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Introduction

In	November	1988,	a	computer	virus	attacked	computers	connected	to	the	still-
nascent	Internet.	The	virus	exploited	a	programmer	error:	assuming	that	another
computer	 could	 be	 trusted	 to	 send	 the	 right	 amount	 of	 data.	 It	 was	 a	 simple
mistake,	 and	 the	 fix	 was	 trivial,	 but	 the	 programming	 language	 used	 was
vulnerable	to	this	type	of	mistake,	and	there	was	not	a	standard	methodology	for
detecting	that	sort	of	problem.
In	 April	 2014,	 a	 computer	 virus	 attacked	 computers	 connected	 to	 the	 now-

ubiquitous	 Internet.	 The	 virus	 exploited	 a	 programmer	 error:	 assuming	 that
another	 computer	 could	 be	 trusted	 to	 send	 the	 right	 amount	 of	 data.	 It	 was	 a
simple	mistake,	and	the	fix	was	trivial,	but	the	programming	language	used	was
vulnerable	to	this	type	of	mistake,	and	there	was	not	a	standard	methodology	for
detecting	that	sort	of	problem.
Remaining	 stuck	 on	 “vulnerable	 programming	 language”	 and	 “no	 way	 to

detect	mistakes”	isn’t	what	we	expect	after	a	quarter	century	of	progress.	Other
new	 engineering	 disciplines	 started	 out	 producing	 unreliable	 products.	 In	 the
early	 days	 of	 aviation,	 people	 built	 planes	 in	 their	 garages,	 with	 predictable
results.	 Now,	 a	 hundred	 years	 later,	 when	 a	 world	 without	 air	 travel	 is
unimaginable,	we	have	extremely	reliable	planes	based	on	well-understood	and
agreed-on	engineering	standards.
Not	 so	 with	 writing	 software.	 Although	 labeled	 an	 engineering	 discipline,

software	has	few	of	the	hallmarks	of	engineering,	where	a	body	of	knowledge	is
built	 up	 over	 time	 based	 on	 rigorous	 experimentation.	 Questions	 one	 would
reasonably	 ask	 of	 an	 engineered	 product—How	 strong	 is	 it?	How	 long	will	 it
last?	How	it	might	fail?—cannot	be	reliably	answered	for	software,	for	either	an
individual	 part	 of	 a	 program	 or	 an	 entire	 suite	 of	 software.	 Professional
licensing,	a	hallmark	of	most	engineering	disciplines,	is	viewed	by	the	software
industry	as	a	potential	source	of	lawsuits	rather	than	an	opportunity	to	establish
standards.
The	effect	of	 this	 is	not	 just	user-visible	bugs;	 it’s	also	a	 lot	of	wasted	effort



and	reinvention	on	the	part	of	programmers,	leading	to	frustration	and	software
that	is	delayed	or	never	ships.
If	you’ve	heard	about	the	software	industry,	it	might	be	because	of	the	unusual

way	 in	 which	 programmers	 are	 interviewed.	 Websites,	 books,	 and	 even
weeklong	training	classes	are	devoted	to	preparing	people	for	the	dreaded	coding
interview,	which	 is	presented	as	an	all-or-nothing	chance	 to	 impress	with	your
skills	 and	 knowledge—especially	 through	 “whiteboard	 coding,”	 in	 which	 a
candidate	 has	 to	 dash	 out	 short	 programs	 on	 the	whiteboard.	 Some	 candidates
complain	that	this	isn’t	an	accurate	representation	of	what	their	daily	job	would
be,	and	they	want	companies	to	focus	on	other	areas	of	their	background.	What
they	may	not	realize	is	that	there	isn’t	much	else	in	their	background	to	focus	on.
Unlike	in	other	engineering	disciplines,	having	a	degree	in	software	engineering
does	not	guarantee	 that	 you	understand	a	known	corpus	of	programming	 tools
and	 techniques,	 because	 such	a	 thing	does	not	 exist.	You	 likely	wrote	 a	 lot	 of
code	when	you	were	 in	 college,	 but	 there	 is	 no	way	of	 knowing	 if	 it	was	 any
good.	So	asking	people	 to	write	code	snippets	on	a	whiteboard	 is	 the	best	way
we	have	to	evaluate	people.
Consider	 this	 joke,	 although	 it’s	 no	 laughing	 matter:	 What	 do	 you	 call	 the

person	 who	 graduated	 last	 in	 their	 medical	 school	 class?	 The	 answer	 is
“doctor”—because	 graduating	 from	 medical	 school	 and	 completing	 your
residency	implies	that	you	have	learned	what	is	needed	to	be	one.	I	have	asked
doctors	 how	 they	were	 interviewed	when	 they	were	 hired.	 They	 say	 that	 they
were	 never	 asked	 specific	 medical	 questions	 or	 to	 perform	 simple	 medical
procedures;	instead,	the	talk	was	about	how	they	speak	to	patients,	how	they	feel
about	new	medicines,	and	that	sort	of	thing—because	it	is	understood	that	they
know	 the	 basics	 of	 medicine.	 Computer	 science	 graduates	 can	 make	 no	 such
universal	claim.
Back	in	November	1990,	Mary	Shaw	of	Carnegie	Mellon	University	wrote	an

article	 for	 IEEE	 Software	 magazine	 titled	 “Prospects	 for	 an	 Engineering
Discipline	 of	 Software.”	 Shaw	 explains	 that	 “engineering	 relies	 on	 codifying
scientific	 knowledge	 about	 a	 technological	 problem	 domain	 in	 a	 form	 that	 is
directly	useful	 to	 the	practitioner,	 thereby	providing	answers	 for	questions	 that
commonly	 occur	 in	 practice.	 Engineers	 of	 ordinary	 talent	 can	 then	 apply	 this
knowledge	 to	solve	problems	far	 faster	 than	 they	otherwise	could.	 In	 this	way,
engineering	 shares	 prior	 solutions	 rather	 than	 relying	 always	 on	 virtuoso
problem	 solving.”	 She	 compares	 software	 to	 civil	 engineering,	 pointing	 out,
“Although	 large	 civil	 structures	 have	 been	 built	 since	 before	 recorded	 history,
only	 in	 the	 last	 few	 centuries	 has	 their	 design	 and	 construction	been	based	on
theoretical	understanding	rather	than	on	intuition	and	accumulated	experience.”1



As	 I	 leaf	 through	 the	 publications	 catalog	 of	 the	 American	 Society	 of	 Civil
Engineers,	full	of	intriguing	titles	such	as	Water	Pipeline	Condition	Assessment
and	Cold	Regions	Pavement	Engineering,	I	can	appreciate	how	much	theoretical
understanding	there	is	in	other	engineering	disciplines.
Looking	 back	 at	 the	 history	 of	 engineering	 in	 various	 forms,	 Shaw	 writes,

“Engineering	 practice	 emerges	 from	 commercial	 practice	 by	 exploiting	 the
results	 of	 a	 companion	 science.	The	 scientific	 results	must	 be	mature	 and	 rich
enough	to	model	practical	problems.	They	must	also	be	organized	in	a	form	that
is	 useful	 to	 practitioners.”2	 Yet	 in	 the	 years	 since	 her	 article	 appeared,	 the
software	 engineering	 community	 has	 made	 little	 progress	 in	 building	 up	 the
scientific	results	needed	to	support	a	true	engineering	discipline;	it	is	still	stuck
in	the	“intuition	and	accumulated	experience”	phase.	At	the	same	time,	software
has	become	critically	important	 to	modern	life;	people	assume	it	 is	much	more
reliable	than	the	underlying	engineering	methodologies	can	guarantee.
Shaw	 ends	 her	 article	with	 the	 following:	 “Good	 science	 depends	 on	 strong

interactions	 between	 researchers	 and	 practitioners.	 However,	 cultural
differences,	lack	of	access	to	large,	complex	systems,	and	the	sheer	difficulty	of
understanding	 those	 systems	 have	 interfered	 with	 the	 communication	 that
supports	 these	 interactions.	Similarly,	 the	adoption	of	 results	 from	the	 research
community	has	been	impeded	by	poor	understanding	of	how	to	turn	a	research
result	 into	 a	 useful	 element	 of	 a	 production	 environment.	 …	 Simply	 put,	 an
engineering	 basis	 for	 software	 will	 evolve	 faster	 if	 constructive	 interaction
between	research	and	production	communities	can	be	nurtured.”3
At	 the	 2013	 Systems,	 Programming,	 Languages,	 and	Applications:	 Software

for	 Humanity	 (SPLASH)	 conference,	 sponsored	 by	 the	 Association	 for
Computing	 Machinery	 (ACM),	 a	 professional	 organization,	 a	 programmer
named	 Greg	 Wilson	 gave	 a	 keynote	 talk	 titled	 “Two	 Solitudes”	 about	 this
divergence	 between	 academia	 and	 industry	 in	 the	 world	 of	 software.	 After
working	 as	 a	 programmer	 for	 a	 while,	Wilson	 discovered	 the	 landmark	 book
Code	 Complete,	 one	 of	 the	 first	 to	 attempt	 to	 lay	 out	 a	 practice	 of	 software
engineering,	and	one	of	the	rare	software	books	that	references	research	studies
on	 software	 practices.	Wilson	 realized	 he	 had	 been	 previously	 unaware	 of	 all
this;	 as	 he	 said	 in	 the	 talk,	 “How	 come	 I	 didn’t	 know	 we	 knew	 stuff	 about
things?”4	 Then	 he	 realized	 that	 none	 of	 his	 coworkers	 did	 either,	 and
furthermore,	they	were	happy	in	their	ignorance	and	had	no	desire	to	learn	more.
He	also	commented,	“Less	than	20%	of	the	people	who	attend	the	International
Conference	 on	 Software	 Engineering	 come	 from	 industry,	 and	 most	 of	 those
work	 in	 labs	 like	 Microsoft	 Research.	 Conversely,	 only	 a	 handful	 of	 grad



students	 and	 one	 or	 two	 adventurous	 faculty	 attend	 big	 industrial	 conferences
like	the	annual	Agile	get-together.”5
The	 hand-wringing	 over	 software	 engineering	 has	 been	 going	 on	 since	 the

term	was	invented	fifty	years	ago.	This	book	won’t	propose	a	solution,	although
it	includes	suggestions	at	the	end,	but	it	will	attempt	to	provide	a	guided	tour	of
the	path	that	the	software	industry	has	taken	from	its	early	days	to	the	present.
With	a	couple	of	exceptions,	the	chapters	are	arranged	in	chronological	order,

roughly	paralleling	my	own	experience	as	a	programmer,	starting	around	1980.
The	 book	 is	 not	 attempting	 to	 be	 a	 complete	 history	 of	 the	 software	 industry;
rather,	 it	 digs	 into	 specific	 moments	 that	 are	 especially	 important	 and
representative.	Those	moments	involve	a	succession	of	ideas	that	were	touted	as
the	one	single	solution	to	all	the	problems	facing	programmers,	before	inevitably
falling	 back	 to	 earth	 and	 being	 superseded	 by	 the	 next	 big	 thing.	At	 the	 same
time,	 the	 gap	 between	 academia	 and	 industry	 has	 continued	 to	widen,	 so	 that
each	new	idea	becomes	less	moored	in	research,	and	software	drifts	further	from,
not	closer	to,	the	engineering	basis	that	Shaw	was	hoping	for.
Fundamentally,	the	book	is	about	a	question	that	I	have	often	asked	myself:	Is

software	development	really	hard,	or	are	software	developers	not	that	good	at	it?
Spoiler	 alert	 for	 technophobes:	 there	 is	 some	 code	 in	 this	 book.	 Do	 not	 be

dismayed.	 It	 is	 impossible	 to	 understand	 the	 software	 industry	 without
understanding	 what	 programmers	 are	 thinking	 about,	 and	 it’s	 impossible	 to
understand	what	programmers	are	thinking	about	without	digging	into	the	actual
code	they	write.	The	difference	between	good	and	bad	software	can	be	a	single
line	 of	 code—a	 seemingly	 inconsequential	 choice	made	 by	 a	 programmer.	 To
understand	some	of	the	problems	with	software,	you	need	to	understand	enough
about	 code	 to	 appreciate	 that	 difference,	 and	why	 programmers	 write	 the	 bad
line	of	code	instead	of	the	good	line.
So	please	read	the	code!	Thank	you.
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1 
Early	Days

I	am	holding	in	my	hand	the	1982	Radio	Shack	computer	catalog,	unaccountably
saved	 from	my	high	 school	 years.	 Sold	 under	 the	TRS-80	 brand,	 the	 products
look	familiar:	computers	with	displays	and	keyboards,	printers	and	hard	drives
as	well	as	games	and	productivity	software.	The	prices	are	reasonable,	if	a	little
high	 by	 today’s	 standards:	 $800	 for	 a	 basic	 desktop	 computer,	 $1,100	 for	 one
with	extra	memory,	and	a	more	powerful	business	system	for	$2,300.	There	are
no	laptops	(although	there	is	a	“pocket	computer”),	and	touch	screens	are	far	in
the	future,	but	everything	else	is	recognizable.1
It’s	the	details	that	are	jarring.	Compared	to	current	hardware,	the	capacity	of

these	 computers	 is	 microscopic.	 The	 $800	 TRS-80	Model	 III,	 the	 entry-level
model,	has	4	kilobytes	of	memory—a	mere	4,096	bytes.	From	the	perspective	of
today,	when	a	low-end	computer	might	have	4	gigabytes	of	memory,	it	is	hard	to
conceive	that	one	with	4	kilobytes—one-millionth	as	much—could	do	anything
useful	at	all.
The	 storage	 difference	 is	 similar.	 A	 hard	 drive	 selling	 for	 $5,000	 holds	 8.4

megabytes;	 today	 you	 can	 buy	 an	 8-terabyte	 hard	 drive—larger,	 again,	 by	 a
factor	of	a	million—for	less	than	$300.	The	floppy	disks	hold	170	kilobytes	each
(once	 you	 pay	 almost	 $1,000	more	 for	 a	 floppy	 disk	 drive	 and	 disk	 operating
system	 software);	 today’s	 USB	 sticks	 hold	 a	 million	 or	 more	 times	 as	 much.
Shrinking	a	modern	storage	device	 to	 the	size	of	what	was	available	back	then
would	be	the	equivalent	of	reducing	this	entire	book	to	half	of	one	letter.	A	car
that	 moved	 at	 one-millionth	 of	 the	 speed	 of	 today’s	 cars	 would	 move	 on	 the
order	 of	 inches	 per	 hour;	 such	 a	 car	 would	 be	 considered,	 by	 normal	 human
observation,	to	be	standing	still.
The	year	1982	is	also	a	milestone	in	my	personal	history:	my	family	acquired

our	first	home	computer,	an	original	IBM	Personal	Computer	running	IBM	PC
DOS	(Disk	Operating	System)	version	1.00.
Before	 the	 appearance	 of	 the	 IBM	 PC	 in	 late	 1981,	 the	 personal	 computer

industry	was	 split	 between	 incompatible	 computers	 from	Radio	 Shack,	Apple,



and	Commodore.	Anybody	wanting	to	sell	software	for	all	three	had,	essentially,
to	 write	 it	 three	 times.	 The	 IBM	 PC	 introduced	 a	 fourth	 platform,	 but	 for	 a
variety	 of	 reasons—the	 facts	 that	 IBM	 was	 the	 most	 well-known	 computer
company	 in	 the	 world	 whose	 name	 “legitimized”	 the	 personal	 computer
industry,	 the	 IBM	 PC	 had	 a	 more	 expandable	 hardware	 design	 than	 its
competitors,	Microsoft	sold	a	version	of	DOS	to	other	hardware	companies,	and
a	company	called	Phoenix	Technologies	wrote	a	lawsuit-proof	copy	of	the	low-
level	 software	 that	 IBM	 included	 on	 the	 computer,	 or	 possibly	 because	 of
serendipity	and	other	factors,	and	all	these	in	unclear	proportions—the	IBM	PC
soon	 became	 the	 standard	 for	 all	 personal	 computers,	 supported	 by	 a	 robust
marketplace	 of	 companies	 selling	 PC-compatible	 computers,	 consigning	 the
other	three	to	the	recycling	bin	of	history.	With	a	standard	platform	to	target,	the
personal	computer	software	industry	began	its	rapid	growth.	And	if	these	slow,
underpowered	 computers	 seemed	 like	 barren	 soil	 in	 which	 to	 grow	 such	 an
enterprise,	in	terms	of	the	programmer’s	experience	they	were	light-years	ahead
of	what	they	replaced.
As	a	small	child	I	had	limited	exposure	to	actual	computers	due	to	the	fact	that

much	of	the	technology	would	not	fit	through	our	front	door.	I	prepared	for	my
future	career	by	playing	with	Lego	bricks—a	common	thread	in	the	life	story	of
programmers	 my	 age.	 In	 the	 mid-1970s,	 computers	 existed	 in	 two	 forms:
mainframe	computers,	the	big	ones	you	see	in	old	movies,	which	were	used	for
weather	 forecasting	and	whatnot,	 and	 tended	 to	be	owned	by	 large	companies,
governments,	 and	 universities;	 and	 minicomputers,	 which	 were	 smaller	 and
more	 self-contained,	 and	 used	 by	 businesses	 for	 tasks	 such	 as	 running	 their
payroll.	 The	 notion	 that	 somebody	might	 have	 a	 computer	 in	 their	 house	was
seen	as	both	frivolous	and	ridiculous;	computers	were	for	dull,	important	things,
and	in	any	case,	where	would	you	put	it?	When	Microsoft	was	founded	in	1976,
the	corporate	vision	of	“a	computer	on	every	desk	and	in	every	home”	seemed,
well,	a	vision.
The	 year	 1977	 saw	 the	 introduction	 of	 the	 first	 three	 broadly	 successful

personal	computers,	 the	Commodore	PET,	Tandy	TRS-80,	and	Apple	II,	along
with	 the	 Atari	 2600	 game	 system	 (then,	 as	 now,	 game	 systems	 were	 also
computers,	with	a	different	user	interface	and	nominal	purpose).	Meanwhile,	at	a
far	 remove	 from	 those	 scrappy	 upstarts,	 somebody	 in	 the	math	 department	 at
McGill	University,	where	my	father	was	a	professor,	convinced	the	department
to	 purchase	 a	minicomputer	made	 by	 a	 company	 called	Wang,	 to	 the	 tune	 of
$20,000	plus	$2,000	for	the	annual	service	contract.	While	mainframes	tended	to
be	 the	 size	 of	 industrial	 refrigerators	 and	 installed	 behind	 glass	 in	 climate-
controlled	rooms,	minicomputers	were	the	size	of	smaller	appliances	and	could



be	 installed	anywhere.	The	entire	category	of	minicomputers	would	eventually
be	obliterated	by	 the	descendants	of	 the	original	personal	 computers	 (which	at
the	time	were	known	by	the	vaguely	insulting	term	microcomputer),	and	within
fifteen	years	Wang	Laboratories	would	suffer	a	precipitous	Innovator’s	Dilemma
drop—to	 borrow	 the	 title	 from	 Clayton	 Christensen’s	 book—from	 thirty
thousand	 employees	 to	 bankruptcy,	 but	 at	 the	 time	 Wang	 computers	 were
considered	quite	capable.2
My	childhood	home	did	not	participate	in	the	first	round	of	personal	computer

adoption—no	Apple,	Commodore,	or	TRS-80,	or	even	a	gaming	system	in	our
living	 room—but	 my	 father	 would	 occasionally	 bring	 me	 to	 the	 McGill
University	 math	 department	 on	 a	 Saturday,	 where	 I	 could	 while	 away	 the
afternoon	on	the	Wang	minicomputer	playing	games	like	Bowling,	Football,	and
Star	 Trek—incredibly	 unsophisticated	 versions,	 with	 “graphics”	 lovingly
rendered	in	text	(the	football	game	constructed	the	field	markings	out	of	dashes,
plus	signs,	and	capital	I’s,	and	at	halftime	indicated	the	presence	of	the	band	by
moving	the	letters	B-A-N-D	around	the	screen).	I	did	this	perhaps	three	times	a
year	and	can	still	remember	the	feeling	of	anticipation	as	a	visit	approached.	As	I
write	this	I	am	on	an	airplane	with	two	of	my	children.	Looking	over	I	see	that—
well,	as	it	happens,	they	are	both	reading	books	right	now,	but	half	an	hour	ago
they	 were	 playing	 games	 on	 handheld	 devices.	 The	 difference	 between	 my
access	to	computer	games	and	theirs,	to	say	nothing	of	the	quality	of	the	games,
is	mind-blowing:	as	if	I	had	observed	evolution	from	trilobite	to	Tyrannosaurus
rex	in	a	single	generation.
This	 introduction	 to	 playing	 computer	 games	 was	 roughly	 aligned	 with	 the

invasion	of	the	video	game	Pong	into	homes	across	the	land,	so	I	was	not	unique
in	 spending	 time	 squinting	 at	 poorly	 drawn	 electronic	 entertainment,	 but	 my
introduction	to	writing	software	came	early	for	that	era.	The	first	software	that	I
ever	wrote	was	not	on	a	computer.	Hewlett-Packard	had	a	line	of	calculators	that
could	 execute	 programs	 written	 by	 the	 user	 (as	 the	 manual	 for	 one	 of	 them
states,	 “Because	 of	 their	 advanced	 capabilities,	 these	 calculators	 can	 even	 be
called	 personal	 computing	 systems”).3	 In	 the	 late	 1970s,	 my	 father	 owned
several	 HP	 calculators,	 including	 one	 with	 a	 built-in	 thermal	 printer	 (the	 HP-
19C).	 The	 calculators	 were	 focused	 on	 mathematical	 operations,	 such	 as
calculating	mortgage	payments,	 but	 I	 had	no	need	 for	 that.	 I	was	 interested	 in
programming	for	programming’s	sake,	so	I	wrote	programs	that	were	useless	in
the	real	world,	such	as	one	to	print	out	prime	numbers	(I’ve	never	found	myself
with	the	need	for	a	list	of	prime	numbers,	but	I’ve	written	the	solution	in	several
programming	languages).



Before	 I	 talk	 more	 about	 programming,	 I	 should	 explain	 a	 bit	 about	 how
computers	run	programs.	The	processor,	the	chip	inside	a	computer,	has	a	set	of
registers	 that	 can	 each	 store	 a	 single	 number.	 The	 processor	 can	 perform
operations	on	the	numbers	in	these	registers—addition,	multiplication,	and	so	on
—and	can	also	perform	tests	on	them—to	see	if	they	equal	to	a	certain	value	or
if	 one	 is	 larger	 than	 the	 other,	 say—and	 jump	 to	 a	 different	 location	 in	 the
program	 if	 the	 test	 is	 true.	 Finally,	 since	 the	 set	 of	 registers	 is	 small	 (eight	 to
thirty-two	registers	is	typical),	the	processor	can	move	values	from	a	register	to
the	 main	 computer	 memory,	 and	 from	 the	 main	 computer	 memory	 to	 the
register,	 so	 that	 they	 can	 be	 preserved	 and	 brought	 back	 to	 a	 register	 when
needed.
That’s	 basically	 what	 the	 processor	 can	 do:	 operations	 on	 registers,

comparisons	 between	 those	 registers,	 jumps	 based	 on	 those	 comparisons,	 and
moving	data	back	and	forth	between	registers	and	memory.	There’s	a	bit	more
(such	 as	 the	 ability	 to	 perform	 mathematical	 operations	 directly	 on	 data	 in
memory	 rather	 than	 having	 to	 move	 it	 into	 a	 register	 first),	 but	 essentially
everything	 is	 built	 up	 from	 combinations	 of	 these	 instructions,	 as	 single
processor	operations	are	known.
The	 program	 that	 a	 computer	 is	 running	 is	 a	 series	 of	 instructions.	 For

example,	on	the	Intel	processors	used	in	many	personal	computers	today	there	is
an	instruction	called	ADD	that	can	add	two	registers.	To	add	the	EAX	register	to	the
ECX	one	(and	store	the	new	total	in	ECX),	the	instruction	in	human-readable	form
is	written	as:

ADD	ECX,	EAX

but	for	the	machine,	it	is	actually	this	sequence	of	bits:4

0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1

which	 is	 a	 “series	of	0s	 and	1s”	 as	used	 in	 the	 sentence	 “computer	processors
interpret	a	series	of	0s	and	1s.”5
The	 sequence	 of	 0s	 and	 1s	 is	 known	 as	machine	 language,	 and	 the	 human-

readable	form

ADD	ECX,	EAX

is	 known	 as	 assembly	 language;	 a	 program	 called	 an	 assembler	 can	 convert
assembly	language	into	machine	language	so	that	the	computer	can	execute	the
program.
Getting	 back	 to	 programming	 on	 the	 HP	 calculators,	 this	 was	 an	 assembly



language	 experience:	 my	 programs	 had	 to	 move	 data	 back	 and	 forth	 from
memory	 to	 the	 location	 where	 the	 processor	 could	 operate	 on	 it	 (which	 was
technically	a	stack,	not	registers,	but	the	effect	was	similar	to	programming	on	a
processor	 that	 had	 only	 two	 registers).6	 There	 are	 those	 who	 say	 that	 every
programmer	 should	 learn	 assembly	 language	 first	 so	 that	 they	 know	 what	 is
going	 on	 under	 the	 covers,	 but	 in	 truth	 these	 HP	 calculator	 programs,	 while
notable	for	their	time,	are	prone	to	simple	mistakes	and	hard	to	read.
Toward	the	end	of	1980,	my	father	lugged	home	a	device	known	as	a	terminal

that	allowed	us	to	connect	to	the	mainframe	computer	at	McGill.	The	setup	was
archaic	by	today’s	standards—it	was	archaic	by	the	standards	of	a	couple	years
later—but	 this	 is	 understandable	 given	 that	 it	 was	 the	 approximate	 midpoint
between	the	dawn	of	computing	and	now.	The	terminal	was	of	a	type	known	as	a
teleprinter	or	teletypewriter,	also	called	a	line	terminal.	It	had	a	keyboard	but	no
screen,	only	a	printer,	so	it	looked	like	a	large	typewriter	that	consumed	fanfold
paper	 (that	 continuous	 folded	paper	with	 removable	 holes	 along	 the	 side,	 now
only	 seen	 in	 old	 movies	 and	 car	 rental	 agencies).	 The	 device	 sat	 there	 in	 an
unanimated	state	until	we	dialed	the	phone	number	for	a	mainframe	computer	at
McGill	and	placed	the	phone	handset	into	an	acoustic	coupler.
The	 acoustic	 coupler,	 which	 looked	 like	 two	 oversize	 headphone	 earpieces

mounted	on	a	box	(Radio	Shack	was	selling	one	for	$240	in	its	1982	catalog),7
cradled	the	handset	snugly	enough	that	it	could	transmit	beeps	and	boops	to	the
microphone	 and	 hear	 the	 same	 coming	 from	 the	 speaker.	 These	 sounds	 were
used	 to	 exchange	 data	with	 the	McGill	 computer,	which	 housed	 all	 the	 actual
processing	power;	if	you	imagine	a	modern	desktop	computer	with	a	keyboard,
display,	 and	 system	unit,	 the	 keyboard	 and	 display	were	 in	 our	 house	 and	 the
system	unit	was	 at	McGill,	 attached	not	 by	 a	 short	 cable	but	 by	 the	 telephone
connection.	And	a	rather	slow	connection	it	was,	with	the	speed	being	300	baud,
or	about	thirty	characters	per	second,	roughly	(you	guessed	it)	one-millionth	of
the	bandwidth	of	a	typical	broadband	connection	today.	The	only	good	thing	that
I	can	say	about	the	slow	connection	is	that	it	made	the	slow	printing	speed	of	the
terminal	a	nonissue;	since	a	full	line	of	eighty	characters	of	text	took	about	three
seconds	to	transmit,	the	printer	had	no	trouble	keeping	up	with	it.
On	 this	 system,	 sitting	 in	 my	 parents’	 bedroom,	 I	 learned	 a	 programming

language	called	WATFIV,	a	version	of	the	grizzled	computer	language	Fortran.8
Compared	 to	 assembly	 language,	 this	 was	 a	 higher-level	 language,	 providing
useful	abstractions	such	as	the	ability	to	give	names	to	storage	locations	(known
as	variables)	 rather	 than	 requiring	 the	use	of	processor	 register	 names	 such	 as
EAX	and	ECX.	A	program	called	a	compiler	converted	 the	higher-level	 language



into	 machine	 language	 (conceptually	 the	 compiler	 converted	 it	 into	 assembly
language	 that	was	 then	converted	 to	machine	 language,	but	 typically	 it	blasted
out	0s	and	1s	directly).
Since	WATFIV	was	designed	to	run	on	mainframe	computers	that	were	often

accessed	 from	 coal-powered	 line	 terminals	 like	 the	 one	 I	 was	 using,	 it	 had
limited	 output	 functionality.	 There	 was	 no	 support	 for	 drawing	 graphics	 on	 a
screen	or	playing	sound	out	of	a	speaker,	since	terminals	frequently	had	neither	a
screen	nor	a	speaker.	The	input/output	functionality	of	a	WATFIV	program	was
limited	to	reading	in	and	printing	out	lines	of	text.
My	formal	training	as	a	Fortran	programmer	consisted	of	the	book	Fortran	IV

with	WATFOR	 and	WATFIV,	 which	 I	 would	 eyeball	 during	 slow	moments	 in
high	school	history	class.	The	book	taught	me	the	basic	syntax	of	the	language,
but	didn’t	explain	how	to	write	a	program	that	accomplished	something	useful,
any	more	 than	 knowing	 the	 syntax	 of	 the	English	 language	 allows	 you	 to	 put
together	a	sales	pitch	or	marriage	proposal.
Here	 is	 an	 example	 of	 a	 WATFIV	 program	 from	 the	 book—and	 if	 ever	 a

programming	language	was	well	suited	to	being	printed	in	uppercase	in	a	fixed-
width	font	(which	I	will	use	for	all	program	fragments	in	the	book),	it’s	a	Fortran
dialect	(in	fact,	the	entire	book	was	printed	in	a	fixed-width	font):9

C	EXAMPLE	6.3	-	SUMMING	NUMBERS

						INTEGER	X,SUM

						SUM=0

				2	READ,X

						IF(X.EQ.0)GO	TO	117

						SUM=SUM+X

						GO	TO	2

		117	PRINT,SUM

						STOP

						END

This	program	is	not	particularly	hard	to	read;	if	you	instinctively	skipped	over
it,	I	encourage	you	to	go	back.	The	set	of	steps	in	a	program	is	often	called	code,
but	not	in	the	sense	of	an	impenetrable	mystery	as	in	The	Da	Vinci	Code;	it’s	just
a	series	of	instructions	that	follow	certain	rules.
The	 program	 declares	 two	 variables	 of	 type	 INTEGER	 (meaning	 a	 number)

named	X	 and	SUM,	 initializes	SUM	 to	 0,	 reads	 in	 a	 value	 and	 stores	 it	 in	X,	 and
checks	if	X	is	0.	If	X	is	0,	then	it	prints	out	the	total	and	stops;	otherwise	it	adds
the	 value	 of	 X	 to	 a	 running	 total	 stored	 in	 SUM	 and	 goes	 back	 to	 read	 another
value.
The	 READ,X	 and	 PRINT,SUM	 lines	 refer	 to	 what	 is	 known	 as	 an	API,	 which



stands	for	application	programming	interface.	APIs	are	functionality	provided	to
programs	in	order	to	accomplish	certain	tasks—in	this	case,	reading	a	value	and
displaying	a	value,	respectively.	We	say	that	code	calls	an	API—that	is,	it	tells
the	compiler	that	it	wants	to	jump	to	that	API	to	perform	an	operation.	The	APIs
take	 parameters,	 which	 are	 passed	 to	 the	 API,	 providing	 more	 detailed
information.	In	this	code,	READ	is	passed	the	parameter	X,	telling	it	what	variable
to	 read	 the	 value	 into,	 and	PRINT	 is	 passed	 the	 arguments	SUM,	 telling	 it	what
variable	to	print.
The	numbers	 to	 the	 left	of	 the	code—2	 and	117—are	optional	 line	numbers,

which	are	needed	as	targets	of	the	GO	TO	instructions;	GO	TO	2	means	“jump	to	the
line	numbered	2	and	continue	execution	from	that	point.”	Unlike	in	most	modern
languages,	the	spacing	at	the	beginning	of	each	line	matters.	Per	Fortran’s	rules,
the	 line	numbers	 appear	 in	 columns	1	 through	5,	 and	 the	 actual	 program	code
starts	 in	column	7.	The	first	 line,	 starting	with	a	C	 in	column	1,	 is	a	comment,
which	is	ignored	by	the	compiler.
As	 for	 the	 data	 that	 will	 be	 read	 when	 this	 program	 calls	 the	 READ	 API,

understand	 that	 Fortran	 and	 its	 variants	 were	 designed	 to	 read	 programs	 off
punch	cards	(one	punch	card	per	line	of	the	program),	run	them,	and	print	out	the
results.	 The	 data	 would	 normally	 follow	 after	 the	 program,	 on	 another	 punch
card	(there	had	to	be	a	special	card	containing	only	the	text	$ENTRY	between	the
program	and	data).	The	READ	API	was	defined	to	read	from	the	next	punch	card
in	 the	pile	(the	version	of	WATFIV	running	on	the	McGill	computer	had	been
enhanced	to	allow	you	to	store	the	program	and	data	on	the	mainframe	computer
disk	drive	rather	than	requiring	that	it	be	reread	each	time	from	cards,	and	could
also	 read	 input	 data	 typed	 at	 the	 keyboard,	 if	 you	 wished).10	 This	 particular
program	expected	there	to	be	a	final	card	with	the	value	0,	which	would	indicate
the	end	of	the	data.
These	 were	 typical	 of	 the	 Fortran	 programs	 that	 people	 wrote—simple

solutions	 to	problems	such	as	calculating	 the	 semester	grades	of	 students	 from
their	individual	test	scores	(one	test	score	per	punch	card,	natch).	In	many	cases,
the	people	who	wrote	programs	were	the	same	people	who	used	those	programs,
because	the	programs	they	wrote	were	specific	to	their	exact	situation.
In	this	day	of	Xbox	gamers	with	their	own	reality	shows,	it’s	hard	to	remember

that	 not	 that	 long	 ago,	 playing	 computer	 games	 was	 still	 viewed	 as	 a	 geeky
hobby.	 Many	 people	 who	 played	 computer	 games	 also	 dabbled	 in	 writing
computer	 games,	which	was	 unquestionably	 geeky.	You	may	 not	 remember	 a
British	pop	group	called	Sigue	Sigue	Sputnik,	a	one-hit	wonder	whose	object	of
wonderment	 was	 the	 song	 “Love	 Missile	 F1-11”;	 what	 amazed	 me	 in	 1986,
looking	at	 the	back	of	 the	LP	at	our	 local	Sam	the	Record	Man	store,	was	that



these	people,	whose	clothing	and	hairstyle	unquestionably	marked	them	as	cool,
forward-thinking	 types,	 listed	 “video	 games”	 as	 one	 of	 their	 hobbies—a
signature	moment	for	me.	I	am	still	slightly	surprised	when	a	student	today	tells
me	that	they	became	interested	in	programming	not	because	of	the	sheer	thrill	of
1s	and	0s	but	instead	because	they	enjoy	using	software	and	thought	it	might	be
interesting	to	learn	how	to	write	it.	Nothing	about	Lego?
As	with	the	HP	calculators,	I	muddled	through	learning	WATFIV	without	any

particular	goal	in	mind.	I	was	writing	simple	programs;	sorting	a	list	of	numbers
(which	in	programming	terms	is	known	as	an	array	of	numbers)	from	largest	to
smallest	was	a	 typical	example,	or	 if	 I	 felt	 like	an	 interactive	experience,	 there
was	the	old	“the	computer	is	thinking	of	a	number;	you	guess,	and	I	will	respond
with	‘higher’	or	‘lower’”	game.	In	order	to	spend	the	time	puzzling	through	how
to	make	 these	 things	work	on	your	 own,	 for	 such	 a	meager	 result,	 you	had	 to
have	a	personality	that	viewed	solving	the	problem	as	valuable	in	and	of	itself—
that	understood	 that	 the	 journey,	 in	 this	situation,	was	 the	 reward.	At	 the	same
time,	there’s	not	much	opportunity	to	make	a	mistake	that	can’t	be	fixed	by	trial
and	error.	You	would	 spend	more	 time	discovering	 that	 a	 line	of	Fortran	code
mistakenly	started	in	column	6	instead	of	7	than	you	would	in	dealing	with	bugs
in	the	logic	of	your	program.
For	 that	 matter,	 playing	 with	 Lego	 as	 a	 kid	 probably	 had	 been	 decent

preparation.	The	pieces	 combining	 into	 a	 larger	 object,	 detailed	directions	 that
had	to	be	followed	precisely,	and	little	“click”	when	you	connect	them	together
are	all	quite	similar	to	writing	short	programs.
The	IBM	PC	that	we	acquired	in	1982	was	a	much	more	compelling	software

platform	than	the	McGill	mainframe.	Beyond	the	convenience	of	not	having	to
connect	remotely	via	a	modem	(after	waiting	until	nobody	else	in	the	house	was
using	 the	 phone),	 the	 IBM	 PC	 could	 display	 graphics	 and	 play	 sounds.11
Programmers	 took	 advantage	 of	 this	 to	 write	 word	 processing	 programs	 that
displayed	 accurate	 formatting	 on	 the	 screen,	 spreadsheets	 that	 recalculated	 on
the	 fly,	 and	 other	marvels	 of	 the	 age.	No	more	 typing	 in	 text	 commands	 to	 a
football	 game	 and	 then	watching	 it	 respond;	 no	more	 band	 represented	 by	 the
letters	B-A-N-D	 moving	 back	 and	 forth.	 Now	 you	 could	 write	 games	 (what	 I
cared	about)	that	were	actually	interactive!
Even	 better,	 the	 BASIC	 language	 included	 with	 the	 computer,	 since	 it	 was

customized	to	run	on	the	IBM	PC,	supported	all	this	hardware.	In	fact,	the	IBM
PC	 BASIC	 had	 advanced	 features	 that	 I	 have	 not	 seen	 on	 any	 other	 system.
There	 was	 an	 API	 called	 PLAY,	 which	 you	 could	 feed	 a	 “tune	 definition
language”	and	it	would	play	the	notes;	the	following



PLAY	"L8	GFE-FGGG	P8	FFF4	GB-B-4	GFE-FGGG	GFFGFE-"

would	 play	 “Mary	 Had	 a	 Little	 Lamb.”12	 And	 the	 DRAW	 API	 supported	 a
“graphics	definition	language,”	so

DRAW	"M100,100	R20D20L20U20	E10F10"

would	draw	a	box	with	a	triangle	on	top.13
Suddenly	I	had	moved	from	a	fairly	difficult	programming	environment	on	the

McGill	mainframe,	with	 limited	 commands	available,	 and	 that	was	only	 really
useful	for	small	“learning	to	program”	examples	that	I	wrote	quickly	and	forgot
about,	 to	a	rich	environment	with	programs	that	I	genuinely	wanted	to	run	and
keep	running,	expand	over	time,	and	possibly	even	show	to	other	people.
A	 cottage	 industry	 of	 books	 and	magazines	 sprang	 up	 to	 serve	 the	 IBM	PC

community,	 but	 my	 main	 source	 of	 knowledge	 on	 BASIC	 was	 the	 printed
manual	 that	 came	with	 the	 computer.	Once	 again,	 I	 learned	 by	 figuring	 it	 out
myself—which	 I	 am	pointing	out	 not	 to	 highlight	my	own	 skill	 but	 instead	 to
emphasize	 that	 reading	 a	 reference	 manual	 was	 then	 the	 standard	 way	 that
people	learned	to	program.	At	the	same	time,	I	was	also	writing	BASIC	code	on
a	 friend’s	 Apple	 II	 clone,	 learning	 the	 details	 in	 the	 same	 way	 (the	 Apple	 II
BASIC	also	had	graphics	and	sound	support,	but	the	specifics	of	how	they	were
done	 in	 BASIC	 differed	 between	 the	 PC	 and	 Apple	 II,	 and	 for	 that	 matter,
among	the	BASICs	included	with	most	of	the	personal	computers	of	the	day).
I	was	able	to	blunder	along,	teaching	myself	enough	IBM	PC	BASIC	to	crank

out	inferior	clones	of	arcade	games	such	as	Pac-Man	and	Q*bert.	My	crowning
achievement	in	high	school	may	have	been	writing	a	program	that	arranged	the
names	of	every	member	of	my	senior	class	into	a	giant	84,	the	year	I	graduated,
with	 said	 design	 then	 being	 printed	 on	 a	 sweatshirt.	Unfortunately,	 there	were
several	factors	 that	prevented	me	from	learning	the	proper	way	to	tackle	larger
programs,	 especially	 of	 the	 sort	 I	 would	 write	 in	my	 professional	 career	 as	 a
programmer.
The	 first	 problem	was	 that	whatever	 knowledge	was	 out	 there	 about	 how	 to

write	 “good”	 programs,	 it	 never	 made	 it	 into	 my	 consciousness.	 The	 BASIC
manual	had	 short	 snippets	of	 code,	 each	of	which	addressed	 the	proper	 syntax
and	usage	of	a	single	part	of	the	language—the	language	keywords	and	API	that
you	 would	 use	 to	 write	 BASIC	 programs.	 While	 there	 may	 have	 been
clarification	 of	 what	 different	 parts	 of	 the	 sample	 were	 trying	 to	 accomplish,
there	 was	 never	 any	 discussion	 of	why	 a	 particular	 section	 of	 code	 had	 been
written	 in	a	certain	way.	The	code	samples	worked,	and	 that	was	enough.	The
rest	was	up	to	you.



When	 you	 are	 dealing	 with	 small	 samples	 of	 code,	 which	 exist	 only	 to
demonstrate	 calling	 one	 API,	 you	 don’t	 spend	 much	 time	 worrying	 about
readability	or	clarity.	This	came	through	in	various	ways.	For	example,	naming	a
variable	 I	 or	 J	 isn’t	 particularly	 helpful	 in	 a	 long	 program,	 where	 you	 want
something	more	descriptive.	But	people	often	used	single-letter	variable	names
in	these	samples,	and	without	much	thought	on	the	matter,	this	style	would	then
be	adopted	in	actual	code.	Most	programmers	wrote	code	for	their	own	use	and
kept	 a	 mental	 image	 in	 their	 mind	 of	 how	 it	 worked,	 so	 they	 didn’t	 concern
themselves	much	with	how	readable	it	was	by	other	people;	I	certainly	didn’t.
The	second	problem	was	the	limited	amount	of	memory	in	the	computer.
The	IBM	PC	came	with	three	versions	of	BASIC	in	order	to	accommodate	the

resource	 limitations—it	 was	 possible	 to	 buy	 an	 IBM	 PC	 with	 as	 little	 as	 16
kilobytes	of	memory.	On	such	a	machine	you	could	only	run	Cassette	BASIC,
which	was	 included	with	 the	computer,	burned	 into	a	32-kilobyte	ROM	(read-
only	memory)	chip,	which	meant	it	didn’t	take	up	any	space	in	the	16	kilobytes
of	memory.	It	was	called	Cassette	BASIC	because	you	could	order	an	IBM	PC
without	 disk	 drives,	 using	 a	 cassette	 tape	 for	 storage.	 In	 this	 situation,	 the
computer	would	boot	directly	into	Cassette	BASIC;	there	was	no	DOS	because
there	was	no	disk	to	operate	(or	to	load	DOS	itself	from).
I	assume	that	a	few	people	did	order	a	cassette-tape-only	IBM	PC	(I	vaguely

recall	a	 letter	 to	 the	 long-defunct	magazine	SofTalk	 for	 the	IBM	PC	discussing
exactly	this),	but	the	vast	majority	ordered	it	with	floppy	disks,	which	meant	you
were	running	DOS	and	therefore	could	launch	either	Disk	BASIC	or	Advanced
BASIC,	known	respectively	as	BASIC	and	BASICA,	after	the	DOS	commands
you	typed	to	start	them.
Disk	BASIC	was	 a	 superset	 of	Cassette	BASIC,	 adding	 support	 for	 reading

and	writing	 files	 to	 disk	 as	 well	 as	 communicating	 over	 a	modem.	Advanced
BASIC	included	that	plus	the	advanced	graphics	and	sound	APIs	like	DRAW	and
PLAY.	Disk	BASIC	 required	 32	 kilobytes	 of	memory,	while	Advanced	BASIC
needed	 a	 whopping	 48	 kilobytes.	 Keep	 in	 mind	 that	 memory	 had	 to
accommodate	the	BASIC	interpreter	itself	(although	the	more	advanced	BASICs
did	rely	on	some	of	the	Cassette	BASIC	code	stored	in	the	separate	ROM),	the
code	 for	your	program,	and	whatever	memory	 the	program	 itself	used	 to	 store
data	in	variables.
Given	 this,	 it	 becomes	 more	 understandable	 that	 you	 would	 give	 all	 your

variables	one-letter	names	because	that	used	the	least	amount	of	memory	to	store
the	code	that	used	those	variables.	BASIC	allowed	you	to	add	comments	in	your
code	to	explain	what	it	was	doing	by	preceding	them	with	the	REM	statement	or	a
'	 (single-quote)	character,	but	comments	were	also	viewed	as	a	 space-hogging



luxury.	And	a	16-kilobyte	IBM	PC	wasn’t	even	the	most	limited	environment	in
which	 you	 could	 run	 BASIC;	 recall	 that	 Radio	 Shack	 was	 selling	 a	 TRS-80
computer	 with	 4	 kilobytes	 of	 memory	 in	 its	 lowest	 configuration,	 running	 a
BASIC	so	minimal	that	it	barely	even	supported	character	strings—variables	that
held	sequences	of	text	(string	is	used	here	as	in	“string	of	letters,”	not	the	thing
you	 tie	 objects	 together	 with).	 Your	 program	 could	 have	 exactly	 two	 string
variables	in	your	code,	named	A$	and	B$.14
In	fact,	 to	save	memory,	some	of	 those	early	BASICs	(although	not	 the	ones

included	with	 the	 IBM	 PC)	 allowed	 you	 to	 leave	 out	 the	 space	 characters.	 A
loop,	a	standard	programming	construct	that	allows	statements	to	be	repeated,	is
normally	written	in	BASIC	like	this	(BASIC	programs	back	then	required	a	line
number	on	every	line):

10	FOR	J	=	1	TO	10

20			PRINT	J

30	NEXT

but	you	can	write	it	in	one	line	instead:

10	FOR	J	=	1	TO	10:	PRINT	J:	NEXT

which	could	then	be	jammed	together	as

10	FORJ=1TO10:PRINTJ:NEXT

and	that	would	be	considered	completely	normal	and	arguably	clever.
These	memory	limits	were	a	step	backward	from	the	mainframe	days.	Those

mainframe	 computers	 didn’t	 have	 a	 lot	 of	 memory	 either	 (I	 don’t	 know	 the
specific	 details	 of	 the	McGill	 computer,	 but	 a	 typical	mainframe	 in	 the	 1970s
had	 between	 256	 kilobytes	 and	 1	 megabyte	 of	 memory),	 and	 it	 was	 shared
between	 all	 users	 connected	 at	 any	 one	 time,	 but	 the	 operating	 system	 used	 a
technique	 called	 virtual	 memory	 that	 let	 the	 disk	 drives	 function	 as	 extra
memory.	 In	 such	 an	 environment,	 shaving	 bytes	 off	 your	 code	was	much	 less
important,	and	programmers	could	splurge	on	the	occasional	comment	line.
The	third	problem	that	prevented	me	from	learning	proper	coding	techniques

on	 an	 IBM	PC	was	 that	 at	 the	 time,	 the	BASIC	 language	made	 it	 difficult	 to
write	large	programs.	Such	programs	are	made	up	of	layers	and	layers	of	code,
often	written	by	different	people,	connected	together	via	APIs.	Code	you	write	is
typically	calling	an	API	provided	by	a	lower	layer	but	also	supplying	an	API	for
higher	layers	to	call.	While	BASIC	did	allow	your	code	to	call	the	APIs	offered
by	 BASIC	 itself,	 such	 as	 DRAW	 and	 PLAY,	 there	 was	 no	 way	 for	 your	 code	 to



provide	its	own	named	APIs	to	other	code.
BASIC	did	have	subroutines,	which	allowed	code	to	jump	somewhere	else	in

the	program	and	then	return	back	to	the	calling	code.	These	are	conceptually	an
API,	yet	they	were	referenced	not	by	name	but	rather	by	line	number	(similar	to
the	way	 that	 GO	 TO	 statements	worked	 in	 Fortran	 or,	 for	 that	matter,	 BASIC).
Furthermore,	 subroutines	did	not	 support	parameters;	 they	 referenced	variables
directly.	 You	 called	 a	 subroutine	 using	 the	 GOSUB	 (sometimes	 spelled	 GO	 SUB)
statement,	 specifying	 a	 line	 number	 as	 the	 target.	 Consider	 this	 example
(modified	slightly	for	clarity)	from	the	book	Structured	BASIC,	from	1983:15

100	READ	A	

110	GO	SUB	700

120	PRINT	S

130	GO	TO	999

700	S	=	0															!	START	OF	SUBROUTINE

710	FOR	I	=	0	TO	A

720	S	=	S	+	I

730	NEXT	I

740	RETURN														!!!	END	OF	SUBROUTINE

999	END

On	line	120,	the	program	is	calling	the	subroutine	starting	on	line	700,	which
sums	 up	 the	 numbers	 from	0	 to	A	 and	 stores	 the	 result	 in	S.	Conceptually	 the
variable	A	is	a	parameter	to	that	subroutine,	because	the	subroutine	uses	A	in	its
calculations,	and	the	variable	S	is	the	return	value	from	the	subroutine,	because
setting	S	is	the	net	effect	of	the	subroutine.	But	those	variables	have	no	particular
connection	to	that	subroutine	except	in	how	they	were	used.	In	software	parlance
all	 variables	 in	 BASIC	 were	 global	 variables,	 meaning	 that	 any	 code	 could
access	 them,	 whether	 in	 the	 main	 program	 or	 a	 subroutine.	 The	 caller	 of	 the
subroutine	 on	 line	 700	 has	 to	 “just	 know”	 to	 put	 a	 certain	 value	 in	 A	 before
calling	 the	 subroutine	 and	 also	 “just	 know”	 that	 the	 value	 that	 the	 subroutine
calculates	 will	 be	 stored	 in	 S	 when	 it	 returns.	 Not	 to	 mention,	 it	 has	 to	 “just
know”	that	 the	subroutine	that	adds	the	numbers	from	0	to	A	starts	at	 line	700,
and	not	accidentally	GO	SUB	to	line	690	or	710.16	The	comments	on	lines	700	and
740,	starting	with	a	!,	indicate	to	the	reader	that	they	are	the	start	and	end	of	a
subroutine,	but	 the	compiler	 ignores	comments	and	has	no	knowledge	that	 line
700	is	supposed	to	be	the	start	of	a	subroutine.
This	 may	 seem	 like	 a	 minor	 detail,	 but	 in	 practice	 it	 makes	 calling	 other

people’s	code	quite	tricky	(of	course,	I	was	programming	by	myself	so	there	was
no	 other	 programmer—another	 factor	 that	 prevented	 me	 from	 learning	 “real”
software	 development).	 Imagine	 copying	 code	 from	 another	 programmer	 and



trying	to	include	it	in	your	own	BASIC	program.	In	addition	to	needing	to	know
the	exact	line	numbers	to	call	subroutines	as	well	as	the	exact	variable	names	to
use	to	pass	in	and	return	values,	you	have	no	guarantee	that	the	line	numbers	and
variable	names	used	inside	another	person’s	code	won’t	be	the	same	as	the	ones
you’ve	used,	which	would	cause	a	conflict.	BASIC	requires	line	numbers	partly
because	 it	was	 designed	 to	work	on	 an	 interactive	 system	 that	might	 not	 have
any	kind	of	text	editor	available;	if	you	wanted	to	insert	a	line	of	code	between
two	 existing	 lines,	 you	 chose	 a	 line	 number	 that	was	 numerically	 between	 the
numbers	of	those	two	lines.	And	if	you	chose	a	line	number	that	was	already	in
use,	 then	 BASIC	 replaced	 the	 old	 line,	 which	 meant	 that	 loading	 somebody
else’s	 code	 would	 replace	 part	 of	 your	 code	 if	 the	 line	 numbers	 conflicted.17
Essentially	 you	were	 restricted	 to	writing	 programs	 that	 depended	 only	 on	 the
built-in	API	available	 in	BASIC,	or	 if	 they	did	 load	 in	other	 snippets	of	 code,
they	were	two	parts	of	the	same	program	that	had	been	carefully	crafted	to	not
overlap	 their	 line	numbers,	as	opposed	 to	 the	much	more	generic	“call	an	API
implementation	 that	 somebody	 else	 wrote”	 that	 defines	 modern	 layered
programs.
In	addition,	as	a	BASIC	programmer,	you	got	no	practice	in	defining	a	clean

API	interface	for	others	to	call.	These	connections	are	fragile	points	in	a	program
because	of	the	potential	for	misunderstanding	at	the	API	boundary,	whereby	the
caller	of	an	API	may	not	realize	exactly	what	the	API	does,	especially	if	it	was
written	 at	 a	 different	 time	 by	 a	 different	 person	 (and	 in	 large	 programs,	 the
source	code—the	uncompiled	original	version—that	implements	the	lower	API
is	frequently	not	available	to	look	at).	In	BASIC,	you	didn’t	have	to	ponder	what
was	 a	 clean	 set	 of	 variables	 to	 pass	 to	 a	 subroutine	 or	 return	 from	 it.	 Any
subroutine	could	read	or	set	any	variable	in	the	program.	Even	the	subject	of	API
naming	didn’t	come	up	because	only	the	line	number	identified	the	subroutines.
And	even	if	you	were	trying	to	maintain	a	self-contained	program	that	did	not

depend	on	any	other	code,	you	still	wound	up	with	code	that	was	hard	to	read.
MS-DOS,	the	operating	system	for	the	IBM	PC,	included	a	few	sample	BASIC
programs	 to	 demonstrate	 the	 functionality	 of	 the	 language	 and	 give	 people
something	to	do	while	 looking	at	 the	computer	 in	a	store.	 I	 remember	one	 that
showed	a	chart	of	the	colors	(all	sixteen	of	them)	available	on	the	IBM	PC,	and
another	that	sketched	the	“skyline”	of	a	“city”	by	drawing	an	endless	succession
of	randomly	sized	rectangles	on	the	screen—a	pretty	good	effect	for	what	must
have	been,	at	its	heart,	about	ten	lines	of	BASIC	code,	centered	on	an	API	called
LINE,	which	would	draw	filled-in	rectangles	if	you	asked	it	properly.18
About	 half	 the	 sample	 programs	 were	 written	 by	 IBM,	 and	 the	 rest	 by



Microsoft.	 According	 to	Glenn	Dardick,	who	 supplied	 IBM’s	 contribution,	 he
wrote	most	 of	 his	 in	 a	 couple	 days	while	 recuperating	 from	 an	 operation.	His
magnum	opus	was	the	Music	program,	which	would	play	eleven	different	songs,
including	“Pop!	Goes	the	Weasel,”	“Yankee	Doodle	Dandy,”	the	“Blue	Danube
Waltz”	by	Johann	Strauss,	and	“Symphony	#40”	by	Wolfgang	Amadeus	Mozart,
all	 while	 a	 musical	 note	 followed	 along	 on	 a	 rendering	 of	 a	 piano	 keyboard.
Dardick	enlisted	a	family	friend,	a	staff	conductor	at	the	Metropolitan	Opera	in
New	York	named	Richard	Woitach,	to	help	him	with	the	music.19
The	most	famous,	or	infamous,	of	these	BASIC	samples	was	called	Donkey,	or

DONKEY.BAS,	 since	 that	 was	 the	 name	 of	 the	 file	 containing	 the	 BASIC
source	 code.	Donkey	was	 a	 video	 game	with	 extremely	 simple	 gameplay.	The
screen	displayed	a	two-lane	road	running	from	the	top	to	bottom	of	the	screen;
near	the	bottom,	there	was	a	race	car,	which	could	be	in	either	the	left	or	right
lane.	A	donkey	would	appear	in	one	of	the	lanes,	moving	down	from	the	top	of
the	screen,	and	you	hit	the	space	bar	to	move	the	car	to	the	other	lane	to	avoid
hitting	the	donkey.	Once	one	donkey	was	avoided,	another	appeared	at	the	top	of
the	screen,	and	the	timeless	battle	was	renewed.	That’s	the	game!	Videos	of	it	in
action	do	exist	on	 the	Internet,	although	don’t	construe	 this	as	advice	 to	watch
them.	In	its	defense,	it	was	written	during	a	late-night	exercise	(with	Bill	Gates
as	 a	 coauthor)	 to	 show	off	 the	 power	 of	Advanced	BASIC.20	 It	 used	 both	 the
DRAW	 and	 PLAY	 APIs	 as	 well	 as	 demonstrated	 the	 basics	 of	 how	 to	 write	 an
interactive	 game,	 which	 was	 very	 instructive	 for	 somebody	 like	 me	 who	 was
used	to	the	noninteractive	line	terminal	experience	of	a	mainframe	computer.
I	will	readily	admit	that	I	played	Donkey	a	few	times	as	an	actual	video	game

rather	 than	merely	 to	marvel	 at	 its	 simplicity.	And	 one	 of	my	 children,	while
reading	a	draft	of	 this	chapter,	dug	up	a	playable	version	of	Donkey	and	found
himself	 briefly	 captivated,	 especially	 since	 each	 successfully	 avoided	 donkey
moves	the	race	car	closer	to	the	top	of	the	screen—a	nuance	I	had	forgotten	that
ratcheted	up	the	excitement.	The	mobile	game	Flappy	Bird	became	a	sensation
in	2014	with	scarcely	more	compelling	gameplay	or	more	complicated	controls
than	Donkey	had	back	in	1981.
One	benefit	of	Donkey’s	notoriety	is	that	the	source	code	survives	to	this	day,

so	we	can	see	what	an	8-bit	era	BASIC	program	looks	like.21	It’s	only	131	lines
long,	 of	 which	 the	 first	 45	 are	 spent	 printing	 an	 introductory	 message	 and
making	sure	you	have	 the	right	hardware.	You	can	follow	the	core	game	 logic
pretty	well,	but	then	suddenly	you	hit	these	two	lines	(in	IBM	PC	BASIC,	GOSUB
was	written	as	one	word):22

1480	GOSUB	1940



1490	GOSUB	1780

and	you	have	no	context	 for	what	 those	mean—what	 the	 subroutines	do,	what
variables	they	depend	on	being	set	before	being	called,	and	what	variables	they
modify	while	running.	At	least	in	Fortran,	the	code	would	look	something	like

CALL	LOADDONKEYIMAGE(DNK)

CALL	LOADCARIMAGE(CAR)

which	provides	a	hint	of	their	purpose—load	the	images	of	the	donkey	and	the
car	 into	 the	 variables	 DNK	 and	 CAR,	 so	 they	 can	 be	 more	 easily	 drawn	 on	 the
screen	later	(which	is	what	the	BASIC	subroutines	at	 lines	1940	and	1780	do).
Or	failing	that,	the	authors	of	Donkey	could	have	added	comments	to	the	lines	of
BASIC	code:

1480	GOSUB	1940				'	LOAD	THE	DONKEY	IMAGE	INTO	DNK

1490	GOSUB	1780				'	LOAD	THE	CAR	IMAGE	INTO	CAR

and	 then	 the	 code	 at	 line	 1940,	 instead	 of	 jumping	 right	 into	 this	 sequence	 to
draw	the	donkey,23

1940	CLS

1950	DRAW	"S08"

1960	DRAW	"BM14,18"

1970	DRAW	"M+2,-4R8M+1,-1U1M+1,+1M+2,-1"

could	 instead	 have	 started	with	 a	 comment	 line	 to	 indicate	what	 it	was	 doing,
maybe	like	this:

1940	REM	SUBROUTINE	TO	DRAW	DONKEY	AND	LOAD	IT	INTO	DNK

Meanwhile	DNK	and	CAR,	at	three	letters	each,	are	tied	for	being	the	longest	and
most	descriptive	variables	used	in	the	whole	program;	other	variables	include	Q,
D1,	D2,	C1,	C2,	and	B.	Note	that	BASIC	allowed	variable	names	to	be	up	to	forty
characters	long.
Another	line	of	code	in	DONKEY.BAS	is	this	one:24

1750	IF	CX=DX	AND	Y+25>=CY	THEN	2060

This	is	the	collision	test	between	the	car	and	donkey;	CX	and	CY	are	the	screen
coordinates	 of	 the	 car,	while	DX	 and	Y	 (not	DY,	 for	 no	 obvious	 reason)	 are	 the
screen	coordinates	of	the	donkey.	The	math	for	these	things	is	always	a	bit	hard
to	puzzle	through,	so	the	complexity	of	the	IF	statement	is	expected	(it’s	saying,
if	the	on-screen	x-coordinates	are	the	same,	meaning	the	car	and	donkey	are	in



the	 same	 lane,	 and	 the	on-screen	y-coordinate	of	 the	donkey	 is	within	 twenty-
five	of	the	car,	then	the	bottom	edge	of	the	donkey	is	overlapping	the	top	edge	of
the	car,	 and	we	have	a	 collision).	The	 reason	 the	code	 is	 confusing	 is	because
what	 the	code	does	on	collision	(when	the	IF	 test	 is	 true)	 is	 jump	to	 line	2060
(that	 is	what	 THEN	 2060	 does)	 as	 opposed	 to	 calling	 an	API	with	 a	 name	 like
SHOWEXPLOSION.	And	again,	there	are	no	comments	to	explain	any	of	this.	If	you
go	to	line	2060	to	try	to	figure	out	what	is	going	on,	you	see	this:25

2060	SD=SD+1:LOCATE	14,6:PRINT	"BOOM!"

First	1	 is	added	to	 the	variable	SD,	which	 isn’t	 that	 informative	(SD	holds	 the
number	of	times	the	donkey	hit	the	car,	for	those	following	along	at	home,	so	it
looks	 like	 it’s	 an	abbreviation	of	“score—donkey”),	 then	 the	LOCATE	 statement
mysteriously	moves	 the	 cursor	 to	 row	 14,	 column	 6,	 but	 then	 you	 see	 that	 it
prints	 the	 word	 “BOOM!”	 and	 you	 can	 probably	 guess,	 especially	 if	 you’ve
played	 the	 game,	 that	 this	 is	 the	 collision	 code.	But	 having	 to	 jump	 back	 and
forth,	keep	all	this	in	your	mind,	and	depend	on	recognizable	PRINT	statements
to	figure	out	what	you	are	looking	at	makes	it	hard	to	read	the	code.
You	can	 imagine	 an	 alternate	world	 in	which	 the	BASIC	 samples	 that	 came

with	MS-DOS	had	good	variable	names	and	helpful	comments,	and	people	took
advantage	of	this	to	expand	the	games.	I	could	have	written	SUPERDONKEY,
with	 three	 lanes	and	 two	donkeys	on	 the	screen	at	once,	except	 that	due	 to	 the
filename	limitations	in	MS-DOS,	it	would	have	been	called	SUPRDONK.BAS.
Still,	maybe	this	would	have	incubated	an	appreciation	of	the	benefits	of	writing
code	that	others	can	understand,	which	we	(we	meaning	“the	assembled	group	of
people	that	was	inspired	by	IBM	PC	BASIC	to	want	to	go	work	at	Microsoft,”	of
which	I	am	a	member)	would	have	then	carried	off	to	our	jobs,	and	who	knows
how	software	engineering	would	have	developed.	But	the	code	was	hard	to	read,
and	 none	 of	 that	 happened.	 Nowadays,	 companies	 that	 are	 preparing	 to	 open
source	 their	 code	 so	 that	 the	 public	 can	 see	 it	 may	 be	 stressed	 about	 people
criticizing	their	variables	names	or	code	layout,	but	apparently	no	such	concerns
existed	back	 then;	 the	only	concession	 in	 the	BASIC	samples	was	a	 three-line
IBM	copyright	message	at	the	top	of	all	of	them.
Another	 source	 of	BASIC	 code	was	 books	with	 titles	 like	BASIC	Computer

Games	 and	More	BASIC	Computer	Games—two	collections	 curated	 by	David
Ahl,	 founder	 and	 publisher	 of	 the	 early	 magazine	 Creative	 Computing.	 The
books	consisted	of	source	code	for	a	variety	of	games;	the	only	way	to	play	these
games	was	to	type	the	code	in	yourself,	hopefully	without	making	any	mistakes
(possibly,	if	a	friend	had	typed	it	in	already,	they	could	copy	it	to	a	floppy	disk



or	 cassette	 tape	 for	 you).	 This	 was	 actually	 helpful	 in	 learning	 the	 language,
since	typing	in	code	gave	you	the	opportunity	to	think	about	how	it	worked.
Every	 computer	 had	 its	 own	 dialect	 of	 BASIC,	 partly	 to	 handle	 specific

features	 of	 the	 computer,	 and	 partly	 because	 BASIC	 had	 never	 been
standardized.26	The	net	effect	of	this	was	that	programs	in	the	book	would	never
do	anything	as	computer	specific	as	graphics	or	real-time	play;	they	were	all	text
based,	 and	 relied	 on	 the	 user	 typing	 commands	 and	 hitting	 “Enter”	 to	 interact
with	 them,	with	 lines	of	output	being	displayed	one	at	a	 time.	This	made	them
suitable	for	almost	any	BASIC,	whether	running	on	an	IBM	PC	or	connected	via
a	 terminal.	 I	 realize	 now	 that	 the	 Star	 Trek	 game	 I	 played	 on	 the	 Wang
minicomputer	 at	McGill	 is	 closely	 related	 to	 the	 game	Super	 Star	 Trek	 in	 the
first	BASIC	Computer	Games	book;	whoever	ported	it	to	the	Wang	had	modified
it	 enough	 that	 the	 star	map	 in	 the	game,	while	 still	 rendered	entirely	 in	ASCII
graphics,	 was	 displayed	 in	 the	 center	 of	 the	 screen	 rather	 than	 scrolling	 in
imitation	of	a	line	terminal.
Less	aggressive	modification	might	be	needed	just	to	get	the	game	working,	if

your	 version	 of	BASIC	was	 different	 from	 the	 version	 the	 book	 targeted.	 For
example,	many	BASICs	allowed	multiple	statements	on	one	line,	separated	by	a
colon,	which	the	book	took	advantage	of,	but	some	did	not,	which	would	require
reworking	 the	 code.	 Or	 they	 allowed	 multiple	 statements,	 but	 separated	 by	 a
back	slash	 instead.27	And	some	differed	 in	 their	handling	of	 strings,	especially
the	API	used	to	extract	subsets	of	strings.	IBM	PC	BASIC	was	pretty	much	in
line	with	what	the	book	expected,	except	for	a	minor	tweak	needed	to	any	code
that	generated	random	numbers.	This	is	not	too	surprising	since	the	standard	for
the	 books,	 which	 came	 out	 in	 1978	 and	 1979,	 respectively,	 was	 Microsoft
BASIC—not	 running	 on	 the	 IBM	 PC,	 which	 did	 not	 exist	 yet,	 but	 rather	 on
earlier	 computers,	 offering	 a	 reminder	 that	 Microsoft	 was	 in	 business	 as	 a
company	selling	languages	for	several	years	before	making	the	deal	to	sell	MS-
DOS	to	IBM	that	ensured	its	long-term	success.	In	fact,	the	reference	version	for
the	first	book	was	Microsoft’s	MITS	Altair	BASIC,	revision	4.0—a	descendant
of	the	first	product	that	Microsoft	ever	sold.28
The	 games	 were	 of	 varying	 quality.	 The	 lack	 of	 graphics	 support	 left	 the

interactivity	a	bit	lacking.	These	are	the	instructions	for	the	Hockey	game	in	the
first	book:29

QUESTION		RESPONSE

PASS					TYPE	IN	THE	NUMBER	OF	PASSES	YOU	WOULD

									LIKE	TO	MAKE,	FROM	0	TO	3.

SHOT					TYPE	THE	NUMBER	CORRESPONDING	TO	THE	SHOT



									YOU	WANT	TO	MAKE.		ENTER:

									1	FOR	A	SLAPSHOT

									2	FOR	A	WRISTSHOT

									3	FOR	A	BACKHAND

									4	FOR	A	SNAP	SHOT

AREA					TYPE	IN	THE	NUMBER	CORRESPONDING	TO

									THE	AREA	YOU	ARE	AIMING	AT.		ENTER:

									1	FOR	UPPER	LEFT	HAND	CORNER

									2	FOR	UPPER	RIGHT	HAND	CORNER

									3	FOR	LOWER	LEFT	HAND	CORNER

									4	FOR	LOWER	RIGHT	HAND	CORNER

And	that’s	how	the	game	went:	when	one	player	had	the	puck,	the	game	would
prompt	to	enter	a	number	of	passes	(0	to	3),	then	prompt	for	the	type	of	shot	and
area,	then	randomly	generate	a	result	(goal	or	save),	then	determine	which	player
had	the	puck	next,	and	so	on	until	you	ran	out	of	fake	time	(the	computer	also
decided	how	much	fake	time	each	play	took).
Believe	it	or	not,	these	games	were	compelling	to	play	back	in	those	days	(and

some	of	 them,	 to	 be	 fair,	were	 better	 suited	 to	 the	 noninteractive	mode),	 even
though	 you	 could	 read	 the	 source	 code	 and	 figure	 out	 the	 computer	 artificial
intelligence	(AI;	from	reading	the	code	now,	it	 looks	like	the	slap	shot	was	the
best	option	to	score,	and	the	area	you	aimed	at	had	no	effect).
Still,	 they	 were	 examples	 of	 large	 BASIC	 programs,	 with	 Super	 Star	 Trek

from	the	first	book	clocking	in	at	over	four	hundred	lines,	printed	in	extra-small
type,	 and	Seabattle—written	by	a	high	 school	 student	 in	Minnesota—from	 the
second	book	being	over	six	hundred	lines.30	Beyond	the	unfortunate	coding	style
that	 BASIC	mandated,	 with	 subroutines	 and	 GOTO	 targets	 being	 line	 numbers,
people	continued	to	use	poor	variable	names;	the	average	number	of	characters
in	the	book’s	variable	names	was	perilously	close	to	one.
The	author	of	Seabattle,	Vincent	Erickson,	said	that	the	version	of	BASIC	he

wrote	 it	 for	 had	 a	 limit	 of	 two	 characters	 for	 variable	 names—an	 obvious
impediment	 to	 clarity.	He	wrote	 the	 game	 in	 1977,	 and	 later	 entered	 it	 in	 the
1978	 Minnesota	 state	 programming	 contest;	 he	 then	 submitted	 it	 to	 Creative
Computing	 magazine,	 which	 selected	 it	 for	 inclusion	 in	 the	 book,	 paying
Erickson	 $50	 for	 the	 rights.	 To	 his	 credit,	 the	 program	 does	 have	 a	 decent
selection	 of	 comments	 identifying	 the	 different	 sections	 of	 the	 code,	 but
Erickson	didn’t	remember	if	he	wrote	it	that	way	originally	or	added	them	when
he	 submitted	 it	 for	 publication.	 He	 won	 second	 place	 in	 the	 programming
contest;	on	the	plus	side,	he	later	started	communicating	via	e-mail	with	a	female
computer	science	student	at	another	high	school;	her	teacher	had	given	her	a	list
of	entries	in	the	contest.	This	led	to	what	may	be	the	first	marriage	between	two



people	who	met	online.31
While	anodyne	variable	names	were	apparently	not	enough	 to	block	Cupid’s

arrow,	they	could	be	frustrating.	There	was	a	checkers	game	in	the	first	book	that
contained	the	logic	for	the	computer	AI,	which	I	would	have	been	interested	in,
but	 it	 was	 buried	 in	 a	 thicket	 of	 single-letter	 variables,	 and	 also	 a	 maze
generation	program	in	the	second	book,	another	program	whose	logic	I	wanted
to	decipher—how	did	it	ensure	there	was	only	one	path	through?—yet	it	was	too
hard	to	wade	through	the	code.	For	the	games	like	Hockey,	you	could	use	printed
strings	as	a	guide;	the	“somebody	scored	a	goal”	logic	was	clearly	in	the	general
vicinity	of	this:32

970	PRINT	"GOAL	"	A$(7):H(9)=H(9)+1:GOTO	990

But	for	a	game	like	the	Checkers	or	Maze	programs,	those	guideposts	did	not
exist.	And	not	surprisingly,	comments	were	almost	nonexistent	(belated	kudos	to
whoever	wrote	the	Bowling	program,	which	at	least	had	a	few	helpful	comments
to	delineate	different	sections	of	the	code).
With	 all	 this,	 it	 is	 accurate	 to	 say	 that	BASIC,	 in	 the	 form	 in	which	 it	most

commonly	 existed	 in	 the	 early	 1980s,	was	 unusable	 for	 sharing	 code	 between
people	 who	 did	 not	 know	 each	 other	 and	 did	 not	 collaborate	 in	 detail	 on	 the
sharing.	This	is	not	a	knock	specifically	on	the	BASIC	that	Microsoft	wrote	for
the	 IBM	PC,	which	was	quite	 full	 featured;	 it’s	 a	 fundamental	problem	with	a
language	 that	 uses	 line	numbers	 as	 subroutine	 and	GOTO	 targets.	 John	Kemeny
and	Thomas	Kurtz,	the	inventors	of	BASIC,	recognized	these	problems,	and	by
the	 late	 1970s	 had	 come	 up	 with	 an	 improved	 version	 of	 BASIC	 that	 had
properly	named	subroutines	with	parameters	and	other	changes	that	made	GOTO
mostly	 unnecessary.33	 Unfortunately	 the	 versions	 of	BASIC	 that	 shipped	with
personal	 computers,	 which	 is	 where	 most	 people	 learned	 the	 language,	 had
already	split	off	in	their	own	directions.	Kemeny	and	Kurtz	were	not	happy	with
the	IBM	PC	BASIC,	partly	because	it	reminded	them	of	the	earlier	incarnations
of	 the	 language.	 They	 described	 the	 way	 it	 handled	 numerical	 variables	 as
“ugly”	and	“silly,”	and	criticized	aspects	of	the	graphics	supports	as	the	sign	of	a
“very	poorly	designed	language.”34	Yet	there	was	no	closing	the	barn	door	after
that	particular	horse	had	escaped.
At	this	point	in	my	story	I	should	mention	the	name	Edsger	Dijkstra.	Dijkstra

was	a	Dutch	computer	scientist	who	was	born	in	1930	(he	died	in	2002),	which
positioned	him	well	to	invent	some	of	the	foundational	concepts	and	algorithms
in	 computer	 science.	 Despite	 looking	 like	 a	 central	 casting	 computer	 science
professor,	he	had	a	knack	for	generating	good	quotations,	and	 in	1975	wrote	a



letter	titled	“How	Do	We	Tell	Truths	That	Might	Hurt?”	in	which	he	stated,	“It
is	practically	impossible	to	teach	good	programming	to	students	that	have	had	a
prior	exposure	to	BASIC:	as	potential	programmers	they	are	mentally	mutilated
beyond	 hope	 of	 regeneration.”	He	 also	 labeled	 Fortran	 an	 “infantile	 disorder”
and	called	it	“hopelessly	inadequate	for	whatever	computer	application	you	have
in	mind	today:	it	is	now	too	clumsy,	too	risky,	and	too	expensive	to	use.”35	He
was	 silent	on	 the	 subject	of	HP	calculators,	 although	you	 should	hear	what	he
said	 about	 COBOL	 (another	 language	 dating	 from	 the	 1950s).	 In	 any	 case,
BASIC’s	lack	of	sophistication	made	BASIC	interpreters	simpler,	and	therefore
easier	to	fit	 into	the	minimal	memory	of	early	personal	computers.	Rather	than
heed	Dijkstra’s	warning,	the	personal	computer	industry	ordained	BASIC	as	the
de	 facto	 standard	 language,	 contributing	 to	 the	 blight	 of	 another	 generation	 of
programmers.	Gates,	 incidentally,	had	an	almost-identical	 first	 experience	with
computers	 about	 a	 decade	 before	 I	 did,	 when	 his	 school	 obtained	 a	 similar
printer-based	terminal	that	connected	to	a	remote	computer	(except	that	his	first
programming	 language	was	a	dialect	of	BASIC,	not	Fortran,	so	he	had	 to	deal
only	with	the	mental	mutilation,	without	my	hopeless	inadequacy	added	on).
So	there	I	was	in	fall	1984,	a	survivor	of	Fortran	and	BASIC,	heading	off	 to

Princeton	 to	major	 in	 computer	 science,	 preparing	 to	 soak	 up	 all	 the	 software
engineering	knowledge	that	had	so	far	eluded	me.	What	happened	next,	as	they
say,	may	surprise	you.
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2 
The	Education	of	a	Programmer

Informed	 by	 knowledge	 of	 what	 is	 taught	 to	 prospective	 doctors,	 lawyers,	 or
accountants,	 you	 could	 not	 be	 faulted	 for	 picturing	 my	 computer	 science
education	 at	 Princeton	 as	 devoted	 to	 instruction	 on	 how	 to	 design	 software,
reporting	on	experiments	with	different	 languages	and	methodologies,	 relaying
tips	for	corralling	elusive	bugs	and	hard-to-pinpoint	slowdowns,	and	in	general
having	the	faculty	impart	their	combined	wisdom	on	software	engineering	to	the
eager	assemblage	of	students.
Before	I	get	into	details	on	why	it	wasn’t	quite	like	that,	I	want	to	cover	a	bit

of	 terminology.	 People	who	write	 software	 programs	 are	 called	programmers.
They	 are	 also	 called	 developers	 or	 software	 developers	 as	 well	 as	 software
engineers,	 software	 development	 engineers,	 or	 sometimes	 software	 design
engineers.	I	called	myself	a	programmer	when	I	was	younger,	while	at	Microsoft
we	were	 informally	called	developers	 (often	 shortened	 to	“devs”),	but	my	 title
was	software	development	engineer.	One	of	the	questions	in	this	book	is	whether
the	 word	 engineer	 belongs	 there.	 But	 for	 now,	 consider	 them	 all	 to	 be
interchangeable.
Meanwhile,	people	who	go	to	college	to	study	programming	usually	major	in

computer	 science—another	 two-word	 phrase	 that	may	 not	 yet	 have	 earned	 its
second	word—but	they	may	instead	major	in	software	engineering.	Some	claim
there	is	a	distinction	between	those	two,	with	computer	science	more	focused	on
theory	 and	 software	 engineering	 more	 concerned	 with	 the	 application	 of	 that
theory,	yet	there	is	no	agreement	on	the	difference,	or	whether	it	exists	at	all,	so
treat	those	two	as	equivalent	too.
In	 any	 case,	 off	 I	 went	 in	 1984,	 home-brewed	 programming	 experience	 in

hand,	 to	 Princeton	 University	 to	 study	 computer	 science.	 Princeton’s	 was	 a
typical	high-level	computer	science	program:	good	facilities,	smart	students,	and
professors	who	were	recognized	as	leading	authorities	in	their	areas	of	research.
But	 the	 professors’	 areas	 of	 research	 were	 primarily	 related	 to	 theoretical
computer	science,	essentially	the	study	of	algorithms	(Princeton	had	a	reputation



for	 being	 a	 bit	 more	 algorithm-focused	 than	 other	 schools,1	 although	 in	 my
observation	 of	 the	 graduates	 of	 various	 other	 schools,	 when	 I	 was	 later
interviewing	 them	 for	 jobs	 at	Microsoft,	 I	 did	 not	 notice	 any	difference	 in	 the
training	 they	had	 received).	There	was	only	one	 class	 that	 centered	on	how	 to
write	software:	the	introductory	computer	science	class	that	I	took	my	first	year,
where	we	were	taught	a	language	called	Pascal.
The	 big	 advance	 that	 Pascal	 had	 over	 early	 1980s’	 BASIC	 was	 that	 it

supported	 passing	 parameters	 to	 its	 version	 of	 subroutines,	 which	 it	 called
procedures.	 (Pascal	 made	 a	 somewhat-unnecessary	 distinction	 between
procedures,	 which	 did	 not	 return	 a	 value,	 and	 functions,	 which	 did.	 I’ll	 use
procedures	 here;	 both	 would	 fall	 under	 the	 more	 language-independent	 term
API.)	In	addition,	any	variables	declared	inside	a	procedure	were	local	variables,
which	means	you	didn’t	need	to	worry	about	whether	they	had	the	same	name	as
a	 variable	 declared	 outside	 the	 procedures.	 This	 made	 it	 possible	 to	 call	 a
procedure	written	by	somebody	else	without	knowing	the	details	of	how	it	was
implemented—the	 basis	 for	 building	 up	 code	 in	 layers.	 This	 is	 essentially
impossible	 in	 IBM	PC	BASIC	with	 its	 line-number-based	 subroutines	with	no
parameters,	and	all	variables	being	global.
My	sister,	who	is	a	year	older	than	me,	also	took	a	Pascal	course	in	college.	I

once	 got	 into	 a	 debate	with	 her	 about	whether	 it	 was	 important	 to	 be	 able	 to
define	 procedures	 with	 parameters,	 as	 Pascal	 allowed,	 or	 whether	 BASIC’s
support	 for	 unnamed,	 unparameterized	 subroutines	 was	 sufficient.	 This	 latter
position	is	hopelessly	naive	in	retrospect,	but	nonetheless	it	was	the	side	I	chose.
At	 this	 point	 my	 sister’s	 programming	 experience	 in	 Pascal	 consisted	 of	 the
typical	short	assignments	(sort	an	array	of	integers,	etc.)	that	I	had	cut	my	teeth
on	when	learning	WATFIV,	whereas	I	had	written	several	games	in	BASIC	of
decent	 complexity	 (with	 what	 would	 be	 described	 today	 as	 8-bit	 graphics,
although	 since	 the	 IBM	PC	only	 supported	16	 colors,	 they	 actually	were	4-bit
graphics).	There	 is	 no	doubt	 in	 retrospect	 that	 I	was	wrong	 and	my	 sister	was
right.	With	 sufficient	 care	 you	 could	work	 around	 the	 problems	 of	 not	 having
named	 subroutines	 and	 local	 variables,	 but	 they	 are	 such	 a	 convenience	 and
avoid	so	many	preventable	mistakes	that	dismissing	them	is	indefensible.	In	my
defense,	 recall	 Dijkstra’s	 comment	 that	 BASIC	 programmers	 are	 “mentally
mutilated	beyond	hope	of	regeneration.”2	Perhaps	at	that	point	my	brain	was	so
torn	up	inside	from	my	intense	exposure	to	BASIC	that	I	couldn’t	think	straight
and	lost	an	argument	to	my	sister.
In	 my	 introductory	 class	 at	 Princeton,	 we	 learned	 the	 basics	 of	 Pascal	 and

wrote	 the	 simple	 programs	 used	 to	 learn	 a	 language.	 Our	 textbook,



Programming	in	Pascal	by	Peter	Grogono,3	did	a	thorough	job	of	explaining	the
syntax	of	Pascal,	without	 spending	much	 time	on	what	 you	 should	 do	with	 it,
and	I	don’t	 recall	 the	 instructor	getting	 into	 too	many	details	either.	As	Harlan
Mills,	a	noted	writer	on	software	topics	who	spent	over	twenty	years	managing
teams	at	IBM,	once	wrote,

Our	present	programming	courses	are	patterned	along	those	of	a	“course	in
French	Dictionary.”	In	such	a	course	we	study	the	dictionary	and	learn	what
the	meanings	of	French	words	are	in	English	(that	corresponds	to	learning
what	PL/I	 or	Fortran	 statements	 do	 to	 data).	At	 the	 completion	 of	 such	 a
course	 in	French	dictionary	we	 then	 invite	and	exhort	 the	graduates	 to	go
forth	and	write	French	poetry.	Of	course,	the	result	is	that	some	people	can
write	French	poetry	 and	 some	not,	 but	 the	 skills	 critical	 to	writing	poetry
were	not	learned	in	the	course	they	just	took	in	French	dictionary.4

The	 trend	 in	 programming	 circles	 at	 that	 time	was	 structured	 programming.
Donald	Knuth	 is	 a	 longtime	professor	of	 computer	 science	best	known	 for	 the
multivolume	 opus	 The	 Art	 of	 Computer	 Programming,	 a	 comprehensive
summary	of	 software	algorithms	 that	he	began	working	on	 in	1962.	He	wrote,
“During	the	1970s	I	was	coerced	like	everybody	else	into	adopting	the	ideas	of
structured	programming,	 because	 I	 couldn’t	 bear	 to	 be	 found	guilty	 of	writing
unstructured	 programs.”5	 It’s	 likely	 that	 for	 any	 language	 then	 in	 use,	 there
existed	a	book	whose	title	contained	the	word	structured	followed	by	the	name
of	the	language.	You	could	find	Structured	Programming	Using	PL/1	and	SP/k
(1975),	Structured	 Programming	 in	 APL	 (1976),	Programming	 in	 FORTRAN:
Structured	 Programming	 with	 FORTRAN	 IV	 and	 FORTRAN	 77	 (1980),
Structured	 COBOL:	 A	 Pragmatic	 Approach	 (1981),	 Problem	 Solving	 and
Structured	Programming	in	Pascal	(1981),	Structured	Basic	(1983),	and	so	on.
Gerald	Weinberg	is	another	longtime	observer	of	the	software	landscape	who,

among	other	 things,	worked	 for	 IBM	on	 the	 software	 for	Project	Mercury,	 the
US	program	to	put	an	astronaut	into	space	in	the	early	1960s.	In	his	foreword	to
the	1976	book	Structured	Programming	in	APL	(APL	was	another	programming
language,	 whose	 name	 is	 unrelated	 to	 the	 term	 API),	 Weinberg	 lays	 out	 the
structured	manifesto	with	his	usual	flourish:

APL	 has	 earned	 such	 a	 reputation	 for	 disorderly	 conduct	 that	 “structured
APL”	 rings	 as	 off-key	 as	 “immaculate	 pigsty”	 or	 “honest	 politician.”	Yet
we	must	not	blame	the	language	for	the	disorderly	conduct	of	its	users—or
misusers.	In	the	hands	of	responsible	and	properly	educated	programmers,
APL	 becomes	 a	 marvelously	 disciplined	 tool,	 a	 tool	 unlike	 any	 other



programming	language	in	common	use.
The	problem,	 of	 course,	 lies	 in	 the	 phrase	 “properly	 educated.”	For	 too

long,	 in	 too	 many	 places,	 APL	 users	 have	 learned	 the	 language	 “in	 the
streets,”	as	any	examination	of	their	programs	would	show.	Their	textbooks
are	little	more	than	reference	manuals,	and	offer	no	corrective	to	the	worst
effects	of	the	oral	tradition.6

Learning	“in	the	streets,”	textbooks	as	“little	more	than	reference	manuals”—
indeed!	Weinberg	was	making	the	same	point	I	am	making	in	this	book,	forty-
plus	years	later:	most	programmers	are	not	properly	educated	in	how	to	program,
and	it	shows	in	their	code.
It	was	 unclear	whether	 structured	 programming	was	 a	 process—a	 structured

approach	 to	 producing	 a	 program—or	 result—a	 program	 that	 is	 structured,	 no
matter	how	it	got	that	way.	Knuth’s	and	Weinberg’s	quotes	above	make	it	sound
like	 it	 is	 the	 second.	 I	 concur;	 in	 the	 end,	 the	 code	 is	what	 remains	 as	well	 as
what	 will	 determine	 how	 quickly	 a	 new	 programmer	 can	 figure	 out	 how	 a
program	works.	Nonetheless,	the	literature,	while	clearly	enamored	of	the	term,
varied	a	lot	in	deciding	what	structured	programming	really	was.
Structured	 COBOL:	 A	 Pragmatic	 Approach	 gets	 to	 page	 ninety-five	 before

providing	 a	 brief	 section	 on	 structured	 programming,	 explaining,	 “This	 is	 the
first	 mention	 of	 the	 term	 structured	 programming,	 although	 every	 program
presented	so	far	has	been	‘structured.’	Structured	programming	is	the	discipline
of	making	a	program’s	logic	easy	to	follow.	This	is	accomplished	by	limiting	a
program	to	three	basic	logic	structures:	sequence,	selection,	and	iteration.”7	The
book	then	presents	flowcharts	for	each	of	those	three	logic	structures.	Sequence
here	just	means	“one	program	statement	following	another”;	selection	means	IF
statements	and	the	resulting	choice	from	those;	and	iteration	is	loops	in	all	their
various	forms.
Structured	 BASIC	 devotes	 one	 six-page	 chapter	 to	 structured	 programming,

about	 halfway	 through	 the	 book,	 which	 starts	 out	 by	 stating,	 “Structured
programming	 is	 an	 additional	 approach	 to	 program	 development	 that	 usually
results	 in	more	 efficient	 code,	 less	 time	 spent	 on	 development,	 program	 logic
that	 is	 easier	 to	 follow,	 and	 a	 resultant	 program	 that	 is	 easier	 to	 debug	 and
modify.”8	 It’s	 hard	 to	 argue	 against	 that,	 but	 the	 approach	 that	 the	 authors
present	 is	 a	mix	of	 “structure	 charts,”	which	 are	 a	 visual	 representation	of	 the
different	parts	of	a	program,	plus	 flowcharts	 that	 indicate	 the	 same	 three	basic
concepts	in	programs	(sequence,	selection,	and	iteration),	so	clearly	the	authors
view	structured	programming	as	“a	structured	approach	to	producing	programs.”
They	do	briefly	mention,	at	the	end	of	the	chapter,	that	comments	can	be	helpful,



and	 that	 indenting	IF	 and	FOR	 blocks	 can	 help	with	 readability—the	 only	 nod
toward	structuring	of	the	actual	code.9
Meanwhile,	 Structured	 Programming	 in	 APL,	 despite	 Weinberg’s	 rousing

introduction,	waits	until	the	epilogue	before	devoting	two	and	a	half	pages	to	the
topic	 of	 structured	 programming	 (to	 be	 fair,	 the	 book	 does	 use	 structure
diagrams	 extensively),	 starting	 out	 with	 this:	 “Perhaps,	 in	 closing,	 we	 should
mention	 something	 about	 the	 mysterious	 phrase	 ‘structured	 programming,’
which	 appears	 in	 the	 title,	 but	 nowhere	 else.	 At	 the	 time	 the	 book	 is	 being
written	 there	 is	 still	 some	 controversy	 about	 exactly	 what	 structured
programming	 is.	 But	 there	 is	 no	 disagreement	 about	 the	 fact	 that	 it	 is
valuable.”10	 What	 follows	 is	 a	 hand-wavy	 definition	 that	 encompasses	 the
differences	between	engineering	a	bridge	and	engineering	software,	the	fact	that
software	 is	 often	 modified	 from	 its	 original	 purpose,	 structure	 charts	 and	 the
sequence-selection-iteration	 trinity,	 the	 importance	 of	 design,	 and	 the	 right
length	for	a	program;	it	also	includes	the	sentence	“there	is	still	controversy	over
whether	 to	 use	 names	 (for	 variables	 and	 labels	 and	 programs)	 that	 are
meaningful	or	meaningless.”11
This	is	all	fine,	but	it’s	incredibly	basic:	all	programs	in	high-level	languages,

however	 structured	 they	 claim	 to	 be,	 consist	 of	 sequences	 of	 instructions,
selection	 by	 IF	 statements	 (or	 their	 equivalent),	 and	 iteration	 in	 loops.	 At	 the
bottom	 level,	 those	 are	 the	 bricks	 from	 which	 software	 is	 built.	 If	 this	 is
structured	 programming,	 it’s	 hard	 to	 imagine	 what	 territory	 is	 left	 for
unstructured	programming	to	claim.
Structured	 Programming	 Using	 PL/1	 and	 SP/k	 probably	 provides	 the	 best

summary:

Certain	phrases	get	to	be	popular	at	certain	times;	they	are	fashionable.	The
phrase,	 “structured	 programming”	 is	 one	 that	 has	 become	 fashionable
recently	[the	book	came	out	in	1975].	It	is	used	to	describe	both	a	number
of	techniques	for	writing	programs	as	well	as	a	more	general	methodology.
…	The	goals	of	structured	programming	are,	first,	to	get	the	job	done.	This
deals	with	how	 to	get	 the	 job	done	and	how	 to	get	 it	 done	correctly.	The
second	goal	 is	concerned	with	having	it	done	so	that	other	people	can	see
how	it	is	done,	both	for	their	education	and	in	case	those	other	people	later
have	to	make	changes	in	the	original	program.12

The	authors	 also	offer	 a	 diplomatic	warning	 about	GOTO	 statements	 (which	 are
written	 as	 GO	 TO	 in	 PL/I):	 “Since	 computer	 scientists	 came	 to	 recognize	 the
importance	of	proper	structuring	 in	a	program,	 the	 freedom	offered	by	 the	GO



TO	statement	has	been	recognized	as	not	in	keeping	with	the	idea	of	structures	in
control	flow.	For	this	reason	we	will	never	use	it.”13
On	a	related	note,	at	the	end	of	Structured	COBOL’s	discussion	of	structured

programming,	it	offers	the	following:

Conspicuous	 by	 its	 absence	 in	 Figure	 6.1	 [which	 lays	 out	 flowcharts	 for
sequence,	 selection,	 and	 iteration]	 is	 the	GO	TO	statement.	This	 is	not	 to
say	 that	 structured	 programming	 is	 synonymous	 with	 ‘GO	 TO	 less’
programming,	 nor	 is	 the	 goal	 of	 structured	 programming	 merely	 the
removal	of	all	GO	TO	statements.	The	discipline	aims	at	making	programs
understandable,	 which	 in	 turn	mandates	 the	 elimination	 of	 indiscriminate
page	 turning	 brought	 on	 by	 abundant	 use	 of	 GO	 TO.	…	 [U]nstructured
programs	often	consist	of	10%	GO	TO	statements.14

Now	we	are	getting	somewhere,	and	I	think	the	authors	doth	protest	too	much:
when	 you	 boil	 down	 the	 difference	 between	 structured	 and	 unstructured
programming,	what	remains	is	getting	rid	of	GOTO.
What	is	so	bad	about	GOTO?
The	 ever-voluble	 Dijkstra	 wrote	 a	 letter	 to	Communications	 of	 the	 ACM	 in

1968	 titled	 “Go	 To	 Statement	 Considered	 Harmful.”	 The	 letter’s	 title	 sounds
suitably	 Dijkstra-esque,	 but	 he	 later	 claimed	 that	 it	 was	 provided	 by	 Niklaus
Wirth,	 the	 inventor	of	Pascal,	who	was	 the	editor	of	 the	magazine	at	 the	 time;
Dijkstra’s	 original	 title	 was	 the	 less	 provocative:	 “A	 Case	 against	 the	 Go	 To
Statement.”15	The	letter	begins,

For	 a	 number	 of	 years	 I	 have	 been	 familiar	with	 the	 observation	 that	 the
quality	 of	 programmers	 is	 a	 decreasing	 function	 of	 the	 density	 of	 go	 to
statements	 in	 the	programs	 they	produce.	More	 recently	 I	discovered	why
the	 use	 of	 the	 go	 to	 statement	 has	 such	 disastrous	 effects,	 and	 I	 became
convinced	 that	 the	 go	 to	 statement	 should	 be	 abolished	 from	 all	 “higher
level”	 programming	 languages	 (i.e.,	 everything	 except,	 perhaps,	 plain
machine	code).16

Dijkstra’s	insight	is	that	a	source	code	listing	is	static,	but	what	we	care	about,
when	 figuring	 out	what	 a	 program	does	 and	 if	 it	 is	 correct,	 is	 the	 state	 of	 the
computer	while	executing	it	(what	he	calls	the	“process”),	which	is	dynamic.	He
points	out	that

our	intellectual	powers	are	rather	geared	to	master	static	relations	and	that
our	 powers	 to	 visualize	 processes	 evolving	 in	 time	 are	 relatively	 poorly



developed.	 For	 that	 reason	we	 should	 do	 (as	wise	 programmers	 aware	 of
our	limitations)	our	utmost	to	shorten	the	conceptual	gap	between	the	static
program	and	the	dynamic	process,	to	make	the	correspondence	between	the
program	(spread	out	 in	 text	space)	and	the	process	(spread	out	 in	 time)	as
trivial	as	possible.17

In	other	words,	while	reading	the	code	it	should	be	as	easy	as	possible	to	keep
track	 in	your	mind	of	 the	 state	of	 all	 the	variables	 and	what	 they	mean	 as	 the
computer	 is	 executing	 a	 given	 line	 of	 code.	 Dijkstra	 then	 explains	 that	 with
sequencing,	selection,	and	iteration,	it	is	relatively	easy	to	figure	out	the	state	of
the	process	at	any	point	in	the	code,	but	when	you	allow	the	code	to	arbitrarily
jump	to	any	other	location	via	a	GOTO,	it	is	hard	to	know	the	state	of	the	process
as	it	passes	through	the	targeted	location	because	that	location	now	has	multiple
ways	that	it	can	be	reached,	and	you	can’t	know	what	state	the	process	was	in	at
all	 the	different	points	 from	which	 it	may	make	 that	 jump.	Dijkstra	concludes,
“The	go	to	statement	as	it	stands	is	just	too	primitive;	it	is	too	much	an	invitation
to	make	a	mess	of	one's	program.”18
Mills	 makes	 a	 similar	 observation:	 “In	 block-structured	 programming

languages,	such	as	Algol	or	PL/I,	such	structured	programs	can	be	GO	TO–free
and	can	be	read	sequentially	without	mentally	jumping	from	point	to	point.”	(He
continues,	though,	by	repeating	the	official	story	that	“in	a	deeper	sense	the	GO
TO–free	property	is	superficial.	Structured	programs	should	be	characterized	not
simply	by	the	absence	of	GO	TO’s,	but	by	the	presence	of	structure.”)19
The	argument	against	GOTO	was	bolstered	by	an	academic	paper	laying	out	the

Böhm-Jacopini	 theorem,	 which	 proved	 that	 any	 program	 could	 be	 written
without	 GOTO	 statements.20	 The	 proof	 relied	 on	 a	 somewhat-contorted
programming	 style;	 in	particular,	 you	wound	up	using	extra	variables	 to	 avoid
certain	GOTO	 statements.	While	 inside	 a	 loop,	 it	 is	 frequently	useful	 to	 exit	 the
loop	early,	before	you	have	finished	every	planned	iteration.	An	example	would
be	 code	 to	 look	 for	 something	 in	 an	 array,	 here	 presented	 in	 the	 language	C#
(pronounced	“C	sharp”).	The	first	line	is	equivalent	to	the	FOR	J	=	1	TO	10	loop
that	we	 saw	 in	 our	BASIC	 illustration	 in	 the	 last	 chapter,	 but	 rewritten	 in	C#
(and	looping	from	0	to	9	instead	of	1	to	10):

for	(j	=	0;	j	<	10;	j++)	{

					//	is	the	j’th	element	of	the	array

					//	the	one	we	want?

					if	(this_is_the_one(j))	{

										//	if	it	is,	then	we	can	exit	the	loop

										goto	endloop;



					}

}

endloop:

The	GOTO	 statement	 jumps	 to	 the	named	 label	 (endloop),	avoiding	unnecessary
iterations	through	the	loop,	and	at	the	end	the	value	of	j	tells	you	which	element
of	the	array	you	want.	Without	this	GOTO,	per	the	formal	Böhm-Jacopini	theorem,
you	need	to	add	an	extra	variable	to	short-circuit	the	unneeded	array	iterations,
and	another	one	to	keep	track	of	where	it	was	found:

foundit	=	false;

foundlocation	=	0;

for	(j	=	0;	j	<	10;	j++)	{

					if	(!foundit)	{

										if	(this_is_the_one(j))	{

															foundit	=	true;

															foundlocation	=	j;

										}

					}

}

This	is	cheesy	and	harder	to	read	than	the	first	version	with	the	GOTO	statement.
In	 fact,	many	 languages	 (including	C#,	 for	 those	of	you	grinding	your	 teeth	at
the	code	above)	have	a	statement	called	BREAK	that	executes	“exit	the	loop	now”
without	needing	the	 label	(and	the	shunned	GOTO	statement),	making	this	much
cleaner:

for	(j	=	0;	j	<	10;	j++)	{

				//	is	the	j’th	element	of	the	array

				//	the	one	we	want?

				if	(this_is_the_one(j))	{

									//	if	it	is,	then	we	can	exit	the	loop

									break;

				}

}

Nonetheless,	 some	 languages	 consider	 the	 BREAK	 statement	 (and	 related
CONTINUE	 statement,	which	 skips	only	 the	 remainder	of	 the	current	 iteration	of
the	 loop,	 not	 all	 future	 iterations)	 to	 be	 a	GOTO	 in	 disguise	 and	 don’t	 allow	 it.
Pascal,	 back	 in	 those	 days,	 was	 one	 of	 those	 purist	 languages,	 with	 Böhm-
Jacopini	 available	 as	 justification;	Programming	 in	 Pascal	 has	 an	 instance	 of
skipping	unneeded	loop	iterations	using	an	extra	variable	(which	it	calls	a	state
variable),	and	the	same	example	using	a	GOTO,	and	decides	that	the	state	variable
is	better:	 “Although	 this	 example	 illustrates	 the	effect	of	 the	goto	 statement,	 it



does	not	justify	the	use	of	the	goto	statement.”21
Personally	I	find	code	with	a	BREAK	 in	 it	 (or	even	a	GOTO	 to	a	clearly	labeled

“loop	end”	 label)	much	easier	 to	 read	 than	 code	 that	 adds	 an	 extra	variable	 to
avoid	using	it.	The	problem	is	not	so	much	these	“nearby”	GOTOs	but	rather	the
more	indiscriminate	use	in	which	the	program	jumps	all	over	the	place,	such	as
you	see	in	the	BASIC	Computer	Games	books	or	DONKEY.BAS.	(As	an	extra
bonus,	in	BASIC,	if	you	had	a	subroutine	starting	at,	say,	line	700,	but	no	GOTO
at	 line	 690	 that	 skipped	 past	 the	 subroutine,	 the	BASIC	 interpreter	would	 roll
right	 into	 line	700	and	start	executing	your	subroutine,	with	whatever	state	 the
relevant	 variables	 happened	 to	 be	 in;	 one	 of	 the	 benefits	 of	 Pascal	 and	 other
languages	that	formally	declare	procedures	is	that	they	avoid	this	problem,	since
the	procedure	code	is	not	part	of	the	main	code	path.)22	This	GOTO-laden	style	of
programming	was	derided	as	“spaghetti	code”	because	trying	to	follow	the	path
taken	through	the	code	was	like	trying	to	follow	a	single	strand	of	spaghetti	in	a
bowl;	 it	 would	 disappear	 into	 unknown	 places	 and	 then	 reappear	 somewhere
else,	with	no	clarity	on	what	exactly	happened	in	between	or	even	whether	you
were	 following	 the	 same	 strand.	Kemeny	 and	Kurtz,	 the	 inventors	 of	 BASIC,
acknowledged	that	the	effect	of	every	line	of	code	having	a	line	number,	which
therefore	made	every	line	of	code	available	as	the	potential	target	of	a	GOTO,	was
the	“one	very	serious	mistake”	they	made	in	the	design	of	the	language.23
If	GOTO	statements	are	so	terrible,	you	might	wonder	why	people	used	them	in

languages	 where	 they	 were	 not	 necessary.	 The	 authors	 of	 Fortran	 with	 Style
explained	in	1978:	“The	unconditional	transfer	of	control,	which	is	the	function
of	 the	 GOTO	 statement,	 has	 been	 associated	 with	 programming	 since	 its
inception.	 Its	 historical	 ties	 have	 left	 indelible	marks	 on	 today’s	 programming
languages.”24	 While	 high-level	 languages	 are	 built	 up	 from	 selection	 and
iteration	 (IFs	 and	 loops),	 assembly	 language	 has	 lower-level	 building	 blocks,
which	you	may	recall	from	the	last	chapter:	moving	data	between	registers	and
memory,	performing	operations	on	 registers,	 comparing	 registers,	 and	 jumping
to	 other	 locations	 in	 the	 program.	 That	 “jumping	 to	 other	 locations	 in	 the
program”	 is	 a	 GOTO	 (although	 the	 term	 jump	 is	 usually	 used	 in	 assembly
language),	 and	 a	 higher-level-language	 construct	 like	 an	 IF	 is	 built	 up	 using
jumps	in	assembly	language;	when	reading	code	in	a	higher-level	language,	your
eye	will	automatically	slide	down	past	the	block	of	code	that	follows	an	IF	test,
but	in	assembly	language	you	have	to	explicitly	jump	past	it.
As	Mills	explains	in	his	1969	essay	“The	Case	against	GO	TO	Statements	in

PL/I”	 (whose	 opinion	on	GOTO	 can	 be	 accurately	 inferred	 from	 the	 title),	 for	 a
programmer	 coming	 from	 assembly	 languages,	 jumps	 are	 a	 natural	 thing,	 and



you	 can’t	 write	 any	 reasonable	 program	 without	 them.25	 It	 makes	 sense	 that
assembly-language	 programmers,	 when	 moving	 to	 a	 higher-level	 language,
would	 not	 differentiate	 jumps	 done	 in	 the	 context	 of	 selection	 and	 iteration,
which	 arguably	 are	 still	 “structured,”	 from	 jumps	 to	 random	 places	 in	 the
program.	Mills	exhorts	his	audience,	“It	might	not	be	obvious	…	that	GO	TO’s
could	be	eliminated	in	everyday	PL/I	programming	without	its	being	excessively
awkward	 or	 redundant.	But	 some	 experience	 and	 trying	 soon	 uncover	 the	 fact
that	it	is	quite	easy	to	do;	in	fact,	the	most	difficult	thing	is	to	simply	decide	to
do	it	in	the	first	place.”26
He	 also	 states,	 “It	 is	 not	 possible	 to	 program	 in	 a	 sensible	way	without	GO

TO’s	 in	FORTRAN	or	COBOL.	But	 it	 is	 possible	 in	ALGOL	or	PL/I.”27	Our
“sum	 up	 the	 numbers”	 Fortran	 program	 from	 chapter	 1	 had	 two	 GO	 TO
statements	for	a	very	simple	algorithm.	In	the	more	modern	language	Pascal,	this
could	be	written	without	them	as

var	sum,	x:	integer;

begin

				sum	:=	0;

				repeat

								read(x);

								sum	:=	sum	+	x

				until	x	=	0;

				writeln(sum);

end.

