistrue, and or tests
whether any oneistrue. Both eval uate the arguments left to right, and stop as soon
asthefinal result can bedetermined. Hereisatabled equivalences:

conditional if form cond form

(when testabc) (if test (progn a bc)) (cond (testabc))
(unless testxy) (if (nottest) (progn xy)) | (cond ((nottest) xy))
(and abe) (ifa(if be)) (cond (a (cond (be))))
(or abc) (ifaa((ifbbc) (cond (a) (b) ()
(casea (b ¢) (t x)) | (if (eql @ 'b) Ccx) (cond ((eqla’b) c) (tx))

It is considered poor style to use and and or for anything other than testing a
logical condition. when, unless, and if canall be used for taking conditional action.
For example:

(and (> n 100)
(princ "N is large.")) ; Ba style!

(or (<= n 100)
(princ "N is large.")) ; Evenworsestyle!
(cond ((> n 100) ; K, but not MY preference
(princ "N is large."))

(when (> n 100)
(princ "N is large.")) ; Good style.

When the main purpose is to return avalue rather than take action, cond and i f
(withexplicitnilintheelsecase)arepreferred overwhenandunless, whichimplicitly

return ni 1 in the else case. when and unl ess are preferred when there is only one
possibility, i f (or, for some people, cond) when there are two, and cond when there
are morethan two:

(defun tax-bracket (income)
"Determine what percent tax should be paid for this income.'
(cond ((< income 10000.00) 0.00)
((< income 30000.00) 0.20)
((< income 50000.00) 0.25)
((< income 70000.00) 0.30)
(t 0.35)))

If there are several tests comparing an expression to constants, then caseis appro-
priate. A caseformlookslike:

(case expression
(match result...}. ..)

The expressionis evaluated and compared to each successivematch. As soon asone
isegl , theresult expressionsare evaluated and thelast oneisreturned. Notethat the
match expressionsare not evaluated. If amatch expressionisalist, then case testsiif
the expressionisegl toany member d thelist. f amatch expressionisthe symbol
otherwi se (or the symbol t) ,then it matches anything. (It only makessensefor this
ot herwi se clauseto bethelast one.)

Thereis also another special form, typecase, which compares the type d an
expression against several possibilitiesand, like case, choosesthe first clause that
matches. |naddition, the specia forms ecase and etypecase are just like case and
typecase except that they signal an error if thereisno match. Yaucanthink d thee
as standing for either "exhaustive” or "error." Theforms ccase and ctypecase aso
signal errors, but they can be continuableerrors (asopposed tofatal errors): the user
is offered the chance to change the expression to something that satisfiesoned the
matches. Hereare someexamplesd caseformsand their cond equivalents:

(case x (cond
(1 10) ((eql x 1) 10)
(2 20)) ((eql x 2) 20))
(typecase x (cond
(number (abs x)) ((typep x 'number) (abs x))
(list (length x))) ((typep x 'list) (length x)))
(ecase x (cond
(110) (Ceql x 1) 10)
(2 20)) ((eql x 2) 20)

(t (error "no valid case")))

(etypecase X (cond
(number (abs x)) ((typep X 'number) (abs x))
(list (length x))) ((typep X 'list) (length x))
(t (error "no valid typecase")))

Special Forms for Dealingwith Variablesand Places

Thespecial formset f isused to assign anew valueto avariableor place, much asan
assignment statement with=or :=isused in other languages. A place, or generdized
variableisanamefor alocationthat can haveavaluestored init. Hereisatabled
corresponding assignment formsin Lisp and Pascal:

T Llsp /* Pascal */
(setf x 0) X = 0;

(setf (aref A i j) 0) Ali,jl = 0;

(setf (rest list) nil) list™.rest := nil;
(setf (name-middle b) Q) b”.middle := "Q";

setf can be used to set a component df a structure as well asto set avariable. In
languages like Pascal, the expressions that can appear on the left-hand side d an
assignment statement arelimited by the syntax o thelanguage. In Lisp, the user can
extendtheexpressionsthat areallowedinaset f formusingthespecial formsdef set f
or define-setf-met hod. Theseareintroduced on pages514 and 884 respectively.

Thereare also some built-infunctions that modify places. For example, (rpl acd
list nil) hasthe same effect as(setf (rest list) nil), except that it returns
list instead d ni 1. Most Common Lisp programmers prefer to usetheset f forms
rather than the specializedfunctions.

if you only want to set avariable, the special form set g can be used instead. In
this book | chooseto useset f throughout, opting for consistency over specificity.

The discussion in this section makesit seem that variables (and slots d struc-
tures) are assigned new values al the time. Actualy, many Lisp programs do no
assignments whatsoever. Itisvery commonto use Lispin afunctional stylewhere
new variables may be introduced, but once a new variableis established, it never
changes. One way to introduce a new variableis as a parameter afunction. It
is also possible to introduce local variables using the special form Tet. Following
are the general let form, along with an example. Each variableis bound to the
corresponding value, and then the body iseval uated:

(let((variablevalue)...) (let ((x 40)
body...) (y (+1 1))
+Xy)) =>2

Definingalocal variablewith ale t formisreally nodifferent from defining param-
eters to an anonymousfunction. Theformer isequivalent to:

((lambda(variable..) ((lambda (x y)
body...) +xy)
value...) 40
+11»

Firgt, dl the values are evaluated. Then they are bound to the variables (the pa
rameters d the lambda expression), and finally the body is evaluated, using those
bindings.

The special form let* is appropriate when you want to use one d the newly
introduced variablesin asubsequent value computation. For example:

(let* ((x 6)
(y (* x x)))
+xy)) =42

We could not have used 1et here, because then the variable x would be unbound
duringthe computation d y’s value.

Exercise 3.1[m] Show a lambda expression that is equivalent to the above Tet*
expression. Yau may need morethan one lambda.

Because lists are so important to Lisp, there are special forms for adding and
deletingelementsfromthefront d alist—inother words, for treating alist asastack.
If li s tisthenamed alocationthat holdsalist, then (pushx 1is t) will changelist
to have x asitsfirst element, and (pop 1ist) will return the first element and, as
aside-effect, change 1i s t to no longer contain the first element. push and pop are
equivalent to thefollowing expressions:

(push X list) = (setf list (cons X list))

(pop list) = (let ((result (first list)))
(setf list (rest list))
resul t)

Just as a list can be used to accumulate elements, a running sum can be used to
accumulatenumbers. Lisp providestwo morespecial forms, i ncf and decf, that can
be used to increment or decrement a sum. For both forms the first argument must

be alocation (avariableor other setf-able form) and the second argument, which
isoptional, is the number to increment or decrement by. For those who know C,
(incf x)isequivalentto++x, and (incf x 2)isequivalentto x+=2. In Lisp the
equivalenceis:

(incf x) = (incf x 1) = (setf x (+ x 1))
(decf x) = (decf x 1) = (setf x (- x 1))

Whenthelocationisacomplex formrather than avariable, Lispiscareful to expand
into code that does not evaluateany subform morethan once. Thisholdsfor push,
pop,i ncf, and decf. In the followingexample, we have alist d playersand want
to decide which player has the highest score, and thus has won the game. The
structureplayer hasd otsfor the player's scoreand number o wins, and thefunction
determi ne-w nner incrementsthewinning player's w nsfield. Theexpansiond the
i ncf form bindsatemporary variableso that the sort is not done twice.

(defstruct player (score 0) (wins 0))

(defun determine-winner (players)
"Increment the WINS for the player with highest score.”
(incf (player-wins (first (sort players #°>
:key #'player-score)))))

(defun determine-winner (players)
"Increment the WINS for the player with highest score.”
(let ((temp (first (sort players #°> :key #'player-score))))
(setf (player-wins temp) (+ (player-wins temp) 1))))

Functions and Special Forms for Repetition

Many languageshaveasmall number d reserved wordsfor formingiterativeloops.
For example, Pascal haswhi 1e, repeat, and for statements. In contrast, Common
Lisp hasan almost bewilderingranged possibilities, as summarized bel ow:

dolist loopover elementsd alist
dotimes |oop over successiveintegers
do, do* general loop, sparse syntax
Toop general loop, verbosesyntax
mapc, mapcar loopover elementsd lists(s)
LVMe, every loopover list until condition
fird, reduce etc. morespecificloopingfunctions
recursion general repetition

Toexplaineach possibility, wewill presentversionsd thefunction1ength, which
returns the number d elementsinalist. First, the special form doli st can be used
toiterate over theelementsd alist. Thesyntaxis:

(dolist (variablelist optional-result) body...)

This means that the body is executed once for each element o the list, with vari-
able bound to the first element, then the second element, and so on. At the end,
doli st evaluatesand returns the optional -result expression, or nil if thereisno result
expression.

Bdowisaversionof 1engthusingdoli st. Theletformintroducesanewvariable,
len, whichisinitially bound to zero. Thedoli st form then executesthe body once
for each element d thelist, with the body incrementing 1en by one each time. This
useisunusual in that theloopiteration variable, el ement, is not used in the body.

(defun lengthl (1ist)

(let ((len 0)) ; start with LEN=0
(dolist (element 1ist) ; and on each iteration
(incf len)) ; increment LEN by 1
len)) ; and return LEN

Itisalso possibleto usethe optional result d doli st, asshown below. While many
programmersusethisstyle, | find that it istoo easy to losetrack d the result, and so
| prefer to placethe result last explictly.

(defun Tengthl.l (1ist) ; alternate version:
(let ({Ten 0)) ; (not ny preference)
(dolist (element list len) ; uses len as result here
(incf 1en))))

Thefunction mgx performs much the same operation asthe special formdoli st. In
the simplest case, mapc takestwo arguments, thefirstafunction, thesecond alist. It
appliesthefunction to each element o thelist. Hereislength using mapc

(defun length2 (1ist)

(let ((len 0)) ; start with LEN=0
(mapc #(lambda (element) ; and an each iteration
(incf len)) ; increment LEN by 1
list)
len)) ; and return LEN

Thereare seven different mapping functions, of which the most useful aremapc and
megpcal . mgpcal executesthe samefunction callsasmapc, but then returnstheresults

inalist.
Thereisasoadotimes form, which has the syntax:

(dotimes (variablenumber optional-result) body...)

and executesthe body with variable bound first to zero, then one, all the way up to
number—1 (for atotal d number times). Of course, dotimes is not appropriate for
implementing Length, sincewedon't know the number o iterations ahead d time.

There are two very general looping forms, do and 1oop. Thesyntax d doisas
follows:

(do {((variableinitial next)...)
(exit-test result)

body...)

Eachvariableisinitially bound to theinitial value. If exit-testistrue, thenresultisre-
turned. Otherwise, the body isexecuted and each variable is set to the corresponding
next value and exit-test istried again. Theloop repeats until exit-test istrue. if anext
valueisomitted, then the corresponding variableis not updated each time through
theloop. Rather, itistreated asif it had been bound withalet form.

Hereislengthimplemented withdo, usingtwovariables, Len tocount thenumber
d elements, and 1 togo down thelist. Thisisoftenreferred to as cdr-ing down alist,
because on each operation we apply thefunction cdr to thelist. (Actualy, herewe
have used the more mnemonic name rest instead d cdr.) Notethat the do loop has
no body! All thecomputationisdonein thevariableinitializationand stepping, and
intheend test.

(defun Tength3 (Tist)

(do ((len 0 (+ len 1)) ; start with LEN=0, increment
(1 list (rest 1))) ; ... on each iteration
((null 1) Yen))) ; (until the end of the 1list)

| find thedoform alittleconfusing, becauseit doesnot clearly say that wearelooping
through alist. Toseethat itisindeed iterating over thelist requireslookingat both
thevariablel and theend test. Worse, thereisnovariablethat standsfor the current
element d the list; wewould need to say (first 1) togetatit. Bothdolistand
mapc takecared stepping, end testing, and variablenaming automatically. They are
examplesd the "be specific" principle. Because it is so unspecific, do will not be
used muchin thisbook. However, many good programmersuseit, soitisimportant
to know how to read do loops, even if you decide never towrite one.

Thesyntax d 1oop isan entire language by itself, and a decidedly non-Lisp-like
languageitis. Rather thanlistall the possibilitiesfor 1oop, wewill just giveexamples

here, and refer the reader to Common Ligp the Language, 2d edition, or chapter 24.5for
moredetails. Herearethreeversionsd length usingloop:

(defun length4 (list)

(loop for element in 1ist ; go through each element
count t)) ; counting each one
(defun length5 (list)
(loop for element in |ist ; go through each element
amming 1)) ; adding 1 each time
(defun length6 (list)
(loop with len = 0 ; start with LEN=0
until (null 1ist) ; and (until end of list)
for element = (pop list) ; an each iteration
do (incf Ten) ; increment LEN by 1
finally (return len))) ; and return LEN

Every programmer learns that there are certain kinds d loops that are used again
and again. Theseare oftencalled programmingidiomsor cliches. An exampleisgoing
through the elements of alist or array and doing some operation to each element.
In most languages, these idioms do not have an explicit syntactic marker. Instead,
they areimplemented with ageneral loop construct, and it isup to the reader o the
program to recognizewhat the programmer isdoing.

Lispisunusual inthat it provideswaystoexplicitlyencapsulate suchidioms, and
refer to them with explicit syntactic and functional forms. dolistand dotimes are
twoexamplesd this—theybothfollowthe' bespecific" principle. Most programmers
prefer to use adoli st rather than an equivalent do, becauseit criesout "thisloop
iterates over theelementsd alist." OF course, the corresponding do form also says
the samething—butit takes morework for the reader to discover this.

In addition to specia formslikedolis t and dotimes, there are quite afew func-
tions that are designed to handle common idioms. Two examples are count-i f,
which counts the number of elements o a sequence that satisfy a predicate, and
position-if, which returns theindex d an element satisfying a predicate. Both
can be used toimplement Tength. Inlength7 below, count-if givesthe number of
elementsin 1ist that satisfy the predicatetrue. Sincetrue isdefined to be aways
true, thisgivesthelength o thelist.

(defun length7 (list)
(count-if #’true list))

(defun true (x) t)

Inlength8, thefunction position-if findsthe position of an element that satisfies
thepredicatetrue, startingfromtheendd thelist. Thiswill bethevery last element

d thelist,and sinceindexingiszero-based, weadd oneto get thelength. Admittedly,
thisisnot the most straightforward implementation o length.

(defun length8 (list)
(if (null list)
0
(+ 1 (position-if #’true list :from-end t))))

A partial table d functions that implement loopingidiomsis given below. These
functions are designed to be flexible enough to handle almost all operations on
sequences. The flexibility comesin three forms. First, functions like mapcar can
apply toanarbitrary number d lists, not just one:

> (mapcar #'- "(1 2 3)) = (-1 -2 -3)
> (mapcar #'+ (1 2) "(10 20)) = (11 22)
> (mapcar #'+ '(1 2) '(10 20) ’'(100 200)) = (111 222)

Second, many d the functions accept keywordsthat allow the user to vary the test
for comparing elements, or to only consider part o the sequence.

> (remove 1 °(1 23210 -1))=1(2320-1)

> (remove 1 "(1 232210 -1) :key #’abs) = (2 320)

> (remove 1 °(1 23210 -1) :test #'<) = (110 -1)

> (remove 1 '(1 23210 -1) :start 4) = (12320 -1)
Third, some have corresponding functions ending in -if or -if-not that take a
predicaterather than an element to match against:

> (remove-if #’0oddp (1 23210 -1)) = (22 0)

> (remove-if-not #’0oddp ’(1 23210 -1)) = (131-1)

> (find-if #’evenp (123210 -1)) = 2
Thefollowing two tablesassume these two val ues:

(setf x '(a b c))
(setfy "(1 2 3))

The first table lists functions that work on any number of lists but do not accept
keywords:

(every #’oddp y) =nil testif every element satisfiesa predicate

(some #’oddp y) =t testif someelement satisfiespredicate

(mapcar #'- y) = (-1 -2 -3) applyfunction to each element and return result
(mapc #'print y) printsl 2 3 perform operation on each element

The second table lists functions that have -if and -if -not versions and also

accept keyword arguments:
(member 2 y) =(2 3) seeif elementisinlist
(count 'b x) =1 count the number d matching elements
(delete 1Y) = (2 3) omit matching elements
(find 2 y) =2 find first element that matches
(position 'a x) =0 findindex d element in sequence
(reduce #’+ y) =6 apply function to succesiveel ements
(remove 2 y) =(13) likedelete, but makesanew copy
(substitute 4 2 y) =1(14 3) replaceelementswith new ones

Repetition through Recursion

Lisphasgainedareputation asa' recursive' language, meaningthat Lispencourages
programmerstowritefunctionsthat call themselves. Aswehaveseenabove, thereis
adizzyingnumber d functions and special formsfor writingloopsin CommonLisp,
but it is also true that many programs handle repetition through recursion rather
thanwith a syntacticloop.

Onesimpledefinitiond lengthis"theempty list haslength O, and any other list
has alength whichis one more than the length o the rest o thelist (after the first
element)." Thistrandates directly into arecursivefunction:

(defun length9 (1ist)
(if (null Tlist)
0
(+ 1 (length9 (rest list)))))

Thisversion d 1ength arises naturally from the recursivedefinitiond alist: "alist
is either the empty list or an element consed onto another list.” In general, most
recursive functions derive from the recursive nature d the data they are operating
on. Somekinds d data, like binary trees, are hard to deal with in anything but a
recursivefashion. Others, likelists and integers, can be defined either recursively
(leadingto recursivefunctions) or as a sequence (leadingto iterativefunctions). In
this book, | tend to use the" list-as-sequence” view rather than the “list-as-first-and-
rest” view. Thereason isthat definingalist asafirst and arest isan arbitrary and
artificia distinction that isbased on theimplementation o liststhat Lisphappensto
use. But therearemany other waystodecomposealist. Wecould breakitintothelast

element and all-but-the-last elements, for example, or thefirst haf and the second
half. The “list-as-sequence” view makes no such artificial distinction. It treats all
elementsidentically.

Oneobjectiontotheused recursive functions isthat they areinefficient, because
the compiler hasto allocatememory for each recursive call. Thismay betruefor the
function length9, but it is not necessarily true for al recursive calls. Consider the
followingdefinition:

(defun TengthlO (list)
(lengthl0-aux 1ist 0))

(defun Tengthl0-aux (sublist |en-so-far)
(if (null sublist)
len-so-far
(lengthl0-aux (rest sublist) (+ 1 len-so-far))))

lengthl0 useslengthl0-aux asanauxiliary function, passingit 0 asthelength o the
listsofar. 1engthl0-aux then goesdownthelist totheend, addinglfor eachelement.
Theinvariant relationisthat thelength d thesublist pluslen-so-far alwaysequals
the length d theoriginal list. Thus, when the sublist is nil, then 1en-so-far isthe
length o theoriginal list. Variableslikelen-so-far that keeptrack o partial results
are called accumulators. Other examplesd functions that use accumulators include
flatten-all on page329; one- unknown on page 237; the Prolog predicates discussed
on page 686; and anonymous-Vari ables-1in on pages400 and 433, which uses two
accumulators.

Theimportant difference between 1ength9 and 1ength10 iswhen the addition
isdone. In length9, the function callsitsdlf, then returns, and then adds 1. In
lengthl0O-aux, the function adds 1, then callsitself, then returns. There are no
pending operations to do after the recursive call returns, so the compiler isfree to
release any memory allocated for the original call before making the recursive call.
lengthl0-auxiscalledatail-recursivefunction, because the recursive call appearsas
thelast thing thefunction does (thetail). Many compilerswill optimizetail-recursive
calls, although not all do. (Chapter 22 treats tail-recursion in moredetail, and points
out that Scheme compilersguarantee that tail-recursive callswill be optimized.)

Somefinditugly tointroduce 1engthl0-aux. For them, therearetwoalternatives.
First, we could combinelength10 and lengthl0-aux into asinglefunction with an
optional parameter:

(defun lengthll (list &optional (len-so-far 0))
(if (null Tist)
ien-so-far

(Tengthll (rest list) (+ 1 len-so-far))))

Macros

The preceding discussion has been somewhat cavalier with the term" special form."
Actudly, some d these specia forms are really macros, forms that the compiler
expands into some other code. Common Lisp providesanumber o built-in macros
and allowsthe user to extend thelanguage by defining new macros. (Thereisnoway
for the user to define new special forms, however.)

Macrosaredefined with the special form def macro. Suppose wewanted todefine
amacro, wh Te, that would act like the whi Te loop statement o Pascal. Writinga
macrois afour-step process:

e Decideif the macroisreally necessary.
¢ Writedown the syntax d the macro.
¢ Figureout what the macro should expand into.

o Usedef mcro toimplement the syntax/expansion correspondence.

Thefirst step in writing a macro is to recognizethat every time you write one,
you are defining a new language that is just like Lisp except for your new macro.
The programmer who thinksthat way will rightfully be extremelyfrugal in defining
macros. (Besides, when someone asks, ""What did you get done today?" it sounds
moreimpressive to say "'l defined a new language and wrote acompiler for it" than
tosay "l just hacked up acoupled macros.") Introducing a macro puts much more
memory strain on the reader d your program than does introducing a function,
variableor data type, soit should not betaken lightly. Introduce macros only when
thereisaclear need, and when the macrofitsinwell with your existing system. As
C.A.R. Hoare put it, " One thing the language designer should not do is to include
untriedideasd hisown."

The next stepis to decide what code the macro should expand into. Itisagood
idea to follow established Lisp conventions for macro syntax whenever possible.
Look at the looping macros (doli st, dotimes, do-symbols), the defining macros
(defun, defvar, defparameter, defstruct), or the thel/0 macros (W th-open-fi le,
with-open-stream, wi th-input-from-string), for example. If youfollow the nam-
ing and syntax conventionsfor oned these instead d inventing your own conven-
tions, you'll bedoing thereader d your programafavor. For whi 1e, agood syntaxis:

(while test body...)

Thethird stepistowrite the code that you want amacro call to expand into:

(Toop
(unless test (return nil))
body }

Thefinal step isto write the definition d the macro, using defmacro. A defmacro
form is similar to a defun in that it has a parameter list, optional documentation
string, and body. Thereareafewdifferencesinwhatisalowedinthe parameter list,
which will be covered later. Hereisadefinition d the macrowhile, which takesa
test and abody, and buildsup the 1oop code shown previously:

(defmacro while (test &rest body)
"Repeat body while test is true."
(list* 'loop
(list 'unless test '(return nil))
body))

(Thefunction Tist* islike17st, except that thelast argument isappended onto the
end d thelistd the other arguments.) We can seewhat this macro expandsinto by
usingmacroexpand, and see how it runs by typingin an example:

> (macroexpand-1 '(while (< i 10)
(print (* i 1))
(setf i (+1 1)) =
(LOOP (UNLESS (< I 10) (RETURN NIL))
(PRINT (* 1 1))
(SETF I (+ I 1))

> (setf 17) =7

> (while (< i 10)
(print (* 1 1))
(setf i (+1 1)) =
49
64
81
NIL

Section 24.6 (page853) describes a more complicated macroand somedetailson the
pitfallsd writing complicated macros (page855).

Backquote Notation

The hardest part about definingwhileis building the codethat is the expansion d
the macro. It would be niceif there was a moreimmediate way d building code.
Thefollowingversiond whilefollowingattemptstodo just that. It definesthelocal

variable code to be atemplate for the code we want, and then substitutes the real
valuesd the variablestest and body for the placeholdersin the code. Thisisdone
with thefunction subst; (subst new old tree) substitutes new for each occurrence of
old anywherewithin tree.

(defmacro while (test &rest body)
"Repeat body while test is true."
(let ((code '(loop (unless test (return nil)) . body)))
(subst test 'test (subst body 'body code))))

The need to build up code (and noncode data) from componentsis so frequent that
there is a special notation for it, the backquote notation. The backquote character
" *" issimilar to the quote character "’ ". A backquoteindicatesthat what followsis
mostlyaliteral expressionbut may contain somecomponentsthat aretobeeval uated.
Anythingmarked by aleadingcomma" , " isevaluatedandinsertedinto thestructure,
and anything marked withaleading " ,e" must evaluateto alist that is spliced into
thestructure: each element o thelistisinserted, without the top-level parentheses.
Thenotationiscovered in moredetail in section 23.5. Herewe use the combination
d backquoteand commato rewritewhile:

(defmacro while (test &rest body)
"Repeat body while test is true."
‘(loop (unless ,test (return nil))

,ebody))

Herearesomemoreexamplesd backquote. Notethat at theendd alist, " ,e" hasthe
sameeffectas"." followed by ",". Inthe middleof alist, only " ,e" isapossibility.

> (setf testl ’(a test)) = (A TEST)
> '(this is ,testl) = (THIS IS (A TEST))

> '(this is ,etestl) = (THIS IS A TEST)

\

"(this is . ,testl) = (THIS IS A TEST)

> '(this is ,etestl -- this is only ,etestl) =
(THIS IS A TEST -- THIS IS ONLY A TEST)

This completesthe section on special forms and macros. Theremaining sectionsd
thischapter givean overview d theimportant built-infunctionsin Common Lisp.

3.3 FunctionsonlLists

For the saked exampl e, assume we have the followingassignments:;

(setf x '(a b ¢))
(setf y "(1 2 3))

The most important functionson lists are summarized here. The more complicated

ones are explained more thoroughly when they are used.

(first x) +a firstelement d alist

(second x) =b second element d alist

(third x) =c third element o alist

(nth 0 x) +a nthelement d alist, 0-based

(rest x) = (b ¢) al but thefirst element

(car x) =a another namefor thefirst element o alist
(cdr x) = (b ¢) another namefor all but thefirst element
(last x) = (c¢) lastconscelinalist

(length x) =3 number d elementsinalist

(reverse x) =(c b a) putslistinreverseorder

(cons 0 y) =(0123) add tofront o list

(append x y) =(abcl23) append together elements

(list x y) = ((abc) (123)) makeanewlist

(list* 12 x) =(12abo) append last argument to others

(null nil) =T predicateistrued theempty list

(null x) +nil ...andfalsefor everythingelse

(Tistp x) =T predicateistrued any list,includingnil
(Tistp 3) +nil ...andisfalsefor nonlists

(consp x) =t predicateistrued non-nil lists

(consp nil) =anil ...andfasefor atoms, includingnil
(equal x x) =t truefor liststhat look the same

(equal x y) =nil ...andfalsefor liststhat look different
(sort y #'>) =(321) sort alist accordingto acomparison function
(subseq x 1 2) = (B) subsequence with given start and end points

Wesaid that (cons ab) buildsalonger list by addingelement atothefront d list
b, but what if bisnot alist? Thisis not an error; the result is an objectx such that
(firstx) =a (restx) = b, andwhereX printsas (a . b). Thisisknown asdotted
pair notation. If bisalist, then the usual list notation is used for output rather than
the dotted pair notation. But either notation can be used for input.

So far we have been thinking d lists as sequences, using phraseslike”a list o
threeelements.” Thelistisaconvenient abstraction, but the actual implementation
d listsrelies on lower-level building blocks called cons cells. A conscell is adata
structure with two fields: afirst and arest. What we have been calling"a list o
three elements” can also be seen as a single cons cell, whose first field points to

thefirst element and whoserest field points to another conscell that is aconscdl
representing alist o two elements. This second cons cell has arest field that isa
third conscdl, onewhoserest fieldisnil. All proper listshavealast conscell whose
restfieldisnil. Figure3.1showstheconscell notationfor thethree-elementlist (one
two three),aswedl asfor theresultd (cons 'one 'two).

(ONE TWO THREE) (ONE. TWO)
| L L | ||
| l | Lo
ONE TWO THREE ONE TWO

Figure3.1: ConsCedl Diagrams

Exercise 3.2[s] Thefunction cons can be seen asaspecial cased oned the other
functionslisted previousy. Whichone?

Exercise 3.3[m] Writeafunction that will print an expressionin dotted pair nota-
tion. Usethe built-infunction pri nc to print each component d the expression.

Exercise 3.4[m] Writeafunctionthat, liketheregular pri ntfunction, will print an
expressionin dotted pair notation when necessary but will use normal list notation
when possible.

3.4 Equality and Internal Representation

In Lisp there are five magjor equality predicates, becausenot all objects are created
equally equal. The numericequality predicate, = testsif twonumbersare thesame.
It is an error to apply = to non-numbers. The other equality predicates operate
on any kind o object, but to understand the difference between them, we need to
understand somed theinternalsd Lisp.

When Lisp reads asymbol in two different places, theresult isguaranteed to be
the exact same symbol. TheLisp system maintainsasymbol tablethat thefunction
read usesto map between characters and symbols. But when alistisread (or built)

in two different places, the results are not identically the same, even though the
corresponding elements may be. Thisisbecauseread callscons to build up thelist,
and each call to cons returns anew cons cell. Figure 3.2 shows two lists, X and vy,
whichare both equal to (one two), but which arecomposed o different conscells,
and hence are not identical. Figure3.3showsthat theexpression (rest x) doesnot
generate new cons cells, but rather shares structurewith X, and that the expression
(cons ’zero X) generatesexactly one new conscell, whoserestisx.

(setf x '(one two))

Lok
r

(setf y '(one two))

Figure3.2: Equal But Nonidentical Lists

(cons 'zero x) X (rest x)
| l
e E—
| | |
ZERO ONE TWO
T I
—

Figure3.3: Partsd Lists

When two mathematically equal numbers are read (or computed) in two places,
they may or may not bethesame, dependingonwhat thedesignersd yourimplemen-
tation felt was more efficient. In most systems, two equal fixnumswill beidentical,
but equal numbersd other typeswill not (except possibly short floats). Common
Lisp providesfour equality predicates d increasing generality. All four begin with
theletters eg, with moreletters meaning the predicate considers more objectsto be
equal. Thesimplest predicateis eq, which tests for the exact same object. Next,
eqgl testsfor objectsthat are either eq or are equivalent numbers. equal testsfor
objectsthat are either egl or arelistsor stringswith egl elements. Finaly, equal p
islike equal except it also matches upper- and lowercase characters and numbers
d different types. Thefollowing table summarizes the results d applying each o
the four predicatesto variousvaluesd x and y. The? value means that the result
depends on your implementation: two integersthat are eql may or may not be eq.

X Y e eg equa equap
X ’ X T T T T

'0 0 ? T T T

*(x) *(x) nil nil T T
tixy" CUxy" | nil o onil T T
PoXy" o rUxY" | nil o onil o nil T

0 '0.0 nil nil nil T

0 ‘1 nil nil nil nil

In addition, there are specialized equality predicates such as =, tree-equal,
char-equal, and string-equal, which compare numbers, trees, characters, and
strings, respectively.

3.5 Functionson Sequences

Common Lispisin atransitional position halfway between the Lisps o the past
and the Lisps d the future. Nowhereis that more apparent than in the sequence
functions. The earliest Lisps dealt only with symbols, numbers, and lists, and
provided list functions like gopend and 1engt h. More modern Lisps added support
for vectors, strings, and other data types, and introduced the term sequence to refer
to both vectorsand lists. (A vector isaone-dimensional array. It can berepresented
more compactly than alist, because there is no need to store the rest pointers. It
isalso more efficient to get at the nth element d avector, becausethereis no need
tofollow achain o pointers.) Modern Lispsalso support strings that are vectors o
characters, and hence also asubtype d sequence.

With the new data types came the problem o naming functions that operated
on them. In some cases, Common Lisp choseto extend an old function: 1ength can

apply tovectorsaswell aslists. Inother cases, the old nameswere reserved for the
list functions, and new names were invented for generic sequence functions. For
example, append and mapcar only work on lists, but concatenate and map work on
any kind o sequence. In till other cases, new functions wereinvented for specific
data types. For example, there are seven functionsto pick the nth element out d a
sequence. Themostgeneraliselt,whichworksonany kindd sequence, butthereare
specificfunctionsfor lists, arrays, strings, bitvectors, simplebit vectors, and simple
vectors. Confusingly, nth isthe only onethat takes theindex as thefirst argument:

(nth nlist)

(el t sequencen)

(aref array n)

(char string n)

(bit bitvectorn)

(shit simple-bit vector n)
(svref simple-vector n)

Themostimportant sequencefunctionsarelisted el sewherein thischapter, depend-
ingontheir particular purpose.

3.6 Functionsfor Maintaining Tables

Lisplists can be used to represent a one-dimensional sequence d objects. Because
they are so versatile, they have been put to other purposes, such as representing
tablesd information. Theassociationlistisatyped list used to implement tables.
Anassociationlistisalistd dotted pairs, whereeachpair consistsd akey andavalue.
Together,thelist o pairsformatable: givenakey, wecanretrievethecorresponding
value from the table, or verify that thereis no such key stored in the table. Here's
an examplefor lookingup the names o states by their two-letter abbreviation. The
function associsused. It returnsthekey/value pair (if thereisone). Toget thevalue,
we just takethecdr d theresult returned by assoc.

(setf state-table
*((AL . Alabama) (AK . Alaska) (AZ . Arizona) (AR . Arkansas)))

> (assoc 'AK state-table) = (AK . ALAXKA)
> (cdr (assoc 'AK state-table)) = ALAKA

> (assoc 'TX state-table) = NIL

If wewant to search the table by valuerather than by key, wecan userassoc:

> (rassoc 'Arizona table) = (AZ . ARIZONA)

> (car (rassoc 'Arizona table)) = AZ

Managing atablewith assoc issimple, but thereisonedrawback: we haveto search
through the wholelist one element at atime. If thelistisvery long, this may take
awhile.

Another way to manage tables is with hash tables. These are designed to han-
dlelargeamounts d data efficiently but have a degree d overhead that can make
them inappropriate for small tables. Thefunction gethashworks much like get—it
takes two arguments, akey and atable. Thetableitsdf isinitialized with acall to
make-hash-tableandmodifiedwithasetf d gethash:

(setf table (make-hash-table))

(setf (gethash 'AL table) ’*Alabama)
(setf (gethash 'AK table) ’Alaska)

(setf (gethash 'AZ table) 'Arizona)
(setf (gethash 'AR table) 'Arkansas)

Hereweretrievevaluesfromthetable:

> (gethash 'AK table) = ALAKA
> (gethash 'TX table) = NIL

Thefunction remhash removesakey/value pair fromahash table, c1rhash removes
all pairs, and map hash can be used to map over thekey/value pairs. Thekeysto hash
tables are not restricted; they can be any Lisp object. Thereare many more details
on the implementation d hash tablesin Common Lisp, and an extensiveliterature
ontheir theory.
A third way to represent table is with property lists. A property listisalist o

alternating key/value pairs. Property lists (sometimescalled p-lists or plists) and
associationlists (sometimescalled a-listsor alists) are similar:

a-list: ((keyr . valy) (keya . vab) ... (key, . wval,))
p-list: (keyr valy key2 val ... key, val,)

Given thisrepresentation, thereislittle to choose between a-listsand p-lists. They
aredlightlydifferent permutations d the sameinformation. Thedifferenceisin how
they are normally used. Every symbol has a property list associated with it. That
meanswecan associ ateaproperty/value pair directlywithasymbol. Most programs
useonly afew different properties but have many instances d property/value pairs
for each property. Thus, each symbol's p-list will likely be short. In our example,
weareonly interested in one property: the state associated with each abbreviation.

That means that the property listswill be very short indeed: one property for each
abbreviation, instead o alist d 50 pairsin the associationlistimplementation.

Property valuesare retrieved with thefunction get, which takes two arguments:
the first is a symbol for which we are seeking information, and the second is the
property d that symbol that we are interested in. get returns the value o that
property, if one hasbeen stored. Property/value pairs can be stored under asymbol
withasetf form. A tablewould be built asfollows:

(setf (get 'AL 'state) ‘'Alabama)
(setf (get 'AK 'state) 'Alaska)

(setf (get 'AZ 'state) ‘Arizona)
(setf (get 'AR 'state) 'Arkansas)

Now we can retrieveval ueswith get:

> (get 'AK 'state) = ALASKA
> (get TX 'state) = NIL

Thiswill befaster becausewe can goimmediately from asymbol toitslone property
value, regardlessd thenumber d symbolsthat have properties. However,if agiven
symbol hasmorethan one property, then we still haveto search linearly through the
property list. As Abraham Lincoln might havesaid, you can makesomed the table
lookupsfaster some d the time, but you can't make all the tablelookupsfaster all
d thetime. Noticethat thereisno equivalent d rassoc using property lists; if you
want to get fromastatetoitsabbreviation, you could storethe abbreviation under a
property d the state, but that would beaseparate setf form, asin:

(setf (get 'Arizona ’abbrev) 'AZ)

In fact, when source, property, and value are al symbols, there are quite a few
possibilitiesfor how to use properties. We could have mimicked the a-list approach,
and listed al the properties under a single symbol, using setf on the function
symboT-plist (whichgivesasymbol's complete property list):

(setf (symbol-plist 'state-table)

(AL Alabama A Alaska AZ Arizona AR Arkansas))
> (get 'state-table ’AL) = ALASKA
> (get 'state-table 'Alaska) = NIL

Property lists have along history in Lisp, but they are falling out d favor as new
alternatives such as hash tables areintroduced. There are two main reasons why
property listsareavoided. First, becausesymbolsand their property listsareglobal,

itiseasy to get conflictswhen tryingto put together two programsthat use property
lists. If two programs use the same property for different purposes, they cannot be
used together. Evenif two programs use different properties on the same symbols,
they will slow each other down. Second, property listsaremessy. Thereisnoway to
removequickly every element d atableimplemented with property lists. Incontrast,
this can be done trivialy with cl rhash on hash tables, or by setting an association
listtonil.

3.7 FunctionsonTrees

Many Common Lisp functions treat the expression ((a b) ((c)) (d e)) asa
sequence d three elements, but there are afew functionsthat treat it asatreewith
fivenon-null leaves. Thefunction copy - treecreatesacopy o atree, and tree-equal
testsif two trees are equal by traversing cons cells, but not other complex data like
vectorsor strings. Inthat respect, tree-equal issimilar to equal, but tree-equal is
more powerful becauseit allowsa :test keyword:

> (setf tree '((a b) ((c)) (d e)))
> (tree-equal tree (copy-tree tree)) = T

(defun same-shape-tree (a b)
"Are two trees the same except for the |eaves?"
(tree-equal a b:test #’true))

(defun true (&rest ignore) t)
> (same-shape-tree tree *((1 2) ((3)) (45)) =T
> (same-shape-tree tree *((1 2) (3) (4 5))) = NL

Figure3.4showsthetree((a b) ((c)) (d e)) asaconscell diagram.

There are also two functions for substituting a new expression for an old one
anywherewithin atree. subst substitutesasinglevaluefor another, while sublis
takesalist d substitutions in theform d an associationlist (old. new) pairs.
Notethat the order d old and new inthe alistfor subli sisreversed from the order
d argumentstosubst. Thenamesubl i sisuncharacteristicallyshort and confusing;
abetter namewould besubst-| i st.

> (subst 'new 'old '(old ((very old))) = (NEW ((VERY NEW))
> (sublis '((old . new)) '(old ((very old))))= (NEW ((VERY NEW))
> (subst 'new 'old 'old) = "NEW

(defun english->french (words)
(sublis '((are . va) (book . Tibre) (friend . ami)
(hello . bonjour) (how . comment) (my . mon)
(red . rouge) (you . tu))
words))

> (english->french '(hello my friend - how are you today?)) =
(BONJOUR MON AMI - COMMENT \A TU TODAY?)

((ab)((c)) (de)

|

| | |
T I]

O —

Figure 3.4: ConsCell Diagramd aTree

3.8 Functionson Numbers

The most commonly used functions on numbers are listed here. There are quite a
few other numericfunctions that have been omitted.

(+ 4 2) =6 add

(- 42) =2 subtract
(* 42) =8 multiply
(/ 42) =2 divide

(> 100 99) =1t greater than (also>=, greater than or equal to)
(= 100 100) =t equal (also/=, not equal)

(< 99 100) =t lessthan (also<=, lessthan or equal to)
(random 100) =42 randominteger from0 to99

(expt 4 2) =16 exponentiation (alsoexp, € and 10g)

(sin pi) = 0.0 sine function (also cos, tan, etc.)

(asin 0) = 0.0 arcsine or sin~! function (alsoacos, atan, etc.)
(nn 234) =2 minimum (al somax)

(abs -3) =3 absolutevalue

(sqrt 4) =2 square root

(round 4.1) =4 round off (alsotruncate, floor, ceiling)
(rem 11 5) =1 remainder (alsomad

3.9 Functionson Sets

One d the important uses d lists is to represent sets. Common Lisp provides
functions that treat listsin just that way. For example, to see what elementsthe sets
r={a,b,c,d)and s = {c,d, e} havein common, wecould use:

> (setfr "(abcd)=(ABCD)
> (setf s "(cde)) = (CDE)
> (intersection r s) = (C D)

Thisimplementation returned (C D) astheanswer, but another might return (D C).
They are equivalent sets, so either isvalid, and your program should not depend on
theorder d elementsin theresult. Hereare the mainfunctions on sets:

(intersection r s) = (c d) find common elements o two sets
(union r s) = (abcde) findaleementsineitherd twosets
(set-difference r s) = (a b) find elementsin one but not other set
(member 'd r) = (d) check if an elementisamember o aset
(subsetp s r) =nil seeff al elementsd one set arein another
(adjoin 'b s) = (b cde) add an element to aset

(adjoin 'Cc s) =(c de) ... but don't add duplicates

It is also possible to represent a set with a sequence d hits, given a particular
universed discourse. For example, if every set weareinterested i n must beasubset
d (a b c d e), thenwecan usethebit sequence11110torepresent (ab cd), 00000
to represent the empty set, and 11001to represent (a b e). The bit sequence can be
represented in Common Lisp asabit vector, or asaninteger in binary notation. For
example, (a b e) would be the bit vector #*11001 or the integer 25, which can also
bewritten as#b11001.

The advantage d using bit sequencesisthat it takes|ess space to encode a set,
assuming a small universe. Computation will be faster, because the computer's
underlyinginstruction set will typically process 32 elements at atime.

Common Lisp providesafull complement o functions on both bit vectorsand
integers. Thefollowingtablelists some, their correspondence to thelist functions.

lists integers bitvectors
intersection Togand bit-and
union logior bit-ior
set-difference logandc2 bit-andc2
member logbitp bit
length Togcount

For example,

(intersection '(a bcd) '(a be)) = (AB)
(bit-and #*11110 #*11001) = #*11000
(Togand #b11110 #b11001) = 24 = #b11000

3.10 Destructive Functions

In mathematics, afunction is something that computes an output val ue given some
input arguments. Functionsdo not "'do" anything, they just compute results. For
exampleg, if 1tell youthat x = 4andy = 5and ask you to apply thefunction " plus’ to
x andy, | expectyoutotell me9. If | thenask,"Nowwhat isthevalued x?* it would
besurprising if x had changed. In mathematics, applying an operator to x can have
no effect on thevalued x.

In Lisp, somefunctions are able to take effect beyond just computing the result.
These"functions" are not functions in the mathematical sense,? and in other lan-
guagesthey areknownas' procedures.” O course, mostd theLispfunctionsaretrue
mathematical functions, but thefew that are not can causegreat problems. They can

In mathematics, afunction must associate a uniqueoutput value with each input value.

also be quite useful in certain situations. For both reasons, they areworth knowing
about.

Consider thefollowing:

> (setf x '(a bc)) = (ABC)
> (setfy "(123)) = (123)
> (append x y) = (ABC123)

append is a pure function, so after evaluating the call to append, we can rightfully
expect that x and y retain their values. Now consider this:

> (nconc x y) = (ABC123)
>x = (ABC123)
>y = (123)

The function nconc computes the same result as gppend, but it has the side effect
d alteringitsfirst argument. It is called a destructive function, because it destroys
existing structures, replacing them with new ones. This means that there is quite
a conceptual load on the programmer who dares to use nconc. He or she must be
awarethat thefirst argument may bealtered, and plan accordingly. Thisisfar more
complicated than the case with nondestructive functions, where the programmer
need worry only about the results d afunction call.

The advantage d nconc is that it doesn't use any storage. While gppend must
make acompletecopy o x and then havethat copy end withy, nconc does not need
to copy anything. Instead, it just changesthe rest fieldd the last element d X to
point to y. So use destructive functions when you need to conserve storage, but be
awared the consequences.

Besides nconc, many d the destructive functions have names that start with
n, including nreverse, ni ntersecti on, nuni on, nset-di fference, and nsubst. An
important exceptionisdel ete, whichisthe nameused for thedestructiveversiond
remove. OF course, the setf special form can also be used to alter structures, but it
isthe destructivefunctions that are most dangerous, becauseit iseasier to overlook
their effects.

Exercise 35[h] (Exerciseinalteringstructure.) Writea program that will play the
roled theguesser inthegameTwenty Questions. Theuser o the programwill have
inmind any typed thing. The program will ask questions d the user, which must
beanswered yesor no, or "it" when the program hasguessed it. If the programruns
out d guesses, it givesup and asksthe user what "it" was. At first the programwill
not play well, but each timeit plays, it will remember the user's repliesand usethem
for subsequent guesses.

3.11 Overview d DataTypes

This chapter has been organized around functions, with similar functions grouped
together. But thereis another way d organizing the Common Lispworld: by con-
sidering the different data types. Thisis useful for two reasons. First, it givesan
alternativeway d seeingthevariety d availablefunctionality. Second, thedatatypes
themselvesare objectsin the Common Lisplanguage, and aswe shall see, there are
functionsthat manipulate datatypes. Theseareuseful mainly for testing objects(as
with the typecase macro)and for makingdeclarations.
Hereisatabled the most commonly used datatypes:

Type Example Explanation

character #\c Asingleletter, number, or punctuation mark.

number 42 The most common numbersarefloats and integers.
float 3.14159 A number with adecimal point.

integer 42 A wholenumber, d either fixed or indefinite size:

f ixnum 123 Aninteger that fitsinasingleword d storage.

bi gnum 123456789 Aninteger unbounded size.

function #'sin A function can beapplied to an argument list.

symbol sin Symbolscan nhamefns and vars, and are themsel ves objects.
null nil Theobject ni 1 istheonly objectd typenull.

keyword - key Keywordsare asubtype d symbol.

sequence (a bc) Sequencesincludelistsand vectors.

list (abo) Alistiseither aconsor nuil.

vector #(a b c) Avector isasubtype d sequence.

cons (a bo A consisanon-nil list.

atam t Anatomisanything that is not acons.

string "abc" A stringisatyped vector d characters.

array #1A(a b C) Arraysinclude vectorsand higher-dimensional arrays.
structure #S(type ...) Structuresaredefinedbydefstruct.

hash-table ... Hash tablesare created by meke- hash-t abl e.

Almost every data type has a recognizer predicate—a function that returns true
for only elements of that type. In general, a predicate is a function that always
returns one d two values: trueor false. In Lisp, the falsevalueisni 1, and every
other valueis considered true, although the most common true valueist. In most
cases, the recognizer predicate's name is composed d the type name followed by
p: characterp recognizescharacters, numberp recognizesnumbers, and so on. For
example, (numbarp 3) returns t because 3isanumber, but (rurberp "x") returns
nil because "x" isastring, not anumber.

Unfortunately, CommonLispisnot completelyregular. Thereare norecognizers
for fixnums, bignums, sequences, and structures. Two recognizers,null and atom,
do not end in p. Also note that there is a hyphen before the p in hash-table-p,
because the type has a hyphen init. In addition, all the recognizersgenerated by
defstruct haveahyphen beforethep.

Thefunction type- of returns thetyped itsargument, and typep testsif an object
is of aspecified type. Thefunction subtypep testsif one typecan be determined to
beasubtype o another. For example:

> (type-of 123) = FIXNUM

> (typep 123 ‘fixnum) =T

> (typep 123 'number) = T

> (typep 123 'integer) = T

>

(
(
(
(
(typep 123.0 'integer) = NIL
(

> (subtypep 'fixnum ‘number) = T

Thehierarchy d typesisrather complicatedin Common Lisp. Asthe prior example
shows, there are many different numeric types, and anumber like123isconsidered
to be d type fixnum, i nteger, and number. We will seelater that itisalso d type
rationalandt.

Thetype hierarchy forms a graph, not just atree. For example, avector is both
asequence and an array, although neither array nor sequence are subtypes d each
other. Similarly,nullisasubtype d both symbo and 1i st.

Thefollowingtable shows a number d more speciaized data typesthat are not
used as often:

Type Example Explanation

t 42 Every objectisd typet.

nil Noobjectisd typenil.

complex #C(0 1) Imaginary numbers.

bit 0 Zeroor one.

rational 213 Rationalsincludeintegers and ratios.

ratio 213 Exact fractional numbers.

simple-array #1A(x y) Anarray that isnot displaced or adjustable.
readtable A mappingfrom charactersto their meaningstoread.
package .. A collectiond symbolsthat formamodule.
pathname #P"/usr/spool/mail" Afileordirectoryname.

stream eee A pointer to an openfile; used for reading or printing.
random-state ... A state used asaseed by random.

Inaddition, thereareeven morespecializedtypes, suchasshort-f 1oat, comp 1ed-
function, and bit-vector. Itisalso possibleto construct moreexact types, such as
(vector (integer 0 3) 100), which representsavector o 100 elements, each o
whichis an integer from 0 to 3, inclusive. Section10.1 gives moreinformation on
typesand their use.

While almost every type has a predicate, it is also true that there are predicates
that are not type recognizersbut rather recognize some moregeneral condition. For

example, oddp istrueonly d odd integers,and s tring-greaterpistrueif onestring
isalphabetically greater than another.

3.12 Input/Output

Input in Lisp isincredibly easy because a completelexica and syntactic parser is
availableto the user. The parser iscalled read. Itisused to read and return asingle
Lispexpression. If you can designyour application so that it readsLisp expressions,
thenyour input worriesare over. Notethat the expression parsed by read need not
bealegal evduableLisp expression. Thatis, youcanread ("hello" cons zzz) just
aswedl as(+ 2 2). Incaseswhere Lisp expressionsare not adequate, the function
read-char reads a single character, and read-1ine reads everything up to the next
newline and returnsit asastring.

To read from the terminal, the functions read, read-char, or read-line (with
no arguments) return an expression, acharacter, and astring up to the end d line,
respectively. It isalso possibleto read from afile. Thefunctionopen or the macro
with-open-stream can be used to open afile and associate it with a stream, Lisp's
namefor adescriptor d an input/output source. All three read functionstake three
optional arguments. Thefirst isthe stream to read from. The second, if true, causes
an error to be signaled at end d file. If the second argument is nil, then the third
argument indicatesthevalueto returnat end of file.

Output in Lisp is similar to output in other languages, such as C. Thereare a
few low-level functions to do specific kinds of output, and there is avery genera
function todo formatted output. Thefunction print printsany objectonanewline,
with aspacefollowingit. prinlwill printany object without the new lineand space.
For both functions, the object is printed in aform that could be processed by read.
For example, thestring "hello there" would printas"hello there". Thefunction
p rincisusedto printinahuman-readableformat. Thestringinquestionwould print
ashellothere with princ—the quote marks are not printed. This means that read
cannot recover the original form; read would interpret it as two symbols, not one
string. Thefunctionwrit e acceptselevendifferent keyword arguments that control
whether it actslikeprinl or princ, among other things.

Theoutput functionsal sotakeastreamasan optional argument. Inthefollowing,
we create thefile "test. text" and print two expressions to it. Then we open the
filefor reading, and try to read back thefirst expression, asinglecharacter, and then
two more expressions. Note that the read-char returns the character #\G, so the
followingread readsthe characters 00DBY E and turns them into asymbol. Thefinal
read hitstheend d file, and so returns the specifiedvalue, eof.

example, oddp istrueonly d odd integers, and s tring-greaterp istrueif onestring
isalphabetically greater than another.

3.12 Input/Output

Input in Ligp isincredibly easy because a complete lexical and syntactic parser is
availableto the user. The parseriscalledread. Itisused toread and returnasingle
Lispexpression. If you candesign your application sothat it readsLisp expressions,
then your input worriesare over. Note that the expression parsed by read need not
bealega evauableLisp expression. Thatis, you canread ("hello" cons zzz) just
aswell as (+ 2 2). Incaseswhere Lisp expressions are not adequate, the function
read-char reads a single character, and read- 1ine reads everything up to the next
newline and returnsit asastring.

To read from the terminal, the functions read, read-char, or read-Tine (with
No arguments) return an expression, a character, and astring up totheend d line,
respectively. It isalso possibleto read from afile. Thefunction open or the macro
with-open-s tream can be used to open afile and associate it with a stream, Lisp's
namefor adescriptor d aninput/output source. All threeread functions takethree
optional arguments. Thefirst isthe stream to read from. The second, if true, causes
an error to be signaled at end d file. If the second argument is nil, then the third
argument indicates thevaluetoreturn at end d file.

