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Many people (we series editors included) find video games exhil-

arating, but it can be just as interesting to ponder why that is so. 

What do video games do? What can they be used for? How do 

they work? How do they relate to the rest of the world? Why is 

play both so important and so powerful?

Playful Thinking is a series of short, readable, and argu-

mentative books that share some playfulness and excitement 

with the games that they are about. Each book in the series is 

small enough to fit in a backpack or coat pocket, and combines 

depth with readability for any reader interested in playing more 

thoughtfully or thinking more playfully. This includes, but is 

by no means limited to, academics, game makers, and curious 

players.

So we are casting our net wide. Each book in our series pro-

vides a blend of new insights and interesting arguments with 

overviews of knowledge from game studies and other areas. You 

will see this reflected not just in the range of titles in our series, 

but in the range of authors creating them. Our basic assumption 

is simple: video games are such a flourishing medium that any 

new perspective on them is likely to show us something unseen 

or forgotten, including those from such unconventional voices 
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as artists, philosophers, or specialists in other industries or fields 

of study. These books are bridge builders, cross-pollinating both 

areas with new knowledge and new ways of thinking.

At its heart, this is what Playful Thinking is all about: new 

ways of thinking about games and new ways of using games to 

think about the rest of the world.

Jesper Juul

Geoffrey Long

William Uricchio
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I was eleven when my cats had to be given away because my 

mother had discovered she was allergic to them. Of course, I was 

very sad about the departure of my cats, but not so much that I 

wouldn’t accept a Commodore 64 as a bribe to not protest too 

loudly. The Commodore 64 was already an obsolete computer 

in 1990; now, operational Commodore 64s are mostly owned by 

museums and hipsters.

I quickly became very engrossed in my Commodore 64, 

more than I had been in my cats, because the computer was 

more interactive and understandable. Or rather, there was the 

hint of a possibility to understand it. I played the various games 

that I had received with the computer on about a dozen cas-

sette tapes—loading a game could take several minutes and 

frequently failed, testing the very limited patience of an eleven-

year-old—and marveled at the depth of possibilities contained 

within those games. Although I had not yet learned how to pro-

gram, I knew that the computer obeyed strict rules all the way 

and that there was really no magic to it, and I loved that. This 

also helped me see the limitations of these games. It was very 

easy to win some games by noticing that certain actions always 

evoked certain responses and certain things always happened in 
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the same order. The fierce and enormous ant I battled at the end 

of the first level in Giana Sisters really had an extremely simple 

pattern of actions, limited by the hardware of the time. But that 

did not lessen my determination to get past it.

You could argue that the rich and complex world of these 

games existed as much in my imagination as in actual computer 

memory. I knew that the ant boss in Giana Sisters moved just 

two steps forward and one step backward regardless of what I 

did, or that the enemy spaceships in Defender simply moved in 

a straight line toward my position wherever I was on the screen. 

But I wanted there to be so much more. I wanted there to be 

secret, endless worlds to explore within these games, charac-

ters with lives of their own, a never-emptying treasure trove of 

secrets to discover. Above all, I wanted there to be things hap-

pening that I could not predict, but which still made sense for 

whoever inside the game made them happen.

In comparison, my cats were mostly unpredictable and gave 

every sign of living a life of their own that I knew very little 

about. But sometimes they were very predictable. Pull a string, 

and the cat would jump at it; open a can of cat food, and the cat 

would come running. After spending time among the rule-based 

inhabitants of computer games, I started wondering whether 

the cats’ behaviors could be explained the same way. Were their 

minds just sets of rules specifying computations? And if so, was 

the same thing true for humans?

Because I wanted to create games, I taught myself program-

ming. I had bought a more capable computer with the proceeds 

from a summer job when I was thirteen and found a compiler 

for the now-antiquated programming language Turbo Pascal on 

that computer’s hard drive. I started by simply modifying other 

people’s code to see what happened until I knew enough to write 
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my own games. I rapidly discovered that making good games 

was hard. Designing games was hard, and creating in-game 

agents that behaved in an even remotely intelligent manner was 

very hard.

After finishing high school I did not want to do anything 

mathematical (I was terrible at math and hated it).1 I wanted 

to understand the mind, so I started studying philosophy and 

psychology at Lund University. I gradually realized, however, 

that to really understand the mind, I needed to build one, so I 

drifted into computer science and studied artificial intelligence. 

For my PhD, I was, in a way, back to animals. I was interested 

in applying the kind of mechanisms we see in “simple” ani-

mals (the ones that literally don’t have that many brain cells) 

to controlling robots and also in using simulations of natural 

evolution to learn these mechanisms. The problem was that the 

experiments I wanted to do would require thousands or even 

tens of thousands of repetitions, which would take a lot of time. 

Also, real robots frequently break down and require service, so 

these experiments would need me to be on standby as a robot 

mechanic, something I was not interested in. Physical machines 

are boring and annoying; it’s the ideas behind them that  

are exciting.

Then it struck me: Why don’t I simply use games instead of 

robots? Games are cheaper and simpler to experiment with than 

robots, and the experiments can be run much faster. And there 

are so many challenges in playing games—challenges that must 

be worth caring about because humans care a lot about them. 

So while my friends worked with mobile robots that clumsily 

made their way around the lab and frequently needed their tires 

adjusted and batteries changed, I worked with racing games, 

StarCraft, and Super Mario Bros. I had a lot of fun. In the process, 
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it became clear to me that not only could games be used to test 

and develop artificial intelligence (AI), but that AI could be used 

to make games better—AI for games as well as games for AI. For 

example, could we use AI methods to automatically design new 

game levels? Noting that there were ample possibilities for using 

modern AI methods to improve games, I started thinking about 

game design and how games could be designed with these mod-

ern methods, as well as human thinking in mind.

I had come full circle. I was once again thinking about intel-

ligence and artificial intelligence through the lens of games, and 

about games through the lenses of intelligence and artificial 

intelligence, just like when I was eleven. It is fair to say that I 

have spent most of my life thinking about these interrelated top-

ics in one way or another, and I’d like to think that I’ve learned 

a thing or two. I hope that I can intelligibly convey some of my 

enthusiasm as well as some of the substance of the research field 

I’m part of in this book. 
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This is a book about games, intelligence, and artificial intelli-

gence. In particular, it is a book about how these three things 

relate to each other. I explain how games help us understand 

what intelligence is and what artificial intelligence is, and how 

artificial intelligence helps us understand games. I also explain 

how artificial intelligence can help us make better games and 

how games can help us invent better artificial intelligence. My 

whole career has been based on my conviction that games, intel-

ligence, and artificial intelligence are deeply and multiply inter-

twined. I wrote this book to help you see these topics in the light 

of each other.

This is a popular science book in the sense that it does not 

require you to be trained in, or even familiar with, any partic-

ular field of inquiry to read it. You don’t need to know any-

thing about artificial intelligence, and although I explain several 

important algorithms throughout the book, it is entirely free of 

mathematical notation—you can follow the argument even if 

you only skim the descriptions of algorithms. Some familiarity 

with basic programming concepts is useful but not necessary. 

You don’t need to know anything about game studies, game 

design, or psychology, either. The only real prerequisite is that 
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you care about games and occasionally play games. It doesn’t 

really matter which games.

In other words, I wrote this book for both members of the 

general public who are curious about games and AI and people 

who work with games in some way (perhaps by making them, 

studying them, or writing about them) but don’t know much 

about AI. If you are already knowledgeable about AI, I hope you 

will still find the book interesting, though you may want to skim 

some parts.

This book is also a scholarly argument, or rather several argu-

ments. It is an argument that games have always been impor-

tant—perhaps even a driving force—in artificial intelligence 

research, and that the role of games in AI research is about to 

become even more important, with the ongoing switch from 

board games to video games as the AI benchmarks of choice and 

the advent of general video game playing, which allows us to 

benchmark the general thinking skills of programs. Conversely, 

artificial intelligence has always been important in games, 

even though many game developers have been unaware of AI 

research. But we are likely to see AI becoming much more impor-

tant to future games—in particular, video games—both because 

of advances in AI methods and because of new ideas on which 

roles AI can be used in in games. Although in the past it was 

commonly assumed that the AI in a game was all about how the 

computer-controlled characters you met in a game behaved, we 

now see AI being used to understand players, adapt games by 

changing the levels, and even help us create new games.

I make three primary claims in this book:

• Games are the future of AI. Games provide the best bench-

marks for AI because of the way they are designed to chal-

lenge many different human cognitive abilities, as well as for 
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their technical convenience and the availability of human 

data. We have only begun to scratch the surface of game-

based AI benchmarks.
• AI is the future of games. We now have much more capable AI 

methods than just a few years ago, and we are rapidly learn-

ing how to best apply them to games. The potential roles of 

AI in games go far beyond providing skillful opponents. We 

need to adapt our ways of thinking about game design to fully 

harness the power of advanced AI algorithms and enable a 

new generation of AI-augmented games.
• Games and AI for games help us understand intelligence. By 

studying how humans play and design games, we can under-

stand how they think, and we can attempt to replicate this 

thinking by creating game-playing and game-designing AI 

agents. Game design is a cognitive science; it studies think-

ing—human thinking and machine thinking.

The book is fairly liberally sprinkled with footnotes.1 I’ve tried 

to relegate everything that would break the flow of the text into 

the footnotes. In particular, I put almost all my citations in foot-

notes. Feel free to entirely disregard these if you want to.

I have also written this book in a relatively informal and 

relaxed, sometimes even playful, tone. This is both in order to 

make it more readable outside the ivory tower of academia and 

because this is the way I naturally write. I think that most aca-

demic writing is needlessly formal and rather boring. I promise 

you that nothing I say is less true because I use the active tense 

and even the first-person singular pronoun.

This is where I give you an overview of the book. Chapter 1 

starts from the beginning, with the origin of computers and some 

ancient games and fundamental algorithms. The very first com-

puter scientists tried to develop programs that could play classic 
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board games such as Chess, as these were thought to embody 

the core of intelligence. Eventually we succeeded in constructing 

software that beat us at all board games. But does this mean that 

this software is intelligent? Chapter 2 asks whether you need 

to be intelligent to play games (or to play games well). It seems 

that not only do games do a good job of exercising your brain 

in a number of different ways, they also teach you to play them; 

in fact, well-designed games are finely tuned to the abilities of 

humans. But if they require intelligence from you, how can an 

algorithm play them without being intelligent? Chapter 3 digs 

into the question of whether a game-playing program can be (or 

have) artificial intelligence, and if not, what AI actually is. There 

are several ideas about what intelligence and artificial intelli-

gence are, but none of these ideas is without its own problems. 

While we may still not know just what intelligence or AI is, we 

now know a lot more about what it is not.

Next, in chapter 4, we look at what kind of AI you actually 

would find in a modern video game. I describe a couple of impor-

tant algorithms in the context of a fairly standard shooter game 

and point out some of the severe limitations of current game AI. 

But do we even know what AI in a video game would be like if it 

were not so limited? I try to give some ideas about what it could 

be like and some ideas about why we do not already have such 

awesome AI. This certainly has to do with the current state of AI 

research, but just as much with game design and game develop-

ment practices. The next three chapters look at some new ways 

in which AI could be used in games. Chapter 5 describes how 

nonplayer characters (NPCs)—and other things in a game—

could learn by experience, from playing the game, using prin-

ciples from biology (evolution) and psychology (learning from 

reinforcements). Chapter 6 describes how games can learn from 
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the humans that play them, and perhaps adapt themselves, and 

chapter 7 describes how AI can be used in a creative role, to con-

struct or generate parts of games or even complete games. These 

uses of AI do not necessarily fit well into standard game design 

and game development practices. Chapter 8 is therefore dedi-

cated to ways of designing games that foreground interesting 

AI capabilities. For the penultimate chapter, chapter 9, we again 

turn to the use of games as tests of (artificial) intelligence. Build-

ing on the discussion in the previous chapters, I discuss testing 

and developing AI though general video game playing. Finally, 

chapter 10 returns to the three claims I advanced above, show-

ing how progress on artificial intelligence for games and progress 

on games for artificial intelligence are dependent on each other. 

If you finish this book and still want to know more about games, 

intelligence, and artificial intelligence, you will be delighted to 

find a “further reading” section following chapter 10 that sug-

gests books, conference proceedings, and journals that will sat-

isfy your curiosity—or get you started on your own research. 
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The first working digital computers were developed in the late 

1940s or early 1950s, depending on your exact definition of com-

puter, and they were immediately used to play games. In fact, 

in at least one instance, a program for playing a game was writ-

ten and executed by hand, using pen and paper because a suf-

ficiently powerful computer to run the program had not been 

built yet. The eager inventor (and player) was none other than 

Alan Turing, one of the founding fathers of computer science 

and artificial intelligence. The year was 1948. The game was 

Chess (figure 1.1). Turing acted as the computer (computing all 

the moves by hand) when using this algorithm to play against 

a good friend.1

Why Chess? Well, it’s a game that’s been around for a very 

long time, the rules are simple to write down in both English and 

in computer code, and many people play it. For some reason—

or some combination of reasons—Chess has traditionally been 

taken very seriously. Maybe this is because it is seldom, if ever, 

played for money, which in turn may be because there is no 

element of chance and no hidden information (no dice or cards 

and you can see the whole board). Maybe it is because Chess has 

plenty of depth: there is a lot to learn about playing the game, 
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so you can keep getting better at the game all your life. The game 

allows a multitude of different strategies, and master-level play-

ers typically have recognizable playing styles.

So it was not far-fetched when, at the very beginning of 

research into artificial intelligence, Chess was proposed as an 

important problem to work on. It was inconceivable that any-

one could be able to play it at a high level without being truly 

intelligent, for how could you play this game without success-

fully planning ahead, judging the true value of board positions, 

and understanding your opponent’s thinking and predict-

ing her moves? The game seemed to be close to pure thought. 

Or could you think of any other activity that more clearly 

required intelligence than playing Chess? It seemed natural 

Figure 1.1
Chess existed for thousands of years before it became central to artificial 

intelligence research. (Courtesy of Wikimedia Commons under a Cre-

ative Commons 3.0 license.)
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to assume that if we constructed a program that was a master 

Chess player, we would have solved the problem of artificial 

intelligence. So people got to work on this nicely well-defined  

problem.

While Turing himself was probably the first person to execute 

a Chess-playing program, many other researchers saw this as an 

important topic. Chess playing grew into a vibrant subfield of 

artificial intelligence research, with conferences, journals, and 

competitions devoted to the study and development of software 

that could play Chess and similar board games. Several impor-

tant developments in artificial intelligence took place in the 

context of board games, such as when the IBM computer scien-

tist Arthur Samuel in 1958 invented the first version of what is 

now called reinforcement learning in order to make a Checkers-

playing program learn from experience.2

When the first Chess-playing programs were developed, 

many thought that a computer program could never rival a 

master-level human player because these programs were merely 

code and humans were intelligent. And Chess, mind you, is a 

sophisticated game that requires intelligence to play.

But during decades of dedicated research, Chess-playing soft-

ware got stronger and stronger. Whereas these programs initially 

could barely beat a beginner, they gradually inched their way 

past intermediate performance, and approached master-level 

play. This had much to do with the availability of faster proces-

sors and larger memory sizes, but it also had a lot to do with the 

software getting better—essentially refinements of and additions 

to the same basic algorithm that all of these programs had used 

from the start.

In 1997 this development finally caught up with the human 

state-of-the-art, which had been improving slowly, if at all. In 
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a much-publicized match, IBM fielded its special-purpose Deep 

Blue Chess computer against the reigning world champion, 

Garry Kasparov. The computer won.3 This event was the starting 

point for a vivid debate about the meaning of intelligence and 

artificial intelligence now that machines had conquered Chess. 

Most observers concluded that Deep Blue was not really intel-

ligent at all, because it looked and functioned nothing like the 

human brain. At the heart of Deep Blue is a simple algorithm, 

though augmented by a myriad bells and whistles. In fact, this 

algorithm is the very same algorithm that Turing (re)invented in 

the 1940s. So how does it work?

How a Computer Plays Chess

The approach almost all Chess-playing programs take is to use 

some variant of the minimax algorithm. This is actually a very 

simple algorithm. It works with the concepts of board states and 

moves. A board state is the position of all pieces on the board, 

and a move is a transition from one state to another (for exam-

ple, moving your pawn two steps forward will transition your 

board into a state similar to but distinct from the state the board 

was in before the move). From any board state, it’s quite simple 

to list all moves that a player can take; on average you can take 

thirty-five or so different moves, and on the first turn, you have 

twenty moves to choose from. Sometimes you can take only 

one or two different moves—when this happens, you usually 

have a problem. Minimax presumes that you can store multiple 

board states in memory or, in other words, that you can keep 

lots of copies of the game. (This is not a problem on any modern 

computer, as a Chess board state can be represented in just a  

few bytes.)
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Minimax also assumes that you have a way of evaluating the 

value (or utility, or goodness) of a board state. For now, you can 

think of the value of a board state as how many pieces you’ve 

got left on the board, minus how many pieces your opponent 

has. If the resulting number is positive, you’re probably ahead 

in the game.

Here is how minimax works. Imagine you play from the per-

spective of the white player, and want to know the best move to 

take from a particular board state. You start with listing all pos-

sible moves you could make from that state. You then simulate 

taking each move and store all of the resulting board states. If 

you were very shortsighted, you could stop here; simply estimate 

the value of each resulting board state (for example, by counting 

pieces) and choose the move that leads to the board state with 

the highest value. That would be the max part of the minimax 

algorithm.

That would indeed be shortsighted, however, because a move 

that brings an immediate benefit (for example, by capturing one 

of the opponent’s pieces) might give the opponent an open-

ing to strike back with one or several captures of her own, thus 

being disastrous in the slightly less short term. Everyone who 

has played more than one game of Chess knows this. Therefore, 

for each of the board states resulting from your possible first 

moves, you list all possible moves by the opponent and evalu-

ate the resulting board states. The crucial difference to what you 

did in the first step is that while in the first step you wanted to 

find the move that was best for you, in the second step, you 

assume that the opponent will take the move that is most advan-

tageous for her, that is, the worst move for you. If your oppo-

nent can capture your piece when it’s her turn, she will. That’s 

the min part of the minimax algorithm. Putting them together, 
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the best move for you is the one that minimizes the maximum 

score your opponent can reach in her turn. Practically, for each 

of your possible moves in your turn, you assign the lowest value 

of the board that your opponent can reach through any of her 

moves in the second turn.

You are now looking two turns ahead. However, what of those 

clever strategies where you let your enemy make a capture on 

her turn just so you yourself can make a bigger capture on your 

next turn? Well, you could simply let the minimax algorithm 

run one step further and assume that the opponent will assume 

that you do the move that benefits you best. This could go on 

forever, or until you have reached the end of the game in your 

simulations. In fact, if you simulate all the way to the end of 

the game, exploring all moves and all responses to those moves, 

you will find the provably optimal strategy, one that cannot be 

improved on. In other words, you will play Chess perfectly.

But you are not going to simulate all the way to the end of 

the game because you don’t have the time to do so. If there are 

thirty possible moves from one board state (a typical number 

for midgame Chess), then each turn you simulate will multiply 

the number of board states you need to investigate by thirty. 

In other words, you need to evaluate 30t states, where t is the 

number of turns you look ahead. For looking five steps ahead, 

that’s about twenty-four million. The number of states you need 

to investigate quickly approaches the number of atoms in the 

earth and other such ridiculous numbers. Searching to the end 

of a Chess game is therefore impossible for any computer we will 

be able to construct in the foreseeable future. That is why you 

need a good way of estimating the value of a board state, because 

you will have to be content with looking only a few turns ahead. 
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In practice, what a Chess-playing agent does is search to a given 

depth and then evaluate the board states it reaches even though 

those are not typically win or loss states. Luckily, in Chess a sim-

ple board state estimation such as the piece difference between 

black and white generally works fairly well, though many more 

complex methods have been developed.

Minimax is called a tree-search algorithm, not because it helps 

you looking for the most delicious cherries in a cherry tree, but 

because of what it does can be understood as growing a branch-

ing tree as it searches for the best move—a tree that grows upside 

down. Think of it this way: the root of the tree is the original 

board state, the one you want to find the best move for. All of the 

possible moves from that state become branches that grow from 

the root. At the end of each branch is the board state that move 

leads to. Of course, from each of these states, a number of moves 

are possible, and these can in turn be visualized as branches from 

the end of the previous branch … and so it continues until you 

reach those board states where you do not try any more moves 

but instead estimate the value of the state. Those are called 

“leaves,” in this somewhat imperfect analogy. (Computer scien-

tists are not famous for their analogies.) The number of moves 

possible at each state is called the “branching factor.”

Of course, there have been a number of improvements to this 

method since Alan Turing himself first suggested it in the 1940s. 

There are ways of “pruning” the search so that fewer board states 

are investigated, there are ways of concentrating on the most 

promising move sequences, and there are much better ways 

of estimating the value of a board. But the minimax principle 

remains. It is the core of almost all successful Chess-playing 

programs.
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Advance Directly to Go

Go is a game that occupies a similar place in East Asian culture as 

Chess does in European culture.4 It has other things in common 

with Chess as well, such as having two players, perfect infor-

mation, no randomness, and that one player uses white pieces 

and the other black (figure 1.2). In other respects, it is actually 

simpler. It has only two or three rules, depending on how you 

count, and one type of piece compared to eight in Chess.

Perhaps somewhat surprisingly, the same methods that work 

very well for playing Chess fail miserably when it comes to 

Go. Minimax-based algorithms generally play this game badly. 

There seem to be two main reasons for this: the branching factor 

(number of moves) is much higher (on the order of 350 rather 

than the 35 in Chess), and it is very hard to accurately estimate 

the value of a board state. The high branching factor means that 

Figure 1.2
Go, the simpler but harder (for a computer) Asian cousin of Chess. (Pho-

to by Linh Nguyen under Creative Commons 2.0 license.)
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minimax can make only very shallow searches, and the diffi-

culty with estimating the board value means that the “signal” 

that the minimax algorithm uses is worse. But for a long time, 

we did not know any better algorithms for playing Go. There-

fore, the best Go-playing programs were stuck at beginner level, 

even as Chess-playing programs reached and surpassed grand-

master level.

So it’s natural that people’s eyes turned to Go after Chess was 

conquered. Go seemed so much harder than Chess. Maybe this 

game could not be conquered with such simplistic techniques? 

Maybe this game would actually require intelligence to play?

We finally started to see some real progress on Go-playing 

software in 2007 when the Monte Carlo tree search (MCTS) algo-

rithm was invented.5 Like minimax, MCTS is a tree search algo-

rithm. Unlike minimax, it has randomness. (That’s why it has 

“Monte Carlo,” like the famous Monaco casino, in its name.) 

Accepting the fact that it will be impossible to explore all pos-

sible moves to the same degree, MCTS chooses which moves to 

explore first randomly; it then proceeds to explore further which 

of those moves seem most promising initially. Instead of count-

ing pieces to estimate the value of a board (this works very badly 

in Go), MCTS plays the game randomly until the end many 

times, and it sees what percentage of these “playouts” it wins. It 

might seem crazy with so much randomness in the algorithm, 

but empirically this works very well.

Almost twenty years after Deep Blue’s victory over Garry 

Kasparov, human supremacy in Go was overturned. This time 

it was the AI research company DeepMind, at the time a divi-

sion of Google, that provided the software. In a series of matches 

in 2016, DeepMind’s AlphaGo took on Lee Sedol, arguably the 

world’s best Go player, and won 4–1. AlphaGo was built on the 
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MCTS algorithm, combined with neural networks that had been 

trained for months on previous matches of numerous Go cham-

pions, and by playing against itself (I’ll discuss neural networks 

later in the book).6

This was the last important classic board game to yield to the 

machines.7 It was also the hardest. There are no longer any clas-

sic board games that the best human plays better than the best 

computer program, at least not classic board games that people 

care about.

So was AlphaGo intelligent? Most people would say no. 

Although it functioned differently from Deep Blue and included 

an element of learning, it was still nothing like the human brain. 

“Just an algorithm,” some would say. And it could only play Go. 

If could not even play Chess (without re-training its network), 

nor could it drive a car or write a poem.