What	about	the	books	that	claimed	to	teach	structured	programming	in	Fortran
and	COBOL?
Programming	in	FORTRAN:	Structured	Programming	with	FORTRAN	IV	and

FORTRAN	 77	 describes	 the	 well-known	 troika,	 with	 some	 names	 changed:
“Three	basic	control	structures	are	sequence	(begin-end),	decision	(if-then-else)
and	 loop	 (while-do).	 These,	 sufficient	 to	 present	 any	 algorithm,	 constitute	 the
fundamental	 means	 of	 a	 systematic	 programming	 process	 called	 structured
programming.”28	But	wait!	Those	are	the	theoretical	constructs;	Fortran	doesn’t
actually	have	a	while-do	loop,	so	the	book	explains	how	to	write	one	using	GOTO
statements.29	The	begin-else	control	structure	merely	involves	putting	statements
one	after	the	other,	so	that	subject	is	never	broached	again.	For	if-then-else,	later
versions	of	Fortran	do	provide	reasonable	support,	whereby	you	can	have	a	set
of	lines	of	code	that	runs	when	the	IF	condition	is	true,	and	another	set	that	runs
when	 it	 is	 false,	which	 is	 known	 as	 supporting	block	IFs.	But	 earlier	 versions
only	let	you	run	one	statement	when	the	IF	condition	was	true,	so	that	statement



was	perforce	often	a	GOTO	(as	our	“sum	up	the	numbers”	Fortran	did).	The	book
points	out,	“The	old	FORTRAN	standard	did	not	contain	the	block	IF	construct;
thus	it	is	not	available	in	FORTRAN	IV	or	in	such	compilers	as	WATFOR	and
WATFIV.”30	Yes,	 I	must	 confess	 that	 the	 first	 programming	book	 I	 ever	 read
was	 for	 a	 language	 variant	 so	 antediluvian	 that	 it	 didn’t	 even	 have	 block	 IF
statements.
Meanwhile,	Structured	COBOL:	A	Pragmatic	Approach	has	it	slightly	easier.

COBOL	 does	 have	 block	 IF	 statements,	 and	 a	 loop	 construct	 called	 PERFORM
UNTIL,	 although	 it	 requires	 you	 to	 put	 the	 body	 of	 the	 loop	 into	 a	 separate
procedure	 that	 makes	 it	 harder	 to	 read,31	 and	 COBOL	 suffers	 from	 so	 much
other	clunkiness	that	I	can	see	why	Mills	threw	it	under	the	“not	structured”	bus;
you	can’t	program	in	a	“sensible	way”	 in	COBOL	no	matter	what	parts	of	 the
language	 you	 use.	Nevertheless,	 the	 authors	 can	 get	 away	without	 using	 GOTO
statements,	except	in	one	specific	case:	when	a	program	wants	to	exit,	they	use	a
GOTO	to	jump	to	the	end	of	the	program.	As	they	write	about	one	program	listing,
“Figure	11.2	also	contains	 five	 ‘villainous’	GO	TO	statements,	but	 their	use	 is
completely	 acceptable	 (to	 us,	 if	 not	 to	 the	 most	 rigid	 advocate	 of	 structured
programming).”	 They	 further	 explain,	 “The	 authors	maintain	 that	 a	 structured
program	can	include	limited	use	of	the	GO	TO,	provided	it	is	a	forward	branch
to	 an	 EXIT	 paragraph”	 (this	 must	 be	 the	 pragmatism	 of	 the	 book’s	 subtitle
manifesting	itself).32	I	agree;	if	you	are	reading	through	the	program	and	get	to
the	 point	where	 it	 is	 about	 to	 exit,	 there	 is	 no	mental	model	 that	 needs	 to	 be
maintained.	 My	 copy	 of	 this	 book	 used	 to	 belong	 to	 my	 mother,	 from	 a
programming	class	she	took	in	1983.	In	the	margins	of	the	book,	next	to	the	first
quote,	she	wrote,	“Hear	hear,”	and	next	to	the	second,	“God	will	forgive	you!”
Knuth	wrote	in	favor	of	allowing	GOTO	for	“error	exits,”	and	even	Dijkstra,	in	his
anti-GOTO	screed,	conceded	that	“abortion	clauses”	or	“alarm	exits,”	meaning	this
same	 sort	 of	 “jump	 to	 the	 end	 of	 a	 block	 of	 code”	 approach,	 might	 be
acceptable.33
Anyway,	let’s	say	that	structured	programming	just	means	“use	GOTO	as	 little

as	 possible.”	 Clearly,	 from	 my	 hopeless	 argument	 with	 my	 sister,	 even	 this
lesson,	which	in	hindsight	seems	obvious,	needed	to	be	drilled	into	habitués	of
Fortran,	 COBOL,	 or	 BASIC.	 I	 suppose	 I	 could	 say	 that	 I	 learned	 structured
programming	at	Princeton	in	that	I	did	absorb	the	lesson	about	eschewing	GOTO.
But	that’s	probably	one	of	the	few	lessons	I	was	explicitly	taught	there.	Because
in	 high	 school	 I	 had	 succeeded	 in	 teaching	 myself	 programming	 and
accomplishing	reasonable	results	with	it,	I	was	extremely	confident	that	the	way
I	 had	 learned	 things	 was	 correct,	 despite	 having	 no	 real	 basis	 for	 this	 claim



beyond	my	own	experience.
The	 logician	Raymond	Smullyan	 proposes	 in	 his	 book	What	 Is	 the	Name	of

This	Book?	that	people	are	either	conceited	or	inconsistent:

A	 human	 brain	 is	 but	 a	 finite	 machine,	 therefore	 there	 are	 only	 finitely
many	 propositions	which	 you	 believe.	Let	 us	 label	 these	 propositions	p1,
p2,	 …,	 pn,	 where	 n	 is	 the	 number	 of	 propositions	 you	 believe.	 So	 you
believe	 each	 of	 these	 propositions	 p1,	 p2,	 …,	 pn.	 Yet,	 unless	 you	 are
conceited,	 you	 know	 that	 you	 sometimes	 make	 mistakes,	 hence	 not
everything	 you	 believe	 is	 true.	 Therefore,	 if	 you	 are	 not	 conceited,	 you
know	that	at	 least	one	of	 the	propositions	p1,	p2,	…,	pn	 is	 false.	Yet	you
believe	 each	 of	 the	 propositions	 p1,	 p2,	 …,	 pn.	 This	 is	 straight
inconsistency.34

Smullyan’s	 point	 was	 that	 a	 reasonably	 modest	 person	 is	 behaving
inconsistently,	 which	 he	 happily	 admits	 to;	 when	 it	 comes	 to	 programmers,
however,	the	conceited	approach	usually	wins	out.
Once	my	 introductory	Pascal	class	was	over,	and	 I	had	 learned	 to	appreciate

the	 value	 of	 passing	 parameters	 to	 named	 procedures,	 the	 rest	 of	 the
undergraduate	classes	that	I	took	dealt	with	more	specific	topics:	how	to	design	a
compiler,	 how	 a	 virtual	memory	manager	worked,	 and	 how	 three-dimensional
graphics	 were	 projected	 onto	 a	 two-dimensional	 display—all	 interesting,	 but
those	classes	all	 focused	on	 the	specific	algorithms	needed	for	 those	problems,
and	since	I	have	never	worked	on	those	areas	in	my	professional	career,	it’s	not
knowledge	that	I	draw	on	in	my	everyday	work.	Nobody	taught	us	how	to	design
large	programs	and	get	them	working	on	a	deadline.	We	were	given	assignments
that	required	large	programs	along	with	a	deadline	to	get	them	working,	and	we
made	it	happen	as	best	we	could.
Sophomore	 year	 was	 the	 first	 time	 I	 took	 a	 class	 where	 I	 used	 the

programming	language	called	C,	which	I	wound	up	using	for	most	of	my	college
and	 professional	 career.	 After	 the	 professor	 explained	 the	 goals	 of	 the	 first
assignment,	a	student	rather	hesitantly	raised	their	hand	and	asked	how	we	were
supposed	 to	 learn	C?	No	problem,	said	 the	professor,	use	 this	book	(it	was	 the
original	 The	 C	 Programming	 Language,	 written	 by	 the	 language’s	 inventors,
Brian	Kernighan	and	Dennis	Ritchie).	I	learned	C	by	reading	the	book,	looking
at	 examples	 to	 try	 to	 discern	 their	 underlying	motivation,	 and	most	 important,
trying	 things	 and	 fixing	 them	when	 they	didn’t	work—the	 same	process	 I	 had
used	to	learn	IBM	PC	BASIC	four	years	earlier.
As	Mills	put	 it,	 the	book	taught	me	the	dictionary.	The	rest	of	 it,	 the	bulk	of



what	 I	 learned	 about	 software	 engineering—how	 to	 split	 a	 big	 problem	 into
smaller	ones,	how	to	connect	the	pieces	together,	how	to	figure	out	why	it	didn’t
work,	and	how	to	decide	when	it	was	finished—I	figured	out	on	my	own	by	trial
and	error,	and	everybody	else	in	the	class	figured	it	out	on	their	own	with	their
own	trials	and	errors.
And	as	a	final	point,	I	had	only	one	class	that	involved	modifying	a	program

that	somebody	else	had	written;	the	rest	of	my	projects	were	all	greenfield	ones,
in	which	I	started	from	scratch.	Modifying	existing	code	is	what	a	professional
programmer	spends	the	vast	majority	of	their	time	doing,	but	my	work	at	school
gave	me	little	preparation	for	sitting	down	with	a	large	program	and	figuring	out
what	the	heck	the	original	author	was	thinking—or	if	they	had	done	something
right,	using	their	code	as	an	example.
I	have	some	code	saved	from	my	time	at	Princeton	(what,	you	say	you	don’t

have	 thirty-year-old	 printouts	 stashed	 in	 your	 attic?),	which	 I	 can	 look	 at	 now
through	the	lens	of	the	intervening	time	spent	earning	a	living	as	a	programmer.
It’s	what	I	would	expect—a	projection	of	my	BASIC	experience	onto	C	(except
without	 GOTOs):	 short	 variable	 names	 that	 don’t	 clarify	 their	 meaning,	 no
comments	 to	 explain	 what	 is	 going	 on	 or	 delineate	 different	 areas	 of	 the
program,	and	repeated	code	that	should	have	been	pulled	into	a	shared	function
(which	 is	 the	 term	C	 uses	 for	 an	API).	 I	 assume	 the	 code	worked,	 although	 I
would	 be	 hard	 put	 to	 verify	 that	 now	 by	 reading	 it.	 It	 served	 its	 purpose:	 to
procure	a	grade	for	a	class	assignment	and	then	never	be	looked	at	again.
How	are	all	 these	stories	about	my	education	related?	The	common	theme	is

that	in	all	cases,	I	was	self-taught.	In	high	school	I	was	fairly	evidently	learning
on	 my	 own.	 But	 even	 my	 Princeton	 years	 are	 deceptive.	 A	 casual	 observer
would	note	that	I	was	taking	a	lot	of	computer	science	classes	and	I	was	learning
a	 lot	 about	 how	 to	 write	 software.	 The	 second	 was	 a	 by-product	 of	 the	 first,
though,	and	not	a	direct	result.	What	was	missing	was	anybody	explaining	what
I	should	do	before	I	did	it	wrong	a	couple	of	times,	or	anybody	looking	over	the
details	of	how	I	had	written	a	program	as	opposed	to	the	result	that	it	achieved.
Despite	graduating	with	a	degree	in	computer	science,	I	was	sorely	lacking	in	the
wisdom	that	I	would	eventually	acquire,	through	experience,	during	my	career	as
a	programmer.
And	 it’s	 not	 just	 me:	 essentially	 all	 programmers	 working	 today	 were	 self-

taught.	 The	 people	 who	 designed	 the	 Internet	 were	 self-taught,	 those	 who
architected	Windows	were	 self-taught,	 and	 the	 people	who	wrote	 the	 software
that	is	running	on	your	microwave	oven	were	self-taught	too.
What	does	this	mean	for	software	engineering?	The	most	obvious	issue	is	that

it	is	incredibly	wasteful	to	have	everybody	figure	things	out	from	square	one	(or



perhaps	 squares	 two	 and	 three),	 over	 and	 over	 and	 over	 again.	 The	 notion	 of
experimenting	 and	 using	 the	 results	 to	 inform	 further	 steps,	 building	 up	 an
engineering	 process	 on	 the	 work	 of	 those	 who	 have	 gone	 before,	 is	 almost
completely	 absent	 from	 software	 development.	 We’re	 not	 standing	 on	 the
shoulders	 of	 giants;	 at	 best	 they	 are	 offering	 us	 a	 knee	 up	 as	 a	 boost.	 The
instructor	 Scott	 Bain,	 who	 teaches	 at	 a	 company	 called	 NetObjectives	 that
offered	training	at	Microsoft,	once	pointed	out	that	there	is	no	well-defined	path
to	becoming	a	software	engineer:	you	don’t	go	to	college	and	major	in	a	certain
subject,	 then	 take	 a	 set	 of	 well-determined	 certification	 tests,	 then	 do	 an
apprenticeship,	and	then	become	certified.	You	can	do	the	college	major	thing,
but	once	 that’s	done	you	hang	up	your	shingle	and	say	you	are	a	programmer,
and	hope	a	company	fishes	you	out	of	 the	ocean	of	similar	people.	And	worse
yet,	it	may	be	that	your	first	year	in	college	is	already	too	late	to	start	down	the
path,	if	you	haven’t	spent	the	last	couple	years	in	high	school	hacking	away	in
your	basement.
That	makes	it	hard	for	people	who	want	to	hire	programmers	(either	to	work	at

a	software	shop	like	Microsoft	or	as	consultants	on	a	project	for	a	business)	 to
figure	out	who	is	qualified.	But	the	subtler	effect	is	that	it	can	scare	off	people
who	are	considering	becoming	programmers.	How	do	you	embark	on	the	path	if
it	 isn’t	well	defined?	Do	you	have	 to	devote	yourself	at	a	young	age	 to	poring
over	programming	manuals	in	your	spare	time?	If	you	weren’t	a	member	of	the
programming	club	in	high	school,	are	you	permanently	behind?
And	the	largest,	most	important	group	that	it	scares	off	is	women.
In	 2002,	 a	 fascinating	 book	 appeared:	 Unlocking	 the	 Clubhouse	 by	 Jane

Margolis	 and	 Allan	 Fisher.	 The	 book	 studied	 students	 in	 Carnegie	 Mellon
University’s	 highly	 respected	 computer	 science	 program	 as	 a	 basis	 for
understanding	why	women	 are	 underrepresented	 in	 the	 industry.	Although	 the
female	 computer	 science	 students	 all	 appeared	 highly	 qualified,	 and	 arrived	 at
college	motivated	and	confident,	many	of	them	soon	experienced	a	similar	sense
of	inferiority.	Here	is	a	sample	of	quotes	from	students:

Then	I	got	here	and	just	felt	so	incredibly	overwhelmed	by	the	other	people
in	 the	 program	 (mostly	 guys,	 yes)	 that	 I	 began	 to	 lose	 interest	 in	 coding
because	 really,	 whenever	 I	 sat	 down	 to	 program	 there	 would	 be	 tons	 of
people	 around	 going,	 “My	 God,	 this	 is	 so	 easy.	 Why	 have	 you	 been
working	on	it	for	two	days,	when	I	finished	it	in	five	hours?”
I’m	actually	kind	of	discouraged	now.	Like	I	said	before,	there	are	so	many
other	 people	who	 know	 so	much	more	 than	me,	 and	 they’re	 not	 even	 in
computer	 science.	 I	 was	 talking	 to	 this	 one	 kid,	 and	…	 oh	my	God!	 He



knew	more	than	I	do.	It	was	so	…	humiliating	kind	of,	you	know?
What	am	I	doing	here?	So	many	other	people	know	so	much	more	than	me,
and	 this	 just	 comes	 so	 easy	 to	 some	 people.	…	 It’s	 just	 like	 there	 are	 so
many	people	that	are	so	good	at	this,	without	even	trying.	Why	am	I	here?
…	You	know,	someone	who	doesn’t	really	know	what	she	is	doing?35

I	don’t	think	the	men	playing	the	role	of	“other	people”	in	these	quotes	had	an
innate	ability	 to	write	 software;	 it’s	 that	 they	had	been	practicing	much	 longer
than	 the	 women	 (which	 doesn’t	 excuse	 them	 for	 making	 fun	 of	 someone	 for
taking	 more	 time	 to	 finish	 a	 program).	 I’ve	 discussed	 this	 topic	 with	 female
computer	 science	 students	 and	 heard	 similar	 comments—in	 fact,	 almost
stunningly	 similar:	 the	 same	discouraging	 sense	 that	 the	 people	who	had	 been
hacking	 away	 in	 high	 school	 knew	 so	 much	 more,	 and	 were	 so	 much	 more
capable	and	prepared	for	future	success	(and	as	a	former	high	school	hacker	who
majored	 in	 computer	 science,	 I	 was	 inadvertently	 complicit	 in	 creating	 the
equivalent	environment	at	Princeton).	The	sameness	of	the	quotes	might	suggest
a	 glimmer	 of	 hope	 that	 at	 least	 these	women	 could	 find	 solace	 and	 support	 in
each	 other,	 and	 wage	 a	 determined	 battle	 against	 the	 propeller-heads.	 But	 it
appears	 that	 the	 mental	 anguish	 was	 a	 lonely,	 internal	 battle,	 with	 each
individual	 mind	 beset	 by	 nagging	 questions	 that	 caused	 these	 intelligent,
motivated,	 capable	women	 to	 repeatedly	doubt	 their	 abilities,	 until	 one	by	one
they	dropped	the	fight	and	majored	in	another	subject.
The	 underlying	 problem	 begins	 at	 an	 early	 age,	 according	 to	 Margolis	 and

Fisher:	“Very	early	in	life,	computing	is	claimed	as	male	territory.	At	each	step
from	early	childhood	through	college,	computing	is	…	actively	claimed	as	‘guy
stuff’	 by	 boys	 and	men.	…	The	 claiming	 is	 largely	 the	work	 of	 a	 culture	 and
society	 that	 links	 interest	and	success	with	computers	 to	boys	and	men.”	They
write,

Despite	the	rapid	changes	in	technology	and	some	fifteen	years	of	literature
covering	 the	 era	 of	 the	 ubiquitous	 personal	 computer,	 a	 remarkably
consistent	 picture	 emerges:	 more	 boys	 than	 girls	 experience	 an	 early
passionate	 attachment	 to	 computers,	whereas	 for	most	 girls	 attachment	 is
muted	and	is	“one	interest	among	many.”	…	Developing	and	exploring	the
computer	are	 truly	epiphanies	for	many	of	 these	male	students.	They	start
programming	early.	They	develop	a	sense	of	familiarity;	they	tinker	on	the
outside	 and	 on	 the	 inside,	 and	 they	 develop	 a	 sense	 of	 mastery	 over	 the
machine.36

In	addition,	“Girls	at	nine	and	ten	are	feisty,	filled	with	spirit	and	confidence,	but



as	puberty	hits,	they	begin	to	pull	within	themselves,	doubt	themselves,	swallow
their	own	voices,	and	doubt	their	own	thoughts.”37	The	problem	is	exacerbated
in	 the	 years	 leading	 up	 to	 college:	 “In	 secondary	 schools	 across	 the	 nation,	 a
repeated	 pattern	 plays	 out:	 a	 further	 increase	 in	 boys’	 confidence,	 status	 and
expertise	 in	 computing	 and	 a	 decline	 in	 the	 interest	 and	 confidence	 of	 girls.
Curriculum,	 computer	 games,	 adolescent	 culture,	 friendship	 patterns,	 peer
relations,	and	identity	questions	such	as	‘who	am	I?’	and	‘what	am	I	good	at?’
compound	this	issue.”38
Computer	science	 is	not	 the	only	field	 in	which	women	may	receive	societal

messages	that	steer	them	away	during	high	school.	And	certainly	there	are	areas,
particularly	 sports,	 where	 success	 as	 a	 professional	 almost	 always	 requires
dedicated	commitment	and	 interest	 in	high	school,	 if	not	earlier.	Yet	computer
science	 packs	 a	 one-two	 punch	 because,	 currently,	 it	 can	 be	 self-taught	 at	 a
young	age:	women	are	losing	interest	in	the	field	at	precisely	the	same	time	that
men	are	not	only	cultivating	their	interest	but	also	learning	the	actual	skills	that
propel	 them	to	a	successful	career,	which	makes	 it	much	harder	 to	catch	up	 in
college.
In	my	1988	graduating	class	at	Princeton,	 according	 to	 the	alumni	directory,

five	out	of	forty-one	computer	science	majors	were	women.39	I	know	one	of	the
women	had	not	programmed	before	arriving	on	campus,	although	most	if	not	all
of	the	others	had	experience	similar	to	mine.	It’s	a	small	sample	size,	but	more
important,	 those	are	 the	 five	who	stuck	 it	out	until	 the	end;	 I	don’t	know	how
many	other	women	started	down	the	path	to	major	in	computer	science	but	then
changed	 their	 minds	 after	 the	 types	 of	 dispiriting	 experiences	 described	 in
Unlocking	 the	 Clubhouse.	 There	 may	 also	 have	 been	 male	 computer	 science
majors	or	former	computer	science	majors	who	were	new	to	programming	when
they	arrived	at	the	school,	although	every	male	whom	I	can	recall	discussing	the
topic	with	had	been	writing	programs	in	high	school.
During	the	time	I	was	at	Princeton,	there	was	a	campus	computer	network,	and

the	school	attempted	an	early	experiment	at	extending	it	 into	dorm	rooms.	The
only	 problem	was	 that	 a	 year	 elapsed	 between	when	 the	 administrators	 asked
who	was	 interested	 and	when	 they	 ran	 the	 network	 cables,	 so	 you	 only	 had	 a
network	connection	if	the	person	who	had	lived	in	your	room	the	year	before	had
requested	one.	Even	then,	what	was	available	on	the	network	was	quite	limited;
there	 were	 no	 websites	 (the	 World	 Wide	 Web	 and	 associated	 protocols	 not
having	 been	 invented	 yet),	 so	 you	 could	 only	 connect	 to	 a	 few	 mainframe
computers	in	an	updated	version	of	“Adam	in	his	parents’	bedroom	with	the	line
terminal.”	 And	 even	 the	 people	 who	 had	 computers	 in	 their	 rooms	 had	 PCs,



which	 were	 different	 from	 the	 computers	 on	 which	 we	 could	 work	 on	 our
assignments.	So	for	this	variety	of	reasons,	all	programming	for	my	classes	was
done	in	a	computer	lab	in	a	building	named	after	John	von	Neumann,	the	famous
mathematician	 who	 had	 worked	 at	 the	 Institute	 for	 Advanced	 Study	 near	 the
Princeton	campus.
“The	Neum,”	 as	we	 called	 it	 (rhymes	with	…	nothing	much,	 but	 the	 vowel

sound	is	the	same	as	the	word	“boy”),	was	a	below-ground	bunker,	whose	roof,
according	to	legend,	had	a	half-inch-thick	slab	of	iron	embedded	in	it	to	prevent
enemy	 powers	 from	 spying	 on	 the	 computers	 inside.	 I’d	 crank	 out	 my
programming	assignments	during	nighttime	coding	jags,	fortified	by	a	gallon	of
Wawa	 iced	 tea	 and	 a	 foot-long	 bacon	 cheesesteak	 from	Hoagie	Haven	 (which
closed	at	midnight,	so	you	had	 to	plan	ahead	 to	 lay	 in	your	provisions).	 Inside
were	long	tables	with	computers	(video	terminals,	actually)—a	precursor	to	the
open	workspace	 that	many	software	companies	use	 today	on	 the	pretext	of	 the
better	 sharing	 of	 information,	 but	 in	 this	 case	 it	 was	 just	 the	 easiest	 way	 to
arrange	them.
Working	elbow	to	elbow	with	my	fellow	grunts	should	have	at	least	given	us

an	opportunity	to	learn	from	each	other,	and	possibly	for	the	few	women	in	the
class	 to	 offer	 support	 to	 each	 other,	 but	 I	 don’t	 remember	 this	 happening;	we
mostly	coded	away	in	grim,	solitary	silence	(one	classmate	had	a	girlfriend	who
would	sit	quietly	next	to	him	while	he	worked,	which	must	have	been	somewhat
boring	 for	 her	 and	 slightly	 nerve-racking	 for	 him).	 Even	when	 I	worked	 on	 a
project	with	a	partner,	we	usually	split	the	work	up	and	tackled	it	independently.
So	the	benefit	I	got	from	Princeton	was	not	the	learning	from	my	peers	that	was
so	helpful	 in	other	classes.	 It	was	 that	 I	was	 forced	 to	write	a	 lot	of	programs,
giving	me	ample	opportunity	to	figure	out	how	to	write	them,	debug	problems,
and	 fix	 those,	but	 all	on	my	own.	 I	had	a	 job	working	at	 the	computer	 center,
where	 we	 would	 staff	 various	 locations	 to	 answer	 questions,	 yet	 it	 was	 well
known	 that	 working	 at	 von	Neumann	was	 an	 easy	 shift	 because	 nobody	 ever
asked	 any	 questions.	 Many	 of	 us	 had	 been	 self-taught	 in	 high	 school	 and
continued	to	self-teach	ourselves	in	college.
This	 is	 ridiculous,	 right?	 The	 world	 depends	 on	 software,	 but	 are	 software

skills	really	gained	in	marathon	programming	sessions	as	a	teenager?	In	trying	to
imagine	 a	 similar	 situation	 in	 the	 field	 of	 medicine,	 I	 picture	 a	 student	 at	 a
medieval	medical	school	writing	a	letter	home,	complaining,	“Everybody	else	is
so	much	better	at	using	leeches	than	I	am	…	and	this	one	kid!	Back	home	he’s
already	 performed	 three	 pocketknife	 amputations!”	 Indeed,	 it	 was	 common	 in
the	 United	 States	 two	 hundred	 years	 ago	 for	 doctors	 to	 learn	 their	 trade	 by
apprenticing	 themselves	 to	 an	 established	 doctor,	 but	 eventually	 the	 need	 for



formal	 education	was	 recognized.40	 The	 fact	 that	 today’s	 programmers	 can	 on
their	own	acquire	 such	a	head	start	 in	knowledge—not	useless	knowledge,	but
the	 same	 knowledge	 that	 was	 being	 learned	 (by	 a	 process	 independent	 from
formal	 instruction)	 in	 school—is	 an	 indictment	 of	 the	 discipline	 of	 software
engineering,	not	of	the	inexperienced	students.
Several	of	my	classmates	at	Princeton	wound	up	working	at	Microsoft	 too;	 I

once	had	 a	 discussion	with	 one	of	 them,	who	had	 also	written	 software	 in	 his
spare	 time	 in	high	school,	 about	how	we	 really	 should	have	skipped	Princeton
and	gone	to	work	for	Microsoft	directly	after	high	school.	We	were	kidding,	but
there	was	a	large	nugget	of	truth	in	there.	Assuming	Microsoft	would	have	hired
us	back	then,	we	would	have	emerged	in	1988	with	a	lot	more	experience	(and
money)	 than	we	 did	 after	 college,	 and	most	 important,	 we	weren’t	much	 less
qualified	 in	 1984	 than	 we	 were	 in	 1988.	 This	 is	 partly	 related	 to	 a	 onetime
historical	window,	because	in	1984	there	weren’t	a	lot	of	people	out	there	who
had	several	years	of	experience	programming	on	the	IBM	PC.	But	 the	primary
reason	is	that	as	preparation	for	developing	large	pieces	of	commercial	software,
writing	 video	 games	 in	 BASIC	was	 almost	 as	 useful	 as	 going	 to	 college	 and
majoring	in	computer	science.	And	certainly	by	1988,	four	years	of	working	at
Microsoft	would	have	left	us	far	more	qualified	than	if	we’d	spent	the	last	four
years	earning	computer	science	degrees.	While	it	would	be	unthinkable	today	for
a	doctor,	say,	to	skip	medical	school	and	go	straight	to	practicing	medicine,	no
such	gap	exists	for	programmers.	Microsoft	would	occasionally	hire	a	developer
who	had	majored	 in	 something	 like	music	and	watch	 them	be	as	 successful	as
the	computer	 science	majors,	which	was	 impressive	 for	 them	personally,	but	a
little	strange	if	you	think	about	it.
Yet	 this	 is	 roughly	where	we	 stand	with	 software	 education	 today.	 In	 2011,

George	 Washington	 University	 professor	 David	 Alan	 Grier	 wrote	 in	 IEEE
Computer	magazine,	“It	isn’t	necessary	to	have	a	bachelor	of	science	degree	to
be	 considered	 a	 software	 engineer.	 According	 to	 the	 Bureau	 of	 Labor	 and
Statistics,	 a	 software	 engineer	 is	 the	 leader	 of	 a	 programming	 or	 system
development	project,	not	necessarily	a	trained	engineer.	…	Only	in	some	cases,
notably	the	most	restrictive	professions,	does	it	consider	‘skills,	education	and/or
training	 needed	 to	 perform	 the	 work	 at	 a	 competent	 level,’”	 with	 software
engineer	 apparently	 not	 making	 the	 restrictive	 professions	 list.	 Grier	 then
concludes,	 “Those	who	 can	 do	 the	work,	 no	matter	 how	 they	may	 have	 been
trained,	can	generally	find	work.”41	People	can	gain	a	big	leg	up	on	their	college
computer	 science	education	by	 learning	 in	 their	 spare	 time,	on	 their	own.	And
unfortunately,	this	knowledge	is	often	acquired	at	a	stage	of	people’s	lives	where



women,	 for	 whatever	 reason,	 tend	 to	 be	 less	 into	 computers	 than	 men.	 And
excluding	half	the	planet	from	your	talent	pipeline	certainly	affects	your	ability
to	hire	all	the	qualified	people	you	want.
All	 this	 raises	 the	 question,	 Why	 has	 the	 software	 industry	 continued	 to

operate	this	way?
The	software	industry	has	evolved	in	just	a	couple	of	generations,	leaving	little

time	to	reflect	on	how	things	are	done.	As	Mills	again	notes,	from	1976,

In	 the	 past	 twenty-five	 years	 a	 whole	 new	 data	 processing	 industry	 has
exploded	 into	a	critical	 role	 in	business	and	government.	Every	enterprise
or	agency	in	the	nation	of	any	size,	without	exception,	now	depends	on	data
processing	 software	 and	 hardware	 in	 an	 indispensable	 way.	 In	 a	 single
human	generation,	 several	 hardware	generations	have	 emerged,	 each	with
remarkable	 improvements	 in	 function,	 size,	 and	 speed.	 But	 there	 are
significant	 growing	 pains	 in	 the	 software	 which	 connects	 this	 marvelous
hardware	with	the	data	processing	operations	of	business	and	government.
Had	 this	 hardware	 development	 been	 spaced	 out	 over	 125	 years,	 rather

than	just	25	years,	a	different	history	would	have	resulted.	For	example,	just
imagine	the	opportunity	for	orderly	industrial	development	with	five	human
generations	of	university	curriculum	development,	education,	feedback	for
the	 expansion	 of	 useful	methodologies	 and	 pruning	 of	 less	 useful	 topics,
etc.	As	it	is,	we	see	a	major	industry	with	minimal	technical	roots.42

More	 important,	 however	 the	 software	 sausage	 is	 made,	 it	 is	 so	 incredibly
useful	that	there	has	not	been	much	pressure	to	improve	how	things	are	done.	In
an	environment	where	customers	are	clamoring,	“Give	me	more	of	 that	 sweet,
sweet	 software!”	 the	 industry	 has	 no	 real	 incentive	 to	 step	 back	 and	 try	 to
improve	things.
Fundamentally,	people	in	the	software	industry	see	nothing	wrong	with	being

self-taught	because,	hey,	it	worked	for	them.	Weinberg	once	wrote,

Another	essential	personality	factor	in	programming	is	at	least	a	small	dose
of	humility.	Without	humility,	 a	programmer	 is	 foredoomed	 to	 the	 classic
pattern	of	Greek	drama:	success	leading	to	overconfidence	(hubris)	leading
to	blind	self-destruction.	Sophocles	himself	could	not	have	invented	a	better
plot	(to	reveal	the	inadequacy	of	our	powers)	than	that	of	the	programmer
learning	 a	 few	 simple	 techniques,	 feeling	 that	 he	 is	 an	 expert,	 and	 then
being	crushed	by	the	irresistible	power	of	the	computer.”43

Unfortunately,	humility	 is	not	 something	 that	programmers	 tend	 to	have	 thrust



on	 them.	Which	 brings	 us	 to	 the	 real	 problem	 with	 programmers	 being	 self-
taught:	it	makes	them	arrogant.
And	why	not?	By	dint	of	sheer	brainpower,	without	ever	having	to	go	through

an	 apprenticeship,	 pay	 their	 dues,	 submit	 to	 any	 standardized	 certification,	 or
even	 get	 a	 relevant	 college	 degree,	 programmers	 have	 arrived	 at	 a	 situation
where	they	can	be	paid	large	sums	of	money	to	pursue	an	activity	that	many	of
them	would	 do	 in	 their	 spare	 time	 anyway,	 in	 an	 environment	 that	 entails	 no
undue	 physical	 exertion	 or	 risk.	What	 better	 validation	 could	 there	 be	 of	 their
own	greatness?
We’ll	 keep	 this	 thought	 in	mind	 as	 we	 dig	 into	 what	 it’s	 like	 to	 work	 as	 a

professional	programmer.
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3 
Layers

I	didn’t	become	a	programmer	until	a	year	after	college.
By	that	point	I	had	been	writing	programs	for	a	decade,	majored	in	computer

science,	and	worked	at	a	small	software	start-up	for	a	year.	Unbeknownst	to	me,
that	was	just	practice	for	my	final	test.
The	 fateful	 sequence	 of	 events	 began	when	my	manager	 called	me	 into	 his

office.	 My	 company,	 Dendrite	 Americas,	 was	 writing	 software	 that	 allowed
representatives	of	pharmaceutical	 companies,	 armed	with	 laptops,	 to	plan	 their
sales	 meetings	 with	 doctors.	 Every	 night	 they	 would	 dial	 in	 to	 our	 central
computer	 to	upload	notes	 they	had	gathered	during	the	day	and	then	download
updates	 to	 their	 database	 of	 doctors—quite	 advanced	 for	 the	 late	 1980s.	 In
certain	 cases,	 in	 no	 discernible	 pattern,	 the	 street	 address	 of	 one	 doctor	 was
being	 replaced	 with	 that	 of	 a	 different	 doctor.	 Nobody	 else	 had	 been	 able	 to
figure	out	what	was	going	on,	and	my	manager	wanted	me	to	give	it	a	try.
Being	selected	for	this	assignment,	from	among	the	fifteen	or	so	programmers

at	 the	 company,	was	 a	 compliment.	 The	 sheriff	 in	 an	 old	Western	movie	was
choosing	 his	 posse	 and	 telling	 me,	 “Tex,	 you’re	 the	 best	 shot	 we’ve	 got.”
Nonetheless,	I	felt	my	stomach	sink—a	feeling	that	I	had	never	felt	when	facing
a	programming	task.	The	challenging	part	 in	situations	like	this	is	not	so	much
fixing	the	problem	as	it	is	finding	it,	and	I	was	nervous	about	whether	I	would	be
able	to	find	it.
Bugs	 in	 software	 are	 described	 by	 repro	 steps:	 the	 sequence	 that	 the	 user

follows	 to	 reproduce	 the	 bug,	 as	 in,	 “Run	 spell-check,	 then	 try	 to	 save	 the
document,	 and	 you’ll	 get	 an	 error.”	 They	 can	 be	 broadly	 divided	 into	 two
categories:	bugs	that	happen	every	time,	and	bugs	that	happen	only	sometimes,
despite	following	the	same	repro	steps.	Those	that	happen	every	time	are	vastly
preferable,	at	least	from	the	point	of	view	of	a	programmer	trying	to	solve	them,
because	 if	 you	 can	make	 the	 bug	 happen	 reliably,	 you	 can	 eventually	 narrow
down	where	the	problem	is.	Like	the	annoying	rattle	in	your	car	that	goes	away
when	the	mechanic	is	listening,	software	bugs	that	occur	intermittently	make	you



pull	your	hair	out.	In	reality,	even	intermittent	bugs	do	happen	“every	time”;	it’s
just	 that	 a	 certain	 set	of	 factors	have	 to	 come	 together,	 and	 the	 repro	 steps,	 as
best	 as	 they	 are	 known,	 are	 not	 detailed	 enough	 to	 always	 trigger	 the	 exact
situation.
There	 is	 another	 way	 to	 divide	 software	 bugs:	 bugs	 in	 a	 program	 that	 you

wrote	 yourself,	 and	 bugs	 in	 somebody	 else’s	 program.	 When	 the	 bug	 is	 in
somebody	 else’s	 program,	 you	 know	 nothing	 about	 the	 details,	 so	 you	 are
starting	at	square	one,	or	line	one.	The	problem	I	was	being	tapped	to	fix	was	in
the	worst	quadrant:	an	intermittent	bug	in	somebody	else’s	program.	This	was	a
new	 experience	 for	 me.	 Previously,	 in	 high	 school	 and	 college,	 I	 had	 rarely
worked	with	code	written	by	 somebody	else.	And	even	when	 I	had,	 the	data	 I
was	working	with	was	small	enough,	and	the	programs	I	was	working	with	were
simple	enough,	that	any	bug	was	easy	to	reproduce.
Throw	in	the	pressure	of	being	put	on	the	spot,	with	paying	customers	waiting

for	a	fix	while	their	salespeople	wandered	aimlessly	around	New	Jersey,	and	this
was	the	moment	when	I	was	going	to	earn	my	stripes	as	a	programmer.
If	you	watch	home	improvement	shows,	you	have	no	doubt	seen	the	knob-and-

tube	reveal,	in	which	the	contractor	informs	the	homeowners,	“I	have	bad	news,”
and	 then	 after	 a	 commercial	 break	 is	 seen	 ripping	 off	 a	 piece	 of	 the	 wall	 to
uncover	the	dreaded	knob-and-tube	system.	This	archaic	method	for	transmitting
electricity	inside	a	house	is	a	potential	fire	hazard,	such	that	when	upgrades	are
made	to	a	house,	the	knob	and	tube	has	to	be	replaced	if	it	is	deemed	unsafe	(or
possibly	if	the	plot	of	the	show	is	deemed	to	be	lacking	in	dramatic	tension).
Finding	electric	problems	is	a	bit	like	debugging,	and	clearly,	since	knob	and

tube	has	been	obsolete	for	seventy-five	years,	it	falls	in	the	category	of	a	bug	in
somebody	 else’s	 work.	 The	 difference	 is	 that	 knob	 and	 tube,	 despite	 being
hidden	behind	a	wall,	is	easy	to	locate:	start	with	the	plug	on	the	wall	and	track	it
back	from	there.	When	I	was	called	in	to	debug	this	mysterious	problem	in	our
software,	 I	 had	 no	 idea	what	 I	 was	 looking	 for.	Was	 it	 knobs?	Was	 it	 tubes?
Which	metaphoric	wall	was	I	supposed	to	look	behind?	And	if	I	found	the	right
place,	would	the	problem	occur	while	I	was	watching?
I’ll	give	away	the	ending:	after	a	couple	days	of	excavation,	 I	 found	the	bug

and	was	rewarded	with	a	bottle	of	champagne	as	well	as	the	respect	of	my	peers
and	a	blissful	return	to	more	mundane	tasks—until	 the	next	time	I	had	to	track
down	 a	 flaky	 bug	 in	 somebody	 else’s	 program.	 But	 let’s	 take	 a	 detour	 to
consider	exactly	how	programmers	approach	writing	and	debugging	software.
We	will	need	something	to	debug,	so	below	are	two	lines	from	a	program	in

C#.	The	purpose	of	 this	 code	 is	 to	 show	 the	user	 an	error	message	 stored	 in	a
variable	named	ErrorMessage,	of	type	string.	This	is	a	snippet	of	a	program,	so



we	 assign	 a	 specific	 value	 to	 ErrorMessage	 (the	 text	 string	 “This	 is	my	 error
message”),	as	opposed	to	having	it	determined	by	an	actual	error:

string	ErrorMessage	=	"This	is	my	error	message";

MessageBox.Show(ErrorMessage);

Look	past	 the	 slightly	backward	 syntax	and	arbitrary-looking	punctuation;	you
may	correctly	infer	that	this	code	will	cause	the	computer	to	show	a	message	box
—one	of	those	pop-up	windows	that	hovers	over	the	screen—containing	the	text
of	 the	 error	 message,	 as	 contained	 in	 the	 variable	 ErrorMessage.	 On	 my
Windows	10	system,	the	message	box—not	the	prettiest	of	message	boxes,	but
you	can	see	the	connection	between	the	code	and	result—looks	like	this:1

MessageBox.Show	 is	 an	API,	 similar	 to	what	we	 saw	 in	Fortran	 and	BASIC,
although	in	 the	argot	of	C#	it	 is	also	known	as	a	method.	You	might	say,	“My
code	calls	the	MessageBox.Show	method.”	Or	since	programmers	tend	to	talk	of
their	 code	 as	 an	 extension	 of	 themselves,	 you	 could	 assert,	 “I	 call	 the
MessageBox.Show	 method.”	Or	most	 commonly,	 since	 code	 that	 doesn’t	 work
yields	the	richest	bounty	of	conversational	fodder,	you	would	be	complaining,	“I
call	 the	 MessageBox.Show	method	 and	 I	 can’t	 figure	 out	why	 it	 isn’t	 working
properly.”
Given	 that	 software	 is	 built	 up	 in	 layers,	 this	 code	 is	 at	 a	 layer	 above

MessageBox.Show,	calling	down	into	it.	A	similar	concept	exists	in	the	physical
world—the	 roof	 of	 a	 house	 may	 be	 built	 on	 prefabricated	 girders,	 which	 are
themselves	made	of	wood,	steel,	and	nails.	The	electric	appliances	in	your	house
are	 layered	 above	 the	 electric	 system	 in	 your	 walls,	 relying	 on	 it	 to	 provide
power	when	needed.	But	these	layers	don’t	go	that	deep;	the	knobs	and	tubes	are
only	 one	 layer	 removed	 from	what	 all	 visible	 to	 the	 homeowner.	 Some	 quick
work	 with	 a	 claw	 hammer	 and	 all	 is	 laid	 bare	 for	 the	 camera.	 The
MessageBox.Show	method	contains	its	own	code,	which	in	turn	calls	other	code
in	a	stack	that	is	dozens	of	levels	deep.	Which	means	the	knobs	and	tubes	may



be	 buried	 so	 deeply	 that	 you	 will	 never	 discover	 them	 until	 your	 software
metaphorically	catches	fire.
In	 the	 code	 snippet	 above,	 ErrorMessage	 is	 passed	 as	 a	 parameter	 to

MessageBox.Show.	 In	 C#,	 as	 in	 many	 modern	 programming	 languages,
parameters	 are	 specified	 in	 a	 comma-separated	 list	 enclosed	 in	parentheses,	 so
we’ll	 follow	 the	 convention	 that	 C#	 method	 names	 are	 followed	 with	 empty
opening	 and	 closing	 parentheses	 in	 order	 to	 distinguish	 them	 from	 other
programming	 constructs.	 MessageBox.Show	 will	 henceforth	 be	 styled	 as
MessageBox.Show().
The	code	in	a	program	generally	involves	figuring	out	the	desired	parameters

to	a	method,	calling	 that	method,	and	using	 the	 information	 returned	from	that
method	to	decide	what	to	do	next.	As	code	gets	more	complicated,	the	number	of
layers	increases,	and	method	calls	are	the	glue	that	holds	those	layers	together.	A
lot	of	code	examples	show	only	one	layer,	but	that	is	unusual	in	real	programs;
code	rarely	proceeds	for	more	than	five	lines	without	calling	a	method.
Let’s	 change	our	 code	 to	display	 the	 error	message	 in	uppercase	 so	 as	 to	be

extra	memorable.	Uppercasing	is	easy	using	a	method	named	ToUpper();	in	C#,
you	 call	 a	 method	 on	 a	 variable—in	 this	 case,	 ErrorMessage—by	 using	 dot
notation,	 as	 shown	 below.	 We’ll	 also	 add	 another	 string	 variable	 named
EM_Upper	to	hold	the	uppercased	string:

string	ErrorMessage	=	"This	is	my	error	message";

string	EM_Upper	=	ErrorMessage.ToUpper();

MessageBox.Show(EM_Upper);

The	 second	 line	 sets	 EM_Upper	 to	 hold	 the	 result	 of	 calling	 the
ErrorMessage.ToUpper()method,	 and	 we	 then	 pass	 that	 as	 a	 parameter	 to
MessageBox.Show(),	instead	of	the	original	ErrorMessage.	The	error	message	is
now	displayed	in	uppercase,	like	this:

Now	 we	 add	 one	 more	 twist	 to	 this	 code:	 in	 addition	 to	 having	 the	 error
message	displayed	in	the	message	box,	we	will	show	a	title	at	the	top.	We’ll	use



the	 title	 “ERROR!,”	 which	 we	 pass	 as	 a	 second	 parameter	 to
MessageBox.Show():

string	ErrorMessage	=	"This	is	my	error	message";

string	EM_Upper	=	ErrorMessage.ToUpper();

MessageBox.Show(EM_Upper,	"ERROR!");

The	difference	 is	 in	 the	 third	 line	of	code;	MessageBox.Show()	now	has	 two
parameters,	 separated	 by	 a	 comma.	 The	 string	 “ERROR!”	 is	 displayed	 as	 the
title	of	the	message	box,	where	previously	there	had	been	no	title:

Both	those	parameters	to	MessageBox.Show()	are	of	type	string	(the	second
parameter	is	not	the	name	of	a	variable	but	instead	contains	the	actual	text	of	the
string,	 surrounded	 by	 double	 quotes).	 There	 are	 multiple	 ways	 you	 can	 call
MessageBox.Show()	with	 different	 sets	 of	 parameters,	 because	 the	 people	who
wrote	 MessageBox.Show()	 (in	 this	 case	 at	 Microsoft,	 which	 invented	 C#	 and
wrote	 the	 collection	 of	methods	 that	 allow	C#	 programs	 to	 do	 things	 such	 as
show	message	 boxes)	 decided	 it	 would	 be	 useful	 to	 offer	 the	 choice.	 The	 C#
compiler	 knows	 the	 type	 of	 the	 parameters	 and	 their	 order,	 which	 form	 a
signature	 of	 sorts;	 this	 call	 to	 MessageBox.Show()	 has	 the	 signature	 “first
parameter	is	a	string,	second	parameter	is	a	string.”
What	if	you	accidentally	got	those	backward,	and	specified	the	first	parameter

as	the	title	of	the	message	box,	and	the	second	as	the	text?	Here	is	an	example:

string	ErrorMessage	=	"This	is	my	error	message";

string	EM_Upper	=	ErrorMessage.ToUpper();

MessageBox.Show("ERROR!",	EM_Upper);

It	seems	obvious	to	us	what	the	intent	is	since	we	have	been	thinking	about	the
code,	and	know	that	“ERROR!”	is	the	title	and	the	message	is	in	EM_Upper.	But
the	compiler	doesn’t	know	that,	since	the	call	still	matches	the	method	signature;
one	string	is	treated	like	any	other	string,	and	it	 lets	the	incorrect	code	through
unchallenged:



Fred	Brooks,	who	managed	 both	 hardware	 and	 software	 teams	 at	 IBM,	 and
later	 founded	 the	Department	 of	Computer	 Science	 at	 the	University	 of	North
Carolina,	 once	 compared	 the	 creativity	 in	 programming	 to	 that	 in	 poetry,	 but
noted,	“The	program	construct,	unlike	the	poet’s	words,	is	real	in	the	sense	that
it	moves	and	works,	producing	visible	outputs	separate	from	the	construct	itself.
…	 The	 magic	 of	 myth	 and	 legend	 has	 come	 true	 in	 our	 time.	 One	 types	 the
correct	 incantation	on	a	keyboard,	and	a	display	screen	comes	 to	 life,	 showing
things	 that	 never	were	nor	 could	be.”	But	 he	 cautioned,	 “One	must	 perform	 it
perfectly.	 The	 computer	 resembles	 the	magic	 of	 legend	 in	 that	 respect,	 too.	 If
one	 character,	 one	 pause,	 of	 the	 incantation	 is	 not	 strictly	 in	 proper	 form,	 the
magic	doesn’t	work.	Human	beings	are	not	accustomed	to	being	perfect,	and	few
areas	of	human	activity	require	it.”2
The	 things	 that	 make	 us	 swear	 at	 computers	 often	 involve	 them	 perfectly

executing	 a	 set	 of	 instructions	 that	 don’t	 do	what	we	want	 them	 to	 do.	 In	 his
book	 I	 Sing	 the	 Body	 Electronic,	 which	 chronicles	 a	 year	 embedded	 with	 a
Microsoft	 development	 team	 in	 the	 1990s,	 longtime	 Seattle	 observer	 Fred
Moody	recounts	a	discussion	with	a	programmer:

Developers	like	to	highlight	the	difference	between	the	world	of	computing
and	the	world	outside	of	computing	by	citing	the	common	directions	on	a
bottle	 of	 shampoo—“Lather.	 Rinse.	 Repeat.”	 …	 In	 the	 everyday	 world,
common	 sense	 tells	 you	 not	 to	 keep	 lathering	 and	 rinsing	 forever.	 In	 the
world	of	computing,	where	there	is	no	common	sense	and	where	everything
must	be	rigorously	defined,	such	an	instruction	is	careless	and	dangerous.3

The	 joke	 is	 that	 the	 instructions	 don’t	 tell	 you	 when	 to	 stop	 repeating;	 a
computer	would	keep	doing	this	until	it	ran	out	of	shampoo	(or	possibly	longer,
if	it	neglected	to	stop	when	the	shampoo	bottle	was	empty).
Reversing	two	parameters	to	a	method	is	the	sort	of	mistake	that	can	be	hard

for	 a	 programmer	 to	 catch,	 because	 our	 human	 commonsense	 filter	 kicks	 in
when	 reading	 the	 code—the	 same	 common	 sense	 that	 makes	 us	 interpret	 the



shampoo	 directions	 the	 way	 they	 were	 intended.	 The	 correct	 code	 looks
maddeningly	similar	to	the	incorrect	version;	you	see	the	title	and	message	being
passed	to	MessageBox.Show(),	so	what	could	be	wrong?
Luckily	 there	 is	 documentation	 available	 for	 MessageBox.Show()	 explaining

which	parameter	goes	where,	and	even	if	you	don’t	read	the	documentation	and
get	the	parameters	backward,	the	error	will	be	apparent	if	you	run	the	program.
In	 this	 case,	 you	 can	 quickly	 solve	 the	 problem:	 you	 know	where	 the	 call	 to
MessageBox.Show()	 is	 in	 your	 code,	 it’s	 pretty	 obvious	 that	 you	 switched	 the
two	parameters,	and	presto,	 it	 is	fixed.	Now	imagine	that	the	method	you	were
calling	was	written	by	another	programmer	at	your	company	and	did	not	have
clear	 documentation—a	 much	 more	 typical	 situation	 when	 debugging.	 Or
imagine	 that	 the	 mistake	 did	 not	 result	 in	 a	 visually	 obvious,	 and	 otherwise
harmless,	transposition	of	two	strings.
Although	you	can	fix	 this	problem	by	changing	your	code,	you	can’t	pin	 the

blame	squarely	on	your	code	or	on	the	code	in	MessageBox.Show();	you	just	had
a	 different	 understanding	 of	 how	 the	 parameters	 worked.	 The	 actual	 problem
involves	 an	 interaction	 between	 your	 code	 and	 the	 details	 of	 how
MessageBox.Show()	 orders	 its	 parameters;	 the	 bug	 is	 somewhere	 in	 the	 gap
between	them.
I	 want	 to	 emphasize	 this	 point:	 method	 calls	 hold	 together	 all	 the	 layers	 of

software,	 and	 miscommunication	 across	 these	 layers	 is	 a	 major	 cause	 of
unexpected	problems.	A	collection	of	methods	at	a	layer	boundary	is	an	API;	I’ll
use	that	term	to	refer	in	an	abstract	sense	to	both	a	single	method	and	collection
of	methods.
So	 to	 restate:	 APIs	 hold	 together	 all	 the	 layers	 of	 software,	 and

miscommunication	across	these	layers	is	a	major	cause	of	unexpected	problems.
This	 miscommunication	 can	 take	 a	 variety	 of	 forms,	 from	 not	 realizing	 the
proper	value	 that	 the	API	expects	 in	a	parameter,	 to	not	realizing	how	the	API
will	 interpret	 that	 parameter	 in	 guiding	 its	 internal	 logic,	 to	misunderstanding
when	 and	 in	what	 form	 the	API	 returns	 values.	Many	debugging	 sessions	 end
with	 a	 programmer,	 after	 having	 examined	 their	 own	 code	 with	 a	 fine-tooth
comb	and	found	nothing	amiss,	cracking	open	the	documentation,	slapping	their
forehead,	 and	 exclaiming,	 “Oh,	 I	 didn’t	 realize	 that	 the	API	 that	 I	was	 calling
worked	that	way.”
The	decisions	here	are	in	the	hands	of	the	programmer	writing	the	code	inside

the	API;	the	caller	of	the	API	is	stuck	with	whatever	that	other	person	decided.
Often	you	cannot	see	the	code	in	the	API	you	are	calling;	it	is	provided	to	you
only	 as	 compiled	 code,	 with	 no	 source	 code	 available.	 Unfortunately,	 people
who	write	code	that	supplies	APIs	to	other	people	generally	don’t	spend	a	lot	of



time	 worrying	 about	 the	 external	 clarity	 of	 their	 API	 but	 instead	 get	 bogged
down	 in	 the	 internal	 implementation	of	 the	API.	This	 is	because	 for	any	given
code	you	want	to	write,	there	are	likely	multiple	ways	to	write	it,	and	not	a	lot	of
wisdom	about	which	one	to	choose.
The	book	The	Paradox	of	Choice,	by	the	psychologist	Barry	Schwartz,	argues

(in	a	section	of	the	book	titled	“Why	We	Suffer”)	that	having	more	choices	does
not	make	people	happier:

Freedom	and	autonomy	are	critical	to	our	well-being,	and	choice	is	critical
to	 freedom	 and	 autonomy.	 Nonetheless,	 though	 modern	 Americans	 have
more	 choice	 than	 any	 group	 of	 people	 ever	 has	 had	 before,	 and	 thus,
presumably,	more	freedom	and	autonomy,	we	don’t	seem	to	be	benefiting
from	it	psychologically.4

He	then	goes	on	to	explain	that	too	much	choice	can	sometimes	be	a	burden	on
us.	Programmers	are	frequently	victims	of	this;	there	are	so	many	ways	to	write
even	trivial	code	like	the	stuff	above,	it	is	hard	to	know	what	the	“right”	way	is.
Getting	back	to	our	code	from	before,	here	is	the	correct	version	(without	the

swapped	parameters	to	MessageBox.Show())	as	we	last	saw	it:

string	ErrorMessage	=	"This	is	my	error	message";

string	EM_Upper	=	ErrorMessage.ToUpper();

MessageBox.Show(EM_Upper,	"ERROR!");

Observe	that	in	the	second	line,	we	declare	a	new	variable,	EM_Upper,	to	hold
the	 uppercase	 version.	 This	 seems	 reasonable;	 although	 we	 don’t	 need	 the
original	mixed-case	error	message,	we	may	want	it	at	some	point	in	the	future,
so	 we	 allocate	 a	 second	 variable	 to	 hold	 the	 uppercase	 version	 and	 keep	 the
original	in	ErrorMessage.
Hang	on.	Do	we	need	to	retain	the	original	value	of	ErrorMessage?	Sure,	we

might	need	it	in	a	future	version	of	this	code,	but	right	now	we	don’t.	And	if	we
don’t	need	it,	we	can	avoid	EM_Upper	entirely	and	instead	replace	ErrorMessage
with	its	uppercase	version	and	pass	that	to	MessageBox.Show():

string	ErrorMessage	=	"This	is	my	error	message";

ErrorMessage	=	ErrorMessage.ToUpper();

MessageBox.Show(ErrorMessage,	"ERROR!");

Come	to	think	of	it,	since	all	we	do	with	the	uppercase	error	message	is	pass	it
to	MessageBox.Show()—we	don’t	 use	 the	 original	or	 the	 uppercase	 version	 in
any	later	code—we	can	combine	the	last	two	lines	of	code	into	one:



string	ErrorMessage	=	"This	is	my	error	message";

MessageBox.Show(ErrorMessage.ToUpper(),	"ERROR!");

Except—and	I’m	just	pointing	this	out	to	be	helpful,	you	understand—now	we
haven’t	 saved	 the	 uppercase	 version	 anywhere.	 We	 passed	 it	 to
MessageBox.Show()	and	then	it	disappears	into	the	ether.	Does	this	matter?	If	the
code	 later	 needs	 the	 uppercase	 value	 a	 second	 time,	 we	 would	 need	 to	 call
ToUpper()	 again,	 which	 seems	 wasteful,	 so	 shouldn’t	 we	 save	 the	 output	 of
ToUpper()	 somewhere	 just	 in	case?	And	 if	we	do	decide	 to	save	 it,	 should	we
stash	 it	 back	 in	 ErrorMessage	 or	 create	 EM_Upper	 as	 a	 separate	 variable,	 thus
retaining	 the	original	version	as	well	 but	using	a	 little	more	of	 the	 computer’s
memory?
These	 last	 few	 paragraphs	 of	 discussion	 are	 all	 theoretical.	 The	 code	works

right	 now,	 so	 why	 complicate	 it?	 Why	 are	 you	 worrying	 about	 saving	 both
versions	or	calling	ToUpper()	twice	when	the	code	needs	to	do	neither	of	those
things?
Sure,	replies	the	devil	on	the	other	shoulder,	but	maybe	if	you	set	yourself	up

for	 the	 future	 now,	 when	 you	 are	 familiar	 with	 the	 code,	 you	 will	 have	 less
chance	of	making	a	mistake	 later	and	save	 time	overall.	A	well-prepared	devil
might	point	out	that	one	study	of	software	maintenance	noted,	“There	is	a	unique
maintenance	aspect	called	‘knowledge	recovery’	or	‘program	understanding.’	It
becomes	 a	 major	 cost	 component	 as	 software	 ages	 (assume	 50%	 of	 both
enhancements	and	defect	 fixing).”5	Half	your	 future	maintenance	costs	will	be
spent	relearning	the	details	of	your	program	that	you	will	have	forgotten	in	the
meantime!	Surely	it	is	better	to	make	those	changes	now,	when	the	code	is	fresh
in	your	mind.
Keep	in	mind	we’re	talking	about	three	lines	of	code	here.
This	 problem	 is	 not	 unique	 to	 software;	many	 tasks	 can	 be	 accomplished	 in

multiple	 ways.	What’s	 different	 is	 the	 ease	 with	 which	 you	 can	 change	 your
mind	 and	 update	 your	 code,	 and	 the	 lack	 of	 criteria	 for	 determining	 which
approach	will	be	most	useful	in	the	long	term.	If	you	are	building	a	bridge,	you
will	know	the	distance	it	is	supposed	to	span	and	weight	it	is	supposed	to	hold,
and	it	is	understood	that	the	current	design	is	based	on	those	factors.	Nobody	is
going	to	assume	that	the	same	bridge	design,	with	just	a	few	modifications,	will
handle	 twice	 as	 much	 distance	 or	 weight,	 or	 that	 it	 will	 be	 simple	 to
accommodate	 such	 a	 change	 when	 the	 bridge	 is	 halfway	 built.	 Changing
software	is	so	easy—a	few	keystrokes,	a	wave	of	the	compiler,	and	you	are	done
—that	the	temptation	is	always	there,	and	the	incentive	to	figure	everything	out
ahead	of	 time	 is	 less,	 for	 the	 same	 reason.	The	 end	 result	 is	 that	 almost	 every



piece	of	software	written	eventually	winds	up	being	modified	to	solve	a	different
problem	than	what	it	was	designed	for.
“The	computer’s	flexibility	is	unique,”	points	out	the	researcher	John	Shore	in

his	essay	“Myths	of	Correctness”:

No	 other	 kind	 of	 machine	 can	 be	 changed	 so	 much	 without	 physical
modifications.	 Moreover,	 drastic	 modifications	 are	 as	 easy	 to	 make	 as
minor	 ones,	 which	 is	 unfortunate,	 since	 drastic	 modifications	 are	 more
likely	 to	 cause	 problems.	 With	 other	 kinds	 of	 machines,	 drastic
modifications	 are	 correspondingly	 harder	 to	 make	 then	 minor	 ones.	 This
fact	provides	natural	constraints	to	modification	that	are	absent	in	the	case
of	computer	software.6

André	van	der	Hoek	and	Marian	Petre,	editors	of	the	book	Software	Designers
in	Action,	observe,	“Almost	any	product	can	be	changed,	in	some	way,	after	it	is
delivered.	What	makes	software	unusual	is	the	expectation	of	the	customer,	the
user,	and	other	stakeholders,	that	it	will	change.”7	Since	software	almost	always
has	a	potential	 alternate	 future	ahead	of	 it,	 there	 is	no	 statute	of	 limitations	on
suggested	 improvements.	And	you	never	 know,	 unless	 you	 can	 see	 the	 future,
which	 ones	 will	 result	 in	 real	 savings	 and	 which	 ones	 will	 be	 needless
complications.
While	the	choices	we’re	discussing	here—what	API	to	call,	or	whether	to	use

a	variable	or	not—seem	innocuous	in	this	situation,	 these	are	precisely	the	sort
of	choices	that	can,	if	made	incorrectly,	lead	to	software	that	has	real	problems,
that	crashes,	hangs,	or	allows	other	users	to	steal	your	files.	The	electricians	who
installed	knob-and-tube	wiring	back	in	the	1930s	were	following	correct,	state-
of-the-art	practices	 for	 the	 time;	 it	was	only	determined	 in	 retrospect	 that	 they
were	 actually	 creating	 a	 large,	 expensive,	 and	 potentially	 life-threatening
problem	for	future	generations	to	deal	with.	Is	that	API	choice	you	are	making	a
clever	decision,	or	will	it	be	determined	by	a	future	programmer,	as	they	slander
your	name,	to	be	horribly	misguided?
Still,	 you	 can’t	 dither	 forever,	 so	 eventually	 you	 choose	 a	 spot	 on	 the

continuum	of	present	versus	future	gratification,	and	write	your	code	to	match.
Are	you	done	now?
No,	unless	you	are	programming	all	by	yourself,	which	usually	only	happens

during	 the	 sunny	 idyll	 known	 as	 college	 (or	 high	 school).	 You	 are	 now	 a
professional	programmer,	working	with	other	programmers,	so	what	comes	next
is	 an	 opportunity	 for	 all	 your	 coworkers	 to	 give	 their	 opinions	 through	 an
activity	with	the	seemingly	auspicious	name	of	code	review.



A	code	review	is	where	other	people	offer	constructive	criticism	of	your	code.
This	 sounds	 like	 a	 good	 idea,	 like	 grabbing	 a	 second	 electrician	 to	 give	 your
work	the	once-over.	That’s	what	you	would	expect	people	to	do	as	they	graduate
from	do-it-yourself	wiring	projects	in	their	own	home	to	becoming	professional
electricians:	 find	somebody	else	 to	point	out	your	knobs	and	 tubes	before	 they
can	cause	any	fires!	The	language	used	gives	this	analogy	a	helpful	shove	in	the
wrong	direction,	because	electricians	are	governed	by	an	electric	code	(that	word
again).	The	electric	code	is	where	it	is	written	down,	“Thou	shalt	not	use	knob-
and-tube	 wiring	 for	 new	 homes,”	 and	 more	 important,	 “When	 evaluating
existing	knob-and-tube	wiring,	these	are	the	things	you	look	for	to	determine	if	it
is	 safe.”	 The	 phrase	 “code	 review”	 implies	 that	 your	 fellow	 programmers	 are
noting	deviations	from	accepted	practices	and	standards,	comparing	your	code	to
a	“professional	programmer’s	[the	other	kind	of]	code.”
Unfortunately	 there	 is	no	equivalent	of	an	electric	code	for	software,	and	the

books	 available	 to	 programmers,	 although	 they	 offer	 advice	 in	 some	 of	 these
areas,	are	not	backed	up	by	any	empirical	studies;	they	tend	to	add	fuel	to	both
sides	of	a	debate.	A	code	review	is	really	about	other	programmers	giving	their
personal	 opinions	 on	 how	 they	 would	 have	 written	 the	 code,	 backed	 up	 by
nothing	more	than	their	own	experiences.	And	since	your	peers	know	all	about
how	 flexible	 code	 is,	 they	 are	 likely	 to	 feel	 that	 their	 suggestions	 should	 be
adopted,	no	matter	how	late	in	the	game	it	is,	because	the	game	never	ends.	This
makes	them	more	likely	to	suggest	changes	and	more	likely	to	pooh-pooh	your
code	if	you	don’t	agree	with	them.
The	most	likely	feedback	from	a	code	review	is	other	programmers’	opinions

on	the	same	questions	that	you	noodled	over	before	you	even	sent	the	code	out
for	review:	Should	you	modify	your	code	now	in	anticipation	of	future	needs,	of
which	you	are	currently	unaware?
Consider	variable	names—a	favorite	topic.	Our	code	above	has	two	variables,

ErrorMessage	and	EM_Upper.	Those	names	are	inconsistent;	the	second	one	has
an	explanation	of	 the	meaning	of	 the	variable	 (it’s	 in	uppercase)	 that	 is	absent
from	the	first	one,	while	the	first	one	spells	out	the	purpose	of	the	variable	(it’s
an	error	message),	but	the	second	one	uses	initials.	We,	the	author	of	the	code,
know	 how	 it	 evolved	 to	 this	 point:	 we	 started	 with	 only	 one	 variable,
ErrorMessage,	and	added	the	second	one	later.	Until	we	added	the	second	one,
we	 didn’t	 know	 what	 was	 going	 to	 distinguish	 it	 from	 the	 first,	 so	 plain-old
ErrorMessage	 seemed	 reasonable.	 Meanwhile,	 when	 inventing	 EM_Upper,	 we
decided	to	save	a	bit	of	typing	and	shorten	the	first	part.
Now	once	we	did	add	the	second	variable	and	the	case—mixed	versus	upper—

became	the	distinguishing	factor,	we	could	have	renamed	all	uses	of	the	original



ErrorMessage	 to	be	ErrorMessageMixed,	 but	 really	we	 should	 then	go	change
EM_Upper	 to	ErrorMessageUpper,	 or	 alternately	 change	ErrorMessageMixed	 to
EM_Mixed.	And	come	to	think	of	it,	the	initial	error	message	might	already	be	in
uppercase;	 we	 can’t	 assume	 it	 is	 mixed	 case,	 so	 perhaps
ErrorMessageOriginalCase	 would	 be	 a	 better	 name.	 Which	 would	 mean
ErrorMessageUpper	should	become	ErrorMessageUpperCase.	Meanwhile	we’re
still	not	100	percent	sure	we	need	two	variables,	so	are	we	willing	to	commit	to
all	that	typing?	Looming	over	this	is	the	nonzero	chance	of	making	a	mistake	(in
particular,	 accidentally	 replacing	 one	 of	 the	 uses	 of	 ErrorMessage	 with
ErrorMessageUpper	 instead	of	ErrorMessageMixed,	which	would	compile	fine,
but	botch	everything	when	you	ran	it).
A	second	programmer	arriving	on	the	scene	for	a	code	review	knows	none	of

this	 history,	 nor	 do	 they	 appreciate	 your	 inner	 struggle.	What	 they	 see	 is	 the
inconsistency	between	the	names	ErrorMessage	and	EM_Upper,	which	they	will
likely	 point	 out.	 By	 the	 way,	 variable	 names	 go	 away	 when	 the	 program	 is
compiled,	so	changing	the	variable	name	has	no	effect	on	how	the	program	runs
or	 the	 user’s	 experience	 running	 it.	 This	 is	 just	 programmers	 arguing	 about
readability	for	the	sake	of	future	programmers	who	encounter	the	code.
Believe	it	or	not,	one	of	the	most	contentious	questions,	which	you	can’t	see	at

all	when	reading	code	in	a	book,	is	this:	When	indenting	code,	which	happens	a
fair	bit,	 do	you	 type	a	 series	of	 spaces	or	 a	 single	 tab	character?	Some	people
like	to	see	code	indented	four	spaces	each	time,	and	some	like	to	see	it	indented
eight	 spaces;	 using	 tab	 characters	means	 each	 person	 can	 see	 the	 indent	 level
they	 like	by	adjusting	 the	 tab	settings	on	 their	own	computer,	but	some	people
consider	that	heresy	and	think	the	original	programmer	should	be	able	to	control
exactly	how	the	indenting	is	seen.	Worse,	a	file	with	a	mix	of	tabs	and	spaces	can
devolve	into	a	visual	torment.	When	I	worked	on	the	first	versions	of	Windows
NT	 (the	 precursor	 to	 today’s	Windows)	 back	 in	 the	 early	 1990s,	 there	 was	 a
strict	 rule	 that	 there	would	be	no	 tab	characters	 in	 the	 source	code,	on	pain	of
baleful	 stares	 from	 your	 coworkers	 (once	 they	 got	 finished	 removing	 the	 tabs
from	your	code).	To	this	day,	if	you	want	to	see	an	eye	roll	from	a	programmer,
utter	the	magic	phrase	“tabs	versus	spaces.”8
So	you’ve	got	the	variable	names	and	indenting,	and	further	discussion	topics

such	as	whether	you	should	put	a	space	before	the	equal	sign	when	assigning	to
a	variable,	before	the	opening	parenthesis	of	a	method	call,	after	the	comma	that
separates	method	parameters,	before	the	semicolon	at	the	end	of	a	line,	or	really
anywhere	 there	 is	 or	 isn’t	 a	 space	 (which	 is	 almost	 anywhere,	 since	 most
programming	languages	ignore	extra	spaces	in	the	code),	or	whether	blank	lines
in	your	code	are	a	sinful	waste	or	glorious	luxury.



Harlan	Mills	 once	wrote	 about	 a	 similar	 situation,	maintaining,	 “Since	 there
was	 no	 mathematical	 rigor	 to	 inhibit	 these	 discussions,	 some	 became	 quite
vehement.”9	 Vehement	 is	 an	 understatement;	 these	 arguments	 are	 often	 called
“religious”	because	they	rely	entirely	on	faith,	not	demonstrated	evidence.
Despite	 the	 energy	 expended,	 code	 reviews	 rarely	 turn	 up	 real	 user-visible

bugs.	They	are	more	about	enforcing	local	norms	such	as	“this	is	how	we	name
our	 variables.”	 Really	 bad	 bugs,	 security	 issues,	 or	 potential	 crashes	 usually
involve	a	series	of	mistakes,	each	small	enough	 to	go	unremarked	 in	 isolation,
acting	in	unfortunate	concert	with	just	the	wrong	set	of	data.	Oftentimes	they	are
a	 misunderstanding	 between	 the	 programmers	 responsible	 for	 two	 adjacent
layers	of	code	at	the	API	boundary.	Brooks	recognized	this	problem	forty	years
ago:	 “The	 most	 pernicious	 and	 subtle	 bugs	 are	 system	 bugs	 arising	 from
mismatched	 assumptions	 made	 by	 the	 authors	 of	 various	 components”	 (the
loosely	defined	terms	component	and	module	are	often	used	to	denote	“a	bundle
of	 code	 that	 provides	 a	 set	 of	 related	 APIs”).10	 Code	 reviewers	 do	 try	 to
anticipate	 future	 modifications	 to	 the	 code,	 but	 when	 reviewing	 code	 that
provides	an	API,	they	rarely	try	to	predict	future	misunderstandings	by	callers	of
the	 API,	 especially	 since	 that	 code	 hasn’t	 been	 written	 yet.	 When	 your
perspective	is	from	the	inside	of	an	API	upward,	it	all	seems	perfectly	logical.
As	a	result,	code	reviews	almost	never	get	 into	 the	 issue	of	 the	usability	and

clarity	of	the	APIs	being	exported	to	a	layer	above.	The	API	name	and	parameter
list	 is	 the	 box	 that	 holds	 the	 code	 being	 reviewed,	 normally	 accepted	 as	 fact
while	your	 eye	 slides	over	 it	 to	get	 to	 the	meaty	 algorithmic	parts	 inside.	 In	 a
way	 that	makes	sense,	 since	 the	 internals	are	 the	“hidden”	part	 that	may	never
get	 looked	 at	 again,	while	 the	API	 external	 surface	will	 be	 seen	 by	 any	 other
programmers	 who	 call	 it,	 but	 the	 latter	 will	 have	 a	 disproportionate	 effect	 on
whether	 code	 from	 two	 different	 programmers	will	 work	 together	 as	 planned.
And	once	the	code	providing	an	API	is	judged	complete,	programmers	are	even
less	 likely	 to	change	 the	API	name	and	parameters	 than	 they	are	 to	 rename	an
unclear	variable;	for	one	thing,	they	would	also	need	to	change	any	code	that	is
now	calling	that	API.
Having	 said	 that,	 I	 do	 applaud	 code	 reviewers	 for	 worrying	 about	 the

readability	and	maintainability	of	the	code,	because	while	it	may	not	have	much
effect	on	clarity	across	API	calls,	 it	relates	directly	to	another	important	source
of	 bugs,	 which	 is	 code	 handoff	 across	 time:	 the	 situation	 where	 another
programmer	 needs	 to	 modify	 the	 code	 for	 future	 use	 (or	 where	 you,	 as
mentioned	earlier,	come	back	to	the	code	some	time	later;	the	amount	of	time	it
takes	your	own	code	to	become	foreign	to	you	is	depressingly	short).	The	code



reviewer	is	a	good	simulation	of	that	future	person	since	they	themselves	do	not
know	 the	 code	 either.	 The	 problem	 is	 that	 while	 the	 code	 reviews	 are	 well
intentioned,	 it’s	 not	 at	 all	 clear	 that	 the	 problems	 they	 point	 out	 will	 have	 an
effect	 on	 future	 maintainability;	 it’s	 frequently	 a	 “he	 said,	 she	 said”	 sort	 of
argument	(or	unfortunately,	often	a	“he	said,	he	said”	one).
At	 one	 point	 in	 Microsoft’s	 history,	 there	 was	 a	 push	 to	 write	 code	 using

Hungarian	 notation,	 where	 variable	 names	 were	 prepended	 with	 little
duodenums	that	described	 their	 type—such	as	a	number,	string,	and	so	on	(the
“and	 so	 on”	 exists	 because	 programmers	 can	 create	 their	 own	 types,	 built	 up
from	collections	 of	 strings	 and	 numbers).	 For	 example,	 all	 variables	 that	were
strings	 would	 start	 with	 sz,	 so	 Hungarian-styled	 code	 was	 peppered	 with
variable	 names	 like	 szUsername	 and	 szAddress.	 The	 theory	 was	 that	 it	 was
useful	to	know	at	a	glance,	without	knowing	anything	else	about	how	the	code
worked,	 if	 a	 particular	 variable	 was	 a	 string	 or	 number,	 to	 prevent	 you	 from
accidentally	using	one	where	 the	other	was	called	 for.	This	 led	 to	extreme	all-
sizzle-no-steak	examples	like	szA,	where	sz	informed	the	masses	that	this	was	a
string,	but	the	A	part	was	a	flashback	to	the	days	of	BASIC,	which	did	nothing	to
tell	you	what	the	string	was	used	for.
Hungarian	 was	 a	 source	 of	 contention	 in	 the	 halls	 of	Microsoft;	 the	 Office

team	adopted	it,	but	the	Windows	NT	team	thought	it	was	silly,	so	I	thought	it
was	 silly	 by	 osmosis	 (would	 the	 discussion	 above,	 about	 EM_Upper	 versus
ErrorMessageUpperCase,	 have	 been	 meaningfully	 impacted	 if	 it	 instead	 were
about	 szEM_Upper	 versus	 szErrorMessageUpperCase?).	 The	 Windows	 NT
naming	 style	 tended	 toward	 long	 intercapped	 names,	 such	 as
MaximumBufferLength,	 a	 style	 known	 as	 “camel	 casing”	 because	 the	 capital
letters	look	like	a	multihumped	Dr.	Seuss	camel;	the	name	told	you	a	lot	about
the	purpose	of	the	variable	but	kept	mum	on	its	type.
(It	 will	 be	 important	 to	 certain	 readers	 for	 me	 to	 clarify	 that	 camel	 case

actually	has	the	initial	 letter	 in	lowercase,	as	 in	exampleVariableName,	and	the
ones	with	 the	 first	 letter	 capitalized	 that	we	used	 in	Windows	NT	were	 called
“Pascal	case,”	but	camel	case	is	a	much	more	evocative	phrase.11	Anyway,	back
to	our	story.)
Proponents	 of	 Hungarian	 in	 turn	 derided	 these	 long,	 not-quite-camel-case

names	as	being	error	prone	as	well	 as	wasteful	of	keystrokes	 and	disk	 storage
(two	things	that	had	historically	been	in	short	supply	for	programmers,	although
truthfully	 no	 longer	 were	 at	 that	 moment	 in	 history).	 Which	 led	 to	 the
counterargument	 that	 it	 is	 clear	 enough	 that	 the	 variable
CurrentlyLoggedInUserName	is	a	string	and	no	extra	characters	at	the	beginning
are	needed	to	indicate	that.	In	addition,	by	the	early	1990s	compilers	were	better



at	 recognizing	 when	 code	 was	 passing	 the	 wrong	 type	 of	 variable	 around
(enforcing	 that	 your	 method	 call	 matched	 the	 method	 signature,	 such	 as	 not
using	 a	 string	 when	 a	 number	 was	 called	 for,	 was	 an	 innovation	 in	 compiler
technology	whose	absence	had	in	the	past	caused	all	sorts	of	entertaining	bugs).
This	made	Hungarian	less	necessary	than	it	was	in,	say,	1986:	if	the	compiler	is
going	 to	catch	a	 type	mismatch,	 then	you	don’t	need	Hungarian;	and	 the	more
interesting	 mistakes	 do	 not	 involve	 bollixing	 up	 strings	 and	 number	 but	 are
instead	 about	 using	 one	 more	 complicated	 type	 where	 a	 different	 more
complicated	 type	 is	 needed,	 and	 those	 complicated	 types	 won’t	 have	 easily
recognized	Hungarian	prefixes	to	guide	you.
Since	 the	 Office	 and	 Windows	 NT	 teams	 had	 their	 own	 separate	 piles	 of

source	code,	pro-and	anti-Hungarian	arguments	could	be	lobbed	back	and	forth
with	no	ground	given;	each	side	had	the	other’s	worst-case	offenders	to	parade
around	the	public	square,	with	camel	casers	chuckling	at	pwszA	and	Hungarian
advocates	snorting	at	SomeReallyLongVariableName.	If	there	was	ever	a	thought
of	 compromise	 (how	 about	 long	 camel-cased	 names	 with	 Hungarian	 prefixes
also?),	I	never	heard	about	it.	This	was	serious	business,	with	no	time	for	such
foolish	 ideas!	 Besides,	 anything	 other	 than	 complete	 capitulation	 by	 the	 other
side	would	have	meant	 fixing	up	a	 lot	of	variable	names	 in	your	own	code—a
daunting	prospect	that	nobody	wanted	to	tackle.	The	few	programmers	who	were
brave	 enough	 to	 switch	 teams	were	quickly	 assimilated	 into	 their	 new	culture,
and	the	twain	never	met.
To	 add	 fuel	 to	 this	 bonfire	 of	 whataboutism,	 the	 two	 sides	 weren’t	 arguing

about	 the	same	thing.	The	original	Hungarian	system,	which	became	known	as
Apps	Hungarian	because	it	was	used	in	the	division	that	wrote	applications	such
as	Office,	prescribed	prefixes	that	were	more	informative	than	just	the	type	of	a
variable;	you	might	distinguish	a	variable	that	held	a	row	number	from	one	that
held	a	column	number	by	using	the	prefix	row	or	col.12	Somehow	(the	blame	is
generally	 placed	 on	 the	 team	 that	 wrote	 the	 documentation	 for	 the	Windows
API,	apparently	following	a	misguided	impulse	to	simplify	the	notation)	it	made
its	public	debut	 in	a	 form	known	as	Systems	Hungarian,	 in	which	 the	variable
name	 prefixes	 only	 identified	 the	 type—as	 in	 number	 versus	 string—which	 is
much	 less	 useful	 (although	 the	 more	 your	 Hungarian	 prefixes	 resemble	 real
words,	the	more	the	difference	between	Hungarian	and	Windows-NT-style	boils
down	 to	 the	 capitalization	 of	 the	 first	 letter—still	 fertile	 ground	 for	 religious
argument,	 of	 course).13	 Thus	 the	 Apps	 Hungarian	 that	 was	 venerated	 by	 the
Office	 team	 was	 different	 from	 the	 Systems	 Hungarian	 that	 was	 used	 as	 a
punching	bag	by	the	Windows	team.



By	good	 fortune,	a	writer	named	G.	Pascal	Zachary	wrote	a	book	about	 that
Windows	 NT	 project	 and	 recorded	 his	 impressions	 of	 the	 Hungarian	 battle
raging	in	Redmond,	Washington,	at	the	time:

Some	 disputes,	 however,	 involved	 what	 programmers	 call	 “religious
differences.”	The	points	at	stake	seem	important	only	 to	zealots;	a	neutral
party	 might	 say	 that	 both	 sides	 are	 right.	 But	 zealots—unable	 to	 silence
their	opponents	with	logical	arguments—hurl	insults.
One	 of	 the	 oddest	 disputes,	 which	 brought	 out	 the	 worst	 in	 zealots,

involved	 the	notational	 system	used	 to	write	 instructions	 in	C,	 one	of	 the
most	popular	computer	languages.	Over	the	years	Microsoft	had	adopted	its
own	conventions,	called	Hungarian,	after	its	creator,	Budapest-born	Charles
Simonyi.	 …	 [I]t	 lacked	 the	 ready	 familiarity	 of	 conventional	 notation,
which	 relied	 largely	 on	 English	 words	 rather	 than	 opaque	 abbreviations.
The	 differences	 between	 the	 two	 styles	 spawned	many	 arguments,	whose
merits	were	lost	on	outsiders.14

One	of	the	programmers	on	the	team	(not	me)	is	quoted	describing	Hungarian
as	“the	stupidest	 thing	I’d	ever	seen,”	although	it’s	unclear	 if	he	 is	referring	 to
Apps	 Hungarian	 or	 Systems	 Hungarian.	 He	 adds	 the	 quasiwise	 summary,
“Coding	 style	 wars	 are	 a	 waste	 of	 valuable	 resources,	 although	 the	 confusion
caused	by	Hungarian	probably	wastes	more	time.”15	And	if	his	arguments	sound
reasonable,	 remember	 he	was	 part	 of	 the	 crew	 that	 obsessed	 over	 tabs	 versus
spaces	 for	 indenting	 source	 code.	 The	 same	 programmer	 can	 have	 a	 perfectly
rational,	 “live	 and	 let	 live”	 attitude	 about,	 say,	 spaces	 between	 method
parameters,	but	go	into	conniptions	at	the	sight	of	an	unneeded	blank	line	in	the
source	code.	For	that	matter,	I	wouldn’t	have	described	the	variable	names	used
in	Windows	NT	as	“conventional	notation”;	they	seemed	oddly	long	to	me	when
I	 first	 joined	 the	 team,	 being	 used	 to	 “opaque	 abbreviations”	 sans	 Hungarian
prefixes.
Luckily	 the	code	reviewers	will	eventually	stop	commenting,	or	you	will	get

tired	 of	 listening,	 and	 you	 can	 update	 your	 code	 to	 reflect	 the	 feedback	 you
choose	 to	heed.	Of	course,	any	change	 to	your	code	 is	an	opportunity	 to	make
new	mistakes	 that	will	 in	 turn	 require	 their	own	debugging;	 it	 is	 a	particularly
numbing	 experience	 to	 decide	 that	 today	 is	 the	 day	 you	 are	 going	 to	 do	 your
civic	 duty	 and	 rename	 that	 obscure	 variable,	 only	 to	 discover	 that	 you	 have
accidentally	 broken	 something	 while	 making	 the	 change,	 and	 the	 compiler	 is
now	complaining	that	“an	expression	tree	lambda	may	not	contain	a	coalescing
operator	with	a	null	 literal	 left-hand	side”—an	actual	C#	compiler	error,	albeit



one	that	is	unlikely	to	be	caused	by	a	typo	in	a	variable	name.16
Let’s	 make	 one	 more	 change	 to	 our	 code:	 have	 it	 only	 display	 the	 error

message	 if	 that	 message	 contains	 the	 word	 “JavaScript”	 in	 it	 (JavaScript	 is
another	programming	language).	Since	we	have	uppercased	the	message,	we	can
check	 if	 it	 contains	 the	 capital	 word	 “JAVASCRIPT”	 using	 the	 Contains()
method	 (I’ve	 removed	 the	 first	 line,	 where	 it	 explicitly	 sets	 ErrorMessage	 to
“This	 is	 my	 error	 message,”	 because	 it	 would	 make	 the	 code	 look	 slightly
ridiculous;	 clearly	 that	 string	 does	 not	 contain	 “JAVASCRIPT,”	 so	 there’s	 no
reason	to	check):

string	EM_Upper	=	ErrorMessage.ToUpper();

if	(EM_Upper.Contains("JAVASCRIPT"))	{

				MessageBox.Show(EM_Upper,	"ERROR!");

}

The	line	that	reads

if	(EM_Upper.Contains("JAVASCRIPT"))	{

performs	 a	 test;	 if	 EM_Upper	 contains	 the	 string	 “JAVASCRIPT”	 anywhere
within	itself,	then	the	code	between	the	{	}	runs,	and	otherwise	it	doesn’t.	The
word	if	is	a	recognized	keyword	in	the	C#	language;	for	notational	convenience,
I	 am	 going	 to	 write	 such	 keywords	 in	 capital	 letters,	 even	 in	 languages	 that
traditionally	are	written	in	lowercase,	so	it	will	be	referred	to	as	an	IF	statement.
As	conscientious	programmers,	we	are	aware	that	our	code	can	run	in	multiple

countries,	 where	 the	 error	 messages	 might	 be	 translated	 into	 a	 different
language,	but	we	have	been	assured	that	the	term	JavaScript,	being	the	name	of	a
programming	language,	won’t	be	translated.
Is	this	correct?	Well,	the	basic	idea	is	correct,	but	it	does	have	a	bug,	and	you

might	 not	 realize	 that	 for	 a	 while,	 because	 it	 depends	 on	 a	 detail	 of	 the
implementation	 of	 a	method	 that	 you—and	many	 experienced	 programmers—
are	likely	completely	unaware	of.
As	 an	 example	 of	 nonobvious	 method	 implementation	 details,	 consider	 the

internals	of	MessageBox.Show(),	the	actual	code	that	shows	a	message	box.	An
important	aspect	of	writing	the	code	was	deciding	what	behavior	made	sense	to
callers	 of	 their	 method	 and	 how	 that	 behavior	 should	 be	 accessible	 via	 the
parameters.
You	 may	 have	 noticed,	 from	 the	 screenshots	 earlier	 in	 this	 chapter,	 that	 in

addition	to	showing	the	message	and	title,	the	message	box	will	display	a	button
labeled	“OK”	that	the	user	can	click:



This	 is	 perfectly	 reasonable,	 noted	 in	 the	documentation,	 and	 apparent	when
you	 run	 the	 program,	 but	 not	 clear	 from	 knowing	 the	 method	 name	 and
parameter	list.
The	situation	appears	benign:	MessageBox.Show()	will	show	a	button	that	the

caller	didn’t	 explicitly	 request,	 but	 is	 that	harmful?	The	answer	 is	 “no”	 in	 this
case.	In	fact,	by	passing	extra	parameters,	you	can	have	some	control	over	what
buttons	 are	 shown—assuming	 you	 know	 that	 the	 method	 supports	 this.	 Yet
methods	having	unknown	side	effects	is	the	cause	of	many	bugs.
That	 was	 exactly	 the	 situation	 with	 the	 bug	 at	 my	 first	 job	 out	 of	 college,

where	 the	 street	 address	 of	 certain	 doctors	 was	 being	 replaced.	 When	 I	 was
enlisted	 to	 help,	 it	was	 quickly	 apparent	 that	 the	 problem	was	 in	 the	API	 that
retrieved	 the	 doctor’s	 information	 from	 the	 database	 on	 the	 computer	 (as
opposed	to,	say,	retrieving	the	right	address	but	messing	up	the	code	to	display
it).	The	exact	name	of	that	API	escapes	my	memory,	but	it	doesn’t	matter;	we’ll
call	 it	GetDatabaseRecord().	This	API	presumably	 took	parameters	specifying
which	 doctor	 to	 retrieve,	 although	 those	 don’t	 matter	 either.	 Of	 course
GetDatabaseRecord()	was	 itself	built	 on	other	API	calls,	which	were	built	 on
other	API	calls,	and	so	on.	My	task	was	to	paw	through	these	underlying	layers
of	code	and	find	out	why	they	were	occasionally	misbehaving.
After	some	investigation,	I	discovered	that	another	programmer	had	modified

a	section	of	the	program	to	calculate	and	display	extra	data	about	the	doctors	in
the	database.	In	certain	cases,	this	required	them	to	load	other	doctor	records	out
of	the	database	(I	don’t	recall	the	details,	but	let’s	say	that	in	the	case	where	two
doctors	 had	 attended	 medical	 school	 together,	 the	 database	 had	 this	 noted
somewhere—something	that	would	only	be	true	in	certain	instances,	and	didn’t
jump	 out	 as	 an	 obvious	 difference	 between	 the	 doctors	 showing	 a	 corrupted
address	and	the	others,	so	it	was	not	noted	in	the	repro	steps).	Because	the	street
address	 of	 a	 doctor,	 somewhat	 uniquely	 among	 all	 the	 other	 data	 fields	 in	 the
database,	 was	 a	 string	 that	 could	 be	 of	 wildly	 varying	 length,	 we	 stored	 the
“street	address	of	the	last	doctor	loaded	from	the	database”	in	a	specific	variable



in	memory	that	had	enough	room	for	any	reasonably	sized	address.	This	 is	 the
sort	of	optimization	you	made	to	save	memory	on	the	underpowered	computers
of	the	day.
In	the	feature	that	the	other	programmer	was	adding,	the	street	address	wasn’t

needed,	so	this	change	didn’t	matter,	but	it	meant	that	sometimes	the	address	in
that	 special	 “street	 address	 of	 the	 last	 doctor	 we	 loaded	 from	 the	 database”
variable	wasn’t	what	we	 thought	 it	was,	because	while	 loading	 information	for
one	doctor,	we	proceeded	to	load	information	for	his	medical	school	buddy,	and
this	updated	the	“street	address	of	the	last	doctor	we	loaded	from	the	database”
variable.	 This	 was	 all	 happening	 several	 layers	 below	 the	 code	 that	 called
GetDatabaseRecord();	 that	 code	 hadn’t	 changed,	 but	 the	 internal	 behavior	 of
GetDatabaseRecord()—or	more	precisely	and	vexingly,	the	internal	behavior	of
an	API	 that	was	 itself	 called	 several	 layers	below	GetDatabaseRecord()—had
changed.	This	wasn’t	maliciousness	on	the	part	of	the	other	programmer,	yet	it
was	subtle	enough	that	even	she	herself,	when	the	“wrong	address”	problem	was
first	 being	 looked	 into,	 didn’t	 realize	 that	 her	 earlier	 change	 was	 causing	 the
problem.
Once	again	you	are	at	the	mercy	of	whoever	wrote	the	API	you	are	calling—

not	only	to	define	the	parameters	in	a	logical	order,	but	also	to	document	all	the
intended	 side	 effects,	 even	 if	 it	 isn’t	 obvious	 why	 they	 would	 matter.	 When
calling	 an	 API,	 you	 have	 precious	 little	 information	 about	 the	 details	 of	 its
implementation	and	how	reliable	it	is—just	a	name	and	a	parameter	list,	as	a	thin
line	of	glue	holding	together	your	software.
I	don’t	remember	exactly	how	I	fixed	the	problem,	but	it	was	easy	once	I	had

found	it;	the	solution	can	be	left	as	an	exercise	for	the	reader.	I	might	have	added
an	 extra	 parameter	 to	GetDatabaseRecord()	 to	 tell	 it	 “don’t	 load	 extra	 doctor
information”	 and	 made	 that	 parameter	 “true”	 in	 this	 specific	 case.	 If	 I	 was
feeling	motivated,	 I	 could	 have	 rewritten	 the	 code	 that	 used	 the	 single	 “street
address	of	the	last	doctor	we	loaded	from	the	database”	variable	so	that	it	instead
used	 multiple	 variables	 as	 needed.	 This	 second	 way	 would	 have	 been	 more
“correct,”	but	it	also	would	have	been	a	larger	change,	delaying	my	champagne
reward,	with	more	risk	of	breaking	something	else	while	making	the	fix.	On	the
plus	side,	it	would	have	meant	that	a	future	caller	of	the	GetDatabaseRecord()
API	had	less	to	understand	about	the	implementation,	which	would	make	things
less	error	prone.	Just	as	people	argue,	during	code	reviews,	about	the	correct	way
to	write	a	piece	of	code,	they	also	argue	about	the	correct	way	to	fix	a	bug	once
the	 cause	 is	 found,	 typically	 involving	 this	 sort	 of	 trade-off	 between	 “less
immediately	risky	but	somewhat	ugly”	and	“more	complicated	but	more	elegant
for	the	long	term.”



