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PREFACE TO THE FIFTH EDITION

This book describes statistical models and methods for analyzing discrete time series and
presents important applications of the methodology. The models considered include the
class of autoregressive integrated moving average (ARIMA) models and various extensions
of these models. The properties of the models are examined and statistical methods for
model specification, parameter estimation, and model checking are presented. Applications
to forecasting nonseasonal as well as seasonal time series are described. Extensions of the
methodology to transfer function modeling of dynamic relationships between two or more
time series, modeling the effects of intervention events, multivariate time series modeling,
and process control are discussed. Topics such as state-space and structural modeling,
nonlinear models, long-memory models, and conditionally heteroscedastic models are
also covered. The goal has been to provide a text that is practical and of value to both
academicians and practitioners.

The first edition of this book appeared in 1970 and around that time there was a great
upsurge in research on time series analysis and forecasting. This generated a large influx of
new ideas, modifications, and improvements by many authors. For example, several new
research directions began to emerge in econometrics around that time, leading to what is
now known as time series econometrics. Many of these developments were reflected in the
fourth edition of this book and have been further elaborated upon in this new edition.

The main goals of preparing a new edition have been to expand and update earlier
material, incorporate new literature, enhance and update numerical illustrations through
the use of R, and increase the number of exercises in the book. Some of the chapters in
the previous edition have been reorganized. For example, Chapter 14 on multivariate time
series analysis has been reorganized and expanded, placing more emphasis on vector au-
toregressive (VAR) models. The VAR models are by far the most widely used multivariate
time series models in applied work. This edition provides an expanded treatment of these
models that includes software demonstrations.

Chapter 10 has also been expanded and updated. This chapter covers selected topics in
time series analysis that either extend or supplement material discussed in earlier chapters.

xix
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This includes unit roots testing, modeling of conditional heteroscedasticity, nonlinear mod-
els, and long memory models. A section of unit root testing that appeared in Chapter 7 of the
previous edition has been expanded and moved to Section 10.1 in this edition. Section 10.2
deals with autoregressive conditionally heteroscedastic models, such as the ARCH and
GARCH models. These models focus on the variability in a time series and are useful for
modeling the volatility or variability in economic and financial series, in particular. The
treatment of the ARCH and GARCH models has been expanded and several extensions
have been added.

Elsewhere in the text, the exposition has been enhanced by revising, modifying, and
omitting text as appropriate. Several tables have either been edited or replaced by graphs
to make the presentation more effective. The number of exercises has been increased
throughout the text and they now appear at the end of each chapter.

A further enhancement to this edition is the use of the statistical software R for model
building and forecasting. The R package is available as a free download from the R Project
for Statistical Computing at www.r-project.org. A brief description of the software is given
in Appendix Al.1 of Chapter 1. Graphs generated using R now appear in many of the
chapters along with R code that will help the reader reconstruct the graphs. The software
is also used for numerical illustration in many of the examples in the text.

The fourth edition of this book was published by Wiley in 2008. Plans for a new edition
began during the fall of 2012. I was deeply honored when George Box asked me to help him
with this update. George was my Ph.D. advisor at the University of Wisconsin-Madison
and remained a dear friend to me over the years as he did to all his students. Sadly, he was
rather ill when the plans for this new edition were finalized towards the end of 2012. He
did not have a chance to see the project completed as he passed away in March of 2013. 1
am deeply grateful for the opportunity to work with him and for the confidence he showed
in assigning me this task. The book is dedicated to his memory and to the memory of his
distinguished co-authors Gwilym Jenkins and Gregory Reinsel. Their contributions were
many and they are all missed.

I also want to express my gratitude to several friends and colleagues in the time series
community who have read the manuscript and provided helpful comments and suggestions.
These include Ruey Tsay, William Wei, Sung Ahn, and Raja Velu who have read Chapter 14
on multivariate time series analysis, and David Dickey, Johannes Ledolter, Timo Terésvirta,
and Niels Haldrup who have read Chapter 10 on special topics. Their constructive comments
and suggestions are much appreciated. Assistance and support from Paul Lindholm in
Finland is also gratefully acknowledged. The use of R in this edition includes packages
developed for existing books on time series analysis such as Cryer and Chan (2010),
Shumway and Stoffer (2011), and Tsay (2014). We commend these authors for making
their code and datasets available for public use through the R Project.

Research for the original version of this book was supported by the Air Force Office of
Scientific Research and by the British Science Research Council. Research incorporated
in the third edition was partially supported by the Alfred P. Sloan Foundation and by the
National Aeronautics and Space Administration. Permission to reprint selected tables from
Biometrika Tables for Statisticians, Vol. 1, edited by E. S. Pearson and H. O. Hartley is
also acknowledged. On behalf of my co-authors, I would like to thank George Tiao, David
Mayne, David Pierce, Granville Tunnicliffe Wilson, Donald Watts, John Hampton, Elaine
Hodkinson, Patricia Blant, Dean Wichern, David Bacon, Paul Newbold, Hiro Kanemasu,
Larry Haugh, John MacGregor, Bovas Abraham, Johannes Ledolter, Gina Chen, Raja
Velu, Sung Ahn, Michael Wincek, Carole Leigh, Mary Esser, Sandy Reinsel, and
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Meg Jenkins, for their help, in many different ways, in preparing the earlier editions.
A very special thanks is extended to Claire Box for her long-time help and support.

The guidance and editorial support of Jon Gurstelle and Sari Friedman at Wiley is
gratefully acknowledged. We also thank Stephen Quigley for his help in setting up the
project, and Katrina Maceda and Shikha Pahuja for their help with the production.

Finally, I want to express my gratitude to my husband Bert Beander for his encourage-
ment and support during the preparation of this revision.

GRETA M. LJUNG
Lexington, MA
May 2015






PREFACE TO THE FOURTH EDITION

It may be of interest to briefly recount how this book came to be written. Gwilym Jenkins
and I first became friends in the late 1950s. We were intrigued by an idea that a chemical
reactor could be designed that optimized itself automatically and could follow a moving
maximum. We both believed that many advances in statistical theory came about as a result
of interaction with researchers who were working on real scientific problems. Helping to
design and build such a reactor would present an opportunity to further demonstrate this
concept.

When Gwilym Jenkins came to visit Madison for a year, we discussed the idea with
the famous chemical engineer Olaf Hougen, then in his eighties. He was enthusiastic and
suggested that we form a small team in a joint project to build such a system. The National
Science Foundation later supported this project. It took 3 years, but suffice it to say, that
after many experiments, several setbacks, and some successes the reactor was built and it
worked.

As expected, this investigation taught us a lot. In particular, we acquired proficiency in
the manipulation of difference equations that were needed to characterize the dynamics of
the system. It also gave us a better understanding of nonstationary time series required for
realistic modeling of system noise. This was a happy time. We were doing what we most
enjoyed doing: interacting with experimenters in the evolution of ideas and the solution of
real problems, with real apparatus and real data.

Later there was fallout in other contexts, for example, advances in time series analysis,
in forecasting for business and economics, and also developments in statistical process
control (SPC) using some notions learned from the engineers.

Originally Gwilym came for a year. After that I spent each summer with him in England
at his home in Lancaster. For the rest of the year, we corresponded using small reel-to-reel
tape recorders. We wrote a number of technical reports and published some papers but
eventually realized we needed a book. The first two editions of this book were written
during a period in which Gwilym was, with extraordinary courage, fighting a debilitating
illness to which he succumbed sometime after the book had been completed.

xxiii



xxiv PREFACE TO THE FOURTH EDITION

Later Gregory Reinsel, who had profound knowledge of the subject, helped to complete
the third edition. Also in this fourth edition, produced after his untimely death, the new
material is almost entirely his. In addition to a complete revision and updating, this fourth
edition resulted in two new chapters: Chapter 10 on nonlinear and long memory models
and Chapter 12 on multivariate time series.

This book should be regarded as a tribute to Gwilym and Gregory.

I was especially blessed to work with two such gifted colleagues.

GEORGE E. P. Box

Madison, Wisconsin
March 2008



PREFACE TO THE THIRD EDITION

This book is concerned with the building of stochastic (statistical) models for time series
and their use in important areas of application. This includes the topics of forecasting,
model specification, estimation, and checking, transfer function modeling of dynamic
relationships, modeling the effects of intervention events, and process control. Coincident
with the first publication of Time Series Analysis: Forecasting and Control, there was a
great upsurge in research in these topics. Thus, while the fundamental principles of the kind
of time series analysis presented in that edition have remained the same, there has been a
great influx of new ideas, modifications, and improvements provided by many authors.

The earlier editions of this book were written during a period in which Gwilym Jenkins
was, with extraordinary courage, fighting a slowly debilitating illness. In the present revi-
sion, dedicated to his memory, we have preserved the general structure of the original book
while revising, modifying, and omitting text where appropriate. In particular, Chapter 7
on estimation of ARMA models has been considerably modified. In addition, we have
introduced entirely new sections on some important topics that have evolved since the
first edition. These include presentations on various more recently developed methods for
model specification, such as canonical correlation analysis and the use of model selection
criteria, results on testing for unit root nonstationarity in ARIMA processes, the state-space
representation of ARMA models and its use for likelihood estimation and forecasting, score
tests for model checking, structural components, and deterministic components in time se-
ries models and their estimation based on regression-time series model methods. A new
chapter (12) has been developed on the important topic of intervention and outlier analysis,
reflecting the substantial interest and research in this topic since the earlier editions.

Over the last few years, the new emphasis on industrial quality improvement has strongly
focused attention on the role of control both in process monitoring and in process adjust-
ment. The control section of this book has, therefore, been completely rewritten to serve
as an introduction to these important topics and to provide a better understanding of
their relationship.
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The objective of this book is to provide practical techniques that will be available to
most of the wide audience who could benefit from their use. While we have tried to remove
the inadequacies of earlier editions, we have not attempted to produce here a rigorous
mathematical treatment of the subject.

We wish to acknowledge our indebtedness to Meg (Margaret) Jenkins and to our wives,
Claire and Sandy, for their continuing support and assistance throughout the long period
of preparation of this revision.

Research on which the original book was based was supported by the Air Force Office
of Scientific Research and by the British Science Research Council. Research incorporated
in the third edition was partially supported by the Alfred P. Sloan Foundation and by the
National Aeronautics and Space Administration. We are grateful to Professor E. S. Pearson
and the Biometrika Trustees for permission to reprint condensed and adapted forms of
Tables 1, 8, and 12 of Biometrika Tables for Statisticians, Vol. 1, edited by E. S. Pearson
and H. O. Hartley, to Dr. Casimer Stralkowski for permission to reproduce and adapt
three figures from his doctoral thesis, and to George Tiao, David Mayne, Emanuel Parzen,
David Pierce, Granville Wilson, Donald Watts, John Hampton, Elaine Hodkinson, Patricia
Blant, Dean Wichern, David Bacon, Paul Newbold, Hiro Kanemasu, Larry Haugh, John
MacGregor, Bovas Abraham, Gina Chen, Johannes Ledolter, Greta Ljung, Carole Leigh,
Mary Esser, and Meg Jenkins for their help, in many different ways, in preparing the
earlier editions.

GEORGE BOX AND GREGORY REINSEL



INTRODUCTION

A time series is a sequence of observations taken sequentially in time. Many sets of data
appear as time series: a monthly sequence of the quantity of goods shipped from a factory, a
weekly series of the number of road accidents, daily rainfall amounts, hourly observations
made on the yield of a chemical process, and so on. Examples of time series abound in
such fields as economics, business, engineering, the natural sciences (especially geophysics
and meteorology), and the social sciences. Examples of data of the kind that we will be
concerned with are displayed as time series plots in Figures 2.1 and 4.1. An intrinsic
feature of a time series is that, typically, adjacent observations are dependent. The nature
of this dependence among observations of a time series is of considerable practical interest.
Time series analysis is concerned with techniques for the analysis of this dependence. This
requires the development of stochastic and dynamic models for time series data and the use
of such models in important areas of application.

In the subsequent chapters of this book, we present methods for building, identifying,
fitting, and checking models for time series and dynamic systems. The methods discussed
are appropriate for discrete (sampled-data) systems, where observation of the system occurs
at equally spaced intervals of time.

We illustrate the use of these time series and dynamic models in five important areas of
application:

1. The forecasting of future values of a time series from current and past values.

2. The determination of the transfer function of a system subject to inertia—the deter-
mination of a dynamic input—output model that can show the effect on the output of
a system of any given series of inputs.

3. The use of indicator input variables in transfer function models to represent and
assess the effects of unusual intervention events on the behavior of a time series.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
© 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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4. The examination of interrelationships among several related time series variables of
interest and determination of appropriate multivariate dynamic models to represent
these joint relationships among the variables over time.

5. The design of simple control schemes by means of which potential deviations of
the system output from a desired target may, so far as possible, be compensated by
adjustment of the input series values.

1.1 FIVE IMPORTANT PRACTICAL PROBLEMS

1.1.1 Forecasting Time Series

The use at time ¢ of available observations from a time series to forecast its value at some
future time ¢ 4 / can provide a basis for (1) economic and business planning, (2) production
planning, (3) inventory and production control, and (4) control and optimization of industrial
processes. As originally described by Holt et al. (1963), Brown (1962), and the Imperial
Chemical Industries (ICI) monograph on short term forecasting (Coutie, 1964), forecasts
are usually needed over a period known as the lead time, which varies with each problem.
For example, the lead time in the inventory control problem was defined by Harrison (1965)
as a period that begins when an order to replenish stock is placed with the factory and lasts
until the order is delivered into stock.

We will assume that observations are available at discrete, equispaced intervals of
time. For example, in a sales forecasting problem, the sales z, in the current month ¢ and
the sales z;_y, z,_5,2;_3, ... in previous months might be used to forecast sales for lead
times / = 1,2,3,...,12 months ahead. Denote by Z,(/) the forecast made at origin t of
the sales z,,; at some future time ¢ + /, that is, at lead time I. The function 2,(/), which
provides the forecasts at origin # for all future lead times, based on the available information
from the current and previous values z,, z,_;, Z,_5, Z;_3, ... through time ¢, will be called the
forecast function at origin t. Our objective is to obtain a forecast function such that the mean
square of the deviations z,,; — Z,(/) between the actual and forecasted values is as small as
possible for each lead time 1.

In addition to calculating the best forecasts, it is also necessary to specify their accuracy,
so that, for example, the risks associated with decisions based upon the forecasts may
be calculated. The accuracy of the forecasts may be expressed by calculating probability
limits on either side of each forecast. These limits may be calculated for any convenient
set of probabilities, for example, 50 and 95%. They are such that the realized value of the
time series, when it eventually occurs, will be included within these limits with the stated
probability. To illustrate, Figure 1.1 shows the last 20 values of a time series culminating at
time ¢. Also shown are forecasts made from origin # for lead times / = 1,2, ..., 13, together
with the 50% probability limits.

Methods for obtaining forecasts and estimating probability limits are discussed in detail
in Chapter 5. These forecasting methods are developed based on the assumption that the
time series z; follows a stochastic model of known form. Consequently, in Chapters 3
and 4 a useful class of such time series models that might be appropriate to represent the
behavior of a series z;, called autoregressive integrated moving average (ARIMA) models,
are introduced and many of their properties are studied. Subsequently, in Chapters 6, 7,
and 8 the practical matter of how these models may be developed for actual time series data
is explored, and the methods are described through the three-stage procedure of tentative
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FIGURE 1.1 Values of a time series with forecast function and 50% probability limits.

model identification or specification, estimation of model parameters, and model checking
and diagnostics.

1.1.2 Estimation of Transfer Functions

A topic of considerable industrial interest is the study of process dynamics discussed, for
example, by Astrom and Bohlin (1966, pp. 96—111) and Hutchinson and Shelton (1967).
Such a study is made (1) to achieve better control of existing plants and (2) to improve the
design of new plants. In particular, several methods have been proposed for estimating the
transfer function of plant units from process records consisting of an input time series X,
and an output time series Y,. Sections of such records are shown in Figure 1.2, where the
input X, is the rate of air supply and the output Y; is the concentration of carbon dioxide
produced in a furnace. The observations were made at 9-second intervals. A hypothetical
impulse response function v i J = 0, 1,2, ..., which determines the transfer function for the
system through a dynamic linear relationship between input X, and output Y, of the form
Y, = 2;‘;0 v;X,_;, is also shown in the figure as a bar chart. Transfer function models that
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FIGURE 1.2 Input and output time series in relation to a dynamic system.
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relate an input process X, to an output process Y; are introduced in Chapter 11 and many
of their properties are examined.

Methods for estimating transfer function models based on deterministic perturbations of
the input, such as step, pulse, and sinusoidal changes, have not always been successful. This
is because, for perturbations of a magnitude that are relevant and tolerable, the response
of the system may be masked by uncontrollable disturbances referred to collectively as
noise. Statistical methods for estimating transfer function models that make allowance for
noise in the system are described in Chapter 12. The estimation of dynamic response is of
considerable interest in economics, engineering, biology, and many other fields.

Another important application of transfer function models is in forecasting. If, for
example, the dynamic relationship between two time series Y; and X, can be determined,
past values of both series may be used in forecasting Y;. In some situations, this approach
can lead to a considerable reduction in the errors of the forecasts.

1.1.3 Analysis of Effects of Unusual Intervention Events to a System

In some situations, it may be known that certain exceptional external events, intervention
events, could have affected the time series z, under study. Examples of such interven-
tion events include the incorporation of new environmental regulations, economic policy
changes, strikes, and special promotion campaigns. Under such circumstances, we may
use transfer function models, as discussed in Section 1.1.2, to account for the effects of
the intervention event on the series z,, but where the ‘‘input’’ series will be in the form
of a simple indicator variable taking only the values 1 and O to indicate (qualitatively) the
presence or absence of the event.

In these cases, the intervention analysis is undertaken to obtain a quantitative measure
of the impact of the intervention event on the time series of interest. For example, Box
and Tiao (1975) used intervention models to study and quantify the impact of air pollution
controls on smog-producing oxidant levels in the Los Angeles area and of economic
controls on the consumer price index in the United States. Alternatively, the intervention
analysis may be undertaken to adjust for any unusual values in the series z, that might
have resulted as a consequence of the intervention event. This will ensure that the results
of the time series analysis of the series, such as the structure of the fitted model, estimates
of model parameters, and forecasts of future values, are not seriously distorted by the
influence of these unusual values. Models for intervention analysis and their use, together
with consideration of the related topic of detection of outlying or unusual values in a time
series, are presented in Chapter 13.

1.1.4 Analysis of Multivariate Time Series

For many problems in business, economics, engineering, and physical and environmental
sciences, time series data may be available on several related variables of interest. A more
informative and effective analysis is often possible by considering individual series as
components of a multivariate or vector time series and analyzing the series jointly. For
k-related time series variables of interest in a dynamic system, we may denote the series as
Zigs Zogs -+ » Zggs a0d let Z, = (zy,, ... , 2;,)’ denote the k X 1 time series vector at time 7.
Methods of multivariate time series analysis are used to study the dynamic relationships
among the several time series that comprise the vector Z,. This involves the development
of statistical models and methods of analysis that adequately describe the interrelationships
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among the series. Two main purposes for analyzing and modeling the vector of time series
jointly are to gain an understanding of the dynamic relationships over time among the
series and to improve accuracy of forecasts for individual series by utilizing the additional
information available from the related series in the forecasts for each series. Multivariate
time series models and methods for analysis and forecasting of multivariate series based
on these models are considered in Chapter 14.

1.1.5 Discrete Control Systems

In the past, to the statistician, the words ‘‘process control’” have usually meant the quality
control techniques developed originally by Shewhart (1931) in the United States (see
also Dudding and Jennet, 1942). Later on, the sequential aspects of quality control were
emphasized, leading to the introduction of cumulative sum charts by Page (1957, 1961) and
Barnard (1959) and the geometric moving average charts of Roberts (1959). Such basic
charts are frequently employed in industries concerned with the manufacture of discrete
“‘parts’’ as one aspect of what is called statistical process control (SPC). In particular (see
Deming, 1986), they are used for continuous monitoring of a process. That is, they are used
to supply a continuous screening mechanism for detecting assignable (or special) causes
of variation. Appropriate display of plant data ensures that significant changes are quickly
brought to the attention of those responsible for running the process. Knowing the answer to
the question ‘‘when did a change of this particular kind occur?’” we may be able to answer
the question ‘‘why did it occur?’” Hence a continuous incentive for process stabilization
and improvement can be achieved.

By contrast, in the process and chemical industries, various forms of feedback and
feedforward adjustment have been used in what we will call engineering process control
(EPC). Because the adjustments made by engineering process control are usually computed
and applied automatically, this type of control is sometimes called automatic process
control (APC). However, the manner in which these adjustments are made is a matter of
convenience. This type of control is necessary when there are inherent disturbances or
noise in the system inputs that are impossible or impractical to remove. When we can
measure fluctuations in an input variable that can be observed but not changed, it may
be possible to make appropriate compensatory changes in some other control variable.
This is referred to as feedforward control. Alternatively, or in addition, we may be able
to use the deviation from target or ‘‘error signal’’ of the output characteristic itself to
calculate appropriate compensatory changes in the control variable. This is called feedback
control. Unlike feedforward control, this mode of correction can be employed even when
the source of the disturbances is not accurately known or the magnitude of the disturbance
is not measured.

In Chapter 15, we draw on the earlier discussions in this book, on time series and
transfer function models, to provide insight into the statistical aspects of these control
methods and to appreciate better their relationships and different objectives. In particular,
we show how some of the ideas of feedback control can be used to design simple charts
for manually adjusting processes. For example, the upper chart of Figure 1.3 shows hourly
measurements of the viscosity of a polymer made over a period of 42 hours. The viscosity
is to be controlled about a target value of 90 units. As each viscosity measurement comes
to hand, the process operator uses the nomogram shown in the middle of the figure to
compute the adjustment to be made in the manipulated variable (gas rate). The lower chart
of Figure 1.3 shows the adjustments made in accordance with the nomogram.
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FIGURE 1.3 Control of viscosity. Record of observed viscosity and of adjustments in gas rate
made using nomogram.

1.2  STOCHASTIC AND DETERMINISTIC DYNAMIC
MATHEMATICAL MODELS

The idea of using a mathematical model to describe the behavior of a physical phenomenon
is well established. In particular, it is sometimes possible to derive a model based on
physical laws, which enables us to calculate the value of some time-dependent quantity
nearly exactly at any instant of time. Thus, we might calculate the trajectory of a missile
launched in a known direction with known velocity. If exact calculation were possible,
such a model would be entirely deterministic.

Probably no phenomenon is totally deterministic, however, because unknown factors
can occur such as a variable wind velocity that can throw a missile slightly off course. In
many problems, we have to consider a time-dependent phenomenon, such as monthly sales
of newsprint, in which there are many unknown factors and for which it is not possible
to write a deterministic model that allows exact calculation of the future behavior of the
phenomenon. Nevertheless, it may be possible to derive a model that can be used to calculate
the probability of a future value lying between two specified limits. Such a model is called
a probability model or a stochastic model. The models for time series that are needed,
for example, to achieve optimal forecasting and control, are in fact stochastic models. It
is necessary in what follows to distinguish between the probability model or stochastic
process, as it is sometimes called, and the actually observed time series. Thus, a time series
Zy,Zy, ..., Zy Of N successive observations is regarded as a sample realization from an
infinite population of such time series that could have been generated by the stochastic
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process. Very often we will omit the word *‘stochastic’” from ‘‘stochastic process’’ and
talk about the ‘“process.”’

1.2.1 Stationary and Nonstationary Stochastic Models for Forecasting and Control

An important class of stochastic models for describing time series, which has received a
great deal of attention, comprises what are called stationary models. Stationary models
assume that the process remains in statistical equilibrium with probabilistic properties
that do not change over time, in particular varying about a fixed constant mean level
and with constant variance. However, forecasting has been of particular importance in
industry, business, and economics, where many time series are often better represented as
nonstationary and, in particular, as having no natural constant mean level over time. It is not
surprising, therefore, that many of the economic forecasting methods originally proposed
by Holt (1957, 1963), Winters (1960), Brown (1962), and the ICI monographs (Coutie,
1964) that used exponentially weighted moving averages can be shown to be appropriate
for a particular type of nonstationary process. Although such methods are too narrow to
deal efficiently with all time series, the fact that they often give the right kind of forecast
function supplies a clue to the kind of nonstationary model that might be useful in these
problems.

The stochastic model for which the exponentially weighted moving average forecast
yields minimum mean square error (Muth, 1960) is a member of a class of nonstationary
processes called autoregressive integrated moving average processes, which are discussed
in Chapter 4. This wider class of processes provides a range of models, stationary and
nonstationary, that adequately represent many of the time series met in practice. Our
approach to forecasting has been first to derive an adequate stochastic model for the
particular time series under study. As shown in Chapter 5, once an appropriate model has
been determined for the series, the optimal forecasting procedure follows immediately.
These forecasting procedures include the exponentially weighted moving average forecast
as a special case.

Some Simple Operators. We employ extensively the backward shift operator B, which
is defined by Bz, = z,_;; hence B"z, = z,_,,. The inverse operation is performed by
the forward shift operator F = B~! given by Fz, = z,,,; hence F"z, = z,,,,. Another
important operator is the backward difference operator, V, defined by Vz, = z, — z,_;.
This can be written in terms of B, since

Vz;,=2z,—z,_1=(0-B)z

Linear Filter Model. The stochastic models we employ are based on an idea originally
due to Yule (1927) that an observable time series z, in which successive values are highly
dependent can frequently be regarded as generated from a series of independent *‘shocks’’
a;. These shocks are random drawings from a fixed distribution, usually assumed normal
and having mean zero and variance 62. Such a sequence of independent random variables
a;,a;_1,0;_, ... 1s called a white noise process.

The white noise process a, is supposed transformed to the process z, by what is called a
linear filter, as shown in Figure 1.4. The linear filtering operation simply takes a weighted
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FIGURE 1.4 Representation of a time series as the output from a linear filter.

sum of previous random shocks a,, so that

Zi=H + a; + yia;_q + Yra;_n + .-
= u+w(Ba, (1.2.1)

In general, y is a parameter that determines the ‘‘level’” of the process, and
w(B)=1+y,B+y,B> + -

is the linear operator that transforms g, into z, and is called the transfer function of the filter.
The model representation (1.2.1) can allow for a flexible range of patterns of dependence
among values of the process {z,} expressed in terms of the independent (unobservable)
random shocks a,.

The sequence y, >, ... formed by the weights may, theoretically, be finite or infinite. If
this sequence is finite, or infinite and absolutely summable in the sense that 2;10 ly;| < oo,
the filter is said to be stable and the process z, is stationary. The parameter y is then the
mean about which the process varies. Otherwise, z, is nonstationary and u has no specific
meaning except as a reference point for the level of the process.

Autoregressive Models. A stochastic model that can be extremely useful in the represen-
tation of certain practically occurring series is the autoregressive model. In this model, the
current value of the process is expressed as a finite, linear aggregate of previous values
of the process and a random shock a,. Let us denote the values of a process at equally
spaced times ¢, t — 1, t =2, ... by z,, z,_, 2Z;_5,.... Also let Z, = z, — u be the series of
deviations from u. Then

Zt = ¢12t_1 + (l)zzt_z + -+ ([)pZt_p + a; (122)

is called an autoregressive (AR) process of order p. The reason for this name is that a linear
model

zZ= d)li] + (]525('2 + -+ ¢)po +a

relating a ‘‘dependent’’ variable z to a set of ‘‘independent’” variables xy, x5, ..., x - plus
arandom error term a, is referred to as a regression model, and z is said to be ‘‘regressed’’
ON X1, X, ..., X In (1.2.2) the variable z is regressed on previous values of itself; hence

the model is autoregressive. If we define an autoregressive operator of order p in terms of
the backward shift operator B by

$(B)=1~¢ B~ ¢,B> - —¢,B’
the autoregressive model (1.2.2) may be written economically as

d)(B)zt = a;
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The model contains p + 2 unknown parameters y, ¢p, o, ..., P, 0'3, which in practice
have to be estimated from the data. The additional parameter aZ is the variance of the white
noise process a,.

It is not difficult to see that the autoregressive model is a special case of the linear filter
model of (1.2.1). For example, we can eliminate Z,_; from the right-hand side of (1.2.2) by
substituting

L= Lotz 3+ Q% ta

Similarly, we can substitute for Z,_,, and so on, to yield eventually an infinite series in
the a’s. Consider, specifically, the simple first-order (p = 1) AR process, Z, = ¢Z,_; + a;.
After m successive substitutions of Z,_; = ¢Z,_;_; +a,_;, j = 1,...,m in the right-hand
side we obtain

. 1= 2
Z=¢"Z_ . ta, +da_, +d°a_,+ - +¢P"a,_,

In the limit as m — oo this leads to the convergent infinite series representation Z; =
Z;’io @’a,_; with y; = ¢/, j > 1, provided that |¢| < 1. Symbolically, in the general AR
case we have that

¢(B)Z, = a,
is equivalent to
£, = ¢ (B)a, = y(B)g,

with w(B) = ¢~1(B) = T2, v; B'.

Autoregressive processes can be stationary or nonstationary. For the process to be
stationary, the ¢’s must be such that the weights v, y,, ... in y(B) = ¢~ 1(B) form a
convergent series. The necessary requirement for stationarity is that the autoregressive
operator, §(B) = 1 — ¢ B — ¢, B> — - — ¢, BP, considered as a polynomial in B of degree
p, must have all roots of ¢(B) = 0 greater than 1 in absolute value; that is, all roots must
lie outside the unit circle. For the first-order AR process Z, = ¢Z,_; + a, this condition
reduces to the requirement that |¢| < 1, as the argument above has already indicated.

Moving Average Models. The autoregressive model (1.2.2) expresses the deviation Z, of
the process as a finite weighted sum of p previous deviations Z;,_j, Z;_5, ..., Z,_, of the
process, plus a random shock ag;. Equivalently, as we have just seen, it expresses Z; as an
infinite weighted sum of the a’s.

Another kind of model, of great practical importance in the representation of observed
time series, is the finite moving average process. Here we take Z,, linearly dependent on a
finite number g of previous a’s. Thus,

Zl = a, - Gla,_l - 92at_2 — e — ant_q (123)
is called a moving average (MA) process of order q. The name ‘‘moving average’’ is
somewhat misleading because the weights 1, -6, —0,, ..., —94, which multiply the a’s,
need not total unity nor need they be positive. However, this nomenclature is in common
use, and therefore we employ it.
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If we define a moving average operator of order g by
9(B)=1-6,B—6,B> ... — ,B1
the moving average model may be written economically as
Z, = 0(B)a,

It contains g + 2 unknown parameters y, 6, ... ,Bq, o-fl, which in practice have to be
estimated from the data.

Mixed Autoregressive—-Moving Average Models. To achieve greater flexibility in fitting
of actual time series, it is sometimes advantageous to include both autoregressive and
moving average terms in the model. This leads to the mixed autoregressive--moving average
(ARMA) model:

Zt = ([)lit_l + e+ (l)pft_p + at - Qlat_l — e — ant_q (124)
or
¢(B)Z, = 0(B)a,

The model employs p + g + 2 unknown parameters u, ¢y, ... ,d)p, 0, ... ,04, 0'2, that are
estimated from the data. This model may also be written in the form of the linear filter (1.2.1)
asz, = ¢! (B)0(B)a, = w(B)a,, withy(B) = ¢~ 1(B)A(B). In practice, it is frequently true
that an adequate representation of actually occurring stationary time series can be obtained
with autoregressive, moving average, or mixed models, in which p and g are not greater
than 2 and often less than 2. We discuss the classes of autoregressive, moving average, and

mixed models in much greater detail in Chapters 3 and 4.

Nonstationary Models. Many series actually encountered in industry or business (e.g.,
stock prices and sales figures) exhibit nonstationary behavior and in particular do not vary
about a fixed mean. Such series may nevertheless exhibit homogeneous behavior over time
of a kind. In particular, although the general level about which fluctuations are occurring
may be different at different times, the broad behavior of the series, when differences in
level are allowed for, may be similar over time. We show in Chapter 4 and later chapters that
such behavior may often be represented by a model in terms of a generalized autoregressive
operator @(B), in which one or more of the zeros of the polynomial @(B) [i.e., one or more
of the roots of the equation @(B) = 0] lie on the unit circle. In particular, if there are d unit
roots and all other roots lie outside the unit circle, the operator ¢(B) can be written

®(B) = ¢(B)(1 — B)*

where ¢(B) is a stationary autoregressive operator. Thus, a model that can represent
homogeneous nonstationary behavior is of the form

®(B)z, = p(B)(1 — B)'z, = 0(B)a,
that is,

$(B)w, = 0(B)a, (1.2.5)
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where
w, = (1= B)z, =V (1.2.6)

Thus, homogeneous nonstationary behavior can sometimes be represented by a model that
calls for the dth difference of the process to be stationary. In practice, d is usually 0, 1, or
at most 2, with d = 0 corresponding to stationary behavior.

The process defined by (1.2.5) and (1.2.6) provides a powerful model for describing
stationary and nonstationary time series and is called an autoregressive integrated moving
average process, of order (p, d, q), or ARIMA(p, d, q) process. The process is defined by

w, =g+ ppw,_p+a,—0a,_ — - —0,a,_, (1.2.7)

with w, = V?z,. Note that if we replace w,, by z, — 4, when d = 0, the model (1.2.7) in-
cludes the stationary mixed model (1.2.4), as a special case, and also the pure autoregressive
model (1.2.2) and the pure moving average model (1.2.3).

The reason for inclusion of the word *‘integrated’’ (which should perhaps more ap-
propriately be ‘‘summed’’) in the ARIMA title is as follows. The relationship, which is
the inverse to (1.2.6),is z, = S?w,, where S = V™! = (1 = B)"! = 1 + B+ B? + - is the
summation operator defined by

oo
Sw, = Wiy =W, +w_;+w_o+-
Jj=0
Thus, the general ARIMA process may be generated by summing or ‘‘integrating’’ the
stationary ARMA process w,d times. In Chapter 9, we describe how a special form of the
model (1.2.7) can be employed to represent seasonal time series. The chapter also includes
a discussion of regression models where the errors are autocorrelated and follow an ARMA
process.

Chapter 10 includes material that may be considered more specialized and that either
supplements or extends the material presented in the earlier chapters. The chapter begins
with a discussion of unit root testing that may be used as a supplementary tool to determine
if a time series is nonstationary and can be made stationary through differencing. This
is followed by a discussion of conditionally heteroscedastic models such as the ARCH
and GARCH models. These models assume that the conditional variance of an observation
given its past vary over time and are useful for modeling time varying volatility in economic
and financial time series, in particular. In Chapter 10, we also discuss nonlinear time series
models and fractionally integrated long-memory processes that allow for certain more
general features in a time series than are possible using the linear ARIMA models.

1.2.2 Transfer Function Models

An important type of dynamic relationship between a continuous input and a continuous
output, for which many physical examples can be found, is that in which the deviations of
input X and output Y, from appropriate mean values, are related by a linear differential
equation. In a similar way, for discrete data, in Chapter 11 we represent the transfer
relationship between an output Y and an input X, each measured at equispaced times, by
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the difference equation
T+EV+ -+ &V =0+ mV + - +1V)Xop (1.2.8)

in which the differential operator D = d/dt is replaced by the difference operator V =
1 — B. An expression of the form (1.2.8), containing only a few parameters (r < 2, s < 2),
may often be used as an approximation to a dynamic relationship whose true nature is more
complex.

The linear model (1.2.8) may be written equivalently in terms of past values of the input
and output by substituting B =1 — V in (1.2.8), that is,

(1-6;B—-=6B")Y,=(wy—wB——-wB)X,_,
= (wyB® — w0 B! — ... — 0, B"™)X, (1.2.9)

or
8(B)Y, = w(B)B* X, = Q(B)X,
Alternatively, we can say that the output Y, and the input X, are linked by a linear filter

}It = U()Xt + UIX[—I + UZXI—Z + .-
= u(B)X, (1.2.10)

for which the transfer function
v(B) = vy + vy B+ v, B> + - (1.2.11)

can be expressed as a ratio of two polynomial operators,

o8 = 28 _ 51 (pyacs)
6(B)
The linear filter (1.2.10) is said to be stable if the series (1.2.11) converges for |B|
< 1, equivalently, if the coefficients {v j} are absolutely summable, z;’;o |v j| < 0. The
sequence of weights v, vy, v,, ..., which appear in the transfer function (1.2.11), is called
the impulse response function. We note that for the model (1.2.9), the first b weights
Vg, U1, ..., Uy_1, are zero. A hypothetical impulse response function for the system of
Figure 1.2 is shown in the center of that diagram.

Models with Superimposed Noise. We have seen that the problem of estimating an appro-
priate model, linking an output Y; and an input X/, is equivalent to estimating the transfer
function v(B) = 6~ 1(B)Q(B), for example, specifying the parametric form of the transfer
function v(B) and estimating its parameters. However, this problem is complicated in prac-
tice by the presence of noise N,, which we assume corrupts the true relationship between
input and output according to

Y, = u(B)X, + N,

where N, and X, are independent processes. Suppose, as indicated by Figure 1.5, that the
noise N, can be described by a stationary or nonstationary stochastic model of the form
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¥(B) = ¢~ '(B)6(B)

a; Linear
—»
filter
Noise N,
»(B) = 7' (B)2(B)
X, Linear v(B) X, 7,
—_— dynamic > >
system

FIGURE 1.5 Transfer function model for dynamic system with superimposed noise model.
(1.2.5) or (1.2.7), that is,
N, =y(B)a, = ¢~ (B)0(B)q,
Then the observed relationship between output and input will be

Y, = v(B)X, + y(B)g,
5 H(BQUB)X, + ¢~ (B)O(B)q, (1.2.12)

In practice, it is necessary to estimate the transfer function
w(B) = ¢~ (B)8(B)

of the linear filter describing the noise, in addition to the transfer function v(B) =
51 (B)Q(B), which describes the dynamic relationship between the input and the
output. Methods for doing this are discussed in Chapter 12.

1.2.3 Models for Discrete Control Systems

As stated in Section 1.1.5, control is an attempt to compensate for disturbances that infect
a system. Some of these disturbances are measurable; others are not measurable and only
manifest themselves as unexplained deviations from the target of the characteristic to be
controlled. To illustrate the general principles involved, consider the special case where
unmeasured disturbances affect the output Y, of a system, and suppose that feedback control
is employed to bring the output as close as possible to the desired target value by adjustments
applied to an input variable X,. This is illustrated in Figure 1.6. Suppose that N, represents
the effect at the output of various unidentified disturbances within the system, which in the
absence of control could cause the output to drift away from the desired target value or set
point T'. Then, despite adjustments that have been made to the process, an error

&=Y,-T
v(B)X,+ N,-T

will occur between the output and its target value T. The object is to choose a control
equation so that the errors € have the smallest possible mean square. The control equation
expresses the adjustment x; = X, — X,_, to be taken at time ¢, as a function of the present
deviation ¢,, previous deviations €,_;,€,_5, ..., and previous adjustments x,_y, X;_, ....
The mechanism (human, electrical, pneumatic, or electronic) that carries out the control
action called for by the control equation is called the controller.
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¥(B) = ¢~ (B)(B)

Linear
filter

a;

Noi = ¥(B)a,
»(B) = 5~ '(B)R(B) oise A = ¥(Bla

X, Process v(B)X, Y — T set point
to be >~ > <+
d controlled
e, =1 —-T
<+ controller <

adjustment x,

FIGURE 1.6 Feedback control scheme to compensate an unmeasured disturbance N,.

One procedure for designing a controller is equivalent to forecasting the deviation from
target which would occur if no control were applied, and then calculating the adjustment
that would be necessary to cancel out this deviation. It follows that the forecasting and
control problems are closely linked. In particular, if a minimum mean square error forecast
is used, the controller will produce minimum mean square error control. To forecast the
deviation from target that could occur if no control were applied, it is necessary to build a
model

N, =y(B)a, = ¢~ (B)0(B)q,

for the disturbance. Calculation of the adjustment x, that needs to be applied to the input
at time ¢ to cancel out a predicted change at the output requires the building of a dynamic
model with transfer function

v(B) = 6~ (B)Q(B)

which links the input with output. The resulting adjustment x, will consist, in general, of a
linear aggregate of previous adjustments and current and previous control errors. Thus the
control equation will be of the form

Xy = Clxt_l + sz,_z + .- +106t + X1€1—1 +X261_2 + .- (1213)

where {1, 5, ..., Xo» X15 X2, --. are constants.

It turns out that, in practice, minimum mean square error control sometimes results in
unacceptably large adjustments x, to the input variable. Consequently, modified control
schemes are employed that restrict the amount of variation in the adjustments. Some of
these issues are discussed in Chapter 15.

1.3 BASIC IDEAS IN MODEL BUILDING

1.3.1 Parsimony

We have seen that the mathematical models we need to employ contain certain constants or
parameters whose values must be estimated from the data. It is important, in practice, that
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we employ the smallest possible number of parameters for adequate representations. The
central role played by this principle of parsimony (Tukey, 1961) in the use of parameters
will become clearer as we proceed. As a preliminary illustration, we consider the following
simple example.

Suppose we fitted a dynamic model (1.2.9) of the form

Y, = (wy — ;B — 0, B* — - —w,B%)X, (1.3.1)
when dealing with a system that was adequately represented by
(1 -6B)Y, = wyX, (1.3.2)

The model (1.3.2) contains only two parameters, 6 and @, but for s sufficiently large, it
could be represented approximately by the model (1.3.1), through

Y, =(1-6B) ' wyX, = wy(1 + 6B + 5°B* + )X,

with |6] < 1. Because of experimental error, we could easily fail to recognize the rela-
tionship between the coefficients in the fitted equation. Thus, we might needlessly fit a
relationship like (1.3.1), containing s + 1 parameters, where the much simpler form (1.3.2),
containing only two, would have been adequate. This could, for example, lead to unneces-
sarily poor estimation of the output Y; for given values of the input X,, X,_1, ....

Our objective, then, must be to obtain adequate but parsimonious models. Forecasting
and control procedures could be seriously deficient if these models were either inadequate
or unnecessarily prodigal in the use of parameters. Care and effort is needed in selecting the
model. The process of selection is necessarily iterative; that is, it is a process of evolution,
adaptation, or trial and error and is outlined briefly below.