This brings up several important questions: Does a thing need 

to function anything like the human brain in order to be intel-

ligent? And do you need to be intelligent in order to play games 

well? Let’s try to answer the second question first.
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Shall we play a game? You choose: Chess, Super Mario Bros., 

or Angry Birds. I’m giving you a choice because I don’t know 

whether you are familiar with all three of them. I talked about 

Chess in the previous chapter: the Western’s world’s arguably 

most famous board game, played by physically moving pieces 

such as pawns, kings, and queens on a board with alternating 

black and white squares. By moving these pieces so that they 

threaten and capture your opponent’s pieces, you can ultimately 

win over your opponent by surrounding her king. It has changed 

little since it was invented millennia ago.

Super Mario Bros. is the platform game that accompanied the 

European/American launch of Nintendo’s 8-bit Nintendo Enter-

tainment System (NES) console back in 1985 (figure 2.1). By 

pressing buttons on a little plastic box, you commandeer the 

jovial plumber, Mario, as he avoids evil turtles, stomps menac-

ing mushroom men, jumps over gaps, collects coins, and saves 

the princess who has been kidnapped by a giant lizard. Sequels 

of the game keep being developed for all of Nintendo’s hard-

ware and in addition to hundreds of millions of copies of the 

Super Mario Bros. games that have been sold legitimately, there 
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are dozens of unauthorized versions of the game available for 

any conceivable hardware platform.

Angry Birds is the mobile gaming phenomenon from 2009 

by Finnish company Rovio (figure 2.2). You point at and swipe 

your fingers over your phone’s touch screen to fling an assort-

ment of birds at various structures, and your goal is to make 

the structures collapse on top of evil green pigs that have stolen 

your eggs. The original game, as well as a myriad of sequels are 

available for iPhone, iPad, and Android devices and have topped 

best-seller lists on all those platforms.

Figure 2.1
The genre-defining platform game Super Mario Bros. (Nintendo, 1985).
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My guess is that you have played all three of these games, 

or at least seen someone play them. If not, you have probably 

played two of them, or at very least one of them. In the extremely 

unlikely event that you don’t know either Chess, Super Mario 

Bros., or Angry Birds, I’m somewhat confused as to who you are 

and what world you live in. Are you reading this book in the far 

future? I’m just going to assume you play games of some sort.

Having ascertained that you play games, let me now ask: Why 

do you play games? To relax, have a good time, lose yourself a 

bit? Perhaps as a way of socializing with friends? Almost cer-

tainly not as some sort of brain exercise. But let’s look at what 

you are really doing:

You plan. In Chess, you are planning for your victory by imag-

ining a sequence of several moves that you will take to reach 

checkmate, or at least capture one of your opponent’s pieces. 

Figure 2.2
Angry Birds (Rovio, 2009), the physics puzzler that was on seemingly ev-

eryone’s iPhone after it debuted.
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If you are any good, you are also taking your opponent’s coun-

termoves into account and making contingency plans if they 

do not fall into your elaborately laid traps. In Super Mario Bros., 

you are planning whether to take the higher path, which brings 

more reward but is riskier, or the safer lower path (figure 2.3). 

You are also planning to venture down that pipe that might 

bring you to a hidden treasure chamber, or to continue past it, 

depending on how much time you have left and how eager you 

are to finish the level. You may be planning to eat the power-

up that lets you get through that wall so you can flick a switch 

that releases a bean from which you can grow a beanstalk that 

lets you climb up to that cloud you want to get to. In Angry 

Birds, you are planning where to throw each bird so as to achieve 

maximum destruction with the fewest birds. If you crush the ice 

wall with the blue bird, you can then hit that cavity with the 

black bomb bird, collapsing the main structure, and finish off 

that cowardly hiding pig with your red bird.

You think spatially. Chess takes place on a two-dimensional 

grid, where cells that are not occupied by white or black pieces 

are “empty.” Those who have played the game a number of 

times and internalized its rules start seeing some of the opportu-

nities and threats directly as they look at the board. The fact that 

the queen is threatened stands out like an X in a row of Os, and 

the possible positions a knight can go to are immediately visible 

on the board. In Super Mario Bros., you need to estimate the tra-

jectory of jumps to see whether you can pass gaps and bounce 

off enemies, which means seeing the jump in your mind’s eye 

before you execute it. You also need to estimate whether you can 

get through that small aperture with your current size (Mario can 

change size) and whether that path over there leads anywhere. 

In Angry Birds, you also need to estimate trajectories, sometimes 
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very complicated ones that involve bouncing and weird gravity, 

and you may also need to determine whether you can fit that 

bird in the narrow passage between that pixelated rock and that 

virtual hard place.

You predict the game and your opponent(s). In Chess, predict-

ing what your opponent will do is essential to successful play. If 

you knew how your opponent would react to your moves, you 

could plan your strategies with perfect certainty that they would 

succeed. Super Mario Bros. and Angry Birds are usually not adver-

sarial games (you are not playing against a human opponent), 

but instead the challenge is to predict the actions and reactions 

Figure 2.3
A planning algorithm (a version of the A* algorithm, discussed in chap-

ter 4) playing a clone of Super Mario Bros. The black lines show the vari-

ous future paths the algorithm is considering.
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of the environment. When will the cannon fire? Which way will 

that turtle face if I land to the left of it? Will the monster lizard 

advance all the way if I don’t jump up on the platform? And 

how exactly will that complex building collapse if I knock out 

the bottom support, where will all the pieces land, and will one 

of them set off that box of TNT to create a nice chain reaction? 

While randomness may play some role in Angry Birds (Super 

Mario Bros. is completely deterministic), the difficulty stems 

mainly from the very complex interactions among the various 

objects in the game.

You assess yourself. “Know yourself,” said Socrates. He was 

probably not talking about Chess and certainly not about Angry 

Birds, but really, knowing yourself is an invaluable asset when 

playing games. Overestimating your skill will make you play 

recklessly and most likely lose; underestimating your skill means 

that you will not attempt that risky strategy that could have 

won the game for you. Also, you need to take your affect into 

account and correct for it. Are you currently off-balance because 

your plan did not work out, unhealthily buoyed by your recent 

success, or perhaps driven by lust for revenge for that bastard 

move your opponent just made to capture your queen? Well, 

then you need to take that into account. Don’t try that ten-

moves-deep strategy if you know it’s based on wishful think-

ing rather than careful assessment of the situation. The same is 

true for Super Mario Bros. and Angry Birds: if you did not know 

your own skill level, you would not be able to progress in the 

game because you would try strategies that were too hard for 

you. You might also be better at executing some tactics, such 

as long jumps or setting traps with your knights, than others, 

such as precision shooting or moving in quickly to surround  

the king.



Do You Need to Be Intelligent to Play Games? 17

You move. It is true that Chess does not involve much in the 

way of motor skills, at least unless the game degenerates into a 

brawl, but the other two games certainly do. Super Mario Bros. has 

you pressing two keys and a D-pad, which is itself eight direction 

keys, very frequently (often multiple presses per second). Angry 

Birds demands very fine control of your finger movements on 

the screen in order to shoot the bird in the right direction with 

the right force and activate its special ability at the right time. In 

both games, these movements must be coordinated with what 

happens on screen and perfectly timed. It is the sensorimotor 

aspects of these games that tend to picked up very quickly by 

five-year-old kids but not always by their frustrated parents.

Of course, other games offer other challenges. First-person 

shooters such as Halo or Call of Duty challenge your spatial 

navigation in three dimensions, and in multiplayer modes, 

they throw you straight into the complexities of team strategy. 

Role-playing games such as Skyrim and Mass Effect require you 

to understand the motives behind the actions of complex char-

acters, resolve ethical dilemmas, and navigate perilous politics 

(at least if you play them the way they are meant to be played—

although you can get pretty far in some of them by just shooting 

everything that moves). Economic simulation games like SimC-

ity and Transport Tycoon require you to understand and influence 

complex economical systems.

One way of trying to outline what types of cognitive chal-

lenges games offer is to look to psychology or, more precisely, 

psychometrics, to see if there is some handy list of cognitive abil-

ities. We could then try to figure out how each of these abilities 

is required (or not) for playing games of different types. It turns 

out that there are indeed such lists. In particular, the Cattell-

Horn-Carroll (CHC) theory divides general intelligence into 
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eleven different “broad cognitive abilities,” which are further 

subdivided into many more specialized cognitive abilities.1 This 

taxonomy is based on statistical analysis of hundreds of different 

cognitive tests and is widely accepted in the psychometrics com-

munity (though as new empirical evidence comes in, categories 

are modified and added).

Table 2.1 lists the eleven broad cognitive abilities from CHC 

theory and gives some examples of situations in games where 

they are used. Note that this is very far from a complete list; 

I’ve more or less listed some of the first examples that came to 

mind, trying to get some diversity in terms of game genres. My 

guess is that almost any game would make use of at least five 

different cognitive abilities (Super Mario Bros., Angry Birds, and 

Chess certainly do), but this is just a guess and I’m not aware of 

anyone having done research on it. Someone really should do 

that research.

In sum, we use many different forms of intelligence when we 

play games, more or less all the time. This sounds like a lot of 

hard work. It’s amazing that playing games actually relaxes you, 

but it does. (I took several breaks to play games while writing 

this chapter.)

Do You Learn When Playing Games?

So far, we have discussed only the individual skills you exercise 

when you play a game. But you do not exercise them the same 

way all the time; you are building your skills as you play. It cer-

tainly does not feel as if you are taking a class while you are play-

ing a game (if it does, it’s not a very good game). Yet you learn. 

Here is proof: you are much better at the game after playing it 

for some time than you were when you started. Try playing one 
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Table 2.1
The various cognitive abilities according to Cattell-Horn-Carroll theory 

and some examples of their use in games

Broad cognitive 
ability Example use in games

Comprehension-
knowledge

Communicating with other players in all 
manner of multiplayer games, from Bridge to 
Gears of War and World of Warcraft

Fluid reasoning Combining evidence to isolate suspects in 
Phoenix Wright; solving puzzles in Drop7

Quantitative 
knowledge

Controlling complex systems involving lots of 
quantitative data, such as in SimCity, or 
character management in Dungeons and 
Dragons

Reading and 
writing ability

Reading instructions in games, following 
conversations, and selecting dialogue options 
in role-playing games such as Mass Effect; 
writing commands in text adventures such as 
Zork

Short-term 
memory

Everywhere! For example, remembering 
recently played cards in Texas hold’em poker 
or Hearthstone

Long-term 
storage and 
retrieval

Recalling previous games of Chess or StarCraft 
that resemble the current game to gain insights 
into strategy

Visual 
processing

Spotting the possible tile matches in Candy 
Crush Saga or the enemy snipers in Call of Duty

Auditory 
processing

Becoming aware of approaching zombies (and 
from which direction) in Left 4 Dead; 
overhearing secret negotiations in Diplomacy

Processing speed Rotating pieces correctly in Tetris; 
micromanaging battles in StarCraft; playing 
speed Chess

Decision or 
reaction time/
speed

Everywhere! For example, countering moves in 
Street Fighter or deciding what fruits to slice in 
Fruit Ninja
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of the early levels in Super Mario Bros. or Angry Birds again. Or try 

playing a Chess computer at novice difficulty again, the one that 

beat you roundly the first time you tried. Piece of cake.

Raph Koster, a famous game designer, has made the argument 

that learning is the main reason games are fun.2 Good games are 

designed to teach you how to play them; the better they teach 

you, the better designed they are. You have fun because you are 

learning to play the game, and when you stop learning, you stop 

having fun. If there is nothing more to learn, you grow tired of 

the game. Therefore, a trivial game that you can beat on your 

first attempt is not interesting, and neither is a near-impossible 

game that you cannot make any progress on. A well-designed 

game instead offers you a long, smooth difficulty progression 

where you can keep learning as you play. We can say that the 

game is accessible and deep.

For example, when you started playing Super Mario Bros., you 

first had to learn what the buttons did—button A makes Mario 

jump and pressing the D-pad in different directions makes him 

walk left or right—and you then had to learn how to tackle the 

various challenges that the game presented. “So, there’s a walk-

ing mushroom approaching. What can I do? Aha! I can jump 

on it!” As you progressed through the levels of Super Mario Bros., 

you would have noticed that the challenges presented became 

trickier and trickier, but also that you were better and better pre-

pared to handle them.

The oft-imitated design of Super Mario Bros.’s levels typically 

introduces a basic version of some challenge (say, a jump over 

a gap or an enemy caught in a valley between two pipes) and 

later presents more advanced versions of the same challenge 

(longer gaps, different kinds of enemies in the valley) or com-

binations of several earlier challenges (a long jump over a gap, 
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after which you immediately land in a valley full of enemies). 

Every time, the completion of some previous challenges has pre-

pared you for tackling the new, more advanced challenge. And 

after a while, when you thought that there were no ways left to 

produce new, interesting challenges by varying the existing chal-

lenges, the game throws in some new ingredient that offers fur-

ther variation and deeper challenges. One such new ingredient, 

introduced rather late in the game, is the spiky enemy, which 

cannot be defeated by jumping on top of it. Adding spiky ene-

mies to existing challenges forces you to develop new strategies 

to cope with the familiar-looking but fresh challenges. Finally, 

even when you’ve managed to finish the whole game (beating 

the boss at the last level and rescuing the princess), there is much 

left to discover, including hidden areas and treasures, and how 

to beat the whole game in under ten minutes (if you’re of that 

persuasion). Super Mario Bros. is widely regarded as a masterpiece 

of game design, partly by virtue of being a masterpiece of peda-

gogics: a deep and rewarding course where the next improve-

ment is always within reach.

The story is much the same for Angry Birds. First, you learn the 

basic motor skills of swiping your fingers to fling birds, before 

proceeding to understand how the various birds interact with the 

materials the towers are built from and which parts of the towers 

are most crucial to hit in order to raze the whole tower. Every 

once in a while, the game throws in new types of material, new 

birds, and other devices to expand the range of challenges. Even 

in Chess, the progression is similar, with the obvious exceptions 

that very little in the way of motor skills is necessary and that 

learning takes place over many games of Chess rather than on 

many levels of the same. First, you learn the basic rules of Chess, 

including how the pieces move and capture. Then you learn 



22 Chapter 2

more advanced rules, which presuppose mastery of the simpler 

rules, including castling and when the game is a draw. You can 

then move on to learning heuristics,3 first simple and then more 

advanced; then you learn opening books (lists of good opening 

moves), the quirks of particular players and playing styles, and 

so on.

The idea that playing (games or otherwise) goes hand in hand 

with learning is not unique to game design. The developmen-

tal psychologist Lev Vygotsky talks about “proximal zones of 

development” in children’s play, where kids typically choose to 

play with objects and tasks that are just outside their capaci-

ties because these are the most rewarding.4 Relatedly, the cre-

ativity theorist Mihaly Czikszentmihalyi’s concept of flow states 

that flow can be experienced when performing a task that is so 

hard as to challenge you but not easy enough to bore you, and 

where the difficulty of the task increases as your performance 

improves. Czikszentmihalyi developed this concept in reference 

to artistic and scientific creativity, but it applies just as well to 

game playing.5 From a seemingly completely different perspec-

tive, the machine learning researcher Jürgen Schmidhuber intro-

duced a mathematical formalization of curiosity. In his model, 

a curious agent (human or artificial) goes looking for tasks that 

allow it to improve its model of the task, and therefore its capac-

ity to perform the task.6 In other words, according to Schmidhu-

ber’s theory, a mathematically optimally curious agent does the 

same thing as a young kid learning about the world by playing 

with it, or as a discerning player choosing to play games she likes 

or choosing challenges that seem interesting within that game.

To sum all this up, it seems that games challenge your brain 

in more than one way—way more than one way—and, further-

more, that good games are designed to keep you challenged by 
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ramping up the challenge (and providing additional challenges) 

in a pedagogical manner. Schools should take note (some do). It 

is very likely that the good games, those that we choose to play 

and keep coming back to, are so good at least partly because they 

succeed in persistently challenging our brains in multiple ways.

So you definitely use your intelligence when you play games. 

At the same time, we saw in the previous chapter that it is pos-

sible to build software that can play Chess or Go better than 

any human while seemingly not being intelligent. So how come 

intelligence is needed for humans to play games, but not for 

machines to play them? What’s going on here? It is time to try 

to nail down what we mean by artificial intelligence and, in the 

process, what we mean by intelligence.
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This is already the third chapter of the book, but I have not yet 

defined what we are talking about. Let me try. AI is short for “arti-

ficial intelligence,” and because “artificial” is a rather straightfor-

ward concept, we just need to define intelligence. There must be 

a good definition of intelligence around, right?

Well, the good news is that lots of people have defined intel-

ligence. The bad news is that the definitions that have been pro-

posed are quite different from each other and not very easy to 

reconcile at all. In fact, there are so many definitions that it is 

hard to even get an overview of all of them. This tells us two 

things: that the nature of intelligence is of central concern to 

many thinkers and that lots of work remains to be done. In this 

book, I present and make use of several different definitions 

of intelligence, and specifically artificial intelligence.1 We’ll start 

with what is perhaps the most famous conception of artificial  

intelligence.

Imagine you are chatting online with two people. Perhaps 

you’re using Facebook messages, Twitter, Slack, SMS, or some-

thing else. If you’re not into chatting—the very word might 

offend you as something that only millennials do—imagine that 

you are having a conversation with two people via text messages. 
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You might even be typing on sheets of paper on a typewriter and 

sending them back and forth in envelopes. The format doesn’t 

matter. The important thing is that you are communicating in 

an old-fashioned text-only way with both people.

Now someone tells you that one of these people is in fact a 

machine—to be more precise, AI software running on a com-

puter. The other is a human. Your task is to find out which is 

which or, if you want, who’s who. You can ask both of your text 

partners anything you want, but they are not required to answer 

truthfully, especially if you ask whether they are a computer.

This test was proposed in 1950 by Alan Turing, whom we 

encountered in the first chapter.2 (Mind you, this was before any 

actual general-purpose computers existed, much less Facebook 

and text messages, so Turing talked about “teleprinters.”) Turing 

was addressing the question, “Can a machine think?” and pro-

posed that one way of finding out was to see whether it could 

win at what he called “the imitation game” but has since come 

to be called the “Turing test.”3

If the software is so good that you could not distinguish 

the human from the computer would that mean that it was 

intelligent? Try to imagine the situation. If you want to, you 

can imagine that the computer “won” the game not just once 

but multiple times. If it can outsmart you, it must surely be 

intelligent—unless you have an extremely low opinion about 

your own intelligence.

Some people just accept that if a computer could pass the Tur-

ing test, it would be intelligent. (Perhaps it needs to have passed 

it multiple times against multiple human judges; perhaps the 

judges need to be specially trained.4) Others, perhaps most, dis-

agree. It becomes interesting when you ask people why the com-

puter is not intelligent, even though it passes the Turing test.
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Sadly, a not-uncommon answer is, “It can’t be intelligent 

because it’s a computer.” Personally, I find it hard to answer this 

objection without sarcasm. But offending people is no way to 

conduct constructive discussion.

The best answer to the “it’s only a computer” objection is to 

keep asking: “Why is it that a computer cannot be intelligent, 

whereas a human can?” Some people say that the word intel-

ligence by definition applies only to humans. Okay, fine. Let’s 

come up with another word then that means “intelligence” 

except it is not arbitrarily confined to humans. Others reply that 

the computer cannot be intelligent because it is made of silicon 

components like transistors, while a human is made out of liv-

ing, biological cells. So why is it that having biological cells is 

necessary for intelligence? And how do you know? There are 

also those who claim that the computer could not be intelligent 

if it was programmed by humans; it must have learned by itself, 

perhaps by growing up with humans. Again, how do you know 

that intelligence can’t be programmed? Have you tried? And 

how do you know that this particular computer program, which 

just fooled you into thinking it was a human, did not grow up 

with humans and go to school with the other kids? All you know 

about is that it was smarter than you.

There are a couple of good objections too. One is that commu-

nicating through written text is rather limited, and real humans 

communicate also through the tone of their voice, facial expres-

sions, and body movements. Another is that this sort of inter-

view situation is indeed a very unnatural one, and not really 

representative of the wide range of activities humans engage in 

every day. Some people handle a written interview situation ter-

ribly but are otherwise perfectly competent human beings. Con-

versely, being able to write eloquent answers to questions does 
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not guarantee that you can get out of bed, tie your shoelaces, 

decide what you want to eat, comfort the ones you love, or paint 

a painting. Or play a game. Yet all of these activities seem to 

require intelligence of some kind.

Are Humans Intelligent?

As we can see, the Turing test is not without issues. But still, the 

basic idea of taking something that a human can do and task the 

computer with doing the same is appealing. It makes sense that 

if that a computer is truly intelligent, it should be able to do all 

those things that a human can do because of her intelligence.

However, this criterion makes at least two assumptions: that 

humans are indeed intelligent and that this is the only (or high-

est) type of intelligence. Humans appear to implicitly be the 

measure for intelligence just as for other things. So let’s turn the 

question around and ask if, from the perspective of computers, 

humans are intelligent.

Humans would, compared to a computer, seem quite stupid 

in many ways. Let’s start with the most obvious: humans can’t 

count. Ask a human to raise 3,425 to the power of 542 and watch 

him sit there for hours trying to work it out. Ridiculous. The 

same goes for a number of other trivial tasks, such as calculat-

ing the average age in a population of 300 million. Shouldn’t 

take more than a couple of seconds—unless you are a human, 

in which case it’ll probably take you years, and even then you 

would have made a number of errors.

Humans have almost no memory either. Ask a human to give 

you the correct name and current address for a randomly cho-

sen social security number (or personal registration number, or 

whatever the equivalent is in your country). Even if she has all 
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the information in whatever format she prefers (such as a large 

paper catalog), it will still take her at least several seconds—and 

most humans would not even know where to get the informa-

tion. Or ask a human to produce a hundred addresses to websites 

talking about artificial intelligence, or even a complete list of 

everything that happened to him yesterday. Humans talk about 

“goldfish memory,” but from the perspective of a computer, the 

human and the goldfish aren’t that far apart, capability-wise.

At this point, many readers will be protesting wildly and say-

ing that I am being terribly unfair to them. I am only choos-

ing tasks that computers excel at and ignoring those where 

humans have an advantage, such as motor control and pattern 

recognition.

Right. Computers can land a jet plane and fly a helicopter. 

In fact, almost any computer can do those things if you load 

the right software. Very few humans know how to land a jet 

plane, and even fewer know how to fly a helicopter. Many have 

the capacity to “load the software” (learn), but this is a process 

that takes years and is very expensive. Sometimes even trained 

humans fail spectacularly at these tasks. (It’s hard to understand 

why anyone would want to be in a plane flown by a human now 

that there are alternatives.) Computers can drive regular cars on-

road and off-road, obeying all traffic regulations. There are many 

humans who can’t even do that.5

Speaking of pattern recognition, it’s true that humans can 

recognize the faces of their friends with quite high accuracy. 

But then, humans have only a couple of hundred friends at 

most. The face recognition software that Facebook uses can tell 

the faces of hundreds of thousands of people apart. Other pat-

tern recognition algorithms can successfully match a scan of a 

human thumb to the right fingerprint in a database of millions.
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Now let’s take another activity that humans should be good 

at: game playing. Games were invented by humans in order to 

entertain themselves, and because humans seem to find it enter-

taining to exercise their learning, motor, and reasoning capabili-

ties, games should be perfectly tailored to human intelligence. 

Humans should excel at game playing, right? Well, not really. As 

we have seen, computers now totally own humans in basically 

all classic board games. And as we will see later, computers per-

form very well in many video games as well. There are still games 

where computers do better, though the development of better 

hardware and software means that computers are constantly 

closing the gap. You should also remember that all the games 

on which we compare humans and computers were designed 

by humans for humans. Therefore, they are particularly well 

suited to human cognitive strengths. It would be very easy to 

invent games that were so complicated that only computers 

could play them.6 Computers could even invent such games  

themselves.

Other things that have been cited as pinnacles of human 

achievement are tying shoelaces and self-reproduction. But 

tying shoelaces is sort of pointless; it’s getting to be an obsolete 

technology even for humans. Why would you need shoelaces 

if you’re a robot? And humans don’t really know how to repro-

duce themselves. They know how to have sex, which is quite a 

different thing and rather easy. The actual reproduction is down 

to various biochemical processes that humans don’t completely 

understand yet and don’t know how to replicate.

