

Playing Smart

Playful Thinking
Jesper Juul, Geoffrey Long, and William Uricchio, editors

The Art of Failure: An Essay on the Pain of Playing Video Games, Jesper Juul,
2013

Uncertainty in Games, Greg Costikyan, 2013

Play Matters, Miguel Sicart, 2014

Works of Game: On the Aesthetics of Games and Art, John Sharp, 2015

How Games Move Us: Emotion by Design, Katherine Isbister, 2016

Playing Smart: On Games, Intelligence, and Artificial Intelligence, Julian
Togelius, 2018

Playing Smart

On Games, Intelligence, and Artificial Intelligence

Julian Togelius

The MIT Press
Cambridge, Massachusetts
London, England

© 2018 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any

form by any electronic or mechanical means (including photocopying,

recording, or information storage and retrieval) without permission in

writing from the publisher.

This book was set in ITC Stone Serif Std by Toppan Best-set Premedia

Limited. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Togelius, Julian, author.

Title: Playing smart : on games, intelligence and Artificial Intelligence /

Julian Togelius.

Description: Cambridge, MA : MIT Press, [2018] | Series: Playful thinking |

Includes bibliographical references and index.

Identifiers: LCCN 2018010191 | ISBN 9780262039031 (hardcover : alk.

paper)

Subjects: LCSH: Video games--Psychological aspects. | Video games--

Design. | Intellect. | Thought and thinking. | Artificial intelligence.

Classification: LCC GV1469.34.P79 T64 2018 | DDC 794.8--dc23 LC

record available at https://lccn.loc.gov/2018010191

10 9 8 7 6 5 4 3 2 1

https://lccn.loc.gov/2018010191

Contents

On Thinking Playfully vii

Jesper Juul, Geoffrey Long, and William Uricchio

Prologue: AI&I ix

What Is This Book? xiii

1 In the Beginning of AI, There Were Games 1

2 Do You Need to Be Intelligent to Play Games? 11

3 What Is (Artificial) Intelligence? 25

4 Do Video Games Have Artificial Intelligence? 41

5 Growing a Mind and Learning to Play 57

6 Do Games Learn from You When You Play Them? 75

7 Automating Creativity 91

8 Designing for AI 115

9 General Intelligence and Games in General 129

10 Synthesis 137

Further Reading 141

Notes 145

Bibliography 153

Index 161

On Thinking Playfully
On Thinking Playfully
On Thinking Playfully

© Massachusetts Institute of TechnologyAll Rights Reserved

Many people (we series editors included) find video games exhil-

arating, but it can be just as interesting to ponder why that is so.

What do video games do? What can they be used for? How do

they work? How do they relate to the rest of the world? Why is

play both so important and so powerful?

Playful Thinking is a series of short, readable, and argu-

mentative books that share some playfulness and excitement

with the games that they are about. Each book in the series is

small enough to fit in a backpack or coat pocket, and combines

depth with readability for any reader interested in playing more

thoughtfully or thinking more playfully. This includes, but is

by no means limited to, academics, game makers, and curious

players.

So we are casting our net wide. Each book in our series pro-

vides a blend of new insights and interesting arguments with

overviews of knowledge from game studies and other areas. You

will see this reflected not just in the range of titles in our series,

but in the range of authors creating them. Our basic assumption

is simple: video games are such a flourishing medium that any

new perspective on them is likely to show us something unseen

or forgotten, including those from such unconventional voices

viii On Thinking Playfully

as artists, philosophers, or specialists in other industries or fields

of study. These books are bridge builders, cross-pollinating both

areas with new knowledge and new ways of thinking.

At its heart, this is what Playful Thinking is all about: new

ways of thinking about games and new ways of using games to

think about the rest of the world.

Jesper Juul

Geoffrey Long

William Uricchio

Prologue: AI&I
P r o l o g u e
A I & I

© Massachusetts Institute of TechnologyAll Rights Reserved

I was eleven when my cats had to be given away because my

mother had discovered she was allergic to them. Of course, I was

very sad about the departure of my cats, but not so much that I

wouldn’t accept a Commodore 64 as a bribe to not protest too

loudly. The Commodore 64 was already an obsolete computer

in 1990; now, operational Commodore 64s are mostly owned by

museums and hipsters.

I quickly became very engrossed in my Commodore 64,

more than I had been in my cats, because the computer was

more interactive and understandable. Or rather, there was the

hint of a possibility to understand it. I played the various games

that I had received with the computer on about a dozen cas-

sette tapes—loading a game could take several minutes and

frequently failed, testing the very limited patience of an eleven-

year-old—and marveled at the depth of possibilities contained

within those games. Although I had not yet learned how to pro-

gram, I knew that the computer obeyed strict rules all the way

and that there was really no magic to it, and I loved that. This

also helped me see the limitations of these games. It was very

easy to win some games by noticing that certain actions always

evoked certain responses and certain things always happened in

x Prologue

the same order. The fierce and enormous ant I battled at the end

of the first level in Giana Sisters really had an extremely simple

pattern of actions, limited by the hardware of the time. But that

did not lessen my determination to get past it.

You could argue that the rich and complex world of these

games existed as much in my imagination as in actual computer

memory. I knew that the ant boss in Giana Sisters moved just

two steps forward and one step backward regardless of what I

did, or that the enemy spaceships in Defender simply moved in

a straight line toward my position wherever I was on the screen.

But I wanted there to be so much more. I wanted there to be

secret, endless worlds to explore within these games, charac-

ters with lives of their own, a never-emptying treasure trove of

secrets to discover. Above all, I wanted there to be things hap-

pening that I could not predict, but which still made sense for

whoever inside the game made them happen.

In comparison, my cats were mostly unpredictable and gave

every sign of living a life of their own that I knew very little

about. But sometimes they were very predictable. Pull a string,

and the cat would jump at it; open a can of cat food, and the cat

would come running. After spending time among the rule-based

inhabitants of computer games, I started wondering whether

the cats’ behaviors could be explained the same way. Were their

minds just sets of rules specifying computations? And if so, was

the same thing true for humans?

Because I wanted to create games, I taught myself program-

ming. I had bought a more capable computer with the proceeds

from a summer job when I was thirteen and found a compiler

for the now-antiquated programming language Turbo Pascal on

that computer’s hard drive. I started by simply modifying other

people’s code to see what happened until I knew enough to write

AI&I xi

my own games. I rapidly discovered that making good games

was hard. Designing games was hard, and creating in-game

agents that behaved in an even remotely intelligent manner was

very hard.

After finishing high school I did not want to do anything

mathematical (I was terrible at math and hated it).1 I wanted

to understand the mind, so I started studying philosophy and

psychology at Lund University. I gradually realized, however,

that to really understand the mind, I needed to build one, so I

drifted into computer science and studied artificial intelligence.

For my PhD, I was, in a way, back to animals. I was interested

in applying the kind of mechanisms we see in “simple” ani-

mals (the ones that literally don’t have that many brain cells)

to controlling robots and also in using simulations of natural

evolution to learn these mechanisms. The problem was that the

experiments I wanted to do would require thousands or even

tens of thousands of repetitions, which would take a lot of time.

Also, real robots frequently break down and require service, so

these experiments would need me to be on standby as a robot

mechanic, something I was not interested in. Physical machines

are boring and annoying; it’s the ideas behind them that

are exciting.

Then it struck me: Why don’t I simply use games instead of

robots? Games are cheaper and simpler to experiment with than

robots, and the experiments can be run much faster. And there

are so many challenges in playing games—challenges that must

be worth caring about because humans care a lot about them.

So while my friends worked with mobile robots that clumsily

made their way around the lab and frequently needed their tires

adjusted and batteries changed, I worked with racing games,

StarCraft, and Super Mario Bros. I had a lot of fun. In the process,

xii Prologue

it became clear to me that not only could games be used to test

and develop artificial intelligence (AI), but that AI could be used

to make games better—AI for games as well as games for AI. For

example, could we use AI methods to automatically design new

game levels? Noting that there were ample possibilities for using

modern AI methods to improve games, I started thinking about

game design and how games could be designed with these mod-

ern methods, as well as human thinking in mind.

I had come full circle. I was once again thinking about intel-

ligence and artificial intelligence through the lens of games, and

about games through the lenses of intelligence and artificial

intelligence, just like when I was eleven. It is fair to say that I

have spent most of my life thinking about these interrelated top-

ics in one way or another, and I’d like to think that I’ve learned

a thing or two. I hope that I can intelligibly convey some of my

enthusiasm as well as some of the substance of the research field

I’m part of in this book.

What Is This Book?
What Is This Book?
What Is This Book?

© Massachusetts Institute of TechnologyAll Rights Reserved

This is a book about games, intelligence, and artificial intelli-

gence. In particular, it is a book about how these three things

relate to each other. I explain how games help us understand

what intelligence is and what artificial intelligence is, and how

artificial intelligence helps us understand games. I also explain

how artificial intelligence can help us make better games and

how games can help us invent better artificial intelligence. My

whole career has been based on my conviction that games, intel-

ligence, and artificial intelligence are deeply and multiply inter-

twined. I wrote this book to help you see these topics in the light

of each other.

This is a popular science book in the sense that it does not

require you to be trained in, or even familiar with, any partic-

ular field of inquiry to read it. You don’t need to know any-

thing about artificial intelligence, and although I explain several

important algorithms throughout the book, it is entirely free of

mathematical notation—you can follow the argument even if

you only skim the descriptions of algorithms. Some familiarity

with basic programming concepts is useful but not necessary.

You don’t need to know anything about game studies, game

design, or psychology, either. The only real prerequisite is that

xiv What Is This Book?

you care about games and occasionally play games. It doesn’t

really matter which games.

In other words, I wrote this book for both members of the

general public who are curious about games and AI and people

who work with games in some way (perhaps by making them,

studying them, or writing about them) but don’t know much

about AI. If you are already knowledgeable about AI, I hope you

will still find the book interesting, though you may want to skim

some parts.

This book is also a scholarly argument, or rather several argu-

ments. It is an argument that games have always been impor-

tant—perhaps even a driving force—in artificial intelligence

research, and that the role of games in AI research is about to

become even more important, with the ongoing switch from

board games to video games as the AI benchmarks of choice and

the advent of general video game playing, which allows us to

benchmark the general thinking skills of programs. Conversely,

artificial intelligence has always been important in games,

even though many game developers have been unaware of AI

research. But we are likely to see AI becoming much more impor-

tant to future games—in particular, video games—both because

of advances in AI methods and because of new ideas on which

roles AI can be used in in games. Although in the past it was

commonly assumed that the AI in a game was all about how the

computer-controlled characters you met in a game behaved, we

now see AI being used to understand players, adapt games by

changing the levels, and even help us create new games.

I make three primary claims in this book:

• Games are the future of AI. Games provide the best bench-

marks for AI because of the way they are designed to chal-

lenge many different human cognitive abilities, as well as for

What Is This Book? xv

their technical convenience and the availability of human

data. We have only begun to scratch the surface of game-

based AI benchmarks.
• AI is the future of games. We now have much more capable AI

methods than just a few years ago, and we are rapidly learn-

ing how to best apply them to games. The potential roles of

AI in games go far beyond providing skillful opponents. We

need to adapt our ways of thinking about game design to fully

harness the power of advanced AI algorithms and enable a

new generation of AI-augmented games.
• Games and AI for games help us understand intelligence. By

studying how humans play and design games, we can under-

stand how they think, and we can attempt to replicate this

thinking by creating game-playing and game-designing AI

agents. Game design is a cognitive science; it studies think-

ing—human thinking and machine thinking.

The book is fairly liberally sprinkled with footnotes.1 I’ve tried

to relegate everything that would break the flow of the text into

the footnotes. In particular, I put almost all my citations in foot-

notes. Feel free to entirely disregard these if you want to.

I have also written this book in a relatively informal and

relaxed, sometimes even playful, tone. This is both in order to

make it more readable outside the ivory tower of academia and

because this is the way I naturally write. I think that most aca-

demic writing is needlessly formal and rather boring. I promise

you that nothing I say is less true because I use the active tense

and even the first-person singular pronoun.

This is where I give you an overview of the book. Chapter 1

starts from the beginning, with the origin of computers and some

ancient games and fundamental algorithms. The very first com-

puter scientists tried to develop programs that could play classic

xvi What Is This Book?

board games such as Chess, as these were thought to embody

the core of intelligence. Eventually we succeeded in constructing

software that beat us at all board games. But does this mean that

this software is intelligent? Chapter 2 asks whether you need

to be intelligent to play games (or to play games well). It seems

that not only do games do a good job of exercising your brain

in a number of different ways, they also teach you to play them;

in fact, well-designed games are finely tuned to the abilities of

humans. But if they require intelligence from you, how can an

algorithm play them without being intelligent? Chapter 3 digs

into the question of whether a game-playing program can be (or

have) artificial intelligence, and if not, what AI actually is. There

are several ideas about what intelligence and artificial intelli-

gence are, but none of these ideas is without its own problems.

While we may still not know just what intelligence or AI is, we

now know a lot more about what it is not.

Next, in chapter 4, we look at what kind of AI you actually

would find in a modern video game. I describe a couple of impor-

tant algorithms in the context of a fairly standard shooter game

and point out some of the severe limitations of current game AI.

But do we even know what AI in a video game would be like if it

were not so limited? I try to give some ideas about what it could

be like and some ideas about why we do not already have such

awesome AI. This certainly has to do with the current state of AI

research, but just as much with game design and game develop-

ment practices. The next three chapters look at some new ways

in which AI could be used in games. Chapter 5 describes how

nonplayer characters (NPCs)—and other things in a game—

could learn by experience, from playing the game, using prin-

ciples from biology (evolution) and psychology (learning from

reinforcements). Chapter 6 describes how games can learn from

What Is This Book? xvii

the humans that play them, and perhaps adapt themselves, and

chapter 7 describes how AI can be used in a creative role, to con-

struct or generate parts of games or even complete games. These

uses of AI do not necessarily fit well into standard game design

and game development practices. Chapter 8 is therefore dedi-

cated to ways of designing games that foreground interesting

AI capabilities. For the penultimate chapter, chapter 9, we again

turn to the use of games as tests of (artificial) intelligence. Build-

ing on the discussion in the previous chapters, I discuss testing

and developing AI though general video game playing. Finally,

chapter 10 returns to the three claims I advanced above, show-

ing how progress on artificial intelligence for games and progress

on games for artificial intelligence are dependent on each other.

If you finish this book and still want to know more about games,

intelligence, and artificial intelligence, you will be delighted to

find a “further reading” section following chapter 10 that sug-

gests books, conference proceedings, and journals that will sat-

isfy your curiosity—or get you started on your own research.

1 In the Beginning of AI, There Were Games
Chapter 1
In the Beginning of AI, There Were Games

© Massachusetts Institute of TechnologyAll Rights Reserved

The first working digital computers were developed in the late

1940s or early 1950s, depending on your exact definition of com-

puter, and they were immediately used to play games. In fact,

in at least one instance, a program for playing a game was writ-

ten and executed by hand, using pen and paper because a suf-

ficiently powerful computer to run the program had not been

built yet. The eager inventor (and player) was none other than

Alan Turing, one of the founding fathers of computer science

and artificial intelligence. The year was 1948. The game was

Chess (figure 1.1). Turing acted as the computer (computing all

the moves by hand) when using this algorithm to play against

a good friend.1

Why Chess? Well, it’s a game that’s been around for a very

long time, the rules are simple to write down in both English and

in computer code, and many people play it. For some reason—

or some combination of reasons—Chess has traditionally been

taken very seriously. Maybe this is because it is seldom, if ever,

played for money, which in turn may be because there is no

element of chance and no hidden information (no dice or cards

and you can see the whole board). Maybe it is because Chess has

plenty of depth: there is a lot to learn about playing the game,

2 Chapter 1

so you can keep getting better at the game all your life. The game

allows a multitude of different strategies, and master-level play-

ers typically have recognizable playing styles.

So it was not far-fetched when, at the very beginning of

research into artificial intelligence, Chess was proposed as an

important problem to work on. It was inconceivable that any-

one could be able to play it at a high level without being truly

intelligent, for how could you play this game without success-

fully planning ahead, judging the true value of board positions,

and understanding your opponent’s thinking and predict-

ing her moves? The game seemed to be close to pure thought.

Or could you think of any other activity that more clearly

required intelligence than playing Chess? It seemed natural

Figure 1.1
Chess existed for thousands of years before it became central to artificial

intelligence research. (Courtesy of Wikimedia Commons under a Cre-

ative Commons 3.0 license.)

In the Beginning of AI, There Were Games 3

to assume that if we constructed a program that was a master

Chess player, we would have solved the problem of artificial

intelligence. So people got to work on this nicely well-defined

problem.

While Turing himself was probably the first person to execute

a Chess-playing program, many other researchers saw this as an

important topic. Chess playing grew into a vibrant subfield of

artificial intelligence research, with conferences, journals, and

competitions devoted to the study and development of software

that could play Chess and similar board games. Several impor-

tant developments in artificial intelligence took place in the

context of board games, such as when the IBM computer scien-

tist Arthur Samuel in 1958 invented the first version of what is

now called reinforcement learning in order to make a Checkers-

playing program learn from experience.2

When the first Chess-playing programs were developed,

many thought that a computer program could never rival a

master-level human player because these programs were merely

code and humans were intelligent. And Chess, mind you, is a

sophisticated game that requires intelligence to play.

But during decades of dedicated research, Chess-playing soft-

ware got stronger and stronger. Whereas these programs initially

could barely beat a beginner, they gradually inched their way

past intermediate performance, and approached master-level

play. This had much to do with the availability of faster proces-

sors and larger memory sizes, but it also had a lot to do with the

software getting better—essentially refinements of and additions

to the same basic algorithm that all of these programs had used

from the start.

In 1997 this development finally caught up with the human

state-of-the-art, which had been improving slowly, if at all. In

4 Chapter 1

a much-publicized match, IBM fielded its special-purpose Deep

Blue Chess computer against the reigning world champion,

Garry Kasparov. The computer won.3 This event was the starting

point for a vivid debate about the meaning of intelligence and

artificial intelligence now that machines had conquered Chess.

Most observers concluded that Deep Blue was not really intel-

ligent at all, because it looked and functioned nothing like the

human brain. At the heart of Deep Blue is a simple algorithm,

though augmented by a myriad bells and whistles. In fact, this

algorithm is the very same algorithm that Turing (re)invented in

the 1940s. So how does it work?

How a Computer Plays Chess

The approach almost all Chess-playing programs take is to use

some variant of the minimax algorithm. This is actually a very

simple algorithm. It works with the concepts of board states and

moves. A board state is the position of all pieces on the board,

and a move is a transition from one state to another (for exam-

ple, moving your pawn two steps forward will transition your

board into a state similar to but distinct from the state the board

was in before the move). From any board state, it’s quite simple

to list all moves that a player can take; on average you can take

thirty-five or so different moves, and on the first turn, you have

twenty moves to choose from. Sometimes you can take only

one or two different moves—when this happens, you usually

have a problem. Minimax presumes that you can store multiple

board states in memory or, in other words, that you can keep

lots of copies of the game. (This is not a problem on any modern

computer, as a Chess board state can be represented in just a

few bytes.)

In the Beginning of AI, There Were Games 5

Minimax also assumes that you have a way of evaluating the

value (or utility, or goodness) of a board state. For now, you can

think of the value of a board state as how many pieces you’ve

got left on the board, minus how many pieces your opponent

has. If the resulting number is positive, you’re probably ahead

in the game.

Here is how minimax works. Imagine you play from the per-

spective of the white player, and want to know the best move to

take from a particular board state. You start with listing all pos-

sible moves you could make from that state. You then simulate

taking each move and store all of the resulting board states. If

you were very shortsighted, you could stop here; simply estimate

the value of each resulting board state (for example, by counting

pieces) and choose the move that leads to the board state with

the highest value. That would be the max part of the minimax

algorithm.

That would indeed be shortsighted, however, because a move

that brings an immediate benefit (for example, by capturing one

of the opponent’s pieces) might give the opponent an open-

ing to strike back with one or several captures of her own, thus

being disastrous in the slightly less short term. Everyone who

has played more than one game of Chess knows this. Therefore,

for each of the board states resulting from your possible first

moves, you list all possible moves by the opponent and evalu-

ate the resulting board states. The crucial difference to what you

did in the first step is that while in the first step you wanted to

find the move that was best for you, in the second step, you

assume that the opponent will take the move that is most advan-

tageous for her, that is, the worst move for you. If your oppo-

nent can capture your piece when it’s her turn, she will. That’s

the min part of the minimax algorithm. Putting them together,

6 Chapter 1

the best move for you is the one that minimizes the maximum

score your opponent can reach in her turn. Practically, for each

of your possible moves in your turn, you assign the lowest value

of the board that your opponent can reach through any of her

moves in the second turn.

You are now looking two turns ahead. However, what of those

clever strategies where you let your enemy make a capture on

her turn just so you yourself can make a bigger capture on your

next turn? Well, you could simply let the minimax algorithm

run one step further and assume that the opponent will assume

that you do the move that benefits you best. This could go on

forever, or until you have reached the end of the game in your

simulations. In fact, if you simulate all the way to the end of

the game, exploring all moves and all responses to those moves,

you will find the provably optimal strategy, one that cannot be

improved on. In other words, you will play Chess perfectly.

But you are not going to simulate all the way to the end of

the game because you don’t have the time to do so. If there are

thirty possible moves from one board state (a typical number

for midgame Chess), then each turn you simulate will multiply

the number of board states you need to investigate by thirty.

In other words, you need to evaluate 30t states, where t is the

number of turns you look ahead. For looking five steps ahead,

that’s about twenty-four million. The number of states you need

to investigate quickly approaches the number of atoms in the

earth and other such ridiculous numbers. Searching to the end

of a Chess game is therefore impossible for any computer we will

be able to construct in the foreseeable future. That is why you

need a good way of estimating the value of a board state, because

you will have to be content with looking only a few turns ahead.

In the Beginning of AI, There Were Games 7

In practice, what a Chess-playing agent does is search to a given

depth and then evaluate the board states it reaches even though

those are not typically win or loss states. Luckily, in Chess a sim-

ple board state estimation such as the piece difference between

black and white generally works fairly well, though many more

complex methods have been developed.

Minimax is called a tree-search algorithm, not because it helps

you looking for the most delicious cherries in a cherry tree, but

because of what it does can be understood as growing a branch-

ing tree as it searches for the best move—a tree that grows upside

down. Think of it this way: the root of the tree is the original

board state, the one you want to find the best move for. All of the

possible moves from that state become branches that grow from

the root. At the end of each branch is the board state that move

leads to. Of course, from each of these states, a number of moves

are possible, and these can in turn be visualized as branches from

the end of the previous branch … and so it continues until you

reach those board states where you do not try any more moves

but instead estimate the value of the state. Those are called

“leaves,” in this somewhat imperfect analogy. (Computer scien-

tists are not famous for their analogies.) The number of moves

possible at each state is called the “branching factor.”

Of course, there have been a number of improvements to this

method since Alan Turing himself first suggested it in the 1940s.

There are ways of “pruning” the search so that fewer board states

are investigated, there are ways of concentrating on the most

promising move sequences, and there are much better ways

of estimating the value of a board. But the minimax principle

remains. It is the core of almost all successful Chess-playing

programs.

8 Chapter 1

Advance Directly to Go

Go is a game that occupies a similar place in East Asian culture as

Chess does in European culture.4 It has other things in common

with Chess as well, such as having two players, perfect infor-

mation, no randomness, and that one player uses white pieces

and the other black (figure 1.2). In other respects, it is actually

simpler. It has only two or three rules, depending on how you

count, and one type of piece compared to eight in Chess.

Perhaps somewhat surprisingly, the same methods that work

very well for playing Chess fail miserably when it comes to

Go. Minimax-based algorithms generally play this game badly.

There seem to be two main reasons for this: the branching factor

(number of moves) is much higher (on the order of 350 rather

than the 35 in Chess), and it is very hard to accurately estimate

the value of a board state. The high branching factor means that

Figure 1.2
Go, the simpler but harder (for a computer) Asian cousin of Chess. (Pho-

to by Linh Nguyen under Creative Commons 2.0 license.)

In the Beginning of AI, There Were Games 9

minimax can make only very shallow searches, and the diffi-

culty with estimating the board value means that the “signal”

that the minimax algorithm uses is worse. But for a long time,

we did not know any better algorithms for playing Go. There-

fore, the best Go-playing programs were stuck at beginner level,

even as Chess-playing programs reached and surpassed grand-

master level.

So it’s natural that people’s eyes turned to Go after Chess was

conquered. Go seemed so much harder than Chess. Maybe this

game could not be conquered with such simplistic techniques?

Maybe this game would actually require intelligence to play?

We finally started to see some real progress on Go-playing

software in 2007 when the Monte Carlo tree search (MCTS) algo-

rithm was invented.5 Like minimax, MCTS is a tree search algo-

rithm. Unlike minimax, it has randomness. (That’s why it has

“Monte Carlo,” like the famous Monaco casino, in its name.)

Accepting the fact that it will be impossible to explore all pos-

sible moves to the same degree, MCTS chooses which moves to

explore first randomly; it then proceeds to explore further which

of those moves seem most promising initially. Instead of count-

ing pieces to estimate the value of a board (this works very badly

in Go), MCTS plays the game randomly until the end many

times, and it sees what percentage of these “playouts” it wins. It

might seem crazy with so much randomness in the algorithm,

but empirically this works very well.

Almost twenty years after Deep Blue’s victory over Garry

Kasparov, human supremacy in Go was overturned. This time

it was the AI research company DeepMind, at the time a divi-

sion of Google, that provided the software. In a series of matches

in 2016, DeepMind’s AlphaGo took on Lee Sedol, arguably the

world’s best Go player, and won 4–1. AlphaGo was built on the

10 Chapter 1

MCTS algorithm, combined with neural networks that had been

trained for months on previous matches of numerous Go cham-

pions, and by playing against itself (I’ll discuss neural networks

later in the book).6

This was the last important classic board game to yield to the

machines.7 It was also the hardest. There are no longer any clas-

sic board games that the best human plays better than the best

computer program, at least not classic board games that people

care about.

So was AlphaGo intelligent? Most people would say no.

Although it functioned differently from Deep Blue and included

an element of learning, it was still nothing like the human brain.

“Just an algorithm,” some would say. And it could only play Go.

If could not even play Chess (without re-training its network),

nor could it drive a car or write a poem.

This brings up several important questions: Does a thing need

to function anything like the human brain in order to be intel-

ligent? And do you need to be intelligent in order to play games

well? Let’s try to answer the second question first.

2 Do You Need to Be Intelligent to Play Games?
Chapter 2
Do You Need to Be Intelligent to Play Games?

© Massachusetts Institute of TechnologyAll Rights Reserved

Shall we play a game? You choose: Chess, Super Mario Bros.,

or Angry Birds. I’m giving you a choice because I don’t know

whether you are familiar with all three of them. I talked about

Chess in the previous chapter: the Western’s world’s arguably

most famous board game, played by physically moving pieces

such as pawns, kings, and queens on a board with alternating

black and white squares. By moving these pieces so that they

threaten and capture your opponent’s pieces, you can ultimately

win over your opponent by surrounding her king. It has changed

little since it was invented millennia ago.

Super Mario Bros. is the platform game that accompanied the

European/American launch of Nintendo’s 8-bit Nintendo Enter-

tainment System (NES) console back in 1985 (figure 2.1). By

pressing buttons on a little plastic box, you commandeer the

jovial plumber, Mario, as he avoids evil turtles, stomps menac-

ing mushroom men, jumps over gaps, collects coins, and saves

the princess who has been kidnapped by a giant lizard. Sequels

of the game keep being developed for all of Nintendo’s hard-

ware and in addition to hundreds of millions of copies of the

Super Mario Bros. games that have been sold legitimately, there

12 Chapter 2

are dozens of unauthorized versions of the game available for

any conceivable hardware platform.