Output in Lisp issimilar to output in other languages, such as C. Thereare a
few low-level functions to do specific kinds o output, and thereis a very general
function todoformatted output. Thefunctionprint printsany objectonanew line,
with aspacefollowingit. prin Iwill print any objectwithout the new lineand space.
For both functions, the object is printed in aform that could be processed by read.
For example, thestring "hello there" would printas"hello there". Thefunction
princisused to printinahuman-readableformat. Thestringinquestionwould print
ashellothere with princ—the quote marks are not printed. Thismeans that read
cannot recover the original form; read would interpret it as two symbols, not one
string. Thefunction writ e accepts elevendifferent keyword arguments that control
whether it actslikeprin | or princ, amongother things.

Theoutput functionsal sotakeastream asanoptional argument. Inthefollowing,
we create the file "test. text" and print two expressions to it. Then we open the
filefor reading, and try to read back thefirst expression, asingle character, and then
two more expressions. Note that the read-char returns the character #\G, so the
following read reads the characters 00DBY E and turns them into asymbol. Thefinal
read hitstheend d file, and so returns the specifiedvalue, eof.

and "~er" printsanumber asaroman numeral. Thecompound directive"~{...”}"
takes the next argument, which must be alist, and formats each element o thelist
according to the format string inside the braces. Finaly, the directive "~"" exits
fromtheenclosing"~{...”}" loopif thereareno morearguments. Yau can seethat
format, like 10op, comprises amost an entire programming language, which, also
likeloop, isnot avery Lisplike language.

3.13 Debugging Tools

In many languages, there are two strategies for debugging: (Dedit the program to
insert print statements, recompile, and try again, or (2) use adebugging program to
investigate (and perhapsalter) theinternal stated the running program.

Common Lisp admits both these strategies, but it also offers a third: (3) add
annotations that are not part d the program but have the effect d automatically
altering the running program. The advantage d the third strategy is that once
you are done you don't have to go back and undo the changes you would have
introduced in thefirst strategy. In addition, Common Lisp providesfunctions that
display information about the program. Yau need not rely solely on lookingat the
source code.

We haveaready seen how trace and untrace can be used to providedebugging
information (page65). Another useful tool i sstep, whichcan beusedtohalt execution
beforeeachsubformisevaluated. Theform (stepexpression) will evaluateandreturn
expression, but pauses at certain points to allow the user toinspect the computation,
and possibly change things before proceeding to the next step. The commands
availableto the user are implementati on-dependent, but typinga? should giveyou
alist & commands. Asan example, here we step through an expression twice, the
first timegivingcommands to stop at each subeval uation, and thesecond timegiving
commands to skip to the next function call. In thisimplementation, the commands
are control characters, so they do not show up in the output. All output, including
the symbols« and = are printed by the stepper itself; | haveadded no annotation.

> (step (+3 4 (*56 (/78)))
< ((+34 (56 78))
<=3=3

=4 = 4

< (*56 (/7 8))

< 5
< 6
<= (

/)

R R

ol ¥ oo o

7
8
) = 718

P
=

<= (/7

<= (*56 (/78)) = 105/4
< (+34 (56 (/78))) = 133/4

133/4
> (step (+ 34 (*56 (/7 8))))
< (+34((*56((/78)))

/: 78 = 718
*''567/8 = 10514
+: 3 4 10514 = 13314

& (+34 (56 (/78))) = 13314
13314

Thefunctions describe, i nspect, documentation, and apropos provideinformation
aboutthestated thecurrent program. apropos printsinformationaboutall symbols
whose name matches the argument:

> (apropos 'string)

MAKE- STRING function (LENGTH &KEY INITIAL-ELEMENT)
PRIN1-TO-STRING function (OBJECT)

PRINC-TO-STRING function (OBJECT)

STRING function (X)

Onceyou know what objectyou areinterestedin, descri becan give moreinformation
onit:

> (describe 'make-string)
Symbol MAKE-STRING is in LISP package.
The function definition i s #<FUNCTION MAKE-STRING -42524322>:
NAVE : MAKE - STRING
ARGLIST: (LENGTH &KEY INITIAL-ELEMENT)
DOCUMENTATION: "Creates and returns a string of LENGTH elements,
all set to INITIAL-ELEMENT."
DEFINITION: (LAMBDA (LENGTH &KEY INITIAL-ELEMENT)
(MAKE-ARRAY LENGTH :ELEMENT-TYPE 'CHARACTER
:INITIAL-ELEMENT (OR INITIAL-ELEMENT

#\SPACE) 1)
MAKE-STRING has property INLINE: INLINE

MAKE-STRING has property :SOURCE-FILE: #P"SYS:KERNEL; STRINGS"

> (describe 1234.56)
123456 is a single-precision floating-point number.
Sign 0, exponent #0211, 23-bit fraction #06450754

If al youwant isasymbol's documentation string, the function documentati an will
do thetrick:

> (documentation 'first 'function) = "Return the first element of LIST."
> (documentation 'pi ‘'variable) = "pi"

If you want to look at and possibly alter components d a complex structure,
then i nspect isthetool. |n someimplementationsit invokesafancy, window-based
browser.

Common Lisp also providesa debugger that is entered automatically when an
error issignalled, either by an inadvertant error or by deliberate action on the part
d the program. The details o the debugger vary between implementations, but
there are standard ways d entering it. The function break enters the debugger
after printing an optional message. It isintended as the primary methodfor setting
debugging break points. break isintended only for debugging purposes, when a
programis deemed to be working, all callsto break should be removed. However,
itisstill agood ideato check for unusual conditionswith error, cerror, assert, or
check-type, whichwill bedescribedin thefollowingsection.

3.14 AntibuggingTools

Itisagoodideatoincludeantibugging checksinyour code, inadditiontodoingnormal
debugging. Antibuggingcodechecksfor errorsand possibly takescorrectiveaction.

Thefunctionserror and cerror are used to signal an error condition. Theseare
intended to remain in the program even after it has been debugged. Thefunction
error takesaformat string and optional arguments. It signalsafatal error; thatis, it
stops the programand does not offer the user any way o restartingit. For example:

(defun average (numbers)
(if (null numbers)
(error "Average of the empty list is undefined.")
(/ (reduce #'+ numbers)
(length numbers))))

In many cases, afatal error isalittledrastic. Thefunction cerror standsfor con-
tinuable error. cer ror takestwo format strings; thefirst prints amessageindicating
what happensif we continue, and the second prints the error messageitself. cerror
does not actually take any actionto repair the error, it just allowsthe user to signal
that continuingis alright. In thefollowingimplementation, the user continues by
typing :continue. In ANSI Common Lisp, there are additional waysd specifying
optionsfor continuing.

(defun average (numbers)
(if (nu11 numbers)

(progn

(cerror "Use 0 as the average."
"Average of the empty |ist is undefined.")

0)

(/ (reduce #’+ numbers)
(length numbers))))

> (average ' ())

Error: Average of the empty list is undefined.
Error signaled by function AVERAGE.

If continued: Use 0 as the average.

>> :continue

0

In this example, adding error checking nearly doubled the length o the code. This
is not unusual; there is a big difference between code that works on the expected
input and code that coversal possibleerrors. CommonLisp triesto makeit easier
to do error checking by providingafew special forms. The form ecase stands for
"exhaustivecase" or "error case." It islikeanormal case form, except that if none
d the casesare satisfied, an error messageis generated. Theformccase standsfor
"continuablecase." Itislikeecase, except that the error iscontinuable. The system
will ask for a new valuefor the test object until the user supplies one that matches
oned the programmed cases.

To makeit easier toinclude error checkswithout inflatingthe length d the code
too much, Common Lisp provides the special formscheck-type and assert. As
the nameimplies, check-typeis used to check the typed an argument. It signalsa
continuableerror if theargument hasthe wrongtype. For example:

(defun sgr (x)
"Multiply x by itself."
(check-type x number)
(* X x))

If sqr iscalledwithanon-number argument, an appropriate error message isprinted:

> (sqr "hello")

Error: the argument x wes "hello", which is not a NUMBER.
If continued: replace X with rav value

>> :continue 4

16

assert is more general than check-type. In the simplest form, assert tests an

expressionand signalsan error if itisfalse. For example:

(defun sgr (x)
"Multiply x by itself."
(assert (numberp x))
(* x x))

Thereisno possibilityd continuingfromthiskind d assertion. Itisalso possibleto
giveassertalist o placesthat can be modified in an attempt to make the assertion
true. Inthisexample, thevariablex isthe only thing that can be changed:

(defun sgr (x)
"Multiply x by itself."
(assert (numberp x) (x))
(* x x))

If theassertionisviolated,an error messagewill be printed and the user will begiven
theoptiond continuing by alteringx. If Xisgivenavaluethat satisfiesthe assertion,
then the program continues. assertawaysreturnsnil.

Finaly, the user who wants more control over the error message can provide
aformat control string and optional arguments. So the most complex syntax for
assertis:

(assert test-form (place..) format-ctl-string format-arg...)

Here is another example. The assertion tests that the temperature d the bear's
porridgeis neither too hot nor too cold.

(defun eat-porridge (bear)
(assert (< too-cold (temperature (bear-porridge bear)) too-hot)
(bear (bear-porridge bear))

a's porridge is not just right: "a
bear (hotness (bear-porridge bear)))
(eat (bear-porridge bear)))

In theinteraction below, the assertion failed, and the programmer's error message
was printed, alongwith two possibilitiesfor continuing. Theuser selectedone, typed
inacall tomake-porridge for the new value, and the function succesfully continued.

> (eat-porridge momma-bear)

Error: #<MOMMA BEAR>’s porridge is not just right: 39
Restart actions (select using :continue):

0: Supply a new value for BEAR

1: Supply a new value for (BEAR-PORRIDGE BEAR)

>> :continue 1

Form to evaluate and use to replace (BEAR-PORRIDGE BEAR):
(make-porridge :temperature just-right)

nil

It may seem likewasted effort to spend timewritingassertionsthat (if all goeswell)
will never be used. However, for all but the perfect programmer, bugsdo occur, and
the time spent antibuggingwill morethan pay for itsdf in savingdebuggingtime.

Wheneveryou devel op acomplex datastructure, such as somekind o database,
it is a good idea to develop a corresponding consistency checker. A consistency
checker is afunction that will look over a data structure and test for all possible
errors. When anew error is discovered, acheck for it should beincorporated into
the consistency checker. Callingthe consistency checker isthefastest way to help
isolatebugsin thedata structure.

In addition, itisagood ideato kegp alist o difficult test caseson hand. That
way, when the programis changed, it will be easy to seeif the changereintroduces
abugthat had been previously removed. Thisiscalled regresson testing, and Waters
(1991) presents an interesting tool for maintainingasuite d regressiontests. Butit
issimpleenough to maintainan informal test suitewith afunction that callsassert
onaseriesd examples:

(defun test-ex ()
"Test the program EX on a series of examples.”
(init-ex) ; Initialize the EX program first.
(assert (equal (ex 3 4) 5))

(assert (equal (ex 5 0) 0))

(assert (equal (ex 'x 0) 0)))

Timing Tools

A programisnot completejust becauseit givestheright output. 1t must alsodeliver
the output in atimely fashion. Theform (ti n@ expresion) can be used to see how
longit takesto executeexpression. Someimplementationsal so print statisticson the
amount d storagerequired. For example:

> (defun f (n) (dotimes (i n) nil)) = F

> (time (f 10000)) = NIL
Evaluation of (F 10000) took 4.347272 Seconds of elapsed time,
including 0.0 seconds of paging time for 0 faults, Consed 27 words.

> (compile *'f) = F

> (time (f 10000)) = NIL
Evaluation of (F 10000) took 0.011518 Seconds of elapsed time,
including 0.0 seconds of paging time for 0 faults, Consed O words.

Thisshows that the compiled versionis over 300 timesfaster and uses less storage
to boot. Most serious Common Lisp programmerswork exclusively with compiled
functions. However,itisusuallyabadideatoworry toomuchabout efficiencydetails
whilestarting to developaprogram. Itisbetter to designaflexibleprogram, getit to
work, and then modify the most frequently used parts to be moreefficient. In other
words, separate the devel opment stage from the fine-tuning stage. Chapters 9 and
10 give more details on efficiency consideration, and chapter 25 gives more advice
on debuggi ngand antibugging techniques.

3.15 Evauation

Thereare three functions for doing evaluationin Lisp: f uncall, apply, and eval.
funcall is used to apply a function to individual arguments, while apply is used
to apply afunction to alist d arguments. Actualy, apply can be given one or
moreindividual arguments before the final argument, whichisawaysalist. eval

is passed a singleargument, which should be an entire form—a function or special
form followed by its arguments, or perhaps an atom. Thefollowingfiveformsare
equivalent:

>(+1234) = 10
> (funcall #+ 1234) = 10
> (apply #+ (1 234)) = 10
> (apply #'+ 12 (3 4)) = 10
> (eval '(+ 12 34)) = 10

Inthe past, eval wasseenasthekey to Ligp's flexibility. Inmodern Lispswithlexical
scoping, such as Common Lisp, eval is used less often (infact, in Schemethereis
noeval at all). Instead, programmers are expected to use 1ambda to create a new
function, and then apply or f uncall the function. In general, if you find yourself
usingeval , you are probably doing the wrong thing.

3.16 Closures

What doesit mean to create anew function? Certainlyevery timeafunction (or#")
special form isevaluated, afunction isreturned. But in the exampleswe have seen
and in thefollowingone, it isalwaysthe same function that isreturned.

> (mapcar #'(lambda (x) (+ x x)) "(1 3 10)) = (2 6 20)

Everytimeweevaluate the#* (lambda ...) form,itreturnsthefunction that doubles
its argument. However, in the general case, a function consists d the body d the
function coupled with anyfree lexica variablesthat the function references. Such a

pairingis called a lexica dlosure, or just a dosure, because the lexical variables are
enclosed within the function. Consider thisexample:

(defun adder (c)

"Return a function that adds ¢ to its argument.”
#'(lambda (x) (+ x ¢)))

> (mapcar (adder 3) °(1 3 10)) = (4 6 13)
> (mapcar (adder 10) ’(1 3 10)) = (11 13 20)

Each time we call adder with a different value for c, it creates a different function,
the function that adds ctoitsargument. Sinceeach call to adder createsanew loca
variablenamed c, each function returned by adder isaunique function.
Hereisanother example. The function bank-account returnsa closure that can
beused asarepresentation o abank account. Theclosure captures thelocal variable

balance. The body d the closure provides code to access and modify the local
variable.

(defun bank-account (balance)
"Open a bank account starting with the given balance."
#"(lambda (action amount)
(case action
(deposit (setf balance (+ balance amount)))
(withdraw (setf balance (- balance amount))))))

In the following, two callsto bank-account create two different closures, each with
a separate value for the lexica variable bd ance. The subsequent calls to the two

closures changetheir respectivebal ances, but thereisno confusion betweenthetwo
accounts.

> (setf my-account (bank-account 500.00)) => #<CLOSURE 52330407>

\%

(setf your-account (bank-account 250.00)) = #CLOSURE 52331203>

\

(funcall my-account 'withdraw 75.00) = 425.0

\Y

(funcall your-account 'deposit 250.00) = 500.0

\Y

(funcall your-account 'withdraw 100.00) = 400.0

\

(funcall my-account 'withdraw 25.00) = 400.0

Thisstyled programmingwill beconsidered in moredetail in chapter 13.

3.17 Specia Variables

Common Lisp providesfor two kindsd variables: lexicd and specid variables. For
the beginner, it is tempting to equate the special variablesin Common Lisp with
global variablesin other languages. Unfortunately, thisis not quite correct and can
leadto problems. Itisbesttounderstand CommonL.ispvariablesontheirownterms.

By default, Common Lisp variables are lexicd varidbles. Lexica variables are
introduced by somesyntacticconstruct likele t or defun and get their namefromthe
fact that they may only bereferred to by code that appears|exicaly within the body
d the syntactic construct. Thebody iscalled the scoped thevariable.

So far, there is no difference between Common Lisp and other languages. The
interesting part is when we consider the extert, or lifetime, d avariable. In other
languages, the extent isthe same asthe scope: anew local variableiscreated when a
block isentered, and the variablegoes away when the block isexited. But becauseit
ispossibleto create new functions—closures—inLisp, itistherefore possiblefor code
that references a variableto live on after the scope d the variable has been exited.
Consider again the bank-account function, which creates a closure representing a
bank account:

(defun bank-account (balance)
"Open a bank account starting with the given balance."
#'(lambda (action amount)
(case action
(deposit (setf balance (+ balance amount)))
(withdraw (setf balance (- balance amount))))))

The function introduces the lexica variablebalance. The scope d balance isthe
body o thefunction, and thereforereferencestobal ance can occur only within this
scope. What happenswhenbank-account iscalled and exited? Oncethe body d the
function has beenleft, no other codecanrefer to that instance d bal ance. Thescope
has been exited, but the extent d balance liveson. We can call the closure, and it

can reference bal ance, becausethe code that created the closure appeared lexically
within the scoped bal ance.
In summary, Common Lisp lexical variables are different because they can be

captured inside closures and referred to even after the flow o control has left their
scope.

Now wewill consider special variables. A variableis madespecial by adef var or
defparameter form. For example, if wesay

(defvar *counter* 0)

then we can refer to the special variable* counter* anywherein our program. This
is just likeafamiliar global variable. The tricky part is that the globa binding d

* counterk can be shadowed by alocal binding for that variable. In most languages,
thelocal bindingwouldintroducealocal | exical variable, butin CommonL.isp, specia
variablescan be bound both locally and globally. Hereisan example:

(defun report ()
(format t "Counter = ~d " *counter*))

> (report)
Counter = 0
NIL

> (let ((*counter* 100))
(report})

Counter = 100
NIL

> (report)
Counter = 0
NIL

Thereare three callsto report here. In thefirst and third, report prints the global
valued the special variable* counter*. Inthe second cal, thelet formintroduces
anew bindingfor the special variable" counter*, whichisagain printed by report.
Once the scope d the let isexited, the new binding is disestablished, so the final
call to report usestheglobal valueagain.

In summary, Common Lisp specia variables are different because they have
global scope but admit the possibility o local (dynamic) shadowing. Remember:
A lexical variable has lexical scope and indefinite extent. A special variable has
indefinite scopeand dynamic extent.

Thefunction call (symbol -value var), where var evaluates to a symbol, can be
used to get at the current value d a special variable. To set a special variable, the
followingtwo formsare compl etely equivalent:

(setf (symbol -valuewar) value)
(setvarvaluel

where both var and value are evaluated. There are no corresponding forms for
accessingand setting lexica variables. Special variablesset up a mapping between
symbolsand valuesthat is accessibleto the running program. Thisisunlikelexica
variables (and all variables in traditional languages) where symbols (identifiers)
have significanceonly while the program is being compiled. Once the programis
running, theidentifiers have been compiled away and cannot be used to accessthe
variables; only codethat appearswithin the scoped alexica variablecan reference
that variable.

Exercise 3.6[g] Giventhefollowinginitializationfor thelexical variablea and the
special variable*b*, what will bethevalued thelet form?

(setf a 'global -al
(defvar *b* ’global-b)

(defun fn () *b*}

(let ({a 'local-a)
(*b* 'local -b))
(list a*b* (fn) (symbol-value 'a) (symbol -value **b*)))

3.18 MultipleVaues

Throughout this book we have spoken d "'thevaluereturned by afunction.” Histor-
icdly, Lispwasdesigned so that every function returnsavalue, even thosefunctions
that are morelike procedures than like functions. But sometimeswe want asingle
function toreturn morethan one pieced information. OF course, we can do that by
making up alist or structure to hold the information, but then we haveto go to the
troubled definingthestructure, buildinganinstance each time, and thentakingthat
instance apart tolook at the pieces. Consider thefunctionround. Oneway it can be
usedistoround off afloating-pointnumber tothe nearest integer. So (round 5.1)is
5. Sometimes, though not always, the programmer isalsointerested in thefractional
part. Thefunction round serves both interested and disinterested programmers by
returningtwo values: the rounded integer and the remaining fraction:

> (round 5.1) = 5.1

Therearetwovaluesafter the = becauseround returnstwovalues. Most o thetime,

multiplevaluesareignored, and only thefirst valueisused. So (* 2 (round 5.1))
is10, justasif round had only returned asinglevalue. If you want to get at multiple
values, you haveto useaspecia form, suchasmulti pl e-val ue- bi nd:

(defun show-both (x)
(multiple-value-bind (int rem)
(round x)
(format t "“f ="d + ~f" x int rem)))

> (show-both 5.1)
51 =5+0.1

Yau can writefunctionsd your own that return multiplevalues using the function
val ues, whichreturnsitsargumentsas multiplevalues:

> (values 123) =123

Multiple values are a good solution because they are unobtrusive until they are
needed. Most d the time when we are using round, we are only interested in the
integer value. If round did not use multiplevalues, if it packaged the two valuesup
intoalist or structure, then it would be harder to usein the normal cases.

It is aso possible to return no valuesfrom a function with (va ues). Thisis
sometimes used by procedures that are called for effect, such as printing. For
example, descri beisdefined to print information and then return novalues:

> (describe ’'x)
Symbol X is in the USER package.
It has no value, definition or properties.

However, when (val ues) or any other expression returning no valuesis nested in
a context where a value is expected, it still obeys the Lisp rule d one-value-per-
expressionand returnsnil. Inthefollowingexample, descri be returnsno values,
but then 1i st ineffect asksfor thefirst valueand getsni 1.

> (list (describe ’x))

Symbol X is in AILP package.

It has no value, definition or properties.
(NIL)

3.19 Moreabout Parameters

Common Lisp providesthe user with alot of flexibilityin specifyingthe parameters
to afunction, and hence the arguments that the function accepts. Followingis a
program that gives practicein arithmetic. It asks the user a series d n problems,
where each problem tests the arithmetic operator op (whichcan be+, -, *, or /, or
perhaps another binary operator). The arguments to the operator will be random
integersfrom0 to range. Hereisthe program:

(defun math-quiz (op range n)
"Ask the user a series of math problems."
(dotimes (i n)
(problem (random range) op (random range))))

(defun problem (x op y)
"Ask a mah problem, read a reply, and say if it is correct."
(format t ™&Howmuch is "d "a ~d?" x op y)
(if (eql (read) (funcall op X y))
(princ "Correct!")
(princ "Sorry, that's not right.")))

and hereisan exampled itsuse:

> (math-quiz '+ 100 2)
Hw muh is 32 + 607 92
Correct!

Hw muh is 91 + 197 100
Sorry, that's not right.

One problem with the function math-quiz isthat it requires the user to type three
arguments. the operator, a range, and the number of iterations. The user must
remember the order of the arguments, and remember to quote the operator. Thisis
quitealot to expect from a user who presumably is just learning to add!

CommonLisp providestwowaysd dealingwith this problem. First, aprogram-
mer can specify that certain arguments are optiond, and provide default valuesfor
thosearguments. For example, inmath-quiz wecan arrange to make+ bethedefault
operator, 100 bethedefault number range, and 10 bethedefault number d examples
with thefollowingdefinition:

(defun math-quiz (&optional (op *+) (range 100) (n 10))
"Ask the user a series of math problems."
(dotimes (i n)
(problem (random range) op (random range))))

Now (math-quiz) means the same as (math-quiz '+ 100 10). K an optional
parameter appears alone without adefault value, then the defaultis ni 1. Optional
parameters are handy; however, what if the user is happy with the operator and
range but wants to change the number iterations? Optional parameters are still
position-dependent, sotheonly solutionistotypeinall threearguments: (math-qui z
'+ 100 5).

Common Lisp also dlowsfor parameters that are position-independent. These
keyword parameters are explicitly named in the function call. They are useful when
thereareanumber o parameters that normally takedefault values but occasionally
need specific values. For example, we could havedefined math-qui z as:

(defun math-quiz (&key (op *+) (range 100) (n 10))
"Ask the user a series of math problems."
(dotimes (i n)

(problem (random range) op (random range))))

Now (math-quiz :n 5) and (math-quiz :op '+ :n 5 :range 100) meanthesame.
Keyword arguments are specified by the parameter name preceded by a colon, and
followed by the value. Thekeyword/value pairs can comein any order.

A symbol startingwith a colonis called a keyword, and can be used anywhere,
not justin argument lists. The term keywordisused differentlyin Lispthanin many
other languages. For example, in Pascal, keywords (or reserved words) are syntactic
symbols, likeif, el se, begin, and end. In Lisp we call such symbols specid form
operatorsor just specidforms. Lisp keywords are symbolsthat happen to residein
the keyword package.®> They have no special syntactic meaning, although they do
havetheunusual property d beingself-evaluating: they are constants that evaluate
to themsel ves, unlike other symbols, which evaluate towhatever value wasstoredin
the variable named by the symbol. Keywordsalso happen to be used in specifying
& keyargument lists, but that is by virtue o their value, not by virtue d some syntax
rule. Itisimportant to remember that keywords are used in the function call, but
normal nonkeyword symbolsare used as parametersin the function definition.

Just to make things alittle more confusing, the symbols&optional, &restand
& keyare called lambdalist keywords, for historical reasons. Unlike the colonin real
keywords, the & inlambda-listkeywordshas no special significance. Consider these
annotated exampl es:

* A package isasymbol table: amapping between strings and the symbol sthey name.

> :xyz = :XYZ ; keywords are self-evaluating

> &optional = ; lambda-list keywordsare normal symbols
Error: the symbol &optional hasnovalue

> "&optional = &OPTIONAL
> (defun f (&xyz) (+ &xyz &xyz)) = F ;& hasnosignificance
>(f3) =6

> (defun f (:xyz) (+ :xyz :xyz)) =
Error: the keyword :xyz appearsinavariable list.
Keywor ds are constants, and so cannot be used as names of variables.

> (defun g (&key x y) (list x ¥)) = G
> (let ((keys *(:x :y :2))) ; keyword args can be computed
(g (second keys) 1 (first keys) 2)) = (2 1)

Many d thefunctions presented in thischapter takekeyword arguments that make
them moreversatile. For example, remember the function f i nd, which can be used
tolook for aparticular element in asequence:

> (find 3 (1234 -56.0)) = 3

It turns out that find takes several optional keyword arguments. For example,
supposewetried tofind 6in thissequence:

> (find 6 *(1 23 4 -5 6.0)) = nil

Thisfailsbecausef i nd testsfor equalitywith egl, and 6isnot egl to6.0. However,
6isequal pto 6.0, sowecould usethe :test keyword:

> (find 6 (1 23 4 -5 6.0) :test #’equalp) = 6.0
Infact, wecan specify any binary predicatefor the : test keyword;it doesn't haveto
be an equality predicate. For example, we could find thefirst number that 4 isless
than:

> (find 4 "(1 2 3 4 -56.0) :test #'<) = 6.0
Now supposewedon't careabout the sign of the numbers; if welook for 5, wewant

tofind the - 5. Wecan handlethiswith the key keyword to take theabsolutevalued
eachelement d thelist withthe abs function:

>(find 5 (1234 -56.0) :key #’abs) = -5

Keyword parameters significantly extend the usefulness d built-in functions, and
they candothesamefor functionsyoudefine. Amongthebuilt-infunctions, the most
commonkeywordsfall into two maingroups: :test, :test-not and : key, whichare
used for matchingfunctions, and :start, :end, and :from-end, whichareused on
sequencefunctions. Somefunctionsaccept both setsd keywords. (CommonLisp the
Language, 2d edition, discouragesthe use d :test-not keywords, although they are
still apart d thelanguage.)

The matchingfunctionsinclude sublis, position, subst, union, intersection,
set-di fference, remove, remove-if, subsetp, assoc, find, and member. By default,
each testsif someitemisegl tooneor mored aseriesd other objects. Thistest can
be changed by supplying someother predicateastheargument to : test, or it can be
reversed by specifying: test- not. Inaddition, the comparison can be made against
somepart d theobject rather than thewholeobject by specifyingasel ector function
asthe : key argument.

The sequence functions include remove, remove-if, position, and find. The
most common typed sequenceisthelist, but stringsand vectorscan also be used as
sequences. A sequencefunction performssomeactionrepeatedly for someel ements
d asequence. Thedefault isto go through the sequence from beginningto end, but
the reverse order can be specified with :from-end t, and a subsequence can be
specifed by supplying a number for the :start or :end keyword. Thefirst element
d asequenceisnumbered 0, not1, so becareful.

As an exampled keyword parameters, suppose we wanted to write sequence
functions that are similar to find and fi nd-i f, except that they return alist d all
matching elements rather than just the first matching element. We will cal the
new functions find-all and find-all-if. Another way tolook at these functions
isasvariationsd remove. Instead d removingitems that match, they keep all the
items that match, and remove the ones that don't. Viewed this way, we can see
that thefunction find-ail-if isactualy the samefunctionas remove-if -not. Itis
sometimes useful to havetwo namesfor the samefunction viewedin different ways
(likenot and nul11). The new name could be defined with adefun, but it iseasier to
just copy over the definition:

(setf (symbol-function 'find-all-if) # remove-if-not)

Unfortunately, thereis no built-infunction that corresponds exactly tofind-all, so
wewill haveto defineit. Fortunately, remove can do most o thework. All we have
to doisarrange to pass removethe complement d the :test predicate. For example,
finding all elements that are equal to1in alist isequivalent to removing el ements
that are not equal to1:

>(setf urs '(12321))= (12321

> (find-all 1 nuvs :test #'=) = (removel rurs :test #’/=) = (1 1)

Now what we need is a higher-order function that returns the complement o a
function. In other words, given =, we want to return /=. This function is called
comp ementin ANSI CommonLisp, butitwasnot definedin earlier versions, soitis
given here:

(defun complemat (fn)
"If N returnsy, then (complement FN) returns (not y)."
;; This function is built-in in ANS Common Lisp.
;; but is defined here for those with non-ANSI compilers.
#(lambda (&rest args) (not (apply fn args))))

When find-all is called with a given :test predicate, all we have to do is call
remove with the complement as the :test predicate. Thisis true even when the
:test function is not specified, and therefore defaults to egl . We should also test
for when the user specifiesthe :test-not predicate, which is used to specify that
the match succeeds when the predicateisfalse. Itisan error to specify both a : test
and :test-not argument to the same call, so we need not test for that case. The
definitionis:

(defun find-all (item sequence & restkeyword-args
&key (test #°eql) test-not &allow-other-keys)
"Find all those edements of sequence that mech item,
according to the keywords Doexnt alter sequence.
(if test-not
(apply #remove item sequence
‘test-not (complement test-not) keyword-args)
(apply #remove item sequence
‘test (complamat test) keywordargs)))

The only hard part about this definition is understanding the parameter list. The
& restaccumulates all the keyword/value pairs in the variable keyword-args. In
addition to the & restparameter, two specific keyword parameters, :test and
:test-not, are specified. Any time you put a &keyin a parameter list, you need
an &allonother - keysif, in fact, other keywordsare allowed. In this case we want
to accept keywordslike :start and : key and passthem on to remove.

All thekeyword/value pairswill beaccumulated inthelist keyword-args, includ-
ing the :test or :test-not values. Sowewillhave:

(find-all 1 rurs :test #'= :key #’abs)
= (remove 1 rurs :test (complement #°=) :test #'= :key #'abs)
= (11

Note that the call to remove will contain two :test keywords. Thisisnot an error;
Common Lisp declaresthat the leftmost valueis the one that counts.

Exercise 3.7[s] Why doyou think the leftmost d two keysisthe one that counts,
rather than the rightmost?

Exercise 3.8[m] Someversionsd Kyoto CommonLisp (KCL)haveabugwherein
they use the rightmost value when more than one keyword/value pair is specified
for the same keyword. Changethedefinitiond find-all sothat it worksin KCL.

Thereare two morelambda-list keywordsthat are sometimes used by advanced
programmers. First, within a macro definition (but not a function definition), the
symbol &bodycan be used as a synonym for & rest. The differenceis that &body
instructs certain formatting programs to indent the rest as a body. Thus, if we
defined the macro:

(defmacro while2 (test &body body)
"Repeat body while test is true."
‘(loop (if (not ,test) (return nil))

. ,body))

Thentheautomaticindentationd while2 (oncertain systems)isprettier thanwhile:

while (< i 10) while2 (< i

hil i hile2 (< i 10
(print (* i i) (print (* i 1))
(setf 1 (+ 1 1)) (setf i (+1i 1)))

Finaly, an &aux can be used to bind a new local variableor variables, as if bound
with Tet*. Persondly, | consider this an abomination, because &aux variablesare
not parameters at al and thus have no placein a parameter list. | think they should
be clearly distinguished aslocal variableswith alet. But some good programmers
do use &aux, presumably to save space on the page or screen. Against my better
judgement, | show an example:

(defun lengthl4 (list &aux (len 0))
(dolist (element list 1en)
(incf Ten)))

3.20 TheRestd Lisp

Thereisalot moreto Common Lisp than what we have seen here, but thisoverview
should be enough for the reader to comprehend the programsin the chapters to
come. TheseriousLisp programmer will further hisor her education by continuing
to consult reference books and online documentation. Yau may also find part V
d this book to be helpful, particularly chapter 24, which covers advanced features
d Common Lisp (such as packagesand error handling) and chapter 25, whichisa
collectiond troubleshooting hintsfor the perplexedLisper.

While it may be distracting for the beginner to be continually looking at some
referencesource, thealternative—toexplainevery new functionincompletedetail as
itisintroduced—wouldbe even moredistracting. It wouldinterrupt the description
d the Al programs, whichiswhat thisbook isall about.

3.21 Exercises
Exercise 3.9[m] Writeaversiond length using thefunction reduce.

Exercise 3.10[m] Useareferencemanual or descri betofigureout what the func-
tions1enand nreconc do.

Exercise 3.11[m] Thereisa built-in Common Lisp function that, given a key, a
value, and an association list, returns a new association list that is extended to
includethekey/value pair. What isthe name of thisfunction?

Exercise 3.12[m] Write asingle expression using format that will take alist of
wordsand print them asasentence, with thefirst word capitalizedand a period after
thelast word. Yau will haveto consult areferencetolearn new format directives.

3.22 Answers

Answer 3.2 (consab) = (list*ab)

Ansve 3.3

(defun dprint (x)
"Print an expression in dotted pair notation."
(cond ((atom x) (princ x))
(t (princ "(")
(dprint (first x))
(pr-rest (rest x))
(princ ")™)
x)))

(defun pr-rest (x)
(princ" . ™
(dprint x))

Ansve 3.4 Usethesamedprint function defined in the last exercise, but change
pr-rest.

(defun pr-rest (x)
(cond ((null x))
((atom x) (princ " . ") (princ x))
(t (princ " ") (dprint (first x)) (pr-rest (rest x)))))

Ansvea 35 Wewill keep adata basecalled *db*. Thedata baseisorganizedinto
atree structure d nodes. Each node has three fields: the name d the object it
represents, anodetogotoif theanswer isyes, and anodefor when theanswer isno.
Wetraversethe nodes until weeither getan"it" reply or havetogiveup. Inthelatter
case, wedestructively modify the data base to contain the new information.

(defstruct node

reme
(yes nil)
(no nil))

(defvar *db*
(make-node:name ‘animal
'yes (make-node :name 'mammd)
:no (make-node
‘name *vegetabl e
:no (make-node :name 'mineral))))

(defun questions (&optional (node *db*))
(format t ""&Isit a "a? " (node-name node))
(case (read)
((y yes) (if (not (null (node-yes node)))
(questions (node-yes node))
(setf (node-yes node) (give-up))))
((nno) (if (not (null (node-no node)))
(questions (node-no node))
(setf (node-no node) (give-up))))
(it 'ahal)
(t (format t "Reply with YES, NO, or IT if I have guessed it.")
(questions node))))

(defun give-up)
(format t ""&I give up - what is it? ")
(make-node :name (read)))

Hereitisused:

> (questions)

Is it a ANIMAL? yes

Is it a MAMMAL? yes

1 give up - what is it? bear
#S(NODE NAME BEAR)

> (questions)

Is it a ANIMAL? yes

Is it a MAVMMAL? no

1 give up - what is it? penguin
#S(NODE :NAME PENGUIN)

> (questions)

Is it a ANIMAL? yes
Is it a MAMMAL? yes
IsitaBEAR? it
AHA!

Answver 3.6 Thevalueis (LOCAL-A LOCAL-B LOCAL-B GLOBAL-A LOCAL-B).

Thelet form binds a lexicaly and *b* dynamically, so the referencesto a and
b (includingthe referenceto*b* within fn) al get the local values. Thefunction
symbol -value dwaystreatsitsargument asaspecial variable, soitignoresthelexica
binding for a and returns the global binding instead. However, the symbol -value
b istheloca dynamicvalue.

Answver 3.7 Therearetwogood reasons: First, it makesit faster to search through
the argument list: just search until you find the key, not al the way to the end.
Second, in the case where you want to override an existing keyword and pass the
argument list on to another function, it is cheaper to cons the new keyword/value
pair onthefront o alistthantoappend ittotheend d alist.

Answver 3.9

(defun length-r (1ist)
(reduce #’+ (mapcar #'(lambda (x) 1) list)))

or moreefficiently:
(defun length-r (list)
(reduce #'(lambda (x y) (+ x 1)) list
sinitial-value 0))

or, with an ANSI-compliant Common Lisp, you can specify a : key

(defunlength-r (list)
(reducet#’+list :key # (lambda (x) 1)))

Ansver 3.12 (format t ""e("{"a~" “}.7)" '(this is a test))

PART [l

EARLY Al PROGRAMS

cHAPTER 4

GPS: The General
Problem Solver

Thereare now in the world machinesthat think.

—Herbert Simon
Nobel Prize-winning Al researcher

bodied a grandiose vision: a single computer program that could solve any problem,

given a suitable description d the problem. GPs caused quite a stir when it wasintro-
duced, and some peoplein Al felt it would sweep in agrand new erad intelligent machines.
Simon went so far as to make this statement about his creation:

T he General Problem Solver, developedin 1957 by Alan Newell and Herbert Simon, em-

Itisnot my aimto surpriseor shock you. ... Butthe simplestway | can summarizeis to say
that there are now in the world machinesthat think, that learn and create. Moreover, their
ability to do these thingsis going to increase rapidly until—in a visible future-therange of
problemsthey can handlewill be coextensivewith the range to which the human mind has
been applied.

Although GPs never lived up to these exaggerated claims, it wasstill animportant
program for historical reasons. It was the first program to separate its problem-
solving strategy from its knowledge d particular problems, and it spurred much
further research in problem solving. For al these reasons, it is a fitting object
d study.

The original GPs program had a number d minor features that made it quite
complex. Inaddition, itwaswritteninanobsol etel ow-level language, I1PL, that added
gratuitouscomplexity. Infact, theconfusingnatured IPL wasprobablyanimportant
reason for the grand claims about GPs. If the programwasthat complicated, it must
do something important. We will beignoringsome d the subtleties d the original
program, and we will use Common Lisp, a much more perspicuous language than
IPL. The result will be a version d GPs that is quite simple, yet illustrates some
important points about Al.

Ononelevd, thischapter isabout GPS. But onanother level, itisabout the process
d developingan Al computer program. We distinguish five stagesin the develop-
ment o aprogram. Firstisthe problem description, which isarough idea—usually
writtenin Englishprose—of what wewant todo. Secondisthe programspecification,
whereweredescribethe problemin termsthat are closer to acomputabl e procedure.
The third stageis the implementation d the program in a programming language
such as Common Lisp, thefourth istesting, and thefifth isdebuggingand analysis.
Theboundaries between these stagesarefluid, and the stages need not be compl eted
inthe order stated. Problemsat any stage can lead to achangein the previousstage,
or even to completeredesign or abandonment d the project. A programmer may
prefer to complete only a partial description or specification, proceed directly to
implementation and testing, and then return to compl etethe specificationbased on
abetter understanding.

Wefollow al five stagesin thedevelopment o our versionsd Gps, with the hope
that the reader will understand Gps better and will also come to understand better
how to write a program d his or her own. To summarize, the five stages d an Al
programming project are:

1. Describethe probleminvagueterms

2. Specifythe probleminalgorithmicterms

3. Implement the problemin a programminglanguage
4. Test the program on representative examples

5. Debugand analyzethe resulting program, and repeat the process

4.1 Stagel: Description

Asour problemdescri ption, wewill start with aquotefromNewell and Simon's 1972
book, Human Problem Solving:

The main methods of GPs jointly embody the heuristic of means-ends analy-
sis. Means-endsanalysis is typified by the following kind of common-sense
argument:

| want to take my son to nursery school. What's the difference
between what | have and what | want? One of distance. What
changes distance? My automobile. My automobile won't work.
What is needed to make it work? A new battery. What has new
batteries? An auto repair shop. | want the repair shop to putin a
new battery; but the shop doesn't know | need one. What is the
difficulty? One of communication. What allows communication?
Atelephone. .. and soon.

Thekind of analysis—classifyingthingsin terms of the functionsthey serveand
oscillating among ends, functionsrequired,and meansthat perform them-forms
thebasic systemdf heuristicof Gps.

O course, thiskind d analysisis not exactly new. The theory means-ends
analysiswaslaid down quite elegantly by Aristotle2300 yearsearlier in the chapter
entitled "The nature d deliberation and its objects" d the Nicomachean Ethics (Book
II1. 3, 1112b):

We deliberatenot about ends, but about means. Far adoctor doesnot deliberate
whether he shall heal, nor an orator whether he shall persuade, nor a statesman
whether he shall producelaw and order, nor does any one else ddliberate about
hisend. They assumetheend and consider how and by what meansitisattained,
and if it seems to ke produced by several meansthey consider by whichiit is
most easily and best produced, whileif it is achieved by one only they consider
how it will be achieved by this and by what means this will be achieved, till
they cometo the first cause, whichintheorder of discoveryislast.. . and what
islastin the order of analysis seemsto be first in the order of becoming. And i f
we come on animpossibility, we give up the search, e.., if we need money and
this cannot be got; but i fa thing appears possiblewe try to doiit.

Given this description o atheory o problem solving, how should we go about
writinga program? First, we try to understand morefully the procedure outlined in
the quotes. The main ideais to solve a problem using a process caled means-ends
analysis, wherethe problemisstated intermsd what wewant to happen. In Newell
and Simon's exampl e, the problemisto get the kid to school, but ingeneral wewould

likethe programto beableto solveabroadclassd problems. Wecan solveaproblem
if we can find someway to eliminate" the difference bbetween what | have and what
| want." For example, if what | haveisachild at home, and what | want isa child
at school, then driving may be a solution, because we know that driving leads to a
changein location. We should be aware that using means-endsanalysisisachoice:
itisalso possibleto start from the current situation and search forward to the goal,
or to employ amixtured different search strategies.

Someactionsrequire the solvingd preconditions as subproblems. Beforewe can
drivethecar, weneed tosolvethesubproblem d gettingthecar inworkingcondition.
It may be that the car isalready working, in which casewe need do nothing to solve
the subproblem. Soaproblemissolved either by taking appropriate action directly,
or by first solving for the preconditions d an appropriate action and then taking
the action. It is clear we will need some description d allowable actions, along
with their preconditions and effects. We will also need to develop a definition d
appropriateness. However, if we can define these notions better, it seemswewon't
need any new notions. Thus, wewill arbitrarily decide that the problem description
iscomplete, and move on to the problem specification.

4.2 Stage?2:. Specification

At thispoint we haveanidea—admittedly vague—of what it meansto solvea problem
in GPS. We can refine these notions into representations that are closer to Lisp as
follows:

e We can represent the current state o the world—"what | have"—or the goa
state—"what | want"—assetsd conditions. Common Lisp doesn't have adata
typefor sets, but it does havelists, which can be used toimplement sets. Each
condition can berepresented by asymbol. Thus, atypical goal might bethelist
d twoconditions(rich famous), and atypica current state might be (unknown
poor).

e Weneedalistd allowableoperators. Thislist will be constant over the course
d aproblem, or evenaseriesd problems, but wewant to be ableto changeit
and tackleanew problem domain.

e An operator can be represented as a structure composed d an action, alist
d preconditions, and a list o effects. We can place limits on the kinds o
possibleeffectsby sayingthat an effecteither adds or del etesaconditionfrom
the current state. Thus, the list d effects can be split into an add-list and
adelete-list. Thiswas the approach taken by the STRIPS implementation o

'STRIPS isthe Stanford Research I nstitute Problem Solver, designed by Richard Fikesand
NilsNilsson (1971).

GPs, whichwewill bein effect reconstructing in thischapter. Theoriginal GPs
alowed moreflexibility in the specification d effects, but flexibility leads to
inefficiency.

e A completeproblemisdescribed toGpsintermsd astarting state, agoal state,
and aset d known operators. Thus, GPswill beafunction o three arguments.
For example, asample call might be:

(GPS '(unknown poor) '(rich famous) list-of-ops)

In other words, startingfromthestated being poor and unknown, achievethe
state of beingrich and famous, usingany combinationd the known operators.
GPsshouldreturn atruevalueonly if it solvesthe problem, and it should print
a record of the actions taken. The simplest approach is to go through the
conditionsin the goal state one at atime and try to achieveeach one. If they
can all beachieved, then the problemissolved.

e A singlegoa condition can be achieved in two ways. If it isaready in the
current state, the goal is trivially achieved with no effort. Otherwise, we have
tofind some appropriate operator and try to apply it.

e Anoperator isappropriateif oned theeffectsd the operator istoadd thegod
in question to the current state; in other words, if the goal isin the operator's
add-list.

¢ We can apply an operator if we can achieveall the preconditions. But thisis
easy, because we just defined the notion d achievinga goal in the previous
paragraph. Once the preconditions have been achieved, applying an operator
means executingthe action and updating the current statein term d the oper-
ator's add-list and delete-list. Sinceour programis just asimulation—it won't
be actually drivinga car or dialing atelephone—we must be content simply to
print out the action, rather than taking any real action.

4.3 Stage3: Implementation

The specification is complete enough to lead directly to a complete Common Lisp
program. Figure4.1 summarizes the variables, data types, and functions that make
up the GPs program, along with some d the Common Lisp functions used toimple-
ment it.

(defun op-p (op)
(and (vectorp op) (eq (elt op 0) ‘op)))

(setf (documentation 'op ‘'structure) "An operation")

Next in the GPs program are four function definitions. The main function, GPs, is
passed three arguments. Thefirst isthe current state d the world, the second the
god state, and the third alist o allowableoperators. The body d the function says
simply that if we can achieve every one d the goalswe have been given, then the
problem is solved. The unstated alternative is that otherwise, the problem is not
solved.

Thefunction achi eveisgivenasanargumentasinglegoal. Thefunctionsucceeds
if that goa is already true in the current state (in which case we don't have to do
anything) or if we can apply an appropriate operator. Thisisaccomplished by first
buildingthelist d appropriate operators and then testing each in turn until onecan
be applied. achievecallsfind-all, which we defined on page101. In this use,
find-all returns alist d operators that match the current goa, according to the
predicate appropri ate-p.

The function appropri ate-p tests if an operator is appropriate for achieving a
goal. (Itfollowsthe Lisp naming convention that predicatesendin -p.)

Finaly, the function apply -op says that if we can achieveall the preconditions
for an appropriate operator, then we can apply the operator. Thisinvolves printing
amessageto that effect and changing the state d the world by deleting what wasin
the delete-list and adding what wasin the add-list. apply-op isalso a predicate; it
returns t only when the operator can be applied.

4.4 Staged: Test

Thissectionwill definealist o operators applicabletothe" drivingto nursery school "
domain and will show how to pose and solve some problemsin that domain. First,
weneed toconstruct thelist d operatorsfor thedomain. Thedef struct formfor the
type gp automatically definesthe function make - op, which can be used asfollows:

(make-op :action 'drive-son-to-school
:preconds '(son-at-home car-works)
radd-list '(son-at-school)
:del-Tist '(son-at-home))

Thisexpressionreturnsanoperatorwhoseactionis thesymbol dri ve- son-to-school
and whose preconditions, add-list and delete-list are the specifiedlists. Theintent

d thisoperator isthat whenever the son isat home and the car works, drive-son-
to-school can beapplied, changing the state by deleting the fact that the son isat
home, and adding thefact that heisat school.

It should be noted that usinglong hyphenated atomslikeson-at -home isauseful
approach only for very simpleexampleslikethisone. A better representation would
break the atom into its components: perhaps (at son home). The problem with
the atom-based approach isone d combinatorics. If there are 10 predicates (such
as at) and 10 people or objects, then there will be 10 x 10 X 10 = 1000 possible
hyphenated atoms, but only 20 components. Clearly, it would be easier to describe
the components. In this chapter we stick with the hyphenated atoms becauseit is
simpler, and we do not need to describe thewholeworld. Subsequent chapterstake
knowledgerepresentation moreserioudly.

With this operator as a model, we can define other operators corresponding to
Newell and Simon's quote on page 109. Therewill be an operator for installing a
battery, telling the repair shop the problem, and tel ephoning the shop. Wecanfillin
the"and soon" by adding operators for |ooking up the shop's phone number and for
giving the shop money:

(def parameter *school -ops*
(list

(make-op :action 'drive-son-to-school
:preconds ' (son-at-home car-works)
;add-list '(son-at-school)

:del-Tist ' (son-at-home))

(make-op :action 'shop-installs-battery
:preconds ' (car-needs-battery shop-knows- probl em shop-has-money)
cadd-Tist '(car-works))

(make-op :action "tell -shop-probl em
:preconds ' (i n-comuni cation-with-shop)
add-1ist ' (shop-knows-problem)

(make-op :action "telephone-shop
:preconds ' (know-phone-nunber)

;add-1ist " (in-communication-with-shop))

(make-op :action 'look-up-number
:preconds ' (have-phone-book)
add-list ' (knowphone-number))

(make-op :action 'give-shop-money
:preconds ' (have-noney)
add-1ist ' (shop-has-money)

:del-1ist ' (have-money))))

Thenext stepisto pose some problemsto GPs and examinethe solutions. Following
are three sample problems. In each case, the goadl isthe same: to achievethesingle
condition son-at -school . Thelist o available operators is also the same in each

problem; the differenceisin theinitial state. Each d the three examplesconsists o
the prompt, “>”, whichis printed by the Lisp system, followed by acall to Gps, “(gps
...)”, whichistyped by the user, then the output from the program, “ (EXECUTI NG
...)”, and finalytheresult d thefunction call, whichcan beeither SOLVED or NI L.

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
"(son-at-school)
school -ops)

(EXECUTI NG LOOK-UP-NUMBER)

(EXECUTI NG TELEPHONE- SHOP)

(EXECUTI NG TELL- SHOP- PROBLEM

(EXECUTING Gl VE- SHOP- MONEY)

(EXECUTI NG SHOP-| NSTALLS- BATTERY)

(EXECUTING DRI VE- SON- TO- SCHOOL)

SOLVED

(son-at-home car-needs-battery have-money)
"(son-at-school)
school -ops)

> (gps

NI L

> (gps '(son-at-home car-works)
" (son-at-school)
school -ops)
(EXECUTI NG DRI VE- SON- TO- SCHOOL)
SOLVED

In al three examplesthe goa is to have the son at school. The only operator that
has son-at-school inits add-listis drive-son-to-school, so GPs selects that op-
erator initially. Before it can execute the operator, GPS has to solve for the pre-
conditions. In the first example, the program ends up working backward through
the operators shop-install s-battery, give-shop-money,tell -shop-probl en and
tel ephone-shop to1ook - up-number, whichhas no outstandingpreconditions. Thus,
the 100k - up-number action can be executed, and the program moveson to the other
actions. AsAristotlesaid, "What isthelast in the order d analysisseemsto befirst
intheorder d becoming.”

Thesecond examplestartsout exactly the same, but thelook - up - number operator
failsbecauseits precondition, have- p hone- book, cannot be achieved. Knowingthe
phone number is a precondition, directly or indirectly, d al the operators, so no
actionistakenand GpsreturnsNI L.

Findly, thethird exampleis much moredirect; the initial state specifiesthat the
car works, so the driving operator can be applied immediately.

45 Stage5: Analysis, or"We Lied about the G"

Inthe sectionsthat follow, weexaminethequestion d just how general this General
Problem Solver is. The next four sections point out limitationsd our versiond GPs,
and wewill show how tocorrect theselimitationsinasecond versiond the program.

Onemightaskif "limitations"isjustaeuphemismfor ""bugs."” Arewe “enhancing”
the program, or are we "correcting” it? There are no clear answers on this point,
becausewe never insisted on an unambiguous problem description or specification.
Al programmingis largely exploratory programming; the aim is often to discover
moreabout the problemarearather than to meet aclearly defined specification. This
isin contrast to a more traditional notion d programming, where the problem is
completely specified beforethefirst lined codeiswritten.

4.6 TheRunning Around the Block Problem

Representing the operator " drivingfrom home to school" is easy: the precondition
and delete-listincludes beingat home, and the add-listincludes beingat school. But
suppose we wanted to represent "' running around the block." Therewould be no
net change d location, so does that mean there would be no add- or delete-list? If
s0, therewould be no reason ever to apply the operator. Perhaps the add-list should
containsomethinglike™ gotsomeexercise” or''fed tired," or something moregeneral
like" experiencerunning around the block." Wewill return to thisquestion later.

