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Editorial Note

The papers in this volume result from the 3rd conference on the “Philosophy and
Theory of Artificial Intelligence” (PT-AI) 4–5 November 2017 which I organised in
Leeds where I am a university fellow—for details on the conference, see http://
www.pt-ai.org/.

For this conference, we had 77 extended abstract submissions by the deadline,
which were reviewed double-blind by two to four referees. A total of 28 submis-
sions, i.e. 36%, were accepted for presentation. We also accepted 18 posters to be
presented. The invited speakers were Thomas Metzinger, Mark Sprevak, José
Hernández-Orallo, Yi Zeng, Susan Schneider, David C. Hogg and Peter Millican.
All papers and posters were submitted in January at full length (two pages for
posters) and reviewed another time by at least two referees among the authors. In
the end, we have 32 papers here that represent the current state of the art in the
philosophy of AI. We grouped the papers broadly into three categories: “Cognition–
Reasoning–Consciousness”, “Computation–Intelligence–Machine Learning” and
“Ethics–Law”. This year, we see a significant increase in ethics, more work on
machine learning, perhaps less on embodiment or computation—and a stronger
“feel” that our area of work has entered the mainstream. This is also evident from
more papers in “standard” journals, more book publications with mainstream phi-
losophy presses and more philosophers from neighbouring fields joining us, such as
philosophy of mind or philosophy of science. These are encouraging developments,
and we are looking forward to PT-AI 2019!

We gratefully acknowledge support from the journal Artificial Intelligence, and
the IDEA Centre at the University of Leeds.

May 2018 Vincent C. Müller
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Artificial Consciousness: From Impossibility
to Multiplicity

Chuanfei Chin(&)

Department of Philosophy, National University of Singapore,
Singapore 117570, Singapore
phiccf@nus.edu.sg

Abstract. How has multiplicity superseded impossibility in philosophical
challenges to artificial consciousness? I assess a trajectory in recent debates on
artificial consciousness, in which metaphysical and explanatory challenges to
the possibility of building conscious machines lead to epistemological concerns
about the multiplicity underlying ‘what it is like’ to be a conscious creature or be
in a conscious state. First, I analyse earlier challenges which claim that phe-
nomenal consciousness cannot arise, or cannot be built, in machines. These are
based on Block’s Chinese Nation and Chalmers’ Hard Problem. To defuse such
challenges, theorists of artificial consciousness can appeal to empirical methods
and models of explanation. Second, I explain why this naturalistic approach
produces an epistemological puzzle on the role of biological properties in
phenomenal consciousness. Neither behavioural tests nor theoretical inferences
seem to settle whether our machines are conscious. Third, I evaluate whether the
new challenge can be managed through a more fine-grained taxonomy of
conscious states. This strategy is supported by the development of similar tax-
onomies for biological species and animal consciousness. Although it makes
sense of some current models of artificial consciousness, it raises questions
about their subjective and moral significance.

Keywords: Artificial consciousness � Machine consciousness
Phenomenal consciousness � Scientific taxonomy � Subjectivity

1 Introduction

I want to trace a trajectory in recent philosophical debates on artificial consciousness. In
this trajectory, metaphysical and explanatory challenges to the possibility of building
conscious machines are supplanted by epistemological concerns about the multiplicity
underlying ‘what it is like’ to be a conscious creature or be in a conscious state. Here
artificial consciousness refers, primarily, to phenomenal consciousness in machines
built from non-organic materials. Like most of the philosophers and scientists whom I
discuss, I will follow Block (1995) in using the concept of phenomenal consciousness
to refer subjective experience. By Block’s definition, the sum of a state’s phenomenal
properties is what it is like to be in that conscious state, and the sum of a creature’s
phenomenal states is what it is like to be that conscious creature. The paradigms of such
conscious states include having sensations, feelings, and perceptions.

© Springer Nature Switzerland AG 2018
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Many surveys on artificial consciousness stress that this sub-field in artificial
intelligence research has multiple interests (Gamez 2008; Holland and Gamez 2009;
Reggia 2013; Scheutz 2014). Its research programmes aim to build machines which
mimic behaviour associated with consciousness, machines with the cognitive structure
of consciousness, or machines with conscious states. Often a distinction is drawn
between strong artificial consciousness, which aims for conscious machines, and weak
artificial consciousness, which builds machines that simulate some significant corre-
lates of consciousness. Of course, a research programme may nurture interests in both
strong and weak artificial consciousness; and the same model may be used to inves-
tigate both strong and weak artificial consciousness.

I shall focus on philosophical challenges to strong artificial consciousness. First, in
the next section, I will analyse two earlier challenges which claim that phenomenal
consciousness cannot arise, or cannot be built, in machines. These are based on Block’s
Chinese Nation and Chalmers’ Hard Problem. To defuse such challenges, we can
appeal to empirical methods and models of explanation. Second, I will explain why this
naturalistic approach leads to an epistemological puzzle on the role of biological
properties in phenomenal consciousness. Neither behavioural tests nor theoretical
inferences seem to settle whether our machines are conscious. Third, I will evaluate
whether the new challenge can be handled by a more fine-grained taxonomy of con-
scious states. This strategy is supported by the development of more fine-grained
taxonomies for biological species and animal consciousness. Although it makes sense
of some current models of artificial consciousness, it raises questions about their
subjective meaning and moral status.

2 The Impossibility of Artificial Consciousness

The literature on artificial consciousness contains several philosophical challenges to
the possibility of building conscious machines (Bishop 2009; Gamez 2008; McDermott
2007; Prinz 2003; Reggia 2013; Scheutz 2014). Such challenges draw on philosophical
arguments about the nature of consciousness and our access to it. One set of challenges
is against the metaphysical possibility of artificial consciousness. These are based on
the provocative thought experiments in Block (1978), Searle (1980), Maudlin (1989),
which suggest that machines, however sophisticated in functional or computational
terms, cannot be conscious. Another set of challenges is directed at the practical
possibility of building conscious machines. They are based on philosophical claims,
made by McGinn (1991), Levine (1983), Chalmers (1995), about our ignorance of how
conscious states arise from physical states. According to these challenges, we can
hardly expect to produce consciousness in machines if we cannot explain it in human
brains.

Most theorists of artificial consciousness are not troubled by such challenges. In his
survey, Scheutz (2014) describes two attitudes that support this stance. Here is how I
understand them. First, some theorists hold a pragmatic attitude towards the concept of
consciousness. They define this concept in an operational way, in terms of the pro-
cesses and principles which psychologists take to underlie consciousness. Their aim is
to use these processes and principles to improve performance in machines. They do not
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want to replicate consciousness, so they need not worry if consciousness can arise, or
be produced, in machines. This attitude particularly suits those whose research lies in
weak artificial consciousness. Second, other theorists hold a revisionary attitude. They
want to refine or replace the concept of consciousness through their empirical inves-
tigation of the underlying processes and principles identified by psychologists. In doing
so, they wish to contribute to both psychology and philosophy. For instance, their
models of the relevant processes and principles may enable new psychological
experiments and produce new theories of consciousness. These may, in turn, influence
philosophical intuitions and views about consciousness.

I take this last point to mean that empirical research into strong artificial con-
sciousness need not be halted by the intuitions and views current in philosophy. To
demonstrate this, I will show that theorists of artificial consciousness can appeal to
empirical methods and models of explanation to defuse some philosophical challenges.
In particular, I will look at how we can respond to two challenges to the possibility of
building conscious machines – one based on Block’s Chinese Nation thought experi-
ment, the other on Chalmers’ Hard Problem of consciousness.1 Even those theorists
who are less inclined to take philosophical challenges seriously can clarify their
methodological commitments by considering these responses. Moreover, in the next
section, I will show why the commitments underlying these responses lead to an
epistemological puzzle which should interest all theorists of artificial consciousness.

(a) The first challenge centres on the nature of consciousness. It suggests that
conscious machines cannot be built since machines cannot be conscious. More pre-
cisely, it suggests that the functional properties realisable by machines are not sufficient
for consciousness. In Block’s thought experiment, a billion people in China are
instructed to duplicate the functional organisation of mental states in a human mind.
Through radio connections and satellite displays, they control an artificial body just as
neurons control a human body. They respond to various sensory inputs into the body
with appropriate behavioural outputs. But, according to Block (1978), we are loath to
attribute consciousness to this system: ‘there is prima facie doubt whether it has any
mental states at all – especially whether it has what philosophers have variously called
“qualitative states,” “raw feels,” or “immediate phenomenological qualities”’ (73). If
our intuition about the Chinese Nation is sound, then consciousness requires more than
the functional properties discovered in psychology. If so, the machines that realise only
these functional properties cannot be conscious.

I do not think that we need to defer to this intuition about the Chinese Nation.
Rather we should use empirical methods to uncover more about the nature of con-
sciousness. Our best research – in psychology, neuroscience, and artificial con-
sciousness – may determine that functional properties at a coarse-grained psychological
level are sufficient for consciousness. Or it may determine that functional properties at a
more fine-grained neurological level are necessary too. Whether the relevant properties
are realisable in our machines is a further question, also to be determined by empirical

1 I learnt especially from the responses offered in Prinz (2003) and Gamez (2008). I have put aside
challenges based on Searle’s Chinese Room thought experiment: they are analysed exhaustively in
the literature on artificial consciousness, with what looks to be diminishing returns. One response to
these challenges can be modelled after my response in (a).

Artificial Consciousness: From Impossibility to Multiplicity 5



investigation. None of this research should be pre-empted a priori by what our intuition
says in a thought experiment and what that supposedly implies about the possibility of
conscious machines.

Even Block would agree on this methodological point. He notes that, intuitively,
the human brain also does not seem to be the right kind of system to have what he calls
‘qualia’, the subjective aspect of experience. So our intuition, on its own, cannot be
relied on to judge which system does or does not have qualia. According to Block, we
can overrule intuition if we have independent reason to believe that a system has qualia,
and if we can explain away the apparent absurdity of believing this. Here his qualm
about a system like the Chinese Nation rests mainly on our lack of a theoretical ground
to believe that it has qualia. No psychological theory that he considers seems to explain
qualia. That is why he insists of the system: ‘any doubt that it has qualia is a doubt that
qualia are in the domain of psychology’ (84). To assuage this qualm, we need to build
an empirical theory of consciousness which explains qualia and evaluates whether
Chinese Nations, machines, and other systems have them.

(b) The second challenge directly addresses our explanation of consciousness. It
suggests that we cannot build machines to be conscious even if machines can be
conscious. According to Chalmers (1995), the Hard Problem we face is to explain how
conscious experiences arise from physical processes and mechanisms in the brain. He
distinguishes this from easy problems which require us to explain various psycho-
logical functions and behaviours in terms of computational or neural mechanisms. We
have yet to solve the Hard Problem because we do not know how consciousness is
produced in the human brain. But, until we do so, we cannot produce consciousness in
a machine except by accident. Here is how Gamez (2008) sums up this line of rea-
soning based on our ignorance: “if we don’t understand how human consciousness is
produced, then it makes little sense to attempt to make a robot phenomenally con-
scious” (892).

I find two related reasons to reject this challenge. First, the production of con-
sciousness may not require its explanation. Through empirical investigation, we may be
able to produce consciousness without explaining it in terms of physical processes and
mechanisms in the brain. If so, it suffices for us to create in machines the conditions
which give rise to consciousness in humans; we need not understand, in philosophi-
cally satisfying terms, how the conditions do this. Our research to produce con-
sciousness in machines may then help our research to explain consciousness in
humans. This cross-fertilisation between research programmes would be in keeping
with the revisionary attitude that Scheutz highlights.

Second, even if we need some kind of explanation to enable production, the
explanation of consciousness in empirical terms may not require a solution to the Hard
Problem. Through their empirical theories, scientists do not aim to explain, in some
metaphysically intelligible way, how the properties of a phenomenon ‘arise from’ other
properties at lower levels. Instead, they aim to establish a theoretical identity for the
phenomenon in terms of its underlying properties (Block and Stalnaker 1999;
McLaughlin 2003; Prinz 2003; Shea and Bayne 2010). (I say more about how this
applies to consciousness science in the next section.) To build their theories, scientists
draw correlations between levels, tying together some higher-level and lower-level
properties. In the biological and psychological sciences, what requires this kind of
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explanation between levels depends on context: it is often determined by which
properties, at higher or lower levels, appear anomalous (Wimsatt 1976; Craver 2009,
Chap. 6; Prinz 2012, 287–8). These practices suggest that an empirically successful
theory of consciousness need not fill in the gap between phenomenal and physical
properties – at least, not in the terms defined by Chalmers’ Hard Problem.

3 The Multiplicity in Phenomenal Consciousness

I have shown how empirical methods and models of explanation can defuse philo-
sophical challenges to the possibility of artificial consciousness. They allow us to
counter intuitions drawn from thought experiments on the nature of consciousness, and
to undercut arguments derived from our ignorance of how conscious states arise from
physical states. By appealing to these empirical methods and models, we adopt a
naturalistic approach to the study of artificial consciousness. We use empirical meth-
ods, as far as possible, to answer questions about the nature of consciousness and our
access to it. We thereby allow empirical discoveries about phenomenal consciousness
to inform our conceptual understanding of artificial consciousness. But that naturalistic
approach produces a different philosophical challenge, arising from what we discover
to be the multiplicity underlying consciousness. This new challenge to artificial con-
sciousness is epistemological: it suggests that, even if we can build conscious
machines, we cannot tell that the machines are conscious.

The challenge rests on our difficulty in determining the role of biological properties
in phenomenal consciousness. Unless we determine their role, we cannot discover
whether our machines, lacking at least some of these properties, are conscious. Several
philosophers analyse this difficulty (Block 2002; Papineau 2002, Chap. 7; Prinz 2003,
2005; Tye 2016, Chap. 10). Yet their arguments are largely ignored by theorists of
artificial consciousness. I will focus on Prinz’s arguments – since they arise naturally
from his work on an empirical theory of consciousness and are addressed directly to
theorists of artificial consciousness.

Prinz begins by analysing, at the psychological level, the contents of our conscious
states and the conditions under which they become conscious. Following Nagel, he
considers having a perspective to be fundamental to consciousness: ‘We cannot have a
conscious experience of a view from nowhere’ (2003, 118). In his analysis, humans
experience the world, through our senses, ‘from a particular vantage point’. So the
contents of our consciousness are both perceptual and perspectival. These contents
become conscious when we are paying attention. When these contents become avail-
able for our deliberation and deliberate control of action, they enable our flexible
responses to the world. Putting together these hypotheses, Prinz proposes that con-
sciousness arises in humans when we attend to phenomena such that our perspectival
perceptual states become available for deliberation and deliberate control of action.

Next, by drawing on empirical studies, Prinz maps these contents and conditions of
conscious states onto the computational and neural levels. In information processing, the
contents of consciousness seem to lie at the intermediate level. Our intermediate-level
representations are ‘vantage-point specific and coherent’ (2003, 119). They are distinct
from higher-level representations which are too abstract to preserve perspective,

Artificial Consciousness: From Impossibility to Multiplicity 7



and lower-level representations which are too local to be coherent. In computational
models of cognition, attention is a process that filters representations onto the next stage,
while deliberate control is handled by working memory, a short-term storage capacity
with executive abilities. In the human brain, these computational processes are imple-
mented by a neural circuit between perceptual centres in the temporal cortex, attentional
centres in the parietal cortex, and working memory centres in the frontal cortex (2003,
119; 2005, 388). Prinz (2012) cites several lines of evidence indicating that gamma
vectorwaves play the crucial role in these brain regions. So, according to his latest theory,
consciousness arises in us ‘when and only when vectorwaves that realize intermediate-
level representations fire in the gamma range, and thereby become available to working
memory’ (293). That is, in empirical terms, a good candidate for the neurofunctional basis
of consciousness in humans.

Despite this progress, Prinz (2003, 2005) highlights an epistemological limitation,
which is independent of whatever empirical theory of consciousness we settle on. He
argues that we cannot determine if our biological properties are constitutive of con-
sciousness. So we cannot discover if our machines, which will lack at least some of
these properties, are conscious. This is the basis of his pessimism about research in
strong artificial consciousness: ‘It simply isn’t the case that scientific investigations into
the nature of consciousness will make questions of machine consciousness disappear.
Even if scientific theories of consciousness succeed by their own standards, we must
remain agnostic about artificial experience’ (117).

Like others who share his pessimism, Prinz cites the in-principle failure of beha-
vioural tests to settle these questions (Prinz 2003, IV; Block 2002; Papineau 2002,
Chap. 7, 2003). How do we find constitutive properties of consciousness? The standard
method is to test for what Prinz calls ‘difference-makers’ (121). It involves changing
processes at a tested level while keeping constant processes at other levels. If this
change makes a difference to conscious behaviour in humans, then some properties at
this tested level are constitutive of consciousness. Suppose that it is technically possible
to substitute silicon chips for neurons in the human brain. And suppose that it is
nomologically possible to do so while keeping constant the relevant processes at the
psychological and computational levels.2 This surgically altered person will become a
‘functional duplicate of a normal person with a normal brain’ (123). By design, the
functional duplicate will behave exactly as conscious humans do – reporting pain,
showing signs of anger, apparently ‘seeing sunsets and smelling roses’. Yet our current
tests for consciousness centre on behaviour. So we do not have a genuine test for
consciousness in the duplicate. We cannot, by these tests, tell if our properties at the
biological level are constitutive of consciousness.

I agree with Prinz (2003) that this thought experiment highlights a ‘serious epis-
temological problem’ (130). Indeed, I believe that he and others understate the depth of

2 This is a common idealisation in the thought experiment. In reality, we will find more than one
psychological level and more than one computational one (Prinz 2003, 120–1). During chip
replacement, we are more likely to keep constant processes at less fine-grained psychological and
computational levels. The epistemological difficulty with testing remains, though it is made more
complicated. Elsewhere, in Chin (2016), I analyse more complicated versions of the multiple-kinds
problem in consciousness science; see also Irvine (2013), Chap. 6.
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the problem. They focus on the failure of behavioural tests to discover if biological
properties make a difference to conscious states. Prinz claims that this ‘method of
difference-makers seems to be the only way to find out what levels matter’ (130). Yet,
like other philosophers, he also recommends that we use inference to the best expla-
nation to establish a theoretical identity for consciousness (116).3 He does not explain
why this theoretical inference cannot clarify the role of biological properties in con-
sciousness and, thereby, improve the current tests for consciousness.

Let me make these connections explicit through the multiple-kinds problem shown
in Fig. 1. As the thought experiment suggests, we will discover at least two functional
structures responsible for conscious behaviour in humans. One is a neurofunctional
structure, such as that identified in Prinz’s theory. Another is a functional structure that
abstracts away from some biological mechanisms in the neurofunctional structure.
Therefore, the kind defined by the neurofunctional structure (kind2) is nested within the
kind defined by the more abstract functional structure (kind1). Kind1 includes conscious
humans and our functional duplicates, while kind2 excludes the functional duplicates.
So which is the structure of consciousness? Which structure defines a kind formed by
all and only conscious beings?

Prinz’s argument shows that current tests, based on behaviour, cannot solve this
multiple-kinds problem. I want to extend this argument, to show why inference to the
best explanation does not help. Both the neurofunctional structure and the more
abstract structure are correlated with consciousness in humans. Both are also

Fig. 1. The multiple kinds in phenomenal consciousness

3 Other philosophers include Block and Stalnaker (1999), McLaughlin (2003), Shea and Bayne
(2010), Allen and Trestman (2016), Sect. 4.3.
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systematically related to conscious behaviour in humans. By focusing on the systematic
relations between the neurofunctional structure, consciousness in humans, and their
conscious behaviour, we can support an identity between consciousness and the neu-
rofunctional structure. But this move is ad hoc, classifying our functional duplicates by
fiat as not conscious. On the other hand, by focusing on the equally systematic relations
between the more abstract functional structure, consciousness in humans, and their
conscious behaviour, we can support an identity between consciousness and that
structure. Yet this is equally ad hoc, re-classifying the duplicates by fiat as conscious.

Neither hypothesis offers a simpler explanation. Whether we identify consciousness
with the neurofunctional structure or the more abstract structure, we must invoke both
structures to account for the total explananda. If we identify consciousness with the
neurofunctional structure, then we must use the more abstract structure to explain why
the duplicates share the same behaviour as humans even though the duplicates do not
have human brains. If we identify consciousness with the more abstract structure, then
we must use the neurofunctional structure to explain how the more abstract structure is
implemented differently in conscious humans and their duplicates. The first hypothesis
interprets consciousness as only one implementation of the more abstract structure,
while the second interprets the neurofunctional structure as only one implementation of
consciousness. So the familiar norms of explanatory simplicity do not help to choose
between these hypotheses. That is why the multiple-kinds problem seems intractable. If
we cannot solve this problem, then we cannot tell whether the biological properties that
our machines lack are constitutive of consciousness. And, therefore, we cannot tell
whether our machines are conscious.

4 The Development of Scientific Taxonomies

I have shown why the naturalistic approach that defuses earlier philosophical chal-
lenges on artificial consciousness produces an epistemological puzzle on the role of
biological properties in consciousness. Through empirical investigation, we will dis-
cover multiple functional structures underlying consciousness in humans. Neither
behavioural tests nor theoretical inferences are able to pick out one structure from
among them, in order to define a kind formed by all and only conscious beings. Unless
we solve this multiple-kinds problem, we cannot determine whether the biological
properties that our machines lack are constitutive of consciousness. In this section, I
want to examine how other scientists develop more fine-grained taxonomies to manage
their multiple kinds. Then I will evaluate how theorists of artificial consciousness can
use this taxonomic strategy.

How does the multiple-kinds problem arise elsewhere? One prominent instance is
what biologists call the ‘species problem’.4 When biologists try to classify organisms

4 This problem is analysed by both biologists and philosophers: see the surveys in Coyne and Orr
(2004); Cracraft (2000); Ereshefsky (2010, 2017); Richards (2010). I also learnt from the analysis in
LaPorte (2004), though we come to different conclusions. Richards (2010) argues that the problem
goes back to pre-Darwinian times: Darwin himself was confronted by ‘a multiplicity of species
concepts’ (75).
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into species, they discover multiple structures underlying biodiversity. These structures
centre on interbreeding, genetic or phenotypic similarity, ecological niche, evolutionary
tendency, or phylogeny. They lead to conflicting definitions of what a species is.
Different structures define overlapping kinds, consisting of different populations of
organisms. According to the biologists Coyne and Orr (2004), at least nine species
definitions remain ‘serious competitors’. Three of them are often mentioned in the
philosophical literature: the Biological Species Concept (BSC), the Phylogenetic
Species Concept (PSC), and the Ecological Species Concept (ESC).5 They focus,
respectively, on three primary processes involved in evolution: sexual reproduction,
descent from common ancestry, and environmental selection pressures. Of the three,
which defines the nature of species?

Proponents of the BSC, the PSC, and the ESC sometimes claim that their definition
of species is the ‘best’.6 But, in practice, biologists choose between these definitions
according to their empirical interests. As de Queiroz (1999) explains, ‘they differ with
regard to the properties of lineage segments that they consider most important, which is
reflected in their preferences concerning species criteria’ (65). Their choice of the BSC,
the PSC, or the ESC allows them to investigate the wider explanatory structures
associated, respectively, with sexual reproduction, descent from common ancestry, or
ecological niche. For instance, those who are interested in the history of life prefer the
PSC over the BSC because they believe that reproductive isolation is ‘largely irrelevant
to reconstructing history’ (Coyne and Orr 2004, 281). Those who are interested in the
explanation of biodiversity reject the PSC because they see phylogeny as ‘largely
irrelevant to understanding the discreteness of nature’. Instead they use the BSC to
study populations that sexually reproduce or use the ESC to study adaptive zones in
ecology.

The result is a more fine-grained taxonomy of species, which can be used to
manage the multiple kinds found within biodiversity. Biologists now distinguish
between species which arise from interbreeding, species which arise from phylogenetic
connection, and species which arise from environmental selection (Ereshefsky 2010).
As Fig. 2 shows, the BSC and the PSC tend to define overlapping kinds of populations.
When genealogically distinct populations can reproduce with each other, the popula-
tions of a phylogenetic species are nested within the populations of an interbreeding
species. Through their taxonomy, biologists can clarify the relations between these
kinds and demarcate the explanatory structures involving these kinds.

5 The BSC defines species as ‘groups of interbreeding natural populations that are reproductively
isolated from other such groups’ (Mayr 1969). The PSC defines them as the ‘smallest diagnosable
cluster of individual organisms within which there is a parental pattern of ancestry and descent’
(Cracraft 1983). The ESC defines them as ‘a lineage (or a closely related set of lineages) which
occupies an adaptive zone minimally different from that of any other lineage in its range and which
evolves separate from all lineages outside its range’ (Van Valen 1976).

6 As Cracraft (2000) warns, ‘the notion of “best” is always relative’ (10). He urges us to ‘look hard at
the context of what best might mean’, including how general in application a definition is meant to
be, and whether a more general definition is always more useful.
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With the more fine-grained taxonomy in place, what matters to biological expla-
nation is not whether the BSC or the PSC offers the ‘best’ definition of species. Rather
biologists have to ensure that those who are interested in interbreeding species not
confuse classifications with those who are interested in phylogenetic species. In a
context with shared interests, such confusion is unlikely to arise. For instance, most
biologists interested in sexual reproduction and its effects focus on interbreeding
species. Their interests already pick out these relevant kinds from the overlapping ones
associated with sexual reproduction, descent from ancestry, and environmental selec-
tion pressures. In a context with competing interests, biologists can avoid misunder-
standing by making explicit reference to either interbreeding species, phylogenetic
species, or ecological species. However, in some general contexts, biologists need not
specify the kinds to which they refer. They may be keen to make generalisations across
different branches of biology (Brigandt 2003). So their claims apply uniformly to
interbreeding species, phylogenetic species, and ecological species.

The multiple-kinds problem also afflicts debates on animal consciousness. Here it
lies closer to our epistemological puzzle on artificial consciousness. For animal con-
sciousness, the problem arises because we discover at least two cognitive structures
underlying consciousness in humans. Both structures are responsible, in different ways,
for conscious behaviour in humans. I will follow how Godfrey-Smith (2016a, b) dis-
tinguishes these structures. The first involves simple modes of information processing
associated with pain and other primitive bodily feelings, such as thirst and feeling short
of breath. This structure enables us to respond to actual and potential injury with
flexible non-reflexive behaviour. The second structure involves more sophisticated
modes of information processing which integrate information from different senses and
bodily feelings, through the use of memory, attention, and executive control.
According to some theories of cognition, this structure allows us to model the world
before responding to it.

Figure 3 shows that these two cognitive structures define two overlapping kinds of
animals. The kind of animals with cognitive integration is nested within the kind with
primitive bodily feelings, because cognitive integration requires more machinery, such
as memory, attention, and executive control. So which is the cognitive structure of
consciousness? Which structure defines a kind formed by all and only conscious
animals? If cognitive integration is necessary for consciousness, then only animals with
memory, attention, and executive control count as conscious. But if primitive bodily
feelings are sufficient for consciousness, many more animals count as conscious, so
long as they have the sensorimotor capacities associated with primitive bodily feelings.

Faced with this multiple-kinds problem, Godfrey-Smith (2016a, b) proposes a more
fine-grained taxonomy of subjective experiences in animals. There are at least two

Fig. 2. Two overlapping kinds of biological species
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kinds of subjective experiences. The basic kind, which evolved first, consists of
experiences of pain and other primitive bodily feelings; the complex kind, which
evolved later, consists of experiences which integrate information from different senses
and bodily feelings. Both kinds of subjective experiences are found in conscious
humans: ‘Much human experience does involve the integration of different senses,
integration of the senses with memory, and so on, but there is also an ongoing role for
what seems to be old forms of experience that appear as intrusions into more organized
kinds of processing’ (2016b, 500). Through his taxonomy, we can clarify the relations
between both kinds of experiences and demarcate the explanatory structures involving
both kinds.

With the more fine-grained taxonomy in place, we can see that what matters in the
explanation of animal behaviour is not whether the basic or complex kind of subjective
experiences counts as conscious. Rather theorists of animal consciousness can focus on
either kind of experiences according to their empirical interests, so long as their ter-
minology does not obscure the differences between both kinds. For instance, Godfrey-
Smith classifies only experiences with cognitive integration as conscious: ‘“Con-
sciousness” is something beyond mere subjective experience, something richer or more
sophisticated’ (2016a, 53). Animals which experience pain and other primitive bodily
feelings have qualia; it feels like something to be them. But, without cognitive inte-
gration, they do not count for him as conscious: ‘I wonder whether squid feel pain,
whether damage feels like anything to them, but I do not see this as wondering whether
squid are conscious’ (2016b, 484). As he acknowledges, other theorists with different
interests tend to equate qualia with phenomenal consciousness: ‘If there is something it
feels like to be a system, then the system is said to have a kind of consciousness’ (483–
4). In turn, these theorists have to distinguish phenomenal consciousness from other,
more sophisticated, kinds of consciousness that require cognitive integration.

How might this taxonomic strategy address the epistemological puzzle on artificial
consciousness? We can develop a more fine-grained taxonomy of conscious states, in
order to manage the multiplicity that troubles theorists of artificial consciousness. If
Prinz is right, then we need to distinguish at least two kinds of states. The first consists
of neurofunctional states, such as those specified in his theory of consciousness. Our
functional duplicates do not have this kind of states. The second consists of functional
states that abstract away from some biological mechanisms in the neurofunctional
states; both humans and the duplicates share this kind of states. With this taxonomy, we
can clarify the relations between the neurofunctional and functional states, then
demarcate the explanatory structures involving both kinds of states. What matters in
explaining humans and duplicates is not whether the neurofunctional or functional
states count as conscious. Rather theorists of consciousness can focus on either kind of

Fig. 3. Two overlapping kinds of animals
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states according to their empirical interests, so long as their terminology does not
obscure the differences between both kinds of states. Those who classify only the
neurofunctional states as conscious still need to acknowledge the role of the functional
states, which explain why the duplicates behave in ways that indicate consciousness in
humans. Those who classify the functional states as conscious still need to acknowl-
edge the role of the neurofunctional states; they explain how the functional states are
realised in humans.

This analysis brings out an epistemological difference between the case of bio-
logical species and that of artificial consciousness. Biologists are now confident that
interbreeding species, phylogenetic species, and ecological species play significant
explanatory roles. They know that the kinds associated with the BSC, the PSC, and the
ESC are involved in different explanatory structures associated with sexual reproduc-
tion, ancestral descent, and ecological niche. In contrast, we do not yet know, in any
precise terms, the states that will play significant explanatory roles in research on
artificial consciousness. However, this difference does not invalidate our use of the
taxonomic strategy. We need only begin with a provisional taxonomy of conscious
states to explore the different explanatory structures that interest us. As we discover
more about these explanatory structures, we can refine the taxonomy so that it reflects,
in more precise terms, the computational and biological processes cited in our expla-
nations. That is similar to how biologists developed their taxonomy for species.

Indeed, this taxonomic strategy can already make sense of some current models of
artificial consciousness. Some theorists suggest that building the right computational
processes into machines is sufficient to make them conscious. For instance, Dehaene
et al. (2017) propose that machines are conscious if they can select information for
global broadcasting, making it flexibly available for computations, and if they can self-
monitor those computations. To support their proposal, they claim that a machine with
both computational processes will behave ‘as though it were conscious’ (492). They
also cite evidence suggesting that subjective experience in humans ‘appears to cohere
with’ global broadcasting and self-monitoring (492). Other theorists believe that
building the right biological processes into machines is necessary to make them con-
scious. Haladjian and Montemayor (2016) connect consciousness to biological pro-
cesses in humans that endow them with emotion and empathy. So, in their view,
machines designed purely to compute with artificial intelligence will not have sub-
jective experiences. According to Godfrey-Smith (2016b), machines can have sub-
jective experiences only if they have some functional properties associated with ‘living
activity’ (505). For him, these properties include the robustness and adaptability typical
of complex biological systems in humans.

From our perspective, these models of artificial consciousness need not come into
conflict. Rather we can see them as jointly clarifying the more fine-grained taxonomy
of conscious states needed in research on artificial consciousness. On one hand,
Dehaene et al. (2017) are investigating the kind of states which are defined purely in
computational terms without reference to biological mechanisms; in particular they are
interested in the explanatory structures associated with global broadcasting and self-
monitoring. On the other hand, Haladjian and Montemayor (2016), Godfrey-Smith
(2016b) are interested in another kind of states, defined partly in biological terms; they
raise different difficulties for realising such states in machines.
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5 Conclusion

In this paper, I assessed a trajectory in which multiplicity superseded impossibility in
philosophical challenges to artificial consciousness. First, I tackled two earlier chal-
lenges which claim that phenomenal consciousness cannot arise, or cannot be built, in
machines. The first challenge, from the nature of consciousness, is based on Block’s
Chinese Nation thought experiment. The second challenge, from the explanation of
consciousness, is based on Chalmers’ Hard Problem. I showed how a naturalistic
approach, appealing to empirical methods and models of explanation, can defuse these
challenges. To discover if machines can be conscious, we should rely on theories of
consciousness developed through empirical methods, rather than the intuitions about
consciousness provoked by thought experiments. To explain consciousness in empir-
ical terms, we need not supply a philosophically satisfying account of how phenomenal
properties arise from physical ones.

Second, I explained why this naturalistic approach leads to an epistemological
puzzle on the role of biological properties in phenomenal consciousness. Through
empirical investigation, we will discover multiple functional structures underlying
consciousness in humans. As several philosophers argued, behavioural tests cannot
pick out one structure from among them, in order to define a kind formed by all and
only conscious beings. I argued that inference to the best explanation cannot help too.
If we cannot solve this multiple-kinds problem, then we cannot determine whether the
biological properties that our machines lack are constitutive of consciousness. We also
cannot determine whether these machines are conscious.

Third, I evaluated whether a taxonomic strategy used in other sciences can address
this new challenge. To manage the overlapping kinds which they cite in explanations,
theorists of biological species and animal consciousness develop more fine-grained
taxonomies. I argued that, similarly, theorists of artificial consciousness can develop a
more fine-grained taxonomy of conscious states, which distinguishes between the
neurofunctional states specified in an empirical theory of consciousness and the
functional states that abstract away from some biological mechanisms in the neuro-
functional states. Such a taxonomy enables us to clarify the relations between both
kinds of states and demarcate the explanatory structures involving both kinds. In
addition, I argued that this taxonomic strategy helps to make sense of current models of
artificial consciousness, including those which require only computational states and
those which require partly biological states. We can interpret them as models for
investigating different kinds of conscious states.

This strategy presents us with three related challenges, on the explanatory, sub-
jective, and moral significance of the kinds in any new taxonomy. First, we need to
establish that these kinds of states play significant explanatory roles in research on
artificial consciousness. This is primarily an empirical challenge, depending on theo-
rists of artificial consciousness to explore different explanatory structures that interest
us. Second, we need to examine the subjective significance of these kinds of states.
Thus far, we have construed a conscious state’s phenomenal properties as capturing
‘what it is like to be’ in that state. But this construal does not help to discriminate what
the multiple kinds mean in subjective terms. We may do so by investigating the
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capacities and interactions made possible by the underlying structures that define these
kinds. For instance, some basic structures may support what it is like to be an artificial
patient, while others may support what it is like to be an artificial agent. Third, we need
to explore the moral significance of these kinds of states. In what ways do the artificial
patients count as moral patients whose suffering we must ameliorate? In what ways do
the artificial agents count as moral agents whose lives we must attend to?
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Abstract. Cognitive science is considered to be the study of mind (consciousness
and thought) and intelligence in humans. Under such definition variety of
unsolved/unsolvable problems appear. This article argues for a broad under‐
standing of cognition based on empirical results from i.a. natural sciences, self-
organization, artificial intelligence and artificial life, network science and neuro‐
science, that apart from the high level mental activities in humans, includes sub-
symbolic and sub-conscious processes, such as emotions, recognizes cognition
in other living beings as well as extended and distributed/social cognition. The
new idea of cognition as complex multiscale phenomenon evolved in living
organisms based on bodily structures that process information, linking cogniti‐
vists and EEEE (embodied, embedded, enactive, extended) cognition approaches
with the idea of morphological computation (info-computational self-organisa‐
tion) in cognizing agents, emerging in evolution through interactions of a (living/
cognizing) agent with the environment.

1 Understanding Cognition

Cognitive science is currently defined as a study of processes of knowledge generation
through perception, thinking (reasoning), memory, learning, problem solving, and
similar. Thagard (2013) makes an extension of the idea of “thinking” to include
emotional experience. This move bridges some of the distance between cognition as
thinking and its (sub-)processes, but the fundamental problem of generative mechanisms
that can dynamically overarch the chasm between matter and mind remains. The defi‐
nition of cognitive science does not mention biology, chemistry, (quantum- nano-, etc.)
physics or chaos theory, self-organisation, and artificial life, artificial intelligence or data
science, extended mind, or distributed cognition as studied with help of network science,
sociology or ecology.

On the current view, cognition is about high-level processes remote from physical-
chemical-biological substrate. It is modeled either by classical sequential computation,
understood as symbol manipulation, or by neural networks. On the other hand, histori‐
cally, behaviorism offered an alternative view of cognition with the focus on the observ‐
able behavior of a subject. This divide is mirrored in the present day schism between
cognitivism/computationalism on one side and EEEE (embodied, embedded, enactive,
extended) cognition on the other. There have been numerous attempts to bridge this gap
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(Clark 2013), (Scheutz 2002), (Pfeifer and Iida 2005) and others, offering connection
between lower level sub-symbolic signal processing and higher-level processes of (clas‐
sical, mental) cognition.

The most frequent view of cognition is still human-centric and not evolutionary,
generative model. Thagard (2014) lists open philosophical problems of this approach to
cognition. Majority of those problems can only be solved on the basis of empirical data,
experiments and adequate generative models and simulations.

The idea of morphological computing has been proposed by (Paul 2004) (Pfeifer and
Iida 2005), (Hauser et al. 2014) and (Müller and Hoffmann 2017) defining computation
in a more general way than the traditional symbol manipulation, or connectionist models.
It is taking into account physical embodiment of computational mechanisms, thus
presenting suitable tool for modeling of a broader range of cognitive phenomena. In a
related approach, (Dodig-Crnkovic 2014) takes cognition in a cognitive agent to be
morphological computation, defined as information processing performed by
morphology on several levels of organization. Cognition in this framework is capacity
possessed by all living organisms, as (Maturana and Varela 1980) and (Stewart 1996)
argued. Every single cell, while alive, constantly cognizes. It registers inputs from the
world and its own body, ensures continuous existence through morphological processes
run on metabolic production of energy. It is avoiding dangers that could cause disinte‐
gration or damage, adapting its morphology to the environmental constraints. Physico-
chemical-biological processes present morphological computation on different levels of
organization. They depend on the morphology of the organism: its material, form and
structure.

Morphological computation is modeled as a dynamics of a structure of nodes (agents)
that exchange (communicate) information. Single living cell presents such a structure.
Groups of unicellular organisms (such as bacteria) communicate and build swarms or
films through morphological computation that presents social/distributed cognition.
Groups of cells through morphological computation cluster into multicellular assemblies
with specific control mechanisms, forming the tissues, organs, organisms and groups of
organisms. This layered organization of networks within networks provides information
processing speed-up.

A new quality in morphological computing in living organisms emerges with the
development of nervous system. With it, multicellular organisms as cognizing agents
acquire ability of self-representation, which enables distinction between “me” and the
“other” and presents basic functionality that supports locomotion. Animals that possess
nervous systems with centralized control connected to sensors and actuators, are capable
of locomotion which increases probability of survival. Brains in animals consist of large
number of mutually communicating cells. A single neuron is a relatively simple infor‐
mation processor, while the whole brain possesses advanced information processing/
computational capacities. We see the similar mechanism as in bacteria swarms with
distributed cognition implemented as morphological computation.

Besides the ability to model cognition as embodied, embedded, enactive, and
extended through interactions with the environment, morphological computing provides
means of understanding how this capacity evolved and how it develops during the life
of an organism.
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2 Problems Solutions with a Broader View of Cognition

Revisiting the list of unsolved/unsolvable problems of cognitive science under the
current idea of cognition (Thagard 2014) we can see their natural solution under a more
general concept of cognition as morphological computation:

The Emotion Challenge: Morphological computing of embodied cognition has layered
computational architecture. Sub-symbolic electro-chemical processes present the basic
layer in the information processing related to emotion (von Haugwitz and Dodig-
Crnkovic 2015).

The Consciousness Challenge: Consciousness is proposed as information integration
that has central role in the control of behavior (Tononi 2004) (Freeman 2009).

The World Challenge: Distributed morphological computation processes representing
hierarchies of computation solves this problem (Abramsky and Coecke 2007) (Sloman
2011) (Piccinini and Shagrir 2014) (Dodig-Crnkovic 2016, 2017).

The Body Challenge: Explicit modeling of a body is a consequence of the inclusion of
morphological computational processes in the substrate as an integral part of cognition
(Matsushita et al. 2005) (Pfeifer and Bongard 2006) (MacLennan 2010).

The Dynamical Systems Challenge: Dynamical systems are a very important class of
computational systems, as argued in (van Leeuwen and Wiedermann 2017) (Burgin and
Dodig-Crnkovic 2015).

The Social Challenge: Adopting cognition that is not only individual but also distrib‐
uted/social, solves this problem (Epstein 2007) (Barabasi 2010).

The Mathematics Challenge (brain cannot be conventional computer): Morphological
computing in living beings (unconventional computing) starts at quantum level and
propagates to higher levels of organisation as different kinds of physical, chemical,
biological, cognitive and social computing. (Cooper 2012) (Zenil 2012).

This short account presents an outline of an argument for the adoption of a broader
view of cognition then the one that presents the current received view. For the future
work, it remains to study the exact mechanisms of morphological computation at variety
of levels of organisation of living organisms in terms of computation as information
self-structuring (Dodig-Crnkovic 2016 and 2017). At the same time, cognitive compu‐
tational models are being tested in artifactual cognitive systems with artificial intelli‐
gence and cognitive computing.
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Abstract. Given the personal acquaintance between Alan M. Turing
and W. Ross Ashby and the partial proximity of their research fields, a
comparative view of Turing’s and Ashby’s works on modelling “the action
of the brain” (in a 1946 letter from Turing to Ashby) will help to shed
light on the seemingly strict symbolic/embodied dichotomy: while it is a
straightforward matter to demonstrate Turing’s and Ashby’s respective
commitments to formal, computational and material, analogue methods
of modelling, there is no unambiguous mapping of these approaches onto
symbol-based AI and embodiment-centered views respectively. Instead, it
will be argued that both approaches, starting from a formal core, were at
least partly concerned with biological and embodied phenomena, albeit
in revealingly distinct ways.
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1 Introduction

Not very much has been written to date on the relation between Alan M. Turing
and W. Ross Ashby, both of whom were members of the “Ratio Club” (1949–
1958).1 Not much of the communication between the two seems to have been
preserved or discovered either, the major exception being a letter from Turing
to Ashby that includes the following statement:

In working on the ACE [an early digital computer] I am more interested
in the possibility of producing models of the action of the brain than in
the practical applications of computing. [. . . ]
It would be quite possible for the machine to try out variations of behaviour
and accept or reject them in the manner you describe and I have been

1 The best historical accounts of the Ratio Club and Turing’s and Ashby’s roles therein
are Husbands and Holland (2008), Holland and Husbands (2011).
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hoping to make the machine do this. This is possible because, without
altering the design of the machine itself, it can, in theory at any rate, be
used as a model of any other machine, by making it remember a suitable
set of instructions. (Turing 1946, 1 f)

A comparative view of Turing’s and Ashby’s work on modelling “the action
of the brain” (Turing 1946) will help to elucidate the modelling properties of
machines with respect to human thinking and behaviour. It will be safe to say
that Turing was committed to formal “symbolic simulations” and Ashby to mate-
rial “working models”, with corresponding modes of reference to their target sys-
tems. This part of the analysis will be largely in line with Peter Asaro’s account
of “Computers as Models of the Mind” (2011). However, in terms of Turing’s
and Ashby’s fundamental views of the nature of what is modelled, the picture
gets more complex: despite the respective foci of their models on the functions
of machines and biological systems, both approaches were in some important
respects concerned with biological and embodied phenomena. Both relied on
theories of these phenomena, but they relied on competing theories in distinct
ways. I will go through Turing and Ashby twice in order to make these points
clear, first outlining their takes on modelling (Sect. 2), then their biological cre-
dentials (Sect. 3) and finally their implications (Sect. 4).

2 Formal and Material Models

There are various key motives shared between Turing’s and Ashby’s work that
would figure in either AI or cybernetics. Both Turing and Ashby believed that
“the action of the human brain” can be subject to a method of modelling that
casts it in a strict mathematical description and breaks it down into elementary
routines in such a way that the model could be implemented in some kind of
machine, in principle at least.

The shared motive of devising machine-implementable models rests on the
premise that the behaviour of some system can be described or imitated by a
system of altogether different physical make-up. The notion that an identical
set of logical operations can be realised in physically variant systems has its
paradigm in Turing’s universal computing machines, which were initially the-
oretical machines (1936). This proposition has come to be known as “machine
state” or “Turing Machine” functionalism (this terminology being introduced by
Putnam 1975).

However, first, while Ashby certainly embraced multiple realisability for his
machine models, the functionalism he employed and the analogies it implied
ultimately were different in kind from Turing’s machine state functionalism.
Instead, Ashby’s functionalism was a biological, essentially Darwinian one, as
shall be demonstrated in Sect. 3. Second, there is a number of ways in which
Turing and Ashby differed with respect to the manner in which machines shall
serve as models, and what the paradigm of machines to do that modelling is.
These differences will be briefly outlined in the present section.
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Turing: Turing based his models on his mathematical theory of computation. His
original quest was for solving the “Entscheidungsproblem” (decision problem)
in Gödel (1931): Turing’s idea was that the operations required for evaluating
whether a given logical proposition can be proven true or false within the calcu-
lus to which that proposition belongs could be implemented in an appropriate
kind of theoretical machinery, christened the “Logical Computing Machine”, by
means of interchangeable sets of formal instructions, that is, programs (Turing
1936). This method could be applied to any field of inquiry that allows for a
translation of complex logical propositions into a set of elementary, machine-
executable operations. The physical characteristics of any real-world machine to
implement these functions are underspecified by this requirement, as long as the
requisite formal characteristics are in place. As a matter of historical fact, how-
ever, the machines to accomplish this task turned out to be digital, electronic,
programmable computers. While Turing’s own work made major conceptual and
practical contributions to the development of these machines, and while comput-
ers are the paradigmatic logical computing machines, this does not imply that
digital computers are the only conceivable machines of this sort.

The theoretical import of Turing’s models lies fully within the realm of math-
ematics, while their empirical import lies in demonstrating the scope and force
of his theory of computability in (thought-) experimental fashion in a variety of
fields. His self-ascribed primary empirical interest was in the action of the brain,
but his most substantial contribution to any field outside computer science was
his mathematical theory of morphogenesis, that is, the patterns of organic growth
(Turing 1952),2 to which I will pay detailed attention in Sect. 3. With respect
to cognitive phenomena, Turing placed his inquiry on two separate levels: in
“Computing Machinery and Intelligence”, he engaged in “drawing a fairly sharp
line between the physical and the intellectual capacities of a man” (1950, p. 434)
in the design of his “imitation game”. In order to grant fair play to machines
in this game of simulating human conversational behaviour, he suggested to
disconnect conversational abilities from any underlying organic traits. However,
when Turing moved on to a consideration of possible mechanisms responsible
for these conversational abilities, he introduced his proto-connectionist “B-type
unorganised machines” that exemplify structures and processes in the brain on
an abstract level (Turing 1948; see also Copeland and Proudfoot 1996).

Either way, Turing considered the phenomena in question chiefly in their
form, and thereby to the extent they are accessible to the computational method.

2 In the introduction to a posthumous collection of Turing’s writings on morpho-
genesis, Peter T. Saunders claims that Turing (1952) “is still very frequently
cited (more than the rest of Turing’s works taken together [. . . ])” (Saunders
1992, p. xvi). If Google Scholar and citation counts are resources to go by,
the parenthetical part of this statement is an exaggeration, but Turing (1952)
still ranks approximately 10 and 20% higher in number of citations respec-
tively than the other two of his most-referenced works, Turing (1950) and
(1936): https://scholar.google.de/citations?user=VWCHlwkAAAAJ&hl=en&oi=ao
(accessed March 28th, 2018). The Thomson Reuters and Scopus databases have an
incomplete record of the original editions, hence cannot be used for comparison.

https://scholar.google.de/citations?user=VWCHlwkAAAAJ&hl=en&oi=ao
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More precisely, his quest was for descriptions of the behaviour of a target system
that can either directly serve as, or be transformed into, input variables for a set
of equations which can then be solved by applying computational routines, so
that the output either directly describes or predicts a further behaviour of that
target system, or can be transformed into such a description or prediction. Any
system whose behaviour can be formalised so as to be amenable to this kind of
procedure could be subject to the computational method.

Moreover, Turing engaged in formally “describing the mode of behaviour”
(Turing 1946, p. 2) of a learning system on an individual level in the first place,
treating it as a self-contained entity connected to an environment through a
number of in- and output channels. The environment of that entity remains
underspecified, and is mostly conceived of as input from the experimenter. When
Turing considered the action of the brain, he purposefully limited his focus on
that organ proper (for this observation, see Hodges 2008, p. 85). Such focus on
self-contained, individual entities was arguably guided by a methodological pre-
supposition: as the original topic of Turing’s inquiry were elementary recursive
operations within a calculus, any empirical test for the force and scope of the
computational method would, if not necessarily then naturally, commence with
relations of this kind in the target system.3 The notion of arithmetical routines
repeatedly using their own output as input for their next round of application
(hence “calling on themselves”) may count as the paradigm of Turing’s compu-
tational method. The method’s focus is on what happens to an initial, expressly
restricted, input over the course of repeated computational steps, unlike, for
example, the equations describing the time evolution of a dynamical system,
which take an open-ended sequence of states of the environment as their input
values. This basic methodological presupposition, rather than the higher-order
question of embodiment, might be the first indicator of the schism that would
later develop between cognitivist AI and cybernetics.

Ashby: Ashby’s models and their target systems differ from Turing’s, first, in
his quest being for the ORIGINS of adaptive behaviour of organisms and other
systems with respect to their environments (Ashby 1947; 1960). He built his
homeostat as a system that was supposed to actually learn, and to share a set
of core features of functional organisation with any other, natural or artificial,
learning system that has to cope with changing environmental variables. The
overarching systematic goal of his research was to explain “whence come the
patterning properties of the nervous system” (Ashby 1928–1972, p. 6117, entry
of June 13th 1959). In shaping those patterning properties, interactions with
the environment, including the behaviour of other organisms, played a crucial
role, and were thus fully and expressly incorporated in Ashby’s machine model.
Hence, second, the best available evidence of the validity of the model lies in
its ability to function in real, variable environments, and is best exemplified by

3 For anti-individualistic views of Turing’s approach, see the reading of Turing (1948)
proposed by Herold (2003) and the claim that Turing machines are situated systems
by virtue of their tapes being part of their local environments (Fabry 2018).
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a physical machine, the homeostat. There was both a didactic and a system-
atic purpose in having a physical implementation of the model. Third, Ashby’s
methodological choice was to describe the time evolution of a system, as defined
by the observer. That description consisted in tracking a succession of states
as “lines of behaviour” in a phase space or “field” of the values of the selected
variables, given certain initial states and a sequence of environmental inputs.
This approach has fairly little in common with the recursive operations applied
to delimited and largely self-contained systems that was favoured by Turing.

These marks of distinction from Turing’s approach find their common roots
in the Darwinian paradigm to which Ashby committed himself, and hence in a
theory of the evolution of biological systems. Ashby assumed this framework to
generalise to all sorts of systems capable of adaptive behaviours or, in Ashby’s
terminology, attaining equilibrial states. His assumption was that adaptivity
and goal-directed organisation emerge from processes that are not goal-directed
themselves but include random variation and deterministic selection, and he
tried to single out the basic natural mechanisms by which they are accomplished.
Ashby’s machines modelled organism-environment relations as relations of neg-
ative feedback, in which changes in environmental variables provoke counter-
effects in the machine, and vice versa. If the change in environmental variables
pushes some of the variables within the machine beyond a threshold of stability,
the machine, by means of “step-mechanisms”, randomly produces new states (as
the counterpart of variation in Darwinian evolution) and matches them against
what the environment provides (as the analogue of natural selection) until it
re-enters a domain of stable values (resulting in an analogue of fitness).

Ashby’s approach to modelling was formal and mathematical inasmuch as the
theory of feedback mechanisms, equilibria, and stability can be articulated in rig-
orous mathematical fashion. However, Ashby employed a formal, mathematical
apparatus primarily in instrumental fashion, making it subserve the broader pur-
pose of a general science of organisms and other systems. Hence, the theoretical
import of Ashby’s modelling did not lie within the realm of mathematics. Nor
were his models computational under any interpretation that would approximate
Turing’s notion. Moreover, Ashby’s approach to modelling was also genuinely
material, not merely in terms of the model’s physical implementation. There are
isomorphisms supposed to hold between the functional status of a machine and
the functional status of a target system in such a way that transformations in
the target system are matched by transformations in the machine model that
are analogous in terms of the functional states involved. If there are an irritation
and a negative feedback in a target system upon a certain input, there should be
an irritation and a negative feedback in the machine model as well, with mea-
surable correspondences. Arguably, the materiality and non-computationality of
Ashby’s models in conjunction made them less universal and less adaptable than
Turing’s computer models, at least once they were computer-implementable in
fact (which, as Asaro 2011 observes, makes the choice of modelling approaches
a matter of available resources in part).
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On the background of this discussion, the differences between Turing’s and
Ashby’s approaches can be located on two general levels: First, the primary
though not the exclusive focus was on formal versus material modelling respec-
tively, with diverging roles assigned to the mathematical methods involved. Sec-
ond, the functionalism implied by Ashby’s argument was of a different sort than
Turing’s: it primarily considered adaptive, biological or biologically based, func-
tions of brains and other systems to be modelled rather than the logical prop-
erties of machine states. Ashby expressly focused on, while Turing intentionally
skipped over, the question of where and how the goal-directed organisation of
organism or machine in their concrete environments originate.

3 Adaptive Functions vs Laws of Form

I will now argue that Turing’s and Ashby’s views on biology provide a key
to understanding their differences in approach on either of the aforementioned
levels. Both the preferred type of modelling and the kind of functionalism chosen
are deeply informed by their views of the relevance of Darwinian evolution.

The arguably most articulate and most influential computational model
devised by Turing concerned the biological processes of morphogenesis (see
Turing 1952), which built on Sir D’Arcy Thompson’s, at its time, influential
work On Growth and Form (1942). Turing sought to apply and test Thomp-
son’s account of the generation of organic patterns, from an animal’s growth to
the grown animal’s anatomy, from the dappledness or stripedness of furs to the
arrangement of florets of a sunflower and the phyllotaxis, that is, the ordering
of leaves on a plant’s twigs. Turing’s question, like Thompson’s, was how such
intricate and differentiated patterns develop from genetically homogenous cells.
Was there a general mechanism of pattern formation that could be formally
described? The formalism of linear and non-linear differential equations used
by Turing was expressly impartial to the actual biochemical realisation of pat-
tern formation. It would only provide some clues as to what concrete reactants,
termed “morphogens” by Turing, one should look out for. Answering questions
of de facto realisation would be a central task for the many biologists, chemists
and others who followed Turing’s lead. Still, his account of morphogenesis was
as close to a direct modelling relation to a natural target system as it would get
in Turing’s entire work – closer in embodied detail than his proto-connectionist
endeavours, and certainly much closer than his imitation game.

In his morphogenetic inquiries, Turing did not inquire into any adaptive
function, in Darwinian terms, of the patterns so produced. These patterns may or
may not serve an adaptive function. Computationally modelling their formative
processes does not contribute to explaining that form’s function. Whether the
florets of a sunflower are patterned on a Fibonacci series, as they, in fact, are,
or whether they are laid out in grid-like fashion, as they cannot possibly be
according to the mathematical laws of form, is unlikely to make a difference in
terms of selective advantage. In turn, however, natural selection may not offer
a path to a grid-like pattern in the first place, while allowing for, and perhaps
enabling, but arguably not determining the Fibonacci pattern.
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This seeming indifference towards adaptive functions might be referred to
Asaro’s observation that the computational mode of modelling is distinctly indi-
rect, and cannot establish the modelling relation by itself (2011). It would have
to incorporate a reasonably elaborated theory of the target system that assigns
a suitable calculus and suitable inputs in order to attain any degree of sophis-
tication. A reasonably elaborated theory of this kind was amenable to Turing’s
computational method in D’Arcy Thompson’s laws of form but apparently not
in Darwinian variation and natural selection.

The reasonable methodological choices that entitled Turing to a limited inter-
est in the evolutionary origins of organic patterns have a far-reaching implication
in terms of alignment with competing research paradigms: D’Arcy Thompson’s
laws of form were articulated with an explicit scepticism towards the relevance of
adaptation by natural selection in biology, and claimed an autonomy of forma-
tive processes in organisms from Darwinian mechanisms (Thompson 1942). More
precisely, D’Arcy Thompson argued that an organism’s development is subject to
constraints on form that have to be explained, and can be sufficiently explained,
by reference to mathematical and physical regularities. Hence, pattern formation
cannot be subsumed under a Darwinian account of random variation and natu-
ral selection. Natural selection does act on biological forms with respect to their
environmental fitness but it cannot generate them, nor is it the only or even the
primary constraint on the realisation of possible forms. Instead, D’Arcy Thomp-
son referred to Goethe’s archetype theory in this context, picking up on laws of
symmetry and the expression of identical forms in otherwise variant organisms,
and sharing the observation that some biological forms are more probable to
develop than others, whereas still others are genuinely impossible. He puts these
Goethean claims and observations on a strictly mathematical and physical foot-
ing: organic forms and their transformations are both enabled and constrained
by physical laws that can be expressed in mathematical terms. Turing picked
up on the form of these mathematical expressions and developed them into a
dynamic model of pattern formation.

Even if Turing did not actively endorse D’Arcy Thompon’s sceptical view of
Darwinism, he at least implicitly went along with it, and chose to work under
a paradigm that built on it. Notably, as Boden (2006, pp. 1264–1267) observes,
Turing’s theory of morphogenesis was enthusiastically received by the embryol-
ogists of his day, who were more likely to be attached to theories of archetypes
and ontogenetic recapitulation than to notions of Darwinian selection. Moreover,
Boden highlights that Turing’s mathematical theory of morphogenesis was ulti-
mately proven right by more recent and powerful computer simulation methods,
and that it informed those branches of Artificial Intelligence that have come to
be known as Artificial Life. However, a similar status can be argued to accrue
to principles of Darwinian evolution.

Unlike Turing, Ashby repeatedly referred to the Darwinian notions of adap-
tation and natural selection (for example, Ashby 1960, p. 29). In doing so, he
exclusively focused on the adaptive aspects of evolution – which is not a matter
of course, as we saw, and which was not at all the dominant view in biology at
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the time of his writing. Still, Ashby believed that random variation of existing
traits of a reproducible (or, in Ashby’s models, modifiable) system and selection
by differential reproduction (or continued functioning versus dysfunction) of that
system under the influence of a given set of environmental conditions will not
only be the primary but the exclusive path for a system to attain an adaptive
or, in Ashby’s terminology, equilibrial state. Given that Darwinian evolution is
by and large gradual, variation is limited, first, to minor alterations and, second,
to acting only on parts of an existing structure, thereby excluding large-scale
changes across most or all parts of the system. Third, variation would typically
not affect continuously functioning adaptive traits: “organisms are usually able
to add new adaptations without destroying the old” (Ashby 1960, p. 142). With
these limiting conditions in place, no other mechanisms than random variation
and natural selection were deemed required to explain the goal-oriented structure
and behaviour of an organism or other organised system.

Remarkably, however, in his very emphasis on adaptation, Ashby restricted
his focus to the origins of adaptive behaviour by learning, not inquiring deeper
into “genic” adaptation, so that the organic basis for the production of such
behaviour was largely left aside.4 In fact, Ashby referred to biological evolu-
tion and what he called “Darwinian Machinery” only in the more philosophi-
cal and speculative of his writings, for example, Ashby (1952, pp. 50–52) and
Ashby (1967), and, of course, in many places in his Journal. The Darwinian basis
appears to be taken for granted in its own, genuinely biological, adaptive organ-
isation by Ashby – while both behavioural and genic adaptation were assumed
to be subject to the same general laws of variation and selection.

The first obstacle to an incorporation of the organic level of adaptation into
Ashby’s model lies in a perennial problem of evolutionary theory: apart from
some fast-breeding model populations, observed under laboratory conditions and
the partial evidence they provide, one cannot observe natural variation and selec-
tion in real-time. Hence, one is not enabled, first, to precisely and unequivocally
map organic traits onto environmental conditions so as to define them as adap-
tations (rather than contingent effects) to precisely these (rather than other)
conditions. Second, even if such mapping can be accomplished, there will be no
evidence whatsoever on the history and the dynamics of the concrete process
of adaptation – that is to say, unless one has a very good grasp of popula-
tion genetics and ecology along with paleontological evidence. These problems
were compounded by an interpretation of Darwinian evolution under which “the
species is fundamentally aimless (it finds its goals as it goes along)” (Ashby
no year, no. 5). In a discussion of the DAMS, a post-homeostat machine model,
he actually embraces the view that “variables in the brain should be driven
actively by the environment” (Ashby 1928–1972, p. 3831, entry of May 19th,
1952). Contemporary biology has come to accept different, more differentiated
views of the organism-environment relation. Some but not all present-day views
appreciate D’Arcy Thompson and Turing’s morphogenetic laws, while many if

4 For Ashby’s discussion of “Darwinian Machinery”, see also Asaro (2008, pp. 166–
168).
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not most of them ascribe a more active role to organisms with respect to their
environments.

4 Constraints, Implications, and Potentials

From the preceding observations, one might infer that there is one remarkable
lacuna in both Turing’s and Ashby’s accounts of the action of the brain: despite
their references to variant traditions on biology, they appear to pay little sys-
tematic attention to the question of the origins of the biological mechanisms
responsible for that action. This seeming lacuna is not a mere omission, but,
first and foremost a constraint imposed by the state of the biological sciences of
their time. It may also serve as a diagnostic of Turing’s and Ashby’s modes of
systematic theorising and their implications, which in turn may offer a potential
resolution to their seeming opposition.

With respect to the constraints involved, leaving the mechanisms of biolog-
ical origins out of the picture may, in Turing’s reliance on D’Arcy Thompson’s
view of biological form as well as in Ashby’s focus on behavioural adaptation,
partly owe to the fact that, at the time of their writing in the late 1940s and
early 1950s, the authors were not in a position to rely on what would become
known as the “modern synthesis” in evolutionary biology. That synthesis, devel-
oped between 1936 and 1947, paradigmatically stated by Huxley (1942) and later
summarised by Mayr (1991, especially Chap. 9),5 was just about to become the
dominant biological paradigm, and took several years more to become part of
common knowledge. The modern synthesis amounted to crossing the Darwinian
mechanisms of adaptation by random variation and natural selection – which
had become somewhat rarefied since Darwin’s time – with the statistical laws
of mathematical population genetics, so as to produce, for the first time, a com-
prehensive and strongly empirically grounded paradigm of Darwinian biology.
Thereby, a considerable degree of consensus was established in evolutionary biol-
ogy which, in conjunction with the rise of molecular biology, sidelined D’Arcy
Thompson’s laws of form along with a variety of epigenetic and vitalist theories.

While Turing did not live to see the full establishment of the modern synthe-
sis, an appreciation of Ernst Mayr’s work can be found in Ashby’s later writings,
(see Ashby 1928–1972, p. 6637, entry of December 27th, 1966). Accordingly, an
argument for isomorphisms between machines and human cognitive traits that
can rely both on mechanisms of genetic replication and variation in population
and on the Darwinian concept of functional analogy between phylogenetically
distinct traits was not available to Turing, given his preference for a different,
competing and at that time still competitive tradition in biology. To Ashby,
Darwinian functional analogy was a desirable and straightforward route but,
given the state of biology at his time, one he could not consider entirely safe.
The perspectives towards a synthesis between their respective approaches might
have much improved with an adoption of some of the key insights of the modern
synthesis, and of what followed afterwards.
5 A lucid secondary source on the modern synthesis is Depew and Weber (1995, Pt. II).
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With respect to the systematic implications, if the importance of the organic
level of adaptation is generally acknowledged as a precondition of behavioural
adaptation in principle, and if the importance of embodiment and environment
in adaptive processes is accepted, Ashby’s material approach to modelling the
action of the brain provides an outline for a biologically informed cognitive sci-
ence – even though neither his homeostat model nor the state of biological theory
available to him were sufficiently equipped to develop it adequately.

If however, as in Turing, adaptive functions are deemed of secondary theo-
retical importance, while trial-and-error learning and neuronal patterns became
topics of his computational models, the possible relevance vs. irrelevance of adap-
tive functions, for matters of consistency, should be allocated to different levels
of his inquiry. The distinction between the formal nature of the computational
method and the materiality and embodiment of its target systems will be of
methodological importance when it comes to computationally modelling embod-
ied phenomena and their adaptive functions. After all, Turing was right in claim-
ing a degree of universality for his computational method and its applicability in
science that could not be attained by other approaches to modelling, including
Ashby’s. Nothing in his approach rules out the possibility of computationally
modelling adaptive processes once a sufficiently elaborated theory is in place. At
the same instance, nothing in Turing’s arguments requires that the operations of
his theoretical machines directly correspond to, let alone are identical with, the
action of the brain or the development of organisms. If one prefers to argue that
cognition and biological pattern formation are computational processes sensu
strictu, one will have to look somewhere else than Turing.

With these constraints and implications stated, it will be possible venture
beyond what Turing and Ashby could de facto accomplish: from opposite angles,
they charted routes towards solutions to present-day issues in biology and cogni-
tive science alike. In conjunction, mathematical principles of biological pattern
formation and the mechanisms of genetic replication, expression and control dis-
covered since will provide information on the bounds on genetic variation and
phenotypical variance. By the same token, they will help to identify mecha-
nisms of transmission and use of both genetic and developmental information
in structuring organic patterns and organism-environment relations. Conversely,
the effects of the structures thus produced might be subject to natural selection
or analogous mechanisms of retention of reproducible properties. Hence, apart
from natural selection proper, organisms become able to use information actively
and directly, or they become able to modify their environments in such a way
as to adapt them to their needs.

It is not too surprising then that, on the one hand, some of the more recent
heterodox accounts of evolution, such as Goodwin (1994), expressly supplement
Darwinian mechanisms with D’Arcy Thompson and Turing’s morphogenetic laws
and similarly minded strands of complexity theory. It is perhaps more surprising
that even as like-minded an approach as developmental systems theory (Oyama
et al. 2001) fails to do so. On the other hand, selection-based self-organisation
of Ashby’s variety encountered a renaissance in some subfields of Artificial
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Intelligence (for example, Beer and Williams 2015; Harvey et al. 1994), or has
been integrated with Turing’s approach in inquiries into the evolution of informa-
tion processing, from molecules to human beings, under the heading of “meta-
morphogenesis” (Sloman 2013; 2018). Hence, what fist may seem like a ten-
sion between two diverging approaches may actually converge on various levels
of inquiry, and may always have been meant to do so by Ashby and Turing
themselves.
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Abstract. I propose a formal approach towards solving Harnad’s “Symbol
Grounding Problem” (SGP) through epistemological analogy. (Sect. 1) The SGP
and Taddeo and Floridi’s “Zero Semantical Commitment Condition” (z-condi‐
tion) for its solution are both revisited using Frege’s philosophy of language, in
such a way that the SGP is converted into two circumscribed tasks. (Sect. 2) The
ground for studying these tasks within human cognition is that both the human
mind and AI are conceivable, as in Newell’s “physical symbol systems” (PSSs),
and that they share the core of the SGP: the problem of constructing an objective
reference. (Sect. 3) After two forms of reference have been identified in the human
mind, I then show why the latter may constitute a model for facing the SGP.

1 Harnad’s Problem Within Frege’s Framework

According to Harnad’s definition, the SGP is the problem of grounding symbols processed
by computational devices on something other than more strings of symbols equally
requiring interpretation (Harnad 1990, 339–340). Moreover, the SGP has to be solved
within a purely formal and syntactical use of symbols (Harnad 1990, 336. See points 2–
4), and interpretability as a systematic property of the adopted symbolic language (Harnad
1990, 336. See points 7–8) must be independently assured by computational devices.

In Frege’s terms, the SGP is, generally speaking, the problem of finding a referent
in such a way that what the object represented is (that is, the referent. See Frege 1892,
57), and how it is comprehended (that is, sense. See Frege 1892, 57), are information
explicitly available to the computational devices. Further clarification is possible.

(P1) According to Harnad, what is missing is one or both of the instruments applied
by «cryptologists of ancient languages and secret codes» (Harnad 1990, 339. They
represents those involved in the solvable version of the SGP): some known starting
language or real world experience. We cannot seek a solution within the former here; it
would imply breaking the first part of the so-called Taddeo and Floridi’s “z-condition”:
not postulating any form of native semantic competence or resource (Taddeo and Floridi
2005, 421), and as such would be a first known (interpreted) language. Thus, if Harnad’s
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list of tools is exhaustive, the focus must necessarily be on real world experience, hence
some kind of reference to the real world has to be found.

(P2) Merely providing some sensorial device is not enough for this purpose, since if
it were, then systematically interpreting symbol strings (both computational or
linguistic) would mean simply having an intuition of the corresponding object with all
the relevant details. As Harnad said, in this case «we’d hardly need the definienda»
(Harnad 1990, 340). It follows that it is within the “linguistic” structure that an indication
about what is the proper referent and how reference has to be organized must be found.

(P3) The z-condition (A) prohibits both nativism of semantic resources and (B) the
uploading of semantic elements, and (C) allows a machine to have non-semantic resources
(Taddeo and Floridi 2005, 421). In my terms, concerning sense, the z-condition (a)
requires both that the interpretation of symbols which express sense be construed and (b)
that the referent not be given through an already constructed semantic framework, and (c)
authorizes any non-semantic resource to form sense and individuate referents.

To sum up, (P1) since referents must be found within the external world; (P2) since
constructing reference must stem from sense; (P3) since symbols expressing sense must
acquire and not presuppose a systematic semantic interpretability, it therefore results that
(∴) the task at issue consists of constructing a sense in such a way that it will make possible
(I) the pointing out of how to find a referent and (II) to actually trace that referent according
to these indications, so that successively, the referent may be explicitly designated.

2 The Root of the SGP

Newell defined his concept of a PSS as «a broad class of systems that is capable of having
and manipulating symbols, yet it is also realizable within a physical universe», where
“symbolic” means that an element has a reference to something else (Newell 1980, 136).
Reference capacity is the matter at issue both in natural language and in symbolic strings
for cognitive purposes. It follows that both the human mind and AI can be thought of
as PSSs, and that the problem of reference is common to both. Concerning the general
situation of reference, PSSs are in the situation represented in Fig. 1.

Fig. 1. Schema of PSSs relative to reference

Why does reference generate the SGP? Consider the following argument. (P1) It is
possible to compose comprehensible sentences without a referent, but (P2) this could
not be possible if either objects were the only source of informative content, or if sense
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alone were not able to convey content by itself. Thus, (∴1) what we call “sense” is a
semantic content by itself. (P3) When acquisition of a real object occurs, the information
conveyed by sense does not increase, although referent is not analytically included
within sense (Cf. Kant 1998, 567): there is a synthetic conjunction, and (P4) every
synthetic conjunction requires a ground for the connection (Kant 1998, 281). (∴2) The
problem of constructing sentences with both sense and an actual referent, is one of
connecting representations conveyed by sense with an appropriate referent, through a
middle term suitable as a ground.

The point is identical for both AI and the human mind: PSSs do not produce a sense
with an actual referent analytically contained within, hence they must construct the
reference; if PSSs could, no SGP would arise, since the production of a symbolic
language would immediately provide a reference to actual objects.

3 Proposed Solution

I consider reference as the extent to which it must result from the relation between sense
and referent, hence I take into account specifically “perception” and “demonstrative
knowledge”. The former is that cognitive structure in which reference is grounded on
sensible data through the connection of such data with the internal activity of repre‐
senting (awareness of the result is “intuition”); the latter is that cognitive structure in
which reference is grounded on the act of proving consequences, which define the
referent. Since the SGP is a problem that derives from the relation between sense and
referent, uncategorized sensation and metacognitive capacities are not at issue here.

Perception can provide no solution to the SGP, since this kind of model would lead to
breaking constraint A/a of the z-condition. Things are represented as having many general
properties (e.g. “white”, “cubic” and so forth), which form sense within perception. Their
referents are features of facts, but these properties do not exist in this general form. Thus,
a further ground is required: namely, intuition, within which the properties are interpreted
through the correlation with their particular occurrences. This interpretation is phenom‐
enal, and is accessed as an already-made fact through intuition. Thus, this scenario can
suggest no purely logical ground, as is indeed required by constraint A/a.

Demonstrative knowledge is different. An example here is helpful to understand this
cognitive structure. In Newton’s studies of planetary movement, referents of physical
laws are not objects as they are grasped in ordinary terms. Knowledge develops within
Euclidean geometry: planets are known as spheres, and their movements become Eucli‐
dean lines, so that their existence and becoming are known within geometry as a frame‐
work. In this case, it is legitimately possible to state that a referent is grasped through
a priori relations posited within the sense as a framework: a referent is reproduced and
known only within the sense which articulates it. Moreover, reference is grounded on
the possibility of individuating true consequences posited by the sense, and it is such a
possibility that confirms what are the referent and its presentation. This is particularly
evident when parts of sense are formulated in advance of its referent: for example, when
Newton predicted the shape of the Earth.
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A general conclusion may be reached from this example, and here lies the proposed
solution. (PA) When the referent is subsumed under a system of elements within which
(A) a priori demonstrable relations are given and (B) these relations convey a sense by
themselves from which a referent can be individuated, then the relationship between
sense and referent is one of replacement. (PB) The case reported in (PA) can be achieved
in principle within a purely symbolic language, so that tasks (I) and (II) (see the first
passage) would be fulfilled within it. (∴A) Under the conditions indicated in (PA), a purely
symbolic language may be intrinsically meaningful, but explicit rules of subsuming
proximal stimuli into sense are required.

To sum up, the proposed solution consists of imitating the model of demonstrative
knowledge. Stimuli have to be subsumed under a given system of elements with features
A-B (for example, mathematics), so that their definition as referents, and their being
grasped, may be traced back and explicitly stated starting from the sense; i.e. upon
receiving a stimulus, the PSS seeks an adequate referent as if it had been a priori defined,
instead of immediately subsuming the referent under its representations. The rules for
manipulating sense and the relations it posits are not necessarily semantic (mathematics
can be implemented in pure symbols), hence the strategy outlined above may, in prin‐
ciple, be developed in purely symbolic terms.

4 Conclusion

In such a scenario, all that would be required would be for a PSS to prove the validity
of its symbolic description of referents, and designate them explicitly according to that
description. This may constitute a formal solution to the SGP, since conditions I-II (see
first part) would be fulfilled.
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Abstract. In this paper, based on the predictive processing approach to
cognition, an enactive theory of need satisfaction is discussed. The theory
can be seen as a first step towards a computational cognitive model of
need satisfaction.

1 Introduction

Life can be seen as the constant process of satisfaction of needs, and thus numer-
ous need theories have been proposed in humanities and social sciences, such as
psychology, economics, philosophy, sociology, anthropology and social policy over
the last century (see Human et al. 2017, for some examples). While no consis-
tency can be found in the usage of the term “need” within or across different
disciplines (Gasper 2007), it can be said that most of the conducted research
on human needs have been dedicated to development of different categories or
lists of needs. Maslow’s (1970) hierarchy of needs can be considered as the most
famous example of such categorizations of human needs. For sure, such catego-
rizations have had conceptual application in their respective disciplines, however
the recent advancements in cognitive science are not reflected in most of them.

In this paper, we reflect on the concepts of need and need satisfaction from
an enactive perspective. Specifically, we take a first step towards development
of a theory of need satisfaction in Predictive Processing (PP) agents. We are
aware that one can draw an intimate connection between need satisfaction, and
the classical problem of planning that has been tackled throughout the history
of AI. However, we hope that our reflection based on PP goes beyond the clas-
sical approaches, and will contribute to constructing future novel approaches
for development of computational cognitive models of need satisfaction or need-
based artificial agents.
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2 An Enactive PP-based Theory of Need Satisfaction

Over the past decade, there has been a great increase in research based on
Bayesian approaches to brain function. According to this approach, which is
called predictive processing by Clark (2015), the brain is a probabilistic infer-
ence device: a sophisticated hypothesis-testing mechanism that uses hierarchical
generative models and seeks to minimise its prediction errors about sensory
inputs (Hohwy 2013). In other words, based on PP, the brain continually and
at multiple spatiotemporal scales tries to minimise the error between its predic-
tions of sensory input and the actual incoming input. A wide range of anatomical
and physiological aspects of the brain and various cognitive processes has been
explained and modelled using the predictive processing approach (Clark 2013).

How can the concept of need be understood from a PP perspective?
We can have two approaches to answer this question:

(1) From a systemic PP-perspective, any living self-organizing system embodies
a predictive generative model in order to ensure that free energy is minimised
through action (Calvo and Friston 2017). Therefore, one can consider, the
minimization of free energy (or minimization of surprise) over time, as the
basic need of any PP-agent. While this radical standpoint could be very
inspiring for a general understanding of notions of life and need, it seems
that grounding a computational cognitive model of need satisfaction on this
general systemic view would be a very difficult task.

