

The	Self-taught	Programmer

Cory	Althoff

Copyright	©	2016	by	Cory	Althoff
All	rights	reserved.	This	book	or	any	portion	thereof
may	not	be	reproduced	or	used	in	any	manner	whatsoever
without	the	express	written	permission	of	the	publisher
except	for	the	use	of	brief	quotations	in	a	book	review.
ISBN	978-1-940733-01-2
Library	of	Congress	Number
www.theselftaughtprogrammer.io

This	book	is	dedicated	to	my	parents	Abby	and	James	Althoff	for	always	supporting	me.

Part	I	Introduction	to	Programming

Chapter	1.	Introduction

"Most	good	programmers	do	programming	not	because	they	expect	to	get	paid	or	get
adulation	by	the	public,	but	because	it	is	fun	to	program."
—	Linus	Torvalds

I	majored	in	Political	Science	at	Clemson	University.	Before	I	chose	this	path	I	considered
Computer	Science.	I	even	enrolled	in	an	Introduction	to	Programming	class	my	Freshman
year,	but	quickly	dropped	it.	It	was	too	difficult.	While	living	in	Silicon	Valley	after
graduation	I	decided	I	needed	to	learn	to	program.	A	year	later,	I	was	working	as	a	software
engineer	II	at	eBay	(above	an	entry	level	software	engineer,	but	below	a	senior	software
engineer).	I	don’t	want	to	give	the	impression	that	this	was	easy.	It	was	incredibly	challenging.
In	between	throwing	things	at	the	wall,	it	was	a	lot	of	fun	too.

I	started	my	journey	learning	to	program	in	Python,	a	popular	programming	language.
This	book,	however,	is	not	about	teaching	you	how	to	program	in	a	specific	language
(although	it	does).	There	are	plenty	of	amazing		books,	classes	and	resources	that	do	that
already.	The	focus	is	everything	else	those	standard	resources	do	not	teach	you.	It’s	about	the
things	I	had	to	learn	on	my	own	in	order	to	become	a	software	engineer.	This	book	is	not
meant	for	someone	looking	for	a	casual	introduction	to	programming	so	they	can	write	code
as	a	hobby.	This	book	is	written	specifically	for	those	looking	to	program	professionally.
Whether	your	goal	is	to	become	a	software	engineer,	an	entrepreneur	or	to	use	your	new
programming	skills	in	another	profession,	this	book	was	written		for	you.

Learning	a	programming	language	is	only	part	of	the	battle.	There	are	other	skills	you
need	in	order	to	speak	the	language	of	computer	scientists.	I	will	teach	you	everything	I
learned	on	my	journey	from	programming	novice	to	professional	software	engineer.	I	wrote
this	book	to	give	aspiring	programmers	an	outline	of	what	they	need	to	know.	As	a	self-taught
programmer,	I	didn’t	know	what	I	needed	to	learn.	The		introduction	to		programming	books
are	all		the	same.	They	teach	you	the	basics	of	how	to	program	in	either	Python	or	Ruby		and
send	you	on	your	way.	The	feedback	I’ve	heard	from	people	finishing	these	books	is,	“What
do	I	do	now?	I	am	not		a	programmer	yet,	and	I	don’t	know	what	to	learn	next.”	This	book	is
my	answer	to	that	question.

How	This	Book	Is	Structured

This	book	is	divided	into	six	parts,	based	on	moving	through	the	following	stages:
learning	to	program,	learning	object-oriented	programming,	learning	to	use	programs	(like
your	operating	system)	that	will	make	you	a	better	programmer,	learning	Computer	Science,
learning	to	program	for	production	and	getting	a	job	and	working	on	a	team.

Many	of	the	subjects	covered	in	a	single	chapter	of	this	book	could	be—and	are—
covered	by	entire	books.	My	goal	is	not	to	cover	every	detail	of	every	subject	you	need	to
know.	My	goal	is	to	give	you	a	map—an	outline	of	all	of	the	skills	you	need	to	develop	in
order	to	program	professionally.

Part	I:	Introduction	to	Programming.	You	will	write	your	first	program	as	quickly	as
possible,	hopefully	today.	If	you	already	know	how	to	program	you	can	use	this	section	to
start	learning	Python.	If	you	already	know	Python,	skip	it.
								Part	II:	Introduction	to	Object-oriented	Programming.	I	cover	the	different	programming
paradigms—focussing	on	object-oriented	programming—and	build	a	game	that	will	show
you	the	power	of	programming.	After	this	section,	you’ll	be	hooked	on	programming.
								Part	III:	Introduction	to	Programming	Tools.	You	learn	to	use	different	tools	to	take	your
programming	productivity	to	the	next	level.	By	this	point	you	are	hooked	on	programming
and	want	to	get	even	better.	You	will	learn	more	about	your	operating	system,	how	to
collaborate	with	other	engineers	using	version	control,	how	to	use	your	Interactive
Development	Environment	to	boost	your	productivity	and	how	to	install	and	manage	other
people's	programs.
								Part	IV:	Introduction	to	Computer	Science.	Now	that	you	can	program,	you	will	have	all
kinds	of	questions	about	how	everything	works.	This	section	is	where	a	lot	of	those	questions
get	answered.	I	cover	algorithms	and	data	structures,	network	programming	and	computer
architecture.
								Part	V:	Programming	for	Production.	You	will	learn	to	program	for	production	(create
	code	that	is	actually	used	by	other	people).	I	cover	the	software	development	process,	testing
and	best	programming	practices.
								Part	VI:	Land	a	Job.	The	final	section	is	about	getting	a	job	as	a	software	engineer,
working	on	a	team	and	improving	as	a	programmer.	I	provide	tips	on	how	to	pass	a	technical
interview,	work		on	a	team		as	well	as	advice	on	how	to	further	improve	your	skills.

If	you	don’t	have	any	programming	experience,	you	should	try	to	practice
programming	on	your	own	as	much	as	possible	between	each	section.	There	are	additional
resources	to	explore	provided	at	the	end	of	each	section.	Don’t	try	to	read	this	book	too
quickly.	Instead,	use	it	as	a	guide	and	practice	for	as	long	as	you	need	in	between	sections	.

Endgame	First

The	way	I	learned	to	program	is	the	opposite	of	how	Computer	Science	is	usually
taught,	and	I	structured	the	book	to	follow		this	approach	.	Traditionally,	you	spend	a	lot	of
time	learning		theory	;	s	o		much	so,	that	many	Computer	Science	graduates	come	out	of
school	not	knowing	how	to	program.	In	his	blog,	Why	Can’t	Programmers..	Program?	,			Jeff
Atwood	writes:	“Like	me,	the	author	is	having	trouble	with	the	fact	that	199	out	of	200
applicants	for	every	programming	job	can’t	write	code	at	all.	I	repeat:	they	can’t	write	any
code	whatsoever	.”	This	led	Atwood	to	create	the	FizzBuzz		coding	challenge,	a	programming

test	used	in	programming	interviews	to	weed	out	candidates.	Most	people	fail	the	challenge,
and	that’s	why	we	spend	so	much	of	this	book	learning	the	skills	you	will	use	in	practice.
Don’t	worry,	we	also	learn	how	to	pass	the	FizzBuzz	test.
								In	The	Art	of	Learning	,	Josh	Waitzkin		of	Searching	for	Bobby	Fischer		fame,	describes
how	he	learned	how	to	play	chess	in	reverse.	Instead	of	studying	opening	moves,	he	started
learning	the	endgame	(where	there	are	only	a	few	pieces	left	on	the	board)	first.	This	gave
him	a	better	understanding	of	the	game	,		and	he	went	on	to	win	many	championships.
Similarly,	I	think	it	is	more	effective	to	learn	to	program	first	,		then	learn	theory	later,	once
you	are	dying	to	know	how	everything	works	under	the	hood.	That	is	why	I	wait	until	the
fourth	section	of	the	book	to	introduce	Computer	Science	theory.	While	theory	is	important,	it
will	be	even	more	valuable	once	you	already	have	programming	experience.

The	Self-taught	Advantage

								Learning	how	to	program	outside	of	school		is	increasingly		common.	A	2015	Stack
Overflow	(an	online	community	of	programmers)	survey	found	48	percent	of	respondents
did	not	have	a	degree			in	computer	science	10	.	When	I	was	hired	at	eBay,	I	was	on	a	team	that
included	programmers	with	CS	degrees	from	Stanford,	Cal	and	Duke,	as	well	as	two	Physics
PhD’s.	At	25,	it	was	intimidating		to	realize			that	my	21-year-old	teammates	knew	10	times
more	about	programming	and	computer	science	than	I	did.

As	intimidating	as	it	might	be	to	work	with	people	who	have			bachelor ’s,	master ’s	and
PhD’s	in	Computer	Science,	never	forget	you	have	what	I	like	to	call	the		“self-taught
advantage	.”	You	are	not	reading	this	book	because	a	teacher	assigned	it	to	you,	you	are
reading	it	because	you	have	a		desire	to	learn,	and	wanting	to	learn	is	the	biggest	advantage
you	can	have.

Why	You	Should	Program

								Programming	can	help	your	career	regardless	of	your	profession.	If	you	are	reading
this	book	I	assume	you	have	already	decided	you	want	to	learn	to	program.	But	I’m	still	going
to	cover	why	you	should	to	give	you	extra	motivation.	Learning	to	program	is	empowering.	I
love	coming	up	with	new	ideas,	and	I	always	have	a	new	project	I	want	to	work	on.	Once	I
learned	how	to	program,	I	could	sit	down	and	build	my	ideas	without	needing	to	find
someone	to	do	it	for	me.

Programming	will	also	make	you	be	better	at	everything.	Seriously.	There	aren’t	many
subjects	that	don’t	benefit	from	finely	tuned	problem-solving	skills.	Recently,	I	had	to	do	the
very	tedious	task	of	searching	for	housing		on	Craigslist,	and		I	was	able	to	write	a	program

to	do	the	work	for	me	and	email	me	the	results.	Learning	to	program	will	free	you	from
repetitive	tasks	forever.

If	you	do	want	to	become	a	software	engineer,	there	is	an	increasing	demand	for	good
engineers	and	not	enough	qualified	people	to	fill	the	available	positions.	By	2020,	an
estimated	one	million	programming	jobs	will	go	unfilled	45	.	Even	i	f		your	goal	isn’t	to
become	a	software	engineer,	jobs	in	fields	like	science	and	finance	are	beginning	to	favor
candidates	with	programming	experience.

Sticking	With	It

									If	you	don’t	have	any	programming	experience	and	are	nervous	about	making	this
journey,	I	want	you	to	know	you	are	absolutely	capable	of	doing	it.	There	are	some	common
misconceptions	about	programmers	like	they	all	are	really	good	at	math.	This	isn’t	true,	but	it
is	hard	work.	Luckily,	a	lot	of	th	e	material	covered	in	this	book	is	easier	to	learn	than	you
think.

In	order	to	improve	your	programming	skills	you	should	practice	programming	every
day.	The	only	thing	that	will	hold	you	back	is	not	sticking	with	it,	so	let’s	go	over	some	ways
to	make	sure	you	do.		I	used	a	checklist	to	make	sure	I	practiced	every	day	and	it	really	helped
me	stay	focused.

If	you	need	extra	help,	Tim	Ferriss,	a	productivity	expert,	recommends	the	following
technique	to	stay	motivated.	Give	money	to	family	or	friends	with	the	instructions	that	it	is
either	to	be	returned	to	you	upon	completing	your	goal	within	a	timeframe	of	your	choosing,
or	donated	to	an	organization	you	dislike.

How	This	Book	is	Formatted

									The	chapters	in	this	book	build	on	one	another.	If	you	see	something	you	don’t
understand,	it	might	have	been	covered	in	a	previous	chapter.	I	try	not	to	re-explain	concepts,
so	keep	this	in	mind.	Important	words	are	italicized	when	they	are	defined.	There	is	a
vocabulary	section	at	the	end	of	each	chapter	where	each	italicized	word	is	defined.

Technologies	Used	In	This	Book

									This	book	teaches	certain	technologies	in	order	to	give	you	as	much	practical
programming	experience	as	possible.	In	some	cases	I	had	to	choose	between	many	different
popular	technologies.	In	Chapter	20:	“	Version	Control	”	(for	those	readers	who	are

unfamiliar	with	version	control,	I	will	explain	later),	we	go	over	the	basics	of	using	Git,	a
popular	version	control	system.	I	chose	Git	because	I	consider	it	the	industry	standard	for
version	control.	I	use	Python	for	the	majority	of	programming	examples	because	it	is	a
popular	first	programming	language	to	learn,	and	it	is	a	very	easy	language	to	read,	even	if
you	have	never	used	it.	There	is	also	a	huge	demand	for	Python	developers	in	just	about	every
field.	But,	I	try	to	be	as	technology	agnostic	as	possible:	focusing	on	concepts	instead	of
technologies.

In	order	to	follow	the	examples	in	this	book	you	will	need	a	computer.	You	computer
has	an	operating	system	—a	program	that	is	the	middleman	between	the	physical	components
of	the	computer	and	you.	What	you	see	when	you	look	at	your	screen	is	called	a	graphical
user	interface	or	GUI,	which	is	part	of	by	your	operating	system.

There	are	three	popular	operating	systems	for	desktop	and	laptop	computers:	Windows	,
Unix		and	Linux	.	Windows	is	Microsoft’s	operating	system.	Unix	is	an	operating	system
created	in	the	1970s.	Currently,	the	most	popular	Unix	operating	system	is	Apple’s	OS	X.
Linux	is	an	open-source	operating	system	used	by	the	majority	of	the	world’s	servers	.	A
server	is	a	computer	or	computer	program	that	performs	tasks	like	hosting	a	website.	Open-
source			means	the	software	is	not	owned	by	a	company		or	individual,	instead	it	is	maintained
by	a	group	of	volunteers.	Linux	and	Unix	are	both	Unix-like	operating	systems,	which	means
they	are	very	similar.	This	book	assumes	you	are	using	a	computer	running	Windows,	OS	X
or	Ubuntu	(a	popular	version	of	Linux)	as	your	operating	system.

Vocabulary

FizzBuzz	:	a	programming	test	used	in	programming	interviews	to	weed	out	candidates.
operating			system	:	A	program	that	is	the	middleman	between	the	physical	components	of	the
computer	and	you.
open-source	:	Software	that	is	not	owned	by	a	company		or	individual,	but	is	instead
maintained	by	a	group	of	volunteers.
Windows	:	Microsoft’s	operating	system.
Unix	:	An	operating	system	created	in	the	1970s.	Apple’s	OS	X	is	a	version	of	Unix.
Linux	:	An	open-source	operating	system	used	by	the	majority	of	the	world’s	servers.
server	:	A	computer	or	computer	program	that	performs	tasks	like	hosting	a	website.

Challenge

Create	a	daily	checklist	that	includes	practicing	programming.

Chapter	2.	Getting	Started

“A	good	programmer	is	someone	who	always	looks	both	ways	before	crossing	a	one-way
street.”
—Doug	Linder

What	is	Programming

									Programming		is	writing	instructions	for	a	computer	to	execute.	The	instructions
might			tell	the	computer	to	print	Hello,	World!	,	scrape	data	from	the	internet	or	read	the
contents	of	a	file	and	save	them	to	a	database.	These	instructions	are	called	code	.
Programmers	write	code	in	many	different	programming	languages.	In	the	past,
programming	was	much	harder,	as	programmers	were	forced	to	use	cryptic,	low-level
programming	languages		like	assembly		language	.	When	a	programming	language	is	low-
level	it	is	closer	to	being	written	in	binary	(0s	and	1s)	than	a	high-level	programming	language
	(a	programming	language	that	reads	more	like	English),	and	thus	is	harder	to	understand.
Here	is	an	example	of	a	simple	program			written	in	an	assembly		language:

global		_start

								section	.text

_start:

								mov					rax	,	1														

								mov					rdi	,	1														

								mov					rsi	,	message										

								mov					rdx	,	13																

								syscall																						

								;	exit(0)

								mov					eax	,	60																

								xor					rdi	,	rdi																

								syscall																								

message:

								db						"Hello",	10						

43

Here	is	the	same	program	written	in	a	modern	programming	language:

									print	("Hello,	World!")

As	you	can	see,	programmers	today	have	it	much	easier.	You	won’t	need	to	spend	time
learning	cryptic	,	low-level			programming	languages	in	order	to	program.	Instead,	you	will
learn	to	use	an	easy-to-read		programming	language	called	Python.

What	is	Python

									Python		is	an	open-source		programming	language	created	by	Dutch	programmer
Guido	van	Rossum	and	named	after	the	British	sketch	comedy	group,	Monty	Python’s	Flying
Circus	.	One	of	van	Rossum’s	key	insights	was	that	programmers	spend	more	time	reading
code	than	writing	it,	so	he	created	an	easy-to-read	language.	Python	is	one	of	the	most
popular	and	easiest	to	learn	programming	languages	in	the	world.	It	runs	on	all	the	major
operating	systems	and	computers	and	is	used	in	everything	from	building	web	servers	to
creating	desktop	applications.	Because	of	its	popularity,	there	is	a	large	demand	for	Python
programmers.		

Installing	Python				

								In	order	to	follow	the	examples	in	this	book,	you	need	to	have	Python	3		(version	3	of
Python)	installed.	You	can	download	Python	for	Windows	and	OS	X	at
http://python.org/downloads	.	If	you	are	on	Ubuntu,	Python	3	comes	installed	by	default.
Make	sure	you	download	Python	3,	not	Python	2.	Some	of	the	examples	in	this	book	will
not	work	if	you	are	using	Python	2.		

Python	is	available	for	both	32-bit		and		64-bit		computers.	If	you	have	a	new	computer,
purchased	after	2007,	it	is	most	likely	a		64-bit		computer.	If	you	aren’t	sure	if	your	computer
is	32-bit	or	64-bit,	an	internet	search	should	help	you	figure	it	out.

If	you	are	on	Windows	or	a	Mac,	download	the	64-	or	32-bit	version	of	Python,	open
the	file	and	follow	the	instructions.		You	can	also	visit

http://theselftaughtprogrammer.io/installpython		for	videos	explaining	how	to	install	Python
on	each	operating	system.

Troubleshooting

From	this	point	forward,	you	need	to	have	Python	installed.	If	you	having	problems
installing	Python,	please	skip	ahead	to	chapter	11	to	the	section	titled	“Getting	Help”.		

The	Interactive	Shell

								Python	comes	with	a	program	called	IDLE	(short	for	interactive	development
environment);	it	is	also	the	last	name	of	Eric	Idle,	one	of	the	members	of	Monty	Python’s
Flying	Circus	.		IDLE	is	where	you	will	be	typing	your	Python	code.	Once	you’ve	downloaded
Python,	search	for	IDLE	in	Explorer		(PC)	,	Finder	(Mac)		or	Nautilus	(Ubuntu)	.	I
recommend	creating	a	desktop	shortcut	to	make	it	easy	to	find.

								

C	lick	on	the	IDLE	icon,	and	a	program	with	the	following	lines	will	open	up	(although	this
could	change	so	don’t	worry	if	the	message	is	absent	or	different)	:

								Python	3.5.1	(v3.5.1:37a07cee5969,	Dec		5	2015,	21:12:44)	

								[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin
								Type	"copyright",	"credits"	or	"license()"	for	more	information.
								>>>

This	program	is	called	the	interactive	shell.	You	can	type	Python	code	directly	into	the
interactive	shell	and	the	shell	prints	the	results.	At	the	prompt	(>>>)	t	ype:

									print	("Hello,	World!")

and	press	enter.
IDLE	might			reject	code	that	is	copied	from	Kindle	,	other	eBooks	or	word	processors

like	Microsoft	Word.	If	you	copy	and	paste	code	and	get	an	unexplainable	error	message,	try
typing	the	code	directly	into	the	window	.		You	must	type	the	code	exactly		as	it	is	written	in
the	example,	including	quotation	marks,	parentheses	and	any	other	punctuation.

	The	interactive	shell	will	respond	by	printing	Hello,	World!		

In	the	programming	world,	when	you	teach	someone	a	new	programming	language,	it
is	tradition	that	the	first	program	you	teach	them	is	how	to	print			Hello,	World!		So,
congratulations!	Y	ou		just	wrote	your	first	program.

Saving	Programs

The	interactive	shell	is	useful	for	quick	computations,	testing	small	bits	of	code	and
writing	short	programs	you	don’t	plan	on	using	again.	You	can	also	use	IDLE	to	save	a
program	for	reuse.	Start	the		IDLE		application,	click	“File”		(in	the	menu	bar	on	the	top	left
of	the	IDLE	editor)	then	select	“New	File.”	This	will	open	up	a	t	ext	editor	,	which	usually	has
a	blank	white	background	.	You	can	write	your	code	in	this	text	editor,	then	save	it	to	run	later.

When	you	run	your	code,	the	output	of	the	code	you	wrote	will	appear	in	the	interactive	shell.
You	need	to	save	your	changes	while	editing	code	before	running	it	again.	Type	the	Hello,
World!	program	into	the	text	editor:

Go	to	“File”	again	and	select	“Save	As.”	Name	your	file	“hello_world.py”	and	save	it.
Python	files	have	to	end	with	.py.	Once	you’ve	saved	your	file,	click	“Run”	(again,	in	the
menu	bar	in	the	top	left	corner	of	the	IDLE	editor)		and	select	“	Run	Module	.”	Alternatively,
you	can	press	the	F5	key	command,	the	equivalent	of	selecting	“Run	Module”	from	the	menu
bar.	Hello	World!		will	print	in	the	interactive	shell,	as	if	you	had	typed	th	is	line	of	code.
However,	in	this	case,	since	you	saved	your	program,	you	can	run	it	as	many	times	as	you
like.

The	program	you	created	is	simply	a	file	with	a	.py	extension,	located	on	your
computer	wherever	you	saved	it.	The	name	I	chose	for	the	file—“hello_world.py”—is
completely	arbitrary,	you	can	name	the	file	anything.	Like	this	example,	writing	programs	in

Python	simply	involves	typing	text	into	files		and	running	them	using	the	interactive	shell.
Easy,	right?

Running	Example	Programs

Throughout	the	book,	I	will	give	examples	of	code	and	the	results	that	print	out	when
you	run	it.	Whenever	I	do	this,	you	should	enter	the	code	and	run	it	yourself.

Sometimes	you	should	type	the	code	in	the	interactive	shell,	and	sometimes	you	should
type	the	code	into	a	new	.py	file.	I	will	explain	how	you	will	know	where	to	run	your	code	in
the	next	chapter.

The	reason	for	this	is	short	examples	are	best	run	using	the	shell,	and	the	text	editor	is
better	for	longer	programs	you	want	to	save	and	edit.	In	the	interactive	shell,	if	you	make	a
mistake	in	your	code—a	typo	for	example—and	the	code	doesn’t	work,	you	have	to	type
everything	again.	Using	the	text	editor	lets	you	save	your	work,	so	if	you	make	a	mistake,	you
simply	edit	the	mistake	and	rerun	the	program.

Another	reason	the	distinction	is	important	is	the	output	of	a	program	running	from	a
file	versus	the	shell	can	be	slightly	different.	If	you	type	100		into	the	interactive	shell	and
press	enter,	the	interactive	shell	will	output	100	.	If	you	type	100		into	a	.py	file	and	run	it,
there	will	be	no	output.	This	difference	can	cause	confusion,	so	be	mindful	of	where	you	are
running	a	program	from	if	you	do	not	get	the	same	output	as	the	example.								

Vocabulary

programming	:	Writing	instructions	for	a	computer	to	execute.
code	:	The	instructions	programmers	write	for	a	computer	to	execute.
low-level	programming	language	:	A	programming	language	closer	to	being	written	in
binary	(0s	and	1s)	than	a	high-level	programming	language.
assembly	language	:	A	type	of	difficult	to	read	programming	language.
high-level	programming	language	:	A	programming	language	that	reads	more	like	English
than	a	low-level	programming	language.
Python	:	The	easy	to	read,	open-source		programming	language	you	will	learn	to	use	in	this
book.	Created	by	Guido	van	Rossum	and	named	after	the	British	sketch	comedy	group,	Monty
Python’s	Flying	Circus.

Challenge

Try	to	print	something	other	than	Hello,	World!	.

Chapter	3.	Introduction	to	Programming
“It’s	the	only	job	I	can	think	of	where	I	get	to	be	both	an	engineer	and	an	artist.	There’s	an
incredible,	rigorous,	technical	element	to	it,	which	I	like	because	you	have	to	do	very	precise
thinking.	On	the	other	hand,	it	has	a	wildly	creative	side	where	the	boundaries	of	imagination
are	the	only	real	limitation.”
—Andy	Hertzfeld

Our	first	program	printed	Hello,	World	!	.	Let’s	print	it	a	hundred	times.	Type	the	following
code	into	the	interactive	shell	(print	needs	to	be	indented	by	exactly	four	spaces):
																

for	i	in	range	(100):
				print	("Hello,	World!")

Your	shell	should	print	Hello,	World!			a	hundred	times.		Even	though	you	will	probably
never	need	to	print	Hello,	World!		a	hundred	times,	this	example	quickly	shows	you	how
powerful	programming	is.	Can	you	think	of	anything	else	you	can	do	a	hundred	times	so
easily?	I	can’t.	That	is	the	power	of	programming.

Examples

Throughout	the	book,	you	will	see	“>>”	after	each	programming	example.	This
represents	the	output	of	the	program	(printed	in	the	interactive	shell).	Ellipses	(...)	mean	“and
so	on.”	T	he	previous	program	will	be	written	like	this	if	it	is	meant	to	be	typed	into	the
interactive	shell:

for	i	in	range	(100):
				print	("Hello	World")

>>	Hello	World
>>	Hello	World
>>	Hello	World
…

And	like	this	if	it	should		be	run	from	a	.py	file:
								
								#	https://goo.gl/rKQedq

for	i	in	range	(100):
				print	("Hello	World")

>>	Hello	World

>>	Hello	World
>>	Hello	World
…

The	difference	between	the	two	examples	is	the	addition	of	#	https://goo.gl/8eou3Z		at
the	top	of	the	program	.	This	is	called	a	comment		(explained	in	the	next	section).	The	URL	(
https://goo.gl/8eou3Z)	will	take	you	to	a	web	page	that	contains			the	code	from	the	example
so	you	can	easily	copy	and	paste	it	into	the	IDLE		text	editor	if	you	are	having	problems
getting	the	code	to	run.	Whenever	you	see	a	comment	like	this,	you	should	run	the	code	in	the
example	f	rom	a	.py	file.														

In	both	examples,	the	color-coded	text	represents	code,	and	all	the	text	that	comes			after
“>>”	represents	the	output	of	the	interactive		shell.	A	nything	written	in	Courier	New	font
represents	some	form	of	code	or	code	output.	For	example,	if	I	refer	to	the	word	for		in	the
previous	program	it	will	be	written	in	the	Courier	New	font	.		

Courier	New	is	a	type	of	fix-width	(non-proportional)	font	often	used	to	display
programming	text	because	each	character	has	the	same	width,	so	indentation	and	other	display
characteristics	of	code	alignment	are	easier	to	observe.

Comments

A	comment		is	a	line	(or	part	of	a	line)	of	code	written	in	English	(or	another	language)
preceded	by	a	special	symbol	that	tells	the	programming	language	you	are	using	to	ignore
that	line			(or	part	of	a	line)	of	code.	In	Python,	the	pound	symbol	is	used	to	create	comments.

	A	comment	explains	what	a	line	of	code	does.	Programmers	use	comments	to	clarify
why	they	did	something	to	make	the	line	of	code	easier	to	understand	for	whoever		reads	it.
You	can	write	whatever	you	want	in	a	comment,	as	long	as	it	is	only	one	line	long.	Here	is	an
example	of	a	comment	taking	up	an	entire	line	of	code,	followed	by	an	example	of	a	comment
taking	up	part	of	a	line	of	code:

								
#	This	is	a	comment
print	("The	comment	does	not	affect	this	code")

								>>	The	comment	does	not	affect	this	code

print	("The	comment	does	not	affect	this	code")	#	This	is	a	comment

								>>	The	comment	does	not	affect	this	code

You	should	only	write	a	comment	if	you	are	doing	something	unusual	in	your	code	,	or	to
explain	something	that	is	not	obvious	in	the	code	itself.	Use	comments	sparingly	—do	not
comment	on	every	line	of	code	you	write—save	them	for	special		situations.	Here	is	an
example	of	an	unnecessary	comment:

print	("Hello,	World!")		#	this	line	of	code	prints	Hello,	World!

It	is	unnecessary	because	it	is	very	clear	what	this	line	of	code	does.	Here	is	an	example	of	a
good	comment:

d	=	math.sqrt(l**2	+	w**2)		#	length	of	the	diagonal

Even	if	you	understood	exactly	how	this	code	works	(and	you	will	be	the	end	of	Part	I),	you
still	might	not	know	how	to	calculate	the	length	of	a	diagonal	of	a	rectangle,	which	is	why	this
comment	is	useful.		

Printing

We	are	not	limited	to	printing	“Hello,	World!”		in	our	programs.	We	can	print	whatever
we’d	like	as	long	as	we	surround	it	with	quotes:

print	("Python")

>>	Python

									print	("Hola!")

								>>	Hola!

Lines

Python	p	rograms	are	divided	into	lines	of	code.	Take	a	look	at	this	program:

									#	line1
								#	line2
								#	line3

There	are	three	lines	of	code.	It	is	useful	to	refer	to	each	piece	of	code	by	the	line	it	is	on.	In
IDLE	you	can	go	to	“Edit”	and	select	“Go	to	line”	to	jump	to	a	specific	line	in	your	program.
Sometimes	a	piece	of	code	is	long	and	takes	up	more	than	one	line.	When	this	happens,	it	is
ok	for	the	code	to	extend	to	the	next	line		(when	extended	according	to	Python's	rules)	:

									print	("""This	is	a	really	really	really	really	really	really
	really	really	long	line	of	code.""")		

I	will	explain	the	rules	for	extending	lines	of	Python	code	in	Part	V.										

Keywords

								The	Python	language	has	a	list	of	words	with	special	meaning.	These	are	called	keywords
.	for		is	a	keyword	we’ve	already	seen	that	is	used	to	execute	code	multiple	times.	We	will
learn	more	keywords	throughout	this	chapter.

Spacing

Let’s	take	another	look	at	our	program	that	prints	Hello,	World!			a	hundred	times:		

									#	https://goo.gl/rKQedq

for	i	in	range	(100):
				print	("Hello,	World!")

As	I	noted	earlier,	print		is	indented	by	four	spaces.	We	will	cover	why	shortly,	but	it	has
to	do	with	letting	Python	know	when	blocks	of	code	begin	and	end.	In	the	meantime,	please	be
aware	that	whenever	you	see	an	indent	in	an	example	it	is	an	indent	of	four	spaces.	Without
proper	spacing,		your	program	will	not	work.

Spacing	is	not	used	like	this	in	other	programming	languages.		Other	approaches
include	using	keywords	or	brackets	instead	of	spacing.	Python	proponents	believe	the
required	use	of	proper	spacing	makes	Python	less	tedious	to	read	and	write	than	other
languages,	but	the	best	approach	to	this	problem	is	frequently	debated	amongst	programmers.
	

Data	Type	s

Different	kinds	of	data	in	Python	are	grouped	into	different	categories,	or	data	types	.	In
Python,		each	data	value,	like	2		or	"Hello,	World!"	,	is	called	an	object	.	We	will	learn	more
about	objects	in	Part	II,	but	for	now	think	of	an	object	as	a	data	value	in	Python	with	three
properties:	an	identity,	a	data	type	and	a	value.	The	identity	of	an	object	is	where	it	is	stored	in
memory,	which	never	changes	(and	which	we	will	be	ignoring	for	now).	The	data	type	of	an
object	is	the	category	of	data	the	object	belongs	to,	and	determines	the	properties	the	object
has.	This	also	never	changes.	The	value	of	an	object	is	the	data	it	represents—the	number	2,
for	example,	has	a	value	of	2.

		"Hello,	World!"			is	an	object	with	a	data	type	called	str	,	short	for	string,	and	the	value
"Hello,	World!"	.	When	we	refer	to	an	object	with	a	str	data	type,	we	call	it	a	string.	A	string	is

a	sequence	of	one	or	more	characters	surrounded	by	quotes.	You	can	use	single	quotes	or
double	quotes,	but	the	quotes	at	the	beginning	and	end	of	a	given	string	must	match:

“Hello,	World!”
>>	Hello,	World!

‘Hello,	World!’
>>	Hello,	World!		

A	character	can	be	any	symbol	found	in	a	unicode	character	table	like	the	interactive
one	found	at	http://unicode-table.com/en		(I	explain	what	unicode	is	in	Part	IV).	Strings	are
used	to	represent	text,	and	they	have	unique	properties.

The	numbers	we	used	to	do	math	in	the	previous	section	are	also	objects—but	they	are
not	strings,	they	have	a	different	data	type.	Whole	numbers	have	the	data	type	int	,	short	for
integer.	Numbers	like	2	,	3	,	4		and	10		all	have	the	data	type	int.	Another	way	of	saying	this	is
they	are	all	integers.	Like	strings,	integers	have	their	own	properties.	For	example,	you	can
divide	two	integers,	but	you	cannot	divide	two	strings.

Although			whole	numbers	are	integers,	fractional	numbers	(numbers	with	a	decimal
point)	have	a	different	data	type	called	float	.	2.1	,	8.2		and	9.9999		are	all	examples	of	objects
with	the	float	data	type.	They	are	called	floats.	Like	all	data	types,	floats	have	their	own
properties	and	behave	in	a	certain	way.	Floats	behave	similarly	to	integers:

2.2	+	2.2
>>	4.4

But	,	there	are	some	important	differences	between	floats	and	integers	you	will	learn	about
later.

Objects	with	a	bool		data	type	have	a	value	of	either	True		or	False		and	are	called
booleans:

True
>>	True

False
>>	False

Objects	with	a	data	type	NoneType		always	have	the	value	None	.	Objects	with	a
NoneType	data	type	are	used	to	represent	the	absence	of	a	value:

									None
								>>None

I	will	explain	how	the	different	data	types	are	used	in	programming	throughout	this
chapter.		

Constants	and	Variables

								You	can	use	Python	to	do	math	just	like	you	would	use	a	calculator.	You	can	add,
subtract,	divide,	multiply,	raise	a	number	to	a	power	and	much	more.	Remember	to	type	all	of
the	examples	in	this	section	into	the	shell.

									2	+	2
								>>	4

								2	-	2
								>>	0

								4	/	2
								>>	2

								2	*	2
									>>	4

A	constant		is	a	value	that	never	changes.	Each	of	the	numbers	in	the	previous	example
is	a	constant:	the	number	two	will	always	represent	the	value	2.	A	variable	,	on	the	other	hand,
refers	to	a	value;	but	that	value	can	change.	A	variable	consists	of	a	name	made	up	of	one	or
more	characters	.	That	name	gets	assigned	to	a	value		using	the		assignment	operator		(the	=
	sign).	Unlike	a	constant,	the	value	of	a	variable	value	can	change.		

Some	programming	languages	require	the	programmer	to	include	variable
"declarations"	that	tell	the	programming	language	what	data	type	the	variable	will	be.	Python
makes	it	simpler:	you	create	a	variable	simply	by	assigning	a	value	to	it	using	the	assignment
operator.	Here	is	an	example	of	creating	a	variable:

									b	=	100
								b

								>>	100

Here	is	how	we	can	change	the	value	of	a	variable:

									x	=	100
								x

								x	=	200
								x
								
								>>	100
								>>	200

We	can	also	use	two	variables	to	perform	arithmetic	operations:

									x	=	10
								y	=	10
								z	=	x	+	y
								z
								a	=	x	-	y
								a

								>>	20
								>>	0

Often	when	programming,	you	want	to	increment		(increase)	the	value	of	a	variable,	or
decrement		(decrease)	the	value	of	a	variable.	Because	this	is	such	a	common	operation,
Python	has	a	special	syntax—a	shortcut—for	incrementing	and	decrementing	variables.	To
increment	a	variable,	you	assign	the	variable	to	itself,	and	on	the	other	side	of	the	equals	sign
you	add	the	variable	to	the	number	you	want	to	increment	by:

									x	=	10
								x	=	x	+	1
								x
								
								>>	11

To	decrement	a	variable,	you	do	the	same	thing,	but	instead	subtract	the	number	you
want	to	decrement	by:

									x	=	10
								x	=	10	-	1
								x

								>>	9

These	examples	are	perfectly	valid,	but	there	is	a	shorter	method			for	incrementing	and
decrementing	variables	you	should	use	instead:
								
									x	=	10
								x	+=	1
								x
								
								>>	11

								x	=	10
								x	-=	1
								x

								>>	9

Variables	are	not	limited	to	storing	integer		values—they	can	refer	to			any	data	type:

									my_string	=	“Hello,	World!”
								>>

								my_float	=	2.2
								>>

								my_boolean	=	True
								>>
								
You	can	name	variables	whatever	you’d	like,	as	long	as	you	follow	four	rules:

0.	Variables	can’t	have	spaces.	If	you	want	to	use	two	words	in	a	variable,	put	an
underscore	between		them:	i.e.,	my_variable	=	“A	string!”
0.	Variable	names	can	only	contain	letters,	numbers	and	the	underscore	symbol.
0.	You	cannot	start	a	variable	name	with	a	number.	Although			you	can	start	a	variable
with	an	underscore,	it	has	a	special	meaning		that	we	will	cover	later	,	so	avoid			using	it
until	then.
0.	You	cannot	use	Python	keywords	for	variable	names.	You	can	find	a	list	of	keywords
here:	http://zetcode.com/lang/python/keywords		

Syntax

									Syntax		is	the	set	of	rules,	principles,	and	processes	that	govern	the	structure	of
sentences	in	a	given	language,	specifically	word	order	.	70		The	English	language	has	a
syntax,	and	so	does	Python.	For	example,	in	English	you	must	end	a	sentence	with	a	period.
Python	also	has	a	set	of	rules	that	must	be	followe	d,	so	it	also	has	syntax.

In	Python,	strings	are	always	surrounded	by	quotes.	This	is	an	example	of	Python’s
syntax.	The	following	is	a	valid	Python	program:

print	("Hello,	World!")

It	is	a	valid	program	because	we	followed	Python’s	syntax	by	using	quotes	around	our	text
when	we	defined	a	string.	If	we	only	used	quotes	on	one	side	of	our	text	we	would	violate
Python’s	syntax,	and	our	code	would	not	work.	Python	does	not	like	when	you	violate	its
syntax,	and	in	the	next	section	you	find	out	what	happens	when	you	do.

Errors	and	Exceptions

									If	you	write	a	Python	program	and	disregard	Python’s	syntax		you	will	get	one	or	more
errors	when	you	run	your	program.	When	this	happens,	the	Python	shell	will	inform	you
your	code	did	not	work,	and	gives	you	information	about	the	error	that	occurred.	Look	at
what	happens	if	you	try	to	define	a	string	in	Python	with	a	quote	on	only	one	side:

									my_string	=	“Hello	World.

>>	File	"/Users/coryalthoff/PycharmProjects/se.py",	line	1
									my_string	=	'd
																	^
								SyntaxError:	EOL	while	scanning	string	literal

This	is	called	a	syntax	error	.	Syntax	e	rrors	are	fatal.	A	program	cannot	run	with	a	syntax
	error	.	When	you	run	a	program	with	a	syntax	error,	Python	lets	you	know	about	it	in	the
shell.	The	message	will	tell	you	what	file	the	error	was	in,	what	line	it	occurred	on	and	what
kind	of	error	it	was.	Although	this	error	may	look	intimidating,	errors	like	this	happen	all	the
time.

When	there	is	an	error	in	your	code,	you	should	go	to	the	line	number	the	problem
occurred	on,	and	try	to	figure	out	what	you	did	wrong.	In	this	example,	you	would	go	to	line
1	of	your	code.	After	staring	at	it	for	a	while,	you	would	eventually	notice	there	is	only	one
quote.	To	fix	it,	add	a	quote	at	the	end	of	the	string	and	rerun	the	program.	From	this	point
forward,	I	will	represent	the	output	of	an	error	like	this:

								>>	SyntaxError:	EOL	while	scanning	string	literal

For	easier	reading,	I	will	only	show	the	last	line	of	the	error.
	Python	has	two	kinds	of	errors:	syntax	errors	and	exceptions.	Any	error	that	is	not	a

syntax	error	is	an	exception	.	A	ZeroDivisionError		is	an	example	of	an	exception	that	occurs
if	you	try	dividing	by	zero.

	The	difference	between	a	syntax	error	and	an	exception	is	exceptions	are	not
necessarily	fatal	(there	is	a	way	to	make	a	program	run	even	if	there	is	an	exception	which
you	will	learn	about	in	the	next	chapter).	When	an	exception	occurs,	Python	programmers	say
“	Python		(or	your	program)	raised	an	exception”.	Here	is	an	example	of	an	exception:
								
									10	/	0

								>>	ZeroDivisionError:	integer	division	or	modulo	by	zero

If	you	incorrectly	indent	your	code,	you	get	an	IndentationError	:

									y	=	2
																	x	=	1

								>>	IndentationError:	unexpected	indent
															

As	you	are	learning	to	program,	you	will	frequently	get	syntax	errors	and	exceptions
(including	ones	we	did	not	cover),	but	they	will	decrease	over	time.	Remember,	when	you	run
into	a	syntax	error	or	exception,	go	to	the	line	where	the	problem	occurred	and	stare	at	it	until
you	figure	out	the	solution	(or	search	the	internet	for	the	error	or	exception	if	you	are
stumped).

Arithmetic	Operators

Earlier	we	used	Python	to	do	simple	arithmetic	calculations	like	4	/	2	.	The	symbols	we
used	in	those	examples	are	called	operators	.		Operators	in	Python	are	divided	into	several
categories,	and	the	ones	we’ve	seen	so	far	are	called	arithmetic	operators	.	Here	is	a	list	of
some	of	the	most	common	arithmetic	operators	in	Python:		

Operator Meaning Example Evaluates	to

** Exponent 2	**	2 4

% Modulo/remainder 14	%	4 2

// Integer	division/floored
quotient 13	//	8 1

/ Division 13	/	8 1.625

* Multiplication 8	*	2 16

- Subtraction 7	-	1 6

+ Addition 2	+	2 4

When	two	numbers	are	divided	there	is	a	quotient	and	a	remainder.	The	quotient	is	the	result
of	the	division	and	the	remainder	is	what	is	left	over.			The	modulo			operator	returns	the
remainder	when	two	numbers	are	divided:

									2	%	2
								>>	0

									10	%	3
								>>	1

There	are	two	different	operators	for	division.	The	first	is	//,	which	returns	the	quotient:

									14	//	3
								>		4
								

	The	second	is	/,	which	returns	the	result	of	the	first	number	divided	by	the	second	as	a
floating	point	number:

									14	/	3
								>	4.666666666666667

You	can	raise	a	number	by	an	exponent	with	the	exponent	operator:
								
									2	**	2
								>>	4

The	values	(in	this	case	numbers)	on	either	side	of	an	operator	are	called	operands	.
Together,	two	operands	and	an	operator	form	an	expression	.	When	your	program	runs,
Python	evaluates	each	expression,	and	returns	a	single	value.	When	you	type	an	expression
like	2+2		into	the	Python	shell,	the	expression	is	evaluated	to	4	.

	The		order	of	operations		is	a	set	of	rules	used	in	mathematical	calculations	to	evaluate
an	expression.	Remember	Please	Excuse	My	Dear	Aunt	Sally	?	It	is	an	acronym	used	to	help
you	remember	the	order	of	operations	in	math	equations:	parentheses,	exponents,
multiplication,	division,	addition	and	subtraction.	Parentheses	outrank	exponents,	which
outrank	multiplication	and	division,	which	outrank	addition	and	subtraction.	If	there	is	a	tie
among	operators,	like	in	the	case	of	15	/	3	×	2	,	you	evaluate	from	left	to	right:.	In	this	case
the	answer	is	the	result	of	15	divided	by	3	times	2.	Python		follows	t	he	same	order	of
operations	when	it	evaluates	mathematical	expressions:

2	+	2	*	2
>>	6

(2+2)	*	2
>>	8

In	the	first	example,	2	*	2		is	evaluated	first,	followed	by	2	+	2	,	because	multiplication	takes
precedence	over	addition.	In	the	second	example,	(2+2)		is	evaluated	first,	because
expressions	in	parentheses	are	always	evaluated		first	.		

Comparison	Operators		

									Comparison	operators		are	another	category	of	operators	in	Python.	Comparison
operators	are	similar	to	arithmetic	operators;	they	are	operators	used	in	expressions	with
operands	on	either	side.	Unlike	expressions	with	arithmetic	operators,	expressions	with
comparison	operators	evaluate	to	either	True		or	False	.

Operator Meaning Example Evaluates	to

> Greater	than 100	>	10 True

< Less	than 100	<	10 False

>= Greater	than	or	equal 2	<=	2 True

<= Less	than	or	equal 22	/	8 2.75

== Equal 3	*	5 15

!= Not	equal 5	-	2 3

An	expression	with	the	>		operator	returns	the	value	True		if	the	number	on	the	right	is	bigger
than	the	number	on	the	left,	and	False		if	it	is	not:

100	>	10
>>	True

An	expression	with	the	<		operator	returns	the	value	True		if	the	number	on	the	left	is	smaller
than	the	number	on	the	right,	and	False		if	it	is	not:
								

100	<	10
>>	False

An	expression	with	the	>=	operator	returns	the	value	True		if	the	number	on	the	right	is
bigger	than	or	equal	to	the	number	on	the	left.	Otherwise	the	expression	returns	False	:
								
									2	>=	2

>>	True

An	expression	with	the	<=	operator	returns	the	value	True		if	the	number	on	the	right	is
smaller	than	or	equal	to	the	number	on	the	left.	Otherwise	the	expression	returns	False	:
								
									2	<=	2

>>	True

An	expression	with	the	==		operator	returns	the	value	True		if	the	two	operands	are	equal,	and
False		if	not:

									2	==	2
>>	True

1	==	2
>>	False

Whereas	an	expression	with	the	!=		operator	check	returns	True		if	the	two	operands	are	not
equal,	and	False		otherwise:

									1	!=	2
								>>	True

									2	!=	2
								>>	False

Earlier,	we	assigned	variables	to	numbers,	like	x	=	100		using	=	.	It	may	be	tempting	to
read	this	in	your	head	as	“x	equals	100,”	but	don’t.	As	we	saw	earlier,	=		is	used	to	assign	a
value	to	a	variable,	not	to	check	for	equality.	When	you	see	x	=	100	,	you	should	think	“x	gets
one	hundred.”	The	comparison	operator	==		is	used	to	check	for	equality,	so	if	you	see	x	==
100	,	then	you	should	think	“x	equals	100”.

Logical	Operators

The	last	category	of	operators	we	will	cover	are	called	logical	operators	.	Expressions
with	logical	operators	are	similar	to	expressions	with	comparison	operators	in	that	they	both
evaluate	to	True		or	False	.

Operator Meaning Example Evaluates	to

and and True	and
True True

or or True	and
False True

not not not	True False

The	Python	keyword			and		takes	two	expressions	and	returns	True		if	all	the	expressions
evaluate	to	True	.	If	any	of	the	expressions	are	False	,	it	returns	False	.		

									1	==	1	and	2	==	2
								>>	True

								1	==	2	and	2	==	2
								>>	False

								1	==	1	and	2	==	1
								>>	False

								2	==	1	and	1	==	1
								>>	False

You	can	use	the	and		keyword	multiple	times	in	one	statement:
								
									1	==	1	and	10	!=	2	and	1	%	1	!=	3	and	2	<	10
								>>	True

When	Python	evaluates	a	statement	with	the	and		keyword	it	stops	evaluating	the	statement	as
soon	as	an	expression		evaluates	to	False	.	Python	does	not	evaluate	the	remaining	expressions
because	it	is	going	to	return	False		regardless	of	how	the	rest	of	the	expressions	evaluate
(only	one	expression	has	to	evaluate	to	False		for	False		to	get	returned	for	the	entire
statement)	.		Understanding	this	behavior	can	help	you	write	more	efficient	code.	For
example,	if	one	of	your	expressions	takes	a	long	time	to	evaluate,	you	should	put	it	last,
because	it	will	be	less	likely	to	be	evaluated	there.

The	keyword	or		takes	two	or	more	expressions	and	evaluates	to	True		if	any		of	the
expressions	evaluate	to	True	:
								1==1	or	1==2
								>>	True
								
								1==1	or	2==2
								>>	True

								1==2	or	2==1
								>>	False

								2==1	or	1==2
								>>	False

Like	and	,	you	can	use	multiple	or		keywords	in	one	statement:
								
								1==1	or	1==2	or	1==3	or	1==4	or	1==5
								>>	True

The	result		of	the	example	above	is	True		because	1==1		is	True		even	though	all	the	rest	of	the
expressions	evaluate	to	False	.	Like	and	,	when	evaluating	statements		with	or		in	them,	as	soon
as	one	expression	evaluates	to	True	,	Python	stops	evaluating	the	rest	of	the	expressions
because	it	is	going	to	return	True		regardless	of	how	they	evaluate.				

You	can	place	the	keyword	not		in	front	of	an	expression,	and	it	will	change	the	result	of
the	expressions	evaluation	to	the	opposite	of	what	it	would	have	otherwise	evaluated	to	.		If	the
expression	would	have	evaluated	to	True	,	it	will	evaluate	to	False		when	preceded	by	not	,	and
if	it	would	have	evaluated	to	False	,	it	will	evaluate	to	True		when	preceded	by	not	.

								not	1	==	1
								>>	False
								
								not	1	==	2
								>>	True

Conditional	Statements

Th	e	keywords	if	,	elif		and	else		are	used	in	conditional	statements	.	Conditional
statements	are	a	type	of	control	structure	:	a	block	of	code	that	can	make	decisions	by
analyzing	the	values	of	variables.	A	conditional	statement	is	code	that	is	able	to	execute
additional	code	circumstantially.	Here	is	an	example	in	pseudocode	(fake	code	used	to
illustrate	an	example)	to	help	clarify	how	this	works:

If	(expression)	Then
																			(code_area1)
								Else
																			(code_area2)
This	pseudocode	explains	that	you	can	define	two	conditional	statements	that	work	together.	If
the	expression	defined	in	the	first	conditional	statement	is	True	,	all	of	the	code	defined	in
code_area1		gets	executed.	If	the	expression	defined	in	the	first	conditional	statement	is	False	,
all	of	the	code	defined	in	code_area2		gets	executed.	The	first	part	of	the	example	is	called	an
if	statement	,	and	the	latter	is	called	an	else	statement	.	Together,	they	form	an			if	else
statement:	a	way	for	programmers	to	say	“if	this	happens	do	this,	otherwise	do	that”.	Here	is
an	example	of	an			if	else	statement	in	Python:

#	https://goo.gl/uYp6ha

									country	=	"America"
if	country	==	"America"	:
				print	("Hello,	America!")
else	:
				print	("Hello,	Canada!")

								>>	Hello,	America!

Lines	2	and	3	form	an	if	statement.	An	if	statement	is	made	up	of	a	line	of	code	starting	with
the	if		keyword	followed	by	an	expression,	a	colon,	an	indentation	and	one	or	more	lines	of
code	to	be	executed	if	the	expression	in	the	first	line	evaluates	to	True	.	Lines	3	and	4	form	an
else	statement.	An	else	statement	starts	with	the	else		keyword,	followed	by	a	colon,	an
indentation	and	one	or	more	lines	of	code	to	execute	if	the	expression	in	the	if	statement
evaluates	to	False	.

Together	they	form	an	if	else	statement.	This	example	prints	Hello,	America!		because
the	expression	in	the	if	statement	evaluates	to	True	.	If	we	change	the	variable	country		to
Canada	,	the	expression	in	the	if	statement	will	evaluate	to	False	,	the	else	statement’s	code	will
execute	and	our	program	will	print	Hello	Canada!		instead.

								#	https://goo.gl/bd4LVW

country	=	"Canada"

if	country	==	"America"	:
				print	("Hello,	America!")
else	:
				print	("Hello,	Canada!")

								>>	Hello	Canada!

An	if	statement	can	be	used	on	its	own:

#	https://goo.gl/jOlzVl

									country	=	"America"
if	country	==	"America"	:
				print	("Hello,	America!")

								>>	Hello,	America!

You	can	have	multiple	if	statements	in	a	row:

									#	https://goo.gl/WBoKWA

									x	=	2
if	x	==	2	:
				print	("The	number	is	2.")
if	x	%	2	==	0	:
				print	("The	number	is	even.")
if	x	%	2	!=	0:
				print	("The	number	is	not	odd.")

								>>	The	number	is	2.
								>>	The	number	is	even.

Each	if	statement	will	execute	its	code	only	if	its	expression	evaluates	to	True	.	In	this	case,	the
first	two	expressions	evaluate	to	True	,	so	their	code	is	executed,	but	the	third	expression
evaluates	to	False	,	so	its	code	is	not	executed.

If	you	really	want	to	get	crazy,	you	can	even	put	an	if	statement	inside	of	another	if
statement.	This	is	called	nesting:

									#	https://goo.gl/S6Z9rp

x	=	10
y	=	11

if	x	==	10	:
				if	y	==	11	:
								print	(x	+	y)

									>>	21

In	this	case	x	+	y		will	only	print	if	the	expressions	in	both	if	statements	evaluate	to	True	.	An
else	statement	cannot	be	used	on	its	own;	it	can	only	be	used	at	the	end	of	an	if	else	statement.

We	use	the	elif		keyword	to	create	elif	statements	.	elif		stands	for	else	if,	and	elif
statements	can	be	indefinitely	added	to	an	if	else	statement	to	allow	it	to	make	additional
decisions.

If	an	if	else	statement	has	elif	statements	in	it,	the	if	statement	expression	gets	evaluated
first.	If	the	expression	in	that	statement	evaluates	to	True	,	its	code	is	executed	and	no	other
code	is	executed.	However,	if	it	evaluates	to	False	,	each	consecutive	elif	statement	is
evaluated.	As	soon	as	an	expression	in	an	elif	statement	evaluates	to	True	,	its	code	is	executed
and	no	more	code	executes.	If	none	of	the	elif	statements	evaluate	to	True	,	the	code	in	the	else
statement	is	executed.	Here	is	an	example	of	an	if	else	statement	with	elif	statements	in	it:

#	https://goo.gl/L0OorN

									country	=	"Thailand"
if	country	==	"Japan"	:
				print	("Hello,	Japan!")
elif	country	==	"Thailand"	:
				print	("Hello,	Thailand!")
elif	country	==	"India"	:
				print	("Hello,	India!")
elif	country	==	"China"	:
				print	("Hello,	China!")
else	:
				print	("Hello,	world!")

>>	Hello,	Thailand!

Here	is	an	example	where	none	of	the	expressions	in	the	elif	statements	evaluate	to	True	,	and
the	code	in	the	else	statement	is	executed:

									#	https://goo.gl/Qwb5OD
								

country	=	"Mars"
if	country	==	"America"	:
				print	("Hello,	America!")
elif	country	==	"Canada"	:
				print	("Hello,	Canada!")
elif	country	==	"Thailand"	:
				print	("Hello,	Thailand!")
elif	country	==	"Mexico"	:
				print	("Hello,	Mexico!")
else	:

				print	("Hello,	world!")

>>	Hello,	World!

Finally,	you	can	have	multiple	if	statements	and	elif	statements	in	a	row:

									#	https://goo.gl/tgcmXN

									x	=	100
if	x	==	10	:
				print	("10!")
elif	x	==	20	:
				print	("20!")
else	:
				print	("I	don’t	know	what	x	is!")

									if	x	==	100	:
				print	("x	is	100!")

if	x	%	2	==	0:
				print	("x	is	even!")
else	:
				print	("x	is	odd!")

>>		I	don’t	know	what	x	is!
>>		x	is	100!
>>		x	is	even!

								

Statements

		A	statement		is	a	technical	term	that	describes	various	parts	of	the	Python	language.
You	can	think	of	a	Python	statement	as	a	command	or	a	calculation.	This	will	become	more
clear	as	we	take	a	look	at	examples	of	different	kinds	of	Python	statements	.	In	this	section	we
will	also	take	a	detailed	look	at	the	syntax	of	statements.	Don't	worry	if	some	of	this	seems
confusing	at	first.	Spend	as	much	time	as	necessary	rereading	this	section	and	go	back	to	the
earlier	examples	and	compare	them	with	what	you	are	learning	here.	It	might	take	a	while	to
understand	the	syntax	of	statements,	but	it	will	start	to	make	more	sense	the	more	time	you
spend	practicing	Python	and	will	help	you	understand	several	programming	concepts.		