Angry Birds is the mobile gaming phenomenon from 2009

by Finnish company Rovio (figure 2.2). You point at and swipe

your fingers over your phone’s touch screen to fling an assort-

ment of birds at various structures, and your goal is to make

the structures collapse on top of evil green pigs that have stolen

your eggs. The original game, as well as a myriad of sequels are

available for iPhone, iPad, and Android devices and have topped

best-seller lists on all those platforms.

Figure 2.1
The genre-defining platform game Super Mario Bros. (Nintendo, 1985).

Do You Need to Be Intelligent to Play Games? 13

My guess is that you have played all three of these games,

or at least seen someone play them. If not, you have probably

played two of them, or at very least one of them. In the extremely

unlikely event that you don’t know either Chess, Super Mario

Bros., or Angry Birds, I’m somewhat confused as to who you are

and what world you live in. Are you reading this book in the far

future? I’m just going to assume you play games of some sort.

Having ascertained that you play games, let me now ask: Why

do you play games? To relax, have a good time, lose yourself a

bit? Perhaps as a way of socializing with friends? Almost cer-

tainly not as some sort of brain exercise. But let’s look at what

you are really doing:

You plan. In Chess, you are planning for your victory by imag-

ining a sequence of several moves that you will take to reach

checkmate, or at least capture one of your opponent’s pieces.

Figure 2.2
Angry Birds (Rovio, 2009), the physics puzzler that was on seemingly ev-

eryone’s iPhone after it debuted.

14 Chapter 2

If you are any good, you are also taking your opponent’s coun-

termoves into account and making contingency plans if they

do not fall into your elaborately laid traps. In Super Mario Bros.,

you are planning whether to take the higher path, which brings

more reward but is riskier, or the safer lower path (figure 2.3).

You are also planning to venture down that pipe that might

bring you to a hidden treasure chamber, or to continue past it,

depending on how much time you have left and how eager you

are to finish the level. You may be planning to eat the power-

up that lets you get through that wall so you can flick a switch

that releases a bean from which you can grow a beanstalk that

lets you climb up to that cloud you want to get to. In Angry

Birds, you are planning where to throw each bird so as to achieve

maximum destruction with the fewest birds. If you crush the ice

wall with the blue bird, you can then hit that cavity with the

black bomb bird, collapsing the main structure, and finish off

that cowardly hiding pig with your red bird.

You think spatially. Chess takes place on a two-dimensional

grid, where cells that are not occupied by white or black pieces

are “empty.” Those who have played the game a number of

times and internalized its rules start seeing some of the opportu-

nities and threats directly as they look at the board. The fact that

the queen is threatened stands out like an X in a row of Os, and

the possible positions a knight can go to are immediately visible

on the board. In Super Mario Bros., you need to estimate the tra-

jectory of jumps to see whether you can pass gaps and bounce

off enemies, which means seeing the jump in your mind’s eye

before you execute it. You also need to estimate whether you can

get through that small aperture with your current size (Mario can

change size) and whether that path over there leads anywhere.

In Angry Birds, you also need to estimate trajectories, sometimes

Do You Need to Be Intelligent to Play Games? 15

very complicated ones that involve bouncing and weird gravity,

and you may also need to determine whether you can fit that

bird in the narrow passage between that pixelated rock and that

virtual hard place.

You predict the game and your opponent(s). In Chess, predict-

ing what your opponent will do is essential to successful play. If

you knew how your opponent would react to your moves, you

could plan your strategies with perfect certainty that they would

succeed. Super Mario Bros. and Angry Birds are usually not adver-

sarial games (you are not playing against a human opponent),

but instead the challenge is to predict the actions and reactions

Figure 2.3
A planning algorithm (a version of the A* algorithm, discussed in chap-

ter 4) playing a clone of Super Mario Bros. The black lines show the vari-

ous future paths the algorithm is considering.

16 Chapter 2

of the environment. When will the cannon fire? Which way will

that turtle face if I land to the left of it? Will the monster lizard

advance all the way if I don’t jump up on the platform? And

how exactly will that complex building collapse if I knock out

the bottom support, where will all the pieces land, and will one

of them set off that box of TNT to create a nice chain reaction?

While randomness may play some role in Angry Birds (Super

Mario Bros. is completely deterministic), the difficulty stems

mainly from the very complex interactions among the various

objects in the game.

You assess yourself. “Know yourself,” said Socrates. He was

probably not talking about Chess and certainly not about Angry

Birds, but really, knowing yourself is an invaluable asset when

playing games. Overestimating your skill will make you play

recklessly and most likely lose; underestimating your skill means

that you will not attempt that risky strategy that could have

won the game for you. Also, you need to take your affect into

account and correct for it. Are you currently off-balance because

your plan did not work out, unhealthily buoyed by your recent

success, or perhaps driven by lust for revenge for that bastard

move your opponent just made to capture your queen? Well,

then you need to take that into account. Don’t try that ten-

moves-deep strategy if you know it’s based on wishful think-

ing rather than careful assessment of the situation. The same is

true for Super Mario Bros. and Angry Birds: if you did not know

your own skill level, you would not be able to progress in the

game because you would try strategies that were too hard for

you. You might also be better at executing some tactics, such

as long jumps or setting traps with your knights, than others,

such as precision shooting or moving in quickly to surround

the king.

Do You Need to Be Intelligent to Play Games? 17

You move. It is true that Chess does not involve much in the

way of motor skills, at least unless the game degenerates into a

brawl, but the other two games certainly do. Super Mario Bros. has

you pressing two keys and a D-pad, which is itself eight direction

keys, very frequently (often multiple presses per second). Angry

Birds demands very fine control of your finger movements on

the screen in order to shoot the bird in the right direction with

the right force and activate its special ability at the right time. In

both games, these movements must be coordinated with what

happens on screen and perfectly timed. It is the sensorimotor

aspects of these games that tend to picked up very quickly by

five-year-old kids but not always by their frustrated parents.

Of course, other games offer other challenges. First-person

shooters such as Halo or Call of Duty challenge your spatial

navigation in three dimensions, and in multiplayer modes,

they throw you straight into the complexities of team strategy.

Role-playing games such as Skyrim and Mass Effect require you

to understand the motives behind the actions of complex char-

acters, resolve ethical dilemmas, and navigate perilous politics

(at least if you play them the way they are meant to be played—

although you can get pretty far in some of them by just shooting

everything that moves). Economic simulation games like SimC-

ity and Transport Tycoon require you to understand and influence

complex economical systems.

One way of trying to outline what types of cognitive chal-

lenges games offer is to look to psychology or, more precisely,

psychometrics, to see if there is some handy list of cognitive abil-

ities. We could then try to figure out how each of these abilities

is required (or not) for playing games of different types. It turns

out that there are indeed such lists. In particular, the Cattell-

Horn-Carroll (CHC) theory divides general intelligence into

18 Chapter 2

eleven different “broad cognitive abilities,” which are further

subdivided into many more specialized cognitive abilities.1 This

taxonomy is based on statistical analysis of hundreds of different

cognitive tests and is widely accepted in the psychometrics com-

munity (though as new empirical evidence comes in, categories

are modified and added).

Table 2.1 lists the eleven broad cognitive abilities from CHC

theory and gives some examples of situations in games where

they are used. Note that this is very far from a complete list;

I’ve more or less listed some of the first examples that came to

mind, trying to get some diversity in terms of game genres. My

guess is that almost any game would make use of at least five

different cognitive abilities (Super Mario Bros., Angry Birds, and

Chess certainly do), but this is just a guess and I’m not aware of

anyone having done research on it. Someone really should do

that research.

In sum, we use many different forms of intelligence when we

play games, more or less all the time. This sounds like a lot of

hard work. It’s amazing that playing games actually relaxes you,

but it does. (I took several breaks to play games while writing

this chapter.)

Do You Learn When Playing Games?

So far, we have discussed only the individual skills you exercise

when you play a game. But you do not exercise them the same

way all the time; you are building your skills as you play. It cer-

tainly does not feel as if you are taking a class while you are play-

ing a game (if it does, it’s not a very good game). Yet you learn.

Here is proof: you are much better at the game after playing it

for some time than you were when you started. Try playing one

Do You Need to Be Intelligent to Play Games? 19

Table 2.1
The various cognitive abilities according to Cattell-Horn-Carroll theory

and some examples of their use in games

Broad cognitive
ability Example use in games

Comprehension-
knowledge

Communicating with other players in all
manner of multiplayer games, from Bridge to
Gears of War and World of Warcraft

Fluid reasoning Combining evidence to isolate suspects in
Phoenix Wright; solving puzzles in Drop7

Quantitative
knowledge

Controlling complex systems involving lots of
quantitative data, such as in SimCity, or
character management in Dungeons and
Dragons

Reading and
writing ability

Reading instructions in games, following
conversations, and selecting dialogue options
in role-playing games such as Mass Effect;
writing commands in text adventures such as
Zork

Short-term
memory

Everywhere! For example, remembering
recently played cards in Texas hold’em poker
or Hearthstone

Long-term
storage and
retrieval

Recalling previous games of Chess or StarCraft
that resemble the current game to gain insights
into strategy

Visual
processing

Spotting the possible tile matches in Candy
Crush Saga or the enemy snipers in Call of Duty

Auditory
processing

Becoming aware of approaching zombies (and
from which direction) in Left 4 Dead;
overhearing secret negotiations in Diplomacy

Processing speed Rotating pieces correctly in Tetris;
micromanaging battles in StarCraft; playing
speed Chess

Decision or
reaction time/
speed

Everywhere! For example, countering moves in
Street Fighter or deciding what fruits to slice in
Fruit Ninja

20 Chapter 2

of the early levels in Super Mario Bros. or Angry Birds again. Or try

playing a Chess computer at novice difficulty again, the one that

beat you roundly the first time you tried. Piece of cake.

Raph Koster, a famous game designer, has made the argument

that learning is the main reason games are fun.2 Good games are

designed to teach you how to play them; the better they teach

you, the better designed they are. You have fun because you are

learning to play the game, and when you stop learning, you stop

having fun. If there is nothing more to learn, you grow tired of

the game. Therefore, a trivial game that you can beat on your

first attempt is not interesting, and neither is a near-impossible

game that you cannot make any progress on. A well-designed

game instead offers you a long, smooth difficulty progression

where you can keep learning as you play. We can say that the

game is accessible and deep.

For example, when you started playing Super Mario Bros., you

first had to learn what the buttons did—button A makes Mario

jump and pressing the D-pad in different directions makes him

walk left or right—and you then had to learn how to tackle the

various challenges that the game presented. “So, there’s a walk-

ing mushroom approaching. What can I do? Aha! I can jump

on it!” As you progressed through the levels of Super Mario Bros.,

you would have noticed that the challenges presented became

trickier and trickier, but also that you were better and better pre-

pared to handle them.

The oft-imitated design of Super Mario Bros.’s levels typically

introduces a basic version of some challenge (say, a jump over

a gap or an enemy caught in a valley between two pipes) and

later presents more advanced versions of the same challenge

(longer gaps, different kinds of enemies in the valley) or com-

binations of several earlier challenges (a long jump over a gap,

Do You Need to Be Intelligent to Play Games? 21

after which you immediately land in a valley full of enemies).

Every time, the completion of some previous challenges has pre-

pared you for tackling the new, more advanced challenge. And

after a while, when you thought that there were no ways left to

produce new, interesting challenges by varying the existing chal-

lenges, the game throws in some new ingredient that offers fur-

ther variation and deeper challenges. One such new ingredient,

introduced rather late in the game, is the spiky enemy, which

cannot be defeated by jumping on top of it. Adding spiky ene-

mies to existing challenges forces you to develop new strategies

to cope with the familiar-looking but fresh challenges. Finally,

even when you’ve managed to finish the whole game (beating

the boss at the last level and rescuing the princess), there is much

left to discover, including hidden areas and treasures, and how

to beat the whole game in under ten minutes (if you’re of that

persuasion). Super Mario Bros. is widely regarded as a masterpiece

of game design, partly by virtue of being a masterpiece of peda-

gogics: a deep and rewarding course where the next improve-

ment is always within reach.

The story is much the same for Angry Birds. First, you learn the

basic motor skills of swiping your fingers to fling birds, before

proceeding to understand how the various birds interact with the

materials the towers are built from and which parts of the towers

are most crucial to hit in order to raze the whole tower. Every

once in a while, the game throws in new types of material, new

birds, and other devices to expand the range of challenges. Even

in Chess, the progression is similar, with the obvious exceptions

that very little in the way of motor skills is necessary and that

learning takes place over many games of Chess rather than on

many levels of the same. First, you learn the basic rules of Chess,

including how the pieces move and capture. Then you learn

22 Chapter 2

more advanced rules, which presuppose mastery of the simpler

rules, including castling and when the game is a draw. You can

then move on to learning heuristics,3 first simple and then more

advanced; then you learn opening books (lists of good opening

moves), the quirks of particular players and playing styles, and

so on.

The idea that playing (games or otherwise) goes hand in hand

with learning is not unique to game design. The developmen-

tal psychologist Lev Vygotsky talks about “proximal zones of

development” in children’s play, where kids typically choose to

play with objects and tasks that are just outside their capaci-

ties because these are the most rewarding.4 Relatedly, the cre-

ativity theorist Mihaly Czikszentmihalyi’s concept of flow states

that flow can be experienced when performing a task that is so

hard as to challenge you but not easy enough to bore you, and

where the difficulty of the task increases as your performance

improves. Czikszentmihalyi developed this concept in reference

to artistic and scientific creativity, but it applies just as well to

game playing.5 From a seemingly completely different perspec-

tive, the machine learning researcher Jürgen Schmidhuber intro-

duced a mathematical formalization of curiosity. In his model,

a curious agent (human or artificial) goes looking for tasks that

allow it to improve its model of the task, and therefore its capac-

ity to perform the task.6 In other words, according to Schmidhu-

ber’s theory, a mathematically optimally curious agent does the

same thing as a young kid learning about the world by playing

with it, or as a discerning player choosing to play games she likes

or choosing challenges that seem interesting within that game.

To sum all this up, it seems that games challenge your brain

in more than one way—way more than one way—and, further-

more, that good games are designed to keep you challenged by

Do You Need to Be Intelligent to Play Games? 23

ramping up the challenge (and providing additional challenges)

in a pedagogical manner. Schools should take note (some do). It

is very likely that the good games, those that we choose to play

and keep coming back to, are so good at least partly because they

succeed in persistently challenging our brains in multiple ways.

So you definitely use your intelligence when you play games.

At the same time, we saw in the previous chapter that it is pos-

sible to build software that can play Chess or Go better than

any human while seemingly not being intelligent. So how come

intelligence is needed for humans to play games, but not for

machines to play them? What’s going on here? It is time to try

to nail down what we mean by artificial intelligence and, in the

process, what we mean by intelligence.

3 What Is (Artificial) Intelligence?
Chapter 3
What Is (Artificial) Intelligence?

© Massachusetts Institute of TechnologyAll Rights Reserved

This is already the third chapter of the book, but I have not yet

defined what we are talking about. Let me try. AI is short for “arti-

ficial intelligence,” and because “artificial” is a rather straightfor-

ward concept, we just need to define intelligence. There must be

a good definition of intelligence around, right?

Well, the good news is that lots of people have defined intel-

ligence. The bad news is that the definitions that have been pro-

posed are quite different from each other and not very easy to

reconcile at all. In fact, there are so many definitions that it is

hard to even get an overview of all of them. This tells us two

things: that the nature of intelligence is of central concern to

many thinkers and that lots of work remains to be done. In this

book, I present and make use of several different definitions

of intelligence, and specifically artificial intelligence.1 We’ll start

with what is perhaps the most famous conception of artificial

intelligence.

Imagine you are chatting online with two people. Perhaps

you’re using Facebook messages, Twitter, Slack, SMS, or some-

thing else. If you’re not into chatting—the very word might

offend you as something that only millennials do—imagine that

you are having a conversation with two people via text messages.

26 Chapter 3

You might even be typing on sheets of paper on a typewriter and

sending them back and forth in envelopes. The format doesn’t

matter. The important thing is that you are communicating in

an old-fashioned text-only way with both people.

Now someone tells you that one of these people is in fact a

machine—to be more precise, AI software running on a com-

puter. The other is a human. Your task is to find out which is

which or, if you want, who’s who. You can ask both of your text

partners anything you want, but they are not required to answer

truthfully, especially if you ask whether they are a computer.

This test was proposed in 1950 by Alan Turing, whom we

encountered in the first chapter.2 (Mind you, this was before any

actual general-purpose computers existed, much less Facebook

and text messages, so Turing talked about “teleprinters.”) Turing

was addressing the question, “Can a machine think?” and pro-

posed that one way of finding out was to see whether it could

win at what he called “the imitation game” but has since come

to be called the “Turing test.”3

If the software is so good that you could not distinguish

the human from the computer would that mean that it was

intelligent? Try to imagine the situation. If you want to, you

can imagine that the computer “won” the game not just once

but multiple times. If it can outsmart you, it must surely be

intelligent—unless you have an extremely low opinion about

your own intelligence.

Some people just accept that if a computer could pass the Tur-

ing test, it would be intelligent. (Perhaps it needs to have passed

it multiple times against multiple human judges; perhaps the

judges need to be specially trained.4) Others, perhaps most, dis-

agree. It becomes interesting when you ask people why the com-

puter is not intelligent, even though it passes the Turing test.

What Is (Artificial) Intelligence? 27

Sadly, a not-uncommon answer is, “It can’t be intelligent

because it’s a computer.” Personally, I find it hard to answer this

objection without sarcasm. But offending people is no way to

conduct constructive discussion.

The best answer to the “it’s only a computer” objection is to

keep asking: “Why is it that a computer cannot be intelligent,

whereas a human can?” Some people say that the word intel-

ligence by definition applies only to humans. Okay, fine. Let’s

come up with another word then that means “intelligence”

except it is not arbitrarily confined to humans. Others reply that

the computer cannot be intelligent because it is made of silicon

components like transistors, while a human is made out of liv-

ing, biological cells. So why is it that having biological cells is

necessary for intelligence? And how do you know? There are

also those who claim that the computer could not be intelligent

if it was programmed by humans; it must have learned by itself,

perhaps by growing up with humans. Again, how do you know

that intelligence can’t be programmed? Have you tried? And

how do you know that this particular computer program, which

just fooled you into thinking it was a human, did not grow up

with humans and go to school with the other kids? All you know

about is that it was smarter than you.

There are a couple of good objections too. One is that commu-

nicating through written text is rather limited, and real humans

communicate also through the tone of their voice, facial expres-

sions, and body movements. Another is that this sort of inter-

view situation is indeed a very unnatural one, and not really

representative of the wide range of activities humans engage in

every day. Some people handle a written interview situation ter-

ribly but are otherwise perfectly competent human beings. Con-

versely, being able to write eloquent answers to questions does

28 Chapter 3

not guarantee that you can get out of bed, tie your shoelaces,

decide what you want to eat, comfort the ones you love, or paint

a painting. Or play a game. Yet all of these activities seem to

require intelligence of some kind.

Are Humans Intelligent?

As we can see, the Turing test is not without issues. But still, the

basic idea of taking something that a human can do and task the

computer with doing the same is appealing. It makes sense that

if that a computer is truly intelligent, it should be able to do all

those things that a human can do because of her intelligence.

However, this criterion makes at least two assumptions: that

humans are indeed intelligent and that this is the only (or high-

est) type of intelligence. Humans appear to implicitly be the

measure for intelligence just as for other things. So let’s turn the

question around and ask if, from the perspective of computers,

humans are intelligent.

Humans would, compared to a computer, seem quite stupid

in many ways. Let’s start with the most obvious: humans can’t

count. Ask a human to raise 3,425 to the power of 542 and watch

him sit there for hours trying to work it out. Ridiculous. The

same goes for a number of other trivial tasks, such as calculat-

ing the average age in a population of 300 million. Shouldn’t

take more than a couple of seconds—unless you are a human,

in which case it’ll probably take you years, and even then you

would have made a number of errors.

Humans have almost no memory either. Ask a human to give

you the correct name and current address for a randomly cho-

sen social security number (or personal registration number, or

whatever the equivalent is in your country). Even if she has all

What Is (Artificial) Intelligence? 29

the information in whatever format she prefers (such as a large

paper catalog), it will still take her at least several seconds—and

most humans would not even know where to get the informa-

tion. Or ask a human to produce a hundred addresses to websites

talking about artificial intelligence, or even a complete list of

everything that happened to him yesterday. Humans talk about

“goldfish memory,” but from the perspective of a computer, the

human and the goldfish aren’t that far apart, capability-wise.

At this point, many readers will be protesting wildly and say-

ing that I am being terribly unfair to them. I am only choos-

ing tasks that computers excel at and ignoring those where

humans have an advantage, such as motor control and pattern

recognition.

Right. Computers can land a jet plane and fly a helicopter.

In fact, almost any computer can do those things if you load

the right software. Very few humans know how to land a jet

plane, and even fewer know how to fly a helicopter. Many have

the capacity to “load the software” (learn), but this is a process

that takes years and is very expensive. Sometimes even trained

humans fail spectacularly at these tasks. (It’s hard to understand

why anyone would want to be in a plane flown by a human now

that there are alternatives.) Computers can drive regular cars on-

road and off-road, obeying all traffic regulations. There are many

humans who can’t even do that.5

Speaking of pattern recognition, it’s true that humans can

recognize the faces of their friends with quite high accuracy.

But then, humans have only a couple of hundred friends at

most. The face recognition software that Facebook uses can tell

the faces of hundreds of thousands of people apart. Other pat-

tern recognition algorithms can successfully match a scan of a

human thumb to the right fingerprint in a database of millions.

30 Chapter 3

Now let’s take another activity that humans should be good

at: game playing. Games were invented by humans in order to

entertain themselves, and because humans seem to find it enter-

taining to exercise their learning, motor, and reasoning capabili-

ties, games should be perfectly tailored to human intelligence.

Humans should excel at game playing, right? Well, not really. As

we have seen, computers now totally own humans in basically

all classic board games. And as we will see later, computers per-

form very well in many video games as well. There are still games

where computers do better, though the development of better

hardware and software means that computers are constantly

closing the gap. You should also remember that all the games

on which we compare humans and computers were designed

by humans for humans. Therefore, they are particularly well

suited to human cognitive strengths. It would be very easy to

invent games that were so complicated that only computers

could play them.6 Computers could even invent such games

themselves.

Other things that have been cited as pinnacles of human

achievement are tying shoelaces and self-reproduction. But

tying shoelaces is sort of pointless; it’s getting to be an obsolete

technology even for humans. Why would you need shoelaces

if you’re a robot? And humans don’t really know how to repro-

duce themselves. They know how to have sex, which is quite a

different thing and rather easy. The actual reproduction is down

to various biochemical processes that humans don’t completely

understand yet and don’t know how to replicate.

What about the Turing test, then? Well, the computers could

define their own Turing test. They would probably define the

interface so that instead of passing typed messages back and

forth at a leisurely pace, it would take place over a 100 megabit

What Is (Artificial) Intelligence? 31

per second optical cable. I do not think any human would do

very well on this test.

So, compared to humans, computers seem to be doing quite

well indeed—at least if you ask the computers. It all depends on

what you measure.

Some humans would object that this comparison is absurd

because it’s humans who build and program computers. There-

fore, any intelligence the computers have should be attributed

to their human creators. But that is a dangerous argument for

humans to make, because in that case, any intelligence that

humans might have is not really their own but actually belongs

to the process of evolution by natural selection that created

them.

Doing What They Do on the Discovery Channel

Presumably, the last few pages have not convinced you that you

are less intelligent than a computer. Clearly there was something

missing from the discussion. There must be some kind of unspo-

ken assumption that, when exposed, collapses the argument. I

agree. Here is the problem:

All of the examples I gave were of computers being good (and

humans bad) at performing very specific tasks and solving very

specific problems, when the hallmark of real intelligence is to be

able to perform well in a large variety of situations. Being very

good at a single thing is never enough for intelligence. There-

fore, humans are more intelligent than computers after all: a

Chess-playing program cannot land a jet plane, and a face recog-

nition program cannot play Super Mario Bros. or do exponentia-

tion. Your intelligence is all about your ability to perform well in

whatever situation you may find yourself, and humans are very

32 Chapter 3

good at adapting to a very wide range of situations and prob-

lems, whereas computer programs are usually suited only to the

particular type of situation or problem they are programmed for.

Let us take a step back and think about what this means in

some concrete situations for animals and for robots.

Ethology is the branch of biology that studies the behavior

of animals and the mechanisms by which this behavior is pro-

duced—“animal psychology,” you might call it. A central con-

cept in this discipline is that of adaptive behavior—the behavior

that an animal exhibits in response to the environment it was

evolved in and which serves to increase its chances of surviving

and having surviving offspring. It is easy to understand how it

is adaptive for a fox to move so as to minimize its chances of

detection when approaching the hare it hopes to make its din-

ner. Similarly, it is as easy to understand why it is adaptive for

the hare to change directions at unpredictable intervals when

trying to escape the faster but heavier fox whose dinner it does

not want to be. What is not easy to understand is which of the

fox and the hare is more intelligent. Indeed, for an ethologist,

this question does not even make sense without first specifying

what environment and what problem the animal is facing. Now

and then you run into people (or tabloid newspapers) who claim

that “dolphins are really as intelligent as humans” or “pigs are

more intelligent than dogs” or similar nonsense. It’s nonsense

not because it is false but because it makes no sense to make

such claims without first establishing the environment and life

conditions in which intelligence is measured. Put a dolphin in

an office chair, or a human in the ocean, and neither of them

will see much success.

In the words of the great roboticist Rodney Brooks, “elephants

don’t play Chess.” Brooks pioneered behavior-based robotics in

What Is (Artificial) Intelligence? 33

the 1980s, an approach to robotics where computationally and

mechanically simple robots were designed for coping with spe-

cific environments. For example, Brooks developed mechanical

insects capable of following people around and avoiding walk-

ing into obstacles in indoor environments using only a couple of

inexpensive motors and light sensors. Some of his robots had no

actual computer at all, just some clever wiring between inputs

and outputs. In contrast, most of the other robots of that time

used state-of-the-art onboard computers and sophisticated sen-

sors yet performed their tasks poorly and were very sensitive to

any modification of the problem they were set out to solve, such

as shadows shifting slightly because someone raised a shade.

Very advanced and ambitious robots were failing at very simple

tasks that simpler robots solved well. And this was precisely the

point Brooks was making.

Elephants don’t play Chess7 because they don’t need to. It’s

not adaptive for them. Why would they waste their precious

brain capacity on this, and why would the elephants’ genes

waste space coding for them being able to learn to play Chess?

In a similar way, Brooks showed that his robots could outper-

form many more advanced robot designs by throwing away all

those extra layers of “general problem-solving capacity” and

just getting on with solving whatever problem the robot was

meant to solve by connecting the inputs almost directly to

the outputs and devising some simple rules. It just seems to be

much easier to design a robot that actually works that way. If

you have ever worked in a large organization with multiple lay-

ers of management and bureaucracy, and observed how much

more easily you could get things done if you just bypassed

all that management and bureaucracy, you can probably

relate.

34 Chapter 3

Where does the notion of intelligence as adaptive behavior

leave us with regard to the question of human intelligence and

machine intelligence? One possible conclusion is that it is now

meaningless to talk about whether a computer is intelligent “in

general,” just as it is meaningless to talk about whether an ani-

mal is intelligent in general. One can only ever talk about how

well suited a computer program or an animal is to solving a par-

ticular problem or surviving in a particular environment.

But this is certainly a rather boring answer. It is also not a very

useful one, at least not for artificial intelligence researchers who

still want to cling to an idea that there is such a thing as “intel-

ligence” that software (or humans, or animals) can have more

or less of. Can we do better? Can we keep the idea of adaptive

behavior and come up with a better definition of intelligence, and

thus of artificial intelligence?

Getting Less Specific

Let’s see if we can save the idea of intelligence while acknowl-

edging that intelligence is always relative to some environment

or task. This is what Shane Legg and Marcus Hutter, at the Swiss

AI Institute IDSIA where I also worked for a while, attempted to

do in an influential 2007 paper.8 The basic idea of Legg and Hut-

ter is that the universal intelligence of an agent (human, computer

program, or something else) equals your ability to perform not

only one task but many tasks—in fact, all possible tasks. But the

simpler tasks are more important, and the more complex a task

is, the less it weighs in the final summation.