1.3.2 [Iterative Stages in the Selection of a Model

If the physical mechanism of a phenomenon were completely understood, it would be
possible theoretically to write down a mathematical expression that described it exactly.
This would result in a mechanistic or theoretical model. In most instances the complete
knowledge or large experimental resources needed to produce a mechanistic model are not
available, and we must resort to an empirical model. Of course, the exact mechanistic model
and the exclusively empirical model represent extremes. Models actually employed usually
lie somewhere in between. In particular, we may use incomplete theoretical knowledge to
indicate a suitable class of mathematical functions, which will then be fitted empirically
(e.g., Box and Hunter, 1965); that is, the number of terms needed in the model and the
numerical values of the parameters are estimated from experimental data. This is the
approach that we adopt in this book. As we have indicated previously, the stochastic and
dynamic models we describe can be justified, at least partially, on theoretical grounds as
having the right general properties.

It is normally supposed that successive values of the time series under consideration or
of the input—output data are available for analysis. If possible, at least 50 and preferably
100 observations or more should be used. In those cases where a past history of 50 or more
observations is not available, one proceeds by using experience and past information to
derive a preliminary model. This model may be updated from time to time as more data
become available.
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FIGURE 1.7 Stages in the iterative approach to model building.

In fitting dynamic models, a theoretical analysis can sometimes tell us not only the
appropriate form for the model, but may also provide us with good estimates of the
numerical values of its parameters. These values can then be checked later by analysis of
data.

Figure 1.7 summarizes the iterative approach to model building for forecasting and
control, which is employed in this book.

1. From the interaction of theory and practice, a useful class of models for the purposes
at hand is considered.

2. Because this class is too extensive to be conveniently fitted directly to data, rough
methods for identifying subclasses of these models are developed. Such methods
of model identification employ data and knowledge of the system to suggest an
appropriate parsimonious subclass of models that may be tentatively entertained. In
addition, the identification process can be used to yield rough preliminary estimates
of the parameters in the model.

3. The tentatively entertained model is fitted to data and its parameters estimated. The
rough estimates obtained during the identification stage can now be used as starting
values in more refined iterative methods for estimating the parameters, such as the
nonlinear least squares and maximum likelihood methods.

4. Diagnostic checks are applied with the goal of uncovering possible lack of fit and
diagnosing the cause. If no lack of fit is indicated, the model is ready to use. If any
inadequacy is found, the iterative cycle of identification, estimation, and diagnostic
checking is repeated until a suitable representation is found.
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Identification, estimation, and diagnostic checking are discussed for univariate time
series models in Chapters 6, 7, 8, and 9, for transfer function models in Chapter 12, for
intervention models in Chapter 13, and for multivariate time series models in Chapter 14.

The model building procedures will be illustrated using actual time series with numerical
calculations performed using the R software and other tools. A brief description of the R
software is included in Appendix Al.1 along with references for further study. Exercises
at the end of the chapters also make use of the software.

APPENDIX Al.1 USE OF THE R SOFTWARE

The R software for statistical computing and graphics is a common choice for data analysis
and development of new statistical methods. R is available as Free Software under the terms
of the Free Software Foundations’s GNU General Public License in source code form. It
compiles and runs on all common operating systems including Windows, MacOS X, and
Linux. The main website for the R project is http://www.r-project.org.

The R environment consists of a base system, which is developed and maintained by the
R Core Team, and a large set of user contributed packages. The base system provides the
source code that implements the basic functionality of R. It also provides a set of standard
packages that include commonly used probability distributions, graphical tools, classic
datasets from the literature, and a set of statistical methods that include regression analysis
and time series analysis. In addition to these base packages, there are now thousands of
contributed packages developed by researchers around the world. Packages useful for time
series modeling and forecasting include the stats package thatis part of the base distribution
and several contributed packages that are available for download. These include the TSA
package by K-S Chan and Brian Ripley, the astsa package by David Stoffer, the Rmetrics
packages fGarch and fUnitRoots for financial time series analysis by Diethelm Wuertz
and associates, and the MTS package for multivariate time series analysis by Ruey Tsay.
We use many functions from these packages in this book. We also use datasets available
for download from the R datasets package, and the TSA and astsa packages.

Both the base system and the contributed packages are distributed through a network
of servers called the Comprehensive R Archive Network (CRAN) that can be accessed
from the official R website. Contributed packages that are not part of the base distribution
can be installed directly from the R prompt ‘“>’" using the command install.package().
Under the Windows system, the installation can also be done from a drop-down list. The
command will prompt the user to select a CRAN Mirror, after which a list of packages
available for installation appears. To use a specific package, it also needs to be loaded into
the system at the start of each session. For example, the TSA package can be loaded using
the commands library(TSA) or require(TSA). The command data() will list all datasets
available in the loaded packages. The command data(airquality) will load the dataset
airquality from the R datasets package into memory. Data stored in a text file can be read
into R using the command is read.table. For a .csv file, the command is read.csv. To get
help on specific functions, e.g. the arima function which fits an ARIMA model to a time
series, type help(arima) or ?arima.

R is object-oriented software and allows the user to create many objects. For example,
the command ts() will create a time series object. This has advantages for plotting the time
series and for certain other applications. However, it is not necessary to create a time series
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object for many of the applications discussed in this book. The structure of the data in R
can be examined using commands such as class(), str(), and summary().

The data used for illustration in this book, as well as in some of the exercises, include
a set of time series listed in Part Five of the book. These series are also available at
http://pages.cs.wisc.edu/ reinsel/bjr-data/index.html. At least three of the series are also
included in the R datasets package and can be accessed using the data() command
described above. Some of the exercises require the use of R and it will be assumed
that the reader is already familiar with the basics of R, which can be obtained by working
through relevant chapters of texts such as Crawley (2007) and Adler (2010). Comprehensive
documentation in the form of manuals, contributed documents, online help pages, and FAQ
sheets is also available on the R website. Since R builds on the S language, a useful reference
book is also Venables and Ripley (2002).

EXERCISES

1.1. The dataset airquality in the R datasets package includes information on daily air
quality measurements in New York, May to September 1973. The variables included
are mean ozone levels at Roosevelt Island, solar radiation at Central Park, average wind
speed at LaGuardia Airport, and maximum daily temperature at LaGuardia Airport;
see help(airquality) for details.

(a) Load the dataset into R.

(b) Investigate the structure of the dataset.

(¢) Plot each of the four series mentioned above using the plot() command in R; see
help(plot) for details and examples.

(d) Comment on the behavior of the four series. Do you see any issues that may
require special attention in developing a time series model for each of the four
series.

1.2. Monthly totals of international airline passengers (in thousands of passengers), January
1949-December 1960, are available as Series G in Part Five of this book. The data
are also available as series AirPassengers in the R datasets package.

(a) Load the dataset into R and examine the structure of the data.
(b) Plot the data using R and describe the behavior of the series.
(c) Perform a log transformation of the data and plot the resulting series. Compare

the behavior of the original and log-transformed series. Do you see an advantage
in using a log transformation for modeling purposes?

1.3. Download a time series of your choosing from the Internet. Note that financial and
economic time series are available from sources such as Google Finance and the Fed-
eral Reserve Economic Data (FRED) of Federal Reserve Bank in St. Louis, Missouri,
while climate data is available from from NOAA’s National Climatic Data Center
(NCDC).

(a) Store the data in a text file or a .csv file and read the data into R.
(b) Examine the properties of your series using plots or other appropriate tools.

(c) Does your time series appear to be stationary? If not, would differencing and/or
some other transformation make the series stationary?


http://pages.cs.wisc.edu/reinsel/bjr-data/index.html

PART ONE

STOCHASTIC MODELS AND THEIR
FORECASTING

In the first part of this book, which includes Chapters 2, 3, 4, and 5, a valuable class of
stochastic models is described and its use in forecasting discussed.

A model that describes the probability structure of a sequence of observations is called
a stochastic process. A time series of N successive observations z’ = (z;, z,, ..., zy) is
regarded as a sample realization, from an infinite population of such samples, which could
have been generated by the process. A major objective of statistical investigation is to infer
properties of the population from those of the sample. For example, to make a forecast is to
infer the probability distribution of a future observation from the population, given a sample
z of past values. To do this, we need ways of describing stochastic processes and time series,
and we also need classes of stochastic models that are capable of describing practically
occurring situations. An important class of stochastic processes discussed in Chapter 2 is the
stationary processes. They are assumed to be in a specific form of statistical equilibrium,
and in particular, vary over time in a stable manner about a fixed mean. Useful devices
for describing the behavior of stationary processes are the autocorrelation function and the
spec trum.

Particular stationary stochastic processes of value in modeling time series are the autore-
gressive (AR), moving average (MA), and mixed autoregressive—moving average (ARMA)
processes. The properties of these processes, in particular their autocorrelation structures,
are described in Chapter 3.

Because many practically occurring time series (e.g., stock prices and sales figures) have
nonstationary characteristics, the stationary models introduced in Chapter 3 are developed
further in Chapter 4 to give a useful class of nonstationary processes called autoregressive
integrated moving-average (ARIMA) models. The use of all these models in forecasting
time series is discussed in Chapter 5 and is illustrated with examples.
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AUTOCORRELATION FUNCTION AND
SPECTRUM OF STATIONARY
PROCESSES

A central feature in the development of time series models is an assumption of some form
of statistical equilibrium. A particularly useful assumption of this kind (but an unduly
restrictive one, as we will see later) is that of stationarity. Usually, a stationary time
series can be usefully described by its mean, variance, and autocorrelation function or
equivalently by its mean, variance, and spectral density function. In this chapter, we consider
the properties of these functions and, in particular, the properties of the autocorrelation
function, which will be used extensively in developing models for actual time series.

2.1 AUTOCORRELATION PROPERTIES OF STATIONARY MODELS

2.1.1 Time Series and Stochastic Processes

Time Series. A time series is a set of observations generated sequentially over time.
If the set is continuous, the time series is said to be continuous. If the set is discrete,
the time series is said to be discrete. Thus, the observations from a discrete time series
made at times 7y, 75, ..., 7}, ... , Ty may be denoted by z(z;), z(z,), ..., 2(7)), ..., z(zy). In
this book, we consider only discrete time series where observations are made at a fixed
interval 2. When we have N successive values of such a series available for analysis,
we write 2y, 25, ..., %, ..., Zy to denote observations made at equidistant time intervals
T9+ h, 79+ 2h, ..., 75+ th, ..., 75 + N h. For many purposes, the values of 7, and & are
unimportant, but if the observation times need to be defined exactly, these two values can
be specified. If we adopt 7 as the origin and /4 as the unit of time, we can regard z, as the
observation at time t.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
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FIGURE 2.1 Yields of 70 consecutive batches from a chemical process.

Discrete time series may arise in two ways:

1. By sampling a continuous time series: For example, in the situation shown in
Figure 1.2, where the continuous input and output from a gas furnace was sampled at
intervals of 9 seconds.

2. By accumulating a variable over a period of time: Examples are rainfall, which is
usually accumulated over a period such as a day or a month, and the yield from a
batch process, which is accumulated over the batch time. For example, Figure 2.1
shows a time series consisting of the yields from 70 consecutive batches of a chemical
process. The series shown here is included as Series F in Part Five of this book.

Deterministic and Statistical Time Series. If future values of a time series are exactly
determined by some mathematical function such as

z, = cos(2x ft)

the time series is said to be deterministic. If future values can be described only in terms of a
probability distribution, the time series is said to be nondeterministic or simply a statistical
time series. The batch data of Figure 2.1 provide an example of a statistical time series.
Thus, although there is a well-defined high—low pattern in the series, it is impossible to
forecast the exact yield for the next batch. It is with such statistical time series that we are
concerned in this book.

Stochastic Processes. A statistical phenomenon that evolves in time according to proba-
bilistic laws is called a stochastic process. We will often refer to it simply as a process,
omitting the word ‘stochastic.”” The time series to be analyzed may then be thought of as
a particular realization, produced by the underlying probability mechanism, of the system
under study. In other words, in analyzing a time series we regard it as a realization of a
stochastic process.



AUTOCORRELATION PROPERTIES OF STATIONARY MODELS 23

Observed
time series
L 1 1 1 1 J
21 23 25 27 29 31
{ —p

FIGURE 2.2 Observed time series (thick line), with other time series representing realizations of
the same stochastic process.

For example, to analyze the batch data in Figure 2.1, we can imagine other sets of
observations (other realizations of the underlying stochastic process), which might have
been generated by the same chemical system, in the same N = 70 batches. Thus, Figure 2.2
shows the yields from batches t = 21 to t = 30 (thick line), together with other time series
that might have been obtained from the population of time series defined by the underlying
stochastic process. It follows that we can regard the observation z, at a given time ¢, say
t =25, as a realization of a random variable z;, with probability density function p(z,).
Similarly, the observations at any two times, say t; = 25 and t, = 27, may be regarded
as realizations of two random variables z, and z, with joint probability density function
p(2;,, z;,). For illustration Figure 2.3 shows contours of constant density for such a joint
distribution, together with the marginal distribution at time #,. In general, the observations
making up an equispaced time series can be described by an N-dimensional random
variable (zy, z5, ..., z)y) with probability distribution p(z, z,, ..., Zy).

Contours of bivariate distribution
2z 2415)

D

Marginal

distribution
M
2}y ——

/

Ze

FIGURE 2.3 Contours of constant density of a bivariate probability distribution describing a
stochastic process at two times ¢, f,, together with the marginal distribution at time ¢,.
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2.1.2 Stationary Stochastic Processes

A very special class of stochastic processes, called stationary processes, is based on the
assumption that the process is in a particular state of statistical equilibrium. A stochastic
process is said to be strictly stationary if its properties are unaffected by a change of
time origin, that is, if the joint probability distribution associated with m observations
Zys Zgyseee s By made at any set of times t,1,, ... ,t,, is the same as that associated with
m Observations z; iy, Z; 4k --- » 21, 4k> Made at times 1y + k, ) + k, ..., 1,, + k. Thus, for a
discrete process to be strictly stationary, the joint distribution of any set of observations
must be unaffected by shifting all the times of observation forward or backward by any
integer amount k.

Mean and Variance of a Stationary Process. When m = 1, the stationarity assumption
implies that the probability distribution p(z,) is the same for all times ¢ and may be written
as p(z). Hence, the stochastic process has a constant mean

u=FE[z]= / zp(z)dz 2.1.1)

which defines the level about which it fluctuates, and a constant variance
2 _ 29 _ ® 2
o, = E[(z, — )] —/ (z—w)p(z)dz (2.1.2)

which measures its spread about this level. Since the probability distribution p(z) is the
same for all times ¢, its shape can be inferred by forming the histogram of the observations
Z1,Zy, ... , Zpy» making up the observed time series. In addition, the mean yu of the stochastic
process can be estimated by the sample mean

zZ=

z, (2.1.3)

M=

1
N

Il
—

t

of the time series, and the variance 65 of the stochastic process can be estimated by the
sample variance

(z, - 2)° (2.1.4)

M=

L
: Ntl

of the time series.

Autocovariance and Autocorrelation Coefficients. The stationarity assumption also im-
plies that the joint probability distribution p(z;,, z;)) is the same for all times 7, 7,, which
are a constant interval apart. In particular, it follows that the covariance between values z;
and z,,,, separated by k intervals of time, or by lag k, must be the same for all # under
the stationarity assumption. This covariance is called the autocovariance at lag k and is
defined by

Vi = COV[Z[» Zt+k] = E[(Zt - ﬂ)(zt+k - u)] (2.1.5)
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FIGURE 2.4 Scatter diagrams at lags (a) kK = 1 and (b) k = 2 for the batch data of Figure 2.1.

Similarly, the autocorrelation at lag k is

El(z; = 1)(Zp = )]
VEI(z, = wP1E[(zi1s = 1)°]
El(z, = 1) (Zypi — )]

2
z

Pk

o

since, for a stationary process, the variance o-Z =y, is the same at time ¢ + k as at time .
Thus, the autocorrelation at lag k, that is, the correlation between z; and z, ., is

g = Lk
=k
Yo

(2.1.6)
which implies, in particular, that py = 1.

It also follows for a stationary process that the nature of the joint probability distribution
p(z;, z;41) of values separated by k intervals of time can be inferred by plotting a scatter
diagram using pairs of values (z;, z,, ) of the time series, separated by a constant interval or
lag k. For the batch data displayed in Figure 2.1, Figure 2.4(a) shows a scatter diagram for
lag k = 1, obtained by plotting z,,; versus z,, while Figure 2.4(b) shows a scatter diagram
for lag k = 2, obtained by plotting z,,, versus z,. We see that neighboring values of the
time series are correlated. The correlation between z; and z,,; appears to be negative and
the correlation between z, and z,,, positive. Figure 2.4 was generated in R as follows:

Yield = read.table("SeriesF.txt",header=TRUE)

yl=Yield[2:70]

x1=Yield[1:69]

y2=Yield[3:70]

x2=Yield[1:68]

win.graph (width=5,height=2.7,pointsize=5)

par (mfrow=c(1,2)) % Places two graphs side-by-side

plot (y=y1l,x=x1,ylab=expression(z[t+1]),xlab=expression(z[t]),

V V.V V V V V V
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main="(a): k=1",type='p’)

> abline (lsfit (x1,vy1))

> plot (y=y2,x=x2,ylab=expression(z[t+2]),xlab=expression(z[t]),
main=" (b): k=2",type='p’)

> abline (1lsfit (x2,vy2))

2.1.3 Positive Definiteness and the Autocovariance Matrix

The covariance matrix associated with a stationary process for observations (z;, z,, ..., 2,,)
made at n successive times is

Yo Y1 Y2 ot Vn-1
1. Yo V1 vt Vn—2
,=|7 71 Yo = Vu-3

_yn—l Yn=2"n=3 =" 70

L pr by pu
pr 1P o
=0c-| P2 P 1 - p,53|=0%P

zon

(i8]

2.1.7)

Pn—1 Pp—2 Pp-3 " 1

A covariance matrix I, of this form, which is symmetric with constant elements on any
diagonal, is called an autocovariance matrix, and the corresponding correlation matrix
P, is called an autocorrelation matrix. Now, consider any linear function of the random
variables z,, Z;_1, ..., Z;_p41!

Lt = llzt + IZZI—I S i lnzt_n+1 (218)

Since cov|[z;, z;] = Y|j—il for a stationary process, the variance of L, is

n n
var[L,] = Z Z Liliy iz

i=1 j=1

which is necessarily greater than zero if the I’s are not all zero. It follows that both
the autocovariance matrix and the autocorrelation matrix are positive definite for any
stationary process. Correspondingly, it is seen that both the autocovariance function {y, }
and the autocorrelation function { p, }, viewed as functions of the lag k, are positive-definite
functions in the sense that Z?:l Z?:] liljy)j-i > O for every positive integer n and all
constants [y, ..., /,.

Conditions Satisfied by the Autocorrelations of a Stationary Process. The positive defi-
niteness of the autocorrelation matrix (2.1.7) implies that its determinant and all principal
minors are greater than zero. In particular, for n = 2,

1 py
pr 1

>0
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so that
1- p% >0
and hence
Similarly, for » = 3, we must have
1 1
P1 >0 P2 >0
pr 1 Py 1
1 p1 0
pr 1 p|>0
papr 1
which implies that
-l1<p <1
-1<py<1
2
pr—p
1< 20
1- pf

and so on. Since P, must be positive definite for all values of n, the autocorrelations of
a stationary process must satisfy a very large number of conditions. As will be shown
in Section 2.2.3, all of these conditions can be brought together in the definition of the
spectrum.

Stationarity of Linear Functions. It follows from the definition of stationarity that the
process L,, obtained by performing the linear operation (2.1.8) on a stationary process z,
for fixed n and fixed coefficients /{, ..., /,, is also stationary. The autocovariance of the
process L,, at a general lag k > 0, is given by

n n

n n
cov[L, L, ;]= Z Z lilicovlzy s Ziy1op—j] = Z Z LY ket j—il

i=1 j=1 i=1 j=1

In particular, the first difference Vz, = z, — z,_; and higher differences V¥z, are station-
ary. This result is of particular importance to the discussion of nonstationary time series
presented in Chapter 4.

The result also extends to infinite linear operations or infinite linear (time-invariant)
filters applied to a stationary process { z, }, under a condition of absolute summability. That
is, if {z,} is a stationary process and {y,} is defined by the infinite linear (time-invariant)
filter

o0
Vi = W0z A VI Z Wz = D Wiz (2.1.9)
i=0
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with fixed coefficients {y;} such that Z;Zo lw;| < co, then {y,} is also stationary. The
absolute summability condition, Z;’io |w;| < co, guarantees that the variables y, in (2.1.9)
are well-defined finite random variables (with probability one) and represent the limit of
the sequence Z,"l:o v;z,_; as n — oo. The variance of y, in (2.1.9) (taking E[z,] = 0 for
convenience) is

o0 [s+]
varly,] = E[y,z] = Z Z YiliY|j—i|
i=0 j=0

This variance is finite since |, E;’;O - < Zieo Z;io lwillw; 11y <
2 . .
}’0{ Z,:o |y/,-|} < o0. The autocovariance of y; at any lag k > 0 is then

n n (69 [e+]
covlyy Yi—il = lim % Z{)Wﬂ/f;ﬂkﬂ—n = % 26 ViV Y et j—i] (2.1.10)
1= j= =0 j=l

which converges by the dominated convergence result.

Gaussian Processes. If the probability distribution of observations associated with any set
of times is a multivariate normal distribution, the process is called a normal or Gaussian
process. Since the multivariate normal distribution is fully characterized by its moments
of first and second order, the existence of a fixed mean g and an autocovariance matrix
I',, of the form (2.1.7) for all n would be sufficient to ensure the stationarity of a Gaussian
process.

Weak Stationarity. We have seen that for a process to be strictly stationary, the whole
probability structure must depend only on time differences. A less restrictive requirement,
called weak stationarity of order f, is that the moments up to some order f depend only
on time differences. For example, the existence of a fixed mean y and an autocovariance
matrix I',, of the form (2.1.7) is sufficient to ensure stationarity up to second order. That
is, a process {z,} is weakly stationary (of order 2), or second-order stationary, if the mean
E[z;] = u is a fixed constant for all # and the autocovariances cov|z;, z,,,] = 7, depend
only on the time difference or time lag k for all ¢. Thus, second-order stationarity and an
assumption of normality are sufficient to produce strict stationarity.

White Noise Process. The most fundamental example of a stationary process is a sequence
of independent and identically distributed random variables, denoted as ay,...,q,, ...,
which we also assume to have mean zero and variance 03. This process is strictly stationary
and is referred to as a white noise process. Because independence implies that the a, are
uncorrelated, its autocovariance function is simply

62 k=0

a

v, = Ela,a,, ] =
k 1Atk 0 k#0

If one concentrates only on the second-order properties, then a sequence of random vari-
ables a,, which are uncorrelated, have mean zero, and common variance ag has the same
autocovariance function y, as above, and is weakly (second-order) stationary. Such a pro-
cess may also be referred to as a white noise process (in the weak sense), when the focus
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is only on the second-order properties. Although the white noise process has very basic
properties, this process plays an important role in the building of processes with much more
interesting and more complicated properties through linear filtering operations as in (2.1.8)
and (2.1.9).

2.1.4 Autocovariance and Autocorrelation Functions

It was seen in Section 2.1.2 that the autocovariance coefficient y,, at lag k, measures the
covariance between two values z, and z,,, a distance k apart. The plot of y, versus lag k
is called the autocovariance function {y, } of the stochastic process. Similarly, the plot of
the autocorrelation coefficient p, as a function of the lag k is called the autocorrelation
Sfunction {p;} of the process. Note that the autocorrelation function is dimensionless, that
is, independent of the scale of measurement of the time series. Since y;, = pkag, knowledge
of the autocorrelation function {p, } and the variance ag
autocovariance function {y;}.

The autocorrelation function, shown in Figure 2.5 as a plot of the diagonals of the
autocorrelation matrix, reveals how the correlation between any two values of the se-
ries changes as their separation changes. Since p, = p_,, the autocorrelation function is

is equivalent to knowledge of the

1.0 08 04 02 -01 AN

FIGURE 2.5 Autocorrelation matrix and corresponding autocorrelation function of a stationary
process.
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FIGURE 2.6 Positive half of the autocorrelation function of Figure 2.5.

necessarily symmetric about zero, and in practice it is only necessary to plot the positive
half of this function. Figure 2.6 shows the positive half of the autocorrelation function
given in Figure 2.5. When we speak of the autocorrelation function, we typically mean
the positive half. In the past, the autocorrelation function has sometimes been called the
correlogram.

From what has previously been shown, a normal stationary process z; is completely
characterized by its mean u and its autocovariance function {y, }, or equivalently by its
mean y, variance af, and autocorrelation function {p; }.

2.1.5 Estimation of Autocovariance and Autocorrelation Functions

Up to now, we have only considered the theoretical autocorrelation function that describes a
stochastic process. In practice, we have a finite time series z, z,, ... , zy of N observations,
from which we can only obtain estimates of the mean u and the autocorrelations. The mean
u = E[z,] is estimated as in (2.1.3) by the sample mean z = Zfil z,/N. It is easy to see
that E[Z] = u, so that Z is an unbiased estimator of y. As a measure of precision of Z as an
estimator of u, we find that

N N-1
1 () k
Var[z]—ﬁZZy,_s—ﬁ 1+2kz=‘1 (1—F>pk

t=1 s=1

A “‘large-sample’’ approximation for this variance is given by

var[z] = (yﬁo) 1+2) p
k=1

in the sense that Nvar[z] - y(14+2 Y72, px) as N — oo, assuming that },;2 ||
< o0. Notice that the first factor in var(Z], y,/ N, is the familiar expression for the variance
of z obtained from independent random samples of size N, but the presence of autocorre-
lation among the z, values can substantially affect the precision of z. For example, in the
case where a stationary process has autocorrelations p; = K || < 1, the large-sample
approximation for the variance of zZ becomes var[Z] = (yo/N)[(1 + ¢)/(1 — ¢)], and the
second factor can obviously differ substantially from 1.

A number of estimates of the autocorrelation function have been suggested in the
literature, and their properties are discussed by Jenkins and Watts (1968), among others. It
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TABLE 2.1 Estimated Autocorrelation Function of Batch Data

k Ty k Iy k T

1 —0.39 6 —0.05 11 0.11
2 0.30 7 0.04 12 —0.07
3 —0.17 8 —-0.04 13 0.15
4 0.07 9 0.00 14 0.04
5 —0.10 10 0.01 15 —0.01

is concluded that the most satisfactory estimate of the kth lag autocorrelation p;, is

A Ck
Fo=pp = — (2.1.11)
€
where
N—k
.1 _ _
ck=yk=FZ(zt—Z)(zt+k—z) k=0,1,2,....K (2.1.12)
=1

is the estimate of the autocovariance y, and Z is the sample mean of the time series. The
values r, in (2.1.11) may be called the sample autocorrelation function. To obtain a useful
estimate of the autocorrelation function in practice, we would typically need at least 50
observations, and the estimated autocorrelations r, would be calculated fork =0, 1, ..., K,
where K was not larger than, say, N /4.

The estimated autocorrelation function r;, of the batch data in Figure 2.1 is given
in Table 2.1 and plotted in Figure 2.7. The autocorrelation function is characterized by
correlations that alternate in sign and tend to damp out with increasing lag. Autocorrelation
functions of this kind are not uncommon in production data and can arise because of
““carryover’’ effects. In this particular example, a high-yielding batch tended to produce
tarry residues, which were not entirely removed from the vessel and adversely affected the
yield of the next batch.

Figure 2.7 and the autocorrelations shown in Table 2.1 were generated in R as follows:

> Yield = read.table("SeriesF.txt", header=TRUE)
> ACF = acf(Yield, 15)
> ACF % retrieves the values shown in Table 2.1

2.1.6 Standard Errors of Autocorrelation Estimates

To identify a model for a time series, using methods to be described in Chapter 6, it is
useful to have a rough check on whether p, is effectively zero beyond a certain lag. For this
purpose, we can use the following expression for the approximate variance of the estimated
autocorrelation coefficient of a stationary normal process given by Bartlett (1946):

l [e]
varlr] = — D L+ PurkPook — 40kPuPui + 20207 (2.1.13)

UV=—00
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FIGURE 2.7 Estimated autocorrelation function of batch data.

For example, if p, = ¢*l (=1 < ¢ < 1), that is, the autocorrelation function damps out
exponentially, (2.1.13) gives

(1+¢H(1 - ¢*)

1 2%
~ — -2k 2.1.14
var[r,] ~ - ¢ ( )

and in particular

(1—¢?

1
var[r;] ~ —
[ry] N
For any process for which all the autocorrelations p,, are zero for v > ¢, all terms except
the first appearing in the right-hand side of (2.1.13) are zero when k > g. Thus, for the
variance of the estimated autocorrelation r;, at lags k greater than some value g beyond
which the theoretical autocorrelation function may be deemed to have “‘died out’’, Bartlett’s

approximation gives

| q
var[r] = — 1+2) p? k>gq (2.1.15)
=1

To use this result in practice, the estimated autocorrelations r;, (k=1,2,...,q) are
substituted for the theoretical autocorrelations p,, and when this is done, we refer to the
square root of (2.1.15) as the large-lag standard error. On the assumption that the p, are
all zero beyond some lag k = g, the large-lag standard error approximates the standard
deviation of r, for suitably large lags (k > ¢). We will show in Chapter 3 that the moving
average (MA) process in (1.2.3) has a correlation structure such that the approximation
(2.1.15) applies to this process.

Similar expressions for the approximate covariance between the estimated autocorrela-
tions r, and r;, at two different lags k and k + s were also given by Bartlett (1946). In

v=
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particular, the large-lag approximation reduces to

q
1
COVIry ep] = o Y buprs k>4 (2.1.16)

v=—q

This result shows that care is required in the interpretation of individual autocorrelations
because large covariances can exist between neighboring values. This effect can sometimes
distort the visual appearance of the sample autocorrelation function, which may fail to damp
out according to expectation.

A case of particular interest occurs for g = 0, that is, when the p, are taken to be zero for
all lags (other than lag 0), and hence the series is completely random or white noise. Then,
the standard errors from (2.1.15) for estimated autocorrelations r;, take the simple form

1
VN

In addition, in this case the result in (2.1.16) indicates that estimated autocorrelations r;
and r,, at two different lags are not correlated, and since the r, are also known to be
approximately normally distributed for large N, a collection of estimated autocorrelations
for different lags will tend to be independently and normally distributed with mean 0 and
variance 1/N.

Two standard error limits determined under the assumption that the series is completely
random are included for the autocorrelation function of the batch data in Figure 2.7. Since
N equals 70 in this case, the two standard errors limits are around +0.24. The magnitude
of the estimated autocorrelation coefficients are clearly inconsistent with the assumption
that the series is white noise.

se[ry] =~ k>0

Example. For further illustration, assume that the following estimated autocorrelations
were obtained from a time series of length N = 200 observations, generated from a stochas-
tic process for which it was known that p; = —=0.4 and p; = 0 for k > 2:

k Ty k 'y

1 —-0.38 6 0.00
2 —-0.08 7 0.00
3 0.11 8 0.00
4 -0.08 9 0.07
5 0.02 10 -0.08

On the assumption that the series is completely random, that is, white noise, we have
q = 0. Then, for all lags, (2.1.15) yields

1

F = m =0005

var[r; ] =~
The corresponding standard error is 0.07 = (0.005)!/2. Since the value of —0.38 for ry
is over five times this standard error, it can be concluded that p; is nonzero. Moreover,
the estimated autocorrelations for lags greater than 1 are all small. Therefore, it might
be reasonable to ask next whether the series was compatible with a hypothesis (whose
relevance will be discussed later) whereby p; was nonzero, but p, =0 (k > 2). Using
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(2.1.15) with g = 1 and substituting r; for p;, the estimated large-lag variance under this
assumption is

varlr,] ~ ﬁ[l +2(=038)2] = 0.0064 k> 1

yielding a standard error of 0.08. Since the estimated autocorrelations for lags greater than
1 are small compared with this standard error, there is no reason to doubt the adequacy of
the model p; # 0, p, =0 (k > 2).

Remark. The limits shown in Figure 2.7, which assume that the series is white noise, are
generated by default in R. Alternative limits, consistent with the assumptions underlying
(2.1.15), can be obtained by adding the argument ci.type="ma" to the acf() command.

2.2 SPECTRAL PROPERTIES OF STATIONARY MODELS

2.2.1 Periodogram of a Time Series

Another way of analyzing a time series is based on the assumption that it is made up of
sine and cosine waves with different frequencies. A device that uses this idea, introduced
by Schuster (1898), is the periodogram. The periodogram was originally used to detect and
estimate the amplitude of a sine component, of known frequency, buried in noise. We will
use it later to provide a check on the randomness of a series (usually, a series of residuals
after fitting a particular model), where we consider the possibility that periodic components
of unknown frequency may remain in the series.

To illustrate the calculation of the periodogram, suppose that the number of observations
N =2g+ 1is odd. We consider fitting the Fourier series model

q
z,= g+ ) (@cy + i) + e (2.2.1)
i=1

where ¢;, = cos(2z f;1), s;, = sin2z f;t), and f; = i/N, which is the ith harmonic of the
fundamental frequency 1/N associated with the ith sine wave component in (2.2.1) with
frequency f; and period 1/ f; = N /i. The least squares estimates of the coefficients & and
(a;, p;) will be

ay =2 (2.2.2)
5 N
a=— Z Z,Cjy (2.2.3)
N 3
i=1,2,...,q
5 N
b= zs, (2.2.4)
N =
since Zfi] cl.zt = 2511 sizt = N/2, and all terms in (2.2.1) are mutually orthogonal over

t =1,..., N. The periodogram then consists of the ¢ = (N — 1)/2 values

I1(f) = %(a?+bi2) i=1,2,....q (2.2.5)
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where I(f;) is called the infensity at frequency f;. When N is even, we set N = 2¢g and
(2.2.2)—(2.2.5) apply fori = 1,2, ...,(g — 1), but

q N
t
=5 2Dz
=1
0
and

I(f) = 1(0.5)= Na_

Note that the highest frequency is 0.5 cycle per time interval because the smallest period is
two intervals.

2.2.2 Analysis of Variance

In an analysis of variance table associated with the fitted regression (2.2.1), when N is odd,
we can isolate (N — 1)/2 pairs of degrees of freedom, after eliminating the mean. These
are associated with the pairs of coefficients (a;, b;), (a5, by), ... ,(aq, bq), and hence with
the frequencies 1/N,2/N, ..., q/N. The periodogram I(f;) = (N/2)(ai2 + bi2) is seen to
be simply the ‘‘sum of squares’” associated with the pair of coefficients (a;, b;) and hence
with the frequency f; = i/N or period p; = N /i. Thus,

n q
Dz —2F =Y I(f) (2.2.6)
t=1 i=1

When N is even, there are (N — 2)/2 pairs of degrees of freedom and a further single
degree of freedom associated with the coefficient a,.
If the series were truly random, containing no systematic sinusoidal component, that is,

z,=agte

with a the fixed mean, and the e’s independent and normal, with mean zero and variance 62,

each component /(f;) would have expectation 262 and would be distributed! as o2 y2(2),
independently of all other components. By contrast, if the series contained a systematic
sine component having frequency f;, amplitude A, and phase angle F, so that

z, = ay + acos2r f;t) + fsin(x ft) + e,

with Asin F = a and A cos F = f, the sum of squares I( f;) would tend to be inflated since
its expected value would be 26> + N(a® + f2)/2 = 262 + N A%/2.

In practice, it is unlikely that the frequency f of an unknown systematic sine component
would exactly match any of the frequencies f; for which intensities have been calculated.
In this case the periodogram would show an increase in the intensities in the immediate
vicinity of f.

It is to be understood that y?(m) refers to a random variable having a chi-square distribution with m degrees of
freedom, defined explicitly, for example, in Appendix A7.1.
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TABLE 2.2 Mean Monthly Temperatures for Central England in 1964

! Zt Clt 4 Zx clr
1 34 0.87 7 16.1 —0.87
2 4.5 0.50 8 15.5 —0.50
3 4.3 0.00 9 14.1 0.00
4 8.7 -0.50 10 8.9 0.50
5 13.3 —0.87 11 7.4 0.87
6 13.8 —1.00 12 3.6 1.00

Example. A large number of observations would generally be used in calculation of the
periodogram. However, to illustrate the details of the calculation, we use the set of 12
mean monthly temperatures (in degrees Celsius) for central England during 1964, given in
Table 2.2. The table gives ¢;, = cos(2zt/12), which is required in the calculation of a;,
obtained from

ay = %[(3.4)(0.87) + o+ (3.6)(1.00)]
= =530

The values of the a;,b;, i =1,2,...,6, are given in Table 2.3 and yield the analysis of
variance of Table 2.4. As would be expected, the major component of these temperature
data has a period of 12 months, that is, a frequency of 1/12 cycle per month.

2.2.3 Spectrum and Spectral Density Function

For completeness, we add here a brief discussion of the spectrum and spectral density
function. The use of these important tools is described more fully by Jenkins and Watts
(1968), Bloomfield (2000), and Shumway and Stoffer (2011, Chapter 4), among others.
We do not apply them to the analysis of time series in this book, and this section can be
omitted on first reading.

Sample Spectrum. The definition of the periodogram in (2.2.5) assumes that the frequen-
cies f; = i/ N are harmonics of the fundamental frequency 1/N. By way of introduction
to the spectrum, we relax this assumption and allow the frequency f to vary continuously

TABLE 2.3 Amplitudes of Sines and Cosines at
Different Harmonics for Temperature Data

i a; b,

1 -5.30 -3.82
2 0.05 0.17
3 0.10 0.50
4 0.52 -0.52
5 0.09 —-0.58
6 -0.30
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TABLE 2.4 Analysis of Variance Table for Temperature Data

Frequency

i fi Period Periodogram Degrees of Mean
I1(f;) Freedom Square

1 1/12 12 254.96 2 127.48
2 1/6 6 0.19 2 0.10
3 1/4 4 1.56 2 0.78
4 1/3 3 3.22 2 1.61
5 5/12 12/5 2.09 2 1.05
6 12 2 1.08 1 1.08
263.10 11 23.92

in the range of 0-0.5 cycle. The definition (2.2.5) of the periodogram may be modified to
_N 2 2 1
()= S@+5)  0</<3 (22.7)

and I(f) is then referred to as the sample spectrum (Jenkins and Watts, 1968). Like the
periodogram, it can be used to detect and estimate the amplitude of a sinusoidal component
of unknown frequency f buried in noise and is, indeed, a more appropriate tool for this
purpose if it is known that the frequency f is not harmonically related to the length of the
series. Moreover, it provides a starting point for the theory of spectral analysis, using a
result given in Appendix A2.1. This result shows that the sample spectrum I(f) and the
estimate c;, of the autocovariance function are linked by the important relation

N-1

I(f)=2|cy+2 ) cxcosrfk) 0<f<
k=1

(2.2.8)

N —

That is, the sample spectrum is the Fourier cosine transform of the estimate of the autoco-
variance function.

Spectrum. The periodogram and sample spectrum are appropriate tools for analyzing time
series made up of mixtures of sine and cosine waves, at fixed frequencies buried in noise.
However, stationary time series of the kind described in Section 2.1 are characterized by
random changes of frequency, amplitude, and phase. For this type of series, the sample
spectrum I(f) fluctuates wildly and is not capable of any meaningful interpretation.

However, suppose that the sample spectrum was calculated for a time series of N
observations, which is a realization of a stationary normal process. As already mentioned,
such a process would not have any cosine or sine deterministic components, but we could
formally carry through the Fourier analysis and obtain values of (a;, by) for any given
frequency f. If repeated realizations of N observations were taken from the stochastic
process, we could build up a population of values for a,, b, and I(f). Thus, we could
calculate the mean value of I(f) in repeated realizations of size N, namely,

N-1
E[I(f)] =2 |Elc))+2 ) Ele,lcosQrfk) (2.2.9)
k=1
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For large N, it may be shown (e.g., Jenkins and Watts, 1968) that the mean value of the
estimate ¢, of the autocovariance coefficient in repeated realizations tends to the theoretical
autocovariance yy, that is,

dm_ Eled =7,

On taking the limit of (2.2.9) as N tends to infinity, the power spectrum p(f) is defined
by

. - 1
p(f) = lim E[I(/)] =2 l}/o 42 ;;1 ¥4 cos2m fk)] 0<f<3 (2.2.10)
‘We note that since
lp(f)l <2 lw +2 ) Iyl COS(27rfk)|l
k=1
SZ<|y0|+22|yk|> (2.2.11)
k=1

a sufficient condition for the spectrum to converge is that y, damps out rapidly enough for
the series (2.2.11) to converge. Since the power spectrum is the Fourier cosine transform of
the autocovariance function, knowledge of the autocovariance function is mathematically
equivalent to knowledge of the spectrum, and vice versa. From now on, we refer to the
power spectrum as simply the spectrum.

On integrating (2.2.10) between the limits O and %, the variance of the process z, is

1/2
Yo=o0r= /0 p(f)df (2.2.12)

Hence, in the same way that the periodogram I(f) shows how the variance (2.2.6) of
a series, consisting of mixtures of sines and cosines, is distributed between the various
distinct harmonic frequencies, the spectrum p(f) shows how the variance of a stochastic
process is distributed between a continuous range of frequencies. One can interpret p(f) df
as measuring approximately the variance of the process in the frequency range of f to
f +df. In addition, from the definition in (2.2.10), the spectral representation for the
autocovariance function {y, } can be obtained as

1/2
e = /0 cosr fk)p(f)df

which together with (2.2.10) directly exhibits the one-to-one correspondence between the
power spectrum and the autocovariance function of a process. Conversely, since the y,
form a positive-definite sequence, provided the series (2.2.11) converges, it follows from
Herglotz’s theorem (see, e.g., Loeve, 1977) that a unique function p(f) exists such that
¥, have the spectral representation y, = % f_ll//z2 e?7kp( ) df. Consequently, the power
spectrum p(f) of a stationary process, for which (2.2.11) converges, can be defined as this
unique function, which is guaranteed to exist and must have the form of the right-hand side
of (2.2.10) by the spectral representation.
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The fundamental property of the spectrum that p(f) > Oforall 0 < f < % follows from
I(f) > 0 and the definition in (2.2.10). In fact, a function p(f) definedon 0 < f < % can
be the spectrum of a stationary process if and only if it satisfies p(f) > 0 for 0 < f < %
and /01/ 2 p(f)df < oo. Conversely, a sequence {y, } °_ ) can be the autocovariance function

of a stationary process if and only if {y,} is a nonnegative-definite sequence, and this is
equivalent to the condition that p(f) > 0,0 < f < %, with p(f) defined by (2.2.10).