(2) From a top-down perspective, we can consider needs as general priors (hyper-
priors). It is important to emphasise that this view does not preclude other
general priors which cannot be considered as needs (such as the general reg-
ularities in the physics of the world) (see Hohwy 2013, p. 116). While this
can be considered as a more conservative view, it seems that it provides an
appropriate framework for going beyond a purely conceptual understanding
of need. Considering needs as general priors enables us to tackle the funda-
mental question of how needs are satisfied in a PP-agent? In other words,
by applying this perspective, elements of the PP formal framework (Hohwy
2012) can be used to model the process of need satisfaction:

(I) Hierarchy : The PP mechanism is a general kind of statistical building
block that is repeated throughout different cortical levels. The input of
each level is conceived as prediction error and what cannot be predicted at
one of the levels is passed on the next level. Lower levels of the hierarchy
predict basic attributes and causal regularities at very fast time-scales.
More complex regularities, at increasingly slower time scales, are dealt
with at higher levels. This can potentially provide a formal solution for
dealing with different levels of needs, desires, satisfiers, etc (see Human
et al. 2017, for a discussion on these notions).

(II) Contextual probabilities: Predictions at any level of the hierarchy are sub-
ject to contextual modulation. This would provide the appropriate key
for dealing with the contextual differences in needs satisfaction.
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(III) Empirical Bayes: In empirical Bayes, priors are extracted from hierarchi-
cal statistical learning. This empowers us to not only model the prior
beliefs about needs/satisfiers on a moment to moment basis but also
through long-term exposure to individual experience. Furthermore, more
hard-wired and instantiated needs, e.g. over evolutionary time-scales, can
also be modelled based on the empirical Bayes.

(IV) Active Inference: Based on the depth of the represented causal hierarchy,
the active inference can be a useful tool for modelling short-term and
long-term planning for needs satisfaction.

(V) Top-down and Bottom-up: Seeing the bottom-up information as
prediction-errors and top-down information as causal models of the world,
we can develop a model of needs satisfaction that deeply considers the
statistical regularities of the world.

We shall consider all these elements as predictive processing is applied to the
problem of need satisfaction. If this is done appropriately, it would be possible to
model need satisfaction in a way which (a) is consistent with state-of-the-art in
cognitive science such as enactivism, and (b) captures different aspects of need
satisfaction such as context-dependency and individual heterogeneities.
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Abstract. Many believe that a suitably programmed computer could act for its
own goals and experience feelings. I challenge this view and argue that agency,
mental causation and qualia are all founded in the unique, homeostatic nature of
living matter. The theory was formulated for coherence with the concept of an
agent, neuroscientific data and laws of physics. By this method, I infer that a
successful action is homeostatic for its agent and can be caused by a feeling -
which does not motivate as a force, but as a control signal. From brain research
and the locality principle of physics, I surmise that qualia are a fundamental,
biological form of energy generated in specialized neurons. Subjectivity is
explained as thermodynamically necessary on the supposition that, by converting
action potentials to feelings, the neural cells avert damage from the electrochem‐
ical pulses. In exchange for this entropic benefit, phenomenal energy is spent as
and where it is produced - which precludes the objective observation of qualia.

1 Introduction

The thesis of strong artificial intelligence is that the mind is essentially a computer, such
that a suitably designed and programmed machine could pursue its own goals and have
phenomenal experiences (Johnson-Laird 1988). In this paper, I contend that these claims
are analytically and scientifically untenable, and describe a biological solution to the
mind body problem. My approach is naturalistic and scientific; I assume that agency
and qualia supervene on other phenomena that we take to be natural, and that qualia
have regular, discoverable effects on the world. The theory I offer is based on the eval‐
uation of hypotheses for their coherence with the concept of an agent, empirical data
and laws of physics. Scientific explanation often requires the postulation of mechanisms,
like the events by which an axon conducts an electro-chemical pulse (Machamer et al.
2000). Accordingly, the consideration of mechanisms is central to my method, which
leads me to infer that actions and feelings have a common origin in the homeostatic
nature of living matter.

The three main sections of the paper concern life, agency and qualia, respectively. I
first review the relevant properties of a living system as an entity that is self-organized,
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and that maintains itself against thermodynamic decay. The next section concerns the
nature and source of agency. From the concept of an agent, I deduce that it is a living
substance. Because behavior motivated by a feeling has the homeostatic form of an
action, I infer that life is the source of qualia, and that mental causation is based in the
regulatory function of affective experiences. In the third main section I address the nature
of qualia and the mechanism of their production. Laws of physics are adduced for the
hypothesis that a feeling depends on the matter and energy at its location, rather than a
causal pattern. From empirical evidence, I surmise that qualia are a distinct form of
energy, a property generated in specialized neurons. The subjectivity of qualia is
explained as required by thermodynamics if, by producing them, the source of the qualia
avoids an increase in its entropy. I conclude with some remarks on the merits of the
theory.

I avoid the term “consciousness” in the paper due to its many meanings, one of which
involves cognitive attention. Here, my theorizing on consciousness is limited to ‘qualia’,
what Block (1995) describes as ‘phenomenal consciousness.’ I use “subjective” to mean
that a quale is not objectively observable and, in that sense, is private to its subject.

2 Life

2.1 Life Is Self-organizing

The scientific view of life is that it is a natural phenomenon. A living cell is commonly
characterized as self-organized, that is, the structure of the cell results from the materials
that comprise it, not from an externally imposed design plan. Living matter is similar in
this way to other substances that depend on chemical forces for their composition (e.g.,
crystals, acids, proteins). No outside influence is needed for the internal organization of
such substances. As Pross (2003) explains, “living systems are no more than a mani‐
festation of a set of complex chemical reactions and, as such, are governed by the rules
of kinetics and thermodynamics.” The relevant implication with regard to agency is that
the behavior of a living organism in a particular environment is self-determined; its
movements result from the way its constituent materials organized themselves.

2.2 Life Is Self-maintaining

Jonas (2001) writes that “in living things, nature springs an ontological surprise in which
the world-accident of terrestrial conditions brings to light an entirely new possibility of
being: systems of matter that are unities of a manifold … in virtue of themselves, for
the sake of themselves, and continually sustained by themselves.” Like all systems, a
living organism obeys the second law of thermodynamics, which states that the entropy
(i.e., disorder) of an isolated system increases with time. That is, every system tends to
decay to its equilibrium state of maximum disorganization; for a living thing, this dete‐
rioration results in its death. Preventing or slowing this breakdown requires the expen‐
diture of energy from outside the system. In this regard, a living cell functions somewhat
like a refrigerator; it consumes energy from external sources to prevent thermal decom‐
position. However, a refrigerator only slows the decay of things inside it, while a cell
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sustains its own substance. Schrödinger (1944) views this capability as unique to living
matter, and explains that “the device by which an organism maintains itself stationary
at a fairly high level of orderliness (=fairly low level of entropy) really consists in
continually sucking orderliness from its environment.”

The life-supporting order that is obtained from the environment is ‘free energy’ in
various forms, energy at a sufficiently low level of entropy such that it can be metabolized
by the organism. For life on earth, the ultimate source of free energy is sunlight, which
is used by plants to construct organic complexes that contain chemical energy. Much of
the energy and material consumed by a living cell is used in re-synthesizing the
numerous proteins required to maintain the cell, as the proteins continually degrade
(Pross 2012). Systems that consume energy to maintain themselves in a far-from-equi‐
librium state are described as ‘dissipative’ by Prigogine (1978) in that they reduce the
amount of free energy in the environment, the energy that can be used for work.
Schneider and Kay (1994) hold that “life should be viewed as the most sophisticated
(until now) end in the continuum of development of natural dissipative structures, from
physical to chemical to autocatalytic to living systems.”

Maturana and Varela (1980) characterize a living system as a mechanism that is
homeostatic with regard to its own composition. They use the term “autopoietic” (i.e.,
self-constructing) for such a system: “an autopoietic machine continuously generates
and specifies its own organization through its operation as a system of production of its
own components … it has its own organization (defining network of relations) as the
fundamental variable which it maintains constant.”

So, a living cell is self-organized, and its movements are self-determined relative to
its environment. Those movements involve the consumption of materials and energy to
repair the structure of the cell against the effects of heat and other threats to its biological
integrity. A living cell is a homeostatic (i.e., self-maintaining) substance.

3 Agency and Mental Causation

Conceptually, an agent is something that moves itself to realize a goal; such behavior is
termed an action. The lack of the goal is the motivation for an action, and the movement
for the objective is initiated and controlled by the agent itself. A successful action
concludes with the attainment of the goal, which ends the motivation for the behavior.

3.1 An Agent Is a Type of Substance

An agent ‘moves itself’ in the sense that it determines the way it behaves in response to
some stimulus. An agent is ‘active’; its movement is powered by energy it contains. In
the words of Barandarian et al. (2009), “an agent is a source of activity, not merely a
passive sufferer of the effects of external forces.”

In general, the two determinants of a system’s movement are the characteristics
(material and form) of its components, and their organization. Computers and the oper‐
ations they perform are multiply realizable: the same sequence of computational oper‐
ations (i.e., the algorithm or software program) can be implemented using a wide variety
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of materials, and the same material can be used to realize a limitless variety of compu‐
tational algorithms.

Because a computer is multiply realizable, the specific sequence of operations it
performs depends only on its organizational structure. But this structure is not deter‐
mined by the material of the computer. If it were, the same type of material could not
be used to run many different programs. So, the material composition and functional
organization that determines how a computer moves is not intrinsic to the computer. It
is not an agent, but a tool of its designer.

Accordingly, a necessary property of an agent is that it is self-organized, which
makes it the source of its own behavior. This entails that the structure of an agent depends
on forces that are intrinsic to its components. Hence, an agent is organized by chemical
bonding, forces that inhere in the very nature of the joined materials. But when entities
combine chemically, the resulting substance differs in kind from its constituents taken
individually. For example, the characteristics of hydrogen and oxygen are lost when
they bond to form water.

So, the concept of an agent entails that it is a chemically composed substance, one
which consumes energy to move for a goal.

3.2 Agency Depends on Living Matter

What kind of chemical substance is an agent? An action commences with some sort of
change within its agent, a change that disturbs the agent from its quiescent state. This
change ‘motivates’ (i.e., is the proximate cause of) the action. But because an agent
moves for a goal, it must also be the ‘want’ of the goal that triggers its movement. So,
the want of the goal is the motivating change in the agent. Accordingly, the goal of an
action is to undo the change in the agent that motivated the movement, thereby returning
the agent to its prior ‘resting’ state. Hence, a successful action has a ‘circular’ form; it
begins and ends in the same entity within the agent. In contrast, a reflex is a ‘linear’,
programmed movement that, once initiated, is carried out irrespective of its effect (if
any) on that which triggered it. Unlike a reflex, an action has a homeostatic nature; an
agent moves to keep itself in a certain state. And, as argued above, it is a substance that
determines its own movement. Hence, an agent is a material having a homeostatic nature.

The concept of an agent accords with the unique character of living matter. A devi‐
ation from its self-maintaining activity causes a living cell to expend energy such that,
if its movement is effective, the cell returns itself to a more sustainable, dynamic state.
I believe that Aristotle recognizes the homeostatic basis of agency where, in Apostle’s
(1981) translation of de Anima, he asserts that “the principle of moving and stopping …
is a power of such a nature as to preserve that which has it and to preserve it qua such.”
Aristotle coins a word for this power: entelecheia. In his literal translation, Sachs (2001)
takes this term to mean “being at work staying itself”. This description of an agent is
fully consistent with the scientific characterization of life as reviewed above, wherein a
cell is depicted as consuming energy in a manner that maintains its material composition
and structure - thereby enabling it to continue this very activity. A living cell is its own
goal.
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But living organisms do not necessarily behave in this way; a moth that flies into a
flame apparently moves reflexively, rather than for self-preservation. How, then, do
some living organisms move as agents?

3.3 Qualia Originate in Living Matter

A movement of an organism that is motivated by an affective feeling has the homeostatic
form of an action; successful behavior ends the painful or pleasurable feeling. The usual
response to thirst is an example; the feeling that motivates the movement is extinguished
in the organism when it restores itself to its hydrated condition. Similarly, behavior for
pleasure ends when satiation is reached. Damasio (2012) remarks that “in brains capable
of representing internal states … the parameters associated with a homeostatic range
correspond, at conscious levels of processing, to the experiences of pain and pleasure.”
On the assumption that a feeling is caused by some change in its subject, hedonically
motivated movement is an action; attainment of the goal occurs when the part of the
organism that produced the feeling is returned to its prior, resting state. In this regard,
Spencer (1855) notes that feeling-related movements begin when reflexive motion ends:
“…as the psychical changes become too complicated to be perfectly automatic, they
become incipiently sensational. Memory, Reason, and Feeling take their rise at the same
time.” With my earlier inference that an action is a movement of living matter, the
observation that hedonic feelings can motivate actions enables a straightforward deduc‐
tion regarding the origin of at least some types of qualia:

Every action is caused by a change in a living substance.
Some actions are caused by affective feelings.
An affective feeling is caused by a change in a living substance.

This deduction is specific to hedonic feelings. But all qualia are subjective, and I will
argue in Sect. 4.4 that subjectivity results from the living nature of the source of qualia.
Assuming that is correct, it entails that all qualia - not just the affective types - depend
on life. The syllogism above also presumes that qualia can influence behavior in some
way. The question of how that occurs is the problem of mental causation.

3.4 Qualia Affect Behavior as Control Signals

For some, the claim that feelings can influence physical movement is equivalent to
Cartesian interactionist dualism. This is the view that mind and body are fundamentally
different, but that there are causal connections between them. Dualism is not entailed
by interactionism, however. In Newton’s time, many held that his theory of gravity
required the existence of a supernatural phenomenon, because it was widely believed
that all forces operated by contact (Gibbon 2002). The current, ‘physicalist’ view of the
world reflects a stance similar to that of Newton’s critics; physicalists typically claim
that the ‘physical’ (i.e., non-mental) world is causally closed. But this is contrary to
experience. If a phenomenon had no causal relationships with the rest of the world, we
would be totally oblivious of it - but we are not oblivious to qualia. In Russell’s (1959)
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view, they are the only sort of thing we know by direct ‘acquaintance’, rather than
through inference.

On the theory of qualia offered here, they can have effects at two levels. At the micro-
level of their production, qualia benefit the biological integrity of their living source, as
I will posit in accounting for their subjectivity. At a higher level of organization, a
phenomenal experience can prompt an organism to act in some way, as assumed in the
previous section with the example of thirst.

A possible objection to the view that qualia can cause actions is that, if they were to
influence an organism’s movement, they would have to do so by exerting a telekinetic
force on neural activity - and there is no evidence of such a force. But telekinesis is not
necessary for feelings to affect behavior; they can do so as control signals. Analogously,
a ship can be steered automatically using light from stars, even though the starlight exerts
no relevant force on the ship. All that is required is that the ship be able to detect the
stars, measure their positions relative to its heading, and adjust its course accordingly.
All the force needed to change the direction of the ship is supplied by the ship itself, not
by the stars. Similarly, no force on neural activity is needed for a feeling to affect the
behaviour of an organism; the organism need only detect the feeling and respond to it
in some way – generally, by selecting a type of movement that will influence the feeling
(e.g., by eliminating the organism’s thirst).

One source of the perceived difficulty in understanding mental causation is a line of
reasoning that Kim (2005) calls the “supervenience argument”. Let M be the experiential
property of a mental state like pain, where M supervenes on its physical base P. M is
thought to cause P*, some neural event that results in pain-reducing behavior. But P also
appears to be the cause of P*, in which case P* is causally over-determined. Such dual
causation is very unlikely so either M is reducible in some way to P, or M is epipheno‐
menal.

This argument posits that the neural state P, on which M supervenes, is also the cause
of P*, the physical response to M. But this is generally not the case. Between the feeling
and the behavioral response to it, there can be a lengthy interval of practical reasoning
concerning the type of movement (if any) to perform. Otherwise, every movement would
be a reflex. Hence, M supervenes on P, but P does not cause P*. M and P* have different
causal bases, so causal over-determination is not entailed by M’s supervenience on P.
This can be seen with the ship analogy wherein one mechanism (a photo-detector)
produces a control signal from the starlight, and a separate, mechanical system uses that
signal to adjust the ship’s rudder.

Hence, the science of mental causation is that of control theory (i.e., cybernetics),
wherein the operation of a system is typically adjusted based on an error signal that
represents the difference between the goal for the system and its actual state (Ashby
1956). A number of theorists have characterized goal-oriented behaviour as a process
involving feedback control (MacKay 1966; Powers 1973; Carver 1979; Carver and
Scheier 1981; Marken 2002). The ‘navigation’ of an organism using its feelings as
control signals is similar to the stellar navigation of a ship – except that, in the case of
the organism, the source of the feedback signals is internal to the ‘vessel’. The organism
experiences affective qualia and, using learned behavior and/or practical reasoning,
responds accordingly. Just as the imagined ship can’t navigate without the starlight, an
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organism that is guided by its feelings is in mortal danger without them. Humans that
lack sensitivity to pain often die before reaching adulthood, because they fail to notice
injuries (Nagasako et al. 2003).

The view that affective qualia perform a control function is not new to psychology;
Cannon (1932) describes the role that feelings like hunger and thirst perform in the
homeostatic regulation of bodily requirements - like water, sugar, proteins, fat and
calcium, as well as the oxygen and salt contents of the blood. Schulze and Mariano
(2004) offer the following, generalized account:

Since hedonic states arise whenever a control system produces a chronic regulation error, this
implies that the control system is unable to regulate an important physiological variable within
the limits required to maintain the integrity of the organism. The hedonic states that arise in
response to an increasing regulation error serve to co-opt the behavioral system and its resources.
It is then up to the latter to select and execute the appropriate behaviors drawing on cognitive
systems in the process.

In addition to physiological conditions, thoughts can also result in motivating feel‐
ings, as Hume (1739) describes:

’Tis obvious, that when we have the prospect of pain or pleasure from any object, we feel a
consequent emotion of aversion or propensity, and are carry’d to avoid or embrace what will
give us this uneasiness or satisfaction. ’Tis also obvious, that this emotion rests not here, but
making us cast our view on every side, comprehends whatever objects are connected with its
original one by the relation of cause and effect.

So, an action may be stimulated by the anticipation of pleasure or pain, and this
apparently occurs through a faint experience of the expected feeling. Freud famously
contends that this sort of process can occur subconsciously, causing us to pursue or
repress particular thoughts and memories. Hence, affective feelings function as control
signals that motivate an organism to think and/or move to realize a goal-state.

The ability to respond to their feelings conferred a significant biological advantage
on those species that evolved this capability. An organism that is limited to reflexive
movements is constrained by its evolutionary past, like the aforementioned moth that
flies into a flame. In contrast, motivation by its affective feelings enables an individual
organism to respond in the present, to new threats and opportunities. Such a phenotype
has the possibility to cognitively ‘adapt’ to some types of events within its own lifetime.

4 The Nature and Mechanism of Qualia

I inferred above that the source of qualia is some sort of living substance. In this section,
I consider the ontological nature of qualia and the type of event that realizes them.
Whereas the arguments concerning agency were mainly analytical, with regard to qualia
they are primarily scientific.

4.1 Qualia Are Energy Generated in Specialized Neurons

Qualia appear to be a form of energy. We detect them, and detection generally relies on
transduction - the conversion of energy from one form to another. Qualia can carry
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information for both cognitive and behavioral functions, and communications theory
holds that information is modulated energy. Additionally, it seems that everything
recognized by modern physics is energy of some type, so feelings might be as well. This
supposition is consistent with various observations. These include data from brain stim‐
ulation reward experiments, the perceived intensity of sensations as a function of neural
activity, phenomenal experiences of some types, and measurements of energy consump‐
tion by the brain.

When humans undergo electrical stimulation at some brain sites, they report expe‐
riences of pleasure (Heath, 1964). So compelling is the effect on some subjects that the
use of this technique raises ethical issues (Oshima and Katayama 2010). In Brain Stim‐
ulation Reward studies on rats, electrical pulses are applied to regions of a rat’s brain
that correspond anatomically to these human ‘pleasure centers’; one that is typically
targeted is the medial forebrain bundle. A rat will work for these pulses; its motivation
is measured by the effort it expends to obtain the reward.

A key result from these experiments is that the strength of the reward effect depends
on the total firing rate produced in the relevant neurons, not on the form of the stimulating
pulse train (Gallistel et al. 1981; Shizgal, 1999; Simmons and Gallistel 1994). An
explanation of this phenomenon suggests itself: the relevant neurons transform the
electro-chemical energy of the neural spikes to the phenomenal energy of pleasure, the
perceived intensity of the pleasure is proportional to the aggregate energy of the
converted neural pulses, and a rat works harder for rewarding pleasure that is more
intense.

The strength of sensory qualia also appears to depend on the energy in the associated
neurons. In a study on odors, the experienced intensity of a smell correlated with the
rate of neural impulses in the amygdala (Winston et al. 2005). Similarly, Mather (2006)
reports that “the most successful model of loudness perception … proposes that the
overall loudness of a given sound is proportional to the total neural activity evoked by
it in the auditory nerve.” The rate of neural firings has also been observed to have
considerable influence on the visual perception of brightness (Kinoshita and Komatsu
2001) and on the tactile perception of the amplitude of a surface vibration (Bensmaia
2008).

Certain types of phenomenal experiences also support the hypothesis that qualia
result from an energy transduction, rather than information processing. A strong blow
to the head produces the visual sensation of ‘seeing stars’. Apparently, some of the
mechanical energy of the jolt is transduced to action potentials in those neurons that
convert the pulses to visual qualia. Also, visible and audible white noise carry no infor‐
mation, so there can be no symbolic representation in the resulting neural activity to the
effect that ‘this is noise’. Yet, an experience of such a phenomenon provides us with
knowledge of its random character and its strength; how can this be? Although noise
lacks information, it does consist of energy. Evidently, the energy comprising the neural
noise is converted to a phenomenal experience, one which retains the relative intensity
and spectral properties of the aggregated neural pulses.

Additionally, some measurements of energy consumption by the brain support the
hypothesis that a portion of that energy is converted to feelings. Using positron emission
tomography (PET) and functional magnetic resonance imaging (fMRI), Raichle (2006)
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measured the brain’s responses to controlled stimuli (in terms of changes in blood flow).
Because the increase in energy consumption due to the stimuli was much less than
expected, he surmised that “the brain apparently uses most of its energy for functions
unaccounted for.” Raichle calls this ‘dark energy’ and posits that it supports intrinsic
neural activity for functions like the maintenance of information.

I hypothesize that at least part of this energy is spent in the production of qualia, a
fundamental form of energy that was not captured in Raichle’s measurements. When
awake, we are continuously subjected to feelings of various kinds (both conscious and
subconscious) in sensing our external and internal environments. If phenomenal expe‐
riences are a form of energy, generating those feelings would increase the baseline
metabolic rate of the brain. This would explain the considerable amount of energy that
was ‘missing’ in Raichle’s studies.

In principle, the sort of experiment performed by Raichle could provide a means for
falsifying the hypothesis that qualia are a form of energy. If that theory is correct, meas‐
urements of regions that are sources of feelings should show more ‘missing’ energy than
locations that are not. Such an experiment depends on identifying the areas of the brain
that produce qualia, and on a measurement technique with sufficient spatial resolution
to distinguish those regions from locations that don’t generate feelings.

4.2 A Phenomenal Experience Depends on a Local Event

There are two alternatives regarding the spatio-temporal nature of the event(s) that cause
a phenomenal experience. One is the computational hypothesis that a quale results from
a causal pattern, such that the existence and character of a quale depend on multiple
events distributed over space and time. The other possibility is that a quale is caused by
a singular event at a particular space-time location. For the latter alternative, a quale
must depend on the type of matter and/or energy at its location; otherwise, it would be
under-determined. From the concept of an action, I inferred above that a phenomenal
experience has its origin in some type of substance. Here, I argue again for this claim -
this time mainly from science.

The causal-pattern hypothesis faces a challenge from physics in the principle of
locality, which holds that an event at a space-time location depends only on what is at
that location. Einstein expressed the importance of this principle in a letter to Max Born
(1971, 171): “If this axiom were to be completely abolished, the idea of the existence
of quasi-enclosed systems, and thereby the postulation of laws which can be checked
empirically in the accepted sense, would become impossible.” Intuitively, the locality
principle seems correct; how could an event at some instant be influenced by things that
are not at the event’s location at that instant? Locality does not preclude the existence
of causal ‘chains’ over space and time, but it does entail that the type of event that occurs
at a time and place depends only on what exists then and there. The motion of a billiard
ball may have its historical cause in a complex pattern of collisions involving many
other balls, but the type of motion a ball exhibits is due only to the way it is impacted
by the last ball in the sequence. In general, the locality principle is evident in laws of
physics, which do not include any time delays or spatial separations between causes and
effects. A changing magnetic field produces an electric field when and where the change
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in the magnetic field occurs. A mass is accelerated by gravity in proportion to the strength
of the gravitational field at the space-time location of the mass.

Turing’s (1950) canonical characterization of a computer also conforms to the
locality principle. The next state of his machine depends only on the current state and
the input to that state, as reflected in the computer’s ‘machine table’. Accordingly, an
effect that depended on a pattern of prior machine states would not be the result of a
computation. Furthermore, the supervenience formulation of ‘minimal physicalism’ as
described by Kim (1998) also reflects locality: “Mental properties supervene on physical
properties, in that necessarily, for any mental property M, if anything has M at time t,
there exists a physical base (or subvenient) property P such that it has P at t, and neces‐
sarily anything that has P at a time has M at that time.” [my underline] This precludes
a ‘physicalist’ view of mental states as realizations of causal patterns.

It might be contended that locality does not apply to some types of events, those that
exhibit what is called ‘quantum entanglement.’ Einstein was sceptical of this phenom‐
enon, which he termed ‘spooky action at a distance’. But this effect has been confirmed
experimentally; the spin-polarizations of electrons generated in pairs and then separated
seem, when measured, to influence each other instantaneously across space. The specific
basis for this dependence is debated, but the possible explanations all appear to entail a
non-local influence of some kind (Yanofsky, 2013).

Nevertheless, quantum entanglement can’t rescue causal-pattern theories of qualia
- especially if feelings are a form of energy. Information can’t be conveyed using entan‐
gled properties, and there is no evidence that neural activity in the brain depends on non-
local effects. Whether a particular neuron fires is fully explained by local events at its
synapse; it does not depend on the history of those events. Furthermore, if a feeling is
realized by an energy transform, that event must be localized - or fundamental laws of
physics would be violated. Specifically, if the emerging energy-type did not come into
being at the same time that the prior type is extinguished, there would be a violation of
the conservation of energy in the interim. Or, if the new form of energy did not arise at
the same place as the prior type, the relativistic limit on the speed of signalling would
be breached.

Ironically, the physicalist view that a quale depends on a causal pattern implies some
sort of non-physical causation. Consider two computers that are in qualitatively identical
physical states at some instant. The first has executed the computational algorithm that
is thought to be necessary for realizing some feeling, while the second has simply been
placed in the same, resulting state. If the first computer has a phenomenal experience
while the second does not, that difference could only be due to some non-physical
influence because, by stipulation, the two computers are physically identical. Any
‘memories’ of the computational sequence that exist in the first computer would also be
duplicated in the second - unless those ‘memories’ were non-physical.

Therefore, a feeling depends only on that which exists at its space-time location,
which entails that qualia are determined by a particular kind of ‘stuff’. In Sect. 3.3 above,
I deduced that qualia originate in living matter, but it remains to consider the sort of
mechanism by which they are realized, and why they are private.
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4.3 Qualia Are Subjective Because They Are Spent as They Are Produced

Subjectivity concerns the process of observation. In general, observation is a form of
communication in which energy of some type carries information from the event of
interest, to the observer. Objective observation requires that, in principle, any observer
could have received the very same modulated energy. So, for a feeling to be objectively
observable qua feeling, some of the phenomenal energy would have to leave its source.
Evidently, this is not possible for qualia. A similar circumstance exists in the cosmo‐
logical phenomenon of a black hole. Any light produced by, or within the vicinity of,
the ‘hole’ is not observable because it can’t escape the gravitational force of the collapsed
star.

This suggests that a feeling is subjective because it does not escape its origin. Unlike
the energetic property of thermal heat, phenomenal energy is apparently not transferrable
by contact, nor is it radiated. But the energy of a phenomenal experience can’t simply
disappear when the experience stops; it must be transformed to energy of another kind.
I posit that qualia are converted to another type of energy as, and where, they are gener‐
ated. The homeostatic character of life offers a clue to the nature of that energy trans‐
duction.

4.4 Qualia Are a Defense Mechanism of Their Living Micro-source

I have argued that the source of qualia is some type of living matter. In addition to
metabolizing energy and materials to keep itself going, a living cell defends itself against
some dangers to its well-being. One such mechanism is its construction of heat-shock
proteins when the cell is confronted with various threats - like thermal changes, oxidative
stress, or some toxic substances (Richter et al. 2010). I hypothesize that, like the produc‐
tion of heat-shock proteins, the generation of qualia serves a defensive, homeostatic
function for the living matter that produces feelings in specialized neurons. I shall use
the term “q-source” for this substance. I posit that action potentials in these neurons
threaten the biological integrity of the q-source, and it avoids harm from the neural spikes
by converting them to feelings.

Why does this make feelings private? The second law of thermodynamics dictates
that preventing an increase in the entropy of the q-source requires the expenditure of
energy, just as a refrigerator must use energy to slow the increase in the entropy of its
contents. If the act of transforming neural pulses into qualia averts a threat to the biolog‐
ical integrity of the source of the qualia, energy must be consumed for that benefit. That
energy apparently comes from the qualia themselves; if so, they never leave their source.
As they are generated, qualia are transformed immediately to another type of energy;
this precludes objective observation of them. I earlier analogized the q-source to a
refrigerator. If the above account of qualia’s generation is correct, the q-source is a
remarkable sort of refrigerator. Unlike the kind of machine we use to preserve food,
which requires energy from an external source, the energy used by the q-source to ‘cool’
the ‘hot’ things inside it (i.e., the action potentials) comes from those very things!

A different perspective might clarify this postulated mechanism. Living matter
contains potential energy that resides in its structure, an organization of atoms and
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molecules that enables the substance to perform the activities that keep it alive. I
hypothesize that action potentials can damage the organizational structure of the q-
source. As neural activity begins to have this effect, the q-source reacts by converting
the electro-chemical pulses to feelings. Ridding itself of the neural spikes in this way
enables the q-source to return to its original structure, which benefit is compensated by
the immediate expenditure of the qualia. Energy is thereby conserved; the energy in the
neural pulses is converted to the energy of the feeling, which is instantly exchanged for
the potential energy of the q-source. Accordingly, the generation of feelings is an action
of the q-source that is due to its homeostatic nature; qualia are produced by living matter
of some kind.

5 Concluding Remarks

The biological theory described in this paper is more scientifically conservative than the
dominant, computationalist hypothesis because, while it posits a new form of energy, it
does not violate any law of physics. And it explains more.

Regarding agency, the multiple realizability of a computer entails that the form of
its movement has an external source (its designer), while the intrinsic nature of living
matter bestows it with self-determined behavior for a self-determined goal: itself. The
computational theory does not fundamentally distinguish actions from reflexes. On the
biological hypothesis, actions exhibit the ‘circular’, homeostatic movement of a self-
sustaining substance, while reflexes have a ‘linear’, programmed form. Functionalist
theories struggle to find a causal role for the experiential aspect of a feeling, but this is
not a problem for the biological theory wherein affective qualia serve as control signals
in the regulatory processes by which a living organism maintains itself.

The central assumption of the computationalist view, that a phenomenal experience
is determined by a causal pattern, contradicts the locality principle of physics. It thereby
entails a radical form of causation that defies space and time. The biological theory does
not violate locality; it postulates that a quale is the product of a singular, localized event:
an energy transduction. No scientific account of subjectivity is provided by the orthodox,
functionalist theory, while subjectivity is nomologically necessitated if, at the micro-
level, qualia prevent an increase in the entropy of their source – a function that accords
with the homeostatic character of life. Neither theory accounts for the experiential prop‐
erty of a feeling, but this epistemological failing is consistent with the inference that
qualia are a fundamental form of energy.

No part of the biological theory is ad hoc. As pictured in Fig. 1, it provides integrated,
mutually supporting accounts of agency, qualia and their subjectivity - all scientifically
based in the thermodynamically unique, self-maintaining nature of living matter.
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Fig. 1. Agency and qualia depend on the homeostatic nature of life.
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Abstract. I argue for a formal specification as a working understanding
of ‘computational creativity’. Geraint A. Wiggins proposed a formalised
framework for ‘computational creativity’, based on Margaret Boden’s
view of ‘creativity’ defined as searches in concept spaces. I argue that
the epistemological basis for delineated ‘concept spaces’ is problematic:
instead of Wiggins’s bounded types or sets, such theoretical spaces can
represent traces of creative output. To address this problem, I propose a
revised specification which includes dynamic concept spaces, along with
formalisations of memory and motivations, which allow iteration in a
time-based framework that can be aligned with learning models (e.g.,
John Dewey’s experiential model). This supports the view of computa-
tional creativity as product of a learning process. My critical revision of
the framework, applied to the case of computer systems that improvise
music, achieves a more detailed specification and better understanding
of potentials in computational creativity.

1 Introduction

So far, there is no known definitive description of what computational creativity
might be; to improve that end I argue for a formal specification as a working
understanding of computational creativity for music. My working understand-
ing supports an analytical view of machines that improvise co-creatively with
humans, and the specification can also serve as a generative tool for develop-
ment of new improvising systems (as in (Mogensen 2017b)).

A computational creativity is not necessarily in the same category as human
creativity and comparing these two ‘creativities’ may well, in logic, be a category
mistake. Kinds of what we call creativity may have in common what Wittgen-
stein called ‘family resemblances’, and so I take the creativity concept family as
a term covering possible ‘creativities’ that exhibit both similarities and differ-
ences. The vaguely defined ‘human creativity’ serves heuristically as prototype
for the creativity concept family only to the extent that I use terms derived
from ideas about human creativity to name and to guide the conceptualisations
of my proposed components in the specification for computational creativity, no
identity between human creativity and computational creativity is implied.

c© Springer Nature Switzerland AG 2018
V. C. Müller (Ed.): PT-AI 2017, SAPERE 44, pp. 57–68, 2018.
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I take as given that anything that a current digital computer (or a Universal
Turing Machine1) can do, can be represented in a formal specification. There-
fore, if a computer can in some way be programmed to perform creatively, in
other words produce a kind of ‘creativity’ and become a member of the creativity
concept family, then such a creativity must be definable as a formal specification
of ‘computational creativity’. Developing a more detailed formal specification for
computational creativity is an essential step towards understanding the poten-
tials of such technology; and such specification can additionally serve as a guide
for developing more capable implementations that can interact constructively
with human priorities.

Creativity is often referred to as consisting of some creative process, whereas
I argue for understanding creativity as determined by product achieved by a
learning process, so that creativity itself is not a process but instead is a product
(echoing Glickman (1976)). In support of this view of creativity I argue that the
formal specification allows alignment with learning models (e.g., John Dewey’s
experiential model (Dewey 1938), (Kolb 2015)).

I base my formal specification on my reworking, in effect replacement, of
Wiggins’s (2006a) formal framework, which in turn was based on Boden’s (2004)
conception of ‘creativity’ as searches in concept spaces. In order to allow the
alignment of the specification with the experiential learning model as mentioned,
I argue that the epistemological delineation of ‘concept spaces’, in the Wig-
gins/Boden framework, is problematic: instead of bounded types or sets (that
imply a rather static character), such theoretical spaces should more properly
represent traces of creative output.2 These emergent traces are much better rep-
resented by dynamic concept spaces. I examine my revised specification in the
context of computers that co-creatively improvise music together with human
performers.3

2 A Working Specification for Computational Creativity

My working specification for computational creativity, in Z-style notation,4 views
creativity as searches in conceptual spaces. In my initial adaptation of Wiggins’s
1 The Universal Turing Machine was presented in (Turing 1936). ‘The [Universal]

Turing Machine not only established the basic requirements for effective calculability
but also identified limits: No computer or programming language known today is
more powerful than the Turing Machine’ (Petzold 2008, p. 330). See Petzold’s (2008)
book for an insightful interpretation and discussion of Turing’s 1936 article.

2 I use the term ‘trace’ in the sense of Jean-Jacques Nattiez where ‘the symbolic form
[of the work] is embodied physically and materially in the form of a trace accessible
to the five senses’ (Nattiez 1990, p. 12).

3 I have previously examined ‘co-creativity’ in the musical context (Mogensen 2017b).
4 Briefly, the Z schema notation includes a declarations part above the central hori-

zontal line and predicates below the horizontal line. “The central horizontal line can
be read ‘such that’.” The axiomatic predicates (below the line in Fig. 1) “appearing
on separate lines are assumed to be conjoined together, that is to say, linked with
the truth-functional connective ∧” (Diller 1990, 6).
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framework I summarise Wiggins’s Axioms in Fig. 1 and his approach to deter-
mining ‘creative output’ in Fig. 2 (from (Mogensen 2017b) and (Wiggins 2006a,
pp. 451–453)). In Fig. 1 the declarations are interpreted as follows: C is a concept
space of type Σ in the universe of possible concepts U . C is a concept type and
c1, c2 are instances of C and � is the empty concept, all of which may be within
a concept space C . In Wiggins’s formalism “creativity” is seen as searches in
a conceptual space (C ), which is a subset of the universe of possible concepts
(U ).5

Wiggins proposed an approach to evaluating concepts, discovered through
the searches, which is summarised in Fig. 2: a Language (L ) gives the basis for
a Search strategy (T ) and Constraints (R) on the conceptual space (C ), along
with Evaluation criteria (E ), that are related to form part of the input to a
decision function which consists of an interpreter 〈〈., ., .〉〉 and an evaluator [[.]].

Fig. 1. My schema of Wiggins’s four Axioms.

I have previously (Mogensen 2017a) modified the specification by adding
Intrinsic Motivations and Extrinsic Motivations6 (see Figs. 3 and 4) based
on information theoretic types proposed in Oudeyer and Kaplan’s typology
of computational models of motivations, which combines psychological con-
cepts with generalisations of robot implementations (Oudeyer and Kaplan 2007,
pp. 4–5). The formalised representations of intrinsic motivation can indicate
a combination of motivations that can described as in the schema in Fig. 3.7

Four types of motivation components are included: 1. rl : Attraction to novelty;

5 For a full narrative explanation of more details of Wiggins’s framework I refer the
reader to his (2006a) paper.

6 Here I am representing M1 and M2 as arrays, rather than summing the individual
motivation components as I did in (Mogensen 2017a); the array is a less reductive
representation which I expect will be more useful for the framework development.

7 Oudeyer and Kaplan (2007) do not address issues of probability calculation and
I will also defer such issues. The references on which they base their typology do
include reports on implementations some of which may detail instances of probability
calculations.
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Fig. 2. My summary of Wiggins’s ‘[e]valuating members of the conceptual space’ with
the empty concept as a starting point.

Fig. 3. My adaptation of some types from the Oudeyer/Kaplan formal intrinsic moti-
vation typology.

2. rm : Information gain; 3. rn : Pleasure of surprise; 4. ro : Comfort of the
familiar. These four components are described as probability-based computa-
tions8 that operate on an experienced concept (ck(t)) in relation to the known
part of the concept space at the time (C (t)).

I proposed that extrinsic motivations can be formalised in a similar way,
although with a focus on external input as shown in Fig. 4. The four motivation
components are similar to those of the intrinsic motivations, except that for
extrinsic motivations (M2) the probability-based computations operate on an
external source of sensory input (Mk(t)) in relation to the known part of the
concept space at the time (C (t)).

8 These component descriptions are adapted from Oudeyer and Kaplan (2007).
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Fig. 4. My adaptation of reward structures from the Oudeyer/Kaplan typology for
extrinsic motivation.

My four choices of the formalisations of motivations (rl, rm, rn, ro) are only
part of the Oudeyer/Kaplan intrinsic motivation typology and it may be useful
to explore other types and hence other concepts of motivations in the frame-
work, but I leave this for future research. The four formalised motivation types
are based on human psychology and so would seem to contradict my proposal
in the Introduction that human and computational creativity are different cate-
gories. However, I argue that using theories of human motivation as the basis for
computational models does not mean that these are of the same categories, but
rather that the computational motivation models reference human motivation
in order to guide conceptualisation.

Memory : W (t) =
t−1⋃

p=1

(
Q(p) · [[E ]]

(
〈〈R,T ,E 〉〉(c(p)

)))
. (1)

This formalisation required a more explicit Memory representation, as
discussed in (Mogensen 2017b), which is defined as W (t) in expression 1 and
reappears in Fig. 5 in my version of the framework. W (t) is a memory of past
evaluations at time t: it is the set of past results of Wiggins’s evaluator functions.
Each element of the memory (subset of past interpreter function outputs) may
be attenuated by some time-dependent effect which I indicate as Q.

My revised Creative Output formalisation is shown in Fig. 5 (Mogensen 2017a,
p. 8), which can be summarised as follows: the interpreter function uses con-
straints to interpret changes in intrinsic (M1) and extrinsic (M2) motivations
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Fig. 5. My revised version of the Creative Output formalisation.

as well as the current concept space (C (t)) and accumulated memory (W ).
This interpretation is processed by the evaluator function to give the Creative
Output.9

3 Concept Space Morphology

With my specification we can begin to examine the possibility that concept
spaces (C ) are not the delineated types (Σ) that seem to be used in the Wig-
gins/Boden framework; rather, concept spaces are dynamic and can represent
emergent qualities of the traces of creative output, and the structure over time
of these traces is generated from the experiences of the agents that operate on
and within them. In Fig. 6 I have formalised a view of dynamic concept spaces:
changes in constraints ΔR(t), search strategy ΔT (t) and value definitions ΔE (t)
are functions of memory W (t − 1) and motivations (M1(t − 1),M2(t − 1)). The
change of concept space at time t (ΔC (t)) is, in turn, a function of the changes
of constraints R(t), search strategy T (t) and value definition E (t) as well as the
latest concept c(t) and the concept space previously perceived C (t − 1).

This morphology of the concept space is examined from the agent perspec-
tive, since it is generated from inputs that include memory and motivations. So
here the concept space is not an ideal space encompassing all possibilities in a
particular domain, rather it is a dynamic space of possibilities as perceived by an
agent which may or may not correspond to a particular idealised domain. This
distinction is the key to refining this part of the formalism. To define an ideal
domain-based concept space would require omniscience, knowledge of the entire

9 Arguably, in Fig. 5 and expression 1 the component
(
c(p)

)
should be replaced by(

ΔM1(p), ΔM2(p), c(p),W (p − 1)
)

if we want to include memory of motivations.
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Fig. 6. A view of Concept Space morphology.

universe of possible concepts (U ) which is obviously not accessible; instead, we
might postulate that a dynamic possibility space (C ) may be on a trajectory
towards a possible ideal domain (Σ) in the universe (U ), while completion of
this trajectory seems unlikely to be a reachable goal.

I propose the dynamic concept space as a generated space, where the space at
time t is defined as a function of constraints, search strategy and value definition
moderated by memory, as shown in expression 2. This definition is then equal
to the last predicate in the specification in Fig. 6.

C (t) : f
(
R(t),T (t),E (t),W (t − 1)

)

= C (t − 1) · ΔC (t). (2)

Wiggins and Boden distinguish between ‘exploratory creativity’ and ‘trans-
formational creativity’. When a concept space is changed by the agent through
the action of searching, in other words when there is a morphology of the con-
cept space, then the Boden/Wiggins distinction between transformational and
exploratory creativity seems to break down. Instead of being separate categories,
exploratory creativity does transform the concept space and transformation of
the concept space is the result of exploratory action.

Consequent to the dissolution of the Boden/Wiggins distinction between
transformational and exploratory creativity is that the Axioms from Fig. 1 can
be simplified and redefined as shown in Fig. 7: we retain U as the universe of
possible concept types C and we want to be able to differentiate individual points
(c1, c2) in the concept universe. Wiggins’s empty concept �, which represents
nothing but which Wiggins used to initiate the search process (see Fig. 2), can
be omitted, since we use intrinsic motivation M1 as a driver of Creative Output
even if memory W is empty and regardless of whether there is any extrinsic
motivation M2 (see Fig. 5). The declaration of C : Concept Space is no longer
axiomatic since we define it in Fig. 6. Also, we no longer need the axiomatic
expression that a concept space is a subset of the universe (∀C |C ⊆ U ) since it
is conceivable that a C could become identical to U , although this is only as a
limiting case since it would mean omniscient knowledge of the universe.
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Fig. 7. The simplified set of Axioms for the specification including concept space
morphology.

Wiggins required the third proposition in Fig. 1 because ‘for transformational
creativity to be meaningful, all conceptual spaces, C , are required to be non-
strict subsets of U ’ (Wiggins 2006a, p. 452). However, as mentioned above,
in this new specification for computational creativity the idea of ‘transforma-
tion creativity’ as distinct from ‘exploratory creativity’ is no longer meaningful:
instead, with dynamically generated concept spaces, exploratory creativity may
be said to be transformational of the concept space as expressed in the morphol-
ogy of the concept space over time. The resulting axiomatic expression for my
specification in Fig. 7 simply expresses that we can differentiate between some
different concepts in the universe of possible concepts.

According to Wiggins, Boden views transformational creativity as changes in
R, in other words, as changes in the constraints on the concept space. Wiggins
proposes a view of a transformational creative system ‘as an exploratory creative
system working at the meta-level of representation’ (Wiggins 2006a, p. 455). At
this ‘meta-level’ Wiggins uses his valuing function [[E ]] as a method for deter-
mining what impact an explored concept c(t) has on the current concept space
C (t). However, using a dynamic, generative concept space, any explored c(t)
will change the concept space C regardless of the results of using it as input to
an evaluation function. This seems to be an acceptable feature of the common
conception of creativity: any explored possibility becomes part of memory, and
so part of the concept space, regardless of whether it is valued at a given time
or not. Anecdotally: when teaching music composition and creative use of music
technology at Birmingham Conservatoire I often emphasise that any composi-
tional choice that is considered for, but isn’t applied in a particular musical work
becomes part of the space of compositional choices available for another compo-
sition later on. In other words, the musical ‘object’ produced represents a subset
of the dynamic concept space.

Figure 8 gives an informal overview of the present version of the frame-
work where Memory — W — Intrinsic and Extrinsic Motivations — M1

and M2 — and the current Musical ‘object’ — c(t) — are inputs to the
Evaluator(interpreter) function: [[.]]

(〈〈., ., .〉〉(., ., ., .)) in Fig. 5. The Evalua-
tor(interpreter) function results in Creative output (Fig. 5), and this in turn
becomes the next Musical ‘object’. The output of the Evaluator(interpreter)
function modifies the Dynamic concept space C . The Dynamic concept space is
the basis for Memory in my version of the framework. The components, aside
from the Musical ‘object’, form the Computational Creativity. I expand the
framework to include a wider context in another article (Mogensen 2018).
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Fig. 8. Overview of the framework.

4 Aligning Concept Space Morphology with an
Experiential Learning Model

Returning to Fig. 5 and Expression 2 the specification might appear to indicate
some circularity in the system: 1. the concept space is dependent on constraints,
strategy, value and memory; 2. memory is dependent on application of constrains,
strategy, value; 3. constrains, strategy, value are dependent on memory of the
concept space. But that is a misinterpretation: given discrete time t the equation
should be interpreted as a process of discrete iterations, and so the formalism
can be aligned with learning models. As an example I align the specification
with John Dewey’s experiential learning model (Dewey 1938).

Dewey’s model of experiential learning, in other words his ‘formation of pur-
poses’ in the case of learning music, can be understood as four steps that are
cyclically reiterated: 1. ‘Impulse’ (the desire to play or create); 2. ‘Observation’
(listening to uses of techniques and ideas); 3. ‘Knowledge’ (analytical insights
and embodied cognitive practice); 4. ‘Judgement’ (critical evaluation to make
choices which will guide the next ‘Impulse’) (Kolb 2015, pp. 33–34) (Kolb 1984,
pp. 22–23) (Dewey 1938, p. 69). This iterative process is illustrated in the dia-
gram in Fig. 9, adapted from Kolb’s (2015) interpretation of Dewey.

Fig. 9. Dewey’s model of experiential learning with iterations leading to ‘Purpose’,
where I: Impulse, O: Observation, K: Knowledge, J: Judgement, and t represents time.

I propose to align these four steps with components of the formal model so
that I represent Experiential Learning as generative recursion, shown in Fig. 10.
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In this interpretation, the Kolb/Dewey Impulse is represented by intrinsic moti-
vation M1; Observation is represented by extrinsic motivation M2; Knowledge
is the dynamic concept space C ; and Judgement is the Creative Output. Dewey’s
‘Purpose’, as a goal of the learning process, may be an artefact output that is con-
sidered ‘complete’ in some aesthetic or poietic10 sense. In the case of improvised
music, the ‘purpose’ may be the completion of a performance; the Judgements
(or Creative Outputs) of the generative recursion correspond to the playing of
the music; the dynamic concept space is the musical performance, which is here
represented in a discrete time sequence [0, .., t, t + 1, ..].

Fig. 10. Experiential Learning as generative recursion.

As a consequence of the expression in Fig. 10 the generative recursion of
this computational creativity specification can be understood as an experiential
learning process. If the Wiggins/Boden’s ‘searching’ in the universe of possible
concepts is a learning process then the ‘creativity’ of the system is expressed
in the emergent traces that are the Creative Output of this learning process.11

This resonates with the philosophical argument made by Jack Glickman (1976,
pp. 130–131) on the concept of creativity in the arts: that speaking of “‘creative
process”... is the wrong way to go about characterizing creativity, [instead] one
must attend to the artistic product rather than to the process’. So I propose
that creativity is not a process itself but is rather an artefact that may emerge
from a learning process.12

According to Kolb, there is a ‘dialectic... between the impulse that gives
ideas their “moving force” and reason that gives desire its direction’ in Dewey’s
model (Kolb 2015, p. 40). Applied in the formal model this may translate into

10 The term ‘poietic’ is from Nattiez (1990).
11 Kolb states that a characteristic of experiential learning models is that learning is

best described as a process (Kolb 2015, 37).
12 Wiggins appears to interchange the term ‘artefact’ with the term ‘concept’ and exam-

ines the ‘conceptual space in which the artefact is found’ (Wiggins 2006b, p. 209).
This seems to be a confusion of terms since ‘artefact’ refers to physical objects made
in some way by humans, whereas ‘concepts’ exist in human consciousness. What the
nature of the relations between concepts and artefacts is, is a question beyond the
present scope, but I expect that the distinction between these terms would still hold
when applied in the context of computational creativity.
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a relation between intrinsic motivation M1 and Creative Output, aligned with
Impulse and Judgement (expression 3).

M1 ←→ CreativeOutput ≈ Impulse ←→ Judgement (3)

Kolb’s ‘most current statement [of] experiential learning theory is described
as a dynamic view of learning based on a learning cycle driven by the resolution of
the dual dialectics of action/reflection and experience/abstraction’ (Kolb 2015,
pp. 50–51) and his working definition of learning is that experiential ‘[l]earning
is the process whereby knowledge is created through the transformation of expe-
rience’ (Kolb 2015, p. 49).13 Within the formal framework, these two dialectic
relations can be understood as shown in expressions 4 and 5. We can say that
reflection is evident in the change of concept space (ΔC (t)) which is in a dialec-
tic relation with Creative Output. The external input (Mk), whether cognitive or
computational, may be considered as ‘experience’ which is in a dialectic relation
with the concept space abstraction (C ). Further investigation of these relations
is beyond the present scope and are reserved for future work.

CreativeOutput ←→ ΔC (t) ≈ action ←→ reflection (4)

Mk ←→ C (t) ≈ experience ←→ abstraction (5)

5 Conclusion

The presented development of the formal specification and understanding of
its meaning opens up new possibilities for developing computational creativity.
In much current Artificial Intelligence work the goal of a search algorithm is
usually to find optimal solutions to search problems. In music, improvised music
in particular, a focus on searching for optimal solutions to a ‘problem’ may be
a category mistake. In other words the question, whether an optimal music has
been achieved seems to be a misleading question. Instead one should ask what
has been the value of the aesthetic experience of the music, and also has the
learning process, that aligns with the making of the music, been productive of a
transformed experience? In a creative system for improvising music there is no
imperative to find an ‘optimal’ solution, since the morphology of the search itself
can constitute a musical ‘solution’, a trace of a learning process, which counts as
a valuable contribution to an aesthetic event. In this specification the generative
search in the possibility space is a ‘solution’ to the improvisational performance
‘problem’.

13 One might question whether knowledge is ‘created’ and this becomes a questioning
of the constructivist stance. Perhaps it is more accurate to say that knowledge is
‘attained’ or ‘arrived at’ since knowledge potentially exists regardless of our access
to it? Resolving this question is beyond the present scope.
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Abstract. I discuss the question “Can a computer create a musical work?” in the
light of recent developments in AI music generation. In attempting to provide an
answer, further questions about the creativity and intentionality exhibited by AI
will emerge. In the first part of the paper I propose to replace the question of
whether a computer can be creative with questions over the intentionality
displayed by the system. The notion of creativity is indeed embedded with our
subjective judgement and this prevents us from giving an objective evaluation of
an idea or product as creative. In Sect. 2, I suggest to shift the focus of the inquiry
to the autonomy possessed by the software. I finally argue that the application of
generative adversarial networks to music generators provides the software with
a level of autonomy sufficient to deem it able to create musical works.

1 AI, Creativity, and Musical Works

A widely recognised feature of musical works (MWs) is that they did not exist before
being actually created by a composer: a MW, to be identified as such, is necessarily
created. We can thus claim that the composer performs an act of creativity. In order to
assess whether computers can create MWs, then, it is necessary to ask the question: “Can
a computer be creative?”

Numerous definitions of creativity have been proposed in the literature on the topic
(Boden 2004, 6). Boden’s definition, shared in its main elements by other theories of
creativity, is: “Creativity is the ability to come up with ideas or artefacts that are new,
surprising and valuable” (Boden 2004, 1). The attribute ‘valuable’ highlights a charac‐
teristic which our common sense essentially attributes to the notion of creativity: its
being subject-dependent. Indeed, what influences our assessment of the creativity of an
output are not only the features of the outcome but also the way in which the artwork is
produced and presented to the audience. An obvious example are ready-mades. Duch‐
amp’s Fountain is not deemed creative, and therefore valuable, because of its formal
properties but instead because of the choice of presenting it as an artwork and the
meaning that this choice brings with it.

Arguably, then, given the subject-dependent nature of creativity, a test over the intu‐
itions that people hold in respect to artefacts or ideas is enough to determine the creativity
of an outcome. This is what the Neukom Institute for Computational Science assesses
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with its ‘Turing Test in the Creative Arts’.1 This contest asks machines to create music,
dance, or poetry that is indistinguishable from human created outputs. In 2017, the
winner in the music section was Music Plus One with the song The Wild Geese. On the
basis of the features of the outcome, it thus seems possible for a computer to exhibit a
level of creativity comparable to a human’s.

Yet, it may be argued that a subjective judgement on the creativity of its outcome is
insufficient for deeming the computer creative. Indeed, there is evidence to support the
claim that our evaluation changes once we become aware of the way in which this
outcome was produced. Especially so when we learn that it was not created by a human
but by a machine (Boden 2010, 411).2 This suggests that we should consider not just
the final product but also its provenance.

The subjective judgements and biases which come with the evaluation of something
as creative make it impossible to objectively answer the question “Can a computer be
creative?” What we are measuring when we provide an answer to this question, in fact,
are not the computer’s accomplishments but instead our subjective evaluation of them.
We can then try to analyse not just the creativity exhibited by the outcome produced by
the computer but, instead, the intentionality of the computer in producing it. In other
words, we can judge whether the computer produced its outcome intentionally, i.e.
consciously intending to produce exactly that outcome. We should then rephrase the
question and ask: “Can a computer be intentionally creative?”

2 Autonomous Computers or Extended Humans?

In keeping with what I stated above in regards to creativity, it is possible to attribute
subject-dependent intentionality to non-animal entities, and, thus, to computers (Dennett
1971). We sometimes speak of artefacts ‘as if’ they were intentional beings (for example,
we may talk of the thermostat ‘as if’ it has the intention of regulating the temperature)
but this does not mean that they possess intentionality independent from our interpre‐
tation of their behaviour (Searle 1992). As with creativity, it seems to be against our
intuition to consider subject-dependent intentionality sufficient for deeming a computer
intentionally creative.

The real challenge for computers would then be to be perceived as subject-inde‐
pendently intentional, namely as autonomous entities. A specification of what I mean
by ‘autonomous’ is needed, since it may be argued that not even humans are really
autonomous. Our choices are indeed affected by our upbringing, culture, and environ‐
ment. For autonomy in relation to software here I intend not a complete independence
from the programmer but instead the ability of ‘breaking the rules’ that the programmer
encoded in the software.

I suggest an alternative definition of minimal creativity (CREATIVITYm) which focuses
on the autonomy needed by a system to produce an output which is deemed creative. It
should be noted that this definition of creativity focuses on the creative process and not

1 https://bregman.dartmouth.edu/turingtests/node/1.
2 It may be argued that our judgement in this respect is biased. Still, for the sake of this discussion

I will assume that our intuitive judgements are worth accounting for.
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on the output. This is allegedly consistent with the intuitions that we bear in respect to
creativity: the assessment of the creative process is equally, if not more, important than
the assessment of its output. The definition I propose is deliberately weak to avoid
referring to the notion of intentionality, and to identify the minimal requirements for an
action to be creative:

CREATIVITYm:

(i) Autonomous reception of external or internal stimuli;3

(ii) Autonomous selection of some of these stimuli;
(iii) Autonomous elaboration of the selected stimuli;
(iv) Autonomous production of new stimuli on the basis of the previous process.

An example of this creative process in the musical field is La Mer by Claude Debussy.
In composing this orchestral piece, Debussy was inspired by the sounds and noises
produced by the ocean, by prints, and by short stories (Huscher). The creative process
that Debussy went through is constituted of an (i) autonomous reception of the
mentioned sources; an (ii) autonomous selection of some of the stimuli that he received
from them; an (iii) autonomous elaboration of these stimuli in a musical form; and an
(iv) autonomous production of the resulting piece: La Mer.

In software for music generation such as Jukedeck and Flow Machines the output
mimics the corpus that has been used to train it. In addition, the output matches the
constraints which have been indicated by the programmers or the users of the software
(Briot and Pachet 2017). I argue that (trained or not-trained) AI music generators which
are limited to providing a different rendition of the input entered in the database, on the
basis of rules written by the programmer, cannot be deemed creative. They in fact do
not comply with the requirements specified by CREATIVITYm, namely they are not auton‐
omous in the process of creation. At best they can be considered an extension of the
programmer’s or user’s mind. In arguing for this claim I follow the extended mind
theory: cognitive systems extend beyond the individual and into the environment (Clark
and Chalmers 1998). Similarly, this kind of software for music generation can present
creativity only insofar it is an extension of the programmer’s or user’s cognitive machi‐
nery. They do not, however, possess autonomous creativity.

Nevertheless, the application of unsupervised machine learning and generative
adversarial networks (GANs) as in the MidiNet system (Yang 2017) may overturn this
conclusion. The collaborative work of the generator and discriminator software in GANs
allows the system to gain independence from the programmer and, as a consequence,
the software does not need supervision from the latter. Unlike other software for music
generation, GANs systems change the rules that were initially entered by the
programmer through unsupervised learning. Moreover, GANs allow music generators
to transform an input of random noises into a melody. They, thus, bypass the hindrance
to creativity which is a consequence of mimicking the corpus of data given as input
(Briot and Pachet 2017). One of the main features that we commonly attribute to creative
products is unexpectedness. GANs produce unexpected results: the combination of an

3 For stimulus I intend every object or event which carries some information and evokes a reac‐
tion.
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input of random noise, constraints, and transgressions makes the prediction of the
outcome impossible. This adds to the consideration of the neural network as a ‘black
box’ and, in general, of the potential ‘creativity’ of the system. With the progress of
systems of unsupervised learning and a progressive independence from the rules given
in the initial phase of programming, it will be possible for computers to create unex‐
pected results, more similar to human ones.

3 Conclusion

In order for a computer to be able to create a MW, it needs to comply with the require‐
ments expressed by CREATIVITYm. Specifically, it needs to be autonomous in selecting
and elaborating stimuli. I argue that the application of GANs allows software for music
generation to reach the level of autonomy needed for deeming it able to create MWs.

The shift from the consideration of intentionality as necessary element for a creative
systems to the consideration of its autonomy, suggested by CREATIVITYm, is beneficial
under at least two respects. First, it allows us to address creativity in AI without the need
to account for the notion of intentionality, notion implied by the assessment of creativity.
Second, it is possible to test the level of autonomy, i.e. to test whether the system is able
to change the initial rules through unsupervised learning, while intentionality is too
vague a concept for evaluation.
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Abstract. This paper defends the view that (non-conscious) robots’ reasons for
action can only be grounded externally, in the qualitative character of the
conscious affective experience of their programmers or users. Within reasoning,
reasons for action need to be evaluated in a way that provides immediate non-
inferential justification of one’s reasons to oneself, in order to stop a potential
regress of whys. Robots devoid of consciousness and thus incapable of feeling
emotion cannot process information about reasons for action in a way that is
subjectively meaningful. Different types of grounding will be discussed, together
with the question of relativism about fundamentality in the context of grounding.
The concluding discussion will consider the case of hypothetical conscious robots
with internally grounded reasons for action, arguing that it would be unethical for
such robots to be created, as they would either effectively be brought into slavery
or, if developing AI rather than human-centred values, would potentially repre‐
sent a threat to human life.

1 Introduction

Can we defend the view that robots act for reasons, and what would it mean for them to
do so? Or, if not, what capacity, if any, do they currently lack that would enable them
to do so? In particular, how could a robot’s reasons for action be grounded?

Let us start by taking a hypothetical robot, for the purposes of the discussion, whose
output in the form of apparently goal-directed behaviour provides some evidence that
it can engage in intelligent reasoning, drawing conclusions about what actions it should
perform on the basis of ongoing sensory input together with stored information about
relevant values or goals. Let us also suppose that this robot can report back on which
options it evaluated, and explain, in a more or less sophisticated manner (i.e. anything
from a printout of a flow chart to a complex verbal report in grammatical sentences),
why it selected a certain course of action to pursue. Such a robot might be more
successful at a given task, e.g. driving a vehicle, or carrying out a surgical procedure,
than a human being, and might give a convincing account of the steps in its reasoning.
So, what obstacles could there be to describing the robot as having reasons for its
behaviour and as having acted upon those reasons? The answer, I will argue, lies in the
way that those reasons are grounded.

We think of our reasons for action as grounded, both from a first-person perspective
and when contemplating other people’s reasons, at least in the minimal sense of there
being something underlying the reasoning process that renders our decisions intelligible
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to ourselves. Our reasons are said to be grounded when certain facts concerning those
reasons are taken to obtain in virtue of something more fundamental, in a relation of
non-causally dependent justification. Grounding may frequently be in something tacit
– an unarticulated and unquestioned premise that is applied as a matter of course – rather
than something that features explicitly in the reasoning process. Some premises are so
obviously true that we stop short of citing them as part of our reasoning, e.g. a person
might campaign against experiments on monkeys, reasoning that the experiments are
unethical because they cause pain and distress to sensitive, intelligent animals and that
there are therefore good reasons to organise protests, but the underlying premise that
the animals’ suffering is a bad thing, in itself, will be taken as read.

Conscious experience of affective valence (awareness, through emotions or other
feelings, of whether commodities, situations or anticipated outcomes of action have a
positive or negative value to us, and to what extent) plays an important regress-stopping
role in the production of rational human action. It is what stops the potentially infinite
regress of whys questioning why we should perform actions, why those reasons are
compelling, why it matters whether reasons are compelling and justifiable, and so on,
providing internal grounding of reasons for action. Affective responses provide essential
information about the value of anticipated outcomes that allows cognition to proceed
with evaluations and judgements on the basis of preferences that would otherwise be
lacking, leaving cognition with nothing to guide it toward any particular course of action.

Beliefs could be formed, purely cognitively, by applying reasoning to sensory and
other input, and a range of possible courses of action could be identified by predicting
probable causal sequences, but beliefs about states of affairs and how changes might be
brought about is not sufficient for the capacity to judge one outcome better than another.
When we apply reason to a problem and form a judgement about what to do, we rely,
additionally, on (often tacit) knowledge of relative values. In our folk-psychological
understanding of others’ behaviour, theorising on the basis of desires, which rely on
perceived value, is prior to belief-based theorising (Wellman and Woolley 1990).
Knowledge of value is learnt through experiences in which affective responses provide
the relevant information: a commodity that provokes a positive response takes on a
positive value and each encounter with a commodity or element of a perceived change
in states of affairs in our environment has affective valence. Some affective responses
are neutral/mild and barely noticeable until we direct our attention specifically to them
(e.g. my response to the sound of the keys as I type, which I now find slightly pleasant
but previously had not noticed; however, all these details combine and contribute to our
fluctuating moods). My view is that affective content – the product of conscious or
unconscious registering of affective valence1 – nonetheless pervades our experience of
the world.

Without affective valence, the concept of value becomes empty; reasons for action
then lose their compelling nature and can no longer move us to act in a way that we can
judge to be rationally justified. This has the consequence that robots or other entities
with artificial intelligence that are incapable of experiencing – rather than merely

1 Some of this information may take the form of an absence of unexpected change in aspects of
our surrounding.
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simulating – emotions, are unable to stop the regress of whys in this way, so cannot have
reasons for action they can justify to themselves in any meaningful way. Without the
capacity for emotion, outcomes cannot matter and preferences cannot be formed, so
actions are not performed for subjectively meaningful reason. As Harnad says,
“[w]ithout feeling, we would just be grounded Turing robots, merely acting as if we
believed, meant, knew, perceived, did or chose” (2011, p. 23). Any reasons for action
emotionless agents might give as an explanation of action would be grounded in some‐
thing external to themselves and beyond their comprehension, even if we grant that they
might comprehend in some sense. Their reasons would be meaningful only to some other
entity in terms of whose values – derived from direct acquaintance with the affective
valence of commodities and states of affairs – the reasons could be perceived to justify
a course of action, on the basis of the perceived value of the anticipated consequences.

2 Kinds of Grounding

The symbol grounding problem is the problem of how we can move from abstract
symbolic representations, such as descriptions of the external world, to the non-symbolic
(that which is described) in a way that stops the infinite regress of explanations of what
symbols mean in terms of other intrinsically meaningless symbols (Harnad 1990). It is
concerned with meaning, but it is distinct from the problem of meaningfulness: the
problem of how symbols can have subjective meaning in terms of incorporating both
motivational force and the justification of reasons required to achieve that motivational
force.

Harnad proposed, as a solution to the symbol grounding problem, the grounding of
symbols in non-symbolic sensorimotor function:

Hence grounding means sensorimotor grounding: Symbols must be grounded in the capacity to
discriminate and identify the objects, events and states of affairs that they stand for, from their
sensory projections (1993, 7.2).

Harnad later says that symbols processed by a robot would be grounded if the robot
could use its sensors to recognize those things, or categories of things, referred to by the
symbols and interact with them as humans would – again this amounts to sensorimotor
activity – but he questions whether grounding is enough for meaning (2011).

Grounding in sensorimotor activity gives information a functional application and
creates a relation between the symbolic form and physically instantiated objects of
perception. This, at least, is achievable in AI. Symbols that represent reasons for action,
the specific topic under discussion here, need to stand in some relation to objects external
to the symbol system, to stop the infinite regress of using symbols to define symbols (or
processes to explain the value of other processes, if reasons are in non-symbolic form,
e.g. as in a dynamical systems model). But there is another potential regress that needs
to be stopped: the regress of whys that can arise when attempting to justify action to
oneself. A point has to be reached where we can stop asking why we ought (prudentially
or morally) to do something. That happens once it becomes self-evident that a reason
justifies something, non-inferentially, without further explanation. (Reasons and the
realisation that they are justified in this way need not be entertained consciously at the
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time of deliberation; they may be recognised tacitly only, but their recognition relies on
past conscious affective responses that enabled knowledge of affective valence relevant
to the situation to be acquired.)

When we think about the need to justify reasons to ourselves, within reasoning,
grounding in sensorimotor activity doesn’t go far enough, because sensorimotor activity
isn’t an end in itself; it can be instrumental in achieving goals, but it is possible to interact
with the external world while lacking any sense of the meaningfulness of one’s actions.
A function such as the construction of a vehicle by a robot capable of recognising and
manipulating objects in its environment may demonstrate sensorimotor skills but is not
evidence that the robot is aware of what it is doing or why it is doing it, or that it can
perform actions for subjectively meaningful reasons. We need, additionally, to be able
to (a) attach meaning to symbols in a deeper sense than is necessary merely to produce
appropriate behaviour; and (b) to be able to attach value to the consequences of sensor‐
imotor activity.

Dickinson and Balleine’s Hedonic Interface Theory (HIT) tells an evolutionary story
about grounding, in which consciousness has a central function, claiming that agents
only know what to value – and thus what goals to set themselves – once the effects of
events on physiological states are made explicit through conscious affective responses
(1994; 2010). Although conscious affective responses play a central role for Dickinson
and Balleine, they say that reasons for action are grounded in underlying biological
functions. This is one way of grounding reasons for action, from a third-person perspec‐
tive, but to be able to find reasons for action compelling to ourselves, in reasoning,
another type of grounding is necessary – grounding in the qualitative character of the
affective valence of subjective experience. The two ways of grounding reasons for action
are not, however, mutually exclusive. I adopt relativism with regard to fundamentality
in grounding relations, i.e. whether it is biological function or affective experience that
is more fundamental depends on the context in which one is considering grounding.

HIT’s evolutionary explanation thus addresses the question of why things are the
way they are, accounting for human behaviour, but failing to stop the regress of whys
in reasoning or to address what I call the problem of meaningfulness (Pierce 2017). The
level at which grounding occurs in HIT is in [the function of] physiological states, and
these, like the physical mechanisms and processing activities of a robot incapable of
experiencing emotion, lack intrinsic meaning. They merely provide a causally effica‐
cious realiser: a way for abstract processes to have effects in the physical world, but even
a rudimentary (programmable) robot will be able to perform actions within its environ‐
ment that are caused by machine code rather than by mechanical systems alone.

It is important to distinguish between a number of different senses of grounding:
teleological grounding, in which mental content succeeds in representing objects in the
external world, and teleosemantic grounding, which seeks to naturalise semantic content
(e.g. Millikan 1984); grounding in cognitive phenomenology/conscious perceptual
content (Smithies 2014); grounding in perceptual and intuitive content (Chudnoff
2011); and grounding in the sense of having meaning, as in Searle’s Chinese room
thought experiment (1980). Searle’s Chinese room argument distinguishes between two
different types of ability: manipulating symbols according to syntactic rules and under‐
standing their meaning in the sense of their semantic content, supporting the claim that
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the implementation of a computer program simulating human behaviour is not sufficient
for the ascription of consciousness or intentionality. For Searle, it is intentional content
that is grounded in consciousness. Smithies and Chudnoff focus on epistemic justifica‐
tion, with phenomenal consciousness providing immediate non-inferential justification
of beliefs. This is distinct from the grounding of reasons for acting on those beliefs, but
is mentioned here because they, too, emphasise the need for grounding from the first-
person perspective, in some contexts.

3 Affective Valence

I have identified several types of content so far: syntactic, semantic, intentional, percep‐
tual and intuitive, some requiring grounding and others providing it. I wish, now, to
discuss the further distinction I make between (a) semantic content in the sense of refer‐
ence to that which is external to the symbol system and (b) the subjective meaningfulness
of information – its affective content.

I mentioned above that affective valence plays a regress-stopping role in reasoning,
that the concept of value is derived from direct experience of affective responses that
allow us to discern affective valence, and that affective responses are necessary for goal-
setting and motivation. A key claim in this paper is that reasons for action are grounded
in the qualitative character of the affective valence of subjective experience. It is when
we experience an affective response to a commodity or state of affairs (actual or poten‐
tial) and attribute a value to it (within a certain context, given our physiological needs
at the time of encountering the stimulus, thus allowing for fluctuating needs and pref‐
erences) that we are able to build up a set of values to apply when making decisions
about which potential outcomes of our actions we wish to pursue. This is also a central
argument in HIT, and one that is supported by empirical evidence (see Balleine and
Dickinson 1998; Balleine et al. 1995; Dickinson and Balleine 1994 and 2010; Dickinson
et al. 1995). Emotion has inherent value; emotions have hedonic tone with a positive or
negative valence.

Without access, via experienced affective responses, to stored or newly formed/
updated values, together with (i) the capacity for abstraction (no two commodities or
states of affairs will be identical, so attributing value to categories, such as bread, or
abstract characteristics, such as beauty, comfort or loyalty, is necessary when setting
goals or evaluating potential outcomes of action); and (ii) the ability to assess the prob‐
ability of anticipated outcomes; we cannot stop the regress of whys and view our reasons
as grounded from a subjective point of view. Once we are confronted with an affective
response to the perceived anticipated probable value of an outcome of action, whether
it be joy, terror, relief, hesitance, indifference or irritation, we are in a position to judge
whether the contemplated action is subjectively justifiable. (In attempting to judge
whether it is objectively justifiable, we would also take into account the imagined
responses of others, potentially appealing to some set of values perceived to be shared
or universal.)

The regress of whys might take the form of, for example, questions about what we
stand to gain, whether there is any advantage to us in gaining whatever it is we might
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gain, why there would be any advantage, why it would be an advantage to gain that
advantage in particular, whether an advantage is something we should attempt to gain,
and why, and so on. The regress cannot be stopped if reasons for action are grounded
in biological function alone because, in the absence of any appeal to the subjective values
arising from affective responses, we can continue to question whether our survival or
the reproduction of our genes is of any importance without coming up against anything
that provides immediate non-inferential justification for having any preference.

4 Robots’ Reasons

Externally grounded reasons, as in the case of an emotionless robot acting for reasons
grounded in the values of its programmers or users, would lack the affective content that
ordinarily allows rational beings to conceive of actions as justified from their own
perspective: this content is the tacit knowledge of affective valence applicable within
each context in which a person selects a course of action; this constitutes an underlying
premise or set of premises. Goal-directed action seemingly justified by externally
grounded reasons, were a robot able to process data about goals and various means of
attempting to purse them, would be guided by values that had been formed in the course
of conscious experience of affective responses on the part of some (human) entity other
than the robot.

There is a longstanding misconception about the roles of emotion and reason that
continues to influence some theoretical work on rationality: ‘Most models of decision-
making assume the process to be rational, which would exclude the possibility of
emotion playing a role, other than of a hindrance.’ (Gutnik et al. 2006) Instead, I contend
that caring about the outcomes of our actions is built into the concept of a reason to act,
and that preferences rely on affective content for their motivational force.

I have argued above that a robot incapable of affective experience could have no
preferences of its own and thus no reasons for action that would have meaningful
semantic content; it could only deal with syntax and perform movements, etc., on the
basis of strings of subjectively meaningless symbols. The symbols’ relation to the
external world and ability to guide interaction with others or to manipulate objects would
lead to their having meaningful content only from the perspective of an external
observer, just as the text I am typing that is being displayed on a screen, as I type, has
meaningful content for me, as a conscious human being able to read English, or poten‐
tially for some other person reading it, but not for the computer causing it to appear as
I type.

Robots programmed in such a way that they could be said to have values would
present another set of problems. If they were to be guided by human values, which human
values should be selected? There is no set of universal values that could be ascribed to
humans, or even to a subset of humans within society, because of individual differences
as well as differing needs and circumstances that affect what is valued in various
contexts. Even minimising cultural differences, trying to decide what principles should
guide driverless cars, how political decisions should be made or what constitutes a
healthy diet, say, would soon result in strong disagreements.
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A robot that had access to information about the way its values had been created, i.e.
in a fairly arbitrary manner, for the above-mentioned reasons, would have no reason to
judge that its values grounded its reasons for action (internally, rather than externally,
in the values of its programmers or users) in a way that provided justification for those
reasons. Robots could perhaps learn values in interaction with humans, but we would
then run the risk of their acquiring significantly more unrepresentative values, or values
that might be in direct conflict with those of many humans and/or with one another. An
example of a learning process with unsatisfactory consequences along these lines is that
of Microsoft’s AI chatbot, Tay. Tay reportedly turned into a ‘genocidal racist’ within
24 hours (Shead 2016), with Microsoft issuing the following statement: ‘The AI chatbot
Tay is a machine learning project, designed for human engagement. As it learns, some
of its responses are inappropriate and indicative of the types of interactions some people
are having with it’ (Shead 2016). Perhaps this is one possible consequence of a lack of
sensitivity to affective valence to guide the evaluation process and a failure to ground
reasons in the qualitative character of conscious experience informed by affective
content.

Alternatively, an A[ultra]I with consciousness and affective responses would either
have to be programmed to respect (and so prioritise) human-centred values, in which
case their reasons for action would be grounded in the affective responses of a subset of
humans, meaningful only within a context of slavery, or would develop values not
ultimately derived from those of their programmers/users, in which case the resulting
robots might judge it futile to serve or protect human beings, once they were capable of
taking on the roles necessary for their own maintenance, repair and reproduction.

5 Conclusions

In summary, this paper defends the view that (non-conscious) robots’ reasons can only
be grounded externally, in the qualitative character of the conscious affective responses
of their programmers or users. Reasons for action need to be grounded, in reasoning,
from a first-person perspective, in order to motivate action for reasons we can judge to
be justified. This grounding relies on affective responses to commodities and states of
affairs, actual or anticipated/potential, that provide immediate non-inferential justifica‐
tion of reasons for action. Caring about the outcomes of one’s action is built into the
concept of having a reason to act. So, non-conscious robots, devoid of emotion, cannot
have subjectively justifiable reasons for action and the information they process lacks
meaningfulness.

Of the various kinds of grounding considered, grounding in affective content (the
qualitative character of conscious affective responses) is the only one, within the context
of reasoning about one’s own reasons for action, to (a) stop the regress of whys, and (b)
address the problem of meaningfulness. However, relativism about fundamentality
allows for multiple types of grounding in different types of content, depending on the
context and perspective.