Let’s	 return,	 finally,	 to	 our	 code	 that	 checks	 if	 the	 error	 message	 contains
“JAVASCRIPT,”	 which	 I	 claimed	 a	 few	 pages	 ago	 had	 a	 real	 bug	 in	 it:	 a
monolingual	English	speaker	may	be	unaware	that	the	concept	of	uppercasing	is
subject	to	regional	interpretation.	English	has	a	lowercase	i	with	a	dot	on	top	and
an	 uppercase	 I	 with	 no	 dot	 on	 it;	 for	 your	 reference,	 I	 have	 included	 several
examples	of	both	in	this	sentence.	Most	languages	written	in	the	same	alphabet
have	 the	 same	 lowercase	 i	 and	 uppercase	 I.	 In	 Turkish,	 however,	 there	 is	 a
lowercase	 dotted	 i	 and	 uppercase	 dotted	 İ,	 and	 a	 lowercase	 undotted	 ı	 and
uppercase	 undotted	 I.	 And	 the	 dotted-or-not	 aspect	 doesn’t	 change	 when	 you
capitalize,	so	the	capital	of	i	is	İ,	not	I	as	it	is	in	English.	When	you	uppercase	a
word	with	 an	 i	 in	 it,	 such	 as	 the	 string	 “JavaScript,”	 the	 capital	 in	 English	 is
“JAVASCRIPT”	and	the	capital	in	Turkish	is	“JAVASCRİPT”	(notice	there	is	a
dot	 above	 the	 uppercase	 I).	 And	 despite	 what	 a	 common	 sense–laden	 human
might	think,	to	a	computer	those	are	most	definitely	not	the	same	thing.
If	 you	 call	 ToUpper()with	 no	 parameters,	 as	 we	 did,	 the	 implementation

uppercases	based	on	the	language	setting	configured	on	the	computer,	which	the
user	 can	 choose.	 If	 your	 user	 is	 on	 a	 computer	 configured	 for	 Turkish,	 the
uppercasing	of	“JavaScript”	will	be	different	 than	 if	 the	machine	 is	configured
for	English,	and	the	Contains()	method	won’t	match	it	as	expected.	You	might
have	 thought	 it	was	clever	 to	have	your	code	make	 the	comparison	against	 the
uppercased	version	of	 the	error	message,	but	 this	could	cause	hard-to-diagnose
problems,	especially	if	you	try	to	reproduce	the	bug	on	a	machine	configured	for
English.
The	fix	to	our	Turkish	uppercasing	problem	is	simple	once	you	know	about	it;

change	your	ToUpper()	call	from17

EM_Upper	=	ErrorMessage.ToUpper();

to

EM_Upper	=	ErrorMessage.ToUpper(InvariantCulture);

As	with	the	MessageBox.Show()method,	ToUpper()	has	multiple	versions	that
take	 different	 parameters.	 The	 simplest	 version	 assumes	 that	 it	 should	 use	 the
culture	 (the	 preferred	 term	 since	 it	 encompasses	 more	 than	 just	 language,
extending	 to	 areas	 such	 as	 currency	 symbols)	 that	 the	 computer	 is	 configured
for.	This	is	normally	right,	but	not	in	the	case	of	comparing	uppercased	strings;
passing	InvariantCulture	as	a	parameter	to	ToUpper()	tells	it	to	uppercase	in	a
way	that	is	guaranteed	to	be	the	same	on	all	computers	(here’s	an	insider	tip:	the
secret	is	“always	do	it	like	they	do	in	English”;	it	doesn’t	have	to	be	politically



correct,	just	consistent).
This	 works	 fine,	 but	 just	 like	 wanting	 MessageBox.Show()	 to	 display

something	 other	 than	 an	 “OK”	 button,	 you	 have	 to	 know	 to	 do	 it.	 The
parameterless	“use	current	culture”	version	of	ToUpper()	is	more	convenient	to
call	(with	convenience	defined	as	less	typing	by	the	programmer)	and	easier	to
discover,	but	its	existence	allows	the	calling	code	to	be	unaware	of	the	notion	of
cultural	differences	in	uppercasing,	which	is	bad.	The	problem	is	not	just	that	the
default	 local	 versus	 invariant	 culture	 choice	 made	 by	 ToUpper()	 is	 a	 hidden
choice	made	by	somebody	else;	it’s	that	the	existence	of	such	a	choice	might	be
unknown	to	the	caller,	either	because	a	programmer	doesn’t	know	about	cultures
at	all	or	they	don’t	realize	that	the	“tell	me	which	culture	to	use”	version	exists.
One	of	 the	 tricky	aspects	of	designing	a	method	 is	deciding	what	 to	make	a

required	 parameter	 (which	 always	 has	 to	 be	 passed	 in,	 such	 as	 the	 title	 of	 the
message	box	or	string	you	want	to	uppercase)	versus	an	optional	parameter	(the
buttons	 to	 display	 in	 a	message	 box	 or	 culture	 to	 use	when	 uppercasing),	 the
related	question	of	what	the	default	behavior	should	be	if	the	optional	parameters
are	not	specified,	and	lastly,	what	is	not	even	specified	via	a	parameter	(such	as
the	font	to	use	in	a	message	box)	and	therefore	gives	the	caller	no	choice	at	all.
As	usual	there	is	no	one	right	answer,	despite	many	brain	waves	having	been

expended	 on	 code	 reviews	 of	 these	 questions.	 Whatever	 decisions	 are	 made,
ignorance	 of	 the	 default	 behavior	 of	 a	method	 is	 a	 common	 problem.	Viewed
through	that	lens,	the	existence	of	the	default-culture	version	of	ToUpper()	is	not
a	convenience	but	 rather	a	 tragic	mistake,	source	of	needless	bugs,	and	missed
opportunity	to	educate	programmers	about	regional	differences—all	for	the	sake
of	saving	a	little	bit	of	typing!	Default	parameters,	while	generally	considered	a
useful	 convenience,	 likely	 do	more	 harm	 than	 good.	 They	 are	 essentially	 like
allowing	a	bridge	builder	to	say,	“Give	me	some	steel	to	build	my	bridge,”	rather
than	requiring	them	to	always	specify	the	exact	properties	of	the	steel	that	they
need.	Programmers	unknowingly	 think	 the	 simplest	call	 is	 the	 right	one—until
they	get	an	irate	call	from	Ankara.
Brooks	 explained	 the	 difference	 between	 a	 program—“complete	 in	 itself,

ready	to	be	run	by	the	author	on	the	system	on	which	it	was	developed”—and	a
programming	 systems	 product—“the	 intended	 product	 of	 most	 systems
programming	 efforts.”18	 To	 get	 from	 the	 former	 to	 the	 latter,	 you	 introduce
complications	in	two	dimensions.	The	first	complication	is	going	from	a	single
author	 to	 a	 program	 that	 can	 be	 “run,	 tested,	 repaired,	 and	 extended	 by
anybody.”	 The	 second	 complication	 is	 going	 from	 a	 single	 program	 to	 “a
collection	 of	 interacting	 programs,	 coordinated	 in	 function	 and	 disciplined	 in



format,	so	that	the	assemblage	constitutes	an	entire	facility	for	large	tasks.”19
Back	in	high	school	and	college,	I	was	working	on	plain-old	programs,	but	in

industry	I	was	working	on	programming	systems	products.	As	Brooks	noted,	the
two	big	new	complications	in	making	this	transition	are	communication	between
programmers	 across	 time	and	communication	between	components	 across	API
boundaries.20	These	 are	 two	areas	where	my	 self-taught	 education	had	 left	me
severely	lacking.
Brooks	 added	 that	 “this	 then	 is	 programming,	 both	 a	 tar	 pit	 in	which	many

efforts	have	foundered	and	a	creative	activity	with	joys	and	woes	all	its	own.”21
Don’t	programmers	learn	how	to	deal	with	these	problems	correctly?	They	may
eventually.	 But	 given	 their	 self-taught	 beginnings,	 they	 tend	 to	 be	 focused	 on
another	aspect	of	their	software,	which	I’ll	discuss	in	the	next	chapter.
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compile	and	run	the	program	(or	choose	Debug	and	then	Start	Debugging).	If
you	get	an	error,	make	sure	you	have	typed	everything	correctly,	including	all
punctuation	symbols	as	well	as	preserving	upper-and	lowercase—and	you	are
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2. Frederick	P.	Brooks	Jr.,	“The	Tar	Pit,”	in	The	Mythical	Man-Month:	Essays
on	Software	Engineering,	anniversary	ed.	(Boston:	Addison-Wesley,	1995),
7–8.

3. Fred	Moody,	I	Sing	the	Body	Electronic:	A	Year	with	Microsoft	on	the
Multimedia	Frontier	(New	York:	Viking,	1995),	125–126.

4. Barry	Schwartz,	The	Paradox	of	Choice:	Why	More	Is	Less,	rev.	ed.	(New
York:	HarperCollins,	2016),	103.

5. Robert	L.	Grady,	Successful	Software	Process	Improvement	(Upper	Saddle
River,	NJ:	Prentice-Hall,	1997),	8.

6. John	Shore,	“Myths	of	Correctness,”	in	The	Sachertorte	Algorithm	and	Other
Antidotes	to	Computer	Anxiety	(New	York:	Viking,	1985),	175.

7. André	van	der	Hoek	and	Marian	Petre,	“Postscript,”	in	Software	Designers	in
Action:	A	Human-Centric	Look	at	Design	Work	(Boca	Raton,	FL:	CRC	Press,
2014),	403.

8. This	was	a	minor	plot	point	on	an	episode	of	the	television	show	Silicon
Valley,	when	a	programmer	decides	he	can’t	date	someone	who	uses	spaces
instead	of	tabs.

9. Harlan	D.	Mills,	“In	Retrospect,”	in	Software	Productivity	(New	York:
Dorset	House,	1988),	3.

10. Frederick	P.	Brooks	Jr.,	“The	Whole	and	the	Parts,”	in	The	Mythical	Man-
Month:	Essays	on	Software	Engineering,	anniversary	ed.	(Boston:	Addison-
Wesley,	1995),	142.

11. It’s	not	clear	why	this	style	is	associated	with	the	language	Pascal;	it	may
simply	have	been	the	first	programming	language	that	inspired	programmers
to	write	in	mixed	case	at	all.	Certainly	Niklaus	Wirth,	the	inventor	of	the
language,	did	not	use	that	style	in	his	original	paper	on	the	language.	He
demonstrates	a	procedure	named	Bisect,	but	also	one	named	readinteger.
Niklaus	Wirth,	“The	Programming	Language	Pascal,”	Acta	Informatica	1,	no.
1	(1971):	35–63.

12. Joel	Spolsky,	“Making	Wrong	Code	Look	Wrong,”	Joel	on	Software	(blog),
May	11,	2005,	accessed	December	29,	2017,
https://www.joelonsoftware.com/2005/05/11/making-wrong-code-look-

https://www.joelonsoftware.com/2005/05/11/making-wrong-code-look-wrong/


wrong/.

13. Larry	Osterman,	“Hugarian	Notation—It’s	My	Turn	Now	:),”	Larry
Osterman’s	WebLog	(blog),	June	22,	2004,	accessed	December	27,	2017,
https://blogs.msdn.microsoft.com/larryosterman/2004/06/22/hugarian-
notation-its-my-turn-now/;	Scott	Ludwig,	comment	on	Osterman,	“Hugarian
Notation,”	accessed	December	27,	2017,
https://blogs.msdn.microsoft.com/larryosterman/2004/06/22/hugarian-
notation-its-my-turn-now/#comment-7981.

14. G.	Pascal	Zachary,	Showstopper:	The	Breakneck	Race	to	Create	Windows
NT	and	the	Next	Generation	at	Microsoft	(New	York:	Free	Press,	1994),	56.

15. Ibid.

16. Microsoft,	“Compiler	Error	CS0845,”	July	20,	2015,	accessed	December	27,
2017,	https://docs.microsoft.com/en-us/dotnet/csharp/language-
reference/compiler-messages/cs0845.

17. Please	note	a	couple	of	things.	First,	if	you	are	typing	this	code	at	home	and
want	it	to	compile,	you	have	to	add	a	lineusing	System.Globalization;at
the	top	of	your	source	code	file,	and	you	also	have	to	use
CultureInfo.InvariantCulture	instead	of	plain	InvariantCulture	(or	you
could	call	the	API	ToUpperInvariant(),	which	does	the	exact	same	thing).
Second,	it	is	a	best	practice,	when	doing	comparisons	of	this	sort,	to	avoid
doing	uppercasing	yourself,	so	instead	of	first	calling	ToUpper()	and	then
Contains(),	you	should	call	an	API	directly	on	ErrorMessage:if
(ErrorMessage.IndexOf("javascript",

StringComparison.InvariantCultureIgnoreCase)	!=	-1)The	reason	you
have	to	call	IndexOf()	instead	of	Contains()	is	that	Contains()	does	not
have	an	overload	that	lets	you	specify	InvariantCultureIgnoreCase.	Why
doesn’t	it	have	this?	I	don’t	know;	once	again	you	are	at	the	mercy	of	the	API
designer.

18. Brooks,	“Tar	Pit,”	4,	6.

19. Ibid.,	5–6.

20. Carl	Landwehr,	Jochen	Ludewig,	Robert	Meersman,	David	Parnas,	Peretz
Shoval,	Yair	Wand,	David	Weiss,	and	Elaine	Weyuker,	“Systems	Software
Engineering	Programmes:	A	Capability	Approach,”	Journal	of	Systems	and
Software	125	(2017):	354–364.	This	article	relates	Brooks’s	explanation	to

https://blogs.msdn.microsoft.com/larryosterman/2004/06/22/hugarian-notation-its-my-turn-now/
https://blogs.msdn.microsoft.com/larryosterman/2004/06/22/hugarian-notation-its-my-turn-now/#comment-7981
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/cs0845


the	gap	in	current	software	engineering	education.

21. Brooks,	“Tar	Pit,”	9.



4 
The	Thief	in	the	Night

What	do	programmers	from	my	era	worry	the	most	about?	How	efficiently	their
programs	run.	For	a	glimpse,	we	turn	to	the	1986	book	Programming	Pearls,	a
collection	 of	 columns	 that	 Jon	 Bentley,	 a	 former	 Carnegie	 Mellon	 computer
science	 professor	 who	 worked	 at	 Bell	 Labs,	 wrote	 for	 the	 journal
Communications	of	the	ACM.
Bentley	 worked	 on	 UNIX,	 which	 ran	 on	 minicomputers	 that	 weren’t	 as

cramped	as	PCs.1	Nonetheless,	looking	over	the	articles	he	chose,	he	comments
that	 performance—making	 sure	 that	 programs	 run	 as	 quickly	 as	 possible	 and
using	as	little	memory	as	possible—is	a	theme	that	runs	through	all	of	them.2	In
fact,	he	fears	that	readers	might	be	ignoring	the	importance	of	performance.	In	a
chapter	titled	“Squeezing	Space,”	Bentley	writes,	“If	you’re	like	several	people	I
know,	your	first	thought	on	reading	the	title	is	‘How	old-fashioned!’	In	the	bad
old	 days	 of	 computing,	 so	 the	 story	 goes,	 programmers	 were	 constrained	 by
small	 machines,	 but	 those	 days	 are	 long	 gone.	 The	 new	 philosophy	 is	 ‘a
megabyte	 here,	 a	 megabyte	 there,	 pretty	 soon	 you’re	 talking	 about	 real
memory.’”3
Coming	from	a	UNIX	environment,	Bentley	was	concerned	that	the	increased

computing	power	of	minicomputers,	 coupled	with	 the	 relative	 lack	of	memory
constraints,	 was	 going	 to	 lead	 to	 a	 generation	 of	 programmers	 who	 were
oblivious	 to	 performance.	 He	 needn’t	 have	 worried.	 More	 and	 more
programmers	 were	 doing	 their	 work	 on	 personal	 computers,	 and	 his	 message
found	 a	 receptive	 audience	 among	 them.	 PCs	 had	 grown	 rapidly	 in	 storage
capacity	since	our	original	IBM	PC	and	its	64	kilobytes	of	memory	in	1982,	but
even	 the	more	advanced	 IBM	PC	AT,	 released	 in	 fall	1984,	was	 limited	 to	16
megabytes	of	total	memory,	so	a	megabyte	here	or	there	really	did	matter.
Bentley	was	 a	 performance	 guru;	 his	 1982	 book	Writing	Efficient	Programs

focused	 exclusively	 on	 the	 topic.	 Yet	 he	 was	 not	 a	 mindless	 performance
improver.	 He	 cautioned	 that	 performance	 improvement	 techniques	 should	 be
applied	with	care,	and	only	when	needed:	“The	rules	that	we	will	study	increase



efficiency	by	making	changes	to	a	program	that	often	decrease	program	clarity,
modularity,	 and	 robustness.	When	 this	 coding	 style	 is	 applied	 indiscriminately
throughout	a	 large	system	(as	 it	often	has	been),	 it	usually	 increases	efficiency
slightly	 but	 leads	 to	 late	 software	 that	 is	 full	 of	 bugs	 and	 impossible	 to
maintain.”4
That	 subtlety	was	 frequently	 lost	 amid	 the	PC-inspired	 zeitgeist	 of	 the	 time.

And	 although	 Writing	 Efficient	 Programs	 had	 examples	 in	 Pascal,	 and
Programming	Pearls	used	a	mix	of	languages,	most	languages,	even	those	that
allowed	 reasonably	 “structured”	 programs—Pascal,	 PL/I,	 ALGOL,	 and	 newer
versions	of	Fortran—were	 in	 the	process	of	being	swept	aside	by	 the	 language
that	I	was	first	exposed	to	in	my	sophomore	year	of	college—a	language	that	had
a	strong	focus	on	performance:	C.
The	C	language	was	invented	in	the	early	1970s	at	Bell	Labs,	the	same	place

where	Bentley	wound	up	working.	Bell	Labs	was	 the	 research	arm	of	 the	Bell
Telephone	 Company,	 which	 at	 the	 time	 had	 a	 monopoly	 on	 long-distance
calling;	it	needed	complicated	software	to	handle	the	routing	of	phone	calls.	To
support	 this,	 it	 wrote	 the	 operating	 system	 UNIX,	 originally	 in	 assembly
language,	 as	 almost	 every	 operating	 system	 was	 back	 then.	 Higher-level
languages	were	viewed	as	producing	code	that	was	too	slow	and	bulky	to	run	in
the	guts	of	an	operating	system.	Yet	when	it	came	time	to	port	UNIX	to	run	on	a
new	computer,	the	decision	was	made	to	rewrite	it	in	a	high-level	language.	No
suitable	language	existed,	which	led	to	the	birth	of	C.5
It	is	hard	to	describe	how	“right”	C	felt	to	someone	like	me,	who	was	used	to

fighting	memory	limits	on	an	IBM	PC.	In	Pascal,	blocks	of	code	are	delineated
with	 the	 keywords	 BEGIN	 and	 END;	 in	 C,	 they	 use	 {	 and	 }.	 If	 a	 programming
language	construct	could	be	described	as	aerodynamic,	 this	was	 it.	 It’s	a	small
thing	 that	has	no	effect	on	 the	code	 that	 the	compiler	produces,	but	 it	made	C
feel	 sleek	 and	modern,	 while	 Pascal	 retained	 a	 faint	 air	 of	 tweed	 jackets	 and
elbow	patches.
The	designers	of	C	took	great	pains	to	ensure	that	the	language	did	not	insert

any	 roadblocks	 to	performance.	The	 result	 is	 a	 language	 that	 takes	 care	of	 the
grunt	work	of	mapping	variable	names	to	memory	locations,	handling	loops	and
IF	 statements	 without	 requiring	 explicit	 GOTOs,	 and	 passing	 parameters	 to
functions,	without	getting	in	the	way	of	anything	else.	C	has	been	characterized
as	 a	 thin	wrapper	 around	 assembly	 language.6	 This	 could	 be	meant	 as	 both	 a
compliment	 and	 insult,	 but	 it	 perfectly	 fit	 the	 needs	 of	 the	 transition	 from
software	 running	 on	 mainframes	 to	 software	 running	 on	 PCs,	 once	 the
complexity	of	that	software	got	much	beyond	DONKEY.BAS.



As	Bentley	 said,	 concentrating	 on	 performance	 “indiscriminately”	 can	 cause
problems,	 but	 the	 design	 of	 C	 forces	 you	 to	 do	 so,	 because	 that’s	 how	 the
language	works.	One	particular	performance-focused	feature	of	C	is	the	worst	of
the	bunch,	and	it	requires	a	little	background	to	explain.
An	important	way	in	which	C	was	close	to	the	processor	was	how	it	handled

numbers	of	different	bitness.	Down	at	the	level	of	machine/assembly	language,
you	can	control	how	many	bytes	are	used	to	store	a	number.	The	smallest	size
possible	is	1	byte,	which	is	8	bits,7	with	1	bit	being	a	single	binary	digit	that	is
either	0	or	 1	 (if	 you	 are	old	 enough	 to	 remember	 learning	 about	bases	 in	new
math	class,	“binary”	and	“base	2”	are	the	same	thing).	The	lowest	8-bit	number,
written	in	binary,	is

00000000

which	is	0,	and	the	highest	8-bit	number,	written	in	binary,	is

11111111

which	is	255.	So	an	8-bit	number	can	store	values	from	0	to	255;	you	can	also
tell	the	processor	(via	how	you	encode	any	single	machine	language	instruction)
that	it	should	treat	the	highest	bit	as	a	sign	bit,	indicating	positive	or	negative,	in
which	case	you	can	store	values	from	–128	to	127	instead	of	0	to	255.8	When	8-
bit	 numbers	 are	 interpreted	 as	 ranging	 from	 0	 to	 255,	 they	 are	 referred	 to	 as
unsigned,	and	when	they	range	from	–128	to	127,	they	are	referred	to	as	signed.
Moving	up	 to	2	bytes	of	storage	gets	you	16-bit	numbers,	 ranging	 from	0	 to

65,535	 (or	 –32,768	 to	 32,767	 for	 signed	 numbers);	 32	 bits	 gets	 you	 0	 to
4,294,967,295	 (or	–2,147,483,648	 to	2,147,483,647);	and	64	bits	gets	you	0	 to
over	18	quintillion—quite	a	large	number	(or	a	signed	range	of	–9	quintillion	to
9	quintillion,	which	are	also	large	numbers).9	When	somebody	talks	about	a	32-
or	 64-bit	 processor,	 they	 are	 referring	 to	 the	 largest	 number	 that	 the	processor
can	deal	with	in	a	single	machine	language	operation,	which	corresponds	to	the
size	 of	 each	 register.	 A	 32-bit	 computer	 has	 32-bit	 registers	 and	 can	 add,
subtract,	and	so	on	two	32-bit	numbers	(I’m	glossing	over	things	a	bit,	but	not	in
a	way	that	matters	here).10
The	 processor	 can	 also	 operate	 on	 fewer	 bits	 at	 a	 time,	 so	 you	 can,	 for

example,	 tell	 a	 32-bit	 processor	 (again	 via	 the	 details	 of	 how	 you	 encode	 a
machine	language	instruction)	to	only	add,	subtract,	or	move	to/from	memory	8-
bit	numbers.	If	you	knew	that	a	certain	number	would	never	go	above	255,	then
you	 could	 store	 it	 in	 8	 bits	 and	 operate	 on	 it	 in	 8	 bits,	which	would	 result	 in
slight	savings	in	both	memory	and	speed.



High-level	 languages	 before	 C	 had	 a	 single	 “integer”	 type	 that	 generally
corresponded	 to	 the	 bitness	 of	 the	 processor,	 so	 the	 largest	 number	 a	 program
could	 handle	 depended	on	 the	 computer	 it	was	 running	on.11	 Furthermore,	 for
simplicity	they	supported	only	signed	numbers,	since	it	was	more	likely,	in	the
universe	of	programs	being	written	at	the	time,	that	the	user	would	want	to	store
a	small	negative	number	than	a	large	positive	one.	The	original	IBM	PC	was	a
16-bit	 computer,	 so	 the	 INT	 (integer)	 type	 in	 BASIC	 was	 signed	 16	 bits	 and
therefore	 supported	 values	 from	 –32,768	 to	 32,767.	 If	 you	 had	 two	 integer
variables	A	and	B	that	were	both	equal	to	25,000,	and	you	executed	this	BASIC
command

10	D	=	A	+	B

then	BASIC	would	 realize	 that	 the	value	 that	D	was	supposed	 to	have,	50,000,
was	 too	 big	 to	 fit	 into	 a	 16-bit	 signed	 integer	 and	 it	would	 terminate	with	 an
“Overflow”	 error.12	 This	 is	 not	 ideal,	 but	 it’s	 better	 than	 silently	 ignoring	 the
overflow	and	proceeding	as	if	nothing	happened,	with	a	bogus	result	in	D	(which
for	reasons	that	are	complicated	to	explain	in	detail	but	conceptually	involve	the
overflowed	number	“wrapping	around,”	would	have	been	the	unexpected	value
of	–15,536).
In	C,	by	contrast,	all	this	detail	was	exposed	directly	to	the	programmer;	when

you	declared	an	integer	variable,	you	indicated	whether	it	was	going	to	be	an	8-,
16-,	 or	 32-bit	 number	 (later	 extended	 to	 support	 64-bit	 numbers).13	 Also,	 to
allow	you	to	fit	in	twice	as	many	positive	numbers	if	you	knew	a	variable	would
never	be	negative,	you	could	explicitly	declare	whether	a	variable	was	signed	or
unsigned,	 and	 the	 compiler	 would	 keep	 track	 and	 encode	 the	 appropriate
machine	language	instructions.
Moreover,	 C	 did	 not	 check	 for	 overflow	 when	 performing	 mathematical

operations	on	numbers.	In	order	to	check	for	overflow	on

D	=	A	+	B

a	compiler	must	generate	code—that	is,	automatically	include	it	in	the	machine
language	code	that	it	creates	to	calculate	that	expression—that	does	this:

1.	Calculate	A	+	B

2.	Check	if	that	last	operation	overflowed	(which	is	something	the	processor
will	have	made	a	note	of)

3.	If	it	did	overflow,	print	an	error	and	terminate



4.	If	it	did	not	overflow,	store	the	result	in	D

Being	performance	focused,	C	skipped	the	second	and	third	steps;	it’s	one	of
those	 small	 things	 that	 add	 up	 if	 you	 do	 it	 every	 time	 you	 perform	 a
mathematical	 calculation.	C	would	 ignore	 the	 potential	 overflow	 and	 store	 the
result	 in	 D,	 no	 questions	 asked.	 In	most	 cases	 this	 is	 fine;	 if	 a	 video	 game	 is
storing	the	on-screen	coordinates	of	an	alien	in	a	16-bit	integer	and	your	screen
is	a	thousand	pixels	wide,	you	don’t	need	to	worry	about	overflow	as	the	alien
moves	 across	 the	 screen.14	On	 the	 other	 hand,	 numerical	 overflows	 can	 cause
major	bugs:	one	of	the	software	problems	with	the	Therac-25	radiation	therapy
machine,	which	killed	 three	people	 in	 the	1980s	due	 to	overdoses	of	 radiation,
was	a	bug	that	hit	when	an	8-bit	counter	variable	overflowed	back	around	to	0	at
just	 the	 wrong	 time,	 and	 an	 Ariane	 5	 rocket	 self-destructed	 in	 1996	 due	 to
another	overflow	bug,	trying	to	copy	a	64-bit	value	into	a	16-bit	variable.15
The	C	language	makes	a	similar	optimization	with	the	programming	construct

known	as	an	array,	which	exists	in	almost	all	programming	languages.	An	array
lets	you	declare	a	single	variable	that	can	hold	multiple	values.	For	example,	in
Pascal	you	can	declare	a	single	integer	this	way:

var	a:	integer;

while	you	declare	an	array	like	this:

var	a:	array[0..4]	of	integer;

and	you	can	then	access	the	5	elements	of	the	array	as	a[0],	a[1],	a[2],	a[3],
and	a[4],	each	of	which	can	hold	an	 integer	value.	 Importantly,	 the	 index	 into
the	array,	 the	part	 in	 the	square	brackets	 (also	known	as	a	subscript),	can	be	a
variable	instead	of	a	constant	number,	so	you	can	write	a	loop	like	this:

for	i:=	0	to	4	do

begin

				writeln(a[i]);

end

to	print	out	the	different	elements	of	a	(writeln()	is	the	Pascal	API	to	print	out
a	value,	and	BEGIN	and	END,	as	noted	before,	demarcate	blocks	of	code).	If	you
try	 to	 access	 an	 element	 of	 the	 array	 a	 with	 an	 index	 of	 5	 or	more,	 then	 the
program	will	terminate	with	an	error.
If	the	array	index	is	in	a	variable,	it	means	the	compiler	can’t	figure	out,	at	the

point	when	 it	 is	compiling	 the	program,	 if	an	array	access	 is	going	 to	be	 legal
because	 it	won’t	know	what	value	 the	variable	will	have	when	 that	 line	of	 the



program	 is	 executed.	 It	 has	 to	 add	 code	 to	do	 this	 check	when	 the	program	 is
actually	 running,	 known	 as	 a	 runtime	 check.	 The	 Pascal	 compiler	 is	 going	 to
generate	code	something	like	this:

1.	Figure	out	where	in	memory	a	is

2.	If	i	is	too	high	(or	too	low,	meaning	it	is	negative)	a	subscript	for	a,	print
an	error	and	terminate	the	program

3.	Retrieve	the	ith	element	in	a

That	second	step	implies	that	the	compiler	has	squirreled	away	the	valid	index
range	for	a,	which	takes	a	little	bit	of	memory	yet	is	not	a	big	deal;	the	problem
is	that	it	will	run	the	code	for	this	check	every	time	you	make	an	array	access,
and	 if	 you	 are	 thinking,	 “That	 sounds	 like	 another	 one	 of	 those	 small	 runtime
checks	that	can	build	up	to	have	a	nontrivial	impact	on	the	performance	of	your
program,	 which	 the	 designers	 of	 C	 were	 trying	 hard	 to	 avoid	 doing
automatically,”	you	would	be	correct.
The	 C	 language	 took	 a	 different	 approach—one	 that	 minimizes	 runtime

overhead.	You	can	declare	arrays	as	 in	other	 languages	 (with	slightly	different
syntax):

int	a[5];

but	C	does	no	runtime	bounds	checks	on	array	access	so	it	dispenses	with	that	“if
i	 is	too	high	a	subscript	for	a	…”	step	entirely.	If	you	use	the	expression	a[i]
when	i	is	equal	to	100,	the	C	compiler	generates	code	to	calculate	where	in	the
computer’s	 memory	 that	 element	 of	 a	 should	 be	 (100	 spots	 after	 the	 first
element,	which	has	 index	0)	and	retrieves	 that	value.	Crucially,	 if	a	 in	fact	has
fewer	 elements,	 the	 generated	 code	will	 return	whatever	 happens	 to	 be	 at	 that
memory	location,	even	if	it	is	past	the	area	that	has	been	reserved	for	the	a	array
and	 might	 belong	 to	 another	 variable,	 or	 be	 in	 an	 area	 of	 memory	 that	 isn’t
currently	used	for	anything	and	has	a	random	value	in	it,	or	causes	a	crash	when
accessed.
What’s	more,	C	merges	the	concept	of	arrays	with	the	concept	of	pointers.	A

pointer	is	a	variable	that	contains	the	address	of	another	variable,	which	is	useful
for	 constructing	 certain	 data	 structures	 in	 memory;	 Pascal	 also	 had	 pointers.
According	 to	 the	 original	 C	 book,	 “Pointers	 have	 been	 lumped	 with	 the	 goto
statement	 as	 a	 marvelous	 way	 to	 create	 impossible-to-understand	 programs.”
Equating	something	with	GOTO	is	no	compliment,	but	as	the	book	goes	on	to	say,
“This	 is	 certainly	 true	 when	 they	 are	 used	 carelessly,	 and	 it	 is	 easy	 to	 create
pointers	 that	 point	 somewhere	 unexpected.	With	 discipline,	 however,	 pointers



can	also	be	used	to	achieve	clarity	and	simplicity.”16
The	insight	that	the	designers	of	C	had	was	that	pointers	and	arrays	are	really

the	same	thing:	a	pointer	points	to	a	location	in	memory,	and	an	array	also	points
to	 a	 location	 in	 memory,	 that	 being	 the	 address	 of	 the	 first	 element.	 Dennis
Ritchie	 called	 this	 “the	 crucial	 jump	 in	 the	 evolutionary	 chain”	 between	 the
language	 on	 which	 C	 was	 based	 (called	 BCPL)	 and	 C.17	 One	 benefit	 is	 that
pointers	can	be	faster	than	regular	array	lookup.	Recall	my	breakdown	of	what
happens	on	the	array	access	a[i]:

1.	Figure	out	where	in	memory	a	is

2.	If	i	is	too	high	(or	too	low)	a	subscript	for	a,	print	an	error	and	terminate
the	program

3.	Retrieve	the	ith	element	in	a

Besides	 the	 fact	 that	 C	 dispenses	 with	 step	 2	 entirely,	 step	 3	 involves
multiplying	 i	 times	 the	 size	 of	 a	 single	 element	 of	 a.	 Using	 pointers	 instead,
iterating	 through	 an	 array	 can	 be	 done	 just	 by	 adding	 the	 size	 of	 each	 array
element	 to	 a	 pointer	 as	 opposed	 to	 redoing	 the	 multiplication	 each	 time,	 and
addition	is	faster	than	multiplication.18
Furthermore,	while	 arrays	 are	 declared	with	 a	 fixed	 size,	which	C	 does	 still

support,	 pointers	 are	 variables	 and	 can	 be	 set	 to	 point	 anywhere.	 In	 C,	 the
particularly	 useful	 place	 that	 they	 can	 be	 set	 to	 point	 is	 the	 location	 returned
from	 an	 API	 that	 allocates	 memory	 from	 the	 system.	 And	 since	 pointers	 and
arrays	 can	 be	 used	 interchangeably,	 you	 can	wait	 until	 runtime	 to	 decide	 how
large	 an	 array	 you	 need,	 allocate	 it	 dynamically,	 and	 assign	 the	 result	 of	 the
allocation	to	a	pointer,	and	then	proceed	to	use	the	pointer	as	if	it	was	an	array.
The	result	is	not	wasting	memory	by	declaring	a	larger	array	than	you	need,	but
still	being	able	to	use	the	more	readable	array	syntax.
Or	you	can	continue	 to	use	 the	pointer.	A	few	of	my	professors	at	Princeton

were	 Bell	 Labs	 employees	 on	 short-term	 leave,	 and	 they	 would	 occasionally
show	us	 tricks	of	 the	 trade	gleaned	from	the	halls	of	UNIX/C-Land.	 I	can	still
recall	 the	 day	 that	 a	 visiting	 professor	 from	 Bell	 Labs	 named	 Henry	 Baird
demonstrated	 how	 to	 change	 a	 loop	 from	 using	 array	 access	 to	 pointer
arithmetic,	which	makes	your	code	harder	 to	understand	but	 also	a	 little	 faster
and	 infinitely	 cooler.	 My	 attitude	 toward	 pointers	 could	 be	 summarized	 in	 a
dialogue	like	this:

Wise	Programmer: 
I	have	good	news	and	bad	news	about	pointers.



Adam: 
What’s	the	good	news?

Wise	Programmer: 
They	make	your	code	faster.

Adam: 
Got	it!	Faster	is	cool.

Wise	Programmer: 
They	also	make	your	code	harder	to	read.

Adam: 
I	see.

Wise	Programmer: 
Faster	but	harder	to	read.	That’s	the	story	on	pointers.

Adam: 
I	thought	you	said	there	was	bad	news?

For	a	 final	 trick,	C	built	on	 those	 three	 ideas—explicitly	declaring	different-
size	 integers,	 avoiding	 overhead	 on	 array	 lookup,	 and	 allocating	 arrays
dynamically	using	the	array/pointer	equivalency—to	come	up	with	a	clever	way
to	handle	strings.
Recall	 that	 a	 string	 is	 a	 sequence	 of	 text:	 “hello”	 is	 a	 string.	 In

machine/assembly	language,	computers	deal	with	numbers,	not	strings.	To	store
strings,	 you	 first	 need	 an	 agreed-on	 way	 to	 encode	 your	 string	 as	 a	 series	 of
numbers.	 The	 most	 common	 encoding	 system	 is	 known	 as	 ASCII	 (American
Standard	Code	for	Information	Interchange),	which	in	its	simplest	version	uses	7
bits	 to	 represent	 various	 characters;	 the	 encoding	 of	 printable	 characters	 goes
from	32	(which	is	defined	to	be	a	space)	up	to	126	(which	is	the	tilde,	~).	That’s
still	enough	room	to	fit	all	the	uppercase	letters	(ranging	from	65	for	A	to	90	for
Z),	 lowercase	 letters	 (from	 97	 for	 a	 to	 122	 for	 z),	 and	 all	 other	 common
punctuation	 symbols.	 The	 numbers	 0	 through	 9—that	 is,	 the	 actual	 printed
characters	“0,”	“1,”	“2,”	and	so	on—are	encoded	from	48	to	57.
So	my	first	name,	“Adam,”	would	be	encoded	as	four	numbers,

65

100



97

109

which	would	 then	 be	 interpreted	 as	A,	d,	a,	 and	m	 by	whatever	 software	was
dealing	with	them	as	long	as	it	knew	this	was	an	ASCII	encoding.
This	all	works	fine,	but	the	problem	with	strings	is	that	they	are	not	bounded

the	way	that	numbers	are.	A	number	is	defined	to	be	a	certain	bitness	and	will
always	use	that	much	storage,	but	a	string	will	need	one	byte	of	storage	for	each
ASCII	character.	And	while	you	can	often	conveniently	 ignore	the	chance	of	a
signed	16-bit	integer	overflowing	past	32,767,	in	the	case	of	a	string	you	need	a
place	 to	 store	 all	 those	 bytes.	 Concern/laziness	 about	 dealing	 with	 multiple
strings,	 each	 of	 potentially	 long	 length,	 was	 the	 underlying	 reason	 behind	 the
decision	to	have	a	single	shared	“street	address	of	the	last	doctor	we	loaded	from
the	 database”	 string	 in	 the	 Dendrite	 code,	 which	 led	 to	 the	 mysterious	 bug	 I
discussed	in	the	previous	chapter.
To	 handle	 this,	 languages	 such	 as	 IBM	PC	BASIC	would	 keep	 track	 of	 the

length	 of	 any	 string	 and	 automatically	 allocate	 memory	 (from	 the	 currently
unused	 memory,	 which	 is	 known	 as	 the	 heap)	 as	 the	 length	 of	 the	 string
changed,	and	 then	copy	the	string	 to	 the	 larger	 location	 if	needed,	with	all	 this
hidden	from	the	programmer.	This	was	fine,	except	that	copying	the	string	to	the
new	 location	 took	some	small	 amount	of	 time.	Worse,	 a	heap	allocation	could
fail	at	any	time,	especially	on	a	computer	with	limited	memory.	You	could	write
code	that	made	your	string	one	character	longer	and	have	the	system	discover,	at
the	moment	 that	 code	was	 running,	 that	 it	was	out	of	heap	memory.	Since	 the
system	 couldn’t	 perform	 the	 operation	 you	 requested,	 and	 the	 following
statements	 in	 your	 code	 presumably	 depended	 on	 that	 string	 being	 valid,	 the
program	had	no	choice	but	to	stop	completely	(in	the	case	of	IBM	PC	BASIC,
with	an	“Out	of	string	space”	error).19	On	top	of	that,	the	longest-allowed	string
in	IBM	PC	BASIC	was	255	characters,	which	is	a	pretty	good	equivalent	of	the
“well,	it	probably	won’t	overflow”	attitude	of	using	16	bits	to	store	a	number	in
that	it	generally	works	but	is	not	guaranteed	to	always	be	enough	room.20
Other	languages	had	the	programmer	specify,	when	they	declared	a	string,	the

maximum	number	of	characters	 it	would	be;	WATFIV	and	Pascal	worked	 this
way.	This	meant	 that	 you	 had	 to	 guess	 the	 longest-possible	 length	 your	 string
might	 have,	 and	 waste	 a	 lot	 of	 memory	 if	 you	 guessed	 too	 high,	 and	 if	 you
guessed	too	low	and	your	string	wound	up	too	long,	the	compiler-generated	code
would	detect	this	and	then	kill	your	program	anyway.
The	designers	of	C	came	up	with	a	solution	that	neatly	resolved	all	of	this.	A

string	was	defined	to	be	an	array	of	8-bit	(one	byte)	numbers,	a	type	known	as	a



char,	 with	 each	 array	 element	 holding	 one	 encoded	 character	 (in	 ASCII,
typically).	Normally	when	doing	 any	operations	with	 arrays	 in	C,	 you	need	 to
store	the	length	of	the	array	in	a	separate	variable,	because	C	internally	does	not
track	array	length.	This	led	to	a	lot	of	C	functions	with	signatures	like	this:

myfunc(int	a[],	int	n)

where	a	is	an	array	(with	each	element	being	an	int),	and	n	is	the	length	of	the
array;	this	allows	myfunc()	to	know	how	many	elements	the	array	contains	so	it
can	 avoid	walking	 off	 the	 end	 of	 the	 array.	 In	 languages	 like	C#,	which	 does
track	 the	 length	 of	 arrays	 internally	 and	 provides	 an	 API	 to	 retrieve	 it	 when
needed,	that	second	parameter	is	not	necessary.
But	since	strings	are	used	so	often,	a	convention	was	adopted	in	C	allowing	a

string	to	be	passed	around	via	a	single	variable,	the	way	numbers	could	be.	The
single	variable	was	a	pointer	 to	 the	first	element.	What	about	 the	 length	of	 the
string?	The	convention	was	that	the	end	of	the	string	was	indicated	by	an	array
element	with	the	value	of	0	(the	actual	value	0,	not	the	encoding	of	the	character
“0,”	which	 is	 the	 number	 48).	Any	 code	 that	 needed	 to	 know	 the	 length	 of	 a
string	would	scan	through	the	array	until	it	found	the	char	with	a	value	of	0	(an
API	 called	 strlen()	 was	 supplied	 that	 did	 this	 for	 you).	 Incidentally,	 this	 is
where	the	Hungarian	variable-name	prefix	sz	came	from—it	stands	for	“string,
zero-terminated.”
So	 in	C,	 the	string	“Adam”	was	stored	 in	an	array	of	 five	char	values	 (8-bit

numbers)—which	 occupies	 5	 bytes,	 and	 is	 also	 known	 as	 a	 5-byte	 buffer—
containing	the	following	5	values:
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0

This	allowed	strings	to	be	allocated	dynamically	at	any	length,	the	same	as	any
other	array,	but	the	entire	string	could	be	referred	to	with	a	single	variable,	with
no	extra	 length	value	needed.	Furthermore,	 it	meant	 that	unlike	 languages	 that
treated	 strings	 as	 a	 special	 other	 type	 and	 needed	 a	 specific	 API	 to	 perform
operations	 such	 as	 “extract	 this	 substring	 from	within	 this	 larger	 string,”	 in	C
you	 could	 access	 individual	 characters	 in	 a	 string	 the	 same	 way	 you	 would
access	 individual	 elements	 of	 an	 array.	 This	 being	 C,	 it	 also	 meant	 that	 the
indexing	into	strings,	like	all	array	indexing,	was	not	checked	for	the	index	being
valid.	And	although	there	were	helper	APIs	to	make	it	easier,	programmers	had



to	write	their	own	code	to	ensure	that	the	memory	buffer	they	allocated	to	hold	a
string	 was	 large	 enough	 for	 that	 string—and	 the	 final	 0	 value	 as	 well.	 Most
famously,	 the	 length	 of	 that	 “Adam”	 string	 (as	 returned	 by	 strlen())	 was	 4
because	it	had	4	characters	in	it,	but	the	amount	of	storage	needed,	if	you	wanted
to	make	a	copy	of	it,	was	5	bytes	due	to	the	extra	0	value.	Programmers	writing
string	manipulation	code	in	C	had	to	be	aware	of	this	at	all	times.
For	example,	the	3-letter	string	“lap”	takes	4	bytes	of	memory	(the	l,	the	a,	the

p,	and	the	0),	and	the	3-letter	string	“dog”	also	takes	4	bytes	of	memory	(the	d,
the	o,	 the	g,	and	 the	0),	but	 the	string	“lapdog”	 takes	up	7	bytes	of	memory—
which	as	you	notice,	is	neither	3	+	3	nor	4	+	4,	which	led	to	programmers	having
to	add	and	subtract	1	from	a	lot	of	string-length	calculations,	leading	to	all	sorts
of	“off	by	one”	math	mistakes	where	the	extra	byte	for	the	0	was	not	accounted
for	properly.	This	might	turn	out	to	be	harmless,	if	the	byte	just	past	the	end	of
the	 buffer	 wasn’t	 used	 by	 any	 other	 variable,	 but	 it	 might	 also	 cause	 big
problems—in	 particular,	 you	 might	 write	 the	 terminating	 0	 into	 another
variable’s	memory	that	was	past	the	end	of	your	buffer,	then	have	that	variable
replace	 the	 0	with	 something	 else,	 and	 suddenly	 your	 string	would	 be	 seen	 as
continuing	on	until	it	happened	to	run	into	another	0	in	memory.21
The	trade-off	made	in	string	manipulation	perfectly	captures	the	heart	of	C:	it

removes	 any	 unneeded	 performance	 overhead,	 but	 also	 removes	 automatic
safeguards.	 You	 had	 complete	 control	 of	 your	 string	 buffer	 allocations,	 were
never	 required	 to	 use	 more	 memory	 than	 you	 needed,	 and	 did	 not	 have	 any
runtime	 checks	 slowing	 down	 indexing.	 It	 did	make	 reading	 code	 harder;	 you
spent	 a	 lot	 of	 time	 looking	 at	 string-length-calculating	 and	 string-memory-
allocating	 code	 trying	 to	 convince	 yourself	 that	 it	 was	 correct,	 typically	 by
running	 through	 examples	 in	 your	 head	 using	 short	 strings	 (“Let’s	 see,	 if	 this
string	is	3	bytes	long,	then	this	number	will	be	calculated	as	4,	and	we’ll	allocate
that	 much	 memory	 here	 …”).	 But	 if	 you	 did	 everything	 right,	 you	 got	 the
functionality	you	needed	with	the	performance	you	wanted.
And	performance,	not	clarity	or	maintainability,	was	definitely	the	focus	at	the

time	 I	was	 in	college.	When	 I	was	a	 senior	at	Princeton,	 the	computer	 science
department	held	a	coding	contest	in	which	we	were	asked	to	write	a	program	to
solve	a	specific	problem;	the	only	criterion	(besides	the	program	working)	was
how	 fast	 it	 ran.22	 The	 winner	 won	 a	 prize	 at	 the	 engineering	 convocation,
alongside	civil	and	aerospace	engineers	who	presumably	had	worked	on	projects
that	were	evaluated	on	something	other	than	pure	speed.
Yet	to	me,	this	all	seemed	perfectly	normal	and	even	encouraging.	Of	course

performance	would	be	the	focus.	What	else	would	be?	Everything	that	C	did	to



clear	out	performance	obstacles	felt	like	taking	off	your	tight	shoes	at	the	end	of
the	 day.	 I	 cheerfully	 wrote	 code	 to	 calculate	 string	 lengths	 and	 check	 array
bounds,	 and	 never	 thought	 that	 any	 other	 way	 would	 be	 better.	 The	 fact	 that
Pascal	programmers	were	willing	to	trade	away	performance	in	exchange	for	not
having	 to	 deal	 with	 these	 complications	 was	 seen	 as	 an	 indictment	 of	 their
language,	them,	or	both.
After	honing	my	pointer-manipulation	skills	at	Princeton,	I	graduated	and	went

off	to	work	writing	C	code	at	Dendrite.	Although	this	was	before	the	invention
of	 the	 World	 Wide	 Web—websites	 and	 browsers—the	 Internet,	 or	 at	 least	 a
prototypical	 version	 of	 it,	 did	 exist,	 with	 many	 machines	 connected	 together.
Many	of	 those	machines	were	running	UNIX,	which	as	mentioned	was	written
in	C—not	just	the	core	of	the	operating	system,	but	a	lot	of	the	programs	that	ran
on	it.
November	1988,	a	few	months	after	I	began	work,	brought	an	object	lesson	in

the	 downside	 of	 the	 C	 performance	 trade-offs.	 A	 Cornell	 computer	 science
graduate	student	named	Robert	Morris	secretly	released	a	program	that	came	to
be	known	as	the	“Morris	worm.”	Starting	from	a	computer	at	the	Massachusetts
Institute	of	Technology	(MIT),	the	program	copied	itself	to	any	other	computers
it	could	get	access	to,	and	from	there	connected	to	any	other	computers	it	could
reach,	in	a	rapidly	growing	circle.23
Although	 the	Morris	 worm	 did	 not	 do	 anything	malicious,	 such	 as	 deleting

files,	 it	would	 replicate	 itself	 back	 to	 the	 same	 computer	 over	 and	over	 again,
and	 the	 overhead	 of	 having	 the	 program	 running	 so	 many	 times	 on	 a	 single
computer	would	degrade	that	computer’s	performance.	The	UNIX	systems	were
meant	to	support	multiple	people	remotely	logging	on	to	them	at	once	(which	is
why	they	were	known,	 in	an	apropos	twist,	as	“hosts”)—this	was	the	setup	we
had	in	college	grinding	away	in	von	Neumann,	with	all	of	us	using	terminals	to
connect	 to	 a	 single	UNIX	machine—and	 users	 on	 an	 infected	machine	would
notice	 it	 becoming	 gradually	 less	 and	 less	 responsive	 until	 the	 machine	 was
unusable.24	 Morris	 had	 meant	 for	 it	 to	 propagate	 much	 more	 slowly	 and
therefore	 remain	undetected	 for	 longer,	but	he	miscalculated	how	fast	 it	would
spread—a	bug	in	his	code.
After	 some	 frantic	 forensic	work	 over	 a	 few	 days,	 the	worm	was	 ultimately

contained,25	 and	 Morris	 was	 sentenced	 to	 three	 years’	 probation,	 eventually
winding	 up	 as	 a	 professor	 at	MIT,	 and	 later	 named	 an	ACM	Fellow.	But	 it’s
instructive	to	look	at	how	the	worm	propagated	itself	because	it’s	a	direct	result
of	the	choices	made	in	designing	C,	in	particular	the	string	handling.
The	Morris	worm	took	advantage	of	a	UNIX	utility	called	“finger,”	which	was



used	to	query	information	about	a	user	on	a	remote	machine.	You	could	type

finger	joe@mit.edu

and	it	would	return	information	about	the	user	“joe”	on	the	machine	mit.edu,	if
there	 was	 such	 a	 user	 (the	 program	 still	 exists	 today;	 there	 is	 even	 a	 version
included	as	part	of	Windows).
Finger	was	like	an	early	version	of	a	personal	website,	except	that	on	the	client

end,	you	ran	the	finger	command	instead	of	a	web	browser,	and	it	was	limited	to
printing	out	certain	specific	 information	about	a	user,	 including	the	contents	of
two	files	that	a	user	could	create	for	this	purpose,	named	.plan	and	.project.26
For	 this	 to	work,	 there	had	 to	be	a	program	running	on	 the	 remote	computer

waiting	 to	 receive	 the	 “tell	 me	more	 about	 this	 user”	message	 that	 the	 finger
client	 program	 would	 send,	 in	 the	 same	 way	 that	 a	 web	 server	 waits	 for	 the
initial	message	from	a	browser.	This	program	was	known	as	the	finger	daemon,
with	the	term	daemon	being	commonly	used	for	this	sort	of	thing	on	UNIX	(it’s
the	Latin	form	of	a	Greek	word	meaning	“power”	or	“god,”	which	my	dictionary
defines	as	“a	guardian	spirit”).27	Although	an	individual	user	could	choose	to	not
allow	finger	to	return	information	to	remote	people,	the	finger	daemon	itself	had
to	 listen	 to	 incoming	 messages	 from	 any	 remote	 computer	 since	 it	 needed	 to
determine	 which	 user	 the	 request	 was	 for	 before	 it	 could	 decide	 whether	 to
respond	or	not.
When	 two	 machines	 communicate	 like	 that,	 there	 has	 to	 be	 a	 convention,

known	as	a	protocol,	on	what	 information	will	be	 transferred—the	code	 in	 the
finger	 client	 and	 the	 finger	 daemon	 have	 to	 be	 in	 agreement.	 In	 this	 case,	 the
protocol	 was	 simple:	 the	 finger	 client	 would	 send	 a	 username	 to	 the	 finger
daemon,	 and	 the	 finger	 daemon	would	 reply	with	 several	 lines	 of	 information
about	that	user,	which	the	finger	client	would	then	display	unchanged.	While	the
message	 coming	 back	 from	 the	 finger	 daemon	 to	 the	 client	 could	 be	 of
somewhat-arbitrary	size,	the	finger	daemon	only	expected	a	short	message	from
the	client—just	long	enough	for	a	username.
There	 was	 nothing	 stopping	 somebody,	 however,	 from	 writing	 their	 own

finger	 client	 that	 sent	 its	 own	 messages	 to	 the	 finger	 daemon	 on	 another
computer,	 and	 there	 was	 also	 nothing	 stopping	 that	 new	 finger	 client	 from
sending	a	much-longer	message	to	the	finger	daemon	than	it	expected.	Of	course
the	official	 finger	client	would	not	do	any	such	 thing,	and	part	of	 the	problem
that	led	to	the	Morris	worm	was	that	nobody	could	imagine	why	anybody	would
write	their	own	finger	client	that	would	misbehave	in	this	way.
To	 explain	 why	 this	 could	 cause	 such	 problems,	 we	 need	 to	 review	 how



programs	typically	use	memory.	A	program	that	needs	memory	to	store	data	will
call	 an	 API	 that	 the	 operating	 system	 provides	 that	 hands	 out	 available	 heap
memory	on	request.	If	a	program	needs	a	500-byte	buffer,	it	calls	the	operating
system	and	says,	“I	need	500	bytes,”	and	 the	operating	system	hands	back	 the
location	of	500	bytes	of	memory	that	it	has	not	previously	handed	out,	and	keeps
track	 of	 this	 so	 it	won’t	 give	 that	memory	 out	 again	 until	 the	 program	 calls	 a
different	API	to	say,	“I’m	done	with	those	500	bytes.”
The	“location”	that	the	system	hands	back	is	just	a	number;	conceptually,	if	a

computer	has	1	megabyte	of	memory,	which	is	actually	1,048,576	bytes,	then	the
available	bytes	of	memory	are	identified	by	a	number	between	0	and	1,048,575.
When	the	system	hands	you	back	500	bytes	of	memory,	it	is	saying,	“Your	500-
byte	piece	starts	at	[as	an	example]	address	652,000,”	which	means	you	can	now
use	 addresses	 652,000	 through	 652,499.	 In	 C,	 this	 number	 652,000	would	 be
stored	in	a	pointer,	 let’s	say	named	p,	and	using	the	magic	of	 the	pointer/array
equivalency,	you	could	now	access	those	bytes	as	p[0]	through	p[499].
As	I	have	discussed	earlier,	C	doesn’t	check	that	your	array	index	is	valid,	so

you	 could	 access	 p[1000]	 (memory	 address	 653,000,	 in	 this	 example)	 and	 be
reading	or	writing	memory	that	was	intended	to	be	used	for	something	else,	but
hopefully	your	code	has	recorded	somewhere	the	fact	 that	p	only	points	to	500
bytes	of	memory	and	won’t	do	that.28
There	 is	 a	 part	 of	 memory	 that	 is	 carved	 off	 by	 the	 system	 for	 a	 special

purpose,	unavailable	for	general	allocation.	This	 is	called	 the	stack	and	is	used
for	 keeping	 track	 of	 the	 layers	 of	 function	 calls.	 When	 a	 program	 calls	 a
function,	the	parameter	values	are	stored	on	the	stack,	as	is	the	return	address—
the	place	 that	 the	code	should	 jump	back	 to	when	 the	 function	completes.	The
return	address	is	a	memory	address	like	any	other,	because	the	actual	code	that	is
being	 run—all	 the	 bytes	 of	machine	 language—is	 also	 stored	 in	memory.	 It’s
another	pointer,	which	happens	to	point	to	bytes	of	code.	Essentially,	when	the
system	loads	a	program	it	puts	the	code	in	one	part	of	memory,	reserves	another
part	 for	 the	 stack,	 and	 makes	 the	 rest	 available	 as	 the	 heap,	 for	 memory
allocation	at	runtime.
Looking	back	on	the	stack,	you	can	see	the	parameters	to	the	current	function

and	its	return	address,	and	then	before	that	you	see	the	parameters	to	the	function
that	 called	 that	 function	 and	 its	 return	 address,	 and	 so	 on;	 all	 the	 layers	 of
functions,	at	any	given	point	when	the	program	is	running,	have	their	parameters
and	 return	 addresses	 stored	 on	 the	 stack.	 It’s	 a	 series	 of	 breadcrumbs	 for	 the
processor	 to	 find	 its	 way	 back	 to	where	 the	 program	 started.	 In	 addition,	 any
local	 variables	 for	 a	 function—variables	 declared	 for	 temporary	 use	 inside	 the
function—are	on	the	stack	as	well.



Figure	4.1	shows	what	the	stack	would	look	like	(with	a	few	irrelevant	items
not	depicted)29	for	the	code	on	the	left,	where	code	calls	function	A,	which	then
calls	 function	 B,	 which	 in	 turn	 calls	 function	 C,	 and	we	 are	 currently	 running
code	 in	 function	 C.	 Note	 that	 the	 stack	 grows	 downward	 in	 memory	 (that	 is,
toward	lower-numbered	memory	addresses),	so	looking	back	on	the	stack	means
looking	up,	toward	higher-numbered	memory	addresses.	To	call	a	function,	first
the	parameters	 are	 pushed	on	 the	 stack,	 and	 then	 the	 address	 that	 the	 function
should	return	back	to	when	it	is	done.	The	calling	code	then	jumps	to	the	start	of
the	 function,	 where	 the	 first	 thing	 the	 function	 does	 is	 run	 code	 (which	 the
compiler	has	automatically	generated)	to	reserve	space	on	the	stack	for	its	local
variables.30	 In	 the	 diagram	 the	 parameters,	 such	 as	 A’s	 first	 parameter,	 are
described	 by	 the	 name	 they	 are	 declared	 as	 in	 A’s	 parameter	 list—in	 this
example,	 height.	 But	 realize	 that	 in	 the	 code	 that	 calls	 A,	 the	 parameter	 that
becomes	 height	 inside	 of	 A	 is	 the	 variable	 cur_h	 in	 the	 calling	 code.	 So	 the
calling	code	pushes	cur_h	on	 the	stack,	and	inside	of	A	 that	same	value	on	the
stack	is	retrieved	as	height.



Figure	 4.1 Code	 is	 on	 the	 left,	 and	 the	 stack	 that	 results	 is	 on	 the	 right
(slightly	simplified)

There	 is	 a	 processor	 register	 called	 the	 stack	 pointer	 (the	 “current	 stack
pointer”	 in	 figure	 4.1	 shows	 where	 it	 would	 be	 pointing	 when	 running	 code
inside	C),	which	tracks	the	next	available	spot	on	the	stack.



Let’s	say	you	want	 to	use	a	500-byte	buffer	 inside	a	function.	There	are	 two
ways	to	do	this	in	C.	You	can	do	a	dynamic	allocation	from	the	heap,	calling	the
memory	allocation	API	malloc():

char*	c	=	malloc(500);

if	(c	==	NULL)	{

					//	the	allocation	failed,	deal	with	this

}

or	you	can	declare	it	as	an	array	on	the	stack:

char	c[500];

Due	to	the	array/pointer	equivalency	in	C,	any	code	that	accesses	the	500	bytes
inside	the	function	will	use	c	in	an	identical	way	no	matter	which	of	the	two	you
use;	 the	 compiler	 will	 hide	 the	 internal	 differences.	 But	 in	 the	 first	 example,
calling	 malloc(),	 the	 only	 thing	 on	 the	 stack	 is	 the	 pointer	 c	 itself—a	 single
value	 that	 will	 occupy	 32	 or	 64	 bits	 on	 modern	 computers.	 In	 the	 second
instance,	the	entire	500	bytes	are	on	the	stack.	As	you	can	see,	it	is	less	code	to
allocate	it	on	the	stack,	and	you	don’t	have	to	call	an	API	and	worry	about	the
allocation	failing,	which	would	require	even	more	code	to	deal	with.	And	it	runs
faster,	since	the	space	is	allocated	just	by	adjusting	the	stack	pointer.	Moreover,
when	 any	 function	 completes	 and	 returns	 back	 to	 its	 caller,	 the	 stack	 pointer
moves	back	 to	where	 it	was	 in	 the	caller,	 so	you	get	automatic	cleanup	of	any
local	variables	allocated	on	the	stack—with	no	need	to	call	another	API	to	free	a
stack	 array	 either.	 Faster	 and	 less	 code,	 as	 usual,	 are	 both	 considered	 to	 be
unalloyed	goods.
One	 important	 difference	 between	 dynamic	 allocation	 and	 allocating	 on	 the

stack	 is	 that	 when	 dynamically	 allocating,	 you	 can	 specify	 a	 size	 that	 isn’t
known	 until	 runtime;	 that	 “500”	 parameter	 to	 malloc()	 could	 instead	 be	 any
variable.	 Meanwhile,	 the	 local	 stack	 allocation	 as	 shown	 above	 requires	 a
constant	value	 (certain	versions	of	C	allow	you	 to	allocate	on	 the	stack	with	a
variable	size,	but	it’s	not	standardized).
So	if	you	are	concatenating	strings	together	into	a	new	string,	the	correct	thing

to	do	is	to	determine	the	length	of	the	original	strings	(the	first	two	lines	below)
and	allocate	the	right	amount	of	memory	(the	third	line,	with	the	+	2	needed	to
account	for	the	space	and	the	terminating	0	character)	before	calling	the	APIs	to
actually	do	the	concatenation	(the	last	three	lines:	first	copy	over	the	first	name,
then	concatenate	on	the	space	and	the	last	name):

int	firstnamelen	=	strlen(firstname);



int	lastnamelen	=	strlen(lastname);

wholename	=	malloc(firstnamelen	+	lastnamelen	+	2);

if	(wholename	==	NULL)	{

					//	the	allocation	failed,	deal	with	this

}

strcpy(wholename,	firstname);

strcat(wholename,	"	");

strcat(wholename,	lastname);

But	 it	 is	oh	so	 tempting	 to	 simply	ask,	“How	 long	can	a	name	possibly	be,”
and	then	pick	a	number	such	as	256:

char	wholename[256];

strcpy(wholename,	firstname);

strcat(wholename,	"	");

strcat(wholename,	lastname);

This	is	less	code	to	write,	and	as	a	bonus	it	runs	slightly	faster	and	you	don’t
have	to	deal	with	the	“allocation	failed”	part,	which	could	get	ugly	(and	you	also
have	to	free	your	heap	allocation	at	some	point).	Note	that	the	last	three	lines	of
code,	the	ones	that	produce	the	concatenated	name,	are	the	same;	by	storing	the
string	on	the	stack,	you	are	saving	3	API	calls	plus	having	to	deal	with	an	error
case.	 Isn’t	 that	 convenient?	 And	 the	 only	 risk	 is	 that	 somebody	 has	 a	 first
name/last	 name	 combo	 that	 is	 longer	 than	 256	 characters	 (254,	 actually,	 since
you	need	room	for	the	space	and	final	0)—and	how	likely	is	that,	really?
Now	 I	 can	 explain	 the	 finger	 daemon	 bug	 that	 the	Morris	 worm	 exploited.

When	reading	the	request	from	the	client,	which	was	only	expected	to	contain	a
username,	 the	 finger	daemon	code	did	 the	quick	“let’s	 just	 assume	 the	 request
buffer	won’t	be	bigger	than	a	certain	size	and	allocate	room	for	it	on	the	stack”
trick,	and	 the	certain	size	 it	picked	was	512	bytes.	And	the	API	 it	was	calling,
which	was	called	gets(),	took	as	its	single	parameter	a	string	buffer	to	read	the
data	into,	but	with	no	way	of	indicating	how	long	the	buffer	was;	it	assumed	the
calling	 code	 knew	 what	 it	 was	 doing	 and	 the	 buffer	 was	 long	 enough.
Specifically,	 gets()	 was	 designed	 to	 read	 “a	 line	 of	 text”;	 recalling	 that	 the
encoding	 of	 printable	 characters	 in	ASCII	 goes	 from	 32	 to	 126,	gets()	 reads
data	until	it	sees	a	byte	containing	the	value	10—a	nonprintable	character	in	the
ASCII	encoding	known	as	the	line	feed	(LF).	The	string	buffer	that	gets()	was
passed	was	 a	 pointer	 to	 a	 location	 in	memory;	gets()	would	 read	 in	 the	 first
byte,	store	 that	at	 the	pointer	 location,	advance	 the	pointer	by	1	byte,	and	loop
back	 to	 read	 the	 next	 byte.	 It	 would	 continue	 doing	 this	 until	 it	 saw	 the	 LF
character,	completely	unaware	of	what	size	had	actually	been	specified	when	the
string	buffer	was	allocated.	It	was	entirely	possible	that	gets()	could	go	past	the



end	of	the	buffer—a	situation	known	as	a	buffer	overflow.
The	 design	 of	 gets()	 is	 terrible;	 honestly,	 I	 have	 no	 idea	 what	 they	 were

thinking.	 In	 the	 string	 concatenation	 example	 above,	 you	 at	 least	 have	 the
opportunity,	if	you	choose	to	take	advantage	of	it	(as	the	first	version	does),	 to
do	the	actual	calculation	of	how	much	storage	you	need,	and	even	have	a	decent
chance	 of	 getting	 it	 right	 (just	 remember	 to	 add	 1	 to	 account	 for	 the	 final	 0
byte!).	But	in	this	case,	no	matter	how	big	a	buffer	you	passed	in,	gets()	could
still	overflow	it	if	it	didn’t	encounter	an	LF	character	in	time.31
This	is	another	example	of	being	stuck	with	the	implementation	of	an	API	you

are	 calling;	 gets()	 is	 the	 gantlet	 that	 the	 program	must	 run	 to	 get	 the	 data	 it
needs.	That	API	will	continue	to	read	data	until	it	sees	that	LF	character,	and	you
have	 no	 control	 over	 that;	 no	matter	 how	 big	 a	 buffer	 you	 pass	 in,	 you	 don’t
know	if	gets()	will	read	more	than	you	allocated	because	you	don’t	know	what
actual	data	it	will	be	reading	at	runtime.	Inside	of	gets(),	meanwhile,	the	code
doesn’t	know	how	long	the	buffer	you	passed	in	was	allocated	to	be,	nor	does	it
know	if	it	was	on	the	stack	or	heap.	The	only	saving	grace	for	gets()	is	that	it	is
somewhat	obvious	that	it	can’t	know	how	long	the	buffer	is,	because	there	is	no
parameter	 specifying	 the	 length.	 So	 hopefully	 people	 will	 realize	 that	 it	 is
hopeless	and	not	call	it.
Except	 that	 the	 finger	daemon	did	call	 it.	Somewhat	depressingly,	 the	 finger

daemon	could	easily	have	called	a	more	general	API	that	reads	from	any	file	and
told	it	to	read	from	a	special	file	called	the	standard	input,	which	is	what	gets()
does,	and	that	API	does	take	a	parameter	indicating	the	maximum	length	of	the
buffer:

fgets(buffer,	512,	stdin);			//	instead	of	gets(buffer)

So	what	are	we	talking	about—typing	9	more	characters	(11	if	you	count	the
commas,	13	 if	you	count	 the	spaces)	 to	switch	 to	an	API	 that	 isn’t	at	 risk	of	a
buffer	 overflow	 and	 prevents	 the	Morris	 worm?32	Why	 did	 the	 author	 of	 the
finger	daemon	not	do	that?	For	that	matter,	why	was	gets()	designed	in	such	a
horribly	broken	way,	when	it	could	have	mimicked	fgets()	and	taken	the	extra
length	parameter?	These	are	historical	questions	whose	answers	are	unknown	to
me;	as	a	small	consolation,	gets()	was	eventually	excommunicated	from	the	C
language	standard	so	it	can	no	longer	infect	future	code	(although	I’m	sure	there
are	a	 lot	of	old	systems	out	 there	 running	code	 that	has	calls	 to	gets()	buried
inside).
In	some	cases,	when	a	buffer	is	too	short	to	hold	the	data,	the	program	doesn’t

have	an	obvious	recourse.	It’s	like	filling	in	a	form	by	hand	that	has	a	square	for



every	letter	and	discovering	that	the	designers	of	the	form	assumed	that	no	last
name	 would	 be	 longer	 than	 15	 characters,	 and	 you	 have	 a	 16-character	 last
name.	What	do	you	do?	There’s	no	right	answer.	But	here	the	answer	is	simple.
Since	a	513-plus-byte	finger	request	is	clearly	wrong,	you	can	ignore	it.	In	fact,
if	you	are	going	to	switch	to	using	fgets()	and	ignore	overlong	requests,	while
you	are	at	it	you	can	use	a	much	smaller	stack	allocation,	such	as	64	bytes.33	The
middle	ground	of	512	is	much	longer	than	you	will	ever	need	for	a	valid	request,
but	it	isn’t	long	enough	to	protect	you	against	an	invalid	request,	so	what	is	the
point?
The	fact	 that	 the	finger	daemon	buffer	 that	overflowed	was	on	 the	stack	was

the	 worst	 part	 of	 it.	When	 running	 inside	 a	 function,	 as	 shown	 in	 the	 earlier
diagram,	 the	 stack	 is	 arranged	with	 the	 local	 variables	 immediately	 below	 the
parameters	and	return	address;	the	stack	overall	grows	downward,	but	access	to
a	 buffer	 goes	 upward.	 Therefore,	 the	 parameters	 and	 return	 address	 were	 just
past	the	end	of	the	512-byte	buffer,	which	was	declared	as	a	local	variable	on	the
stack	 rather	 than	 allocated	 dynamically	 from	 the	 heap	 because	 that	 takes	 less
typing	and	stack	allocations	magically	never	fail	(in	fact	the	stack	is	just	memory
and	can	run	out	of	room,	crashing	the	program,	but	programmers	ignore	this).
A	 buffer	 overflow	 is	 always	 bad,	 because	 you	 will	 likely	 corrupt	 whatever

memory	 is	 just	after	your	buffer,	but	at	 least	 if	 the	buffer	 is	 somewhere	 in	 the
heap,	the	likely	outcome	will	just	be	strange	behavior	and/or	making	the	finger
daemon	crash,	which	is	annoying	and	disruptive	yet	not	an	existential	 threat	 to
the	 proto-Internet	 (although	 there	 are	 exceptions:	 the	 remote	 attack	 against
Windows	 known	 as	 EternalBlue,	 which	 was	 the	 basis	 of	 the	 WannaCry
ransomware	attack	 in	2017,	 took	advantage	of	an	overflow	 in	a	heap	buffer;	 it
relied	on	clever	tactics	regarding	exactly	what	messages	it	sent	to	the	computer
to	 ensure	 that	 the	 heap	 buffer	 just	 after	 the	 one	 that	was	 overflowed	 could	 be
usefully	and	reliably	modified).34	When	you	have	the	buffer	on	the	stack,	your
malicious	finger	request	is	going	to	stomp	on	the	most	dangerous	piece	of	data	in
memory:	 the	 return	address	of	 the	 function	 that	 is	 calling	gets().	This	 is	data
that	 the	 processor	 is	 going	 to	 blindly	 obey	when	 it	 decides	where	 it	 needs	 to
jump	back	to	when	this	function	is	finished	running.
By	another	appalling	lack	of	serendipity	that	I	won’t	get	into,	you	can	set	the

return	address	to	point	into	an	earlier	part	of	the	buffer	itself,	and	the	computer
will	happily	jump	to	any	return	address,	even	one	that	is	in	the	area	reserved	for
the	stack	versus	where	code	is	normally	loaded.	So	the	malicious	finger	request
(such	messages	are	generally	known	as	exploits)	can	send	over	 the	actual	code
that	 it	wants	 to	 run	 (known	as	 the	payload)	 in	 the	 same	bogus	 finger	message



that	it	uses	to	overflow	the	stack	buffer.
The	payload	has	 to	be	 in	machine	 language,	 since	 that	 is	what	 the	processor

expects	 to	 see	 in	memory	when	 it	 is	 running	 a	 program.	But	 you	 have	 on	 the
order	of	512	bytes	 to	craft	your	payload—more	 than	enough	 room	 to	hold	 the
fairly	 simple	 exploit	 code	 that	 the	 worm	 used	 (the	 one	 gotcha	 is	 that	 your
machine	language	code	can’t	have	a	byte	with	the	value	of	10,	since	that	would
be	interpreted	by	gets()	as	an	LF	character	and	stop	it	reading	data).
If	you	had	been	intentionally	designing	a	system	to	allow	remote	exploits,	you

could	 hardly	 have	 done	 a	 better	 job.	 This	 is	 the	 “worst	 performance-focused
feature	 of	 C”	 that	 I	 mentioned	 at	 the	 beginning	 of	 the	 chapter.	 The	 lack	 of
safeguards	 on	 arrays,	 ease	 of	 allocating	 local	 buffers,	 and	 arrangement	 of	 the
stack,	 as	well	 as	 the	 appeal	 of	UNIX	 as	 bait,	make	C	 the	 perfect	Manchurian
sleeper	language.	To	quote	Arwen	in	The	Lord	of	the	Rings,	“Not	till	now	have	I
understood	the	tale	of	your	people	and	their	fall.	As	wicked	fools	I	scorned	them,
but	I	pity	them	at	last.	If	 this	is	indeed,	as	the	Eldar	say,	the	gift	of	the	One	to
Men,	it	is	bitter	to	receive.”35
It’s	not	 that	 the	 concept	of	malicious	 code	was	unknown	 in	1988.	The	book

Computer	 Viruses	 had	 appeared	 the	 year	 before,	 talking	 about	 the	 dangers	 of
unknown	code	 running	on	your	computer	 and	discussing	 the	various	means	of
infection.36	But	 all	 the	 viruses	 explored	 in	 that	 book	were	 spread	 due	 to	what
could	 be	 loosely	 called	 “human	 error.”	Although	 the	 usage	 is	 not	 precise,	 the
term	virus	generally	means	an	exploit	that	has	to	be	spread	“manually,”	such	as
by	a	user	copying	a	file,	as	opposed	to	a	worm,	which	can	spread	with	no	user
action.	The	attacks	up	to	this	point	had	been	viruses,	not	worms.
For	 example,	 there	 was	 a	 previous	 “infects	 the	 Internet”	 virus	 in	 late	 1987

called	 Christmas	 Tree,	 which	 was	 spread	 via	 e-mail,	 and	 when	 run,	 e-mailed
itself	to	everybody	else	it	could	find.37	But	Christmas	Tree	depended	on	the	user
receiving	an	e-mail	that	essentially	said	“run	this	program,	no	questions	asked”
(before	infecting	your	friends,	 it	printed	out	a	Christmas	tree	made	of	asterisks
for	your	enjoyment).	And	 there	were	other	viruses	 that	depended	on	a	 trusting
user	 running	 an	 infected	 program,	 which	 would	 then	 infect	 other	 programs	 it
found	on	your	computer	(this	is	why	e-mail	programs	today	will	refuse	to	open,
or	in	certain	cases	even	transmit,	types	of	file	attachments	known	to	be	risky).
All	 these	could	be	dismissed	by	programmers	as	not	 their	fault:	“Well,	 if	 the

user	does	something	stupid,	then	they	have	to	face	the	consequences,”	where	the
stupid	action	was	running	a	program	whose	contents	you	were	ignorant	of	(in	the
case	of	Christmas	Tree,	which	was	an	interpreted	script	in	the	language	REXX,
just	scanning	the	code	would	make	it	obvious	it	was	up	to	something	devious;	of



course	 this	would	 require	you	 to	understand	REXX,	but	 I	 suppose	not	being	a
programmer	was	 also	 lumped	 into	 the	 category	 of	 stupid	 user	 behavior).38	 At
one	 unfortunate	 point	 in	 the	 history	 of	 computers,	when	most	 users	were	 also
programmers,	 programmers	 would	 refer	 to	 the	 rare	 nonprogramming	 users	 as
lusers—a	play	on	the	word	loser.	Blindly	running	a	virus	script	was	something
that	a	luser	would	do.
The	Morris	worm	was	 different:	 it	 infected	machines	with	 no	 action	 by	 the

user.	The	cardinal	 sin	was	 a	onetime	mistake	by	a	programmer,	 and	 from	 that
point	 on	 there	 was	 nothing	 that	 could	 have	 been	 done	 to	 prevent	 it,	 until	 the
worm	was	out	there	and	wreaking	havoc,	and	people	were	inspired	to	deploy	a
new	version	of	 the	 finger	daemon	 that	had	 the	buffer	overflow	problem	 fixed.
There	was	even	a	suggestion	at	the	time	that	some	people	knew	the	code	in	the
finger	 daemon	 was	 risky	 but	 ignored	 the	 problem,	 presumably	 because	 of	 a
failure	 of	 imagination;	 they	 knew	 the	 real	 finger	 client	 would	 never	 send	 a
message	anywhere	near	512	bytes,	and	it	never	occurred	to	them	that	somebody
would	write	a	program	to	maliciously	generate	invalid	requests.39
This	could	have	functioned	as	a	wake-up	call	to	C	enthusiasts,	but	it	did	not.

Certainly	 there	 was	 no	 outcry	 against	 C-style	 buffer	 manipulation,	 although
there	 was	 movement	 to	 excise	 gets()	 specifically	 from	 people’s	 code.	 The
Cornell	Commission,	 in	 its	 Summary	 of	 Findings,	 after	 first	 (correctly)	 laying
the	blame	with	Morris,	goes	on	to	state,

The	fact	that	UNIX,	in	particular	Berkeley	UNIX,	has	many	security	flaws
has	 been	 generally	 well	 known,	 as	 indeed	 are	 the	 potential	 dangers	 of
viruses	 and	 worms	 in	 general.	 Although	 such	 security	 flaws	 may	 not	 be
known	to	the	public	at	large,	their	existence	is	accepted	by	those	who	make
use	of	UNIX.	It	is	no	act	of	genius	or	heroism	to	exploit	such	weakness.	A
community	of	scholars	should	not	have	to	build	walls	as	high	as	the	sky	to
protect	 a	 reasonable	 expectation	 of	 privacy,	 particularly	when	 such	walls
will	 equally	 impede	 the	 free	 flow	 of	 information.	 Besides,	 attempting	 to
build	 such	 walls	 is	 likely	 to	 be	 futile	 in	 a	 community	 of	 individuals
possessed	 of	 all	 the	 knowledge	 and	 skills	 required	 to	 scale	 the	 highest
barriers.40

I	can	accept	their	view	of	the	Internet	as	a	“community	of	scholars”	rather	than
the	 early	 version	 of	 the	 most	 important	 thing	 ever,	 since	 this	 was	 1989,	 but
beyond	that	it’s	hard	to	know	where	to	start	with	this.	The	casual	acceptance	of
exploitable	code?	The	backhanded	denigrating	of	Morris’s	technical	skills?	The
conflating	of	“don’t	call	the	verkakte	gets()	API”	with	impeding	the	free	flow



of	information?	The	main	thing	is	that	this	accurately	captures	the	palms-to-the-
sky,	what-are-you-gonna-do	attitude	of	programmers	toward	buffer	overflows.
It	 is	 also	 hard	 to	 separate	 C	 from	 UNIX;	 they	 were	 made	 for	 each	 other.

Niklaus	Wirth	described	 it	 this	way:	“In	 its	 tow	UNIX	carried	 the	 language	C,
which	 had	 been	 explicitly	 designed	 to	 support	 the	 development	 of	 UNIX.
Evidently,	it	was	therefore	at	least	attractive,	if	not	even	mandatory	to	use	C	for
the	development	of	applications	running	under	UNIX,	which	acted	like	a	Trojan
horse	for	C.”41	The	finger	daemon	required	interacting	with	the	network,	which
is	 not	 something	 that	 any	 programming	 language	 supported	 with	 its	 standard
API,	 but	 on	 UNIX,	 where	 C	 was	 the	 language	 of	 choice,	 there	 were	 API
available	in	C	that	let	you	send	and	receive	network	messages,	so	naturally	the
finger	daemon	was	written	in	C.
“From	 the	 point	 of	 view	 of	 software	 engineering,	 the	 rapid	 spread	 of	 C

represented	a	great	leap	backward,”	continued	Wirth,

It	revealed	that	the	community	at	large	had	hardly	grasped	the	true	meaning
of	 the	 term	 “high-level	 language”	 which	 became	 an	 ill-understood
buzzword.	…	The	widespread	 run	 on	C	 undercut	 the	 attempt	 to	 raise	 the
level	of	software	engineering,	because	C	offers	abstractions	which	 it	does
not	 in	 fact	 support:	 Arrays	 remain	 without	 index	 checking,	 data	 types
without	 consistency	 check,	 pointers	 are	 merely	 addresses	 where	 addition
and	 subtraction	 are	 applicable.	 One	 might	 have	 classified	 C	 as	 being
somewhere	between	misleading	and	even	dangerous.	But	on	 the	contrary,
people	 at	 large,	 particularly	 in	 academia,	 found	 it	 intriguing	 and	 “better
than	assembly	code,”	because	it	featured	some	syntax.42

I	wasn’t	 just	 intrigued	 by	C	 because	 it	 “featured	 some	 syntax”;	 I	 found	 the
very	 things	 that	 Wirth	 is	 criticizing	 to	 be	 the	 most	 appealing	 features	 of	 C.
Indeed,	when	I	heard	about	the	Morris	worm	exploiting	a	buffer	overflow	in	C
code,	I	thought	to	myself,	“That’s	kind	of	clever!”	Even	one	of	the	reports	on	the
worm	referred	 to	 the	 finger	daemon	buffer	overflow	as	 the	“neatest	hack”	 that
the	worm	did.43
More	 important,	 there	 was	 no	 feeling	 after	 the	 fact	 that	 anything	 was

fundamentally	 wrong	 with	 writing	 network-facing	 system	 tools	 in	 C.	 The
episode	was	viewed	as	 the	 result	of	 a	 single	mistake,	which	had	been	 fixed	 in
newer	 versions	 of	 the	 finger	 daemon,	 and	 the	 problem	 was	 solved.	 Nobody
thought,	 “Gee,	 there	 might	 be	 a	 lot	 more	 of	 these	 out	 there.”	 As	 mentioned,
programmers	 were	 self-taught,	 and	 this	 tended	 to	 lead	 to	 a	 certain	 lack	 of
introspection.	It	certainly	never	occurred	to	me	that	my	code	might	have	similar



bugs.	 I	was	confident	 that	 I	could	get	 the	math	 right	when	dealing	with	buffer
and	array	lengths.
Whatever	 rules	 you	 feel	 that	 the	 “structured	 programming”	 movement	 was

trying	 to	 enforce,	 it	 clearly	had	an	effect	on	what	programmers	did.	Even	 if	 it
boiled	down	to	“don’t	use	GOTOs	indiscriminately,”	the	message	managed	to	get
through	to	me,	despite	having	taught	myself	to	program	in	GOTO-infested	Fortran
and	BASIC.	But	C	was	like	one	of	those	foreign	spies	raised	in	a	simulated	US
village	who	passes	the	eye	test	when	they	arrive	in	the	United	States:	it	clearly
was	 structured,	 in	 that	 it	 supported	 the	 sequence/selection/iteration	model	 and
did	not	require	GOTO	statements.	Yet	a	dark	heart	lurked	inside	it,	which	was	not
only	missed	by	people	like	me	but	also	celebrated	as	representing	freedom	from
our	old	fetters.
The	 C	 language	 didn’t	 only	 enable	 charismatic	 megafailures	 such	 as	 the

Morris	worm.	Code	that	accidentally	indexed	off	the	end	of	an	array	could	cause
all	sorts	of	subtle	failures.	If	your	code	read	a	value	past	the	end	of	an	array,	the
program	might	 crash,	 but	 it	 also	might	 successfully	 read	memory	 intended	 for
another	 use,	 which	 might	 vary	 each	 time	 you	 ran	 the	 program.	 If	 your	 code
wrote	 to	 memory	 past	 the	 end	 of	 an	 array,	 you	 might	 corrupt	 another	 data
structure	in	memory,	again	in	an	unpredictable	way;	when	you	tried	to	debug	the
problem,	 you	would	 have	 no	way	 of	 knowing	what	 code	 had	written	 the	 bad
value.	You	might	have	a	bug	that	happened	every	time,	but	in	a	slightly	different
way,	which	is	extremely	tricky	to	diagnose.	At	one	point	during	the	development
of	Windows	NT,	a	fellow	programmer	was	debugging	such	an	error,	where	his
data	structure	was	being	randomly	corrupted	by	unknown	code.	I	can	still	recall
the	bleak	 look	on	his	 face	as	he	contemplated	scanning	 reams	of	code	 looking
for	the	problem.
There	were	naysayers	at	the	time	C	appeared.	The	above	quote	from	Wirth	is

from	a	retrospective	article	he	wrote	in	2008,	but	he	was	always	opposed	to	the
amount	of	rope	that	C	handed	to	programmers.	In	1979,	Wirth	came	out	with	the
language	 Modula-2,	 a	 successor	 to	 Pascal,	 which	 was	 also	 designed	 to	 be
powerful	and	performative	enough	to	write	an	operating	system	in	(specifically,
a	system	called	Lilith	that	Wirth	also	wrote,	so	I	assume	the	performance	claim
was	accurate),	and	that	had	bounds-checked	array	lookup.	Modula-2	was	swept
aside	in	the	C/UNIX	landslide;	the	tagline	“an	improved	version	of	Pascal,”	if	it
ever	 reached	my	ears,	would	undoubtedly	have	 failed	 to	 impress,	and	Wirth,	a
true	titan	in	the	annals	of	computer	science,	would	have	been	unfairly	dismissed
as	a	grumpy	guy	who	probably	couldn’t	write	correct	pointer	code.
OK,	fine,	you	are	saying.	Buffer	overflows	can	happen.	Yet	are	programmers

really	 that	 stupid?	 Maybe	 you	 can	 grant	 them	 that	 people	 make	 arithmetic



mistakes	counting	bytes,	and	perhaps	you	can	understand	the	part	about	trusting
the	return	address	on	 the	stack,	 if	you	don’t	 think	 there	 is	any	way	for	 it	 to	be
tampered	with.	But	why,	 for	heaven’s	sake,	are	you	even	storing	 the	untrusted
user’s	message	anywhere	near	the	trusted	return	address?	Why	not	put	the	user’s
message	 somewhere	 else,	 where	 even	 if	 you	 botched	 the	 handling	 of	 it,	 it
wouldn’t	allow	you	to	be	taken	over	by	an	exploit?	And	why	not	write	the	whole
thing	 in	 a	 language	 that	 keeps	 track	 of	 buffer	 lengths	 and	prevents	 them	 from
overflowing?
This	last	 is	an	excellent	question.	You	can	do	it	 that	way,	and	a	lot	of	newer

languages	do,	which	is	why	the	C#	string	manipulation	code	that	we	have	seen	is
so	much	 simpler	 than	what	 is	 required	 in	C.	But	 the	question	boils	 down	 to	 a
deeper	 question	 in	 programming—one	 known	 as	 “errors	 versus	 exceptions.”
And	therein,	as	they	say,	lies	a	tale,	which	I	will	get	to	a	few	chapters	from	now.
First,	 though,	 I’ll	 consider	 the	 more	 prosaic	 question	 of	 how	 programmers
determine	if	their	software	is	going	to	work	at	all.
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5 
Making	It	Right

The	term	“software	crisis”	is	not	heard	as	much	today,	but	there	was	a	lot	of	talk
about	it	in	the	1960s.	As	Matti	Tedre	relates	in	his	well-researched	2015	history
The	Science	of	Computing:	Shaping	a	Discipline,

In	 the	 course	 of	 the	 1960s,	 computing’s	 development	 curve	was	 about	 to
break.	The	complexity	of	computer	systems	had	all	but	met	the	limits	of	the
popular	 software	 development	 methods	 of	 the	 time.	 The	 crisis	 rhetoric
entered	computing	parlance	over	the	first	half	of	the	1960s.	…	By	the	end
of	 the	 1960s	 project	 managers,	 programmers,	 and	 many	 academics	 alike
had	grown	so	weary	of	the	blame	and	shame	that	immediate	improvements
were	deemed	necessary.