Python	has	two	kinds	of	statements:	simple	statements		and	compound	statements	.
Simple	statements	can	be	expressed	in	one	line	of	code,	whereas	compound	statements
generally	span	multiple	lines	(but	can	be	written	in	one	line	in	some	circumstances).	Here	are
some	examples	of	simple	statements:

print	("Hello,	World!")
>>	‘Hello,	World!”

2	+	2
>>	4

Compound	statement	s		generally	span	more	than	one	line	of	code.	You’ve	already	seen
multiple	examples	of	compound	statements:	if	statements,	if	else	statements	and	the	first
program	we	wrote	in	this	chapter	that	printed	“Hello,	World!”	one	hundred	times	are	all
examples	of	compound	statements.

Compound	statements	are	made	up	of	one	or	more	clause	.	A	clause	consists	of	two	or
more	lines	of	code:	a	header		followed	by	a	suite	(s).		A	header	is	a	line	of	code	in	a	clause
that	contains	a	keyword	followed	by	a	colon	and	a	sequence	of	one	or	more	lines	of	indented
code.	After	the	indent	there	are	one	or	more	suites.	A	suite	is	just	a	line	of	code	in	a	clause.
The	suites	are	controlled	by	the	header.	Our	program	that	prints	“Hello,	World!”		a	hundred
times	is	made	up	of	a	single	compound	statement:

									#	https://goo.gl/rKQedq	
for	i	in	range	(100):
				print	("Hello,	World!")

>>	Hello	World
>>	Hello	World
>>	Hello	World
…

The	first	line	of	the	program	is	the	header.	It’s	made	up	of	a	keyword—	for	—followed	by	a
colon	and	an	indent	ed	line	of	code.	After	the	indentation	is	a	suite	—	print(“Hello,	World!”)	.
In	this	case,	the	header	uses	the	suite	to	print	Hello,	World!		a	hundred	times.	This	is	called	a
loop,	which	you	learn	more	about	in	Chapter	7.	This	code	only	has	one	clause.

A	compound	statement	can	also	be	made	up	of	multiple	clauses.	You	already	saw	this
with	if	else	statements.	Anytime	an	if	statement	is	followed	by	an	else	statement,	the	result	is	a
compound	statement	with	multiple	clauses.	When	a	compound	statement	has	multiple	clauses,
the	header	clauses	work	together.	In	the	case	of	an	if	else	compound	statement,	when	the	if
statement	evaluates	to	True	,	the	if	statement’s	suites	execute	and	the	else	statement’s	suites	do
not	execute.	When	the	if		statement	evaluates	to	False	,	the	if	statement’s	suites	do	not	execute
and	the	else		statement’s	suites	execute	instead.		The	last	example	from	the	previous	section
has	three	compound	statements:

#	https://goo.gl/tgcmXN

									x	=	100
if	x	==	10	:
				print	("10!")
elif	x	==	20	:

				print	("20!")
else	:
				print	("I	don’t	know	what	x	is!")

									if	x	==	100	:
				print	("x	is	100!")

if	x	%	2	==	0:
				print	("x	is	even!")
else	:
				print	("x	is	odd!")

>>		I	don’t	know	what	x	is!
>>		x	is	100!
>>		x	is	even!

The	first	compound	statement	has	three	clauses,	the	second	compound	statement	has	one
clause	and	the	last	compound	statement	has	two	clauses.

One	last	thing	about	statements,	statements	can	have	spaces	between	them.	Space
between	statements	does	not	affect	the	code.	Sometimes	spaces	are	used	between	statements	to
make	code	more	readable:

print	("Michael")
print	("Jordan")

>>	Michael
>>	Jordan

Vocabulary

comment	:	A	line	(or	part	of	a	line)	of	code	written	in	English	(or	another	language)	preceded
by	a	special	symbol	that	lets	the	programming	language	you	are	using	know	it	should	ignore
that	line			(or	part	of	a	line)	of	code.
keyword	:	A	word	with	a	special	meaning	in	Python.	You	can	see	all	of	Python’s	keywords	at
http://zetcode.com/lang/python/keywords
constant	:	A	value	that	never	changes.
variable	:	A	name	assigned	to	a	value		using	the			assignment	operator
assignment	operator	:	The	=		sign.
increment	:	Increasing	the	value	of	a	variable.
decrement	:	Decreasing	the	value	of	a	variable.
data			type	:	A	category	of	data.
object	:	A	data	value	in	Python	with	three	properties:	an	identity,	a	data	type	and	a	value.

string	:	An	object	with	a	data	type	str.	Its	value	is	a	sequence	of	one	or	more	characters
surrounded	by	quotes.
integer	:	An	object	with	a	data	type	int.	Its	value	is	a	whole	number.
float	:	An	object	with	a	data	type	float.	Its	value	is	a	fractional	number.
boolean	:	An	object	with	a	data	type	bool.	Its	value	is	either	True		or	False	.
nonetype	:	An	object	with	a	data	type	NoneType.	Its	value	is	always	None	.
syntax	:	T	he	set	of	rules,	principles,	and	processes	that	govern	the	structure	of	sentences	in	a
given	language,	specifically	word	order	.	70
syntax			error	:	A	fatal	programming	error	caused	by	violating	a	programming	language’s
syntax.
exception	:	A	nonfatal	programming	error.
operator	:	Symbols	used	with	operands	in	an	expression.
arithmetic			operator	:	A	category	of	operators	used	in	arithmetic	expressions.
operand	:	A	value	on	either	side	of	an	operator.
expression	:	Code	with	an	operator	surrounded	by	two	operands.
order			of			operations	:	A	set	of	rules	used	in	mathematical	calculations	to	evaluate	an
expression.
comparison			operator	:	A	category	of	operators	used	in	expression	that	evaluate	to	either
True		or	False	.
logical			operator	:	A	category	of	operators	that	evaluate	two	expressions	and	return	either
True		or	False
control			structure	:	A	block	of	code	that	makes	decisions	by	analyzing	the	values	of
variables
conditional			statement	:	Code	that	is	able	to	execute	additional	code	circumstantially.
if			else			statement	:	A	way	for	programmers	to	say	“if	this	happens	do	this,	otherwise	do
that.”
if			statement	:	The	first	part	of	an	if	else	statement.
else			statement	:	The	second	part	of	an	if	else	statement.
elif			statement	:	S	tatements	that	can	be	indefinitely	added	to	an	if	else		statement	to	allow	it	to
make	additional	decisions.
statement	:	A	command	or	a	calculation.
simple			statement	:	A	statement	that	can	be	expressed	in	one	line	of	code
compound			statement	:	A	statements	that	generally	spans	multiple	lines	(but	can	be	written	in
one	line	in	some	circumstances).
clause	:	The	building	blocks	of	compound	statements.	A	clause	is	made	up	of	two	or	more
lines	of	code:	a	header		followed	by	a	suite	(s)	.
header	:	A	header	is	a	line	of	code	in	a	clause	containing	a	keyword	followed	by	a	colon	and
a	sequence	of	one	or	more	lines	of	indented	code.
suite	:	A	line	of	code	in	a	clause	controlled	by	a	header.

Challeng	e

Write	a	program	with	a	variable	called	age		assigned	to	an	integer	that	prints	different
strings	depending	on	what	integer	age	is.

Chapter	4.	Functions

“Functions	should	do	one	thing.	They	should	do	it	well.	They	should	do	it	only.”
—	Robert	C.	Martin

A	function	is	a	compound	statement	that	can	take	input,	execute	instructions,	and	optionally
return	an	output.	Calling	a	function	means	giving	the	function	the	input	it	needs	toso	it	can
execute	its	instructions	and	optionally	return	an	output.	Functions	in	Python	are	similar	to
functions	in	math.	If	you	don’t	remember	functions	from	algebra,	here	is	an	example:

								#	the	following	is	algebra,	not	Python	code
f(x)	=	x	*	2

The	left	half	of	the	equation	defines	a	function	f	—that	takes	one	parameter—	x	.	A
parameter	is	data	passedyou	pass	into	a	function	when	its	called.	A	function	can	have	one
parameter,	multiple	parameters	or	no	parameters.	A	function’s	parameters	are	its	input.

The	right	half	of	the	equation	is	the	definition	of	the	function	(the	instructions	it
executes	when	called).	The	right	hand	side	of	the	equation	usesis	able	to	use	the	parameter	that
was	passed	in	(x)	to	make	a	calculation	and	return	the	result	(the	output).	In	this	case,	our
function	takes	a	parameter	(x);	,	multiplies	it	by	2;		and	returns	the	result.

	In	both	Python	and	algebra,	you	call	a	function	with	the	following	syntax:
[function_name]([parameters_seperated_by_commas])	.	You	call	a	function	by	putting
parentheses	after	the	function	name.	TYou	put	the	parameters	go	inside	the	parenthesis	with
each	parameter	separated	by	a	comma.	If	we	call	the	function	we	just	defined	above	(?)	and
pass	in	the	parameter	4	,	we	get	the	following	result:

								#	the	following	is	algebra,	not	Python	code
									f(4)
								>>	8

If	we	pass	in	10	as	a	parameter	we	get	20:

								f(10)
								>>	20

In	our	first	example,	we	called	our	function	with	4		as	a	parameter	(x).	Our	function	executed
its	code,			x	*	2	,	and	returned	the	result	—	8	.	In	our	second	example,	we	called	our	function
with	10		as	a	parameter	(x).	Our	function	executed	its	code,	x	*	2	,	and	returned	the	result	—
20	.

Representing	Concepts

This	is	abrupt,	maybe	something	like	“As	you	may	have	figured	out	by	now…”We	are
not	limited	to	printing	“Hello,	World!”		in	our	programs.	We	can	print	whatever	we’d	like:

print(“Python!”)

>>	Python!

From	here	on	out,	I	will	use	the	following	convention	to	explain	concepts	like	the	idea	that
you	can	print	anything	in	Python:	print(“[what_you_want_to_print]”)	.	The	brackets	and	the
text	inside	of	them	represent	that	you	need	to	be	replaced	by	a	piece	of	codesubstitute	a	piece
of	code	in	place	of	them.
When	you	are	trying	to	follow	an	example	written	in	this	formatlike	this,	do	not	type	the
brackets.	The	words	inside	of	the	brackets	are	a	hint	for	the	code	you	need	to	replace	the
brackets			with.	Everything	outside	of	thenot	in	brackets	represents	actual	code			that	you
should	type.	This	format	is	a	way	of	expressing	that	you	can	type
print(“[what_you_want_to_print]”)	into	Python,	replace			[what_you_want_to_print]		with
whatever	you	want	to	print,	and	Python	will	print	it:

									print(“I	do	not	like	green	eggs	and	ham.”)
								print(“The	Cat	in	the	Hat”)

								>>	I	do	not	like	green	eggs	and	ham
								>>	The	Cat	in	the	Hat

Programming	is	full	of	conventions:	agreed	upon	ways	of	doing	things.	This	format	is	an
example	of	a	convention	that	is	used	in	the	programming	world	and	will	be	used	throughout
the	book.

Defining	Functions

To	create	a	function	in	Python	we	choose	a	function	name,	define	its	parameters,	define
what	the	function	will	do,	and	we	can	choose	to	optionally	return	a	value	(if	we	don’t	return	a
value	the	function	will	return	None).	We	use	the	following	syntax	to	define	a	function:

									def	[function_name]([parameters_seperated_by_commas]):
																		[function_definition]

Our	mathematical	function	f(x)	=	x	*	2		looks	like	this	in	Python:

#	https://github.com/calthoff/tstp/blob/master/part_I/functions/df_ex1.py

									def	f(x):
				return	x	*	2

>>

The	keyword	def		tells	Python	you	are	about	to	define	a	function.		is	a	keyword	used	to	define
a	function.	When	you	use	it,	Python	knows	you	are	about	to	define	one.	After	def	,	you	can
name	your	function	anythingwhatever	you’d	like.	By	convention,	you	should	never	use	capital
letters	in	ayour	function	name,s	and	if	there	are	two	words	in	your	function	name	you	should
separate	them	with	an	underscore—like_this.	Once	you’ve	named	your	function,		put
parentheses	after	it.	Inside	the	parentheseis,	you	put	your	parameter(s).	In	this	(the	previous?)
example,	our	function	only	has	one	parameter	(x),	but	if	you	want	your	function	to	accept
more	than	one	parameter,	you	must	separate	each	parameter	inside	the	parentheseis	with	a
comma.	After	the	parentheseis	you	put	a	colon	and	indent	by	four	spaces	(like	any	other
compound	statement).	Any	code	indented	four	spaces	after	the	colon		is	the	function’s
definition.	In	this	case,	our	function’s	definition	is	only	one	line—	return	x	*	2	.			return		is
another	keyword.	It	is		used	to	define	the	value	a	function	outputs	when	you	call	it,	referred	to
as	the	value	the	function	returns.

To	call	a	function	in	Python,	we	use	the	syntax	we	learned	earlier:	[function_name]()	.
Here	is	an	example	of	calling	our	function	with	2		as	a	parameter:

f(2)
>>		

You	will	notice	the	console	didn’t	print	anything.	Our	function	worked,	but	it	just	didn’t	print
the	result	because	we	didn’t	tell	Python	to.	If	we	want	to	print	the	value	our	function	returned,
we	can	save	our	function’s	output	in	a	variable:

									#	https://github.com/calthoff/tstp/blob/master/part_I/functions/df_ex3.py
									result	=	f(2)
								print(result)

								>>	4
								
You	can	save	the	result	your	function	returns	in	a	variable	whenever	you	need	to	use	the	value
later	in	your	program.
									Functions	are	not	onlyjust	used	to	return	values.	Returning	a	value	is	optional,	as	is
including	a	return		statement	in	your	function.	Aside	from	returning	values,	functions	also
encapsulate	functionality	you	want	to	reuse.	For	example:
	
									#add	github

def	even_odd(x):
												if	x	%	2	==	0:
																print(“even”)
												else:

																print(“odd”)								

								even_odd(2)
								even_odd(3)

								>>	even
								>>	odd

We	didn’t	define	a	value	for	our	function	to	return,	but	our	function	is	still	useful.	ItOur
function	tests	if	x	%	2	==	0		and	prints	whether	x		is	even	or	odd	depending	on	the	result.
Remember,	modulo	returns	the	remainder	when	you	divide	two	numbers.	If	there	is	no
remainder	when	you	divide	a	number	by	2		(modulo	returns	0)	the	number	is	by	definition
even.	If	there	is	a	remainder,	the	number	is	odd.	You	may	need	to	use	this	functionality	in
several	different	places	in	your	program.	It	would	be	poor	programming	to	type	the	code	we
used	in	our	function’s	definition	every	time	you	want	to	use	this	functionality.	That’s	what
functions	are	for.	You	put	functionality	in	a	function,	and	it	lets	you	easily	reuse	that
functionality	throughout	your	program,	without	having	to	do	any	extra	work.	This	is	a	little
confusing	-	are	you	going	to	explain	later	on?	You	could	mention	this	is	something	you’ll
cover	how	to	do	in	Chapter	__.

Parameters

So	far,	we’ve	only	defined	functions	that	accept	one	parameter.	A	function	doesn’t	have
to	take	any	parameters.	Here	is	an	example	of	a	function	that	does	not	take	any	parameters:

#	https://github.com/calthoff/tstp/blob/master/part_I/functions/df_ex5.py

									def	f():
												return	1	+	1

								result	=	f()
								print(result)

								>>	2

Here	is	an	example	of	a	function	that	accepts	multiple	parameters:

#	https://github.com/calthoff/tstp/blob/master/part_I/functions/df_ex4.py

def	f(x,	y,	z):
				return	x	+	y	+	z

								result	=	f(1,	2,	3)
								print(result)

								>>	6

There	are	two	types	of	parameters	a	function	can	accept.	The	parameters	we’ve	seen	so
far	are	called	required	parameters.	When	a	function	is	called,	all	of	the	required	parameters
must	be	passed	into	the	function,	or	you	will	get	an	error	in	your	program.	There	is	another
kind	of	parameter—optional	parameters—that	let	the	caller	of	the	function	pass	in	a
parameter	if	they	want	to,	but	they	do	not	have	to.	If	they	do	not	pass	in	a	parameter,	a	default
value	defined	by	the	function	will	be	used	instead.	OYou	define	optional	parameters	are
defined	with	the	following	syntax:	[function_name]([parameter_name]=[paramater_value])	.
Like	required	parameters,	optional	parametersthey		must	be	separated	by	commas.	Here	is	an
example	of	a	function	that	takes	an	optional	parameter:

#	https://github.com/calthoff/tstp/blob/master/part_I/functions/op_ex1.py

def	f(x=10):
				if	x	==	10:
									print(“x	is	ten”)
				else:
								print(“x	is	not	ten”)

default	=	f()
								pass_in	=	f(2)

								print(default)
								print(pass_in)

								>>	‘x	is	ten’	I’m	confused	why	there	are	single	quotes	or	any	quotes	at	all.
								>>	‘x	is	not	ten’I’m	confused	why	there	are	single	quotes	or	any	quotes	at	all.

First,	we	call	our	function	without	passing	in	a	parameter.	Because	the	parameter	is	optional
we	don’t	have	to	pass	it	inthis	is	allowed,	and	x		is	assigned	the	value	we	defined	in	our
optional	parameter—	10	.	When	our	function	is	called,	x		is	equal	to	10	,	and	so	‘x	is	ten’(if
there	should	be	single	quotes	above,	leave	it,	if	not	take	them	out)		prints.

Next—we	call	our	function	again—but	this	time	we	pass	in	2		as	a	parameter.	The
default	value	10		is	ignored	because	we	provided	a	value	this	time,	and	so	x		gets	2		and	“x	is
not	ten”		(same	thing	about	the	quotes,	even	if	I’m	just	missing	something	I	think	they	should
be	single	quotes)	prints.	You	can	define	a	function	with	both	required	and	optional
parameters,	but	there	is	one	rule:	all	of	your	required	parameters	must	be	defined	before	your
optional	parameters:

									def	required_optional(x,	y=10)
												return	x	+	y

								>>

Passing	Parameters

									When	you	define	a	function	with	parameters,	sometimes	those	parameters	have	to	be	a
specific	data	type	in	order	for	the	function	to	work.	How	do	you	communicate	this	to	whoever
calls	your	function?	When	you	write	a	function,	it	is	good	practice	to	leave	a	comment	at	the
top	of	the	function	explaining	what	data	type	each	parameter	needs	to	be.	We	will	discuss	this
further	in	Ppart	V.	When	you	give	a	function	parameters	when	you	call	it,	it	is	referred	to	as
“passing”	the	function	parameters.	This	sentence	makes	sense,	but	is	fairly	confusing.	Could	it
be:	When	you	give	a	function	parameters	THEN	you	call	it,	it	is	referred	to	as	“passing”	the
function	parameters.

pass

We	can	use	the	keyword	pass		to	create	a	function	that	does	nothing:

”””	https://github.com/calthoff/tstp/blob/master/part_I/functions/pass_ex1.py
”””

def	f():
				pass

f()
>>

pass	The	pass	keyword	is	useful	whenever	you	want	to	create	a	function,	but	finish	the
definition	later.		

Nested	Functions

You	can	define	a	function	inside	of	a	function.	This	is	called	nesting.	The	first	function
is	called	the	outer	function,	and	the	second	function	is	called	the	inner	(or	nested)	function,	or
nested	function.	Here	is	an	example:

def	f	():
				print	("Inner	Function!")

				def	x	():
								print	("Nested	Function!")

			x()

f()

									>>	Inner	Function!
								>>	Nested	Function!

We	will	not	be	covering	why	this	is	important	in	this	book	because	you	do	not	needit	is	not
important	to	use	nested	functions	when	you	are	learning	to	program.,	but	I	wanted	to	included
this	example	so	you	know	that	it	is	possible.

Scope

Variables	have	an	important	property	called	scope	we	didn’t	discuss	when	we	first
covered	them.	When	you	define	a	variable,	the	variable’s	scope	refers	to	what	part	of	your
program	has	access	to	it.	This	is	determined	by	where	the	variable	is	defined	in	your
program.	If	you	define	a	variable	outside	of	a	function	(or	a	class,	which	we	learn	about	in
Part	II)	the	variable	has	a	global	scope:	the	variable	can	be	accessed	anywhere	in	your
program.	If	you	define	a	variable	inside	of	a	function	(or	class)	it	has	local	scope:	the	variable
cannot	be	accessed	anywhere	in	your	program—;	it	can	only		be	accessed	in	the	function	(or
class)	it	was	defined	in	(or	any	nested	functions	or	classes).	Here	are	some	examples	of
variables	with	global	scope:		

									x	=	1
								y	=	2
								z	=	3

								>>

These	variables	were	not	defined	inside	of	a	function	(or	class)	and	therefore	have	a	global
scope.	This	means	we	can	access	them	anywhere—including	inside	of	a	function:

									x	=	1
								y	=	2
								z	=	3

								def	f():
												print(x)
												print(y)
												print(z)

								f()

									>>	1

								>>	2
								>>	3
								
If	we	define	these	same	variables	inside	of	a	function,	we	can	only	access	them	inside	of
thatthe	function	we	defined	them	in	(or	a	function	nested	inside	the	function	we	defined	them
in).	If	we	try	to	access	them	outside	of	the	function	they	were	defined	in,	Python	raises	an
exception:

def	f	():
				x	=	1
				y	=	2
				z	=	3

print	(x)
print	(y)
print	(z)

									>>	NameError:	name	'x'	is	not	defined

If	we	stick	to	using	these	variables	inside	our	function,	there	is	no	problem:

def	f	():
			x	=	1
				y	=	2
				z	=	3
				print	(x)
				print	(y)
				print	(z)

f()
					
									>>	1
								>>	2
								>>	3
								
If	you	want	to	change	the	value	of	a	global	variable	inside	a	local	scope,	you	need	to	use	the
global		keyword	followed	by	the	variable	you	want	to	change:

								#	https://github.com/calthoff/tstp/blob/master/part_I/functions/scope_ex3.py

									x	=	100

def	f():
				global	x
				x	+=	1

							print(x)
	
f()

>>	101

The	reason	programming	languages	have	scope	is	because	having	no	scope	(every	variable
can	be	accessed	anywhere	in	a	program)	causes	problems.	If	you	have	a	large	program,	and
you	write	a	function	that	uses	the	variable	x	,	you	might	accidently	change	the	value	of	a
variable	called	x		that	was	previously	defined	in	your	program;	which	will	change	the
behavior	of	your	program	and	may	cause	an	error	or	unexpected	results.	The	larger	your
program	gets,	and	the	more	variables	it	has,	the	more	likely	this	becomes.	However,	with
scope,	if	you	define	a	variable	x		inside	of	a	function,	there	is	a	guarantee	you	will	not
accidentally	change	the	value	of	any	previously	defined	variables	outside	of	your	function
because	in	order	to	change	the	value	of	a	variable	outside	of	your	function,	you	must
explicitly	use	the	global		keyword.

Built-in	Functions

									Python	comes	with	a	library	of	built-in	functions.	They	perform	all	sorts	of	different
functionality	and	are	ready	to	use	without	any	work	on	your	part.	We’ve	already	seen	one
example	of	a	built-in	function—the	first	program	we	wrote	used	the	print		function	to	print
“Hello,	World!”	.			len		is	another	built	in	function.	It	returns	the	length	of	an	object—like	a
string.	The	length	of	a	string	is	the	number	of	characters	in	it.

len(“Monty”)
>>	5

len(“Python”)
>>	6

type		is	another	built-in	function.	It	returns	what	data	type	an	object	is:

type(“Hello	World”)
								>>	<type	'str'>
								
								type(100)
								>>	<type	'int'>

								type(1.0)
								>>	<type	'float'>

The	built-in	str		function	takes	an	object	and	returns	a	new	object	with	a	string	data	type.	For
example,	we	can	use	str		to	convert	an	integer	to	a	string.

									str(100)
								>>	'100'

int		takes	an	object	and	returns	a	new	object	with	an	integer	data	type:

								int(“1”)
								>>	1

And	float		takes	an	object	and	returns	a	new	object	with	an	integer	data	type:

								float(100)
								>>	100.0

input		is	a	built-in	function	that	collects	information	from	the	person	using	our	program.		

“““
https://github.com/calthoff/tstp/blob/master/part_I/introduction_to_programming/input_ex1.py
”””

age	=	input("How	old	are	you?")
age	=	int(age)
if	age	<	21:
								print("You	are	young!")
else:
								print("Wow	you	are	old!")

>>	How	old	are	you?

The	input		function	takes	a	string	as	a	parameter	and	displays	the	string	to	the	person	using	the
program	in	the	shell.	They	can	then	type	a	response	into	the	shell,	and	we	can	save	their
response	in	a	variable—in	this	case	we	save	the	response	in	the	variable	age	.

Next	we	use	the	int		function	to	change	age		from	a	string	to	an	integer	because	input
	collects	data	from	the	user	as	a	string,	and	we	want	our	variable	to	be	an	integer	so	we	can
compare	it	to	other	integers.	Once	we	have	an	integer,		our	if	else		statement	determines	which
message	gets	printed	to	the	user,	depending	on	what	they	typed	into	the	shell.	If	the	user	types
a	number	smaller	than	21	,	“You	are	young!”		prints.	If	the	user	types	a	number	greater	than
21	,	“Wow	you	are	old!”		prints.

Exception	Handling

								When	you	rely	on	user	input	from	the	input		function,	you	do	not	control	the	input	to
your	program—the	user	does,	and	that	input	could	cause	an	error.	For	example,	say	we	write
a	program	to	collect	two	numbers	from	a	user,	and	print	out	the	result	of	the	first	number
divided	by	the	second	number:

“““
https://github.com/calthoff/tstp/blob/master/part_I/introduction_to_programming/exception_handling_ex1.py
”””

								a	=	input(“type	a	number”)
								b	=	input(“type	another	number”)
								a	=	int(a)
								b	=	int(b)
								print(a	/	b)

								>>	type	a	number
>>	10
>>	type	another	number
>>	5

>>	2
								
Our	program	appears	to	work.	However,	we	will	run	into	a	problem	if	the	user	inputs	0		as	the
second	number:

									a	=	input(“type	a	number”)
								b	=	input(“type	another	number”)
										a	=	int(a)
													b	=	int(b)
								print(a	/	b)
								
								>>	type	a	number

>>	10
>>	type	another	number
>>	0

>>	ZeroDivisionError:	integer	division	or	modulo	by	zero

Our	program	works—until	the	user	decides	to	enter	0		as	the	second	number,	in	which	case
our	program	raises	an	exception.	We	cannot	allow	people	to	use	this	program	and	hope	they
will	not	enter	0		as	the	second	number.	One	way	to	solve	this	is	to	use	exception	handling,
which	allows	you	to	“catch”	exceptions	if	they	occur	and	decide	what	to	do.

	The	keywords	try		and	except		are	used	for	exception	handling.	We	can	change	our
program	to	use	exception	handling	so	if	a	user	enters	0		as	the	second	number,	our	program
prints	a	message	telling	them	not	to	enter	0		instead	of	raising	an	exception.

In	Python	exceptions		are	objects—which	allows	us	to	use	to	them	in	our	programs.
Each	exception	in	Python	is	an	object.	You	can	see	the	full	list	of	built-in	exceptions	here:
https://docs.python.org/3/library/exceptions.html.	Whenever	you	are	in	situation	where	you
think	your	code	may	raise	an	exception,	you	can	use	a	compound	statement	with	the	keywords
try			and	except		to	catch	the	exception.

The	try	clause	defines	the	error	that	could	occur.	The	except	clause	defines	code	that
will	only	execute	if	the	exception	defined	in	your	try	clause	occurs.	Here	is	an	example	of
how	we	can	use	exception	handling	in	our	program	so	if	a	user	enters	0		as	the	second
number	our	program	doesn’t	break:

“““
https://github.com/calthoff/tstp/blob/master/part_I/introduction_to_programming/exception_handling_ex2.py
”””

								a	=	input(“type	a	number”)
								b	=	input(“type	another	number”)
								try:
												print(a	/	b)
								except	ZeroDivisionError:
												print(“b	cannot	be	zero.	Try	again.”)

>>	type	a	number
>>	10
>>	type	another	number
>>	0
>>	“b	cannot	be	zero.	Try	again.”

If	the	user	enters	anything	other	than	0	,	the	code	in	our	try	block	is	executed	and	our	except
block	doesn’t	do	anything.	But	if	the	user	enters	0	,	instead	of	raising	an	exception,	the	code	in
our	except	block	is	executed	and	our	program	prints	“b	cannot	be	zero.	Try	again.”	.
	

Docstrings

									Docstrings	are	comments	at	the	top	of	a	function	or	method	that	explain	what	the
function	or	method	does,	and	documents	what	types	of	the	parameters	should	be	passed	to	it.
Here	is	an	example:

def	add	(x	,	y):
				"""
			Returns	x	+	y.
				:param		x:	int	first	integer	to	be	added.
				:param		y:	int	second	integer	to	be	added.

				:return	:	int	sum	of	x	and	y.
			"""
				return	x	+	y

The	first	line	of	the	docstring	clearly	explains	what	our	function	does.	When	other	developers
reuse	your	function	or	method,	they	do	not	want	to	have	to	read	through	all	of	your	code	to
figure	out	what	it	does.	The	rest	of	the	lines	of	the	docstring	lists	the	function’s	parameters,	its
return	value,	and	some	additional	information,	including	the	type	for	all	of	the	parameters
and	the	return	value.	Docstrings	will	help	you	program	faster,	because	if	you	forget	what	a
piece	of	code	does,	you	can	quickly	figure	it	out	by	reading	the	docstring	instead	of	all	of	the
code	in	a	function,	class	or	method.	It	will	also	make	it	much	easier	for	other	programmers	to
use	your	code.	In	some	cases	I’ve	omitted	docstrings	I	normally	would	have	included	them	to
make	my	code	as	concise	as	possible	for	easy	reading—but	whenever	I	am	writing	code	for
production	(code	that	is	actually	used	by	other	people)—	I	use	docstrings.										

Challeng	e

Write	a	function	that	does	something	interesting,	and	use	it	several	times	in	a	program.

Chapter	5.	Containers

"Bad	programmers	worry	about	the	code.	Good	programmers	worry	about	data	structures
and	their	relationships."
—	Linus	Torvalds

In	chapter	3,	we	learned	how	to	store	objects		in	variables.	In	this	chapter	we	learn	to	store
objects	in	containers—special	objects	that	can	store	and	retrieve	other	objects	(like	strings).	In
this	chapter,	we	will	go	over	three	commonly	used	containers:	lists,	tuples	and	dictionaries.

Lists

A	list	is	a	mutable	container	that	stores	objects	in	a	specific	order.	When	a	container	is
mutable	it	means	the	objects	in	the	the	container	can	change—objects	can	be	added	and
removed	from	the	container.

[image]

Lists	are	represented	in	Python	with	brackets.	There	are	two	syntaxes	to	create	a	list.	We
can	create	an	empty	list	with	the	list		function:

									new_list	=	list()
								new_list
								>>	[]

Or	we	can	create	an	empty	list	with	brackets:

									new_list	=	[]
								new_list
								>>	[]

Both	syntaxes	create	a	new	empty	list.		When	you	create	a	new	list	with	the	list		function	you
can	also	pass	in	objects	you	want	to	add	to	your	list	as	parameters:

my_list	=	list	(“Apple”,	“Orange”,	“Pear”)
my_list

								>>	['Apple',	'Orange',	'Pear']

Or	like	this	using	the	second	syntax:

my_list	=	[“Apple”,	“Orange”,	“Pear”]

my_list

>>	['Apple',	'Orange',	'Pear']

Each	object	in	a	list	is	called	an	item	in	the	list.	In	this	example	there	are	three	items	in	our
list:	‘Apple’	,	‘Orange’		and	‘Pear ’	.	Lists	keep	their	items	in	order—the	order	the	items
entered	the	list.	Unless	we	change	the	order	of	our	list,	‘Apple’		will	always	be	the	first	item,
‘Orange’		the	second	item	and	‘Pear ’		the	third	item.	‘	Apple’		is	at	the	beginning	of	the	list,
and	‘Pear ’		is	at	the	end.		We	can	add	a	new	item	to	the	end	of	our	list	using	the	append
	function:

my_list.append(“Banana”)
my_list.append(“Peach”)
my_list

>>	['Apple',	'Orange',	'Pear',	‘Banana’,’Peach’]

Lists	are	not	limited	to	storing	strings—they	can	store	any	data	type:

									new_list	=	[]
									new_list.append(True)
								new_list.append(100)

new_list.append(1.1)
new_list.append(‘Hello’)

								>>	[True,	100,	1.1,	‘Hello’]

E	very	item	in	a	list	has	a	position	in	the	list—called	its	index.	You	can	figure	out	the	index	of
any	item	in	a	list	by	starting	at	the	beginning	of	the	list	and	counting.	The	only	tricky	part	is
you	have	to	start	counting	at	zero,	because	the	first	item	in	a	list	has	an	index	of	zero.	So	the
first	item	in	a	list	is	at	index	zero,	the	second	item	in	a	list	is	index	one,	and	so	on.	Counting
starting	at	zero	takes	some	getting	used	to,	so	don’t	worry	if	it	frustrates	you	at	first.		You	can
access	each	item	in	a	list	with	its	index	using	the	syntax	[list_name][[index]]	.	I	put	index	in
two	brackets	to	represent	that	[index]	should	be	replaced,	but	should	be	inside	brackets.

									my_list	=	[“Apple”,	“Orange”,	“Pear”]
									my_list[0]
								my_list[1]
								my_list[2]

								>>	Apple
								>>	Orange
								>>	Pear

You	can	change	an	item	in	a	list	by	setting	the	index	of	the	item	to	a	new	object:

color_list	=	[“blue”,	“green”,		“yellow”]

color_list
color_list[2]	=	“red”
color_list

>>	[“blue”,	“green”,		“yellow”]
>>	[“blue”,	“green”,	“red”]

If	you	try	to	access	an	index	that	doesn’t	exist,	Python	will	raise	an	exception:

									color_list	=	[“blue”,	“green”,		“yellow”]
color_list[4]

>>	IndexError:	list	index	out	of	range

You	can	remove	the	last	item	from	a	list	with			pop	:

									color_list	=	[“blue”,	“green”,	“yellow”]
								color_list
								item	=	color_list.pop()

item
								color_list

>>	[“blue”,	“green”,		“yellow”]								
								>>	“yellow”
						>>		[“blue”,	“green”]

You	cannot	pop	from	an	empty	list,	if	you	do	Python	will	raise	an	exception.
You	can	check	if	an	item	is	in	a	list	using	the	keyword	in	:

									color_list	=	[“blue”,	“green”,		“yellow”]
								“green”	in	color_list

								>>	True

Add	the	keyword	not		to	check	if	an	item	is	not	in	a	list:

									color_list	=	[“blue”,	“green”,		“yellow”]
								“black”	not	in	color_list

								>>	True

You	can	get	the	size	of	a	list	(the	number	of	items	in	it)	with	the	len		function:

len(color_list)
								>>	3

Finally,	you	can	get	a	range	of	items	in	a	list	with	slicing.	We	slice	a	list	with	a	start
index	and	an	end	index	separated	by	a	colon	in	brackets	outside	of	our	list.	Slicing	returns	a

new	list	(a	“slice”	of	the	old	one)	made	up	of	everything	between	the	start	and	end	index.	The
syntax	for	slicing	is	[list_name][[start_index:end_index]].	Here	is	an	example	of	slicing	a	list:

new_list	=	['Apple',	'Orange',	'Pear',	‘Banana’,	‘Peach’]
								new_list[0:3]

								>>	['Apple',	'Orange',	'Pear']

A	“gotcha”	with	slicing	is	the	start	index	includes	the	item	at	that	index,	but	the	end	index
doesn’t	include	the	item	at	the	end	index,	it	only	includes	the	item	before	the	end	index.	This
means	if	you	want	to	slice	from	“Apple”	to	“Pear”,	you	need	to	slice	from	index	0,	to	index	3
(instead	of	index	2),	because	the		item	at	the	end	index	is	not	included	in	the	slice.

Tuples

									A	tuple	is	an	immutable	container	that	stores	objects	in	a	specific	order.	When	a
container	is	immutable	it	means	the	contents	of	the	container	cannot	change.	That	means
unlike	a	list,	once	you	put	an	object	into	a	tuple,	you	can	no	longer	change	it.	Once	you	create
a	tuple	you	cannot	change	the	value	of	any	of	the	items	in	it,	you	cannot	add	new	items	to	it,
and	you	cannot	remove	items	from	it.	Tuples	are	represented	with	parenthesis.	There	are	two
syntaxes	to	create	a	tuple:

my	_tuple	=	tuple()
my_tuple

>>	()

And
									my_tuple	=	()
								my_tuple
								>>	()

If	you	want	your	tuple	to	contain	objects,	you	must	add	them	to	your	tuple	when	you	create	it.
Here	is	how	you	add	items	to	a	tuple	using	the	first	syntax:

									my_tuple	=	tuple(“brown”,	“orange”,	“yellow”)
								my_tuple

								>>	(“brown”,	“orange”,	“yellow”)

And	the	second:

								my_tuple	=	(“brown”,	“orange”,	“yellow”)

								my_tuple

								>>	(“brown”,	“orange”,	“yellow”)

A	tuple	with	one	item	in	it	still	needs	a	comma	after	the	item:

									(‘self_taught’,)

								>>	(‘self_taught’,)

Once	you’ve	created	your	tuple,	if	you	try	to	add	an	object	to	it,	Python	will	raise	an
exception:

									my_tuple	=	(“brown”,	“orange”,	“yellow”)
								my_tuple[1]	=	“red”

								>>	TypeError:	'tuple'	object	does	not	support	item	assignment

You	can,	however,	access	data	from	a	tuple	like	a	list—you	can	reference	an	index	and	slice	a
tuple:

												my_tuple	=	(“brown”,	“orange”,	“yellow”)
									my_tuple[0]

my_tuple[1:2]

								>>	yellow
								>>	('yellow',	'orange')

You	can	check	if	an	item	is	in	a	tuple	using	the	keyword	in:
								

my_tuple	=	(“brown”,	“orange”,	“yellow”)
								“brown”	in	my_tuple

								>>	True

Add	the	keyword	not		to	check	if	an	item	is	not	in	a	tuple:

									my_tuple	=	(“brown”,	“orange”,	“yellow”)
								“black”	not	in	my_tuple

								>>	True

You	may	be	wondering	why	you	would	want	to	use	a	data	structure	that	appears	to	be
like	a	list,	but	less	helpful.	Tuples	are	useful	when	you	are	dealing	with	values	you	know	will
never	change,	and	you	don’t	want	other	parts	of	your	program	to	have	the	ability	to	change
those	values.	A	good	example	is	if	you	are	working	with	geographic	coordinates.	You	may
want	to	store	the	longitude	and	latitude	of	New	York	in	a	tuple	because	you	know	the

longitude	and	latitude	of	New	York	is	never	going	to	change,	and	you	want	to	make	sure	other
parts	of	your	program	don’t	have	the	ability	to	accidentally	change	them.		

Dictionaries

									Dictionaries	are	another	built-in	container	for	storing	objects.	They	are	mutable—but
unlike	lists	and	tuples—they	do	not	store	objects	in	a	specific	order.	Instead,	dictionaries	are
used	to	map	one	object	(called	the	key)	to	another	object	(called	the	value).	Dictionaries	are
represented	with	curly	brackets.	There	are	two	syntaxes	for	creating	dictionaries:

									my_dict	=	dict()
								my_dict

								>>		{}

And:

									my_dict	=	{}
								my_dict

								>>	{}

You	add	objects	to	a	dictionary	by	mapping	a	key	to	a	value.	Each	key	mapped	to	a	value	in	a
dictionary	is	called	a	key	value	pair.	Here	is	how	you	create	key	value	pairs	when	you	create	a
dictionary	with	the	first	syntax:

my_dict	=	dict({“Apple”:	“Red”,	“Banana”:	“Yellow”})
								my_dict

								>>	{'Apple':	'Red',	'Banana':	'Yellow'}

And	the	second:

								my_dict	=	{“Apple”:	“Red”,	“Banana”:	“Yellow”}
								my_dict

								>>	{'Apple':	'Red',	'Banana':	'Yellow'}
								
Both	syntaxes	have	a	key	separated	from	a	value	by	a	colon.	Each	key	value	pair	must	be
separated	by	a	comma.	Unlike	a	tuple,	if	you	have	just	one	key	value	pair,	you	do	not	need	a
comma	after	it.	Once	you’ve	added	key	value	pairs	to	a	dictionary,	you	can	use	a	key	to
lookup	a	value.	You	can	only	use	a	key	to	lookup	a	value.	You	cannot	use	a	value	to	lookup	a
key:

									my_dict[‘Apple’]

								>>	Red

Dictionaries	are	mutable,	so	once	you’ve	created	one	you	can	add	more	key	value	pairs	with
the	syntax	[my_dictionary][[key]]=[value]	:

my_dictionary	=	dict()

my_dictionary[“programming”]	=	“awesome”
my_dictionary[“programming”]

my_dictionary[“Bill	Gates”]	=	“rich”
my_dictionary[“Bill	Gates”]

my_dictionary[“america_founded”]	=	1776
								my_dictionary[“america_founded”]

								>>	awesome
								>>	rich
								>>	1776

You	can	use	the	in		keyword	to	check	if	a	key	is	in	a	dictionary.	You	cannot	use	the	in
	keyword	to	check	if	a	value	is	in	a	dictionary.

									“Bill	Gates”	in	my_dictionary

								>>	True

Add	the	keyword	not		to	check	if	a	key	is	not	in	a	dictionary:

									“Bill	Plates”	not	in	my_dictionary

								>>	True

Finally,	you	can	delete	a	key	value	pair	from	a	dictionary	with	the	keyword	del

									my_dictionary
									del	my_dictionary['Bill	Gates']

my_dictionary

>>	{'america_founded':	1776,	'programming':	'awesome',	'Bill
Gates':	'Rich'}

>>	{'america_founded':	1776,	'programming':	'awesome'}

Challenge

Lists,	tuples	and	dictionaries	are	just	a	few	of	the	containers	built-in	to	Python.	Take
some	time	to	look	up	and	read	about	Python	sets.	What	is	a	situation	would	you	use	a	set	in?

Chapter	6.	String	Manipulation

“	In	theory,	there	is	no	difference	between	theory	and	practice.	But,	in	practice,	there	is.	”
—	Jan	L.	A.	van	de	Snepscheut

									Python	has	built-in	functionality	for	manipulating	strings,	such	as	changing	a	string’s
case	or	splitting	a	string	into	two	parts	at	a	given	character.	This	frequently	comes	in	handy.
Say	for	example,	you	have	a	string	IN	ALL	CAPS	and	you	want	to	change	it	to	lowercase.
Luckily,	with	Python,	we	can	easily	fix	this	problem.	In	this	chapter	we	will	learn	more	about
strings	and	go	over	some	of	Python’s	most	useful	tools	for	manipulating	strings.

Triple	Strings

If	a	string	is	more	than	one	line,	you	need	to	put	it	in	triple	quotes:

“““line	one
						line	two
						line	three
	”””

If	you	try	to	define	a	string	that	spans	more	than	one	line	with	single	or	double	quotes,	you
will	get	a	syntax	error.

Index	es

Strings	are	iterable.	You		can	access	each	character	in	a	string	with	its	index,	just	like
you	can	access	each	item	in	a	tuple.	Like	tuples,	the	first	character	in		a	string	starts	with	index
0		and	each	subsequent	index	is	incremented	by	1.

my_string	=	“LAX”
my_string[0]
my_string[1]
my_string[2]

>>	‘L’
>>	‘A’
>>	‘X’

In	this	example	w	e	used	the	indexes	0	,	1	,	and	2		to	access	each	of	the	characters	in	the	string
“LAX”	.	If	we	try	to	access	an	element	past	the	last	element,	Python	raises	an	exception:

my_string	=	“LAX”
my_string[3]

>>	IndexError:	string	index	out	of	range

Strings	are	Immutable

Strings,	like	tuples,	are	immutable.	You	cannot	change	characters	in	a	string.	If	you	want
to	change	the	characters	in	a	string,	you	need	to	create	a	new	string.

Methods

In	chapter	4,	we	learned	about	functions.	In	this	chapter,	will	be	using	a	concept	similar
to	functions—methods—to	manipulate	strings.	We	learn	more	about	methods	in	Part	II	of	this
book—	but	for	now	you	can	think	of	methods	as	functions	that	objects	“come”	with.

You	can	pass	parameters	to	a	method,	which	can	execute	code	and	return	a	result	just
like	a	function.	Unlike	a	function,	a	method	gets	called	on	an	object.	For	example	if	we	have	a
string	“Hello”	,	we	could	call	“Hello”.[method_name]()		on	our	string.	Other	than	being
called	on	an	object,	you	can	think	of	a	method	as	the	same	thing	as	a	function(for	now).

Change	Case

You	can	change	a	string	so	every	letter	is	uppercase	by	calling	the	upper			method	on	it:

“““	If	computer	programming	were	a	country,	it	would	be	the	third	most	diverse	for
languages	spoken.		”””	.upper()

>>	“““	IF	COMPUTER	PROGRAMMING	WERE	A	COUNTRY,	IT	WOULD	BE	THE
THIRD	MOST	DIVERSE	FOR	LANGUAGES	SPOKEN		”””

43

Similarly,	you	can	change	every	letter	in	a	string	to	lowercase	by	calling	the	lower		method
on	it:

“““	Ada	Lovelace,	the	daughter	of	the	English	poet	Lord	Byron,	is	considered	to	be	the
first	computer	programmer.	”””	.lower()

>>	“ada	lovelace,	the	daughter	of	the	english	poet	lord	byron,	is									considered	to	be
the	first	computer	programmer”

42

You	can	also	capitalize	the	first	letter	of	every	word	in	a	sentence	by	calling	the	capitalize
	method	on	a	string:

”””	you	can	build	a	computer	using	anything	that	can	implement	a			NAND-gate	and	the
concept	of	zero	(i.e.,	something	and	nothing).	all	Turing-complete	programming
languages	are	equally	powerful	(ignoring	practicalities).	lisp	appeared	in	1958	and	is
still	regarded	as	being	among	the	more	powerful	programming	languages
today.”””.capitalize()

>>	”””	You	can	build	a	computer	using	anything	that	can	implement																																		
a		NAND-gate	and	the	concept	of	zero	(i.e.,	something
and	nothing).	All	Turing-complete	programming	languages	are
equally	powerful	(ignoring	practicalities).	Lisp	appeared	in	1958
and	is	still	regarded	as	being	among	the	more	powerful
programming	languages	today.”””			40

format

									Sometimes	you	will	want	to	create	a	string	using	variables.	This	is	done	with	the
format		method:
																
									year_started	=	“1989”
								“Python	was	created	in	{}.”.format(year_started)
								
								>>	‘Python	was	created	in	1989.’

The	format	function	looks	for	any	occurrences	of	{}		in	the	string	and	replaces	them	with	the
values	you	pass	into	format.
You	are	not	limited	to	using	{}		once,	you	can	put	as	many	of	them	in	your	string	as	you’d
like:

								#	https://github.com/calthoff/tstp/blob/master/part_I/string_manipulation/format.py

year_started	=	“1989”

creator	=	“Guido	van	Rossum”
country	=	“the	Netherlands”
my_string	=	“Python	was	created	in	{}	by	{}	in	{}.”.format(year_started,	creator,
country)

								print(my_string)
								
								>>	‘Python	was	created	in	1989	by	Guido	van	Rossum	in	the						

Netherlands.’

split

									Strings	have	a	method	called	split	used	to	separate	one	string	into	two	strings.	You	pass
the	split	method	the	character	or	characters	you	want	to	use	to	separate	the	string—for
example,	we	can	pass	in	a	period	to	separate	this	quote	by	Daniel	Coyle	into	two	different
strings:
								

”””	Practice	doesn’t	make	perfect.	Practice	makes	myelin,	and	myelin	makes
perfect.”””.split(“.”)

										>>	["Practice	doesn't	make	perfect",	'	Practice	makes	myelin,	and
myelin	makes	perfect',	'']

The	result	is	a	list	with	two	different	strings	split	at	the	period	in	the	original	string.

join

The	join		method	lets	you	add	new	characters	in	between	every	character	in	a	string:
								
									my_string	=	‘abc’
								join_result	=	‘+’.join(my_string)
								join_result

								>>	‘a+b+c’

You	can	turn	a	list	of	strings	into	a	single	string	by	calling	the	join	method	on	an	empty	string
(“”)	and	passing	in	a	list:

the_Fox	=	[“The”,	“fox”,	“jumped”,	“over”,	“the”,	“fence”,	“.”]

one_string	=	“”.join(the_Fox)
one_string

>>	The	fox	jumped	over	the	fence.

replace

The	replace		method	lets	you	replace	every	occurrence	of	a	character(s)	with	another
character(s).	The	first	parameter	is	the	character(s)	to	replace	and	the	second	parameter	is	the
character(s)	to	replace	it	with.

									my_string	=	“The	cat	jumped	over	the	hat.”
								my_string	=	my_string.replace(“a”,	“@”)
								my_string

								>>	“The	c@t	jumped	over	the	h@t.”

index

We	can	get	the	index	of	the	first	occurrence	of	a	character	in	a	string	with	the	index
method.	We	pass	in	the	character	we	are	looking	for,	and	we	get	the	index	of	the	first
occurrence	of	the	character	in	the	string:
								
									‘cat’.index(‘a’)
								>>	1

in

The	in		keyword	checks	if		one	string	is	in	another	string	and	returns	True		or	False	:

“Playboy”	in		”””	A	picture	from	Playboy	magazine	is	the
most	widely	used	for	all	sorts	of	image	processing
algorithms”	””

								>>	True
								42

Add	the	keyword	not		in	front	of	in		to	check	if		one	string	is	not	in	another	string:
																

								“	hello	”	not	in	”””	The	computer	virus	was	initially
designed	without	any	harmful	intentions	”””

																>>	True
									42

Escaping	Strings

What	if	you	want	to	use	quotes	inside	a	string?	If	we	use	quotes	inside	a	string	we	get	a	syntax
error:

”””	Sun	Tzu	said	"The	Supreme	art	of	war	is	to	subdue	the	enemy	without		fighting."	"
“““

>>	SyntaxError:	invalid	syntax
								
We	can	solve	this	with	escaping,	which	means	putting	a	special	symbol	in	front	of	a	character
that	has	special	meaning	in	Python	(in	this	case	the	special	character	is	a	quote),	to	let	Python
know	that	this	particular	character	is	meant	to	be	a	character,	and	not	the	special	Python
symbol	it	usually	represents.	The	special	symbol	we	use	to	escape	our	quote	is	a	backslash.

									“““Sun	Tzu	said	\"The	Supreme	art	of	war	is	to	subdue	the		
enemy	without	fighting.\"	”””

									>>	'	Sun	Tzu	said	"The	Supreme	art	of	war	is	to	subdue	the	enemy
			without	fighting."	'

Newline

We	can			use			“\n”		inside	a	string	to	represent	a	newline:

									print(“line1	\nline2”)
								>>	‘line1’
								>>	‘line2’

Concatenation

We	can	add	two	strings	together	using	the	addition	operator.	The	result	will	be	one
string	with	the	characters	from	the	first	string	followed	by	the	characters	from	the	next
strings.	This	is	called	concatenation:

	“cat”	+	“in”	+	“the”	+	“hat”
								>	‘catinthehat’

								“cat	”	+	“in	”	+	“the	”	+	“hat	”
								>>	‘cat	in	the	hat’

String	Multiplication

We	can	also	multiply	a	string	by	a	number	with	the	multiplication	operator:

								“cat”	*	3
								>>	‘catcatcat’

Chapter	7.	Loops

The	second	program	we	learned	how	to	write	printed	Hello,	World!		a	hundred	times.	We	did
this	by	using	a	loop.	Loops	are	compound	statements	that	let	us	execute	code	over	and	over
again	a	certain	number	of	times,	or	as	long	as	a	condition	is	True	.	In	this	chapter	we	will	go
over	two	kinds	of	loops—for	loops	and	while	loops.

For	Loops

									For	loops	execute	a	set	of	instructions	a	certain	number	of	times.	You	give	a	for	loop	a
number	to	start	at	(we	will	call	this	number	a),	a	number	to	stop	at	(we	will	call	this	number	z
),	a	set	of	instructions,	and	a	variable	that	keeps	track	of	the	number	of	times	the	instructions
have	been	executed	(we	will	call	this	variable	i).	You	can	think	of	a	for		loop	as	a	circle.	It
goes	round	and	round	executing	instructions.	Every	time	the	loop	executes	its	instructions,	i
	(which	starts	at	the	value	of	a)	gets	incremented	by	1	.	When	i		becomes	equal	to	z	,	the		the
for		loop	stops.				

You	define	a	for		loop	with	the	syntax	for	[variable_name]	in	range(a,	z):
[code_to_execute]		where	a		is	the	number	to	start	at,	z		is	the	number	to	stop	at,	and
[variable_name]		is	a	variable	name	of	your	choosing	that	gets	assigned	to	whatever	number
the	loop	is	on	(we’ve	been	referring	to	it	as	i)	and	code_to_execute		is	the	code	you	define
that	is	executed	each	time	around	the	loop.	This	all	is	easier	to	understand	with	an	example:

								#	https://github.com/calthoff/tstp/blob/master/part_I/loops/for_loops_ex1.py

									for	i	in	range(0,	10):
												print(i)

								>>	0
								>>	1
								…
								>>	9

In	this	example	we	chose	i		as	our	variable_name	.	This	is	the	variable	name	people	in	the
Python	community	usually	use	when	they	write	a	for		loop.	Your	code_to_execute		has	access
to	the	variable	i	.

When	we	run	this	program,	our	program	enters	our	for		loop.	a		starts	at	0	,	z		starts	at
10		and	i		starts	at	the	same	value	as	a	—	0	.	The	first	time	around	the	loop	i		is	0	,	and	our	for
	loop	executes	its	instructions—	print(i)	—	which	prints	0		(because	i		is	equal	to	0).	The	next
time	around	the	loop,	i		is	incremented	by	1	,	so	i		is	now	1	,	and	so	1		gets	printed.	The	next

time	around	the	loop,	i		is	incremented	by	1		again,	and	so	now	i		is	2	,	and	so	2		gets	printed.
Eventually,	i		will	equal	10	.	When	this	happens,	nothing	will	print,	because	i		is	equal	to	z		and
so	the	loop	ends.

When	a	loop	ends,	its	instructions	stops	executing,	and	Python	moves	on	to	the	next	line
of	code	after	the	loop.	That	is	why	9	is	the	last	number	printed.	If	there	were	more	code	after
our	loop,	Python	would	execute	it,	but	in	this	example	there	is	not,	and	so	the	program	ends.
								There	is	another	for		loop	syntax	we	can	use	for	iteration.	Iteration	means	going	one	by
one	through	an	iterable.	An	iterable	is	an	object	that	has	indexes.	Some	examples	of	iterables
are	strings,	lists,	tuples	and	dictionaries.	Iteration	is	done	with	the	syntax	for	variable_name	in
iterable:	[code_to_execute]	.	Just	like	the	first	syntax,	we	chose	a	variable	name	and	define	the
code	to	be	executed	each	time	around	the	loop.	In	this	syntax,	instead	of	our	loop	executing
code	until	i		is	equal	to	z	,	our	loop	starts	at	the	first	index	in	the	iterable,	and	stops	after	the
last	index.	Also	variable_name		gets	assigned	to	the	item	at	the	index	we	are	at	(in	the
iterable).	Here	is	an	example:

#	https://github.com/calthoff/tstp/blob/master/part_I/loops/for_loops_ex2.py

my_string	=	“Python”
for	character	in	my_string:
				print(character)

>>	‘P’
>>	‘y’
>>	‘t’
>>	‘h’
>>	‘o’
>>	‘n’

#	https://github.com/calthoff/tstp/blob/master/part_I/loops/for_loops_ex3.py

my_list	=	[“a”,	“b”,	“c”]
								for	item	in	my_list:
												print(character)
								
								>>	‘a’
								>>	‘b’
								>>	‘c’

									#	add	github

									my_tuple	=	(“a”,	“b”,	“c”)
								for	item	in	my_tuple:
												print(character)

								>>	‘a’

								>>	‘b’
								>>	‘c’

									#	add	github

									my_dict	=	{“self”:	“taught”,	“programming”:	“wizard”}
								for	key	in	my_dict:
												print(key)

								>>	“self”
								>>	“wizard”

Each	of	these	examples	loops	through	an	iterable,	and	prints	each	item	in	it.	You	will	notice
we	used	several	different	variable	names	for	variable_name	.	In	this	syntax,	instead	of	using	i
,	you	want	to	use	a	descriptive	variable	name.	In	the	first	example,	we	used	character	,	because
each	item	at	an	index	in	a	string	is	called	a	character.	In	the	second	and	third	examples,	we
used	item	,	because	each	object	in	a	list	or	tuple	is	called	an	item.	In	the	last	example,	we	used
key	,	because	when	you	iterate	through	a	dictionary	like	this,	you	can	only	access	each	key	in
the	dictionary,	not	the	value—	so	we	chose	a	variable	name	to	make	this	clear.