This might need some explanation. What Legg and Hutter

propose is an equation that in theory could be used to assign

any agent (human, machine, or otherwise) a value between 0

What Is (Artificial) Intelligence? 35

and 1, where 0 means incapable of doing anything useful and

1 means perfectly, universally intelligent. The universal intel-

ligence of the agent is defined as the sum of its performance

over all possible tasks. Tasks are basically anything that an agent

could fail or succeed on (predicting stock prices, tying shoelaces,

making friends at a party). The agent’s performance on each task

is rewarded with a number between 0 and 1, where 0 is complete

failure and 1 complete success. By dividing with the number of

tasks, you get the agent’s average performance on all tasks. In

order to give more priority to the more fundamental tasks, those

are weighted higher in the calculation; essentially, the impor-

tance of each task is inversely proportional to the shortest pos-

sible description of that task.

Are you still with me? Good. My description is rather techni-

cal, but the basic ideas can be summarized: (1) intelligence can

be measured as your ability to solve problems and (2) you should

measure intelligence over all possible problems, but (3) simpler

problems (those that can be easily described) are more elemen-

tary and your ability to solve these should count more.

I think this makes a lot of sense. It might not accurately cap-

ture all the various meanings of the word intelligence, but I think

it accurately captures one sense of intelligence that is very useful

for developing artificial intelligence. You could define the search

for artificial intelligence as the search for agents that have higher

and higher universal intelligence.

It is not a practical measure, however. Actually, that’s a bit of

an understatement. You cannot test the universal intelligence

of any given agent using the formula given by Legg and Hutter,

because you need to test it on all possible tasks. But there are

infinitely many tasks, and you don’t have that much time. In

addition, the shortest possible description of a task (the so-called

36 Chapter 3

Kolmogorov complexity) is not computable. You cannot, even

in theory, be sure that you have found the shortest description

of a task. So to actually measure the intelligence of a program,

we will have to look for something more practical.

Doing Better Than Humans

Defining intelligence in a way that is useful for artificial intel-

ligence and at the same time true to our intuitive notion of

intelligence seems to be far from easy. So maybe we should look

at defining artificial intelligence—the activities and technology

that are we typically refer to when using that term—without

first trying to settle on a definition of intelligence. Let’s be

pragmatic. Versions of the following definition have been pro-

posed by different people: “Artificial intelligence is the quest

to make computers be able to do things that humans currently

do better.”

This is a refreshingly nonconstraining description. If we cre-

ate a piece of software that understands human speech better

than most humans do, that is progress in artificial intelligence.

Creating software that can look at an X-ray of a human chest,

diagnose the disease, and propose a course of treatment would

also be progress in artificial intelligence. A self-driving car that

obeys all traffic rules and avoids running over children who sud-

denly run out into the road? Definitely AI. And creating software

that would beat a strong human player in a game such as Star-

Craft or DOTA would certainly count as progress in AI.

However, isn’t this definition a bit too wide? Imagine that you

invented an artificial liver. (You would become rich!) Cleansing

the blood is something that we currently can’t do very well with

artificial systems; actually, livers are the only devices that can do

What Is (Artificial) Intelligence? 37

it well. That’s why you need a liver transplant to survive if the

one liver that your body came with gets messed up. However, it

feels very weird to say that creating an artificial liver would rep-

resent progress in artificial intelligence. It’s more like a solving a

chemical problem, isn’t it?

One could argue that in order to be artificial intelligence, the

technology needs to be able to do something that humans do

better consciously. I don’t know about you, but I’m certainly not

conscious of what my liver is doing right now. I’m not conscious

of how I understand spoken language either, and I’m only partly

conscious of the strategies I employ when I play Chess or the

action adventure game Bloodborne.

Another issue, or perhaps feature, with this definition is that

it includes narrow AI. It is entirely possible to imagine a system

that drives perfectly in city traffic or one that issues better diag-

noses of chest diseases than any doctor, but makes no progress

whatsoever toward more general AI—no progress toward some-

thing that would, for example, pass a Turing test.

The distinction between narrow AI and general AI (or artifi-

cial general intelligence—AGI, as some call it) is important for

another reason. Occasionally you might hear people say that

“AI has failed.” Researchers have been working on AI since the

1950s, but there is still no Robocop, HAL, or Wall-E around

or even something that could pass the Turing test. From the

perspective of general AI, it is true that we have not yet pro-

duced AI. However, it took much more than fifty years from the

invention of paper kites until the Wright brothers built the first

self-powered flying machine,9 including hundreds of years of

technical developments of wheels, engines, theory, and materi-

als. And you could certainly say that there has been plenty of

technical development in AI since the 1950s.

38 Chapter 3

From the perspective of narrow AI, the claim that AI has

failed is utterly false. Much of the technology you use every day

and that our society is built on started as AI research. The image

recognition software in your phone camera that helps you take

better photos, the voice processing algorithms in your personal

assistant software, your GPS navigator that finds the shortest

route to the concert venue, and of course the creepy suggestions

from Facebook about who you should add as a friend: it is all the

result of AI research. In fact, the object-oriented programming

style of programming that most software you use is programmed

in, and the relational database model that almost every website

uses also started as research into how to make machines truly

intelligent. It could be argued that reproducing intelligence was

one of the driving forces for the original inventors of the com-

puter. However, it seems that as soon as AI research produces

something that actually works and is useful, it’s spun off into its

own research field and is no longer called artificial intelligence.

From this perspective, it would be only slightly irreverent to

define artificial intelligence as any ambitious computer technol-

ogy that doesn’t quite work yet.

So, What Is (Artificial) Intelligence?

You might be forgiven for running out of patience at this point.

I’ve spent this entire chapter bouncing from one definition of

intelligence and artificial intelligence to another, seemingly finding

shortcomings in each. I started with describing the Turing test as

a test and implicitly a definition of artificial intelligence, but con-

cluded that it doesn’t test for lots of things that a normal human

being does and which seem to require intelligence (cooking,

tying your shoelaces, a knowing smile), and that it would thus

What Is (Artificial) Intelligence? 39

be possible for a rather unintelligent being to pass the test. Also,

the test is highly dependent on the particular human interroga-

tor; some humans might fail to spot an obvious AI, and we don’t

want the definition of whether a machine is actually intelligent

to depend on frail human judgment. Next, we discussed the idea

of intelligence as adaptive behavior, where intelligence would

be something completely different depending on the environ-

ment an agent (a surgeon, a sturgeon, a vacuuming robot) lives

in. But this sort of evades the question and does not allow us to

say that one agent is more intelligent than another. So we then

considered the idea that universal intelligence is the average per-

formance of an agent on all possible problems, weighted by the

simplicity of the problems. This makes sense theoretically but is

impossible to measure in practice. Finally we discussed the idea

that AI is simply about trying to create software (and occasion-

ally hardware) that tries to do things than humans currently do

better than computers.

The truth is that there is no commonly agreed definition of

either of these concepts, and even experts frequently talk about

intelligence and artificial intelligence with different implicit

meanings depending on the context. We’ll just have to live with

it. So in the rest of this book, I will use artificial intelligence to

mean either of the following things, depending on what I am

talking about:

1. The quest to build intelligent machines, for some definition

of intelligence.

2. Whatever people who call themselves artificial intelligence

researchers do.

3. A set of algorithms and ideas developed by artificial intelli-

gence researchers. The minimax and MCTS algorithms from

40 Chapter 3

chapter 2 are good examples of AI algorithms, and I will pre-

sent more such algorithms in coming chapters.

Finally, what did Alan Turing—inventor of the Turing test

and arguably the first person to pose several key problems in

AI—think? Well, contrary to what many believe, Turing did not

propose what is now known as the Turing test as a definition of

artificial intelligence; instead, he proposed it to show that our

whole concept of intelligence was flawed and that there was no

point in arguing about whether some machine was intelligent.

Turing thought that we would eventually develop software that

would pass the test he had invented, but that “the original ques-

tion, ‘Can machines think?’ I believe to be too meaningless to

deserve discussion.”10

4 Do Video Games Have Artificial Intelligence?
Chapter 4
Do Video Games Have Artificial Intelligence?

© Massachusetts Institute of TechnologyAll Rights Reserved

Many, perhaps most, video games feature so-called nonplayer

characters (NPCs). These could be adversaries, allies, bystanders,

or something else. The point is that they are controlled not by

the player (you) but by the computer. Usually people refer to the

way these NPCs behave as the “AI” of the game.

As we have established that there are many different views

on what artificial intelligence is, let us simply accept that moni-

ker for whatever controls the NPCs in video games. But how

exactly does the AI in a typical video game work? Behold a little

dramatization.

Seven Seconds in the Life of Enemy 362

Enemy 362 spawned 43 minutes into the game session. The

game had already spawned 361 enemies in this play session; the

player had killed 143 of these, and the others had simply expired

when the player left the zone of the game in which they existed.

The player had made her way into the third level of this rather

generic first-person shooter (FPS) (I think of it as something like

a Call of Duty game, but it could also be something like Gears of

War, or Half-Life), and her character was now single-handedly

42 Chapter 4

assaulting the hideout of an infamous international terrorist (see

figure 4.1). Enemy 362, looking like a typical lower-rank terror-

ist with ragged combat fatigues, a black scarf covering the lower

half of its face, and a Kalashnikov assault rifle, was tasked with

failing to protect the terrorist boss at the end of the level. Unless

the player really messed up, of course.

As always—in every game session—enemy 362 spawned at

the same place, next to the abandoned-looking hut, as soon as

the player passed the third checkpoint of the level. When enemy

362 came into existence, its mind was in state 0. This is how the

mind of enemy 362 looks:

• State 0: Guard. Slowly walk back and forth between the aban-

doned hut where it spawned and the palm tree, looking back

and forth. If the player character appears within the field of

vision, go to state 1.

Figure 4.1
First person-shooters are so called because you view the world from a

first-person perspective and, well, shoot things. Call of Duty: Modern

Warfare 2 (Infinity Ward, 2009) is a good representative of the genre.

Do Video Games Have Artificial Intelligence? 43

• State 1: Take cover. Run as fast as possible to the nearest cover

point. A pile of sandbags are suitably located between the

abandoned hut and the palm tree. When cover is reached, go

to state 2.
• State 2: Stay in cover. Stay crouched behind cover so as to be

as hard to hit as possible. Set a timer for a random amount

between 1 and 3 seconds. When that amount of time has

passed, go to state 3. If at any point the player character

advances beyond the point of cover, go to state 4.
• State 3: Fire from cover. Stand up behind cover and fire at the

player character, with a random deviation of 5 degrees so as

not hit too often. Set a timer for either 1 or 2 seconds. When

that time has passed, go to state 3. If at any point the player

character advances beyond the point of cover, go to state 4.
• State 4: Attack player. Run straight toward the player along the

shortest path, firing continuously at the player.
• State 5: Die. If at any point health is reduced to 0, fall down on

the ground and do nothing more.

The architecture of enemy 362’s mind is called a finite state

machine. This is because it is organized as a finite number of

states,1 where each state contains instructions for how to behave

in that state. Incidentally, all of the NPCs in this game share this

architecture, but the different types of enemies differ in which

particular states they have.

In states 1 and 4, enemy 362 is running toward a position.

This is accomplished using the A* algorithm, which is a path-

finding algorithm. In other words, it is a method for finding

the shortest path from point A (for example, where a character

is standing) to point B (for example, behind some sandbags). A*

works as follows:

44 Chapter 4

1. Start at point A, the starting position, and select this as the

active position.

2. Look at all the positions next to the active position and find

out which ones are possible to go to (they are not, for example,

inside a wall). In this example, it might look at eight points

in a circle with a diameter of half a meter around the active

position.

3. Those positions that are possible to go to are added to a list of

available positions, which is sorted according to how far they

are to the goal (point B) along a straight line.

4. Select the position that is closest to the goal2 from this list,

and remove it from the list. (The other points are kept in the

list.) Mark this point as the active position. Go to step 2.

Essentially the algorithm keeps track of a large number of

positions, and constantly explores the most promising one. Run-

ning this process will always result in finding the shortest path

between point A and point B, and usually it will find it pretty

quickly—much faster than if it had investigated all possible posi-

tions in the area. (There are some further complexities to the

algorithm, but these are not necessary to discuss to give you a

general idea of it.)

The finite state machine architecture and the A* algorithm

play central roles in most games and are also used widely in

robotics and self-driving cars. Many games use additional algo-

rithms on top of this to control NPC behavior, and some do

not use any of these techniques (in recent years, an alternative

to finite state machines, called behavior trees, has become pop-

ular). But it’s fair to say that finite state machines and A* are

among the most common algorithms for implementing NPC

behavior in commercial video games.3

Do Video Games Have Artificial Intelligence? 45

So let us return to enemy 362. After suddenly finding itself in

the world, it dutifully starts walking from the hut to the palm

tree. It gets only halfway there, though, before it spots the player

character advancing toward it. It goes into state 1 for only a frac-

tion of a second because it is already next to the sandbags. It

goes to state 2 for a few seconds and then to state 3, standing up

and firing straight at the player character. However, the player

character has hidden behind cover of her own and is not hit.

Enemy 362 goes back to state 1 while the player character lobs a

grenade. The force of the explosion instantly depletes all health,

causing a rapid transition to state 5.

Enemy 362 did not have a name and is quickly forgotten by

the player as she advances further. There would not normally be

anyone to write the biography of enemy 362, for in truth there

is not much to remember. The flip side of this is that nobody

would feel any guilt for dispensing with enemy 362 so quickly.

It’s not like there was any actual mind to put an end to.

Is This Really All There Is?

You may note that after pulling back the curtain on the Wizard

of Oz, there are only smoke and mirrors after all—some pretty

impressive smoke and well-polished mirrors, but still. Of course,

the actual implementation of NPC control in any given game is

much more complex than what I have explained, but the prin-

ciples are very similar.

You might also notice everything that’s missing. The AI con-

trolling enemy 362 is not a complete mind in any way. It cannot

do anything other than what is recorded in those five states. If

you hide behind a wall for an hour, enemy 362 will keep tran-

sitioning between states 2 and 3 until you come out. It will not

46 Chapter 4

decide that it has had enough and proceed to flank you instead

or call on its friends for help.

It’s true that there are examples of more interesting NPCs

in some existing games, even among first-person shooters. For

example, the horror-themed shooter F.E.A.R. introduced the use

of planning algorithms in modern action games. Using plan-

ning, enemies could coordinate their attacks and do such things

as flanking the player; the player could also overhear the chatter

between enemies to try to second-guess their plans. The Halo

series of first-person shooters has also shown how more engag-

ing NPC behavior can be implemented; for example, enemies

often move in squads, some enemies retreat when others are

killed, and some enemies will try to guess where you will appear

if you try hiding from them. A more recent example is Shadow

of Mordor, a game where NPCs remember their encounters with

you and refer back to them in future fights.4

Still, these examples are pretty much the state of the art—at

least for this type of game—and each of the advances could be

described as a very specific trick rather than an advancement

in general-purpose AI. Just like our fictive enemy 362 from a

fictive generic first-person shooter, the NPCs of even the most

sophisticated games are limited in the forms of behavior they

can express and the forms of interaction they can understand.

Here is a very partial list of things that enemy 362 cannot do:

• Figure out that you were hiding behind a wall for an hour

instead of assaulting it, and so consider alternative options,

such as flanking you.
• Throw pebbles at you until you move from behind that wall.
• Call for backup.
• Feel fear.

Do Video Games Have Artificial Intelligence? 47

• Have a philosophical conversation with you, shouted across

that wall, about the meaning of war and why you and it are

fighting each other.
• Propose, and play, a nice game of Chess with you instead.
• Tie its shoes.
• Make a cup of decent coffee.

Of course, it is entirely possible to write code that would

allow enemy 362 to do each of these things—except, perhaps,

feeling fear.5 Indeed, some games include NPCs that flank you,

throw pebbles at you, hold (scripted) philosophical conversa-

tions with you, and so on. But each of these capacities has to

be built specifically by a human designer. Someone would have

to specifically write the program code that makes it possible for

enemy 362 to throw pebbles (maybe add a few states to the finite

state machine and an algorithm for figuring out where to throw

the pebbles), or write the lines in the philosophical discussion

that you would be able to choose to engage in, complete with an

interface where you can select your responses. If enemy 362 is to

be able to put the AK47 away and pull out a Chess board to play

with you, the game developers need to implement a minimax

algorithm to act as enemy 362’s Chess brain and, of course, the

graphics and interface elements to allow playing Chess. None of

these capabilities will emerge magically from the AI of enemy

362 because, as we saw, its “brain” is just a finite state machine

and a pathfinding algorithm.

At this point, I would like to contrast what I just told you

with the wild imagination I had when I was eleven years old

and played games on my Commodore 64, as I related in the

prologue. I kept fantasizing about what would happen if I played

the games in ways beyond which I could: of sailing beyond the

edge of the map in Pirates!, of taking control of (or just talking

48 Chapter 4

to) individual people in a strategy game such as Civilization, or

bringing my favorite characters from other games into Bubble

Bobble. Basically, I fantasized that games were infinite and had

room for infinite possibilities.

Another way of seeing this is that I imagined that interacting

with games could have something like the amazing possibility

space of interacting with a human being or even a cat or a dog.

You are reading this book now and thinking thoughts that you

never thought before, following along with my argument or per-

haps formulating counterarguments of your own. Your reactions

are likely to surprise me, or at least I would not be able to predict

them. Could games not be the same?

You might expect that I—an adult and professor who has pub-

lished hundreds of articles about artificial intelligence, in par-

ticular about artificial intelligence and games—have overcome

these childhood fantasies and adopted a more sober view. Well,

no. Far-fetched fantasy scenarios are necessary for scientific pro-

gress. So let me present you with one vision of what it would be

like to have games that more thoroughly built on AI methods.

What If Video Games Had Actual AI?

Let’s step into the future and assume that many of the various AI

techniques we are working on at the moment have reached per-

fection and we could make games that use them. In other words,

let’s imagine what games would be like if we had good enough

AI for anything we wanted to do with AI in games. Imagine that

you are playing a game of the future.

You are playing an open world game—in other words, a

game in which you roam a relatively open space and pur-

sue game objectives in any order you choose. (Examples of

Do Video Games Have Artificial Intelligence? 49

popular open-world game series include Grand Theft Auto, The

Elder Scrolls, and The Legend of Zelda) In this hypothetical future

open world game, you decide that instead of going straight to

the next mission objective in the city you are in, you feel like

driving (or riding) five hours in some randomly chosen direc-

tion. West, maybe. The game makes up the landscape as you

go along, and you end up in a new city that no human player

has visited before. In this city, you can enter any house (though

you might have to pick a few locks), talk to everyone you meet,

involve yourself in a completely new set of intrigues, and carry

out new missions. If you had gone in a different direction, you

would have reached a different city with different architecture,

different people, and different missions—or a huge forest with

realistic animals and eremites, or a secret research lab, or what-

ever else the game engine comes up with.

Talking to these people you find in the new city is as easy as

just talking to the screen. The characters respond to you in natu-

ral language that takes into account what you just said. These

lines are not read by an actor but generated in real time by the

game. You could also communicate with the game though wav-

ing your hands around, dancing, or facial expressions or other

exotic modalities. Of course, in many (most?) cases, you are still

pushing buttons on a keyboard or controller because that is

often the most efficient way of telling the game what you want

to do.

It is perhaps needless to say, but all NPCs navigate and gener-

ally behave in a thoroughly believable way. For example, they

will not get stuck running into walls or repeat the same sentence

over and over (well, not more than an ordinary human would).

This also means that you have interesting adversaries and col-

laborators to play any game with without having to resort to

50 Chapter 4

waiting for your friends to come online or have to resort to being

matched with annoying thirteen-year-olds.

Within the open world game, there are other games to play,

for example, by accessing virtual game consoles within the game

world or proposing to play a game with some NPC. These NPCs

are capable of playing the various subgames at whatever level of

proficiency that fits with the game fiction, and they play with

human-like playing styles. It is also possible to play the core game

at different resolutions, for example, as a management game or

as a game involving the control of individual body parts, by

zooming in or out. Whatever rules, mechanics, and content are

necessary to play these subgames or derived games are invented

by the game engine on the spot. Any of these games can be lifted

out of the main game and played on its own.

The game senses how you feel while playing the game and

figures out which aspects of it you are good at, as well as which

parts you like (and, conversely, which parts you suck at and

despise). Based on this, the game constantly adapts itself to be

more to your liking, for example, by giving you more stories,

challenges, and experiences that you will like in that new city

that you reached by driving five hours in a randomly chosen

direction—perhaps by changing its own rules. It’s not just that

the game is giving you more of what you already liked and mas-

tered. Rather more sophisticatedly, the game models what you

preferred in the past and creates new content that responds to

your evolving skills and preferences as you keep playing.

Although the game you are playing is endless, is of infinite

resolution, and continuously adapts to your changing tastes and

capabilities, you might still want to play something else at some

point. So why not design and make your own game? Maybe

because it’s hard and requires lots of work? Sure, it’s true that

Do Video Games Have Artificial Intelligence? 51

back in 2018, it required hundreds of people working for years

to make a high-profile game and a handful of highly skilled pro-

fessionals to make any notable game at all. But now that it’s

the future and we have advanced AI, this can be used not only

inside the game but also in the game design and development

process, so you simply switch the game engine to edit mode and

start sketching a game idea—a bit of a storyline here, a character

there, some mechanics over here, and a set piece on top of it. The

game engine immediately fills in the missing parts and provides

you with a complete, playable game. Some of it is suggestion.

If you have sketched an in-game economy but the economy is

imbalanced and will lead to rapid inflation, the game engine

will suggest a money sink for you, and if you have designed gaps

that the player character cannot jump over, the game engine

will suggest changes to the gaps or to the jump mechanic. You

can continue sketching, and the game engine will convert your

sketches into details, or jump right in and start modifying the

details of the game. Whatever you do, the game engine will work

with you to flesh out your ideas into a complete game with art,

levels, and characters. At any time, you can jump in and play the

game yourself. You can also watch any number of artificial play-

ers play various parts of the game, including players that play

like you would have played the game or like your friends (with

different tastes and skills) would have played it.

Why Is the Future Not Here Yet?

Why do we not already have something like what I just described?

Because we don’t have the technology yet and because game

design and development practices are not very good yet at inte-

grating the AI technology we have.

52 Chapter 4

Let us start with the second reason. Artificial intelligence

is on everyone’s lips these days, and advances in AI methods

are published almost daily. Yet the game industry has seemed

curiously uninterested in incorporating most AI techniques in

their games. Many academic AI researchers have proposed new

AI algorithms for games and excitedly presented them to game

developers, only to see said game developers explain (in a more

or less polite manner) how the new algorithm is pointless to

them. Sometimes this can be attributed to AI researchers’ not

understanding games or to game developers’ not understanding

AI, but most often this is because the games industry just doesn’t

work that way.

Essentially, the games industry is confined by economic reali-

ties to be highly risk averse and rather shortsighted. Big-budget

video games typically take one to three years to develop and

may involve hundreds of professionals during this time; it often

consumes most or all resources of a single studio. At the same

time, the games market is hit-driven, with mediocre games mak-

ing very little money. So the game has to be a hit or the studio

goes bust. Deadlines are tight, so the technology needs to be cer-

tain to work. Because so many game development studios don’t

know whether they will be around after they release their next

game, they typically have little in the way of research or long-

term development.

Under these conditions, some new AI technology that might

work wonders, but also may be very hard to work with, is not an

easy sell to most game developers. Instead, games are designed

around existing and proven technologies, such as the finite state

machine and pathfinding that makes up the brain of enemy 362.

Games are designed to not need (nontrivial) AI. We will return

Do Video Games Have Artificial Intelligence? 53

to the question of why games are designed around the lack of AI

and what can do about this in Chapter 9.

Now on to the first reason that the future is not here yet. Of

course we don’t have games like the one I envisioned because we

don’t have the technology yet. Currently, our mature AI tech-

niques mostly allow for solutions to well-defined computational

problems. It is very hard to build AI that can deal with situations

that are not carefully defined, almost scripted. The kind of AI

that can deal with emergent situations, learning and adapting, is

to a large extent still on the drawing board.

And let us not forget that for some types of games, the lim-

ited capabilities of current artificial intelligence method fall

short even for the most narrowly defined problems. Take strat-

egy games—for example, any game in the Civilization series of

turn-based epic strategy games. In these games, you guide a

civilization from the Neolithic age to the space age, meanwhile

engaging in exploration, expansion, warfare, and research. Simi-

larly to other strategy games, at any given point you typically

have a large number of “units” (military or otherwise) scattered

around the world, and you need to tell them all what to do.

Compare that to Chess, or Go, or Checkers, where you only

move or place one unit every turn. The fact that you have so

many units at the same time in a game such as Civilization means

that the number of possible moves quickly gets astronomical

(figure 4.2). If you have one unit that you can move to ten dif-

ferent places (or generally take ten different actions with), you

have a branching factor of 10; if you have two units, you have

a branching factor of 10 * 10 = 100; three units, 10 * 10 * 10 =

1000 … We quickly reach branching factors of millions and even

billions.

54 Chapter 4

Under such circumstances, algorithms such as minimax

quickly break down. There are simply too many potential actions

to consider, and the search can hardly begin looking at the con-

sequences of each. This is the reason that Civilization, which

is primarily a single-player game,6 is infamous for its “bad AI”;

computer-controlled units rarely coordinate with each other and

generally appear stupid. To offer a competitive challenge, the

game has to “cheat” by effectively conjuring units out of thin

air where the player is not looking. Similar situations occur in

other strategy games. The real-time strategy game StarCraft is a

favorite for competitive play between humans, and there have

been competitions between AI players since 2010. Despite all the

Figure 4.2
The games in the Civilization series (Firaxis, 1991–2016) allow you to

lead a civilization through thousands of years of expansion, research,

diplomacy, and war. The possibility space is quite overwhelming for

computers and humans alike.

Do Video Games Have Artificial Intelligence? 55

efforts, the best StarCraft-playing AI barely plays better than a

human beginner player. The complexity of the game—the num-

ber of actions available to take with repercussions on different

timescales—simply overwhelms our current AI methods.7

So far, we have only looked at work on using AI to play

games or control the characters in games (two closely related

tasks, though not the same). As we saw in chapter 2, there has

been work on using AI to play classic board games since before

there were computers; recently, more and more researchers

have started working on AI that can play video games and new

approaches to creating interesting nonplayer character behavior.

But AI methods can be used for much more than this. If we are

going to realize the vision of AI-driven games we just discussed,

we will need AI that can adapt its behavior, learn from previous

failures and successes, understand what the player knows and

likes, create new levels and games, and work with us on design-

ing experiences. In the next few chapters, we will explore some

recent attempts at inventing AI that can do these things.

5 Growing a Mind and Learning to Play
Chapter 5
Growing a Mind and Learning to Play

© Massachusetts Institute of TechnologyAll Rights Reserved

So far in this book, you have read about a couple of different

types of algorithms that can be used to play a game in some sense

—in particular, the minimax algorithm for board game playing

in chapter 2 and the finite state machines and A* search for FPS

bots in chapter 4. These algorithms are designed by humans and

integrated by humans into the complex software systems we call

video games. Building such systems is often what creating AI

is about: assembling various components (algorithms) so that

they support each other, tuning them to work well in concert,

testing how the final product works, and then going back and

redoing things—like you would build a bike, a water pump. or

an electronic circuit. Constructing such AI is a craft and a rela-

tively pedestrian activity that does little to appeal to the roman-

tic mind drunk on the promise of artificial intelligence that

learns on its own and decides for itself.1 Also, and perhaps more

important, it’s a labor-intensive and therefore expensive process

that any game developer (or anyone else depending on some

degree of artificial intelligence in her product) would love to see

automated.