(Tedre	 also	 comments,	 “The	 crisis	 talk	 that	 was	 rooted	 in	 the	 1960s	 and
popularized	 in	 the	 early	 1970s	 has	 remained	 with	 computing	 ever	 since—
whether	 or	 not	 a	 decades-long	 quagmire	 of	 problems	 should	 be	 called	 ‘crisis’
anymore.”)1
In	 1968,	 the	 North	 Atlantic	 Treaty	 Organization	 (NATO)	 sponsored	 a

conference	 in	Garmisch,	Germany,	bringing	 together	 academia	and	 industry	 to
discuss	these	problems.	This	conference	was	a	seminal	moment	in	the	history	of
software	 engineering	 (for	 one	 thing,	 it	 popularized	 the	 term),	 although	 its	 net
effect	is	unclear.	The	conference	report	laid	out	all	the	problems	in	software	that
continue	 to	 plague	 us	 today—reliability,	management,	 scheduling,	 testing,	 and
so	on.2	Then	again,	many	writers	were	describing	the	same	problems	at	the	same
time;	the	issues	weren’t	a	secret	to	anybody	who	had	written	nontrivial	software.
Some	 have	 described	 the	 conference	 as	 a	 critical	 point	 in	 the	 schism	 between
industry	and	academia,	especially	after	a	follow-up	conference	in	Rome	the	next
year	devolved	into	a	more	explicit	division	between	theorists	and	practitioners.3
Then	there	is	a	theory	that	the	whole	thing	was	part	of	a	fiendish	plot	by	Dijkstra
to	get	people	to	pay	more	attention	to	his	notions	of	structured	programming.4



Whatever	the	NATO	conferences	did	or	did	not	accomplish,	the	root	cause	of
all	this	concern	was	that	programmers	couldn’t	figure	out	how	to	write	software
without	 bugs.	 The	 problems	 in	 software	 engineering	 to	 this	 day	 either	 relate
directly	to	bugs	(reliability	and	testing)	or	to	dealing	with	the	unpredictability	of
bugs	(management	and	scheduling).
Just	what	are	software	bugs?	Although	it	might	feel	like	a	bug	when	software

doesn’t	 perform	 the	way	 the	 user	 expects,	 from	 a	 programmer’s	 perspective	 a
bug	is	when	the	software	doesn’t	perform	the	way	the	programmer	expected.	To
them,	 bugs	 are	 surprises.	 There	 are	 books	 devoted	 to	 the	 issue	 of	 what
programmers	 expect	 versus	 what	 normal	 people	 do,	 and	 who	 should	 be
designing	the	software	and	setting	the	expectations,	but	that	is	a	separate	topic.5
Certainly,	 many	 changes	 to	 software	 are	 made	 because	 the	 user	 wanted	 the
software	 to	 operate	 differently	 from	 the	 way	 it	 was	 designed	 to	 work,	 but	 I
consider	 those	 to	 be	 “enhancements”	 rather	 than	 “bugs.”	Donald	Knuth,	while
categorizing	 the	 changes	 he	 made	 to	 a	 large	 software	 package,	 provided	 the
cleanest	 differentiation:	 “I	 felt	 guilty	when	 fixing	 the	 bugs,	 but	 I	 felt	 virtuous
when	making	the	enhancements.”6
Actually,	the	term	bug	 is	used	too	broadly.	People	who	study	software	errors

talk	 about	 three	 levels:	 defect,	 fault,	 and	 failure.7	 Those	 terms	 are	 not	 used
consistently	(even	by	me,	I’m	sure);	typically	for	software	engineering,	there	has
not	been	enough	 study	of	 the	matter	 to	bring	about	 any	 standardization.	Some
writers	 use	 infection	 instead	 of	 fault,	 and	 the	word	bug	 is	 sprinkled	 around	 to
mean	any	or	all	of	them.	For	our	purposes,	I’ll	define	them	as	follows.	A	defect
is	an	actual	flaw	in	the	code:	the	mistake	that	a	programmer	makes.	The	running
program	 logic,	 viewed	 at	 a	 certain	 level,	 consists	 of	 manipulating	 data	 in	 the
memory	of	a	computer	(what	Dijkstra,	 in	his	complaint	about	GOTOs,	called	the
process);	at	some	point	a	piece	of	memory	will	have	the	wrong	value	in	it,	due	to
the	defect	in	the	code—this	is	the	fault.	Finally,	this	fault	will	cause	an	error	that
is	noticeable	to	the	user—the	failure.
Not	 every	 code	 defect	 will	 cause	 a	 fault;	 it	 must	 be	 executed	 under	 the

necessary	conditions.	If	you	recall	the	Year	2000,	or	Y2K,	bug,	one	of	the	fears
was	 that	 software	 that	 stored	 the	 year	 in	 two	 digits	 as	 opposed	 to	 four	would
make	wrong	decisions	about	durations	of	 time	when	 the	year	 rolled	over	 from
1999	to	2000.	For	example,	the	code	controlling	a	nuclear	reactor	might	contain
this	(where	the	two	vertical	bars,	||,	mean	“or”):

years_since_service	=	this_year	-	year_of_last_service;

if	(years_since_service	==	0	||

														years_since_service	==	1)	{



				//	we	are	OK,	was	serviced	this	year	or	last

}	else	{

				//	haven’t	been	serviced	in	2+	years,	help!

				initiate_emergency_shutdown();

}

If	the	variables	holding	the	year	values	(this_year	and	year_of_last_service)
are	 storing	 only	 the	 last	 two	 digits,	 then	 this	 code	 has	 a	 defect,	 but	 it	 only
manifests	 itself	 as	 a	 fault	 in	 the	 year	 2000,	 when	 this_year	 is	 00	 and
year_of_last_service	is	99.8	The	code	will	calculate	that	it	has	been	–99	years
since	 the	 last	 service,	 which	 is	 not	 equal	 to	 the	 values	 of	 0	 or	 1	 that	 the	 IF
statement	 is	 looking	 for,	 and	 decide	 to	 initiate	 an	 emergency	 shutdown.	 That
value	 of	 –99	 in	 years_since_service	 is	 the	 fault,	 and	 the	 call	 to
initiate_emergency_shutdown()	 would	 (presumably)	 cause	 a	 visible	 failure,
but	the	defect	could	lurk	for	years	before	the	fault	and	then	the	failure	actually
arose.
Conversely,	there	may	be	no	defect;	storing	dates	as	two	digits	doesn’t	require

that	 the	 code	 behave	 this	 way.	 It	 could	 be	 written	 such	 that	 when	 it	 sees	 an
unusual	 value	 like	 –99	 for	 years_since_service,	 it	 assumes	 that	 we	 have
crossed	a	century	boundary	and	handles	the	situation	correctly.	This	is	why	there
was	such	debate,	ahead	of	time,	about	what	failures	would	result	from	the	Y2K
bug—unlike	 in	 civil	 engineering,	 say,	 where	 you	 can	 reasonably	 assess	 the
condition	of	a	bridge	and	how	much	it	will	cost	to	repair	it,	it	is	very	difficult	to
determine	 how	 failure-prone	 a	 piece	 of	 software	 is.	 In	 the	 end	 the	 year	 2000
brought	some	minor	problems,	with	automated	 ticket	machines	not	working	or
websites	displaying	an	incorrect	date,	but	no	major	disruptions.9	Given	that	a	lot
of	software	had	been	patched	or	replaced	in	the	years	leading	up	to	2000,	it	will
likely	 never	 be	 known	 how	 severe	 the	 problem	would	 have	 been	 had	 it	 been
ignored.
The	code	above	is	a	dramatization	of	a	bug;	most	are	more	subtle,	and	don’t

involve	 nuclear	 reactors	 and	 APIs	 named	 initiate_emergency_shutdown().
And	 to	 be	 fair	 to	 the	 authors	 of	 Y2K-suspect	 code,	 many	 assumed	 that	 their
software	 would	 be	 replaced	 long	 before	 the	 year	 2000	 rolled	 around,	 so	 they
didn’t	bother	writing	 it	 in	a	Y2K-safe	way.	The	key	point	 to	appreciate	 is	 that
when	 reading	 the	 code	 above,	 it	 is	 not	 obvious	 that	 there	 is	 a	 defect	 that	will
cause	an	API	to	be	called	when	it	is	not	supposed	to	be	(and	in	many	cases,	the
source	code	for	old	software	isn’t	available	to	be	read).
Not	 every	 defect	 will	 cause	 a	 fault,	 but	 every	 fault	 is	 caused	 by	 a	 defect

(leaving	out	hardware	problems,	which	I	will	do).	Faults	don’t	just	happen	with
nobody	being	to	blame;	they	happen	due	to	defects	in	the	code,	and	if	the	code



had	 no	 defects,	 they	 wouldn’t	 happen.	 Furthermore,	 they	 happen
deterministically	 if	 the	 right	 repro	 steps	 are	 followed.	Every	 time	 you	 execute
the	defective	code	under	the	right	conditions—in	the	example	above,	in	the	year
2000,	 when	 the	 reactor	 was	 last	 serviced	 in	 1999—the	 fault	 and	 failure	 will
happen.
So	you	have	your	fault—the	bad	data	in	memory.	Yet	just	as	not	every	defect

causes	a	fault,	not	every	fault	will	cause	a	failure.	To	turn	a	fault	into	a	failure,
the	bad	value	in	memory	is	read	by	code	further	along,	which	may	lead	to	further
bad	 data,	 which	 is	 read	 by	 other	 code,	 and	 so	 on,	 until	 the	 effect	 of	 the	 bad
memory	becomes	visible	to	the	user—a	nuclear	reactor	shuts	down,	perhaps,	but
more	commonly	an	icon	on	the	screen	is	 in	the	wrong	place,	a	character	 is	not
visible,	the	spreadsheet	shows	the	wrong	value,	or	if	things	are	wrong	in	exactly
the	right	way,	the	program	will	crash,	which	we’ll	get	to	in	a	moment.	It’s	also
possible,	 though,	 that	 this	whole	chain	of	events	may	not	 link	up;	 the	incorrect
value	in	memory	may	not	be	used	by	any	future	code,	so	it	may	not	matter	that	it
was	incorrect.
Consider	an	underage	person	who	goes	into	a	bar	and	shows	identification	to

prove	 that	 they	 are	 twenty-one	 years	 old,	 the	 legal	 drinking	 age	 in	 the	United
States.	Imagine	that	the	bouncer	only	considers	the	year	in	which	somebody	was
born	 and	 therefore	 will	 think	 a	 person	 is	 twenty-one	 even	 if	 they	 will	 turn
twenty-one	later	this	year,	but	have	not	yet	had	their	birthday.	That	flaw	in	the
bouncer’s	thinking	is	the	defect	(assume	the	bouncer	always	makes	this	mistake
in	 a	 consistent	way,	 as	 a	 computer	program	would).	Now	 imagine	 further	 that
the	 bouncer	 looks	 at	 the	 twenty-year-old’s	 identification	 and	 decides	 that	 the
person	is	of	legal	age.	That	is	now	the	fault;	in	software	terms,	you	could	think
of	this	as	the	bouncer	having	the	“are	they	of	legal	age?”	variable	set	to	“true”
when	it	should	have	been	“false.”	Note	that	the	defect	didn’t	have	to	cause	this
fault—the	person	might	have	already	had	their	birthday	this	year,	or	maybe	they
were	eighteen	or	twenty-three,	so	the	defective	calculation	didn’t	matter—but	in
the	exact	set	of	circumstances,	the	bouncer	will	make	the	mistake.
So	 now	we	 have	 the	 fault,	whereby	 the	 bouncer	 thinks	 that	 the	 person	 is	 of

legal	 drinking	 age.	 This	will	 not	 automatically	 cause	 the	 failure	 of	 letting	 the
person	 into	 the	 bar.	 Perhaps	 the	 bouncer	 will	 decide	 that	 the	 person	 is	 not
dressed	appropriately	and	deny	them	entrance	for	that	reason.	Perhaps	there	will
be	a	second	identification	check	by	somebody	else	who	does	the	math	correctly.
Maybe	the	person,	as	they	are	about	to	enter	the	bar,	will	receive	a	text	message
inviting	them	to	go	somewhere	else.	Still,	if	none	of	that	happens,	then	we	will
have	an	underage	person	in	the	bar,	which	is	the	visible	failure,	which	could	be
traced	back	 to	 the	 fault,	which	could	 then	be	 traced	back	 to	 the	defect.	And	 if



you	fixed	the	defect,	by	either	training	the	bouncer	to	calculate	ages	properly	or
hiring	 a	 new	bouncer,	 then	 that	 specific	way	 of	 generating	 the	 fault	would	 be
removed	and	thus	would	never	cause	a	failure.
This	fix	would	not	prevent	underage	people	from	ever	being	admitted	to	a	bar;

it	would	just	mean	that	 this	particular	sequence	of	defect	 to	fault	 to	failure	has
been	prevented.	You	may	have	other	 faults	 that	 lead	 to	 the	exact	 same	failure,
which	 can	 make	 it	 hard	 to	 figure	 out	 what	 is	 going	 on.	 You	 might	 fire	 that
bouncer,	offer	math	classes	to	the	rest,	and	yet	next	week	the	police	come	by	and
find	another	twenty-year-old	ordering	drinks.
The	repro	steps	of	software	bugs	are	typically	reported	in	terms	of	the	failure

(the	 problem	 visible	 to	 the	 user),	 and	 debugging	 them	 consists	 of	 two	 parts:
finding	 the	 fault	 (the	 bad	 value	 in	 the	 computer’s	memory),	 and	 using	 that	 to
track	down	the	defect	(the	code	error).	Finding	the	fault	can	be	tricky,	because
what	you	need	to	find	is	the	first	fault,	which	may	quickly	metastasize	into	a	set
of	 faults,	 as	 variables	 are	 assigned	 values	 calculated	 from	 the	 faulty	 values	 of
other	 variables.	 Debugging	 often	 consists	 of	 running	 the	 program	 for	 a	 bit,
examining	the	contents	of	memory,	determining	them	to	be	fine,	running	it	a	bit
more,	 realizing	 that	 the	 contents	 of	memory	 have	 gotten	messed	 up,	 and	 then
repeating	 this	 in	 smaller	 increments,	 trying	 to	 narrow	 down	 the	 point	 of	 first
fault	(this	is	why	having	reliable	repro	steps	on	a	bug	is	so	important).	Once	the
first	 fault	 is	 found,	 the	code	defect	 is	generally	obvious,	although	 this	assumes
you	 are	 familiar	 with	 the	 code—hence	 the	 added	 difficulty	 of	 debugging
somebody	else’s	code.	The	proper	way	to	fix	the	defect,	of	course,	is	subject	to
the	usual	debate.
Broadly	 speaking,	 there	 are	 three	 types	 of	 failures:	 crashes,	 hangs,	 and	 just

plain	 misbehaviors.	 Crashes	 are	 the	 most	 dramatic	 kind	 of	 failure,	 when	 the
program	stops	running	unexpectedly;	 they	usually	happen	because	the	program
tries	to	access	memory	that	has	not	been	allocated	to	it.	As	we’ve	discussed,	in	C
a	pointer	is	 just	a	number,	which	is	not	guaranteed	to	be	the	address	of	a	valid
memory	location.	For	one	thing	pointers	are	frequently	initialized	to	0,	known	as
the	null	pointer,	which	will	cause	a	crash	if	it’s	used	to	access	memory	(although
the	first	byte	of	memory	in	a	computer	is	nominally	at	address	0,	that	location	is
marked	as	off-limits	to	programs).	Since	C	doesn’t	do	array	bounds	checks,	any
slightly	 out-of-bounds	 array	 index	 may	 result	 in	 a	 bad	 pointer	 crash	 (which
arguably,	 is	better	 than	silently	reading	bad	data,	which	might	also	happen).	In
languages	 that	 do	 have	 runtime	 bounds	 checking,	 the	 program	 will	 be
intentionally	 crashed	 if	 an	 out-of-bounds	 array	 index	 is	 detected,	 which	 is	 a
slightly	 cleaner	 experience	 conceptually,	 but	 isn’t	much	 better	 from	 the	 user’s
perspective.10



If	 a	 program	does	 not	 crash	 but	 instead	 hangs,	 it	 is	 likely	 stuck	 in	 a	 loop.	 I
have	shown	examples	of	simple	loops:

FOR	I	=	1	TO	10

				PRINT	I

NEXT

so	you	might	wonder	 how	 such	 code	 can	get	 stuck,	 but	many	 loops	 are	much
more	complicated.
One	 form	of	 loop	 is	 called	 the	WHILE	 loop,	which	 terminates	when	 a	 logical

expression	 is	 false.	A	widely	 reported	bug	 in	a	WHILE	 loop	caused	Microsoft’s
Zune	music	 player	 to	 hang	when	 it	 tried	 to	 boot	 on	December	 31,	 2008.	 The
clock	on	the	device	stored	the	date	as	the	number	of	days	since	January	1,	1980,
which	 took	 up	 less	 space	 than	 storing	 a	 full	 date	 and	 made	 calculating	 date
ranges	easier;	in	order	to	convert	that	date	to	a	year	for	displaying	to	the	user,	it
had	this	code,	which	starts	with	the	year	1980	and	lops	off	one	year’s	worth	of
days	from	the	date,	until	it	gets	to	the	current	year:11

year	=	1980;

while	(days	>	365)	{

			if	(IsLeapYear(year))	{

						if	(days	>	366)	{

									days	-=	366;

									year	+=	1;

						}

			}

			else	{

						days	-=	365;

						year	+=	1;

			}

}

If	 you	want	 to	 read	 this	 code,	 it’s	 best	 to	 first	 pretend	 that	 leap	 years	 don’t
exist,	so	IsLeapYear(year)	is	always	false;	then	the	code	is	starting	with	a	days
value	 and	 going	 through	 the	 ELSE	 block	 of	 the	 if	 (IsLeapYear(year))

statement,	doing	this	over	and	over:

while	(days	>	365)	{

			days	-=	365;

			year	+=	1;

}

which	is	a	reasonable	(if	slightly	inefficient	in	this	case)	way	to	figure	it	out.	If
the	 number	 of	 days	 still	 to	 be	 accounted	 for,	 as	 stored	 in	 the	 variable	 named



days,	 is	more	 than	365,	 then	 add	 a	 year	 and	 subtract	 off	 those	365	days,	 then
loop	back	and	check	again.
From	there,	you	can	see	that	the	“true”	branch	of	the	IF	covers	the	special	case

of	 leap	 years,	 subtracting	 off	 366	 (rather	 than	 365)	 from	 days	 to	 account	 for
them.	Again,	there	is	nothing	logically	wrong	with	this.
The	code	works	correctly	on	any	day	that	is	not	December	31	of	a	leap	year.

Unfortunately,	 on	 December	 31	 of	 a	 leap	 year	 it	 loops	 forever:
IsLeapYear(year)	is	true	when	year	reaches	the	current	year,	and	once	the	code
is	 done	 chopping	 days	 down	 to	 account	 for	 every	 year	 between	 1980	 and	 last
year,	 then	days	will	be	366	(December	31	being	the	366th	day	of	a	leap	year),
but	the	code	only	checks	if	days	is	greater	than	366;	if	days	is	exactly	366,	then
the	code	won’t	change	it	at	all,	and	the	WHILE	loop	will	iterate	again	and	again—
it’s	 the	 “Lather.	 Rinse.	 Repeat.”	 instructions	 from	 the	 shampoo	 bottle,	writ	 in
code	(meanwhile,	if	days	is	less	than	366,	on	any	earlier	day	in	a	leap	year,	the
while	(days	>	365)	loop	will	have	exited	already).	In	addition	to	checking	for
days	being	greater	 than	366,	as	 it	does,	 the	code	needs	an	additional	check	for
days	being	equal	to	366	so	it	can	break	out	of	the	loop	in	that	case	(there	are	also
myriad	other	ways	to	rework	the	code	to	avoid	the	bug).
The	defect	is	this	missing	code;	the	fault	is	days	remaining	at	366	forever;	and

the	failure	is	the	visible	hang—the	Zune	would	not	boot	on	that	day.	As	with	the
Y2K	bug,	this	defect	lurked	for	a	while	before	causing	a	fault,	from	the	time	the
Zune	 was	 released	 in	 November	 2006	 until	 the	 first	 time	 the	 calendar	 had	 a
366th	day	in	a	year,	on	December	31,	2008	(when	days	entered	the	above	loop
with	a	value	of	exactly	10,593).
Crashes	 and	 hangs	 are	 rarer	 than	 the	 “just	 plain	 misbehaving”	 category.

Whether	code	bugs	cause	the	application	to	crash,	hang,	or	misbehave	is	usually
a	matter	of	luck,	unrelated	to	the	difficulty	of	the	code	being	written.	In	the	Zune
example,	 a	 slight	 tweak	 would	 produce	 code	 that	 didn’t	 hang	 but	 instead
reported	December	31	of	a	leap	day	as	“January	0,”	and	if	the	code	then	tried	to
look	up	day	number	0	in	an	array,	it	could	easily	crash	on	a	bad	array	access.	All
these	 would	 appear	 as	 roughly	 the	 same	 code;	 there	 is	 nothing	 obvious	 in	 a
defect	that	indicates	what	sort	of	failure	the	fault	will	cause.
Complicating	 the	 situation	 is	 that	 the	 problem	may	not	 even	be	 in	 code	 that

you	can	look	at;	as	in	other	areas	of	programming,	you	are	at	 the	mercy	of	the
API	you	are	calling.	You	can	call	an	API	that	normally	works,	and	then	suddenly
it	 crashes,	 or	 hangs,	 or	 does	 the	 wrong	 thing	 (the	 Zune	 hang	 bug	was	 not	 in
Microsoft’s	 code	but	 instead	 in	 the	 implementation	 of	 an	API	 that	 it	 got	 from
another	 company,	 which	 Microsoft’s	 code	 called	 during	 the	 Zune	 start-up
sequence).	 Doing	 the	 wrong	 thing	 often	 means	 that	 the	 API	 returns	 an	 error



rather	 than	 succeeding,	 at	which	 point	 the	 code	 calling	 the	API	 has	 to	 decide
what	to	do.	Does	it	shrug	its	shoulders	and	show	the	user	the	unexpected	error?
Does	it	call	the	API	again	in	hopes	that	it	succeeds?	Does	it	do	something	clever
to	preserve	the	user’s	work?	All	this	requires	that	more	code	be	written,	so	it’s
up	 to	 the	programmer’s	 judgment	about	how	 likely	an	API	 is	 to	 fail,	 and	how
much	work	it	is	worth	doing	to	deal	with	that	case	in	a	clean	way.
One	notorious	example	of	software	being	at	the	mercy	of	an	API	it	was	calling

was	in	the	original	version	of	DOS	that	shipped	with	the	IBM	PC	in	1981.	If	a
program	called	an	API	that	DOS	provided	to	save	a	file	to	a	disk—which	back
then	 was	 a	 removable	 5	 ¼-inch	 floppy	 disk—and	 it	 failed,	 DOS	 itself	 would
prompt	with	a	message	asking	the	user	to	“Abort,	Retry,	Ignore.”	Abort	crashed
the	program	immediately,	and	Ignore	pretended	that	the	operation	worked	even
though	it	hadn’t—neither	of	which	was	a	particularly	useful	choice	(as	the	DOS
manual	noted	 in	 regard	 to	 Ignore,	“This	 response	 is	not	 recommended	because
data	is	lost	when	you	use	it”).12	Retry	would	try	again,	which	could	handle	the
most	trivial	case	(when	the	user	forgot	to	insert	a	floppy	disk	in	the	drive),	but
then	you	would	be	stuck	in	the	Retry	loop	until	you	inserted	a	floppy	disk.	From
the	 perspective	 of	 the	 program	 calling	 the	 API,	 this	 was	 all	 done	 under	 the
covers;	 the	API	call	would	not	return	until	 the	operation	had	been	successfully
retried	or	the	error	ignored.	Programs	could	avoid	getting	stuck	in	this	DOS	error
prompt,	but	 it	 required	writing	extra	code,	which	some	programmers	neglected
to	do.13	At	one	point	in	the	early	days	of	the	IBM	PC,	whether	a	program	such	as
a	word	processor	could	handle	a	missing	floppy	without	crashing	and	losing	data
was	 a	 point	 of	 evaluation	 in	 magazine	 reviews.	 A	 fourth	 option,	 “Fail,”	 was
eventually	added	to	the	choices	in	an	update	of	DOS,	allowing	the	API	to	return
to	 the	program	with	an	error	and	giving	 the	program	the	opportunity	 to	decide
how	to	proceed.
Conceptually	 the	same	thing	can	happen	 in	a	car	crash:	 the	car	 is	calling	 the

tire	“API”	and	asking	it	to	provide	adhesion	to	the	road,	and	if	the	tire	fails	to	do
so,	 the	 car	 may	 crash.	 But	 the	 tire	 has	 been	 tested	 and	 certified	 to	 operate	 a
certain	way.	Think	of	all	the	other	engineered	objects	with	which	you	interact	in
your	daily	life,	such	as	every	railing	you	lean	on,	every	electric	device	you	plug
in,	or	every	medication	you	 take.	You	expect	 these	 to	work	every	 single	 time,
over	 and	 over,	without	 randomly	 “crashing,”	 and	 because	 you	 expect	 this,	 the
people	who	engineer	these	products	put	a	 lot	of	research	and	design	effort	 into
making	sure	 that	 they	do	work.	The	 tire	 that	blows	out	and	causes	your	car	 to
crash	was	made	by	people	who	expect	it	to	never	fail	catastrophically	if	used	as
intended,	and	were	subject	to	regulations	designed	to	prevent	such	failures.	And



most	 important,	 if	 it	 fails,	 they	understand	 that	 they	have	 failed	 in	 some	small
way	and	try	to	prevent	it	in	the	future—despite	the	fact	that	tires	suffer	physical
wear	and	tear	that	makes	failures	more	likely,	unlike	software.
When	you	call	an	API	to	figure	out	what	year	it	is,	there	is	no	way	to	know	if

it	 is	 going	 to	 suddenly	 fail,	 hang,	 or	 crash	 just	 because	 we	 happen	 to	 be	 on
December	31	of	a	leap	year.	As	with	the	term	worm	from	the	Morris	worm	that	I
discussed	in	the	last	chapter,	talk	of	viruses	and	crashes	makes	them	sound	like
bad	 luck	 that	 can	 happen	 to	 anybody,	 and	 thus	 may	 be	 avoided	 due	 to
environmental	 factors,	but	 that’s	misleading.	When	people	 say,	 “It’s	 inevitable
that	 a	 large	program	will	 have	bugs,”	 they	don’t	mean	 inevitable	 in	 the	 sense,
“It’s	 inevitable	 that	 cars	 will	 have	 accidents.”	What	 they	mean	 is,	 “We	 don’t
have	the	proper	software	engineering	techniques	to	root	out	all	defects	so	we’re
not	even	going	to	attempt	to	remove	them	all—and	we’re	not	going	to	improve
the	techniques	either.”
Yet	a	lot	can	be	achieved	by	aiming	for	perfection,	even	if	you	don’t	reach	it.

The	car	company	Volvo	has	set	the	following	goal:	“By	2020	no	one	should	be
killed	or	seriously	injured	in	a	new	Volvo	car.”14	Will	it	achieve	this?	Probably
not.	 But	 it	 sure	 does	 help	 focus	 Volvo	 on	 safety.	 This	 institutionalized
acceptance	 of	 shoddiness	 is	 one	 of	 the	 most	 shameful	 aspects	 of	 software
engineering.	Software	bugs	are	not	 inevitable,	but	 trying	 to	write	software	 that
never	 crashes	 is	 a	 nongoal,	 as	 they	 say,	 for	 the	 current	 crop	 of	 programmers.
And	the	implicit	comparison	to	automobile	crashes	silently	enables	this	attitude.
The	 early	 days	 of	 software	 did	 feature	 a	 significant	 emphasis	 on	 how	 to

produce	completely	bug-free	software.	In	the	years	following	the	1968	and	1969
NATO	 software	 engineering	 conferences,	 two	 books	 appeared	 on	 the	 topic	 of
writing	 better	 software;	 not	 surprisingly,	 both	 were	 titled	 Structured
Programming.	The	first	came	out	in	1972,	and	was	written	by	Ole-Johan	Dahl,
Edsger	Dijkstra,	 and	C.	A.	 R.	Hoare.	 The	 second	 came	 out	 in	 1979,	 and	was
written	by	Richard	Linger,	Harlan	Mills,	and	Bernard	Witt.15	The	first	book	was
written	by	leading	academic	computer	scientists	(Dijkstra	attended	both	NATO
conferences,	 and	Hoare	was	 at	 the	 second),	 and	 IBM	veterans	 (none	of	whom
were	at	either	conference,	although	IBM	was	well	represented	at	both)	wrote	the
second.16
The	 first	 book	 is	 three	 long	 essays:	 “Notes	 on	 Structured	 Programming”	 by

Dijkstra,	 “Notes	 on	 Data	 Structuring”	 by	 Hoare,	 and	 “Hierarchical	 Program
Structures”	 by	 Dahl	 and	 Hoare.	 They	 lay	 out	 the	 basics	 of	 structured
programming,	as	we	have	seen	earlier,	as	well	as	 talking	about	a	 few	common
data	structures	and	how	to	break	a	large	problem	into	smaller	ones.	This	is	not	to



criticize	 the	 work;	 at	 the	 time,	 the	 “structured	 programming”	 debate,	 which
could	 in	 hindsight	 be	 summarized	 as	 the	 “don’t	 use	 GOTOs”	 debate,	 was	 still
being	 fought,	 so	 this	 is	 a	worthwhile	 accomplishment.	As	Knuth	enthused,	 “A
revolution	is	taking	place	in	the	way	we	write	programs	and	teach	programming.
…	 It	 is	 impossible	 to	 read	 the	 recent	 book	 Structured	 Programming	 without
having	it	change	your	life.”17
The	problem	with	the	book	is	summarized	in	a	quote	from	the	book	itself,	in	a

section	of	Dijkstra’s	essay	titled	“On	Our	Inability	to	Do	Much”:

What	I	am	really	concerned	about	is	the	composition	of	large	programs,	the
text	of	which	may	be,	say,	of	the	same	size	as	the	whole	text	of	this	chapter.
Also	 I	 have	 to	 include	 examples	 to	 illustrate	 the	 various	 techniques.	 For
practical	 reasons,	 the	 demonstration	 programs	must	 be	 small,	many	 times
smaller	than	the	“life-size	programs”	I	have	in	mind.	My	basic	problem	is
that	 precisely	 this	 difference	 in	 scale	 is	 one	 of	 the	 major	 sources	 of	 our
difficulties	in	programming!
It	 would	 be	 very	 nice	 if	 I	 could	 illustrate	 the	 various	 techniques	 with

small	demonstration	programs	and	could	conclude	with	“…	and	when	faced
with	a	program	a	thousand	times	as	large,	you	compose	it	in	the	same	way.”
This	common	educational	device,	however,	would	be	self-defeating	as	one
of	my	central	themes	will	be	that	any	two	things	that	differ	in	some	respect
by	a	factor	of	already	a	hundred	or	more,	are	utterly	incomparable.18

Dijkstra’s	solution	to	this	problem	is	to	have	his	essay	contain	little	code	and
focus	 more	 on	 theoretical	 insights,	 and	 the	 essays	 on	 data	 structuring	 and
program	 structure	 also	 confine	 themselves	 to	 theory	 and	 small	 fragments	 of
code.
The	IBM	crew,	meanwhile,	 takes	a	noble	stand	with	 its	goals,	 right	from	the

first	paragraph	in	the	book:

There	is	an	old	myth	about	programming	today,	and	there	is	a	new	reality.
The	 old	 myth	 is	 that	 programming	 must	 be	 an	 error	 prone,	 cut-and-try
process	of	frustration	and	anxiety.	The	new	reality	is	that	you	can	learn	to
consistently	design	and	write	programs	that	are	correct	from	the	beginning
and	that	prove	to	be	error	free	in	their	testing	and	subsequent	use.	…
Your	programs	should	ordinarily	execute	properly	 the	 first	 time	you	 try

them,	 and	 from	 then	 on.	 If	 you	 are	 a	 professional	 programmer,	 errors	 in
program	 logic	 should	 be	 extremely	 rare,	 because	 you	 can	 prevent	 them
from	entering	your	programs	by	positive	action	on	your	part.	Programs	do
not	 acquire	 bugs	 as	 people	 do	 germs—just	 by	 being	 around	 other	 buggy



programs.	They	acquire	bugs	only	from	their	authors.19

What	about	Dijkstra’s	point	about	scaling,	keeping	in	mind	that	this	book	was
written	by	people	who	had	been	involved	in	writing	some	of	the	largest	software
of	 the	day	and	so	 leaving	 them	acutely	aware	of	 the	problem?	The	 IBM	 trio’s
answer	is,

It	 will	 be	 difficult	 (but	 not	 impossible)	 to	 achieve	 no	 first	 error	 in	 a
thousand-line	 program.	 But,	 with	 theory	 and	 discipline,	 it	 will	 not	 be
difficult	 to	achieve	no	 first	error	 in	a	 fifty-line	program	nine	 times	 in	 ten.
The	 methods	 of	 structured	 programming	 will	 permit	 you	 to	 write	 that
thousand-line	 program	 in	 twenty	 steps	 of	 fifty	 lines	 each,	 not	 as	 separate
subprograms,	 but	 as	 a	 continuously	 expanding	 and	 executing	 partial
program.	If	eighteen	of	those	twenty	steps	have	no	first	error,	and	the	other
two	 are	 readily	 corrected,	 you	 can	 have	 very	 high	 confidence	 in	 the
resulting	thousand-line	program.20

Worthy	 goals	 indeed,	 but	 a	 thousand-line	 program	 is	 pretty	 short	 and	 still
within	the	capacity	of	one	person	to	produce.	The	rest	of	the	book	is	about	how
to	prove	your	software	is	correct	using	a	mathematical	approach.	Still,	this	is	the
distilled	wisdom	of	people	 from	IBM.	What	did	 I	 think	of	 this	advice,	when	 I
went	off	to	college	five	years	later?
I	thought	nothing	of	it,	naturally,	since	I	wasn’t	exposed	to	any	of	it.	Whether

you	believe	in	mathematical	proofs	or	not,	I	wasn’t	taught	how	to	know	whether
the	 software	 I	 wrote	 worked.	 But	 looking	 back,	 it’s	 clear	 that	 the	 time	 for
mathematical	proofs	was	passing.	For	 simple	 code	 like	 a	 sort	 routine,	you	can
prove	 that	 your	 algorithm	 is	 correct:	 the	 array	 begins	 in	 this	 state,	 the	 loop
iterates	 this	 many	 times,	 after	 each	 iteration	 one	 more	 element	 is	 sorted,	 and
therefore	the	array	is	sorted	at	the	end.	This	is	a	standard	mathematical	technique
known	 as	 induction.	 The	 problem	 is	 that	 modern	 software	 is	 vastly	 more
complicated	than	that.	A	failure	today	along	the	lines	of	“my	word	processor	is
showing	this	character	in	the	wrong	place”	involves	extremely	complicated	code
that	has	to	factor	 in	the	margins	of	 the	document,	 the	font	being	used,	whether
the	 character	 is	 super-or	 subscripted,	 how	 line	 justification	 is	 being	 done,	 the
size	of	 the	application	window,	and	a	host	of	other	 factors;	 the	code	winds	up
being	a	tangle	of	IF	statements	and	nonobvious	calculations.
Think	back	to	the	Zune	leap	year	bug:	the	defect	was	not	in	the	algorithm	but

rather	in	the	implementation.	Many	annoying	bugs,	when	finally	excavated,	turn
out	to	be	nothing	more	than	a	typing	mistake	by	the	programmer.	The	IBMers’
Structured	 Programming	 book	 was	 a	 curious	 atavism—a	 book	 advocating



techniques	that	were	only	effective	for	short	programs,	produced	by	people	who
had	worked	on	large	programs.
If	there	was	a	guiding	spirit	of	software	quality	that	attended	my	college	years,

it	came	not	from	the	academics	or	IBM	veterans	but	instead	from	a	third	fount	of
programming	 wisdom:	 Bell	 Labs,	 the	 source	 of	 UNIX	 and	 C.	 As	 it	 happens,
Princeton	 is	 located	near	Bell	Labs,	 and	professors	on	 leave	 from	 there	 taught
several	of	my	courses.	I	don’t	recall	them	inveighing	against	formal	correctness
proofs,	 but	 I	 assume	 they	 had	 a	 subtle	 effect	 on	me.	 Even	 for	 students	 not	 at
Princeton,	however,	 the	“UNIX	folks”	exerted	 influence	due	 to	 the	books	 they
wrote,	not	 just	on	UNIX	and	C,	but	on	other	programming	topics	as	well.	 I’ve
already	mentioned	Programming	Pearls	by	Bentley	(who	gave	a	guest	lecture	to
us	 at	Princeton).	Kernighan,	 one	of	 the	 authors	of	C,	wrote	 a	book	 called	The
Elements	of	Programming	Style	with	P.	J.	Plauger,	another	employee.	The	book
is	consciously	modeled	on	William	Strunk	Jr.	and	E.	B.	White’s	The	Elements	of
Style,	and	consists	of	a	series	of	examples	supporting	a	set	of	maxims,	the	first
two	of	which	are	“write	clearly—don’t	be	too	clever”	and	“say	what	you	mean,
simply	and	directly.”21
The	book	 is	meant	 to	 support	 structured	programming.	As	 the	preface	 to	 the

second	 edition	 (1978)	 says	 about	 the	 first	 edition	 (1974),	 “The	 first	 edition
avoided	any	direct	mention	of	the	term	‘structured	programming,’	 to	steer	well
clear	of	 the	religious	debates	 then	prevalent.	Now	that	 the	fervor	has	subsided,
we	 feel	 comfortable	 in	 discussing	 structured	 coding	 techniques	 that	 actually
work	well	 in	practice.”	Notwithstanding	that,	Kernighan	and	Plauger	eschewed
both	the	theory	of	the	first	Structured	Programming	book	and	the	formal	proofs
of	 the	second	 to	focus	on	code	 itself:	“The	way	 to	 learn	 to	program	well	 is	by
seeing,	over	and	over,	how	real	programs	can	be	improved	by	the	application	of
a	few	principles	of	good	practice	and	a	little	common	sense.”22	It’s	incremental:
keep	 improving	 your	 programs	 and	 they	 will	 wind	 up	 being	 good;	 here	 are
seventy-seven	 pieces	 of	 advice	 on	 how	 to	 do	 that.	 Or	 consider	 this	 comment
about	GOTO	in	the	original	C	book	by	Kernighan	and	Ritchie:	“Although	we	are
not	dogmatic	about	the	matter,	it	does	seem	that	goto	statements	should	be	used
sparingly,	if	at	all.”23	This	is	a	far	cry	from	Dijkstra’s	strident	denunciation.
The	 book	 Software	 Tools,	 also	 by	 Kernighan	 and	 Plauger,	 has	 a	 similarly

nuanced	 view	 of	 GOTOs.	 Discussing	 other	 control	 structures	 available	 in	 the
language	they	are	using	(Ratfor,	short	for	Rational	Fortran,	as	the	name	implies	a
more	 “sensible”	 variant	 of	 Fortran),	 they	 state,	 “These	 structures	 are	 entirely
adequate	and	comfortable	for	programming	without	goto’s.	Although	we	hold	no
religious	convictions	about	 the	matter,	you	may	have	noticed	 that	 there	are	no



gotos’s	 in	 any	 of	 our	 Ratfor	 programs.	 We	 have	 not	 felt	 constrained	 by	 this
discipline—with	 a	 decent	 language	 and	 some	 care	 in	 coding,	 goto’s	 are	 rarely
needed.”24
This	message	 lands	 quite	 easily	 on	 the	 ears	 of	 a	 self-taught	 programmer.	 It

reinforces	 the	 idea	 that	 there	 is	 not	 a	 lot	 of	 formal	 knowledge	 associated	with
software	engineering,	and	your	own	personal	experience	 is	a	valuable	guide	 in
how	to	proceed.	Sure,	you	could	improve	a	bit,	but	who	can’t?	And	to	the	extent
that	 I	picked	up	any	sense	of	software	engineering	 in	college,	 it	was	 this	vibe.
Not	 only	 did	 I	 adopt	 C	 from	 the	 UNIX	 crowd,	 but	 I	 also	 acquired	 the
incrementalist	view	of	software	quality.
And	 on	 the	 question	 of	 formally	 testing	 your	 software,	 I	 acquired	 no

knowledge	 at	 all,	 even	 from	 the	 Bell	 Labs	 visitors;	 it	 wasn’t	 part	 of	 the
curriculum	 at	 Princeton.	 The	 algorithm	was	 what	 was	 important,	 and	 proving
that	you	had	accurately	 translated	 it	 into	code	was	 less	so.	Understand	 that	 the
stakes	are	lower	in	college.	When	I	wrote	a	compiler	for	a	class,	it	was	to	learn
how	to	write	a	compiler,	not	to	use	it	to	compile	a	lot	of	programs.	If	it	failed	on
the	programs	 I	 tested	 it	with,	 then	 I	 fixed	 those	 issues;	 it	was	never	 subject	 to
anything	more	stressful	and	at	 the	end	of	 the	 term	was	set	aside.	As	Weinberg
writes,	 “Software	 projects	 done	 at	 universities	 generally	 don’t	 have	 to	 be
maintainable,	 usable,	 or	 testable	 by	 another	 person.”25	 The	 notion	 of
intentionally	 trying	 to	 make	 a	 program	 break	 by	 feeding	 it	 unusual	 inputs	 or
navigating	the	user	interface	in	an	unusual	way	never	occurred	to	me.	If	I	felt	the
algorithms	were	correct,	the	code	looked	reasonable,	and	I	hadn’t	observed	any
crashes,	then	it	was	perfect	as	far	as	I	was	concerned.	The	programming	contest
that	I	talked	about	in	chapter	4	presented	a	slight	concern,	since	the	actual	data	it
would	 be	 run	 on	was	 kept	 secret.	 I	 recall	 running	 it	 using	 several	 randomized
data	sets	that	I	generated;	nonetheless,	when	my	program	ran	successfully	(albeit
not	as	expeditiously	as	some	others)	during	the	actual	contest,	my	reaction	was
more	“thank	goodness!”	than	“well,	of	course,	I	tested	it.”
My	 high	 school	 friends	 who	 studied	 engineering	 at	 Canadian	 universities

participated	in	an	event	called	the	Ritual	of	the	Calling	of	an	Engineer	when	they
graduated.	 At	 this	 ceremony	 (which	was	 designed	 by	 Rudyard	Kipling,	 of	 all
people,	 back	 in	 the	 1920s),	 they	were	 presented	with	 a	 rough-hewn	 iron	 ring,
which	 is	 worn	 on	 the	 little	 finger	 of	 their	 working	 hand	 and	 “symbolizes	 the
pride	which	engineers	have	in	their	profession,	while	simultaneously	reminding
them	 of	 their	 humility.”26	 Now	 it’s	 not	 that	 I	 have	 observed	 any	 particularly
greater	humility	or	aversion	to	C	string	handling	in	graduates	of	Canadian	versus
US	 universities.	 Still,	 I	 left	 college	 with	 no	 sense	 of	 the	 impact	 that	 buggy



software	 could	 have	 on	 the	world.	 Partly	 this	was	 because	 back	 in	 1988,	 this
impact	was	much	more	constrained,	with	computers	rarely	even	being	connected
to	 a	 network.	 Even	 the	Morris	 worm,	 which	 was	 released	 later	 that	 year,	 did
nothing	to	change	this	attitude.	My	experience	with	the	effect	of	bugs	had	been
limited	to	my	IBM	PC	BASIC	Pac-Man	game	not	working	correctly	or	having
to	 work	 late	 in	 von	 Neumann	 to	 get	 my	 3-D	 billiards	 animation	 to	 display
properly.	Certainly	as	a	user	I	had	been	annoyed	when	I	lost	work	due	to	a	crash
in	a	program	I	was	using,	but	I	can’t	recall	ever	connecting	that	feeling	with	the
notion	 that	 I	 would	 now	 be	 the	 one	 writing	 software	 that	 others	 would	 be
entrusting	their	data	to.
Understand	 that	 I	 am	 not	 blaming	 a	 UNIX	 slacker	 attitude	 for	 this;	 the

programmers	 at	 Bell	 Labs	 obviously	 cared	 greatly	 about	 the	 quality	 of	 their
software,	 since	 it	was	 supporting	 critical	 telephone	 infrastructure.	And	 in	 their
books	 they	 talked	 about	 quality	 a	 lot,	 although	 the	 approach	 was	 incremental
improvements	in	their	software	until	it	was	of	high	quality.	I	just	never	got	any
message	of	“once	you	graduate,	this	stuff	really	matters.”
So	what	did	companies,	writing	 larger	pieces	of	 software	 for	customers	who

were	 paying	 them	 money,	 do	 to	 ensure	 that	 the	 software	 worked?
Unquestionably,	to	the	extent	that	they	were	inspired	at	all,	it	was	by	the	UNIX
approach.
At	Dendrite,	where	I	worked	immediately	after	college,	there	was	little	testing

of	 the	 software—not	 atypical	 for	 a	 small	 start-up	 that	 employed	 about	 ten
programmers	 when	 I	 started.	 There	 were	 several	 customer	 support	 people
working	in	the	office,	and	they	would	run	through	basic	operations	with	a	new
release	 before	 sending	 it	 out	 (by	 mailing	 a	 floppy	 disk	 to	 every	 sales
representative	 running	 the	 software!),	 but	 there	 was	 no	 official	 verification
process.	 They	 counted	 on	 the	 programmers	 getting	 things	 right	 (which	 to	 our
credit,	we	mostly	did,	not	through	application	of	any	formal	design	process,	but
just	through	being	careful;	the	tricky	bug	I	described	in	chapter	3	was	unusual	in
that	it	was	seen	by	customers).
Dendrite	was	small	enough—all	 the	programmers	sat	 together	 in	a	warren	of

cubicles—that	communication	with	other	programmers	was	easy:	we	could	yell
if	we	wanted	a	question	answered.	When	I	got	 to	Microsoft,	 the	Windows	NT
team	had	around	thirty	programmers	on	it,	 laughably	small	compared	to	today,
but	 much	 larger	 than	 Dendrite.	 In	 addition,	 Windows	 NT	 had	 been	 in
development	for	a	year	and	a	half,	so	already	had	a	sizable	body	of	code	that	I
needed	to	get	familiar	with.
Even	 at	 Microsoft,	 a	 well-established	 company	 at	 the	 time,	 there	 was	 no

training	on	how	 to	proceed	with	 the	 task	of	 software	engineering.	The	general



attitude	 was,	 “You’re	 smart,	 so	 you	 figure	 it	 out.”	 Trial	 and	 error	 was	 the
foremost	technique	employed,	with	imitating	existing	code	that	looked	similar	a
close	 second.	You	might	wonder	 if	 this	was	 intentional—if	 there	was	 a	 sense
that	 asking	 somebody	 for	 help	 was	 a	 sign	 of	 weakness.	 I	 never	 saw	 any
indication	 that	 this	was	 a	 policy;	 it	was	 just	 that	 everyone	 else	 had	 learned	 to
program	by	 figuring	 things	out	on	 their	own,	so	 they	simply	kept	doing	 it	 that
way	 and	 never	 gave	 the	 matter	 much	 thought.	 Imagine	 if	 new	 electricians
learned	this	way.
At	 Microsoft,	 I	 encountered	 a	 group	 of	 people	 with	 the	 title	 software	 test

engineer—the	testers—whose	job	it	was	to	take	the	software	that	the	developers
produced	and	give	it	a	stamp	of	approval	before	it	was	released	to	customers.	In
its	early	days,	Microsoft	had	no	testers	either—IBM	PC	DOS,	the	software	that
started	Microsoft	on	 its	 road	 to	prominence,	must	 therefore	have	been	released
without	 a	 separate	 testing	 team—but	 eventually	 management	 realized	 that
counting	on	developers	to	test	their	own	code	posed	problems.	One	concern	was
that	developers	spending	time	testing	their	code	was	inefficient;	users	were	more
common	than	developers,	so	you	could	hire	people	to	pretend	to	be	users	while
the	 developers	 churned	 out	more	 features.	 There	was	 also	 this	 sense	 that	 you
couldn’t	“trust”	developers	to	test	their	own	code;	that	if	you	asked	a	developer,
“Tell	me	when	your	code	has	been	adequately	tested?”	they	would	immediately
respond,	“It’s	good.”
I	 always	 felt	 that	 the	 implied	 laziness/evilness/delusionality	 on	 the	 part	 of

developers	 was	 unfair,	 and	 attribute	 their	 overoptimism	 to	 not	 having	 been
exposed	to	testing	in	college.	I	found	that	most	developers,	when	they	arrived	at
a	place	like	Microsoft,	fairly	quickly	adopted	a	more	conscientious	approach	(for
example,	I	don’t	recall	DOS	or	Microsoft	BASIC	being	buggy).	In	any	case,	the
profession	of	software	 tester	was	already	extant	at	Microsoft	when	I	arrived	 in
1990.	The	book	Microsoft	Secrets,	which	came	out	in	1995,	fills	in	some	of	the
background:	the	first	test	teams	were	set	up	in	1984;	there	were	expensive	recalls
of	 two	pieces	 of	 software,	Multiplan	 (a	 spreadsheet,	which	was	 a	 precursor	 to
Excel)	 in	 1984,	 and	 Word	 in	 1987;	 and	 in	 May	 1989,	 there	 was	 an	 internal
meeting	on	the	optimistic	subject	of	“zero-defects	code.”27
The	 testers	 would	 come	 up	 with	 test	 cases,	 sequences	 of	 steps	 designed	 to

exercise	different	areas	of	the	code;	if	a	spreadsheet	supported	adding	two	cells
together,	there	would	be	a	test	case	to	create	two	cells,	have	the	spreadsheet	add
them,	and	verify	 that	 the	 result	was	correct,	while	 also	keeping	an	eye	out	 for
any	untoward	behavior,	such	as	a	crash	or	hang.	The	goal	in	having	the	test	cases
be	formalized	was	to	both	ensure	that	nothing	was	missed	and	hopefully	have	a
reliable	set	of	repro	steps	for	whatever	went	wrong.



The	 first	 edition	 of	 Cem	 Kaner’s	 Testing	 Computer	 Software,	 the	 most
recommended	testing	book	at	the	time,	had	come	out	in	1988;	people	had	been
writing	books	about	testing	for	at	least	a	decade	before	then,	and	they	had	been
testing	as	well	as	thinking	about	testing	software	for	a	while	before	that.	In	1968,
Dijkstra	 stated	 (in	 support	 of	 structured	 programming,	 remember,	 which
advocates	 up-front	 proof	 rather	 than	 after-the-fact	 testing)	 that	 testing	 was	 “a
very	inefficient	way	of	convincing	oneself	of	the	correctness	of	programs,”	and
the	following	year	he	 formalized	 this	as	“program	testing	can	be	used	 to	show
the	presence	of	bugs,	but	never	to	show	their	absence,”	which	he	repeated	in	his
essay	 in	 the	 1972	 Structured	 Programming	 book.28	 Mills	 and	 the	 IBMers,	 in
their	 Structured	 Programming,	 state	 as	 fact	 (with	 the	 same	 motivation	 as
Dijkstra),	“It	 is	well	known	 that	a	software	system	cannot	be	made	reliable	by
testing.”29	Well	known,	but	not	apparently	to	people	at	Microsoft	a	decade	later,
who	indeed	were	attempting	exactly	that.
In	chapter	2	of	his	book,	Kaner	delves	into	the	motivation	for	testing;	his	main

points	 are	 summarized	 in	 the	 titles	of	 sections	2.1	 and	2.2,	 “You	Can’t	Test	 a
Program	 Completely”	 and	 “It	 is	Not	 the	 Purpose	 of	 Testing	 to	 Verify	 That	 a
Program	Works	Correctly,”	respectively.30	What,	then,	is	testing	for?	Section	2.3
explains	it:	 the	point	of	testing	is	to	find	problems	and	get	them	fixed.	Kaner’s
reasons	for	throwing	cold	water	on	your	dreams	of	thoroughness	come	from	G.
J.	Myers’s	1979	book	The	Art	of	Software	Testing:	 if	you	 think	your	 task	 is	 to
find	problems,	 you	will	 look	harder	 for	 them	 than	 if	 you	 think	your	 task	 is	 to
verify	that	the	program	has	none.31	And	while	you	are	puzzling	that	one	out,	I’ll
throw	 in	 this	bit	of	existential	angst	 from	Kaner:	“You	will	never	 find	 the	 last
bug	in	a	program,	or	if	you	do,	you	won’t	know	it.”32
Kaner	doubles	down	by	stating,	“A	test	that	reveals	a	problem	is	a	success.	A

test	 that	 did	 not	 reveal	 a	 problem	 was	 a	 waste	 of	 time.”33	 His	 point,	 also
borrowed	from	Myers,	is	that	a	program	is	like	a	sick	patient	whom	a	doctor	is
diagnosing;	if	the	doctor	can’t	find	anything	wrong	and	the	patient	really	is	sick
(and	software,	the	analog	of	the	patient	here,	is	assumed	to	be	“sick”—that	is,	to
have	bugs),	then	the	doctor	is	bad.34	Of	course,	the	doctor	finding	nothing	wrong
after	a	battery	of	tests	is	different	from	any	given	test	not	finding	anything.	The
baseball	player	Ichiro	Suzuki,	who	is	known	to	get	a	lot	of	hits	but	also	swing	at
a	 lot	of	bad	pitches,	was	once	asked	why	he	didn’t	 ignore	 the	bad	pitches	and
swing	at	the	ones	that	were	going	to	be	hits.	Ichiro	explained	that	it	didn’t	quite
work	that	way.
I	believe	what	Kaner	was	trying	to	do,	by	focusing	on	finding	bugs,	was	a	shift

away	from	the	notion	of	“the	testers	said	the	software	was	good,”	which	implies



they	should	be	blamed	if	it	turns	out	it	wasn’t,	to	“the	testers	said	they	couldn’t
find	any	more	bugs,”	which	implies	 that	we	are	all	stepping	to	 the	same	tragic
pavane.	 Despite	 this,	 the	 notion	 of	 “testers	 signing	 off”	 was	 in	 full	 force	 at
Microsoft	 in	 1990.	Which	 of	 course	was	 another	way	 for	 developers	 to	 avoid
blame	 for	 bugs:	 it’s	 the	 testers’	 fault	 for	 not	 finding	 them.	 It	 didn’t	 help	 that
Myers,	back	in	1979,	had	pushed	the	idea	that	programmers	could	not	and	thus
should	 not	 try	 to	 test	 their	 own	 software:	 “As	 many	 homeowners	 know,
removing	 wallpaper	 (a	 destructive	 process)	 is	 not	 easy,	 but	 it	 is	 almost
unbearably	 depressing	 if	 you,	 rather	 than	 someone	 else,	 originally	 installed	 it.
Hence	 most	 programmers	 cannot	 effectively	 test	 their	 own	 programs	 because
they	cannot	bring	themselves	to	form	the	necessary	mental	attitude:	the	attitude
of	wanting	to	expose	errors.”35

What	 emerged,	 unfortunately,	 was	 the	 “throw	 it	 over	 the	 wall”	 culture.36
Developers	would	strive	to	reach	“code	complete,”	meaning	that	all	the	code	had
been	written	and	successfully	compiled,	and	if	the	stars	aligned	just	right,	might
even	be	bug	free.	They	would	then	hand	the	software	off	to	the	tester,	with	the
implication	 that	 they	 had	 done	 their	 part	 and	 the	 tester	 was	 responsible	 for
figuring	 out	 if	 it	 worked	 or	 not.	 Code	 complete	 is	 not	 an	 inconsequential
milestone;	it	meant	that	none	of	your	early	design	decisions	had	painted	you	into
a	 corner,	 and	 the	API	 you	 had	 designed	 to	 connect	 the	 pieces	 together	was	 at
least	functionally	adequate.	But	the	problem	was	that	code	complete	was	viewed
as	 “the	 developer’s	 work	 is	 done,	 pending	 any	 bugs	 received;	 if	 the	 software
ships	with	bugs,	it’s	the	testers’	fault	for	not	finding	them.”	And	woe	betide	the
tester	who	pushed	back,	saying	they	could	not	test	in	the	code	in	time;	they	were
supposed	to	deal	with	whatever	they	got	from	the	developers.	At	one	point	in	the
Windows	 NT	 source	 code,	 next	 to	 code	 for	 a	 feature	 that	 had	 been	 disabled
because	 the	 testers	 could	 not	 find	 the	 time	 to	 test	 it,	 there	 existed	 a	 snarky
comment	 from	 a	 developer	 along	 the	 lines	 of,	 “Well,	 now	 that	 the	 testers	 are
designing	our	software	for	us,	we’ll	remove	this.”
I	 don’t	 mean	 to	 make	 developers	 look	 entirely	 bad.	 We	 do	 have	 a

craftsperson’s	pride	 in	 their	work	and	don’t	want	bugs	 to	happen;	we	certainly
feel	some	sense	of	guilt	 if	our	programs	freeze	or	crash,	especially	 if	 they	lose
data.	 And	 we	 generally	 enjoy	 the	 intellectual	 challenge	 of	 fixing	 bugs.	 I	 do
believe	 that	 I	 wrote	 solid	 code	 in	my	 early	 days	 at	Microsoft,	 but	 it	 was	 not
because	of	any	sense	that	Microsoft’s	stock	price	could	be	affected	if	I	messed	it
up.	Morris,	author	of	the	Morris	worm,	intended	it	to	spread	much	more	slowly
than	 it	 did,	 with	 the	 goal	 of	 lurking	 for	 a	 while	 before	 being	 revealed.
Presumably	he	was	angry	with	himself	 that	he	had	not	 tested	the	worm	first	 to



get	a	sense	of	how	fast	it	would	replicate,	which	would	have	prevented	the	rapid
detection	 brought	 on	 by	 the	 havoc	 that	 it	 wreaked;	 at	 the	 time,	 one	 observer
commented	that	he	should	have	tested	it	on	a	simulator	before	releasing	it.37
The	sense	that	testers	were	there	to	guard	against	devious	developers	trying	to

sneak	 bugs	 past	 them	often	 led	 to	 an	 antagonistic	 attitude	 between	 developers
and	 testers.	 Just	 as	 developers	 viewed	 their	 users	 as	 an	 annoying	 source	 of
failure	reports	rather	than	as	the	people	who	ultimately	paid	their	salary—shades
of	 the	old	luser	attitude—they	came	to	see	testers	 in	 the	same	light,	since	their
interactions	with	testers	had	a	depressing	similarity:	every	time	you	heard	from	a
tester,	they	were	reporting	a	failure,	interrupting	whatever	lovely	new	technical
problem	you	were	working	on	and	replacing	it	with	a	bug	investigation,	which
always	had	the	potential	to	turn	into	a	bottomless	pit.	The	response	to	a	failure
report	was	frequently	a	heavy	sigh	followed	by	a	quick	attempt	to	determine	if
the	investigation	could	be	shuttled	off	to	another	developer,	and	finally	a	“why
would	you	use	the	software	that	way?”	eye	roll.	Unfortunately	the	message	that
“the	 tester’s	 job	 is	 to	 find	 bugs”	 led	 to	 using	 bug	 counts	 as	 a	measure	 of	 the
effectiveness	 of	 testers,	which	 led	 to	 testers	 sometimes	 favoring	 quantity	 over
quality	when	 looking	 for	 bugs,	 filing	many	bugs	 for	 obscure	 cases	 rather	 than
looking	 for	 problems	 that	 users	 were	 most	 likely	 to	 hit,	 which	 of	 course	 did
nothing	 to	 improve	 developers’	 opinion	 of	 testers.	 But	 overall	 the	 bad	 actors
here	were	the	developers,	not	the	testers.
Worst	 of	 all	 were	 bug	 reports	 with	 inexact	 repro	 steps,	 such	 that	 when	 a

developer	 took	 the	 trouble	 to	 walk	 through	 the	 steps,	 the	 bug	 would	 not
reproduce.	Ellen	Ullman’s	novel	The	Bug	captures	the	general	attitude	here,	as	a
programmer	tries	to	reproduce	a	bug	report	from	a	tester:

He	started	up	 the	user	 interface,	 followed	 the	directions	on	 the	 report:	He
went	to	the	screen,	constructed	the	graphical	query,	clicked	open	the	RUN
menu,	slid	the	mouse	out	of	the	menu.	Now,	he	thought,	the	system	should
freeze	up	now.	But	nothing.	Nothing	happened.	“Shit,”	he	muttered,	and	did
it	 all	 again:	 screen,	 query,	 click,	 slide,	 wait	 for	 the	 freeze-up.	 Nothing.
Everything	 worked	 fine.	 “Asshole	 tester,”	 he	 said.	 And	 then,	 annoyance
rising,	he	did	it	all	again.	And	again	nothing.
A	kind	of	rage	moved	through	him.	He	picked	up	the	first	pen	that	came

to	 hand—a	 thick	 red-orange	 marker—and	 scrawled	 “CANNOT
REPRODUCE”	in	the	programmer-response	area	of	the	bug	report.	Then	in
the	line	below	he	added,	“Probable	user	error,”	underlining	the	word	“user”
in	thick,	angry	strokes.	The	marker	spread	like	fresh	blood	onto	the	paper,
which	he	found	enormously	satisfying	…	Not	a	bug.	They	were	idiots,	all



of	them,	incompetent.38

Ullman’s	book	is	fiction,	but	she	is	a	veteran	Silicon	Valley	programmer;	the
book	was	written	in	2003,	but	is	set	in	1984,	and	that	attitude	of	superiority	that
programmers	 had	 toward	 testers,	 possibly	with	 a	 little	 less	 swearing,	was	 still
prevalent	at	Microsoft	in	the	early	1990s.	A	programmer	investigating	a	failure
report	very	much	hoped	to	reproduce	it	on	their	own	machine,	where	they	could
use	debugging	tools	to	determine	the	fault	and	then	work	their	way	back	to	the
defect	in	the	code.	If	they	couldn’t	reproduce	the	failure,	then	they	would	reach
for	 the	 thick	 red-orange	 marker	 (conceptually,	 since	 even	 back	 in	 1990,
Microsoft	used	an	electronic	bug-tracking	system)	and	mark	it	as	“Not	Repro,”
no	matter	how	severe	the	effect	of	the	failure	was.
There	 was	 some	 software	 where	 testing	 was	 taken	 seriously	 and	 bugs	 were

appreciated	 rather	 than	 dreaded.	 But	 this	 was	 only	 in	 situations	 where	 the
developers	 realized	 that	 the	 cost	 of	 a	 failure	 would	 be	 severe—two	 common
examples	being	software	that	ran	on	medical	devices	and	spacecraft.	Of	course
these	occasionally	had	bugs	also,	such	as	the	Therac-25	machine	administering
fatal	doses	of	radiation	or	the	Ariane	5	rocket	that	self-destructed	(certainly	not
the	only	space	mission	that	aborted	due	to	a	bug),	but	they	were	engineered	with
more	 care	 than	 we	 undertook	 at	 Microsoft.	 As	 opposed	 to	 being	 viewed	 as
excellent	 examples	 of	 fine	 software	 craftspersonship,	 however,	 these	 were
considered	by	programmers	to	be	old,	stodgy	projects—imagine	having	to	spend
all	 that	 time	 simulating	 every	 possible	 situation	 just	 to	 be	 sure	 your	 software
worked	 properly	 all	 the	 time!—as	 compared	 to	 the	 cool,	 fast	 work	 we	 were
doing	at	Microsoft.
In	 1990,	 certainly,	 nobody	 sat	 us	 newly	 hired	 developers	 down	 and	 talked

about	 the	expensive	recalls	of	 the	1980s.	They	may	have	harangued	the	 testers
about	this,	but	I	never	heard	about	it.	Nobody	read	us	this	quote,	from	Mills	in
1976:	“It	is	well	known	that	you	cannot	test	reliability	into	a	software	system.”39
Eventually,	 though,	 the	 needle	 swung	 away	 from	 testers	 “testing	 in”	 quality

and	back	to	the	notion	that	programmers	should	“design	in”	quality.	This	is	the
same	idea	that	the	structured	programming	movement	was	going	for,	but	with	a
different	approach—which	I	will	discuss	in	the	next	chapter.
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6 
Objects

Imagine	 that	 the	 hardware	 store	 in	 your	 town	was	 sold	 to	 a	 new	 owner.	 The
previous	owner	had	arranged	the	store	with	similar	items	grouped	together:	 the
paint	over	here,	hand	tools	over	there,	and	raw	materials	some	place	or	other.	It
wasn’t	always	obvious	where	things	were,	and	it	always	seemed	that	if	you	were
only	buying	two	things	for	the	same	project,	they	were	on	opposite	sides	of	the
store,	but	if	you	knew	where	a	certain	type	of	merchandise	was	stored,	you	could
find	similar	things	nearby.
Now	 imagine	 that	 the	 new	 owner	 chose	 to	 reorganize	 the	 layout	 based	 on

tasks.	 They	might	 reason	 that	 somebody	 building	 a	 chair	 needs	wood,	 a	 saw,
screws,	a	screw	gun,	and	paint.	They	group	all	these	things	together	in	one	area
and	call	it	the	“make	a	chair	area.”	The	people	planning	this	would	spend	a	while
thinking	 through	 various	 activities	 they	 needed	 to	 support	 and	 assigning	 their
inventory	to	different	categories.
If	you	went	to	the	store	and	wanted	to	make	a	chair,	this	would	be	great,	since

it’s	all	in	one	place,	nice	and	convenient.	But	what	if	you	wanted	to	build	a	chair
and	you	needed	something	 that	 the	designer	of	 the	“make	a	chair	area”	hadn’t
anticipated?	 Now	 you	 have	 to	 go	 hunting	 for	 the	 item,	 trying	 to	 guess	 what
activity	the	new	layout	specialists	had	bucketed	your	missing	item	into.
And	 more	 fundamentally,	 you’re	 trying	 to	 build	 a	 chair.	 Your	 shopping

experience	 at	 the	 hardware	 store	 could	 be	 slightly	 improved	 or	 worsened	 by
changing	 the	 layout	 of	 the	 store,	 but	 in	 the	 greater	 scheme	of	 things,	 the	 hard
part	is	figuring	out	what	parts	you	need	and	actually	building	the	chair,	and	that
doesn’t	change.
To	 the	 owners	 of	 the	 store,	 though,	 the	 layout	 would	 feel	 logical,	 and	 they

would	 feel	 they	had	done	something	clever	and	 forward	 thinking.	 In	 fact,	 they
might	decide	that	they	had	revolutionized	the	art	of	hardware	store	design.	They
might	even	write	a	book	and	go	on	a	speaking	tour,	explaining	to	other	hardware
store	 owners	 how	 significant	 their	 changes	were.	 Naturally	 they	would	 find	 a
few	chair	builders	who	preferred	the	new	layout	and	gather	positive	quotes	about



the	experience.
The	quest	to	“design	in”	software	quality	eventually	evolved	to	a	similar	point,

although	the	beginnings	were	more	humble.
Wirth,	 creator	of	Pascal,	 published	a	book	 in	1976	 titled	Algorithms	+	Data

Structures	=	Programs.1	The	title	is	accurate;	a	program	consists	of	algorithms
—the	code	that	runs—and	data	structures—the	data	that	it	operates	on.	Both	are
important,	and	a	programmer	who	wants	to	learn	how	a	program	operates	must
understand	 both	 of	 them.	 The	 “structured	 programming”	 push	 was	 aimed	 at
clarity	of	algorithms,	as	expressed	in	code,	but	clarity	of	data	structures	received
much	less	attention.
Data	 structures	 are	 built	 up	 from	 the	 fundamental	 data	 types:	 numbers	 and

strings.	In	many	early	languages,	there	was	no	way	to	group	such	data	together:
if	you	wanted	to	store	both	a	person’s	name	and	age,	you	defined	two	separate
variables,	without	any	visible	connection	between	them,	except	whatever	could
be	 shoehorned	 into	 the	 names	 of	 the	 variables.	Only	 by	 reading	 the	 code	 that
used	them	could	another	programmer	intuit	 that	 they	were	related.	To	continue
my	hardware	store	analogy,	it’s	as	if	different	power	tools	were	stored	randomly
all	around	the	store,	because	nobody	had	thought	of	a	way	to	put	them	together.
The	one	grouping	 construct	 that	 existed	was	 arrays,	which	were	designed	 to

hold	multiple	 instances	of	 the	 same	sort	of	value,	 such	as	a	 top-ten	high	score
list.	 Sometimes,	 for	 lack	of	 any	other	way,	 programmers	would	use	 arrays	 for
grouping	 different	 pieces	 of	 data;	 for	 instance,	 a	 BASIC	 program	 wanting	 to
store	somebody’s	height	and	weight	might	create	an	array	of	 two	integers,	and
put	the	height	in	the	first	and	weight	in	the	second.	This	connected	them,	but	it
was	 not	 obvious,	 from	 the	 declaration	 of	 a	 single	 array,	 what	 the	 specific
meaning	of	each	element	was,	and	it	was	easy	to	get	them	backward	in	the	code.
The	Hockey	 game	 in	BASIC	Computer	Games	 used	 an	 array	 of	 seven	 strings,
storing	the	names	of	the	six	players	in	the	first	six	elements,	and	the	name	of	the
team	in	the	seventh	element.	This	made	it	a	bit	confusing	to	read,	which	wasn’t
helped	by	the	fact	that	the	array	in	question	was	named	A$.2
Languages	 such	 as	 Pascal	 and	 C	 avoided	 this	 clunky	 feeling	 by	 letting	 you

bundle	related	data	into	a	larger	entity,	called	a	record	in	Pascal	and	a	struct	in
C.	For	example,	a	C	struct	could	hold	information	about	a	person:

struct	person	{

			int	age;

			char	name[64];

};

and	 if	 you	 had	 a	 variable	 p	 of	 type	 person,	 you	 could	 refer	 to	 the	 individual



elements	as	p.age	 and	p.name,	but	also	 refer	 to	an	entire	person,	 such	as	 in	a
function	 parameter.	 This	 was	 an	 underappreciated	 step	 forward	 in	 program
clarity	since	it	addressed	the	second	part	of	Wirth’s	equation.
One	of	Wirth’s	points	is	that	algorithms	and	data	structures	are	closely	related:

“The	 choice	 of	 structure	 for	 the	 underlying	 data	 profoundly	 influences	 the
algorithms	 that	 perform	 a	 given	 task.”	 Furthermore,	 neither	 one	 will	 likely
remain	unchanged	during	the	writing	of	a	program:	“In	the	process	of	program
construction	 the	 data	 representation	 is	 gradually	 refined—in	 step	 with	 the
refinement	 of	 the	 algorithm—to	 comply	 more	 and	 more	 with	 the	 constraints
imposed.”3
The	person	struct	shown	above	looks	reasonable—you	are	storing	the	age	and

name—but	while	working	on	a	program	with	such	a	data	structure,	you	may	see
opportunities	for	“refinement.”	You	realize	that	the	age	of	a	person	needs	to	be
updated	every	year,	even	though	their	birthday	will	never	change,	so	you	decide
to	 store	 their	 birthday	 instead	 of	 their	 age;	 this	means	 you	 have	 to	 recalculate
their	age	if	you	need	it,	but	that’s	not	too	hard.	Or	you	might	notice	that	several
times	 in	 your	 code,	 you	 have	 had	 to	 split	 the	 name	 into	 first	 and	 last	 names.
Again,	 this	 isn’t	 hard—hopefully	 the	 second	 time	 you	 did	 it,	 you	moved	 that
code	into	a	separate	API	so	you	could	call	 it	 from	anywhere	as	needed—but	 it
seems	easier	 to	 store	 the	 first	 and	 last	name	separately.	These	are	 the	kinds	of
details	you	might	not	think	of	when	first	sketching	out	your	data	structures;	it’s
the	normal	evolution	of	a	program’s	design.
At	 a	 mechanical	 level,	 however,	 this	 sort	 of	 change	 can	 be	 a	 pain	 when

working	in	a	procedural	language—the	type	of	language	we	have	seen	thus	far,
and	a	category	 that	 includes	Fortran,	BASIC,	Pascal,	 and	C.	Although	 there	 is
clearly	 a	 logical	 connection	 between	 your	 data	 structures	 and	 algorithms,	 they
tend	to	be	separated	in	the	source	code;	the	data	structures	defined	near	the	top
and	 implementation	 of	 the	 algorithms	 further	 down,	 or	 in	 a	 separate	 file.	 So
when	 making	 improvements	 like	 this,	 which	 involve	 modifying	 both	 the
definition	of	your	data	structures	and	code	that	uses	them,	you	wind	up	moving
back	and	forth	in	your	source	code.	More	important,	if	you	wanted	to	figure	out,
say,	 which	 functions	 operated	 on	 a	 person	 or	 used	 the	 soon-to-be-replaced
person.age,	you	would	need	to	scan	the	parameter	lists	of	all	your	functions	to
find	those	that	took	a	person,	and	then	scan	the	code	to	find	any	use	of	age.
Starting	 in	 the	 1960s,	 the	 idea	 emerged	 of	 grouping	 data	 structures	 together

with	the	code	that	operates	on	that	data,	in	a	construct	known	as	a	class.	A	class
is	actually	a	blueprint	for	such	a	collection;	an	instance	of	the	data	in	a	class,	in
the	memory	of	a	computer	 running	a	program,	 is	called	an	object.	As	a	 result,
this	approach	is	labeled	object-oriented	programming.



We	 saw	 an	 illustration	 of	 this	 in	 chapter	 3,	 since	 C#	 is	 an	 object-oriented
language.	The	string	 class	defines	both	data	 (the	characters	 in	 the	string)	and
methods	 (the	 currently	 preferred	 term	 for	 an	 API	 in	 object-oriented
programming)	 that	 operate	 on	 the	 string,	 such	 as	 ToUpper()	 in	 our	 examples.
You	use	dot	notation	to	join	the	object	and	method	name:

upperstring	=	mystring.ToUpper();

We	 are	 calling	 the	 method	 ToUpper()	 on	 the	 object	 mystring,	 which	 is	 an
instance	of	the	string	class.	The	code	inside	the	implementation	of	ToUpper()
will	be	operating	on	the	class	data	of	that	mystring	object.
In	a	procedural	 language	like	C,	you	call	functions	directly	rather	 than	on	an

object;	any	function	that	wants	access	to	data	needs	to	have	it	passed	as	one	of
its	parameters.4	It	doesn’t	look	much	different:

upperstring	=	ToUpper(mystring);

This	 is	 sometimes	 stated	 as	 “Rather	 than	 calling	 a	 function	 to	 uppercase	 the
string,	 you	 ask	 the	 string	 object	 to	 uppercase	 itself,”	 as	 if	 the	 objects	 have
become	self-aware	and	relieved	their	human	overlords	of	mundane	coding	tasks.
In	 reality	 somebody	 still	 has	 to	write	 the	 code,	 but	 things	 get	 cleaner:	 all	 the
methods	that	operate	on	the	data	in	the	class	are	grouped	together	in	one	place	in
the	code,	next	to	the	definition	of	the	data	itself.
The	first	language	to	introduce	classes	was	Simula,	developed	at	a	research	lab

in	 Norway	 in	 the	 1960s	 (one	 of	 its	 authors	 was	 Ole-Johan	 Dahl,	 later	 the
coauthor	of	one	of	 the	Structured	Programming	books).	Simula	was	a	general-
purpose	 programming	 language,	 but	 designed	 with	 the	 goal	 of	 writing
simulations,	such	as	for	cars	on	a	highway	or	people	waiting	 in	 line	at	a	bank.
The	object	model	works	quite	well	for	simulating	real-world	objects:	the	object
representing	a	car	will	have	certain	pieces	of	data	associated	with	it,	like	speed
and	 position,	 and	 will	 have	 certain	 operations	 that	 it	 can	 perform,	 such	 as
accelerating	 or	 turning.	Grouping	 them	 together	 in	 a	 class	makes	 this	 clear	 to
somebody	reading	the	code.
In	 Simula,	 you	 would	 create	 a	 new	 object	 of	 a	 given	 class	 (which	 is	 also

known	as	instantiating	an	instance	of	that	class)	using	the	keyword	NEW	followed
by	the	name	of	the	class,	like	this:

MyObject	:-	new	MyClass;

where	:-	 is	 known	 as	 the	 reference	 assignment	 operator	 (modern	 eyes	 should
read	it	as	an	equal	sign),	and	you	could	also	specify	that	the	creation	of	an	object



could	take	what	were	called	class	declaration	parameters,	like	this:

MyPerson	:-	new	Person(name,	age);

where	the	Person	class	included	initialization	code,	run	every	time	that	a	Person
object	was	created,	that	could	use	the	name	and	age	parameters	as	it	saw	fit.	In
this	example,	it	would	presumably	store	them	in	the	class	data	so	they	could	later
be	used	 in	class	procedures	 (which	 is	what	Simula	called	methods).	This	code
that	runs	when	an	object	is	created	is	generally	known	as	a	constructor,	although
Simula	did	not	use	that	term.
Classes	can	also	have	subclasses.	This	concept	 is	now	known	as	 inheritance,

although	 again,	 Simula	 did	 not	 call	 it	 that	 (the	 term	 inheritance,	 “Object	 B
inherits	from	Object	A,”	implies	a	more	anthropomorphic	view	of	code	than	the
businesslike	Simula	phrasing	“Object	B	is	a	subclass	of	Object	A”).	A	subclass
has	 all	 the	 data	 and	 procedures	 of	 the	 superclass,	 plus	whatever	 other	 ones	 it
adds.	 This	 again	 fits	well	with	 the	 simulation	 focus:	 you	 can	 have	 classes	 for
animal,	 vegetable,	 and	 mineral,	 and	 then	 subclasses	 of	 animal	 for	 specific
animals;	you	could	layer	it	as	deep	as	you	would	like.5	A	pointer	that	referenced
an	object	of	 a	 specific	 animal	 class	 could	also	be	used	 in	a	 context	 (such	as	 a
procedure	 parameter)	where	 the	more	 general	 animal	 class	was	 expected	 (you
could	 also	 switch	 the	 pointer	 between	 referencing	 the	 specific	 and	 general
classes	 using	 a	 keyword	with	 the	 lovely	 name	 QUA,	 which	 sadly	 has	 not	 been
picked	 up	 by	 any	 modern	 languages).	 This	 let	 you	 reuse	 common	 data	 and
procedures	in	the	animal	class,	but	allow	the	specific	animal	classes	to	have	their
own	added	data	and	procedures.	 If	you	had	a	class	Animal	and	a	subclass	Dog,
Animal	could	have	a	procedure	GetName(),	which	applies	to	all	animals,	and	Dog
could	have	a	procedure	GetBreed(),	which	makes	sense	for	dogs	but	not	most
other	animals.
Simula	 also	 introduced	 the	 important	 object-oriented	 notion	 of	 a	 virtual

procedure.	 You	 want	 your	 code	 to	 be	 able	 to	 refer	 to	 all	 animals	 using	 the
Animal	 class,	 which	 makes	 it	 nice	 and	 generic,	 but	 perhaps	 you	 want	 the
implementation	of	GetName()	 to	be	provided	by	Dog,	 since	 that	code	would	be
aware	 of	 any	 dog-specific	 details.	 The	 solution	 is	 to	 declare	 GetName()	 as	 a
virtual	 procedure	 in	 Animal.	 Animal	 can	 implement	 GetName(),	 but	 Dog	 can
provide	 its	own	more	 specific	 implementation;	Simula	would	 look,	 at	 runtime,
for	 the	 innermost	 class	 (that	 is,	 the	 deepest	 level	 subclass)	 with	 an
implementation	of	GetName(),	and	call	that	one.6
When	 Simula	 first	 appeared,	 objects	were	 seen	 as	 a	 notational	 convenience,

not	a	major	breakthrough	in	how	software	was	written.	The	1973	book	SIMULA



Begin,	 written	 by	 the	 authors	 of	 the	 language,	 doesn’t	 use	 the	 term	 object-
oriented	programming	at	all,	and	presents	classes	and	objects	as	just	one	useful
feature	 in	 the	 language.7	 R.	 J.	 Pooley’s	 An	 Introduction	 to	 Programming	 in
SIMULA,	which	came	out	 in	1987,	doesn’t	get	 to	 the	concept	of	classes	or	use
the	 term	 object-oriented	 programming	 until	 chapter	 9,	 although	 it	 does	 use
objects	in	examples	in	earlier	chapters.	Pooley	states,	“One	major	advantage	of
this	 approach	 is	 that,	 given	 a	 sensible	 choice	 of	 names,	we	will	 have	 a	much
more	readable	program.	Complicated	detail	is	moved	from	the	main	part	of	the
program	 to	 the	 procedure[s]	 …	 of	 the	 class	 and	 replaced	 by	 meaningful
procedure	names.”8
The	language	that	popularized	object-oriented	programming	was	C++,	created

by	a	Danish	computer	scientist	at	Bell	Labs	named	Bjarne	Stroustrup	starting	in
1979—just	a	decade	after	C,	the	language	on	which	it	was	based,	was	invented.
The	name	is	a	reference	to	the	++	operator	in	C,	which	increments	the	value	of	a
variable;	Stroustrup	states	that	the	name	had	“nice	interpretations,”	although	he
mentions	that	++	can	also	be	read	as	next	and	successor,	which	sounds	a	bit	nicer
then	the	“incremental”	interpretation.9
Stroustrup	 helpfully	 wrote	 the	 book	 The	 Design	 and	 Evolution	 of	 C++,	 in

which	he	explained	his	thinking	in	designing	the	language.	Although	he	cleaned
up	a	few	things	he	disliked	about	C,	the	primary	goal	was	certainly	to	bring	over
the	 class	 idea	 from	 Simula;	 his	 initial	 name	 for	 his	 language	 was	 “C	 with
Classes.”	 He	 beefed	 up	 Simula’s	 class	 support,	 such	 as	 by	 allowing	 multiple
constructors	 for	 a	 class,	 as	 long	 as	 each	 constructor	 had	 a	 unique	 parameter
signature	so	the	compiler	could	tell	them	apart.	For	that	matter	he	came	up	with
the	 term	 constructor,	 after	 first	 trying	 out	 new-function.	 Stroustrup	 used	 the
terms	derived	class	and	base	class	instead	of	subclass	and	superclass	because	he
thought	they	were	clearer,	with	the	potential	confusion	being	that	a	subclass	is	an
expansion	of	the	superclass,	not	the	other	way	around	as	one	would	expect	from
the	way	the	word	subset	is	used	in	mathematics.	He	also	referred	to	the	data	and
functions	of	a	class	as	members,	a	term	that	has	since	become	standard	(C++	did
not	use	the	term	method	but	instead	called	them	member	functions).10
More	 important,	 Stroustrup	made	 all	 class	members	 default	 to	 being	private

rather	than	public.	If	a	variable	in	a	class	was	declared	as	private,	it	was	hidden
from	code	that	used	that	class	(known	as	calling	code	or	a	caller);	only	the	code
inside	 the	 class	 itself,	 implementing	 class	 member	 functions,	 could	 access	 it
(member	functions	themselves	could	be	similarly	hidden,	which	restricted	them
to	being	called	only	by	other	member	functions).	In	the	first	version	of	Simula
all	members	were	public;	in	the	early	1970s	the	notion	of	private	members	was



added,	but	 the	default	was	still	public—accessible	directly	by	any	caller	unless
you	explicitly	marked	members	as	private	in	your	class	declaration.11	C++	made
the	opposite	choice,	with	members	being	private	unless	otherwise	indicated.	This
encouraged	 abstraction	 of	 the	 implementation	 from	 callers;	 implementation
details	can	change	without	affecting	code	that	calls	the	class,	as	long	as	the	only
changes	 are	 to	 private	 data	 and	 functions,	 and	 the	 public	 surface	 remains	 the
same.
David	Parnas	 is	 a	 computer	 science	 professor	who	wrote	 the	 first	 papers	 on

“information	 hiding,”	 as	 he	 called	 abstraction:	 the	 idea	 that	 keeping	 different
modules	from	knowing	the	internal	details	of	each	other’s	data	structures	made
them	more	 robust.	As	 he	 observed,	 “It	was	 information	 distribution	 that	made
systems	‘dirty’	by	establishing	almost	invisible	connections	between	supposedly
independent	 modules.”12	 In	 his	 original	 1971	 paper	 on	 information	 hiding,
Parnas	wrote	about	the	connections	between	modules:

Many	 assume	 that	 the	 “connections”	 are	 control	 transfer	 points,	 passed
parameters,	 and	 shared	 data.	 …	 Such	 a	 definition	 of	 “connection”	 is	 a
highly	 dangerous	 oversimplification	which	 results	 in	misleading	 structure
definitions.	 The	 connections	 between	modules	 are	 the	 assumptions	which
the	 modules	 make	 about	 each	 other.	 In	 most	 systems	 we	 find	 that	 these
connections	are	much	more	extensive	than	the	calling	sequence	and	control
block	formats	usually	shown	in	system	structure	descriptions.	…
We	 now	 consider	 making	 a	 change	 in	 the	 completed	 system.	We	 ask,

“What	 changes	 can	be	made	 to	one	module	without	 involving	 changes	 to
other	modules?”	We	may	make	only	those	changes	which	do	not	violate	the
assumptions	made	 by	 other	modules	 about	 the	module	 being	 changed.	 In
other	 words,	 a	 single	 module	 may	 be	 changed	 only	 as	 long	 as	 the
“connections”	still	“fit.”	…
The	most	 difficult	 decisions	 to	 change	 are	 usually	 the	 earliest.	 The	 last

piece	of	code	inserted	may	be	changed	easily,	but	a	piece	of	code	inserted
several	 months	 earlier	 may	 have	 “wormed”	 itself	 into	 the	 program	 and
become	difficult	to	extract.13

In	 a	 1972	 paper,	 discussing	 the	 division	 into	 modules	 of	 a	 larger	 program,
Parnas	 summarizes	 the	 approach:	 “Its	 interface	 or	 definition	 was	 chosen	 to
reveal	as	little	as	possible	about	its	inner	working.”14	This	gave	the	owner	of	a
module	 the	maximum	 flexibility	 to	 rework	 it	without	having	 to	modify	 all	 the
code	that	called	its	API.
Based	 on	 my	 experience	 in	 college	 working	 on	 programs	 involving	 a



maximum	of	 two	programmers,	I	was	unaware	of	 these	finer	points	and	would
not	have	understood	why	they	mattered.	Nonetheless,	C++	began	to	catch	on	as
the	next	 logical	 successor	 to	C.	 I	believe	 the	 first	 I	ever	heard	of	 the	 language
was	from	a	classmate	at	Princeton,	probably	in	early	1988,	describing	a	program
they	wanted	to	write	and	saying	something	along	the	lines	of,	“A	few	years	ago	I
would	 have	written	 it	 in	 C,	 now	 of	 course	 I	 would	write	 it	 in	 C++.”	He	was
probably	 just	 showing	 off,	 but	 still	 it	 demonstrates	 how	 the	 language	 was
gradually	 intruding	 into	 the	 consciousness	 of	 programmers	 as	 the	 new	 thing.
Nevertheless,	the	original	name,	C	with	Classes,	is	indicative	of	what	Stroustrup
was	 aiming	 for:	 take	 the	 language	C	 and	 add	 the	 useful	 feature	 of	 classes,	 as
opposed	 to	 changing	 the	 world	 through	 object-oriented	 programming.	 In	 the
preface	of	 the	original	C++	Programming	Language,	he	states	(using	 the	 term
type,	where	a	class	is	a	user-defined	type),	“In	addition	to	the	facilities	provided
by	C,	 C++	 provides	 flexible	 and	 efficient	 facilities	 for	 defining	 new	 types.	 A
programmer	can	partition	an	application	into	manageable	pieces	by	defining	new
types	that	closely	match	the	concept	of	the	application.	…	When	used	well,	these
techniques	 result	 in	 shorter,	 easier	 to	 understand,	 and	 easier	 to	 maintain
programs.”15	 Stroustrup	 doesn’t	 get	 to	 an	 in-depth	 discussion	 of	 classes	 until
chapter	5,	toward	the	middle	of	the	book.
There	was	another	object-oriented	language	floating	around	at	the	time	called

Smalltalk,	 which	 had	 been	 developed	 at	 Xerox’s	 Palo	 Alto	 Research	 Center
(PARC)	 during	 the	 1970s.	 The	 first	 general	 release	 was	 called	 Smalltalk-80,
after	the	year	in	which	it	was	appeared.	The	book	Smalltalk-80:	The	Language,
coauthored	by	Adele	Goldberg,	one	of	the	designers	of	the	language,	and	David
Robson,	explains,	“The	Smalltalk-80	system	is	based	on	ideas	gleaned	from	the
Simula	language	and	from	the	visions	of	Alan	Kay.”16	Kay	is	a	good	source	for
visions.	If	you	have	heard	of	Xerox	PARC,	it	is	likely	as	the	place	that	invented
graphical	windowing	environments,	later	appropriated	by	Apple	and	Microsoft;
Kay	was	one	of	the	leaders	on	that	project,	in	addition	to	coining	the	term	object-
oriented	programming.
Stroustrup	notes	that	he	had	heard	of	Smalltalk	when	he	was	designing	C	with

Classes,	 but	 doesn’t	 list	 it	 as	 a	 primary	 influence	 (Smalltalk-80	 was	 the	 fifth
version	of	the	language;	the	language	predates	Stroustrup’s	work	adding	classes
to	C).17	 In	Smalltalk	you	don’t	 call	methods,	 you	 send	messages	 to	 an	object,
which	that	object	may	choose	to	process	by	calling	a	method	(so	a	method	is	an
internal	implementation	detail	in	a	class,	not	the	public	surface;	another	effect	of
this	 is	 that	 all	 class	 members	 are	 necessarily	 private).	 Smalltalk	 is	 a	 “pure”
object-oriented	language;	even	language	constructs	are	based	on	objects.	Instead



of	 an	 IF/ELSE	 statement,	 as	 in	 most	 languages,	 you	 have	 an	 expression	 that
evaluates	to	a	Boolean	object	(an	object	that	stores	a	value	that	is	either	true	or
false),	which	is	then	sent	a	message	with	two	other	objects	containing	blocks	of
code	 (because	code	 itself	 is	 also	an	object),	one	of	which	 should	be	 run	 if	 the
Boolean	is	 true,	and	the	other	which	should	be	run	if	 the	Boolean	is	false,	 like
this:18

number	>	0

			ifTrue:	[positive	←	1]

			ifFalse:	[positive	←	0]

This	 is	 described	 in	 Smalltalk	 terminology	 as	 sending	 a	 message	 with	 the
selector	ifTrue:ifFalse:,	meaning	that	the	message	has	two	arguments,	named
ifTrue:	 and	 ifFalse:	 (true	 camel	 casing,	 you	will	 observe).	 The	message	 is
sent	to	the	Boolean	object	that	results	from	evaluating	the	expression	number	>
0.	This	is	the	rough	equivalent	of	calling	a	method	on	the	Boolean	that	takes	two
parameters,	 except	 note	 that	 the	 parameters	 are	 identified	 by	 a	 name,	 not	 a
position	 in	 an	 argument	 list,	which	 also	means	 that	 the	 syntax	 easily	 supports
making	them	optional	(if	 there	 is	no	ifFalse:	argument,	for	example,	 it	 is	 like
having	no	ELSE	block	on	an	IF	statement).	Named	versus	positional	parameters
is	a	minor	detail	at	this	point	in	our	story,	but	keep	it	in	mind	for	later.
It’s	all	quite	mind	expanding,	if	a	bit	hard	to	read	for	somebody	used	to	almost

any	other	language.	Smalltalk	is	proud	and	unapologetic	in	its	stance;	Smalltalk-
80:	 The	 Language	 jumps	 right	 into	 objects,	 messages,	 classes,	 instances,	 and
methods	in	the	first	chapter.	To	its	credit,	it	avoids	ascribing	hyperbolic	benefits
to	 this	 system,	merely	 stating,	 similar	 to	what	Stroustrup	 said	 about	C++,	 that
“an	 important	 part	 of	 designing	 Smalltalk-80	 programs	 is	 determining	 which
kinds	of	objects	should	be	described	and	which	message	names	provide	a	useful
vocabulary	of	interaction	among	these	objects.”19
Given	that	C++	was	emerging	at	around	the	same	time	as	Smalltalk-80,	with

its	similarity	to	C	making	it	appealing	to	people	who	had	been	seduced	by	that
language,	 it	 is	 understandable	 that	 Smalltalk,	 whose	 syntax	 was	 unusual	 for
anybody	 familiar	 with	 the	 Algol-Pascal-C	 language	 family	 (which	 is	 to	 say,
almost	everybody),	never	gained	as	much	mainstream	traction	as	C++.
Programmers	began	playing	around	with	C++,	especially	C	programmers	who

wanted	 to	 try	 something	 slightly	 edgier;	 they	 happily	 divided	 their	 class
variables	 into	public	and	private,	enjoying	 the	excitement	of	playing	with	 their
new	object-oriented	toys.
In	 1986,	 the	 first	 Object-Oriented	 Programming,	 Systems,	 Languages,	 and

Applications	 (OOPSLA)	 conference	 was	 held	 in	 Portland,	 Oregon,	 under	 the



aegis	of	the	Association	for	Computing	Machinery	(ACM).	Goldberg	was	one	of
the	 organizers.	OOPSLA	 is	 one	 of	 a	 series	 of	 specialized	 conferences	 that	 the
ACM	 puts	 on	 (in	 2010,	 the	 conference	 was	 merged	 into	 the	 Systems,
Programming,	Languages,	and	Applications:	Software	for	Humanity	[SPLASH]
conference).	Stroustrup	describes	 the	first	OOPSLA	conference	as	 the	“start	of
the	OO	[object-oriented]	hype.”20
OOPSLA	 arrived	 at	 the	 beginning	 of	 the	 third	 act	 of	 an	 important	 arc	 in

programming	 language	 design.	 Although	 IBM	 was	 behind	 the	 creation	 of
Fortran	 and	 PL/I,	 many	 of	 the	 first	 computer	 languages	 were	 developed	 at
universities:	 BASIC	was	 invented	 by	 two	Dartmouth	 professors,	 Kemeny	 and
Kurtz,	 Pascal	 by	 Wirth	 at	 the	 ETH	 in	 Zurich,	 and	 Algol	 by	 a	 committee	 of
computer	scientists.	These	were	simpler	days,	where	languages	and	the	problems
they	solved	were	much	less	complex	than	they	are	today,	and	a	better	match	to
the	 capacity	 of	 a	 college	 professor.	 After	 that	 we	 moved	 into	 an	 era	 where
languages	 emerged	 from	 research	 labs,	 either	 private	 ones	 like	 the	Norwegian
lab	 that	 came	 up	 with	 Simula	 or	 more	 commonly	 research	 labs	 within	 larger
hardware	 companies:	 C	 and	 C++	 came	 from	 Bell	 Labs,	 and	 Smalltalk	 from
Xerox	PARC.	These	languages	were	invented,	in	various	degrees,	to	support	the
company’s	business,	but	they	were	a	by-product	and	not	the	end	goal.
In	 the	 1980s,	 there	 began	 to	 emerge	 languages	 designed	 by	 companies	 that

were	an	end	unto	themselves:	the	company’s	business	was	the	language,	and	the
success	of	 the	company	depended	on	programmers	adopting	a	new	language—
always	a	difficult	sell	to	programmers.	Two	of	the	first	of	these	were	Objective-
C,	 invented	 by	Brad	Cox	 and	 Tom	Love	 at	 a	 company	 called	 StepStone,	 and
Eiffel,	invented	by	Bertrand	Meyer	at	a	company	called	Eiffel	Software.	Both	of
these	were	object-oriented	languages.
I	 am	 not	 impugning	 the	motives	 behind	 Objective-C	 and	 Eiffel;	 the	 object-

oriented	approach	was	genuinely	seen	as	a	road	to	software	that	was	both	higher
quality	and	easier	to	write.	Nonetheless,	one	can	appreciate	that	if	the	foundation
of	your	business	involves	convincing	programmers,	enamored	of	C,	to	switch	to
an	object-oriented	language,	you	need	to	present	object-oriented	languages	as	a
bit	more	than	the	mere	notational	convenience	that	Simula	and	C++	were	aiming
for.
Cox’s	 book	Object-Oriented	 Programming:	 An	 Evolutionary	 Approach	 was

published	 in	 1986.	Despite	 the	 subtitle,	 his	 approach	was	 evolutionary	only	 in
the	 sense	 that	 his	 language,	 Objective-C,	 was	 based	 on	 C	 rather	 than	 being
completely	new.	In	the	preface,	Cox	gets	right	to	it:	“It	is	time	for	a	revolution	in
how	we	 build	 software,	 comparable	 to	 the	 ones	 that	 hardware	 engineers	 now
routinely	 expect	 about	 every	 five	 years.	 The	 revolution	 is	 object-oriented



programming.”	 He	 does	 dial	 down	 the	 rhetoric	 in	 the	 body	 of	 the	 book;
Objective-C	 uses	 message	 passing	 instead	 of	 method	 calls,	 the	 same	 as
Smalltalk,	 which	 does	 give	 it	 more	 flexibility	 than	 C++	 in	 how	 objects	 can
choose	 to	 support	 a	message.	Cox	at	one	point	 calls	 this	 “the	only	 substantive
difference	 between	 conventional	 programming	 and	 object-oriented
programming.”21
Such	restraint	was	missing	in	the	writings	of	Meyer	(who	presented	the	paper

“Genericity	versus	Inheritance”	at	the	first	OOPSLA).22	He	starts	his	1988	book
Object-Oriented	 Software	 Construction	 with	 this	 paragraph,	 which	 rivals
anything	Dijkstra	ever	wrote	for	sheer	awesomeness:

Born	in	the	ice-blue	waters	of	the	festooned	Norwegian	coast,	amplified	(by
an	aberration	of	world	currents,	for	which	marine	geographers	have	yet	 to
find	a	suitable	explanation)	along	the	much	grayer	range	of	the	Californian
Pacific;	viewed	by	some	as	a	typhoon,	by	some	as	a	tsunami,	and	by	some
as	a	storm	in	a	teacup—a	tidal	wave	is	reaching	the	shores	of	the	computing
world.23

Following	 on	 to	 the	 oblique	 references	 to	 Simula	 and	 Smalltalk,	 the	 next
paragraph	acknowledges	that	the	reader	may	have	heard	this	sort	of	thing	before:
“‘Object-oriented’	 is	 the	 latest	 in	 term,	 complementing	 or	 perhaps	 even
replacing	‘structured’	as	the	high-tech	version	of	‘good.’	…	Let’s	make	it	clear
right	away,	lest	the	reader	think	the	author	takes	a	half-hearted	approach	to	this
topic:	 I	do	not	 think	object-oriented	design	 is	 a	mere	 fad.”	Meyer	 then	 throws
down	the	gauntlet:	“I	believe	it	is	not	only	different	from	but	even,	to	a	certain
extent,	 incompatible	 with	 the	 software	 design	 methods	 that	 most	 people	 use
today—including	some	of	the	principles	taught	in	most	programming	textbooks.
I	 further	 believe	 that	 object-oriented	 design	 has	 the	 potential	 for	 significantly
improving	the	quality	of	software,	and	that	it	is	here	to	stay.”24
He	states	that	he	will	show

how,	 by	 reversing	 the	 traditional	 focus	 of	 software	 design,	 one	 may	 get
more	 flexible	 architectures,	 furthering	 the	 goals	 of	 reusability	 and
extendibility.	…	When	laying	out	the	architecture	of	a	system,	the	software
designer	 is	 confronted	with	 a	 fundamental	 choice:	 should	 the	 structure	be
based	on	the	actions	or	on	the	data?	In	the	answer	to	this	question	lies	the
difference	 between	 traditional	 design	 methods	 and	 the	 object-oriented
approach.25

He	presents	 the	 top-down	 functional	 approach	 as	 the	 old	way,	 in	which	you



start	 with	 the	 overall	 goal	 of	 a	 program	 and	 then	 break	 it	 down	 into	 smaller
pieces	of	functionality;	this	is	what	structured	programming	was	about.	This,	he
argues,	tends	to	lock	the	software	into	a	certain	functionality,	making	it	hard	to
modify	when	user	requirements	(inevitably)	change,	and	preventing	reusability,
since	 the	 pieces	 that	 the	 software	 is	 broken	 down	 into	 will	 be	 specific	 to	 the
overall	 function	 (which	 is	 ironic,	 since	SIMULA	Begin	presents	both	 top-down
and	bottom-up	routes	to	the	same	goal,	and	in	An	Introduction	to	Programming
in	 SIMULA,	 the	 authors	 talk	 about	 “how	 object-oriented	 programming	 makes
top-down	 design	 easier,”	 because	 you	 can	 rough	 out	 your	 object	 interfaces
without	worrying	about	implementation	details).26
Meyer	 then	 explains	 how	 object-oriented	 design	 avoids	 these	 problems,

because	 your	 data	 tends	 to	 change	 less	 than	 your	 functionality	 and	 can	 more
likely	be	reused	in	other	components.	He	states	the	mantra,	“Ask	not	first	what
the	 system	 does;	 Ask	 WHAT	 it	 does	 it	 to!”	 and	 then	 posits,	 “For	 many
programmers,	this	change	in	viewpoint	is	as	much	of	a	shock	as	may	have	been
for	 some	people,	 in	another	 time,	 the	 idea	of	 the	earth	orbiting	around	 the	sun
rather	than	the	reverse.”27
As	 with	 structured	 programming,	 object-oriented	 programming	 could	 be

viewed	as	either	a	process	to	arrive	at	an	object-oriented	program	or	the	resulting
program	itself.	The	initial	discussion,	in	the	days	of	Simula	and	Smalltalk,	was
about	 the	 resulting	program:	 it	had	objects,	 so	 it	was	object	oriented.	Meyer	 is
instead	 talking	 about	 object-oriented	 design—a	process	 that	 begins	 before	 you
start	 writing	 the	 code,	 thereby	 representing	 a	 more	 fundamental	 shift	 in
approach.
Indeed	in	his	view,	object-oriented	design	does	not	need	language	support;	his

book	 includes	 a	 section	 on	 how	 to	 write	 object-oriented	 code	 in	 existing
languages,	including	a	particularly	forced	attempt	to	do	it	in	Fortran,	although	he
washes	his	hands	of	Pascal.28	Nonetheless,	Meyer	is	clearly	claiming	that	object-
oriented	 design	 turns	 out	 better	 when	 programming	 in	 an	 object-oriented
language,	 and	 a	 lot	 of	 what	 he	 talks	 about,	 such	 as	 allowing	 classes	 to	 be
extensible	 (which	 is	 done	 through	 inheritance),	 does	 require	 language	 support.
His	 basic	 claim	 is	 that	 bottom-up	 design,	 in	which	 you	 start	 by	 defining	 your
classes	and	then	stitch	them	together	into	a	program,	produces	designs	superior
to	those	produced	by	top-down	design.
The	way	in	which	the	design	of	a	program	actually	evolves	is	not	as	simple	as

Meyer	 implies.	 You	 create	 a	 class,	 defining	 your	 best	 guess	 as	 to	 what	 the
methods	 should	 be.	 Later	 you	 might	 realize	 that	 the	 code	 that	 calls	 those
methods	needs	the	data	in	a	different	format	or	needs	access	to	details	about	an



object	that	you	haven’t	exposed;	alternately,	you	realize	that	a	method	you	have
defined	isn’t	being	called	by	anybody,	so	isn’t	needed	(for	now,	anyway—let’s
see	 what	 your	 code	 reviewer	 thinks).	 This	 is	 not	 bad;	 it’s	 the	 way	 program
design	 evolves.	 But	 it’s	 the	 sort	 of	 driven-from-above	 change	 that	 object-
oriented	design	was	supposed	to	avoid,	per	Meyer.
A	2010	paper	by	Linden	Ball,	Balder	Onarheim,	and	Bo	Christensen	compared

breadth-first	design	(proceeding	from	the	top	down	in	an	ordered	way)	to	depth-
first	design	(digging	into	specific	areas,	such	as	a	single	class).	It	summed	up	a
point	made	in	an	earlier	study,	coauthored	by	Ball,	this	way:

experts	will	often	tend	to	mix	breadth-first	and	depth-first	design.	…	[T]he
preferred	strategy	of	expert	designers	 is	a	 top-down,	breadth-first	one,	but
they	 will	 switch	 to	 depth-first	 design	 to	 deal	 strategically	 with	 situations
where	their	knowledge	is	stretched.	Thus,	depth-first	design	is	a	response	to
factors	 such	 as	 problem	complexity	 and	design	uncertainty,	with	 in-depth
exploration	 of	 solution	 ideas	 allowing	 designers	 to	 assess	 the	 viability	 of
uncertain	concepts	and	gain	confidence	in	their	potential	applicability.