4.7 TheClobbered Sibling Goal Problem

Consider the problem o not only getting the child to school but also having some
money left over to usefor therest d the day. Gps can easily solvethis problemfrom
thefollowinginitial condition:

> (gps ‘'(son-at-home have-money car-works)
'(have-money son-at-school)
school -ops)

(EXECUTING DRIVE-SON-TO-SCHOOL)

SOLVED

However, in the next example GPS incorrectly reports success, when in fact it has
spent the money on the battery.

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
‘(have-money son-at-school)
school -ops)

(EXECUTING LOOK-UP-NUMBER)

(EXECUTING TELEPHONE-SHOP)

(EXECUTING TELL-SHOP-PROBLEM)

(EXECUTING GIVE-SHOP-MONEY)

(EXECUTING SHOP-INSTALLS-BATTERY)

(EXECUTING DRIVE-SON-TO-SCHOOL)

SOLVED

The "bug" is that GPS uses the expression (every #'achieve goals) to achieve
aset o gods. If this expression returns true, it means that every one o the
goas has been achieved in sequence, but it doesn't mean they are al ill true
at the end. In other words, the goa (have-money son-at-school), which wein-
tended to mean "end up in a state where both have-money and son-at-school are
true," wasinterpreted by GPS to mean "first achieve have-money, and then achieve
son-at-school.” Sometimes achieving one goa can undo another, previously
achieved goal. We will call this the " prerequisite clobbers sibling god" problem.?
That is, have-money and son-at-school aresibling goals, one of the prerequisites
for the plan for son-at-school iscar-works, and achievingthat goa clobbersthe
have-money goal.

Modifyingthe programtorecognizethe" prerequisitecl obberssiblinggod" prob-
lemisstraightforward. First note that wecall (every #*achieve something) twice
within the program, solet's replacethosetwoformswith (achieve-all something).
Wecan then defineachieve-all asfollows:

(defun achieve-all (goals)
"Try to achieve each goal, then make sure they still hold."
(and (every #'achieve goals) (subsetp goals *state*)))

TheCommonLispfunctionsubsetp returnstrueif itsfirst argumentisasubsetd its
second. Inachieve-all,itreturnstrueif every oned the goalsisstill in the current
state after achievingall thegoals. Thisis just what wewanted to test.
Theintroduction d achieve-all prevents Gps from returning true when one o
the goalsgetsclobbered, but it doesn't force GPsto replan and try to recover froma
clobbered goal. Wewon't consider that possibility now, but wewill takeit up again
in the section on the blocksworld domain, whichwas Sussman's primary example.

2Gerald Sussman, in his book A Camputer Madd d Skill Aoguisition, uses the term " prereg-
uisite clobbers brother goal" or PCBG. | prefer to be gender neutral, even at therisk o being
labeled ahistorical revisionist.

4.8 Thel eapingbeforeYouLook Problem

Another way to address the" prerequisiteclobberssiblinggoa" problemisjust to be
more careful about the order d goalsinagoal list. If wewant to get the kid to school
and still have some money left, why not just specify the goal as (son-at -school
have-money) rather than(have-noney son-at-school)? Let's see what happens
whenwetry that:

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
'(son-at-school have-money)
school -ops)

(EXECUTING LOOK-UP-NUMBER)

(EXECUTING TELEPHONE-SHOP)

(EXECUTING TELL-SHOP-PROBLEM)

(EXECUTING GIVE-SHOP-MONEY)

(EXECUTING SHOP-INSTALLS-BATTERY)

(EXECUTING DRIVE-SON-TO-SCHOOL)

NIL

GPs returns nil, reflecting the fact that the goal cannot be achieved, but only after
executingall actions up to and including driving to school. | cal this the "leaping
beforeyoulook” problem, becauseif you asked the programtosolvefor thetwo goals
(jump-of f -cl i ff land- safely) itwould happily jumpfirst, only to discover that it
had no operator toland safely. Thisislessthan prudent behavior.

The problem arises because planning and execution are interleaved. Once the
preconditionsfor an operator areachieved, theactionistaken—and* st at * isirrevo-
cably changed—evenif thisaction may eventually lead to adead end. Analternative
would beto replacethesingleglobal * st at e* with distinct local state variables, such
that a new variableis created for each new state. Thisadternativeisagood onefor
another, independent reason, aswe shall seein the next section.

4.9 TheRecursiveSubgoal Problem

In our simulated nursery school world there is only one way to find out a phone
number: tolook it up in the phone book. Suppose we want to add an operator for
finding out aphone number by askingsomeone. O course, in order to ask someone
something, you need to be in communication with him or her. The asking-for-a-
phone-number operator could beimplemented asfollows:

(push (make-op :action ‘ask-phone-number
:preconds ‘(in-communication-with-shop)
;add-list '(know-phone-number))
school -ops)

(Thespecial form (push item list) putstheitem on thefront o thelist; it isequiv-
adentto (setf ligt (cons item list)) inthe simplecase.) Unfortunately, something
unexpected happenswhen weattempt to solveseemingly simple problemswith this
new set d operators. Consider thefollowing:

> (gps '(son-at-home car-needs-battery have-money)
‘(son-at-school)
school -ops)

>>TRAP 14877 (SYSTEM:PDL-OVERFLOW EH::REGULAR)
The regular push-down list has overflown.
While in the function ACHIEVE <- EVERY <- REMOVE

The error message (whichwill vary fromone implementation & Common Lisp to
another) means that too many recursively nested function calls were made. This
indicates either avery complex problem or, more commonly, a bugin the program
leading toinfiniterecursion. Oneway to try to seethe caused the bugisto tracea
relevant function, such asachieve:

> (trace achieve) = (ACHIEVE)

> (gps '(son-at-home car-needs-battery have-money)
'(son-at-school)
school -ops)
(1 ENTER ACHIEVE: SON-AT-SCHOOL)
(2 ENTER ACHIEVE: SON-AT-HOME)
(2 EXIT ACHEEVE: (SON-AT-HOME CAR-NEEDS-BATTERY HAVE-MONEY))
(2 ENTER ACHIEVE: CAR-WORKS)
(3 ENTER ACHIEVE: CAR-NEEDS-BATTERY)
(3 EXIT ACHIEVE: (CAR-NEEDS-BATTERY HAVE-MONEY))
(3 ENTER ACHIEVE: SHOP-KNOWS-PROBLEM)
(4 ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP)
(5 ENTER ACHIEVE: KNOW-PHONE-NUMBER)
(6 ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP)
(7 ENTER ACHIEVE: KNOW-PHONE-NUMBER)
(8 ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP)
(9 ENTER ACHIEVE: KNOW-PHONE-NUMBER)

The output from trace gives us the necessary clues. Newell and Simon talk o
" oscillatingamong ends, functions required, and means that perform them." Here
it seems we have an infinite oscillation between being in communication with the
shop (levels4, 6, 8, ...) and knowing the shop's phone number (levelss, 7, 9, ...).
Thereasoningisasfollows: wewant the shop to know about the problem with the
battery, and thisrequires beingin communicationwith himor her. Oneway togetin
communicationisto phone, but wedon't havea phone book to look up the number.
We could ask them their phone number, but this requires beingin communication
with them. AsAristotleput it, "'If we areto be awaysdeliberating, we shall haveto
goontoinfinity." Wewill call thisthe" recursivesubgoal” problem: trying to solve
aprobleminterms d itself. Oneway to avoid the problemisto have achi eve keep
track o all the goals that are being worked on and give up if it sees aloop in the
god stack.

4.10 ThelLack d Intermediate I nformation
Problem

Whencpsfailstofind asolution, it just returnsni 1. Thisisannoyingin caseswhere
the user expected a solution to be found, becauseit gives no information about the
cause d failure. The user could always trace some function, as we traced achieve
above, but the output from traceis rarely exactly the information desired. It would
be nice to haveageneral debuggingoutput tool where the programmer could insert
print statementsinto his code and have them selectively printed, depending on the
informationdesired.

Thefunction dbg providesthis capability. dbg prints output in the same way as
format, but it will only print when debuggingoutput isdesired. Each call todbgis
accompanied by an identifer that is used to specify aclassd debugging messages.
Thefunctions debug and undebug are used to add or remove message classesto the
listd classesthat should be printed. In this chapter, all the debugging output will
use the identifier - gps. Other programswill use other identifiers, and a complex
programwill use many identifiers.

A call todbgwill result in output if thefirst argument to dbg, theidentifier,isone
that was specifiedin acall to debug. The other arguments to dbg areaformat string
followed by alistd arguments to be printed accordingto theformat string. In other
words, wewill writefunctions that include callsto dbg like:

(dbg :gps "The current goal is: "a" goal)

if we have turned on debugging with (debug :gps), then calls to dbg with the
identifier :gps will print output. The output is turned off with (undebug :gps).

debug and undebug are designed to besimilar to trace and untrace, in that they turn
diagnostic output on and off. They also follow the convention that debug with no
argumentsreturnsthecurrent list identifiers, and that undebug with no arguments
turns all debugging off. However, they differ from trace and untrace in that they
arefunctions, not macros. If you useonly keywordsand integersfor identifiers, then
youwon't noticethedifference.

Two new built-in features are introduced here. First, *debug - i o* is the stream
normally used for debugginginput/output. In all previouscallsto format we have
used t asthe stream argument, which causes output togo to the* standard - out put*
stream. Sending different typesof output to different streams allowsthe user some
flexibility. For example, debuggingoutput could be directed to a separate window,
or it could be copied to afile. Second, the function fresh-1i ne advancesto the next
lined output, unlessthe output streamisalready at the start d theline.

(defvar *dbg-ids* nil "lIdentifiers used by dbg")

(defun dbg (id format-string &rest args)
"Print debugging info if (DEBUG ID) has been specified."
(when (member id *dbg-ids*)
(fresh-line *debug-io*)
(apply #'format *debug-io* format-string args)))

(defun debug (&rest ids)
"Start dbg output on the given ids."
(setf *dbg-ids* (union ids *dbg-ids*)))

(defun undebug (&rest ids)
"Stop dbg on the ids. With no ids, stop dbgaltogether."
(setf *dbg-ids* (if (null ids) nil
(set-difference *dbg-ids* ids))))

Sometimesit iseasier to view debuggingoutput if it isindented accordingto some
pattern, such asthedepthd nested callstoafunction. Togenerateindented output,
thefunction dbg- i ndent isdefined:

(defun dbg-indent (id indent format-string &rest args)
"Print indented debugging info if (DEBUG ID) has been specified."
(when (member id *dbg-ids*)
(fresh-line *debug-io*)
(dotimes (i indent) (princ " " *debug-io*))
(apply #'format *debug-io* format-string args)))

4.11 GPSVersion2: A MoreGenerd
Problem Solver

At this point we are ready to put together a new version d Gps with solutions for
the" runningaround the block," " prerequisiteclobberssiblinggod," " leaping before
you look," and "' recursivesubgoal” problems. Theglossary for the new versionisin

figure4.2.

Top-Leve Function

member -equal

GPS Solveagoal fromastate usingalist d operators.
Special Variables
ops Alistd availableoperators.
DataTypes
op An operation with preconds, add-listand del-list.
Magor Functions
achieve-all Achievealist o goals.
achieve Achieveanindividual goal.
appropriate-p Decideif anoperator isappropriate for agoal.
apply-op Apply operator to current state.
Auxiliary Functions
executing-p Isaconditionanexecutingform?
starts-with Istheargument alist that startswith agivenatom?
convert-op Convert an operator to use theexecuting convention.
op Createan operator.
use Usealist o operators.

Test if anelementisequal toamember d alist.

Selected Common Lisp Functions

member Test if anelementisamember d alist. (p.78)
set-difference All elementsinoneset but not the other.
subsetp Isone set wholly contained in another?
union All elementsineither d two sets.
every Testif every element d alist passesatest. (p.62)
some Test if any element o alist passesatest.
remove -1 f Removeall items satisfyingatest.

Previoudy Defined Functions
find-all Alistd al matchingelements. (p.101)
find-all-if Alistd al elementssatisfyinga predicate.

The most important change is that, instead d printing a message when each
operator is applied, we will instead have GPS return the resulting state. A list o

Figure4.2: Glossary for Version2d GPS

"messages"” in each state indicates what actions have been taken. Each messageis
actually acondition, alistdf theform (executing operator). Thissolvesthe" running
around the block” problem: we could call GPS with an initial goal d ((executing
run-around- bl ock)), and it would execute the run-around- bl odk operator, thereby
satisfying the goal. The following code defines a new function, op, which builds
operators that include the messagein their add-list.

(defun executing-p (x)
"Is x of the form: (executing ...) ?"
(starts-with x 'executing))

(defun starts-with (list x)
"Is this alist whose first element is x?"
(and (consp list) (eql (firstlist) x)))

(defun convert-op (op)
"Make op conform to the (EXECUTING op) convention."
(unless (some #'executing-p (op-add-list op))
(push (list 'executing (op-action op)) (op-add-list op)))
opl

(defun op (action &key preconds add-list del-list)
"Make a new operator that obeys the (EXECUTING op) convention."
(convert-op
(make-op :action action :preconds preconds
;add-list add-list :del-1ist del-Tist)))

Operators built by op will be correct, but we can convert existing operators using
convert-qodirectly:

(mapc #'convert-op *school-ops*}

Thisis an example of exploratory programming: instead o starting all over when
we discover alimitation d thefirst version, we can use Lisp to alter existing data
structuresfor the new versiond the program.

Thedefinitiond the variable*ops* and the structure op are exactly the same as
before, and therest d the program consists d fivefunctions we have already seen:
GPS, achieve-all, achieve, appropriate-p, and apply-op. At the top level, the
function GPS callsachi eve-all, which returns either nil or avalid state. From this
we removeall the atoms, which leaves only the elements d the final state that are
lists—in other words, the actions of theform (executing operator). Thus, thevalue
d GPSitsdf isthelist of actionstaken toarriveat thefinal state. GPSnolonger returns
SOLVED whenit findsa solution, but it still obeysthe convention o returning nil for
failure, and non-nil for success. Ingeneral, itisagoodideato haveaprogramreturn

a meaningful valuerather than print that value, if thereisthe possibility that some
other program might ever want to usethevalue.

(defvar *ops* nil "A list of available operators.")

(defstruct op "An operation"
(action nil) (preconds nil) (add-list nil) (del-1ist nil))

(defun GPS (state goals &optional (*ops* *ops*))
"General Problem Solver: from state, achieve goals using *ops*."
(remove-if #’atom (achieve-all (cons '(start) state) goals nil)))

Thefirst major changeinversion2isevidentfromthefirst lined the program: there
is no *state* variable. Instead, the program keeps track o local state variables.
This is to solve the "leaping before you look” problem, as outlined before. The
functions achieve, achieve-ail, and apply-op al takean extraargument whichis
the current state, and al return anew state astheir value. They also must still obey
the conventiond returningnil when they fail.

Thus we have a potential ambiguity: does nil represent failure, or does it rep-
resent avalid state that happens to have no conditions? We resolve the ambiguity
by adopting the convention that all states must have at least one condition. This
convention isenforced by thefunction Gps. Instead o calling (achieve-all state
goals nil), cpscalls(achieve-all (cons *(start) state) goals nil). Soeven
if the user passes Grs a null initial state, it will pass on a state containing (start)
to achieve-all. From then on, we are guaranteed that no state will ever become
nil, because the only function that buildsanew stateisapply -op, and we can see by
lookingat thelast lined apply-op that it awaysappends something onto the stateit
isreturning. (Anadd-listcan never be nil, becauseif it were, the operator would not
be appropriate. Besides, every operator includesthe (executing...)} condition.)

Notethat thefinal valuewereturnfrom cpshasall theatomsremoved, soweend
up reporting only the actions performed, since they are represented by conditions
d theform (executing action). Addingthe (s tart) condition at the beginningalso
servestodifferentiatebetweenaproblem that cannot besolvedand onethat issolved
without executingany actions. Failurereturns nil, whileasol ution with no stepswill
at least includethe (start) condition, if nothing else.

Functionsthat return nil asanindication d failureand return someuseful value
otherwise are known as semipredicates. They are error prone in just these cases
where nil might be construed as a useful value. Be carefulwhen definingand using
semipredicates. (DDecideif nil could ever be a meaningful value. (2) Insure that
the user can't corrupt the program by supplying nil asavalue. In this program, GPS
is the only function the user should cal, so once we have accounted for it, we're
covered. (3) Insure that theprogram can't supply nil asavalue. Wedid thisby seeing
that there was only one placein the program where new states were constructed,
and that this new state was formed by appending a one-element list onto another

state. By following this three-step procedure, we have an informal proof that the
semipredicatesinvolvingstates will function properly. Thiskind d informal proof
procedureisacommonelement d good program design.

The other big changein version 2 isthe introduction d agoa stack to solvethe
recursive subgoal problem. The program keeps track o the goasit is working on
and immediately failsif agoal appearsasasubgoal d itself. Thistestis madein the
second claused achieve.

Thefunctionachieve-all triestoachieveeachoned thegoalsinturn, settingthe
variablestate2 to be the valuereturned from each successivecall to achieve. If al
goalsareachievedin turn, andif all thegoasstill hold at theend (assubsetp checks
for), then thefinal stateisreturned; otherwise the functionfails, returningnil.

Most d the work is done by achieve, which gets passed a state, a single goa
condition, and the stack d goalsworked on sofar. If the conditionisalready in the
state, then achiieve succeeds and returns the state. On the other hand, if the goal
conditionisaready in the goal stack, then there is no sense continuing—wewill be
stuck in an endless loop—so achieve returns nil. Otherwise, achieve looksthrough
thelist o operators, tryingtofind one appropriateto apply.

(defun achieve-all (state goals goal-stack)
"Achieve each goal, and make sure they still hold at the end."
(let ((current-state state))
(if (and (every # (lamhda (g)
(setf current-state
(achieve current-state g goal-stack)))
goal s)
(subsetp goals current-state :test #'equal))
current-state)))

(defun achieve (state goal goal-stack)
"A goal is achieved if it already holds.
or if there is an appropriate op for it that is applicable."
(dbg-indent :gps (length goal-stack) "Goal:~a" goal)
(cond ((menber-equal goal state) state)
((member-equal goal goal -stack) ni 1)
(t (some # (lanmbda C(op) (apply-op state goal op goal-stack))
(find-all goal *ops* :test #’appropriate-p)))))

The goal ((executing run-around-block)) isalist & one condition, where the
condition happens to be atwo-element list. Allowinglists as conditions gives us
moreflexibility, but we also have to be careful. The problemisthat not al lists that
look alikeactually arethe same. Thepredicateequal essentially teststo seeif itstwo
argumentslook alike, whilethe predicateeql teststoseeif itstwoargumentsactually
areidentical. Sincefunctionslikemember useeql by default, we haveto specify with
a:test keywordthat wewant equal instead. Sincethisisdone several times, we

introduce the functionmember - equal. Infact, we could havecarried the abstraction
one step further and defined member-situati on, afunction to test if aconditionis
truein asituation. Thiswould allow the user to change the matching function from
egl to equal, and to anything elsethat might be useful .

(defun menber-equal (item list)
(menber itemlist :test #equal))

Thefunction apply-op, which used to changethe stateirrevocably and print ames-
sage reflectingthis, now returns the new state instead of printing anything. It first
computes the state that would result from achieving all the preconditions d the
operator. If itispossibleto arriveat such astate, then appl y-op returns a new state
derived from this state by adding what's in the add-list and removingeverythingin
thedelete-list.

(defun apply-op (state goal op goal -stack)
"Return a new, transformed state if op is applicable."
(dbg-i ndent :gps (I ength goal-stack) "Consider: "a" (op-action op))
(let ((state2 (achieve-all state (op-preconds op)
(cons goal goal -stack))))
(unless (null state2)
;; Return an updated state
(dbg-i ndent :gps(length goal-stack) "Action: "a" (op-action op))
(append (remove-if # (lanbda (x)
(menber-equal x (op-del-Tist op)))
state?)
(op-add-list op))»MN

(defun appropriate-p(goal op)
"An op is appropriate to a goal if it isinits add-list."
(menber-equal goal (op-add-list op)))

Thereis one last complication in the way we compute the new state. In version
1 o GPs, states were (conceptually) unordered sets o conditions, so we could use
uni on and set - di f f erenceto operate on them. Inversion 2, states become ordered
lists, becausewe need to preserve the ordering d actions. Thus, we haveto usethe
functions gppend and remove-if, since these are defined to preserve order, while
union and set-differencearenot.

Findly, thelast differencein version 2isthat it introduces a new function: use.
Thisfunctionisintendedtobeused asasort d declarationthat agivenlistdf operators
istobeusedfor aseriesd problems.

introduce the function mambe -equal . Infact, we could havecarried the abstraction
one step further and defined member-situati on, afunction to test if aconditionis
truein asituation. Thiswould allow the user to change the matching function from
egl toequal, and to anything el sethat might be useful.

(defun menber-equal (item [ist)
(menber item7list :test # equal))

Thefunction apply-op, which used to changethe state irrevocablyand print ames-
sagereflectingthis, now returns the new stateinstead d printing anything. It first
computes the state that would result from achieving all the preconditions o the
operator. If itis possibleto arriveat such a state, then apply - op returns a new state
derived from this state by adding what's in the add-list and removingeverythingin
thedelete-list.

(defun apply-op (state goal op goal-stack)
"Return a new, transformed state if op is applicable."
(dbg-i ndent :gps (length goal-stack) "Consider: "a" (op-action op))
(let (state2 (achieve-al 1 state (op-preconds op)
(cons goal goal -stack))))
(unl'ess (null state2)
;; Return an updated state
(dbg-i ndent :gps(length goal-stack) "Action: "a" (op-action op))
(append (remove-if # (lambda (x)
(menber-equal X (op-del-Tist op)))
state2)
(op-add-list op)))

(defun appropriate-p(goal op)
"An op is appropriate to agoal if it isinits add-list."
(menber-equal goal (op-add-list op)))

Thereis one last complicationin the way we compute the new state. In version
1d GpPs, stateswere (conceptually)unordered sets of conditions, so we could use
uni n and set -di fference to operate on them. Inversion 2, states become ordered
lists, because we need to preserve the ordering of actions. Thus, we haveto use the
functions append and remove-i f, since these are defined to preserve order, while
union and set-differencearenot.

Findly, the last differencein version 2is that it introduces a new function: use.

Thisfunctionisintendedtobeused asasortd declarationthat agivenlistd operators
isto beusedfor aseriesd problems.

> (gps "(son-at-home car-needs-battery have-money have-phone-book)
"(son-at-school))

((START)

(EXECUTING LOOK-UP-NUMBER)

(EXECUTING TELEPHONE-SHOP)

(EXECUTING TELL-SHOP-PROBLEM)

(EXECUTING GIVE-SHOP-MONEY)

(EXECUTING SHOP-INSTALLS-BATTERY)

(EXECUTING DRIVE-SON-TO-SCHOOL))

> (debug :gps) = (:GPS)

> (gps ’(son-at-home car-needs-battery have-money have-phone-book)
"(son-at-school))
Goal : SON-AT-SCHOOL
Consider: DRIVE-SON-TO-SCHOOL
Goal: SON-AT-HOME
Goal : CAR-WORKS
Consider: SHOP-INSTALLS-BATTERY
Goal: CAR-NEEDS-BATTERY
Goal: SHOP-KNOWS-PROBLEM
Consider: TELL-SHOP-PROBLEM
Goal: IN-COMMUNICATION-WITH-SHOP
Consider: TELEPHONE-SHOP
Goal: KNOW-PHONE-NUMBER
Consider: ASK-PHONE-NUMBER
Goal: IN-COMMUNICATION-WITH-SHOP
Consider: LOOK-UP-NUMBER
Goal: HAVE-PHONE-BOOK
Action: LOOK-UP-NUMBER
Action: TELEPHONE-SHOP
Action: TELL-SHOP-PROBLEM
Goal: SHOP-HAS-MONEY
Consider: GIVE-SHOP-MONEY
Goal: HAVE-MONEY
Action: GIVE-SHOP-MONEY
Action: SHOP-INSTALLS-BATTERY
Action: DRIVE-SON-TO-SCHOOL
((START)
(EXECUTING LOOK-UP-NUMBER)
(EXECUTING TELEPHONE-SHOP)
(EXECUTING TELL-SHOP-PROBLEM)
(EXECUTING GIVE-SHOP-MONEY)
(EXECUTING SHOP-INSTALLS-BATTERY)
(EXECUTING DRIVE-SON-TO-SCHOOL))

> (undebug) = NIL

> (gps '(son-at-home car-works)
*(son-at-school))

((START)

(EXECUTI NG DRI VE- SON- TO- SCHOOL))

Now we see that version 2 can also handl e the three cases that version 1.got wrong.
In each case, the program avoids an infinite loop, and also avoids leaping before
itlooks.

> (gps ‘(son-at -home car-needs-battery have-money have-phone- book)
"(have-money son-at-school))
NIL

> (gps ' (son-at-home car-needs-battery have-money have-phone-book)
"(son-at-school have-money))
NI L

> (gps ' (son-at-home car-needs-battery have-money)
"(son-at-school))
NI L

Finaly, we see that thisversion GPs alsoworkson trivial problems requiring no
action:

> (gps '(son-at-home) '(son-at-home)) = ((START))

4.12 TheNew Domain Problem: Monkey
and Bananas

Toshow that Gpsisat al general, we haveto makeit work in different domains. We
will start with a"dassic" Al problem.? Imagine the followingscenario: a hungry
monkey is standing at the doorway to aroom. Inthe middled the roomisabunch
d bananas suspended from the ceiling by a rope, well out d the monkey's reach.
Thereisachair near the door, whichislight enough for the monkey to push and tall
enough to reach almost to the bananas. Justto makethingscomplicated, assume the
monkey isholdingatoy ball and can only hold onething at atime.

In trying to represent this scenario, we have someflexibilityin choosingwhat to
put in the current state and what to put in with the operators. For now, assume we
define the operators asfollows:

3Qriginally posed by Saul Amarel (1968).

(defparameter *banana-ops*
(1i st

(op 'cl imb-on-chair
:preconds ' (chair-at-mddle-room at-m ddle-roomon-floor)
add-list '(at-bananas on-chair)
:del-1ist ' (at-mddle-room on-floor))

(op 'push-chair-fromdoor-to-mddle-room
:preconds ' (chair-at-door at-door)
;add-list '(chair-at-mddle-room at-mddle-room
:del-1ist "(chair-at-door at-door))

(op 'wal k-fromdoor-to-mddle-room
:preconds {at-door on-fl oor)
add-list '(at-middle-room
:del-1i st "(at-door))

(op ' grasp-bananas
:preconds ' (at-bhananas enmpty-handed)
:add-1ist ' (has-bananas)
:del-Tist ' (enpty-handed))

(op "drop-bal |
:preconds
sadd-1i st

' (has-bal)
' (enpt y-handed)
:del-Tist ' (has-ball))
(op 'eat-bananas
:preconds ' (
cadd-list ' (
:del-1ist ' (

has-bananas)
enpty-handed not-hungry)
has-bananas hungry))))

Using these operators, we could pose the problem of becoming not-hungry, given
theinitial state d beingat the door, standing on the floor, holding the ball, hungry,

and with the chair at thedoor. Gpscan find asolution to this problem:

>(use *banana-ops*) = 6

> (GPS '(at-door on-floor has-ball hungry chair-at-door)
"(not-hungry))

((START)

(EXECUTING PUSH- CHAI R- FROM DOOR- TO- M DDLE- ROOM)

(EXECUTING CLI MB- ON- CHAI R)

(EXECUTING DROP-BALL)

(EXECUTI NG GRASP- BANANAS)

(EXECUTI NG EAT-BANANAS))

Noticewedid not need to makeany changesat all to the GPs program. We just used

adifferent set o operators.

4.13 TheMaze Searching Domain

Now wewill consider another "' classic™ problem, maze searching. Wewill assume a
particular maze, diagrammed here.

1 2 3 4] &
6] 7 8 9| 10
11 12 “13] 14| 15
16 17] 18] 19 20
21 22 23 24| 25

It is much easier to define some functions to help build the operatorsfor this
domain than it would be to typein all the operators directly. The following code
definesaset o operatorsfor mazesin general, and for thismazein particular:

(defun make-maze-ops (pair)
"Make maze ops in both directions"
(l'ist (make-maze-op (first pair) (second pair))
(make-maze-op (second pair) (first par))))

(defun make-maze-op(here there)
"Make an operator to nove between two pl aces'
(op '(move from ,hereto ,there)
:preconds '((& ,here))
;add-list "((@ ,there))
:del-Tist "((& ,here))))

(def par anet er *maze-ops*
(mappend #’make-maze-ops
*((12) (23) (34) (49) (914) (98) (87) (7 12) (12 13)
(12 11) (11 6) (11 16) (16 17) (17 22) (21 22) (22 23)
(23 18) (23 24) (24 19) (19 20) (20 15) (15 10) (10 5) (20 25))))

Notethe backquotenotation, (). It iscovered in section 3.2, page67.

We can now use thislist o operators to solve several problemswith this maze.
And we could easily create another mazeby givinganother list o connections. Note
that thereis nothing that says the placesin the maze are arranged in afive-by-five
layout—that is just oneway d visualizingthe connectivity.

> (use *maze-ops*) = 48

> (gps '((at 1)) '((at 25)))
((START)
(EXECUTING (MOVE FROM 1 TO 2))
(EXECUTING (MOVE FROM 2 TO 3))
(EXECUTING (MOVE FROM 3 TO 4))
(EXECUTING (MOVE FROM 4 TO 9))
(EXECUTING (MOVE FROM 9 TO 8))
(EXECUTING (MOVE FROM 8 TO 7))
(EXECUTING (MOVE FROM 7 TO 12))
(EXECUTING (MOVE FROM 12 TO 11))
(EXECUTING (MOVE FROM 11 TO 16))

(EXECUTING (MOVE FROM 16 TO 17))
(EXECUTING (MOVE FROM 17 TO 22))
(EXECUTING (MOVE FROM 22 TO 23))
(EXECUTING (MOVE FROM 23 TO 24))
(EXECUTING (MOVE FROM 24 TO 19))
(EXECUTING (MOVE FROM 19 TO 20))
(EXECUTING (MOVE FROM 20 TO 25))
(AT 25))

Thereisone subtle bug that the maze domain points out. Wewanted GPS to return
alist d the actions executed. However, in order to account for the case where the
goal can be achieved with no action, | included (START) in the value returned by
GPS. These examplesinclude the START and EXECUTI NG forms but also alist o the
form (AT n), for some n. Thisisthe bug. If we go back and look at the function
GpPs, wefind that it reports the result by removing all atomsfrom the state returned
by achieve-all. Thisis a"pun"—we said remove atoms, when we really meant
to remove al conditions except the (START) and (EXECUTI NG action) forms. Up to
now, all these conditions were atoms, so thisapproach worked. The mazedomain
introduced conditions d theform (AT »n), sofor thefirst timethere was a problem.
Themoral isthat when a programmer uses puns—sayingwhat's convenient instead
d what's really happening—there's bound to be trouble. What we really want to do
isnot to removeatoms but to find all elements that denote actions. The code below
sayswhat we mean:

(defun GPS (state goals &optional (*ops* *ops*))
"General Problem Solver: from state, achieve goals using *ops*."
(find-al11-if #'action-p
(achieve-all (cons '(start) state) goals nil)))

> (gps "((c on a) (a on table) (b on table)
(space on c) (space on b) (space on table))
*((c on table)))
((START)
(EXECUTING (MOVE C FROM A TO B))
(EXECUTING (MOVE C FROM B TO TABLE)))

The solution is correct, but there is an easier solution that moves C directly to the
table. The simpler solution was not found because d an accident: it happens that
make - bl ock- ops defines the operators so that moving C from B to the table comes
before moving C from A to the table. So thefirst operator istried, and it succeeds
provided CisonB. Thus, thetwo-stepsolutionisfound beforetheone-step solutionis
ever considered. Thefollowingexampl etakesfour stepswhen it could bedoneintwo:

=
4 m M e
start god

> (gps "((c on a) (a on table) (b on table)
(space on c¢) (space on b) (space on table))
*((c on table) (a on b)))
((START)
(EXECUTING (MOVE C FROM A TO B))
(EXECUTING (MOVE C FROM B TO TABLE))
(EXECUTING (MOVE A FROM TABLE TO C))
(EXECUTING (MOVE A FROM C TO B)))

How could wefind shorter solutions? Oneway would beto do afull-fledgedsearch:
shorter solutions aretried first, temporarily abandoned when something el selooks
more promising, and then reconsidered later on. This approach is taken up in
chapter 6, using ageneral searchingfunction. A lessdrasticsolutionistodoalimited
rearrangement d the order in which operators are searched: the ones with fewer
unfulfilled preconditionsaretriedfirst. In particular, thismeansthat operatorswith
all preconditionsfilledwould alwaysbe tried beforeother operators. Toimplement
thisapproach, wechangeachieve:

(defun achieve (state goal goal-stack)
"A goal is achieved if it already holds,
or if there is an appropriate op for it that is applicable."
(dbg-indent :gps (length goal-stack) "Goal: "a" goal)
(cond ((member-equal goal state) state)
((member-equal goal goal-stack) nil)

(t (some #'(lambda (op) (apply-op state goal op goal-stack))
(appropriate-ops goal state))))) ;***

(defun appropriate-ops (goal state)

"Return a list of appropriate operators,

sorted by the number of unfulfilled preconditions.’

(sort (copy-list (find-all goal *ops* :test # appropriate-p)) #’<

:key #'(lambda (op)
(count-if #'(lambda (precond)
(not (member-equal precond state)))
(op-preconds op)))))

Now weget the sol utionswewanted:
=
4 m &
start god

> (gps "((c on a) (a on table) (b on table)
(space on c¢) (space on b) (space on table))
*((c on table) (a on b)))
((START)
(EXECUTING (MOVE C FROM A TO TABLE))
(EXECUTING (MOVE A FROM TABLE TO B)))

start goal

> (gps '((a on b) (b on ¢) (c on table) (space on a) (space on table))
*((b on @) (c on b))}
((START)
(EXECUTING (MOVE A FROM B TO TABLE))
(EXECUTING (MOVE B FROM C TO A))
(EXECUTING (MOVE C AROM TABLE TO B)}))

> (gps "((a on b) (b on c) (c on table) (space on a) (space on table))
>((c on b) (b on a)))
((START)
(EXECUTING (MOVE A FROM B TO TABLE))
(EXECUTING (MOVE B FROM C TO A))
(EXECUTING (MOVE C FROM TABLE TO B)))

The Sussman Anomaly

Surprisingly, there are problems that can't be solved by any reordering d goals.
Consider:

L
start

Thisdoesn't look too hard, solet's seehow our gpPs handlesit:

> (setf start "((c on a) (a on table) (b on table) (space on c)
(space on b) (space on table)))

((C ON A) (A QN TABLE) (B ON TABLE) (SPACE QN C)

(SPACE (N B) (SPACE ON TABLE))

> (gps start "((a on b) (b on ¢))) = NIL

> (gps start ({b on ¢) (a on b))) = NIL

Thereisa" prerequisiteclobberssiblinggoa™ problem regardlessd which way we
order the conjuncts! In other words, no combinationd plansfor the twoindividual
goals can solve the conjunction d the two goals. Thisisasurprising fact, and the
examplehas come to be known as''the Sussman anomaly.”* We will return to this
problemin chapter 6.

4.15 Stage5Repeated: Analysisd Verson 2

We have shown that GPsSis extensibleto multiple domains. The main point is that
we didn't need to change the program itsdlf to get the new domains to work; we
just changed the list d operators passed to GPS. Experiencein different domains
did suggest changes that could be made, and we showed how to incorporate afew
changes. Althoughversion2isabigimprovement over versionl, it still leavesmuch
to bedesired. Now wewill discover afew d the most troubling problems.

4 A footnotein Waldinger 1977 says, "' This problem was proposed by Allen Brown. Perhaps
many children thought o it earlier but did not recognize that it was hard." The problem is
named after Gerald Sussman because he popularizeditin Sussman 1973.

4.16 TheNot Lookingafter You Don't
L eap Problem

We solved the"' leaping beforeyou look” problem by introducing variables to hold a
representation d possiblefuturestates, rather than justasinglevariablerepresenting
the current state. This prevents GPsfrom taking an ill-advised action, but we shall
see that evenwith all the repair strategiesintroduced in the last section, it doesn't
guarantee that a solutionwill befound whenever oneis possible.

To see the problem, add another operator to the front of the *school-ops* list

and turn the debuggingoutput back on:

(use (push (op 'taxi -son-to-school
:preconds ‘(son-at-home have-money)
;add-list '(son-at-school)
:del-Tist '(son-at-home have-money))
school -ops))

(debug :gps)
Now, consider the problem d gettingthe child to school without using any money:

> (gps '(son-at-home have-money car-works)
‘(son-at-school have-money))
Goal : SON-AT-SCHOOL
Consider: TAXI-SON-TO-SCHOOL
Goal : SON-AT-HOME
Goal : HAVE-MONEY
Action: TAXI-SON-TO-SCHOOL
Goal: HAVE-MONEY
Goal : HAVE-MONEY
Goal : SON-AT-SCHOOL
Consider: TAXI-SON-TO-SCHOOL
Goal: SON-AT-HOME
Goal : HAVE-MONEY
Action: TAXI-SON-TO-SCHOOL
NIL

The first five lines d output succesfully solve the son-at-school goa with the
TAX | - SON-TO - SCHOOL action. Thenext lineshowsan unsuccesful attempt to solvethe
have-money goal. Thenext stepistotry theother ordering. Thistime, thehave-money
god istriedfirst, and succeeds. Then, theson-at-school goa isachieved again by
the TAXI-SON-TO-SCHOOL action. But thecheckfor consistencyinachieve-eachfails,
andtherearenorepairsavailable. Thegoal fails, eventhough thereisavalid solution:

drivingtoschool.

The problemisthat achieve uses some tolook at the appropriate-ops. Thus, if
thereis some appropriate operator, achi eve succeeds. If thereisonly onegod, this
will yield a correct solution. However, if there are multiple goas, asin this case,
achieve will still only find oneway tofulfill thefirst goal. If thefirst solutionisabad
one, theonly recourseistotry torepair it. Indomainslikethe block world and maze
world, repair oftenworks, becauseall stepsarereversible. Butinthetaxi example, no
amountd planrepair can get the money back onceitisspent, sothewholeplanfails.

There are two ways around this problem. Thefirst approach is to examine al
possi blesol utions, not justthefirstsol utionthat achieveseachsubgoal. Thelanguage
Prolog, to bediscussed in chapter 11, does just that. The second approachisto have
achieve and achieve-all keep track o alist o goalsthat must be protected. Inthe
taxi example, wewould trivially achieve the have -money goal and then try to achieve
son-at-school, while protecting the goal have-money. An operator would only
be appropriate if it didn't delete any protected goals. This approach still requires
some kind d repair or search through multiple solution paths. If we tried only
oneordering—achievingson-at-school and thentryingto protectit whileachieving
have -money—thenwewould not find thesolution. David Warren's WARPLAN planner
makesgood used theidead protected goals.

4.17 ThelLack of Descriptive Power Problem

It would be alot more economical, in the maze domain, to have one operator that
sayswe can movefromhereto thereif weareat "here" and if thereisaconnection
from"here" to"there.” Then the input to a particular problem could list the valid
connections, and we could solve any mazewith this single operator. Similarly, we
have defined an operator where the monkey pushes the chair from the door to the
middle d the room, but it would be better to have an operator where the monkey
can push the chair fromwherever it isto any other nearby location, or better yet, an
operator to push any "pushable" object from one location to a nearby one, aslong
as there is no intervening obstacle. The conclusionis that we would like to have
variablesin the operators, so we could say something like:

(op '(push X from Ato B)
:preconds '((monkey at A) (X at A) (pushable X) (path A B))
radd-list ‘((monkey at B) (X at B))
:del-1ist '((monkey at A) (X at A)))

Often we want to characterize a state in terms o something more abstract than a
list conditions. For example, in solvingachess problem, the goal isto have the
opponent in checkmate, a situation that cannot be economically described in terms
d primitiveslike (black king on A 4), sowe need to be able to state some kind

d constraint on the goa state, rather than just listing its components. We might
want to be ableto achieveadisjunction or negationd conditions, where the current
formalismallowsonly aconjunction.

It alsoisimportant, in many domains, to be able to state problems dealingwith
time: we want to achieve X before time Ty, and then achieve Y beforetime 73, but
not before 7. Schedulingwork on afactory floor or building a house are examples
d planning wheretime playsanimportant role.

Often there are costs associated with actions, and we want to find a solution
with minimal, or near-minimal costs. The cost might be as simple as the number o
operatorsrequiredfor asolution—wesaw i n the blocksworld domain that sometimes
an operator that could be applied immediately was ignored, and an operator that
needed several preconditions satisfied was chosen instead. Or we may be satisfied
withapartial solution, if acompletesolutionisimpossibleor tooexpensive. Wemay
alsowant to takethe cost (andtime) computation into account.

4.18 ThePerfect Information Problem

All the operators we have seen so far have unambiguous results; they add or delete
certain things from the current state, and Gps aways knows exactly what they are
goingto do. Inthereal world, thingsarerarely so cut and dried. Going back to the
problem d becomingrich, one relevant operator would be playingthelottery. This
operator has the effect o consuming afew dollars, and oncein awhile paying of a
largesum. But we have no way to represent a payoff "oncein awhile." Similarly,
we have no way to represent unexpected difficultiesd any kind. In the nursery
school problem, we could represent the problem with the car battery by having GPs
explicitly check to see if the car was working, or if it needed a battery, every time
the program considered the driving operator. In the real world, we are seldom this
careful; wegetinthecar, and onlywhenit doesn't start doweconsider thepossibility
d adead battery.

4.19 Thelnteracting GoalsProblem

Peopletend to have multiplegoals, rather thanworkingononeat atime. Not only do
| want to get thekid to nursery school, but | want to avoid getting hit by another car,
get to my job on time, get my work done, meet my friends, have somefun, continue
breathing, and so on. | also have to discover goalson my own, rather than work on
aset d predefined goals passed to me by someone else. Some goals| can keepin
the background for years, and then work on them when the opportunity presents
itself. Thereis never anotion d satisfying all possible goals. Rather, thereisa

continual processd achievingsomegoals, partially achievingothers, and deferring
or abandoning still others.

Inaddition to havingactivegoals, peoplealsoareawared undesirable situations
that they are trying to avoid. For example, suppose | haveagod o visitingafriend
inthe hospital. Thisrequires being at the hospital. One applicableoperator might
be towalk to the hospital, whileanother would beto severly injure mysalf and wait
for the ambulance to take me there. The second operator achievesthe goal just as
well (perhapsfaster), but it has an undesirable side effect. Thiscould be addressed
either with anotion d solution cost, as outlined in the last section, or with alist d
backgroundgoal sthat every solution attempts to protect.

Herb Simon coined the term "satisficing' to describethe strategy o satisfyinga
reasonable number d goal stoareasonabl e degree, whileabandoning or postponing
other goals. Psonly knowssuccessand failure, and thushas noway d maximizing
partial success.

420 TheEndd GPS

Theselast four sectionsgiveahint asto thescoped thelimitationsd Gps. Infact, it
isnot avery general problemsolver at all. Itisgeneral inthesensethat thea gorithm
isnot tied to a particular domain; we can changedomain by changing the operators.
But GPs fails to be general in that it can't solve many interesting problems. Itis
confined to small tricksand games.

Thereis an important yet subtle reason why GPswas destined to fail, areason
that was not widely appreciated in 1957 but now isat the cored computer science.
Itisnow recognizedthat thereare problemsthat computerscan't solve—not because
a theoretically correct program can't be written, but because the execution d the
programwill take too long. A large number d problems can be shown to fall into
the classd " NP-hard problems. Computing a solution to these problems takes
time that grows exponentially as the sized the problem grows. Thisis a property
d the problems themselves, and holds no matter how clever the programmer is.
Exponential growth means that problems that can be solved in seconds for, say, a
five-inputcase may taketrillionsd yearswhen there are100inputs. Buying afaster
computer won't help much. After all, if aproblemwouldtakeatrillionyearsto solve
onyour computer, it won't help much to buy 1000 computers each 1000 timesfaster
than the one you have: you're still left with amillion yearswait. For atheoretical
computer scientist, discoveringthat aproblemisNP-hard isanend initself. But for
an Al worker, it means that the wrong question is being asked. Many problemsare
NP-hardwhenweinsist onthe optimal solution but are much easier whenwe accept
asolution that might not be the best.

TheinputtoGpPsisessentiallyaprogram, and theexecutiond GPsistheexecution
d that program. If GPS’s input languageis general enough to express any program,

then there will be problems that can't be solved, either because they take too long
to execute or because they have no solution. Modern problem-solving programs
recognizethisfundamental limitation, and either limit theclassd problemsthey try
tosolveor consider waysd finding approximateor partial solutions. Some problem
solversalso monitor their own executiontime and know enough to give up when a
problemistoo hard.

Thefollowingquotefrom Drew McDermott’s article" Artificia IntelligenceM eets
Natural Stupidity" sums up the current feelingabout GPs. Keepit in mind the next
timeyou haveto nameaprogram.

Remember GPS? By now, "GPsisacolorlesstermdenotinga particularly stupid
program to solve puzzles. But it originally meant " General Problem Solver,"
which caused everybody alot of needlessexcitement and distraction. It should
have been called LFGNS—“Local Feature-Guided Network Searcher.”

Nonethel ess, GPshas been auseful vehiclefor expl oringprogrammingingeneral,
and Al programmingin particular. More importantly, it has been a useful vehicle
for exploring"the nature o deliberation." Surely well admit that Aristotle was
a smarter person than you or me, yet with the aid d the computational model o
mind as a guiding metaphor, and the further aid d a working computer program
to help explorethe metaphor, we have been led to amore thorough appreciation o
means-ends analysis—at least within the computational model. We must resist the
temptation to believethat al thinking followsthis model.

Theappea d Al can be seen as a split between meansand ends. Theend d a
successful Al project can be a program that accomplishes some useful task better,
faster, or cheaper thanit could be before. By that measure, Gps isamostly afailure,
asit doesn't solve many problems particularly well. But the means toward that end
involved aninvestigationand formalizationd the problem-solvingprocess. By that
measure, our reconstruction d GPSis asuccess to the degreein which it leads the
reader to abetter understandingd theissues.

4.21 History and References

Theoriginal gPsisdocumented in Newell and Simon's 1963 paper and in their 1972
book, Human Problem Solving, aswell asin Ernst and Newell 1969. Theimplementa-
tionin thischapter is based on the STRIPS program (Fikesand Nilsson1971).
Thereareother important planning programs. Earl Sacerdoti's ABSTRIPS program
wasamodificationd STRIPSthat allowedfor hierarchical planning. Theideawasto
sketch out askeletal plan that solvedtheentireprogramat anabstract level, and then
fill in the details. David Warren's WARPLAN planner iscoveredin Warren 1974a,b
andinasectiond Coelhoand Cottal988. Austin Tate’s NONLIN system (Tatel1977)

achieved greater efficiency by considering a plan as a partially ordered sequence d
operationsrather thanasastrictly ordered sequenced situations. David Chapman's
TWEAK synthesizesand formalizesthe stated theartin planningasd 1987.

All o these papers—and quite a few other important planning papers—are
reprintedin Allen, Hendler, and Tate1990.

4.22 EXercises

Exercise 4.1[rn] Itispossibletoimplement dbg usingasinglecall to format. Can
youfigureout theformat directivesto do this?

Exercise 4.2[m] Writeafunction that generatesall permutations o itsinput.

Exercise 4.3[h] GPS does not recognizethe situation where agoal is accidentally
solved aspart o achievinganother goal. Consider thegoa o eatingdessert. Assume
that there are two operators available: eatingice cream (which requires having the
ice cream) and eating cake (whichrequires having the cake). Assume that we can
buy a cake, and that the bakery has adeal where it gives out freeice cream to each
customer who purchases and eatsacake. (1)Designalist d operators to represent
thissituation. (2) Givegps thegoa d eating dessert. Show that, with the right list
d operators, gps will decideto eat ice cream, then decide to buy and eat the cakein
order toget thefreeice cream, and then go ahead and eat theice cream, even though
thegoa o eatingdessert hasal ready been achieved by eating the cake. (3) Fix gps so
that it does not manifestthis problem.
Thefollowing exercisesaddress the problemsinversion2d the program.

Exercise 4.4[h] The Not Lookingafter You Don't Leap Problem. Writea program that
keepstrack d the remaining goalsso that it does not get stuck consideringonly one
possi ble operation when others will eventually lead to thegoal. Hint: haveachieve
take an extra argument indicating the goals that remain to be achieved after the
current goal isachieved. achieve should succeed only if it can achievethe current
goa andalsoachieve-all the remaininggoals.

Exercise 4.5 [d] Write a planning program that, like Warren's WARPLAN, keeps
track d thelist o goalsthat remain to be doneaswell asthelist & goalsthat have
been achieved and should not be undone. The program should never undo agod
that has been achieved, but it should alowfor the possibilityd reordering stepsthat

havealready been taken. Inthisway, the program will solvethe Sussman anomaly
and similar problems.

Exercise 4.6[d] TheLack of Descriptive Power Problem. Readchapters5and 6tolearn
about pattern matching. Writeaversiond GPsthat usesthe pattern matchingtools,
and thus allows variablesin the operators. Apply it to the maze and blocksworld
domains. Your programwill be more efficientif, like Chapman's TWEAK program,
you alowfor the possibility d variablesthat remain unbound aslong as possible.

Exercise 4.7[d] Speculate on thedesign d a planner that can address the Perfect
Informationand Interacting Goals problems.

4.23 Answers

Answer 4.1 Inthisversion, theformat string"~& VeT™?" breaksdown asfollows:
"~&" means go to afresh ling; "~VeT" means insert spaces (eT) but use the next
argument (V) to get the number d spaces. The "~?" istheindirection operator: use
the next argument as aformat string, and the argument following that as thelist d
argumentsfor theformat string.

(defun dbg-indent (id indent format-string é&rest args)
"Print indented debugging info if (DEBUG ID) has been specified. "
(when (member id *dbg-ids*)
(format *debug-io* "~&VeT™2" (* 2 indent) format-string args)))

Answver 4.2 Hereisonesolution. Thesophisticated Lisp programmer should also
see the exerciseon page680.

(defun permutations (bag)
"Return a list of all the permutations of the input.”
;; If the input is nil, there is only one permutation:
;; nil itself
(if (null bag)
44Q))]
;; Otherwise, take an element, e, out of the bag.
;; Generate all permutations of the remaining elements,
;; And add e to the front of each of these.
;; b this for all possible e to generate all permutations.
(mapcan #’(lambda (e)
(mapcar #(lambda (p) (cons e p))
(permutations
(remove e bag :count 1 :test #'eq))))
bag)))

CHAPTER J

ELizA: Dialog with a Machine

Itis said that to explainisto explain away.

—JosephWeizenbaum
MIT computer scientist

the1960s. ELIzA held a conversation with the user in which it simulated a psychother-
apist. STUDENT solvedword problemsd the kind found in high school algebra books,
and MACSYMA solved avariety of symbolic mathematical problems, including differential and
integral calculus. We will develop versions o the first two programs that duplicate most o
the essential features, but for the third we will implement only a tiny fraction d the original
program's capabilities.
All three programs make heavy use of atechnique called pattern matching. Part | servesto
show theversatility—and al so the limitations—of thistechnique.

Of thethreeprograms, thefirst two processinput i n plain English, and thel ast two solvenon-
trivial problemsin mathematics, sothereissomebasi sf ordescribingthemasbeing'intelligent."
On the other hand, we shall see that thisintelligenceislargely anillusion, and that ELIZA in
particular was actually designed to demonstrate thisillusion, not to bea' serious” AI program.

T his chapter and the rest o part | will examine three more well-known Al programs o

ELiza wasone d thefirst programs to feature English output as well as input.
The program was named after the heroine d Pygmalion, who was taught to speak
proper English by a dedicated teacher. ELizA’s principal developer, MIT professor
Joseph Weizenbaum, published a paper on ELIZA in the January 1966 issue o the
Communicationsof the Association for Computing Machinery. The introduction to that
paper isreproduced initsentirety here:

It is said that to explainis to explain away. This maximis nowhere so well
fulfilled as in the area of computer programming, especially in what is called
heuristic programmingand artificial intelligence. Far in those realms machines
are made to behavein wondrous ways, often sufficient to dazze even the most
experienced observer. But oncea particular programisunmasked, onceitsinner
workings are explained in language sufficiently plain toinduce understanding,
its magic crumbles away; it stands revealed as amere collection of procedures,
each quite comprehensible. The observer saysto himself," | could havewritten
that." With that thought he moves the programin question from the shelf
marked "intelligent,” to that reserved for curios, fit to be discussed only with
peopleless enlightened than he.

Theobject of this paper isto cause just sucha re-eval uation of the programabout
to be “explained.” Few programsever needed it more.