Being	able	to	loop	through	an	iterable	is	very	useful.	Iterables	are	used	to	store	data,
and	you	can	use	for		loops	to	loop	through	your	data	to	easily	make	changes	to	it,	or	move
the	data	from	one	iterable	to	another.

While	Loops

									While	for		loops	execute	code	a	certain	number	of	times,	while		loops	execute	code	as
long	as	the	expression	in	its	header	evaluates	to	True	.	The	syntax	for	creating	a	while		loop	is
while	[expression]:	[code_to_execute]	.	Like	a	for		loop,	a	while		loop	goes	around	like	a
circle	executing	code.	The	difference	is	instead	of	executing	code	a	set	amount	of	times,	a
while		loop	executes	code	as	long	as	the	expression	we	define	in	its	header	evaluates	to	True	.

	If	we	use	an	expression	that	always	evaluates	to	True	,	our	loop	will	run	forever.	This	is
called	an	infinite	loop.	Writing	an	infinite	loop	is	easy	(be	prepared	to	press	control-c		on
your	keyboard	in	the	Python	shell.	It	is	the	only	way	to	stop	an	infinite	loop	from	running).				
			

									#	https://github.com/calthoff/tstp/blob/master/part_I/loops/while_loops_ex1.py

									while	True:
												print(“Hello,	World!”)

								>>	Hello	World
								...

Because	a	while		loop	runs	as	long	as	its	expression	evaluates	to	True	—and	True		always
evaluates	to	True	—this	loop	will	run	forever,	continuously	executing	the	code	we	defined.	In
other	words,	our	program	will	never	stop	printing	“Hello,	World!”	.
Now	let’s	look	at	a	while		loop	with	an	expression	that	will	eventually	evaluate	to	False	:
																
									#	https://github.com/calthoff/tstp/blob/master/part_I/loops/while_loops_ex2.py

x	=	10
								while	x	>	0:

						print(‘{}’.format(x))
					x	-=	1
print(“Happy	New	Year!”)

>>	10
								>>	9
								>>	8
								>>	7
								>>	6
								>>	5
								>>	4
								>>	3
								>>	2
								>>	1
								>>	‘Happy	New	Year!’

Our	while		loop	will	execute	its	code	as	long	as	the	expression	we	defined	is	True	.	In	this
case,	that	means	it	will	execute	its	code	as	long	as	x	>	0	.			x		starts	at	10		(we	defined	x		before
we	created	our	while		loop).	The	first	time	through	our	loop,	x		is	10	,		so	x	>	0		evaluates	to
True	.	Our	while		loop’s	code	prints	x		and	then	decrements	x		by	1	—	x		is	now	9	.	The	next
time	around	the	loop	x		gets	printed	and	x		becomes	8	.	This	continues	until	x		becomes	0	,	at
which	point	x	>	0		evaluates	to	False		and	our	loop	ends.	Python	then	executes	the	next	line	of
code	after	our		loop—	print(“Happy	New	Year!”)	—	which	prints	“Happy	New	Year!”	.

Break

									You	can	prematurely	end	a	for		or	while		loop	with	the	keyword	break	.	For	example,
the	following	loop	will	run	one	hundred	times:

								#	https://github.com/calthoff/tstp/blob/master/part_I/loops/break.py

for	i	in	range(0,	100):

				print(i)

>>	0
>>	1
...

But	if	we	add	a	break		statement	to	the	code	the	loop	executes,	the	loop	only	runs	once:

								#	https://github.com/calthoff/tstp/blob/master/part_I/loops/break_ex2.py

for	i	in	range(0,	100):
				print(i)
				break

>>	0

The	loop	goes	around	once	and	prints	0	.	When	the	the	break		keyword	is	executed,	the	loop
ends.	This	is	useful	in	many	situations.	For	example,	we	can	write	a	program	that	asks	the	user
for	input	until	they	type	“q”	to	quit:

								#	https://github.com/calthoff/tstp/blob/master/part_I/loops/break_ex3.py

								“““If	you	are	unfamiliar	the	reference	in	this	example,	go	watch	Monty	Python	and	the
Holy

Grail!”””

questions	=	[“What	is	your	name?”,	“What	is	your	favorite	color?”,	“What	is	your
quest?”]
n	=	0								

								while	True:
												print(“Type	q	to	quit”)
												answer	=	input(questions[n])
												if	answer	==	“q”:

								break
												n	+=	1
												if	n	>	2:

								n	=	0

Each	time	through	our	infinite	loop,	our	program	will	ask	the	user	a	question	from	our	list	of
questions.	We	use	the	variable	n		to	keep	track	of	a	number	which	we	use	as	an	index	to	get	a
question	from	our	questions	list.	When	n		becomes	greater	than	2	,	we’ve	run	out	of	questions
and	we	set	n		back	to	0		which	will	ask	the	first	question	in	the	list.		This	will	go	on
indefinitely,	unless	the	user	types	in	“q”		,	in	which		case	our	program	hits	the	break		keyword
and	the	loop	ends,	which	ends	our	program.

Continue

									You	can	use	the	keyword	continue		to	stop	executing	a	for		or	while		loop’s	code,	and
jump	to	the	top	of	a	loop.	Say	for	instance,	we	want	to	print	the	numbers	from	1		to	5	,	except
for	the	number	3	.	We	can	do	this	by	using	a	for		loop	with	the	continue		keyword:

								#	https://github.com/calthoff/tstp/blob/master/part_I/loops/continue.py

									for	i	in	range(1,	6)	:
												if	i	==	3:
																continue
												print(i)

								>>	1
								>>	2
								>>	4
								>>	5

In	our	loop,	when	i		equals	3	,	our	program	hits	the	continue		keyword.	Instead	of	causing	our
loop	to	exit	completely—like	the	break		keyword—the	loop	persists	but	w	e	get	jumped	to	the
top	of	our	loop,	which	means	any	of	the	loop’s	code	that	would	have	executed	that	time
around	the	loop	gets	skipped.	In	this	case	when	i		is	equal	to	3	,		everything	after	continue		is
skipped	(in	this	case	print(i)).	The	result	is	3		is	not	printed.	Here	is	the	same	example	with	a
while		loop:
	
									#	add	github
								i	=	1
								while	i	<=	5:
													if	i	==	3:
																				continue
													print(i)

Nested	Loops

									You	can	combine	loops	in	various	ways.	For	example,	you	can	have	one	loop	inside	of
another	loop.	You	can	also	have	a	loop	inside	a	loop	inside	a	loop.	There	is	no	limit	to	the
amount	of	times	you	can	do	this,	although	in	practice	you	want	to	limit	the	number	of	times
you	do.

	When	a	loop	is	inside	another	loop,	the	second	loop	is	said	to	be	nested	in	the	first
loop.	The	first	loop	is	called	the	outer	loop,	and	the	nested	loop	is	called	the	inner	loop.	When
you	nest	two	loops,	the	inner	loop	runs	its	full	course	each	time	around	the	outer	loop.	Here	is
an	example:

								#	https://github.com/calthoff/tstp/blob/master/part_I/loops/nested_loops.py

																	for	i	in	range(1,	3):
																				print(i)
																				for	letter	in	[‘a’,	‘b’,	‘c’]:
																								print(letter)
																
																>>	1
																>>	‘a’
																>>	‘b’
																>>	‘c’
																>>	2
																>>	‘a’
																>>	‘b’
																>>	‘c’

The	nested	for		loop	will	iterate	through	the	list	“[a’,	‘b’,	‘c’]”	however	many	times	the
outside	loop	runs—in	this	case	twice.	If	we	changed	our	outer	loop	to	run	three	times,	the
inner	loop	would	iterate	through	the	list	three	times.

If	you	have	two	lists	of	numbers	and	want	to	create	a	new	list	with	all	of	the	numbers
from	each	list	added	together	you	can	use	two	for		loops:

								#	https://github.com/calthoff/tstp/blob/master/part_I/loops/nested_loops_ex2.py
									list1	=	[1	,	2	,	3	,	4]

list2	=	[5	,	6	,	7	,	8]
added_up	=	[]
for	i	in	list1:
				for	j	in	list2:
							added_up.append(i	+	j)

print	(added	_up)

								>>	[6,	7,	8,	9,	7,	8,	9,	10,	8,	9,	10,	11,	9,	10,	11,	12]

In	the	second	for		loop	we	used	the	variable	j		because	i		is	already	in	use	by	the	first	loop.
You	can	also	nest	a	for		loop	inside	a	while		loop	and	vice	versa:

								#	https://github.com/calthoff/tstp/blob/master/part_I/loops/nested_loops_ex3.py
while	input	('Continue	y	or	n?')	!=	'n'	:
				for	i	in	range	(1,	5):

								print	(i)

>>
Continue	y	or	n?y
1
2
3
4
5
Continue	y	or	n?y
1
2
3
4
5
Continue	y	or	n?n
>>>

This	program	will	print	the	numbers	0-4		until	the	user	enters	n	.

Challenge

Write	a	program	that	has	an	infinite	loop	(with	q	to	quit),	and	each	time	through	the
loop,	it	asks	the	user	to	guess	a	number	and	tells	them	whether	their	guess	was	right	or	wrong.

Chapter	8.	Modules

Imagine	we	wanted	to	build		a	large	project	with	ten	thousand	lines	of	code.	If	we	kept	all	of
that	code	in	one	file,	our	project	would	be	difficult	to	navigate.	Every	time	there	was	an	error
or	exception	in	our	code,	we	would	have	to	scroll	through	a	file	with	ten	thousand	lines	to
find	the	line	of	the	code	with	a	problem.	Programmers	solve	this	problem	by	dividing	large
programs	up	into	multiple	pieces.	Each	piece	is	stored	in	a	module—	which	is	another	name
for	a	Python	file.	Python	has	a	special	syntax	that	lets	you	use	code	from	one	Python	module
in	another	Python	module.	Python	also	comes	with	built-in	modules	you	can	use	that	give	you
access	to	extra	functionality.

Importing	Built-in	Modules

In	order	to	use	a	module,	you	must	import	it	first,	which	means	use	a	special	syntax	to
make	the	code	in	the	module	available	to	use	in	your	program.	This	is	done	with	the	syntax
import	[module_name]	.	import		is	a	keyword	for	importing	modules	and	must	be	followed
by	the	module	name.	For	now,	we	are	only	going	to	learn	how	to	import	built-in	modules	and
modules	located	in	the	same	folder	as	the	module	you	are	importing	it	from.	In	Part	III,	we
learn	how	import	modules	from	different	locations	.
We	can	import	Python’s	built-in	math		module	with	the	following	syntax:

									import	math

								>>

The	math		module	is	a	module	that	comes	with	Python	when	you	install	it.	It	is	a	regular
Python	file	with	a	bunch	of	math	related	functionality—it	contains	Python	functions	that	are
useful	when	you	are	doing	math.	Once	you’ve	imported	a	module,	you	can	use	any	of	the
code	from	it.	You	can	access	a	function	in	the	module	with	the	syntax	[path_to_module].
[function_name]()	.	With	this	syntax,	you	can	use	any	of	the	code	(such	as	a	function)	from	the
math	module	in	your	program:

									import	math

								math.fabs(-3)
								>>	3

The	fabs		function	returns	the	absolute	value	of	the	parameter	you	pass	in.		You	may	be
wondering	how	you	are	supposed	to	know	there	is	a	math	module	with	a	function	called	fabs

	in	it.	A	list	of	Python’s	built-in	modules	can	be	found	at	https://docs.python.org/3/py-
modindex.html.	If	you	search	for	the	math		module,	there	is	a	link	that	takes	you	to	a	page	that
lists	every	function	in	the	math		module,	what	each	function	does,	and	what	parameters	it
takes.

Another	built-in	module	is	the	random		module.	Here	is	an	example	of	importing	the
random		module,	and	using	a	function	from	it	called	randint		that	takes	two	numbers	as
parameters	and	returns	a	random	number	between	them.

								#	The	output	of	this	program	might	not	be	52	when	you	run	it—it’s	random!

									import	random

								random.randint(0,100)

>>	52

There	are	other	syntaxes	for	importing	modules,	but	in	general	import	[module_name]		is	the
syntax	you	should	use,	and	the	one	we	will	be	using	throughout	the	book.	Finally,	you	should
do	all	of	the	imports	for	your	program	at	the	top	of	your	file.

Importing	Modules

									In	this	section,	we	are	going	to	create	a	module,	and	use	the	code	from	it	in	another
module.	First	create	a	new	folder	on	your	computer	called	tstp	,	then	create	a	file	called
hello.py		in	it.	Inside	hello.py		add	the	following	code:

								#	https://github.com/calthoff/tstp/blob/master/part_I/modules/hello.py

									def	print_hello():
												print(“Hello”)

Save	the	file.	Inside	the	tstp		folder,	create	another	Python	file	called	project.py	.	Inside
project.py		add	the	following	code:

									#	https://github.com/calthoff/tstp/blob/master/part_I/modules/project.py

									import	hello
								
								hello.print_hello()

								>>	‘Hello’

Using	the	import		keyword	we	can	easily	use	code	from	our	first	module	in	our	second
module.

Challenge

I	challenge	you	to	write	three	functions	in	a	module,	and	use	them	in	another	Python	program.

Chapter			9.	Files

Python	makes	it	easy	to	work	with	files.	You	can	easily	read	and	write	data	from	a	file.
Reading	data	from	a	file	means	accessing	the	files	content.	Writing	data	to	a	file	means	adding
new	content	to	the	file.	This	is	useful	whenever	you	want	to	use	data	from	a	file	in	a	program,
or	output	data	from	a	program	to	a	file.	In	this	chapter,	we	will	learn	the	basics	of	working
with	files—including	how	to	read	and	write	to	files.

Working	With	Files

The	open		function	takes	a	string	representing	the	path	to	a	file	and	a	string	representing
the	mode	to	open	the	file	in	as	parameters.	The	path	to	a	file—also	called	a	file	path—
represents	the	location	on	your	computer	a	file	resides,	for	example:
/Users/calthoff/my_file.txt		is	the	file	path	to	a	file	called	my_file.txt	.	Each	word	separated	by
the	slash	that	precedes	it	is	the	name	of	a	folder.	Together	they	represent	the	location	of	that
file.	If	a	file	path	only	has	the	name	of	the	file,	Python	will	look	for	the	file	in	whatever	folder
you	are	running	your	program	in.

The	second	parameter	represents	the	mode	to	open	the	file	in,	which	determines	the
actions	you	will	be	able	to	perform	on	the	file.	Here	are	a	few	of	the	modes	you	can	open	a
file	with:

									“r”			Opens	a	file	for	reading	only.

									“w”			Opens	a	file	for	writing	only.	Overwrites	the	file	if	the	file	exists.	If	the	file	does
not	exist,	creates	a	new	file	for	writing.

									“w+”		Opens	a	file	for	both	writing	and	reading.	Overwrites	the	existing	file	if	the	file
exists.	If	the	file	does	not	exist,	creates	a	new	file	for	reading	and	writing.

5

Once	you’ve	passed	the	open		function	a	file	path	and	mode	as	parameters,	open		creates	a	file
object		(We	learn	about	objects	in	Part	II)		we	can	use	to	read	or	write	to	our	file	(or	both
depending	on	the	mode	you	chose).	Here	is	an	example	writing	to	a	file:

									my_file	=	open(“my_file.txt”,	“w”)
								my_file.write(“Hello	from	Python!”)
								my_file.close()

								>>

		open		creates	a	new	file	called	my_file.txt		(because	we	passed	in	“w”	as	our	mode)	in
whatever	directory	you	ran	our	program	in.	We	save	our	file	object	returned	by	the	open
	function	in	in	the	variable	my_file	.

Now	we	can	call	the	write		method	on	our	file	object,		which	accepts	a	string	as	a
parameter	and	writes	it	to	the	new	file	we	created.	Finally,	we	closed	our	file	by	calling	the
close		method	on	the	file	object.	This	is	an	important	step.	Whenever	you	open	a	file	using	the
open		method,	you	need	to	close	it	with	the	close		method.	If	you	have	a	program	where	you
use	the	open		method	on	multiple	files,	and	you	forget	to	close	them,	it	can	cause	problems	in
your	program.

Using	with

									Because	forgetting	to	close	files	you	opened	can	cause	problems,	there	is	a	second,
prefered	syntax	for	opening	files.	The	preferred	way	to	open	a	file	in	Python	is	to	use	a
compound	statement			using	the	with		keyword	and	the	syntax	with	open(‘my_file’,[mode])	as
[variable_name]:	[your_code]	.	When	you	use	a	compound	statement	using	with		the	file
automatically	closes	after	the	last	suite	executes	in	the	statement.	The	file	object	gets	saved	in
a	variable	of	your	choosing	([variable_name]).	Here	is	the	example	from	the	previous
section	written	using	the	preferred	syntax	for	opening	a	file:

								#	https://github.com/calthoff/tstp/blob/master/part_I/files/using_with.py
									with	open(‘my_file.txt’,	‘w’)	as	my_file:
																my_file.write(‘Hello	from	Python!’)

								>>

As	long	as	you	are	inside	of	the	with		statement,	you	can	work	with	the	file	you	opened	using
the	variable	you	created—in	this	case	my_file	.	As	soon	as	Python	leaves	the	with		statement,	it
closes	the	file	for	you	.

Reading	Files

									If	you	want	to	access	the	contents	of	a	file	(read	the	file)	you	pass	in	“r”		as	the	second
parameter	to	open	.	Then	you	can	call	the	read		method	on	your	file	object	which	returns	an
iterable	you	can	iterate	through	to	get	each	line	of	the	file.

								#	https://github.com/calthoff/tstp/blob/master/part_I/files/reading_files.py

									with	open(“my_file.txt”,	“r”)	as	my_file:
																for	line	in	my_file.read():
																				print(line)

								>	>	Hello	from	Python!

You	can	only	call	read		on	a	file	once	(each	time	you	run	your	program)	to	gets	its	contents,
so	you	should	save	the	file	contents	in	a	variable	or	container	if	you	need	to	use	the	file
contents	again	later	in	your	program.	For	example,	we	could	change	the	previous	example	to
save	the	file	contents	in	a	list:

									#		

									my_list	=	list()

									with	open(“my_file.txt”,	“r”)	as	my_file:
																for	line	in	my_file.read():
																				my_list.append(line)

								print(my_list)

								>	>	Hello	from	Python!

With	the	file	contents	saved	in	a	list,	we	can	easily	access	it	later	in	our	program	whenever	we
need	it.

CSV	Files

									Python	comes	with	a	built-in	module	for	working	with	CSV	files.	CSV	stands	for
comma	separated	value.	It	is	a	file	format	commonly	used	in	Microsoft	Excel:	a	program	for
creating	spreadsheets.	A	comma	in	a	CSV	file	is	called	a	delimiter.	Every	piece	of	data
separated	by	a	comma	represents	a	cell	in	Excel.	Each	line	of	the	CSV	file	represents	a	row	in
Excel.	Here	is	an	example	of	the	contents	of	a	csv	file:

									#	my_file.csv
								one,	two,	three
								four,	five,	six

You	could	load	this	file	into	excel	and	one	,	two		and	three		would	each	get	their	own	cells	in
the	first	row	of	the	spreadsheet;	and	four	,	five		and	six		would	each	get	their	own	cells	in	the
second	row	of	the	spreadsheet.
								We	can	use	a	with		statement	to	open	a	CSV	file	like	the	example	from	the	previous
section,	but	inside	the	with		statement	we	need	to	use	the	csv		module	to	convert	our	file	object

into	a	csv	object.	The	csv		module	has	a	method	called	writer		that	accepts	a	file	object	and	a
delimiter	and	returns	a	csv		object	with	a	method	called	writerow		we	can	use	to	write	to	our
CSV	file:				

									#	https://github.com/calthoff/tstp/blob/master/part_I/files/csv_files.py

									import			csv

									with			open	(‘	my_file.csv’	,	‘w’)	as		csvfile:
													spamwriter	=		csv	.	writer(csvfile,	delimiter	=	',’)	
														spamwriter	.	writerow([‘one’,	‘two’,	‘three’])
														spamwriter	.	writerow([‘	four ’,	‘five’,	‘six’])

>>
										
The	writerow		method	accepts	a	list	as	a	parameter.	Every	item	in	the	list	gets	written	to	the
CSV	file	and	each	item	is	separated	by	the	delimiter	you	passed	to	the	writer		method	(in	this
case	a	comma).	writerow		only	writes	one	row,	so	we	have	to	call	it	twice	to	create	two	rows.
When	you	run	this	program,	it	will	create	a	new	file	called	my_file.csv		and	when	you	open
the	file	with	a	text	editor,	it	will	look	like	this:

									#	my_file.csv
								on	e,	two,	th	ree
								four,	five,	six

If	you	load	this	file	into	Excel	(or	Google	Sheets	a	free	Excel	alternative),	the	commas
disappear,	but	one	,	two		and	three		will	each	have	their	own	cell	in	row	one;	and	four	,	five
	and	six		will	each	have	their	own	cell	in	row	two.

We	can	also	use	the	csv	module	to		read	the	contents	of	a	file.	To	read	from	a	CSV	file,
first	we	pass	in	‘r ’		to	open		as	as	the	second	parameter.	This	opens	the	file	for	reading	only.
Instead	of	using	the	writer		method	like	the	previous	example,	we	use	the	reader		method,	but
still	pass	in	the	file	path	and	a	comma	as	the	delineator.

reader		returns	an	iterable	we	can	iterate	through	to	print	each	row.	We	can	call	the	join
	method	on	a	comma	to	add	a	comma	in	between	each	value	to	print	the	contents	of	the	file
like	it	appears	in	the	original	file:

								#	https://github.com/calthoff/tstp/blob/master/part_I/files/csv_files_ex2.py

									import	csv

								with	open(‘my_file.csv’,	‘r ’)	as	csvfile:
																	spamreader	=		csv	.	reader(csvfile,	delimiter	=	',')
																	for		row	in		spamreader:
																				print	(','	.	join(row))

								>>		one,two,thre	e

								>>	four,	five,	six

Challenge

	Data	persists	when	it	outlives	the	program	that	created	it.	We	can	use	files	to	persist	data	by
writing	the	output	of	our	programs	to	a		file.	Write	a	program	that	collects	data	from	a	user—
and	saves	it	to	a	file—so	the	data	persists.

Chapter			10.	Bringing	It	All	Together

In	this	chapter,	we	are	going	to	combine	the	concepts	we’ve	learned	so	far	to	build	a
text-based	game:	the	classic	game	Hangman.	If	you’ve	never	played	Hangman,	here's	how	it
works.	Player	One	picks	a	secret	word	and	draws	lines	representing	each	letter	in	the	word
(we	will	use	an	underscore	to	represent	each	line).	Player	Two	tries	to	guess	the	word	one
letter	at	a	time.	If	Player	Two	guess	a	letter	correctly,	the	corresponding	underscore	is
replaced	with	the	correct	letter.	If	Player	Two	guesses	incorrectly,	Player	One	draws	a	piece
of	a	picture	of	a	hangman	(a	person	hanging).	If	Player	Two	completes	the	word	before	the
picture	of	the	hangman	is	drawn,	they	win,	if	not	they	lose.	In	our	program	the	computer	will
be	Player	One,	and	the	person	playing	the	game	will	be	Player	Two.	Are	you	ready	to	build
Hangman?

Hangman		

Here	is	the	beginning	of	our	hangman	code:

								#
https://github.com/calthoff/tstp/blob/master/part_I/bringing_it_all_together/hangman.py

def	hangman	():
			word	=	"caat"
			wrong_guesses	=	0
				stages	=	[""	,	"________						"	,	"|						|						"	,	"|						0						
			"	,	"|					/|\					"	,	"|					/	\					"	,	"|													"]
				letters_left	=	list	(word)
			score_board	=	['__']	*	len	(word)
			win	=	False
				print	('Welcome	to	Hang	Man')

First	we	create	a	function	called	hangman	we	can	call	to	start	the	game.	The	word	to	guess	is
stored	in	the	variable	word		(you	can	change	the	word	the	player	has	to	guess	by	changing	the
variable).	We	use	another	variable	wrong_guesses		to	keep	track	of	how	many	incorrect
letters	the	player	has	guessed.

stages		is	a	list	filled	with	strings	we	will	use	to	draw	our	Hangman.	When	each	string	in
the	stages	list	is	printed	on	a	new	line,	a	picture	of	a	hangman	forms.	letters_left		is	a	list	made

up	of	each	character	in	word	.	We	will	use	it	to	keep	track	of	which	letters	are	left	to	guess	in
our	word.		

scoreboard		is	a	list	of	strings	used	to	keep	track	of	the	hints	we	display	to	the	user	e.g.,
“c	__	t”	if	the	word	is	“cat”	.	The	initial	value	of	score_board		is	calculated	with			[‘__’]	*
len(word)		which	returns	a	list	made	up	of	the	number	of	underscores	to	start	with.	For
example	if	the	word	is	“cat”			score_board		starts	as	[“__”,	“__”,	“__”]	.

Finally,	we	have	a	win		variable	that	starts	as	False		to	keep	track	of	whether	the	player
has	won	the	game	yet	or	not.	To	start	the	game	off	we	print	Welcome	to	Hangman	.

When	you	build	a	game,	you	normally	use	a	loop	that	continues	until	the	game	is	over.
Here	is	the	loop	we	will	use	in	our	game:

while	wrong_guesses	<	len	(stages)	-	1	:
				print	('	\n	')
			guess	=	input	("Guess	a	letter")
				if	guess	in	letters_left:
							character_index	=	letters_left.index(guess)
							score_board[character_index]	=	guess
							letters_left[character_index]	=	'$'
				else	:
							wrong_guesses	+=	1
				print	(''	.join(score_board))
				print	('	\n	'	.join(stages[0	:	wrong_guesses	+	1]))
				if	'__'	not	in	score_board:
								print	('You	win!	The	word	was:')
								print	('	'	.join(score_board))
							win	=	True
							break

Our	loop	continues	as	long	as	the	variable	wrong_guesses		is	less	than	the
	len(wrong_guesses)	-	1	.	wrong_guesses		keeps	track	of	the	number	of	wrong	letters	the	user
has	guessed,	so	as	soon	as	the	user	has	guessed	more	wrong	letters	than	the	number	of	strings
that	make	up	the	hangman,	the	game	is	over.	The	reason	we	subtract	1		is	because	the	length
	function	in	Python	does	not	count	from	0	,	it	counts	from	1	.	In	order	to	compensate	for	this,
we	have	to	subtract	one,	to	compensate	for	the	fact	that	length		counts	starting	from	1		instead
of	0	.	The	reason	we	want	to	count	from	0		is	because	stages		is	a	list,	and	we	are	going	to	be
using	wrong_guesses		as	an	index	to	get	the	strings	from	stages	and	indexes	start	at	0	.

Inside	our	loop,	we	print	a	blank	space	to	make	our	game	look	nice	when	it’s	printed	in
the	shell.	Next	we	collect	the	player ’s	guess	with	the	built-in	input		function	and	store	the	value
in	the	variable	guess	.		
									If	guess		is	in	letters_left		(a	variable	from	the	beginning	of	our	program	that	keeps
track	of	the	letters	that	haven’t	been	guessed	yet),	the	player	guessed	correctly.	If	the	player
guessed	correctly	we	need	to	update	our	score_board		list,	which	we	use	later	in	the	game	to
display	the	score.	If	the	user	guessed	“c”	,	we	want	to	change	our	score_board		to	look	like

this:	[“c”,	“__”,	“__”]	.		We	use	the		index		method	on	our	letters_left		list	to	get	the	first	index
of	the	letter	that	was	guessed.	We	use	that	index	to	replace	the	underscore	in	score_board	at
the	index	with	the	correctly	guessed	letter.	We	have	a	problem	though.	Because	index	only
returns	the	first	index	of	the	character	we	are	looking	for,	our	code	will	not	work	if	word
	(the	word	the	player	is	guessing)	has	more	than	one	of	the	same	character.	To	compensate	for
this,	we	modify	letters_left		by	replacing	the	character	that	was	just	correctly	guessed	with	a
dollar	sign	so	that	the	next	time	around	the	loop,	if	there	is	more	than	one	letter	in	the	word
index		will	find	second	occurrence	of	the	letter	since	the	first	occurrence	of	the	letter	was
replaced	by	a	dollar	sign.	If	on	the	other	hand	the	player	guesses	an	incorrect	letter,	we	simply
increment	wrong_guesses		by	1	.

Next	we	print	the	scoreboard	and	print	our	hangman	using	our	score_board		and	stages
	lists.	To	print	the	scoreboard,	all	we	have	to	do	is	print	''	.join(score_board)	.

Printing	the	hangman	is	trickier.	When	each	of	the	strings	in	our	stages		list	is	printed
on	a	new	line,	a	complete	picture	of	a	hangman	is	printed.	We	can	easily	create	the	entire
hangman	by	printing	'	\n	'	.join(stages)	.	This	connects	each	string	in	the	stages	list	with	a
blank	space	(\n)	.	But	we	want	to	print	our	hangman	at	the	stage	we	are	currently	at,	which	we
accomplish	by	slicing	our	stages		list.	We	start	at	stage	0		and	slice	up	until	whatever	stage	we
are	at	(represented	by	the	variable	wrong_guesses)	plus	one.	The	reason	we	add	one,	is
because	when	you	are	slicing,	the	end	slice	does	not	get	included	in	the	results.	This	gives	us
only	the	strings	we	need	to	print	the	stage	of	the	hangman	we	are	currently	on	which	we	then
print.

The	last	thing	we	do	in	our	loop	is	check	if		the	user	has	won	the	game	If	there	are	no
more	underscores	in	the	score_board		list,	we	know	the	user	has	guessed	all	the	letters	and
won	the	game.	If	the	user	has	won,	we	print	that	they	won	and	we	print	the	word	they	correctly
guessed.	We	also	set	the	variable	win		to	True		which	is	used	when	we	break	out	of	our	loop.

Once	we	break	out	of	our	loop,	if	the	user	won,	we	do	nothing,	and	the	program	is	over.
If	the	user	did	not	win,	the	variable	win		will	be	False			.	If	that	is	the	case	we	know	the	user
lost	the	game	and	we	print	the	full	hangman,	print	“You	lose!”		followed	by	the	word	they
incorrectly	guessed:

if	not	win:
				print	('	\n	'	.join(wrong_guesses[0	:	stage]))
				print	('You	lose!	The	words	was	{}'	.format(word))

hangman()

Here	is	our	complete	code:

									#
https://github.com/calthoff/tstp/blob/master/part_I/bringing_it_all_together/hangman.py

def	hangman	():
			stage	=	0

				wrong_guesses	=	[""	,	"________						"	,	"|						|						"	,	"|						0						"	,	"|					/|\					"	,	"|					/	\		
		"	,	"|													"]
			word	=	"cat"
				score_board	=	['__']	*	len	(word)
			win	=	False
				print	('Welcome	to	Hang	Man')
				while	stage	<	len	(wrong_guesses)	-	1	:
								print	('	\n	')
							guess	=	input	("Guess	a	letter")
								if	guess	in	word:
											score_board[word.index(guess)]	=	guess
								else	:
											stage	+=	1
								print	(('	'	.join(score_board)))
								print	('	\n	'	.join(wrong_guesses[0	:	stage	+	1]))
								if	'__'	not	in	score_board:
												print	('You	win!	The	word	was:')
												print	('	'	.join(score_board))
											win	=	True
											break
			if	not	win:
								print	('	\n	'	.join(wrong_guesses[0	:	stage]))
								print	('You	lose!')

hangman()

Challenge

Building	text-based	games	is	a	great	way	to	improve	your	programming	ability.	Build
another	text-based	game	that	interests	you.

Chapter	11.	Practice

“	The	fool	wonders,	the	wise	man	asks.	”
	—	Benjamin	Disraeli

If	this	is	your	first	programming	book,	I	recommend	you	spend	time	practicing	before
moving	on	to	the	next	section.	In	this	chapter,	I	provide	exercises	to	help	you	get	additional
practice	before	moving	on	to	the	next	section,	resources	to	check	out,	and	we	cover	how	to
get	help	if	you	get	stuck.

Exercises

0.	Create	a	text	based	game	of	your	favorite	sport.
0.	Make	up	your	own	text	based	game.	When	I	was	starting	out	I	built	a	fantasy	based
game	based	on	Heroes	of	Might	and	Magic	III
0.	Build	a	text	based	magic	8	ball	program	where	the	user	can	shake	a	magic	eight	ball
and	get	predictions	about	their	future
0.	Create	a	program	that	asks	the	user	what	kind	of	mood	they	are	in	and	recommends	a
song.
0.	Build	a	program	that	prints	out	ten	brands	and	lets	the	user	type	them	in.	When	they
do,	the	program	should	print	the	brand’s	trademark	i.e.,	the	user	could	type	Nike	and	the
program	would	print	“Just	do	it.”

Read

0.	http://programmers.stackexchange.com/questions/44177/what-is-the-single-most-
effective-thing-you-did-to-improve-your-programming-skil
0.	https://www.codementor.io/ama/0926528143/stackoverflow-python-moderator-
martijn-pieters-zopatista

Getting	Help

								If	you	get	stuck,	I	have	a	few	suggestions.	The	first	is	posting	a	question	on
http://forum.theselftaughtprogrammer.io	,	it	is	a	forum	I	set	up	for	people	reading	this	book

to	get	answers	to	any	questions	they	have.
		I	also	recommend	checking	out	Stack	Exchange—an	amazing	resource	for

programmers.	There	are	two	websites	on	Stack	Exchange	you	should	explore.	The	first	is
Stack	Overflow.	If	you	haven’t	used	it	yet,	you	will	soon	be	familiar	with	it.	Google	almost
any	programming	question	and	an	answer	will	pop	up	on	Stackoverflow,	which	makes	it	a
game	changer	for	learning	to	program.
								Learning	to	rely	on	other	people's	help	was	an	important	lesson	for	me.	Struggling	to
figure	things	out	is	a	major	part	of	the	learning	process,	but	at	some	point	it	becomes
counter-productive	.	Working	on	projects	in	the	past,	I	used	to	continue	to	struggle	way	past
the	point	where	it	was	productive.	Today	if	that	happens,	I	will	post	a	question	online,	if	the
answer	is	not	already	on	there.	Every	time	I’ve	posted	a	question	online,	someone	has	been
able	to	answer	it.	I	can’t	say	enough	about	how	helpful	and	friendly	the	programming
community	is.

Other	Resources

link	to	website	for	other	python	resources

Part	II	Introduction	to	Object-oriented
Programming

Chapter	12.	Programming	Paradigms

“There	are	only	two	kinds	of	languages:	the	ones	people	complain	about	and	the	ones	nobody
uses”
—Bjarne	Stroustrup

								A	programming	paradigm	is	a	certain	way	of	programming.	There	are	many	different
programming	paradigms.	You	won’t	need	to	learn	all	of	them	at	the	beginning	of	your	career
—but	it’s	important	to	know	what	some	of	the	most	popular	paradigms	are.	The
programming	paradigms	we	will	go	over	in	this	chapter	are	imperative	programming,
functional	programming	and	object-oriented	programming—with	a	focus	on	object-oriented
programming—the	subject	of	the	remaining	chapters	of	this	section.

State

One	of	the	fundamental	differences	between	different	programming	paradigms	is	the
handling	of	state.	State	is	the	data	your	program	has	access	to.	Programs	store	data	in
variables—so	state	is	the	value	of	a	program’s	variables	at	a	given	time	the	program	is
running.

Imperative	Programming

	In	Part	I,	we	learned	to	program	imperatively.	Imperative	programming	can	be
described	as	“do	this,	then	that”.	An	imperative	program	is	a	sequence	of	steps	moving	toward
a	solution—with	each	step	changing	the	program’s	state.	An	example	of	imperative
programming	would	be:

x	=	2
y	=	4
z	=	8
xyz	=	x	+	y	+	z

									>>	14

Each	step	of	the	program	changes	the	program's	state.	We	get	to	xyz		by	first	defining	x	,
followed	by	y	,	followed	by	z		and	finally	defining	xyz	.

Functional	Programming

Functional	programming	is	another	popular	programming	paradigm.	It	originates	from
lambda	calculus.	Functional	programming	involves	writing	functions	that—given	the	same
input—	always	return	the	same	output.	In	functional	programming,	you	only	program	with
functions,	you	do	not	use	classes—a	feature	of	object-oriented	programming	we	will	learn
about	shortly.	There	is	a	lot	of	jargon	in	functional	programming	and	Mary	Rose	Cook	does
a	great	job	cutting	through	it	with	her	definition,	“Functional	code	is	characterised	by	one
thing:	the	absence	of	side	effects.	It	doesn’t	rely	on	data	outside	the	current	function,	and	it
doesn’t	change	data	that	exists	outside	the	current	function.”	61		She	follows	her	definition
with	an	example	which	I	will	also	share	with	you.	Here	is	an	unfunctional	function:

a	=	0

def	increment	():
				global	a
			a	+=	1

	Here	is	a	functional	function	:

def	increment	(a):
				return	a	+	1

The	first	function	is	unfunctional	because	it	relies	on	data	outside	of	itself,	and	changes	data
outside	of	the	current	function	by	incrementing	a	global	variable.	The	second	function	is
functional	because	it	does	not	rely	on	any	data	outside	of	itself,	and	it	does	not	change	any
data	outside	of	itself	either.	Functional	programmers	write	functions	this	way	to	eliminate	side
effects—the	unintended	consequences	that	happen	when	you	are	constantly	changing	the	state
of	your	program.		

Object-oriented	Programming

The	object-oriented	programming	paradigm	involves	writing	programs	where	you
define	and	create	objects	that	interact	with	each	other.	We’ve	been	programming	with	objects
this	whole	time—strings,	integers	and	floats	are	all	examples	of	objects.	But	you	can	also
define	your	own	objects	using	classes.	Classes	are	the	blueprint	used	to	create	objects.	You
can	think	of	a	class	as	the	idea	of	an	object.	Think	of	an	orange.	An	orange	is	an	object.	A
fruit	weighing	between	2	to	10	ounces	is	the	idea	of	an	orange—a	class.

We	can	model	oranges	in	Python	by	defining	a	class	we	can	use	to	create	orange
objects.	We	define	a	class	using	the	class		keyword	followed	by	the	name	we	want	to	give	our
class.	A	class	is	a	compound	statement	with	a	header	followed	by	suites.	You	write	suites	after

the	header,	which	can	be	simple	statements,	as	well	as	compound	statements	called	methods.
Methods	are	like	functions,	but	they	are	defined	inside	of	a	class,	and	can	only	be	called	on	the
object	the	class	can	create.	We	saw	different	examples	of	this	in	Chapter	5	when	we	called
various	methods	on	strings.	Here	is	an	example	how	we	can	represent	an	orange	using	a	class
in	Python:
								
#
https://github.com/calthoff/tstp/blob/master/part_II/object_oriented_programming/orange_ex1.py

class	Orange	:
				print	("Orange	created!")

We	started	with	the	class	keyword	followed	by	the	name	of	our	class—in	this	case	Orange
because	we	are	modeling	oranges.	By	convention,	classes	in	Python	always	start	with	a	capital
letter	and	are	written	in	camelCase—which	means	if	a	class	name	is	made	up	of	more	than
one	word,	the	words	should	not	be	separated	by	an	underscore	(like	a	function	name),	instead
each	word	should	be	capitalized	LikeThis.

After	our	class	definition	we	have	a	simple	statement—	print(“Orange	created!”)	.	This
code	will	execute	when	we	create	an	orange	object.	With	this	class	definition,	we	can	create	as
many	Orange		objects	as	we’d	like:						

orange	=	Orange()
print	(type	(orange))
print	(orange)

								>>	Orange	created!
								>>	<class	'__main__.Orange'>
								>>	<__main__.Orange	object	at	0x101a787b8>

We	created	a	new	Orange		object	using	the	same	syntax	we	use	to	call	a	function—[
classname]()	.	This	is	called	instantiating	an	object,	which	means	creating	a	new	object.
“Orange	created!”		prints	as	soon	as	we	instantiate	our	Orange		object.	When	we	print
type(orange)	,	the	type		function	tells	us	our	Orange		object	is	an	instance	of	the	Orange		class
we	just	created.	When	we	print	our	Orange		object,	Python	lets	us	know	it	is	an	Orange
	object,	and	then	gives	us	its	location	in	memory.	When	you	print	an	object	like	this,	the
location	in	memory	printed	on	your	computer	will	not	be	the	same	as	the	example,	because
the	object’s	location	in	memory	changes	each	time	the	program	runs.

Now	we	are	going	to	add	a	method	to	our	Orange		class.	You	define	a	method	with	the
same	syntax	as	a	function.	There	are	only	two	differences:	a	method	must	be	defined	as	a	suite
in	a	class,	and	a	method	has	to	accept	at	least	one	parameter	(except	in	special	cases	I	won’t	go
into).	You	can	name	the	first	parameter	of	a	method	whatever	you’d	like,	but	by	convention
the	first	parameter	in	a	method	is	always	named	self	,	and	I’ve	never	seen	this	convention
broken.

The	reason	every	method	must	have	a	first	parameter	is	because	whenever	a	method	is
called	on	an	object,	Python	automatically	passes	the	method	the	object	that	called	it.	This
concept	exists	in	most	programming	languages	that	support	object-oriented	programming,
however,	Python	makes	the	passing	of	self		as	a	parameter	explicit	whereas	many	other
languages	make	it	implicit.	What	I	mean	is	that	Python	makes	you	explicitly	define	self		in
every	method	you	create	whereas	in	other	languages	self		is	just	implied	to	have	been	passed
to	the	object.	If	we	define	a	method	and	print	self	,	we	will	see	it	is	the	Orange		object	we
called	our	method	on:

class	Orange	:
				print	("Orange	created!")

				def	print_orange	(self):
								print	(self)

									Orange().print_orange()

								>>	Orange	created!
								>>	<__main__.Orange	object	at	0x101a787b8>

self		is	useful	because	we	can	use	it	to	define	and	access	variables	that	belong	to	our	Orange
	object.	We	do	this	by	defining	a	special	method	called	__init__	,	which	stands	for	initialize.
When	you	instantiate	an	object,	if	you’ve	defined	a	method	called	__init__	,	Python
automatically	calls	the	__init__		method	for	you	when	the	object	is	created.	Inside	__init__		we
can	give	our	Orange		object	variables	with	the	syntax	self.[variable_name]	=	[variable_value]
.	Here	is	an	example:

class	Orange	:
				print	("Orange	created!")

				def	__init__	(self):
								self	.color	=	"orange"
								self	.weight	=	10

				def	print_orange	(self):
								print	(self)
								print	(self	.color)
								print	(self	.weight)

orange	=	Orange()
orange.print_orange()

									>>	Orange	created!
								>>	<__main__.Orange	object	at	0x10564dba8>
								>>	orange
								>>	10
								

Using	__init__	we	can	now	create	oranges	that	get	a	color	and	weight	when	initialized	and	we
can	use	and	change	these	variables	in	any	of	our	methods	just	like	regular	variables.	In
Python,	any	method	surrounded	on	both	sides	by	underscores	is	called	a	magic	method	which
means	it	does	something	special.	The	print_orange		method	was	used	to	illustrate	an	example,
it	will	not	be	a	method	in	our	orange	as	we	continue	to	model	it.
								We	can	change	our	class	definition	so	the	person	creating	the	object	can	pass	in	their
own	variables	when	they	create	a	new	orange,	instead	of	the	weight	and	color	starting	with
default	values	.	Here	is	our	new	class	definition:

#
https://github.com/calthoff/tstp/blob/master/part_II/object_oriented_programming/orange_ex3.py

class	Orange	:
				def	__init__	(self	,	weight	,	color	,	mold):
													"""all	weights	are	in	oz"""
								self	.weight	=	weight
								self	.color	=	color

Now	we	can	create	a	wider	variety	of	oranges	objects:

orange	=	Orange(10	,	'orange'	,)

We	just	created	a	10	oz	(per	the	comment	“all	weight	are	in	oz”),		orange	colored	orange.	We
can	access	the	oranges	variables	using	dot	notation:

									print	(orange.weight)

								>>	10

									print	(orange.color)

								>>	“orange”

We	can	also	change	any	of	the	values	of	our	orange	object:

									orange.weight	=	100
print	(orange.weight)

								>>	100

Moving	forward	with	the	modeling	of	our	orange,	there	is	more	to	an	orange	than	just
its	physical	properties	like	color	and	weight.	Oranges	can	also	do	things,	and	we	need	to	be
able	to	model	that	as	well.	What	can	an	orange	do?	Well,	for	one	thing,	oranges	can	go	bad
from	mold.	We	can	model	a	molding	orange	by	adding	a	mold	variable	to	our	Orange		class,
and	creating	a	method	that	increments	the	mold	variable	when	it’s	called:

#
https://github.com/calthoff/tstp/blob/master/part_II/object_oriented_programming/orange_ex2.py

class	Orange	():
				def	__init__	(self):
							"""all	weights	are	in	oz"""
								self	.weight	=	6
								self	.color	=	'orange'
								self	.mold	=	0

				def	rot	(self	,	days	,	temperature):
								self	.mold	=	days	*	(temperature	*	.1)

orange	=	Orange()
print	(orange.mold)
orange.rot(10	,	98)
print	(orange.mold)

>>	0
>>	98.0		

Now	our	orange	objects	will	be	able	to	rot.	We	defined	a	method	that	accepts	the	number	of
days	it's	been	since	the	orange	was	picked,	and	the	average	temperature	during	that	time	as
parameters.	With	our	made-up	formula,	we	can	increase	the	amount	of	mold	the	orange	has
every	time	we	call	the	rot	method;	and	our	orange	now	has	the	ability	to	rot.

That	was	a	lot	to	take	in	,	so	let's	go	over	it	all	one	more	time.	In	Object-oriented
programming,	we	use	classes	to	model	objects.	These	objects	group	variables	(state)	and
methods	(for	altering	state)	together	in	a	single	unit—the	object.	Classes	have	a	special
method	called	__init__		that	Python	calls	when	an	object	is	created	using	the	syntax
[class_name]()	.	This	is	an	example	of	one	of	Python’s	magic	methods.	The	first	argument	to
any	method	is	called	self		by	convention	and	exists	because	Python	automatically	passes	the
object	that	called	the	method	into	the	method.

Challenge

Pick	a	programming	paradigm	and	research	what	problems	it	solves.

Chapter	13.		The	Four	Pillars	of	Object-oriented
Programming

"Good	design	adds	value	faster	than	it	adds	cost."
—Thomas	C.	Gale

								There	are	four	main	concepts	in	object-oriented	programming—often	called	the	four
pillars	of	object-oriented	programming:	inheritance,	polymorphism,	abstraction	and
encapsulation.	These	concepts	must	all	be	present	in	a	programming	language	in	order	for	it
to	be	considered	an	object-oriented	programming	language.	Python,	Java	and	Ruby	are	all
examples	of	object-oriented	languages.	Not	all	programming	languages	support	object-
oriented	programming—for	example	Haskell	is	a	functional	programming	language	that
does	not	support	object-oriented	programming.	In	this	chapter,	we	take	a	deeper	look	at
object-oriented	programming	by	exploring	each	of	the	four	pillars	of	object-oriented
programming.

I	nheritance

Inheritance	in	programming	is	similar	to	genetic	inheritance.	In	genetic	inheritance	you
can	inherit	attributes	from	your	parents,	like	your	eye	color.	Similarly	w	hen	you	create	a
class,	it	can	inherit	from	another	class	(which	is	then	called	its	parent	class)—giving	the	new
class	you	created	the	parent	class’s	variables	and	methods.	In	this	section	we	will	model	a	kid
and	adult	using	inheritance.	First,	we	define	a	class	to	represent	an	adult:

“““
https://github.com/calthoff/tstp/blob/master/part_II/more_object_oriented_programming/inheritance_ex1.py
	”””

class	Adult	():
				def	__init__	(self	,	name	,	height	,	weight	,	eye_color):
								"""height	is	in	feet,	weight	in	lbs."""
								self	.name	=	name
								self	.height	=	height
								self	.weight	=	weight
								self	.eye_color	=	eye_color

				def	print_name	(self):
								print	(self	.name)

tom	=	Adult("Tom"	,	6	,	150	,	"brown")

print	(tom.name)
print	(tom.height)
print	(tom.weight)
print	(tom.eye_color)
tom.print_name()

								>>	Tom
								>>	6
								>>	150
								>>	brown
								>>	Tom

Using	this	class	we	can	create	Adult		objects	with	a	name,	height,	weight	and	eye	color.	In
addition,	our	Adult		objects	have	a	method	called	print_name		that	prints	the	parent’s	name.		

We	can	model	a	human	child	that	also	has	a	name,	height,	weight,	eye	color	and	can
print	its	name;		with	an	extra	method	we	don’t	want	our	Adult		objects	to	have	called
print_cartoon	;	using	inheritance.	You	inherit	from	a	parent	class	by	adding	parenthesis	to	the
class	name	you	are	defining,	and	passing	in	the	class	name	you	want	to	inherit	from	as	a
parameter.	Here	is	an	example:

“““
https://github.com/calthoff/tstp/blob/master/part_II/more_object_oriented_programming/inheritance_ex2.py
	”””

class	Adult	():
				def	__init__	(self	,	name	,	height	,	weight	,	eye_color):
								#	height	is	in	feet,	weight	in	lbs.
								self	.name	=	name
								self	.height	=	height
								self	.weight	=	weight
								self	.eye_color	=	eye_color

				def	print_name	(self):
								print	(self	.name)

class	Kid	(Adult):
				def	print_cartoon	(self	,	favorite_cartoon):
								print	("{}'s	favorite	cartoon	is	{}"	.format(self	.name	,
												favorite_cartoon))

child	=	Kid("Lauren"	,	3	,	50	,	"blue")
print	(child.name)
print	(child.height)

print	(child.weight)
print	(child.eye_color)
child.print_name()
child.print_cartoon('DuckTales')

									>>	brown
								>>	Ricky
								>>	DuckTale	s

By	passing	in	Adult		to	our	Kid		class,	our			Kid		class	inherits	the	variables	and	methods	of
our	Adult		class:	when	we	create	a	Kid		object	we	pass	it	a	name,	height,	weight	and	eye	color;
and	our	Kid		object	is	able	to	use	the	method	print_name	;	all	of	which	was	inherited	from	its
parent	class	(without	having	to	define	any	of	it	in	our	Kid		class).	This	is	important	because
not	having	to	repeat	code	makes	our	program	smaller	and	therefore	more	manageable.

After	inheriting	from	our	Adult		class,	all	we	had	to	do	was	define	a	new	method	called
print_cartoon		in	our	Kid		class	to	create	a	Kid		class	with	all	of	the	functionality	of	our	Adult
	class,	plus	additional	functionality;	all	without	affecting	our	Adult		class.

Polymorphism

									The	best	definition	I’ve	found	of	polymorphism	is	“polymorphism	is	the	ability	(in
programming)	to	present	the	same	interface	for	differing	underlying	forms	(data	types)	”	69
	An	interface	refers	to	one	or	more	functions	or	methods.	Let’s	take	a	look	at	a	situation
where	this	is	the	case:

									print('Hello	World')
print(200)
print(200.1)

								>>	“Hello	World”
								>>	200
								>>	200.1

In	this	example,	we	were	able	to	present	the	same	interface	(the	print	function)	for	three
different	data	types:	a	string,	an	int	and	a	float.	We	didn’t	need	to	call	three	separate	functions
—	print_string	,	print_int	,	or	print_float		in	order	to	print	these	three	different	data	types—
instead	Python	has	just	one	interface	for	all	of	them.
								Let’s	take	a	look	at	another	example.	Say	we	want	to	write	a	program	that	can	draw
different	shapes:	triangles,	squares	and	circles.	Each	of	these	shapes	is	drawn	in	a	different
way,	so	the	methods	to	draw	them	would	all	have	different	implementations.	In	Python,	we	can
create	different	draw	methods	for	each	shape	so	that	Triangle.draw()		will	draw	a	triangle,
Square.draw()		will	draw	a	square,	and	Circle.draw()		will	draw	a	circle.	Each	of	these	shape

objects	has	it’s	own	draw	interface	that	knows	how	to	draw	itself.	When	we	have	a	shape
object,	we	know	we	can	call	the	draw		function	to	draw	the	shape.	The	same	interface	is
presented	for	all	the	different	shape	data	types.

If	Python	did	not	support	polymorphism—	we	would	need	a	function	that	creates	a
triangle,	and	another	function	called			draw_triangle		to	draw	it;	a	function	to	create	a	circle,
and	a	function	called			draw_circle		to	draw	it;	etc.	Because	Python	has	polymorphism,	every
shape	can	simply	be	drawn	with	its	draw		method.	This	makes	our	shape	objects	much	easier
to	use	and	explain.	Instead	of	explaining—we	have	three	functions	representing	three	different
shapes,	and	another	three	functions	that	draws	each	of	them;	we	can	simply	tell	whoever	is
using	the	code:	we	have	three	shapes—if	you	want	to	draw	one—call	its	draw		method.									

Abstraction

We	use	abstraction	in	object-oriented	programming	when	we	create	a	class	and	define
its	methods.	Say	we	create	a	class	to	represent	a	person.	When	we	define	our	person	class—
and	the	methods	that	go	with	it—	we	are	creating	an	abstraction.	Our	definition	of	a	person
could	include	eye	color,	hair	color,	height	and	ethnicity	as	well	as	the	ability	to	read,	write
and	draw.	We	could	have	a	five	foot	three	person	with	blue	eyes,	blonde	hair	unable	to	read,
write	or	draw.	Or	we	could	have	a	six	foot	five	person	with	brown	eyes,	brown	hair	that	can
read,	write	and	draw.	Both	of	these	fall	into	the	category	of	the	person	abstraction	we’ve
created.

	When	we	design	object-oriented	programs,	we	create	abstractions	of	different	concepts
that	all	work	together	to	form	our	program.	For	example,	we	may	create	an	abstraction	of	a
person,	and	an	abstraction	of	a	government,	and	model	how	many	people	live	under	each
government	in	the	world.	Abstraction	allows	us	to	model	objects	with	clear	boundaries,	and
have	them	interact	with	each	other.	In	Part	4	we	learn	more	about	abstraction	and	how	Python
itself	is	built	on	multiple	layers	of	it.		

Encapsulation

In	object-oriented	programming,	encapsulation	hides	our	codes	internal	data.	When
code	is	encapsulated,	it	means	when	it	is	called,	the	caller	cannot	access	the	code's	internal
data.	Take	a	look	at	the	method	get_data	:

class	Data	:
				def	get_data	(self,	index	,	n):
							data	=	[1	,	2	,	3	,	4	,	5]
							data.append(n)

The	method	has	a	variable	called	data	.	When	we	call	get_data	,	there	is	no	way	for	us	to
access	this	variable	because	of	encapsulation.	If	there	was	no	encapsulation,	we	might	be	able
to	access	the	variable	data	—and	append	n	to	it—like	this:

								#	warning	this	code	does	not	work
									Data.get_data.data.append(6)

If	this	was	allowed,	anyone	could	access	the	data		variable	in	our	get_data		method.	Instead	of
relying	on	our	implementation	of	the	get_data		method—they	could	append	n		to	data
	themselves.	This	is	not	a	problem—until	we	change	the	implementation	of	get_data	.	What	if
we	decide	want	the	variable	data		to	be	a	tuple	instead	of	a	list?	If	we	make	this	change,	it	will
break	anyone’s	code	calling	append		on	the	variable	data	,	because	tuples	do	not	have	an
append		method.	But	because	of	encapsulation,	this	scenario	is	not	possible	(which	is	why	the
code	does	not	work),	and	we	can	be	assured	changes	to	the	internal	implementation	of	our
code	won’t	break	our	client’s	code	(client	is	a	term	for	the	person	using	a	piece	of	code).

Composition

									While	composition	is	not	one	of	the	four	pillars	of	object-oriented	programming,	it	is
an	important	concept	related	to	the	rest.	Composition		is	used	to	represent	“has	a”
relationships—it	occurs	when	one	object	stores	another	object	as	a	variable.For	example,	say
we	want	to	represent	the	relationship	between	a	dog	and	its	owner—this	is	a	“has	a”
relationship—a	dog	has	an	owner.	First	we	define	our	dog	and	people	classes:

class	Dog	():
								def	__init__	(self	,	name	,	breed	,	owner):
																self	.name	=	name
																self	.breed	=	breed
																self	.owner	=	owner

class	Person	():
								def	__init__	(self	,	name):
												self	.name	=	name

When	we	create	our	dog	object,	we	pass	in	a	person	object	as	the	owner	parameter:

mick	=	Person("Mick	Jagger")
dog	=	Dog("Stanley"	,	"French	Bulldog"	,	mick)
print	(dog.owner)

								
>>	Mick	Jagger

Now	our	dog	Stanley	has	an	owner—a	Person		object	named	Mick	Jagger—we	can	easily
reference.