The	 authors	 then	verified	 this	 by	 analyzing	video	 recordings	of	 three	 different
teams	of	actual	programmers	at	work:

All	 design	 teams	 rapidly	 produced	 an	 initial	 “first-pass”	 solution	 …
indicative	 of	 breadth-first	 solution	 development.	 …	 High-complexity
requirements	were	subsequently	dealt	with	much	earlier	in	the	transcripts	in
comparison	 to	 intermediate-and	 low-complexity	 requirements.	 …	 This
finding	was	generalized	across	all	three	design	teams	and	suggested	the	use
of	 a	 depth-first	 strategy	 to	 handle	 high-complexity	 requirements	 and	 a
breadth-first	 strategy	 to	 deal	 with	 low-and	 intermediate-complexity
requirements.	…	Overall,	 these	 findings	 point	 to	 a	 sophisticated	 interplay
between	 structured	 breadth-first	 and	 depth-first	 development	 in	 software
design.29

In	 other	words,	 programmers	 can	 go	 back	 and	 forth,	 identifying	broad	 areas
and	 then	 digging	 into	 the	 details	 when	 they	 recognize	 that	 the	 solution	 for	 a
given	 area	 is	 unclear.	But	 even	 for	 simple	 classes,	 the	 design	does	 not	 radiate
outward	 from	 the	 class	 definition	 in	 a	 brilliant	 beam	 of	 clarity;	 it	 is	 a	 dance
between	the	providers	(the	class)	and	consumers	(the	callers	of	the	class)	until	it
settles	 on	 something	 that	 seems	 reasonable.	 It’s	 similar	 to	 the	 dance	 between
algorithm	 and	 data	 structures	 that	 Wirth	 was	 describing	 in	 the	 quote	 at	 the
beginning	 of	 this	 chapter.	 To	 paraphrase	 a	military	 saying,	 “No	 plan	 survives



contact	with	the	callers	of	your	class	methods.”	The	unfortunate	fact	is,	it’s	hard
to	know	if	a	design	 is	“good”	until	 the	whole	program	is	written	and	working.
There	is	no	reliable	process,	top	down	or	bottom	up,	to	arrive	at	this	situation	in
a	deterministic	way,	and	even	if	nirvana	is	reached,	it	is	only	a	temporary	respite
until	the	requirements	of	the	program	change.
Remember	 the	 discussion	 of	 the	 importance	 of	 API	 design	 in	 chapter	 3?	 A

class	is	providing	an	API,	and	its	design	needs	careful	attention,	 like	any	other
API.	 As	 Joshua	 Bloch	 recommended	 in	 a	 talk	 on	 the	 subject	 of	 API	 design,
“Write	to	your	API	early	and	often.”30	In	other	words,	you	need	to	consider	an
API	 you	 are	 providing	 from	 the	 caller’s	 view	 before	 deciding	 that	 it	 is	 well
designed.	 As	 the	 caller	 of	 methods	 in	 object-oriented	 code,	 you	 still	 wind	 up
being	ruled	by	whatever	the	author	of	the	object	chose	to	expose.	If	your	notion
of	 how	an	API	 should	be	 structured	 is	 in	 sync	with	 the	person	who	wrote	 the
API,	 then	 it	 will	 appear	 obvious	 and	 intuitive,	 object	 oriented	 or	 not.	 And	 if
you’re	not	in	sync,	it	will	be	puzzling	and	hard	to	work	with.
At	 one	 point	 at	 Microsoft,	 I	 worked	 on	 a	 product	 that	 supplied	 an	 API	 to

programmers	outside	Microsoft.	Somebody	on	the	team	commented	that	the	API
looked	reasonable,	but	we	couldn’t	be	sure	until	a	lot	of	people	had	used	it.	My
instinctive	 reaction	was,	“It’s	a	good	API.	What	do	we	care	what	other	people
think?”	…	but	I	now	see	the	error	of	my	ways.	Henry	Baird,	one	of	my	on-loan-
from-Bell-Labs	 professors	 at	 Princeton,	 points	 out	 that	 API	 design	 requires
social	skills,	because	you	have	to	be	aware	of	what	assumptions	your	callers	may
make.	 Such	 empathy	 can	 be	 rare	 in	 programmers,	who,	 to	 quote	 Baird	 again,
“are	strongly	attracted	to	the	idea	of	going	into	a	room	alone	with	the	machine
and	getting	something	beautiful”—beautiful,	of	course,	in	their	own	eyes.31
As	 Stroustrup	 cautions,	 “Remember	 that	 much	 programming	 can	 be	 simply

and	clearly	done	using	only	primitive	types,	data	structures,	plain	functions,	and
a	few	classes	from	a	standard	library.	The	whole	apparatus	involved	in	defining
new	 types	 should	not	be	used	 except	when	 there	 is	 a	 real	 need.”32	Rushing	 to
define	 your	 own	 classes	 doesn’t	 have	much	 point	 if	 you	 don’t	 even	 need	 any
new	 classes,	 but	 of	 course	 if	 you	 define	 your	 classes	 first,	 you	 might	 never
realize	that	they	are	unnecessary.
Meyer	 at	 one	 point	 states,	 “We	 have	 seen	 that	 continuity	 provides	 the	most

convincing	argument:	over	time,	data	structures,	at	least	if	viewed	at	a	sufficient
level	of	abstraction,	are	the	really	stable	aspects	of	a	system.”33	The	problem	is
that	the	sufficient	level	of	abstraction	needed	for	this	to	be	true	is	so	high	level
that	 it	only	applies	 to	 the	basic	broad-brush	design	of	a	system:	“We’ll	need	a
place	to	store	the	data,”	or	“The	images	should	be	accessible	in	a	standard	way.”



Once	 you	 start	 diving	 in,	 things	 become	 much	 less	 straightforward,	 and	 you
won’t	know	your	class	design	is	right	until	you	have	written	the	code	for	all	the
actions	you	need	to	perform.
If	you	read	through	papers	presented	at	the	OOPSLA	conferences,	they	are	all

full	 of	 interesting	 ideas	 about	 object-oriented	 programming—many	 of	 them
claiming	 to	 be	 in	 the	 service	 of	 writing	 software	 that	 demonstrates	 desirable
attributes,	such	as	modularity,	composability,	reusability,	and	so	on.	They	rarely,
however,	have	research	to	back	up	these	claims;	they	simply	state	that	such-and-
such	 arrangement	 of	 objects	 is	 pleasing	 to	 the	 eye.	 There	 is	 little	 side-by-side
investigation	 of	 the	 “old	 way”	 and	 “new	way,”	 and	 no	metrics	 to	 evaluate	 if
arranging	 your	 objects	 in	 a	 certain	 way	 produces	 fewer	 bugs	 or	 more
maintainable	code.	To	 the	extent	 that	 there	were	papers	of	 this	sort,	 they	came
from	academia	or	corporate	research	labs,	especially	Hewlett-Packard	and	IBM.
The	fact	that	it	was	old-school	hardware	companies	doing	the	empirical	studies

is	not	surprising.	First	of	all,	they	had	the	capacity	to	do	so;	there	were	no	large
software-only	 companies	 in	 the	 1980s	 (Microsoft	 Research	 was	 founded	 in
1991).	 Second,	 in	 the	 world	 of	 hardware,	 which	 is	 driven	 by	 research-based
science,	 dramatic	 improvements	 do	 come	 from	 research	 labs.	 Back	 in	 1965,
Gordon	Moore,	 one	 of	 the	 cofounders	 of	 Intel,	 predicted	 that	 the	 capacity	 of
integrated	 circuits—the	 basic	 building	 blocks	 of	 computers—would	 double
every	year.34	The	timeline	for	doubling	has	since	moved	back	to	two	years,	more
or	 less,	 but	 the	 law	 has	 proved	 remarkably	 durable	 for	 half	 a	 century.	 These
advances	were	based	on	scientific	research	into	the	materials	and	processes	used
to	fabricate	integrated	circuits.	It	would	be	reasonable	for	a	hardware	company,
observing	the	term	software	engineering,	to	think	that	similar	advances	could	be
made	on	 that	 side;	 software	 companies	would	be	 too	pessimistic	 to	 try.	 In	 the
late	1980s,	John	Young,	the	CEO	of	Hewlett-Packard,	announced	that	“software
quality	and	productivity	had	to	rise	by	a	factor	of	ten	in	five	years.”35
Trying	 to	 impose	 a	 Moore’s	 law	 equivalent	 for	 software	 turned	 out	 to	 be

impossible,	but	it	did	drive	some	good	research	(Brooks,	who	managed	hardware
teams	 at	 IBM	 before	 moving	 over	 to	 software,	 points	 out	 that	 proximity	 to
hardware	 gives	 software	 a	 bad	 rap,	 like	 an	 extremely	 attractive	 friend	 who
makes	 you	 feel	 inadequate:	 “The	 anomaly	 is	 not	 that	 software	 progress	 is	 so
slow	but	that	computer	hardware	progress	is	so	fast.	No	other	technology	since
civilization	began	has	seen	six	orders	of	magnitude	price-performance	gain	in	30
years”).36	Hewlett-Packard	did	make	improvements	in	software	productivity,	as
documented	in	Robert	Grady’s	book	Successful	Software	Process	Improvement.
The	goal	was	 a	 factor-of-ten	 reduction	 in	postrelease	defect	 density	 as	well	 as



the	total	number	of	open	serious	and	critical	defects.	They	did	reach	one-sixth	of
the	 previous	 defect	 density,	 short	 of	 the	 goal	 but	 still	 an	 impressive	 result.
Unfortunately	 the	 amount	 of	 software	 in	 their	 products	 grew	 so	much	 that	 the
other	metric,	open	and	serious	critical	defects,	remained	level.37
The	academic	papers	acknowledge	that	they	report	on	only	one	study,	and	that

more	study	is	needed,	although	oftentimes	this	subtlety	is	lost.	Consider	the	Law
of	Demeter,	a	well-known	object-oriented	 rule	 that	was	 first	presented	by	Karl
Lieberherr,	 Ian	 Holland,	 and	 Arthur	 Riel,	 professors	 from	 Northeastern
University,	 at	 OOPSLA	 in	 1988.38	 It	 is	 aimed	 at	 reducing	 coupling	 between
classes—that	is,	how	much	any	class	knows	about	another	class—in	support	of
the	oft-desired	goal	of	making	it	easier	to	rework	a	class	without	breaking	other
code	 that	uses	 that	class.	Specifically,	 the	approach	 is	 to	 reduce	 the	number	of
classes	 that	any	given	class	knows	anything	at	all	about	(Demeter	 is	 the	Greek
goddess	of	 the	harvest;	 the	 law	was	not	 directly	named	after	 her,	 but	 took	 the
name	 from	 a	 tool,	 also	 called	Demeter,	 that	was	 used	 for	 formally	 specifying
class	definitions—a	rich	bounty	of	class	definitions,	presumably—and	was	also
developed	at	Northeastern).	The	Law	of	Demeter	states	that	if	a	certain	class	C	is
using	an	object	A,	it	should	be	oblivious	about	any	objects	returned	by	methods
on	A—oblivious,	in	this	case,	meaning	that	if	code	in	C	calls	a	method	on	A	that
returns	an	object	of	class	B,	 then	C	 should	not	call	any	methods	(or	access	any
public	data	members,	 if	such	exist)	on	B.	The	most	C	can	do	 is	hand	B	back	 to
another	method	on	A	if	it	is	needed.	The	law	can	be	paraphrased	as	“don’t	talk	to
strangers.”
The	 effect	 of	 this	 is	 that	 if	 B	 changes	 in	 any	 way,	 even	 in	 the	 names	 or

parameters	of	its	public	methods,	C	won’t	need	to	change,	because	it	is	treating	B
as	 a	 black	 box.	C	 only	 leverages	 knowledge	 of	A,	 not	B.	 This	 is	 stronger	 than
saying	 “C	 only	 accesses	 public	 members	 of	 B,”	 the	 basic	 coupling	 reducer	 in
object-oriented	programming.	 It’s	saying	 that	C	doesn’t	access	anything	 in	B	at
all.
This	certainly	does	reduce	coupling	at	the	class	level:	class	C	is	only	sensitive

to	changes	in	class	A,	not	class	B.	The	problem	is,	what	if	C	wants	to	accomplish
something	 that	 is	 best	 handled	 by	 a	method	 on	B—you	 call	 a	method	 on	A,	 it
returns	an	object	of	class	B,	now	you	want	to	use	that	B	object	to	do	something
else?	The	answer,	per	 the	Law	of	Demeter,	 is	 that	A	 should	add	a	new	method
that	 provides	 that	 functionality,	 which	 it	 (presumably)	 implements	 by	 turning
around	and	calling	B	internally;	C	is	allowed	to	call	this	new	method	on	A,	since
it	is	already	coupled	to	A.
This	is	following	the	letter	of	the	law,	but	not	the	spirit.	C	is	still	not	coupled	to



B,	 but	 it	 is	 now	 more	 tightly	 coupled	 to	 A	 because	 it	 is	 now	 calling	 another
method	 on	 A.	 And	 A	 is	 now	 slightly	 more	 coupled	 to	 B	 because	 it	 is	 now
providing	 a	method	 that	 it	 likely	 implements	 by	 calling	 B.	 Yes,	 technically,	 A
could	 continue	 to	 support	 this	 new	method	without	 calling	 B,	 since	 this	 is	 an
internal	implementation	detail,	but	that	would	likely	be	more	work.
The	authors	of	the	original	OOPSLA	paper	had	been	using	the	law	in	a	large

programming	project	with	their	students,	so	they	had	experience	to	back	up	their
proposal.	 They	 do	 avoid	 extravagant	 claims,	 and	 acknowledge,	 as	 you	 would
expect	academics	 to	do,	 that	 there	are	potential	 issues.	The	method	count	on	a
class	may	increase:	“In	this	case	the	abstraction	may	be	less	comprehensible,	and
implementation	 and	 maintenance	 more	 difficult.”	 The	 authors	 continue	 in	 the
same	vein:	“We	have	seen	 that	 there	 is	a	price	 to	pay.	The	greater	 the	 level	of
data	 hiding,	 the	 greater	 the	 penalties	 are	 in	 terms	 of	 the	 number	 of	 methods,
speed	of	execution,	number	of	arguments	to	methods	and	sometimes	readability
of	their	code.”39	They	end	with	a	recommendation	for	further	investigation.
I	don’t	doubt	that	the	Law	of	Demeter	is	helpful	in	certain	situations.	What	is

not	known,	because	it	has	not	been	studied	formally,	is	what	those	situations	are:
what	 it	 is	 about	 the	 programming	 task	 at	 hand,	 the	 size	 of	 the	 team,	 the
likelihood	of	future	changes,	and	so	on,	that	makes	applying	the	Law	of	Demeter
a	net	benefit.	Yet,	in	the	time	since	the	original	paper	was	published,	the	Law	of
Demeter	 has	 been	 picked	 up	 and	 is	 now	 presented	 as	 universally	 applicable
object-oriented	canon;	I	was	taught	it	as	such	in	an	object-oriented	programming
class	I	took.	I	suppose	“The	Possibly	Useful	Idea	of	Demeter”	doesn’t	sound	as
appetizing.
Some	 OOPSLA	 papers	 did	 involve	 solid	 research.	 In	 a	 paper	 presented	 at

OOPSLA	1989,	Mary	Beth	Rosson	and	Eric	Gold	from	IBM	Research	point	out,

A	widely	held	belief	 about	object-oriented	design	 (OOD)	 is	 that	 it	 allows
designers	 to	 model	 directly	 the	 entities	 and	 structures	 of	 the	 problem
domain.	…	This	 is	 an	 inherently	psychological	 claim,	with	 psychological
consequences:	a	design	approach	that	more	directly	captures	the	real	world
should	 ease	 the	 cognitive	 process	 of	 mapping	 from	 the	 problem	 to	 a
solution,	 and	 it	 should	 produce	 design	 solutions	 that	 are	 more
comprehensible	 in	 terms	 of	 the	 problem	 domain.	 Surprisingly,	 though,
virtually	no	psychological	analyses	of	such	claims	exist.40

The	 authors	 then	 proceed	 to	 compare	 actual	 object-oriented	 programmers	 to
procedural	programmers	as	they	analyze	a	problem	and	talk	through	a	solution.
It’s	good	stuff,	but	unfortunately	rare	for	an	OOPSLA	paper.



Even	better	is	a	1991	paper	titled	“An	Empirical	Study	of	the	Object-Oriented
Paradigm	and	Software	Reuse.”	It	starts	with	the	obligatory	group	mea	culpa:

While	 little	 or	 no	 empirical	 validation	 exists	 for	 many	 of	 software
engineering’s	 basic	 assumptions,	 the	 need	 for	 scientific	 experimentation
remains	clear.	…	The	use	of	precise,	repeatable	experiments	to	validate	any
claim	 is	 the	hallmark	of	 a	mature	 scientific	 or	 engineering	discipline.	Far
too	 often,	 claims	 made	 by	 software	 engineers	 remain	 unsubstantiated
because	 they	 are	 inherently	 difficult	 to	 validate	 or	 because	 their	 intuitive
appeal	seems	to	dismiss	the	need	for	scientific	confirmation.41

The	study,	 though,	 is	great;	done	by	John	Lewis,	Sallie	Henry,	Dennis	Kufara,
and	 Robert	 Schulman,	 all	 professors	 at	 Virginia	 Tech,	 it	 involved	 a	 carefully
planned	 experiment	 comparing	 reuse	 between	 procedural	 and	 object-oriented
languages,	 using	 students	 as	 the	 test	 subjects.	 The	 professors	 had	 a	 control
group.	They	balanced	out	the	skill	set	among	the	students.	One	of	the	professors
was	 a	 statistician!	 They	 conclude	 that	 object-oriented	 languages	 promote
software	reuse	more	than	procedural	ones;	I	could	push	back	on	the	grounds	that
the	languages	used	were	C++	and	Pascal,	which	isn’t	a	fair	fight,	but	that	would
be	 a	 quibble.42	 Instead,	 I	 will	 salute	 this	 paper	 as	 a	 shining	 beacon	 of
engineering	research.
Most	 of	 the	 rest,	 however,	 is	 anecdotal	 reporting	 on	 what	 the	 authors

accomplished.	As	Marvin	Zelkowitz	wrote	in	2013,

The	typical	conference	proceedings	today	in	software	engineering	contains
numerous	papers	of	the	form
How	<my	acronym>,	using	<this	new	theory	of	mine>,
is	useful	for	the	testing	of	<application	domain>
and	is	able	to	find	<class	of	errors>	better	than	existing	tools.43

Since	every	software	project	 is	unique,	and	problems	 tend	 to	show	up	as	 the
group	 of	 programmers	 changes	 or	 the	 software	 evolves	 over	 the	 years,	 the
successful	completion	of	a	project	is	not	an	indicator	that	the	methodology	and
language	chosen	were	the	best	ones	possible.	I	successfully	wrote	games	in	IBM
PC	BASIC;	that	doesn’t	mean	that	it’s	a	great	language.	And	the	wide	universe
of	 software	 makes	 it	 easy	 to	 construct	 specific	 examples	 where	 a	 given
arrangement	 of	 classes	 in	 an	 object-oriented	 program	works	well;	 that	 doesn’t
mean	the	advice	can	automatically	be	generalized.	When	writing	a	game	on	the
IBM	PC,	a	lot	of	the	code	involves	changing	the	image	displayed	on	the	screen.
In	this	environment,	making	the	screen	globally	accessible	from	anywhere	in	the



program	rather	than	requiring	a	screen	handle	or	screen	object	is	a	convenience;
it	avoids	having	to	pass	around	a	parameter	that	will	always	be	the	same.	I	could
have	 written	 a	 paper	 on	 “The	 Effective	 Use	 of	 Global	 Variables	 to	 Optimize
Interactivity”;	that	doesn’t	mean	that	global	variables	are	always	good.	There	are
many	other	areas,	even	in	the	code	for	the	same	game,	where	they	make	the	code
hard	to	read,	not	to	mention	hard	to	modify	without	breaking	anything.
Certainly	OOPSLA	had	a	lot	of	“hype,”	as	Stroustrup	called	it.	In	the	abstract

for	a	panel	on	“OOP	 in	 the	Real	World”	at	OOPSLA	1990,	a	description	of	a
troubled	project	included	this:

These	were	by	and	large,	failures	of	management	and	many	of	 them	were
quite	 independent	 of	 the	 use	 of	 an	OOPL	 [Object-Oriented	 Programming
Language].	 Nonetheless,	 the	 fact	 that	 we	 were	 using	 an	 OOPL	 was
important	 because	 it	 contributed	 to	 an	 attitude	 that	 would	 not	 otherwise
have	 existed.	 It	 was	 very	 true	 and	 is	 still	 somewhat	 true	 that	 OOP
protagonists	 are	 true	 believers.	 The	 very	 real	 benefits	 of	 using	 OOP	 are
presented	in	a	very	one-sided	fashion	which	too	often	leads	to	the	view	that
OOP	 is	 a	 panacea.	 This	 better	 than	 life	 outlook	 induced	 a	 euphoria	 in
management	 which	 caused	 suspension	 of	 the	 normal	 procedures	 and
judgment	criteria.44

It’s	not	that	these	object-oriented	ideas	are	bad;	many	of	them	are	good.	They
may	produce	more	readable,	maintainable	programs.	Maybe	all	of	them	do!	But
more	evidence	would	be	helpful	in	knowing	what	actually	is	better,	as	opposed
to	just	sounding	better,	and	in	figuring	out	when	a	particular	approach	will	work
best.	 I	 think	 it	 comes	 back	 to	 the	 fact	 that	many	programmers	 are	 self-taught;
they	are	used	to	their	own	experiences	being	all	the	evidence	they	need	that	an
idea	is	worthwhile.	As	with	any	situation	where	code	is	calling	an	API	defined
by	somebody	else,	it’s	similar	to	the	hardware	store	redesign:	if	your	task	lines
up	with	what	the	designer	had	in	mind,	it	can	be	nice,	but	otherwise	it	can	make
your	work	difficult.
Object-oriented	 programming	 has	 been	 discussed	 enough	 that	 the	 term	 has

filtered	 into	 the	 public’s	 consciousness	 as	 something	 that	 programmers	 do,
although	 to	 the	extent	 that	 it	 is	covered	 in	 the	mainstream	press,	 it’s	not	about
improved	 design	 but	 rather	 reusability.	 In	 particular,	 it	 concerns	 the	 idea	 that
now	 that	 you	 have	 these	 objects,	 you	 can	 easily	 glue	 them	 together	 to	 make
programs.	This	perception	is	not	surprising.	First	of	all,	the	word	object	makes	it
sound	 like	 you	 can	 do	 that.	 Second,	 it’s	 a	 convenient	 way	 to	 explain	 to	 a
nonprogrammer	what	is	new	about	objects	compared	with	the	old	way;	they	are



standardized	components	that	can	then	be	used	to	assemble	larger	pieces.	Most
important,	 object-oriented	 proponents	 repeatedly	 made	 this	 claim.	 Cox	 wrote
that	programmers	would	“produce	reusable	software	components	by	assembling
components	of	other	programmers.	These	components	are	called	Software-ICs	to
emphasize	 their	similarity	with	 the	 integrated	silicon	chip,	a	similar	 innovation
that	has	revolutionized	the	computer	hardware	industry.”45
This	 ignores	 a	 couple	 of	 problems.	 You	 could	 do	 that	 with	 procedural

programming	 (all	 programs,	 object	 oriented	 or	 not,	 are	 built	 up	 in	 layers	 that
have	to	connect	with	each	other	and	interact	cleanly,	and	“reuse”	just	means	that
somebody	else	wrote	some	of	the	layers,	which	is	independent	of	object-oriented
programming).46	 The	 reality	 is	 that	 you	 can	 slap	 objects	 together	 with	 other
objects	if	they	were	designed	to	do	that	or	happen	to	mesh	together	well,	and	you
can’t	if	they	weren’t,	and	that	is	also	the	same	as	procedural	programming.
It	turns	out	that	small	problems	can	trip	up	the	combining	of	objects.	Hewlett-

Packard	researcher	Lucy	Berlin’s	paper	at	OOPSLA	1990	titled	“When	Objects
Collide”	observed	that	“pairs	of	independently	sensible	pragmatic	decisions	can
cause	fundamental	 incompatibilities	among	components.”47	 In	other	words,	 the
designers	of	the	code	that	is	calling	a	class,	and	the	designers	of	that	class	itself,
can	 each	 make	 completely	 rational,	 sensible	 decisions	 about	 how	 their	 code
works,	 in	 out-of-the-spotlight	 areas	 such	 as	 how	 they	 handle	 errors	 and	 how
objects	 are	 initialized,	which	 turn	 out	 to	 be	 fundamentally	 opposed	 and	make
piecing	together	objects	impossible.
There	has	been	one	 instance	when	the	“stick	 the	blocks	of	code	next	 to	each

other	and	it	will	work”	approach	was	successful,	and	it	predates	object-oriented
programming.	 Back	 in	 the	 1970s,	 the	 UNIX	 operating	 system	 introduced	 the
notion	of	a	pipeline:	taking	the	output	of	one	program	and	sending	it	to	another
program	as	 the	 input.	This	 is	most	accessible	 to	users	when	 they	are	using	 the
command-line	 interface,	which	 is	what	DOS	 looked	 like:	 the	operating	 system
displays	a	prompt	and	blinking	cursor,	the	user	types	a	command	and	hits	enter,
the	output	of	 the	command	scrolls	past,	and	then	the	computer	prompts	for	 the
next	 command.	 Although	 they	 are	 somewhat	 hidden,	 command	 prompts	 still
exist	 in	both	Windows	and	macOS	 (not	 to	mention	Linux)	because	 they	allow
certain	complicated	commands	to	be	typed	easily.	It’s	not	just	programmers	who
appreciate	this;	in	1999,	the	science	fiction	author	Neal	Stephenson	wrote	a	long
paean	 to	 the	 power	 of	 the	 command	 line	 titled	 In	 the	 Beginning	 …	Was	 the
Command	Line,	which	was	later	reprinted	as	a	book.48	Kernighan	and	Plauger’s
book	Software	Tools	is	primarily	about	the	usefulness	of	command-line	tools	to
programmers.



Using	simple	syntax	on	the	UNIX	command	line,	you	could	print	the	contents
of	 a	 file,	 extract	 data	 from	 it,	 rearrange	 that	 data	 as	 needed,	 and	 build	 useful
larger	“programs”	out	of	smaller	building	blocks	without	needing	to	modify	the
underlying	code—the	putative	benefit	of	object-oriented	programming.	You	put
together	a	series	of	commands	using	the	vertical	bar	as	the	pipeline	symbol,	like
this	 (which	 I’ve	 split	 to	 fit	 on	 the	 page,	 but	 in	 reality	would	 be	 typed	 on	 one
line):

cat	filename.txt	|	grep	total	|	cut	-d	,	-f	5	|

						tr	a-z	A-Z	|	sort	|	uniq

This	says	“take	the	contents	of	filename.txt,	grab	only	the	rows	that	contain
the	word	‘total,’	interpret	it	as	a	comma-separated	list	and	take	the	fifth	column,
uppercase	 the	 values,	 sort	 them,	 and	 remove	 duplicate	 rows.”	 This	 is	 quite
powerful	 for	 a	 lot	 of	 simple	 manipulation	 of	 data.	 It’s	 part	 of	 the	 “UNIX
Philosophy,”	which	is	described	in	Brian	Kernighan	and	Rob	Pike’s	1984	book
The	UNIX	Programming	Environment:

Even	though	the	UNIX	system	introduces	a	number	of	innovative	programs
and	techniques,	no	single	program	or	idea	makes	it	work	well.	Instead,	what
makes	it	effective	is	an	approach	to	programming,	a	philosophy	of	using	the
computer.	 Although	 that	 philosophy	 can’t	 be	 written	 down	 in	 a	 single
sentence,	at	 its	heart	 is	 the	 idea	 that	 the	power	of	 the	system	comes	more
from	the	relationship	among	programs	than	from	the	programs	themselves.
Many	UNIX	programs	do	quite	trivial	tasks	in	isolation,	but,	combined	with
other	programs,	become	general	and	useful	tools.49

This	 is	 a	 different	UNIX-related	 notion	 from	 the	 “an	 incremental	 approach	 to
program	 improvement	 is	 better	 than	 a	 heavy-handed	 process”	 one	 that	 I
discussed	in	the	previous	chapter,	although	it	could	be	viewed	as	a	different	side
of	the	same	coin:	many	small	things	are	better	than	one	big	thing.
The	reason	you	could	stitch	the	command-line	tools	together	so	well	was	that

when	 transferring	 data	 between	 them,	 they	 broke	 the	 data	 down	 into	 the
simplest,	most	 portable	 format—everything	 became	 text	 strings—so	 the	 result
was	not	particularly	fast,	and	it	required	the	user	to	have	knowledge	of	the	data
format.	But	the	user	could	easily	modify	the	data,	precisely	because	 it	was	just
text	strings;	in	fact,	a	lot	of	the	command-line	tools	existed	solely	to	manipulate
the	data	so	it	could	be	successfully	passed	into	the	next	tool,	such	as	cut	and	tr
in	the	example	above.	If	one	tool	output	the	data	separated	by	commas	but	you
needed	it	separated	by	tabs,	or	you	needed	to	sort	the	output	or	remove	duplicate



lines,	simple	tools	were	available	for	that.	When	linking	objects	together	you	run
into	problems,	because	the	output	of	one	method	can’t	always	be	easily	fed	into
the	next	method;	 the	UNIX	command-line	environment	 let	you	 first	notice	 the
equivalent	problems	by	visually	inspecting	the	output	of	the	first	tool,	and	then
fix	it	up	as	needed	by	inserting	commands	into	the	pipeline	before	feeding	it	into
the	 second	 tool.	Of	course	all	 this	was	 slow,	with	all	 the	conversion	 to	 strings
and	 back,	 so	 stitching	 together	 commands	 this	 way	 wasn’t	 considered	 “real”
programming,	but	it	did	work.
But	 so	 far,	 this	 is	 the	 only	 case	where	 the	 “objects	 as	 building	 blocks”	 idea

works.	 Early	 object-oriented	 writers	 recognized	 this.	 Cox	 called	 UNIX
command-line	pipelines	“one	of	the	most	potent	reusability	technologies	known
today.”50	Meyer	mentions	them	when	talking	about	composability,	although	for
him	that	is	just	one	of	the	criteria	for	good	design:	“This	criterion	reflects	an	old
dream:	transforming	the	software	design	process	into	a	construction	box	activity,
whereby	 programs	 would	 be	 built	 by	 combinations	 of	 existing	 standard
elements.”51
Still,	 in	most	cases	objects	can’t	be	arbitrarily	glued	 together.	What	can	 they

be	used	 for?	 In	 fact,	 there	 is	 a	 situation	 in	which	objects	 are	unquestionably	 a
step	forward,	but	it’s	not	the	elegant	designs	that	Meyer	had	in	mind;	it’s	more
mundane,	yet	also	more	useful.
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7 
Design	Thinking

Inheritance	was	 one	 of	 the	 signature	 features	 of	 object-oriented	 programming;
many	new	C++	programmers	latched	onto	the	notion	of	sharing	common	code	in
a	base	class.	It’s	an	elegant	way	to	avoid	having	to	write	(and	test)	the	same	code
twice.	And	analyzing	code	for	commonalities,	to	find	the	logical	split	into	base
class	and	derived	class,	is	the	type	of	clever	thing	that	programmers	like	to	do,
even	if	it	was	possible	that	nobody	would	ever	instantiate	an	instance	of	the	base
class	on	its	own.
Naturally	 this	 can	 be	 taken	 too	 far.	 I	 worked	 on	 a	 C++	 project	 in	 the	mid-

1990s	where	one	of	 the	developers	had	decreed	 that	any	 inheritance	could	add
only	one	new	member.	If	you	started	with	a	rectangle	base	class,	and	wanted	to
add	both	text	and	a	color	as	members,	you	had	to	first	create	a	derived	class	that
added	the	text	member,	and	then	derive	a	class	from	that	which	added	the	color
member—and	most	classes	have	a	lot	more	than	three	members.	God	forbid	that
somebody	decided	they	wanted	to	use	a	class	that	was	a	rectangle	with	text	and
the	 color	 got	 dragged	 along	 too.	Left	 unanswered	was,	What	 if	 they	wanted	 a
rectangle	 with	 a	 color	 but	 no	 text?	 Anyway,	 limiting	 inheritance	 to	 one	 new
member	made	no	sense	because	…	just	trust	me,	it	made	no	sense.	I	mean,	does
it	sound	like	it	makes	sense?	But	it	had	been	mandated	at	some	point	in	the	past.
Given	the	usual	problem	that	it	is	impossible	to	convince	a	programmer	they	are
wrong,	and	the	fact	that	the	code	was	already	structured	that	way,	I	accepted	my
fate.
There	 are	 other	ways	 that	 programmers	 can	 overuse	 a	 cool	 new	 feature	 like

inheritance.	 Consider	 an	 e-mail	 program	 that	 wanted	 to	 support	 encrypted	 e-
mails—encoding	 an	 e-mail	 so	 that	 only	 certain	 people	 can	 read	 it.	 There	 are
various	 encryption	 algorithms	 available,	 each	 with	 trade-offs	 in	 how	 fast	 and
secure	 they	 are.	 Let’s	 say	 this	 e-mail	 program	 wanted	 to	 use	 the	 encryption
algorithm	known	as	Advanced	Encryption	Standard	(AES).
Further,	 assume	 that	 a	 class	 had	 already	 been	 written	 that	 provided	 AES

encryption,	defined	something	like	this:



class	AESEncrypter	{

			public	Encrypt()	{	}

}

This	 is	what	 class	 definitions	 look	 like	 in	most	 object-oriented	 languages:	 the
word	class	 followed	by	 the	name	of	 the	class	and	 then	 the	methods.	Here	 the
class	 is	 named	 AESEncrypter,	 and	 it	 has	 a	 single	 public	 method	 named
Encrypt()	(this	example	leaves	out	a	few	details,	especially	that	the	Encrypt()
method	presumably	 takes	 several	 parameters	 and	may	 return	 a	value,	 and	 also
that	the	implementation,	between	the	{	},	is	empty).
The	e-mail	program	 is	planning	 to	use	AESEncrypter	 to	perform	encryption,

but	 there	 is	 flexibility	 in	 exactly	 how	 it	 goes	 about	 this.	 One	 approach,	 for
programmers	 under	 the	 initial	 spell	 of	 object-oriented	 programming,	 was	 to
leverage	 the	 fact	 that	 a	 class	 that	 inherits	 from	 a	 base	 class	 can	 access	 all	 the
members	(data	and	methods)	of	the	base	class.	You	could	have	the	e-mail	class
inherit	 from	 the	 encryption	 class,	 as	 indicated	 by	 the	 colon	 syntax	 in	 the
declaration	of	your	new	Emailer	class:

class	Emailer:	AESEncrypter	{

			//	code	in	Emailer	can	call	Encrypt()

}

and	now	all	the	methods	on	AESEncrypter	are	available	to	Emailer.
This	 isn’t	 particularly	 logical,	 since	 inheritance	 is	 about	 extending	 the

functionality	of	the	base	class	and	offering	the	combined	functionality	to	callers
of	the	derived	class;	your	Emailer	class	exposes	the	public	methods	of	any	class
it	 inherits	 from,	 which	 means	 that	 other	 code	 might	 start	 using	 Emailer	 for
encryption	 by	 calling	 the	 Encrypt()	 method,	 thereby	 locking	 Emailer	 into
providing	 encryption	 for	 the	 foreseeable	 future.	 This	 goes	 against	 the	 idea	 of
loose	coupling	of	classes.1	Yet	programmers	would	design	their	code	this	way,
because	 it	 solved	 their	 immediate	 problem	 of	 needing	 access	 to	 encryption
functionality	 and	 they	 weren’t	 thinking	 about	 the	 longer-term	 effects	 of	 how
their	callers	would	invoke	their	class.
The	test	for	whether	inheritance	made	sense	was	eventually	formulated	as	“is-

a”	versus	“has-a.”	In	order	to	inherit	from	a	class,	you	should	legitimately	be	that
class—the	 [derived	 class]	 “is-a”	 [base	 class]—with	 a	 little	 something	 extra
added.	It	makes	sense	for	a	Dog	class	to	inherit	from	an	Animal	class,	because	a
dog	 is	 an	 animal.	 Is	 it	 accurate	 to	 say	 that	 Emailer	 is	 an	 AESEncrypter?	No,
Emailer	 is	 for	 sending	 e-mail;	 it’s	 only	 providing	 encryption	 accidentally,
because	 of	 the	 way	 you	 have	 used	 inheritance.	 This	 pushes	 it	 to	 the	 “has-a”



category—Emailer	has	an	AESEncrypter	that	it	uses.	Instead	of	inheriting	from
AESEncrypter,	it	should	contain	an	instance	of	it:

class	Emailer	{

			private	AESEncrypter	aes;		//	can	call	aes.Encrypt()

}

and	 it	 can	 now	 call	 methods	 on	 that	 AESEncrypter	 as	 it	 sees	 fit.	 That
AESEncrypter	 object	 aes	 is	 private—meaning	 its	methods	 are	 not	 exposed	 to
callers	of	Emailer	but	instead	are	only	for	use	internally	by	Emailer	methods.
This	is	cleaner	than	inheriting	from	AESEncrypter,	but	it	still	has	the	potential

to	 cause	 friction	 in	 the	yet-to-be-revealed	 future,	 the	bête	noire	of	 all	 software
design.	As	a	code	reviewer	might	ask,	What	if	you	decided	that	you	wanted	to
change	your	encryption	algorithm?2	Or	what	if	you	wanted	to	support	more	than
one	encryption	algorithm?
One	solution	would	be	for	Emailer	to	contain	multiple	encrypters	and	use	only

the	one	it	needed	when	sending	an	e-mail,	but	that	is	cheesy	for	several	reasons.
First,	 you	 would	 have	 all	 those	 encrypters	 lying	 around,	 sitting	 there	 in	 your
class	 definition	 like	 so	 many	 bumps	 on	 a	 log,	 each	 taking	 up	 a	 small	 bit	 of
memory,	although	only	one	of	them	was	being	used	in	a	given	instance	of	your
class.	Second,	you	would	wind	up	writing	code	like	this	in	Emailer	to	figure	out
which	 encrypter	 to	 call	 (based	 on	 a	 variable,	 such	 as	 encryptionType	 used
below,	that	defines	which	encryption	type	you	actually	want	to	use):

if	(encryptionType	==	AES)	{

			aes.Encrypt();

}	else	if	(encryptionType	==	RC4)	{

			rc4.Encrypt();

}	else	if	(encryptionType	==	TripleDES)	{

			tripledes.Encrypt();

}

and	similar	code	would	need	 to	be	 repeated	every	 time	you	wanted	 to	call	 the
encrypter.	 Plus,	 all	 those	 sections	 of	 code	would	 need	 to	 be	 extended	 via	 yet
another	ELSE	IF	if	you	added	another	type	of	encryption.
Fortunately,	 around	 this	 time	 people	 were	 figuring	 out	 an	 extremely	 useful

application	of	object-oriented	programming,	involving	interfaces.
A	 class	 can	 declare	 a	method	 as	 abstract;	 this	means	 that	 the	 class	 does	 not

implement	 the	 method	 but	 simply	 sets	 the	 contract—the	 method	 name	 and
parameter	 list—that	 derived	 classes	 must	 follow	 when	 they	 implement	 that
method.	Classes	with	 abstract	methods	 can’t	 be	 instantiated	 as	 objects;	 only	 a



derived	class	that	implements	all	the	abstract	methods	of	its	base	classes	can	be
instantiated	(such	a	class	is	known	as	a	concrete	class).
An	 interface	 is	 a	 class	 that	 takes	 this	 to	 the	 extreme:	 all	 of	 its	methods	 are

abstract.	Because	of	 this	you	can’t	 instantiate	 an	 instance	of	 an	 interface;	 they
exist	only	as	contracts	to	be	followed	by	derived	classes	that	inherit	from	them:

interface	MyInterface	{

			int	SomeMethod(string	a,	int	b);

}

class	MyConcreteClass:	MyInterface	{

			public	int	SomeMethod(string	a,	int	b)	{	}

}

Notice	 that	 the	 parameter	 signature	 of	 SomeMethod()	 in	 MyConcreteClass
exactly	 matches	 the	 one	 in	 MyInterface	 (the	 concrete	 class	 has	 to	 explicitly
define	SomeMethod()	as	public,	which	is	automatically	implied	for	the	interface).
Crucially,	code	that	wants	to	call	into	a	MyConcreteClass	instance	is	allowed	to
refer	 to	 it	 as	a	MyInterface,	 just	as	a	caller	can	 treat	any	derived	object	as	 its
base	object.
When	an	updated	version	of	the	C++	language	came	out	in	1989,	 it	 included

the	 idea	 of	 multiple	 inheritance,	 which	 meant	 a	 class	 could	 inherit	 from	 two
different,	completely	unrelated	base	classes.	This	was	a	clever	idea	in	theory—
and	 somewhere	 between	 neutral	 and	 terrible	 in	 practice.	 It	 turned	 out	 that	 the
cases	 in	which	 a	 derived	 class	was	 100	 percent	 “is-a”	with	 two	 different	 base
classes	 rarely	arose	 in	any	useful	 situations	 (a	 lot	of	 the	 initial	use	of	multiple
inheritance	in	C++	was	for	inappropriate	“has-a”	relationships,	such	as	inheriting
from	 an	 encrypter	 class	 in	 an	 e-mail	 class).	 Multiple	 inheritance	 of	 classes
eventually	fell	out	of	favor,	and	the	 two	modern	object-oriented	languages	 that
most	people	care	about	today,	Java	and	C#,	don’t	allow	it.	But	they	do	support
multiple	inheritance	of	interfaces.	This	isn’t	in	danger	of	violating	the	“is-a”	rule
because	an	interface	“isn’t	a”	thing	at	all;	it’s	just	a	set	of	rules	for	what	methods
can	be	called.
Meyer,	 in	 discussing	multiple	 inheritance,	 focuses	 on	 the	 value	 of	 interfaces

(which	 he	 calls	deferred	 classes,	 since	 Eiffel	 uses	 the	 keyword	 “deferred”	 for
“abstract”);	he	calls	it	a	“marriage	of	convenience,”	which	sounds	a	bit	negative
until	you	read	his	explanation:

The	 FIXED_STACK	 example	 is	 representative	 of	 a	 common	 kind	 of
multiple	inheritance,	which	may	be	called	the	marriage	of	convenience.	It
is	 like	 a	marriage	 uniting	 a	 rich	 family	 and	 a	 noble	 family.	 The	 bride,	 a
deferred	 class,	 belongs	 to	 the	 aristocratic	 family	 of	 stacks;	 it	 brings



prestigious	 functionality	but	no	practical	wealth—no	 implementation.	The
groom	comes	 from	a	well-to-do	bourgeois	 family,	 arrays,	but	needs	 some
luster	to	match	the	efficiency	of	its	implementation.	The	two	make	a	perfect
match.3

In	 my	 encrypting	 e-mail	 example,	 you	 would	 define	 an	 interface	 for
encrypters,	 which	 looks	 similar	 to	 my	 definition	 of	 the	 AESEncrypter	 class
above	(interface	names	traditionally	start	with	an	I):

interface	IEncrypter	{

			Encrypt();

}

Any	 implementation	 of	 an	 encrypter	 can	 now	 inherit	 from	 the	 IEncrypter
interface	and	implement	the	methods,	as	it	normally	would,	except	the	methods
now	inherit	their	signature	from	the	interface	rather	than	having	carte	blanche	to
define	them	in	each	individual	encrypter	(this	is	a	good	thing:	the	enforcement	of
a	 standard	method	 signature	 is	 the	point	of	 inheriting	 from	 the	 interface).	You
only	need	a	one-line	change	in	the	declaration	of	a	specific	encrypter	to	add	the
inheritance	from	IEncrypter:

class	AESEncrypter:	IEncrypter	{

			public	Encrypt()	{	}

}

and	 then	 your	 e-mail	 program	 that	 needs	 encryption	 can	 use	 the	 IEncrypter
interface	to	call	through	into	whatever	encrypter	it	is	going	to	use,	without	your
having	to	write	extra	code	to	decide	which	encrypter	it	is	really	calling	into:

class	Emailer	{

			private	IEncrypter	e;			//	can	call	e.Encrypt()

}

This	leaves	open	the	question	of	how	e	is	initialized.	In	the	worst	case,	you	can
have	code	in	the	constructor	of	Emailer	(which	is	defined	using	the	class-name-
like-a-method-name	syntax	below)	that	sets	it	based	on	an	encryption	type.	This
still	requires	having	a	known	list	of	encryption	types	and	encrypters,	but	at	least
adding	 support	 for	more	 encrypters	 only	 involves	 changing	 this	 one	 place,	 as
opposed	to	every	place	you	want	to	call	into	an	IEncrypter:

Emailer()	{

			if	(encryptionType	==	AES)	{

						e	=	new	AESEncrypter();



			}	else	if	(encryptionType	==	RC4)	{

						e	=	new	RC4Encrypter();

			}	else	if	(encryptionType	==	TripleDES)	{

						e	=	new	TripleDESEncrypter();			}

}

But	 a	 much	 cleaner	 way	 is	 to	 have	 the	 constructor	 of	 Emailer	 take	 the
IEncrypter	as	a	parameter,	saving	it	in	e	for	later	use:

Emailer(IEncrypter	enc)	{

			e	=	enc;

}

This	 arguably	 just	 pushes	 the	 problem	 up	 a	 level	 since	 it	means	 the	 person
creating	the	Emailer	object	now	has	to	know	how	to	create	the	IEncrypter	so	it
can	 pass	 it	 to	 the	 Emailer	 constructor.	 There	 are	 a	 few	 solutions	 to	 that:	 you
could	write	an	Emailer	constructor	like	the	sample	above	that	sets	e	based	on	an
encryption	 type	passed	 to	 the	constructor	but	defaults	 to	a	specific	encrypter	 if
none	is	specified.	In	any	case,	hold	that	thought	(I	will	come	back	to	it	later),	and
instead	focus	on	how	clean	the	internals	of	Emailer	are	with	this	design.
The	 concept	 that	 clarified	 the	 usefulness	 of	 interfaces	 was	 design	 patterns.

Design	 patterns	 were	 first	 introduced	 in	 1994	 in	 a	 book	 of	 the	 same	 name,
subtitled	Elements	of	Reusable	Object-Oriented	Software.4	The	book	was	based
on	the	1977	book	A	Pattern	Language	by	Christopher	Alexander,	Sara	Ishikawa,
and	 Murray	 Silverstein.5	 That	 book	 has	 nothing	 to	 do	 with	 software;	 it	 is
subtitled	Towns	·	Building	·	Construction	and	is	about	architecture.	The	theme	of
Alexander	and	company’s	book	is	that	there	are	design	problems	in	architecture
that	have	been	solved	repeatedly	throughout	the	centuries,	and	it	makes	sense	to
collect,	 describe,	 and	 name	 them,	 so	 that	 architects	 can	 use	 and	 discuss	 them
without	lengthy	reinvention	or	explanation.	The	architectural	problems	(there	are
253	of	them)	range	from	large	to	small	scale.	Using	the	capitalization/numbering
convention	 in	 the	 book	 as	well	 as	 the	 book’s	 general	 ordering	 from	 largest	 to
smallest,	 they	 include	AGRICULTURAL	VALLEYS	(4),	RING	ROADS	(17),
MARKET	OF	MANY	 SHOPS	 (46),	 BUS	 STOP	 (92),	 INDOOR	 SUNLIGHT
(128),	 STREET	 WINDOWS	 (164),	 FLOOR-CEILING	 VAULTS	 (219),	 and
HALF-INCH	TRIM	(240).6
The	four	authors	of	the	software	Design	Patterns	book	(who	became	known	as

the	Gang	 of	 Four)	 applied	 the	 same	 idea	 to	 common	 software	 problems.	 Like
Alexander	and	his	coauthors,	 they	give	each	solution	a	name	and	describe	it	 in
detail.	 For	 example,	 the	 “Strategy”	 pattern	 addresses	 the	 problem	 we	 talked
about	above:	a	program	wants	to	use	a	module	to	perform	an	operation	such	as



encryption	 (the	 Strategy	 pattern	 is	 often	 demonstrated	 using	 an	 encryption
module)	in	a	clean	way	that	makes	it	possible	to	change	the	encryption	module
or	add	more	encryption	modules	with	minimal	changes	to	the	code.	The	solution
in	the	Strategy	pattern	is,	as	you	might	expect,	to	access	the	encryption	module
through	 an	 interface	 rather	 than	 inherit	 from	 or	 contain	 a	 concrete	 encrypter
class.
The	 Gang	 of	 Four	 book	 is	 a	 bit	 dense,	 and	 some	 of	 the	 patterns	 are	 less

insightful	than	others.	For	instance,	the	“Singleton”	pattern	consists	of	this	code,
which	ensures	that	anybody	who	calls	it	will	receive	back	the	same	instance	of
SingletonClass,	which	the	code	will	create	if	it	doesn’t	exist	yet:

if	(instance	==	null)	{

			instance	=	new	SingletonClass();

}

return	instance;

There	is	nothing	wrong	with	this,	but	it’s	more	obvious	than	revolutionary;	it’s
closer	to	the	level	of	HALF-INCH	TRIM	(240).	Meanwhile,	the	Strategy	pattern
can	help	you	with	a	cleaner,	more	extensible	design	for	plugging	in	encrypters,
but	it	won’t	help	you	with	the	more	common	type	of	problem,	which	is	that	the
person	 writing	 code	 to	 call	 an	 encrypter	 doesn’t	 understand	 exactly	 how	 the
Encrypt()	method	works	and	makes	a	mistake	that	cause	a	crash,	or	leaves	the
data	unencrypted.
Still,	it	is	useful	to	start	creating	a	common	language.	“I	will	use	the	Singleton

pattern”	 is	 shorter	 and	 clearer	 than	 “I	 will	 have	 a	 method	 that	 checks	 if	 the
instance	 exists	 and	 allocates	 it	 if	 it	 doesn’t.”	 Singleton	 is	 the	 simplest	 pattern,
although	 not	 by	much:	 the	 patterns	 involve	 an	 arrangement	 of	 at	most	 two	 or
three	classes.	 In	his	essay	“The	Evidence	 for	Design	Patterns,”	 though,	Walter
Tichy	 makes	 the	 point	 that	 programmers,	 like	 anybody	 else,	 have	 a	 limited
number	of	things	they	can	keep	in	their	short-term	memory;	using	the	names	of
patterns	allows	them	to	collapse	a	set	of	classes	down	to	a	single	pattern,	which
leaves	more	room	for	other	ideas.7	And	indeed	the	clearest	benefits	ascribed	in
Tichy’s	paper	are	related	to	documentation	and	communication	of	code	details,
not	better	design.
The	Gang	 of	 Four	 stated	 two	 principles	 of	 good	 object-oriented	 design	 that

were	 present	 in	 all	 the	 patterns:	 “favor	 object	 composition	 over	 class
inheritance”	 and	 “program	 to	 an	 interface,	 not	 an	 implementation.”8	 The	 first
one	means	“don’t	do	what	we	had	in	our	early	example,	where	Emailer	inherited
directly	from	AESEncrypter;	instead	contain	an	instance	of	the	encrypter	as	one
of	your	class	data	members.”	And	the	second	one	says,	“That	encrypter	you	are



containing?	 Make	 it	 an	 interface	 like	 IEncrypter,	 not	 a	 concrete	 class	 like
AESEncrypter.”	This	gives	you	 the	maximum	flexibility	 to	change	 the	 internal
details	of	the	encrypter	you	are	using	or	change	your	Emailer	to	use	a	different
encrypter.
Design	 patterns	 are	 useful,	 but	 their	 anointing	 as	 the	 solution	 to	 all	 design

problems	 has	 been	 imprudent.	 Erich	Gamma,	 one	 of	 the	Gang	 of	 Four,	 when
discussing	 the	misconception	 that	more	 patterns	 always	make	 a	 system	 better,
later	 wrote,	 “Patterns	 make	 it	 easy	 to	 make	 a	 system	 more	 complex.	 They
achieve	flexibility	and	variability	by	introducing	levels	of	indirection,	which	can
complicate	a	design.	It’s	better	to	start	simple	and	evolve	a	design	as	needed.”9
There	is	a	good	idea	at	the	core	of	design	patterns,	but	the	standardization	is	on
the	 level	 of	 standardizing	 the	 sizes	 of	 nuts	 and	 bolts	 used	 in	 carpentry;	 it’s	 a
great	benefit,	 although	nobody	would	 claim	 that	 it	 fully	 solves	 the	problem	of
building	a	building	that	won’t	fall	down.	The	Strategy	pattern	is	elegant,	but	the
real	design	questions—the	ones	that	affect	whether	your	software	crashes,	runs
fast,	or	is	taken	over	by	Russian	teenagers—are	all	far	removed	from	it.	For	what
it’s	worth,	the	patterns	are	presented	as	fact,	without	any	studies	to	back	up	their
benefits.	Nonetheless,	time	has	shown	that	the	design	patterns	are	clean	solutions
to	 the	 problems	 they	 address,	 as	 anybody	 who	 has	 spent	 time	 separating	 an
improperly	commingled	“has-a”	base	and	derived	class	can	attest.
Plus,	 design	 patterns	 have	 an	 aspect	 that	 I	 really	 like:	 they	 were	 developed

through	a	productive	collaboration	between	industry	and	academia.	The	Gang	of
Four	consisted	of	an	IBM	researcher,	a	Swiss	programmer,	a	consultant,	and	a
professor	 at	 the	 University	 of	 Illinois.	 Design	 patterns	 originated	 as	 the	 PhD
thesis	of	one	of	the	Gang	of	Four	(the	Swiss	member,	Gamma),	and	the	idea	was
incubated	 at	 various	OOPSLA	 conferences	 in	 the	 early	 1990s.	 This	 is	 exactly
how	industry	and	academia	should	interact.	Unfortunately,	it’s	the	only	shining
example	from	the	past	three	decades.	And	the	reason	that	design	patterns	could
evolve	 as	 an	 industry/academia	 collaboration	 is	 precisely	 because	 they	 are	 not
that	complicated;	their	scope	is	at	the	level	at	which	a	professor	can	still	engage
and	understand	code.
There’s	another	thing	to	note	about	patterns.	Recall	our	discussion	in	chapter

3,	concerning	 the	mental	anguish	of	a	programmer	deciding	how	much	to	plan
for	 future	 changes	 versus	 solving	 the	 problem	 in	 front	 of	 them:	 a	 lot	 of	 the
benefits	of	patterns	relate	 to	future	extensibility.	 If	your	e-mail	program	uses	a
single	encrypter,	then	the	whole	inheritance	versus	containment	versus	interface
argument	 is	 somewhat	 pointless;	 the	 code	 you	 write	 won’t	 differ	 much	 in
complexity	or	size	whether	you	follow	the	Strategy	pattern	or	not	(and	if	it	does
differ,	 it’s	 the	 Strategy	 version	 that	will	 be	 slightly	more	 complex).	 It’s	when



you	want	 to	modify	 it	 in	 the	future	 that	 it	matters,	 in	 terms	of	how	much	code
you	have	to	tweak	or	replace	to	make	it	easy.	You	need	that	“second	thing”—a
second	type	of	encryption,	say—for	the	pattern	to	pay	off.
Luckily,	 at	 around	 the	 same	 time	 that	 patterns	were	 emerging,	 another	 good

idea	was	percolating	in	the	world	of	programming,	guaranteeing	that	you	would
need	that	second	thing	in	all	your	code.	This	was	the	idea	of	the	unit	test.
The	concept	of	unit	tests,	as	used	today,	has	a	murky	origin,	since	the	term	has

been	in	circulation	for	a	while,	and	the	question	is	how	big	a	unit	you	are	talking
about.	 The	modern	meaning	was	 certainly	 present	 in	 a	 paper	written	 by	Kent
Beck	in	1989	titled	“Simple	Smalltalk	Testing:	With	Patterns.”	It	looks	at	testing
a	call	to	a	single	method	on	an	object	(since	this	is	Smalltalk,	it’s	actually	about
testing	a	single	message	to	an	object),	which	is	much	more	localized	than	a	lot	of
quote-unquote	 unit	 tests	 were	 at	 the	 time.10	 The	 idea	 of	 automated	 testing,
writing	 a	 separate	 program	 whose	 only	 purpose	 was	 to	 test	 the	 program	 you
shipped	 to	 customers,	 had	been	around	 for	 a	while.	Typically	 these	 automated
tests	 would	 operate	 against	 the	 user	 interface	 of	 the	 software,	 simulating
keystrokes	 and	 mouse	 clicks,	 and	 verifying	 that	 the	 program	 responded	 as
expected.	 They	 were	 functionally	 the	 same	 as	 a	 human	 tester,	 but	 with	 the
benefit	 of	 easy	 repeatability.	 The	 problem	 is	 the	 same	 one	 that	 occurs	 when
humans	 do	 the	 testing:	 the	 user	 interface	 of	 the	 software	 is	 stacked	 on	 top	 of
many	 layers	 of	method	 calls,	 so	 if	 the	 software	 behaves	 incorrectly	 at	 the	 top
level,	it	is	hard	to	isolate	the	fault	among	all	those	layers.
Let’s	say	your	program	has	a	method	to	sort	an	array	of	numbers,	not	directly

accessible	 to	 the	user	but	 instead	buried	deep	 for	use	by	 intermediate	 code.	 In
traditional	user-interface-based	testing,	it	may	be	hard	to	directly	test	this	code.
Still,	you	want	to	be	confident	that	your	sort	routine	works	correctly.	A	unit	test
is	 code	 (test	 code	 that	 does	 not	 ship	 to	 customers)	 that	 directly	 calls	 the	 sort
method,	passing	 it	an	unsorted	array,	and	 then	checks	at	 the	end	 that	 the	array
was	sorted.	The	unit	test	doesn’t	randomly	generate	an	unsorted	array;	it	passes
in	a	known	array,	for	which	the	sorted	version	is	also	known,	and	after	the	sort	is
done,	it	compares	the	resulting	array	against	the	known	sorted	version.
Bugs	 in	 sort	 routines	 may	 manifest	 themselves	 only	 with	 certain	 inputs.

Perhaps	 the	 routine	 fails	 to	 sort	 properly	 only	 if	 the	 first	 element	 in	 the	 array
needs	 to	move	 to	a	different	 location	 in	 the	array.	Thankfully,	 there	 is	nothing
stopping	you	from	writing	multiple	unit	tests	for	the	same	method;	you	can	pass
in	an	already-sorted	array,	 an	array	 that	 is	 in	 reverse	order,	 an	array	where	no
element	is	in	the	correct	place,	an	array	with	all	the	elements	equal,	or	whatever
other	arrangements	you	think	might	ferret	out	a	bug.	The	goal	is	to	have	lots	of
tests	 that	 run	quickly:	“A	unit	 test	 that	 takes	1/10th	of	 second	 to	 run	 is	a	 slow



unit	test,”	as	the	unit	testing	advocate	Michael	Feathers	put	it.11
Some	 well-known	 bugs	 throughout	 history	 were	 clearly	 crying	 out	 for	 unit

tests.	Consider	the	bug	that	hit	Microsoft’s	Zune	media	players	on	the	last	day	of
a	 leap	year,	as	discussed	 in	chapter	5.	This	 is	precisely	 the	sort	of	 thing	a	unit
test	could	check.	When	testing	the	entire	Zune,	it	might	not	occur	to	a	tester	to
set	the	clock	to	the	last	day	of	a	leap	year,	because	they	didn’t	realize	that	any
unusual	code	ran	on	that	day.	But	the	developer	who	wrote	the	ConvertDays()
function,	aware	that	the	code	special	cases	the	leap	year,	would	presumably	want
to	 write	 a	 unit	 test	 that	 checked	 that	 the	 last	 day	 of	 a	 leap	 year	 was	 handled
correctly.
Such	a	method	is	easy	to	test	because	it	is	self-contained,	depending	only	on	a

value	passed	as	a	parameter;	 the	code	is	all	calculations	based	on	that.	What	 if
the	method	you	want	to	unit	test	is	itself	dependent	on	another	method	and	so	on
through	 many	 layers?	 And	 worse,	 what	 if	 some	 of	 those	 methods	 have	 side
effects	 that	you	don’t	want	 to	occur	during	testing?	You	may	be	writing	a	unit
test	 to	verify	code	 that	 formats	data	and	 then	sends	 it	 to	 the	printer.	You	can’t
have	your	unit	test	print	anything,	for	a	variety	of	reasons:	it	 takes	a	while	and
wastes	paper,	and	also	requires	you	 to	have	a	printer	connected	and	 turned	on,
and	even	then	how	would	your	unit	test	verify	that	the	proper	printing	happened
within	1/10th	of	a	second?
The	cleanest	approach	is	to	write	a	fake	printer	object	that	supports	the	same

methods	 as	 the	 real	 printer;	 you	 somehow	 tell	 the	 code	 that	 you	 are	 testing,
which	 is	 using	 the	 printer,	 that	 it	 should	 use	 the	 fake	 printer	 instead.	Without
applying	a	design	pattern,	this	might	wind	up	with	a	bunch	of	code	surrounding
each	call	to	the	printer	methods,	like	this:

if	(runningTests)	{

			fakePrinter.Print();

}	else	{

			realPrinter.Print();

}

which	would	need	to	exist	every	place	you	called	any	of	the	printer	methods.	If
this	reminds	you	of	the	prepatterns	code	above	for	selecting	an	encrypter	to	call,
that’s	no	coincidence.	The	Strategy	pattern,	the	canonical	design	pattern,	works
well	here,	even	if	the	name	Strategy	is	a	bit	of	a	misnomer	here;	think	of	it	as	a
pattern	 for	 “I	 want	 to	 take	 something	 that	 might	 change	 and	 encapsulate	 it
behind	 an	 interface.”	 You	 define	 an	 interface	 for	 the	 printer,	 which	 the	 real
printer	class	inherits	from	and	therefore	implements,	and	also	write	a	fake	printer
class	that	inherits	from	the	same	interface.	The	fake	printer	collects	whatever	it



is	told	to	“print,”	and	includes	extra	methods	that	let	you	validate	that	what	was
sent	looks	correct	(these	methods	exist	only	on	the	fake	printer	class,	not	the	real
one).
About	 ten	 years	 after	 the	 original	 Design	 Patterns	 book	 came	 out,	 Alan

Shalloway	 and	 James	Trott	wrote	 a	 book	 called	Design	Patterns	Explained	 in
which	 they	 added	 a	 new	 rule	 that	was	 implicit	 in	 the	 original	 design	 patterns:
“Separate	 the	code	 that	uses	an	object	 from	 the	code	 that	 creates	an	object.”12
This	relates	to	the	question	that	might	still	have	you	scratching	your	head.	In	the
example	above,

Emailer(IEncrypter	enc)	{

			e	=	enc;

}

we	 have	 the	 constructor	 of	 Emailer	 taking	 an	 IEncrypter	 interface	 as	 a
parameter	and	saving	it	 to	use	 later	 in	a	nicely	abstracted	way,	but	where	does
that	IEncrypter	come	from?	The	answer	is	to	provide	a	separate	class,	known	as
a	factory,	which	knows	how	to	create	a	concrete	encrypter	class.	Then	any	code
that	 needs	 to	 construct	 an	 Emailer	 can	 call	 the	 encrypter	 factory	 to	 get	 the
encrypter	 object	 and	 pass	 that	 to	 the	 Emailer	 constructor.	 This	 makes	 the
creation	 of	 the	 real	 Emailer	 easy,	while	 preserving	 the	 ability	 to	 construct	 an
Emailer	with	a	fake	IEncrypter	when	running	unit	tests	against	Emailer.
You	can	do	a	similar	thing	in	my	printer	example,	allowing	you	to	set	up	your

unit	 test	 to	use	the	fake	printer	with	zero	changes	in	the	code	you	want	to	test.
The	unit	test	is	the	only	code	that	is	aware	that	the	printer	interface	passed	in	to
your	 code	 is	 in	 fact	 the	 fake	 printer,	 and	 is	 the	 only	 one	 that	 calls	 the	 extra
verification	methods	that	the	fake	printer	object	supports.
In	this	model,	the	fake	objects	(generally	known	as	mocks)	that	are	required	for

unit	 testing	become	the	“second	 thing”	 that	your	code	needs	 to	call,	 so	even	 if
your	real	code	is	only	going	to	ever	use	one	printer	class,	unit	testing	will	require
it	 to	 use	 a	 second	 printer	 class,	 and	 therefore	 the	 convention	 that	 the	 design
pattern	dictates	is	not	overkill	but	rather	a	simplification.
To	be	clear,	unit	tests	are	not	perfect.	Just	because	you	write	a	unit	test	for	a

method	doesn’t	mean	it	will	work	in	all	cases;	you	could	write	a	unit	test	for	a
sort	 that	 handed	 it	 an	 already-sorted	 array,	 and	 the	 unit	 test	would	 likely	 pass
whether	 the	 algorithm	 was	 broken	 or	 not.	 One	 metric	 used	 to	 evaluate	 how
complete	your	unit	tests	are	is	known	as	code	coverage,	which	is	the	percent	of
your	product	code	that	is	run	if	you	execute	all	your	unit	tests.	Ideally	you	would
hit	100	percent,	but	even	 that	won’t	guarantee	correct	code;	 the	Zune	bug	was
ultimately	 due	 to	 code	 that	was	 completely	missing	 (an	ELSE	 branch	 of	 an	IF



statement),	so	a	set	of	unit	tests	with	100	percent	code	coverage	might	still	have
missed	the	bug.
While	they	don’t	guarantee	that	your	code	has	no	defects,	unit	tests	are	a	good

way	 to	guard	against	 it	getting	worse.	As	we	have	seen,	software	 is	 frequently
expanded	beyond	its	original	purpose,	and	as	part	of	this	growth,	code	has	to	be
reworked	to	accommodate	the	change.	Some	changes	can	be	inserted	with	little
risk,	 especially	 if	 it	 is	 the	 sort	 of	 change	 that	 design	patterns	 allow—adding	 a
new	type	of	encrypter,	for	instance.	But	often	the	changes	are	more	complicated,
and	 the	 risk	 of	 accidentally	 breaking	 something	 is	 high.	Having	 a	 good	 set	 of
unit	tests	that	continue	to	pass	100	percent	is	a	great	way	to	catch	this	quickly.	If
you	 recall	 the	 bug	 with	 doctors’	 addresses	 that	 was	 inadvertently	 introduced
back	when	I	worked	at	Dendrite,	this	is	exactly	the	sort	of	thing	that	a	unit	test
would	 likely	 have	 caught	 at	 the	 time	 the	 change	 was	 made,	 but	 because	 the
feature	 that	 broke	 was	 not	 the	 one	 being	 added	 at	 that	 time,	 normal	 spot-
checking	by	the	developer	didn’t	catch	it.
Furthermore,	unit	 tests	can	guard	against	your	software	getting	stale.	 It	 is	an

unfortunate	 fact	 of	 software	 development	 that	 your	 program	 can	 start	 to	 fail
without	 your	 having	 changed	 your	 code	 at	 all;	 a	 new	 version	 of	 another
company’s	 code	 library,	 an	 update	 to	 the	 compiler	 you	 use,	 or	 a	 patch	 to	 the
operating	 system	 that	 it	 runs	 on—all	 these	 could	 break	 your	 code	 in	 an
unpredictable	way,	through	no	fault	of	your	own.	This	tends	to	prevent	software
from	 being	 moved	 forward,	 keeping	 it	 locked	 to	 older	 versions	 of	 whatever
technology	underpins	 it,	 requiring	users	 to	keep	 that	older	 technology	 running.
How	many	of	you	have	a	dentist	who	runs	a	version	of	Windows	 that	 is	more
than	ten	years	old?	Having	a	strong	set	of	unit	tests	allows	software	to	be	moved
to	newer	systems	with	much	less	fear	of	unintended	consequences.
Unit	 tests	are	a	great	 idea,	and	arguably	anybody	who	 is	not	writing	 them	is

not	doing	their	job	as	a	programmer.	Certainly	if	you	want	to	make	software	less
fragile,	 unit	 tests	 are	 worthwhile,	 and	 if	 we	 are	 thinking	 about	 how	 to	 turn
software	into	a	real	engineering	discipline,	not	writing	unit	tests	would	be	akin	to
building	 a	 bridge	 without	 first	 calculating	 if	 you	 expect	 it	 to	 stay	 standing.
Requiring	 unit	 tests	 is	 a	 great	 way	 to	 emphasize	 to	 developers	 that	 they	 are
responsible	 for	 the	quality	 of	 their	 own	code	 and	get	 away	 from	 the	 “throw	 it
over	the	wall	to	the	testers”	attitude	that	used	to	prevail.
The	biggest	hurdle	to	unit	tests	is	that	a	lot	of	software	was	written	without	any

consideration	 for	 them.	 If	 you	 already	 have	 a	mock	 printer	 class	 written,	 and
your	code	that	uses	the	printer	accesses	it	through	an	interface,	and	has	properly
separated	 creation	 and	 use,	 then	writing	 one	more	 unit	 test	 is	 fairly	 simple.	 If
none	of	that	support	is	there,	and	you	need	to	write	the	entire	mock	printer	class



as	 well	 as	 go	 in	 and	 replace	 all	 the	 hard-coded	 printer	 calls	 with	 calls	 to	 an
interface,	and	figure	out	a	way	to	pass	the	interface	through	to	the	code	that	uses
it,	then	writing	that	first	unit	test	becomes	a	high	mountain	to	climb,	and	you	risk
accidentally	breaking	your	code	while	reworking	it	to	support	unit	tests	(a	truly
ironic	result).
In	2004,	Feathers	published	the	book	Working	Effectively	with	Legacy	Code—

a	title	that	speaks	to	one	of	the	great	frustrations	of	being	a	programmer:	being
handed	the	task	of	fixing	a	bug	in	a	large	piece	of	old	software,	where	you	don’t
know	enough	about	the	details	(if	you	know	anything	at	all)	to	ensure	that	fixing
the	bug	won’t	break	something	else	(another	book	on	 the	same	subject	has	 the
title	 Software	 Exorcism).13	 Although	 the	 phrase	 legacy	 code	 is	 often	 used	 to
mean	“old	code	that	I	don’t	understand,”	Feathers’s	book	straight	up	defines	it	as
“code	without	 tests,”	 and	 the	book	 could	be	 summed	up	 as	 “before	 you	 touch
anything,	you	need	to	have	unit	tests	in	place.”14	For	example,	you	might	fix	the
“last	day	of	the	leap	year”	bug	in	the	Zune	clock	driver	code,	and	of	course	you
would	verify	that	it	worked	correctly	in	that	specific	situation,	but	your	change
might	inadvertently	introduce	a	different	bug—maybe	it	won’t	work	on	the	first
day	of	a	leap	year,	last	day	of	a	regular	year,	or	who	knows—and	if	there	are	no
existing	 unit	 tests,	 being	 the	 first	 person	 to	 decide	 to	 write	 a	 unit	 test	 means
signing	up	to	do	a	lot	of	work—potentially	hundreds	of	times	as	much	work	as
just	 fixing	 the	 bug	 and	 crossing	 your	 fingers.	 Given	 that	 programmers,	 as	 a
species,	introduced	entire	classes	of	security	errors	in	C	code	just	to	avoid	a	little
extra	typing,	it’s	understandable	why	people	are	unwilling	to	be	the	first	person
into	the	unit	test	breach.
There	 is	 something	else	 at	 play	here.	Although	 the	general	 idea	of	unit	 tests

has	 been	 around	 for	 a	 while,	 the	 notion	 that	 they	 are	 a	 core	 part	 of	 what	 a
programmer	has	 to	deliver	has	only	gained	strength	 in	 the	 last	decade	or	so.	A
manager	who	didn’t	come	of	age	with	this	idea	will	instinctively	come	up	with
estimates	(of	how	long	a	piece	of	software	will	take	to	write)	that	are	completely
out	of	kilter	with	the	reality	of	writing	quality	code.	Splitting	your	time	evenly
between	writing	 code	 and	writing	 unit	 tests	 is	 a	 reasonable	 guideline,	 but	 this
math	will	sound	wrong	to	any	old-or	not-quite-so-old-school	managers.
If	 the	 structured	 programming	 push	 wound	 up	 boiling	 down	 to	 “don’t	 use

GOTOs,”	 that	 is	still	a	worthwhile	result.	And	if	 the	main	contribution	of	design
patterns	 is	making	 your	 code	 amenable	 to	 unit	 testing,	 that’s	 also	worthwhile:
the	 unit	 testing	 message	 has	 tunneled	 past	 all	 the	 self-taught	 knowledge	 and
embedded	itself	in	the	skulls	of	programmers,	which	is	quite	an	accomplishment.
Still,	it	does	bring	up	a	question:	If	design	patterns	and	unit	tests	only	help	with



small-scale	 design	 and	 testing,	 what	 can	 help	 with	 the	 broader	 design	 of	 big
software	 systems?	 Once	 the	 personal	 computer	 software	 industry	 had,	 after
much	 suffering,	 relearned	 the	 lesson	 that	you	could	not	 “test	 in”	quality,	 there
was	 a	 push	 to	 “design	 in”	 quality	 instead.	 Who	 would	 provide	 the	 design
expertise?
If	you	peruse	job	listings	for	programmers,	you	may	see	a	job	titled	“Software

Architect.”	In	college,	I	heard	somebody	talk	about	software	they	had	designed
during	a	summer	job	(I	think	it	was	for	a	bank),	and	they	said,	dismissively,	“At
that	point	I	handed	it	off	to	a	coder.”	Whether	or	not	summer	interns	get	to	hand
anything	 off	 to	 anyone,	 this	 does	 capture	 the	 essential	 notion	 of	 the	 software
architect:	just	as	a	“real”	architect	(one	who	works	on	buildings)	comes	up	with
designs	 and	 then	 hands	 them	off	 to	 other	 people	 to	 build,	 a	 software	 architect
would	come	up	with	software	designs	and	then	hand	them	off	to	others	to	write.
This	is	fine,	but	architects	go	to	school	to	learn	about	architecture;	they	are	not

construction	workers	who	have	been	doing	it	for	a	while	and	have	a	track	record
of	 nonfailure,	 which	 is	 how	 you	 become	 a	 software	 architect.	 Architects	 can
justify	their	designs	to	a	builder	because	they	are	based	on	an	industry	consensus
on	what	works	 and	what	 doesn’t	work,	which	 in	 turn	 is	 based	 on	 a	 legacy	 of
experiments	and	mathematics—the	sort	of	thing	that	was	captured	in	Alexander
and	crew’s	A	Pattern	Language.	Software	architects,	like	all	programmers,	rely
instead	on	the	“I	tried	it	this	way	once	and	it	wasn’t	too	bad”	approach.	Only	in
the	nuts-and-bolts	areas	covered	by	design	patterns	is	there	any	equivalent	of	the
built-up	 knowledge	 that	 an	 architect	 has,	 and	 a	 software	 architect	 would	 not
stoop	 to	 the	 level	of	 specifying	details	as	nitty-gritty	as	how	your	code	should
call	 an	 encryption	 algorithm,	 any	 more	 than	 a	 building	 architect	 would	 tell	 a
construction	worker	how	to	hold	a	nail	gun.
Joel	Spolsky	is	a	noted	software	blogger	who	wrote	a	post	about	“Architecture

Astronauts”:	software	architects	who	like	to	think	about	higher	and	higher	levels
of	abstraction.	His	description	of	an	Architecture	Astronaut	at	work	is	typical:

When	great	thinkers	think	about	problems,	they	start	 to	see	patterns.	They
look	at	the	problem	of	people	sending	each	other	word-processor	files,	and
then	 they	 look	 at	 the	 problem	of	 people	 sending	 each	 other	 spreadsheets,
and	 they	 realize	 that	 there’s	 a	 general	 pattern:	 sending	 files.	 That’s	 one
level	of	abstraction	already.	Then	they	go	up	one	more	 level:	people	send
files,	but	web	browsers	also	“send”	requests	for	web	pages.	And	when	you
think	about	it,	calling	a	method	on	an	object	is	like	sending	a	message	to	an
object!	 It’s	 the	same	thing	again!	Those	are	all	sending	operations,	so	our
clever	thinker	invents	a	new,	higher,	broader	abstraction	called	messaging,



but	 now	 it’s	 getting	 really	 vague	 and	 nobody	 really	 knows	 what	 they’re
talking	about	any	more.15

Spolsky	gives	a	warning	sign:	“That’s	one	sure	tip-off	 to	 the	fact	 that	you’re
being	assaulted	by	an	Architecture	Astronaut:	the	incredible	amount	of	bombast;
the	 heroic,	 utopian	 grandiloquence;	 the	 boastfulness;	 the	 complete	 lack	 of
reality.	And	people	buy	it!	The	business	press	goes	wild!”16
The	 commonly	 prescribed	 antidote	 to	 software	 architects	 who	 only	 spout

architecture	is	to	require	them	to	write	product	code	that	ships	to	customers,	in
order	 to	keep	them	grounded	and	ensure	 their	architecture	 is	relevant.	Whether
this	was	a	good	use	of	their	time	was	a	subject	of	debate	inside	Microsoft,	like
many	things;	at	one	point	I	was	involved	in	a	series	of	discussions	with	people
across	 the	 company	 to	 try	 to	 document	 “what	makes	 a	 good	 architect,”	which
foundered	 on	 disagreements	 such	 as	 this	 one.	Nevertheless,	 the	 current	 bias	 is
more	 toward	 the	 “sometimes-coding”	 architects	 than	 the	 “pontificating-only”
ones.	 Although	 grounded	 software	 architects,	 at	 this	 moment	 in	 time,	 are
considered	 better	 than	 oxygen-deprived	 ones,	 the	 fact	 that	 architects	 need
continual	 immersion	in	 their	 team’s	current	project	 is	another	sign	 that	 there	 is
not	 enough	 accepted	 knowledge	 and	 vocabulary	 around	 software	 engineering.
Software	architects	should	be	able	to	leverage	precedent	to	design	a	solution	in
the	 abstract,	 and	 be	 able	 to	 communicate	 that	 to	 any	 programming	 team	 in
language	that	is	clear	and	standardized	enough	that	the	team	will	recognize	the
value	of	the	design,	and	be	able	to	trust	that	it	will	be	followed.	Although	people
may	complain	about	 the	designs	of	building	architects,	you	never	hear	 that	 the
solution	 is	 having	 them	 occasionally	 hang	 sheetrock	 just	 to	 ensure	 that	 their
buildings	will	work.
Underlying	the	existence	of	the	software	architect	role	is	the	idea	that	there	is

“good”	and	“bad”	design,	and	architects	will	choose	the	first	and	not	the	second.
I’m	 talking	 about	 the	 underlying	 design	 of	 the	 software—the	 part	 that	 is	 not
visible	to	the	user	(user	interface	design	is	a	whole	other	area,	outside	the	scope
of	this	book).	There	is	a	sense	that	good	design	will	show	through	to	the	user	in
some	way,	but	I	see	no	evidence	that	the	user	knows	or	cares	about	how	anybody
embeds	their	encryption	algorithm	in	their	code.
Beyond	 design	 patterns,	 what	 does	 good	 design	 look	 like?	 With	 a	 lack	 of

theoretical	 rigor	 to	 underpin	 it,	 this	 is	 a	 murky	 area.	 One	 study	 of	 software
design	by	Antony	Tang,	Aldeida	Aleti,	 Janet	Burge,	and	Hans	van	Vliet	put	 it
this	way:

Software	 design	 has	 certain	 characteristics	 that	 are	 different	 from	 other



engineering	 design	disciplines.	 First,	 designers	 often	 have	 to	 explore	 new
application	 and	 technology	 domains	 that	 they	 do	 not	 have	 previous
experience	with.	Therefore,	the	quality	of	their	design	outcomes	may	not	be
consistent	 even	 for	 a	 designer	 who	 has	 practised	 for	 years.	 Secondly,	 a
design	 is	 an	abstract	model	and,	often,	whether	 it	would	actually	work	or
not	cannot	be	easily	judged,	objectively,	until	it	is	implemented.17

There	 are	 books	 that	 claim	 to	 explain	 good	 design—with	 titles	 like	 Clean
Code	and	The	Pragmatic	Programmer—that	 are	 full	 of	 completely	 reasonable
advice,	 but	 they	 don’t	 present	 a	 specific	 approach	 to	 engineering	 your
software.18	They	are	more	about	lists	of	things	to	remember	to	do:	don’t	forget
to	 think	about	making	your	code	 localizable	 (meaning	 it	 can	be	 translated	 into
other	 languages),	check	frequently	 to	make	sure	your	code	builds	successfully,
and	the	like.
The	 physician	 and	 writer	 Atul	 Gawande	 wrote	 a	 book	 called	 The	 Checklist

Manifesto	about	how	medicine	can	be	made	safer	by	using	checklists.19	One	of
his	 discoveries	 is	 that	 checklists	 don’t	 need	 to	 be	 extremely	 specific	 to	 be
helpful;	 for	 example,	 it	 is	much	more	 useful	 to	 have	 a	 checklist	 question	 like
“Has	 the	 doctor	 discussed	 the	 anesthesia	 plan	with	 the	 anesthesiologist?”	 than
have	 a	 complicated	 checklist	 of	 all	 the	 steps	 the	 anesthesiologist	 should	 take.
You	don’t	need	all	the	steps	written	down	because	the	anesthesiologist	has	been
to	medical	 school	 and	done	 advanced	 training	 in	 anesthesiology.	Problems	are
more	 likely	 to	 arise	 from	 communication	 issues	 than	 from	 lack	 of	 medical
knowledge.	It	would	be	great	if	we	could	adapt	this	approach	to	software,	asking
questions	 like	 “Has	 the	developer	discussed	 the	 test	plan	with	 the	 tester?”	Yet
there	 is	 not	 enough	 shared	 knowledge	 for	 this	 plan	 to	 work;	 what	 you	 see
instead,	in	books	that	have	software	checklists,	is	long	lists	of	specific	things	to
worry	about,	making	checklists	hard	to	apply	in	practice.
In	 1971,	 in	 The	 Psychology	 of	 Computer	 Programming,	 Gerald	 Weinberg

wrote,	 “We	 shall	 be	 hampered	 by	 our	 inability	 to	 measure	 the	 goodness	 of
programs	on	an	absolute	scale.	But	can	we	perhaps	measure	them	on	a	relative
scale—can	 we	 say	 that	 program	 A	 is	 better	 or	 worse	 than	 program	 B?
Unfortunately,	we	will	generally	not	even	be	able	to	do	that,	for	several	reasons.
First	of	all,	when	is	there	ever	another	program	with	which	to	compare?”20	This
is	an	important	point.	Since	programs	are	designed	“from	scratch”	each	time,	it
is	always	easy	 to	see	why	a	new	program	is	slightly	different	 from	an	existing
one,	 in	 ways	 that	 make	 it	 invalid	 for	 comparison	 purposes.	 Of	 course,	 being
unable	 to	 measure	 the	 goodness	 of	 programs	 makes	 it	 hard	 to	 measure	 the
goodness	of	programmers,	and	in	particular	it	makes	it	hard	to	measure	progress



in	 either	 of	 those	 areas,	 which	 you	 hope	 software	 engineering	 would	 be
achieving	after	all	these	years.
For	 part	 of	 my	 career	 at	 Microsoft,	 I	 worked	 in	 a	 group	 with	 the	 slightly

overambitious	 name	 Engineering	 Excellence,	 which	 did	 internal	 training	 and
consulting.	In	response	to	demand,	we	created	a	course	for	software	developers
on	 how	 to	 design	 software.	 We	 came	 up	 with	 the	 title	 Practical	 Design	 for
Developers,	which	we	were	quite	proud	of.	Here	was	the	class	that	was	going	to
strip	 away	 all	 the	 nonsense	 and	 give	 developers	 the	 knowledge	 they	 really
needed!	And	the	class	was	quite	well	attended,	so	we	weren’t	the	only	ones	who
thought	 that	developers	were	hungry	for	 this	 information.	But	after	a	while	we
realized	that	we	were	less	and	less	confident	that	the	class	was	useful;	when	you
strip	away	the	nonsense	from	software	design,	you	are	left	with	design	patterns
and	not	much	else.
There	 is	another	 truth	about	good	design:	 it	often	runs	counter	 to	design	 that

executes	 quickly.	And	 given	 the	 performance	 focus	 in	which	many	 of	 today’s
programmers	were	steeped,	it	is	hard	to	fight	that.
Weinberg	 wrote	 about	 Fisher’s	 fundamental	 theorem,	 derived	 by	 the

statistician	and	biologist	R.	A.	Fisher:	“A	word	of	caution	before	we	proceed	to
the	 question	 of	 efficiency.	 Adaptability	 is	 not	 free.	 …	 Fisher’s	 fundamental
theorem	 states—in	 terms	 appropriate	 to	 the	 present	 context—that	 the	 better
adapted	a	system	is	 to	a	particular	environment,	 the	 less	adaptable	 it	 is	 to	new
environments.	By	 stretching	our	 imagination	 a	 bit,	we	 can	 see	 how	 this	might
apply	to	computer	programs	as	well	as	 to	snails,	 fruit	 flies,	and	tortoises.”21	 In
other	words,	the	more	you	optimized	your	program	for	speed,	the	harder	it	was
to	modify	it	later	to	accommodate	extra	functionality.
Computer	scientists	have	long	recognized	that	as	computers	have	gotten	faster,

squeezing	out	 every	ounce	of	performance	was	no	 longer	 the	primary	goal.	 In
Structured	Programming,	in	1972,	Dijkstra	wrote:

My	 conclusion	 is	 that	 it	 is	 becoming	 most	 urgent	 to	 stop	 to	 consider
programming	primarily	as	the	minimization	of	a	cost/performance	ratio.	We
should	 recognise	 that	 already	 now	 programming	 is	 much	 more	 an
intellectual	 challenge:	 the	 art	 of	 programming	 is	 the	 art	 of	 organising
complexity,	 of	 mastering	 multitude	 and	 avoiding	 its	 bastard	 chaos	 as
effectively	as	possible.
My	refusal	to	regard	efficiency	considerations	as	the	programmer’s	prime

concern	is	not	meant	to	imply	that	I	disregard	them.	…	My	point,	however,
is	that	we	can	only	afford	to	optimise	(whatever	that	may	be)	provided	that
the	program	remains	sufficiently	manageable.22



Recall	Bentley’s	similar	warning	in	Writing	Efficient	Programs	that	changes	to
make	 a	 program	 run	 faster	 “often	 decrease	 program	 clarity,	 modularity,	 and
robustness.”23	Knuth	phrased	 it	 this	way	 in	1974,	ending	with	one	of	his	most
famous	quotes:

There	is	no	doubt	 that	 the	grail	of	efficiency	leads	 to	abuse.	Programmers
waste	 enormous	 amounts	 of	 time	 thinking	 about,	 or	 worrying	 about,	 the
speed	of	noncritical	parts	of	their	programs,	and	these	attempts	at	efficiency
actually	 have	 a	 strong	 negative	 impact	when	 debugging	 and	maintenance
are	considered.	We	should	forget	about	small	efficiencies,	say	about	97%	of
the	time:	premature	optimization	is	the	root	of	all	evil.24

Regrettably,	this	wisdom	was	lost	on	the	new	generation	of	programmers	who
taught	themselves	to	program	on	personal	computers,	with	strict	resource	limits
that	pushed	programmers	away	from	good	design.	They	 learned,	on	 their	own,
the	same	bad	pro-performance,	antidesign	wisdom	that	Dijkstra	and	Bentley	had
been	 fighting	 a	 generation	 earlier.	 This	 is	 not	 surprising	 for	 individual
programmers:	performance	issues	can	be	observed	in	a	program	of	any	size,	and
any	improvements	made	can	be	measured,	to	positive	effect	on	the	psyche.	Good
design,	 on	 the	 other	 hand,	matters	 when	 you	 are	 working	 on	 larger	 programs
involving	more	people	for	longer	periods	of	time—a	situation	that	doesn’t	arise
for	programs	within	the	scope	of	one	person.	Even	old-fogy	programmers,	who
arguably	 should	 know	 better,	 will	 focus	 their	 complaints	 about	 “those	 young
kids”	 on	 a	 situation	 where	 they	 ignored	 performance	 rather	 than	 when	 they
ignored	 good	 design;	 performance	 problems	 are	 more	 clear-cut	 and	 therefore
easier	to	call	out.
Some	of	the	best-known	problems	in	software	were	due	to	performance	versus

design	 trade-offs.	The	Y2K	problem	didn’t	 arise	 because	 nobody	 realized	 that
storing	 only	 the	 last	 two	 years	 of	 the	 date	 made	 1900	 indistinguishable	 from
2000.	It	arose	because	storing	dates	with	two	digits	is	slightly	more	efficient,	and
the	immediate	performance	savings	were	viewed	as	worth	it	when	balanced	with
the	 likelihood	 that	 the	 software	 would	 still	 be	 around	 when	 the	 year	 2000
arrived.
Believe	it	or	not,	a	similar	situation	is	looming—the	Year	2038	problem.25	On

many	UNIX	systems,	times	are	stored	as	the	number	of	seconds	since	January	1,
1970	(more	precisely,	since	00:00:00	on	that	date,	or	the	stroke	of	the	new	year).
Using	 a	 signed	 32-bit	 number	 to	 hold	 the	 date,	 this	 will	 hit	 the	 maximum
allowed	value	at	03:14:07	on	January	19,	2038—exactly	2,147,483,647	seconds
after	January	1,	1970.	Because	of	how	signed	numbers	work,	1	second	later	will



be	interpreted	as	2,147,483,648	seconds	before	January	1,	1970,	or	20:45:52	on
December	 13,	 1901—which,	 appropriately,	 is	 a	 Friday.26	 Again,	 this	 was	 not
unknown	 to	 the	designers	of	UNIX;	 they	 faced	a	 trade-off	of	 storing	 the	dates
using	 64-bit	 numbers	 (or	 another	 accommodation	 that	 avoided	 the	 2038
problem)	versus	 the	 likelihood	 that	UNIX	would	still	be	around	 in	2038.	Back
when	 UNIX	 was	 being	 invented,	 operating	 systems	 were	 less	 platform
independent,	and	people	tended	to	buy	combinations	of	hardware	and	operating
system	 together.	 It	was	 reasonable	 to	 expect	 that	when	 the	 next	 generation	 of
hardware	arrived,	a	new	operating	system	would	come	with	it,	displacing	UNIX.
In	 that	 sense,	 those	 programmers	were	 guilty	mostly	 of	 underanticipating	how
well	UNIX	would	hit	the	sweet	spot	of	what	programmers	wanted	and	allow	an
independent	 software	 industry	 to	 emerge	 on	 top	 of	 it	 that	 helped	 ensure	 its
continued	 presence.	 (And	 for	 what	 it’s	 worth,	 if	 you	 are	 optimistic	 about	 the
long-term	survival	of	our	species,	many	of	 the	Y2K	fixes	 involved	replacing	2
digits	with	4,	so	now	we	have	a	faintly	looming	Year	10,000	problem.	But	that
will	be	someone	else’s	to	deal	with.)
A	 nontechnical	 person	 may	 assume	 that	 simpler	 designs	 are	 also	 faster.

Somehow	this	just	seems	right.	There’s	less	to	do,	correct?	Yet	it	doesn’t	work
out	 that	way;	having	 less	code	doesn’t	mean	your	software	runs	faster.	 In	fact,
it’s	frequently	the	opposite.
Consider	a	real-world	example:	an	overnight	shipping	company	that	wants	to

offer	delivery	anywhere	in	 the	United	States.	It	has	a	collection	of	offices	near
major	airports	all	around	the	country,	and	each	office	has	trucks	and	drivers	that
enable	it	to	collect	outgoing	packages	in	time	to	deliver	them	to	the	airport	by	8
p.m.,	and	can	deliver	incoming	packages	the	next	day	if	they	arrive	at	the	airport
by	8	a.m.
The	simplest	algorithm	is	to	pick	a	central	location	in	the	United	States	that	is

a	reasonable	flight	time	from	every	airport—let’s	say	no	more	than	4	hours	away
—and	build	a	sorting	facility	there.	Every	day	the	local	offices	collect	packages
and	bring	them	to	the	airport	by	8	p.m.	Planes	leave	each	of	the	airports	at	8	p.m.
and	arrive	at	 the	central	sorting	 location	by	midnight.	Between	midnight	and	4
a.m.,	all	the	packages	are	sorted	and	prepared	to	be	loaded	onto	the	same	planes.
The	 planes	 then	 fly	 back	 to	 their	 local	 airports,	 arriving	 by	 8	 a.m.	 The	 local
offices	deliver	those	packages	during	the	day,	collect	new	ones,	and	the	process
repeats.
From	 the	 perspective	 of	 a	 local	 office	 needing	 to	 know	 what	 to	 do	 with	 a

package,	the	algorithm	is	dead	simple:

void	routePackage(package)	{



			package.SendViaPlane(centralHub);

}

This	 abstracts	 away	 a	 lot	 of	 complexity.	 There	 are	 a	 lot	 of	 moving	 parts
involved,	 such	 as	 lots	 of	 trucks	 and	 planes,	 not	 to	 mention	 people,	 and	 the
sorting	facility	is	probably	quite	sophisticated.	Throw	in	tracking,	payment,	and
all	that,	and	you	have	a	lot	of	layers	underneath	that	call	to	SendViaPlane().	But
the	algorithm	(since	we’re	talking	about	algorithms	here,	we	can	for	the	moment
ignore	 real	 issues	 on	 the	 ground)	 has	 a	 certain	 elegance:	 all	 the	 packages	 are
loaded	 on	 a	 plane	 at	 8	 p.m.	 and	 then	 taken	 off	 a	 plane	 at	 8	 a.m.	 The	 sorting
facility	might	be	complicated,	but	the	complication	is	all	encapsulated	within	the
one	building,	like	a	well-designed	class	encapsulates	its	internals—nobody	else
has	 to	know	about	 it,	and	 it	can	change	as	 long	as	 the	external	 interface	 is	 the
same.	If	you	decide	that	a	particular	city	 is	better	served	by	a	different	airport,
you	have	to	tell	the	people	in	the	office	in	that	city	(so	they	know	where	to	go	to
deliver	 and	 pick	 up	 packages),	 and	 the	 pilots	 who	 fly	 between	 there	 and	 the
central	location,	but	nobody	else	needs	to	know	about	it.
This	algorithm	will	deliver	every	package	to	the	right	place,	but	it	can	be	quite

wasteful.	A	package	I	am	sending	to	my	next-door	neighbor	will	go	all	the	way
to	the	central	sorting	location,	spending	hours	on	trucks	and	airplanes,	and	then
taking	 the	 reverse	 route	back.	This	would	 result	 in	unnecessary	cost,	either	 for
the	delivery	service	or	me.	If	the	service	charged	me	the	full	cost	of	this,	I	might
complain	or	use	a	rival	delivery	service	that	could	do	it	more	cheaply.	And	if	it
charged	 me	 a	 low	 rate	 because	 the	 net	 distance	 wasn’t	 far,	 then	 the	 service
would	be	internally	inefficient,	flying	my	package	around	on	its	own	dime.
This	 gives	 the	 delivery	 service	 an	 incentive	 to	 streamline	 its	 service.	 For

example,	it	might	tell	the	local	office	that	if	it	saw	a	package	whose	destination
was	 served	 by	 the	 same	 office	 to	 set	 it	 aside	 and	mix	 it	 in	with	 the	 incoming
packages	to	be	delivered	the	next	morning,	thus	avoiding	flying	it	to	the	central
location	and	back.	The	algorithm	then	becomes:

void	routePackage(package)	{

			if	package.Destination	==	thisOffice)	{

						package.Store(thisOffice);

			}	else	{

						package.SendViaPlane(centralHub);

			}

}

This	 is	 an	 overall	 efficiency	 improvement,	 but	 it	 complicates	 the	 algorithm.
The	local	offices	have	to	check	all	the	packages	instead	of	just	tossing	them	on	a



plane.	This	adds	time	and	expertise	to	the	work	they	have	to	do.
Now	imagine	that	you	decide	to	further	optimize	your	delivery	service	by	not

flying	all	packages	to	the	central	location.	You	realize	that	there	is	enough	traffic
between	Los	Angeles	and	San	Francisco,	say,	that	it	makes	more	sense	to	fly	a
plane	 directly	 between	 those	 two	 cities.	And	maybe	 it	makes	 sense	 to	 drive	 a
truck	from	New	York	to	Boston	rather	than	fly	a	plane,	so	you	need	to	check	for
that	option	also:

void	routePackage(package)	{

			if	package.Destination	==	thisOffice)	{

						package.Store(thisOffice);

			}	else	{

						if	(TruckAvailable(package.Destination))	{

									package.SendViaTruck(package.Destination);

						}	else	if	PlaneAvailable(package.Destination))	{

									package.SendViaPlane(package.Destination);

						}	else	{

									package.SendViaPlane(centralHub);

						}

			}

}

Pretty	soon	you	have	a	complicated	algorithm	for	how	each	office	should	route
packages.	Looking	at	 the	code	above,	can	you	convince	yourself	 that	 there	are
no	cases	in	which	it	does	nothing	at	all	(which	would	presumably	be	bad)—that
it	 will	 always	 wind	 up	 calling	 either	 package.Store(),
package.SendViaTruck(),	 or	 package.SendViaPlane()?	 The	way	 the	 code	 is
written,	 it	will	 always	 do	 something	 with	 each	 package,	 but	 it	 takes	 a	 bit	 of
thinking	 (or	 a	 thorough	 set	 of	 unit	 tests)	 to	 be	 confident	 of	 that,	making	 sure
every	 IF	 has	 an	 ELSE,	 and	 that	 whatever	 path	 is	 taken	 through	 the	 code,	 the
package	 winds	 up	 going	 somewhere.	 Furthermore,	 each	 office	 now	 needs	 to
have	 knowledge	 of	 which	 trucks	 and	 planes	 are	 traveling	 where,	 and	 when,
which	makes	it	harder	to	change	those	details	later.
I	am	not	claiming	that	it	is	a	mistake	for	an	overnight	delivery	service	to	make

these	 improvements.	 My	 point	 is	 that	 optimizing	 the	 performance	 of	 an
algorithm	generally	makes	it	more	complicated,	not	simpler.	Programmers	think
that	design	and	performance	are	correlated,	such	that	better	design	runs	faster.	In
reality,	 they	 are	 frequently	 inversely	 correlated:	 simpler,	more	 elegant	 designs
run	 slower,	 and	 you	 improve	 performance	 by	 complicating	 your	 design	 with
special	cases.
Why	is	this	so?	Software	design	is	really	the	design	of	abstraction	layers,	and	a

design	that	is	pleasing	to	the	eye	has	nice,	clean	abstraction	layers.	The	version



of	the	shipping	algorithm	that	has	clean	abstraction	layers	is	the	first	one	I	came
up	 with:	 every	 outgoing	 package	 gets	 put	 on	 a	 plane	 to	 the	 central	 sorting
location,	and	every	incoming	package	comes	off	a	plane	from	the	central	sorting
location.	 It’s	 clean,	 it’s	 simple,	 and	 anybody	 can	 understand	 it.	 The
complications	 arise	 when	 you	 try	 to	 optimize	 it.	 And	 given	 the	 tendency	 of
programmers	to	want	to	make	things	efficient,	they	tend	to	complicate	things	a
lot.	Whether	the	performance	impacts	that	need	to	be	mitigated	are	imagined	in	a
programmer’s	head	before	any	code	is	written	or	manifest	in	the	real	world	after
the	software	is	deployed,	the	clean	design	rarely	survives.
One	of	the	most	basic	ways	in	which	performance	and	clean	design	battle	each

other	involves	how	errors	are	handled—which	winds	up	being	quite	a	story.