What about the Turing test, then? Well, the computers could 

define their own Turing test. They would probably define the 

interface so that instead of passing typed messages back and 

forth at a leisurely pace, it would take place over a 100 megabit 
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per second optical cable. I do not think any human would do 

very well on this test.

So, compared to humans, computers seem to be doing quite 

well indeed—at least if you ask the computers. It all depends on 

what you measure.

Some humans would object that this comparison is absurd 

because it’s humans who build and program computers. There-

fore, any intelligence the computers have should be attributed 

to their human creators. But that is a dangerous argument for 

humans to make, because in that case, any intelligence that 

humans might have is not really their own but actually belongs 

to the process of evolution by natural selection that created 

them.

Doing What They Do on the Discovery Channel

Presumably, the last few pages have not convinced you that you 

are less intelligent than a computer. Clearly there was something 

missing from the discussion. There must be some kind of unspo-

ken assumption that, when exposed, collapses the argument. I 

agree. Here is the problem:

All of the examples I gave were of computers being good (and 

humans bad) at performing very specific tasks and solving very 

specific problems, when the hallmark of real intelligence is to be 

able to perform well in a large variety of situations. Being very 

good at a single thing is never enough for intelligence. There-

fore, humans are more intelligent than computers after all: a 

Chess-playing program cannot land a jet plane, and a face recog-

nition program cannot play Super Mario Bros. or do exponentia-

tion. Your intelligence is all about your ability to perform well in 

whatever situation you may find yourself, and humans are very 
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good at adapting to a very wide range of situations and prob-

lems, whereas computer programs are usually suited only to the 

particular type of situation or problem they are programmed for.

Let us take a step back and think about what this means in 

some concrete situations for animals and for robots.

Ethology is the branch of biology that studies the behavior 

of animals and the mechanisms by which this behavior is pro-

duced—“animal psychology,” you might call it. A central con-

cept in this discipline is that of adaptive behavior—the behavior 

that an animal exhibits in response to the environment it was 

evolved in and which serves to increase its chances of surviving 

and having surviving offspring. It is easy to understand how it 

is adaptive for a fox to move so as to minimize its chances of 

detection when approaching the hare it hopes to make its din-

ner. Similarly, it is as easy to understand why it is adaptive for 

the hare to change directions at unpredictable intervals when 

trying to escape the faster but heavier fox whose dinner it does 

not want to be. What is not easy to understand is which of the 

fox and the hare is more intelligent. Indeed, for an ethologist, 

this question does not even make sense without first specifying 

what environment and what problem the animal is facing. Now 

and then you run into people (or tabloid newspapers) who claim 

that “dolphins are really as intelligent as humans” or “pigs are 

more intelligent than dogs” or similar nonsense. It’s nonsense 

not because it is false but because it makes no sense to make 

such claims without first establishing the environment and life 

conditions in which intelligence is measured. Put a dolphin in 

an office chair, or a human in the ocean, and neither of them 

will see much success.

In the words of the great roboticist Rodney Brooks, “elephants 

don’t play Chess.” Brooks pioneered behavior-based robotics in 
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the 1980s, an approach to robotics where computationally and 

mechanically simple robots were designed for coping with spe-

cific environments. For example, Brooks developed mechanical 

insects capable of following people around and avoiding walk-

ing into obstacles in indoor environments using only a couple of 

inexpensive motors and light sensors. Some of his robots had no 

actual computer at all, just some clever wiring between inputs 

and outputs. In contrast, most of the other robots of that time 

used state-of-the-art onboard computers and sophisticated sen-

sors yet performed their tasks poorly and were very sensitive to 

any modification of the problem they were set out to solve, such 

as shadows shifting slightly because someone raised a shade. 

Very advanced and ambitious robots were failing at very simple 

tasks that simpler robots solved well. And this was precisely the 

point Brooks was making.

Elephants don’t play Chess7 because they don’t need to. It’s 

not adaptive for them. Why would they waste their precious 

brain capacity on this, and why would the elephants’ genes 

waste space coding for them being able to learn to play Chess? 

In a similar way, Brooks showed that his robots could outper-

form many more advanced robot designs by throwing away all 

those extra layers of “general problem-solving capacity” and 

just getting on with solving whatever problem the robot was 

meant to solve by connecting the inputs almost directly to 

the outputs and devising some simple rules. It just seems to be 

much easier to design a robot that actually works that way. If 

you have ever worked in a large organization with multiple lay-

ers of management and bureaucracy, and observed how much 

more easily you could get things done if you just bypassed 

all that management and bureaucracy, you can probably  

relate.
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Where does the notion of intelligence as adaptive behavior 

leave us with regard to the question of human intelligence and 

machine intelligence? One possible conclusion is that it is now 

meaningless to talk about whether a computer is intelligent “in 

general,” just as it is meaningless to talk about whether an ani-

mal is intelligent in general. One can only ever talk about how 

well suited a computer program or an animal is to solving a par-

ticular problem or surviving in a particular environment.

But this is certainly a rather boring answer. It is also not a very 

useful one, at least not for artificial intelligence researchers who 

still want to cling to an idea that there is such a thing as “intel-

ligence” that software (or humans, or animals) can have more 

or less of. Can we do better? Can we keep the idea of adaptive 

behavior and come up with a better definition of intelligence, and 

thus of artificial intelligence?

Getting Less Specific

Let’s see if we can save the idea of intelligence while acknowl-

edging that intelligence is always relative to some environment 

or task. This is what Shane Legg and Marcus Hutter, at the Swiss 

AI Institute IDSIA where I also worked for a while, attempted to 

do in an influential 2007 paper.8 The basic idea of Legg and Hut-

ter is that the universal intelligence of an agent (human, computer 

program, or something else) equals your ability to perform not 

only one task but many tasks—in fact, all possible tasks. But the 

simpler tasks are more important, and the more complex a task 

is, the less it weighs in the final summation.

This might need some explanation. What Legg and Hutter 

propose is an equation that in theory could be used to assign 

any agent (human, machine, or otherwise) a value between 0 
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and 1, where 0 means incapable of doing anything useful and 

1 means perfectly, universally intelligent. The universal intel-

ligence of the agent is defined as the sum of its performance 

over all possible tasks. Tasks are basically anything that an agent 

could fail or succeed on (predicting stock prices, tying shoelaces, 

making friends at a party). The agent’s performance on each task 

is rewarded with a number between 0 and 1, where 0 is complete 

failure and 1 complete success. By dividing with the number of 

tasks, you get the agent’s average performance on all tasks. In 

order to give more priority to the more fundamental tasks, those 

are weighted higher in the calculation; essentially, the impor-

tance of each task is inversely proportional to the shortest pos-

sible description of that task.

Are you still with me? Good. My description is rather techni-

cal, but the basic ideas can be summarized: (1) intelligence can 

be measured as your ability to solve problems and (2) you should 

measure intelligence over all possible problems, but (3) simpler 

problems (those that can be easily described) are more elemen-

tary and your ability to solve these should count more.

I think this makes a lot of sense. It might not accurately cap-

ture all the various meanings of the word intelligence, but I think 

it accurately captures one sense of intelligence that is very useful 

for developing artificial intelligence. You could define the search 

for artificial intelligence as the search for agents that have higher 

and higher universal intelligence.

It is not a practical measure, however. Actually, that’s a bit of 

an understatement. You cannot test the universal intelligence 

of any given agent using the formula given by Legg and Hutter, 

because you need to test it on all possible tasks. But there are 

infinitely many tasks, and you don’t have that much time. In 

addition, the shortest possible description of a task (the so-called 
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Kolmogorov complexity) is not computable. You cannot, even 

in theory, be sure that you have found the shortest description 

of a task. So to actually measure the intelligence of a program, 

we will have to look for something more practical.

Doing Better Than Humans

Defining intelligence in a way that is useful for artificial intel-

ligence and at the same time true to our intuitive notion of 

intelligence seems to be far from easy. So maybe we should look 

at defining artificial intelligence—the activities and technology 

that are we typically refer to when using that term—without 

first trying to settle on a definition of intelligence. Let’s be 

pragmatic. Versions of the following definition have been pro-

posed by different people: “Artificial intelligence is the quest 

to make computers be able to do things that humans currently  

do better.”

This is a refreshingly nonconstraining description. If we cre-

ate a piece of software that understands human speech better 

than most humans do, that is progress in artificial intelligence. 

Creating software that can look at an X-ray of a human chest, 

diagnose the disease, and propose a course of treatment would 

also be progress in artificial intelligence. A self-driving car that 

obeys all traffic rules and avoids running over children who sud-

denly run out into the road? Definitely AI. And creating software 

that would beat a strong human player in a game such as Star-

Craft or DOTA would certainly count as progress in AI.

However, isn’t this definition a bit too wide? Imagine that you 

invented an artificial liver. (You would become rich!) Cleansing 

the blood is something that we currently can’t do very well with 

artificial systems; actually, livers are the only devices that can do 



What Is (Artificial) Intelligence? 37

it well. That’s why you need a liver transplant to survive if the 

one liver that your body came with gets messed up. However, it 

feels very weird to say that creating an artificial liver would rep-

resent progress in artificial intelligence. It’s more like a solving a 

chemical problem, isn’t it?

One could argue that in order to be artificial intelligence, the 

technology needs to be able to do something that humans do 

better consciously. I don’t know about you, but I’m certainly not 

conscious of what my liver is doing right now. I’m not conscious 

of how I understand spoken language either, and I’m only partly 

conscious of the strategies I employ when I play Chess or the 

action adventure game Bloodborne.

Another issue, or perhaps feature, with this definition is that 

it includes narrow AI. It is entirely possible to imagine a system 

that drives perfectly in city traffic or one that issues better diag-

noses of chest diseases than any doctor, but makes no progress 

whatsoever toward more general AI—no progress toward some-

thing that would, for example, pass a Turing test.

The distinction between narrow AI and general AI (or artifi-

cial general intelligence—AGI, as some call it) is important for 

another reason. Occasionally you might hear people say that 

“AI has failed.” Researchers have been working on AI since the 

1950s, but there is still no Robocop, HAL, or Wall-E around 

or even something that could pass the Turing test. From the 

perspective of general AI, it is true that we have not yet pro-

duced AI. However, it took much more than fifty years from the 

invention of paper kites until the Wright brothers built the first 

self-powered flying machine,9 including hundreds of years of 

technical developments of wheels, engines, theory, and materi-

als. And you could certainly say that there has been plenty of 

technical development in AI since the 1950s.
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From the perspective of narrow AI, the claim that AI has 

failed is utterly false. Much of the technology you use every day 

and that our society is built on started as AI research. The image 

recognition software in your phone camera that helps you take 

better photos, the voice processing algorithms in your personal 

assistant software, your GPS navigator that finds the shortest 

route to the concert venue, and of course the creepy suggestions 

from Facebook about who you should add as a friend: it is all the 

result of AI research. In fact, the object-oriented programming 

style of programming that most software you use is programmed 

in, and the relational database model that almost every website 

uses also started as research into how to make machines truly 

intelligent. It could be argued that reproducing intelligence was 

one of the driving forces for the original inventors of the com-

puter. However, it seems that as soon as AI research produces 

something that actually works and is useful, it’s spun off into its 

own research field and is no longer called artificial intelligence.

From this perspective, it would be only slightly irreverent to 

define artificial intelligence as any ambitious computer technol-

ogy that doesn’t quite work yet.

So, What Is (Artificial) Intelligence?

You might be forgiven for running out of patience at this point. 

I’ve spent this entire chapter bouncing from one definition of 

intelligence and artificial intelligence to another, seemingly finding 

shortcomings in each. I started with describing the Turing test as 

a test and implicitly a definition of artificial intelligence, but con-

cluded that it doesn’t test for lots of things that a normal human 

being does and which seem to require intelligence (cooking, 

tying your shoelaces, a knowing smile), and that it would thus 
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be possible for a rather unintelligent being to pass the test. Also, 

the test is highly dependent on the particular human interroga-

tor; some humans might fail to spot an obvious AI, and we don’t 

want the definition of whether a machine is actually intelligent 

to depend on frail human judgment. Next, we discussed the idea 

of intelligence as adaptive behavior, where intelligence would 

be something completely different depending on the environ-

ment an agent (a surgeon, a sturgeon, a vacuuming robot) lives 

in. But this sort of evades the question and does not allow us to 

say that one agent is more intelligent than another. So we then 

considered the idea that universal intelligence is the average per-

formance of an agent on all possible problems, weighted by the 

simplicity of the problems. This makes sense theoretically but is 

impossible to measure in practice. Finally we discussed the idea 

that AI is simply about trying to create software (and occasion-

ally hardware) that tries to do things than humans currently do 

better than computers.

The truth is that there is no commonly agreed definition of 

either of these concepts, and even experts frequently talk about 

intelligence and artificial intelligence with different implicit 

meanings depending on the context. We’ll just have to live with 

it. So in the rest of this book, I will use artificial intelligence to 

mean either of the following things, depending on what I am 

talking about:

1. The quest to build intelligent machines, for some definition 

of intelligence.

2. Whatever people who call themselves artificial intelligence 

researchers do.

3. A set of algorithms and ideas developed by artificial intelli-

gence researchers. The minimax and MCTS algorithms from 
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chapter 2 are good examples of AI algorithms, and I will pre-

sent more such algorithms in coming chapters.

Finally, what did Alan Turing—inventor of the Turing test 

and arguably the first person to pose several key problems in 

AI—think? Well, contrary to what many believe, Turing did not 

propose what is now known as the Turing test as a definition of 

artificial intelligence; instead, he proposed it to show that our 

whole concept of intelligence was flawed and that there was no 

point in arguing about whether some machine was intelligent. 

Turing thought that we would eventually develop software that 

would pass the test he had invented, but that “the original ques-

tion, ‘Can machines think?’ I believe to be too meaningless to 

deserve discussion.”10
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Many, perhaps most, video games feature so-called nonplayer 

characters (NPCs). These could be adversaries, allies, bystanders, 

or something else. The point is that they are controlled not by 

the player (you) but by the computer. Usually people refer to the 

way these NPCs behave as the “AI” of the game.

As we have established that there are many different views 

on what artificial intelligence is, let us simply accept that moni-

ker for whatever controls the NPCs in video games. But how 

exactly does the AI in a typical video game work? Behold a little 

dramatization.

Seven Seconds in the Life of Enemy 362

Enemy 362 spawned 43 minutes into the game session. The 

game had already spawned 361 enemies in this play session; the 

player had killed 143 of these, and the others had simply expired 

when the player left the zone of the game in which they existed. 

The player had made her way into the third level of this rather 

generic first-person shooter (FPS) (I think of it as something like 

a Call of Duty game, but it could also be something like Gears of 

War, or Half-Life), and her character was now single-handedly 
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assaulting the hideout of an infamous international terrorist (see 

figure 4.1). Enemy 362, looking like a typical lower-rank terror-

ist with ragged combat fatigues, a black scarf covering the lower 

half of its face, and a Kalashnikov assault rifle, was tasked with 

failing to protect the terrorist boss at the end of the level. Unless 

the player really messed up, of course.

As always—in every game session—enemy 362 spawned at 

the same place, next to the abandoned-looking hut, as soon as 

the player passed the third checkpoint of the level. When enemy 

362 came into existence, its mind was in state 0. This is how the 

mind of enemy 362 looks:

•  State 0: Guard. Slowly walk back and forth between the aban-

doned hut where it spawned and the palm tree, looking back 

and forth. If the player character appears within the field of 

vision, go to state 1.

Figure 4.1
First person-shooters are so called because you view the world from a 

first-person perspective and, well, shoot things. Call of Duty: Modern 

Warfare 2 (Infinity Ward, 2009) is a good representative of the genre.
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•  State 1: Take cover. Run as fast as possible to the nearest cover 

point. A pile of sandbags are suitably located between the 

abandoned hut and the palm tree. When cover is reached, go 

to state 2.
•  State 2: Stay in cover. Stay crouched behind cover so as to be 

as hard to hit as possible. Set a timer for a random amount 

between 1 and 3 seconds. When that amount of time has 

passed, go to state 3. If at any point the player character 

advances beyond the point of cover, go to state 4.
•  State 3: Fire from cover. Stand up behind cover and fire at the 

player character, with a random deviation of 5 degrees so as 

not hit too often. Set a timer for either 1 or 2 seconds. When 

that time has passed, go to state 3. If at any point the player 

character advances beyond the point of cover, go to state 4.
•  State 4: Attack player. Run straight toward the player along the 

shortest path, firing continuously at the player.
•  State 5: Die. If at any point health is reduced to 0, fall down on 

the ground and do nothing more.

The architecture of enemy 362’s mind is called a finite state 

machine. This is because it is organized as a finite number of 

states,1 where each state contains instructions for how to behave 

in that state. Incidentally, all of the NPCs in this game share this 

architecture, but the different types of enemies differ in which 

particular states they have.

In states 1 and 4, enemy 362 is running toward a position. 

This is accomplished using the A* algorithm, which is a path-

finding algorithm. In other words, it is a method for finding 

the shortest path from point A (for example, where a character 

is standing) to point B (for example, behind some sandbags). A* 

works as follows:
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1. Start at point A, the starting position, and select this as the 

active position.

2. Look at all the positions next to the active position and find 

out which ones are possible to go to (they are not, for example, 

inside a wall). In this example, it might look at eight points 

in a circle with a diameter of half a meter around the active  

position.

3. Those positions that are possible to go to are added to a list of 

available positions, which is sorted according to how far they 

are to the goal (point B) along a straight line.

4. Select the position that is closest to the goal2 from this list, 

and remove it from the list. (The other points are kept in the 

list.) Mark this point as the active position. Go to step 2.

Essentially the algorithm keeps track of a large number of 

positions, and constantly explores the most promising one. Run-

ning this process will always result in finding the shortest path 

between point A and point B, and usually it will find it pretty 

quickly—much faster than if it had investigated all possible posi-

tions in the area. (There are some further complexities to the 

algorithm, but these are not necessary to discuss to give you a 

general idea of it.)

The finite state machine architecture and the A* algorithm 

play central roles in most games and are also used widely in 

robotics and self-driving cars. Many games use additional algo-

rithms on top of this to control NPC behavior, and some do 

not use any of these techniques (in recent years, an alternative 

to finite state machines, called behavior trees, has become pop-

ular). But it’s fair to say that finite state machines and A* are 

among the most common algorithms for implementing NPC 

behavior in commercial video games.3
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So let us return to enemy 362. After suddenly finding itself in 

the world, it dutifully starts walking from the hut to the palm 

tree. It gets only halfway there, though, before it spots the player 

character advancing toward it. It goes into state 1 for only a frac-

tion of a second because it is already next to the sandbags. It 

goes to state 2 for a few seconds and then to state 3, standing up 

and firing straight at the player character. However, the player 

character has hidden behind cover of her own and is not hit. 

Enemy 362 goes back to state 1 while the player character lobs a 

grenade. The force of the explosion instantly depletes all health, 

causing a rapid transition to state 5.

Enemy 362 did not have a name and is quickly forgotten by 

the player as she advances further. There would not normally be 

anyone to write the biography of enemy 362, for in truth there 

is not much to remember. The flip side of this is that nobody 

would feel any guilt for dispensing with enemy 362 so quickly. 

It’s not like there was any actual mind to put an end to.

Is This Really All There Is?

You may note that after pulling back the curtain on the Wizard 

of Oz, there are only smoke and mirrors after all—some pretty 

impressive smoke and well-polished mirrors, but still. Of course, 

the actual implementation of NPC control in any given game is 

much more complex than what I have explained, but the prin-

ciples are very similar.

You might also notice everything that’s missing. The AI con-

trolling enemy 362 is not a complete mind in any way. It cannot 

do anything other than what is recorded in those five states. If 

you hide behind a wall for an hour, enemy 362 will keep tran-

sitioning between states 2 and 3 until you come out. It will not 
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decide that it has had enough and proceed to flank you instead 

or call on its friends for help.

It’s true that there are examples of more interesting NPCs 

in some existing games, even among first-person shooters. For 

example, the horror-themed shooter F.E.A.R. introduced the use 

of planning algorithms in modern action games. Using plan-

ning, enemies could coordinate their attacks and do such things 

as flanking the player; the player could also overhear the chatter 

between enemies to try to second-guess their plans. The Halo 

series of first-person shooters has also shown how more engag-

ing NPC behavior can be implemented; for example, enemies 

often move in squads, some enemies retreat when others are 

killed, and some enemies will try to guess where you will appear 

if you try hiding from them. A more recent example is Shadow 

of Mordor, a game where NPCs remember their encounters with 

you and refer back to them in future fights.4

Still, these examples are pretty much the state of the art—at 

least for this type of game—and each of the advances could be 

described as a very specific trick rather than an advancement 

in general-purpose AI. Just like our fictive enemy 362 from a 

fictive generic first-person shooter, the NPCs of even the most 

sophisticated games are limited in the forms of behavior they 

can express and the forms of interaction they can understand. 

Here is a very partial list of things that enemy 362 cannot do:

•  Figure out that you were hiding behind a wall for an hour 

instead of assaulting it, and so consider alternative options, 

such as flanking you.
•  Throw pebbles at you until you move from behind that wall.
•  Call for backup.
•  Feel fear.
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•  Have a philosophical conversation with you, shouted across 

that wall, about the meaning of war and why you and it are 

fighting each other.
•  Propose, and play, a nice game of Chess with you instead.
•  Tie its shoes.
•  Make a cup of decent coffee.

Of course, it is entirely possible to write code that would 

allow enemy 362 to do each of these things—except, perhaps, 

feeling fear.5 Indeed, some games include NPCs that flank you, 

throw pebbles at you, hold (scripted) philosophical conversa-

tions with you, and so on. But each of these capacities has to 

be built specifically by a human designer. Someone would have 

to specifically write the program code that makes it possible for 

enemy 362 to throw pebbles (maybe add a few states to the finite 

state machine and an algorithm for figuring out where to throw 

the pebbles), or write the lines in the philosophical discussion 

that you would be able to choose to engage in, complete with an 

interface where you can select your responses. If enemy 362 is to 

be able to put the AK47 away and pull out a Chess board to play 

with you, the game developers need to implement a minimax 

algorithm to act as enemy 362’s Chess brain and, of course, the 

graphics and interface elements to allow playing Chess. None of 

these capabilities will emerge magically from the AI of enemy 

362 because, as we saw, its “brain” is just a finite state machine 

and a pathfinding algorithm.

At this point, I would like to contrast what I just told you 

with the wild imagination I had when I was eleven years old 

and played games on my Commodore 64, as I related in the 

prologue. I kept fantasizing about what would happen if I played 

the games in ways beyond which I could: of sailing beyond the 

edge of the map in Pirates!, of taking control of (or just talking 
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to) individual people in a strategy game such as Civilization, or 

bringing my favorite characters from other games into Bubble 

Bobble. Basically, I fantasized that games were infinite and had 

room for infinite possibilities.

Another way of seeing this is that I imagined that interacting 

with games could have something like the amazing possibility 

space of interacting with a human being or even a cat or a dog. 

You are reading this book now and thinking thoughts that you 

never thought before, following along with my argument or per-

haps formulating counterarguments of your own. Your reactions 

are likely to surprise me, or at least I would not be able to predict 

them. Could games not be the same?

You might expect that I—an adult and professor who has pub-

lished hundreds of articles about artificial intelligence, in par-

ticular about artificial intelligence and games—have overcome 

these childhood fantasies and adopted a more sober view. Well, 

no. Far-fetched fantasy scenarios are necessary for scientific pro-

gress. So let me present you with one vision of what it would be 

like to have games that more thoroughly built on AI methods.

What If Video Games Had Actual AI?

Let’s step into the future and assume that many of the various AI 

techniques we are working on at the moment have reached per-

fection and we could make games that use them. In other words, 

let’s imagine what games would be like if we had good enough 

AI for anything we wanted to do with AI in games. Imagine that 

you are playing a game of the future.

You are playing an open world game—in other words, a 

game in which you roam a relatively open space and pur-

sue game objectives in any order you choose. (Examples of 
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popular open-world game series include Grand Theft Auto, The 

Elder Scrolls, and The Legend of Zelda) In this hypothetical future 

open world game, you decide that instead of going straight to 

the next mission objective in the city you are in, you feel like 

driving (or riding) five hours in some randomly chosen direc-

tion. West, maybe. The game makes up the landscape as you 

go along, and you end up in a new city that no human player 

has visited before. In this city, you can enter any house (though 

you might have to pick a few locks), talk to everyone you meet, 

involve yourself in a completely new set of intrigues, and carry 

out new missions. If you had gone in a different direction, you 

would have reached a different city with different architecture, 

different people, and different missions—or a huge forest with 

realistic animals and eremites, or a secret research lab, or what-

ever else the game engine comes up with.