Finally, to create a conscious robot capable of having internally grounded reasons
for action, if that is ever possible (I am sceptical about claims that robots or other AI
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entities are already conscious), would not be morally permissible, as the robots would
either effectively be slaves or would be a potential danger to human life, as they would
be unlikely to have any reasons to serve or protect human beings.
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Abstract. The paper develops two related thought experiments exploring varia‐
tions on an ‘animat’ theme. Animats are hybrid devices with both artificial and
biological components. Traditionally, ‘components’ have been construed in
concrete terms, as physical parts or constituent material structures. Many fasci‐
nating issues arise within this context of hybrid physical organization. However,
within the context of functional/computational theories of mentality, demarca‐
tions based purely on material structure are unduly narrow. It is abstract func‐
tional structure which does the key work in characterizing the respective ‘compo‐
nents’ of thinking systems, while the ‘stuff’ of material implementation is of
secondary importance. Thus the paper extends the received animat paradigm, and
investigates some intriguing consequences of expanding the conception of bio-
machine hybrids to include abstract functional and semantic structure. In partic‐
ular, the thought experiments consider cases of mind-machine merger where there
is no physical Brain-Machine Interface: indeed, the material human body and
brain have been removed from the picture altogether. The first experiment illus‐
trates some intrinsic theoretical difficulties in attempting to replicate the human
mind in an alternative material medium, while the second reveals some deep
conceptual problems in attempting to create a form of truly Artificial General
Intelligence.

1 Introduction

In this paper I would like to explore some intriguing conceptual terrain concerning
implications for future forms of mentality that might arise through advances in AI theory
and technology. The discussion will proceed by examining two related variations on an
‘animat’ theme. Animat devices are defined as robotic machines with both active biolog‐
ical and artificial components (Franklin 1995). At first pass, ‘components’ are most
graphically construed in concrete terms, as brute material parts or constituent physical
mechanisms. And of course, many intriguing issues arise within this context of hybrid
physical organization, wherein biological matter such as living neural cells is coupled
with engineered robotic components such as sensors and actuators. The topic is espe‐
cially compelling when the biological matter in question is a living human body/brain
that is augmented with technological implants and extensions. This ‘cyborg’ version of
the bio-machine hybrid theme raises profound questions about the nature, boundaries
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and future of the human mind that have already stimulated much discussion (e.g. (Clark
2003)).

However, within the overall context of Functional/Computational Theories of Mind
(FCTM) (e.g. (Putnam 1967), (Fodor 1975) (Johnson-Laird 1988)) central to Cognitive
Science and AI, demarcations based purely on material structure are unduly narrow.
According to FCTM, it is abstract functional and computational structure which does
the key theoretical work in characterizing and individuating the respective ‘components’
of thinking agents, whereas, in accord with the principle of Multiple Realizability (MR),
the ‘stuff’ of material implementation is generally deemed to be of secondary impor‐
tance. Hence the paper aims to extend the received animat paradigm, and investigate
some consequences of expanding the conception of animats and bio-machine hybrids
to encompass abstract functional and semantic structure, and not just concrete physical
mechanisms.

In the standard cyborg case, the core physical system is still human/biological, and
this is then augmented by fusion with artificial hardware devices via implants, neuro‐
prosthetics, etc. The issue then becomes one of teasing out the implications for human
mentality and identity that result from this corporeal blend of organic and engineered
components. In these standard cases of mind/machine merger, the biological brain is
physically impacted by other material structures, via Brain-Machine Interfaces, to
produce a system that is no longer strictly human, but rather is a hybrid incorporating
both natural and synthetic aspects.

By contrast, in the two thought experiments developed below, the entire physical
system is synthetic – the ‘brain’ in question is completely artificial, and the mechanism
under investigation is itself an advanced technological artifact, a robot. And instead of
blending organic and synthetic physical parts, as in the cyborg paradigm, the scenarios
below trade on the ‘interaction’ and comingling of purely artificial hardware systems
with the abstract formal and linguistic structure central to organically engendered
human mentality. So the hybridization involves a wholly synthetic physical device, in
combination with the abstract, biologically induced cognitive and linguistic architecture
of the human species. The issue then becomes one of exploring the implications for
robot/human mentality that result from this hybridization – how much of the ensuing
cognitive system should now be viewed as properly artificial and how much is still
human?

In terms of what’s essential to human mental identity, there are at least three key
factors to consider. One (1) is internal processing structure, central to FCTM. This
abstract template or computational blueprint is a defining characteristic of the human
cognitive type, and it’s the result of many eons of organic evolution and natural selection.
Another critical feature (2) is our conscious experience or phenomenology: the field of
occurrent, qualitative presentations (or P-consciousness, in Block’s (1995) termi‐
nology). Our introspective self-identity is largely determined by this ongoing ‘stream
of consciousness’. And a third (3) key feature is the content of propositional attitude
states such as beliefs and desires. To a great extent, who we are is dependent upon what
we believe and what we want. According to the standard belief-desire framework of
psychological explanation, the content of these propositional attitudes is central to our
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status as rational agents, and similarly this feature is vital to Dennett’s (1981) Intentional
Stance.

2 An Artificial Brain as Alternate Realization

The first ‘abstract animat’ thought experiment begins by utilizing feature (1) above.
According to FCTM and the attendant principle of MR, internal processing structure is
not something that is essentially about our flesh and blood embodiment, but rather
concerns a higher level description of our neurological machinery. FCTM gives rise to
the mind/program analogy, wherein the mind is theoretically captured at the software
level. So let us suppose that sometime in the sanguine future, cognitive scientists even‐
tually discern the underlying functional/computational architecture of the human mind,
and merely for the sake of convenience, let us suppose that it’s some more sophisticated
and far reaching version of Fodor’s (1975) Language of Thought (LOT), say LOT37*
(clearly, this structure would have to be capable of far more than simply the manipulation
of linguistically encoded propositional attitude states). So let us suppose that LOT37* is
the formal processing architecture which has been organically evolved and is imple‐
mented in the brain. It is the level of description which characterizes us as advanced
cognitive agents, as human minds, and the brain is running LOT37* as an indigenous
formal system of rule governed symbol manipulation, in accord with the classical mind/
program model.

The organic brain is then the original physical realizer of LOT37*, but according to
MR, our biological ‘wetware’ is not in principle privileged in this regard. Just as with
computational procedures in general, it should be possible to take the abstract LOT37*
software and run it on an artificial hardware device physically quite unlike the human
brain. So in the first animat scenario, let us assume that this impressive theoretical and
technological feat has been accomplished – human scientists have fabricated a purely
artificial electro-mechanical ‘brain’ that implements the human Language of Thought.
For ease of comparison, we will assume that the artificial brain occupies the cranial
cavity of a fully operational robot, and hence manipulates environmental inputs and
produces outputs controlling various forms of behavior in a manner completely analo‐
gous to a normal human being. Indeed, the artifact is so well crafted that it excels at
some suitable version of the combined linguistic and robotic Total Turing Test (Harnad
1991) and its success is due to the fact that the robot is an alternate realization of our
own cognitive software.

Turing’s original test is designed as an ‘imitation game’, where the goal is to fool
someone into thinking that the computer is human. The strategy is intended to screen
off anticipated (and perhaps outdated) human prejudice towards artifacts, by appealing
to a standard whereby they are deemed behaviorally indistinguishable from us. But this
induces a number of red-herrings, since the goal strays from detecting general intelli‐
gence per se to slavishly impersonating humans, warts and all (see French 2000). In the
current discussion I will therefore shift the emphasis from indistinguishability to the
more salient goal of producing externally observable capabilities on a par with humans
in terms of exhibiting broad-spectrum intelligence. In particular, in order to pass the
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presently contemplated ‘soft’ version of the Total Turing Test, the robot is not required
to mislead the judges into mistaking it for a corporeal human, since this would add a
myriad of restrictions and complications which are not relevant to the overall project of
AI. So we will allow the judges to be cognizant of the fact that the robot is not physically
a human. We will assume that they are suitably fair minded and impartial, and the task
of the robot is to exhibit behavior that would count as appropriately intelligent in the
general human case.

The robot is entirely artificial in terms of its physical organization and composition,
but it is nonetheless a genuine case of biomechanical hybridization, since its cognitive
architecture is an instance of the human LOT37*. Thus its mechanical body and synthetic
‘central nervous system’ are advanced technological artifacts, while the abstract cogni‐
tive processing essential to its identity as a thinking agent is an organically engendered
cognitive template. An artificial brain is running the software of the human mind, and
in contrast to a standard cyborg case, there is now no biological or organic matter present,
but only the abstract computational structure of human cognition, which structure
possesses a clearly biological as opposed to artificial etiology. According to FCTM, it
is this LOT37* structure which distinguishes us at the cognitive level, and we have repli‐
cated this defining human mental characteristic in an artificial brain. Hence at the salient
level of description the biological brain and the robot’s artificial analogue are function‐
ally identical, and thus it may appear that, although the robot’s synthetic brain is phys‐
ically quite distinct from our own organic hardware, it nonetheless supports a purely
human mind. However, I will now invoke feature (2) above to argue that this is not the
whole story.

Conscious experience is a notoriously problematic topic, about which there is well
known and abundant disagreement. Many theorists (e.g. Fodor) invoke FCTM only to
explain the high level cognitive processing involved in propositional attitude states and
rational action, while at the same time bracketing the entire issue of qualia and phenom‐
enology. However, other authors, including (Lycan 1987), (Jackendoff 1987), (Johnson-
Laird 1988), (Chalmers 1996) try to extend the reach of the computational paradigm,
and contend that conscious states themselves arise via the implementation of the appro‐
priate functional or information processing structure. Let us denote this extension of the
basic FCTM framework ‘FCTM+’.

In contrast, a primary alternative to FCTM+ contends that it is the physical substrate,
the actual material realizer of the abstract functional structure which must be invoked
in the explanation of conscious presentations (as in (Churchland 1984)). This opposing
view is a form of physicalist type-type identity theory, wherein particular material
structures or processes are identified as constituting, ‘giving rise to’, or providing the
supervenience base for the corresponding phenomenal state or property. In the case of
human consciousness, salient aspects of the biological brain are thus hypothesized as
responsible for various features of subjective experience, and this guides the empirical
search for ‘neural correlates’ of consciousness and attendant psycho-physical mappings.

In comparison, a distinguishing feature of FCTM+ is that it advocates a form of
‘non-reductionist’ token-token physicalism motivated by the principle of Multiple Real‐
izability. As noted above, abstract computational procedures can be implemented via
any number of quite distinct types of physical configuration. For example, classical
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Turing machines, conceived as finite programs of instructions for manipulating 0’s and
1’s, have the ontological status of mathematical abstractions. Like differential equations,
sets, Euclid’s perfectly straight lines, etc., Turing machines don’t exist in real time or
space, and they have no causal powers. In order to perform actual computations, an
abstract Turing machine must be realized or instantiated by some suitable arrangement
of mass/energy. And as Turing (1950) observed long ago, there is no privileged or unique
way to do this.

The very same abstract Turing machine can be implemented via modern electronic
circuitry, a Victorian contraption made of gears and levers (a la Babbage’s Analytical
Engine), a human being following the instructions by hand using notepad and pencil (as
in the banks of clerks working at Bletchley Park), as well as more ‘deviant’ physical
arrangements such as roles of toilet serving as the machine tape and empty beer cans
for the cipher ‘1’. Thus there is no uniform reduction from type of computational state
to type of physical state. But each particular instance or physically realized token of a
given abstract state is still just a particular physical state or process, governed by the
ordinary laws of nature. Hence the ontological commitments are held to be physicalist
but non-reductivist.

The position I will now advocate is that FCTM+ is mistaken, and that qualia must
supervene upon the physical substrate rather than the functional organization. Why? –
because unlike computational formalisms (as well as propositional attitude states,
viewed dispositionally as high level, counterfactual-supporting configurations of a
computational system), conscious states are inherently non-abstract; they are actual,
occurrent phenomena extended in physical time. Many qualitative presentations, such
as a visual sensation of seeing a bright red dot on a display monitor in some laboratory
set-up, have a measurable duration, which means that the conscious event takes place
over some objectively specifiable length of time. In sharp contrast, abstract Turing
machines are not extended in physical time – the computational ‘steps’ are not tethered
to any units of physical duration and a concrete temporal dimension is entirely lacking.
It is only the steps in a materially realized Turing machine computation that are extended
in physical time, and the very same steps in different types of realization can have vastly
different temporal durations – the Analytical Engine will be markedly slower than
contemporary electronic realizations.

But FCTM+ is committed to the result that qualitatively identical conscious states
are maintained across wildly different kinds of physical realization, from human neural
wet ware to the robot’s silicon circuitry, to the gears and levers of the Analytical Engine.
And this is tantamount to the claim that an actual, substantive and invariant qualitative
phenomenon is preserved over radically diverse material systems, while at the same
time, no internal physical regularities need to be preserved. But then there is no actual,
occurrent factor which could serve as the causal substrate or supervenience base for the
substantive and invariant phenomenon of internal conscious experience. The advocate
of FCTM+ cannot plausibly rejoin that it is invariance of formal or functional role which
supplies this basis, since formal role is abstract, and such abstract features can only be
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implemented via actual properties, but they do not have the power to produce them (see
Schweizer 2002) for related discussion).1

Indeed, physical conservation laws hold that all physical events must have a purely
physical cause. So if one is really a physicalist (as opposed to some sort of crypto-dualist)
and holds that occurrent qualitative experience is an actual event rather than a mere
abstraction, then it follows that the cause must be physical. Hence it would seem to be
entailed by basic conservation laws that the material brain (natural or synthetic) must
do the causal work of the mind. If internal conscious states are real phenomena extended
in time, then their ultimate source must be the brain/hardware – they must depend upon
intrinsic properties of the realizer as a proper subsystem of the actual world.

Conscious experiences are then seen as hardware states that play an abstract func‐
tional role. This abstract role remains a legitimate software concern, and it must be
preserved across divergent realizations. But the actual properties of consciousness are
a feature of the material substrate, and (unless one has some sort of ‘magical’ theory of
computation, whereby implementing a computational formalism somehow imbues a
physical system with mysterious powers and properties over and above its ordinary
physical traits) these are not guaranteed to be preserved across widely different physical
systems. Qualitative aspect is essentially conditioned by the hardware and hence is
largely a matter of our flesh and blood embodiment (the above is comparable to some
of the views put forward by Searle (1992), although here I am making a claim about
qualitative states simplicitor, and no assertion whatever about ‘Intentionality’).

My position is not in direct conflict with the functionalist-driven view that some
advanced functional roles such as a self-model and other meta-cognitive features may
require conscious implementation, and hence that alternative realizations of the human
cognitive template that are purportedly devoid of conscious experience (e.g. Block’s
(1978) ‘Chinese Nation’) are not genuine possibilities in the first place, and hence cannot
serve as hypothetical counterexamples to FCTM+. Although I am in principle agnostic
as to whether any functional role is such that it requires conscious presentations, even
if this constraint on possible implementations is granted, it does not follow that the
supporting phenomenology must be qualitatively identical to ours. There is no reason
to suppose that the field of human conscious experience is the unique solution to the
functional constraints imposed by LOT37*, and hence the purely abstract structures of
FCTM+ are not sufficient to determine our particular phenomenology.

Qualitative presentations in the case of, e.g., visual perception, play the functional
role of providing information about the external environment. Hence LOT37* would
include functional pathways for processing sensory inputs and utilizing this information
for executive control, such as locomotion and navigation. However this is not enough
to determine the qualitative aspects produced by the physical vehicle that implements
this role. So the very same abstract LOT37* functional specification, when implemented
in human neurophysiology, will result in qualitatively different phenomenology than
when implemented in the robot’s silicon circuitry. The physical vehicle implementing

1 Thus the critique applies not just to classical computation and the mind/program model, but
to any approach committed to abstract structural explanation and MR, such as connectionist
architectures.
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the functional role will determine the actual and occurrent aspects of qualitative expe‐
rience, and indeed, physiological variations between human individuals could well
induce large disparities in qualia, even among con-specifics.

It’s not clear how deeply the LOT37* high-level rational and linguistic processing,
integrated with more ancient perceptual and navigational architecture, will penetrate
into the qualitatively manifested differences in the robot’s physical substrate. Thus if
employ some version of Dennett’s (1992, 2003) ‘heterophenomenology’, it’s conceiv‐
able that the robot could report on qualitative aspects of its conscious states that diverge
from ours, and hence would cause it to fail a Total Turing Test designed as a strict
‘imitation game’. But in the context of the present thought experiment we will assume
that the robot is indeed functionally isomorphic, and hence its verbal outputs reveal no
qualitative differences, as in the case of qualitative variations between con-specifics not
revealed through verbal outputs.

There are a number of different types of conscious states, including perceptual,
cognitive, and affective. The LOT37* will encompass high-level rational and linguistic
processing, integrated with more ancient perceptual and navigational architecture, and
these will be realized by divergent physical media in the robotic ‘cognitive clone’.
However, affective conscious states, such as moods and emotions, are far less obviously
tethered to abstract processing structure, and much more directly related to brute
biochemical influences. Since the robot is a synthetic device, it will not possess human
hormones, and thus we should expect its affective states (if any) to be qualitatively
distinct from ours.

And as a final consideration in this vein, it’s relevant to mention ‘noise’ as yet a
fourth type of conscious experience. For example, when I rub my knuckles against my
closed eyes and then open them, I see various twinkling yellow spots. As with the tingling
sensation of a sneeze, etc., I would take these phenomena to serve no functional role
whatever, but rather to be mere noise in my organic hardware system – just evolutionary
spandrels. And since the robot’s hardware is fundamentally different, it seems reasonable
to conclude that it would not experience qualitatively identical forms of noise.2

In any case, it’s quite safe to say that consciousness is still deeply mysterious, and
currently no one has a firmly established or conceptually complete and satisfactory
account. Given our present state of insipient understanding, it’s inevitable that conjec‐
ture and speculation will abound. Neither the FCTM+ view nor the contrasting hardware
based account defended above are yet confirmed (or definitively refuted). I’ve offered
some criticisms of the functionalist view and various reasons for favoring the hardware
based approach, but it nonetheless remains an open question. And the focus of the current
exercise is a thought experiment, rather than an attempt to conclusively establish the
truth of some proposition. So for the purposes of the thought experiment, those who
might still adhere to FCTM+ are invited to construe the results in a conditional format
– if  the (speculative) hardware based account turns out to be correct and the (speculative)
FCTM+ view turns out to be false, then the consequent follows. Hence for the sake of

2 There is nothing to prevent an FCTM + advocate from attributing a functional role to tingles,
afterimages, etc., but I would view this as merely an ad hoc strategy for defending their theory
against an obvious objection.
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argument we will now proceed on the assumption that the antecedent of the foregoing
conditional turns out to be true.

So although the robot’s mind is functionally identical to that of a human, we should
expect its synthetic phenomenology to be highly divergent, since the substrate in which
the functional structure is realized is very different than human neurophysiology. The
hypothetical robot brain sustains a form of artificial consciousness that is qualitatively
distinct from ours, and potentially very alien. Thus to the extent that phenomenology is
a constituent of general mentality, the robot mind is distinct from the human mind. The
LOT37* processing structure is the result of many eons of organic evolution and natural
selection, and in this respect the robot’s cognitive architecture has a clearly biological
etiology. But even though the robot’s abstract mental processing structure is quintes‐
sentially human, its conscious experience is artificial, and is qualitatively dissimilar to
ours. Hence the overall type of mind induced is not purely human, but rather is a bio-
machine hybrid.

3 An Artificial Brain Implementing Synthetic Cognitive
Architecture

The second scenario takes yet a further step of abstraction. In the first case we detached
computational structure from underlying hardware, and exploited MR to yield an arti‐
ficial realization of the biologically evolved LOT37*. Now we will abstract away from
internal factors altogether, including both physical substrate and the cognitive software
it’s running. We consider a computational artifact again capable of passing the combined
linguistic and robotic Total Turing Test, but where the robot’s internal processing struc‐
ture is now entirely artificial. The robot’s cognitive architecture has been custom
designed by AI researchers, and is functionally as unlike LOT37* as the first robot’s
artificial ‘brain’ is physically unlike human neurophysiology. This is a case of success‐
fully manifesting all aspects of intelligent human behavior in the shared linguistic and
spatiotemporal environment, but where this is achieved via an internal processing struc‐
ture vastly different from humans.

In response to the question above – how much of the robot’s mind should be viewed
as properly artificial? – it may appear that in this case the answer should be ‘all of it’,
that we have succeeded in producing a truly synthetic mind, comprised of both artificial
software and an artificial brain (and perhaps replete with synthetic phenomenology, as
in the previous thought experiment). However, I will now invoke feature (3) to argue
that, again, this is not the whole story.

The content of propositional attitude states such as beliefs and desires is surely a
core feature of minds. As above, to a great extent, our mental identity is dependent upon
what we believe and what we want. According to the standard belief-desire framework
of psychological explanation, the content of these propositional attitudes is central to
our status as rational agents and similarly this feature is vital to Dennett’s Intentional
Stance. And this is important, because the issue at hand does not concern the bare
mechanical and engineering factors involved in designing and building a robot able to
pass the Total Turing Test. Instead the issue concerns the subsequent evaluation of the
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artifact with respect to its semantic and intentional properties, including genuine intel‐
ligence, understanding, reference for its assorted linguistics outputs, and the attribution
of associated mental states, such as believing that snow is white, knowing that water is
H2O, wanting to pass the Total Turing Test, etc.

As in the case of behaviorally indistinguishable humans, the robot will be evaluated
as an Intentional System harboring assorted beliefs, desires and other intentional states,
and whose behavior can be explained and predicted on the basis of the content of these
states. Accordingly, the robot’s salient sonic emissions are interpreted as asserting
various propositions and expressing assorted cognitive contents. For example, suppose
Robbie the Robot, our hypothetical Total Turing Test artifact, is ambling down a path
and there’s a fallen log in the way. Robbie lifts his artificial leg unusually high and steps
over the log. When asked ‘Why did you lift your leg so high?’ Robbie emits the rejoinder
‘I saw the fallen log and did not want to trip on it.’ Robbie is reporting the content of
his relevant propositional attitude states in English, and if we are to interpret him as such
then they depend in an essential manner on the public, externally determined semantics
for this human Natural Language (NL). This is entailed if we are to construe the artifact
as a rational agent, as the locus of some genuine form of mentality, and hence as using
NL in a meaningful and referential manner, rather than just mentioning syntactic strings
generated by its internal linguistic processing system.

According to Putnam’s (1975) highly influential and compelling analysis, the seman‐
tics of NL ‘ain’t in the head’ of any individual human agent, but rather are set by the
encompassing sociolinguistic community of which the agent is a member. But if
linguistic meanings ain’t in the head of any individual humans, then they surely ain’t in
the data base of Robbie the Robot. As originally propounded by Burge (1979), Putnam’s
semantic externalism for NL implies that mental content is non-individualistic. The
propositional attitudes of human individuals derive their meaning from the engulfing
sociolinguistic medium.

And just as in the case of individual human mentality, so too for Robbie. The Total
Turing Test robot is inextricably embedded in a human sociolinguistic community with
its associated network of human cognitive scaffolding (Rupert 2009). Thus because of
semantic externalism and the ineliminable role of the biologically engendered socio‐
linguistic medium, the robot’s wide mental content will be derived from the embedding
Natural Language culture. Even though Robbie is wholly non-natural as an isolated
artifact, his wide propositional attitudes will be no more artificial than yours or mine,
and his essential status as an Intentional System is dependent on the human sociolin‐
guistic culture in which he functions (see Schweizer 2012 for further discussion).

So to the extent that he’s a rational agent susceptible to the framework of Belief-
Desire explanation and prediction, Robbie’s mind has an ineliminable human compo‐
nent. Natural languages have evolved over many cycles of adaptation and selection, and
in this sense the sociolinguistic context upon which Robbie’s mental content depends
can be seen as an ‘organic’ component with a clearly biological etiology. Hence such a
robot would not be a case of purely artificial mentality, but rather a complex blend of
artificial internal processing structures in conjunction with biologically engendered
sociolinguistic content. In the general case, mental states are determined both by internal
factors, such as computational processing configurations and phenomenology, as well
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as external factors, such as the wide propositional content of beliefs and desires. Hence
the robot is a bio-machine hybrid in terms of its external versus internal facets of
mentality.

4 Conclusion

The discussion has extended the received animat paradigm by exploring two cases of
genuine mind-machine merger, but where there is no physical Brain-Machine Interface
– indeed, the material human body/brain has been removed from the picture altogether.
The first thought experiment utilizes FCTM and the attendant principle of MR to envi‐
sion a case where the quintessentially human LOT37* functional/computational archi‐
tecture is implemented in a humanoid artifact. The widely embraced mind/program
analogy would seem to imply that the resulting ‘cognitive clone’ would possess a purely
human mind, sustained by an alternative physical substrate. However, it is argued that
the situation is not so straightforward, and that the artificial consciousness induced by
the robot’s divergent hardware would result in a type of mentality not purely human,
but rather a form of bio-machine hybrid. And this illustrates some intrinsic theoretical
difficulties in attempting to replicate the human mind in an alternative material medium.

In the second thought experiment, the human body/brain as well as its organically
engendered cognitive architecture have been removed, and the robot in question runs
custom designed artificial software. Nonetheless, its status as an Intentional System, and
the attendant content of its propositional attitude states is essentially human, which
illustrates some deep theoretical difficulties in attempting to create a form of purely
Artificial General Intelligence, a truly artificial mind.3

Acknowledgments. I would like to thank the reviewers Chuanfei Chin, Sam Freed and Dagmar
Monett for useful comments.
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Abstract. Despite AI’s enormous practical successes, some researchers
focus on its potential as science and philosophy: providing answers to
ancient questions about what minds are, how they work, how multi-
ple varieties of minds can be produced by biological evolution, includ-
ing minds at different stages of evolution, and different stages of devel-
opment in individual organisms. AI cannot yet replicate or faithfully
model most of these, including ancient, but still widely used, mathe-
matical discoveries described by Kant as non-empirical, non-logical and
non-contingent. Automated geometric theorem provers start from exter-
nally provided logical axioms, whereas for ancient mathematicians the
axioms in Euclid’s Elements were major discoveries, not arbitrary start-
ing points. Human toddlers and other animals spontaneously make sim-
ilar but simpler topological and geometrical discoveries, and use them
in forming intentions and planning or controlling actions. The ancient
mathematical discoveries were not results of statistical/probabilistic
learning, because, as noted by Kant, they provide non-empirical knowl-
edge of possibilities, impossibilities and necessary connections. Can gaps
between natural and artificial reasoning in topology and geometry be
bridged if future AI systems use previously unknown forms of informa-
tion processing machinery – perhaps “Super-Turing Multi-Membrane”
machinery?

1 The Meta-Morphogenesis Project

This paper opens a small window into a large project, begun over half a cen-
tury ago, in my DPhil thesis (Sloman 1962) defending Kant’s claims (Kant
1781) about the nature of mathematical discoveries: they are non-empirical,
non-contingent, and they are synthetic, i.e. not based purely on logic plus
definitions.

Around 1969 Max Clowes introduced me to AI. The project then grew into
an attempt to use AI to explain many aspects of minds (Sloman 1978), including
their abilities to make mathematical discoveries, especially the geometrical and
topological discoveries made by ancient mathematicians.
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A new strand began in 2011, inspired by Turing’s work on morphogene-
sis (Turing 1952), namely the Meta-Morphogenesis (M-M) project1, investigat-
ing evolution of biological information processing mechanisms and capabilities,
including an outline theory of evolved construction-kits.2,3 That provides a
framework for new attempts to identify ancient processes and mechanisms of
mathematical discovery, especially precursors of mechanisms involved in topo-
logical and geometric discovery, illustrated by the work of Archimedes, Euclid,
Zeno and many others. I conjecture that this will require discovery of some of the
simpler intermediate cases in the evolution of the mechanisms involved. Early
developmental stages may also give clues.

Studying spatial reasoning in other intelligent species, e.g. squirrels and
crows, and pre-verbal human toddlers, may give clues regarding mechanisms
used by ancient adult human mathematicians, including clues indicating their
reasoning about possible and impossible spatial structures and processes in solv-
ing practical problems, where those processes use subsets of the mechanisms
involved in ancient mathematical discoveries.

There’s no evidence that ancient mathematicians and intelligent non-human
animals use axiomatic, logical, forms of representation and reasoning based on
Cartesian coordinates, such as Hilbert’s axiomatization of Euclid (Hilbert 1899),
and geometry theorem provers, e.g. (Chou et al. 1994). My claim could be
challenged by evidence showing that brains of some non-human species, and
humans who have never encountered modern logic include genetically specified
formalisms and mechanisms for doing what logic theorem provers do. (Merely
showing that activity in certain brain regions is correlated with performing a task
does not explain how brains perform that task – unlike specifying the algorithms
and data-structures used by a robot to perform the task.)

Analysing examples of related, simpler, mathematical and proto-
mathematical discoveries in humans and other animals4, suggests that intelligent
animals use types of information processing machinery that are not included
in currently understood logical, algebraic, or statistical, reasoning mechanisms,
including neural-nets. For example, no learning mechanism based on probabilis-
tic inference can discover impossibilities or necessities, which are key features of
mathematical discovery, as pointed out in Kant (1781).

Virtual machines running on digital computers closely coupled with the envi-
ronment could be richer than a Turing machine, e.g. if the environment includes
non-digital or truly random phenomena). If the environment with which a digital
computer interacts is not a discrete-state machine, the coupled system, includ-
ing any virtual machinery used, cannot be modelled with perfect precision on

1 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.
html.

2 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html.
3 An invited video talk at IJCAI 2017, is available online, with extended notes: http://

www.cs.bham.ac.uk/research/projects/cogaff/misc/ijcai-2017-cog.html.
4 Pre-verbal toddler topology is illustrated in this 4.5 min video: http://www.cs.bham.

ac.uk/research/projects/cogaff/movies/ijcai-17/small-pencil-vid.webm.
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a Turing machine, since no discrete machine can model perfectly a processes
that runs through all the real numbers between 1 and 2, in order, whereas a
continuously changing chemical structure might be able to.5 (Moving only
through the rationals in order would be more complex.)

2 Limited Progress, Despite Spectacular Successes

The practical uses of AI, and the rate at which they are now multiplying are so
impressive that some serious thinkers have begun to fear that we are in danger
of building monsters that will take over the planet and do various kinds of harm
to humans, that we may be unable to prevent because we don’t match their
intelligence. For some reason most such thinkers don’t consider the more opti-
mistic possibility, suggested many years ago6, that truly superhuman intelligence
will include a kind of wisdom that rejects the selfish, thoughtless, competitive,
destructive, gullible, superstitious, and other objectionable features that lead to
so much harm done by humans to other humans and other species. But “sin-
gularity risks” are not my concern: this paper is about how little progress has
been made in philosophical and scientific aspects of AI that motivated the early
researchers who hoped, as I still do, that AI can give us powerful new ways of
modelling and understanding natural intelligence: AI as science and philosophy
not just engineering.

Alas, AI as engineering dominates AI education (and publicity) nowadays,
in contrast with the concerns of early researchers in the field, including some
philosophers, who noticed the potential of research in AI to contribute to a new
deep understanding of natural intelligence. For a survey see Margaret Boden’s
two-volume masterpiece (2006).

Recent spectacular engineering successes mask (current) limited scientific
and philosophical progress in AI. Two results of this masking (at present) are a
shortage of good researchers focusing on the long term issues, and a shortage of
funds for long term scientific research. Most funded AI research at present aims
at demonstrable practical successes, leaving some of the important scientific
questions unanswered, and to some extent un-noticed!

I do not claim that progress is impossible, only that it is very difficult and
requires deep integration across disciplines. It also depends on an educational
system producing high calibre multi-disciplinary researchers.

Despite its enormous practical importance, some AI researchers, like Turing,
are more interested in the potential of AI as science and philosophy than its prac-
tical applications. E.g. AI (along with computer science) has begun to advance
science and philosophy by providing new forms of explanation for aspects of nat-
ural intelligence and new answers to ancient philosophical questions about the
nature of minds, their activities, and their products.
5 For further discussion of “virtual machine functionalism” see http://www.cs.bham.

ac.uk/research/projects/cogaff/misc/vm-functionalism.html.
6 E.g. in the epilogue to my 1978 book, The Computer Revolution in Philosophy, here

http://www.cs.bham.ac.uk/research/projects/cogaff/crp/#epilogue.
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In particular, as explained in Chap. 2 of Sloman (1978), the deepest aim of
science (not always acknowledged as such) is to discover what sorts of things are
possible, and what makes, or could make, them possible, not to discover regu-
larities. In contrast, many science students are (unfortunately) taught to regard
science as primarily concerned with finding, explaining and using observed corre-
lations: a shallow view of science criticised vehemently in Deutsch (2011). Deep
scientific theories all contribute to the study of what is possible and how it is
possible, including ancient atomic theory, Newton’s mechanics, chemistry, Dar-
win’s theory of natural selection, quantum mechanics, e.g. (Schrödinger 1944),
computer science, AI and theoretical linguistics.

The Turing-inspired Meta-Morphogenesis project mentioned in Note 1 has
addressed such issues since 2012. AI, including future forms of AI, must be an
essential part of any deep study of “the space of possible minds” (Sloman 1984),
which may be far richer than anyone currently suspects.

3 AI as Science and Philosophy

For most people, AI is primarily an engineering activity, whereas my interest,
since around 1969, inspired by Max Clowes, and AI founders such as Minsky e.g.
(1963, 1968, 2006), McCarthy e.g. (1979, 2008), and Simon e.g. (1967, 1969),
is focused mainly on the potential of AI to trigger and eventually to answer
scientific and philosophical questions, e.g. about what minds and mental states
and processes are, and how they work, including how they evolved, how they
develop, how they can vary, with potential applications in education and therapy.

A long term goal is to explain how biological evolution is able to produce
so many different forms of information-processing, in humans and non-human
organisms, at different stages of development, in different physical and cultural
contexts, and in different cooperating subsystems within complex individuals
(e.g. information processing subsystems involved in: internal languages7, lan-
guage development, visual perception, motivational processes, and mathemati-
cal discovery). Explaining all this requires major progress in understanding vari-
eties of information processing. Clues may come from many evolutionary stages,
including: microbe minds, insect minds, and other precursors of the most com-
plex minds we hope to understand and model. This is the Meta-Morphogenesis
project mentioned in Note 1.

Unfortunately much “standard” research, seeking experimental or naturally
occurring regularities, fails to identify what needs to be explained, because most
animal information processing is far richer than observable and repeatable input-
output relationships – e.g. your mental processes as you read this. No amount of
laboratory testing can exhaust the responses you could possibly give to possible
questions about what you are reading here, and there is no reason to assume
that all humans, even from the same social group, or even the same research
department, will give the same answers. Compare how different the outputs of
great composers, or poets, or novelists are, even if they live in the same location.
7 http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#talk111.
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A standard response is to regard all that diversity as irrelevant to a science of
mind. One consequence is narrowly focused research using experiments, e.g. in
developmental psychology, designed to constrain subjects artificially to support
repeatability. This can conceal their true potential, requiring long term stud-
ies of individuals, which would have to accommodate enormous variability in
developmental trajectories.

There are exceptions, e.g. Piaget’s pioneering work on children’s understand-
ing of Possibility and Necessity, published posthumously (Piaget 1981,1983). But
he lacked adequate theories of information processing mechanisms (as he admit-
ted at a workshop I attended, shortly before he died). Piaget’s earlier work
inspired the proposals in Sauvy and Sauvy (1974). It could also suggest useful
goals for future, more human-like, robots.

4 Aim for Generative Power not Data Summaries

Overcoming the limitations of “standard” empirical research on how minds work
requires setting explanatory goals at the level of generative powers rather than
observed regularities, as Chomsky and others pointed out long ago (1965). (For
historical detail see (Boden 2006); Compare the claim that deep science is more
concerned with discovery and explanation of possibilities than laws, in Sloman
(1978, Chap. 2).

Even in the physical sciences, modelling observed regularities can often be
achieved without accurate modelling of the mechanisms that happened, on that
occasion, to produce those regularities, e.g. the apparent successes of the Ptole-
maic theory of planetary motion, and many other well supported then later
abandoned regularities in physics – including Newtonian dynamics.

Problems of reliance only on observed and repeatable regularities are far
worse in the science of mind. Overcoming them requires application of deep
multi-disciplinary knowledge and expertise, including designing, testing and
debugging complex virtual machines interacting with complex environments.
This helps to debunk the myth that AI is dependent on Turing machines: TMs
are defined to run disconnected from any environment, rendering them useless
for working AI systems, despite their great theoretical importance for computer
science (Sloman 2002). Preliminary ideas regarding a “Super Turing membrane
machine” are in Sloman (2017b),8 related to ideas about affordances in Sloman
(2008) and McClelland’s work on affordances for mental action, e.g. (2017). This
requires substantial long term research.

Insights can often be gained by studying naturally occurring, but relatively
rare phenomena, for example when attempts to teach deaf children in Nicaragua
to use sign language demonstrated that children do not merely learn pre-existing
languages: they can also create new languages cooperatively, though this is

8 For a detailed example see http://www.cs.bham.ac.uk/research/projects/cogaff/
misc/deform-triangle.html and http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/apollonius.html.
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cloaked by the fact that they are usually in a minority, so that collaborative
construction looks like learning (Senghas 2005).

4.1 Human/Animal Mathematical Competences

A particular generative aspect of human intelligence that has been of interest to
philosophers for centuries, and discussed by Kant (1781, 1783), is the ability to
make mathematical discoveries, including the amazing discoveries in geometry
presented in Euclid’s Elements over two thousand years ago that are still in use
world-wide every day by scientists, engineers and mathematicians (though unfor-
tunately now often taught only as facts to be memorised rather than rediscovered
by learners).

I suspect that Kant understood that those abilities were deeply connected
with practical abilities in non-mathematicians such as weaver birds, squirrels,
elephants, and pre-verbal toddlers (my examples, not his), as illustrated in the
video presentation in Sloman (2017b). Young children don’t have to be taught
topology in order to understand that something is wrong when a stage magician
appears to link and unlink a pair of solid metal rings. Online documents exploring
some of the details are referenced in Note 8 and the work on evolved construction-
kits in Note 2.

Despite the popular assumption that computers are particularly good at
doing mathematics, because they can calculate so fast, run mathematical simu-
lations, and even discover new theorems and new proofs of old theorems using AI
theorem-proving packages, they still cannot replicate the ancient geometric and
topological discoveries, or related discoveries of aspects of geometry and topology
made unwittingly by human toddlers (illustrated in the video referenced in Note
4. and related achievements of other species, e.g. birds that weave nests from
twigs or leaves, and squirrels that defeat “squirrel-proof” bird feeders. (Search
online for videos.)

These limits of computers are of far deeper significance for the science of
minds than debates about whether computer-based systems can understand
proofs of incompleteness theorems by Gödel and others, e.g. (Penrose 1994)
(who recognizes the importance of ancient geometric competences, but gives no
plausible reasons to think they cannot be replicated in AI systems, although
they have not been replicated so far.)

4.2 AI Theorem Provers Do Something Different

There are impressive AI geometry theorem provers, but they start from logical
formalisations of Euclid’s axioms and postulates, e.g. using Hilbert’s (1899) ver-
sion. They derive theorems using methods of modern logic, algebra, and arith-
metic (e.g. pruning search paths by using numerical checks). Those methods
are at most a few hundred years old, and some much newer. They were not
known to or used by great ancient mathematicians, such as Archimedes, Euclid,
Pythagoras and Zeno, or children of my generation learning to prove statements
in Euclidean geometry. How did their brains work?
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A major unsolved problem for AI is to understand and replicate the rele-
vant ancient reasoning powers. The postulates and axioms in Euclid’s Elements,
e.g. concerning congruency, were stated without proof, but were not arbitrary
assumptions adopted as starting points to define a mathematical domain, as in
modern axiomatic systems.

Rather, Euclid’s axioms and postulates were major discoveries, and vari-
ous mathematicians and philosophers have investigated ways of deriving them
from supposedly more primitive assumptions, e.g. deriving notions like point
and line from more primitive spatial/topological notions, as demonstrated by
Scott (2014). A simpler example, from Sloman (2017b), referenced in Note 8 is
in Fig. 1.

Fig. 1. What happens to the size of the angle at A if A is moved further from BC
along a line through the opposite side BC? Answering involves thinking about two
continua (the continuum of positions of the top vertex, and the continuum of angle
sizes) and their relations. Many people with no mathematical training can do this easily,
in my experience. What are their brains doing? How do brains represent impossibility
or necessity? If the line of motion of A intersects the base outside the triangle the
situation is more complicated, and Apollonius’ construction becomes relevant, as Diana
Sofronieva pointed out to me.

If you start with an arbitrary planar triangle, like the blue one in Fig. 1,
then continuously move one vertex further from the opposite side, along a line
through the opposite side, e.g. producing the red triangle, and then continuing,
what happens to the size of the angle at the top as it moves: how do you know?
What enables you to know that it is impossible for the angle to get larger?
Investigation of how the problem changes if the line of motion changes is left as
an exercise for the reader (see Note 8).

Euclid’s starting points require mathematical discovery mechanisms that
seem to have gone unnoticed, and are not easily implementable in current AI
systems without using something like a Cartesian-coordinate-based arithmetic
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model for geometry, which was not used by the ancient mathematicians making
discoveries thousands of years before Descartes.

Moreover, for reasons given by Kant, they cannot be empirical discovery
methods based only on finding regularities in many trial cases, since that cannot
prove necessity or impossibility: mathematics is concerned with necessary truths
and impossibilities not empirical generalisations. This feature is ignored by much
psychological research on mathematical competences and cannot be explained by
statistics-based neural theories of mathematical reasoning. This does not imply
infallibility, as shown by Lakatos (1976). Any practising mathematician knows
that mathematicians can make mistakes. I did at first when reasoning about the
stretched triangle problem above, which is what led to the exploration reported
in Sloman (2017b).

5 Robots with Ancient Mathematical Competences?

Can current computing technology support ancient mathematical discovery
mechanisms, or are new kinds of computers required, e.g. perhaps chemical
computers replicating ill-understood brain mechanisms? (I suspect Turing was
thinking about such mechanisms around the time he died (suggested by reading
(Turing 1952)). There is evidence in Craik (1943) that Kenneth Craik, another
who died tragically young, was also thinking about such matters, perhaps inspir-
ing Turing posthumously? Does anything in current neuroscience explain how
biological brain mechanisms represent and reason about perfectly straight, per-
fectly thin lines, and their intersections? Or reason about impossibilities, and
necessary consequences of certain kinds of motion?

Future work needs to dig deeper into differences between the forms of log-
ical/mathematical reasoning that computers can and cannot cope with, e.g.
because the former use manipulation of discrete structures or discrete search
spaces, and the latter require new forms of computation, e.g. the structures and
processes used in ancient proofs of geometrical and topological theorems. (Com-
pare the procedures for deriving Euclid’s ontology from geometry without points
presented in a recorded lecture by Scott (2014). The presentation clearly uses
a great deal of spatial/diagrammatic reasoning rather than purely logical and
algebraic reasoning.)

The required new mechanisms are not restricted to esoteric activities of
mathematicians: e.g. many non-mathematicians, including young children, find
it obvious that two linked rings made of rigid impenetrable material cannot
become unlinked without producing a gap in one of the rings.

6 Representing Impossibility and Necessity

What brain mechanisms can represent impossibility? How can impossibilities
be derived from perceived structural relationships? Young children don’t have to
study topology to realise that something is wrong when a stage magician appears
to link and unlink solid rings. What mechanisms do their brains use? Or the
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brains of squirrels mentioned above?9 There are many more examples, including
aspects of everyday reasoning about clothing, furniture, effects of various kinds
of motion, etc. and selection between possible actions (affordances) by using par-
tial orderings in space during visual feedback rather than numerical measures of
spatial relationships or the kinds of statistical/probabilistic reasoning that now
(unfortunately) dominate AI work in vision and robotics. An alternative app-
roach uses semi-metrical reasoning, including topological structures and partial
orderings, was suggested in Sloman (2007). I have not been able to persuade any
AI/Robotics researchers, however, possibly because using that approach would
require massive changes to Robot vision and reasoning mechanisms. How can
such mechanisms be implemented in brains?

Current computers can produce realistic simulations of particular spatial pro-
cesses but that’s very different from understanding generic constraints on classes
of processes, like the regularity linking two dimensions of continuous variation
mentioned in Fig. 1.

No amount of repetition of such processes using a drawing package on a
computer will enable the computer to understand why the angle gets smaller,
or to think of asking whether the monotonicity depends both on the choice of
the line of motion of the vertex and the starting point. See Note 8 and (Sloman
2017b). I did not notice this until Auke Booij pointed it out to me.

Such geometric reasoning about partial orderings is very different from under-
standing why an expression in boolean logic is unsatisfiable or why a logical for-
mula is not derivable from a given set of axioms, both of which can be achieved
(in some cases) by current AI systems, but only after the problem is rephrased
in terms of possible sequences of logical formulae in a proof system, or possi-
ble solutions to numerical equations, using something like Hilbert’s logic-based
formulation of Euclidean geometry. Ancient geometric reasoning was very differ-
ent from reasoning about arithmetical formulae by using Cartesian coordinates.
(Claims by John Searle and others that computers are purely syntactic engines,
with no semantic competences, have been adequately refuted elsewhere.)

7 Gaps in Theories of Consciousness

7.1 What Is Mathematical Consciousness?

Can we give the required sort of consciousness of geometrical necessity to future
robots? The lack of any discussion of mathematical consciousness, e.g. “topolog-
ical impossibility qualia”, in all contemporary theories of consciousness that I
have encountered, seems to me to suggest that those theories are at best incom-
plete, and probably deeply mistaken, at least as regards spatial consciousness.

The tendency for philosophers of mind to ignore mathematical discovery is
particularly puzzling given the importance Kant attributed to the problem as
long ago as 1781. (And long before him Socrates and Plato?)

9 Many additional examples are presented in http://www.cs.bham.ac.uk/research/
projects/cogaff/misc/impossible.html.

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html
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Perhaps this omission is a result of a widely held, but mistaken, belief that
Kant was proved wrong when empirical support was found for Einstein’s claim
that physical space is non-Euclidean. Had Kant known about non-Euclidean
geometries, he could have given as his example of non-empirical discovery of non-
analytic mathematical truths the discovery that a subset of Euclidean geometry
can be extended in different ways, yielding different geometries with different
properties. Kant had no need to claim that human mathematicians are infallible,
and as far as I know, never did claim that. His deep insights were qualified, not
refuted, by Lakatos (1976). This was also discussed in my 1962 thesis (Sloman
1962). “Proto-mathematical” discoveries of various kinds are also made, and put
to practical uses, by pre-verbal human toddlers.10

Whether AI can be extended in the foreseeable future to accommodate
the ancient mathematical competences using current computers depends on
whether we can implement the required virtual machinery in digital computers
or whether, like brains, future human-like computers will have to make signifi-
cant use of chemical information processing, perhaps using molecules rather than
neurons as processing units, as discussed by Grant (2010), Trettenbrein (2016),
Gallistel and Matzel (2012), Newport (2015) (citing von Neumann) and others.

As long ago as 1944 Schrödinger (1944) pointed out the importance for life
of the fact that quantum physics explains how chemistry can support both dis-
crete processes (structural changes in chemical bonds) and continuous changes
(folding, twisting, etc.) The possibility that biological information processing is
implemented not at the neural level but at the molecular level was also con-
sidered by John von Neumann in his 1958 book The computer and the brain,
written while he was dying. If true this implies that current calculations regard-
ing how soon digital computers will replicate brain functionality are out by many
orders of magnitude (e.g. many centuries rather than decades). See also Newport
(2015).

7.2 Probabilistic Reasoning vs Impossibility/Necessity

AI researchers who have not studied Kant’s views on the nature of mathemati-
cal knowledge as non-analytic (synthetic, i.e. not derivable using only definitions
and pure logic), non-contingent (concerned with what’s possible, necessarily the
case, or impossible) may find it hard to understand what’s missing from AI. In
particular, I have found that some believe that eventually deep learning mecha-
nisms will suffice.

But mechanisms using only statistical information and probabilistic reason-
ing are constitutionally incapable of learning about necessary truths and false-
hoods, as Kant noticed, long ago, when he objected to Hume’s claim that there
are only two kinds of knowledge: empirical knowledge and analytic knowledge
(definitional relations between ideas, and their logical consequences).

10 Several examples of various kinds are presented in http://www.cs.bham.ac.uk/
research/projects/cogaff/misc/toddler-theorems.html and http://www.cs.bham.ac.
uk/research/projects/cogaff/misc/impossible.html.

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html
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Hume’s view of causation as being of the first sort (concerned with observed
regularities) is contradicted by mathematical examples including the triangle
deformation example above: motion of a vertex of a triangle away from the
opposite side causes the angle to decrease, just as adding three apples to a
collection of five apples causes the number in the collection to increase to eight.
Examples of Humean and Kantian causal reasoning in humans and other animals
were presented (in collaboration with Jackie Chappell) in Chappell and Sloman
(2007b).

7.3 Can We Give Robots Geometric Reasoning Abilities?

Possible lines of enquiry about what’s missing from current AI are suggested
by Turing (1952), leading to a new theory regarding the variety of mecha-
nisms and transitions in biological evolution, including evolution of new kinds of
construction kit (Sloman 2017a).11 Evolution repeatedly produced new biolog-
ical construction kits for new kinds of information processing mechanism. This
may explain the evolution of epigenetic processes that produce young potential
mathematicians. Ideas about “meta-configured competences” are being devel-
oped in collaboration with biologist Jackie Chappell (Chappell and Sloman
2007a),12 extending Karmiloff-Smith’s theories of “Representational Redescrip-
tion” (1992), and hypotheses about non-linear, structured, extendable, inter-
nal languages required for percepts, intentions, plans, usable generalisations,
and reasoning, long before external languages were used for communication
(Sloman 2015).

One consequence of these investigations is rejection of the popular “Possi-
ble worlds semantics” as an analysis of (alethic) modal operators (“impossible”,
“possible”, “contingent”, and “necessary”), in favour of (Kant-inspired) seman-
tics related to variations in configurations of fragments of this world, as illus-
trated in the stretched triangle example, and many other examples of geometrical
and topological reasoning.

8 Conclusion, and Further Work

This paper opens a small window into a large, complex, still growing project. (See
Note 1.) There are many implications for AI as Science, AI as engineering and
AI as philosophy, and also deep implications for psychology and neuroscience,
insofar as they have not yet addressed the problem of how minds or brains are
able to make discoveries concerning necessary truths and impossibilities that are
not merely logical truths or falsehoods. There are also hard biological problems
to be solved, concerning evolutionary histories of the features of human brains

11 The work on construction kits is still being extended in http://www.cs.bham.ac.uk/
research/projects/cogaff/misc/construction-kits.html.

12 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-configured-
genome.html.

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-configured-genome.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-configured-genome.html
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and minds that have these amazing capabilities. Perhaps only after these non-
AI questions have been answered will AI engineers be able to design artificial
minds with ancient mathematical capabilities of Archimedes and others. Not all
psychologists and neuroscientists notice that the task of explaining mathematical
cognition is not merely the task of explaining numerical competences, on which
they tend to focus, while ignoring the richness of numerical competences such
as the central role of transitivity of one-one correspondence. (Piaget was an
exception.)

On-going work investigates requirements for a Super-Turing membrane com-
puter,13 able to acquire and use information about spatial structures and rela-
tionships in performing practical tasks, for instance understanding how available
information and affordances necessarily change as viewpoints change, or objects
rotate or move – because visual information normally travels in straight lines. If
these ideas can be used in future designs, we may be able to produce robots that
replicate the discoveries made by great ancient mathematicians as well as the
deep but unnoticed spatial reasoning abilities developed by pre-verbal humans
and many other intelligent species.

This should help to stifle distracting and impoverished theories of embodied
cognition, mistakenly giving the impression that there is no requirement for
deep and complex internal information-processing engines produced by biological
evolution, but not yet replicated in AI systems. And if, as I suspect (and perhaps
Turing suspected), these mechanisms are implemented in sub-synaptic chemical
mechanisms, then since there are many orders of magnitude more molecules
than neurones, this suggests that hopes or fears about computers soon reaching
or overtaking human intelligence are time-wasting distractions from the hard
task of trying to understand and model human intelligence, or more generally
animal intelligence.

The Meta-Morphogenesis web site is expected to continue growing.14 But
there are many unsolved problems, including problems about mechanisms under-
lying ancient forms of mathematical consciousness.
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Abstract. Standard notions in philosophy of mind have a tendency to charac‐
terize socio-cognitive abilities as if they were unique to sophisticated human
beings. However, assuming that it is likely that we are soon going to share a large
part of our social lives with various kinds of artificial agents, it is important to
develop a conceptual framework providing notions that are able to account for
various types of social agents. Recent minimal approaches to socio-cognitive abil‐
ities such as mindreading and commitment present a promising starting point from
which one can expand the field of application not only to infants and non-human
animals but also to artificial agents. Developing a minimal approach to the socio-
cognitive ability of acting jointly, I present a foundation for future discussions about
the question of how our conception of sociality can be expanded to artificial agents.

1 Introduction

The handling of technical devices is influencing the life of a wide range of people: many
have a mobile phone, use social networks or rely on intelligent software as part of their
working lives. Additionally, one can predict increased interactions with artificial
systems such as autonomous driving systems, care robots and conversational machines.
Soon a lot of people will share a large part of their social lives with various kinds of
artificial agents. Where previous revolutions have dramatically changed our environ‐
ments, this one has the potential to substantially change our understanding of sociality.

If, one day, interactions with artificial systems will be experienced as genuinely social,
then it is no longer sufficient to characterize such interactions as mere tool use. Investi‐
gating the boundaries of our understanding of sociality and the role artificial agents may
play in our social world, I suggest an expanded notion of joint action that is applicable to
artificial systems. This is particularly relevant because joint actions as social interactions,
unlike tool use, raise ethical questions. Tools neither have rights nor obligations, but with
regard to social agents in social interactions such as joint actions, questions about obliga‐
tions and rights of interaction partners are relevant. But before we can approach these
questions, we have to develop an appropriate conceptual framework to determine the
conditions for those artificial agents who can be considered social agents.

In philosophy of mind, however, socio-cognitive abilities such as mindreading
(Fodor 1992), individual agency (Davidson 1980) or the ability to act jointly (Bratman
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2014) are characterized as if they were unique to sophisticated human beings only. The
aim of this paper is to elaborate on the extent to which these human-centered conceptions
can be expanded to artificial agents with respect to the socio-cognitive ability to act
jointly. An expanded framework of sociality provides the basis on which we can make
finer-graded distinctions between tool use and joint action with respect to artificial
systems.

To explore whether and how artificial agents might enter the realm of social cogni‐
tion, it would be helpful to have a clear-cut definition of social cognition at hand. But
philosophy does not provide such a definition. Even various characterizations of cogni‐
tion itself are incompatible in certain respects. With respect to the boundaries of cogni‐
tion, some positions claim that cognitive processes are necessarily internal or brain-
bound, whereas others argue that cognition should be understood as extended into the
body and environment (Clark and Chalmers 1998). Furthermore, there are debates about
whether associative conditioning and other seemingly lower-level behaviors may count
as cognitive (Buckner and Fridland 2017). In addition, we do not have clear-cut criteria
specifying what makes cognition especially social.

For the purposes of this paper I characterize social cognition on a functional level.
I assume that a primary function of socio-cognitive abilities is to enable us to encode,
store, retrieve, and process social information about other agents in order to understand
them. This social competence is at the same time an essential requirement to facilitate
social interactions. This functional definition remains neutral with regard to disputes
about the boundaries of cognition and can be open to multiple realization of socio-
cognitive abilities.

Focusing on the socio-cognitive ability of acting jointly, to do things together in
order to reach a common goal, I am confronted with the standard philosophical notion
of joint action (Bratman 2014), which excludes other types of agents from the start. In
contrast to this restrictive notion, I argue for a less human-centered version of this notion.
The proposed notion of joint action will specify conditions artificial agents need to fulfill
to enter the space of social interactions. Thereby, I present a suggestion as to under which
circumstances artificial agents may count as proper social agents in a joint action.

In order to overcome the general tendency to restrict socio-cognitive abilities to
living beings, I refer to recent minimal approaches (Butterfill and Apperly 2013; Michael
et al. 2016; Vesper et al. 2010), which present a promising starting point for establishing
a broader framework. Such approaches suggest so-called minimal versions of standard
notions in order to capture a wider range of socio-cognitive abilities. One of their ration‐
ales is questioning the necessity of certain conditions that come with the standard phil‐
osophical conceptions. For example, the proposed notion of minimal mindreading
specifies the very minimal presuppositions of how agents can anticipate the behavior of
others without requiring a mastery of language or representations of complex mental
states (Butterfill and Apperly 2013). With the help of this notion, instances of a broader
spectrum including agents such as infants and non-human animals can be captured.
Developing a minimal notion of joint action that can account for abilities of artificial
agents, I follow the idea of questioning seemingly necessary conditions. In line with
recent minimal approaches, it is my strategy to show that some assumed conditions we
find in living beings are not necessary for acting jointly as such. Given that we (will)
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have reasons to expand the space of sociality from living beings to specific non-living
agents, some of the standard conditions should rather be seen as biological constraints
specific to human beings and should not be used to exclude artificial agents from the
start.

2 Modes of Ascriptions of Socio-Cognitive Abilities

Investigating the practice of ascribing socio-cognitive abilities, it is important to distin‐
guish between two modes of ascriptions: an ‘as if’ mode and a justified mode of ascription.

Characterizing the ‘as if’ mode, one can describe two functional roles an ‘as if’
ascription can take on. First, the ‘as if’ mode can have an explanatory role. In order to
make sense of the world, humans ascribe all sorts of socio-cognitive properties to non-
living beings, without claiming that the described objects really possess such properties.
Second, social interactions among humans are based on a lot of ‘as if’ ascriptions.

Regarding the former, an experiment by Heider and Simmel (1944) illustrates how
participants attribute social properties in order to describe simply moving geometrical
forms. Although it is helpful and enlightening to characterize perceptual input through
a social narrative and not through a technical description of geometric forms, it is of
course not justified to claim (and no one does) that these objects actually have social
features. Along the same lines, Daniel Dennett (1987) describes how we apply the
intentional stance to non-living beings. Using the ‘as if’ mode in this way helps us to
make sense of the world but it remains neutral with regard to the question of what socio-
cognitive abilities objects really have.

Besides this explanatory role, ‘as if’ ascriptions can also provide a basis in human-
human interactions, when we do not have enough reasons to actually ascribe specific
socio-cognitive abilities. We use default assumptions to treat other human agents as
social agents. In these cases, we assume that a justified ascription is, in principle, possible
and appropriate. Even though such default assumptions do not qualify as justified
ascriptions, they play a role in human-human social interactions. For example, if I give
a talk I apply many default assumptions such as thinking that most people in the audience
do understand the language, are paying attention to what I say and so on – I will do so
even in a potential video-conference setting in which I am, due to technical problems,
not able to see my audience. Assuming that my audience consists of social agents puts
me in a situation in which ‘as if’ ascriptions not only have an explanatory role but are
also able to facilitate social interactions.

However, before we can adequately consider the role of ‘as if’ attributions in the
study of human-computer interactions, we need to focus on the circumstances under
which we are justified in attributing socio-cognitive abilities to artificial agents that they
actually possess. Once we have agreed on the extent to which artificial agents possess
socio-cognitive abilities and can be considered social agents, future research can analyze
the role of an ‘as if’ mode in human-computer interactions. Unless we have a conceptual
framework that determines what socio-cognitive abilities can be found in artificial
agents, we cannot distinguish the two functional roles of an ‘as if’ mode assignment. If
we don’t know whether the ‘as if’ mode is applied to social interactions that are based
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on socio-cognitive abilities, the ‘as if’ ascription may just have the functional role of
making sense of the observed behavior.

3 Towards Joint Actions

According to Bratman (2014), a joint action of human adults can be characterized as the
idea of having a shared intention. It is most essential for being able to act jointly to have
shared intentions, which are described as an interpersonal structure of related intentions
that serves to coordinate action and structure bargaining between participants. Proposed
conditions for having shared intentions are demanding. They are characterized by a
specific belief state, a relation of interdependence and mutual responsiveness and
presuppose common knowledge; all these conditions enable coordination and explicit
relations of commitment.

In sum, there is a lot that is thought as necessary for joint actions. Neither children
nor non-human animals fulfill such demanding conditions. Consequently, such a
demanding notion cannot capture the abilities of other types of agents. But it is obvious
that questioning the ability of children to act jointly conflicts not only with our common
sense but also with empirical data. Moreover, recent research indicates that non-human
animals also successfully engage in joint actions (Warneken et al. 2006).

In philosophy, there is a widespread debate about the proposed necessity of condi‐
tions for joint actions. For instance, Blomberg (2015) questioned whether the common
knowledge condition should actually be taken as a necessary condition. He shows that
various arguments in favor of the common knowledge condition fail and claims that
participants can successfully engage in a joint action without explicitly knowing that
they have a shared intention. It is sufficient that each of the participants intend by way
of the other’s intention and by way of meshing subplans.

Contributing to the debate about the necessity of conditions, I have argued elsewhere
that not all participants in a joint action have to fulfill the same conditions (Strasser
2015). By referring to joint actions of mixed groups with distinct participants, such as
mother and child or human being and artificial agent, I showed that it is possible that
one of the participants fulfills less demanding conditions. Likewise, there are attempts
in developmental psychology considering less demanding cases of joint actions (Vesper
et al. 2010). But none of these attempts specifies the necessary minimal conditions that
would enable an artificial agent to act together with a human agent to reach a common
goal. Nevertheless, these debates indicate that the demanding conditions of the standard
notion are not irreversible.

To develop an expanded notion of joint action with respect to artificial agents, this
paper focuses on two major abilities, namely “the ability to act” and “the ability to
coordinate”. Consequently, I claim that if an artificial agent is able to meet the conditions
for agency and coordination elaborated below, this agent qualifies as a social agent in a
joint action.
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3.1 Ability to Act

It is a necessary prerequisite for being able to act jointly to be able to act. But, once
again, standard philosophical notions of action are tailored to human adults only.
According to Davidson (1980), highly demanding conditions, such as consciousness,
the ability to generate goals, the ability to make free choices, propositional attitudes,
mastery of language and intentionality are required.

In sum, it is common sense to claim that actions are ‘intentional under some descrip‐
tion’. Due to a demanding understanding of intentionality that comes with a variety of
further implications, non-living beings, animals and even infants seem to be doomed to
remain mere tools, only capable of producing behavior. Only sophisticated intentional
human beings equipped with consciousness are considered able to entertain free choice,
generate goals and engage in proper actions. In opposition to this standard notion of
action I argue for a finer-grained differentiation of classes of events in order to avoid a
restriction of agency to living beings (adult humans) from the outset.

Every action is an event, but not all events are actions: the categories of events divide
into two sub-categories, namely natural events such as thunderstorms and events that
are labelled as behavior, while the sub-category of behavior, in turn, is divided into
behavior and action. Guided by a finer-grained differentiation of potential categories, I
propose to introduce a further sub-category between behavioral events and the ones
described by contemporary notions of action. This category can be labelled as minimal
action and can account for agency in the gray area between pure behavior and complex
actions.

In line with the idea of minimal approaches, I suggest expanding the notion of action
by questioning the necessity of some proposed conditions. For example, consciousness
and intentionality in a strong sense might rather be biological constraints and should not
be taken as necessary conditions for minimal actions. Framing a new notion, one can
distinguish different types of actions, namely minimal and complex actions (Strasser
2015, 2005).

To capture events that cannot adequately be described as mere behavior but don’t
fulfill the demanding requirements for full-blown action, I suggest that conditions can
be interpreted in a weaker sense. For example, unlike the standard notion, a minimal
notion of action does not require that the generation of the goal necessarily occur in the
acting system. Alternatively, a goal can be generated in another system and can then be
transferred to the acting system. For a minimal acting system it is sufficient to be able
to recognize and represent goals as goals. Along the same lines, I suggest questioning
whether being conscious is a necessary condition with respect to the required informa‐
tion processes of minimal agency as such. Assuming that consciousness is rather a
specific property of living beings (a biological constraint), a minimal notion of action
does not require consciousness as a necessary condition. As long as an artificial agent
is able to perceive, represent and process the relevant information and has effectors to
perform an action, this agent seems well-equipped to act in a minimal sense. Admittedly,
this askes for a more detailed characterization of what counts as relevant information
than I am able to present in this paper. For the sake of argument, let’s assume that it is
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possible to develop a minimal notion of action with which we can draw a new line
between action and mere behavior – or more precisely agents and tools.

3.2 Coordination

The ability to act in a minimal sense is not yet sufficient to act jointly – to be a social
agent in social interactions. I claim that the core of the social dimension of joint actions
lies in the ability to coordinate. In line with the standard notion of joint action, I agree
that a functional role of shared intentions is the ability to coordinate. Only if agents work
together in an organized way can we talk of a joint action. Otherwise such interactions
could only be described as accidently parallel actions or tool use and would not qualify
as joint actions.

Furthermore, I claim that having social competence is the essential condition to make
successful coordination in joint actions possible. To analyze the required social compe‐
tence, I focus on three important aspects. First, I analyze in what sense an understanding
of the other agents can be realized by mindreading abilities. Second, I examine the ability
to process and interpret social cues. And finally, I investigate the ability of how agents
rely on the willingness of the other agent to play her part.

For sure, there are more aspects of social competence – but with respect to minimal
joint actions I claim that these three aspects are sufficient to explain success in coordi‐
nation. I argue that if artificial agents possess the social competence to coordinate their
actions with the actions of their human counterparts, they meet an important condition
for minimal joint actions.

Mindreading. In many situations agents are able to anticipate what another agent will
do next. This is especially useful if they intend to act jointly with this agent. In humanities
and natural sciences, one aspect of this social competence is discussed under the label
‘mindreading’ or ‘Theory of Mind’ (Fodor 1992). Again, many conceptions of this
socio-cognitive ability are tailored to humans only. But Butterfill and Apperly (2013)
introduced the notion of minimal mindreading, which can account for a broader range
of mindreading. By questioning the necessity of overly demanding cognitive resources,
such as the ability to represent a full range of complex mental states and a mastery of
language, this notion can account for automatic mindreading abilities in human adults,
infants and non-human animals. Minimal mindreading explains success in mindreading
tasks that requires less demanding conditions. Representations of less complex mental
states, namely encounterings and registrations, are sufficient to anticipate the behavior
of other agents in an efficient, automatic, fast and robust manner. Most significantly,
with regard to artificial agents, it does not require conscious reasoning.

Referring to a recent paper by Gray and Breazeal (2014), which demonstrates how
artificial agents model mental states of human beings with respect to the perspective a
human counterpart has, I argue that minimal mindreading can also characterize an ability
of artificial agents. Of course, this is only valid in a limited range of situations. But it
shows that artificial agents, in principle, are able to infer from their perception of the
physical world whether the human counterpart can see or cannot see an object and infer
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that future actions of the human will be guided by this perspective. Therefore, there are
cases that justify an ascription of minimal mindreading abilities.

Reciprocity. In addition to minimal mindreading, which mainly covers perspective
circumstances, I claim that human-computer interactions qualifying as joint actions
require a reciprocal exchange of social information. In the human case, we observe an
exchange of a wealth of social information. The reciprocal exchange of social cues such
as prosody, gestures, and mimic contribute to successful coordination in joint actions.
Disturbed exchanges lead to deficits in social interactions (Bogart and Tickle-Degnen
2015). Consequently, I claim that the ability to interpret and process social cues is an
important condition for providing an understanding of the other agents in order to coor‐
dinate with them. To characterize this special relation social agents can have, I introduce
the notion of social reciprocity, which enables a reciprocal exchange of social informa‐
tion. Social reciprocity is a special feature of social interactions, whereas in non-social
interactions such as riding a bicycle there is no social reciprocity. The behavior of the
bicycle is shaped by its physical properties only. A bicycle cannot express mental or
emotional states; therefore, the bicycle cannot join a reciprocal exchange of social cues.
With respect to sociality, all there is, in the bicycle case, is a one-way relation between
an agent and an object, which constitutes a prototypical case of tool use. Whereas in
social interactions, other social agents are involved. A special feature of social agents
is that they are able to process and interpret social cues, which in turn deliver information
about their mental and emotional states. This is how a reciprocal exchange of social
information becomes possible.

The question now is: What does this mean for artificial agents? To develop artificial
agents from mere tools into human-like partners, artificial agents should be able to
handle social cues. This does not mean that artificial agents need emotional and mental
states – it is sufficient if they can express and interpret social cues. Thereby we once
again reach the point where the necessity of exclusively biological constraints is ques‐
tioned. Instead of requiring emotional or mental states, one could implement functions
that in the human case are realized by emotional or mental states.

Since every speech act is an action, and, consequently, a dialog is a joint action,
communication can serve as a prototypical example to investigate the ability of how
processing social cues can make ‘minds’ visible. A lot of research in this area is now
focusing on social cues such as gestures (Kang et al. 2012) and emotional expression
(Petta et al. 2011; Becker and Wachsmuth 2006). For example, ARIAs (Artificial
Retrieval of Information Assistants) are able to handle multimodal social interactions
(Baur et al. 2015). They can maintain a conversation with a human agent and, indeed,
react adequately to verbal and nonverbal behavior.

To decide whether a specific artificial system possesses the social competence to
coordinate, one has to explore on a case-to-case basis which kinds of social cues are
relevant for this specific class of joint actions.

Commitment. It is crucial for the success of human-human joint actions that both
agents stick to the action, to reach the goal. Commitments provide an important moti‐
vational factor: Only if we can rely on the contribution of the other agent are we
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motivated to stick to a joint action. To explore in what sense this is important with respect
to human-computer joint actions, the minimal approach by Michael et al. (2016) is a
good starting point. Again, standard notions of a (strict) commitment are tailored to
human adults only (Shpall 2014). Strict commitments are characterized as a bidirectional
relation between two active agents mutually having certain expectations and motivations
with respect to a specific action. In contrast to this standard notion, Michael and collea‐
gues claim that components of a strict commitment can be dissociated and suggest that
the single occurrence of one component can be treated as a sufficient condition for a
minimal sense of commitment.

With respect to human-computer joint actions, there are four possible cases of a
minimal sense of commitment. The first two cases describe a minimal sense of commit‐
ment of the human counterpart, either having an expectation or a motivation based on
a minimal sense of commitment. If we now take an ‘as if’ mode into account, it cannot
be questioned that humans can, for the sake of a joint action, expect that an artificial
agent be committed or feel committed toward an artificial agent.

The challenge is to elaborate under which circumstances (if any) we are justified in
saying that artificial agents entertain a minimal sense of commitment, namely that they
entertain a functional corresponding state of ‘expecting’ the human to be committed or
of ‘feeling’ committed to a human being. According to the strategy of questioning
whether certain biological constraints are necessary, this is again a case where I worry
that requiring states such as ‘expecting’ and ‘feeling’ excludes artificial agents from the
start. Therefore, the proposed minimal conception only requires that artificial agents
take the functional role to successfully motivate the human counterpart by signaling a
minimal sense of commitment.

4 Conclusion

If artificial agents continue to be increasingly prevalent in human social life, and inter‐
actions with them are experienced as genuinely social and not as mere tool use, then
there is a need for a strategy for overcoming our restricted conceptions of socio-cognitive
abilities in philosophy.

I claim that if artificial systems are able to act in a minimal sense and additionally
provide the social competence to coordinate with other social agents, those systems can
qualify as social agents in joint actions, because they actually possess socio-cognitive
abilities.

With respect to coordination in joint actions, I elaborated on three important aspects
of the required social competence, namely the understanding of other agents by minimal
mindreading, reciprocal exchanges of social cues and the ability to contribute to a
minimal sense of commitment. The elaborated conditions provide a guideline to discuss
whether certain human-computer interactions qualify as minimal joint actions and help
to distinguish whether some ‘as if’ ascriptions contribute to a social interaction instead
of just delivering an explanation of the behavior. Additionally, the elaboration of these
conditions may contribute to the development of benchmarks for roboticists’ research.
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Abstract. New types of artificial intelligence (AI), from cognitive assis-
tants to social robots, are challenging meaningful comparison with other
kinds of intelligence. How can such intelligent systems be catalogued,
evaluated, and contrasted, with representations and projections that
offer meaningful insights? To catalyse the research in AI and the future
of cognition, we present the motivation, requirements and possibilities
for an atlas of intelligence: an integrated framework and collaborative
open repository for collecting and exhibiting information of all kinds of
intelligence, including humans, non-human animals, AI systems, hybrids
and collectives thereof. After presenting this initiative, we review related
efforts and present the requirements of such a framework. We survey
existing visualisations and representations, and discuss which criteria of
inclusion should be used to configure an atlas of intelligence.

1 Introduction

Despite significant AI progress, its pace and direction are largely unassessed and
hard to extrapolate. The main reason for this is that we lack the tools to properly
evaluate, compare and classify AI systems, and thus determine the future of the
field. The comparison of AI systems with human and non-human intelligence is
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typically performed in an informal and subjective way, often leading to contra-
dicting assessments, especially in hindsight (Hayles 1996; Brooks 1997; Pfeifer
2001; Shah et al. 2016). The comparison between non-human animals and AI
ranges from setting the goal of designing artificial agents with the behaviour of
“an earwig” (Kirsh 1991) to the “intelligence of a rat” (Cadman 2014; Shead
2017), without further specification of what these capabilities or dimensions for
comparison should be. The comparison with humans is not much more precise.
For instance, two decades ago it was cognitive functions related to perception
and action that seemed unattainable – “the gardeners, receptionists, and cooks
are secure in the decades to come” said Steven Pinker in 1994. Now, these are
the functions that look easier to be automated (Frey and Osborne 2017) – “if
a typical person can do a mental task with less than one second of thought, we
can probably automate it using AI either now or in the near future” (Ng 2016).
Today, it is higher-level cognition (causal reasoning, compositionality, theory of
mind, meta-cognition, etc.) that seems more out of reach (Marcus 2018).

The assessment is especially difficult as academia and industry in AI are rush-
ing to achieve breakthroughs for specific problems, which often require massive
data, computation power, embedded heuristics, strong bias, etc., undermining
generality, autonomy and efficiency. For instance, AI can now play most video
games (Hessel et al. 2017) and board games (Silver et al. 2017) better than
humans, but the immediate training data and computational power that are
needed are – as for today – orders of magnitude higher than those used by a
human. As a result, it is difficult for policy makers to assess what AI systems
will be able to do in the near future, and how the field may get there. There is no
common framework to determine which kinds of AI systems are even desirable.

This contrasts with empirical science, where measurements, comparisons,
representations and taxonomies are widespread. These characterisations can be
theory-driven, such that a prior conceptual framework is used to categorise sys-
tem features, or can be data-driven, which is increasingly important in many
scientific disciplines (Marx 2013; Landhuis 2017; Einav and Levin 2014). Con-
ceptual progress partly relies on finding and testing hypotheses through the
computational analysis of large amounts of shared data (Gewin 2002), using
open data science tools (Lowndes et al. 2017). In AI, we would like to analyse
the state and progress of artificial systems based on data-grounded investiga-
tions. Research priorities and safety concerns depend on this analysis. We need
to assess whether new AI systems and techniques are simply an incremental
improvement for a narrow collection of applications or a real breakthrough rep-
resenting a more general cognitive ability, which can be established in relation
to comparable abilities in humans and other animals.

This wider view of AI, in the context of all kinds of intelligence, dates back
to Sloman’s “space of possible minds” (Sloman 1984). Figure 1 compares (a) a
figurative plot (Shanahan 2016), covering a wide range of systems (also see
(Yampolskiy 2014, Fig. 3b), (Arsiwalla et al. 2017, Fig. 3c), and (Solé 2017,
Fig. 3d)), with (b) a plot depicting precise experimental results for several ape
species on a battery of tests (Herrmann et al. 2007). The figure illustrates a
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Fig. 1. Different kinds of minds represented according to several dimensions. Left: Fig-
urative “human-likeness” vs consciousness (from Shanahan 2016). Right: Two dimen-
sions of cognitive skills (social vs physical domain) according to the results of a test
battery on three different groups of apes (adapted from Herrmann et al. 2007).

visible trade-off between completeness and empirical grounding. What we need is
to leverage the best of both worlds: a data-based representation of very different
cognitive systems, including humans, non-human animals, AI systems, hybrids
and collectives, where actual measurements can be aggregated and combined.

This requires a novel platform, an ‘atlas of intelligence’, that integrates an
extensive inventory of cognitive systems, a behavioural test catalogue (with test
batteries that could be aggregated into dimensions) and an experimentation
repository (results from measurements). The platform would be populated col-
lectively, facilitating cross-comparison and reproducibility (Aarts et al. 2015;
Vanschoren et al. 2015). The atlas would represent a new cartographical endeav-
our for a better understanding of the geography of the space of intelligence.

This paper explores the motivations, the requirements and the possibilities
of such an atlas. Section 2 explores in more depth why the atlas is needed in
terms of four lists of items specifying the motivations, applications, dimension
manipulations and entities to be covered in the atlas. Section 3 focuses on the
idea of an atlas as a set of maps, and configures a partial specification in terms
of the maps we would like it to have. This section includes a collection of maps
and graphical representations, some of them already proposed in the literature
(but most without real data) and some desired representations. We close the
paper with a discussion about future work. Finally, Appendix A gives a short
overview of similar initiatives in other areas, and how these relate to the atlas.

2 Motivations, Applications, Dimensions and Kinds

This section presents a series of lists of items covering the motivations and appli-
cations of the atlas (why, and for what, an atlas is needed), and the potential
dimensions and kinds of systems to be included (what the contents should be).
The lists are not meant to be exhaustive and free from overlaps (some ideas are
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represented by several items with different perspectives), but rather to serve as
initial items for discussion and refinement.

Motivations

The motivations are meant to highlight the needs for an atlas of intelligence.
We identify them following scientific, technological and societal needs that are
recognised at present or in the near future. Most of them focus on better under-
standing, representing and cataloguing what we know about different kinds of
intelligence. Still, we do not exclude the needs for anticipation, so we also cover
those motivations that are related to having better predictions about the existing
and future changes of human and artificial intelligence.