Let mepoint outin passing that the main objectd thisbook isto causethe reader
to say to him or herself, "l could havewritten that." It ishoped that in some cases
this will be because the reader has gained something, and not solely because the
programsinquestion havelost their ability to dazzle.

Let's start our investigation d ELIzZA by looking at a sample dialog from the
Weizenbaumarticle. ELizA was designed to beinstructed by avariety d scripts, or
patternsd interaction. Infactit had several scripts, including onesin German and
Welsh. But the only script that was used to any extent wasin English, and it made
ELIzA emulate a Rogerian psychoanalyst. Rogeriansare “nondirective”—they try to
let the patient reveal himself. Thisisan easy script for ELIZA to follow, because it
involves being passive and reacting, rather than volunteering new information. In
thelisting that follows, the user's inputisin mixed case, and ELIZA'S responseisin
capitals:

Men are all alike.

IN WHAT WAY

They're always bugging us about something or another.
CAN YQU BE MCRE SPECIFIC

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU QOVE HERE

He says I'm depressed much of the time.

1 M SORRY TO HEAR YOU ARE DEPRESSED

It's true. 1 am unhappy.

0D YQU THINK COMING HERE WILL HELP YQU NOT TO BE UNHAPPY
1 need some help, that much seems certain.

WHAT WOUD IT MEAN TO YU |F YQU GOT SOME HELP

Perhaps I could learn to get along with my mother.

TELL ME MCRE ABOUT YOLR FAMILY

This seems quite impressive; the programis responding reasonably to avariety o

inputs and appears to be exhibiting true "understanding.” But, as Weizenbaum
explains, this appearance isanillusion, and the program has finessed the difficult
task d understanding by carefully recognizing, transforming, and echoing pieces
d theinput. The procedure is to look for specific patterns, based on a key word
or wordsin theinput. For example, whenever the program sees the words "dike"
or"same" it prints a message asking about similarity, in thiscase, "IN WHAT WAY.”
Other patternsare more complicated. Inthe next tolast exchange, ELizA first throws
away everything after the comma, and then uses a pattern that looksfor input o

theform"l need X and transformsit to the output ""What would it mean to you if

you got X" where X isthe phrase ""somehelp" in this case. Thegreat advantage d

this approach is that the response will make sense for avariety o inputs: "l need
avacation" will dicit"What would it mean to you if you got avacation." Thiswill

work automatically, without havingtotell the program thedifferencebetween" some
help" and"avacation." Thedisadvantageisthat the programwill sometimes make
silly responses: "I need thislike a holein the head will be answered with "What
wouldit meantoyouif you got thislikeaholeinthehead." Infact, the programonly
makesany senseat all if it isreceivinginput from someone who makes sense—and
someonewhointerpretsitsanswerscharitably. Whengiven"| need gibbleplix zzg,”
ELizawould reply" What wouldit meantoyouif yougot gibbleplix zzg," without any
inklingthat somethingiswrong. Another exampled theoriginal ELizA program has
it communicatingwith another program, PARRY, which waswritten by Dr. Kenneth
Colby tomimic paranoid behavior. Part of theconversationfollows,withELIzAagain
in capitalsand PARRY in mixed case:

1 don't understand your motives.

WH DONT YOU UNDERSTAND MY MOTIVES?
Shouldn't I be?

W 0D YOU SAY THAT JUST NOW?

That's just the way it is.

SUPPOSE THAT'S JUST THE WA I T WERE NOT.
So?

1 AM NOT SURE 1 UNDERSTAND YOU FULLY.
You harp on the same questions too much.
WHAT DOES THAT SIMILARITY SUGGEST TO YOU?
| don't get you.

0D YQU WISH THAT YQU DID GET |?

Thissuggeststhat neither ELIzA nor PARRY had adeep understanding o the dial og.
When there isa human to take on most d the burden d carryingforth the conver-
sation, these programs can be convincing, but when the human is taken out o the
conversation, theweaknessesd the programsare reveal ed.

5.1 Describingand SpecifyingELIzA

Now that we haveanidead what ELIzAislike, wecan beginthedescription and spec-
ificationd the program, and eventual ly moveto theimplementati on and debugging.

The ELIzA algorithm can be described simply as. (Dread an input, (2) find a
pattern that matchestheinput, (3) transform theinputinto aresponse, and (4) print
theresponse. Thesefour steps are repeated for eachinput.

The specificationand implementation d steps (1) and (4) are trivid: for (1), use
the built-in read function toread alist words, andfor (4)use pri nt toprint thelist
d wordsinthe response.

O course, there are some drawbacks to this specification. The user will have
to type a real list—using parentheses—and the user can't use characters that are
special to read, like quotation marks, commas, and periods. So our input won't
be as unconstrained asin the sample dialog, but that's a small priceto pay for the
convenienced havinghdf d the problem neatly solved.

5.2 Pattern Matching

The hard part comes with steps (2) and (3)—thisnotion o pattern matching and
transformation. There are four things to be concerned with: ageneral pattern and
response, and aspecificinputandtransformationd thatinput. Sincewehaveagreed
to represent the input as alist, it makes sensefor the other components to be lists
too. For example, we might have:

Pattern: (i need a X)
Response: (what would it mean to you if you got a X ?)

Input: (i need a vacation)
Transformation: (what would it mean to you if you got a vacation ?)

The pattern matcher must match theliteralsi with i, need with need, and a with a,
aswell as match the variableX with vacati on. This presupposesthat thereissome
way d deciding that X isavariableand that need is not. We must then arrange to
substitutevacati anfor X within theresponse, inorder toget thefinal transformation.

Ignoringfor amoment the problemd transforming the patterninto theresponse,
we can see that this notion of pattern matchingis just ageneralization d the Lisp
function equal. Bdowweshow thefunctionsi nd e-equal, whichislikethe built-in
function equal,! and the function pat-match, whichis extended to handle pattern-
matching variables:

(defun simple-equal (x y)
"Are x and y equal? (Don't check inside strings.)"
(if (or (atom x) (atom y))
(eql x y)
(and (simple-equal (first x) (first y))
(simple-equal (rest x) (rest y)))))

(defun pat-match (pattern input)
"Does pattern match input? Any variable can match anything."
(if (variable-p pattern)
t
(if (or (atom pattern) (atom input))
(eql pattern input)
(and (pat-match (first pattern) (first input))
(pat-match (rest pattern) (rest input))))))

Exercise 5.1 [s] Would it be a good idea to replace the complex and form in
pat-match with thesimpler (every #'pat-match pattern input)?

Before we can go on, we need to decide on an implementation for pattern-
matching variables. We could, for instance, say that only a certain set d symboals,
such as {X)Y,Z}, are variables. Alternately, we could define a structure d type
variabl e, but thenwed haveto typesomething verboselike (make-variabl e : reme
' X) every timewewanted one. Another choicewould be to use symbols, but to dis-
tinguish variablesfrom constantsby the named thesymbol. For example, inProlog,
variablesstart with capital letters and constantswith lowercase. But CommonLisp
i s case-insensitive, so that won't work. Instead, thereisatraditionin Lisp-based Al
programsto havevariablesbe symbol sthat start with the question mark character.

So far we have dealt with symbolsas atoms—objectswith no internal structure.
But things are always more complicated than they first appear and, asin Lisp as
in physics, it turns out that even atoms have components. In particular, symbols
have names, which are strings and are accessi bl ethrough the symbad -name function.
Strings in turn have elements that are characters, accessible through the function
char. The character ‘?” isdenoted by the self-evaluatingescape sequence #\?. So
the predicate variabl e-p can be defined as follows, and we now have a complete
pattern matcher:

IThe differenceisthat simple-equal doesnot handlestrings.

(defun variable-p (x)

"Is x a variable (a symbol beginning with *?*)?"

(and (symbolp x) (equal (char (symbol-name x) 0) #\?)))
> (pat-match '(1 need a ?X) '(| need a vacation))
T

> (pat-match *(I need a ?X) ’(I really need a vacation))
NIL

Ineach caseweget the right answer, but wedon't get any indicationd what ?Xis, so
we couldn’t substitute it into the response. We need to modify pat-match to return
somekind d tabled variablesand corresponding values. |n makingthischoice, the
experienced Common Lisp programmer can savesometime by beingopportunistic:
recognizingwhen thereis an existingfunction that will do alargepart o the task at
hand. What we want is to substitute values for variablesthroughout the response.
The aert programmer could refer to the index d this book or the Common Lisp
reference manual and find the functions substitute, subst, and sublis. All of these
substitute somenew expressionfor an old onewithin anexpression. It turns out that
subli Sismost appropriate because it isthe only one that allowsus to make severa
substitutions al at once. subl i s takestwoarguments, thefirstalist o old-new pairs,
and the second an expression in which to make the substitutions. For each one d
the pairs, the car isreplaced by the cdr. In other words, we would form each pair
with something like (cons o1d rew). (Such alist d pairsisknown as an associaion
ligt, or aligt, because it associates keyswith values. Seesection3.6.) Interms d the
exampleabove, wewould use:

> (sublis ’((?X . vacation))
"(what would it mean to you if you got a ?X ?))
(WHAT WOUD IT MEAN TO YQU |F YQU GOT A VACATION ?)

Now we need to arrange for pat-match to return an alist, rather than just T for
success. Here's afirst attempt:

(defun pat-match (pattern input)
"Does pattern match input? WARNING: buggy version."
(if (variable-p pattern)
(list (cons pattern input))
(if (or (atom pattern) (atom input))
(eql pattern input)
(append (pat-match (first pattern) (first input))
(pat-match (rest pattern) (rest input))))))

Thisimplementationlooksreasonable: itreturns ana-listd oneelementif the pattern
isavariable, and it appends alistsif the pattern and input are both lists. However,

there are several problems. First, thetest (eql pattern input) may return T, which
isnot alist, so append will complain. Second, the same test might return nil, which
should indicatefailure, but it will just be treated as alist, and will be appended to
therest o the answer. Third, we haven't distinguished between the casewhere the
match fails—and returns nil —versusthe case where everything matches, but there
are no variables, so it returns the null alist. (Thisis the semipredicate problem
discussed on page127.) Fourth, wewant the bindingsd variablesto agree—if ?Xis
used twicein the pattern, wedon't want it to match two different valuesin theinput.
Findly,itisinefficientfor pat-match to check boththe Fistandrest d lists, even
when the corresponding fir st partsfail to match. (Isn't it amazing that there could
befivebugsin aseven-linefunction?)

We can resolvethese problemsby agreeingon two mgjor conventions. Firs, itis
very convenient to makepat-match atrue predicate, sowewill agreethat it returns
nilonly toindicatefailure. That meansthat wewill need anon-nil valuetorepresent
the empty bindinglist. Second, if we are going to be consistent about the values o
variables,thenthefirstwill havetoknowwhat ther e stisdoing. Wecanaccomplish
this by passing the binding list as a third argument to pat-match. We makeit an
optional argument, becausewewant to beableto say ssmply (pat-match ab).

To abstract away from these implementation decisions, we define the constants
fai1 and no-bindings to represent the two problematic return values. The special
form defconstant is used to indicate that these values will not change. (Itiscus
tomary to givespecial variablesnames beginningand endingwith asterisks, but this
convention usually is not followed for constants. The reasoning is that asterisks
shout out, " Careful! | may be changed by something outside o thislexica scope."
Constants, d course, will not bechanged.)

(defconstant fail nil "Indicates pat-match failure")

(defconstant no-bindings *({(t . t))
"Indicates pat-match success, with no variables.")

Next, we abstract away from assoc by introducing thefollowingfour functions:

(defun get-binding (var bindings)
"Find a (variable . value) pair in a binding list."
(assoc var bindings))

(defun binding-val (binding)
"Get the value part of a single binding."
(cdr binding))

(defun lookup (var bindings)
"Get the value part (for var) from a binding list."
(binding-val (get-binding var bindings)))

(defun extend-bindings (var val bindings)
"Add a (var . value) pair to a binding list."
(cons (cons var val) bindings))

Now that variablesand bindings are defined, pat-match iseasy. It consists d five
cases. Firgt, if thebindinglistisfai 1, then the matchfails (becausesome previous
match must have failed). If the patternisasingle variable, then the match returns
whatever match-variahl e returns; either the existingbindinglist, an extended one,
orfail. Next, if both pattern and input arelists, wefirst call pat-mat ch recursively
onthefirstelement d eachlist. Thisreturnsabindinglist (or f ai 1), which we use
to matchtherest o thelists. Thisisthe only casethat invokesa nontrivial function,
soitisagood ideato informally prove that the function will terminate: each o the
two recursivecallsreducesthesized both pattern and input, and p at-match checks
thecased atomic patterns and inputs, so the function as awhole must eventually
returnan answer (unlessboth pattern and input ared infinitesize). If noned these
four cases succeeds, then the matchfails.

(defun pat-match (pattern input &optional (bindings no-bindings))
"Match pattern against input in the context of the bindings"
(cond ((eq bindings fail) fail)

({variable-p pattern)
(match-variable pattern input bindings))
((eql pattern input) bindings)
((and (consp pattern) (consp input))
(pat-match (rest pattern) (rest input)
(pat-match (first pattern) (first input)
bindings)))
(t fail)))
(defun match-variable (var input bindings)
"Does VAR match input? Uses (or updates) and returns bindings."
(let ((binding (get-binding var bindings)))
(cond ((not binding) (extend-bindings var input bindings))
((equal input (binding-val binding)) bindings)
(t fail))))

We can now test pat-match and seehow it works:

> (pat-match (i need a ?X) *(i need a vacation))
((?X . VACATION) (T . T))

The answer is alist of variable bindings in dotted pair notation; each element o
thelistisa (variable . value) pair. The (T . T) isaremnant from no-bindings. It
does no real harm, but we can eliminateit by makingextend- bindings alittiemore
complicated:

(defun extend-bindings (var val bindings)
"Add a (var . value) pair to a binding list."
(cons (cons var val)
;; Once we add a "real" binding,
;; we can get rid of the dummy no-bindings
(if (eq bindings no-bindings)
nil
bindings)

> (sublis (pat-match '(i need a ?X) ’(i need a vacation))
‘(what would it mean to you if you got a ?X ?))
(WHAT WOUD IT MEAN TO YOU |F YOU QOT A VACATION ?)

> (pat-match *(i need a ?X) ’(i really need a vacation))

NIL

> (pat-match '(this is easy) '(this is easy))
(T . 1)

> (pat-match *(2X is ?X) "((2 + 2) is 4))
NIL

> (pat-match " (2X is ?2X) "((2 + 2) is (2 + 2)))
((2X 2+ 2))

> (pat-match *(?P need . ?X) (i need a long vacation))
((?X A LONG VACATION) (2P . I))

Noticethe distinction betweenNILand ((T . T)). Thelatter meansthat the match
succeeded, but there were no bindingsto return. Also, remember that (?X 2+ 2)
means the sameas (?X . (2 + 2)).

A morepowerful implementationd pat-matchisgiveninchapter 6. Yd another
implementationis givenin section10.4. It is more efficient but more cumbersome
touse.

53 Segment Pattern Matching

Inthe pattern (?P need . ?X), thevariable?X matchesthe rest d theinput list,
regardless 0 itslength. Thisisin contrast to 7P, which can only match a single
element, namely, thefirst element d theinput. For many applicationsd pattern
matching, thisisfine; we only want to match corresponding elements. However,
ELizA issomewhat differentin that we need to account for variablesin any position
that match a sequence d itemsin the input. We will call such variables segment
variables. We will need a notation to differentiate segment variablesfrom normal

variables. The possibilitiesfall into two classes: either we use atoms to represent
segment variablesand distinguish them by some spelling convention (aswe did to
distinguish variables from constants) or we use a nonatomic construct. We will
choosethelatter, usingalist d theform (?* variable) to denote segment variables.
Thesymbol ?*schosen becauseit combinesthe notiond variablewith the Kleene-
star notation. So, the behaviorwewant frompat-match isnow:

> (pat-match *({?* ?p) need (?* ?x))
*(Mr Hulot and I need a vacation))
((?P MR HULOT A\D I) (2X A VACATION))

In other words, when both pattern and input are lists and the first element d the
pattern is a segment variable, then the variablewill match some initial part o the
input, and the rest d the pattern will attempt to match the rest. We can update
p at-match toaccountfor this by adding asingle cond-clause. Definingthe predicate
to test for segment variablesisalso easy:

(defun pat-match (pattern input &optional (bindings no-bindings))
"Match pattern against input in the context of the bindings"
(cond ((eq bindings fail) fail)

((variable-p pattern)
(match-variable pattern input bindings))
((eql pattern input) bindings)
((segment-pattern-p pattern) » kkk
(segment-match pattern input bindings)) ; KEF
((and (consp pattern) (consp input))
(pat-match (rest pattern) (rest input)
(pat-match (first pattern) (first input)
bindings)))
(t fail)))

(defun segment-pattern-p (pattern)

"Is this a segment matching pattern: ({?* var) . pat)"

(and (consp pattern)
(starts-with (first pattern) *?%*)))

In writing segment-match, the important question is how much d the input the
segment variable should match. One answer isto look at the next element d the
pattern (theoneafter the segment variable) and see at what positionit occursin the
input. If it doesn't occur, the total pattern can never match, and we should fai 1. If
it does occur, cal its position pos. We will want to match the variable against the
initial part d theinput, up to pos. But first we haveto seeif therest d the pattern
matchestherest o theinput. Thisisdone by arecursivecall topat-match. Let the
result o thisrecursivecall benamedb?. If b2 succeeds, thenwego ahead and match
the segment variableagainst theinitial subsequence.

The tricky part iswhen b2 fails. We don't want to give up completely, because
it may bethat if the segment variable matched a longer subsequence d the input,
then therest d the patternwould match therest o theinput. Sowhat wewant isto
try segment-match again, but forcingit to consider alonger match for the variable.
Thisisdone by introducing an optional parameter, start, whichisinitially0 andis
increased with each failure. Noticethat this policy rules out the possibility d any
kind d variablefollowingasegment variable. (Laterwewill removethisconstraint.)

(defun segment-match (pattern input bindings &optional (start 0))
"Match the segment pattern ((?* var) . pat) against input.”
(let ((var (second (first pattern)))
(pat (rest pattern)))
(if (null pat)
(match-variable var input bindings)
;; W assume that pat starts with a constant
;; In other words, a pattern can't have 2 consecutive vars
(let ((pos (position (first pat) input
;start start :test #’equal)))
(if (null pos)
fail
(let ((b2 (pat-match pat (subseq input pos) bindings)))
;; If this match failed, try another longer one
;3 If it worked, check that the variables match
(if (eq b2 fail)
(segment-match pattern input bindings (+ pos 1))
(match-variable var (subseq input 0 pos) b2))))))))

Someexamplesd segment matching follow:

> (pat-match "((?* ?p) need (?* ?x))
>(Mr Hulot and I need a vacation))
((?2P MR HULOT AND I) (?X A VACATION))

> (pat-match “((?* ?x) is a (?* ?y)) '(what he is is a fool))
((2X WHAT HE IS) (2Y FOOL))

Thefirst d these examplesshows afairly ssmple case: ?p matches everything up
to need, and ?x matches therest. The next exampleinvolvesthe more complicated
backup case. First 7x matcheseverything up to thefirst i s (thisis position 2, since
counting startsat 0in CommonLisp). But then the pattern afailsto match theinput
i S, S0 segment-match triesagai nwith starting position 3. Thistimeeverythingworks,
ismatchesis, a matchesa, and (?* ?y) matchesfool.

Unfortunately, thisversionof segment -match doesnot matchas muchasitshould.
Consider thefollowingexample:

> (pat-match *((2* ?x) a b (?* ?x)) '(1 2abab12ab)) = NIL

This fails because ?x is matched against the subsequence (1 2), and then
the remaining pattern succesfully matches the remaining input, but the final
cal tomatch-variabl e fails, because ?x has two different values. Thefix isto call
match-variabl e before testing whether the b2 fails, so that we will be sure to try
segment-match again with alonger match no matter what the caused thefailure.

(defun segment-match (pattern input bindings &optional (start 0))
"Match the segment pattern ((?* var) . pat) against input.”
(let ((var (second (first pattern)))
(pat (rest pattern)))
(if (null pat)
(match-variable var input bindings)
;; W assume that pat starts with a constant
;; In other words, a pattern can't have 2 consecutive vars
(let ((pos (position (first pat) input
;start start :test #’equal)))
(if (null pos)
fail
(let ((b2 (pat-match
pat (subseq input pos)
(match-variable var (subseq input 0 pos)
bindings))))
;; If this match failed, try another longer one
(if (eq b2 fail)
(segment-match pattern input bindings (+ pos 1))
b2)3))))))

Now we see that the match goesthrough:

> (pat-match *((?* ?x) ab (?*?7x)) "(1 2abab1l2ab))
((?2X 12 A B))

Note that thisversion d segment-match tries the shortest possible match first. It
would also be possibleto try the longest match first.

5.4 TheELizAa Program: A Rule-Based
Translator

Now that we have a working pattern matcher, we need some patterns to match.
What's more, wewant the patterns to be associated with responses. We can do this
by inventing a data structure called a rul e, which consists d a pattern and one or
more associated responses. These are rules in the sense that they assert, "If you
see A, then respond with B or C, chosen at random." We will choose the simplest
possibleimplementation for rules: aslists, wherethefirstelementisthe pattern and
therestisalistd responses:

(defun rule-pattern (rule) (first rule))
(defun rule-responses (rule) (rest rule))

Here's an exampled arule:

(CC2* 2x) | want (2% ?y))

(What would it mean if you got ?y)
(Why do you want ?y)

(Suppose you got ?y soon))

When applied to theinput (I want to test this program),thisrule (whenin-
terpreted by the ELizA program) would pick aresponse at random, substitutein the
value of ?y, andrespondwith, say, (why do you want to test this program).

Now that we know what an individual rule will do, we need to decide how to
handleaset d rules. If ELIZA isto be of any interest, it will haveto haveavariety d
responses. So several rules may all be applicableto the sameinput. One possibility
would betochoosearul eat randomfrom among theruleshaving patterns that match
theinput.

Another possibilityis just to accept thefirst rule that matches. Thisimpliesthat
the rulesform an ordered list, rather than an unordered set. The clever ELIZA rule
writer can take advantaged thisordering and arrange for the most specific rulesto
comefirst, while morevague rulesare near theend d thelist.

Theoriginal ELIZA had asystemwhere each rule had a priority number associated
withit. Thematchingrulewiththehighest prioritywas chosen. Notethat puttingthe
rulesin order achievesthe same effect as having a priority number on each rule: the
first ruleimplicitly hasthe highest priority, the second ruleis next highest, and so on.

Hereisashortlistd rules, selectedfrom Weizenbaum’s original article, but with
theform d the rules updated to theform we are using. Theanswer to exercise5.19
containsalonger list o rules.

(defparameter *eliza-rules*
P((((2* 2x) hello (2* ?y))
(How do you do. Please state your problem.))
(CC?* ?2x) | want (2% ?y))
(What would it memn if you got ?y)
Wy do you want ?y) (Supposeyou got ?y soon))
(CC2*) if (2% 2y))
(Do you really think its likely that ?y) (Do you wish that ?y)
(What do you think about ?y) (Really-- if ?y))
(C(2*% 2x) no (?* ?y))
Why not?) (You are being a bit negative)
(Areyou saying "NO" just to be negative?))
(CC* 2x) | was (7% ?y))
(Were you really?) (Perhaps | already kmew you were ?y)
Why do you tell ne you were ?y now?))
(((2* 2x) | feel (7% ?y))
(Do you often feel ?y ?))
(CC* 2x) | felt (2% ?y))
(What other feelings do you have?))))

Finally we are ready to define ELIzA proper. Aswe said earlier, the main program
should bealoopthat readsinput, transformsit, and printstheresult. Transformation
isdone primarily by finding some rule such that its pattern matches the input, and
then substituting thevariablesinto therul€'s response. Theprogramissummarized
infigure5.1.

There are a few minor complications. We print a prompt to tell the user to
input something. We usethefunction f Ta tten toinsurethat the output won't have
imbedded lists after variable substitution. An important trick is to alter the input
by swapping'you'" for""me'" and so on, sincethese terms arerel ativeto the speaker.
Hereisthe complete program:

(defun eliza ()
"Respond to user input using pattern matching rules."
(Toop
(print 'el iza>)
(write (flatten (use-eliza-rules (read))) :pretty t)))

(defun use-eliza-rules (input)
"Find some rule with which to transform the input.”
(some #(lambda (rule)
(let ((result (pat-match (rule-pattern rule) input)))’
(if (not (eq result fail))
(sublis (switch-viewpoint result)
(random-l t (rule-responses rule))))))
el iza-rules))

Top-Levd Function

eliza Respond to user input using pattern matching rules.
Special Variables

el iza-rul es Alistd transformation rules.
Data Types

rule Anassociationd apatternwith alist o responses.
Functions

eliza Respond to user input using pattern matching rules.

use-el iza-rules Find somerulewith whichto transform theinput.
swi tch-viewpoint Changel toyou and viceversa, and soon.

flatten Append together elementsd alist.
Selected Common Ligp Functions

sublis Substitute elementsinto atree.
Previoudy Defined Functions

random-€l t Pick arandom element from alist. (p.36)

pat-match Match a pattern against aninput. (p.160)

mappend Append together theresultsd amapcar.

Figure5.1: Glossary for the ELIZA Program

(defun switch-viewpoint (words)
"Change | to you and vice versa, and so on."
(sublis *((I . you) (you . I) (me . you) (am . are))
words))

Notethe used writewiththe: pretty keywordtrue. Thiswill give better formatted
output insomecases. Theprogram makesused the previously defined random-el t,
and flatten, which is defined here using mgppend and i i st, a function that is
defined in the InterLisp dialect but notin CommonLisp.

(defun flatten (the-list)
"Append together elements (or lists) in the list."”
(mappend #’mklist the-list))

(defun mklist (x)
"Return x if it is alist, otherwise (x)."
(if (Tistp x)
X
(list x)))

(defun mappend (fn the-list)
"Apply fn to each element of list and append the results."”
(apply #’append (mapcar fn the-1ist)))

(defun random-elt (choices)
"Choose an element from a list at random."
(elt choices (random (length choices))))

Theactual ELizA programhad afew complicationsthat don't show upinthisversion.
First, therewas an aliasmethod for associ ati ng several wordswith the same pattern;
both" mother' and" father' could beassociated with the"family" pattern. Therewas
asoasynonym mechanism that would treat "'don't" and''do not" or " everybody" and
"everyone" the same. In the case d input with several comma-separated phrases,
each phrase was processed separately, and the response with the highest priority
was selected. In addition, the original ELIZA had a" memory" mechanism. When
no pattern matched the input, it said something like" Tell me moreabout X,” where
X is some input given earlier. Finaly, our version has fewer rules. Despite the
shortcomingsd our version, it can occasionally hold upitsend d aconversation, as
shown below:

> (eliza)

ELIZA> (hello there)

HOW DD YOU DO. PLEASE STATE YOUR PROBLEM.)

ELIZA> (i want to test this program)

(WHAT WOUD IT MEAN |F YOU GOT TO TEST THIS PROGRAM)

ELIZA> (i could see if it works)

(DO YQU REALLY THINK ITS LIKELY THAT IT WORKS

ELIZA> (no not really)

(ARE YOU SAYING "NO" JUST TO BE NEGATIVE?)

ELIZA> (no)

(ARE YOU SAYING "NO" JUST TO BE NEGATIVE?)

ELIZA> (forget it-- i was wondering how general the program is)
WHY DD YOU TELL ME YOU WERE WONDERING HOV GENERAL THE PROGRAM IS NOW?)
ELIZA> (i felt like it)

(WHAT OTHER FEELINGS DD YOU HAVE?)

ELIZA> (i feel this is enough)

(DO YOU OFTEN FEEL THIS IS ENOUGH ?)

ELIZA> [Abort]
>

Inthe end, it is the technique that is important—not the program. ELIzA has been
"explainedaway" and should rightfullybe movedtothecurioshelf. Pattern matching
in general remains important technique, and we will see it again in subsequent
chapters. The notion d a rule-based trandator is also important. The problem
d understanding English (and other languages) remains an important part o Al.
Clearly, the problem d understanding Englishis not solved by ELIZA. In part V, we
will address the problem again, using more sophisticated techniques.

5.5 History and References

As mentioned above, the original articledescribing ELizA is Weizenbaum1966. An-
other dialog system using similar pattern-matching techniques is Kenneth Colby's
(1975) PARRY. This program simulated the conversation o a paranoid person well
enough to fool several professional psychologists. Although the pattern matching
techniques were simple, the model d bdief maintained by the system was much
moresophisticated than ELIzA. Colby hassuggested that dialogprogramslikeELizA,
augmented with somesort d belief model like PARRY, could be useful toolsin treat-
ing mentally disturbed people. According to Colby, it would be inexpensive and
effectiveto havepatients conversewithaspeciallydesigned program, one that could
handle simple cases and alert doctors to patients that needed more help. Weizen-
baum:s book Computer Power and Human Reason (1976) discusses ELIzA and PARRY
and takes a very critical view toward Colby's suggestion. Other interesting early
work on dialog systems that model bdlief is reported by Allan Collins (1978) and
JamieCarbonell (1981).

5.6 Exercises

Exercise 5.2 [m] Experiment with this version d ELiza. Show some exchanges
where it performs well, and some where it fails. Try to characterize the differ-
ence. Whichfailurescould befixed by changing the rule set, which by changing the
pat-matchfunction (andthe patternlanguageit defines), and whichrequireachange
totheel i za programitself?

Exercise 5.3[h] Defineanew set d rules that make ELIzA give stereotypical re-
sponsesto some situation other than the doctor-patient rel ationship. Or, writeaset
d rulesinalanguageother than English. Test and debugyour new rule set.

Exercise 5.4[s] We mentioned that our version d ELIZA cannot handle commas
or double quote marksin theinput. However, it seems to handle the apostrophe in
both input and patterns. Explain.

Exercise 5.5[h] Alter the input mechanism to handle commas and other punctu-
ation characters. Also arrange so that the user doesn't have to type parentheses
around the wholeinput expression. (Hint: this can only be done using some Lisp
functions we havenot seen yet. Look at read-1ineand read-from-stri ng.)

Exercise 5.6 [m] Modify ELIZA to have an explicit exit. Also arrange so that the
outputisnot printed in parentheses either.

Exercise 5.7 [m] Add the "memory mechanism" discussed previously to ELIZA.
Alsoadd someway d definining synonymslike" everyone'" and " everybody."

Exercise 5.8[h] Itturnsoutthat noneof therulesinthegivenscript usesavariable
morethan once—thereisnoruled theform (?x... ?x). Writeapattern matcher that
only adds bindings, never checksvariablesagainst previousbindings. Usethe time
special form to compareyour function against the current version.

Exercise 5.9[h] Winston and Horn's book Lisp presents agood pattern-matching
program. Comparetheir implementation with thisone. Onedifferenceisthat they
handle the casewherethefirstelement o the patternisasegment variablewith the
following code (translated into our notation):

(or (pat-match (rest pattern) (rest input) bindings)
(pat-match pattern (rest input) bindings))

This says that a segment variable matches either by matching the first element o
the input, or by matching morethan the first element. Itis much simpler than our
approach using position, partly because they don't update the binding list. Can
you change their code to handle bindings, and incorporate it into our version d
pat-match? Isit still simpler? Isit moreor lessefficient?

Exercise 5.10 Whatiswrongwith thefollowingdefinitionof simpl e-equal?

(defun simple-equal (x y)
"Test if two lists or aoms are equal."
:; Wamning - incorrect
(or (eql X ¥y)
(and (Tistp x) (listp y)
(simple-equal (first x) (firsty))
(simple-equal (rest x) (rest y)))))

@ Exercise 5.11[m] Weightheadvantagesof changingno-bindingstonil,andfail

to something else.

Exercise 5.12[m] Weightheadvantagesd makingpat-match return multipleval-
ues: thefirst would be true for amatch and falsefor failure, and the second would
bethe bindinglist.

Exercise 5.13[m] Supposethat thereisacall to segment-matchwherethevariable
aready has a binding. The current definition will keep making recursive calls to
segment-match, one for each possible matching position. But this is slly—if the
variable is already bound, there is only one sequence that it can possibly match
against. Changethedefinitionso that it looksonly for thisone sequence.

Exercise 5.14[m] Defineaversion of mappendthat, likemapcar, acceptsany number
d argumentlists.

Exercise 5.15[m] Giveaninformal proof that segment-match alwaysterminates.

Exercise 5.16[5] Trick question: Thereisan objectin Lispwhich, when passed to
variable-p, resultsinanerror. What isthat object?

Exercise 5.17[m] Thecurrent versiond ELIzA takes an input, transforms it ac-
cordingto thefirst applicablerule, and outputs the result. One can alsoimaginea
system where the input might be transformed several times before thefinal output
isprinted. Would such asystem be more powerful ?If so, inwhat way?

Exercise 5.18[h] Read Weizenbaum's original articleon ELIzA and transpose his
listd rulesinto the notation used i n thischapter.

5.7 Answers

Answer 5.1 No. If either the pattern or theinput were shorter, but matched every
existingelement, the every expressionwouldincorrectly return true.

(every #pat-match ’(a bc) ’(a) =T

Furthermore, if either the patternor theinputwereadottedlist, thentheresult d the
every woul d be undefined—someimplementations might signal anerror, and others
might just ignorethe expression after the dot.

(every #'pat-match '(@ b.c)'(a b.d) = T, NL, orerror.

Answver 5.4 Theexpressiondon 't maylooklikeasingleword, but tothel ispreader
itiscomposed d the two elements don and *t, or (quote t). If these elementsare
used consistently, they will match correctly, but they won't print quite right—there
will be a space before the quote mark. Infact the : pretty t argument towriteis
specified primarily to make (quote t) print as 't (Seepage559 d Steele's Common
Lisp the Langueage, 2d edition.)

Answver 5.5 Oneway todothisistoread awholelined textwith read-11inerather
than read. Then, substitute spaces for any punctuation character in that string.
Finaly, wrap the stringin parentheses, and read it back inasalist:

(defun read-line-no-punct ()
"Read an input line, ignoring punctuation."
(read-fromstring
(concatenate 'string "(" (substitute-if #\space#’punctuation-p
(read-Tine))
")"))

(defun punctuation-p (char) (find char ".,;:*12#-O\\\""))

Thiscould also be done by altering the readtabl e, asin section 23.5, page 821.

Answer 5.6

(defun eliza ()
"Respond to user input using pattern matching rules.”
(Toop
(print 'eliza>)
(let* ((input (read-line-no-punct))
(response (flatten (use-eliza-rules input))))
(print-with-spaces response)
(if (equal response ‘(good bye)) (RETURN)))))

(defun print-with-spaces (list)

(mapc #'(lambda (x) (prinl x) (princ " ")) list))
or
(defun print-with-spaces (list)

(format t "*{"a ~}" list))

Answer 5.10 Hint: consider (simple-equal () '(nil . nil)).

Answer 5.14

(defun mappend (fn &rest list)
"Apply fn to each element of lists and append the results."”
(apply #'append (apply #’mapcar fn lists)))

Answer 5.16 Itmustbeasymbol, becausefornonsymbols,variable-p justreturns
nil. Getting the symbol -name of asymbol is just accessingadot, so that can't cause
an error. The only thing left is el t; if the symbol name is the empty string, then
accessing element zero of the empty string is an error. Indeed, there is a symbol
whose nameistheempty string: the symbol .

Answer 5.17 Amongotherthings, arecursivetransformationsystemcould beused
to handle abbreviations. That is, aformlike"don't" could be transformed into ""do
not" and then processed again. That way, the other rules need only work oninputs
matching'do not."

Answer 5.19 Thefollowingincludes most d Weizenbaum's rules:

(defparameter *el iza-rules*
> ?2x) hello (7% 2y))
(How do you do. Please state your problem.))
(((?* ?x) computer (?* ?y))
(Do computers worry you?) (What do you think about machines?)
(Why do you mention computers?)
(What do you think machines have to do with your problem?))
(((?* ?x) name (?* ?y))
(1 an not interested in names))
(((?* ?2x) sorry (2% ?y))
(Please don't apologize) (Apologies are not necessary)
(What feelings do you have when you apologize))
(C(?* ?x) | remember (?* ?y))
(Do you often think of ?y)
(Does thinking of ?y bring anything else to mind?)
(What else do you remember) (Why do you recall ?y right now?)
(What in the present situation reminds you of ?y)
(What is the connection between me and ?y))
(((?* ?2x) do you remember (?* ?y))
(Did you think | would forget ?y ?)
(Why do you think | should recall ?y now)
(What about ?y) (You mentioned ?y))
(2% 2x) i f (2% 7y))
(Do you really think its likely that ?y) (Do you wish that ?y)
(What do you think about ?y) (Really-- if 2y))

(((?2* ?2x) | dreamt (?* ?y))

(Really-- ?y) (Have you ever fantasized ?y while you were awake?)
(Have you dreamt ?y before?))

(((?* ?2x) dream about (?* ?y))

(How do you feel about ?y in reality?))

(((?* ?x) dream (?* ?y))

(What does this dream suggest to you?) (Do you dream often?)
(What persons appear in your dreams?)

(Don't you believe that dream has to do with your problem?))
(((?* ?x) my mother (?* 2y))

(Who else in your family ?y) (Tell me more about your family))
(((?* ?x) nmy father (?*?y))

(Your father) (Does he influence you strongly?)

(What else comes to mind when you think of your father?))

(CC?* ?2x) 1 want (2% ?y))

(What would it mean i Fyou got ?y)

(Why do you want ?y) (Suppose you got ?y soon))
(((?* ?2x) 1 an glad (?* ?y))

(How have I helped you to be ?y) (What makes you happy just now)
(Can you explain why you are suddenly ?y))

(C(?* ?2x) 1 an sad (?* 7y))

(lam sorry to hear you are depressed)

(I'm sure it's not pleasant to be sad))

(((2* 7x) are like (?2* ?y))

(What resemblance do you see between ?x and ?y))
(((2* ?2x) is like (2% ?y))

(In what way is it that ?x is like ?y)

(What resemblance do you see?)

(Could there really be some connection?) (How?))
(((?*% ?2x) alike (2% ?y))

(In what way?) (What similarities are there?))
(((?* ?7x) same (?* ?y))

(What other connections do you see?))

(CC?* 2x) 1 was (2% ?y))

(Were you really?) (Perhaps I already knew you were ?y)
(Why do you tell me you were ?y now?))

(C(?* ?2x) was 1 (2% ?y))

(What i f you were ?y ?) (Do you think you were ?y)
(What would it mean i f you were ?y))

(CC2* 2x) 1 an (2% 2y))

(In what way are you ?y) (Do you want to be ?y ?))
(C2* 2x) an 1 (2% ?y))

(Do you believe you are ?y) (Would you want to be ?y)
(You wish I would tell you you are ?y)

(What would it mean i f you were ?y))

(C(2* 2x) an (?* ?y))

(Why do you say "AM?") (I don't understand that))
(((?* ?2x) are you (?* ?y))

(Why are you interested in whether I an ?y or not?)
(Would you prefer if I weren't ?y)

(Perhaps I an ?y in your fantasies))

(((?* ?2x) you are (2?* ?y))

(What makes you think I an ?y ?))

(C(?* ?x) because (?* ?y))

(I's that the real reason?) (What other reasons might there be?)
(Does that reason seem to explain anything else?))

(((?* ?x) were you (?* ?y))

(Perhaps I was ?y) (What do you think?) (What if I had been ?y))
(C(?* ?2x) 1 can't (?% ?y))

(Maybe you could ?y now) (What if you could ?y ?))

(CC2* ?2x) 1 feel (2% ?y))

(Do you often feel ?y ?))

(CC2* 2x) 1 felt (2% ?y))

(What other feelings do you have?))

(CC2* 72x) 1 (2% ?y) you (?* 2z))

(Perhaps in your fantasy we ?y each other))

(C(?* ?7x) why don't you (?* ?y))

(Should you ?y yourself?)

(Do you believe I don't ?y) (Perhaps I will ?y in good time))
(C(2* ?x) yes (2% ?y))

(You seem quite positive) (You are sure) (I understand))
(C(?* ?2x) no (2% ?y))

(Why not?) (You are being a bit negative)

(Are you saying "NO" just to be negative?))

(((?* ?x) someone (?* ?y))

(Can you be more specific?))

(C(?* ?x) everyone (?* ?y))

(surely not everyone) (Can you think of anyone in particular?)
(Who for example?) (You are thinking of a special person))
(((?* ?2x) always (?* ?y))

(Can you think of a specific example) (When?)

(What incident are you thinking of?) (Really-- always))
(C(?* ?x) what (?* ?y))

(Why do you ask?) (Does that question interest you?)

(What is it you really want to know?) (What do you think?)
(What comes to your mind when you ask that?))

(((?* ?x) perhaps (?* ?y))

(You do not seem quite certain))

(((2* 2x) are (?* ?y))

(Did you think they might not be ?y)

(Possibly they are ?y))

(CC?* ?2x))

(Very interesting) (I an not sure I understand you fully)
(What does that suggest to you?) (Please continue) (Go on)
(Do you feel strongly about discussing such things?))))

CHAPTER 6
Building Software Tools

Manisatool-usnganimal.. ..
Without toolsheis nothing,
with toolsheisall.

—Thomas Carlyle (1795-1881)

In this chapter, wewill reexaminethose two programsto discover some common patterns.
Those patternswill beabstracted out toform reusabl e software tool sthat will provehel pful
i n subsequent chapters.

I nchapters4 and Swewereconcerned with buildingtwo particular programs, GPsand ELIZA.

6.1 Anlnteractive Interpreter Tool
Thestructured thefunction el izaisacommon one. Itisrepeated below:

(defun eliza ()
"Respond to user input using pattern matching rules."
(Toop
(print 'el iza>)
(print (flatten (use-eliza-rules (read))))))

Many other applicationsuse this pattern, including Lispitself. Thetop level d Lisp
could bedefined as:

(defun lisp ()
(Toop
(print *>)
(print (eval (read)))))

Thetoplevel d aLisp system has historically been called the read-eva -printloop.™
Most modern Lisps print aprompt beforereadinginput, soit should really becalled
the" prompt-read-eval-printloop," but there was no prompt in some early systems
likeMacLisp, so the shorter name stuck. If weleftout the prompt, we could writea
completeLispinterpreter using just four symbols:

(loop (print (eval (read))))

It may seem facetiousto say those four symbolsand eight parentheses constitute a
Lispinterpreter. When we write that line, have we really accomplished anything?
Oneanswer to that question isto consider what wewould havetodo towriteaLisp
(orPascal)interpreter in Pascal. Wewould need alexica analyzer and asymbol table
manager. Thisisaconsiderable amount of work, butitisall handled by read. We
would need a syntactic parser to assemble the lexica tokensinto statements. read
also handles this, but only because Lisp statements have trivial syntax: the syntax
d listsand atoms. Thus read servesfineas a syntactic parser for Lisp, but would
fail for Pascal. Next, we need the evaluation or interpretation part o theinterpreter;
eval doesthisnicedly, and could handle Pascal just aswell if we parsed Pascal syntax
into Lisp expressions. print does much less work than read or eval, but is still
quite handy.

Theimportant point isnot whether onelined code can be considered animple-
mentation d Lisp; it isto recognize common patterns o computation. Both el iza
and 1i sp can be seen asinteractiveinterpretersthat read someinput, transform or
evaluatetheinput in someway, print theresult, and then go back for moreinput. We
can extract the following common pattern:

(defun program ()
(1oop
(print prompt)
(print (transform (read)))))

Thereare two waysto make use d recurring patternslike this: formally and infor-
mally. Theinformal alternativeisto treat the pattern as a cliche or idiom that will
occur frequently in our writingd programs but will vary from use to use. Whenwe

want towriteanew program, weremember writing or readingasimilar one, go back
and look at thefirst program, copy the relevant sections, and then modify themfor
the new program. If the borrowingisextensive, it would be good practiceto insert
acomment in the new program citing the original, but there would be no "officid"
connection between the original and the derived program.

Theformal alternativeistocreatean abstraction, intheformd functionsand per-
hapsdatastructures, and refer explicitlytothat abstractionineach new application—
in other words, to capture the abstraction in theformof auseable software tool. The
interpreter pattern could be abstracted into afunction asfollows:

(defun interactive-interpreter (pronpt transformer)
"Read an expression, transformit, and print the result."
(Toop
(print pronpt)
(print (funcall transformer (read)))))

Thisfunction could then be used in writing each new interpreter:

(defun lisp O
(interactive-interpreter *> #’eval))

(defun eliza O
(interactive-interpreter 'eliza>
(lanbda (x) (flatten (use-eliza-rules x)))))

Or, withthe help d the higher-order function compose:

(defun conpose (f g)
"Return the function that conputes (f (g x))."
(lambda (x) (funcall f (funcall g x))))

(defun eliza ()
(interactive-interpreter ’eliza>
(compose # flatten # use-eliza-rules)))

Thereare two differences between the formal and informal approaches. First, they
look different. If the abstraction isasimple one, as thisoneis, then it is probably
easier to read an expression that has the loop explicitly written out than to read one
that callsinteractive-interpreter, sincethat requires finding the definition o
interactive-interpreterand understandingit aswell.

The other differenceshows up in what's called maintenance. Suppose wefind a
missingfeaturein thedefinitiond theinteractiveinterpreter. Onesuch omissionis
that theloop hasnoexit. | havebeenassuming that the user can terminatetheloop by
hittingsomeinterrupt (or break, or abort) key. Acleaner implementationwould allow

the user to give the interpreter an explicit termination command. Another useful
feature would be to handle errors within the interpreter. If we use the informal
approach, then adding such a featureto one program would have no effecton the
others. Butifweusetheformal approach, thenimprovingi nteracti ve-i nterpreter
would automatically bringthe new features to all the programsthat useit.

Thefollowingversionof i nteracti ve-i nterpreter addstwonewfeatures. First,
it uses the macro handl er-case! to handle errors. This macro evaluates its first
argument, and normally just returns that value. However, if an error occurs, the
subsequent arguments are checkedforan error condition that matchestheerror that
occurred. In this use, the case error matches al errors, and the action taken isto
print the error condition and continue.

This version aso allows the prompt to be either a string or a function d no
arguments that will be called to print the prompt. Thefunction prompt-generator,
for example, returns a function that will print prompts d the form [11, [21, and
soforth.

(defun interactive-interpreter (prompt transformer)
"Read an expression, transform it, and print the result."”
(Toop
(handler-case
(progn
(if (stringp prompt)
(print prompt)
(funcall prompt))
(print (funcall transformer (read))))
;5 In case of error, do this:
(error (condition)
(format t ""&;; Error "a ignored, back to top level."
condition)))))

(defun prompt-generator (&optional (num 0) (ctl-string "["dl "))
"Return a function that prints prompts like [1], [21, etc."
#’(Tambda () (format t ctl-string (incf num))))

6.2 A Pattern-MatchingTool

The pat-match function was a pattern matcher defined specificaly for the ELizA
program. Subsequent programs will need pattern matchers too, and rather than
write specialized matchersfor each new program, it is easier to define one general

IThe macrohandler-case isonly in AN S1Common Lisp.

pattern matcher that can serve most needs, and is extensiblein case novel needs
come up.

The problemin designing a*' general" tool is deciding what features to provide.
We can try to definefeatures that might be useful, but itisalso agood ideato make
thelist o features open-ended, so that new ones can be easily added when needed.

Featurescan beadded by generalizingor specializingexistingones. For example,
we provide segment variables that match zero or more input elements. We can
specializethis by providingfor akind d segment variablethat matches one or more
elements, or for an optional variable that matches zero or one element. Another
possibilityistogeneralizesegment vari abl estospecify amatchd mtonelements, for
any specifiedm and n. Theseideas comefrom experiencewith notationsfor writing
regular expressions, aswell asfrom very general heuristicsfor generalization, such
as' consider important special cases' and "' zero and one are likely to be important
special cases."

Another useful featureisto allow the user to specify an arbitrary predicate that
a match must satisfy. The notation (?is ?n numberp) could be used to match any
expression that isanumber and bind it to the variable ?n. Thiswouldlook like:

> (pat-match *(x = (?is ?n nunberp)) ’(x = 34)) = ((n . 34))

> (pat-match ’(x = (2?is ?n nunberp)) *(x = x)) = NIL

Sincepatternsarelikebool eanexpressions, it makessensetoallow bool eanoperators
on them. Following the question-mark convention, we will use ?and, ?or and ?not
for theoperators.? Hereisapattern tomatch arel ational expressionwithoned three
relations. It succeeds because the < matches one d the three possibilitiesspecified
by (7or <=>).

> (pat-match *(2x (2or < =>) ?%y) "(3 <4)) = ((?Y ., 4) (X . 3))

Hereisan exampled an ?7and pattern that checksif an expressionisboth a number
and odd:

> (pat-match ’(x = (?and (?is ?n numberp) (?is ?n oddp)))
"(x = 3))

(2N, 3))

2 An alternativewould be to reserve the question mark for variables only and use another
notationfor these match operators. Keywordswould beagood choice, suchas :and, :or, :i§,
etc.

The next pattern uses?not toinsurethat two partsare not equal:

> (pat-match *(2?x /= (Znot ?x)) "(3 /= 4)) = ((?X . 3))

The segment matching notation we have seen before. It isaugmented to allow for
three possibilities: zero or more expressions; one or more expressions, and zero or
oneexpressions. Finaly, the notation (?i f exp) can be used to test a relationship
betweenseveral variables. It hasto belisted asasegment patternrather thanasingle
pattern becauseit does not consume any o theinput at all:

> (pat-match *(?x > ?y (?if (> ?x ?y))) (4 > 3)) =
((2y . 3) (?X . 4))

When the description d a problem gets this complicated, it is a good idea to
attempt a more formal specification. The following table describes a grammar o
patterns, using the samegrammar ruleformat described in chapter 2.

pat= var match any one expression
constant match just thisatom
segment-pat match something agai nst a sequence
single-pat match something against one expression
(pat. pat) match thefirst and the rest
single-pat=- (?i Svar predicate) test predicate onone expression

(?or pat...) match any pattern on one expression
(?and pat...) match every pattern on oneexpression
(?not pat...) succeedif pattern(s) do not match

segment-pat= ((?*var) ..) match zero or moreexpressions
((?+var) ...) match one or moreexpressions
((?2 var) ..) match zero or one expression
((?21f exp)..) testif exp (whichmay contain

variables)istrue
var= ?chars asymbol starting with ?
constant=- atom any nonvariableatom

Despite the added complexity, al patterns can still be classifiedinto five cases.
The pattern must be either a variable, constant, a (generalized) ssgment pattern,
a (generalized) single-element pattern, or a cons d two patterns. The following
definitiond pat-match reflectsthe fivecases (alongwith two checksfor failure):

(defun pat-match (pattern input &optional (bindings no-bindings))
"Match pattern against input in the context of the bindings"
(cond ((eq bindings fail) fail)

((variable-p pattern)

(match-variable pattern input bindings))

((eql pattern input) bindings)

((segment-pattern-p pattern)

(segment-matcher pattern input bindings))

((single-pattern-p pattern) y xkk

(single-matcher pattern input bindings)) ; FRE

((and (consp pattern) (consp input))

(pat-match (rest pattern) (rest input)
(pat-match (first pattern) (first input)

bindings)))
(t fail)))

For compl eteness, we repeat here the necessary constants and low-level functions
fromELIZA:

(defconstant fail nil "Indicates pat-match failure")

(defconstant no-bindings "((t . t))
"Indicates pat-match success, with no variables.")

(defun variable-p (x)
"Is x a variable (a symbol beginning with “?7)?"
(and (symbolp x) (equal (char (symbol-name x) 0) #\?)))

(defun get-binding (var bindings)
"Find a (variable . value) pair in a binding list."
(assoc var bindings))

(defun binding-var (binding)
"Get the variable part of a single binding."
(car binding))

(defun binding-val (binding)
"Get the value part of a single binding."
(cdr binding))

(defun make-binding (var val) (cons var val))

(defun lookup (var bindings)
"Get the value part (for var) from a binding list."
(binding-val (get-binding var bindings)))

(defun extend-bindings (var val bindings)
"Add a (var . value) pair to a binding list."
(cons (make-binding var val)
;; Once we add a "real" binding,
;3 we can get rid of the dummy no-bindings
(if (eq bindings no-bindings)
nii
bindings)

(defun match-variable (var input bindings)
"Does VAR match input? Uses (or updates) and returns bindings."
(let ((binding (get-binding var bindings)))
(cond ((not binding) (extend-bindings var input bindings))
((equal input (binding-val binding)) bindings)
(t fail))))

The next step is to define the predicates that recognize generalized segment and
single-elementpatterns, and the matchingfunctionsthat operate onthem. Wecould
implement segment -matcher and si ngl e-matcher with case statementsthat consider
al possible cases. However, that would makeit difficult to extend the matcher. A
programmer who wanted to add a new kind d segment pattern would have to edit
the definitionsd both segment - pattern - pand segment-matcher to install the new
feature. This by itself may not be too bad, but consider what happens when two
programmers each add independent features. f you want to use both, then neither
version d segment-matcher (or segment-pattern-p)will do. Youll haveto edit the
functions again, just to merge the two extensions.