Talking to these people you find in the new city is as easy as 

just talking to the screen. The characters respond to you in natu-

ral language that takes into account what you just said. These 

lines are not read by an actor but generated in real time by the 

game. You could also communicate with the game though wav-

ing your hands around, dancing, or facial expressions or other 

exotic modalities. Of course, in many (most?) cases, you are still 

pushing buttons on a keyboard or controller because that is 

often the most efficient way of telling the game what you want  

to do.

It is perhaps needless to say, but all NPCs navigate and gener-

ally behave in a thoroughly believable way. For example, they 

will not get stuck running into walls or repeat the same sentence 

over and over (well, not more than an ordinary human would). 

This also means that you have interesting adversaries and col-

laborators to play any game with without having to resort to 
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waiting for your friends to come online or have to resort to being 

matched with annoying thirteen-year-olds.

Within the open world game, there are other games to play, 

for example, by accessing virtual game consoles within the game 

world or proposing to play a game with some NPC. These NPCs 

are capable of playing the various subgames at whatever level of 

proficiency that fits with the game fiction, and they play with 

human-like playing styles. It is also possible to play the core game 

at different resolutions, for example, as a management game or 

as a game involving the control of individual body parts, by 

zooming in or out. Whatever rules, mechanics, and content are 

necessary to play these subgames or derived games are invented 

by the game engine on the spot. Any of these games can be lifted 

out of the main game and played on its own.

The game senses how you feel while playing the game and 

figures out which aspects of it you are good at, as well as which 

parts you like (and, conversely, which parts you suck at and 

despise). Based on this, the game constantly adapts itself to be 

more to your liking, for example, by giving you more stories, 

challenges, and experiences that you will like in that new city 

that you reached by driving five hours in a randomly chosen 

direction—perhaps by changing its own rules. It’s not just that 

the game is giving you more of what you already liked and mas-

tered. Rather more sophisticatedly, the game models what you 

preferred in the past and creates new content that responds to 

your evolving skills and preferences as you keep playing.

Although the game you are playing is endless, is of infinite 

resolution, and continuously adapts to your changing tastes and 

capabilities, you might still want to play something else at some 

point. So why not design and make your own game? Maybe 

because it’s hard and requires lots of work? Sure, it’s true that 
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back in 2018, it required hundreds of people working for years 

to make a high-profile game and a handful of highly skilled pro-

fessionals to make any notable game at all. But now that it’s 

the future and we have advanced AI, this can be used not only 

inside the game but also in the game design and development 

process, so you simply switch the game engine to edit mode and 

start sketching a game idea—a bit of a storyline here, a character 

there, some mechanics over here, and a set piece on top of it. The 

game engine immediately fills in the missing parts and provides 

you with a complete, playable game. Some of it is suggestion. 

If you have sketched an in-game economy but the economy is 

imbalanced and will lead to rapid inflation, the game engine 

will suggest a money sink for you, and if you have designed gaps 

that the player character cannot jump over, the game engine 

will suggest changes to the gaps or to the jump mechanic. You 

can continue sketching, and the game engine will convert your 

sketches into details, or jump right in and start modifying the 

details of the game. Whatever you do, the game engine will work 

with you to flesh out your ideas into a complete game with art, 

levels, and characters. At any time, you can jump in and play the 

game yourself. You can also watch any number of artificial play-

ers play various parts of the game, including players that play 

like you would have played the game or like your friends (with 

different tastes and skills) would have played it.

Why Is the Future Not Here Yet?

Why do we not already have something like what I just described? 

Because we don’t have the technology yet and because game 

design and development practices are not very good yet at inte-

grating the AI technology we have.
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Let us start with the second reason. Artificial intelligence 

is on everyone’s lips these days, and advances in AI methods 

are published almost daily. Yet the game industry has seemed 

curiously uninterested in incorporating most AI techniques in 

their games. Many academic AI researchers have proposed new 

AI algorithms for games and excitedly presented them to game 

developers, only to see said game developers explain (in a more 

or less polite manner) how the new algorithm is pointless to 

them. Sometimes this can be attributed to AI researchers’ not 

understanding games or to game developers’ not understanding 

AI, but most often this is because the games industry just doesn’t 

work that way.

Essentially, the games industry is confined by economic reali-

ties to be highly risk averse and rather shortsighted. Big-budget 

video games typically take one to three years to develop and 

may involve hundreds of professionals during this time; it often 

consumes most or all resources of a single studio. At the same 

time, the games market is hit-driven, with mediocre games mak-

ing very little money. So the game has to be a hit or the studio 

goes bust. Deadlines are tight, so the technology needs to be cer-

tain to work. Because so many game development studios don’t 

know whether they will be around after they release their next 

game, they typically have little in the way of research or long-

term development.

Under these conditions, some new AI technology that might 

work wonders, but also may be very hard to work with, is not an 

easy sell to most game developers. Instead, games are designed 

around existing and proven technologies, such as the finite state 

machine and pathfinding that makes up the brain of enemy 362. 

Games are designed to not need (nontrivial) AI. We will return 



Do Video Games Have Artificial Intelligence? 53

to the question of why games are designed around the lack of AI 

and what can do about this in Chapter 9.

Now on to the first reason that the future is not here yet. Of 

course we don’t have games like the one I envisioned because we 

don’t have the technology yet. Currently, our mature AI tech-

niques mostly allow for solutions to well-defined computational 

problems. It is very hard to build AI that can deal with situations 

that are not carefully defined, almost scripted. The kind of AI 

that can deal with emergent situations, learning and adapting, is 

to a large extent still on the drawing board.

And let us not forget that for some types of games, the lim-

ited capabilities of current artificial intelligence method fall 

short even for the most narrowly defined problems. Take strat-

egy games—for example, any game in the Civilization series of 

turn-based epic strategy games. In these games, you guide a 

civilization from the Neolithic age to the space age, meanwhile 

engaging in exploration, expansion, warfare, and research. Simi-

larly to other strategy games, at any given point you typically 

have a large number of “units” (military or otherwise) scattered 

around the world, and you need to tell them all what to do. 

Compare that to Chess, or Go, or Checkers, where you only 

move or place one unit every turn. The fact that you have so 

many units at the same time in a game such as Civilization means 

that the number of possible moves quickly gets astronomical 

(figure 4.2). If you have one unit that you can move to ten dif-

ferent places (or generally take ten different actions with), you 

have a branching factor of 10; if you have two units, you have 

a branching factor of 10 * 10 = 100; three units, 10 * 10 * 10 = 

1000 … We quickly reach branching factors of millions and even  

billions.
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Under such circumstances, algorithms such as minimax 

quickly break down. There are simply too many potential actions 

to consider, and the search can hardly begin looking at the con-

sequences of each. This is the reason that Civilization, which 

is primarily a single-player game,6 is infamous for its “bad AI”; 

computer-controlled units rarely coordinate with each other and 

generally appear stupid. To offer a competitive challenge, the 

game has to “cheat” by effectively conjuring units out of thin 

air where the player is not looking. Similar situations occur in 

other strategy games. The real-time strategy game StarCraft is a 

favorite for competitive play between humans, and there have 

been competitions between AI players since 2010. Despite all the 

Figure 4.2
The games in the Civilization series (Firaxis, 1991–2016) allow you to  

lead a civilization through thousands of years of expansion, research, 

diplomacy, and war. The possibility space is quite overwhelming for 

computers and humans alike.
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efforts, the best StarCraft-playing AI barely plays better than a 

human beginner player. The complexity of the game—the num-

ber of actions available to take with repercussions on different 

timescales—simply overwhelms our current AI methods.7

So far, we have only looked at work on using AI to play 

games or control the characters in games (two closely related 

tasks, though not the same). As we saw in chapter 2, there has 

been work on using AI to play classic board games since before 

there were computers; recently, more and more researchers 

have started working on AI that can play video games and new 

approaches to creating interesting nonplayer character behavior. 

But AI methods can be used for much more than this. If we are 

going to realize the vision of AI-driven games we just discussed, 

we will need AI that can adapt its behavior, learn from previous 

failures and successes, understand what the player knows and 

likes, create new levels and games, and work with us on design-

ing experiences. In the next few chapters, we will explore some 

recent attempts at inventing AI that can do these things.
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So far in this book, you have read about a couple of different 

types of algorithms that can be used to play a game in some sense 

—in particular, the minimax algorithm for board game playing 

in chapter 2 and the finite state machines and A* search for FPS 

bots in chapter 4. These algorithms are designed by humans and 

integrated by humans into the complex software systems we call 

video games. Building such systems is often what creating AI 

is about: assembling various components (algorithms) so that 

they support each other, tuning them to work well in concert, 

testing how the final product works, and then going back and 

redoing things—like you would build a bike, a water pump. or 

an electronic circuit. Constructing such AI is a craft and a rela-

tively pedestrian activity that does little to appeal to the roman-

tic mind drunk on the promise of artificial intelligence that 

learns on its own and decides for itself.1 Also, and perhaps more 

important, it’s a labor-intensive and therefore expensive process 

that any game developer (or anyone else depending on some 

degree of artificial intelligence in her product) would love to see 

automated.

The idea of an AI that develops itself so that you don’t have 

to program it—just tell it what sort of thing it should learn to do 
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well—sounds a lot more appealing than hand-coding AI to an 

AI romantic, as well as to a business-minded person focusing on 

the financial bottom line. So let’s find out how it can be done. 

One way is to try to create AI systems the way we ourselves were 

made: through Darwinian evolution.

A Very Simple Idea

The idea of evolution by natural selection seems utterly unre-

markable and almost self-evident to most people in modern 

Western societies. But  just over 150 years ago, when Charles 

Darwin published The Origin of Species, it was radical, heretical, 

and dangerous.2 It was also far from obvious to everybody that it 

worked or even made sense. Because the core ideas of evolution 

by natural selection can easily become mixed up with all kinds 

of other ideas, let’s try to boil the concept down to its bones to 

see whether we can reproduce it in a computer.

For evolution to work, you need three ingredients: variation, 

(imperfect) heredity, and selection. Variation means that there 

should be some difference among individuals. This implicitly 

assumes that there are things called individuals—we have not 

gone into detail on what these are yet—and that there’s more 

than one individual. The set of all individuals is called a “popula-

tion.” Heredity means that the individuals can reproduce, either 

on their own or together with other individuals, and that the 

offspring resulting from this reproduction somehow resemble 

their “parents.” Generally it’s assumed that the heredity is not 

perfect, so that the offspring are not identical clones of their 

parents; if the population is small and parents can reproduce 

asexually without mixing with other parents, this condition 

becomes necessary. Finally, selection simply means that some 
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individuals get to have more offspring than others, for some 

reason. We say that individuals that get to have more offspring 

are more “fit” than the other; an individual’s “fitness” can be 

approximated by how many grandchildren that individual gets  

to have.

Let’s consider this in the context of rabbits. First, we have vari-

ation. All rabbits are different from each other, and even if you 

or I cannot tell the difference between one rabbit and another, 

they presumably can themselves. Some of this variation is func-

tionally meaningful; for example, some rabbits might have lon-

ger legs so they can run faster and others have sharper eyes so 

they can spot foxes at a greater distance. Then, we have heredity. 

The blueprint for a rabbit, as for all other animals and plants, 

is in its DNA. Rabbits (frequently) practice sexual reproduction 

(after all, they breed like rabbits) resulting in the DNA from one 

rabbit recombined with that of another. There are typically also 

some small changes introduced to the DNA in each generation; 

these are due to transcription errors when the DNA string is cop-

ied in the cell division process and are called mutations. Finally 

we have selection. This can happen in many ways—I know very 

little about what makes rabbits attractive to each other—but an 

obvious form of selection is that rabbits that get caught by a 

fox do not get to have as many offspring as those who outrun 

it. Selection is dependent not only on the individual rabbit but 

also on the rest of the population: to outrun the fox, you don’t 

actually have to be faster than the fox, you just have to be faster 

than some other rabbit. Therefore, every small improvement to 

running speed, evasion tactics, or eyesight could mean a higher 

fitness for a rabbit. Over very many generations of rabbits, we 

get very good rabbits, or at least rabbits that are good at outrun-

ning foxes.
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Of course, foxes are also subject to evolution through natu-

ral selection. While variation and heredity are very similar for 

the fox population and the rabbit population, selection works 

somewhat differently. Foxes that fail to catch rabbits ultimately 

starve and cease their foxhood without reproducing, whereas 

those that catch and eat rabbits might acquire sufficient nutri-

ents for surviving and having offspring. Of course, whether a 

fox catches a rabbit depends on both the fox and the rabbit (and 

possibly the other rabbits in the same herd). So the fitness of the 

fox is coupled to the fitness of the rabbit in a process known as 

coevolution; the fox population and the rabbit population enter 

an “arms race” where the foxes develop better and better tactics 

and bodily features for pursuing rabbits, and rabbits develop bet-

ter and better ways of evading foxes. After many generations of 

rabbit and fox coevolution, some rabbits are still caught by foxes 

and most still escape. But if a rabbit from a thousand genera-

tions back meets a latest-generation shiny new fox, the fox is 

almost certain to win, and vice versa. Coevolutionary arms races 

are responsible for a range of fascinating phenomena in nature, 

including the extreme speeds of cheetahs and gazelles, the long 

beaks of hummingbirds, and the peculiar shape of the flowers 

which the hummingbirds pollinate, that hides their valuable 

nectar deep within the flower.

But this chapter is not going to literally be about the birds 

and the bees. I promised to talk about how to grow a mind, so let 

us see how evolution could apply to computer programs. First, 

we have variation. Imagine a population of different computer 

programs; they differ in their source code, so they also differ in 

what they do. In the simplest case, these programs are all ran-

dom in the beginning. Then we have heredity. We can make off-

spring from a program by simply copying it, and then make the 
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heredity imperfect by introducing a few mutations (changing a 

few small pieces of the source code). We could also combine the 

source code from two parent programs, taking some pieces from 

one and some from the other, to create an offspring program in 

a process known as crossover. Finally, we come to selection. We 

simply measure how good the programs are at what they do and 

assign higher fitness to those that perform some task better. The 

task could be anything you want a computer program to do: 

sort a list, paint a picture, perhaps play a game. Based on this 

fitness measurement, we simply throw away the bad programs 

and make mutated or recombined copies of the good ones. It’s a 

code-eat-code world in there!

Does this makes sense to you? If it doesn’t, you have my full 

understanding. It is a bit hard to believe initially that we can 

evolve programs because there are good arguments as to why 

it should not work. Random programs, for example, are not 

likely to be very good at anything at all; in fact, they will likely 

not even run. So how could you give a population of worthless 

computer programs any sensible fitness values? As for mutation, 

introducing random changes to a program will most likely just 

make it worse, probably even break it so it won’t work at all. It is 

hard to see how this could make programs better at all.

And yet evolution does work, not only in nature but also in 

the computer. Evolutionary algorithms, as algorithms based on 

the principles of evolution by (artificial) selection are called, 

are frequently used for tasks as diverse as forecasting financial 

time series, controlling jet engines, and designing radar anten-

nas. Also, some of the best game-playing AIs are at least partly 

constructed by evolution, as we shall see. In order to help under-

stand how it is that this unlikely process actually works, it helps 

to consider the following.
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First, while it is true that randomly constructed programs 

will usually be extremely bad at solving any given task, it’s not 

necessary that any of the programs actually solve the task they 

are given. All we need to get evolution started is a way of dis-

tinguishing which of the programs are a little less worthless at 

solving their task—which of them mess it up the least—and 

select those for reproduction. Over sufficiently many genera-

tions, the programs can then move from atrocious to almost 

hopeless to merely bad to half-bad to okay to rather good to 

good to excellent. But in order for this to happen, we need a 

fitness function, a way of assigning fitnesses to programs, that 

can capture all these nuances. This is one reason games are great 

for AI research: it is usually easy to measure the performance of 

a player very precisely through score or ranking against other 

player. I describe later in this chapter how a good fitness func-

tion helped me evolve racing game drivers that drive better  

than I do.

Second, it is true that random changes to a program written in 

a standard programming language like Java, Python, or C++ are 

likely to destroy the program; most code changes result in the 

program not running at all, just like removing a single random 

stick in a Jenga tower will likely lead the tower to collapse, or 

removing a single random piece in a Chess game in an advanced 

state of play will alter the game balance completely. But we don’t 

need to use these languages when we evolve programs. Choos-

ing a correct representation for your programs is a very important 

part of making evolution work. For many types of programs, we 

now have representations where most small mutations to the 

program are not disastrous, and many are actually beneficial for 

the fitness of the program. In particular, a good way of represent-

ing these programs is as neural networks.
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A Very Small Brain

Like so many other concepts within artificial intelligence, you 

can see (and talk about) neural networks from romantic or prag-

matic perspectives. From a romantic perspective, neural net-

works are little brain simulators, imitating the core functionality 

of the brain’s neural circuitry. From a pragmatic perspective, 

neural networks are just nonlinear equation systems, imple-

menting geometric transformations on input data.

Figure 5.1 illustrates a simple neural network. It is organized 

into four layers: an input layer (with six nodes), two hidden 

Hidden layers

Output layer

Input layer

Figure 5.1
This figure illustrates a very simple neural network. It is organized into 

four layers: an input layer (with six nodes), two hidden layers (with four 

and three neurons each), and an output layer (with only one neuron). 

Each node (often called a “neuron” by analogy to biological neurons 

in brains) belongs to a particular layer and is connected to all neurons 

in the next layer. This type of neural network is called a feedforward 

network, because values are fed (or propagated) forward from one layer 

to the next. 
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layers (with four and three neurons each), and an output layer 

(with only one neuron). Each node (often called “neuron” by 

analogy to biological neurons in brains) belongs to a particular 

layer and is connected to all neurons in the next layer. This type 

of neural network is called a feedforward network, because values 

are fed (or propagated) forward from one layer to the next.

You use a feedforward neural network by assigning (“input-

ting”) values, called activations, to the neurons in the input 

layer. These activations are then propagated to the next layer 

via the connections between the neurons, and the connections 

have values (called “weights”) themselves. When an activation 

passes from one neuron to another, it is multiplied by the weight 

of the connection between neurons. Because all neurons in one 

layer connect to all neurons in the next layer, the activation of 

a cell in some layer (e.g., the first hidden layer) is the sum of all 

neuron activations in the previous layer (e.g., the input layer) 

multiplied by the weights of the connections from that layer. 

And then all this happens again when passing activations to the 

next layer. And so on.

If the idea that lots of neuron activations, which are really 

just numbers, are multiplied by other numbers doesn’t clarify 

anything, try thinking of the neural network like a system of 

pipes.3 Some kind of liquid (say, rum) is fed into the input layer 

and then passed on from neuron through neuron through pipes 

of varying diameter. The thicker pipes naturally carry more liq-

uid, so neurons with thick pipes from high-activation neurons 

receive more liquid and are able to pass on more of it. Thickness 

of pipes here corresponds to weight of connections.

It’s almost that simple, but there is one more important detail: 

every time the activation for a neuron has been computed, it 

passes through a nonlinear function (such as the hyperbolic 
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tangent or the rectified linear function). This improves the com-

putational capacity of the neural network but understanding it 

is not really essential to understanding what happens on a con-

ceptual level. Apart from that, it really is that simple. At least 

the basics are. The basic idea of activations being passed from 

neurons through connections of varying weights is the same in 

almost all types of neural networks, even those that have con-

nections that vary in strength, loop back on themselves, and 

share weights with other connections. Even the very large net-

works that are used in what is nowadays called “deep learning” 

and that might have dozens of layers and millions of connec-

tions are at their core just equation systems or, if you prefer, 

systems of pipes.

These simple computational constructs are surprisingly use-

ful and versatile; mathematically speaking, a sufficiently large 

network can approximate any function. Neural networks can be 

taught to recognize faces, drive cars, compose music, translate 

text, and so on. Yes, they can also be taught to play games. But 

first they need to be taught, or trained, meaning that all the con-

nection weights need to be set. Because the connection weights 

define what the neural network can do, the same neural net-

work structure with different connection values could be good 

at doing completely different things, such as conjugating French 

verbs, playing football, or finding defects in steel sheets. And a 

neural network with random connection weights is usually no 

good at anything at all.

So, how do you train a neural network? There are basically 

two ways. One is through evolutionary algorithms, as I’ve 

described; the small changes to the program here refer to mak-

ing small changes to the connection weights. I’ll explain how 

evolution can be used to train neural networks to play games in 
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the next section. The other important way of training a neural 

network is through making small changes in response to every 

time the network makes a mistake and sending these corrections 

backward in the neural network from the output layer to the 

input layer. This is called backpropagation and we’ll see how that 

can be used in the section after next.

Survival of the Fastest

When I started my PhD back in 2004, my plan was to use evo-

lutionary algorithms to train neural networks to control robots. 

These robots would be rewarded for doing such things as follow-

ing other robots, not running into walls, solving a maze, and 

so on. Because neural networks that got more rewards would 

be able to procreate, in the end I would have a population of 

pretty well-behaving neural nets. That was the plan, at least. At 

that time, other researchers had already managed to teach robot-

controlling neural networks to do these things, but I was going 

to do it … better! I had a couple of ideas about connecting several 

neural networks together and training them one at a time, and 

such things. However, when I got down to the business of actu-

ally trying to teach neural nets to control these robots, I found 

out that this was a lot of hard work. The robots were slow and 

frequently put themselves in situations I would have to rescue 

them from, not to mention that I would have to contend with 

tires that wore down, cables that broke, and so on. It seemed to 

me that I was never going to make any real progress that way.

So I left the real world behind and turned to video games.

My idea was that I could use video games (instead of robots) as 

environments for testing my algorithms. Video games have most 

of the desirable qualities of a robotics problem and lack several of 
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the highly undesirable qualities. In particular, you don’t have to 

build an expensive robot or real-world obstacle course, you can 

speed up the game so your testing happens much faster (thou-

sands of times faster in many cases) than real time, and when 

something goes wrong, you can just restart the game. You don’t 

have to sweep up the pixels after your game character crashes, 

and you don’t have to pay money to build a new one.

I decided to start with racing games because they have a nice 

difficulty curve: it’s relatively straightforward to learn the very 

basics—just hit the accelerator to drive straight forward—but 

then things get more complicated when you also have to take 

curves and overtake other cars while avoiding colliding with 

them. And apparently there is a lot to learn about how to best 

conduct a car in a car race; otherwise, there would not be large 

recurring international competitions on this matter.4 So I devel-

oped a simple car racing game and a way of driving cars with 

neural networks.

The way the neural network is used to drive the car is pretty 

simple: it connects the inputs of the neural network to what the 

driver “sees” and the outputs to the steering wheel and pedals. 

In one of my setups, I used eight neurons in the input layer: 

six were connected to simulated range-detecting sensors that 

returned the distance to the nearest track edge or other car each 

along six different directions, one to a speedometer, and one to 

a sensor that returned the angle relative to the track. The neural 

network had one hidden layer of six neurons, and finally the 

output layer had only two neurons, which were connected to 

the accelerator/brake and steering.

Take such a neural network with random connection weights 

and put it in control of a car, and it will either do nothing at all 

or do something rather uninteresting, like drive off the track and 



68 Chapter 5

crash. Take a hundred such networks with different random con-

nection weights, and some of them will do more interesting or 

useful things than the others. In order to turn this into an evo-

lutionary algorithm, we need just a fitness function and a way 

of doing selection and mutation. In this case, the fitness func-

tion was very simple: how far the car drove in 30 seconds. Using 

a population of one hundred networks, the evolutionary algo-

rithm I used would try all of the networks and remove the fifty 

networks that performed worst (drove the shortest distance in 

the time allotted); it would then replace them with copies of the 

fifty networks that performed best, but adding mutations in the 

form of randomly changing some of the connection weights in  

these networks.

This simple process worked like a charm. Within a dozen gen-

erations, I would have neural networks that could drive fairly 

well, and within one hundred generations I would typically get a 

neural network that could drive better than I could! Thus, I could 

yet again experience being beaten in a game by an AI program 

that I developed myself (an experience I highly recommend), 

but in contrast to that Checkers-playing program from my class 

assignment several years earlier, I had not really specified how 

the program should solve its task but rather how the program 

should learn to solve its task.