The idea of an AI that develops itself so that you don’t have

to program it—just tell it what sort of thing it should learn to do

58 Chapter 5

well—sounds a lot more appealing than hand-coding AI to an

AI romantic, as well as to a business-minded person focusing on

the financial bottom line. So let’s find out how it can be done.

One way is to try to create AI systems the way we ourselves were

made: through Darwinian evolution.

A Very Simple Idea

The idea of evolution by natural selection seems utterly unre-

markable and almost self-evident to most people in modern

Western societies. But just over 150 years ago, when Charles

Darwin published The Origin of Species, it was radical, heretical,

and dangerous.2 It was also far from obvious to everybody that it

worked or even made sense. Because the core ideas of evolution

by natural selection can easily become mixed up with all kinds

of other ideas, let’s try to boil the concept down to its bones to

see whether we can reproduce it in a computer.

For evolution to work, you need three ingredients: variation,

(imperfect) heredity, and selection. Variation means that there

should be some difference among individuals. This implicitly

assumes that there are things called individuals—we have not

gone into detail on what these are yet—and that there’s more

than one individual. The set of all individuals is called a “popula-

tion.” Heredity means that the individuals can reproduce, either

on their own or together with other individuals, and that the

offspring resulting from this reproduction somehow resemble

their “parents.” Generally it’s assumed that the heredity is not

perfect, so that the offspring are not identical clones of their

parents; if the population is small and parents can reproduce

asexually without mixing with other parents, this condition

becomes necessary. Finally, selection simply means that some

Growing a Mind and Learning to Play 59

individuals get to have more offspring than others, for some

reason. We say that individuals that get to have more offspring

are more “fit” than the other; an individual’s “fitness” can be

approximated by how many grandchildren that individual gets

to have.

Let’s consider this in the context of rabbits. First, we have vari-

ation. All rabbits are different from each other, and even if you

or I cannot tell the difference between one rabbit and another,

they presumably can themselves. Some of this variation is func-

tionally meaningful; for example, some rabbits might have lon-

ger legs so they can run faster and others have sharper eyes so

they can spot foxes at a greater distance. Then, we have heredity.

The blueprint for a rabbit, as for all other animals and plants,

is in its DNA. Rabbits (frequently) practice sexual reproduction

(after all, they breed like rabbits) resulting in the DNA from one

rabbit recombined with that of another. There are typically also

some small changes introduced to the DNA in each generation;

these are due to transcription errors when the DNA string is cop-

ied in the cell division process and are called mutations. Finally

we have selection. This can happen in many ways—I know very

little about what makes rabbits attractive to each other—but an

obvious form of selection is that rabbits that get caught by a

fox do not get to have as many offspring as those who outrun

it. Selection is dependent not only on the individual rabbit but

also on the rest of the population: to outrun the fox, you don’t

actually have to be faster than the fox, you just have to be faster

than some other rabbit. Therefore, every small improvement to

running speed, evasion tactics, or eyesight could mean a higher

fitness for a rabbit. Over very many generations of rabbits, we

get very good rabbits, or at least rabbits that are good at outrun-

ning foxes.

60 Chapter 5

Of course, foxes are also subject to evolution through natu-

ral selection. While variation and heredity are very similar for

the fox population and the rabbit population, selection works

somewhat differently. Foxes that fail to catch rabbits ultimately

starve and cease their foxhood without reproducing, whereas

those that catch and eat rabbits might acquire sufficient nutri-

ents for surviving and having offspring. Of course, whether a

fox catches a rabbit depends on both the fox and the rabbit (and

possibly the other rabbits in the same herd). So the fitness of the

fox is coupled to the fitness of the rabbit in a process known as

coevolution; the fox population and the rabbit population enter

an “arms race” where the foxes develop better and better tactics

and bodily features for pursuing rabbits, and rabbits develop bet-

ter and better ways of evading foxes. After many generations of

rabbit and fox coevolution, some rabbits are still caught by foxes

and most still escape. But if a rabbit from a thousand genera-

tions back meets a latest-generation shiny new fox, the fox is

almost certain to win, and vice versa. Coevolutionary arms races

are responsible for a range of fascinating phenomena in nature,

including the extreme speeds of cheetahs and gazelles, the long

beaks of hummingbirds, and the peculiar shape of the flowers

which the hummingbirds pollinate, that hides their valuable

nectar deep within the flower.

But this chapter is not going to literally be about the birds

and the bees. I promised to talk about how to grow a mind, so let

us see how evolution could apply to computer programs. First,

we have variation. Imagine a population of different computer

programs; they differ in their source code, so they also differ in

what they do. In the simplest case, these programs are all ran-

dom in the beginning. Then we have heredity. We can make off-

spring from a program by simply copying it, and then make the

Growing a Mind and Learning to Play 61

heredity imperfect by introducing a few mutations (changing a

few small pieces of the source code). We could also combine the

source code from two parent programs, taking some pieces from

one and some from the other, to create an offspring program in

a process known as crossover. Finally, we come to selection. We

simply measure how good the programs are at what they do and

assign higher fitness to those that perform some task better. The

task could be anything you want a computer program to do:

sort a list, paint a picture, perhaps play a game. Based on this

fitness measurement, we simply throw away the bad programs

and make mutated or recombined copies of the good ones. It’s a

code-eat-code world in there!

Does this makes sense to you? If it doesn’t, you have my full

understanding. It is a bit hard to believe initially that we can

evolve programs because there are good arguments as to why

it should not work. Random programs, for example, are not

likely to be very good at anything at all; in fact, they will likely

not even run. So how could you give a population of worthless

computer programs any sensible fitness values? As for mutation,

introducing random changes to a program will most likely just

make it worse, probably even break it so it won’t work at all. It is

hard to see how this could make programs better at all.

And yet evolution does work, not only in nature but also in

the computer. Evolutionary algorithms, as algorithms based on

the principles of evolution by (artificial) selection are called,

are frequently used for tasks as diverse as forecasting financial

time series, controlling jet engines, and designing radar anten-

nas. Also, some of the best game-playing AIs are at least partly

constructed by evolution, as we shall see. In order to help under-

stand how it is that this unlikely process actually works, it helps

to consider the following.

62 Chapter 5

First, while it is true that randomly constructed programs

will usually be extremely bad at solving any given task, it’s not

necessary that any of the programs actually solve the task they

are given. All we need to get evolution started is a way of dis-

tinguishing which of the programs are a little less worthless at

solving their task—which of them mess it up the least—and

select those for reproduction. Over sufficiently many genera-

tions, the programs can then move from atrocious to almost

hopeless to merely bad to half-bad to okay to rather good to

good to excellent. But in order for this to happen, we need a

fitness function, a way of assigning fitnesses to programs, that

can capture all these nuances. This is one reason games are great

for AI research: it is usually easy to measure the performance of

a player very precisely through score or ranking against other

player. I describe later in this chapter how a good fitness func-

tion helped me evolve racing game drivers that drive better

than I do.

Second, it is true that random changes to a program written in

a standard programming language like Java, Python, or C++ are

likely to destroy the program; most code changes result in the

program not running at all, just like removing a single random

stick in a Jenga tower will likely lead the tower to collapse, or

removing a single random piece in a Chess game in an advanced

state of play will alter the game balance completely. But we don’t

need to use these languages when we evolve programs. Choos-

ing a correct representation for your programs is a very important

part of making evolution work. For many types of programs, we

now have representations where most small mutations to the

program are not disastrous, and many are actually beneficial for

the fitness of the program. In particular, a good way of represent-

ing these programs is as neural networks.

Growing a Mind and Learning to Play 63

A Very Small Brain

Like so many other concepts within artificial intelligence, you

can see (and talk about) neural networks from romantic or prag-

matic perspectives. From a romantic perspective, neural net-

works are little brain simulators, imitating the core functionality

of the brain’s neural circuitry. From a pragmatic perspective,

neural networks are just nonlinear equation systems, imple-

menting geometric transformations on input data.

Figure 5.1 illustrates a simple neural network. It is organized

into four layers: an input layer (with six nodes), two hidden

Hidden layers

Output layer

Input layer

Figure 5.1
This figure illustrates a very simple neural network. It is organized into

four layers: an input layer (with six nodes), two hidden layers (with four

and three neurons each), and an output layer (with only one neuron).

Each node (often called a “neuron” by analogy to biological neurons

in brains) belongs to a particular layer and is connected to all neurons

in the next layer. This type of neural network is called a feedforward

network, because values are fed (or propagated) forward from one layer

to the next.

64 Chapter 5

layers (with four and three neurons each), and an output layer

(with only one neuron). Each node (often called “neuron” by

analogy to biological neurons in brains) belongs to a particular

layer and is connected to all neurons in the next layer. This type

of neural network is called a feedforward network, because values

are fed (or propagated) forward from one layer to the next.

You use a feedforward neural network by assigning (“input-

ting”) values, called activations, to the neurons in the input

layer. These activations are then propagated to the next layer

via the connections between the neurons, and the connections

have values (called “weights”) themselves. When an activation

passes from one neuron to another, it is multiplied by the weight

of the connection between neurons. Because all neurons in one

layer connect to all neurons in the next layer, the activation of

a cell in some layer (e.g., the first hidden layer) is the sum of all

neuron activations in the previous layer (e.g., the input layer)

multiplied by the weights of the connections from that layer.

And then all this happens again when passing activations to the

next layer. And so on.

If the idea that lots of neuron activations, which are really

just numbers, are multiplied by other numbers doesn’t clarify

anything, try thinking of the neural network like a system of

pipes.3 Some kind of liquid (say, rum) is fed into the input layer

and then passed on from neuron through neuron through pipes

of varying diameter. The thicker pipes naturally carry more liq-

uid, so neurons with thick pipes from high-activation neurons

receive more liquid and are able to pass on more of it. Thickness

of pipes here corresponds to weight of connections.

It’s almost that simple, but there is one more important detail:

every time the activation for a neuron has been computed, it

passes through a nonlinear function (such as the hyperbolic

Growing a Mind and Learning to Play 65

tangent or the rectified linear function). This improves the com-

putational capacity of the neural network but understanding it

is not really essential to understanding what happens on a con-

ceptual level. Apart from that, it really is that simple. At least

the basics are. The basic idea of activations being passed from

neurons through connections of varying weights is the same in

almost all types of neural networks, even those that have con-

nections that vary in strength, loop back on themselves, and

share weights with other connections. Even the very large net-

works that are used in what is nowadays called “deep learning”

and that might have dozens of layers and millions of connec-

tions are at their core just equation systems or, if you prefer,

systems of pipes.

These simple computational constructs are surprisingly use-

ful and versatile; mathematically speaking, a sufficiently large

network can approximate any function. Neural networks can be

taught to recognize faces, drive cars, compose music, translate

text, and so on. Yes, they can also be taught to play games. But

first they need to be taught, or trained, meaning that all the con-

nection weights need to be set. Because the connection weights

define what the neural network can do, the same neural net-

work structure with different connection values could be good

at doing completely different things, such as conjugating French

verbs, playing football, or finding defects in steel sheets. And a

neural network with random connection weights is usually no

good at anything at all.

So, how do you train a neural network? There are basically

two ways. One is through evolutionary algorithms, as I’ve

described; the small changes to the program here refer to mak-

ing small changes to the connection weights. I’ll explain how

evolution can be used to train neural networks to play games in

66 Chapter 5

the next section. The other important way of training a neural

network is through making small changes in response to every

time the network makes a mistake and sending these corrections

backward in the neural network from the output layer to the

input layer. This is called backpropagation and we’ll see how that

can be used in the section after next.

Survival of the Fastest

When I started my PhD back in 2004, my plan was to use evo-

lutionary algorithms to train neural networks to control robots.

These robots would be rewarded for doing such things as follow-

ing other robots, not running into walls, solving a maze, and

so on. Because neural networks that got more rewards would

be able to procreate, in the end I would have a population of

pretty well-behaving neural nets. That was the plan, at least. At

that time, other researchers had already managed to teach robot-

controlling neural networks to do these things, but I was going

to do it … better! I had a couple of ideas about connecting several

neural networks together and training them one at a time, and

such things. However, when I got down to the business of actu-

ally trying to teach neural nets to control these robots, I found

out that this was a lot of hard work. The robots were slow and

frequently put themselves in situations I would have to rescue

them from, not to mention that I would have to contend with

tires that wore down, cables that broke, and so on. It seemed to

me that I was never going to make any real progress that way.

So I left the real world behind and turned to video games.

My idea was that I could use video games (instead of robots) as

environments for testing my algorithms. Video games have most

of the desirable qualities of a robotics problem and lack several of

Growing a Mind and Learning to Play 67

the highly undesirable qualities. In particular, you don’t have to

build an expensive robot or real-world obstacle course, you can

speed up the game so your testing happens much faster (thou-

sands of times faster in many cases) than real time, and when

something goes wrong, you can just restart the game. You don’t

have to sweep up the pixels after your game character crashes,

and you don’t have to pay money to build a new one.

I decided to start with racing games because they have a nice

difficulty curve: it’s relatively straightforward to learn the very

basics—just hit the accelerator to drive straight forward—but

then things get more complicated when you also have to take

curves and overtake other cars while avoiding colliding with

them. And apparently there is a lot to learn about how to best

conduct a car in a car race; otherwise, there would not be large

recurring international competitions on this matter.4 So I devel-

oped a simple car racing game and a way of driving cars with

neural networks.

The way the neural network is used to drive the car is pretty

simple: it connects the inputs of the neural network to what the

driver “sees” and the outputs to the steering wheel and pedals.

In one of my setups, I used eight neurons in the input layer:

six were connected to simulated range-detecting sensors that

returned the distance to the nearest track edge or other car each

along six different directions, one to a speedometer, and one to

a sensor that returned the angle relative to the track. The neural

network had one hidden layer of six neurons, and finally the

output layer had only two neurons, which were connected to

the accelerator/brake and steering.

Take such a neural network with random connection weights

and put it in control of a car, and it will either do nothing at all

or do something rather uninteresting, like drive off the track and

68 Chapter 5

crash. Take a hundred such networks with different random con-

nection weights, and some of them will do more interesting or

useful things than the others. In order to turn this into an evo-

lutionary algorithm, we need just a fitness function and a way

of doing selection and mutation. In this case, the fitness func-

tion was very simple: how far the car drove in 30 seconds. Using

a population of one hundred networks, the evolutionary algo-

rithm I used would try all of the networks and remove the fifty

networks that performed worst (drove the shortest distance in

the time allotted); it would then replace them with copies of the

fifty networks that performed best, but adding mutations in the

form of randomly changing some of the connection weights in

these networks.

This simple process worked like a charm. Within a dozen gen-

erations, I would have neural networks that could drive fairly

well, and within one hundred generations I would typically get a

neural network that could drive better than I could! Thus, I could

yet again experience being beaten in a game by an AI program

that I developed myself (an experience I highly recommend),

but in contrast to that Checkers-playing program from my class

assignment several years earlier, I had not really specified how

the program should solve its task but rather how the program

should learn to solve its task.

When I say the process worked like a charm, there’s a hitch.

It really did work like a charm when training the neural network

to drive around a particular racetrack. When taking the same

neural network and putting it in the car on a different racetrack,

things did not work very well at all: mostly the car would fail

to take turns when it should, and it veered off the track. I was

a little confused by this, but then I realized that the track I had

been training the neural networks to drive on was quite limited

Growing a Mind and Learning to Play 69

in the challenges it offered; for example, it contained only left

turns. So I instituted a new training regime: every time the net-

work learned how to drive well on one track, I added a new and

different racetrack to the fitness function, so that the fitness of

the neural network would depend on how it drove on several

tracks. This approach worked very well, and relatively soon evo-

lution produced neural networks that could drive proficiently

on any track I could come up with for them, though in general

they were a bit more careful drivers than the networks that had

been evolved on a single track only.

Now what about racing in the presence of other cars? Not

unsurprisingly, if you take a neural network that has been taught

to drive on its own track undisturbed by pesky competitors and

put it in a competitive race with other cars, mayhem ensues.

Because the network has never encountered other cars before, it

does not know how to avoid collisions, or that avoiding them

is a good idea, or even what car-to-car collisions are. This can

be rectified by training the network with other cars present and

usually leads to pretty good driving behavior—depending on the

fitness function. When we are no longer racing alone, we need

to go back and think again about the fitness function.

The fitness function that works so well for learning to race

alone on a track was to simply measure how far along the track

the car travels in 30 seconds. But in a real competitive car race,

what really matters is your position—ahead of or behind the

other car(s)—so maybe the fitness function should reflect that.

This would make the situation more like coevolution in the nat-

ural world, where the fitness of individuals in one species (or

group, more generally) is partly dependent on another species—

as with the example of rabbits and foxes earlier in this chapter.

And it certainly seems that successful strategies in a car race, as

70 Chapter 5

in any other game, would be partly dependent on how other

drivers drive.

To see what might happen if the fitness function mirrored

the reward structure of an actual car race, I changed the fitness

to a relative one—the position ahead of or behind the other car

at the end of race. Very quickly, the evolutionary process found

out that a viable strategy was to be very aggressive and push the

other car off the track. This behavior seemed to be easier to learn

than learning to drive fast, avoid collisions, and get a good lap

time. Or perhaps a network that learned a nonaggressive strat-

egy would be pushed out of the way by a neural network that

learned an aggressive strategy, and therefore receive lower fit-

ness. In any case, the composition of the fitness function could

easily be used here as a knob to turn aggressiveness up or down

in the evolved networks, something that could certainly be use-

ful when creating interesting characters in games.

Trial and Error on Speed

Evolutionary computation can be described as a process of

massive trial and error. It seems to be an enormously wasteful

process—all those neural nets that are somewhat worse than

the best neural nets of each generation are simply thrown away.

None of the information they encountered in their brief “lives”

is saved. Yet the process of evolution through selection works,

both in nature (as we are living proof of) and inside computer

programs. But is there another way we could learn from experi-

ence to create effective AI, perhaps preserving more information?

The problem of learning to perform a task given only inter-

mittent feedback about how well you’re doing is called the rein-

forcement learning problem, importing some terminology from

Growing a Mind and Learning to Play 71

behaviorist psychology (the kind where psychologists make rats

pull levers and run around in mazes) to computer science. There

are essentially two broad approaches to solving these problems.

The less common is to use some form of evolutionary algorithm.

The more common is to use some form of approximate dynamic

programming, such as the Q-learning algorithm.

You can think of it this way: whereas evolutionary comput-

ing models the type of learning that takes place across multiple

lifetimes, Q-learning (and similar algorithms) models the kind

of learning that takes place during a lifetime. Instead of learn-

ing based on a single fitness value at the end of an attempt to

perform a task (as evolution does), Q-learning can learn from

many events as the task is performed. Instead of making random

changes to the complete neural network (as happens in evolu-

tion), in Q-learning the changes are taken in specific directions

in response to positive or negative rewards.

In Q-learning, the neural network takes inputs that represent

what the agent “sees,” just like the evolved car control network I

described in the previous section. The networks also take inputs

describing what action the agent is considering to take; in the

car racing domain, it could be steer left, steer right, acceler-

ate, and brake (or some combination). The output is a Q-value,

which is an estimate of how good a particular action would be

in a particular state (situation). So instead of mapping sensor

inputs to actions, the network maps sensor inputs and actions

to Q-values. The way this neural network is used to do some-

thing, such as driving a car, is that every time it needs to make a

decision, it tests all possible actions and makes the one with the

highest Q-value in the current state.

Obviously the neural network needs to be trained before it is

useful; a network that outputs random Q-values is not going to

72 Chapter 5

win any races or solve any other problems, for that matter. The

basic idea of training a neural network using Q-learning is to

compare the predicted value of taking an action in a state with

the actual value of taking the action in the state, as observed

after having taken it. If the actual value differs from the predicted

value, the neural network is adjusted a little bit using the back-

propagation algorithm. For example, we don’t know whether

it’s a good idea to turn left in an intersection. So we try it, and

see what happens. Once we know what happens, we update our

belief about the value of turning left in that intersection.

But how do we know the true value of taking a certain action

in a given state? That depends on what feedback, or reinforce-

ment, the agent gets from the world. For example, when teaching

a neural network to car race, you may give it positive feedback

(rewards) every time it reaches the goal or perhaps every time it

clears a part of the track, and negative feedback (punishment)

every time it veers off the track or bumps into another car. If the

feedback is higher, or lower, than the network expected to get,

then the backpropagation algorithm is used to slightly nudge

the neural network in the direction of the feedback, so that it

gives a better estimate of the value of that action the next time it

encounters a similar state. The core of the Q-learning algorithm

is to constantly update the neural network so that it becomes

better at estimating how good a different action would be to take

in a given state based on the rewards it gets now and then.

The problem with the procedure I just outlined is that you

want to be able to tell how good actions are even when they

are not rewarded right away. For example, if you are learning

to drive a car, you want to learn that even going slightly off the

racetrack is a bad idea, even though you would have to continue

for several seconds before you actually exit the track and receive

Growing a Mind and Learning to Play 73

a negative reward (crash!). You also want to know that if you’re

at the starting line, accelerating is good even though it will take

you quite some time until you actually complete the race and get

a positive reward. Similarly, if you’re playing Tetris, you want to

know that stacking your blocks so that you can eventually clear

several lines at the same time is a good idea, though it might

be tempting to achieve short-term gains by clearing a single

line. In real life, you might sometimes be in a state where a cer-

tain action, say ordering another drink, provides a short-term

reward, but you may have learned that the action can have a

negative value because of the long-term punishment of having

a hangover the day after and increasing the risk of the longer-

term punishment of ending up as an alcoholic. In reinforcement

learning, this is called the credit assignment problem, and as you

might expect, it’s a very hard problem.

In Q-learning, the standard way of approaching the credit

assignment problem is to learn from the expected reward. So

every time an action is taken, if there’s no actual reward or pun-

ishment from the world, it adjusts the neural network’s estimate

of the value of the action just taken based on its own estimate of

the value of the best action in the next state. The neural network

is essentially asking itself what it thinks its reinforcement should

be. It sounds crazy, but given that the network now and then

gets actual reinforcements from the world (or the game), this

procedure should work—in theory. In practice, for a long time,

it has been rather hard to get Q-learning to work reliably on

complex problems. However, in 2015, a group of researchers at

the London-based AI research company DeepMind managed to

get Q-learning to play a number of classic arcade games from the

Atari 2600 console, such as Missile Command and Pac-Man.5 It

took a lot of computer power to train these networks, more than

74 Chapter 5

a month of computer time per game, but the neural networks in

many cases learned to play better than humans.

So which type of algorithm is better for learning to play games:

Q-learning or evolution? In theory, Q-learning should be able

to exploit more information because it can use more frequent

reinforcement, and it can also make directed changes to the

weights of the neural network, whereas evolution simply makes

random changes. But it seems evolution has more freedom to

invent strategies that are not directly dependent on the rewards,

and evolution is also capable of changing the structure of the

network, not just the weights. You could argue that Q-learning

reacts to the feedback it gets by gradually tuning its strategies,

whereas evolution boldly proposes complete new strategies and

tests them as wholes.

In practice, both methods can work well when a skilled prac-

titioner applies them. But we are still at the point when most

learning methods don’t work very well out of the box. In the

long run, we could look at the natural world for inspiration: ani-

mals (including us) learn both during and across lifetimes, and

it is likely that we would similarly need both types of learning

to create systems that are able to learn really complex tasks by

themselves.

6 Do Games Learn from You When You
Play Them?
Chapter 6
Do Games Learn from You When You Play Them?

© Massachusetts Institute of TechnologyAll Rights Reserved

As we saw in the previous chapters, we learn from games—how

to play them and almost certainly other skills as well. We can

also develop algorithms that learn to play games. But let’s turn

this statement around. Can games learn from us? And if so, what

could they learn? Can we develop algorithms that use our inter-

actions with games to learn about us?

When you play a game, you are constantly supplying infor-

mation to the game. You are pressing buttons and twiddling

console sticks. In many games, you are also entering text. You

are constantly making choices: go this way or that way, respond

affirmatively or negatively to that character in a conversation,

attack that enemy or not (and using which weapon). Some

choices are complex and expressed over the course of a whole

game, such as the personality and other characteristics of the

character you are playing or the shape and political orientation

of the country you rule; others happen at subsecond scales, such

as exactly when to jump off a platform to avoid falling into

a gap.

All of this is information that can be nicely expressed with

numbers and other symbols. For games implemented on com-

puters (including standard computer games as well as digital

76 Chapter 6

versions of board and card games), this is convenient because

that’s what computers are great at: storing and processing infor-

mation. It’s perfectly possible for a computer game to store all

the input you have ever given it and then use clever algorithms

to analyze it. These days, almost all devices we play games on

(computers, smartphones, game consoles) are connected to the

Internet. Given an Internet connection, it is perfectly possible

for a game to “phone home” and send all the data it has gath-

ered from you as you played it, either in raw form or aggregated,

to the servers of the company that made the game. The game

developer can then run all kinds of algorithms on the data to

find out things about you and the rest of its player population.

In fact, very many—maybe most?—recent video games already

do this.

But what kinds of things can games learn from you?

What Would You Do?

Just like you can learn from a game how to play it, the game

can learn from its players how it is played. By looking at the

histories of how players have played the game, it is possible to

find out what players typically do in each situation. This infor-

mation can be used to create an AI that plays the game like an

“average” player by simply taking the most frequent action in

each situation. To see how this can be done, imagine that the

game simply stores a long list of all the situations the player

has ever been in (in the game) and the action the player took in

each situation. Let’s assume we can describe the situation with

some numbers; for example, the coordinates of the player in the

game world, current health, the relative position of the closest

nonplayer characters (NPCs), and so on. After we’ve stored all

Do Games Learn from You When You Play Them? 77

these data in a long list, it becomes trivial to create an AI agent

that can play the game just as the human player would. At every

point in time, simply look at what situation the agent’s character

is in, find that situation in the long list of situations the player

encountered, and take the action that the player took. Simple

and elegant, right?

There are two problems with this simple solution. The first

is that the list of all the situations a player has encountered can

grow long—very long if you record where the player is, say, ten

times per second and the player plays for ten hours, and very

very long if you want to learn from not just one player but per-

haps hundreds or millions. The length of the list is a problem

not just for storing it in computer memory, but also for being

able to look up one of these situations quickly. You don’t want to

look at millions of different stored actions every time you want

to figure out what to do. We need a more compact way of storing

the complete playing history of a player (or multiple players).

The other problem is that even if you spent ten hours playing

a game, you have almost certainly not experienced every possi-

ble situation in that game. In fact, even if you have hundreds of

players in your list, you are going to be missing lots of potential

situations in your list. For every game that is not entirely trivial,

the number of possible different game states is going to be some

insanely large number, probably bigger than the number of stars

in the universe.1 You’ll also need a way for your agent to deal

with situations that the player(s) did not encounter. So we need

a way to generalize.

Luckily, it turns out that you can use the backpropagation

algorithm to train neural networks to predict what the player

would do. Yes, this is the same method I described in the previous

chapter when I talked about learning how to drive a car through

78 Chapter 6

trial and error. The difference is that here, we are using back-

propagation not for reinforcement learning but for supervised

learning. In supervised learning, you have a list of “instances,”

where each instance has a number of features that describe dif-

ferent aspects of the instance, and a target value. When learning

to play the game like a human, each instance would be com-

posed of the features describing a situation the player agent was

in and what action the player took in the situation. Backpropa-

gation is then used to train the neural network to reproduce this

list. Remember that in reinforcement learning, the backpropa-

gation algorithm changes the weights of the neural network

depending on whether the action the network decided on leads

to good or bad outcomes; in supervised learning, it changes the

weights depending on whether the action the neural network

decided on was the same as what the human decided on. Using

this simple principle, the neural network can be trained to pre-

dict what action the player would have taken in each situation,

usually with very good accuracy. The great advantage of this is

that the neural network is much smaller than the long list of

situations and actions used to train it, and it’s much faster to

“ask” the neural network for an action than it is to look up the

state in a big table. Such neural networks typically also have a

pretty good ability to generalize, meaning that they can come up

with an answer for what the agent would do in a situation that

the player never actually encountered based on what the player

did in similar situations.