Spectral Density Function. It is sometimes more convenient to base the definition (2.2.10)
of the spectrum on the autocorrelations p; rather than on the autocovariances y;. The
resulting function

g() = 2L
[0}

z

=2l1+22pkcos(27rfk)] 0</f<

k=1

(2.2.13)

N —

is called the spectral density function. Using (2.2.12), it is seen that the spectral density

function has the property
1/2
/ g(NHdf=1
0

Since g(f) is also positive, it has the same properties as an ordinary probability density
function. This analogy extends to the estimation properties of these two functions, as we
discuss next.

Estimation of the Spectrum. One would expect that an estimate of the spectrum could be
obtained from (2.2.10), by replacing the theoretical autocovariances y, with their estimates
ci. Because of (2.2.8), this corresponds to taking the sample spectrum as an estimate of
p(f). However, it can be shown (e.g., Jenkins and Watts, 1968) that the sample spectrum
of a stationary time series fluctuates violently about the theoretical spectrum. An intuitive
explanation of this fact is that the sample spectrum corresponds to using an interval, in the
frequency domain, whose width is too small. This is analogous to using too small a group
interval for the histogram when estimating an ordinary probability distribution. By using a
modified or smoothed estimate

N-1

BH=2 ey +2 ) Ayeycosafk) (2.2.14)
k=1

where the 4, are suitably chosen weights called a lag window, it is possible to increase
the bandwidth of the estimate and to obtain a smoother estimate of the spectrum. The
weights A, in (2.2.14) are typically chosen so that they die out to zero for lags k > M,
where M is known as the truncation point and M < N is moderately small in relation to
series length N. As an alternative computational form, one can also obtain an estimate of
the spectrum smoother than the sample spectrum I(f) by forming a weighted average of
a number of periodogram values I(f;,;) in a small neighborhood of frequencies around a
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FIGURE 2.8 Estimated power spectrum of batch data.

given frequency f;. Specifically, a smoothed periodogram estimator of p(f;) takes the form

A c J
=Y, WUl <f; + N)

j==m

where Z;":_m W(f j) = 1, the symmetric weighting function W (f;) is referred to as the
spectral window, and m is chosen to be much smaller than N /2.

Figure 2.8 shows an estimate of the spectrum of the batch data. It is seen that most
of the variance of the series is concentrated at high frequencies. This is due to the rapid
oscillations in the original series, shown in Figure 2.1.

Remark. The command spectrum() can be used to estimate the power spectrum in R.
To use this command, a smoothing window must be specified; see help(spectrum) and
the references therein for details. The following command will generate a graph roughly
similar to Figure 2.8:

spectrum(Yield, spans=c(7,7),taper=0)

As an alternative, the R program spec.ar() fits an autoregressive model of order p to the
series and computes the spectral density of the fitted model. The lag order p is selected
using a model selection criterion such as the AIC to be discussed in Chapter 6.

2.2.4 Simple Examples of Autocorrelation and Spectral Density Functions

For illustration, we now show equivalent representations of two simple stationary stochastic
processes based on:

1. Their theoretical models
2. Their theoretical autocorrelation functions
3. Their theoretical spectra

Consider the two processes
z, =10+ a; + a,_4 z,=104+a;, —a,_;

where a,,a,_;,... are a sequence of uncorrelated normal random variables with mean
zero and variance ag, that is, Gaussian white noise. From the result in Section 2.1.3 on
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stationarity of linear functions, it is clear that the two processes above are stationary. Using
the definition (2.1.5),

Vi = cov[zy, Ze ] = E[(z — p)(Z4qk — )]

where E[z,] = E[z,,,] = u =10, and the autocovariances of these two stochastic pro-
cesses are obtained from

Yi = covla; + a1, a + Gy ]
= cov[a;, a;y ;] +covla,, a, 11+ covlia,_y,a,. ] +covla,_i,a,, 4]

and y, = covla, — a,_y,a,,; — a,;_;], respectively. Hence, the autocovariances are

2 2062 k=0

[N

IS
|

62 k=0
Yk = 63 k=1 Yk =4-0C
0 k>2

v
o
==
v
V)

Thus, the theoretical autocorrelation functions are

05 k=1 —-05 k=1
Pk = Pk =
00 k>2 00 k>2

and using (2.2.13), the theoretical spectral density functions are

g(f) =2[1 + cos(2xz f)] g(f) =2[1 - cos(2xz f)]

The autocorrelation functions and spectral density functions are plotted in Figure 2.9
together with a sample time series from each process.

1. It should be noted that for these two stationary processes, knowledge of either the
autocorrelation function or the spectral density function, with the mean and vari-
ance of the process, is equivalent to knowledge of the model (given the normality
assumption).

2. It will be seen that the autocorrelation function reflects one aspect of the behavior
of the series. The comparatively smooth nature of the first series is accounted for by
the positive association between successive values. The alternating tendency of the
second series, in which positive deviations usually follow negative ones, is accounted
for by the negative association between successive values.

3. The spectral density throws light on a different but equivalent aspect. The predom-
inance of low frequencies in the first series and high frequencies in the second is
shown by the spectra.

Remark. The two models considered in Figure 2.9 are special cases of the moving average
model defined in (1.2.3). Specifically, the models are first-order moving average, or MA(1),
models with parameters # = —1 and 6 = +1, respectively. As such, they are also special
cases of the more general autoregressive integrated moving average (ARIMA) model
defined in (1.2.7), where the order now is (0, 0, 1). Figure 2.9 was generated in R by taking
advantage of special functions for simulating ARIMA processes and for computing the
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Model (1): z,=10+a;+ a;_4 Model (2): z,=10 +a;-a;_4
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FIGURE 2.9 Two simple stochastic models with their corresponding theoretical autocorrelation
functions and spectral density functions.

theoretical autocorrelation function and power spectrum for these processes. The function
arima.sim() simulates a time series from a specified model, while ARMAacf() computes its
theoretical autocorrelation. Both functions are available in the stats library of R. The TSA
library includes a function ARMAspec() that computes and plots the theoretical spectrum
of an autoregressive—moving average (ARMA) process. The commands used to generate
Figure 2.9 are given below. Note, however, that the MA parameters are entered as +1
and —1, since R uses a definition that has positive signs of the MA parameters in (1.2.3).

> library (TSA)

> set.seed(12345)

> par (mfrow=c(3,2)) % Specifies panels in three rows and two columns

> plot (l0+arima.sim(list (order=c(0,0,1), ma = +1.0), n=100),ylab =
expression(z[t]),main=(expression(Model™ (1) :z[t] == 10+altl+alt-1]1)))

> plot (l0+arima.sim(list (order=c(0,0,1), ma = -1.0), n=100),ylab =
expression(z[t]),main=(expression (Model™ (2) :z[t] == 1l0+alt]-alt-1]1)))

> plot (ARMAacf (ar=0,ma=1.0,10) ,type="h",x=(0:10) ,xlab="1lag",ylab="ACF")

> abline (h=0)

> plot (ARMAacf (ar=0,ma=-1.0,10) ,type="h",x=(0:10) ,xlab="1lag",ylab="ACF")

> abline (h=0)

> ARMAspec (model=1ist (ma=1.0),freg=seq(0,0.5,0.001),plot=TRUE)

> ARMAspec (model=1ist (ma=-1.0),freqgq=seq(0,0.5,0.001),plot=TRUE)
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2.2.5 Advantages and Disadvantages of the Autocorrelation and Spectral Density
Functions

Because the autocorrelation function and the spectrum are transforms of each other,
they are mathematically equivalent, and therefore any discussion of their advantages and
disadvantages turns not on mathematical questions but on the representational value. Be-
cause, as we have seen, each sheds light on a different aspect of the data, they should be
regarded not as rivals but as allies. Each contributes something to an understanding of the
stochastic process in question.

The obtaining of sample estimates of the autocorrelation function and of the spectrum
are nonstructural approaches, analogous to the representation of an empirical distribution
function by a histogram. They are both ways of letting data from stationary series ‘‘speak
for themselves’” and provide a first step in the analysis of time series, just as a histogram
can provide a first step in the distributional analysis of data, pointing the way to some
parametric model on which subsequent analysis will be based.

Parametric time series models such as those of Section 2.2.4, are not necessarily asso-
ciated with a simple autocorrelation function or a simple spectrum. Working with either
of these nonstructural methods, we may be involved in the estimation of many lag correla-
tions and many spectral ordinates, even when a parametric model containing only one or
two parameters could represent the data. Each correlation and each spectral ordinate is a
parameter to be estimated, so that these nonstructural approaches might be very prodigal
with parameters, when the approach via the model could be parsimonious. On the other
hand, initially, we probably do not know what type of model may be appropriate, and initial
use of one or the other of these nonstructural approaches is necessary to identify the type
of model that is needed (in the same way that plotting a histogram helps to indicate which
family of distributions may be appropriate). The choice between the spectrum and the
autocorrelation function as a tool in model building depends upon the nature of the models
that turn out to be practically useful. The models that we have found useful, which we
consider in later chapters of this book, are simply described in terms of the autocorrelation
function, and it is this tool that we will employ for model specification.

APPENDIX A2.1 LINK BETWEEN THE SAMPLE SPECTRUM AND
AUTOCOVARIANCE FUNCTION ESTIMATE

Here, we derive the result (2.2.8):

N-1

I(f)=2[cg+2 ) ¢y cosafk) 0<f<
k=1

D=

which links the sample spectrum I(f) and the estimate ¢, of the autocovariance function.
Suppose that the least square estimates a, and b of the cosine and sine components, at

frequency f, in a series are combined according to d; = a, — ib;, where i = —y/—1; then

=N

> dyd; (A2.1.1)
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where d; is the complex conjugate of d ;. Then, using (2.2.3) and (2.2.4), we obtain

N

a(f) = % 2 z,[cosQRr 1) — i sinQ2x f1)]

=1

N
-2 Yz (A2.12)
N t=1
2 N
— N Z(zt _ Z)e—[QJTft

1

Substituting (A2.1.2) in (A2.1.1) yields

-
Il

N N
I1(f)= % Z Z(Z’ — 2)(th _ z)e—iZﬁf(t—ﬂ) (A2.1.3)

t=1 t'=1
Since

N-k

1 = -

= 2= D= 2)
=1

the transformation k = ¢ — ¢’ transforms (A2.1.3) into the following required result:

N-1
(=2 Y, ce Ik
k=—N+1
N-1
=2|c+2 ) cpcos2rfk) 0
k=1

IA
<~
IA
N[ =

EXERCISES

2.1. The following are temperature measurements z, made every minute on a chemical
reactor:

200,202, 208, 204,204,207, 207,204, 202, 199, 201, 198, 200,
202,203, 205,207,211, 204, 206, 203, 203, 201, 198, 200, 206,
207,206, 200, 203, 203, 200, 200, 195, 202,204.207, 206, 200

(a) Plot the time series.
(b) Plot z,, 4 versus z,.
(c) Plot z,,, versus z,.
After inspecting the graphs, do you think that the series is autocorrelated?

2.2. State whether or not a stationary stochastic process can have the following values of
autocorrelations:



2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

EXERCISES 45

(@) p, =0.80, p, =0.55, p, =0, fork > 2
(b) p; =0.80, p, =0.28, p, =0, fork > 2

Two stationary stochastic processes zy, and z,, have the following autocovariance
functions:

zip o 79=057r=02,y,=0 (=2

Calculate the autocovariance function of the process z3; = z;; + 2z,; and verify that
it is a valid stationary process.

Calculate ¢, ¢y, ¢y, ¢3, 1, I, 3 for the series given in Exercise 2.1. Make a graph of
re.k=0,1,2,3.

On the assumption that p; = 0 for j > 2, obtain the following:
(a) Approximate standard errors for r, r,, and r s> 2.
(b) The approximate correlation between r, and rs.

The annual sales of mink furs by a North American company during 1911-1950

are included as Series N in Part Five of this book. The series is also available at

http://pages.stat.wisc.edu/ reinsel/bjr-data/.

(a) Plot the time series using R. Calculate and plot the sample autocorrelation func-
tion of the series.

(b) Repeat the analysis in part (a) for the logarithm of the series. Do you see an
advantage in using the log transformation in this case?

Repeat the calculations in Exercise 2.6 for the annual sunspot series given as Series
E in Part Five of this book. Use a square root transformation of the data in part (b) in
Exercise 2.6. (Note: This series is also available for a slightly longer time period as
series sunspot.year in the datasets package of R).

Calculate and plot the theoretical autocorrelation function and the spectral density
function for the AR(1) process z, = 0.95z,_; + a,. (Hint: See the R code provided
for Figure 2.9). Based on the results, how would you expect a time series generated
from this model to fluctuate relative to its mean?

Calculate and plot the theoretical autocorrelation function and the spectral density
function for the AR(2) process z; + 0.35z,_; — 0.20z,_, = a;.

Simulate a time series of length N = 300 from the AR(2) model specified in Exercise

2.9 and plot the resulting series.

(a) Estimate and plot the autocorrelation function for the simulated series. Compare
the results with the theoretical autocorrelation function derived in Exercise 2.9.

(b) Repeat the calculations performed above for a series of length N = 70 generated
from the same process and compare the results with those for N = 200.

(¢) Do the estimated autocorrelation functions derived above show any similarity to
autocorrelation function of the chemical yield series shown in Figure 2.7. If so,
what would you conclude?
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2.11. Using the data of Exercise 2.1, calculate the periodogram for periods 36, 18, 12, 9,
36/5, and 6 and construct an analysis of variance table showing the mean squares
associated with these periods and the residual mean square.

2.12. A circular stationary stochastic process with period N is defined by z; = z,, y-

(a) Show that (see, e.g., Brockwell and Davis, 1991; Fuller, 1996; Jenkins and Watts,
1968) when N = 2n, the latent roots of the N X N autocorrelation matrix of z,
are

n—1
ik
=142 p cos(Z5) + K
k ;pl cos n Pn cos(rk)

k=1,2,..., N and the latent vectors corresponding to A, Ax_; (With 4, =
An_y) are

Z) = (cos(ﬂk),cos<2”—k>,...,cos(27rk)>
n

n
. k . (2rk .
£ ( (”—) (—> 2 k>
Nk sin " sin ” sin(2zk)

(b) Verify that as N tends to infinity, with k/N fixed, 4, tends to g(k/N)/2, where
g(f) is the spectral density function, showing that in the limit the latent roots of
the autocorrelation matrix trace out the spectral curve.
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LINEAR STATIONARY MODELS

In this chapter, we describe a general linear stochastic model that assumes that the time
series is generated by a linear aggregation of random shocks. For practical representation,
it is desirable to employ models that use parameters parsimoniously. Parsimony may
often be achieved by representation of the linear process in terms of a small number of
autoregressive—moving average (ARMA) terms. The properties of the resulting ARMA
models are discussed in preparation for their use in model building in subsequent chapters.

3.1 GENERAL LINEAR PROCESS

3.1.1 Two Equivalent Forms for the Linear Process

In Section 1.2.1, we discussed the representation of a stochastic process as the output from
a linear filter, whose input is white noise a,, that is,

Zy=a;+ Y, +yd_ +
o0
= a, + l//ja,_j (3.1.1)

j=1

where Z, = z, — p is the deviation of the process from some origin, or from its mean, if
the process is stationary. The general linear process (3.1.1) allows us to represent Z; as a
weighted sum of present and past values of the ‘‘white noise’’ process a,. Important early
references on the development of linear stochastic models include Yule (1927), Walker
(1931), Slutsky (1937), Wold (1938), Kendall (1945), Bartlett (1946), Quenouille (1952,
1957), Doob (1953), Grenander and Rosenblatt (1957), Hannan (1960), Robinson (1967),

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
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among others. The usefulness of these models is well-documented in subsequent literature.
The white noise process a, may be regarded as a series of shocks that drive the system.
It consists of a sequence of uncorrelated random variables with mean zero and constant
variance, that is,

Ela]=0 var[a;] = 02

Since the random variables a, are assumed uncorrelated, it follows that their autocovariance
function is

E[ ] 65 k=0 (3.1.2)
)/ = a.a = 1.
k t%t+k 0 k #0
Thus, the autocorrelation function of white noise has a particularly simple form
1 k=0
pr = (3.1.3)
0 k+#0

A fundamental result in the development of stationary processes is that of Wold (1938), who
established that any zero-mean purely nondeterministic stationary process Z, possesses a
linear representation as in (3.1.1) with Z;io 1//].2 < 00. The g, are uncorrelated with common

variance GZ but need not be independent. We will reserve the term linear processes for
processes Z; of the form of (3.1.1) in which the a, are independent random variables.

For Z, defined by (3.1.1) to represent a valid stationary process, it is necessary for
the coefficients y; to be absolutely summable, that is, for Z;io ly;| < co. Under suitable
conditions (see Koopmans, 1974, p. 254), Z, is also a weighted sum of past Z,’s and an
added shock a,, that is,

Zt = 7712,_1 + ﬂzzt_z + -+ a;

= zﬂjz,_j +a (3.1.4)
j=1

In this alternative form, the current deviation Z, from the level 4 may be thought of as being
“‘regressed’’ on past deviations Z,_;, Z,_,, ... of the process.

Relationships between the w Weights and the x Weights. The relationships between the
yw weights and the # weights may be obtained by using the previously defined backward
shift operator B, such that

Bz, =z,, andhence B’z, = Zj
Later, we will also need to use the forward shift operator F' = B!, such that
Fz,=z,, and Flz = Zytj

As an example of the use of the operator B, consider the following model

zZ,=a,—0a,_; =1 —-0B)a,
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in whichyy = —0, y; = 0 for j > 1. Expressing g, in terms of the Z,’s, we obtain
(1-0B)'z =q
Hence, for |0] < 1,
(1+6B+60*B>+6°B*> + --)z, = q,
and the deviation Z, expressed in terms of previous deviations, as in (3.1.4), is
Z,=—0%_, —0°%,_, —0°%Z,_3 — - +gq,

so that for this model, z; = —6/.
Using the backshift operator B, the model (3.1.1) can be written as

[se]
Z = (1 + ijf>a,
Jj-1

or
Z, = w(B)q, (3.1.5)
where
(o9 (]
v(B)=1+ y;B =Y w;B
j=1 j=0

with y = 1. As mentioned in Section 1.2.1, yw(B) is called the transfer function of the

linear filter relating Z, to a,. It can be regarded as the generating function of the y weights,

with B now treated simply as a variable whose jth power is the coefficient of ;.
Similarly, (3.1.4) may be written as

[s0]
<1 -y ﬂij> z =a
j=1

or
n(B)z, = a, (3.1.6)
Thus,
z(B)=1- anBj
j=1

is the generating function of the 7 weights. After operating on both sides of this expression
by w(B), we obtain

v(B)n(B)z, = y(B)a, = Z,
Hence, w(B)x(B) = 1, so that

z(B) =y~ '(B) (3.1.7)
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This relationship may be used to derive the = weights, knowing the y weights, and vice
versa.

3.1.2 Autocovariance Generating Function of a Linear Process

A basic data analysis tool for identifying models in Chapter 6 will be the autocorrelation
function. Therefore, it is important to know the autocorrelation function of a linear process.
It is shown in Appendix A3.1 that the autocovariance function of the linear process (3.1.1)
is given by

[Se]

V=02 DWW (3.1.8)
i=0

In particular, by setting k = 0, we find that its variance is

vn=0l=0c2) v’ (3.1.9)
=0

It follows that the stationarity condition of absolute summability of the coefficients y;,
27;0 ly;| < oo, implies that the series on the right of this equation converges, and hence
guarantees that the process will have a finite variance.

Another way of obtaining the autocovariances of a linear process is via the autocovari-
ance generating function

y(B)= ) yB* (3.1.10)
k=—c0

where y,, the variance of the process, is the coefficient of BO = 1, while 7k, the autocovari-
ance of lag k, is the coefficient of both B/ and B~/ = F/. It is shown in Appendix A3.1
that

7(B) = o,y(By(B™") = ooy (B (F) (3.1.11)
For example, suppose that Z, = a, — 0a,_; = (1 — 6 B)a;, so that y(B) = (1 — 6 B). Then,
y(B)=0c2(1-0B)(1—-6B")
=62 [-0B™" + (1 +6%) — 0B]
Comparing with (3.1.10), the autocovariances are

10 = (1 + 6%)5?

2
a

Y1 = —0o

In the development that follows, when treated as a variable in a generating function, B will
be able to take on complex values. In particular, it will often be necessary to consider the
different cases when |B| < 1, |B| = 1, or | B| > 1, that is, when the complex number B lies
inside, on, or outside the unit circle.
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3.1.3 Stationarity and Invertibility Conditions for a Linear Process

Stationarity. The convergence of the series (3.1.9) ensures that the process has a finite
variance. Also, we have seen in Section 2.1.3 that the autocovariances and autocorrelations
must satisfy a set of conditions to ensure stationarity. For a linear process (3.1.1), these
conditions are guaranteed by the single condition that Z;io ly;| < oo. This condition can
also be embodied in the condition that the series y(B), which is the generating function of
the y weights, must converge for | B| < 1, that is, on or within the unit circle. This result
is discussed in Appendix A3.1.

Spectrum of a Linear Stationary Process. Itisshownin Appendix A3.1 thatif we substitute

B =27/ wherei = V/ —1, in the autocovariance generating function (3.1.11), we obtain
one half of the power spectrum. Thus, the spectrum of a linear process is

p(f) = 202w (e 2 yy (™))

=2cc |y H?  0<f< % (3.1.12)
In fact, this is the well-known expression (e.g., Jenkins and Watts, 1968) that relates the
spectrum p(f) of the output from a linear system to the uniform spectrum 205 of a white

noise input by multiplying it with the squared gain G*(f) = |y (e~"2*/)|? of the system.

Invertibility. We have seen that the y weights of a linear process must satisfy the condition
that y(B) converges on or within the unit circle if the process is to be stationary. We now
consider a similar restriction applied to the 7 weights to ensure what is called invertibility.
This invertibility condition is independent of the stationarity condition and is also applicable
to the nonstationary linear models, which we introduce in Chapter 4.

To illustrate the basic idea of invertibility, consider again the special case

Z,=(1—-6B)q, (3.1.13)
Expressing the a,’s in terms of the present and past Z,’s, this model becomes
a,=(1-0B)7'z, = (1 + 0B+ 6*B* + - + 0K B*)(1 — ok*1 Bk+1)~1 3,

that is,

Z,=—0%_, —0%%,_5— - —0"Z,_, +a,— 0"a,_,_, (3.1.14)
If |6] < 1, on letting k tend to infinity, we obtain the infinite series
Z,=—0%_,—0°%,_,— - +aq, (3.1.15)

and the = weights of the model in the form of (3.1.4) are z; = —6/. Whatever the value of
0, Z, = (1 — 0B)a, defines a perfectly proper stationary process. However, if [6] > 1, the
current deviation Z; in (3.1.14) depends on Z,_;, Z,_,, ..., Z,_;, with weights that increase
as k increases. We avoid this situation by requiring that |#| < 1. We then say that the series

is invertible. We see that this condition is equivalent to Ejio |0/ = Z;io |7;| < o0, so
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that the series
a(B)=(1-0B)" =) ¢/B/
j=0

converges for all | B| < 1, that is, on or within the unit circle. The invertibility requirement
is needed to associate present events with past values in a sensible manner.
The general linear process (3.1.1) is invertible and can be written in the form

n(B)Z, = a;

if the weights m; are absolutely summable, that is, if Z;‘;o |7Tj| < o0, which implies that
the series z(B) converges on or within the unit circle.
Thus, to summarize, a linear process (3.1.1) is stationary if Z;io ly;| < oo and is

invertible if Z;io |7;| < o0, where 7(B) = v liB)=1- Z;’;l 7B,

3.1.4 Autoregressive and Moving Average Processes

The representations (3.1.1) and (3.1.4) of the general linear process would not be very
useful in practice if they contained an infinite number of parameters y; and z;. We now
describe a way to introduce parsimony and arrive at models that are representationally
useful for practical applications.

Autoregressive Processes. Consider first the special case of (3.1.4) in which only the first
p of the weights are nonzero. The model may be written as

Z, =15, +¢2zt—2+"'+¢p2t—p+at (3.1.16)

where we now use the symbols ¢, ¢,, ..., d)p for the finite set of weight parameters. The
resulting process is called an autoregressive process of order p, or more succinctly, an
AR(p) process. In particular, the AR(1) and AR(2) models

Zi=¢1%+aq
=¢1Z 1t Pzt q

are of considerable practical importance.
The AR(p) model can be written in the equivalent form

(1-¢B—¢,B> — - —¢,B")Z, =q,
or
$(B)z, = q, (3.1.17)
This implies that
- 1 -
5= Sogy = ¢ (Ba = (B,

Hence, the autoregressive process can be thought of as the output Z; from a linear filter
with transfer function ¢~!(B) = w(B) when the input is white noise a,.
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Moving Average Processes. Next consider the special case of (3.1.1), when only the first
q of the y weights are nonzero. The process may be written as

Zy=a - 0101 — 04,5 — - — 0,0, (3.1.18)

where we now use the symbols —6;, —0,, ..., —0, for the finite set of weight parameters.

This process is called a moving average process! of order ¢, which we often abbreviate as
MA(gq). The special cases of MA(1) and MA(2) models

Z,=a,—0,a,_,
=a,—61a,_; — 64,

are again particularly important in practice.
Using the backshift operator Ba; = a,_;, the MA(g) model can be written in the equiv-
alent form as

Z,=(1-6,B—0,B>— - —0,Bq,
or more succinctly as
Z, = 6(B)aq, (3.1.19)

Hence, the moving average process can be thought of as the output Z, from a linear filter
with transfer function 6(B) when the input is white noise a,.

Mixed Autoregressive—-Moving Average Processes. As discussed in Section 3.1.1, the
finite moving average process

Z,=at—91tz,_1 =(1—913)a, |01|<1
can also be written as an infinite autoregressive process
Z,=—0,%Z,_, —0?%,_,— - +a
t 141-1 1412 t

However, if the process really was MA(1), we would not obtain a parsimonious rep-
resentation using an autoregressive model. Conversely, an AR(1) process could not be
parsimoniously represented using a moving average model. In practice, to obtain parsimo-
nious parameterization, it is often useful to include both autoregressive and moving average
terms in the model. The resulting model

Zl = d)lzt—] + e+ d)pzt—p + at — 91“1—1 —_— e — Bqat—q
or
$(B)z; = 0(B)a, (3.1.20)

is called the mixed autoregressive—moving average process of order (p,q), which we
abbreviate as ARMA(p, q). For example, the ARMA(1, 1) process is

Zi=¢1Z+a,— 0610,

1 As we remarked in Chapter 1, the term ‘‘moving average’’ is somewhat misleading since the weights do not sum
to unity. However, this nomenclature is now well established and we will use it here.
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Now writing
Z, = ¢~ (B)¥(B)a,
0(B) 1-6,B—--—6,B1
T BT =g BB

we see that the mixed ARMA process can be thought of as the output Z; from a linear filter,
whose transfer function is the ratio of two polynomial operators 8(B) and ¢(B), when the
input is white noise a,. Furthermore, since Z; = z, — u, where y = E[z,] is the mean of the
process in the stationary case, the general ARMA(p, ¢g) process can also be written in terms
of the original process z, as

¢(B)z, = 0y + 0(B)a, (3.1.21)
where the constant term 6, is
Op ==y =y ==y (3.1.22)

In the next sections, we discuss some important characteristics of autoregressive, mov-
ing average, and mixed models. In particular, we study their variances, autocorrelation
functions, spectra, and the stationarity and invertibility conditions that must be imposed on
their parameters.

3.2 AUTOREGRESSIVE PROCESSES

3.2.1 Stationarity Conditions for Autoregressive Processes

The parameters ¢y, ¢, ... , ¢, of an AR(p) process
Zi=¢iZ_+ -+ qpr,_p +a,
or
(1-¢B—-—¢,B"zZ, = p(B)Z, = q,

must satisfy certain conditions for the process to be stationary. For illustration, the AR(1)
process

(1-¢,B)z, =a,

may be written as
(o]
~ -1 j
z=(1-¢;B"'a, =) dla,_;
j=0
provided that the infinite series on the right converges in an appropriate sense. Hence,

y(B)=(1-¢B)" =) ¢/ B (3.2.1)
Jj=0
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We have seen in Section 3.1.3 that for stationarity, y(B) must converge for |B| < 1, or
equivalently that Z;‘;O |1/ < oo. This implies that the parameter ¢»; of an AR(1) process
must satisfy the condition |¢;| < 1 to ensure stationarity. Since the root of 1 — B =0
is B= d)l_l, this condition is equivalent to saying that the root of 1 — ¢; B = 0 must lie
outside the unit circle.

The general AR(p) process ¢p(B)Z; = a, can be written as

[e+]
z=¢"'(Bla, = y(Bla, = ) wja,_,
Jj=0

provided that the right-side expression is convergent. Using the factorization
$(B) =(1 -G B)(1 -G,B)--(1-G,B)

where Gl_l, e Gp_1 are the roots of ¢(B) = 0, and expanding ' (B) in partial fractions
yields

- -1 S K;
z,=¢ (B, = ; T—GB"
Hence, if w(B) = ¢~'(B) is to be a convergent series for | B| < 1, that is, if the weights
y; = Zle K,»Gf are to be absolutely summable so that the AR(p) process is stationary,
we must have |G;| < 1, fori =1, ..., p. Equivalently, the roots of the ¢(B) = 0 must lie
outside the unit circle. The roots of the equation ¢(B) = 0 may be referred to as the zeros
of the polynomial ¢(B). Thus, for stationarity, the zeros of ¢(B) must lie outside the unit
circle. A similar argument may be applied when the zeros of ¢(B) are not all distinct. The
equation ¢(B) = 0 is called the characteristic equation for the process.
Note also that the roots of ¢(B) =1 — ¢ B — --- — ¢, B = 0 are the reciprocals to the
roots of the polynomial equation in m,

mP_¢1mP_1 — e _¢p =0

Hence, the stationarity condition that all roots of ¢(B) = 0 must lie outside the unit circle,
that is, be greater than 1 in absolute value, is equivalent to the condition that all roots of
mP — (i)lmf”‘1 — = d)p = 0 must lie inside the unit circle, that is, be less than 1 in absolute
value.

Since the series 7(B) = ¢(B) =1 — ¢ B — --- — ¢, B is finite, no restrictions are re-
quired on the parameters of an autoregressive process to ensure invertibility.

w Weights. Since y(B) = 1/¢(B) sothat ¢(B)w(B) = 1, itreadily follows that the weights
w; for the AR(p) process satisfy the difference equation

V=i it O, Jj>0

with y =1 and y; = 0 for j <0, from which the weights y; can easily be computed
recursively in terms of the ¢;. In fact, as seen from the principles of linear difference
equations as discussed in Appendix A4.1, the fact that the weights y; satisfy the difference
equation discussed earlier implies that they have an explicit representation in the form of

v, = le K,-G{ for the case of distinct roots.
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3.2.2 Autocorrelation Function and Spectrum of Autoregressive Processes

Autocorrelation Function. An important recurrence relation for the autocorrelation func-
tion of a stationary autoregressive process is found by multiplying throughout in

L=¢Z o+ ,5 ,ta
by Z,_,, for k > 0, to obtain
Z L =05z D2 g B ot D2 42+ 2 (3.2.2)
Now, on taking expected values, we obtain the difference equation
Y=o+ oot by, k>0 (3.2.3)

Note that the expectation E[Z,_,a,] is zero for k > 0, since Z,_; can only involve the shocks
a; up to time 7 — k, which are uncorrelated with a,. On dividing throughout in (3.2.3) by
70, we see that the autocorrelation function satisfies the same form of difference equation

Pk = 1Pkt + Poppa + -+ dppp, k>0 (3.2.4)

Note that this is analogous to the difference equation satisfied by the process Z, itself, but
without the random shock input a,.
Now suppose that this equation is written as

¢(B)p, =0

where ¢(B) =1 — ¢ B — -+ — ¢, BP and B now operates on k and not ¢. Then, writing

)4
oB)=[]a-6B
i=1

the general solution for p, in (3.2.4) (see, e.g., Appendix A4.1) is

P = MG+ 4Gl + - + 4,6 (3.2.5)
where G7', G}, ..., G, " are the roots of the characteristic equation
$(B)=1—¢,B— B> — - ~¢,B” =0
or equivalently, Gy, Gy, ..., G, are the roots of m” — pymP~l — o — ¢, =0.

For stationarity, we require that |G;| < 1. Thus, two situations can arise in practice if
we assume that the roots G; are distinct.

1. A root G is real, in which case a term A,-Gfc in (3.2.5) decays to zero geometrically
as k increases. We often refer to this as a damped exponential.

2. A pair of roots G; and G are complex conjugates, in which case they contribute a
term

D* sinzfk+ F)

to the autocorrelation function (3.2.5), which follows a damped sine wave, with dam-
ping factor D = |G;| = |G,| and frequency f such that 2z f = cos™! [IRe(G))|/D].
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In general, the autocorrelation function of a stationary autoregressive process will
consist of a mixture of damped exponentials and damped sine waves.

Autoregressive Parameters in Terms of the Autocorrelations: Yule—Walker Equations. 1f

we substitute k = 1,2, ..., pin (3.2.4), we obtain a set of linear equations for ¢, ¢,, ..., ¢p
in terms of py, py, ... s Pps that is,
p1=¢; +dop + P,

= + +o o,
?2 (iblpl ¢2 ' (»bp.pp 2 (326)

Pp=P1Pp_1 +P2ppr + -+,

These are the well-known Yule--Walker equations (Yule, 1927; Walker, 1931). We obtain
Yule-Walker estimates of the parameters by replacing the theoretical autocorrelations p;
by the estimated autocorrelations r;. Note that, if we write

o 1 L pir py o pp

o) P2 pr L pp ppn
o= p=|| P=|. . . 7

by Pp Ppi Pp—2 Pp—3 - 1

the solution of (3.2.6) for the parameters ¢ in terms of the autocorrelations may be written
as

¢ = P;lpp (3.2.7)

Variance. When k = 0, the contribution from the term E[Z,_,a,], on taking expectations
in (3.2.2),is E [atz] = GZ, since the only part of Z, that will be correlated with g, is the most
recent shock, a,. Hence, when k = 0,

Yo=®17_1+bara+ e+ iy, + o,

On substituting y_; = y, and writing y;, = y,py., the variance y, = ag may be written as

2 Ug
o2 = (3.2.8)
L=ip1 —brpy — - — bpp,

Spectrum. For the AR(p) process, y(B) = ¢! (B) and
¢(B) =1~ B~ B> — - — ¢, B
Therefore, using (3.1.12), the spectrum of an autoregressive process is

262

_ a 1
p(f) = 11— pre 27T — gy nl — oo — o e~2p7] |2 0<f<3 (3.2.9)

We now discuss two particularly important autoregressive processes, those of first and
second order.
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3.2.3 The First-Order Autoregressive Process

The first-order autoregressive process is

Z=¢i1%+aq
=a,+¢1a,_) +ra,_o+ (3.2.10)

where it has been shown in Section 3.2.1 that ¢; must satisfy the condition —1 < ¢p; < 1
for the process to be stationary.

Autocorrelation Function. Using (3.2.4), the autocorrelation function satisfies the first-
order difference equation

Pr = d)lpk—l k>0 (3211)
which, with py = 1, has the solution

p=¢) k=0 (3.2.12)

Since —1 < ¢ < 1, the autocorrelation function decays exponentially to zero when ¢, is
positive but decays exponentially to zero and oscillates in sign when ¢; is negative. In
particular, we note that

P = (3.2.13)

Variance. Using (3.2.8), the variance of the process is

2
O'2 = Ga
2 1=-p1¢y
62
a (3.2.14)
1-¢7

on substituting p; = ¢,

Spectrum. Finally, using (3.2.9), the spectrum is
20'2
|1 _ ¢1e—i275f|2
20'3

1+ ¢2 — 20, cos2xf)

p(f) =

(3.2.15)

N

Example. Figure 3.1 shows realizations from two AR(1) processes with ¢; = 0.8 and
¢, = —0.8, and the corresponding theoretical autocorrelation functions and spectra. Thus,
when the parameter has the large positive value ¢; = 0.8, neighboring values in the series
are similar and the series exhibits marked trends. This is reflected in the autocorrelation
function, which slowly decays to zero, and in the spectrum, which is dominated by low
frequencies. When the parameter has the large negative value ¢p; = —0.8, the series tends
to oscillate rapidly, and this is reflected in the autocorrelation function, which alternates
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AR(1) process with ¢ = 0.8 AR(1) process with ¢ =-0.8
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FIGURE 3.1 Realizations from two first-order autoregressive processes and their corresponding
theoretical autocorrelation functions and spectral density functions.

in sign as it decays to zero, and in the spectrum, which is dominated by high frequencies.
Figure 3.1 was generated in R and can be reproduced as follows:

>library (TSA)

>set.seed (12345)

>par (mfrow=c (3,2))

>plot (arima.sim(list (order=c(1,0,0),ar = 0.8), n=100),ylab=
expression(z[t]) ,main=expression("AR (1) process with "*phi*"=0.8"))
>plot (arima.sim(list (order=c(1,0,0),ar = -0.8), n=100), ylab=
expression(z[t]) ,main=expression("AR (1) process with "*phi*"=-0.8"))
>plot (ARMAacf (ar=0.8,ma=0,15) [-1],type="h",ylab="ACF",xlab="1lag")
>abline (h=0)

>plot (ARMAacf (ar=-0.8,ma=0,15) [-1],type="h",ylab="ACF",xlab="1lag")
>abline (h=0)

>ARMAspec (model=1ist (ar=0.8),freg=seqg(0,0.5,0.001),plot=TRUE)
>ARMAspec (model=1ist (ar=-0.8) , freg=seq(0,0.5,0.001) ,plot=TRUE)

3.2.4 Second-Order Autoregressive Process

Stationarity Condition. The second-order autoregressive process can be written as

2, = (]512,_1 + ¢22t—2 + a, (3216)
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FIGURE 3.2 Typical autocorrelation and partial autocorrelation functions p, and ¢,, for various
stationary AR(2) models (Source: Stralkowski, 1968).

For stationarity, the roots of
$(B)=1-¢B—¢,B*=0 (3.2.17)

must lie outside the unit circle, which implies that the parameters ¢»; and ¢, must lie in the
triangular region

¢+ <1
¢y — ¢ <1 (3.2.18)
-1<¢, <1

as shown in Figure 3.2.

Autocorrelation Function. Using (3.2.4), the autocorrelation function satisfies the second-
order difference equation

Pk =P1pr—1 t bapy k>0 (3.2.19)

with starting values py = 1 and p; = ¢; /(1 — ¢,). From (3.2.5), the general solution to this
difference equation is

pr = A GF + A,Gh
G- GGy — Gy(1 - GGS

= (3.2.20)
(G, — Go)(1 +G,G,)

where Gl_1 and G, I are the roots of the characteristic equation ¢(B) = 0. When the
roots are real, the autocorrelation function consists of a mixture of damped exponentials.
This occurs when d)% + 4¢, > 0 and corresponds to regions 1 and 2, which lie above the
parabolic boundary in Figure 3.2. Specifically, in region 1, the autocorrelation function
remains positive as it damps out, corresponding to a positive dominant root in (3.2.20). In
region 2, the autocorrelation function alternates in sign as it damps out, corresponding to a
negative dominant root.
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If the roots G| and G, are complex ((j)% +4¢, < 0), a second-order autoregressive
process displays pseudoperiodic behavior. This behavior is reflected in the autocorrelation
function, for on substituting G, = De?"/0 and G, = De™?%/0 (0 < f, < %) in (3.2.20),
we obtain

D sin(2x fok + F)
P =

3.2.21
sin F ( )

We refer to this as a damped sine wave with damping factor D, frequency f, and phase
F. These factors are related to the process parameters as follows:

D =G| =v—o, (3.2.22)

where the positive square root is taken,

cosr fy) = oG _ (3.2.23)
D PAVaR()
1 + D?

tan F = lJ_r—Dz tan(27 £y) (3.2.24)

Again referring to Figure 3.2, the autocorrelation function is a damped sine wave in
regions 3 and 4, the phase angle F being less than 90° in region 4 and lying between 90°
and 180° in region 3. This means that the autocorrelation function starts with a positive
value throughout region 4 but always switches sign from lag O to lag 1 in region 3.

Yule-Walker Equations. For the AR(2) model, the Yule-Walker equations become

=¢ +
P1 = b1+ drpy (3.2.25)
P2 =¢1p1 + &,
which, when solved for ¢ and ¢,, give
b, = /’1(1 - p2)
1- p?
2 (3.2.26)
" P2 =P
2 1 pf

P
P1 1 —,
2
Py =y + i (3.2.27)
1-¢,

which provide the starting values for the recursions in (3.2.19). Expressions (3.2.20) and
(3.2.21) are useful for explaining the different patterns for p; that may arise in practice.
However, for computing the autocorrelations of an AR(2) process, it is simplest to make
direct use of the recursions implied by (3.2.19).

Using the stationarity condition (3.2.18) and the expressions for p; and p, in (3.2.27),
it can be seen that the admissible values of p; and p,, for a stationary AR(2) process, must
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FIGURE 3.3 Admissible regions for (a) ¢,, ¢, and (b) p,, p,, for a stationary AR(2) process.

lie in the region

-1<p; <1
-1<p, <1

1
P% <3+

The admissible region for the parameters ¢ and ¢, is shown in Figure 3.3(a), while Figure
3.3(b) shows the corresponding admissible region for p; and p,.

Variance. From (3.2.8), the variance of the AR(2) process is

2
2 %,

o, = ——
1 =pi¢ —prhs
l-¢,

Lty (1 )2 —

(3.2.28)
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Spectrum. From (3.2.9), the spectrum is

3 20'2
p(f) = 11— o2/ — pyeidnl 2
265 1
_ 0<f<?
1+ 2 + 62 — 26, (1 — ) cos2 f) — 2b, cos(dr f) ?
(3.2.29)

The spectrum also reflects the pseudoperiodic behavior that the series exhibits when the
roots of the characteristic equation are complex. For illustration, Figure 3.4(a) shows 70
values of a series generated from the AR(2) model

Zl = 0.7521_1 - 0’5021—2 + a,

Figure 3.4(b) shows the corresponding theoretical autocorrelation function. The roots of
the characteristic equation

1-0.75B+0.5B%>=0

are complex, so that the pseudoperiodic behavior observed in the series is to be expected.
We clearly see this behavior reflected in the theoretical autocorrelation function of Figure
3.4(b), the average apparent period being about 6. The damping factor D and frequency

(a) Simulated AR(2) process

o
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FIGURE 3.4 (a) Time series generated from a second-order autoregressive process Z, = 0.75 z,_, —
0.50%,_, + a,, along with (b) the theoretical autocorrelation function, and (c) the spectral density
function for the same process.
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fo, from (3.2.22) and (3.2.23), are

_ cos1(0.5303)

D=41050=071  f, > 61—2
T .