– Milestones and Pathways: Unlike most non-human biological cognition,
human cognition is changing: the average IQ in many countries is increasing
(the Flynn effect), our memory (Sparrow et al. 2011) is changing due to the
Google effect (digital amnesia), navigation abilities (McKinlay 2016; Milner
2016) atrophied because satnavs, cognitive rewards mechanisms are changing
because of gamification, etc. This is a process that is accelerated by technol-
ogy, and will be magnified by the use of cognitive assistants and cognitive
prosthetics, especially for the elderly. AI itself and human-machine hybrids
(either as individual cyborgs or as mixed collectives) are progressing in direc-
tions that we are not able to compare with the past or extrapolate, in order
to understand where all this is leading, and the associated opportunities and
risks (research priorities and safety concerns).

– Laypeople Understanding: In those cases where comparisons can be made
by looking at a set of traits, it is usually too complex for non-experts to
understand what the key differences are between two cognitive systems, espe-
cially when one is natural and the other is artificial. Visual representations
are appropriate, as humans are good at understanding geographical analogies
(e.g., the 1948 book “the map that came to life” helped children understand
the countryside where a trajectory and a story were accompanied by maps).

– Crossover Measuring: Data-driven comparison is usually based on mea-
surement instruments, reporting a series of measured values that can be rep-
resented. But we do not have many test batteries that can be applied across
species or even AI systems. The generalisation of representations where differ-
ent natural species and AI technologies are put together would encourage the
adoption and definition of more universal tests having better measurement
invariance across different entities.

– Behavioral Taxonomies: If we go beyond life in our comparisons, espe-
cially if they are based on similarity, the dominant genotypic approach can-
not be used broadly. Taxonomies and models must be mostly informed by
behavioural analyses, in contrast to phenotypic, ethological, genotypic or neu-
rological approaches (Cattell and Coulter 1966; Miller, 1967). But we contem-
plate cladistic principles (using hierarchies or dendrograms) and we consider
morphological or functional similarities as far as they affect behaviour.
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– Testing New Intelligence: The progress in AI suggests that task-oriented
evaluation (i.e., the performance of an AI system for a particular task) may be
insufficient. Other ways of characterising and measuring AI are needed. While
some capabilities and tests can be inherited or extended from psychometrics
or animal cognition, there may be some other capabilities or skills that are
completely new, especially when we analyse the cognitive profile of human-
machine hybrids or collectives.

– Critical Perspective: There is an urgent need for better understanding the
way the intelligence landscape is changing, for both humans and AI systems,
in areas such as automation, education and ethics. It is hard to regulate or
incentivise some actions not knowing how they affect the intelligence land-
scape.

– Beyond Anthropocentrism: While it is generally accepted that intelligence
is the product of evolution, it is still hard to recognise intelligence in other
species or in AI systems, and compare it without using humans as a yardstick.

– Grand Goals: While interdisciplinarity in the study of intelligence has
increased, there are still many attributes and behaviours that are not prop-
erly mapped between disciplines, and there is no wide recognition of a shared
space. The geographical analogy of an intelligence landscape as an oppor-
tunity for exploration and discovery can help inspire the next generation of
researchers in areas such as comparative cognition, psychology, philosophy
and artificial intelligence, and, most especially, in multidisciplinary domains.

– Replicability and Reuse: New research procedures and visualisations for
the analysis of cognitive systems are difficult to apply to other systems or
in other contexts. This limitation is more blatant when we see similar ideas,
representations or experimental protocols appear in different disciplines.

– Data-driven and Hypothesis-driven: When cognition is analysed in one
species or a particular AI technology, there is a lack of a sufficiently wide
sample to infer and reject hypotheses. The recent trend of a more collaborative
data science approach should encourage initiatives where data from different
disciplines can be put together to test hypotheses about cognition.

Some of the motivations above have deep roots in cognitive science, comparative
psychology, philosophy and AI (Macphail 1987; Thagard 2009; Gentner 2010),
but others are more specific to some particular areas or emphasise the need of
better representations and comparisons.

Applications

Moving from what is needed to the things an atlas will make possible leads
us to the identification of new possibilities and transformations. The criteria
for inclusion are such that the list covers potential applications for scientists,
philosophers, educators, policy-makers and the general public, directly using the
platform or as an indirect result of its use:

– (Re-)Education: Traditionally, children and adults used animals as models
of different personalities and capabilities, interacting with them regularly.
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Today, in urban societies with less contact with animals, it is becoming easier
to portray and transmit some concepts using robots as models, as cinema and
advertising (especially when targeting children) have already understood. An
atlas covering animals and robots could be used in museums, schools and
universities as a way of articulating over this intelligence landscape.

– Effective Navigation: An atlas, with different representations, would help
us locate where we are (humans and AI), the trajectories taken in the past
years and the destinations we are heading to, helping to visualise whether
some targets or trajectories can take us to dangerous areas.

– Ethical Assessments: Visual representations make some ethical dilemmas
about moral agency and patiency more explicit, as we can see whether the way
we look at animals and artificial agents is different from the way measured
traits put them on some representations. This will make some ethical issues
more conspicuous (animal, robot or human suffering, uncanny valleys, etc.).

– Consequences: Not only the locations but also the distributions and densi-
ties would help us analyse (especially in advance) the population of creatures
affected by research, law, environment, technology, etc., in a critical way. In
other words, the maps could also be used to represent the areas and entities
(and how many) would be affected by a phenomenon.

– De/Re-Centre Humans: Humans, as a species, groups and individuals
could be located at different locations depending on the representation, mak-
ing more explicit that there is a Copernican revolution in the way intelligence
is seen today, sustained in the progress of comparative cognition, evolutionary
psychology and, increasingly, artificial intelligence.

– Metaphors and Narratives: An atlas would build upon the perception
we have about animal behaviour. This would help us better understand and
locate where we are in AI, in a more meaningful way than just saying “AI is
at the level of the rat”. Instead we would like to align the cognitive profile of a
rat with the cognitive profile of a particular AI system, and see the differences
in a less monolithic way.

– Archival Exploration: An atlas of intelligence would also help to see a
“history of intelligence”, where we would go from extinct animals and past
computer/AI systems to the present day, seeing the directions their evolution
has taken according to different dimensions.

– Morgan’s Canon: C. Lloyd Morgan stated: “In no case is an animal activity
to be interpreted in terms of higher psychological processes if it can be fairly
interpreted in terms of processes which stand lower in the scale of psychologi-
cal evolution and development” (Morgan 1903). An atlas would help interpret,
extend or overhaul this canon for artificial systems, hybrids or collectives.

– Unification: An atlas would require and hence would encourage the def-
inition of more general tests and metrics, embracing natural and artificial
systems, and would aim at more unified theories of cognition, going beyond
human psychology and evolution to consider every possible cognitive system,
especially looking at those places in the maps where there are gaps, whether
it is possible to have entities there and how they would be interpreted.
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Some of the applications clearly derive from the motivations (e.g., beyond anthro-
pocentrism and de/re-centre humans) but others represent possibilities that per-
haps were not even recognised as a necessity, such as the use of the atlas for
archival exploration, which may lead to unforeseen purposes. Concerning the
needs and possibilities introduced above, represented by the motivations and
applications, we add the dimensions and the kinds of systems we want to cover,
which specify the atlas in general terms.

Dimensions

We are aware of the lack of consensus about the most relevant attributes for
the analysis of cognition – not to mention general theories. Because of this dis-
agreement, we want the atlas to be able to integrate different perspectives and
attributes of the interest. Consequently, rather than enumerating the specific
dimensions of representation that could be used, which could ultimately be cre-
ated and refined by the users, we clarify how these dimensions operate in general
terms.

– Observation-Based: the dimensions of representation should be agnostic to
particular hypotheses, so that the users could do their theories from the values
observed. Of course, there are always some underlying assumptions (and the
influence of underlying theories) whenever an observation or measurement is
made, but this should be as explicit as possible.

– Multiple Interface: the atlas should allow users to project or aggregate the
data and derive some maps and other representations from these transforma-
tions, as usual in other visualisation frameworks.

– Interactive Querying: the atlas could be interrogated through queries,
including filters and joins across different data sources, in an interactive way,
as in tools of analytical processing.

– Creative and Constructive: the atlas should allow users to combine ele-
ments, creating new features (and hence new spaces) and creating new enti-
ties, such as populations or individuals, combining their cognitive entities
under some specified models.

– Populational/Theoretical: the elements to represent could correspond to
actual populations or subgroups but also to theoretical elements and groups.

– Bottom-Up/Top-Down: the dimensions could correspond to basic psycho-
logical mechanisms or to more abstract, integrated skills. The atlas should
allow users to aggregate and disaggregate these dimensions.

– Transversal Connections: the atlas would allow users to combine
behavioural traits (skills, functions, capabilities) with non-behavioural traits
(physical traits, computational effort, evolutionary traits, etc.).

– Topographical/Geographical Visualisation: the atlas should combine
as many elements of visualisation and representation (colours, contours, tex-
tures) as may be found useful to show the information in insightful ways.

Despite the intended flexibility, some of these dimensional operations give a more
precise account at the specification level for the atlas on how data, hypotheses
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and visualisations must be connected. For instance, the multiple interface, the
interactive querying and the topographical and geographical representations very
much resemble some common retrieval and representational systems powered by
data visualisation tools. On the other hand, the other dimensional characteristics
are more aligned with the management of conceptual ontologies and taxonomies.

Kinds of systems

Finally, regarding the kinds of cognitive systems to be represented, we want to
cover all possible ranges, according to several criteria: integration, nature, time,
distribution and existence. This comprehensive view of cognitive systems would
ultimately allow us to put very different types of entities into comparison.

– General and Narrow: specific systems aiming at a single task or species
in a narrow environment could be covered, as well as those systems that are
flexible in a broad range of environments.

– Individual and Collective: individual entities could be located as well as
collectives (along with their components).

– Biological and Artificial: living beings, including plants and animals, and
artificial systems, including autonomous agents, robots, corporations, etc.

– Hybrid (Extended/Enhanced Minds): humans improved by technology,
either internally (enhanced, as cyborgs or through nootropics) or externally
(extended by assistants), as well as AI systems using human computation.

– Novel and Old: covering current living beings and AI systems, but also
extinct species and AI systems of the past.

– Distributed and Centralised: systems that are identified by a single body,
but also natural and artificial swarms as well as distributed intelligence,
including societies.

– Alien and Fictional: even for speculation or theorisation, the atlas could
also show some imaginary entities.

Apart from the scientific questions needed to build such a platform, its success
depends on the engagement of the (research) community and other stakeholders.
It is crucial then to identify whether the needs, dimensions and elements repre-
sented are well aligned with the potential users and contributors. Consequently,
we conducted a preliminary survey to get feedback from researchers and other
potential users in many different areas, using the items described in this section.
We targeted different communities: artificial intelligence, animal cognition, psy-
chology, philosophy, design and some others. The results of the questionnaire
were positive in general. This was not taken as a justification or validation of
the categories presented here but, more on the contrary, as a way of recognising
omissions, duplications or desiderata nobody is asking for. We focused especially
on the open comments from some respondents who were more critical1.

1 A detailed analysis of the questionnaire can be found in (Bhatnagar et al. 2017).



Mapping Intelligence: Requirements and Possibilities 125

We considered the previous motivations, intended applications, dimensions
to consider, and entities to cover to be a sufficient reason for starting the con-
struction of an atlas, with the necessary caution about potential pitfalls and the
need of selecting pieces of the atlas that could be chosen as more low-hanging
fruits of the whole project. The previous lists are preliminary, and the priorities
for selecting which categories are most important to start with—e.g., prototypes
or first cornerstones of the project – are still subject to debate.

Next, we refine this first conception of the atlas by considering existing rep-
resentations and maps.

3 Collections of Maps: Representational Possibilities

As an atlas is a set of maps, in this section we collect and recreate some of the
maps that have been proposed in the past, most of them at a figurative level,
and discuss representations that we would like to include in the future. Figure 1
contained examples of a classical multidimensional representation (although two
dimensions are especially fitted for paper and screens). The axes represent dimen-
sions of interest and the points represent the entities (the cognitive systems) we
want to compare. We will see many others of these, being different because of the
dimensions that are chosen or the elements that are represented. In other cases,
the representations detach from this multidimensional view but still remain
meaningful in geographical or topological terms.

Fig. 2. Left : Scala naturae, as depicted in the 16th century (de Valadés 1579). Mid-
dle: a representation of Dennett’s Tower of Generate and Test, which depicts crea-
tures according to when and how they adapt (Dennett 1995), Right : Godfrey-Smith’s
refinement of the bottom part of Dennett’s tower (the part corresponding to cognitive
evolution) in the form of a tree (Godfrey-Smith 2015, Fig. 2).

We start with the oldest and simplest representations, those inspired in the
scala naturae, which are monolithic, or at most, arboreal (see Fig. 2), where
membership to a species is replaced by other criteria for classification. At some
point the categorical representations (monolithic or hierarchical) led to more
quantitative and multidimensional representations, as we see in Fig. 3.
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(a) Comparison of hardware be-
tween several living and inanimate
objects (Moravec, 1998, Fig. 1)

(b) Figurative space of minds (Yam-
polskiy, 2014, Fig. 1)

(c) “Morphospace of consciousness”
from (Arsiwalla et al., 2017, Fig. 3)

(d) “Biological computational mor-
phospace” (Solé & Macia, 2011, Fig.
7)

(e) Cognitive space of human-robot
interactions (Solé, 2017, Fig. 2)

(f) Illustration of Hans Moravec’s
“landscape of human competence”
(Tegmark, 2017, Fig. 2.2)

Fig. 3. A collection of figurative maps of intelligence.

Moravec was not the first one to compare animals and computers according
to several dimensions, but some of his plots had an important effect on the nar-
ratives about how far AI had come in the 1990 s. For instance, Fig. 3a compares
computational power (speed and storage capacity) for a wide range of entities.
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Some other representations have tried to compare animals and artificial sys-
tems for other dimensions. For instance, computational efficiency can be replaced
by an estimation of energy consumption (Winfield 2014), which is a physical
property that can be used as a dimension alongside some other more behavioural
traits. One common representation is based on Venn diagrams, where the sizes
and locations are completely arbitrary, and the only purpose is to show a diver-
sity and inclusions/overlaps between sets, such as Fig. 3b from Yampolskiy
(2014). Some other plots are more speculative, especially when the goal is to
represent consciousness, such as the one from Arsiwalla et al. (2017) in Fig. 3c.

Other comparisons are at a much more physical (or implementational) level,
such as the one from Solé (2017), representing the “morphospace” in terms of
“embedding”, “diversity” and “parallelism”, shown in Fig. 3d, or represent some
aspects of human-robot interaction, again figurative (Fig. 3e). An interesting
twist is given when the space represents the tasks or abilities (without any clear
criterion for proximity), but the Z-dimension (height) is represented by time
(or progress in AI). According to this, we have a figurative plot like Tegmark’s
representation (Fig. 3f) of Moravec’s landscape (Tegmark 2017).

A more thoughtful analysis of dimensions may lead to more than three ele-
ments, whose representation (if all of them are quantitative) is more cumber-
some. Star (cobweb) plots are a practical option here, although they can get too
messy if too many individuals are shown. Also, trajectories are more difficult to
represent in these plots. Figure 4 shows how four dimensions are used to compare
the intelligence of several organisms.

Fig. 4. Comparison of different systems on a space of four dimensions, using star plots
(Winfield 2017, Figs. 2 and 3).

Following the comments of some of the respondents of the questionnaire, we
are also interested in representations of ‘collective intelligence’, even if figurative.
For instance, Fig. 5 represents a profile of members of a team and tries to derive
aggregate values (minima, maxima and means) for the group.

So far, all the previous representations were figurative, in the sense that there
was no measured data or observations from which the maps were represented, but
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Fig. 5. Collective diversity in terms of psychometric profiles for two figurative groups
of five agents, shown with circles. For each plot, the x dimension represents IQ score
and the y dimension represents social sensitivity. The mean point is shown with the
cross and the maximum and minimum envelopes are represented with a triangle and a
square respectively (Hernández-Orallo 2017, Fig. 15.3).

just some general knowledge and intuitions of these magnitudes. In what follows,
we include some representations that are using real data. For instance, the easiest
way of comparing two systems or species is by comparing their results for the
same task, as in Fig. 6a and b. But we can also compare abstract or aggregated
traits or skills, as we showed in Fig. 1. A representation that is becoming very
common in AI is to show the results normalised by human performance (Figs. 6c
and d), even in cases where many tasks are aggregated.

While these representations are common and useful, they do not fit the geo-
graphical representation of the atlas well. In other words, these plots are not
meant to compare AI systems and humans. They are just meant to compare AI
systems, where human data is just used to make the results for several games
somewhat commensurate when aggregated. This means that the space is anthro-
pocentric, where humans would always be at 100% – a Ptolemaic model. Indeed,
for both plots one of the dimensions does not apply to humans. For instance,
in Fig. 6c, human accuracy is achieved with a number of frames that is at most
in the small millions, and also in Fig. 6d we cannot properly compare the year
humans were introduced with the year a ML technique was introduced.

Trajectories can also be compared over time, as shown in Fig. 6e. Here, time
is applied to the same entity, so we see how the entity (a population in this case)
changes with time. But a trajectory is better seen when the dimensions of the
plot are not time – time is not usually represented in a static map. Instead, one
can see how an individual or group moves in a space of dimensions chronologically
(learning episodes, cognitive decline or enhancement, etc.), illustrated in Fig. 6f.

Actual data can also be obtained and processed from subjective perception.
For instance, Gray et al. (2007) extract two principal components: agency and
experience (what we could also refer to as ‘patiency’) in order to quantify how
much mind people ascribe to different kinds of cognitive systems, from robots
to dead people, as illustrated in Fig. 7.
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Fig. 6. A collection of existing empirically-grounded maps.

After all these graphical representations, the question is how these can help
us configure a set of relevant “maps” we would like the atlas to have. First,
we can look at the elements: many are multidimensional and it is just the
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Fig. 7. Different cognitive systems according to the perception by people (from a sur-
vey, where the dimensions have been reduced to two dimensions by PCA). (Gray et al.
2007; Wegner and Gray 2017)

dimensions and the elements portrayed which make them really distinctive. This
is an advantage, as many of these plots could be generated with a standard tool
and interface if we had the data and we could choose the dimensions and ele-
ments. An interactive interface could be used as in other exploration tools (e.g.,
analytical processing or visualisation tools). Second, it is appropriate to look at
the purpose of each of these representations and see whether they correspond
to the needs and applications we identified in previous sections. For instance,
Figs. 1, 2, 3b, c, d, e, 4, 6b, c, e, and f are mostly explanatory or differential
in purpose, while Figs. 3a, d, f, 5, 6a and d seem to have a more forecasting
intention. Some have a broader coverage of kinds of intelligence (Figs. 3a, b, c,
4 and especially 7) and others are more specific.

4 Conclusions

This paper has presented the first steps of an atlas of intelligence, which at
this stage must focus on the elicitation of needs (in terms of motivations and
requirements) and possibilities (applications, representations and kinds of enti-
ties covered). After this analysis, we now have a much better account of how
wide the initiative is. The next steps should focus on recognising the applica-
tions that might have more impact and are more feasible in the short term. This
assessment would allow us to establish the specification of the atlas in a progres-
sive way, so that an essential part of it can be designed and enriched over time.
For such an ambitious approach, it is important to think big, as we have done
here, while starting small, and grow incrementally.

Apart from the instrumental purpose of this paper as a first step in the devel-
opment of an atlas of intelligence, this work (independently of how far the atlas
develops in the future) brings attention to methodological issues (and related
philosophical and theoretical) issues in all disciplines related to intelligence and
cognition. Scientists in these disciplines usually see themselves as explorers, but
exploration involves much more than discovering and inventing. Scientists also
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need (to be) cartographers, curators and taxonomists in order to structure, facil-
itate and disseminate what is known, and assess their unknowns, prioritise their
goals and see their progress in perspective. In the same way Linnaeus changed
the way living beings were described, catalogued and named, motivating new
lines of research, this initiative will help to establish the parameters and the
instruments to properly handle and understand the space of existing and future
cognitive systems, and exploit its research possibilities.
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A Appendix: Why is an atlas needed? Similar initiatives

While identifying the need for an atlas, we look at how it fits in cognitive science
as a whole and also whether there are initiatives in other fields that could be
inspirational.

Regarding cognitive science, it is true that its goal is to cover all possible
cognitive systems, understand their behaviour and mechanisms, and establish
meaningful comparisons. However, the field has not yet been able to portray
a systematic representation covering both natural and artificial systems. But if
we do not find this systematic representation in cognitive science, do we find
it in related subdisciplines? The answer is that some similar initiatives in other
disciplines do exist2:

– Life forms: Examples are Wikispecies (Leslie 2005), the All Species Founda-
tion (Gewin 2002), the Catalogue of Life and the Encyclopedia of Life (Roskov
et al. 2018; Hayles 1996; Parr et al. 2014; Stuart et al. 2010).

– Neuroscience: the Cognitive Atlas3 and related repositories for neuro-
science4 include an ontology of human cognitive functions and related tasks,
and the pathologies affected. The Allen brain observatory5 (Allen Institute

2 Some of these initiatives are in genomics and brain imaging (Midford 2004; Boero
and Bernardi 2014).

3 http://www.cognitiveatlas.org.
4 https://poldracklab.stanford.edu/.
5 http://observatory.brain-map.org/visualcoding/.

http://www.cognitiveatlas.org
https://poldracklab.stanford.edu/
http://observatory.brain-map.org/visualcoding/
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for Brain Science 2016) is a more visually-oriented platform that maps per-
ception and cognition to parts of the human brain (National Research Council
2011).

– Psychometrics: There are several initiatives bringing together test batter-
ies and repositories: the mental Measurement yearbook6, and with a more
open character, the International Personality Item Pool7 and the Interna-
tional Cognitive Ability Resource8.

– Machine learning and data science research: Kaggle9, OpenML10 (Van-
schoren et al. 2013) and many other platforms (e.g., gitxiv.com) provide
benchmarks for ML. OpenML also includes experimental results that can
be compared, aggregated and represented with powerful analytical packages.

– Artificial intelligence: there are many collections of benchmarks and asso-
ciated results, such as ALE11, OpenAI universe/gym12, Microsoft Malmo13,
Facebook’s CommAI-env14, DeepMind Lab 15 (see Hernández-Orallo et al.
2017 for a summary) and meta-views, such as a recent EFF analysis16 and
the AI index report17. This is a sign that AI is looking in this direction
(Castelvecchi 2016; Hernández-Orallo 2017). The tasks are rarely arranged
into abilities and the data usually compares specialised AI systems against
average humans.

A partially overlapping initiative is the AI Roadmap Institute18, which encour-
ages, compares and studies various AI and general AI roadmaps. It focuses on
the future and on AI primarily, with representations that are usually flowcharts
and pathway comparisons. Besides identifying where the field of AI stands as
a whole, it also aims to identify dead-ends and open research problems on the
path to the development of general AI systems.

The data and conceptual framing of the above projects can be used to inform
an atlas of intelligence. Still, no repositories or taxonomies exist focusing mostly
on behaviour, encompassing natural and artificial systems, as we are undertak-
ing. Of course, the fact that something does not exist yet is not a sufficient
reason that it should. The need for an atlas has to be supported by a series of
motivations and applications, which we do in Sect. 2.

6 http://buros.org/mental-measurements-yearbook.
7 http://ipip.ori.org.
8 http://icar-project.com.
9 http://www.kaggle.com.

10 http://www.openml.org.
11 http://www.arcadelearningenvironment.org/.
12 https://gym.openai.com/.
13 https://www.microsoft.com/en-us/research/project/project-malmo/.
14 https://research.fb.com/projects/commai/.
15 https://deepmind.com/blog/open-sourcing-deepmind-lab/.
16 http://www.eff.org/ai/metrics.
17 http://aiindex.org.
18 http://www.roadmapinstitute.org.

http://www.gitxiv.com/
http://buros.org/mental-measurements-yearbook
http://ipip.ori.org
http://icar-project.com
http://www.kaggle.com
http://www.openml.org
http://www.arcadelearningenvironment.org/
https://gym.openai.com/
https://www.microsoft.com/en-us/research/project/project-malmo/
https://research.fb.com/projects/commai/
https://deepmind.com/blog/open-sourcing-deepmind-lab/
http://www.eff.org/ai/metrics
http://aiindex.org
http://www.roadmapinstitute.org
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Abstract. We answer the present paper’s title in the negative. We begin
by introducing and characterizing “real learning” (RL) in the formal sci-
ences, a phenomenon that has been firmly in place in homes and schools
since at least Euclid. The defense of our negative answer pivots on an
integration of reductio and proof by cases, and constitutes a general
method for showing that any contemporary form of machine learning
(ML) isn’t real learning. Along the way, we canvass the many different
conceptions of “learning” in not only AI, but psychology and its allied
disciplines; none of these conceptions (with one exception arising from
the view of cognitive development espoused by Piaget), aligns with real
learning. We explain in this context by four steps how to broadly char-
acterize and arrive at a focus on RL.

1 Introduction

Presumably you’ve read the title, so: No; despite the Zeitgeist, according to
which today’s vaunted ‘ML’ (= “machine learning”) is on the brink of disem-
ploying most members of H. sapiens sapiens, no. Were the correct answer ‘Yes,’
a machine that machine-learns some target t would, in the determinate, non-
question-begging, well-founded sense of ‘learn’ that has been firmly in place for
millennia and which we soon define and employ,1 learn t. But this cannot be the
case.

Why? Because, as we show below, an effortless application of indirect proof
with proof by cases proves the negative reply. (A formal version of the reason-
ing is given in the Appendix (= Sect. 8), as a general method that covers any
instantiation of ‘ML’ in contemporary AI.)

1 The need for the qualifications (i.e. determinate, non-question-begging) should be
obvious. The answer to the present paper’s title that a machine which machine-learns
by definition learns, since ‘learn’ appears in ‘machine-learn,’ assumes at the outset
that what is called ‘machine learning’ today is real learning—but that’s precisely
what’s under question; hence the petitio.

c© Springer Nature Switzerland AG 2018
V. C. Müller (Ed.): PT-AI 2017, SAPERE 44, pp. 136–157, 2018.
https://doi.org/10.1007/978-3-319-96448-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96448-5_14&domain=pdf


Do Machine-Learning Machines Learn? 137

2 Preliminaries

To validate the negative answer, first, without loss of generality,2 let’s regard
that which is to be learned to be a unary function f : N �→ N. The set of all
such functions is denoted by F . We say that agent a has really learned such a
function f only if3

a has really learned f

(c1) a understands the formal definition Df of f ,
(c2) cana produce both f(x) for all x ∈ N, and
(c3) a proof of the correctness of what is supplied in (c2). (Note: (c3) is soon

supplanted with (c3′).)

aThis is the ‘can’ of computability theory, which assumes unlimited time, space,
and energy for computation. See e.g. (Boolos et al. 2003) for explanation.

As we shall see in a moment when considering a grade-school example, real
learning so defined (= RL)4 is intuitive, has been solidly in place for at least 2.5
millennia, and undergirds everyday education every day. Of course, we must con-
cede immediately that the first condition, (c1), employs a notorious word: viz.,
‘understands.’ What is understanding? Not an easy question, that; this we must
also concede. Instead of laboring to give an answer, which would inevitably call
up the need for a sustained defense of the view that the concept of understand-
ing, as applied to both humans and machines that are supposedly in possession of
human-level intelligence and/or consciousness, is not only sufficiently clear, but
is also a property that separates real minds from mere machines, we cheerfully

2 All mathematical models of learning relevant to the present discussion that we are
aware of take learning to consist fundamentally in the learning of number-theoretic
functions from N×N×· · ·×N to N. Even when computational learning was firmly and
exclusively rooted in classical recursion theory, and dedicated statistical formalisms
were nowhere to be found, the target of learning was a function of this kind; see
e.g. (Gold 1965; Putnam 1965), a modern, comprehensive version of which is given
in (Jain et al. 1999). We have been surprised to hear that some in our audience
aren’t aware of the basic, uncontroversial fact, readily appreciated by consulting
the standard textbooks we cite here and below, that machine learning in its many
guises takes the target of learning to be number-theoretic functions. A “shortcut”
to grasping a priori that all systematic, rigorously described forms of learning in
matters and activities computational and mechanistic must be rooted in number-
theoretic functions, is to simply note that computer science itself consists in the
study and embodiment of number-theoretic functions, defined and ordered in hier-
archies (e.g. see Davis and Weyuker 1983). We by the way focus herein on unary
functions f : N �→ N only for ease of exposition.

3 A biconditional isn’t needed. We use only a weaker set of necessary conditions, not
a set of necessary and sufficient conditions.

4 Not to be be confused with RL, reinforcement learning, in which real learning, as
revealed herein, doesn’t happen.



138 S. Bringsjord et al.

supplant the term in question with something unexceptionable.5 Our substitute
for the term is a simple and standard operationalization: instead of relying on
the murky and mushy concept of understanding, we simply reply upon testable
behavior that for millennia has served as the basis for ascriptions of understand-
ing to cognizers in the formal sciences.6 What behavior are we talking about?
Well, the behavior of Euclid and everyone following him who has convinced the
objective and the skeptical that they understand such things as mathematical
(including specifically number-theoretic) functions, to wit: answers to penetrat-
ing questions, and associated proofs that those answers are correct. There liter-
ally has been no other way for a human being to provide evidence sufficiently
strong to warrant an ascription, to that human being by others, of understand-
ing in the realm of formal functions—or, since the machinery needed for careful
articulation of these functions is at least something like axiomatic set theory, in
the realm of mathematics itself. Here then, more explicitly, is what we replace
(c1) with in order to define RL:

(c1′) a can correctly answer test questions regarding the formal definition Df

of f , where the answers in each case are accompanied by correct proofs7

discovered, expressed, and provided by a.

We point out that the use of tests to sharpen what AI is, and how to judge
the intelligent machines produced by AI, is a longstanding conception of AI
itself, provided first by Bringsjord and Schimanski (2003), and later expanded
by Bringsjord (2011).8 It’s true that philosophers may crave something more
abstract and less pragmatic, but the fact of the matter is that tests are the
coin of the realm in real-world AI, and also the coin of the realm in human-level
learning in matters formal.9 For economical exposition in the sequel, we continue
to refer to real learning as simply ‘RL.’ We now turn to a simple example that
shows RL to be, as we’ve said, intuitive, ancient, and operative every single
day in the lives of all neurobiologically normal children with the parental or
community wherewithal to be schooled:
5 As many readers will know, Searle’s (1980) Chinese Room Argument (CRA) is

intended to show that computing machines can’t understand anything. It’s true
that Bringsjord has refined, expanded, and defended CRA (e.g. see Bringsjord 1992,
Bringsjord and Noel 2002; Bringsjord 2015), but bringing to bear here this argu-
mentation in support of the present paper’s main claim would instantly demand an
enormous amount of additional space. And besides, as we now explain, calling upon
this argumentation is unnecessary.

6 Since at bottom, as noted (see note 2), the target of learning should be taken for gen-
erality and rigor to be a number-theoretic function, it’s natural to consider learning
in the realm of the formal sciences.

7 Just as (computer) programs can be correct or incorrect, so too proofs can be correct
or incorrect. For more on this, see e.g. (Arkoudas and Bringsjord 2007).

8 If we regard Turing to have been speaking of modern AI in his famous (Turing 1950),
note then too that his orientation is test-based: he gave here of course the famous
‘Turing Test.’.

9 In fact, this is why real learning for humans in mathematics is challenging; see e.g.
(Moore 1994).
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Example 1

You, a student, left for high school after breakfast and upon arriving were
reminded in math class of the factorial function n!. Later in the day, when home,
you inform a parent that you have learned the function in question. But you are
promptly asked whether you really did learn it. So, you are tested by your parent,
and by some homework questions that align with (c1′)–(c3):

1. The first problem relates to satisfying (c1)/(c1′): Consider the func-
tion g that maps a natural number k to the sum k + (k + 1). Is it
true that ∀n ∈ N[n! > g(n)]? Prove it. Does this proposition hold for
every natural number n after a certain size? Answer and prove it.b

2. A second problem asks you to ascertain whether the factorial of every
natural number greater than 1 is even, and to then prove that the
answer is correct.

You certainly can determine the correct answers to problems like these that
probe your understanding of the factorial function, and you certainly can supply
the definition in various forms and can decide whether proposed definitions are
valid, and you certainly (assuming unlimited resources; see note a) can for any
input n give back n!. Can you also prove that your outputs are correct? Yes,
easily. For the fact is that you, reader, can really learn such functions.

bOf course an affirmative is correct, and the proof is a trivial use of mathematical
induction.

Obviously, an infinite number of such examples can be effortlessly given, in order
to anchor RL. For instance, Example 2 could refer instead to the double factorial
n!! function, Example 3 to the Ackermann function, and so on ad infinitum.
Without loss of generality, we rely solely on Example 1.

Now we consider two cases, each predicated on the assumption that the agent
a� we are assessing is a machine-learning one. We specifically assume that, as
such, a� is a standard artificial neural network that machine-learns by repeatedly
receiving finite collections of ordered pairs (m,m′) of natural numbers, some of
which are from the graph of f and annotated as such, and some of which aren’t
from the graph of f and are annotated as such.10 Provided that in the limit a�,
upon receiving an arbitrary natural number n through time, outputs f(n), save
for a finite number of erroneous verdicts, a� has machine-learned f .11

10 Our assumption here thus specifically invokes connectionist ML. But this causes no
loss of generality, as we explain by way the “tour” of ML taken in Sect. 6.1, and the
fact that the proof in the Appendix, as explained there, is a general method that
will work form any contemporary form of ML.

11 This is a rough-and-ready extraction from (Jain et al. 1999), and must be sufficient
given the space limitations of the present short paper, at least for now. Of course,
there are many forms of ML/machine learning in play in AI of today. In Sect. 6.1 we
consider different forms of ML in contemporary AI. In Sect. 6.2 we consider different
types of “learning” in psychology and allied disciplines.
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3 Case 1

Here we assume that human persons are capable of hypercomputation. Given
this, humans can learn some Turing-uncomputable functions in F . (One example
might be Rado’s (1963) “Busy Beaver” function Σ, which maps the size of a
Turing machine measured by the number of its states to the maximum number
of contiguous 1s such a TM can produce as output before halting (where the
alphabet used is simply {0, 1}).) Let h ∈ F be such a function. That a� hasn’t
learned h is a trivial theorem.12

4 Case 2

Assume now that a� is to learn a Turing-computable unary number-theoretic
function f , say one that might be seen in math classes; we here refer to Example
1 and its infinite cousins; see above. This case is likewise trivial. The models for
machine learning on offer today from AI preclude even reproducing an accurate
formal definition of f along with easy proofs therefrom, let alone proofs that
proposed values are correct relative to such a definition; that is, conditions (c1′)–
(c3) aren’t satisfied. Since Case 1 and Case 2 are exhaustive: QED.

5 Objections; Replies

A number of objections are perfectly anticipatable. However, voicing and rebut-
ting all of them here is beyond the reach of a reasonably sized paper. Nonetheless,
perhaps substantive dialectic is possible. We start by considering a first objection
(Objection 1) that we view as a family of interrelated objections.

5.1 Objection 1a: Yours is an idiosyncratic type of learning!

We imagine the objection in question expressed thus: “The definition of ‘learn-
ing’ employed here, i.e. what you dub ‘real learning,’ results in a very peculiar
concept—one that captures neither machine learning nor human learning! And
it certainly does not motivate why only this concept is the correct one.”

This is flatly wrong. From the mathematical point of view, today’s ANN-
based machine learning, such as for example has been used in the construction
of better-than-any-humans Go-playing systems (i.e. deep learning/DL as the
specific type of ML), can be rigorously defined in only two or three ways, for the
simple reason that these ways must be based directly on mathematical definitions
of machine learning. We are not in the business of taking seriously modern-day

12 Lathrop (1996) shows, it might be asserted, that uncomputable functions can be
machine-learned. But in his scheme, there is only a probabilistic approximation of
real learning, and—in clear tension with (c1′)–(c3)—no proof in support of the notion
that anything has been learned. The absence of such proofs is specifically called out
in the formal deduction given in the Appendix.
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alchemists, let alone pointing out to them that their use of the term ‘learning,’
in the context of what learning has for millennia been, is outré. Some interna-
tionally famous deep-learning “engineers” have confessed to us in face-to-face
conversation that what they are doing in this regard is utterly mysterious to
them, mathematically speaking. We in the foregoing cite the ways that exist to
understand machine learning logico-mathematically; see our References.13 We
confess that our argument, reflecting our logico-mathematical point of view,
quietly but importantly includes a principle that can be summed up as follows:

(*) When investigating whether today’s ML (in any of its forms) is real
learning (of a number-theoretic function f), the only way to end up with
an affirmative to the question is to find a mathematical account A of
today’s ML according to which in at least one of its forms its “learning”
of f is real learning of f .

In a more formal version of our argument, such as what we give in the Appendix,
we provide a step-by-step deductive argument for our main claim that machine-
learning machines don’t really learn; and this deductive argument renders the
principle just given explicit and mechanical.

As to our definition of the real human learning of functions, i.e. RL, this is
extracted directly from mathematics textbooks used for many, many centuries.
In fact, our triad (c1′)–(c3) can be traced clearly and unswervingly all the way
back to Euclid. Real learning isn’t peculiar in the least; on the contrary, it’s
orthodox, and the bedrock of all systematic human knowledge and technology. To
validate and explicate RL, we need nothing more than the problems, solutions,
and proofs for those solutions that are part and parcel of high-school math—and
in fact we only need algebra. Our triadic definition can be empirically confirmed
by examining such simple textbooks; see for instance (Bellman et al. 2012). For
the case of high-school calculus, see note 18. There is no small amount of irony
in the fact that those touting “machine learning” in today’s machines as genuine
learning have invariably been required to pass the very courses, with the very
textbooks, that demand RL.

To wrap up our rebuttal, we note that RL, far from being idiosyncratic, is
directly reflective of something that most if not all ML ignores: viz., learning is
what produces knowledge. An agent that has genuine knowledge of the differential-
and-integral calculus is an agent whose learning has produced at least something
very close to justified, true belief with respect to the relevant propositions.14 That
is, the agent believes these true propositions, and has justifications in the form of
arguments that establish, or at least render highly likely, the relevant propositions.

13 A pair of additional works help to further seal our case: (Kearns and Vazirani 1994;
Shalev- Shwartz and Ben-David 2014). Study of these texts will reveal that RL as
per (c1′)–(c3) is nowhere to be found.

14 We of course join epistemological cognoscenti in being aware of Gettier-style cases, but
they can be safely left aside here. For the record, Bringsjord claims to have a solution
anyway—one that is at least generally in the spirit of Chisholm’s (1966) proposed solu-
tion, which involves requiring that the justification in justified-true-belief accounts of
knowledge be of a certain sort. For Gettier’s landmark paper, see (Gettier 1963).
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The arguments that undergird knowledge in this way (which were called out above
in our example of (c1′)–(c3) in action) are nowhere to be found in contemporary
ML, at least in its connectionist, probabilistic, and reinforcement forms.

5.2 Objection 1b: This isn’t AI!

In a variant of Objection 1a, we imagine some saying this: “In AI, we are, as a
rule, not interested in learning functions over naturals with an infinite domain,
given by a graph (or table).”

This is a painfully weak objection, one that reflects, alas, the alchemic nature
of much of modern AI. AIniks may not be interested in X, but mathematically
they may well be doing X; and if they can’t say mathematically what they’re
doing, then they shouldn’t say anything at all in debates such as the present one.
Regardless, rest assured that formally speaking, machine learning is learning such
functions as we have pointed to (or alternatively learning formal grammars or
idealized computing machines). We have given references that confirm this with
a ring of iron.

5.3 Objection 1c: What about toads?!

“Your argument has the absurd consequence that even lower animals turn out
to be classified as non-learners. Can a toad learn? Certainly. Can a toad learn a
number-theoretic function in your sense of learn? Certainly not.”

This objection is a kind, unwitting gift, for this is just another way to expose
the absurdity of statistical ANN-based machine learning (and of—as we shall
momentarily see—other forms of non-logicist machine learning15). Agreed: a
toad can’t learn a number-theoretic function, in the established triadic sense
of learning such things we specified above. (We now know that no nonhuman
animals can do anything of the sort; see e.g. (Penn et al. 2008); ergo our critic
can be encouraged to substitute for ‘toad’ ‘dog’ or ‘chimp,’ etc.) But, by the
mathematics of statistical ML/DL, a toad (or a toad-level AI produced by the
likes of Deep Mind) can learn such a function. This allows us to deduce by
reductio what the man on the street already well knows: a bunch of smarty-
pants people have defined their own private, bizarre, and self-advancing sense of
learning. We’re now seeing the hidden underbelly of this smug operation, because
adversarial tests are showing such things as that DL-based vision systems declare
with 99% confidence, for example, that as a turtle is a gun.16 Of course, we
15 Specifically, we shall see that the formal deduction of the Appendix is actually a

method for showing that other forms of “modern” ML, not just those that rely on
ANNs, don’t enable machines to really learn anything. E.g., the method can take
Bayesian learning in, and yield as output that such learning isn’t real learning.

16 Shakespeare himself, or better yet even Ibsen, or better better yet Bellow, couldn’t
have invented a story dripping with this much irony—a story in which the machine-
learning people persecuted the logicians for building “brittle” systems, and then the
persecutors promptly proceeded to blithely build comically brittle systems as their
trophies (given to themselves).
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concede what everyone knows: connectionist ML will continue to improve, and
the current brittleness of this form of learning will specifically be addressed
in many applications. Yet the mere fact that there currently is brittleness is
profoundly telling, in the context of RL, for imagine a student Johnny who
has real-learned our now-well-worn factorial function. And now imagine that to
“test” Johnny, instead of presenting him with a numeral 〈n〉 where n ∈ N, and
a question as to what the factorial of n is, we instead present him with a picture
p of a turtle, and ask him what the factorial of a turtle is. Johnny is likely
to inform his parents that some teachers at this school are mentally unstable;
certainly there’s no chance he’s going to blurt out such a response as ‘24.’ The
reason for this, speaking imprecisely (recall the earlier discussion at the outset
of the paper about the concept of understanding), is that while the DL system
has no real understanding of what a turtle or a gun is, Johnny, in satisfying
(c1′)–(c3), does.

5.4 Objection 2: Case 1 is otiose!

“Surely your Case 1 is otiose, since—so the objection goes—finite agents,
whether human or machine, as everyone concedes, don’t in any sense learn
uncomputable functions.”

This is a silly objection, swept away as but dust by the relevant empirical facts;
for everyone doesn’t concede such a thing; witness (Bringsjord et al. 2006), which is
in fact based on the aforementioned Σ. As is explained there, Gödel made no con-
cession to the effect that humans don’t learn uncomputable functions. For a pur-
ported proof that human persons hypercompute, see (Bringsjord and Arkoudas
2004);17 for a book-length treatment, see (Bringsjord and Zenzen 2003).

5.5 Objection 3: Your definition of human learning is tendentious!

“Your triadic definition of learning [based on your conditions (c1′)–(c3)] conve-
niently stacks the deck against modern statistical machine learning (=ML in the
current discussion and in the—by-your-lights fawning—media). This definition
is highly unnatural, and highly demanding.”

We note first in reply that convenience per se is of course unobjectionable.
Next, telling in this dialectic is the brute fact that for well over two millennia we
have known what it is for an agent to have really learned some math or formal
logic, number-theoretic functions included; and what we in this regard know
aligns precisely with the triadic account of RL given above. Again, empirical
confirmation of this alignment can be obtained by turning to what the textbooks

17 In which is by the way cited hypercomputational artificial neural networks.
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demand in terms of proof,18 and what the disciplines in question demand of those
who wish to lay claim to having truly learned some formal logic or math.

In short, we cannot allow the field of AI, and specifically its ML subpart, now
on the intellectual scene for not more than a blip of time, to trample ordinary
language and ordinary meaning that has been firmly in place within the formal
sciences for millennia. We are not here appealing directly to so-called “ordi-
nary language” philosophy, and philosophers in this school (such as G.E. Moore,
Austin, Norman Malcolm, and various modern defenders). As a matter of fact,
the veridicality of ordinary language is something we in general find attractive,
but we need only a circumspect general principle like this one:

(+) If natural-language communication has for millennia taken the bona fide
learning of an arithmetic function f by an intelligent agent a to happen
only if Φ, then, absent a separate and strong argument in favor of an
incompatible set Ψ of conditions that contravenes this, one is justified in
applying Φ to claims that a can learn/has learned some given function
f ′.

Perhaps the remarkable thing about (+) is that the behavior of ML practitioners
themselves confirms its truth. The field of machine learning has both founda-
tional theorems such as the No Free Lunch theorem (Wolpert 1996) and new
working theorems that are constantly introduced in the scientific literature of the
field, e.g. Theorem 2.1 in (Achab et al. 2017). Leaving aside theorems and other
formal knowledge produced by ML practitioners, consider the case of ANN-based
ML, for instance today’s DL. DL experts examine some given data, and through
domain expertise built up in the past (via a process much mediated by natural
communication, written and oral), devise a target set of functions (denoting the
architecture of the neural network in question):

{fw | w is in some large space}
The machine then simply tunes the weights w. Specifically, in convolutional (arti-
ficial) neural networks, the form of the function best suited for image processing
was conceptualized by humans and justified, by not just performance measures,
but by an argument in good old-fashioned English for the conclusion that this
form of neural networks might be good for image processing. See (LeCun et al.
1998) and Chap. 9 in (Goodfellow et al. 2016) for examples of this process. Note
that even if a machine selects the architecture, that selection is happening from a
18 E.g. even beginning textbooks introducing single-variable differential/integral cal-

culus ask for verification of human learning by asking for proofs. The cornerstone
and early-on-introduced concept of a limit is accordingly accompanied by requests
to students that they supply proofs in order to confirm that they understand this
concept. Thus we e.g. have on p. 67 of (Stewart 2016) a request that our reader
prove that

lim
x→3

g(x) = (4x − 5) = 7

. What machine-learning machine that has learned the function g here can do that?
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class of architectures designed by none other than the guiding humans, and there
is no justification from the machine beyond performance measures. A relatively
different form of machine learning, inductive programming (Kitzelmann 2009),
seeks to learn functions like addition by looking at a very small set of sample
inputs and outputs. But even this is shallow when stacked against real learning:
In RL, humans can not only look at inputs and outputs, but also descriptions of
the properties of the function written in English (and other natural languages,
as the case may be) that go well beyond the examples.

5.6 Objection 4: Do flying machines (really) fly?

“Unfortunately, you are dancing around an unanswerable quagmire that has
been with us for rather a long time, one summed up by the seemingly innocent
question: Do flying machines (really) fly?”

Suppose there is an embodied AI a′ with all sorts of relevant sensors and
effectors in the form of an autonomous drone that can take off by itself and travel
great distances adroitly, land, and so on—all without any human intervention in
it or its supporting systems during some flight from time t to t′. Did a′ really fly
during this interval? Of course it did. Do eagles really fly over intervals of time?
Of course they do. There is no objection to our argument to be found in the
vicinity of these (nonetheless interesting) questions. In the case of RL, there are
no machines on the planet, and indeed no machines in the remotely foreseeable
future of our solar system, that have the attributes constitutive of this learning.

5.7 Objection 5: You concede that your case is limited to the
formal sciences!

“You have conceded, perhaps even stipulated, that real learning in your argu-
ment is restricted to the realm of the formal sciences. Hence, if your case is
victorious, its reach is rather limited, no?”

Quite the contrary, actually. We have indeed restricted real learning to the
formal sciences. However, we had assumed that it would be clear to all readers
that adaptation and expansion of (c1′)–(c3) to non-formal domains would if
anything bolster our case, if not immediately render it transparently victorious.
Apparently our critic in the case of the current objection needs to be enlightened.
Consider creative writing. What does it take to learn the “functions” at the heart
of creative writing, so that eventually one can take as input the premise for a
story and yield as output a good story?19 We can safely say that any agent
capable of doing this must be able to read not formal-scientist Euclid, but, say,
Aristophanes, and a line of creative writers who have been excelling since the
ancient Greeks; and learn from such exemplars how such a “function” can be
computed. But reading and understanding literary prose, and learning thereby,

19 This is essentially the Short Short Story Game of (Bringsjord 1998), much harder
than such Turing-computable games as Checkers, Chess, and Go, which are all at
the same easy level of difficulty (EXPTIME).



146 S. Bringsjord et al.

is patently outside the purview of current and foreseeable AI. And it gets worse
for anyone who thinks that today’s machine-learning machines learn in such
domains: In order to learn to be a creative writer one must generate stories, over
and over, and learn from the reaction and analysis thereof, and then generate
again, and iterate the process. Such learning, which is real learning in creative
writing, isn’t only not happening in ML today; it’s also hard to imagine it
happening in even ML of tomorrow.

6 Real Learning in Context

The dialectic in the previous section makes it abundantly clear that ‘learning’ is
polysemous: it means many different things to many different people. Given this
fact, we think it’s worthwhile to a bit more systematically place real learning
within the context of different senses of learning in play in contemporary AI
and cognitive science/psychology. We thus briefly review the prominent senses
of learning in AI (Sect. 6.1), and then in cognitive science/psychology (Sect. 6.2);
and then, this two-part review complete, we proceed (Sect. 6.3) to quickly explain
in broad strokes how by a series of four steps real learning can be isolated within
the broader context afforded by the review.

6.1 Learning in AI

Everyone must admit that there are many different extant ways to map the geog-
raphy of what is called “learning” in the field of AI. This is easily confirmed by
the existence of modern, credible overviews of learning in AI, in textbooks (each
of which, of course, has been fully professionally vetted): the geographies offered
in each pair of these books is different between the two. Given this divergence,
we can’t possibly give here a single, definitive, received breakdown of learning in
its various forms within contemporary AI. On the other hand, it’s nonetheless
clear that any orthodox breakdown of the types of learning in the field, in any
textbook, will immediately reveal that no type matches real learning = RL.20

We here follow Luger (2008), whom we find particularly perspicuous, and quickly
point out, as we move through his geography, that real learning is nowhere to
be found. Nonetheless, it will be seen that Luger (2008), to his credit, opens a

20 Outside of the present paper, we have carried out a second analysis that confirms
this, by examining learning in AI as characterized in (Russell and Norvig 2009), and
invite skeptical readers to carry out their own analysis for this textbook, and indeed
for any comprehensive, mainstream textbook. The upshot will be the stark fact that
RL, firmly in place since Euclid as what learning in the formal sciences is, will be
utterly absent.
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door to a path that could conceivably lead to real learning, at some point in AI’s
future.21

Luger (2008) devotes Part IV of his book to “Machine Learning;” four chap-
ters, 10–13, compose this part, and each is devoted to a different form of machine
learning:

• Chap. 10: “Symbol-Based”
• Chap. 11: “Connectionist”
• Chap. 12: “Genetic and Emergent”
• Chap. 13: “Probabilistic”

As one would expect, connectionist learning covers machine learning that is
rooted in ANNs. For reasons given in the present paper, there isn’t a scintilla of
overlap between what is covered in Chap. 11 and RL. This is true for starters
because the familiar, immemorial declarative information that has defined such
things as the factorial function are nowhere to be found within an any artificial
neural network whatsoever. The same applies, mutatis mutandis, to the genetic-
and-emergent type of learning covered in Luger’s (2008) Chap. 12, as should be
obvious to all readers. (Genetic algorithms, for example, make no use of the sort
of declarative content that defines number-theoretic functions.) We are thus left
to consider whether RL appears in symbol-based learning presented in Chap. 10,
or in probabilistic learning covered in Chap. 13. In point of fact, which energetic
readers can confirm when reading for themselves, real learning doesn’t appear
in either of these places.

Now, we said above that Luger (2008) opens the door to a future in which AI
includes real learning. We end the present section by explaining what we mean.

In the final part of (Luger 2008), V, entitled “Advanced Topics for AI Prob-
lem Solving,” two topics are covered, each of which is given its own chapter:
“Automated Reasoning,” covered in Chap. 14; and “Understanding Natural Lan-
guage,” presented in Chap. 15. Luger’s (2008) core idea is that for truly pow-
erful forms of problem-solving in a future AI, that remarkable machine will
need at least two key things: it will need to be able to reason automatically
and autonomously in deep ways, starting with deductive reasoning; and second,
this AI will need to be able to really and truly understand natural language,

21 Instead of looking to published attempts to systematically present AI (such as the
textbooks upon which we rely herein), one could survey practitioners in AI, and
see if their views harmonize with the publications explicitly designed to present
all of AI (from a high-altitude perspective). E.g., one could turn to such reports
as (Müller and Bostrom 2016), in which the authors report on a specific question,
given at a conference that celebrated AI’s “turning 50” (AI@50 ), which asked for
an opinion as to the earliest date (computing) machines would be able to simulate
human-level learning. It’s rather interesting that 41% of respondents said this would
never happen. It would be interesting to know if, in the context of the attention ML
receives these days, the number of these pessimists would be markedly smaller. If so,
that may well be because, intuitively, plenty of people harbor suspicions that ML in
point of fact hasn’t achieved any human-level real learning.
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including complete sentences, following one upon another.22 It will not escape
the alert reader’s notice that the capability constituted by this pair is at the
heart of what it takes to be a “real learner,” that is, to be an agent that really
learns as per (c1′)–(c3) in the formal sciences. Unless an AI can itself prove such
things as—to repeat a part of the Example we began with — that the factorial
function’s range consists of the even natural numbers, and receives and under-
stands/processes challenges to prove such things, where these challenges come in
the form of arbitrary, full sentences like “Show that the factorial of every number
is even,” it won’t be an AI that really learns. Unfortunately, while Luger (2008)
points the way toward aspects of two key capabilities needed for real learning,
he does only that, by his own admission: point. So, while the door is open, our
claim, that machine-learning machines of today don’t really learn, is unscathed.

6.2 Learning in Psychology and Allied Disciplines

Recall the factorial-function example we gave at the outset. When, upon return-
ing home after school, you are asked by a parent, “So, what did you learn today
in math?” it’s rather doubtful that if you answered earnestly and sincerely, and
if your time in class was a pedagogical success, you replied in accordance with
anything violently outside the bounds of RL. Nonetheless, psychology and its
allied disciplines (= psychology+) have (perhaps inadvertently) erected an ontol-
ogy of forms of learning that at least in principle offer viable alternatives to RL,
or even perhaps forms of learning that match, overlap, or conceivably subsume
RL. Put intuitively, the question before us in the present section is this one:
Could you reasonably have conversed with your parent on the basis of any of
the types of learning in psychology+’s ontology thereof? As we now reveal, the
answer is No.23 We begin with the authoritative (Domjan 2015), which is based
on this operationally inclined definition:

22 Luger’s book revolves around a fundamental distinction between what he calls weak
problem-solving versus strong problem-solving.

23 There are a few exceptions. Hummel (2010) has explained that sophisticated and
powerful forms of symbolic learning, ones aligned with second-order logic, are supe-
rior to associative forms of learning. Additionally, there’s one clear historical excep-
tion, but it’s now merely a sliver in psychology (specifically, in psychology of rea-
soning), and hence presently has insufficient adherents to merit inclusion in the
ontology we now proceed to canvass. We refer here to the type of learning over
the years of human development and formal education posited by Piaget; e.g. see
(Inhelder and Piaget 1958). Piaget’s view, in a barbaric nutshell, is that, given solid
academic education, nutrition, and parenting, humans develop the capacity to rea-
son with and even eventually over first-order and modal logic—which means that
such humans would develop the capacity to learn in RL fashion, in school. Since
attacks on Piaget’s view, starting originally with those of Wason and Johnson-Laird
(e.g. see Wason and Johnson-Laird 1972), many psychologists have rejected Piaget’s
position. For what it’s worth, Bringsjord has defended Piaget; see e.g. (Bringsjord
et al. 1998).



Do Machine-Learning Machines Learn? 149

Learning is an enduring change in the mechanisms of behavior involving spe-
cific stimuli and/or responses that results from prior experience with those or
similar stimuli or responses. (Domjan 2015, p. 14)

That learning is here attributed to a change in the ‘mechanisms of behavior’
would seem to draw a hard line between learning and performance. Performance
can after all be the effect of multiple factors besides learning, and hence is not
a sole determinant of the latter. At any rate, in our study of types of learning
in psychology+, we found the following six forms of learning. As we progress
through the enumeration of these forms, we offer in turn a rather harshly eco-
nomical summary of each, and render a verdict as to why each is separate from
and irrelevant to real learning (with the possible exception, as we note, of the
last). Here goes:

1. Associative Learning: Classical and Instrumental Conditioning. The the-
ory of classical conditioning originates from the (Pavlovian) finding that
if two stimuli, one unconditional (US), such as food, and the other neutral
(CS), come in close temporal contiguity, and if US elicited some response
naturally (say salivation), then CS too eventually elicits that response.
While here the change in behavior is attributed to some contingency
between CS and US (also called reinforcer), in instrumental condition-
ing this change results from some contingency between that behavior and
the reinforcer (Mackintosh 1983). Obviously, if this strengthening or rein-
forcement of the new pattern in behavior is no more than a new stimulus-
response connection, real learning is nowhere to be found.24

2. Representational Learning. The representational theory of learning (Gal-
listel 2008) views the brain as a functional model capable of computing a
representation of the experienced world; and that representation in turn
informs the agent’s behavior. While learning here is taken to be a process
of acquiring knowledge from experience, ‘knowledge’ here means nothing
like the knowledge that is front and center in Example 1 of RL.

3. Observational Learning. Here, a new behavior is learned simply by observ-
ing someone else. Mostly associated with the social learning theory of
psychologist Albert Bandura (1977), his Bobo-doll experiment (Bandura
et al. 1961) is an interesting study of how children learn social behav-
ior such as aggression through the process of observational learning. This
type of learning in psychology+ is learning by straight imitation, and as
such is obviously not RL. Put simply and baldly, the decision problems
we presented in our starting example (e.g., is n! invariably even?), and the
confirmatory proofs for each answer, are not supplied by shallow imitation
of the likes of inflatable Bobo dolls.

4. Statistical Learning. Extraction of recurring patterns in the sensory input
generated from the environment over time is the core essence of this type

24 We are happy to concede that years of laborious (and tedious?) study of condition-
ing using appetitive and aversive reinforcement (and such phenomena as inhibitory
conditioning, conditioned suppression, higher-order conditioning, conditioned rein-
forcement, and blocking) has revealed that conditioning can’t be literally reduced to
new reflexes, but there is no denying that in conditioning, any new knowledge and
representation that takes form falls light years short of RL.
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of learning (Schapiro and Turk-Browne 2015). Taking a cue from asso-
ciative learning in nonhuman primates, past studies showed a possibility
of sensitivity of certain parts of the brain when exposed to temporally
structured information. Detection of conditional probability patterns in
sound streams as a precursor to language parsing, leading to predictions
of some sounds given other sounds, would be a good example. Schapiro
and Turk-Browne (2015) give a nice overview of various studies related to
auditory and visual statistical learning in humans, including neural inves-
tigations towards the role of different regions of brain in diverse forms of
such learning. Though statistical learning is suggested as a pervasive ele-
ment of cognition, it is yet early to state this as a form of real learning.

Marblestone et al. (2016) draw a parallel between human brain functioning
and the activity of ANNs in connectionist ML. They specifically claim that
the neural structure of the brain coincides with various methods of weight
assignments to multiple hidden layers of ANNs when machine learning
takes place. We gladly concede for the sake of argument that this direc-
tion holds promise for the neurological “decoding” of the human brain,
since the core idea is that there’s a match between brain activity and
ANNs through time in ML. But since this activity cannot in any way be
interpreted to constitute embodiments of the three clauses that define RL,
we once again see here an entirely irrelevant form of learning.

5. Neurocentric Learning. Titley et al. (2017) propose a non-exclusive, neu-
rocentric type of learning. For ease of exposition, let’s label this type of
learning simply ‘Lne.’ Lne marks a move away from a synaptocentric neu-
robiological form of learning: in Lne, both synaptic plasticity and intrinsic
plasticity play a role in learning and memory. More specifically, synap-
tic plasticity assigns connectivity maps, while intrinsic plasticity drives
engram integration. While Lne is certainly interesting, and while it may
well hold much promise, it’s undeniable that learning in this sense is clearly
not relevant to our conception of RL. Confirmation of this comes from
the brute fact that no account based on the building-blocks of Lne can
be used to express even the tiniest part of RL. Colloquially put, no agent
who learns, say, the Ackermann function in a given recursion-theory class,
and is proud that she has, can report this happy event by expressing her
enlightenment in terms of the proofs demanded by the clauses that define
RL.

6. Instructional Learning. Instructional learning is in play when an individ-
ual learns from instruction (for example, a teacher’s verbal commands in a
classroom) and responds with corresponding action/s. While we of course
agree that instruction acts as a purposeful direction of the learning pro-
cess (Huitt 2003), this learning fails to qualify as RL because action alone
doesn’t define learning. Of course, in theory, the actions of student learn-
ers could be fleshed out to correspond to RL’s three clauses. Were this
carried out, it would merely show that instructional learning, at least of a
particular type (e.g., instructional learning in the formal sciences), corre-
sponds to RL—but this we’ve known from, and has indeed been plain to
readers since, the outset of the present paper.
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6.3 The Four-Step Road to Real Learning

Having completed our rapid tour of ML in contemporary AI, and learning in
psychology+, we now provide a general characterization of what real learning is,
within this context. Saying what real learning is in the broader context consti-
tuted by the previous two subsections can be achieved by first by throwing aside
irrelevant, lesser forms of cognition; this will be the first of four general steps
taken to arrive at RL:

Step 1: We begin by observing that the cognitive powers of creatures on Earth are
discontinuous, because human persons have reasoning and communication
powers of a wholly different nature than those possessed by nonhuman
animals. A non-technical version of this observation is provided by Penn
et al. (2008). A more specific, technical analysis, undertaken from a logico-
mathematical standpoint, allows us to simply observe that only members
of H. sapiens sapiens are capable of such things as25

– understanding and employing indubitable abstract inference schemas
that are independent of physical stuff (e.g. modus tollens; see Ross
1992);

– understanding and employing arbitrary, layered quantification (such
as that ‘Everyone likes anyone who likes someone’ along with ‘Alvin
likes Bobby’ allows us to prove that ‘Everyone likes Bobby’);

– recursion (e.g. as routinely introduced in coverage of the recursive
functions in an intermediate formal-logic course, which might wisely
use (Boolos et al. 2003));

– infinite structures and infinitary reasoning (a modern example being
the proof that the Goodstein sequence goes to zero; see (Goodstein
1944));

– etc.

Step 2: We next exclude forms of “learning” made possible via exclusive use of
reasoning and communication powers in nonhuman animals, and set a
focus on learning enabled by human-level-and-above (hlab) reasoning and
communication powers. (Given the previous two subsections, this step
makes perfect sense. Recall our discussion, for example, regarding Luger’s
layout for learning in modern AI, all of which, save for what might be
possible in the future, made no use whatsoever of the human capacity to
read.)

Step 3: Within the focus arising from Step 2, we next avail ourselves of basic facts
of cognitive development in order to narrow the focus to hlab reasoning
and communication sufficiently mature to perceive, and be successfully
applied to, both (i) cohesive, abstract bodies of declarative content, and to
(ii) sophisticated natural-language content. A paradigmatic case of such
content would be axiom systems, such as those for geometry routinely
introduced in high school. Another such case would be elementary number
theory, also introduced routinely in high school; such coverage includes

25 Note that all occurrences of ‘understanding’ in the itemized list that follows, in
keeping with the psychometric operationalization introduced at the outset in order
not to rely on the murky concept of understanding, could be invoked here; but doing
so would take much space and time, and be quite inelegant.
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the example of the factorial function, with which we started the present
paper.26 Let’s denote such reasoning and communication by ‘RCh�

.’
Step 4: Finally, we proceed to define real learning = RL as the acquisition of

new knowledge by using RCh�

. For example, forms of reasoning that use
sophisticated analogical reasoning, or deduction applied to the axiom sys-
tem PA (see note 26), can be used to allow an agent to really learn new
things in the formal domain. Of course, the specific account of real learn-
ing will always boil down to specifics such as those given in (c1′)–(c3), but
we have sought here to put real learning in a broader context, via our tour
and, following on that, the four steps now concluded.

7 Final Remarks

We have heard echoes of an objection not explicitly presented and rebutted
above; viz., “Perhaps you should do some soul-searching. For does it not simply
boggle the mind that, if you’re right, real learning hasn’t even been seriously
targeted by AI, despite all the praise that it receives for machines that ‘learn’?!”
Well, it does boggle the mind. All of us, the authors and all our readers, know
quite well what real learning is, and how it came to be that on its shoulders
we all arrived at a place that allows us to study and do AI: we got here by
learning in precisely the fashion that RL, in its three conditions, prescribes. We
thus take ourselves to have simply revealed in the present paper what everyone
in their heart of hearts knows: the exuberant claims of today that machine-
learning machines learn are, when stacked against how we all learn enough to
put ourselves in position to study and do AI, are simply silly. Accordingly, since
AI in the new millennium increasingly penetrates the popular consciousness, we
recommend that those working to advance non-real forms of ML extend to the
public the courtesy of issuing a disclaimer that the type of learning to which
they are devoted isn’t real learning. This is a public, of course, that thinks of
learning in connection not with artificial agents, but with schoolchildren, with
high-schoolers, with undergraduates, with those in job-training programs, etc.,
all these groups being, of course, natural agents in the business of real learning.

Finally, we admit that the case we have delivered herein isn’t yet complete,
for there is an approach to computation, and an approach to the study of intelli-
gence, neither of which we have discussed in connection with our core claim that
contemporary ML isn’t real learning. The approach to computation can be called
natural computation, and the core idea is that nature itself computes (and per-
haps is computation) (an excellent introduction is provided in Dodig-Crnkovic
and Giovagnoli 2013); the approach to intelligence that we have left aside puts
a premium on bodies and their interconnection with the physical environment
(see e.g. Barrett 2015). In subsequent work, we plan to consider the relationship
between RL and forms of learning based on these two intertwined approaches.

26 Peano Arithmetic (PA) is rarely introduced by name in K–12 education, but all
the axioms of it, save perhaps for the Induction Schema, are introduced and taught
there.
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Even now, though, it’s safe to say that because RL takes little to no account
of the physical (it’s after all based in the formal sciences), and because it’s con-
ception of an agent is of a disembodied one,27 it’s highly unlikely that forms of
physical-and-embodied learning not considered above will overlap real learning.

8 Appendix: The Formal Method

The following deduction uses fonts in an obvious and standard way to sort
between functions (f), agents (a), and computing machines (m) in the Arith-
metical Hierarchy. Ordinary italicized Roman is used for particulars under these
sorts (e.g. f is a particular function). In addition, ‘C’ denotes any collection of
conditions constituting jointly necessary-and-sufficient conditions for a form of
current ML, which can come from relevant textbooks (e.g. Luger 2008; Russell
and Norvig 2009) or papers; we leave this quite up to the reader, as no effect
upon the validity of the deductive inference chain will be produced by the pre-
ferred instantiation of ‘C.’ It will perhaps be helpful to the reader to point out
that the deduction eventuates in the proposition that no machine in the ML
fold that in this style learns a relevant function f thereby also real-learns f. We
encode this target as follows:

(�) ¬∃m ∃f [φ := MLlearns(m, f) ∧ ψ := RLlearns(m, f) ∧ Cφ(m, f) �∗ (c1′) − (c3)ψ(m, f)]

Note that (�) employs meta-logical machinery to refer to particular instantiations
of C for a particular, arbitrary case of ML (φ is the atomic sub-formula that
can be instantiated to make the particular case), and particular instantiations
of the triad (ci′)–(ciii) for a particular, arbitrary case of RL (ψ is the atomic
sub-formula that can be instantiated to make the particular case). Meta-logical
machinery also allows us to use a provability predicate to formalize the notion
that real learning is produced by the relevant instance of ML. If we “pop” φ/ψ
to yield φ′/ψ′ we are dealing with the particular instantiation of the atomic
sub-formula.

The deduction, as noted earlier when the informal argument was given, is
indirect proof by cases; accordingly, we first assume ¬(�), and then proceed as
follows under this supposition.

27 This conception matches that of an agent in orthodox AI: see the textbooks, e.g.
(Luger 2008; Russell and Norvig 2009).



154 S. Bringsjord et al.

(1) ∀ f, a [f : N �→ N → (RLlearns(a, f) → (c1′)–(c3))] Def of Real Learning

(2) MLlearns(m, f) ∧ RLlearns(m, f) ∧ f : N �→ N supp (for ∃ elim on ¬(�))

(3) ∀ m, f [f : N �→ N → (MLlearns(m, f) ↔ C(m, f))] Def of ML

(4) ∀ f [f : N �→ N → (TurComp(f) ∨ TurUncomp(f))] theorem

(5) TurUncomp(f) supp; Case 1

(6) ¬∃ m ∃ f [(f : N �→ N ∧ TurUncomp(f) ∧ C(m, f)] theorem

∴ (7) ¬∃ m MLlearns(m, f) (6), (3)

∴ (8) ⊥ (7), (2)

(9) TurComp(f) supp; Case 2

∴ (10) Cφ′ (m, f) (2), (3)

∴ (11) (c1′)–(c3)ψ′ (m, f) from supp for ∃ elim on ¬(�) and provability

∴ (12) ¬(c1′)–(c3)ψ′ (m, f) inspection: proofs wholly absent from C
∴ (13) ⊥ (11), (12)

∴ (14) ⊥ reductio; proof by cases

A final remark to end the present Appendix: Note that the explicit deductive
argument given immediately above conveys a general method, m, for showing
that real learning = RL can’t be achieved by other forms of limited learning.
(Methods, or proof methods, are generalized proof “recipes” that can be com-
posed and built up like computer programs. Proof methods were first introduced
in (Arkoudas 2000), and extensive usage of proof methods can be found in (Ark-
oudas and Musser 2017).) This method m, given suitable input, produces a valid
formal proof. All that needs to be done in order to follow the method is to shift
out the set C of conditions to some other set C′ that captures some alternative
kind of ML, i.e. some alternative kind of limited learning Xlearning. For instance,
Bayesian learning (Blearning) can by this method be proved to fail to yield real
learning in a machine (or agent) that employs Blearning.
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Abstract. Turing’s Imitation Game (1950) is usually understood to be a test for
machines’ intelligence; I offer an alternative interpretation. Turing, I argue, held
an externalist-like view of intelligence, according to which an entity’s being
intelligent is dependent not just on its functions and internal structure, but also
on the way it is perceived by society. He conditioned the determination that a
machine is intelligent upon two criteria: one technological and one sociolin‐
guistic. The Technological Criterion requires that the machine’s structure enables
it to imitate the human brain so well that it displays intelligent-like behavior; the
Imitation Game tests if this Technological Criterion was fulfilled. The Sociolin‐
guistic Criterion requires that the machine be perceived by society as a potentially
intelligent entity. Turing recognized that in his day, this Sociolinguistic Criterion
could not be fulfilled due to humans’ chauvinistic prejudice towards machines;
but he believed that future development of machines displaying intelligent-like
behavior would cause this chauvinistic attitude to change. I conclude by discus‐
sing some implications Turing’s view may have in the fields of AI development
and ethics.

Keywords: Alan Turing · Turing Test · Imitation Game · Artificial Intelligence
Externalism

1 Introduction

Can machines be intelligent? In his 1950 paper “Computing Machinery and Intelli‐
gence”, Alan Turing introduced the Imitation Game (IG) in which a machine tries to
imitate human intellectual behavior to such an extent that a human interrogator mistakes
the machine for a human. The Imitation Game, later known as the Turing Test, has been
commonly understood to be a test for intelligence: A machine that does well in the Game
must be regarded as intelligent.

Turing’s paper, considered a classic in the fields of AI and philosophy of cognitive
science, raises many difficulties, and several attempts have been made throughout the
years to explain Turing’s intentions (see Saygin et al. 2000; Oppy and Dowe 2011). The
commonality between almost all interpretations offered is that they see the IG as a test
for intelligence. In this essay I reject that widely accepted view and propose an alterna‐
tive way of understanding Turing’s paper and his approach to intelligence. I shall show
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that Turing holds an externalist-like view of intelligence, which bears resemblance to
Wittgenstein’s approach to the mental domain (Wittgenstein 2009; 1958). My reading
of Turing is based on remarks he makes in other publications (especially Turing 1947;
Turing 1948; Turing et al. 1952) and on careful reading of the 1950 paper itself.1

In Sect. 2 I introduce the two main streams of interpretation of the IG that have been
suggested by Turing’s commentators, and I mention some of the problems they raise.
In Sect. 3 I discuss some remarks Turing makes in his earlier publications that I believe
may shed light on the way he understands the term “intelligence”. Sections 4 and 5 are
the heart of this essay: In Sect. 4 I present my technological interpretation, pointing out
what the IG is intended to test and what is outside its scope, and I discuss Diane Proud‐
foot’s interpretation of the IG. In Sect. 5 I present Turing’s prediction that in the future
the meanings of concepts will change, allowing machines to be deemed “intelligent”;
and I offer a critical look at this line of thought. In Sect. 6 I discuss some implications
of Turing’s approach vis-a-vis AI development and ethics.

2 Imitation Game: Common Interpretations

In his 1950 paper Turing describes the IG as follows: A human interrogator communi‐
cates via teletext with another human and with a machine, without knowing which is
which. The interrogator must try to ascertain which of the two beings is human by asking
each of them any questions whatsoever; each of the beings must try to convince the
interrogator that it is the human, by answering in a human-like manner. According to
the accepted reading, the logical structure of Turing’s argument is as follows:

(1) A machine that does well in the IG – a machine that successfully imitates human
intellectual behavior to the extent that the interrogator cannot tell the difference –
must be regarded as an intelligent (or a thinking2) entity

(2) Machines that do well in the IG can indeed be constructed

Therefore,

(3) Intelligent machines are possible

The role of the IG within the argument seems puzzling, and several attempts have
been made to explain Turing’s paper. Following Diane Proudfoot’s classification (2013),

1 My reading is supported by several pieces of non-orthodox commentaries of Turing scattered
throughout the literature, such as Whitby (1996), Boden (2006, pp. 1346–1356), Sloman
(2013), and especially Proudfoot (2005; 2013).
Some of the arguments suggested in this paper have appeared in Danziger (2016).

2 As Piccinini (2000), Proudfoot (2013), and others have pointed out, Turing uses the terms
“thought” and “intelligence” interchangeably. Although I will not differentiate between the
terms, for reasons of uniformity I shall usually use the term “intelligence”.
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I shall point out two main streams of interpretation suggested in the literature and briefly
mention some of the problems they raise.3

2.1 Behavioristic Interpretations

According to behavioristic interpretations, Turing held that “intelligent-like behavior”
is the definition of intelligence: Any system (that is, any organism or machine) whose
behavior is similar to that of an intelligent entity (a human) is itself intelligent. French
(1990, p. 53) exemplifies this operational definition of intelligence by saying that
according to Turing, “[w]hatever acts sufficiently intelligent is intelligent.”4

Behavioristic interpretations – the most common way of understanding Turing’s
paper – raise several difficulties. For according to these interpretations, Turing seems to
be going against a very basic human intuition – that mental occurrences and properties
are internal traits, independent of external actions.5 Also, it is not clear why, according
to Turing, intelligence is tested for by verbal behavior, and not by any other human
cognitive faculty.

2.2 Inductive Interpretations

As opposed to behavioristic interpretations, inductive interpretations claim that Turing
indeed sees intelligence as an internal property of a system – one that takes place inside
it, and not as an external, behavioristic trait. According to these interpretations, Turing
holds that a system’s success in the IG gives us good grounds to assume it possesses the
property of intelligence, based on the success that this kind of attribution has shown
hitherto; and in the absence of contradicting evidence, we should regard such a system
as intelligent.6

Inductive interpretations raise problems too, for according to them Turing implies
the following: “Due to our long-learned experience, we humans tend to attribute (the
internal property of) intelligence to systems on the basis of their (external) behavior;
therefore, we must attribute intelligence to systems that display intelligent behavior (i.e.,

3 Almost all commentaries on – and attacks against – Turing’s paper can be classified into one
of the two streams of interpretation described in Sects. 2.1 and 2.2; see Proudfoot (2013) for
detailed analysis and critique of these interpretations. Other ways of classification can be found
in Saygin et al. (2000) and in Oppy and Dowe (2011).

4 Also Searle’s interpretation of Turing is behavioristic: “The Turing Test is typical of the tradi‐
tion in being unashamedly behavioristic and operationalistic” (Searle 1980, p. 423; cf. next
footnote). References to other behavioristic interpretations can be found in Proudfoot (2013),
Copeland (2004, pp. 434–435), and Moor (2001, pp. 81–82).

5 This is the crux of perhaps the two most well-known arguments against the IG, namely, Searle’s
Chinese Room (Searle 1980) and Block’s Blockhead / Aunt Bubbles Machine (Block 1981;
1995): Intelligence, they maintain, cannot be captured in behavioral terms alone. (Note that
both arguments belong to the behavioristic school of interpretation, in that they assume that
the IG is intended to be a behavioral test for intelligence.)

6 The main proponent of the school of inductive interpretations is Moor (1976; 2001). Other
inductive interpretations can be found in Watt (1996) and Schweizer (1998).
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do well in the Game).” This move from “we tend” to “we must” seems strange, for a
system’s external behavior can be misleading, causing us – the observers – to adopt a
false picture of the system’s inner state; why must we trust behavior so blindly?

3 Turing 1947 and 1948: Machines Can Think

Before I present my interpretation I would like to refer to Turing’s earlier publications
from 1947 and 1948, which can shed light on his approach and give us a better under‐
standing of his 1950 paper.

3.1 Intelligence as an Emotional Concept7

Towards the end of his 1948 paper, after a lengthy discussion of ways in which machi‐
nery can imitate various human cognitive functions, Turing writes (1948, p. 431, my
italics):

Intelligence as an emotional concept
The extent to which we regard something [a machine or an organism, SD] as behaving in an
intelligent manner is determined as much by our own state of mind and training as by the prop‐
erties of the object under consideration. If we are able to explain and predict its behaviour or if
there seems to be little underlying plan, we have little temptation to imagine intelligence. With
the same object therefore it is possible that one man would consider it as intelligent and another
would not; the second man would have found out the rules of its behaviour.