Who Are You in the Game?

For a game developer, it is crucial to know who plays their game:

which aspects of it they are good and bad at, which aspects they

Do Games Learn from You When You Play Them? 79

like and dislike, and generally what they will do in the game.

Outside the world of games, marketers use terms such as target

group analysis and market segmentation when they talk about iden-

tifying and characterizing the potential customers of a product,

so that the company that makes the product knows how to sell

it or improve it. In games, we talk about player type analysis.

The idea is that players of a game can be clustered into different

groups, or player types, where the players of each type behave

similarly and have similar preferences. An early and very influen-

tial attempt to identify player archetypes was made in the 1980s

by Richard Bartle, a pioneer of online multiplayer games. Bartle

built on his observations of players in the text-based online game

MUD and stipulated four player types: achievers, who like to accu-

mulate points and get ahead in the game; explorers, who like to

explore both the space of the game and the rule system and find

new places or invent new ways of playing; socializers, who are

attracted to online games because of the opportunities to hang

out with and talk to others; and finally, killers, who enjoy causing

harm to other players’ in-game characters.2

Obviously this typology works best for the type of games it

was devised for: online multiplayer games. While the categories

of achiever and explorer would be easy to apply to Super Mario

Bros. and Angry Birds (and maybe Chess, though it is unclear

what exploration means in such a game), the categories of social-

izer and killer make no sense for one- or two-player games. It is

likely that you would need to find a different typology for each

game or at least for each game genre. Fortunately, we have the

tools to do this now, given all the data that games collect about

us and modern data processing and machine learning tech-

niques. In other words, games can learn player typologies from

players.

80 Chapter 6

In 2009, some of my colleagues at the IT University of Copen-

hagen (ITU), Alessandro Canossa, Anders Drachen, and Georgios

Yannakakis, managed to get hold of a treasure trove of player

data. Through a collaboration with the video game publisher

Square Enix Europe, they gained access to data collected from

about a million players playing Tomb Raider: Underworld on the

XBox 360. The games in the Tomb Raider franchise are action-

adventure games in which you play a single character (the

adventurer Lara Croft) and navigate a three-dimensional world

while solving puzzles and fighting bad guys and occasionally

monsters (figure 6.1). The developers had included functionality

in the code so that every time a player finished a level, the game

contacted Square Enix’s servers and uploaded a chunk of infor-

mation about how the player had played the level. This informa-

tion included how much time the player character had spent in

various parts of the level, how many treasures found, how many

enemies killed, and how often the player used the game’s help

system, among other things. This was a new and untested idea in

2009 (in 2018, it would be hard to find a commercially released

game that does not “phone home” to the developer with infor-

mation on how it’s being played), and therefore the data were

rather dirty and a lot of work was needed to get them into such

shape that machine learning algorithms could be used on it.

The cleaned-up and reorganized data were fed to an algorithm

known as a self-organizing map. This is a type of neural network.

Like the ones discussed in the previous chapter, it is a computa-

tional structure inspired by the human brain, but it works rather

differently from the car-driving networks discussed there. A self-

organizing map takes a large amount of data and separates the

instances into different groups so that the instances within one

group are maximally similar and instances in different groups

Do Games Learn from You When You Play Them? 81

are as different from each other as possible. In machine learning

language, this is called clustering and is a form of unsupervised

learning (as opposed to supervised learning or reinforcement

learning). You don’t know in advance how many groups you are

going to get; this depends on the data and, to some extent, how

you have configured the self-organizing map. In this case, each

instance represented one player and contained carefully selected

information about what sorts of things the player had done over

the course of the game. Out came four clusters of data, represent-

ing four player types.

Simply knowing that there are four types of players doesn’t

tell us much. As a developer, we would want to know what

those player types represent—in other words, how the players

of one type differ from those of another. So the team looked at

Figure 6.1
Balancing on a ledge in Tomb Raider: Underworld (Crystal Dynamics,

2008).

82 Chapter 6

a number of representative players of each type and compared

how much they had done each kind of action. They identified

four types: veterans, who rarely die, collect most of the treasure,

and generally play the game very well; solvers, who rarely use the

help system or any hints, play slowly, and prefer to solve all of

the game puzzles themselves; runners, who complete the game

very quickly but frequently ask for help and tend to die more

often; and pacifists, who are good at solving the game’s puzzles

but are bad at the combat elements and appear to seek to avoid

them. This typology is clearly very different from Bartle’s, which

is understandable given that we are dealing with a very differ-

ent type of game with a different player population. Something

that is rather interesting is that the developers of the game at

Square Enix had not foreseen the existence of the pacifist player

type when they developed the game, and they were surprised

to find out that the game was played in a way they had not

“intended.”3

While it is obviously useful to know what types of players play

your game, it would perhaps be even more useful to know what

the players are going to do in the game. Usually you want your

players to stay with your game for as long as possible, because a

happy player will recommend your game to a friend and perhaps

buy your next game. It is also common with free-to-play games

that are initially free but involve semi-mandatory payments for

upgrades in order to keep playing. For developers of such games,

it absolutely essential to be able to predict which players will stay

with the game (and eventually pay money) and which might

stop playing it. Why? Because when you know which aspects of

your design make people stay and pay, you can tweak your game

to make more money. In addition, as a game developer, you may

simply be interested in understanding your players.

Do Games Learn from You When You Play Them? 83

The next task for the same team, of which I was now a mem-

ber (I had just moved to ITU to take up my first faculty posi-

tion), as was Tobias Mahlmann (one of our PhD students), was

to try to learn rules that would predict player behavior later in

the game from player behavior early in the game. One of the

things we tried to learn to predict was the highest level a player

would complete out of the seven levels in the game. Theoreti-

cally, there are many supervised learning methods that could

be used to learn to predict this, but some are better suited than

others. We tried several of these methods on the task of predict-

ing after which level the player would stop playing. One of the

best-working methods was decision tree induction, a method that

also has the advantage that its results are easy to understand for

humans. It produces decision trees, which can be thought of as

long lists of if-then rules within each other. Here is an example

of what the algorithm learned:

IF Rewards on level 2 <18.5

THEN IF Time in Flushtunnel <9858: 2

ELSE (Time in Flushtunnel ≥9858): 3
ELSE (Rewards on level 2 ≥18.5): 7

In other words, if you accumulated a low score on level 2 and

spent little time in the Flush Tunnel (an area in level 2), you will

stop playing after level 2 and never finish level 3. Otherwise you

will stop playing after level 3. However, if you accumulated a

high score on level 2, you will finish the whole game.

This no doubt sounds like a very silly, arbitrary rule. It looks

about as reasonable as astrology, and it’s not the kind of rule you

would expect an actual human game designer to come up with.

However, silly as it may be, it is built on solid empirical evidence:

it has a prediction accuracy of 76.7 percent when tested over

tens of thousands of players. This means that while there are a

84 Chapter 6

certainly a few people who get a low reward on level 2 and then

continue to finish the whole game, it is statistically unlikely.

While it might be insulting to common sense that the amount

of time spent in some tunnel should be so indicative of whether

a player will give up the game after level 2 or 3, this really seems

to be the case based on all these data. Maybe the most notewor-

thy result is that the prediction accuracy is so high. What this

says is that we humans really are quite predictable, even when

we play games.4

Who Are You Outside of the Game?

So far we have seen that the game can learn from your playing

what type of player you are and how you will play in the future.

But you are not only a player of games. You are a full-fledged

human being, with hopes, dreams, fears, manners, friends, and

habits. There is no reason to believe that all the rest of who you

are disappears the moment you lean back on the sofa and grab

the Xbox controller; you are still you, even if you are momen-

tarily Mario, Master Chief, or Lara Croft. Now the question is,

Does anything of the rest of you shine through in your game

playing? What can the game learn about the real you from ana-

lyzing how you play?

Back in 2013, Alessandro and I had at our disposal an ambi-

tious master’s student, Josep Martinez, and we were searching

for a topic for his thesis. Alessandro had recently read the works

of Stephen Reiss, a personality psychologist who had devised a

model for categorizing people’s life motives, that is, what moti-

vates them in life. Reiss identified sixteen broad life motives (in

alphabetical order): acceptance, curiosity, eating, family, honor,

idealism, independence, order, physical, power, romance, saving,

Do Games Learn from You When You Play Them? 85

social, status, tranquility, and vengeance. Each of these motives

has several subcategories, and there is a well-tested question-

naire available for assessing life motives. We wondered whether

the motives people had in real life were also expressed in games.

If so, which ones? And in which games?

Like so many others, Alessandro, Josep, and I were fasci-

nated by Minecraft, the open world game that took the world by

storm beginning in 2010. When it was first released, as a buggy

beta, Minecraft was a rather unique game—now there are many

clones—not only for its peculiarly blocky graphics but also for

the unparalleled freedom it affords players. The game is now a

global phenomenon that is used for everything from making

machinima (animated films made inside video games), to edu-

cation, to testing AI algorithms. Minecraft can be described as a

cross between a role-playing game and a digital version of Lego

(figure 6.2). When you arrive in the game, you have nothing,

and you must hurry to assemble some tools so you can build

yourself some shelter before the night comes and monsters

start roaming the land. But in order to make these tools, you

need materials, and in order to get those, you need to mine the

ground. After crafting more advanced tools, you will be able

to mine deeper for more exotic materials so you can construct

more advanced buildings and mechanisms. Given enough time

and effort, you can construct anything you want. Searching for

videos of Minecraft on YouTube yields thousands of examples

of player-constructed replicas of famous buildings and vehicles

(even the Starship Enterprise). There is also a storyline in Mine-

craft, including fairly typical role-playing game-like quests, but

it is entirely optional whether to follow this storyline and carry

out the quests; many players don’t.

86 Chapter 6

Almost all games afford a number of different playing styles,

but Minecraft does so more than most others. I think it’s safe to

say that there are more different ways to play Minecraft than there

are ways to play Tomb Raider: Underworld. Clearly these different

playing styles reflect different in-game motivations: some people

are motivated by finishing quests, others by expressing them-

selves through building grandiose edifices, yet others by collect-

ing rare resources. But do these motivations have anything to

do with your real-world life motives? Does someone who cares

mostly about her family play differently from someone whose

Figure 6.2
The cubistic world of Minecraft (Mojang, 2011). The game largely re-

volves around mining cubes for material so that you can build things

out of other cubes.

Do Games Learn from You When You Play Them? 87

chief concern is getting ahead in professional life? We decided

to find out.

Josep sent out questionnaires, with questions taken from the

Reiss Motivation Profile, to 100 Minecraft players; these ques-

tionnaires were used to construct a profile of each player in

terms of what motivated them most. He then asked each player

for her Minecraft log file. This is a small file automatically saved

by the game, which contains more than six hundred variables,

including such things as how many hours the player has played,

how much redstone ore she has mined (redstone is used for

making electric-like circuits), and how far she has traveled by

pig (an often overlooked transportation option). After extract-

ing and cleaning these data, we ran a correlation analysis of all

combinations of potentially relevant game variables and life

motives.

“Correlation” is a way of saying that, statistically, two things

have something to do with each other. It does not necessarily

mean that one causes the other: if umbrella sales and the num-

ber of hours you spend watching TV are correlated across the

weeks in a year, they might both be caused (at least in part) by

bad weather. Two variables can correlate negatively or positively.

So is, for example, smoking negatively correlated to longevity:

when one is high, the other is low. (In this case, it is reasonable

to assume that one causes the other.)

We found that all of the life motives were significantly cor-

related with several of the in-game variables. However, some

were correlated with only a few variables (so few that it might

come down to chance), whereas others were correlated with a

large number of the in-game variables, and some of the correla-

tions were so strong that there was virtually no room for doubt.

Among the most highly correlated life motives were curiosity,

88 Chapter 6

saving, vengeance, and honor, whereas those that did not seem

to be much expressed in the game were romance, tranquility,

and physical activity. In some cases, these correlations make

intuitive sense to someone who knows the game; in other cases,

they are unexpected and quite amusing. People who are strongly

motivated by curiosity in real life tend to craft plenty of torches

and stone tools in the game, which makes sense because these

are the most cost-efficient ways of exploring large parts of the

game world. Those who are motivated by saving tend to use

cheap and simple materials in the buildings and tools they con-

struct. Vengeful players apparently quit the game and restart it

(perhaps from an earlier save) more often—what would be called

“rage quit” in gamer lingo. Players who are strongly motivated

by independence in real life showed this in the game by refus-

ing to do the quests in the game’s storyline; in particular, it was

strongly correlated with not even attempting the final quest.

Another interesting expression of life motives is that people

with a strong need for tranquility built significantly more fences

around their dwellings. It certainly seems that the person you

play when you play Minecraft is you in some very important

respects.5

These results can be seen in the light of the studies by Nick

Yee, then at Stanford University, and his colleagues, who inves-

tigated how players express their personality (rather than life

motives) in the online multiplayer role-playing game World of

Warcraft (figure 6.3). Yee used the Big Five personality question-

naire, which groups personality traits into the five categories of

Openness, Conscientiousness, Extraversion, Agreeableness, and

Neuroticism. There were plenty of correlations in these data as

well, and he could see, for example, that conscientious players

were more likely to collect items of various kinds and less likely

Do Games Learn from You When You Play Them? 89

to die of accidents, that players with high openness explored

more of the game world, and that extraverted players (unsurpris-

ingly) had more social interactions in the game.6 A group led

by Pieter Spronck and including Shoshanna Tekofsky at the

University of Tilburg has also found similar effects in games

as different as the epic strategy game Civilization and the first-

person shooter Battlefield 4. For example, it’s possible to predict

gender and age with relatively good accuracy from how people

play Battlefield 4.7

Taken together, the picture we get from this research, as well

as many other studies on these topics, is that you express quite a

lot of yourself while playing games. If the game wants to, it can

find out not only who you are in-game and how you will play in

Figure 6.3
World of Warcraft (Blizzard, 2004) is a massively multiplayer online role-

playing game; much of the game is communicating with other players

over text or voice chat.

90 Chapter 6

the future, but also quite a lot about who you are outside of the

game. This raises plenty of interesting opportunities not only

for game developers but also for psychologists and other social

scientists who want to understand how humans function.

But this research also raises a number of complicated ques-

tions. A couple of years ago, I was speaking at a conference

where a number of people from the security services and other

government agencies were in attendance. One of the things I

talked about was how much you could find out about players

from their in-game behavior. In order to stir the conversation,

I suggested that it might be possible to find out really sensitive

information about players, such as their political views, sexual-

ity, history of drug use and incarceration, or health status. (Note:

I have not done this research and do not intend to!) I was expect-

ing to get some worried reactions, but instead these people sim-

ply nodded pensively, as in “that’s an interesting idea.” It is fair

to say that I have not become less worried about the potential

to use player modeling for nefarious purposes since then. Par-

ticularly in light of concerns about how much of our personal

information is gathered by security services, social network com-

panies, internet providers, and all manners of shady operators

who sell their services to the highest bidder, I think it is impor-

tant to realize that our game playing is another way in which we

leave rich digital trails. The difference, perhaps, is that when we

post on a social network, we are aware that we are sharing infor-

mation about ourselves; when we play a game, this is not obvi-

ous because we believe we are only acting inside the game world.

But as we have seen, we bring much of ourselves into that world.

7 Automating Creativity
Chapter 7
Automating Creativity

© Massachusetts Institute of TechnologyAll Rights Reserved

Ada Lovelace is widely considered the world’s first programmer.

She was the first to write programs for Charles Babbage’s Analytic

Engine, a very ambitious but never realized mechanical computer,

in the mid-nineteenth century. She was also among the first to

point out the truly marvelous potential of computing machines.

In her view, however, the “Analytical Engine has no pretentions

whatsoever to originate anything. It can do whatever we know how

to order it to perform.” In the last century and a half we have seen

massive progress in computing, in particular since the inven-

tion of the actual digital computers. However, surprisingly many

would still believe something like the following: Although we can

make computers play games, predict what players will do, and even

associate certain player behaviors with personality characteristics, the

computers could never design the games themselves. For that, we need

human creativity because computers can never fundamentally create

something that we humans didn’t program them to do first.

This is entirely wrong and one of the most harmful wide-

spread myths about computing and artificial intelligence. While

“automating creativity” might sound like an oxymoron to some,

creativity is in fact no more or less automatable than other

human cognitive capabilities. In this chapter, I discuss some

92 Chapter 7

ways in which artificial intelligence methods can be used to do

things that would be called “creative” if humans did them, in

particular when it comes to designing games. I will also look

at how we could use artificial intelligence to augment our own

creativity for such design tasks. But first, let’s rewind the tape a

decade.

In 2006, I was two years into my PhD, and I had published

several papers on ways of evolving neural networks to drive

cars or play other games. These papers had been well received

by the research community, but they were not groundbreaking.

I had shown that neuroevolution could work well for this type

of game, but in the end, what I had done was just to take a well-

known method in robotics and shown how to make it work for

certain types of games. I was wondering what the next step in

my doctoral project would be. One idea I was toying with was

to try to use more complex information, such as raw visual data,

as input to the neural network, but this didn’t seem exciting

enough.

But then one day, while I was thinking in the shower, I had

another idea. Evolutionary algorithms are apparently very useful

for creating agents (implemented as neural networks) that can

play a game. But could you use the same principle, evolution, to

create other parts of the game—for example, the levels?1

I mentioned this idea to my friend Renzo De Nardi, who

found it interesting and agreed to help out. Because there was a

suitable conference and its deadline was just over a week away,

we figured that we should have enough time to refine the con-

cept, write the code, design and run the experiment, and write

the paper. (Unfounded optimism and willingness to work all

through the night are useful assets when doing a PhD.) We chose

the same racing game I had built for my previous experiments in

Automating Creativity 93

evolving neural nets to drive cars because we already knew how

that code worked. We immediately faced two problems: how to

represent the racing tracks so that evolution can search for good

tracks effectively and how to create a fitness function that accu-

rately tells us how “good,” or enjoyable, a racing track is.

The first problem is not exactly trivial but not that hard

to solve, either. We represented the tracks using a technique

called b-splines, where a track can be described by a sequence

of numbers specifying how the track bends. So just as for neu-

ral networks, the “genome” of a racing track is simply a list of

numbers.

The second problem is much trickier and immediately brings

up fundamental problems in aesthetics. How do we know that a

racetrack, or some other type of game level, or any type of game

content, is any good? If we try to be a little more specific, how

can we write program code that automatically evaluates a race-

track and returns a number corresponding to how exciting, or

interesting, or entertaining a human would think that racetrack

is when playing a racing game? On the face of it, this seems like

an impossible task. How could we know what a human would

think of a game level without having that human around? We

would have to simulate the whole human and ask the simula-

tion what it thinks—something that, mildly put, is well beyond

our technical capabilities. If you are still not convinced about

how hard this is, imagine writing a program that would look at

paintings and given them a score between 1 and 10 reflecting

how much a professional art critic would like the painting. It’s

hard to even imagine where to begin. Problems like these are

sometimes called AI-complete problems, reflecting the idea that

you first need to develop general human-level AI to be able to

solve them.

94 Chapter 7

However, as with many other very hard problems, it turns out

you can make a good deal of progress if you don’t care about get-

ting things exactly right, and instead just try to get some rough

approximation. In our case, we looked into game design theory2

and also played a couple of racing games ourselves to see if we

could discover some simple rules that would indicate that indi-

cate that one racetrack was better than another. We came up with

the following heuristic rules for what makes a good racetrack:

• It should have the right difficulty.
• It should have different types of challenges along a lap, such

as some sharp turns and some smooth curves.
• At some point on the track, it should be possible to drive

really fast.

How can we measure whether a track has these properties?

Well, the simplest way is to drive the track and see what hap-

pens. We could look at whether the driver manages to complete

the lap, the difference in minimum and maximum speed along

the track (indicating that there are different types of challenges),

and the maximum speed achieved. We can then create a fit-

ness function that reflects all three of these values, allowing the

evolutionary algorithm to search for tracks with all three of the

properties we listed.

The remaining problem, then, is that someone will need to

drive the car. We can’t have an actual human do the driving

because the evolutionary algorithm will need to try thousands

or even tens of thousands of different tracks with minor varia-

tions, and humans are far too slow for that and also get tired

easily. We needed an artificial player to drive our tracks in order

to evaluate their quality. Luckily, I had been working on evolv-

ing neural networks for driving cars in this particular racing

Automating Creativity 95

game, so we could use those neural network drivers to test the

tracks. Even better, we could train neural networks to drive like

us, so we could evolve racetracks that would suit our own driv-

ing styles, using a combination of evolutionary algorithms and

the backpropagation method I described in the previous chapter.

Renzo and I trained some neural networks to drive like us.

Appropriately, the network trained on data from my play-

throughs drove fast and recklessly, while the network trained on

Renzo’s playthroughs drove slowly and meticulously. (Note that

this only reflects our driving styles in racing games; in offline

life, I don’t actually have a driver’s license.) We then evolved

racing tracks to fit each of our driving styles. The results are in

figure 7.1.

I’ve since worked with various teams of people to take this gen-

eral idea—creating new game levels with evolution, using agents

that play the levels to evaluate them—to various games and level

types. For example, we showed that we could automatically create

Figure 7.1
The racetracks that evolved from the neural networks.

96 Chapter 7

balanced maps for StarCraft and levels for Super Mario Bros. We call

the general idea “search-based procedural content generation,”

because game content is generated through a search process—

in this case, based on artificial evolution. All that is needed is a

good way of representing the game content and a good fitness

function (though, as we’ve seen, this part can be tricky).3

The idea of seeing creativity as a search in a space of potential

artifacts is not new; it has been discussed at length by, for exam-

ple, the British philosopher Margaret Boden.4 There are also

many examples of search-based approaches to generating music,

images, and so on. Seeing creativity as search, it becomes clear

that creativity is about as automatable as any other endeavor

that usually requires human thought: it’s by no means easy but

definitely not impossible.

The Random Number God

The idea of creating some parts of games automatically, through

algorithms, is not new, either. In fact, it is almost as old as video

games themselves. Back in the days when computing power was

a scarce resource available only on mainframe computers you

had to share with hundreds or thousands of others, and even

that mainframe had far lower processing speed and far less

storage capacity than a cell phone has today, conserving bytes

was of the utmost importance. This was the environment in

which Michael Toy and Glenn Wichmann created Rogue in 1980

(figure 7.2).

Toy and Wichmann, who were studying at the University of

California at Santa Cruz, were aficionados of the influential pen-

and-paper role-playing game Dungeons and Dragons. Normally,

Dungeons and Dragons campaigns require a specialized dungeon

Automating Creativity 97

master who runs the game and plays various NPC roles in the

game world where a team of one or several players is adven-

turing. Toy and Wichmann wondered how they could create a

computer game that played a bit like Dungeons and Dragons but

could be played alone, against the computer. Translating the

combat mechanics from Dungeons and Dragons into code was

easy enough. The problem was with the adventures, which, in

Dungeons and Dragons, appropriately enough often take place in

dungeons. In Dungeons and Dragons, these dungeons are either

made by the dungeon master or bought in books sold by the

game publisher. Clearing a dungeon involves navigating a maze

to find the exit; collecting items; managing health, food, and

money; and fighting (and/or running away from) monsters. For

the game the duo was creating, Rogue, they didn’t want to cre-

ate the dungeons themselves because they created the game pri-

marily for themselves and it would be more fun to be surprised

by the dungeons. In any case, they simply didn’t have the disk

space to store many dungeons for the game, so handcrafting

them was practically impossible.

Necessity is supposedly the mother of invention, so Toy and

Wichmann were forced to invent a way of automatically gen-

erating dungeons. Every time a new game of Rogue is started,

a completely new dungeon is created, and this procedure was

fast even back on 1980-era computers. The algorithm, some-

what simplified here, works as follows. First, divide the dungeon

into different segments; then create rooms in all the dungeon

segments; mark the first one that is visited; then keep creating

corridors from (randomly chosen) visited rooms to (randomly

chosen) unvisited rooms until all rooms are marked as visited.

This will create a number of rooms that are connected by cor-

ridors, so that it is possible to get from any room to any other.

98 Chapter 7

What’s left is to add items and monsters; these are mostly sprin-

kled out at random in the rooms.

The result of this process is that every game of Rogue feels

fresh. Every time you start playing the game, there’s a new dun-

geon for you to find your way in, new potions to figure out, new

monsters to kill. This means that to become good at playing the

game, you need to learn strategies for how to play the game well

rather than simply memorize the layout of the dungeons. This

is a qualitatively different kind of game play compared to many

other types of games.

While Rogue was not the first game to include procedurally

generated levels (that distinction may belong to the slightly ear-

lier and simpler Beneath Apple Manor), its popularity led to the

Figure 7.2
Rogue (A. I. Design, 1980), the original roguelike, has modest hardware

requirements because it was developed for a computer that had less com-

putational power than your fridge. The smiley face represents the player

character.

Automating Creativity 99

creation of a new genre of games called “roguelikes” in honor of

the landmark game. By definition, every roguelike game session

presents a new set of levels to play. Many are also role-playing

games like Rogue, for example, the open source classic NetHack,

the endlessly intricate Dwarf Fortress, or Blizzard’s best-selling

Diablo series. But many other games that are not commonly

thought of as roguelikes build on the idea of generating levels, or

worlds at the start of every playing session. This includes some

very well-known games; the indie sensation platformer Spelunky,

the epic strategy games in the Civilization series, or the mega-

selling sandbox game Minecraft (also discussed in the previous

chapter); none of these games would be possible in anything like

their current format without procedural generation.

Another game from the 1980s that spearheaded procedural

content generation is Elite (figure 7.3), a space trading and battle

game where the player explores a galaxy with thousands of plan-

ets, buys and sells goods and items, fights space pirates, and takes

Figure 7.3
Approaching a space station in Elite (Acornsoft, 1984).

100 Chapter 7

on missions. The scale of the game is large by any standard, but

what is even more impressive is the extremely limited hardware

it ran on. I played it on my Commodore 64, a popular home

computer with 64 kilobytes of memory. How could such a huge

game world possibly fit into 65,536 characters’ worth of mem-

ory, especially given that the game engine and graphics needed

to be stored there as well? The answer is that every star system

was generated as you visited it, including names and positions of

planets and space stations, prices of commodities, and locations

of spaceships. But unlike Rogue, the game does not change with

every play session, and if you go back to a star system you’ve left,

you’ll find it looks just as the way it did when you left it. This is

because Elite uses a particular seed value for the random number

generator for each star system, precisely determining the output

of the generative algorithm. Instead of storing thousands of star

systems, Elite simply stores the number of each star system and

uses that to regenerate the star system as it needs. This idea has

been highly influential in game development and is used in vari-

ous roles in many games for regenerating things such as vegeta-

tion on demand. A prominent recent example of a game storing

a complete galaxy as seed values, creating a giant space for the

player to explore, is No Man’s Sky (figure 7.4).

So does this mean that the problem of procedural content

generation is already solved? Far from it. The problem can be

illustrated by the Random Number God. When starting a game

of Rogue, most of the time you’ll get a dungeon of reasonable

difficulty, but sometimes you can get crazy difficulty spikes or

long sequences with little challenge. Also, some dungeons are

just (much) better than others. So it has become common to

blame an unfair outcome in Rogue (or another roguelike) on the

Random Number God, who clearly was out to get the player by

Automating Creativity 101

spawning his character right next to a high-level dragon, or in a

room that is almost impossible to get out of, or something else

like that.

The problem is that it is very hard to foolproof the type of

algorithms used by games such as Rogue. In other words, it is

hard to make sure that the level that comes out at the other end

is always at the right level of difficulty, or balanced, or some-

times even playable. This, of course, limits what kind of games

we can procedurally generate levels for using these methods.

Here is where the search-based approach shines. With a well-

designed fitness function based on an agent playing the level,

it becomes possible to include as a condition that the level is

indeed balanced, playable and having the right level of chal-

lenge. This makes procedural generation of game content pos-

sible in a much wider range of games, bringing us closer to the

vision I outlined in chapter 4.