Challenge

Create	an	Orange		class	and	object	as	many	times	as	you	have	to	until	you	can	do	it
without	referencing	this	chapter.

Chapter	14.	More	Object-oriented	Programming

“Commenting	your	code	is	like	cleaning	your	bathroom	-	you	never	want	to	do	it,	but	it	really
does	create	a	more	pleasant	experience	for	you	and	your	guests.”
—Ryan	Campbell

In	this	chapter	we	cover	additional	concepts	related	to	object-oriented	programming.	While
some	of	these	examples	are	specific	to	Python,	the	majority	of	these	concepts	are	present	in
other	languages	that	support	object-oriented	programming.

How	Variables	Work

In	this	section,	we	are	going	to	learn	more	about	variables.	Variable	“point”	to	an	object.

number	=	100

number		points	to	an	integer	object	with	the	value	100.

[illustration	of	point	to	an	object]

									number	=	101

When	we	assign	a	new	value		to	number	,	it	points	to	a	new	integer	object	with	the	value	101	,
and	the	old	integer	object	with	a	value	of	100		is	discarded	because	it	is	no	longer	being	used.
Two	variables	can	point	to	the	same	object:
								
									x	=	100
								y	=	x

x		points	to	an	integer	object	with	a	value	of	100	.	When	we	assign	y		to	x	,	y		now	points	to	the
same	integer	object	x		points	to:	they	both	point	to	an	integer	object	with	a	value	of	100	.		

[insert	illustration	from
http://cdn.oreillystatic.com/en/assets/1/event/95/Python%20103_%20Memory%20Model%20_%20Best%20Practices%20Presentation.pdf
]

What	do	you	think	the	following	program	will	print?

								x	=	10
								y	=	x
								x	+=	1
								print(x)

								print(y)

The	answer	is	11		and	10	.	x		points	to	an	integer	object	with	a	value	of	10,	and	when	we	create
y	,	it	points	to	the	same	integer	object.	When	we	increment	x	,	x		points	to	a	new	integer	object
—with	a	value	of	11,	but	the	integer	object	with	a	value	of	10	is	not	discarded,	because	it	is
being	used:	y		still	points	to	the	integer	object	with	a	value	of	10	.	So	when	we	print	x	,	11
	prints	because	we	assigned	x		to	a	new	integer	object—11—but	when	we	print	y	—	10		prints
because	changing	the	value	of	x	,	which	points	to	the	integer	object	11	,	does	not	affect	the
value	of	y	.	Here	is	another	example	to	illustrate	this	point.	What	do	you	think	the	output	of
this	code	will	be?

x	=	[1,	2,	3]
								y	=	x
								y[2]	=	100
								print(x)
								print(y)

The	output	will	be	[1,	2,	100]		twice	.	The	reason	is	that	both	x		and	y		point	to	the	same	list
object.	In	the	third	line,	we	make	a	change	to	that	single	list	object,	and	when	we	print	both
variables,	it	prints	the	list	object	they	both	point	to,	with	the	changes	made	in	line	3.

i	s

The	keyword		is	returns	True		if	two	objects	are	the	same	object	(they	are	stored	in	the	same
location	in	memory)	and	False		if	not.

“““
https://github.com/calthoff/tstp/blob/master/part_II/more_object_oriented_programming/is_example.py
	”””

class	Person	:
				def	__init__	(self):
								self	.name	=	'Bob'

bob	=	Person()
the_same_bob	=	bob
print	(bob	is	the_same_bob)

another_bob	=	Person()
print	(bob	is	another_bob)

>>	True
>>	False

When	we	use	the	keyword	is		with	bob		and	the_same_bob	,	the	result	is	True		because	both
variables	point	to	the	same	Person		object.	When	we	create	a	new	Person		object	and	compare
it	to	the	original	bob		the	result	is	False		because	the	variables	point	to	different	Person
	objects.		

None

The	built-in	constant	None		is	used	to	represent	the	absence	of	a	value:

x=	None
x
>>	None

We	can	test	if	a	variable	is	None		using	conditional		statements.

“““
https://github.com/calthoff/tstp/blob/master/part_I/introduction_to_programming/none_ex1.py
”””

									x	=	10
if	x:
				print	("x	is	not	None")
else	:
				print	("x	is	None	:(")

								>>	x	is	not	None

x	=	None
if	x:
				print	("x	is	not	None")
else	:
				print	("x	is	None	:(")

								>>	x	is	None	:(

While	this	may	not	seem	useful	now,	it	will	be	later.

Classes	Are	Objects

									In	Python,	classes	are	objects.	This	idea	comes	from	the	influential	programming
language	SmallTalk.	This	means	that	when	run	a	program	in	which	you	define	a	class—

Python	turns	it	into	an	object—which	you	can	then	use	in	your	program:

class	Pterodactyl	:
				pass

print	(Pterodactyl)

									>>	<class	'__main__.Pterodactyl'>

Without	any	work	on	our	part,	Python	turns	our	class	definition	into	an	object	which	we	can
then	use	in	our	program,	by	printing	it	for	instance.

Class	Variables	vs.	Instance	Variables

									Classes	can	have	two	types	of	variables—class	variables	and	instance	variables.	All	of
the	variables	we’ve	seen	so	far	have	been	instance	variables	defined	with	the	syntax	self.
[variable_name]	=	[variable_value]	.	Instance	variables	belong	to	the	object	that	created	them.
In	other	words	we	can	do	this:
								

class	Liger	:
				def	__init__	(self	,	name):
								self	.name	=	name

connor	=	Liger("Connor")
print	(connor.name)

>>	Connor

Class	variables	belong	to	both	the	class	that	created	them	and	the	object.	That	means	we	can
access	them	with	the	class	object	Python	creates	for	each	class:

class	Liger	:
			interests	=	["swimming"	,	"eating"	,	"sleeping"]

				def	__init__	(self	,	name):
								self	.name	=	name

print	(Liger.interests)
									

									>>	['swimming',	'eating',	'sleeping']

In	this	example	we	never	created	a	Liger		object,	yet	we	were	able	to	access	the	interests		class	variable.	This	is	because	class
variables	can	be	accessed	by	the	class	that	created	them.	Class	variables	can	also	be	accessed	by	the	object:
								

class	Liger	:

			interests	=	["swimming"	,	"eating"	,	"sleeping"]

				def	__init__	(self	,	name):
								self	.name	=	name

larry	=	Liger("Larry")
print	(larry.interests)

									>>	['swimming',	'eating',	'sleeping']

Class	variables	are	useful	when	you	want	every	object	in	a	class	to	have	access	to	a	variable.
In	this	case	the	name	of	each	Liger		can	be	unique,	but	all	of	our	Ligers	to	have	access	to	the
same	list	of	interests.

Private	variables

								Most	programming	languages	have	the	concept	of	private	variables	and	methods:	special
variables	and	methods	the	designer	of	a	class	can	create	that	the	object	has	access	to,	but	the
programmer	using	the	object	does	not	have	access	to.	One	situation	private	variables	and
methods	are	useful	in	is	if	you	have	method	or	variable	in	your	class	the	class	uses	internally,
but	you	plan	to	change	the	implementation	of	your	code	later	on	(or	you	want	to	preserve	the
flexibility	to	have	the	option	to),	and	therefore	don’t	want	whoever	is	using	the	class	to	rely
on	those	variables	and	methods	used	internally	because	they	might	change	(and	would	then
break	their	code).

	Unlike	other	languages	Python	does	not	have	private	variables.	Variables	that	are	not
private	are	called	public	variables,	and	all	of	Python’s	variables	are	public.	Python	solves	the
problem	private	variables	resolve	another	way—by	using	convention.	In	Python,	if	you	have	a
variable	or	method	the	caller	should	not	access,	you	precede	its	name	with	an	underscore.
Python	programmers	know	if	a	method	or	variable	has	an	underscore,	they	shouldn’t	use	it,
although	they	are	still	able	to	at	their	own	risk.	Here	is	an	example	of	a	class	that	uses	this
convention:
								
“““
https://github.com/calthoff/tstp/blob/master/part_II/more_object_oriented_programming/private_variables_ex1.py
	”””

class	PublicPrivateExample:
				def	__init__	(self):
								self	.public_variable	=	"callers	know	they	can	access	this"
								self	._dontusethisvariable	=	"callers	know	they	shouldn't	access	this"

				def	public_method(self):
								#	callers	know	they	can	use	this	method

								pass

				def	_dont_use_this_method(self):
								#	callers	know	they	shouldn't	use	this	method
								pass

Python	programmers	reading	this	code	will	know	self.public_variable		is	safe	to	use,	but	they
shouldn’t	use	self._dontusethisvariable	,	and	if	they	do,	they	do	so	at	their	own	risk	because
the	person	maintaining	this	code	has	no	obligation	to	keep	self.dontusethisvariable		around
because	callers	are	a	not	supposed	to	be	accessing	it.	The	same	goes	for	the	two	methods:
Python	programmers	know	public_method		is	safe	to	use,	whereas	_dont_use_this_method		is
not.

Overriding	Methods

When	a	class	inherits	a	method	from	a	parent,	we	have	the	ability	to	override	it.	Take	a
look	at	the	following	example:

“““
https://github.com/calthoff/tstp/blob/master/part_II/more_object_oriented_programming/overriding_ex1.py
	”””

class	Mammal	:
				def	__init__	(self	,	name):
								self	.hunger	=	100
								self	.tired	=	100
								self	.name	=	name

				def	print_result	(self	,	amount	,	action):
								print	("{}	{}	decreased	by	{}."	.format(self	.name	,	action	,

							amount))

				def	eat	(self	,	decrease):
								self	.hunger	-=	decrease
								self	.print_result(decrease	,	'hunger')

				def	sleep	(self	,	decrease):
								self	.tired	-=	decrease
								self	.print_result(decrease	,	'tiredness')

class	Dolphin	(Mammal):
				pass

class	Tiger	(Mammal):
				def	sleep	(self	,	decrease):
								self	.tired	-=	decrease
								print	("The	tiger	is	really	tired!")

dolphin	=	Dolphin('dolphin')
dolphin.eat(10)
dolphin.sleep(10)

tiger	=	Tiger('tiger')
tiger.eat(10)
tiger.sleep(10)
					
>	>	dolphin	hunger	decreased	by	10.
>>	dolphin	tiredness	decreased	by	10.
>>	tiger	hunger	decreased	by	10.
>>	The	tiger	is	really	tired!

We	created	two	classes	that	inherit	from	Mammal	.	The	first	class,	Dolphin	,	inherits	all	of	its
functionality	from	the	Mammal		parent	class	without	making	any	changes.	The	second	class
Tiger		defines	a	method	called	sleep	,	with	different	functionality	than	the	sleep		method	it
inherited	from	its	parent	class.	When	we	call	tiger.sleep	,	the	new	method	we	defined	gets
called	instead	of	the	inherited	method.	Other	than	this,	Tiger		and	Dolphin		have	all	the	same
functionality	inherited	from	the	parent	class	Mammal	.				

Super

The	built-in	super		function,	lets	us	call	a	method	a	class	inherited	from	its	parent.	The
super		function	is	used	with	the	syntax	super().[parent_method]([parameters])		where	you
replace	parent_method		with	the	parent	method	you	want	to	call	and	pass	it	any	parameters	it
needs.	The	parent	method	is	then	called	and	executed,	and	the	rest	of	the	code	in	the	method
super		was	called	from	then	finishes	executing.	Here	is	an	example	of	how	we	can	call	the
Mammal		parent	class's	sleep		method	from	our	Tiger		classes’	sleep		method,	in	order	to	use
the	code	from	the	Mammal		class’s	sleep		method	followed	by	additional	functionality:
			

class	Tiger	(Mammal):
				def	sleep	(self	,	decrease):
								super	().sleep(decrease)
								print	("The	tiger	is	really	tired!")								

tiger	=	Tiger('tiger')

tiger.eat(10)
tiger.sleep(10)

								>>		tiger	tiredness	decreased	by	10.
								>>	The	tiger	is	really	tired!

First	we	use	the	super		keyword	to	call	the	Mammal		parent	class’s	sleep		method	and	pass	in
the	decrease		variable	as	parameter.	Mammal’s			sleep		method	is	executed	and	prints	“tiger
tiredness	decreased	by	10”	.	The	Tiger		classes	sleep		method	then	executes	the	new
functionality	we	added	to	the	Tiger		classes	sleep		method	and	“The	tiger	is	really	tired!”
	prints.	By	using	the	super		keyword	we	were	able	to	give	a	child	class	the	functionality	from
a	parent	class’s	method	without	having	to	retype	the	functionality	in	the	child	class.	This	is
important	because	you	should	always	avoid	repeating	code	with	the	same	functionality	in
different	places	in	your	program	when	you	can.

Overriding	Built-in	Methods

	Every	class	in	Python	automatically	inherits	from	a	parent	class	called	Object	.	All
classes	in	Python	inherit	methods	from	this	parent	class.	Python’s	built-in	functions	use	these
methods	(which	we	learned	are	called	magic	methods)—in	different	situations—like	when	we
print	an	object:

class	Lion	:
				def	__init__	(self	,	name):
								self	.name	=	name

lion	=	Lion("Dilbert")
print	(lion)

>>	<__main__.Lion	object	at	0x101178828	>

When	we	print	our	Lion		object,	Python	calls	the	__repr__		method	on	our	object,	which	it
inherited	from	the	Object		parent	class.	It	prints	whatever	the	__repr__		method	returns.	We
can	override	this	built-in	method	to	change	what	happens	when	the		print		function	prints	our
object.:

“““
https://github.com/calthoff/tstp/blob/master/part_II/more_object_oriented_programming/overriding_builtin.py
	”””

class	Lion:
				def	__init__	(self	,	name):
								self	.name	=	name

				def	__repr__	(self):

								return	self	.name

lion	=	Lion("Dilbert")
print	(lion)

>>	Dilbert

Because	we	overrode	the	__repr__		method,	when	we	print	our	Lion		object,	the	Lion		object’s
name—	Dilbert	—	gets	printed	instead	of	something	like			<__main__.Lion	object	at	0x101178828	>
	which	the	inherited	__repr__		method	would	have	returned.
								Not	all	magic	methods	are	inherited.	Python	expressions	like	2	+	2		expect	the	operands	to	have	a	method	the	operator
can	use	to	evaluate	the	expression.	In	the	example	2	+	2	,	integer	objects	have	a	method	called	__add__		which	is	called
when	the	expression	is	evaluated,	but	__add__		is	not	inherited	when	you	create	a	class	.	We	can	create	objects	that	can	be
used	as	operands	in	an	expression	with	the	addition	operator	by	defining	an	__add__			method	in	our	class:

class	AlwaysPositive	:
				def	__init__	(self	,	number):
								self	.number	=	number

				def	__add__	(self	,	other):
								return	abs	(self	.number	+	other.number)

x	=	AlwaysPositive(-	20)
y	=	AlwaysPositive(10)

print	(x	+	y)
	
>>	10
	

Our	AlwaysPositive	objects	can	be	used	as	operands	in	an	expression	with	the	addition	operator	because	we	defined	a	method
called	__add__	.	The	method	must	accept	a	second	parameter,	because	when	an	expression	with	an	addition	operator	is
evaluated,	__add__		is	called	on	the	first	operand	object,	and	the	second	operand	object	gets	passed	into	__add__		as	a
parameter.	The	expression	then	returns	the	result	of	__add__	.

	In	this	example,	we	added	a	twist.	We	used	the	function	abs		to	return	the	absolute	value	of	the	two	numbers	being
added	together.	Because	we	defined	__add__		this	way,	two	AlwaysPositive		objects	added	together	will	always	return	the
absolute	value	of	the	sum	of	the	two	objects.

Challenge

Write	classes	to	model	four	species	in	the	animal	kingdom.

Chapter	15.	Bringing	It	All	Together

“It's	all	talk	until	the	code	runs.”
—Ward	Cunningham

In	this	chapter,	we	are	going	to	use	what	we’ve	learned	about	classes	and	objects	to	create	the
card	game	War.	If	you’ve	never	played,	War	is	a	game	where	each	player	draws	a	card	from
the	deck,	and	the	player	with	the	highest	card	wins.	We	will	build	War	by	defining	a	class
representing	a	card,	a	deck,	a	player,	and	finally,	a	class	to	represent	the	game	itself.	These
classes	will	work	together	to	create	the	game	War.

Cards

First	we	define	our	card	class:		

#	https://github.com/calthoff/tstp/blob/master/part_II/war/war.py

class	Card	:
			suits	=	["spades"	,	"hearts"	,	"diamonds"	,	"clubs"]
			values	=	[None	,	None	,	"2"	,	"3"	,	"4"	,	"5"	,	"6"	,	"7"	,	"8"	,	"9"	,
														"10"	,	"Jack"	,	"Queen"	,	"King"	,	"Ace"]

				def	__init__	(self	,	value	,	suit):
								"""suit	and	value	should	be	integers"""
								self	.value	=	value
								self	.suit	=	suit

				def	__lt__	(self	,	other):
								if	self	.value	<	other.value:
												return	True
							if	self	.value	==	other.value:
												if	self	.suit	<	other.suit:
																return	True
											else	:
																return	False
							return	False

			def	__gt__	(self	,	other):
								if	self	.value	>	other.value:
												return	True
							if	self	.value	==	other.value:

												if	self	.suit	>	other.suit:
																return	True
											else	:
																return	False
							return	False

			def	__repr__	(self):
								return	self	.values[self	.value]	+	"	of	"	+	self	.suits[self	.suit]

	Our	Card		class	has	two	class	variables:	suits		and	values	.	suits		is	a	list	of	strings
representing	all	of	the	different	suits	a	card	could	be.	values		is	a	list	of	strings	representing
the	different	numeric	values	a	card	could	be.	The	first	two	indexes	of	values		are	None		so	that
the	strings	in	the	list	match	up	with	the	index	they	represent—in	other	words	so	that	the	string
“2”		in	values		is	positioned	at	index	2	.

Our	card	class	also	has	two	instance	variables:	suit	,	and	number	—each	represented	by
an	integer;	and	represent	what	kind	of	card	the	Card		object	is.	For	example,	we	can	create	a	2
of	hearts		by	creating	a	Card		object	and	passing	in	the	parameters	2		and	1		(1		represents
hearts	because	hearts	is	at	index	one	in	our	suits		list).	Later	our	Card		object	will	use	these
variables	to	print	what	kind	of	card	it	is,	by	using	them	as	indexes	in	the	suits		and	values		lists.

illustration

								In	order	to	play	War,	we	need	to	compare	two	cards	to	see	which	card	is	bigger.	We
added	the	ability	to	compare	two	cards	in	an	expression	with	the	comparison	operators
greater	than(>)	and	less	than(<)	to	our	Card		class	by	defining	the	two	magic	methods	used
by	these	comparison	operators:	__lt__		and	__gt__	.	By	defining	these	methods	we	can
determine	what	happens	when	our	Card		objects	are	compared—just	like	we	did	with	our
AlwaysPositive		example	in	the	previous	chapter	except	with	comparison	operators	instead	of
the	addition	operator.	The	code	in	these	methods	looks	to	see	if	the	card	is	greater	than	or	less
than	the	other	card	passed	in	as	a	parameter.	However,	we	must	take	one	more	thing	into
consideration—what	happens	if	the	cards	have	the	same	value—for	example	if	both	cards	are
10’s.	If	this	situation	occurs,	we	compare	the	value	of	the	suits	and	return	the	result.	This
works	because	the	integers	we	use	to	represent	the	suits,	are	in	order—with	the	most	powerful
suit	getting	the	highest	integer	and	the	least	powerful	suit	getting	the	lowest	integer.	With	these
methods	defined,	we	can	compare	to	cards	using	the	greater	than	and	less	than	operators	:

									card1	=	Card(10	,	2)
card2	=	Card(11	,	3)
print	(card1	<	card2)

>>	True

card1	=	Card(10	,	2)
card2	=	Card(11	,	3)
print	(card1	>	card2)

>>	False

The	last	thing	we	do	is	override	the	magic	method	__repr__	,	which	we	learned	in	the
previous	chapter	is	used	by	the	print		function	to	print	an	object.	Overriding	the	__repr__
	method	lets	us	print	the	card	a	Card		object	represents:

card	=	Card(3	,	2):
print	card

>>	3	of	diamonds

Deck

Next	we	need	to	define	a	class	to	represent	a	deck	of	cards.	Our	deck	will	create	a	list	of
fifty	two	cards—four	of	each	suit—when	it	is	initialized	and	it	will	have	a	method	to	remove	a
card	from	the	cards		list.	Here	is	our	deck:

from	random	import	shuffle

class	Deck	:
				def	__init__	(self):
								self	.cards	=	[]
								for	i	in	range	(2	,	15):
												for	j	in	range	(4):
																self	.cards.append(Card(i	,	j))
							shuffle(self	.cards)

				def	remove_card	(self):
								if	len	(self	.cards)	==	0	:
												return
							return	self	.cards.pop()

								
When	a	Deck		object	is	initialized,	the	two	for		loops	in	__init__		create	all	of	the	cards	in	a
fifty	two	card	deck	and	append	them	to	our	cards		list.	The	first	loop	is	from	2		to	15		because
cards	start	with	the	value	2		and	end	with	the	value	14		(the	ace).	Each	time	around	the	inner
loop,	a	new	card	will	be	created	using	the	integer	from	the	outer	loop	as	the	value		(i.e.,	14	for
an	ace)	and	the	integer	from	the	inner	loop	as	the	suit	(i.e.	a	2		for	hearts).	This	results	in	the
creation	of	fifty	two	cards—one	for	every	suit.

Finally,	we	use	the	shuffle		method	from	the	random		module	to	randomly	rearrange	the
items	in	our	cards		list	to	mimic	shuffling	a	deck	of	cards.	Our	deck	has	just	one	method,
remove_card	,	which	returns	None		if	our	list	of	cards	is	empty,	and	otherwise	removes	and
returns	a	card	from	the	cards		list.	Using	our	Deck		class,	we	can	create	a	new	deck	of	cards
and	print	out	all	the	cards	in	the	deck:

deck	=	Deck()
for	card	in	deck.cards:
				print	(card)

								
>>	4	of	spades
>>	8	of	hearts
...

Player

We	need	a	class	representing	each	player	in	the	game		so	we	can	keep	track	of	their
cards	and	how	many	rounds	they’ve	won.	Here	is	our	player	class:

class	Player	:
				def	__init__	(self	,	name):
								self	.wins	=	0
								self	.card	=	None
								self	.name	=	name

Our	Player		class	has	three	instance	variables:	wins 		to	keep	track	of	how	many	rounds
they’ve	won,	card		to	represent	the	current	card	the	player	is	holding,	and	name 		to	keep	track
of	the	player ’s	name.

Game

Finally,	we	can	create	the	class	representing	the	game	itself:

class	Game	:
				def	__init__	(self):
							name1	=	input	("player1	name	")
							name2	=	input	("player2	name	")
								self	.deck	=	Deck()
								self	.player1	=	Player(name1)
								self	.player2	=	Player(name2)

				def	play_game	(self):
							cards	=	self	.deck.cards
								print	("beginning	War!")
							response	=	None
							while	len	(cards)	>=	2	and	response	!=	'q'	:

											response	=	input 	('q	to	quit.	Any	other	key	to	play.')
											player1_card	=	self	 .deck.remove_card()
											player2_card	=	self	 .deck.remove_card()
												 print	 ("{}	drew	{}	{}	drew	{}"	.format(self	.player1.name 	,

					player1_card 	,	 self	 .player2.name	 ,	player2_card))
												 if	player1_card	>	player2_card:
																self 	.player1.wins	+=	 1
																print 	("{}	wins	this	round"	 .format(self 	.player1.name))
												 else	 :
																self 	.player2.wins	+=	 1
																print 	("{}	wins	this	round"	 .format(self 	.player2.name))
							 	print 	("The	War	is	over.{}	wins" 	.format(self	.winner(self	.player1 	,
														self 	.player2)))

				def	 winner 	(self 	,	 player1 	,	 player2):
							 	if	player1.wins	>	player2.wins:
												 return	player1.name
							 	if	player1.wins	<	player2.wins:
												 return	player2.name
							 	return	 "It	was	a	tie!"

When	our	game	object	is	initialized,	the	__init__ 		method	is	called	and	we	use	the	 input
	function	to	collect	the	names	of	the	two	players	in	the	game	which	we	save	in	the	variables
name1	 	and	name2	 .	We	create	a	new	Deck	 	object	and	store	it	in	the	instance	variable	deck	,
	and	create	two	Player	 	objects	using	the	names	we	collected	from	the	user	and	store	them	in
the	instance	variables	player1	 	and	player2	.
								Our	Game		class	has	a	method	called	 		 play_game		used	to	start	the	game.	The	heart	of
the	method	is	the	loop	that	keeps	the	game	going	as	long	as	there	are	two	or	more	cards	left
in	the	deck,	and	as	long	as	the	variable	response	 	is	not	equal	to	“q” 	 .	Before	our	loop	we
define	response	as	 None	,	and	later	we	set	it	to	the	input	of	the	user,	which	is	the	only	situation
it	can	become	“q” 		and	end	the	game.	Otherwise,	the	game	ends	when	there	are	less	than	two
cards	left	in	the	deck.

		Each	time	through	the	loop,	two	cards	are	drawn.	The	first	card	is	assigned	to	player1
	and	the	second	card	is	assigned	to	 player2	.	Next	we	print	the	name	of	each	player	and	what
card	they	drew.	We	compare	the	two	cards	to	see	which	card	is	greater,	increment	the	wins
	instance	variable	for	the	player	that	won,	and	print	a	message	that	says	which	player	won.

Our	Game		class	also	has	a	method	called	winner	which	takes	two	player	objects,	looks
at	the	number	of	rounds	they	won,	and	returns	the	player	that	won	the	most	round.	When	our
deck	runs	out	of	cards,	we	print	a	message	that	the	war	is	over,		call	the	winner	method
(passing	in	both	 player1		and	player2)	and	print	the	name	of	the	result—the	player	that	won.

War

When	we	put	it	all	together,	we	have	the	card	game	War:

from	 random	import	shuffle

class	 Card	 :
			suits	=	["spades" 	,	 "hearts" 	,	 "diamonds"	 ,	"clubs"]
			values	=	[None	 ,	None 	, 	"2"	 ,	 "3"	,	 "4"	,	 "5"	 ,	"6"	 ,	 "7"	,	 "8"	 ,	"9"	 ,
														 "10"	 ,	 "Jack"	,	 "Queen"	 ,	 "King"	,	 "Ace"]

				 def	__init__ 	 (self	 ,	value 	,	 suit):
							 	"""suit	and	value	should	be	integers"""
							 	self 	.value	=	value
							 	self 	.suit	=	suit

				 def	__lt__	 (self	 ,	 other):
							 	if	 self	.value	<	other.value:
												 return	True
							if	self	 .value	==	other.value:
												 if	self	 .suit	<	other.suit:
																return	True
											else	 :
																return	False
							return	False

			def	__gt__	 (self	,	 other):
							 	if	 self	.value	>	other.value:
												 return	True
							if	self	 .value	==	other.value:
												 if	self	 .suit	>	other.suit:
																return	True
											else	 :
																return	False
							return	False

			def	__repr__	 (self):
							 	return	 self	 .values[self	 .value]	+	"	of	"	+	 self	 .suits[self 	.suit]

class	 Deck	:
				 def	__init__ 	 (self):
							 	self 	.cards	=	[]
							 	for	 i	in	 range	 (2 	,	 15):
												 for	j	 in	 range	 (4):
																self 	.cards.append(Card(i 	,	 j))

							shuffle(self 	.cards)

				 def	 remove_card	 (self):
							 	if	 len	(self 	.cards)	==	0 	 :
											 	return
							return	 self	 .cards.pop()

class	 Player	 :
				 def	 __init__	 (self	 ,	 name):
							 	self 	.wins	=	 0
							 	self 	.card	=	 None
							 	self 	.name	=	name

class	 Game	:
				 def	 __init__	 (self):
							name1	=	 input	 ("player1	name	")
							name2	=	 input	 ("player2	name	")
							 	self 	.deck	=	Deck()
							 	self 	.player1	=	Player(name1)
							 	self 	.player2	=	Player(name2)

				 def	 play_game	(self):
							cards	=	 self	 .deck.cards
							 	print 	 ("beginning	War!")
							response	=	None
							while	 len	(cards)	>=	 2	and	response	!=	 'q'	:
											response	=	input 	 ('q	to	quit.	Any	other	key	to	play.')
											player1_card	=	self 	.deck.remove_card()
											player2_card	=	self 	.deck.remove_card()
											 	print 	("{}	drew	{}	{}	drew	{}"	 .format(self	 .player1.name	 ,	 player1_card	,	 self	 .player2.name	 ,
player2_card))
											 	if	player1_card	>	player2_card:
																 self	.player1.wins	+=	 1
																 print	 ("{}	wins	this	round"	.format(self	.player1.name))
											 	else 	:
																 self	.player2.wins	+=	 1
																 print	 ("{}	wins	this	round"	.format(self	.player2.name))
							 	print 	 ("The	War	is	over.{}	wins"	 .format(self	 .winner(self	 .player1	,	 self 	.player2)))

				 def	 winner	 (self	,	 player1 	,	 player2):
							 	if	 player1.wins	>	player2.wins:
											 	return	 player1.name
							 	if	 player1.wins	<	player2.wins:

											 	return	 player2.name
							 	 return	"It	was	a	tie!"

game	=	Game()
game.play_game()

>>	"player1	name	"
…

Chapter	16.	Practice

Exercises

0.	Build	an	object-oriented	text-based	version	of	Blackjack.
0.	Build	a	web	scraper	to	collect	data	from	another	website.
0.	Find	a	Python	project	you	are	interested	in	hosted	on	pip,(hint	look	on	GitHub),
download	it,	and	use	it	in	a	program.

Read

0.	https://julien.danjou.info/blog/2013/guide-python-static-class-abstract-
methods
0.	http://stackoverflow.com/questions/2573135/python-progression-path-
from-apprentice-to-guru

Part	III	Introduction	to	Programming	Tools

Chapter	17.		Bash

In	this	section	of	the	book	we	learn	to	use	tools	that	will	make	us	more	effective
programmers.	In	this	chapter	we	learn	to	use	the	command	line	shell	Bash	that	comes	with
many	versions	of	Linux	 	and	OS	X	 	(which	are	Unix-like	operating	systems).	A	command	line
shell	is	a	program	that	lets	you	type	instructions	into	it	that	your	computer	executes	when	you
press	enter.

Once	you	are	able	to	use	Bash,	you	will	be	able	to	use		Unix-like	operating	systems
more	effectively.	This	is	important	because	Unix-like	operating	systems	are	so	widely	used	in
the	programming	world:	Linux	runs	on	the	majority	of	the	world’s	web	servers,	a	nd	many
programming	jobs	will	require	you	to	be	familiar	with	Unix-like	operating	systems.		
								The	examples	in	this	chapter	assume	you	are	using	either	Ubuntu	or	OSX	.	If	you	are
using	Windows,	you	can	follow	along	with	the	examples	by	going	to
theselftaughtprogrammer.io/bash	 	where	you	will	find	a	link	to	a	website	that	emulates	Bash—
you	just	type	the	commands	into	the	green	box	in	the	website.

Finding	Bash

									You	can	find	Bash	by	searching	for	terminal		from	the	icon	titled	Search	your	computer
and	online	resources		if	you	are	using	Ubuntu	or	from	 Spotlight	search	 	if	you	are	using	a
Mac.
Using	Bash
								Bash	is	similar	to	the	Python	Shell.	The	Bash	command	line	shell	takes	its	own
programming	language	called	Bash	as	input.	The	programming	language	Bash	has
commands—which	are	like	functions	in	Python.	We	start	with	a	keyword;	type	a	space;	type
the	parameter	we	want	to	give	the	command	(if	any);	hit	the	enter	key;	and	Bash	returns	the
result.	One	of	Bash’s	commands	is	echo	,	which	is	similar	to	the	 print		function	in	Python.
Here	is	an	example:

	$		echo	Hello,	World!
	>>	Hello,	World!

We	typed	the	command	echo	 	into	Bash,	followed	by	a	space	and	Hello,	World! 		as	a
parameter.	When	we	press	enter,	Hello,	World!	 	prints	in	the	Bash	command	line	shell.
								You	can	also	use	programs	you’ve	installed—like	Python—from	the	Bash	command	line
shell.	Enter	the	command	python3	to	use	Python	from	the	shell:

									$python3
								>>

Now	you	can	execute	Python	code:

									print(“Hello,	World!”)
								>>	Hello,	World!

Enter	exit()	 	to	exit	Python.

Relative	vs	Absolute	Paths

								An	operating	system	is	made	up	of	directories	and	files.	A	directory	is	another	word	for
a	folder	on	your	computer.	All	directories	and	files	have	a	path.	A	path	is	as	an	address	where
a	directory	or	file	exists	in	your	operating	system.	When	you	are	using	the	Bash	command
line	shell,	you	are	always	in	a	directory,	located	at	a	specific	path.	You	can	see	the	path	you
are	at	by	entering	the	command	pwd 		in	the	Bash	command	line	shell:

								pwd
								>>	/Users/bernie

pwd	 	stands	for	print	working	directory	(a	working	directory	is	the	directory	you	are
currently	in),	and	the	path	that	prints	on	your	computer	will	be	the	name	of	whatever	directory
you	are	in.

The	folders	in	your	operating	system	are	a	tree.	A	tree	is	an	important	concept	in
Computer	Science	called	a	data	structure	(covered	in	Part	IV).	In	a	tree,	there	is	a	root	at	the
top.	The	root	can	have	branches,	and	each	one	of	the	branches	can	have	more	branches,	and
those	branches	can	have	branches.	This	goes	on	indefinitely.

									[add	illustration	of	a	tree	data	structure]

								root
													/		\
						home		etc
				/															\
bernie									bin
/						\		
test		projects
								
Every	branch	on	the	tree	is	a	directory,	including	the	root.	The	tree	shows	how	they	are
connected	to	each	other.	When	you	are	using	Bash,	at	any	given	time	you	are	at	one	of	the
locations	on	the	tree,	and	a	path	is	a	way	of	expressing	that	location.	There	are	two	ways	of
expressing	a	location	on	Unix-like	operating	systems:	absolute	paths	and	relative	paths.	An
absolute	path	is	a	way	of	expressing	a	location	starting	from	the	root	directory.	An	absolute
path	is	made	up	of	the	name	of	folders	in	the	tree,	in	order,	separated	by	backslashes.	The
absolute	path	to	the	bernie	directory	(for	the	operating	system	illustrated	above)	is

/home/bernie	 .	The	first	slash	represents	the	root	directory;	followed	by	the	home	directory;
followed	by	another	slash	and	the	bernie	directory.		
								The	other	way	of	specifying	a	location	on	your	computer	is	called	using	a	relative	path.
Instead	of	starting	at	the	root	directory,	a	relative	path	is	relative	to	the	directory	you	are	in.
Your	operating	system	knows	a	path	is	relative	when	it	doesn’t	begin	with	a	backslash.	If	we
were	located	in	the	home 		directory	in	the	example	above,	the	relative	path	to	the	projects
directory	would	be	bernie/projects 	.	If	we	were	in	the	home	directory,	the	relative	path	to
bernie	 	is	simply	bernie 	.		

Navigating

You	can	use	the	cd	 	command,	which	stands	for	change	directory,	to	navigate	to	a
directory	using	an	absolute	or	relative	path.	Enter	the	cd	 	command	followed	by	the	absolute
path	/ 		to	navigate	to	the	root	directory:

									 $	cd	/

	You	are	now	in	your	root	directory,	which	you	can	verify	with	the	command	 pwd	 :

									 $	pwd
								>>	/

The	command	 ls	,	which	stands	for	list	directories,	prints	the	folders	in	the	directory	you	are
in:

									 $	ls
								>>	bin	dev	initrd.img	lost+found

...									 																								

You	can	create	a	new	directory	with	the	command	mkdir 	.	Directory	names	cannot	have
spaces	in	them.	Use	the	mkdir 		command	to	make	a	new	directory	called	 tstp 	:

$	mkdir	tstp
>>

	Verify	the	new	directory	exists	with	the	command	 	ls	.	Now	use	the	 cd	 	command	to	enter	the
tstp 		directory	by	passing	in	the	relative	path	to	 tstp 		as	a	parameter:

								$	cd	tstp

Now	use	the	 cd		command	followed	by	two	periods	to	return	to	the	folder	you	were	in	before
you	entered	the	tstp 	 	directory:

$	cd	..

Delete	the	new	directory	using	the	command	rmdir 	 ,	which	stands	for	remove	directory:

$	rmdir	tstp 		

Use	the	command	 ls		to	verify	the	directory	was	deleted.

Flags

Commands	have	a	concept	called	flags	that	allow	the	issuer	of	the	command	to	change
the	commands	behavior.	If	you	use	a	command	without	any	flags,	all	of	the	commands	flags
are	set	to	false.	But	if	you	add	a	flag	to	a	command,	the	flag	is	set	to	true	and	the	behavior	of
the	command	changes.	The	 - 		and	-- 		symbols	are	used	to	attach	flags	to	a	command.	 --author
	is	an	example	of	a	flag	you	can	add	to	the	ls 		command	to	print	the	author	of	all	of	the
directories	and	files	that	get	listed.	This	example	is	for	Linux,	on	OS	X	you	can	use	the	same
flag	but	you	need	to	use	one	dash	instead	of	two.	Here	is	an	example	of	using	the	--author	flag
with	the	ls	command:

$	ls	--author
>>	drwx------+	13	coryalthoff			442B	Sep	16	17:25	Pictures
...

When	you	add	the	 --author	 	flag	to	your	 ls	 	command,	the	name	of	each	directory	and	folder
in	your	current	directory	will	print—as	well	as	some	additional	information,	including	the
name	of	the	person	that	created	them.

vim

Vim	is	a	command	line	text	editor.	It's	like	Microsoft	Word,	except	you	use	it	from	the
command	line.	If	you	are	using	Ubuntu,	first	install	vim	with	the	command			 apt-get	install
vim 	.	Make	sure	to	enter	 Y	 	when	prompted.	If	you	are	using	a	Mac,	it	should	come	with	vim
	If	you	are	using	the	online	bash	shell,	it	already	has	vim	installed.
								You	can	create	a	new	file	with	vim	by	going	to	the	command	line	and	using	the	command
vim	[name	of	the	file	to	create] 	.	Use	the	command	vim	self_taught.txt	 	to	create	a	new	text	file
called	 self_taught.txt	 .	Press	the	i	or	insert	key	and	type	a	paragraph	of	text	into	the	file.	Any
paragraph	of	text	you	find	on	the	internet	will	do.	The	reason	you	have	to	hit	the	i	or	insert
key	when	you	first	enter	a	file	is	because	vim	has	different	modes	optimized	for	different
activities.	vim	starts	in,	Normal	Mode,	which	is	not	meant	for	adding	text	to	the	file	(it	is
meant	for	easy	navigation)—you	can	delete	text	in	normal	mode,	but	you	cannot	insert	new
text.	Once	you	press	the	i	or	insert	key	and	enter	normal	mode,	you	can	use	vim	like	a	word
processor—try	typing	into	vim.

								Since	you	can’t	use	your	mouse	to	move	the	cursor	around,	it’s	important	to	learn	a	few
shortcuts	to	jump	to	different	locations	in	your	document,	so	that	you	don’t	end	up	using	the
arrow	keys	on	your	keyboard	(because	that’s	slow).	To	practice	moving	around,	first	make
sure	you	are	in	Normal	Mode	(control-c).	You	can	move	to	the	beginning	of	a	word	by
pressing	b	 	and	the	end	of	a	word	with	e	 .	0		will	move	you	to	the	beginning	of	the	line	you	are
on,	while	the	dollar	sign	$	 	will	move	you	to	the	end	of	the	line.	H 		will	move	you	to	the	first
line	of	the	page	and	L	 	will	move	you	to	the	last.	 You	can	delete	entire	lines	of	text	in	normal
mode	by	pressing	the	d		key	twice.	Spend	some	time	using	these	keys	to	get	familiar	with	with
navigating	through	a	file	using	vim.

To	exit	vim	you	need	to	first	switch	to	Normal	Mode	by	pressing	control-c 	.	Next	press
the	shift 	 	key	and	then	hit	the	colon 		key	(while	still	holding	the	shift	key).	From	here	you	can
type	q!	 	if	you	want	to	quit	without	saving	your	changes	to	the	file,	or	type	x		if	you	want	save
your	changes	and	quit.	Once	you’ve	typed	one	of	these	options,	press	the	enter		key	to	exit.
vim		is	useful	in	a	few	situations:	servers	are	usually	only	accessed	with	a	command	line	shell,
so	if	you	want	to	make	changes	to	a	file	on	a	server,	you	need	to	use	a	command	line	text
editor,	and	once	you	get	good	at	using	vim,	it	is	often	faster	to	use	it	to	make	changes	than
using	a	conventional	word	processor.	Try	typing			vimtutor	 	in	the	Bash	command	line	shell
and	see	what	happens.		

Touch

You	can	use	the	command	touch 		followed	by	a	filepath	to	quickly	create	a	new	file:

$	touch	purple_carrots.txt
>>

View	A	File	With	less

The	 less	 	command	enables	you	to	view	files	from	the	command	line.	Pick	a	file	on
your	computer	and	use	the	command	less	[filepath] 		to	view	the	file	from	the	command	line	in
the	less 		program.	Make	sure	you	are	in	the	same	folder	you	created	the	file	selftaught.txt	 	in
with	vim	and	pass	the	filename	as	a	parameter:

$	less	self_taught.txt
>>	whatever	text	you	put	in	your	file

Press	q 		to	exit.

Users

									Operating	systems	have	different	users.	A	user	represents	a	person	in	the	world—
someone	using	the	operating	system—and	each	user	has	different	activities	they	are	allowed
to	do—called	their	permissions—as	well	as	their	own	directories	and	files	that	other	users
can’t	access.	Users	can	also	be	placed	into	groups,	with	an	entire	group	given.		You	can	see
the	name	of	the	user	you	are	on	your	operating	system	with	the	command	whoami	 :

									$	whoami
								>>	cory

Normally	you	start	as	the	user	you	created	when	you	installed	your	operating	system.	This
user	is	not	the	most	powerful	user	the	operating	system	has.	The	root	user	is	the	highest	level
user,	which	means	it	has	the	highest	level	of	permissions.	Every	system	has	a	root	user.	The
root	user	can	do	an	anything:	for	example	the	root	user	can	create	or	delete	other	users.

For	security	reasons,	you	normally	do	not	log	in	as	the	root	user.	Instead	you	use	a
command	called	sudo		in	front	of	another	command	to	temporarily	use	the	power	of	the	root
user	to	issue	the	command.	sudo	 	allows	you	to	do	most	things	as	the	root	user,	but	not
everything.	Make	sure	to	be	careful	using	sudo	 ,	because	using	commands	with	sudo	can	harm
your	operating	system	if	you	don’t	know	what	you	are	doing.	We	are	not	going	to	cover
using	sudo		in	this	book,	but	I’ve	set	up	a	tutorial	on	using	 sudo		 	at 		
theselftaughtprogrammer.io/sudo	 	you	can	read	through	once	you	feel	comfortable	using	the
Bash	command	line	shell.

Permissions

Every	directory	and	file	on	your	computer	has	a	set	of	permissions.	These	permissions
define	what	actions	a	user	can	perform	on	them.	There	are	three	types	of	permissions:	r	 ,	rw
	and	x	,	which	stand	for	read,	write	and	execute.	Reading	a	file	means	viewing	it,	writing	a	file
means	changing	it,	and	executing	a	file	means	running	it	as	a	program.	You	can	view	a	file	or
directory’s	permissions	with	the	command	ls	-lah	[name_of_file]	 .	Use	the	command	touch	 	to
create	a	new	file	called	tstp 	:

$	touch	tstp
>>

Now	we	can	view	the	files	permissions:

$	ls	-lah	tstp
								-rw-r--r--		1	coryalthoff		staff					5B	Feb	21	11:55	test.py

Our	file	has	three	permissions	that	apply	to	three	different	groups	of	users—represented	by	 -
rw-r--r--	 .	The	first	set	applies	to	the	owner	of	the	file,	the	second	set	applies	to	the	group
assigned	the	file	and	the	third	set	applies	to	everyone.	So	in	this	example,	the	owner	of	the	file
has	permission	to	read	and	write	the	file,	whereas	everyone	else	can	only	read	the	file.

You	can	add	and	subtract	permissions	with	the	command	chmod	(short	for	change
mode).	You	can	add	permission	to	read	with	the	command 		 	chmod	+r	 ,	permission	to	read
and	write	with	the	command	 chmod	+rw	 ,	and	permission	to	execute	with	chmod	+x	 .		You	can
subtract	the	same	permissions	with	chmod	-r 	,	chmod	-w	 	and	chmod	-x	 ,	respectively.

Bash	Programs

If	we	want	to	run	a	bash	script	from	the	command	line,	we	need	to	give	the	file	owner
permission	to	execute.	Create	a	new	file	called	hello_world.sh 		and	type	echo	Hello,	World!	in
it.	The	reason	we	use	the	 .sh		extension	is	to	let	anyone	who	sees	this	file	know	it	is	a	Bash
script.	The	syntax	./[file_name]	 	is	used	to	execute	a	file	in	the	directory	you	are	in	.	You
execute	a	file	with	/[file_name]	 	and	the	period	means	look	for	the	file	in	the	current	directory.
You	could	also	replace	the	period	with	the	path	to	the	file.	Try	executing	the	file	(make	sure
you	are	in	the	same	directory	as	the	file):

$./hello_world.sh
>>	Permission	denied

The	reason	the	console	printed	permission	denied	i	s	because	we	do	not	have	permission	to
execute	the	file.	We	can	change	that	with	the	chmod 		command.	 	

								$	 chmod	u+x	hello_world.sh
$./hello_world.sh 	.
>>	Hello,	World!

In	the	example	above,	we	added	u	 	to	+x 		to	form	u+x 		because	u	stands	for	user,	and	we	only
wanted	to	give	ourselves	the	ability	to	execute	the	file.		If	you	are	repeating	an	argument	from
the	previous	command	line,	in	this	case	the	filename,	you	can	use	!$ 		to	represent	the	repeated
argument.

Processes

Hidden	Files

									 Your	operating	system,	and	different	programs	on	your	computer,	use	hidden	files	to
store	data. 			 Hidden	files	in	Unix-like	systems	are	files	that	by	default	are	not	shown	to	users
because	changing	them	can	affect	the	program(s)	that	depends	on	them.	Hidden	files	start	with
a	period—for	example—	.hidden	 .	You	can	see	hidden	files	using	the	command	 ls		with	the
flag	-a 	,	which	stands	for	all.	Create	a	hidden	file	named	 .self_taught		with	 touch	.hidden		and
test	if	you	can	see	it	with	the	commands	ls 		and	ls	-a	 .

Environmental	Variables

Your	operating	system	can	store	and	use	variables	called	environmental	variables.	You
can	create	a	new	environmental	variable	from	the	command	line	with	the	syntax	export
variable_name=[variable_value] 	.	In	order	to	use	an	environmental	variable,	you	must	put	a
dollar	sign	in	front	of	the	environmental	variable’s	name.	For	example:

$	export	x=100
$	echo	$x
>>	100

Creating	an	environmental	variable	from	the	command	line	is	not	permanent.	If	you	quit	the
command	line,	reopen	it,	and	type	 echo	$x	,	the	terminal	will	no	longer	print	100	 .
We	can	make	the	environmental	variable	x		persistent	by	adding	it	to	a	hidden	file	used	by
Unix-like	operating	systems	called	.profile	 	located	in	your	home	directory.	Go	to	your	home
directory	with	the	command	 cd	~	 	(~	is	a	shortcut	for	representing	your	home	directory	on
Unix-like	operating	systems)	and	open	your	 .profile		file	using	vim	 	with	the	command	vim
.profile	 .	Make	sure	to	enter	Normal	Mode,	type	export	x=100		into	the	first	line	of	the	file,
and	exit	with	:x 	.	Close	and	reopen	your	command	line,	and	you	should	still	be	able	to	print
the	environmental	variable	you	defined:

									 $	echo	$x
								>>	100

	The	environmental	variable	x		gets	 100		as	long	as	it’s	defined	in	your	 .profile		file.

$PATH

								When	you	type	a	command	into	the	Bash	command	shell,	it	looks	for	the	command	in	all
of	the	directories	stored	in	an	environmental	variable	named	$PATH	 .	$PATH	 	is	a	string	of
directory	paths	separated	by	colons.	The	Bash	command	shell	looks	in	each	of	these
directories	for	a	file	matching	the	name	of	the	command	you	typed.	If	the	file	is	found,	the

command	is	executed,	if	not	the	command	shell	prints	“command	not	found”.		Use	echo	 	to
print	your	$PATH	 	environmental	variable	(your	$PATH		may	look	different	than	mine):

echo	$PATH
>>	/usr/local/sbin:/user/local/bin:/usr/bin:
...

In	this	example	there	are	three	directory	paths	in	$PATH	 :	/usr/local/sbin	,	/user/local/bin	 	and
/usr/bin 	.	The	Bash	command	line	shell	will	be	able	to	execute	any	command	found	in	these
three	directories.	You	can	see	where	a	command	like	 grep		is	installed	by	passing	it	as	a
parameter	to	the	command	 which	:

								$	which	grep
								>>	/usr/bin/grep

The	 grep		command	is	located	in	 /usr/bin	 ,	one	of	the	locations	in	my	operating	system’s
$PATH	 	environmental	variable.

pipes 	 	

In	Unix-like	systems,	the	character	 |	 	is	known	as	a	pipe.		You	can	use	a	pipe	to	use	the
output	of	one	command	as	the	input	for	another	command.	For	example,	we	can	pass	the
output	of	the	 ls 		command	as	the	input	of	the	less	 	command	to	open	less	with	all	of	the	files	in
the	current	directory:

$	ls	|	less
>>	Applications
...

The	result	is	a	text	file	with	the	output	of	 ls	 	opened	up	in	the	program	less	 	(press	q		to	quit
less) 	.	You	are	not	limited	to	piping	two	commands—you	can	chain	multiple	commands
together	using	pipes.

c 	at

									 You	can	use	the	versatile	 cat		command	to	display	the	contents	of	a	file	and	to	catenate,
which	means	“to	connect	in	a	series.”	11	 .	Create	a	new	file	called	hello.txt 	 	and	add	Hello,
World!	 	as	the	first	line.	Now	use	the	cat	 	command	to	print	the	contents	of	the	file:

									 $	cat	hello.txt
								>>	echo	Hello,	World!

To	use	the	cat 		command	to	catenate	two	files,	first	create	a	file	called	 c1.txt	 	and	add	the	text
Boy	 .	Then	create	another	file	called	c2.txt	 	and	add	the	text			Meets	World 	.	Now	we	can
catenate	them	by	passing	both	files	as	parameters	to	the		cat	command 	,	followed	by	the
greater	than	symbol	(>),	and	the	name	of	the	new	file	to	create:

$	 		 cat	c1.txt	c2.txt	>	combined.txt	 	
>>

	Open	up	the	newly	created	combined.txt 		which	should	say	Boy	Meets	World 	.

Recent	Commands

									You	can	scroll	through	your	recent	commands	by	pressing	the	up	and	down	arrows	in
the	command	line	shell.	To	see	a	list	of	all	of	your	recent	commands	use	the	command	history
:		

									$	history
								>>	1.	echo	Hello,	World!
								>>	2.	pwd
								>>	3.	ls
								…

Jump	Around								

								When	you	are	typing	a	command	in	the	terminal,	there	will	be	times	where	you	want	to
edit	the	command	you’ve	already	typed.	Your	first	instinct	will	be	to	use	the	arrow	right	or
left	key	to	move	the	cursor	to	the	part	you	want	to	change.	But	this	is	slow.	Instead	you	should
use	shortcuts	that	will	get	you	there	faster.

Type	 echo	hello,	world!	 (without	pressing	Enter)			in	the	terminal	and	use	esc	b	 	to	move
the	cursor	back	one	word,	and	esc	f	to	move	the	cursor	forward	one	word.	You	can	also	move
the	cursor	to	the	beginning	of	the	line	with	control	a	 	or	the	end	of	the	line	with	control	e	 .

Tab	Complete

									Tab	complete	is	a	feature	that	will	help	improve	the	speed	you	get	things	done	from	the
command	line	shell.	If	you	are	in	the	middle	of	typing	a	command	you	and	press	the	tab
	button	on	your	keyboard,	the	command	line	shell	will	try	to	autocomplete	the	command	for
you.

	Try	it	for	yourself	by	typing	ech		in	the	command	line	followed	by	tab 	;		 	ech	 	will
automatically	get	turned	into	echo	.	You	can	also	use	tab 		to	complete	file	or	directory	paths.
Start	typing	the	path	of	the	directory	you	are	in	and	finish	it	off	by	pressing	t	 ab	. 		If	you	press
tab	and	nothing	happens,	it	is	because	two	commands	or	paths	are	named	similarly,	and	the
shell	doesn’t	know	which	to	choose.	For	example	if	you	have	a	directory	named	car 	,	and
another	directory	named	 candy	 ,	and	you	type	ca	 	and	try	to	tab	complete,	nothing	will	happen
because	the	shell	won’t	know	whether	to	choose	car	 	or	candy	 .	If	you	add	an	n	 	so	you’ve	type
can	,	and	press	tab	complete,	the	shell	will	autocomplete	candy		because	the	shell	knows	 car 		is
not	correct.		

Wildcard

A	wildcard	is	a	character	used	to	match	a	pattern.	Two	examples	of	wildcards	are	an
asterisk	 	and	a	question	mark.	The	asterisk	wildcard	matches	everything	either	starting	or
ending	with	a	pattern,	depending	if	you	put	it	before	or	after	the	pattern.		Asterisk	wildcards
are	commonly	used	with	the	command	ls	 .	The	command 		ls	*.txt		will	show	any	files	in	the
current	directory	that	end	with	.txt	 ,	whereas	ls	.txt*	 	will	show	any	files	that	with	.txt	 .

	A	question	mark	will	match	any	single	character.	So	ls	t?o 		will	show	any	files	or
directories	that	match	t 		followed	by	any	character	followed	by	o	.	If	you	had	directories
named	two		and	too 	,	they	both	would	get	printed.

Other	Tools

									If	your	terminal	gets	cluttered,	you	can	clear	it	with	the	command	clear 	.	If	a	process	is
taking	too	long,	you	can	kill	it	with	control+c	 .	Another	powerful	command	is	grep, 		used	to
search	files	for	patterns	and	covered	in	the	next	chapter.		

The	One	Week	Challenge

I	challenge	you	to	only	use	the	command	line	for	one	week.	That	means	no	graphical
user	interface	for	anything	other	than	using	the	internet!	You	should	complete	this	challenge
during	a	week	you	are	actively	working	on	a	programming	project.

Chapter	18.	Regular	Expressions

quote

A	regular	expression	 	is	a	sequence	of	characters	used	to	look	for	a	pattern	in	a	string.	In	this
chapter	we	are	going	to	practice	using	regular	expressions	from	the	command	line	using
grep	 ,	a	command	for	using	regular	expressions	to	search	files.	We	will	also	learn	to	use
regular	expressions	in	Python.

Setup

									 To	get	started	practicing	using	regular	expressions,	create	a	file	called	zen.txt	 .	From	the
command	line	(make	sure	you	are	inside	the	directory	where	you	created	 zen.txt)	enter	the
command	 python3	-c	“import	this”	.	This	will	print	out	The	Zen	of	Python,	a	poem	written	by
Tim	Peters:

The	Zen	of	Python
Beautiful	is	better	than	ugly.
Explicit	is	better	than	implicit.
Simple	is	better	than	complex.
Complex	is	better	than	complicated.
Flat	is	better	than	nested.
Sparse	is	better	than	dense.
Readability	counts.
Special	cases	aren't	special	enough	to	break	the	rules.
Although	practicality	beats	purity.
Errors	should	never	pass	silently.
Unless	explicitly	silenced.
In	the	face	of	ambiguity,	refuse	the	temptation	to	guess.
There	should	be	one--	and	preferably	only	one	--obvious	way	to	do	it.
Although	that	way	may	not	be	obvious	at	first	unless	you're	Dutch.
Now	is	better	than	never.
Although	never	is	often	better	than	*right*	now.
If	the	implementation	is	hard	to	explain,	it's	a	bad	idea.
If	the	implementation	is	easy	to	explain,	it	may	be	a	good	idea.
Namespaces	are	one	honking	great	idea	--	let's	do	more	of	those!