The solution to this dilemmais to write one version d segment- pattern-p and
segment-matcher, once and for all, but to have these functions refer to a table d
pattern/action pairs. The table would say "if you see ?*in the pattern, then use
the function segment-match," and so on. Then programmers who want to extend
the matcher just add entries to the table, and it is trivial to merge different exten-
sions (unless d course two programmers have chosen the same symbol to mark
different actions).

Thisstyled programming, where pattern/action pairs are stored in a table, is
called data-driven programming. Itisavery flexiblestylethat i sappropriate for writing
extensiblesystems.

There are many ways to implement tablesin Common Lisp, as discussed in
section 3.6, page 73. In this case, the keys to the table will be symbols (like ?*),
and it isfineif the representation d the tableis distributed across memory. Thus,
property lists are an appropriate choice. We will have two tables, represented by
the segment-match property and the si ngl e4mat ch property o symbolslike ?*.The
valued each property will be the name d afunction that implements the match.
Herearethetableentries toimplement the grammar listed previously:

(setf (get '?is ‘'single-match) 'match-is)
(setf (get *?or 'single-match) 'match-or)
(setf. (get '?and 'single-match) 'match-and)
(setf (get '?not 'single-match) 'match-not)

(setf (get '?* 'segment-match) 'segment-match)
(setf (get '?+ 'segment-match) ‘segment-match+)
(setf (get '?? 'segment-match) 'segment-match?)
(setf (get '?if 'segment-match) ‘match-if)

With the table defined, we need to do two things. First, definetheglue" that holds
thetabletogether: the predicatesand action-taking functions. A function that looks
up adata-driven functionand callsit (suchassegment-matcherandsingle-matcher)
iscalled a dispatch function.

(defun segment-pattern-p (pattern)
"Is this a segment-matching pattern like ((?* var) . pat)?"
(and (consp pattern) (consp (first pattern))
(symbolp (first (first pattern)))
(segment-match-fn (first (first pattern)))))

(defun single-pattern-p (pattern)
"Is this a single-matching pattern?
E.g. (?is x predicate) (?and . patterns) (?or . patterns)."
(and (consp pattern)
(single-match-fn (first pattern))))

(defun segment-matcher (pattern input bindings)
"Call the right function for this kind of segment pattern.”
(funcall (segment-match-fn (first (first pattern)))
pattern input bindings))

(defun single-matcher (pattern input bindings)
"Call the right function for this kind of single pattern.”
(funcall (single-match-fn (first pattern))
(rest pattern) input bindings))

(defun segment-match-fn (x)
"Get the segment-match function for x,
if itis a symbol that has one."
(when (symbolp x) (get x 'segment-match)))

(defun single-match-fn (x)
"Get the single-match function for x,
ifitis a symbol that has one."
(when (symbolp x) (get x 'single-match)))

The last thing to do is define the individual matching functions. First, the single-
pattern matchingfunctions:

(defun match-is (var-and-pred input bindings)
"Succeed and bind var if the input satisfies pred,
where var-and-pred is the list (var pred)."

(1et* ((var(first var-and-pred))
(pred (second var-and-pred))
(new-bindings (pat-match var input bindings)))
(if (or (eq newbindings fail)
(not (funcal 1 pred input)))
fail
new bi ndi ngs)))

(defun match-and (patterns input bindings)
"Succeed if all the patterns match the input."
(cond ((eq bindings fail) fail)
((null patterns) bindings)
(t(match-and (rest patterns) input
(pat-match (first patterns) input

bindings)))))

(defun match-or (patterns input bindings)
"Succeed if any one of the patterns match the input."
(if (null patterns)
fail
(let ((newbindings (pat-match (first patterns)
input bindings)))
(if (eq newbindings fail)
(match-or (rest patterns) input bindings)
new bi ndings))))

(defun match-not (patterns input bindings)
"Succeed if none of the patterns match the input.
This will never bind any variables."

(if (match-or patterns input bindings)
fai1
bi ndings))

Now the segment-pattern matching functions. segment-match is similar to the ver-
sion presented as part d ELiza. The differenceis in how we determine pos, the
position d thefirst lement d the input that could match the next element o the
pattern after the segment variable. In ELIzA, we assumed that the segment variable
was either the last element d the pattern or was followed by a constant. In the
following version, we allow nonconstant patternsto follow segment variables. The
functionfi rst-match- posisadded to handlethis. If thefollowingelementisinfact
aconstant, the same calculationisdone using posi tion. If itisnot aconstant, then

we just return thefirst possiblestarting position—unlessthat would put us past the
end of theinput, inwhich casewereturn nil toindicatefailure:

(defun segment-match (pattern input bindings &optional (start 0))
"Match the segment pattern ((?* var) . pat) against input.”
(let ((var (second (first pattern)))
(pat (rest pattern)))
(if (null pat)
(match-variable var input bindings)
(let ((pos (first-match-pos (first pat) input start)))
(if (null pos)
fail
(let ((b2 (pat-match
pat (subseq input pos)
(match-variable var (subseq input 0 pos)
bindings))))
;; If this match failed, try another longer one
(if (eq b2 fail)
(segment-match pattern input bindings (+ pos 1))
b2)))))))

(defun first-match-pos (patl input start)
"Find the first position that patl could possibly match input,
starting at position start. If patl is non-constant, then just
return start."”
(cond ((and (atom patl) (not (variable-p patl)))
(position patl input:start start :test #'equal))
((< start (length input)) start)
(t nil)))

In thefirst example beow, the segment variable?x matchesthe sequence (b ¢). In
the second exampl e, there are two segment variablesin arow. Thefirst successful
match isachievedwith thefirst variable, ?x, matching the empty sequence, and the
second one, 7y, matching (b c).

> (pat-match '(a (?* ?x) d) ‘(a b c d)) = ((?X B C))

> (pat-match '(a (?* ?x) (?* ?y) d) '(a b c d)) = ((2¥ B C) (?X))

In the next example, ?x isfirst matched against nil and ?y against (b ¢ d), but that
fals, so we try matching ?x against a segment d length one. That fails too, but
finally the match succeedswith ?x matchingthe two-element segment (b ¢), and ?y
matching (d).

> (pat-match '(a (?* 2x) (2% ?y) ?x ?y)
"(a bcd(bc) (d))= ((?¥Y D) (?2X B C))

Givensegment -match, itiseasy todefinethefunctionto match one-or-moreel ements
and thefunction to match zero-or-oneel ement:

(defun segment-match+ (pattern input bindings)
"Match one or more elements of input.”
(segment-match pattern input bindings 1))

(defun segment-match? (pattern input bindings)
"Match zero or one element of input."
(let ((var (second (first pattern)))
(pat (rest pattern)))
(or (pat-match (cons var pat) input bindings)
(pat-match pat input bindings))))

Findly, we supply thefunction to test an arbitrary pieced Lisp code. It doesthis
by evaluating the codewith the bindingsimplied by the bindinglist. Thisisoned

the few cases whereit is appropriate to call eval : when we want to give the user
unrestricted accessto the Lispinterpreter.

(defun match-if (pattern input bindings)
"Test an arbitrary expression involving variables.
The pattern looks like ((?if code) . rest)."
(and (progv (mapcar #’car bindings)
(mapcar #’cdr bindings)
(eval (second (first pattern))))
(pat-match (rest pattern) input bindings)))

Hereare two examplesusing ?if. Thefirst succeedsbecause (+ 3 4) isindeed 7,
and thesecondfailsbecause (> 3 4) isfalse.

> (pat-match *(?x ?0p ?y is ?z (?if (eql (20p ?x ?y) ?7z)))
'(3+4is 7))
(22 . 7) (Y . 4) (0P . +) (2X . 3))

> (pat-match "(?x ?op ?y (2if (20p ?x ?y)))
(3 > 4))
NIL

The syntax we have defined for patterns has two virtues: first, the syntax is very
general, soit is easy to extend. Second, the syntax can be easily manipulated by
pat-mat ch However, thereisonedrawback: the syntax isalittleverbose, and some
may find it ugly. Comparethefollowing two patterns:

(a (2% ?2x) (?* ?y) d)
(a 7x* 7y* d)

Many readers find the second pattern easier to understand at a glance. We could
change pat-match to allow for patterns o the form ?x*, but that would mean
pat-match would have a lot more work to do on every match. An aternativeis
toleavepat-match asis, but defineanother level d syntax for use by human readers
only. That is, a programmer could type the second expression above, and have it
translated into thefirst, whichwould then be processed by pat-match.

In other words, we will define a facility to define akind d pattern-matching
macro that will be expanded thefirst time the pattern isseen. Itis better to do this
expansion once than to complicatepat-match and in effect do the expansion every
timea pattern isused. (Of course, if a pattern isonly used once, then thereis no
advantage. Butin most programs, each pattern will be used againand again.)

We need to define two functions: one to define pattern-matching macros, and
another to expand patterns that may contain these macros. We will only allow
symbolsto be macros, so it is reasonabl e to store the expansions on each symbol's
property list:

(defun pat-match-abbrev (symbol expansion)
"Define symbol as a macro standing for a pat-match pattern.”
(setf (get symbol ‘expand-pat-match-abbrev)
(expand-pat-match-abbrev expansion))

(defun expand-pat-match-abbrev (pat)
"Expand out all pattern matching abbreviations in pat."
(cond ((and (symbolp pat) (get pat 'expand-pat-match-abbrev)))
((atom pat) pat)
(t (cons (expand-pat-match-abbrev (first pat))
(expand-pat-match-abbrev (rest pat))))))

Wewould usethisfacility asfollows:

> (pat-match-abbrev *2x*x *(2* ?x)) = (?* ?X)
> (pat-match-abbrev *7y* *(2% ?y)) = (?* ?Y)

> (setf axyd (expand-pat-match-abbrev '(a ?x* ?y* d))) =
(A (2% 2X) (?* ?Y) D)

> (pat-match axyd ‘(@ b ¢ d)) = ((2Y B C) (?2X))

Exercise 6.1[m] Goback and changetheELIZA rulestousetheabbreviationfacility.
Doesthismaketheruleseasier to read?

Exercise 6.2 [h] In the few prior examples, every time there was a binding d
pattern variablesthat satisfied the input, that bindingwasfound. Informally, show
that pat-match will alwaysfind such abinding, or show a counterexamplewhereit
failstofind one.

6.3 A Rule-Based Trandator Tool

Aswe havedefinedit, the pattern matcher matchesoneinput against one pattern. In
el i za, we need to match each input against anumber d patterns, and then return a
result based on the rule that contains thefirst pattern that matches. To refresh your
memory, hereisthefunction use-eli za-rules:

(defun use-eliza-rules (input)
"Find some rule with which to transform the input."
(some #(lambda (rule)
(let ((result (pat-match (rule-pattern rule) input)))
(if (not (eq result fail))
(sublis (switch-viewpoint result)
(random-elt (rule-responses rule))))))
eliza-rules))

It turnsout that thiswill beaquite commonthing todo: search throughalistd rules
for one that matches, and take action accordingto that rule. To turn the structure o
use-€l i za-rulesinto a software tool, we will alow the user to specify each o the
following:

a What kind d ruleto use. Every rulewill be characterized by an if-partand a
then-part, but thewaysd getting at those two parts may vary.

e What list d rulesto use. Ingeneral, each application will haveitsownlist o
rules.

o How toseeif arule matches. By default, wewill use pat-match, but it should
be possibleto use other matchers.

a What todowhen arule matches. Oncewe havedetermined whichruleto use,
we haveto determine what it means to useit. Thedefault is just to substitute
thebindingsd the match into the then-part o therule.

Therule-basedtranslator tool now lookslikethis:

(defun rule- based-translator
(input rules &key (matcher #'pat-match)
(rule-if #’first) (rule-then #’rest) (action #’sublis))
"Find the first rule in rules that matches input,
and apply the action to that rule."
(some
#(lambda (rule)
(let ((result (funcall matcher (funcall rule-if rule)
input)))
(if (not (eq result fail))
(funcall action result (funcall rule-then rule)))))
rules))

(defun use-eliza-rules (input)
"Find <ome rule with which to transform the input.
(rule-based-translator input *el iza-rules*
:action #(lambda (bindings responses)
(sublis (switch-viewpoint bindings)
(random-elt responses)))))

6.4 A Setd SearchingTools

The GPs program can be seen as a problemin search. Ingeneral, asearch problem
involves exploring from some starting state and investigating neighboring states
until asolutionisreached. Asin GPs, state means adescription d any situation or
state d affairs. Each state may have severa neighbors, so therewill be a choice d
how to search. We can travel down one path until weseeit isadead end, or wecan
consider lotsd different paths at the same time, expanding each path step by step.
Search problems are called nondeter ministic because there is no way to determine
what is the best step to take next. Al problems, by their very nature, tend to be
nondeterministic. Thiscan beasourced confusionfor programmerswho are used
to deterministic problems. In this section we will try to clear up that confusion.
Thissection also servesas an exampled how higher-order functions can be used to
implement general toolsthat can be specified by passing in specificfunctions.
Abstractly, asearch problem can be characterized by four features:

o Thestart state.

e Thegoal state (or states).

e Thesuccessors, or states that can be reached from any other state.

e Thedrategy that determines the order in whichwe search.

Thefirst three features are part d the problem, while the fourth is part d the
solution. In GpPs, the starting state was given, along with a description o the god
states. Thesuccessors of astate were determined by consulting the operators. The
search strategy was means-ends analysis. Thiswas never spelled out explicitly but
wasimplicitinthestructured the wholeprogram. In thissectionwewill formulate
ageneral searching tool, show how it can be used to implement several different
search strategies, and then show how GPs could beimplemented with thistool.

Thefirst notion we have to defineis the state 0ace, or set d all possible states.
We can view the states as nodes and the successor relation aslinksin agraph. Some
state space graphs will have asmall number d states, while others have an infinite
number, but they can till be solved if we search cleverly. Some graphs will have
aregular structure, while others will appear random. We will start by considering
only trees—that is, graphs where astate can be reached by only one unique sequence
d successor links. Hereisatree:

N\

8 9 10 11 12 13 14 15

Sear ching Trees

We will call our first searching tool tree-search, becauseit is designed to search
state spaces that arein theform d trees. It takesfour arguments:. (Dalist o valid
starting states, (2) apredicateto decideif we havereached agoa state, (3) afunction
to generate the successors d a state, and (4) afunction that decidesin what order

to search. Thefirst argument isalist rather than asingle state so that tree-sear ch
canrecursivelycal itself after it hasexplored several paths through the state space.
Think d thefirst argument not asastartingstate but asalist o possiblestatesfrom
which the goal may be reached. Thislists represents thefringed the tree that has
been explored so far. tree-search has three cases: If there are no more states to
consider, then give up and return fail. If the first possible state is a goa state,
then return the succesful state. Otherwise, generate the successorsd thefirst state
and combine them with the other states. Order this combined list accordingto the
particular search strategy and continue searching. Notethattre e-search itself does
not specify any particul ar searching strategy.

(defun tree-search (states goal-p successors combiner)
"Find a state that satisfies goal-p. Start with states,
and search according to successors and combiner."

(dbg :search "~&;; Search: "a" states)
(cond ((null states) fail)
((funcall god -p (first states)) (first states))
(t (tree-search
(funcall combiner
(funcall successors (first states))
(rest states))
god -p successors combiner))))

Thefirst strategy we will consider is called depth-first search. In depth-first search,
the longest paths are considered first. In other words, we generate the successors
d astate, and then work on the first successor first. We only return to one d the
subsequent successors if we arrive at a state that has no successors at al. This
strategy can be implemented by simply appending the previous states to the end
d thelist & new successors on each iteration. Thefunction depth-first-search
takesasinglestarting state, agoal predicate, and a successor function. It packages
the starting stateinto alist asexpected by tree-search, and specifiesappend asthe
combiningfunction:

(defun depth-first-search (start goal-p successors)
"Search rev states first until god is reached."
(tree-search (list start) goal-p successors #'append))

Let's see how we can search through the binary tree defined previoudy. First, we
define the successor function binary-tree. Itreturnsalist o two states, the two
numbersthat aretwicetheinput stateand one morethan twicetheinput state. Sothe
successorsd Awill be2and 3, andthesuccessorsd 2will be4and5. Thebinary-tree
function generatesaninfinitetreed which thefirst15 nodesarediagrammedinour
example.

(defun binary-tree (x) (list (* 2 x) (+ 1 (* 2 x))))

Tomakeiteasier tospecifyagoa, wedefinethefunction i sasafunction that returns
apredicate that tests for a particular value. Notethat i s does not do the test itself.
Rather, it returnsafunction that can be called to perform tests:

(defun is (value) #'(lambda (x) (eql x value)))

Now we canturn on thedebuggingoutput and search through the binary tree, starting
at1, and lookingfor, say, 12, asthe goal state. Eachlined debuggingoutput shows
thelist d statesthat have been generated as successors but not yet examined:

> (debug :search) = (SEARCH)

> (depth-first-search 1 (is 12) #'binary-tree)
;; Search: (1)

;3 Search: (2 3)

;; Search: (4 5 3)

;; Search: (8 9 5 3)

;s Search: (16 17 9 5 3)

;3 Search: (32 33 17 9 5 3)

;; Search: (64 65 33 17 9 5 3)

;3 Search: (128 129 65 33 17 9 5 3)

;s Search: (256 257 129 65 33 17 9 5 3)

;; Search: (512 513 257 129 65 33 17 9 5 3)

;3 Search: (1024 1025 513 257 129 65 33 17 9 5 3)

;: Search: (2048 2049 1025 513 257 129 65 33 17 9 5 3)

[Abortl]

The problem is that we are searching an infinite tree, and the depth-first search
strategy just divesdown theleft-hand branch at every step. Theonly way to stop the
doomed searchisto typeaninterrupt character.

Analternativestrategy isbreadth-first search, where the shortest path isextended
first at each step. It can be implemented simply by appending the new successor
statestotheend d the existingstates:

(defun prepend (x y) "Prepend y to start of x" (append y x))

(defun breadth-first-search (start goal-p successors)
"Search old states first until goal is reached."
(tree-search (list start) goal-p successors #’prepend))

The only difference between depth-first and breadth-first search is the difference
between gopend and prepend. Here we see breadth-fi rst-searchinaction:

> (breadth-first-search 1 (is 12) 'binary-tree)
;3 Search: (1)

;s Search: (2 3)

;; Search: (3 45)

;; Search: (4 567)

;3 Search: (567 89)

;3 Search: (6 78 910 11)

;3 Search: (7 8 9 10 11 12 13)

;3 Search: (8 910 11 12 13 14 15)

;s Search: (9 10 11 12 13 14 15 16 17)

;3 Search: (10 11 12 13 14 15 16 17 18 19)

;3 Search: (11 12 13 14 15 16 17 18 19 20 21)

;; Search: (12 13 14 1516 17 18 19 20 21 22 23)
12

Breadth-first search ends up searching each node in numerical order, and so it will
eventuallyfind any goal. Itismethodical, but therefore plodding. Depth-firstsearch
will be much faster—if it happens to find the goal at al. For example, if we were
looking for 2048, depth-first search would find it in 12 steps, while breadth-first
would take 2048 steps. Breadth-first search also requires more storage, because it
saves moreintermedi ate states.

If the search treeisfinite, then either breadth-first or depth-first will eventually
find thegoal . Bothmethods search theentirestatespace, butinadifferent order. We
will now show adepth-firstsearchd thel5-nodebinary treediagrammed previoudly.
It takesabout thesameamount o timetofind thegoal (12)asit did with breadth-first
search. Itwould havetaken moretimetofind 15; lesstofind 8. The bigdifferenceis
inthe number d statesconsidered at onetime. At most, depth-first search considers
four at atime; ingeneral itwill need tostoreonly log, nstatestosearch an-nodetree,
while breadth-first search needs to storen /2 states.

(defun finite-binary-tree (n)
"Return a successor function that generates a binary tree
with n nodes."
#(lambda (x)
(remove-if #'(lambda (child) (> child n))
(binary-tree x))))

> (depth-first-search 1 (is 12) (finite-binary-tree 15))
;3 Search: (1)

;3 Search: (2 3)

13 Search: (4 5 3)

;3 Search: (8 9 5 3)

;3 Search: (9 5 3)

;s Search: (5 3)

;s Search: (10 11 3)

;3 Search: (11 3)

;; Search: (3)

:; Search: (6 7)

;; Search: (1213 7)
12

Guiding the Search

Whilebreadth-first searchismore methodical, neither strategy isabletotake advan-
taged any knowledgeabout the state space. They both search blindly. In most real
applicationswe will have some estimate d how far a state isfrom the solution. In
such cases, we can implement a best-first search. The nameis not quite accurate; if
wecould really search best first, that would not beasearch at all. Thenamerefersto
thefact that the state that gppearsto be best issearched first.

To implement best-first search we need to add one more pieced information: a
cost function that givesan estimate d how far agiven stateisfrom thegoal.

For the binary treeexample, wewill useasacost estimate the numeric difference
from the goal. Soif wearelookingfor 12, then 12 has cost 0, 8 has cost 4 and 2048
hascost 2036. Thehigher-orderfunction di f f, showninthefollowing, returnsacost
function that computesthedifferencefromagoal. Thehigher-orderfunction sorter
takesa cost function as an argument and returns acombiner function that takesthe
listsdf old and new states, appends them together, and sorts the result based on the
cost function, lowest cost first. (The built-in function sort sorts alist according to
acomparison function. Inthis casethe smaller numbers comefirst. sort takesan
optional :key argument that says how to compute the scorefor each element. Be
careful —sort isadestructivefunction.)

(defun diff (num)
"Return the function that finds the difference from num."
#(lambda (x) (abs (- X num))))

(defun sorter (cost-fn)
"Return a combiner function that sorts according to cost-fn."
#(lambda (new old)
(sort (append rav old) #'< :key cost-fn)))

(defun best-first-search (start goal-p successors cost-fn)
"Search lowest cost states first until goa is reached."
(tree-search (list start) goal-p successors (sorter cost-fn)))

Now, using the differencefrom the goal as the cost function, we can search using
best-firstsearch:

> (best-first-search 1 (is 12) #'binary-tree (diff 12))
+3 Search: (1)

;s Search: (3 2)

;3 Search: (7 6 2)

;; Search: (14 15 6 2)

:: Search: (15 6 2 28 29)

;5 Search: (6 2 28 29 30 31)

;: Search: (12 13 2 28 29 30 31)

12

Themoreweknow about thestate space, the better wecan search. For example, if we
know that all successorsaregreater than the states they comefrom, then wecan use
acost function that givesavery high cost for numbersabove thegoal. Thefunction
price-is-rightislikediff, except that it gives a high penalty for going over the
goal.® Using this cost function leads to a near-optimal search on this example. It
makesthe" mistake" o searching 7 before6 (because7iscloser to 12), but does not
waste time searching14 and 15:

(defun price-is-right (price)
"Return a function that measures the difference from price,
but gives a big penalty for going over price. "
#'(lambda (x) (if (> x price)
most-positive-fixnum
(- price x))))

> (best-first-search 1 (is 12) #'binary-tree (price-is-right 12))
;3 Search: (1)

;; Search: (3 2)

;3 Search: (7 6 2)

;3 Search: (6 2 14 15)

35 Search: (12 2 13 14 15)

12

All the searching methodswe haveseen sofar consider ever-increasinglistsd states
asthey search. For problemswhere there isonly one solution, or a small number o
solutions, thisisunavoidable. Tofind aneedlein ahaystack, you need to look at a
lot o hay. But for problemswith many solutions, it may be worthwhileto discard
unpromising paths. Thisrunstherisk d failingtofind a solution at al, but it can
save enough space and time to offset the risk. A best-first search that keepsonly a
fixed number of alternative states at any one timeis known as a beam search. Think
d searching as shining alight through the dark of the state space. In other search

The built-in constant most-positive-fixnum is a large integer, the largest that can be
expressed without using bignums. Its value depends on the implementation, but in most
Lispsitisover16 million.

strategies the light spreads out as we search deeper, but in beam search the light
remains tightly focused. Beam search isavariant o best-first search, but it isalso
similar to depth-first search. Thedifferenceisthat beam search looks down severd
paths at once, instead d just one, and chooses the best one to look at next. But
it gives up the ability to backtrack indefinitely. The function beam-search is just
likebest-first-search, except that after we sort the states, we then take only the
firstbeam-width states. Thisisdonewith subseq; (subseq list start end) returnsthe
sublist that startsat position start and ends just before positionend.

(defun beam-search (start goal-p successors cost-fn beam-width)
"Search highest scoring states first until goal is reached.
but never consider more than beam-width states at a time."
(tree-search (list start) goal-p successors
#'(lambda (old new)
(let ((sorted (funcall (sorter cost-fn) oldnew)))
(if (> beam-width (length sorted))
sorted
(subseq sorted0 beam-width))))))-

We can successfully search for 12 in the binary tree using abeamwidth o only 2:

> (beam-search 1 (is 12) #'binary-tree (price-is-right 12) 2)
;3 Search: (1)

;; Search: (3 2)

;s Search: (7 6)

;3 Search: (6 14)

;; Search: (12 13)

12

However, if wego back to the scoringfunction that just takesthe differencefrom12,
then beam searchfails. Whenit generates14 and 15, it throwsaway 6, and thusloses
itsonly chancetofind the goal:

> (beam-search 1 (is 12) #'binary-tree (diff 12) 2)
;3 Search: (1)

;+ Search: (3 2)

;3 Search: (7 6)

;; Search: (14 15)

;: Search: (15 28)

;5 Search: (28 30)
;: Search: (30 56)
;3 Search: (56 60)
;3 Search: (60 112)
;3 Search: (112 120)
;3 Search: (120 224)

[Abort]

This search would succeed if we gaveabeam width d 3. Thisillustrates ageneral
principle: we can find agoal either by lookingat more states, or by being smarter
about the stateswelook at. That means havinga better ordering function.

Notice that with a beam width of infinity we get best-first search. With abeam
widthd 1, weget depth-first searchwith no backup. Thiscouldbecalled “depth-only
search," but it is more commonly known as hill-dimbing. Think d a mountaineer
trying to reach a peak in aheavy fog. One strategy would befor the mountaineer to
look at adjacent locations, climb to the highest one, and look again. This strategy
may eventually hit the peak, but it may a so get stuck at the top o afoothill, or loca
maximum. A nother strategy would befor the mountaineer to turn back and try again
when thefoglifts, but in Al, unfortunately, thefog rarely lifts.*

As a concrete exampled a problem that can be solved by search, consider the
task o planning aflightacrossthe North Americancontinent inasmall airplane, one
whose rangeislimited to 1000 kilometers. Supposewe havealist o selected cities
with airports, alongwith their positioninlongitudeand latitude:

(defstruct (city (:type list)) name long lat)

(defparameter *cities*

"((Atlanta 84.23 33.45) (Los-Angeles 118.15 34.03)
(Boston 71.05 42.21) (Memphis 90.03 35.09)
(Chicago 87.37 41.50) (New-York 73.58 40.47)
(Denver 105.00 39.45) (Oklahoma-City 97.28 35.26)
(Eugene 123.05 44.03) (Pittsburgh 79.57 40.27)
(Flagstaff 111.41 35.13) (Quebec 71.11 46.49)
(Grand-Jct 108.37 39.05) (Reno 119.49 39.30)
(Houston 105.00 34.00) (San-Francisco 122.26 37.47)
(Indianapolis 86.10 39.46) (Tampa 82.27 27.57)
(Jacksonville 81.40 30.22) (Victoria 123.21 48.25)
(Kansas-City 94.35 39.06) (Wilmington 77.57 34.14)))

Thisexampleintroduces anew optiontodef struct. Instead d just givingthe name
o thestructure, itisalso possibleto use:

(defstruct (structure-name (option value)...) "optionaldoc" slot...)

For city, theoption :type isspecifiedas 1ist. Thismeansthat citieswill beimple-
mented aslistsd three elements, asthey areintheinitial valuefor *cities*.

*In chapter 8wewill see an examplewnhere thefogdid lift: symbolicintegration was once
handled as a problem in search, but new mathematical results now makeit possibleto solve
thesame classd integration problemswithout search.

Figure6.1: A Mapd Some Cities

The cities are shown on the map in figure 6.1, which has connections between
all citieswithin the 1000 kilometer ranged each other.> This map wasdrawn with
thehelpd air-distance, afunctionthat returnsthedistancein kilometersbetween
twocities"asthecrow flies." 1t will bedefinedlater. Two other useful functionsare
neighbors, whichfinds al the citieswithin 1000 kilometers, and c ity, which maps
fromanametoacity. Theformerusesfind-all-if, whichwasdefined on pagel01
asasynonymfor remove-if -not.

(defun neighbors (city)
"Find a1l cities within 1000 ki 1ometers."
(find-all -if #(lambda (c)
(and (not (eq c city))
(< (air-distance c city) 1000.0))}
cities))

(defun city (name)
"Find the city with this name"
(assoc rare *cities*))

Weare now ready to plan atrip. Thefunction trip takesthenamed astarting and
destination city and does a beam search d width one, consideringall neighborsas

SThe astutereader will recognizethat thisgraphisnot atree. Thedifferencebetweentrees
and graphs and theimplicationsfor searchingwill becovered | ater.

successorsto astate. Thecost for astateistheair distanceto thedestination city:

(defun trip (start dest)
"Search for a way from the start to dest.”
(beam-search start (is dest) #'neighbors
#'(lambda (c¢) (air-distance c dest))
1))

Here we plan a trip from San Francisco to Boston. The result seems to be the best
possiblepath:

> (trip (city 'san-francisco) (city ’boston))
;3 Search: ((SAN-FRANCISCO 122.26 37.47))
;3 Search: ((RENO 119.49 39.3))

;s Search: ((GRAND-JCT 108.37 39.05))

;; Search: ((DENVER 105.0 39.45))

;3 Search: ((KANSAS-CITY 94.35 39.06))
;; Search: ((INDIANAPOLIS 86.1 39.46))
;3 Search: ((PITTSBURGH 79.57 40.27))

;; Search: ((BOSTON 71.05 42.21))
(BOSTON 71.05 42.21)

But look what happens when we plan the return kip. There are two detours, to
Chicago and Flagstaff:

> (trip (city 'boston) (city 'san-francisco))
;s Search: ((BOSTON 71.05 42.21))

;; Search: ((PITTSBURGH 79.57 40.27))

;3 Search: ((CHICAGO 87.37 41.5))

;; Search: ((KANSAS-CITY 94.35 39.06))

:; Search: ((DENVER 105.0 39.45))

;3 Search: ((FLAGSTAFF 111.41 35.13))

:: Search: ((RENO 119.49 39.3))

;s Search: ((SAN-FRANCISCO 122.26 37.47))
(SAN-FRANCISCO 122.26 37.47)

Why did trip gofrom Denver to San Francisco via Flagstaff? Because Flaggtaff is
closer tothedesti nation than Grand Junction. The problemisthat weare minimizing
thedistance to thedestination at each step, when we should be minimizing the sum
d thedistanceto thedestination plusthedistance already traveled.

Search Paths

To minimizethe total distance, we need some way to talk about the path that leads
tothegoal. But thefunctionswe havedefined so far only deal withindividual states
along the way. Representing paths would lead to another advantage: we could
return the path as the solution, rather than just return the god state. Asitis, trip
only returnsthe goa state, not the path toit. So thereisno way to determine what
trip hasdone, except by reading the debuggingoutput.

The data structure path is designed to solve both these problems. A path has
four fields: the current state, the previouspartial path that this path is extending,
thecost o the path sofar, and an estimated thetota cost toreachthegoal. Hereis
the structure definitionfor path. It usesthe :print-functionoption to say that all
pathsare to be printed with thefunctionp rin t-path, whichwill bedefined below.

(defstruct (path (:print-function print-path))
state (previous nil) (cost-so-far 0) (total-cost 0))

The next question is how to integrate paths into the searching routines with the
least amount of disruption. Clearly, it would be better to make one change to
tree-search rather than to change depth-first-search, breadth-first-search,
and beam-search. However, looking back at the definitiond tree-search, wesee
that it makesno assumptions about the structure d states, other than thefact that
they can be manipulated by the goal predicate, successor, and combiner functions.
Thissuggeststhat we can usetree-search unchangedif we passit pathsinstead o
states, and giveit functionsthat can process paths.

Inthefollowingredefinitiond trip, thebeam-searchfunctioniscalled withfive
arguments. Instead d passing it a city as the start state, we pass a path that has
thecity asitsstatefield. The goa predicate should test whether itsargument isa
pathwhosestate isthe destination; we assume (andlater define) aversiond is that
accommodatesthis. The successor function is the most difficult. Instead o just
generating alist & neighbors, we want to first generate the neighbors, then make
each one into a path that extends the current path, but with an updated cost so far
and total estimated cost. Thefunctionpath-saver returnsafunctionthatwill do just
that. Findly, the cost function we are tryingto minimizeispath-total-cost, and
we providea beam width, whichis now an optional argument to tr ip that defaults
toone:

(defun trip (start dest &optional (beam-width 1))
"Search for the best path from the start to dest."
(beam-search

(make-path :state start)
(is dest :key #'path-state)
(path-saver #'neighbors #'air-distance

#'(lambda (c) (air-distance c dest)))
#'path-total-cost
beam-width))

Thecalculationd ai r-di s tanceinvolvessomecomplicatedconversiond longitude
and latitude to x-y-z coordinates. Since thisisa problemin solid geometry, not Al,
the codeis presented without further comment:

(defconstant earth-diameter 12765.0
"Diameter of planet earth in kilometers. ")

(defun air-distance (cityl city2)
"The great circle distance between two cities. "
(let ((d (distance (xyz-coords cityl) (xyz-coords city2))))
;; dis the straight-line chord between the two cities,
;3 The length of the subtending arc is given by:
(* earth-diameter (asin (/ d 2)))))

(defun xyz-coords (city)
"Returns the x,y,z coordinates of a point on a sphere.
The center is (0 0 0) and the north pole is (0 0 1)."
(let ((psi (deg->radians (city-lat city)))
(phi (deg->radians (city-Tong city))))
(list (* (cos psi) (cos phi))
(* (cos psi) (sin phi))
(sin psil)))

(defun distance (pointl point2)
"The Euclidean distance between two points.
The points are coordinates in n-dimensional space."
(sqrt (reduce #’+ (mapcar #'(lambda (a b) (expt (- a b) 2))
pointl point2))))

(defun deg->radians (deg)
"Convert degrees and minutes to radians."
(* (+ (truncate deg) (* (rem deg 1) 100/60)) pi 1/180))

Beforeshowingtheauxiliary functionsthat implement this, here are someexamples
that showwhat itcando. With a beamwidthd 1, thedetour to Flagstaff iseliminated,
but the one to Chicago remains. Withabeamwidth o 3, thecorrectoptimal pathis
found. Inthefollowingexamples, eachcall tothenewversiond trip returnsapath,
whichisprintedbyshow-city-path:

> (show-city-path (trip (city 'san-francisco) (city ’boston) 1))
#<Path 4514.8 km: San-Francisco - Reno - Grand-Jct - Denver -
Kansas-City - Indianapolis - Pittsburgh - Boston>

> (show-city-path (trip (city 'boston) (city 'san-francisco) 1))
#<Path 4577.3 km Boston - Pittsburgh - Chicago - Kansas-City -
Denver - Grand-Jct - Reno - San-Francisco>

> (show-city-path (trip (city 'boston) (city 'san-francisco) 3))
#<Path 4514.8 km Boston - Pittsburgh - Indianapolis -
Kansas-City - Denver - Grand-Jct - Reno - San-Francisco>

Thisexampleshowshow searchissusceptibletoirregularitiesinthe search space. It
was easy tofind the correct path fromwest to east, but thereturn trip required more
search, because Haggtaff isafalsely promisingstep. In general, there may be even
worsedead endslurkingin the search space. Look what happenswhenwelimit the
airplane's rangeto 700 kilometers. Themap isshowninfigure6.2.

Figure6.2: AMapd Citieswithin 700km

if we try to plan atrip from Tampa to Quebec, we can run into problemswith
thedead end at Wilmington, North Carolina. With a beam width o 1, the path to
Jacksonvilleand then Wilmingtonwill betriedfirst. Fromthere, eachstepd the path
aternates between Atlantaand Wilmington. Thesearch never getsany closer tothe
goa. But withabeamwidth d 2, the path from Tampato Atlantais not discarded,
and it is eventually continued on to Indianapolisand eventually to Quebec. So the
capabilityto back upisessential inavoidingdead ends.

Nowfor theimplementationdetails. Thefunctioni s still returnsapredicatethat
testsfor avalue, but now it accepts: key and :test keywords:

(defun is (value &key (key #'identity) (test #’eql))
"Returns a predicate that tests for a given value."
#'(lambda (path) (funcall test value (funcall key path))))

Thepath-saver function returnsafunction that will takea path asan argument and
generate successors paths. path-saver takesas an argument a successor function
that operateson barestates. It callsthisfunctionand, for each statereturned, builds
up apath that extendsthe existing path and storesthe cost o the path sofar aswell
astheestimated total cost:

(defun path-saver (successors cost-fn cost-left-fn)
#'(lambda (old-path)
(let ((old-state (path-state old-path)))
(mapcar
#'(lambda (new-state)
(let ((old-cost
(+ (path-cost-so-far old-path)
(funcall cost-fn old-state new-state))))
(make-path
:state new-state
:previous old-path
:cost-so-far old-cost
:total -cost (+ old-cost (funcall cost-left-fn
new-state)))))
(funcall successors old-state)))))

By default apath structurewouldbeprinted as#S(PATH .. .). But becauseeach path
hasapreviousfieldthatisfilled by another path, thisoutputwoul dget quiteverbose.
Thatiswhyweinstalledprin t-path asthe print functionfor pathswhenwe defined
thestructure. It usesthe notation #<. . .>, whichisa Common Lisp conventionfor
printing output that can not bereconstructed by read. Thefunctionshow- i ty-path
printsamorecompl eterepresentation d apath. Wealso definemap-path toiterate
over apath, collectingvalues:

(defun print-path (path &optional (stream t) depth)
(declare (ignore depth))
(format stream "#<Path to "a cost 7,1f>"
(path-state path) (path-total-cost path)))

(defun show-city-path (path &optional (stream t))
"Show the length of a path, and the cities along it.
(format stream "#<Path ~,1f km ~{":("a™)"" - ~}>"

(path-total -cost path)
(reverse (map-path #'city-name path)))
(values))

(defun map-path (fn path)
"Call fn on each state in the path, collecting results."
(if (null path)
nil
(cons (funcall fn (path-state path))
(map-path fn (path-previous path)))))

Guessing versus Guaranteeing a Good Solution

Elementary Al textbooksplaceagreat emphasi s on search algorithmsthat are guar-
anteed to find the best solution. However, in practice these algorithms are hardly
ever used. Theproblemisthat guaranteei ng the best sol ution requireslookingat alot
d other solutionsin order to rulethem out. For problemswith large search spaces,
this usually takes too much time. The alternative is to use an algorithm that will
probably return a solution that is close to the best solution, but gives no guarantee.
Such algorithms, traditionally known as non-admissible heuristic seerch algorithms,
can bemuchfaster.

O the algorithms we have seen so far, best-first search almost, but not quite,
guarantees the best solution. The problem is that it terminates a little too early.
Supposeit has calculated three paths, o cost 90, 95 and 110. It will expand the 90
path next. Suppose thisleads to a solution o total cost 100. Best-first search will
then return that solution. Butit is possiblethat the 95 path could lead to a solution
with atotal cost lessthan100. Perhaps the 95 path is only one unit away from the
god, soit could result in acomplete path o length 96. Thismeansthat an optimal
search should examinethe 95 path (but not the110 path) beforeexiting.

Depth-first search and beam search, on the other hand, are definitely heuristic
algorithms. Depth-first search findsa solution without any regard toits cost. With
beam search, picking a good value for the beam width can lead to a good, quick
solution, while picking the wrong value can lead to failure, or to a poor solution.
Oneway out d this dilemmaisto start with a narrow beam width, and if that does
not lead to an acceptabl e solution, widen the beam and try again. We will call this
iterativewidening, although that isnot astandard term. Thereare many variationson
thistheme, but hereisasimpleone:

(defun iter-wide-search (start goal-p successors cost-fn
&key (width 1) (max 100))
"Search, increasing beam width from width to max.
Return the first solution found at any width."
(dbg :search "; Width: ~d" width)
(unless (> width max)
(or (beam-search start goal-p successors cost-fn width)
(iter-wide-search start goal-p successors cost-fn

:width (+ width 1) :max max))))

Hereiter-wide-search is used to search through a binary tree, failing with beam
widthland 2, and eventually succeeding with beamwidth 3:

> (iter-wide-search 1 (is 12) (finite-binary-tree 15) (diff 12))
; Width: 1

;; Search: (1)

;5 Search: (3)

;; Search: (7)

;; Search: (14)

;; Search: NIL

; Width: 2

;; Search: (1)

;; Search: (3 2)

;; Search: (7 6)

;5 Search: (14 15)
;; Search: (15)

;5 Search: NIL

; Width: 3

;; Search: (1)

;; Search: (3 2)

;; Search: (7 6 2)
;; Search: (14 15 6)
;; Search: (15 6)

;; Search: (6)

;; Search: (12 13)
12

Thenameiterativewideningis derived from the established term iterative deepening.
Iterative deepening is used to control depth-first search when we don't know the
depth o the desired solution. Theideaisfirst to limit the search to adepth d 1,

then 2, and so on. That way we are guaranteed to find a solution at the minimum
depth, just asin breadth-first search, but without wasting as much storage space. O

course, iterative deepening does waste some time because at each increasing depth
it repeats all the work it did at the previous depth. But suppose that the average
state hasten successors. That meansthat increasing the depth by oneresultsin ten
timesmoresearch, so only 10% o thetimeiswasted on repeated work. Soiterative
deepening uses only slightly moretime and much less space. Wewill seeit againin
chapters11and18.

Searching Graphs

Sofar, tree-search has been theworkhorsebehind al the searching routines. This
iscurious, whenweconsider that the city probleminvolvesagraph that isnot atree
at all. Thereason tree- search worksisthat any graph can betreated asatree, if we
ignorethefact that certain nodes areidentical. For example, the graph infigure 6.3
can berendered as atree. Figure 6.4 showsonly thetop four levelsd thetree; each
d the bottom nodes (exceptthe 6s) needs to be expanded further.

1 |— 2

/

—>| 4

/

—_— 6

o je—] W |e—

Figure6.3: A Graph with Six Nodes

Insearchingfor paths through the graph o cities, wewereimplicitly turning the
graphintoatree. Thatis, if tree-searchfound two pathsfrom Pittsburgh to Kansas
City (via Chicago or Indianapolis), then it would treat them as two independent
paths, just as if there were two distinct Kansas Cities. This made the algorithms
simpler, but it alsodoublesthe number o pathsleft to examine. If thedestinationis
San Francisco, we will have to search for a path from Kansas City to San Francisco
twiceinstead d once. Infact, even though the graph has only 22 cities, the treeis
infinite, because we can go back and forth between adjacent cities any number o
times. So, while it ispossibleto treat the graph asatree, there are potential savings
intreatingit asatruegraph.

the functiongraph-search doesjust that. Itis similartotree-search, butaccepts
two additional arguments. a comparisonfunction that testsif two statesare equal,
andalistd statesthat arenolonger beingconsidered, but wereexaminedinthe past.
Thedifferencebetween graph-search and tree-search isin thecall to new-states,
which generates successors but eliminatesstates that are in either thelist d states
currently beingconsideredor thelist o old states consideredin the past.

(defun graph-search (states goal-p successors combiner
&optional (state=+#'eq1) old-states)
"Hnd a state that satisfies goal-p. Start with states,

3 4

NN

4 5 5 6 6 6

Figure6.4: The CorrespondingTree

and search according to successors and combiner.
Don't try the same state twice."
(dbg :search "~&;; Search: "a" states)
(cond ((null states) fail)
((funcall goa -p (first states)) (first states))
(t (graph-search
(funcall
combiner
(new-states states successors state= old-states)
(rest states))
goal-p successors combiner state=
(adjoin (first states) old-states
test state=)))))

(defun new-states (states successors state= old-states)

"Generate successor states that have not been seen before."
(remove-i f

#’ (lambda (state)
(or (membe state states :test state=)
(mamber state old-states :test state=)))
(funcall successors (first states))))

Usingthesuccessor functionnext2, wecan search the graph shown hereeither asa
treeor asagraph. If wesearchitasagraph, it takesfewer iterationsand lessstorage
spacetofind thegoa. O course, thereis additional overhead to test for identical

states, but on graphs like this one we get an exponential speed-up for a constant
amount o overhead.
(defun next2 (x) (list (+ x 1) (+ x 2)))

> (tree-search *(1) (is 6) #’next2 #’prepend)
;s Search: (1)

;3 Search: (2 3)

;3 Search: (3 3 4)

;s Search: (3 4 45)

;s Search: (4 45 45)

:: Search: (45455 6)

;; Search: (5455656)

;: Search: (4556566 7)

;3 Search: (55656675 6)
;s Search: (565667566 7)
;; Search: (6 566 7566767)
6

> (graph-search (1) (is 6) #’next2 #’prepend)
;s Search: (1)

;3 Search: (2 3)

;3 Search: (3 4)

;; Search: (4 5)

;; Search: (5 6)

;; Search: (6 7)

The next stepisto extend the graph-search algorithmto handle paths. The compli-
cationisindeciding which path to keep when two paths reach the same state. if we
have a cost function, then the answer is easy: keep the path with the cheaper cost.
Best-first search o agraph removingduplicate statesiscalledA™ search.

A* search is more complicated than graph-search because d the need both to
add and to delete pathsto thelistsdf current and old paths. For each new successor
state, therearethreepossibilities. Thenew statemay beinthelistd current paths,in
thelist d old paths, or in neither. Withinthefirst two cases, there are two subcases.
if the new pathis more expensivethan the old one, then ignorethe new path—it can
not lead to a better solution. If the new path is cheaper than a corresponding path
inthelist d current paths, then replaceit with the new path. If itischeaper than a
corresponding path in thelist d the old paths, then removethat old path, and put
the new pathinthelist o current paths.

Also, rather thansort thepaths by total cost on eachiteration, they arekept sorted,
and new paths areinserted into the proper placeone at atimeusing i Nsert-path.
Two morefunctions, better-path and find-path, are used to compare paths and
seeif astate hasalready appeared.

(defun a*-search (paths goal-p successors cost-fn cost-left-fn
&optional (state= #’eql) old-paths)
"Find a path whose state satisfies goal-p. Start with paths,
and expand successors, exploring least cost first.
When there are duplicate states, keep the one with the
lower cost and discard the other."
(dbg :search ";; Search: "a" paths)
(cond
((null paths) fail)
((funcall goal-p (path-state (first paths)))
(values (first paths) paths))
(t (let* ((path (pop paths))
(state (path-state path)))
;; Update PATHS and OLD-PATHS to reflect
;; the new successors of STATE:
(setf old-paths (insert-path path old-paths))
(dolist (state2 (funcall successors state))
(let* ((cost (+ {path-cost-so-far path)
(funcall cost-fn state state2)))
(cost2 (funcall cost-left-fn state2))
(path2 (make-path
:state state2 :previous path
:cost-so-far cost
:total -cost (+ cost cost2)))
(old nil)
;; Place the new path, path2, in the right list:
(cond .
((setf old (find-path state2 paths state=))
(when (better-path path2 old)
(setf paths (insert-path
path2 (delete old paths)))))
((setf old (find-path state2 old-paths state=))
(when (better-path path2 old)
(setf paths (insert-path path2 paths))
(setf old-paths (delete old old-paths))))
(t (setf paths (insert-path path2 paths))))))
; Finally, call A* again with the updated path lists:
(a*-search paths goal-p successors cost-fn cost-left-fn
state= old-paths)))))

Herearethe three auxiliary functions:

(defun find-path (state paths state=)
"Find the path with this state among a list of paths."
(find state paths :key #'path-state :test state=))

(defun better-path (pathl path2)
"Is pathl cheaper than path2?"
(< (path-total-cost pathl) (path-total-cost path2)))

(defun insert-path (path paths)
"Put path into the right position, sorted by total cost.”
;3 MERGE is a built-in function
(merge 'list (list path) paths #°< :key #'path-total-cost))

(defun path-states (path)
"Collect the states along this path."
(if (null path)
nil
(cons (path-state path)
(path-states (path-previous path)))))

Below we use a* - search to search for 6 in the graph previously shownin figure6.3.
The cost function is aconstant 1. for each step. In other words, the total costisthe
length d the path. The heuristic evaluationfunction is just the differencefrom the
goal. The A* algorithm needs just three search steps to come up with the optimal
solution. Contrast that to the graph search algorithm, which needed five steps, and
the tree search algorithm, which needed ten steps—and neither o them found the
optimal solution.

> (path-states
(a*-search (list (make-path :state 1)) (is 6)
#'next2 #'(lambda (x y) 1) (diff 6)))
;3 Search: (#<Path to 1 cost 0.0>)

;; Search: (#<Path to 3 cost 4.0> #<Path to 2 cost 5.0>)

s: Search: (#<Path to 5 cost 3.0> #<Path to 4 cost 4.0>
#<Path to 2 cost 5.0>)

; Search: (#<Path to 6 cost 3.0> #<Path to 7 cost 4.0>
#<Path to 4 cost 4.0> #<Path to 2 cost 5.0>)

(6 531)

It may seem limiting that these search functions all return asingle answer. Insome
applications, we may want to look at several solutions, or at al possible solutions.
Other applications are more naturally seen as optimization problems, where we
don't know ahead d timewhat countsasachievingthegoal but are just tryingtofind
some actionwith alow cost.

Itturnsout that thefunctionswehavedefined are notlimitingat all in thisrespect.
They can be used to serve both these new purposes— providedwe carefully specify
the goal predicate. Tofind al solutions to a problem, all we havetodo ispassina
god predicatethat dwaysfails, but savesall thesolutionsin alist. Thegoal predicate
will see all possible solutions and save away just the ones that are real solutions.
O coursg, if the search space isinfinite this will never terminate, so the user has
to be careful in applying this technique. It would also be possible to write a goal
predicate that stopped the search after finding acertain number o solutions, or after
lookingat acertain number d states. Hereisafunction that findsall solutions, using
beam search:

(defun search-all (start goal-p successors cost-fn beam-width)
“Find all solutions to a search problem, using beem search."
;; Be careful : this can 1ead to an infinite 1o0p.

(let ((solutions nil))
(beam-search
start #(lambda (x)
(when (funcall goal-p x) (push x solutions))
nil)
successors cost-fn beam-width)
solutions))

6.5 GPSasSearch

TheaPs program can beseenasaproblemin search. For example, in the three-block
blocksworld, thereareonly13differentstates. They could bearrangedinagraph and
searched just aswe searched foraroute betweencities. Figure6.5 shows thisgraph.

The function search-gps does just that. Like the gps function on page 135, it
computes afinal state and then picks out the actions that lead to that state. But
it computes the state with a beam search. The goal predicate tests if the current
state satisfiesevery conditionin the goal, the successor function findsall applicable
operatorsand appliesthem, and the cost function simply sumsthe number o actions
taken sofar, plusthe number d conditions that are not yet satisfied:

5 c
A A
c c B A
B ! ! c
A A A B
{ B|Cc|—|B|C !
8 | [c
Alc | | AlB
A ! \;Bc/]
V4 \[o
cl—slA|cC AlB|—>

Figure6.5: TheBlocksWorld asaGraph

(defun search-gps (start god &optional (beam-width 10))
"Search for a sequence of operators leading to goal."
(find-al1-if

#'action-p
(beam-search

(cons '(start) start)

#(lambda (state) (subsetp god state :test #'equal))

#’gps-successors

#(lambda (state)

(+ (count-if #'action-p state)
(count-if #(lambda (con)
(not (member-equal con state)))
god)))
beamwi dth)))

Hereisthe successor function:

(defun gps-successors (state)
"Return a |ist of states reachable from this one using ops."
(mapcar
#(lambda (op)

(append
(remove-if #'(lambda (x)
(member-equal x (op-del-list op)))
state)
(op-add-1ist op)))
(applicable-ops state)))

(defun applicable-ops (state)
"Return a list of all ops that are applicable now.'
(find-all-if
#’(lambda (op)
(subsetp (op-preconds op) state :test #’equal))
ops))

The search technique finds good solutions quickly for avariety d problems. Here
we see the solution to the Sussman anomaly in the three-block blocksworld:

(setf start *((c on a) (a on table) (b on table) (space on c)
(space on b) (space on table)))

> (search-gps start *((a on b) (b on ¢)))
((START)
(EXECUTING (MOVE C FROM A TO TABLE))
(EXECUTING (MOVE B FROM TABLE TO C))
(EXECUTING (MOVE A FROM TABLE TO B)))

> (search-gps start *((b on c) (a on b)))
((START)

EXECUTING (MOVE C FROM A TO TABLE))
EXECUTING (MOVE B FROM TABLE TO C))
EXECUTING (MOVE A FROM TABLE TO B)))

P

In these solutionswe search forward from the start to the goal; thisisquitedifferent
fromthe means-endsapproach o searching backwardfrom thegoal for an appropri-
ate operator. But wecould formulate means-endsanalysisasforward search simply
by reversingstart and goal: Grs’s goa stateisthesearch's start state, and thesearch's
goal predicateteststoseeif astatematchesGrs’s start state. Thisisleftasanexercise.