Figure 7.4
In No Man’s Sky (Hello Games, 2016) all planets are procedurally gener-

ated, including their flora, fauna, and geology.

102 Chapter 7

Getting Personal

The vision I laid out in chapter 4 also includes that the game

somehow adapts to you and creates new content that is not

just good in general but tailored specifically to you: what you

like, what you’re good at, and how you play. Using search-based

procedural content generation, we can create levels that can be

played by an artificial agent trained on a particular player’s play-

ing style, so we can at least indirectly adapt the new levels to

the skills and playing style of a human player. But how could we

create levels that are adapted to the preferences of a human, levels

that would be tailored to create a particular kind of experience

in the player?5

This was the question that my friend and colleague Geor-

gios Yannakakis and I asked ourselves in 2009. Georgios had

been working on methods for modeling player experience for

his PhD thesis and several years after that. He had developed

machine learning–based methods for predicting what a player

would think of a particular part of a game. I had been working

on the search-based approach to procedural content generation,

as described above. We thought that there should be some way

of combining these two ideas to automatically generate game

content that would create a specific experience in the player.

We recruited a master’s student, Chris Pedersen, for the proj-

ect and started collecting data. Because we needed lots of data,

we wanted to use a game that many already knew, so we were

delighted to find Infinite Mario, an open-source clone of Nin-

tendo’s classic platformer Super Mario Bros. We modified the level

generator so that it could create levels according to parameters

(figure 7.5). These parameters specified properties such as how

large the holes in the ground should be and how far from each

Automating Creativity 103

other enemies should appear. By varying these parameters, we

could get the generator to generate very different kinds of levels,

some largely empty, some with lots of enemies to defeat, oth-

ers with tricky jumping challenges, and so on. We created a few

hundred levels with very different settings of these parameters

and proceeded to try to get people to play games for us.

While most people enjoy playing games, getting hundreds of

people to play your game so you can collect data about them

is not easy at all. Sometimes you have to pay people to play

games. For this experiment, however, it was enough to pester

our friends using Twitter, Facebook, and email (no one has so

Figure 7.5
Part of a level generated in the Mario AI framework using an evolution-

ary algorithm.

104 Chapter 7

far unfriended me over this kind of behavior—as far as I know).

Each person was tasked with playing at least two levels of the

game. Those two levels were generated using different param-

eter values so that they felt different to play. Each person played

different pairs of levels. We recorded everything the player did

while playing, and after each pair of levels, we asked them a

set of questions, Which of the two levels just played was more

challenging? Which was more entertaining? Which was more

frustrating?

After collecting data from more than seven hundred play-

ers, we set out to try to create a model of player experience. We

defined a neural network (figure 7.6) that would take the param-

eters of two different levels as inputs, along with some data on

the player’s playing style, such as how often the player jumped,

how much the player ran, and how many enemies the player

defeated. The three outputs of the neural network represented

the player’s preference: which of the two levels they found more

challenging, more entertaining, and more frustrating. Once we

had the data, training the neural network to accurately predict

player preferences was straightforward. We now had a model of

player preference that, given two levels in the game and a par-

ticular playing style, could predict which of the two levels the

player would prefer in each of these three dimensions.

The next step was to use this model to generate new levels.

For this part of the project, we brought on our promising new

PhD student, Noor Shaker, who got to work on building what

we called an experience-driven procedural content generator. It

turned out to be easier than expected: given that the neural

network we trained can predict which levels a particular per-

son would prefer, we can use it as a fitness function. You simply

evolve the level parameters to maximize how much the neural

Automating Creativity 105

Level features and rules, playing behavior

Player experience
(fun, frustration, anxiety, ...)

Figure 7.6
Diagram of a neural network that takes level design parameters and play-

ing style as inputs, and outputs predicted player affect. By keeping play-

ing style constant and optimizing for desired player affect, we can find

out what types of levels would likely cause certain experiences in the

player.

106 Chapter 7

network predicts the player would enjoy the level. Once you

have these level parameters, you feed them into the standard

level generator, which generates levels that turn out to be pretty

exactly what you asked for. (As usual, this description ignores

a number of technical details and tricky design decisions, but

conceptually this is what happens.) A nice feature of this proce-

dure is that you can optimize for each of the three dimensions of

preference separately or in some combination. So, for example,

you can search for levels that would be maximally entertaining

and minimally frustrating for a particular player. Of course, you

can also search for levels that are minimally entertaining and

maximally frustrating (if that’s what you prefer).

Getting More General

So far, I’ve talked about game content in a very abstract sense

but given only examples of game levels (if we count racetracks

and dungeons as levels). What other things could we generate?

Well, it’s very common for games to use procedural generation

of vegetation such as trees and grass and other natural features

such as clouds and water. Generating such “background” con-

tent is pretty much a solved problem, and there is software that

will take care of it for you if you want. The reason things such as

bushes and clouds are simple to generate is that they don’t need

to interact too much with the rest of the game and its mechan-

ics. An oddly shaped cloud or bizarre tree might raise a few eye-

brows but will not make your game unplayable. But what if we

look in the other direction, at generating content that is core

to the game and interacts with everything? Could we generate

game rules? Maybe even complete games?

Automating Creativity 107

In 2008, Cameron Browne was finishing his PhD thesis on

exactly this topic. He’d done his PhD mostly on weekends and

evenings while working as a software developer and also indulg-

ing in his other hobby: designing board games and writing books

about designing board games. (I know him and can confirm that

he sometimes sleeps as well.) For his PhD, he had designed the

Ludi language and game generation system, specifically focused

on so-called recombination games: games with regular boards and

pieces of only a few types, like Checkers, Go, Hex, and Othello.6

The Ludi language allows such games to be represented in only

a few lines of code, where one line defines the board size and

shape, another line defines how and if pieces can be captured,

and so on. This code can be treated as a genome, so game rules

can be created with an evolutionary algorithm. To get the evo-

lutionary algorithm going, Cameron supplied the Ludi system

with dozens of existing recombination games, mostly classic

games, to serve as the initial population. He also designed a

fitness function that would evaluate the quality of the games

through playing them and measuring a number of properties

of the playthrough, such as how often the lead changed and

how early in the game it was possible to predict who would win

(it’s generally considered a good thing if you can predict this as

late as possible). With the representation and fitness function

specified, Ludi could start evolving games. This was of course a

very slow process because the system needed to play every game

it came up with many times against itself. But the results were

worth the wait. In particular, one game, Yavalath (figure 7.7),

was so novel and good that a game publisher was interested in

selling the game as a boxed set in stores. This is probably the

world’s first completely computer-generated commercial game.

108 Chapter 7

As far as I’m aware, however, Cameron gets all the royalties from

the game sales, with none of the money going to Ludi.

At the same time that Cameron was working on Ludi, I was

working on my own ideas for generating game rules. But unlike

Cameron, whose system works on a specific kind of board game,

I was targeting simple arcade games in the style of Pac-Man. I took

axioms that these games would take place in two-dimensional

game worlds and that the player controlled an agent that could

move around and interact with various “things.” The way I

thought about this was that the various things could be enemies,

food, bonuses, friends, mines, or something else, all depending

on how they interacted with each other and with the player. For

Figure 7.7
Yavalath (Nestorgames, 2007) was designed by the Ludi system, which

was designed by Cameron Browne.

Automating Creativity 109

example, in Pac-Man, pellets disappear when interacting with

the player agent and increase score, and the player-agent dis-

appears if interacting with a ghost. So I decided to evolve the

rules for how these things interacted. When designing the fit-

ness function, I was inspired by Raph Koster’s idea that fun in

games comes from learning, as detailed in chapter 2. I wanted

to evolve learnable games, but of course I couldn’t use actual

humans in the fitness function. Instead, I used another evolu-

tionary algorithm—inside the fitness function, inside the main

evolutionary algorithm—that would try to learn to play the

game. Games where the algorithm could make quick improve-

ments got high fitness scores.7

Alas, my experiments did not result in any new hit games

to rule the App Store. What I got was a number of examples

of games that the fitness function thought were reasonable but

for various reasons were not interesting to play, or sometimes

weren’t even playable. It turns out that generating video game

rules is significantly harder than generating rules for board

games such as recombination games. One reason is that for the

fitness function to work well, we need an AI agent that is able to

not only play any strange game that the evolutionary algorithm

throws at it but also play them well and in a human-like manner.

Note that if you are part of a fitness function, you are bound to

encounter some very strange games produced by random muta-

tions and crossover. This is very much an unsolved research

problem.

Together with various students and collaborators, I’ve kept up

the efforts to develop algorithms that can create rules for video

games. In one project, we used the Video Game Description

Language (discussed in chapter 9) as representation and tried

to evolve games that good agents do well at and bad agents do

110 Chapter 7

poorly at—in other words, games that have some skill depth. This

has had some limited success, being able to create novel rules for

simple puzzle games in the style of Sokoban.8 Others have also

been working on this, for example Adam Smith has proposed

using logic programming to create game rules,9 and Mike Cook

has worked for a long time on ANGELINA, a multifaceted system

that can generate not only rules but all kinds of different game

assets, with fascinating results (figure 7.8).10

Trying to create systems that can create games is not only

about building technical systems that can do marvelous things.

Since its inception, artificial intelligence has had the dual pur-

pose of creating systems that can solve tasks that seem to require

intelligence and to understand the principles behind the intel-

ligence that already exists in the world, for example, in us. More

Figure 7.8
To That Sect (Michael Cook, 2014) was designed by the ANGELINA sys-

tem, which was designed by Michael Cook.

Automating Creativity 111

generally, one of the things you learn as a computer scientist

is that you don’t really understand a task until you have writ-

ten program code that can solve that task. This is because only

designing and implementing an algorithm that solves a task

forces you to look at the task in sufficient detail. This is true

even of such a mundane thing as sorting: studying and imple-

menting sorting algorithms forces you to understand sorting

in depth. I am sure you intuitively know how to sort socks or

pencils or coins, but unless you have taken computer science

classes, you have probably not thought much about exactly

which rules you follow when you sort things, and how sorting

could be made more efficient. This observation is even more true

for game design, a complex endeavor that we can (imperfectly)

train people to do but that we don’t understand at anything like

the depth with which we understanding tasks such as sorting,

text reading, or car driving. Designing and implementing sys-

tems that can perform some aspect of game design, even if in a

very limited environment, is therefore a way of studying game

design.

Being Creative Together

For the foreseeable future, we will not have AI systems that can

design a complete game from scratch with anything like the qual-

ity, or at least consistency of quality, that a team of human game

developers can. Human designers will not be out of a job any-

time soon. However, there are a number of problems for which

AI methods already perform impressively, as we have seen. In

many cases, the strengths of human designers and algorithms are

complementary rather than replacing each other. This suggests

that we could build systems where humans collaborate with AI

112 Chapter 7

algorithms to make games—for example, by using algorithms for

ideation, feedback, fine-tuning, and automatic play testing. In

particular, this could be done through building mixed-initiative

AI-assisted game design tools. These are systems in which both

the human user and the AI can take initiatives when it comes

to editing the game and where the AI can provide suggestions,

feedback, and limited automated generation for the human user.

One influential example of such a system is Tanagra by Gillian

Smith, now a professor at Worcester Polytechnic Institute.11

Tanagra is an editor for platform games that uses constraint

solving to generate whole levels or parts of levels. The user can

create levels completely freely, but at any time can call on the

tool to generate a completely new level or just regenerate any

particular part of a level. The level generator ensures that every

level is playable.

Inspired by this system, Antonios Liapis, at the time a PhD

student of Georgios Yannakakis and myself, started working on a

system we call Sentient Sketchbook.12 The idea was to unify sev-

eral different types of AI-based design support in a system that

would help create levels for strategy games. In Sentient Sketch-

book, the user works on “map sketches,” somewhat abstract rep-

resentations of strategy game maps (see figure 7.9). As the user

edits the map, the tool provides feedback about such measures

as how balanced the map is, how close resources are to base loca-

tions, and how protected bases are. Some of these quantities are

visualized as gauges and some as overlays on the actual map, for

example, displaying graphically which resources are under the

control of a particular base location. The tool also constantly

provides users with suggestions for ways of improving the map.

These suggestions are generated by evolutionary algorithms run-

ning in the background, at every point in time starting from

the current map design and asking questions like these: What

Automating Creativity 113

would it be like if the map was a little more balanced, or had

fewer impassable areas, or maybe resources that were harder to

control? The user is of course free to disregard any suggestions;

Sentient Sketchbook will keep trying to second-guess the design-

er’s intent.

Tools like Tanagra and Sentient Sketchbook—and several oth-

ers that have followed in their footsteps—show the way toward

greater use of AI methods in game design and development.13

A combination of algorithms and human designers is in almost

any case better than either on their own. I predict we will soon

see similar tools integrated into mainstream game engines such

as Unity and Unreal.

But will we also see modern AI methods applied within games,

as opposed to for design and development, anytime soon?

Figure 7.9
Editing a map sketch with Sentient Sketchbook.

8 Designing for AI
Chapter 8
Designing for AI

© Massachusetts Institute of TechnologyAll Rights Reserved

In chapter 4, I posed the question why the type of artificial

intelligence methods we have seen so many examples of in this

book are not used more in games. I outlined a couple of poten-

tial reasons for this. One of the reasons I mentioned is that game

development is a surprisingly risk-averse industry because of the

hit-driven nature of the business and that the technology may

not be mature enough yet. Now, after spending the past few

chapters on AI methods for playing games, modeling players,

and generating content, we’ll revisit the question. This time we

focus on the role of game design in enabling AI and, conversely,

AI in enabling game design.

Back when I was a naive and overenthusiastic PhD student,

and even when I was a slightly less naive and overenthusiastic

postdoc, I tried rather naively to effect change. When I met a

game designer or developer at a conference, I would try to con-

vince her that her company’s new game stood to win a whole

lot by using some of these fancy new AI methods. Usually the

response I would get was that no, in fact their game did not

need my AI at all; it works perfectly fine as it is. For example,

while we could train a neural network to drive a car faster or

provide a more challenging opponent in a fighting game, this

116 Chapter 8

is unnecessary because it’s easier to simply artificially manipu-

late the top speed of computer-controlled cars or hit boxes of

nonplayer character (NPC) fighters until they get the desired

performance. Basically, why introduce complex AI when you

could simply cheat? And, anyway, the game would get boring

if the enemies were too hard because the fun comes from beat-

ing them. It’s true that we could use online adaptation, maybe

through reinforcement learning, to create a game character that

learns from your behavior in a role-playing game and updates its

own behavior to match what you do; but this runs the very real

risk of ruining the carefully tuned game balance and making the

game unplayable. Sure, we could build a level generation algo-

rithm that enables an endless supply of new competitive multi-

player levels for a first-person shooter; but the game already has

a couple of good levels and most players prefer to play the levels

they already know.

I found this attitude extremely conservative and annoying,

but after a while, I had to admit that in many cases, they were

right. Many games would not actually benefit from advanced AI

because they were designed to not need any AI.

Let me explain. Most of today’s video game genres have

their roots in games developed in the 1980s and early 1990s.

These eras saw the development of platformers, role-playing

games, puzzle games, turn-based and real-time strategy games,

team sports games, first-person and third-person shooters, con-

struction and management simulations, racing games, and so

on. While there has certainly been design innovation since

2000—for example, the invention of multiplayer online battle

arenas (MOBAs) such as League of Legends and sandbox games

such as Minecraft—these new game genres evolved from earlier

genres.

Designing for AI 117

Back in the 1980s and early 1990s, artificial intelligence was

much less advanced than it is today. While the fundamental

algorithm behind modern deep learning, backpropagation, had

been invented, it was far less understood than it is today, and

many of the inventions that make neural networks work so well

had not been made yet. Monte Carlo tree search did not exist,

and although evolutionary algorithms were an active field of

research, major advances have been made since. Most impor-

tant, though, was that computer power was very limited then.

Depending on what you measure, your current laptop is at least

tens of thousands of times as fast as the computers that genre-

defining games such as DOOM and Dune 2 were designed to run

on, and your smartphone is faster than the fastest supercom-

puters of the 1980s. On top of that, the ability to run neural

networks on graphics cards (GPUs) did not exist back then; its

invention has added another few orders of magnitude of speed

for deep learning in particular.

When the games that came to define whole genres were

developed, incorporating state-of-the-art artificial intelligence

was not an option. I don’t think that a design goal for early plat-

formers was to have (only) enemies that moved back and forth

in predictable patterns. It also seems improbable that it was con-

sidered a good thing in early role-playing games that the NPCs

say the same canned lines all the time and force you to navigate

cumbersome dialogue trees and, presumably, the level genera-

tion in early roguelikes was not meant to be highly erratic and

disregard the player’s skill and preferences. Rather, this is how

it had to be because of technical limitations, and then the rest

of the game was designed to accommodate these shortcomings.

To take yet another example, in section 4, I explained the

algorithms behind a typical enemy in a first-person shooter

118 Chapter 8

through describing its seven-second “life span.” Why only

seven seconds? Early first-person shooters were designed with

essentially no persistent characters in order to mask their sim-

plicity. If you interacted with a character in DOOM for a min-

ute, its simplistic programming would be painfully obvious

for every player. But if the enemy is on screen for only a few

seconds, there aren’t enough clues for you as to how intelli-

gent it is (or isn’t). And later first-person shooters were heav-

ily influenced by the trailblazers of the genre, such as DOOM

(figure 8.1).

In other words, video games of that era were designed around

the lack of AI. This led to a number of design choices that would

not have been made had better AI been available. For example,

boss fights were designed around patterns of recurring actions

Figure 8.1
DOOM (id Software, 1993) was one of the original first-person shooters

and a major influence in the development of this game genre.

Designing for AI 119

that the player needed to decode instead of around the boss

trying to genuinely outsmart the player and dialogues in role-

playing games were designed around a set of fixed dialogue

choices rather than around NPCs having a dynamic knowledge

base about the world that the player character could query in

arbitrary ways. For the same reasons, difficulty scaling in games

is typically implemented through giving computer-controlled

adversaries more or fewer resources, essentially cheating rather

than modeling the player’s skill and adapting the depth of deci-

sion making of the computer-controlled characters.

These design choices came to define game genres as other

designers copied them and players started expecting them. It is

possible to break the genre conventions, but this may involve

creating new genres. Creating a role-playing game that does not

have fixed dialogue trees, as the AI researcher Michael Mateas

and game developer Andrew Stern did in their groundbreaking

relationship drama game Façade, has come to be seen as creating

a new type of game rather than trying to repair an aspect of role-

playing game design that has been broken since the beginning.

Given the (justifiable) cautiousness of most large game develop-

ers and publishers, it is no wonder that the rather remarkable

recent advances in AI methods are barely reflected at all in game

development. Existing games do not need advanced AI because

they are designed not to need it.

AI-Based Game Design Patterns

For someone like me, who cares deeply about both artificial intel-

ligence and games, the natural question is how to change this.

Advances in AI methods promise to make amazing new games

possible, but because of conservative design and development

120 Chapter 8

practices, this is not yet happening. So how can we design games

that actually need advanced AI methods?

That was the question a handful of my colleagues and I posed

one cold January day in the attic of Schloss Dagstuhl, a Ger-

man castle where we were organizing a seminar on the future

of AI in games. We decided to investigate the different roles AI

can play in games, trying to find examples from well-known or

little-known games that use AI in such a way that you need to

interact with and understand it to play the game well. We tried

to categorize these into design patterns. The design patterns we

came up with,1 some of which follow, could serve as inspiration

for envisioning even more ways of designing around AI.

AI Is Visualized: In this design pattern, the internal workings of

the AI algorithm are exposed to the player, and the player can

use that information in game play. In other words, the player can

see how one or several NPCs think by looking inside its mind.

An example is the stealth game Third Eye Crime, where you are

tasked with outsmarting security guards. The guard behavior is

driven by an AI technique called occupancy maps, which cre-

ate a model of where the guards should explore next as they go

looking for you. The trick here is that these occupancy maps are

visible to the player through being laid out on the game map. In

effect, the player can see the state of the guards’ minds (figure

8.2). In order to play the game well, the player needs to under-

stand the AI system to predict what the NPCs will do.

AI as Role Model: Many of the algorithms that underlie NPC

behavior are relatively simple and easy to predict, as we saw

in chapter 4. Instead of trying to make these algorithms more

human-like, one intriguing game design idea is to make humans

behave more like the algorithms. Spy Party is an asymmetric

Designing for AI 121

two-player game, where one player has to identify a human

player in a group of NPCs and the other player tries to blend in

as much as possible so as not to be identified by the first player

while carrying out a mission that has been assigned to her.

Blending in is best accomplished by trying to copy NPCs’ move-

ment patterns and decision making (figure 8.3). In other words,

one player needs to understand how the algorithms that drive

the NPCs’ behavior works through observation in order to copy

the behavior, and the other player needs to understand the same

behavior in order to discern the interloping human. One way

of seeing this game mechanic is as a form of reverse Turing test.

The basic concept behind the Turing test is highly appealing and

Figure 8.2
In Third Eye Crime (Moonshot Games, 2014), the colors on the ground

signal to the player both where the guards can currently see and where

they are thinking of looking next, offering the player a view into the

mind of the enemy.

122 Chapter 8

it’s possible that many other interesting game mechanics could

be built on it.

AI as Trainee: The god game (or management simulator game,

if you want a more mundane name for this genre) Black and

White puts the player in the role of a local deity, in various ways

influencing the life of mostly hapless villagers (figure 8.4). The

most important way to influence the villager is through a giant

creature, which acts as your embodied stand-in in the world.

You cannot control this creature directly; instead you must teach

it how to interact with the villagers. You do this by rewarding

and punishing it for its actions and by showing it by example

what to do. The creature’s behavior is driven by machine learn-

ing algorithms, which learn from your actions in real time as

you play the game. To play this game well, you need to master

the art of training the creature, which is a little bit like learning

to train a dog: you can do it without understanding very much

of what actually goes on in the dog’s head.

Figure 8.3
A scene from Spy Party (Chris Hecker, 2009) features a number of NPCs in

a bar, and one player must try to blend in seamlessly with them.

Designing for AI 123

Another take on this particular pattern is to build games

where you train agents that are then competing or fighting

against each other, a little bit like the training mechanic of the

Pokémon series but with actual machine learning instead of a

simple role-playing game-style progress mechanic. One exam-

ple of this is NERO (NeuroEvolution of Robotic Operatives),

a research-based game by Ken Stanley, now at University of

Central Florida and Uber AI Labs. In that game, you train an

army of miniature soldiers through designing various tasks for

them and deciding what kind of behavior to reward them for.2

Another research game from my team, EvoCommander, is based

on the same idea of training agents to do the player’s bidding,

Figure 8.4
The giant creatures in Black and White (Lionhead Studios, 2001) can do

your bidding, but only if you train them well.

124 Chapter 8

but instead of training multiple agents, you train a number of

“brains” (separate neural networks) for a simulated robot (figure

8.5). When playing against another player, you then control the

robot indirectly through selecting which brain it should use at

each point in time.3

AI Is Editable: You can also design a game around directly edit-

ing the instructions for the algorithms that control the behavior

of an agent. The board game RoboRally is proof of the possibil-

ity of creating a very successful game around such a mechanic.

In RoboRally, each player in turn chooses the instructions that

her robot should carry out in that turn. Although the “program-

ming” here is simplistic, predicting the resultant behavior is very

challenging because all players’ robots carry out their programs

in parallel.

A more advanced example is the network editor mode

of Galactic Arms Race, another research-based game by Ken

Figure 8.5
A family tree of brains in EvoCommander (Daniel Jallov, 2015). Before a

match, you choose which of your trained brains to bring with you into

battle.

Designing for AI 125

Stanley’s team. Galactic Arms Race is a third-person space shooter

game built around a unique form of search-based procedural

content generation (figure 8.6). Weapons in this game are con-

trolled by neural networks, which decide how the particles fired

by the player’s spaceship behave. Players can collect and discard

weapons throughout the game world, and at any point, they can

switch between several equipped weapons. Weapons are created

through a collaborative evolutionary algorithm where all play-

ers of the game act as a fitness function; new weapons are the

offspring of the weapons that players choose to use the most.

This is in itself a very interesting use of AI techniques in the

game, though more in a background role because players do not

need to understand the weapon-generating evolutionary algo-

rithm to play the game. The AI-is-editable design pattern was

introduced in an extension to the game, which makes it possible

to manually edit the neural networks defining the weapons. The

structure of neural networks is generally hard to understand for

humans, meaning that this editing mode is not for everyone,

but for some players, editing the neural network to try to get a

desired weapon behavior is an engaging puzzle game in itself.4

AI Is Guided: Yet another idea for how to design a game around

AI so that the player needs to interact with and understand it is

to have game characters controlled by AI algorithms, but imper-

fectly so either because you limit what the algorithms can do

or because the tasks the game characters are asked to perform

are too complex. The player will then need to act as a guide

or manager for the agents, giving them high-level commands

or guiding them through operations they cannot perform by

themselves. An excellent example of this design pattern is the

enormously successful The Sims series of games. These games can

best be described as life simulators or virtual dollhouses, where

126 Chapter 8

you control a family of characters as they go about their life. You

need to make all the large life decisions for them, such as where

to build a house, but in many cases you also need to help out

with small tasks, such as making sure there are pots and pans

available for cooking. But the characters also have a say. The

Sims games feature complex AI systems that control the agent,

so that they not only perform autonomous actions such as going

to the bathroom and cooking dinner but also strike up friend-

ships and fall in love (figure 8.7). Playing the game is a constant

balancing act between the player and the AI system. Crucially

the game frequently communicates the state of its AI systems via

little thought bubbles above the characters’ heads, allowing the

player to understand what goes on.

Figure 8.6
Evolved weapons in Galactic Arms Race (Evolutionary Games, 2009).

Designing for AI 127

Of course, this is just a small subset of the many, many pos-

sible ways in which AI can be used in visible roles within video

games. And I have mentioned only one pattern involving pro-

cedural generation and none building on player modeling. It is

pretty clear that there is a vast and underexplored design space

out there, with plenty of novel game design ideas available for

those who look beyond established genres and preconceptions

on what parts AI can and cannot play.

Figure 8.7
A romantic encounter in The Sims 4 (Maxis, 2013).

9 General Intelligence and Games in General
Chapter 9
General Intelligence and Games in General

© Massachusetts Institute of TechnologyAll Rights Reserved

Let us return to the question of what intelligence actually is, the

one I discussed in chapter 3 without coming to any satisfying

conclusion. Since you are reading this, you clearly haven’t given

up on reading this book, but you may be a bit disappointed with

me because I apparently can’t give you a straight answer. Well,

I was just being honest. It is still very much up for debate to

what extent there exists such a thing as general intelligence. I

won’t try to force a particular view on you because I think there’s

plenty of work, both philosophical and empirical, left to do to

understand this question better. What it seems we can all agree

on, however, is that some artificial intelligence systems have

broader applicability than others in the sense that they can per-

form a wider range of tasks and that it is a desirable quality of

an AI system to be generic rather than specific. There is noth-

ing wrong with AI systems that can do only one thing if we

are simply trying to engineer a solution to a specific problem.

If we are trying to make scientific progress on creating artificial

intelligence, however, then it is important that we build systems

that can do a range of different things—for example, play differ-

ent games.

130 Chapter 9

Around the time that I was finishing my PhD, I thought

that the little car racing game I had constructed for my experi-

ments with evolving neural networks was pretty nifty and that

other people might want to use it for their own experiments,

so I decided to make the code available. As I was doing that, I

decided to start a competition. Researchers, students, and any-

one else could submit their best agents, and they would com-

pete against each other. Just like in real-world car racing, the

car that finished the course fastest would win. Also just like in

real-world car racing, the collisions were the most fun part to

watch. I quickly got a few dozen competitors from all over the

world, submitting controllers based on some pretty different AI

techniques. The winner used a technique called fuzzy logic to rea-

son about how to drive best, but there were several good agents

based on reinforcement learning and evolutionary algorithms.

Seeing how well the competition went, I decided to run it again,

but this time I teamed up with some Italian researchers, Pier

Luca Lanzi and Daniele Loiacono at the Politecnico di Milano,

to move it over to a more capable 3D racing game called TORCS.