Notes

1. In	some	languages,	through	private	inheritance,	the	Emailer	class	could
avoid	exposing	the	AESEncrypter	class	to	callers,	but	the	code	inside	the
Emailer	class	could	still	access	members	of	the	AESEncrypter	class	and	in
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8 
Your	Favorite	Language

Let	us	return	 to	 the	saga	of	computer	worms,	 last	seen	when	Morris	unleashed
his	on	the	fledgling	Internet	in	1988.	As	computers	became	more	interconnected
over	 the	 ensuing	 decades,	 the	 opportunities	 for	 worms	 to	 reproduce	 grew,
especially	 with	 Windows	 becoming	 the	 dominant	 platform.	 A	 worm’s
infiltration	path	will	usually	only	exist	in	one	operating	system;	Windows	was	a
juicy	target	for	worm	writers	to	concentrate	their	energies	on.
The	core	internals	of	Windows,	known	as	the	kernel	of	the	operating	system,

are	 written	 in	 the	 C	 programming	 language.	 C	 is	 uniquely	 supportive	 of	 the
programmer	 errors	 that	 allow	 buffer	 overflows—the	 mechanism	 by	 which	 an
exploit	is	injected	into	computers	(both	Linux	and	Apple’s	macOS,	currently	the
two	main	competitors	to	Windows,	also	have	kernels	written	in	C).	When	I	was
an	engineer	on	the	Windows	team	at	Microsoft	in	1999,	we	were	given	training
on	 buffer	 overflows;	 this	 was	 the	 first	 time	 I	 understood	 the	 potential	 risk	 of
remote	exploits	and	how	easy	 it	was	 to	make	a	mistake	 in	C	that	allowed	one.
We	 attempted	 to	 scrub	 the	 code	 by	 reading	 it	 carefully,	 but	 we	 didn’t	 catch
everything.	In	July	2001,	a	worm	known	as	Code	Red,	which	exploited	a	buffer
overflow	 just	 as	 the	 Morris	 worm	 had	 done,	 attacked	 computers	 running
Windows.	In	addition	to	bogging	down	the	entire	Internet	by	transmitting	itself
around	 repeatedly,	 the	 worm	 bombarded	 the	 White	 House	 website	 with
messages,	 crashing	 it	 (once	 an	 exploit	 gains	 control,	 the	 damage	 is	 mostly
limited	by	the	imagination	of	the	worm	author).1
Worms	 are	 often	 reported	 to	 the	 company	 that	 owns	 the	 code	 before	 being

widely	released,	usually	with	details	on	where	 the	defect	 is	 (although	attackers
may	not	have	access	to	the	source	code,	while	constructing	the	exploit	they	will
become	familiar	enough	with	the	compiled	machine	code	that	 they	can	make	a
reasonably	precise	guess	as	to	what	the	original	source	code	looked	like).	The	fix
is	typically	simple,	since	most	buffer	overflows	are	due	to	errors	in	calculating
the	 length	 of	 the	 buffer	 or	 the	 length	 of	what	 is	 being	 copied	 into	 the	 buffer.
Companies	can	 issue	a	patch,	which	replaces	 the	defective	code	with	 the	fixed



version.	 In	 the	case	of	Code	Red,	 the	patch	had	been	available	from	Microsoft
for	a	month	before	Code	Red	struck,	but	unfortunately	many	users	had	not	yet
applied	it.2	Once	enough	machines	were	patched,	everybody	could	breathe	a	sigh
of	 relief—until	 September	 2001,	when	 a	worm	 known	 as	Nimda	 struck	 (once
again,	a	patch	had	been	available	before	the	worm	was	released).
The	 next	 year	was	 quiet.	 Jim	Allchin,	 the	 group	 vice	 president	 in	 charge	 of

Windows,	 was	 quoted	 as	 saying,	 “We	 have	 gone	 through	 all	 code	 and,	 in	 an
automated	way,	 found	places	where	 there	 could	be	buffer	 overflow,	 and	 those
have	been	removed	in	Windows	XP	[which	shipped	in	late	2001].”3	Alas,	it	was
not	 to	be.	The	year	 2003	 featured	both	 the	Slammer	 and	Blaster	worms,	 2004
brought	 Sasser,	 and	 2005	 was	 Zotob’s	 moment	 in	 the	 sun.4	 Microsoft,	 to	 its
credit,	has	continued	to	invest	in	tools	to	automatically	detect	exploitable	code,
especially	 the	 most	 obvious	 mistakes,	 where	 too	 much	 data	 is	 copied	 into	 a
buffer	allocated	on	the	stack.5
Attackers	 have	 started	 targeting	 applications,	 such	 as	 Microsoft	 Office,	 by

creating	documents,	spreadsheets,	and	presentations	that	are	specially	crafted	to
cause	a	buffer	overflow	in	the	application	when	they	are	loaded.	These	would	be
considered	viruses,	not	worms,	since	the	user	has	to	open	the	file	for	the	exploit
to	 take	 effect,	 but	 they	 can	 do	 clever	 things	 to	 entice	 the	 user	 to	 do	 this.
Typically	 the	exploit	code	will	e-mail	 the	 infected	document	as	attachments	 to
all	 the	 user’s	 contacts,	 with	 subject	 lines	 such	 as	 “You	 HAVE	 to	 see	 this	 to
believe	it”	(the	result	is,	“A	user	opens	an	attachment	they	received	from	a	friend
…	 and	 what	 happens	 next	 will	 shock	 you!”).	 Worms	 and	 viruses	 are	 also
becoming	less	immediately	destructive;	rather	than	propagate	rapidly	and	cause
havoc	 (which	 leads	 to	quick	detection	and	patching),	 it	 is	 better	 to	hide	 in	 the
background,	 renting	 out	 the	 exploited	 computer	 to	 other	 users	 for	 off-hours
Bitcoin	mining,	website	attacks,	and	the	like.	Despite	my	understanding	of	how
remote	worms	could	attack	the	operating	system,	 the	realization	that	viewing	a
virus-infected	JPEG	image	could	also	cause	your	computer	 to	be	 taken	over—
and	that	Microsoft	Office	was	therefore	another	target	for	attacks—was	another
“Wait,	what?”	moment	for	me.
While	 none	 of	 these	 recent	 exploits	 involve	 code	 calling	 an	 API	 that	 was

fundamentally	unsafe,	the	way	gets()	was	for	the	Morris	worm,	some	of	them
do	 involve	 the	mistake	of	 trusting	data	 received	off	 the	network,	 including	 the
Heartbleed	attack	from	2014,	which	was	due	to	a	flaw	in	the	implementation	of
the	Secure	Sockets	Layer	(SSL)	protocol.6
SSL,	which	is	used	to	encrypt	web	traffic,	supports	what’s	called	a	heartbeat

packet,	sent	 to	verify	 that	a	connection	 is	still	active.	The	proper	response	 to	a



heartbeat	packet	is	to	copy	the	data	in	the	incoming	packet	and	send	it	back.	The
problem	is	 that	 the	 incoming	packet,	 in	addition	 to	containing	 the	data	 to	echo
back,	 also	has	 a	2-byte	 field	 inside	 it	 that	 indicates	how	 long	 that	 data	 is,	 and
some	SSL	implementations	trust	that	length	field	without	checking	it	against	the
actual	 length	of	 the	packet	 (which	would	be	 returned	by	 the	API	 that	 the	SSL
code	calls	to	receive	the	packet).	Two	bytes	can	hold	a	value	up	to	65,535,	so	if
the	incoming	packet	claims	to	have	65,535	bytes	of	data	but	it	really	has	only	1
byte,	 then	 the	 defective	 code	will	 try	 to	 copy	 65,535	 bytes	 into	 the	 response,
which	will	consist	of	the	correct	1	byte	from	the	incoming	packet,	followed	by
65,534	 bytes	 of	whatever	 is	 in	 the	memory	 heap	 after	 that.	 Since	 this	 code	 is
frequently	 running	 on	web	 servers,	 that	memory	may	well	 contain	 passwords,
credit	card	numbers,	and	other	readily	identifiable	data.	Heartbleed	does	not	take
over	the	computer,	but	it	still	can	leak	sensitive	information.
Some	 Windows	 exploits,	 however,	 were	 classic	 cases	 of	 good	 intentions

getting	stuck	on	 the	horns	of	programmers	who	didn’t	understand	an	API	 they
were	calling.	The	details	require	a	little	backstory.
Recall	 that	when	 storing	 strings	 in	memory	 you	 need	 to	 encode	 them,	 since

ultimately	the	computer	is	storing	numbers	and	there	needs	to	be	a	standard	for
how	 numbers	 are	 interpreted	 as	 characters.	 Back	 in	 the	UNIX/MS-DOS	 days,
the	 most	 common	 encoding	 was	 ASCII,	 in	 which	 printable	 characters	 have
values	 between	 32	 and	 126.	 This	 allows	 room	 for	 lowercase	 letters,	 capital
letters,	 numbers,	 and	 common	 punctuation	 symbols.	 One	 ASCII	 character
occupied	1	byte;	 since	 a	byte	 can	hold	a	number	up	 to	255,	 there	was	also	 an
extended	ASCII	 character	 set	 that	 included	 other	 useful	 symbols	 in	 the	 range
from	 128	 to	 255.	 That’s	 still	 not	 enough	 room	 to	 hold	 all	 characters	 in	 all
alphabets,	so	there	were	in	fact	many	extended	ASCII	character	sets,	known	as
code	pages,	each	with	its	own	unique	set	of	characters	in	the	128	to	255	range.
The	 default	 code	 page,	 “Latin	 US,”	 had	 certain	 common	 currency	 symbols,
Greek	 letters,	 and	 a	 collection	of	 letters	with	 accents,	 tildes,	 cedillas,	 diereses,
and	 so	 on.7	 It	 also	 featured	 a	 complete	 set	 of	 single-and	 double-line-drawing
characters	 for	 programs	 to	 visually	 construct	 boxes	 on	 the	 screen	 using	 only
characters,	which	was	important	for	early	IBM	PCs	that	did	not	support	graphics
at	 all.8	 In	 addition,	 there	were	 separate	 code	 pages	 for,	 among	 others,	Arabic,
Greek,	 Cyrillic,	 Hebrew,	 Portuguese,	 and	 Turkish	 (this	 last	 included	 our	 old
friends	 the	dotted	capital	İ	and	undotted	 lowercase	 ı,	at	positions	152	and	141,
respectively).9



Figure	8.1 MS-DOS	Latin	US	code	page

Figure	 8.1	 is	 the	 default	 code	 page,	with	 each	 row	 showing	10	 characters.10
Meanwhile,	 figure	 8.2	 is	 the	 Turkish	 code	 page;	 notice	 that	 they	 are	 identical
from	32	to	127,	and	only	have	about	50	characters	that	differ	in	the	128	to	255
range.



Figure	8.2 MS-DOS	Turkish	code	page

Once	a	user	configured	their	computer	to	use	the	right	code	page,	text	would
display	as	expected	on	the	screen.	Or	they	could	open	a	document	written	for	a
different	code	page	and	see	amusing	gibberish.	On	every	code	page,	the	original
ASCII	 characters	 32–127	 remained	 unchanged,	 so	 English	 text	 displayed	 the
same	no	matter	what	code	page	 the	computer	was	configured	for.11	Thus	most
programmers	at	Microsoft,	working	in	English,	were	oblivious	to	the	frustration
of	choosing	the	wrong	code	page.
When	Microsoft	Windows	first	came	out	in	the	mid-1980s,	it	included	its	own

code	pages	covering	the	same	basic	ground	but	different	in	their	exact	encoding
(for	 one	 thing,	 since	Windows	 always	 ran	 in	 graphics	mode,	 the	 line-drawing
characters	were	no	longer	needed).12	As	before,	you	had	to	choose	the	right	code
page	 for	your	 system	 if	you	wanted	 it	 to	display	 the	upper	128	characters	 that
you	wanted,	and	as	before,	English	speakers	were	blissfully	unaware	of	all	this.
Code	 pages	 worked	 reasonably	 well	 but	 ran	 out	 of	 gas	 for	 ideographic

alphabets,	 such	 as	 the	 Japanese	 kanji,	 which	 has	 thousands	 of	 characters.	 To
solve	this	problem,	the	decision	was	made	that	Windows	NT,	whose	first	version
came	out	in	1993,	would	switch	to	an	encoding	system	called	Unicode.
Unicode	 dispenses	 with	 code	 pages	 and	 stores	 all	 characters	 in	 two	 bytes,

which	 allows	 65,536	 (almost)	 possible	 characters.	 It’s	 actually	 slightly	 more
complicated	 than	 that,	 to	 allow	 even	 more	 characters,	 yet	 not	 in	 a	 way	 that



matters	here.13	Unicode’s	large	character	count	allows	the	Chinese	and	Japanese
ideographic	alphabets	(the	most	common	subsets,	anyway;	it	currently	supports
somewhat	 over	 100,000	 characters,	 including,	 in	 recent	 revisions,	 more	 than
2,500	 emoji)	 to	 happily	 coexist	 with	 Latin	 alphabets	 in	 all	 their	 accented
varieties,	 as	 well	 as	 Cyrillic,	 Hebrew,	 Korean,	 and	 so	 on.14	 The	 trade-off,	 of
course,	 is	 that	 it	 uses	2	bytes	of	 storage	 for	 every	character,	 so	 strings	occupy
more	memory	and	take	longer	to	copy	around,	but	(for	once!)	this	was	deemed	a
worthwhile	choice.
Unicode	 was	 overall	 a	 great	 improvement,	 but	 it	 had	 one	 unfortunate	 side

effect,	which	 is	 that	programmers,	used	 to	 the	 idea	 that	1	character	occupied	1
byte,	had	learned	to	think	of	the	terms	interchangeably.15	Unicode	opens	up	an
avenue	 for	programmers	 to	make	“characters	versus	bytes”	math	mistakes	 that
can	 lead	 to	 trying	 to	 copy	 data	 into	 a	 buffer	 that	 can	 only	 hold	 half	what	 the
programmer	expects—the	exact	 sort	of	error	 that	causes	buffer	overflows.	Ten
Unicode	 characters	 take	 up	 20	 bytes	 of	 memory,	 so	 if	 you	 try	 to	 copy	 10
Unicode	 characters	 into	 a	 10-byte	 buffer,	 you	 will	 overflow	 the	 buffer	 by	 10
bytes.	 This	 is	 unexpected	 for	 programmers	 used	 to	 single-byte	 characters,	 for
which	10	characters	occupy	10	bytes.
When	 Unicode	 was	 added	 to	 Windows,	 the	 C	 API	 for	 string	 manipulation

needed	 to	 be	 extended.	 Recall	 that	 a	 string	 in	 C	 is	 an	 array	 of	 8-bit	 values,
terminated	 by	 a	 0;	 a	Unicode	 string	was	 defined	 as	 an	 array	 of	 16-bit	 values,
terminated	by	a	0—that	is,	a	16-bit	0.	The	API	strlen()	calculates	the	length	of
a	single-byte	string	by	scanning	for	a	0	byte;	an	API	wcslen()	was	added	that
calculates	the	length	of	a	Unicode	string	by	scanning	for	a	16-bit	0	(that	wcs	at
the	beginning,	which	 is	short	 for	wide	character	string,	 is	a	cameo	appearance
by	a	Hungarian	prefix).
The	question	arises	of	what	wcslen()	should	return:	Should	it	be	the	number

of	 bytes	used	or	 the	number	of	Unicode	 characters?	For	strlen(),	 the	 single-
byte	 version,	 they	 were	 equivalent,	 so	 that	 didn’t	 offer	 any	 precedent.	 It	 was
decided	that	wcslen()	would	return	the	number	of	characters,	and	indeed	that	is
what	 it	does.	That’s	not	wrong—it’s	 the	most	 logical	choice16—but	 this	 is	one
more	of	those	situations	in	which	you	have	to	know	how	an	API	works	or	you
can	 make	 a	 mistake.	 There	 is	 nothing	 obvious	 about	 wcslen()—despite	 the
Hungarian	prefix!—to	indicate	“returns	a	byte	count”	versus	“returns	a	character
count.”
When	you	allocate	a	buffer	on	the	stack	in	C,	the	easiest	way	to	figure	out	its

size	 is	 via	 an	 API	 (which	 is	 not	 really	 an	 API,	 but	 think	 of	 it	 as	 one	 for
simplicity)	called	sizeof(),	which	tells	you	how	much	memory	a	variable	takes.



Consider	the	following	code	(wchar_t	is	a	single-wide	character—that	is,	a	16-
bit	Unicode	character,	 the	Unicode	equivalent	of	char	 in	 a	 single-byte	 strings;
why	the	extra	_t	is	there	is	not	worth	explaining):17

wchar_t	my_buffer[10];

This	allocates	an	array	of	10	Unicode	characters	on	the	stack.	In	 this	situation,
sizeof(my_buffer)	will	return	20:	10	characters	time	2	bytes	per	character.
The	 problems	 arose	when	 programmers	wrote	 code	 trying	 to	 figure	 out	 if	 a

Unicode	string	 they	were	processing	would	fit	 in	a	stack	buffer.	 In	 the	days	of
single-byte	 characters,	 it	was	 fine	 to	mingle	strlen()	 and	sizeof(),	 like	 this
(note	the	–	1	part;	you	still	have	to	account	for	that	final	0	character):18

char	sb_buffer[10];

if	(strlen(other_sb_buffer)	<=	(sizeof(sb_buffer)	-	1))	{

				//	other_sb_buffer	will	fit	into	sb_buffer

}

But	in	Unicode	land,	the	following,	which	merely	replaces	all	single-byte	code
with	its	Unicode	equivalent,	is	wrong:

wchar_t	wc_buffer[10];

if	(wcslen(other_wc_buffer)	<=	(sizeof(wc_buffer)	-	1))	{

				//	other_wc_buffer	will	fit	into	wc_buffer—WRONG!

}

because	sizeof(wc_buffer)	 is	20,	 so	you	may	attempt	 to	copy	a	19-character
string—that	is,	19	Unicode	characters,	which	occupy	38	bytes	and	will	overflow
wc_buffer.
Of	course,	programmers	can	avoid	this	easily.	They	just	have	to	remember	that

sizeof()	 returns	a	value	 in	bytes,	 and	divide	 it	 appropriately,	 like	 this	 (and	 if
reading	 this	 code	 gives	 you	 a	 headache	 trying	 to	 match	 up	 left	 and	 right
parentheses,	you	are	not	alone;	 it’s	annoying,	but	messing	 them	up	can	 lead	 to
hard-to-find	bugs):

if	(wcslen(other_wc_buffer)	<=

					((sizeof(wc_buffer)	/	sizeof(wchar_t))	-	1))	{

which	 would	 then	 correctly	 compare	 wcslen()’s	 output	 to	 9	 instead	 of	 19.19
Unfortunately	 when	 you	 are	 accustomed	 to	 not	 doing	 this	 with	 single-byte
characters,	it	is	easy	to	forget.	And	while	not	every	oversight	of	this	type	led	to
an	exploit—many	of	them,	because	of	where	they	were,	only	caused	a	crash,	and



some,	because	the	buffer	on	the	stack	was	large	enough	to	hold	whatever	strings
it	was	called	on	to	accommodate,	never	caused	a	problem—a	few	of	them	did.
We	used	to	joke	that	the	value	of	typing	those	16	characters,

/	sizeof(wchar_t)

as	compared	to	the	cost	of	some	of	the	exploits,	made	it	clear	that	programmers
were	underpaid.
It’s	not	 that	software	is	doomed	to	have	this	sort	of	bug;	 it’s	 that	C	allows	it

because	of	the	way	it	handles	strings,	and	combining	that	with	Unicode,	with	the
extra	 potential	 to	 mix	 up	 character	 and	 byte	 counts,	 makes	 it	 more	 likely.	 I
should	clarify	that	if	you	wanted	to,	you	could	write	your	own	set	of	routines	in
C	 that	 handled	 all	 string	 manipulation	 in	 a	 safe	 way.	 You	 would	 define	 a
structure,	let’s	call	it	safestring,	which	could	hold	the	characters	in	a	string	and
also	 contained	 the	 length	 of	 the	 string,	 and	 you	 would	 then	 write	 a	 set	 of
functions	 to	 create	 a	 safestring,	 manipulate	 a	 safestring,	 and	 extract	 the
underlying	 string	data	 from	a	safestring	 (to	pass	 to	APIs	 that	did	use	 raw	C
strings).	And	then	you	would	sign	a	solemn	pledge	to	always	call	those	functions
when	your	code	did	any	operations	on	strings.
You	could	do	this,	but	the	resulting	code	would	run	more	slowly	and	require

more	 typing	 by	 programmers.20	 One	 of	 the	main	 reasons	 people	 liked	 C	was
because	you	could	handle	raw	string	buffers	quickly	and	tersely.	But	C,	for	all	its
myriad	charms,	 is	not	a	safe	 language	for	handling	network	messages	directly;
for	that	you	want	a	language	that	makes	it	impossible	for	a	worm	to	sneak	in	via
a	buffer	overflow,	 a	 language	where	buffer	 copying	 is	 always	checked	against
the	actual	length	of	the	buffer,	no	matter	what	the	programmer	does.
What	sort	of	language	is	safe?
Object-oriented	languages	have	the	power	to	take	string	length	calculations	out

of	the	hands	of	individual	programmers.	In	a	1998	update	to	C++,	a	new	built-in
class	 named	 string	 was	 added,	 which	 held	 a	 string	 (actually	 it	 was	 called
std::string,	but	I’ll	ignore	the	std::	part	here).	One	of	the	features	of	string
was	that	it	overloaded	the	+	operator	to	do	string	concatenation;	you	could	write

c	=	d	+	e;

when	c,	d,	and	e	were	all	of	type	string,	and	it	would	just	work;	C++	operator
overloading	allowed	a	new	class,	such	as	string,	to	provide	its	own	+	operator
that	worked	in	a	way	that	made	sense	for	that	class.21	The	details	are	inside	the
implementation	of	 the	string	class,	where	they	had	presumably	been	carefully
verified	to	work,	and	every	use	of	the	string	class	can	leverage	that	care	(there



is	also	a	similar	class	wstring	for	handling	Unicode	strings).	So	it	was	like	the	C
safestring	we	talked	about	above,	except	that	once	you	declared	a	variable	as	a
C++	string,	you	had	no	alternative	but	 to	use	 the	 functions	provided,	and	 the
overloaded	operators	meant	you	could	do	it	without	extra	typing.
The	 problem	 with	 this	 is	 that	 you	 may	 get	 memory	 allocation	 errors	 when

performing	 these	operations.	More	precisely,	 the	 code	 inside	 the	string	 class,
which	handles	all	these	details,	may	get	memory	allocation	errors.	How	does	this
information	 propagate	 back	 so	 your	 code	 can	 react?	 In	 C,	 the	 memory
allocations	 are	 obvious,	 since	 you	 call	 malloc()	 explicitly,	 but	 C++	 is	 doing
allocations	 under	 the	 covers	 here.	 In	 fact,	 even	 in	 the	 earliest	 days	 of	C++,	 if
memory	could	not	be	allocated	for	an	instance	of	an	object,	then	the	constructor
would	return	a	value	of	0	instead	of	the	new	object,	but	most	code	did	not	check
for	that	any	more	than	it	tried	to	guard	math	operations	against	overflow.
To	understand	how	a	language	can	handle	this	cleanly	and	reliably,	let’s	step

back	a	bit	and	talk	about	how	programs	determine	that	an	error	has	occurred.
Every	time	your	code	calls	an	API,	there	is	a	chance	it	will	report	back	that	it

was	unsuccessful.	Code,	by	pure	tonnage,	is	primarily	dealing	with	things	going
wrong,	despite	the	fact	that	nothing	goes	wrong	the	vast	majority	of	the	time	that
it	runs.
Cast	your	mind	back	to	1996	and	imagine	that	you	are	a	programmer	writing

code	 in	C	 to	 run	on	Microsoft	Windows.	The	 little	 bit	 of	 code	you	have	been
tasked	with	 today	should	create	a	 file,	write	out	1,000	bytes	 to	 it,	and	close	 it.
The	 result	 might	 look	 like	 the	 snippet	 that	 follows.	 The	 first	 line	 of	 code	 is
truncated,	 since	 CreateFile()	 actually	 takes	 six	more	 parameters	 besides	 the
filename	that	specify	precise	details	on	how	the	file	should	be	created;	a	typical
set	of	values	for	 these	parameters	would	be,	 in	order,	GENERIC_WRITE,	0,	NULL,
CREATE_NEW,	 FILE_ATTRIBUTE_NORMAL,	 and	 NULL,	 but	 removing	 them	makes	 it
easier	to	read:22

handle	=	CreateFile("foo.txt");

WriteFile(handle,	buffer,	1000,	&written,	NULL);

CloseHandle(handle);

Each	of	the	three	steps	invokes	an	API	with	certain	parameters:	first	create	a
file	with	the	name	foo.txt,	then	write	the	data	to	the	file,	and	then	close	the	file.
We	can	draw	an	analogy	with	storing	a	piece	of	paper	 in	a	 filing	cabinet:	 first
open	the	cabinet,	then	insert	the	piece	of	paper,	and	then	close	the	filing	cabinet.
The	use	of	the	word	file	in	the	computer	context	is	not	an	accident;	it	was	meant
to	 guide	 users	 toward	 the	 same	 analogy,	 although	 at	 this	 point	 it	 is	 probably
more	likely	that	somebody	would	explain	a	filing	cabinet	in	terms	of	computer



storage	rather	than	the	other	way	around.
You	will	 notice	 that	 the	 variable	 handle	 appears	 in	 all	 three	 lines;	 this	 is	 a

value	 that	 CreateFile()	 returns	 back	 to	 the	 program,	 which	 then	 becomes	 a
parameter	 to	 WriteFile()	 and	 CloseHandle(),	 so	 that	 they	 can	 perform	 their
operations	 on	 the	 correct	 file.23	 This	 is	 typical	 of	 the	 way	 that	 non-object-
oriented	 languages	 impose	 a	 smattering	 of	 object-oriented-ish	 loose	 coupling,
because	 handle	 is	 an	 opaque	 value	 the	 callers	 pass	 around;	 the	 code	 inside
WriteFile()	 and	 CloseHandle()	 knows	 how	 to	 interpret	 handle	 to	 get	more
details	about	the	file	(often	it	is	really	a	pointer	to	an	internal	data	structure),	but
those	implementation	details	can	change	without	affecting	calling	code.
This	 code	 works	 fine	 if	 nothing	 goes	 wrong,	 and	 usually	 nothing	 will	 go

wrong;	the	file	will	be	successfully	created	with	1,000	bytes	of	data.	Yet	things
could	 go	 wrong.	 For	 instance,	 the	 disk	 could	 run	 out	 of	 space	 during	 this
operation;	 it	 could	 have,	 say,	 500	 bytes	 of	 free	 space	 before	 you	 started	 and
therefore	not	have	room	to	write	 the	1,000	bytes.	This	 is	extremely	unlikely	 in
these	days	of	multiterabyte	hard	drives,	but	it	could	happen.
The	 most	 likely	 failure	 here	 is	 that	 a	 file	 by	 that	 name	 already	 exists.

CreateFile(),	 despite	 what	 the	 API	 name	 might	 imply,	 can	 also	 open	 an
existing	 file	 if	 it	 finds	 one	 with	 the	 requested	 name.	 In	 this	 case,	 since	 we
specified	CREATE_NEW	 (one	of	 those	 extra	parameters	 that	 I	 chopped	out	of	 the
actual	code	listing,	which	means	it	“Creates	a	new	file,	only	if	it	does	not	already
exist”24),	it	will	fail	if	the	file	already	exists.
The	three	lines	of	code	shown	above	completely	ignore	all	these	possibilities;

the	call	to	WriteFile()	assumes	that	handle	is	valid,	but	this	will	only	be	true	if
CreateFile()	 succeeded,	 and	 so	 on.	Nonetheless,	 this	 is	 perfectly	 legal	 code,
and	you	may	be	using	a	computer	application	that	is	written	this	way;	you	won’t
know	 until	 you	 hit	 the	 unusual	 error	 case	 at	 runtime	 and	 the	 program	 doesn’t
deal	with	it	correctly.	Imagine	if	the	code	had	a	fourth	line	added,	with	the	first
three	lines	remaining	unchanged	(as	with	CreateFile(),	I’ve	simplified	the	call
to	MessageBox()	by	removing	irrelevant	parameters):

handle	=	CreateFile("foo.txt");

WriteFile(handle,	buffer,	1000,	&written,	NULL);

CloseHandle(handle);

MessageBox("File	written	OK",	MB_ICONINFORMATION);

That	 last	 line	 (calling	 MessageBox())	 tells	 the	 system	 to	 display	 a	 pop-up
window;	 the	MessageBox()	API	 is	 the	C	equivalent	of	 the	MessageBox.Show()
method	 in	C#.	The	message	will	be	“File	written	OK,”	and	 the	 icon	displayed
will	 be	 the	 information	 symbol	 (in	 current	 versions	 of	 Windows,	 this	 is	 a



lowercase	i	in	a	blue	circle).
If	 you	 see	 this	pop-up,	you	would	naturally	 assume	 that	 the	 file	was	written

successfully.	After	all,	the	message	box	told	you	so!	But	if	the	code	looked	like
the	sample	above,	that	pop-up	would	guarantee	nothing	of	the	sort.	It’s	possible
that	the	call	to	CreateFile()	failed,	which	would	have	caused	the	WriteFile()
and	CloseHandle()	to	fail	also,	so	nothing	would	have	been	written	to	disk.	Yet
the	code	would	have	blithely	displayed	the	message	box.
This	is	not	acceptable	from	a	software	engineering	point	of	view,	even	if	 the

compiler	allows	this	sort	of	plonky	code.	A	conscientious	programmer	can	add
code	to	warn	the	user	if	something	goes	wrong:

handle	=	CreateFile("foo.txt");

if	(handle	==	INVALID_HANDLE_VALUE)	{

			MessageBox("Couldn't	open	file",	MB_ICONERROR);

}	else	{

			b	=	WriteFile(handle,	buffer,	1000,	&written,	NULL);

			if	(b	==	FALSE)	{

						MessageBox("Couldn't	write	to	file",

						MB_ICONERROR);

						CloseHandle(handle);

			}	else	{

						b	=	CloseHandle(handle);

						if	(b	==	FALSE)	{

									MessageBox("Couldn't	close	file",

									MB_ICONERROR);

						}	else	{

									MessageBox("File	written	OK",

									MB_ICONINFORMATION);

						}

			}

}

This	code	 is	more	complicated	because	of	 the	IF	and	ELSE	 statements;	 recall
that	 C	 syntax	 rules	 state	 that	 if	 the	 test	 in	 parentheses	 after	 the	 IF	 is	 true,	 it
executes	the	code	between	the	first	pair	of	braces	(the	{	and	}	characters);	if	the
IF	is	false,	then	it	executes	the	code	between	the	braces	following	the	word	ELSE
(recall	 also	 that	 in	 the	 text,	 I	 am	 capitalizing	 language	 keywords	 like	 IF	 and
ELSE,	but	I’m	referring	to	the	keywords	that	appear	in	the	code	above	as	if	and
else).	The	construction	handle	==	INVALID_HANDLE_VALUE	is	interpreted	as	“is
handle	 equal	 to	 the	 value	 INVALID_HANDLE_VALUE,”	 with
INVALID_HANDLE_VALUE	being	the	value	that	CreateFile()	returns	if	it	fails.	The
other	two	APIs,	WriteFile()	and	CloseHandle(),	return	a	Boolean,	a	true/false
value,	 to	 indicate	 if	 they	 succeed	 or	 fail	 (they	 will	 always	 fail	 if	 the	 handle



passed	in	is	INVALID_HANDLE_VALUE).
This	code	avoids	the	problem	of	telling	the	user	that	the	operation	succeeded

when	 it	 actually	 failed.	But	 instead	of	 four	 lines	of	 code,	 you	have	 thirteen	or
possibly	 sixteen	 lines	 of	 code	 (the	 philosophical	 question	 “Does	 a	 line
containing	only	a	curly	brace	count	as	a	line	of	code?”	is	another	religious	query
bandied	about	among	programmers).	And	still	this	is	only	a	slight	improvement;
if	something	goes	wrong,	the	pop-up	serves	as	a	warning,	but	doesn’t	help	with
recovery.	The	user	doesn’t	have	the	data	written	to	disk	and	may	have	lost	work.
To	 fix	 this	 properly,	 you	would	 need	 to	 add	 even	more	 code,	 perhaps	 tell	 the
user	 what	 happened,	 give	 them	 a	 chance	 to	 try	 again,	 and	 so	 forth,	 thereby
adding	 to	 the	percentage	of	your	code	 that	 is	 involved	 in	error	 recovery	 rather
than	 the	mainline	work.	You	wind	up	with	 twenty-five	 to	 thirty	 lines	of	 code,
with	 the	 actual	 functionality	 being	 still	 just	 the	 original	 four	 lines	 of	 code—a
terrible	signal-to-noise	ratio.
In	 addition,	 the	 error-checking	 code	 is	 mixed	 right	 in	 with	 the	 main	 logic,

making	it	hard	to	follow.	Error-checking	code	is	like	an	annoying	kid	watching
you	attempt	something,	repeating,	“It’s	not	going	to	work!”	over	and	over,	until
one	day	it	doesn’t	work,	and	then	they	can	say,	“I	told	you	so.”
There’s	 another	 thing	 too,	 which	 seems	 trivial.	 As	 you	 move	 through	 your

code	and	call	more	APIs	that	need	to	be	checked	for	errors,	each	check	involves
an	IF	 statement,	with	 the	code	 in	 the	IF	and	ELSE	blocks	usually	 indented	one
more	level	for	readability;	you	can	see	this	in	the	sample	above	that	calls	three
APIs.	With	even	more	API	calls,	your	code	would	be	even	more	indented,	until
visually	 it	 risks	 bumping	 into	 the	 right	 edge	 of	 your	 editor.	 In	 any	 modern
language,	you	are	 free	 to	 split	 a	 single	 line	of	 code	up	 into	multiple	 lines,	but
each	resulting	fragment	of	the	line	will	also	likely	be	indented	just	as	much,	and
there	is	something	about	typing	all	those	indents	and	lining	up	the	line	fragments
that	 feels	 like	 unnecessary	work—with	 the	 programmer	 desire	 to	 avoid	 typing
springing	 up	 again.	 And	 mistakes	 lining	 up	 indented	 code	 can	 lead	 to	 real
defects,	if	you	don’t	do	it	correctly	and	associate	the	wrong	block	of	code	with	a
certain	IF	or	ELSE	case.25
This	overall	problem	has	been	known	in	programming	circles	for	a	long	time,

and	a	 solution	has	been	proposed	 for	 a	 long	 time	as	well:	write	programs	 that
depend	on	exceptions	instead	of	errors.
The	error	approach	is	what	we	see	 in	 the	code	above:	code	that	calls	an	API

will	immediately	check	whether	the	API	failed,	by	whatever	mechanism	the	API
has	 documented	 that	 it	 will	 indicate	 failure—which	 could	 mean	 returning	 an
invalid	 handle,	 returning	 a	 Boolean	 false,	 returning	 a	 specific	 error	 code,	 or
something	 else,	 with	 no	 consistency	 between	 APIs.	 To	 paraphrase	 Tolstoy,



successful	API	calls	are	all	alike,	but	every	failed	API	call	fails	in	its	own	way.
Proper	 detection	 is	 dependent	 on	 checking	 for	 errors	 correctly,	 through	 all	 the
layers	of	software,	many	of	whose	code	you	can’t	see.	Beyond	ignoring	errors,
code	 may	 check	 for	 the	 wrong	 ones;	 if	 the	 caller	 of	 an	 API	 is	 checking	 for
ERROR_ACCESS_DENIED	but	instead	gets	ERROR_INVALID_ACCESS,	it	won’t	catch	it.
There	 are	 a	 lot	 of	 these	 similar-sounding	 errors;	 in	 Windows,	 you	 have
ERROR_FILE_NOT_FOUND	and	ERROR_PATH_NOT_FOUND,	ERROR_WRITE_PROTECT	and
ERROR_WRITE_FAULT,	ERROR_INVALID_FUNCTION	and	ERROR_NOT_SUPPORTED,	and
so	 on.	 And	 of	 course	 there	 is	 the	 wonderful	 ERROR_ARENA_TRASHED,	 which
persists	with	horsetail-like	tenacity	as	error	#7	on	a	system	where	the	errors	were
essentially	handed	out	in	the	order	they	were	needed	when	implementing	it	(the
“system”	being	DOS	1.00,	 in	 this	case,	since	those	low-value	error	codes	were
defined	 in	 that	 era).26	Code	can	attempt	 to	make	a	nonspecific	 check	 for	 “any
error	 at	 all,”	 but	 that	 reduces	 the	 chance	 that	 it	 will	 do	 something	 clever	 to
recover	from	a	specific	error,	and	instead	you	wind	up	failing	back	up	through
the	chain	of	callers	until	the	user	gets	a	mysterious	error	message.
The	solution	proposed	for	all	this,	getting	away	from	errors	entirely,	is	to	use

what	are	known	as	exceptions.
Exceptions	are	like	an	on-call	telephone	list	for	a	crisis	at	work:	the	employee

responsible	gets	called,	and	if	they	don’t	answer,	then	their	boss	gets	called,	and
so	on	up	the	organizational	chart.	Code	that	determines	that	an	actual	error	has
happened	 throws	 (in	 the	vernacular	of	exceptions)	an	exception.	The	code	 that
called	 that	 code	 can	 indicate	 if	 it	 knows	how	 to	 deal	with	 that	 exception;	 if	 it
does	(known	as	catching	 the	exception),	 then	it	provides	code	to	be	run	in	this
situation	(for	example,	display	a	dialogue	box	to	the	user).	If	the	code	that	called
the	 throwing	 code	 does	 not	 catch	 the	 exception,	 then	 the	 code	 that	 called	 that
code	has	a	chance	to	catch	it,	and	so	forth	up	the	chain.
Exceptions	work	 even	better	with	objects,	 because	object-oriented	 languages

define	 that	 when	 an	 object	 goes	 out	 of	 scope—meaning	 that	 the	method	 it	 is
declared	in	returns	or	the	block	of	code	it	is	declared	in	ends—it	is	automatically
cleaned	 up	 by	 calling	 a	 special	 class	 method	 called	 a	 destructor,	 which	 is
provided	for	this	purpose.	If	the	destructor	is	properly	written,	then	the	“cleanup
on	error”	part	of	error	handling	will	be	 taken	care	of	as	well,	without	 the	need
for	extra	code	 in	 the	method	 that	uses	 the	object.	As	shown	below,	 the	object-
oriented	 equivalent	 of	CreateFile()returns	 an	 object,	 not	 a	 handle,	 and	when
the	object	goes	out	of	scope,	it	automatically	closes	the	file	if	needed	(at	least	it
will	if	the	implementation	of	its	destructor,	which	you	likely	can’t	see	the	code
for,	 is	 correct—fingers	 crossed).	Exceptions	 are	handled	 in	 an	orderly	way;	 as
the	exception	handler	walks	up	the	chain	of	callers	looking	for	one	to	handle	the



exception,	objects	will	still	get	cleaned	up	as	 the	exception	propagates	past	 the
layer	at	which	they	were	declared.
The	code	 to	catch	an	exception	(I’ll	switch	 to	C#	here)	 looks	 like	 this,	using

the	keyword	TRY	to	indicate	the	code	that	will	be	checked	for	exceptions	(if	this
same	code	is	run	outside	a	TRY	block,	then	any	exceptions	would	automatically
propagate	back	to	the	caller	of	this	code).	The	main	logic	is	clearly	laid	out,	with
no	error	handling	mixed	in:

try	{

			using	(FileStream	fs	=	File.Open("foo.txt",

													CreateNew))	{

						fs.Write(buffer,	0,	1000);

			}

}	catch	(Exception	e)	{

			//	handle	any	exceptions	here

}

The	 FileStream	 object	 returned	 by	 File.Open()	 is	 the	 equivalent	 of	 the
handle	 returned	 by	 CreateFile()	 in	 the	 C	 illustration.	 The	 USING	 syntax	 is
needed	 to	 ensure	 the	FileStream	will	 get	 cleaned	 up	 properly	 if	 an	 exception
occurs;	don’t	worry	about	that	and	instead	focus	on	the	fact	that	with	one	CATCH,
you	can	handle	any	exception	that	happens	anywhere	in	the	chain	of	calls	below
this	point.27
To	a	programmer	raised	on	error	checking,	 relying	on	exceptions	can	appear

dangerous;	previous	programming	experience,	 the	usual	guide,	 fails	 them	here.
Error	checking	reminds	you	of	a	room	of	people	in	dinner	jackets	smelling	their
brandy	 snifters,	 discussing	 the	 latest	 reports	 from	 the	 CreateFile()	 front;
exceptions	 feel	 more	 like	 the	 controlled	 explosions	 used	 for	 avalanche
prevention.	 Is	 everybody	 sure	 the	 explosion	 can	 be	 controlled?	 But	 this	 is
excessive	anthropomorphizing	of	code;	exceptions	can	be	reliably	caught	if	 the
language	supports	it.
There	 is	 also	 an	 argument	 that	 having	 the	 destructor	 do	 cleanup	 (when	 it	 is

automatically	called	when	the	object	goes	out	of	scope)	hides	the	details	of	the
cleanup,	leading	to	potential	bugs.	Better	to	have	the	code	that	uses	the	object	do
the	 cleanup	 explicitly,	 so	 the	 code	 can	 be	 clearly	 seen.	 The	 problem	 is	 that
having	 everybody	 write	 their	 own	 cleanup	 code,	 besides	 clogging	 up	 every
program	with	duplicated	cleanup	logic,	gives	everyone	the	opportunity	to	code	it
incorrectly.	Certainly	the	destructor	is	an	API	that	needs	to	be	well	documented
and	understood	by	users	of	the	class,	which	today	is	often	not	the	case,	but	better
to	document	its	behavior	than	document	the	expected	behavior	that	you	need	all
callers	to	reimplement	themselves.



The	exceptions	approach	is	not	perfect.	There	is	no	guarantee	that	the	code	that
runs	after	an	exception	is	caught	(the	code	in	the	CATCH	block)	will	do	the	right
thing;	the	most	extreme	example	of	this	would	be	code	that	caught	all	exceptions
but	 then	did	nothing	 in	 the	exception	handler,	which	 is	effectively	 the	same	as
ignoring	an	error	code	(that	is	what	the	code	above	does	as	written,	since	all	 it
currently	 has	 in	 the	CATCH	 block	 is	 a	 comment	 saying	 “handle	 any	 exceptions
here”).	But	you	have	to	go	out	of	your	way	to	do	the	wrong	thing,	whereas	with
errors	you	have	 to	go	out	of	your	way	 to	do	 the	 right	 thing;	 if	you	write	your
code	 assuming	 that	 every	API	 succeeds,	 in	 error-based	 code	 you	will	 silently
miss	all	errors,	and	in	exception-based	code	you	will	crash	on	all	errors	(since	if
an	exception	propagates	all	the	way	back	to	the	top	level	of	a	program	without
being	caught,	the	program	will	crash).	Exceptions	steer	programmers	away	from
the	 situation	where	 careless	 programming	 leads	 to	 the	 outcome,	 “We	 reported
success	to	the	user	but	there	was	actually	an	error.”
We	can	now	get	back,	finally,	to	our	problem	of	a	string	class	being	able	to

reliably	report	memory	allocation	errors,	which	would	allow	you	to	use	 it	with
confidence	when	manipulating	 string	buffers.	With	exceptions,	 the	code	 inside
the	string	class	can	throw	an	exception	if	it	can’t	allocate	memory.	If	code	that
uses	 the	 string	 class	 is	 oblivious	 to	 this	 possibility,	 then	 the	 exception	 will
propagate	upward	 rather	 than	being	cast	 aside	 the	way	 it	would	be	 if	 the	code
had	to	explicitly	check	for	an	error	right	at	the	point	it	might	happen.	This	makes
it	OK	for	code	to	hand	off	all	 the	string-processing	details—including	memory
allocation—to	 the	string	 class,	and	we	can	avoid	 the	 risk	of	buffer	overflows
from	reimplementing	the	string	processing	every	time,	as	is	done	in	C.
Another	example	 is	 integer	overflow,	which	has	historically	been	 ignored	by

programmers.	In	an	error-based	system,	you	have	the	same	problem	as	detecting
memory	allocation	errors	while	concatenating	strings;	if	the	code	doesn’t	check
for	it	right	when	it	could	happen,	any	errors	slip	by	unnoticed.	With	exceptions,
the	code	to	do	the	integer	calculations	can	throw	an	exception	when	it	detects	an
overflow,	 so	 they	 can’t	 be	 silently	missed.	C++	 does	 not	 support	 this,	 but	C#
does,	either	in	a	single	block	of	code	or	for	a	whole	program,	although	somewhat
disappointingly,	 this	 is	 turned	 off	 by	 default,	 presumably	 as	 a	 concession	 to
programmers	with	 a	 performance	bee	 stuck	 in	 their	 coding	bonnets.	Microsoft
offers	the	weak	defense,	“Because	checking	for	overflow	takes	time,	the	use	of
unchecked	 code	 in	 situations	 where	 there	 is	 no	 danger	 of	 overflow	 might
improve	 performance”	 (to	 be	 fair,	 enabling	 this	 by	 default	 could	 also	 expose
non-failure-causing	 overflows	 in	 existing	 code,	 where	 ignoring	 an	 overflow
manages	 to	work	 somehow,	 but	wouldn’t	 it	 be	 better	 to	 uncover	 those	 sooner
rather	than	later?).28



While	 it	 was	 a	 big	 step	 forward	 for	 C++	 to	 support	 an	 exception-throwing
string	class	 in	1998,	 the	 language,	for	unavoidable	historical	reasons,	 is	stuck
in	 a	 middle	 ground.	 The	 errors	 versus	 exceptions	 debate	 is	 long	 running	 in
programming	circles;	the	first	version	of	C++	did	not	support	exceptions	at	all.
Stroustrup	 considered	 it,	 but	 didn’t	 feel	 he	 had	 time	 to	 come	 up	with	 a	 good
design.	Exceptions	were	 also	not	 present	 in	version	2.0,	which	 added	multiple
inheritance	and	various	other	features.	In	1990,	Stroustrup,	along	with	Margaret
Ellis,	published	The	Annotated	C++	Reference	Manual,	which	laid	out	C++	as
he	wished	it	 to	be,	with	exceptions	included;	it	 took	a	few	more	years	for	C++
compilers	to	catch	up	and	support	them.29
By	the	time	the	string	class	was	standardized	in	1998,	exceptions	were	part	of

the	 language,	 so	 string	 could	 be	 defined	 to	 throw	 exceptions	 when	memory
allocations	failed.	In	the	years	before	string	was	standardized,	however,	people
hand	 rolled	 their	 own	 equivalents	 so	 that	 they	 could	 take	 advantage	 of	 nifty
features	like	overloading	+	for	string	concatenation.	Modules	using	two	different
homemade	string	implementations	might	also	differ	in	how	they	handled	errors,
making	it	difficult	to	knit	them	together.	And	C++	continued	to	support	the	old
“0-terminated	 char	 array”	 style	 of	 strings	 (known	 as	 C-strings	 in	 C++).
Stroustrup	 later	 reflected,	 looking	 back	 on	 the	 history	 of	 C++,	 “To	 my	 mind
there	really	is	only	one	contender	for	the	title	of	‘worst	mistake.’	Release	1.0	and
my	 first	 edition	 should	have	been	delayed	until	 a	 larger	 library	 including	…	a
simple	 string	 class	 could	 have	 been	 included.	 The	 absence	 of	 those	 led	 to
everybody	 re-inventing	 the	 wheel	 and	 to	 unnecessary	 diversity	 in	 the	 most
fundamental	classes.”30
It	 is	 crucial	 to	 emphasize	 the	 uphill	 battle	 that	 Stroustrup	 faced	 in	 order	 to

make	 C++	 appealing	 to	 performance	 geeks	 for	 whom	 C	 was	 the	 one	 true
language	(while	simultaneously	dealing	with	object-oriented	purists	who	thought
any	 C-ness	 was	 an	 unacceptable	 compromise).31	 Exceptions	 are	 not	 a	 new
concept;	 in	 the	1960s,	PL/I	had	 the	ability	 to	 specify	code	blocks	preceded	by
“ON	 conditions”	 (like	 ON	 OVERFLOW	 or	 ON	 ZERODIVIDE),	 which	 would	 be
invoked	 if	 specific	 exceptional	 conditions	 were	 detected,	 and	 the	 basics	 of
structured	 exception	 handling	were	 laid	 out	 in	 papers	 by	 John	Goodenough	 in
ACM	 conference	 proceedings	 and	 publications	 in	 the	 mid-1970s.32	 But
exceptions	were	always	haunted	by	the	notion	that	they	were	slow	and	memory
hogging,	 and	 in	 particular	 that	 the	 overhead	 necessary	 to	 track	 how	 to	 handle
things	 just	 in	 case	 an	 exception	 hit	was	 always	 going	 to	 exist	 even	 if	 nothing
went	wrong,	whereas	code	to	check	for	errors	would	lurk	harmlessly	until	it	was
needed.



Stroustrup	 had	 to	 go	 to	 heroic	 lengths	 to	 ensure	 that	 C++	 did	 not	 have	 any
unnecessary	slowdowns;	he	worried	about	adding	a	few	extra	machine	language
instructions	to	the	cost	of	calling	a	function	as	the	price	for	supporting	multiple
inheritance.33	The	fact	that	he	succeeded	in	getting	C	programmers	interested	in
C++	 is	barely	 short	of	miraculous.	Similarly	 to	Caesar’s	wife,	he	had	 to	avoid
any	appearance	of	unnecessary	slowdowns,	and	having	an	exception	model	from
the	 start—where	 the	 standard	APIs	 themselves	 used	 exceptions,	 as	 they	 do	 in
C#,	thus	forcing	everybody	to	use	exceptions—would	have	been	a	huge	source
of	dissatisfaction	among	his	target	audience.
C++	is	now	defined	by	a	standards	committee,	which	publishes	updates	every

three	 to	 five	 years,	 and	 exceptions	 are	 completely	 integrated	 into	 modern
versions	of	 the	 language.	But	 there	 is	 still	a	 lot	of	C++	code	being	maintained
that	 predates	 exceptions,	 and	 more	 important,	 there	 are	 a	 lot	 of	 C++
programmers	 out	 there	 whose	 experience	 learning	 the	 language	 predates	 the
wide	availability	of	exceptions.	To	 this	day,	 there	 is	considerable	debate	about
whether	using	exceptions	in	C++	is	a	good	idea	or	not;	the	arguments	against	it
include	 the	 reputed	 runtime	 overhead	 (which	 is	 claimed	 by	 proponents	 of
exceptions	to	be	wildly	overstated)	and	the	fact	that	there’s	an	existing	codebase
that	doesn’t	use	exceptions	and	would	be	a	headache	to	retrofit	(which	is	similar
to	 the	 assertion	 occasionally	 deployed	 against	 unit	 testing).	 The	 result	 is	 that
C++,	while	a	critical	link	in	the	chain	of	languages,	winds	up	being	neither	fish
nor	 fowl	but	halfway	between	errors	 and	exceptions.	When	 I	 left	Microsoft	 in
early	 2017,	 this	 debate	was	 still	 ongoing	 even	 among	 teams	within	Microsoft
Office,	leading	to	a	few	gymnastics	required	for	code	that	needed	to	run	in	both
an	exception-embracing	and	exception-shunning	application.
Stroustrup	once	said,	“There	are	only	two	kinds	of	languages:	the	ones	people

complain	about	and	the	ones	nobody	uses.”34	Certainly	nobody	would	call	C++
a	language	that	nobody	uses,	so	you	can	guess	what	comes	next.	Peter	Seibel’s
2009	book	Coders	at	Work	features	interviews	with	fifteen	software	luminaries,
and	 their	 opinion	 of	 C++	 is	 not	 positive.	 Quotes	 include	 “C++	 is	 hairy”
(Brandon	 Eich),	 “I	 couldn’t	 exactly	 bring	myself	 to	 use	 C++”	 and	 “C++	was
pushed	well	beyond	its	complexity	threshold”	(Joshua	Bloch),	and	“I	can	hardly
read	or	write	it.	I	don’t	like	C++;	it	doesn’t	feel	right.	It’s	just	complicated”	(Joe
Armstrong).35	And	those	are	the	milder	comments.	The	people	who	really	don’t
like	it	say	things	like	“C++	is	just	an	abomination.	Everything	is	wrong	with	it	in
every	 way”	 (Jamie	 Zawinski),	 “the	 syntax	 is	 terrible	 and	 totally	 inconsistent”
(Brad	Fitzpatrick),	and	“it	certainly	has	its	good	points,	but	by	and	large	I	think
it’s	a	bad	language.	It	does	a	lot	of	things	half	well	and	it’s	just	a	garbage	heap



of	ideas	that	are	mutually	exclusive”	(Ken	Thompson).36
Harrumph,	 as	 they	 say.	 Stroustrup	 has	 nothing	 to	 be	 ashamed	 of;	 what	 he

accomplished,	given	the	era	in	which	he	accomplished	it,	was	remarkable.	C++
was	not	the	first	object-oriented	language,	but	it	was	the	one	that	popularized	the
approach,	 which	 allowed	 design	 patterns	 and	 unit	 testing	 to	 go	 mainstream.
Some	of	the	people	quoted	in	the	book,	while	claiming	they	would	not	deign	to
line	 their	 birdcages	 with	 C++,	 are	 leveraging	 his	 spadework	 to	 write	 better
object-oriented	languages.
This	 brings	 us	 to	 a	 vexing	 problem.	 Programmers	 have	 access	 to	 more

languages	today	than	ever	before,	but	there	is	not	a	lot	of	guidance	on	when	to
choose	 one	 language	 over	 another.	 As	 a	 result,	 they	 tend	 to	 continue	 using
languages	 they	 have	 used	 before,	 even	 in	 situations	where	 the	 language	 is	 far
from	the	best	choice.	Beyond	areas	I	have	already	covered,	such	as	susceptibility
to	buffer	overflows,	 languages	vary	 in	how	easily	 they	handle	certain	kinds	of
programming	challenges.	The	corollary	is	that	they	vary	in	how	prone	they	are	to
bugs	when	handling	 those	 same	programming	challenges.	And	despite	what	 is
implied	 by	 the	 term	 language,	 it	 is	 much	 easier	 to	 learn	 a	 new	 programming
language	 than	 it	 is	 to	 learn	a	new	spoken	 language.	For	programs	at	 the	scope
that	industry	generally	tackles,	the	long-term	negative	of	language	unsuitability
quickly	outweighs	the	short-term	benefit	of	language	familiarity.
In	the	old	days,	a	lot	of	new	languages	were	created,	but	they	were	often	tied

to	one	operating	system;	the	corollary	of	this	was	that	languages,	even	those	with
wide	 adoption	 at	 one	 time,	 would	 become	 obsolete,	 especially	 as	 the	 systems
that	 they	 ran	on	became	obsolete.	Despite	 the	 large	amount	of	 code	written	 in
them	back	in	the	day,	few	people	are	voluntarily	programming	in	Fortran	(from
1957),	 Algol	 (1960),	 COBOL	 (1962),	 or	 PL/I	 (1965),	 except	 possibly	 to
maintain	 old	 systems	 that	managed	 to	 avoid	 getting	 defenestrated	 in	 the	Y2K
cleansing.	 By	 the	 time	 I	 was	 in	 college,	 twenty	 to	 thirty	 years	 after	 the
introduction	 of	 those	 languages,	 they	were	 already	 in	 clear	 decline.	 In	 1986,	 I
had	a	summer	job	modifying	a	Fortran	program,	which	was	already	understood
to	be	outdated;	the	urge	to	rewrite	it	in	C	was	great.
More	 recent	 languages	 have	 tended	 to	 stick	 around;	 C	 is	 still	 popular	 as	 it

nears	 its	 golden	 anniversary,	 as	 are	 C++	 thirty	 years	 out,	 and	 Java,	 which
originated	in	the	early	1990s.	Related	is	the	fact	that	the	most	popular	operating
systems,	Windows	 and	 various	UNIX	 variants,	 have	 also	 stuck	 around	 for	 an
unexpectedly	long	time,	so	old	programs,	including	compilers	and	related	tools,
can	 continue	 to	 run	 for	 a	 long	 time.	MS-DOS	 first	 appeared	 in	 1981,	 but	was
considered	obsolete	fifteen	years	 later	once	Windows	95	shipped;	development
of	the	current	Windows	kernel	began	in	1988,	and	there	is	no	replacement	on	the



horizon	(the	underpinnings	of	Linux	and	macOS	also	date	from	around	the	same
time).	 The	 effect	 is	 that	 once	 programmers	 learn	 a	 language	 and	 become
proficient	 in	 it,	 there	 are	 no	 longer	 any	 obstacles	 preventing	 them	 from
continuing	to	use	it	for	the	rest	of	their	career,	no	matter	how	unsuitable	it	may
be	 for	 the	 job.	The	 code	 that	 the	Heartbleed	worm	 attacked	was	written	 in	C,
which	as	I	have	discussed	is	a	dangerous	choice	for	that	sort	of	code.	Even	in	the
late	 1990s,	 when	 work	 first	 began	 on	 the	 implementation	 of	 SSL	 that	 was
attacked,	C	could	have	been	seen	as	risky,	but	certainly	from	today’s	perspective
we	know	it	is.	But	with	C	(and	UNIX)	still	alive	and	kicking,	there	was	no	push
to	replace	it,	and	programmers	continue	to	work	on	the	code,	including,	in	2012,
accidentally	adding	the	buggy	code	that	enabled	Heartbleed.37
If	 you	 look	 at	 the	 course	 catalogs	 of	 computer	 science	 departments,	 they

generally	don’t	devote	time	to	comparing	languages	and	choosing	the	right	one
for	a	task.38	The	ACM	and	IEEE	Computer	Society	periodically	come	out	with
curriculum	recommendations	for	universities,	most	recently	in	2013.39	This	does
a	thorough	job	of	laying	out	the	various	areas	that	a	computer	science	curriculum
could	cover,	but	in	the	programming	languages	section,	most	of	the	courses	are
aimed	 at	 people	 writing	 compilers	 (an	 interesting	 and	 fairly	 well-understood
area,	mature	enough	that	I	myself	took	a	university	class	on	writing	compilers	in
the	1980s,	but	of	little	value	unless	you	wind	up	writing	one	yourself)	rather	than
providing	 specifics	 about	 the	 pros	 and	 cons	 of	 different	 languages	 for	 solving
different	types	of	programming	problems.
The	 report	 also	 lists	 the	 details	 of	 a	 variety	 of	 exemplar	 courses	 in	 different

areas,	and	perusing	these	you	do	see	notable	exceptions.	Carnegie	Mellon	has	a
Principles	 of	 Programming	 Languages	 course,	 taught	 by	 Robert	 Harper	 and
based	 on	 his	 book	Practical	 Foundations	 for	 Programming	 Languages.40	 The
course	has	a	summary	in	the	report	(written	by	Harper),	which	I	will	quote	from
since	it	speaks	precisely	to	my	point:

Programming	language	design	is	often	regarded	as	largely,	or	even	entirely,
a	 matter	 of	 opinion,	 with	 few,	 if	 any,	 organizing	 principles,	 and	 no
generally	 accepted	 facts.	 Dozens	 of	 languages	 are	 in	 everyday	 use	 in
research	laboratories	and	in	industry,	each	with	its	adherents	and	detractors.
The	relative	merits	of	languages	are	debated	endlessly,	but	always,	it	seems,
with	an	inconclusive	outcome.	Some	would	even	suggest	that	all	languages
are	equivalent,	the	only	difference	being	a	matter	of	personal	taste.	Yet	it	is
obvious	that	programming	languages	do	matter!
Yet	can	we	really	say	that	Java	is	“better”	(or	“worse”)	than	C++?	…	Can

we	hope	to	give	substance	to	any	of	these	questions?	Or	should	we	simply



reserve	 them	 for	 late	 night	 bull	 sessions	 over	 a	 glass	 of	 beer?	 …
Programming	 language	 theory	 liberates	 us	 from	 the	 tar	 pit	 of	 personal
opinion,	and	elevates	us	to	the	level	of	respectable	scientific	discourse.41

One	effect	of	the	course	is	turning	programmers	into	discriminating	consumers
of	 programming	 languages;	 Harper	 told	 me	 that	 one	 of	 his	 students	 reported
back,	 after	 working	 in	 industry	 for	 a	 while,	 “My	 coworkers	 know	 so	 little
programming	 language	 theory	 that	 I	can’t	even	explain	why	Python	[a	popular
programming	 language]	 is	 an	abomination.”42	Unfortunately	 this	 course	 stands
out	 as	 unusual	 among	 all	 the	 other	 ones	 described	 in	 the	 curriculum
recommendations;	 while	 a	 few	 of	 them	 do	 get	 into	 the	 area	 of	 comparing
different	 languages	(and	learning	fundamental	concepts	so	that	a	new	language
can	 be	 picked	 up	 more	 quickly),	 certainly	 none	 of	 the	 other	 descriptions	 are
written	with	such	urgency.
The	 net	 effect	 is	 the	 same	 as	 in	 other	 areas	 of	 software.	 Self-taught

programmers	assume	that	what	they	know	is	good	enough	and	don’t	try	to	learn
anything	 else.	 If	 they	 have	 a	 favorite	 language	 based	 on	 past	 experience,	 they
will	continue	to	use	it	because	they	can	see	no	reason	to	change.	Although	C++
certainly	has	problems,	in	the	anti-C++	quotes	above	there	was	an	undercurrent
of	“I	don’t	like	C++	because	it’s	different	from	my	favorite	language.”	C++	may
have	enough	flaws	that	it	is	rarely	the	best	choice,	yet	that	same	attitude	is	aimed
at	 newer	 languages	 that	may	 indeed	 allow	 for	 easier	 coding,	with	 fewer	 bugs,
than	the	language	that	the	programmer	was	planning	to	use.
Rob	Pike,	one	of	the	original	UNIX	crew,	gave	a	talk	on	“The	Unix	Legacy”

in	 which	 he	 described	 C	 as	 the	 “desert	 island	 language”—meaning	 the	 one
language	 you	 would	 choose	 if	 you	 could	 only	 choose	 one	 for	 all	 your
programming	 tasks.43	 C	 may	 well	 be	 the	 most	 general-purpose	 language
available	today,	with	the	broadest	availability	of	compilers	and	platform	APIs	of
any	language.	But	that	doesn’t	mean	I	want	to	use	it	every	day;	I’m	sure	if	I	were
stuck	on	a	desert	island,	I	would	eat	whatever	I	could	get	my	hands	on,	but	back
home	I	prefer	a	more	varied	diet.	Pike	said	 that	“C	is	well	understood	and	has
aged	surprisingly	gracefully”;	it	is	indeed	impressive	that	a	language	that	old	still
has	any	relevance	at	all.	Yet	the	industry	needs	to	understand	that	C	attained	its
permanence	from	a	unique	event,	when	self-taught	programmers	obsessed	with
performance	went	 off	 to	 college	 and	discovered	 it,	 and	 then	never	 reevaluated
their	opinion.
“Programming	 style	 is	 what	 results	 from	 writing	 programs	 under	 a	 set	 of

constraints,”	notes	Cristina	Lopes	in	her	book	Exercises	in	Programming	Style:
“Constraints	can	come	from	external	sources	or	 they	can	be	self	 imposed;	 they



can	capture	true	challenges	of	the	environment	or	they	can	be	artificial;	they	can
come	 from	 past	 experiences	 and	 measurable	 data	 or	 they	 can	 come	 from
personal	preferences.”44
Lopes’s	book,	in	a	manner	similar	to	how	Alexander	and	company’s	book	on

architectural	 patterns	 led	 to	 the	 Gang	 of	 Four’s	 book	 on	 design	 patterns,	 was
inspired	by	 the	French	writer	Raymond	Queneau’s	 book	Exercises	 in	 Style,	 in
which	he	wrote	 the	same	short	 story	ninety-nine	different	ways	 (some	of	 them
admittedly	 a	 little	 unreadable,	 such	 as	 permuting	 the	 letters	 according	 to	 a
pattern	or	ordering	the	words	by	part	of	speech).45	Lopes	shows	the	same	short
programming	 problem	 solved	 thirty-three	 ways,	 demonstrating	 how	 different
constraints	 affect	 program	 design—not	 just	 the	 usual	 constraints	 such	 as
minimizing	memory	usage	or	program	length,	but	issues	such	as	use	of	objects
or	how	deeply	the	code	is	layered.	Students,	especially	those	self-taught	in	high
school,	 may	 be	 unaware	 of	 how	 the	 constraints	 of	 their	 early	 programming
environments	 affect	 the	 style	 they	 use	 even	 when	 those	 constraints	 no	 longer
apply.	As	my	former	professor	Henry	Baird	put	it,	“It	is	hard	to	teach	someone
that	they	need	to	eat	a	thousand	meals	before	they	cook	one.”46
Harper,	 in	 his	 pitch	 for	 programming	 language	 theory	 in	 the	 ACM/IEEE

curriculum	recommendation,	continues:

“Little	 languages”	 arise	 frequently	 in	 software	 systems—command
languages,	scripting	languages,	configuration	files,	mark-up	languages,	and
so	 on.	 All	 too	 often	 the	 basic	 principles	 of	 programming	 languages	 are
neglected	 in	 their	 design,	 with	 all	 too	 familiar	 results.	 After	 all,	 the
argument	 goes,	 these	 are	 “just”	 scripting	 languages,	 or	 “just”	 mark-up
languages,	why	bother	too	much	about	them?	One	reason	is	that	what	starts
out	 as	 “just”	 an	 ad	 hoc	 little	 language	 often	 grows	 into	much	more	 than
that.47

The	 scripting	 languages	 that	 he	mentions	 are	 heavily	 used	 these	 days.	They
are	descendants	of	the	language	used	in	the	UNIX	command	line	environment,
usually	focused	on	manipulating	strings	easily;	the	original	use	was	for	throwing
together	 quick	 programs	 for	 small	 operations,	 such	 as	 renaming	 files	 in	 a
particular	 way.	 When	 writing	 scripts	 like	 this,	 it	 is	 useful	 to	 smooth	 over
differences	 in	 the	 data.	 For	 example,	 Perl,	 one	 of	 the	 best-known	 scripting
languages,	considers	 the	string	“0”	and	 the	number	0	 to	be	equal,	which	 is	not
true	 in	most	 languages;	 you	 have	 to	 explicitly	 convert	 the	 string	 to	 a	 number
first.	Similarly,	in	Perl	if	you	look	up	a	value	in	an	array	using	an	invalid	index,
it	won’t	 crash	 like	most	 languages	will,	 but	will	 instead	 return	 a	 special	 value



undef.	These	are	conveniences;	they	avoid	writing	a	line	or	two	of	extra	code—
to	 convert	 the	 string	 to	 a	 number	 or	 check	 first	 if	 your	 array	 index	 is	 valid—
which	as	always	programmers	are	keen	to	avoid.
This	is	fine	and	works	well	for	small	scripts	where	you	can	easily	verify	if	the

program	 is	 doing	 what	 you	 expected,	 but	 as	 you	 start	 to	 write	 longer	 Perl
programs,	 these	 clever	 ideas	 can	 cause	 bugs.	 If	 you	 write	 code	 to	 check	 an
element	in	an	array	(something	like	this)

if	($arr[$index])	{

the	IF	will	be	false	if	there	is	no	$index	element	in	$arr,	but	it	will	also	be	false
if	 there	 is	 such	an	 element	 and	 its	 value	 is	 the	number	0—and	 it	will	 even	be
false	 if	 there	 is	such	an	element	and	 its	value	 is	 the	string	“0.”	This	can	all	be
worked	 around	 and	 mitigated	 if	 you	 are	 careful,	 yet	 it	 can	 cause	 tricky	 bugs
when	it	misbehaves	in	the	guts	of	a	large	program	just	because	a	string	happens
to	contain	the	value	“0”;	at	some	point	the	cleverness	isn’t	so	clever	anymore.
And	 fans	 of	 Perl	 certainly	 do	 write	 long	 Perl	 programs;	 the	 language	 has

grown	over	 time	 to	be	a	complete	general-purpose	 language,	 including	support
for	 objects.	 One	 author	 called	 it	 the	 “Swiss	 Army	 chainsaw	 of	 scripting
languages,”	 which	 fairly	 accurately	 captures	 the	 power	 and	 danger	 of	 the
language,	and	also	the	fact	that	it	might	not	be	suitable	for	all	situations.48
Universities	generally	 remain	 silent	 on	 this	 issue	of	 language	 choice.	 If	 they

expose	students	to	Perl	at	all,	it	will	be	for	smaller	programs	that	are	typical	of
all	 university	 work,	 so	 the	 warts	 are	 unlikely	 to	 appear.	 Instead	 of	 giving
students	 a	 sense	 of	 the	 limits	 of	 Perl,	 they	 may	 have	 deputized	 another
programmer	 who	 thinks	 Perl	 is	 the	 perfect	 hammer	 and	 all	 programming
problems	are	nails.
Wirth,	 inventor	 of	 Pascal,	 concluded	 his	 2008	 “A	Brief	History	 of	 Software

Engineering”	retrospective	with	the	statement	that	academia

has	remained	inactive	and	complacent.	Not	only	has	research	in	languages
and	 design	 methodology	 lost	 its	 glamour	 and	 attractivity,	 but	 worse,	 the
tools	 common	 in	 industry	 have	 quietly	 been	 adopted	 without	 debate	 and
criticism.	Current	languages	may	be	inevitable	in	industry,	but	for	teaching,
for	 an	 orderly,	 structured,	 systematic,	 well-founded	 introduction	 they	 are
entirely	mistaken	and	obsolete.
This	 is	notably	 in	accord	with	 the	 trends	of	 the	21st	century:	We	 teach,

learn,	 and	perform	only	what	 is	 immediately	profitable,	what	 is	 requested
by	 students.	 In	 plain	 words:	 We	 focus	 on	 what	 sells.	 Universities	 have
traditionally	 been	 exempt	 from	 this	 commercial	 run.	 They	 were	 places



where	people	were	expected	to	ponder	about	what	matters	in	the	long	run.
They	 were	 spiritual	 and	 intellectual	 leaders,	 showing	 the	 path	 into	 the
future.	 In	 our	 field	 of	 computing,	 I	 am	 afraid,	 they	 have	 simply	 become
docile	followers.	They	appear	to	have	succumbed	to	the	trendy	yearning	for
continual	 innovation,	 and	 to	 have	 lost	 sight	 of	 the	 need	 for	 careful
craftsmanship.
If	we	can	 learn	anything	 from	 the	past,	 it	 is	 that	 computer	 science	 is	 in

essence	 a	 methodological	 subject.	 It	 is	 supposed	 to	 develop	 (teachable)
knowledge	and	techniques	that	are	generally	beneficial	in	a	wide	variety	of
applications.	This	does	not	mean	that	computer	science	should	drift	into	all
these	diverse	applications	and	lose	its	identity.	Software	engineering	would
be	 the	 primary	 beneficiary	 of	 a	 professional	 education	 in	 disciplined
programming.	 Among	 its	 tools	 languages	 figure	 in	 the	 forefront.	 A
language	 with	 appropriate	 constructs	 and	 structure,	 resting	 on	 clean
abstractions,	 is	 instrumental	 in	 building	 artefacts,	 and	 mandatory	 in
education.	 Homemade,	 artificial	 complexity	 has	 no	 place	 in	 them.	 And
finally:	It	must	be	a	pleasure	to	work	with	them,	because	they	enable	us	to
create	artefacts	that	we	can	show	and	be	proud	of.49

The	 trend	 I	 discussed	 earlier,	 of	 language	 design	moving	 from	 academia	 to
corporate	research	labs,	has	continued,	with	language	design	then	moving	from
corporate	research	labs	to	corporate	business	divisions,	becoming	an	explicit	part
of	 a	 company’s	 strategy	 by	 defining	 a	 platform	 for	 other	 programmers.	 Sun
came	out	with	Java	(although	Java	has	now	migrated	to	be	owned	by	a	combined
industry/user	 committee),	 Microsoft	 invented	 C#,	 and	 Apple,	 after	 some
acquisitions,	wound	up	owning	Objective-C,	which	it	more	recently	evolved	into
a	 language	 called	 Swift.	 There	 are	 advantages	 to	 this:	 when	 languages	 were
designed	by	professors	who	had	no	particular	interest	in	productizing	the	related
tools,	 they	often	had	many	different	 flavors	with	different	 features	and	syntax,
such	as	the	many	versions	of	BASIC	that	the	BASIC	Computer	Games	book	had
to	 accommodate.	Having	 a	 single	 company	 providing	 the	 reference	 version	 of
the	compiler	and	driving	 the	 language	 forward	does	avoid	 that	problem.	But	 it
also	moves	academia	further	away	from	industry	in	this	critical	area.
Given	 that	 academics	 no	 longer	 tend	 to	 be	 involved	 in	 language	 design,

perhaps	it	 is	not	surprising	that	they	are	less	interested	in	comparing	languages
than	 they	 once	 were.	 Certainly	 universities	 have	 a	 limited	 amount	 of	 time	 to
interact	with	students	and	a	lot	to	teach	them;	it	does	not	make	sense	for	schools
to	 be	 too	 hasty.	 The	 latest	 crop	 of	 languages	 should	 be	 given	 time	 to	 prove
themselves	before	 they	are	 taught	 in	 school.	Still,	 it	 is	 disappointing,	 as	Wirth



says,	that	schools	are	followers	in	this	important	area.
The	industry,	meanwhile,	has	done	a	lot	of	thinking	about	languages	in	recent

years.	But	it	has	done	even	more	thinking	about	something	else:	how	to	manage
software	projects,	the	topic	of	the	next	chapter.

Notes

1. Wikipedia,	“Code	Red	(Computer	Worm),”	accessed	January	9,	2018,
https://en.wikipedia.org/wiki/Code_Red_(computer_worm).

2. Worm	writers	frequently	look	at	what	code	is	fixed	in	a	patch	as	a	way	to
locate	exploitable	code,	since	not	everybody	applies	patches	right	away.

3. eWeek	Editors,	“Microsoft:	XP	Dramatically	More	Secure,”	October	22,
2001,	accessed	January	9,	2018,	http://www.eweek.com/news/microsoft-xp-
dramatically-more-secure.

4. Wikipedia,	“Timeline	of	Computer	Viruses	and	Worms,”	accessed	January	9,
2018,
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms.

5. The	amount	of	data	to	be	copied	is	usually	specified	by	a	variable,	whose
value	won’t	be	known	until	the	code	is	running,	but	with	clever	analysis	you
can	often	figure	out	what	range	of	values	the	variables	might	have.	The
primary	tool	is	Structured	Annotation	Language,	which	is	now	shipping	with
Microsoft’s	compiler	products.	Excuse	the	advertisement	for	Microsoft,	but	it
really	is	a	worthwhile	attempt	to	fix	the	problem,	and	for	everybody’s	code,
not	just	Microsoft’s.

6. Eric	Limer,	“How	Heartbleed	Works:	The	Code	behind	the	Internet’s
Security	Nightmare,”	accessed	January	9,	2018,	http://gizmodo.com/how-
heartbleed-works-the-code-behind-the-internets-se-1561341209.

7. Nadine	Kano,	Developing	International	Software	for	Windows	95	and
Windows	NT	(Redmond,	WA:	Microsoft	Press,	1995),	488.

8. It	was	also	faster	to	display	characters	than	graphics.	Here’s	a	fun	fact:	if	you
did	have	a	graphics	display,	the	actual	glyphs	for	the	upper	128	characters
displayed	by	MS-DOS	were	stored	in	memory	and	could	be	overwritten,	so
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that	any	given	character	in	the	128	to	255	range	could	show	any	arbitrary
arrangement	of	dots	that	fit	in	an	8	by	8	grid.	The	game	Microsoft	Decathlon,
which	came	out	in	1982,	used	this	trick	to	display	“graphics”	of	athletes	using
characters	instead	of	full	graphics;	it	stored	every	possible	body	part	needed
in	one	of	the	upper	128	characters.

9. Kano,	Developing	International	Software,	496.

10. This	chart	and	the	next	one	were	produced	using	a	BASIC	program	I	wrote
to	print	them	out,	running	on	the	amazing	PC-BASIC	interpreter	written	by
Rob	Hagemans.	“PC-BASIC,”	accessed	January	9,	2018,	http://www.pc-
basic.org.

11. Kano,	Developing	International	Software.	In	addition	to	going	into	detail	on
how	this	all	works,	the	book	includes	many	pages	of	sumptuous	character
glyphs	for	you	to	gaze	at.

12. Ibid.,	464.	This	is	the	Windows	equivalent	of	the	MS-DOS	Latin	US	code
page,	which	was	called	Latin	1	or	ANSI.	It	removes	the	line-drawing
characters	and	Greek	letters,	adds	more	symbols	(such	as	opening	and	closing
single	and	double	quotes,	which	were	absent	in	MS-DOS,	so	programs	could
only	use	the	generic	single	and	double	quotes	that	exist	in	standard	ASCII),
and	has	a	more	complete	collection	of	accented	letters.	Not	the	Turkish	I,
though;	that	still	required	a	Turkish	code	page.

13. Unicode	has	different	encodings,	and	although	early	versions	of	Windows
NT	really	did	only	support	exactly	2	bytes	per	character	in	all	cases	(an
encoding	known	as	UCS-2),	Unicode	eventually	grew	to	encompass	more
than	the	65,536	characters	that	could	fit	in	even	16	bits,	so	Windows	switched
to	an	encoding	called	UTF-16,	in	which	most	characters	were	encoded	in	2
bytes,	but	certain	characters	were	encoded	in	4	bytes.	I	will	ignore	it	and	treat
Unicode	as	if	every	character	is	2	bytes,	which	is	what	the	code	in	question
does.	In	particular,	in	UTF-16	the	characters	encoded	in	4	bytes	were	set	up
so	that	neither	of	the	2-byte	values	(known	as	the	high	and	low	surrogate)
was	a	valid	2-byte	character—so	since	the	code	I	am	discussing	here	was
mostly	copying	strings	around,	or	might	occasionally	be	searching	for	a
common	character	like	a	period	or	backslash	that	existed	in	the	lower	half	of
the	original	ASCII	table	(whose	encoding	in	UTF-16	was	equal	to	the	16-bit
version	of	that	ASCII	value	and	therefore	always	stored	in	2	bytes,	not	4),	it
would	work	fine,	completely	oblivious	to	the	UCS-2	versus	UTF-16
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difference	(as	wcslen()	also	was).

14. Unicode,	Inc.,	“Full	Emoji	List	v5.0,”	accessed	January	10,	2018,
https://unicode.org/emoji/charts/full-emoji-list.html.	Since	you	asked,	the
“pile	of	poo”	emoji	is	assigned	the	value	1F4A9	(that	is,	a	base	16,	aka
hexadecimal,	number,	equal	to	128,169	in	decimal).	C#	is	also	Unicode	only
(it	uses	UTF-16	encoding),	and	hence	the	“Turkish	I”	problem	discussed	in
chapter	3	can	manifest	itself.	The	Turkish	I	problem	with	upper-and
lowercasing	of	strings	is	not	related	to	being	able	to	fit	the	characters	in	the
Unicode	character	set;	it’s	just	about	the	algorithm	used	to	convert	uppercase
to	lowercase.	In	the	days	of	ASCII,	the	mapping	was	set	up	for	the	26	English
letters,	so	the	lowercase	version	of	any	letter	was	always	32	above	the
uppercase	letter—for	example,	A	was	65	and	a	was	97—and	conversion
between	cases	was	a	simple	mathematical	operation.	In	the	world	of	code
pages	or	Unicode,	it	has	to	be	done	by	having	a	table	with	explicit	mapping
for	every	character,	and	which	table	you	use	depends	on	the	locale	the
computer	is	set	up	to	use;	for	uppercasing,	the	English	mapping	will	map	i	to
I,	and	the	Turkish	mapping	will	map	i	to	İ.

15. Some	people	feel	the	way	it	was	integrated	into	C/C++	on	Windows	was
poorly	done,	though,	because	while	it	doesn’t	matter	for	the	low-level	code
discussed	here,	for	user	interface	(UI)	code	the	fact	that	UTF-16	can
sometimes	encode	a	character	in	4	byes	instead	of	2	can	be	important.	See
“UTF-8	Everywhere,”	accessed	January	10,	2018,	http://utf8everywhere.org/
for	details.

16. Especially	given	that	in	the	encoding	system	known	as	multibyte	characters,
another	system	used	for	encoding	ideographic	alphabets	in	which	characters
may	be	encoded	in	1,	2,	or	3	bytes,	the	corresponding	API	mbslen()	had
already	been	defined	to	return	a	character	count,	not	a	byte	count.	Multibyte
characters,	in	a	simplified	subset	known	as	double-byte	characters,	were	the
source	of	the	notorious	Microsoft	interview-coding	question	“Kanji
backspace.”	Having	the	solution	published	in	a	book	didn’t	dissuade
Microsoft	interviewers	from	continuing	to	ask	it.	Kano,	Developing
International	Software,	70.

17. Specifically,	it	is	not	worth	explaining	because	I’m	not	actually	sure	why	it
is	there,	although	it	is	related	to	a	fashion	in	vogue	at	the	time	of	appending
_t	to	type-related	constructs.	In	writing	this	footnote,	I	am	subscribing	to	the
Internet	theory,	“If	you	want	somebody	to	explain	something	to	you,	then
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give	a	wrong	explanation	in	public.”	Also,	on	some	systems,	wchar_t	is	32
bits,	not	16	bits—a	fact	that	is	not	relevant	to	the	discussion	here.

18. You	could	also	write	strlen(other_sb_buffer)	<	sizeof(sb_buffer),
which	is	what	people	likely	wrote,	since	avoiding	the	subtraction	of	1	makes
the	code	slightly	faster,	but	I	find	that	conceptually	a	bit	harder	to	read.	These
days,	the	compiler	likely	notices	the	combination	of	<=	and	–	1,	and	converts
it	to	the	faster	code	anyway.

19. Technically	it	is	cleaner	to	divide	by	sizeof(wc_buffer[0])	rather	than	by
sizeof(wchar_t),	in	case	the	type	changes,	but	in	this	instance	that	is
unlikely	to	matter;	it	is	more	important	in	code	that	is	meant	to	compile,
through	a	few	tricks,	for	both	single-and	double-byte	characters,	but
Windows	internally	was	entirely	double	byte.	Microsoft’s	C	compiler	also
has	a	pseudo-API	called	_countof(),	which	will	count	array	elements
properly,	but	that	is	not	standard	in	other	C	compilers.

20. Microsoft	did	define	such	a	type,	known	as	BSTR,	but	it	was	more
complicated	to	use,	and	since	it	had	to	interoperate	with	various	APIs	that
expected	plain	0-terminated	strings,	it	could	not	be	required	everywhere.
Microsoft,	“BSTR,”	accessed	January	10,	2018,
https://msdn.microsoft.com/en-
us/library/windows/desktop/ms221069(v=vs.85).aspx.

21. This	example	required	overloading	the	=	operator	as	well.	Operator
overloading	originally	appeared	in	the	language	Algol	68,	which	allowed
operators	to	be	named	using	any	combination	of	letters	and	symbols.	A	few
of	the	members	of	the	committee	that	designed	Algol	68,	including	Dijkstra
and	Hoare,	filed	a	dissenting	opinion	stating	that	the	language	was	too
complicated,	although	I	don’t	know	if	operator	overloading	was	the	straw	that
broke	the	camel’s	back.	Edsger	W.	Dijkstra,	Fraser	Duncan,	Jan	Garwick,	C.
A.	R.	Hoare,	Brian	Randell,	Gerhard	Seegmueller,	Wlad	Turski,	and	Michael
Woodger,	“Minority	Report,”	accessed	January	5,	2018,
http://archive.computerhistory.org/resources/text/algol/algol_bulletin/A31/P111.HTM.

22. They	specify,	respectively,	the	access	mode,	sharing	mode,	security
attributes,	creation	disposition	(what	to	do	if	the	file	doesn’t	exist),	flags	and
attributes	(various	options	such	as	whether	the	file	should	be	encrypted	or
read	only),	and	template	file	(another	file	whose	attributes	should	be	reused
for	this	file).	Microsoft,	“CreateFile	Function,”	accessed	January	10,	2018,
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https://msdn.microsoft.com/en-
us/library/windows/desktop/aa363858(v=vs.85).aspx.

23. A	few	points	for	those	who	are	learning	Windows	programming	from	my
examples.	For	one,	the	reason	that	the	operation	is	split	into	three—open,
write,	and	close	versus	having	WriteFile()	take	the	filename	as	a	parameter
and	do	the	entire	operation	inside	one	API	call—is	mostly	for	performance,	in
that	it	is	faster	to	open	the	file	once	and	then	do	multiple	writes	to	the	open
handle,	just	as	if	you	are	going	to	insert	multiple	pages	into	a	file	folder,	it	is
easier	to	find	it	in	the	filing	cabinet	once	and	then	leave	it	on	your	desk	while
you	insert	each	page,	as	opposed	to	finding	it	in	the	filing	cabinet	(the
CreateFile())	and	then	returning	it	to	the	filing	cabinet	(the
CloseHandle())	around	each	page	you	insert.	Second,	the	CloseHandle()	is
not	strictly	needed	right	here,	in	that	Windows	will	close	open	handles	when
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search	the	Internet	you	will	see	it	explained	with	the	opaque	message,	“The
storage	control	blocks	were	destroyed.”	Private	Facebook	discussion	with	a
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lurking	in	the	file	Error.h	(which	states	that	it	contains	DOS	error	codes)	in	a
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9 
Agile

Millions	of	years	ago,	powerful	geologic	 forces	 in	northern	Utah	converged	 to
uplift	the	Wasatch	Range	and	create	a	160-mile	north-south	mountain	chain	that
provides	a	dramatic	backdrop	to	what	is	now	Salt	Lake	City.1
In	February	2001,	another	convergence	occurred	 in	 the	area,	when	seventeen

men	met	at	the	Snowbird	Resort	to	discuss	a	common	enemy.2
Who	were	these	men?	They	were	an	assortment	of	Americans,	Canadians,	and

Britons,	plus	one	Dutchman.	The	group	included	Dave	Thomas,	coauthor	of	the
influential	1999	book	The	Pragmatic	Programmer;	Alistair	Cockburn,	author	of
Writing	 Effective	 Use	 Cases;	 Martin	 Fowler,	 author	 of	 UML	 Distilled;	 Kent
Beck,	 inventor	 of	 extreme	 programming	 (and	 unit	 testing);	 and	 Ward
Cunningham,	who	invented	the	wiki.	These	are	all	various	software	techniques
that	 could	 be	 characterized	 as	 lightweight	 (except	 for	 the	 wiki,	 which	 is	 just
cool).
Their	 enemy	 was	 software	 development	 methodologies	 with	 names	 like

Rational	 Unified	 Process	 and	 Capability	Maturity	Model,	 which	were	 gaining
traction,	 for	 lack	 of	 any	 opposition,	 as	 potential	 best	 practices	 for	 software
development	 (or	 at	 least,	 as	 the	 best	 practices	 for	 managing	 software
development).	 They	 could	 be	 termed	 heavyweight—lots	 of	 writing	 specs	 up
front	 and	 defining	 specific	 milestones	 to	 be	 checked	 off	 during	 the	 process.
Despite	their	lofty	names,	they	weren’t	making	software	development	any	more
predictable.
Microsoft,	certainly,	had	been	beset	by	extremely	public	delays	in	the	previous

decade.	The	first	version	of	Windows	NT,	on	which	I	 labored	after	 joining	the
company	in	1990,	was	initially	estimated	to	take	two	and	a	half	years	but	wound
up	 taking	 nearly	 five.3	 Windows	 95,	 which	 shipped	 to	 customers	 in	 August
1995,	was	originally	planned	to	be	Windows	93.
All	 seventeen	men	 at	 the	meeting	 in	Utah	had	what	 they	 considered	 to	 be	 a

better	 idea,	 although	 they	didn’t	all	have	 the	same	better	 idea.	There	had	been
cross-pollination,	 and	many	of	 them	had	worked	or	written	 together	at	various



times,	but	they	weren’t	all	pushing	the	same	idea	so	much	as	pushing	against	the
same	 set	 of	 them.	 Some	 of	 the	 seventeen	 were	 talking	 about	 better	 ways	 to
specify	software,	some	about	better	ways	to	produce	time	estimates	for	it,	some
about	better	ways	 to	design	 it,	some	about	better	ways	 to	actually	write	 it,	and
others	 about	 better	 ways	 to	 coordinate	 work.	 But	 they	 recognized	 that	 as
seventeen	separate	outposts,	 they	were	not	making	much	progress	 in	 the	battle
against	 heavyweight	 processes,	 and	 they	 decided	 that	 combining	 forces	would
give	them	more	leverage.
During	that	2001	meeting	in	Utah,	the	group	adopted	the	word	agile	 to	unify

their	 efforts.	 The	 term	 originated	with	 Fowler	 and	 has	 a	 nice	 ring	 to	 it.	Agile
sounds	better	than	whatever	slow,	stodgy	term	it	is	the	opposite	of,	and	certainly
a	lot	better	than	lightweight;	in	the	movie	The	Karate	Kid,	Ralph	Macchio	starts
out	lightweight,	but	ends	up	agile	and	overcomes	his	bullies.
The	 main	 output	 of	 the	 Snowbird	 gathering	 was	 the	 “Manifesto	 for	 Agile

Software	Development”:

We	 are	 uncovering	 better	 ways	 of	 developing	 software	 by	 doing	 it	 and
helping	others	do	it.	Through	this	work	we	have	come	to	value:

Individuals	and	interactions	over	processes	and	tools

Working	software	over	comprehensive	documentation

Customer	collaboration	over	contract	negotiation

Responding	to	change	over	following	a	plan

That	is,	while	there	is	value	in	the	items	on	the	right,	we	value	the	items	on
the	left	more.4

Agile	is	more	of	a	branding	exercise	than	any	single	approach,	so	a	software
development	team	announcing	“we	are	Agile”	doesn’t	mean	much;	it	primarily
signifies	 being	 au	 courant	 with	 progressive	 software	 development.	 Agile	 has
oozed	out	 into	 the	world	beyond	software.	My	brother	and	sister,	who	work	in
old,	 well-respected,	 and	 time-proven	 fields	 (transportation	 engineering	 and
scientific	publishing,	respectively),	have	over	the	past	decade	been	hearing	about
Agile	methodology	and	how	it	could	help	them.
The	most	well-known	technique	under	the	Agile	umbrella	is	known	as	Scrum.

The	 term	 comes	 from	 the	 scrum	 in	 rugby,	 where	 two	 teams	 link	 arms	 at	 the
beginning	 of	 the	 match	 and	 run	 into	 each	 other	 in	 an	 attempt	 to	 get	 the	 ball
(visualize	 “link	 arms,”	 not	 “run	 into	 each	 other”).	 Scrum	 had	 been	 kicking
around	 for	 about	 a	decade	before	 the	Agile	Manifesto	was	written,	 after	being



originally	 presented	 in	 a	 paper	 by	 Ken	 Schwaber	 and	 Jeff	 Sutherland	 at
OOPSLA	1995.5
At	 its	 heart,	 Scrum	 is	 the	 Agile	 Manifesto	 mapped	 onto	 software	 project

management.	Programmers	working	on	a	Scrum	team	meet	briefly	every	day	to
provide	 status	 and	 ask	 for	 help	 if	 needed,	 which	 precludes	 the	 need	 for	 any
formal	 system	 to	 track	 dependencies	 between	 their	 work	 (“individuals	 and
interactions	 over	 processes	 and	 tools”);	 aim	 to	 deliver	 new	 features	 in	 small
increments	 rather	 than	 pieces	 of	 code	 that	 will	 only	 work	 once	 they	 are	 all
completed	 and	 stitched	 together	 (“working	 software	 over	 comprehensive
documentation”);	 rely	 on	 customer	 feedback	 on	 the	 delivered	 increments	 to
figure	out	what	 to	do	next	as	opposed	to	planning	a	 larger	deliverable	up	front
(“customer	 collaboration	 over	 contract	 negotiation”);	 and	 view	 changing
customer	requirements	as	a	positive	sign	that	people	are	using	their	stuff,	rather
than	an	excuse	to	complain	(“responding	to	change	over	following	a	plan”).
Scrum	is	about	how	to	manage	software	projects,	not	about	how	to	write	 the

code.	This	is	not	a	secret;	the	“Scrum	Guide”	website	states,	“Scrum	is	a	process
framework	 that	 has	 been	 used	 to	manage	 complex	 product	 development	 since
the	 early	 1990s.	 Scrum	 is	 not	 a	 process	 or	 a	 technique	 for	 building	 products;
rather,	 it	 is	 a	 framework	within	which	 you	 can	 employ	 various	 processes	 and
techniques.”6	In	fact,	one	key	assertion	behind	Scrum	is	that	there	exists	no	solid
process	or	 technique	 to	develop	 software,	but	 that’s	OK;	as	Fowler	writes,	 “A
process	 can	 be	 controlled	 even	 if	 it	 can’t	 be	 defined.”7	 This	 is	 certainly	 in
contrast	to	what	Mills	wrote	a	generation	earlier:	“My	approach	to	software	has
been	 that	of	 a	 study	 in	management,	dealing	with	 a	very	difficult	 and	creative
process.	The	 first	 step	 in	 such	an	approach	 is	 to	discover	what	 is	 teachable,	 in
order	to	be	able	to	manage	it.	If	it	cannot	be	taught,	it	cannot	be	managed	as	an
organized,	coordinated	activity.”8
It	 is	often	stated	that	Scrum	replaced	a	software	development	process	known

as	waterfall.	Brooks,	in	his	famous	essay	“The	Mythical	Man-Month,”	gives	the
following	advice	on	splitting	up	time	within	a	project:	“⅓	planning,	 	coding,
¼	 component	 test	 and	 early	 system	 test,	¼	 system	 test	 [once]	 all	 components
[are]	 in	 hand.”	His	 goal	was	 to	 prod	managers	 to	 allow	more	 time	 for	 testing
(and	 to	 a	 lesser	 extent,	 planning):	 “In	 examining	 conventionally-scheduled
projects,	 I	 have	 found	 that	 few	 allowed	 one-half	 of	 the	 projected	 schedule	 for
testing,	 but	 that	 most	 did	 indeed	 spend	 half	 of	 the	 actual	 schedule	 for	 that
purpose.	Many	of	these	were	on	schedule	until	and	except	in	system	testing.”9	In
other	words,	testing	will	extract	its	pound	of	flesh,	whether	you	budget	adequate
schedule	time	or	not;	if	you	don’t,	then	the	project	will	slip.



What	was	implicit	in	that	guidance	was	the	one-way	flow	of	the	development
process:	 first	you	plan,	 then	you	code,	 then	you	test	each	component,	and	then
you	test	the	whole	thing	together.	This	is	where	the	word	waterfall	comes	from,
since	the	process	is	like	water	going	over	a	fall.	You	don’t	reopen	the	planning
process	after	coding	has	started,	nor	do	you	begin	coding	before	the	planning	is
complete.	And	 you	 don’t	 start	 testing	 until	 you	 reach	 “code	 complete”	 (fixing
bugs	found	in	testing	can	involve	writing	code,	but	the	idea	is	to	confine	yourself
to	 fixing	bugs	as	opposed	 to	making	enhancements;	 in	Knuth’s	 framing	of	 the
distinction,	you	should	always	feel	guilty,	never	virtuous).	Brooks	was	arguing
for	changing	 the	division	of	 time	between	 the	phases,	but	not	 for	changing	 the
unidirectional	transit	through	them.
In	1995,	Brooks	came	out	with	a	twenty-year	anniversary	edition	of	his	book

The	Mythical	Man-Month,	 in	 which	 the	 original	 essay	 of	 the	 same	 name	 had
appeared.	 He	 included	 a	 new	 essay	 titled	 “The	Mythical	Man-Month	 after	 20
Years,”	 which	 states	 that	 “the	 waterfall	 model	 is	 wrong.”10	 Brooks	 was
responding	directly	to	his	own	original	essay	“Plan	to	Throw	One	Away,”	which
claimed	that	the	first	version	of	any	system	is	going	to	be	terrible,	“too	slow,	too
big,	awkward	to	use,	or	all	three,”	and	“the	only	question	is	whether	to	plan	in
advance	 to	 build	 a	 throwaway,	 or	 to	 promise	 to	 deliver	 the	 throwaway	 to
customers”	(as	he	puts	it,	“Seen	this	way,	the	answer	is	much	clearer”).11	Brooks
had	originally	advocated	building	a	“pilot	system,”	that	first	terrible	system,	but
never	 delivering	 it	 to	 your	 customer	 and	 instead	 starting	 over	 with	 the
knowledge	you	have	gained.
I	never	particularly	liked	this	advice;	it	is	un-engineer-y	to	not	be	able	to	build

software	that	is	usable	the	first	time.	Brooks	did	state	that	chemical	engineering
plants	 are	 built	 this	 way,	 with	 a	 smaller	 plant	 used	 to	 test	 a	 process,	 but
presumably	 this	 is	only	done	once	 for	 a	given	chemical	process,	not	 for	 every
plant	that	uses	the	same	process.	Long	bridge	designs	are	based	on	information
gathered	 from	 building	 shorter	 bridges,	 yet	 not	 every	 long	 bridge	 needs	 a
specific	shorter	version	constructed	to	prove	that	the	real	one	won’t	fall	down.
So	I	was	glad	to	see	that	Brooks,	with	twenty	years	of	hindsight,	had	changed

his	mind	about	“Plan	to	Throw	One	Away”	(this	was	retroactive	gladness	years
later;	like	most	programmers,	I	wasn’t	reading	his	books	in	the	1990s,	a	period
when	 Microsoft	 was	 heedlessly	 using	 a	 waterfall-ish	 approach).	 His	 main
complaint	 was	 that	 his	 earlier	 advice	 accepted	 the	 waterfall	 model	 as	 fact:
“Chapter	11	[the	‘Plan	to	Throw	One	Away’	essay]	is	not	the	only	one	tainted	by
the	 sequential	 waterfall	 model;	 it	 runs	 through	 the	 book,	 beginning	 with	 the
scheduling	rule	in	Chapter	2	[the	‘Mythical	Man-Month’	essay].”12



“The	 basic	 fallacy	 of	 the	 waterfall	 model	 is	 that	 it	 assumes	 a	 project	 goes
through	the	process	once,”	Brooks	continues,

that	the	architecture	is	excellent	and	easy	to	use,	the	implementation	design
is	sound,	and	the	realization	is	fixable	as	testing	proceeds.	Another	way	of
saying	it	is	that	the	waterfall	model	assumes	the	mistakes	will	all	be	in	the
realization,	 and	 thus	 that	 their	 repair	 can	 be	 smoothly	 interspersed	 with
component	and	system	testing.
“Plan	to	throw	one	away”	does	indeed	attack	this	fallacy	head	on.	It	is	not

the	diagnosis	 that	 is	wrong;	 it	 is	 the	remedy.	…	The	waterfall	model	puts
system	test[ing],	and	therefore	by	implication	user	testing,	at	the	end	of	the
construction	process.	Thus	one	can	find	impossible	awkwardness	for	users,
or	 unacceptable	 performance,	 or	 dangerous	 susceptibility	 to	 user	 error	 or
malice,	only	after	investing	in	full	construction.13

Rather	than	mimicking	the	smooth	flow	of	water	over	a	waterfall,	the	process
was	 beginning	 to	 look	 more	 like	 riding	 a	 barrel	 over	 one:	 moments	 of	 sheer
terror	followed	by	getting	crushed	in	the	churn	at	the	end.
Brooks	mentions	that	 the	waterfall	model	was	enshrined	in	a	US	Department

of	Defense	specification	for	all	military	software.	Back	in	the	realm	of	users	who
pay	for	their	own	software,	he	recommends,	“implementers	may	well	undertake
to	 build	 a	 vertical	 slice	 of	 a	 product,	 in	 which	 a	 very	 limited	 function	 set	 is
constructed	 in	 full,	 so	 as	 to	 let	 early	 sunlight	 into	 places	 where	 performance
snakes	may	 lurk.”14	 It’s	 not	 just	 performance	 snakes;	 it’s	 any	 issues	 the	 users
might	 encounter.	 If	 you	know	your	 software	will	 need	a	database	 layer,	 rather
than	 start	 by	 implementing	 all	 the	 functionality	 you	 think	 you	will	 eventually
require,	you	write	the	minimal	database	support	needed	for	a	single	user-visible
feature,	along	with	the	minimal	support	needed	in	any	other	layers,	and	present
that	to	the	customer;	that	is	the	ultimate	way	you	will	determine	if	your	database
is	 designed	 properly.	 Then	 you	 go	 back	 and	 work	 on	 another	 feature:	 lather,
rinse,	repeat.
It’s	 not	 just	 the	 users	 who	 prefer	 vertical	 slices;	 it’s	 also	 the	 programmers.