When I say the process worked like a charm, there’s a hitch. 

It really did work like a charm when training the neural network 

to drive around a particular racetrack. When taking the same 

neural network and putting it in the car on a different racetrack, 

things did not work very well at all: mostly the car would fail 

to take turns when it should, and it veered off the track. I was 

a little confused by this, but then I realized that the track I had 

been training the neural networks to drive on was quite limited 
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in the challenges it offered; for example, it contained only left 

turns. So I instituted a new training regime: every time the net-

work learned how to drive well on one track, I added a new and 

different racetrack to the fitness function, so that the fitness of 

the neural network would depend on how it drove on several 

tracks. This approach worked very well, and relatively soon evo-

lution produced neural networks that could drive proficiently 

on any track I could come up with for them, though in general 

they were a bit more careful drivers than the networks that had 

been evolved on a single track only.

Now what about racing in the presence of other cars? Not 

unsurprisingly, if you take a neural network that has been taught 

to drive on its own track undisturbed by pesky competitors and 

put it in a competitive race with other cars, mayhem ensues. 

Because the network has never encountered other cars before, it 

does not know how to avoid collisions, or that avoiding them 

is a good idea, or even what car-to-car collisions are. This can 

be rectified by training the network with other cars present and 

usually leads to pretty good driving behavior—depending on the 

fitness function. When we are no longer racing alone, we need 

to go back and think again about the fitness function.

The fitness function that works so well for learning to race 

alone on a track was to simply measure how far along the track 

the car travels in 30 seconds. But in a real competitive car race, 

what really matters is your position—ahead of or behind the 

other car(s)—so maybe the fitness function should reflect that. 

This would make the situation more like coevolution in the nat-

ural world, where the fitness of individuals in one species (or 

group, more generally) is partly dependent on another species—

as with the example of rabbits and foxes earlier in this chapter. 

And it certainly seems that successful strategies in a car race, as 
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in any other game, would be partly dependent on how other 

drivers drive.

To see what might happen if the fitness function mirrored 

the reward structure of an actual car race, I changed the fitness 

to a relative one—the position ahead of or behind the other car 

at the end of race. Very quickly, the evolutionary process found 

out that a viable strategy was to be very aggressive and push the 

other car off the track. This behavior seemed to be easier to learn 

than learning to drive fast, avoid collisions, and get a good lap 

time. Or perhaps a network that learned a nonaggressive strat-

egy would be pushed out of the way by a neural network that 

learned an aggressive strategy, and therefore receive lower fit-

ness. In any case, the composition of the fitness function could 

easily be used here as a knob to turn aggressiveness up or down 

in the evolved networks, something that could certainly be use-

ful when creating interesting characters in games.

Trial and Error on Speed

Evolutionary computation can be described as a process of 

massive trial and error. It seems to be an enormously wasteful 

process—all those neural nets that are somewhat worse than 

the best neural nets of each generation are simply thrown away. 

None of the information they encountered in their brief “lives” 

is saved. Yet the process of evolution through selection works, 

both in nature (as we are living proof of) and inside computer 

programs. But is there another way we could learn from experi-

ence to create effective AI, perhaps preserving more information?

The problem of learning to perform a task given only inter-

mittent feedback about how well you’re doing is called the rein-

forcement learning problem, importing some terminology from 
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behaviorist psychology (the kind where psychologists make rats 

pull levers and run around in mazes) to computer science. There 

are essentially two broad approaches to solving these problems. 

The less common is to use some form of evolutionary algorithm. 

The more common is to use some form of approximate dynamic 

programming, such as the Q-learning algorithm.

You can think of it this way: whereas evolutionary comput-

ing models the type of learning that takes place across multiple 

lifetimes, Q-learning (and similar algorithms) models the kind 

of learning that takes place during a lifetime. Instead of learn-

ing based on a single fitness value at the end of an attempt to 

perform a task (as evolution does), Q-learning can learn from 

many events as the task is performed. Instead of making random 

changes to the complete neural network (as happens in evolu-

tion), in Q-learning the changes are taken in specific directions 

in response to positive or negative rewards.

In Q-learning, the neural network takes inputs that represent 

what the agent “sees,” just like the evolved car control network I 

described in the previous section. The networks also take inputs 

describing what action the agent is considering to take; in the 

car racing domain, it could be steer left, steer right, acceler-

ate, and brake (or some combination). The output is a Q-value, 

which is an estimate of how good a particular action would be 

in a particular state (situation). So instead of mapping sensor 

inputs to actions, the network maps sensor inputs and actions 

to Q-values. The way this neural network is used to do some-

thing, such as driving a car, is that every time it needs to make a 

decision, it tests all possible actions and makes the one with the 

highest Q-value in the current state.

Obviously the neural network needs to be trained before it is 

useful; a network that outputs random Q-values is not going to 
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win any races or solve any other problems, for that matter. The 

basic idea of training a neural network using Q-learning is to 

compare the predicted value of taking an action in a state with 

the actual value of taking the action in the state, as observed 

after having taken it. If the actual value differs from the predicted 

value, the neural network is adjusted a little bit using the back-

propagation algorithm. For example, we don’t know whether 

it’s a good idea to turn left in an intersection. So we try it, and 

see what happens. Once we know what happens, we update our 

belief about the value of turning left in that intersection.

But how do we know the true value of taking a certain action 

in a given state? That depends on what feedback, or reinforce-

ment, the agent gets from the world. For example, when teaching 

a neural network to car race, you may give it positive feedback 

(rewards) every time it reaches the goal or perhaps every time it 

clears a part of the track, and negative feedback (punishment) 

every time it veers off the track or bumps into another car. If the 

feedback is higher, or lower, than the network expected to get, 

then the backpropagation algorithm is used to slightly nudge 

the neural network in the direction of the feedback, so that it 

gives a better estimate of the value of that action the next time it 

encounters a similar state. The core of the Q-learning algorithm 

is to constantly update the neural network so that it becomes 

better at estimating how good a different action would be to take 

in a given state based on the rewards it gets now and then.

The problem with the procedure I just outlined is that you 

want to be able to tell how good actions are even when they 

are not rewarded right away. For example, if you are learning 

to drive a car, you want to learn that even going slightly off the 

racetrack is a bad idea, even though you would have to continue 

for several seconds before you actually exit the track and receive 
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a negative reward (crash!). You also want to know that if you’re 

at the starting line, accelerating is good even though it will take 

you quite some time until you actually complete the race and get 

a positive reward. Similarly, if you’re playing Tetris, you want to 

know that stacking your blocks so that you can eventually clear 

several lines at the same time is a good idea, though it might 

be tempting to achieve short-term gains by clearing a single 

line. In real life, you might sometimes be in a state where a cer-

tain action, say ordering another drink, provides a short-term 

reward, but you may have learned that the action can have a 

negative value because of the long-term punishment of having 

a hangover the day after and increasing the risk of the longer-

term punishment of ending up as an alcoholic. In reinforcement 

learning, this is called the credit assignment problem, and as you 

might expect, it’s a very hard problem.

In Q-learning, the standard way of approaching the credit 

assignment problem is to learn from the expected reward. So 

every time an action is taken, if there’s no actual reward or pun-

ishment from the world, it adjusts the neural network’s estimate 

of the value of the action just taken based on its own estimate of 

the value of the best action in the next state. The neural network 

is essentially asking itself what it thinks its reinforcement should 

be. It sounds crazy, but given that the network now and then 

gets actual reinforcements from the world (or the game), this 

procedure should work—in theory. In practice, for a long time, 

it has been rather hard to get Q-learning to work reliably on 

complex problems. However, in 2015, a group of researchers at 

the London-based AI research company DeepMind managed to 

get Q-learning to play a number of classic arcade games from the 

Atari 2600 console, such as Missile Command and Pac-Man.5 It 

took a lot of computer power to train these networks, more than 
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a month of computer time per game, but the neural networks in 

many cases learned to play better than humans.

So which type of algorithm is better for learning to play games: 

Q-learning or evolution? In theory, Q-learning should be able 

to exploit more information because it can use more frequent 

reinforcement, and it can also make directed changes to the 

weights of the neural network, whereas evolution simply makes 

random changes. But it seems evolution has more freedom to 

invent strategies that are not directly dependent on the rewards, 

and evolution is also capable of changing the structure of the 

network, not just the weights. You could argue that Q-learning 

reacts to the feedback it gets by gradually tuning its strategies, 

whereas evolution boldly proposes complete new strategies and 

tests them as wholes. 

In practice, both methods can work well when a skilled prac-

titioner applies them. But we are still at the point when most 

learning methods don’t work very well out of the box. In the 

long run, we could look at the natural world for inspiration: ani-

mals (including us) learn both during and across lifetimes, and 

it is likely that we would similarly need both types of learning 

to create systems that are able to learn really complex tasks by 

themselves.
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As we saw in the previous chapters, we learn from games—how 

to play them and almost certainly other skills as well. We can 

also develop algorithms that learn to play games. But let’s turn 

this statement around. Can games learn from us? And if so, what 

could they learn? Can we develop algorithms that use our inter-

actions with games to learn about us?

When you play a game, you are constantly supplying infor-

mation to the game. You are pressing buttons and twiddling 

console sticks. In many games, you are also entering text. You 

are constantly making choices: go this way or that way, respond 

affirmatively or negatively to that character in a conversation, 

attack that enemy or not (and using which weapon). Some 

choices are complex and expressed over the course of a whole 

game, such as the personality and other characteristics of the 

character you are playing or the shape and political orientation 

of the country you rule; others happen at subsecond scales, such 

as exactly when to jump off a platform to avoid falling into  

a gap.

All of this is information that can be nicely expressed with 

numbers and other symbols. For games implemented on com-

puters (including standard computer games as well as digital 
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versions of board and card games), this is convenient because 

that’s what computers are great at: storing and processing infor-

mation. It’s perfectly possible for a computer game to store all 

the input you have ever given it and then use clever algorithms 

to analyze it. These days, almost all devices we play games on 

(computers, smartphones, game consoles) are connected to the 

Internet. Given an Internet connection, it is perfectly possible 

for a game to “phone home” and send all the data it has gath-

ered from you as you played it, either in raw form or aggregated, 

to the servers of the company that made the game. The game 

developer can then run all kinds of algorithms on the data to 

find out things about you and the rest of its player population. 

In fact, very many—maybe most?—recent video games already 

do this.

But what kinds of things can games learn from you?

What Would You Do?

Just like you can learn from a game how to play it, the game 

can learn from its players how it is played. By looking at the 

histories of how players have played the game, it is possible to 

find out what players typically do in each situation. This infor-

mation can be used to create an AI that plays the game like an 

“average” player by simply taking the most frequent action in 

each situation. To see how this can be done, imagine that the 

game simply stores a long list of all the situations the player 

has ever been in (in the game) and the action the player took in 

each situation. Let’s assume we can describe the situation with 

some numbers; for example, the coordinates of the player in the 

game world, current health, the relative position of the closest 

nonplayer characters (NPCs), and so on. After we’ve stored all 
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these data in a long list, it becomes trivial to create an AI agent 

that can play the game just as the human player would. At every 

point in time, simply look at what situation the agent’s character 

is in, find that situation in the long list of situations the player 

encountered, and take the action that the player took. Simple 

and elegant, right?

There are two problems with this simple solution. The first 

is that the list of all the situations a player has encountered can 

grow long—very long if you record where the player is, say, ten 

times per second and the player plays for ten hours, and very 

very long if you want to learn from not just one player but per-

haps hundreds or millions. The length of the list is a problem 

not just for storing it in computer memory, but also for being 

able to look up one of these situations quickly. You don’t want to 

look at millions of different stored actions every time you want 

to figure out what to do. We need a more compact way of storing 

the complete playing history of a player (or multiple players).

The other problem is that even if you spent ten hours playing 

a game, you have almost certainly not experienced every possi-

ble situation in that game. In fact, even if you have hundreds of 

players in your list, you are going to be missing lots of potential 

situations in your list. For every game that is not entirely trivial, 

the number of possible different game states is going to be some 

insanely large number, probably bigger than the number of stars 

in the universe.1 You’ll also need a way for your agent to deal 

with situations that the player(s) did not encounter. So we need 

a way to generalize.

Luckily, it turns out that you can use the backpropagation 

algorithm to train neural networks to predict what the player 

would do. Yes, this is the same method I described in the previous 

chapter when I talked about learning how to drive a car through 
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trial and error. The difference is that here, we are using back-

propagation not for reinforcement learning but for supervised 

learning. In supervised learning, you have a list of “instances,” 

where each instance has a number of features that describe dif-

ferent aspects of the instance, and a target value. When learning 

to play the game like a human, each instance would be com-

posed of the features describing a situation the player agent was 

in and what action the player took in the situation. Backpropa-

gation is then used to train the neural network to reproduce this 

list. Remember that in reinforcement learning, the backpropa-

gation algorithm changes the weights of the neural network 

depending on whether the action the network decided on leads 

to good or bad outcomes; in supervised learning, it changes the 

weights depending on whether the action the neural network 

decided on was the same as what the human decided on. Using 

this simple principle, the neural network can be trained to pre-

dict what action the player would have taken in each situation, 

usually with very good accuracy. The great advantage of this is 

that the neural network is much smaller than the long list of 

situations and actions used to train it, and it’s much faster to 

“ask” the neural network for an action than it is to look up the 

state in a big table. Such neural networks typically also have a 

pretty good ability to generalize, meaning that they can come up 

with an answer for what the agent would do in a situation that 

the player never actually encountered based on what the player 

did in similar situations.

Who Are You in the Game?

For a game developer, it is crucial to know who plays their game: 

which aspects of it they are good and bad at, which aspects they 



Do Games Learn from You When You Play Them? 79

like and dislike, and generally what they will do in the game. 

Outside the world of games, marketers use terms such as target 

group analysis and market segmentation when they talk about iden-

tifying and characterizing the potential customers of a product, 

so that the company that makes the product knows how to sell 

it or improve it. In games, we talk about player type analysis. 

The idea is that players of a game can be clustered into different 

groups, or player types, where the players of each type behave 

similarly and have similar preferences. An early and very influen-

tial attempt to identify player archetypes was made in the 1980s 

by Richard Bartle, a pioneer of online multiplayer games. Bartle 

built on his observations of players in the text-based online game 

MUD and stipulated four player types: achievers, who like to accu-

mulate points and get ahead in the game; explorers, who like to 

explore both the space of the game and the rule system and find 

new places or invent new ways of playing; socializers, who are 

attracted to online games because of the opportunities to hang 

out with and talk to others; and finally, killers, who enjoy causing 

harm to other players’ in-game characters.2

Obviously this typology works best for the type of games it 

was devised for: online multiplayer games. While the categories 

of achiever and explorer would be easy to apply to Super Mario 

Bros. and Angry Birds (and maybe Chess, though it is unclear 

what exploration means in such a game), the categories of social-

izer and killer make no sense for one- or two-player games. It is 

likely that you would need to find a different typology for each 

game or at least for each game genre. Fortunately, we have the 

tools to do this now, given all the data that games collect about 

us and modern data processing and machine learning tech-

niques. In other words, games can learn player typologies from  

players.
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In 2009, some of my colleagues at the IT University of Copen-

hagen (ITU), Alessandro Canossa, Anders Drachen, and Georgios 

Yannakakis, managed to get hold of a treasure trove of player 

data. Through a collaboration with the video game publisher 

Square Enix Europe, they gained access to data collected from 

about a million players playing Tomb Raider: Underworld on the 

XBox 360. The games in the Tomb Raider franchise are action-

adventure games in which you play a single character (the 

adventurer Lara Croft) and navigate a three-dimensional world 

while solving puzzles and fighting bad guys and occasionally 

monsters (figure 6.1). The developers had included functionality 

in the code so that every time a player finished a level, the game 

contacted Square Enix’s servers and uploaded a chunk of infor-

mation about how the player had played the level. This informa-

tion included how much time the player character had spent in 

various parts of the level, how many treasures found, how many 

enemies killed, and how often the player used the game’s help 

system, among other things. This was a new and untested idea in 

2009 (in 2018, it would be hard to find a commercially released 

game that does not “phone home” to the developer with infor-

mation on how it’s being played), and therefore the data were 

rather dirty and a lot of work was needed to get them into such 

shape that machine learning algorithms could be used on it.

The cleaned-up and reorganized data were fed to an algorithm 

known as a self-organizing map. This is a type of neural network. 

Like the ones discussed in the previous chapter, it is a computa-

tional structure inspired by the human brain, but it works rather 

differently from the car-driving networks discussed there. A self-

organizing map takes a large amount of data and separates the 

instances into different groups so that the instances within one 

group are maximally similar and instances in different groups 
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are as different from each other as possible. In machine learning 

language, this is called clustering and is a form of unsupervised 

learning (as opposed to supervised learning or reinforcement 

learning). You don’t know in advance how many groups you are 

going to get; this depends on the data and, to some extent, how 

you have configured the self-organizing map. In this case, each 

instance represented one player and contained carefully selected 

information about what sorts of things the player had done over 

the course of the game. Out came four clusters of data, represent-

ing four player types.

Simply knowing that there are four types of players doesn’t 

tell us much. As a developer, we would want to know what 

those player types represent—in other words, how the players 

of one type differ from those of another. So the team looked at 

Figure 6.1
Balancing on a ledge in Tomb Raider: Underworld (Crystal Dynamics, 

2008).
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a number of representative players of each type and compared 

how much they had done each kind of action. They identified 

four types: veterans, who rarely die, collect most of the treasure, 

and generally play the game very well; solvers, who rarely use the 

help system or any hints, play slowly, and prefer to solve all of 

the game puzzles themselves; runners, who complete the game 

very quickly but frequently ask for help and tend to die more 

often; and pacifists, who are good at solving the game’s puzzles 

but are bad at the combat elements and appear to seek to avoid 

them. This typology is clearly very different from Bartle’s, which 

is understandable given that we are dealing with a very differ-

ent type of game with a different player population. Something 

that is rather interesting is that the developers of the game at 

Square Enix had not foreseen the existence of the pacifist player 

type when they developed the game, and they were surprised 

to find out that the game was played in a way they had not  

“intended.”3

While it is obviously useful to know what types of players play 

your game, it would perhaps be even more useful to know what 

the players are going to do in the game. Usually you want your 

players to stay with your game for as long as possible, because a 

happy player will recommend your game to a friend and perhaps 

buy your next game. It is also common with free-to-play games 

that are initially free but involve semi-mandatory payments for 

upgrades in order to keep playing. For developers of such games, 

it absolutely essential to be able to predict which players will stay 

with the game (and eventually pay money) and which might 

stop playing it. Why? Because when you know which aspects of 

your design make people stay and pay, you can tweak your game 

to make more money. In addition, as a game developer, you may 

simply be interested in understanding your players.
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The next task for the same team, of which I was now a mem-

ber (I had just moved to ITU to take up my first faculty posi-

tion), as was Tobias Mahlmann (one of our PhD students), was 

to try to learn rules that would predict player behavior later in 

the game from player behavior early in the game. One of the 

things we tried to learn to predict was the highest level a player 

would complete out of the seven levels in the game. Theoreti-

cally, there are many supervised learning methods that could 

be used to learn to predict this, but some are better suited than 

others. We tried several of these methods on the task of predict-

ing after which level the player would stop playing. One of the 

best-working methods was decision tree induction, a method that 

also has the advantage that its results are easy to understand for 

humans. It produces decision trees, which can be thought of as 

long lists of if-then rules within each other. Here is an example 

of what the algorithm learned:

IF Rewards on level 2 <18.5 

THEN IF Time in Flushtunnel <9858: 2 

ELSE (Time in Flushtunnel ≥9858): 3 
ELSE (Rewards on level 2 ≥18.5): 7

In other words, if you accumulated a low score on level 2 and 

spent little time in the Flush Tunnel (an area in level 2), you will 

stop playing after level 2 and never finish level 3. Otherwise you 

will stop playing after level 3. However, if you accumulated a 

high score on level 2, you will finish the whole game.

This no doubt sounds like a very silly, arbitrary rule. It looks 

about as reasonable as astrology, and it’s not the kind of rule you 

would expect an actual human game designer to come up with. 

However, silly as it may be, it is built on solid empirical evidence: 

it has a prediction accuracy of 76.7 percent when tested over 

tens of thousands of players. This means that while there are a 
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certainly a few people who get a low reward on level 2 and then 

continue to finish the whole game, it is statistically unlikely. 

While it might be insulting to common sense that the amount 

of time spent in some tunnel should be so indicative of whether 

a player will give up the game after level 2 or 3, this really seems 

to be the case based on all these data. Maybe the most notewor-

thy result is that the prediction accuracy is so high. What this 

says is that we humans really are quite predictable, even when 

we play games.4

Who Are You Outside of the Game?

So far we have seen that the game can learn from your playing 

what type of player you are and how you will play in the future. 

But you are not only a player of games. You are a full-fledged 

human being, with hopes, dreams, fears, manners, friends, and 

habits. There is no reason to believe that all the rest of who you 

are disappears the moment you lean back on the sofa and grab 

the Xbox controller; you are still you, even if you are momen-

tarily Mario, Master Chief, or Lara Croft. Now the question is, 

Does anything of the rest of you shine through in your game 

playing? What can the game learn about the real you from ana-

lyzing how you play?

Back in 2013, Alessandro and I had at our disposal an ambi-

tious master’s student, Josep Martinez, and we were searching 

for a topic for his thesis. Alessandro had recently read the works 

of Stephen Reiss, a personality psychologist who had devised a 

model for categorizing people’s life motives, that is, what moti-

vates them in life. Reiss identified sixteen broad life motives (in 

alphabetical order): acceptance, curiosity, eating, family, honor, 

idealism, independence, order, physical, power, romance, saving, 
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social, status, tranquility, and vengeance. Each of these motives 

has several subcategories, and there is a well-tested question-

naire available for assessing life motives. We wondered whether 

the motives people had in real life were also expressed in games. 

If so, which ones? And in which games?

Like so many others, Alessandro, Josep, and I were fasci-

nated by Minecraft, the open world game that took the world by 

storm beginning in 2010. When it was first released, as a buggy 

beta, Minecraft was a rather unique game—now there are many 

clones—not only for its peculiarly blocky graphics but also for 

the unparalleled freedom it affords players. The game is now a 

global phenomenon that is used for everything from making 

machinima (animated films made inside video games), to edu-

cation, to testing AI algorithms. Minecraft can be described as a 

cross between a role-playing game and a digital version of Lego 

(figure 6.2). When you arrive in the game, you have nothing, 

and you must hurry to assemble some tools so you can build 

yourself some shelter before the night comes and monsters 

start roaming the land. But in order to make these tools, you 

need materials, and in order to get those, you need to mine the 

ground. After crafting more advanced tools, you will be able 

to mine deeper for more exotic materials so you can construct 

more advanced buildings and mechanisms. Given enough time 

and effort, you can construct anything you want. Searching for 

videos of Minecraft on YouTube yields thousands of examples 

of player-constructed replicas of famous buildings and vehicles 

(even the Starship Enterprise). There is also a storyline in Mine-

craft, including fairly typical role-playing game-like quests, but 

it is entirely optional whether to follow this storyline and carry 

out the quests; many players don’t.
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Almost all games afford a number of different playing styles, 

but Minecraft does so more than most others. I think it’s safe to 

say that there are more different ways to play Minecraft than there 

are ways to play Tomb Raider: Underworld. Clearly these different 

playing styles reflect different in-game motivations: some people 

are motivated by finishing quests, others by expressing them-

selves through building grandiose edifices, yet others by collect-

ing rare resources. But do these motivations have anything to 

do with your real-world life motives? Does someone who cares 

mostly about her family play differently from someone whose 

Figure 6.2
The cubistic world of Minecraft (Mojang, 2011). The game largely re-

volves around mining cubes for material so that you can build things 

out of other cubes.
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chief concern is getting ahead in professional life? We decided 

to find out.

Josep sent out questionnaires, with questions taken from the 

Reiss Motivation Profile, to 100 Minecraft players; these ques-

tionnaires were used to construct a profile of each player in 

terms of what motivated them most. He then asked each player 

for her Minecraft log file. This is a small file automatically saved 

by the game, which contains more than six hundred variables, 

including such things as how many hours the player has played, 

how much redstone ore she has mined (redstone is used for 

making electric-like circuits), and how far she has traveled by 

pig (an often overlooked transportation option). After extract-

ing and cleaning these data, we ran a correlation analysis of all 

combinations of potentially relevant game variables and life  

motives.