The competition ran for seven years, with continued participa-

tion from universities, and in some cases hobbyists and private

companies, around the world (figure 9.1).1

A few years later I started another AI competition based on

Infinite Mario, the open-source clone of Super Mario Bros. I men-

tioned earlier. My student Sergey Karakovskiy and I rebuilt Infi-

nite Mario into an AI benchmark and had people submit their

best Mario-playing AI agents. With a few weeks to go before the

end of the competition, a young PhD student by the name of

Robin Baumgarten submitted an agent based on the A* algo-

rithm discussed in chapter 4. The agent was stupendously

effective. It completed all the levels our level generators could

General Intelligence and Games in General 131

generate seemingly faultlessly and went on to win the competi-

tion. This was a bit of a letdown for us, as we had imagined that

we had constructed a hard AI problem, only for an agent based

on such a simple and well-known algorithm to walk all over it.

In an attempt to salvage the competition for the next round,

we went to work on making the level generator meaner. Next

time we ran the competition, the level generator created levels

with frequent dead ends, which Mario would need to backtrack

to get out of. This was a challenge that Baumgarten’s A* agent

could not overcome; instead, the next competition was won by

a complex agent called REALM, which combined evolutionary

algorithms with a rule-based system and, as one subservient part

of the mix, an A* algorithm similar to Baumgarten’s.2

Of course, I was not the first to run game-based AI competi-

tions. Competitions for AI players of Chess, Checkers, and Go

have been running for decades. Within the video game space,

Figure 9.1
TORCS, 2014. (Image courtesy of the Libre Game Wiki.)

132 Chapter 9

there have been long-running AI competitions based on clas-

sic arcade games such Ms. Pac-Man, first-person shooters such

as DOOM, and physics puzzle games such as Angry Birds. One of

the most active competitions right now is the StarCraft competi-

tion, which revolves around a game in which the best submitted

agents still stand no chance against a good human player.

In most of these competitions, as least those that continue

for a few years, there is clear progress. Racing agents submitted

to the 2012 Simulated Car Racing Competition literally run laps

around those submitted to the 2008 competition, and agents

submitted to the 2011 Mario AI Competition finish levels that

agents submitted to the 2009 competition would not. This is all

good and would seem to suggest that these competitions spur

advancements in game-playing AI. Looking at the submissions

from each year, however, you can see a worrying trend: there are,

in general, fewer and fewer general AI algorithms in the later sub-

missions. The submissions to the first edition of Simulated Car

Racing Competition consisted of agents using relatively general-

purpose algorithms that could have been used to play other

games with minor changes. In later years of the competition,

agents were being tailored more and more to the task of playing

this particular racing game, including painstakingly handcrafted

mechanisms for changing gears, learning the shape of the track,

blocking overtaking cars, and so on. In fact, machine learning

algorithms in general were used in fewer and lesser roles in later

years’ submissions compared to those at the beginning of the

competitions. Advanced AI algorithms were demoted to support-

ing roles. The improvement in the agents’ performance is not

really due to any improvements in the underlying algorithms

but to better game-specific engineering. A similar development

could be observed in the Mario AI competition. As for the Star-

Craft competitions, the agents that win tend to be intricately

General Intelligence and Games in General 133

handcrafted strategies with little in the way of what we would

normally call AI, such as search or machine learning algorithms.

Above all, these agents are very specific. The agents submit-

ted to the Mario AI Competition cannot control the cars in the

Simulated Car Racing Competition or build bases and command

armies in StarCraft. The StarCraft agents cannot drive cars or play

Super Mario Bros., and so on. It’s not just that the agent would

play these games badly; it’s that it cannot play them at all: the

game state is represented very differently for each of the game.

The StarCraft game state makes no sense to the Mario-playing

agent, and the outputs of that agent (such as running and jump-

ing) make no sense to the StarCraft game.

This is not a problem unique to these competitions. I men-

tioned back in chapter 5 that DeepMind trained neural networks

to play a few dozen classic Atari games. This might seem like an

example of more general game-playing AI, were it not for the

fact that each neural network is trained to play one game only.

The neural network trained to play Space Invaders cannot play

Pac-Man, Montezuma’s Revenge, or any of the other Atari games—

at least not play them any better than the proverbial monkey in

front of a typewriter, but with a joystick instead of a typewriter.

There have been several attempts to train neural networks to be

able to play more than one game, so far with limited success.3

The same thing is true for the other famous game-playing agent

from DeepMind, AlphaGo. It is very good at playing Go, but it

can only play Go. It can’t play anything else, not even Chess.4

General Video Game Playing

Let’s return to the question of developing general artificial

intelligence, or at least somewhat general artificial intelligence.

It seems all this work on developing AI agents that can play

134 Chapter 9

individual games may not be moving us that much closer to this

goal after all. In the worst case, it may even be a case of two steps

forward and one step backward: we keep spending resources on

understanding and exploiting the dynamics of individual games

rather than trying to create agents that can demonstrate more

general intelligence. The best way to demonstrate more gen-

eral intelligence would be for the same agent, with no or little

retraining, to solve multiple different tasks, such as playing mul-

tiple different games.

How would you ensure that researchers work on creating

agents that have some more general game-playing capacity? You

create a competition! That’s what a group of us were thinking

back in 2013 as we started working on the General Video Game

AI (GVG-AI) Competition (figure 9.2) The idea was to have a

competition where you cannot tailor your agent to a particular

game, so you have to make it at least somewhat general. We

figured that we needed to design the competition so you did

not know what games your agent was going to play. Every time

we ran the competition, we needed new games that no one had

seen before (even though they could be similar to or versions of

well-known games). For this, we needed a way to easily create

these games, so we started by designing a new language specifi-

cally for creating games in the style of classic arcade games. Tom

Schaul took the lead in creating this language, which we call the

Video Game Description Language (VGDL). Diego Perez-Liebana

then took the lead in creating the competition software.

So far, we’ve run the GVG-AI competition a few times per

year since 2014. Every competition event tests all the submitted

agents on a set of ten new games, which must be handmade for

each competition. To date, more than a hundred games have

been created, many of them versions of or inspired by arcade

General Intelligence and Games in General 135

games from the 1980s. Competitors don’t know which games

their agents will be tested on until after they have submitted their

agents, making sure that they spend their energy on improving

the agents’ general game-playing capacities rather than their fit

with a particular game. Currently, the best agents can reliably

win at fewer than half of the existing games, showing that there

is ample room for improvement.5

If someone constructed an agent that could win at all of the

existing games in the GVG-AI competition, would we call that

agent “generally intelligent”? Well, not quite yet. The GVG-AI

software gives the AI agents access to a forward model, or a simu-

lator of the games, which makes it easy to plan your actions

by simulating what would happen if you executed your plan.

Figure 9.2
Four different games in the GVG-AI framework: Zelda, Butterflies, Boulder

Dash, and Solar Fox. The common interface means that the same agent

can play all games in the framework, but with varying skill.

136 Chapter 9

For example, the version of the A* agent that won the Mario

AI competition crucially depends on having a forward model.

You would generally not have access to that as a human playing

classic arcade games, and the “real world” notoriously lacks a

forward model. We are working on a new version of the com-

petition, which does not provide agents with this possibility

but instead gives them a short amount of time to adapt to each

game. Also, the games that can be expressed in the current ver-

sion of VGDL are limited to the kinds of games you would find

in an early 1980s home computer or arcade hall, and even then

some types of games are missing (e.g., there are no text-based

games). In some unspecified future, we hope that VGDL or some

successor language will be able to express a much wider range of

games. We also hope that at some point in the future, it will be

possible to generate these games automatically, making it much

easier to create new games to test AI agents on.

While the GVG-AI project is only a small step toward solving,

or even properly formulating, the problem of general game play-

ing, I do believe that it is extremely relevant for understanding

intelligence in general. As we have seen in the book, games are

incredibly diverse, and they challenge our cognitive capacities

in ways we are barely beginning to understand. If at some point

in the future we create an agent that can learn quickly to play

all video games or even just the most well-designed ones (let’s

say the top 100 popular games on each of the major distribu-

tion platforms, such as Steam or the iOS App Store) with a skill

similar to that of a game-playing human, then I think we will

have achieved artificial general intelligence. At the very least,

we will have enormously advanced our understanding of what

intelligence is and is not.

10 Synthesis
Chapter 10
S y n t h e s i s

© Massachusetts Institute of TechnologyAll Rights Reserved

I regret to inform you that the book is almost over now. I know

this is a little bit sad—for you, not for me. It took a lot of effort

to write this book, and I’m happy that I’m basically done. It

all started with my cats being rehomed, and ten chapters later,

we have explored game design, definitions of intelligence, nar-

row and general artificial intelligence, automatic creativity, and

games that learn who you are and what you want, among other

things. In order to structure the closing comments, we will here

revisit the three broad claims that I made at the beginning of

the book and outline how the discussion in the book supports

these claims.

Games are the future of AI. Games provide the best benchmarks for

AI because of the way they are designed to challenge many different

human cognitive abilities, as well as for their technical convenience

and the availability of human data. We have only began to scratch

the surface of game-based AI benchmarks.

Games, especially well-designed games, are fantastic AI bench-

marks because they are designed to test our cognitive capaci-

ties; they are engaging to play partly because they are unusually

pedagogical intelligence tests. We have seen how board games

138 Chapter 10

have been used as AI benchmarks since the very beginning of

AI research, but also how landmark achievements such as Deep

Blue and AlphaGo have made board games less relevant for

future AI testing. To some extent, the classic board games are

simply done. Attention is shifting to video games, which pro-

vide a different and in many ways much richer set of challenges;

the diversity of video games means that all the broad cognitive

abilities from Cattell-Horn-Carroll theory are challenged by

some video games. Many video games, including real-time strat-

egy games such as StarCraft, are also much harder than any of

the classic board games for various reasons, such as large branch-

ing factors and hidden information. But it’s not enough to

create agents that play individual video games well. If we want

to create more general artificial intelligence—which most agree

is a central goal of AI, despite the disagreement over what intel-

ligence is—we need to create agents that can play any games we

present them with. For this, we need benchmarks and competi-

tions that reflect the real diversity of video games. To make this

feasible, we will probably need to generate these games at least

partly automatically.

AI is the future of games. We now have much more capable AI meth-

ods than just a few years ago, and we are rapidly learning how to best

apply them to games. The potential roles of AI in games go far beyond

providing skillful opponents. We need to adapt our ways of thinking

about game design to fully harness the power of advanced AI algo-

rithms and enable a new generation of AI-augmented games.

There is a sizeable gulf between the AI methods that are being

researched in academia and the AI methods employed in most

games. While there exist some sophisticated techniques for con-

trolling NPCs in games, more general-purpose AI methods are

Synthesis 139

largely absent from commercial game development. Compared

to other industries, game development is curiously unaffected

by the current surge of interest in artificial intelligence. This

is to a large extent because most game genres build on design

blueprints that were laid down decades ago, when effective AI

on consumer hardware was more or less impossible. Games are

therefore designed to not need AI. To change this and harness

some of the possibilities modern AI brings, we need to rethink

game design, starting with the roles that AI can play. There are

many unexplored roles for AI beyond standard NPC control.

One particularly prominent role for AI algorithms is that of gen-

erating game content. Procedural content generation has been

a feature of some games for decades, but new methods based

on, for example, evolutionary algorithms make much more

wide-ranging and controllable content generation possible.

Player modeling is another key use case for AI in games, and

modeling players’ preferences and behavior makes it possible

to adapt games to particular players, suggesting a future where

games could continuously reinvent themselves in response to

what players do. They may even invent content players do not

realize they want yet. Tools such as player modeling and con-

tent generation can also be useful for designers and make game

development easier and more accessible. All these methods

are, however, dependent on progress in AI agents that can play

games in general.

Games and AI for games help us understand intelligence. By study-

ing how humans play and design games, we can understand how

they think, and we can attempt to replicate this thinking by creat-

ing game-playing and game-designing AI agents. Game design is a

cognitive science; it studies thinking—human thinking and machine

thinking.

140 Chapter 10

The fact that some games are easy for humans to play but hard

for current algorithms, and vice versa, is an important source of

information on our thinking. It tells us how our thinking differs

from that of the algorithms we currently have and can inspire

us to create new AI methods. But it’s not only in the context

of game playing that game AI can inform us about thinking.

Algorithms for designing games, or parts of games, can be seen

as models of human creativity. Trying to create software that

can design games will give us some idea of how human creative

processes, currently badly understood, work. And the differences

between human and machine design will tell us more about this

process and give us ideas for further creative algorithms.

Finally, I’ll reiterate that all of the research topics discussed in

this book feed into each other. AI for games and games for AI are

not the same thing, but advances in one of these endeavors will

enable advances in the other. And there is much left to do in this

young research field with so many open research questions in

every direction. It is also an inherently interdisciplinary research

field, where computer scientists, cognitive scientists, designers,

and humanities scholars who care about games can contribute.

Perhaps you would like to join us?

Further Reading
Further Reading
Further Reading

© Massachusetts Institute of TechnologyAll Rights Reserved

I hope that this book has inspired you to read more about its

topics and maybe even dive into this research field yourself.

Throughout the book, I have included a number of notes with

references to papers that expand on each topic in greater detail.

The papers may be more or less accessible given your techni-

cal background, so you might want a more coherent intro-

duction to some topics. To that end, here I offer some book

recommendations.

Georgios Yannakakis and I recently published Artificial Intel-

ligence and Games (2018), a textbook that covers approximately

the same topics as this book but from a much more technical

angle. Read it to learn the algorithms behind the discussions

in this book. The book presupposes a computer science back-

ground, including an understanding of the fundamentals of arti-

ficial intelligence.

If you are specifically interested in the topics of chapter 7,

I recommend the book Procedural Content Generation in Games

(2016), edited and cowritten by Noor Shaker, Mark Nelson, and

me, with contributions from a dozen or so leading researchers in

the field. This is also a technical book.

142 Further Reading

If you want to learn the basics of artificial intelligence, the

standard work is Artificial Intelligence: A Modern Approach (2009)

by Stuart Russell and Peter Norvig. It’s a great reference because

of its completeness, but that’s not saying it’s the most accessible

book there is. Many online courses on the basics of AI may be

more accessible introductions. There are some good introduc-

tory books for certain subfields of AI. Deep Learning with Python

(2017) by François Chollet is a highly accessible and useful intro-

duction to modern neural network techniques. Introduction to

Evolutionary Computing (2003) by A. E. Eiben and J. E. Smith is

a good introduction to and overview of evolutionary computa-

tion, which has been used in much of the work described in

this book. There are also many good books on game design and

game studies, some of them practical books about the game

design process and others geared more toward describing the

space of game designs in a more formal and abstract way. In the

latter category, two books that I have found useful when think-

ing about (artificial) intelligence and games are Rules of Play:

Game Design Fundamentals (2004) by Katie Salen Tekinbaş and

Eric Zimmerman and Characteristics of Games (2012) by George

Skaff Elias, Richard Garfield, and K. Robert Gutschera. Beyond

books, Tommy Thompson has produced a great series of acces-

sible videos on AI and games that are available on YouTube and

on http://aiandgames.com.

Like all of artificial intelligence, the AI and games field moves

fast. If you want to keep up to date, you can peruse the pro-

ceedings (freely available online) of the main conferences: IEEE

Conference on Computational Intelligence and Games (CIG)

and AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment (AIIDE). Additionally, many relevant

papers are published in the proceedings of the Foundations of

http://aiandgames.com

Further Reading 143

Digital Games (FDG) conference and its associated workshops,

such as the Procedural Content Generation Workshop. Another

important publication is IEEE Transactions on Games, a journal

that publishes technical and scientific research on games includ-

ing AI. Nowadays, papers are typically uploaded to repositories

such as ArXiv before they are published, often even before they

are submitted for publication. Given the enormous volume of

papers that are submitted to ArXiv, the best way of finding out

about interesting papers posted online is probably to follow

researchers on Twitter. You can start with @togelius.

Notes
N o t e s
N o t e s

© Massachusetts Institute of TechnologyAll Rights Reserved

Prologue: AI&I

1. Math and I are still not the best of friends. Contrary to popular mis-

conceptions, you do not need to be mathematically inclined to have a

successful career in computer science.

What Is This Book?

1. But I’ve tried to keep the footnotes short.

Chapter 1: In the Beginning of AI, There Were Games

1. Turing wrote an account of this event in Turing et al. (1953).

2. Samuel (1959).

3. For more about this match and the system that won it, see Campbell,

Hoane, and Hsu (2002). It is worth noting that the development of

better computer Chess software has by no means ceased, and that com-

puters have also kept getting faster; you can now download software for

your laptop that will play Chess better than any human player out

there.

4. Of course, both East Asia and Europe comprise many cultures, but

both of these games have historically been popular in many countries

across these regions.

146 Notes

5. For a thorough introduction to MCTS, see the popular survey paper

by Browne and Maire (2010).

6. Silver et al. (2016).

7. Computers achieved superhuman performance on several other

games much earlier, and some games, such as Checkers have even been

“solved,” meaning that the computer can play a provably perfect game

against any opponent (Schaeffer et al., 2007).

Chapter 2: Do You Need to Be Intelligent to Play Games?

1. The theory is described in Carroll (2003).

2. Koster’s book, A Theory of Fun for Game Design (2005), is surprisingly

fun to read.

3. In their excellent book Characteristics of Games, Elias, Garfield, and

Gutschera (2012) describe heuristic accumulation at some length. I have

tried to lay out how the chain of heuristics relates to the depth of a

game (Lantz et al., 2017).

4. Vygotsky (1978).

5. Csikszentmihalyi (1990). There have also been attempts to develop

offshoots of the flow theory specifically tailored to games (Sweetser and

Wyeth, 2005).

6. This theory has been developed in a number of publications and

applied to various machine learning tasks, but for a readable overview,

see Schmidhuber (2006).

Chapter 3: What Is (Artificial) Intelligence?

1. For a more thorough overview of various definitions of intelligence

from the perspective of artificial intelligence, see Legg and Hutter

(2007).

Notes 147

2. Turing was a coinventor of the computer, genius mathematician, war

hero, LGBT martyr, and many other things. See Hodges (2012) for an

excellent biography.

3. The paper where the test was proposed is Turing (1950). It’s a fasci-

nating paper full of intriguing arguments, and very readable; most of it

does not require any particular technical background. Bring it to the

beach next time you go, and enjoy it with a cold beer.

4. Interestingly, it seems that the Turing test is getting harder to pass as

time passes. The computer program Eliza was invented in the 1960s as a

parody of Rogerian nondirectional psychotherapy, as well as a contribu-

tion to natural language processing. You can interact with Eliza by

“chatting” with it, but most of the program’s answers will be either

reformulations of what you said or very general questions such as, “Tell

me about your mother.” When the program was announced to the

public, many of those who tried it would not believe it was a computer

program because they could not believe that a computer could say these

things. They were sure there must be a human “at the other end.” These

days, very few people would be fooled by Eliza. People are used to the

existence of chatbots, and many have interacted with them over Twitter

or Slack or as part of a game. Young people in particular would quickly

see through Eliza’s antics.

5. As of the time of writing, I am thirty-eight years old and still have

not gotten myself a driver’s license.

6. Imagine a game that had a million different moves available each

turn, all with different outcomes but with no obvious visualization to

let you choose among them. The ordering and names of the moves

changed every turn. You would not be able to play this any better than

if you played randomly, whereas a computer could easily simulate the

outcome of each move and play the game well.

7. This is the title of one of his papers, and a pretty readable one too

(Brooks, 1990).

8. The paper is Legg and Hutter (2007). Legg went on to cofound Deep-

Mind, which Google later bought for a very respectable sum and is cur-

rently the world’s preeminent AI research lab.

148 Notes

9. Though it took just over fifty years from the Wright flyer to the

Apollo rocket.

10. Turing (1950).

Chapter 4: Do Video Games Have Artificial Intelligence?

1. The word state is here used similarly to how we use it for humans or

dogs: Fido could be bored, hungry, happy, or sleeping. Technically, the

state of a game character is a particular configuration of the variables

that define the character. It is related to but different from the use in

chapter 2, where we talked about the “game state,” which is all the vari-

ables that define the game.

2. Actually, the one where the sum of the distance already traveled and

the estimated distance to the goal is lowest.

3. For more about A* algorithms and some of the myriad variations, see

any standard AI textbook, such as Russell and Norvig (2009). For more

on finite state machines and behavior trees, see a dedicated game AI

textbook, such as Millington and Funge (2009).

4. Jeff Orkin, the AI lead developer of F.E.A.R., wrote about the plan-

ning system in an influential paper (Orkin, 2006). Damian Isla (2005)

similarly wrote about some important aspects of the AI of Halo 2. The

Shadow of Mordor system has been discussed in talks at the Game Devel-

opers Conference, but nothing has been published about it in the aca-

demic literature as far as I know.

5. The subjective experience of artificial agents is a can of worms that

we are not quite ready to open. Those worms are doing just fine inside

the can for now.

6. According the classification in Elias et al. (2012), it (and many other

games we usually refer to as single player) is really a one-and-a-half-

player game, as it lets a human play against AI opponents. For simplic-

ity, I will continue calling such games single-player games in this book.

7. Ontanón et al. (2013) is a good overview of the state of the art of AI

versus AI StarCraft competitions.

Notes 149

Chapter 5: Growing a Mind and Learning to Play

1. Like many others, I came to the field of AI as a romantic and was

molded into a utilitarian. The romantic streak is still there, though, and

breaks out at uneven intervals.

2. Darwin (1859).

3. Indeed, not entirely unlike the so-bad-it’s-good “series of tubes”

metaphor for the Internet alluded to by Senator Ted Stevens.

4. Back when I started this line of research, I did not have a driving

license and I lived outside the sleepy town of Colchester, England. I still

don’t have a driving license, but I have since moved to New York City. I

keep thinking I should get myself a driving license before all cars drive

themselves, so I’ll have to learn to drive in Manhattan. It appears I like

playing this game at a high difficulty level.

5. Mnih et al. (2015).

Chapter 6: Do Games Learn from You When You Play Them?

1. It is sometimes said that while astronomy and other branches of

physics deal with large numbers, computer science deals with really

large numbers. This is just how combinatorics works. Remember that six

digits between 0 and 9 can be combined in a million ways (all the num-

bers you can write between 000000 and 999999). Similarly, if your game

state is represented by 1,000 bytes (a kilobyte) of memory, then you

have about 102456 possible game states. Yes, that’s one followed by 2,456

zeroes.

2. Bartle’s original paper (1996) is refers to multiuser dungeons (MUDs)

but has since been used to talk about and classify players across essen-

tially all game genres (Bartle, 1996).

3. Drachen, Canossa, and Yannakakis (2009).

4. Mahlmann et al. (2010).

5. Canossa, Martinez, and Togelius (2013).

150 Notes

6. Yee, Ducheneaut, Nelson, and Likarish (2011).

7. This research is reported in a number of papers, including Tekofsky,

Van Den Herik, Spronck, and Plaat (2013), and Tekofsky, Spronck,

Goudbeek, Plaat, and van den Herik (2015).

Chapter 7: Automating Creativity

1. The main paper to come out of this project was Togelius, De Nardi,

and Lucas (2007).

2. In this case, we were inspired by the work of Thomas Malone (1981)

and Raph Koster (2005).

3. The idea of search-based procedural content generation is laid out in

more detail in Togelius, Yannakakis, Stanley, and Brown (2011). For the

work on StarCraft maps and Super Mario Bros, see Togelius et al. (2013)

and Dahlskog and Togelius (2014), respectively. An interestingly differ-

ent take on seeing content generation as search is to use a constraint

solver, as demonstrated in Smith and Mateas (2010) and Smith, White-

head, and Mateas. (2011).

4. Boden (1991).

5. The research described in this section was reported in several papers,

of which Pedersen, Togelius, and Yannakakis (2010) and Shaker, Yan-

nakakis, and Togelius (2010) are the most important; there’s also an

overview paper about the experience-driven approach (Yannakakis and

Togelius, 2011).

6. Browne and Maire (2010).

7. Togelius and Schmidhuber (2008).

8. Nielsen, Barros, Togelius, and Nelson (2015).

9. Smith and Mateas (2010).

10. See, for example, Cook and Colton (2011, 2014).

11. Smith et al. (2011).

Notes 151

12. Liapis, Yannakakis, and Togelius (2013).

13. With various collaborators, I have, for example, worked on the

Ropossum tool for AI-assisted level generation in the popular physics-

based puzzle game Cut the Rope (Shaker, Shaker, and Togelius, 2013) and

an AI-assisted tool for creating game rules in the video game description

language (Machado, Nealen, and Togelius, 2017). Another interesting

example is the AI-assisted level editor for the puzzle game Refraction

(Butler, Smith, Liu, and Popvic, 2013).

Chapter 8: Designing for AI

1. The rest of this chapter largely builds on the paper that came out of

that long discussion in the German castle attic (Treanor et al., 2015).

That paper lists more patterns than this chapter and also contains two

game prototypes mean to illustrate and explore further such patterns.

2. Stanley, Bryant, and Miikkulainen (2005).

3. Jallov, Risi, and Togelius (2017).

4. The Galactic Arms Race game is described in Hastings, Guha, and

Stanley (2009), and the neural network editing extension is described in

Hastings and Stanley (2010).

Chapter 9: General Intelligence and Games in General

1. We wrote a paper summarizing the competitors and results of the

first competition (Togelius et al., 2008) and, later, a similar paper about

the new car racing competition (Loiacono et al., 2010).

2. The paper describing the game-playing track of the Mario AI Compe-

tition, as we called it, is Karakovskiy and Togelius (2012). The REALM

agent is described in Bojarski and Congdon (2010).

3. The original paper is Mnih et al. (2015); one of the several attempts

at creating more generally capable agents is Rusu et al. (2016).

152 Notes

4. A recent development of AlphaGo called AlphaZero uses a similar

combination of reinforcement learning and tree search to learn to play

not just Go but also Chess and the Go-related game Shogi. However, it

trains separate networks for each game and even uses different represen-

tation of the board state for the different games, so the Go-playing net-

work cannot play Chess or Shogi (Silver et al., 2017).

5. The GVG-AI competition and some of its results are described in

Perez-Liebana, Samothrakis, Togelius, Lucas, et al. (2016), and Perez-

Liebana, Samothrakis, Togelius, Schaul, et al. (2016). The GVG-AI proj-

ect was also inspired by the earlier General Game Playing competition,

which focuses on board games (Genesereth, Love, and Pell, 2005).

Bibliography
B i b l i o g r a p h y
B i b l i o g r a p h y

© Massachusetts Institute of TechnologyAll Rights Reserved

Boden, M. A. (1991). The creative mind: Myths and mechanisms. New

York, NY: Basic Books.

Bojarski, S., & Congdon, C. B. (2010). Realm: A rule-based evolutionary

computation agent that learns to play Mario. In Proceedings of the 2010

IEEE Symposium on Computational Intelligence and Games (pp. 83–90).

Piscataway, NJ: IEEE.

Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autono-

mous Systems, 6(1–2), 3–15.

Browne, C., & Maire, F. (2010). Evolutionary game design. IEEE Transac-

tions on Computational Intelligence and AI in Games, 2(1), 1–16.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlf-

shagen, P., … Colton, S. (2012). A survey of Monte Carlo tree search

methods. IEEE Transactions on Computational Intelligence and AI in Games,

4(1), 1–43.

Butler, E., Smith, A. M., Liu, Y.-E., & Popovic, Z. (2013). A mixed-initia-

tive tool for designing level progressions in games. In Proceedings of the

26th Annual ACM Symposium on User Interface Software and Technology

(pp. 377–386). New York, NY: ACM.

Campbell, M., Hoane, A. J., & Hsu, F.-H. (2002). Deep Blue. Artificial

Intelligence, 134(1–2), 57–83.

154 Bibliography

Canossa, A., Martinez, J. B., & Togelius, J. (2013). Give me a reason

to dig: Minecraft and psychology of motivation. In Proceedings of the

2013 IEEE Conference on Computational Intelligence and Games (pp. 1–8).

Piscataway, NJ: IEEE.