Thus, the fundamental period of the autocorrelation function is 6.2. In addition, the theoret-
ical spectral density function in Figure 3.4(c) shows that a large proportion of the variance
of the series is accounted for by frequencies in the neighborhood of f,.

Figure 3.4 was generated in R using the following commands:

library (TSA)

ar.acf=ARMAacf (model=1list (ar=c(0.75,-0.5)))

ar.spec=ARMAspec (model=1list (ar=c(0.75,-0.5), freg=seq(0,0.5,0.0005)))

layout (matrix(c(1,1,2,3),2,2,byrow=TRUE) )

plot (arima.sim(list (order=c(2,0,0),ar=c(0.75,-0.5)), n=70), ylab=
expression(z[t]),xlab="Time",main=("Simulated AR (2) process"))

plot (ar.acf, main="b")

> plot (ar.spec, main="c")

vV V. V V V

\

3.2.5 Partial Autocorrelation Function

In practice, we typically do not know the order of the autoregressive process initially,
and the order has to be specified from the data. The problem is analogous to deciding on
the number of independent variables to be included in a multiple regression. The partial
autocorrelation function is a tool that exploits the fact that, whereas an AR(p) process has
an autocorrelation function that is infinite in extent, the partial autocorrelations are zero
beyond lag p.

The partial autocorrelations can be described in terms of p nonzero functions of the
autocorrelations. Denote by ¢, ; the jth coefficient in an autoregressive representation of
order k, so that ¢ is the last coefficient. From (3.2.4), the ¢, satisfy the set of equations

pj=bapjr+ o bpgnpjprt + bupjoe T =12,k (3.2.30)

leading to the Yule—Walker equations (3.2.6), which may be written as

L py oy - prcr || Pra 2
P Lo pka || Pr2 _|P2 (3.231)
Pr—1 Pi—2 Pr—3 = 1 || Prk Pk

or

P b, = py (3.2.32)



AUTOREGRESSIVE PROCESSES 65

Solving these equations for k = 1,2, 3, ..., successively, we obtain
11 =P
L p
2
Py p| PP
yy = 21 = ‘ (3.2.33)
L p 1- /’%
1
L p p
pr 1
Py P11 P3
¢33 =
Lo m
pr1op
PP 1

In general, for ¢, the determinant in the numerator has the same elements as that in the
denominator, but with the last column replaced by p,. The quantity ¢,,, regarded as a
function of the lag k, is called the partial autocorrelation function.

For an AR(p) process, the partial autocorrelations ¢, will be nonzero for k < p and
zero for k > p. In other words, the partial autocorrelation function of the AR(p) process has
a cutoff after lag p. For the AR(2) process, partial autocorrelation functions ¢, are shown
in each of the four regions of Figure 3.2. As a numerical example, the partial autocorre-
lations of the AR(2) process Z, = 0.75%,_; — 0.50Z,_, + a, considered in Figure 3.4 are
b11=p1 =05, by = (py = p1)/(1 = p}) = =0.5 = ¢bp, and ¢y = 0, for all k > 2.

The quantity ¢, is called the partial autocorrelation of the process {z,} atlag k, since it
equals the partial correlation between the variables z; and z,_; adjusted for the intermediate
variables z,_;, z,_,, ..., z,_, (or the correlation between z, and z,_, not accounted for
by z,_1,2,_5,...,2;_;41)- Now, it is easy to establish from least squares theory that the
values ¢y, Pra, ... , Prr. which are the solutions to (3.2.31), are the regression coefficients
in the linear regression of z; on z,_y, ..., z,_, that is, they are the values of coefficients
by, ..., by, which minimize E[(z, — by — Zf; ) b,z,_;)*]. Hence, assuming for convenience
that the process {z,} has mean zero, the best linear predictor, in the mean squared error
sense, of z, basedon z,_;, 2,5, ..., Z_j41 IS

2 = po112-1 F Prc12Zi0 + 0 F Droi ko1 Zi—k

whether the process is an AR or not. Similarly, the best linear predictor of z,_, based on
the (future) values z,_y, z;_5, ..., Z;_p41 1S

2k = P11 Zkr1 T Prc12Zimkp2 T F B k- 121

Then, the lag k partial autocorrelation of {z,}, ¢, can be defined as the correlation between
the residuals from these two regressions on z,_y, ..., z;,_y4 1, that s,

¢kk = COl‘I‘[Zt - ZAI, Zl—k - ﬁl‘—k] (3.2.34)
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TABLE 3.1 Estimated Partial Autocorrelation Function for the Chemical Yield Data in
Figure 2.1

k Pu k Puk k Pk
1 -0.39 6 -0.12 11 0.14
2 0.18 7 0.02 12 -0.01
3 0.00 8 0.00 13 0.09
4 -0.04 9 —0.06 14 0.17
5 -0.07 10 0.00 15 0.00
As examples, we find that ¢p;; = corr[z;, z,_;] = p;, while

¢y =corrlz, — p12_1, 249 — P1Z4-1]
2= 2171 + 0770 Py — ]
[0+ piro = 207212 1= p}

which agrees with the results in (3.2.33) derived from the Yule—Walker equations. Higher
order partial autocorrelations ¢, defined through (3.2.34) can similarly be shown to be
the solution to the appropriate set of Yule—Walker equations.

3.2.6 Estimation of the Partial Autocorrelation Function

The partial autocorrelations may be estimated by fitting successively autoregressive models
of orders 1,2, 3, ... by least squares and picking out the estimates q§1 1s Q'A’zz’ (1'333, ... of the
last coefficient fitted at each stage. Alternatively, if the values of the parameters are not
too close to the nonstationary boundaries, approximate Yule—Walker estimates of the
successive autoregressive models may be employed. The estimated partial autocorrelations
can then be obtained by substituting estimates r; for the theoretical autocorrelations in
(3.2.30), to yield

Py = drarioi+ Gt o+ Gty okt + bk =12k (3.2.35)

and solving the resultant equations for k = 1,2, .... This can be done using a simple recur-
sive method due to Levinson (1947) and Durbin (1960), which we describe in Appendix
A3.2. However, these estimates obtained from (3.2.35) become very sensitive to rounding
errors and should not be used if the values of the parameters are close to the nonstationary
boundaries.

3.2.7 Standard Errors of Partial Autocorrelation Estimates

It was shown by Quenouille (1949) that on the hypothesis that the process is autoregressive
of order p, the estimated partial autocorrelations of order p + 1, and higher, are approxi-
mately independently and normally distributed with zero mean. Also, if # is the number of
observations used in fitting,

var[¢h ] = k>p+1

S =
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Thus, the standard error (SE) of the estimated partial autocorrelation ¢3kk is

SE[dyi] = 61yl = k>p+1 (3.2.36)

Sk

3.2.8 Calculations in R

The estimation of the partial autocorrelation function is conveniently performed in R.
For example, the command pacf(Yield) in the stats package gives the estimated partial
autocorrelations shown in Table 3.1 for the chemical yield data plotted in Figure 2.1.
An alternative is to use the command acf2() in the R package astsa. This command
has the advantage that it produces plots of the autocorrelation and partial autocorrelation
functions in a single graph. This allows easy comparison of the two functions, which will
be useful for specifying a model for the time series. Figure 3.5 shows a graph of the 15 first
autocorrelations and partial autocorrelations for the chemical yield data produced using
this routine. The patterns of the two functions resemble those of an AR(1) process with
a negative value of ¢, or possibly an AR(2) process with a dominant negative root (see
region 2 of Figure 3.2). Also shown in Figure 3.5 by dashed lines are the two SE limits
calculated on the assumption that the process is white noise. Since ¢, is the second biggest
partial autocorrelation, the possibility that the process is AR(2) should be kept in mind.
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FIGURE 3.5 Estimated autocorrelation and partial autocorrelation functions for the chemical yield
data in Series F.
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The use of the autocorrelation and partial autocorrelation functions for model specification
will be discussed more fully in Chapter 6. Figure 3.5 was generated using the following R
commands:

library (astsa)
seriegF=read.table("SeriesF.txt, header=TRUE)
Yield=ts (seriesF)

acf2(Yield, 15)

vV V. V V

3.3 MOVING AVERAGE PROCESSES

3.3.1 Invertibility Conditions for Moving Average Processes

We now derive the conditions that the parameters 6, 6,, ..., Qq must satisfy to ensure the
invertibility of the MA(q) process:

Zy=a,— 010,y — - —0,a,_,
=(1-6,B----0,Bq,
= 0(B)aq, 3.3.1)

We have already seen in Section 3.1.3 that the first-order moving average process
z, =(1-6,B)q,

is invertible if |0;| < 1; that is,
a(B)=(1-0,B)" =) 0/B/
j=0

converges on or within the unit circle. However, this is equivalent to saying that the root,
B = 07" of (1 - 0,B) = 0, lies outside the unit circle.

The invertibility condition for higher order MA processes may be obtained by writing
Z, = 6(B)a, as

a, = 07'(B)z,
Hence, if
q
oB) =[] - H,B)
i=1
where H N .., Hq_1 are the roots of 8(B) = 0, then, on expanding in partial fractions, we
obtain

q M.
=0 =3 (75)

i=1

which converges, or equivalently, the weights x; = —Z?zl MiH[j are absolutely

summable, if |H;| <1, for i =1,2,...,q. It follows that the invertibility condition for
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an MA(q) process is that the roots H;” I of the characteristic equation
0(B)=1-6,B— 92B2 — = Qqu =0 (3.3.2)

lie outside the unit circle. From the relation 6(B)z(B) = 1, it follows that the weights x;
satisfy the difference equation

m; =071+ 0 o+ -+ 0,7, j>0
with the convention that 7, = —1 and T = 0 for j < 0, from which the weights 7 ; can
easily be computed recursively in terms of the ;.
Note that since the series
w(B)=0(B)=1-6,B—0,B* — - —,B"

is finite, no restrictions are needed on the parameters of the moving average process to
ensure stationarity.

3.3.2 Autocorrelation Function and Spectrum of Moving Average Processes

Autocorrelation Function. The autocovariance function of an MA(gq) process is

vi = El(a; = 010,y — - =00, )@, — 010,41 — - = 0,0, )]
= —0,Ela_ ]+ 6,61 Ela;__ 1+ - +6,_40,Ela_ ]

since the g, are uncorrelated, and y, = 0 for k > g. Hence, the variance of the process is
vo=(+06]+0;+ - +0))0, (3.3.3)
and
(—0k + 010,41 + 020,40+ + 60,4002 k=12, .4
k= { 0 k> q
Thus, the autocorrelation function is

—9k + 010k+1 + A + Hq_qu

o = 1+67+ - +62 (3.3.4)
0 k>gq

We see that the autocorrelation function of an MA(q) process is zero, beyond the order g
of the process. In other words, the autocorrelation function of a moving average process
has a cutoff after lag q.

Moving Average Parameters in Terms of Autocorrelations. If p, p,, ..., pg are known,
the g equations (3.3.4) may be solved for the parameters 0, 60,, ..., Hq. However, unlike
the Yule—Walker equations (3.2.6) for an autoregressive process, the equations (3.3.4)
are nonlinear. Hence, except in the simple case where ¢ = 1, which is discussed shortly,
these equations have to be solved iteratively. Estimates of the moving average parameters
may be obtained by substituting estimates r, for p, and solving the resulting equations.
However, unlike the autoregressive estimates obtained from the Yule—Walker equations,
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the resulting moving average estimates may not have high statistical efficiency. Neverthe-
less, they can provide useful rough estimates at the model identification stage discussed
in Chapter 6. Furthermore, they provide useful starting values for an iterative parameter
estimation procedure, discussed in Chapter 7, which converges to the efficient maximum
likelihood estimates.

Spectrum. For the MA(q) process,
w(B)=0(B)=1-6,B—0,B*— - —0,B
Therefore, using (3.1.12), the spectrum of an MA(q) process is
p(f)=2011 = 01e* — )™ — o — g PP 0< [ <
(3.3.5)

We now discuss in greater detail the moving average processes of first and second order,
which are of considerable practical importance.

3.3.3 First-Order Moving Average Process
We have already introduced the MA(1) process
Z =a,— 0610,

=(1-60,B)a,

and we have seen that ; must lie in the range —1 < 6, < 1 for the process to be invertible.
The process is, of course, stationary for all values of ;.

Autocorrelation Function. 1t is easy to see that the variance of this process equals
2y 2
Yo =1+ 60,
The autocorrelation function is
-0,

2
P = 1+6; (3.3.6)
0 k>1

from which it is noted that p; must satisfy |p,| = [6;]/(1 + 9%) < % Also, for k =1, we
find that

P07 +0,+p =0 (3.3.7)

with roots for 6, equal to 6; = (=1 + /1 — 4p%)/(2p1). Since the product of the roots is

unity, we see that if 8, is a solution, so is 6’1‘1. Furthermore, if 8, satisfies the invertibility
condition |6;| < 1, the other root 01‘1 will be greater than unity and will not satisfy the
condition. For example, if p; = —0.4, the two solutionsare §; = 0.5and §; = 2.0. However,
only the solution 8, = 0.5 corresponds to an invertible model.
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Spectrum. Using (3.3.5), the spectrum of the MA(1) process is
P =201 = 01~

=202[1467 —20,cos2zf)] 0<f< (3.3.8)
In general, when 6, is negative, p, is positive, and the spectrum is dominated by low
frequencies. Conversely, when 6, is positive, p; is negative, and the spectrum is dominated
by high frequencies.

Partial Autocorrelation Function. Using (3.2.31) with p; = -6, /(1 + 0%) and p;, = 0, for
k > 1, we obtain after some algebraic manipulation

5 —0%(1 - 6%)
kk = T oaD

1— Hf(k+1)
Thus, |¢,,| < 16,|¥, and the partial autocorrelation function is dominated by a damped
exponential. If p; is positive, so that 6; is negative, the partial autocorrelations alternate
in sign. If, however, p; is negative, so that 8, is positive, the partial autocorrelations are
negative. From (3.1.15), it has been seen that the weights 7 for the MA(1) process are

7= —0{, and hence since these are coefficients in the infinite autoregressive form of
the process, it makes sense that the partial autocorrelation function ¢, for the MA(1)
essentially mimics the exponential decay feature of the weights ;.

We now note a duality between the AR(1) and the MA(1) processes. Thus, whereas the
autocorrelation function of an MA(1) process has a cutoff after lag 1, the autocorrelation
function of an AR(1) process tails off exponentially. Conversely, whereas the partial
autocorrelation function of an MA(1) process tails off and is dominated by a damped
exponential, the partial autocorrelation function of an AR(1) process has a cutoff after
lag 1. It turns out that a corresponding approximate duality of this kind occurs in general in
the autocorrelation and partial autocorrelation functions between AR and MA processes.

3.3.4 Second-Order Moving Average Process

Invertibility Conditions. The second-order moving average process is defined by

Z,=a,— 6,0, —ba,_,
=(1-6,B-6,B%q,

and is stationary for all values of 8, and 6,. However, it is invertible only if the roots of the
characteristic equation

1-6,B—6,B>=0 (3.3.9)
lie outside the unit circle, that is,
0,+0, <1
0,—0,<1 (3.3.10)

-1<6,<1
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These are parallel to conditions (3.2.18) required for the stationarity of an AR(2)
process.

Autocorrelation Function. Using (3.3.3), the variance of the process is
Yo =0 (1467 +063)

and using (3.3.4), the autocorrelation function is

p_—91(1—92)
1= 2 2
l+t91+02

% (3.3.11)
p:— o
2 1+62+67

pk:() k>?2

Thus, the autocorrelation function has a cutoff after lag 2.
It follows from (3.3.10) and (3.3.11) that the first two autocorrelations of an invertible
MA(2) process must lie within the area bounded by segments of the curves

py+pp=-0.5

pT =4py(1=2py)

The invertibility region (3.3.10) for the parameters is shown in Figure 3.6(a) and the
corresponding admissible region (3.3.12) for the autocorrelations in Figure 3.6(b). The latter
shows whether a given pair of autocorrelations p; and p, is consistent with the assumption
that the model is an MA(2) process. If they are consistent, the values of the parameters
0, and 0, can be obtained by solving the nonlinear equations (3.3.11). To facilitate this
calculation, Chart C in the Collection of Tables and Charts in Part Five has been prepared
so that the values of 8, and 6, can be read off directly, given p; and p,.

Spectrum. Using (3.3.5), the spectrum of the MA(2) process is

p(f) = 265“ — Hle_iz’ff — gze—i4ﬂf|2
= 20'2[1 + 6’% + 95 —260,(1 — 6,)cos2z f) — 26, cos(4x )]

0< f< % (3.3.13)

and is the reciprocal of the spectrum (3.2.29) of a second-order autoregressive process,
apart from the constant 20'2.

Partial Autocorrelation Function. The exact expression for the partial autocorrelation
function of an MA(2) process is complicated, but it is dominated by the sum of two
exponentials if the roots of the characteristic equation 1 — @, B — 6, B> = 0 are real, and
by a damped sine wave if the roots are complex. Thus, it behaves like the autocorrelation
function of an AR(2) process. The autocorrelation functions and partial autocorrelation
functions for various values of the parameters within the invertible region are shown in
Figure 3.7. Comparison of Figure 3.7 with Figure 3.2, which shows the corresponding
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P\ = dpoft = 2py)
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FIGURE 3.6 Admissible regions for (a) 8,,0, and (b) p,, p, for an invertible MA(2) process.

Complex roots

I~ <~ =
_Q*FA-‘— Sy ’yL &2
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FIGURE 3.7 Autocorrelation and partial autocorrelation functions p, and ¢,, for various MA(2)
models.
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autocorrelations and partial autocorrelations for an AR(2) process, illustrates the duality
between the MA(2) and the AR(2) processes.

Example. For illustration, consider the second-order moving average model
Z,=a,—08a,_;+0.5a,_,

The variance of the process is y; = 0'5(1 +(0.8)2 +(=0.5)%) = 1.890’5, and from (3.3.11)

the theoretical autocorrelations are

-0.8(1-(=0.5))  —1.20 _ _ —(=0.5)

_ - — —0.635 - —0.265
1+(0.82+ (=052  1.89 P2= 7789

P

and p, =0, for k > 2. The theoretical partial autocorrelations are obtained by solving
(3.2.31) successively; the first several values are ¢ = p; = —0.635, ¢y, = (p, — p%)/(l -
p%) = —0.232, ¢p33 = 0.105, ¢4y = 0.191, and ¢p55 = 0.102.

Figure 3.8 shows the autocorrelation and partial autocorrelation functions up to
15 lags for this example. Note the partial autocorrelations ¢, display an approximate
damped sinusoidal behavior with moderate rate of damping, similar to the behavior
depicted for region 4 in Figure 3.7. This is consistent with the fact that the roots of

0(B) = 0 are complex with modulus (damping factor) D = \/ﬁ ~ 0.71 and frequency
fo =cos71(0.5657)/(2x) = 1/6.48 in this example.

The autocorrelation and partial autocorrelation functions shown in Figure 3.8 were
generated using the function ARMAacf() in the R stats package. The commands needed
to reproduce the graph are shown below. Note that the moving average parameters in the
ARMAacf() function are again entered with their signs reversed since R uses positive signs
in defining the moving average operator, rather than the negative signs used here.

(a): ACF
©
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Lag
(b): PACF
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eI T '
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FIGURE 3.8 (a) Autocorrelation function and (b) partial autocorrelation function for the MA(2)
model Z, = a, — 0.8a,_, + 0.5q,_,.
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ACF=ARMAacf (ar=0,ma=c(-0.8,+0.5),lag.max=15, pacf=FALSE) [-1]
PACF=ARMAacf (ar=0,ma=c(-0.8,+0.5) ,lag.max=15,pacf=TRUE)

par (mfrow=c(2,1))

plot (ACF,type='h’,ylim=c(-0.8,0.6) ,xlab='lag’,main=' (a): ACF’)
abline (h=0)

plot (PACF, type="h',ylim=c(-0.8,0.6) ,xlab='"1lag’,main=' (b) : PACF')
abline (h=0)

ACF % Retrieves the autocorrelation coefficients

PACF % Retrieves the partial autocorrelation coefficients

3.3.5 Duality Between Autoregressive and Moving Average Processes

The previous sections have examined the properties of autoregressive and moving average
processes and discussed the duality between these processes. As illustrated in Table 3.2 at
the end of this chapter, this duality has the following consequences:

1. In a stationary autoregressive process of order p, a, can be represented as a finite

34

weighted sum of previous Z’s, or Z; as an infinite weighted sum
s _ g1
Z,=¢  (B)a,
of previous a’s. Conversely, an invertible moving average process of order g, Z,, can

be represented as a finite weighted sum of previous a’s, or g, as an infinite weighted
sum

0~'(B)z, = q,

of previous Z’s.

. The finite MA process has an autocorrelation function that is zero beyond a certain

point, but since it is equivalent to an infinite AR process, its partial autocorrelation
function is infinite in extent and is dominated by damped exponentials and/or damped
sine waves. Conversely, the AR process has a partial autocorrelation function that is
zero beyond a certain point, but its autocorrelation function is infinite in extent and
consists of a mixture of damped exponentials and/or damped sine waves.

. For an autoregressive process of finite order p, the parameters are not required to

satisfy any conditions to ensure invertibility. However, for stationarity, the roots of
¢(B) = 0 must lie outside the unit circle. Conversely, the parameters of the MA
process are not required to satisfy any conditions to ensure stationarity. However, for
invertibility, the roots of §(B) = 0 must lie outside the unit circle.

. The spectrum of a moving average process has an inverse relationship to the spectrum

of the corresponding autoregressive process.

MIXED AUTOREGRESSIVE-MOVING AVERAGE PROCESSES

3.4.1 Stationarity and Invertibility Properties

We have noted earlier that to achieve parsimony it may be necessary to include both
autoregressive and moving average terms. Thus, we may need to employ the mixed ARMA
model

ZZ‘ = (b]Zt_l + -+ ¢p2,_p + a[ - 01(11_1 — e — an,_q (341)
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that is,
(1-¢B—¢,B* - —¢,B")z,=(1-0,B—0,B>— - — 0, B%a,
or
$(B)Z, = 6(B)a,

where ¢(B) and 6(B) are polynomial operators in B of degrees p and q.
We subsequently refer to this process as an ARMA(p, q) process. It may be thought of
in two ways:

1. As a pth-order autoregressive process
P(B)Z, = ¢,

with e, following the gth-order moving average process e, = 6(B)a,.
2. As a gth-order moving average process

Z, = 0(B)b,
with b, following the pth-order autoregressive process ¢(B)b, = a, so that

$(B)z; = 6(B)p(B)b, = 6(B)a,

It is obvious that moving average terms on the right of (3.4.1) will not affect the earlier
arguments, which establish conditions for stationarity of an autoregressive process. Thus,
¢(B)zZ, = 0(B)a, will define a stationary process provided that the characteristic equation
¢(B) = 0 has all its roots outside the unit circle. Similarly, the roots of (B) = 0 must lie
outside the unit circle if the process is to be invertible.

Thus, the stationary and invertible ARMA(p, q) process (3.4.1) has both the infinite
moving average representation

[00]
Z, =y(B)a, = Z Wid,_j
Jj=0

where w(B) = ¢! (B)8(B), and the infinite autoregressive representation
n(B)zZ, =%, — Z Tz =a
j=1

where 7(B) = ~1(B)¢(B), with both the w; weights and the z; weights being absolutely
summable. The weights w; are determined from the relation ¢(B)y (B) = 6(B) to satisfy

Vi =i+ oyt by, — 6 Jj>0

with yy =1, y; = 0 for j <0, and 6; = 0 for j > g, while from the relation 8(B)x(B) =
¢(B) the z; are determined to satisfy

np =01+ Oyt Oy gt J>0
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with the 7o = —1, z; = 0 for j < 0, and ¢p; = 0 for j > p. From these relations, the y; and
7; weights can readily be computed recursively in terms of the ¢; and §; coefficients.

3.4.2 Autocorrelation Function and Spectrum of Mixed Processes

Autocorrelation Function. The autocorrelation function of the mixed process may be
derived by a method similar to that used for autoregressive processes in Section 3.2.2.
On multiplying throughout in (3.4.1) by Z,_, and taking expectations, we see that the
autocovariance function satisfies the difference equation

Yk = ¢1yk—1 +oeet ¢pyk—p + yza(k) - elyza(k -1—- - GqYZu(k -q)

where y_,(k) is the cross-covariance function between z and a and is defined by y,,(k) =
E[Z,_,a,]. Since z,_, depends only on shocks that have occurred up to time ¢ — k through
the infinite moving average representation Z,_, = w(B)a,_;, = Z;’;O W;a,_k_;, it follows

that
0 k>0
Vzalk) = )

w0, k=<0
Hence, the preceding equation for y, may be expressed as
Ve =P1ricr + o+ Dprip — 2O + Oy + -+ 0,0, 4) (3.4.2)
with the convention that §, = —1. We see that this implies
Yk = Qrli—1 + PoVia+ -+ Dpriy k>qg+1
and hence
Pk =101 + Pobr 2+ Dppiy k2g+1 (3:4.3)
or
¢(B)p, =0 k>q+1

Thus, for the ARMAC(p, g) process, there will be g autocorrelations py, ..., p, whose values
depend directly on the choice of the ¢ moving average parameters ;, as well as on the
p autoregressive parameters ¢;. Also, the p values p,_,,, ..., p, provide the necessary
starting values for the difference equation ¢(B)p; = 0, where k > g + 1, which then entirely
determines the autocorrelations at higher lags. If ¢ — p < 0, the whole autocorrelation

function p s for j =0,1,2,..., will consist of a mixture of damped exponentials and/or
damped sine waves, whose nature is dictated by (the roots of) the polynomial ¢(B) and the
starting values. If, however, g — p > 0, there will be ¢ — p + 1 initial values p, py, ..., p,_»

which do not follow this general pattern. These facts are useful in identifying mixed series.

Variance. When k = 0, we have

o=+t dyr,+ ‘72(1 =01y = = 0w, (3.4.4)
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which has to be solved along with the p equations (3.4.2) for k =1,2,... p to obtain
}/(),7/1,---,7/1;-

Spectrum. Using (3.1.12), the spectrum of the mixed ARMA(p, q) process is

o) = 202 20

T | p(e=i2xf)|2
’ 2 |1—Hle—i27rf_..._gqe—i2q7rf|2 . 1 s
N < < ~ . .
o, |1 — ¢1e—f2”f e — ¢pe—i2pﬂf|2 <f=< 3 ( )

Partial Autocorrelation Function. The mixed process ¢(B)zZ, = 0(B)a, can be written as
a, = 0"\ (B)$p(B)z,

where 6~!(B) is an infinite series in B. Hence, the partial autocorrelation function of a
mixed process is infinite in extent. It behaves eventually like the partial autocorrelation
function of a pure moving average process, being dominated by a mixture of damped
exponentials and/or damped sine waves, depending on the order of the moving average and
the values of the parameters it contains.

3.4.3 First Order Autoregressive First-Order Moving Average Process

A mixed ARMA process of considerable practical importance is the ARMA(1, 1) process
Z, =1z = a,— 014, (3.4.6)
that is,
(1-¢1B)z, =(1—-6,B)q,

We now derive some of its more important properties.

Stationarity and Invertibility Conditions. First, we note that the process is stationary if
—1 < ¢; < 1, and invertible if —1 < 6; < 1. Hence, the admissible parameter space is the
square shown in Figure 3.9(a). In addition, from the relations y; = ¢ yy — 0 = ¢ — 04

and y; = ¢y;_; for j > 1, we find that the y; weights are given by y; = (¢| — 01)¢{_1,

Jj > 1, and similarly it is easily seen that T = (¢ — 91)9{_1, j > 1, for the stationary and
invertible ARMAC(1, 1) process.

Autocorrelation Function. From (3.4.2) and (3.4.4) we obtain

Yo=®171 + 62(1 - 01y1)
Y =d1v0— 910'[,2
Yk = P1Yk-1 k=2
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FIGURE 3.9 Admissible regions for (a) ¢,,60, and (b) p,,p, for a stationary and invertible
ARMAC(1, 1) process.

with y; = ¢; — 6;. Hence, solving the first two equations for y, and y,, the autocovariance
function of the process is

_ 1+67 —2¢,6,

=T pe %
) ¢! —¢191)(¢;1 —91)65 (3.4.7)
1—¢?

Yk = P1Yi—1 k22

The last equation gives p;, = ¢p;_;, k > 2, so that p; = p1¢’1‘_1, k > 1. Thus, the auto-
correlation function decays exponentially from the starting value p;, which depends on 6,
and ¢, .2 This exponential decay is smooth if ¢, is positive and alternates if ¢; is negative.
Furthermore, the sign of p; is determined by the sign of (¢p; — 6;) and dictates from which
side of zero the exponential decay takes place.

2By contrast, the autocorrelation function for the AR(1) process decays exponentially from the starting value
po =1
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FIGURE 3.10 Autocorrelation and partial autocorrelation functions p, and ¢,, for various
ARMAC(1, 1) models.

The first two autocorrelations may be expressed in terms of the parameters of the
ARMAC(1,1) process, as follows:

_ (I —¢10)(y —6y)
146% -2¢,6,
P2 =19

Py (3.4.8)

Using these expressions and the stationarity and invertibility conditions, it may be shown
that p; and p, must lie in the region

[p2] < 1pi]
pr>p12py+1)  p<0 (3.4.9)

pr>p2p—=1)  p>0

Figure 3.9(b) shows the admissible space for p; and p,; that is, it indicates which combi-
nations of p; and p, are possible for a mixed (1, 1) stationary, invertible process.

Partial Autocorrelation Function. The partial autocorrelation function of the mixed
ARMAC(1, 1) process consists of a single initial value ¢;; = p;. Thereafter, it behaves
like the partial autocorrelation function of a pure MA(1) process and is dominated by a
damped exponential. Thus, as shown in Figure 3.10, when 6, is positive, it is dominated
by a smoothly damped exponential that decays from a value of p;, with sign determined by
the sign of (¢p; — 6,). Similarly, when 6, is negative, it is dominated by an exponential that
oscillates as it decays from a value of p;, with sign determined by the sign of (¢p; — 6,).
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FIGURE 3.11 Theoretical autocorrelation and partial autocorrelation functions of an ARMA(1,1)
process with ¢ =0.8 and 6 = —0.6.

Numerical Example. For numerical illustration, consider the ARMA(I, 1) process,
(1-0.8B)z, = (1 +0.6B)q,

so that ¢ = 0.8 and § = —0.6. Further assuming 0'3 =1, we find from (3.4.7) and (3.4.8)
that the variance of Z, is y, = 6.444, and p; = 0.893. Also, the autocorrelation function
satisfies p; = 0.8p;_, j > 2, so that p; = 0.893(0.8)/~!, for j > 2.

The autocorrelation and partial autocorrelation functions are shown in Figure 3.11.
The exponential decay in the autocorrelation function is clearly evident from the graph.
The partial autocorrelation function also exhibits an exponentially decaying pattern that
oscillates in sign due to the negative value of 6. The figure was generated in R using the
commands included below. Notice again that the parameter €, although negative in this
example, is entered as + 0.6 since R defines the MA operator 8(B) as (1 + 6 B) rather that
(1 — 6B) as done in this text.

ACF=ARMAacf (ar=0.8,ma=0.6,20) [-1]
PACF=ARMAacf (ar=0.8,ma=0.6,20,pacf=TRUE)
win.graph (width=8,height=4)

par (mfrow=c(1,2))

plot (ACF, type="h",xlab="1ag") ;abline (h=0)
plot (PACF, type="h",xlab="1ag") ;abline (h=0)

V V.V V V V

3.4.4 Summary

Figure 3.12 brings together the admissible regions for the parameters and for the auto-
correlations py, p, for AR(2), MA(2), and ARMAC(1, 1) processes, which are restricted to
being both stationary and invertible. Table 3.2 summarizes the properties of mixed ARMA
processes and brings together all the important results for autoregressive, moving average,
and mixed processes, which will be needed in Chapter 6 to identify models for observed
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FIGURE 3.12 Admissible regions for the parameters and p,,p, for AR(2), MA(2), and
ARMAC(1, 1) processes that are restricted to being both stationary and invertible.

time series. In the next chapter, we extend the mixed ARMA model to produce models that

can describe nonstationary behavior of the kind that is frequently met in practice.

APPENDIX A3.1 AUTOCOVARIANCES, AUTOCOVARIANCE
GENERATING FUNCTION, AND STATIONARITY CONDITIONS FOR A
GENERAL LINEAR PROCESS

Autocovariances. The autocovariance at lag k of the linear process

(o)
zZ, = 2 via,;
=

with y = 1 is clearly

Yk = ElZZ14]

0 o
=E Z 2 YiWna—jGrik—n
j=0 h=0

o0
= agzijHk (A3.1.1)
Jj=0
using the property (3.1.2) for the autocovariance function of white noise.

Autocovariance Generating Function. The result (A3.1.1) may be substituted in the au-
tocovariance generating function

y(B)= ) 1B* (A3.1.2)
k=—00



TABLE 3.2 Summary of Properties of Autoregressive, Moving Average, and Mixed ARMA Processes

Autoregressive Process

Moving Average Processes

Mixed Processes

Model in terms of previous Z's
Model in terms of previous a’s
7 weights

w weights

Stationarity condition

Invertibility condition

Autocorrelation function

Partial autocorrelation function

BB, = q,

z, = ¢ '(B)g,

Finite series

Infinite series

Roots of ¢p(B) = 0 lie
outside the unit circle
Always invertible

Infinite (damped
exponentials and/or
damped sine waves)
Tails off

Finite

Cuts off after lag p

0-'(B)z, = q,

Z, = 0(B)a,
Infinite series
Finite series
Always stationary

Roots of §(B) = 0 lie outside
the unit circle
Finite

Cuts off after lag ¢

Infinite (dominated by
damped exponentials and/or
damped sine waves)

Tails off

0 (BYB(B)Z, = a,

z = ¢! (B)I(B)a,
Infinite series

Infinite series

Roots of ¢(B) = 0 lie out-
side the unit circle

Roots of 6(B) = 0 lie out-
side the unit circle

Infinite (damped exponen-
tials and/or damped sine
waves after first g — plags)
Tails off

Infinite (dominated by
damped exponentials
and/or damped sine waves
after first p — g lags)

Tails off

83
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to give

oo oo
— 2 k
y(By=02 Y Y wy, B
k=—o00 j=0

(e [oe]
DI

=0 k==

since y, = 0 for A < 0. Writing j + k = h, so that k = h — j, we have

Y; WhBh_j

||M8

h=0

(o)
y(B)=02 )
J=0

[se] (o]

= 62 Z l[/hBh Z l[/jB_]
h=0 j=0
that is,

v(B) = o w(Byw(B™") = ooy (B (F) (A3.1.3)

which is the result (3.1.11) quoted in the text.

Stationarity Conditions. If we substitute B = ¢~>*/ and F = B~! = 27/ in the auto-
covariance generating function (A3.1.2), we obtain half the power spectrum. Hence, the
power spectrum of a linear process is

p(f) = 262y (e > Yy (/)

=20, ly(e P 0<f<3 (A3.1.4)
It follows that the variance of the process is
1/2 1/2 ' '
o= / p(f)df =202 / w(e 2 Ny () df (A3.1.5)
0 0

Now if the integral (A3.1.5) is to converge, it may be shown (Grenander and Rosenblatt,
1957) that the infinite series w(B) must converge for B on or within the unit circle.
More directly, for. t.he linear process Z, = Z;io Wiaijs the condition Z;’;O ly;| < oo of
absolute summability of the coefficients v implies (see Brockwell and Davis, 1991;
Fulle.r, 199§) that the sum Z;io w;a,_; converges with probability 1 and hence represents
a valid stationary process.

APPENDIX A3.2 RECURSIVE METHOD FOR CALCULATING ESTIMATES
OF AUTOREGRESSIVE PARAMETERS

We now show how Yule—Walker estimates for the parameters of an AR(p + 1) model may
be obtained from the estimates for an AR(p) model fitted to the same time series. This
recursive method of calculation, which is due to Levinson (1947) and Durbin (1960), can
be used to approximate the partial autocorrelation function, as described in Section 3.2.6.
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To illustrate the recursion, consider equations (3.2.35). Yule-Walker estimates are
obtained for k = 2, 3 from

ry = <l321f1 + ¢322
1= by + dopry (A3.2.1)

and

r3 = @311y + G3pr) + P33
ry =317y + 3y + Pasry (A3.2.2)
ry =31+ dpry + P33rp

The coefficients <,1331 and ¢332 may be expressed in terms of 4333 using the last two equations
of (A3.2.2). The solution may be written in matrix form as

(<1331> R (’2 - ‘{’33”) (A3.2.3)
o3 ry — $s3r;

where

Now, (A3.2.3) may be written as

(£31 3 |:r2:| A 3 [rl]
. =R - R A3.2.4
[¢32] 20 PuRy r ( )

Using the fact that (A3.2.1) may also be written as
4321 —R-! [’ 2]
$n >
it follows that (A3.2.4) becomes
¢331 _ 4321 é 4322
A =1 — P33 | A
3 b ®a1

‘1531 = <l§21 - <7333<1322
b32 = b — 3o (A3.2.5)

that is,

To complete the calculation of ¢, and ¢5,, we need an expression for ¢b;3. On substituting
(A3.2.5) in the first of the equations (A3.2.2), we obtain

r3 = ¢y — $yory

u e (A3.2.6)
L=y 11 = Poory

¢33 =
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Thus,
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the partial autocorrelation (,1'333 is first calculated from <],'321 and ¢322, using (A3.2.6),

and then the other two coefficients, (]531 and ¢332, may be obtained from (A3.2.5).
In general, the recursive formulas are

Gpi1j = bp; = bprrpriPpprio;  J= 12,00 (A3.2.7)

_VY? 4
Fpr1 Zj:1¢pjrp+l—j

1=30_ dyr

Bpi1ps1 = (A3.2.8)

EXERCISES

31

3.2

3.3.

34.

3.5.

3.6.

3.7.

Write the following models in B notation:

1) z,-05%,_,=aq,

2) z,=a,—13a,_; +0.4a,_,

3) 2, -052,_1=a;,—13a;_1 +04a,_,

For each of the models of Exercise 3.1 and also for the following models, state
whether it is (a) stationary or (b) invertible.
4 z,—15%,_,+062,_, =aqa,

S z,-%_,=a,-05q,_,

) z,—%,_,=a,—13a,_; +03q,_,

For each of the models in Exercise 3.1, obtain:
(a) The first four y; weights

(b) The first four = j weights

(¢) The autocovariance generating function
(d) The first four autocorrelations p ;

(e) The variance of Z; assuming that O'Z =1.0

Calculate the first fifteen y; weights for each of the three models in Exercise 3.2
using the function ARMAtoMA in R. See help(ARMAtoMA) for details.

Classify each of the models (1) to (4) in Exercises 3.1 and 3.2 as a member of the
class of ARMA(p, g) processes.

(a) Write down the Yule—Walker equations for models (1) and (4) considered in
Exercises 3.1 and 3.2.

(b) Solve these equations to obtain p; and p, for the two models.
(¢) Obtain the partial autocorrelation function for the two models.

Consider the first-order autoregressive model z, = 6, + ¢z,_; + a,, where the con-
stant 6, is a function of the mean of the series.

(a) Derive the autocovariances y;, = E([z, — u][z,_;, — p]) for this series.

(b) Calculate and plot the autocorrelation function for ¢ = 0.8 using the R command
ARMAacf(); see help(ARMAacf) for details.
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3.9.

3.10.

3.11.

3.12.

EXERCISES 87

(¢) Calculate and plot the partial autocorrelation function for the same process.
Consider the mixed ARMAC(1,1) model z, — ¢pz,_; = a, — 6a,_,, where =1 < ¢p < 1
and E(z;) is assumed to be zero for convenience.

(a) Derive the autocovariances y; = E([z, — ullz;_; — p]) for this series.

(b) Calculate and plot the autocorrelation function for ¢ = 0.9 and 6 = —0.3 using
R (see Exercise 3.7).

(¢) Calculate and plot the partial autocorrelation function for the same process.

For the AR(2) process Z, — 1.0Z,_; + 0.52,_, = a,:

(a) Calculate p,.

(b) Using py and p; as starting values and the difference equation form for the
autocorrelation function, calculate the values of p; for k =2, ..., 15.

(c) Use the plotted autocorrelation function to estimate the period and damping factor
of the autocorrelation function.

(d) Check the values in (c) by direct calculation using the parameter values and the
related roots Gl_1 and G2_1 of p(B)=1-1.0B+ 0.5B2.

(a) Plot the power spectrum g( f) of the autoregressive process of Exercise 3.9, and
show that it has a peak at a period that is close to the period in the autocorrelation
function.

(b) Graphically, or otherwise, estimate the proportion of the variance of the series in
the frequency band between f = 0.0 and f = 0.2 cycle per data interval.

(a) Why is it important to factorize the autoregressive and moving average operators
after fitting a model to an observed series?

(b) It was shown by Jenkins (1975) that the number of mink skins z, traded annually
between 1848 and 1909 in North Canada is adequately represented by the AR(4)
model

(1 -0.82B + 0.22B + 0.28BY[In(z,) — u] = q,

Factorize the autoregressive operator and explain what the factors reveal about the
autocorrelation function and the underlying nature of the mink series. The data for
the period 1850-1911 are listed as Series N in Part Five of this book. Note that the
roots of ¢(B) =0 can be calculated using the R commond polyroot(), where the
autoregressive parameters are entered with their signs reversed; see help(polyroot)
for details.

Calculate and plot the theoretical autocorrelation function and partial autocorrelation
function for the AR(4) model specified in Exercise 3.11(b).
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Many empirical time series (e.g., stock price series) behave as though they had no fixed
mean. Even so, they exhibit homogeneity in the sense that apart from local level, or perhaps
local level and trend, one part of the series behaves much like any other part. Models that
describe such homogeneous nonstationary behavior can be obtained by assuming that some
suitable difference of the process is stationary. In this chapter, we examine the properties of
the important class of models for which the dth difference of the series is a stationary mixed
autoregressive—moving average process. These models are called autoregressive integrated
moving average (ARIMA) processes.