The	- 	c	 	flag	in	Python	executes	Python	passed	in	as	a	string,	and	import	this 		prints	the	Zen	of
Python	when	executed.	Copy	and	paste	the	Zen	of	Python	into	the	file	zen.txt	 .	I	also

recommend	reading	it	as	it	contains	some	great	wisdom.		Use	the	function	 exit()		to	exit
Python.	If	 	you	are	using	the	online	bash	shell 	.

If	you	are	using	a	Mac,	set	the	following	environmental	variables	in	the	terminal:

$	export	GREP_OPTIONS='--color=always'
$	export	GREP_COLOR='1;35;40'

This	will	make	grep	 	highlight	the	words	matched	in	the	terminal	,	which	happens	by	default
on	Ubuntu	but	not	on	OSX.	Remember,	setting	an	environmental	variable	from	the	terminal	is
not	permanent,	so	if	you	exit	the	terminal	and	come	back	you	will	have	to	set	the
environmental	variables	again.	Add	the	environmental	variables	to	your	 .profile	file	if	you
want	to	make	the	change	permanent.

Simple	Match

The	command	grep	accepts	a	regular	expression	and	the	path	to	a	file	to	look	for	the
regular	expression	in	as	parameters.	From	the	command	line,	in	the	directory	where	you
created	the	file	 zen.txt	 ,	enter	the	following	command:

									 	$	grep	Beautiful	zen.txt
								>>	Beautiful 		is	better	than	ugly.

Beautiful 		is	the	regular	expression	and	 zen.txt	 	is	the	path	to	the	file	to	look	for	the	regular
expression	in.	Beautiful 		is	a	sequence	of	characters	that	match	the	word	 Beautiful	 .	This	is	the
simplest	kind	of	regular	expression.	Your	 console 		printed	the	line	Beautiful	is	better	than
ugly 	 .	with	Beautiful	 	highlighted	because	it	is	the	word	the	regular	expression	matched.

Ignore	Case

If	we	change	our	regular	expression	from	Beautiful 		to	 beautiful	,	it	will	no	longer
match	anything	in	the	Zen	of	Python.	Enter	 grep	beautiful	zen.py	 	to	see	for	yourself.	If	we
want	our	regular	expression	to	match	the	word	beautiful	 	regardless	of	case	(whether	or	not
characters	are	capitalized),	we	can	use	the	flag	 -i	 :

								$	grep	-i	beautiful	zen.txt
								>>	Beautiful 		is	better	than	ugly.

Because	we	added	the	flag	-i	 to	our	command,	grep	ignores	case	and	highlights	Beautiful
	again.

Only	Return	Matched

									grep		returns	the	entire	line	of	the	file	a	match	was	found	on.	We	can	return	the	exact
word	matched	by	using	the	flag	-o 	:
								
									$	grep	-o	Beautiful	zen.txt
								>>	Beautiful
	
Normally,	grep	 	would	have	returned	Beautiful	 	is	better	than	ugly.		but	because	we	added	the
flag	-o 	 ,	only	the	exact	match,	Beautiful 	,	gets	returned.

Match	Beginning	and	End

									Regular	expressions	have	certain	characters	that	don’t	match	themselves,	but	instead	do
something	special.	For	example	the	̂ 		character	is	used	to	look	for	matches	only	if	they	occur
at	the	beginning	of	a	line:
								

$	grep	^If	zen.txt
>>	 If	 	the	implementation	is	hard	to	explain,	it's	a	bad	idea.
>>	 If	 	the	implementation	is	easy	to	explain,	it	may	be	a	good
			idea.

Similarly,	we	can	use	the	dollar	sign	to	only	match	the	lines	that	end	with	a	pattern:

$		grep	idea.$	zen.txt
>>	If	the	implementation	is	hard	to	explain,	it's	a	bad	 idea.
>>	If	the	implementation	is	easy	to	explain,	it	may	be	a	good	idea.

The	lines	matched	both	end	with	idea.	The	line	Namespaces	are	one	honking	great	idea	--	let's
do	more	of	those!	 	was	ignored	because	although	it	includes	the	word	idea,	it	does	not	end
with	the	word	idea.	You	can	also	combine	the	two	anchor	matches	we’ve	covered	into	the
regular	expression	^$		to	search	for	empty	lines	in	a	file.

Match	Multiple	Characters

								You	can	use	brackets	in	a	regular	expression	to	match	any	of	the	characters	inside	the
brackets.	In	this	example,	instead	of	matching	text	from	our	zen.txt		file,	we	are	going	to	use	a
pipe	to	pass	in	a	string	to	grep	 :

										$	echo	Two	is	a	number	and	too	is	not.	|	grep		-i	t[ow]o
								>>	 Two	 	is	a	number	and	too	 	is	not.

Remember,	the	pipe	symbol	passes	the	output	of	one	command	as	the	input	of	the	next.	In	this
case	the	output	of	echo	is	passed	as	the	input	of	grep.	The	command	echo	Two	is	a	number
and	too	is	not.	|	grep		-i	t[ow]o		will	match	both	 two		and	too 		because	the	regex	is	looking	for
a	t 		followed	by	either	an	 o		or	a	 w	 	followed	by	an	o	.

Repetition

									We	can	add	repetition	in	our	patterns	with	the	asterisk	symbol.	The	asterisk	symbol
means	“	 The	preceding	item	will	be	matched	zero	or	more	times.”	 56		We	might	want	to	say,
match	tw	 followed	by	any	amount	of	o’s 	.	The	regular	expression	 	grep	two*		 	accomplishes
this:

$	echo	two	twooo	twoo	not	too.	|	grep	-o	two*
>>	two
>>	twooo
>>	twoo

Adding	a	*	after	 two		means	the	regular	expression	should	match	anything	with	two	 	followed
by	any	number	of	o’s	 .	 	

Range

								You	can	match	a	range	of	letters	or	numbers	by	putting	the	range	inside	brackets.	For
example,	we	might	want	to	only	match	the	numbers	in	122233	hello	334443	goodbye	939333 	.
The	regex	[[:digit:]] 	*	 	will	match	all	the	numbers	in	the	string	because	it	includes	a	range	of
numbers	(0-9)	 ,	followed	by	*		which	tells	the	regex	to	match	as	many	numbers	in	a	row	as	it
can.
			

$		echo	122233	hello	334443	goodbye	939333	|	grep	-o	[0-9]*
								>>	 122233
								>>	33443
								>>	939333

Si	 milarly,	you	can	match	a	range	of	cha	racters	(all	characters	in	this	case)	with	the	regex
[[:alpha:]]	:

$	echo	122233	hello	334443	goodbye	939333	|	grep	[[:alpha:]]*

Escaping		

									What	if	we	want	to	match	one	of	the	special	characters	we’ve	been	discussing,	like	the
dollar	sign?	We	can	do	this	by	escaping	the	character.	We	covered	escaping	in	the	chapter
Manipulating	Strings:	escaping	means	prefixing	a	character	with	a	special	character	to	let	the
program	evaluating	the	syntax	know	you	want	to	use	the	actual	character	and	not	the	special
meaning	the	character	normally	has.	Escaping	in	regular	expressions	is	done	with	a	backward
slash:

$	echo	I	love	$	|	grep		\\$
>>	I	love	$

Normally,	the	dollar	sign	has	the	special	meaning	of	only	matching	something	at	the	end	of	a
line,	however	because	we	escaped	it,	our	regex	looks	for	the	dollar	sign.

Regular	Expressions	in	Python

								Python	has	a	library	called	re 	 	that	lets	you	use	regular	expressions	in	Python	programs.
The	symbols	in	Python	regular	expressions	are	not	always	the	same	as	grep	 ,	but	the	concept
of	regular	expressions	is	the	same.
								

#
https://github.com/calthoff/tstp/blob/master/part_III/regular_expressions/reg_expr_ex1.py

									import	 re

line	=	"Match	this."

matchObj	=	re.search('this'	 ,	line)

if	matchObj:
				 print	 (matchObj.group())
else	:
				 print	 ("No	match!")

								>>	this

									re 	 	comes	with	different	methods	like	search,	which	returns	the	first	occurrence	of	the
pattern	you	are	looking	for.	If	a	match	is	found,	an	SRE_Match	object	is	returned,	and	we	can
get	the	match	by	calling	the	function	group() 	.	If	no	match	is	found,	 re.search()	 	returns	None	.
								We	can	use	the	function	findall() 		in	the	 re	 	module	to	find	every	occurrence	of	a	pattern,
instead	of	just	the	first	match.

								#
https://github.com/calthoff/tstp/blob/master/part_III/regular_expressions/reg_expr_ex2.py

import	re

line	=	"""The	numbers	172	can	be	found	on	the	back	of	the	U.S.	$5
		dollar	bill	in	the	bushes	at	the	base

								of	the	Lincoln	Memorial."""

matchObj	=	re.findall('\d+'	 ,	line)

if	matchObj:
			 	print	matchObj
else	 :
			 	print	 ("No	match!")

								
								>>	[‘172’,	‘5’]

	
re.findall()	 returns	a	list	of	all	the	strings	matching	the	pattern,	and	an	empty	list	if	there	is	no
match	 .	The	+	 	symbol	matches	the	preceding	character	one	or	more	times.
	If	we	want	to	match	everything	in	between	two	underscores,	we	can	do	it	with:
								
								#
	https://github.com/calthoff/tstp/blob/master/part_III/regular_expressions/reg_expr_ex3.py

import	re

line	=	"""__yellow__	__red__	and	__blue__	are	colors"""

matchObj	=	re.findall('__.*?__'	,	line)

if	matchObj:
			 	print	matchObj
else	 :
			 	print	 ("No	match!")

The	two	underscores	match	two	underscores,	the	period	matches	any	character,	and	the
question	mark	followed	by	an	asterisk	means	keep	matching	any	character	until	there	is
another	double	underscore. 		

Here	is	a	fun	example	of	using	regular	expressions	in	Python	to	create	the	game	Mad
Libs:
“““https://github.com/calthoff/tstp/blob/master/part_III/lets_read_some_code/lets_read_some_code.py”””

import	re

text	=	"""

						Giraffes	have	aroused	the	curiosity	of	__PLURAL_NOUN__	since
earliest	times.	The	giraffe	is	the

						tallest	of	all	living	__PLURAL_NOUN__,	but	scientists	are	unable
to	explain	how	it	got	its	long

						__PART_OF_THE_BODY__.	The	giraffe's	tremendous	height,	which
might	reach	__NUMBER__	__PLURAL_NOUN__,comes	from	its	legs	and	_
_BODYPART__.

						"""

def	 mad_libs	 (mls):
			 	"""
			 	:param 		mls:	String	with	parts	the	user	should	fill	out	surrounded
			by	double	underscores.	Underscores	cannot
			be	inside	hint	e.g.,	no	__hint_hint__	only	__hint__.
			"""
			 	hints	=	re.findall("__.*?__"	 ,	mls)
			 	if	hints:
							 	 for	word	 in	hints:
											new_word	=	 input 	("enter	a	{}"	 .format(word))
											mls	=	mls.replace(word 	 ,	 new_word	 ,	1)
							 	 print	 (' 	\n	 ')
							 	 print	 (mls)
			 	else 	:
							 	 print	 ("invalid	mls")

mad_libs(text)

Zen	Challenge

Write	a	regular	expression	to	find	every	word	in	the	Zen	of	Python	ending	with	the	letter	 y	 .

Chapter	19.	Package	Managers

“Every	programmer	is	an	author.”
―		 	Sercan	Leylek

								Package	managers	are	programs	that	install	and	manage	other	programs	on	your
operating	system.	An	example	of	managing	a	program	is	keeping	the	program	up	to	date
when	a	new	version	comes	out.	In	this	chapter	we	are	going	to	learn	to	use	several	package
managers.	Package	managers	are	useful	because	programmers	use	programs	to	create	new
programs.	For	example,	most	programs	use	one	or	more	databases	(we	learn	to	use	a
database	in	the	last	chapter	of	this	section),	and	which	are	programs	themselves.
Programmers	use	package	managers	to	download	and	keep	their	databases	up	to	date,	as	well
as	to	install	and	manage	the	wide	variety	of	other	programs	they	use	in	their	craft.
								In	this	chapter	we	will	learn	to	use	three	package	managers:	apt-get,	Homebrew,	and	pip.
apt-get	is	a	package	manager	for	Ubuntu,	Homebrew	is	a	package	manager	for	OS	X,	OneGet
is	a	package	manager	for	Windows	and	pip	is	a	package	manager	that	comes	with	Python	and
is	used	to	download	and	manage	Python	programs.

Packages

A	package	is	software	“packaged”	for	distribution—it	includes	the	files	that	make	up	the
actual	program,	as	well	as	files	with	metadata	(data	about	data);	such	as	the	software’s	name,
version	number,	and	dependencies	(programs	that	need	to	be	downloaded	in	order	for	it	to
run	properly).	Package	managers	download	packages,	install	them—which	means
downloading	any	dependencies	the	package	has.

Apt-get

									Apt-get	is	a	package	manager	that	comes	with	Ubuntu.	You	cannot	use	apt-get	from	the
online	Bash	command	line	shell	emulator.	You	need	to	have	Ubuntu	installed	so	you	can	use
the	command	sudo	 .	If	you	do	not	have	Ubuntu	installed	on	your	computer,	you	can	skip	this
section.

You	install	a	package	with	sudo	apt-get	install	[package_name]	.	Here	is	an	example	of
installing	a	package	named	 aptitude	:

$	sudo	apt-get	install	aptitude

								>>	Do	you	want	to	continue?		[Y/N]	Y

								…
								>>	Processing	triggers	for	libc-bin	(2.19-0ubuntu6.7)	…
								
Make	sure	to	type	Y	 	when	prompted	with	“Do	you	want	to	Continue	[Y/N]”.	The	 aptitude
	package	should	now	be	installed.	You	can	use	it	by	typing	aptitude	 	into	the	Bash	command
line	shell:

									$	aptitude
								>>

This	will	open	up	Aptitude,	a	helpful	program	that	shows	information	about	packages.	You
should	see	a	list	of	all	the	packages	installed	on	your	operating	system	under	the	option
Installed	Packages,	as	well	as	a	list	of	packages	you’ve	yet	to	install,	under	Not	Installed
Packages.
								You	can	also	list	the	packages	that	have	been	installed	with	apt-get	with	the	command	apt
list	--installed	 :
								

$	apt	list	--installed
								>>	python3-requests...

You	can	remove	packages	using	aptitude	with	the	syntax	apt-get	uninstall
[package_name]	 .	If	you	want	to	remove	aptitude 		from	your	computer,	you	can	uninstall	it
with	sudo	apt-get	uninstall	aptitude	 .	That’s	all	there	is	to	it—installing	and	removing
programs	is	as	simple	as	using	two	commands	with	apt-get	 .

Homebrew

								Homebrew	is	a	popular	package	manager	for	OS	X.	If	you	have	a	Mac,	you	can	install
Homebrew	from	the	command	line.	Go	to	http://brew.sh/	 	and	copy	and	paste	the	provided
script	in	the	terminal	 .	Once	installed,	you	should	see	a	list	of	commands	when	you	type	brew
	into	your	terminal:

									$	brew
								>>	Example	usage:
									>>		brew	[info	|	home	|	options]	[FORMULA...]
								...

We	can	install	packages	with	Homebrew	using	the	syntax	install	[package_name]	.	Use	the
following	command	to	install	a	package	called	calc	 :

$	brew	install	calc
...
>>	==>	Pouring	calc-2.12.5.0.el_capitan.bottle.tar.gz

>>			/usr/local/Cellar/calc/2.12.5.0:	518	files,	4.4M

A	calculator	program	called	 calc	 	is	now	installed.	You	can	use	it	by	typing	calc	 	from	the
command	line	(type	quit	 	to	exit);

									 $	calc
								>>	2	+	2
								>>	4

The	command	 	brew	list	 	prints	the	software	you’ve	installed	using	Homebrew:

								$	brew	list
								>>	calc

You	can	remove	packages	using	Homebrew	with	the	syntax	brew	uninstall	[package_name] 	.If
you	want	to	remove	calc	 	from	your	computer,	you	can	uninstall	it	with	the	command	brew
uninstall	calc 	.	That	is	all	you	need	to	know—you	are	ready	to	use	Homebrew	to	manage	your
packages.

OneGet

OneGet	is	the	first	package	manager	to	come	with	Windows:	it	was	first	released	with
Windows	Ten.	If	you	do	not	have	Windows	Ten,	you	can	download	OneGet	by	following	the
instructions	on	its	GitHub	 	page:	https://github.com/OneGet/oneget 	.

We	can	install	packages	on	OneGet	using	the	command

pip

									 Pip	is	used	to	download	Python	packages.	Pip	will	install	a	Python	package	for	you,	and
once	installed,	you	can	import	the	program	you	downloaded	as	a	module	in	your	Python
programs.	First,	check	Pip	is	installed	by	going	to	either	the	Bash	command	line	shell,	or	the
Command	Prompt	if	you	are	using	Windows	(which	you	can	find	by	searching	Command
Prompt	from	the	Run	Window)	and	typing	pip 	 .

								$	pip
>>	Usage:		
							pip	<command>	[options]

							Commands:
								install																					Install	packages.
								download																				Download	packages.

																					

A	list	of	commands	you	can	use	with	pip	should	print.	Pip	comes	with	Python	when	you
download	it,	but	in	earlier	versions	it	didn’t	so	if	nothing	happens	when	you	enter	pip,	google
“installing	pip	with	easy_install”.

We	can	use	 pip	install	[package_name]		to	install	a	new	package.	You	can	find	all	of	the
Python	packages	available	for	download	at	 https://pypi.python.org/pypi 	.	There	are	two	ways
to	specify	a	package:	you	can	just	use	the	package	name,	or	you	can	give	the	package	name
followed	by	 ==	 	and	the	version	number.	If	you	use	the	package	name,	the	most	recent	version
will	get	downloaded.	Sometimes	you	don’t	want	the	most	recent	version,	you	want	a	specific
version,	which	is	why	the	second	option	exists.	Here	is	an	example	of	how	we	can	install	a
package	called	Flask,	a	popular	Python	package	that	lets	you	easily	create	websites,	using	a
version	number:

									 pip	install	 		Flask==0.10.1 		
								>>

On	Unix-like	systems	you	need	to	use	 sudo	:
								

	 	sudo	 		 pip	install		 	Flask==0.10.1 		
>>

When	the	installation	is	finished,	the	flask	module	will	be	installed	in	a	special	folder	on	your
computer	called	site-packages.	Site-packages	is	automatically	included	in	your	Python	path,
so	when	Python	imports	a	module,	it	looks	in	site-packages	to	see	if	it's	there.

Now,	if	you	write	a	program,	you	will	be	able	to	import	and	use	the	Flask 		module.
Create	a	new	Python	file	and	add	the	following	code:

from	 flask	import	 Flask

app	=	Flask(__name__)

@	 app.route	 ('/')
def	index 	 ():
			 	return	"Hello,	World!"

app.run(port 	= 	'8000')

If	you	go	to	 http://127.0.0.1:8000/		in	your	web	browser,	you	will	see	a	website	that	says
“Hello,	World!”.	This	example	was	taken	from	Flask’s	tutorial,	which	is	available	at
theselftaughtprogrammer.io/flask 		if	you	are	interested	in	learning	about	how	Flask	works.
You	can	view	the	packages	you’ve	installed	with	pip	with	the	command	 pip	freeze	 :

									 pip	freeze
								>>	Flask==0.10.1

								…

You	can	use	the	syntax	pip	freeze	>	[filename] 	 	to	save	names	of	all	the	packages	you’ve
installed	with	pip	to	a	file.	Create	a	requirements	file	with:

									pip	freeze	>	requirements.txt
								>>

Open	requirements.txt 		with	a	text	editor	to	see	the	new	file.	This	file	is	useful	because	you	can
use	the	syntax	pip	install	[requirements_file] 		to	install	all	the	packages	listed	in	a
requirements	file.	This	command	is	useful	for	quickly	downloading	the	dependencies	of	a
Python	program	that	has	not	been	listed	on	pypi,	and	thus	is	not	available	on	pip.

	Finally,	you	can	uninstall	programs	you’ve	downloaded	with	pip	uninstall
[package_name]	 .	To	uninstall	Flask,	use	the	following	command:

	 	pip	uninstall	flask 	.
…
>>	Proceed	(y/n)?	y
...

Challenge

F	ind	three	programs	that	interest	you	on	Ubuntu	using	aptitude	and	install	them	using	apt-get
.

Chapter	20.	Version	Control

“I	object	to	doing	things	that	computers	can	do.”
—	Olin	Shivers

								Writing	software	is	a	team	sport.	When	you	are	working	on	a	project	with	more	than	one
person,	you	will	both	be	making	changes	to	the	codebase 	 —the	folders	and	files	that	make	up
your	software—and	you	need	to	keep	those	changes	in	sync.	You	could	both	periodically
email	each	other	with	your	changes,	and	combine	the	two	different	versions	yourself,	but	that
would	quickly	become	tedious.	Also	what	would	happen	if	you	both	made	changes	to	the	same
part	of	the	project?	Whose	changes	should	be	used?	These	are	the	kinds	of	problems	a
version	control	system 		solves.	A	version	control	system	is	software	designed	to	let	you
easily	collaborate	on	projects	with	other	programmers.

There	are	many	different	version	control	systems.	Git 	 	and	SVN		are	both	popular
choices.	Version	control	systems	are	programs,	usually	used	in	conjunction	with	a	service	that
stores	your	software	on	the	cloud,	like	GitHub 	.	In	this	chapter	we	are	going	to	use	Git,	a
version	control	system,	to	put	software	on	Github,	a	website	that	stores	your	code	on	the
cloud.

Repositories

A	repository		is	a	data	structure	created	by	the	program	Git	to	manage	a	software
project.	A	data	structure	is	a	way	of	organizing	and	storing	information:	lists	and	dictionaries
are	examples	of	data	structures	(you	will	learn	more	about	data	structures	in	Part	IV).
Repositories	are	used	to	keep	track	of	all	the	changes	in	a	software	project.

When	you	are	working	on	a	project	managed	by	Git,	there	are	multiple	repositories
(usually	one	for	each	person	working	on	the	project).	A	typical	situation	looks	like	this:
everybody	working	on	the	project	also	has	their	own	repository	on	their	computer	called	a
	local	repository	 	which	keeps	track	of	all	the	changes	they	make	on	their	own	computer;
there	is	also	a	central	repository 		hosted	on	a	website	like	GitHub	which	all	of	the	local
repositories	communicate	with	to	stay	in	sync	with	each	other.	A	programmer	working	on	the
project	can	update	the	central	repository	with	the	changes	they’ve	made	in	their	local
repository	or	they	can	update	their	local	repository	with	the	newest	changes	other
programmers	have	made	to	the	central	repository.		
image	of	repositories 		communicating
This	is	done	from	the	command	line	using	the	program	Git.

	You	can	create	a	new	repository	using	the	Git	program	from	the	command	line	or	on
GitHub’s	website.	Once	you	create	a	repository,	you	can	use	the	Git	program	to	manage	it	and
communicate	with	a	central	repository.		

Getting	Started

To	get	started,	you	need	to	create	a	Github	account:	go	to	Github.com/join	to	create	one.
								Create	a	new	repository	on	Github.	Login	to	your	GitHub	account	at	github.com	and
click	on	the	+	 	button	at	the	top	right	corner	of	the	screen.	Click	Create	repository		from	the
dropdown	menu.	Give	the	repository	the	name	 hangman	 .	Make	it	public	 ,	and	check	initialize
the	repository	with	a	readme 	.	Now	click	Create	a	repository	.	If	at	any	time	you	run	into
trouble	and	do	something	wrong	in	this	section,	go	to	the	settings	page	of	your	repository,
delete	it,	and	start	over.	You	also	need	to	install	Git.	You	can	install	Git	using	your	package
manager	of	choice.
On	GitHub,	hit	the	button	in	the	top	right	corner	and	select	Your	Profile.
									 image

You	will	see	the	name	of	your	repository:	 hangman	 .	Click	on	it.	You	will	see	a	button	that
says	Clone	Or	Download.	When	you	click	on	it,	you	will	see	HTTPS: 		followed	by	a	link.	You
can	use	this	link	to	download	your	repository	to	your	computer	using	the	command	git	clone
[repository_url]	 .		The	repository	will	download	in	whatever	director	you	issue	the	command
from.	Copy	the	link,	or	press	the	copy	link	to	clipboard	button	and	use	it	with	the	 git	clone
	command:

									 $	git	clone
								>>

Use	ls	to	verify	the	repository	downloaded:

									 $	ls
								>>	my_project

Pushing	and	Pulling

There	are	two	main	things	you	will	be	doing	with	Git.	 The	first	is	updating	the	central
repository 		with	changes	from	your	local	repository.	This	is	called	pushing 	 	because	you	are
pushing	new	data	to	your	central	repository.

The	second	thing	you	will	be	doing	is	called	pulling 	.	Pulling	data	means	updating	your
local	repository	with	all	of	the	new	changes	from	the	central	repository.

The	command	git	remote	-v 	 	shows	you	what	central	repository	your	local	repository	is
pushing	and	pulling	from.	The	 -v	 	flag	stands	for	verbose,	which	means	the	command	will
usually	print	out	extra	information	.	Use	this	command	inside		to	see	the	central	repository
your	local	repository	is	pushing	and	pulling	from:		

									 $	git	remote	-v

								>>	origin	https://github.com/[username]/my_git_project.git
(fetch)

								>>	origin	https://github.com/[username]/my_git_project.git	(push)

The	first	line	shows	the	central	repository	your	project	will	pull	data	from	and	the	second	line
shows	the	central	repository	your	project	will	push	data	to.	Generally,	you	will	push	and	pull
from	the	same	central	repository.

Pushing	Example

								In	this	section,	you	will	make	a	change	to	the	local	repository	for	your	hangman	project
and	push	that	change	to	your	central	repository.

Move	the	Python	file	with	the	code	we	used	to	create	Hangman	into	the	 hangman
	directory	we	created	in	Getting	Started.	Our	local	repository	now	has	a	file	that	does	not	exist
in	our	central	repository—our	local	repository	is	out	of	sync	with	our	central	repository.	We
can	fix	this	by	pushing	the	changes	we	made	in	our	local	repository	to	our	central	repository.

Pushing	changes	from	your	local	repository	to	your	central	repository	happens	in	three
steps.	First	you	stage	your	files	which	is	where	you	tell	Git	which	files	have	changes	that	you
want	to	push	to	your	central	repository.	Once	you’ve	reviewed	everything,	you	commit	the
files.

,	then	you	commit	them	and	finally	you	push	them.	In	the	first	step	you	tell	Git	what	files
you	want	to	push	to	our	central	repository.	This	is	called	staging	a	file.	When	a	file	is	staged,
we	have	the	chance	to	change	our	mind	and	unstage	it.	The	syntax	git	add	[file_path] 	 	is	used
to	stage	a	file.	Use	the	command	git	add	hangman.py	 	to	stage	our	file:

$	git	add	hangman.py
>>

The	command	 git	status		shows	you	the	current	state	of	your	project	in	relation	to	your
repository.	New	files	that	exist	in	your	local	project,	but	do	not	exist	in	your	repository	are
shown	in	green,	as	are	deleted	files.	Files	that	have	been	modified	are	in	red.	A	file	is
modified	if	it	is	in	your	repository,	but	local	version	and	the	one	in	your	repository	differ.
	Enter	the	command	git	status	 	:

$	git	status
>>	On	branch	master
Changes	to	be	committed:
		(use	"git	reset	HEAD	<file>..."	to	unstage)

									 new	file:			hangman.py

You	should	see	the	file	hangman.py		in	a	green	font.	You	have	to	stage	each	file	you	want	to
push	to	your	repository	with	the	command	git	add	[file]	 .	If	you	stage	a	file	and	change	your
mind,	you	can	unstage	it	without	making	changes	to	your		central	repository.	You	can	unstage
a	file	with	the	syntax	git	reset	[file_path]	 .	Unstage	hangman.py		with	the	command	git	reset
hangman.py	.	Use	git	status	to	see	the	result,	and	add	it	again	with	git	add	hangman.py	 :

									$	git	reset	hangman.py
								$	git	status
								
								>>

								$	git	add	hangman.py
								
								>>

		 Once	we’ve	staged	our	files,	and	everything	looks	the	way	we	want,	we	are	ready	to	move	to
the	next	step—committing	our	files	to	our	central	repository.	When	you	commit	files,	you
want	to	use	the	-m	 	flag	so	you	can	pass	along	a	message.	The	message	will	be	saved	along
with	your	commit	in	your	repository	to	help	you	remember	what	changes	you	made	in	that
commit.
																

$	git	commit	-m	“my	first	commit”

>>		1	file	changed,	1	insertion(+)
create	mode	100644	hello_world.py

The	final	step	is	to	actually	push	your	changes	to	GitHub.	This	is	done	with	the	command			git
push	origin	master	 :

$	git	push	origin	master
>>	Counting	objects:	3,	done.
Delta	compression	using	up	to	4	threads.
Compressing	objects:	100%	(2/2),	done.
Writing	objects:	100%	(3/3),	309	bytes	|	0	bytes/s,	done.
Total	3	(delta	0),	reused	0	(delta	0)
To	https://github.com/[your_username]/my_project.git
			0eb3a47..48acc38		master	->	master

Once	you	enter	your	GitHub	username	and	password	from	the	command	line,	your	changes
will	be	pushed	to	GitHub.	If	you	look	at	your	repository	on	GitHub’s	website,	you	will	see
hangman.py	is	now	in	your	project.

Pulling	Example

								In	this	section,	we	learn	how	to	update	your	repository	with	changes	from	the	central
repository.	First,	we	have	to	make	a	change	in	our	central	repository.	Use	the	command	 	git
pull	origin	master 		to	update	your	local	repository	with	the	change	we	made:

$	git	pull	origin	master
>>From	https://github.com/calthoff/my_project
>>	*	branch												master					->	FETCH_HEAD

Git	applied	the	changes	from	our	central	repository	to	our	local	repository,	and	they	are	now
in	sync.	You	can	view	the	README.md	 	file	on	your	computer	to	see	the	change.

Reverting	Versions

									When	you	use	version	control,	the	entire	history	of	your	project	is	saved	and	available
for	you	to	use.	If	you	decide	you	want	to	revert	to	a	version	of	your	project	from	10	days	ago,
you	are	able	to	do	so.	You	can	view	your	project’s	history	of	commits	with	git	log	 ,	which
should	output	something	like	this:

									$	git	log

								commit	aeb4ef3cf3aabdb9205ea9e96e8cab5c0f5ca7ea
Author:	Cory	Althoff	<coryalthoff@Corys-MacBook-Pro.local>
Date:			Thu	Jan	21	13:52:02	2016	-0800

The	string	of	numbers	and	letters	after	commit	 	is	the	commit	number.	We	can	use	this
number	to	revert	our	project	to	exactly	how	it	was	at	that	time.		We	can	travel	back	in	time
with	the	command	git	checkout	[old	commit] 	.	In	this	case	the	command	would	be	git	checkout
aeb4ef3cf3aabdb9205ea9e96e8cab5c0f5ca7ea	 .

diff

We	can	use	the	command	git	diff 		to	see	the	difference	between	the	version	of	a	file	in	our
local	project,	and	the	version	in	our	repository.	Add			 x=100	 	to	the	second	line	of	our
hello_world.py	 	file.	Enter	the	command:

$		git	diff	hello_world.py
>>	diff	--git	a/hello_world.py	b/hello_world.py
index	b376c99..83f9007	100644
---	a/hello_world.py
+++	b/hello_world.py
@@	-1	+1,2	@@

	print('hello')
+x	=	100

Git	highlights	+x=100	 	in	green	because	the	line	changed,	the	+ 		is	to	signify	the	line		 	x=100
	was	added.

The	Other	Pull	Request

									Confusingly,	there	are	two	concepts	named	pull	in	version	control.	We	previously	talked
about	pulling	data	from	your	repository.	There	is	also	an	unrelated	concept	called	a	pull
request.	A	pull	request	takes	place	on	GitHub.	If	you	are	working	on	a	branch	of	a	project,	and
you	want	to	merge	it	with	the	master	repository,	you	would	issue	a	pull	request	on	GitHub	to
merge	the	two.	This	gives	your	teammates	the	chance	to	review	and	comment	on	your
changes.	If	everything	looks	good,	someone	on	your	team	can	approve	the	pull	request	and
merge	the	two	branches.

Learning	More				

You	typically	create	a	new	branch	when	you	want	to	develop	a	new	feature
for	your	program	or	fix	a	bug	or	problem.	When	you	are	finished	with	whatever
you	are	doing	on	your	branch,	you	normally	merge	your	changes	with	the
master	branch,	which	is	the	process	of	combining	the	two	branches.	Covering
merging	is	outside	the	scope	of	this	book,	but	git-scm	has	a	great	tutorial	on	it
you	can	check	out	at:	https://git-scm.com/book/en/v2/Git-Branching-Basic-
Branching-and-Merging.

Challenge

Chapter	21.	SQLite

“Data!	Data!	Data!	I	can’t	make	bricks	without	clay!”
—Sir	Arthur	Conan	Doyle

									Databases	are	programs	used	to	persist	data.	Data	persists	if	it	outlives	the	process	that
created	it	46	 .	Most	of	the	programs	we’ve	built	so	far	work	fine	without	persisting	any	data,
with	one	notable	exception—our	web	scraping	program	we	built	in	part	II	to	collect	headlines
from	Google	News.	All	of	the	headlines	we	collect	are	lost	after	the	program	stops	running.
But	what	if	we	want	to	analyze	the	headlines	from	the	last	year?	This	is	where	persistence
comes	in,	and	why	databases	are	important.	Databases	perform	two	main	operations—read
and	write.	When	you	write	to	a	database,	you	are	giving	it	information	to	store.	When	you
read	from	a	database,	you	are	retrieving	information	from	it.	In	an	increasingly	data-centric
world,	databases	are	becoming	exceedingly	important.		In	this	chapter,	we	go	over	the	basics
of	databases.

NoSQL	vs.	SQL

									 	Relational	databases	were	first	proposed	by	Edgar	F.	Codd	in	1970.	Relational	databases
store	data	like	an	Excel	spreadsheet—data	is	stored	in	rows	and	columns.	The	data	is	stored
and	retrieved	using	the	query	language	SQL,	which	stands	for	Structured	Query	Language.
PostGreSQL	and	MySQL	are	examples	of	popular	relational	databases.

Recently	a	new	breed	of	databases,	called	NoSQL		have	gained	popularity.	NoSQL
literally	means	“no	SQL.”	In	other	words,	the	thing	these	new	breed	of	databases	have	in
common	is	they	are	not	relational	databases	using	SQL.	Redis	is	an	example	of	a	popular
NoSQL	databases.	Redis	is	a	“key	value	store”	which	means	you	can	store	data	like	a
dictionary	in	Python,	i.e.,	store	a	key	and	a	value.	So	for	example	you	could	store	“Monty”	as
a	key	and	“Python”	as	a	value;	query	Redis	for	“Monty”	and	it	will	return	“Python”.	While
NoSQL	databases	are	useful,	,	in	this	chapter	we	are	learning	about	relational	databases,
because	they	are	very	important	in	the	software	industry.	Once	you	are	familiar	with
relational	databases,	I	encourage	you	to	learn	more	about	NoSQL.

Getting	Started

								We	will	get	started	with	SQL	by	using	SQLite.	SQLite	is	a	lightweight	database	that
comes	built	in	to	your	operating	system,	so	we	don’t	have	to	install	anything.	Go	to	the
command	line	and	type	the	command	“	 sqlite	 	self_taught.db”	to	create	a	new	database.	 		If	you

are	coming	back	to	You	can	open	SQLite	anytime	with	the	command	“sqlite3”.	If	you	already
created	the	database,	open	it	with	“.open	self_taught.db”.	Exit	SQLite	with	the	command
“.exit”.

#explain	relational	databases	what	is	a	column,	what	is	a	row

Data	Types

Create	a	Table

CREATE	TABLE	customers 	 (
				id	int
			first_name	 	text	
			last_name	text	 ,	
			date_created	date 	 ,	
			PRIMARY	KEY 	(column1) 	
);

Every	table	in	a	relational	database	has	to	have	something	called	a	primary	key
—a	unique	identifier	for	each	row.	In	this	case	our	primary	key	is	our	first
column—called	id.	We	can	set	our	primary	key	to	auto	increment,	which	means
the	primary	key	will	be	a	number	that	the	database	automatically	increments	for
you	whenever	you	add	new	data.	Our	customers	table	also	has	a	row	for	the
customer’s	first	name	and	last	name.
									Relational	databases	are	made	up	of	tables	that	store	data	like	an	Excel	spreadsheet,	in
columns	and	rows.	Let’s	c	reate	our	first	tabl 	 e.	Type	the	following	inside	sqlite.	Make	sure
you	are	inside	SQLite	with	the	command	“sqlite3”	and	your	command	line	says	sqlite.
									CREATE	TABLE	self_taught.bdfl(
name	string
project	string
age	int
birthday	date
);
Our	new	in	our	databas	e	self_taught	is	called	“bdfl”,	which	stands	for	benevolent	dictator	for
life.	BDFL	is	a	title	given	to	the	creators	of	open	source	programming	projects	like	Linus
Torvalds,	creator	of	Linux,	Guido	van	Rossum	creator	of	Python,	David	Heinemeier	Hansson
creator	of	Ruby	on	Rails	or	Matt	Mullenweg	creator	of	Wordpress	.	We	will	use	our	table	to
store	data	about	these	bdfls,	such	as	their	name,	project,	and	birthdays.

Constraints

#	find	somewhere	to	put	#	 Creating	a	relationship	with	another	table	is	done	with	SQL,
which	makes	sure	the	database	is	aware	of	the	relationship.	You	can’t	just	enter	any	integer
under	the	customer	column,	your	database	will	only	let	you	enter	a	valid	primary	key	for	a
customer	in	the	customer	table.
A	constraint	is	a	rule	you	can	apply	to	a	column	that	is	enforced	by	the	database.	Examples	of
constraints	are:	not	null,	unique,	primary	key	and	foreign	key.

If	you	put	the	constraint“not	null”	on	a	column,	that	column	cannot	be	“null”	which	is	like
“None”	in	Python.	This	means	the	column	must	have	data	in	it.	Say	you	are	collecting	the	first,
middle	and	last	name	of	subscribers	for	a	newsletter	on	your	website.	The	table	in	your
database	to	collect	this	information	might	look	like	this:

									subscribers
								first	|	middle	|	last
								
You	probably	would	want	to	put	“not	null”	constraints	on	the	first	column,	while	allowing
“null”	in	the	middle	and	last	columns.	The	reason	being	that	everyone	has	a	first	name,	but	not
everyone	has	a	middle	or	last	name.	What	if	Prince	signed	up	for	your	newsletter?	If	you	put	a
not	null	constraint	on	last,	Prince	wouldn’t	be	able	to	sign	up.

	Constraints	are	important	because	they	make	guarantees	about	data.	In	this	case,	if	we
might	want	to	create	a	program	that	analyzes	the	first	names	of	all	of	our	subscribers,	our
program	would	probably	perform	some	sort	of	operation	on	each	string.	If	the	“first”	column
gave	our	program	a	null	value	instead	of	a	string,	and	our	program	treated	the		null	value	like
a	string,	it	would	cause	an	error	in	our	program.	By	adding	a	not	null	constraint	to	our	first
column,	our	program	can	now	be	assured	that	every	first	name	it	gets	from	the	database	is
going	to	be	a	string	and	our	program	can	treat	it	as	such.

If	we	are	collecting	data	for	a	newsletter,	we	also	need	to	collect	our	users’	email
addresses.	We	can	do	this	by	adding	an	email	column	to	our	table:

									ALTER	TABLE	customer
ADD	email	string	UNIQUE

We	added	a	“unique”	constraint	to	this	new	column,	so	that	the	email	column	must	be	unique.
This	means	if	an	email	is	used	in	one	row	of	our	table,	it	cannot	be	used	in	another	row.	This
makes	sense	because	every	email	address	in	the	world	is	unique,	and	if	two	subscribers	have
the	same	email,	there	is	a	problem.
								A	foreign	key	lets	you	enforce	that	the	data	entered	in	the	table	is	a	primary	key	in
another	table.	We	already	saw	an	example	of	using	a	foreign	key	in	our	Amazon	example.
Here	is	how	we	could	change	a	table	to	add	a	foreign	key	P_Id	to	a	made	up	table	called
Persons:

									ALTER	TABLE	customer
ADD	FOREIGN	KEY	(P_Id)
REFERENCES	Persons(P_Id)

								A	check	constraint	is	used	to	make	sure	data	entered	in	a	table	meets	certain
specifications.	Here	is	an	example	of	a	check	constraint	we	could	add	to	our	email	column:

									ALTER	TABLE	customer
ADD	CHECK	email	varchar(255)

This	enforces	that	all	emails	entered	into	our	database	have	to	be	less	than	255
characters.

Insert	Data
									Time	to	insert	data	about	our	first	BDFL	into	our	table.	Enter	the	following	SQL
statements	one	at	a	time:

INSERT	INTO	bdfl	(name,	project,age)
VALUES	(Guido	van	Rossum,Python,1-31-1956);

INSERT	INTO	bdfl(name,project,age)
VALUES(David	Heinemeier	Hansson,Ruby	on	Rails,10-15-1979);

INSERT	INTO	bdfl(name,project,age)
VALUES(Linus	Torvalds,Linux,12-28-1969);

INSERT	INTO	bdfl(name,project,age)
VALUES(Matt	Mullenweg,WordPress,1-11-1984);

INSERT	INTO	bdfl(name,project,age)
VALUES(Dries	Buytaert,Drupal,11-19-1978);

																	INSERT	 INTO	bdfl(name,project,age)
VALUES(Larry	Wall,Perl,9-27-1954);

Query	Data

									Querying	data	means	looking	up	data	in	your	database	given	specific	parameters.
Example	of	the	parameters	you	might	give	are	what	table	the	data	is	in,	and	different	attributes
you	want	the	data	to	contain.	Let’s	start	by	querying	for	everything	in	our	bdfl	table	by
entering	SELECT*	from	bdfl 	 	into	sqlite.		In	SQL,	SELECT	*	 	means	select	everything.
								If	we	do	not	want	to	select	everything,	and	just	want	to	select	the	name	of	the	bdfl	of
Linux,	we	can	do	this	with	SELECT	name	FROM	bfdfl	WHERE	project	=	“Linux”

or	Query

									 You	can	add	“or”	to	your	query	to	select	from	a	row	if	either	the	condition	before	the
or, 	or	the	condition	after	the	or 		is	true.	Select	everything	from	our	table	where	the	project	is
Ruby	on	Rails	or	Wordpress	with	the	statement	SELECT	*	FROM	bfdl	WHERE	project	=
“Linux”	OR
	project=”Ruby	on	Rails” 	.

and	Query

									 Adding	“and”	to	your	query	will	only	select	a	row	if	both	conditions	are	true.	First	try
SELECT*	FROM	bfdl	WHERE	bfdl.name	LIKE	D%	.	This	returns	any	row	where	the	name
starts	with	a	D.	It	should	return	the	data	stored	for	David	Heinemeier	Hansson	and	Dries
Buytaert.
									Now	try	“” 	SELECT*	FROM	bfdl	WHERE	name	LIKE	“D%”	AND		where	A.Date	>=
Convert(datetime,	'2010-04-01') 	.	This	will	only	return	David	Heinemeier	Hansson.	While
Dries	Buytaert	starts	with	“D”,	his	birthday	is	not	greater	than	the	date	we	provided.

Count

Count	the	number	of	rows	in	a	table	with:

	 	SELECT	COUNT(*)	FROM	bfdl
>>	 	

Communicating	with	Databases

So	far,	we’ve	learned	to	communicate	with	a	database	by	using	SQL	from	the	terminal.
But	what	if	we	want	to	store	data	collected		in	 a	database	fr	 om	a	program	we’ve	written	in	a
database?	There	is	tool	we	can	use	to	abstract	SQL	away	entirely	called	an	ORM,	or	object
relational	map.	An	object	relational	map	is	software	that	lets	you	interact	with	your	database
using	classes	in	your	programming	language,	instead	of	using	SQL.

Using	an	ORM	library,	such	as	the	ORM	that	comes	with	the	Python	web	framework
Django,	we	can	represent	a	database	table	as	a	class	in	Python.	Instead	of	using	SQL
statements	to	read	and	write	from	our	table,	we	can	use	methods	from	the	table	class	we

defined.	Here	is	an	example	of	how	we	could	represent	and	query	our	Amazon	customer	table
using	Django’s	ORM:

									 from	django.db	import	models

								class	Customer(models.Model):
															username	=	models.CharField()
															
This	example	defines	a	new	database	table	called	“customer.”	In	this	case	we	have	two
columns,	id 		which	is	our	primary	key	automatically	created	by	our	ORM	and	not	reflected	in
our	code,	and	 username		which	is	a	variable	set	to	a	CharField	object	which	Django	uses	to
create	a	database	column	that	stores	strings.
								Now,	when	we	want	to	interact	with	our	database,	we	can	do	it	using	our	 Customer		class.
For	example,	we	can	create	a	new	user,	which	will	be	stored	in	MySQL,	with	the	following
code:

user1	=	Customer.objects.create(username=”eddie”)

To	query	our	database	we	simply	need	to	use	the	class	we	created:

									 eddie	=	Customer.objects.get(username=”eddie”)
								print	eddie.username

								>>	“eddie”

With	this	code,	we	were	able	to	successfully	read	and	write	from	our	database	without	any
SQL.	Django’s	ORM	translates	our	code	to	SQL	for	us,	so	we	don’t	have	to	worry	about	it.

Challenge

Chapter	22.	Bringing	It	All	Together

“The	magic	of	myth	and	legend	has	come	true	in	our	time.	One	types	the	correct	incantation
on	a	keyboard,	and	a	display	screen	comes	to	life,	showing	things	that	never	were	nor	could
be”....
—	Frederick	Brooks

								In	this	chapter,	we	will	see	how	powerful	programming	can	be	by	building	a	web
scraper:	a	program	that	extracts	data	from	a	website.	Learning	to	scrape	data	from	websites	is
powerful.	It	gives	you	the	ability	to	extract	any	data	you	want	from	the	largest	collection	of
information	that	has	ever	existed.	Seeing	the	power	of	web	scrapers,	and	how	easy	they	are	to
build,	is	one	of	the	reasons	I	got	hooked	up	on	programming,	and	I	hope	it	has	the	same	effect
on	you.

HTML

								Before	we	build	our	web	scraper,	we	need	a	quick	primer	on	HTML,	or	hypertext
markup	language.	HTML	is	one	of	the	fundamental	technologies	used	to	build	websites,	along
with	CSS	and	JavaScript.	You	can	think	of	HTML	as	its	own	little	language,	used	to	give	a
website	structure.	HTML	is	made	up	of	tags	that	a	web	browser	uses	to	layout	a	web	page.	In
fact,	you	can	build	an	entire	website	using	only	HTML.	It	won’t	be	interactive	or	look	very
good,	because	JavaScript	is	what	makes	websites	interactive,	and	CSS	is	what	gives	them
style,	but	it	will	be	a	website.	Here	is	an	example	of	a	website	that	will	display	the	text	Hello,
World!	:

									<!--This	is	a	comment	in	HTML.	Save	this	file	as	index.html-->

<html	lang= 	"en" 	>
<head>
		<meta	charset=	 "UTF-8"	>
		<title>	My	Website 	</title>
</head>
<body>
				 Hello,	World!
			 here	
</body>
</html>

Take	a	minute	to	study	this	code.	Now	save	this	HTML	into	a	file	and	open	the	file	with	your
web	browser	 	by	clicking	on	 	the	file	(you	may	have	to	right	click	and	change	the	default

program	to	open	the	file	with	to	a	web	browser	like	Chrome).	Once	you	open	the	file	with
your	web	browser,	you	will	see	a	website	that	says	Hello	World!	with	a	link	to	the	Y
Combinator	website.

Your	web	browser	uses	the	different	tags	in	our	HTML	to	figure	out	how	to	display	this
website.	Tags	have	a	beginning	tag	and	closing	tag,	often	with	something	like	text	in	between.
For	example,	your	browser	displays	the	text	in	between	the	 <title>	</title>	 	tags	in	the	tab	of
your	browser.	Anything	in	between	the	<body>	</body> 		tags,	makes	up	the	actual	website.
Anything	inside	 <a>			tags	is	a	link.	There	is	a	lot	more	to	HTML,	but	this	is	all	you	need
to	know	in	order	to	build	your	first	web	scraper.

Scrape	Google	News

Now	we	can	build	a	scraper	that	fetches	all	of	the	headlines	from	Google	News.	We	will
do	this	by	extracting	all	of	the	<a>		tags	in	Google	News’s	HTML.	As	we	saw	in	our
HTML	example,	each	<a>		tag	has	a	variable	in	it	called	 href	 ,	e.g.,		 	.	We	are	going	to	extract	all	of	the	href		variables
from	all	of	the	<a>	 	tags	on	Google	News’s	website.	In	other	words,	we	are	going	to
collect	all	of	the	URLs	Google	News	is	linking	to	at	the	time	we	run	our	program.	We	will
use	the	BeautifulSoup 		library	for	parsing	our	HTML	(converting	HTML	to	Python	objects),
so	first	install	it	with:

pip	install	beautifulsoup4==4.4.1

Once	BeautifulSoup	is	installed,	we	can	get	Google	News’s	HTML	using	Python’s	built-in
urllib2 		library	for	working	with	URLs.	Start	by	importing	urllib2	and	BeautifulSoup:

“““https://github.com/calthoff/tstp/blob/master/part_III/lets_read_some_code/lets_read_some_code.py”””

import	urllib2
from	 bs4	import	BeautifulSoup

Next	we	create	a	scraper	class

class	Scraper 	 :
				 def	__init__ 	(self	 ,	site):
								 self	.site	=	site

				 def	scrape 	(self):
								 pass

Our	method	takes	a	website	to	scrape	from,	and	has	a	method	called	scrape	which	we	are
going	to	call	whenever	we	want	to	scrape	data	from	the	website	we	passed	in.

Now	we	can	start	defining	our	scrape	method.		

def	scrape 	(self):
			response	=	urllib2.urlopen(self 	.site)
			 	html	=	response.read()

The	 urlopen() 		function	makes	a	request	to	Google	News	and	returns	a	response	object,which
includes	Google	News’s	HTML	in	it	as	a	variable.	We	save	the	response	in	our	 response
	variable	and	assign	the	variable	html 		to	 response.read() 		which	returns	the	HTML	from
Google	News.	All	of	the	HTML	from	Google	News	is	now	saved	in	the	variable	html 	 .		This
is	all	we	need	in	order	to	extract	data	from	Google	News.	However,	we	still	need	to	parse	the
HTML.	Parsing	HTML	means	reading	it	into	our	program	and	giving	it	structure	with	our
code,	such	as	turning	each	HTML	tag	into	a	Python	object,	which	we	can	do	using	the
Beautiful	Soup	library.	First,	we	create	a	 BeautifulSoup	 	object	and	pass	in	our	html	variable
and	the	string	 	‘html.parser ’	as	a	parameter	to	let	Beautiful	Soup	know	we	are	parsing	HTML:
								

def	scrape 	(self):
			response	=	urllib2.urlopen(self 	.site)
			html	=	response.read()
			soup	 		 =	BeautifulSoup(html 	,	'html.parser')

Moving	forward,	we	can	now	print	out	the	links	from	Google	News	with:

def	scrape 	(self):
			response	=	urllib2.urlopen(self 	.site)
			html	=	response.read()
			soup	=	BeautifulSoup(html 	,	'html.parser')
			 	for	tag	in	soup.find_all('a'):
							url	=	tag.get('href')
							 	if	 url	and	'html'	in	url:
											 	print	 (" 	\n 	 "	+	url)

find_all() 	 	is	a	method	we	can	call	on	BeautifulSoup 		objects.	It	takes	a	string	representing	an
HTML 		tag	as	a	parameter	(‘a’	 representing	<a>),	and	returns	a	ResultSet 	 	object
containing	all	the	 Tag	 	objects	found	by	find_all() 	.	The	 ResultSet 		is	similar	to	a	list—	you
can	iterate	through	it	(we	never	save	ResultSet 	 	in	a	variable,	it	is	simply	the	value	returned	by
soup.find_all('a')),	and	each	time	through	the	loop	there	is	a	new	variable:	tag,	 representing	a
tag	object.	We	call	the	method	get()	 on	the	tag	object,	passing	in	the	string	‘href’	 	as	a
parameter	(href	is	the	part	of	an	HTML		tag	which	holds	the	URL),		and	it
returns	a	string	URL	which	we	store	in	the	variable	 url	.		

The	last	thing	we	do	is	to	check	to	make	sure	URL	 	is	not	None 		with	 if	url	,	because	we
don’t	want	to	print	the	 url	 	if	it	is	empty.	We	also	make	sure	‘html’	 	is	in	the	url 	,	because	we
don’t	want	to	print	Google’s	internal	links.	If	the	url 		passes	both	of	these	tests,	we	use	‘\n’	to
print	a	newline	and	then	print		the	url.	Here	is	our	full	program:

import	urllib2

from	 bs4	import	 BeautifulSoup

class	 Scraper	 :
			 	def	__init__ 	 (self	,	site):
							 	self	 .site	=	site

			 	def	scrape 	(self):
							response	=	urllib2.urlopen(self	.site)
							html	=	response.read()
							soup	=	BeautifulSoup(html 	,	'html.parser')
							 	for	tag	in	 soup.find_all('a'):
											url	=	tag.get('href')
											 	if	url	and	 'html'	in	 url:
															 	print 	(" 	 \n	 "	+	url)

									 Scraper().scrape('https://news.google.com/')

Run	the	scraper,	and	you	should	see	a	result	similar	to	this:
https://www.washingtonpost.com/world/national-security/in-foreign-bribery-cases-leniency-
offered-to-companies-that-turn-over-employees/2016/04/05/d7a24d94-fb43-11e5-9140-
e61d062438bb_story.html

http://www.appeal-democrat.com/news/unit-apartment-complex-proposed-in-
marysville/article_bd6ea9f2-fac3-11e5-bfaf-4fbe11089e5a.html

http://www.appeal-democrat.com/news/injuries-from-yuba-city-bar-violence-hospitalize-
groom-to-be/article_03e46648-f54b-11e5-96b3-5bf32bfbf2b5.html

...

Now	that	you	have	all	of	Google	News’s	headlines	available	in	your	program,	the
possibilities	are	limitless.	You	could	write	a	program	to	analyze	the	most	used	words	in	the
headlines,	and	build	a	word	cloud	to	visualize	it.	You	could	build	a	program	to	analyze	the
sentiment	of	the	headlines,	and	see	if	it	has	any	correlation	with	the	stock	market.	As	you	get
better	at	web	scraping,	all	of	the	information	in	the	world	will	be	open	to	you,	and	I	hope	that
excites	you	as	much	as	it	excites	me.

Challenge

Modify	the	Google	Scraper	to	save	the	headlines	in	a	file.

Chapter	23.	Practice

Exercises

0.	Build	a	scraper	for	another	website.
0.	Write	a	program	and	then	revert	to	an	earlier	version	of	it	using	PyCharm.
0.	Download	pylint	using	pip,	read	the	documentation	for	it	and	try	it	out.

Read

0.	http://www.tutorialspoint.com/python/python_reg_expressions.htm

Part	IV	Introduction	to	Computer	Science 				

Data	Structures	&	Algorithms

“I	will,	in	fact,	claim	that	the	difference	between	a	bad	programmer	and	a	good	one	is	whether
he	considers	his	code	or	his	data	structures	more	important.	Bad	programmers	worry	about
the	code.	Good	programmers	worry	about	data	structures	and	their	relationships.”
—	Linus	Torvalds

This	chapter	is	a	light	introduction	to	algorithms	and	data	structures,	perhaps	the	most
important	subject	in	Computer	Science.	The	title	of	the	influential	book	Algorithms	+	Data
Structures	=	Programs	summarizes	their	importance.	My	goal	in	this	chapter	is	to	introduce
you	to	the	subject,	and	clarify	some	things	I	found	confusing	when	I	was	learning	about	them
(which	I	still	am).	In	addition	to	reading	this	chapter,	you	definitely	need	to	read	more	about
algorithms	and	data	structures	outside	of	this	book,	and	also	spend	a	lot	of	time	practicing	the
concepts	introduced	here.	Many	of	the	examples	in	this	chapter	come	from	the	amazing	book
Python	Algorithms	and	Data	Structures	 		 by	Brad	Miller	and	David	Ranum.	It	is	one	of
my	favorite	books,	available	online	for	free	at:	http://interactivepython.org.