6.6 History and References

Pattern matching is one d the most important tools for Al. As such, it is cov-
ered in most textbookson Lisp. Good treatments include Abelson and Sussman
(1984), Wilensky (1986), Winston and Horn (1988), and Kreutzer and McKenzie
(1990). An overview is presented in the" pattern-matching" entry in Encyclopedia d
Al (Shapiro1990).

Nilsson's Problem-Solving Methodsin Artificial Intelligence (1971)wasan early text-
book that emphasized search as the most important defining characteristic o Al.
More recent texts give less importance to search; Winston's Artificial Intelligence
(1984) gives a balanced overview, and his Lisp (1988) providesimplementations o
some d the algorithms. They are at alower level d abstraction than the onesin
this chapter. Iterative deepening was first presented by Kof (1985), and iterative
broadening by Ginsberg and Harvey (1990).

6.7 Exercises

Exercise 6.3[m] Writeaversiond i nteracti ve-interpreter thatismoregenera
than the one defined in this chapter. Decide what features can be specified, and
providedefaultsfor them.

Exercise 6.4[m] Defineaversiond composethat allowsany number o arguments,
not just two. Hint: Yau may want to use the function reduce.

Exercise 6.5[m] Defineaversiond composethat allowsany number d arguments
but is more efficient than the answer to the previousexercise. Hint: try to make
decisionswhen composeiscalled to build the resulting function, rather than making
the samedecisionsover and over each timetheresultingfunctioniscalled.

Exercise 6.6[m] One problemwith pat-match isthat it gives specia significance
to symbolsstartingwith ?, which means that they can not be used to match aliteral
pattern. Definea pattern that matches the input literally, so that such symbolscan
be matched.

Exercise 6.7[m] Discusstheprosand consd data-driven programmingcompared
to the conventional approach.

Exercise 6.8[m] Writeaversiond tree-search usingan explicitlooprather than
recursion.

Exercise 6.9[m] Thesorter functionisinefficientfor tworeasons: it callsappend,
which has to make acopy d thefirst argument, and it sortsthe entire result, rather
than just inserting the new states into the already sorted old states. Write a more
efficientsorter.

=

Exercise 6.10[m] Writeversionsd graph-search and a*-search that use hash
tablesrather than liststo test whether a state has been seen before.

Exercise 6.11[m] Writeafunctionthat callsbeam-searchtofindthefirstnsolutions
toaproblemand returnsthemin alist.

Exercise 6.12[m] On personal computers without floating-point hardware, the
air-distance calculationwill be rather dow. If thisisa problemfor you, arrange
to compute the xyz-coords d each city only once and then store them, or store
acompletetable d air distances between cities. Also precompute and store the
neighborsd eachcity.

Exercise 6.13[d] Writeaversiond GPSthat usesA* searchinstead d beamsearch.
Comparethetwoversionsinavariety d domains.

Exercise 6.14[d] Writeaversiond GPS that allows costsfor each operator. For
example, driving the child to school might haveacost o 2, but calling alimousine
to transport thechild might haveacost d 100. Usethese costsinstead o aconstant
cost d 1 for each operation.

Exercise 6.15[d] Writea version d Gps that uses the searching tools but does
means-endsanalysis.

6.8 Answers

Answer 6.2 Unfortunately, pat-match doesnot alwaysfind theanswer. The prob-
lemisthat it will only rebind a segment variable based on afailure to match the
rest d the pattern after the segment variable. Inall the examplesabove, the''rest o

the pattern after the segment variable" was the whole pattern, sopat-match aways
worked properly. But if asegment variableappearsnestedinsidealist, then therest
d the segment variabl€e's sublistisonly a part of the rest of thewhole pattern, asthe
followingexampleshows:

> (pat-match *(((?* 2x) (2* ?2y)) ?x ?y)
(Ca b ¢ d) (ab) (cd)) = NL

The correct answer with ?x bound to (a b) and ?y bound to (¢ d) is not found
becausetheinner segment match succeedswith ?x bound to () and ?y bound to (a

b ¢ d), and oncewe leave the inner match and return to the top level, thereis no
goingback for alternative bindings.

Answer 6.3 Thefollowingversionletsthe user specify all four componentsd the
prompt-read-eval-printloop, as well as the streams to use for input and output.

Defaultsare set up asfor aLispinterpreter.

(defun interactive-interpreter
(&key (read #’read) (eval #’eval) (print #’print)
(prompt "> ") (input t) (output t))
"Read an expression, evaluate it, and print the result."
(Toop
(fresh-line output)
(princ prompt output)
(funcall print (funcall eval (funcall read input))
output)))

Hereisanother version that does al of the aboveand a so handles multiple values
and bindsthevarious'" history variables" that the Lisp top-level binds.

(defun interactive-interpreter
(&key (read #’read) (eval #’eval) (print #'print)
(prompt "> ") (input t) (output t))
"Read an expression, evaluate it, and print the result(s).
Does multiple values and binds: * ** *** _ & a4 44t/ /7 /770
(let (x ¥* *¥*% o oy 4t 1 /1 /7] vals)
;; The above variables are all special, except VALS
;5 The variable - holds the current input
;3 ¥ F* YR, are the 3 most recent values
;; + + ++H are the 3 most recent inputs
;5 / /1 /// are the 3 most recent lists of multiple-values
(Toop
(fresh-line output)
(princ prompt output)
;; First read and evaluate an expression
(setf - (funcall read input)
vals (multiple-value-list (funcall eval -)))
;; Now update the history variables

(setf +++ ++ 11111 *** (first ///)
+H o+ /1 ¥ (first /7))
+ - / vals * o (first /)

; Finally print the computed value(s)
(dolist (value vals)
(funcall print value output)))))

Ansnve 6.4

(defun compose (&rest functions)
"Return the function that is the composition of all the args.
i.e. (compose f g h) = (lambda (x) (f (g (h x))))."
#'(lambda (x)
(reduce #’funcall functions :from-end t:initial-value x)))

Answve 6.5

(defun compose (&rest functions)
"Return the function that is the composition of all the args.
i.e. (compose f g h) = (lambda (x) (f (g (h x))))."
(case (length functions)
(0 #'identity)
(1 (first functions))
(2 (let ((f (first functions))
(g (second functions)))
#'(lambda (x) (funcall f (funcall g x)))))
(t #'(lambda (x)
(reduce #’funcall functions :from-end t
sinitial-value x)))))

Ansnve 6.8

(defun tree-search (states goal-p successors combiner)
"Find a state that satisfies goal-p. Start with states,
and search according to successors and combiner.”

(Toop
(cond ((null states) (RETURN fail))

((funcall goal-p (first states))

(RETURN (first states))

(t (setf states

(funcall combiner

(funcall successors (first states))
(rest states))))))))

Answver 6.9

(defun sorter (cost-fn)
"Return a combiner function that sorts according to cost-fn."
#'(lambda (new old)
(merge 'list (sort new #'> :key cost-fn)
old #'> :key cost-fn)))

Answver 6. 11

(defun search-n (start n goal-p successors cost-fn beam-width)
"Find n solutions to a search problem, using beem search."
(let ((solutions nil))

(beam-search
start #’(lambda (x)
(cond ((not (funcall goa-p x)) nil)
((=n0) x)
(t (decf n)
(push x solutions)
nil)))
successors cost-fn beam-width)
sol uti ons))

CHAPTER /

STUDENT:. Solving Algebra
Word Problems

[This]is anexample par excellence o the power of
using meaning to solvelinguistic problems.

— Marvin Minsky (1968)
MIT computer scientist

ashisPh.D. research projectin1964. It was designed to read and solvethe kind o word
problemsfound in high school algebrabooks. Anexampleis:

If the number of customersTomgetsis twicethe square of 20% of the number of advertise-
mentsheruns, and the number of adverti sementsis45, then what isthenumber of customers
Tomgets?

STUDENT could correctlyreply that the number o customersis162. Todo this, STUDENT must be
far more sophisticated than ELIzA; it must processand " understand agreat deal d the input,
rather than just concentrate on afew key words. And it must compute aresponse, rather than
justfill in blanks. However, we shall see that the STUDENT program uses little more than the
pattern-matching techniques o ELIZA to trandate the input into a set d agebraic equations.
Fromthere, it must know enough algebrato solve the equations, but that is not very difficult.

S TUDENT was another early language understanding program, written by Daniel Bobrow

Theversion d STUDENT we develop here is nearly afull implementation d the
original. However, remember that while the original was state-of-the-artas o 1964,
AT hasmade some progressin aquarter century, as subsequent chapterswill attempt
toshow.

7.1 Trandating Englishinto Equations

Thedescription o STUDENT is:

1. Bresk theinput into phrasesthat will represent equations.
2. Bregk each phraseintoapair d phraseson either sided the=sign.

3. Bresk these phrases down further into sums and products, and so on, until
finally we bottom out with numbersand variables. (By"'variable' here, | mean
"mathematicalvariable," whichisdistinctfromtheidead a' pattern-matching
variable" asusedinpat-matchin chapter 6).

4. Translateeach English phraseintoamathematical expression. Weusetheidea
d arule-basedtrangdator as developedfor ELIZA.

5. Solvethe resulting mathematical equations, coming up with avalue for each
unknown variable.

6. Print thevaluesd al thevariables.

For example, we might havea pattern o theform (1f ?x then ?y), with an asso-
ciated response that saysthat ?x and ?y will each be equations or listsd equations.
Applying the pattern to the input above, ?y would have the value (what is the
number of customers Tomgets). Another patternd theform (?xi s ?y) could have
aresponse corresponding to an equation where ?x and ?y are the two sides d the
equation. We could then make up a mathemeatical variablefor (what) and another
for (the number of customers Tom gets). Wewould recognizethislater phraseas
avariable because there are no patterns to break it down further. In contrast, the
phrase (twice the square of 20 per cent ofthe number of advertisements
he runs) could matchapattern o theform (twice ?x) andtransformto (* 2 (the
square of 20 per cent ofthe number of advertisements he runs)), and by
further applying patternsd theform (the square of ?x) and (?x per cent of
?y) wecouldarriveat afinal responsed (* 2 (expt (* (/ 20 100) n) 2)),where
nis the variable generated by (the number of advertisements he runs).

Thus, we need to represent variables, expressions, equations, and setsd equa-
tions. Theeasiest thing to do is to use something we know: represent them just as
Lispitsalf does. Variableswill be symbols, expressionsand equationswill be nested

listswith prefix operators, and setsd equationswill belistsd equations. With that
inmind, we can definealist d pattern-response rules corresponding to the type o
statements found in algebraword problems. The structure definition for aruleis
repeated here, and the structure exp, an expression, isadded. 1hs and r hs stand for
|eft-and right-hand side, respectively. Notethat the constructor mkexp isdefinedasa
constructor that buildsexpressionswithout takingkeyword arguments. Ingeneral,
the notation (:constructor fn ags) createsaconstructor function with the given
nameand argument list.'

(defstruct (rule (:type list)) pattern response)

(defstruct (exp (:type list)
(:constructor mkexp (Ths op rhs)))
op lhs rhs)

(defun exp-p (x) (consp x))
(defun exp-args (x) (rest x))

Weignored commas and periodsin ELIZA, but they are crucial for STUDENT, so we
must make allowancesfor them. Theproblemisthata"," in Lisp normally can be
used only within abackquoteconstruction, anda" . " normally can beused only asa
decimal point or inadotted pair. Thespecial meaningd thesecharacterstotheLisp
reader can be escaped either by preceding the character with abackslash (\,) or by
surrounding the character by vertical bars (!, 1).

(pat-match-abbrev ’*?x* *(?* ?x))
(pat-match-abbrev *?y* *(?* ?y))

(defparameter *student-rules* (mapcar #'expand-pat-match-abbrev

TCCCX* LD ?2X)
((2x* |1 2y*%) (?7x 2y))
(Gif 2x* 1,1 then ?2y*) (?x ?y))
((if ?2x* then ?y*) (?x ?y))
(CIf 2x* |1 ?2y%) (?7x ?y))
((?2x* [| and ?y*) (2% ?y))
((find ?x* and ?y*) ((= to-find-1 ?x) (= to-find-2 ?y)))
((find ?x*) (= to-find ?x))
((?x* equals ?y*) = 77X ?y))
((?x* same as ?y*) = 7x ?y))
((Ix* = 2y*) = 7x ?y))
((?x* is equal to ?y*) (= 7x ?y))
((?2x* is ?2y*) = 72X 7y))
((2x* - 2y*) (- ?2x ?y))
((?x* minus ?y*) (- 72x ?y))

'Page 316 & Common Lisp the Language says, " Because a constructor d this type operates
By Order & Arguments, it issometimesknown asaBOA constructor."

((difference between ?x* and ?y*)
((difference ?x* and ?y*)

((2x* + 2y*)

((?2x* plus ?y*)

((sum ?x* and ?y*)
((product ?x* and ?y*)
((2x* * 2y%)

((?x* times ?y*)

((2x* / ?y*)

((?2x* per ?y*)

((?x* divided by ?y*)
((half 2?x*)

((one half ?x*)
((twice ?x*)

((square ?x*)

((?2x* % less than ?y*)
((?x* % more than ?y*)
((x* % ?2y*)

Themain sectiond STUDENT will search through thelist of rulesforaresponse, just
asELiza did. Thefirst pointd deviationisthat beforewesubstitutethevaluesd the
pat-match variablesinto the response, we must first recursively transl ate the value
d eachvariable, using thesamelist d pattern-response rules. Theother difference
isthat oncewe're done, wedon't just print the response; instead we haveto solvethe
set d equations and print theanswers. The programissummarizedinfigure7.1.

Beforelooking carefully at the program, let's try asampl e problem: "If zis3, what
istwicez?"' Applyingtherulesto theinput givesthefollowingtrace:

Input: (If z is 3, what is twice z)

Rule: ((if 2x I,1 ?y)

Binding: ((?x. (z is 3)) (%y

Input: (z is 3)
Rule: ((?x s ?y)
Result: (= z 3)

Input: (what is twice z ?)
Rule: ((?x is ?y)

Binding: ((?x . what) (?y .

Input: (twice z)

Rule: ({(twice ?x)
Result: (* 2 z)
Result: (= what (* 2 z))

(+
(+
(+
(*
(*
(*
/
/
«/
/
(/
(*
(*
(*
(*
(*

X
X
X
X
7X
7X
7Xx
X
X
7X
X

?y))
)
?y))
?y))
?y))
¥))
?y))
7y))
?y))
2))

2))

2 7x))

X

2y (/ (- 100 ?x) 100)))
2y (/ (+ 100 ?x) 100)))

X))

(- 2y ?2x))
(- 2y 7X))

(/7 ?x 100) ?y)))))

(?x ?y))

(= 2x 7y))

(= 7x ?y))

(twice 2)))

(* 2 7x))

Result: ((= z 3) (= what (* 2 2)))

Therearetwo minor complications. First, we agreed toimplement setsd equations
aslistsd equations. For this example, everything worked out, and the response

. (what is twice z)))

Top-Levd Function

st udent Solvecertain algebraword problems.
Special Variables

student- rul es Alistd pattern/response pairs.
DataTypes

exp
rul e

An operator and itsarguments.
A pattern and response.

translate-to-expression
transiate-pai r
create-1ist -of -equations
sol ve-equations

Magjor Functions

Translatean English phraseinto an equation or expression.
Trandatethevaluepart d the pair into an equation or expression.
Separate out equations embedded in nested parens.

Print the equations and their solution.

sol ve Solveasystem d equations by constraint propagation.
AuxiliaryFunctions
isol ate Isolatethelonevariableon theleft-handsided an expression,
noise-word-p Isthis alow-contentword that can besafely ignored?
make-variabl e Create avariable name based on thegivenlist o words.
print-equations Print alist d equations.
i nverse-op Le., theinversed tis—.
unknown - p Isthe argument an unknown (variable)?
i n-exp Trueif x appearsanywherein exp.
no-unknown Returnstrueif thereare no unknownsin exp.
one-unknown Returnsthesingleunknown inexp, if thereisexactly one.
comut ative-p Isthe operator commutative?
sol ve-ari thnetic Performarithmeticonrhsd an equation.
bi nary-exp-p Isthisabinary expression?
prefix->infix Translate prefix to infix expressions.
nkexp Makean expression.
Previoudy Defined Functions
pat -mat ch Match pattern against aninput. (p.180)

rul e-based-transl ator

Applyaset d rules. (p.189)

Figure7.1: Glossary for the STUDENT Program

wasalist d two equations. But if nested patterns are used, the response could be
somethinglike ((= a 5) ((= b (+ a 1)) (= ¢ (+ a b)))), whichis not a list of
equations. Thefunction create-1i st-of -equati onstransformsaresponse likethis
into aproper listd equations. The other complicationis choosing variable names.
Givenalistd wordslike (thenumber of customers Tan gets), wewant to choose
asymbol torepresentit. Wewill see below that the symbol customersischosen, but
that there are other possibilities.

Hereisthe mainfunction for STUDENT. Itfirst removeswords that have no con-
tent, then translates theinput to one bigexpressionwith transiate-to-expressi on,
and breaks that into separate equations with create-1i st-of -equations. Findly,
thefunction sol ve-equat i ons does the mathematicsand printsthe solution.

(defun student (words)
"Sol ve certain Algebra Wrd Problens. "
(sol ve-equati ons
(create-list-of-equations
(translate-to-expression (remove-if # noi se-word-p words)))))

Thefunction translate-to-expression is arule-based tranglator. It either finds
somerulein*student -rules* totransform theinput, or itassumesthat theentirein-
putrepresentsasinglevariable. Thefunctiontranslate-pair takesavariable/value
bindingpairand translatesthe value by arecursivecal totranslate-t o-expression.

(defun transl ate-to-expression (words)
"Transl ate an English phrase into an equation or expression.”
(or (rule-based-translator
wor ds *student-rul es*
:rule-if #rule-pattern :rule-then # rule-response
action # (lanbda (bindings response)
(subli s (mapcar #’translate-pai r hindings)
response)))
(make-variable words)))

(defun translate-pair (pair)
"Transl ate the value part of the pair into an equation or expression."
(cons (binding-var pair)
(transl ate-to-expression (binding-val par))))

Thefunction create-1ist-of-equations takes a single expression containing em-
bedded equations and separatesthemintoalist o equations:

(defun create-list-of-equations (exp)
"Separate out equations enbedded in nested parens."
(cond ((null exp) nil)
((atom (first exp)) (list exp))
(t (append (create-list-of-equations (first exp))
(create-list-of-equations (rest exp))))))

Findly, the function make-variable creates avariableto represent alist d words.
We do that by first removingall ""'noisewords" from the input, and then taking the
first symbol that remains. So, for example, "'the distance John traveled and "'the
distance travel ed by John' will both be represented by the samevariable, d i stance,

whichiscertainly theright thing to do. However, ""thedistance Mary traveled" will
also be represented by the same variable, which is certainly a mistake. For (the
number of customers Tom gets), thevariablewill be customers, sincethe, of and
number areall noisewords. Thiswill match (the customers mentioned above) and

(the numbe of customers), but not (Tom's customers). For now, wewillaccept
thefirst-non-noise-wordsol ution, but note that exercise 7.3 asksfor acorrection.

(defun make-variable (words)
"Create a variable name based on the given list of words"
;; The list of words will already have noise words removed
(first words))

(defun noise-word-p (word)
"Is this a low-content word that can be safely ignored?"”
(member word '(a an the this number of $)))

7.2 SolvingAlgebraic Equations

The next step is to write the equation-solvingsection d STUDENT. Thisis more an
exercise in elementary algebra than in Al, but it is a good example d a symbol-
manipulation task, and thus an interesting programming problem.

The STUDENT program mentioned the function sol ve-equati ons, passing it one
argument, alist of equations to be solved. sol ve-equati ons printsthelist o equa-
tions, attempts to solvethem using sol ve, and printstheresult.

(defun solve-equations (equations)
"Print the equations and their solution”
(print-equations "The equations to be solved are:" equations)
(print-equations "The solution is:" (solve equations nil)))

The real work is done by solve, which has the following specification: (1) Find
an equation with exactly one occurrence o an unknown init. (2) Transform that
equation so that the unknown isisolated on the left-hand side. Thiscan bedoneif
welimittheoperatorsto+ -, *,and /. (3) Evaluatethearithmeticontheright-hand
side, yielding a numeric value for the unknown. (4) Substitute the numeric value
for the unknown in all the other equations, and remember the known value. Then
try to solvetheresulting set d equations. (5)If step (1) fals—if thereisno equation
with exactly one unknown—then just return the known valuesand don't try to solve
anything else.

Thefunction sol veis passed asystem d equations, alongwith alist d known
variable/value pairs. Initially no variables are known, so thislist will be empty.
sol ve goesthrough thelist o equations searching for an equation with exactly one
unknown. If it can find such an equation, it callsi sol ate to solve the equation
interms o that one unknown. solve then substitutes the vaue for the variable
throughout thelist o equations and callsitsdlf recursively on theresultinglist. Each

timesol vecallsitself, it removesoneequationfromthelist o equationsto besolved,
and addsoneto thelist d known variable/value pairs. Sincethelistd equationsis
alwaysgrowingshorter, sol ve must eventually terminate.

(defun solve (equations known)

"Solve a system of equations by constraint propagation.”

;; Try to solve for one equation, and substitute its value into

;; the others. If that doesn't work, return what is known.

(or (some #'(lambda (equation)

(let ((x (one-unknown equation)))
(when x
(Tet ((answer (solve-arithmetic
(isolate equation x))))
(solve (subst (exp-rhs answer) (exp-Ths answer)
(remove equation equations))
(cons answer known))))))
equations)
known))

isolate is passed an equation guaranteed to have one unknown. It returns an
equivalent equation with the unknown isolated on the left-hand side. There are
five cases to consider: when the unknown is alone on the left, we're done. The
second caseiswhen the unknown is anywhere on the right-hand side. Because’=’
iscommutative, we can reduce the problem to solving the equival ent equation with
|eft- and right-hand sides reversed.

Next wehavetodeal with thecasewhere theunknown isin acomplex expression
on theleft-hand side. Becausewe are allowingfour operators and the unknown can
be either on the right or the left, there are eight possibilities. Letting X stand for
an expression containing the unknown and A and B stand for expressionswith no
unknowns, the possibilitiesand their solutionsare asfollows:

(1) X*A=B = X=B/A (5) A*X=B => X=B/A
(2) X+A=B => X=B-A (6) A*X=B = X=B-A
(3) X/A=B = X=B*A (7)A/X=B = X=A/B
(4) X-A=B = X=B+A (8)A-X=B = X=A-B

Possihilities (1)through (4) are handled by case IlI, (5) and (6) by case IV, and (7)
and (8) by case V. In each case, the transformation does not give usthefinal answer,
since X need not be the unknown; it might be a complex expression involving the
unknown. Sowe haveto call i sol ate again on the resulting equation. The reader
should try to verify that transformations (Dto (8) are valid, and that casesIII to V
implement them properly.

(defun isolate (e x)
"Isolate the lone x in e on the left-hand side of e."
;: This assumes there is exactly one x in e,
;; and that e is an equation.
(cond ((eq (exp-lhs e) x)
;; Case Iz X =A->X=n
e)
((in-exp x (exp-rhs e))
;; Case IT: A= f(X) > f(X) =A
(isolate (mkexp (exp-rhs e) "= (exp-lhs e)) x))
((in-exp x (exp-lhs (exp-lhs e)))
;; Case III: f(X)*A =B -> f(X) = B/A
(isolate (mkexp (exp-lhs (exp-lhs e)) '=
(mkexp (exp-rhs e)
(inverse-op (exp-op (exp-lhs €)))
(exp-rhs (exp-lhs e)))) x))
((commutative-p (exp-op (exp-lhs e)))
; Case IV: A*f(X) = B -> f(X) = B/A
(isolate (mkexp (exp-rhs (exp-lhs e)) '=
(mkexp (exp-rhs e)
(inverse-op (exp-op (exp-lhs e)))
(exp-Ths (exp-Ths e)))) x))
(t ;; Case V. A/f(X) =B -> f(X) = A/B
(isolate (mkexp (exp-rhs (exp-lhs e)) °*=
(mkexp (exp-Ths (exp-lhs e))
(exp-op (exp-Ths e))
(exp-rhs e))) x))))

Recdl that to proveafunctioniscorrect, wehaveto proveboththat it givesthecorrect
answer when it terminates and that it will eventually terminate. For a recursive
function with several alternative cases, we must show that each alternativeisvalid,
and also that each alternative gets closer to the end in someway (that any recursive
cdlsinvolve'smpler' arguments). For i sol ate, elementary algebrawill show that
each step is vaid—or at least nearly valid. Dividing both sides d an equation by
0 does not yield an equivalent equation, and we never checked for that. It's also
possiblethat similar errors could sneak in during the call to eval. However, if we
assume the equation does have asinglevalid solution, then i sol ate performsonly
legal transformations.

Thehard partisto provethat i sol ate terminates. Casel clearly terminates, and
the others al contribute towards isolating the unknown on the left-hand side. For
any equation, thesequencewill befirst a possibleuse of casell, followed by anumber
d recursivecallsusingcaseslli toV. The number d callsisbounded by the number
d subexpressionsin the equation, since each successivecall effectivelyremovesan
expression from theleft and placesit on the right. Therefore, assuming the input is

d finitesize, wemust eventuallyreacharecursivecall to i sol atethat will usecasel
and terminate.

When i solate returns, the right-hand side must consist only d numbers and
operators. Wecould easilywriteafunctiontoeval uatesuchanexpression. However,
wedon't havetogotothat effort, sincethefunction already exists. Thedatastructure
exp was carefully sel ected to be the same structure (listswith prefixfunctions) used
by Lispitsaf for itsown expressions. So Lispwill find theright-hand side to be an
acceptableexpression, one that could be evaluated if typed in tothetop level. Lisp
evaluatesexpressionsby callingthefunction eval, sowecan call eval directly and
haveit return anumber. Thefunction sol ve-ari thmdi ¢ returnsan equationd the
form (=var number).

Auxiliary functionsfor sol ve are shown bdow. Most are straightforward, but
| will remark on afew d them. The function prefix->infiXx takesan expression
in prefix notation and convertsit to afully parenthesized infix expression. Unlike
i sol ate, it assumes the expressionswill beimplemented aslists. prefix->irnfixis
used by pri nt-equati onsto produce more readabl e output.

(defun print-equations(header equations)
"Print alist of equations."
(format t "9%6ad'{"% ~{"d)")"% header
(mapcar # prefix->infix equations)))

(defconstant operat ors-and-i nver ses
T+ -) (- 8) (2) () *) (==)))

(defun inverse-op (op)
(second (assoc op operat ors-and-i nverses)))

(defun unknown-p (exp)
(synbol p expn

(defun in-exp (x exp)
"True if x appears anywhere in exp"
(or (eq X exp)
(and (exp-p exp)
(or (in-exp x(exp-1hs exp)) (in-exp x(exp-rhs exp)))))

(defun no-unknown (exp)
"Returns true if there are no unknowns in exp."
(cond ((unknown-p exp) nil)
((atom exp) t)
((no-unknown (exp-1hs exp)) (no-unknown (exp-rhs exp)))
(t nl)))

(defun one-unknown (exp)
"Returns the single unknown in exp, if there is exactly one."
(cond ((unknown-p exp) exp)
((atom exp) nil)
((no-unknown (exp-lhs exp)) (one-unknown (exp-rhs exp)))
((no-unknown (exp-rhs exp)) (one-unknown (exp-lhs exp)))
(t nil)))

(defun commutative-p (op)
"ls operator commutative?"
(member op *(+ * =)))

(defun solve-arithmetic (equation)
"Do the arithmetic for the right-hand side."
;3 This assumes that the right-hand side is in the right form.
(mkexp (exp-lhs equation) '= (eval (exp-rhs equation))))

(defun binary-exp-p (x)
(and (exp-p x) (= (length (exp-args x)) 2)))

(defun prefix->infix (exp)
"Translate prefix to infix expressions.”
(if (atom exp) exp
(mapcar #'prefix->infix
(if (binary-exp-p exp)
(list (exp-lhs exp) (exp-op exp) (exp-rhs exp))
exp))))

Here's an example of solve-equati onsin action, with asystem d two equations.
Thereader should go through the trace, discoveringwhichcasewasused at each call
toi sol ate, and verifyingthat each step isaccurate.

> (trace isolate solve)
(isolate solve)

> (solve-equations *((= (+ 3 4) (* (- 5 (+2x)) 7))
(= (+ (* 3 x) y) 12)))
The equations to be solved are:
B+4)=5-@+X)*D
((3*X)+Y) =12
(1 ENTER SOLVE: ((= (+ 3 4) (* (-5 (+2X)) 7))
(= (+ (* 3 X)Y) 12)) NIL)
(1 ENTER ISOLATE: (= (+ 34) (* (-5 (+2X)) 7)) X)
(2 ENTER ISOLATE: (= (* (- 5 (+ 2 X)) 7) (+34)) X)
(3 ENTER ISOLATE: (= (-5 (+ 2 X)) (/ (+3 4) 7)) X)
(4 ENTER ISOLATE: (= (+ 2 X) (- 5(/ (+34) H)) X)
(5 ENTER ISOLATE: (= X (- (- 5 (/ (+ 3 4) 7)) 2)) X)
(5 EXIT ISOLATE: (=X (- (-5 (/ (+34) 7)) 2)))
(4 EXIT ISOLATE: (= X (- (- 5 (/ (+ 3 4) 7)) 2)))

(3 EXIT ISOLATE: (= X (- (-5 (/ (+34) 7)) 2)))
(2 EXIT ISOLATE: (= (- (-5 (+34)7))2)))
(1 EXIT ISOLATE: (= X (-5 (+34)7)) 2))
(2 ENTER SOLVE: ((= (+ (* 3 2) Y) 12)) ((= X 2)))
(1 ENTER ISOLATE: (= (+ (* 3 2) Y) 12) Y)
(2 ENTER ISOLATE: (=Y (- 12 (* 3 2))) Y)
(2 EXIT ISOLATE: (=Y (- 12 (* 3 2))))
(1 EXIT ISOLATE: (=Y (- 12 (* 3 2))))
(3 ENTER SOLVE: NIL ((=Y 6) (=X 2)))
(3 EXIT SOLVE: ((=Y 6) (=X 2)))
(2 EXIT SOLVE: ({(=Y 6) (=X 2)))
(1 EXIT SOLVE: ((=Y 6) (=X 2)))
The solution is:

X
(-

Y=6
X =2
NIL
Now let's tacklethe format string ""%"a"{"%"''{ "a")")"%" inprint-equations.

This may look like random gibberish, but thereis actually sense behind it. format
processesthestringby printingeach character, exceptthat "~ " indicatessomespecial
formatting action, depending on the following character. The combination " ~%"
prints a newline, and ""a" prints the next argument to format that has not been
used yet. Thusthefirst four charactersd theformat string, " ~%™a", print anewline
followed by the argument header. The combination ""'{" treats the corresponding
argument asalist, and processeseach el ement accordingtothespecificationbetween
the " {" andthenext "~}". Inthiscase, equations isalistd equations, so each one
getsprinted withanewline (" ~%") followed by two spaces, followed by the processing
o the equation itself asalist, where each element is printed in the "*a" format and
preceded by a blank. Thet given asthefirst argument to format means to print to
the standard output; another output stream may be specifiedthere.

Oned theannoying minor holesin Lispisthat therei snostandard conventionon
whereto print newlines! InC, for example, theveryfirstlined codeinthereference
manual is

printf("hello, world\n");

This makesit clear that newlines are printed after each line. This conventionis so
ingrained in the UNIX world that some UNIX programswill gointo an infiniteloop
if thelast linein afileisnot terminated by anewline. InLisp, however, thefunction
print putsinanewline before the object to be printed, and aspace after. SomeLisp
programscarry thenewline-beforepolicy over toformat, and others usethenewline-
after policy. Thisonly becomes a problemwhen you want to combinetwo programs
written under different policies. How did the two competing policiesarise? | n UNIX
therewas only one reasonabl e policy, becauseall input to the UNIX interpreter (the

shell) is terminated by newlines, so thereis no need for a newline-before. In some
Lispinterpreters, however,input can beterminated by amatchingright parenthesis.
In that case, a newline-beforeis needed, lest the output appear on the samelineas
theinput.

Exercise 7.1[m] Implement print-equations usingonly primitive printing func-
tionssuchasterpri andprinc, aongwith explicitloops.

7.3 Examples

Now we moveon to examples, takenfrom Bobrow’s thesis. Inthefirst example, itis
necessary toinsert a'then™ beforetheword"what" to get the right answer:

> (student '(If the number of customers Tom gets is twice the square of
20 % of the number of advertisements he runs ||
and the number of advertisements is 45 |,
then what is the number of customers Tom gets ?))
The equations to be solved are:
CUSTOMERS = (2 * (((20 / 100) * ADVERTISEMENTS) *
((20 /7 100) * ADVERTISEMENTS)))
ADVERTISEMENTS = 45
WHAT = CUSTOMERS

The solution is:
WHAT = 162
CUSTOMERS = 162
ADVERTISEMENTS = 45
NIL

Notice that our program prints.the values for al variables it can solve for, while
Bobrow’s program only printed the values that were explicitly asked for in the text.
Thisisan exampled "moreisless’—it may look impressiveto print all the answers,
but it isactually easier to do so than to decide just what answers should be printed.
Thefollowingexampleis not solved correctly:

> (student '(The daily cost of living for a group is the overhead cost plus
the running cost for each person times the number of people in
the group |.I This cost for one group equals $ 100 |,!
and the number of people in the group is 40 I.!I
If the overhead cost is 10 times the running cost |, |
find the overhead and running cost for each person [.1))
The equations to be solved are:
DAILY = (OVERHEAD + (RUNNING * PEOPLE))
COST = 100
PEOPLE = 40
OVERHEAD = (10 * RUNNING)
TO-FIND-1 = OVERHEAD
TO-FIND-2 = RUNNING

The solution is:
PEOPLE = 40
QOST = 100

NIL

This example points out two important limitations o our version o student as
compared to Bobrow's. Thefirst problemisinnamingd variables. Thephrases"the
daily cost o livingfor agroup' and ' thiscost" aremeant torefer tothe same quantity,
but our program gives them the names daily and cost respectively. Bobrow’s
program handled naming by first considering phrases to be the same only if they
matched perfectly. If theresultingsetd equations could not be solved, hewould try
again, thistime considering phrases with wordsin commonto beidentical. (Seethe
followingexercises)

The other problem isin our solve function. Assuming we got the variables
equated properly, sol vewould be ableto boil theset df equations down to two:

100 = (OVERHEAD + (RUNNING * 40))
OVERHEAD = (10 * RUNNING)

Thisisaset d two linear equations in two unknowns and has a unique solution at
RUNINS = 2 OVERHEAD = 20. But our version d sol ve couldn't find this solution,
sinceitlooksfor equationswithoneunknown. Hereisanother examplethat student
handleswdll:

> (student '(Fran’s age divided by Robin's height is one half Kelly's 1Q 1.l
Kelly's 1Q minus 80 is Robin's height 1.
If Robin is 4 feet tall I,! how old is Fran ?))
The equations to be solved are:
(FRAN / ROBIN) = (KELLY / 2)
(KELLY - 80) = ROBIN
ROBIN = 4

HW = FRAN

The solution is:
HW = 168
FRAN = 168
KELLY = 84
ROBIN = 4

NIL

But aslight variationleadsto a problem:

> (student '(Fran's age divided by Robin's height is one half Kelly's 1Q 1.}
Kelly's 1Q minus 80 is Robin's height |.!|
If Robin is 0 feet tall I,! how old is Fran ?))
The equations to be solved are:
(FRAN / ROBIN) = (KELLY / 2)
(KELLY - 80) = ROBIN

ROBIN = 0
HW = FRAN
The solution is:

HW =0
FRAN = 0
KELLY = 80
ROBIN = 0
NIL

Thereisnovalidsolutiontothisproblem, becauseitinvolvesdividingby zero(Robin's
height). But studentiswillingto transform thefirst equation into:

FRAN = ROBIN * (KELLY / 2)

and then substitutesto get 0 for FRAN. Worse, dividing by zero could also come up
insideeval:

> (student '(Fran's age times Robin's height is one half Kelly's 1Q I.I
Kelly's 1Q minus 80 is Robin's height |.]I
If Robin is 0 feet tall I,| how old is Fran 7))
The equations to be solved are:
(FRAN * ROBIN) = (KELLY / 2)
(KELLY - 80) = ROBIN
ROBIN = 0
HW = FRAN

]

>>Error: There was an attempt to divide a number by zero

However, one could claim that nasty exampleswith divisionby zero don't show up
inagebratexts.

In summary, STUDENT behaves reasonably well, doing far more than the toy
program ELIZA. STUDENT is aso quite efficient; on my machineit takes less than
one second for each d the prior examples. However, it could still be extended to
have more powerful equation-sol vingcapabilities. Itslinguisticcoverageis another
matter. Whileone could add new patterns, such patternsarereally just tricks, and
don't capturetheunderlyingstructured Englishsentences. Thatiswhy the STUDENT
approach was abandoned asaresearch topic.

7.4 History and References

Bobrow’s Ph.D. thesis contains a complete description d STUDENT. It isreprinted
in Minsky 1968. Sincethen, there have been several systems that addressthe same
task, withincreased sophistication in both their mathematical and linguistic ability.
Wong (1981) describes a system that uses its understanding o the problem to get
a better linguisticanalysis. Sterling et al. (1982) present a much more powerful
equation solver, but it does not accept natural languageinput. Certainly Bobrow’s
language analysi s techniques were not very sophisticated by today's measures. But
that waslargely the point: if you know that the languageis describing an algebraic
problem d acertain type, then you don't need to know very much linguisticsto get
theright answer most d thetime.

7.5 Exercises

Exercise 7.2[h] Wesaidearlier that our programwasunabletosolvepairsd linear
equations, such as:

100 = (OVERHEAD + (RUNNING * 40))
OVERHEAD = (10 * RUNNING)

Theoriginal STUDENT could solvethese equations. Writearoutinetodo so. Yau may
assume there will be only two equations in two unknowns if you wish, or if you are
moreambitious, you could solveasystem d nlinear equations with n unknowns.

Exercise 7.3[h] Implement aversion d Bobrow’s variable-namingalgorithm. In-
stead of takingthefirstwordd each equation, createaunique symbol, and associate

withit theentirelist & words. Inthefirst pass, each nonequal list o wordswill be
considered adistinct variable. If no solutionisreached, word lists that share words
in common are considered to be the same variable, and the solution is attempted
again. For example, aninput that contains the phrases "'therectangle's width and
"thewidth d therectangle" might assignthesetwo phrasesthevariablesvl andv2. If

an attempt to solvethe problemyields no sol utions, the program should realizethat
v | and v2 havethewords" rectangle" and " width in common, and add the equation
(= vl v2)and try again. Since the variables are arbitrary symbols, the printing
routine should probably print the phrases associated with each variablerather than
thevariableitself.

Exercise 7.4[h] Theoriginal STUDENT alsohad aset o "'commonknowledge” equa-
tions that it could use when necessary. Thesewere mostly facts about conversion
factors, suchas (1 inch = 2.54 cm). Alsoincluded wereequations like(distance
equals rate times time), which could be used to solve problemslike"If thedis-
tance from Anabru to Champaignis 10 miles and the time it takes Sandy to travel
thisdistanceis2hours, whatisSandy's rated speed?' Makechangestoincorporate
thisfacility. It probably only helpsin conjunction with a solution to the previous
exercise.

Exercise 7.5[h] Change student so that it prints values only for those variables
that are being asked for in the problem. That is, given the problem”X is3. Y is4.
How muchisX +Y?'it should not print valuesfor X and Y.

Exercise 7.6[m] Try STUDENT on the following examples. Make sure you handle
special characters properly:

(@ Thepriced aradiois69.70dollars. If thispriceis15%lessthan the marked
price, find the marked price.

(b) The number d soldiers the Russians haveisone hdf o the number o guns
they have. The number d guns they haveis 7000. What isthe number o soldiers
they have?

(©)If thenumber d customers Tom getsistwicethesquared 20% d the number
d advertisements he runs, and the number d advertisements is 45, and the profit
Tomreceivesis10timesthe number d customers hegets, then what isthe profit?

(d) Theaveragescoreis 73. The maximum scoreis97. What isthe squared the
differencebetween the averageand the maximum?

(e) Tomistwice Mary's age, and Jan€'s ageis hdf the difference between Mary
and Tom. If Mary is18yearsold, how oldis Jane?

(f) Whatis4+5*14 /7?

@rxb=c+dbxc=z.x=b+bb=>5.

Exercise 7.7[h] Student's infix-to-prefix rulesaccount for the priority o operators
properly, but they don't handle associativityin the standard fashion. For example,
(12 - 6 - 3) trandatesto (- 12 (- 6 3)) or 9, when the usual convention isto
interpret thisas (- (- 12 6) 3)or 3. Fx student to handlethisconvention.

Exercise 7.8[d] Find amathematicallyoriented domain that issufficientlylimited
sothat STUDENT can solveproblemsinit. Thechemistry o solutions(calculatingpH
concentrations) might be an example. Write the necessary * student- rul es*, and
test theresulting program.

Exercise 7.9[m] Anayzethe complexity d one-unkmoan and implement a more
efficientversion.

Exercise 7.10 [h] Bobrow’s paper on STUDENT (1968) includes an appendix that
abstractly characterizes dl the problems that his system can solve. Generate a
similar characterizationfor thisversiond the program.

7.6 Answers

Answer 7.1

(defun print-equations (header equations)
(terpri)
(princ header)
(dolist (equation equations)

(terpri)

(princ" ™

(dolist (x (prefix->infix equation))
(princ ™ ™)

(princ x))))

Answver 7.9 one-unknown isvery inefficient becauseit searches each subcompo-
nent o an expression twice. For example, consider the equation:

(=+(+x2) (+34)) (+(+56) (+78)))

Todecideif thishasoneunknown, one-unknownwill call no-unknown ontheleft-hand
side, and sinceit fails, call it again on the right-hand side. Although there are only
eight atoms to consider, it ends up callingno-unknown 17 timesand one-unknown 4
times. In general, for a tree of depth n, approximately 2™ calls to no-unknown are
made. Thisisclearly wasteful; there should be no need tolook at each component
more than once.

Thefollowingversion usesan auxiliary function, f ind-one-unknown, that hasan
accumul ator parameter, unknown. This parameter can take on three possiblevalues:
nil, indicating that no unknown has been found; or the single unknown that has
been found sofar; or the number 2 indicating that two unknowns have been found
and thereforethefinal result should benil. Thefunctionfind-one-unknown hasfour
cases. (1)If wehavea ready foundtwounknowns, thenreturn 2toindicatethis. (2) If
theinput expressionis a nonatomic expression, then first look at its left-hand side
for unknowns, and pass the result foundin that side as the accumulator to a search
d theright-hand side. (3) If theexpressionisan unknown, and if itisthe second one
found, return 2, otherwisereturn the unknown itself. (4) If theexpressionisanatom
that isnot an unknown, then just return the accumul ated resullt.

(defun one-unknown (exp)
"Returns the single unknown in exp, if there is exactly one."
(let ((answer (find-one-unknown exp nil)))
;; If there were two unknowns, return nil;
;; otherwise return the unknown (if there was one)
(if (eql answer 2)
nil
answer)))
(defun find-one-unknown (exp unknown)
"Assuming UNKNOWN is the unknown(s) found so far, decide
if there is exactly one unknown in the entire expression.
(cond ((eql unknown 2) 2)
((exp-p exp)
(find-one-unknown
(exp-rhs exp)
(find-one-unknown (exp-Ths exp) unknown)))
((unknown-p exp)
(i f unknown
2
exp))
(t unknown)))

CHAPTER &

Symbolic Mathematics:
A Simplification Program

Our lifeis frittered away by detail... . .
Simplify, simplify.
—Heary David Thoreau, Wal den (1854)

withvariablesand expressionsrather than just numbers. Computerswerefirst devel oped

primarily to solvearithmetic problems:. to add up largecolumnsd numbers, to multiply
many-digit numbers, to solve systems d linear equations, and to calculate the trgjectories o
ballistics. Encouragedby successintheseareas, peopl ehoped that computers couldal so beused
on more complex problems; to differentiate or integrate a mathematical expression and come
up with another expression as the answer, rather than just a number. Several programswere
developed along these linesin the 1960sand 1970s. They were used primarily by professional
mathematiciansand physicistswith accessto large mainframe computers. Recently, programs

likeMATHLAB, DERIVE, and MATHEMATICA have given these capabilitiesto the average personal
computer user.

[[Symbolic mathematics" is to numerical mathematics as algebrais to arithmetic: it deals

It isinteresting to look at some d the history d symbolic algebra, beginning
in 1963 with SAINT, JamesSlagle's program to do symbolic integration. Originaly,
SAINT was heralded asatriumph o Al. It used general problem-solvingtechniques,
similar in kind to GPs, to search for solutions to difficult problems. The program
worked its way through an integration problem by choosing among the techniques
known to it and backing up when an approach failed to pan out. SAINT's behavior
on such problems was originally similar to (and eventually much better than) the
performanced undergraduate cal culusstudents.

Over time, the AT component d symbolic integration began to disappear. Joel
M osesimplemented a successor to SAINT called SIN. It used many d the sametech-
niques, but instead d relyingon search tofind the right combination o techniques,
it had additional mathematical knowledgethat led it to pick the right technique at
each step, without any provisionfor backingup and tryingan alternative. SIN solved
more problems and was much faster than SAINT, although it was not perfect: it still
occasionally made the wrong choiceand failed to solvea problemit could have.

By 1970, the mathematician R Risch and others devel oped algorithmsfor indef-
initeintegration d any expression involvingalgebraic, logarithmic, or exponential
extensionsd rational functions. Inother words, given a' normal” function, the Risch
agorithmwill return either the indefinite integral o the function or an indication
that no closed-formintegral is possibleintermsd elementary functions. Suchwork
effectivelyended theerad considering integration asa problemin search.

SINwasfurther refined, mergedwith partsd theRischalgorithm, and putintothe
evolvingMacsyMa! program. For the most part, refinement & MACSYMA consisted
d theincorporation d new algorithms. Few heuristics d any sort survive. Today
MacsyMA isno longer considered an Al program. It is used daily by scientists and
mathematicians, whileELIzA and STUDENT are now but historical footnotes.

With ELIzA and STUDENT wewereabl eto devel op miniature programsthat dupli-
cated most o thefeatures d the original. Wewon't even try to develop a program
worthy d thename MACsYMA; instead wewill settlefor amodest programtodo sym-
bolic simplification, which we will cal (simply)simplifier. Then, we will extend
simplifier to do differentiation, and someintegration problems. Theideais that
givenanexpressionlike (2- 1)z *0, wewant the programto computethe simplified
formx. |

According to the MathematicsDictionary (Jamesand James1949), the word "sim-
plified" is"probably the most indefinite term used seriously in mathematics." The
problemisthat "simplified is relativeto what you want to use the expression for
next. Whichissimpler, x2 + 3z +2 or(x +1)(z +2? Thefirst makesit easier to

IMAcsYMa isthe Project MAC SYMbolic MAthematics program. Project MACisthe MIT
research organization that was the precursor d MIT’s Laboratory for Computer Science.
MAC stood either for Machine-Aided Cognition or Multiple-AccessComputer, according to
oned their annual reports. Thecynical haveclaimed that MAC really stood for Man Against
Computer.

integrate or differentiate, the second easier to find roots. Wewill be content tolimit
ourselvesto"obvious' simplifications. For example, x isamost always preferable
tolz T 0.

8.1 Converting Infix to Prefix Notation

We will represent simplificationsasalist d rules, much likethe rulesfor STUDENT
and ELIzA. But since each simplificationruleisan agebraic equation, wewill store
each oneasan exp rather thanasarule. To makethings morelegible, wewill write
eachexpressionininfix form, but storetheminthe prefixformexpected by exp. This
requiresan in fix->prefixfunctiontoconvertinfix expressionsinto prefix notation.
We havea choiceas to how general wewant our infix notation to be. Consider:

((a*(x " 2))+(b*x)) +c)
(a*x " 2+b*x+¢)

(ax " 2+bx+c)

a x"2 + b*x+c

Thefirstisfully parenthesized infix, the second makes use d operator precedence
(multiplicationbindstighter thanaddition andisthus performedfirst),and the third
makes use d implicit multiplication as well as operator precedence. The fourth
requiresalexical analyzer to break Lisp symbolsinto pieces.

Suppose we only wanted to handle the fully parenthesized case. To write
infix->prefix, onemightfirstlook at prefix->infix (onpage 228) trying to adapt
it to our new purposes. In doing so, the careful reader might discover a surprise:
infix->prefix and prefix->infix areinfact the exact ssme function! Both leave
atoms unchanged, and both transform three-element lists by swapping the exp-op
and exp-1hs. Both apply themselvesrecursively to the (possibly rearranged) i nput
list. Once we discover thisfact, itwould betemptingtoavoidwritingiin fix->prefix,
and just call prefix->infixinstead. Avoid thistemptation at all costs. Instead, de-
fineinfix->pre fix asshown below. Theintent d your codewill beclearer:

(defun infix->prefix (infix-exp)
"Convert fully parenthesized infix-exp to a prefix expression”
; Don't use this version for non-fully parenthesized exps!
(prefix->infix infix-exp))

As we saw above, fully parenthesized infix can be quite ugly, with al those extra
parentheses, so instead we will use operator precedence. There are a number d
waysd doing this, but the easiest way for us to proceed is to use our previously
definedtool rule-based-translator and its subtool, pat-match. Note that thethird

clause d infix->prefix, the one that callsrule-based-translator isunusual in
that it consistsd asingleexpression. Most cond-clauses havetwo expressions: atest
and aresult, but oneslike thismean, " Evaluatethe test, and if itisnon-nil, returnit.
Otherwisego on to the next clause."

(defun infix->prefix (exp)
"Translate an infix expression into prefix notation."
;3 Note we cannot do implicit multiplication in this system
(cond ((atom exp) exp)
((= (length exp) 1) (infix->prefix (first exp)))
((rule-based-translator exp *infix->prefix-rul es*
crule-if #°rule-pattern :rule-then #'rule-response
;action
#’(lambda (bindings response)
(sublis (mapcar
#'(lambda (pair)
(cons (first pair)
(infix->prefix (rest pair))))
bindings}
response))))
((symbolp (first exp))
(list (first exp) (infix->prefix (rest exp))))
(t (error "lllegal exp"))))

Because we are doing mathematicsin this chapter, we adopt the mathematical con-
vention d using certain one-letter variables, and redefinevari able-p so that vari-
ablesareonly the symbolsm through z.

(defun variable-p (exp)
"Variables are the symbols M through Z."

;s put x,y,z first to find them a little faster
(member exp '(xy zmnopgrstuvw)))

(pat-match-abbrev 'x+ *(?+ x))
(pat-match-abbrev "y+ *(?+ y))

(defun rule-pattern (rule) (first rule)?}
(defun rule-response (rule) (second rule))

(defparameter *infix->prefix-rul es*
(mapcar #'expand-pat-match-abbrev
((x+ =y+) (=xy)
(- x+) (- x))
((+ x+) (+ x))
((x+ + y+) (+ x y))
((x+ - y+H) (- x ¥
((x+ * y+) (* x y))
(x+ /7 y+) (/ x ¥))
((x+ " y+) (" xy»)»
"Alist of rules, ordered by precedence.")

X X X X

8.2 Simplification Rules

Now weareready todefinethesimplificationrules. Weusethedefinitiond thedata
types rule and exp (page221) and pref iX->inf i X (page228) fromSTUDENT. They
arerepeated here:

(defstruct (rule (:type list)) pattern response)

(defstruct (exp (:type list)
(:constructor mkexp (1hs op rhs)))
op lhs rhs)

(defun exp-p (x) (consp x))
(defun exp-args (x) (rest x))

(defun prefix->infix (exp)
"Translate prefix to infix expressions.’
(if (atom exp) exp
(mapcar #'prefix->infix
(if (binary-exp-p exp)
(list (exp-Ths exp) (exp-op exp) (exp-rhs exp))
exp))))

(defun binary-exp-p (x)
(and (exp-p x) (= (length (exp-args x)) 2)))

We also use rule-based-translator (page188) once again, this time on alist o
simplificationrules. A reasonablelist d simplificationrulesis shown below. This
list coversthe four arithmetic operators, addition, subtraction, multiplication, and
division, aswell as exponentiation (raisingto a power), denoted by the symbol “~”.
Again, it isimportant to note that the rules are ordered, and that later rules will
be applied onlywhen earlier rulesdo not match. So, for example, 0 / 0simplifiesto

undef i ned, and not to 1 or 0, becausetherulefor0 / 0 comesbeforetheother rules.
Seeexercise8.8for amorecompletetreatment o this.