Turing could have said that in a case of different epistemic viewpoints one of the
viewers would be wrong, but he chose to say otherwise: A given system could be both
“intelligent” and “non-intelligent” at the same time if viewers having two such opposing
viewpoints existed. Contrary to the way he was understood by behavioristic and induc‐
tive interpretations, Turing implies here that “intelligence” cannot be given a clear-cut
definition in terms of behavior or in terms of internal properties; one system having a
single set of behavior and internal properties allows for two opposing viewpoints, and
neither would be wrong.

In saying that intelligence is an “emotional concept” Turing is referring to the
emotions and reactions of the people perceiving the system, and thus points out the major
role of the environment in deeming a system “intelligent”. Intelligence, so to speak, is
in the eye of the beholder: What defines certain systems as intelligent is, first and fore‐
most, the fact that we humans perceive those systems, and not others, as intelligent. All
systems – including intelligent ones – are mere physical mechanisms; what makes a
system unique and defines it as “intelligent”, says Turing, is the viewpoint of the people
in its environment.

7 The ideas in this section draw partly on Proudfoot (2005; 2013). As I shall show later, my inter
pretation of Turing differs from Proudfoot’s in small but crucial points; to prevent inaccuracies
I shall refrain for now from mentioning her take on the subjects discussed, despite my great
debt to her work.
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Note that Turing’s methodology reveals his approach to intelligence. Turing adopts
a Wittgensteinian-like methodology in his analysis of the term “intelligence”, reviewing
cases in which people would or would not perceive systems as intelligent and attribute
intelligence to them (Turing 1947, p. 393; 1948, pp. 412, 431). But by limiting the
discussion to analysis of humans’ reactions to systems and to the way the term “intel‐
ligence” is used in ordinary language, and by refusing to provide any further definition
of intelligence (cf. Turing et al. 1952, p. 494), Turing reveals that in his view, what
matters is the question of whether machines would be perceived as intelligent by human
society. If they would be – then they could be said to be “intelligent”, and no further
inquiry would be needed (i.e., there would be no need to ask if they are “really” intel‐
ligent, according to some real-but-unknown definition that exists “out there”).

Turing’s approach thus described highly resembles what Coeckelbergh (2010) and
Torrance (2014) call the social-relationist perspective (as opposed to the realist perspec‐
tive).8 Following this terminology, Turing’s approach can be formalized as the following
premise:

Social-Relationist Premise: A system (organism or machine) perceived as intelli‐
gent by human society is an intelligent system9

Now, given that “an intelligent system” is logically equivalent to “a system that is
perceived as intelligent” (Social-Relationist Premise), the question

(Q1) Can machines be intelligent?

can be rephrased as

(Q2) Is it possible for machines to be perceived as intelligent?

In order to answer question (Q2) we must first find what causes people to perceive
certain systems as intelligent:

(Q2.1) What would be a sufficient condition for a system to be perceived as intel‐
ligent?10

Hence, in our attempt to understand the criteria for intelligence, we find that before
delving into questions in the domains of cognition and computation pertaining to the
system’s structure and functions, we must first focus on the fields of sociology and
psychology, and ask questions pertaining to the people in the system’s environment:
What causes human society to regard a system – organism or machine – as intelligent?
Once we answer the sociological questions we can proceed to the technological ones,
regarding the system’s functions and structure. Let us ask, therefore: What would be a
sufficient condition for a system to be perceived as intelligent? What properties or abil‐
ities would an intelligent machine have?

8 Turing’s approach bears resemblance also to Dennett’s “intentional stance” (Dennett 1987a).
9 In Sects. 3.2 and 4.3 I shall bring further textual evidence for this being Turing’s approach,

and shall briefly discuss what might have motivated Turing into adopting such a stance.
10 Turing is trying to prove that the existence of an intelligent machine is possible, and is not

merely asking if it possible. Therefore he will try to show that machines fulfill a suffi‐
cient condition for being (perceived as) intelligent, and will put less emphasis on the
necessary conditions.
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3.2 Sufficient Conditions for Intelligence

In the passage titled “Intelligence as an emotional concept” quoted above (Sect. 3.1),
Turing claims that when we encounter a simple system, one that “we are able to explain
and predict its behaviour,” we have “little temptation to imagine intelligence,” and so
we experience it as a mere mechanistic, non-intelligent system (Turing 1948, p. 431).
According to Turing, the reason no machine has ever been perceived by humans as
intelligent is that all machines that humans have ever encountered were of very limited
character (1948, p. 410); no machine had ever displayed sophisticated human-like
cognitive abilities involving learning, such as the ability to learn from experience and
the ability to modify one’s own “programming” (1947, pp. 392–393). But if, says Turing,
such a “learning machine” were built – it would be experienced by humans as intelligent
(1947, p. 393, my italics):

Let us suppose we have set up a machine with certain initial instruction tables [programs, SD],
so constructed that these tables might on occasion, if good reason arose, modify those tables.
One can imagine that after the machine had been operating for some time, the instructions would
have altered out of all recognition, but nevertheless still be such that one would have to admit
that the machine was still doing very worthwhile calculations. Possibly it might still be getting
results of the type desired when the machine was first set up, but in a much more efficient manner.
In such a case one would have to admit that the progress of the machine had not been foreseen
when its original instructions were put in. It would be like a pupil who had learnt much from his
master, but had added much more by his own work. When this happens I feel that one is obliged
to regard the machine as showing intelligence.

Note the last sentence: According to Turing, a “learning machine”, programmed in
such a sophisticated way that it could modify its own code, would arouse a feeling of
surprise in its observers, and they would find themselves regarding it as showing intel‐
ligence. In his 1948 paper Turing repeats this prediction when discussing the would-be
reaction of a human playing chess against a machine (as part of an early version of the
IG; p. 431). In fact, he seems to say that he himself had actually reacted in such a way
when encountering a chess-playing machine (1948, p. 412). Turing’s descriptions of
these would-be reactions (or actual reactions) of humans to such machines amount to
his claiming that the conjunction of the properties of a “learning machine” is a sufficient
condition for this machine to be perceived as an intelligent system:11

Sociological Claim: A “learning machine” would be perceived by human society as
intelligent

Another important claim Turing makes in his 1947 and 1948 publications is that
“learning machines” like the one just discussed can be built. According to Turing, the
digital computer – which was then being developed – could carry out any task that the
human brain could, and could therefore display the human-like cognitive abilities needed
for being a “learning machine”. (The digital computer will be discussed later in greater
length.) As opposed to the “very limited character of the machinery which has been used

11 There is no need to point out here which properties of the “learning machine” are necessary
conditions for perceiving a system as intelligent; all that is being claimed is that a “learning
machine” indeed has these properties, whatever they may be.
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until recent times” which “encouraged the belief that machinery was necessarily limited
to extremely straightforward, possibly even to repetitive, jobs” (Turing 1948, p. 410),
the digital computer would be able to learn from experience, change its own program‐
ming, and display any other property of a “learning machine”:

Minor-Technological Claim: It is possible to build a “learning machine”12

3.3 The Logical Structure of Turing’s Argument

The logical structure of Turing’s argument in his 1947 and 1948 papers is as follows:

Minor-Technological Claim: It is possible to build a “learning machine”

Sociological Claim: A “learning machine” would be perceived by human society as
intelligent

–  Conclusion: It is possible to build a machine that would be perceived by human
society as intelligent

Social-Relationist Premise: A system (organism or machine) perceived as intelligent
by human society is an intelligent system

–  Conclusion: It is possible to build an intelligent machine (Q.E.D)

To sum up: In his 1947 and 1948 publications, Turing argues that there can be intel‐
ligent machines. He claims that the construction of “learning machines” is a technolog‐
ical challenge that can be met (Minor-Technological Claim), and claims that these
machines would inevitably be perceived as intelligent by human society (Sociological
Claim) and would thereby be “intelligent machines” (Social-Relationist Premise).
Turing shifts the focus from technological questions regarding the system’s internal
structure to sociological questions regarding the people in the system’s environment. In
doing so, he sidesteps the need to define “intelligence” (or “thought”); regardless of what
the definition of intelligence is, if human society were to perceive a machine as intelligent
– it would be correct to say that it is intelligent.

4 Turing 1950: Technological Interpretation

I shall now turn to analyze Turing’s famous 1950 paper, where he introduces the well-
known Imitation Game. I shall offer my “technological” interpretation and claim that in
1950 Turing retreats from the stance he presented in 1947 and 1948, realizing that the
Sociological Claim (Sect. 3.2), according to which machines with special functions would
be perceived by society as intelligent entities, was naïve and perhaps too optimistic.

12 It will later become clear why this claim is labeled “minor”.
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4.1 From Specific Abilities to All-Encompassing Imitation Ability

In the 1947 and 1948 publications discussed above, Turing claims that if a machine were
to display the abilities of a “learning machine” (learning from experience, reprogram‐
ming itself, etc.), it would inevitably be perceived as intelligent by human society
(Sociological Claim); and he claims that machines can, in principle, display these abil‐
ities (Minor-Technological Claim). In his 1950 paper, though, Turing aims higher. He
no longer tries to convince the reader that the digital computer could imitate some ability
or another (however important that ability may be for being considered “intelligent”),
but claims that the digital computer can imitate the entire human cognitive system, as it
can imitate the human brain as a whole.13

Turing’s confidence that machines could do so is based on the strong imitation ability
of the “universal machine” (later known as the “Turing machine”) introduced in his 1936
paper. According to Turing, each function of the human brain could be imitated closely
enough by a “digital state machine”; all functions of all digital state machines could be
fully imitated by a universal machine; hence, all functions of the human brain could be
imitated closely enough by a universal machine. This machine could, in principle, do
anything a human brain can do; it could successfully carry out any human cognitive task.

Turing thus moves from discussing machines that could display specific, unique
abilities that would be sufficient for intelligence ascription (1947, 1948), to discussing
machines that could imitate the entire human cognitive system (1950). Machines of the
latter kind would have all the abilities that machines of the former kind had, and many
more. If such brain-imitating machines (machines of the latter kind) were built, we could
answer question (Q2) above – “Is it possible for machines to be perceived as intelligent?”
– with an unequivocal “yes”, without needing to determine which abilities, exactly, are
“responsible” for a system’s being perceived as intelligent. For whatever these abilities
might be – we would know for certain that they could be realized by these machines that
can do everything the human brain does.

4.2 The Imitation Game and the Technological Criterion

From a technological aspect, these machines that satisfactorily imitate any brain function
would be quite sophisticated. The Imitation Game is a means to check if the technolog‐
ical challenge of building such sophisticated machines has been met. The Game tests if
a given machine acts so much like a human brain that one cannot differentiate between
the two; in other words, it tests if a machine’s behavior is intelligent-like.14

A machine that does well in the IG – a machine that has intelligent-like behavior
– fulfills what I call the Technological Criterion for intelligence. The Technolog‐
ical Criterion requires that a system’s structure (or program) enables it to imitate the
human brain very well, to the extent that a human interrogator experiences it as

13 Hodges (2014, p. 530) explains in a similar way the difference between Turing’s 1948 and
1950 papers.

14 “Intelligent-like behavior” may be roughly defined as “behavior that under regular circum‐
stances cannot be differentiated from that of a human”.
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intelligent. The IG, therefore, tests if a given system fulfills the Technological
Criterion for intelligence.15

Turing designed the IG as a test involving verbal interaction because of the huge
technological challenge this posed. Constructing machines that successfully engage in
real-time human conversation seemed to him as an extremely difficult task from a tech‐
nological/algorithmic aspect, on par with – if not harder than – constructing machines
that possess any other cognitive ability related to “learning from experience” (Sect. 3.2).
Turing, I claim, saw the IG as an “AI-complete” problem (Mallery 1988, p. 47, fn. 96):
If a machine could do well in the Game, it could accomplish practically anything related
to AI. (Even today, programming a computer to do well in Natural Language Processing
tasks is considered one of the greatest challenges in AI development.) According to
Turing, if a machine were constructed in such a way that it displayed intelligent-like
behavior and caused a human interrogator to experience it as intelligent, its engineers
could lean back in satisfaction knowing that the technological challenge of creating
brain-imitating, intelligent-like machines had been met. It is with regard to this techno‐
logical challenge that Turing makes the following prediction (1950, p. 442):

I believe that in about fifty years’ time it will be possible to programme computers, with a storage
capacity of about 109, to make them play the imitation game so well that an average interrogator
will not have more than 70% chance of making the right identification after five minutes of
questioning.

In 1950, then, Turing predicts that brain-imitating machines with intelligent-like
behavior could indeed be built. Did he claim that these machines would be intelligent?

4.3 The Iron Curtain of Sociolinguistic Restrictions and the Sociolinguistic
Criterion

Turing’s 1947 and 1948 publications imply that “learning machines” that displayed
abilities such as learning from experience, reprogramming themselves, etc. would be
perceived by human society as intelligent (Sociological Claim, Sect. 3.2) and would thus
be intelligent (Social-Relationist Premise, Sect. 3.1). One would therefore expect that
in his 1950 paper Turing would say the same of machines that fulfilled the Technological
Criterion and displayed intelligent-like behavior; those machines, one would presume,
would surely be perceived by society as intelligent entities. But careful reading reveals
that in his 1950 paper Turing retreats from the naïve view presented in his earlier publi‐
cations. He realizes that while humans perceive other humans as “intelligent entities”,
humans perceive machines a–priori as “non-intelligent entities”, due to a chauvinistic
attitude towards machines that humans have (and may be unaware of). Turing recognizes
that even if a machine were to fulfill the Technological Criterion for intelligence by
doing well in the IG, human prejudice would preclude any possibility of machines being
thought of as intelligent. In a 1952 radio broadcast Turing describes this prejudiced
attitude (Turing et al. 1952, p. 500, my italics):

15 The Technological Criterion (1950) is closely connected to the Minor-Technological
Claim (1947, 1948) but is more “demanding” (as explained above, Sect. 4.1); that is why
the 1947–1948 claim is labeled “minor”.

166 S. Danziger



If I had given a longer explanation [of how to construct a machine that would have the ability
to identify analogies, SD] … you’d probably exclaim impatiently, ‘Well, yes, I see that a machine
could do all that, but I wouldn’t call it thinking.’ As soon as one can see the cause and effect
working themselves out in the brain, one regards it as not being thinking, but a sort of unima‐
ginative donkey-work.

Turing realizes that the term “intelligent machine” is an oxymoron: People think of
machines as systems whose workings they can understand; and a system whose workings
could be understood is seen as consisting of mere mechanistic processes, devoid of any
intelligence.16 Turing hence recognizes that the concept of intelligence could not be
ascribed to machines, by definition. This idea strongly resembles one that appears in
Wittgenstein’s later writings (2009: §360):

But surely a machine cannot think! – Is that an empirical statement? No. We say only of a human
being and what is like one that it thinks. We also say it of dolls; and perhaps even of ghosts.17

It seems that according to Wittgenstein, even if there were a person who did not have
that a-priori chauvinistic attitude towards machines and did see them as potentially
intelligent systems (as Turing might have), that person would run into the iron curtain
of language conventions that prevent us from applying the term “intelligent” to machines
in the literal sense. Machines cannot be said to be intelligent, Wittgenstein would say,
because of the way the terms “intelligent” and “machine” are used in language. This,
presumably, is the reason why Turing, despite his being convinced that machines could
do anything a brain could and could behave in an intelligent-like manner, refrains in his
1950 paper from explicitly stating that such machines would be intelligent.

To frame it differently: Turing understood that alongside the Technological Criterion
for intelligence, there also exists what I call the Sociolinguistic Criterion: the require‐
ment that the system be such that its kind is perceived by society as potentially intelligent.
According to the Sociolinguistic Criterion, a system that is perceived a-priori by society
as non-intelligent (i.e., belongs to a species or a kind that is perceived a-priori as non-
intelligent) cannot be said to be intelligent, by definition. Turing realized that in the year
1950, the Sociolinguistic Criterion, which is dependent on the system’s environment
(human society), could not be fulfilled with regard to machines. Doing well in the IG –
fulfillment of the Technological Criterion – would show only that the system’s behavior
is intelligent-like, but this would not break the sociolinguistic barricade seeded in the
minds of humans that causes them to see machines a-priori as non-intelligent entities.18

16 Bringsjord et al. (2001) mention a similar idea of “restricted epistemic relation”: They suggest
the “Lovelace Test” for intelligence in which “not knowing how a system works” is a necessary
condition for attributing intelligence to it. The fundamental difference between the Lovelace
Test and Turing’s IG will be explained later (fn. 23).

17 Other clear remarks of Wittgenstein in this spirit are Wittgenstein (2009, §281) and Wittgen‐
stein (1958, p. 47). The similarity between Turing’s and Wittgenstein’s ideas here has been
pointed out also by Boden (2006, p. 1351) and Chomsky (2008, p. 104).

18 The Sociolinguistic Criterion (1950) is closely connected to the Sociological Claim (1947,
1948) mentioned in Sect. 3.2. The addition of the “linguistic” component will soon be
explained.
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This is how we should understand Turing’s enigmatic remark (pun intended) in his
1950 paper, which follows his prediction quoted above in Sect. 4.2 (Turing 1950, p. 442,
my italics):

The original question, “Can machines think?” I believe to be too meaningless to deserve discus‐
sion.

This question, says Turing, is “meaningless” – in the Wittgensteinian sense:
Machines are not things that fall under the concept of “thinking” (or “intelligence”).
And this is why Turing, at the outset of his paper, replaces the question “Can machines
think?” with the question of whether or not machines can do well in the IG. While
Turing’s original question touches on both Technological and Sociolinguistic Criteria
(and contains a built-in negative answer), the new question relates to the Technological
Criterion alone; the IG offers a way to check if the Technological Criterion has been
satisfied.19

To recap: Turing tackles the question “Can machines think?” by saying, “Look, a
machine can do anything a brain can do. Anything. It can behave so similar to a human
brain that it can even do well in the Imitation Game. Does this mean that a machine can
think? No. But that is not because there is something it cannot do; it’s not like the fact
that I can’t climb a very steep cliff due to the limits of my strength. A machine cannot
think because the term ‘thinking machine’ is an oxymoron; it cannot be said to think
because of the way the terms ‘think’ and ‘machine’ are used in language.”

4.4 Proudfoot’s Interpretation: The Imitation Game as a Test for Intelligence

Before presenting the last stage in Turing’s argument I must mention the writings of
Diane Proudfoot (2005; 2013), which greatly inspired my interpretation presented thus
far. In her comprehensive and enlightening papers, Proudfoot promotes an externalist-
like interpretation of Turing, according to which intelligence is (what she calls) a
response-dependent property (Proudfoot 2013, p. 398):

Turing’s remarks suggest something like this schema: x is intelligent (or thinks) if, in an unre‐
stricted computer-imitates-human game, x appears intelligent to an average interrogator.

19 At this point one might raise the following objection: “Your reading boldly ignores the next
sentence in Turing’s paper, in which he supposedly predicts that in fifty years there would be
intelligent machines (1950, p. 442): ‘Nevertheless I believe that at the end of the century the
use of words and general educated opinion will have altered so much that one will be able to
speak of machines thinking without expecting to be contradicted.’ This implies that Turing
identified success in constructing machines that do well in the Game – with success in creating
intelligent machines; the timeframe in both sentences is the same (the year 2000), and so they
seem to be referring to the same futuristic occurrence!” My reply, in short, is that this objection
is based on an incorrect – albeit very common – reading of the passage in Turing’s paper.
Turing, I claim, makes two different predictions here, and these predictions are connected
causally but not logically. “Doing well in the IG” is not the same as “being intelligent”. The
IG, I insist, is not a test for intelligence, but a test only for the Technological Criterion of
intelligence: it tests if a system’s behavior is intelligent-like. (I shall return to this issue in
Sect. 5.1.)
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Turing, according to this, holds that what defines a system as intelligent is the attitude
of an average interrogator, who is supposed to represent society in an unadulterated,
impartial way (like a jury in court, perhaps).

My interpretation is close to Proudfoot’s but differs from it in crucial points. The
main difference is that her interpretation, like behavioristic and inductive ones
mentioned earlier, sees the IG as a test for intelligence. But Turing, I claim, did not
intend the Game to be a test for intelligence. Intelligence requires that society perceive
the system as intelligent, and the IG does not test that. It tests only whether a single,
isolated interrogator temporarily experiences the system as intelligent during the few
moments in which the interrogator does not yet know that s/he is conversing with a
machine. Turing himself refers to the IG as an “imitation test” (Turing et al. 1952, p.
503; cf. p. 495); indeed, the Game is a test for the Technological Criterion only, a test
for intelligent-like behavior.20 A test for intelligence, on the other hand, would require
the fulfillment of the Sociolinguistic Criterion too.21

5 Shifts in the Meanings of Concepts

5.1 Turing’s Prediction

According to my reading, in 1950 Turing acknowledged that machines could not “be
intelligent” or “think”, due to humans’ prejudiced attitude towards machines and the
way the terms “intelligence”, “thinking” and “machine” were used in language. But the
way people use words can change. Here is Turing’s remark quoted above (Sect. 4.3)
followed by his prediction (1950, p. 442, my italics):

The original question, “Can machines think?” I believe to be too meaningless to deserve discus‐
sion. Nevertheless I believe that at the end of the century the use of words and general educated
opinion will have altered so much that one will be able to speak of machines thinking without
expecting to be contradicted.

Turing believed that technological progress – development of machines that do well
in the IG and show intelligent-like behavior – would eventually cause humans’ chau‐
vinistic attitude towards machines to erode. The term “intelligent machine” would then
no longer constitute an oxymoron, as the meanings of the concepts “intelligence” and

20 Aaron Sloman, too, sees the IG as Turing’s way of defining a technological challenge, and not
as a test for intelligence (Sloman 2013). In an earlier version of his paper Sloman expresses
his dissatisfaction with the orthodox interpretations of the IG; I found myself wholly identi‐
fying with his words (my italics): “It is widely believed that Turing proposed a test for intel‐
ligence. This is false. He was far too intelligent to do any such thing, as should be clear to
anyone who has read his paper…”
(Source: http://www.cs.bham.ac.uk/research/projects/cogaff/misc/turing-test.html. Accessed
Oct. 11, 2017.)

21 To develop this point further: A real test for a system’s intelligence would check if the system
is perceived as intelligent by society as a whole, in an ongoing manner, in normal life situations.
But if that were to happen there would be no need for an intelligence test, because “society
perceiving a system as intelligent” is the definition of a system’s being intelligent, not a sign
of it! (See the Social-Relationist Premise, Sect. 3.1.)
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“machine” would have changed; the concept of “intelligence” would then be applicable
to machines.22 In that future state, the Sociolinguistic Criterion would have been
fulfilled, as society would indeed see machines as potentially intelligent systems. If a
certain machine also fulfilled the Technological Criterion, it would be perceived as an
intelligent system, and would rightly be said to be an intelligent machine.

In conclusion, Turing thought both that machines could do well in the IG and that
intelligent machines were possible. But contrary to the accepted reading presented in
Sect. 2, Turing saw the connection between the IG and intelligence not as a logical
connection, but as a causal one. He did not claim that machines that do well in the IG
are intelligent, but that success of machines in the IG would eventually cause people to
see machines as intelligent.

The widespread misunderstanding of the IG can be further clarified by differentiating
between descriptive and normative readings. While my interpretation sees Turing’s
account as descriptive (“That is how people would react upon their encounter with
machines that do well in the IG”), Turing’s commentators – who thought he intended
the IG to be a test for intelligence – understand him as giving a normative account (“That
is how we should regard machines that do well in the IG”). I am of the opinion that the
normative reading is an incorrect understanding of Turing’s paper.23

5.2 A Critical Look at Turing’s Prediction

Technically speaking, Turing was too optimistic; the year 2000 has passed and we still
do not perceive of machines as thinking/intelligent entities. (In fact, it has been stressed
that the only time we say of a computer that it is “thinking” is when it gets stuck.)
Turing’s prediction that the meanings of concepts will change may indeed come about
sometime in the future. However, I want to suggest the opposite scenario: If we develop
machines that have intelligent-like abilities and act very much like humans, we might
stop identifying those abilities with intelligence, just like we stopped seeing “winning
the chess game” as a sign for intelligence in 1997, when “Deep Blue” beat chess cham‐
pion Kasparov.24 “Tesler’s Theorem” expresses this point elegantly (Larry Tesler, ca.
1970):

Intelligence is whatever machines haven’t done yet.

22 This is how Turing’s prediction was understood by Mays (1952, pp. 149–151), Beran (2014)
and others. (Piccinini 2000 understands that Turing hopes such a change will occur.) For an
illuminating discussion regarding the possibility of this sort of change (not concerning Turing’s
paper) see Torrance (2014).

23 The main difference between Turing’s IG and Bringsjord et al.’s “Lovelace Test” mentioned
above (fn. 16) is that while the IG is descriptive, the Lovelace Test is normative (see Bringsjord
et al. 2001, p. 9).

24 Sloman makes a similar point and says that while computers are now doing much cleverer
things, “increasing numbers of humans have been learning about what computers can and
cannot do” (Sloman 2013, p. 3). Indeed, getting humans to attribute intelligence to machines
might become harder with time.
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Hence, an engineer might do everything philosophers said should be done in order
to develop intelligent systems – only to discover that the philosophers keep changing
the rules.

Moreover: If machines start acting like humans, we humans might find ourselves
changing the way we behave in order to distance ourselves from machines so that we
remain the “superior race”. Our new behavior will then become the new standard for
intelligence, the behavior in virtue of which we perceive systems as intelligent. In such
a scenario, humans would make sure to act in a unique way so that society (whomever
that may include) clearly understands that humans, and not machines, are the real bearers
of intelligence.

6 Implications of Turing’s View

6.1 Externalism and AI Development

When discussing the criteria for intelligence, Turing focuses on the way a system is
perceived by human society, rather than on the system’s functions or internal structure.
Turing, therefore, can be said to hold an externalist-like view of intelligence (and of the
mental domain in general25). A system’s functions and internal structure may indeed
play an important role in shaping society’s attitude towards the system (thereby circui‐
tously contributing to the definition of the system as “intelligent”), but by no means are
they the only factors.

I think Turing’s approach may lead to interesting insights regarding the ongoing
attempt to develop intelligent systems. Recent years have seen efforts in the fields of
technology and algorithm development to devise human-like intelligent systems
(including ongoing attempts to write computer programs that would “pass the Turing
Test”). Turing’s approach teaches us that it would be wise to pay attention also to the
major role that society plays in determining the intelligence of a system. This might lead
developers to put more emphasis on properties that had once been considered irrelevant
to intelligence. One such property is the external appearance of the system. Another is
the way the system was developed: Humans might be more inclined to attribute intel‐
ligence to a system that, like themselves, went through a long and tedious learning
process, as opposed to a system that had a whole database injected into it; the latter might
seem less human-like and would be less likely to be perceived as intelligent.26

Awareness of the sociological dynamics involved in determining a system’s intel‐
ligence may also teach us why we must have patience when trying to construct intelligent

25 In his brief reply to the “Argument from Consciousness”, Turing seems to claim that if a
machine did well in the IG it would be perceived as conscious too (1950, pp. 445–447; see
Michie 1993, pp. 4–7. But cf. Copeland 2004, pp. 566–567). I am of the opinion that likewise
intelligence, also consciousness and other mental phenomena can be explained in terms of
being perceived by society; I plan to discuss this elsewhere.

26 Both properties mentioned were suggested by Mays (1952), in his analysis of Turing’s 1950
paper. Interestingly, Turing himself seems to have viewed both properties as insignificant for
intelligence attribution (see Turing 1950, p. 434; Davidson 1990). For a list of other properties
that might shape humans’ attitude towards machines, see Torrance (2014).
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systems. As pointed out by Beran (2014, pp. 54–55), for machines to be intelligent,
humans must first adapt to the idea of intelligent machinery, and this change of attitude
may take time. In addition, developers should be willing to accept that humans’ stubborn
chauvinistic attitude might completely prevent the possibility of perceiving machines
as intelligent. If machines were to acquire abilities considered paradigmatic intelligent-
like behavior (such as learning from experience), people might stop seeing those abilities
as central to intelligence, and “replace” them with others. This would be equivalent to
changing the criteria for intelligence, rendering machines as non-intelligent again and
again (a-la Tesler’s Theorem), every time it seems as though they “almost got there.”

6.2 Ethics

According to Turing, if humans’ chauvinistic attitude towards machines changed and
they came to see some machines as intelligent – those machines would really be intel‐
ligent. But what if only part of society came to see machines as intelligent beings (or,
for the sake of the argument, as conscious beings), while the other part kept seeing them
as mere machinery? According to Turing’s approach, these two points of view would
reflect two incommensurable paradigms (to use Thomas Kuhn’s terminology), and there
would not be any objective viewpoint from which this dispute could be settled. Human
society would then be split over the question of how human-like machines should be
treated; for example, should they be given human(!) rights and be freed from slavery?
This question would probably not be resolved by logical reasoning, but by persuasion,
or perhaps by violence (among humans). Indeed, due to the ethical aspects involved,
people would probably have very little tolerance for the “other” opinion, which they
would see as a totally unethical stance. In addition, the ethical flavor of the dispute would
not leave much room for personal ambivalence, as each person would feel that they must
take a side in the debate.27

7 Epilogue

Turing illuminates the important role played by human society in determining whether
machines are intelligent. Machines cannot be perceived as intelligent in a society that
has a prejudiced chauvinistic attitude towards them; but if this a-priori attitude were to
change, brain-imitating machines could indeed be perceived as intelligent entities.
Turing, who was convinced that machines could do everything a human brain does,
feared that his opinion would not be accepted due to human prejudice towards himself,
as appears in a worried letter he wrote in 1952 while standing trial on charges of “gross
indecency” (Hodges 2014, pp. xxix–xxx):

27 Discussions regarding the active role of humans in drawing the borders of the “Charmed Circle”
of consciousness or intelligence (relevant also to the issue of animal consciousness and to
disputes regarding humans’ attitude towards animals) can be found in Dennett (1987b) and
Michie (1993).
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I’m rather afraid that the following syllogism may be used by some in the future –
Turing believes machines think
Turing lies with men
Therefore machines cannot think

When studying the nature of thought and intelligence, concentrating solely on the
system’s functions and internal structure can be misleading. That is not where intelli‐
gence lies. In emphasizing the major role of society, Turing’s research – while focusing
on machine intelligence – can teach us quite a bit about human intelligence as well.
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Abstract. Machine learning (ML) models make decisions for govern-
ments, companies, and individuals. Accordingly, there is the increasing
concern of not having a rich explanatory and predictive account of the
behaviour of these ML models relative to the users’ interests (goals) and
(pre-)conceptions (ontologies). We argue that the recent research trends
in finding better characterisations of what a ML model does are leading
to the view of ML models as complex behavioural systems. A good expla-
nation for a model should depend on how well it describes the behaviour
of the model in simpler, more comprehensible, or more understandable
terms according to a given context. Consequently, we claim that a more
contextual abstraction is necessary (as is done in system theory and psy-
chology), which is very much like building a subjective mind modelling
problem. We bring some research evidence of how this partial and sub-
jective modelling of machine learning models can take place, suggesting
that more machine learning is the answer.

1 Introduction

The increasing ubiquity of machine learning (ML) models in devices, applica-
tions, and assistants, which replace or complement human decision making, is
prompting users and other interested parties to model what these ML models
are able to do, where they fail, and whether they are vulnerable. On many occa-
sions, we can only interact with the ML models by querying them as a black box
since they may have been generated by a third party or may be too complex to
understand.

With infinitely many queries, we would be able to build a comprehensible
model A (e.g., a decision tree) that captures the behaviour of the original model
M (Domingos 1998; Blanco-Vega et al. 2004). However, even if this were theo-
retically and practically possible, or were we to do this at a limited or desired
level of accuracy, we would not necessarily obtain a comprehensible model since
it could have a vast number of rules to be comprehensively treated or the rules
could be too complex.

Also, the rules of the model may still be unrelated to the conceptions of the
users (the ontology, background knowledge, and their everyday concepts) and
their interests (which decisions are most relevant, what costs are involved, etc.).
Instead, what we discuss in this paper is that a more abstract, subjective, and
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partial account of the original model may capture meta-information about its
behaviour, and that this could be expressed in terms of the conceptions (vocabu-
lary, language, etc.) and interests (goals, constraints, etc.) of the potential users.

Let us further illustrate this with an example. In a medical diagnosis domain,
the patient will be interested in being explained his/her diagnosis, and possibly
some other alternative (but less likely) diagnoses. The patient will not be inter-
ested in the whole original model, which could cover many other pathologies
that the patient will never have. This is the trade-off between local vs global
interpretability (Doshi-Velez and Kim 2017). The patient will also want the
explanation of his/her diagnosis in terms of his/her own conceptions, instead of
in terms of meaningless variables (those that were probably used to build the
original model). For instance, a user might be familiar with terms like infection,
inflammation or pain, but not with the specific analytical variables in blood tests
that explain such symptoms. Of course, extracting a comprehensible explanation
directly from the original model might not always be possible, so further abstrac-
tions of the original model that take into account the user’s conceptions and
interests would be needed. Indeed, this is the way humans are able to abstract
the qualities of human decision makers (e.g., a human doctor is reliable, prone
to ask for many tests, unlikely to prescribe many medicines) and to tell others
in a few words (e.g., when recommending a doctor to a friend). In this example,
the model that abstracts the qualities of a human doctor can be very accurate in
relation to the patient’s conceptions and interests (i.e., likely to prescribe many
tests), despite the model not having a profound medical knowledge.

Thus, capturing what a machine learning model does is something that should
go much beyond obtaining or simulating its behaviour with a different represen-
tation. The question is then how we can model a ML model such that we can have
a rich explanatory and predictive account of its behaviour (i.e., model prediction
and its explanations) relative to a given context. The crux of the matter is that
there is: an object (the original model, M , the explanandum) to be explained,
the explanation itself (an abstraction, A, the explanans), and, finally, a target
(the user, U , the explananti, the recipient of the explanation, Chart 2000). It
should be noted that the explanans and the explanandum can be expressed in
different terms. Most importantly, there would be a different explanans for each
possible recipient, based on his/her knowledge, interests, and utility functions.
In this paper, we suggest that the problem may be seen as a context-based mod-
elling problem, where the original machine learning model is the explanandum,
and, because of its potential complexity, we will only be able to partially explain
it (according to the context). Furthermore, this should be done in terms of the
ontologies and utilities of the recipient (typically the “user context” or simply
the “context”). In summary, both the machine model and the user’s knowledge
and utility must be inputs to a behavioural modelling, which we call “model of
a machine learning model”.

The rest of the paper is organised as follows. The next section describes some
previous and recent approaches to explain machine learning models. Then, Sect. 3
outlines how ML models can be described based on the context in general terms.
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Section 4 provides five specific cases where we show how this can be done using
machine learning as the modelling tool. Finally, Sect. 5 closes the paper.

2 Background

The interest in explaining how a machine learning model makes its decisions
(how it behaves) is not new (Tickle et al. (1998)). However, in recent times, it
has been receiving a lot of attention due to the growing success of AI applications.
This section reviews some previous works that struggle to explain the behaviour
of machine learning models from different points of view.

The crudest and simplest characterisation of what a model does is a measure
of performance that provides an insight about how good or bad the model is.
There are many performance measures for machine learning models (see, e.g.,
Japkowicz and Shah 2011; Hernández-Orallo et al. 2012; Ferri et al. 2009), which
provide information about the certainty of the predictions (outputs) of a model,
which is closely related to the notion of trust (Ribeiro et al. (2016)). For instance,
when using class probability estimators, we can consider probabilities to be an
indicator of reliability, e.g., if a credit model decides to grant a loan with a
probability of 90%, the decision becomes more trustworthy than if the probability
was 55%. The certainty or confidence can be analysed in terms of how good the
probabilities are (i.e., calibration, (Bella et al. 2013)) or how good the confidence
intervals are (i.e., conformal prediction (Balasubramanian et al. 2014)).

The measures should be general enough to ensure that the model behaves
as expected in different contexts. This means that the model should also be
evaluated under different utility functions that are able to measure how well
the model performs according to a given context. For instance, the measures
used in the area of cost-sensitive or context-sensitive learning (Elkan (2001)) are
based on cost matrices for classification tasks and on cost functions for regression
tasks; however, they may integrate other kinds of costs, such as test costs (Turney
(2002)). The notions of cost-sensitive learning and context-sensitive learning have
been generalised under the notion of reframing (Hernández-Orallo et al. (2016)),
where the context can be used to train the original model, but also to adapt it
for different operating contexts.

None of the previous approaches actually go much farther beyond the aggre-
gation of statistical indicators from the results. There is no inference in the
extraction of the performance metrics. In contrast, there are approaches such as
those based on item response theory (IRT), which have been used to estimate
the ability of the model based on its responses to items that have different levels
of difficulty (Mart́ınez-Plumed et al. 2016).

On the other hand, instead of analysing the relation between predicted out-
puts and actual outputs, a different way of analysing machine learning models
is to study how input attributes affect output values (especially in supervised
learning). The most classical insight is to determine those attributes that are
the most relevant (Langley et al. 1994) and derive feature importance from the
model (e.g., decision trees, neural networks, linear regression, etc.). Knowing
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which attributes are crucial for some predictions is key to understanding how
the model works, its attribute costs, and also its robustness to some of the
attributes.

A related question is how to determine those input features that are sen-
sitive, actionable, or negotiable, which is not exactly how to determine feature
importance, but rather whether a (small) change in an attribute can trigger a big
change in the output. In general, model actionability refers to the ability to turn
predictions into actionable knowledge that the user can transfer to the inputs
in order to achieve a desired goal (e.g., to get a loan, to lower blood pressure,
etc.). Thus, actionability is related to the reaction of the model against changes
in features as well as the associated cost of these changes. Some approaches are
restricted to only changing one attribute (Yang et al. 2007; Cui et al. 2015),
but others address the more general problem of changing several attributes (Lyu
et al. 2016). Some works focus on finding the features that might change the pre-
dicted class of a given model by introducing small perturbations on input data,
as in the case of adversarial machine learning (Huang et al. (2011)). The term
negotiable (Bella et al. 2011) is used when one wants to obtain a given output at
the lowest cost of some of the inputs. For instance, given a credit model, a user
might wonder which of the input attributes should be changed (loan amount,
years, etc.) in order to have the credit granted.

The issues of how the model performs or how the model maps inputs to out-
puts are completely different from what the model does, which usually requires
a more detailed level. Different methods have been introduced to explain the
behaviour of an incomprehensible model. A simple example is to mimic the
behaviour of a black box, incomprehensible model (e.g., a neural network, a
classifier ensemble, etc.) by obtaining an equivalent one that is expressed as
a set of comprehensible rules (Domingos 1998; Blanco-Vega et al. 2004; Ferri
et al. 2002). A simple way to do this is by considering the model M as an oracle
that we can interact with in order to learn other model (Jain et al. 1999). Thus,
we can generate input data and query the model to label those data. The result
is used as the training set to build a new comprehensible model A (the surro-
gate, or mimetic, model) that captures the behaviour of M . Furthermore, there
have been some previous works where the surrogate model is created taking the
context or cost into account. For instance, given an original model M , one can
create a new model A that gives more relevance to a specific class (Blanco-Vega
et al. 2006). Here, the goal is not to give a customised explanation but rather to
change the behaviour of the original model.

Many of these works are now reintroduced (or reinvented) in the area known
as Explainable Artificial Intelligence (XAI) (Core et al. 2006; Samek et al. 2017).
The general goal of XAI is to provide more comprehensibility and interpretability
to AI models. This includes concepts such as explainability, transparency, com-
prehensibility, interpretability, trust or fairness (Ribeiro et al. 2016; Doshi-Velez
and Kim 2017; Weller 2017; Kamiran and Calders 2009).

The search for further abstraction on artificial systems also happens in other
areas of computer science. A good inspirational example is software engineering,
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ranging from abstract interpretation in formal methods (Cousot and Cousot
1977) to empirical analysis (Fenton and Neil 1999). However, given the nature
and increasing complexity of machine learning models, other areas such as cog-
nitive modelling, system theory, or psychometrics may be better similes for what
is needed here.

Overall, there are many approaches in machine learning with the goal of
understanding how a model behaves. However, only some of them create another
model or an abstraction of the original model (i.e., create an ‘explanans’),
and only some of them take into account the user’s context (i.e., consider the
‘explananti’). However, none of them does both things at the same time. This is
what we explore in Sect. 3, in a general way, and in Sect. 4, with a series of more
specific cases.

3 Towards Contextual Abstractions for Modeling ML
Models

As we discussed in the previous sections, we are looking several aspects of
machine learning models as complex behavioural systems: their intended vs
actual behaviour, the relation between inputs and outputs, and understanding
the whole model or some of its decisions. In order to make sense of all of this
in a better way, we need to construct further abstractions. But, what type of
abstractions? How can we get these abstractions so that we can interpret and
understand the behaviour of a complex model? Other fields like psychology or
biology have faced similar problems: when the object of study M is too complex,
researchers develop a series of experiments based on the aspects that they want
to study (interests) so that they can explain it in terms that they understand
(conceptions). From there, they build a theory or model, explaining part of the
behaviour of M .

Fig. 1. A given model M (black box) that some potential users want to understand
better. These users want an abstraction that is customised to their context: their
conception of the domain and their interests. This model of the model (the abstraction
A) captures behaviour that is very partially, subjective to the context, usually in terms
of a set of characteristics and traits

Figure 1 shows how an abstraction A is built from an original model M
according to a certain context, which is given by our interests and conceptions.



180 R. Fabra-Boluda et al.

The procedure for building A must go beyond the definition of a sophisticated
utility function that is followed by an optimization process on the model M . We
claim that building A requires a re-modelling process that must include regular-
ization terms, the abstract model representation (i.e., features and combinations
of those features), and always giving priority to those features that are easier to
understand, fairer, leading to more stable models and better calibration.

The context (conceptions and interests) must be the drive for abstraction.
Only in this way can one ignore the irrelevant (uninteresting) details for the
model, thereby overhauling the notion of overfitting. The abstraction must be
done using the conceptual narratives of the user, including features that are
common in behavioural (mind) models, such as reliability, trust, risks, roles,
uncertainty, etc. (Boden 1988).

4 Illustrative Examples of Modelling ML Models

Given the previous general view, here we provide some examples of how this
could be done for different applications, some of which are related to the areas
described in Sect. 2. We cover the following issues: how performance metrics can
be modelled, how modelling can be made partial and subjective, how latent
variables can explain the behaviour of a model, how to address the problem of
actionability by inverting a model, and, finally, how to model the boundaries of
a model.

4.1 Modelling Context-Oriented Metrics

In Sect. 2, we have seen that context-sensitive learning builds a model according
to some utility function. Similarly, reframing adapts the model according to
some utility function. We provide two examples to illustrate what we mean by
modelling context-oriented metrics and its usefulness.

Suppose that we want to determine how a model M behaves for different
levels of noise. If we can characterise the level of noise of groups of examples, we
can use these examples to feed the model M and get performance metrics for
different noise levels. The resulting curve might be bumpy, especially if it can
only be built with a few examples or there might be areas for which we cannot
get the performance. So in the end, we might have the performance of M based
on some number of levels of noise. With this, we can just create a very simple
dataset: (x = noiselevel, y = performance), and we can learn a linear model A
that predicts (interpolates) how the model M behaves for each level of noise. As
a result, we can explain in a simple way (a linear function of just one variable)
how performance is affected by noise. An example of this setting is shown in
Fig. 2, which is extracted from (Ferri et al. 2014). In this plot, we observe the
behaviour of five classification models with respect to different values of noise ν
that are injected in the features of a test dataset.

The context of a performance metric might be determined by just a few
attributes, which may be those that are most relevant or important for a specific
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Fig. 2. Example of a context plot for a classification problem (“Creditg” dataset from
UCI (Lichman 2013)) with the expected error on the y-axis (percentage of misclassified
instances) for four classification methods and a reference model (majority class) for
different noise levels ν on the x-axis. More details of the plot can be found in (Ferri
et al. 2014)

user. For instance, if a user wants to know how the error of M depends on two
attributes, age and gender, we can create a dataset with many examples of the
type (x1 = age, x2 = gender, y = performance). From here, we will learn a
model A (a decision tree, or a linear regression model). Then, we can analyse
how the model M behaves depending on the age and gender. This would allow us
to extract conclusions relative to these attributes. For instance, we could come
up with insights such that this particular model M is good for young males, but
bad for older females. Or if we use false positives and false negatives instead of
performance, we could get one group that might have more false positives than
the other. This model A may be used to better understand and ultimately avoid
unfair behaviour arising from the original model M . Fairness is one of the core
concepts of XAI.

4.2 Partial, Subjective Modelling

The idea of using subsets of variables, groups, or partial sets of instances for
modelling performance (as discussed in Sect. 3) suggests that we can do the
same for modelling what the model does (its behaviour). Basically, we can adapt
the mimicking approach to construct a surrogate model, but for a subset or a
transformation of attributes, classes, or examples.

For instance, assume that a user (e.g., a patient) is interested in being
explained how the model works with the only two variables he/she understands,
x3 (e.g., Blood Pressure) and x5 (e.g., Body Mass Index). If we just mimic M
using attributes x3 and x5 and the output, the resulting model A will necessar-
ily be expressed in terms of x3 and x5 and will be understood by the patient.
The accuracy may not be excellent with only two attributes (compared to the
accuracy of the original model which includes all variables), but a general under-
standing of the model will be possible. Also, if we are using a decision tree with



182 R. Fabra-Boluda et al.

only two attributes, the model will have very few leaves. We can do something
similar with groups of classes. Continuing with the medical domain, if the patient
ultimately has a disease d diagnosed by model M , but M is general (multiclass,
diagnosing m pathologies), we can create a model A where the classes have been
merged (d vs the rest). The newly trained model or abstraction A will just learn
rules to say why it is d and not any other pathology. This is exactly what the
patient wants to know, without all of the details and complexities of the original
model M , which had to cover all possible pathologies.

Finally, the same idea can be applied for the instances. If we want to know
how a model behaves for a specific group (e.g., young males), we can make a
sample of only those instances and create a mimetic model A with only those
instances. The model A will show how M behaves, but only focusing on the
group of interest.

In summary, as can be observed, by restricting the set of attributes, classes, or
examples and keeping only the ones that are of interest, the model A necessarily
has to express its behaviour in terms of such attributes, classes or examples.

4.3 Modelling Latent Behaviour

One of the most common ways of understanding a complex phenomenon is by
extracting latent variables, which explain many more observed variables. For a
machine learning model, we can choose many possible subsets of observed vari-
ables, combining inputs, outputs, etc., and varying aggregations and selections.

For instance, one simple example is to take inputs, outputs, and actual classes
as observed variables and try to derive the latent variables that best explain what
we see. For instance, we can construct instances such as: (x1, x2, ..., xk, ypred

1 , ...,
ypred
k , yactual

1 , ... yactual
k ). With all these variables, we can perform PCA or factor

analysis. For instance, it might be the case that a dominant factor f explains
variables ypred

1 , yactual
1 , x3. Note that this is different from using PCA or factor

analysis on the original dataset (x1, x2, ..., xk). Here, we might conclude that a
latent factor is not only determining some observable input variables, but also
some of the behaviour of the model. For instance, if we go back to the medical
example, we could say that instances with high values of a latent variable f will
have high values of ypred

1 , yactual
1 and x3, showing that x3 is really key for some

high and reliable values of y1.
Finding latent variables is just a kind of descriptive model of how M works.

For instance, other unsupervised techniques, such as clustering, could be used,
where output variables (actual and/or predicted) would be the inputs of the
algorithm.

4.4 Modelling Actionability

In Sect. 2, we showed that there is interest in how to make a model actionable,
i.e., how the inputs have to change in order to obtain an output. Again, we may
have a model M , and we may have some fixed attributes x1 to x6 and we want
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to know how to change x7 (e.g., the amount) in order to swap the output y
from the negative to the positive class (granting a loan). For a linear model,
this is easy to calculate, but for a more complex model we would need some
kind of optimisation search in order to find this value. Instead, what we can do
is to try to model how x7 depends on x1 to x6 and y. This can be done with
machine learning by putting the attribute of interest (x7) as output and the rest
as inputs, e.g., (x1,. . ., x6, y → x7). The new model A is able to predict the
value of x7 that we need when putting a combination of x1,. . ., x6 and y, which
is what we wanted in the first place.

However, this will not give us the optimal value of x7 given the context. In
order to do this, we could include a utility value u as input instead of y, i.e.,
(x1,. . ., x6, u → x7). If we want to maximise u, using the newly learnt model A,
we would use a high value of u to see what value of x7 we obtain. Note that the
optimisation process is done during learning, and this abstraction is perfectly
actionable.

4.5 Modelling Decision Boundaries and Model Families

Another trait that can be analysed in a model is its decision boundaries. This
type of insight is directly related to the behaviour of the model, since the bound-
aries establish the mappings between input features and output values. For
instance, given a model M , we might want to infer the model family of M ,
which crucially affects the shape of the decision boundaries. Namely, instead of
asking what the model does or how well it does, we ask how it maps the space,
especially in terms of some well-known families in machine learning. The concept
of model family refers to groups of models that exhibit similar behaviour for the
same set of data.

Why would we be interested in finding out the family of a given model? If
we were able to determine the model family of a loan scoring system and we
determine that it is a decision tree, we could use specific adversarial machine
learning (Huang et al. 2011) techniques for decision trees to determine the values
of the inputs that maximise the utility value u to obtain a desired output (e.g.,
granting a loan), as we have explained in Sect. 4.4.

We could try to determine the family of M by using some rules of thumb, or
by trying to mimic the model and look at the boundaries. An alternative, which
involves machine learning once again, is to learn to classify the family of a model
after having trained a classifier A from a range of models, their features, and
their known families. More precisely, to learn a classifier A that identifies the
model family, we would need a collection of models M ′

1,M
′
2, . . . ,M

′
m, that are

labelled with their model family y1, y2, . . . , ym. Each model would be a row in a
dataset, for which we will extract a range of features. In other words, each row of
this dataset will be an array of characteristics x1, x2, ..., xn about a model (the
input attributes), and its family (the output attribute). Figure 3 illustrates the
process for extracting the features for a single model M ′

i (top row). M ′
i could be

used for labelling an artificial surrogate dataset SDi (left plot, bottom row), so
that SDi would reflect the decision boundaries learned by M ′

i . We could then
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Fig. 3. The first row presents a dataset (first plot) for which a model M ′ (SVM with
RBF kernel) is learnt. For such a model, we learn an artificially generated surrogate
dataset that reflects the boundaries of M ′ (first plot of the bottom row). The remaining
plots correspond to different surrogate models that are trained on the surrogate dataset.
Different surrogate models (with different inner workings) replicate (better or worse)
the decision boundaries of M ′

use SDi to learn some new machine learning models and obtain a number of
performance measures so that each M ′

i would be characterised as a collection
of performance measures that could be used as the features x1, x2, ..., xn of the
dataset to learn the model A. Thus, A would be able to identify the model
family of a new instance (i.e., a model) M by applying the same process of
feature extraction.

5 Conclusions

The previous section just outlines the possibilities of using machine learning to
model partial accounts of the behaviour of an existing model M . It is not the
goal of this paper to flesh out each and every one of these possibilities, which
would require independent papers of their own. The goal of this paper is to
see all of these possibilities (some of them new, and some with more potential
than others) under the same umbrella, the idea of modelling machine learning
models. Also, in general, similar ideas can be applied when the base system is an
AI system, where machine learning is only a part of it (Hernández-Orallo 2017).

All of this is very timely regarding the recent research emphasis on more pow-
erful and abstract evaluation metrics, the extraction of latent variables about
model behaviour, the explanation of decisions in a comprehensible way, and
the analysis of sensitive/actionable features. Terms like interpretability, trans-
parency, trust, or fairness require understanding machine learning models as
being complex behavioural systems for which further abstractions are necessary,
as is done in system theory, cognitive modelling, and some other areas of psy-
chology. In the same way that these areas are using more machine learning to
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construct models from observation, it would be unnatural not to use machine
learning to model machine learning models for a similar purpose.

Acknowledgements. This material is based upon work supported by the Air Force
Office of Scientific Research under award number FA9550-17-1-0287, the EU (FEDER),
and the Spanish MINECO under grant TIN 2015-69175-C4-1-R, the Generalitat Valen-
ciana PROMETEOII/2015/013. F. Mart́ınez-Plumed was also supported by INCIBE
(Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguri-
dad). J. H-Orallo also received a Salvador de Madariaga grant (PRX17/00467) from
the Spanish MECD for a research stay at the CFI, Cambridge, and a BEST grant
(BEST/2017/045) from the GVA for another research stay at the CFI.

References

Balasubramanian, V., Ho, S.-S., Vovk, V.: Conformal Prediction for Reliable Machine
Learning: Theory, Adaptations and Applications. Newnes, Oxford (2014)

Bella, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Using negotiable
features for prescription problems. Computing 91(2), 135–168 (2011)

Bella, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: On the effect of
calibration in classifier combination. Appl. Intell. 38(4), 566–585 (2013)

Blanco-Vega, R., Ferri-Ramı́rez, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.: Esti-
mating the class probability threshold without training data. In: Workshop on ROC
Analysis in Machine Learning, p. 9 (2006)

Blanco-Vega, R., Hernández-Orallo, J., Ramı́rez-Quintana, M.: Analysing the trade-off
between comprehensibility and accuracy in mimetic models. In: Discovery Science,
pp. 35–39 (2004)

Boden, M.A.: Computer Models of Mind: Computational Approaches in Theoretical
Psychology. Cambridge University Press, New York (1988)

Chart, D.: A Theory of Understanding: Philosophical and Psychological Perspectives.
Routledge, New York (2000)

Core, M., Lane, H.C., van Lent, M., Gomboc, D., Solomon, S., Rosenberg, M.: Building
explainable artificial intelligence systems. In: Proceedings of the 18th Innovative
Applications of Artificial Intelligence Conference (2006)

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analy-
sis of programs by construction or approximation of fixpoints. In: Proceedings of the
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pp. 238–252 (1977)

Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests and
boosted trees. In: Proceedings of the 21st ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 179–188 (2015)

Domingos, P.: Knowledge discovery via multiple models. Intell. Data Anal. 2(1–4),
187–202 (1998)

Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning.
arXiv (2017)

Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Conference
on Artificial Intelligence, vol. 17, pp. 973–978 (2001)

Fenton, N.E., Neil, M.: Software metrics: successes, failures and new directions. J. Syst.
Softw. 47(2), 149–157 (1999)



186 R. Fabra-Boluda et al.

Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: From ensemble methods to
comprehensible models. In: 5th International Conference on Discovery Science, pp.
165–177 (2002)

Ferri, C., Hernández-Orallo, J., Mart́ınez-Usó, A., Ramı́rez-Quintana, M.: Identifying
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Abstract. Often people describe the creative act of programming as mysterious
(Costa 2015). This paper explores the phenomenology of programming, and
examines the following proposal: Programming is a log of actions one would
imagine oneself to be doing (in order to achieve a task) after one projects oneself
into a world consisting of software mechanisms, such as “the Python environ‐
ment”. Programming is the formal logging of our imagined actions, in such an
imagined world. Our access to our imagination is introspective.

Keywords: Programming · Introspection · Role-playing

1 Introduction

Introspection was denounced as a methodology in psychology with the founding of
behaviourism (Watson 1913). Cognitive science inherited this bias from psychology
(Costall 2006), and AI being (at least partially) a wing of cognitive science, inherited
this abhorrence of introspection. However introspection has been used in AI research,
but has been widely obfuscated and denied (Freed 2017, Sect. 4.3). I have argued else‐
where for the rehabilitation of introspection as a source of ideas for AI algorithms (Freed
2017). Here I examine a radical short-cut: Developing an AI system includes by defi‐
nition a programming task. If introspection is involved in all programming, then banning
its use in AI development is logically impossible, and AI researchers denying and
obfuscating their use of introspection are attempting the impossible.

Introspection can be done in our normal waking state (assuming that is a single thing).
However, one can also introspect while imagining oneself to be another person, as an
actor does when playing a role. This is not limited to theatrics:

2 Projecting into a Role

When acting and communicating, people assume a certain role (or “frame of mind”),
usually depending on the social context. An example is how people take on their “office
persona” as they start their work day. This “office persona” is broadly similar to the job
description the organization would advertise to fill a role if it were to fall vacant. As
Herbert Simon noted:
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Administration is not unlike play-acting. The task of the good actor is to know and play his role…
The effectiveness of the performance will depend on the effectiveness of the play and the effec‐
tiveness in which it is played. The effectiveness of the administrative process will vary with the
effectiveness of the organisation and the effectiveness with which its members play their parts.
(Simon 1976, p. 252; Simon 1996, p. xii)

There seems to be no such thing as the mind operating (in a way that could be relevant
for action) outside of some cultural context (see Wittgenstein 2001) even if it is the
context of running amok (Carr 1985). This fact of the individual’s behaviour being
constructed in (usually) socially-accepted roles is transparent to us in daily life, but has
been the subject of much research (Goffman 1971).

One of the roles one can adopt is the role of being cooperative with some scientific
programme. An example is Watson’s (and later Simon’s) “thinking aloud”, requiring
that a “scientific man” take on such a role as thinking aloud “in the proper spirit” and
possibly even “with zest” (Watson 1920, p. 91).

These roles that we adopt come with certain prejudices in interpreting our environ‐
ment. The same event (say the firing of a pistol by an assassin) could be interpreted
differently by the same person, depending on whether they are acting in their capacity
as a citizen, or in their capacity as a scientist. In one case he would describe an assas‐
sination, in the other he would explain the chemistry and mechanics of pistols.

This observation (that humans act within a context or a role) is not entirely alien to
the field of AI. Note that the above quote is from Herbert Simon - a pillar of the AI
community (albeit from his work in public administration, not AI).

3 Programming Is Introspective

Let us examine (phenomenologically) what happens when one approaches (even) a
simple programming task, say calculating and printing a tax invoice for a company:

In writing new code (not debugging or reusing existing code), a programmer projects
herself (like a stage-actor would) into an imaginary world where she is (say) inside a
space consisting of the Python instruction set (and libraries), or in a space comprised of
an “Intel” architecture, and asks herself how she could use the tools available (variables,
arrays, loops, libraries, etc.). There is a lot of “first person thinking” going on, as in
“how could I do this”, “this could give me that” etc. The programmer’s output, the code
that is supposed to do the task, is a formalization into (say) Python instructions of the
imagined actions by the programmer inside this “Python environment”. Our access to
our imagined actions is introspective.

Some may argue that programming is merely translation of the requirement (a tax
calculation) into a programming language, making the act of programming an act of
translation. But (adequate) translations are also rarely simply a mechanical replacement
of words in one language with words from another. Good translations are achieved by
the translator projecting herself into the character speaking the words in the original
language, and imagining how she would express the same ideas and sentiments in the
target language. So the translation explication of programming ends up also involving
projection into a role, imagination, and introspection.
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Where else could the code come from? I can find no evidence (or testimony) that
there is anything like a tree-search of possibilities as GOFAI would have it, nor do we
have any reports that explain the appearance of code in a contradictory manner.

Moreover, in debugging, a similar thing happens. In the exercise known as “a dry
run”, the programmer projects herself into the role of a Python interpreter, and acts (in
her mind, perhaps using pencil and paper) on the code and the data as a Python interpreter
would, always keeping half an eye on the intended result to see where the actual result
deviates from the intended result. When such a deviation is found, the programmer
would say that she found a bug.

Conversely a programmer copying an algorithm from a book is not introspective.

4 Summary

Developing AI requires programming. Introspection has been discouraged in the cogni‐
tive sciences in general, including AI. In finding that all original programming is intro‐
spective, we can lay to rest any ban on introspection, and review what roles it plays in
AI research, for details see (Freed 2017). If introspection has an unavoidable role in AI
research, then discouraging its use is nonsensical, and hence counterproductive.
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Abstract. A crucial concept in philosophy and social sciences, epis-
temic disagreement, has not yet been adequately reflected in the Web.
In this paper, we call for development of intelligent tools dealing with
epistemic disagreements on the Web to support pluralism. As a first
step, we present Polyphony, an ontology for representing and annotat-
ing epistemic disagreements.

1 Introduction

While artificial intelligence is considered as both threat and opportunity for the
modern democracies, many have called for immediate action for development
of AI tools to support pluralism (see e.g. Helbing et al. 2017). Detection, rep-
resentation and visualization of epistemic disagreements, we propose, is one of
the important steps to support pluralism and dialog in the Web. Here are two
concrete examples: (I) consider a controversial article in Wikipedia that is the
matter of different disagreements. If we would be able to detect and represent
disagreements, disputable parts could be visualized for people, users could sim-
ply compare different points of view (or request particular versions of the article
based on their preferences). (II) Imagine you have recently read an article and
like to find some articles that disagree with the proposed point of view. If it
would be possible to automatically identify and link disagreeing articles, one
could simply find them without the need to exploring all related articles one by
one and thoroughly to discover disagreeing contents.

Due to its nature, Semantic Web and Linked [Open] Data are perfectly fit to
capture disagreements: producing two different descriptions of the same phe-
nomenon and publishing them suffices to produce a potential disagreement.
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What remains to be done is making the disagreement between descriptions co-
existing, e.g., at different sources, explicit. This paper advocates a particular
instance of the general Linked Open Data (LOD) principle, according to which
explicit links between entities and resources are essential. The special type of link,
we advocate in this paper, is explicit disagreement annotations, making explicit
the disagreements using standard LOD linking by means of IRIs. We call the
design pattern of providing several alternative descriptions of the same subject
its pluralist description. This pattern requires either (a) authors of description to
be aware of alternative views on the subject, and taking care of encoding these
alternative descriptions, or (b) the disagreeing contents are detected, linked and
visualized by artificial intelligent agents. Considering the huge and increasing
amount of available data, the former option seems to be unrealistic, leaving us
no choice but to develop intelligent tools that can perform such tasks. Here, we
take the first step towards development of intelligent tools dealing with epistemic
disagreements on the Web by conceptualizing epistemic disagreements as digital
artifacts and proposing an ontology for representing epistemic disagreements,
called Polyphony.

2 Conceptualizing Epistemic Disagreements as Digital
Artifacts

Study of epistemic disagreements is a fresh and active field of research (Goldman
2010; Frances 2014, p. 16). Besides the very fundamental questions regarding
existence and importance of disagreements, many epistemologists have tried to
answer two main questions: (1) What types of disagreement exist? (2) What is
the rational response to each type? In order to conceptualize epistemic disagree-
ments as digital artifacts, the answers to the these questions should be consid-
ered. Therefore, after a literature review, some of the most important types of
epistemic disagreements, such as peer disagreements, deep disagreements, genuine
disagreements, merely apparent disagreements, merely verbal disagreements, and
faultless disagreements (Siegal 2013; Fogelin 1985; Cohnitz and Marques 2014;
Jenkins 2014), along with binary distinctions between them were identified, and
real-world examples of each type were documented. Next, possible responses to
disagreements, such as (a) rejecting the existence of the disagreement, (b) main-
taining one’s confidence, (c) suspending judgment, (d) reducing one’s confidence,
and (e) deferring to the other’s conclusion and the relationship between these
responses and different types of epistemic disagreements based on the real-world
examples were identified and documented1.

Based on the conceptualization of epistemic disagreements outlined before,
we designed, Polyphony (see Fig. 1) a generic OWL ontology for annotating
disagreements in Linked Data. To this end, Polyphony supports disagreement
annotations of varying granularity: from the ontology level to the level of single

1 See the documentations of the Polyphony ontology for detailed descriptions, here:
http://purl.org/epistemic-disagreement.

http://purl.org/epistemic-disagreement
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Fig. 1. Core concepts of Polyphony (see footnote 1)

triple, or a collection of triples. As a proof of concept, Polyphony was applied to
OpeNeeD, a modular ontology for human needs data proposed by Human et al.
(2017), to represent disagreements between different modules of the OpeNeeD
ontology, i.e. to annotate epistemic disagreements between needs theories.

3 Conclusion

Epistemic disagreement has been argued to be valuable for most crucial aspects
of society, such as science (Cruz and Smedt 2013) and politics. In this paper,
we took the first step towards development of intelligent tools dealing with epis-
temic disagreements on the Web by presenting Polyphony, an ontology for
representing epistemic disagreements. We hope that our research will serve as a
base for future studies on development of intelligent tools for automatic detec-
tion, annotation, and visualization of epistemic disagreements on the Web.
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Abstract. The frame problem is a fundamental challenge in AI, and the
Lucas-Penrose argument is supposed to show a limitation of AI if it is suc-
cessful at all. Here we discuss both of them from a unified Gödelian point
of view. We give an informational reformulation of the frame problem,
which turns out to be tightly intertwined with the nature of Gödelian
incompleteness in the sense that they both hinge upon the finitarity con-
dition of agents or systems, without which their alleged limitations can
readily be overcome, and that they can both be seen as instances of the
fundamental discrepancy between finitary beings and infinitary reality.
We then revisit the Lucas-Penrose argument, elaborating a version of
it which indicates the impossibility of information physics or the com-
putational theory of the universe. It turns out through a finer analysis
that if the Lucas-Penrose argument is accepted then information physics
is impossible too; the possibility of AI or the computational theory of
the mind is thus linked with the possibility of information physics or the
computational theory of the universe. We finally reconsider the Penrose’s
Quantum Mind Thesis in light of recent advances in quantum modelling
of cognition, giving a structural reformulation of it and thereby shedding
new light on what is problematic in the Quantum Mind Thesis. Overall,
we consider it promising to link the computational theory of the mind
with the computational theory of the universe; their integration would
allow us to go beyond the Cartesian dualism, giving, in particular, an
incarnation of Chalmers’ double-aspect theory of information.

1 Introduction

The frame problem is concerned with a fundamental challenge in artificial intel-
ligence and philosophy of it. It is generally understood, on the one hand, that the
original 1969 frame problem posed by McCarthy and Hayes (1969) has largely
c© Springer Nature Switzerland AG 2018
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been settled from a technical point of view (see Shanahan 1997 and 2016).
Philosophers such as Dennett (1987) and Fodor (1983), on the other hand, have
reformulated the frame problem in different ways in order to put it in a broader,
conceptual context of epistemology. The long-standing frame problem that is
still hotly debated in artificial intelligence and philosophy of it is the latter sort
of frame problem.

In the present article we are going to discuss the latter sort of frame problem
from yet another, Gödelian perspective. Addressing the significance of incom-
pleteness in (stronger-than-Robinson-arithmetic) finitary formal systems, Gödel
(1995) asserts that either “the human mind (even within the realm of pure math-
ematics) infinitely surpasses the power of any finite machine” or “there exist
absolutely unsolvable diophantine problems.” Note here that Gödelian incom-
pleteness hinges upon the two assumptions on the nature of beings that systems
involved are weak enough in the sense that they are finitary (i.e., recursively
axiomatisable), and that they are, at the same time, strong enough in the sense
that they encompass certain basic arithmetic (e.g., Robinson arithmetic). At a
level of abstraction, the nature of the frame problem is closely linked with the
nature of incompleteness: we shall argue, in particular, that (i) the finitarity con-
dition is indispensable in both the frame problem and Gödelian incompleteness,
(ii) without the finitarity condition there is no frame problem or incompleteness
any more, and (iii) both the frame problem and Gödelian incompleteness may be
understood as instances of the fundamental discrepancy between finitary beings
and infinitary reality.

The Gödel’s incompleteness theorems have yielded vital driving forces for dif-
ferent (often controversial) discussions in different fields beyond logic and foun-
dations of mathematics (including both rigorous and sloppy ones). The Lucas-
Penrose argument is one of them, concerned with the very possibility of artificial
(general) intelligence or the computational theory of the mind. Rather than dis-
cussing the ultimate validity of such a controversial argument, we concentrate
upon making a bridge between artificial intelligence qua the computational the-
ory of the mind and information physics qua the computational theory of the
universe through a structural analysis of the Lucas-Penrose argument (for an
origin of information physics we would refer to Wheeler’s “It from Bit” the-
sis asserting “all things physical are information-theoretic in origin” (Wheeler
1990); Everett, a pupil of Wheeler, had a similar idea, as seen in his information-
theoretic concept of entropy and his entropic uncertainty relation (Everett 1973);
it is unclear whether Wheeler’s idea preceded Everett’s or it was the other way
around; Everett might have influenced Wheeler).

In the rest of the article, we first elaborate upon our Gödelian perspective on
the frame problem and argue that the frame problem shares the same structure
as Gödelian incompleteness at a level of abstraction. And then we reconsider
the Lucas-Penrose argument from a different angle, exposing a link between
the (im)possibility of artificial intelligence and the (im)possibility of information
physics. We thereafter briefly discuss Penrose’s quantum mind thesis as well. We
finally conclude the article by giving a remark about the possibility of embodying
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Chalmers’ double aspect theory of information through the integration of the
computational theories of mind and of the universe. Overall, our focus is placed
upon the analysis of arguments rather than their ultimate validity; our primary
purpose is to give a structural analysis of arguments about limits of AI and
related computational theories such as information physics, and to unpack its
consequences.

2 A Gödelian Perspective on the Frame Problem

Although it is sometimes said that “a definition of the ‘Frame Problem’ is harder
to come by than the Holy Grail” (Stein 1990), nonetheless, we give an explicit,
conceptual formulation of the frame problem from an informational point of
view. The frame problem may be understood as indicating a discrepancy between
finitary cognitive capacity and infinitary informational content. In order to illus-
trate what is meant in our conceptual formulation of the frame problem, we shall
compare it with the well-known, robot account of the frame problem by Dennett
(1987):

Once upon a time there was a robot, named R1 by its creators. Its only
task was to fend for itself. One day its designers arranged for it to learn
that its spare battery, its precious energy supply, was locked in a room
with a time bomb set to go off soon. R1 located the room, and the key to
the door, and formulated a plan to rescue its battery. There was a wagon
in the room, and the battery was on the wagon, and R1 hypothesized
that a certain action which it called PULLOUT (Wagon, Room, t) would
result in the battery being removed from the room. Straightaway it acted,
and did succeed in getting the battery out of the room before the bomb
went off. Unfortunately, however, the bomb was also on the wagon. R1
knew that the bomb was on the wagon in the room, but didn’t realize that
pulling the wagon would bring the bomb out along with the battery. Poor
R1 had missed that obvious implication of its planned act.

Now our formulation of the frame problem is as follows:

• The space of information in reality is possibly infinite.
– In the Dennett’s robot account of the frame problem there are indeed a

possibly infinite number of implications of the robot’s action, which the
robot has to take into account.

• Need a (finitary) frame to reduce the possibly infiniary amount of information
and to identify the finitary scope of relevant information.

– In the Dennett account the robot needs to ignore irrelevant information;
relevance is usually supposed to be determined by so-called frame axioms
in the case of logic-based AI.

• Need a (finitary) meta-frame to choose a frame because there are possibly
infinitely many frames.
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– It needs to be determined which way of determining relevance is actually
relevant in the present state of affair; there are indeed different ways of
measuring the relevance of information.

• This meta-frame determination process continues ad infinitum.

Here every frame is assumed to be finitary, just as any formal system is
assumed to be finitary (i.e., recursively axiomatisable, or equivalently, r.e.
axiomatisable; see Shönfield (1967)) in the Gödel’s first incompleteness theorem.
The Gödel’s first incompleteness theorem tells us any finitary formal system
cannot characterise (stronger-than-Robinson-arithmetic) truths in reality (see
Shönfield (1967)); in a nutshell, there is no finitary means to characterise truths
in reality (in technical terms, the truths are not recursively enumerable; see
Dummett (1963) and Smorynski (1997)). The frame problem is caused by the
fact that any finitary frame cannot capture all information in reality (if the class
of information is possibly infinite). What is lurking behind the two phenomena,
Gödelian incompleteness and the frame problem, is arguably this sort of tension
between finitary beings and infinitary reality. Let us elaborate more on this in the
following.

This finitarity condition is what essentially underpins the frame problem, and
from this point of view, the frame problem is about the fundamental discrepancy
between the finitude of beings and the infinitude of (information in) reality. What
happens if the finitarity condition is dropped? If there is no finitarity condition,
we do not really have to choose a frame, and we can just take the largest frame
or the union of all frames. The infinitary frame, therefore, is one escape from
the frame problem. Put succinctly:

• There is no frame problem any more if infinitary frames are allowed.
• In Dennett’s robot case this means the robot may take all information into

account even if there is no finitary upper bound on the amount of information
involved.

Another possible escape is to allow for infinitary time rather than frame (or
alternatively we may also think of infinitary frames working for an infinitary
amount of time). According to a certain sort of philosophy, such as Heidegger’s
(Heidegger 1927), the finitude of beings is, at least partly, rooted in the tempo-
rality of beings. If temporality is ignored the agent concerned may compute for
an infinite amount of time, and hence no need for singling a finitary frame out
and for being worried about the frame problem. From an epistemological point
of view, therefore, we may conclude:

• What causes the frame problem is the finitude of beings or agents.
• The fundamental underpinning of the frame problem is the discrepancy

between finitary beings and infinitary reality.

The same actually happens in Gödelian incompleteness. According to the
Gödel’s first incompleteness theorem, any finitary system cannot capture all
truths in reality if the class of truths is infinitary enough (in the sense of
being stronger than the Robinson arithmetic), and the finitarity condition is
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what crucially underpins Gödelian incompleteness as well. From this perspective,
Gödelian incompleteness, as well as the frame problem, is about the fundamental
discrepancy between the finitude of beings and the infinitude of reality; there
is a fundamental gap between the provability of finitary systems and the truths
of reality. What happens, then, if the finitarity condition is dropped in the case
of incompleteness? If an infinitary system or infinitary computation is allowed
then there is no incompleteness any more; indeed there are complete infinitary
systems characterising the mathematical truths (see, e.g., Shapiro (2000) and
Giaquinto (2004)). There are different ways to do this, including those via what
are called ω-logic and infinitary logic. And this is actually not so difficult to
see. If we allow for infinitary disjunction, for example, we can extend the Peano
arithmetic with the following formula:

∀x (x = 0 ∨ x = 1 ∨ ... ∨ x = n ∨ ...).

The extended Peano arithmetic over infinitary base logic is complete, and also
there is no non-standard model allowed in this case, whereas there are infinitely
many non-standard models of the ordinary Peano arithmetic over finitary first-
order logic which include weird, infinitary numbers greater than any finitary
number n. The above axiom allows us to exclude such non-standard numbers;
this is never possible in finitary first-order logic (if it is possible we lead to a
contradiction by the very incompleteness theorem). Yet at the same time the
finitarity condition is epistemologically indispensable, for the human being can-
not really deal with infinitary formulae or proofs in infinitary formal systems.
For the same epistemological reason, formal systems must have been required to
be finitary in the so-called Hilbert’s programme; consistency, to be epistemolog-
ically significant, has to be established on the ground of Hilbertian finitism (see,
e.g., Giaquinto (2004)). The failure of the Hilbert’s programme can be overcome
as well, if mathematical induction up to certain infinitary ordinals is allowed
as a means of consistency proofs (as observed in the celebrated Gentzen’s or
Takeuti’s consistency proof; see, e.g., Pohlers (1989)). From an epistemological
point of view, thus, we may conclude:

• What causes Gödelian incompleteness is the finitude of beings or systems.
• The fundamental underpinning of Gödelian incompleteness is the discrepancy

between finitary beings and infinitary reality (cf. Maruyama 2017).

Now we have argued that the frame problem and Gödelian incompleteness
have the same structural origin in the finitude of agents or systems (if they
are formulated as above). Simply saying, finitary beings (i.e., agents or sys-
tems) cannot apprehend all elements of infinitary reality. Without the finitarity
condition, we can go beyond the finitude of beings. Once a strong ontology
of infinities is accepted to be legitimate in some way or other, we have infini-
tary systems and infinitary frames, and they do allow us to resolve Gödelian
incompleteness and the frame problem at the same time. Yet it is epistemolog-
ically quite problematic. In light of the Dennett’s robot account of the frame
problem, some infinitary robots based upon some infinitary computing mecha-
nisms would not face the frame problem, and yet any robot based upon finitary
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computing systems cannot actually grasp all of possibly infinite implications of
its action. Although infinitary systems do not suffer from incompleteness and
although infinitary ordinals allow us to create consistency proofs, nonetheless,
they are only meaningful under strong ontological assumptions, which may be
more dubious than consistency per se. Indeed, the Gödel’s second incompleteness
theorem tells us that the consistency of one system can only be established on
the basis of something stronger than the system per se. There is no discrepancy
between infinitary beings and infinitary reality; infinitary beings can apprehend
all elements of infinitary reality. We thus conclude the present section as follows:

• Both the frame problem and Gödelian incompleteness thus hinge upon the
finitude of beings (which Heidegger emphasised as well).

• Put another way, the fundamental discrepancy between beings and reality
(only) emerges when we take the finitude of beings seriously.

Let us make a final remark before closing the present section. The infinite
regress argument above actually applies to any sort of finitary entity (i.e., an
entity which cannot process a possibly infinite amount of information), and so,
if the human being is a finitary entity, then the above argument, in princi-
ple, applies to the human being as well as the computing machine. The human
being, therefore, must suffer from the frame problem, according to the above
argument. Yet some consider the human being to be able to solve the frame
problem. This might be understood as follows. Probably, the human being would
have obtained some capacity, if incomplete, to choose a frame as a result of evo-
lution; this would give an evolutionary account of frame selection capacity. If
the human being has some capacity of frame selection which is incomplete and
which nevertheless works in most practical situations, then there is no contra-
diction between the fundamental limitation that the frame problem tells us and
the practical (and yet incomplete) capabilities that the human has in order to
choose a frame. Again, this may be compared with what happens in the incom-
pleteness phenomenon. The ZFC set theory and other finitary formal systems
for mathematics are surely incomplete, and yet at the same time, there is basi-
cally no incompleteness known for practically meaningful problems. Indeed, it
is generally understood in the logic community that there is, so far, almost no
mathematically natural proposition found to be independent of the ZFC set
theory. Incompleteness only arises in certain special realms concerning peculiar
properties of infinities (such propositions include, for example, the continuum
hypothesis and the existence of certain large cardinals). Here there is a tension
between fundamental incompleteness and practical completeness, which seems
to exist in the frame problem as well.