Brooks	 remarks	 that	 at	 one	 point	 during	 his	 tenure	 at	 the	University	 of	North
Carolina,	“I	switched	to	teaching	incremental	development.	I	was	stunned	by	the
electrifying	 effect	 on	 team	morale	 of	 that	 first	 picture	 on	 the	 screen,	 that	 first
running	system.”15
Scrum	 focuses	 aggressively	 on	 delivering	 new	 functionality	 to	 the	 user	 as

often	as	possible.	The	 timeline	 for	delivery	 is	known	as	a	sprint,	 and	 typically
lasts	two	to	four	weeks.	Around	the	sprint,	Scrum	has	certain	artifacts,	including



the	product	backlog	(a	list	of	all	work	that	could	be	considered	for	future	sprints)
and	 burndown	 chart	 (which	 tracks	 the	 total	 estimated	 work	 remaining	 in	 this
sprint,	hopefully	hitting	zero	at	the	end	of	the	sprint—with	the	caveat	that	only
items	 that	 are	 entirely	 complete	 can	 have	 their	 hours	 crossed	 off).	 At	 the
beginning	 of	 each	 sprint,	 the	 team	 selects	 what	 it	 feels	 are	 the	 right	 product
backlog	items	(right	in	terms	of	both	“what	the	customer	wants	next”	and	“what
we	think	will	fit	in	one	sprint”)	and	then	spends	the	rest	of	the	sprint	working	to
deliver	those	items.	The	term	sprint	is	frequently	misinterpreted	to	imply	frenetic
activity	 that	 leaves	 you	burned	out,	 but	 the	 goal	 is	 that	 teams	 can	work	 sprint
after	 sprint	 without	 breaks.	 A	 sprint	 should	 feel	 more	 like	 one	 mile	 of	 a
marathon,	not	a	mad	dash	to	the	finish	line.
Since	 Brooks	 was	 writing	 about	 replacing	 the	 waterfall	 model	 with	 the

incremental	 delivery	 of	 vertical	 slices	 in	 the	 same	 year	 that	 Scrum	was	 being
presented	 at	 OOPSLA,	 it	 might	 appear	 that	 Schwaber’s	 delineation	 of	 Scrum
represented	the	recording	of	an	already-emerged	consensus	about	how	to	move
away	 from	 the	waterfall	model	 of	 development.	Actually,	 Scrum	was	 a	much
more	aggressive	departure.
Schwaber’s	paper	was	presented	as	part	of	a	larger	OOPSLA	workshop	titled

“Business	Object	Design	 and	 Implementation,”	where	 a	 “business	 object”	 is	 a
reusable	 software	 component	 that	 can	 be	 knitted	 together	 with	 other	 business
objects	 to	 create	 applications—the	 familiar	 object-oriented	 dream.	 The	 Scrum
paper	doesn’t	have	anything	particular	to	do	with	this.	The	summary	paper	from
the	 entire	 business	 object	 workshop	merely	 states,	 “New	 systems	will	 require
that	loosely	coupled,	reusable,	plug	compatible	components	be	constructed	using
a	 tightly	 coupled	 development	 method	 that	 combines	 business	 process
reengineering,	analysis,	design,	implementation,	and	reusable	component	market
delivery	systems	similar	to	today’s	custom	IC	chip	industry.”	Yet	it	also	includes
the	following	summary	of	the	Scrum	paper:	“The	stated,	accepted	philosophy	for
systems	development	 is	 that	systems	development	process	is	a	well	understood
approach	that	can	be	planned,	estimated,	and	successfully	completed.	This	is	an
incorrect	basis.”16	Essentially,	Schwaber	was	saying	that	the	premise	of	the	rest
of	 the	 workshop	 was	 faulty;	 there	 was	 no	 “tightly	 coupled	 development
method,”	nor	will	there	ever	be	one.
The	summary	continues,

SCRUM	states	 that	 the	 systems	 development	 process	 is	 an	 unpredictable,
complicated	 process	 that	 can	 only	 be	 roughly	 described	 as	 an	 overall
progression.	SCRUM	defines	 the	 systems	development	process	as	a	 loose
set	of	activities	 that	combines	known,	workable	 tools	and	 techniques	with



the	best	 that	a	development	 team	can	devise	 to	build	systems.	Since	 these
activities	 are	 loose,	 controls	 to	manage	 the	 process	 and	 inherent	 risk	 are
used.17

The	mid-1990s,	when	Brooks	wrote	his	updated	essay	and	Scrum	was	getting
started,	was	also	 the	 time	 that	 the	book	Microsoft	Secrets	 came	out.	The	book
lays	 out	 various	 principles,	 as	 reported	 by	Microsoft	 employees,	 for	 how	 the
company	 handles	 development,	 including	 “work	 in	 parallel	 teams,	 but	 ‘synch
up’	and	debug	daily,”	“always	have	a	product	you	can	 theoretically	 ship,”	and
“continuously	test	the	product	as	you	build	it.”18	This	sounds	marvelously	Agile,
but	having	worked	on	a	large	Microsoft	product	in	the	early	1990s,	I	know	that
the	techniques	used	were	a	far	cry	from	what	Scrum	was	advocating.	Brooks,	in
his	 1995	 update,	 is	 impressed	 at	 learning	 that	 Microsoft	 builds	 and	 tests	 its
software	every	night.19	The	reality	is	that	while	we	did	ensure	that	the	software
built	every	night—meaning	that	it	produced	a	compiled	program	without	hitting
any	 errors—and	 did	 do	 minimal	 testing	 each	 day,	 it	 was	 a	 product	 we	 could
“theoretically	ship”	only	in	the	most	theoretical	meaning	of	the	word	theoretical.
Our	software	was	developed	in	milestones	 lasting	six	to	nine	months	each,	and
although	we	did	not	follow	a	strict	waterfall	process	during	each	milestone,	we
definitely	 back-loaded	 the	 testing,	 and	 only	 toward	 the	 end	 of	 any	 given
milestone	was	the	software	reliable	enough	to	release	externally.	Effectively	our
“sprint”	 duration,	 and	 the	 timeframe	 for	 the	 “slices”	we	 delivered,	 was	 six	 to
nine	months—much	 longer	 than	 the	 two	 to	 four	weeks	 that	 Scrum	 advocates.
Even	 equating	 the	 milestones	 with	 “long	 sprints”	 is	 wrong,	 because	 Scrum
explicitly	 contraindicates	 the	 “mini	waterfall”	 approach	 to	 a	 sprint,	where	 you
might	split	your	four	weeks	into	a	week	of	planning,	two	weeks	of	coding,	and
one	week	of	 testing.	Every	 feature	 delivered	during	 a	 sprint	 is	 supposed	 to	 be
ready	to	ship	to	a	customer	on	the	day	it	is	completed.
So	while	many	companies	had	moved	away	from	the	pure	waterfall	model	to

something	 a	 bit	 more	 iterative	 (or	 never	 used	 pure	 waterfall	 to	 begin	 with),
Scrum	made	for	a	dramatic	acceleration	of	that	movement.
Even	more	 dramatic	 is	 the	 second-best-known	Agile	methodology,	 Extreme

Programming	(known	as	XP).	Invented	by	Beck	(who	had	earlier	originated	unit
testing	 in	 its	 current	 form),	XP	 is	based	on	a	 set	of	 rules	around	 the	planning,
managing,	designing,	coding,	and	testing	of	software.20	Planning	and	managing
are	 Scrum-like,	 with	 daily	 meetings	 and	 a	 focus	 on	 frequent	 small	 releases,
although	 XP	 is	 more	 prescriptive	 in	 some	 cases.	 The	 guidance	 on	 the
design/coding/testing	 phases	 gets	 into	 actual	 specifics	 of	 how	 the	 software
should	be	engineered,	which	Scrum	ignores.	The	key	to	the	approach	is	writing



unit	tests,	and	ensuring	that	those	unit	 tests	are	run	often,	and	writing	new	unit
tests	whenever	new	code	is	added	or	a	bug	is	found	that	snuck	past	the	current
set	of	unit	tests.
XP	also	mandates	 the	 somewhat-controversial	 practice	of	pair	 programming,

in	 which	 two	 programmers	 work	 together	 at	 all	 times,	 sharing	 one	 computer;
typically	 one	 is	 coding	 while	 the	 other	 is	 watching.	 The	 idea	 here	 is,	 quite
literally,	 that	 two	heads	are	better	 than	one;	 the	second	programmer	provides	a
continuous	code	review	of	what	the	first	programmer	is	doing	(having	a	second
programmer	watching	also	discourages	unnecessary	web-based	diversions	while
you	are	supposed	to	be	working,	which	no	doubt	has	an	effect	on	productivity).
XP	does	attempt	to	avoid	some	of	 the	“religious”	arguments	about	coding.	It

mandates	 that	 a	 coding	 convention	 be	 written	 down	 and	 adhered	 to—without
specifying	 a	particular	 coding	 convention,	 but	 at	 least	 ensuring	 that	 arguments
over	 proper	 coding	 style	 will	 happen	 once,	 be	 resolved	 in	 some	 way,	 and
thereafter	not	brought	up	again	(tabs	or	spaces,	just	pick	one	and	go	with	it).	On
the	 question	 of	making	 your	 code	 flexible	 to	 anticipate	 future	 changes,	XP	 is
clear:	 don’t	 do	 it.	Write	 the	 code	 for	 the	 requirements	 of	 the	 feature	 you	 are
working	on	now,	 and	 if	 the	 requirements	 change,	 because	 of	 a	 new	 feature	 or
user	 feedback,	modify	 the	code	 then.	Since	 the	code	will	have	good	unit	 tests,
you	 can	make	 these	 future	modifications	 without	 worrying	 about	 accidentally
breaking	something	because	your	understanding	of	the	code	is	not	fresh	in	your
mind.	And	until	you	have	new	requirements,	you	won’t	know	what	changes	are
needed,	so	 it	 is	 foolish	 to	attempt	 to	anticipate	 them	now.	Any	opinions	 to	 the
contrary	 can	 be	 dismissed	 with	 the	 mantra	 “You	 Ain’t	 Gonna	 Need	 It”
(YAGNI).
Scrum	and	XP	are	designed	 for	 small	 teams;	 the	daily	meeting	doesn’t	 scale

well	 beyond	 ten	 to	 fifteen	 people	 because	 the	 chance	 of	 any	 one	 programmer
caring	about	another	programmer’s	status	decreases	as	the	number	of	attendees
rises.	Schwaber	and	Sutherland’s	original	1995	OOPSLA	paper	 starts	out	with
an	axiom:	“Small	teams	of	competent	individuals,	working	within	a	constrained
space	 that	 they	 own	 and	 control,	 will	 significantly	 outperform	 larger
development	groups.”21	It	is	hard	to	argue	with	this	if	performance	is	based	on	a
metric	 like	“code	delivered	per	person”;	 it	 is	generally	understood,	 in	areas	far
beyond	software	engineering,	that	the	communication	and	coordination	overhead
will	 increase	 as	 you	 work	 on	 larger	 projects.	 Nonetheless,	 it	 is	 misleading	 to
imply	that	small	teams	will	produce	more	software	than	larger	ones	of	any	size.
Beck	writes,	“Size	clearly	matters.	You	probably	couldn’t	 run	an	XP	project

with	a	hundred	programmers.	Not	fifty.	Not	twenty,	probably.	Ten	is	definitely
doable,”	and	later	says,	“If	you	have	programmers	on	two	floors,	forget	it.	If	you



have	programmers	widely	separated	on	one	floor,	forget	it.”22
Another	problem	is	that	when	you	are	working	on	the	first	version	of	a	piece

of	software,	it	can	be	hard	to	produce	anything	that	users	can	use	in	two	to	four
weeks,	 or	 even	 in	 small	multiples	 of	 two	 to	 four	weeks.	Before	Windows	NT
could	start	shipping	public	releases	at	the	end	of	six-to	nine-month	milestones,	it
took	several	years	to	create	anything	that	was	usable	at	all,	because	so	much	of
the	 internals	 of	 an	 operating	 system	 need	 to	 be	written	 before	 it	 can	 handle	 a
single	request	from	a	user.
Microsoft	used	to	be	feature	driven	in	its	products,	meaning	that	teams	would

establish	 a	 planned	 set	 of	 features	 and	 then	 work	 until	 they	 were	 available,
accepting	 whatever	 schedule	 slip	 was	 needed;	 at	 a	 certain	 point	 the	 company
switched	to	being	date	driven,	where	teams	would	set	a	date	and	only	include	the
features	that	could	be	completed	by	that	date,	cutting	features	in	the	middle	of	a
project	if	they	looked	to	be	in	danger.	This	made	things	much	more	predictable
for	customers.	But	 this	 is	a	 luxury	 that	 is	available	when	you	have	an	existing
product;	for	the	first	version	of	Windows	NT,	the	critical	feature	“the	operating
system	 works”	 could	 not	 be	 cut.	 Date-driven	 scheduling	 is	 heralded	 as	 a
breakthrough	 in	 project	 management,	 but	 it’s	 no	 coincidence	 that	 the	 switch
away	from	being	feature	driven	happened	around	the	time	that	all	of	Microsoft’s
major	 products	 (Windows,	 Office,	 its	 compilers,	 the	 SQL	 Server	 database
program,	 and	 the	 Exchange	 e-mail	 server)	 had	 established,	 working	 versions,
which	 could	 then	 have	 individual	 features	 added	 on	 (or	 not)	 in	 subsequent
versions.
In	 fact,	 the	original	OOPSLA	Scrum	paper	 states,	 “Scrum	 is	 concerned	with

the	management,	 enhancement	 and	maintenance	 of	 an	 existing	 product,	 while
taking	 advantage	of	new	management	 techniques	 and	 the	 axioms	 listed	 above.
Scrum	is	not	concerned	with	new	or	reengineered	systems	development	efforts.”
By	the	time	Schwaber’s	first	Scrum	book	came	out	in	2002,	this	distinction	had
been	 lost,	 and	 Scrum	 was	 presented	 as	 applicable	 to	 both	 new	 and	 ongoing
projects.23
As	an	aside,	the	OOPSLA	paper	states	another	axiom:	“Product	development

in	 an	 object-oriented	 environment	 requires	 a	 highly	 flexible,	 adaptive
development	process,”	and	later	says,	“Object	Oriented	technology	provides	the
basis	 for	 the	Scrum	methodology.	Objects,	or	product	 features,	offer	a	discrete
and	manageable	 environment.	 Procedural	 code,	with	 its	many	 and	 intertwined
interfaces,	 is	 inappropriate	 for	 the	 Scrum	 methodology.”24	 I’m	 not	 sure	 what
being	object	oriented	has	to	do	with	it;	procedural	programming	also	required	a
highly	flexible,	adaptive	development	process.	If	you	believe	the	loudest	object-



oriented	supporters,	procedural	programming	would	require	even	more	flexible
processes	since	it	is	missing	the	special	sauce	that	object-oriented	programming
provides.	 The	 vaguely	 implied	 equating	 of	 “objects”	 and	 “product	 features”
makes	me	think	this	was	either	a	sop	to	the	OOPSLA	crowd	or	reflection	of	the
heady	early	days	of	the	object-oriented	frenzy.	For	what	it’s	worth,	I	have	read
several	 books	 on	 Scrum	 (including	 Schwaber’s,	 which	 makes	 no	 mention	 of
this),	 become	 a	 Certified	 Scrum	 Master,	 and	 taught	 Scrum	 to	 teams	 inside
Microsoft	 for	 several	 years,	 and	 I	 never	 heard	 that	 Scrum	 was	 unsuited	 to
procedural	programming	or	observed	problems	with	Scrum	that	were	unique	to
teams	using	procedural	languages.
Mills	 once	 described	 courses	 available	 to	 programmers	 as	 “new	 names	 for

common	sense,”	 and	while	 common	sense	 is	better	 than	a	 lack	of	 it,	Scrum	 is
still	 tackling	 the	easiest	problem	in	software:	 small	 teams	working	 for	a	single
customer	 on	 incremental	 improvements	 to	 an	 already-functioning	 piece	 of
software.25	 This	 is	 not	 to	 say	 it	 is	 not	 useful;	 teams	 in	 those	 situations	 were
taking	 archaic	 approaches,	 such	 as	 using	 a	 waterfall	 model	 to	 deliver	 the
complete	 solution	 before	 getting	 any	 customer	 feedback,	 and	 Scrum	 can
certainly	get	them	on	a	better	path.
Where	 waterfall	 attempts	 to	 plan	 out	 the	 details	 of	 a	 project	 carefully	 and

predict	 a	 completion	 date,	 Scrum	 states	 that	 the	 team	will	 work	 diligently	 on
pieces	 of	 a	 project	 (the	 “best	 that	 a	 development	 team	 can	 devise”	 from
Schwaber’s	 original	 paper—meaning,	 “trust	 us	 and	 stop	 nagging”),	 and	 in	 the
right	order,	always	focusing	on	delivering	working	code	to	the	user	at	the	end	of
each	sprint.	The	Agile	approach	to	preventing	long	schedules	that	slip	is	to	avoid
long	 schedules.	 As	 Schwaber	 and	 coauthor	 Mike	 Beedle	 explain,	 “Several
studies	 have	 found	 that	 about	 two-thirds	 of	 all	 projects	 substantially	 overrun
their	estimates,”	and	they	address	the	“risk	of	poor	estimation	and	planning”	this
way:	 “Scrum	 manages	 this	 risk	 …	 by	 always	 providing	 small	 estimates.	 …
Within	the	Sprint	cycle,	Scrum	tolerates	the	fact	that	not	all	goals	of	the	Sprint
may	 be	 completed.”26	 Beck	 talks	 about	 “schedule	 slips—the	 day	 for	 delivery
comes,	 and	you	have	 to	 tell	 the	customer	 that	 the	 software	won’t	be	 ready	 for
another	 six	 months,”	 and	 explains,	 “XP	 calls	 for	 short	 release	 cycles,	 a	 few
months	at	most,	so	the	scope	of	any	slip	is	limited.”27
In	 other	 words,	 these	 methodologies	 don’t	 change	 the	 fact	 that	 software

engineers	are	bad	at	estimating;	they	just	keep	the	estimates	short,	so	that	even	a
significant	slip,	in	percentage	terms,	is	not	that	bad	in	calendar	terms.	To	be	fair,
they	do	emphasize	frequent	delivery	of	working	code	to	customers,	which	allows
customer-driven	course	correction	as	needed	and	encourages	 team	members	 to



complete	higher-priority	work	first,	which	is	a	step	in	the	right	direction	(absent
this	 nudge,	 they	 would	 tend	 to	 tackle	 the	 most	 interesting	 technical	 problem
first).	And	Agile	proponents	point	out,	accurately,	 that	 if	a	 team	stays	 together
and	works	on	similar	kinds	of	work,	it	will	become	better	at	estimation—but	that
is	not	new	information	or	unique	to	Agile.
Socrates	is	quoted	in	Plato’s	Apology	as	saying,	“I	am	wiser	than	this	man;	it	is

likely	 that	 neither	 of	 us	 knows	 anything	 worthwhile;	 but	 he	 thinks	 he	 knows
something	when	he	does	not;	whereas	when	I	do	not	know,	neither	do	I	think	I
know;	so	I	am	likely	to	be	wiser	than	he	is	to	this	small	extent,	that	I	do	not	think
I	 know	 what	 I	 do	 not	 know.”	 In	 this	 sense	 Scrum,	 which	 says	 that	 software
projects	are	 inherently	uncontrollable,	 is	wiser	 than	 the	waterfall	methodology,
which	 proposes	 to	 control	 them	 without	 knowing	 how.	 Although	 Scrum
proponents	 may	 want	 to	 heed	 a	 follow-on	 insight	 from	 Socrates:	 “The	 good
craftsmen	seemed	to	have	the	same	fault	as	the	poets:	each	of	them,	because	of
his	 success	 at	 his	 craft,	 thought	 himself	 very	 wise	 in	 other	 most	 important
pursuits,	and	this	error	of	theirs	overshadows	the	wisdom	they	had.”28
Agile	 is	 not	 really	 the	 opposite	 of	 waterfall,	 partly	 because	 true	 waterfall

wasn’t	used	much	at	 the	 time	 that	Agile	came	along.	 If	you	are	 looking	for	an
approach	that	is	as	far	from	Agile	as	possible,	it	is	the	Personal	Software	Process
(PSP)	and	Team	Software	Process	(TSP),	developed	at	the	Software	Engineering
Institute	 (SEI),	 a	 software	 think	 tank	at	Carnegie	Mellon	University,	under	 the
guidance	of	Watts	Humphrey,	a	longtime	manager	of	software	teams	at	IBM.
The	 PSP	 approach	 is	 laid	 out	 in	 the	 preface	 to	 Humphrey’s	 1995	 book	 A

Discipline	for	Software	Engineering:

Society	 is	 now	 far	 too	dependent	on	 software	products	 for	 us	 to	 continue
with	the	craft-like	practices	of	the	past.	It	needs	engineers	who	consistently
use	 effective	 disciplines.	 For	 this	 to	 happen,	 they	 must	 be	 taught	 these
disciplines,	 and	 have	 an	 opportunity	 to	 practice	 and	 perfect	 them	 during
their	formal	educations.
Today,	when	students	start	to	program,	they	generally	begin	by	learning	a

programming	 language.	 They	 practice	 on	 toy	 problems	 and	 develop	 the
personal	skills	and	techniques	to	deal	with	issues	at	this	toy	problem	level.
…	 These	 programming-in-the-small	 skills,	 however,	 are	 inherently
limited.29

The	 PSP	 solution	 is	 to	 take	 practices	 used	 for	 large-scale	 software
development—and	Humphrey,	at	IBM,	was	managing	some	of	the	largest-scale
software	 development	 of	 his	 day—and	 scale	 them	 down	 to	 work	 for	 single-



person	programs.	Having	programmers	use	these	techniques	on	small	programs
would	 prepare	 them	 for	 proper	 large-scale	 software	 development	 (which	 is
addressed	in	phase	two	of	Humphrey’s	plan,	the	TSP).	In	this	approach,	the	PSP
is	the	exact	opposite	of	Agile,	which	takes	techniques	optimized	for	small	teams
and	then	implies	that	they	will	work	for	larger	teams.
Recognizing	that	this	sounds	a	lot	like	exhorting	people	to	eat	their	vegetables,

Humphrey	 throws	 down	 a	 little	 challenge:	 “The	 PSP	 is	 a	 self-improvement
process.	Mastering	it	requires	research,	study,	and	a	lot	of	work.	But	the	PSP	is
not	for	everyone.	Recall	that	the	PSP	is	designed	to	help	you	be	a	better	software
engineer.	Some	people	are	perfectly	happy	just	getting	by	on	their	jobs.	The	PSP
is	 for	 people	 who	 strive	 for	 personal	 achievement	 and	 relish	 meeting	 a
demanding	challenge.”	He	also	includes	a	chapter	on	how	to	stay	the	PSP	course
even	 if	 you	 are	 the	only	person	on	 the	 team	using	 it,	when	your	manager	 and
coworkers	are	giving	you	funny	looks.30
The	PSP	 relies	heavily	on	counting	 three	 things—lines	of	 code,	defects,	 and

time—and	performing	various	mathematical	calculations	among	 them,	so	as	 to
enable	predictions	about	the	future.	It	makes	use	of	formal	code	inspections—a
group	 activity	 first	 proposed	 by	Michael	 Fagan	 from	 IBM	 in	 1976.31	 Formal
inspections	differ	from	the	individual	code	reviews	we	encountered	in	chapter	3
in	 a	 variety	 of	 important	 ways:	 the	 inspectors	 are	 given	 time	 ahead	 of	 the
meeting	to	read	the	code;	guidelines	on	what	to	look	for	in	reviews	are	created
and	kept	updated;	 the	meeting	has	a	 formal	 leader	 to	keep	 things	moving;	and
the	results	of	 the	 inspection	(the	number	of	defects	 found	per	 line	of	code)	are
tracked	and	analyzed.32
My	 first	 experience	 with	 any	 kind	 of	 formal	 code	 review	 at	Microsoft	 was

back	 in	1993,	when	 I	was	working	on	 low-level	networking	code	 in	Windows
NT.	 A	 group	 of	 us	 sat	 down	 with	 printouts	 of	 my	 code	 and	 started	 walking
through	 them.	The	 date	was	 January	 20,	 the	 day	 of	Bill	Clinton’s	 presidential
inauguration,	 and	 the	 day	 a	 windstorm	 swept	 through	 the	 Seattle	 area	 and
knocked	out	power	to	Microsoft.	Undaunted,	we	gathered	in	a	conference	room
near	 the	 window—and	 completely	missed	 the	 fact	 that	 a	 tree	 had	 fallen	 on	 a
catering	truck	outside	our	building,	with	the	truck’s	cargo	of	pizzas	subsequently
being	 distributed	 free	 to	 everybody	 in	 the	 building,	 except	 for	 those	 of	 us
hunkered	down	doing	a	code	review	in	the	fading	light.
Beyond	 that	 trauma,	 I	 can	 see	 in	 retrospect	 that	 this	 was	 nothing	 like	 an

inspection	is	supposed	to	be.	Nobody	had	read	the	code	ahead	of	time,	and	the
results	 were	 not	 tracked;	 it	 was	 more	 like	 a	 set	 of	 parallel	 individual	 code
reviews	 based	 on	 whatever	 surface-level	 faults	 could	 be	 spotted.	 In	 a	 report



reprinted	in	a	book	by	Tom	Gilb	and	Dorothy	Graham,	these	individual,	ad	hoc
code	reviews	were	described	as	“the	least	effective,	but	most	used,	of	all	defect
removal	techniques.”33	Meanwhile,	SEI	(and	Gilb	and	Graham,	for	that	matter)
has	research	demonstrating	real	improvements	from	code	inspections.
On	the	other	hand,	 like	Agile,	 the	PSP	doesn’t	say	much	about	how	to	write

code—how	to	put	line	B	after	line	A.	The	closest	it	gets	to	talking	about	actual
software	design	is	to	mention	that	both	top-down	and	bottom-up	designs	can	be
useful	in	different	situations,	as	can	starting	in	the	middle,	and	that	focusing	on
vertical	 slices	 can	be	 a	 good	 idea,	 but	 so	 can	building	 the	 entire	 system	up	 in
layers.34	Since	it’s	the	PSP,	you	spend	time	thinking	about	your	strategy	up	front
and	also	 ruminating	about	whether	 it	went	well	afterward,	which	 is	better	 than
blindly	 using	 the	 same	 strategy	 as	 the	 last	 time,	 but	 doesn’t	 provide	 much
guidance	 on	 how	 to	 proceed	 in	 a	 new	problem	 area.	 Scrum	at	 least	 gives	 you
concrete	guidance,	to	concentrate	on	vertical	slices,	which	may	be	bad	advice	in
a	given	situation,	but	at	least	prevents	dithering—since	in	the	end,	given	the	one-
off	nature	of	most	projects,	it	is	hard	to	know	if	a	different	design	strategy	would
have	worked	better.
I	was	never	exposed	 to	 the	PSP	until	 I	worked	 in	Engineering	Excellence	at

Microsoft	and	we	taught	some	of	its	concepts	in	our	courses,	but	I	can	see	why
programmers	would	instinctively	recoil	from	it.	Thinking	about	all	that	tracking,
just	for	my	own	personal	improvement,	makes	my	head	ache.	Thinking	about	the
PSP	 book	 makes	 my	 arm	 muscles	 ache;	 at	 over	 750	 pages,	 it’s	 the	 longest
software	engineering	book	I	know	(the	TSP	book	clocks	in	at	a	relatively	svelte
450	 pages).35	 It	 spends	 an	 entire	 30-page	 chapter	 talking	 about	 how	 to	 count
lines	of	code	(admittedly	a	subject	of	debate	in	programming	circles).	Per	PSP,
you	 are	 supposed	 to	 count	 every	 syntax	 error	 that	 the	 compiler	 catches	 as	 a
defect,	which	 is	duly	 logged	 for	 future	analysis.	Fixing	compilation	errors	 is	 a
mechanical,	 annoying	 task,	 but	 one	 that	 doesn’t	 take	 that	 long;	 adding	 in	 the
mechanical,	annoying	task	of	logging	the	errors	makes	me	shudder	(and	you	are
further	 supposed	 to	 classify	 the	 errors	 into	 one	 of	 about	 twenty	 different
categories).36
There	is	even	debate	in	PSP	circles	about	whether	it	makes	sense	to	do	a	code

review	before	you	compile	the	code	the	first	time,	which	instinctively	seems	like
a	waste	of	time.	Why	spend	time	looking	for	errors	that	the	compiler	can	catch	in
a	few	seconds?	Ah,	says	the	PSP	data,	but	around	10	percent	of	errors	that	you
would	 expect	 the	 compiler	 to	 catch	 are	 not	 caught	 because	 they	 inadvertently
form	valid	 syntax,	 and	 those	 are	particularly	 sneaky	bugs	 to	 figure	out	 later.37
And	having	all	 the	bugs	available	 to	be	 found	 in	a	pre-compiler	 review	makes



the	code	a	more	target-rich	area,	which	makes	the	code	review	more	rewarding
and	hence	more	likely	to	be	taken	seriously.
It	all	does	make	a	certain	sense;	classifying	compiler	errors	by	type	could	be	a

lot	 of	work,	 but	 if	 I	 realize	 that	 I	make	 specific	 kinds	 of	mistakes	more	 than
others,	 I	can	focus	on	avoiding	 those	and	become	more	efficient,	and	yet.	…	I
don’t	consider	myself	somebody	who	is	“just	happy	getting	by	on	their	jobs,”	in
Humphrey’s	 accusatory	 phrase,	 but	 I	 can	well	 understand	why	 in	Engineering
Excellence	 our	 Scrum	 courses	 had	 much	 better	 uptake	 than	 our	 PSP-inspired
estimation	and	inspection	courses,	both	of	which	I	felt	were	more	relevant	inside
Microsoft	 than	Scrum	training.	When	you’ve	achieved	a	level	of	success	being
self-taught,	 it	 is	much	 easier	 to	 accept	 a	methodology	 like	 Scrum,	which	 says
that	 even	 the	 limited	 amount	 of	 tracking	 you	 are	 being	 asked	 to	 do	 is
unnecessarily	hobbling	you,	than	one	like	PSP,	which	says	that	you	need	to	do
more	of	it.
For	PSP	to	take	hold	as	the	natural	order	of	things	it	would	be	helpful	for	it	to

be	 instilled	 early	 on,	 but	 for	 many	 programmers,	 “early	 on”	 is	 during	 high
school;	few	people	trying	to	hack	out	a	quick	mobile	app	or	website	are	going	to
worry	 about	 something	 like	PSP,	 if	 they	 have	 even	 heard	 of	 it.	Also,	 the	 idea
built	 into	 the	 PSP	 of	 taking	 processes	 appropriate	 to	 large-scale	 projects	 and
scaling	 them	 down	 to	 small	 programs,	 where	 they	 are	 not	 needed	 except	 as
training	 for	 future	work	 on	 large	 programs,	makes	 PSP	 a	 tough	 sell.	 It	 is	 not
even	taught	to	undergraduates	at	Carnegie	Mellon,	the	university	with	which	SEI
is	associated.
Fundamentally,	 Scrum	 in	 particular	 and	 Agile	 in	 general	 are	 optimistic:

assume	things	will	go	well,	 trust	your	team,	and	fix	the	process	if	needed.	PSP
and	other	 command-and-control	 techniques	 are	pessimistic:	 assume	 things	will
go	 terribly	 wrong	 unless	 you	 invest	 a	 significant	 percentage	 of	 your	 time	 in
preventing	 problems.	 As	 a	 manager,	 I	 much	 preferred	 taking	 an	 optimistic
approach,	and	I	think	the	people	who	worked	for	me	appreciated	it	too.	But	we
still	 did	 a	 lot	 of	 planning	 and	 tracking	 that	went	well	 beyond	what	 any	Agile
methodology	would	recommend.
Agile	 is	 correct	 in	 recognizing	 that	 trying	 to	 figure	 out	 up	 front	 how	 long	 a

software	project	will	take,	given	our	current	techniques	for	both	estimation	and
software	 engineering,	 is	 a	 fool’s	 errand.	A	 favored	 tactic	 of	managers,	 before
Scrum	and	XP	gave	programmers	the	cover	needed	to	tell	them	to	butt	out,	was
to	 ask	 a	programmer	 for	 an	 estimate	 in	 the	 early	days	of	 a	project,	when	 they
didn’t	yet	know	enough	about	 its	details	 to	be	able	 to	make	a	decent	estimate,
and	 then	 hold	 the	 programmer	 to	 that	 seat-of-the-pants	 estimate.	 In	 a	 book	on
software	estimation	 (appropriately	 subtitled	Demystifying	 the	Black	Art),	Steve



McConnell	writes	about	the	Cone	of	Uncertainty:	the	fact	that	the	error	range	for
software	estimates	starts	out	large,	yet	gradually	shrinks	as	you	begin	to	do	more
investigation	 into	 how	you	will	 implement	 the	work,	 and	 shrinks	 even	 further
after	coding	begins.38	Asking	a	programmer	to	provide	an	estimate	at	the	widest
part	of	the	cone,	and	then	never	revisiting	it,	is	the	worst-possible	approach.	(He
further	 points	 out	 that	 having	 individual	 programmers	 supply	 estimates,	 rather
than	trying	a	“wisdom	of	the	crowds”	approach	of	asking	multiple	people	for	an
estimate	even	if	they	won’t	be	the	ones	doing	the	work,	further	contributes	to	the
inaccuracy	of	estimations,	no	matter	at	what	point	on	the	cone	they	are	done.)39
In	 The	 Soul	 of	 a	 New	 Machine,	 his	 Pulitzer-Prize-winning	 book	 about	 the

engineering	of	a	new	minicomputer	at	a	company	called	Data	General	in	the	late
1970s,	Tracy	Kidder	describes	how	early	estimates	became	etched	in	stone:

There	was,	it	appeared,	a	mysterious	rite	of	initiation	through	which,	in	one
way	or	another,	almost	every	member	of	the	team	passed.	The	term	that	the
old	hands	used	for	this	rite—West	invented	the	term,	not	the	practice—was
“signing	up.”	By	signing	up	for	the	project	you	agreed	to	do	whatever	was
necessary	for	success.	You	agreed	to	forsake,	if	necessary,	family,	hobbies,
and	 friends—if	 you	 had	 any	 of	 these	 left	 (and	 you	might	 not	 if	 you	 had
signed	 up	 too	many	 times	 before).	 From	 a	manager’s	 point	 of	 view,	 the
practical	virtues	of	the	ritual	were	manifold.	Labor	was	no	longer	coerced.
Labor	volunteered.40

In	 a	 2000	 study	 of	 a	 high-tech	 company,	 Ofer	 Sharone	 referred	 to	 this
situation,	 in	which	 employees	 self-impose	 the	 type	 of	workplace	 pressure	 that
one	 would	 expect	 to	 come	 from	 their	 managers,	 as	 one	 part	 of	 what	 he	 calls
“competitive	 self-management,”	 which	 can	 “engender	 intense	 anxiety	 among
[the	company’s]	engineers	regarding	their	professional	competence.”41	The	other
part	is	grading	employee	performance	on	a	rigid	curve;	I	don’t	know	if	this	was
in	effect	at	Data	General,	but	it	certainly	is	at	a	lot	of	software	companies.
The	 Soul	 of	 a	 New	 Machine	 was	 about	 hardware	 development,	 but	 it	 still

provides	the	most	accurate	depiction	I	have	ever	read	of	what	it	is	like	to	work
on	 a	 large	 “version	 1”	 software	 project.	 Creating	 the	 first	 version	 of	 a	 new
computer	(it	was	Data	General’s	first	32-bit	minicomputer)	 is	an	all-or-nothing
endeavor;	you	can’t	ship	half	a	computer.	The	result	was	high	pressure	and	long
hours,	 including	 this	portrait	of	 “signing	up”	 in	action,	between	a	programmer
named	Dave	Epstein	and	his	boss,	Ed	Rasala:

Some	weeks	ago,	Ed	Rasala	asked	Epstein,	“How	long	will	it	take	you?”



Epstein	replied,	“About	two	months.”
“Two	months?”	Rasala	said.	“Oh,	come	on.”
So	Epstein	told	him,	“Okay,	six	weeks.”
Epstein	felt	as	if	he	were	writing	his	own	death	warrant.	Six	weeks	didn’t

look	like	enough	time,	so	he’s	been	staying	here	half	the	night	working	on
the	thing,	and	it’s	going	faster	than	he	thought	it	would.	This	has	made	him
so	happy	 that	 just	 a	moment	 ago	 he	went	 down	 the	 hall	 and	 told	Rasala,
“Hey,	Ed,	I	think	I’m	gonna	do	it	in	four	weeks.”
“Oh,	good,”	Rasala	said.
Now,	back	in	his	cubicle,	Epstein	has	just	realized,	“I	just	signed	up	to	do

it	in	four	weeks.”
Better	hurry,	Dave.42

There	 is	 a	 joke	 about	 software:	 “The	 first	 90	 percent	 of	 the	 work	 takes	 90
percent	 of	 the	 time.	 The	 last	 10	 percent	 takes	 the	 other	 90	 percent.”	 Since
estimates	almost	always	grow	rather	than	shrink,	as	new	unaccounted-for	work
is	 discovered	 during	 the	 implementation,	 asking	 programmers	 for	 an	 estimate
early	on,	when	the	Cone	of	Uncertainty	is	at	its	widest,	winds	up	committing	the
programmer	 to	 a	 schedule	 that	 is	 too	 aggressive.	 Yet	 managers	 can	 justify	 it
because	 they	 are	 doing	 the	 noble	 thing	 and	 building	 up	 a	 schedule	 from	 the
programmers’	own	estimates	as	opposed	to	mandating	one	from	above.
Schwaber	and	Beck	had	presumably	felt	the	pain	of	this.	Schwaber	and	Beedle

are	clear	that	estimates	are	only	for	planning	out	a	sprint	and	are	not	considered
binding.43	Beck	mandates	a	forty-hour	week,	with	few	exceptions:	“The	XP	rule
is	simple—you	can’t	work	a	second	week	of	overtime.	For	one	week,	fine,	crank
and	put	in	some	extra	hours.	If	you	come	in	Monday	and	say,	‘To	meet	our	goal,
we’ll	 have	 to	work	 late	 again,’	 then	you	 already	have	 a	 problem	 that	 can’t	 be
solved	by	working	more	hours.”44	 (Epstein,	 in	 the	 excerpt	 from	The	Soul	of	 a
New	Machine	 above,	did	 finish	his	project	 in	 the	 four	weeks	he	signed	up	 for,
although	clearly	working	more	than	forty	hours	a	week.)
I	 confess	 that	 when	 I	 read	 The	 Soul	 of	 a	 New	 Machine,	 rather	 than	 being

turned	 off	 by	 the	 descriptions	 of	 signed-up	 engineers	 working	 crazy	 hours,	 I
wanted	to	be	involved	in	such	a	project.	It	wasn’t	just	the	notion	of	going	out	in
a	 blaze	 of	 glory.	A	 project	 like	 that,	 given	 the	 urgency	 to	 deliver,	 promised	 a
freedom	 to	do	what	was	needed,	bypassing	whatever	 rules	or	 conventions	you
felt	 were	 in	 the	 way.	 It	 was	 the	 same	 freedom	 that	 Agile	 promises	 to
programmers—it’s	just	that	we	spent	a	lot	more	time	savoring	that	freedom	than
Schwaber,	 Beedle,	 and	 Beck	 recommend.	 I	 was	 eventually	 on	 such	 a	 project,
working	on	the	first	two	versions	of	Windows	NT	from	1990	to	1994.	But	once



that	 was	 completed,	 I	 was	 done	 with	 signing	 up	 and	 looked	 for	 mellower
projects	within	Microsoft.	Despite	the	impression	from	a	story	like	The	Soul	of	a
New	Machine	that	working	crazy	hours	is	a	heroic	undertaking,	when	it	happens
with	software,	it	produces	code	that	is	rushed	and	poor	quality,	with	a	long	tail
of	bugs	for	customers	to	uncover.	In	particular,	 the	temptation	is	great	 to	gloss
over	 the	 handling	of	 error	 cases:	 code	 that	 rarely	 runs,	 but	 is	 the	most	 critical
part	when	it	is	needed.
The	 Agile	 approach	 of	 only	 providing	 short	 estimates	 and	 not	 holding

programmers’	 feet	 to	 the	 fire	 is	 clearly	 better	 than	 offering	 long	 estimates,
stamping	 them	 on	 programmers’	 foreheads,	 and	 then	 missing	 the	 overall
schedule	 anyway.	Yet	 if	 you	 step	 back,	 this	 glosses	 over	 a	more	 fundamental
problem.	Scrum	is	not	a	progressive	way	of	managing	software	projects;	 it’s	a
logical	reaction	to	the	current	state	of	software	development,	which	attempts	to
contain	 the	 damage	 by	 not	 overpromising	 to	 customers.	 Some	 version	 of
waterfall	 is	 the	 way	 engineering	 projects	 should	 work;	 it’s	 what	 any	 “real”
engineering	 project	 is	 aiming	 to	 achieve,	 because	 ideally	 you	 would	 know
enough	to	anticipate	issues	and	plan	accordingly,	and	be	able	to	schedule	out	the
work	 accurately	 based	 on	 previous	 experience	 on	 similar	 projects.	 Valuing
“responding	 to	 change	over	 following	a	plan”	 is	 another	way	of	 saying	“don’t
expect	me	to	be	able	to	predict	what	I	will	get	done,”	which	is	the	current	reality,
but	 I	 hope	 things	 don’t	 stay	 that	 way.	 Because	 while	 some	 change	 is	 due	 to
customers	 seeing	 the	 software	 and	 realizing	 they	 don’t	 like	 it,	 a	 lot	 is	 due	 to
realizing	that	your	internal	implementation	details,	which	the	customer	can’t	see,
need	to	be	reworked—and	being	unable	to	recognize	ahead	of	time	that	you	are
going	down	the	wrong	path	makes	software	development	unpredictable.
You	 may	 have	 read	 about	 Scrum,	 the	 product	 backlog,	 and	 the	 burndown

chart,	and	thought,	“Hey,	I	know	nothing	about	software,	but	those	things	make
sense.”	Which	emphasizes	the	fact	that	Scrum	has	nothing	to	say	about	how	to
actually	 engineer	 software;	 it	 is	 focused	on	getting	customer	 feedback	 through
rapid	 iterations.	 Mary	 Shaw	 wrote	 about	 quote-unquote	 software	 engineering
back	in	1990	that	“unfortunately,	the	term	is	now	most	often	used	to	refer	to	life-
cycle	models,	routine	methodologies,	cost-estimation	techniques,	documentation
frameworks,	configuration-management	tools,	quality-assurance	techniques,	and
other	 techniques	for	standardizing	production	activities.	These	 technologies	are
characteristic	 of	 the	 commercial	 stage	 of	 evolution—‘software	 management’
would	be	 a	much	more	 appropriate	 term.”45	 Scrum	 fits	 right	 into	 the	 software
management	category,	not	the	software	engineering	category.
I	 do	 give	 Agile	 credit	 for	 acknowledging	 one	 important	 fact	 about

programming,	which	 previous	methodologies	 tended	 to	 ignore:	 code	 is	 read	 a



lot.
The	 significance	 of	 code	 reading	 has	 not	 been	 completely	 missed	 in	 the

literature.	 The	 IBMers’	 Structured	 Programming	 book	 has	 a	 long	 chapter	 on
code	 reading,	 complete	 with	 case	 studies,	 which	 begins,	 “The	 ability	 to	 read
programs	 methodically	 and	 accurately	 is	 a	 crucial	 skill	 in	 programming.
Program	reading	is	 the	basis	for	modifying	and	validating	programs	written	by
others,	 for	 selecting	 and	 adapting	 program	designs	 from	 the	 literature,	 and	 for
verifying	 the	 correctness	 of	 one’s	 own	 programs.”46	 Mills,	 in	 Software
Productivity,	 has	 a	 chapter	 titled	 “Reading	 Code	 as	 a	 Management	 Activity”
(from	 1972,	 thus	 predating	 his	 coauthorship	 of	 the	 Structured	 Programming
book).	 He	 anticipates	 “a	 new	 possibility	 in	 PL/I:	 that	 programmers	 can	 and
should	read	programs	written	by	others,	not	 in	 traumatic	emergencies,	but	as	a
matter	 of	 normal	 procedure	 in	 the	 programming	 process.”47	Weinberg,	 in	The
Psychology	 of	 Computer	 Programming,	 also	 has	 a	 chapter	 on	 reading
programs.48	 I’ll	mention	in	passing	that	my	previous	book,	Find	the	Bug,	 talks
about	how	to	read	code	too.49	In	Microsoft	Secrets,	an	engineer	on	Excel	praises
Hungarian	 for	 its	 salutatory	 effect	 on	 code	 reading:	 “Hungarian	 gives	 us	 the
ability	to	just	go	in	and	read	code.	…	Being	fluent	 in	Hungarian	is	almost	 like
being	a	Greek	scholar	or	something.	You	pick	up	something	and	you	can	 read
it.”50	The	actual	content	in	that	quote	is	somewhat	divergent	from	reality,	but	it
does	 show	 that	 reading	 code	 was	 an	 activity	 that	 programmers	 did	 and	 cared
about,	and	tried	(in	vain,	in	this	case)	to	make	easier.
In	classic	waterfall	programming,	the	goal	was	to	write	the	code	for	the	entire

system	you	were	going	to	produce	and	then	hand	it	off	to	testing.	If	bugs	were
found,	 the	programmer	might	 experience	 the	 tribulation	of	 revisiting	 the	 code,
but	 it	 would	 be	 considered	 normal	 and	 even	 a	 positive	 sign	 if	 it	 were	 never
looked	at	again.
In	Agile,	with	its	focus	on	delivering	small	 increments	of	functionality	under

the	YAGNI	banner,	 it	 is	understood	 that	 the	code	will	be	modified	eventually,
when	“You	Do	Need	It”;	new	vertical	slices	are	written	that	touch	existing	code,
and	better	ways	to	arrange	the	resulting	whole	are	discovered	in	a	process	known
as	 refactoring.	 Code	 is	 not	 meant	 to	 be	 written	 once	 and	 then	 never	 touched
again;	far	from	it.	Rather	than	interpret	this	as	“we	got	it	right	the	first	time,”	it
would	 be	 seen	 as	 “we	 are	 probably	 not	 responding	 to	 our	 customers,	 and	 our
code	is	getting	moldy.”	As	Beck	put	it,	“A	day	without	refactoring	is	like	a	day
without	sunshine.”51	The	recognition	that	code	is	going	to	be	read	and	modified
often	is	an	important	mental	switch	from	older	methodologies.
The	most	 extreme	 refactoring-based	Agile	 approach	 is	 known	 as	 test-driven



development,	which	mandates	not	only	that	unit	tests	be	written	for	all	code	but
also	 that	 unit	 tests	 be	 written	 first,	 before	 the	 code	 they	 are	 going	 to	 test.
Furthermore,	you	strictly	alternate	between	writing	one	test	and	writing	the	code
to	make	that	test	pass—with	no	peeking	ahead!	YAGNI	is	the	mantra,	so	if	you
were	writing	 the	 code	 to	 score	 a	game	of	bowling	 (which	 is	 the	 standard	 test-
driven	development	example),	and	your	first	unit	test	involved	a	game	that	was
all	strikes,	your	actual	product	code	at	that	point	should	look	something	like	this:

int	ScoreGame(Board	b)	{

				return	300;

}

Do	you	see	what	I	did	there?	Naturally	once	you	wrote	a	second	unit	test,	which
tested	something	other	than	a	game	of	all	strikes,	you	would	need	to	write	code
to	actually	 score	 the	game	based	on	 the	Board	 parameter,	not	 just	hard	code	a
score	of	300	that	satisfied	the	first	test.
My	 biggest	 concern	 about	 Agile	 is	 that	 it	 currently	 dominates	 the

programming	methodology	 discussion	while	 only	 covering	 a	 narrow	 subset	 of
the	problems	that	software	engineers	can	hit.	In	this	entire	chapter,	that	one-line
method	was	 the	only	code	sample	needed.	Despite	 this,	Agile	 is	pitched	as	 the
savior	 of	 programming	 projects;	 as	 Schwaber	 and	Beedle	wrote	 in	 their	 book,
“The	case	studies	we	provide	in	this	book	will	show	that	Scrum	doesn’t	provide
marginal	 productivity	 gains	 like	 process	 improvements	 that	 yield	 5–25%
efficiencies.	When	we	say	Scrum	provides	higher	productivity,	we	often	mean
several	 orders	 of	 magnitude	 higher,	 i.e.,	 several	 100	 percents	 higher.”52	 The
actual	case	studies	are	underwhelming,	to	say	the	least	(especially	since	they	are
handpicked,	 not	 controlled	 experiments),	 but	 Scrum	 still	 sells	 to	 an	 eager
audience	of	programmers.
Earlier,	 I	 discussed	 the	 shift	 in	 the	 origin	 of	 software	 ideas,	 starting	 with

universities	 in	 the	early	days,	 then	moving	to	corporate	research	labs,	and	then
turning	 to	 corporate	 product	 groups.	 Agile	 is	 the	 next	 evolution	 of	 this	 trend.
Although	 its	 inventors	 began	 as	 programmers	 whose	 business	 was	 writing
programs,	 they	 quickly	 morphed	 into	 consultants	 whose	 product	 was	 Agile
knowledge	 itself.	 As	 with	 much	 other	 advice	 to	 programmers,	 Agile	 was	 not
based	 on	 any	 research	 studies	 or	 empirical	 observation	 beyond	 what	 people
noticed	in	their	own	work.
Academia,	in	particular,	has	almost	nothing	to	do	with	Agile.	It’s	easy	to	see

why:	with	its	new	terminology	and	overhyped	promises,	Agile	can	come	across
as	a	fad,	which	universities	would	want	to	avoid.	This	in	turn	makes	universities



seem	 slow	 and	 stodgy	 to	 Agile	 practitioners,	 and	 possibly	 to	 new	 college
graduates	who	fall	under	the	sway	of	Agile.	What	is	missing,	to	mend	this	gap,	is
more	 research	on	when	exactly	Agile	practices	 are	helpful,	 and	when	 they	 are
not.	A	methodology	such	as	test-driven	development	is	no	doubt	useful	in	some
situations,	but	not	 in	every	one,	which	 it	perforce	 is	proposed	as	a	 solution	 to.
This	provides	ample	ammunition	for	both	sides	of	any	argument.
In	2007,	Scott	Rosenberg	published	the	book	Dreaming	in	Code,	in	which	he

embedded	himself	with	a	well-credentialed	group	of	programmers	trying	to	write
version	1	of	an	application:	a	personal	information	manager	named	Chandler.	He
unfortunately	 happened	 on	 a	 somewhat-dysfunctional	 team.	 Many	 of	 the
members	 were	 tainted	 by	 previous	 success	 in	 that	 they	 were	 unable	 to
distinguish	factors	that	had	legitimately	contributed	to	that	success	from	factors
that	didn’t	matter	or	were	actively	wrong.	They	all	believed,	in	different	ways,	in
the	 fallacy	 “if	 we	 just	 do	 this	 one	 thing,	 then	 the	 normal	 complications	 of
software	development	won’t	apply.”
Nonetheless,	 Rosenberg	 had	 enough	 personal	 experience	 with	 software	 to

realize	 that	 their	behaviors	were	not	 completely	atypical.	At	 a	 certain	point	he
throws	up	his	hands:	“As	I	followed	Chandler’s	fitful	progress	and	watched	the
project’s	machinery	sputter	and	cough,	 I	kept	circling	back	 to	 the	reactions	I’d
had	 to	 my	 own	 experiences	 with	 software	 time:	 It	 can’t	 always	 be	 like	 this.
Somebody	must	have	figured	this	stuff	out.”	He	then	spends	a	chapter	wandering
around	 some	 of	 the	 same	 back	 alleys	 I	 have	 covered	 here,	 including	 design
patterns,	XP,	and	PSP.	Rosenberg	concludes,	“I	can’t	say	that	my	quest	to	find
better	 ways	 of	 making	 software	 was	 very	 successful,”	 but	 qualifies	 this	 by
saying,	“I	don’t	think	the	methodology	peddlers	are	snake	oil	salespeople.”53	It’s
just	 that	 the	 solutions	 being	 proposed	 don’t	 help	 with	 a	 large,	 complicated
project	 like	Chandler.	Rosenberg	 eventually	got	 tired	of	waiting,	 and	his	book
appeared	before	Chandler	did.
One	of	the	most	recent	flavors	of	Agile	is	the	Software	Engineering	Methods

and	 Theory	 (SEMAT)	 initiative,	 created	 “to	 identify	 a	 common	 ground	 for
software	 engineering	…	manifested	 as	 a	 kernel	 of	 essential	 elements	 that	 are
universal	to	all	software	development	efforts.”	SEMAT	is	introduced	in	a	book
subtitled	 Applying	 the	 SEMAT	 Kernel,	 but	 with	 a	 more	 ambitious	 title,	 The
Essence	of	Software	Engineering.	Like	any	good	 jeremiad,	 it	 features	a	call	 to
action,	which	states:

Software	 engineering	 is	 gravely	 hampered	 today	 by	 immature	 practices.
Specific	problems	include:

– The	prevalence	of	fads	more	typical	of	a	fashion	industry	than	of	an



engineering	discipline

– The	lack	of	a	sound,	widely	accepted	theoretical	basis
– The	huge	number	of	methods	and	method	variants,	with	differences
little	understood	and	artificially	magnified

– The	lack	of	credible	experimental	evaluation	and	validation
– The	split	between	industry	practice	and	academic	research54

As	I’ve	written	in	similar	situations,	it’s	hard	to	argue	with	all	that.	How	does
SEMAT	propose	 to	 address	 this?	Not,	 initially	 anyway,	 by	 actually	 doing	 any
experimental	 evaluation	 and	 validation.	 As	 programmer	 and	 former	 professor
Greg	Wilson	comments	in	his	“Two	Solitudes”	keynote	talk	from	the	SPLASH
2013	 conference,	 the	 SEMAT	 book	 doesn’t	 cite	 a	 single	 empirical	 study.55
Instead,	between	the	three	forewords	and	twelve	pages	of	testimonials	at	the	end,
it	 attempts	 to	 abstract	 out	 the	 common	 parts	 of	 software	 process	management
methodologies	 into	a	metamethodology,	which	could	 then	be	used	 to	diagnose
flaws	 in	 your	 actual	 methodology.	 Given	 that	 Agile	 is	 already	 somewhat
removed	 from	 the	actual	problems	of	 software	 engineering,	 taking	a	 step	back
does	not	get	you	any	closer	to	the	essence.
Yet	it	does	bring	up	a	point	about	Agile.	To	some	people,	 the	problems	with

software	 relate	 to	 process	 management:	 making	 sure	 the	 requirements	 are
correct,	stakeholders	are	involved,	and	right	team	is	in	place.	The	actual	writing
of	the	software	is	an	exercise	left	to	the	reader.	For	this	audience,	something	like
SEMAT	is	moving	closer	to	the	essence	of	software	engineering.
I	 am	 not	 minimizing	 the	 importance	 of	 all	 that.	 The	 Agile	 techniques

originated	with	 consultants	 who	were	working	 on	 contract	 work;	 it	 helps	 you
concentrate	on	the	customer	when	you	won’t	get	paid	unless	they	like	what	you
deliver.	 This	 customer	 focus	 had	 often	 been	 ignored	 by	 programmers,	 who
viewed	customer	change	 requests	 as	evidence	of	 their	 fickle	“luserness,”	not	 a
necessary	step	 in	making	 them	happy.	 In	Engineering	Excellence	at	Microsoft,
we	 studied	 a	 field	 known	 as	 human	 performance	 improvement,	 to	 be	 used	 in
analyzing	 Microsoft	 teams.	 One	 of	 the	 key	 tenets	 of	 human	 performance
improvement	contends,	“Put	a	good	performer	in	a	bad	system,	and	the	system
will	 win	 every	 time.”56	 In	 other	 words,	 the	 inputs	 people	 get	 from	 the
environment	 have	 a	 greater	 impact	 on	 their	 performance	 than	 what	 they
themselves	 bring	 to	 the	 table.	 Having	 good	 requirements	 and	 involved
stakeholders	is	a	critical	part	of	the	environment	in	which	programmers	operate.
But	for	a	lot	of	software	engineers,	this	has	already	been	decided;	the	spec	is



written,	 the	 team	 is	 chosen,	 and	 now	 code	 needs	 to	 be	written.	Agile	 tends	 to
peter	out	 just	as	 the	engineering	gets	complicated.	 If	you	have	a	 team	that	can
meet	every	day	in	a	room,	its	project	is	small	enough	that	it	can	test	most	of	its
work	via	unit	tests;	and	if	the	team	stays	together	for	the	duration	of	a	project,	it
won’t	 hit	 mysterious	 problems	 calling	 unclear	 API	 because	 the	 person	 who
wrote	 the	 API	 is	 probably	 in	 the	 room	with	 the	 team.	 Schwaber	 and	 Beedle,
discussing	the	issue	of	other	people	needing	to	learn	the	code	that	the	team	has
written,	 came	 up	 with	 a	 simple	 yet	 impractical	 solution:	 “[We]	 instituted	 the
following	 policy:	whoever	writes	 code	 owns	 it	 forever.”57	 I	 suppose	 from	 the
team’s	 perspective	 the	 code	 can	 be	 owned	 forever,	 if	 their	 perception	 of	 time
ceases	 once	 they	 stop	 working	 on	 it,	 in	 a	 sort	 of	 reverse	 big	 bang.58
Unfortunately,	customers	don’t	have	this	luxury.
The	 complications	 of	 software	 happen	 at	 larger	 and	 longer	 scale	 than	 those

sorts	of	projects.	While	Agile	may	make	easy	problems	a	bit	 easier,	 it	 doesn’t
help	 with	 the	 hard	 problems.	 It’s	 appealing	 to	 programmers,	 but	 to	 make
software	 engineering	 more	 of	 an	 engineering	 discipline,	 something	 else	 is
needed.
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10 
The	Golden	Age

If	you’re	like	me,	you	dream	of	a	day	when	software	engineering	is	studied	in	a
thoughtful,	methodical	way,	and	the	guidance	given	to	programmers	sits	atop	a
foundation	 of	 experimental	 results	 rather	 than	 the	 shifting	 sands	 of	 individual
experience.	Perhaps	with	a	time	machine,	it	would	be	possible	to	travel	into	the
future	and	live	in	such	a	world.
Somewhat	surprisingly,	there	is	another	way.	It	still	requires	a	time	machine,

but	you	would	point	 it	 in	 the	opposite	direction,	 toward	 the	past.	About	 forty-
five	years	in	the	past	to	be	precise.
After	alighting	in	the	early	1970s	and	locating	the	nearest	computer	bookstore,

you	would	 discover	 that	 you	were	 in	 the	middle	 of	 a	 fertile	 time	 for	 software
engineering	 research.	 Books	 from	 that	 era	 wrestle	 with	 every	 problem	 that
confronts	us	today,	despite	the	fact	that	this	period	predates	almost	every	piece
of	software	still	running.	The	first	work	on	UNIX	began	in	1969;	C	was	invented
in	 1971.	Essentially	 everything	 that	 came	before—mainframe	 systems	 running
programs	 written	 in	 languages	 like	 COBOL	 and	 Fortran—has	 been	 replaced,
with	the	Y2K	crisis	providing	the	final	nail	in	many	coffins.	Since	the	software
from	that	era	is	functionally	obsolete,	it	is	tempting	to	dismiss	research	from	the
same	time	period	as	equally	outdated.
This	 would	 be	 a	 mistake.	 Today	 we	 have	 faster	 hardware,	 more	 expressive

programming	 languages,	 and	 better	 debugging	 tools.	 But	 if	 you	 read	 the	 old
books,	 it	 is	clear	 that	 the	fundamental	 issues	have	not	changed.	People	need	to
learn	 to	program,	 they	write	a	 lot	of	code,	 it	doesn’t	 integrate	with	other	code,
debugging	 it	 is	 hard,	 new	 programmers	 don’t	 understand	 it,	 and	 so	 on.	 The
software	wasn’t	as	complicated	as	the	largest	programs	now,	but	the	languages
and	 tools	 were	 also	 more	 primitive,	 so	 the	 difficulty	 was	 about	 the	 same—
presumably	at	a	roughly	equivalent	position	on	the	spectrum	of	human	cognitive
demand.
What	is	different	is	that	back	then,	there	were	a	group	of	people	in	academia

and	industry	that	was	taking	a	systematic	approach	to	figuring	out	the	problems



as	 well	 as	 how	 to	 solve	 them.	 This	 was	 the	 period	 just	 after	 the	 NATO
conferences,	the	paint	was	still	drying	on	the	term	software	engineering,	and	the
discipline	was	being	investigated	the	way	other	engineering	disciplines	had	been
investigated	in	the	past.
Consider	 the	 1971	 book	Debugging	Techniques	 in	Large	 Systems.1	 The	 title

would	 attract	 interest	 today:	 we	 work	 on	 large	 software	 systems	 and	 have	 to
debug	 them.	The	 book	 is	 not	 a	monograph	 by	 one	 person;	 it’s	 a	 collection	 of
papers	pulled	from	a	conference	held	in	summer	1970	at	the	Courant	Institute	of
Mathematical	Sciences	 at	New	York	University—the	 first	 in	 a	 planned	 annual
series.	The	participants	were	from	both	the	academic	and	industrial	communities
(IBM	 figures	 heavily	 in	 the	 industry	 representation),	 and	 the	 conference	 was
supported	 by	 a	 grant	 from	 the	 mathematics	 program	 of	 the	 Office	 of	 Naval
Research.
I	own	a	reasonably	complete	collection	of	modern	books	on	debugging,	which

I	pulled	together	when	I	wrote	Find	the	Bug,	my	contribution	to	the	corpus.	But
none	of	 those	books	 is	 the	 result	of	a	symposium;	 they	are	all	 in	 the	“here	are
some	things	I	figured	out	while	working	with	code”	vein	that	is	so	prevalent	in
modern	 software	 books.	 It’s	 not	 that	 the	 topics	 have	 changed	 much	 in	 the
intervening	decades.	Debugging	Techniques	in	Large	Systems	covers	compilers
that	 can	 catch	 bugs,	 how	 to	 design	 software	 to	 reduce	 errors,	 better	 debugger
tools,	how	software	should	be	tested	to	reliably	find	bugs,	and	the	ever-elusive
issue	of	proving	program	correctness.
Ironically,	 a	 lot	of	 the	advice	exchanged	back	 then	was	much	harder	 to	 take

advantage	 of	 than	 it	 would	 be	 today,	 because	 everybody	 was	 using	 different
computer	systems	that	ran	incompatible	software.	It	wasn’t	a	question	of	being
able	 to	 come	 home	 from	 a	 conference	 with	 a	 new	 tool	 that	 you	 could	 use
immediately;	 instead	 you	 would	 have	 an	 idea	 of	 how	 you	 could	 improve	 the
tools	 available	 on	 your	 own	 system,	 if	 you	 chose	 to	 undertake	 the	 task.
Nonetheless,	 there	 was	 great	 interest	 in	 sharing	 knowledge	 for	 the	 sake	 of
advancing	the	software	engineering	discipline.
Unfortunately,	 the	 excitement	 didn’t	 last.	 When	 I	 started	 college	 in	 1984,

Debugging	Techniques	 in	Large	Systems	book	was	only	 thirteen	years	old,	but
for	whatever	reason	I	never	was	exposed	to	it	or	any	other	book	about	software
from	this	era	except	for	the	original	The	C	Programming	Language	reference.
I	had	barely	heard	of	the	software	researchers	who	were	active	back	in	the	day.

I	knew	the	sound	bite	version:	Brooks	was	known	for	saying	that	“adding	people
to	 a	 late	 software	 project	 makes	 it	 later,”	 and	 Dijkstra	 was	 the	 guy	who	 said
“GOTO	statement	 considered	 harmful.”	 I	was	 oblivious	 to	 how	much	of	what
they	 had	 written	 about	 software	 was	 still	 relevant	 and	 would	 continue	 to	 be.



Those	who	ignore	history,	as	 they	say,	are	doomed	to	repeat	 it.	 If	you	actually
read	Brooks’s	The	Mythical	Man-Month,	from	which	I	have	quoted	extensively
in	 this	 book,	 he	 writes	 about	 documentation,	 communication,	 roles	 on	 teams,
estimation	 difficulties,	 scalability	 of	 teams,	 code	 comments,	 and	 cost	 of	 code
size—all	things	that	the	industry	has	struggled	with	ever	since.	The	book	came
out	in	1975,	the	year	that	Microsoft	was	founded—and	yet	we	knew	nothing	of
it!
Then	 there	 is	Mills,	 one	of	 the	greats	of	 the	 era	whom	 I	had	never	heard	of

until	 I	 started	 doing	 research	 for	 this	 book.	 Reading	 through	 Software
Productivity,	a	collection	of	Mills’s	essays	written	between	1968	and	1981,	you
are	 treated	 to	 a	 preview	 of	 almost	 everything	 that	 has	 been	 debated	 about
software	since	then:	the	different	roles	in	software,	how	to	design	software,	how
to	test	it,	how	to	debug	it,	unit	testing,	documentation,	and	so	on.	Mills	was	also
a	bomber	pilot	 in	World	War	 II	and	created	 the	 first	National	Football	League
scheduling	 algorithm.	 To	 be	 fair,	 he	 was	 widely	 read	 at	 the	 time	 and	 had	 a
successful	career	at	IBM.	After	he	died	in	1996,	the	IEEE	created	the	Harlan	D.
Mills	 Award	 for	 “long-standing,	 sustained,	 and	 impactful	 contributions	 to
software	 engineering	 practice	 and	 research	 through	 the	 development	 and
application	 of	 sound	 theory.”2	 I	 can’t	 recall	 ever	 hearing	 news	 about	 anybody
winning	it,	however	(for	the	record,	Parnas	and	Meyer	are	both	past	honorees).
Many	 other	 researchers	 took	 a	 scientific	 approach	 to	 studying	 programming

and	programmers.	Harold	Sackman,	 in	 1970,	 studied	 (among	other	 things)	 the
question	 of	 how	much	 better	 good	 programmers	 are	 than	 bad	 ones.3	Maurice
Halstead,	 in	 1977,	 examined	 whether	 the	 difficulty	 of	 a	 given	 programming
problem	could	 be	 quantified	mathematically.4	Mills	wrote	 a	 paper	with	Victor
Basili,	one	of	the	pioneers	in	the	field,	on	techniques	for	documenting	programs
so	programmers	could	understand	them	quickly.5	The	book	Studying	the	Novice
Programmer	 collects	 a	 series	 of	 studies	 on	 how	 people	 learn	 to	 program,
covering	such	topics	as	how	programmers	understand	the	concepts	of	variables,
loops,	 and	 IF	 statements,	 plus	 the	 personally	 relevant	 topic	 “A	 Summary	 of
Misconceptions	of	High-School	BASIC	Programmers”	(“The	students’	apparent
attributing	of	human	reasoning	ability	to	the	computer	gave	rise	to	a	wide	variety
of	misconceptions”).6
The	 best	 part	 about	 all	 this	 research,	 besides	 the	 fact	 that	 it	 involved

collaboration	 between	 industry	 and	 academia,	 is	 that	 the	 authors	 actually	 told
you	 how	 to	write	 software.	No	more	 endless	 checklists	 or	 theories	 on	 how	 to
manage	around	the	mess	of	software	development;	this	is	truly	practical	advice.
Do	this	instead	of	that	to	make	your	code	easier	to	debug;	do	that	rather	than	this



to	make	it	easier	for	another	programmer	to	read.
You	want	to	settle	the	never-ending	religious	debates	that	continuously	roil	the

waters	 of	 software	 development?	Since	 all	 these	 have	 purported	 benefits,	why
not	have	two	groups	of	people	work	with	code	written	in	different	styles,	and	see
how	 it	 affected	 the	 initial	 comprehension,	 ease	 of	 modification,	 and	 general
maintainability	 of	 the	 code?	 Why	 not	 indeed!	 Here’s	 Ben	 Shneiderman	 in
Software	 Psychology,	 published	 in	 1980,	 testing	 students	 on	 how	 different
commenting	 styles	 affect	 readability	 of	 the	 same	 FORTRAN	 program.7	 Do
mnemonic	variables	names	matter?	Larry	Weissman	did	a	series	of	experiments
on	that,	reported	in	1974.8	What	about	indentation?	Tom	Love	and	Shneiderman
were	 just	 a	 few	 of	 the	 people	 in	 the	 1970s	who	 investigated	whether	 it	 helps
readability.9	Is	GOTO	really	harmful?	Max	Sime,	Thomas	Green,	and	John	Guest
looked	into	that	in	1973,	as	did	Henry	Lucas	and	Robert	Kaplan	in	1976.10
The	battle	over	flowcharts	is	a	rare	example	of	how	an	engineering	discipline

is	supposed	to	evolve.	The	flowchart	approach	has	the	programmer	lay	out	every
bit	of	control	 logic—every	IF	 statement,	 loop,	GOTO,	 and	so	on—on	a	diagram
before	coding	it	up.	Flowcharts	can	work	for	basic	decision	trees.	They	are	the
ancestors	of	those	diagrams	on	the	last	page	of	Wired	magazine	about	“Should	I
Do	 X”	 or	 “What	 Sort	 of	 Y	 Should	 I	 Buy”—all	 those	 diamond	 shapes	 for
decision	 points	 with	 an	 arrow	 leading	 away	 for	 each	 choice.	 Even	 the	 visual
language,	the	shape	of	the	boxes,	is	the	same	as	software	flowcharts.	They	were
advocated	in	books	such	as	Marilyn	Bohl’s	1971	Flowcharting	Techniques,	and
continued	to	grace	the	pages	of	various	how-to	books	for	a	while.11
The	 problem	with	 flowcharts	 is	 that	 they	 don’t	 help	with	 the	 tricky	 parts	 of

program	 comprehension.	 When	 reading	 an	 IF	 statement,	 the	 issue	 is	 not
realizing	that	 there	is	an	IF	statement	in	the	code	but	 instead	knowing	whether
the	 IF	 logic	 is	 correct,	 which	 is	 as	 easy	 to	 read	 from	 the	 code	 as	 from	 a
flowchart.	 Think	 back	 to	 our	 “Did	 the	 donkey	 hit	 the	 car”	 statement	 in
DONKEY.BAS	from	chapter	1:12

1750	IF	CX=DX	AND	Y+25>=CY	THEN	2060

You	could	redraw	this	as	a	flowchart:



Figure	10.1 “Did	the	donkey	hit	the	car?”	in	flowchart	form

But	that	doesn’t	help	us	understand	whether	the	IF	test	(CX=DX	AND	Y+25>=CY)
is	correct,	which	 is	where	bugs	might	 lurk.	And	for	what	 it’s	worth,	you	don’t
know	 if	 a	 flowchart	 has	 been	 kept	 in	 sync	 as	 the	 code	 has	 been	 twiddled	 by
intervening	owners,	so	in	the	end	you	have	to	read	the	code	anyway.
Flowcharts	were	eventually	debunked,	based	on	studies	by	Richard	Mayer,	the

omnipresent	Shneiderman,	and	others.13	Luckily,	this	meshed	with	the	empirical
feedback	 from	 programmers	 that	 they	 were	 far	 more	 trouble	 than	 they	 were
worth	for	anything	of	larger	scope	than	a	Microsoft	interview	question.	Brooks,
in	a	section	of	an	essay	titled	“The	FlowChart	Curse”—with	a	title	like	that,	do	I
need	 the	quote?	I’ll	provide	 it	anyway	as	another	 illustration	of	how	ideas	 that
may	work	well	 for	 small	 programs	 break	 down	when	 applied	 to	 large	 ones—
observed	 that	 “the	 flow	 chart	 is	 a	most	 thoroughly	 oversold	 piece	 of	 program
documentation.	…	They	show	decision	structure	rather	elegantly	when	the	flow
chart	is	on	one	page,	but	the	overview	breaks	down	badly	when	one	has	multiple
pages,	sewn	together	with	numbered	exits	and	connectors.”14
But	 that’s	 about	 the	 only	 case	 I	 can	 think	 of	 where	 a	 once-fashionable

programming	methodology	has	been	retired	based	on	research—and	even	then	I
suspect	it	was	primarily	programmer	lassitude,	not	the	research	studies,	that	led
to	 flowcharts’	 extinction	 (I	 can	 personally	 recall	 both	 being	 advised	 to	 use
flowcharts	and	later	deciding	on	my	own	that	they	were	a	waste	of	time).
What	was	the	reason	for	this	early	attention	to	how	to	engineer	software?	It’s

hard	 to	 know	 exactly,	 but	 I	 can	 speculate.	 There	 is	 a	 chicken-and-egg	 effect
when	you	have	a	new	university	course	of	study	spring	up	in	a	short	period	of
time.	How	was	 the	 first	 set	 of	 computer	 science	 professors	 trained	when	 they
themselves	 went	 to	 college	 before	 a	 computer	 science	 major	 existed?	 The
answer	was	that	they	were	mostly	mathematicians;	Knuth,	Mills,	and	Brooks	all
had	 PhDs	 in	 mathematics.	 As	 the	 son	 of	 a	 mathematician,	 I	 can	 state	 with
confidence	that	despite	possibly	having	a	reputation	for	 thinking	deep	thoughts



in	isolation,	mathematicians	are	extremely	collaborative	and	spend	a	lot	of	time
meeting	 to	 exchange	 ideas,	 almost	 always	 building	 on	 the	work	 of	 those	who
have	gone	before.15
Furthermore,	 when	 software	 first	 became	 a	 product	 that	 could	 be	 sold	 to

customers,	it	was	hardware	companies	that	were	writing	the	software;	there	were
no	 “software-only”	 companies	 like	 Microsoft	 was	 in	 its	 early	 days.	 Each
company	 was	 producing	 its	 own	 hardware	 that	 was	 incompatible	 with	 other
hardware,	 and	 it	 needed	 an	 operating	 system	 to	 run	 the	 software	 along	 with
compilers	 and	 tools	 to	 allow	 others	 to	 write	 software.	 Customers	 didn’t	 buy
computers	 to	 heat	 their	 office;	 they	 needed	 software	 for	 the	 specific	 problem
they	were	trying	to	solve,	and	who	better	(or	who	at	all,	really)	was	there	to	write
this	than	the	company	that	also	made	the	hardware?	IBM,	which	is	historically
thought	of	as	a	hardware	company,	had	to	write	a	lot	of	software	in	order	to	sell
its	 machines.	 SABRE,	 the	 original	 computer-based	 airline	 reservation	 system
that	American	Airlines	rolled	out	in	the	early	1960s,	was	written	by	IBM	as	part
of	 a	 combined	 hardware/software	 deal	 with	 the	 airline.	 Mills	 worked	 in	 the
Federal	Systems	Division	at	 IBM,	 tasked	with	writing	software	customized	for
government	customers.
When	designing	hardware,	 a	 company	 is	 doing	 “real”	 engineering:	 electrical

engineering	 has	 built-up	 knowledge	 about	 circuit	 design,	 heat	 dissipation	 and
power,	 and	 other	 topics	 that	 can’t	 be	 solved	 with	 a	 “this	 worked	 for	 me	 last
time”	 approach.	Companies	 have	 to	 rely	 on	 research,	 both	 from	academia	 and
industry.	 In	 addition,	 you	 can’t	 easily	 make	 changes	 late	 in	 the	 design	 of
hardware	 the	 way	 you	 can	 with	 software;	 up-front	 design	 is	 worth	 the	 time.
Presumably	a	hardware	company	would	approach	a	software	problem	with	 the
same	disciplined	approach.
Given	 that,	 it	 is	 understandable	 that	 early	 software	 engineering,	 driven	 by	 a

combination	 of	 mathematicians	 in	 academia	 and	 hardware	 companies	 in
industry,	started	down	the	path	taken	by	other	engineering	disciplines,	and	you
can	see	the	results	of	this	in	the	literature	produced	during	that	time.	An	observer
in	 1975	would	 have	 had	 reasonable	 confidence	 that	 the	 trend	would	 continue,
and	that	in	a	few	decades,	things	would	be	figured	out,	codified,	and	then	taught
to	students	and	reinforced	through	professional	training.
That	is	not	the	way	it	turned	out,	to	put	it	mildly.	What	happened?
In	 The	 Psychology	 of	 Computer	 Programming,	 Weinberg	 theorizes	 about	 a

change	caused	by	the	arrival	of	terminals	(this	was	back	in	1971).	When	he	talks
about	 terminals,	 he	 means	 typing	 at	 a	 console	 that	 is	 still	 connected	 to	 a
mainframe	computer	but	allows	you	to	edit	and	run	programs	interactively—the
same	rig	 I	used	 to	connect	 to	McGill’s	computer	 from	my	parents’	 room	circa



1981,	 except	 possibly	 with	 a	 screen	 display	 rather	 than	 a	 printer.	 This	 is	 a
significant	 advance	 over	 older	 systems,	 where	 to	 run	 a	 program	 you	 had	 to
submit	it	in	person	as	a	stack	of	punched	cards,	and	then	wait	awhile	for	it	to	be
scheduled	and	run,	with	your	output	being	delivered	to	you	by	an	operator	who
had	access	to	the	actual	computer.	Weinberg	is	discussing	reading	code	as	a	way
to	improve	yourself	as	a	programmer	and	lamenting	that	this	is	done	less	than	in
the	past:

With	the	advent	of	terminals,	things	are	getting	worse,	for	the	programmer
may	not	even	see	his	own	program	in	a	form	suitable	for	reading.	In	the	old
days—which	in	computing	is	not	so	long	ago—we	had	less	easy	access	to
machines	and	couldn’t	afford	to	wait	for	learning	from	actual	machine	runs.
Turnaround	was	often	so	bad	that	programmers	would	while	away	the	time
by	reading	each	others’	programs.	…
But,	 alas,	 times	 change.	 Just	 as	 television	 has	 turned	 the	 heads	 of	 the

young	from	the	old-fashioned	joys	of	book	reading,	so	have	terminals	and
generally	improved	turnaround	made	the	reading	of	programs	the	mark	of	a
hopelessly	old-fashioned	programmer.	Late	at	night,	when	the	grizzled	old-
timer	is	curled	up	in	bed	with	a	sexy	subroutine	or	a	mystifying	macro,	the
young	blade	is	busily	engaged	in	a	dialogue	with	his	terminal.16

Wading	past	the	imagery	in	the	last	sentence,	and	ignoring	his	offhand	use	of	a
male	 personal	 pronoun	 as	 a	 standin	 for	programmer,	Weinberg’s	 point	 is	 that
programming	 with	 interactive	 terminals	 moves	 you	 away	 from	 the	 slower
approach	that	characterized	early	software	development,	where	you	spent	more
time	 up	 front	 making	 it	 right,	 because	 the	 delay	 in	 running	 it	 was	 so	 much
greater	(and	you	had	more	time	to	chat	with	other	programmers	while	standing
around	 waiting	 for	 the	 operators	 to	 deliver	 your	 results).	 That	 was	 more	 like
hardware	engineering,	where	fixing	a	problem	becomes	so	much	more	difficult
once	you	have	built	physical	hardware.
There	 was	 another	 seed	 germinating	 at	 this	 time	 that	 contributed	 to	 things

veering	away	from	the	predicted	path.	The	1968	NATO	conference	in	Garmisch,
Germany,	is	remembered	for	the	origin	of	the	term	software	engineering,	and	the
agreement	 between	 academia	 and	 industry	 that	 something	 needed	 to	 be	 done.
Less	remembered	is	the	second	NATO	conference	in	Rome	the	following	year,
which	did	not	end	with	the	same	feeling	of	togetherness.	John	Buxton	and	Brian
Randell,	editors	of	the	proceedings,	wrote	the	following:

The	 Garmisch	 conference	 was	 notable	 for	 the	 range	 of	 interests	 and
experience	 represented	 among	 its	 participants.	 In	 fact	 the	 complete



spectrum,	 from	 the	 inhabitants	 of	 ivory-towered	 academe	 to	 people	 who
were	right	on	the	firing-line,	being	involved	in	the	direction	of	really	large-
scale	 software	 projects,	 was	 well	 covered.	 The	 vast	 majority	 of	 these
participants	found	commonality	in	a	widespread	belief	as	to	the	extent	and
seriousness	of	the	problems	facing	the	area	of	human	endeavor	which	has,
perhaps	somewhat	prematurely,	been	called	“software	engineering.”	…
The	intent	of	the	organizers	of	the	Rome	conference	was	that	it	should	be

devoted	 to	 a	 more	 detailed	 study	 of	 technical	 problems,	 rather	 than
including	 also	 the	 managerial	 problems	 which	 figured	 so	 largely	 at
Garmisch.	 However,	 once	 again,	 a	 deliberate	 and	 successful	 attempt	was
made	 to	 attract	 an	 equally	 wide	 range	 of	 participants.	 The	 resulting
conference	 bore	 little	 resemblance	 to	 its	 predecessor.	 …	 A	 lack	 of
communication	between	different	sections	of	the	participants	became,	in	the
editors’	opinions	at	least,	a	dominant	feature.	Eventually	the	seriousness	of
this	communication	gap,	and	 the	 realization	 that	 it	was	but	a	 reflection	of
the	situation	in	the	real	world,	caused	the	gap	itself	to	become	a	major	topic
of	discussion.	 Just	as	 the	 realization	of	 the	 full	magnitude	of	 the	software
crisis	was	 the	main	 outcome	 of	 the	meeting	 at	Garmisch,	 it	 seems	 to	 the
editors	 that	 the	 realization	 of	 the	 significance	 and	 extent	 of	 the
communication	 gap	 is	 the	 most	 important	 outcome	 of	 the	 Rome
conference.17

In	other	words,	once	people	started	to	get	away	from	broad	recognition	of	the
problem	and	 into	 details	 of	 potential	 solutions,	 the	 gap	between	 academia	 and
industry	began	to	manifest	itself.	Roger	Needham	and	Joel	Aron	addressed	this
difference	in	a	working	paper	at	the	second	conference:

The	 software	 engineer	 wants	 to	 make	 something	 which	 works;	 where
working	 includes	 satisfying	 commitments	 of	 function,	 cost,	 delivery,	 and
robustness.	Elegance	and	consistency	come	a	bad	second.	It	must	be	easy	to
change	 the	 system	 in	ways	 that	 are	 not	 predictable	 or	 even	 reasonable—
e.g.,	in	response	to	management	directives.	At	present	theorists	cannot	keep
up	with	this	kind	of	thing,	any	more	than	they	can	with	the	sheer	size	and
complexity	of	large	software	systems.18

The	 report	 also	 contains	 a	 quote	 from	 Christopher	 Strachey,	 a	 computer
scientist	 from	Oxford	University,	 from	a	discussion	 that	was	added	on	 the	 last
day	to	address	the	gap:

I	want	to	talk	about	the	relationship	between	theory	and	practice.	This	has



been,	to	my	mind,	one	of	the	unspoken	underlying	themes	of	this	meeting
and	 has	 not	 been	 properly	 ventilated.	 I	 have	 heard	with	 great	 interest	 the
descriptions	 of	 the	 very	 large	 program	 management	 schemes,	 and	 the
programs	 that	 have	 been	 written	 using	 these;	 and	 also	 I	 heard	 a	 view
expressed	last	night	that	the	people	who	were	doing	this	felt	that	they	were
invited	 here	 like	 a	 lot	 of	monkeys	 to	 be	 looked	 at	 by	 the	 theoreticians.	 I
have	 also	 heard	 people	 from	 the	more	 theoretical	 side	who	 felt	 that	 they
were	equally	isolated;	they	were	here	but	not	allowed	to	say	anything.	…
I	think	we	ought	to	remember	somebody	or	other’s	law,	which	amounts	to

the	fact	 that	95	per	cent	of	everything	is	rubbish.	You	shouldn’t	 judge	the
contributions	of	 computing	 science	 to	 software	 engineering	on	 the	95	per
cent	of	computing	science	which	is	rubbish.	You	shouldn’t	judge	software
engineering,	 from	 the	 high	 altitude	 of	 pure	 theory,	 on	 the	 95	 per	 cent	 of
software	engineering	which	is	also	rubbish.	Let’s	try	and	look	at	 the	good
things	from	the	other	side	and	see	if	we	can’t	in	fact	make	a	little	bridge.19

He	 is	 likely	 referring	 to	Sturgeon’s	 law,	 coined	by	 the	 science	 fiction	writer
Theodore	Sturgeon,	which	posits	that	“90%	of	everything	is	crap.”20
Knuth	has	 stated	 that	 he	 feels	 that	 at	 the	 beginning	of	 the	 1970s,	 academics

were	 good	 programmers	 and	 industry	 professionals	 were	 not.	 Yet	 during	 that
decade,	 as	 the	 scope	 of	 software	 that	 industry	 wrote	 increased,	 the	 situation
reversed	 itself,	 and	 by	 the	 end	 of	 the	 decade	 the	 academics	 had	 drifted	 out	 of
sync	with	what	was	going	on	in	industry	and	restricted	their	programming,	and
therefore	their	area	of	expertise,	to	smaller	programs	that	were	no	longer	useful
for	 generating	 advice	 for	 industry.21	 Basili	 stated	 it	 as,	 “Researchers	 solve
problems	that	are	solvable,	not	necessarily	ones	that	are	real.”22	The	gap,	sadly,
still	 persists	 to	 this	 day,	 despite	 the	 occasional	 bright	 spot	 such	 as	 design
patterns.
But	really,	 there	is	one	obvious	cause	of	 the	decline	in	academic	research	on

software	engineering.	And	that	cause	is	me.
Not	just	me,	of	course.	It’s	me	and	people	like	me:	the	ones	who	came	of	age

just	after	the	personal	computer	revolution	started	in	the	mid-1970s,	which	took
the	 move	 to	 interactive	 terminals	 and	 accelerated	 it	 to	 light	 speed.	Weinberg
commented	 on	 this	 in	 the	 silver	 anniversary	 edition	 of	 The	 Psychology	 of
Computer	Programming,	observing	a	team	of	programmers	at	a	company	he	was
consulting	 with	 in	 the	 mid-1990s:	 “More	 interesting,	 however,	 was	 the
coincidence	 that	 all	 of	 them	 had	 learned	 to	 program	 before	 they	 studied
programming	 formally	 in	 school.	 That’s	 a	major	 change	 brought	 about	 by	 the
personal	computer.	In	my	day,	I	had	not	even	seen	a	computer	before	I	went	to



work	for	IBM	in	1956.”23
It’s	 not	 a	 coincidence.	Beginning	 in	 the	 late	1970s,	 access	 to	 a	 computer	no

longer	required	that	you	work	at	a	computer	hardware	company	or	be	associated
with	a	university.	Anybody	could	afford	to	bring	a	personal	computer	home,	free
from	 the	 oversight	 and	 advice	 of	 more	 experienced	 programmers	 and	 the
methodology	of	an	engineering	company,	and	start	programming	on	their	own.
And	 they	 did	 just	 that,	 in	 large	 numbers,	 learning	 nothing	 from	 the	 past	 and
reinventing	everything,	over	and	over.	Both	literally	and	figuratively,	we	never
looked	 back.	 Independent	 software	 companies	 thrived	 while	 the	 software
divisions	 of	 hardware	 companies	 shrank,	 so	 that	 the	modern	 software	 industry
was	created	by	people	who	had	never	been	exposed	to	engineering	rigor.
This	is	the	era	in	which	I	grew	up	as	a	programmer.	I	started	using	computers

just	as	 the	personal	computer	was	becoming	established.	But	 I	also	majored	 in
computer	science	at	an	Ivy	League	university!	As	I’ve	said	before,	all	of	us	were
self-taught	in	how	to	actually	program,	and	if	my	professors	knew	of	Weinberg
and	Mills,	they	weren’t	talking	about	them	to	the	undergraduates.	I	don’t	know
why	 it	was	 like	 this—whether	 the	 software	world	 appeared	 to	 be	 changing	 so
fast	that	this	looked	obsolete,	there	was	so	much	else	to	teach	us	that	there	was
no	 room,	 or	 maybe	 they	 had	 tried	 it	 and	 been	 ignored	 by	 callow	 personal
computer	 habitués.	 Possibly	 it	 was	 seen	 as	 not	 relevant,	 because	 these	 topics
tended	to	get	lumped	under	“psychology”	(a	term	that	appears	in	the	title	of	both
Shneiderman’s	and	Weinberg’s	classic	books)	or	“human	factors,”	which	sounds
awfully	un-engineering-ish.
In	 1976,	 Shneiderman	 helped	 found	 the	 informal	 Software	 Psychology

Society,	which	met	monthly	to	discuss	the	intersection	of	computer	science	and
psychology,	 including	 software	engineering	 topics.	 In	1982,	 the	 society	put	on
the	Human	Factors	in	Computing	Systems	conference,	which	led	to	the	creation
of	 the	ACM	Special	Interest	Group	on	Computer-Human	Interaction	(SIGCHI)
conference.24	Yet	for	whatever	reason,	SIGCHI	focused	much	more	on	the	topic
of	user	interaction	with	computer	interfaces	rather	than	programmer	interaction
with	software	tools	(as	eventually	did	Shneiderman	himself).25	The	net	effect	of
all	 this	was	 that	at	Princeton,	 I	heard	about	none	of	 this	 research,	which	at	 the
time	was	only	about	a	decade	old	and	certainly	relevant	then—and	relevant	now
as	well.
I	met	several	people	in	my	early	days	at	Microsoft	who	had	previously	worked

at	hardware	companies	and	left	because	writing	software	there	felt	too	slow	and
bureaucratic:	The	 companies	 followed	 the	 same	process	 for	 software	 that	 they
did	 for	 hardware.	 I	 mean,	 why	 not;	 if	 you	 can	 work	 unencumbered	 by



established	precedent	and	instead	invent	everything	yourself,	wouldn’t	you	want
to?	No	 rules!	Free	money!	 It’s	 the	 same	pitch	 that	Agile	 is	making	 today:	 the
less	methodology	you	use,	the	more	you	will	be	free	to	create	works	of	genius.
Unfortunately,	 rather	 than	 trying	 to	 learn	 something	 about	 process	 from	 these
refugees,	we	enabled	them	in	their	quest	to	be	freed	from	their	shackles.
I	 realize	 now	 that	 this	was	 the	 difference	 between	Dave	Cutler,	who	was	 in

charge	of	the	Windows	NT	project	when	I	worked	for	him	early	in	my	Microsoft
career,	and	almost	any	other	executive	at	the	company.	Cutler	was	a	generation
older	 than	 me	 and	 had	 learned	 the	 ropes	 at	 Digital	 Equipment,	 a	 hardware
company.	 Working	 there	 he	 had	 acquired	 an	 understanding	 of	 the	 need	 for
planning	and	rigor	in	software	development.	Before	beginning	to	write	the	code
for	the	first	version	of	Windows	NT,	the	team	produced	a	large	notebook	laying
out	the	internal	details	of	the	system,	focusing	heavily	on	the	APIs	provided	by
each	 section;	 a	 copy	 of	 this	 notebook	 is	 now	 preserved	 in	 the	 Smithsonian
Institution.26	This	was	before	I	arrived	on	the	team;	I’m	not	sure	what	I	would
have	thought	of	this	activity	if	I	had	observed	it	 in	person.	I	 likely	would	have
wondered	why	we	weren’t	jumping	in	and	writing	code.	For	that	matter,	I’m	not
sure	what	Bill	Gates	thought	of	it	(although	clearly	he	allowed	Cutler	to	do	it	his
way).	Gates	was	just	young	enough	that	he	was	able	to	learn	to	program	on	his
own,	on	a	terminal	like	the	one	that	Weinberg	accused	of	leading	programmers
down	the	primrose	path.
Wilson’s	 “How	 come	 I	 didn’t	 know	we	 knew	 stuff	 about	 things?”	moment,

described	 in	his	SPLASH	2013	keynote,	was	 inspired	by	his	discovering,	after
ten	years	in	the	industry,	the	1993	book	Code	Complete	by	Steve	McConnell.27
This	was	one	of	the	first	books	that	attempted	to	assemble	wisdom	about	how	to
write	 software.	 It	 deserves	 special	 mention	 because	 it	 does	 refer	 to	 academic
studies	to	back	up	its	recommendations,	at	least	in	areas	where	studies	had	been
done,	such	as	“What	 is	 the	 right	number	of	 lines	of	code	 in	a	single	method?”
For	what	it’s	worth,	the	consensus	on	method	length	from	the	studies	McConnell
looked	at	was	 that	around	 two	hundred	 lines	was	getting	 to	be	 too	 long.28	The
topic	has	since	been	unmoored	from	any	research	and	now	bobs	merrily	in	a	sea
of	 impassioned	verbiage,	 such	 that	 there	are	 scarcely	any	positive	numbers	 for
which	somebody	doesn’t	consider	that	many	lines	in	a	method	to	be	too	many.
Some	people	claim	that	the	instant	you	feel	you	need	a	comment	in	your	code,
you	 should	 instead	 move	 that	 code	 into	 a	 separate	 method	 with	 a	 sentence-
length,	 camel-cased	 method	 name,	 with	 said	 method	 name	 serving	 as	 the
complete	 documentation;	 these	 people	 walk	 among	 us,	 undetected	 by	 the
institutions	meant	to	protect	a	civil	society.