(defparameter *simplification-rules* (mapcar #'infix->prefix ’(

(x +0 =x)

(0 +x =x)

(X +x =2 *x)
(x -0 =x)

(0 -x =-x)
(x - x =0)

(- - x =x)
x*1 =x)
(1*x =x)
x*0 =0)
(0*x =0)
(x*x =x"2)
(x / 0 = undefined)
0/ x =0)
(x/ 1 =x)
(x/ x =1)

(0 © 0 = undefined)
(x~0 =1
(0" x =0)
1" x =1

(x "1 =x)

(x ~-1=1/x)
(x*(y/x)=y
Wy /7 x) *x=y)
Wy *x) /x=y)
(x*y) / x=y
(x + - x=0)
(- x) +x=0)
(x+y -x=y)

)))

(defun = (x y) "Exponentiation" (expt x y))

Wearenow ready togoaheadand write thesimplifier. Themainfunction,sing i fi er,
will repeatedly print aprompt, read aninput, and printitinsimplifiedform. Input
and output isininfix and the computation isin prefix, so we need to convert accord-
ingly; the function smp does this, and thefunction simp1i fy takescare o asingle
prefix expression. Itissummarized infigure8.1.

simplifier
simp
simplify

Top-Leve Functions

A read-simplify-printloop.
Simplifyan infix expression.
Simplify a prefix expression.

infix->prefix-rules
simplification-rules

Special Variables
Rulesto translate from infix to prefix.
Rulesto simplify an expression.

exp

DataTypes
A prefix expression.

simplify-exp
infix->prefix

Auxiliary Functions
Simplify a non-atomic prefix expression.
Convertinfix to prefix notation.

variable-p Thesymbolsmthrough z arevariables.
Analiasfor expt, exponentiation.
evaluable Decideif an expression can be numerically evaluated.
simp-rule Transformaruleinto proper format.
lTength=1 Istheargument alistd length 1?
PreviousFunctions
pat-match Match pattern against aninput. (p.180)

rule-based-translator
pat-match-abbrev

Applyaset d rules. (p.189)
Definean abbreviationfor usein pat-match.

Figure8.1: Glossary for the Simplifier

Hereisthe program:

(defun simplifier ()

"Read a mathematical expression, simplify it, and print the result."”

(Toop

(print 'simplifier>)
(print (simp (read)))))

(defun simp (inf) (prefix->infix (simplify (infix->prefix inf))))

(defun simplify (exp)

"Simplify an expression by first simplifying its components. "

(if (atom exp) exp

(simplify-exp (mapcar #’simplify exp))))

(defun simplify-exp (exp)
"Simplify using a rule, or by doing arithmetic."
(cond ((rule-based-translator exp *simplification-rules*
irule-if #’exp-lhs :rule-then #’exp-rhs
;action #’(lambda (bindings response)

(simplify (subTis bindings response)))))

((evaluable exp) (eval exp))

(t exp)))

(defun evaluable (exp)
"I's this an arithmetic expression that can be evaluated?"
(and (every #’numberp (exp-args exp))
(or (member (exp-op exp) *(+ - * /))
(and (eq (exp-op exp) ")
(integerp (second (exp-args exp)))))))

Thefunction si npl i fy assures that any compound expressionwill be simplified by
first simplifying the arguments and then calling si npl i fy-exp. This latter func-
tion searches through the simplification rules, much like use-¢l iza-ru es and
translat e-t o-expressi on. Whenitfindsamatch, si npl i f y-exp substitutesin the
proper variablevaluesand callssinplify onthe result. sinpl i fy-exp asohasthe
abilitytocall eval tosimplifyan arithmetic expressionto anumber. Asin STUDENT,
itisfor thesakeof thiseval that werequire expressionsto berepresented aslistsin
prefix notation. Numericevaluationisdone after checkingthe rulesso that therules
canintercept expressionslike (/ 1 0) and simplifythemtoundef i ned. if wedidthe
numericevaluationfirst, theseexpressionswouldyieldanerror when passedtoeval.
Because CommonLisp supportsarbitrary precisionrational numbers (fractions),we
areguaranteed therewill be no round-off error, unlesstheinput explicitly includes
inexact (floating-point)numbers. Noticethat we allow computations involvingthe
four arithmetic operators, but exponentiation is only alowed if the exponent isan
integer. That is because expressionslike (" 41/2) are not guaranteed to return 2
(theexact squareroot d 4); the answer might be 2.0 (aninexact number). Another
problemisthat —2 isaso asquareroot d 4, and in some contextsit is the correct
onetouse.

The following trace shows some examples o the simplifierin action. First we
show that it can be used asacal culator; then we show moreadvanced problems.

> (simplifier)

SIMPLIFIER> (2 + 2)

4

SIMPLIFIER> (5 * 20 + 30 + 7)

137

SIMPLIFIER> (5 * x - (4 + 1) * x)

0

SIMPLIFIER> (y / z * (5 * x - (4 + 1) * X))

0

SIMPLIFIER> ((4 - 3) * x+ (y / y - 1) * 2)

X

SIMPLIFIER> (1 * f(x) + 0)

(F X)

SIMPLIFIER> (3 * 2 * X)

(3*(2*x)

SIMPLIFIER> [Abort]

>

Herewehaveterminated theloop by hittingtheabort key ontheterminal. (Thedetails
d thismechanismvariesfromoneimplementationd CommonLisptoanother.) The
simplifier seemstowork fairly well, althoughit errson thelast example: (3 * (2 *
X)) should simplify to (6 * X). In the next section, wewill correct that problem.

8.3 Associativity and Commutativity

We could easily add aruleto rewrite (3 * (2 *X))as((3 * 2) * X) and hence
(6 * X). The problemisthat this rulewould also rewrite (X * (2 * 3)) as (X *
2) * 3), unless we had away to limit the rule to apply only when it would group
numberstogether. Fortunately, pat-match does providejust thiscapability, with the
?1S pattern. We could writethisrule:

(((?is n numberp) * ((2is mnumberp) * x)) = ((n *m) * x))

This transforms (3 * (2 * x)) into ((3 * 2) * x), and henceinto (6 * x).
Unfortunately, the problemis not assimpleasthat. Weasowant tosimplify ((2 *
x) * (y* 3))to(6 *(x * y)). Wecandoabetter jobd gatheringnumberstogether
by adopting three conventions. First, make numbersfirstin products; changex *
3to 3 * x. Second, combine numbersin an outer expression with anumber in an
inner expression: change3 * (5 * x) to (3 * 5) * x. Third, move numbers out
d inner expressionswhenever possible: change (3 * x) * yto3 * (x * y). We
adopt similar conventionsfor addition, except that we prefer numberslast there: x
+ linsteadof 1 + x.

;; Define n and mas numbers; s as a non-number:
(pat-match-abbrev ’n (2is n numberp))
(pat-match-abbrev 'm *(2is m numberp))
(pat-match-abbrev 's ’(?is s not-numberp))

(defun not-numberp (x) (not (numberp x)))

(defun simp-rule (rule)
“Transforma rule into proper format."
(let (Cexp (infix->prefix rule)))
(mkexp (expand-pat-match-abbrev (exp-lhs exp))
(exp-op exp) (exp-rhs exp))))

(setf *simplification-rules*
(append *simplification-rules* (mapcar #'simp-rule
*((s*n=n*s)
mM*m*x)=(m*m *x)
x*¥m*y)y=n*x*y)
(n*x) *y=n*(&x*y)
n+s=s+n)
((x+m)+n=x+n+m
(x+ (y+n)=(x+y)+n)
((x+n) +y=(&+y)+n)))))

With the new rulesin place, weareready totry again. For some problemsweget just
theright answers:

> (simplifier)
SIMPLIFIER> (3 * 2 * x)

(6 *X)
SIMPLIFIER> (2 * x * x * 3)
(6 * (X~ 20N

SIMPLIFIER> (2 * x ¥ 3% y ¥ 4% 7 ¥ 5 % ¢)

(720 * (X * (Y *)N

SIMPLIFIER> (3 + X + 4 + x)

(2*x)+7)

SIMPLIFIER> (2 * x *3*x *4* (1 /x) *5%*6)
(720 * X)

Unfortunately, there are other problemsthat aren't ssimplified properly:

SIMPLIFIER> (3 + x + 4 - X)
(X + (4 - X)) +3)
SIMPLIFIER> (x + y + ¥y + X}
X+ (Y + (Y +X)))
SIMPLIFIER> (3 * x + 4 * X)
({3 *X) +(4 X))

Wewill return to these problemsin section 8.5.

Exercise 8.1 Verifythatthesetd rulesjust prior doesindeedimplement thedesired
conventions, and that the conventionshavethe proper effect, and awaysterminate.
Asan exampled apotential problem, what would happen if we used therule (x *
N = n * x)instead of therule (s * n = n * s)?

8.4 Logs, Trig, and Differentiation

In the previoussection, we restricted ourselvesto the simple arithmetic functions,
so as not to intimidate those who are alittleleery of complex mathematics. In this
section, we add alittle to the mathematical complexity, without having to alter the
program itself one bit. Thus, the mathematically shy can safely skip to the next
sectionwithout feeling they are missingany d thefun.

Westart off by representing some elementary propertiesd the logarithmicand
trigonometric functions. The new rules are similar to the ' zero and one” ruleswe
neededfor thearithmeticoperators, exceptheretheconstantseandp i (e= 2.71828..
andm = 3.14159..) areimportantinadditionto0 and 1. Wealsothrowinsomerules
rel atinglogsand exponents, and for sumsand differencesd logs. Therulesassume
that complex numbersarenot allowed. If they were, loge* (andevenz¥) would have
multiplevalues, and it would bewrongto arbitrarily chooseone d thesevalues.

(setf *simplification-rules*
(append *simplification-rules* (mapcar #'simp-rule ’(

(log 1 =0
(log O = undefined)
(log e =1
(sin 0 =0)
(sin pi =0)
(cos 0 =1)
(cos pi = -1)
(sin(pi /7 2) =1)
(cos(pi /7 2) =0)
(log (e ~ x) =1x)
(e © (log x) =x)

(x Y)Y *(x"z2)y=x"(y+2))
(X" y)/ (x"z2)=x"(y - 2))
(log x + log y = Tog(x * y))

(log x - logy = Tog(x / y))
((sin x) = 2+ (cos x) ~2=1)
NN

Now we would like to go astep further and extend the system to handle differenti-
ation. Thisisafavoriteproblem, and one which has historical significance: in the
summer d 1958 John M cCarthy decided toinvestigatedifferentiationasaninterest-
ing symbolic computation problem, which was difficult to expressin the primitive
programminglanguagesd theday. Thisinvestigationled himto seetheimportance
d functional arguments and recursivefunctionsin thefield d symbolic computa-
tion. For example, McCarthy invented what we now call mapcar to expresstheidea
that the derivatived a sum is the sum d the derivativefunction applied to each
argument. Further work led McCarthy to the publicationin October 1958 & MIT

Al Lab Memo No. 1: “An Algebraic Language for the Manipulation d Symboalic
Expressions, which defined the precursor o Lisp.

InMcCarthy’s work and i n many subsequent textsyou can seesymbolicdifferen-
tiation programswith asimplification routine tacked on the end to make the output
morereadable. Here, we take the opposite approach: the smplificationroutineis
central, and differentiationis handled as just another operator, with its own set o
simplificationrules. We will require a new infix-to-prefix translation rule. While
wereat it, well add arulefor indefiniteintegrationaswell, althoughwewon't write
simplificationrulesfor integrationyet. Hereare the new notations:

math infix prefix
dy/dz dy/dx (dyx)
fydz Intydx C@inty x)

And herearethe necessary infix-to-prefixrules:

(defparameter *infix->prefix-rul es*

(mapcar #'expand-pat-match-abbrev

((x+ = y+) (=xy))
((- x+) (- x))
((+ x+) (+ x))
((x+ + y+) (+ x y))
((x+ - y+) (- x¥))
((dy+ /dx) (dy x)) ;*¥%% New rule
((Int y+ d x) (inty x)) ;¥%* Naw rule
((x+ * y+) (* x y))
(Ix+ / y+) (/ x ¥y))
((x+ 7 y+) (" xy)))))

Sincethe new rulefor differentiationoccursbeforetherulefor division, therewon't
be any confusion with adifferential being interpreted as a quotient. On the other
hand, there isa potential problemwith integralsthat contain d asavariable. The
user can alwaysavoid the problemby using (d) instead of d insideanintegral.

Now we augment the simplificationrules, by copyingadifferentiation table out
d areferencebook:

(setf *simplification-rules*
(append *simplification-rules* (mapcar #'simp-rule *(

(dx/dx =1) .
(du+v)/dx=(du/dx)+(dv/dx))
(du-v)/dx=(du/dx)-(v/dx))
(d(-u)/dx =-(du/dx))

(d*v) /dx=u*(dv/dx)+v*(du/dx))
dw/v)/dx=(w*(du/dx)-u*({dv/dx))

" 2)

(d (u " n)
(d (u " v)
(d (log w
(d (sin w)
(d (cos u)
(d (e " w
(du/dx

~N O
a Q
x

NN N N

o O o o
X X X X

x

=n*u“"(n-1)*du/dx))
v*u“ (v-1)*(du/dx)
u”v*(loguw *(dv/dx)
(du/dx) /7w

(cos u) * (du/dx))

- (sinuw) * (du/dx))

(e " w *(du/dx))
0)))))

+

(1 [R

We have added adefaultrule, (d u / d x = 0); thisshould only apply when the
expressionu isfreed thevariablex (thatis, whenuisnot afunctiond x). Wecould
use?i f tocheck this, butinstead werdly onthefact that differentiation sclosed over
thelistd operatorsdescribed here—aslongaswedon't i ntroduceany new operators,
the answer will always be correct. Note that there are two rulesfor exponentiation,
onefor the case when the exponent is a number, and onewhen it isnot. Thiswas
not strictly necessary, as the second rulecovers both cases, but that wastheway the
ruleswerewritteninthetable d differentialsl consulted, sol left bothrulesin.

SIMPLIFIER> (d (x + x) / d x)

2

SIMPLIFIER> (d (a *x ~ 2+ b *x+¢) / d x)

((2* (A* X)) +B)

SIMPLIFIER> (d (a * x "2 +b *x+c¢) / x) /dx)

(AT X2 + (BFX)+0)) - (X* (2% (A* X)) +B))
/(X" 2)
SIMPLIFIER> (log ((d (x + x) / d x) / 2))

0

SIMPLIFIER> (1og{x + x) - log x)
(LOG 2)
SIMPLIFIER> (x
(17X
SIMPLIFIER> (d (3 * x + (cos x) / x) / d x)
(CC(COS X) - (X * (- (SINX)))) / (X~ 2)) +3)
SIMPLIFIER> (d ((cos x) / x) / d x)

((€COS X) - (X * (- (SIN X)) / (X~ 2)
SIMPLIFIER> (d 3*x ~2+2%x+1) /dx)

(6 *X) +2)

cos pi)

SIMPLIFIER> (sin(x + x) ~ 2+ cos(d x ~ 2 /d x) "~ 2)

1

SIMPLIFIER> (sin(x + x) * sin(d x ~ 2 / d x) +

1

cos(2 * x) *cos(x *d2*y /dy)

Theprogramhandlesdifferentiationproblemswell and isseemingly clever initsuse
o theidentity sin?x

cos?x =1

8.5 Limitsd Rule-Based Approaches

In this section we return to some examples that pose problems for the simplifier.
Hereisasimpleone:

SIMPLIFIER> (x + y +y + x) = (X + (Y + (Y + X)))

Wewouldprefer2 * (x + y). Theproblemisthat, althoughwewent togresat trouble
to group numbers together, there was no effort to group non-numbers. We could
writerulesd theform:

(y +(y+x)=1(2*%y)+x)
(y + (x+y)=1(2%*y)+x)

Thesewouldwork for the exampleat hand, but they would not workfor (x +y + z
+ y + x). For that wewould need morerules:

(y+(z+(y+x))=(2*y)+x+2)
(y+(z+(x+y))=(2%*y)+x+2z)
(y + ((y + x) + 2) (2 *y)+x+2)
(y +({X +y) +Z2) = (2% y)+ X+ Z)

[}

To handle al the cases, we would need an infinite number d rules. The pattern-
matching languageis not powerful enough to expressthis succintly. It might help
if nested sums (and products) were unnested; that is, if we allowed + to take an
arbitrary number d argumentsinstead d just one. Oncetheargumentsaregrouped
together, we could sort them, so that, say, all theys appear beforez and after x. Then
liketermscould begrouped together. We haveto becareful, though. Consider these
examples:

SIMPLIFIER> (3 * x + 4 * x)
((3*X)+(4*X))

SIMPLIFIER> (3 * x + y + x + 4 * x)
((3*X) + (Y + (X+ (4%*X))))

Wewouldwant (3 * x) tosort tothesame placeasx and (4 * x) sothat they could
all becombinedto (8 * x). Inchapter 15, wedevelopanew versiond the program
that handlesthis problem.

8.6 Integration

So far, the algebraic manipulations have been straightforward. There is a direct
algorithm for computing the derivative d every expression. When we consider
integrals, or antiderivatives,? the picture is much more complicated. Asyou may
recall from freshman calculus, there is afine art to computing integrals. In this
section, we try to see how far we can get by encoding just afew d the many tricks
availableto the cal culusstudent.

Thefirst step is to recognize that entries in the simplification table will not be
enough. Instead, we will need an algorithm to evaluate or "smplify" integrals.
We will add a new case to sinf i fy-exp to check each operator to seefif it hasa
simplificationfunction associated with it. These simplification functions will be
associated with operators through the functions set-Simp-fn and Simp-fn. f an
operator doeshaveasimplificationfunction, thenthat functionwill becalledinstead
d consulting the simplificationrules. The simplificationfunction can elect not to
handle the expression after al by returning nil, in which case we continue with the
other simplificationmethods.

(defun simp-fn (op) (get op 'simp-fn))
(defun set-simp-fn (op fn) (setf (get op 'simp-fn) fn))

(defun simplify-exp (exp)
"Simplify using a rule, or by doing arithmetic,
or by using the simp function supplied for this operator.”
(cond ((simplify-by-fn exp)) . dkk
((rule-based-translator exp *simplification-rules*
crule-if #'exp-lhs :rule-then #’exp-rhs
;action #'(lambda (bindings response)
(simplify (sublis bindings response)))))
((evaluable exp) (eval exp))
(t exp)))

(defun simplify-by-fn (exp)
"1f there is a simplification fn for this exp,
and i f applying it gives a non-null result,
then simplify the result and return that."
(let* ((fn (simp-fn (exp-op exp)))
(result (if fn (funcall fn exp))))
(if (null result)
nil
(simplify result))))

Freshman calculusclassesteachavariety d integration techniques. Fortunately,
onetechnique—thederivative-dividestechnique—can beadopted to solvemost d the

2The term antiderivativeis morecorrect, becaused branch point problems.

problemsthat come up at thefreshman calculusleve, perhaps90% o the problems
givenontests. Thebasicruleis:

[1@de= [1%

As an example, consider [xsin(x?)dx. Using the substitution u = x2, we can
differentiatetoget du/dz = 2z. Then by applyingthe basic rule, we get:

in(x?)dx L i u adx 1/ i d
/xsm(x) = i/sm(u)& =3 sin(u) du.
Assume we have atabled integralsthat includes the rule [sin(z) dx = — cos(z).
Thenwe can get thefinal answer:
1
5 cos(z?).

Abstractingfrom this example, the general algorithm for integrating an expres-
sionywith respecttoxis:

1. Pickafactor d y, calingit f (u).

2. Computethederivativedu/dz.

3. Dividey by f (u) X du/dz, callingthe quotient k.

4. If kisaconstant (withrespect to x), then theresultisk [f (u)du.

This algorithm is nondeterministic, as there may be many factorsd y. In our
example, f (U) = sin(x?),u = x?, and du/dz = 2z. Sok = 1, and the answer is
—3 cos(z?).

Thefirst stepinimplementing thistechniqueisto make surethat divisionisdone
correctly. Weneed to beableto pick out thefactorsd y, divideexpressions, and then
determine if aquotientisfreed x. Thefunctionfactori zedoesthis. It keepsalist
d factorsand arunning product of constant factors, and augments them with each
call to thelocal function fac.

(defun factorize (exp)
"Return a list of the factors of exp™n,
where each factor is of the form (" y n).”
(let ((factors nil)
(constant 1))
(labels
((fac (x n)
(cond
((numberp x)
(setf constant (* constant (expt x n))))
((starts-with x **)
(fac (exp-lhs x) n)
(fac (exp-rhs x) n)}
((starts-with x "/)
(fac (exp-lhs x) n)
(fac (exp-rhs x) (- n)))
((and (starts-with x *-) (length=1 (exp-args x)))
(setf constant (- constant))
(fac (exp-lhs x) n))
((and (starts-with x **) (numberp (exp-rhs x)))
(fac (exp-lhs x)} (* n (exp-rhs x))))
(t (let ((factor (find x factors :key #’exp-lhs
‘test #’equal)))

—_—

(if factor
(incf (exp-rhs factor) n)
(push “(° ,x ,n) factors)))))))
;; Body of factorize:
(fac exp 1)
(case constant
(0 (01N
(1 factors)
(t “((" ,constant 1) .,factors))))))

factorize mapsfromanexpression toalistd factors, butweasoneedunfactorize
to turnalist back into an expression:

(defun unfactorize (factors)
"Convert a list of factors back into prefix form."
(cond ((null factors) 1}
((Tength=1 factors) (first factors))
(t “(* (first factors) ,(unfactorize (rest factors))))))

Thederivative-dividesmethodrequiresaway o dividingtwo expressions. Wedothis
by factoring each expression and then dividing by cancellingfactors. There may be
caseswhere, for exampl e, twofactorsin the numerator could be multiplied together

to cancel afactor in the denominator, but this possibilityis not considered. It turns
out that most problemsfrom freshman cal culusdo not require such sophistication.

(defun divide-factors (numer denom)
"Divide a list of factors by another, producing a third."
(let ((result (mapcar #'copy-list numer)))
(dolist (d denom)
(let ((factor (find (exp-1hs d) result :key #’exp-1lhs
‘test #’equal)))
(if factor
(decf (exp-rhs factor) (exp-rhsd))
(push ‘(" ,(exp-Ths d) ,(- (exp-rhs d))) result))))
(delete 0 result :key #’exp-rhs)))

Finaly, the predicatefree-of returnstrueif an expressiondoes not have any occur-
rencesd aparticular variableinit.

(defun free-of (exp var)
"True if expression has no occurrence of var."
(not (find-anywhere var exp)))

(defun find-anywhere (item tree)
"Does item occur anywhere in tree? If so, return it."
(cond ((eql item tree) tree)
((atom tree) nil)
((find-anywhere item (first tree)))
((find-anywhere item (rest tree)))))

In factorize we made use d the auxiliary function length=1. The function call
(1ength=l x) isfaster than (= (length x) 1) becausethe latter has to compute
thelength d the wholelist, while the former merely hasto seeif thelist hasarest
element or not.

(defun length=1 (x)
"Is x alist of length 12"
(and (consp x) (null (rest x))))

Given these preliminaries, the function i ntegrat eisfairly easy. We start with
some simple casesfor integrating sums and constant expressions. Then, wefactor
the expression and split the list d factorsinto two: alist d constant factors, and
alist o factors containing x. (Thisisdone with partition-if, acombination o
remove-i f and remove-if -not.) Findly, we call deri v-di vides, givingit a chance
with each d thefactors. f none d them work, we return an expression indicating
that theintegral isunknown.

(defun integrate (exp x)
;; First try some trivial cases

(cond
((free-of exp x) “(* ,exp x)) : Int c dx = ¢*x
((starts-with exp ’+) ;Int f+g =
‘(+ ,(integrate (exp-lhs exp) x) ; Int f+1Intg

,(integrate (exp-rhs exp) x)))
((starts-with exp *-)
(ecase (length (exp-args exp))
(1 (integrate (exp-lhs exp) x)) ;Int - f=-Intf
(2 “(- ,(integrate (exp-lhs exp) x) ; Int f - g =

,(integrate (exp-rhs exp) x))))) ; Intf - Intg
;3 Now move the constant factors to the left of the integral
((multiple-value-bind (const-factors x-factors)
(partition-if #’(lambda (factor) (free-of factor x))
(factorize exp))
(simplify
“‘(* ,(unfactorize const-factors)
;: And try to integrate:
,(cond ((null x-factors) x)
((some #’(lambda (factor)
(deriv-divides factor x-factors x))
x-factors))
;; <other methods here>
(t ‘(int? ,(unfactorize x-factors) ,x)))))))))

(defun partition-if (pred list)
"Return 2 values: elements of list that satisfy pred,
and elements that don’t."
(let ((yes-list nil)
(no-list nil))
(dolist (item list)
(if (funcall pred item)
(push item yes-list)
(push item no-list)))
(values (nreverse yes-list) (nreverse no-list))))

Note that the place in integrate where other techniques could be added is
marked. We will only implement the derivative-divides method. It turns out that
thefunctionisalittle morecomplicatedthan thesimpl efour-stepal gorithmoutlined
before:

(defun deriv-divides (factor factors x)
(assert (starts-with factor 7))
(let* ((u (exp-Ths factor)) ; factor = u™n
(n (exp-rhs factor))
(k (divide-factors
factors (factorize “(* ,factor ,(deriv u x))))))
(cond ((free-of k x)
Int k*u"n*du/dx dx = k*Int u"n du
k*u®(n+l1)/(n+l1) for n /= -1
k*1og(u) for n= -1

(if (=n-1)
‘(* ,(unfactorize k) (log ,u))
‘(/ (* ,(unfactorize k) (" ,u ,(+ n 1)))
L+ n 1NN
((and (=n 1) (in-integral-table? u))
53 Int y’*f(y) dx = Int f(y) dy
(let ((k2 (divide-factors
factors
(factorize “(* ,u ,(deriv (exp-lhs u) x))))))
(if (free-of k2 x)
‘(* ,(integrate-from-table (exp-op u} (exp-lhs u))
,(unfactorize k2))))))))

Therearethreecases. Inany case, dl factorsared theform (* u n), soweseparate
the factor into a base, u, and exponent, n. f u or u” evenly divides the origina
expression (hererepresented asfactors), then we have an answer. But we need to
check the exponent, because [u"duisu™+!/(n + 1)for n # —1, butitislog(u) for
n = -1 Butthereisathird caseto consider. Thefactor may be somethinglike (*
(sin (" x 2)) 1), inwhich casewe should consider f (u) = sin(x?). Thiscaseis
handled withthehelpd anintegral table. We don't need aderivativetable, because
wecan just usethesimplifier for that.

(defun deriv (y x) (simplify ‘(d ,y .x)))

(defun integration-table (rules)
(dolist (i-rule rules)
(let ((rule (infix->prefix i-rule)))
(setf (get (exp-op (exp-Ths (exp-lhs rule))) ’int)
rule))))

(defun in-integral-table? (exp)
(and (exp-p exp) (get (exp-op exp) "int)))

(defun integrate-from-table (op arg)
(let ((rule (get op ’int)))
(subst arg (exp-lhs (exp-lhs (exp-lhs rule))) (exp-rhs rule))))

(integration-table

*((Int Tog(x) d x = x * Tog(x) - x)
(Int exp(x) d x = exp(x))
(Int sin(x) d x = - cos(x))
(Int cos(x) d x = sin(x))
(Int tan(x) d x = - Tog(cos(x)))
(Int sinh(x) d x = cosh(x))

(Int cosh(x) d x = sinh(x))
(Int tanh(x) d x = log(cosh(x)))
))

Thelast stepistoinstall i ntegrate as the simplification functionfor the operator
Int. Theobviousway todo thisis:

(set-simp-fn 'Int 'integrate)

Unfortunately, that does not quite work. The problem is that integrate expects
two arguments, corresponding to the two argumentsy and x in (I nty x). But the
conventionfor simplificationfunctionsisto passthemasingleargument, consisting
d the whole expression (Inty x). We could go back and edit Simplify-exp to
changethe convention, but instead | choose to make the conversionthisway:

(set-simp-fn 'Int #'(lambda (exp)
(integrate (exp-lhs exp) (exp-rhs exp))))

Hereare some examples, taken from chapters8 and 9 d Calculus (Loomis 1974):

SIMPLIFIER> (Int x * sin(x ~ 2) d x)

(172 % (- (COS (X ~ 2)))

SIMPLIFIER> (Int ((3 * x " 3) -1/ 3*x ~3))d x)
(3% (X ~4) /7 4) - (I/3*F (X" -2)/-2))
SIMPLIFIER> (Int (3 * x + 2) * -2/3 d x)
((B3*X)+2) ~1/31

SIMPLIFIER> (Int sin(x) ~ 2 * cos(x) d x)

(((SINX) ~3) /3

SIMPLIFIER> (Int sin(x) / (1 + cos(x)) d x)

(-1 * (LOG ((COS X) + 1)))

SIMPLIFIER> (Int (2 * x + 1) / (x “ 2+ x - 1) d x)

LOG ((X " 2) + (X - 1))
SIMPLIFIER> (Int 8 * x 2/ (x ~3+2) "~ 3d x)
(8% ((1/3 % (((X ~3)+2)" -2))/ -2))

All theanswers are correct, although the last one could be made simpler. One quick
way to simplify such an expression is to factor and unfactor it, and then simplify

again:

(set-simp-fn 'Int
#'(lambda (exp)
(unfactorize
(factorize
(integrate (exp-1hs exp) (exp-rhs exp))))))

With this change, weget:

SIMPLIFIER> (Int B * x " 2 / (x "3+ 2) " 3 d x)
(-4/3 * (((X " 3)+2) " -2))

8.7 History and References

A brief history isgivenintheintroduction tothischapter. Aninteresting pointisthat
the history o Lispand d symbolic algebraic manipulation are deeply intertwined.
It is not too gross an exaggeration to say that Lisp wasinvented by John McCarthy
to expressthe symbolic differentiation algorithm. And the development o thefirst
high-quality Lisp system, MacLisp, was driven largely by the needs d MACSYMA,
one d thefirst large Lisp systems. See McCarthy 1958 for early Lisp history and
the differentiation algorithm, and Martin and Fateman 1971 and Moses (1975)for
more details on MACSYMA. A comprehensive book on computer algebra systems
is Davenport 1988. It covers the MACSYMA and REDUCE systems as well as the
algorithms behind those systems.

Because symbolic differentiation is historically important, it is presented in a
number d text books,from theoriginal Lispl.5Primer (Weissmanl967)and Allen's
influential Anatomy o Ligp (1978)to recent textslike Brooks1985, Hennessey 1989,
and Tanimoto 1990. Many d these books use rules or data-driven programming,
but each treats differentiation as the main task, with simplification as a separate
problem. Noned them use the approach taken here, where differentiationis just
another kind o simplification.

Thesymbolicintegration programsSAINT and SIN are covered in Slagle1963and
Moses1967, respectively. The mathematical solution to the problem o integration

in closed term is addressed in Risch 1969, but be warned; this paper is not for the
mathematically naive, and it has no hints on programmingthe algorithm. A better
referenceis Davenport et al. 1988.

I'n this book, techniquesfor improving the efficiency o agebraic manipulation
are covered in sections 9.6 and 10.4. Chapter 15 presents a reimplementation that
does not use pattern-matching, and iscloser to thetechniquesused in MACSYMA.

8.8 Exercises

Exercise 8.2[s] Some notations use the operator ** instead o * to indicate expo-
nentiation. Fx i rfi x->prefi X so that either notationisallowed.

Exercise 8.3[rn] Can the system as is deal with imaginary numbers? What are
somed thedifficulties?

Exercise 8.4[n] There are some simple expressions involving sums that are not
handled by the integrate function. Thefunction can integratea X x2 +boxx+ec
but not5x (ax x2+ b x x * c). Similarly, it canintegratex* + 2 x x3+ x2 but not
(22 +2)?, anditcando x3+ x2 + x + 1 but not (x2+ 1) x (x+1).Modify integrate
sothat it expandsout products (or small exponents) o sums. Yauwill probably want
totry the usual techniquesfirst, and do the expansion only when that fails.

Exercise 8.5[d] Another very general integration technique is called integration
by parts. Itisbased on therule:

]udv =uv — /vdu

/ X cos xdx

So, for example, given
we can take u = X,dv = cosxdx. Then we can determine v = sinx by integration,
and comeup with the solution:

f:ccosa:da: =xsinz — /sin:c X ldz = zsinz + cos x

It iseasy to program an integration by parts routine. The hard partisto program
the control component. Integration by parts involvesarecursivecall to i ntegrate,
and d all the possiblewaysd breaking up the original expressioninto au and a du,

few, if any, will lead to a successful integration. One simplecontrol ruleisto alow
integration by parts only at the top level, not at the recursivelevel. Implement this
approach.

Exercise 8.6 [d] A more complicated approach is to try to decide which ways o
breaking up the original expression are promising and which are not. Derive some
heuristicsfor makingthisdivision, and reimplement integrat e to includeasearch
component, using the search toolsd chapter 6.

Look inacal culustextbook to seehow | sin? xdx iseval uated by twointegrations
by parts and adivision. Implement this techniqueaswell.

Exercise 8.7[m] Writesimplificationrulesfor predicate calculusexpressions. For
example,

(true and X = x)
(false and x = false)
(true or x = true)
(false or x = false)

Exercise 8.8[m] Thesimplificationrule(x / 0 = undefined) isnecessary toavoid
problemswith division by zero, but the treatment o undefined isinadequate. For
example, theexpression ((0 / 0) - (0 / 0)) will smplify to zero, whenit should

smplify to undefined. Add rulesto propagate undefi ned valuesand prevent them
from beingsimplifiedaway.

Exercise 8.9]d] Extendthe method used tohandleundefinedtohandle+infinity
and -infinity aswell.

PART 1l

TOOLS AND TECHNIQUES

CHAPTER 9

Efficiency issues

A Lisp programmer knows the value o everything,
but the cogt of nothing.

—Alan J. Perlis

Ligpis not inherentlyless efficient than other
high-level languages.
—Richard J. Fateman

what isnow call ed rapid-prototyping—devel opinga program quickly, with littleregards

for details. That iswhat we have done sofar in this book: concentrated on getting a
working algorithm. Unfortunately, when a prototypeisto be turned into a production-quality
program, detailscan nolonger beignored. Most"'red™ Al programsdeal withlargeamounts d
data, and with largesearch spaces. Thus, efficiency considerations becomevery important.

However, this does not mean that writing an efficient program is fundamentaly different

fromwritingaworkingprogram. |dedly, devel opingan efficient programshoul d beathree-step
process. First, developaworkingprogram, using proper abstractions so that the programwill be
easy to changeif necessary. Second, instrument the program to determinewhereit is spending
most o the time. Third, replace the slow parts with faster versions, while maintaining the
program'’s correctness.

O ned thereasons Lisp hasenjoyedalong history isbecauseit isan ideal languagefor

Theterm efficiency will be used primarily to talk about the speed or runtimed a
program. To alesser extent, efficiencyisalso used to refer to the space or amount o
storage consumed by a program. Wewill also talk about the cost d aprogram. This
ispartly aused the metaphor "timeismoney," and partly rootedin actual monetary
cogs—if acritical program runs unacceptably dowly, you may need to buy a more
expensivecomputer.

Lisp has been saddled with a reputation as an "inefficient language." Strictly
speaking, it makesno sense to call alanguage efficient or inefficient. Rather, itisonly
aparticularimplementationd thelanguageexecutingaparticular program that can be
measured for efficiency. SosayingLispisinefficientispartly ahistorical claim: some
past implementations have been inefficient. Itisalso partly a prediction: there are
somereasonswhy futureimplementations are expectedto sufferfrominefficiencies.
Thesereasons mainly stem from Lisp's flexibility. Lisp allowsmany decisionsto be
delayed until runtime, and that can maketheruntimetakelonger. Inthe past decade,
the " efficiency gap™ between Lisp and " conventional languages" like FORTRAN or
C has narrowed. Here are the reasons—some deserved, some not—behind Ligp's
reputation for inefficiency:

e Early implementations were interpreted rather than compiled, which made
them inherently inefficient. Common Lispimplementations have compilers,
sothisisnolongeraproblem. WhileLispis(primarily)nolongeraninterpreted
language,itisstill aninteractivelanguage, soit retainsitsflexibility.

o Lisphasoften beenused towriteinterpretersfor embedded languages, thereby
compounding the problem. Consider this quote from Cooper and Wogrin’s
(1988) book on the rule-based programminglanguage OPS5:

Theefficiency of implementationsthat compile rules into executable code
compares favorably to that of programs written in most sequential lan-
guages such as FORTRAN or Pascal. Implementations that compilerules
into data structuresto beinterpreted, asdomany Lisp-based ones, could be
noticeably slower.

HereLispisguilty by association. Thefallaciouschaind reasoningis: Lisphas
been used to writeinterpreters; interpreters are slow; therefore Lisp is slow.
Whileitistrue that Lisp makesit very easy towriteinterpreters, it also makes
it easy towritecompilers. Thisbook isthefirst that concentrateson usingLisp
as both theimplementation and target languagefor compilers.

e Lispencouragesastylewith lotsd function cals, particularly recursivecalls.
Insomeolder systems, function callswereexpensive. Butitisnow understood
that afunction call can be compiledinto asimple branch instruction, and that

many recursivecallscan be made no moreexpensivethan an equivalent itera-
tiveloop (seechapter 22). Itisal sopossibletoinstruct aCommonLispcompiler
to compilecertain functionsinline, so thereisno calingoverhead at all.

Ontheother hand, many Lispsystemsrequiretwofetchesinsteadd onetofind
the codefor afunction, and thuswill beslower. Thisextralevel d indirection
is the price paid for the freedom d being able to redefine functions without
rel oading the whol e program.

a Run-timetype-checkingissow. Lispprovidesarepertoired genericfunctions.
For example, wecanwrite (+ X y) without botheringtodeclareif Xxandy arein-
tegers, floating point, bignums, complex numbers, rational s, or somecombina-
tiond theabove, Thisisvery convenient, butit meansthat typechecksmust be
madeat run time, so the generic+will besower than, say, al6-bitinteger addi-
tionwithnocheckfor overflow. If efficiencyisimportant, CommonLispallows
the programmer toinclude declarationsthat can eliminate run-time checks.

In fact, once the proper declarations are added, Lisp can be asfast or faster
than conventional languages. Fateman (1973)compared the FORTRAN cube
root routine on the PDP-10to aMacLisp tranditeration. The MacLispversion
produced almost identical numerical code, but was18% faster overall, dueto
asuperior function-callingsequence.! The epigraph at the beginning d this
chapter isfrom thisarticle.

Berlinand Weise (1990) show that with aspecial compilation technique called
partia eva uation, speeds 7to 90 timesfaster than conventionallycompiledcode
can be achieved. OF course, partial evaluation could be used in any language,
butitisvery easytodoinLisp.

The fact remains that Lisp objects must somehow represent their type, and
even with declarations, not all o this overhead can be eliminated. Most Lisp
implementations optimizeaccesstolistsand fixnumsbut pay the pricefor the
other, lesscommonly used data types.

a Lispautomatically managesstorage, and soit must periodicallystopand collect
the unused storage, or garbage. In early systems, thiswas done by periodically
sweeping through all & memory, resulting in an appreciable pause. Modern
systems tend to useincremental garbage-collectiontechniques, so pauses are
shorter and usually unnoticed by theuser (althoughthe pauses may still betoo
long for real-time applications such as controlling a laboratory instrument).
The problem with automatic garbage collection these days is not that it is
dow—in fact, the automatic systems do about as well as handcrafted storage

1One could say that the FORTRAN compilerwas" broken." Thisunderscores the problem
d definingtheefficiency of alanguage—dowe judgeby the most popular compiler, by the best
compiler available, or by the best compilerimaginable?

alocation. The problemisthat they make it convenient for the programmer
to generate alot d garbagein thefirst place. Programmersin conventional
languages, who have to clean up their own garbage, tend to be more careful
and use static rather than dynamic storage more often. If garbage becomesa
problem, the Lisp programmer can just adopt these static techniques.

e Lispsystemsare big and leavelittieroomfor other programs. Most Lisp sys-
temsaredesigned to becompl eteenvironments, withinwhichthe programmer
does all program development and execution. For thiskind o operation, it
makes sense to have alarge language like Common Lisp with a huge set o
tools. However, it is becoming more common to use Lisp as just one compo-
nent inacomputing environment that may include UNIX, X Windows, emacs,
and other interacting programs. Inthiskind d heterogeneous environment,
it would be useful to be able to define and run small Lisp processes that do
not include megabytes d unused tools. Some recent compilers support this
option, butitisnot widely availableyet.

e Lispisacomplicated high-level language, and it can be difficult for the pro-
grammer to anticipate the costsd variousoperations. Ingeneral, the problem
is not that an efficient encodingisimpossiblebut that itisdifficultto arriveat
that efficient encoding. Inalanguagelike C, the experienced programmer has
a pretty good idea how each statement will compileinto assembly language
instructions. Butin Lisp, very similar statements can compileinto widely dif-
ferent assembly-leve instructions, depending on subtle interactions between
the declarations given and the capabilitiesdf the compiler. Page 318 givesan
examplewhere adding a declaration speeds up atrivia function by 40 times.
Nonexpertsdo not understand when such declarations are necessary and are
frustrated by the seeming inconsistencies. With experience, the expert Lisp
programmer eventually devel opsagood " efficiency mode," and the need for
such declarations becomesobvious. Recent compilerssuch as CMU'’s Python
providefeedback that eases thislearning process.

Insummary, Lisp makesit possibletowrite programsinawidevariety o styles,
some efficient, some less so. The programmer who writes Lisp programsin the
samestyleas Cprogramswill probablyfind Lisptobed comparablespeed, perhaps
dightly slower. The programmer who uses some d the more dynamic features o
Lisp typically finds that it is much easier to develop a working program. Then, if
the resulting program is not efficient enough, there will be more time to go back
and improve critical sections. Decidingwhich parts d the program use the most
resourcesiscalled instrumentation. It isfoolhardy to try toimprovethe efficiency d
aprogramwithout first checkingif theimprovement will makeareal difference.

OneroutetoefficiencyistousetheLisp prototypeasaspecificationand reimple-
ment that specificationinalower-levellanguage, suchasCor C+. Somecommercial

Alvendorsaretakingthisroute. Analternativeisto use Lispasthelanguagefor both
the prototype and the final implementation. By adding declarations and making
minor changes to the original program, it is possibleto end up with aLisp program
that issimilar in efficiency to aC program.

Thereare four very general and language-independent techniques for speeding
up analgorithm:

e Cachingtheresultsd computationsfor later reuse.
e Compilingso that lesswork isdoneat run time.
e Ddayingthecomputation d partial results that may never be needed.

¢ Indexing adata structurefor quicker retrieval.

This chapter coverseach d the four techniquesin order. It then addresses the
important problem of instrumentation. The chapter concludes with a case study o
thesi mpl i fy program. Thetechniquesoutlined hereresultin al30-fold speed-up in
this program.

Chapter 10 concentrates on lower-level "tricks" for improvingefficiency further.

9.1 CachingResultsd Previous Computations:
Memoization

We start with a ssimple mathematical function to demonstrate the advantages d
cachingtechniques. Later wewill demonstrate more complex examples.

The Fibonacci sequence is defined as the numbers1,1,2,3,5,8, ... where each
number isthesumd the two previousnumbers. The most straightforward function
to compute the nth number in this sequenceisasfollows:

(defun fib (n)
"Compute the nth number in the Fibonacci sequence."
(if(<=nl)1
(+ (fib (- n 1)) (fib (- n 2)))))

The problem with this function is that it computes the same thing over and over
again. Tocompute (fib 5) meanscomputing (fib 4) and (fib 3), but (fib 4)
alsorequires(fib 3),theybothrequire(fib 2),andsoon. Therearewaystorewrite
thefunction to do less computation, but wouldn't it be nicetowritethe function as
is, and have it automatically avoid redundant computation? Amazingly, thereis
away to do just that. Theideais to use the function fib to build a new function
that remembers previously computed results and usesthem, rather than recompute

them. This processis called memoization. Thefunction memo below is ahigher-order

function that takesafunction asinput and returns anew function that will compute
the same results, but not do the same computation twice.

(defun nmem (fn)
"Return a meno-function of fn."
(let ((table (make-hash-table)))
#’(1anbda (x)
(multiple-val ue-bind (val found-p)
(gethash x table)
(if found-p
val
(setf (gethash x table) (funcall fn x)))))))

The expression (memo #'fib) will produce a function that remembers its results
between calls, so that, for example, if we apply it to 3 twice, thefirst call will do the
computation d (fib 3), but the second will just look up the result in a hash table.
Withfibtraced, it wouldlook likethis:

> (setf memo-fib (meno #'fib)) = #<CLOSURE -67300731>

> (funcall nemo-fib 3) =
(1 ENTER FIB: 3)
(2 ENTER FIB: 2)
(3 ENTER FIB: 1)
(3 EXIT FIB: 1)
(3 ENTER FIB: 0)
(3 EXIT FIB: 1)
(2 EXIT FIB: 2)
(2 ENTER FIB: 1)
(2 EXIT FIB: 1)
(1 EXIT FIB: 3)
3

> (funcall memp-fib 3) = 3

Thesecond timewecall memo-f i bwith 3astheargument, theanswer isjust retrieved
rather than recomputed. But the problem is that during the computation d (fib
3), westill compute (fib 2) multipletimes. It would be better if eventheinternal,
recursivecallswere memoized, but they arecallstof i b, whichisunchanged, not to
memo - f I b. We can solve this problem easily enough with the function memoi ze:

(defun memoize (fn-name)
"Replace fn-name's global definition with a memoized version."
(setf (symbol-function fn-name) (memo (symbol-function fn-name))))

When passed asymbol that names afunction, memoi ze changesthe global definition
d the function to a memo-function. Thus, any recursive calls will go first to the
memo-function, rather than to the original function. Thisisjust what wewant. In
thefollowing, we contrast the memoized and unmemoized versionsd fib. First,a
calto(fib 5) withfibtraced:

> (fib 5) =
(1 ENTER FIB: 5)
(2 ENTER FIB: 4)
(3 ENTER FIB: 3)
(4 ENTER FIB: 2)
(5 ENTER FIB: 1)
(5 EXIT FIB: 1)
(5 ENTER FIB: 0)
(5 EXIT FIB: 1)
(4 EXIT FIB: 2)
(4 ENTER FIB: 1)
(4 EXIT FIB: 1)
(3 EXIT FIB: 3)
(3 ENTER FIB: 2)
(4 ENTER FIB: 1)
(4 EXIT FIB: 1)
(4 ENTER FIB: 0)
(4 EXIT FIB: 1)
(3 EXIT FIB: 2)
(2 EXIT FIB: 5)
(2 ENTER FIB: 3)
(3 ENTER FIB: 2)
(4 ENTER FIB: 1)
(4 EXIT FIB: 1)
(4 ENTER FIB: 0)
(4 EXIT FIB: 1)
(3 EXIT FIB: 2)
(3 ENTER FIB: 1)
(3 EXIT FIB: 1)
(2 EXIT FIB: 3)
(1 EXIT FIB: 8)
8

Weseethat (fib 5) and (fib 4) areeach computed once, but (fib 3) iscomputed
twice, (fib 2) threetimes,and (f b 1)fivetimes. Belowwe call (memoize *fib)and
repeat the cal culation. Thistime, each computation isdoneonly once. Furthermore,

when the computationd (fi b 5) isrepeated, the answer is returned immediately
with no intermediate computation, and afurther call to (fi b 6) can makeused the
valueof (fib 5).

> (memoize 'fib) = #<CLOSURE 76626607>

> (fib 5) =
(1 ENTER FIB: 5)
(2 ENTER FIB: 4)
(3 ENTER FIB: 3)
(4 ENTER FIB: 2)
(5 ENTER FIB: 1)
(5 EXIT FIB: 1)
(5 ENTER FIB: 0)
(5 EXIT FIB: 1)
(4 EXIT FIB: 2)
(3 EXIT FIB: 3)
(2 EXIT FIB: 5)
(1 EXIT FIB: 8)
8

> (fib 5) = 8

> (fib 6) =

(1 ENTER FIB: 6)
(1 EXIT FIB: 13)
13

Understanding why this works requires a clear understanding d the distinction
betweenfunctionsandfunctionnames. Theoriginal (def un fib ...) formdoestwo
things: buildsafunction and storesit asthe symbal - functionvalued fib. Within
that function there are two referencesto f i b these are compiled (or interpreted) as
instructions tofetch the symboal -f uncti on o fi band apply it to theargument.

What memoize doesisfetch the original function and transform it with maro to a
function that, when called, will first look in the tableto seeif the answer is aready
known. If not, the original functioniscalled, and anew valueis placedin thetable.
Thetrick isthat mama ze takes this new function and makesit the symbol -f uncti on
valued thefunction name. Thismeansthat all thereferencesin theoriginal function
will now go to the new function, and the table will be properly checked on each
recursivecall. Onefurther complicationto mema thefunction gethash returns both
thevaluefound in the tableand an indicator & whether the key was present or not.
Weusemultiple-value-bi nd to capture both values, so that we can distinguish the
casewhen ni 1 isthe valued the function stored in the table from the case where
thereisno stored value.

If you makeachangetoamemoized function, you need to recompiletheoriginal
definition, and then redo the call to memoize. In developingyour program, rather

than saying (memoize *f), it might be easier to wrap appropriate definitions in a
memoizeform asfollows:

(memoi ze
(defun f (x) ...)
)

Or defineamacro that combinesd e fun and memoi ze:

(defmacro defun-memo (fn args &body body)
"Define a memoized function."
‘(memoize (defun ,fn ,args . ,body)))

(defun-memo f (x) ...)

Bothd these approachesrely onthefact that defunreturnsthenamed thefunction
defined.

n (fib n) | unmemoized memoized | memoized upto

25 121393 1.1 .010 0
26 196418 1.8 .001 25
27 317811 29 .001 26
28 514229 4.7 .001 27
29 832040 8.2 .001 28
30 1346269 12.4 .001 29
31 2178309 20.1 .001 30
32 3524578 324 .001 31
33 5702887 52,5 .001 32
34 9227465 81.5 .001 33
50 2.0e10 — .014 A
100 5.7e20 — .031 50
200 4.5e41 — .096 100
500 2.2e104 — 270 200
1000 7.0e208 — .596 500
1000 7.0e208 - .001 1000
1000 7.0e208 — .876 0

Now we show atablegiving thevaluesd (fib n) for certain», and thetimein
seconds to compute the value, before and after (memoize 'fib). For larger values
o n, approximationsare shown in the table, although fi b actually returns an exact
integer. With theunmemoized version, | stopped at n = 34, because thetimeswere
getting too long. For the memoized version, evenn = 1000 took under a second.

Notethereare threeentriesfor (fi b1000). Thefirst entry representstheincre-
mental computation when the table contains the memoized values up to 500, the
second entry shows the time for a table lookup when (fi b 1000) is already com-
puted, and the third entry is the time for a compl ete computation starting with an
empty table.

It should be noted that there are two general approaches to discussing the effi-
ciency d analgorithm. Oneisto timetheal gorithmon representativeinputs, aswe
didinthistable. Theother istoanalyzethe asymptoticoomplexity d thealgorithm. For
thef i b problem, an asymptoti canalysi sconsidershow longit takestocompute (fi b
n) asn approachesinfinity. Thenotation O(f (n))isused todescribethe complexity.
For example, the memoized versionf i bisan O(n) algorithm because the computa-
tion timeisbounded by someconstant timesn, for any valued n. Theunmemoized
version,itturnsout,isO(1.7"), meaningcomputingf i bd n+1 cantakeuptol.7times
aslongasfibd n. Insimpler terms, the memoized version has linear complexity,
while the unmemoized version has exponentid complexity. Exercise9.4 (page 308)
describeswherethel.7 comesfrom, and givesatighter bound on the complexity.

Theversiond nmeo presented aboveisinflexiblein several ways. First, it only
worksfor functions d one argument. Second, it only returns a stored value for
argumentsthat are eql, becausethat is how hash tableswork by default. For some
applicationswewant toretrievethestoredval uefor argumentsthat areequal . Third,
thereisnoway to delete entriesfrom the hash table. In many applicationsthereare
timeswhen it would be good to clear the hash table, either becauseit has grown too
large or becausewe havefinished aset d related problemsand are movingonto a
new problem.