4.1 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PROCESSES

4.1.1 Nonstationary First-Order Autoregressive Process

Figure 4.1 shows four time series that have arisen in forecasting and control problems.
All of them exhibit behavior suggestive of nonstationarity. Series A, C, and D repre-
sent ‘‘uncontrolled’’ outputs (concentration, temperature, and viscosity, respectively) from
three different chemical processes. These series were collected to show the effect on these
outputs of uncontrolled and unmeasured disturbances such as variations in feedstock and
ambient temperature. The temperature Series C was obtained by temporarily disconnecting
the controllers on the pilot plant involved and recording the subsequent temperature fluc-
tuations. Both A and D were collected on full-scale processes, where it was necessary to
maintain some output quality characteristic as close as possible to a fixed level. To achieve
this control, another variable had been manipulated to approximately cancel out variations
in the output. However, the effect of these manipulations on the output was accurately

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
© 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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Series A “Uncontrolled’’ concentration, two hourly readings:
chemical process
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Series C “Uncontrolled’’ temperature, readings every minute :
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FIGURE 4.1 Typical time series arising in forecasting and control problems.

known in each case, so that it was possible to compensate numerically for the control ac-
tion. That s, it was possible to calculate very nearly the values of the series that would have
been obtained if no corrective action had been taken. It is these compensated values that are
recorded here and referred to as the ‘“uncontrolled’’ series. Series B consists of the daily
IBM stock prices during a period beginning in May 1961. A complete list of all the series
is given in the collection of time series at the end of this book. In Figure 4.1, 100 successive
observations have been plotted from each series and the points joined by straight lines.
There are an unlimited number of ways in which a process can be nonstationary.
However, the types of economic and industrial series that we wish to analyze frequently
exhibit a particular kind of homogeneous nonstationary behavior that can be represented
by a stochastic model, which is a modified form of the autoregressive—moving average
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FIGURE 4.2 Realization of the nonstationary first-order autoregressive process z, = 2Z,_, + a,
with 62 = 1.

(ARMA) model. In Chapter 3, we considered the mixed ARMA model
$(B)z, = 0(B)a, 4.1.1)

with ¢(B) and 6(B) polynomial operators in B, of degree p and ¢, respectively. To ensure
stationarity, the roots of ¢»(B) = 0 must lie outside the unit circle. A natural way of obtaining
nonstationary processes is to relax this restriction.

To gain some insight into the possibilities, consider the first-order autoregressive model,

(1-¢B)Z, = a, (4.1.2)

which is stationary for |¢| < 1. Let us study the behavior of this process for ¢ =2, a
value outside the stationary range. Figure 4.2 shows a series Z, generated by the model
Z, =2Z,_1 + a, using a set of unit random normal deviates a, and setting Z, = 0.7. It is
seen that after a short induction period, the series ‘‘breaks loose’” and essentially follows
an exponential curve, with the generating a,’s playing almost no further part. The behavior
of series generated by processes of higher order, which violate the stationarity condition, is
similar. Furthermore, this behavior is essentially the same whether or not moving average
terms are introduced on the right of the model.

4.1.2 General Model for a Nonstationary Process Exhibiting Homogeneity

Autoregressive Integrated Moving Average Model. Although nonstationary models of the
kind described above are of value to represent explosive or evolutionary behavior (such
as bacterial growth), the applications that we describe in this book are not of this type. So
far, we have seen that an ARMA process is stationary if the roots of ¢(B) = 0 lie outside
the unit circle, and exhibits explosive nonstationary behavior if the roots lie inside the unit
circle. The only case remaining is that the roots of ¢(B) = 0 lie on the unit circle. It turns
out that the resulting models are of great value in representing homogeneous nonstationary
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time series. In particular, nonseasonal series are often well represented by models in which
one or more of these roots are unity and these are considered in the present chapter'.
Let us consider the model

@(B)z, = 0(B)a, (4.1.3)

where @(B) is a nonstationary autoregressive operator such that d of the roots of p(B) = 0
are unity and the remainder lie outside the unit circle. Then the model can be written as

@(B)z, = p(B)(1 — B)'z, = 0(B)a, (4.1.4)

where ¢(B) is a stationary autoregressive operator. Since VdZ, = de,, for d > 1, where
V =1 — B s the differencing operator, we can write the model as

$(B)V9z, = 6(B)a, (4.1.5)
Equivalently, the process is defined by the two equations
¢(B)w, = 0(B)a, (4.1.6)
and
w, = Viz (4.1.7)

Thus, we see that the model corresponds to assuming that the dth difference of the series
can be represented by a stationary, invertible ARMA process. An alternative way of looking
at the process for d > 1 results from inverting (4.1.7) to give

z, = S%, (4.1.8)

where S is the infinite summation operator defined by

t
Sx;= ) xp=(1+B+B*+-)x

h=—00

=(1-B)'x,=Vx,
Thus,
S=1-B)'=v!
The operator S? is similarly defined as
S2x, =85x,+Sx;_ 1 +Sx;0+ -

t i
= Z D xp=(0+2B+3B+ ),

i=—00 h=—00

and so on for higher order d. Equation (4.1.8) implies that the process (4.1.5) can be
obtained by summing (or ‘‘integrating’’) the stationary process (4.1.6) d times. Therefore,
we call the process (4.1.5) an autoregressive integrated moving average (ARIMA) process.

In Chapter 9, we consider models, capable of representing seasonality of period s, for which the characteristic
equation has roots lying on the unit circle that are the sth roots of unity.
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The ARIMA models for nonstationary time series, which were also considered earlier by
Yaglom (1955), are of fundamental importance for forecasting and control as discussed
by Box and Jenkins (1962, 1963, 1965, 1968a, 1968b, 1969) and Box et al. (1967a).
Nonstationary processes were also discussed by Zadeh and Ragazzini (1950), Kalman
(1960), and Kalman and Bucy (1961). An earlier procedure for time series analysis that
employed differencing was the variate difference method (see Tintner (1940) and Rao and
Tintner (1963)). However, the motivation, methods, and objectives of this procedure were
quite different from those discussed here.

Technically, the infinite summation operator .S = (1 — B)~! in (4.1.8) cannot actually
be used in defining the nonstationary ARIMA processes, since the infinite sums involved
will not be convergent. Instead, we can consider the finite summation operator .S, for any
positive integer m, given by

1 - B"

S,=(1+B+B*+. +B" )= —

Similarly, the finite double summation operator can be defined as

m—1m—1
S@ = B =(1+2B+3B*+ - +mB"™")
j=0 i=j
_1—B"—mB"™(1-B)
B (1-B)?

since (1 —B)S,(,,2 ) = S,, —mB™, and so on. Then the relation between an integrated
ARMA process z, with d = 1, for example, and the corresponding stationary ARMA
process w; = (1 — B)z,, in terms of values back to some earlier time origin k < ¢, can be
expressed as

Sk _ 1
Z = 1_Bt—kw’_ 1 — Btk

(W + Wy + -+ Wiy )

so that z, = w, + w;_{ + -+ + wy 41 + z; can be thought of as the sum of a finite num-
ber of terms from the stationary process w plus an initializing value of the process z
at time k. Hence, in the formal definition of the stochastic properties of a nonstationary
ARIMA process as generated in (4.1.3), it would typically be necessary to specify initializ-
ing conditions for the process at some time point k in the finite (but possibly remote) past.
However, these initial condition specifications will have little effect on most of the im-
portant characteristics of the process, and such specifications will for the most part not be
emphasized in this book.

As mentioned in Chapter 1, the model (4.1.5) is equivalent to representing the process z,
as the output from a linear filter (unless d = 0, this is an unstable linear filter), whose input
is white noise a,. Alternatively, we can regard it as a device for transforming the highly
dependent, and possibly nonstationary process z,, to a sequence of uncorrelated random
variables a,, that is, for transforming the process to white noise.

If in (4.1.5), the autoregressive operator ¢(B) is of order p, the dth difference is taken,
and the moving average operator (B) is of order g, we say that we have an ARIMA model
of order (p, d, q), or simply an ARIMA(p, d, q) process.
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Two Interpretations of the ARIMA Model. We now show that the ARIMA model is an
intuitively reasonable model for many time series that occur in practice. First, we note that
the local behavior of a stationary time series is heavily dependent on the level of Z,. This
is to be contrasted with the behavior of series such as those in Figure 4.1, where the local
behavior of the series appears to be independent of its level.

If we are to use models for which the behavior of the process is independent of its level,
we must choose the autoregressive operator @(B) such that

@(B)(z, + ¢) = p(B)Z,
where c is any constant. Thus ¢(B) must be of the form
@(B) = ¢(B)(1 — B) = ¢ (B)V
Therefore, a class of processes having the desired property will be of the form
¢ (B)w, = 0(B)a,

where w, = VZ, = Vz,. Required homogeneity excludes the possibility that w, should
increase explosively. This means that either ¢,(B) is a stationary autoregressive operator
or ¢;(B) = ¢,(B)(1 — B), so that ¢,(B)w, = 0(B)a,, where now w; = szt. In the latter
case, the same argument can be applied to the second difference, and so on.

Eventually, we arrive at the conclusion that for the representation of time series that
are nonstationary but nevertheless exhibit homogeneity, the operator on the left of (4.1.3)
should be of the form ¢(B)V?, where ¢(B) is a stationary autoregressive operator. Thus,
we are led back to the model (4.1.5).

To approach the model from a somewhat different viewpoint, consider the situation
where d = 01n (4.1.4), so that ¢(B)Z, = 8(B)a,. The requirement that the zeros of ¢(B) lie
outside the unit circle would ensure not only that the process Z; was stationary with mean
zero, but also that Vz,, sz,, V3z,, ... were each stationary with mean zero. Figure 4.3(a)
shows one kind of nonstationary series we would like to represent. This series is homoge-
neous except in level, in that except for a vertical translation, one part of it looks much the
same as another. We can represent such behavior by retaining the requirement that each of
the differences be stationary with zero mean, but letting the level ‘‘go free.”” We do this by
using the model

¢(B)Vz, = 0(B)a;

Figure 4.3(b) shows a second kind of nonstationarity or fairly common occurrence. The
series has neither a fixed level nor a fixed slope, but its behavior is homogeneous if we
allow for differences in these characteristics. We can represent such behavior by the model

$(B)V?z, = 0(B)a,

which ensures stationarity and zero mean for all differences after the first and second but
allows the level and the slope to ‘‘go free.”’
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FIGURE 4.3 Two kinds of homogeneous nonstationary behavior. (a) A series showing nonsta-
tionarity in level such as can be represented by the model ¢(B)Vz, = 0(B)a,. (b) A series showing
nonstationarity in level and in slope such as can be represented by the model ¢(B)V?z, = 6(B)a,.

4.1.3 General Form of the ARIMA Model

For reasons to be given below, it is sometimes useful to consider a slight extension of the
ARIMA model in (4.1.5), by adding a constant term 6, yielding the more general form

@(B)z, = p(B)V?z, = 0, + 0(B)a, (4.1.9)
where
$(B)=1—¢ B~ B> — - — ¢,B
0(B)=1-6,B—0,B>— - —0,B"

In what follows:

1. ¢(B) will be called the autoregressive operator; it is assumed to be stationary, that
is, the roots of ¢p(B) = 0 lie outside the unit circle.

2. @(B) = ¢(B)V? will be called the generalized autoregressive operator; it is a nonsta-
tionary operator with d of the roots of ¢(B) = 0 equal to unity, that is, d unit roots.

3. 0(B) will be called the moving average operator; it is assumed to be invertible, that
is, the roots of 8(B) = 0 lie outside the unit circle.

When d = 0, this model represents a stationary process. The requirements of stationarity
and invertibility apply independently, and, in general, the operators ¢»( B) and 6(B) will not
be of the same order. Examples of the stationarity regions for the simple cases of p = 1,2
and the identical invertibility regions for ¢ = 1, 2 were given in Chapter 3.
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Stochastic and Deterministic Trends. When the constant term 6, is omitted, the model
(4.1.9)is capable of representing series that have stochastic trends, as typified, for example,
by random changes in the level and slope of the series. In general, however, we may wish
to include a deterministic function of time f(¢) in the model. In particular, automatic
allowance for a deterministic polynomial trend, of degree d, can be made by permitting 6
to be nonzero. For example, when d = 1, we may use the model with 6 # O to represent
a possible deterministic linear trend in the presence of nonstationary noise. Since, from
(3.1.22), to allow 6, to be nonzero is equivalent to permitting

_ %
R e

to be nonzero, an alternative way of expressing this more general model (4.1.9) is in the
form of a stationary invertible ARMA process in 0, = w; — p,,. That is,

E[w,] = E[Viz]=u

¢(B)w, = 6(B)a, (4.1.10)

Notice, when d = 1, for example, Vz, = w, = i, + u,, implies that z, = Z, + u,t + a,
where « is an intercept constant and the process Z, is such that VZ, = ,, which has zero
mean. Thus, 6y # 0 allows for a deterministic linear trend component in z, with slope
i = 00/(1 = by = = = b,).

In many applications, where no physical reason for a deterministic component exists,
the mean of w can be assumed to be zero unless such an assumption is inconsistent with
the data. In many cases, the assumption of a stochastic trend is more realistic than the
assumption of a deterministic trend. This is of special importance in forecasting, since a
stochastic trend does not require the series to follow the trend pattern seen in the past. In
what follows, when d > 0, we will often assume that y,, = 0, or equivalently, that 6, = 0,
unless it is clear from the data or from the nature of the problem that a nonzero mean, or
more generally a deterministic component of known form, is needed.

Some Important Special Cases of the ARIMA Model. In Chapter 3, we examined some
important special cases of the model (4.1.9), corresponding to the stationary situation,
d = 0. The following models represent some special cases of the nonstationary model
(d > 1), which seem to be common in practice.

1. The (0, 1, 1) process:

Vz, = a, =614,
= (1 -6,B)q,

correspondingto p=0,d =1,9q=1,¢(B)=1,0(B)=1-6,B.
2. The (0, 2, 2) process:

Viz, =a,— 0,0, — 00, ,
=(1-6,B~-6,B%aq,

correspondingtop=0,d =2,g=2,¢(B)=1,0B)=1-6,B — 02B2.
3. The (1, 1, 1) process:

Vz, = ¢ Vz,_y = a,— 010,
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TABLE 4.1 Summary of Simple Nonstationary Models Fitted to Time Series of Figure 4.1

Series Model Order of Model
A Vz, = (1 —0.7B)a, 0,1, 1)
B Vz, =(1+0.1B)a, 0,1,1)
C (1-0.8B)Vz, =g, (1,1,0)
D Vz, = (1 —0.1B)a, 0,1,1)
or

(1-¢,B)Vz, = (1 —0,B)a,

correspondingtop=1,d=1,g=1,¢(B)=1—-¢B,0(B)=1-6,B.

For the representation of nonseasonal time series (seasonal models are considered in
Chapter 9), we rarely seem to meet situations for which either p, d, or g need to be greater
than 2. Frequently, values of zero or unity will be appropriate for one or more of these
orders. For example, we show later that Series A, B, C, and D given in Figure 4.1 are
reasonably well represented? by the simple models shown in Table 4.1.

Nonlinear Transformation of z. The range of useful applications of the model (4.1.9)
widens considerably if we allow the possibility of transformation. Thus, we may substitute
zg'l) for z,, in (4.1.9), where zg’“ is some nonlinear transformation of z,, involving one or
more parameters A. A suitable transformation may be suggested by the application, or in
some cases it can be estimated from the data. For example, if we were interested in the sales
of a recently introduced commodity, we might find that the sales volume was increasing at
a rapid rate and that it was the percentage fluctuation that showed nonstationary stability
(homogeneity) rather than the absolute fluctuation. This would support the analysis of the
logarithm of sales since

z, Vz, Vz,
Vlog(z;) =log| — | =log| 1+ — | @ —
z

-1 211 Zi-1

where Vz,/z,_, are the relative or percentage changes, the approximation holding if the
relative changes are not excessively large. When the data cover a wide range and especially
for seasonal data, estimation of the transformation using the approach of Box and Cox
(1964) may be helpful (for an example, see Section 9.3.5). This approach considers the
family of power transformations of the form zﬁ’l) = (z;1 —1)/Afor A # 0 and zgo) = log(z,)
forA=0.

Software to estimate the parameter A in the Box—Cox power transformation is available
in the TSA and MASS libraries of R. For example, the function BoxCox.ar() in the TSA
package finds a power transformation so that the transformed series is approximately a
Gaussian AR process.

2As is discussed more fully later, there are certain advantages in using a nonstationary rather than a stationary
model in cases of doubt. In particular, none of the fitted models above assume that z, has a fixed mean. However,
we show in Chapter 7 that it is possible in certain cases to obtain stationary models of slightly better fit.
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4.2 THREE EXPLICIT FORMS FOR THE ARIMA MODEL

We now consider three different ‘‘explicit’” forms for the general model (4.1.9). Each of
these allows some special aspect to be appreciated. Thus, the current value z, of the process
can be expressed

1. In terms of previous values of the z’s and current and previous values of the a’s, by
direct use of the difference equation,

2. In terms of current and previous shocks a,_; only, and

3. In terms of a weighted sum of previous values z,_; of the process and the current
shock a,.

In this chapter, we are concerned primarily with nonstationary models in which V9z,
is a stationary process and d is greater than zero. For such models, we can, without loss of
generality, omit y from the specification or equivalently replace Z; by z,. The results of this
chapter and the next will, however, apply to stationary models for which d = 0, provided
that z, is then interpreted as the deviation from the mean u.

4.2.1 Difference Equation Form of the Model

Direct use of the difference equation permits us to express the current value z; of the process
in terms of previous values of the z’s and of the current and previous values of the a’s.
Thus, if

@(B) = p(B)(1 ~ B)! = 1 =B~ ¢, B’ — - — ¢, 4 B"*
the general model (4.1.9), with 6, = 0, may be written as
2= Q12+ CpraZipg — 0 — =004+ 4.2.1)
For example, consider the process represented by the model of order (1, 1, 1)
(1-¢B)1—-B)z;,=(1—-0B)ag,

where, for convenience, we drop the subscript 1 on ¢; and 6;. Then this process may be
written as

[1—(+¢)B+ ¢pB*1z, =(1 —0B)a,
that is,

z,=(1+d)z,_ — Ppz,_5 +a, — ba,_, (4.2.2)
with ¢; = 1 + ¢ and ¢, = —¢ in the notation introduced above. For many purposes, and, in

particular, for calculating forecasts, the difference equation (4.2.1) is the most convenient
form to use.
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4.2.2 Random Shock Form of the Model

Model in Terms of Current and Previous Shocks. As discussed in Chapter 3, a linear
model can be written as the output z, from the linear filter

Zp=a,+ya, g tyra )t

[00]
= at + z l[/jat_j
j=1
= y(B)q, 4.2.3)

whose input is white noise, or a sequence of uncorrelated shocks a, with mean O and
common variance 03. It is sometimes useful to express the ARIMA model in this form,
and, in particular, the y weights will be needed in Chapter 5 to calculate the variance of the
forecast errors. However, since the nonstationary ARIMA processes are not in statistical
equilibrium over time, they cannot be assumed to extend infinitely into the past, and hence
an infinite representation as in (4.2.3) will not be possible. But a related finite truncated
form, which will be discussed subsequently, always exists. We now show that the y weights
for an ARIMA process may be obtained directly from the difference equation form of the
model.

General Expression for the w Weights. If we operate on both sides of (4.2.3) with the
generalized autoregressive operator @(B), we obtain

@(B)z, = p(B)y (B)a,
However, since @(B)z, = 0(B)a;, it follows that
@(B)y(B) = 6(B) (4.2.4)
Therefore, the y weights may be obtained by equating coefficients of B in the expansion

1-¢B—-— (pp+dBp+d)(1 +y,B +W2B2 + )
=(1-6,B—--—6,B) (4.2.5)

Thus, we find that the y; weights of the ARIMA process can be determined recursively
through the equations

Vi =0\t QW ot +OprgWipa— 9}‘ j>0

with y = 1, y; =0 for j <0, and 6, = 0 for j > g. We note that for j greater than the
larger of p+d —1 and g, the y weights satisfy the homogeneous difference equation
defined by the generalized autoregressive operator, that is,

@(B)y; = ¢(B)(1 - B)'y; =0 (4.2.6)

where B now operates on the subscript j. Thus, for sufficiently large j, the weights y; are
represented by a mixture of polynomials, damped exponentials, and damped sinusoids in
the argument j.
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Example. For illustration, consider the (1, 1, 1) process (4.2.2), for which

@(B) = (1-¢B)(1 - B)
=1-(1+¢)B+ ¢B>

and
0(B)=1-6B
Substituting in (4.2.5) gives
[1-(1+¢)B+¢B* (1 +y;B+y,B>+--)=1-0B

and hence the y; satisfy the recursion y; = (1 + @)y;_| — dpw;_»,j = 2 with y, = 1 and
v, = (1 + ¢) — 0. Thus, since the roots of @(B) = (1 — ¢B)(1 — B) =0 are Gl_1 =1 and
G2_ 1= ¢_1, we have, in general,

w; = A+ A 4.2.7)

where the constants A, and A; are determined from the initial values y; = Ay + A; =1
andy| =Ag+Ap=1+¢—0as
- 0 —
Ay = 1-0 A = o-¢
1-¢ 1-¢

Thus, informally, we may wish to express model (4.2.2) in the equivalent form
(e
z= ) (Ag+ Ay¢)a,_; (4.2.8)
Jj=0

Since |¢| < 1, the weights y; tend to A for large j, so that shocks a,_;, which entered
in the remote past, receive a constant weight A,. However, the representation in (4.2.8)
is strictly not valid because the infinite sum on the right does not converge in any sense;
that is, the weights y/; are not absolutely summable as in the case of a stationary process.
A related truncated version of the random shock form of the model is always valid, as we
discuss in detail shortly. Nevertheless, for notational convenience, we will often refer to
the infinite random shock form (4.2.3) of an ARIMA process, even though this form is
strictly not convergent, as a simple notational device to represent the valid truncated form
in (4.2.14), in situations where the distinction between the two forms is not important.

Truncated Form of the Random Shock Model. For technical purposes, it is necessary and

in some cases convenient to consider the model in a form slightly different from (4.2.3).

Suppose that we wish to express the current value z; of the process in terms of the r — k

shocks a;,a,_y, ..., a;,, which have entered the system since some time origin k < t. This

time origin k might, for example, be the time at which the process was first observed.
The general model

@(B)z, = 6(B)a, (4.2.9)
is a difference equation with the solution

z, = C,(t — k) + I (t — k) (4.2.10)



100 LINEAR NONSTATIONARY MODELS

A short discussion of linear difference equations is given in Appendix A4.1. We remind
the reader that the solution of such equations closely parallels the solution of linear dif-
ferential equations. The complimentary function C;(t — k) is the general solution of the
homogeneous difference equation

@(B)Ci(t—k)=0 (4.2.11)

In general, this solution will consist of a linear combination of certain functions of time.
These functions are powers t/, real geometric (exponential) terms G*, and complex geomet-
ric (exponential) terms D’ sin(2z ft + F), where the constants G, f,, and F are functions
of the parameters (¢, 0) of the model. The coefficients that form the linear combinations
of these terms can be determined so as to satisfy a set of initial conditions defined by the
values of the process before time k + 1. The particular integral I (¢t — k) is any function
that satisfies

@(B)I,(t — k) = 0(B)a, (4.2.12)

It should be carefully noted that in this expression B operates on ¢ and not on k. It is shown
in Appendix A4.1 that this equation is satisfied for t — k > g by

t—k—1

L=-k)= ) wa_;=a+ya_ ++y a4 1>k (4.2.13)
j=0

with I, (t — k) = 0,1 < k. This particular integral I, (t — k), thus, represents the finite trun-
cated form of the infinite random shock form (4.2.3), while the complementary function
C,(t — k) embodies the ‘‘initializing’’ features of the process z in the sense that C, (f — k) is
already determined or specified by the time k + 1. Hence, the truncated form of the random
shock model for the ARIMA process (4.1.3) is given by

t—k—1

z= )y +Clt—k) (4.2.14)
j=0

For illustration, consider Figure 4.4. The above discussion implies that any observation
z, can be considered in relation to any previous time k and can be divided up into two
additive parts. The first part C,(t — k) is the component of z,, already determined at time
k, and indicates what the observations prior to time k + 1 had to tell us about the value of
the series at time . It represents the course that the process would take if at time k, the
source of shocks a, had been ‘‘switched off.”” The second part, I, (t — k), represents an
additional component, unpredictable at time k, which embodies the entire effect of shocks
entering the system at time k. Hence, to specify an ARIMA process, one must specify
the initializing component C; (¢ — k) in (4.2.14) for some time origin k in the finite (but
possibly remote) past, with the remaining course of the process being determined through
the truncated random shock terms in (4.2.14).

Example. For illustration, consider again the example

(1-¢B)(1 - B)z, = (1 —0B)a,
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FIGURE 4.4 Role of the complementary function C,(t — k) and of the particular integral I, (t — k)
in describing the behavior of a time series.

The complementary function is the solution of the difference equation
(I1-¢B)(1 - B)C,(t—k)=0
that is,

Cit — k) = b + b0+

where bE)k), b(lk) are coefficients that depend on the past history of the process and, it will
be noted, change with the origin k.
Making use of the y weights (4.2.7), a particular integral (4.2.13) is

t—k—1
-k =Y (Ag+A¢)a,_
j=0
so that, finally, we can write the model (4.2.8) in the equivalent form

t—k—1
2, =7+ b+ Y (Ag+ A ¢)a, (4.2.15)
J=0

Note that since || < 1, if t — k is chosen sufficiently large, the term involving ¢/~ in this
expression is negligible and may be ignored.

Link Between the Truncated and Nontruncated Forms of the Random Shock Model.
Returning to the general case, we can always think of the process with reference to some
(possibly remote) finite origin k, with the process having the truncated random shock form
as in (4.2.14). By comparison with the nontruncated form in (4.2.3), one can see that we
might, informally, make the correspondence of representing the complementary function
C,(t — k) in terms of the y weights as

G-k = ) wa_, (4.2.16)
j=t—k
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even though, formally, the infinite sum on the right of (4.2.16) does not converge. As
mentioned earlier, for notational simplicity, we will often use this correspondence.
In summary, then, for the general model (4.2.9),

1. We can express the value z; of the process, informally, as an infinite weighted sum
of current and previous shocks g,_; , according to

(s
z; = wia_; = v (B)a,
Jj=0

2. The value of z, can be expressed, more formally, as a weighted finite sum of the # — k
current and previous shocks occurring after some origin k, plus a complementary
function C,(t — k). This finite sum consists of the first  — k terms of the infinite
sum, so that

t—k—1

zZ=Clt—k+ Y va._; (4.2.17)
j=0

Finally, the complementary function C,;(t — k) can be taken, for notational conve-
nience, to be represented as the truncated infinite sum, so that

C,(t—k) = Z wa,_; (4.2.18)
j=t—k

For illustration, consider once more the model

(1-¢B)(1 - B)z, =(1 - 0B)a,

5

We can write z, either, informally, as an infinite sum of the a,_;’s
oo
z= ) (Ag+ Ayd)a,;
=

or, more formally, in terms of the weighted finite sum as

t—k—1

2 =Clt=k)+ Y (Ag+ A¢)a,_;
=0

Furthermore, the complementary function can be written as
— 3 (k) p1—k
Ct—k)y=by" +b"¢

where b(()k) and b(lk), which satisfy the initial conditions through time k, are

pk) = 2= P21 ~ O o = —$(z2 — 2 + 04y
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The complementary function can also be represented, informally, as the truncated infinite
sum

Ct—k = D (Ag+ A ¢d)a,_
j=t—k
from which it can be seen that bgk) and b(lk) may be represented as

) )
k 1-0
bg)zAOZat_j_—(pzatj
j=t—k j=t—k
© 0 — )
k j—(t—k k
b(l):Alzqy(t )az—jzl ¢Z¢J(t)
j=t—k j=t—k

Complementary Function as a Conditional Expectation. One consequence of the trun-
cated form (4.2.14) is that for m > 0,

Ck(t - k) = Ck—m(t —k+ m) + YAy + Wi k+19k—1 + -
T W ktm—19%—m+1 (4.2.19)

which shows how the complementary function changes as the origin k is changed. Now
denote by E, [z,] the conditional expectation of z;, at time k. That is the expectation given
complete historical knowledge of the process up to, but not beyond time k. To calculate

this expectation, note that
0 j>k
Blded =90 j<k

That is, standing at time k, the expected values of the future a’s are zero and of those that
have happened already are their actually realized values.

By taking conditional expectations at time k on both sides of (4.2.17), we obtain E;[z;] =
C(t — k). Thus, for (t — k) > g, the complementary function provides the expected value
of the future value z; of the process, viewed from time k and based on knowledge of
the past. The particular integral shows how that expectation is modified by subsequent
events represented by the shocks a; 1, a;,», ..., a,. In the problem of forecasting, which
we discuss in Chapter 5, it will turn out that C, (¢ — k) is the minimum mean square error
forecast of z, made at time k. Equation (4.2.19) may be used in ‘‘updating’’ this forecast.

4.2.3 Inverted Form of the Model

Model in Terms of Previous z’s and the Current Shock a,. We have seen in Section 3.1.1
that the model

z, = y(B)a,
may also be written in the inverted form

1//_1 (B)z, = a,
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or
[Se]
n(B)z, = (1 - 7[ij> zZ; = a; (4.2.20)
Jj=1
Thus, z; is an infinite weighted sum of previous values of z, plus a random shock:
Z[ = ﬂ]Z,_] + 7[2Z1_2 + e 4+ at

Because of the invertibility condition, the 7 weights must form a convergent series; that is,
z(B) must converge on or within the unit circle.

General Expression for the = Weights. To derive the = weights for the general ARIMA
model, we can substitute (4.2.20) in

@(B)z, = (B)a,
to obtain
(P(B)Zt = H(B)”(B)Zt

Hence, the 7 weights can be obtained explicitly by equating coefficients of B in

®(B) = 0(B)x(B) (4.2.21)
that is,
(1-@B——q,4B")=(1-6,B—-—0,B%
X(1=m B—-myB*—-) (4.2.22)

Thus, we find that the z; weights of the ARIMA process can be determined recursively
through

”j=917[j—1+92”j—2+”'+0q”j—q+(pj ]>0

with the convention 7y = —1, z; = 0 for j <0, and ¢; = 0 for j > p +d. It will be noted
that for j greater than the larger of p + d and ¢, the 7 weights satisfy the homogeneous
difference equation defined by the moving average operator

6(B)x; =0

where B now operates on j. Hence, for sufficiently large j, the # weights will exhibit
similar behavior as the autocorrelation function (3.2.5) of an autoregressive process; that
is, they follow a mixture of damped exponentials and damped sine waves.

Another interesting fact is that if d > 1, the z# weights in (4.2.20) sum to unity. This may
be verified by substituting B = 1 in (4.2.21). Thus, @(B) = ¢(B)(1 — B)¢ is zero when
B =1 and (1) # 0, because the roots of §(B) = 0 lie outside the unit circle. Hence, it
follows from (4.2.21) that (1) = 0, that is,

(o]
Yom=1 (4.2.23)

Jj=1
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Therefore, if d > 1, the process may be written in the form
z;=Z,_1(7)+ a, (4.2.24)

where

[0e]
Z_1(m) = Z Tz
Jj=1

is a weighted average of previous values of the process.

Example. We again consider, for illustration, the ARIMA(1, 1, 1) process:
(1-¢B)(1—-B)z, =(1—-0B)ag,
Then, using (4.2.21),
7(B)= (B0~ (B)=[1-(1+¢)B+ dB*|(1 + 0B + 6>B> + --)
so that
m=¢p+(1-0) m=0-p1-0) z,=0-PH(1-00"7 j>3.

The first seven 7 weights corresponding to ¢ = —0.3 and 6 = 0.5 are given in Table 4.2.
Thus, z, would be generated by a weighted average of previous values, plus an additional
shock, according to

z,=(0.2z,_, +04z,_,+02z,_3+4+0.1z,_4,+ ) +gq,

We notice, in particular, that the 7 weights die out as more and more remote values of z,_ j
are involved. This happens when —1 < 0 < 1, so that the series is invertible.

We mention in passing that, for models fitted to actual time series, the convergent x
weights usually die out rather quickly. Thus, although z, may be theoretically dependent
on the remote past, the representation

(e
Zt = Zﬂ'jzt_j + a,
Jj=1

will usually show that z; is dependent to an important extent only on recent past values
z,_; of the time series. This is still true even though for nonstationary models with d > 0,
the y weights in the ‘‘weighted shock’ representation

(9]
z, = Z Via_;
Jj=0

do not die out to zero. What happens, of course, is that all the information that remote values
of the shocks a,_; supply about z, is contained in recent values z,_;, z,_,, -+ of the series.
In particular, the expectation Ej[z,], which in theory is conditional on complete history of
the process up to time k, can usually be computed to sufficient accuracy from recent values
of the time series. This fact is particularly important in forecasting applications.
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TABLE 4.2 First Seven 7 Weights for an ARIMA(1, 1, 1) Process with ¢p = —0.3, 0 = 0.5

j 1 2 3 4 5 6 7
T, 0.2 0.4 0.2 0.1 0.05 0.025 0.0125

J

4.3 INTEGRATED MOVING AVERAGE PROCESSES

A nonstationary model that is useful in representing some commonly occurring series is
the (0, 1, 1) process:

Vz,=a,—0a,_,

The model contains only two parameters, # and 63. Figure 4.5 shows two time series
generated by this model from the same sequence of random normal deviates a,. For the first
series, @ = 0.6, and for the second, & = 0. Models of this kind have often been found useful
in inventory control problems, in representing certain kinds of disturbances occurring in
industrial processes, and in econometrics. We will show in Chapter 7 that this simple
process can, with suitable parameter values, supply useful representations of Series A, B,
and D shown in Figure 4.1. Another valuable model is the (0, 2, 2) process

2, _—
Viz, =a, - 010,y — bra,

which contains three parameters, 64, 6,, and 0'3. Figure 4.6 shows two series generated
from this model using the same set of normal deviates. For the first series, the parame-
ters (01, 6,) = (0,0) and for the second (6, 6,) = (1.5, —0.8). The series tend to be much
smoother than those generated by the (0, 1, 1) process. The (0, 2, 2) models are useful in
representing disturbances (such as Series C) in systems with a large degree of inertia. Both
the (0, 1, 1) and the (0, 2, 2) models are special cases of the class

Viz, = 6(B)a, (4.3.1)

We call these models integrated moving average (IMA) processes, of order (0, d, q), and
consider their properties in the following section.

6=0.6(1=04)

————— 6=0.0(1=10)

el

FIGURE 4.5 Two time series generated from IMA(O, 1, 1) models.
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0,8, =(1.5,-0.8)
(g Ap) = (0.2,-0.3)

Z4

\{ (0, 6,)=(0,0)

(o 2D =(1, 1)

l—

FIGURE 4.6 Two time series generated from IMA(O, 2, 2) models.

4.3.1 Integrated Moving Average Process of Order (0,1, 1)
Difference Equation Form. The IMA(O, 1, 1) process
Vz,=(1-06B)a, —-1<0<1

possesses useful representational capability, and we now study its properties in more detail.
The model can be written in terms of the z’s and the a’s in the form

z,=2z,1+a, —0a,_, 4.3.2)

Random Shock Form of Model. Alternatively, we can obtain z, in terms of the a’s alone by
summing on both sides of (4.3.2). Before doing this, there is some advantage in expressing
the right-hand operator in terms of V rather than B. Thus, we can write

1-B=(1-6)B+(1-B)=(1-60B+V=AB+V
where 4 = 1 — 0, and the invertibility region in terms of 4 is defined by 0 < 4 < 2. Hence
Vz, = Aa,_1 + Va,

Relative to some time origin k < t, applying the finite summation operator .S,_, =1+ B +
-« + B7k=1 = (1 — B'=%)/(1 — B), we obtain
(1= B8z, = AS,_ja,_, + (1 = B %)q, (4.3.3)

so that

z,=a,+Ma,_;+a,_,+ - +a)+(z, —0ay) 4.3.4)
—k—1
j=0
Also, the complementary functionis C; (t — k) = z; — fa; = b(()k) (a “‘constant’’ b, for each
k), which is the solution of the difference equation (1 - B)C; (t — k) = 0. Moreover, in the

Incomparisonto z, = ), wja,_; + Ci(t — k), the weightsare yy = 1,y; = Aforj > 1.

infinite form z, = a, + A Z;’i | G—j» Wemay identify bék.) with 4 Z;’; T For this model,
then, the complementary function is simply a constant (i.e., a polynomial in ¢ of degree zero)

representing the current ‘‘level’’ of the process and associated with the particular origin of
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reference k. If the origin is changed from k — 1 to k, then b is ‘“‘updated’’ according to
(k) _ p(k=1)
by" =b, '+ Aay
since using (4.3.2), b3 =z, + (A — Day = z,_, — Oa,_, + Aa.

Inverted Form of Model. Finally, we can consider the model in the form
n(B)z, = a,
or equivalently, in the form
z, = z 7z +a; =2 (7) + q
j=1

where z,_;(x) is a weighted moving average of previous values of the process.
Using (4.2.21), the = weights for the IMA(O, 1, 1) process are given by

(1-0B)z(B)=1-B

that is,
- 1-6B—(1-6)B
2By = =B _ OB — (1 -0)
1-6B 1-6B
=1-(1-0)(B+0B>+6°B°+ )
so that

m=01-00"=i1-2"" j>1
Thus, the process may be written as
z, =2z,_1(A) +gq, (4.3.5)

The weighted moving average of previous values of the process

Zo(N) =) 0=z (4.3.6)
j=1

is, in this case, an exponentially weighted moving average (EWMA). This term reflects the
fact that the weights

A Al=2) A1=21% ad =13

fall off exponentially (i.e., as a geometric progression) as j increases. The weight function
for an IMA(O, 1, 1) process, with A = 0.4 (or 8 = 0.6), is shown in Figure 4.7.

Although the invertibility condition is satisfied for 0 < A < 2, in practice, we are most
often concerned with values of A between zero and 1 (i.e., 0 < 8 < 1). We note that if A
had a value equal to 1, the weight function would consist of a single spike (7, = 1,7; =0
for j > 1). As the value A approaches zero, the exponential weights die out more and more
slowly and the EWMA stretches back further into past values of the process. Finally, with
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FIGURE 4.7 The z weights for an IMA process of order (0, 1, 1) withA=1-0 =0.4.

A=0and 6 =1, the model (1 — B)z, = (1 — B)a, is equivalent to z, = 6, + a,, with 6,
being given by the mean of all past values.

Since b(()k) =z, —0a, =2z, —a,, OF Z;, 1 = b(ok) + a1, on comparison with
(4.3.5) it follows that for this process, the complementary function bg‘) =Ci(t—k) in
(4.34)is

by = 2,(A) (4.3.7)

an exponentially weighted average of values up to the origin k. In fact, (4.3.4) may be
written as

t—k—1

=50+ ) a_;+aq,
j=1

We have seen that the complementary function Cy (¢ — k) can be thought of as telling
us what is known about the future value of the process at time ¢, based on knowledge of
the past when we are standing at time k. For the IMA(O, 1, 1) process, this takes the
form of information about the ‘‘level’” or location of the process b(()k) = Z;(4). At time
k, our knowledge of the future behavior of the process is that it will diverge from this
level in accordance with the ‘‘random walk’ represented by A 23_:’;_1 a,_; + a,, whose
expectation is zero and whose behavior we cannot predict. As soon as a new observation
is available, that is, as soon as we move our origin to time k + 1, the level will be updated

k+1 _
to bV = 2,4, ().

%3

Important Properties of the IMA(0, 1, 1) Process. Since the process is nonstationary, it
does not vary in a stable manner about a fixed mean. However, the exponentially weighted
moving average Zz,(A) can be regarded as measuring the local level of the process at
time t. From its definition (4.3.6), we obtain the well-known recursion formula for the
EWMA:

Z,(A) = Az, + (1 = DZ,_(A) (4.3.8)

This expression shows that for the IMA(O, 1, 1) model, each new level is arrived at by
interpolating between the new observation and the previous level. If 4 is equal to unity,
z,(A) = z; which would ignore all evidence concerning location coming from previous
observations. On the other hand, if A had some value close to zero, Z;(4) would rely
heavily on the previous value z,_;(4), which would have weight 1 — A. Only the small
weight A would be given to the new observation.
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Now consider the two equations

=Rt (4.3.9)
zZ,(A) = z,_1(A) + Aa,
the latter being obtained by substituting (4.3.5) in (4.3.8) and is also directly derivable from
(4.3.7).

It was pointed out by Muth (1960) that the two equations (4.3.9) provide a useful way of
thinking about the generation of the process. The first equation shows how, with the level
of the system at z,_; (4), a shock a, is added at time ¢ and produces the value z,. However,
the second equation shows that only a proportion A of the shock is actually absorbed into
the level and has a lasting influence, the remaining proportion 8§ = 1 — A of the shock being
dissipated. Now a new level z,(4) having been established by the absorption of a,, a new
shock a,,; enters the system at time ¢ + 1. Equations (4.3.9), with subscripts increased by
unity, will then show how this shock produces z,,; and how a proportion A of it is absorbed
into the system to produce the new level z,,(4), and so on.

Equation (4.3.4) can be used to obtain variance and correlation features of the IMA(O, 1,
1) process directly. For example, with reference to the origin k and treating the initializing
function bf)k) as constant, we find that

var(z,] = 62[1 + (t — k — 1)4%] (4.3.10)

which does not converge as ¢ increases. We might also view this variance as, essentially,
the variance of the difference z; — z;, treating a; = 0 in (4.3.4). In particular, in the
case of a random walk process, z, = z,_; + a,, we have 4 = 1, and this variance function
grows proportionally with t — k, whereas for more common situations with 0 < 4 < 1 (i.e.,
0 < 6 < 1) and especially for A close to zero, the variance function of z, — z; grows much
more slowly with ¢ — k. In addition, for s > 0, cov(z,, z,, ;] = 0'5[/1 + (t — k — 1)42], which
implies that corr[z,, z,, ;] will be close to 1 for  — k large relative to s (and 4 not close
to zero). Hence, it follows that adjacent values of the process will be highly positively
correlated, so the process will tend to exhibit rather smooth behavior (unless 4 is close to
Zero).
The properties of the IMA(O, 1, 1) process with deterministic drift

Vz, =0+ (1 —0,B)a,

are discussed in Appendix A4.2.