What	Are	Algorithms	&	Data	Structures?

An	algorithm	is	a	series	of	steps	that	can	be	followed	to	solve	a	problem.	The	problem	could
be	anything,	like	sorting	or	searching	a	list,	or	traversinge	a	tree.
									 A	data	structure	is	a	way	to	store	and	organize	information.	Data	structures	are
fundamental	to	programming,	and	whatever	programming	language	you	use	will	come	with
built-in	data	structures.		Common	data	structures	include	hash	tables,	stacks,	and	lists.	Data
structures	come	with	different	tradeoffs,	with	certain	data	structures	being	better	suited	for
specific	tasks	than	others.

Big	O	Notation

								In	Computer	Science,	we	solve	problems	using	algorithms.	But	what	if	you	come	up	with
two	different	algorithms	to	solve	the	same	problem?	How	do	you	decide	which	is	best?	Big	O
Notation	gives	you	a	framework	for	deciding	if	one	algorithm	is	better	than	another	by

looking	at	the	number	of	steps	each	algorithm	takes,	and	choosing	the	one	that	takes	the	least
amount	of	steps.
									 We	can	use	an	equation	like	T(n)	=	n	to	describe	an	algorithm	 .
								The	following	sections	introduce	some	algorithms	you	should	learn.

Modulo

The	modulo	operator	“%”	returns	the	remainder	of	two	numbers	when	you	divide	them.
For	example	“2	%	2”	returns	0,	whereas	“3	%	2”	returns	1.	Modulo	is	helpful	in	solving	a
variety	of	problems	like	Fizzbuzz,	a	popular	first	interview	question	designed	to	weed	out
people	that	cannot	program.	The	question	was	introduced	by	Imran	Ghory	in	his	blog	post
Using	FizzBuzz	to	Find	Developers	who	Grok	Coding 	.	If	you	know	the	correct	approach	to	the
problem,	it	is	easy	to	solve,	whereas	if	you	don’t,	it	can	appear	complicated.	The	problem	is
usually	given	as:
Write	a	program	that	prints	the	numbers	from	1	to	100.	But	for	multiples	of	three	print	“Fizz”
instead	of	the	number	and	for	the	multiples	of	five	print	“Buzz”.	For	numbers	which	are
multiples	of	both	three	and	five	print	“FizzBuzz”.

The	key	to	solving	this	problem	is	using	modulo.	To	solve	this	problem	you	simply
need	to	iterate	from	1	to	100	and	check	if	each	number	is	divisible	by	3,	5	or	both.	Here	is	the
solution:

def	fizz_buzz	 ():
			 	for	i	 in	range(0,	101):
							 	if	 i	%	3	==	0	and	 i	%	5	==	0:
											 	print	'FizzBuzz'
							 	elif	i	%	3	==	0:
											 	print	'Fizz'
							 	elif	i	%	5	==	0:
											 	print	'Buzz'
							 	else	 :
											 	print	i

We	start	by	iterating	through	the	numbers	1	to	100	with	a	for	loop.	Then	we	simply	check
each	of	the	conditions.	We	need	to	check	if	the	number	is	divisible	by	3	or	5	first,	because	if	it
is,	we	can	move	to	the	next	number.	 This	is	not	true	 	with	being	divisible	by	either	5	or	3,
because 		if	either	are	true,	we	still	have	to	check	if	the	number	is	divisible	by	both.	We	then
can	check	if	the	number	is	divisible	by	3	or	5	(in	any	order).	Finally,	if	none	of	the	conditions
are	true,	we	simply	print	the	number.
								Here	is	another	problem	where	using	modulo	is	the	key	to	figuring	out	the	answer:

																Rotate	an	array	of	 n		elements	to	the	right	by	k	 	steps.

For	example,	with	n		=	7	and	 k	 	=	3,	the	array	[1,2,3,4,5,6,7]	is	rotated	to	[5,6,7,1,2,3,4],	i.e.,
you	are	moving	every	element	in	the	list	k	positions.

When	you	solve	this	problem,	your	first	instinct	might	be	to	simply	add	n	to	the	index
of	each	number	and	move	the	number	to	the	new	position.	The	problem	is	this	does	not	work.
	The	key	to	solving	this	problem	is	once	again	modulo.	Say	we	had	a	list	of	numbers	from		1-
12.	We	can	think	of	this	list	as	a	clock.	If	we	start	at	12	o’clock,	and	go	around	the	clock
twelve	hours,	we	are	back	to	where	we	started.

We	can	achieve	this	by	taking	the	current	index,	adding	the	keynew	index	and	getting	the
remainder.	If	you	take	our	list	of	12		numbers	and	you	want	to	calculate	where	the	number	12
would	be	(starting	at	index	11)	if	we	added	12	to	the	index,	you	can	calculate	that	with	11	+

Bubble	Sort

								A	sorting	algorithm	is	an	algorithm	that	takes	a	group	of	numbers	and	puts	them	in	a
certain	order.	There	are	many	different	algorithms	such	as	selection	sort,	insertion	sort,	shell
sort,	merge	sort,	and	quicksort.	In	this	section	we	will	implement	bubble	sort,	a	sorting
algorithm	that	is	not	very	efficient—but	easy	to	understand	and	useful	for	understanding
sorting	algorithms.	Here	is	an	implementation	of	bubble	sort:

									def	 bubble_sort	(num_list):
			 	"""
			 	:param 		num_list:	List	of	numbers
			 	:return	 :	Sorted	list	of	numbers
			"""
			 	for	i	 in	 range	 (len	(num_list)- 	1 	 ,	0 	 ,	 -	 1):
							 	 for	j	 in	range 	(i):
											 	if	 num_list[j]	>	num_list[j	+	1]:
															temp	=	num_list[j]
															num_list[j]	=	num_list[j	+	 1]
															num_list[j	+	 1]	=	temp

my_list	=	[4	 ,	 266	,	 9 	 ,	24 	 ,	44 	,	 54 	,	 41 	,	 89 	,	 20]
bubble_sort(my_list)
print 	(my_list)

>>	[4,	9,	20,	24,	41,	44,	54,	89,	266]

In	this	algorithm

Sequential	Search

									Search	algorithms	are	used	to	find	a	number	in	a	list	of	numbers.	Sequential	search	is	a
simple	search	algorithm	that	checks	each	number	in	the	list	one	by	one	to	see	if	it	matches	the
number	it	is	looking	for.	A	sequential	search	is	the	way	you	search	a	deck	of	cards	for	a
specific	card.	You	go	one	by	one	through	each	card,	if	the	card	is	the	card	you	are	looking
for,	you	stop.	If	you	make	it	through	the	entire	deck	without	finding	the	card,	you	know	the
card	isn’t	there.	Here	is	an	example	of	sequential	search:

									def	sequential_search 	(number_list,	number):
				 """
			:param	number_list:	List	of	integers.
			:param	number:	Integer	to	look	for.
			:return:	True	if	the	number	is	found	otherwise	false.
			"""
				 found	=	False
				 for	i	in	number_list:
								 if			i	==	number:
											found	=	True
											break
				 return	found

									print	sequential_search(range(0,	100),	2)
								>>	True
									print	sequential_search(range(0,	100),	202)
								>>	False

First	“found”	is	set	to	false.	Then	we	loop	through	every	number	in	the	list	and	check	if	it	is
equal	to	the	number	we	are	looking	for.	If	it	equal	to	the	number	we	are	looking	for,	we	set
found	to	True,	exit	our	loop	and	return	True.	Otherwise,	we	continue	to	the	next	number	in	the
list.	If	we	get	through	the	entire	list	and	found	has	never	been	set	to	True,	w.	We	return	found
which	will	still	be	set	to	False.
								Sequential	search	is	an	O(n)	algorithm.	In	the	best	case	scenario,	the	number	we	are
looking	for	could	be	the	first	number	in	the	list,	in	which	case	our	algorithm	would	take	only
one	step.	However,	in	the	worst	case	scenario,	the	number	is	not	in	the	list	and	we	have	to
check	every	single	number	in	the	list,	or	n	steps.	If	we	have	a	million	items	in	our	list,	worst
case	we	have	to	search	through	a	million	items.	If	we	have	a	billion	items,	worst	case	we	have
to	search	through	a	billion	items.	As	our	list	grows,	the	worst	case	scenario	for	our	algorithm
grows	by	the	size	of	our	list,	making	this	algorithm	O(n)	.

Binary	Search

								Binary	search	is	a	logarithmic	algorithm	used	to	search	for	numbers	in	a	list,	but	the
numbers	have	to	be	ordered.		Remember	this:,	in	order	for	an	algorithm	to	be	logarithmic,	it
needs	to	either	be	dividing	or	multiplying	to	a	solution.	Any	guesses	how	binary	search
works?	Binary	search	works	by	continually	cutting	the	list	in	half.	The	algorithm	picks	a
number	in	the	middle	of	a	list,	and	looks	at	whether	it’s	the	right	number.	If	it	is	the	right
number,	the	search	is	complete.	If	it’s	not	the	right	number,	the	algorithm	t	hrows	away	half
the	list	 .	If	the	number	was	too	big,	it	throws	away	everything	above	the	number	it	selected.	If
the	number	was	too	small,	it	throws	away	everything	below	the	number	it	selected.
								Image	we	have	an	ordered	list	from	1	to	10,	and	we	want	to	search	for	the	number	3.	Our
list	looks	like	this:

								[1,2,3,4,5,6,7,8,9,10]

Our	algorithm	would	first	pick	the	number	5	because	it’s	in	the	middle	of	the	list.	Since	5	is
not	the	number	we	are	looking	for,	and	3	is	smaller	than	five,	our	algorithm	would	throw	out
everything	above	5.	Now	our	list	looks	like	this:

								[1,2,3,4,5]

Our	list	would	now	pick	the	number	three,	since	it’s	in	the	middle	of	the	list.	Since	3	is	the
number	we	are	looking	for,	our	algorithm	would	stop	and	return	that	the	number	3	was	found
in	our	list.	Notice	our	algorithm	only	took	two	steps	to	figure	out	three	was	in	our	list.	If	we
searched	through	the	list	linearly,	one	by	one,	looking	for	the	number	three,	it	would	takes	us
three	steps.	Here	is	an	example	of	a	binary	search	algorithm	searching	for	the	number	3:

def	binary_search	 (number_list,	number):
			 	"""Logarithmic	binary	search	algorithm.
			:param	number_list:	List	of	ordered	integers.
			:param	number:	Integer	to	search	for	in	the	passed	in	list.
			:return:	True	if	the	number	is	found,	otherwise	False.
			"""
			 	first	=	0
			last	=	len(number_list)-1
			number_found	=	False

			 	while	first	<=	last	and	not	number_found:
							middle	=	(first	+	last)/2
							 	if	number_list[middle]	==	number:
											number_found	=	True
							 	else	 :
											 	if	 number	<	number_list[middle]:
															last	=	middle	-	1
											 	else	 :
															first	=	middle	+	1
			 	return	number_found

binary_search([1,2,3,4,5,6,7,8,9,10],	3)

We	use	a	while	loop	that	continues	as	long	as	the	variable	first	is	not	greater	than	or	equal	to
the	variable	last,	and	the	variable	not_true	is	False.

We	calculate	the	middle	index	of	the	list	by	adding	the	first	index	of	the	list	with	the	last
index	of	the	list	and	dividing	them	by	two.	The	reason	we	subtract	one	from	last	is	because	the
length	of	a	list	is	calculated	starting	from	one,	whereas	indexes	start	at	zero.
									We	check	to	see	if	the	middle	number	is	the	number	we	are	looking	for	by	looking	up
the	middle	number	in	our	list	with	number_list[middle].	If	the	middle	number		is	the	number
we	are	looking	for,	not_true	is	set	to	True,	and	we	exit	the	loop.	Otherwise,	we	check	to	see	if
the	number	we	are	looking	for	is	bigger	or	smaller	than	the	middle	number.	If	our	middle
number	is	smaller	than	the	number	we	are	looking	for,	we	change	last	to	the	middle	index	-	1,
which	on	the	next	loop	will	split	the	list	in	half	with	everything	smaller	than	our	current
middle	number,	whereas	if	our	middle	number	is	bigger	than	the	number	we	are	looking	for,
we	change	first	to	middle	+	1,	dividing	the	list	in	half	so	it	contains	everything	bigger	than
our	middle	number.

Recursion

								Recursion	is	notorious	as	one	of	the	toughest	concepts	for	new	programmers	to	grasp.	If
it	is	confusing	to	you	at	first,	don’t	worry,	it’s	confusing	to	everyone.	Recursion	is	a	method
of	solving	problems	by	breaking	the	problem	up	into	smaller	and	smaller	pieces	until	it	can
be	easily	solved.	This	is	achieved	with	a	function	that	calls	itself.	Any	problem	that	can	be
solved	recursively	can	also	be	solved	iteratively,	however	in	certain	cases,	recursion	offers	a
more	elegant	solution.
								A	recursive	algorithm	must	follow	the	three	laws	of	recursion:
“1.	A	recursive	algorithm	must	have	a	 base	case	.
2.	A	recursive	algorithm	must	change	its	state	and	move	toward	the	base	case.
3.	A	recursive	algorithm	must	call	itself,	recursively.”

Let’s	go	over	an	example	of	a	recursive	function	that	has	all	three,	a	function	to	print
out	the	lyrics	to	the	popular	children’s	song	“99	Bottles	of	Beer	on	the	Wall” 	19	 :

def	bottles_of_beer 	(bob):
			 	"""	Use	recursion	to	print	the	bottles	of	beer	song.
			:param	bob:	Integer	number	of	beers	that	arestart	on	the	wall.
			"""
			 	if	 bob	<	1:
							 	print	"No	more	bottles	of	beer	on	the	wall.	No	more	bottles	of	beer."
							 	return
			 	tmp	=	bob

			bob	-=	1
		print	"{}	bottles	of	beer	on	the	wall.	{}	bottles	of	beer.	Take	one	down,	pass	it	around,
{}	bottles	of	beer	on	the	wall.".format(tmp,	tmp,	bob)
			bottles_of_beer(bob)

bottles_of_beer(99)
								
								>>	99	bottles	of	beer	on	the	wall.	99	bottles	of	beer.	Take	one	down,	pass	it	around,
98	bottles	of	beer	on	the	wall.								
								>>	98	bottles	of	beer	on	the	wall.	98	bottles	of	beer.	Take	one	down,	pass	it	around,
97	bottles	of	beer	on	the	wall.
								…
								>>No	more	bottles	of	beer	on	the	wall.	No	more	bottles	of	beer.

In	this	example,	the	base	case	is:

									 				 if	bob	<	1:
																				print	"No	more	bottles	of	beer	on	the	wall.	No	more	bottles	of	beer."
																				return

The	base	case	of	a	recursive	algorithm	is	what	finally	stops	the	algorithm	from	running.
If	you	have	a	recursive	algorithm	without	a	base	case,	it	will	continue	to	call	itself	forever,
and	you	will	get	a	runtime	error	saying	the	maximum	recursion	depth	has	been	exceeded.	The
line:

bob	-=	1

satisfies	our	second	rule	that	we	must	move	toward	our	base	case.	In	our	example,	we	passed
in	the	number	“99”	to	our	function	as	the	parameter	bob.	Since	our	base	case	is	bob	being	less
than	1,	and	because	bob	starts	at	99,	without	this	line	we	will	never	reach	our	base	case,	which
will	also	give	us	a	maximum	recursion	depth	runtime	error.
								Our	final	rule	is	satisfied	with	:

bottles_of_beer(bob)

With	this	line,	we	are	calling	our	function.	The	function	will	get	called	again,	but	with	one
important	difference.	Instead	of	passing	in	99	like	the	first	time	the	function	was	called,	this
time	98	will	be	passed	in,	because	of	rule	number	two.	The	third	the	function	is	called	97	will
be	called.	This	will	continue	to	happen	until	eventually	bob	is	equal	to	0,	and	we	hit	our	base
case.	At	that	point	we	print	“No	more	bottles	of	beer	on	the	wall.	No	more	bottles	of	beer.”
and	return,	signaling	the	algorithm	to	stop.
								Let’s	go	over	one	more	recursive	algorithm.	Say	you	are	given	the	following	problem:

Given	a	non-negative	integer	num,	repeatedly	add	all	its	digits	until	the	result	has	only
one	digit.
For	example:

Given	num	=	38,	the	process	is	like:	3	+	8	=	11,	1	+	1	=	2.	Since	2	has	only	one	digit,
return	it.

One	way	we	can	solve	this	problem	is	using	recursion:

def	 add_digits	 (number):

							 	 """

							 	 :param	 	number:	Int

							 	 :return	 :	Single	digit	int
							"""

							 	 number	=	str	 (number)

							 	 if	len	(number)	==	1 	 :

											 	return	 int	 (number)
							the_sum	=	 0

							 	 for	c	in	 number:

											the_sum	+=	int 	(c)

							 	 return	add_digits(the_sum)

print	add_digits(99)
>>	9

In	this	example,	our	function	accepts	a	number	as	a	parameter,	calculates	its	sum	and	calls
itself	until	it	hits	the	base	case	which	is	a	number	with	only	one	digit.	If	we	pass	in	the	number
ninety	nine,	it	has	two	digits	so	it	fails	the	base	case.	We	then	calculate	that	the_sum	equals	18,
so	we	call	add_digits	again	and	pass	in	18.		Once	again	18	does	not	pass	our	base	case	so	we
calculate	the	sum	of	the	digits	which	this	time	is	9,	and	call	add_digits	with	9	as	a	parameter.
The	third	time	around,	our	number	is	9	and	since	it’s	only	one	digit,		it	does	satisfy	our	base
case	and	we	return	the	answer.

Abstract	Data	Types

									When	learning	about	data	structures,	you	will	come	across	the	term	abstract	data	type.	I
remember	what	an	abstract	data	type	is	by	thinking	of	the	relationship	between	an	abstract	data
type	and	a	data	structure	as	similar	(although	not	exactly	the	same)	as	the	relationship	between
a	class	and	an	object.

If	you	want	to	model	an	orange	in	object-oriented	programming,	a	class	represents	the
idea	of	an	orange,	whereas	the	object	represents	the	actual	orange.	Similarly,	an	abstract	data
type	represents	the	idea	of	a	certain	type	of	data	structure.	An	example	of	an	abstract	data	type
is	a	list.	A	list	is	an	abstract	data	type	that	can	be	implemented	several	ways	with	data
structures	such	as	an	array,	or	a	linked	list.		

Nodes

Node	is	a	term	used	frequently	in	Computer	Science.	You	can	think	of	a	node	as	a	point	on	a
graph.	The	internet	is	made	up	of	routers	that	communicate	with	each	other.	Each	router	is	a
node	in	the	network.	Nodes	are	used	in	several	data	structures,	including	linked	lists,	trees	and
graphs.

Stacks

								A	stack	is	a	last-in-first-out	data	structure.	This	is	best	envisioned	as	a	stack	of	dishes.
Say	you	stack	five	dishes	on	top	of	each	other.	In	order	to	get	to	the	last	dish	in	the	stack,	you
have	to	remove	all	of	the	other	dishes.	This	is	how	a	stack	data	structure	works.	You	put	data
into	a	stack.	Every	piece	of	data	is	like	a	dish,	and	you	can	only	access	the	data	by	pulling	out
the	data	at	the	top	of	the	stack.	Here	is	an	example	of	a	stack	implemented	in	Python:

class	Stack:
					def	__init__(self):
									self.items	=	[]

					def	isEmpty(self):
									return	self.items	==	[]

					def	push(self,	item):
									self.items.append(item)

					def	pop(self):
									return	self.items.pop()

					def	peek(self):
									return	self.items[len(self.items)-1]

					def	size(self):
									return	len(self.items)

The	two	most	important	methods	in	the	definition	are	push	and	pop.	Push	lets	you	put
data	on	top	of	the	stack,	and	pop	lets	you	take	it	off	the	stack.

So	what	are	stacks	used	for?	Well	first	of	all,	stacks	are	important	for	understanding
recursion.	Recursion	is	a	fundamental	part	of	programming	we	go	over	in	a	later	section.
Most	new	programmers	struggle	with	recursion,	but	the	key	to	understanding	recursion	is	to
deeply	understand	how	a	stack	works.

Furthermore,	stacks	are	used	to	reverse	things.	Whatever	you	put	on	a	stack	comes	out
in	reverse	order	when	you	take	it	off.	For	example,	let’s	say	you	want	to	reverse	a	string.	We
could	reverse	the	string	by	first	putting	in	on	a	stack,	and	then	taking	it	off,	like	this:

from	collections	import	stack	as	s

my_string	=	“Hello”
								stack	=	s()

for	c	in	my_string:
	stack.push(c)

new_string	=	“”
for	c	in	stack:
									new_string	+=	c
print	new_string
>>>olleH

In	this	example	we	went	through	each	character	in	the	word	“Hello”,	and	put	it	on	our	stack.
Then	we	we	iterated	through	our	stack,	and	took	everything	we	just	put	on	the	stack,	off	of	it,
and	saved	the	order	in	the	variable	new_string.	By	the	time	we	get	to	the	last	line,	our	word	is
reversed	and	our	program	prints	“olleH”.
								I’m	going	to	share	another	example	of	using	a	stack.	It’s	a	rare	example	of	a	question
I’ve	been	asked	to	solve	in	an	interview,	and	actually	have	used	on	the	job.	The	problem	is,
write	a	program	that	tests	a	string	for	balanced	parentheses.	So,	for	example,	“(hello)”	would
pass,	but	“(hello”	would	fail.	“()()()”	would	pass,	but	“()(”	would	fail.	This	looks	easy	at	first,
until	we	get	something	like	this	“((()((()((()((((()))))”.
								How	are	you	supposed	to	keep	track	of	all	the	parenthesis?	The	key	to	solving	this
problem	is	to	use	a	stack.	Every	time	we	come	across	an	open	paren,	we	put	it	on	a	stack.	If	we
come	across	a	closed	paren,	we	pull	an	open	paren	off	the	stack.

def	balanced_paren	 (expression):
			stack	=	[]
				for	 c	in	 expression:
							 	if	c	==	'(' 	:
											stack.append(c)
							 	elif	 c	==	')'	:
												 if	len	(stack)	<	1 	 :
																return	 False

												 stack.pop()
				 if	len	(stack)	==	 0 	:
							 	return	 True
				 return	False

If	the	parenthesis	are	balanced,	our	stack	will	be	empty	after	our	loop,	and	we	can	return
“True.”		One	thing	we	need	to	watch	out	for,	if	the	parenthesis	are	unbalanced,	we	will	try	to
pop	from	an	empty	stack	which	will	cause	an	error.	That	is	why	when	we	come	across	a
closed	paren,	we	have	to	first	make	sure	the	stack	is	not	empty	before	we	pop	it	off	the	stack.
If	we	come	across	a	closed	paren,	and	the	stack	is	empty,	we	know	the	parenthesis	are	not
balanced	and	we	can	return	“False.”	If	at	the	end	of	the	loop	there	are	still	open	parenthesis	on
the	stack,	we	can	also	return	“False.”
	

Linked	Lists

								A	linked	list	is	made	up	of	a	series	of	nodes,	with	each	node	pointing	to	the	next	node	in
the	list.	My	friend	Steve	gave	a	great	metaphor	for	thinking	about	linked	lists.	Imagine	you
are	in	the	Mafia	and	want	to	give	orders	in	such	a	way	that	no	one	knows	who	you	are.	You
could	set	up	a	structure	where	you	give	an	order	anonymously	to	the	next	person	down	the
chain	of	command.	You	know	who	they	are	but	they	don’t	know	you,	they	only	know	the	next
person	they	should	give	the	order	to.	The	person	they	give	the	next	order	to	doesn’t	know
them,	but	only	knows	the	next	person	to	receive	the	order.	This	chain	of	information	is	what	a
singly	linked	list	is.	In	a	singly	linked	list,	all	of	the	nodes	in	the	list	only	know	about	the	next
node.	They	don’t	keep	track	of	the	node	behind	them.	You	can	get	to	every	piece	of	data	in	a
linked	list	by	starting	at	the	head	of	the	list,	and	moving	one	by	one	to	each	next	node.	A
doubly	linked	list	is	the	same	thing	except	each	node	keeps	track	of	the	node	behind	it,	in
addition	to	keeping	track	of	the	next	node.	A	linked	list	can	also	be	ordered	or	unordered.	In
this	section,	we	will	implement	an	unordered	singly	and	doubly	linked	list:

class	Node:
			"""Class	representing	one	node	in	a	linked	list."""
			def	__init__(self,	data):
							self.data	=	Node(data)
							self.next	=	None

class	LinkedList:
			"""Class	representing	a	linked	list	data	structure"""
			def	__init__(self,	head):
							self.head	=	head

			def	add(self,	data):

							"""Add	a	new	node	to	the	linked	list."""
							previous_head	=	self.head
							self.head	=	Node(data)
							self.head.next	=	previous_head

Our	linked	list	class	is	simple.	It	stores	the	head	of	the	linked	list	and	has	a	method	called
“add”	to	add	a	new	node	to	the	list.	Since	the	list	is	unordered,	we	don’t	care	where	we	put	the
next	node,	so	it’s	easiest	to	put	it	at	the	head	of	the	list.	The	method	add	stores	the	current	head
in	the	previous_head	variable,	so	we	don’t	lose	track	of	it,	creates	a	new	node	with	the	passed
in	data,	and	sets	the	new	node	as	the	head	of	the	list.	The	node	that	used	to	be	the	head	is	then
set	as	the	next	node	after	the	new	head.	Now	we	can	create	a	linked	list	and	add	data	to	it:

								linked_list	=	LinkedList()
								linked_list.add(1)
								linked_list.add(2)
								linked_list.add(3)

To	get	the	data	from	our	linked	list,	we	start	with		the	head,	and	visit	every	node	until	we	hit	a
next	node	that	equals	none.

								node	=	linked_list.head
while	node:
				print	node.data
				node	=	node.next

													>>	3
>>	2
>>	1

We	can	change	our	singly	linked	list	to	a	doubly	linked	list	by	keeping	changing	our	node
class	to	keep	track	of	the	node	behind	it.

class	 Node	 :
				 """Class	representing	one	node	in	a	linked	list."""
				 def	 __init__	 (self	 ,	 data):
							 	self 	.data	=	data
							 	self 	. 	next	=	None
							 	self 	.previous	=	None

class	 LinkedList	:
				 """Class	representing	a	linked	list	data	structure"""
				 def	 __init__	 (self	 ,	 data):
							 	self 	.head	=	Node(data)

				 def	 add	 (self	,	 data):
							 	"""Add	a	new	node	to	the	linked	list."""

							 	 previous_head	=	self	 .head
							 	 self	.head	=	Node(data)
							previous_head.previous	=	 self	 .head
							 	 self	.head. 	next	 =	previous_head

Our	new	linked	list	is	the	same	as	our	previous	one,	except	now	every	node
knows	the	node	in	front	and	back	of	it.

Arrays

									An	array	is	an	implementation	of	the	list	abstract	data	type.		Every	piece	of	data	in	an
array	has	to	be	the	same	type.	So	for	example,	you	can	have	an	array	made	up	of	strings	or
ints	but	you	cannot	have	an	array	made	up	of	both.	Python’s	built	in	list	data	structure	is
implemented	internally	in	C	as	an	array	of	pointers.

Binary	Trees

								A	tree	is	another	data	structure	that	gets	its	name	from	looking	like,	you	guessed	it,	a
tree.	A	great	example	of	a	tree	data	structure	is	the	file	system	on	your	computer,	which	is
implemented	using	a	tree.	There	are	many	different	kinds	of	trees	such	as	red	and	black	trees,
AVL	trees	and	binary	trees.	In	this	section,	we	will	build	a	binary	tree.
								A	binary	tree	is	made	up	of	nodes	containing	data.	Each	node	can	have	a	left	child	and	a
right	child.	In	the	same	way	a	linked	list	points	to	the	next	element	in	the	list,	a	node	can	point
to	two	other	nodes	called	the	left	and	right	child.	Like	a	doubly	linked	list,	the	left	and	right
child	keep	track	of	their	parent.	Here	is	an	example	of	a	binary	tree	implemented	in	Python:

class	Node	 :
			 	"""Binary	tree	node."""
			 	def	 __init__(self,	value):
							self.value	=	value
							self.left_child	=	None
							self.right_child	=	None

class	BinaryTree 	:
			 	"""This	class	represents	a	binary	tree	data	structure."""
			 	def	 __init__(self,	root):
							 	"""
							:param	root:	Binary	tree	node.

							"""
								 self.root	=	root

Our	binary	tree	is	simply	made	up	of	a	root.	 See	next	section	for	a	tree	with	children.

Breadth	First	&	Depth	First	Search

								If	we	want	to	visit	every	node	in	a	binary	tree,	there	are	two	search	algorithms	we	can
use:	breadth	first	search,	and	depth	first	search.	If	you	think	of	a	tree	of	being	made	up	of
rows	and	columns,	in	a	breadth	first	search	we	visit	each	row	one	by	one,	whereas	in	depth
first	search	we	visit	each	column	one	by	one.	We	will	use	the	binary	tree	from	the	previous
example	to	create	our	tree	to	traverse:

								tree	=	BinaryTree(“a”)
								tree.left	=	TreeNode(“b”)
								tree.right	=	TreeNode(“c”)
								tree.left.left	=	TreeNode(“d”)
								tree.right.right	=	TreeNode(“e”)

Now	we	can	write	a	function	that	takes	a	tree	as	a	parameter	and	does	a	breadth	first	search	of
the	tree,	printing	out	the	value	of	each	node	it	visits:

def	breadth_first	 (tree):
				"""	Breadth	first	search	of	binary	tree	print	out	each	node.
				:param 		root:	BinaryTree
			"""
				current_level	=	[root]
			next_level	=	[]
				while	current_level:
								 for	node	 in	current_level:
												print	 node.val
												if	 node.left_child:
															next_level.append(node.left_child)
												if	 node.right_child:
															next_level.append(node.right_child)
							current_level	=	next_level
							next_level	=	[]

We	use	the	list	current_level	to	keep	track	of	all	the	nodes	in	the	level	of	the	tree	we	are
currently	in.	When	there	is	no	more	current	level,	our	algorithm	stops.	Our	tree	looks	like
this:

									a

/	\
											b				c
										/	\
								d			e

“current_level”	will	start	as	[a],	become	[b,	c],	become	[d,	e]	and	finally	become	an	empty	list
[]	at	which	point	our	algorithm	is	finished.	We	are	able	to	do	this	by	keeping	track	of	the	next
level	of	nodes	in	our	list	next_level.

Before	our	while	loop,	we	add	the	root	of	our	tree	to	current_level,	then	tell	our	while
loop	to	continue,	as	long	as	current_level	isn’t	empty.	In	our	while	loop,	we	iterate	through
every	node	in	current_level,	printing	out	each	node.	Then	we	check	if	the	node	has	any
children.	If	it	does,	we	add	those	children	to	our	next_level	list.	At	the	end	of	our	for	loop,	we
switch	the	two	lists,	so	the	current_level	list	is	set	to	the	next_level	list,	and	the	next_level	list
becomes	empty.	This	is	what	allows	us	to	move	from	one	level	to	the	next.	Eventually,	when
we	reach	the	last	level,	the	nodes	will	not	have	any	children,	next_level	will	be	empty,
current_level	will	be	set	to	next_level,	and	because	it’s	empty	the	algorithm	will	stop.

A	depth	first	search	searches	the	tree	vertically	instead	of	traversing	across	it
horizontally.	Our	tree	from	the	previous	example	would	be	searched	“a”,	“b”,	“d”,	“e”,	“c”.
We	can	implement	depth	first	search	using	recursion:

Hash	Tables

									In	the	chapter	Containers,	we	covered	Python’s	built	in	dictionary	data	type.	Dictionaries
are	helpful	because	they	can	store	keys	and	values	and	are	incredibly	fast	at	getting	and	setting
data.	To	recap,	dictionaries	map	keys	to	values.	For	instance	you	could	add	the	key
“super_computer”	to	a	dictionary	with	the	value	“Watson”	with	the	following	code:

								my_dictionary	=	{}
								my_dictionary[“super_computer”]	=	“Watson”

Now	we	can	retrieve	the	key	“super_computer”		in	 	with:

print	my_dictionary[“super_computer”]
>>>	Watson

The	amazing	thing	about	dictionaries	is	they	can	set	and	get	data	in	constant 		time.	It	doesn’t
matter	how	many	rows	of	data	we	have	in	our	dictionary.	We	could	have	one	billion	rows,	and
still	add	and	retrieve	the	value	for	“super_computer”	to	our	dictionary	in	O(1)	time.

Internally,	Python	uses	a	hash	table	to	implement	its	dictionary.	A	hash	table	is	a	data
structure	that	uses	a	list	and	a	hash	function	to	store	data	in	O(1)	time.	When	you	add	a	value
to	a	hash	table,	it	uses	a	hash	function	to	come	up	with	an	index	in	the	list	to	store	the	data.
When	you	retrieve	data	from	a	hash	table,	it	uses	the	same	hash	function	to	find	the	index	so	it

can	retrieve	it	from	the	list.	In	this	example,	our	hash	table	is	only	going	to	store	numbers.
The	hash	function	will	return	the	result	of	the	number	modulo	eleven.	So	for	example,	our
hash	function	for	one	would	return	one,	so	we	store	the	number	one	at	index	one	in	our	list.
Our	hash	function	for	the	number	five	would	return	five,	and	so	we	would	store	the	number
five	at	index	five	in	our	list.	Here	is	an	example	of	a	hash	table:
								
								 	class	 HashTable 	:

			 	"""Hash	table	data	structure"""
			 	def	__init__	(self):
								 self	 .list	=	[None]	*	 11

			 	@	 staticmethod
			 	def	hash 	(n):
								 """
								 :param		n:	int
								 :return 	:	return	index	in	list	to	store	number.
							"""
								 return	n	%	11

			 	def	set	 (self	 ,	n	 ,	v):
								 """
								 :param		n:	int
								 :param		v:	can	be	any	type.
							"""
								 self	 .list[self 	.hash(n)]	=	v

			 	def	get	 (self	 ,	n):
								 """
								 :param		n:	int
								 :return 	:	int	value	from	list
							"""
								 return	self	 .list[hash 	(n)]

hash_table	=	HashTable 	()
hash_table.set(1	 ,	'Disrupted')
hash_table.set(5	 ,	'HubSpot')
print	 (hash_table.get(1))
print	 (hash_table.get(5))

This	is	an	oversimplified	example	that	clearly	has	problems.	However,	the	goal	is	to	illustrate
how	a	hash	table	works. 		bc

Challenge

Chapter	X.	Relational	Database	Design

								 	When	you	create	use	a	relational	database,	you	have	to	design	the	different	tables	your
database	will	have,	how	the	tables	relate	to	each	other,	what	columns	they	will	have,	and	what
constraints	are	put	on	those	columns.	Together,	this	makes	up	your	database	schema.	In	this
section,	we	are	going	to	to	design	a	schema	to	store	data	for	a	website	like	Amazon.com.
									First,	we	need	to	think	about	the	data	Amazon	needs	to	store.	The	first	thing	that	comes
to	mind	is	products;	Amazon	clearly	must	have	a	database	where	they	store	all	of	their
products.	Amazon	also	has	to	keep	track	of	customers—you	don’t	have	to	register	a	new
account	every	time	you	order	something	on	Amazon,	so	they	must	store	their	customers
information	as	well.	A	customer	might	order	more	than	one	product,	so	Amazon	must	also
have	a	way	to	store	orders.	Let’s	start	by	designing	a	table	to	hold	data	about	products:
								
									product
								_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
								id	|	name	|	price
								1		|	The	Pragmatic	Programmer	|		14.99
																
Our	product	table	has	a	column	called	id	that	serves	as	the	primary	key,	and	columns	for	the
name	of	the	product	and	the	price.	Our	primary	id	is	an	integer	that	auto	increments,	the	name
column	accepts	strings,	and	the	price	column	accepts	 integers	 .	The	data	shown	in	the	table
such	as	1,	“The	Pragmatic	Programmer,”	and	14.99	are	not	part	of	the	database	design,	but	are
an	example	of	how	data	would	look	in	our	table.	This	convention	is	used	throughout	this
chapter.

Note	that	when	you	design	a	database	schema,	you	want	to	pick	a	naming	convention
and	stick	to	it.	In	the	following	this	case	we	will	use	lowercase	letters	and	an	underscore	in
between	words.			Now	we	need	a	table	to	keep	track	of	our	customers.	Our	customer	table	is
very	similar	to	our	product	table:

	
									Customer

id		|	first_name	|	last_name
_	_	_	_	_	_	_	_	_	_	_	_	_	_
1	|			Steve												|	Smith

								
Our	customer	table	has	a	primary	key,	and	two	columns	that	accept	strings.	This	is	all	we	need
to	keep	track	of	our	customers.

	We	are	going	to	keep	track	of	our	orders	using	two	different	tables.	The	first	table	will
map	an	order	id	to	a	specific	customer,	and	the	second	table	will	keep	track	of	the	products	in
each	order.	Here	is	our	first	table	shown	along	with	the	customer	table:

									customer
id		|	first_name	|	last_name
_	_	_	_	_	_	_	_	_	_	_	_	_	_
1	|			Steve												|	Smith

order
_	_	_	_	_	_	_
id	|	customer
1		|	1

Our	order	table	has	a	primary	key	called	id	and	a	column	called	customer.	Our	customer
column	is	different	than	the	rest	of	the	columns	we’ve	seen	so	far	because	it	uses	a	constraint
called	a	foreign	key	(covered	in	the	chapter	SQL).	The	customer	column	of	our	order	table
accepts	an	integer	that	represents	the	primary	key	of	a	customer	in	our	customer	table.	In	our
example,	the	first	entry	in	the	order	table	customer	column	is	1.	If	we	look	up	the	row	with	1
as	its	primary	key	in	in	our	customer	table	we	would	get	the	row	“	 1	|			Steve	|	Smith	”.	By
using	a	foreign	key,	we’ve	successfully	linked	our	order	table	to	our	customer	table.	This	is
called	creating	a	relationship.
								Imagine	if	we	decided	to	put	the	information	from	our	“customer”	table	in	the	“order”
table	instead:

									order
id	|	username	|	order
_	_	_	_	_	_	_	_	_	_	_	_	_
1		|	Steve										|	NoSQL	Distilled
2		|	Cory											|	Think	Python
3		|	Steve										|	The	Talent	Code

The	problem	with	this	design	is	that	data	is	duplicated	in	our	table.	The	username	Steve	is
repeated	twice.	If	we	needed	to	change	Steve’s	username	to	“Steven,”	we	might	accidentally
only	change	the	name	in	the	first	row,	and	forget	to	change	it	in	the	third.	This	would	corrupt
our	data:

	
order
id	|	username	|	order
_	_	_	_	_	_	_	_	_	_	_	_	_
1		|	Steven					|	NoSQL	Distilled
2		|	Cory									|	Think	Python
3		|	Steve								|	The	Talent	Code

In	our	original	design	this	is	not	possible.	Take	another	look	at	our	previous	design:
								

									customer
								id	|	username

								_	_	_	_	_	_	_	_	_
								8		|	Cory
								9		|	Steve

								orders
id	|	username	|	order
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1		|	9										|	NoSQL	Distilled
2		|	8										|	Think	Python
3		|	9										|	The	Talent	Code

When	we	need	to	change	a	username,	we	only	have	to	change	it	in	one	place—the	customer
table.	Once	we	change	the	name	in	our	customer	table,	anyone	looking	up	username	with	a
foreign	key	of	9	will	see	the	customer ’s	username	is	Steve.	There	is	no	chance	of	accidentally
corrupting	the	data	because	it	only	exists	in	one	location.

Tables	can	have	three	types	of	relationships:	one	to	one,	one	to	many	and	many	to	many.
This	is	an	example	of		a	one	to	one	relationship.	You	create	both	a	one	to	one	relationship	and
a	many	to	one	relationship	using	a	foreign	key.	The	difference	is,	in	a	one	to	one	relationship,
both	tables	can	have	foreign	keys	to	each	other,	although	like	in	this	case,	they	don’t	have	to.
In	a	one	to	many	relationship,	only	the	many	side	has	a	foreign	key	linking	it	to	the	one.	This
is	not	something	your	database	knows	about,	but	rather	a	construct	invented	to	help	you
design	databases.

	In	this	example,	a	customer	can	have	many	orders,	but	an	order	cannot	have	many
customers.	Another	example	of	a	many	to	one	relationship	is	a	classroom.	A	teach	can	have
many	classes,	but	a	class	cannot	have	many	teachers.	In	a	one	to	one	relationship	however,	the
relationship	can	go	both	ways.	One	person	has	one	passport,	and	one	passport	has	one	person.
The	final	relationship	tables	can	have	is	called	many	to	many.	In	order	to	do	that	we	need	to
create	a	junction	table,	which	we	need	to	do	in	order	to	complete	our	Amazon	design.	Our
final	table	order_item	will	keep	track	of	products:

order_item
_	_	_	_	_	_	_	_	_	_
id	|	order_id	|	product_id
1		|	1														|	1

This	table	has	 	id	 	as	a	primary	key,	and	two	foreign	keys—	order_id 		and	product_id	 	linking
the	table	to	our	order	and	product	table.	Our	design	is	complete,	we	can	store	and	lookup	all
of	the	information	we	need	to	fulfill	an	order.	Here	are	all	of	our	tables	together:

									 product
								_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
								id	|	name	|	price
								1		|	The	Pragmatic	Programmer	|		14.99

								customer

id		|	first_name	|	last_name
_	_	_	_	_	_	_	_	_	_	_	_	_	_
1	|			Steve												|	Smith

order
_	_	_	_	_	_	_
id	|	customer
1		|	1

order_item
_	_	_	_	_	_	_	_	_	_
id	|	order_id	|	product_id
1		|	1														|	1
2		|	1																			|	1

If	we	are	ready	to	ship	an	order,	we	can	get	all	of	the	information	we	need	by	looking	at	the
order_item	table	and	using	that	information	to	query	other	tables.	First	we	would	select	all	the
rows	from	our	order_id	with	an	order_id	of	1.	Then	we	would	look	up	all	the	products	using
the	product_id	in	each	row.	Finally,	we	would	use	the	order_id	key	to	lookup	the	name	of	the
foreign	customer	key	in	our	order	table,	and	lookup	the	customer's	name	in	the	customer
table	using	that	information.

Normalization

One	of	the	challenges	you	face	when	working	with	a	database	is	maintaining	data
integrity,	which	means	“assuring	the	accuracy	and	consistency	of	data	over	its	entire	life-
cycle”	 49	 .	Normalization	and	referential	integrity	are	some	of	the	concepts	that	help	ensure
data	integrity.

Data	normalization	is	the	process	of	designing	a	relational	database	in	order	to	reduce
data	redundancy,	which	can	lead	to	inaccurate	data.	While	there	are	many	rules	for	data
normalization,	there	are	three	specific	rules	that	every	database	should	follow.	Each	of	these
rules	is	called	a	“normal	“form.” 		If	the	first	rule	is	followed,	the	database	is	in	"first	normal
form"	or	1nf.		If	all	three	rules	are	followed,	the	database	is	in	"third	normal	form"	or	3nf.	 52
	In	order	to	reach	each	successive	level	of	normalization,	all	of	the	previous	rules	must	be
followed.	In	other	words,	if	the	rule	for	2nf	is	satisfied,	but	1nf	is	not,	the	database	is	not
considered	2nf.

To	reach	the	first	normal	form,	you	need	to	avoid	duplicating	data	in	multiple	row,
avoid	storing	more	than	one	piece	of	information	in	a	row	and	the	table	must	have	a	primary
key.	Here	is	an	example	of	storing	duplicate	data:

t-shirt

_	_	_	_	_	_	_	_	_	_	_	_
color	|	color
blue												|	blue

And	an	example	of	storing	more	than	one	piece	of	data	in	one	row:

t-shirt
_	_	_	_	_	_
color
blue,	large

In	this	example	we	are	using	a	comma	to	store	two	pieces	of	data	in	one	column—“blue”	and
“large.”	This	is	something	you	should	never	do.	Furthermore,	neither	of	these	examples	are
1nf	because	they	do	not	have	a	primary	key.

Here	is	an	example	of	a	table	that	is	1nf:

t-shirt
primary_key	=	id
_		_	_	_	_	_	_	_	_	_	_	_	_
id	|	color
1						blue 																

In	order	for	a	table	to	be	2nf,	all	non	primary	key	columns	must	relate	to	the	primary	key.
Let’s	look	at	an	example	that	violates	2nf:

									t-shirt
								primary_key	=	item
								primary_key	=	color
								_	_	_	_	_	_	__	_	_
								item	|	color	|price|	tax
								t-shirt	red							19.99		.90								
								t-shirt	blue						18.00	.78
						polo				yellow			32						1.4
						polo			green						40						1.8
						polo			orange					43						2

This	table	is	not	2nf	because	the	two	columns	that	are	not	primary	keys,	price	and	tax	relate	to
item,	but	do	not	relate	to	color.

									dealership
								_	_	_	_	_	_	_	_
								id	|location			|	available
								1					Portland	|Yes

53

Normalization	is	an	important	part	of	database	design.	While	there	even	more
normalization	rules	we	did	not	cover,	it	is	important	to	always	normalize	your	database	to
3nf.	To	help	you	remember	the	rules,	programmers	often		use	the	phrase	“	The	data	depends
on	the	key	[1NF],	the	whole	key	[2NF]	and	nothing	but	the	key	[3NF]	so	help	me	Codd	 ”
	(Codd,	mentioned	earlier,	is	the	creator	of	relational	databases)	to	help	them	remember	the
rules	of	of	normalization.

Referential	Integrity

Referential	integrity	is	another	way	of	ensuring	data	integrity.	It	is	a	measure	of
consistency	in	a	database.	If	for	example	we	have	the	following	tables:

customer
								id	|	username
								_	_	_	_	_	_	_	_	_
								8		|	Cory
								9		|	Steve

									order
id	|	username	|	order
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1		|	9										|	NoSQL	Distilled

and	we	delete	the	second	row	from	the	customer	table:
								

customer
								id	|	username
								_	_	_	_	_	_	_	_	_
								8		|	Cory

								order
id	|	username	|	order
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1		|	9										|	NoSQL	Distilled

Our	username	column	in	our	order	table	references	a	foreign	id	that	no	longer	exists.	This	is
a	violation	of	referential	integrity.	Fortunately,	your	database	manages	referential	integrity
for	you.	If	you	try	to	do	this	in	a	relational	database,	it	won’t	let	you,	you	will	get	an	error.

Indexing

									 You	can	index	a	column	in	a	table	in	order	to	make	reads	faster.	Indexes	work	like	a
telephone	book	sorted	by	last	name.	If	you	were	looking	through	such	a	telephone	book,	you
wouldn’t	look	through	every	single	entry,	you	would	immediately	skip	to	the	section	of	the
phonebook	that	matches	the	last	name	of	the	person	you	were	looking	for.	This	is	what	an
index	does.	When	you	index	a	column	in	a	database,	internally	the	database	duplicates	the	data
in	the	column,	but	arranges	it	in	a	specific	order 	—	alphabetically	for	example,	that	allows	it
to	lookup	data	faster.	Here	is	an	example	of	creating	an	index	with	SQL:

									CREATE	INDEX	my_index
ON	table_name	(customers)

This	will	cause	our	database	to	internally	duplicate	all	of	the	data	in	our	customer	table	and
arrange	it	alphabetically.	Now	we	can	lookup	customers	much	faster.	The	drawback	to
creating	an	index	is	that	duplicating	data	and	organizing	it	has	a	cost—it	increases	the	time	it
takes	to	write	to	your	database.

Challenge

Chapter	X.	Computer	Architecture

“There	are	10	kinds	of	people	in	the	world	—	those	who	understand	binary	and	those	who
don't.”
—Anonymous

									 Now	that	w	 e’ve	covered	the	fundamentals	of	programming—and	some	tools	to
program	more	effectively—we	are	going	to	go	over	some	of	the	basics	of	Computer	Science.
Computer	Science	is	usually	taught	as	abstrusely	as	possible—so	I’ve	attempted	to	make	it	as
friendly	as	possible—while	focusing	on	the	most	practical	parts.	In	this	chapter	we	take	a	look
under	the	hood	of	what	we’ve	learned	so	far—we	explore	how	Python,	your	operating	system
and	computer	work.

How	Your	Computer	Works

								Computers	can	only	understand	binary,	so	in	order	to	understand	how	a	computer	works,
you	should	have	a	basic	understanding	of	binary.	When	you	normally	count,	you	count	in
base	ten,	which	means	we	represent	every	number	in	the	world	using	only	ten	digits.	The
“base”	of	a	counting	system	is	the	number	of	numbers	used	to	represent	all	the	number	in	the
world.	In	the	base	10	counting	system,	once	we	get	over	the	number	nine,	we	recombine
numbers	from	one	to	ten	to	create	new	numbers:

								0	 1		2	3	4	5	6	7	8	9
									 11		 	1	 2	1	 3	14	15	16	17	18	19	20

								Base	two	is	a	system	of	counting	just	like	base	ten.	However,	instead	of	combining
existing	numbers	after	ten	numbers,	base	two	starts	doing	it	after	two	numbers
								0	->				0

1	->				1
10	->		2
11	->		3

0	and	1	are	the	same	as	base	ten.	However,	once	we	get	to	2,	we’ve	gone	past	two	numbers,
and	we	need	to	combine	our	first	two	numbers	to	create	a	new	number.	Hence	one	and	zero
are“10”	is	combined	to	represent	2.	Each	number	starting	from	the	left	represents	whether	or
not	there	is	a	power	of	2.	So	for	example,	“ 	10”	means	there	are	zero	2	**	0’s	and	1	2	**1:

10
2	+	0	=	2		

Your	computer	is	made	up	of	hardware—	a	CPU,	memory	and	input/output	devices.	All
computing	is	done	with	these	physical	pieces	of	hardware.	Hardware	only	understands	binary.
That	means	no	matter	what	programming	language	you	use,	no	matter	what	operating	system
you	use,	every	instruction	a	computer	ever	executes	is	in	binary.

[explain	representing	things	in	binary]
This	chart	shows	how	each	character	is	mapped	to	a	number.	For	example,	97	is	mapped	to
the	letter	“a”.	A	program	using	ASCII	would	store	an	“a”	as	1100001,	or	97	in	binary.	When
the	same	program	needs	to	retrieve	the	letter	“a”,	it	looks	up	97	in	the	ASCII	table	and	sees	it
represents	the	letter	“a”.
								You	can	use	Python	to	easily	get	the	number	a	character	maps	to	in	ASCII.	The	function
“ord”	takes	a	character	and	returns	the	number	it	maps	to:

ord(“a”)
>>	97

ord(“z”)
>>	122

At	a	high	level	a	computer	is	made	up	of	a	CPU	and	memory	 .	The	CPU	is	the	part	of	a
computer	that	executes	the	instructions	provided	by	a	program.	A	computer	can	have	one	or
more	CPUS:	a		computer	with	multiple	CPUs	is	said	to	have	a	multi-core	processor.		A	CPU
has	a	clock	generator	that	produces	“clock	cycles.”	In	a	CISC,	or	Complex	Instruction	Set
processor,	each	instruction	takes	one	or	more	“clock	cycles,”	whereas	RISC,	or	Reduced
Instruction	Set	Computing	processors,	are	faster,	able	to	execute	multiple	instructions	per
clock	cycle.	Clock	speed	refers	to	the	speed	a	microprocessor	executes	instructions.

python	version	of	java	CPU	program	in	Structured	Computer	Organization		

									Computers	have	two	types	of	memory,	RAM	and	ROM.	RAM	stands	for	random	access
memory	and	is	volatile,	meaning	it	is	erased	when	a	computer	turns	off.	All	arithmetic	and
logic	operations	take	place	in	ram.	ROM	stands	for	read	only	memory.	It	is	not	volatile;	it
persists	after	a	computer	is	turned	off	and	is	used	for	the	most	fundamental	parts	of	an
operating	system	needed	when	a	computer	starts	up.
								Everything	in	memory	is	stored	in	binary,	sequences	of	zeros	and	ones.	The	zeros	and
ones	are	stored	in	chips	made	up	of	millions	or	billions	of	transistors.		Each	transistor	can	be
turned	on	or	off	using	a	flow	of	electricity.	When	a	transistor	is	turned	off	it	represents	a	zero
in	binary,	and	when	a	transistor	is	turned	on	it	represents	a	one.
									Memory	is	not	where	everything	on	a	computer	is	stored,	despite	the	name	sounding
like	it	is.	Memory	is	used	in	combination	with	the	CPU	to	execute	tasks,	like	arithmetic
operations.	When	you	store	information	in	a	database	for	example,	it	is	written	to	disk
storage,	not	memory.		

I/O

The	CPU	combined	with	memory	make	up	is	the	brain	of	a	computer.	I/O	is	the	transfer
of	data	to	or	from	the	brain	by	other	devices.	Reading	and	writing	data	from	disk	storage	is
an	example	of	I/O.

As	we	learned	earlier,	computers	only	understand	binary.	So	how	do	computers	work
with	characters?	The	answer	is	character	encoding	schemes	like	ASCII	and	Unicode.	To	a
computer,	characters	do	not	exist.	Characters	are	represented	using	encoding	schemes	like
ASCII	to	map	characters	to	binary	numbers.

How	Programming	Languages	Work

Machine	code	is	code	made	up	entirely	of	binary	(or	hex	which	is	base	16	but	ignore
that	for	now)	that	can	be	executed	directly	by	your	computer ’s	hardware.	You	can	program
every	Python	program	we’ve	written	so	far	in	binary.				

Computer	Scientists	use	a	concept	called	abstraction	to	manage	complexity.	When
something	is	an	abstraction,	it	means	you	can	use	it	without	needing	to	understand	how	it
works.	When	you	program,	you	are	programming	beneath	several	layers	of	abstraction:	you
can	program	in	Python	without	knowing	how	Python	communicates	with	your	operating
system,	how	your	operating	system	communicates	with	your	computer ’s	hardware,	or	how
your	computer ’s	hardware	executes	binary.

	Programming	languages	are	built	on	abstractions.	Machine	code	is	the	lowest	level
programming	language—that	means	it	has	no	abstractions	beneath	it.	A	programming
language	becomes	higher-level	the	further	away	it	gets	from	machine	code	(the	direct
instructions	executed	by	the	CPU).	The	higher-level	a	programming	language	is—the	more
abstractions	it	has	beneath	it.	The	more	abstractions	a	programming	language	has	beneath	it
the	slower	it	runs.		If	you	can	write	any	Python	program	in	machine	code—and	the	programs
will	run	faster—you	might	be	wondering,	“Why	don’t	programmers	write	all	of	their
programs	in	machine	code?”	The	reason	programmers	don’t	write	programs	in	machine
code	is	because	it	is	insanely	tedious.	People	don’t	think	like	computers—they	don’t	think
purely	in	numbers—	which	led	to	the	idea	of	writing	a	program	in	machine	code	that	could
translate	a	more	human	readable	language	into	machine	code,	so	humans	could	write	in	a
language	that	was	more	natural	to	them,	and	this	new	program	(called	an	assembler)	would
automatically	translate	assembly	codeit	to	machine	code	(called	an	assembler)—this
programming	language	is	called	Assembly,	and	it	is	the	first	abstraction	above	machine	code
and	the	program	that	translates	assembly	code	to	machine	code.	Here	is	an	example	of	a
program	adding	two	numbers	and	storing	them	in	a	variable	in	machine	code:

add	machine	code	example

Here	is	the	same	program	written	in	Assembly:

add	assembly	code	example 		

As	you	can	see,	the	Assembly	language	code	represents	the	way	human	thinks	much	than	the
machine	code;	however,	while	assembly	code	is	easier	to	read,	the	instructions	still	are	one	to
one	with	machine	code;	that	is,	every	line	of	assembly	code	translates	to	exactly	one	line	of
machine	code—so	programming	in	assembly	is	still	tedious	because	it	requires	the
programmer	to	write	so	many	lines	of	code	to	get	anything	done.	This	led	programmers	to
develop	even	higher	level	programming	languages—like	C—with	instructions	that	are	not
one	to	one	with	machine	language	and	thus	let	the	programmer	write	programs	with	fewer
lines	of	code.	C	code	is	first	translated	into	assembly	code,	and	then	it	is	translated	into
machine	code.	Here	the	same	program	adding	two	numbers	and	storing	them	in	a	variable
from	the	previous	examples	in	C:

int	x
x	=	2	+	2		

This	is	similar	to	how	we	would	write	this	program	in	Python,	although	there	are	two	steps
instead	of	one.	In	C,	unlike	Python,	Unlike	Python—in	C—you	have	to	declare	what	type	a
variable	is	before	you	use	it.	This	is	a	concept	called	static	typing,	which	we	cover	later.
Although	this	code	looks	familiar,	C	is	a	lower	level	language	than	Python,	which	is	one
abstraction	level	above	it.	C	code	gets	converted	to	assembly,	and	then	to	machine,	code	by	a
program	called	a	compiler.	The	difference	between	an	assembler	and	a	compiler	is	that	a
compiler	includes	extra	functionality	to	optimize	performance	when	it	translates	a	higher
level	language	to	machine	code	(compilers	are	used	in	every	programming	language	not	just
C).	But	the	concept	is	still	the	same—a	high	level	language	is	translated	to	machine	code.