Most	of	the	studies	cited	by	McConnell	were	at	least	ten	years	old,	since	this
type	of	investigation	had	mostly	dried	up	by	then	(a	second	edition	of	the	book,
published	in	2004,	barely	unearths	any	new	studies).	But	at	 least	he	referenced
them	where	he	could.	He	even	spends	five	pages	discussing	Hungarian	notation,
presenting	 arguments	 pro	 and	 con	 without	 choosing	 a	 winner.29	 This	 is	 not
surprising	since	Hungarian	notation,	being	a	product	of	industry,	has	never	been
formally	 studied—with	 both	 sides	 instead	 preferring	 to	 continue	 hurling
invectives	 at	 each	 other	 (in	 the	 second	 edition,	 he	 cuts	 the	 treatment	 of
Hungarian	 in	 half	 and	 genericizes	 it	 as	 “standardized	 prefixes,”	 but	 he	 also
excises	most	of	the	arguments	against	it,	leaving	the	reader	with	the	impression
that	it’s	a	good	idea).30
The	IEEE	Computer	Society,	a	professional	association	with	similar	goals	 to

the	ACM,	 created	 the	Software	Engineering	Body	of	Knowledge	 (SWEBOK),
which	 is	 summarized	 in	 the	 book	 SWEBOK	 3.0:	 Guide	 to	 the	 Software
Engineering	Body	of	Knowledge,	known	as	the	SWEBOK	Guide	(the	ACM	was
initially	 involved	 in	 SWEBOK,	 but	 pulled	 out	 after	 disagreement	 on	 the
direction	 it	 was	 taking).31	 This	 initiative	 has	 a	 cargo	 cult	 aspect	 to	 it;	 other
engineering	disciplines	have	bodies	of	knowledge,	so	maybe	if	we	create	one	of
our	own,	we	will	acquire	the	engineering	rigor	that	they	possess.	Essentially	the
IEEE	 has	 assembled	 the	 current	 wisdom	 on	 software	 engineering,	 without
passing	judgment	on	the	actual	value	of	it.
Given	that	API	design	is	one	of	the	most	critical	areas	of	software	engineering

(McConnell	 spends	 an	 entire	 chapter	 on	 the	 subject	 in	Code	 Complete),	 it	 is
instructive	to	see	what	 the	SWEBOK	Guide	has	 to	say	about	 it.	Admittedly	the
book	is	less	expansive	than	Code	Complete,	but	still	it	is	deflating	to	find	only	a
quarter	of	a	page	devoted	to	such	an	important	 topic.	After	explaining	what	an
API	is,	 it	states	 that	“API	design	should	 try	 to	make	the	API	easy	to	 learn	and
memorize,	 lead	 to	 readable	 code,	 be	 hard	 to	 misuse,	 be	 easy	 to	 extend,	 be
complete,	 and	 maintain	 backward	 compatibility.	 As	 the	 APIs	 usually	 outlast
their	 implementations	for	a	widely	used	library	or	framework,	 it	 is	desired	that
the	 API	 be	 straightforward	 and	 kept	 stable	 to	 facilitate	 the	 development	 and
maintenance	 of	 the	 client	 applications.”32	 That’s	 it.	 This	 advice	 is	 not	wrong,
although	possibly	mildly	contradictory,	but	it’s	woefully	incomplete.	And	what
does	“should	try”	mean?	Nowhere	does	it	state	how	to	accomplish	all	these	goals
or	give	any	references	to	studies	of	them.
The	 SWEBOK	 Guide	 notes	 that	 it	 doesn’t	 contain	 detailed	 information,	 but

points	 the	 reader	 to	 other	 literature:	 “The	Body	 of	Knowledge	 is	 found	 in	 the
reference	materials	 themselves.”33	 In	 the	 case	of	API	design,	 the	 redirect	 is	 to



the	book	Documenting	Software	Architectures,	which	is	a	reasonable	book	about
documenting	 your	 software	 design	 at	 various	 levels	 of	 granularity,	 including
down	to	the	individual	API	layer—yet	it	is	about	documenting	a	design	that	has
been	created,	not	about	how	to	create	it	in	the	first	place.34
Meanwhile,	 the	 three-part	 book	 Software	 Engineering	 Essentials,	 which	 is

meant	 to	provide	more	detail	on	SWEBOK	and	matches	 it	point	 for	point,	has
this	to	say	about	API	design,	in	toto:

An	 API	 (application	 programming	 interface)	 is	 a	 language	 and	 message
format	used	by	an	application	program	to	communicate	with	the	operating
system	 or	 some	 other	 control	 program	 such	 as	 a	 database	 management
system.	 An	 API	 implies	 that	 some	 program	 module	 is	 available	 in	 the
computer	to	perform	the	operation	or	that	it	must	be	linked	into	the	existing
program	to	perform	the	tasks.35

There	is	no	great	insight	there;	it	is	only	a	definition	of	the	term,	attributed	to	PC
Magazine	Encyclopedia.
Much	 of	what	 has	 been	 espoused	 in	 software	 engineering	 in	 the	 last	 twenty

years—Agile	 development,	 unit	 testing,	 the	 debate	 about	 errors	 versus
exceptions,	 and	 the	 benefits	 of	 different	 programming	 languages—has	 been
presented	without	any	experimental	backing.	Even	object-oriented	programming
itself	 has	 not	 been	 subjected	 to	 rigorous	 testing	 to	 see	 if	 it	 is	 better	 than	what
came	 before	 or	 just	 more	 pleasing	 to	 the	 mind	 of	 programmers.	 As	 one
metareview	 of	 the	 few	 studies	 of	 object-oriented	 programming	 put	 it	 in	 2001,
“The	 weight	 of	 the	 evidence	 tends	 to	 slightly	 favor	 OOSD	 [Object-Oriented
Systems	 Development],	 although	 most	 studies	 fail	 to	 build	 on	 a	 theoretical
foundation,	many	suffer	from	inadequate	experimental	designs,	and	some	draw
highly	questionable	conclusions	from	the	evidence.”36
There	are	a	 few	stalwart	 researchers	who	have	continued	 to	do	experimental

investigations	into	software	engineering.	Basili	(an	IEEE	Mills	award	winner	in
2003)	deserves	special	mention,	as	one	of	 the	first	and	longest	practitioners.	In
addition	to	a	lengthy	career	as	a	professor	of	computer	science	at	the	University
of	Maryland,	he	spent	twenty-five	years	as	director	of	the	Software	Engineering
Laboratory	at	NASA’s	Goddard	Space	Flight	Center.	In	honor	of	his	sixty-fifth
birthday,	 the	 book	 Foundations	 of	 Empirical	 Software	 Engineering	 was
published	in	2005,	collecting	twenty	essays	from	throughout	his	career.37	If	your
curiosity	 is	 piqued	 by	 titles	 like	 “A	 Controlled	 Experiment	 Quantitatively
Comparing	 Software	 Development	 Approaches”	 and	 “Comparing	 the
Effectiveness	 of	 Software	 Testing	 Strategies,”	 then	 I	 encourage	 you	 to	 learn



more	about	empirical	studies.	But	too	often	his	sort	of	work	winds	up	in	journals
like	Empirical	 Software	 Engineering	 or	 the	 Journal	 of	 Systems	 and	 Software,
and	 never	 crosses	 over	 into	 industry,	 while	 working	 programmers	 flock	 to
conferences	on	Agile	development	and	other	trendy	topics.
When	 all	 of	 us	 “young	 blades”	 banded	 together	 in	 the	 early	 1980s	 and

mounted	 our	 successful	 assault	 on	 mainframe	 computers,	 we	 threw	 the
engineering	discipline	baby	out	with	the	mainframe	bathwater.	The	challenge	for
software	engineering	is	how	to	get	it	back.

Notes

1. Randall	Rustin,	ed.,	Debugging	Techniques	in	Large	Systems	(Englewood
Cliffs,	NJ:	Prentice-Hall,	1971).

2. IEEE	Computer	Society,	“Harlan	D.	Mills	Award,”	accessed	January	13,
2018,	https://www.computer.org/web/awards/mills.

3. Harold	Sackman,	Man-Computer	Problem	Solving	(Princeton,	NJ:	Auerbach
Publishers,	1970).

4. Maurice	H.	Halstead,	Elements	of	Software	Science	(New	York:	North
Holland,	1977).

5. Victor	R.	Basili	and	Harlan	D.	Mills,	“Understanding	and	Documenting
Programs,”	IEEE	Transactions	on	Software	Engineering	8,	no.	3	(May	1982):
270–283.

6. Ralph	T.	Putnam,	D.	Sleeman,	Juliet	A.	Baxter,	and	Laiani	K.	Kuspa,	“A
Summary	of	Misconceptions	of	High-School	BASIC	Programmers,”	in
Studying	the	Novice	Programmer,	ed.	Elliott	Soloway	and	James	C.	Spohrer
(Hillsdale,	NJ:	Lawrence	Erlbaum	Associates,	1989).

7. Ben	Schneiderman,	Software	Psychology:	Human	Factors	in	Computer	and
Information	Systems	(Boston:	Little,	Brown,	1980),	66–70.

8. Larry	Weissman,	“Psychological	Complexity	of	Computer	Programs:	An
Experimental	Methodology,”	ACM	SIGPLAN	Notices	9,	no.	6	(June	1974):
25–36.

https://www.computer.org/web/awards/mills


9. Tom	Love,	“An	Experimental	Investigation	of	the	Effect	of	Program
Structure	on	Program	Understanding,”	ACM	SIGSOFT	Software	Engineering
Notes	2,	no.	2	(March	1977):	105–113;	Schneiderman,	Software	Psychology,
72–74.

10. Max	E.	Sime,	Thomas	R.	G.	Green,	and	D.	John	Guest,	“Psychological
Evaluation	of	Two	Conditional	Constructions	Used	in	Computer	Languages,”
International	Journal	of	Man-Machine	Studies	5,	no.	1	(1973):	105–113;
Henry	C.	Lucas	Jr.	and	Robert	B.	Kaplan,	“A	Structured	Programming
Experiment,”	Computer	Journal	19,	no.	2	(1976):	136–138.

11. Marilyn	Bohl,	Flowcharting	Techniques	(Chicago:	Science	Research
Associates,	1971).

12. “donkey.bas,”	accessed	January	13,	2018,	https://github.com/coding-
horror/donkey.bas/blob/master/donkey.bas.

13. Richard	E.	Mayer,	“Different	Problem-Solving	Competencies	Established	in
Learning	Computer	Programming	with	and	without	Meaningful	Models,”
Journal	of	Education	Psychology	67,	no.	6	(1975):	725–734;	Schneiderman,
Software	Psychology,	81–85.

14. Frederick	P.	Brooks	Jr.,	“The	FlowChart	Curse,”	in	The	Mythical	Man-
Month:	Essays	on	Software	Engineering,	anniversary	ed.	(Boston:	Addison-
Wesley,	1995),	167–168.

15. As	my	father	put	it,	“In	my	career	with	over	a	hundred	papers,	there	is
something	truly	new	(having	no	obvious	antecedents)	in	only	one	of	them.
And	I	conjecture	that	is	one	more	than	average.”

16. Gerald	M.	Weinberg,	The	Psychology	of	Computer	Programming,	silver
anniversary	ed.	(New	York:	Dorset	House,	1998),	6.

17. John	Buxton	and	Brian	Randell,	introduction	to	“Part	II:	Report	on	a
Conference	Sponsored	by	the	NATO	Science	Committee,	Rome	Italy,
October	27–31,	1969,”	in	Software	Engineering	Concepts	and	Techniques,
ed.	Peter	Naur,	Brian	Randell,	and	J.	N.	Buxton	(New	York:
Petrocelli/Charter,	1976),	145.

18. Roger	M.	Needham	and	Joel	D.	Aron,	“Software	Engineering	and	Computer
Science,”	in	Software	Engineering	Concepts	and	Techniques,	ed.	Peter	Naur,
Brian	Randell,	and	J.	N.	Buxton	(New	York:	Petrocelli/Charter,	1976),	251.

https://github.com/coding-horror/donkey.bas/blob/master/donkey.bas


19. Christopher	Strachey,	quoted	in	“Theory	and	Practice,”	in	Software
Engineering	Concepts	and	Techniques,	ed.	Peter	Naur,	Brian	Randell,	and	J.
N.	Buxton	(New	York:	Petrocelli/Charter,	1976),	147.

20. Wikipedia,	“Sturgeon’s	Law,”	accessed	January	13,	2018,
https://en.wikipedia.org/wiki/Sturgeon%27s_law.

21. Donald	Knuth,	interview	with	the	author,	February	10,	2017.

22. Victor	Basili,	interview	with	the	author,	December	7,	2016.

23. Weinberg,	Psychology	of	Computer	Programming,	202.

24. Ben	Shneiderman,	“No	Members,	No	Officers,	No	Dues:	A	Ten	Year
History	of	the	Software	Psychology	Society,”	ACM	SIGCHI	Bulletin	18,	no.
2	(October	1986):	14–16.

25. Ben	Shneiderman,	interview	with	the	author,	December	2,	2016.

26. National	Museum	of	American	History,	“Microsoft	Windows	NT	OS2
Design	Workbook,”	no.	2001.3014.01,	accessed	January	13,	2018,
http://americanhistory.si.edu/collections/search/object/nmah_742559.

27. Greg	Wilson,	“Two	Solitudes”	(keynote	talk	at	the	SPLASH	2013
conference,	Indianapolis,	October	26–31,	2013).

28. Steve	McConnell,	Code	Complete:	A	Practical	Handbook	of	Software
Construction	(Redmond,	WA:	Microsoft	Press,	1993),	93–94.

29. Ibid.,	202–206.

30. Steve	McConnell,	Code	Complete:	A	Practical	Handbook	of	Software
Construction,	2nd	ed.	(Redmond,	WA:	Microsoft	Press,	2004),	279–281.

31. Pierre	Bourque	and	Richard	E.	Fairly,	eds.,	SWEBOK	V3.0:	Guide	to	the
Software	Engineering	Body	of	Knowledge	(Piscataway,	NJ:	IEEE	Computer
Society,	2014);	John	White	and	Barbara	Simons,	“ACM’s	Position	on	the
Licensing	of	Software	Engineers,”	Communications	of	the	ACM	45,	no.	11
(November	2002):	91.

32. Bourque	and	Fairly,	SWEBOK	V3.0,	3–8.

33. Ibid.,	xxxii.

https://en.wikipedia.org/wiki/Sturgeon%27s_law
http://americanhistory.si.edu/collections/search/object/nmah_742559


34. Paul	Clements,	Felix	Bachmann,	Len	Bass,	David	Garlan,	James	Ivers,	Reed
Little,	Paulo	Merson,	Robert	Nord,	and	Judith	Stafford,	Documenting
Software	Architectures:	Views	and	Beyond,	2nd	ed.	(Upper	Saddle	River,	NJ:
Addison-Wesley,	2011).

35. Richard	Hall	Thayer	and	Merlin	Dorfman,	eds.,	Software	Engineering
Essentials,	Volume	1:	The	Development	Process	(Carmichael,	CA:	Software
Management	Training	Press,	2013),	140.

36. Richard	Johnson,	“Object-Oriented	Systems	Development:	A	Review	of
Empirical	Research,”	Communications	of	the	Association	for	Information
System	8	(2002):	65–81.

37. Barry	Boehm,	Hans	Dieter	Rombach,	and	Marvin	V.	Zelkowitz,	eds.,
Foundations	of	Empirical	Software	Engineering:	The	Legacy	of	Victor	R.
Basili	(Berlin:	Springer,	2005).



11 
The	Future

It	has	been	fifty	years	since	the	1968	NATO	conference,	when	the	term	software
engineering	entered	the	vernacular.
The	list	of	concerns	voiced	at	the	conference	is	largely	the	same	one	we	face

today,	although	progress	has	been	made.	The	GOTO	statement	has	been	demoted
from	 a	 top-floor	 suite	 to	 the	 second	 underbasement.	 We	 have	 better
programming	languages,	even	if	people	are	constitutionally	resistant	to	adopting
them.	 Object-oriented	 programming	 may	 not	 allow	 us	 to	 build	 programs	 by
placing	 blocks	 of	 code	 next	 to	 each	 other	 or	make	 designing	 usable	APIs	 any
easier,	 but	 it	 has	given	us	design	patterns,	 unit	 testing,	 and	cleaner	 abstraction
between	 code	 modules.	 Programmers	 still	 argue	 over	 the	 proper	 format	 of
variable	names	and	whether	tabs	are	better	than	spaces,	but	at	least	they	now	do
so	semi-ironically.
Meanwhile,	 new	 approaches	 to	 management,	 while	 not	 changing	 the

fundamental	task	at	hand,	have	acknowledged	and	adapted	to	the	current	reality.
Agile,	in	its	various	incarnations,	has	opened	people’s	eyes	to	the	inadequacy	of
current	software	project	scheduling,	and	made	explicit	the	need	for	code	that	can
be	understood	and	modified	on	an	ongoing	basis.	The	open-source	movement,	in
which	 a	 team	 of	 people	who	may	 never	 have	met	 in	 person	work	 together	 to
develop	 software,	 also	 emphasizes	 the	 need	 for	 readable,	 modifiable	 code.	 In
addition,	 since	 open-source	 contributors	 often	 self-select	 to	work	 on	 a	 project
and	prove	their	worth	with	actual	production	code	rather	than	interviews,	it	has
highlighted	 the	 fact	 that	 top-tier	 university	 computer	 science	 programs	 don’t
have	 a	 monopoly	 on	 producing	 competent	 programmers,	 and	 established
software	companies	don’t	have	any	magic	techniques	for	engineering	software.
The	most	promising	prospect	for	improving	software	engineering,	however,	is

the	move	to	“the	cloud”:	a	company	delivering	software	as	a	service	that	runs	on
that	 company’s	 computers	 instead	 of	 as	 software	 that	 runs	 on	 customer
machines.
The	 period	 after	 the	 IBM	 PC	 became	 the	 standard	 platform	 was	 the	 gravy



years	for	the	software	industry,	with	companies	focused	on	what	became	known
as	packaged	software.	They	wrote	software,	deemed	it	“good	enough	to	ship”	by
whatever	 quality	 standards	 they	 chose	 to	 enforce,	 and	 then	were	mostly	 done
with	 it;	 all	 that	was	 left	 to	 do	was	 count	 sales	 and	watch	 the	 stock	 price	 rise.
Customers	would	 report	 bugs,	 and	 companies	might	provide	updated	versions,
but	 most	 of	 the	 pain	 of	 running	 the	 software—acquiring	 it,	 installing	 it,
administering	 it,	 living	 with	 bugs,	 and	 rolling	 out	 updates—was	 felt	 by	 the
customers.
This	 left	 programmers	 relatively	 isolated	 from	 problems	 arising	 from	 their

work.	If	a	customer	reported	a	bug,	and	a	programmer	could	reproduce	the	bug
on	 their	 machine,	 then	 they	 could	 fix	 it,	 but	 otherwise	 it	 was	 easy	 to	 treat
nonreproducible	 bugs	 as	 flaky	 problems	 that	 could	 be	 ignored.	Occasionally	 a
bug	would	be	widely	 reported	 enough	 that	 programmers	 felt	 angst	 over	 it	 (for
example,	 the	Zune	“Day	366”	bug	that	messed	up	New	Year’s	Eve	2008	party
plans,	which	was	covered	in	the	mainstream	press),	but	mostly	they	could	enjoy
a	blameless	sleep	and	try	to	tackle	the	bug	on	their	own	schedule.	Some	teams	at
Microsoft	even	had	a	separate	group	of	engineers	responsible	for	fixing	bugs	in
software	once	it	had	shipped,	so	somebody	else	had	to	deal	with	bugs	while	the
original	author	was	off	cranking	out	cool	new	stuff;	notably,	but	not	surprisingly,
this	“sustained	engineering”	role,	like	the	tester	role,	was	viewed	as	lower	on	the
engineering	totem	pole	than	developers.
With	 the	shift	 to	software	running	in	 the	cloud—such	software	 is	generically

called	 a	 service—all	 that	 changed.	 The	 company	 that	writes	 the	 software	 also
installs	 it	 and	 keeps	 it	 running;	 the	 customer	 accesses	 it	 via	 a	 web	 browser.
Forget	about	suggesting	that	customers	try	to	turn	the	machine	off	and	then	back
on	 again;	 the	 end	 users	 have	 no	 control	 at	 all	 over	 software	 running	 on	 a
machine	 in	 a	 faraway	 data	 center.	 They	 have	 to	 report	 all	 problems	 to	 the
company—and	to	keep	customers	happy,	it	 is	best	if	your	software	has	already
figured	 out	 that	 it	 is	 malfunctioning,	 so	 you	 can	 be	 alerted	 before	 customers
notice.	Furthermore,	it	is	unlikely	that	you	can	stop	a	machine	for	an	hour	while
you	debug	the	problem.	Issues	have	to	be	figured	out	from	telemetry	data	that	is
continuously	captured	on	 the	running	system—recording	 information	about	 the
system,	logging	what	files	are	accessed,	tracking	database	queries,	and	so	on.
When	I	worked	on	Windows	NT	in	the	early	1990s,	every	night	before	leaving

work	 we	 would	 start	 “stress	 tests”	 running	 on	 all	 our	 computers.	 These
automated	tests	were	a	mix	of	programs	that	ran	continuously,	performing	basic
operations	such	as	reading	and	writing	files,	or	drawing	graphics	on	the	screen;
the	 goal	 was	 to	 see	 if	Windows	NT	 could	make	 it	 through	 the	 night	 without
crashing	or	 hanging.1	Developers	grew	 to	dread	 the	morning	 e-mail	 indicating



that	a	machine	had	failed	in	code	that	they	owned.	By	general	agreement,	stress
failures	needed	to	be	investigated	before	the	machine	could	be	reclaimed,	since
it	might	be	 the	unique	example	of	an	 intermittent	bug.	Frequently	 the	problem
had	hit	on	another	developer’s	primary	machine,	leaving	them	dead	in	the	water
until	 the	 investigation	was	 completed.	 I	 recall	 those	 debugging	 sessions	 being
the	 most	 stressful,	 because	 somebody	 else	 was	 stuck	 until	 I	 was	 done.	 And
forget	 about	 repro	 steps;	 the	bug	 likely	hit	 due	 to	precise	 interactions	between
various	pieces	of	software,	which	might	never	reoccur	again,	so	you	had	 to	do
what	you	could	to	retroactively	figure	out	what	went	wrong,	by	forensic	digging
into	 the	 current	 state	 of	memory	 to	 try	 to	 isolate	 the	 first	 fault	 and	 thence	 the
code	defect.	How	exhaustively	you	 investigated	before	giving	up	on	any	given
failure	was	up	 to	you,	 but	 the	pressure	 ratcheted	up	 if	 it	 happened	 again;	woe
betide	the	developer	who	continued	to	be	unable	to	fix	a	recurring	stress	failure.
On	 a	 service,	 every	 investigation	 is	 like	 that.	 Suddenly,	 bugs	 become	 an

immediate	 concern	 for	 developers.	 A	 widely	 used	 strategy	 is	 to	 give	 the
developers	pagers	and	put	 them	on	call	 to	 look	 into	 issues	on	a	 rotating	basis,
transforming	 developers	 into	 living	 exceptions	 handlers.	 This	 forces
programmers	to	directly	feel	the	pain	of	bugs,	and	it	also	inspires	them	to	make
sure	the	monitoring	and	alerting	is	accurate;	nobody	wants	to	miss	a	real	issue,
but	nobody	wants	 to	be	woken	up	 in	 the	middle	of	 the	night	by	a	 false	alarm.
And	if	your	telemetry	data	isn’t	rich	enough	to	debug	the	failures,	then	you	have
lots	of	motivation	to	improve	it,	and	quickly.
On	the	plus	side,	because	the	bugs	are	happening	on	machines	that	companies

own,	it	is	easier	to	keep	track	of	them	and	figure	out	which	ones	cause	the	worst
disruptions,	and	then	go	back	and	figure	out	how	the	problem	could	have	been
avoided—and	how	 future	 problems	of	 the	 same	 sort	 could	 be	 avoided.	Was	 it
poor	design	choices?	Was	 it	an	API	with	undocumented	side	effects?	Was	 it	a
unit	test	that	should	have	been	written?	Was	it	a	test	that	was	written,	but	not	run
at	 the	 right	 time?	 Was	 it	 a	 step	 on	 a	 deployment	 checklist	 that	 was	 missed
because	 somebody	was	not	 being	 careful	 or	 it	wasn’t	written	down?	 It	 is	 now
much	 more	 obvious	 if	 people	 are	 skipping	 out	 on	 these	 engineering-like
behaviors	that	programmers	had	previously	been	able	to	ignore.
At	 some	 point,	 you	 could	 even	 conceive	 of	 tying	 this	 back	 to	 the	 so-called

religious	 debates	 that	 have	 befuddled	 programmers	 through	 the	 years.	Do	 you
prefer	your	particular	coding	style?	Do	you	think	your	favorite	language	leads	to
fewer	bugs	or	more	rapid	development?	Do	you	like	Hungarian	prefixes	on	your
variable	names?	It’s	unlikely	that	one	company	is	going	to	produce	enough	data
to	 individually	 come	 up	 with	 an	 answer,	 but	 if	 you	 analyze	 this	 across	 the
industry,	it’s	possible	that	actual	answers	could	emerge	from	the	murk.	Even	if



companies	are	not	able	to	answer	the	questions	themselves,	they	would	at	least
be	 motivated	 to	 care	 about	 the	 answers	 (and	 sometimes	 to	 impose	 whatever
mitigation	was	discovered	onto	their	teams)	because	services	have	a	nice	way	of
converting	 these	 decisions	 into	 dollar	 amounts.	 If	 you	 have	 more	 bugs	 than
another	company	that	has	made	a	different	choice	of	coding	style,	if	your	service
runs	more	slowly,	 if	 it	 is	harder	 to	deploy	…	that	all	 translates	 to	more	money
you	 need	 to	 spend	 somewhere	 to	 keep	 it	 running,	 which	 makes	 it	 harder	 to
compete	in	the	market.
Essentially,	running	a	service	imposes	an	automatic	“no	bullshit”	filter	on	the

old	wives’	tales	that	permeate	software	engineering.
As	 an	 added	 benefit,	 the	 way	 data	 is	 transferred	 between	 components	 of	 a

service,	or	between	a	client	machine	and	service	in	the	cloud,	is	much	closer	to
the	 ideal	 of	 object-oriented	 programming	 than	 is	 typically	 achieved	 with
software	 running	 on	 a	 single	 computer.	 In	 the	 early	 days	 of	 computer
networking,	 when	 machines	 were	 all	 on	 the	 same	 local	 area	 network,	 the
network	was	low	bandwidth	but	also	low	latency;	sending	a	lot	of	data	through
the	network	was	slow,	but	a	small	network	packet	could	reach	the	other	machine
fairly	 quickly.	As	 a	 result,	 early	 network	 protocols	 focus	 on	 packing	 as	much
data	into	as	little	space	as	possible,	which	made	writing	the	code	to	handle	them
tricky;	 it	 was	 processing	 this	 sort	 of	 incoming	 network	 packet	 that	 led	 to	 the
Heartbleed	worm	in	2014.
Modern	 networks	 connecting	 a	 client	 to	 the	 cloud	 have	 much	 higher

bandwidth.	The	computer	network	at	Microsoft	back	in	1990	ran	at	10	megabits
per	second	shared	by	the	entire	floor	of	a	building,	while	today	it	is	typical	for	a
home	 broadband	 connection	 to	 support	 100	megabits	 per	 second	 directly	 to	 a
single	house,	with	the	backbone	connections	that	get	you	to	the	Internet	running
much	faster	than	that.	The	connections	have	a	higher	latency,	however,	since	a
packet	has	to	make	multiple	hops	between	computers.	As	a	result,	the	amount	of
data	in	a	packet	doesn’t	matter	as	much—a	large	packet	doesn’t	take	noticeably
longer	 than	a	short	one	 to	 reach	 its	destination—and	communication	 is	usually
encoded	 in	 a	 more	 verbose	 format	 known	 as	 Extensible	 Markup	 Language
(XML).
XML	 is	 a	 slightly	 more	 categorized	 version	 of	 the	 text	 strings	 used	 to

communicate	between	pipelined	UNIX	commands,	which	previously	had	been
the	most	effective	implementation	of	“object-oriented”	software	building	blocks.
In	older	network	protocols	containing	tightly	packed	binary	data,	the	meaning	of
any	given	byte	depended	on	its	exact	location	in	the	packet,	and	it	was	hard	for	a
human	 to	 parse	 the	 data	 to	 figure	 out	what	 it	meant;	 entire	 separate	 programs
known	 as	 packet	 sniffers	 existed	 to	 assist	 in	 debugging	 network	 traffic	 (the



sniffers	we	used	in	my	early	days	at	Microsoft	were	entirely	separate	machines,
quite	expensive	to	replace	if	you	happened	to	drop	a	network	cable	into	the	back
of	 one	 while	 it	 was	 turned	 on—not	 that	 I	 would	 know	 anything	 about	 that).
XML,	by	contrast,	uses	human-readable	 tags	 to	 identify	data,	so	a	programmer
can	 scan	 the	XML	 request	 itself	 to	 figure	 out	 its	meaning,	 and	 code	 to	 parse
XML	 can	 be	 written	 more	 generically	 and	 therefore	 more	 safely	 (Microsoft
Office	 uses	 XML	 in	 its	 newer	 file	 formats	 to	 avoid	 the	 problem	 of	 exploits
hidden	 inside	 the	 old	 binary	 format).	 It’s	 similar	 to	 the	 difference	 between
reading	 raw	 bytes	 of	 machine	 language	 and	 reading	 code	 in	 a	 higher-level
language.
A	 second	 benefit	 is	 that	 XML	 communication	 is	 much	 more	 forgiving	 of

version	mismatches	than	earlier	protocols.	In	particular,	if	a	client	sends	data	in	a
request	 that	 the	 server	 doesn’t	 expect,	 it	 can	 simply	 ignore	 it,	which	makes	 it
easier	to	expand	a	network	protocol	without	breaking	interoperability	with	older
clients.	 If	 early	 network	 protocols	 were	 like	 the	 tightly	 bound	 API	 calls	 in	 a
performance-focused	 language	 like	C++,	where	 a	 single	 added	API	 parameter
could	break	the	code	unless	all	callers	were	also	updated,	XML	is	more	like	the
Smalltalk	messages-with-named-parameters	 approach—a	 little	 slower,	 but	 also
less	fragile	in	the	face	of	changes.
That	 said,	 there	 is	 an	 interesting	bifurcation	going	on.	At	 the	 same	 time	 that

programmers	 are	 working	 on	 cloud	 services	 with	 almost	 infinite	 computing
power,	they	are	writing	programs	to	run	on	smaller	devices.	Just	as	a	generation
of	 programmers	 came	 of	 age	 on	 the	 resource-limited	 mainframes	 and
minicomputers	of	the	1960s,	and	a	new	generation	came	of	age	on	the	resource-
limited	 personal	 computers	 of	 the	 1980s,	 it’s	 possible	 that	 another	 generation
will	learn	to	program	on	resource-limited	phones	and	tablets.	What	remains	to	be
seen	 is	 whether	 the	 Third	 Great	 Software	 Resource	 Bottleneck	 will	 teach
programmers	 all	 the	 same	 bad	 habits	 of	 the	 previous	 generations,	 favoring
performance	and	convenience,	and	less	typing	of	course,	at	the	expense	of	clean
design.
The	 services	 approach	 can	 be	 difficult	 for	 programmers	 experienced	 in

packaged	 software	 to	 adapt	 to.	 Services	 require	 a	 mind	 shift	 away	 from
performance	 toward	 maintainability	 and	 reliability,	 and	 a	 further	 mind	 shift
away	 from	 concentrating	 on	 shipping	 software	 toward	 focusing	 on	 keeping	 it
running.	 Microsoft	 famously	 has	 a	 Ship-It	 Award	 where	 everybody	 who
contributes	to	a	project	that	ships	to	customers	receives	a	small	commemorative
metal	sticker	to	attach	to	a	plaque,	with	the	resulting	accretion	forming	a	record
of	each	employee’s	time	at	Microsoft.2	The	award	was	created	in	the	early	1990s
after	a	few	large	projects	visibly	flamed	out	and	were	canceled,	with	nothing	to



show	for	years	of	work;	 it	was	meant	 to	emphasize	 the	 importance	of	actually
finishing	software	and	delivering	it	to	customers.	Despite	a	legendary	stumble	at
the	launch	of	the	program,3	people	do	care	about	their	Ship-It	Awards,	and	many
Microsoft	employees	proudly	display	their	plaques	in	their	offices.
Flash-forward	 fifteen	 years	 and	 your	 humble	 narrator,	 as	 part	 of	 the	 duties

managing	 my	 team	 in	 Engineering	 Excellence,	 was	 solely	 responsible	 for
determining	 whether	 a	 piece	 of	 software	 written	 at	 Microsoft	 was	 significant
enough	to	deserve	a	Ship-It	Award.	The	process	by	which	this	authority	came	to
be	 vested	 in	 my	 position	 was	 somewhat	 convoluted,	 but	 I	 did	 my	 best	 to
dispense	justice	as	I	saw	fit	(new	versions	of	Office	and	Windows:	yes;	update	to
the	point-of-sale	software	used	in	the	Microsoft	Store:	no).	The	Ship-It	program
had	been	designed	for	packaged	software,	but	around	this	time	the	large	services
teams	were	realizing	that	shipping	is	only	the	beginning;	the	real	trick	is	to	keep
a	service	running.	They	began	agitating	for	an	equivalent	recognition	of	this	to
adorn	 their	 plaques	 (the	working	 title	was	Run-It	Award),	 yet	 in	 the	 end	 their
request	 was	 shot	 down—a	 legacy	 of	 the	 “it’s	 just	 sustained	 engineering”
mentality.
In	 2009,	 a	 lot	 of	 programmers	 at	 Microsoft	 were	 beginning	 to	 work	 on

services,	 so	 we	 in	 Engineering	 Excellence	 went	 around	 the	 company	 asking
those	who	had	already	been	through	the	transition	for	their	advice	(besides	“give
us	a	Run-It	Award”).	The	most	 insightful	comment	came	 from	an	engineer	on
the	Exchange	e-mail	service	who	had	previously	worked	on	packaged	software.
After	walking	through	a	list	of	all	the	things	he	had	needed	to	relearn	in	order	to
be	effective	working	on	a	 service,	he	 ruefully	 said,	 “The	problem	 is,	 if	 I	went
back	in	time	two	years	and	told	myself	all	of	that,	I	wouldn’t	have	believed	it.”
Brooks	 at	 one	 point	 quotes	 Benjamin	 Franklin,	 writing	 in	 Poor	 Richard’s
Almanac:	“Experience	is	a	dear	teacher,	but	fools	will	learn	at	no	other.”4
The	move	 to	 services	 is	 a	 step	 in	 the	 right	 direction,	 but	 more	 needs	 to	 be

done.
Gawande’s	 book	 The	 Checklist	 Manifesto	 is	 subtitled	 How	 to	 Get	 Things

Right.	At	one	point	he	talks	to	a	structural	engineer	about	how	the	construction
industry	has	changed:

For	most	 of	modern	history,	 he	 explained,	 going	back	 to	medieval	 times,
the	 dominant	 way	 people	 put	 up	 buildings	 was	 by	 going	 out	 and	 hiring
Master	 Builders	 who	 designed	 them,	 engineered	 them,	 and	 oversaw
construction	 from	 start	 to	 finish.	 …	 But	 by	 the	 middle	 of	 the	 twentieth
century	 the	 Master	 Builders	 were	 dead	 and	 gone.	 The	 variety	 and
sophistication	 of	 advancements	 in	 every	 stage	 of	 the	 construction	 process



had	overwhelmed	the	ability	of	any	individual	to	master	them.5

Today’s	software	engineers	are	master	builders,	and	they	are	in	danger	of	being
overwhelmed.
Gawande	also	discusses	the	hero	test	pilots	from	the	early	days	of	high-speed

aircraft,	as	documented	 in	Tom	Wolfe’s	book	The	Right	Stuff.	They	succeeded
through	 improvisation	 and	 daring,	 but	 eventually	 “values	 of	 safety	 and
conscientiousness	 prevailed,	 and	 the	 rock	 star	 status	 of	 the	 test	 pilots	 was
gone.”6	The	universe	applies	a	natural	corrective	to	test	pilots	who	fail	to	adapt,
but	 no	 such	 effect	 exists	 in	 software;	 the	 middle	 and	 upper	 management	 of
software	 companies	 are	 full	 of	 successful	 self-taught	 programmers.	Hopefully,
more	 recent	 graduates	 have	 heard	 about	 design	 patterns	 and	 unit	 tests;	 while
those	are	a	long	way	from	providing	a	scientific	basis	for	software	engineering,
at	 least	 they	have	opened	people’s	 eyes	 to	 the	 fact	 that	 accepted	knowledge	 is
possible	 in	 the	 software	 industry,	 which	 in	 turn	 should	 make	 them	 more
amenable	to	learning	new	ways	if	we	can	discover	them.	But	of	course	they	do
have	to	be	discovered	first.
Otherwise,	we	will	have	to	confront	another	quote	from	Gawande’s	book:

For	 nearly	 all	 of	 history,	 people’s	 lives	 have	 been	 governed	 primarily	 by
ignorance.	…	Failures	of	ignorance	we	can	forgive.	If	the	knowledge	of	the
best	 thing	 to	do	 in	a	given	 situation	does	not	exist,	we	are	happy	 to	have
people	simply	make	their	best	effort.	But	if	the	knowledge	exists	and	is	not
applied	correctly,	it	is	difficult	not	to	be	infuriated.	…	It	is	not	for	nothing
that	philosophers	gave	these	failures	so	unmerciful	a	name—ineptitude.7

Are	 programmers	 inept?	 I	 don’t	 think	 they	 are	 in	 the	 exact	 way	 Gawande
indicts	medicine,	 the	prime	focus	of	his	book.	He	 is	 talking	about	situations	 in
which	 the	 knowledge	of	 how	 to	deliver	 proper	medical	 care	 is	 unquestionably
available	 and	agreed	on	by	all	 involved,	but	 for	various	 reasons	 is	not	 applied
properly.	 Gawande	 sees	 parallels	 to	 this	 struggle	 in	 “almost	 any	 endeavor
requiring	mastery	of	complexity	and	of	large	amounts	of	knowledge”—a	list	that
to	him	includes	foreign	intelligence	failures,	 tottering	banks,	and	(little	does	he
know)	flawed	software	design.8
The	argument	 against	 labeling	programmers	 inept	 is	 that	 they	have	not	 even

reached	the	stage	of	knowing	the	right	way	to	do	their	jobs.	That’s	because	they
have	 stopped	 trying	 to	 figure	 this	out,	which	 isn’t	 a	great	defense:	we	are	 still
inept,	just	in	a	slightly	different	way.
In	1986,	Brooks	wrote	an	essay	titled,	“No	Silver	Bullet”—a	reference	to	the



ammunition	reputedly	needed	to	kill	werewolves.	“We	hear	desperate	cries	for	a
silver	 bullet,	 something	 to	 make	 software	 costs	 drop	 as	 rapidly	 as	 computer
hardware	costs	do,”	he	lamented,

But,	as	we	look	to	 the	horizon	of	a	decade	hence,	we	see	no	silver	bullet.
There	 is	 no	 single	 development,	 in	 either	 technology	 or	 management
technique,	 which	 by	 itself	 promises	 even	 one	 order	 of	 magnitude
improvement	 in	 productivity,	 in	 reliability,	 in	 simplicity.	…	Not	 only	 are
there	 no	 silver	 bullets	 now	 in	 view,	 the	 very	 nature	 of	 software	makes	 it
unlikely	that	there	will	be	any.9

Brooks	 describes	 what	 he	 feels	 is	 the	 essence	 of	 the	 problem,	 the	 inherent
difficulties	of	software:	complexity,	conformity	(the	need	to	fit	new	code	into	an
existing	 API),	 changeability,	 and	 invisibility	 (the	 difficulty	 of	 visualizing	 the
internals).	 He	 lists	 various	 developments	 that	 may	 help,	 including	 object-
oriented	programming	(which	at	that	time	was	just	beginning	its	transformation
into	Object-Oriented	Silver	Bullet	Amalgamated	Holdings),	but	doubts	that	any
of	them	will	supply	the	magic	needed.
Nine	years	later,	almost	at	the	end	of	the	time	period	he	was	considering	in	the

original	paper,	Brooks	produced	a	follow-up	essay	“‘No	Silver	Bullet’	Refired,”
discussing	reactions	to	the	original.	He	wrote,	“Most	of	these	attack	the	central
argument	 that	 there	 is	 no	 magical	 solution,	 and	 my	 clear	 opinion	 that	 there
cannot	be	one.	Most	agree	with	the	arguments	in	‘NSB,’	but	then	go	on	to	assert
that	 there	is	 indeed	a	silver	bullet	 for	 the	software	beast,	which	the	author	has
invented.”10	 The	 italics	 are	 mine,	 because	 I	 can	 think	 of	 no	 more	 succinct
summary	of	the	ongoing	procession	of	alleged	software	panaceas.
Brooks	 ends	 his	 second	 essay	 with	 a	 short	 section	 titled	 “Net	 on	 Bullets—

Position	 Unchanged.”	 He	 quotes	 noted	 software	 observer	 Robert	 Glass,	 in	 an
essay	in	System	Development	magazine:	“At	last,	we	can	focus	on	something	a
little	 more	 viable	 than	 pie	 in	 the	 sky.	 Now,	 perhaps,	 we	 can	 get	 on	 with	 the
incremental	improvements	to	software	productivity	that	are	possible,	rather	than
waiting	for	the	breakthroughs	that	are	not	likely	to	come.”11
The	 history	 of	 software	 engineering	 has	 been	 a	 search	 for	 the	 silver	 bullet.

Structured	 programming,	 formal	 testing,	 object-oriented	 languages,	 design
patterns,	 Agile	 methodologies—all	 are	 useful,	 but	 none	 alone	 can	 slay	 the
werewolf.	 I	 personally	 lived	 through	 all	 these	 transitions,	 even	 structured
programming;	due	to	spending	my	early	years	in	a	self-taught	bubble	of	Fortran
and	BASIC,	 I	was	able	 to	experience	 the	 twilight	of	GOTOs	 firsthand,	 ten	years
later	 than	 the	 rest	 of	 the	 industry.	 Each	 of	 these	 started	 out	 small,	 gained



supporters,	 and	 wound	 up	 being	 hyped	 as	 the	 solution	 to	 all	 programming
problems,	 leading	 to	 inevitable	 disappointment	 and	 disillusionment.	 I	 can
understand	why	programmers	hope	beyond	hope	 for	 the	 silver	bullet	 and	have
eagerly	glommed	onto	a	succession	of	shiny	objects.	“Any	port	 in	a	storm,”	as
the	saying	goes.	Unfortunately,	as	Parnas	put	it,	“[Programmers]	have	been	fed
so	many	‘silver	bullets’	that	they	don’t	believe	anything	anymore.”12
Moreover,	 the	 software	 industry	 has	 gotten	 in	 the	 habit	 of	 abandoning	 old

silver	 bullets	 once	 they	 get	 tarnished.	 It’s	 a	 binary	 view	 of	 the	 world:	 a
programming	 technique	 is	 either	 going	 to	 solve	 every	 problem	 or	 it’s	 useless.
When	Microsoft	 began	 hiring	 software	 test	 engineers	 to	 test	 the	 software,	 the
developers,	who	 previously	 had	 been	 responsible	 for	 this,	 quickly	 segued	 into
“throw	 it	 over	 the	 wall	 to	 test”	 mode.	 In	 the	 mid-2000s,	 Microsoft	 replaced
software	 test	 engineers	with	 software	 design	 engineers	 in	 test,	 responsible	 for
writing	 automated	 tests,	 and	 stopped	 relying	 on	manual	 testing.	With	 the	 later
move	to	unit	tests,	which	are	written	by	developers,	the	company	got	rid	of	a	lot
of	 the	 software	 design	 engineers	 in	 test	 and	 the	 user-interface-level	 tests	 that
they	provided.	Now	with	the	transition	to	the	cloud,	there	is	an	emphasis	on	“test
in	 production,”	where	updates	 to	 the	 software	 are	 quickly	deployed	 to	 a	 small
percentage	 of	 real	 customers,	with	 checks	 in	 place	 to	 quickly	 detect	 problems
and	roll	back	the	update.	Each	new	technique	is	useful,	but	it	should	be	viewed
as	another	arrow	in	the	quiver,	not	the	be-all	and	end-all	that	obviates	the	need
for	what	went	before.
In	1978,	Harlan	Mills	predicted	that	“The	next	generation	of	programmers	will

be	much	more	competent	than	the	first	ones.	They	will	have	to	be.	Just	as	it	was
easier	to	get	into	college	in	the	‘good	old	days,’	it	was	also	easier	to	get	by	as	a
programmer	in	the	‘good	old	days.’	For	this	new	generation,	a	programmer	will
need	 to	 be	 capable	 of	 a	 level	 of	 precision	 and	 productivity	 never	 dreamed	 of
before.”13	As	with	almost	everything	Mills	wrote,	this	is	as	true	today	as	it	was
back	then.
So	what	is	to	be	done?
Most	 of	 my	 recommendations	 involve	 changing	 how	 students	 are	 taught

software	engineering	in	universities.	I	am	not	entirely	blaming	universities;	one
of	 the	main	 reasons	 they	do	not	know	what	 to	 teach	 is	because	 industry	 is	 too
self-satisfied	 and	 complacent	 to	 interact	with	 academia.	 If	 you	 ask	 companies
what	 they	would	 like	 colleges	 to	 teach,	 they	will	 likely	 start	 talking	 about	 so-
called	soft	skills:	communication,	being	on	time,	and	working	well	with	others.
That’s	nice,	but	it’s	not	surprising	that	a	bunch	of	adults,	who	now	have	families,
mortgages,	and	other	 responsibilities,	are	able	 to	 recognize	 that	college	seniors



aren’t	quite	as	mature	as	they	are.	It’s	more	difficult	to	determine	what	technical
skills	may	be	 lacking	 in	college	graduates,	particularly	when	 those	 same	skills
may	be	lacking	in	the	experienced	employees	as	well.
And	 in	 the	 spirit	 of	 The	 Checklist	 Manifesto,	 I	 am	 not	 going	 to	 be	 too

prescriptive.	As	long	as	industry	and	academia	have	talked	and	agreed	on	what	is
to	be	done,	I	will	trust	their	judgment.	But	by	“agreed,”	I	don’t	mean	the	ACM
has	a	conference	where	professors	and	 industry	researchers	show	up;	 there	has
been	 enough	 of	 that	 already.	 The	 ACM,	 to	 its	 credit,	 has	 over	 thirty	 special
interest	 groups,	 including	 ones	 focused	 on	 computer	 science	 education,
programming	 languages,	and	software	engineering,	but	 they	do	not	get	enough
traction	 among	 working	 software	 professionals.	 I	 want	 software	 engineering
programs	to	change	their	curriculum,	and	companies	to	care.
In	any	case,	it’s	a	question	of	timing:	future	programmers	usually	are	exposed

to	 software	 education	 before	 they	 are	 exposed	 to	 software	 jobs,	 so	 let’s	 begin
there.	Through	a	combination	of	academia,	industry,	and	divine	providence,	the
following	areas	need	to	be	addressed.

Force	Students	to	Learn	Something	New

When	 the	 independent	 software	 industry	 emerged	 in	 the	 1980s,	 it	 reinvented
everything	about	managing	software	projects	that	had	been	written	in	the	1960s
and	1970s.	It	is	hard	to	fathom	how	much	time	and	energy	was	wasted	because
of	 this.	 Yet	 there	 is	 no	 reason	 why	 it	 won’t	 happen	 again	 with	 the	 next
generation	of	programmers.
Some	 students	 arrive	 in	 college	with	 no	 knowledge	 of	 how	 to	 program,	 but

many	 have	 significant	 experience.	 The	 sooner	 students	 are	 disabused	 of	 the
notion	 that	 they	 know	 everything	 they	 need	 to	 know,	 the	 sooner	 they	 will
become	 receptive	 to	 new	 ideas.	 I	 made	 it	 through	 my	 Princeton	 computer
science	classes,	and	to	some	extent	my	early	years	at	Microsoft,	on	the	basis	of
the	skills	I	had	taught	myself	in	high	school,	writing	BASIC	games	for	the	IBM
PC.	The	classes	weren’t	easy;	I	had	to	write	a	lot	of	code	and	spent	a	lot	of	late
nights	 in	 von	Neumann	 getting	my	programs	 to	work.	But	 this	 did	 nothing	 to
open	my	mind	to	the	wide	world	of	software	engineering.
Forcing	 students	 to	 learn	 something	new	 rather	 than	get	by	on	 their	 existing

skills	 will	 make	 them	 humble.	 And	 as	 jazz	 trumpeter	 Wynton	 Marsalis	 said,
“The	humble	improve.”14	One	example	is	the	details	of	different	algorithms	for
sorting	arrays,	which	have	names	 like	bubble	sort	 and	selection	sort.	Different



sorting	 algorithms	 perform	 better	 with	 certain	 data,	 which	 Knuth	 (in	 his
landmark	series	of	books	The	Art	of	Computer	Programming)	and	others	worked
out	a	long	time	ago.	When	I	asked	programmers	to	write	a	sort	algorithm	on	the
whiteboard	during	a	Microsoft	interview,	I	didn’t	care	how	they	did	it	or	if	they
knew	the	name	of	the	algorithm.	I	was	looking	for	that	hard-to-capture	ability	to
write	 code	 and	get	 it	 to	work,	 summarized	 in	 the	 statement,	 “They	can	 code.”
But	why	not	expect	that	students	can	rattle	off	the	intricacies	of	different	sorting
algorithms?	 Ironically,	 information	 floating	 around	 the	 Internet	 claims	 that
Microsoft	is	looking	for	this	level	of	detail	during	an	interview,	but	I	never	saw
it,	although	if	you	look	over	the	slides	from	Stanford	University’s	class	Problem-
Solving	for	the	CS	Technical	Interview	or	scan	discussion	threads	on	the	website
Reddit,	it	seems	that	some	companies	are.15
Even	if	students	don’t	remember	all	the	details	of	algorithms,	at	least	they	will

take	 away	 the	 awareness	 that	 there	 is	 a	 lot	 of	 knowledge	 out	 there,	 available
when	they	need	it.	There	are	situations	where	your	sorting	algorithm	does	matter
a	lot,	and	you	want	students	to	develop	the	instinct	of	recognizing	them.
While	you’re	at	it,	have	students	do	up-front	estimates	of	how	much	time	they

think	 it	 will	 take	 them	 to	 complete	 various	 phases	 of	 a	 project	 and	 then	 look
back	 to	 compare	 that	 to	 how	 long	 they	 actually	 took.	 These	 will	 be	 smaller
projects,	so	the	estimates	won’t	be	as	far	off	as	in	the	real	world,	but	it	can’t	hurt
to	 show	 them	 that	 even	 for	 smaller	 projects,	 estimating	 software	 is	 a	 perilous
endeavor.
Certainly	 a	 new	graduate	may	 encounter	 a	 situation	where	 deep	 engineering

knowledge	 is	 not	 needed.	 Coding	 camps,	 which	 claim	 to	 turn	 anybody	 into	 a
programmer	in	a	few	months,	have	a	mixed	reputation,	but	they	do	indicate	that
the	 basic	 knowledge	 required	 for	 certain	 programming	 jobs	 can	 be	 taught
relatively	quickly.
If	 students	 wind	 up	 working	 in	 an	 Agile	 Eden,	 on	 a	 small	 team	 that	 stays

together	 for	 a	 long	 period	 of	 time,	with	 a	 single	 customer	who	 is	 engaged	 in
overseeing	 their	 software,	 calling	well-documented	APIs	 in	 a	 well-understood
environment—then	 great,	 they	 can	 dial	 back	 their	 application	 of	 software
engineering	 principles	 and	 relive	 their	 halcyon	 days.	 But	 if	 not,	 they	 need	 to
have	 the	 core	 engineering	 knowledge.	 It’s	 a	 lot	 easier	 to	 know	 the	 underlying
principles	and	choose	not	 to	apply	 them	than	 it	 is	 to	not	know	 them	and	be	 in
over	your	head.
Students	should	also	study	their	history.	In	June	2001,	a	conference	was	held

in	 Bonn,	 Germany,	 featuring	 presentations	 by	 sixteen	 influential	 software
pioneers;	 the	 results	 (including	 videos)	 were	 collected	 in	 the	 book	 Software



Pioneers.16	 It’s	 an	 impressive	 list:	Wirth	 and	Brooks;	Dahl	 and	Nygaard,	who
designed	Simula;	Friedrich	Bauer,	inventor	of	the	stack;	Kay,	who	came	up	with
Smalltalk	 and	 the	 graphical	 user	 interface;	 Hoare,	 who	 did	 early	 work	 on
program	correctness,	 and	his	 fellow	Algol	68	denouncer	Dijkstra;	Parnas,	who
wrote	some	of	the	earliest	papers	on	modularizing	software;	and	others	whom	I
have	not	mentioned	only	due	to	lack	of	room	in	this	book.
The	 fact	 is,	 these	 luminaries	 won’t	 be	 around	 forever.	 Dijkstra,	 Dahl,	 and

Nygaard	all	died	the	following	year,	within	six	weeks	of	each	other;	Bauer	died
in	2015.	John	Backus,	inventor	of	Fortran,	who	was	invited	but	could	not	attend,
died	in	2007.	It	would	be	a	tremendous	disservice	to	them	if	all	the	programmers
who	 are	 benefiting	 from	 their	 insight	 did	 not	 acknowledge	 their	 contributions,
and	a	 tremendous	waste	of	 time	 if	 their	wisdom	was	not	dispensed	 to	 the	next
generation	of	programmers.

Work	to	Level	the	Playing	Field

We	need	programmers;	we	can’t	afford	to	exclude	anybody	before	they	leave	the
starting	 gate.	 You	want	 to	 attract	 anybody	who	 is	 interested	 in	 programming,
high	school	geek	or	not,	whatever	their	race	and	gender.	Even	if	the	sum	total	of
what	motivates	a	person	to	major	in	computer	science	is	a	single	Hour	of	Code
tutorial	 or	 the	 fact	 that	 they	 like	 to	 play	 video	 games,	 they	 should	 still	 feel
welcome.	 Hopefully	 this	 will	 produce	 a	 double	 benefit:	 making	 other	 new
programmers	 feel	more	welcome	 at	 school,	 and	 producing	 software	 engineers
who	 are	more	 teachable	 and	 open	 to	 lifelong	 learning.	The	 alleged	 rise	 of	 the
“brogrammer,”	that	annoying	fraternity	kid	now	reborn	as	a	web	developer,	is	in
some	 ways	 an	 encouraging	 sign	 of	 software	 careers	 opening	 up	 to	 a	 wider
audience.
Some	universities	have	split	their	introductory	classes	into	multiple	tracks,	so

that	 students	who	have	no	 experience	programming	are	not	 intimidated	by	 the
propeller-heads.17	 There	 is	 also	 a	 push	 to	 organize	 first-year	 programming
classes	 around	 projects	 that	 are	 more	 interesting	 to	 students	 than	 pure
algorithmic	noodling,	such	as	robotics	or	game	programming.18
Another	tactic	is	ensuring	that	having	been	in	the	computer	club	in	high	school

is	 unlikely	 to	 provide	 a	 big	 advantage.	 Carnegie	Mellon	 University	 teaches	 a
language	 called	 ML	 in	 its	 introductory	 class.	 ML	 is	 an	 elegant	 but
nonmainstream	language,	belonging	to	a	class	of	languages	known	as	functional
languages—that	is,	not	a	procedural	or	object-oriented	language.	It’s	something



that	 programmers	 may	 never	 use	 in	 their	 professional	 career	 (although	 not
surprisingly	some	programmers	 today	claim	 that	 functional	programming	 is,	at
last,	the	silver	bullet	that	will	cure	all	programming	ills);	the	big	benefit	of	using
ML	in	an	introductory	class	is	the	likelihood	that	none	of	the	incoming	students
has	 used	 it	 in	 high	 school	 (they	 are	 unlikely	 to	 have	 learned	 any	 functional
languages),	so	it	places	everybody	on	an	equal	footing	at	the	start.
Related	to	this,	there	has	been	a	fair	bit	of	discussion	about	how	to	increase	the

percentage	 of	 women	 majoring	 in	 computer	 science,	 sometimes	 expanded	 to
include	 having	 underrepresented	 minorities	 reach	 proportional	 representation.
Harvey	Mudd	College	has	gotten	a	lot	of	press	recently	for	reaching	a	proportion
of	almost	50	percent	women	in	its	computer	science	program,	with	a	multitrack
approach	 to	 introductory	 classes	 being	 one	 of	 its	 main	 strategies.	 Carnegie
Mellon	also	has	close	to	50	percent	women	in	its	computer	science	program.
Computer	 science	 enrollment	 waxes	 and	 wanes,	 depending	 on	 whether	 the

news	is	focusing	on	stock	option	millionaires	or	tech	companies	going	bankrupt.
A	2017	 report	by	 the	Computing	Research	Association	 shows	 that	 since	2006,
when	computer	science	enrollment	was	at	a	low	point	following	the	bursting	of
the	dot-com	bubble	in	the	early	2000s,	 the	number	of	computer	science	majors
has	tripled,	reaching	an	all-time	high	that	is	almost	twice	the	number	at	the	peak
of	the	dot-com	boom.19
The	 percentage	 of	 female	 computer	 science	majors	was	 14	 percent	 in	 2006,

dropped	to	11	percent	in	2009,	and	had	climbed	back	to	16	percent	by	2015,	the
last	year	covered	by	the	report.	Meanwhile,	 the	percentage	of	underrepresented
minorities	hovered	around	10	percent	 the	 entire	 time,	 ticking	up	 slightly	 to	13
percent	in	2015.20	Given	the	overall	rise	in	enrollment,	these	still	represent	large
increases	 in	 the	 absolute	 numbers	 of	 women	 and	 underrepresented	 minorities
majoring	in	computer	science,	but	they	remain	much	lower	percentages	than	in
the	 overall	 population	 (those	 underrepresented	 minorities,	 as	 defined	 for	 the
report,	constituted	around	30	percent	of	the	US	population	in	the	2010	census).21
Female	programmers	have	a	secret	weapon	here.	Both	academia	and	industry

need	 to	do	more	 to	connect	 students	 and	employees	with	 the	 IEEE	and	ACM;
these	 are	 the	 relevant	 professional	 societies,	 and	 people	 working	 in	 software
engineering	should	know	and	care	about	them.	The	secret	weapon	for	women	is
an	 annual	 conference	 known	 as	 the	 Grace	 Hopper	 Celebration	 of	 Women	 in
Computing,	 named	 after	 the	 author	 of	 the	 first	 compiler	 who	 was	 one	 of	 the
guiding	forces	behind	COBOL	(which,	despite	being	the	butt	of	jokes	today,	was
a	 big	 step	 forward	 in	 its	 time).	 The	 conference	 has	 both	 career-related	 and
technical	 talks.	Such	material	 is	 available	 in	a	 lot	of	places,	but	 the	key	 to	 the



Grace	Hopper	Celebration	is	that	people,	both	students	and	professionals,	attend
it	 in	 large	numbers;	 it	 is	 the	conference	 that	Microsoft,	by	a	 large	margin,	was
the	most	interested	in	sending	employees	to.	(The	conference	does	allow	men	to
attend	and	in	fact	actively	encourages	it.)

Teach	Students	to	Work	with	Larger	Pieces	of	Software

Back	in	1980,	Mills	wrote,

It	is	characteristic	in	software	engineering	that	the	problems	to	be	solved	by
advanced	practitioners	require	sustained	efforts	over	months	or	years	from
many	 people,	 often	 in	 the	 tens	 or	 hundreds.	 This	 kind	 of	mass	 problem-
solving	effort	 requires	a	 radically	different	kind	of	precision	and	scope	 in
techniques	than	are	required	for	individual	problem	solvers.	If	the	precision
and	 scope	 are	 not	 gained	 in	 university	 education,	 it	 is	 difficult	 to	 acquire
them	 later,	 no	matter	 how	well	 motivated	 or	 adept	 a	 person	might	 be	 at
individual,	intuitive	approaches	to	problem	solving.22

It	is	common	nowadays	for	students	to	do	class	programming	projects	in	teams
of	two	to	four,	to	expose	them	to	the	issues	that	arise	when	you	are	not	the	only
person	working	on	a	program.	Even	back	in	my	day,	I	did	several	class	projects
working	with	a	partner.	This	is	a	laudable	attempt	to	expose	students	to	some	of
the	situations	they	will	encounter	working	in	industry.
Unfortunately,	working	with	two	to	four	people	for	one	semester	is	not	a	large

enough	 step	 up	 from	 a	 one-person	 project.	Yes,	 you	will	 see	 somebody	 else’s
coding	 style,	 have	 to	 divide	 up	 the	 code	 and	 work	 out	 an	 API	 between	 each
person’s	 contribution,	 and	 practice	 your	 interpersonal	 skills—all	 valid	 and
possibly	 eye-opening	 experiences.	 But	 fundamentally,	 you	 can	 engineer	 a
project	 like	 that	 using	 the	 programming	 skills	 you	have	 taught	 yourself;	 if	 the
API	interface	you	are	calling	was	worked	out	with	a	fellow	student,	it	is	unlikely
that	there	will	be	confusion	about	the	functionality,	and	in	a	semester	you	are	not
going	to	forget	how	the	code	works,	so	future	maintainability	won’t	be	an	issue.
Recalling	 Brooks’s	 description	 of	 the	 difference	 between	 a	 program	 and	 a
programming	 system	 product—requiring	 both	 a	move	 from	 a	 single	 author	 to
multiple	authors,	and	a	move	from	a	single	component	to	a	program	that	is	built
up	 from	connections	across	API	boundaries—working	on	 small	group	projects
gives	you	a	slight	nudge	 in	both	dimensions,	but	you	still	 remain	firmly	 in	 the
starting	quadrant.23



Larger	 pieces	 of	 software	 will	 also	 let	 students	 practice	 reading	 code,	 and
teach	them	the	benefits	of	clear	variable	names,	code	comments,	and	the	like.	To
get	 the	 benefits	 here,	 they	 need	 software	 that	 is	much	more	 complicated	 than
what	students	could	create	on	their	own.	It’s	not	like	civil	engineering,	where	if
you	 can	model	 the	 stress	 on	 one	 steel	 beam,	 you	 can	 extrapolate	 to	 an	 entire
bridge.	 Perhaps	 some	 companies	 with	 large	 codebases	 would	 volunteer	 their
code,	 viewing	 it	 as	 an	 opportunity	 to	 get	 name	 recognition	 among	 potential
future	employees.	Alternatively,	 if	companies	won’t	fork	over	 their	code,	 there
are	 large	 open-source	 projects	 that	would	 provide	 fruitful	 training	 grounds	 for
students	 too.	Care	 should	 also	 be	 taken	 to	 choose	 code	written	 in	 a	 variety	 of
languages,	 to	 help	 students	 get	 a	 better	 understanding	 of	 what	 languages	 are
most	suitable	to	what	sorts	of	problems.
Debugging	is	also	vastly	easier	on	small	programs,	especially	since	they	tend

to	 run	on	 small	 amounts	of	 data.	 In	 college,	 I	made	do	with	what	was	 termed
printf	debugging,	after	the	printf()	API	in	C	that	is	used	to	print	to	the	console;
if	my	 program	was	 not	 working	 as	 expected,	 I	 would	 litter	 it	 with	 temporary
printf()	 statements	 to	display	 the	contents	of	my	variables	at	different	points
and	then	look	through	the	output	 trying	to	find	the	point	of	 the	first	fault.	This
works	 great	 on	 college-scale	 projects,	 but	 falls	 apart	 rapidly	 in	 the	 corporate
world—at	 least	 for	most	of	us.	Thompson,	who	designed	and	 implemented	 the
first	UNIX	 system,	 has	 stated	 that	 he	much	prefers	 printf	 debugging.24	But	 as
Baird	 put	 it,	 “If	 you	 are	 a	 genius	 like	Ken	Thompson,	 you	 are	 going	 to	write
good	code.”25	The	rest	of	us	need	 to	move	beyond	printf	debugging	 to	get	our
code	working,	as	I	rapidly	discovered	once	I	started	working	on	the	internals	of
Windows	NT	at	Microsoft	(the	fundamental	skill	is	learning	to	use	a	specialized
piece	of	software	called	a	debugger,	which	can	examine	the	memory	of	another
program).
Debugging	can	in	ways	be	compared	to	a	doctor	diagnosing	a	patient—a	skill

that	medical	schools	certainly	spend	a	lot	of	time	teaching.	Of	course,	the	doctor
doesn’t	first	have	to	learn	how	to	build	a	human	being,	which	leaves	more	room
for	other	topics,	but	debugging	is	rarely	taught	 to	students.	There	are	tools	and
techniques	that	can	be	used	for	debugging	large	programs	that	could	be	taught	in
college	 if	 large	 enough	 codebases	 were	 used	 to	 practice	 on,	 but	 I	 arrived	 in
industry	completely	unaware	of	them.
Parnas	expressed	hope	that	internships	would	expose	students	to	these	sorts	of

issues.26	The	problem	is	that	internships	are	primarily	extended	job	interviews	as
well	 as	 advertisements	 for	 the	 company.	 For	 both	 reasons,	 companies	 tend	 to
smooth	 the	 path	 for	 interns	 and	 avoid	 exposing	 them	 to	 too	 much	 code,	 no



matter	 how	well	 organized	 it	might	 be.	Requiring	 interns	 to	 assimilate	 a	 large
body	of	code	would	be	discouraging	and	also	soak	up	a	significant	percentage	of
the	internship.	But	they	could	certainly	be	required	to	do	it	for	a	college	course.

Emphasize	Writing	Readable	Code

Code	is	usually	written	once	and	read	many	times,	but	historically	the	emphasis
has	been	on	making	the	writing	easier,	at	the	expense	of	the	reading.	Requiring
that	 students	 participate	 in	 inspections—formal	 inspections,	 not	 ad	 hoc	 code
reviews—would	 be	 extremely	 valuable	 for	 everyone,	 not	 necessarily	 to	 find
defects,	 but	 to	 ensure	 that	 students	 were	 writing	 readable	 code	 because	 they
would	need	to	read	each	other’s	code	 in	order	 to	participate	 in	 the	 inspections.
Inspections	 can	 be	 daunting	 not	 only	 for	 the	 person	 whose	 code	 is	 being
inspected	(who	can	feel	 like	 they	are	suffering	 through	an	 inquisition)	but	also
for	 the	 inspectors	 (who	 can	 feel	 pressure	 to	 find	 issues).	 But	 these	 can	 be
mitigated,	 partly	 by	 having	 an	 experienced	 person	 leading	 the	 inspection,	 and
partly	 by	 having	 everybody	 in	 turn	 volunteer	 code	 to	 be	 inspected.	 And	 if
students	 complain	 to	 their	 professors	 that	 inspections	 are	 unfair	 because	 they
haven’t	 been	 taught	 what	 their	 code	 should	 look	 like—well,	 that	 would	 be	 a
great	forcing	function	for	professors	to	go	figure	that	out.
There	are	other	techniques	that	have	attempted	to	produce	more	readable	code.

In	 1984,	 Knuth	 published	 the	 paper	 “Literate	 Programming”	 about	 writing
programs	with	 a	 primary	 focus	 on	making	 them	 comprehensible	 to	 others.	He
enthused,	“The	impact	of	this	new	approach	on	my	own	style	has	been	profound,
and	my	excitement	has	continued	unabated	for	more	than	two	years.	I	enjoy	the
new	methodology	so	much	 that	 it	 is	hard	for	me	 to	refrain	from	going	back	 to
every	program	that	I’ve	ever	written	and	recasting	it	in	‘literate’	form.”27
Literate	programming	 involves	 the	programmer	authoring	a	 file	 that	contains

both	the	code	and	an	explanation	of	 it,	mixed	together,	with	the	explanation	as
the	 primary	 focus,	 and	 the	 code	 appearing	 in	 small	 fragments	 following	 the
relevant	explanation;	 fragments	of	code	can	reference	other	 fragments	of	code,
similar	 to	 an	 API	 call.	 A	 separate	 program	 then	 parses	 this	 original	 file	 to
produce	two	pieces	of	output:	a	file	containing	all	the	fragments	pulled	together
so	 they	 can	 be	 compiled,	 and	 a	 formatted	 document	 containing	 all	 of	 the
explanations	 of	 the	 fragments	 (Knuth	 named	 the	 first	 implementation	 of	 this
system	 “WEB,”	 explaining—this	was	 in	 1984,	 remember—“I	 chose	 the	 name
WEB	 partly	 because	 it	 was	 one	 of	 the	 few	 three-letter	 words	 of	 English	 that



hadn’t	 already	 been	 applied	 to	 computers”).28	 When	 my	 kids	 took	 drivers’
education,	they	were	taught	to	do	“commentary	driving,”	in	which	they	explain
their	thoughts	out	loud	as	they	are	driving.	Literate	programming	is	sort	of	like
that	 for	coding,	 except	you	write	your	commentary	down	alongside	 the	 source
code.
Knuth	 did	 an	 experiment	 with	 seven	 undergraduates	 one	 summer,	 teaching

them	literate	programming;	six	of	them	loved	it	because,	as	he	put	it,	“it	blended
well	with	their	psyche.”29	The	methodology	doesn’t	have	broad	adoption;	Knuth
commented	that	if	one	in	fifty	people	are	good	at	programming,	and	one	in	fifty
people	are	good	at	writing,	it	is	hard	to	find	people	who	are	good	at	both.	Knuth
successfully	 used	 it	 for	 the	 popular	 text-formatting	 program	 known	 as	 TEX,
although	for	much	of	it	he	was	the	only	author.
Literate	programming’s	greatest	success	may	be	a	computer	graphics	renderer

—software	that	takes	a	3-D	representation	and	turns	it	into	an	image—written	by
Matt	Pharr	and	Greg	Humphreys,	which	they	documented	in	the	book	Physically
Based	Rendering.30	They	were	inspired	by	the	book	A	Retargetable	C	Compiler,
which	was	 also	 created	 using	 literate	 programming	 (in	 fact,	 as	 a	 collaboration
between	a	Bell	Labs	 researcher,	Christopher	Fraser,	 and	a	Princeton	professor,
David	Hanson).31	In	both	cases,	the	actual	book	was	generated	from	the	original
file	that	had	the	code	fragments	mixed	in;	the	book	therefore	served	as	complete
documentation	of	 the	algorithms	used	for	 the	program	and	was	easy	to	keep	in
sync	with	the	code.
Pharr	 and	 Humphreys	 call	 literate	 programming	 “a	 new	 programming

methodology	based	on	 the	 simple	but	 revolutionary	 idea	 that	programs	 should
be	written	more	for	people’s	consumption	than	for	computers’	consumption.”32
Along	 with	 their	 Stanford	 professor	 Pat	 Hanrahan,	 they	 won	 a	 Scientific	 and
Technical	Academy	Award	for	the	book;	if	you	watch	videos	of	the	presentation,
not	 only	 do	 you	 see	 Kristen	 Bell	 and	 Michael	 B.	 Jordan	 do	 a	 surprisingly
credible	 job	of	 explaining	 recent	 advances	 in	 rendering	 technology,	you	get	 to
hear	Knuth	be	thanked	in	an	Oscar	acceptance	speech.
Is	literate	programming	a	great	idea?	I	honestly	don’t	know;	even	if	Bell	does

have	 a	 copy	 of	 Physically	 Based	 Rendering	 on	 her	 Kindle,	 as	 she	 jokingly
claimed,	 it’s	 just	 one	 example	 of	 a	 successful	 program.	Knuth	 himself	 wrote,
“My	enthusiasm	is	so	great	that	I	must	warn	the	reader	to	discount	much	of	what
I	shall	say	as	the	ravings	of	a	fanatic	who	thinks	he	has	just	seen	a	great	light.”33
In	the	foreword	to	Physically	Based	Rendering,	Hanrahan	observes,	“Writing	a
literate	 program	 is	 a	 lot	more	work	 than	writing	 a	 normal	 program.	After	 all,
who	 ever	 documents	 their	 programs	 in	 the	 first	 place!?	 Moreover,	 who



documents	 them	in	a	pedagogical	style	 that	 is	easy	to	understand?	And	finally,
who	ever	provides	commentary	on	the	theory	and	design	issues	behind	the	code
as	they	write	the	documentation?”34	Maybe	it	is	more	work—but	maybe	that	is
work	that	programmers	need	to	do.
Literate	programming	is	an	interesting	example	of	how	hard	it	is	for	new	ideas

in	programming	 to	emerge	from	academia.	 It	was	 invented	by	Knuth,	who	has
impeccable	 credentials	 and	broad	name	 recognition;	 it	 has	 an	 example	 in	TEX
that	 is	widely	used	and	unusually	 large	for	a	piece	of	software	produced	by	an
academic;	 and	 it	 had	 positive	 results	 from	 the	 informal	 study	 that	 Knuth
performed.	Nonetheless,	it	has	a	hard	time	getting	airplay	when	competing	with
trendier	initiatives	such	as	Agile,	whose	proponents’	livelihoods	are	based	on	its
success.
Whether	 it	 is	a	 literate	program	or	 something	else,	 if	 the	provider	of	an	API

created	more	 formal	 documentation	 on	what	 the	 API	 did,	 rather	 than	 just	 the
method	 name	 and	 parameter	 list,	 it	 would	mitigate	 API	 confusion.	 In	 Java,	 a
method	 has	 to	 list	 every	 exception	 that	 it	 throws	 as	 well	 as	 every	 exception
thrown	 by	 a	method	 it	 calls	 that	 it	 does	 not	 itself	 catch—in	 other	 words,	 the
complete	 set	 of	 exceptions	 that	 a	 caller	 of	 this	 method	 can	 expect	 to	 have
thrown.35	This	requires	more	thinking	and	typing	by	the	programmer,	but	it	does
clarify	some	of	the	potential	side	effects	of	the	method,	allowing	the	calling	code
to	be	more	robust,	since	unclear	side	effects	inside	an	API	are	a	source	of	errors.
Parnas,	 in	 a	 1994	 paper	 with	 Jan	 Madey	 and	 Michal	 Iglewski,	 proposed	 a
symbolic	 notation	 for	 specifying	 the	 side	 effects	 of	 API	 calls.36	 Such	 things
make	 programmers	 blanch,	 but	 if	 it	 helps	 clear	 up	 confusion,	 we	 need	 to
consider	biting	the	bullet	and	having	programmers	learn	to	read	the	notation.

Relocate	Certain	Well-Understood	Topics

The	 university	 majors	 computer	 science	 and	 software	 engineering	 are	 used
inconsistently	 although	 often	 interchangeably.	 But	 certainly,	 you	 have	 people
who	 undertake	 a	 course	 of	 study	 in	 college	 that	 is	more	 theoretical	 than	what
they	apply	on	the	job.	As	McConnell	wrote	about	the	issue	of	computer	science
majors	 becoming	 software	 engineering	 professionals,	 “This	 puts	 computer
scientists	into	a	technological	no-man’s	land.	They	are	called	scientists,	but	they
are	 performing	 job	 functions	 that	 are	 traditionally	 performed	 by	 engineers
without	the	benefit	of	engineering	training.”37



We	 need	 a	 real	 software	 engineering	major	 that	 focuses	 on	 the	 engineering
practices.	Yet	undergraduate	curriculums	are	already	jam-packed.	How	will	they
make	room	to	teach	more	fundamentals?
One	 answer	 is	 to	 push	 a	 few	 time-honored	 subjects	 out	 of	 the	 software

engineering	major.	 There	 are	 areas	 of	 computer	 science	where	 the	 theory	 and
practice	 have	 been	 fleshed	 out	 reasonably	 well	 over	 the	 years,	 including
graphics,	 compilers,	 and	 databases.	 These	 are	 often	 taught	 in	 undergraduate
courses,	but	 the	reality	 is	 that	unless	a	student	goes	on	to	work	in	 that	specific
area,	these	courses	don’t	add	much	value,	except	as	a	chance	to	write	more	code.
And	 if	 students	 do	 wind	 up	 working	 in	 that	 area,	 they	 can	 look	 up	 that
knowledge.	The	problems	with	software	engineering	are	generally	not	in	finding
the	 correct	 algorithm;	 they	 involve	 translating	 that	 algorithm	 into	 code	 that
works	 correctly.	 So	 while	 it’s	 good	 for	 all	 students	 to	 learn	 fundamental
algorithms	for	sorting	and	such,	the	more	advanced	ones	aren’t	necessary.
Of	 course,	 these	 are	 frequently	 the	 areas	 that	 professors	 specialize	 in,	 so

teaching	such	classes	has	appeal	to	them.	I’m	not	saying	they	shouldn’t	be	taught
at	all;	 I’m	saying	 they	should	be	moved	over	 to	a	real	computer	science	major
that	does	not	claim	to	teach	software	engineering	or,	instead,	offered	to	graduate
students.
Pushing	 these	 topics	 to	 graduate	 school	 would	 allow	 a	 student	 who	 was

interested	 to	 concentrate	 on	 them,	which	would	 allow	 students	 to	 differentiate
themselves	 more.	 Currently,	 software	 engineers	 coming	 out	 of	 college	 are
viewed	as	fungible;	 it	 is	expected	 that	any	programmer,	 if	 found	competent	by
whatever	 hiring	procedure	 is	 used,	 can	go	work	on	 any	part	 of	 a	 program.	As
software	 becomes	more	 and	more	 complicated,	 however,	 it	makes	more	 sense
for	people	to	specialize	in	different	areas.
Mills	wrote	about	specialization	on	a	surgical	team:

A	 surgical	 team	 represents	 a	 good	 example	 of	 work	 structuring,	 with
different	 roles	 predefined	 by	 the	 profession	 and	 previous	 education.
Surgery,	 anesthesiology,	 radiology,	 nursing,	 etc.	 are	 dimensions	 of	 work
structuring	 in	 a	 surgical	 team.	The	 communication	 between	 these	 roles	 is
crisp	 and	 clean—with	 a	 low	 bandwidth	 at	 their	 interface,	 e.g.,	 at	 the
“sponge	 and	 scalpel”	 level,	 not	 the	 whole	 bandwidth	 of	 medical
knowledge.38

Gawande	also	 talks	about	specialization	 in	his	book	on	checklists.	Following
his	 guidance,	 the	 way	 to	 ensure	 that	 software	 was	 secure,	 fast,	 reliable,	 or
whatever	other	aspect	you	were	concerned	about,	would	not	be	to	make	a	long



checklist	 that	 had	 to	 be	 followed	 by	 every	 programmer.	 It	 would	 be	 to	 hire
programmers	 who	 were	 specialized	 in	 security,	 performance,	 reliability,	 or
whatever,	and	 then	have	a	checklist	 item	 that	 simply	 read,	“Have	you	checked
with	 the	 security/performance/reliability/whatever	 expert	 that	 they	 are	 happy
with	 this	 software?”	 In	 an	 undergraduate	 education,	 not	 all	 these	 areas	 can	 be
covered.	Making	them	graduate	specialties	would	solve	that	problem	and	give	a
graduate	 degree	 higher	 status	 in	 industry.	 Companies,	 in	 turn,	 would	 learn	 to
favor	them	when	hiring	people	to	fill	these	specialized	roles.

Pay	Attention	to	Empirical	Studies

In	 1995,	 Brooks	 wrote,	 “In	 preparing	 my	 retrospective	 and	 update	 of	 The
Mythical	Man-Month,	I	was	struck	by	how	few	of	the	propositions	asserted	in	it
have	 been	 critiqued,	 proven,	 or	 disproven	 by	 ongoing	 software	 engineering
research	and	experience.”39
Empirical	 studies	 never	 went	 away;	 the	 Empirical	 Studies	 of	 Programmers

workshops	 continued,	 and	 the	 journal	Empirical	 Software	 Engineering	 is	 still
published.	A	well-known	(within	the	field	of	empirical	research)	conference	was
held	at	Dagstuhl	Castle	 in	Germany	in	2006.	The	book	Making	Software,	 from
2011,	 has	 thirty	 essays	 on	 empirical	 software	 engineering,	 including	 “How
Effective	 Is	 Test-Driven	 Development”	 and	 “How	 Usable	 Are	 Your	 APIs.”40
The	Psychology	of	Programming	Interest	Group	in	England	continues	to	put	on
an	annual	conference.
What	changed	was	 the	appetite	of	programmers	 for	consuming	 this	material.

With	 the	PC	explosion	 in	 the	 late	1970s	and	1980s	came	 the	emergence	of	an
independent	software	industry,	filled	with	self-taught	programmers	who	quickly
realized	 they	 could	 make	 lots	 of	 money	 by	 continuing	 the	 practices	 they	 had
taught	themselves.	They	felt	no	need	to	look	at	research	on	how	to	improve,	so
they	 didn’t.	Whatever	methodology	 turned	 out	 to	 be	 critical	 for	 their	 success,
such	 as	 tracking	 bugs	 or	 scheduling,	 they	 gradually	 and	 painfully	 reinvented,
unaware	 that	 the	 prior	 generation	 had	 already	 written	 extensively	 on	 how	 to
address	these	problems.
The	irony	is	that	programmers	generally	like	to	get	uncommon	insight	into	the

way	the	world	works.	In	1984,	when	I	was	a	senior	in	high	school,	I	attended	a
weeklong	camp	at	the	University	of	Waterloo	for	students	who	had	done	well	in
an	annual	math	competition.	At	this	meeting,	essentially	the	annual	gathering	of
the	 Future	 Programmers	 of	 Canada	 Society,	 a	 fellow	 attendee	 was	 reading	 a



book	by	a	baseball	writer	I	had	never	heard	of	named	Bill	James.	The	book	was
all	 about	 his	 attempts	 to	 bring	 mathematical	 rigor	 to	 the	 game:	 taking	 long-
unquestioned	 “rules”	 of	 baseball,	 such	 as	 using	 wins	 as	 a	 measure	 of	 pitcher
quality	or	 the	value	of	a	stolen	base,	and	 trying	 to	answer	 them	by	mining	 the
rich	 trove	of	statistical	data	 that	had	been	built	up	over	 the	previous	century.	 I
immediately	 loved	 this	 idea	 and	 became	 a	 James	 fan,	 as	 many	 other
programmers	are.	But	somehow	this	never	translated	into	thinking	about	whether
the	long-unquestioned	“rules”	of	software	could	also	be	studied	and	analyzed.
Glass,	 in	his	 collection	of	 essays	Software	Conflict,	 asks,	 “So	why	don’t	we

have	 an	 experimental	 component	 to	 our	 field’s	 science	 and	 our	 field’s
engineering?”	and	continues,

There	are	two	reasons	that	I	can	think	of:

1.	Experiments	that	are	properly	controlled	and	conducted	are	hard	and
expensive	to	conduct.	It’s	not	enough	to	rope	three	undergraduate
students	into	writing	50	lines	of	Basic	and	then	compare	notes.	If	an
experiment	is	going	to	be	meaningful,	it	ought	to	involve	real	software
developers	solving	real	software	problems	in	a	carefully	predefined	and
measured	setting.

2.	The	engineers	and	scientists	in	our	field	are	neither	motivated	nor
prepared	to	conduct	meaningful	experiments.	Advocacy	[by	which
Glass	means	writing	that	promotes	a	methodology	without	any
supporting	experimental	evidence]	has	been	with	us	for	so	long	that	is
just	doesn’t	seem	to	occur	to	anyone	that	there’s	a	component	missing
from	our	research.	And	without	motivation	to	supply	the	missing
component,	no	one	is	getting	the	proper	intellectual	tools	to	know	how
to	conduct	experimental	research.

Glass	does	allow,	“Perhaps	 the	words	no	one	 in	 the	preceding	paragraph	 is	an
example	of	going	too	far.	For	example,	the	folks	working	on	the	intersection	of
software	 and	 psychology,	 the	 ‘empirical	 studies’	 folks,	 are	 doing	 fairly
interesting	experimental	work.”41
Just	 because	 empirical	 studies	 of	 programming	 are	 hard	 doesn’t	 mean	 that

researchers	 should	 not	 be	 doing	 them—and	 it	 certainly	 isn’t	 an	 excuse	 for
companies	to	ignore	what	has	already	been	studied.	The	name	empirical	studies
and	alternative	term	software	psychology	need	an	upgrade.	What	we	are	talking
about	is	programming	science.	Normally	I	would	put	this	one	on	academia	and
say	 that	 it	 needed	 to	do	more	of	 this	 sort	 of	 research.	But	 industry	 is	 also	not
conditioned	to	care	about	this	sort	of	research	because	it	has	been	so	successful



without	it.
When	 I	 worked	 at	 Microsoft,	 particularly	 when	 I	 was	 in	 Engineering

Excellence,	I	observed	a	resistance	to	advice	if	 it	was	gleaned	from	experience
within	Microsoft	 itself.	There	was	a	team	in	Microsoft	Research	that	examined
software	engineering,	generally	using	Microsoft	as	its	population	of	interest,	but
the	results,	although	considered	to	be	thought-provoking	tidbits,	rarely	had	any
uptake	back	in	the	product	groups.	It	was	a	variation	of	the	Gell-Mann	Amnesia
effect,	where	people	 realize	 that	news	stories	about	 their	areas	of	expertise	are
simplistic	 or	 inaccurate,	 but	 completely	 trust	 news	 stories	 about	 topics	 they
know	 nothing	 about.	 If	 you	 told	 members	 of	 one	 Microsoft	 team	 about	 the
engineering	 experience	 of	 another	 team,	 they	 would	 immediately	 be	 able	 to
identify—because	of	their	knowledge	of	the	internals	of	Microsoft—the	ways	in
which	 that	other	 team	was	different	 from	 their	 team,	and	 therefore	dismiss	 the
guidance	as	not	relevant.	Meanwhile,	 they	would	happily	slurp	up	guidance	on
Scrum,	 even	 if	 it	 was	 completely	 inapplicable	 to	 their	 team,	 because	 they
weren’t	aware	of	the	details	of	the	environment	in	which	it	had	been	successful.

Set	a	Goal	of	Eventual	Certification	and	Licensing

McConnell’s	 1999	 book	After	 the	 Gold	 Rush:	 Creating	 a	 True	 Profession	 of
Software	Engineering	addresses	a	theme	similar	to	that	of	this	book:	How	do	we
fix	 software	 engineering?	He	 references	 an	 earlier	 iteration	 of	 SWEBOK	 as	 a
guide	for	what	universities	should	teach	students,	and	proposes	the	certification
(voluntary)	or	licensing	(mandatory)	of	software	engineers.42
I	 concur	 with	 McConnell’s	 ultimate	 goal:	 software	 engineering	 should	 be

taught	 from	 an	 agreed-on	 body	 of	 knowledge,	 which	 could	 then	 lead	 to	 the
certification	 and	 licensing	 of	 software	 engineers	 based	 on	 that	 body	 of
knowledge.	This	would	benefit	everybody—colleges	would	know	what	to	teach,
companies	would	 know	what	 to	 interview	 for,	 and	 software	 developers	would
know	the	gaps	 in	 their	skills,	and	of	course,	 in	 the	end,	 they	would	do	a	better
job	and	we	would	have	more	reliable	software.
Unfortunately,	 SWEBOK	 is	 still	 not	 yet	 ready	 for	 prime	 time;	 it	 includes

curriculum	guidelines,	but	I	agree	with	the	SEMAT	book’s	dismissive	summary
of	 those:	“guidelines	at	a	very	high	 level,	 leaving	 (too)	much	 to	be	defined	by
individual	 universities	 and	 professors.”43	 In	 2013,	 the	 Texas	 Board	 of
Professional	Engineers,	 as	 part	 of	 the	 licensing	of	 software	 engineers,	 adopted
the	Principles	and	Practice	of	Engineering	exam,	which	exists	for	a	wide	variety



of	disciplines,	 in	the	area	of	software	engineering.44	The	exam,	which	covers	a
broad	 but	 shallow	 SWEBOK-ish	 range	 of	 knowledge,	 is	 being	 viewed	with	 a
“wait-and-see”	attitude	by	other	jurisdictions.45
Even	 with	 a	 well-defined	 body	 of	 knowledge,	 companies’	 attitude	 toward

certification	and	 licensing	would	 likely	 still	be	 indifferent	 at	best,	 and	actively
oppositional	 at	worst,	 because	 they	 view	 them	 as	 having	 no	 tangible	 benefits.
Companies	care	about	employees	knowing	the	specific	languages	and	tools	they
need	for	their	job,	but	those	vary	widely	across	the	industry.	In	addition,	they	are
concerned	that	licensing	would	open	up	the	issue	of	liability	for	bugs.
Parnas	provided	 a	version	of	 a	 standard	 line	 (attributing	 it	 to	 a	 friend):	 “We

live	 in	 countries	 where	 you	 need	 a	 license	 to	 cut	 hair,	 but	 you	 don’t	 need
anything	 to	 write	 code	 for	 safety	 critical	 software	 or	 other	 mission	 critical
software.”46	McConnell	helpfully	 supplied	a	 list	of	over	 thirty	professions	 that
require	 licensing	 in	 the	 state	 of	 California,	 including	 custom	 upholsterer	 and
mule	jockey.47	It’s	an	easy	punch	to	land,	but	it’s	still	true.
Certification	 and	 licensing	 should	 happen,	 but	 not	 right	 away;	 what	 is

important	 is	 that	 industry	and	academia	agree	that	 they	are	a	goal	 to	strive	for.
Maybe	it’s	not	required	for	everybody,	and	maybe	you	need	a	master’s	degree,
but	we	should	set	it	as	a	long-term	goal.	In	1999,	McConnell	wrote,	“We	need	to
continue	 working	 on	 several	 fronts—instituting	 widespread	 undergraduate
education,	 licensing	 professional	 software	 engineers,	 establishing	 software
engineering	certification	programs,	and	 thoroughly	diffusing	best	practices	 into
the	industry.”48	Twenty	years	later,	there	has	been	almost	zero	progress	in	those
areas.
 

In	the	meantime,	what	do	we	have?	What	we	have	is	the	situation	I	found	myself
in,	twenty-plus	years	into	my	career	as	a	software	developer:	I	realized	that	there
was	 a	 curious	 void	 in	my	professional	 life	 because	 there	was	 no	 craftsperson-
apprentice	 relationship	 that	 I	 could	 develop	 with	 recent	 college	 graduates.	 I
could	mentor	people	on	how	to	navigate	the	waters	of	corporate	life,	but	that	was
generic	advice	that	they	could	get	from	anybody.	Like	others,	my	guidance	was
vague:	“Well,	in	this	one	case	I	remember	this	sort	of	thing	worked	OK,	so	why
not	try	that?”
I	 saw	 the	author	Michael	Lewis	give	a	 talk	at	Microsoft	 about	his	book	The

Big	 Short,	which	 covered	 the	 financial	meltdown	 of	 2008.	Lewis’s	 first	 book,
Liar’s	Poker,	chronicled	his	time	working	on	Wall	Street,	the	headquarters	of	the
US	financial	services	 industry.	He	mentioned	 that	over	 the	years,	many	people
told	him	they	went	to	work	on	Wall	Street	after	reading	Liar’s	Poker.	He	found



this	 curious	because	his	 intent	had	been	 to	demonstrate	 that	Wall	Street	was	a
silly	 place	 to	 work,	 but	 somehow	 it	 came	 across	 to	 college	 students	 as	 an
interesting	place	 to	work.	He	 realized	 that	an	author	doesn’t	have	control	over
readers,	but	he	did	feel	a	little	funny	because	he	felt	that	Wall	Street	was	a	huge
waste	of	talent.
Is	the	software	industry	a	huge	waste	of	talent?	I	am	sure	that	most	Wall	Street

workers	 feel	 that	 they	 provide	 a	 valuable	 service,	 notwithstanding	 Lewis’s
opinion.	And	I	certainly	don’t	feel	that	my	career	has	been	a	waste.	I’ve	worked
on	software	products	that	are	extremely	useful	to	many	people.	A	few	employees
have	told	me	that	reading	one	of	my	earlier	books	inspired	them	to	want	to	work
for	Microsoft,	which	made	me	proud,	not	guilty.	Still,	I	have	felt	the	effect	of	a
problem	 that	 a	 Microsoft	 executive	 once	 lamented:	 “We	 hire	 a	 lot	 of	 smart
people	at	Microsoft,	but	they	tend	to	cancel	each	other	out.”	Expending	time	and
energy,	when	I	was	working	on	product	teams	at	Microsoft,	convincing	peers	of
the	benefits	of	a	certain	approach	to	the	software	development	process	(or	worse,
failing	to	convince	them	because	their	unexamined	beliefs	were	as	entrenched	as
mine),	 when	 the	 positives	 or	 negatives	 of	 such	 a	 process	 should	 have	 been
worked	out	long	ago,	was	extremely	wasteful,	not	to	mention	frustrating.	I	think
of	the	first	line	of	Allen	Ginsberg’s	poem	“Howl,”	“I	saw	the	best	minds	of	my
generation	destroyed	by	madness,”	and	I	feel	some	of	his	frustration.49
Steve	Lohr,	in	his	history	of	software	titled	Go	To,	stated	the	proposition	that

“Americans	typically	brought	an	engineering	mentality	to	the	task	of	designing
programming	 languages—compromises	 were	 made	 to	 solve	 the	 computing
problem	 at	 hand.	 The	 Europeans,	 by	 contrast,	 often	 took	 a	 more	 theoretical
academic	 approach	 to	 language	 design.”50	 This	 claim,	 which	 he	 admits	 is	 a
“broad	generalization,”	 is	not	borne	out	by	 the	facts.	You	can	 look	back	at	 the
history	 of	 programming	 languages	 and	 find	 similar	 ideas	 being	 propagated	 on
both	sides	of	the	Atlantic.	Simula	and	Pascal	came	from	Europe,	and	Smalltalk
and	Algol	 came	 from	 the	United	 States.	 The	 two	 early	 salespeople	 of	 object-
oriented	 design,	 Meyer	 and	 Cox,	 were	 French	 and	 American,	 respectively.
Dijkstra	was	European,	and	Knuth	is	American.	A	Dane	working	in	the	United
States	 designed	 C++,	 the	 ultimate	 compromise.	 If	 the	 availability	 of	 peanut
butter	has	an	effect	on	language	design,	I	haven’t	observed	it.
What	is	undoubtedly	true,	however,	is	that	as	the	needs	of	industry	outstripped

the	 ability	of	 college	professors	 to	keep	up,	 the	nexus	of	 software	 engineering
moved	 firmly	 to	 the	United	States,	 because	 that’s	where	 almost	 all	 the	 largest
software	companies	are	headquartered.
Is	 the	 current	 state	 of	 software	 a	 reflection	 of	 US	 values	 that	 favor



individuality	 over	 community,	 breaking	 the	 rules	 over	 following	 them,
MacGyver	over	Hercule	Poirot?	It’s	not	that	US	companies	institutionally	ignore
quality;	 the	 hardware	 companies	 that	 initially	 fostered	 an	 engineering-focused
approach	 to	 software,	 when	 they	 were	 the	 places	 where	 software	 was	 being
written	back	in	the	1960s,	were	also	primarily	American.	Kurt	Andersen,	in	his
recent	book	Fantasyland,	discusses	how	starting	in	the	1960s	Americans	began
to	drift	away	from	rationalism,	as	individuals	increasingly	felt	that	“your	beliefs
about	 anything	 are	 equally	 as	 true	 as	 anyone	 else’s	…	What	 I	 believe	 is	 true
because	 I	 want	 and	 feel	 it	 to	 be	 true.”51	 This	 would	 make	 software	 the
quintessential	 American	 industry,	 and	 certainly	 there	 is	 something	 about	 the
speed	with	which	software	has	arrived	on	the	scene,	coupled	with	the	amount	of
money	being	made	today,	that	seems	to	uniquely	bind	software	to	foundational
US	 legends—the	 self-made	 person,	 the	 genius	 in	 the	 garage,	 the	 myth	 of	 the
West.	 It	 may	 be	 impossible	 to	 convince	 US	 software	 leaders	 that	 they	 aren’t
experiencing	manifest	destiny	replayed	 in	 the	 twenty-first	century,	and	 that	 the
software	 industry	 should	be	anything	other	 than	exactly	what	 it	 is	now.	 If	you
use	the	number	of	millionaires	as	your	metric	for	determining	the	success	of	an
industry,	software	engineering	appears	to	be	doing	great.
But	 that	 doesn’t	 mean	we	 don’t	 need	 to	 change	 it.	 And	 the	 change	 doesn’t

have	 to	 originate	 in	 the	United	 States.	 There	 are	 plenty	 of	 technologies,	 from
cars	to	skyscrapers	to	solar	panels,	which	initially	flowered	in	the	United	States
but	 whose	 center	 of	 innovation	 later	 shifted	 elsewhere.	 Currently,	 the	 United
States	 is	 the	 predominant	 source	 of	 wisdom,	 as	 it	 were,	 on	 software
development,	 but	 there	 is	 no	 innate	 reason	 that	 it	 has	 to	 stay	 that	 way,
particularly	 if	 other	 countries	 are	 more	 willing	 to	 invest	 in	 fundamental
engineering	research.
Mills	fretted	about	this	back	in	1980,	referring	to	the	missile	gap	that	existed

with	the	Soviet	Union	in	the	early	days	of	the	Cold	War:	“The	inertia	of	several
hundred	 thousand	 undisciplined	 programmers	 in	 the	 United	 States	 is	 a	 real
reason	 for	 concern.	 …	 Unless	 we	 address	 this	 problem	 with	 exceptional
measures,	 we	 are	 on	 the	 way	 to	 a	 ‘software	 gap’	 much	 more	 serious	 and
persistent	 than	 the	 famous	 ‘missile	 gap’	which	helped	 fuel	 the	 very	growth	of
our	 electronics	 industry.”52	 So	 far	 this	 has	 not	 manifested	 itself:	 the	 mass	 of
undisciplined	programmers	has	grown,	but	they	are	not	uniquely	concentrated	in
the	United	States.
Meanwhile,	noted	skeptic	Edward	Yourdon	 (whose	early	warnings	about	 the

impending	 Y2K	 catastrophe,	 depending	 on	 whom	 you	 ask,	 either	 vastly
overstated	the	problem	or	gave	the	world	time	to	avoid	it)	published	a	book	in



1992	titled	Decline	and	Fall	of	the	American	Programmer,	in	which	he	blithely
predicted,	 “The	 American	 programmer	 is	 about	 to	 share	 the	 fate	 of	 the	 dodo
bird.	 By	 the	 end	 of	 this	 decade,	 I	 foresee	 massive	 unemployment	 among	 the
ranks	of	American	programmers,	systems	analysts,	and	software	engineers.”	His
premise	 was	 that	 “American	 software	 is	 developed	 at	 a	 higher	 cost,	 less
productively,	 and	 with	 less	 quality	 than	 that	 of	 several	 other	 countries.”
Therefore,	“if	your	slovenly	bunch	of	software	engineers	doesn’t	want	to	play	at
the	world-class	level	of	performance,	trade	them	in	for	a	new	bunch	from	Ireland
or	Singapore.”53
This	 has	 not	 come	 to	 pass.	 US	 code	 is	 currently	 no	worse	 than	 other	 code.

Yourdon	 himself,	 a	 mere	 four	 years	 later,	 published	 the	 book	 Rise	 and
Resurrection	of	 the	American	Programmer,	 in	which	he	walked	back	 some	of
his	earlier	warnings,	inspired	by,	among	other	things,	the	growth	of	the	Internet
and	 success	 of	 Microsoft.	 Referring	 to	 the	 strawperson	 COBOL	 programmer
from	his	first	book,	Yourdon	wrote,	“That	American	programmer	is	indeed	dead,
or	 at	 least	 in	 grave	 peril.	 But	 there’s	 a	 new	 generation	 of	 American
programmers,	doing	exciting	new	things.”54	But	of	course	 that	doesn’t	mean	 it
can’t	happen	in	the	future.	Personally	I	don’t	care;	I	want	software	to	become	a
real	engineering	discipline,	but	this	is	unrelated	to	whether	the	center	remains	in
the	United	States.
Coming	back	 to	 the	original	question	I	asked	 in	 the	 introduction,	 Is	software

development	 really	 hard,	 or	 are	 software	 developers	 not	 that	 good	 at	 it?
Certainly	there	are	parts	of	software	that	are	hard,	but	software	developers	seem
to	do	everything	in	their	power	to	make	even	the	easy	parts	harder	by	wasting	an
inordinate	 amount	 of	 time	 on	 reinvention	 and	 inefficient	 approaches.	A	 lot	 of
mistakes	are	in	fundamental	areas	that	should	be	understood	by	now,	and	so	the
software	industry	needs	to	push	to	figure	them	out	and	then	teach	people	about
them,	so	we	can	devote	our	energy	to	the	parts	that	really	are	hard.
In	the	1982	coming-of-age	movie	Fast	Times	at	Ridgemont	High,	the	character

of	Jeff	Spicoli	is	visited	on	the	evening	of	his	high	school	graduation	dance	by
his	 history	 teacher,	 the	 inimitable	 Mr.	 Hand,	 and	 forced	 to	 atone	 for	 his
previously	 lackluster	 commitment	 to	 scholarship	 by	 demonstrating	 his
knowledge	 of	 the	 American	 Revolution.	 At	 the	 end,	 Spicoli	 produces	 this
summary:	 “What	 Jefferson	 was	 saying	 was,	 hey,	 we	 left	 this	 England	 place
because	it	was	bogus.	So	if	we	don’t	get	some	cool	rules	ourselves,	pronto,	we’ll
just	be	bogus	too.”55
This	 is	what	 software	 engineering	 is	 facing	 today.	We	 left	 behind	 the	 other

jobs	we	 could	 have	 taken	 because	 they	 didn’t	 appeal	 to	 us,	 and	 headed	 to	 the



land	of	software	where	we	could	be	clever	and	creative.	We	had	fun	for	a	while,
but	now	the	whole	world	is	depending	on	us,	and	if	we	don’t	get	some	cool	rules
ourselves,	pronto,	…	well,	you	know.
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