4.3.2 Integrated Moving Average Process of Order (0, 2, 2)
Difference Equation Form. The IMA(O, 2, 2) process

V2z,=(1-6,B-6,B%aq, (4.3.11)

can be used to represent series exhibiting stochastic trends (e.g., see Fig. 4.6), and we now
study its general properties within the invertibility region:

-1<6,<1 0,+60, <1 6,-0,<1
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Proceeding as before, z, can be written explicitly in terms of z’s and a’s as
2, =2z =z 5+a, =010, —6ya,_,
Alternatively, we can rewrite the right-hand operator in terms of differences:
1-6,B—0,B*=(4V + A)B+V?

and on equating coefficients, we find expressions for the 8’s in terms of the A’s, and vice
versa, as follows:

01=2—).0—),1 /10=1+92

4.3.12)
02=).0_1 )»1:1—91—92
The IMA(O, 2, 2) model may then be rewritten as
V2z, = (4gV + ADa,_; + VZa, (4.3.13)

There is an important advantage in using this form of the model, as compared with (4.3.11).
This stems from the fact that if we set 1; = 0 in (4.3.13), we obtain

Vz, = [1 = (1 — 4y)Bla,

which corresponds to a (0, 1, 1) process, with 8 = 1 — 4,. However, if we set 8, =0 in
(4.3.11), we obtain

V2z, = (1 - 6,B)q,

As will be shown in Chapter 5, for a series generated by the (0, 2, 2) model, the optimal
forecasts lie along a straight line, the level and slope of which are continually updated
as new data become available. By contrast, a series generated by a (0, 1, 1) model can
supply no information about slope but only about a continually updated level. It can be
an important question whether a linear trend, as well as the level, can be forecasted and
updated. When the choice is between these two models, this question turns on whether or
not 4; in (4.3.13) is zero.

The invertibility region for an IMA(O, 2, 2) process is the same as that given for an
MA(2) process in Chapter 3. It may be written in terms of the 8’s and A’s as follows:

0,+0, <1 0<2g+ 4, <4
0,—-0,<1 A >0 (4.3.14)
-1<6,<1 Ag>0

The triangular region for the 6’s was shown in Figure 3.6 and the corresponding region for
the A’s is shown in Figure 4.8.

Truncated and Infinite Random Shock Forms of Model. On applying the finite double

summation operator St(f)k, relative to a time origin k, to (4.3.13), we find that

[1 - B~% —(t = 0B (1 = B)lz, = [Ao(S, — (t = )B™) + 1,52 1a,_,
+[1 = B"™% - (t — k)B"*(1 - B)laq,
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Complex
roots

FIGURE 4.8 Invertibility region for parameters 4, and A, of an IMA(0, 2, 2) process.

Hence, we obtain the truncated form of the random shock model as

2 K | Lk
2z, = AoS—k-10-1 + /115,(_)16_1%—1 +a, + bf) '+ b(l 't — k)
1—k—1 t—k—1

=Jo D aj+ A D Ja;+a+Cplt—k) (4.3.15)
j=1 j=1

So, for this process, the y weights are
wo=1 wi=g+4) w;=g+jA)
The complementary function is the solution of
(1-B)>C(t—k)=0
that is,
Cet — k) = b3 + 60 — k) (4.3.16)

which is a polynomial in (# — k) of degree 1 whose coefficients depend on the location of
the origin k. From (4.3.15), we find that these coefficients are given explicitly as

by =z, — (1 = dg)ay

b =z, — 2z, — (1= A)a,+ (1= dpay_,

Also, by considering the differences b(()k) - bgk_l) and b(lk) - b(lk_l), it follows that if the
origin is updated from k — 1 to k, then b, and b, are updated according to
B = BV 15D 4 Joa,

(4.3.17)
k k—1
b = b 4 21a,
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We see that when this model is appropriate, our expectation of the future behavior of
the series, judged from origin k, would be represented by the straight line (4.3.16), having
location bf)k) and slope b(lk). In practice, the process will, by time ¢, have diverged from this
line because of the influence of the random component

t—k—1 t—k—1
Ao Z a_j+ 4 Z ja,_; +a
j=1 j=1

which at time k is unpredictable. Moreover, on moving from origin k — 1 to origin k, the
intercept and slope are updated according to (4.3.17).
Informally, through (4.3.15) we may also obtain the infinite random shock form as

[So]

zo=Jo D Ay + A D e +a,=ASa,_ + A S%a,_; +a, (4.3.18)

Jj=1 J=1

So by comparison with (4.3.15), the complementary function can be represented informally
as

Cut=ky=4y Y a;+4 Y ja;=b\" +b0—k)
j=t—k j=t—k

By writing the second infinite sum above in the form

o8] o8] o8]
Y ja=0—k) Y a_+ Y - —kla,
j=t—k Jj=t—k Jj=t=k

we see that the coefficients bék) and b(lk) can be associated with

by = dgSay + 4 2ay_y = (Ao — A))Say + 1,524y
k
b(l ) = /IISak

Inverted Form of Model. Finally, we consider the model in the inverted form:

o]

z, = Z miz_jt+a, =2z (m)+a
Jj=1

Using (4.2.22), we find on equating coefficients in
1-2B+B>=(1-6,B—0,B>)(1 —n,B— B> — )
that the = weights of the IMA(O, 2, 2) process are
7[1 :2—91 =/10+Al
Ty =0,2=0))— (1+0,) = Ay +24 — (Ag + 4y)? (4.3.19)
(1-6,B—6,B)z; =0 j>3

where B now operates on j.
If the roots of the characteristic equation 1 — 6, B — 6, B> = 0 are real, the 7= weights
are a mixture of two damped exponentials. If the roots are complex, the weights follow a
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FIGURE 4.9 The 7 weights for an IMA(0, 2, 2) process with 4, = 0.5, 4, = 0.6.

damped sine wave. Figure 4.9 shows the weights for a process with §; = 0.9 and 8, = —0.5,
that is, 4, = 0.5 and 4; = 0.6. For these parameter values, the characteristic equation has
complex roots (the discriminant 0% + 46, = —1.19is less than zero). Hence, the weights in
Figure 4.9 follow a damped sine wave, as expected.

4.3.3 General Integrated Moving Average Process of Order (0,d, q)

Difference Equation Form. The general integrated moving average process of order
0.d,q)is

det =(1-6,B- 9232 — . — quq)a[ = 6(B)q, (4.3.20)

where the zeros of (B) must lie outside the unit circle for the process to be invertible. This
model may be written explicitly in terms of past z’s and a’s in the form

1
Z=dz = 5dd =Dz + -+ D"z 4 +a,-0,a,_ - —0,a,_,

Random Shock Form of Model. To obtain z, in terms of the a,’s, we write the right-hand
operator in (4.3.20) in terms of V = 1 — B. In this way, we obtain

(1=60,B— - —0,B) =g V" + -+ 4V + o+ 1, DB+ V! (4321)

where, as before, the A’s may be written explicitly in terms of the 6’s, by equating coeffi-
cients of B.
On substituting (4.3.21) in (4.3.20) and summing d times, informally, we obtain

z, = (/ld_qV"_d_l ot 2SS+ o+ A1 SDa,_ +q, (4.3.22)

Thus, for g > d, we notice that in addition to the d sums, we pick up ¢ — d additional terms
—d-1 : :
A\ at_]2 11.1V01v1ng a,Tl,at_z, "?H?d‘q' .
If we write this solution in terms of finite sums of a’s entering the system after some
origin k, we obtain the same form of equation, but with an added complementary function,
which is the solution of

viC,(t—k) =0



INTEGRATED MOVING AVERAGE PROCESSES 115

that is, the polynomial
Cit — k) = b7 + B9 = k) + b0t = k)P + - + B0 (¢ = k)7

As before, the complementary function C,(f — k) represents the finite behavior of the
process, which is predictable at time k. Similarly, the coefficients b;k) may be expressed,
informally, in terms of the infinite sums up to origin k, that is, Sa,, Szak, .84 a.
Accordingly, we can discover how the coefficients b;k) change as the origin is changed,
from k — 1 to k.

Inverted Form of Model. Finally, the model can be expressed in the inverted form
n(B)z; = a,
or
z; = Z;_1(z) + a(t)
The = weights may be obtained by equating coefficients in (4.2.22), that is,
(1-B)?=(1-6,B-0,B>— - —0,B)(1 - B— B> — ) (4.3.23)

This expression implies that for j greater than the larger of d and g, the = weights satisfy
the homogeneous difference equation

O(B)r; =0
defined by the moving average operator. Hence, for sufficiently large j, the weights =,

follow a mixture of damped exponentials and sine waves.

IMA Process of Order (0, 2, 3). One final special case of sufficient interest to merit
comment is the IMA process of order (0, 2, 3):

V2z,=(1—-6,B-6,B> — 0,B%)q,
Proceeding as before, if we apply the finite double summation operator, this model can be

written in truncated random shock form as

t—k—1 t—k—1
. k k
Zo=doiay Ao D, aj+ A D, e +a+ b)) + b0 k)
= =

where the relations between the A’s and 6’s are

01=2—A_1_).0—11 A_1=—03
92=/10—1+2j._1 10:1+02+203
93:—1_1 1121—01—02—93

Alternatively, it can be written, informally, in the infinite integrated form as

zZ; = ),_lat_l + Aosat_l + /llSza,_l +at
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FIGURE 4.10 Invertibility region for parameters A_,, 4, and 4, and of an IMA(0, 2, 3) process.

Finally, the invertibility region is defined by
0,+6,+0;<1 Ar>0
-0, +6,-6;<1 200+ A <41 —=2_))
050, —-0,)—0, <1 Ag(l+A_y) > =414,
-1<6;<1 -1<i <1

as is shown in Figure 4.10.

In Chapter 5, we show how forecasts of future values of a time series can be generated
in an optimal manner when the model is an ARIMA process. In studying these forecasts,
we make considerable use of the various model forms discussed in this chapter.

APPENDIX A4.1 LINEAR DIFFERENCE EQUATIONS

In this book, we are often concerned with linear difference equations. In particular, the
ARIMA model relates an output z, to an input a, in terms of the difference equation

2t = P12 = PrZpp T T P2y
= at - Hlat_l - 6261,_2 — e — Oqat_q (A411)

where p' = p+d.
Alternatively, we may write (A4.1.1) as

@(B)z, = 0(B)a,
where

¢(B)=1-¢B= B — -~ B’
O(B)=1-6,B—0,B>— ... — 0, B
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We now derive an expression for the general solution of the difference equation (A4.1.1)
relative to an origin k < f.

1. We show that the general solution may be written as
z,=Ct —k)y+ I, (t — k)

where C,(f — k) is the complementary function and I, (r — k) is a ‘‘particular inte-
gral.”’

2. We then derive a general expression for the complementary function C (¢t — k).
3. Finally, we derive a general expression for a particular integral I; (¢ — k).

General Solution. The argument is identical to that for the solution of linear differential
or linear algebraic equations. Suppose that z is any particular solution of

@(B)z, = 6(B)a, (A4.1.2)
that is, it satisfies
qo(B)z; = 0(B)a, (A4.1.3)
On subtracting (A4.1.3) from (A4.1.2), we obtain
@(B)(z, —2)) =0
Thus z]/ = z, — z} satisfies
®(B)z] =0 (A4.1.4)
Now
z,=z+z

and hence the general solution of (A4.1.2) is the sum of the complementary function z;’ s
which is the general solution of the homogeneous difference equation (A4.1.4), and a
particular integral z], which is any particular solution of (A4.1.2). Relative to any origin
k < t, we denote the complementary function z)’ by C;(t — k) and the particular integral
z) by It (t — k).

Evaluation of the Complementary Function.

Distinct Roots. Consider the homogeneous difference equation

@(B)z, =0 (A4.1.5)

where
@(B)=(1-GB)(1-G,B)-(1-Gy,B) (A4.1.6)
and where we assume in the first instance that G, G,, ..., Gp, are distinct. Then, it is shown

below that the general solution of (A4.1.5) at time #, when the series is referred to an origin



118 LINEAR NONSTATIONARY MODELS
at time k, is
7, =AGTF+ AGTR 4+ AP,G;T" (A4.1.7)

where the A;’s are constants. Thus, a real root G of @(B) =0 contributes a damped
exponential term G'~¥ to the complementary function. A pair of complex roots contributes
a damped sine wave term D% sin(2z f,t + F).

To see that the expression given in (A4.1.7) does satisfy (A4.1.5), we can substitute
(A4.1.7)in (A4.1.5) to give

P(B)(A;G7F + A G 4+ AP,G;;") =0 (A4.1.8)
Now consider
¢(B)G, ™ =(1- ¢ B—¢,B” — - — 0, B )G/
A / /—1
=G PG —9,GF — = gy)

We see that qo(B)Gf‘k vanishes for each value of i if
G -G = —p, =0
i Y Py =

that is, if B; = 1/G; is a root of @(B) = 0. Now, since (A4.1.6) implies that the roots of
@(B) = 0are B, = 1/G,, it follows that qo(B)G;_k is zero for all i and hence (A4.1.8) holds,
confirming that (A4.1.7) is a general solution of (A4.1.5).

To prove (A4.1.7) directly, consider the special case of the second-order equation:

(1-G,B)(1-=G,B)z, =0

which we can write as

(1-G{B)y, =0 (A4.1.9)
where
=1 -G,B)z (A4.1.10)
Now (A4.1.9) implies that
Ve =Gy =Giya = =Gy,

and hence

— -k
yt—DlGi
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where D = y, is a constant determined by the starting value y,. Hence (A4.1.10) may be
written as

z, =G,z + D,G"*
—k—1 —k
= G2(G2Z1_2+D1G; )+D1th

=G *z + D(GTF + GG+ + GGy

D
— Gl‘—k + 1 Gt—k _ Gt—k

> &t 1g, 6, G )
= A,GT  + A,GK (A4.1.11)

where A, A, are constants determined by the starting values of the series. By an extension
of the argument above, it may be shown that the general solution of (A4.1.5), when the
roots of @(B) = 0 are distinct, is given by (A4.1.7).

Equal Roots. Suppose that @(B) = 0 has d equal roots G=7!, so that ¢(B) contains a factor

1- GOB)d. In particular, consider the solution (A4.1.11) for the second-order equation
when both G| and G, are equal to G,,. Then, (A4.1.11) reduces to

z, =G5z + DG (1 — k)
or
z, = [Ag + A1 = DIG; "

In general, if there are d equal roots Gy, it may be verified by direct substitution in
(A4.1.5) that the general solution is

zZ, = [AO + A](l - k) + Az(t — k)2 + ...
+A (= k) GHE (A4.1.12)

In particular, when the equal roots G, are all equal to unity as in the IMA (0, d, q) process,
the solution is

Z, = Ag+ At — k) + Ayt —k)> 4 -+ Ay_ (1 — k)?! (A4.1.13)

that is, a polynomial in # — k of degree d — 1.
In general, when @(B) factors according to

(1-G{B)(1~G,B) (1 - G,B)(1 - G,B)

the complementary function is

d—1 p
Ct =) =Gk Y At —kY + ). DG+ (A4.1.14)
j=0 i=1

Thus, in general, the complementary function consists of a mixture of damped expo-
nential terms G'~X, polynomial terms (t — k)/, damped sine wave terms of the form
D'=*sin(2x fot + F), and combinations of these functions.
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Evaluation of the ‘‘Particular Integral’’. We now show that a particular integral 1, (s — k),
satisfying

oB)I(t—k)=0(B)a, t—k>gq (A4.1.15)
is a function defined as follows:
Li(s—k)=0 s<k
I(D)= a4,
Ik(2)= ak+2+u/1ak+1 (A4116)
L(t=k)=a, + 0y +yoa o+ + Wy 1>k

where the y weights are those appearing in the form (4.2.3) of the model. Thus, the y
weights satisfy

@(B)y(B)a, = 0(B)aq, (A4.1.17)
Now the terms on the left-hand side of (A4.1.17) may be set out as follows:

a+ya g tyoa ot W Gy | TV G T
—@1(a_ 1+ Y10+ F Y | FW g )
— ) (A4.1.18)

_(pp’(al‘—p’ + -+ wt—k—p’—lak+1 +Wt—k—p’ak + .-
Since the right-hand side of (A4.1.17) is
a;— 010,y — - —0,a,_,

it follows that the first ¢ + 1 columns in this array sum to a;, —=6,a,_y, ..., —0,a,_,. Now the
left-hand term in (A4.1.15), where I; (s — k) is given by (A4.1.16), is equal to the sum of
the terms in the first (r — k) columns of the array, that is, those to the left of the vertical line.
Therefore, if t — k < ¢, that is, the vertical line is drawn after ¢ + 1 columns, the sum of
all terms up to the vertical line is equal to 6(B)a,. This shows that (A4.1.16) is a particular
integral of the difference equation.

Example. Consider the IMA(O, 1, 1) process
z,— 2z, =a; —0a,_, (A4.1.19)
for whichy; =1 — 6 for j > 1. Then

1,0)=0
I (1) = apyy
: (A4.1.20)
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t—k—1
Lt-K=a+0-0 ) a; t—k>I
j=1

Now if z; = I} (t — k) is a solution of (A4.1.19), then
Ik(t - k) - Ik(t — k- 1) =a; — 9a,_1

and as is easily verified, while this is not satisfied by (A4.1.20) for t — k = 1, it is satisfied
by (A4.1.20) for t — k > 1, thatis, for t — k > q.

APPENDIX A4.2 IMA(0, 1, 1) PROCESS WITH DETERMINISTIC DRIFT

The general model d)(B)de, = 0, + 0(B)a, can also be written as
$(B)Vz, = O(B)e,

with the shocks €, having a nonzero mean & = 6,/(1 — 6, — -+ — 6,). For example, the
IMA(O, 1, 1) model is then

Vz, = (1 - 0B),

with E[g;] =& = 0y/(1 —0). In this form, z, could represent, for example, the outlet
temperature from a reactor when heat was being supplied from a heating element at a fixed
rate. Now if

g =E&+aq, (A4.2.1)
where g, is white noise with zero mean, then with reference to a time origin k, the integrated

form of the model is

t—k—1
Z=b0+4 ) £ +e (A42.2)
j=1

with A = 1 — 6. Substituting for (A4.2.1) in (A4.2.2), the model written in terms of the a’s
is

t—k—1
Z=b0+ At —k—D+E+A ) a;+a (A4.2.3)
j=1

Thus, we see that z, contains a deterministic slope or drift due to the term A5(t — k — 1),
with the slope of the deterministic linear trend equal to A¢ = 6. Moreover, if we denote
the “‘level’’ of the process at time ¢ — 1 by /,_;, where

z,=1l_1+a
we see that the level is changed from time ¢ — 1 to time ¢, according to

l,=1,_; + AE + Aq,
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The change in the level, thus, contains a deterministic component A¢ = 6, as well as a
stochastic component Aa;.

APPENDIX A4.3 ARIMA PROCESSES WITH ADDED NOISE

In this appendix, we consider the effect of added noise (e.g., measurement error) to a
general ARIMA(p, d, q) process. The results are also relevant to determine the nature of
the reduced form ARIMA model of an observed process in structural component models
(see Section 9.4), in which an observed series Z, is presumed to be represented as the sum
of two unobservable component processes that follow specified ARIMA models.

A4.3.1 Sum of Two Independent Moving Average Processes

As a necessary preliminary to what follows, consider a stochastic process w;, which is the
sum of two independent moving average processes of orders q; and ¢,, respectively. That
is,

Ww; = Wy + Wy = HI(B)Clt + 02(B)bt (A431)
where 6,(B) and 6,(B) are polynomials in B, of orders q; and ¢,, and the white noise

processes a, and b; have zero means, variances GZ and O'Z, and are mutually independent.
Suppose that ¢ = max(q,, ¢,); then since

vi(w) =yj(wy) +v;(wy)

it is clear that the autocovariance function y;(w) for w, must be zero for j > g. It follows
that there exists a representation of w; as a single MA(q) process:

w, = 0(B)u, (A43.2)

where u, is a white noise process with mean zero and variance 0'5. Thus, the sum of two
independent moving average processes is another moving average process, whose order is
the same as that of the component process of higher order.

The parameters in the MA(q) model can be deduced by equating the autocovariances
of w;,, as determined from the representation in (A4.3.1), with the autocovariances of the
basic MA(g) model (A4.3.2), as given in Section 3.3.2. For an example, suppose that
wy, = 0(B)a, = (1 -0, 1B)a, is MA(1) and w,, = 0,(B)b, = (1 -0, ,B — 62’2B2)bt is
MA(2), so that w, = 8(B)u, is MA(2) with

w; = (1=, B)a, + (1= 6,,B = 6,,B°),
=(-6,B-0,B )y,
The parameters of the MA(2) model for w, can be determined by considering

ro(w) = (1467 Do, + (1467

54030, = (1467 +63)0;
y1(W) = =0, 1067 + (=0, 5 + 0, ,0,,)07 = (=0, + 6,0,)0>

]/2(1/0) = _62’20'1% = —9263
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and solving for 8, 6,, and 0'3 in terms of given values for the autocovariances yy(w), y1(w),
y>(w) as determined from the left-hand-side expressions for these.

A4.3.2 Effect of Added Noise on the General Model

Correlated Noise. Consider the general nonstationary model for the process z, of order

(p.d,q):
$(B)VIz, = 6(B)aq, (A4.3.3)

Suppose that we cannot observe z, itself, but only Z, = z, + b,, where b, represents some
extraneous noise (e.g., measurement error) or simply some additional unobserved compo-
nent that together with z, forms the observed process Z;, and b, may be autocorrelated. We
wish to determine the nature of the model for the observed process Z;. In general, applying
$(B)VY to both sides of Z, = z, + b,, we have

$(B)V?Z, = 6(B)a, + $(B)Vb,
If the noise b, follows a stationary ARMA process of order (p;, 0, q;),
¢1(B)b; = 6,(B)a, (A4.3.4)

where a, is a white noise process independent of the a, process, then

$,(B)p(B)VY Z, = §,(B)O(B) a, + p(B)6,(B)V? a, (A4.3.5)
— — —— —_——
p1+p+d p1+4q p+q1+d

where the values below the braces indicate the degrees of the various polynomials in B.
Now the right-hand side of (A4.3.5) is of the form (A4.3.1). Let P = p; + p and Q be equal
to whichever of (p; + ¢q) and (p + q; + d) is larger. Then we can write

by (B)V! Z, = 05(B)uy,

with u, a white noise process, and the Z, process is seen to be an ARIMA of order
(P, d, Q). The stationary AR operator in the ARIMA model for Z, is determined as ¢,(B) =
¢1(B)¢(B), and the parameters of the MA operator 6, (B) and 03 are determined in the same
manner as described in Section A4.3.1, that is, by equating the nonzero autocovariances
from the representations:

$1(B)O(B)a, + $(B)O(B)V e, = 05(B)u,

Added White Noise. If, as might be true in some applications, the added noise is white,
then ¢;(B) = ;B = 1 in (A4.3.4), and we obtain

H(B)\V!Z, = 0,(B)u, (A4.3.6)
with

05(B)u, = 0(B)a, + ¢(B)V?b,
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which is of order (p, d, Q) where Q is the larger of g and (p + d). If p + d < ¢, the order
of the process with error is the same as that of the original process. The only effect of the
added white noise is to change the values of the 6’s (but not the ¢’s).

Effect of Added White Noise on an Integrated Moving Average Process. In particular, an
IMA process of order (0, d, q), with white noise added, remains an IMA of order (0, d, g) if
d < g; otherwise, it becomes an IMA of order (0, d, d). In either case, the parameters of the
process are changed by the addition of noise, with the representation V¢ Z, = 6,(B)u, as in
(A4.3.6). The nature of these changes can be determined by equating the autocovariances
of the dth differences of the process, with added noise, to those of the dth differences
of a simple IMA process, that is, as a special case of the above, by equating the nonzero
autocovariances in the representation

0(B)a, + Vb, = 0,(B)u,

The procedure will now be illustrated with an example.

A4.3.3 Example for an IMA(0, 1, 1) Process with Added White Noise

Consider the properties of the process Z, = z, + b, when
z, =21 — (1 =MNa,_; +a, (A4.3.7)

and the b, and a; are mutually independent white noise processes. The Z, process has first
difference W, = Z, — Z,_, given by

W,=[1-(1—-2A)Bla;+ (1 — B)b, (A4.3.8)
The autocovariances for the first differences W, are

o= 021+ (1 - )] +20;
y1=—-0X(1-24) -0} (A4.3.9)
szo j=2

The fact that the y; are zero beyond the first lag confirms that the process with added noise
is, as expected, an IMA process of order (0, 1, 1). To obtain explicitly the parameters of
the IMA that represents the noisy process, we suppose that it can be written as

Z,=Z_,—(=Nu,_, +u, (A4.3.10)

where u, is a white noise process. The process (A4.3.10) has first differences W, = Z, —
Z,_, with autocovariances

vo=02[1+ (1 - A)]
r=-c2(1-A) (A4.3.11)
V= 0 j=2
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Equating (A4.3.9) and (A4.3.11), we can solve for A and 0'3 explicitly. Thus

A? P

A2 2

1-A 1—/1+O'b/63
2 222 A43.12
au—caﬁ (A4.3.12)

Suppose, for example, that the original series has 4 = 0.5 and sz = 0'5; then, A = 0.333
and 62 = 2.25¢2.

A4.3.4 Relation between the IMA(0, 1, 1) Process and a Random Walk

The process
z; =2z, +q (A4.3.13)

which is an IMA(O, 1, 1) process, with A = 1(0 = 0), is called a random walk. If the a, are
steps taken forward or backward at time 7, then z, will represent the position of the walker
at time t.

Any IMA(O, 1, 1) process can be thought of as a random walk buried in white noise
b;, uncorrelated with the shocks a, associated with the random walk process. If the noisy
process is Z, = z, + b,, where z, is defined by (A4.3.13), then using (A4.3.12), we have

Z,=Z,_1—(1=-MNu,_+u,

with
2 2
A2 o 2 %
_1 Syvie ; o, = ﬁ (A4.3.14)
b

A4.3.5 Autocovariance Function of the General Model with Added Correlated
Noise

Suppose that the basic process is an ARIMA process of order (p, d, q):
H(B)V?z, = 6(B)aq,

and that Z, = z, + b, is observed, where the stationary process b,, which has autocovariance
function y;(b), is independent of the process a;, and hence of z,. Suppose that y;(w) is the

autocovariance function for w, = V¢z, = ¢~1(B)8(B)a, and that W, = V¢ Z,. We require
the autocovariance function for W;. Now

VUZ, - b) = ¢~ (B)O(B)g
W, =w, +v,

where

v, =V, = (1 - B)b,
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Hence
(W) =y;w)+y;)
r;) = (1= B)(1 = F)y;(b)
= (=11 = By*y;,4(b)
and

(W) = 7;w) + (=11 = BY**y;,4(b) (A4.3.15)

For example, suppose that correlated noise b, is added to an IMA(O, 1, 1) process
defined by w, = Vz;, = (1 — 0 B)a,. Then the autocovariances of the first difference W; of
the “‘noisy’’ process will be

YoW) = a2(1 + 0%) + 2[yy(b) — r,(b)]

nw) = —029 + [271(5) = vo(b) — v2(b)]
Vj(W) = [27j(b) - Yj_l(b) - 7j+1(b)] j=>2

In particular, if b, was first-order autoregressive, so that b, = ¢b,_; + «a;,

roW) = o2(1 + 6%) + 27, (b)(1 — ¢)
(W) = =620 — y(b)(1 — ¢)
v (W) ==y~ (1 - ¢)*  j22

where y,(b) = o-ﬁ /(1= ¢2). In fact, from (A4.3.5), the resulting noisy process Z, = z, + b,
is in this case defined by

(1-¢B)VZ,=(1—-¢pB)(1—0B)a, +(1 - Ba,

which will be of order (1, 1, 2), and for the associated ARMA(1, 2) process W, = VZ,, we
know that the autocovariances satisfy y;(W) = ¢y;_ (W) for j > 3 [e.g., see (3.4.3)] as is
shown explicitly above.

EXERCISES

4.1. For each of the models
1) (1-B)z,=(-0.5B)q,
(2) (1 -B)z;,=(1-0.2B)q,
3) 1-05B)(1-B)z, =g,
4 (1-02B)(1-B)z;, =aq,
(5) 1-0.2B)(1 - B)z; =(1 —0.5B)q,
(a) Obtain the first seven y; weights.

(b) Obtain the first seven z; weights.
(¢) Classify as a member of the class of ARIMA(p, d, q) processes.
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For the five models of Exercise 4.1, and using where appropriate the results there
obtained,

(a) Write each model in random shock form.

(b) Write each model as a complementary function plus a particular integral in
relation to an origin k =t — 3.

(¢) Write each model in inverted form.

Consider the IMA(O, 2, 2) process with parameters ; = 0.8 and 6, = —0.4.
(a) Is the process invertible? If so, what is the expected pattern of the # weights?
(b) Calculate and plot the first ten 7 weights for the original series z, and comment.

(c) Calculate and plot the first ten z weights for the differenced series w, =
(1 - B)’z,.

4.4 Given the following series of random shocks g;, and given that z, = 20,z_; = 19,

4.5.

4.6.

4.7.

t a, t a, t a,
0 -03 5 =06 10 -04
1 0.6 6 1.7 11 0.9
2 0.9 7 =09 12 0.0
3 0.2 8§ -13 13 -14
4 0.1 9 -06 14 =06
(a) Use the difference equation form of the model to obtain z, z,, ..., z;4 for each

of the five models in Exercise 4.1.
(b) Plot the resulting series.

Using the inverted forms of each of the models in Exercise 4.1, obtain z;,, z;3, and
Z14, using only the values z;, z,, ..., z; derived in Exercise 4.4 and a;,, a3, and
ay4. Confirm that the values agree with those obtained in Exercise 4.4.

Consider the IMA(O, 1, 1) model (1 — B)z; = (1 — 6)a,, where the g, are i.i.d.

N(, ¢2).

(a) Derive the expected value and variance of z,, t = 1,2,..., assuming that the
process starts at time ¢ = 1 with z, = 10.

(b) Derive the correlation coefficient p, between z, and z;_,, conditioning on z, =
10. Assume that 7 is much larger than the lag k.

(c) Provide an approximate value for the autocorrelation coefficient p; derived in
part (c).

If z, = Z;’;l 7z then for models (1) and (2) of Exercise 4.1, which are of

the form (1 — B)z, = (1 — 0B)a,, Z, is an exponentially weighted moving average.

For these two models, by actual calculation, confirm that Z;;, Z;,, and Z;5 satisfy
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4.8.

4.9.

4.10.

4.11.

4.12.

LINEAR NONSTATIONARY MODELS

the relations

z, =z, +a;, (seeExercise4.5)
Z, =%+ (1 = 0)a
=(1-0)z;,+0z,_,

If wy; = (1 —0B)ay; and w,, = (1 — 6, B)a,,, show that w3, = w,, + w,; may be
written as w3, = (1 — 3 B)as,, and derive an expression for 65 and o-i in terms of
the parameters of the other two processes. State your assumptions. \

Suppose that Z, = z, + b;, where z, is a first-order autoregressive process (1 —
¢B)z, = a, and b, is a white noise process with variance ai. What model does
the process Z; follow? State your assumptions.

(a) Simulate a time series of N =200 observations from an IMA(O, 2, 2) model with
parameters 6, = 0.8 and 6, = —0.4 using the arima.sim() function in R; type
help(arima.sim) for details. Plot the resulting series and comment on its behavior.

(b) Estimate and plot the autocorrelation function of the simulated time series.

(c) Estimate and plot the autocorrelation functions of the first and second differences
of the series.

(d) Comment on the patterns of the autocorrelation functions generated above. Are
the results consistent with what you would expect to see for this IMA(O, 2, 2)
process?

Download the daily S& P 500 Index stock price values for the period January 2, 2014

to present from the Internet (e.g., http://research.stlouisfed.org).

(a) Plot the series using R. Calculate and graph the autocorrelation and partial
autocorrelation functions for this series. Does the series appear to be stationary?

(b) Repeat the calculations in part (a) for the first and second differences of the
series. Describe the effects of differencing in this case. Can you suggest a model
that might be appropriate for this series?

(c) The return or relative gain on a stock can be calculated as (z, — z,_;)/z, or
log(z;) — log(z,_;). Perform this calculation and comment on the stationarity of
the resulting series.

Repeat the analysis in Exercise 11 for the Dow Jones Industrial Average, or for a
time series of your own choosing.
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In Chapter 4, we discussed the properties of autoregressive integrated moving average
(ARIMA) models and examined in detail some special cases that appear to be common in
practice. We will now show how these models may be used to forecast future values of
an observed time series. In Part Two, we will consider the problem of selecting a suitable
model of this form and fitting it to actual data. For the present, however, we proceed as
if the model were known exactly, bearing in mind that estimation errors in the parameters
will not seriously affect the forecasts unless the time series is relatively short.

This chapter will focus on nonseasonal time series. The forecasting, as well as model
fitting, of seasonal time series is described in Chapter 9. We show how minimum mean
square error (MSE) forecasts may be generated directly from the difference equation form
of the model. A further recursive calculation yields probability limits for the forecasts. It is
emphasized that for practical computation of the forecasts, this approach via the difference
equation is the simplest and most elegant. However, to provide insight into the nature of
the forecasts, we also consider them from other viewpoints. As a computational tool, we
also demonstrate how to generate forecasts and associated probability limits using the R
software.

5.1 MINIMUM MEAN SQUARE ERROR FORECASTS AND THEIR
PROPERTIES

In Section 4.2, we discussed three explicit forms for the general ARIMA model:

»(B)z, = 6(B)a, (5.1.1)

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
© 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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where @(B) = ¢p(B)V?. We begin by recalling these three forms since each one sheds light
on a different aspect of the forecasting problem.

We will consider forecasting a value z,,;,/ > 1, when we are currently at time 7. This
forecast is said to be made at origin t for lead time I. We now summarize the results of
Section 4.2, but writing ¢ + / for ¢ and ¢ for k.

Three Explicit Forms for the Model. An observation z,; generated by the ARIMA process
may be expressed as follows:

1. Directly in terms of the difference equation by

Ziyl = P1Zig1-1 + o+ CpraZipi—p—q — 01041 —
—0,a141-g+ a1y (5.1.2)

2. As an infinite weighted sum of current and previous shocks a;:

e
Ze) = ) WA (5.1.3)
Jj=0

where y; = 1 and, as in (4.2.5), the y weights may be obtained by equating coeffi-
cients in

@(B)(1 +y B+, B> + ---) = 6(B) (5.1.4)

Equivalently, for positive /, with reference to origin k < ¢, the model may be written
in the truncated form:

Zigl = Qpy TG+ F WA
+ y,a; + -+ Yitl—k—19%+1 + Ck(t +1[ - k)
:at+l+wlat+l—l+'“+Wl—lat+l +Ct(l) (515)
where C,(t + [ — k) is the complementary function relative to the finite origin k of
the process. From (4.2.19), we recall that the complementary function relative to the

forecast origin ¢ can be expressed as C,(I) = C, (t + [ — k) + y,a;, + w10, 1 + - +
Wiyi_k_1441- Informally, C,(]) is associated with the truncated infinite sum:

G = Z Wil (5.1.6)
=l

3. As an infinite weighted sum of previous observations, plus a random shock,

o]

o = D M Z g ¥ G (5.1.7)
j=1
Also, if d > 1,

e8]

B ()= ) 7z (5.1.8)

Jj=1
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will be a weighted average, since then Z;’;l 7; = 1. As in (4.2.22), the = weights
may be obtained from

@(B) = (1 - x,B—,B* - --)0(B) (5.1.9)

5.1.1 Derivation of the Minimum Mean Square Error Forecasts

Now suppose, at origin ¢, that we are to make a forecast Z,(/) of z,,;, which is to be a linear
function of current and previous observations z;, z,_y, Z;_s, -... Then, it will also be a linear
function of current and previous shocks a;, a,_1, a;_, ...

Suppose, then, that the best forecast is

z,() = l//l*at + W;:_lat—l + W;k+2at—2 + -

where the weights 1//1*, II/1*+1’ ... are to be determined. Then, using (5.1.3), the mean square
error of the forecast is

Elz,, - 2t(1)]2 =1+ le oot 11112_1)0'2

+ ) Wiy — v} )00 (5.1.10)
=0

which is minimized by setting Wl*+j = ;- This conclusion is a special case of more
general results in prediction theory (Wold, 1938; Kolmogoroff (1939, 1941a, 1941b),
Wiener, 1949; Whittle, 1963). We then have

Zypy = (@ F W11+ FW_1a041)
+Wa, + g + ) (5.1.11)
=e,() + 2,() (5.1.12)

where e,(/) is the error of the forecast Z,(/) at lead time /.

Certain important facts emerge. As before, denote E[z,,,|z;, z,_;, ...], the conditional
expectation of z,,; given the knowledge of all the z’s up to time ¢, by E;[z,,;]. We will
assume that g, are a sequence of independent random variables.

1. Then, E[at+j|z,, Z,1,...] =0, j >0, and so from (5.1.3),
2,([)=l//,at+l//,+1at_1 + - :Et[zt+l] (5113)

Thus, the minimum mean square error forecast at origin ¢, for lead time /, is the
conditional expectation of z,,; at time t. When 2,(/) is regarded as a function of /
for fixed ¢, it will be called the forecast function for origin . We note that a minimal
requirement on the random shocks g, in the model (5.1.1) in order for the conditional
expectation E,[z,,,], which always equals the minimum mean square error forecast,
to coincide with the minimum mean square error linear forecast is that E;[a,, ;] = 0,
J > 0. This property may not hold for certain types of nonlinear processes studied,
for example, by Priestley (1988), Tong (1983, 1990), and many subsequent authors.
Such processes may, in fact, possess a linear representation as in (5.1.1), but the
shocks a; will not be independent, only uncorrelated, and the best forecast E;[z,,]
may not coincide with the best linear forecast Z,(/) as obtained in (5.1.11).
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. The forecast error for lead time [ is

el) = Ay + W1Grp1-1 + o F Y-1a04 (5.1.14)
Since
Ele,(D]=0 (5.1.15)
the forecast is unbiased. Also, the variance of the forecast error is

V() =varle (D] = +y] +y; + - +w )02 (5.1.16)

. It is readily shown that not only is Z,(/) the minimum mean square error forecast

of z,,;, but that any linear function ZIL=1 w,; 2,(I) of the forecasts is also a minimum

mean square error forecast of the corresponding linear function Zf: | Wiz of the
future observations. For example, suppose that using (5.1.13), we have obtained, from
monthly data, minimum mean square error forecasts Z,(1), 2,(2), and Z,(3) of the sales
of a product 1, 2, and 3 months ahead. Then, it is true that 2,(1) + Z,(2) + Z,(3) is the
minimum mean square error forecast of the sales z,, | + z,,, + z,,3 during the next
quarter.

. The Shocks as One-Step-Ahead Forecast Errors. Using (5.1.14), the one-step-ahead

forecast error is
e()=1z,1—-2,0)=a,, (5.1.17)

Hence, the shocks a,, which generate the process, and which have been introduced
so far merely as a set of independent random variables or shocks, turn out to be the
one-step-ahead forecast errors.

It follows that for a minimum mean square error forecast, the one-step-ahead
forecast errors must be uncorrelated. This makes sense, for if the one-step-ahead errors
were correlated, the forecast error a,,; could, to some extent, be predicted from
available forecast errors a;, a,_;, a;_», .... If the prediction so obtained was d,,, then
z,(1) + a,,; would be a better forecast of z,,; than was Z,(1).

. Correlation between the Forecast Errors. Although the optimal forecast errors at lead

time 1 will be uncorrelated, the forecast errors for longer lead times in general will
be correlated. In Section AS5.1.1, we derive a general expression for the correlation
between the forecast errors e,(/) and e,_;(/), made at the same lead time / from
different origins t and t — j.

Now, it is also true that forecast errors e,(/) and e,(/ + j), made at different lead
times from the same origin ¢, are correlated. One consequence of this is that there will
often be a tendency for the forecast function to lie either wholly above or below the
values of the series, when they eventually come to hand. In Section A5.1.2, we give a
general expression for the correlation between the forecast errors e, (/) and e,(! + j),
made from the same origin.

5.1.2 Three Basic Forms for the Forecast

We have seen that the minimum mean square error forecast 2,(/) for lead time / is the
conditional expectation E,[z,, ], of z,;, atorigin 7. Using this fact, we can write expressions
for the forecast in any one of three different ways, corresponding to the three ways of
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expressing the model summarized earlier in this section. To simplify the notation, we
will temporarily adopt the convention that square brackets imply that the conditional
expectation, at time ¢, is to be taken. Thus,

lai] = Eila.y] (2411 = E/[2:4]

For / > 0, the following are three different ways of expressing the forecasts:

1. Forecasts from Difference Equation. Taking conditional expectations at time ¢ in
(5.1.2), we obtain

(2] = 2,(D) = @il ziy1] + - + @pralZigi—p-al — 01la;4 1]
=0, [aryy] + (2] (5.1.18)

2. Forecasts in Integrated Form. Use of (5.1.3) gives

(2] = 2,(D) = [l +wilag 1+ - +yi_glagy]
+ylal+wyqla,_ ]+ - (5.1.19)

yielding the form (5.1.13) discussed above. Alternatively, using the truncated form
of the model (5.1.5), we have

[z,0)) = 2,(D) = [a, ] +wqla,y 1+ -
+Wik—1lag ] + Gt +1 = k)
= [al‘+l] + W] [aH-l—l] 4+ .o 4+ Wl—l[at-}—l] + Cl(l) (5120)

where C,(/) is the complementary function at origin t.

3. Forecasts as a Weighted Average of Previous Observations and Forecasts Made at
Previous Lead Times from the Same Origin. Finally, taking conditional expectations
in (5.1.7) yields

(2] = 2(1) = ). 7 (2001 + [a4] (5.1.21)
=1

It is to be noted that the minimum mean square error forecast is defined in terms of
the conditional expectation

(z01) = Eilzi] = Elzi44124, 2215 -]

which theoretically requires knowledge of the z’s stretching back into the infinite
past. However, the requirement of invertibility imposed on the ARIMA model ensures
that the = weights in (5.1.21) form a convergent series. Hence, for the computation of
a forecast, the dependence on z,_; for j > k can typically be ignored. In practice, the
7 weights usually decay rather quickly, so whatever form of the model is employed,
only a moderate length of series z,, z;_, ..., z,_; is needed to calculate the forecasts
to sufficient accuracy. The methods we discuss are easily modified to calculate the
exact finite sample forecasts, E[z,,;12;, 2,1, ..., z], based on the finite length of
dataz,, z,_q,...,2;.
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To calculate the conditional expectations in expressions (5.1.18-5.1.21), we note that if j
is a nonnegative integer,

[Zz—j] = Et[zt—j] = Zi—j j=0,12,..
[Zt+j] = Et[zt”] = 2,(j) ) j =1,2,... (5.1.22)
[at_j] = E,[at_j] =a_;=2_;— Z’t—j—l(l) j=0,1,2,...