When	you	program	in	C,	you	have	to	manage	the	memory	your	program	uses	yourself;
when	you	program	in	Python—your	program’s	memory	is	managed	for	you,	and	you	have
no	access	to	it.	When	you	program	in	Python,	you	can	create	a	list,	and	append	as	many	items
to	that	list	as	you’d	like.	When	you	program	in	C,	this	is	not	possible.	When	you	define	an
array	in	C,	you	have	to	allocate	a	certain	amount	of	memory	to	it.	You	can’t	just	define	an
array—you	have	to	include	how	many	items	will	be	in	that	array.	If	you	define	an	array	that
can	hold	ten	integers—and	decide	you	actually	need	eleven—you	have	to	create	a	brand	new
array.	In	Python,	as	we’ve	seen,	you	simply	create	a	list	and	append	as	many	items	to	it	as
needed.

Python	achieves	this	by	adding	one	more	layer	of	abstraction.	Python	code	does	not	get
compiled	to	machine	code	the	way	C	code	does.	Instead,	when	you	run	a	Python	program,	it	is
executed	in	two	steps.	First,	the	Python	compiler	(written	in	C)	translates	Python	code	to
bytecode—a	special	kind	of	code	consisting	only	of	numbers—but	meant	to	be	executed	by	a
virtual	machine	(software	that	emulates	hardware).	Python’s	virtual	machine	program	is	then
executed	by	the	hardware 	,	and	it	goes	line	by	line	through	the	bytecode	and	executes	each
instruction.	This	design	offers	two	important	advantages.		Because	of	this,	you	can	write	a
program	in	Python	without	worrying	about	managing	memory,	an	 d	why	you	ca

There	are	several	different	implementations	of	Python.	The	version	of	Python	we	are
using	is	called	CPython.		

When	you	are	programming	in	C,	you	have	to	compile	your	program	before	it	will	run.
The	C	compiler	takes	your	code	and	translates	it	into	machine	code	your	computer	can
understand.	Once	compiled,	you	no	longer	need	any	sort	of	program	to	run	your	code,	you
can	execute	it	directly.

Python	code,	however,	must	always	be	run	using	the	“python”	program.	This	is	because
Python	is	what	is	often	called	an	“interpreted”	language,	a	term	used	to	differentiate	it	from	a
language	like	C,	which	is	called	a	“compiled”	language.	This	is	confusing,	because	while
Python	has	an	interpreter,	it	also	has	a	compiler.	When	you	run	a	Python	program,	its
compiler	translates	your	code	to	something	called	bytecode,	a	special	kind	of	code	that	is	like
binary	but	meant	to	be	consumed	by	a	virtual	machine.	At	runtime,	Python’s	virtual	machine
translates	the	bytecode	into	machine	code	and	executes	it	line	by	line.

These	two	approaches	both	have	advantages	and	disadvantages.	One	advantage	of	C’s
approach	is	speed—compiling	directly	to	machine	code	makes	C’s	programs	run	faster	than
Python	programs.	C’s	approach	also	allows	for	variables	to	be	statically	typed.	This
eliminates	a	class	of	errors,	but	also	has	drawbacks	such	as	giving	programmers	less
flexibility.	Python’s	approach	is	advantageous	because	it	allows	it	to	be	platform-independent.
Python’s	use	of	an	interpreter	also	allows	its	variables	to	be	dynamically	typed,	which	makes
programming	in	Python	much	more	flexible	than	C.

Programming	languages	can	be	either	dynamically	or	statically	typed.	Python	and	Ruby
are	examples	of	dynamically	typed	languages.	In	a	dynamically	typed	language,	you	can
declare	a	variable	as	one	type,	and	later	change	that	same	variable	to	a	value	of	a	different
type.	For	example,	this	is	allowed	in	Python:

x	=	5
x	=	“Hello	World”

In	a	statically	typed	language,	trying	to	change	a	variable	from	one	type	to	another	will
cause	an	error	because	in	a	statically	typed	language;	once	you	declare	a	variable’s	type,	you
cannot	change	it.	Understanding	the	difference	between	statically	and	dynamically	typed
languages	will	payoff	with	hours	of	fun	arguing	with	your	friends	with	Computer	Science
degrees	about	whether	or	not	the	former	is	better	than	the	latter.
									 	

Your	computer	is	made	up	of	physical	hardware.	This	hardware	is	what	runs	our	Python
programs	and	it	only	understands	one	thing—binary.	Binary	is	a	counting	system.	Counting	in
binary	is	no	different	than	when	you	normally	count—which	is	called	counting	in	base	ten—
except	there	are	only	two	digits	instead	of	ten	digits.	When	we	count	in	base	ten,	we	start	at
zero,	and	when	we	get	to	nine	we	say	oh	no!	We	ran	out	of	digits.	We	solve	this	by	taking	a
digit	we	already	have—zero—	and	putting	it	after	the	first	digit	(one)	to	create	the	number	ten.
Binary	works	the	same	way.	Zero	in	binary	is		zero.	One	in	binary	is	one.	In	binary,	a	zero	or
one	is	called	a	bit—short	for	binary	digit.	In	binary,	after	the	number	one,	we	run	out	of

digits,	and	like	base	ten,	we	reuse	digits	we	already	have.	We	add	a	zero	to	the	end	of	the	next
number—two—which	becomes	10.	We	do	the	same	thing	for	three—which	becomes	11.
Counting	this	way	is	called	counting	in	base	two.

(binary)
base	2				base	10

			0							0
			1							1
		10							2
		11							3
	100							4
	101							5
	110							6
	111							7
1000							8
1001							9
1010						10
1011						11

								I	cover	how	to	convert	a	number	in	base	10	to	its	binary	equivalent	later	in	the
book.	For	now,	just	understanding	what	binary	is	will	suffice,	and	allows	us	to	explore	a
fundamental	programming	concept—data	types,	or	types	for	short.														 	 	

At	the	beginning	of	this	section	we	learned	computers	only	understand	binary.	Python
needs	to	store	both	integers	and	strings	in	your	computers	memory	(the	part	of	your
computer	that	saves	data	and	can	only	store	binary)—so	how	can	Python	store	integers	and
strings	in	memory?	We	already	went	over	how	the	number	two	is	represented	in	binary—so	it
is	easy	to	understand	how	Python	stores	integers	like	2	in	your	computer ’s	memory—it	just
converts	them	to	binary.	But	how	does	your	Python	represent	a	string	like	“z”	when	it	talks	to
your	computer?	Python	represents	“z”	just	like	the	number	two—in	binary	(everything	is	in
binary!).	To	your	computer	“z”	is:
								01111010
	01111010	is	also	the	number	122	in	binary.	Since	everything	must	be	represented	in	binary,
Python	represents	strings	(like	“z”	or	“a”)	with	binary	numbers,	and	it	has	a	table	that	maps
each	binary	number	to	a	character	in	the	alphabet.	This	table	is	called	a	unicode	table.	You	can
check	out	a	cool	example	of	a	unicode	table	here: 		 	http://unicode-table.com/en/#0046	 	(click
on	a	letter	and	then	click	on	the	link	in	the	popup	to	see	the	binary).	01111010	is	mapped	to
“z”.	So	01111010	can	represent	either	the	number	122	or	“z”.	When	you	put	quotes	around
“z”,	the	quotes	let	Python	know	you	are	representing	a	string	and	not	another	type	like	an
integer.	It	takes	the		letter	in	quotes	and	looks	up	in	the	unicode	table	which	binary	number
represents	“z”	and	then	uses	that	when	it	talks	to	your	computer.	That	is	why	type	is	so
important.	A	computer	can	only	understand	binary	and	so	programming	languages	like

Python	have	to	differentiate	between	different	types	of	data—like	strings	and	integers—so	it
can	know	how	to	represent	them	to	your	computer.

How	Your	Operating	System	Works

An	operating	system	is	the	software	that	manages	a	computer ’s	hardware,	allowing	you
to	use	your	computer.	Your	computer	has	a	limited	amount	of	resources	such	as	memory	and
CPU,	and	your	operating	system	determines	the	resources	each	program	receives,	along	with
creating	a	structure	for	managing	files,	managing	different	users	and	managing	other
common	operations	needed	by	programmers.
								The	kernel	is	the	most	fundamental	part	of	an	operating	system,	responsible	for
allocating	resources	like	CPU	and	memory	to	different	processes.	Processes	are	programs
that	are	executing.	The	kernel	assigns	memory	and	a	stack	to	each	new	program	when	it	starts
running.	The	state	of	the	current	process	is	saved	in	a	data	structure	called	a	process	control
block.

The	kernel	cannot	be	accessed	directly,	so	there	is	another	layer	of	software	built	on	top
of	the	kernel	in	order	to	access	it	called	the	shell	(because	it	is	a	shell	around	the	kernel).	We
learned	how	to	use	the	shell	in	the	chapter	The	Command	Line	in	Part	III.	Operating	systems
have	other	responsibilities	other	than	resource	sharing,	but	in	order	to		limit	the	size	of	the
kernel’s	code,	other	operating	system	jobs	(called	daemons)	are	run	alongside	user
programs.
								When	the	kernel	switches	from	one	process	to	another,	it	is	called	a	context	switch.

InterruptsInterupts
The	following	explanation	on	Stack	Overflow	helped	me	understand	the	difference

between	concurrency	and	parallelism:
“Concurrency		is	when	two	or	more	tasks	can	start,	run,	and	complete	in	overlapping	time
periods.	It	doesn’'t	necessarily	mean	they'll	ever	both	be	running	at	the	same	instant.	E.g.,
multitasking	on	a	single-core	machine.
Parallelism	 	is	when	tasks	literally	run	at	the	same	time,	e.g.,	on	a	multicore	processor.”
RichieHindle	4		.

How	can	a	single	core	processor	run	multiple	tasks	at	once?

Challenge

Chapter	X.	Network	Programming

									In	this	chapter,	we	look	into	how	computers	communicate	with	each	other	over
networks.	A	network	is	a	group	of	computers	connected	through	software	and	hardware	that
allows	them	to	exchange	messages.	54	 .	The	Internet	is	an	example	of	a	network.	In	this
chapter	we	will	explore	the	foundation	of	the	internet—	the	client	server	model	and	the
TCP/IP	protocol.	Then	we	will	dive	deeper	into	these	subjects	by	building	both	a	client	and	a
server.

Client-Server	Model

									The	Internet	communicates	using	the	client-server	model.	In	the	client-server	model,
there	is	a	server	actively	listening	for	requests	(like	Google),	sent	by	a	client	(your	web
browser).	Clients	send	requests	to	servers	asking	for	the	resources	they	need	to	render	a
webpage,	and	if	everything	goes	well,	the	server	responds	by	sending	the	resources	to	the
browser.	Requests	are	made	using	HTTP,	or	hypertext	transfer	protocol,	which	we	cover	in
the	next	section.	When	I	say	resources,	I	mean	the	HTML,	JavaScript	and	CSS	files	the
browser	needs	to	display	a	website	along	with	any	images.	When	you	visit	Google’s	website,
you	are	seeing	the	client-server	model	in	action.	Google	waits	for	you	to	send	a	request,	and
responds	with	the	resources	your	web	browser	needs	to	display	Google’s	website	to	you.

	Try	going	to	Google	in	your	browser	and	copy	and	paste	the	URL	into	a	word
processor.	You	will	see	there	is	a	slash	added	to	the	end	of	the	url.	That	is	because	when	you
go	to	a	website	like	Google,	you	are	really	going	to	“	 http://www.google.com/	 ”.	The	“/”	is
referencing	the	root	page	of	the	website,	which	you	will	recall	from	the	Command	Line
chapter	is	how	is	how	you	reference	the	root	of	an	operating	system.	So	when	you	go	to	“
http://www.google.com/ 	”,	you	are	requesting	Googe’s	root	page,	whereas	if	you	go	to	“
http://www.google.com/news 	”	you	are	requesting	“/news”	and	Google	will	respond	with
different	resources.
								However,	before	any	of	this	can	happen,	your	web	browser	needs	to	translate	“
http://www.google.com	 ”	into	an	IP	address.	This	is	where	something	called	the	DNS,	or
domain	name	system	comes	in.	The	DNS	is	a	giant	table	that	maps	all	of	the	domains	in	the
world	to	their	IP	addresses,	maintained	by	different	internet	authorities	such	as	the			 Internet
Assigned	Numbers	Authority	.	An	ip	address	is	a	unique	number	that	represents	each
computer	on	the	internet.	To	communicate	with	Google,	your	browser	needs	to	get	its	IP
address	,which	it	does	by	looking	it	up	in	the	DNS.
								At	a	low	level,	all	this	communication	happens	through	sockets.	Sockets	are	the	functions
that	give	programs	access	to	a	computer ’s	network	hardware.		Sockets	are	created	by	your
operating	system	as	a	data	structure,	allowing	computers	to	establish	connections	with	each

other.	A	server	opens	a	passive	socket,	and	a	client	opens	an	active	socket.	A	passive	socket
stays	open	indefinitely,	listening	for	connections,	whereas	an	active	socket	requests	data	from
a	passive	socket	and	then	closes.
								To	recap,	the	client-server	model	works	as	follows—	a	user	enters	a	domain	name	into
the	browser,	and	the	browser	looks	up	the	domain’s	IP	address	in	the	DNS.	The	browser	sends
an	http	request	to	the	IP	address	it	looked	up,	and	the	server	responds	with	an	http	 request
	letting	the	browser	know	it	received	its	request	and	then	sends	the	resources	the	web	browser
needs	to	display	the	requested	webpage	to	you.

TCP/IP

									 The	communication	in	the	client-server	model	follows	the	TCP/IP	protocol.	A	protocol
is	an	agreed	upon	way	of	doing	things,	used	to	standardize	a	process.	Protocols	are	not
limited	to	Computer	Science.	If	you	were	to	meet	the	Queen	of	England,	there	would	be	a
protocol	in	place—a	set	of	rules	every	person	has	to	follow	when	meeting	her.	You	wouldn’t
just	walk	up	to	her	and	say	“Hey	bro!”	You	would	address	her	a	certain	way,	speak	politely,
stick	to	certain	subjects	etc.	That	is	a	protocol.

Computers	communicating	over	the	Internet	use	a	protocol	called	TCP/IP.	Imagine	an
internet	without	an	agreed	upon	protocol.	With	no	standard	for	communicating,	every	time
two	computers	needed	to	pass	data	to	one	another,	they	would	have	to	negotiate	the	terms	of
their	communication.	Nothing	would	ever	get	done.		Luckily	we	have	protocols	like	TCP/IP
that	ensure	communication	happens	seamlessly.

TCP/IP	is	what	is	called	a	protocol	stack.	It	is	is	made	up	of	four	layers,	with	each	layer
using	its	own	protocol.	Each	layer	is	a	program	responsible	for	accomplishing	a	task,	and
communicating	with	the	layers	above	and	below	it.		While	the	Internet	could	use	one	protocol
(instead	of	a	stack),	the	benefit	of	using	a	protocol	stack	separated	into	layers	is	that	you	can
make	changes	to	one	layer	without	needing	to	change	the	others.	Think	about	the	post	office.
Someone	at	the	post	office	accepts	packages,	then	someone	else	sorts	them	and	passes	them
off	to	someone	who	delivers	them.	Each	person	has	their	own	protocol	for	accomplishing
their	task	(and	they	all	communicate	with	each	other).	If	the	delivery	guy	decides	to	deliver
packages	using	drones	instead	of	a	truck,	the	change	in	protocol	doesn’t	affect	the	person	who
accepts	packages	or	the	person	who	sorts	them.	This	is	the	same	reason	why	TCP/IP	uses	a
protocol	stack,	so	changes	to	one	protocol	won’t	affect	the	others.

	The	four	layers	of	TCP/IP	are	the	Application	Layer,	the	Transport	Layer,	the	Internet
Layer	and	the	Network	Layer.		

[tcp/ip	picture]

Let’s	take	a	look	at	an	example	of	data	moving	through	TCP/IP	by	once	again	thinking	about
mail.	Think	of	the	Application	Layer	as	a	program	containing	a	letter.	When	you	type	a	url

into	your	web	browser,	the	Application	Layer	writes	a	message	on	the	letter	that	looks
something	like	this:

								[picture	of	letter	with	http	on	it]

The	information	on	the	letter	is	an	HTTP	request.	Again,	HTTP	is	a	protocol	that	servers	and
clients	use	to	send	messages	to	each	other.	The	HTTP	requestIt	contains	information	such	as
the	requested	resource,	the	browser	the	client	is	using	and	a	few	more	pieces	of	information.

The	letter	is	then	passed	to	the	next	layer,	the	Transport	Layer.	You	can	think	of	the
Transport	Layer	putting	the	letter	in	an	envelope.	Outside	the	envelope,	the	Transport	Layer
puts	more	information:

								[picture	of	envelope	with	writing	on	it]

The	information	includes	the	domain	name	to	send	the	request	to,	the	domain	the	request	is
coming	from,	the	port	number	the	server	is	on,	and	something	called	a	checksum.	Data	is	not
sent	across	the	network	all	at	once,	it	is	broken	up	into	packets	which	are	sent	one	at	a	time.
The	Transport	Layer	keeps	uses	checksum	to	make	sure	all	the	packets	get	delivered	properly.
								Now	the	Transport	Layer	passes	the	envelop	to	the	Internet	Layer	which	takes	the
envelope	and	puts	it	in	an	even	bigger	envelop,	with	more	information	written	on	it:
								
								[picture	of	envelop	with	writing	on	it]
								
The	information	written	on	the	Internet	Layer	envelop	only	contains	the	information	the
router	needs	to	deliver	the	data	to	the	server	it	is	sending	the	data	to.	It	contains	the	IP	address
of	the	server	and	the	IP	address	of	the	computer	making	the	request.	It	also	contains	the	TTL,
which	stands	for	time	to	live	and	(explain	ttl) 		At	this	point,	the	envelop	is	considered	a	packet
.
								This	final	envelope	is	sent	to	the	bottom	layer,	the	Network	Layer,	which	uses	hardware
and	software	to	physically	send	the	data.	The	data	is	received	by	the	Network	Layer	on	the
servers	computers	and	the	envelop	is	passed	in	reverse	order	up	the	protocol	stack	with	each
layer	removing	an	envelop	until	the	letter	is	revealed	at	the	Application	Level	of	the	server.
The	server	then	goes	through	the	same	process	through	the	TCP/IP	stack,	sending	an	HTTP
request	back	signalling	that	the	request	was	either	valid	or	invalid.	If	the	request	was	valid,	it
starts	sending	the	resources	the	client	needs.

It	is	important	to	remember	that	data	does	not	get	sent	all	at	once,	it	gets	broken	down
into	packets.	The	bottom	layer	of	the	stack,	the	Network	Layer	may	send	thousands	of	packets
to	a	client,		

Challenge

Chapter	#TK.	Bringing	It	All	Together

Create	a	Server

In	this	section	we	are	going	to	use	the	Python	socket	library	to	create	a	simple	web
server	and	client,	using	Python’s	built-in	library	for	creating	and	managing	sockets.	We	are
going	to	create	a	server	that	listens	for	requests	and	responds	to	them	with	the	data,e	and	a
client	we	can	use	to	make	those	requests.

A	web	server	creates	a	socket,	binds	it	to	a	port,	and	then	runs	an	infinite	loop,
responding	to	requests	as	they	come	through	the	socket;	whereas	a	client	simply	opens	up	a
socket	and	,	connects	to	a	server	to	get	the	information	it	needs.	We	will	start	by	building	a
	server	in	Python.		The	first	step	is	to	import	the	socket	and	date	libraries:

import	socket
import	datetime

First	we	get	today’s	date:
								today	=	str(datetime.datetime.today())

Now	we	can	create	a	socket:

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

socket.AF_INET	is	an	address	family	specifying	what	addresses	in	your	socket	can
communicate	with.	AF_INET	is	used	for	communicating	over	the	internet.	There	are	other
address	families	like	AF_BLUETOOTH	that	can	be	passed	in	for	communicating	over
Bluetooth.	“socket.SOCK_STREAM”	means	we	want	to	use	TCP	to	ensure	delivery.	#fact
check

Next	we	bind	our	socket	to	TCP	port	8888	 :

								s.bind(“”,	8888)

And	set	the	length	of	the	queue	(a	queue	is	used	because	multiple	requests	can	come	in	at	the
same	time	and	a	data	structure	is	needed	to	process	them):

								s.listen(10)

Now	we	can	create	the	server ’s	infinite	loop	which	waits	for	a	connection	and	sends	the	date
back	as	a	response:

while	 		 True:
				connect,	address	=	s.accept()
				resp	=	(connect.recv(1024)).strip()			#	limit	request	to	1024	bytes
			connect.send(“received	http	request”)
			#Close	the	connection	when	we	are	finished:
		connect.close()

Here	is	our	full	server:
								

import	 		 socket
import	datetime

today	=	datetime.datetime.today()
s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)
s.bind(("",	8888))
s.listen(5)

while	True:
							connect,	address	=	s.accept()
							resp	=	(connect.recv(1024)).strip()
							connect.send(today)
							connect.close()
					

You	can	test	this	server	by	running	the	program	and	going	to	localhost:8888	in	your	browser.
You	should	see	the	date	when	you	do.

Create	a	Client

								Now	lets		create	a	client	to	make	requests	to	our	server.	Just	like	creating	a	web	server,
we	start	out	by	creating	a	socket:

								import	socket
								s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

To	connect	to	our	server,	we	get	the	name	of	our	local	machine	and	set	the	variable	port	to	the
port	our	server	uses	so	we	can	use	it	later:

								#	get	name	of	our	local	machine
								host	=	socket.gethostname()						

#	set	port																				
								port	=	8888

Now	we	can	connect	to	our	hostname	at	port	8888	by	passing	in	a	tuple	with	our	hostname	and
port:

								s.connect((hostname,	port))

Save	the	response	and	close	the	socket:

								msg	=	s.recv()
								s.close()

Print	the	message	we	received:

								print(“{}”.format(msg))
That’s	all	there	is	to	it.	We’ve	built	a	functioning	client.	When	you	run	our	client,	you	will	get
the	date	from	our	server. 		

Challenge

Chapter	#TK	 .	Practice

Exercises

Read

0.		
0.	http://stackoverflow.com/questions/2794016/what-should-every-programmer-know-
about-security

Part	V	Programming	for	Production

Chapter	#TK 	.	 Testing

“If	debugging	is	the	process	of	removing	bugs,	then	programming	must	be	the	process	of
putting	them	in.”
-Edsger	Dijkstra

When	you	start	building	software	other	people	are	going	to	use,	the	code	in	the	product
people	end	up	using	is	called	production	code.	When	you	put	software	into	production,	it
means	you	put	it	live	where	people	are	using	it.	Part	V	of	this	book	is	about	how	you	should
program	when	your	goal	is	to	put	something	into	production;	in	this	section	of	the	book	we
learn	about	the	software	development	process,	with	a	focus	on	testing.	We	also	learn	some
best	programming	practices.

The	Waterfall	Software	Development	Process

A	software	development	process	is	a	way	of	 		 “splitting	of	software	development	work
into	distinct	phases	(or	stages)	containing	activities	with	the	intent	of	better	planning	and
management,”	 63	The	Waterfall	model	is	a	“ 	sequential 		(non-iterative)	design	process,	used
in	software	development	processes,	in	which	progress	is	seen	as	flowing	steadily	downwards
(like	a	waterfall)	through	the	phases	of	conception,	initiation,	analysis,	design,	construction,
testing,	production/implementation	and	maintenance.”	 64	 	It	is	made	up	of	five	phases:
Planning	and	Requirements	Analysis,	Defining	Requirements,	System	Design,	Implementation
and	Deployment,	System	Testing	and	System	Maintenance.

In	the	first	phase	of	the	Systems	Development	Cycle	you	determine	what	problem	you
want	to	solve.	You	look	at	how	the	new	system	affects	your	current	priorities,	you	analyze	the
resources	you	would	need	to	build	the	new	system,	and	you	think	about	the	system’s
requirements.	You	can	do	a	feasibility	study	at	this	stage,	looking	at	whether	the	system	is
operationally,	economically,		and	technically	feasible,	among	other	considerations.

In	the	Defining	Requirements	phase	you	define	and	document	the	system	requirements.
This	is	done	by	working	with	the	project	stakeholders—	 	“	 an	individual,	group,	or
organization,	who	may	affect,	be	affected	by,	or	perceive	itself	to	be	affected	by	a	decision,
activity,	or	outcome	of	a	project”.	 61

In	the	System	Design	phase,	different	design	approaches	are	discussed,	and	a	final
approach	is	agreed	upon	and	outlined	in	a	document	called	a	Design	Document	Specification
which	outlines	the	“ 	design	approach	for	the	product	architecture.” 	62	 	A	design	approach
“clearly	defines	all	the	architectural	modules	of	the	product	along	with	its	communication	and
data	flow	representation	with	the	external	and	third	party	modules	(if	any).	The	internal	design
of	all	the	modules	of	the	proposed	architecture	should	be	clearly	defined	with	the	minutest	of

the	details	in	DDS.”	62	 In	other	words,	you	decide	how	you	are	going	to	architect	the	system
you	are	building,	and	commit	it	to	the	DDS.

This	is	where	the	magic	happens.	After	three	stages	of	planning,	coding	begins	in	the
Implementation	and	Deployment	phase.	The	product	is	built	in	this	phase,	following	the
Design	Document	Specification.				

The	System	Testing	Phase	is	where	the	product	is	tested	for	bugs	and	tested	to	make
sure	it	meets	the	requirements	outlined	in	the	Defining	Requirements	stage.	The	next	chapter
of	this	book	covers	testing	in	detail.
									Once	the	product	has	been	tested,	it	is	put	into	production	and	released	to	the	public.
During	this	phase	the	product	is	live	and	the	software	team	performs	any	necessary
maintenance.		

Other	Software	Development	Processes

									The	waterfall	method	is	one	of	many	software	development	processes—	like	the
incremental	model:	“	a	method	of	software	development	where	the	product	is	designed,
implemented	and	tested	incrementally	(a	little	more	is	added	each	time)	until	the	product	is
finished.”	65		There	are	also	various	implementations	of	the	popular	Agile	methodology
which	you	can	find	out	more	about	by	reading	the	Manifesto	for	Agile	Software
Development:	http://agilemanifesto.org.		

While	not	a	software	development	process,	in	the	next	chapter,	we	utilize	Test	Driven
Development,		a	development 	 	technique	where	you	must	first	write	a	test	 	that	fails	before
you	write	new	functional	code.”	66			 Test	Driven	Development	helps	you	write	better
programs	by	forcing	you	to	think	clearly	about	what	you	are	designing.		

Testing

	In	this	chapter	we	will	focus	on	testing,	part	of	the	software	development	process. 		
Testing	a	program	means	checking	that	the	program	“	meets	the	requirements	that	guided	its
design	and	development,	responds	correctly	to	all	kinds	of	inputs,	performs	its	functions
within	an	acceptable	time,	is	sufficiently	usable,	can	be	installed	and	run	in	its	intended
environments,	and	achieves	the	general	result	its	stakeholders	desire.”	57	 	In	order	to	achieve
this,	we	write	programs	to	test	our	programs.	In	most	cases,	testing	is	not	optional;	you
should	consider	every	program	you	intend	to	put	into	production	incomplete	until	you	have
written	tests	for	it,	unless	you	have	a	very	good	reason	not	to.	If	you	write	a	quick	program	to
do	something	like	manipulate	a	file,	and	you	never	are	going	to	use	it	again,	testing	might	be
a	waste	of	time.	But	if	you	are	writing	a	program	that	other	people	are	going	to	be	using,	you

should	write	tests.	As	someone	smart	once	said,	“Untested	code	is	broken	code.”	In	this
chapter,	we	are	going	to	go	over	some	of	the	fundamentals	of	testing.	Fun	fact—the	word
computer	“bug”	originated	from	an	incident	in	1942,	where	Grace	Murray	Hopper	found	and
removed	a	moth	stuck	in	a	Mark	Aiken	Relay	Calculator.

Assertions

									Assertions	are	the	foundation	of	tests.	An	assertion	is	a	statement	that	a	programmer
expects	to	be	True		(in	which	case	it	doesn’t	do	anything)	and	raises	an	exception	if	it	is	 False	 .
Python	has	a	built-in	assert 		keyword	for	creating	assertions.	Here	is	an	example:

									x	=	1
								assert	x	==	1
								>>

								x	=	1
								assert	x	==	2
								>>Traceback	(most	recent	call	last):
										File	"/Users/coryalthoff/PycharmProjects/self_taught/st.py",	line

2,	in	<module>
											assert	x	==	1

AssertionError

In	the	first	example,	the	condition	following	 assert	 	is	True	 ,	so	no	error	is	raised.	In	the
second	example,	the	condition	following	assert	is	False	 ,	and	an	AssertionError	 	is	raised.
Assertions	are	used	to	check	whether	or	not	a	test	(which	we	will	learn	how	to	write	shortly)
passed.	If	an	AssertionError 		is	raised,	the	test	failed,	otherwise	it	passed.		

Types	of	Tests

									Testing	is	usually	done	in	four	different	phases:	unit	testing,	integration	testing,	system
testing,	and	acceptance	testing.	In	this	section,	we	will	briefly	explore	each	of	these	phases.

The	unit	testing	phase	involves	writing	unit	tests	that	test	individual	pieces	of	code	such
as	functions,	methods	and	classes.	Each	unit	test	tests	one	aspect	of	a	piece	of	code	with	an
assertion.	Say	for	example	you	have	a	function	that	prints	whatever	string	you	pass	it.	One
unit	test	might	pass	the	function	the	string	“Hello” 		and	test	that	 “Hello”	 	was	printed;	whereas
another	unit	test	might	pass	the	function	an	integer	to	make	sure	the	function	is	able	to
properly	handle	an	input	that	is	not	a	string.	Unit	tests	should	test	the	general-use	case	for	all
of	your	functions	classes	and	methods;	checking	what	happens	when	they	receive	input	values
you	weren’t	expecting,	and	test	boundary	conditions—when	things	like	a	list	get	big	or	full.

You	can	write	your	unit	tests	within	a	unit	testing	framework—	a	program	for	creating	and
structuring	unit	tests,	like	Python’s	built-in	unit	testing	framework	called	unittest	,	which
comes	with	different	assertion	methods	that	let	you	easily	test	different	conditions.
								Integration	testing	is	performed	after	unit	testing.	While	unit	testing	tests	each	individual
piece	of	code	in	a	module,	integration	testing	tests	to	make	sure	the	different	modules	in	a
project	work	with	each	other.	For	example,	say	you	are	building	a	banking	application	and
you	have	two	modules:	transfer—for	transferring	money—and	balance—for	showing	the
customer's	balance.	An	integration	test	might	check	that	when	the	transfer	module	moves
1,000	dollars	from	a	customer's	account,	and	the	balance	module	correctly	reduces	the
customer ’s	balance	by	1000	dollars.	59						
									System	testing	tests	the	entire	system. 		There	are	many	different	types	of	tests	used	in
systems	testing:	graphical	user	interface	testing—which	tests	the	part	of	product	you	can	see;
usability	testing—which	tests	that	people	can	figure	out	how	to	use	the	product;	and	software
performance	testing—which	tests	to	see	how	the	product	performs	under	a	heavy	workload
such	as	a	large	number	of	users;	among	others.						
								Finally	the	last	phase	of	the	testing	cycle	is	acceptance	testing—which	checks	to	make
sure	the	software	meets	the	requirements	agreed	upon	by	the	project	stakeholders.	Acceptance
testing	is	not	done	programmatically—it	is	done	by	people	who	make	sure	the	the	product
requirements	laid	out	in	the	requirements	document	are	met.	The	rest	of	this	chapter	will
focus	on	unit	testing,	because	as	a	new	software	engineer	on	a	team,	you	will	be	responsible
for	writing	unit	tests—but	you	most	likely	will	not	be	responsible	for	integration,	systems	and
acceptance	testing.		

TDD

As	we	learned	in	the	previous	chapter,	TDD		stands	for	test	driven	development,	and	is	a
software	development	technique	that	helps	you	design	better	programs.	When	you	follow	test
driven	development,	you	write	your	unit	tests	before	you	write	your	program.	Following
TDD	forces	you	to	break	out	of	the	pattern	of	putting	writing	unit	tests	off	until	the	end	of
your	development	cycle,	and	then	deciding	not	to	write	them.	It	also	guarantees	you	will	have
unit	tests	throughout	your	development	cycle.	Lastly,	TDD	helps	you	to	design	better	software
by	forcing	you	to	think	about	the	design	requirements	of	your	program	by	writing	your	tests
first.

In	this	section	we	are	going	to	learn	to	write	unit	tests	by	creating	a	stack	 using	TDD
and	Python’s	unittest		testing	framework.	We	will	start	our	development	process	by	writing
unit	tests	that	will	fail	(but	would	work	if	our	stack	was	properly	designed),		and	then	writing
code	to	make	the	tests	pass.

To	better	visualize	the	tests	we	need	to	create,	wWe	will	start	by	defining	a	stack	that
doesn’t	do	anything	to	better	visualize	the	tests	we	need	to	create.	In	this	section	I	assume	you

remember	how	a	stack	works	(If	you	forget	how	a	stack	works,	please	revisit	the	chapter	Data
Structures	&	Algorithms).
	

import	unittest

class	Stack	 :
			 	def	__init__ 	(self):
							 	self	 .stack	=	[]

			 	def	push	 (self	,	 item):
							 	pass

			def	 pop	(self):
							 	pass

			def	 peak	(self):
							 	pass

			def	 is_empty	 (self):
							 	pass
>>>

We’ve	defined	a	 Stack	 	class,	however,	none	of	the	methods	in	our	class	actually	do	anything.
Before	we	define	the	methods	for	our	 Stack	 	class,	we	are	going	to	write	all	of	our	tests 	.
								

class	StackTests(unittest.TestCa 	 se):

			 	def	setUp(self):
							 	self	.stack	=	Stack()

			 	def	tearDown(self):
							 	del	self	.stack

			 	def	test_is_empty(self):
							 	self	.assertTrue(self	.stack.is_empty())

			 	def	test_push(self):
							 	self	.stack.push(100)
							 	self	.assertFalse(self	.stack.is_empty())

			 	def	test_peak(self):
							 	self	.stack.push('test')
							 	self	.assertEqual(self	 .stack.peak()	,	'test')

			 	def	test_pop(self):
							 	self	.stack.push(10.1)

							 	self	 .stack.pop()
							 	self	 .assertTrue(self	.stack.is_empty())

			 	def	test_pop_value(self):
							 	self	 .stack.push('test_value')
							value	=	self	 .stack.pop()
							 	self	 .assertEqual(value	 ,	'test_value')
>>>

When	you	write	unit	tests	with	the	unittest	 	framework,	you	start	by	defining	a	class	that
inherits	from	 unittest.TestCase	—		in	this	our	class	is	called	 StackTests	 .	The	unittest
	framework	uses	the	class	that	inherits	from	 unittest.TestCase	 	to	run	tests;	with	each	method
you	define	in	your	class—as	long	as	it	starts	with	 test 	—runs	as	an	isolated	test.	A	test	that
passes	will	not	raise	an	 AssertionError	 ,	and	a	test	that	fails	will.	If	you	run	our	program,	you
will	see	the	results	of	each	test	(they	all	will	fail	with	AssertionErrors).

	Here	is	a	more	detailed	explanation	of	the	testing	code	you	wrote.	The	first	two
methods	 setUp	 	and	tearDown	do	not	start	with	test	because	they	are	not	tests:	they	are	methods
inherited	from	 unittest.TestCase	 	used	to	help	set	up	our	tests.

def	setUp(self):
				self	 .stack	=	Stack()

def	tearDown(self):
				del	self	 .stack

setUp 		runs	before	each	test,	and	 tearDown	 	runs	after	each	test.	In	this	case	we	use	setUp
	to	create	a	new	 Stack		object	before	each	test,	and	use	 tearDown		to	delete	it	after	each	test.	We
do	this	in	order	to	make	sure	we	have	a	brand	new	 Stack	 	object	in	each	test,	s 	o	the	tests	don’t
interfere	with	each	other.		

In	the	first	test	we	define,	test_is_empty() 	,		using	the	assertion	method	assertTrue()
	which	takes	a	parameter	and	raises	an	AssertionError 		if	the	parameter	evaluates	to	False
	because	if	we	don’t	put	anything	in	our	stack,	it	should	be	empty.

def	test_is_empty(self):
				self	 .assertTrue(self	.stack.is_empty())

Our	next	test	is	 test_push()	 .	It	calls	push() 		on	our	stack	and	passes	in	100	 .		We	use	the
assertion	method	 assertFalse		and	pass	in	self.stack.is_empty() 	 	because	after	pushing
something	to	our	stack,	the	stack	should	no	longer	be	empty:	 self.stack.is_empty()	 	should	be
False 	.

def	test_push(self):
				self	 .stack.push(100)
				self	 .assertFalse(self	.stack.is_empty())

	In	our	next	test,	 test_peak()	,	we	push	 ‘test’		onto	the	 Stack	 	and	use	assertEqual()	 	to
check	that		self.stack.peek() 		returns	the	value	we	pushed	to	our	stack,	in	this	case
self.stack.peek()		and	‘test’	 	should	be	equal.

	 	def	 test_peak(self):
							 	self	 .stack.push('test')
							 	self	 .assertEqual(self	.stack.peak()	 ,	'test')

Our	next	test	is	 test_pop	().	We	push	 10.1 		to	our	stack,	call	 self.stack.pop()	 	and	use	the
assertion	method	assertTrue()	 	to	check	that	our	pop() 		method	successfully	removed	an	item
and	our	stack	is	now	empty.

	 	def	 test_pop(self):
							 	self	 .stack.push(10.1)
							 	self	 .stack.pop()
							 	self	 .assertTrue(self	.stack.is_empty())

Our	final	test,	 test_pop_value(),	 	pushes	the	string	 ‘test_value’	 	to	our	stack	and	uses	the
assertion	method	assertEqual() 		to	check	that	 pop()	 	returns	‘test_value’ 	.
								

def	 test_pop_value(self):
							 	self	 .stack.push('test_value')
							value	=	self	 .stack.pop()
							 	self	 .assertEqual(value	,	'test_value')

	Run	our	tests.	Y 	ou	will	be	notified	a 	ll	five	tests	failed 		by	raising	five	AssertionErrors
.	This	is	because	we	have	not	defined	any	of	the	methods	in	our	Stack	class.	Our	methods
don’t	do	anything	and	so	all	of	our	tests	fail.	One	of	the	advantages	of	TDD	is	that	writing
your	tests	first	helps	clarify	your	thinking.	We	now	know	exactly	how	we	need	to	define	each
method	in	our	Stack	 	class	in	order	to	pass	each	test.	Here	is	what	we	need	to	do:

class	 Stack:
			 	def	 __init__	 (self):
							 	self	 .stack	=	[]

			 	def	 push(self	,	item):
							 	self	 .stack.append(item)

			 	def	 pop(self):
							 	return	 self	.stack.pop()

			 	def	 peek(self):
							 	return	 self	.stack[-	 1]

			 	def	 is_empty(self):
							 	if	 len 	(self	 .stack)	>	0	:

												 return	False
								 return	True

								>>>
Now	that	we’ve	defined	the	methods	in	our	Stack 	,	when	you	run	our	tests	again,	the	tests	will
all	pass.	We’ve	tested	our	class,	our	methods	and	general	use	cases;	and	now	we	need	to	test
unexpected	use	cases,	bad	input	values,	and	boundary	conditions.	An	example	of	an
unexpected	use	case	is	calling	pop		on	an	empty	stack,	which	will	cause	an	error.	To	fix	this,
first	we	should	write	a	new	test.

class	StackTests 	(unittest.TestCase):

				 def	setUp	(self):
								 self	.stack	=	Stack()

				 def	tearDown	 (self):
								 del	self	.stack

				 def	test_empty_pop	(self):
								 with	self	.assertRaises(IndexError):
												 self	.stack.pop()

								
Our	new	test	 test_empty_pop	 	uses	the	assertion	method	self.assertRaises() 		with	the	 with
	statement	to	test	if	an	exception	is	raised.	The	code	inside	the	with	 	statement	is	expected	to
raise	the	exception	passed	to	assertRaises	.	If	the	exception	is	raised	the	test	passes;	if	the
exception	is	not	raised	an	AssertionError 		is	raised	and	the	test	fails.	Now	we	can	fix	our	stack
to	handle	empty	pops:

class	Stack	 :
				 def	__init__ 	(self):
								 self	.stack	=	[]

				 def	push	(self	,	item):
								 self	.stack.append(item)

				 def	pop	 (self):
								 if	not	self	.stack:
												 raise	IndexError	 ("Cannot	pop	from	empty	stack")
								 return	self	.stack.pop()

				 def	peek	(self):
								 return	self	.stack[- 	 1]

				 def	is_empty	 (self):
								 if	len 	(self	 .stack)	>	0	 :
												 return	False
								 return	True

								>>>

We	need	to	think	about	bad	input	values.	In	this	example,	there	are	no	bad	input	values
because	any	object	in	Python	can	be	added	to	a	list,	and	therefore	can	be	added	to	our	stack.
However,	you	always	want	to	take	the	time	to	at	least	think	about	any	input	values	that	could
break	your	program.	Finally,	we	should	think	about	boundary	cases:	the	“behavior	of	a
system	when	one	of	its	inputs	is	at	or	just	beyond	its	maximum	or	minimum	limits.”	58			 In
Python,	there	is	no	limit	to	how	many	objects	we	can	put	in	a	list,	therefore	the	size	of	our
stack	is	only	limited	by	the	amount	of	memory	the	computer	that	created	it	has.	However,
some	programming	languages	limit	the	number	of	objects	you	can	put	in	a	list,	and	if	that
were	the	case	in	Python,	we	would	have	to	write	a	test	for	that	condition.		

Writing	Good	Tests

									Good	tests	are	repeatable.	That	means	when	you	run	your	tests 	, 		they	should	work	in
any	environment—if	you	write	a	test	on	OS	X,	it	should	also	work	on	Windows	without
having	to	make	any	changes	to	to	the	test.	An	example	of	violating	this	would	be	including
hard	coded	directory	paths	in	your	test.	Windows	and	OS	X	use	different	slashes	for	directory
paths—so	your	test	in	a	Windows	environment	would	not	work	in	an	OS	X	environment.	This
means	the	test	is	not	repeatable,	and	needs	to	be	rewritten.	Tests	should	also	run	quickly.	Tests
need	to	run	often;	try	not	to	write	tests	that	take	a	long	time	to	run.	Finally	your	tests	should	be
orthogonal—one	test	should	not	affect	the	other.

Code	Coverage

									Code	coverage	is	the	the	total	number	of	lines	of	code	in	your	project	called	during
your	tests	divided	by	the	total	number	of	lines	of	code	in	your	project.	Code	coverage	does
not	measure	the	efficiency	of	your	tests,	but	is	useful	for	finding	untested	parts	of	your	code.
You	generally	want	to	have	code	coverage	above	80%.	If	your	code	coverage	is	low,	it	means
you	have	not	tested	enough	of	your	code.	The	professional	version	of	PyCharm	(the	one	that
costs	money)	is	integrated	with	a	tool	for	analyzing	code	coverage.	If	you	use	PyCharm’s	free
Community	Edition,	you	are	in	luck	because	the	tool	the	professional	version	is	integrated
with	is	called	coverage.py	and	is	free	to	use.	The	documentation	for	coverage.py	is	available
at:	https://coverage.readthedocs.io 	.				

Testing	Saves	Time

It’s	easy	to	get	lazy	and	skip	testing,	justifying	your	laziness	by	saying	you	don’t	have
time	to	write	tests.	Counterintuitively,	taking	the	time	to	write	tests	will	save	you	a	substantial
amount	of	time	in	the	long	run.	The	reason	is	because	if	you	don’t	write	tests,	you	will	end	up
testing	your	software	manually—	running	your	program	yourself	with	various	different
inputs	and	under	different	conditions		to	see	if	anything	breaks	as	opposed	to	testing	your
program	programmatically.	While	you	should	test	your	entire	program	by	testing	it	manually
and	looking	for	bugs,	you	don’t	want	to	solely	rely	on	this.	Spending	your	time	manually
testing	inputs	and	conditions	when	you	could	easily	automate	the	process	is	a	huge	waste	of
time.	Finally,	if	you	come	back	to	the	project	in	a	month,	you	won’t	be	able	to	remember	the
different	tests	you	were	manually	running.
											 Testing	is	an	important	part	of	programming.	Most	software	teams	have	at	least	one
person	dedicated	to	testing.	Getting	into	the	habit	of	following	TDD	will	improve	your	code
by	making	sure	you	always	write	tests	and	therefore	decrease	the	number	of	errors	in	your
code,	and	by	helping	you	to	think	carefully	about	how	you	design	your	programs.

Challenge

Write	unit	tests	for	the	Hangman	program	we	built	in	Part	I.
								

Whenever	you	are	following	programming	instructions,and	see	$,	it	means	whatever
follows	is	a	command	that	you	should	type	into	the	command	line	(no	need	to	type	the	dollar
sign).
									 Programming	languages	have	conventions	as	well.	Conventions	are	rules	generally
followed	by	the	community	using	the	language.

Chapter		#TK.	Best	Programming	Practices

“Always	code	as	if	the	guy	who	ends	up	maintaining	your	code	will	be	a	violent	psychopath
who	knows	where	you	live.”
-Martin	Golding

In	this	chapter	we	will	cover	a	few	general	programming	principles	that	will	help	you	write
production	-ready	code.	Many	of	these	principles	originated	in	the	excellent	book	“The
Pragmatic	Programmer”	by	Andy	Hunt	and	Dave	Thomas,	a	book	that	dramatically	improved
the	quality	of	my	code.

Write	Code	As	A	Last	Resort		

								Your	job	as	a	software	engineer	is	to	write	as	little	code	as	possible.	When	you	have	a
problem	you	need	to	solve,	your	first	thought	should	not	be	“How	can	I	solve	this?”	It	should
be,	“Has	someone	else	solved	this	problem	already	and	can	I	use	their	solution?”	If	you	are
trying	to	solve	a	common	problem,	chances	are	someone	else	has	already	solved	it.	Start	by
looking	online	for	a	solution.	Only	after	you’ve	determined	no	one	else	has	already	solved
the	problem	should	you	start	solving	it	yourself.

DRY

DRY	is	a	programming	principle	that	stands	for	Don’t	Repeat	Yourself.	Following	DRY
is	easy:	if	you	are	writing	code	and	find	yourself	repeating	the	same	code—stop.	Do	not
repeat	yourself.	If	you	find	that	you	are	copying	pieces	of	code,	pasting	them	somewhere	else
in	your	program,	and	making	small	changes	to	it	to	create	new	code—	stop.	Do	not	repeat
yourself.		We	will	illustrate	this	with	a	program	that	makes	changes	to	a	list	of	words.									

					def	capitalize_item	(word 	,	 word_list):
			 	for	index 	,	 item	in	 enumerate	(word_list):
							 	 if	item	==	word:
											word_list[index]	=	word_list[index].capitalize()

def	 change_letter	 (word	 ,	 word_list 	,	 old_letter	 ,	new_letter):
			 	for	index 	,	 item	in	 enumerate	(word_list):
							 	 if	item	==	word:
											word_list[index]	=	word_list[index].replace(old_letter 	,	 new_letter)

words	=	['Programming' 	,	 'is' 	,	 'fun']
upper('Programming' 	,	 words)
print	(words)
change_letter('fun'	 ,	 words	 ,	 'u'	 ,	'$')
print	(words)

									>>	['PROGRAMMING',	'is',	'fun']
								>>	['PROGRAMMING',	'is',	'f$n']

Both	functions	use	Python’s	built-in	enumerate	 	function,	which	takes	a	list	as	a	parameter,	and
allows	you	to	use	a	for 		loop	to	easily	capture	the	current	index	of	the	list,	as	well	as	the
current	item	in	the	list.	“Index”		refers	to	an	item’s	position	within	a	list.	Our	program	works
—but	if	you	look	closely	at	the	code—you	will	see	both	of	our	functions		look	for	a	word	in	a
list	to	replace	it	with	something	new.	Instead	of	having	code	to	search	for	a	word	in	both
functions,	we	should	create	one	function	that	returns	the	index	of	the	word	we	are	looking	for
(Python	has	a	built-in	function	index()		that	finds	the	index	of	a	string	in	a	list,	but	for	the	sake
of	this	example	we	are	not	using	it).	Here	is	how	we	should	refactor	our	code	to	avoid
repeating	ourselves:

def	 find_index	(word	 ,	word_list):
						for	 index	 ,	item	in	enumerate	 (word_list):
												if	 item	==	word:
																	 	return	 index

def	 upper	(word	 ,	word_list):
						index	=	find_index(word 	,	word_list)
						word_list[index]	=	word_list[index].upper()

def	 change_letter	(word	 ,	word_list	 ,	old_letter 	,	new_letter):
						index	=	find_index(word 	,	word_list)
					word_list[index]	=	word_list[index].replace(old_letter 	 ,	new_letter)

words	=	['Programming',	'is',	'fun']
upper('Programming',	words)
print(words)
change_letter('fun',	words,	'u',	'$')
print(words)

>>>
['PROGRAMMING',	'is',	'fun']
['PROGRAMMING',	'is',	'f$n']
>>>

By	creating	a	new	function	that	returns	the	index	of	a	word,	we	are	no	longer	r	 epeating	code.
If	we	decide	to	change	the	way	we	search	for	an	index,	we	only	need	to	change	our	find_index
function,	instead	of	changing	the	code	to	find	an	index	in	multiple	functions.										

Orthogonality 		

								Orthogonality	is	another	important	principle	popularized	by	the	book	the	Pragmatic
Programmer	 .	The	authors	Andy	Hunt	and	Dave	Thomas	explain,	“In	computing,	the	term	has
come	to	signify	a	kind	of	independence	or	decoupling.	Two	or	more	things	are	orthogonal	if
changes	in	one	do	not	affect	any	of	the	others.	In	a	well-designed	system,	the	database	code
will	be	orthogonal	to	the	user	interface:	you	can	change	the	interface	without	affecting	the
database,	and	swap	databases	without	changing	the	interface.”	 16		Put	this	in	practice	by
remembering	that	as	much	as	possible,	“a	should	not	affect	b”.	If	you	have	two	modules—
module	a	and	module	b—	module	a	should	not	make	changes	to	things	in	module	b,	and	vice
versa.	If	you	design	a	system	where	a	affects	b;	which	affects	c;	which	affects	d;	things
quickly	spiral	out	of	control	and	the	system	becomes	unmanageable.

Every	Piece	Of	Data	Should	Have	One	Representation

									This	is	best	explained	with	an	example.	Say	you	are	building	a	project,	and	in	that
project	you	are	using	Twitter ’s	API	(application	programming	interface)—	a	program	that
gives	you	access	to	data	from	a	website	like	Twitter.	Twitter	provides	a	module	you	can
download	on	pip	to	query	their	API	for	data.	In	order	to	use	Twitter ’s	API,	you	have	to
register	for	an	API	key—	a	string	you	send	to	Twitter	when	you	use	their	API	so	they	can
verify	it	is	you.

Once	you’ve	obtained	your	API	key	from	Twitter,	you	start	using	the	API	in	two
functions.	The	first	function	gets	data	from	celebrities,	and	the	second	function	gets	data	from
non	celebrities.	Both	functions	need	the	API	key	in	order	to	use	Twitter ’s	API.	Here	is	an
example	of	what	this	could	look	like:

#	WARNING	this	code	does	not	actually	work

import	 twitter_api
import	celebrity_list
import	regular_list

def	celebrity_data 	 ():
			api_key	=	'11330000aazzz22'
				return	 twitter_api.get_data(api_key	 ,	 celebrity_list)

def	 people_data	 ():
			api_key	=	 '11330000aazzz22'
				 return	twitter_api.get_data(api_key 	,	 regular_list)

This	is	a	made	up	example 	 		that	won’t	actually	work,	but	the	gist	is	we	are	using	a	made	up
module	called	twitter_api 		to	call	the	function	get_data	with	our	api	key	and	a	list	of	people.	A
few	months	go	by	and	you	end	up	getting	a	new	API	key	from	Twitter.	You	go	to	the	celebrity
function	and	change	the	variable	api_key 		to	the	new	API	key.	It’s	been	a	long	time	since	you
wrote	this	code,	and	you	completely	forget	the	API	key	is	used	in	the	second	function.	You	put
your	code	into	production	and	accidently	leaving	the	old	API	key	in	the	second	function;
everything	breaks,	and	you	get	fired.	You	could've	avoided	your	tragic	fate	by	following	the
rule	that	every	piece	of	data	should	have	one	representation.	The	correct	way	to	handle	this
situation	is	to	make	a	Python	file	with	a	variable	called	api_key.	This	is	called	a	configuration
file.	Your	program	should	import	api_key 		from	this	file,	and	both	functions	should	use	it.
This	way,	the	piece	of	data	(the	API	key)	is	only	represented	once.	That	way,	no	matter	how
many	places	the	API	key	is	used,	if	you	have	to	change	the	API	key,	you	only	need	to	change	it
in	one	place,	the	configuration	file,	and	the	previously	discussed	disaster	will	be	av	 erted.	 	

Functions	Should	Do	One	Thing

Every	function	you	write	should	do	one	thing,	and	one	thing	only.	If	you	find	your
functions	getting	too	long,	ask	yourself	if	the	function	you	are	writing	is	accomplishing	more
than	one	task.	Limiting	functions	to	accomplishing	one	task	offers	several	advantages:	your
code	will	be	easier	to	read	because	the	name	of	your	function	will	describe	exactly	what	it
does;	and	if	your	code	isn’t	working	it	will	be	easier	to	debug	because	every	function	is
responsible	for	a	specific	task,	so	you	can	quickly	isolate	and	diagnose	the	function	that	isn’t
working.	As	Ryan	Singer	says,	“So	much	complexity	in	software	comes	from	trying	to	make
one	thing	do	two	things.”

Use	Dummy	Data

								While	I	was	at	eBay	I	was	given	an	assignment	to	fix	an	error	in	our	code.	The	program	I
was	debugging	processed	a	large	text	file	and	took	five	minutes	to	run.	I	would	make	a
change	to	the	program	to	try	to	get	some	information	about	what	was	wrong,	run	the
program,	and	wait	five	minutes	for	the	results.	I	was	not	making	any	progress,	because	I	had
to	wait	five	minutes	every	time	I	made	a	change,	and	that	quickly	added	up.	I	finally	took	the
time	to	substitute	the	large	text	file	with	dummy	data—fake	data	my	program	could	use	but
would	only	take	a	few	seconds	to	process.	This	way	I	could	still	look	for	the	bug	in	the

program,	but	much	faster.		Taking	the	time	to	set	up	dummy	data—even	if	it	takes	you	twenty
minutes—w	 ill	quickly	pay	off		by	shortening	your	debug	cycle.		

If	It’s	Taking	Too	Long	You	Are	Probably	Making	a	Mistake

								If	you	are	not	working	on	something	obviously	complex	like	working	with	a	large
amounts	of	data,	and	your	program	is	taking	a	very	long	time	to	load,	assume	you	are	doing
something	wron 	g.

Logging 		

Logging	is	the	practice	of	recording	data	when	your	software	runs.	You	can	use
logging	to	help	debug	your	program,	and	to	gain	additional	insight	into	what	what	happened
when	your	program	ran.	Python	comes	with	a	great	logging	module	that	lets	you	log	either	to
the	console	or	a	file.

When	something	goes	wrong	in	your	program,	you	don’t	want	it	to	go	unnoticed—you
should	log	information	about	what	happened	so	you	can	review	it	later.		Logging	is	also
useful	for	collecting	and	analyzing	data.	For	example,	you	might	setup	a	web	server	set	to	log
data—including	the	date	and	time—every	time	it	receives	a	request.	You	could	store	all	of
your	logs	in	a	database,	and	create	another	program	to	analyze	that	data	and	create	a	graph
displaying	the	times	of	day	your	website	is	visited	the	most.