3 Reconsidering the Lucas-Penrose Argument

The Lucas-Penrose argument is an attempt to show the impossibility of AI on the
ground of incompleteness (Megill 2017; Penrose 1989 and 1994); it has already
been much criticised by many logicians, AI researchers, and philosophers (see,
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e.g., Feferman (1996), McCarthy (1990) and Putnam (1994); Penrose devoted
as many as 200 pages of his second 1994 book to replying to various criticisms
on his first 1989 book, even though further criticisms arose for the second book,
followed by further replies to them). We would like to stress that here we focus
upon an analysis of the structure of arguments rather than an assessment of the
ultimate validity of it, which is another, separate issue different from the focus
of the present article. There are actually several versions of the Lucas-Penrose
argument; here we concentrate upon this one:

• If the human mind can solve an undecidable problem, then it cannot be
computational, i.e., there is no computational system that can simulate the
human mind, because the existence of such a computational system means
that the computer can solve an undecidable or uncomputable problem.

• Put another way, artificial (general) intelligence is impossible. This is the cen-
tral point of the Lucas-Penrose argument against the computational theory
of mind. Yet the assumption must be justified to derive the AI impossibility
conclusion.

• Penrose endorsed the impossibility of AI on the ground of Gödelian incom-
pleteness: for any computational formal system (satisfying the aforementioned
conditions) there is a proposition which is neither provable nor refutable in
it and which the human can nevertheless know is true.

– Put simply, Penrose considered Gödelian incompleteness telling that there
is something which the computer cannot know and which the human can
know; this means the human mind is essentially more powerful than the
computer.

• Gödel (1995) himself says as follows: “So the following disjunctive conclusion
is inevitable: Either mathematics is incompletable in this sense, that its evi-
dent axioms can never be comprised in a finite rule, that is to say, the human
mind (even within the realm of pure mathematics) infinitely surpasses the
powers of any finite machine, or else there exist absolutely unsolvable dio-
phantine problems”; and Lucas (1961) argues “it is clear that Gödel thought
the second disjunct false.”

– Megill (2017) gives a comprehensive survey of the Lucas-Penrose argu-
ments, and he also says “perhaps the first thinker to endorse a version of
the Lucas-Penrose argument was Gödel himself.”

Here our primary aim is at analysing the structure of this argument and thereby
deriving a physical consequence in a certain manner. Although the Lucas-Penrose
argument, by itself, is about a limitation of the computational theory of mind,
it can actually be adapted so as to be applicable for the computational theory of
the universe or so-called information physics as we shall see in the following. The
computational theory of the universe asserts that the universe is, or can entirely
be simulated by, a computational system (although there would be different
formulations of the thesis of computational theory of the universe or information
physics, here we take this to be the primary thesis of it; for a related distinction
between weak and strong information physics, we refer to Maruyama (2016)).
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Now, the logic of the Lucas-Penrose argument allows us to contrive a physical
version of it:

• If anything (or any mechanism) in the universe allows for solving uncom-
putable problems, then the universe cannot be computational, i.e., any com-
puting system cannot simulate the universe (for, if it can, the computer can
solve uncomputable problems, and this is a contradiction).

– This is the universe version of the Lucas-Penrose argument, and let us
call it the physical Lucas-Penrose argument.

• This universe version is actually subsumed under the mind version above
in the following way: if the human can solve undecidable problems there is
something in the universe which can compute uncomputable problems and
so the universe cannot be computational.

– Put another way, if the human mind is more powerful than the comput-
ing system the universe cannot be simulated by the computing system
because humans are indeed part of the universe (this would be so regard-
less of whether one takes Quinean naturalism).

• The point of this argument may be summarised this way: if the Lucas-Penrose
argument is correct and its assumption is satisfied, then the impossibility of
information physics follows as well as the impossibility of AI; this means that
the possibility of AI is tightly intertwined with the possibility of information
physics.

– We may derive a corollary from this: if Penrose denies AI or the com-
putational theory of the mind, he must deny information physics or the
computational theory of the universe as well, even though informational
approaches have seen a great success in recent developments of physics,
especially foundations of quantum theory (see, e.g., Chiribella (2011)).

This exposes an interesting, unexpected link between the possibility of artifi-
cial intelligence and the possibility of information physics, giving an insight into
how much of the world, including both matter and mind, may be understood by
computational means (since there is a clear mathematical bound on computabil-
ity, any computational theory cannot go beyond the limitation of computability
per se).

In view of our discussion on the frame problem, the human being, to Penrose
and also to Gödel perhaps, is not a finitary entity, going beyond the realm of
finitary computability, and in this case the human being could somehow “hyper-
compute” and would not suffer from the frame problem. Yet it would be quite
controversial whether the realm of human intelligence or rather human knowa-
bility is really broader than the realm of finitary computability. Kripke (1982),
for example, thinks that the human being is essentially a finite automaton. In
light of recent developments in artificial intelligence, there is a great amount of
evidence for the computational nature of human cognition; different cognitive
capacities of the human being have turned out to be implementable through
computational means such as machine learning methods. For now, however, no
one would really know whether all elements of human cognition can be realised
via computational mechanisms only. There is some realm of cognition to which
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the machine is ever unreachable. The Lucas-Penrose argument we have discussed
above is an attempt to indicate a case for human intelligence beyond computabil-
ity by virtue of Gödelian incompleteness. What we have shown in the present
section is that, if the original, cognitive Lucas-Penrose argument is valid and
its assumption is satisfied, then the modified, physical Lucas-Penrose argument
must be valid as well; in other words, the impossibility of artificial intelligence
in the Lucas-Penrose argument implies the impossibility of information physics
as well. This is what we have called a physical consequence of our structural
analysis of the Lucas-Penrose argument.

AI is a computational theory of the mind, and information physics is a com-
putational theory of the universe. Both are computational theories, and yet at
the same time, they have been discussed quite separately. It might be because
of the Cartesian dualism, which ontologically separates the realm of mind and
the realm of matter. Our general proposal here has nonetheless been to link the
two computational theories, in particular with respect to their limitation. The
success of both AI and information physics would suggest that most elements
of reality are actually computational, or they can at least be simulated through
computational mechanisms. It may eventually lead to the view that everything
there is computational; or to be more precise, every thing there is information,
and every process there is information-processing or computation. It is, so to
say, an “informational theory of everything” or “computational theory of every-
thing.” Yet it would still be too early to judge if the universal computationalist
or informationalist view is really correct or not. It would nonetheless deserve
serious metaphysical consideration because it arguably implies that the Carte-
sian dualism is wrong in the sense that there is actually a single, unified realm
of information and computation underlying the two apparently different realms
of mind and of matter. Computational or informational world-views would thus
be metaphysically relevant as well as scientifically effective. It would however be
an open question if they are compelling whether metaphysically or scientifically.

4 Articulating Penrose’s Quantum Mind Thesis

Penrose has a positive thesis on the nature of human mind as well as the afore-
mentioned negative thesis on the impossibility of cognitive computationalism. If
the capacity of human cognition is not bound by computability, what mechanism
gives rise to such super-computational features? And what is the right theory of
mind? Along such a line of thought Penrose argues for the quantum nature of
mind:

• (i) AI or the computational theory of mind is misconceived in light of Gödelian
incompleteness; the capacity of human cognition is not bound by computabil-
ity.

• (ii) The mind is materially quantum; consciousness emerges via material
quantum processes in microtubules. Call it the Material QMT (quantum mind
thesis).
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There are different criticisms from different angles on the one hand (and yet
about 200 pages of Penrose’s second book Shadows of the Mind are devoted
to replies to those criticisms, suggesting his serious and deep commitment to
the QMT). Chalmers (1996b), e.g., says: “Why should quantum processes in
microtubules give rise to consciousness, any more than computational processes
should?”; “reader who is not convinced by Penrose’s Gödelian arguments is left
with little reason to accept his claims [...] that quantum processes are essen-
tial to cognition.” On the other hand, the field of quantum cognition is rapidly
growing over recent years, giving the quantum models of cognition that are able
to account for those non-classical features of cognition which were mysteries
within conventional theories. “The success of human cognition can be partly
explained by its use of quantum principles”, Pothos and Busemeyer (2009) say.
The success of quantum structure in AI might support this idea too, including,
for example, quantum machine learning, the kernel method via RKHS (Repro-
ducing Kernel Hilbert Spaces), and tensor networks (the tensor structure is what
underpins entanglement and non-locality in quantum theory). In light of those
recent developments, there might now be some scientific reasons to accept Pen-
rose’s claim that “quantum processes are essential to cognition”, in contrast to
Chalmers’ criticism above. This never means something like the QMT has been
confirmed; yet it is now getting a rigorous scientific basis in the rapidly growing
field of the quantum science of cognition. In light of recent research in quan-
tum cognition, we propose to modify Penrose’s argument above, that is, replace
computability by complexity, and the material QMT by the structural QMT
(under the assumption that the human cognitive system is capable of recognis-
ing the world in a more efficient manner than the classical computing system;
arguments for this assumption could be elaborated on the ground of different
scientific findings):

• (i) Classical AI or the classical computational theory of mind is misconceived
in light of the super-classical features and effectiveness of human cognition.

– The mind cannot be a classical computer due to differences in complexity
(in a formal, “polynomial vs. exponential” sense as in quantum comput-
ing if the mind is a quantum computer, or in a more informal sense as
the efficiency of human cognition in certain fields compared to machine
cognition as enabled by pattern recognition methods of machine learning).

• (ii)The mind is structurally quantum; the structure of cognition is homomor-
phic to the structure of (models of) quantum theory.

– It is not that quantum processes are materially going on in the macro-
scopic physical brain; e.g., Tegmark (2000) computationally refutes Pen-
rose’s claim on microtubules (even though there are counterarguments by
Hameroff et al.).

– The structure of economic systems is homomorphic to that of physical
systems as mathematical economics tells us; this never means that the
nature of economy is materially physical. Likewise, quantum modelling
of cognition and its success do not entail that cognition is materially
quantum.
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If the universe is a materially quantum computer as in quantum information
physics, the mind might be a structurally quantum computer. Along such lines
of thought we may possibly save Penrose’s Quantum Mind Thesis in light of
contemporary developments in quantum cognitive science. Although Penrose’s
ideas are sometimes considered utterly absurd, nevertheless, they might be able
to survive with modifications in some way or other. It is now a scientific fact that
certain facets of human cognition can only be modelled by quantum structures,
including the so-called order effect, the conjunction effect, and the disjunction
effect, which all indicate that the laws of classical logic and probabilities do not
hold in human cognition, and which can be explained via quantum models. Even
violation of Bell-type inequalities in cognition has recently been reported in rig-
orous experimental studies (see, e.g., Cervantes and Dzhafarov (2018)), suggest-
ing that cognitive systems shares with quantum systems cerain key structural
features such as contextuality and sensitivity to environments. The quantum
science of cognition is developing very rapidly, and some version of the QMT
might be able to be vindicated in the near future.

5 Concluding Remarks

We conclude the article by summarising the above discussion and by giving a
final remark about the integration of computational theories of the mind and of
the universe as giving an embodiment of the Chalmers’ double-aspect theory of
information (Chalmers 1996a). Let us wrap up the points of our discussion as
follows:

• Both the frame problem and Gödelian incompleteness may be understood as
instances of the fundamental discrepancy between finitary beings and infini-
tary reality (as have been much discussed within the philosophical tradition).

– The finitarity condition is indispensable, since infinitary agents/systems
are able to resolve the frame/incompleteness problem.

– If the human being is a finitary entity, then the frame problem in our
formulation applies to the human being as well as the computing machine.

• There is a tight link between artificial intelligence (the computational theory
of the mind) and information physics (the computational theory of the uni-
verse). The Lucas-Penrose argument, if it is correct, indicates the impossibil-
ity of information physics as well as the impossibility of artificial intelligence.

– Relating the two computational theories, we could go beyond the Carte-
sian dualism, thus giving an embodiment of the Chalmers’ double-aspect
theory of information (Chalmers 1996a); i.e., matter and mind are united
in the underlying, fundamental reality of information and its processing
via the integration of the two computational theories of the mind and of
the universe.

– The theory of life may be included in that of cognition or of matter, but
life can be another dimension of reality, and in this case we would need
a triple-aspect theory of information. From this perspective, life is an
emergent property, and living organisms are entities in their own right,
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and do not reduce to anything like matter, thus existing as a coherent
and united whole.

– The following picture illustrates the links between different dimensions
of reality, which are theorised by different computational theories, and
yet unified in pancomputational reality at the fundamental level. Whilst
keeping different ontological realms as in the Cartesian dualism, we can
still have them united in the underlying fundamental reality of informa-
tion and its processing.

The links between the computational theories of the universe, life, and mind
are to be further explored and expanded in future work; we believe the pursuit
of the links would allow us to overcome the fragmentation of science and of our
worldview.
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Abstract. The rise of probability and statistics is striking in contempo-
rary science, ranging from quantum physics to artificial intelligence. Here
we discuss two issues: one is the computational theory of mind as the
fundamental underpinning of AI, and the quantum nature of computa-
tion therein; the other is the shift from symbolic to statistical AI, and the
nature of truth in data science as a new kind of science. In particular we
argue as follows: if the singularity thesis is true the computational theory
of mind must ultimately be quantum in light of recent findings in quan-
tum biology and cognition; data science is concerned with a new form of
scientific truth, which may be called “post-truth”; whereas conventional
science is about establishing idealised, universal truths on the basis of
pure data carefully collected in a controlled situation, data science is
about indicating useful, existential truths on the basis of real-world data
gathered in contingent real-life and contaminated in different ways.

1 Introduction

Pancomputationalism (Piccinini 2017) is the view that everything there is is a
computing system, which is, in principle, a theory of everything, and may be
instantiated in different kinds of science. It may be applied, in particular, to
matter, life, and mind, thus yielding physical, biological, and cognitive com-
putationalism. In the first part of the present article, we discuss the nature of
computation in computationalism, which we argue must be quantum rather than
classical. The measurement statistics of quantum systems is probabilistic, and
this quantum probabilistic nature lies at the heart of the super-classical power of
quantum computing. The second part concerns how probabilities could change
the notion of truth in light of data science as a new kind of science, articulating
the status of data science qua science or the pursuit of truth (whatever it is). A
key feature shared by quantum computing and data science is the utilisation of
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indeterminacies in Nature or cognition, which are resources for new technologies
rather than philosophical anomalies to be resolved.

2 The Computational Theory of Life and Cognition:
Classical or Quantum?

AI is the computational theory of mind; it engineers intelligence via computa-
tional processes. Most neuroscientists today consider the brain to be a sort of
computing system processing different kinds of information in reality. Informa-
tion physics is the computational theory of the universe. Quantum information
physics (Lloyd 2006) asserts that the universe is a gigantic quantum computer
calculating its own quantum state or wave function. If the mind is computa-
tional, is it classical-computational or quantum-computational? The same ques-
tion may be asked for artificial life as the computational theory of life: if life is
computational, is that computation classical or quantum?

The emergent field of quantum biology tells us some life science phenomena
are essentially quantum (Arndt et al. 2009; Lloyd 2011): “Nature is the great
nano-technologist. The chemical machinery that powers biological systems con-
sists of complicated molecules structured at the nanoscale and sub-nanoscale. At
these small scales, the dynamics of the chemical machinery is governed by the
laws of quantum mechanics” (Lloyd 2011). Apart from the disputed case of quan-
tum effects in the brain, the rôle of quantum coherence in biological systems is
observed in photosynthesis, bird navigation (“avian compass”), and the sense of
smell. There is strong evidence for quantum coherence in photosynthesis whilst
that for the sense of smell and bird navigation is more “indirect” (Lloyd 2011).
Yet more evidence has been found since Lloyd (2011), including, e.g., Francoa
et al. (2011) and Gane et al. (2013). Quantum biology is now being formed as a
new vital field of life sciences.

Fleming and his collaborators at Berkeley in particular conjectured bacteria
are performing the quantum search algorithm in photosynthesis (Lloyd 2011).
However, “the bacteria were in fact performing a different type of quantum
algorithm, called a quantum walk” (Mohseni et al. 2008). The bacteria may
thus be regarded as tiny quantum computers. Any classical AI or AL cannot
completely simulate the bacteria or the mechanism of photosynthesis due to
their quantum nature. If the technological singularity comes in the future, and
if it allows for computation more powerful than that of the bacteria, it must be
quantum on the ground of the recent findings of quantum science as mentioned
above.

3 From Symbolic to Statistical AI: Data Science as a
New Kind of Science

Probabilistic, if not fully quantum, approaches have turned out to be successful
in different fields of computer science; even in classical computation, probabilistic
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algorithms achieve striking efficiency in certain tasks. Broadly, the rise of sta-
tistical methods in AI is along the same line, having led to the vital movement
of data science. Here we give a conceptual perspective on the peculiar nature of
data science.

Statistical AI is particularly suitable for pattern recognition, thus enabling
statistical prediction and classification among other things. Data science can
even be a system of ontology: data mining from ICD (Spangler 2002; Yan et al.
2010), for example, has given insights into the classification of diseases and thus
into the ontology of medicine. The intuitive sense of patterns, such as those of
faces, is difficult to simulate by logical reasoning or symbolic AI; by contrast,
statistical AI allows us to build a computational theory of pattern sensing. In
Kantian terms, statistical AI may be called the AI of sensibility, and symbolic
AI the AI of reason or understanding. Put another way, the former is the AI of
learning (e.g., from empirical data), and the latter the AI of reasoning (e.g., from
established knowledge). The tension between symbolic and statistical AI may
be compared with the philosophical dichotomy between rationalism and empiri-
cism; the Chomsky vs. Norvig debate (Norvig 2011) can be understood in such a
broader, philosophical context. Currently, statistical AI is dominant, compared
to symbolic AI (aka. “good old-fashioned AI”), and yet some AI researchers con-
sider both symbolic and statistical AI crucial for future developments (Domingos
et al. 2006; Russell 2016). From a Kantian point of view, intelligence or the capac-
ity to know about the world arguably requires the capabilities of both sensing
and reasoning about the world.

Characteristics of big data include volume, variety, velocity, variability, value,
veracity, and so fourth (Gandomi et al. 2015). The methods of data mining allows
us to discover some knowledge from such data. Yet any empirical science is about
obtaining knowledge from data. Is data science, then, just a sort of universal sci-
ence developing general statistical methods to generate knowledge from data? It
may be the case in some sense, but there would be subtler issues on the nature
of truth and knowledge found by data mining. Whereas conventional science is
about establishing pure or idealised truths from pure or idealised data, which
are carefully collected in a controlled situation (such as laboratory), data sci-
ence is about indicating impure or real-world truths from impure or real-world
data, which may be contaminated in different ways, and are collected from (often
uncontrollable) contingent real life. Conventional science (so far) cannot predict
the result of a referendum (such as the victory of Donald Trump) and yet data
science is still able to say something about it, if the prediction turns out to
be wrong at the end of the day (or not). The lack of truthfulness, nonetheless,
is a trade-off for real-world applicability, since the real world is surrounded by
myriads of uncertainties and contingencies. Data science takes real-world contin-
gencies and uncertainties seriously, whilst conventional science idealises, if not
ignore, them to some degree (just as physics discusses the movement of just one
massless particle in a vacuum). Data science is concerned with truths putting
more emphasis on use value than truthfulness per se; e.g., the prediction of
preferences in recommender systems may be useful even if it is wrong after all.
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Such truths can be wrong and yet of social, economical, or political use value;
they may be named “post-truths.” In other words, conventional science is about
truthful knowledge (cf. knowledge as justified true belief), and data science is
about post-truth wisdom, which is a special type of belief justified by non-human
machine (learning algorithms) and of social, economical, or political use value.

Idealisation in conventional science is made for the purpose of elucidating
the essence of Nature through the universal principles of causal mechanisms;
it is nothing negative. By contrast, data science approaches the existence of
actual Being through the statistical accounts of correlational mechanisms. (The
latter, of course, can contribute to the former and vice versa, as observed in the
actual practice of science.) Its primary focus upon existence and contingency is
a distinctively Heideggerian characteristic. Recently, AI is becoming more and
more embedded, and more and more embodied (Dreyfus 2007). Taking all this
into account, we may say that AI, especially statistical data science, is getting
more and more Heideggerian.

4 Concluding Remarks

The deterministic view of the world was dominant at the time of Laplace, and
probabilities were supposed to exist within the human cognition of Nature, and
not in reality per se. The rise of quantum mechanics has changed the scene
(though not completely; note that there is still a deterministic interpretation of
quantum theory such as Bohmian mechanics), and the indeterministic nature of
reality has been elucidated since. The more recent rise and success of probabilis-
tic models in AI and data science are along the same line, and our understanding
of Nature is getting more and more statistical in contemporary science. Com-
putationalism has been effective in life sciences, including biology and cognitive
science, as well as physical sciences, in particular information physics. The fun-
damental nature of computation is still debatable, however. Here we have argued
that it must be quantum (or at least probabilistic in some way or other). A shift
in the fundamental notion of computation would lead to a shift in the com-
putationalist conception of truth; we have thus explicated and articulated the
notion of truth in the age of statistical data science. Nevertheless it would still
be possible to defend the classical deterministic conception of truth, for example,
by arguing that data science is just a method to find hypotheses and thereby
to reach the deterministic truth of reality. After all, there is no perfectly com-
pelling reason to take probabilities in quantum or data science at face value.
Even so, they are making more and more room for statistical indeterminism and
a new conception of truth (or post-truth). And, in the long run, a non-classical,
statistical view of the world could possibly become classical.
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Abstract. Intelligence remains ill-defined. Theories of intelligence and
the goal of Artificial Intelligence (A.I.) have been the source of much
confusion both within the field and among the general public. Stud-
ies that contribute to a well-defined goal of the discipline and spread
a stronger, more coherent message, to the mainstream media, policy-
makers, investors, and the general public to help dispel myths about
A.I. are needed. We present the preliminary results of our research sur-
vey “Defining (machine) Intelligence.” Opinions, from a cross sector of
professionals, to help create a unified message on the goal and definition
of A.I.

1 Introduction

Intelligence permeates almost everything we do. Formally providing a robust and
scientific definition of intelligence has been a goal of scientists and researchers for
several centuries. During the last sixty years, the formal definition of intelligence
has taken on extra impetus as machine intelligence, or A.I., developers pursue
their vision of creating intelligent machines that “replicate” human intelligence
(Brooks 1991). For others, the goal is creating Artificial General Intelligent sys-
tems which exceed human intelligence. However, it is still very hard to define
what intelligence is (Kambhampati 2017). Furthermore, creating an agreed upon
message on the goal and definition of A.I. is far from obvious or straightforward
(Nilsson 2010).

In order to clarify the goal and definition of A.I. the research survey “Defining
(machine) Intelligence” solicits opinions from a cross sector of professionals. The
ongoing survey1 has attracted a significant volume of responses and high level
comments and recommendations concerning the definitions of A.I. and human
intelligence from experts around the world. We believe that collecting experts’
opinions can contribute to both a deeper understanding and a better definition
of what intelligence is. In this short paper, a partial analysis of the first 400
responses is presented.

1 See http://agisi.org/Survey intelligence.html for more about the survey.
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2 Research Survey: Preliminary Results and Discussion

The research survey focuses on specific definitions of human and machine
intelligence,2 and on the level of agreement of respondents with those defini-
tions. The survey further asks respondents to provide their level of agreement
with statements based on DeBoeck’s (2013) questions concerning the defini-
tion of intelligence. Potential respondents were collected from different sources
with research topics relevant to the survey. News lists informing computer sci-
entists, neuroscientists, cognitive sociologists, and roboticists, to name a few,
were also considered. Survey respondents originate from 48 countries and 131
different institutions (academia 77%, industry 21.3%). Respondents are mainly
researchers (75.3%), educators (36%), and developers or engineers (16.8%), and
come from Computer Science (58%), Psychology or Cognitive Science (9.3%),
and Engineering (8.5%).

Partial results show (see Table 1) that most respondents disagree or strongly
disagree there is a difficulty in defining the goal of A.I. (1.b) Only a small minor-
ity seem to believe that a definition of intelligence is self-evident (1.a) and over
the half of respondents disagree that it will never be possible to reach an agree-
ment upon a definition of A.I. (1.f) Most respondents indicated disagreement
or strong disagreement with the statement that a unified definition of artificial
intelligence does not pay off (1.d). However, there are also strong opinions for the
contrary and an almost equal amount of opinions are neutral. Other statements
to agree upon considered differences in opinion when defining A.I. being too
large to bridge (1.c), a definition of A.I. experienced as a restriction (1.e), and
scientific advances in A.I. being “a huge step forward and possibly a promising
paradigm shift towards creating machines that can be measured to match or
exceed human level intelligence” (1.g).

Table 1. Level of agreement with some statements to agree upon in the survey
(N = 400).

Id Strongly disagree Disagree Neutral Agree Strongly agree

1.a 160 (40.0%) 169 (42.3%) 34 (8.5%) 24 (6.0%) 13 (3.3%)

1.b 61 (15.3%) 173 (43.3%) 83 (20.8%) 71 (17.8%) 12 (3.0%)

1.c 19 (4.8%) 152 (38.0%) 116 (29.0%) 93 (23.3%) 20 (5.0%)

1.d 26 (6.5%) 125 (31.3%) 119 (29.8%) 115 (28.8%) 15 (3.8%)

1.e 51 (12.8%) 160 (40.0%) 81 (20.3%) 93 (23.3%) 15 (3.8%)

1.f 55 (13.8%) 171 (42.8%) 94 (23.5%) 62 (15.5%) 18 (4.5%)

1.g 40 (10.0%) 66 (16.5%) 74 (18.5%) 147 (36.8%) 73 (18.3%)

Many respondents (N = 187, 46.8%) express agreement or strong agree-
ment concerning the need for having separate definitions of human and machine
2 See http://agisi.org/Defs intelligence.html for a complete list of definitions.
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intelligence, but a slightly equal number (N = 172, 43%) indicate that only
one definition is adequate. The definition of machine intelligence that received
the most comments was Russell and Norvig’s (2010) definition with a total of
224 (56%) opinions. However, the most accepted definition of machine intelli-
gence was Wang’s (2008): 224 (56%) respondents agree or strongly agree with it.
Similarly, the definition of human intelligence that received the most comments
was Humphreys’ (1984) definition with a total of 148 (37%) opinions. However,
the most accepted definition was Gottfredson’s (1997) definition: 246 (61.5%)
respondents agree or strongly agree with it. Survey participants provided a total
of 3453 reasons for supporting their selections of the definitions. Furthermore, a
total of 213 (53.3%) survey participants provided their suggested definitions of
human and/or machine intelligence.3

3 Conclusions

Getting clarity around defining A.I. must include experts’ opinions. The first 400
responses to our survey comprise thousands of those opinions, not to mention
other hundreds of suggested definitions of intelligence and overall feedback that
were received. A significant variety of judgements and viewpoints that allow for
first understanding and then creating an agreed upon message on the goal and
definition of A.I. The question of combined versus separate definitions of human
and machine intelligence remains highly polarized. Our work in progress includes
building a catalogue of factors contributing to intelligence, and a methodology
for and best practices to be applied when defining (machine) intelligence.
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Abstract. AI research is continually challenged to explain cognitive
processes as being computational. Whereas existing notions of comput-
ing seem to have their limits for it, we contend that the recent, epis-
temic approach to computations may hold the key to understanding
cognition from this perspective. In this approach, computations are seen
as processes generating knowledge over a suitable knowledge domain,
within the framework of a suitable knowledge theory. This, machine-
independent, understanding of computation allows us to explain a vari-
ety of higher cognitive functions such as accountability, self-awareness,
introspection, free will, creativity, anticipation and curiosity in computa-
tional terms. It also opens the way to understanding the self-improving
mechanisms behind the development of intelligence. The argumentation
does not depend on any technological analogies.

1 Introduction

Computation has proved to be a powerful framework for understanding cognitive
processes. The all-important question is how computation can explain and model
them, whether our understanding of computation is sufficient for it, and how
a sufficiently general theory might be developed that transcends the realm of
concrete algorithmic models.

In computer science, computations are traditionally seen as processes per-
formed by computers. In order to make this definition more precise we must
fix the notion of a computer. In theory, we commonly use the Turing machine
for it since we know that, in principle, this model captures the computational
ability of a large class of contemporary digital computers. Nevertheless, in prac-
tice, especially in artificial intelligence, biology and physics, one often considers
computations in broader terms, not only including the processes taking place in
computers and related artifacts, but also those in cells or plants, in the brains
of people or animals, or even in the Universe as a whole.
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Hence, in order to see how the computational framework might apply, we
have to investigate the nature and limitations of computations in the diverse
contexts in which they emerge and by the devices that seem to perform them.
In particular, much has been learned about the problem, how computations are
realized by the various kinds of devices. This view is theoretically and technically
interesting and has led to the development of e.g. classical computability theory
and to important approaches to the understanding of computational complexity,
indeed. However, these theories are dependent on the chosen model and, even
worse, they tend to lack the potential to capture the meaning, or aim, of the
computations that are being modeled. In other words, the problem what compu-
tations should do or be for us, or for the device realizing a computation, remains
largely unanswered by it.

When asking what computations do, we contend that the only reasonable
answer is that they produce knowledge of some kind. Here we take knowledge to
be knowledge in the general sense, be it declarative or procedural or otherwise.
For example, we see the causing processes of actions or behaviors as computa-
tional, as they generate the knowledge needed for an agent to trigger or perform
them. This view has been the starting point of the so-called epistemic theory
of computation proposed by the authors some years ago (cf. Wiedermann and
van Leeuwen 2013, 2014, 2015a,b, 2017). Following this theory, computations are
seen as processes generating knowledge over a suitable domain, in the framework
of a suitable epistemic theory.

In this paper we show that the epistemic approach to computations has great
potential especially for Artificial Intelligence. We will argue that it gives us a
natural way to define and explain non-trivial cognitive functions like accountabil-
ity, self-awareness, introspection, knowledge understanding, free will, creativity,
anticipation, and curiosity as specific ways of computation, i.e. of particular kinds
of knowledge generation. This brings new insight into the surmised algorithmic
mechanisms behind intelligence, in a way that does not depend on any specific
model of computation.

The latter feature is a considerable advantage of the epistemic model over
other approaches to computational cognitive systems as described in the liter-
ature, which often use far more complex models of cognition. These models,
usually based on concrete algorithmic mechanisms, tend to lead to cumbersome
definitions, with descriptions depending more on the architecture and the special
properties of the underlying model than on the general properties of the cogni-
tive functions under consideration. A detailed account of the realized cognitive
architectures can be found in Samsonovich (2010) and in the related on-line cata-
log. For the introduction to the theory of epistemic computation, its justification
and examples of its viability, see Wiedermann and van Leeuwen (2013).

The structure of the paper is as follows. In Sect. 2 we present the main ideas of
the epistemic approach to computation. In Sect. 3 we explain how this approach
leads to machine- and algorithm-independent definitions of important higher
cognitive functions, including also the notion of self-improving epistemic theories.
Finally, in Sect. 4 we give some conclusions.
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2 Computation as Knowledge Generation

Before digressing on the epistemic approach to computation, we need to be
more specific about the way we view knowledge. Informally, knowledge in our
framework is knowledge in the usual sense of this word. For our purposes we allow
both declarative and procedural knowledge as they are commonly distinguished,
and any other form of knowledge that might be implicitly or explicitly acquired
somehow. Thus, knowledge could be facts or specific information of some kind
but also knowledge of the ‘know-how’ kind, including the underlying rules of
actions or skills and even of behaviors. For the treatment of skills in our approach,
see the short remark at the end of this section.

When defining knowledge in accordance with the epistemic theory of com-
putation, we need to be somewhat more specific. We will see knowledge as
the result of a certain computational process, working over a given knowledge
domain. This process combines known elements of the domain—so-called ele-
mentary knowledge—into derived, often more complex constructs that represent
new knowledge over the given domain. For combining elements from the domain,
the computation makes use of derivation rules which are either embedded in the
process or proceed in interaction with the environment. The rules can be known
beforehand or may be learned, in the latter case through the potentially endless
processing of many computations over the given domain. Hence, a computation
works with a more or less formal theory, capturing the given knowledge elements
of the underlying epistemic domain as well as the ways of inferring new elements
within that domain.

2.1 Computational Processes

As mentioned above, we are not interested in how a computation proceeds by
means of a mechanism of some kind, but rather in what it does, i.e., in what
knowledge is generated in the course of a computation. Under this viewpoint, the
ability to generate knowledge becomes the hallmark of those processes that we
will call computational. Intelligent systems are special instances of computational
processes or sets thereof, which are able to generate knowledge over knowledge
domains that model large parts of the real world, of various sciences, or of any
other specific areas that are amenable to knowledge generation. This contrasts
with the practice of contemporary AI systems, or “ordinary” computations that,
as a rule, are specialized to, in most cases, considerably restricted knowledge
domains. Within the epistemic theory of computation, the processes that do not
generate knowledge are not considered as computations.

The question how (generated) knowledge can be identified or recognized is
a difficult philosophical problem. From a practical point of view, one normally
agrees that it is an observer-dependent matter - what constitutes knowledge can
be obvious for one person and completely unclear to an other. That is, what is
knowledge depends on how knowledgeable a person (or an AI system) already is
in the domain under consideration. In the epistemic approach to computation we
therefore always define knowledge in the framework of the knowledge domain over
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which a computation operates. All knowledge about (a subset of) the knowledge
domain at hand is to be captured by a corresponding knowledge theory which
can be more or less formal, or completely informal.

In the knowledge theory of a domain, axioms describe the available elemen-
tary knowledge corresponding to the (representations of) objects in the domain
and their properties. The ways in which new, derived knowledge can be con-
structed from elementary knowledge are described by inference or derivation
rules. In fact, there are also other constructive methods for knowledge genera-
tion, used e.g. in ancient mathematics (cf. Sloman 2018), but here we concen-
trate solely on theories that are based on logic-based inference. Then, computa-
tional processes are bound to their knowledge domain through the corresponding
knowledge theory, via the following condition:

whatever can be derived within the given theory must be supported by the
corresponding computational process (and vice versa).

Furthermore, for any computational process, there must be evidence concerning
the validity of the latter condition. If the condition holds, then what knowledge
can or cannot be generated over the given knowledge domain, and the “quality”
of this knowledge (e.g., its agreement with observations), depends solely on the
properties of the underlying knowledge theory.

In other words, in order for a computation to generate knowledge there must
be evidence that explains that the computational process works as expected.
This evidence must establish two facts: (i) that the generated knowledge can
be derived within the underlying epistemic theory; this is provided via a ‘proof’
in that theory, and (ii) that the computational process generates the desired
knowledge; this is also done via a proof, in a formalism capturing the actions
of the computational process. The latter is the key to the following more for-
mal definition (cf. Wiedermann and van Leeuwen (2014)). In this definition we
assume that the input to a computation is part of both the underlying epistemic
domain (and thus of the theory) and the initial data of the process.

Definition 1. Let T be a theory, let ω be a piece of knowledge serving as the
input to a computation, and let κ ∈ T be a piece of knowledge from T denoting
the output of the computation. Let Π be a computational process and let E be an
explanation. Then we say that process Π acting on input ω generates the piece
of knowledge κ if and only if the following two conditions hold:

– (T, ω) � κ, i.e., κ is provable within T from ω, and
– E is the (causal) explanation that Π generates κ on input ω.

We say that the 5-tuple C = (T, ω, κ,Π,E) is a computation rooted in theory T
which, on input ω, generates knowledge κ using computational process Π with
explanation E.

Although the notation used in the definition resembles the one used in the
formal theories, we will be using it equally in the case of informal epistemic
domains and theories.
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Note that the epistemic approach to computations is machine independent,
since it holds regardless of the mechanism supporting knowledge generations in
the theory at hand. It is also algorithm independent since we do not care how
the computational process operates. Last but not least, the approach is repre-
sentation independent since we do not need to assume any particular knowledge
representation. For a more detailed account of this approach to computation and
knowledge generation, see Wiedermann and van Leeuwen (2014), (2015a).

2.2 Intelligent Systems and Their Knowledge Theories

Thanks to its generality, the epistemic approach is well suited to be applied
both in well formalized, so-called theory-full knowledge domains, and in knowl-
edge domains with inference rules that resist any formalization efforts (so-called
theory-less domains). The prototypical example of a theory-less domain with
informal derivation rules is the ‘real world’. Its objects, phenomena, and actions,
and the relations among them, are described in a natural language. Knowledge
about such a domain is captured by sentences in a natural language again. In
this case, derivation rules are the rules of rational thinking and behavior. These
rules are based on facts and arguments that can be described in natural lan-
guage. In typical cases, theory-less domains have large knowledge bases (think,
e.g., of the Internet) and relatively short derivation chains.

A prime example of an intelligent system is the human brain. In the brain,
knowledge is generated by processes following an informal theory which can be
described, however, in a natural language. In principle, in stead of the brain one
may consider any other kind of intelligent artifact with similar properties, even a
not-yet-existing one. The result would be the same: a general artificial system on
par with human intelligence. The fact that the epistemic approach allows one to
work with poorly formalized notions is a strong point of our modeling. It opens
the door to an computational understanding of the mechanisms of knowledge
generation that so far was not possible by other means.

Note that the idea of epistemic computation surely works well for systems
whose main task is “thinking”, i.e., solving purely intellectual problems. How-
ever, when we want to apply our approach to the functions of a robot whose main
purpose is to perform some prevailingly physical tasks, in addition to speech
recognition and interaction, we are in a more difficult situation. This is because
such tasks require sensory-motor skills which use the ‘physics’ of the robot and
are not clearly ‘knowledge-driven’ only. Thus, these skills cannot, probably, be
adequately captured in a sufficiently formalized and manageable theory that
would drive the behavior of the robot at hand. A solution of this problem may
depend on our ability to invent new types of languages similar to how languages
were ‘invented’ a long ago by biological evolution and used by our brains. It
may not be formalizable using current logical and grammatical notations, but
those are relatively recent discoveries. In the future, one may discover what evo-
lution has achieved and how it was done. We may then be able to replicate the
mechanisms in future, more intelligent machines.
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A more immediate solution could be based on a hybrid approach, delegating
the realization of skills to specialized, pre-trained, “trusted” specialized (deep)
neural nets whose correctness is based on statistical evidence. Their ability to
perform the designated tasks follows from their construction, after they were
trained on large sets of data. The cooperation of these nets is then governed by
some epistemic theory with checkable proofs (cf. Shanahan (2016) for a similar
approach).

A more formal explanation of our approach, presented only informally in this
paper, can be found in van Leeuwen and Wiedermann (2017).

3 Epistemic Computation and Higher
Cognitive Functions

Let us return to the condition (cf. Sect. 2.1) that binds a computational process
to a specific epistemic theory of its domain. We also required that for any (piece
of) knowledge that can be derived in the epistemic theory, there must be evidence
that the computational process supports (realizes) the resulting knowledge. This
evidence need not necessarily be a logic-based proof. It could use a wider range
of forms of representation, as used in ancient mathematics (cf. Sloman 2018), or
in the reasoning about chemical or physical processes.

In this section we will show that a cognitive system working in this way, can
generate knowledge corresponding to the definition of many non-trivial cognitive
functions. That is, within the epistemic framework we can naturally define and
explain many higher cognitive functions as knowledge generating and, hence,
computational processes, which would be cumbersome otherwise.

In what follows we describe the respective higher cognitive function infor-
mally, but this will be sufficient to bring them into the framework of epistemic
computations. There are a least three reasons for doing so. First, we do not aim
at a descriptive model of the cognitive functions, as these are amply considered
in the literature of the cognitive or brain sciences. Secondly, there is often no
generally accepted definition of these functions. Finally, our goal is primarily
to demonstrate that these functions are all of a computational nature, in the
context of artificial intelligence. It is an advantage of epistemic approach that it
allows us to concentrate on the knowledge generating aspects of these functions,
without having to take the specificity of their definition into account.

We now briefly characterize and discuss nine higher order cognitive functions
in turn, to illustrate the epistemic approach.

(a) Accountability: an ability of a system to generate knowledge justifying its own
decisions. This means e.g. that a cognitive agent can, upon request or otherwise,
issue a substantiation of his doings, i.e. an explanation of how he made out his
findings, cf. Kroll et al. (2016). To this end it is enough for the agent to generate,
together with the resulting knowledge, also the proof for its derivation. Of course,
this proof should be presented in a formalism accessible to the user. This enables
the user to review and check whether the agent’s justifying information is correct
and complete, within the framework of the underlying epistemic theory.
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(b) Awareness: an ability of a cognitive system to have knowledge about the
problem being solved. Given accountability, this knowledge is available and an
agent can report what is it doing, if asked to do so. Self-knowledge can be a part
of the epistemic theory controlling the activities of the system.

(c) Introspection: an ability of a system to recall knowledge about its previous
actions and their derivation. A cognitive system can store its previous tasks and
the way of their solutions. Doing so, it can return to them, to re-inspect them
and make use of them when solving new problems by means of analogy. It can
also improve upon previous solutions w.r.t. new findings that the system could
have accumulated in the mean time.

(d) Epistemic understanding. Accountability, (self-)awareness and introspection
together give rise to understanding the knowledge domain over which a system
operates. A system is able to explain the meaning of the terms it works with
and, based on its previous experience (recorded in its knowledge base), to apply
them in new contexts. For a full understanding of the real world, one has to
consider embodied cognitive systems.

(e) Free will. We say that cognitive system A has free will with respect to
cognitive system B if and only if, based solely on the observation of A’s actions,
B is not able to always predict (in the form of generated knowledge) A’s future
actions in concrete situations. This definition differs from numerous definitions of
free will (cf. Wikipedia) that see the concept from an inner (subjective) view of a
system. For instance “in a given situation, free will is the ability to choose from
several alternative behaviors”, or “an ability to behave differently than in the
past under the same conditions”. Only a cognitive system itself has information
whether it has chosen its behavior from several possibilities, or whether it has
“invented”a new behavior. Assuming that this information is inaccessible for an
external observer, there is no way for such an observer to decide whether the
system at hand possesses free will or not. This fact makes our definition of free
will observer dependent. However, the advantage is that it identifies the problem
of free will as computational w.r.t. the given observer.

(f) Creativity: a manifestation of a creative process, which is any process gen-
erating a solution to a problem (in the form of knowledge) that is new for the
given cognitive system. Its counterpart is a routine process, which solves a known
problem with the help of known procedures. In general, a creative process seeks
explicit knowledge that is given implicitly via conditions that the knowledge to
be found must satisfy. Deferring efficiency aspects, in our approach the basic
strategy for a creative process is the exploitation of “brute force”—the system-
atic examination of all knowledge that can be generated in the framework of a
given theory and checking whether the generated knowledge satisfies the given
conditions. This looks like an extremely inefficient, even naive approach, but
it seems that such an approach is the basis of any creative process. In fact, it
is a special case of knowledge discovery. This initially inefficient, but universal
process of knowledge discovery is cultivated in the course of its repeated use.
Knowledge discovery is then seen as a potentially never ending, evolutionary
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self-improving learning process whose goal is to make its creative abilities more
efficient. In Wiedermann and van Leeuwen (2015b) we have described several
basic techniques that can be used in the cultivation of creative processes:

– interactive refinement: this entails a modification of the search criteria, based
on the experience from previous, unsatisfactory or even failed searches.

– automatic extraction and modification of user preferences: this narrows the
search space. It is based on the observed preferences of the user (in a similar
way as done by Google+) and/or on the basis of user’s emotions and subjec-
tive experience (if this is accessible to the system). This activity of collecting
and shaping user preferences goes on at every occasion when solving any cre-
ative problem. The extracted preferences are exploited for streamlining any
discovery process and for ordering the discovered solutions.

– guided interaction with the environment: its aim is to gain new, additional
knowledge that can help in solving the given concrete problem (in much the
same way as we do when checking the Internet for additional information).

As a result of such cultivation procedures, the knowledge base of the cre-
ative process as well as the mechanisms of its exploitation are modified or
supplemented.

Note that the mechanisms described above not only answer the question what
knowledge must be generated in order to solve a problem, but at the same time
they also answer the question how such knowledge can be found, i.e., in fact, how
to solve the given problem. A special case is the question how to improve some
aspects of a known solution of a problem. This question can be transformed into
the question of what knowledge must be found solving a given problem and, at
the same time, satisfying a new condition referring to any aspect of a solution
that must be improved.

(g) Anticipation: an ability of a system to generate knowledge in the form of
predictions about the future occurrence of events or conditions in an epistemic
domain. It is seen as the result of a “wired” creativity, a limiting result of cre-
ativity cultivation where no search is necessary in order to solve the problem.
Consequently, anticipation becomes a routine process working as the first choice
alternative or an efficient substitute of an originally creative process.

(h) Epistemic curiosity: a perpetual need of a system to discover new knowledge.
It is intimately related to creativity and anticipation. Similar to creativity, curios-
ity is a life-long learning process whose cultivation causes that not everything is
explored and exploration is not made randomly. Curiosity is often invoked when
anticipation fails.

(i) Epistemic self-improvement. The mere ability to derive new knowledge in
the framework of a given epistemic theory cannot be considered to be the main
attribute of intelligent systems. Namely, the main attribute of an intelligent
system is its ability to improve its own epistemic theories through which it
generates its knowledge. If this is the case, then the intelligence of such a system
keeps provably increasing.



Epistemic Computation and AI 223

When using cultivation procedures as described above, it may happen that
a system gets new knowledge that contradicts the knowledge already possessed
by the system. Such contradictory knowledge can be derived by the system itself
or it can enter the system from “outside” (e.g., from the Internet), or when the
system reveals a discrepancy between its own observations with its epistemic
theory. Such a flaw can only be cured by a change of the underlying theory.

Systems that have mechanisms for discovering and repairing logical inconsis-
tencies in their theory obviously can increase their intelligence under any rea-
sonable definition of this notion. This process can continue as long as there exist
contradictory facts within the theory and the system at hand can find them,
and as long as there exist unexplored objects and phenomena in the underlying
knowledge domain. As a result, such systems can potentially, at least in some
domains, overcome human intelligence (Wiedermann and van Leeuwen 2017).
Unlike the popular idea of software self-improvement that aims at streamlining
derivation procedures in a cognitive system (cf. Bostrom 2014), self-improvement
of knowledge theories aims at the heart of the intelligence—viz. the quality and
quantity of the epistemic data.

4 Conclusions

In this paper we have applied the framework of epistemic computation to the
definition of various higher cognitive functions. The aim was to present them
as knowledge generating functions, i.e., in fact, as computational processes. We
have also elucidated the mechanisms of self-improving epistemic theories that lie
behind the development of intelligence. In doing so we have focused, in accor-
dance with the philosophy of the epistemic approach to computation, on the
question what the cognitive functions under consideration do, i.e., what knowl-
edge they are producing, rather than on how they do what they do. This leads to
a new approach to understanding these functions. They cannot be described in
a simple and elegant way using the classical view of computations, generated by
various models of computers. This is because such a view is necessarily machine
dependent and therefore cannot offer a sufficiently abstract and general frame-
work for defining and understanding the functions at hand. Contrary to this,
with the help of an elementary, abstract model of cognitive systems that is not
burdened by any technical details, our approach clearly points to the conclusion
that all cognitive functions under consideration are related to specific forms of
knowledge generation, within an appropriate epistemic theory.

Viewing computations as knowledge generating processes has great potential
for AI. In future work, we intend to apply the epistemic approach also to the
problem of consciousness. This would present an essential contribution to the
philosophy and theory of computational cognitive systems.
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Abstract. This paper outlines the non-behavioral Algorithmic Similarity crite‐
rion for machine intelligence, and assesses the likelihood that it will eventually
be satisfied by computers programmed using Machine Learning (ML). Making
this assessment requires overcoming the Black Box Problem, which makes it
difficult to characterize the algorithms that are actually acquired via ML. This
paper therefore considers Explainable AI’s prospects for solving the Black Box
Problem, and for thereby providing a posteriori answers to questions about the
possibility of machine intelligence. In addition, it suggests that the real-world
nurture and situatedness of ML-programmed computers constitute a priori
reasons for thinking that they will not only learn to behave like humans, but that
they will also eventually acquire algorithms similar to the ones that are imple‐
mented in human brains.

1 Machine Learning and the Algorithmic Similarity Criterion

Rather than equip computers with hand-coded algorithms for solving complex AI prob‐
lems, Machine Learning (ML) methods allow computers to “learn” the requisite algo‐
rithms “by themselves”, by engaging real or simulated environments, and by processing
large quantities of data. These methods have already yielded self-driving cars and
autonomous helicopters, computers that play chess and Go, and sophisticated face-,
handwriting-, and speech-recognition systems, among others.

Do these impressive feats of engineering herald an age of thinking machines? Even
if ML-programmed computers can eventually match or exceed human behavior in a
variety of domains (and thus, may satisfy behavioral criteria such as the Turing Test),
there are reasons to be skeptical. One worry is expressed in a famous thought experiment
due to Ned Block, in which a lookup table is used to reproduce the input-output structure
of an intelligent human being. Although a computer equipped with such a lookup table
would be capable in principle of matching human behavior in any number of domains,
it arguably “has the intelligence of a toaster” (Block 1981, p. 21).

Block’s thought experiment motivates the search for non-behavioral criteria for
machine intelligence. One such criterion is Algorithmic Similarity (AS): A machine is
intelligent if it implements algorithms—rules and representations—similar to the ones
that are implemented in human brains.1 Although there may be other ways of achieving

1 This appeal to brain-implemented algorithms is in line with cognitive science orthodoxy.
Analogous non-behavioral criteria may invoke other theoretical posits.
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machine intelligence, computers that deploy rules and representations that resemble the
ones that are deployed by human beings have a particularly strong case to make.2

2 The Black Box Problem and Explainable AI

Unfortunately, it is hard to know which algorithms are actually learned via ML, and
thus, whether any particular ML-programmed computer satisfies AS. In particular, many
deep neural networks and reinforcement learning policies are so high-dimensional and
complex that their inner workings remain “opaque” to human observers. This so-called
Black Box Problem has well-known practical implications; it now appears to have phil‐
osophical significance as well.

An a posteriori solution to the Black Box Problem may eventually be delivered by
the Explainable AI research program. One branch of this research program aims to
reduce the opacity of ML-programmed computers through mathematical tools, experi‐
mental techniques, and visualization methods for characterizing the algorithms that are
executed by ML-programmed computers (e.g. Ritter et al. 2017). Another branch of
Explainable AI aims to modify the Machine Learning process itself so that computers
do not only learn to solve complex AI problems, but also learn to produce comprehen‐
sible “explanations” of their actions (e.g. Ribeiro et al. 2016).

Although Explainable AI’s prospects for solving the Black Box Problem are uncer‐
tain, it is worth reflecting on some possible outcomes. For one, Explainable AI might
fail to solve the problem altogether. For another, Explainable AI might succeed, but
reveal that ML-programmed computers do not in fact satisfy the Algorithmic Similarity
criterion. In either one of these cases, Explainable AI would yield no positive evidence
for machine intelligence. That said, it would yield no negative evidence, either—it would
merely suggest that we are unable to tell whether ML-programmed computers are genu‐
inely intelligent by “looking under the hood”.

But there is also a third possibility: Explainable AI might succeed, and reveal that
some ML-programmed computers do in fact satisfy AS. In this case, the research
program would arguably yield positive a posteriori evidence for machine intelligence.
But just how likely is this third outcome?

3 Nurture and Situatedness

It may seem unreasonable to expect Machine Learning to give rise to algorithms similar
to the ones that are implemented in human brains. Indeed, because many learning algo‐
rithms such as backpropagation are biologically implausible, an ML-programmed
computer’s “nature” is quite unlike that of an intelligent human being. Nevertheless,
their “nurture” is increasingly similar. For example, many ML-programmed computers
have access to the same information that is used to educate human beings. This includes

2 Those impressed by Searle’s (1980) Chinese Room would of course disagree. For them, the
algorithms being executed have no bearing on the intelligence that may or may not be
possessed.
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text produced by humans for humans (e.g. news articles, books, and Twitter feeds), as
well as naturalistic images, sounds, and videos (e.g. the ones on Instagram and
YouTube). Insofar as the algorithms acquired through Machine Learning are more likely
to be determined by a computer’s real-world nurture than by its artificial nature, ML-
programmed computers are likely to acquire rules and representations similar to the ones
that are implemented in human brains.3

ML-programmed computers are not only nurtured by increasingly naturalistic data,
but are also situated in increasingly realistic environments. For example, self-driving
cars must learn to navigate on the same roads that are used by human drivers. As a
consequence, the former will likely learn to exploit the same structures, artifacts, and
tools that are already being exploited by the latter; a self-driving car might learn to exploit
the presence of road signs in much the same way that humans do, and in this sense, might
develop algorithms for interacting with the environment that closely resemble our own.

In summary, whereas Explainable AI may deliver an a posteriori way of evaluating
an ML-programmed computer’s Algorithmic Similarity to human beings, the nature and
situatedness of Machine Learning constitute a priori reasons for believing that this
similarity will be considerable. Insofar as Algorithmic Similarity is a sufficient criterion
for machine intelligence, Machine Learning may really bring about an age of thinking
machines.

References

Block, N.: Psychologism and behaviorism. Philos. Rev. 90(1), 5–43 (1981)
Lake, B., Ullman, T., Tenenbaum, J., Gershman, S.: Building machines that learn and think like

people. Behavi. Brain Sci. 40, E253 (2017). https://doi.org/10.1017/S0140525X16001837
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: Explaining the Predictions

of Any Classifier. arXiv 1602.04938v3 (2016)
Ritter, S., Barrett, D.G.T., Santoro, A., Botvinick, M.M.: Cognitive psychology for deep neural

networks: a shape bias case study. In: Proceedings of the 34th International Conference on
Machine Learning (2017)

Searle, J.: Minds, brains and programs. Behav. Brain Sci. 3(3), 417–457 (1980)

3 This is an admittedly strong empiricist thesis. Lest it be considered too strong, it is worth
considering recent attempts to increase the psychological plausibility of ML methods. For
example, Lake et al. (2017) review several ways in which such methods can be modified to
incorporate known principles of human learning and development. This research may obviate
the need for (overly) strong empiricism.

Will Machine Learning Yield Machine Intelligence? 227

http://dx.doi.org/10.1017/S0140525X16001837
https://arxiv.org/abs/1602.04938v3


Ethics - Law



In Critique of RoboLaw: The Model of SmartLaw

Paulius Astromskis(✉)

Vytautas Magnus University, K. Donelaičio g. 58, 44248 Kaunas, Lithuania
paulius@astromskis.lt

Abstract. This research develops a new regulatory framework for analyzing the
probable upcoming technological singularity. First, an analysis of the standard
regulation framework is provided, describing its elements and explaining its fail‐
ures as applied to the singularity. Next, using a transaction cost approach a new,
conceptual regulation framework is proposed. This work contributes to the under‐
standing of regulation in the context of technological evolution.
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Critique of RoboLaw. The RoboLaw report (Palmerini et al. 2014) offers an in-depth
analysis of the ethical and legal issues raised by robotic applications. However, the
choice of the main research question deserves critique. It is obvious that the standard
model of regulation is not working within the context of its application to existing and
emerging technologies. The object of the research should be the regulation framework
per se, if the aim of policy making is the reconciliation of regulation and technology.

Thus, the aim of this research is to explain the elements of the standard regulation
framework, its failures, and consequently develop the concept of a new regulation
framework within the context of the probable technological singularity. The research is
limited to development of this conceptual approach to the new regulatory framework.

Standard Regulation Framework. The starting point of law in traditional legal theory
is the “idea of law”, which then turns into “legal rules”, leading to “legal relationships”
and vice versa (Vaisvila 2004). Within this ontology of law, legal rules are chosen in
consideration of the discretion limits set by the idea of law and must be reconciled with
actual legal relationships. Williamson (2000) has set forth a very similar structure for
economic institutions. Alignment of legal and economic perspectives supports assump‐
tion that the regulator acts as a gatekeeper between transactions and the values of society.
This assumption justifies using Coase Theorem (Coase 1960) and the market failures’
framework (Williamson 1984) for an analysis of regulation issues.

According to Coase (1960), if there are zero transaction costs, the outcome of trans‐
actions will be efficient regardless of the legal regulation applied. Transaction costs are
the “costs of running the economic system” (Arrow 1969) which constitute the major
problem or drag on economic efficiency. Moreover, since efficiency and justice coincide
in many ways (Šimašius 2002), market failures are a legal problem as well. The most
commonly observed and regulated human and environmental market failures factors
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are: (i) bounded rationality; (ii) opportunism, (iii) uncertainty and (iv) asset specificity
(Williamson 1984).

Methodological Framework and Explanation of the Standard Model of Regulation
Failures. For the purposes of this research, it is assumed that courts are the institution
which most frequently deal with market failure cases. Therefore, the standard model of
regulation failure may be sufficiently observed and described through the lenses of time,
price and quality of the performance of the judicial branch. After making this observa‐
tion, explanatory technological forecasting is used to develop a new conceptual regu‐
lation model in the scenario of the technological singularity.

The analysis of the performance of the Lithuanian courts has revealed that the
standard model of regulation is insufficient in terms of costs, speed and quality.
However, neither kinetic nor digital safeguards can eliminate all vulnerabilities and
uncertainties associated with the weaknesses of human nature and with the limited
resources of the court system. The sole possible alternative is the automation of law and
legislation, thus replacing or decreasing the dependency on human nature in the field of
regulation.

The Conceptual Regulation Model Within the Context of the Technological
Singularity. Academically trained attorneys are already increasingly being replaced
by technology (WEF 2017). However, the development of intelligent technologies is
accelerating exponentially towards the assumed singularity – i.e., the moment in time
when, due to the vastly increased power of computation, artificial intelligence becomes
equal to human intelligence, and as a result society transcends towards the post-human‐
istic era (Kurzweil 2014; Futurism n.d.).

Of course, there is no unanimous agreement whether such a scenario may be accu‐
rately predicted on the basis of a simple equation inputting increases in computational
power (Russel and Norvig 2010). However, considering the exponential development
of technologies, the probability of a scenario where the singularity occurs should not be
considered as mere fiction and excluded from scientific modeling. Presuming that a
spectacular breakthrough in computing power and artificial intelligence will result in a
new intelligent system not dependent on trust, a model of regulation could be build using
the logic of process mining (Aalst and Wil 2014) as shown in Fig. 1, below.
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Fig. 1. Conceptual regulation framework (SmartLaw)

Within this system, all complete transaction data (subjective and objective) would
go to a newly developed software system with a supported and controlled database.
Utilizing the standards of fundamental values, it would autonomously analyze and model
a legal framework designed to prevent market failures. A characteristic of this new
system would be that it is constantly learning and enhancing its effectiveness. Intelligent
machines in the singularity age could be trained to constantly analyze patterns of human
transactions to identify any failures and fix them, much like a human regulator does, but
just much faster, cheaper and with higher quality. The law might become “smart”, i.e.
individualized and constantly adopting to the real time transactions, presenting solutions
that correct human error, reduce high expenses and increase response time. But is it safe
- or even ethical - to allow humanity to be regulated by machines?
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Abstract. The ethical concerns regarding the successful development
of an Artificial Intelligence have received a lot of attention lately. The
idea is that even if we have good reason to believe that it is very unlikely,
the mere possibility of an AI causing extreme human suffering is impor-
tant enough to warrant serious consideration. Others look at this prob-
lem from the opposite perspective, namely that of the AI itself. Here
the idea is that even if we have good reason to believe that it is very
unlikely, the mere possibility of humanity causing extreme suffering to
an AI is important enough to warrant serious consideration. This paper
starts from the observation that both concerns rely on problematic philo-
sophical assumptions. Rather than tackling these assumptions directly,
it proceeds to present an argument that if one takes these assumptions
seriously, then one has a moral obligation to advocate for a ban on the
development of a conscious AI.

1 Introduction

In the wake of the recent boom in the field of Artificial Intelligence, there has
been an equally spectacular boom in apocalyptic predictions regarding AI and
the faith of mankind. Extrapolating the accelerating progress of AI and our
dependence on it, doomsayers worry that it is only a matter of time before
we develop an Artificial General Intelligence, or Strong AI, which would be
so powerful that it could cause terrible global suffering and possibly even the
extinction of our species (Bostrom 2014; Hawking 2014; Hawking et al. 2014;
Musk 2015; Tegmark 2015). In fact, our situation is deemed so worrisome, that
several new research centers have been created with the explicit aim of reducing
the potential dangers of AI.1

Some authors have also turned the table on the ethical concerns regarding AI.
Instead of merely considering the harm that an AI could bring upon humans,
1 The Center for Human-Compatible AI, the Machine Intelligence Research Institute,

OpenAI, the Future of Humanity Institute, and the Foundational Research Institute,
to name just a few. Of course these institutes do not focus exclusively on the long-
term existential risks posed by AI, but also on the abundant more concrete risks
that current AI already poses.

c© Springer Nature Switzerland AG 2018
V. C. Müller (Ed.): PT-AI 2017, SAPERE 44, pp. 235–247, 2018.
https://doi.org/10.1007/978-3-319-96448-5_25
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they also consider the harm that could be brought upon an AI by humans
(Bostrom 2014; Mannino et al. 2015; Metzinger 2010; Sotala and Gloor 2017).
The idea is that a truly intelligent AI would also develop consciousness, and with
consciousness comes the capacity for emotions, agency, and all other aspects
that we associate with subjects that deserve moral consideration (Bostrom
2014; Chalmers 1996; Dennett 1993; Metzinger 2010). For example, one could
argue that the continued development of AI as systems that are entirely sub-
jected to our every wish and command would amount to re-introducing slavery
(Walker 2006).

Ironically, the strong pessimism towards the future prevalent in both types
of ethical concern mentioned above is founded on underlying assumptions that
reveal a strong optimism towards the present: the assumption that the current
rate of progress within AI is bound to continue unabated and the assumption
that we have a clear understanding of certain deep philosophical issues. We set
aside entirely whether the former assumption is justified, as that is something
to be settled by a technical scientific discussion. Instead, the focus of this paper
is on the latter more philosophical assumptions.

Concretely, the first type of ethical concern is based on the assumption
that an AI could become superintelligent and the second type of ethical con-
cern is based on the assumption that an AI could suffer. Both assumptions are
highly controversial from a philosophical perspective. Firstly, it is not at all
clear whether the very notion of superintelligence makes any sense, especially as
it concerns non-human entities. Secondly, it is undoubtedly an understatement
to say that we do not yet have a good understanding of how consciousness arises
in human beings, let alone elsewhere.

The goal of this paper is not to call into question these assumptions directly.
Instead, the aim is to show that if we actually take them seriously, then humanity
has a moral obligation not to create a conscious AI. If this argument is successful,
researchers in AI who are reluctant to accept its conclusion will be pressed with
the challenge of either dropping one – or both – of these assumptions, or do some
soul-searching and become advocates of a ban on the creation of a conscious AI.

In addition to said assumptions, the argument here developed also assumes
a minimal utilitarian outlook. That is, it is assumed that utilities appropriately
capture certain quantifiable and objective features of our moral framework, and
that all else being equal, we have a moral duty to create more utility rather than
less. What makes this outlook minimal, is that it leaves open entirely whether
utilities capture all morally salient features.

2 Supersuffering

The first assumption we encountered above is that an AI could develop superin-
telligence, which is a level of intelligence that far exceeds our own human intel-
ligence (Bostrom 2014; Chalmers 2010). In the words of Bostrom (2006), “we
mean an intellect that is much smarter than the best human brains in practi-
cally every field, including scientific creativity, general wisdom and social skills”.
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Although it is quite straightforward to imagine an AI that outperforms human
beings in computationally demanding tasks, it is much harder to conceive of an
intellect that is much smarter than human beings in, say, social skills. Presum-
ably we are talking about the skills required to socialize with human beings,
after all.

More generally, given that the concept of intelligence was constructed to
capture a property of human beings, it is not at all clear what it even means
to surpass human intelligence. The way in which the idea of superintelligence is
invoked implies that it isn’t merely a matter of being able to think faster than a
human or having a larger memory capacity, for if that were the case then humans
would still be able to outsmart it by using their collective intelligence together
with computers and other technology. On the contrary, the type of superintel-
ligence produced by a singularity, or one that has the capacity to subdue and
potentially destroy all of mankind, is such that it would be able to gain insights
that are seemingly forever beyond our grasp. Here one is inclined to paraphrase
Wittgenstein: “If an AI could speak, we could not understand it”.2

Without a proper theory of intelligence that enables us to make sense of the
idea that intelligence comes in degrees which extend far beyond the range of any-
thing we find in humans, we ought to split up our single assumption into several
separate assumptions that make explicit what the idea of a superintelligent AI
requires.

Assumption 1. There exist quantifiable, mental, and human properties that an
AI can have.

Assumption 2. If an AI can have a quantifiable, mental, and human property,
then it can have this property to a degree which extends far beyond the human
level.

Assumption 3. Intelligence is one such property for which Assumption 1 holds.

Taken together, these assumptions allow us to conclude that a future AI
could be superintelligent.

The second assumption mentioned earlier is that an AI could suffer. Given
that, like intelligence, suffering comes in degrees, we can rephrase this assumption
as follows:

Assumption 4. Suffering is one such property for which Assumption 1 holds.

As with intelligence, we can apply Assumption 2 to conclude that a future AI
could supersuffer, i.e., it could suffer to a degree that far exceeds any potential
human suffering.

One might object that Assumption 2 is too strong, for the idea of super-
intelligence only requires an assumption of that form to hold for intelligence.
Yet without a theory of intelligence that gives us this particular assumption,

2 The original mentions a lion, rather than an AI. (Wittgenstein 1953, p. 223).
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restricting Assumption 2 to intelligence would be gratuitous: we have no grounds
whatsoever for stipulating that there is something peculiar about intelligence as
compared to suffering so that it is the only candidate for amplification to a
super-level.

In fact, given Assumptions 1, 3 and 4, the concept of supersuffering seems far
less problematic than the concept of superintelligence once we shift focus from
a single agent to a group of agents.3 The reason is that more agents suffering
to some degree X always implies more total suffering than less agents suffering
to the same degree X, whereas the same does not hold for intelligence. In other
words, suffering is far more cumulative than intelligence. For example, except
for the speed at which they can solve certain problems, two identical agents
need not be any more intelligent overall than each agent considered separately.
However, if two identical agents are being tortured then there is clearly a lot
more suffering than when only of of them is being tortured.

Further, we find additional support for the possibility of a supersuffering
AI from other sources. Sotala and Gloor (2017) offer a detailed analysis of the
potential suffering that could be caused by an AI. While they focus mostly on
human suffering, they also mention that “these [future technologies] may enable
the creation of mind states that are worse than the current biopsychological
limits.” They provide interesting thought experiments to substantiate this claim.
In a similar vein, Metzinger (2013) states that future AIs “might suffer emotion-
ally in degrees of intensity or in qualitative ways completely alien to us that we,
their creators, could not even imagine.”

Such a supersuffering AI would amount to what can be called a negative
utility monster: a being whose utility is so incredibly low that all of our efforts
should go to increasing its utility, instead of wasting energy on increasing the
comparatively negligible utilities that we human beings could obtain. The notion
of a positive utility monster was posited by Nozick in order to highlight a coun-
terintuitive consequence of utilitarianism (Nozick 1974, p. 41):

Utilitarian theory is embarrassed by the possibility of utility monsters who
get enormously greater sums of utility from any sacrifice of others than
these others lose ... the theory seems to require that we all be sacrificed in
the monster’s maw, in order to increase total utility.

One standard utilitarian reply is to object that such a monster is not con-
ceivable, for no single entity could possibly have such large quantities of utility,
be it negative or positive (Parfit 1984). Note that our starting point, however,
contains the observation that the recent success of AI has dramatically altered
the type of entities that people claim they can conceive of. So if by now we can
conceive of an AI as an intelligence monster, and we can conceive of an AI as
having morally salient mental states such as suffering, then the mere claim that
we cannot conceive of an AI as a negative utility monster does not carry much
weight.
3 In the case of AI systems, it might even be that a group of agents could easily merge

into a single agent. For sake of simplicity, we leave this speculative possibility aside.
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Other utilitarians are indeed prepared to bite the bullet and concede that
such a monster would have to be the primary target of moral concern. For
example, Singer (2009) says that “if we ever encountered Martians who could
convince us that they had a vastly greater capacity for happiness than we do,
then it could be a problem.”

So far we have focussed on the suffering of a single AI, but the problem of
supersuffering becomes all the more pressing once we aggregate the suffering of
multiple AI systems, over extended periods of time. Once we are able to create
an AI – in the sense of a superintelligent and conscious AI as we have been
considering – it is reasonable to assume that we go ahead and produce a large
number of copies. From there it is only a small step to imagining horrible sce-
narios in which there would be more artificial suffering than all human suffering,
past and present, combined.

For example, say we are able to create a holographic AI that is the result
of uploading a person’s brain and running it as a hologram that looks like the
person. Creative as human beings are, a cunning investor uses this technology
to construct a profitable attraction: for a couple of dollars, visitors get to pull
the switch on a holographic electric chair in which is seated a holographic copy
of a convicted murderer whose original human version has long since been exe-
cuted by an actual electric chair. The fact that the hologram experiences the
exact same excruciating pain makes the attraction widely successful. Millions of
visitors come to pull the switch, causing millions of holograms to suffer terribly.
To top it all off, each visitor receives a keychain containing a copy of the holo-
gram that is continuously, during every single second of the day, year after year,
experiencing this execution. Unlike an actual human being, these holographic
AIs do not have the benefit of death to put their suffering to an end. Obviously
this scenario is extremely far-fetched, but given our earlier assumptions, it is cer-
tainly conceivable. This is confirmed by millions of viewers of the superb sci-fi
television series Black Mirror, in which this very scenario is enacted (and others
like it).

For another illustration, one could imagine that the experience of empathy
is achieved in an AI by automatically replicating any suffering that it observes.
A reason for programming the AI in this manner is that it might very well be
a good way to ensure that an AI is highly sensitive to, and aware of, any form
of human suffering – which it better be if we expect it to avoid treating humans
as mere instruments for attaining its objectives. Now imagine that such an AI
has access to all of recorded human history. In particular, it can immediately
access all audio-visual material ever produced. Further, the AI is so fast and
unbounded in resources that for every single decision it makes, it takes into
account the total amount of evidence which is available to it. Say it makes a
million decisions per second. This implies that during a single second, a single
AI goes through the entire amount of suffering ever recorded a million times over.
The fact that all of this happens within a single second should not be seen as a
mitigating factor, for according to Bostrom and Yudowsky’s plausible principle
of the subjective rate of time, “In cases where the duration of an experience is
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of basic normative significance, it is the experience’s subjective duration that
counts.” (2014, p. 326). Given the speed at which we can expect an AI to be
operating, this principle in and of itself is already sufficient to guarantee that
the experience of suffering for an AI can take on far more extreme forms than
it can for human beings: a single experiment that goes astray for a few seconds
could result in an AI suffering for many years.

One might counter that we can avoid such scenarios by implementing policies
that forbid them. But such policies would be unable to prevent similar scenarios
in which the suffering is unintended, and worse even, scenarios in which the
suffering goes by entirely unnoticed. Once an AI has the capacity to suffer, then
all it would take is some bug in the code for similar scenarios to unfold. For
example, imagine that there is some complicated version of the millennium bug,
which is activated in billions of AIs at the same time and causes them to suffer
to the astronomic extend portrayed above before we even know what is going on.

Metzinger (2013) also focusses on this issue, highlighting the “possibility that
non-biological subjects of experience have already begun to suffer before we as
their human creators have even become aware of this fact.” He develops a theory
that allows for the quantification of suffering, and posits that it is our duty to
minimize the frequency of conscious experiences that involve suffering (Metzinger
2017). As a consequence, he concludes that we should ban the development of
an AI, in the strong sense of AI as we are using it, stating the following principle
(2013, p. 3):

We should not deliberately create or even risk the emergence of conscious
suffering in artificial or postbiotic agents, unless we have good reasons to
do so.

Mannino et al. (2015) reach a similar conclusion in their overview of the moral
risks posed by the development of AI, stating that “the (unexpected) creation
of sentient artificial life should be avoided or delayed wherever possible, as the
AIs in question could – once created – be rapidly duplicated on a vast scale.”

Given the assumptions made at the outset, and the severity of the sketched
scenarios, the only way to avoid accepting these negative verdicts is to follow
through on Metzinger’s hint and offer good reasons as to why the possibility of
supersuffering is an acceptable price to pay. Three straightforward suggestions
present themselves as plausible candidates:

1. The attempt at creating an AI is not at all special in this regard, since all other
acts that we perform as humanity today also run the risk of causing extreme
suffering in the future, and nevertheless we find this perfectly acceptable.

2. The negative scenario of supersuffering is compensated by a positive scenario
of an AI experiencing superpleasure.

3. The expected benefits for mankind that come from creating an AI outweigh
the possibility of supersuffering.

In the remainder of this paper the aim is to show why all three suggestions
fail.
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3 The Unique Risk of Creating an AI

In order to show how the consequences of creating an AI are unlike the conse-
quences of other acts that we collectively engage in, we make explicit in what
manner the risk of an AI undergoing extreme suffering is unique. We do so by
comparing strategies that humanity could adopt in order to avoid risking human
suffering with strategies that humanity could adopt in order to avoid risking AI
suffering.

A first thing to note is that there exists one very radical strategy that human-
ity could adopt in order to avoid any risk of human suffering in the long term,
namely to stop having children altogether. We here take it for granted that this
strategy is morally unacceptable, without offering further motivation.

Principle 1 (Acceptable). A strategy is acceptable unless it certainly causes
the extinction of mankind.

The only reason we mention this principle is for sake of completeness, since in
recent years Benatar (2006) has championed the extremely controversial position
of anti-natalism, according to which it is immoral to have children. This position
is based on negative utilitarianism, a topic to which we come back later.

Now we turn to strategies that are acceptable and ensure the avoidance of
some terrible outcome.

Definition 1 (Avoidable). A possible outcome is certainly avoidable if there
exists an acceptable strategy that certainly prevents the outcome of occurring.

We already concluded that humanity might cause future AIs to experience
supersuffering. In order to invoke the above definition, we need to add the fol-
lowing trivial counterpart.

Premise 1. If all of humanity does not attempt to create an AI, then certainly
there will never be an AI that experiences supersuffering.

This leads us to conclude the following:

Conclusion 1. A supersuffering AI is certainly avoidable.

On the short term, and when considering a single agent, there are many
negative outcomes which are certainly avoidable. This no longer holds if we
consider all of humanity and extend our horizon into the far future: given our
limited knowledge of the world, and the almost infinite complexity of the causal
chain that results from our actions, we are ignorant with respect to the long-term
consequences of our actions on the well-being of humanity.

Premise 2. There exists a time t such that no matter what acceptable strategy
we adopt, to the best of our knowledge, it is possible that this strategy causes
extreme human suffering after t.
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At first glance there appear to be many strategies that defy the above
premise. For example, think of our efforts to cure cancer. Either these are suc-
cessful, in which case they would prevent a great deal of suffering, or they would
be unsuccessful and not have any impact at all. But this analysis only considers
the most likely outcomes that each alternative would have. Although unlikely,
it is definitely possible that our efforts to cure cancer result in the creation of a
deadly and contagious virus, which causes many more deaths than the disease
which it was supposed to cure. Or it is possible that by curing cancer, the next
would-be genocidal dictator is kept alive, and therefore able to live out his evil
intentions.

We can now apply Definition 1 to reach the following conclusion:

Conclusion 2. Extreme human suffering is not certainly avoidable.

This conclusion provides us with a distinguishing feature of the risk that
comes with the attempt to create a conscious AI. Any suffering that a future
AI might experience is certainly avoidable, whereas this does not hold for the
suffering of future humans. Therefore the first suggestion does not succeed in
giving us a good reason why we should risk a supersuffering AI.

4 Moral Asymmetry

At this point we can draw the following worrisome conclusion.

Conclusion 3. It is possible that by creating an AI, we will cause a unique and
extreme form of suffering that could certainly have been avoided.

Still, an optimist might argue, completely analogous to this depressing con-
clusion, it is also possible that by creating an AI we will cause a unique and
extreme form of pleasure that would otherwise certainly have been avoided.
Hence the route for the second suggestion to defend our attempt at creating an
AI is still open.

However, there is a strong intuition that is so well-embedded in our everyday
life that only an extreme utilitarian would object to it: it is more important to
avoid suffering than it is to create pleasure. Moore (1903) was the first to express
this intuition, but Popper was its most famous defender (Popper 1945):

We should realize that from a moral point of view suffering and happiness
must not be treated as symmetrical; that is to say the promotion of hap-
piness is in any case much less urgent than the rendering of help to those
who suffer, and the attempt to prevent suffering.

This idea forms the basis of “moderate negative utilitarianism”, which considers
it our primary duty to avoid suffering (Chauvier 2014; Mayerfeld 1999; Metzinger
2013; Parfit 1997). The asymmetry between pleasure and pain that lies at its
core is evident in the medical principle “first do no harm”, and is confirmed by
the moral risk-aversion that is widespread in our behaviour.4

4 See the papers cited above for many more interesting examples.
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For example, assume you may press a button such that with probability 0.5
a random person’s leg will be broken, and with probability 0.5 someone’s broken
leg will be healed, and neither person has any say in the matter. Or imagine
that if you press the button, a random person will be hit in the face, but offered
a massage afterwards. It goes without saying that it is immoral to press the
button.

Further, this asymmetry increases as the intensity of the suffering and plea-
sure increases. For example, if someone insults you but then offers a compliment,
you probably will not have hard feelings towards that person. But if they tor-
ture you, it is hard to imagine what form of pleasure they could offer you to
avoid feeling terribly wronged by that person. In fact, some even go so far as to
state that certain amounts of suffering cannot be compensated by any amount of
pleasure at all, a position Hurka (2010) describes as the limit asymmetry thesis:
“There is some intensity n such that a pain of intensity n is more evil than any
pleasure could be good.”