Carroll, J. B. (2003). The higher-stratum structure of cognitive abilities:

Current evidence supports g and about ten broad factors. In H. Nyborg

(Ed.), The scientific study of general intelligence: Tribute to Arthur Jensen (pp.

5–21) Amsterdam, Netherlands: Elsevier.

Chollet, F. (2017). Deep learning with Python. Shelter Island, NY: Man-

ning Publications Company.

Cook, M., & Colton, S. (2011). Multi-faceted evolution of simple arcade

games. In Proceedings of the 2011 IEEE Conference on Computational Intel-

ligence and Games (pp. 289–296). Piscataway, NJ: IEEE.

Cook, M., & Colton, S. (2014). Ludus ex machina: Building a 3D game

designer that competes alongside humans. Paper presented at the Fifth

International Conference on Computational Creativity, Ljubljana, Slo-

venia, June 10–13.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience.

New York, NY: Harper & Row.

Dahlskog, S., & Togelius, J. (2014). Procedural content generation using

patterns as objectives. In Proceedings of the European Conference on the

Applications of Evolutionary Computation (pp. 325–336). Cham, Switzer-

land: Springer.

Darwin, C. (1859). On the origin of species by means of natural selection, or

the preservation of favoured races in the struggle for life. London: Murray.

Drachen, A., Canossa, A., & Yannakakis, G. N. (2009). Player modeling

using self-organization in Tomb Raider: Underworld. In Proceedings of the

2009 IEEE Symposium on Computational Intelligence and Games (pp. 1–8).

Piscataway, NJ: IEEE.

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing.

Cham, Switzerland: Springer.

Bibliography 155

Elias, G. S., Garfield, R., & Gutschera, K. R. (2012). Characteristics of

games. Cambridge, MA: MIT Press.

Genesereth, M., Love, N., & Pell, B. (2005). General game playing: Over-

view of the AAAI competition. AI Magazine, 26(2), 62.

Hastings, E. J., Guha, R. K., & Stanley, K. O. (2009). Automatic content

generation in the Galactic Arms Race video game. IEEE Transactions on

Computational Intelligence and AI in Games, 1(4), 245–263.

Hastings, E. J., & Stanley, K. O. (2010). Interactive genetic engineering of

evolved video game content. Paper presented at the 2010 Workshop on

Procedural Content Generation in Games, Monterey, CA, June 18.

Hodges, A. (2012). Alan Turing: The enigma. New York, NY: Random

House.

Isla, D. (2005). Managing complexity in the Halo 2 AI system. Paper pre-

sented at the 2005 Game Developers Conference, San Francisco, CA,

March.

Jallov, D., Risi, S., & Togelius, J. (2017). EvoCommander: A novel game

based on evolving and switching between artificial brains. IEEE Transac-

tions on Computational Intelligence and AI in Games, 9(2), 181–191.

Karakovskiy, S., & Togelius, J. (2012). The Mario AI benchmark and

competitions. IEEE Transactions on Computational Intelligence and AI in

Games, 4(1), 55–67.

Koster, R. (2005). A theory of fun for game designers. Scottsdale, AZ: Para-

glyph Press.

Lantz, F., Isaksen, A., Jaffe, A., Nealen, A., & Togelius, J. (2017). Depth in

strategic games. Paper presented at the AAAI Workshop on What’s Next

for AI in Games, San Francisco, CA, February 4. http://movingai.com/

aigames17/slides/depth.pdf

Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of

machine intelligence. Minds and Machines, 17(4), 391–444.

Liapis, A., Yannakakis, G. N., & Togelius, J. (2013). Sentient Sketchbook:

Computer-aided game level authoring. In Proceedings of the Eighth

http://movingai.com/aigames17/slides/depth.pdf
http://movingai.com/aigames17/slides/depth.pdf

156 Bibliography

International Conference on the Foundations of Digital Games (pp. 213–

220). Santa Cruz, CA: Society for the Advancement of the Science of

Digital Games.

Loiacono, D., Lanzi, P. L., Togelius, J., Onieva, E., Pelta, D. A., Butz, M.

V., … , Quadflieg, J. (2010). The 2009 Simulated Car Racing Champion-

ship. IEEE Transactions on Computational Intelligence and AI in Games,

2(2), 131–147.

Machado, T., Nealen, A., & Togelius, J. (2017). CICERO: Computation-

ally Intelligent Collaborative EnviROnment for game and level design.

Paper presented at ICCC Computational Creativity & Games Workshop,

Atlanta, GA, June 19–23. http://computationalcreativity.net/iccc2017/

CCGW/CCGW17_paper_1.pdf

Mahlmann, T., Drachen, A., Togelius, J., Canossa, A., & Yannakakis, G.

N. (2010). Predicting player behavior in Tomb Raider: Underworld. In Pro-

ceedings of the 2010 IEEE Symposium on Computational Intelligence and

Games (pp. 178–185). Piscataway, NJ: IEEE.

Malone, T. (1981). What makes computer games fun? Paper presented at

the Joint Conference on Easier and More Productive Use of Computer

Systems, Ann Arbor, MI, May 20–22.

Millington, I., & Funge, J. (2009). Artificial intelligence for games. Boca

Raton, FL: CRC Press.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,

M. G., … , Hassabis, D. (2015). Human-level control through deep rein-

forcement learning. Nature, 518(7540), 529–533.

Nielsen, T. S., Barros, G. A., Togelius, J., & Nelson, M. J. (2015). Towards

generating arcade game rules with VGDL. In Proceedings of the 2015

IEEE Conference on Computational Intelligence and Games (pp. 185–192).

Piscataway, NJ: IEEE.

Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., &

Preuss, M. (2013). A survey of real-time strategy game AI research and

competition in StarCraft. IEEE Transactions on Computational Intelligence

and AI in Games, 5(4), 293–311.

http://computationalcreativity.net/iccc2017/CCGW/CCGW17_paper_1.pdf
http://computationalcreativity.net/iccc2017/CCGW/CCGW17_paper_1.pdf

Bibliography 157

Orkin, J. (2006). Three states and a plan: The AI of F.E.A.R. Presentation

given at Game Developers Conference 2006, San Jose, CA, March 20–24.

Pedersen, C., Togelius, J., & Yannakakis, G. N. (2010). Modeling player

experience for content creation. IEEE Transactions on Computational

Intelligence and AI in Games, 2(1), 54–67.

Perez-Liebana, D., Samothrakis, S., Togelius, J., Lucas, S. M., & Schaul, T.

(2016). General video game AI: Competition, challenges, and opportu-

nities. In Proceedings of the 30th AAAI Conference on Artificial Intelligence

(pp. 4335–4337). Palo Alto, CA: AAAI.

Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S. M.,

Couëtoux, A., … Thompson, T. (2016). The 2014 General Video Game

Playing Competition. IEEE Transactions on Computational Intelligence and

AI in Games, 8(3), 229–243.

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach

(3rd ed.). London, UK: Pearson.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,

Kavukcuoglu, K., … Hadsell, R. (2016). Progressive neural networks.

https://arxiv.org/abs/1606.04671

Salen, K., & Zimmerman, E. (2004). Rules of play: Game design fundamen-

tals. Cambridge, MA: MIT Press.

Samuel, A. L. (1959). Some studies in machine learning using the game

of checkers. IBM Journal of Research and Development, 3(3), 210–229.

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake,

R., Lu, P., and Sutphen, S. (2007). Checkers is solved. Science, 317(5844),

1518–1522.

Schmidhuber, J. (2006). Developmental robotics, optimal artificial curi-

osity, creativity, music, and the fine arts. Connection Science, 18(2),

173–187.

Shaker, N., Shaker, M., & Togelius, J. (2013). Evolving playable content

for cut the rope through a simulation-based approach. In G. Sukthankar

& I. Horswill (Eds.), Proceedings of the 9th AAAI Conference on Artificial

https://arxiv.org/abs/1606.04671

158 Bibliography

Intelligence and Interactive Digital Entertainment (pp. 72–78). Palo Alto,

CA: AAAI.

Shaker, N., Togelius, J., & Nelson, M. J. (2016). Procedural content genera-

tion in games. Cham, Switzerland: Springer.

Shaker, N., Yannakakis, G. N., & Togelius, J. (2010). Towards automatic

personalized content generation for platform games. In G. M. Young-

blood & V. Bulitko (Eds.), Proceedings of the 6th AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment (pp. 63–68).

Palo Alto, CA: AAAI

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driess-

che, G., … , Hassabis, D. (2016). Mastering the game of Go with deep

neural networks and tree search. Nature, 529(7587), 484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,

… , Hassabis, D. (2017). Mastering chess and Shogi by self-play with a gen-

eral reinforcement learning algorithm. https://arxiv.org/abs/1712.01815

Smith, A. M., & Mateas, M. (2010). Variations forever: Flexibly generat-

ing rulesets from a sculptable design space of mini-games. In Proceedings

of the 2010 IEEE Symposium on Computational Intelligence and Games (pp.

273–280). Piscataway, NJ: IEEE.

Smith, A. M., & Mateas, M. (2011). Answer set programming for proce-

dural content generation: A design space approach. IEEE Transactions on

Computational Intelligence and AI in Games, 3(3), 187–200.

Smith, G., Whitehead, J., & Mateas, M. (2011). Tanagra: Reactive

planning and constraint solving for mixed-initiative level design.

IEEE Transactions on Computational Intelligence and AI in Games, 3(3),

201–215.

Stanley, K. O., Bryant, B. D., & Miikkulainen, R. (2005). Real-time neu-

roevolution in the NERO video game. IEEE Transactions on Evolutionary

Computation, 9(6), 653–668.

Sweetser, P., & Wyeth, P. (2005). GameFlow: A model for evaluating

player enjoyment in games. Computers in Entertainment, 3(3). doi:10

.1145/1077246.1077253

https://arxiv.org/abs/1712.01815

Bibliography 159

Tekofsky, S., Van Den Herik, J., Spronck, P., & Plaat, A. (2013). Psyops:

Personality assessment through gaming behavior. Paper presented at the

Eighth International Conference on the Foundations of Digital Games,

Chania, Crete, Greece, May 14–17.

Tekofsky, S., Spronck, P., Goudbeek, M., Plaat, A., & van den Herik, J.

(2015). Past our prime: A study of age and play style development in

Battlefield 3. IEEE Transactions on Computational Intelligence and AI in

Games, 7(3), 292–303.

Togelius, J., De Nardi, R., & Lucas, S. M. (2007). Towards automatic per-

sonalised content creation for racing games. In Proceedings of the 2007

IEEE Symposium on Computational Intelligence and Games (pp. 252–259).

Piscataway, NJ: IEEE.

Togelius, J., Lucas, S., Thang, H. D., Garibaldi, J. M., Nakashima, T.,

Tan, C. H., … , Burrow, P. (2008). The 2007 IEEE CEC simulated car

racing competition. Genetic Programming and Evolvable Machines, 9(4),

295–329.

Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J.,

Yannakakis, G. N., Grappiolo, P. (2013). Controllable procedural map

generation via multiobjective evolution. Genetic Programming and Evolv-

able Machines, 14(2), 245–277.

Togelius, J., & Schmidhuber, J. (2008). An experiment in automatic

game design. In Proceedings of the 2008 IEEE Symposium On Computa-

tional Intelligence and Games (pp. 111–118). Piscataway, NJ: IEEE.

Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011).

Search-based procedural content generation: A taxonomy and survey.

IEEE Transactions on Computational Intelligence and AI in Games, 3(3),

172–186.

Treanor, M., Zook, A., Eladhari, M. P., Togelius, J., Smith, G., Cook, M.,

… , Smith, A. (2015). AI-based game design patterns. Paper presented at

the Tenth International Conference on the Foundations of Digital

Games, Pacific Grove, CA, June 22–25. http://www.fdg2015.org/papers/

fdg2015_paper_23.pdf

http://www.fdg2015.org/papers/fdg2015_paper_23.pdf
http://www.fdg2015.org/papers/fdg2015_paper_23.pdf

160 Bibliography

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49,

433–460.

Turing, A. M., Bates, M., Bowden, B., and Strachey, C. (1953). Digital

computers applied to games. In B. V. Bowden (Ed.), Faster than thought:

Symposium on digital computing machines (pp. 286–310). London, UK:

Pitman.

Vygotsky, L. (1978). Interaction between learning and development. In

M. Gauvain & M. Cole (Eds.), Readings on the development of children

(pp. 34–40). New York, NY: Scientific American Books.

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural

content generation. IEEE Transactions on Affective Computing, 2(3),

147–161.

Yannakakis, G. N., & Togelius, J. (2018). Artificial intelligence and games.

Cham, Switzerland: Springer. http://gameaibook.org

Yee, N., Ducheneaut, N., Nelson, L., & Likarish, P. (2011). Introverted

elves and conscientious gnomes: The expression of personality in World

of Warcraft . In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (pp. 753–762). New York, NY: ACM.

http://gameaibook.org

Index
I n d e x
I n d e x
© Massachusetts Institute of TechnologyAll Rights Reserved

Page numbers in italics indicate references to figures.

AAAI Conference on Artificial

Intelligence and Interactive

Digital Entertainment (AIIDE),

142

A*algorithm, 130–131

Achievers, 79

Adaptive intelligence, 31–34

AI-complete problems, 93

AlphaGo, 9–10, 133, 138, 152n4

AlphaZero, 152n4

Analytic Engine, 91

ANGELINA, 110

Angry Birds, 11, 12–13, 15, 132

assessing yourself in playing, 16

learning while playing, 20,

21–22

planning in, 14

player’s moves in, 17

players of, 79

randomness in, 16

spatial thinking in playing,

14–15

Animal psychology, 32

Artificial agents, 133–136, 148n5

Artificial intelligence (AI), 25. See

also Intelligence

creativity through

collaborations between

humans and, 111–113, 113

defining, 36–38, 146n1

designing for, 115–119, 118

as editable, 124–125

further reading on, 141–143

game competitions, 131–133

game design patterns based on,

119–127, 121–124, 126–127

games as the future of, 137–140

for general video game playing,

133–136, 135

as guided, 125–128, 126–127

lack of common agreement in

defining, 38–40

narrow, 37–38

neural networks and, 63–66

162 Index

as nonplayer character (NPC) in

video games, 41–48

playing like “average” players,

76–78

as role model, 120–122

that develops itself, 57–58

Togelius’ working definition of,

39–40

as trainee, 122–124, 123–124

visualized, 120

what if video games had actual,

48–51

why the future is not here yet

with, 51–55

Artificial Intelligence: A Modern

Approach, 142

Artificial Intelligence and Games,

141

ArXiv, 143

Assessing yourself in playing

games, 16

Auditory processing, 19

Babbage, Charles, 91

Backpropagation, 66, 77–78, 117

Bartle, Richard, 79, 82

Battlefield 4, 89

Behavior-based robotics, 32–33

Big Five personality traits, 88

Black and White, 122, 123

Bloodborne, 37

Boden, Margaret, 96

Brain, neural networks of the,

63–66

Branching factors, 7, 8–9

Brooks, Rodney, 32–33

Browne, Cameron, 107–108

B-splines, 93

Bubble Bobble, 48

C++, 62

Call of Duty, 17, 41

Canossa, Alessandro, 80

Cattell-Horn-Carroll (CHC)

theory, 17–18, 19, 138

Characteristics of Games, 142,

146n3

Checkers, 3, 53, 68, 131, 146n7

Chess, 1–3, 11

assessing yourself in playing, 16

competitions for, 131, 133

computer, 3–7

consciousness in playing, 37

moving one unit at a time in, 53

planning in, 13–14

player’s moves in, 17

predicting opponent’s actions

and reactions in playing, 15

spatial thinking in playing, 14

Chollet, François, 142

Civilization, 48, 53–54, 89, 99

Clustering, 81

Coevolution, 60

Cognitive abilities, 17–18, 19

Communication via text, 25–28

Competitions, AI game, 131–133

Comprehension-knowledge, 19

Computers

activities accomplished by, 29

early, 1

evolutionary algorithms and, 61

Artificial intelligence (AI) (cont.)

Index 163

fitness function and, 62

game playing ability of, 30,

146n7

pattern recognition by, 29

program mutations in, 60–61

Turing test and, 26

Consciousness, 37

Content, game

general, 106–111, 108, 110

personalized, 102–106, 103, 105

Cook, Mike, 110

Correlation, 87

Creativity, automating, 91–96, 95

in general content, 106–111,

108, 110

personal content and, 102–106,

103, 105

random number God and, 96–

101, 98–99, 101

through human collaboration

with AI systems, 111–113, 113

Credit assignment problem, 73

Crossovers, 61

Cut the Rope, 151n13

Czikszentmihalyi, Mihaly, 22

Darwin, Charles, 58

Decision/reaction time/speed, 19

Decision tree induction, 83

Deep Blue, 4, 9–10, 138

Deep learning, 65, 117

Deep Learning with Python, 142

DeepMind, 9–10, 73–74, 133

De Nardi, Renzo, 92, 95

Design for artificial intelligence,

115–119, 118

game design patterns in, 119–

127, 121–124, 126–127

Diablo, 99

DNA mutations, 59

DOOM, 117–118, 132

DOTA, 36

Drachen, Anders, 80

Dune 2, 117

Dungeons and Dragons, 96–97

Dwarf Fortress, 99

Editable nature of artificial

intelligence, 124–125

Eiben, A. E., 142

Elias, George Skaff, 142

Elite, 99–100

Eliza (computer program), 147n4

Enemy 362. See Nonplayer

characters (NPCs)

Ethology, 32

EvoCommander, 123–124

Evolution

by artificial intelligence, 57–58

by natural selection, 58–61

trial and error on speed and,

70–74

Evolutionary algorithms, 61

Expected reward, 73

Experience-driven procedural

content generator, 104

Explorers, 79

Façade, 119

Facebook, 25, 29, 103

F.E.A.R., 46, 148n4

Feedforward networks, 63, 64

164 Index

First-person shooter (FPS) games,

41–45, 57, 116, 117–118

Fitness function, 62

Fluid reasoning, 19

Foundations of Digital Games

(FDG), 142–143

Fuzzy logic, 130

Galactic Arms Race, 124–125, 126

Games. See also Checkers; Chess;

Go (game); Video games

assessing yourself in playing,

16

cognitive abilities used in,

17–18, 19

competitions, AI, 131–133

as the future of artificial

intelligence, 137–140

learning when playing, 18–23

minimax algorithm in, 4–9

planning in playing, 13–14

player’s moves in, 17

playing like “average” players,

76–78

predicting opponent’s actions

and reactions in playing,

15–16

recombination, 107

spatial thinking in playing,

14–15

Garfield, Richard, 142

Gears of War, 41

General game content, 106–111,

108, 110

General problem-solving capacity,

33

General Video Game AI (GVG-AI)

Competition, 134–136

General video game playing, 133–

136, 135

Genetic mutations, 59

Go (game), 8–10, 131, 133

moving one unit at a time in, 53

Goldfish memory, 29

Guided nature of artificial

intelligence, 125–128, 126–127

Gutschera, K. Robert, 142

Half-Life, 41

Halo, 17, 46

Halo 2, 148n4

Heredity, 58

Human intelligence, 28–31

consciousness and, 37

as situational, 31–32

Hutter, Marcus, 34–35

IDSIA, 34

IEEE Conference on

Computational Intelligence

and Games (CIG), 142

IEEE Transactions on Games, 143

If-then rules, 83

Imitation game, 26

Infinite Mario, 102, 103, 130–131

In-game variables, 87–88

Intelligence, 17–18. See also

Artificial intelligence (AI)

as adaptive behavior, 31–34

communication and, 25–28

defining, 25–27, 129

of humans, 28–31

Index 165

lack of common agreement in

defining, 38–40

robotic, 32–33

situational, 31–32

Turing test and, 26

universal, 34–36

Introduction to Evolutionary

Computing, 142

Isla, Damian, 148n4

Java, 62

Karakovskiy, Sergey, 130

Kasparov, Garry, 4, 9–10

Killers, 79

Kolmogorov complexity, 36

Koster, Ralph, 20, 109

Lanzi, Pier Luca, 130

League of Legends, 116

Learning

deep, 65, 117

by games, 76–78

supervised, 78

unsupervised, 81

when playing games, 18–23

Legg, Shane, 34–35

Liapis, Antonios, 112

Loiacono, Daniele, 130

Long-term storage and retrieval, 19

Lovelace, Ada, 91

Ludi, 107–108

Mahlmann, Tobias, 83

Mario AI Competition, 2011,

132–133, 136

Market segmentation, 79

Martinez, Josep, 84–87

Mass Effect, 17

Mateas, Michael, 119

Memory, human, 28–29

Minecraft, 85–88, 99, 116

Minimax algorithm

breakdown of, 54

Chess and, 4–7

Go and, 8–9

Missile Command, 73–74

Mixed-initiative AI-assisted game

design tools, 112

Monte Carlo tree search (MCTS),

9–10

Moves, players’, 17

Ms. Pac-Man, 132

MUD, 79

Mutations

computer program, 60–61

DNA, 59

Narrow AI, 37–38

Natural selection, 58–61

Nelson, Mark, 141

NERO, 123

NetHack, 99

Neural networks, 63–66

automating creativity, 91–96,

95, 105

self-organizing maps, 80–81

video games as environments

for testing, 66–70

Nintendo Entertainment System

(NES), 11

No Man’s Sky, 100, 101

166 Index

Nonplayer characters (NPCs)

artificial intelligence control of,

41–46, 138–139

automatic creativity and, 97

behaving in believable ways,

49–50

limits to abilities of, 46–48

playing subgames, 50

Norvig, Peter, 142

Open world games, 48–49

Origin of Species, The, 58

Orkin, Jeff, 148n4

Pacifists, 82

Pac-Man, 73–74, 108–109

Pattern recognition, 29

Pedersen, Chris, 102

Perez-Liebana, Diego, 134

Personalized content, 102–106,

103, 105

Pirates!, 47–48

Planning in playing games,

13–14

Players, game

content personalized for, 102–

106, 103, 105

outside the game, 84–90

types of, 78–84

Pokémon, 123

Prediction of opponent’s actions

and reactions, 15–16

Procedural Content Generation in

Games, 141

Procedural Content Generation

Workshop, 143

Processing speed, 19

Python, 62

Q-learning algorithm, 71–74

Quantitative knowledge, 19

“Rage quit,” 88

Randomness, 16

Random Number God, 96–101,

98–99, 101

Reading and writing ability, 19

REALM, 131

Recombination games, 107

Refraction, 151n13

Reinforcement learning, 3

Reinforcement learning problem,

70–71

Reiss, Stephen, 84–85

Representation for programs, 62

RoboRally, 124

Robotics, behavior-based, 32–33

Rogue, 97–101

Role model, artificial intelligence

as, 120–122

Role-playing games, 85, 88, 96–

97, 99, 116–117, 119

Ropossum tool, 151n13

Rovio, 12

Rules of Play: Game Design

Fundamentals, 142

Runners, 82

Russell, Stuart, 142

Samuel, Arthur, 3

Schaul, Tom, 134

Schmidhuber’s theory, 22

Index 167

Search-based procedural content

generation, 150n3

Sedol, Lee, 9–10

Selection, 58–59

Self-organizing map, 80–81

Self-reproduction, 30

Sentient Sketchbook, 112–113

Shadow of Mordor, 46, 148n4

Shaker, Noor, 104, 141

Shoelaces, tying of, 30

Short-term memory, 19

SimCity, 17

Sims, The, 125–126, 127

Simulated Car Racing

Competition, 2012, 132–133

Situational intelligence, 31–32

Skill depth, 110

Skyrim, 17

Slack, 25

Smith, Adam, 110

Smith, Gillian, 112

Smith, J. E., 142

SMS, 25

Socializers, 79

Socrates, 16

Sokoban, 110

Solvers, 82

Spatial thinking in playing games,

14–15

Spleunky, 99

Spronck, Pieter, 89

Spy Party, 120–121, 122

Square Enix Europe, 80

Stanley, Ken, 124–125

StarCraft, 36, 54–55, 96, 132–133,

138, 150n3

State, 148n1

Stern, Andrew, 119

Super Mario Bros., 11–12, 13, 96,

130, 150n3. See also Infinite

Mario

assessing yourself in playing, 16

learning while playing, 20–21

personalized content and, 102

planning in, 14

player’s moves in, 17

players of, 79

predicting opponent’s actions

and reactions in playing, 15

randomness in, 16

spatial thinking in playing, 14

Supervised learning, 78

Tanagra, 112–113

Target group analysis, 79

Tekinbaş, Katie Salen, 142

Tekofsky, Shoshanna, 89

Tetris, 73

Third Eye Crime, 120, 121

Thompson, Tommy, 142

Tomb Raider: Underworld, 80, 81,

86

TORCS, 130, 131

To That Sect, 110

Toy, Michael, 96–97

Trainee, artificial intelligence as,

122–124, 123–124

Transport Tycoon, 17

Tree-search algorithm, 7

Trial and error, 70–74, 78

Turing, Alan, 1, 3, 4, 7, 26,

147n2–3

168 Index

Turing test, 26, 30–31, 37, 121,

147n4

Twitter, 25, 103, 143

Universal intelligence, 34–36

Unsupervised learning, 81

Variation, 58

Veterans, 82

Video Game Description

Language (VGDL), 109, 134,

136

Video games. See also Games

with actual artificial

intelligence, 48–51

as environment for testing

algorithms, 66–70

as environments for testing

neural networks, 66–70

first-person shooter, 41–45

general artificial intelligence for

playing, 133–136, 135

general content in, 106–111,

108, 110

human versus computer ability

with, 30

information provided by player

to, 75–76

in-game variables, 87–88

nonplayer characters (NPCs) in,

41–48

open world, 48–49

personalized content in, 102–

106, 103, 105

role-playing, 85, 88, 96–97, 99,

116–117, 119

types of players of, 78–84

why the future is not here yet

with artificial intelligence in,

51–55

Visual processing, 19

Wichmann, Glenn, 96–97

World of Warcraft, 88, 89

Yannakakis, Georgios, 80, 102,

112, 141

Yavalath, 107–108

Zimmerman, Eric, 142

	Contents
	On Thinking Playfully
	Prologue: AI&I
	What Is This Book?
	1 In the Beginning of AI, There Were Games
	How a Computer Plays Chess
	Advance Directly to Go

	2 Do You Need to Be Intelligent to Play Games?
	Do You Learn When Playing Games?

	3 What Is (Artificial) Intelligence?
	Are Humans Intelligent?
	Doing What They Do on the Discovery Channel
	Getting Less Specific
	Doing Better Than Humans
	So, What Is (Artificial) Intelligence?

	4 Do Video Games Have Artificial Intelligence?
	Seven Seconds in the Life of Enemy 362
	Is This Really All There Is?
	What If Video Games Had Actual AI?
	Why Is the Future Not Here Yet?

	5 Growing a Mind and Learning to Play
	A Very Simple Idea
	A Very Small Brain
	Survival of the Fastest
	Trial and Error on Speed

	6 Do Games Learn from You When You Play Them?
	What Would You Do?
	Who Are You in the Game?
	Who Are You Outside of the Game?

	7 Automating Creativity
	The Random Number God
	Getting Personal
	Getting More General
	Being Creative Together

	8 Designing for AI
	AI-Based Game Design Patterns

	9 General Intelligence and Games in General
	General Video Game Playing

	10 Synthesis
	Further Reading
	Notes
	Prologue: AI&I
	What Is This Book?
	Chapter 1: In the Beginning of AI, There Were Games
	Chapter 2: Do You Need to Be Intelligent to Play Games?
	Chapter 3: What Is (Artificial) Intelligence?
	Chapter 4: Do Video Games Have Artificial Intelligence?
	Chapter 5: Growing a Mind and Learning to Play
	Chapter 6: Do Games Learn from You When You Play Them?
	Chapter 7: Automating Creativity
	Chapter 8: Designing for AI
	Chapter 9: General Intelligence and Games in General

	Bibliography
	Index