[a,+j]=E,[a,+j]=0 j=172,...

Therefore, to obtain the forecast Z,(/), one writes down the model for z,,; in any one of
the three explicit forms above and treats the terms on the right according to the following
rules:

1. The z,_ y (j =0,1,2,...), which have already occurred at origin ¢, are left unchanged.

2. The z,,;(j = 1,2, ...), which have not yet occurred, are replaced by their forecasts
Z,(j) at origin t.

3. The at_j(j =0,1,2,...), which have occurred, are available from Zyj— 2t—j—l (D).

4. The a,,;(j = 1,2, ...), which have not yet occurred, are replaced by zeros.

For routine calculation, it is easiest to work directly with the difference equation form
(5.1.18). Hence, the forecasts for I = 1,2, ... are calculated recursively as

p+d q

2= @0 =)= 00,
j=1 j=l

where £,(—j) = [z,_;] denotes the observed value z,_; for j > 0, and the moving average
terms are not present for lead times [ > g.

Example: Forecasting Using the Difference Equation Form. We will show in Chapter 7
that the viscosity data in Series C can be represented by the model

(1-0.8B)(1 - B)z,,| = a,;;
that is,
(1-1.8B+0.8B%)z,, = a,,,
or
Zow = 18241 =082, 5 +ayy
The forecasts at origin ¢ are given by

2,(1) =18z, - 0.8z,_;
2,(2) = 1.82,(1) — 0.8z, (5.1.23)
z2,(l)=1.82,(1-1)—-0.82,(/ - 2) 1=3,4,..

yielding in a simple recursive calculation.

There are no moving average terms in this model. However, such terms produce no
added difficulties. Later in this chapter, we have a series arising in a control problem, for
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which the model at time ¢ + / is
V22, =1 —-09B+0.5B%a,,,
or, equivalently, z,,, = 2z,, 1 — z,.y_» + a,,; —0.9a,,,_; + 0.5a,,,_,. Then,

2,(1)=2z,—z,_, —0.9a, +0.5a,_,
2,(2) = 22,(1) - z, + 0.5a,
2 ()=22(-1)—2(-2) [=3,4,..

In these expressions, we remember that a, = z, — 2,_1(1),a,_; = z,_; — 2,_,(1), and the
forecasting process may be started off initially by setting unknown a values equal to their
unconditional expected values of zero. Thus, assuming by convention that data are available
starting from time s = 1, the necessary a,’s are computed recursively from the difference
equation form (5.1.2) of the model:

pt+d

q
a,=z,— %2, (1)=2z,— <Z ®jZgj— Zejas_j) s=p+d+1,..,t
j=1 =1

Jj=

setting initial a,’s equal to zero, for s < p+ d + 1. Alternatively, it is possible to estimate
the necessary initial a,’s, as well as the initial z,’s, using back-forecasting. This technique,
which essentially determines the conditional expectations of the presample a;’s and z,’s,
given the available data, is discussed in Chapter 7 with regard to parameter estimation of
ARIMA models. However, provided that a sufficient length of data series z;, z;_y, ..., 2|
is available, the two different treatments of the initial values will have a negligible effect
on the forecasts 2 (/).

5.2 CALCULATING FORECASTS AND PROBABILITY LIMITS

5.2.1 Calculation of y Weights

It is often the case that forecasts are needed for several lead times 1,2, ..., L. As already
shown, the difference equation form of the model allows the forecasts to be generated
recursively in the order 2,(1), 2,(2), 2,(3), and so on. To obtain probability limits for these
forecasts, it is necessary to calculate the weights y |, y,, ...,y _;. This is accomplished
using the relation

@(B)y B = 6(B) (5.2.1)
that is, by equating coefficients of powers of B in

(1= B= =, B"™) (1+yB+y,B* + )
=(1-6,B-0,B"—-—0,B%) (5.2.2)
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Knowing the values of the ¢’s and the 8’s, the values of y may be obtained as follows:

v =9, —0,

Vo =@y + @y — 0
: (5.2.3)

W= @1+ Ppra¥iopa —0;

where yy =1, y; =0 for j <0, and 6; =0 for j > q. If K is the greater of the integers
p+d —1and g, then for j > K the y’s satisfy the difference equation:

V; =01t oy ot @00, 5.2.4)

Thus, the y’s are easily calculated recursively. For example, for the model (1 — 1.8 B +
0.8B?)z, = a,, appropriate to Series C, we have

(1-1.8B+08B>)(1+y,B+y,B>+-)=1
Hence, with ¢; = 1.8 and ¢, = —0.8, we obtain

wo=1
l[/l = 1.8
l//J = 181[/1_1 - OSII/J—Z J = 2, 394’

so that y, = (1.8 X 1.8) — (0.8 X 1.0) = 2.44 and y3 = (1.8 X 2.44) — (0.8 X 1.8) = 2.95,
and so on.

Before proceeding to discuss the probability limits, we briefly mention the use of the y
weights for updating of forecasts as new data become available.

5.2.2 Use of the y Weights in Updating the Forecasts

Using (5.1.13), we can express the forecasts Z,, (/) and Z,(/ + 1) of the future observation
Z,,;+1 made at origins  + 1 and 7 as

2D =wia + W0+ Wipa_ g + -
U+ D =wa+y0a+

On subtraction, it follows that
Zoa)=z,(+1)+ya,, (5.2.5)

Explicitly, the t-origin forecast of z,,,, | can be updated to become the 7 + 1 origin forecast
of the same z;,,,;, by adding a constant multiple of the one-step-ahead forecast error
Q) = 2,4 — 2;(1) with multiplier y;.

This leads to a rather remarkable conclusion. Suppose that we currently have forecasts
at origin ¢ for lead times 1,2, ..., L. Then, as soon as z,,; becomes available, we can
calculate a,, | = z,,; — £,(1) and proportionally update to obtain forecasts 2, (/) = 2,(I +
1) + y,a,,, at origin ¢ + 1, for lead times 1,2, ..., L — 1. The new forecast Z,, (L), for
lead time L, cannot be calculated by this means but is easily obtained from the forecasts at
shorter lead times, using the difference equation.
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TABLE 5.1 Variance Function for Series C

) 1 2 3 4 5 6 7 8 9 10
V(h/e: 1.00 424 10.19 1896 3024 43.86 59.46 7679 9552 115.41

5.2.3 Calculation of the Probability Limits at Different Lead Times

The expression (5.1.16) shows that the variance of the /-steps-ahead forecast error for any
origin # is the expected value of

e%(l) = [Zt+l - 2[(1)]2

and is given by

-1
V() = (1 +Y wf) o2
j=1

Jj=

For example, using the y weights calculated above, the function V'(I)/ CTZ for Series C is
shown in Table 5.1.

Assuming that the @’s are normal, it follows that given information up to time ¢, the
conditional probability distribution p(z;,|z;, z;_1, ...) of a future value z,,, of the process
will be normal with mean Z,(/) and standard deviation

-1 1/2
o(l) = (1 +Z"’J‘2> o,
j=1

Thus, the variate (z;,; — 2,(/))/o(/) will have a unit normal distribution and so Z,(/) +
Ugjp0(l) provides limits of an interval such that z,,, will lie within the interval with
probability 1 — £, where u, /, is the deviate exceeded by a proportion & /2 of the unit normal
distribution. Figure 5.1 shows the conditional probability distributions of future values
Zy1, 292, 293 for Series C, given information up to origin ¢ = 20.

We show in Chapter 7 how an estimate sg, of the variance 03, may be obtained from
time series data. When the number of observations on which this estimate is based is, say,
at least 50, s, may be substituted for ¢, and approximate 1 — & probability limits z,,;(—)
and z,,,(+) for z,,, will be given by

-1 1/2
Z(2) = 2,(D) x Ue/2 <1 + IIsz> S, (5.2.6)
i=1

It follows from Table 7.6 that for Series C, s, = 0.134; hence, the 50 and 95% limits,
for z,,,, for example, are given by
50% limits : 2,(2) + (0.674)(1 + 1.8%)1/2(0.134) = 2,(2) £ 0.19
95% limits : Z,(2) + (1.960)(1 + 1.8%)172(0.134) = 2,(2) £0.55
Figure 5.2 shows a section of Series C together with the several-steps-ahead forecasts

(indicated by crosses) from origins ¢ = 20 and ¢ = 67. Also shown are the 50 and 95%
probability limits for z,,,;, for I =1 to 14. The interpretation of the limits z,,;(—) and
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113 17 18 19 20 21 22 23 24

FIGURE 5.1 Conditional probability distributions of future values z,;, z,,, and z,; for Series C,
given information up to origin t = 20.

Z,,;(4+) should be noted carefully. These limits are such that given the information available
at origin t, there is a probability of 1 — € that the actual value z,,;, when it occurs, will be
within them, that is,

PI”{ZH_I(—) < 21 < Zt+l(+)} =1l-e

Also, the probabilities quoted apply to individual forecasts and not jointly to the forecasts
at different lead times. For example, it is true that with 95% probability, the limits for lead
time 10 will include the value z,, o when it occurs. It is not true that the series can be
expected to remain within all the limits simultaneously with this probability.

5.2.4 Calculation of Forecasts Using R

Forecasts of future values of a time series that follows an ARIMA(p,d,q) can be
calculated using R. A convenient option is to use the function sarima.for() in the
astsa package. For example, if z represents the observed time series, the command

281
..oooc.... 95 Limi xXXXx»
imit ¥
26+ 0.‘.. % {ﬁx n....
L x ®%eqeensce
24 | . 50% Limit ® ®ececee 00 ,0004,0
. [}
T 2 Xppoooox o Forecast function,, e
o’ ..o
. 0

2 e .o.ou..voo"""'....

181

16+

| —
144
12 L 1 1 1
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FIGURE 5.2 Forecasts for Series C and probability limits.
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FIGURE 5.3 Forecasts for Series C with +2 prediction error limits generated using R.

sarima.for(z,n.ahead,p,d,q,no.constant=TRUE) will fit the ARIMA(p,d,q) model
without a constant term to the series and generate forecasts from the fitted model. The
argument n.ahead specifies the number of forecasts to be generated. The output gives the
forecasts and the standard errors of the forecasts, and supplies a graph of the forecasts along
with their +/— 2 prediction error limits. Thus, forecasts up to 20 steps ahead for Series C
based on the ARIMA(1, 1, 0) model (1 — ¢ B)(1 — B) = g, are generated as follows:

library (astsa)

seriesC=read.table ("SeriesC.txt, header=TRUE)
ml=sarima.for (seriesC,20,1,1,0,no.constant=FALSE)
ml % prints output from file ml

vV V. V V

This code generates an output file ‘“m1’’ that includes the forecasts (‘‘pred’’) and the
prediction errors (‘‘se’”) of the forecasts. These can be accessed as m1$pred and m1$se, if
needed for further analysis. Figure 5.3 shows a graph of the forecasts and their associated
+2 prediction error limits for Series C. We note that the limits become wider as the lead time
increases, reflecting the increased uncertainty due to the fact that the series is nonstationary
and does not vary around a fixed mean level.

5.3 FORECAST FUNCTION AND FORECAST WEIGHTS

Forecasts are calculated most simply by direct use of the difference equation. From the
purely computational standpoint, the other model forms are less convenient. However,
from the point of view of studying the nature of the forecasts, it is useful to consider in
greater detail the alternative forms discussed in Section 5.1.2 and, in particular, to consider
the explicit form of the forecast function.
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5.3.1 Eventual Forecast Function Determined by the Autoregressive Operator

Attime 7 + I, the ARIMA model may be written as

Z ) — P1Z041-1 ~ T PprdZigl—p—d = G — 01014
= 0,004, (5.3.1)

Taking the conditional expectations at time ¢, we have, for / > g,

2 -2 =D == 2(-p-d)=0 [>gq (5.3.2)

where itis understood that Z,(—j) = z,_; for j > 0. This difference equation has the solution

() = b)) o)+ b 1D+ + B0 gy (D) (53.3)

for I > g — p—d. Note that the forecast Z,(/) is the complementary function introduced
in Chapter 4. In (5.3.3), fo(D), f1(D, ... ,fp+d_1(l) are functions of the lead time /. In
general, they could include polynomials, exponentials, sines and cosines, and products of
these functions. The functions f(/), f1([), ..., fp4q—1(I) consist of d polynomial terms I,
i=0,...,d —1,ofdegree d — 1, associated with the nonstationary operator vi=(1-B)Y,
and p damped exponential and damped sinusoidal terms of the form G' and D' sin(2z f1 +
F), respectively, associated with the roots of ¢(B) = 0 for the stationary autoregressive
operator. That is, the forecast function has the form

2= b0 + 601+ o+ b0 16D £, (1) + 6D fi1 (D)

d+1
+ - +b(t)d 1fp+d l(l)

For instance, if ¢p(B) = 0 has p distinct real roots G‘1 . G_1 then the last p terms in

z,() are bg)Gl bgilGl b(ti e 1Gl Since the operator q’)(B) is stationary, we have

|G| < 1and D < 1 and the last p terms in Z,(/) are transient and decay to zero as / increases.

Hence, the forecast function is dominated by the remaining polynomial terms, Zd ! (') I,

as [ increases. For a given origin t, the coefficients b® are constants applying to all lead
times /, but they change from one origin to the next, adapting themselves appropriately
to the particular part of the series being considered. From now on we call the function
defined by (5.3.3) the eventual forecast function; ‘‘eventual’’ because when it occasionally
happens that g > p + d, it supplies the forecasts only for lead times [ > ¢ — p — d.

We see from (5.3.2) that it is the general autoregressive operator ¢(B) that determines
the mathematical form of the forecast function, that is, the nature of the f’s in (5.3.3).
Specifically, it determines whether the forecast function is to be a polynomial, a mixture
of sines and cosines, a mixture of exponentials, or a combination of these functions.

5.3.2 Role of the Moving Average Operator in Fixing the Initial Values

While the autoregressive operator determines the nature of the eventual forecast function,
the moving average operator is influential in determining how that function is to be “‘fitted”’
to the data and hence how the coefficients bg), b(lt), .. b(’l del in (5.3.3) are to be calculated
and updated.
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For example, consider the IMA(O0, 2, 3) process:

Zoy =22yt 2 =y — 010y — 0, 5 —03a,, 4
Taking the conditional expectation, the forecast function becomes

2(1) =2z, — z,_y — 010, — Ora,_ — O30,
2,(2) = 22,(1) — z; — 6,4, — O304,

2,(3) = 22,(2) — 2,(1) — O3a,
z(h=2z010-1)-2(1-2) [>3

Therefore, since @(B) = (1 — B)? in this model, the eventual forecast function is the unique
straight line

=00+ 1>1

which passes through Z,(2) and 2,(3) as shown in Figure 5.4. However, note that if the 6,
term had not been included in the model, then ¢ — p — d = 0, and the forecast would have
been given at all lead times by the straight line passing through 2,(1) and 2,(2).

In general, since only one function of the form (5.3.3) can pass through p + d points, the
eventual forecast function is that unique curve of the form required by ¢(B), which passes
through the p + d “‘pivotal’’ values 2,(q), 2,(q — 1), ..., 2,(q — p — d + 1), where 2,(—j) =
z,_; (G =0,1,2,...). In the extreme case where g = 0, so that the model is of the purely
autoregressive form ¢(B)z, = a,, the curve passes through the points z;, z,_y, ..., Z;_,_g41-
Thus, the pivotal values can consist of forecasts or of actual values of the series; they are
indicated in the figures by circled points.

The moving average terms help to decide the way in which we ‘‘reach back’’ into the
series to fit the forecast function determined by the autoregressive operator @(B). Figure
5.5 illustrates the situation for the model of order (1,1,3) given by (1 — ¢B)Vz, = (1 —
6, B — 0, B — 65 B%)a,. The (hypothetical) weight functions indicate the linear functional
dependence of the three forecasts, 2,(1), 2,(2), and 2,(3), on z,,z,_;, 2;_5, .... Since the
forecast function contains p + d = 2 coefficients, it is uniquely determined by the forecasts
2,(3) and 2,(2), that is, by 2,(¢q) and Z,(qg — 1). We next consider how the forecast weight

functions, referred to above, are determined.
x @/"
. Pivotal forecasts
T * ) * )

FIGURE 5.4 Eventual forecast function for an IMA(O, 2, 3) process.
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FIGURES.5 Dependence of forecast function on observations fora (1, 1, 3) process (1 — ¢B)Vz, =
(1-6,B—0,B*>-0,B%)a,.

5.3.3 Lead ! Forecast Weights

The fact that the general model may also be written in inverted form,
a,=n(B)z, = (1 — 7, B — n1,B*> — 13B> — --.)z, (5.3.4)
allows us to write the forecast as in (5.1.21). On substituting for the conditional expectations
in (5.1.21), we obtain
z,() = Z 72, (I =) (5.3.5)
j=1
where, as before, 2,(—h) = z,_, for h =0, 1,2, .... Thus, in general,
zZ) =m0 =D+ +m_12,(D+mz, + 7w 2, + (5.3.6)
and, in particular,
2 =mz,+ 7z, + 32,9+

The forecasts for higher lead times may also be expressed directly as linear functions of
the observations z,, z,_;, z;_,, .... For example, the lead 2 forecast at origin ¢ is

2,(2) 7712[(1)"‘7[22,4‘7732,_1 + .-

(6] [se]
=7 Z TjZpy1—j t Z Tjt12141—j
Jj=1 Jj=1

()
- 2
= 2 T 21—
j=
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where

2P =mmtry, J=12 (53.7)

Proceeding in this way, it is readily shown that

gD =Y 1Vz1; (5.3.8)
j=1
where
-1
A =g+ Y =12 (5.3.9)
h=1

and 7" = ;. Alternative methods for computing these weights are given in

Appenélix AS5.2.
. As seen earlier, the 7;’s themselves may be obtained explicitly by equating coefficients
in

0(B)(1 — m B — 1, B> — ) = o(B)

Given these values, the s may readily be obtained, if so desired, using (5.3.9) or the

results of Appendix A5.2. As an example, consider again the model
V2z, =(1-0.9B+0.5B%)q,
which was fitted to a series, a part of which is shown in Figure 5.6. Equating coefficients in

(1-09B+0.5B*)(1 —7,B—n,B*—-)=1-2B + B?

=% Weights
¥
|
68 . : '..-...
r  Weights I ‘e,
|
|
66
I ”“""“ﬂTIJ‘—T: 509, Limit
' 959, Limit
Z, 64} .’
e .......‘. c.'..
e L]
62 s .0 00 ”
| ————tp

FIGURES5.6 Part of aseries fitted by V?z, = (1 — 0.9B + 0.5 B?)a, with forecast function for origin
t = 30, forecast weights, and probability limits.
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TABLE 5.2 & Weights for the Model
V3z,=(1-0.9B + 0.5B%)a,

i ”;1) 7[;2)
1 1.100 1.700
2 0.490 0.430
3 -0.109 —0.463
4 —0.343 —0.632
5 —0.254 —0.336
6 —-0.057 0.013
7 0.076 0.181
8 0.097 0.156
9 0.049 0.050
10 —0.004 —0.032
11 —0.028 —0.054
12 -0.023 —-0.026

yields the weights ; = E;l), from which the weights ¥ may be computed using (5.3.7).
The two sets of weights are given for j = 1,2, ..., 12 in Table 5.2. In this example, the lead
1 and lead 2 forecasts, expressed in terms of the observations z,, z,_y, ..., are

2,(1)=1.10z, +0.49z,_; — 0.11z,_, — 0.34z,_3 — 0.25z,_4 — -
and
2,(2)=1.70z, + 0.43z,_; — 0.46z,_, — 0.63z,_3 — 0.34z,_4 + -+

In fact, the weights follow damped sine waves as shown in Figure 5.6.

5.4 EXAMPLES OF FORECAST FUNCTIONS AND THEIR UPDATING

The forecast functions for some special cases of the general ARIMA model will now
be considered. We exhibit these in the three forms discussed in Section 5.1.2. While the
forecasts are most easily computed from the difference equation itself, the other forms
provide insight into the nature of the forecast function in particular cases.

5.4.1 Forecasting an IMA(0, 1, 1) Process

Difference Equation Approach. We first consider the model Vz; = (1 — 0 B)a,. At time
t + /, the model may be written as

Zogt = Zypp—1 + Gy — 0014
Taking conditional expectations at origin ¢ yields

z,(1) =z, — Oa,

c(h=20-1) 1>2 (5.4.1)
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Hence, for all lead times, the forecasts at origin ¢ will follow a straight line parallel to the
time axis. Using the fact that z, = 2,_;(1) + a,, we can write (5.4.1) in either of two useful
forms.

The first of these is

2,() =2,_,(1) + A, (5.4.2)

where 4 = 1 — 0. This form is identical to the general updating form (5.2.5) for this model,
since y; = A and Z,_;(/ + 1) = 2,_{(!) for all / > 1. This form implies that having seen
that our previous forecast 2,_; (/) falls short of the realized value by a,, we adjust it by an
amount Ag,. It will be recalled from Section 4.3.1 that A measures the proportion of any
given shock a,, which is permanently absorbed by the “‘level’” of the process. Therefore, it
is reasonable to increase the forecast by that part Ag, of a,, which we expect to be absorbed.

The second way of rewriting (5.4.1)isto writea, = z, — 2,_;(1) = z, — 2,_;(1)in (5.4.2)
to obtain

2(0) = Az, + (1= M2, () (5.4.3)

This form implies that the new forecast is a linear interpolation at argument A between old
forecast and new observation. Thus, if A is very small, we rely principally on a weighted
average of past data and heavily discounting the new observation z,. By contrast, if A =1
(6 = 0), the evidence of past data is completely ignored, 2,(I) = z;, and the forecast for
all future time is the current value. With A > 1, we induce an extrapolation rather than an
interpolation between Z,_; (/) and z,. The forecast error must now be magnified in (5.4.2)
to indicate the change in the forecast.

Forecast Function in Integrated Form. The eventual forecast function is the solution of
(1 -B)z,(1)=0. Thus, z,(I) = bg), and since g — p — d = 0, it provides the forecast for all
lead times, that is,

z(=b 1>0 (5.4.4)

For any fixed origin, bg) is a constant, and the forecasts for all lead times will follow a

straight line parallel to the time axis. However, the coefficient bg) will be updated as a
new observation becomes available and the origin advances. Thus, the forecast function
can be thought of as a polynomial of degree zero in the lead time /, with a coefficient that
is adaptive with respect to the origin ¢.

A comparison of (5.4.4) with (5.4.1) shows that

by = 2,(1) = z, — ba,

Equivalently, by referring to (4.3.4), since the truncated integrated form of the model,
relative to an initial origin k, is

Zl = ),St_k_lat_] + at + (Zk - Gak)
= A(at—l + .-+ ak+1) + at + (Zk - Gak)

it follows that

() = b = AS,_ga, + (2, — 0ay) = Aa, + - + agy)) + (2 — Oay)
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Also, v = A(j =1,2,...) and hence the adaptive coefficient bg) can be updated from
origin ¢ to origin ¢t + 1 according to

1
by = b + day, (5.4.5)
similar to (5.4.2).
Forecast as a Weighted Average of Previous Observations. Since, for this process, the

P weights of (5.3.8) are also the weights for the one-step-ahead forecast, we can also
write, using (4.3.6),

2= b0 = Az, + A1 = Nz,_y + A1 = D2z, + (5.4.6)

Thus, for the IMA(O, 1, 1) model, the forecast for all future time is an exponentially weighted
moving average of current and past z’s.

Example: Forecasting Series A. 1t will be shown in Chapter 7 that Series A is closely
fitted by the model

(1-B)z,=(1-0.7B)q,

In Figure 5.7, the forecasts at origins t = 39,40,41, 42, and 43 and also at origin t = 79 are
shown for lead times 1, 2, ..., 20. The weights = s which for this model are forecast weights
for any lead time, are given in Table 5.3. These weights are shown diagrammatically in
their appropriate positions for the forecast 259(/) in Figure 5.7.

Variance Functions. Since for this model, y; = A(j = 1,2, ...), the expression (5.1.16)
for the variance of the lead / forecast errors is

V() =c[1+ (- DA (5.4.7)

Using the estimate si = 0.101, appropriate for Series A, in (5.4.7). 50 and 95% proba-
bility limits were calculated and are shown in Figure 5.7 for origin # = 79.

ol i 909 Limit
x‘xxx-xx:(x'xzxf.ll'x‘xxx'

I st i 502 Limit
:(x'llnxlxln IO ____,___————'—

z, v M W lxxxxxnlxxlil'l!l‘?

16 | | L l\
20 40 &0 80

t—

FIGURE 5.7 Part of Series A with forecasts at origins t = 39,40,41,42,43 and at t = 79.
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TABLE 5.3 Forecast Weights Applied to Previous z’s for Any Lead
Time Used in Forecasting Series A with Model Vz, = (1 — 0.7B)a,

J T; J T;

1 0.300 7 0.035
2 0.210 8 0.025
3 0.147 9 0.017
4 0.103 10 0.012
5 0.072 11 0.008
6 0.050 12 0.006

5.4.2 Forecasting an IMA(0, 2, 2) Process

Difference Equation Approach. We now consider the model szt =(1-6,B- 92B2)a,.
At time ¢ + /, the model may be written as

21 =221 — Ziga F Ay — 010y —0hary
On taking conditional expectations at time ¢, we obtain

Z(1) =22, =z, — 019, = b4,
2,(2) =22,(1) — z; — Oa,
2 =2z010-1)—-2(1-2) >3

from which the forecasts may be calculated. Forecasting of the series of Figure 5.6 in this
way was illustrated in Section (5.1.2). An alternative way of generating the first L — 1 of
L forecasts is via the updating formula (5.2.5),

Zp (D =2,(+ 1) +ya,., (5.4.8)
The truncated integrated model, as in (4.3.15), is
2= A0S 10y + 4SO ay +a,+ b+ 50— k) (5.4.9)

where g =146, and 4} =1-0, —0,, so that y; = 4y + j4,(j = 1,2, ...). Therefore,
the updating function for this model is

(D) =20+ 1)+ (o +14)a,y, (5.4.10)

Forecast in Integrated Form. The eventual forecast function is the solution of (1 —
B)22,(l) = 0, thatis, 2,(I) = bg) + b(lt)l . Since g — p — d = 0, the eventual forecast function
provides the forecast for all lead times, that is,

z(=b"+6"1  1>0 (5.4.11)

Thus, the forecast function is a linear function of the lead time [/, with coefficients that are
adaptive with respect to the origin . The stochastic model in truncated integrated form is

- ©) G0
Zert = AoStii—k—19041-1 T A0S Grpio1 Ty by + b+ —K)
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and taking expectations at origin ¢, we obtain

2,(1) = AoSi—yar + A(la; + (L + Dar_y + -+ (I +1 — k — Dagyy)
+ b0 + b0t +1 - k)

= VoSt + 2182, ay + 5 + 60 = 01+ (4,5, + 61

The adaptive coefficients may thus be identified as

b(t) ﬂ«o —kQ + /11 — k lat—l + bgk) + b(lk)([ - k)

B = 2,8, _pa, + b (5.4.12)
or informally based on the infinite integrated form as b( ) = = ApSa, + 4;5%a,_, and b(t)
A1Sa,. Hence, their updating formulas are

by =07V + 67V 4 44a,

b(’) b(’ Yy da, (5.4.13)

t—1)

similar to relations (4.3.17). The additional slope term b(1 , which occurs in the updating

formula for bg), is an adjustment to change the location parameter b, to a value appropriate
to the new origin. It will also be noted that A, and A are the fractions of the shock a,, which
are transmitted to the location parameter and the slope parameter, respectively.

Forecasts as a Weighted Average of Previous Observations. For this model, then, the
forecast function is a straight line that passes through the forecasts 2,(1) and 2,(2). This
is illustrated for the series in Figure 5.6, which shows the forecasts made at origin t = 30,
with appropriate weight functions. It will be seen how dependence of the entire forecast
function on previous z’s in the series is a reflection of the dependence of Z,(1) and Z,(2)
on these values. The weight functions for z,(1) and Z,(2), plotted in the figure, have been
given in Table 5.2.

The example illustrates once more that while the AR operator ¢(B) determines the form
of function to be used (a straight line in this case), the MA operator is of importance in
determining the way in which that function is ‘“fitted’’ to previous data.

Dependence of the Adaptive Coefficients in the Forecast Function on Previous z’s. Since

for the general model, the values of the adaptive coefficients in the forecast function are

determined by 2,(q), 2,(q — 1), ..., 2,(q — p — d + 1), which can be expressed as functions

of the observations, it follows that the same is true for the adaptive coefficients themselves.
For instance, in the case of the model sz, =(1-09B+0.5 Bz)a, of Figure 5.6,

(o)

N 1

B =450 = Y 20z,
j=1

o0

N 2

5@ =b) +2b = Y 27z,
j=1
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Weights for location parameter b%) [ I

a 'l 1 |

Weights for slope parameter b({) I
. T B |

— T

FIGURE 5.8 Weights applied to previous z’s determining location and slope for the model V2z, =
(1-0.9B +0.5Ba,.

so that

(s
A P 1 2
by =220~ 5@ = 32" ~ 1)z
=

and

[e+]
A A 2 1
b = 2,2) - 2,(1) = Z(nj ) n; Nz
=1

These weight functions are plotted in Figure 5.8.

Variance of the Forecast Error. Using (5.1.16) and the fact that y; = 4, + j4;, the vari-
ance of the lead / forecast error is

Vi)=c2[l+( -1+ él(l — D@1 = DAT+ AgA 11 = D] (5.4.14)

Using the estimate sg =0.032, 45 = 0.5, and 4; = 0.6, the 50 and 95% limits are shown in
Figure 5.6 for the forecast at origin ¢t = 30.

5.4.3 Forecasting a General IMA(0, d, q) Process
As an example, consider the process of order (0, 1,3):
(1-B)z,,, =(—-6,B—0,B*—0;B%a,,,
Taking conditional expectations at time ¢, we obtain
2,(1) =z, =—6,a, — 0,a,_| — 03a,_,
2,2) - 2(1) = =654, — O3a,_,

2,(3) - £,2) = —65q,
2 ()—-20-1)=0 [=4,5,6,...
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-

FIGURE 5.9 Forecast function for an IMA(O, 1, 3) process.

Hence, 2,(I) = 2,(3) = bg) for all I > 2, as expected, since g — p—d = 2. As shown in
Figure 5.9, the forecast function makes two initial ‘‘jumps,”” depending on previous a’s,
before leveling out to the eventual forecast function.

For the IMA(O, d, q) process, the eventual forecast function satisfies the difference
equation (1 — B)?2,(I) = 0, and has for its solution, a polynomial in / of degree d — 1:

2,(1) = b0 + 601+ 6012 4 e 4+ 60 177

This will provide the forecasts Z,(/) for/ — g — d. The coefficients bg), b(lt), e bg)_l must be
updated progressively as the origin advances. The forecast for origin # will make g — d initial
“‘jumps,”” which depend on a,, q,_y, ..., A_gi1s and after this, will follow the polynomial

above.

5.4.4 Forecasting Autoregressive Processes

Consider a process of order (p,d,0), ¢(B)z, = a,. The eventual forecast function is the
solution of @(B)Z,(I) = 0. It applies for all lead times and passes through the last p + d
available values of the series. For example, the model for the IBM stock series (Series B)
is very nearly

(1-B)z, =q,
so that
z,() =z,

The best forecast for all future time is very nearly the current value of the stock. The weight
function for 2,(/) is a spike at time ¢ and there is no averaging over past history.

Stationary Autoregressive Models. The stationary AR(p) process ¢(B)Z; = a, will in gen-
eral produce a forecast function that is a mixture of exponentials and damped sines. In
particular, for p = 1, the model

(1-¢B)zZ =aq, -l<¢p<l1
has a forecast function that, for all / > 0, is the solution of (1 — ¢B)§,(l) = 0. Thus,

E=b0¢  1>0 (5.4.15)
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Course of forecast decided
by current deviation only

(@)

Course of forecast decided
by current and penultimate deviations

(b)

FIGURE 5.10 Forecast functions for (a) the AR(1) process (1 — 0.5B)z, = a,, and (b) the AR(2)
process (1 — 0.75B + 0.5B%)z, = a, from a time origin ¢ = 14.

Also, Z,(1) = ¢Z,, so that bg) = %, and

2() = z,¢!

So, the forecasts for the original process z; are Z,(I) = u + g (z; = p).

Hence, the minimum mean square error forecast predicts the current deviation from
the mean decaying exponentially to zero. In Figure 5.10(a) a time series is shown that is
generated from the process (1 — 0.5B)Z, = a,, with the forecast function at origin ¢ = 14.
The course of this function is seen to be determined entirely by the single deviation
Z14. Similarly, the minimum mean square error forecast for a second-order autoregressive
process is such that the current deviation from the mean is predicted to decay to zero via
a damped sine wave or a mixture of two exponentials. Figure 5.10(b) shows a time series
generated from the process (1 — 0.75B + 0.50B2)z, = a, and the forecast at origin t = 14.
Here the course of the forecast function at origin ¢ is determined entirely by the last two
deviations, Z4 and Z;3.

Variance Function for the Forecast from an AR(1) Process. Since the AR(1) process at
time ¢ + / may be written as

Zi =G+ Pa g+ + ¢1_1at+1 + ¢th
it follows from (5.4.15) that

- 2 1
e()=Zy-z(D=ay+day |+ + ¢’ |
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Hence,

V() = varle,()] = 62(1 + ¢* + - + ¢*I71)

2 1 - 21
= % (5.4.16)

We see that for this stationary process, as / tends to infinity the variance increases to a
constant value y, = 0'2 /(1 — ¢?), associated with the variation of the process about the
ultimate forecast u. This is in contrast to the behavior of forecast variance functions for
nonstationary models that ‘‘blow up’’ for large lead times.

Nonstationary Autoregressive Models of Order (p, d, 0). For the model
H(B)V'z, = a,

the dth difference of the process decays back to its mean when projected several steps
ahead. The mean of V¥z, will usually be assumed to be zero unless contrary evidence is
available. When needed, it is possible to introduce a nonzero mean by replacing V9z, by
the deviation (V9z, — p,,) in the model. For example, consider the model

(1-¢B)(Vz, — u,) = a (5.4.17)

After substituting 7 4 j for ¢ and taking conditional expectations at origin ¢, we readily
obtain [compare with (5.4.15) et seq.]

2() = 2, = 1) =ty = ¢ (2, = 2,21 = Hy)

or w,(j) — Uy, = qu(w, — H,,), where w; = Vz,. This shows how the forecasted difference
decays exponentially from the initial value w, = z, — z,_; to its mean value y,,. On sum-
ming this expression from j = 1 to j = [, that is, using Z,(/) = w,(/) + --- + w,(1) + z,, we
obtain the forecast function

1-— 1
2() =z, + pyl + (2, — 2, — yw)% 1>1

that approaches asymptotically the straight line

FU) = 2+ gl + (2, = 2,y — ﬂw)ﬁ

with deterministic slope p,,. If the forecasts are generated using the function sarima.for()
in the astsa package in R, a deterministic slope can be incorporated into the forecast
function by setting the argument no.constant=FALSE. The treatment of the constant term
can have a big impact on the forecasts and should be considered carefully when a possible
trend might be present.

We now consider the forecasting of some important mixed models.
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5.4.5 Forecasting a (1, 0, 1) Process

Difference Equation Approach. Consider the stationary model
(1-¢B)z, =(1 —0B)q,
The forecasts are readily obtained from
Z,(1) = ¢z, — Oa
K o (5.4.18)
z,(h)=¢z,(1-1) [1>2

The forecasts decay geometrically to the mean, as in the first-order autoregressive process,
but with a lead 1 forecast modified by a factor depending on a; = z, — 2,_;(1). The y
weights are

v=@-0¢"  j=12..

and hence, using (5.2.5), the updated forecasts for lead times 1,2,..., L — 1 could be
obtained from previous forecasts for lead times 2,3, ..., L according to

ZaD =20+ D+ (-09¢'la, +1

Integrated Form. The eventual forecast function for all / > 0 is the solution of (1 —
¢B)Z,(l) = 0, that is,

E=b¢"  1>0
However,

5 = b = $7, - 0a, = [(1 - %) E + %%H(l)] $

Thus,
5 ). , 0
Z(1) = [(1 - 5) Z, + 5z,_l(l)] @' (5.4.19)

Hence, the forecasted deviation at lead / decays exponentially from an initial value, which
is a linear interpolation between the previous lead 1 forecasted deviation and the current
deviation. When ¢ is equal to unity, the forecast for all lead times becomes the familiar
exponentially weighted moving average and (5.4.19) becomes equal to (5.4.3).

Weights Applied to Previous Observations. The n weights, and hence the weights applied
to previous observations to obtain the lead 1 forecasts, as

m=@-00""  j=12,..

Note that the weights for this stationary process sum to (¢p — 8)/(1 — 8) and not to unity.
If ¢ were equal to 1, the process would become a nonstationary IMA(O, 1, 1) process,
the weights would then sum to unity, and the behavior of the generated series would be
independent of the level of z,.

For example, Series A is later fitted to a (1,0, 1) model with ¢ = 0.9 and 6 = 0.6,
and hence the weights are 7; = 0.30, 7, = 0.18, 3 = 0.11, z, = 0.07, ..., which sum to
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0.75. The forecasts (5.4.19) decay very slowly to the mean, and for short lead times are
practically indistinguishable from the forecasts obtained from the alternative IMA(O, 1, 1)
model Vz, = a, — 0.7a,_;, for which the weights are z; = 0.30, zp,= 0.21, 73 = 0.15,
74 = 0.10, and so on, and sum to unity. The latter model has the advantage that it does not
tie the process to a fixed mean.

Variance Function. Since the y weights are given by
v =(@-0¢""  j=12..
it follows that the variance function is

1= ¢2([—1)

V()=0o2|1+(¢p-6)° T

(5.4.20)

which increases asymptotically to the value 6Z(1 — 2¢6 + 6%)/(1 — $?), the variance y; of
the process.

5.4.6 Forecasting a (1,1, 1) Process

Another important mixed model is the nonstationary (1, 1, 1) process:
(1-¢B)(1—-B)z, =(1—6B)a,
Difference Equation Approach. Attime t + 1, the model may be written
Zep1 =L+ D)2y = Pz + @y — 0ay

On taking conditional expectations, we obtain

z() =0+ )z, — pz,_; — Oq,

K R K (5.4.21)
t=+dz(l—-1)—¢2,(0-2) [>1

Integrated Form. Since q < p + d,the eventual forecast function forall/ > Qis the solution
of (1 —¢B)(1 — B)z,(I) =0, which is

2(1) = b0 + b ¢!

Substituting for Z,(1) and 2,(2) in (5.4.21), we find explicitly that

by =z, + (z,—2z,_) —

¢ 0
1—¢ 1-0
Oa, — p(z; — z,_1)

1-¢

a;

0 _
by =
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Thus, finally,

1 ! 1— !
2() =z + ¢—¢(z, —z,_)- gl=

=4 a (5.4.22)

l—¢ !
It is evident that for large /, the forecast tends to bg).

Weights Applied to Previous Observations. Eliminating a, from (5.4.22), we obtain the
alternative form for the forecast in terms of previous z’s:

)= 1- =20 - ¢’>] Z,+ [H“ - ¢’>] 2,1(0) (5.4.23)
where Z,_;(0) is an exponentially weighted moving average with parameter 6, that is,
zZ,_10)=(1-0) Zj’;l g/-1 Zyj. Thus, the & weights for the process consist of a ‘‘spike’’
at time t and an EWMA starting at time ¢t — 1. If we refer to (1 — @)x + @y as a linear
interpolation between x and y at argument a, the forecast (5.4.23) is a linear interpolation
between z and Z,_;(f). The argument for lead time 1 is § — ¢, but as the lead time
is increased, the argument approaches (6 — ¢)/(1 — ¢). For example, when 8 = 0.9 and
¢ = 0.5, the lead 1 forecast is

2,(1) = 0.6z, 4+ 0.4z,_,(0)
and for long lead times, the forecast approaches

2,(00) = 0.2z, + 0.82,_1(0)

5.5 USE OF STATE-SPACE MODEL FORMULATION FOR EXACT
FORECASTING

5.5.1 State-Space Model Representation for the ARIMA Process

The use of state-space models for time series analysis began with the work of Kalman
(1960) and many of the early developments took place in the field of engineering. These
models consist of a state equation that describes the evolution of a dynamic system in time,
and a measurement equation that represents the observations as linear combinations of the
unobserved state variable corrupted by additive noise. In engineering applications, the state
variable generally represents a well-defined set of physical variables, but these variables
are not directly observable, and the state equation represents the dynamics that govern the
system. In statistical applications, the state-space model is a convenient form to represent
many types of models, including autoregressive—moving average (ARMA) models, struc-
tural component models of ‘‘signal-plus-noise’’ form, or time-varying parameter models.
In the literature, state-space models have been used for forecasting, maximum likelihood
estimation of parameters, signal extraction, seasonal adjustments, and other applications
(see, for example, Durbin and Koopman, 2012). In this section, we introduce the state-space
form of an ARIMA model and discuss its use in exact finite sample forecasting. Other ap-
plications involving the use of state-space models for likelihood calculations, estimation
of structural components, treatment of missing values, and applications related to vector
ARMA models will be discussed in Sections 7.4, 9.4, 13.3, and 14.6.
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For an ARIMA(p, d, q) process @(B)z, = 6(B)a,, define the forecasts 2,(j) = E,[z, + j]
as in Section 5.1, for j =0, 1, ...,r, with r = max(p + d, g + 1), and 2,(0) = z,. From the
updating equations (5.2.5), we have Z,(j — 1) = Z,_1(j) + yj_1a,, j = 1,2,...,r — 1. Also
for j = r > g, recall from (5.3.2) that

p+d
z(G-D=2z_()+ Vi_16; = Z 0z (G—D+ Vi-14
i=1

So we define the ‘‘state’’ vector at time f¢, Y,, with r components as Y, =
(2, 2,(1), ..., 2,(r — 1)). Then from the relations above, we find that the vector Y, sat-
isfies the first-order system of equations:

i - [ 1]
0 1 0
¥
0 0 1 0 )
Y,=|- - - Y+ g (5.5.1)
o 0 - - -1
_(pr Pr—1 = - (pl_ W,
where @; = 0if i > p+ d. So we have
Y, =®Y,_| +Yq, (5.5.2)
together with the observation equation
Z,=z;,+N,=[1,0,...,0]Y,+ N, =HY, + N, (5.5.3)

where the additional noise N, would be present only if the process z; is observed subject to
additional white noise; otherwise, we simply have z, = HY,. The last two equations above
constitute what is known as a state-space representation of the model, which consists of a
state or transition equation (5.5.2) and an observation equation (5.5.3), and Y/ is known as
the state vector. We note that there are many other constructions of the state vector Y, that
will give rise to state-space equations of the general form of (5.5.2) and (5.5.3); that is, the
state-space form of an ARIMA model is not unique. The two equations of the form above,
in general, represent what is known as a state-space model, with unobservable state vector
Y, and observations Z,, and can arise in time series settings more general than the context
of ARIMA models.
Consider a state-space model of a slightly more general form, with state equation

Y, =®,Y, | +aq, (5.5.4)
and observation equation
Z,=H,Y,+ N, (5.5.5)

where it is assumed that a, and N, are independent white noise processes, a, is a vector
white noise process with covariance matrix X, and N, has variance GJZV' In this model, the
(unobservable) state vector Y, summarizes the state of the dynamic system through
time 7, and the state equation (5.5.4) describes the evolution of the dynamic system in time,

while the measurement equation (5.5.5) indicates that the observations Z, consist of linear
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combinations of the state variables corrupted by additive white noise. The matrix @, in
(5.5.4)is an r X r transition matrix and H; in (5.5.5) is a 1 X r vector, which are allowed to
vary with time ¢. Often, in applications these are constant matrices, @, = ® and H, = H
for all ¢, that do not depend on ¢, as in the state-space form (5.5.2) and (5.5.3) of the
ARIMA model. In this case, the system or model is said to be time invariant. The minimal
dimension r of the state vector Y, in a state-space model needs to be sufficiently large so
that the dynamics of the system can be represented by the simple Markovian (first-order)
structure as in (5.5.4).