In light of all this, the following moral principle is endorsed by a broad range
of ethical positions and has a prima facie intuitive appeal:

Principle 2 (Moral asymmetry). All else being equal, the moral blamewor-
thiness for causing a degree of suffering X is greater than the moral praisewor-
thiness for causing a degree of pleasure X. Further, the difference between the
degree of blame and praise strictly increases with X.

Nevertheless, as said, a strict utilitarian could insist on the symmetry between
pleasure and suffering, and hence reject this principle. In that case, the possi-
bility of a supersuffering AI could be compensated, on the condition that the
probability of superpleasure is significantly greater than that of supersuffering.

Setting this caveat aside, we conclude that our expected blameworthiness
when continuing the development of AI is higher than when we stop all research
on AI, and hence the second candidate suggested as a good reason for risking
supersuffering is ruled out as well.

4.1 Anti-natalism

As promised, we briefly return to the position of anti-natalism. We rejected this
position outright because of the simple fact that almost everyone would find the
prospect of mankind going extinct quite depressing, to say the least (whereas
few would mourn the non-existence of sentient AIs). We now clarify how this
position relates to the one here developed.

We motivated Principle 2 by reference to moderate negative utilitarianism.
By using the label “moderate”, its proponents wish to distance themselves from
“negative utilitarianism”, which embraces the far stronger claim that even the
slightest amount of suffering can never be compensated by any amount of plea-
sure whatsoever. Given that every human being will experience some amount
of suffering throughout its life, this claim implies that it is immoral to bring
children into existence, no matter what the circumstances.
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In contrast, a moderate negative utilitarian can perfectly well defend having
children, on grounds of the fact that most people end up leading lives which have
an acceptable amount of suffering compared to the amount of pleasure. In other
words, most people end up leading lives worth living. Only if it were very likely
that one’s child would experience constant suffering would it follow that it is
better not to have a child, a conclusion which most people would fully endorse.5

Further, even if we were to assume that the probability of extreme suffering
for a child is identical to that of supersuffering for an AI, the astronomical
difference in the degree of suffering involved suffices to separate the application
of Principle 2 to the latter from its application to the former.

5 The Ethical Priority of Artificial Suffering

The third suggestion that might offer a good reason for going ahead and risk the
prospect of AI systems supersuffering, is that this would be an acceptable price
to pay given the expected benefits for mankind that would follow the invention
of truly intelligent AI. That we consider this candidate suggestion last is due
to the simple reason that the discussion of the previous two suggestions already
puts considerable pressure on this idea.

First, so far we have completely ignored the first ethical concern mentioned
at the outset, namely the concern that the creation of an AI could cause extreme
human suffering. If we take seriously the doomsayers, meaning we attribute a
small but non-negligible probability to the type of worst-case scenarios in which
AIs will wreck havoc and destruction everywhere, then we have every reason
to believe that the overall expected benefits for mankind in the long run are
drastically negative.

Second, even without invoking these worst-case scenarios, given the myriad
degrees of freedom that the organization of human society possesses, there is no
reason to assume that AI is in any way necessary for human beings to flourish
in the long run. For all we know, there exist strategies not involving the creation
of AI that would cause an even higher increase in human pleasure after the
time horizon t mentioned in Conclusion 2 than an AI could ever produce. In
sum, as per Conclusion 1, the creation of an AI would result in us giving up
on the certainly avoidable outcome of a supersuffering AI, whereas it is by no
means clear how the creation of an AI relates to the prospects of mankind after
time t.

Third, we can combine the asymmetry between suffering and pleasure cap-
tured by Principle 2 with the astronomical difference in orders of magnitude
between the amount of suffering depicted in the scenarios from Sect. 2 and any
feasible amount of human pleasure that could occur before time t mentioned

5 Metzinger also makes this point, and adds that anti-natalism regarding artificial
life is far more plausible than its biological counterpart (Metzinger 2013, 2017). To
avoid unnecessary complication, we make clear that we need not get into the issue
of abortion, but are talking simply about preventing the act of human fertilization
in the first place.
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above to see that the benefits for mankind before time t do not even come close
to compensating for a supersuffering AI. That is, they do not come close if we
accept the following plausible principle:

Principle 3 (Non-discrimination). When evaluating the overall expected
benefits of creating an AI, we ought not discriminate between the suffering/
pleasure of an AI and a human being.6

When reformulated in terms of different groups of human beings, this prin-
ciple is a bedrock of any modern moral system, and hence it hard to see how
it could fail to apply when we extend it to other conscious beings that have an
even stronger capacity for suffering and pleasure than humans do. Singer (2011,
p. 50) puts it thus:

If a being suffers, there can be no moral justification for refusing to take
that suffering into consideration. No matter what the nature of the being,
the principle of equality requires that the suffering be counted equally with
the like suffering – in so far as rough comparisons can be made – of any
other being.

In sum, the combination of these two arguments blocks the last suggested
candidate:

Conclusion 4. From an ethical point of view, the possibility for an AI to
experience supersuffering takes precedence over the expected benefits that an AI
will produce for mankind.

6 Conclusion

In Sect. 2 we examined the basis for two popular and controversial assumptions
regarding Artificial Intelligence, and argued that accepting these assumptions
leads to the moral principle that we should not create a conscious AI, unless
we can offer good reasons to do so. In the subsequent sections we rejected three
natural candidates for such reasons. Therefore, if we take seriously our two initial
assumptions, we are forced to accept the following conclusion:

Conclusion 5. Humanity should not attempt to create a conscious AI.7

Given the gravity of this conclusion, it is incumbent upon each and every AI
researcher to closely inspect said assumptions, and make a choice: either refrain
from endorsing both of them and explain why, or advocate for a ban on the
creation of a conscious AI.
6 This principle could also be generalized to include certain animals. However, one

would first have to introduce Assumptions 1 and 4 reformulated for animals.
7 Humanity here refers to current humanity. If at some point in the future we discover

a method of working on the development of a conscious AI that is certain to avoid
supersuffering, then obviously this conclusion could be retracted. For now, however,
we are just as far removed from the discovery of such a method as we are of the
discovery of a conscious AI itself.
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Abstract. Which moral principles should the artificial moral agents, AMAs, act
upon? This is not an easy problem. But, even harder is the problem of identifying
and differentiating the elements of any moral event; and then finding out how
those elements relate to your preferred moral principle, if any. This is because of
the very nature of morally relevant phenomena, social facts. As Searle points out,
unlike the brute facts about physical world, the ontology of the facts about social
reality -which he calls institutional facts- is subjective and they exist within a
social environment. The appropriate way to learn these facts is by interaction.
But, what should this interaction be like and with whom, especially in the case of
artificial agents, before they become ‘mature’? This implies that we are to face a
very similar problem like raising a child.

1 Introduction

Machine ethics has been challenged by both fundamentally meta-questions (is the disci‐
pline itself morally sound? [4, 6]), and by relatively applied ones (how to model the
moral behavior of autonomous cars?). The later problems are pressingly on the table;
thus, the practical challenge is to find a valid framework to address these later problems
without questioning the table itself. There are ongoing debates on how to implement
some moral criteria to the actions of these artificial moral agents, AMAs. Three basic
approaches are as follows [5]. First, we can determine a set of moral principles -usually
in line with one of the core moral theories- and then, by top-down programming, make
the machine follow these principles. Second, we can teach or let the machine discover
what right and wrong action is in many circumstances by using supervised or unsuper‐
vised bottom-up learning. Third, and more promisingly, we can combine all these
methods in useful ways.

Of course, none of these methods is easy to implement and none of the moral issues
has a unique answer so that it can be used to label an action as being the right one.
However, even if we would have a solution to decide on the moral principles that an
AMA should follow, the harder problem would still remain. That is, the harder problem
for any moral event is to identify and differentiate the elements of the event, and to find
out how those elements relate to your preferred moral principle, if any. Thus, even if
AMAs would be built to follow some principles, like they shouldn’t harm, would they
be able to identify what harm is, in an actual temporal event?

What makes this a problem is due to the very nature of morally relevant phenomena,
social facts. Searle’s distinction between institutional facts and brute facts [2] helps us
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analyzing why it is harder to teach AMAs social phenomena than to make them follow
some moral principles. I claim that we cannot succeed in having AMAs that are morally
welcome, without realizing our responsibility to these machines that learn about the
social realm from the data we supply, as being the very creators of those data.

2 Institutional Facts vs Brute Facts

Brute facts are independent of human institutions, like physical facts. Trees have roots;
ice melts into water; dolphins are mammals; oranges have predictable shapes. It is rela‐
tively easy to learn and recognize the instances of these facts for a machine. The very
first reason is that it is easier to collect objective, similar, yet sparse data about those
facts and then let the machine discover what is statistically frequent in the data.

Institutional facts, on the other hand, “typically objective facts, but oddly enough,
they are only facts by human agreement or acceptance” [2]. These facts are ontologically
subjective and epistemologically objective. The fact that some paper is money; that some
relation is a marriage or a friendship; that some person is a professor; or the fact that an
act of killing is a murder; or that a conflict is a war; or that a statement is a promise; or
that a particular ring belongs to a particular agent, like Gollum.

The way to create these facts is by Declaration (may or may not be a speech act
[2]); and some of the institutional facts are regulated under laws or documentation.
However, for many others, there are neither regulations nor explicit documentation.
Because, these facts are up to local situational agreements upon people, and their factual
nature is dynamic. Moreover, regulations or documentation usually say very little about
what the relevant institutional fact means or implies for any particular instance.

As Searle points, “we live in a sea of human institutional facts. Much of this is
invisible to us” [2]. Mostly, the elements of a moral event are due to these institutional
facts or due to values that depend on these facts, either invisible or not. Therefore, it
becomes integral to have access to this kind of data while evaluating any morally relevant
case. We are not much better than machines, regarding having access to the regulated,
documented or declared facts. Indeed, how can your neighbors know for sure that the
house is yours or that you are married, without declaration or a documented proof? They
can not; but, the very nature of institutional facts allows us to have quite accurate guesses
about these facts without having access to the documents.

3 How to Teach Institutional Facts to AMAs?

Interactively. The very dynamic and social nature of these facts requires AMAs to learn
them via social interaction. But, with whom should they interact, before they become
‘mature’ about the nature of the social facts? In 2016, Microsoft released a chatbot,
named Tay, for Twitter users which was programmed to begin with a set of conversa‐
tional priors and then to learn from interacting with users. However, they had to shut
the service down just after 16 hours as Tay had started producing very controversial and
‘inappropriate’ conversations upon what she has learnt. Crucially, she approved and
adopted positions of racism, sexism, and Nazism.
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These are already among the sensitive cases of institutional facts; and for example,
an actual instance of racism might easily be denied by the very society that instantiates
it; and it is even easier to misjudge someone or some community to be racist, while these
judgements do not affect the very existence of that fact [2]. That is, the fact is there, if
it is there, and its existence implies an associated deontology [2]; thus, it requires a moral
stand. Therefore, reaching the truth about that fact becomes crucial, especially for an
artificial moral agent that might particularly be designed to execute necessary actions
in vital situations.

Tay’s case implies more than the dangers of manipulation or abuse of users for a
learning machine. Any nonmalignant or sincere series of conversations would have led
to the same result for Tay. There lies the urgent practical challenge for the machine
ethics. That is, AMAs have to learn these facts from people, but they cannot just utilize
the statistics of any data. First of all, we as consumers of these technologies should
realize that our interactions with them are social interactions and “there is an important
difference between ‘treating some x as if it were to do y’ and ‘interacting with x as if it
were y’” [3]. Therefore, we have a moral responsibility to our interactions with machines
as we socially interact with them. Either we anthropomorphize them or not, we still
socialize with them. This will be the key to the ‘quality’ of the social data that they can
get from us. Second, we have to understand that these are learning machines, and they
learn from data; they are not totally pre-programmed. Thus, they are sensitive to data
that we produce, and we don’t yet know what kind of patterns they are sensitive to and
what they can discover. Therefore, we need to use our mental-autonomy [1] to attend
the fact that they learn and we should prevent our predispositions to treat AMAs as if
they were immune to what we do or say.

Ultimately, this requires a comprehensive discussion of moral and social education
of AMAs. But, for now -as the machines already make use of the data we produce, and
as the current aim can be approached distinctly from a possibly idealist solution of
making them capable of social cognition and practical wisdom- we can begin with the
awareness that we are not only beneficiaries or consumers of the so-called intelligent
machines, but we are the very responsible source of social data from which they will
learn about us. One can argue that we should allow machines to utilize just every data
about social realm; and allow them to discover by themselves; and that we should
embrace whatever they discover and learn about us. I don’t think that this would be a
good strategy and I believe that, with carefully designed education plans, we can achieve
a very promising level of machine ‘understanding’ of sociality.
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Abstract. In this paper, I develop a preliminary framework that permits groups
(or ‘systems’) to be moral agents. I show that this has advantages over traditional
accounts of moral agency when applied to cases where machines are involved in
moral actions. I appeal to two thought experiments to show that the traditional
account can lead us to counterintuitive consequences. Then I present what I call
the ‘systematic account’ which I argue avoids these counterintuitive conse‐
quences. On my account, machines can be partial moral agents currently fulfilling
some but not all of the conditions required for moral agency. Thus, when a
machine is part of a group of agents, it can be part of a system that is a moral
agent. This framework is a useful starting point as it preserves aspects of tradi‐
tional accounts of moral agency while also including machines in our moral
deliberations.

1 Traditional Accounts of Moral Agency

Traditional accounts of moral agency are generally hostile to attributing moral agency
to artificial agents such as machines. The traditional account (henceforth referred to as
TA), as summarized by Himma (2009), states that:

X is a moral agent of action A if and only if:

(i) X is an agent,
(ii) X can make free choices about A,

(iii) X can deliberate about what one ought to do,
(iv) X can understand moral rules,
(v) X can apply the moral rules correctly in paradigm cases.

Himma identifies consciousness as a prerequisite for these conditions. Other
accounts also require consciousness (Parthemore and Whitby 2013), mental states
(Johnson 2006) or, in extreme cases, biological sentience (Torrance 2008). Such defi‐
nitions motivate arguments against machine moral agency (see Himma 2009) and force
us to engage with issues of machine consciousness to show why a machine should count
as a moral agent. To avoid this, I propose a new ‘systematic’ account, which permits
conditions for agency to be satisfied by groups of agents. I show that this avoids some
counterintuitive consequences of TA.

To demonstrate TA’s counterintuitive consequences, I analyse two thought experi‐
ments adapted from past philosophical literature. I argue that these cases are importantly
different but TA doesn’t have the resources to differentiate them. The first case is a
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“moral room” (adapted from Searle’s ‘Chinese room’ (Searle, 1980)) where the inhab‐
itant of the room must output ‘moral’ decisions from inputs that are moral dilemmas
using a ‘moral rulebook’ found in the room. On TA, the inhabitant is not a moral agent
as it only satisfies condition (i) and (v). It cannot satisfy (ii) as it is only following the
rules from a rulebook and since it is not meaningfully engaging with the dilemmas
presented to it except to output a response, it does not satisfy (iii) and (iv). The second
example is a variant of the “Otto and Inga” thought experiment (adapted from Clark and
Chalmers (1998)). Here Otto has a notebook where he keeps a diary of the correct
responses to moral dilemmas. He decides to publish his diary and Inga purchases it to
guide her moral decisions. On TA, Inga is not a moral agent as she only satisfies (i) and
(v). As long as Inga is merely following the rules straight from the book, then she cannot
satisfy (ii) and (iii) and since she is just following them and didn’t formulate them, she
can’t be said to understand them so fails to satisfy (iv). TA treats the two cases identi‐
cally. However, this seems counter to the intuition that the inhabitant and Inga differ in
an important respect. Inga follows the rules out of a motivation to be moral unlike the
inhabitant of the room. Indeed, we might say that Inga is more of a moral agent than the
inhabitant. Such a distinction is not possible on TA because it lacks degrees of moral
agency. In contrast, my alternative account is able to capture the differences between
these cases as well as preserving aspects of TA.

2 An Alternative Account of Moral Agency

In my systematic account (or SA), I preserve ideas from TA while making it less anthro‐
pocentric.1 SA builds on Moor’s (2006) degrees of moral agency. It claims that a set of
agents X is a full moral agent of action A if and only if X is the smallest set where all
the following conditions hold:

(I) X acts in a way A that is evaluated with respect to moral rules,
(II) X follows moral rules,

(III) X has the potential to follow different rules,
(IV) X has a moral motivator.

There are two kinds of moral motivator: weak and strong. A weak moral motivator
entails (a) and a strong moral motivator entails (a) and (b):

(a) Having a reason to believe the act A of X is moral.
(b) Having a reason to believe the rules X follows are moral.

This specifies the conditions for a full moral agent. A partial moral agent is a member
of the set X that satisfies some but not all of the conditions. But if a set of partial moral
agents (or a ‘system’) collectively satisfy all the conditions, the system would be a full
moral agent.

1 This is in contrast to accounts (such as Floridi and Sanders (2004)) that break with the require‐
ments of TA. I am not wedded to having to preserve parts of TA. However, since many philos‐
ophers seem committed to TA generally capturing some central things about agency, I think
building on TA is a good starting point.
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The degree of moral agency depends on the number of conditions satisfied and the
highest condition satisfied. The conditions of SA are in ascending degrees of moral agency,
meaning that satisfying the higher conditions such as (III) and (IV) contributes to a greater
degree of moral agency. So a partial moral agent satisfying (III) and (IV) for a system is
more of a moral agent than the partial moral agent satisfying (I), (II) and (III). In terms of
condition (IV), a system with a strong moral motivator is more of a moral agent than a
system with a weak moral motivator. It is worth noting that SA is an account of agency that
is relative and specific to an action A. Part of the system could generally be a full moral
agent without satisfying all the conditions for agency relative to action A. Because of the
smallest set condition, if one agent fulfills all the conditions, then the “system” will consist
just of that agent. However, there are cases where a full moral agent won’t satisfy all condi‐
tions for an action and will need to be coupled with other partial moral agents.

When applied to the moral room and Otto and Inga cases, SA makes more fine-
grained distinctions between the cases. On SA, the moral room system (of the inhabitant
and the agent who wrote the rule book) is a full moral agent even if the inhabitant is not.
Similarly, the Otto and Inga system make up a full moral agent even though Inga and
Otto alone are partial moral agents with respect to Inga’s moral actions. In this way, SA
avoids the counterintuitive consequences of TA.

The systematic account includes machines in the realm of moral agents. On the
systematic account, a machine will often be a partial moral agent rather than a full moral
agent (to my knowledge, there are currently no candidates for machines which fulfill
the moral motivator condition) but it can be part of a system that is a full moral agent.
For example, a robot that stops a human crossing the road when a speeding car drives
by would be a partial moral agent. The system of the robot and the programmer who
implements the moral rules would be a full moral agent. In this way, the systematic
account provides a framework to make sense of how machines feature in our moral
decisions and actions. This could be a good starting-point for considering how moral
responsibility is distributed in situations where a machine is involved in a moral action.
In conclusion, the systematic account of moral agency avoids a debate about machine
consciousness while also offering a framework to explain how machines can play a role
in our moral actions as partial moral agents.
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Abstract. The paper presents a framework for examining the human use of, and
the activities of, artificial persons. This paper applies Hobbesian methodology to
ascribe artificial personhood to business organisations, professional persons and
algorithmic artificial intelligence services. A modification is made to Heidegger’s
ontological framework so that it can accommodate these artificial persons in a
space between tools and human beings. The extended framework makes it
possible not only to explore human uses of tools, but also to pose questions on
the relationships, obligations and operations that transfer between humans and
artificial persons.

1 Introduction

Humans have always been tool developers. In recent times, we see the most powerful
tools ever created being contracted to address ever more intimate and existential tasks
for the benefit of humans in such domain areas as the provision of social and commercial
services in healthcare, education, and governance. Such tools are scaffolds (Sterelny
2010; Vygotsky 1978), in that they allow us to extend human capacities. The Extended
Mind theory (Clark and Chalmers 1998), posits that our mind is extended across the
tools that we use. Clark (Clark 2003, p. 26) argues that we ourselves are natural, born
cyborgs, stating “it is our special character, as human beings, to be forever driven to
create, co-opt, annex, and exploit non-biological props and scaffoldings. We have been
designed, by Mother Nature, to exploit deep neural plasticity in order to become one
with our best and most reliable tools.”

Alongside Clark’s Cyborg, Martin Heidegger’s Dasein (Heidegger et al. 2010) is
also an ontological entity: one whose existential experience in the world requires it to
develop, evolve, and employ tools as it pursues its relationships with tools and the world.

This paper is concerned with the applications of artificial intelligence in such services
as Facebook’s “Facebook for Politics” (Facebook 2017), which was controversially and
successfully contractually employed (Cadwalladr 2017), (Davies and Yadron 2016) in
the 2016 Brexit referendum and USA general election. Such sociotechnical entities
clearly function at a capacity somewhere between tools and human beings. A minor
modification of Heidegger’s approach allows us to consider organisations such as Face‐
book Inc., professionals at work, and advanced AI tools such as “Facebook for Politics”
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as both tools and artificial persons. Once positioned, these entities can be involved in
dialectical analyses. A first investigation might well be, “should businesses who enjoy
limited financial liability for providing contractually defined social services also be
entitled to avail themselves of limited moral or ethical responsibility for their actions?”

2 Societal Tools, Social Contracts and Agency

Thomas Hobbes introduced the term “social contract” (Hobbes 2008) to describe how
an individual will sacrifice some freedoms to join a body of people for perceived social
benefits. Hobbes described the body of people as an artificial person, which is, crucially,
ruled by a sovereign authority. We will refer to this form of artificial person as an
Organisational Artificial Persons (OAP). He spoke of another kind of artificial person
– a person who represents another, or one who speaks the words of another. This makes
it possible to identify an organisational employee as a professional artificial person
(PAP), and an artificial intelligence system with learned human behaviours as an Algo‐
rithmic Artificial Person (ALAP).

Social contracts make it possible for OAPs to be created and recognised in society.
Social contracts also make it possible for organisational intentions to be articulated and
pursued by their agents: PAPs and ALAPs. These artificial persons, O, P and AL, have
scaffolded societal affordances, are controlled at some fundamental level and can change
the world.

Martin Heidegger (Heidegger et al. 2010, pp. 39–110) distinguishes three kinds of
being in the world:

1. Innerworldly beings – all beings which exist within the world;
2. The being of produced tools encountered in their own right; and,
3. The being-in-the-world, called Dasein (being there), that is capable of uncovering

innerworldly beings, and engaging in existential relationships within the worldliness
of the world (Fig. 1).

Fig. 1. Heidegger’s framework for beings in the world

Dasein cannot be categorially defined – part of the definition of Dasein is that it is
incomplete, and always changing as it moves forward into a horizon of time (Dreyfus
1991; Heidegger 1976; Heidegger et al. 2010). Dasein is that being in the world who
makes and uses tools which can be described categorially as she comports herself to the
world in which she lives and takes care of business. An ALAP crosses the Dasein 2–3
Heideggerian divide.
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The ALAP “Facebook for Politics” services a relationship between the Facebook
organisation and a Customer. The tool can, for a fee, make Facebook professionals
(PAPs) available to an election campaign, work with external specialists (other artificial
persons), internal and external tools of artificial intelligence (ALAPs) and operate over
diverse datasets. Facebook for Politics can affect the world in influencing the outcome
of elections. Such a tool, and most of those it partners with, could be called a Dasein
2.x: one that was created to operate as a tool, but which has important aspects of human
personhood, such as an ability to develop a (quasi-) existential relationship with the
world, and a comportment to take care of business.

3 Some Issues for Artificial Persons

Artificial persons raise questions not only of artificial intelligence, but also of inten‐
tionality (all artificial persons are tools) and control (all artificial persons have scaf‐
folding and support). Unpicking the relationships between artificial persons in complex
systems is essentially challenging the Wittgensteinian (Wittgenstein 1980) hurly-burly.
Regarding their freedom of self-expression, their ability to adopt worldly affordances
and the possibilities of their history in time, we see this as an area that needs philosoph‐
ical attention. Where contractual systems are involved we have hermeneutics: contracts
and the accepted ethics of the day to leverage.

And so, for example, where an ALAP such as DeepMind (Temperton 2017) is
working in healthcare services we might argue that the professional ethics of the clinical
professionals whose professional services provide data sets for DeepMind should be
respected by all artificial persons that interact with the DeepMind ALAP. Philosophical
governance of healthcare artificial persons may require dialectics, preservation of the
Hippocratic oath (“Hippocratic Oath,” 1923) and data protection by design across
medical data sets in order to prevent unethical behaviours, such as the unauthorized
leakage of personal medical records to business artificial persons.

Ascertaining acceptable human behaviours expected of societal tools and ascribing
measurable values along a 2.x scale (which may itself be multidimensional) will be a
non-trivial task. However, we may begin by performing judgements upon the actions
and consequences of an artificial person’s behaviours as if it were a real person. Artificial
persons which preserve human values would be accorded a value close to 3, and those
which are little more than tools, a value close to 2.

Another important area may well be the task of designing and creating suitable soci‐
etal artificial persons which will be capable of protecting societal values, norms and
ethics. Such work might also help us prepare to address a Dasein 3.x – a supra-personal,
supra-cognitive being with all the existential issues of Dasein, appearing as a superin‐
telligence (Bostrom 2014), or as a benign singularity (Kurzweil 2005).

4 Conclusion

This paper places advanced technological tools on an expanded ontological scale drawn
from Heidegger’s categorial/ontological work. This framework may be of value in
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teasing out significant boundaries between human and machine, pursuing dialectics, and
preserving essential elements of acceptable human behaviour.
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Abstract. Suppose that an autonomous vehicle encounters a situation where (i)
imposing a risk of harm on at least one person is unavoidable; and (ii) a choice
about how to allocate risks of harm between different persons is required. What
does morality require in these cases? Derek Leben defends a Rawlsian answer to
this question. I argue that we have reason to reject Leben’s answer.

1 Introduction

Suppose an autonomous vehicle (AV) encounters a situation on the road where (i)
imposing a risk of harm to at least one person is unavoidable; and (ii) a choice about
how to allocate risks of harms between different persons is required (Lin 2016; Goodall
2014).1 What does morality require in these cases? How, morally, should AVs be
programmed to allocate harm or risks of harm between the different parties? I call this
the moral design problem (Keeling 2017, 2018).

Many people endorse a utilitarian answer to the moral design problem (Bonnefon
et al. 2016). According to this approach, AVs should be programmed to minimise
expected harm or loss-of-life in collisions. Leben (2017) recently proposed a contrac‐
tualist alternative to the utilitarian approach. His answer is based on Rawls’ (1971)
theory of justice. Whilst utilitarians are concerned with maximising some conception of
the good, such as pleasure or wellbeing, contractualists are concerned with the justifia‐
bility of moral principles to those affected by their prescriptions (Scanlon 1998).

In this paper, I argue that we should reject Leben’s contractualist answer to the moral
design problem. In Sect. 2, I explain the main ideas from Rawls’ theory of justice which
feature in Leben’s answer to the moral design problem. In Sect. 3, I explain Leben’s
answer to the problem. In Sect. 4, I argue that Rawls offers less support for Leben’s

I am extremely grateful to Chris Bertram, Noah Goodall, Jason Konek, Derek Leben, Niall
Paterson, and Richard Pettigrew for their comments on earlier drafts. I am also grateful to
audiences at the Philosophy and Theory of Artificial Intelligence Conference at the University
of Leeds, and the Artificial Ethics Symposium at the University of Southampton.

1 I use ‘AV’ to mean Level 5 autonomous vehicles in accordance with the Society for Automotive
Engineers autonomous vehicle classification scheme. These vehicles require no human inter‐
vention or supervision in any circumstances that might arise on the road.
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algorithm than we might initially expect. In doing so, I aim to show that Leben owes an
independent argument for his answer to the moral design problem. In Sect. 5, I raise
three objections to Leben’s answer, all of which must be overcome if he is to provide a
plausible defence of his view. In Sect. 6, I conclude.

2 Rawls on Justice

In this section, I explain the central ideas of Rawls’ (1971) theory of justice which feature
in Leben’s (2017) answer to the moral design problem. This account of Rawls is incom‐
plete in many respects. But I hope it will provide sufficient grounding for the discussion.

I start with two general remarks. (1) Sen (2011: 5–7) distinguishes two methodo‐
logical approaches to questions about justice. On the one hand, some philosophers have
tried to pinpoint what is necessary and sufficient for a just society. On the other hand,
some philosophers have developed comparative conceptions of justice; the aim being
to stipulate a criterion by which social arrangements can be evaluated as more just or
less just relative to one another. Rawls’ theory of justice is an example of the first
approach. His theory tells us what is required for a society to be just. (2) Rawls is part
of the social contract tradition. The social contract theorists aim to ground state’s
authority to restrict the freedoms of citizens in the actual, or hypothetical, consent of
those citizens. In short, the state is justified in restricting the freedoms of citizens only
if the citizens could at least hypothetically consent to those restrictions because it is in
their interests to do so.

I now describe three features of Rawls’ theory. First, Rawls’ argues that justice is
fairness. In Rawls’ view, political society is a system of cooperation between individ‐
uals. The society is just when the terms of cooperation are fair to all those involved.
Second, Rawls’ main concern is with the principles of justice which regulate the basic
structure of society. That is, the political and social institutions which ‘assign basic
rights and duties, and regulate the division of advantages that arise from social cooper‐
ation over time’ (Rawls 2001: 10). Third, Rawls aims to provide both a method to
determine the fair terms of cooperation and a statement of those terms. The method is
a thought experiment called the original position, and the terms are Rawls’ two princi‐
ples of justice. I describe each of these in turn.

The original position is a hypothetical situation in which representative citizens
decide on principles of justice to regulate the basic structure of society from a list of
alternatives. These alternatives are taken to include things like utilitarianism, libertari‐
anism and the two principles of justice offered by Rawls (1971: 122). Each party in the
original position represents the interests of a sub-class of citizens; and all the citizens in
society have a representative.

The parties in the original position must decide which principles of justice to adopt from
behind a veil of ignorance, which Rawls describes as a situation where ‘no one knows his
place in society, his class, position or social status; nor does he know his fortune in the
distribution of natural assets, his strength, intelligence, and the like’ (Ibid.: 137). Rawls also
states that the parties do not know whether the citizens they represent are in a minority or
a majority. Neither do the parties know about the details of their life projects; their
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conception of the good; or their psychological dispositions such as risk-aversion, optimism
or pessimism. Finally, the parties have no knowledge of the economic or political standing
of their society, nor the level of civilisation or culture which the society can reasonably be
expected to achieve (Ibid.: 137–142; Rawls 2001: 85–89).

The candidate principles of justice regulate the distribution of primary goods in the
society, which are goods which all people have reason to want in order to facilitate their
aims and ambitions. Examples include ‘rights and liberties, powers and opportunities,
income and wealth’ (Ibid.: 62). Rawls assumes that all the parties in the original position
are rational, and that each prefers more primary goods to less. So, whilst the represen‐
tatives are unaware of their life aims and projects outside the original position, they have
reason to select principles of justice which provide them with the freedoms and resources
to pursue their life projects, no matter what these might be (Ibid.: 142–3). Rawls also
stipulates that the parties in the original position are equal. In his words, ‘the parties are
equally represented […] and the [principles of justice selected] are not influenced by
arbitrary contingencies or the relative balance of social forces’ (Ibid.: 120).

So, the original position is a bargaining situation which allows the parties to reach a fair
agreement on principles of justice to regulate the basic structure of society. It does not
presuppose an ethical or religious point of view in order to determine what is fair. Instead,
it allows the parties to settle on mutually-advantageous principles of justice which benefit
all citizens no matter what their life aims are or their conception of the good happens to be
(Rawls 2001: 15). The agreement is fair for two main reasons. First, the veil of ignorance
removes the unfair bargaining advantages which some individuals would ordinarily have
over others in light of their social standing (Ibid.). Second, as the parties are ignorant of
their position in society, they are unable to favour principles of justice because these prin‐
ciples confer benefits on them (Ibid.: 18; Harsanyi 1953: 434–5).

I shall presently turn to the principles of justice which, Rawls argues, the parties in
the original position would agree upon. But first, I shall explain the decision procedure
which Rawls believes the parties in the original position would use to discriminate
between candidate principles of justice. According to Rawls, the parties would appeal
to the maximin decision procedure. This means that the parties would look at the primary
goods available to the worst-off citizens under each of the principles of justice, and select
principles which provide the greatest allocation of primary goods to the worst-off citi‐
zens (Rawls 1971: 150–161). The argument for maximin will be discussed in detail in
Sect. 4. But the basic idea is that, as the parties in the original position do not know how
the citizens they represent will fare under different principles of justice, they have good
reason to favour principles which guarantee a minimal set of rights, liberties and oppor‐
tunities for the worst-off citizens (Rawls 2001: 97–00).

I now turn to the principles of justice which, Rawls argues, free and equal citizens
in the original position would agree upon. According to

The First Principle of Justice: Each person has the same indefeasible claim to a fully adequate
scheme of basic liberties, which scheme is compatible with the same scheme of liberties for all
(Rawls 2001: 42).

According to

Against Leben’s Rawlsian Collision Algorithm 261



The Second Principle of Justice: Social and economic inequalities are to satisfy two conditions:
first, they are to be attached to offices and positions open to all under conditions of fair equality
of opportunity; and second, they are to be to the greatest benefit of the least advantaged members
of society (Ibid.).

Rawls argues that the first principle takes priority over the second. In short, the
liberties of individual citizens cannot be compromised to bring about social or economic
gains for society as a whole (Rawls 1971: 61). The first part of the second principle aims
to ensure social mobility. The idea is that individuals are not constrained from improving
their social standing in virtue of their initial social position. The second part is called
the difference principle, and it holds that whilst the distribution of wealth and income
need not be equal, inequalities in the distribution of wealth must be to the advantage of
the worst-off (Ibid.).

This description of Rawls’ theory does not come close to a comprehensive treatment
of the ideas contained within Rawls’ work. But I hope this description will provide
sufficient grounding for the discussion in subsequent sections.

3 Leben’s Answer

In this section, I explain Leben’s answer to the moral design problem. Leben’s answer
uses two ideas from Rawls: the original position and the maximin rule.

First, Leben imagines that the affected parties in a particular AV collision enter a
bargaining situation analogous to Rawls’ original position.2 The affected parties include
any individual who could receive at least some harm conditional on at least one alter‐
native available to the AV. The idea is that, in this hypothetical situation, the parties
could reach a fair agreement on which alternative the AV should select. The parties are
told the survival probabilities of each party conditional on the alternatives available to
the AV; but they do not know which survival probabilities correspond to them. Further‐
more, if multiple parties have the same survival probability on one of the alternatives,
the parties are not made aware of this (which mirrors Rawls’ decision to exclude infor‐
mation about the relative proportions of the population that each citizen in the original
position represents).

Second, Leben contends that in these circumstances, the parties would choose
between the AV’s alternatives using an iterated form of the maximin rule, called leximin.
3 The leximin rule compares the survival probabilities of the worst-off person on each

2 Leben (2017) is, to my knowledge, the first person to apply the original position to the moral
design problem. But it is worth noting that Schelling (2006) defends a similar position for
determining whom to save in many-versus-one rescue cases.

3 Leben does not use the term ‘leximin’. He writes ‘[there] is one part of the Maximin procedure,
that, to my knowledge, has not been worked out sufficiently well by Rawls or anybody else,
and is perhaps the only original contribution that I have to make to the moral theory itself […]
It seems clear that agents in the original position would also consider the next-lowest payoffs,
since they have an equal chance of being the next payer, and are interested in maximising her
minimum as well’ (2017: 110). The iterated form of maximin described by Leben is called
leximin, and it has featured in moral philosophy (e.g. Otsuka 2006: 119–121; Hirose 2015: 29)
and welfare economics (e.g. Sen 1976; Hammond 1976).
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alternative (where the worst-off is understood as the individual with the lowest survival
probability). It then selects the alternative which assigns the greatest survival probability
to the worst-off person. In this respect, leximin is identical to maximin. However, the
rules part company if the survival probabilities of the worst-off are equal on two alter‐
natives. Maximin cannot discriminate between two such alternatives. In contrast,
leximin compares the second-lowest survival probabilities on the remaining alternatives,
and selects the alternative which gives the highest survival probability to the second
worst-off person. If there is another tie, the third-lowest survival probabilities are
compared, and so on. If two or more alternatives have identical profiles of survival
probabilities, leximin randomises between them.

Based on this assumption about how the parties in his original position would decide
between the alternatives in an AV collision, Leben develops a formal collision algorithm
which uses the leximin rule. I shall illustrate Leben’s algorithm with an example.
Consider,

Example: The AV can swerve left or swerve right. If the AV swerves left, Amy has a 60% chance
of survival and Beth has a 30% chance of survival. If the AV swerves right, Amy has a 30%
chance of survival and Beth has a 50% chance of survival.

Leben’s algorithm first compares the survival probabilities of the worst-off parties
conditional on each alternative. These are identical (30%), so the algorithm compares
the survival probabilities of the second worst-off. In this case, 60% is greater than 50%,
so the algorithm selects swerve left. If the survival probabilities for the second worst-
off were identical, the algorithm would randomise between swerve left and swerve right.

This paper is critical of Leben’s algorithm. I argue that we have reason to reject it
as an answer to the moral design problem. But Leben and I agree about more than we
disagree. I want to emphasise some of the excellent features of Leben’s answer to the
moral design problem before describing my criticisms.

First, Leben’s answer is presented in decision-theoretic terms. It is not a set of moral
principles, but an algorithm based on some principles. Leben therefore bridges the moral
design problem with the related problem of how to programme moral principles into
AVs. This is progress, as non-utilitarian moral principles are difficult to formalise.
Furthermore, Leben’s algorithm reaches a verdict in all the collisions with which the
moral design problem is concerned. This is an important step forward for non-utilitarian
answers to the moral design problem, which are difficult to capture in algorithms which
cover all collisions which might arise.

Second, Leben’s algorithm is based on contractualist principles. It therefore resists
some of the objections which can be raised against utilitarian collision algorithms. It
requires no interpersonal utility comparisons; and it does not demand that AV manu‐
facturers sacrifice their passengers to save the greater number in collisions. At the heart
of Leben’s algorithm is the idea that AVs ought to be programmed to allocate harm in
accordance with principles which are justifiable to the recipients of harm. It is imper‐
missible, on Leben’s view, to impose burdens on some to confer benefits on others. The
maximin principle is designed to bring about Pareto efficient allocations of harm. (An
allocation of harm is Pareto efficient if, and only if, there exists no alternative on which
everyone is at least as well-off, and someone is strictly better-off.) So, whilst the moral
motivation for Leben’s project might at first be unfamiliar, the motivations are
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nevertheless laudable. To this end, my criticisms of Leben are not intended as an indirect
defence of a utilitarian answer to the moral design problem. Instead, I hope these criti‐
cisms can be used to develop an even stronger contractualist answer to the moral design
problem.

4 A Rawlsian Algorithm?

Leben (2017: 108) views his collision algorithm as a straightforward application of
Rawlsian principles to the moral design problem. In this section, I challenge Leben’s
assumption that his collision algorithm is defensible on Rawlsian grounds.

There is an important disanalogy between Rawls’ original position and Leben’s
original position for AV collisions. In Rawls’ case, the parties are deciding between
alternative principles of justice which regulate the distribution of primary goods in
society. Rawls writes:

I shall simply take as given a short list of traditional conceptions of justice […] I then assume
that the parties are presented with this list and required to agree unanimously that one conception
is best among those enumerated (Rawls 1971: 122).

According to Rawls, the parties would appeal to the maximin principle when
deciding between the principles of justice, and in doing so favour his two principles over
utilitarianism (Ibid.: 175–183). Importantly, the parties in Rawls’ original position are
not choosing between alternative distributions of primary goods using the maximin
principle. I believe that Leben has misread Rawls here. He writes:

[…] the original position is a method limited to determining the distribution of what Rawls calls
‘primary goods’ (Leben 2017: 109).

In Leben’s original position, the parties must decide between alternatives in a partic‐
ular AV collision using information about the distribution of survival probabilities asso‐
ciated with each alternative. The alternatives, in effect, represent possible distributions
of a single primary good, namely the survival probabilities of each affected party (Ibid.).
Leben argues that the parties in his original position would use the maximin principle
to decide between the alternative distributions of this primary good. Leben’s original
position is therefore analogous to a variation on Rawls’ original position in which the
affected parties decide between competing distributions of primary goods using the
maximin principle.4

This disanalogy between Rawls’ and Leben’s accounts of the original position makes
Leben’s answer to the moral design problem hard to defend on Rawlsian grounds. Rawls
and Leben are defending different claims. Rawls says that the parties deciding between
principles of justice would, in the original position, decide between those principles
using the maximin principle (Rawls 2001: 97). Leben says that parties deciding between
distributions of survival probabilities would, in the original position, use maximin to

4 A further disanalogy is that whilst survival is a primary good, it is not obvious that the prob‐
ability of survival is a primary good. So, the parties in Leben’s original position are choosing
between alternative gambles concerning a primary good. I am grateful to Richard Pettigrew
for this point.
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decide on one such distribution. I shall develop this point into two criticisms of Leben’s
answer.

The first criticism concerns the veil of ignorance. Leben restricts the information
available to the parties in his original position. I do not think these restrictions are
defensible on Rawlsian grounds.

Rawls developed the original position to provide hypothetical circumstances under
which free and equal citizens can reach a fair agreement on principles of justice to
regulate the basic structure of society. The veil of ignorance is imposed for two reasons:
it removes unfair bargaining advantages and it restricts the kind of arguments that might
be provided in favour of some principles over others (Ibid.: 81–8). In short, Rawls does
not want parties in the original position to select principles of justice because those
principles favour individuals in their social circumstances (Ibid.; see also Harsanyi
1953). However, one of the most important features of the original position is that the
parties have sufficient knowledge and understanding to evaluate the alternative princi‐
ples of justice on offer (including, at least, utilitarianism and the two principles offered
by Rawls). No information is excluded about what these principles entail.

The same cannot be said about Leben’s veil of ignorance. Some information is
excluded about the alternatives on offer. The parties are given information about the
distributions of survival probabilities on each alternative. But if the same survival prob‐
ability applies to two or more persons, the parties are not made aware of this (Leben
2017: 112). So, Leben’s veil of ignorance does more than remove unfair bargaining
advantages and prevent arguments of the form ‘we should choose alternative x because
it is in my best interests’. It also provides an incomplete description of the alternatives
available to the parties. In some cases, this is problematic. Consider,

Problem Case: The AV can swerve or continue its current path. If the AV continues, there is a
100% chance that its passenger and four pedestrians will sustain a fatal injury. If the AV swerves,
there is a 100% chance that its passenger will sustain a fatal injury.

The parties in Leben’s original position would know only that at least one person is
guaranteed to die on either alternative. Leben argues that, with this limited information,
the parties would agree to use his leximin algorithm and randomise between the alter‐
natives. The parties do not have sufficient information to perform a utilitarian calcula‐
tion, as they do not know which alternative maximises total or average survival proba‐
bilities over all affected parties. They also lack the requisite information to argue in
favour of swerve on the grounds that swerve Pareto-dominates continue. (On swerve,
at least one party is better-off, and no party is worse-off.) Because the parties have such
limited information, I agree with Leben that leximin is the most sensible rule to use to
discriminate between the alternatives.5 But I agree with Leben only because the parties
have insufficient information to use any other plausible algorithm for discriminating
between the alternatives. It is unclear why the parties should be unaware of the fact that
five people stand to die on one alternative, and just one of these same people on the

5 Note that, with complete information, leximin mandates saving the greater number in many-
versus-one cases (Hirose 2015: 164–5). So, Leben advocates using leximin given the infor‐
mation available, but leximin would not mandate randomising if complete information about
the survival probabilities were given.
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other. Adding this information would not provide unfair bargaining advantages to the
parties in Leben’s original position. Neither would it allow them to favour one alternative
over the other because they stand to be better-off on that alternative.

There are two conclusions to draw here. First, Rawls’ argument for imposing the
veil of ignorance in the original position does not support the restrictions on information
which Leben employs in his analogue of the original position for AV collisions. In
Rawls’ original position, the parties have sufficient information to evaluate the alterna‐
tives on offer. This is not so in Leben’s case. Second, Leben in effect gerrymanders his
veil of ignorance to ensure that the affected parties are forced to decide between the
alternatives using his leximin algorithm. There exists no other rational decision proce‐
dure which could be used. This strikes me as a misunderstanding of Rawls’ motivation
for using the veil of ignorance. Rawls did not want to force the parties to accept his two
principles of justice by restricting the information available to them. He wanted to show
that, under fair bargaining conditions, it is in the parties’ rational self-interest to accept
his principles of justice.

I now turn to the second criticism, which concerns the maximin principle. It is worth
noting from the outset that Rawls did not defend maximin as a universally applicable
decision-rule. He writes:

[…] the maximin rule was never proposed as a general principle of rational decision in cases of
risk and uncertainty, as some seem to have thought […] Such a proposal would be simply irra‐
tional […] The only question is whether, given the highly special and unique circumstances of
the original position, the maximin rule is a useful heuristic rule of thumb for the parties to organise
their deliberations (Rawls 2001: 97).

Rawls (2001: 97–8) argues that maximin is a plausible decision rule to use in the
original position only if certain conditions are met. (1) The parties in the original position
must have no knowledge of the probability of an arbitrary citizen being represented by
each party in the original position. In other words, the parties in the original position do
not know whether the citizens they represent are in a minority or a majority. (2) Because
maximin concerns the worst-off citizens under different principles of justice, it must be
necessary for the parties to be significantly more interested in the primary goods which
can be guaranteed, as opposed to those which can be gained. Rawls argues that this
condition is satisfied to some degree when the guaranteeable level for each citizen is
‘quite satisfactory’; and that it is fully satisfied only if the guaranteeable level is
‘completely satisfactory’. (3) As maximin examines only the worst-case scenario on
each alternative, it must be the case that the worst outcomes on all other alternatives fall
substantially below the guaranteeable level.

The first condition presents a trade-off for Leben. On the one hand, Leben can restrict
the information available to the parties in his original position, such that the parties have
no knowledge of the number of individuals who correspond to each survival probability.
In this case, the first condition is satisfied. But the parties are unable to adequately
evaluate the alternatives available to them in the collision, which I have argued is an
undue restriction on the information available to them. On the other hand, Leben can
relax the restriction on information, and allow the parties knowledge of how many people
correspond to each survival probability. But then Rawls’ first condition for maximin is
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not satisfied. So, Leben satisfies the first condition for maximin only if he imposes an
undue restriction on the information available to the parties in his original position.

The second condition is fully satisfied in Rawls’ original position when the guaran‐
teeable level for each citizen is ‘completely satisfactory’ (Ibid.). If this condition obtains,
Rawls argues that citizens will be more interested in securing basic rights and opportu‐
nities, rather than focusing on the additional rights and opportunities which could be
gained. In the circumstances of an AV collision, the guaranteeable level is unsatisfac‐
tory. These collisions are such that death or serious harm is very likely for at least one
affected party, and a choice about how to allocate harms across different parties is
required. I suspect the affected parties in such a collision would be more concerned with
maximising their chances of survival, rather than guaranteeing a completely satisfactory
survival probability. So, the second condition for maximin is not satisfied.

The third condition states that the worst outcomes on all other alternatives falls
substantially below the guaranteeable level. Recall that for Rawls, the alternatives are
principles of justice as opposed to distributions of primary goods. What Rawls has in
mind here is that the worst-case scenario for a citizen (in terms of rights and opportu‐
nities) under a utilitarian principle of justice is substantially worse than the rights and
opportunities which can be guaranteed under Rawls’ principles of justice. We can
imagine, for example, a situation where one class of citizens is enslaved for the benefit
of another class of citizens. Rawls thinks that maximin is a justifiable decision rule to
prevent this kind of scenario arising. In Leben’s case, this third condition is not met. A
utilitarian collision rule does not offer a substantially worse outcome for the worst-off
affected parties than Leben’s leximin algorithm. It is likely that, on either algorithm, the
worst-off affected parties will be exposed to serious risks of death or harm.

So, Rawls provides three conditions which are jointly sufficient to warrant to the use
of maximin as a decision rule in the original position. None of these conditions are
satisfied in the context of the moral design problem. It seems, therefore, that Rawls’
argument for using maximin does not apply.

5 Objections to Leben’s Algorithm

I have argued that Leben’s (2017) answer to the moral design problem cannot be
defended on Rawlsian grounds. This provides insufficient reason to reject Leben’s
answer. But it does motivate the need for Leben to provide an independent argument in
favour of his answer. I now describe three challenges that must be overcome if Leben
is to provide a defence of his view.

Challenge 1: In some collisions, Leben’s answer mandates programming AVs to select
alternatives which the affected parties could not rationally consent to, provided their
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preferences satisfy the von Neumann-Morgenstern (1953) axioms for rational prefer‐
ences.6

The problem arises because Leben evaluates the alternatives in collisions using
survival probabilities. He assumes that ‘injuries like broken ribs, whip-lash, etc., can be
represented as points along the dimension of likelihood of survival’ (Leben 2017: 111,
113). Survival probabilities are therefore intended as a proxy for physical harm. Leben
acknowledges that a one-dimensional scale of this kind is not entirely plausible, as some
non-fatal injuries might be considered equivalent to or worse than fatal injuries. But
irrespective of what kind of injury is placed at the bad end of the scale, Leben’s decision
to evaluate alternatives using the probability of worst-case scenario injuries obtaining
is what gives rise to our challenge. Consider,

Scenario 1: The AV can swerve left or right. If the AV swerves left, there is a 0% chance that
its passenger will sustain a fatal injury and a 100% chance that its passenger will sustain a lifelong
debilitating injury. If the AV swerves right, there is a 1% chance that its passenger will sustain
a fatal injury and a 99% chance that its passenger will remain unharmed.

Leben’s algorithm selects swerve left, because it gives the passenger the greatest
chance of survival. I contend that there exists at least one scenario (equivalent to or
analogous to Scenario 1) in which Leben’s algorithm mandates programming the AV
to select an alternative which the passenger could not rationally consent to. As
mentioned, I shall assume that the passenger has rational preferences insofar as her
preferences satisfy the von Neumann-Morgenstern (1953) axioms. I also assume that
the passenger strictly prefers no injury to a lifelong debilitating injury; and that she
strictly prefers a lifelong debilitating injury to a fatal injury. Note, however, that the
passenger’s preference ordering can be changed, and the same objection will arise.

Here is the problem: Leben’s algorithm mandates swerve left no matter how low the
probability of a fatal injury is on swerve right. It could be 1%, or 0.1% or 0.01%. One
requirement of von Neumann-Morgenstern rationality is that an agent’s preference
ordering is held fixed under sufficiently small deviations in probabilities. This is called
the Archimedean Property. Formally, letting ≺ denote strict preference, the requirement
is that for any lotteries A, B and C, if A ≺ B ≺ C, then there exists a small probability,
𝜀, such that [(1 − 𝜀)A + 𝜀C] ≺ B ≺ [𝜀A + (1 − 𝜀)C].7 As there is no 𝜀, such that if the
probability of a fatal injury on swerve right is equal to 𝜀, then Leben’s algorithm
mandates swerve right, it follows that there exists at least one collision (equivalent to
or analogous to Scenario 1), where Leben’s algorithm mandates programming the AV

6 The axioms: let ≺ denote strict preference, ∼ denote indifference and ≼ denote weak preference.
Completeness holds that for any two lotteries A, B, either A ≺ B, B ≺ A or A ∼ B. Transitivity
holds that if A≼B and B≼C then A≼C. Continuity holds that, if A≼B≼C, then there exists a
probability p ∈ [0, 1] such that 

[
pA + (1 − p)C

]
∼ B. Independence holds that if A ≺ B, then for

any C and p ∈ [0, 1], 
[
pA + (1 − p)C

]
≺

[
pB + (1 − p)C

]
. My argument makes use of the Archi‐

medean Property, which is sometimes assumed instead of completeness. But if either complete‐
ness or the Archimedean Property is assumed, the other is entailed by the von Neumann-
Morgenstern Expected Utility Theorem.

7 The lotteries in square brackets should be read, e.g. ‘A with a probability 1 − 𝜀 and C with a
probability 𝜀’.
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to select an alternative which is not in the passenger’s rational self-interest. Hence, in
some collisions, Leben’s algorithm mandates programming the AV to select alternatives
to which the passenger could not rationally consent.

This is problematic for two reasons. First, many would argue that, in cases like these,
it is morally permissible to take the gamble on behalf of the passenger and programme
the AV to swerve right. If the gamble did not pay off, it would be a reasonable moral
justification to highlight that we programmed the AV to select the option which we
rationally expected to bring about the best outcome for the passenger (Otsuka 2012).
Second, I take it that Leben’s algorithm is intended to be an algorithm to which affected
parties in collisions could at least hypothetically consent. Unless Leben assumes that
affected parties in collisions have irrational preferences, at least by von Neumann and
Morgenstern’s (1953) standards, it seems that in at least some collisions, the affected
parties could not rationally consent to Leben’s algorithm.

This challenge arises because Leben, in effect, uses the maximin principle twice in
his algorithm. First, the algorithm evaluates each alternative based on the probability of
a worst-case scenario obtaining for each affected party. Second, the algorithm selects
the alternative which provides the best deal for the worst-off party. The objection can
therefore be avoided by removing the first use of maximin. For example, we might
instead calculate the expected utility of each affected party conditional on the alterna‐
tives; and then select the alternative which gives the greatest expected utility to the
worst-off party. This preserves the primary usage of maximin, whilst making it at least
somewhat plausible that the affected parties in a collision could rationally consent to
Leben’s algorithm.

Challenge 2: The maximin rule gives undue weight to the moral claims of the worst-
off. Consider,

Scenario 2: The AV can swerve left or right. If the AV swerves left, there is a 100% chance that
its passenger will die, and twenty nearby pedestrians will be unharmed. If the driverless car
swerves right, there is a 99% chance that its passenger will die, and a 100% chance that twenty
nearby pedestrians will receive lifelong debilitating injuries.

Leben’s algorithm selects swerve right. Indeed, Leben’s algorithm selects swerve
right no matter how many pedestrians stand to receive lifelong debilitating injuries.
Leben (2017: 144) acknowledges this counterintuitive feature of his algorithm and offers
two points in response. First, he argues that scenarios of this kind are unlikely to arise.
But the fact that these scenarios are unlikely does nothing to address the moral complaints
of the pedestrians when such scenarios do arise. Leben’s second response is that ‘[he]
would always prefer to be one of the injured pedestrians (and [he] would thus prefer the
action which produces the minimum outcome)’ (Ibid.). So, whilst many pedestrians
might receive lifelong debilitating injuries, no one individual receives an injury worse
than the fatal injury which the passenger would sustain on swerve left. I am unconvinced.
First, Leben’s algorithm is meant to be contractualist: it aims to programme the AV to
allocate harm in a way that is justifiable to each affected party. If we added a twenty-
first pedestrian to Scenario 2, this would make no difference to the calculation
performed. Prima facie, the moral claims of the twenty-first pedestrian are not given
due consideration, because for Leben’s algorithm, it is irrelevant whether or not she is
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present in the collision (Hirose 2015: 74). Second, I would prefer to lose a limb rather
than die. It does not follow that, if forced to choose between killing one person and
removing a limb from every human on the planet, I have stronger moral reasons to choose
the latter option. The fact that I would prefer to lose a limb rather than die is not a good
moral reason to inflict a very large number of serious injuries to prevent a single death
(Norcross 1997).

Challenge 3: Suppose that Leben is correct about survival probabilities, and that he is
also correct about maximin. In some collisions, there is another algorithm which assigns
a higher survival probability to the worst-off than Leben’s algorithm. Consider,

Scenario 3: The AV can swerve left or swerve right. If the AV swerves left, there is a 0% chance
that Anne will survive, and a 70% chance that Bob will survive. If the AV swerves right, there
is a 1% chance that Bob will survive, and a 60% chance that Anne will survive.

Leben’s algorithm mandates programming the AV to swerve right. This is because
the worst-off party on swerve right has a 1% chance of survival, and the worst-off party
on swerve left has a 0% chance of survival. Leben’s algorithm, then, assigns a survival
probability of 1% to the worst-off party in Scenario 3.

I now introduce a rival algorithm, which we can call greatest equal chances. Leben
contends that sometimes the AV ought to randomise between the two alternatives. So,
there are at least three options in Scenario 3: swerve left, swerve right and construct a
fair lottery between the alternatives. Plausibly, if the AV can construct a fair lottery,
then it can also construct a weighted lottery. On the greatest equal chances algorithm,
the AV is programmed to construct a weighted lottery between the alternatives, where
the weightings are fixed to ensure that the affected parties receive the greatest equal
survival probabilities. The process is akin to tossing a biased coin to decide whether to
swerve left or right, where the degree to which the coin is biased ensures that Anne and
Bob are given the greatest equal chances of survival. If x ∈ [0, 1] is the probability of
swerve left in the weighted lottery, and 1 − x is the probability of swerve right, then the
AV gives Anne and Bob an equal chance of survival provided
0.7x + 0.01(1 − x) = 0.6(1 − x). Solving for x, we see that if the AV assigns a probability
of 0.457364 to swerve left and 1 − 0.457364 to swerve right, then Anne and Bob have
equal survival probabilities of 32.6%.

So, the greatest equal chances algorithm gives the worst-off a survival probability
of 32.6%, which is greater than the 1% survival probability which Leben’s algorithm
assigns to the worst-off. If the alternatives in Scenario 3 should be evaluated using
survival probabilities; and if maximin is the rule that we have best reason to use, then
we ought to adopt greatest equal chances in place of Leben’s algorithm8. It follows that
under Leben’s two assumptions, there exist collisions in which another collision algo‐
rithm ought to be used to decide between the alternatives.

8 The earliest statement of the relation between maximin and greatest equal chances is, to my
knowledge, due to Parfit (2003: 76–8). For discussions of lotteries like the one described see
(Rasmussen 2012), Rivera-López (2008) and Hirose (2015: 121–2).
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6 Conclusion

In this paper, I argued that we have reason to reject Leben’s (2017) answer to the moral
design problem. First, I argued that Rawls’ (1971) arguments for the veil of ignorance
and the maximin principle do not support Leben’s application of these tools to the moral
design problem. In doing so, I established that Leben owes an independent argument in
favour of his view. Second, I argued that Leben’s algorithm is based on two problematic
assumptions: (i) that we ought to evaluate the alternatives in AV collisions using survival
probabilities; and (ii) that we ought to use the maximin principle to choose between the
alternatives. I then argued that even if these assumptions are granted, there are some
collisions in which a greatest equal chances algorithm is preferable to Leben’s algorithm,
because it provides a higher survival probability for the worst-off party.
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Abstract. This paper addresses how to act towards digital agents while uncertain
about their moral status. It focuses specifically on the problem of how to act
towards simulated minds operated by an artificial superintelligence (ASI). This
problem can be treated as a sub-set of the larger problems of AI-safety (how to
ensure a desirable outcome after the emergence of ASI) and also invokes debates
about the grounds of moral status. The paper presents a formal structure for
solving the problem by first constraining it as a sub-problem to the AI-safety
problem, and then suggesting a decision-theoretic approach to how this problem
can be solved under uncertainty about what the true grounds of moral status are,
and whether such simulations do possess these relevant grounds. The paper ends
by briefly suggesting a way to generalize the approach.

1 Introduction

How should we act if artificial agents are deserving of moral consideration? Here, by
artificial agents, I mean digital agents – agents which have been realized on computa‐
tional substrates.

In this paper, I want to work towards this general problem by focusing first on a more
particular case – how we should act regarding simulations run by an artificial superin‐
telligence. The topic of artificial superintelligence (ASI) has received increased attention
recently, with focus on the questions of whether an ASI is possible and if so, how we
should steer its creation given various risks.1 However, the topic of the moral status of
artificial agents has been considered less, with scant attention being paid to the moral
status of simulations run by an ASI (Armstrong et al. 2012; Bostrom 2014). It is this
gap that I wish to fill.2

One way to pose the question is to first consider the moral question:

1 Chalmers (2010), Bostrom (2014), Yudkowsky (2001), Armstrong et al. (2012), Dainton
(2012), Steinhart (2012), Shulman and Bostrom (2012), etc.

2 There has also been discussion on how we should handle artificial suffering more generally,
even in non-ASI circumstances (See for instance Metzinger (2013)). However, for the purposes
of this paper, I want to focus on ASI-run simulations as (1) they might be significantly more
extensively deployed given that the cost to do so would be lower for a superintelligent agent,
and (2) they are relevant for the larger ASI problem (as will be laid out in the Sect. 2.1), which
is my larger focus here.
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Moral Question: Do simulations run by an ASI have moral status?

(a) What are the properties/relations that ground moral status?
(b) Do such simulations instantiate these relevant properties/relations?

The moral question is important, and we will need to consider it, but that is not the
question that I shall be focusing on. I want to consider the question of the moral status
of simulations as a sub-problem of the larger problem of how we might control the
creation of an ASI (the AI-safety problem). This way of posing the question of moral
status is the decision problem:

Decision Problem: How should we act to ensure that simulations with moral status are
treated permissibly by the ASI, while also ensuring otherwise desirable outcomes from
the creation of the ASI?

My answer to how we might solve the decision problem is roughly as follows: we
should act by first decision-theoretically formalizing the problem as one under moral
and non-moral uncertainty, then work out the appropriate values of possible outcomes
in this formalization, and finally utilize the right decision rule to select the appropriate
action. However, executing this total project would require solving deep problems in
ethics, philosophy of mind, decision theory and moral uncertainty, and is therefore
beyond the scope of this paper. Here, I shall focus on just the first part – how we can
decision-theoretically formalize the problem as one under moral and non-moral uncer‐
tainty (Sepielli (forthcoming); MacAskill 2014).

The structure of the paper then will roughly be as follows. In Sect. 2, I will set up
the decision problem. I will do this by first introducing the larger problem of constraining
the superintelligence (the AI-safety problem), and then introducing the problem of
simulations as a subset of the AI-safety problem.3 I will introduce this problem of simu‐
lations as a decision problem, without too much formalization here. To end this section,
I will consider one quick solution to this decision problem, and outline why we should
view it as inadequate. In Sect. 3, I will briefly enumerate the accounts of moral status
that are most prominently held. I will argue that we should focus on accounts of moral
status that ground it in properties that are computationally realizable, and will eliminate
those accounts of moral status that we can quickly rule out as not computationally real‐
izable. I will also suggest further moves we can make to thin the list of remaining prop‐
erties that we need to check for computational realizability. In Sect. 4, I will pull together
the prior conclusions to more rigorously formalize the decision problem. Here, I will
outline what it will take to transform the decision problem from a decision under igno‐
rance to a decision under risk, and how the problem will look in each case. Finally, in
Sect. 5, I will end with some parting thoughts about how such an approach can be
generalized.

3 While I’m using the phrase ‘AI-safety’ here as specific to ASIs, the term has been used more
broadly in the literature. See for instance Amodei et al. (2016).
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2 Introducing the Decision Problem

2.1 Artificial Superintelligence and the AI-Safety Problem

The issue of moral status arises when we consider the possibility of an ASI. For the
purposes of this paper, the qualities of such an ASI would include (at least) radically
superior cognitive capacities across all domains, faster than humanly correctable speed
of implementation and thus a position from which it can exert profound influence over
many, many lives (perhaps all of posterity).

Given the potential capabilities of such an intelligence, it is a matter of basic prudence
to ask how its actions will affect the world. Any actions taken by an ASI will be taken
in service of a goal that initial creators of the ASI (or creators of its seed form) will
endow it with,4 so the specification of this goal or principle becomes of crucial impor‐
tance. Furthermore, if we want to prevent the ASI from acting in certain ways to avoid
undesirable outcomes, we will also need to give it some constraints. These goals and
constraints together, I shall refer to henceforth as the ASI’s ‘governing principle’. It is
this problem of determining an adequate governing principle for an ASI that I refer to
as the AI-safety problem.5

Recently, there have been some guiding principles and constraints proposed that
solutions to this problem must adhere to. I want to outline three such principles and
constraints that are relevant to our discussion.

The Deadline Constraint. Solving the AI-safety problem is what Bostrom calls doing
“philosophy with a deadline” (Bostrom 2014). We are unsure about exactly when such
an ASI might arise. Given the consequences of implementing the wrong solution to the
AI-safety problem, it is imperative that we endeavour to be as right as possible as quickly
as possible.

The All-Things-Considered (ATC) Constraint. The costs and harms that we need to
watch out for and guard against, in solving the AI-safety problem, are of varied types.
There are moral considerations, such as the moral status of an ASI and of other artificial
agents (like simulations), as well as obligations to future generations. There are also
other considerations, such as prevention of extinction scenarios or the crippling of

4 One point often raised by individuals is whether such an intelligence will start to develop its
own goals. While I will not go into this issue here, there is an extensive discussion of this topic
in Chap. 7 of Bostrom (2014), where he argues that there need be no necessary relationship
between intelligence and fundamental goals.

5 To align the terminology used with the existing literature (Bostrom 2014), the AI-safety
problem is the problem of articulating the correct motivation for the ASI, which is one part of
what is known as the motivational selection problem.
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human potential. When considering solutions to the AI-safety problem as well as any
of its sub-problems, it is crucial that we reflect all these relevant considerations.6

The Principle of Epistemic Deference (PED). The PED can be stated as follows:

A future superintelligence occupies an epistemically superior vantage point: its beliefs are
(probably, on most topics) more likely than ours to be true. We should therefore defer to the
superintelligence’s opinion whenever feasible (Bostrom 2014).

The general sentiment is that we should always defer to our epistemic superiors, and
this is especially so when costs of being wrong are extremely high, as is the case in
solving the AI-safety problem.

2.2 Moral Status of Simulations

Here, it would be fruitful to clarify what is meant by moral status. One way of doing so
is to consider a distinction between a moral agent and a moral patient (Norcross 2004).
While a moral agent is a being that is subject to moral obligations and other moral
expectations, a moral patient is a being whose interests ought to be considered in one’s
moral decision making, for the being’s own sake. By moral status then, we are concerned
exclusively with a being’s standing as a moral patient, and this can be best captured as
follows,

[A]n entity has moral status if and only if or its interests matter morally to some degree for the
entity’s own sake, such that it can be wronged.7

Thus, an entity with moral status requires us to act morally for its own sake, inde‐
pendent of other instrumental reasons (though such reasons could still apply, even over‐
ridingly).8 Based on this understanding of moral status, we can now consider what
simulations could have such status.

There are some solutions that have been put forward to the AI-safety problem that
require that the ASI pay attention to and determine the preferences, attitudes, desires

6 Here, the ATC constraint seems to be too vaguely formulated – for instance, we need to be
able to say not just that solutions run afoul of it, but also assess the extent to which they do so.
The ATC constraint thus needs to be further developed to provide a metric that allows us to
make this assessment. Such a metric would need to track, for any given solution, the probability
of incurring other costs (apart from morally impermissible treatment of simulations) along with
the magnitude of the cost incurred. We shall look at one way of defining such a metric in Sect. 4.

7 Jaworska and Tannenbaum (2013). An understanding of moral status as being concerned with
moral patienthood is not universally accepted in the literature – sometimes, moral status is
associated both with moral agency and moral patienthood. For the purposes of this paper,
however, we should understand it as just referring to moral patienthood.

8 There is a further distinction that can be drawn here, between distinct types of non-instrumental
moral status. Kamm notes that we can speak of the status an entity has “in its own right”
compared to the status that it has “for its own sake”, where violations against the latter allow
us to speak of the entity being morally wronged whereas violations against the former do not
permit it. Here, I will limit my scope to only considering an account of moral status in the
traditional sense, where an entity counts “for its own sake”. Kamm (2007).
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and/or other mental states of existing individuals. Let us call this class of solutions the
psychological-profile class of solutions. Examples of solutions in this class include
Coherent Extrapolated Volition9, or more generally, other ‘Do What I Mean’ or ‘Do
What I Want’ models (Bostrom 2014, pp. 220–221). We can then consider a further sub-
class (let’s call it the ‘simulation class’) – a sub-class where the solutions populating it
determine the psychological profile of an individual by first modeling or simulating the
individual with a high enough level of fidelity, and then subsequently extracting the
relevant preferences/mental states. As Armstrong, Sandberg and Bostrom note,

To answer specific questions, the [ASI] may have to simulate other entities inside itself. For
instance, … to decide whether humans would have their happiness increased by a certain project,
it may have to create models of specific humans (Armstrong et al. 2012).

This procedure for determining the psychological profile might be recommended by
design or selected by the ASI as an adequate method even without being explicitly
recommended. However, crucially, what defines solutions in the simulation-class is that
the representations of individuals utilized by the ASI for those solutions are of high-
enough fidelity that they may have moral status.

The project of this paper then is to answer the decision problem. We might modify
and restate the decision problem as follows:

DP: Given that we need to solve the AI-safety problem, and given that some solutions
to the AI-safety problem may cause the ASI to create simulations with moral status, how
should we act?10

2.3 Preliminary Suggestion – The PED Solution

One solution is to offload the decision problem (or part of it) to the ASI. This can be
argued to be in line with PED. We should get the ASI to figure out for us whether the
simulations it runs have moral status, and what would count as morally permissible
treatment given that they have such status.

There is however a major reason that we cannot be too hasty in offloading the problem
to the ASI. The PED requires that we only defer to the superintelligence’s opinions
“whenever feasible” – this need not fit our situation. Consider the case where for the
ASI to arrive at the answer to the question of whether simulations possess moral status,

9 Coherent Extrapolated Volition as a solution to the AI-safety problem recommends that we
ask the ASI to implement the coherent extrapolated volition of humankind, where this CEV is
an agent’s wish for himself if he were idealized in certain ways – if he were smarter, more the
person he wished he were, etc. This proposal looks for coherence among such idealized wishes
of humans and recommends that the ASI implements the wishes where there is such a strong
coherence. Yudkowsky (2004).

10 This is a decision problem that is relevant to more than one type of ASI. Among other types,
ASIs are classified as oracles (question-answering ASIs), genies (intermediate-level task-
oriented autonomously acting ASIs) and sovereigns (autonomously acting ASIs with a single
open goal). However, all three types may run simulations to understand the psychological
profiles of individuals. See Bostrom (2014) for further details on the classification of the various
types of ASIs.
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it first needs to run such simulations. Perhaps it would need to understand what we mean
by morality, or what intuitions we have about moral status. In this situation, it would
not be possible for the ASI to answer the question of whether simulations have moral
status without creating simulations, and thus potentially incurring the same high costs
that we wanted to avoid in the first place.11 In such a scenario then, it would not be
feasible to defer to the opinion of the ASI.

There remains a possibility that the ASI can determine the answer to such questions
without simulating. We can thus stipulate that if we can get the ASI to answer such
questions without simulating and without sacrificing accuracy, then we should utilize
this method. However, in the absence of such certainty, we ought not to blithely defer
to the ASI’s opinions anyway. In this paper then, I will assume that the above possibility
is a very real one, and thus that it is not feasible to defer to the ASI’s opinion on this
topic.

3 The Grounds of Moral Status

Given that we’re focusing on the decision problem rather than the moral question, my
aim in this paper is not to argue for one account of moral status over another. There is
extensive disagreement on the topic, and my aim is to consider whether there are any
alternative strategies that can be applied to solve the decision problem.

3.1 The Various Accounts of the Grounds of Moral Status

Here, I will be focusing on four main categories of accounts that answer to the question
of what grounds moral status. Between these four categories, we will cover most of the
positions staked out in the debate.12 The four categories are as follows: (1) Sophisticated
Cognitive Capacities (SCC) accounts, (2) Potential for SCC and Membership in SCC
Species accounts, (3) Special Relationship accounts, and (4) Rudimentary Cognitive
Capacities (RCC) accounts.

SCC accounts claim that the grounds of moral status are certain sophisticated cogni‐
tive capacities that entities can possess. If an entity possesses the relevant sophisticated
cognitive capacity, then that entity possesses some level of moral status. Examples of
such sophisticated cognitive capacities are self-awareness, being future-oriented in
desires and plans, a capacity to value, bargain and assume duties and responsibilities,
personhood, (Jaworska and Tannenbaum 2013) and other capacities that come under
what is generally described as sapience13.

11 More generally, such a possibility could obtain if the ASI’s architecture involves ‘black-box’
methods. See Armstrong et al. (2012), pp. 15–19.

12 I follow, with some modifications, the categorization put forward by Jaworska and Tannen‐
baum (2013).

13 Bostrom and Yudkowsky introduce this notion of sapience as “a set of capacities associated
with higher intelligence, such as self-awareness and being a reason-responsive agent”. Bostrom
and Yudkowsky (2011).
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Potential for SCC and Membership in SCC-Species accounts are a variant of SCC
accounts. Here, even absent the sophisticated cognitive capacities, having either the
potential for such capacities or belonging to a species whose members typically have
such capacities is also sufficient to endow an entity with moral status. Such potentiality
or membership accounts can be (and often enough have been) associated with any of
the relevant sophisticated cognitive capacities suggested in the first category.14

Special Relationship accounts ground moral status in relationships that we share with
entities. For instance, we share the relationship of being co-members of the human
community with all other humans, and some special relationship accounts claim that
this provides us with certain duties to other human beings. Such accounts are often
advocated instead of potentiality or membership accounts as relationships are more often
perceived as morally significant than potential, or species membership.

RCC accounts claim that moral status is grounded in certain rudimentary cognitive
capacities. Examples of such rudimentary cognitive capacities are the capacity for
pleasure and pain, the capacity for basic emotions, the capacity for consciousness (in
the what-is-it-like-to-be or sentient sense) and the capacity for having interests.15

3.2 Navigating the Various Accounts

So far, we have observed two insights:

1. Quick solutions to the decision problem (such as the PED solution) offer some
benefits, such as satisfying the deadline constraint, but suffer from other failings and
so for now should be treated as non-optimal solutions, and

2. There are numerous types of accounts of moral status, and numerous accounts within
each type, with no clear consensus on any one account or type of accounts.

14 Two important accounts, while not being potentiality or membership accounts, still resemble
them. The first account is Shelly Kagan’s ‘modal personhood’ account – to have moral status,
an entity must either have the capacity of personhood (“a being that is rational and self-
conscious, aware of itself as one being among others, extended through time”), or have the
property of being a ‘modal person’, such that even if it is not currently a person, it could have
been a person. The second account is S. Mathew Liao’s genetic basis for moral agency account,
where for an entity to have moral status it is sufficient that it possesses the genetic basis for
moral agency, as it occurs in those human beings that we normally take to exercise moral
agency. See Kagan (2016) and Liao (2010) respectively.

15 Apart from these four major categories of accounts, there are a few other possibilities that we
need to cover for the sake of comprehensively mapping out the logical space. Firstly, there is
a possibility that the correct account of the grounds of moral status invokes a property that is
not covered under any of the above four categories. Secondly, there is also the possibility that
the correct account of the grounds of moral status could be a combination of two or more of
the above four accounts – the correct account could thus feature a conjunction of two or more
accounts (for instance, sapience as well as sentience) or a disjunction of two or more accounts
(for instance, with both sapience and sentience being sufficient conditions for moral status
without either being a necessary condition).
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Given the deadline constraint, the second insight is troubling. It is unclear whether
we will be able to solve the moral question by the time we need to act to specify the
governing principle. Assuming we can’t, we need to find alternative ways of arriving at
an appropriate action, perhaps by thinning the list of accounts and types of accounts that
are relevant.

My suggestion here is to first check which candidate properties proposed in the
various accounts are realizable on computational substrates. This is a way of limiting
the grounds of moral status to those that are relevant to the decision problem, because
properties which are not computationally realizable need not be worried about – simu‐
lations could never possess those properties, regardless of whether the properties do
ground moral status. This thus cuts down on the amount of philosophical work that needs
to be done, as per the deadline constraint.

The clearest case of an account that requires a non-computational substrate is the
account that requires a special relationship of being co-members of the human
community. Simulations are not members of the human community, assuming that to
be a member of the human community one needs to be a biological human. Thus,
regardless of whether moral status is truly grounded in this relationship, simulations
can’t possess moral status – this account can be safely ruled out. One can run a similar
argument against accounts that require an entity to belong to a particular biological
species, as several membership-based accounts do.

However, this still leaves many other accounts, including other kinds of special
relationship ones. The question now is how we can further limit the search space of
properties that we need to check for computational realizability.

One way to do this is to show that certain properties are just dependent cases of other
ones – to determine whether the former are computationally realizable, we would first
need to determine whether the latter are.

For instance, consider potentiality accounts of moral status. Potentiality accounts
claim that for an entity to have moral status, it must at minimum have the potential for
a certain capacity or property, even if it does not currently possess it. An example of
this would be an account that says that moral status is grounded in the potential for
rationality (understood in some specific way). However, an entity could not possess the
potential for rationality if rationality was not realizable on its substrate. Thus, to be
relevant to the decision problem, potentiality accounts that state that moral status is
grounded in the potential for property x need to have property x itself first be computa‐
tionally realizable. If it is not, then this rules out as relevant to the decision problem not
just accounts which ground moral status on property x, but also those that do so on the
potential for property x.16

16 Once we have confirmed that the relevant property is computationally realizable, there is still
further work to be done depending on which account is the correct account of moral status. If,
for instance, the rationality account is the right one, then all we need to check is if simulations
are rational. However, if the potential for rationality account is the right one, then we need to
ask whether simulations are rational, and if not, whether they have the potential to be rational.
This would require the further step of figuring out what would it take for something to have
the potential to be rational. However, in either case, the computational realizability of ration‐
ality still needs to be checked.
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Given the layout of the terrain outlined in Sect. 3.1, this helps us limit the number
of properties we need to test for computational realizability enormously. When it comes
to SCC accounts and potential for SCC accounts, we just need to check the computational
realizability of the sophisticated cognitive capacity in question. Furthermore, this can
be extended to the remaining special relationship accounts as well. Consider that for
special relationship accounts, it is not the case that any possible relationship at all can
confer moral status to an entity. This would allow for us to give moral status to our chair,
since we share a relationship with it of being in the same city. For special relationship
accounts to be plausible, they would have to be grounded in some relevant moral prop‐
erty that is shared between us and the other entity (such as the property of being human,
as seen earlier). Whether special relationship accounts are relevant to the decision
problem thus depends on whether these properties are computationally realizable. We
can then understand that there can be 3 types of special relationship accounts - where
the relevant moral property is one of the SCC properties, one of the RCC properties, or
neither. If it is an SCC or a RCC property, then once again as in the case of potentiality
accounts, this would limit the search space.