	Good	programmers	use	logging,	summarized	nicely	by	Henrike	Warne	when	he	said
“One	of	the	differences	between	a	great	programmer	and	a	bad	programmer	is	that	a	great
programmer	adds	logging	and	tools	that	make	it	easy	to	debug	the	program	when	things	fail.”
You	can	learn	how	to	use	Python’s	logging	module	at
https://docs.python.org/3/howto/logging.html.

Do	Things	The	Best	Way	The	First	Time

								If	you	are	in	a	situation	where	you	are	programming	and	you	think,	“I	know	there	is	a
better	way	of	doing	this,	but	I’m	in	the	middle	of	coding	and	don’t	want	to	stop	and	figure	out
how	to	do	it	better.”	Stop.	Do	it	better.

Follow	Conventions

Taking	the	time	to	learn	the	conventions	of	the	new	programming	language	you	are
trying	to	learn	will	help	you	read	code	written	in	the	new	language	faster.	Pep	8	is	a	set	of
guidelines	for	writing	Python	code,	and	you	should	read	it.	It’s	available	at:
https://www.python.org/dev/peps/pep-0008	.
Use	a	Powerful	IDE

An	IDE,	or	Interactive	Development	Environment,	is	a	program	you	use	to	write	your
code.	Thus	far,	we’ve	been	using	IDLE,	the	IDE	that	comes	with	Python.	However,	IDLE	is
just	one	option	of	many	different	IDEs	available,	and	I	do	not	recommend	using	it	long	term,
because	it	is	not	very	powerful	compared	to	other	IDEs.	For	example,	if	you	open	up	a	Python
project	in	a	better	IDE,	there	will	be	a	different	tabs	for	each	Python	file.	In	IDLE,	you	have	to
open	a	new	window	for	each	file,	which	in	big	projects	this	quickly	gets	tedious	and	it’s
difficult	to	navigate	back	and	forth	between	files.

I	use	an	IDE	called	PyCharm	created	by	JetBrains.	They	offer	a	free	version	as	well	as	a
professional	version.	Either	one	will	work.	Sublime	is	another	popular	IDE.	In	this	chapter	I
will	be	going	over	some	of	the	features	I	use	in	JetBrains	IDE	that	increases	my	productivity.
Because	any	IDE		is	liable	to	change	its	commands	at	any	time,	there	are	no	examples	in	this
chapter.	Instead	I		describe	some	of	the	features	PyCharm	has,	to	give	you	an	idea	of	what	an
IDE	is	capable	of,	so	you	won’t	waste	time	doing	things	manually	that	you	can	quickly	do
with	an	IDE.		I	put	a	tutorial	at	theselftaughtprogrammer.io/ide 		so	I	can	keep	it	up	to	date.
									 If	you	see	a	variable,	function	or	object	being	used	and	you	would	like	to	see	its
definition,	PyCharm	has	a	shortcut	to	jump	to	the	the	code	that	defined	it	(even	if	it	is	in	a
different	file).	There	is	also	a	shortcut	to	jump	back	to	the	page	you	started	from.
								PyCharm	has	a	feature	that	saves	local	history	which	has	dramatically	improved	my
productivity.	PyCharm	will	automatically	save	a	new	version	of	your	project	every	time	it
changes.	This	means	you	can	use	PyCharm	as	local	version	control	system	but	without	having
to	push	to	a	repository.	You	don’t	have	to	do	anything,	it	happens	automatically.	Before	I	knew
about	this	feature,	I	would	often	solve	a	problem,	change	the	solution,	and	then	decide	I
wanted	to	go	back	to	the	original	solution.	If	I	didn’t	push	the	original	solution	to	GitHub,	the
original	solution	was	long	gone,	and	I	would	have	to	rewrite	it	again.	With	this	feature,	you
can	simply	jump	back	in	time	10	minutes,	and	reload	your	project	exactly	how	it	was.	If	you
change	your	mind	again,	you	can	jump	back	and	forth	between	the	different	solutions	as	many
times	as	you	want.
								In	your	workflow	you	are	probably	copying	and	pasting	code	a	lot,	moving	it	from	one
location	on	a	page	to	another.	In	PyCharm,	instead	of	copying	and	pasting,	you	can	move
code	up	and	down	on	the	page	you	are	on.

PyCharm	is	integrated	with	popular	version	control	systems	like	Git	and	SVN.	Instead
of	having	to	go	to	the	command	line,	you	can	use	Git	from	Pycharm.	The	fewer	trips	you
have	to	make	back	and	forth	between	your	IDE	and	the	command	line,	the	more	productive
you	will	be.
PyCharm	also	has	a	built	in	command	line	and	Python	Shell.

								In	Pycharms	Pro	version,	there	is		a	built	in	tool	for	connecting	to		relational	databases,
such	as	MySQL.	If	you	are	using	a	relational	database,	this	is	a	huge	time	saver.	Remembering
SQL	syntax	is	difficult,	having	autocomplete	for	your	SQL	is	a	game	changer.
								PyCharm	has	a	powerful	debugger	 	that	lets	you	pause	the	execution	of	a	program	at
certain	points,	check	the	status	of	different	variables,	and	walk	through	a	program	step	by
step.

Code	Reviews

								A	code	review	is	when	someone	reads	your	code	and	gives	you	feedback.	You	should	do
as	many	code	reviews	as	you	can—especially	as	a	self-taught	programmer	getting	started.
Even	if	you	follow	all	of	the	best	practices	laid	out	in	this	chapter,	you	are	still	doing	things
wrong—you	need	someone	more	experienced	than	you	to	read	over	your	code	and	tell	you
the	mistakes	you	are	making	so	you	can	fix	them.
								Code	Review	on	Stack	Exchange	is	a	website	where	you	can	get	a	code	review	from	a
community	of	programmers.	Anyone	can	go	on	Code	Review	and	post	their	code.	Other
members	of	the	Stack	Exchange	community	review	your	code	and	give	you	feedback	about
what	you	did	well	and	offer	helpful	suggestions	on	how	you	can	improve.

Security

Security	is	an	easy	subject	for	the	self-taught	programmer	to	ignore.	You	probably	won’t	be
asked	about	security	in	your	interview,	and	security	is	not	important	for	the	programs	you
write	while	you	are	learning	to	program.	However,	once	you	get	your	first	job	programming,
you	are	directly	responsible	for	the	security	of	the	code	you	write.	The	last	thing	you	want	is
for	your	company's	database	to	get	hacked	because	you	made	a	mistake.	Better	to	learn	some
practical	tips	to	keep	your	code	safe	now.
								In	the	chapter	The	Command	Line	we	learned	to	use	sudo	to	issue	a	command	as	the	root
user.	I	mentioned	you	should	never	run	a	program	as	sudo.	You	should	also	disable	root
logins	if	you	are	managing	the	system.	There	are	several	reasons	you	should	do	this:	every
hacker	is	aware	there	is	a	root	account	and	so	it	is	an	easy	target	when	attacking	a	system
(hence	it	should	be	disabled),	if	you	are	logged	in	as	root	you	can	irreversibly	damage	the
system	you	are	running,	and	if	you	run	a	program	as	root	and	it	gets	taken	over	by	a	hacker,
the	compromised	program	now	has	root	access.		

There	are	several	kinds	of	malicious	attacks	that	rely	on	exploiting	programs	that
accept	user	input,	so	you	should	also	assume	all	user	input	is	malicious	and	program
accordingly.	An	SQL	injection	is	a	type	of	attack	that	occurs	when	a	user	submits	input	to	a

program	and	adds	SQL	to	it,	allowing	them	to	execute	SQL	in	your	database.For	instance,	you
might	have	a	car	website,	and	on	that	website	you	want	to	return	details	about	a	specific	car	a
user	enters.	You	expect	the	user	to	provide	you	with	the	name	of	a	car,	such	as	“Nissan	Leaf”.
	Once	you	receive	the	name	of	the	car	from	the	user,	you	write	more	code	to	query	a	MySQL
table	called	cars	to	display	details	about	the	car.	You	use	the	following	query:

								SELECT*	FROM	car	WHERE	name	=	query_data;

The	variable	query_data	represents	the	data	you	collected	from	the	user.	If	the	user	enters
something	like	“Nissan	Leaf”	like	you	expected,	this	works	fine.	The	problem	is	the	user	can
enter	anything	they	want.	A	malicious	user	could	enter	something	like	this	into	the	website:

								“Ferrari”;	DROP	TABLE	cars;

This	would	cause	your	program	to	query	MYSQL	with	the	following,	valid	SQL:

								SELECT*	FROM	car	WHERE	name	=	“Ferrari”;	DROP	TABLE	cars

The	query	would	get	all	of	the	data	for	a	car	named	Ferrari,	then	it	would	delete	your	database
table—wiping	out	all	of	your	data.	To	combat	this,	you	assume	all	user	input	is	malicious,	and
instead	of	writing	raw	SQL—you	use	an	ORM	like	SQLAlchemy	or	another	library	that
protects	against	SQL	injections.	You	don’t	want	to	write	a	solution	to	this	problem	yourself
because	you	could	too	easily	make	a	mistake,	which	someone	could	exploit.		

									 A	final		strategy	for	keeping	your	software	secure	is	to	minimize	your	attack	surface
—the	different	areas	of	your	program	where	attackers	could	extract	data	or	attack	your
system	in	some	way.	By	making	your	attack	area	as	small	as	possible,	you	can	reduce	the
likelihood	of	vulnerabilities	in	your	program.	Here	are	some	strategies	for	minimizing	your
attack	surface:	avoid	storing	confidential	data	if	you	don’t	have	to,	give	users	the	lowest	level
of	access	you	can,	use	as	few	third	party	libraries	as	possible	(the	less	code	the	less	amount	of
possible	exploits),	and	get	rid	of	features	that	are	no	longer	being	used	(less	code	less
exploits).		

Avoiding	logging	in	as	the	root	user	on	your	system,	not	trusting	user	input	and
minimizing	your	attack	surface	are	important	steps	to	making	sure	your	programs	are	secure.
However,	these	are	just	starting	points.	You	should	always	take	time	to	try	to	think	like	a
hacker.	How	would	a	hacker	try	to	exploit	your	code?	This	can	help	you	find	vulnerabilities
you	otherwise	would’ve	overlooked.	There	is	a	lot	more	to	learn	about	security	than	we	can
cover	in	this	book,	so	make	an	effort	to	always	be	thinking	and	learning	about	security.	Bruce
Schneier	said	it	best—“Security	is	a	state	of	mind”.

Challenge		

Review	a	program	you’ve	written	and	see	if	you	followed	the	programming	practices
outlined	in	this	chapter.

Chapter	#TK.	Bringing	It	All	Together

“I	don't	care	if	it	works	on	your	machine!	We	are	not	shipping	your	machine!”
—	Vidiu	Platon

Congratulations	on	making	it	to	the	final	coding	exercise	of	this	book.	In	this	chapter	we	are
going	to	create	a	program	that	scrapes	a	lyrics	page	on	lyrics.wikia.com	and	creates	a	word
cloud	with	the	lyrics.	If	you’ve	never	seen	a	word	cloud,	it	is	an	image	derived	from	a	piece
of	text	in	which	the	size	of	each	word	corresponds	to	how	many	times	it	appeared	in	the	text.
[picture	of	a	word	cloud]
We	will	develop	our	program	using	the	Waterfall	model 		and	test	driven	development.

Word	Cloud	Lyrics

								We	begin	our	software	development	process	in	the	Planning	and	Requirements	Analysis
phase.	First,	we	define	the	problem	we	want	to	solve:	our	inability	to	scrape	a	song	lyrics
website	and	turn	the	lyrics	into	a	word	cloud.	We	never	want	to	write	code	unless	we	have	to,
so	the	first	thing	we	do	is	check	if	someone	has	already	solved	this	problem.	Some	Google
searching	reveals	this	problem	has	been	solved,	and	the	code	is	available	on	GitHub.
Normally	we	would	use	the	available	solution	if	it	meets	our	requirements,	and	the	software
development	process	would	end,	but	for	the	sake	of	learning	we	can	forget	we	saw	the
solution,	and	conclude	no	one	has	solved	this	problem.

Next	we	enter		the	Defining	Requirements	phase,	where	we	go	over	our	project’s
requirements,	and	the	resources	we	will	need	to	complete	it.	Our	project	requires	two	main
pieces	of	functionality:	the	ability	to	scrape	data	from	a	website,	and	the	ability	to	create	a
word	cloud.	We’ve	already	scraped	data	from	Google	News,	so	we	know	we	have	the	tools
and	expertise	to	scrape	song	lyrics	from	a	website.	What	we	don’t	know	is	how	to	build	a
word	cloud.	Building	a	nice	looking	word	cloud	is	not	easy,	so	if	someone	has	not	already
solved	this	problem	for	us,	it	is	going	to	significantly	increase	the	time	needed	to	finish	this
project.	Luckily,	a	Google	search	reveals	there	is	a	Python	module	called	word_cloud		that
lets	you	easily	create	beautiful	word	clouds,	so	we	can	conclude	we	should	be	able	to
complete	this	project	in	a	reasonable	amount	of	time.	We	also	have	to	define	the	requirements
for	our	project—we	need	to	be	able	to	pass	our	program	a	url	that	has	song	lyrics	from
lyrics.wikia.com,	and	our	program	needs	to	generate	a	word	cloud.	We	finish	this	phase	by
writing	our	requirements	down	in	a	requirements.txt	document.

We	are	now	in	the	third	phase	of	the	Waterfall	Model—System	Design—	where	we
decide	how	our	system	will	be	architected.	Our	program	will	consist	of	two	functions—one	to
get	the	lyrics	from	the	website,	and	the	other	to	create	the	word	cloud,	which	will	also	be	the
main	function	we	use	to	run	our	program.

After	designing	our	system	,	we	are	ready	to	enter	the	Implementation	and	Deployment
phase	and	start	to	code.	Since	we	are	following	Test	Driven	Development,	we	will	start	by
writing	our	tests.	We	know	our	program	needs	to	do	two	things:	get	lyrics	from
lyrics.wikia.com,	and	create	a	wordcloud;	so	we	will	start	by	writing	a	test	for	each	of	these
pieces	of	functionality.

import	unittest
import	os

def	get_lyrics 	():
				pass

def	create_wordcloud	 (wiki_url):
				pass

class	TestBIAT 	(unittest.TestCase):
				def	 test_lyrics 	(self):
								 """Test	that	a	string	gets	return	from	get_lyrics()"""
								 self	 .assertIsInstance(get_lyrics()	 ,	str)

				def	 test_wordcloud_creation	 (self):
								 """Test	that	a	new	file	is	created	when	create_wordcloud()	is

	called"""
								 filecount_before	=	 len	 (os.listdir())
							create_wordcloud('	http://lyrics.wikia.com/wiki/The_Beatles:Lucy_In_The_S

					ky_With_Diamonds')
								 self	 .assertEqual(filecount_before	+	1 	 ,	 len	 (os.listdir()))

Our	first	test	checks	that	get_lyrics() 		function	returns	a	string	because	we	want	to	scrape	the
lyrics	from	the	site	and	return	them	as	a	string	for	our	other	function	to	use.	Our	second	test
checks	that	test_wordcloud_creation() 		creates	a	new	file.When	we	create	a	wordcloud	we	are
going	to	save	it	as	a	file	in	the	folder	where	we	ran	our	program,	which	is	why	we	test	to
make	sure	create_wordcloud()		creates	a	new	file	in	the	current	directory	when	it’s	called	with
the	url	of	a	lyrics.wikia.com	lyrics	page.	We	check	that	a	new	file	is	created	using	the	os
	module—a	built-in	Python	library	that	has	different	functionality	for	interacting	with	your
operating	system.	os.list.dir()		returns	a	list	of	all	the	files	in	the	current	directory.	In	our
assertion	in	test_wordcloud_creation()	 ,	we	check	the	number	of	files	in	the	current	directory
before	we	call	create_wordcloud()	 	+	1	is	the	same	as	the	number	of	files	after
create_wordcloud()	 	was	called.	This	is	because	after	we	call	create_wordcloud()	 ,	there
should	be	the	same	number	of	files	as	there	were,	only	one	more	(the	new	file	that	was
created).	When	we	run	these	tests,	they	both	should	fail	with	an	AssertionError 	 .		Now	all	we
have	to	do	is	write	the	code	to	make	them	pass.	First,	we	need	to	install	the	libraries	we	are
going	to	use	with	pip.	The	first	two	are	requirements	for	the	wordcloud	 	library.

									$	pip3	install	numpy
$	pip3	install	pillow
$	pip3	install	wordcloud

You	should	already	have	Beautiful	Soup	installed	from	when	we	built	our	first	scraper,	but	if
not:

$	pip3	install	BeautifulSoup4

We	start	our	program	by	importing	the	libraries	we	installed:

from	wordcloud	 import	WordCloud
from	bs4	 import	BeautifulSoup
import	requests
from	os	 import	path

Now	we	can	write	a	function	to	scrape	song	lyrics:

def	get_lyrics 	(wiki_url 	,	 tag	 ,	tag_name):
				"""	Takes	a	url	for	a	lyrics	page	of	lyrics.wikia.com,	a	tag	and	a	tag	name	searches	for	that	tag
			in	the	urls	HTML	that	has	the	tag_name	passed	in.	Returns	the	song	lyrics	found.
				:param 	 	wiki_url:	string	lyrics.wikia	lyrics	url	e.g.	http://lyrics.wikia.com/wiki/The_Beatles:Girl.
				:param 	 	tag:	string	HTML	tag	to	look	for	lyrics	in	e.g.	"div"
				:param 	 	tag_name:	string	name	of	HTML	tag	to	look	for	lyrics	in	e.g.	lyricbox
				:return 	:	string	song	lyrics
			"""
				response	=	requests.get(wiki_url)
			soup	=	BeautifulSoup(response.text	 ,	 'html.parser')
				if	 soup.find_all(tag	 ,	tag_name):
							 	return	 soup[0].text

Our	get_lyrics()	 	function	should	look	familiar.	It	is	similar	to	our	Google	News
scraper:	we	get	the	HTML	from	the	lyrics	website		and	pass	it	into	a	BeautifulSoup	object;
then	we	pass	the	parameter	tag	and	tag_name	into	soup.find_all()	 	which	looks	for	an	HTML
tag	with	the	tag	 	and	tag_name		we	passed	in.	We	return	the	result—	the	song	lyrics	(if	they
were	found).	We	pass	tag	 	and	tag_name		into	our	function	instead	of	passing	it	into
soup.find_all()	 	directly	because	we	are	getting	data	from	a	live	website,	and	the	tag	we	are
looking	for	is	likely	to	change,	so	we	don’t	want	to	hardcode	that	data	into	our	function,
isntead	we	pass	it	in	so	the	caller	of	the	function	can	decide	the	correct	tag 		and	tag_name		to
pass	in.	At	the	time	of	this	writing,	the	song	lyrics	are	held	in	the	HTML	tag	<div
class=“lyricbox”>	</div>.	If	the	HTML	tag	ever	changes,	I	will	update	it	on	GitHub,	so	watch
out	for	that	if	this	program	stops	working.	Here	is	how	we	would	call	our	current	function:

get_lyrics('http://lyrics.wikia.com/wiki/The_Beatles:Lucy_In_The_Sky_With_Diamonds' 	,	 'div'	 ,
	'lyricbox')

Now	we	can	code	a	function	to	create	our	word	cloud:		

def	 create_wordcloud	(wiki_url 	,	 file_name	 ,	tag	 ,	 tag_name):
				 """	Takes	a	url	for	a	lyrics	page	of	lyrics.wikia.com	and	creates	a
			wordcloud	from	the	lyrics.
				 :param	 	wiki_url:	string	lyrics.wikia	lyrics	url	e.g.
			http://lyrics.wikia.com/wiki/The_Beatles:Girl.
			"""
				 lyrics	=	get_lyrics(wiki_url	 ,	 tag	,	 tag_name)
			wordcloud	=	WordCloud().generate(lyrics)
			image	=	wordcloud.to_image()
			image.show()
			image.save(path.dirname(__file__)	+	 '/wordcloud.jpg')

create_wordcloud('	 http://lyrics.wikia.com/wiki/The_Beatles:Lucy_In_The_Sky_With_Diamonds	 ',	‘wordcloud.jpg’,
‘div’,	‘lyricbox’)

								We	start	by	getting	the	lyrics	from	the	 wiki_url		we	passed	in	by	calling	our	get_lyrics()
function	and	passing	it	the	wiki_url	 .	From	hereonout,	the	T	 he	WordCloud 		module	does	all
the	hard	work	for	us.	We	create	a	 WordCloud	 	object	and	pass	it	the	lyrics.	Now	we	can	use
the	methods	the	WordCloud 		object	has	to	create	our	wordcloud.	The	trick	to	knowing	what
methods	exist	and	figuring	out	how	to	use	them	is	to	read	the	 Wordcloud		module’s
documentation,	available	at:	 https://github.com/amueller/word_cloud	.

	First	we	call	to_image()	 	on	our	WordCloud 		object,	and	then	call	 show()	 	on	the	result
to	create	our	word	cloud.	This	creates	a	word	cloud	that	will	pop	up	on	our	desktop,	but	we
also	want	to	save	the	word	cloud	as	a	file,	so	we	call	save() 	—which	takes	a	path	to	where	we
should	save	the	file	as	a	parameter,	and	saves	the	file	there;	so	if	we	want	to	name	our	file
“my_file.txt”	and	save	it	to	our	desktop,	we	would	pass	in	something	like
“/users/desktop/my_file.txt”.	In	this	case,	we	want	to	save	our	file	in	the	folder	where	our
program	is	running,	so	we	pass	in	 path.dirname(__file__)	 	(path	 	is	a	function	from	the	os
	module	which	returns	the	path	where	our	program	is	running),	and	concatenate	that	with	the
file_name	 	passed	to	to	create_wordcloud() 	as	a	parameter—	resulting	in	something	like
“users/program/word_cloud.jpg”	(which	is	where	our	word	cloud	will	be	saved).	That’s	all
there	is	too	it,	our	function	now	creates	a	beautiful	wordcloud	based	on	the	song	lyrics	from
the	url	we	pass	in.

When	you	run	the	program,	it	should	create	a	word	cloud	that	pops	up	on	your	desktop
(if	not	check	the	version	posted	on	GitHub	because	the	tags	may	have	changed),	save	the	file
to	the	folder	where	the	program	is	running,	and	when	you	run	our	tests,	they	should	all	pass.
Here	is	our	finished	code:

from	 wordcloud	import	WordCloud
from	 bs4	import	BeautifulSoup
import	requests
from	 os	import	path

def	 get_lyrics	 (wiki_url	 ,	tag	 ,	 tag_name):

				 """	Takes	a	url	for	a	lyrics	page	of	lyrics.wikia.com,	a	tag	and	a
			tag	name	searches	for	that	tag
			in	the	urls	HTML	that	has	the	tag_name	passed	in.	Returns	the	song		
			lyrics	found.
				 :param 		wiki_url:	string	lyrics.wikia	lyrics	url	e.g.
			http://lyrics.wikia.com/wiki/The_Beatles:Girl.
				 :param 		tag:	string	HTML	tag	to	look	for	lyrics	in	e.g.	"div"
				 :param 		tag_name:	string	name	of	HTML	tag	to	look	for	lyrics	in	e.g.
			lyricbox
				 :return	 :	string	song	lyrics
			"""
				 response	=	requests.get(wiki_url)
			soup	=	BeautifulSoup(response.text 	,	 'html.parser')
				 if	soup.find_all(tag	 ,	 tag_name):
							 	return	 soup[0].text

def	 create_wordcloud	(wiki_url 	,	 file_name	 ,	 tag	 ,	 tag_name):
				 """	Takes	a	url	for	a	lyrics	page	of	lyrics.wikia.com	and	creates	a
			wordcloud	from	the	lyrics.
				 :param 		wiki_url:	string	lyrics.wikia	lyrics	url	e.g.
			http://lyrics.wikia.com/wiki/The_Beatles:Girl.
			"""
				 lyrics	=	get_lyrics(wiki_url 	,	 tag	,	 tag_name)
			wordcloud	=	WordCloud().generate(lyrics)
			image	=	wordcloud.to_image()
			image.show()
			image.save(path.dirname(__file__)	+	 '/wordcloud.jpg')

create_wordcloud('http://lyrics.wikia.com/wiki/The_Beatles:Lucy_In_The_Sky_With_Diamonds' 	 ,	 'word_cloud.jpg'	,
'div' 	,
																 'lyricbox')

								Now	that	we’ve	written	our	program,	the	next	phase	is	System	Testing.	We’ve	already
written	unit	tests	using	Test	Driven	Development,	but	we	still	need	to	write	integration	tests
and	system	tests,	and	have	people	test	the	program	as	users.	In	this	case,	we	are	creating	a
product	for	other	programmers	to	use,	so	we	should	get	some	programmers	to	try	out	our
program,	and	see	if	they	are	able	to	easily	use	it.	We	won’t	write	anymore	tests	in	this
example,	but	try	to	think	about	how	you	would	approach	this.		
								The	final	step	in	our	development	process	is	Implementation	and	Deployment.	Since	we
are	building	a	product	for	other	programmers,	putting	our	program	into	production	means
uploading	it	to	GitHub	and	PyPi.	Once	we	do	that,	it	is	available	for	other	programmers	to
use,	and	it	is	up	to	us	to	continuously	check	in	on	the	code	and	provide	maintenance	for	the
code	if	anything	breaks.	If	you	are	interested	in	learning	how	to	upload	your	code	to	PyPi	so

it	is	available	on	pip,	follow	the	instructions	here:	http://peterdowns.com/posts/first-time-
with-pypi.html.

Practice

Exercises

0.	Find	a	project	on	GitHub,	read	through	it	and	think	about	the	quality	of	the	code.

Read

0.	http://googletesting.blogspot.com/2016/06/the-inquiry-method-for-test-planning.html

Part	VI	Land	a	Job

Chapter	X.			Your	First	Programming	Job

“Beware	of	‘the	real	world.’	A	speaker ’s	appeal	to	it	is	always	an	invitation	not	to	challenge
his	tacit	assumptions.”
—	Edsger	W.	Dijkstra

									Welcome	to	Part	VI,	the	final	part	of	this	book,	dedicated	to	helping	you	with	your
career	as	a	software	engineer.	Getting	your	first	programming	job	requires	extra	effort,	but	if
you	follow	the	advice	in	this	chapter,	you	should	have	no	problem.	Luckily,	once	you	land
your	first	programming	job	and	get	some	experience,	when	it	comes	time	to	look	for	your
next	job,	recruiters	will	start	reaching	out	to	you	 .		

Choose	a	Path

One	thing	to	keep	in	mind	is	that	programming	jobs	are	lumped	into	specific	domains:
each	with	their	own	set	of	technologies	and	skill	sets.	If	you	look	at	programming	job	ads,	the
headline	will	be	something	like	“Python	Backend	Programmer	Wanted.”	This	means	they	are
looking	for	someone	that	programs	the	backend	of	a	website,	and	is	already	familiar	with
Python.	If	you	go	to	the	job	description,	there	will	be	a	list	of	technologies	the	ideal	candidate
will	be	familiar	with,	along	with	skills	they	should	have.	While	it’s	fine	to	be	a	generalist	(a
programmer	that	dabbles	in	everything)	while	you	are	learning	to	program,	and	it	is	possible
to	get	a	job	as	a	generalist	programmer,		you	probably	should	find	a	specific	area	of
programming	you	enjoy	and	start	becoming	an	expert	in	it.	This	will	make	getting	a	job
significantly	easier.

								Web	and	mobile	development	are	two	of	the	most	popular	programming	paths.
Application	development	is	often	split	into	two	parts—the	front	end	and	the	back	end.	The
front	end	of	an	application	is	the	part	that	you	can	see—like	the	interface	of	a	web	app.	The
back	end	is	what	you	can’t	see—the	part	that	provides	the	front	end	with	data.	Some
companies	will	have	a	team	dedicated	to	the	front	end,	and	a	team	dedicated	to	the	back	end.
Other	companies	only	hire	full	stack	developers—programmers	that	can	work	on	both	the
front	and	back	end.	However,	this	only	applies	to	application	development	(building	websites
or	apps).	There	are	all	kinds	of	other	programming	areas	you	can	work	in	like	security,
platform	engineering,	and	data	science.	To	learn	more	about	the	different	areas	of
programming,	go	to	sites	listing	programming	jobs,	and	read	through	the	descriptions.	The
Python	Job	Board	is	a	good	place	to	start:	https://www.python.org/jobs.	Look	at	the
requirements	for	the	different	jobs,	as	well	as	the	technologies	they	use—this	will	give	you	an
idea	what	you	need	to	learn	to	be	competitive	for	the	type	of	job	you	want.

Getting	Initial	Experience

									In	order	to	get	your	first	programming	job	you	need	experience.	But	how	do	you	get
programming		experience	if	no	one	will	hire	you	without	it?	There	are	a	few	ways	to	solve
this	problem.	One	solution	is	to	focus	on	open	source.	You	can	either	start	your	own	open
source	project,	or	contribute	to	the	thousands	of	open	source	projects	on	GitHub.
								Another	option	is	to	do	freelance	work;	you	can	create	a	profile	on	sites	like	Upwork,
and	start	getting	small	programming	jobs	right	away.	To	get	started,	I	recommend	finding
someone	you	know	that	needs	some	programming	work	done.	Have	them	sign	up	for	an
Upwork	account	and	officially	hire	you	there	so	they	can	leave	you	a	great	review	for	your
work.	Until	you	have	at	least	one	good	review	on	a	site	like	Upwork,	it	is	difficult	to	land
jobs.	Once	people	see	that	you’ve	successfully	completed	at	least	one	job,	getting	hired	for
jobs	by	people	you’ve	never	met	becomes	easier,	because	you’ve	established	some	c
redibility	 .		

Getting	an	Interview

								Once	you’ve	gained	programming	experience	through	either	open	source	or	freelance
work	it’s	time	to	start	interviewing.	I’ve	found	the	most	effective	way	to	get	an	interview	is	to
focus	on	LinkedIn.	If	you	don’t	have	a	LinkedIn	account,	create	one	to	get	started	networking
with	potential	employers.	Add	a	summary	about	yourself	at	the	top	of	of	your	profile,	and
make	sure	to	highlight	your	programming	skills.	For	example,	a	lot	of	people	add	something
like	“Languages:	Python,	JavaScript”	at	the	top	of	their	profile,	which	helps	recruiters
searching	for	those	keywords	find	them.	Make	sure	to	add	your	open	source	or	freelancing
experience	as	your	most	recent	job.

Once	your	profile	is	complete,	start	connecting	with	technical	recruiters—there	are	tons
of	technical	recruiters	on	LinkedIn,	so	find	them	and	send	them	a	request	to	connect.	They	are
always	looking	for	new	talent,	so	they	will	be	eager	to	connect	with	you.	Once	they	accept
your	invitation,	reach	out	and	ask	if	they	have	any	open	positions	available.

The	Interview

									If	a	recruiter	thinks	you	look	like	a	good	fit	for	the	role	they	are	hiring	for,	they	will
send	you	a	message	on	LinkedIn	asking	to	set	up	a	phone	screen.	The	phone	screen	will	be
with	the	recruiter,	so	it	is	usually	non-technical	(although	I’ve	had	recruiters	ask	me	some
technical	questions	they’ve	memorized	the	answer	to	during	the	first	interview).	The

conversation	is	about	the	technologies	you	know,	your	previous	experience	and	seeing	if	you
would	fit	into	the	company’s	culture.

If	you	do	well,	you	will	advance	to	the	second	round—a	technical	phone	screen—where
you	speak	with	one	or	more	members	of	the	engineering	team	and	they	ask	you	the	same
questions	about	your	experience	and	skills	as	the	first	interview.	This	time	however,	the
questions	are	followed	by	a	technical	test	over	the	phone.	The	engineers	will	give	you	the
address	of	a	website	where	you	can	edit	code;	they	will	post	a	programming	question;	and	ask
you	to	solve	it.
								If	you	make	it	past	the	second	round—and	this	nerve-racking	process	hasn’t	caused	you
to	abandon	this	book	and	quit	programmin	 g—you	will	have	a	third	interview.	The	third
interview	is	on	site,	in	person	at	the	company’s	office.	The	third	round	is	a	lot	like	the	first
two.	You	meet	with	different	engineers	on	the	team,	they	ask	you	about	your	skills	and
experience,	and	there	are	more	technical	tests.	Sometimes	you	even	stay	for	lunch	to	see	how
you	interact	with	the	team.	The	third	round	is	where	the	famous	white	board	coding	tests
happen.	If	the	company	you	are	interviewing	for	does	whiteboarding,	you	will	be	asked
several	programming	problems	and	asked	to	solve	them	on	a	whiteboard.	I	recommend
buying	a	white	board	and	practicing 		this	before	hand	because	solving	a	programming
problem	on	a	whiteboard	is	much	harder	than	solving	it	on	a	computer.	Of	course	not	all
companies	follow	this	exact	formula,	you	may	run	into	different	variations	of	it,	but	in
general,	this	is	what	you	should	expect.

Hacking	The	Interview

									The	majority	of	programming	interviews	focus	on	two	subjects—data	structures	and
algorithms.	That	means	to	pass	your	programming	interview,	you	know	exactly	what	you
must	do—	get	very	good	at	two		specific	area	 s	of	Computer	Science.	Fortunately,	this	will
also	help	you	to	become	a	better	programmer.

You	can	narrow	down	the	questions	you	should	focus	on	even	further	by	thinking	about
the	interview	from	the	interviewer's’	perspective.	Think	about	the	situation	your	interviewers
are	is	in;	they	say	software	is	never	finished,	and	it’s	true.	Your	interviewers	most	likely	has	a
lot	of	work	they	need	to	get	done,	and	don’t	want	to	dedicate	a	lot	of	his	time	to	interviewing
candidates.	Coming	up	with	good	programming	questions	is	hard.	Are	they	going	to	spend
their	valuable	time	coming	up	with	original	programming	questions?	Probably	not.	They	are
probably	going	to	google	“programming	interview	questions”	and	ask	one	of	the	first	ones
they	find.	This	leads	to	the	same	interview	questions	coming	up	over	and	over	again—and
there	are	some	great	resources	out	there	to	practice	them.	Leetcode	is	one	I	recommend	you
check	out.	Almost	every	question	I’ve	ever	been	asked	in	a	programming	interview	is	on
Leetcode.

Chapter	X.	Working	on	a	Team

	 	“You	can’t	have	great	software	without	a	great	team,	and	most	software	teams	behave	like
dysfunctional	families.”
-	Jim	McCarthy

								Coming	from	a	self-taught	background,	you	are	probably	used	to	programming	alone.
Once	you	join	a	company,	you	will	need	to	learn	how	to	work	on	a	team.	Even	if	you	start
your	own	company,	eventually	you	will	need	to	hire	additional	programmers,	at	which	point
you	will	also	need	to	learn	to	work	as	a	team.	Programming	is	a	team	sport	and	like	any	team
sport,	you	need	to	get	along	with	your	teammates.	This	chapter	provides	some	tips	for
successfully	working	in	a	team	environment.

Master	the	Basics

									 When	you	are	hired	by	a	company,	you	are	expected	to	be	competent	in	the	skills
covered	in	this	book.	It	is	not	enough	to	simply	read	this	book—you	need	to	master	the	skills
in	it.	Start	a	side	project	with	a	friend	and	use	version	control.	Write	new	tests	everyday.
Schedule	programs	to	run.	If	your	teammates	have	to	constantly	help	you	with	the	basics,	they
will	become	frustrated.

Don’t	Ask	What	You	Can	Google

As	a	new,	self-taught	member	of	a	programming	team,	you	will	have	plenty	to	learn,
and	you	will	need	to	ask	a	lot	of	questions.	This	is	a	great	way	to	learn,	but	you	want	to	make
sure	you	are	only	asking	good	questions.	A	general	rule	is	to	only	ask	a	question	if	you’ve
spent	at	least	five	minutes	trying	to	Google	the	answer	yourself.	While	asking	questions	is	a
positive	thing,	if	you	ask	too	many	questions	you	could	have	easily	figured	out	yourself,	you
will	annoy	your	teammates.	Make	sure	you	are	only	asking	good	questions	by	trying	to	find
the	answer	for	at	least	five	minutes	before	you	ask	it.

Changing	Code

									 By	reading	this	book,	you’ve	demonstrated	you	are	the	type	of	person	who	is	constantly
looking	to	improve.	Unfortunately,	not	everyone	on	your	team	will	share	your	enthusiasm	for

becoming	a	better	programmer.	Many	programmers	don’t	have	the	desire	to	keep	learning,
and	they	are	fine	doing	things	suboptimally.	This	can	be	especially	prevalent	in	startups,
where	shipping	code	fast	is	often	more	important	than	shipping	high	quality	code.	If	you	find
yourself	in	this	situation,	you	should	listen	to	Walter	White	and	“tread	lightly.”	Programmers
can	get	their	egos	hurt	very	easily	when	you	change	their	code.	Even	worse,	if	you	spend	a	lot
of	time	fixing	other	people’s	code,	you	will	not	have	enough	time	to	contribute	to	new
projects,	and	it	may	look	like	you	are	not	working	hard	enough.	The	best	defense	for	this	is	to
carefully	question	any	company	you	join	about	their	engineering	culture.	If	you	still	find
yourself	in	this	situation,	it	is	best	to	listen	to	Edward	Yourdon,	“If	you	think	your
management	doesn’t	know	what	it’s	doing	or	that	your	organisation	turns	out	low-quality
software	crap	that	embarrasses	you,	then	leave.	”

Even	if	you	work	at	a	great	company,	there	are	still	times	when	you	will	need	to	fix
other	people’s	code,	which	you	should	approach	delicately.	Mike	Coutermarsh	wrote	an
article	on	Medium	called	“Jr.	Developers	#5:	How	to	Improve	Code	Without	Anyone	Hating
You”	which	I	recommend	you	read	for	advice	on	the	subject.	As	a	new	programmer	entering
your	first	programming	job,	it’s	important	for	you	to	get	along	with	your	team—alienating
your	team	members	can	happen	much	easier	than	it	may	seem—so	make	sure	to	always	stay
cognizant	of	how	your	teammates	will	react	if	you	want	to	make	changes	to	their	code.

Imposter	Syndrome

								Everyone	that	programs	feels	overwhelmed	at	times	and,	no	matter	how	hard	you	work
there	are	going	to	be	things	you	don’t	know.	As	a	self-taught	programmer,	it	is	especially
easy	to	feel	inadequate	because	someone	asked	you	to	do	something	you’ve	never	heard	of,
or	because	you	feel	like	there	are	so	many	concepts	in	Computer	Science	you	still	do	not
understand.	Remember—this	happens	to	everyone—not	just	you.

	I	was	surprised	when	my	friend	with	a	Masters	degree	in	Computer	Science	from
Stanford	told	me	he	feels	this	way	as	well.	He	said	everyone	in	his	program	dealt	with
imposter	syndrome,	and	he	noticed	they	reacted	in	one	of	two	ways:	they	either	stayed	humble
and	were	always	willing	to	admit	when	they	didn’t	know	something—and	tried	learn	it—or
they	pretended	they	knew	everything	(when	they	didn’t)	and	stifled	their	learning.	Make	sure
you	remember	you	got	to	where	you	are	by	working	hard,	and	it’s	ok	if	you	don’t	know
everything,	nobody	does.	Just	stay	humble,	relentlessly	study	anything	you	don’t	understand,
and	you	will	be	unstoppable	 .

Further	Learning

“The	best	programmers	are	not	marginally	better	than	merely	good	ones.	They	are	an	order-
of-magnitude	better,	measured	by	whatever	standard:	conceptual	creativity,	speed,	ingenuity
of	design,	or	problem-solving	ability.”
—Randall	E.	Stross

								The	article	ABC:	Always	Be	Coding 		by	David	Byttow	gives	great	advice	on	how	to	get	a
job	as	a	software	engineer.	The	article	is	summarized	in	the	title—always	be	coding.	If	you
combine	ABC	with	a	new	acronym	I	made	up—ABL—always	be	learning—you	are	sure	to
have	an	exceptional	career.	In	this	chapter,	I		am	going	to	go	over	some	programming
resources	I’ve	found	helpful.

The	Classics

There	are	a	few	programming	books	that	are	considered	must	reads:	The	Pragmatic
Programmer	 	by	Andy	Hunt	and	Dave	Thomas;	Design	Patterns		by	Erich	Gamma,	John
Vlissides,	Ralph	Johnson,	and	Richard	Helm	(design	patterns	are	an	important	subject	we
didn’t	get	a	chance	to	cover);	Code	Complete 		by	Steve	McConnell;	Compilers:	Principles,
Techniques,	and	Tools,	by	Alfred	Aho,	Jeffrey	Ullman,	Monica	S.	Lam		and	Ravi	Sethi;	and
Introduction	to	Algorithms	 	by	The	MIT	Press.	I	also	highly	reccomend	 Problem	Solving	with
Data	Structures	and	Algorithms 	,	a	free,	interactive,	excellent	introduction	to	algorithms,
much	easier	to	understand	than	MIT’s	Introduction	to	Algorithms	.

Online	Classes

Online	coding	classes	are	a	popular	way	to	learn	to	program.	Coursera	is	one	of	the
most	popular,	but	I	also	love	the	lesser	known	Codeschool.	I	highly	recommend	you	take
some	of	their	classes.	Not	only	do	they	have	great	classes	on	different	programming
languages,	but	they	also	have	classes	on	Git,	SQL	and	other	subjects	discussed	in	this	book.

Hacker	News

								Hacker	News	is	a	platform	for	user-submitted	news	on	the	technology	incubator	Y
	Combinators	website	found	at	https://news.ycombinator.com.	It	is	popular	with	programmers
and	will	help	you	keep	up	to	date	with	the	newest	trends	and	technologies.

Other

This	article	is	great	for	finding	new	things	to	learn:	http://matt.might.net/articles/what-cs-
majors-should-know.

Next	Steps

								First	of	all—thank	you	for	purchasing	this	book.	I	hope	it’s	helped	you	become	a	better
programmer.	The	programming	community	has	given	me	so	much	support,	and	by	writing
this	book,	I	hope	I’ve	managed	to	help	you	in	your	journey	the	way	so	many	people	helped
me.
								Now	that	you’ve	finished,		it’s	time	for	you	to	get	down	to	business.	Where	do	you	go
from	here?	Data	structures	and	algorithms,	algorithms	algorithms.	Get	on	LeetCode	and
practice	those	algorithms.	Then	practice	them	some	more!	In	this	chapter	I	give	some	final
thoughts	on	how	you	can	continue	to	improve	as	a	programmer	(once	you	finished	practicing
your	algorithms).

Find	a	Mentor

									 Finding	a	mentor	will	help	you	take	your	programming	skills	to	the	next	level.	One	of
the	hard	things	about	learning	to	program	is	that	there	are	so	many	things	you	can	do
suboptimally,	without	knowing	it.	I	mentioned	earlier	you	can	help	combat	this	by	doing	code
reviews:	a	mentor	can	do	code	reviews	with	you	and	help	you	improve	your	coding	process,
recommend	books,	and	help	you	with	programming	concepts	you	are	having	trouble
understanding.

Strive	to	Go	Deep

									 	There	is	a	concept	in	programming	called	a	“black	box”	that	refers	to	something	you
use,	but	do	not	understand	how	it	works.	When	you	first	start	programming,	everything	is	a
black	box.	One	of	the	best	ways	to	get	better	at	programming	is	to	try	to	open	up	every	black
box	you	can	find	and	try	to	understand	how	it	works.		One	of	my	friends	told	me	it	was	a
major	“aha”	moment	for	him	when	he	realized	the	command	line	itself	is	a	program.	Opening
up	a	black	box	is	what	I	call	going	deep.
								Writing	this	book	helped	me	go	deep.	There	were	certain	concepts	I	thought	I
understood,	only	to	find	out	I	couldn’t	explain	them.	I	had	to	go	deep.	Don’t	just	stop	at	one
explanation,	read	all	the	explanations	on	the	topic	you	can	find.	Ask	questions	and	read
differing	opinions	online.

	I	find	one	of	the	most	helpful	questions	to	be	“What	problem	does	this	solve?”	For
example,	we	learned	about	Object-oriented	programming	in	this	book.	But	why	was	object-

Oriented	programming	invented?	What	problem	does	it	solve?	Are	there	other	solutions?
Pursuing	the	answers	to	these	types	of	questions	will	help	you	become	a	better	programmer.

Another	way	to	go	deep	is	to	build	things	you	want	to	understand	better.	Having	trouble
understanding	databases?	Build	a	simple	database	in	your	free	time.	When	I	was	having
trouble	understanding	compilers—I	built	one.	Taking	the	time	to	do	a	project	like	this	is	well
worth	the	investment,	because	it	will	improve	your	understanding	of	whatever	you	are
struggling	with.

Other	Advice

								I	once	came	across	a	forum	discussing	ways	to	become	a	better	programmer.	The	top
voted	answer	was	a	somewhat	surprising:	“Do	things	other	than	programming.”	I’ve	found
this	to	be	true—reading	books	like	The	Talent	Code 		by	Daniel	Coyle	has	made	me	a	better
programmer;	because	he	lays	out	exactly	what	you	need	to	do	to	master	any	skill.	Another
good	book	about	learning	a	skill	is	 Mastery	by	George	Leonard.	Keep	your	eye	out	for	things
outside	of	programming	you	can	bring	to	your	programming	game.
								The	last	piece	of	advice	I	will	leave	you	with	is	to	spend	as	much	time	as	you	can	reading
other	people’s	code.	Reading	other	people’s	code	is	one	of	the	best	ways	to	improve	as	a
programmer.	When	you	are	learning,	you	need	to	make	sure	to	strike	a	balance	between
writing	code,	and	reading	code.	Reading	other	people’s	code	is	going	to	be	difficult	at	first,
but	it	is	important	to	do	it	because	you	can	learn	so	much	from	other	programmers.

I	hope	you	enjoyed	this	book	as	much	as	I	enjoyed	writing	it.	Please	feel	free	to	email
me	at	cory@theselftaughtprogrammer.io	for	any	reason.	I	also	have	a	programming
newsletter	you	can	sign	up	for	at	theselftaughprogrammer.io	and	a	forum	where	you	can	get
in	touch	with	me	and	a	community	of	people	learning	to	program.	If	you	liked	this	book,
please	also	consider	leaving	a	review	on	Amazon	 ,	it	helps	get	this	book	in	the	hands	of	more
people,	and	I	really	appreciate	every	review	I	receive.	Best	of	luck	on	the	rest	of	your	journey.
And	remember—ABL!

Acknowledgements

Parents,	Pam,	Randee,	Anzar,	Cover	Designer,	Lauren,	Antoine,	Torrey,	Jin	Chun.

Glossary

Biography

Citations
0.	http://stackoverflow.com/questions/466790/assembly-code-vs-machine-code-vs-
object-code
0.
0.	http://man7.org/linux/man-pages/man1/ls.1.html
0.
0.	http://www.webopedia.com/TERM/C/clock_speed.html
0.
0.	http://stackoverflow.com/questions/1050222/concurrency-vs-parallelism-what-is-the-
difference
0.
0.	http://berb.github.io/diploma-thesis/original/022_webapps.html
0.
0.	http://stackoverflow.com/questions/11828270/how-to-exit-the-vim-editor
0.
0.	http://superuser.com/questions/666942/why-it-is-not-recommend-to-use-root-login-
in-linux
0.
0.	http://programmers.stackexchange.com/questions/37294/logging-why-and-what
0.
0.	http://stackoverflow.com/questions/10925478/how-to-read-api-documentation-for-
newbs
0.
0.	http://www.infoworld.com/article/2908474/application-development/stack-overflow-
survey-finds-nearly-half-have-no-degree-in-computer-science.html
0.
0.	http://www.merriam-webster.com/dictionary/catenate
0.
0.	Design	Patterns	kindle	location	546
0.
0.	Design	Patterns	kindle	location	650
0.
0.	Design	Patterns	kindle	location	824
0.
0.	https://hungred.com/wp-content/uploads/2009/05/ascii-table-cheat-sheet1.png
0.
0.	The	Pragmatic	Programmer	kindle	location	830
0.
0.	https://automatetheboringstuff.com/chapter0/
0.

0.	http://kevinlondon.com/2015/07/26/dangerous-python-functions.html
0.
0.
http://interactivepython.org/runestone/static/pythonds/Recursion/TheThreeLawsofRecursion.html
0.
0.	https://automatetheboringstuff.com/chapter1/
0.	https://www.quora.com/What-are-some-interesting-facts-about-computer-
programming
0.			 http://www.dkfindout.com/us/explore/eight-cool-facts-about-computer-coding/
0.	http://thenextweb.com/insider/2016/02/26/8-facts-every-computer-programmer-
should-know/#gref
0.	http://cs.lmu.edu/~ray/notes/x86assembly/
0.	http://www.tutorialspoint.com/python/python_files_io.htm
0.	http://www.wsj.com/articles/computer-programming-is-a-trade-lets-act-like-it-
1407109947?mod=e2fb
0.	https://en.wikipedia.org/wiki/Persistence_(computer_science)
0.	https://en.wikipedia.org/wiki/Column_family
0.	http://stackoverflow.com/questions/2570756/what-are-database-constraints
0.	https://en.wikipedia.org/wiki/Data_integrity
0.	https://www.sitepoint.com/understanding-the-observer-pattern/
0.	http://codedx.com/how-to-minimize-your-softwares-attack-surface/
0.	https://support.microsoft.com/en-us/kb/283878
0.	http://www.slideshare.net/jagaarj/database-design-normalization
0.	http://www.tcpipguide.com/free/t_WhatIsNetworking.htm
0.	Readwrite.com
0.	http://www.gnu.org/software/grep/manual/grep.html
0.	https://en.wikipedia.org/wiki/Software_testing
0.	https://en.wikipedia.org/wiki/Boundary_case
0.	http://www.guru99.com/integration-testing.html
0.	https://en.wikipedia.org/wiki/Systems_development_life_cycle#cite_note-1
0.	Project	Management	Institute,	2013
0.	http://www.tutorialspoint.com/sdlc/sdlc_overview.htm
0.	https://en.wikipedia.org/wiki/Software_development_process
0.	https://en.wikipedia.org/wiki/Waterfall_model
0.	https://en.wikipedia.org/wiki/Incremental_build_model
0.	http://agiledata.org/essays/tdd.html
0.	http://www.agilenutshell.com/
0.	https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-
programming
0.	http://stackoverflow.com/questions/1031273/what-is-polymorphism-what-is-it-for-
and-how-is-it-used
0.	https://en.wikipedia.org/wiki/Syntax

	amazon
	The Self-taught Programmer

	Cory Althoff
	Part I Introduction to Programming
	Chapter 1. Introduction
	How This Book Is Structured
	Endgame First
	The Self-taught Advantage
	Why You Should Program
	Sticking With It
	How This Book is Formatted
	Technologies Used In This Book
	Vocabulary
	Challenge

	Chapter 2. Getting Started
	What is Programming
	What is Python
	Installing Python
	Troubleshooting
	The Interactive Shell
	Saving Programs
	Running Example Programs
	Vocabulary
	Challenge
	Examples
	Comments
	Printing
	Lines
	Keywords
	Spacing
	Data Types
	Constants and Variables
	Syntax
	Errors and Exceptions
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Conditional Statements
	Statements
	Vocabulary
	Challenge

	Chapter 4. Functions
	Representing Concepts
	Defining Functions
	Parameters
	Passing Parameters
	pass
	Nested Functions
	Scope
	Built-in Functions
	Exception Handling
	Docstrings
	Challenge

	Chapter 5. Containers
	Lists
	Tuples
	Dictionaries
	Challenge

	Chapter 6. String Manipulation
	Triple Strings
	Indexes
	Strings are Immutable
	Methods
	Change Case
	format
	split
	join
	replace
	index
	in
	Escaping Strings
	Newline
	Concatenation
	String Multiplication

	Chapter 7. Loops
	For Loops
	While Loops
	Break
	Continue
	Nested Loops
	Challenge

	Chapter 8. Modules
	Importing Built-in Modules
	Importing Modules
	Challenge

	Chapter?9. Files
	Working With Files
	Using with
	Reading Files
	CSV Files
	Challenge

	Chapter?10. Bringing It All Together
	Hangman
	Challenge

	Chapter 11. Practice
	Exercises
	Read
	Getting Help
	Other Resources

	Part II Introduction to Object-oriented Programming
	Chapter 12. Programming Paradigms
	State
	Imperative Programming
	Functional Programming
	Object-oriented Programming
	Challenge

	Chapter 13. ?The Four Pillars of Object-oriented Programming
	Inheritance
	Polymorphism
	Abstraction
	Encapsulation
	Composition
	Challenge

	Chapter 14. More Object-oriented Programming
	How Variables Work
	is
	None
	Classes Are Objects
	Class Variables vs. Instance Variables
	Private variables
	Overriding Methods
	Super
	Overriding Built-in Methods
	Challenge

	Chapter 15. Bringing It All Together
	Cards
	Deck
	Player
	Game
	War

	Chapter 16. Practice
	Exercises
	Read

	Part III Introduction to Programming Tools
	Chapter 17.?Bash
	Finding Bash
	Relative vs Absolute Paths
	Navigating
	Flags
	vim
	Touch
	View A File With less
	Users
	Permissions
	Bash Programs
	Processes
	Hidden Files
	Environmental Variables
	$PATH
	pipes
	cat
	Recent Commands
	Jump Around
	Tab Complete
	Wildcard
	Other Tools
	The One Week Challenge

	Chapter 18. Regular Expressions
	Setup
	Simple Match
	Ignore Case
	Only Return Matched
	Match Beginning and End
	Match Multiple Characters
	Repetition
	Range
	Escaping
	Regular Expressions in Python
	Zen Challenge

	Chapter 19. Package Managers
	Packages
	Apt-get
	Homebrew
	OneGet
	pip
	Challenge

	Chapter 20. Version Control
	Repositories
	Getting Started
	Pushing and Pulling
	Pushing Example
	Pulling Example
	Reverting Versions
	diff
	The Other Pull Request
	Learning More
	Challenge

	Chapter 21. SQLite
	NoSQL vs. SQL
	Getting Started
	Data Types
	Create a Table
	Constraints
	Query Data
	or Query
	and Query
	Count
	Communicating with Databases
	Challenge

	Chapter 22. Bringing It All Together
	HTML
	Scrape Google News
	Challenge

	Chapter 23. Practice
	Exercises
	Read

	Part IV Introduction to Computer Science
	Data Structures & Algorithms
	What Are Algorithms & Data Structures?
	Big O Notation
	Modulo
	Bubble Sort
	Sequential Search
	Binary Search
	Recursion
	Abstract Data Types
	Nodes
	Stacks
	Linked Lists
	Arrays
	Binary Trees
	Breadth First & Depth First Search
	Hash Tables
	Challenge

	Chapter X. Relational Database Design
	Normalization
	Referential Integrity
	Indexing
	Challenge

	Chapter X. Computer Architecture
	How Your Computer Works
	I/O

	How Programming Languages Work
	How Your Operating System Works
	Challenge

	Chapter X. Network Programming
	Client-Server Model
	TCP/IP
	Challenge

	Chapter #TK. Bringing It All Together
	Create a Server
	Create a Client
	Challenge

	Chapter #TK. Practice
	Exercises
	Read

	Part V Programming for Production
	Chapter #TK. Testing
	The Waterfall Software Development Process
	Other Software Development Processes
	Testing
	Assertions
	Types of Tests
	TDD
	Writing Good Tests
	Code Coverage
	Testing Saves Time
	Challenge

	Chapter ?#TK. Best Programming Practices
	Write Code As A Last Resort
	DRY
	Orthogonality
	Every Piece Of Data Should Have One Representation
	Functions Should Do One Thing
	Use Dummy Data
	If It?s Taking Too Long You Are Probably Making a Mistake
	Logging
	Do Things The Best Way The First Time
	Follow Conventions
	Code Reviews
	Security
	Challenge

	Chapter #TK. Bringing It All Together
	Word Cloud Lyrics

	Practice
	Exercises
	Read

	Part VI Land a Job
	Chapter X.?Your First Programming Job
	Choose a Path
	Getting Initial Experience
	Getting an Interview
	The Interview
	Hacking The Interview

	Chapter X. Working on a Team
	Master the Basics
	Don?t Ask What You Can Google
	Changing Code
	Imposter Syndrome

	Further Learning
	The Classics
	Online Classes
	Hacker News
	Other

	Next Steps
	Find a Mentor
	Strive to Go Deep
	Other Advice

	Acknowledgements
	Glossary
	Biography