“Correlation” is a way of saying that, statistically, two things 

have something to do with each other. It does not necessarily 

mean that one causes the other: if umbrella sales and the num-

ber of hours you spend watching TV are correlated across the 

weeks in a year, they might both be caused (at least in part) by 

bad weather. Two variables can correlate negatively or positively. 

So is, for example, smoking negatively correlated to longevity: 

when one is high, the other is low. (In this case, it is reasonable 

to assume that one causes the other.)

We found that all of the life motives were significantly cor-

related with several of the in-game variables. However, some 

were correlated with only a few variables (so few that it might 

come down to chance), whereas others were correlated with a 

large number of the in-game variables, and some of the correla-

tions were so strong that there was virtually no room for doubt. 

Among the most highly correlated life motives were curiosity, 
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saving, vengeance, and honor, whereas those that did not seem 

to be much expressed in the game were romance, tranquility, 

and physical activity. In some cases, these correlations make 

intuitive sense to someone who knows the game; in other cases, 

they are unexpected and quite amusing. People who are strongly 

motivated by curiosity in real life tend to craft plenty of torches 

and stone tools in the game, which makes sense because these 

are the most cost-efficient ways of exploring large parts of the 

game world. Those who are motivated by saving tend to use 

cheap and simple materials in the buildings and tools they con-

struct. Vengeful players apparently quit the game and restart it 

(perhaps from an earlier save) more often—what would be called 

“rage quit” in gamer lingo. Players who are strongly motivated 

by independence in real life showed this in the game by refus-

ing to do the quests in the game’s storyline; in particular, it was 

strongly correlated with not even attempting the final quest. 

Another interesting expression of life motives is that people 

with a strong need for tranquility built significantly more fences 

around their dwellings. It certainly seems that the person you 

play when you play Minecraft is you in some very important 

respects.5

These results can be seen in the light of the studies by Nick 

Yee, then at Stanford University, and his colleagues, who inves-

tigated how players express their personality (rather than life 

motives) in the online multiplayer role-playing game World of 

Warcraft (figure 6.3). Yee used the Big Five personality question-

naire, which groups personality traits into the five categories of 

Openness, Conscientiousness, Extraversion, Agreeableness, and 

Neuroticism. There were plenty of correlations in these data as 

well, and he could see, for example, that conscientious players 

were more likely to collect items of various kinds and less likely 
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to die of accidents, that players with high openness explored 

more of the game world, and that extraverted players (unsurpris-

ingly) had more social interactions in the game.6 A group led  

by Pieter Spronck and including Shoshanna Tekofsky at the 

University of Tilburg has also found similar effects in games  

as different as the epic strategy game Civilization and the first-

person shooter Battlefield 4. For example, it’s possible to predict 

gender and age with relatively good accuracy from how people 

play Battlefield 4.7

Taken together, the picture we get from this research, as well 

as many other studies on these topics, is that you express quite a 

lot of yourself while playing games. If the game wants to, it can 

find out not only who you are in-game and how you will play in 

Figure 6.3
World of Warcraft (Blizzard, 2004) is a massively multiplayer online role-

playing game; much of the game is communicating with other players 

over text or voice chat.
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the future, but also quite a lot about who you are outside of the 

game. This raises plenty of interesting opportunities not only 

for game developers but also for psychologists and other social 

scientists who want to understand how humans function.

But this research also raises a number of complicated ques-

tions. A couple of years ago, I was speaking at a conference 

where a number of people from the security services and other 

government agencies were in attendance. One of the things I 

talked about was how much you could find out about players 

from their in-game behavior. In order to stir the conversation, 

I suggested that it might be possible to find out really sensitive 

information about players, such as their political views, sexual-

ity, history of drug use and incarceration, or health status. (Note: 

I have not done this research and do not intend to!) I was expect-

ing to get some worried reactions, but instead these people sim-

ply nodded pensively, as in “that’s an interesting idea.” It is fair 

to say that I have not become less worried about the potential 

to use player modeling for nefarious purposes since then. Par-

ticularly in light of concerns about how much of our personal 

information is gathered by security services, social network com-

panies, internet providers, and all manners of shady operators 

who sell their services to the highest bidder, I think it is impor-

tant to realize that our game playing is another way in which we 

leave rich digital trails. The difference, perhaps, is that when we 

post on a social network, we are aware that we are sharing infor-

mation about ourselves; when we play a game, this is not obvi-

ous because we believe we are only acting inside the game world. 

But as we have seen, we bring much of ourselves into that world.
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Ada Lovelace is widely considered the world’s first programmer. 

She was the first to write programs for Charles Babbage’s Analytic 

Engine, a very ambitious but never realized mechanical computer, 

in the mid-nineteenth century. She was also among the first to 

point out the truly marvelous potential of computing machines. 

In her view, however, the “Analytical Engine has no pretentions 

whatsoever to originate anything. It can do whatever we know how 

to order it to perform.” In the last century and a half we have seen 

massive progress in computing, in particular since the inven-

tion of the actual digital computers. However, surprisingly many 

would still believe something like the following: Although we can 

make computers play games, predict what players will do, and even 

associate certain player behaviors with personality characteristics, the 

computers could never design the games themselves. For that, we need 

human creativity because computers can never fundamentally create 

something that we humans didn’t program them to do first.

This is entirely wrong and one of the most harmful wide-

spread myths about computing and artificial intelligence. While 

“automating creativity” might sound like an oxymoron to some, 

creativity is in fact no more or less automatable than other 

human cognitive capabilities. In this chapter, I discuss some 
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ways in which artificial intelligence methods can be used to do 

things that would be called “creative” if humans did them, in 

particular when it comes to designing games. I will also look 

at how we could use artificial intelligence to augment our own 

creativity for such design tasks. But first, let’s rewind the tape a 

decade.

In 2006, I was two years into my PhD, and I had published 

several papers on ways of evolving neural networks to drive 

cars or play other games. These papers had been well received 

by the research community, but they were not groundbreaking.  

I had shown that neuroevolution could work well for this type 

of game, but in the end, what I had done was just to take a well-

known method in robotics and shown how to make it work for 

certain types of games. I was wondering what the next step in 

my doctoral project would be. One idea I was toying with was 

to try to use more complex information, such as raw visual data, 

as input to the neural network, but this didn’t seem exciting 

enough.

But then one day, while I was thinking in the shower, I had 

another idea. Evolutionary algorithms are apparently very useful 

for creating agents (implemented as neural networks) that can 

play a game. But could you use the same principle, evolution, to 

create other parts of the game—for example, the levels?1

I mentioned this idea to my friend Renzo De Nardi, who 

found it interesting and agreed to help out. Because there was a 

suitable conference and its deadline was just over a week away, 

we figured that we should have enough time to refine the con-

cept, write the code, design and run the experiment, and write 

the paper. (Unfounded optimism and willingness to work all 

through the night are useful assets when doing a PhD.) We chose 

the same racing game I had built for my previous experiments in 
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evolving neural nets to drive cars because we already knew how 

that code worked. We immediately faced two problems: how to 

represent the racing tracks so that evolution can search for good 

tracks effectively and how to create a fitness function that accu-

rately tells us how “good,” or enjoyable, a racing track is.

The first problem is not exactly trivial but not that hard 

to solve, either. We represented the tracks using a technique 

called b-splines, where a track can be described by a sequence 

of numbers specifying how the track bends. So just as for neu-

ral networks, the “genome” of a racing track is simply a list of  

numbers.

The second problem is much trickier and immediately brings 

up fundamental problems in aesthetics. How do we know that a 

racetrack, or some other type of game level, or any type of game 

content, is any good? If we try to be a little more specific, how 

can we write program code that automatically evaluates a race-

track and returns a number corresponding to how exciting, or 

interesting, or entertaining a human would think that racetrack 

is when playing a racing game? On the face of it, this seems like 

an impossible task. How could we know what a human would 

think of a game level without having that human around? We 

would have to simulate the whole human and ask the simula-

tion what it thinks—something that, mildly put, is well beyond 

our technical capabilities. If you are still not convinced about 

how hard this is, imagine writing a program that would look at 

paintings and given them a score between 1 and 10 reflecting 

how much a professional art critic would like the painting. It’s 

hard to even imagine where to begin. Problems like these are 

sometimes called AI-complete problems, reflecting the idea that 

you first need to develop general human-level AI to be able to 

solve them.
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However, as with many other very hard problems, it turns out 

you can make a good deal of progress if you don’t care about get-

ting things exactly right, and instead just try to get some rough 

approximation. In our case, we looked into game design theory2 

and also played a couple of racing games ourselves to see if we 

could discover some simple rules that would indicate that indi-

cate that one racetrack was better than another. We came up with 

the following heuristic rules for what makes a good racetrack:

•  It should have the right difficulty.
•  It should have different types of challenges along a lap, such 

as some sharp turns and some smooth curves.
•  At some point on the track, it should be possible to drive 

really fast.

How can we measure whether a track has these properties? 

Well, the simplest way is to drive the track and see what hap-

pens. We could look at whether the driver manages to complete 

the lap, the difference in minimum and maximum speed along 

the track (indicating that there are different types of challenges), 

and the maximum speed achieved. We can then create a fit-

ness function that reflects all three of these values, allowing the 

evolutionary algorithm to search for tracks with all three of the 

properties we listed.

The remaining problem, then, is that someone will need to 

drive the car. We can’t have an actual human do the driving 

because the evolutionary algorithm will need to try thousands 

or even tens of thousands of different tracks with minor varia-

tions, and humans are far too slow for that and also get tired 

easily. We needed an artificial player to drive our tracks in order 

to evaluate their quality. Luckily, I had been working on evolv-

ing neural networks for driving cars in this particular racing 
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game, so we could use those neural network drivers to test the 

tracks. Even better, we could train neural networks to drive like 

us, so we could evolve racetracks that would suit our own driv-

ing styles, using a combination of evolutionary algorithms and 

the backpropagation method I described in the previous chapter.

Renzo and I trained some neural networks to drive like us. 

Appropriately, the network trained on data from my play-

throughs drove fast and recklessly, while the network trained on 

Renzo’s playthroughs drove slowly and meticulously. (Note that 

this only reflects our driving styles in racing games; in offline 

life, I don’t actually have a driver’s license.) We then evolved 

racing tracks to fit each of our driving styles. The results are in 

figure 7.1.

I’ve since worked with various teams of people to take this gen-

eral idea—creating new game levels with evolution, using agents 

that play the levels to evaluate them—to various games and level 

types. For example, we showed that we could automatically create 

Figure 7.1
The racetracks that evolved from the neural networks.
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balanced maps for StarCraft and levels for Super Mario Bros. We call 

the general idea “search-based procedural content generation,” 

because game content is generated through a search process— 

in this case, based on artificial evolution. All that is needed is a 

good way of representing the game content and a good fitness 

function (though, as we’ve seen, this part can be tricky).3

The idea of seeing creativity as a search in a space of potential 

artifacts is not new; it has been discussed at length by, for exam-

ple, the British philosopher Margaret Boden.4 There are also 

many examples of search-based approaches to generating music, 

images, and so on. Seeing creativity as search, it becomes clear 

that creativity is about as automatable as any other endeavor 

that usually requires human thought: it’s by no means easy but 

definitely not impossible.

The Random Number God

The idea of creating some parts of games automatically, through 

algorithms, is not new, either. In fact, it is almost as old as video 

games themselves. Back in the days when computing power was 

a scarce resource available only on mainframe computers you 

had to share with hundreds or thousands of others, and even 

that mainframe had far lower processing speed and far less  

storage capacity than a cell phone has today, conserving bytes 

was of the utmost importance. This was the environment in 

which Michael Toy and Glenn Wichmann created Rogue in 1980 

(figure 7.2).

Toy and Wichmann, who were studying at the University of 

California at Santa Cruz, were aficionados of the influential pen-

and-paper role-playing game Dungeons and Dragons. Normally, 

Dungeons and Dragons campaigns require a specialized dungeon 
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master who runs the game and plays various NPC roles in the 

game world where a team of one or several players is adven-

turing. Toy and Wichmann wondered how they could create a 

computer game that played a bit like Dungeons and Dragons but 

could be played alone, against the computer. Translating the 

combat mechanics from Dungeons and Dragons into code was 

easy enough. The problem was with the adventures, which, in 

Dungeons and Dragons, appropriately enough often take place in 

dungeons. In Dungeons and Dragons, these dungeons are either 

made by the dungeon master or bought in books sold by the 

game publisher. Clearing a dungeon involves navigating a maze 

to find the exit; collecting items; managing health, food, and 

money; and fighting (and/or running away from) monsters. For 

the game the duo was creating, Rogue, they didn’t want to cre-

ate the dungeons themselves because they created the game pri-

marily for themselves and it would be more fun to be surprised 

by the dungeons. In any case, they simply didn’t have the disk 

space to store many dungeons for the game, so handcrafting 

them was practically impossible.

Necessity is supposedly the mother of invention, so Toy and 

Wichmann were forced to invent a way of automatically gen-

erating dungeons. Every time a new game of Rogue is started, 

a completely new dungeon is created, and this procedure was 

fast even back on 1980-era computers. The algorithm, some-

what simplified here, works as follows. First, divide the dungeon 

into different segments; then create rooms in all the dungeon 

segments; mark the first one that is visited; then keep creating 

corridors from (randomly chosen) visited rooms to (randomly 

chosen) unvisited rooms until all rooms are marked as visited. 

This will create a number of rooms that are connected by cor-

ridors, so that it is possible to get from any room to any other. 
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What’s left is to add items and monsters; these are mostly sprin-

kled out at random in the rooms.

The result of this process is that every game of Rogue feels 

fresh. Every time you start playing the game, there’s a new dun-

geon for you to find your way in, new potions to figure out, new 

monsters to kill. This means that to become good at playing the 

game, you need to learn strategies for how to play the game well 

rather than simply memorize the layout of the dungeons. This 

is a qualitatively different kind of game play compared to many 

other types of games.

While Rogue was not the first game to include procedurally 

generated levels (that distinction may belong to the slightly ear-

lier and simpler Beneath Apple Manor), its popularity led to the 

Figure 7.2
Rogue (A. I. Design, 1980), the original roguelike, has modest hardware 

requirements because it was developed for a computer that had less com-

putational power than your fridge. The smiley face represents the player 

character.
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creation of a new genre of games called “roguelikes” in honor of 

the landmark game. By definition, every roguelike game session 

presents a new set of levels to play. Many are also role-playing 

games like Rogue, for example, the open source classic NetHack, 

the endlessly intricate Dwarf Fortress, or Blizzard’s best-selling 

Diablo series. But many other games that are not commonly 

thought of as roguelikes build on the idea of generating levels, or 

worlds at the start of every playing session. This includes some 

very well-known games; the indie sensation platformer Spelunky, 

the epic strategy games in the Civilization series, or the mega-

selling sandbox game Minecraft (also discussed in the previous 

chapter); none of these games would be possible in anything like 

their current format without procedural generation.

Another game from the 1980s that spearheaded procedural 

content generation is Elite (figure 7.3), a space trading and battle 

game where the player explores a galaxy with thousands of plan-

ets, buys and sells goods and items, fights space pirates, and takes 

Figure 7.3
Approaching a space station in Elite (Acornsoft, 1984).
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on missions. The scale of the game is large by any standard, but 

what is even more impressive is the extremely limited hardware 

it ran on. I played it on my Commodore 64, a popular home 

computer with 64 kilobytes of memory. How could such a huge 

game world possibly fit into 65,536 characters’ worth of mem-

ory, especially given that the game engine and graphics needed 

to be stored there as well? The answer is that every star system 

was generated as you visited it, including names and positions of 

planets and space stations, prices of commodities, and locations 

of spaceships. But unlike Rogue, the game does not change with 

every play session, and if you go back to a star system you’ve left, 

you’ll find it looks just as the way it did when you left it. This is 

because Elite uses a particular seed value for the random number 

generator for each star system, precisely determining the output 

of the generative algorithm. Instead of storing thousands of star 

systems, Elite simply stores the number of each star system and 

uses that to regenerate the star system as it needs. This idea has 

been highly influential in game development and is used in vari-

ous roles in many games for regenerating things such as vegeta-

tion on demand. A prominent recent example of a game storing 

a complete galaxy as seed values, creating a giant space for the 

player to explore, is No Man’s Sky (figure 7.4).

So does this mean that the problem of procedural content 

generation is already solved? Far from it. The problem can be 

illustrated by the Random Number God. When starting a game 

of Rogue, most of the time you’ll get a dungeon of reasonable 

difficulty, but sometimes you can get crazy difficulty spikes or 

long sequences with little challenge. Also, some dungeons are 

just (much) better than others. So it has become common to 

blame an unfair outcome in Rogue (or another roguelike) on the 

Random Number God, who clearly was out to get the player by 
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spawning his character right next to a high-level dragon, or in a 

room that is almost impossible to get out of, or something else 

like that.

The problem is that it is very hard to foolproof the type of 

algorithms used by games such as Rogue. In other words, it is 

hard to make sure that the level that comes out at the other end 

is always at the right level of difficulty, or balanced, or some-

times even playable. This, of course, limits what kind of games 

we can procedurally generate levels for using these methods. 

Here is where the search-based approach shines. With a well-

designed fitness function based on an agent playing the level, 

it becomes possible to include as a condition that the level is 

indeed balanced, playable and having the right level of chal-

lenge. This makes procedural generation of game content pos-

sible in a much wider range of games, bringing us closer to the 

vision I outlined in chapter 4.

Figure 7.4
In No Man’s Sky (Hello Games, 2016) all planets are procedurally gener-

ated, including their flora, fauna, and geology.
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Getting Personal

The vision I laid out in chapter 4 also includes that the game 

somehow adapts to you and creates new content that is not 

just good in general but tailored specifically to you: what you 

like, what you’re good at, and how you play. Using search-based 

procedural content generation, we can create levels that can be 

played by an artificial agent trained on a particular player’s play-

ing style, so we can at least indirectly adapt the new levels to 

the skills and playing style of a human player. But how could we 

create levels that are adapted to the preferences of a human, levels 

that would be tailored to create a particular kind of experience 

in the player?5

This was the question that my friend and colleague Geor-

gios Yannakakis and I asked ourselves in 2009. Georgios had 

been working on methods for modeling player experience for 

his PhD thesis and several years after that. He had developed 

machine learning–based methods for predicting what a player 

would think of a particular part of a game. I had been working 

on the search-based approach to procedural content generation, 

as described above. We thought that there should be some way 

of combining these two ideas to automatically generate game 

content that would create a specific experience in the player.

We recruited a master’s student, Chris Pedersen, for the proj-

ect and started collecting data. Because we needed lots of data, 

we wanted to use a game that many already knew, so we were 

delighted to find Infinite Mario, an open-source clone of Nin-

tendo’s classic platformer Super Mario Bros. We modified the level 

generator so that it could create levels according to parameters 

(figure 7.5). These parameters specified properties such as how 

large the holes in the ground should be and how far from each 
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other enemies should appear. By varying these parameters, we 

could get the generator to generate very different kinds of levels, 

some largely empty, some with lots of enemies to defeat, oth-

ers with tricky jumping challenges, and so on. We created a few 

hundred levels with very different settings of these parameters 

and proceeded to try to get people to play games for us.

While most people enjoy playing games, getting hundreds of 

people to play your game so you can collect data about them 

is not easy at all. Sometimes you have to pay people to play 

games. For this experiment, however, it was enough to pester 

our friends using Twitter, Facebook, and email (no one has so 

Figure 7.5
Part of a level generated in the Mario AI framework using an evolution-

ary algorithm.
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far unfriended me over this kind of behavior—as far as I know). 

Each person was tasked with playing at least two levels of the 

game. Those two levels were generated using different param-

eter values so that they felt different to play. Each person played 

different pairs of levels. We recorded everything the player did 

while playing, and after each pair of levels, we asked them a 

set of questions, Which of the two levels just played was more 

challenging? Which was more entertaining? Which was more 

frustrating?

After collecting data from more than seven hundred play-

ers, we set out to try to create a model of player experience. We 

defined a neural network (figure 7.6) that would take the param-

eters of two different levels as inputs, along with some data on 

the player’s playing style, such as how often the player jumped, 

how much the player ran, and how many enemies the player 

defeated. The three outputs of the neural network represented 

the player’s preference: which of the two levels they found more 

challenging, more entertaining, and more frustrating. Once we 

had the data, training the neural network to accurately predict 

player preferences was straightforward. We now had a model of 

player preference that, given two levels in the game and a par-

ticular playing style, could predict which of the two levels the 

player would prefer in each of these three dimensions.

The next step was to use this model to generate new levels. 

For this part of the project, we brought on our promising new 

PhD student, Noor Shaker, who got to work on building what 

we called an experience-driven procedural content generator. It 

turned out to be easier than expected: given that the neural 

network we trained can predict which levels a particular per-

son would prefer, we can use it as a fitness function. You simply 

evolve the level parameters to maximize how much the neural 
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Level features and rules, playing behavior

Player experience
(fun, frustration, anxiety, ...)

Figure 7.6
Diagram of a neural network that takes level design parameters and play-

ing style as inputs, and outputs predicted player affect. By keeping play-

ing style constant and optimizing for desired player affect, we can find 

out what types of levels would likely cause certain experiences in the 

player.
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network predicts the player would enjoy the level. Once you 

have these level parameters, you feed them into the standard 

level generator, which generates levels that turn out to be pretty 

exactly what you asked for. (As usual, this description ignores 

a number of technical details and tricky design decisions, but 

conceptually this is what happens.) A nice feature of this proce-

dure is that you can optimize for each of the three dimensions of 

preference separately or in some combination. So, for example, 

you can search for levels that would be maximally entertaining 

and minimally frustrating for a particular player. Of course, you 

can also search for levels that are minimally entertaining and 

maximally frustrating (if that’s what you prefer).

Getting More General

So far, I’ve talked about game content in a very abstract sense 

but given only examples of game levels (if we count racetracks 

and dungeons as levels). What other things could we generate? 

Well, it’s very common for games to use procedural generation 

of vegetation such as trees and grass and other natural features 

such as clouds and water. Generating such “background” con-

tent is pretty much a solved problem, and there is software that 

will take care of it for you if you want. The reason things such as 

bushes and clouds are simple to generate is that they don’t need 

to interact too much with the rest of the game and its mechan-

ics. An oddly shaped cloud or bizarre tree might raise a few eye-

brows but will not make your game unplayable. But what if we 

look in the other direction, at generating content that is core 

to the game and interacts with everything? Could we generate 

game rules? Maybe even complete games?
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In 2008, Cameron Browne was finishing his PhD thesis on 

exactly this topic. He’d done his PhD mostly on weekends and 

evenings while working as a software developer and also indulg-

ing in his other hobby: designing board games and writing books 

about designing board games. (I know him and can confirm that 

he sometimes sleeps as well.) For his PhD, he had designed the 

Ludi language and game generation system, specifically focused 

on so-called recombination games: games with regular boards and 

pieces of only a few types, like Checkers, Go, Hex, and Othello.6 

The Ludi language allows such games to be represented in only 

a few lines of code, where one line defines the board size and 

shape, another line defines how and if pieces can be captured, 

and so on. This code can be treated as a genome, so game rules 

can be created with an evolutionary algorithm. To get the evo-

lutionary algorithm going, Cameron supplied the Ludi system 

with dozens of existing recombination games, mostly classic 

games, to serve as the initial population. He also designed a 

fitness function that would evaluate the quality of the games 

through playing them and measuring a number of properties 

of the playthrough, such as how often the lead changed and 

how early in the game it was possible to predict who would win 

(it’s generally considered a good thing if you can predict this as 

late as possible). With the representation and fitness function 

specified, Ludi could start evolving games. This was of course a 

very slow process because the system needed to play every game 

it came up with many times against itself. But the results were 

worth the wait. In particular, one game, Yavalath (figure 7.7), 

was so novel and good that a game publisher was interested in 

selling the game as a boxed set in stores. This is probably the 

world’s first completely computer-generated commercial game. 
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As far as I’m aware, however, Cameron gets all the royalties from 

the game sales, with none of the money going to Ludi.