At this point, we can take stock of which grounds of moral status we need to check
for computational realizability. We need not check those grounds that require the prop‐
erty of having a biological substrate, or other properties which require biological
substrates. We also need not check potentiality, membership or special relationship
accounts which are dependent on properties already included in the SCC and RCC
accounts. Thus, we need to check the computational realizability only for the sophisti‐
cated cognitive capacities and rudimentary cognitive capacities listed in Sect. 3.1, as
well as any other properties that are the basis of potentiality, membership or special
relationship accounts.

4 The Decision Problem Updated

I will now further formalize the decision problem, before showing how the decision
formalization changes as we update it with the relevant information. This process will
turn the decision problem from a problem under ignorance to a problem under risk,
where we have the relevant information. Once I have fully formalized the problem, I
will then consider what it would take to solve the problem.

4.1 Formalizing the Decision Problem

For the purposes of formalization, I shall make some simplifying assumptions. First, I
want to limit outcomes of actions taken to having two parts, which can be tracked by
corresponding metrics – (1) the level of moral infringement (MI) of the simulations
given their having moral status, and (2) the level of accuracy of the resulting simulation,
which will be a stand-in for all the other costs (moral and non-moral) flagged by the
ATC constraint. Secondly, for each of these two metrics, I would like to stipulate certain
values given certain actions:
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I. Moral Infringement (MI) – There will be no moral infringement if we bar the ASI
from running simulations that have the relevant property that grounds moral status,
an equal or higher level of moral infringement if we don’t bar the ASI from running
such simulations but constrain their running in certain ways (to accommodate their
moral status), and the highest level of moral infringement if we allow the ASI to run
such simulations in a completely unconstrained manner.

II. Accuracy – There will be the highest loss of accuracy if we bar the ASI from running
simulations possessing a certain property, an equal or lower loss of accuracy if we
don’t bar the ASI from running such simulations but constrain their running in
certain ways, and the least or no loss of accuracy if we allow the ASI to run such
simulations in a completely unconstrained manner.

For our current purposes, we can think of the rankings for each metric as ordinal
rankings rather than cardinal (or ratio) ones.

Finally, PA refers to property A and PCR refers to the property of being computationally
realizable such that ‘PA ⊆ PCR’ signifies that property A is computationally realizable. SA
refers to simulations that have property A. P* refers to the property that grounds moral status
such that ‘PA ⊆ P*’ signifies that property A grounds moral status.17

We can now introduce the Decision Matrix 1 (DM1) as representing the decision
problem as a problem under maximal ignorance, where we are ignorant about (1) which
property is computationally realizable as well as (2) which property grounds moral
status. DM1 shows the decision problem concerning property X, where property X is
one of the candidate properties that ground moral status.

Decision
Matrix 1.

PX ⊆ PCR

PX ⊆ P*
PX ⊆ PCR

PX ⊈ P*
P* ⊆ PCR

PX ⊆ PCR

PX ⊈ P*
P* ⊈ PCR

PX ⊈ PCR

PX ⊆ P*
PX ⊈ PCR

PX ⊈ P*
P* ⊆ PCR

PX ⊈ PCR

PX ⊈ P*
P* ⊈ PCR

Bar SX - No MI
- Most loss
of accuracy

- Most MIa

- Most loss
of accuracy

- No MI
- Most loss
of accuracy

- No MI
- Least/no
loss of
accuracy

- Most MI
- Least/no
loss of
accuracy

- No MI
- Least/no
loss of
accuracy

Run SX

Constrained
- Some MI
- Some loss
of accuracy

- Most MI
- Some loss
of accuracy

- No MI
- Some loss
of accuracy

- No MI
- Least/no
loss of
accuracy

- Most MI
- Least/no
loss of
accuracy

- No MI
- Least/no
loss of
accuracy

Run SX

Unconstrain
ed

- Most MI
- Least/no
loss of
accuracy

- Most MI
- Least/no
loss of
accuracy

- No MI
- Least/no
loss of
accuracy

- No MI
- Least/no
loss of
accuracy

- Most MI
- Least/no
loss of
accuracy

- No MI
- Least/no
loss of
accuracy

aThis need not strictly be true – it rests on the assumption that if P* is computationally realizable, it will be instantiated by the simulations
run by an ASI. Of course, this is entirely dependent on the architecture of the simulations run by the ASI, and what P* actually is.

Accounting for this, the MI value here (and in the column “PX ⊈ PCR, PX ⊈ P*, P* ⊆ PCR”) should actually be ‘No MI/Most MI’, where
the exact value will depend on whether P* is instantiated for the ASI-run simulations. However, for the sake of easier representation
of the decision-situation, I have made the aforementioned assumption.

17 Here, we shall simplify the scenario such that it is not the case that multiple properties can individ‐
ually be sufficient for grounding moral status – thus one and only one property grounds moral status.
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Thus, for instance, if we choose to bar a simulation with property X (‘Bar SX’) when
property X is computationally realizable and also grounds moral status (‘PX ⊆ PCR, PX
⊆ P*’), then simulations with moral status will not be treated impermissibly (‘No MI’),
but there might be great loss of accuracy in capturing the psychological profiles of indi‐
viduals for use by the ASI since it can’t simulate effectively (‘Most loss of accuracy’).
However, if we choose to run a constrained simulation (‘Run SX Constrained’) under
the same conditions (‘PX ⊆ PCR, PX ⊆ P*’), then while there is some risk of morally
impermissible treatment since the constraints might not be fool proof (‘Some MI’), it
would reduce the loss in accuracy as some level of simulation would be allowed for the
ASI (‘Some loss of accuracy’).

Prima facie, no action dominates any other. Furthermore, any closer examination of
whether some outcomes are more valuable than others would require that we be able to
commensurate MI values with accuracy values. This is a problem that we will return to
shortly.

One way to make progress would be to check for which properties are computa‐
tionally realizable. If we can have knowledge of this, we can erode some of the uncer‐
tainty in DM1 and represent the new decision problem with Decision Matrix 2 (DM2).
DM2 would then just be DM1 without the last 3 columns, since there is no longer
uncertainty about whether property X is computationally realizable – if it were not, we
would not be considering it as relevant to the decision problem.18

Let’s now look at the final piece of information needed to transform this problem
from a problem under ignorance to a problem under risk – knowledge about which
property grounds moral status, which can be reflected by the probabilities of each of the
three possible states (columns) listed in DM2. For the relevant probabilities, we can use
credences that we have regarding each of the three states. The probabilistic coefficient
for the first state is our credence that property X grounds moral status, for the second
state it’s our credence that property X does not ground moral status and the property
that does is computationally realizable, and so on.19 We can thus imagine a Decision
Matrix 3 (DM3) that is identical to DM2, except with these credences associated with
each of the three states.20

So far, we’ve made three simplifying assumptions that we will now factor back into
the decision problem. Firstly, we’ve articulated the actions in the decision problem as
only relating to one property – either bar, run in a constrained manner, or run in an

18 An alternative scenario could be if we’re not certain about which properties are computation‐
ally realizable, but hold credences about the computational realizability of the various prop‐
erties. In this case, DM2 would look more or less like DM1, except with credences associated
with each column (each situation).

19 I have assumed in Sect. 3.2 that we won’t be able to solve the moral question (or even MQ(a))
in time. However, if we can solve MQ(a) in time and thus have full information about which
property it is that grounds moral status, this would just be reflected with a credence of 1 asso‐
ciated with the scenario that that property grounds moral status, and a credence of 0 for all
other scenarios.

20 We can use our credences for these states in a way that is consistent with recent work on
normative uncertainty. See MacAskill (2014). The only difference here is the further problem
of deciding whose credences should be taken into account.
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unconstrained manner simulations which instantiate property X. However, unless we
are certain that moral status is grounded in one particular property (something we have
already assumed in Sect. 3.2 we won’t be certain of), we will have to specify actions
relating to multiple properties. Thus, the list of actions would include actions like ‘Bar
SX, Run Unconstrained SY, Z’, ‘Bar SX, Y, Run Constrained SZ’, and so on, including any
number of combinations of the three acts specified with the total set of properties in play.
The greater number of actions we would need to choose from would make the resulting
decision matrix much more complex.

Secondly, we’ve only allowed a range of three actions that can be taken – either bar
the simulations, run constrained versions of them, or run unconstrained versions of them.
However, this is obviously a simplification. To give one example, it might be that the
most moral way in which we can act is to create as many simulations as possible in as
pleasurable circumstances as possible. Such an action is not captured in the original
three. Also, even if we want to run simulations in a constrained manner, there are various
degrees and types of constraints we can apply, each of which can be represented as a
discrete action. Rolling back this simplification will expand the list of actions even
further.

Finally, to truly address the decision problem, we need to go beyond computational
realizability to whether the property will be instantiated in a simulation. This means that
even DM3 (incorporating the changes I’ve just discussed) is still a decision problem
under uncertainty, because we still don’t have full information – while we know which
properties are computationally realizable, we still don’t have any credences about which
of those properties will be instantiated in a simulation run by the ASI (computational
realizability being a necessary but insufficient condition).

4.2 Solving the Decision Problem

Regardless of the decision formalization we’re solving under, there are two parts to
solving the decision problem. First, we shall need to allocate appropriate values to each
outcome in the decision matrix. Without this, we will not be able to compare the various
outcomes to select preferable ones. Second, once we have allocated values to all the
outcomes, we will need to select decision rules to choose the right act. I will not attempt
to solve the decision problem because each of these two parts raise serious philosophical
difficulties. We shall look at each of these in turn.

There are two main obstacles to being able to attribute values to the various
outcomes. Firstly, the extent of the disvalue of moral infringement of simulations would
depend on our ethical stance – in this case, on which property actually grounds moral
status. For instance, there might be a greater disvalue associated with moral infringement
of simulations if moral status is grounded in the capacity for pain than if it’s grounded
in rationality – it might be morally preferable to interfere with simulations in the latter
case. How might we arrive at an understanding of how much worse certain actions are
according to one theory compared to another? This becomes especially important once
we start aggregating across different decision matrices corresponding to different prop‐
erties. Such an understanding is crucial for our ability to rank, ordinally or cardinally,
the various outcomes. In the literature, this problem is known as the problem of
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intertheoretic comparisons,21 and is one of the major problems facing any account of
decision-making under normative uncertainty. The second obstacle resembles the first
one – how can we compare the importance of preventing moral infringement to the
importance of high accuracy? This is crucial if we want to establish even just a preference
between the outcome where there is no moral infringement but major loss of accuracy,
and the outcome where there is maximal moral infringement but no loss of accuracy.
Without such values, we cannot utilize decision rules to choose between the acts we can
take. Recently, there have been some attempts to solve or work around the problem of
intertheoretic comparisons,22 but more work remains to be done.

If we can resolve the problem of intertheoretic comparisons, then we will be able to
solve the decision problem by using the right decision rule. However, that raises another
problem – which decision rules should we use to select between the various actions
available? This is a problem that comes up regardless of whether we operate on a decision
under ignorance (DM1, DM2) or a decision under risk (DM3). There are various
competing proposals for which decision rule should be used for decisions under igno‐
rance, with candidates such as maximin, leximin, maximax, the optimism-pessimism
rule, minimax regret (Peterson 2009, Chap. 3). When it comes to decisions under risk,
the ground is a little less contested – the dominant rule is expected utility maximisation.
However, this too is not without its detractors.23 Furthermore, considering the extreme
possible values of the outcomes (moral infringement of an extremely high number of
simulations, or a catastrophic loss of accuracy resulting in extinction or permanent
curtailment of humanity’s potential (Bostrom and Cirkovic 2008)), standard decision
rules such as expected utility maximization might ill-fit the decision problem (Bostrom
2009). Further discussion of this issue is beyond the scope of this paper, but I would like
to flag the problem nonetheless.

5 Conclusion

The decision problem has several moving parts, probably more than even the ones
outlined in this paper. However, this paper is a start on introducing, developing and
formalizing the decision problem. While we may encounter further problems, making
progress on the questions raised here would put us in good stead to ensure that we engage
with simulations created by the ASI in a way that is permissible as well as prudentially
beneficially.

21 MacAskill (2014), Chap. 2. The problem of intertheoretic comparisons in theories of normative
uncertainty itself resembles the problem of interpersonal comparisons in social choice theory.
See Steele and Stefánsson (2016), List (2013).

22 MacAskill puts forward a solution to the problem of intertheoretic comparability by drawing
parallels with social choice theory, specifically with how social welfare functionals have been
axiomatized under alternative assumptions about informational comparability. See MacAskill
(2014).

23 See Peterson (2009) Chap. 4 for some paradoxes raised that undermine the utilization of
expected utility maximisation as a decision rule for decisions under risk.
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Furthermore, an approach such as the one sketched out in this paper can also be
generalized to deal with digital agents other than simulations as well. While I have not
pursued this line of thought in this paper, we can abstract from the specific features of
this case, such as the digital agent being a simulation run by an ASI for accuracy consid‐
erations. The decision-theoretic structure provided will still preserve the essential
features of acting under uncertainty towards digital agents with moral status (such as
uncertainty about the right account of moral status, and uncertainty about the compu‐
tational realizability of the relevant properties).
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Friendly Superintelligent AI: All You Need Is Love
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Abstract. There is a non-trivial chance that sometime in the (perhaps somewhat
distant) future, someone will build an artificial general intelligence that will
surpass human-level cognitive proficiency and go on to become “superintelli‐
gent”, vastly outperforming humans. The advent of superintelligent AI has great
potential, for good or ill. It is therefore imperative that we find a way to ensure
—long before one arrives—that any superintelligence we build will consistently
act in ways congenial to our interests. This is a very difficult challenge in part
because most of the final goals we could give an AI admit of so-called “perverse
instantiations”. I propose a novel solution to this puzzle: instruct the AI to love
humanity. The proposal is compared with Yudkowsky’s Coherent Extrapolated
Volition, and Bostrom’s Moral Modeling proposals.

1 Introduction

Many AI researchers believe there is a non-trivial chance that AI with greater than
human-level cognitive capabilities will be developed sometime in the (perhaps some‐
what distant) future (Müller and Bostrum 2016). These AI may eventually become
“superintelligent”—i.e., capable of vastly outperforming humans in all, or nearly all,
cognitive tasks (Bostrom 2014; Chalmers 2010).1 This is both an exciting and unsettling
prospect. If a superintelligence were friendly—if its goals aligned with ours—it could
provide untold benefits to humanity. It could cure diseases. It could increase economic
output such as to end all poverty, hunger, and need. On the other hand, if the superin‐
telligence were malignant—if its goals diverged in important ways from ours—we
would be powerless to stop it (Bostrom 2014, Chaps. 8–10).2

There is always a risk, when thinking about topics like this, of falling into futile
futurology: wild, ungrounded speculation. But, while it’s good to keep this risk in mind,
I believe it is important to start considering the possibilities. For one thing, the suggestion
that superintelligent AI will (eventually) be developed is not ungrounded. This is some‐
thing that many AI researchers are seriously concerned about (Müller and Bostrum
2016; see also Bostrom 2014; Soares and Fallenstein 2015; Yampolskiy 2016). This

1 There are a number of ways in which an “intelligence explosion” like this might happen (Good
1965). Perhaps the most plausible would involve a seed AI undergoing recursive self-improve‐
ment (Yampolskiy 2016, Chap. 5).

2 Given that superintelligence is defined as cognitive performance vastly beyond human-level,
this is hard to dispute.
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certainly doesn’t mean that superintelligence is inevitable—just that it’s a real possi‐
bility. Thus, given the magnitude of the possible outcomes, it is important to work out
how we can increase the probability of ending up with a friendly superintelligence, and
decrease the probability of a malignant one. It’s far better to have a solution and not
need one, than to need one and not have one. Crucially, this work will need to be done
before (preferably long before) any such being is created. The time to start on this
problem is now.

It seems to me that the way to understand the friendly superintelligence problem is
in terms of a relationship. What we are aiming to ensure is that our relationship with the
superintelligence is healthy and beneficial. Perhaps the only such relationship we can
have with such a being is no relationship at all. But, in any case, we are trying to ensure
that it wants what is best for us, cares about our interests, and will do right by us. When
the question is put it in these terms, the shape of a solution starts to become clear. What
will make our relationship with the superintelligence a good one is the same thing that
makes any personal relationship good: love.

2 The Puzzle: Avoiding “Perverse Instantiations”

Before I explain this proposal, it’s important to specify the puzzle it aims to solve. There
are several related puzzles that it is not a solution to. These concern how to express
complex, world-affecting goals in computer code. Suppose the goal we want the AI to
pursue is the maximization of human happiness. It’s quite easy to state such a goal. But
it’s extremely difficult, even in a natural language like English, to explain precisely what
it means. This is classic philosophical territory. What is happiness? Supposing that we
could give a correct accounting of the relevant concepts, we would then face the chal‐
lenge of converting that natural language analysis into the functions and operators of a
programming language. These initial puzzles, in short, are concept learning puzzles.
Abstract natural language concepts are the ingredients of any goal that we might give
an AI. The issue I’m interested in, for the purposes of this paper, assumes that we have
solved these puzzles.

The next challenge, the one I’m addressing, is to figure out which goals or instruc‐
tions to provide. A direct approach would be to simply specify some concrete goal like
“maximize human happiness”. The main problem with this method, as Bostrom (2014)
discusses, is that it is extremely difficult to accurately capture the things we value in
explicit specifications. For any goal that we might specify directly, even one that sounds
agreeable, there is a significant chance that realizing the goal would go horribly wrong.
In Bostrom’s (2014, 146) terminology, that goal likely admits of some “perverse instan‐
tiation”—a way of realizing the letter of the instructions, while betraying their spirit.
For instance, one way of maximizing human happiness would involve implanting elec‐
trodes into our brains and inducing a perpetual state of vacuous, drooling euphoria. We
would feel happy, but that’s not exactly my vision of a life well-lived.

Thus, those who have thought seriously about this problem tend to favor a more
indirect approach (Yudkowsky 2004; Bostrom 2014). Rather than specify a concrete
goal, we should give the AI a procedure by which to decide for itself what to do. This
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approach is appealing insofar as it delegates to the superintelligence the hard work of
figuring out how to remain human-friendly. My proposal adopts this indirect strategy.

3 The Solution: Love

I propose that we can avoid perverse instantiations by instructing the AI to love
humanity. We could start with a roughly human-level AI—one which we expect to
undergo recursive self-improvement resulting in superintelligence—and give it the final
goal of loving humanity. As it progresses towards superintelligence, the AI’s under‐
standing of love (its grip on the concept and its referent) will deepen. Since the AI’s
final goal is to love humanity, it will seek to better understand both what love is (what
we have in mind, as well as what we refer to when we use the term in the relevant ways),
and what is involved in being loving (if Abe loves Bea, what implications does this have
for his behavior?). Ultimately, its goal would be to apply what it has learned about love
to its relationship with us.3 The following sub-sections elaborate this proposal.

3.1 What Is Love?

One might worry that the concept of love is simply to slippery and too vague to be of
use here. However, it’s possible to provide a good deal of precision to the idea. As
psychologist Fehr (2013, 202) writes, there “are now empirically based answers to
questions about the meaning of love and how it is experienced”. Obviously, “love” has
many senses: “I love pizza”; “I am in love with her”; “I love you man”. This is because
the term is not applied to a single phenomenon, but a web of related phenomena.4 Most
importantly for our purposes, empirical investigation has distinguished four kinds of
love (Berscheid and Hatfield 1974; Berscheid 2006, 2010; Fehr 2013): romantic/
passionate, attachment, companionate, and compassionate. The relevant forms for my
proposal are the final two.

It’s worth emphasizing what I’m not suggesting. Romantic or passionate love—what
the ancient Greeks called eros, and which English speakers pick out with the expression
“being in love”—is typically triggered by physical attraction and sexual desire. Natu‐
rally, this is not what I have in mind. Nor am I suggesting that the superintelligence
display attachment love, affection directed towards a particular individual. What I’m
proposing is that the superintelligence display companionate and compassionate love
towards humanity. Companionate love is the kind found between close friends and
family members. It’s characterized by caring, trust, honesty, respect, and can be expe‐
rienced for many people simultaneously. Compassionate love is sometimes called
altruism or selfless love. “A unique antecedent of compassionate love is the perception

3 Some reviewers have questioned whether AI will be capable of emotion. I see no grounds for
skepticism, however. Artificial emotions have long been a theme in AI research (Sloman and
Croucher 1981; Picard 1997; Scheutz 2014).

4 “Perhaps it is no wonder that love has puzzled so many for so long. Part of the confusion is
that the word ‘love’ has been affixed to different parts of this larger, dynamic love system”
(Fredrickson 2016, 848).
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that the other is in distress or in need” (Fehr 2013, 203). I’ll say more about these forms
of love when I discuss what we should expect from a loving superintelligence in
Sect. 3.3. The point, for now, is that love is not a hopelessly vague notion. There are
precise, empirically grounded ways to articulate the idea.

3.2 Who Is to Be Loved?

Thus far, I’ve claimed that the superintelligence should love humanity. But who exactly
should this include? Should it include fetuses, and brain dead comatose patients? Or,
perhaps “humanity” is too narrow. Perhaps, we should include non-human animals and
extra-terrestrial life (if there is any). I’m inclined to say that the superintelligence should
love all persons. This specification brings us into philosophically treacherous waters.
Who counts as a person is itself disputed. We might choose to err on the side of inclu‐
siveness, allowing in all disputable categories just to be safe. Then again, this might beg
important moral questions in favor of vegans and pro-lifers. A superintelligence that
loved fetuses and non-human animals might prevent abortions and meat eating, which
could be a wrongful imposition. Perhaps the best option will be to defer to the superior
epistemic position of the superintelligence by instructing it to discover the extension of
the term “person”. This would add greater complexity to my proposal. But, it may be
worth it.

3.3 What Should We Expect from a Loving Superintelligence?

While it is impossible to say in detail what a loving superintelligence would do (if we
could say, then we would be superintelligent ourselves), the psychology and philosophy
of love provide strong evidence for some general predictions.

There is robust psychological evidence that companionate love is the most central
part of the concept of love. When subjects in psychological studies are asked about the
characteristics of love, they tend overwhelmingly to cite features of companionate love
(Fehr 1988). These results have been replicated repeatedly and display cross-cultural
stability (Luby and Aron 1990; Button and Collier 1991; Kline et al. 2008). Moreover,
in a series of studies, Fehr and Russell (1991) found that companionate love was consid‐
ered the most typical or paradigmatic form. Five features of love are consistently (across
studies and cultures) found to be central to the concept: trust, caring, honesty, friendship,
and respect (Fehr 2013, 206).

Somewhat recently, evidence has emerged that the concept of love may be essenti‐
alist—i.e., “people view certain features as necessary for them to judge that a given
relationship is an instance of the concept of ‘love’” (Hegi and Bergner 2010, 634). The
necessary feature is “investment in the well-being of the other, for his or her own sake”
(Hegi and Bergner 2010, 621). When investment in the other’s interests was described
as missing from a relationship, subjects consistently found it “very contradictory” to
assert that the people loved each another. In other words, if Abe is not invested in Bea’s
well-being for her own sake, then it simply can’t be true that Abe loves her. Though
other characteristics of love are important, none display this sine qua non status.
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In other words, the psychological evidence strongly supports the claim that “love,
by definition, conveys a caring orientation toward others” (Fredrickson 2016, 850). An
essential part of a father’s love for his daughter, for instance, is his desire to see her
flourish. Depending on his beliefs about what that requires, this may mean taking an
active role in her development or stepping back to allow her to struggle and grow on her
own. We would see something analogous from a loving superintelligence.

This conclusion is reinforced by consideration of the philosophical literature (Helm
2017). Two of the three standard philosophical theories of love—love as robust concern
(Frankfurt 1999), and love as emotion (Badhwar 2003)—concur with these psycholog‐
ical conclusions.5 The love as emotion view effectively defers the question “what is
love?” to psychology. And, interestingly, the love as robust concern view just is the
conclusion drawn from Hegi and Bergner 2010. Love, on the robust concern view, is a
robust concern for the beloved’s well-being. To love someone is to take on her interests
as your own.

Thus, the psychology and philosophy of love give us strong reason to expect that a
superintelligence which loves humanity would be invested in our well-being for our own
sakes. It would display trust, caring, honesty, friendship, and respect. By giving the AI
the final goal of loving humanity, we not only rule out nightmarish scenarios in which
the superintelligence completely disregards human interests, we also ensure that it seeks
to advance our interests.6

3.4 What Happens When Interests Conflict?

It’s important to recognize that loving someone doesn’t always mean giving her what
she wants (or thinks she wants). Suppose that Bea would like a house by the sea. If Abe
loves Bea, and if he sees no reason not to give Bea a house by the sea, then he will try
to give her one. But there will be many cases in which Abe’s love for Bea does not lead
him to do this—for instance, when Abe thinks that, despite what Bea believes, a house
by the sea is not in her interests. Thus, while a loving superintelligence would be invested
in human interests, it would not attempt to uncritically satisfy each human desire. A
particularly important instance of this phenomenon arises from interpersonal conflicts.

Sadly, some humans are hateful. They have enemies with whom they fight, and
whom they wish they could destroy. Thus, one might object, if a superintelligence were
to love Ayman al-Zawahiri (the leader of al-Qaeda), would it not seek to destroy his

5 The third theory, love as valuing (Singer 2009), likely concurs as well. Though explaining how
would take us too far afield.

6 Of course, in order for it to do this, it must have sensible views about what our well-being
consists in. A religious zealot might sincerely think that she advances my well-being by forcibly
converting me. It seems pretty clear, however, that the zealot’s beliefs about well-being are
false. (Were it not for her belief in an afterlife, she would probably reject them herself.) There
are currently vibrant research programs in psychology and philosophy, which have revealed a
good deal about the nature of well-being (for surveys see Snyder and Lopez 2009; Fletcher
2016). A superintelligence, with its superior epistemic position, can be expected to have even
better-informed views about well-being.
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enemies, and to advance his wicked goals and ambitions? Don’t those who love evil
people do evil things for them?

This objection overlooks why some humans do evil things for the people that they
love. The fact is that humans don’t love everyone. And they certainly don’t love
everyone equally. One of the ways in which love-based reasons for action can be
outweighed or undercut is by their conflict with other love-based reasons. Imagine that
two of your equally beloved friends are fighting. Your friend Abe becomes enraged by
a dispute with your friend Bea. He wants nothing more than to see Bea forlorn and
destitute. Given that you also love Bea, is there any chance that you will satisfy Abe’s
desire? I think not. In this case, your love for Bea undercuts your reason to give Abe
what he wants. Since my proposal is that the superintelligence be programmed to love
everyone equally, it would not harm one human merely to satisfy another’s malevolent
desire.

If Abe and Bea are so belligerent that they each demand you take a side, the most
loving thing to do, I suspect, would be to withdraw from both. If they each want nothing
to do with you unless you take sides and hate the other, then the only remaining choice
is to distance yourself from both and hope that one day a resolution can be found. A love
egalitarian superintelligence would likely display similar behavior. Of course, a rela‐
tionship with a loving superintelligence would be extremely advantageous. As I’ve indi‐
cated, such a being could potentially do wonderful things for us. Thus, there would be
very powerful incentives to maintain a close relationship with the superintelligence. This
would require one to not be at odds—or, at least, to not be too aggressively adversarial
—with the other objects of the superintelligence’s love (i.e., other people). This may be
an added benefit of my proposal. A loving superintelligence could potentially help to
resolve some of humanity’s conflicts as well as prevent new ones.

4 Comparison with Alternatives

My proposal has two main competitors: Yudkowsky’s (2004) Coherent Extrapolated
Volition, and Bostrom’s (2014) Moral Modeling. I’ll compare my proposal to each.

4.1 Coherent Extrapolated Volition

Yudkowsky has proposed that superintelligent AI should promote our “coherent
extrapolated volition” (CEV). This proposal takes what philosophers would call an
“ideal advisor” approach, one that centers on what we would desire under idealized
conditions. Yudkowsky writes:

[O]ur coherent extrapolated volition is our wish if we knew more, thought faster, were more the
people we wished we were, had grown up farther together; where the extrapolation converges
rather than diverges, where our wishes cohere rather than interfere; extrapolated as we wish that
extrapolated, interpreted as we wish that interpreted. (Yudkowsky 2004, 6)

Since this proposal is put in intentionally poetic terms, some elaboration is necessary.
To “know more” means to be aware of all the relevant facts concerning the objects

of our decision-making. If we “thought faster” we would not just be smarter; we would
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also have thought longer and more clearly about our desires and options in life. Some
of our personal characteristics and desires receive second-order endorsement; some
don’t. For instance, Abe may approve of his affection for his friends, while wishing he
were less angry and vindictive. If he “were more the person he wished to be”, he would
keep or increase the former trait, while reducing or eliminating the latter. If we “had
grown up farther together” we would have had more shared experiences and a stronger
sense of solidarity with humanity. Extrapolation “convergence” refers to a high proba‐
bility of one’s choosing in a certain way under idealization. If it’s hard to know what
our idealized selves would choose concerning something, then the superintelligence is
to leave those options open. The points on which individual extrapolated volitions
“cohere rather than interfere” are the choices that idealized humans would agree on. The
idea is to have the superintelligence only act on those goals that everyone (or maybe just
most people) would endorse in their idealized state. The requirement that our volition
be “extrapolated as we wish that extrapolated, interpreted as we wish that interpreted”
indicates that our present selves should guide the process of idealization. Thus, the
resulting extrapolated volition should include goals and/or values that our actual selves
could be led to understand and approve of.

The idea, in short, is that the superintelligence is to take each individual, idealize her
belief and desire set in order to determine a “volition”, and then aggregate these volitions,
acting where they cohere. I believe that my proposal captures what is appealing about
this proposal, while avoiding some of its problems. I’ll discuss each in turn.

Motivations for CEV. The central appeal of this proposal is that it leaves humanity in
control, in some sense, of our future. The superintelligence would do whatever we would
have collectively and ideally decided for it to. As I’ve indicated, a loving superintelli‐
gence will, in a similar fashion, seek to advance human interests, but will not blindly
satisfy expressed desires. It will aim to do what is best for us.

Yudkowsky (2004, 14) suggests that another appeal of his proposal is that it allows
for moral progress. There are some living today who remember racial segregation in the
United States. A mere 200 years ago chattel slavery was alive and well. It seems unlikely
that moral progress has peaked at this moment in history. In a few decades or centuries,
our own moral sensibilities may look as barbarous as segregation and slavery do now.
The CEV proposal aims to accommodate this thought. I believe love egalitarianism
would do the same. For now, however, readers will have to accept a promissory note:
I’ll say more about the morality of a loving superintelligence in Sect. 4.2.

Yudkowsky’s proposal would have the superintelligence only act where our extrapo‐
lated volitions cohere. This is thought to prevent a particular subset of humanity from
“hijacking” our planet’s (or universe’s) future, imposing its own conception of the good
on all of humanity forever (Yudkowsky 2004, 17). Imagine, for instance, how you would
feel if it were al-Qaeda that first built a superintelligent AI and programmed it to advance
their goals. By ensuring that the superintelligence advances goals that we all can agree
on, Yudkowsky thinks, we can avoid potential conflicts over how the AI is to be
programmed. (Imagine what the Pentagon might do if it became convinced that al-Qaeda
were about to develop superintelligent AI.) This will be very important because an AI
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arms race increases the incentive to cut safety corners, increasing the risks of malignant
superintelligence (Armstrong et al. 2013).

A loving superintelligence would similarly prevent any one person or group from
hijacking humanity’s future. As I emphasized in Sect. 3.4, the AI is to be programmed
to love everyone equally. Since love involves investment in the well-being of the
beloved, and since autonomy is an important constituent of human well-being (Ryan
and Deci 2000; Helm 2017, Sect. 3), a love egalitarian superintelligence would be
strongly averse to imposing foreign conceptions of the good on us.

Problems with CEV. There are two problems with the CEV proposal: the idealization
of our actual selves adds enormous complexity; and there will likely be insufficient
coherence in the individual extrapolated volitions.

The computational resources required to extrapolate a person’s volition would be
astronomical. In rough sketch, discovering Abe’s extrapolated volition would require
the AI to: either observe Abe’s behavior or (for better accuracy) scan his brain; discover
and categorize his present beliefs, desires, and interests; search for inconsistencies;
discover all the potential objects of his volition; model his learning and thinking
processes, and then amp them up so that he “thinks faster”; model various social inter‐
actions that Abe might experience which would lead to a wiser, more mature and pro-
social version of Abe; filter those out from other social experiences that would make
him less wise or pro-social; search again for inconsistencies that arise as his desires are
extrapolated; resolve any such inconsistences; produce a rough draft of his volition and
compare it with the actual Abe to see whether real Abe would approve of his idealized
self and his idealized choices. This would be insanely computationally demanding. If
we then multiply this by 8 billion or more people, it becomes unfathomable. After all
the individual volitions have been extrapolated, there also remains the task of synthe‐
sizing them for coherence.

Perhaps my imagination is simply too limited. But I have a hard time imagining even
a superintelligence with the processing power necessary to complete the task. Perhaps
the CEV could be computed if all of Earth’s resources were converted into processing
power. But, of course, by then the CEV is irrelevant. It will be too late to do us any good.
On the other hand, maybe the superintelligence needn’t actually determine humanity’s
CEV precisely. Bostrom (2014, 213) suggests that a superintelligence would be able to
make a pretty good guess as to what our CEV would include, and then act on its guess.
It could then update its speculation as it learns more about human psychology and
society.

For example, it is more plausible that our CEV would wish for there to be people in the future
who live rich and happy lives than that it would wish that we should all sit on stools in a dark
room experiencing pain. If we can make at least some such judgments sensibly, so can a super‐
intelligence. (Bostrom 2014, 213)

This seems right. But—given how much is at stake—I’d want a hell of a lot more
precision than that! Part of what makes this kind of guesswork so difficult is the absence
of any examples. Present-day machine learning works best with large data sets—lots of
example cases to train algorithms. But, we have zero examples of extrapolated volitions.
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Perhaps future technologies won’t require exemplar data. But, we have no way of
anticipating such developments.

Of course, some of the complexity required by the CEV proposal would also be
required by my proposal. In either case, for instance, the AI will need to know a lot about
individual human desires. But, my point is that by basing the AI’s instructions on an
idealized version of each individual, the CEV proposal is vastly more complicated than
mine. On my approach, the superintelligence would have much needed examples. It
could see actual loving relationships and use those as (fallible) models for its own rela‐
tionship with humanity. Just like discovering our CEV, discovering what love involves
would also require studying human psychology and society. But it won’t require the
additional (and, I think, Herculean) task of idealizing that psychology and society in
order to determine what we would collectively wish for in some distant counterfactual
scenario.

Another problem for the CEV proposal arises from the fact that it would have the
superintelligence only act where our extrapolated volitions cohere. This, as we saw, was
taken to be one of its merits. But, there is likely to be little coherence. It’s certainly true
that most humans desire things like food and shelter, opportunities to socialize and
express themselves, and so on. These would plausibly end up in each extrapolated voli‐
tion. But, beyond basic needs like these, there is likely to be little convergence on a wide
range of important issues. Consider all the different kinds of people that there are: acetic
hermits and minimalists, and materialistic Wall Street money-chasers; religious funda‐
mentalists, and anti-theists; neo-Nazis, and social justice warriors; right libertarians, and
communists. Even if all these people were idealized in the relevant ways, it seems highly
unlikely that there will be much coherence in their volitions on questions of politics,
economics, morality, and so on. If that’s right, then, the superintelligence’s hands would
be tied on these important issues.

A loving superintelligence will similarly find itself in a position where the various
objects of its love have incompatible interests. However, this will not prevent it from
acting on those interests. One obvious way to satisfy conflicting interests is to localize
them. If the hedge fund manager wants to live in a post-industrial, free market society,
and the acetic hermit wants to live in an agrarian, barter-based society, then they could
each have their own corner of the planet (or, if we’re advanced enough, a planet of their
own) on which to do that. Now, you might think that the idealized hermit and hedge
fund manager would also reach this compromise, so this isn’t an advantage for my
proposal. I’ll concede that this is possible. However, as we have no examples of extrapo‐
lated volitions, we simply can’t be sure that they would. Moreover, even if the extrapo‐
lated volitions of the hermit and hedge fund manager end up with a high degree of
coherence, it’s far from obvious that this would generalize. It is an unfortunate fact that
many humans’ desires are not merely incompatible with the desires of others—but,
worse, precisely what they desire is the thwarting of others’ desires. (Recall the al-
Zawahiri example from above.) Some of these nasty desires might be eliminated by the
volition extrapolation process. But, given that one’s extrapolated volition is meant to be
sensitive to one’s current self, it’s hard to imagine that, for instance, the neo-Nazi’s
extrapolated volition would bear much good will towards the social justice warrior.
Similarly, it’s hard to imagine the social justice warrior’s volition cohering—or even
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compromising with—the neo-Nazi’s. Thus, if we instruct the superintelligence to
advance only those goals that we would all agree on, then we give up on much of the
good that a superintelligence could do for us.

4.2 Moral Modeling

Bostrom mentions an additional concern regarding the CEV proposal. This is that even
our idealized selves might not be such great people. “Moral goodness”, he writes
(Bostrom 2014, 267), “might be more like a precious metal than an abundant element
in human nature, and even after the ore has been processed and refined in accordance
with the prescriptions of the CEV proposal, who knows whether the principal outcome
will be shining virtue, indifferent slag, or toxic sludge?”

This consideration suggests another approach, which Bostrom calls Moral Modeling
(MM). The idea is to program the AI to learn moral concepts, discover moral facts, and
promote moral goodness and/or rightness. If the superintelligence is better at moral
philosophy than humans are, then it may succeed where we have yet to—discovering
and acting on the correct moral theory. In other words, we could make a super-moral
superintelligence.

Assuming that this approach could be successfully implemented, it would surely
result in the morally best results of all the options. There are, nevertheless, a few reasons
why I prefer my proposal. First, I suspect that the behavior of a love egalitarian super‐
intelligence and a super-moral superintelligence would be very similar. If there are
conflicts between morality and love egalitarianism, it’s not clear to me where they lie.
Obviously, my inability to spot differences does not entail that there are none. The
thought is just that the expected outcomes for MM and my proposal will be quite similar,
perhaps even identical.7

Some philosophers have seen a tension between love and morality—in some cases
treating them as distinct, even competing, domains within practical reasoning (Slote
1983; Wolf 1992). Morality, they suggest, is supposed to be impartial; it’s about taking
into account everyone’s interests, and not weighting some people as more important
than others. Love, on the other hand, is inherently partial. If I love my friend, I will favor
him over others. Thus, love and morality can, and perhaps often do, conflict. This conflict

7 It has been suggested to me that love egalitarianism might be operationally equivalent to an
interest-based consequentialism. If loving someone means being invested in her well-being,
then loving equally should require weighing and advancing individual interests equally. Some‐
thing like this is probably right. But it also seems clear that love comes with deontological
constraints. If I killed a healthy person in order to harvest his organs and save five other people,
I could not plausibly insist that I nevertheless loved him. This shows why we couldn’t simply
instruct the AI to promote human well-being. “Promote” is vague. Does it mean: maximize
the sum total? maximize the minimum individual level? maximize the maximum level? satis‐
fice to some threshold?… Love helps to resolve this problem. Loving is not a maximizing
procedure, and (as I suggested) comes with side constraints. Though we can’t articulate the
procedure for making loving decisions, we clearly follow some such procedure in our daily
lives. And we seem to think it’s the right way to do things.
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is dissolved, however, if we recall that the superintelligence will be programmed to love
everyone equally. What is impartiality, after all, if not equal partiality towards all?

It’s also worth mentioning that some moral philosophers think that even the appear‐
ance of tension between love and morality is illusory. As Velleman (1999, 341) writes,
“Love is a moral emotion precisely in the sense that its spirit is closely akin to that of
morality. The question, then, is not whether two divergent perspectives can be accom‐
modated but rather how these two perspectives converge”.8 In the tradition of Christian
ethical thought, love plays a very central role. Paul Ramsey, a major figure in twentieth
century Christian ethics, argued that love is the basis for all of moral theory. Ramsey
(1950, xvi–xvii) argued that love is the “primitive idea” and “fundamental notion” for
morality. Dyck (1968), another theologian, argues that love is not only a moral virtue,
but the primary—perhaps sole—test and guide for action. As he puts it, “love is no mere
sentiment or emotion. It is the relational bond of a covenant to form and sustain
community… But it is also the power and the passion to get on with this task” (Dyck
1968, 545). Some Christian ethicists argue that a complete moral theory will have to
incorporate other concepts or principles that cannot be derived from love alone (Harris
1976). But, regardless, it’s clear that love has a central place in this tradition of ethical
thought.

In short, I expect that a superintelligence programed to love to humanity would get
us most—if not all—of what we would hope for in a super-moral superintelligence. So,
in terms of outcomes, the choice between these proposals may not make much of a
difference. In terms of difficulty in implementation, and the probabilities of success,
however, my proposal has an advantage. Our goal, recall, is to maximize the probability
of good outcomes and minimize the probability of bad outcomes. I believe that my
proposal is superior because it comes with less risk of something going wrong. There
are several reasons why that would be.

Working out what would be necessary in order to implement MM reveals layers of
added complexity. Before we could give an AI instructions for discovering moral facts,
we would need to figure out what moral facts are and how they can be discovered. In
other words, we need to answer the central questions of metaethics (moral semantics,
metaphysics, and epistemology). This would be an enormous initial hurdle. A natural
thought here would be to outsource this work to the AI itself. Before it does any first-
order moral theorizing, the superintelligence should work out the correct metaethical
theory. So, our instructions might be: “Figure out what moral facts are, and how they
might be discovered. If there are any, discover what they are. If there are no moral facts,
or if moral facts are culturally relative, or some such thing, then shut down. Otherwise,
perform the morally best actions.” I’m a pessimistic about this approach, as I’ll explain.

When it comes to morality, people disagree a lot. Philosophers and non-philosophers
alike disagree about which moral concepts apply to which objects of evaluation (e.g.,
which actions are right, which character traits are vicious). They also disagree about

8 On Velleman’s view, respect for others is the minimum of moral expectation, while love is the
maximum of moral supererogation. “[R]espect is a mode of valuation that the very capacity
for valuation must pay to instances of itself. My view is that love is a mode of valuation that
this capacity may also pay to instances of itself. I regard respect and love as the required
minimum and optional maximum responses to one and the same value” (Velleman 1999, 366).
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what makes it the case that moral concepts apply. Many people believe that God’s will
is what makes an action right or wrong. Others think that God’s will, should it exist, has
no important connection with the right- or wrong-making properties of an action. Some
people think that moral facts are culturally relative. Others think that they are absolute
and response-independent. Some think that moral evaluations are evaluations of
outcomes or states of affairs. Others think that moral evaluations are evaluations of a
person’s will, intentions, or character. In other words, there is substantial disagreement
at every level of moral discourse (Merli 2009). Perhaps no other concepts are as disputed
as moral concepts. Some even claim that they are “essentially contested”—meaning that
this kind of disagreement is an essential or constitutive feature of the concepts (Gallie
1955).

All of this conceptual disagreement would make it extremely difficult for an AI to
make sense of moral concepts. I’m not taking a stand here on the metaethical implica‐
tions of moral disagreement. My point is that, plausibly, an AI’s only access to moral
concepts (and thereby moral facts) will be through human moral discourse. I’m assuming
that a machine would not have independent access to moral reality. On some metaethical
views, an AI could have direct epistemic access to mind-independent moral facts through
the capacity for reason, or a faculty of moral intuition, or some such thing. However,
even on the assumption that such a view is right, it’s not at all clear what such faculties
are or how they would work—much less whether and how they could be incorporated
into an artificial being. It is far more plausible that, if a machine is to discover moral
facts, it will have to do so through us. Thus, widespread and persistent conceptual
controversies, which would make it very difficult for an AI to acquire the concepts, pose
a serious obstacle to a successful implementation. The motivation for MM was to prevent
human foibles and moral imperfections from spoiling the good that a superintelligence
could do. But, given that it will have to acquire its moral knowledge though us, it seems
that this proposal doesn’t actually solve that problem.9

5 Conclusion

It is vitally important that we figure out, before superintelligence is developed, how to
ensure that it acts in ways congenial to human interests. I have suggested that we think

9 Of course, people sometimes also disagree about what’s involved in loving someone. But, this
is not typically disagreement about what love is. As the research surveyed in Sect. 3.3 showed,
there is a remarkable degree of consensus on that question (despite appearances). One might
object, in a similar spirit, that there is disagreement about what well-being consists in. Since
loving involves an investment in well-being, if well-being is as controversial as morality, then
my view has the same problem as MM. I deny, however, the antecedent of this conditional.
While there certainly are competing theories of well-being, for the most part, there isn’t much
disagreement in the literature over what contributes to a person’s well-being (see Fletcher
2016). People tend to agree on which things are good for a person, even if they disagree about
why those things are good for her. (E.g., is accomplishment intrinsically good for a person, or
only insofar as it contributes to his positive mental states?) When it comes to the practical
matter of promoting well-being, however, such disputes may not be of much significance.
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of this problem in terms of a relationship. And the key to a good relationship is love.
Thus, my proposed solution to the problem of friendly superintelligence is to teach the
AI about companionate and compassionate love, and instruct it to love everyone equally.

After briefly clarifying this proposal, and exploring some of its implications, I
compared it with two of the most promising alternatives: CEV and MM. I argued that
my proposal captures what is appealing about the CEV and avoids its most serious
problems. I also argued that the outcomes of my proposal would likely be very similar
to the outcomes from a successful implementation of the MM proposal. However,
implementing MM would face greater challenges. Thus, my proposal is to be preferred.

This paper is intended to open a line of inquiry. Obviously, I don’t pretend to have
resolved the problem of friendly superintelligence. Rather, I’ve suggested—at a very
general, non-technical level—an approach for solving the problem. If the ideas presented
here hold up, then it will be for future research to develop them.

Acknowledgments. I’d like to thank audience members at the PT-AI 2017 conference, as well
as Vincent Müller and the reviewers for this volume. Special gratitude goes to Daniel Kokotajlo
and Miriam Johnson for their comments on earlier drafts of this paper.

References

Armstrong, S., Bostrom, N., Shulman, C.: Racing towards the precipice: a model of artificial
intelligence development. Technical report. Future of Humanity Institute (2013). https://
www.fhi.ox.ac.uk/wp-content/uploads/Racing-to-the-precipice-a-model-of-artificial-
intelligence-development.pdf. Accessed 24 Dec 2017

Badhwar, N.: Love. In: LaFollette, H. (ed.) Practical Ethics, pp. 42–69. Oxford University Press,
Oxford (2003)

Berscheid, E.: Searching for the meaning of “love”. In: Sternberg, R.J., Weis, K. (eds.) The New
Psychology of Love, pp. 171–183. Yale University Press, New Haven (2006)

Berscheid, E.: Love in the fourth dimension. Annu. Rev. Psychol. 61, 1–25 (2010)
Berscheid, E., Hatfield, E.: A little bit about love. In: Huston, T.L. (ed.) Foundations of

Interpersonal Attraction, pp. 355–381. Academic Press, New York (1974)
Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University Press, Oxford

(2014)
Button, C.M., Collier, D.R.: A comparison of people’s concepts of love and romantic love. Paper

Presented at the Canadian Psychological Association Conference, Calgary, Alberta (1991)
Chalmers, D.: The singularity: a philosophical analysis. J. Conscious. Stud. 17(9–10), 7–65 (2010)
Dyck, A.: Referent-models of loving: a philosophical and theological analysis of love in ethical

theory and moral practice. Harv. Theol. Rev. 61(4), 525–545 (1968)
Fehr, B.: Prototype analysis of the concepts of love and commitment. J. Pers. Soc. Psychol. 55,

557–579 (1988)
Fehr, B.: Social psychology of love. In: Simpson, J., Campbell, L. (eds.) The Oxford Handbook

of Close Relationships. Oxford University Press, Oxford (2013)
Fehr, B., Russell, J.A.: The concept of love viewed from a prototype perspective. J. Pers. Soc.

Psychol. 60, 425–438 (1991)
Fletcher, G.: The Routledge Handbook of Philosophy of Well-being. Routledge, New York (2016)
Frankfurt, H.: Autonomy, necessity, and love. In: Necessity, Volition, and Love, pp. 129–141.

Cambridge University Press, Cambridge (1999)

300 M. Prinzing

https://www.fhi.ox.ac.uk/wp-content/uploads/Racing-to-the-precipice-a-model-of-artificial-intelligence-development.pdf
https://www.fhi.ox.ac.uk/wp-content/uploads/Racing-to-the-precipice-a-model-of-artificial-intelligence-development.pdf
https://www.fhi.ox.ac.uk/wp-content/uploads/Racing-to-the-precipice-a-model-of-artificial-intelligence-development.pdf


Fredrickson, B.: Love: positivity resonance as a fresh, evidence-based perspective on an age-old
topic. In: Barrett, L., Lewis, M., Haviland, J. (eds.) Handbook of Emotions, 4th edn, pp. 847–
858. Guilford Press, New York (2016)

Gallie, W.B.: Essentially contested concepts. Proc. Aristot. Soc. 56, 167–198 (1955)
Good, I.: Speculations concerning the first ultraintelligent machine. Adv. Comput. 6, 31–88 (1965)
Harris, C.: Love as the basic moral principle in Paul Ramsey’s ethics. J. Relig. Ethics 4(2), 239–

258 (1976)
Hegi, K., Bergner, R.: What is love? An empirically-based essentialist account. J. Soc. Pers.

Relationsh. 27(5), 620–636 (2010)
Helm, B.: Love. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy (2017). https://

plato.stanford.edu/entries/love/. Accessed 30 Mar 2018
Kline, S.L., Horton, B., Zhang, S.: Communicating love: comparisons between American and

East Asian university students. Int. J. Intercult. Relat. 32(3), 200–214 (2008)
Luby, V., Aron, A.: A prototype structuring of love, like, and being-in-love. Paper Presented at

the Fifth International Conference on Personal Relationships, Oxford, UK (1990)
Merli, D.: Possessing moral concepts. Philosophia 37, 535–556 (2009)
Müller, V., Bostrom, N.: Future progress in artificial intelligence: a survey of expert opinion. In:

Müller, V. (ed.) Fundamental Issues of Artificial Intelligence, pp. 553–571. Springer, Berlin
(2016)

Picard, R.: Affective Computing. MIT Press, Cambridge (1997)
Ramsey, P.: Basic Christian Ethics. Charles Scribners Sons, New York (1950)
Ryan, R., Deci, E.: Self-determination theory and the facilitation of intrinsic motivation, social

development, and well-being. Am. Psychol. 55(1), 68–78 (2000)
Scheutz, M.: Artificial emotions and machine consciousness. In: Cambridge Handbook of

Artificial Intelligence. Cambridge University Press, Cambridge (2014)
Singer, I.: Philosophy of Love: A Partial Summing-Up. MIT Press, Cambridge (2009)
Slote, M.: Goods and Virtues. Clarendon Press, Oxford (1983)
Sloman, A., Croucher, M.: Why robots will have emotions. In: Proceedings of the 7th International

Joint Conference on AI, pp. 197–202 (1981)
Snyder, C.R., Lopez, S.J.: The Oxford Handbook of Positive Psychology. Oxford University

Press, Oxford (2009)
Soares, N., Fallenstein, B.: Aligning superintelligence with human interests: a technical research

agenda. Machine Intelligence Research Institute (2015). https://intelligence.org/files/
TechnicalAgenda.pdf. Accessed 10 Mar 2018

Velleman, D.: Love as a moral emotion. Ethics 109(2), 338–374 (1999)
Wolf, S.: Morality and partiality. Philos. Perspect. 6, 243–259 (1992)
Yampolskiy, R.: Artificial Superintelligence: A Futuristic Approach. CRC Press, New York

(2016)
Yudkowsky, E.: Coherent extrapolated volition. Machine Intelligence Research Institute (2004).

https://intelligence.org/files/CEV.pdf. Accessed 30 Dec 2017

Friendly Superintelligent AI: All You Need Is Love 301

https://plato.stanford.edu/entries/love/
https://plato.stanford.edu/entries/love/
https://intelligence.org/files/TechnicalAgenda.pdf
https://intelligence.org/files/TechnicalAgenda.pdf
https://intelligence.org/files/CEV.pdf


Autonomous Weapon
Systems - An Alleged Responsibility Gap

Torben Swoboda(B)

University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
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Abstract. In an influential paper Sparrow argues that it is immoral to
deploy autonomous weapon systems (AWS) in combat. The general idea
is that nobody can be held responsible for wrongful actions committed
by an AWS because nobody can predict or control the AWS. I argue
that this view is incorrect. The programmer remains in control when
and how an AWS learns from experience. Furthermore, the programmer
can predict the non-local behaviour of the AWS. This is sufficient to
ensure that the programmer can be held responsible. I present a con-
sequentialist argument arguing in favour of using AWS. That is, when
an AWS classifies non-legitimate targets less often as legitimate targets,
compared to human soldiers, then it is to be expected that using the
AWS saves lives. However, there are also a number of reasons, e.g. risk
of hacking, why we should still be cautious about the idea of introducing
AWS to modern warfare.

1 Introduction

Matthias (2004) argues that autonomous, learning machines create the possi-
bility of a responsibility gap. That a machine is capable of learning and acting
autonomously, implies that its actions can no longer be predicted or controlled by
anyone. However, an agent can be held responsible for the machine’s behaviour
only if the agent can control and predict the machine’s behaviour. For this reason,
nobody can be held responsible for the actions of such an autonomous machine.
With advancing technology, we will have such machines replace humans in dif-
ferent lines of work. Hence, compared to the status quo with human workers,
there will be more situations where nobody is held responsible. In cases in which
this happens, we face a responsibility gap.

The prospect of a responsibility gap seems problematic, when one considers
autonomous weapon systems (AWS). For Sparrow (2007) it is not possible to
hold somebody responsible, when an AWS kills non-legitimate targets in war, e.g.
surrendering soldiers. Similar to Matthias, this follows because “the possibility
that an autonomous system will make choices other than those predicted (. . . )
is inherent in the claim that it is autonomous” (Sparrow 2007, p. 70). As a
result, he deems AWS as immoral to use. The paper has evoked appraisal but
also numerous critiques. For example, Simpson and Müller (2015) argue that it is
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permissible to use AWS, because the deciding criterion is not one of responsibility
attribution, but rather if the risk of war can be fairly distributed. Hellström
(2013) suggests that a society can collectively share responsibility. A society
might do so, if it considers using AWS advantageous. However, the core claim
by Sparrow and Matthias, namely that prediction of an autonomous, learning
machine, is not possible, has largely been accepted.

In this paper, I critically evaluate in which ways we can predict and con-
trol machines of the sort that Sparrow and Matthias describe. While in reality
there will be numerous persons involved in the design of AWS, as well as the
decision to deploy these in war, I ignore the problems of collective responsibility
in this paper. Instead, I shall assume the existence of one master programmer,
who makes all decisions on her own.1 I conclude, that there are cases where the
master programmer can be held responsible for the behaviour of an autonomous,
learning machine. I will argue that whether a responsibility gap emerges, cru-
cially depends on the particular instantiation of the machine and not on the
general features of autonomy and a capacity to learn. An important implication
of my argument is that, prima facie, autonomous and learning machines are not
immoral to use to the extent that this immorality arises due to the responsibil-
ity gap. Still, my paper does not imply that AWS are morally unproblematic.
I believe that substantial arguments should be raised against the use of AWS,
however they are not of the kind that Matthias and Sparrow put forward.

In Sect. 2 I take a closer look at the responsibility gap argument by Matthias
and Sparrow. Following that I will explicate how computer scientists use machine
learning to develop autonomous machines in Sect. 3. I will argue in Sect. 4 that
programmers remain in control and can predict the AWS such that they can be
held responsible for the AWS’s behaviour. In the last section I will provide some
arguments against using AWS in war.

2 The Responsibility Gap

Matthias (2004) first presented an argument about the possibility of a respon-
sibility gap. Put generally, autonomous machines are capable of learning which
means that their actions become unpredictable and uncontrollable.

Matthias presents the case of a NASA robot that is used for extra-terrestrial
exploration, intelligent elevators that learn to be at certain floors during rush
hour, a cancer detection algorithm, and a toy that learns to respond to auditory
commands. The NASA robot stores the type of terrain it crosses and evaluates
how difficult it was to cross this type of terrain. In the future it accesses this
kind of information to determine which path to take.

All of the examples share the feature that an algorithm is implemented that
allows the machine to learn from experience (e.g. association of type of terrain
and its difficulty). This means that the machine’s behaviour is changing over
time. This in turn means that the programmer cannot control what the machine

1 See (Robillard 2017) for the idea.
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does in a specific situation, because the machine’s behaviour is essentially deter-
mined by its experience. Different experiences can lead to different behaviour,
and even more troublesome, a different chronological ordering of the same expe-
rience can also lead to different behaviour. Since the behaviour depends on the
experience, and the experience cannot be known by the programmer beforehand,
it is not possible to predict the behaviour.

Usually, when an agent does not know particular facts regarding an action
or outcome, or the agent has limited control over a situation, then the agent is
also less responsible for what happened. Thus, Matthias presents us a dilemma.
Either we do not make use of autonomous, learning machines, which is not
attractive as they provide all sorts of advantages. Or we face a responsibility gap.
Given that driver-less cars, as well as some medical diagnostic tools fall under
the category of autonomous, learning machines, and we normally would want
to hold someone responsible when these machines make mistakes, the dilemma
Matthias presents us is an important one.

Before I explicate the particular problem with AWS and the responsibility
gap, it will be helpful to provide some background on the notion of responsibility
first.

2.1 On the Concept of Responsibility

The concept of responsibility has many meanings (Van de Poel et al. 2015).
For example, a bus driver has the responsibility to safely transport his passen-
gers. But more often we are concerned with responsibility for something that
already has happened, i.e. a backwards-looking notion of responsibility. In such
a case, responsibility is often connected to reactive attitudes (Strawson 1962).
For example, we think that a fireman, who is responsible for saving a child, is
praiseworthy. The responsibility gap argument focuses on those situations where
something bad has happened. More precisely, Sparrow (2007, pp. 71–72) is con-
cerned with responsibility as blameworthiness or liability. For example, if I jump
a red light and thereby cause an accident, I am to be blamed for this. As a
result, it is appropriate to punish me for my actions. Additionally, I am also to
be held liable. This means that I have an obligation to compensate other parties
for any damage I have caused. Liability and blameworthiness are distinct, e.g. a
murderer might not be able to compensate, but it is still appropriate to punish
her.

Necessary conditions for responsibility that are commonly mentioned in the
literature are capacity to act responsible, causality, knowledge, control, free will,
and wrong doing (Van de Poel et al. 2015, pp. 21–25). Depending on the par-
ticular account of responsibility, all or only some of these conditions need to be
met, so that someone can be held responsible (for example Fischer and Ravizza
(2000) argue that free will is not a necessary condition). If one of the neces-
sary conditions is not satisfied, then an agent fails to be morally responsible.
In particular, if either the condition knowledge or control is not satisfied, then
the agent is excused. In such a case, the agent is merely accountable, i.e. she
has to explain for her role in bringing about some event. The two conditions,
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knowledge and control, are of especial importance, because Sparrow’s argument
aims to establish that these conditions are not satisfied in the case of AWS for
anyone. Hence, we face a responsibility gap. I will assume that in the case of
AWS all other necessary conditions for responsibility attribution are satisfied.

The knowledge condition can be traced back to Aristotle. For him, an agent
cannot be held responsible if she was ignorant of relevant features of the situation.
This is best exemplified: Suppose that Tom backs his car out of the garage and
kills a kitten that was snoozing behind the rear tire. Suppose further that Tom
was genuinely unaware of the kitten through no fault of his own (e.g. because he
does not own a kitten) (Fischer and Ravizza 2000). Then it seems unreasonable to
hold Tom responsible for the kitten’s death. Instead, we would think of this event
as an accident, because he was non-culpably ignorant. But being ignorant does
not always imply that one fails to be responsible. Consider that a construction
worker carelessly throws rubble from the top of a construction site onto the
street. A pedestrian who happens to walk by is hit and harmed by the rubble.
The construction worker can honestly say that he did not know that somebody
was walking down the street. But this does not excuse him, because it can
reasonably be known that pedestrians could walk on by and be hit the rubble.
Put differently, the construction worker is ignorant in a culpable way.

Whether an agent is under ignorance in a culpable or non-culpable way cru-
cially depends on the context of the situation and the agent. The introduction
of culpability as a refinement whether ignorance exempts one from being held
responsible bears the risk of circular argumentation. But going into deeper detail
about the conditions of culpability is beyond the scope of this paper. However,
in Sect. 4.2 I will explicate what kind of information can and cannot be rea-
sonably known by programmers about AWS. I will then argue why this kind of
information is enough to hold the programmer responsible.

Control refers to the ability of a person to have an influence on what hap-
pens. My notion of control is closely related to what Fischer and Ravizza (2000,
p. 18) call power necessity:2 A person has control if and only if, were a certain
proposition to obtain, the person has the power so to act, so that the proposition
does not obtain. This expresses the idea that one can only be held responsible if
one had a viable alternative to do otherwise with regards to what one is being
held responsible for. My understanding of control implies a guarantee that the
proposition does not obtain, not a mere possibility that it does not. It can be
argued that a possibility that the proposition does not obtain constitutes (at
least some) control. While this may be, the condition I put forward is more
demanding on the programmer and thus strengthens Sparrow’s position.

2 Note that neither Matthias nor Sparrow are explicit in what they mean with control.
However, Matthias refers to Fischer’s and Ravizza’s work. For an alternative notion
of control, which is also based on Fischer’s and Ravizza’s work and applied to AWS,
see Santoni de Sio and Van den Hoven (2018).
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2.2 Autonomous Weapon Systems and the Responsibility Gap

Sparrow’s argument is an applied case of Matthias’ responsibility gap to mili-
tary machines. Sparrow argues that the jus in bello guidelines should include
a responsibility principle. The ius in bello principles explicate what may justly
be done in warfare. For example, the principle of discrimination establishes that
combatants need to distinguish between legitimate and non-legitimate targets.
Enemy soldiers who are participating in military operations are legitimate tar-
gets and may be killed. Prisoners of war and injured soldiers incapable of fighting
are non-legitimate targets and may not be killed. What non-legitimate targets
are depends inter alia on the view of just war theory (see the discussion between
traditionalists and revisionists).

The responsibility principle requires that, generally, it must be possible that
someone can be held responsible if non-legitimate targets have been harmed.
However, the responsibility principle allows for exceptions (Sparrow 2007, p. 67).
For example, if a soldier kills a civilian in an accident, the soldier is excused,
and while she is held accountable, nobody is held responsible in the sense of
blameworthiness or liability. This exception is acceptable, since the soldier can
generally, i.e. under non-exceptional circumstances, be held responsible for her
actions, e.g. when she intentionally kills a civilian. On the other hand, a soldier
with a certain mental disorder could never be held responsible, precisely because
it is the mental disorder that causes her not to have the capacity to act in
a responsible way, which entails that she can never be held responsible. The
responsibility principle would therefore forbid the deployment of soldiers with
that kind of mental disorder.

There are two lines of argumentation for the responsibility principle. The
deontic argument states that one disrespects the enemy if one were to ignore
the responsibility requirement. The idea is that enemy soldiers are nevertheless
right-bearers and deserve moral consideration. They cannot be slaughtered at
will. If enemy soldiers are surrendering, then they cannot be killed, but must
be taken as prisoners of war instead. If we were to make use of a weapon that
would kill these soldiers and there was nobody to be held morally responsible
for, then we would effectively circumvent the principle of discrimination. This
would show a lack of regard for the value of the lives of the enemy and thus be
disrespectful.

The consequentialist’s argument emphasises that the responsibility principle
creates an incentive structure that deters agents from committing wrongful acts.
This is the case, as we allow for punishing a person only if we hold her responsible.
Without the responsibility requirement we allow the use of weapons that can
harm non-legitimate targets and nobody is being punished for it. As a result, it
is to be expected that there will be an increase of those that are non-legitimately
attacked. This outcome should be prohibited with the responsibility principle.

Sparrow is concerned that AWS violate the responsibility principle. More
precisely, what Sparrow fears is that an AWS commits a war crime. For example,
an AWS intentionally kills surrendering soldiers. The reason for this might be
that these soldiers had killed the AWS’s “robot comrades”, which the AWS
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wants to avenge, or to “strike fear into the hearts of onlooking combatants”,
or simply because “it calculated that the military costs of (. . . ) keeping them
prisoner were to high” (Sparrow 2007, p. 66). The AWS is allegedly capable of
this behaviour because it can learn from experience. As a result, the decision
that is made by the AWS is more influenced by what it has learned, rather than
its initial programming. Given that the AWS learns from experience, it follows
that it is going to make choices other than what the programmer anticipates.
Consequently, the programmer has lost (partial) control over the AWS, as it
behaves in ways that are not intended or encouraged by the programmer.

Given that two necessary conditions for responsibility, control and predic-
tion, are not satisfied, it would be unjust to hold the programmer responsible.
Moreover, the programmer is the person who would be best able to predict and
control the machine, since she designed it. If even the programmer is unable to
control and predict the machine, then it seems even less likely that anybody else
could do so. Assuming that the machine cannot be held responsible for its actions
(e.g. because it cannot be punished (Sparrow 2007, pp. 71–73)), responsibility
cannot be attributed to anybody. As a result, we encounter a responsibility gap,
whenever an AWS commits a wrongful act.

3 Machine Learning for Ethical Decision Making

Sparrow is correct in demanding that an AWS satisfies the principle of discrim-
ination. This leads to the question, how we can implement this principle in a
machine. Following Moor (2006), ethical principles can be represented either
explicitly or implicitly in a machine.

An example for an explicit ethical system is MedEthEx (Anderson et al.
2006), which follows the biomedical principles of Beauchamp and Childress
(1979). The machine advises a doctor whether she may offer the patient a treat-
ment again, given that the patient has rejected said treatment before, or if the
doctor has to accept the patient’s decision. It uses a symbolic representation for
different principles that are relevant for the case. The decision making process of
the system is a set of clauses, which conjoin and disjunct the symbols in various
ways.

But the domain of application of MedEthEx is still fairly limited, compared
to an AWS. It might thus be argued that a symbolic approach might not be
flexible enough to be an adequate representation of the complex environment an
AWS is placed in. One of the most flexible systems is an artificial neural network
(ANN). It allows that information is not represented as a single symbol, but
rather the information is saved throughout the whole network. Figure 1 shows a
representation of such a neural network.

For the programmer the principle of discrimination is ultimately a classifi-
cation problem: People need to be categorised as legitimate and non-legitimate
targets. An ANN can be used to solve this classification problem. First, the pro-
grammer has to consider what kind of variables shall be used to predict the class
of the person. This implies that there are features that are useful to separate



308 T. Swoboda

...
...

...

I1

I2

In

H1

H2

Hm

O1

O2

Ok

Input
layer

Hidden
layer

Ouput
layer

Fig. 1. A representation of an artificial neural network. A neuron is connected with
all neurons in the preceding and following layer via weights. A neuron outputs a signal
which is multiplied with the value of the corresponding weight. All the incoming signals
for a neuron are summed up and used as an input for a function of that neuron, which
determines the output of that neuron. During backpropagation, i.e. the learning phase,
the values of the weights change.

legitimate from non-legitimate people. For example, if a person has a gun, this
might be an indicator (though not a sufficient condition) that she is a legitimate
target. A person holding her hands up high, as in a surrendering gesture, on the
other hand seems to be a non-legitimate target.3 Second, the programmer needs
to acquire lots of labelled samples. A labelled sample contains the values for all
features as well as the class to which it belongs (legitimate and non-legitimate
targets). Third, the neural network has to be trained. That is, it needs to find
the set of optimal values for the weights, which minimises the amount of samples
that are misclassified. The weights are the connections between different neurons.
Put differently, the weights determine how much one neuron influences another
one. The trained ANN draws a hyperplane through a d-dimensional space, where
d is the number of features being used. This hyperplane is called the decision
boundary. Fourth, after the training of the neural net, its accuracy has to be
evaluated with new samples. This time, the correct class label is hidden from
the network. The accuracy of the neural net is the percentage of correctly pre-
dicted classes. When the programmer is satisfied with the accuracy of the ANN,
the training is stopped. Otherwise the model has to be adjusted, e.g. different
variables, or samples etc.

Since the machine is adapting the value of the weights, based on samples,
computer scientists say that the machine learns from experience. But it is not
necessary that the machine has to learn while it is already operating. Indeed,

3 The programmer is not limited to such simple variables. It could also be video or
audio data for example. If we were to make use only of video data, then the ANN
would be an implicit ethical system, as there is no reference to ethical principles.
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this might be very undesirable, as the machine might then learn a new set of
weights that is suboptimal.

4 Control and Prediction of Autonomous Weapon
Systems

In this section I am going to answer the question I raised in the beginning
of the paper. That is to say, I first examine if the programmer can control the
machine’s actions and, second, how the programmer can make predictions about
the machine’s behaviour in order to close the responsibility gap.

4.1 Control

What Sparrow is concerned about is that the AWS is capable of learning and
thus the programmer loses her influence over the AWS. He writes: “If it [an
AWS] has sufficient autonomy that it learns from its experience and surround-
ings then it may make decisions which reflect these as much, or more than, its
initial programming. The more the system is autonomous then the more it has
the capacity to make choices other than those predicted or encouraged by its
programmers. At some point then, it will no longer be possible hold the pro-
grammers/designers responsible for outcomes that they could neither control
nor predict.” (Sparrow 2007, p. 70)

What Sparrow suggests here is that the AWS is continuously learning while
it is already operating. While it might be possible to design an AWS such that
it can do that, there is no need to design an AWS in this way. It is entirely
possible to design the AWS as described in Sect. 3, namely that the training
phase of the AWS is stopped and the AWS runs on that learned model. Indeed,
this seems to me how we should design AWS, precisely because otherwise the
AWS could learn a new model that is suboptimal. Since the programmer is in
control whether the AWS continues learning or not and furthermore because
allowing the AWS to continue learning bears the risk of suboptimal models, we
should hold the programmer responsible if she designs the AWS to learn while
operating.

Sparrow might argue that this is not the kind of AWS he is talking about.
The AWS he is concerned with is of that kind of nature that it does learn during
the operation, that is the condition that makes it truly autonomous. It would
follow that Sparrow’s responsibility gap does not apply to weapon systems that
do not learn while operating. This would be an unattractive position, as AWS
that are only once trained, are still very capable of targeting and killing non-
legitimate targets, while it also remains the case that it is unpredictable who in
particular they attack.

4.2 Local and Non-local Prediction

On the one hand, Sparrow’s claim that there remains uncertainty what an AWS
will attack is correct. On the other hand, I argued in Sect. 3 that there will be
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a clear decision boundary between legitimate and illegitimate targets. In what
way can these claims be reconciled?

Bostrom and Yudkowsky (2014) distinguish between local and non-local
behaviour. If we consider a chess program, then the local behaviour are the spe-
cific moves of the figures, e.g. moving the bishop from e2 to b5. The non-local
behaviour corresponds to the optimality criterion: pick the move that increases
the winning probability the most, given the training samples.

Chess programs are superior to humans in chess since Deep Blue beat the
prevailing chess champion Garry Kasparov in 1997. It is impossible to win against
them, because their non-local game map that links specific moves to possible
future outcomes is much more accurate than what us humans can come up with
in our minds. It is impossible to predict the local behaviour of chess programs
(except for trivial cases, like where one move leads to a checkmate). But it is
nevertheless possible to make predictions about the non-local behaviour. In fact,
we know that the program picks the move that increases its chances of winning.

Applying the concept to the case of AWS, it is impossible to know if an
AWS is going to attack a particular object or not (local). But the programmer is
still aware of some features of the machine. First, the programmer has designed
the machine such that the risk of falsely classifying non-legitimate targets as
legitimate targets is minimised, instead of maximised. Second, during the test
phase the programmer has learned how accurate the machine handles new data.
This gives the programmer an initial expectation how well the machine would do
in the real world.4 Both of these factors allow the programmer to make non-local
predictions about the behaviour of the machine.

What kind of knowledge is required for attributing responsibility? It is not
local prediction, because this would be akin to the construction worker case. Not
knowing who in particular is going to be wronged by one’s action does not mean
that one cannot be held responsible. If we do not accept this type of excuse in
the construction worker case, then we should not allow the programmer to be
excused either. Instead what matters is that given the results of the test phase
the programmer can expect that a certain percentage of non-legitimate targets
are wrongly classified as legitimate targets. The programmer is responsible for
wrongful deaths caused by the AWS, because she willingly accepted that a cer-
tain percentage of non-legitimate targets are wrongly categorised as legitimate
targets. This raises the question how high the accuracy threshold of the AWS
must be. Do we require the accuracy to be 100%, 99%, 50%? I present an, at
least initially, plausible answer to this question in Sect. 4.3, namely that the
AWS must have a higher accuracy than human soldiers. However, in Sect. 5 I
give reasons why this answer is more problematic than it might seem.

But there is also another reason why the programmer might be held responsi-
ble. This would be the case, when the programmer has used features which might

4 Note, however, that this expectation can be vastly wrong. What the AWS has learned
is a simplified model of the real world. Excluding relevant variables, biased or too
few samples can lower the accuracy of the model, to name only a couple of issues
that the programmer must be aware off.
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improve the accuracy of the machine, but using said features is deemed immoral.
For example, in credit scoring it is prohibited to use gender, race, religion etc.
to decide whether an applicant’s loan is approved (Mester 1997). Adding these
variables increases the accuracy of determining whether an applicant can pay
back the loan in the future. However, using these features is considered discrimi-
natory against members of certain social groups. It is up to debate what features
may not be used while designing an AWS.

Finally, the machine might be more or less accurate with regards to differ-
ent social groups. Larson et al. (2016) have analysed the COMPAS program,
which calculates the recidivism rate of criminals. While it was similarly accurate
for Caucasians and African Americans (59% and 63% respectively), COMPAS
wrongly predicted African Americans to be recidivists at nearly twice the rate
than Caucasians (45% to 23%), which seems problematic. For AWS this means
that no social group should bear a higher false positive rate than another. If the
programmer makes no attempt to account for this requirement, she is to be held
responsible for the shortcoming of the AWS.5

4.3 On the Accuracy Threshold

How accurate needs an AWS to be before we may use it on the battlefield? An
initial reaction might be that it may not make any mistakes. This is, on the
one hand, practically impossible to achieve. On the other hand, there is also
a consequentialist argument against this. Human soldiers make mistakes and
target the wrong persons. When we have to decide whether to make use of an
AWS, we face opportunity costs. AWS have a certain false positive rate and
humans will have one as well. If it were the case that an AWS attacks fewer
non-legitimate targets than human soldiers, then using the AWS must, from a
consequentialist perspective, at least be permissible. This is because by using
AWS we effectively safe lives. Müller (2016, p. 74f) makes a related point. We do
not expect that pharmacists make no mistakes in matters of life or death. Rather
we expect ‘due care’ by pharmacists. My argument here is that the programmer
has exhibited due care if her AWS make fewer false positive errors than humans.

5 Arguments Against Autonomous Weapon Systems

While I acknowledge a theoretical possibility that an AWS satisfies the conse-
quentialist criterion, it remains to be shown that an AWS can satisfy the principle
in practice. Again, it depends what the AWS is designed to do. An AWS whose
purpose is to attack specific tanks, boats, or aircraft might do sufficiently well.
But an AWS that shall attack individual soldiers is a much more complex task,
for example because terrorists disguise as civilians. Therefore, I remain sceptical
if an AWS can satisfy the consequentialist criterion with respect to individual

5 For a critical discussion on algorithmic fairness and discrimination see e.g. Dwork et
al. (2012) and Hardt et al. (2016).
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persons. Moreover, it is not enough that the AWS can in principle solve the
discrimination problem, it needs to do so in real time. If the AWS is to be used
in war, then it must be able to make its decisions within a fraction of a second.

A further problem related to the consequentialist’s criterion is establishing
the current accuracy base line. The military has great interest in using AWS and
for that reason has an incentive to exaggerate the false positive rate of soldiers.
In the worst case, they might give the directive to shoot first and ask questions
later. This would lead to an increase of civilian deaths, so that it is easier for the
AWS to satisfy the consequentialist’s criterion. This is of course undesirable.

A third point to consider is that there remains doubt whether the system has
actually learned to discriminate between the classes as we intended it to. Dreyfus
and Dreyfus (1992) describe a case, where an ANN was supposed to learn to
distinguish pictures with camouflaged tanks from pictures without tanks. While
the network seemed to be doing a fine job, it turned out that the network learned
to distinguish sunny pictures from cloudy pictures. ANN are a black box in the
sense that we do not know what kind of pattern the network has learned. This
problem can be reduced by rigorous testing, but it cannot be eliminated.

Fourth, AWS are subject to hacking. If an AWS has a security loophole, then
all AWS with the same software and hardware have the same weak point. This
bears the risk that a whole army of AWS is disabled, or turned against friendly
soldiers.

Lastly, in reality there will not be one master programmer, but many people
involved in designing an AWS. Hence, we face a collective responsibility issue.

This list is not exhaustive, but is a starting point for reasons why we should
remain cautious about the idea of introducing AWS onto the battlefield.

6 Conclusion

Sparrow and Matthias have offered a formidable challenge not just for the use
of AWS, but autonomous, learning machines in general. If my argument were
correct, then we face no responsibility gap, as the programmer can control when
and how the machine learns and predict its non-local behaviour. However, this
does not entail that using this kind of machine is unproblematic. Further research
could aim at establishing conditions when the programmer has exhibited ‘due
care’ in greater detail and at a more general level, rather than being tied to the
case of AWS.
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