Theversionsd n&oand merd ze below handl e these three problems. They are
compatiblewiththepreviousversionbut add three new keywordsfor theextensions.
The rame keyword stores the hash table on the property list d that name, soit can
be accessed by cl ea-memoi ze. The test keyword tellswhat kind d hash table to
create: eqg, egl, or equal. Findly, the key keyword tells which arguments d the
function toindex under. Thedefaultisthefirst argument (to be compatiblewith the
previousversion), but any combinationd the arguments can be used. If youwant
to useall thearguments, specify i denti ty asthekey. Notethat if thekey isalist o
arguments, then youwill haveto use equal hash tables.

(defun memo (fn name key test)
"Return a memo-function of fn."
(let ((table (make-hash-table :test test)))
(setf (get name 'neno) table)
#'(lambda (&rest args)
(let ((k (funcall key args)))
(multiple-value-bind (val found-p)
(gethash k table)
(if found-p val

(setf (gethash k table) (apply fn args))))))))

(defun memoize (fn-name &key (key #°first) (test #'eql))
"Replace fn-name's global definition with a memoized version."
(setf (symbol-function fn-name)

(memo (symbol-function fn-name) fn-name key test)))

(defun clear-memoize (fn-name)
"Clear the hash table from a mero function.”
(let ((table (get fn-name 'memo)))
(when table (c1rhash table))))

9.2 CompilingOne Languageinto Another

In chapter 2we defined anew language—thelanguaged grammar rules—whichwas
processed by an interpreter designed especially for that language. Aninterpreteris
a program that looksat some data structure representing a' program' or sequence
d rulesd some sort and interpretsor evaluatesthose rules. Thisisin contrast toa
compiler, whichtranslatessomeset d rulesinonelanguageinto aprograminanother
language.

Thefunction generatewasan interpreter for the" language'™ defined by the set o
grammar rules. Interpreting these rulesisstraightforward, but the processissome-
what inefficient,in that generate must continually search through the "' grammar* to
find the appropriate rule, then count thelength d theright-hand side, and so on.

A compilerfor thisrule-languagewoul d takeeach ruleand trand ateitintoafunc-
tion. Thesefunctions could then call each other with no need to search through the
grammar. Weimplement this approach with the function compi 1e-rul e. It makes
use d the auxiliary functions one-of and rul e-1hs and rul e- rhs from page 40,
repeated here;

(defun rule-lhs (rule)
"The left-hand side of a rule."
(first rule))

(defun rule-rhs (rule)
"The right-hand side of a rule."
(rest (rest rule)))

(defun one-of (set)
"Pick one element of set, ad meke a list of it."
(list (random-elt set)))

(defun random-elt (choices)
"Choose an element from a list at random."
(elt choices (random (length choices))))

The function compile-rule turns arule into a function definition by building up
Lisp code that implements all the actions that generate would take in interpreting
therule. Thereare three cases. If every element d the right-hand side is an atom,
then the ruleisalexical rule, which compilesinto acal to one-of to pick aword at
random. If thereisonly oneelement o theright-handside, thenbuild-codeiscaled
to generate codefor it. Usualy, thiswill beacall to append to build up alist. Findly,
if there are several elementsin the right-hand side, they are each turned into code

by build-code; are given a number by build-cases; and then acase statement is
constructed to chooseoned the cases.

(defun compile-rule (rule)
"Translate a granmar rule into a LISP function definition."
(let ((rhs (rule-rhs rule)))
'(defun . (rule-1hs rule) O
,(cond ((every #atom rhs) ‘(one-of ’,rhs))
((length=1 rhs) (build-code (first rhs)))
(t '(case (random ,(length rhs))
.@(build-cases0 rhs)))))))

(defun build-cases (number choices)
"Return a list of case-clauses"
(when choices
(cons (list number (build-code (first choices)))
(build-cases (+ number 1) (rest choices)))))

(defun build-code (choice)
"Append together multipl e constituents"
(cond ((null choice) nil)
((atom choice) (list choice))
((1ength=1 choice) choice)
(t '(append ,e(mapcar #build-code choice)))))

(defun 1ength=1 (x)
"I's X alist of length 12"
(and (consp x) (null (rest x))))

The Lisp code built by compile-rule must be compiled or interpreted to make it
available to the Ligp system. We can do that with one o the following forms.

Normally we would want to call compile but during debuggingit may be easier
not to.

(dolist (rule *grammar*) (eval (compile-rule rule)))
(dolist (rule *grammar*) (compile (eval (compile-rule rule))))

Onefrequent way to use compilationisto defineamacro that expandsinto the code
generated by the compiler. That way, we just typein calls to the macro and don't
haveto worry about makingsure all thelatest rules have been compiled. We might
implement thisasfollows:

(defmacro defrule (&rest rule)
"Define a grammar rule"
(compile-rule rule))

(defrule Sentence -> (NP VP))
(defrule NP -> (Art Noun))

(defrule VP -> (Verb NP))

(defrule Art -> the a)

(defrule Noun -> man ball woman table)
(defrule Verb -> hit took saw 1iked)

Actualy, thechoiced usingonebiglistd rules(like*gr ammar*) versususingindivid-
ual macrostodefinerulesisindependentd thechoiced compiler versusinterpreter.
Wecouldjustaseasilydefinedef rul e simplytopushtheruleonto* gramer*. Macros
likedefrul e are useful whenyouwant to definerulesin different places, perhapsin
severa separatefiles. Thedef paramet er method is appropriate when dl the rules
can be definedin one place.

We can seethe Lisp codegenerated by compile-rul eintwoways: by passingit
aruledirectly:

> (compile-rule '(Sentence -> (NP VP)))
(DEFUN SENTENCE ()
(APPEND (NP) (VP)))

> (compile-rule ‘(Noun -> man ball woman table))
(DEFUN NON ()
(ONE-OF '(MAN BALL WOVAN TABLE)))

or by macroexpandingadef rul e expression. Thecompiler wasdesignedto produce
the same codewewerewritingin our first approach to the generation problem (see

page35).

> (macroexpand '(defrule Adj* -> () Adj (Adj Adj*)))
(DEFUN ADJ* ()
(CASE (RANDOM 3)
(0 NIL)
(1 (ADJ))
(2 (APPEND (ADJ) (ADJ*)))))

Interpreters are usually easier to write than compilers, although in this case, even
thecompilerwas not too difficult. Interpreters areal soinherently moreflexiblethan
compilers, because they put off making decisions until the last possible moment.
For example, our compiler considerstheright-handsided aruleto bealistd words
only if every element is an atom. In al other cases, the elements are treated as
nonterminals. Thiscould cause problemsif we extended the definition o Noun to
include the compound noun* chow chow"':

(defrule Noun -> man ball woman table (chow chow))

Therulewould expand into the following code:

(DEFUN NOIN ()
(CASE (RANDOM 5)
(0 (MAN))
(1 (BALL))
(2 (WOMAN))
(3 (TABLE))
(4 (APPEND (CHOW) (CHOW)))))

Theproblemisthat man and ball and all the others aresuddenly treated asfunctions,
not as literal words. So we would get a run-time error notifying us d undefined
functions. Theequivalentrulewouldcausenotroublefor theinterpreter, whichwaits
until it actually needs to generate asymbol to decideif itisaword or anonterminal.
Thus, the semantics d rules are different for the interpreter and the compiler, and
weas programimplementors haveto bevery careful about how we specify the actual
meaning d arule. Infact, thiswas probably abugin the interpreter version, since
it effectively prohibitswordslike' noun"” and " sentence" from occurringaswords if
they are also the names d categories. One possibleresolution d the conflict is to
say that an element d aright-hand side representsaword if it isan atom, and alist
of categoriesif itisalist. if wedid indeed settle on that convention, then we could
modify both theinterpreter and thecompilertocomplywith theconvention. Another
possibilitywould beto represent words as strings, and categoriesas symbols.

Theflipsided losingrun-timeflexibilityisgai ningcompil e-timediagnostics. For
example, it turns out that on the Common Lisp system | am currently using, | get
some useful error messageswhen | try to compilethe buggy versiond Nourt

> (defrule Noun -> man ball woman table (chow chow))
The following functions were referenced but don't seem defined:
GON referenced by NOWN
TABLE referenced by NOWN
WOVMN referenced by NOUN
BALL referenced by NOWN
MAN referenced by NON
NOUN

Another problemwith thecompil ationschemeoutlined hereisthe possibilityd name
clashes. Under the interpretation scheme, the only names used were the function
generat e and the variable*grammar*. With compilation, every left-hand sided a
rule becomes the name d afunction. The grammar writer has to make sure he or
sheisnot usingthe named an existingLispfunction, and henceredefiningit. Even
worse, if more than one grammar is being devel oped at the same time, they cannot
have any functions in common. If they do, the user will have to recompilewith
every switchfrom one grammar to another. This may makeit difficult to compare
grammars. The best away around this problemisto use the Common Lisp idea o

packages, but for small exercises name clashes can be avoided easily enough, sowe
will not explore packages until section24.1.

The mgjor advantage d a compiler is speed d execution, when that makes a
difference. For identical grammars running in one particular implementation o
Common Lisp on one machine, our interpreter generates about 75 sentences per
second, whilethe compil edapproach turnsout about 200. Thus, itismorethantwice
asfast, but thedifferenceisnegligibleunl esswe need to generate many thousandsd
sentences. Insection 9.6 wewill seeanother compilerwithanevengreater speed-up.

Theneed to optimizethe code produced by your macrosand compilersultimately
depends on the quality d the underlying Lisp compiler. For example, consider the
followingcode:

> (defun f1 (n 1)
(let (11 (first 1))
(12 (second 1)))
(expt (* 1 (+ n 0))
(- 4 (length (list 1112))))))
F1

> (defun f2 (n 1) (* nn)) = F2

> (disassemble *fl)

6 PUSH ARGI0 ;N
7 MOVEM PDL- PUSH
8 * PDL-POP
9 RETURN PDL-POP

F1

> (disassemnle *f2)

6 PUSH ARGO i N
7 MOVEM PDL- PUSH
g * PDL-POP
9 RETURN PDL-POP

F2

This particular Lisp compiler generates the exact same code for f1 and f2. Both
functions square the argument n and the four machineinstructions say, ""Take the
0th argument, makeacopy of it, multiply thosetwo numbers, and return theresult."
It’s clear the compiler has some knowledge of the basic Lisp functions. In the case
d fl, it was smart enough to get rid d the locd variables11 and 12 (and their
initialization),aswell asthecallstofi rst, second, length, and 1i st and mostd the
arithmetic. Thecompiler coulddo thisbecauseit hasknowledgeabout thefunctions
length and li st and the arithmetic functions. Somed this knowledge might bein
theformd ssmplificationrules.

As a user d this compiler, there's no need for me to write clever macros or
compilersthat generate streamlined codeasseenin f 2 | can blindly generate code
with possible inefficiencies like those in fl, and assume that the Lisp compiler
will cover up for my laziness. With another compiler that didn't know about such
optimizations, | would haveto be more careful about the code | generate.

9.3 Delaying Computation

Back on page45, we saw aprogramtogenerateall stringsderivablefromagrammar.
Onedrawback d thisprogramwasthat somegrammars produceaninfinitenumber
o strings, so the programwould not terminate on thosegrammars.

It turns out that we often want to deal with infinite sets. O course, we can't
enumeratedl the elementsd aninfiniteset, but we should be ableto represent the
set and pick elementsout oneat atime. Inother words, wewant to beableto specify
how a set (or other object) isconstructed, but delay the actual construction, perhaps
doingit incrementallyover time. Thissoundslikea jobfor closures: we can specify
theset constructor asafunction, and then call thefunction sometimelater. Wewiill
implement thisapproach with the syntax used in Scheme—themacrodel ay buildsa
closureto be computed later, and the function force calls that function and caches
away thevalue. Weusestructuresd typedel ay toimplementthis. Adelay structure
hastwofields: thevalueand thefunction. Initidly, thevaluefieldisundefined, and
the function field holds the closurethat will compute the value. Thefirst timethe
delay isforced, thefunctioniscalled, and itsresult isstored in thevaluefield. The
function field is then set to nil to indicate that thereis no need to call the function
again. Thefunctionforce checksif thefunction needsto becalled, and returnsthe

value. If forceispassed an argument that isnot adelay, it just returnsthe argument.

(defstruct delay (value nil) (function nil))

(defmacro delay (&rest body)
"A computation that can be executed later by FORCE."
'(make-delay :function #'(lambda () . ,body)))

(defun force (x)
"Find the value of x, by computing if it is a delay."
(if (not (delay-p x))
X
(progn
(when (delay-function x)
(setf (delay-value x)
(funcall (delay-function x)))
(setf (delay-function x) nil))
(delay-value x))))

Here's anexampled the used del ay. Thelist x isconstructed using acombination
d normal evaluationand delayedeval uation. Thus, thelisprinted whenxiscreated,
but the 2isnot:

> (setf x (list (print 1) (delay (print 2)))) =
1
(1 #S(DELAY :FUNCTION (LAMBDA () (PRINT 2))))

Thesecond element isevaluated (and printed) whenit isforced. But thenforcingit
again just retrievesthe cached value, rather than callingthe function again:

> (force (second x)) =
2
2

> x = (1 #S(DELAY :VALUE 2))

> (force (second x)) = 2

Now let's see how delays can be used to buildinfinitesets. An infinite set will be
considered a special cased what we will call a pipe alist with af i rst component
that has been computed, and a rest component that is either a normal list or a
delayed value. Pipes havealso been called delayed lists, generated lists, and (most
commonly)streams. Wewill usetheterm pipebecause Sreamalready has ameaning
in Common Lisp. The book Artificial Inteligence Programming (Charniak et al. 1987)

asocallsthesestructures pipes, reserving streamsfor delayedstructures that do not
cachecomputed results.

Todistinguish pipesfrom lists, wewill use the accessorshead and tai 1 instead
d firstand rest. Wewill also useempty-pipe instead o nil, make-pipe instead
d cons, and pipe-eltinstead o elt. Note that make-pipe isa macro that delays
evauationd thetail.

(defmacro make-pipe (head tail)
"Create a pipe by evaluating head and delaying tail."
'(cons ,head (delay ,tail)))

(defconstant empty-pipe nil)

(defun head (pipe) (first pipe))
(defun tail (pipe) (force (rest pipe)))

(defun pipe-elt (pipe 1)
"The i-th element of a pipe, 0-based"
(if (=10
(head pipe)
(pipe-elt (tail pipe) (- i 1))))

Here's afunction that can be used to make alarge or infinite sequence d integers
with delayed eval uation:

(defun integers (&optional (start 0) end)
"A pipe of integers from START to END.
If B\D is nil, this is an infinite pipe."
(if Cor (null end) (<= start end))
(make-pipe start (integers (+ start 1) end))
nil))

And hereisan exampled itsuse. The pipe ¢ representsthe numbersfrom 0 toin-
finity. Whenit iscreated, only the zeroth element, O, isevaluated. The computation
d theother elementsisdelayed.

> (setf ¢ (integers 0)) = (0 . #S(DELAY :FUNCTION #<CLOSURE -77435477>))

> (pipe-elt ¢ 0) = 0

Callingp ipe-elttolookat thethird element causesthefirst through third elements
to be evaluated. The numbers0 to 3 are cached in the correct positions, and further
elements remain unevaluated. Another call topipe-elt with alarger index would
forcethem by evaluating the delayed function.

> (pipe-elt ¢ 3) = 3

> C =
(0 . #S(DELAY
: VALUE
(1 . #S(DELAY
: VALUE
(2 . #S(DELAY
: VALUE
(3 . #S(DELAY

: FUNCTION
#<CLOSURE -77432724>))3))))))

Whilethisseemstowork fine, thereisaheavy priceto pay. Every delayed valuemust
be stored in atwo-element structure, where one d the elementsisaclosure. Thus,
there is some storagewasted. Thereisalso sometimewasted, astail orpipe-elt
must traversethe structures.

Analternaterepresentation for pipesisas (value. closure) pairs,wheretheclosure
values are stored into the actual cons cells as they are computed. Previously we
needed structuresd typedel ay to distinguish adelayedfrom a nondelayed object,
but in a pipeweknow the rest can beonly oned threethings: nil, alist, or adelayed
value. Thus, we can usetheclosuresdirectly instead d usingdelay structures, if we
havesomeway d distinguishingclosuresfromlists. Compiledclosuresareatoms, so
they canawaysbedi stingui shedfromlists. But someti mescl osuresarei mplemented
as lists beginning with 1ambda or some other implementation-dependent symbol.2
The built-in function functionp is defined to be true d such lists, aswel asd all
symbolsand all objectsreturned by compile. But using functionp means that we
can not havea pipethat includes the symbol 1ambda as an el ement, becauseit will be
confused for aclosure:

> (functionp (last '(theta iota kappa lambda))) = T

If we consistently use compiled functions, then we could eliminate the problem by
testing with the built-in predicate compiled-function-p. Thefollowingdefinitions
do not make this assumption:

(defmacro make-pipe (head tail)
"Create a pipe by evaluating head and delaying tail."
‘(cons .head #’(lambda () ,tail)))

2In KCL, thesymbol 1ambda- closureisused, andin Allegro, itisexcl : . Texical -closure.

(defun tail (pipe)
"Return tail of pipe or list, and destructively update
the tail if it is a function."
(if (functionp (rest pipe))
(setf (rest pipe) (funcall (rest pipe)))
(rest pipe)))

Everything else remains the same. If we recompilei ntegers (becauseit uses the
macro meke- pi pe), we see thefollowing behavior. First, creation d the infinite pipe
cissimilar:

> (setf c (integers 0)) = (0 ., #CLOSURE 77350123>)
> (pipe-elt c 0) = 0

Accessing an element o the pipeforcesevaluation d all the intervening elements,
and as beforel eavessubsequent el ements uneval uated:

> (pipe-elt ¢ 5) = 5
>c¢c = (012345 . #CLOSURE 77351636>)

Pipescan also be used for finitelists. Hereweseeapiped length11:

> (setf 1 (integers 0 10)) = (0 . #<CLOSURE 77375357>)

> (pipe-elt i 10) = 10
> (pipe-elt i 11) = NIL
>i=(012345678910)

Clearly, thisversion wastes less space and is much neater about cleaning up after
itself. Infact, acompletely evaluated pipeturnsitsaf into alist! Thisefficiency was
gained at the sacrificeof agenera principled program design. Usually we strive
to build more complicated abstractions, like pipes, out & simpler ones, likedelays.
Butinthiscase, part o thefunctionality that delayswere providingwas duplicated
by the cons cells that make up pipes, so the more efficientimplementation o pipes
does not usedelaysat all.
Hereare some more utility functions on pipes:

(defun enumerate (pipe &key count key (result pipe))
"Go through all (or count) elements of pipe,
possibly applying the KEY function. (Try PRINT.)"

; Returns RESULT, which defaults to the pipe itself.
(if (or (eq pipe empty-pipe) (eql count 0))

result
(progn
(unless (null key) (funcall key (head pipe)))
(enumerate (tail pipe) :count (if count (- count 1))
:key key :result result)}))

(defun filter (pred pipe)
"Keep only items in pipe satisfying pred.”
(if (funcall pred (head pipe))
(make-pipe (head pipe)
(filter pred (tail pipe)))
(filter pred (tail pipe))))

And here's an application d pipes. generating prime numbers using the sieve d
Eratosthenesalgorithm:

(defun sieve (pipe)
(make-pipe (head pipe)
(filter #'(lambda (x) (/= (mod x (headpipe)) 0))

(sieve (tail pipe)))))

(defvar "primes* (sieve (integers 2)))

> *primes* = (2 . #<CLOSURE 3075345>)

> (enumerate *primes* :count 10) =
(23571211317 19 23 29 31 . #<CLOSURE 5224472>)

Finaly,let's return to the problem o generatingall stringsinagrammar. Firstwere
going to need some more utility functions:

(defun map-pipe (fn pipe)
"Map fn over pipe, delaying all but the first fn call."”
(if (eq pipe empty-pipe)
empty-pipe
(make-pipe (funcall fn (head pipe))
(map-pipe fn (tail pipe)))))

(defun append-pipes (x y)
"Return a pipe that appends the elements of x and y."
(if (eq x empty-pipe)
Y
(make-pipe (head x)
(append-pipes (tail x) y))))

(defun mappend-pipe (fn pipe)

"Lazily mg fn over pipe, appending results."
(if (eq pipe empty-pipe)

empty-pi pe

(let ((x (funcall fn (head pipe))))

(make-pipe (head x)
(append-pipes (tail x)
(mappend- pi pe
fn (tail pipe)))))))

Now we can rewrite generate-all and combine-all to use pipesinstead o lists.
Everythingel seisthe same as on page 45.

(defun generate-all (phrase)
"Generate a random sentence or phrase"
(if (1istp phrase)
(if (null phrase)
(listnil)
(combine-all -pipes
(generate-all (first phrase))
(generate-all (rest phrase))))
(let ((choices (rule-rhs (assoc phrase *grammar*))))
(if choices
(mappend-pipe #'generate-all choices)
(list (list phrase))))))

(defun combine-all-pipes (xpipe ypipe)
"Return a pipe of pipes formed by appending ay to an x"
;; In other words, form the cartesian product.

(mappend-pi pe
#(lambda (y)
(map-pipe #(lambda (x) (append-pipes x y))
xpipe))
ypipe)]

With these definitions, here's the pipe d &l sentences from *grammar2* (from
page43):

> (setf ss (generate-all 'sentence)) +
((THE . #&CLO8JURE 27265720>) . #COLOSJRE 27266035>)

> (enumerate ss :count 5) =

((THE . #<CLOSURE 27265720>)

(A . #<CLOSURE 27273143>)

(THE . #<CLOSURE 27402545>)

(A . #<CLOSURE 27404344>)

(THE . #<CLOSURE 27404527>)

(A . #<CLOSURE 27405473>) . #<CLOSURE 27405600>)

> (enumerate ss :count 5 :key #'enumerate) =
((THE MAN HIT THE MAN)

(A MAN HIT THE MAN)

(THE BIG MAN HIT THE MAN)

(A BIG MAN HIT THE MAN)

(THE LITTLE MAN HIT THE MAN)

(THE . #<CLOSURE 27423236>) . #<CLOSURE 27423343>)

> (enumerate (pipe-elt ss 200)) =+
(THE ADIABATIC GREEN BLUE MAN HIT THE MAN)

Whilewewereabl etorepresent theinfiniteset of sentences and enumerateinstances
d it, we still haven't solved all the problems. For one, this enumeration will never
get to a sentence that does not have' hit the man" as the verb phrase. Wewiill see
longer and longer listsd adjectives, but no other change. Another problemis that
left-recursiverules will still cause infinite loops. For example, if the expansion for
Adj* had been (Adj* -> (Adj* Adj) ()) instead d (Adj* -> () (Adj Adj*)),
then the enumerationwould never terminate, because pipes need to generate afirst
element.

We have used delays and pipes for two main purposes. to put of until later
computations that may not be needed at all, and to havean explicitrepresentation o
largeor infinitesets. It should be mentioned that thelanguageProlog hasadifferent
solutiontothefirst problem (butnot thesecond). Asweshall seeinchapter 11, Prolog
generates solutions one at atime, automatically keeping track o possible backtrack
points. Where pipes allow usto represent an infinite number o alternativesin the
data, Prolog alowsusto represent those alternativesin the programitself.

Exercise 9.1[h] When given afunction f and a pipe p, mappend-pipe returns a
new pipethat will eventuallyenumerateall of (f (first p)),thendld (f (second
p)), and soon. Thisisdeemed "unfair"if (f (first p)) hasaninfinite number o
elements. Defineafunctionthat will fairlyinterleaveelements, sothat all d themare
eventually enumerated. Show that thefunction worksby changinggenerate-allto
work withit.

9.4 IndexingData

Lisp makesitvery easy touselistsastheuniversal datastructure. A listcanrepresent
aset or an ordered sequence, and alist with sublists can represent atree or graph.
For rapid prototyping, it is often easiest to represent datain lists, but for efficiency
thisis not alwaysthe best idea. Tofind anelementinalist o length nwill taken/2
stepson average. Thisistruefor asimplelist, an associationlist, or a property list.
if ncan belarge, it isworth looking at other data structures, such as hash tables,
vectors, property lists, and trees.

Picking the right data structure and algorithmisasimportant in Lisp asitisin
any other programming language. Even though Lisp offersawide variety d data
structures, it isoften worthwhileto spend someeffort on building just the right data
structurefor frequently used data. For example, Lisp's hash tablesare very general
and thus can be inefficient. You may want to build your own hash tables if, for
example, you never need to del ete el ements, thus makingopen hashing an attractive
possibility. Wewill seean exampled efficientindexingin section 9.6 (page297).

9.5 Instrumentation: DecidingWhat
to Optimize

Because Lisp is such a good rapid-prototyping language, we can expect to get a
workingimplementation quickly. Beforewegoabout tryingtoimprovetheefficiency
d the implementation, it is a good idea to see what parts are used most often.
Improvinglittle-usedfeaturesisawaste d time.

Theminimal support we needistocount thenumber o callstoselectedfunctions,
and then print out thetotals. Thisiscalled profilingthe functions.® For eachfunction
to be profiled, wechange the definition so that it increments acounter and thencalls
the original function.

Most Lisp systems have some built-in profiling mechanism. If your system has
one, by all meansuseit. Thecodein thissectionis providedfor thosewholack such
afeature, and asan exampled how functions can be manipulated. Thefollowingis
asimple profilingfacility. For each profiledfunction, it keepsacount d the number
d timesitiscalledunder the prof i 1e-count property d thefunction's name.

3The terms metering and monitoringare sometimes used instead o profiling.

(defun profilel (fn-nane)

"Make the function count how often it is called"
;; First save away the ol d, unprofiled function
;; Then make the name be a new function that increnents
;; acounter and then calls the original function
(let ((fn(synbol-function fn-nane)))

(setf (get fn-name " unprofiled-fn) fn)

(setf (get fn-name'profile-count) 0)

(setf (synbol-function fn-name)

(profiled-fn fn-name fn))
fn-nane))

(defun unprofilel (fn-nane)
"Make the function stop counting how often it is called."
(setf (symbol-function fn-nane) (get fn-nane ’unprofiled-fn))
f n-name)

(defun profiled-fn(fn-name fn)
"Return a function that increments the count."
(lanbda (&rest args)
(incf (get fn-name 'profile-count))
(apply fn args)))

(defun profile-count (fn-name) (get fn-nanme ' profile-count))

(defun profile-report (fn-names &optional (key # profile-count))
"Report profiling statistics on given functions."
(loop for name in(sort fn-names #'> :key key) do
(format t "~&~7D "A" (profile-count name) nang)))

That's all we need for the bare-bonesfunctionality. However, there are afew ways
we could improvethis. Firgt, it would be nice to have macrosthat, like trace and
untrace, allow the user to profile multiplefunctions at onceand keep track o what
has been profiled. Second, it can be helpful to see the length d time spent in each
function, aswell asthe number o calls.

Also, itisimportant to avoid profilingafunction twice, since that would double
the number d callsreported without alerting the user d any trouble. Suppose we
entered thefollowing sequence d commands:

(defun f (x) (g x))

(profilel 'f)
(profilel 'f)

Thenthedefinitiond f would beroughly:

(lamhda (&rest args)
(incf (get 'f 'profile-count))
(apply # (lanbda (&rest args)
(incf (get 'f 'profile-count))
(apply # (lanbda (x) (g x))
args))
args))

The result is that any cal to f will eventually cal the original f, but only after
incrementing the count twice.

Another considerationiswhat happenswhen a profiledfunction isredefined by
the user. The only way we could ensure that a redefined function would continue
profilingwould be to change the definition d the macro def un to look for functions
that should be profiled. Changing system functions like def un is arisky prospect,
and in Common Lisp the Language, 2d edition, it is explicitly disallowed. Instead,
well do the next best thing: ensure that the next call to prof i 1ewill reprofileany
functions that have been redefined. Wedo thisby keepingtrack d both the original
unprofiled function and the profiled function. We also keep alist o all functions
that are currently profiled.

In addition, wewill count the amount d time spent in each function. However,
the user is cautioned not to trust the timingfigurestoo much. First, they include the
overhead cost d the profilingfacility. This can be significant, particularly because
thefacility conses, and thus can force garbage coll ectionsthat would not otherwise
havebeen done. Second, the resolution d the system clock may not be fine enough
to makeaccuratetimings. For functionsthat takeabout 1/10 d asecond or more, the
figureswill berdliable, but for quick functions they may not be.

Hereisthe basic codefor prof i1eand unprofi 1€

(defvar *profiled-functions* nil
"Function names that are currently profiled")

(defmacro profile (&rest fn-names)
"Profile fn-names. Wth no args, list profiled functions."
‘(mapcar #’profilel
(setf *profiled-functions*
(union *profiled-functions* *,fn-names))))

(defmacro unprofi 1e (&rest fn-names)

"Stop profiling fn-names. Wth no args, stop all profiling."
*(progn

(mapcar #’unprofile

L(if fn-names “’,fn-names '*profiled-functions*))
(setf *profiled-functions*
LG (null fn-names)
ni1

"(set-difference *profiled-functions*
*,fn-names)))))

The idiom ‘’,fn-names deserves comment, since it is common but can be con-
fusing at first. 1t may be easier to understand when written in the equivalent form
‘(quote ,fn-names). Asalways, thebackquotebuildsastructure with bothconstant
and evaluated components. In this case, the quot e is constant and the variable
fn-names is evaluated. In MacLisp, the function kwot e was defined to serve this
purpose:

(defun kwote (x) (list 'quote x))

Now we need tochangepr of i 1el and unprofi lel todo the additional bookkeeping:
For prof ilel, there aretwo cases. If the user doesapr of i 1e1 on the samefunction
nametwicein arow, then on the second timewewill noticethat the current function
is the same as the functioned stored under the prof ited-f n property, so nothing
more needs to be done. Otherwise, we create the profiledfunction, store it as the
current definitiond the nameunder the pr of i 1ed -f n property, save the unprofiled
function, and initializethe counts.

(defun profilel (fn-nane)
"Make the function count how often it is called
;; First save away the ol d, unprofiled function
;; Then nmake the nane be a new function that increments
;; acounter and then calls the original function
(let «(fn(synbol-function fn-nane)))
(unless (eq fn(get fn-name'profiledfn))
(let ((newfn (profiled-fn fn-name fn)))
(setf (symbol-function fn-nane) newfn
(get fn-nane 'profiled-fn) newfn
(get fn-name 'unprofiled-fn) fn
(get fn-name 'profile-time) 0
(get fn-name 'profile-count) 0))))
f n-nane)

(defun unprofilel (fn-name)
"Make the function stop counting how often it is called."
(setf (get fn-name'profiletine) 0)
(setf (get fn-name'profile-count) 0)
(when (eq (synbol -function fn-nane) (get fn-name ' profiled-fn))
;3 normal case: restore unprofiled version
(setf (synmbol-function fn-name)
(get fn-nane ' unprofiled-fn)))
fn-nane)

Now we look into the question d timing. Thereis a built-in Common Lisp func-
tion, get -internal -real -ti ne, that returns the elapsed time since the Lisp ses-
sion started. Because this can quickly become a bignum, some implementations
provide another timingfunction that wraps around rather than increasing forever,
but which may have a higher resolution than get -i nternal-real-ti m. For ex-
ample, on Tl Explorer Lisp Machines, get -internal-real-ti me measures 1/60-
second intervals, whileti me:m crosecond-ti me measures 1/1,000,000-second in-
tervals, but the value returned wraps around to zero every hour or so. The func-
tion time:microsecond-time-di fference is used to compare two d these num-
berswith compensation for wraparound, aslong as no more than one wraparound
hasoccurred.

Inthe codebdow, | usethe conditional read macro characters#+and #- todefine
the right behavior on both Explorer and non-Explorer machines. We have seeen
that # is a special character to the reader that takes different action depending on
thefollowingcharacter. For example, #°f nisread as (f unction fn). Thecharacter
sequence #+ isdefined so that #+feature expression reads asexpression if the featureis
definedinthe current implementation, and asnothingat all if itisnot. Thesequence
#- actsin just the opposite way. For example, on a Tl Explorer, we would get the
following:

>'(hi #+TI t #+Symbolics s #-Explorer e #-Mac m) = (H T M)
Theconditional read macro characters are used in thefollowingdefinitions:

(defun get-fast-time ()
"Return the elapsed time. This may wrap around;
use FAST-TI ME-DI FFERENCE t o conpare.”
#+Expl orer (time:microsecond-time) ; do this on an Explorer
#-Explorer (get-internal -real -time)) ; do this on a non-Expl orer

(defun fast-time-difference (end start)
"Subtract two time points.”
#+Expl orer (time:microsecond-time-difference end start)
#-Explorer (- end start))

(defun fast-ti me->seconds (time)
"Convert a fast-time interval into seconds."
#+Explorer (/ time 1000000.0)
#-Explorer (/ time internal-time-units-per-second))

Thenext stepistoupdatepr of i 1 ed -f n tokeeptrack o thetimingdata. Thesimplest
way to do thiswould beto set avariable, say start, tothetimewhen afunctionis
entered, runthefunction, and thenincrement thefunction'stimeby thedifferencebe-
tweenthecurrenttimeand start. Theproblemwiththisapproachisthat everyfunc-

tioninthecdl stack getscreditfor thetimed eachcalledfunction. Supposethefunc-
tionf calsitsaf recursivelyfivetimes, witheachcal and returntaking placeasecond
apart, sothat thewholecomputationtakesnineseconds. Thenf will bechargednine
secondsfor the outer call, seven secondsfor the next cal, and so on, for atotal o
25 seconds, eventhoughin reality it only took nine secondsfor all d them together.

A better algorithmwould be to charge each function only for the time since the
last cal or return. Then f would only be charged the nine seconds. The variable
*prof i le-call -stack*isused toholdastackof functionname/entry time pairs. This
stack ismanipulated by prof i Le-enter and prof i 1e-exi t toget theright timings.

Thefunctionsthat are used on eachcall toaprofiledfunctionaredeclaredi nl i ne.
In most cases, acall to afunction compil esinto machineinstructions that set up the
argument listand branch tothelocationd thefunction's definition. Withaninl i ne
function, the body d the function is compiled in line at the place d the function
call. Thus, thereisno overheadfor setting up theargument list and branchingto the
definition. Aninli ne declaration can appear anywhere any other declaration can
appear. Inthiscase, thefunction prociamisused to register aglobal declaration.
Inline declarationsare discussed in moredepth on page 317.

(proclaim *(inline profile-enter profile-exit inc-profile-time))

(defun profiled-fn(fn-name fn)
"Return a function that increments the count, and tines."
#'(lambda (&rest args)
(profile-enter fn-nane)
(multipl e-val ue-progl
(apply fn args)
(profile-exit fnnane))))

(defvar *profile-call-stack* nil)

(defun profile-enter (fn-name)
(incf (get fn-name 'profile-count))
(unl'ess (nu11 *profil e-cal | -stack*)
:; Time charged against the calling function:
(inc-profile-time (first *profile-call -stack*)
(car (first *profile-call -stack*))))
;; Put a newentry on the stack
(push (cons fn-name(get-fast-time))
profile-call -stack))

(defun profile-exit (fn-nane)

;s Time charged against the current function:
(inc-profile-time (pop *profile-call -stack*)
fn-nane)

;3 Change the top entry to reflect current tinme
(unless (null *profile-call -stack*)
(setf (cdr (first *profile-call -stack*))
(get-fast-tine))))

(defun inc-profile-tine(entry fn-nanme)
(incf (get fn-name ' profile-tinme)
(fast-time-difference (get-fast-time) (cdr entry))))

Finally, we need to updateprofile-report to print the timing data as well as the
counts. Notethat thedefault fn-namesisacopy d theglobal list. That is becausewe
pass fn-names to sort, whichisadestructivefunction. Wedon't want theglobal list
to bemodified asaresult o thissort.

(defun profilereport (&optional
(fn-names (copy-list *profiledfunctions*))
(key #’profile-count))
"Report profiling statistics on given functions. "
(let ((total-time (reduce #’+ (mapcar # profile-tine fn-nanes))))
(unl'ess (null key)
(setf fn-names(sort fn-names #'> :key key)))
(format t ""&Total elapsed time: ~d seconds."
(fast-time->seconds total-tine))
(format t "~& Count Secs Tine% Nane")
(loop for name in fn-names do
(format t "~&7D "6,2F ~3d% "A'
(profile-count name)
(fast-time->seconds (profile-tine nane))
(round ¢/ (profile-tine nane) total-tinme) .o1)
name))))

(defun profiletim(fn-name) (get fn-name ' profiletine))

Thesefunctionscan beused by callingprof ile, then doingsomerepresentative com-
putation, thencallingprofile-report, andfinally unprofile. It can be convenient
to provideasinglemacrofor doingall d these at once:

(defmacro W th-profiling (fn-names &rest body)
“(progn
(unprofile . ,fn-names)
(profile . ,fn-names)
(setf *profile-call -stack* nil)
(unwi nd-pr ot ect
(progn . ,body)
(profile-report *,fn-names)
(unprofile . ,fn-names))))

Notethe used unwind-protect toproducethereportand call unprofi le evenif the
computation is aborted. unwind-protect isa special form that takes any number
d arguments. It evaluatesthe first argument, and if all goeswell it then evaluates

the other argumentsand returnsthefirst one, justlikeprogl. Butif anerror occurs
during the evaluation d the first argument and computation is aborted, then the
subsequent arguments (calledcleanup forms) are eval uated anyway .

9.6 A CaseStudyinEfficiency: The
SMPLIFY Program

Suppose we wanted to speed up the simplify program o chapter 8. This sec-
tion shows how a combination d general techniques—memoizing, indexing, and
compiling—can be used to speed up the program by afactor d 130. Chapter 15 will
show another approach: replacetheagorithmwith an entirely different one.

Thefirst steptoafaster programisdefiningabenchmark, atest suite representing
atypica work load. Thefollowingisashortlist of test problems(and their answers)
that aretypical o thesimplify task.

(defvar *test-data* (mapcar #'infix->prefix
'(d(@*x " 2+b*x+c)/dx)
(d((a*x " 2+b*x+c)/ x)/dx)
(d((a*x"3+b*x"2+c*x+d)/x"~5)/dx)
((sin (x + x)) * (sin (2 * x)) + (cos (d (x ~2) / dx)) ~ 1)
(d (3% x+ (cos x) / x) /dx))))

(defvar *answers* (mapcar #'simplify *test-data*))

Thefunction test-it runs through the test data, making sure that each answer is
correctand optionally printing profiling data.

(defun test-it (&optional (with-profiling t))
"Time a test run, and make sure the answers are correct."
(let ((answers
(if with-profiling
(with-profiling (simplify simplify-exp pat-match
match-variable variable-p)
(mapcar #'simplify *test-data*))
(time (mapcar #'simplify *test-data*)))))
(mapc #'assert-equal answers *answers*)
t))

(defun assert-equal (x y)
"If x is not equal to y, complain.”
(assert (equal x y) (x y)
"Expected "a to be equal to "a" x y))

Herearetheresultsd (test-it) with and without profiling:

> (test-it nil)
Evaluation of (MAPCAR #'SIMPLIFY *TEST-DATA*) took 6.612 seconds.

> (test-it t)
Total elapsed time: 22.819614 seconds.

Count Secs Time% Name
51690 11.57 51% PAT-MATCH
37908 8.75 38% VARIABLE-P
1393 0.32 19GMATCH-VARIABLE
906 0.20 196SIMPLIFY
274 1.98 9% SIMPLIFY -EXP

Running the test takes 6.6 seconds normally, although the time triples when the
profilingoverhead isadded in. It should be clear that to speed things up, we have
to either speed up or cut down on the number o callsto pat-match or vari abl e-p,
since together they account for 89% o the calls (and89% o thetimeaswell). We
will look at three methods for achievingboth those goals.

Memoization

Consider therulethat transforms (X + x) into (2 * x). Oncethisisdone, we have
to simplify theresult, whichinvolvesresimplifyingthe components. If X weresome
complex expression, this could be time-consuming,and it will certainly bewasteful,
becausex isalready simplifiedand cannot change. Wehaveseen thistyped problem
before, and the solution is memoization: make si nd i fy remember the work it has
done, rather than repeating the work. We can just say:

(memoize ’simplify :test #'equal)

Two questions are unclear: what kind d hash table to use, and whether we should
clear the hash table between problems. Thesimplifierwastimedfor al four combi-
nationsd eg or equal hash tablesand resetting or nonresetting between problems.
Thefastest result was equal hashing and nonresetting. Note that with eg hashing,
the resetting version was faster, presumably becauseit couldn't take advantage o
the common subexpressions between examples (sincethey aren't eq).

hashing resetting time
none - 6.6
equa yes 38
equd no 3.0
eq yes 7.0
eq no 10.2

Thisapproach makesthe function si ngd ify remember the work it has done, in
ahash table. If the overhead of hash table maintenance becomestoo large, thereis
anaternative: makethedataremember what simplify hasdone. Thisapproach was
taken in MACSYMA: it represented operators aslistsrather than as atoms. Thus, in-
steaddf (* 2 X), Macsyma would use ((*) 2 x). Thesimplificationfunction would
destructively insertamarker into the operator list. Thus, theresult o simplifying2z
would be ((* sinp) 2 X). Then, when the simplifierwas called recursively onthis
expression, it would noticethe si mp marker and return the expression asis.

Theidead associatingmemoizationinformationwiththedatainstead d withthe
function will be moreefficientunless thereare many functions that all want to place
their marks on the same data. The data-oriented approach has two drawbacks: it
doesn't identify structures that areequal but not eg, and, because itrequires explicitly
alteringthedata, it requires every other operation that manipulates the datato know
about the markers. Thebeauty d the hash tableapproach isthat itistransparent; no
code needsto know that memoizationistaking place.

Indexing

Wecurrently go through theentirelist d rules oneat atime, checkingeachrule. This
isinefficientbecause most d therules could betrivialy ruled out—if only they were
indexed properly. The simplest indexing scheme would be to have a separate list
d rules indexed under each operator. Instead o havingsimplify-exp check each
member d *si nd i fi cation- rul es*, it could look only at thesmallerlist o rulesfor
the appropriateoperator. Here's how:

(defun simplify-exp (exp)
"Simplify using a rule, or by doing arithmetic,
or by using the simp function supplied for this operator.
This version indexes simplification rules under the operator."
(cond ((simplify-by-fn exp))
((rule-based-translator exp (rules-for (exp-op exp)) ;***
crule-if #'exp-Ths :rule-then #’exp-rhs
:action #'(lambda (bindings response)
(simplify (sublis bindings response)))))
((evaluable exp) (eval exp))
(t exp)))

(defvar *rules-for* (make-hash-table :test #'eq))

(defun main-op (rule) (exp-op (exp-lhs rule)))

(defun index-rules (rules)
"Index all the rules under the man op."
(cirhash *rules-for*)
(dolist (rulerules)
; nconc instead of push to preserve the order of rules
(setf (gethash (main-op rule) *rules-for*)
(nconc (gethash (main-op rule) *rules-for*)

(list rule)))))

(defun rules-for (op) (gethash o *rules-for*))

(index-rules *simplification-rul es*)

Timingthememoized, indexedversiongetsusto .98seconds, downfrom6.6 seconds
for the original codeand 3 secondsfor the memoizedcode. If thishadn't helped, we
could have considered more sophisticated indexing schemes. Instead, we moveon
to consider other meansd gainingefficiency.

Exercise 9.2[m] Thelist d rulesfor each operator is stored in a hash table with
the operator as key. An alternative would be to store the rules on the property list
d each operator, assuming operators must be symbols. Implement this alternative,
and timeit against the hash table approach. Remember that you need some way o
clearingtheold rules—trivialwith ahashtable, but not automaticwith property lists.

Compilation

Yau canlook at simpli fy-exp asaninterpreter for the simplificationrule language.
One proven technique for improving efficiency is to replace the interpreter with a
compiler. For example, therule(x + x = 2 * x) could becompiledinto something
like:

(Tarbda (exp)
(if (and (eq (exp-op exp) ’'+) (equal (exp-lhs exp) (exp-rhs exp)))
(make-exp :op '* :1hs 2 :rhs (exp-rhs exp))))

Thiseliminates the need for consing up and passing around variabl e bindings, and
should be faster than the general matching procedure. When used in conjunction
withindexing, theindividual rulescan besimpler, becauseweal ready knowwe have
theright operator. For example, with the aboveruleindexed under “+”, it could now
becompiledas:

(Tanbda (exp)
(if (equal (exp-1hs exp) (exp-rhs exp))
(make-exp :op '* :1hs 2 :rhs (exp-1hs exp))))

It is important to note that when these functions return nil, it means that they
have failed to simplify the expression, and we have to consider another means o
simplification.

Another possibility is to compileaset o rulesal at the same time, so that the
indexingisineffectpart d thecompiled code. Asan example, | show hereasmall set
d rulesand apossible compilationd the ruleset. The generated function assumes
that X isnot an atom. Thisis appropriate because we are replacingsimpli fy-exp,
not simplify. Also, we will return nil to indicate that x is already simplified. |
have chosen adightly different format for the code; the main differenceisthelet
tointroducevariablenamesfor subexpressions. Thisis useful especially for deeply
nested patterns. The other differenceisthat | explicitly build up the answer with a
cal to li st, rather than make-exp. Thisis normally considered bad style, but since
thisis code generated by acompiler, | wanted it to be as efficient as possible. If the
representation d the exp datatype changed, we could simply changethe compiler; a
much easier task than hunting down al the referencesspread throughout ahuman-
written program. The commentsfollowingwere not generated by the compiler.

(x *1=x)
(1 *x=x)
(x *0=20)
(0 *x=0)

(x *x=x"2)

(lambda (x)
(et ((x1 (exp-lhs x))
(xr (exp-rhs x)))

(or (if (eql xr °1) ; (x *1=x)
Xl)
(if (eql ¥ 1) ; (1% x=X)
Xr)
(if Ceql xr *0) 5 (X *0=0)
*0)
(if Ceql x1 ’0) ; (0*x=0)
'0)
(if (equal xr x1) s (X *x=x"2)

(list *~x *2))))

I chosethisformat for the code becausel imagined (and later show) that it would be
fairly easy towritethe compiler forit.

The Sngle-Rule Compiler

Herel show the compl etesingle-rulecompiler, to befollowed by theindexed-rul e-set
compiler. Thesingle-rulecompiler workslikethis:

> (compile-rule *(= (+ x x) (* 2 x)))
(LAMBDA (X)
(IF (0P? X *+)
(LET ((XL (EXP-LHS X))
(XR (EXP-RHS X)))
(IF (EQUAL XR XL)
(SIMPLIFY-EXP (LIST '* '2 XL)))))

Givenarule, it generates code that first tests the pattern and then builds the right-
hand side d theruleif the pattern matches. Asthe codeis generated, correspon-
dencesarebuiltbetweenvariablesinthe pattern, likex, andvariabl esinthegenerated
code, likexl . Thesearekeptintheassociationlist*bi ndi ngs*. Thematchingcan be
broken down into four cases: variablesthat haven't been seen before, variablesthat
have been seen before, atoms, and lists. For example, the first timewe run across
X in the rule above, no test is generated, since anything can match x. But the entry
(x . x1) isadded tothe*bindi ngs* list to mark the equivalence. When the second x
isencountered, thetest (equal xr xl) isgenerated.

Organizing the compiler is alittle tricky, because we have to do three things at
once: returnthegenerated code, keeptrack o the*bi ndi ngs*, andkeeptrackd what
to do "next"—that is, when a test succeeds, we need to generate more code, either
to test further, or to build the result. This code needs to know about the bindings,
so it can't be done befare thefirst part d the test, but it also needs to know whereit
should be placed in the overall code, so it would be messy to doiit after thefirst part
d thetest. Theanswer isto passin afunction that will tell uswhat code to generate
later. Thisway, it getsdone at the right time, and ends up in theright placeas well.
Such afunction is often called a continuation, becauseit tells us where to continue
computing. Inour compiler, thevariableconsequent isacontinuation function.

Thecompileriscalled compile-rul e. It takesaruleasan argument and returns
alambda expression that implements therule.

(defvar *bindings* nil
"A list of bindings used by the rule compiler.")

(defun compile-rule (rule)
"Compile a single rule."
(let ((*bindings* nil))
'(lambda (x)
,(compile-exp 'x (exp-1hs rule) ; x is the lambda parameter
(delay (build-exp (exp-rhs rule)

bindings))))))

All the work is done by compi 1e-exp, which takesthree arguments: avariablethat
will represent the input in the generated code, a pattern that the input should be
matched agai nst, and acontinuation for generating the codeif thetest passes. There
arefivecases. (DIf the patternisavariableinthelist o bindings, thenwegenerate
an equality test. (2) If the patternisavariable that we have not seen before, then
weadd it to the binding list, generate no test (becauseanything matches avariable)
and then generate the consequent code. (3) If the patternisan atom, then the match
succeedsonly if theinput iseql to that atom. (4) If the pattern is aconditional like
(?is n numberp), thenwegeneratethetest (numberp n). Other such patternscould
beincluded here but havenot been, sincethey have not been used. Findly, (5)if the
patternisalist, wecheck that it hastheright operator and arguments.

(defun compile-exp (var pattern consequent)
"Compile code that tests the expression, and does consequent
i f it matches. Assumes bindings in *bindings*."
(cond ((get-binding pattern *bindings*)
;; Test a previously bound variable
‘(if (equal ,var ,(Tookup pattern *bindingsk))
,(force consequent)))
((variable-p pattern)
;: Add a new bindings; do type checking if needed.
(push (cons pattern var) *bindings*)
(force consequent))
((atom pattern)
;3 Match a literal atom
"(if (eql ,var ',pattern)
,(force consequent)))
((starts-with pattern ’?is)
(push (cons (second pattern) var) *bindings*)
"(if (,(third pattern) ,var)
,(force consequent)))
:: So, far, only the ?is pattern is covered, because
;3 it is the only one used in simplification rules.
;; Other patterns could be compiled by adding code here.
;3 @ we could switch to a data-driven approach.
(t ;; Check the operator and arguments
*(if (op? ,var ’,(exp-op pattern))
,(compile-args var pattern consequent)))))

Thefunction compile-args isused tocheck theargumentsto a pattern. It generates
ale t form binding one or two new variables (for aunary or binary expression),and
then callscompi1e-exp to generate codethat actually makesthetests. It just passes
along the continuation, consequent, to compile-exp.

(defun compile-args (var pattern consequent)
"Compile code that checks the arg or args, and does consequent
if the arg(s) match."
;; First make up variable names for the arg(s).
(let ((L (symbol var °L))
(R (symbol var ’R)))
(if (exp-rhs pattern)
;; two arg case
"(let ((,L (exp-lhs ,var))
(,R (exp-rhs ,var)))
,(compile-exp L (exp-lhs pattern)
(delay
(compile-exp R (exp-rhs pattern)
consequent))))
;; one arg case
"(let ((,L (exp-lhs ,var)))
,(compile-exp L (exp-lhs pattern) consequent)))))

The remaining functions are simpler. bui 1d-exp generates code to build the right-
hand side d arule, op? testsif itsfirst argument is an expression with a given

operator, and symba constructs a new symbol. Also givenis new-symboal, although
itisnot used in this program.

(defun build-exp (exp bindings)
"Compile code that will build the exp, given the bindings."
(cond ((assoc exp bindings) (rest (assoc exp bindings)))
((variable-p exp)
(error "Variable "a occurred on right-hand side,"
but not Teft." exp))
((atom exp) *’,exp)
(t (let ((new-exp (mapcar #'(lambda (x)
(build-exp x bindings))
exp)))
‘(simplify-exp (list .,new-exp))))))

(defun op? (exp op)

"Does the exp have the given op as its operator?”
(and (exp-p exp) (eq (exp-op exp) op)))

(defun symbol (&rest args)
"Concatenate symbols or strings to form an interned symbol”
(intern (format nil "“{"a~}" args)))

(defun new-symbol (&rest args)

"Concatenate symbols or strings to form an uninterned symbol"
(make-symbol (format nil "~{~a~}" args)))

Hereare some examplesof the compiler:

> (compile-rule '(= (log (" e x)) x))
(LAMBDA (X)
(IF (0P? X 'LOG)
(LET ((XL (EXP-LHS X)))
(IF (OP? XL *™)
(LET ((XLL (EXP-LHS XL))
(XLR (EXP-RHS XL)))
(IF (EQL XLL ’E)
XLR))))))

»

> (compile-rule (simp-rule *(n * m* x) = (n *m) * x)))
(LAMBDA (X)
(I (0P? X ')
(LET ((XL (EXP-LHS X))
(XR (EXP-RHS X)))
(IF (NUMBERP XL)
(IF (0P? 3R %)
(LET ((XRL (EXP-LHS XR))
(XRR (EXP-RHS XR)))
(IF (NUMBERP XRL)
(SIMPLIFY -EXP
(LIST **