At the same time that Cameron was working on Ludi, I was 

working on my own ideas for generating game rules. But unlike 

Cameron, whose system works on a specific kind of board game, 

I was targeting simple arcade games in the style of Pac-Man. I took 

axioms that these games would take place in two-dimensional 

game worlds and that the player controlled an agent that could 

move around and interact with various “things.” The way I 

thought about this was that the various things could be enemies, 

food, bonuses, friends, mines, or something else, all depending 

on how they interacted with each other and with the player. For 

Figure 7.7
Yavalath (Nestorgames, 2007) was designed by the Ludi system, which 

was designed by Cameron Browne.
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example, in Pac-Man, pellets disappear when interacting with 

the player agent and increase score, and the player-agent dis-

appears if interacting with a ghost. So I decided to evolve the 

rules for how these things interacted. When designing the fit-

ness function, I was inspired by Raph Koster’s idea that fun in 

games comes from learning, as detailed in chapter 2. I wanted 

to evolve learnable games, but of course I couldn’t use actual 

humans in the fitness function. Instead, I used another evolu-

tionary algorithm—inside the fitness function, inside the main 

evolutionary algorithm—that would try to learn to play the 

game. Games where the algorithm could make quick improve-

ments got high fitness scores.7

Alas, my experiments did not result in any new hit games 

to rule the App Store. What I got was a number of examples 

of games that the fitness function thought were reasonable but 

for various reasons were not interesting to play, or sometimes 

weren’t even playable. It turns out that generating video game 

rules is significantly harder than generating rules for board 

games such as recombination games. One reason is that for the 

fitness function to work well, we need an AI agent that is able to 

not only play any strange game that the evolutionary algorithm 

throws at it but also play them well and in a human-like manner. 

Note that if you are part of a fitness function, you are bound to 

encounter some very strange games produced by random muta-

tions and crossover.  This is very much an unsolved research 

problem.

Together with various students and collaborators, I’ve kept up 

the efforts to develop algorithms that can create rules for video 

games. In one project, we used the Video Game Description 

Language (discussed in chapter 9) as representation and tried 

to evolve games that good agents do well at and bad agents do 
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poorly at—in other words, games that have some skill depth. This 

has had some limited success, being able to create novel rules for 

simple puzzle games in the style of Sokoban.8 Others have also 

been working on this, for example Adam Smith has proposed 

using logic programming to create game rules,9 and Mike Cook 

has worked for a long time on ANGELINA, a multifaceted system 

that can generate not only rules but all kinds of different game 

assets, with fascinating results (figure 7.8).10

Trying to create systems that can create games is not only 

about building technical systems that can do marvelous things. 

Since its inception, artificial intelligence has had the dual pur-

pose of creating systems that can solve tasks that seem to require 

intelligence and to understand the principles behind the intel-

ligence that already exists in the world, for example, in us. More 

Figure 7.8
To That Sect (Michael Cook, 2014) was designed by the ANGELINA sys-

tem, which was designed by Michael Cook.
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generally, one of the things you learn as a computer scientist 

is that you don’t really understand a task until you have writ-

ten program code that can solve that task. This is because only 

designing and implementing an algorithm that solves a task 

forces you to look at the task in sufficient detail. This is true 

even of such a mundane thing as sorting: studying and imple-

menting sorting algorithms forces you to understand sorting 

in depth. I am sure you intuitively know how to sort socks or 

pencils or coins, but unless you have taken computer science 

classes, you have probably not thought much about exactly 

which rules you follow when you sort things, and how sorting 

could be made more efficient. This observation is even more true 

for game design, a complex endeavor that we can (imperfectly) 

train people to do but that we don’t understand at anything like 

the depth with which we understanding tasks such as sorting, 

text reading, or car driving. Designing and implementing sys-

tems that can perform some aspect of game design, even if in a 

very limited environment, is therefore a way of studying game 

design.

Being Creative Together

For the foreseeable future, we will not have AI systems that can 

design a complete game from scratch with anything like the qual-

ity, or at least consistency of quality, that a team of human game 

developers can. Human designers will not be out of a job any-

time soon. However, there are a number of problems for which 

AI methods already perform impressively, as we have seen. In 

many cases, the strengths of human designers and algorithms are 

complementary rather than replacing each other. This suggests 

that we could build systems where humans collaborate with AI 
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algorithms to make games—for example, by using algorithms for 

ideation, feedback, fine-tuning, and automatic play testing. In 

particular, this could be done through building mixed-initiative 

AI-assisted game design tools. These are systems in which both 

the human user and the AI can take initiatives when it comes 

to editing the game and where the AI can provide suggestions, 

feedback, and limited automated generation for the human user.

One influential example of such a system is Tanagra by Gillian 

Smith, now a professor at Worcester Polytechnic Institute.11 

Tanagra is an editor for platform games that uses constraint 

solving to generate whole levels or parts of levels. The user can 

create levels completely freely, but at any time can call on the 

tool to generate a completely new level or just regenerate any 

particular part of a level. The level generator ensures that every 

level is playable.

Inspired by this system, Antonios Liapis, at the time a PhD 

student of Georgios Yannakakis and myself, started working on a 

system we call Sentient Sketchbook.12 The idea was to unify sev-

eral different types of AI-based design support in a system that 

would help create levels for strategy games. In Sentient Sketch-

book, the user works on “map sketches,” somewhat abstract rep-

resentations of strategy game maps (see figure 7.9). As the user 

edits the map, the tool provides feedback about such measures 

as how balanced the map is, how close resources are to base loca-

tions, and how protected bases are. Some of these quantities are 

visualized as gauges and some as overlays on the actual map, for 

example, displaying graphically which resources are under the 

control of a particular base location. The tool also constantly 

provides users with suggestions for ways of improving the map. 

These suggestions are generated by evolutionary algorithms run-

ning in the background, at every point in time starting from 

the current map design and asking questions like these: What 
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would it be like if the map was a little more balanced, or had 

fewer impassable areas, or maybe resources that were harder to 

control? The user is of course free to disregard any suggestions; 

Sentient Sketchbook will keep trying to second-guess the design-

er’s intent.

Tools like Tanagra and Sentient Sketchbook—and several oth-

ers that have followed in their footsteps—show the way toward 

greater use of AI methods in game design and development.13 

A combination of algorithms and human designers is in almost 

any case better than either on their own. I predict we will soon 

see similar tools integrated into mainstream game engines such 

as Unity and Unreal.

But will we also see modern AI methods applied within games, 

as opposed to for design and development, anytime soon?

Figure 7.9
Editing a map sketch with Sentient Sketchbook.
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In chapter 4, I posed the question why the type of artificial  

intelligence methods we have seen so many examples of in this 

book are not used more in games. I outlined a couple of poten-

tial reasons for this. One of the reasons I mentioned is that game 

development is a surprisingly risk-averse industry because of the 

hit-driven nature of the business and that the technology may 

not be mature enough yet. Now, after spending the past few 

chapters on AI methods for playing games, modeling players, 

and generating content, we’ll revisit the question. This time we 

focus on the role of game design in enabling AI and, conversely, 

AI in enabling game design.

Back when I was a naive and overenthusiastic PhD student, 

and even when I was a slightly less naive and overenthusiastic 

postdoc, I tried rather naively to effect change. When I met a 

game designer or developer at a conference, I would try to con-

vince her that her company’s new game stood to win a whole 

lot by using some of these fancy new AI methods. Usually the 

response I would get was that no, in fact their game did not 

need my AI at all; it works perfectly fine as it is. For example, 

while we could train a neural network to drive a car faster or 

provide a more challenging opponent in a fighting game, this 
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is unnecessary because it’s easier to simply artificially manipu-

late the top speed of computer-controlled cars or hit boxes of 

nonplayer character (NPC) fighters until they get the desired 

performance. Basically, why introduce complex AI when you 

could simply cheat? And, anyway, the game would get boring 

if the enemies were too hard because the fun comes from beat-

ing them. It’s true that we could use online adaptation, maybe 

through reinforcement learning, to create a game character that 

learns from your behavior in a role-playing game and updates its 

own behavior to match what you do; but this runs the very real 

risk of ruining the carefully tuned game balance and making the 

game unplayable. Sure, we could build a level generation algo-

rithm that enables an endless supply of new competitive multi-

player levels for a first-person shooter; but the game already has 

a couple of good levels and most players prefer to play the levels 

they already know.

I found this attitude extremely conservative and annoying, 

but after a while, I had to admit that in many cases, they were 

right. Many games would not actually benefit from advanced AI 

because they were designed to not need any AI.

Let me explain. Most of today’s video game genres have 

their roots in games developed in the 1980s and early 1990s. 

These eras saw the development of platformers, role-playing 

games, puzzle games, turn-based and real-time strategy games, 

team sports games, first-person and third-person shooters, con-

struction and management simulations, racing games, and so 

on. While there has certainly been design innovation since 

2000—for example, the invention of multiplayer online battle 

arenas (MOBAs) such as League of Legends and sandbox games 

such as Minecraft—these new game genres evolved from earlier  

genres.
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Back in the 1980s and early 1990s, artificial intelligence was 

much less advanced than it is today. While the fundamental 

algorithm behind modern deep learning, backpropagation, had 

been invented, it was far less understood than it is today, and 

many of the inventions that make neural networks work so well 

had not been made yet. Monte Carlo tree search did not exist, 

and although evolutionary algorithms were an active field of 

research, major advances have been made since. Most impor-

tant, though, was that computer power was very limited then. 

Depending on what you measure, your current laptop is at least 

tens of thousands of times as fast as the computers that genre-

defining games such as DOOM and Dune 2 were designed to run 

on, and your smartphone is faster than the fastest supercom-

puters of the 1980s. On top of that, the ability to run neural 

networks on graphics cards (GPUs) did not exist back then; its 

invention has added another few orders of magnitude of speed 

for deep learning in particular.

When the games that came to define whole genres were 

developed, incorporating state-of-the-art artificial intelligence 

was not an option. I don’t think that a design goal for early plat-

formers was to have (only) enemies that moved back and forth 

in predictable patterns. It also seems improbable that it was con-

sidered a good thing in early role-playing games that the NPCs 

say the same canned lines all the time and force you to navigate 

cumbersome dialogue trees and, presumably, the level genera-

tion in early roguelikes was not meant to be highly erratic and 

disregard the player’s skill and preferences. Rather, this is how 

it had to be because of technical limitations, and then the rest 

of the game was designed to accommodate these shortcomings.

To take yet another example, in section 4, I explained the 

algorithms behind a typical enemy in a first-person shooter 
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through describing its seven-second “life span.” Why only 

seven seconds? Early first-person shooters were designed with 

essentially no persistent characters in order to mask their sim-

plicity. If you interacted with a character in DOOM for a min-

ute, its simplistic programming would be painfully obvious 

for every player. But if the enemy is on screen for only a few 

seconds, there aren’t enough clues for you as to how intelli-

gent it is (or isn’t). And later first-person shooters were heav-

ily influenced by the trailblazers of the genre, such as DOOM  

(figure 8.1).

In other words, video games of that era were designed around 

the lack of AI. This led to a number of design choices that would 

not have been made had better AI been available. For example, 

boss fights were designed around patterns of recurring actions 

Figure 8.1
DOOM (id Software, 1993) was one of the original first-person shooters 

and a major influence in the development of this game genre.
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that the player needed to decode instead of around the boss 

trying to genuinely outsmart the player and dialogues in role-

playing games were designed around a set of fixed dialogue 

choices rather than around NPCs having a dynamic knowledge 

base about the world that the player character could query in 

arbitrary ways. For the same reasons, difficulty scaling in games 

is typically implemented through giving computer-controlled 

adversaries more or fewer resources, essentially cheating rather 

than modeling the player’s skill and adapting the depth of deci-

sion making of the computer-controlled characters.

These design choices came to define game genres as other 

designers copied them and players started expecting them. It is 

possible to break the genre conventions, but this may involve 

creating new genres. Creating a role-playing game that does not 

have fixed dialogue trees, as the AI researcher Michael Mateas 

and game developer Andrew Stern did in their groundbreaking 

relationship drama game Façade, has come to be seen as creating 

a new type of game rather than trying to repair an aspect of role-

playing game design that has been broken since the beginning. 

Given the (justifiable) cautiousness of most large game develop-

ers and publishers, it is no wonder that the rather remarkable 

recent advances in AI methods are barely reflected at all in game 

development. Existing games do not need advanced AI because 

they are designed not to need it.

AI-Based Game Design Patterns

For someone like me, who cares deeply about both artificial intel-

ligence and games, the natural question is how to change this. 

Advances in AI methods promise to make amazing new games 

possible, but because of conservative design and development 
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practices, this is not yet happening. So how can we design games 

that actually need advanced AI methods?

That was the question a handful of my colleagues and I posed 

one cold January day in the attic of Schloss Dagstuhl, a Ger-

man castle where we were organizing a seminar on the future 

of AI in games. We decided to investigate the different roles AI 

can play in games, trying to find examples from well-known or 

little-known games that use AI in such a way that you need to 

interact with and understand it to play the game well. We tried 

to categorize these into design patterns. The design patterns we 

came up with,1 some of which follow, could serve as inspiration 

for envisioning even more ways of designing around AI.

AI Is Visualized: In this design pattern, the internal workings of 

the AI algorithm are exposed to the player, and the player can 

use that information in game play. In other words, the player can 

see how one or several NPCs think by looking inside its mind. 

An example is the stealth game Third Eye Crime, where you are 

tasked with outsmarting security guards. The guard behavior is 

driven by an AI technique called occupancy maps, which cre-

ate a model of where the guards should explore next as they go 

looking for you. The trick here is that these occupancy maps are 

visible to the player through being laid out on the game map. In 

effect, the player can see the state of the guards’ minds (figure 

8.2). In order to play the game well, the player needs to under-

stand the AI system to predict what the NPCs will do.

AI as Role Model: Many of the algorithms that underlie NPC 

behavior are relatively simple and easy to predict, as we saw 

in chapter 4. Instead of trying to make these algorithms more 

human-like, one intriguing game design idea is to make humans 

behave more like the algorithms. Spy Party is an asymmetric 
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two-player game, where one player has to identify a human 

player in a group of NPCs and the other player tries to blend in 

as much as possible so as not to be identified by the first player 

while carrying out a mission that has been assigned to her. 

Blending in is best accomplished by trying to copy NPCs’ move-

ment patterns and decision making (figure 8.3). In other words, 

one player needs to understand how the algorithms that drive 

the NPCs’ behavior works through observation in order to copy 

the behavior, and the other player needs to understand the same 

behavior in order to discern the interloping human. One way 

of seeing this game mechanic is as a form of reverse Turing test. 

The basic concept behind the Turing test is highly appealing and 

Figure 8.2
In Third Eye Crime (Moonshot Games, 2014), the colors on the ground 

signal to the player both where the guards can currently see and where 

they are thinking of looking next, offering the player a view into the 

mind of the enemy.
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it’s possible that many other interesting game mechanics could 

be built on it.

AI as Trainee: The god game (or management simulator game, 

if you want a more mundane name for this genre) Black and 

White puts the player in the role of a local deity, in various ways 

influencing the life of mostly hapless villagers (figure 8.4). The 

most important way to influence the villager is through a giant 

creature, which acts as your embodied stand-in in the world. 

You cannot control this creature directly; instead you must teach 

it how to interact with the villagers. You do this by rewarding 

and punishing it for its actions and by showing it by example 

what to do. The creature’s behavior is driven by machine learn-

ing algorithms, which learn from your actions in real time as 

you play the game. To play this game well, you need to master 

the art of training the creature, which is a little bit like learning 

to train a dog: you can do it without understanding very much 

of what actually goes on in the dog’s head.

Figure 8.3
A scene from Spy Party (Chris Hecker, 2009) features a number of NPCs in 

a bar, and one player must try to blend in seamlessly with them.
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Another take on this particular pattern is to build games 

where you train agents that are then competing or fighting 

against each other, a little bit like the training mechanic of the 

Pokémon series but with actual machine learning instead of a 

simple role-playing game-style progress mechanic. One exam-

ple of this is NERO (NeuroEvolution of Robotic Operatives), 

a research-based game by Ken Stanley, now at University of 

Central Florida and Uber AI Labs. In that game, you train an 

army of miniature soldiers through designing various tasks for 

them and deciding what kind of behavior to reward them for.2 

Another research game from my team, EvoCommander, is based 

on the same idea of training agents to do the player’s bidding, 

Figure 8.4
The giant creatures in Black and White (Lionhead Studios, 2001) can do 

your bidding, but only if you train them well.
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but instead of training multiple agents, you train a number of 

“brains” (separate neural networks) for a simulated robot (figure 

8.5). When playing against another player, you then control the 

robot indirectly through selecting which brain it should use at 

each point in time.3

AI Is Editable: You can also design a game around directly edit-

ing the instructions for the algorithms that control the behavior 

of an agent. The board game RoboRally is proof of the possibil-

ity of creating a very successful game around such a mechanic. 

In RoboRally, each player in turn chooses the instructions that 

her robot should carry out in that turn. Although the “program-

ming” here is simplistic, predicting the resultant behavior is very 

challenging because all players’ robots carry out their programs 

in parallel.

A more advanced example is the network editor mode 

of Galactic Arms Race, another research-based game by Ken 

Figure 8.5
A family tree of brains in EvoCommander (Daniel Jallov, 2015). Before a 

match, you choose which of your trained brains to bring with you into 

battle.
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Stanley’s team. Galactic Arms Race is a third-person space shooter 

game built around a unique form of search-based procedural 

content generation (figure 8.6). Weapons in this game are con-

trolled by neural networks, which decide how the particles fired 

by the player’s spaceship behave. Players can collect and discard 

weapons throughout the game world, and at any point, they can 

switch between several equipped weapons. Weapons are created 

through a collaborative evolutionary algorithm where all play-

ers of the game act as a fitness function; new weapons are the 

offspring of the weapons that players choose to use the most. 

This is in itself a very interesting use of AI techniques in the 

game, though more in a background role because players do not 

need to understand the weapon-generating evolutionary algo-

rithm to play the game. The AI-is-editable design pattern was 

introduced in an extension to the game, which makes it possible 

to manually edit the neural networks defining the weapons. The 

structure of neural networks is generally hard to understand for 

humans, meaning that this editing mode is not for everyone, 

but for some players, editing the neural network to try to get a 

desired weapon behavior is an engaging puzzle game in itself.4

AI Is Guided: Yet another idea for how to design a game around 

AI so that the player needs to interact with and understand it is 

to have game characters controlled by AI algorithms, but imper-

fectly so either because you limit what the algorithms can do 

or because the tasks the game characters are asked to perform 

are too complex. The player will then need to act as a guide 

or manager for the agents, giving them high-level commands 

or guiding them through operations they cannot perform by 

themselves. An excellent example of this design pattern is the 

enormously successful The Sims series of games. These games can 

best be described as life simulators or virtual dollhouses, where 
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you control a family of characters as they go about their life. You 

need to make all the large life decisions for them, such as where 

to build a house, but in many cases you also need to help out 

with small tasks, such as making sure there are pots and pans 

available for cooking. But the characters also have a say. The 

Sims games feature complex AI systems that control the agent, 

so that they not only perform autonomous actions such as going 

to the bathroom and cooking dinner but also strike up friend-

ships and fall in love (figure 8.7). Playing the game is a constant 

balancing act between the player and the AI system. Crucially 

the game frequently communicates the state of its AI systems via 

little thought bubbles above the characters’ heads, allowing the 

player to understand what goes on.

Figure 8.6
Evolved weapons in Galactic Arms Race (Evolutionary Games, 2009).
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Of course, this is just a small subset of the many, many pos-

sible ways in which AI can be used in visible roles within video 

games. And I have mentioned only one pattern involving pro-

cedural generation and none building on player modeling. It is 

pretty clear that there is a vast and underexplored design space 

out there, with plenty of novel game design ideas available for 

those who look beyond established genres and preconceptions 

on what parts AI can and cannot play.

Figure 8.7
A romantic encounter in The Sims 4 (Maxis, 2013).
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Let us return to the question of what intelligence actually is, the 

one I discussed in chapter 3 without coming to any satisfying 

conclusion. Since you are reading this, you clearly haven’t given 

up on reading this book, but you may be a bit disappointed with 

me because I apparently can’t give you a straight answer. Well, 

I was just being honest. It is still very much up for debate to 

what extent there exists such a thing as general intelligence. I 

won’t try to force a particular view on you because I think there’s 

plenty of work, both philosophical and empirical, left to do to 

understand this question better. What it seems we can all agree 

on, however, is that some artificial intelligence systems have 

broader applicability than others in the sense that they can per-

form a wider range of tasks and that it is a desirable quality of 

an AI system to be generic rather than specific. There is noth-

ing wrong with AI systems that can do only one thing if we  

are simply trying to engineer a solution to a specific problem. 

If we are trying to make scientific progress on creating artificial 

intelligence, however, then it is important that we build systems 

that can do a range of different things—for example, play differ-

ent games.
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Around the time that I was finishing my PhD, I thought 

that the little car racing game I had constructed for my experi-

ments with evolving neural networks was pretty nifty and that 

other people might want to use it for their own experiments, 

so I decided to make the code available. As I was doing that, I 

decided to start a competition. Researchers, students, and any-

one else could submit their best agents, and they would com-

pete against each other. Just like in real-world car racing, the 

car that finished the course fastest would win. Also just like in 

real-world car racing, the collisions were the most fun part to 

watch. I quickly got a few dozen competitors from all over the 

world, submitting controllers based on some pretty different AI 

techniques. The winner used a technique called fuzzy logic to rea-

son about how to drive best, but there were several good agents 

based on reinforcement learning and evolutionary algorithms. 

Seeing how well the competition went, I decided to run it again, 

but this time I teamed up with some Italian researchers, Pier 

Luca Lanzi and Daniele Loiacono at the Politecnico di Milano, 

to move it over to a more capable 3D racing game called TORCS. 

The competition ran for seven years, with continued participa-

tion from universities, and in some cases hobbyists and private 

companies, around the world (figure 9.1).1

A few years later I started another AI competition based on 

Infinite Mario, the open-source clone of Super Mario Bros. I men-

tioned earlier. My student Sergey Karakovskiy and I rebuilt Infi-

nite Mario into an AI benchmark and had people submit their 

best Mario-playing AI agents. With a few weeks to go before the 

end of the competition, a young PhD student by the name of 

Robin Baumgarten submitted an agent based on the A* algo-

rithm discussed in chapter 4. The agent was stupendously 

effective. It completed all the levels our level generators could 
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generate seemingly faultlessly and went on to win the competi-

tion. This was a bit of a letdown for us, as we had imagined that 

we had constructed a hard AI problem, only for an agent based 

on such a simple and well-known algorithm to walk all over it. 

In an attempt to salvage the competition for the next round, 

we went to work on making the level generator meaner. Next 

time we ran the competition, the level generator created levels 

with frequent dead ends, which Mario would need to backtrack 

to get out of. This was a challenge that Baumgarten’s A* agent 

could not overcome; instead, the next competition was won by 

a complex agent called REALM, which combined evolutionary 

algorithms with a rule-based system and, as one subservient part 

of the mix, an A* algorithm similar to Baumgarten’s.2

Of course, I was not the first to run game-based AI competi-

tions. Competitions for AI players of Chess, Checkers, and Go 

have been running for decades. Within the video game space, 

Figure 9.1
TORCS, 2014. (Image courtesy of the Libre Game Wiki.)
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there have been long-running AI competitions based on clas-

sic arcade games such Ms. Pac-Man, first-person shooters such 

as DOOM, and physics puzzle games such as Angry Birds. One of 

the most active competitions right now is the StarCraft competi-

tion, which revolves around a game in which the best submitted 

agents still stand no chance against a good human player.

In most of these competitions, as least those that continue 

for a few years, there is clear progress. Racing agents submitted 

to the 2012 Simulated Car Racing Competition literally run laps 

around those submitted to the 2008 competition, and agents 

submitted to the 2011 Mario AI Competition finish levels that 

agents submitted to the 2009 competition would not. This is all 

good and would seem to suggest that these competitions spur 

advancements in game-playing AI. Looking at the submissions 

from each year, however, you can see a worrying trend: there are, 

in general, fewer and fewer general AI algorithms in the later sub-

missions. The submissions to the first edition of Simulated Car 

Racing Competition consisted of agents using relatively general-

purpose algorithms that could have been used to play other 

games with minor changes. In later years of the competition, 

agents were being tailored more and more to the task of playing 

this particular racing game, including painstakingly handcrafted 

mechanisms for changing gears, learning the shape of the track, 

blocking overtaking cars, and so on. In fact, machine learning 

algorithms in general were used in fewer and lesser roles in later 

years’ submissions compared to those at the beginning of the 

competitions. Advanced AI algorithms were demoted to support-

ing roles. The improvement in the agents’ performance is not 

really due to any improvements in the underlying algorithms 

but to better game-specific engineering. A similar development 

could be observed in the Mario AI competition. As for the Star-

Craft competitions, the agents that win tend to be intricately 
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handcrafted strategies with little in the way of what we would 

normally call AI, such as search or machine learning algorithms.

Above all, these agents are very specific. The agents submit-

ted to the Mario AI Competition cannot control the cars in the 

Simulated Car Racing Competition or build bases and command 

armies in StarCraft. The StarCraft agents cannot drive cars or play 

Super Mario Bros., and so on. It’s not just that the agent would 

play these games badly; it’s that it cannot play them at all: the 

game state is represented very differently for each of the game. 

The StarCraft game state makes no sense to the Mario-playing 

agent, and the outputs of that agent (such as running and jump-

ing) make no sense to the StarCraft game.

This is not a problem unique to these competitions. I men-

tioned back in chapter 5 that DeepMind trained neural networks 

to play a few dozen classic Atari games. This might seem like an 

example of more general game-playing AI, were it not for the 

fact that each neural network is trained to play one game only. 

The neural network trained to play Space Invaders cannot play 

Pac-Man, Montezuma’s Revenge, or any of the other Atari games—

at least not play them any better than the proverbial monkey in 

front of a typewriter, but with a joystick instead of a typewriter. 

There have been several attempts to train neural networks to be 

able to play more than one game, so far with limited success.3 

The same thing is true for the other famous game-playing agent 

from DeepMind, AlphaGo. It is very good at playing Go, but it 

can only play Go. It can’t play anything else, not even Chess.4

General Video Game Playing

Let’s return to the question of developing general artificial 

intelligence, or at least somewhat general artificial intelligence. 

It seems all this work on developing AI agents that can play 
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individual games may not be moving us that much closer to this 

goal after all. In the worst case, it may even be a case of two steps 

forward and one step backward: we keep spending resources on 

understanding and exploiting the dynamics of individual games 

rather than trying to create agents that can demonstrate more 

general intelligence. The best way to demonstrate more gen-

eral intelligence would be for the same agent, with no or little 

retraining, to solve multiple different tasks, such as playing mul-

tiple different games.

How would you ensure that researchers work on creating 

agents that have some more general game-playing capacity? You 

create a competition! That’s what a group of us were thinking 

back in 2013 as we started working on the General Video Game 

AI (GVG-AI) Competition (figure 9.2) The idea was to have a 

competition where you cannot tailor your agent to a particular 

game, so you have to make it at least somewhat general. We 

figured that we needed to design the competition so you did 

not know what games your agent was going to play. Every time 

we ran the competition, we needed new games that no one had 

seen before (even though they could be similar to or versions of 

well-known games). For this, we needed a way to easily create 

these games, so we started by designing a new language specifi-

cally for creating games in the style of classic arcade games. Tom 

Schaul took the lead in creating this language, which we call the 

Video Game Description Language (VGDL). Diego Perez-Liebana 

then took the lead in creating the competition software.

So far, we’ve run the GVG-AI competition a few times per 

year since 2014. Every competition event tests all the submitted 

agents on a set of ten new games, which must be handmade for 

each competition. To date, more than a hundred games have 

been created, many of them versions of or inspired by arcade 
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games from the 1980s. Competitors don’t know which games 

their agents will be tested on until after they have submitted their 

agents, making sure that they spend their energy on improving 

the agents’ general game-playing capacities rather than their fit 

with a particular game. Currently, the best agents can reliably 

win at fewer than half of the existing games, showing that there 

is ample room for improvement.5

If someone constructed an agent that could win at all of the 

existing games in the GVG-AI competition, would we call that 

agent “generally intelligent”? Well, not quite yet. The GVG-AI 

software gives the AI agents access to a forward model, or a simu-

lator of the games, which makes it easy to plan your actions 

by simulating what would happen if you executed your plan. 

Figure 9.2
Four different games in the GVG-AI framework: Zelda, Butterflies, Boulder 

Dash, and Solar Fox. The common interface means that the same agent 

can play all games in the framework, but with varying skill.
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For example, the version of the A* agent that won the Mario 

AI competition crucially depends on having a forward model. 

You would generally not have access to that as a human playing 

classic arcade games, and the “real world” notoriously lacks a 

forward model. We are working on a new version of the com-

petition, which does not provide agents with this possibility 

but instead gives them a short amount of time to adapt to each 

game. Also, the games that can be expressed in the current ver-

sion of VGDL are limited to the kinds of games you would find 

in an early 1980s home computer or arcade hall, and even then 

some types of games are missing (e.g., there are no text-based 

games). In some unspecified future, we hope that VGDL or some 

successor language will be able to express a much wider range of 

games. We also hope that at some point in the future, it will be 

possible to generate these games automatically, making it much 

easier to create new games to test AI agents on.

While the GVG-AI project is only a small step toward solving, 

or even properly formulating, the problem of general game play-

ing, I do believe that it is extremely relevant for understanding 

intelligence in general. As we have seen in the book, games are 

incredibly diverse, and they challenge our cognitive capacities 

in ways we are barely beginning to understand. If at some point 

in the future we create an agent that can learn quickly to play 

all video games or even just the most well-designed ones (let’s 

say the top 100 popular games on each of the major distribu-

tion platforms, such as Steam or the iOS App Store) with a skill 

similar to that of a game-playing human, then I think we will 

have achieved artificial general intelligence. At the very least, 

we will have enormously advanced our understanding of what 

intelligence is and is not.
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I regret to inform you that the book is almost over now. I know 

this is a little bit sad—for you, not for me. It took a lot of effort 

to write this book, and I’m happy that I’m basically done. It 

all started with my cats being rehomed, and ten chapters later, 

we have explored game design, definitions of intelligence, nar-

row and general artificial intelligence, automatic creativity, and 

games that learn who you are and what you want, among other 

things. In order to structure the closing comments, we will here 

revisit the three broad claims that I made at the beginning of 

the book and outline how the discussion in the book supports 

these claims.

Games are the future of AI. Games provide the best benchmarks for 

AI because of the way they are designed to challenge many different 

human cognitive abilities, as well as for their technical convenience 

and the availability of human data. We have only began to scratch 

the surface of game-based AI benchmarks.

Games, especially well-designed games, are fantastic AI bench-

marks because they are designed to test our cognitive capaci-

ties; they are engaging to play partly because they are unusually 

pedagogical intelligence tests. We have seen how board games 
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have been used as AI benchmarks since the very beginning of 

AI research, but also how landmark achievements such as Deep 

Blue and AlphaGo have made board games less relevant for 

future AI testing. To some extent, the classic board games are 

simply done. Attention is shifting to video games, which pro-

vide a different and in many ways much richer set of challenges; 

the diversity of video games means that all the broad cognitive 

abilities from Cattell-Horn-Carroll theory are challenged by 

some video games. Many video games, including real-time strat-

egy games such as StarCraft, are also much harder than any of 

the classic board games for various reasons, such as large branch-

ing factors and hidden information. But it’s not enough to  

create agents that play individual video games well. If we want 

to create more general artificial intelligence—which most agree 

is a central goal of AI, despite the disagreement over what intel-

ligence is—we need to create agents that can play any games we 

present them with. For this, we need benchmarks and competi-

tions that reflect the real diversity of video games. To make this 

feasible, we will probably need to generate these games at least 

partly automatically.

AI is the future of games. We now have much more capable AI meth-

ods than just a few years ago, and we are rapidly learning how to best 

apply them to games. The potential roles of AI in games go far beyond 

providing skillful opponents. We need to adapt our ways of thinking 

about game design to fully harness the power of advanced AI algo-

rithms and enable a new generation of AI-augmented games.

There is a sizeable gulf between the AI methods that are being 

researched in academia and the AI methods employed in most 

games. While there exist some sophisticated techniques for con-

trolling NPCs in games, more general-purpose AI methods are 
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largely absent from commercial game development. Compared 

to other industries, game development is curiously unaffected 

by the current surge of interest in artificial intelligence. This 

is to a large extent because most game genres build on design 

blueprints that were laid down decades ago, when effective AI 

on consumer hardware was more or less impossible. Games are 

therefore designed to not need AI. To change this and harness 

some of the possibilities modern AI brings, we need to rethink 

game design, starting with the roles that AI can play. There are 

many unexplored roles for AI beyond standard NPC control. 

One particularly prominent role for AI algorithms is that of gen-

erating game content. Procedural content generation has been 

a feature of some games for decades, but new methods based 

on, for example, evolutionary algorithms make much more 

wide-ranging and controllable content generation possible. 

Player modeling is another key use case for AI in games, and 

modeling players’ preferences and behavior makes it possible 

to adapt games to particular players, suggesting a future where 

games could continuously reinvent themselves in response to 

what players do. They may even invent content players do not 

realize they want yet. Tools such as player modeling and con-

tent generation can also be useful for designers and make game 

development easier and more accessible. All these methods 

are, however, dependent on progress in AI agents that can play 

games in general.

Games and AI for games help us understand intelligence. By study-

ing how humans play and design games, we can understand how 

they think, and we can attempt to replicate this thinking by creat-

ing game-playing and game-designing AI agents. Game design is a 

cognitive science; it studies thinking—human thinking and machine  

thinking.
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The fact that some games are easy for humans to play but hard 

for current algorithms, and vice versa, is an important source of 

information on our thinking. It tells us how our thinking differs 

from that of the algorithms we currently have and can inspire 

us to create new AI methods. But it’s not only in the context 

of game playing that game AI can inform us about thinking. 

Algorithms for designing games, or parts of games, can be seen 

as models of human creativity. Trying to create software that 

can design games will give us some idea of how human creative 

processes, currently badly understood, work. And the differences 

between human and machine design will tell us more about this 

process and give us ideas for further creative algorithms.

Finally, I’ll reiterate that all of the research topics discussed in 

this book feed into each other. AI for games and games for AI are 

not the same thing, but advances in one of these endeavors will 

enable advances in the other. And there is much left to do in this 

young research field with so many open research questions in 

every direction. It is also an inherently interdisciplinary research 

field, where computer scientists, cognitive scientists, designers, 

and humanities scholars who care about games can contribute.

Perhaps you would like to join us?
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I hope that this book has inspired you to read more about its 

topics and maybe even dive into this research field yourself. 

Throughout the book, I have included a number of notes with 

references to papers that expand on each topic in greater detail. 

The papers may be more or less accessible given your techni-

cal background, so you might want a more coherent intro-

duction to some topics. To that end, here I offer some book 

recommendations.

Georgios Yannakakis and I recently published Artificial Intel-

ligence and Games (2018), a textbook that covers approximately 

the same topics as this book but from a much more technical 

angle. Read it to learn the algorithms behind the discussions 

in this book. The book presupposes a computer science back-

ground, including an understanding of the fundamentals of arti-

ficial intelligence.

If you are specifically interested in the topics of chapter 7, 

I recommend the book Procedural Content Generation in Games 

(2016), edited and cowritten by Noor Shaker, Mark Nelson, and 

me, with contributions from a dozen or so leading researchers in 

the field. This is also a technical book.
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If you want to learn the basics of artificial intelligence, the 

standard work is Artificial Intelligence: A Modern Approach (2009) 

by Stuart Russell and Peter Norvig. It’s a great reference because 

of its completeness, but that’s not saying it’s the most accessible 

book there is. Many online courses on the basics of AI may be 

more accessible introductions. There are some good introduc-

tory books for certain subfields of AI. Deep Learning with Python 

(2017) by François Chollet is a highly accessible and useful intro-

duction to modern neural network techniques. Introduction to 

Evolutionary Computing (2003) by A. E. Eiben and J. E. Smith is 

a good introduction to and overview of evolutionary computa-

tion, which has been used in much of the work described in 

this book. There are also many good books on game design and 

game studies, some of them practical books about the game 

design process and others geared more toward describing the 

space of game designs in a more formal and abstract way. In the 

latter category, two books that I have found useful when think-

ing about (artificial) intelligence and games are Rules of Play: 

Game Design Fundamentals (2004) by Katie Salen Tekinbaş and 

Eric Zimmerman and Characteristics of Games (2012) by George 

Skaff Elias, Richard Garfield, and K. Robert Gutschera. Beyond 

books, Tommy Thompson has produced a great series of acces-

sible videos on AI and games that are available on YouTube and 

on http://aiandgames.com.

Like all of artificial intelligence, the AI and games field moves 

fast. If you want to keep up to date, you can peruse the pro-

ceedings (freely available online) of the main conferences: IEEE 

Conference on Computational Intelligence and Games (CIG) 

and AAAI Conference on Artificial Intelligence and Interactive 

Digital Entertainment (AIIDE). Additionally, many relevant 

papers are published in the proceedings of the Foundations of 

http://aiandgames.com
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Digital Games (FDG) conference and its associated workshops, 

such as the Procedural Content Generation Workshop. Another 

important publication is IEEE Transactions on Games, a journal 

that publishes technical and scientific research on games includ-

ing AI. Nowadays, papers are typically uploaded to repositories 

such as ArXiv before they are published, often even before they 

are submitted for publication. Given the enormous volume of 

papers that are submitted to ArXiv, the best way of finding out 

about interesting papers posted online is probably to follow 

researchers on Twitter. You can start with @togelius.
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Prologue: AI&I

1. Math and I are still not the best of friends. Contrary to popular mis-

conceptions, you do not need to be mathematically inclined to have a 

successful career in computer science.

What Is This Book?

1. But I’ve tried to keep the footnotes short.

Chapter 1: In the Beginning of AI, There Were Games

1. Turing wrote an account of this event in Turing et al. (1953).

2. Samuel (1959).

3. For more about this match and the system that won it, see Campbell, 

Hoane, and Hsu (2002). It is worth noting that the development of 

better computer Chess software has by no means ceased, and that com-

puters have also kept getting faster; you can now download software for 

your laptop that will play Chess better than any human player out 

there.

4. Of course, both East Asia and Europe comprise many cultures, but 

both of these games have historically been popular in many countries 

across these regions.
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5. For a thorough introduction to MCTS, see the popular survey paper 

by Browne and Maire (2010).

6. Silver et al. (2016).

7. Computers achieved superhuman performance on several other 

games much earlier, and some games, such as Checkers have even been 

“solved,” meaning that the computer can play a provably perfect game 

against any opponent (Schaeffer et al., 2007).

Chapter 2: Do You Need to Be Intelligent to Play Games?

1. The theory is described in Carroll (2003).

2. Koster’s book, A Theory of Fun for Game Design (2005), is surprisingly 

fun to read.

3. In their excellent book Characteristics of Games, Elias, Garfield, and 

Gutschera (2012) describe heuristic accumulation at some length. I have 

tried to lay out how the chain of heuristics relates to the depth of a 

game (Lantz et al., 2017).

4. Vygotsky (1978).

5. Csikszentmihalyi (1990). There have also been attempts to develop 

offshoots of the flow theory specifically tailored to games (Sweetser and 

Wyeth, 2005).

6. This theory has been developed in a number of publications and 

applied to various machine learning tasks, but for a readable overview, 

see Schmidhuber (2006).

Chapter 3: What Is (Artificial) Intelligence?

1. For a more thorough overview of various definitions of intelligence 

from the perspective of artificial intelligence, see Legg and Hutter 

(2007).
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2. Turing was a coinventor of the computer, genius mathematician, war 

hero, LGBT martyr, and many other things. See Hodges (2012) for an 

excellent biography.

3. The paper where the test was proposed is Turing (1950). It’s a fasci-

nating paper full of intriguing arguments, and very readable; most of it 

does not require any particular technical background. Bring it to the 

beach next time you go, and enjoy it with a cold beer.

4. Interestingly, it seems that the Turing test is getting harder to pass as 

time passes. The computer program Eliza was invented in the 1960s as a 

parody of Rogerian nondirectional psychotherapy, as well as a contribu-

tion to natural language processing. You can interact with Eliza by 

“chatting” with it, but most of the program’s answers will be either 

reformulations of what you said or very general questions such as, “Tell 

me about your mother.” When the program was announced to the 

public, many of those who tried it would not believe it was a computer 

program because they could not believe that a computer could say these 

things. They were sure there must be a human “at the other end.” These 

days, very few people would be fooled by Eliza. People are used to the 

existence of chatbots, and many have interacted with them over Twitter 

or Slack or as part of a game. Young people in particular would quickly 

see through Eliza’s antics.

5. As of the time of writing, I am thirty-eight years old and still have 

not gotten myself a driver’s license.

6. Imagine a game that had a million different moves available each 

turn, all with different outcomes but with no obvious visualization to 

let you choose among them. The ordering and names of the moves 

changed every turn. You would not be able to play this any better than 

if you played randomly, whereas a computer could easily simulate the 

outcome of each move and play the game well.

7. This is the title of one of his papers, and a pretty readable one too 

(Brooks, 1990).

8. The paper is Legg and Hutter (2007). Legg went on to cofound Deep-

Mind, which Google later bought for a very respectable sum and is cur-

rently the world’s preeminent AI research lab.
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9. Though it took just over fifty years from the Wright flyer to the 

Apollo rocket.

10. Turing (1950).

Chapter 4: Do Video Games Have Artificial Intelligence?

1. The word state is here used similarly to how we use it for humans or 

dogs: Fido could be bored, hungry, happy, or sleeping. Technically, the 

state of a game character is a particular configuration of the variables 

that define the character. It is related to but different from the use in 

chapter 2, where we talked about the “game state,” which is all the vari-

ables that define the game.

2. Actually, the one where the sum of the distance already traveled and 

the estimated distance to the goal is lowest.

3. For more about A* algorithms and some of the myriad variations, see 

any standard AI textbook, such as Russell and Norvig (2009). For more 

on finite state machines and behavior trees, see a dedicated game AI 

textbook, such as Millington and Funge (2009).

4. Jeff Orkin, the AI lead developer of F.E.A.R., wrote about the plan-

ning system in an influential paper (Orkin, 2006). Damian Isla (2005) 

similarly wrote about some important aspects of the AI of Halo 2. The 

Shadow of Mordor system has been discussed in talks at the Game Devel-

opers Conference, but nothing has been published about it in the aca-

demic literature as far as I know.

5. The subjective experience of artificial agents is a can of worms that 

we are not quite ready to open. Those worms are doing just fine inside 

the can for now.

6. According the classification in Elias et al. (2012), it (and many other 

games we usually refer to as single player) is really a one-and-a-half-

player game, as it lets a human play against AI opponents. For simplic-

ity, I will continue calling such games single-player games in this book.

7. Ontanón et al. (2013) is a good overview of the state of the art of AI 

versus AI StarCraft competitions.
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Chapter 5: Growing a Mind and Learning to Play

1. Like many others, I came to the field of AI as a romantic and was 

molded into a utilitarian. The romantic streak is still there, though, and 

breaks out at uneven intervals.

2. Darwin (1859).

3. Indeed, not entirely unlike the so-bad-it’s-good “series of tubes” 

metaphor for the Internet alluded to by Senator Ted Stevens.

4. Back when I started this line of research, I did not have a driving 

license and I lived outside the sleepy town of Colchester, England. I still 

don’t have a driving license, but I have since moved to New York City. I 

keep thinking I should get myself a driving license before all cars drive 

themselves, so I’ll have to learn to drive in Manhattan. It appears I like 

playing this game at a high difficulty level.

5. Mnih et al. (2015).

Chapter 6: Do Games Learn from You When You Play Them?

1. It is sometimes said that while astronomy and other branches of 

physics deal with large numbers, computer science deals with really 

large numbers. This is just how combinatorics works. Remember that six 

digits between 0 and 9 can be combined in a million ways (all the num-

bers you can write between 000000 and 999999). Similarly, if your game 

state is represented by 1,000 bytes (a kilobyte) of memory, then you 

have about 102456 possible game states. Yes, that’s one followed by 2,456 

zeroes.

2. Bartle’s original paper (1996) is refers to multiuser dungeons (MUDs) 

but has since been used to talk about and classify players across essen-

tially all game genres (Bartle, 1996).

3. Drachen, Canossa, and Yannakakis (2009).

4. Mahlmann et al. (2010).

5. Canossa, Martinez, and Togelius (2013).
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6. Yee, Ducheneaut, Nelson, and Likarish (2011).

7. This research is reported in a number of papers, including Tekofsky, 

Van Den Herik, Spronck, and Plaat (2013), and Tekofsky, Spronck, 

Goudbeek, Plaat, and van den Herik (2015).

Chapter 7: Automating Creativity

1. The main paper to come out of this project was Togelius, De Nardi, 

and Lucas (2007).

2. In this case, we were inspired by the work of Thomas Malone (1981) 

and Raph Koster (2005).

3. The idea of search-based procedural content generation is laid out in 

more detail in Togelius, Yannakakis, Stanley, and Brown (2011). For the 

work on StarCraft maps and Super Mario Bros, see Togelius et al. (2013) 

and Dahlskog and Togelius (2014), respectively. An interestingly differ-

ent take on seeing content generation as search is to use a constraint 

solver, as demonstrated in Smith and Mateas (2010) and Smith, White-

head, and Mateas. (2011).

4. Boden (1991).

5. The research described in this section was reported in several papers, 

of which Pedersen, Togelius, and Yannakakis (2010) and Shaker, Yan-

nakakis, and Togelius (2010) are the most important; there’s also an 

overview paper about the experience-driven approach (Yannakakis and 

Togelius, 2011).

6. Browne and Maire (2010).

7. Togelius and Schmidhuber (2008).

8. Nielsen, Barros, Togelius, and Nelson (2015).

9. Smith and Mateas (2010).

10. See, for example, Cook and Colton (2011, 2014).

11. Smith et al. (2011).
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12. Liapis, Yannakakis, and Togelius (2013).

13. With various collaborators, I have, for example, worked on the 

Ropossum tool for AI-assisted level generation in the popular physics-

based puzzle game Cut the Rope (Shaker, Shaker, and Togelius, 2013) and 

an AI-assisted tool for creating game rules in the video game description 

language (Machado, Nealen, and Togelius, 2017). Another interesting 

example is the AI-assisted level editor for the puzzle game Refraction 

(Butler, Smith, Liu, and Popvic, 2013).

Chapter 8: Designing for AI

1. The rest of this chapter largely builds on the paper that came out of 

that long discussion in the German castle attic (Treanor et al., 2015). 

That paper lists more patterns than this chapter and also contains two 

game prototypes mean to illustrate and explore further such patterns.

2. Stanley, Bryant, and Miikkulainen (2005).

3. Jallov, Risi, and Togelius (2017).

4. The Galactic Arms Race game is described in Hastings, Guha, and 

Stanley (2009), and the neural network editing extension is described in 

Hastings and Stanley (2010).

Chapter 9: General Intelligence and Games in General

1. We wrote a paper summarizing the competitors and results of the 

first competition (Togelius et al., 2008) and, later, a similar paper about 

the new car racing competition (Loiacono et al., 2010).

2. The paper describing the game-playing track of the Mario AI Compe-

tition, as we called it, is Karakovskiy and Togelius (2012). The REALM 

agent is described in Bojarski and Congdon (2010).

3. The original paper is Mnih et al. (2015); one of the several attempts 

at creating more generally capable agents is Rusu et al. (2016).
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4. A recent development of AlphaGo called AlphaZero uses a similar 

combination of reinforcement learning and tree search to learn to play 

not just Go but also Chess and the Go-related game Shogi. However, it 

trains separate networks for each game and even uses different represen-

tation of the board state for the different games, so the Go-playing net-

work cannot play Chess or Shogi (Silver et al., 2017).

5. The GVG-AI competition and some of its results are described in 

Perez-Liebana, Samothrakis, Togelius, Lucas, et al. (2016), and Perez-

Liebana, Samothrakis, Togelius, Schaul, et al. (2016). The GVG-AI proj-

ect was also inspired by the earlier General Game Playing competition, 

which focuses on board games (Genesereth, Love, and Pell, 2005).
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