5.5.2 Kalman Filtering Relations for Use in Prediction

For the general state-space model (5.5.4) and (5.5.5), define the finite sample optimal
(minimum mean square error matrix) estimate of the state vector Y, ; based on observations
Z,, ..., Z, over the finite past time period, as

A

Yt+l|t = E[YH'lth’ ceey Zl]
with
Vier = Bl 1y = Y’+l|t)(Yt+l - Yr+l|t)’]

equal to the error covariance matrix. A convenient computational procedure, known as the
Kalman filter equations, is then available to obtain the current estimate Y,|t, in particular.

It is known that, starting from some appropriate initial values Y, = Y0|0 and V = V0,

A

the optimal filtered estimate, Y, is given through the following recursive relations:

Y=Y, +K (Z-HY,_) (5.5.6)
where
K, =V, H[HV,_H +03]" (5.5.7)
with
Yt|l—1 = (I)th—lll—l Vt|t—1 = (I)tV,_”,_l(I); +X, (5.5.8)
and
Vt|t =[1- Kth]Vt|t—1
=V - Vo HIHV, H + 63 17'HV,,_, (5.5.9)
fort=1,2,....

In (5.5.6), the quantity a,,_; = Z; — H,Y,h_] =Z - Zt|,_1 is called the (finite sample)
innovation at time ¢, because it is the new information provided by the measurement Z,
that was not available from the previous observed (finite) history of the system. The
factor K, is called the Kalman gain matrix. The filtering procedure in (5.5.6) has the
recursive  ‘prediction—correction’’ or ‘‘updating’’ form, and the validity of these equations
as representing the minimum mean square error predictor can readily be verified through
the principles of updating. For example, verification of (5.5.6) follows from the principle,
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for linear prediction, that

EY(|Z,....,Z\| = EIY|Z, = Zij—1, Zy_1, ..., Z)]
=EY(|Z_\.....Z 1+ EIY,|1Z, - Z,,_]

since a,,_) = Z; — Zt|,_1 is independent of Z,_, ..., Z;. From (5.5.6), it is seen that the
estimate of Y, based on observations through time f equals the prediction of Y, from obser-
vations through time 7 — 1 updated by the factor K, times the innovation a,,_;. Equation
(5.5.7) indicates that K, can be interpreted as the regression coefficients of Y, on the inno-
vation a,,_y, with var(a,,_,] = H,V,,_H] + o3 and cov[Y ,, a,,_;]1 = V,,_H] following
directly from (5.5.5) since a,,_; = H/(Z, - Z,|,_1) + N,. Thus, the general updating rela-
tion is

& _ % -1
Ytlt = Yz|r—1 + cov[Y,, at|t—1]{var[at|t—l]} t)1-1

where a,,_1 = Z; — Z,h_l, and the relation in (5.5.9) is the usual updating of the error
covariance matrix to account for the new information available from the innovation a,,_,
while the prediction relations (5.5.8) follow directly from (5.5.4).

In general, forecasts of future state values are available directly as Y, 4 =D +,l?, -1t
for I = 1,2, ..., with the covariance matrix of the forecast errors generated recursively
essentially through (5.5.8) as

’
Vt+l|t = (I)z+th+l—l|t(I)t+1 +Z,

Finally, forecasts of future observations, Z,,, = H,,Y,,, + N,,,, are then available as
Z,+,|, =H,,;Y ), with forecast error variance

Uiy = EN(Z1y = Zt+l|t)2] = Hr+th+I|tH;+1 + ‘712\/

Use for Exact Forecasting in ARIMA Models. For ARIMA models, with state-space
representation (5.5.2) and (5.5.3) and Z, = z, = HY, with H=1[1,0, ..., 0], the Kalman
filtering procedure constitutes an alternative method to obtain exact finite sample fore-
casts, based on data z;,z,_y, ..., z;, for future values in the ARIMA process, subject to
specification of appropriate initial conditions to use in (5.5.6) to (5.5.9). For stationary
zero-mean processes z,, the appropriate initial values are Y0|0 = 0, a vector of zeros, and
Voo = cov[Yy] = V,, the covariance matrix of Y;, which can easily be determined under
stationarity through the definition of Y,. Specifically, since the state vector Y, follows
the stationary vector AR(1) model Y, = ®Y,_; + Wa,, its covariance matrix V, = cov[Y,]
satisfies V, = ®V_ @' + UZ\P\P/ , which can be readily solved for V. For nonstationary
ARIMA processes, additional assumptions need to be specified (see, for example, Ansley
and Kohn (1985) and Bell and Hillmer (1987)).

The forecasts of the ARIMA process z, are obtained recursively as indicated above,
with /-step-ahead forecast 2, = HY, +1]r» the first element of the vector Y, +1)» Where

Yt+l|t = (DYI+I—1|I

with forecast error variance v,,;, = HV,; H’. The “‘steady-state’” values of the Kalman
filtering procedure /-step-ahead forecasts Z,,;, and their forecast error variances v,
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which are rapidly approached as ¢ increases, will be identical to the expressions given in
Sections 5.1 and 5.2, 2,(1) and V (1) = 62(1 + X} w).
In particular, for the ARIMA process in state-space form, we can obtain the exact (finite

sample) one-step-ahead forecasts:
21“_1 = E[ZAZ,_], eey Z]] = HY1‘|I—1

and their error variances v, = HV,, 1 H', conveniently through the Kalman filtering equa-
tions (5.5.6)—(5.5.9). This can be particularly useful for evaluation of the likelihood func-
tion, based on n observations z, ..., z, from the ARIMA process, applied to the problem
of maximum likelihood estimation of model parameters (see, for example, Jones (1980)
and Gardner et al. (1980)). This will be discussed again in Section 7.4.

Innovations Form of State-Space Model and Steady State for Time-Invariant Models.
One particular alternative form of the general state variable model, referred to as the
innovations or prediction error representation, is worth noting. If we set Y =Y ,_; and

aj =ay_ =7, - H,I?m_], then from (5.5.6) and (5.5.8) we have
Y =®.,,Y +®, Ka =@,Y; +¥a; and  Z,=HY] +af

which is also of the general form of a state-space model but with the same white noise
process a; (the one-step-ahead prediction errors) involved in both the transition and obser-
vation equations.

In the ‘‘stationary case’’ (i.e., time-invariant and stable case) of the state-space model,
where @, = ® and H, = Hin (5.5.4) and (5.5.5) are constant matrices and @ has all eigen-
values less than 1 in absolute value, we can obtain the steady-state form of the innovations
representation by setting Y, = E[Y,|Z,_;,Z,_,,...], the projection of Y, based on the
infinite past of { Z,}. In this case, in the Kalman filter relations (5.5.7) to (5.5.9), the error
covariance matrix V., approaches the steady-state matrix V = lim,_,, V, |, as t — oo,
which satisfies

V=0Ve' - ®VH'[HVH' + 03] 'HV®' + X,

Then, also, the Kalman gain matrix K, in (5.5.7) approaches the steady-state ma-
trix, K, - K, where K= VH'[HVH' + 6% 7!, a’ = a,,_, tends to a, = Z, —HY} =
2

Z,-E|lZ,|Z,_|,Z,_,, ...],the one-step-ahead prediction errors, and %ot
2 _

o, = var[a,], where 65 = HVH + 0'12\,, as t — oo. These steady-state filtering results for
the time-invariant model case also hold under slightly weaker conditions than stability
of the transition matrix @ (e.g., Harvey (1989), Section 3.3), such as in the nonstation-
ary random walk plus noise model discussed in the example of Section 5.5.3. Hence, in
the time-invariant situation, the state variable model can be expressed in the steady-state
innovation or prediction error form as

= varla,;_;] —

Y*

5, =®Y +®Ka, =®Y! +¥a, and Z =HY +q, (5.5.10)

In particular, for the ARIMA process @(B)z, = 6(B)a, with no additional observa-
tion error so that Z, = z,, a prediction error form (5.5.10) of the state-space model can
be given with state vector Y:‘H = (2,(1),..., 2,(r")) of dimension r* = max(p+d, q),
¥ = (y,...,¥,,), and observation equation z, = 2,_;(1) + a,. For example, consider
the ARMAC(1, 1) process (1 — ¢B)z, = (1 — 6B)a,. In addition to the state-space form
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with state equation given by (5.5.1) and Y, = (z,, 2,(1))’, we have the innovations form
of its state-space representation simply as 2,(1) = ¢2,_;(1) + w*a; and z; = 2,_1(1) + a;,
or Y, =Y +y"a; and z, = Y;" + a, with the (single) state variable Y, , = Z,(1) and
T )

5.5.3 Smoothing Relations in the State Variable Model

Another problem of interest within the state variable model framework, particularly in
applications to economics and business, is to obtain ‘‘smoothed’’ estimates of past values
of the state vector Y, given the observations Z, ..., Z, through some fixed time n. One
convenient method to obtain the desired estimates, known as the fixed-interval smoothing
algorithm, makes use of the Kalman filter estimates Y,| , obtainable through (5.5.6)—(5.5.9).
The smoothing algorithm produces the minimum MSE estimator (predictor) of the state

value Y, given the observations through time n, 1?,|,, = E[Y,|Z,,...,Z,]. In general,
define ¥, = E[Y,|Z,,..., Zyl and V,;p = E[(Y, = Y ;7)(Y, = ¥ ;)']. We assume that
the filtered estimates Y,|, and their error covariance matrices V,|,, fort=1,...,n, have
already been obtained by the Kalman filter equations. Then, the optimal smoothed estimates

are obtained by the (backward) recursive relations, in which the filtered estimate Y, is
updated, as

Yin =Y +AQ 1, —Yiq) (5.5.11)
where
A=V @, Vil = covY LYy =Y HeovlY = Y ) (5.5.12)
and
Vt|n = Vt|t - At(Vt+1|t - V,+1|n)A: (5.5.13)

The result (5.5.11) is established from the following argument. First, consider u, =
EY,|Z,....Z,,Y | — l?t+1|,,Nt+1,at+2, Niy2s-..a,, Nyl. Then, because {a,;,j >
2) and {Ny;;, j > 1} are independent of the other conditioning variables in the defini-
tion of u, and are also independent of Y,, we have u, = Ytlt + E[Y,|Y, | — YH”,] =
?tlt +A(Y g - Y,H't), where A, is given by (5.5.12). Thus, because the conditioning
variables in u, generate Z, ..., Z,, it follows that

A

Y,,=ElY,|Z,.....Z,

=Ewl|Z,,....Z,]= Yt|t +At(?t+l|n - Yt+1|r)

tln

as in (5.5.11). The relation (5.5.13) for the error covariance matrix follows from rather
straightforward calculations. This derivation of the fixed-interval smoothing relations is
given by Ansley and Kohn (1982).

Thus, it is seen from (5.5.11)—(5.5.13) that the optimal smoothed estimates Y

A

obtained by first obtaining the filtered values Y, through the forward recursion of the
Kalman filter relations, followed by the backward recursions of (5.5.11)—(5.5.13) for t =
n—1,...,1. This type of smoothing procedure has applications for estimation of trend and
seasonal components (seasonal adjustment) in economic time series, as will be discussed
in Section 9.4. When smoothed estimates ¥, are desired only at a fixed time point (or

f|n are

tln
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only at a few fixed points), for example, in relation to problems that involve the estimation
of isolated missing values in a time series, then an alternative ‘‘fixed-point’> smoothing
algorithm may be useful (e.g., see Anderson and Moore (1979) or Brockwell and Davis
(1991)).

Example. As a simple example of the state-space model and associated Kalman filtering
and smoothing, consider a basic structural model in which an observed series Z, is viewed
as the sum of unobserved trend and noise components. To be specific, assume that the
observed process can be represented as

Z,=u,+ N, where pu,=py,_;+a

so that y, is a random walk process and N, is an independent (white) noise process. This
is a simple example of a time-invariant state-space model with® = 1 and H = 1 in (5.5.4)
and (5.5.5) and with the state vector Y, = y, representing an underlying (unobservable)
““trend or level’”” process (or ‘‘permanent’’ component). For this model, application of
the Kalman filter and associated smoothing algorithm can be viewed as the estimation of
the underlying trend process p; based on the observed process Z,. The Kalman filtering
relations (5.5.6)—(5.5.9) for this basic model reduce to

ﬁt|t = ﬁt—l|l—1 + K,(Z, - ﬁt—1|r—1) =K. Z,+(1- Kt)ﬁt—ut—l
where the gain is K, = V;,_;[V;|t — 1 + 63 ]7', with
Vv = Vit — WV + 06217V + 02
t+1]t t)t—1 ti=1LVer—1 T O tli-1 T O,

Then f,; represents the current estimate of the trend component , given the observations
Z,, ..., Z, throughtime ¢. The steady-state solution to the Kalman filter relations is obtained
as t — oo for V (V =1lim,_, V;4y},), which satisties V =V = V[V + o3 7'V + 62, that
is, V[V + 612\,]‘11/ = 62, and the corresponding steady-state gain is K = V[V + 0'12\/]‘1.
In addition, the recursion (5.5.11) for the smoothed estimate of the trend component y,
becomes

Ann = Ay + ABigrjn — Argye)
= (= Afyy + Adhpry 1=n—1,...,1

noting that fi 1y, = fiy, where A, =Vy Vi =V {Vy+0;}”" and V=1~
K)V;ji—1» with the recursion for the calculation of V;;_; being as given above. Thus,
the smoothed value is a weighted average of the filtered estimate fi;, at time 7 and the
smoothed estimate /i, 1, at time 7 + 1. The steady-state form of this smoothing recursion is
the same as above with a constant A = lim,_, ., A,, which can be foundtoequal A =1 — K.
Hence, the steady-state (backward) smoothing relation (5.5.11) for this example has the
same form as the steady-state filter relation already mentioned; that is, they both have the

form of an exponential weighted moving average (EWMA) with the same weight.
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5.6 SUMMARY

The results of this chapter may be summarized as follows: Let Z, be the deviation of an
observed time series from any known deterministic function of time f(¢). In particular, for
a stationary series, f(¢) could be equal to u, the mean of the series, or it could be equal to
zero, so that Z, was the observed series. Then, consider the general ARIMA model

H(B)V'Z, = O(B)a,
or

@(B)z, = 0(B)a,

Minimum Mean Square Error Forecast. Given the knowledge of the series up to some
origin ¢, the minimum mean square error forecast Z,(/)(/ > 0) of z,,; is the conditional
expectation

ét(l) = [ZH.]] = E[zt-f-llzt’ Zi1s o]

Lead 1 Forecast Errors. A necessary consequence is that the lead 1 forecast errors are the
generating a,’s in the model and are uncorrelated.

Calculation of the Forecasts. 1t is usually simplest in practice to compute the forecasts
directly from the difference equation to give

21D =@y [Zg g ]+ + OpralZipi—p—al + a1 = 01la;4 4]
— = 0,la,+1—q] (5.6.1)
The conditional expectations in (5.6.1) are evaluated by inserting actual Z’s when these are
known, forecasted Z’s for future values, actual a’s when these are known, and zeros for
future a’s. The forecasting process may be initiated by approximating a’s by zeros and, in

practice, the appropriate form for the model and suitable estimates for the parameters are
obtained by methods set out in Chapters 6-8.

Probability Limits for Forecasts. The probability limits may be obtained as follows:

1. By first calculating the y weights from

ll/0=1
v =@ — 0

v =yt — 6, (5.6.2)

V=@t Qg pa — 0]

where 0, =0, j > q.
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2. For each desired level of probability €, and for each lead time /, substituting in

I-1 1/2
zH_](i) = é[(l) =+ u£/2 <1 + Z ll/jz> o, (563)

J=1

where in practice o, is replaced by an estimate s,, of the standard deviation of the
white noise process a,, and u, /, is the deviate exceeded by a proportion £/2 of the
unit normal distribution.

Updating the Forecasts. When a new deviation Z,; comes to hand, the forecasts may
be updated to origin 7 + 1, by calculating the new forecast error a,, | = Z,,; — Z,(1) and
using the difference equation (5.6.1) with ¢ + 1 replacing . However, an alternative method
is to use the forecasts Z,(1), Z,(2), ..., 2(L) at origin , to obtain the first L — 1 forecasts
Z (D, 2,12, ..., 2, (L = 1) at origin 7 + 1, from

§t+1(1) = 21(1 + 1) +ya,,, (5.6.4)

and then generate the last forecast 2, +1(L) using the difference equation (5.6.1).

Other Ways of Expressing the Forecasts. The above is all that is needed for practical
utilization of the forecasts. However, the following alternative forms provide theoretical
insight into the nature of the forecasts generated by different models:

1. Forecasts in Integrated Form.For | > q — p — d, the forecasts lie on the unique curve
Z2() = bg) folh) + b(ln fiD+ -+ ”;2 P APIRT() (5.6.5)

determined by the ‘‘pivotal’’ values Z,(q),Z,(g—1),...,2,(q—p—d + 1), where
2,(—j) =%_;(G=0,1,2,..). If g > p+d, the first ¢ — p — d forecasts do not lie
on this curve. In general, the stationary autoregressive operator contributes damped
exponential and damped sine wave terms to (5.6.5), and the nonstationary operator
V4 contributes polynomial terms up to degree d — 1.

The adaptive coefficients b“ in (5.6.5) may be updated from origin ¢ to t + 1 by
amounts depending on the last lead 1 forecast error a,,, according to the general
formula

p+D = L'b® + g4, (5.6.6)

given in Appendix A5.3. Specific examples of the updating are given in (5.4.5) and
(5.4.13) for the IMA(O, 1, 1) and IMA(O, 2, 2) processes, respectively.

2. Forecasts as a Weighted Sum of Past Observations. It is instructive from a theoretical
point of view to express the forecasts as a weighted sum of past observations. Thus,
if the model is written in inverted form,

a,=n(B), =(-mnB- 7;2]32 — )E,
the lead 1 forecast is

2() =mZ, +mZ_q + (5.6.7)
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and the forecasts for longer lead times may be obtained from
2(1) = m[Zeim1] + Mol Zrg 2] + - (5.6.8)

where the conditional expectations in (5.6.8) are evaluated by replacing Z’s by actual
values when known, and by forecasted values when unknown.

Alternatively, the forecast for any lead time may be written as a linear function of
the available observations. Thus,

[So]

2 () 5

z(h) = Z i Zivl—j
Jj=1

where the 7[';1) are functions of the x j’s.

Role of Constant Term in Forecasts. The forecasts will be impacted by the allowance
of a nonzero constant term 6, in the ARIMA(p, d, q) model, ¢(B)z, = 6, + 8(B)a,, where
@(B) = ¢p(B)V?. Then, in (5.3.3) and (5.6.5), an additional deterministic polynomial term
of degree d, (u,,/d!)I? with w, = Vz, and p,, = E[w,] = 0y/(1 — py — py — =+ — )
will be present. This follows because in place of the relation @(B)z,(I) = 6, in (5.3.2),
the forecasts now satisfy @(B)z,(I) = 6,, 1 > ¢, and the deterministic polynomial term
of degree d represents a particular solution to this nonhomogeneous difference equation.
Hence, in the instance of a nonzero constant term 6, the ARIMA model is also expressible
as d)(B)(de, — ) = 0(B)a;, u,, # 0, and the forecast in the form (5.6.5) may be viewed
as representing the forecast value of Z,,; = z,.; — f(t + 1), where f(t + 1) = (y,,/d ")t +
D4 + g(t+1) and g(t) is any fixed deterministic polynomial in ¢ of degree less than or
equal to d — 1 (including the possibility g(#) = 0). For example, in an ARIMA model with
d = 1 such as the ARIMA(I, 1, 1) model example of Section 5.4.6, but with 6, # 0, the
eventual forecast function of the form 2,(/) = bg) + b(1')¢’ will now contain the additional
deterministic linear trend term y,,/, where p,, = 6,/(1 — ¢), similar to the result in the
example for the ARIMAC(1, 1,0) model in (5.4.17). Note that in the special case of a
stationary process z,, with d = 0, the additional deterministic term in (5.3.3) reduces to the
mean of the process z;, u = E[z,].

APPENDIX A5.1 CORRELATION BETWEEN FORECAST ERRORS

AS.1.1 Autocorrelation Function of Forecast Errors at Different Origins

Although it is true that for an optimal forecast the forecast errors for lead time 1 will be
uncorrelated, this will not generally be true of forecasts at longer lead times. Consider
forecasts for lead times /, made at origins ¢ and ¢ — j, respectively, where j is a positive
integer. Then, if j = 1,1+ 1,/ + 2, ..., the forecast errors will contain no common compo-
nent, but for j = 1,2, ...,/ — 1, certain of the a’s will be included in both forecast errors.
Specifically,

e;(1) = 2y = 2/(1) = @pyy + Y1 Gy + - F W10y

e () =2z jyr = 2 j() = @ jyy W10 jy + o F WGy
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TABLE AS5.1 Autocorrelations of Forecast Errors at Lead 6 for Series C

j 0 1 2 3 4 5 6
ple,(6),e_e)] 1.00 0.81 0.61 0.41 0.23 0.08 0.00

and for j < [, the lag j autocovariance of the forecast errors for lead time / is

-1
E[e[(l)ez_j(l)] = 0-2 Z W[W[_j (AS]])
i=j

where y; = 1. The corresponding autocorrelations are

27%%, ,
0<j<lI

ple,(D),e,_;(D] = zf vt (A5.1.2)
0 j>1

We show in Chapter 7 that Series C of Figure 4.1 is well fitted by the (1, 1,0) model
(1 -0.8B)Vz, = a,. To illustrate (A5.1.2), we calculate the autocorrelation function of the
forecast errors at lead time 6 for this model. It follows from Section 5.2.1 that the y weights
Wi, ¥y, ..., s for this model are 1.80, 2.44. 2.95, 3.36, and 3.69, respectively. Thus, for
example, the lag 1 autocovariance is

Ele,(6)e,_1(6)] = 0'2[(1.80 x 1.00) + (2.44 x 1.80) + --- + (3.69 x 3.36)]
=35.7002
On dividing by E[et2(6)] = 43.860’5, we obtain p[e;(6),e,_;(6)] = 0.81. The first six au-

tocorrelations are shown in Table A5.1 and plotted in Figure AS.1(a). As expected, the
autocorrelations beyond the fifth are zero.

AS5.1.2 Correlation Between Forecast Errors at the Same Origin with Different
Lead Times

Suppose that we make a series of forecasts for different lead times from the same fixed
origin . Then, the errors for these forecasts will be correlated. We have for j = 1,2,3, ...,

e(D=2zy —Z(D)=ay +wiag 1+ + W14
e(l+ )=z — 2+ )) = a1+ F W a4
tWa t WGt W10

so that the covariance between the 7-origin forecast errors at lead times [ and [/ + j is
2 y/-1 —
O Dimo WiWisj» Where y = 1. .
Thus, the correlation coefficient between the f-origin forecast errors at lead times / and
I+jis
-1
Zi=o ViViij

-1 g lti1 . 2\ /?
h=0¥p Lig=o Y

ple,(D), e, (I + j)] = (A5.1.3)
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FIGURE A5.1 Correlations between various forecast errors for Series C. (a) Autocorrelations of
forecast errors for Series C from different origins at lead time / = 6 (b) Correlations between forecast
errors for Series C from the same origin at lead time 3 and lead time j.

To illustrate (A5.1.3), we compute, for forecasts made from the same origin, the cor-
relation between the forecast error at lead time 3 and the forecast errors at lead times
Jj=12,3,4,...,16 for Series C. For example, using (A5.1.3) and the y weights given in
Section 5.2.2,

2
Ele,(3)e,(5)] = 02 Y wiwisr = oolwow + ¥1w73 + wos]
i=0
= 02[(1.00 X 2.44) + (1.80 X 2.95) + (2.44 x 3.36)]
= 15.9407

The correlations for lead times j = 1,2, ..., 16 are shown in Table A5.2 and plotted in
Figure A5.1(b). As is to be expected, forecasts made from the same origin at different lead
times are highly correlated.

APPENDIX A5.2 FORECAST WEIGHTS FOR ANY LEAD TIME

In this appendix we consider an alternative procedure for calculating the forecast weights

P applied to previous z’s for any lead time /. To derive this result, we make use of the
identity (3.1.7), namely,

(1+y,B+y, B>+ )1 —n,B—m,B> =) =1

from which the = weights may be obtained in terms of the y weights, and vice versa.
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TABLE A5.2 Correlation Between Forecast Errors at Lead 3
and at Lead j Made from a Fixed Origin for Series C

J ple,(3),e,()] J ple,(3),e,(j)]
1 0.76 9 0.71
2 0.94 10 0.67
3 1.00 11 0.63
4 0.96 12 0.60
5 0.91 13 0.57
6 0.85 14 0.54
7 0.80 15 0.52
8 0.75 16 0.50

On equating coefficients, we find, for j > 1,

J
v = z T ((//0 =1) (A5.2.1)
i=1
Thus, for example,
vi=m =
yo=my + 71 Ty =W — YT

Y3 = my, + myy t+ g 3= Y3 — YTy —YHT
Now from (5.3.6),
() =mz,( =) +me( =2+ +m_ 15D+ 1z + 112+ (A522)

Since each of the forecasts in (A5.2.1) is itself a function of the observations
Z4y Z4_1> Z4—05 - -, WE CaN Write

t()=az, + 70z + 2z, 5+

where the lead ! forecast weights may be calculated from the lead 1 forecast weights

nj. = ;. We now show that the weights n'j(.[) can be obtained using the identity

!
O]
= z:, Vimiflipj—1 = Tjp1—1 T Wi+ W7 (A5.23)
i=

For example, the weights for the forecast at lead time 3 are

3

ni ) = 73 + Yy +yym
3

ﬂé) =7T4+l[/17f3 +l[/27l'2
3

ﬂé):ﬂ5+l//17l'4+lﬂ27f3
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and so on. To derive (A5.2.3), we write

2D =ya; + w101 + -
Zivimi(D =wag + - tya + i + o

On subtraction, we obtain

2D =21 () = w181 —Woli0 — = = Wi_14141
Hence,
(D) =m 2y + T Zigy o+ A T Zg T2 T 2
i (=z1 T 2o+ A T2 T 2 Tz )
o=z + T 23+ 32 F T2 T2y + )
+ e
w1 (=2 + T2+ Tz )
Using the relation (A5.2.1), each one of the coefficients of z,,;_;,..., 2, is seen to

vanish, as they should, and on collecting terms, we obtain the required result (A5.2.3).
Alternatively, we may use the formula in the recursive form
! -1
n'; ) = 71';“ by (A5.2.4)
Using the model V2z, = (1 — 0.9B + 0.5B?)q, for illustration, we calculate the weights for
lead time 2. Equation (A5.2.4) gives
2)

=Ty + v 7

and using the weights in Table 5.2, with y; = 1.1 we have, for example,

7 = 1y +yymy = 0.490 + (1.1)(1.1) = 1.700

7 = 13+ yymy = —0.109 + (1.1)(0.49) = 0.430

and so on. The first 12 weights have been given in Table 5.2.

APPENDIX A5.3 FORECASTING IN TERMS OF THE GENERAL
INTEGRATED FORM

AS5.3.1 General Method of Obtaining the Integrated Form

We emphasize once more that for practical computation of the forecasts, the difference
equation procedure is by far the simplest. The following general treatment of the integrated
form is given only to elaborate further on the forecasts obtained. In this treatment, rather
than solving explicitly for the forecast function as we did in the examples given in Section
5.4, it will be appropriate to write down the general form of the eventual forecast function
involving p + d adaptive coefficients. We then show how the eventual forecast function
needs to be modified to deal with the first ¢ — p — d forecasts if ¢ > p + d. Finally, we
show how to update the adaptive coefficients from origin ¢ to origin ¢ + 1.
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If it is understood that Z,(—j) = z,_ ; for j =0,1,2, ..., then using the conditional ex-
pectation argument of Section 5.1.1, the forecasts satisfy the difference equation:

2,(1)—9,2,0) = - — (pp+d2t(1 -p-d)=-0,a,— - —0,a,_ .,
22 -1 2(D) = —@py 22 —p—d)=—bra, — - = 0,a,_41»
: (A5.3.1)
2@ —@12(q—1) = =@y 42(gq—p—d)=—-0,4q,
E(D =2 =)= = @pa2(I—p=d)=0  [>g

The eventual forecast function is the solution of the last equation and may be written as

p+d—1
5D = b)) o)+ b 1D+ + B fpran D= Y B fiD)
i=0
I>qg-p—d (A5.3.2)

When gq is less than or equal to p + d, the eventual forecast function will provide forecasts
2,(1), 2,(2), 2,(3), ... for all lead times / > 1.
As an example of such a model with ¢ < p + d, suppose that

(1- B)(1 - V3B + B*?z, = (1 - 0.5B)q,
sothat p+d =5 and g = 1. Then,
(1-B)(1—-V3B+B2?2,()=0 [=234,..

where B now operates on / and not on ¢. Solution of this difference equation yields the
forecast function

. 2rl 2xl
z,() = bg) + b(lt) cos (E) + b(zt)l cos (H)

+bgt)sin(%>+bg)lsin<%> 1=1,2,..

If g is greater than p + d, then for lead times / < g — p — d, the forecast function will have
additional terms containing a,_;’s. Thus,

p+d—1 J
z(y= ) " (1) + Y dya_; 1<q-p-d (A5.3.3)
i=0 i=0

where j = ¢ — p — d — [ and the d’s may be obtained explicitly by substituting (A5.3.3) in
(A5.3.1). For example, consider the stochastic model

V2z,=(1-0.8B+0.5B> - 0.4B> +0.1Bq,

inwhichp+d=2,g=4,g—p—-d=2andg, =2,¢0,=-1,0,=08,0,=-05,0, =
0.4, and 6, = —0.1. Using the recurrence relation (5.2.3), we obtain y| = 1.2, y, = 1.9,
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w3 = 2.2, and yy = 2.6. Now, from (A5.3.3),

(1) = b + b + dyga, + dyya,_,

2,2) = b +2b + dyya, (A5.3.4)

2 =b"+601  1>2
Using (AS5.3.1) gives

2,(4)—22,(3) + 2,(2) = 0.1q,
so that from (A5.3.4)
dyga; = 0.1a,
and hence d, = 0.1. Similarly, from (A5.3.1),
2,(3) - 22,(2) + 2,(I) = —0.4a, + 0.1qa,_,
and hence using (A5.3.4),
—0.2a, + dyga; + dy;a,_1 = —0.4a, + 0.1a,_,;
yielding
dy=-02 d, =01

Hence, the forecast function is

2(1) =60 +b" —0.24,+0.1a,_,

2,2) = b + 261" + 0.1q,

(=00 +61  1>2

A5.3.2 Updating the General Integrated Form

Updating formulas for the coefficients may be obtained using the identity (5.2.5) with # + 1
replaced by t:

2 () =2,_,0+1)+ya,

Then, for! >qg—p—d,

p+d—1 p+d—1

S nw =Y BTV ) +wa, (A5.3.5)
i=0 i=0

By solving p + d such equations for different values of /, we obtain the required updating
formula for the individual coefficients, in the form

p+d—1
t (1—1)
b= Y Lbl"" + g,
j=0
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Note that the updating of each of the coefficients of the forecast function depends only on
the lead 1 forecast error a, = z, — 2,_;(1).

A5.3.3 Comparison with the Discounted Least-Squares Method

Although to work with the integrated form is an unnecessarily complicated way of comput-
ing forecasts, it allows us to compare the present mean square error forecast with another
type of forecast that has received considerable attention. Let us write

[ fo) 0 SO PR ()
F, = J:‘O(l +1) ]:’](l +1) ]"p_'_d_l(l +1)
Joltptd—D fd+prd—1) - ﬂm4”+ﬁ+d—n
[ bg) v
b = l?(lt) v, = ‘{/1+1
i l;;’i i Vitprd—1

Then, using (A5.3.5) for [,/ +1,...,1 + p+d + —1, we obtain for | > ¢ — p—d,
Fb® =F b +yq,
yielding
b? = (B} 'Fpy b~ + (F 'y e,
or
bO = /b 4 ga, (A5.3.6)

Equation (AS5.3.6) is of the same algebraic form as the updating function given by the
‘‘discounted least-squares’’ procedure of Brown (1962) and Brown and Meyer (1961).
For comparison, if we denote the forecast error given by that method by e,, then Brown’s
updating formula may be written as

O =L/'pD 4 he, (A5.3.7)

where B is his vector of adaptive coefficients. The same matrix L appears in (A5.3.6) and
(AS5.3.7). This is inevitable, for this first factor merely allows for changes in the coefficients
arising from translation to the new origin and would have to occur in any such formula.
For example, consider the straight line forecast function:

2, ()= b0V + 07

where bg_l) is the ordinate at time ¢ — 1, the origin of the forecast. This can equally well
be written as

2 (=08 + )+ 6P -1
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where now (bg_l) + b(lt_l)) is the ordinate at time ¢. Obviously, if we update the forecast to
origin ¢, the coefficient b, must be suitably adjusted even if the forecast function were to
remain unchanged.

In general, the matrix L. does not change the forecast function, it merely relocates it.
The actual updating is done by the vector of coefficients g and h. We will see that the
coefficients g, which yield the minimum mean square error forecasts, and the coefficients
h given by Brown are in general completely different.

Brown’s Method of Forecasting.

1. A forecast function is selected from the general class of linear combinations and
products of polynomials, exponentials, and sines and cosines.

2. The selected forecast function is fitted to past values by a ‘‘discounted least-squares’’
procedure. In this procedure, the coefficients are estimated and updated so that the
sum of squares of weighted discrepancies

5, = 2 w;[z,_; = 2,(=)T? (A5.3.8)
j=0

between past values of the series and the value given by the forecast function at the
corresponding past time are minimized. The weight function w; is chosen arbitrarily

to fall off geometrically, so that @ ;= (1 — a)/, where the constant a, usually called

the smoothing constant, is (again arbitrarily) set equal to a value in the range 0.1-0.3.

Difference between the Minimum Mean Square Error Forecasts and those of Brown.
To illustrate these comments, consider the forecasting of IBM stock prices, discussed by
Brown (1962, p. 141). In this study, he used a quadratic model that would be, in the present
notation,

3 1
Zl(l) — ﬂ(()l) + ﬂ}t)l + zﬂg)lz

With this model, he employed his method of discounted least squares to forecast stock
prices 3 days ahead. The results obtained from this method are shown for a section of the
IBM series in Figure AS.2, where they are compared with the minimum mean square error
forecasts.

The discounted least-squares method can be criticized on the following grounds:

1. The nature of the forecast function ought to be decided by the autoregressive operator
@(B) in the stochastic model, and not arbitrarily. In particular, it cannot be safely
chosen by visual inspection of the time series itself. For example, consider the IBM
stock prices plotted in Figure A5.2. It will be seen that a quadratic function might
well be used to fit short pieces of this series to values already available. If such fitting
were relevant to forecasting, we might conclude, as did Brown, that a polynomial
forecast function of degree 2 was indicated. The most general linear process for
which a quadratic function would produce minimum mean square error forecasts at
every lead time / = 1,2, ... is defined by the (0, 3, 3) model

V3z,=(1-6,B-0,B* - 0,B%)q,
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FIGURE AS.2 IBM stock price series with comparison of lead 3 forecasts obtained from best
IMA(0, 1, 1) model and Brown’s quadratic forecast for a period beginning from July 11, 1960.

which, arguing as in Section 4.3.3, can be written as
V3z, = V3a, + 4oV?a,_ + 4, Va,_, + a,_,

However, we show in Chapter 7 that if this model is correctly fitted, the least-
squares estimates of the parameters are 4; = A, =0 and A5 ~ 1.0. Thus, Vz;, =
(1 - 6B)a,, with 8 =1 — A close to zero, is the appropriate stochastic model, and
the appropriate forecasting polynomial is Z,(/) = ﬁ(t) , which is of degree 0 in / and
not of degree 2.

2. The choice of the weight function ; in (A5.3.8) must correspondingly be decided
by the stochastic model, and not arbitrarily. The use of the discounted least-squares
fitting procedure would produce minimum mean square error forecasts in the very

restricted case, where

a. the process was of order (0,1, 1),so Vz; = (1 — 6B)a,,
b. a polynomial of degree 0 was fitted, and

c. the smoothing constant « was set equal toour A =1 — 6.

In the present example, even if the correct polynomial model of degree 0 had been
chosen, the value @ = A = 0.1, actually used by Brown, would have been quite
inappropriate. The correct value A for this series is close to unity.

3. The exponentially discounted weighted least-squares procedure forces all the p + d
coefficients in the updating vector h to be functions of the single smoothing parameter
a. In fact, they should be functions of the p + g independent parameters (¢, 0).

Thus, the differences between the two methods are not trivial, and it is interesting to
compare their performances on the IBM data. The minimum mean square error forecast is
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TABLE AS5.3 Comparison of Mean Square Error of Forecasts Obtained at Various Lead
Times Using Best IMA(0, 1, 1) Model and Brown’s Quadratic Forecasts

Lead Time /

1 2 3 4 5 6 7 8 9 10

MSE (Brown) 102 158 218 256 363 452 554 669 799 944
MSE (4 =0.9) 42 91 136 180 282 266 317 371 427 483

Z,(I) = by(t), with updating bg) = bg_l) + Aa;, where A ~ 1.0. If A is taken to be exactly
equal to unity, this is equivalent to using

z,()=z

which implies that the best forecast of the stock price for all future time is the present
price.! The suggestion that stock prices behave in this way is, of course, not new and goes
back to Bachelier (1900). Since z, = Sa, when A = 1, this implies that z, is a random walk.

To compare the minimum mean square error forecast with Brown’s quadratic forecasts,
a direct comparison was made using the IBM stock price series from July 11, 1960 to
February 10, 1961, for 150 observations. For this stretch of the series, the minimum MSE
forecast is obtained using the model Vz, = a, — 0a,_;, with 6 =0.1,or A=1-0=0.9.
Figure A5.2 shows the minimum MSE forecasts for lead time 3 and the corresponding
values of Brown’s quadratic forecasts. It is seen that the minimum MSE forecasts, which
are virtually equivalent to using today’s price to predict that 3 days ahead, are considerably
better than those obtained using Brown’s more complicated procedure.

The mean square errors for the forecast at various lead times, computed by direct
comparison of the value of the series and their lead / forecasts, are shown in Table A5.3
for the two types of forecasts. It is seen that Brown’s quadratic forecasts have mean square
errors that are much larger than those obtained by the minimum mean square error method.

EXERCISES

5.1. For the models
1) 2,-052,_,=aq,
(2) Vz, =a,—-0.5qa,_,
3) (1-0.6B)Vz; =g,
write down the forecasts for lead times / = 1 and [ = 2:
(a) From the difference equation
(b) In integrated form (using the y; weights)
(c) As aweighted average of previous observations

IThis result is approximately true supposing that no relevant information except past values of the series itself is
available and that fairly short forecasting periods are being considered. For longer periods, growth and inflationary
factors would become important.
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The following observations represent values zq;, Zg», ... , Z19g from a series fitted by
the model Vz; = a, — 1.1a,_; + 0.28a,_,:

166,172,172,169, 164,168,171, 167,168, 172

(a) Generate the forecasts 2go(/) for/ = 1,2, ...,12 and draw a graph of the series
values and the forecasts (assume agy = 0, ag; = 0).

(b) With 6'2 = 1.103, calculate the estimated standard deviations 6(/) of the forecast
errors and use them to calculate 80% probability limits for the forecasts. Insert
these probability limits on the graph, on either side of the forecasts.

Suppose that the data of Exercise 5.2 represent monthly sales.

(a) Calculate the minimum mean square error forecasts for quarterly sales for 1, 2,
3, 4 quarters ahead, using the data up to ¢t = 100.

(b) Calculate 80% probability limits for these forecasts.

Using the data and forecasts of Exercise 5.2, and given the further observation

Z101 = 174:

(a) Calculate the forecasts 2;y; (/) for/ = 1,2, ..., 11 using the updating formula
2D =20+ D +ya,

(b) Verify these forecasts using the difference equation directly.

For the model Vz;, = a, — 1.1a,_; + 0.28a,_, of Exercise 5.2:

(a) Write down expressions for the forecast errors e,(1), e,(2), ..., e,(6), from the
same origin 7.

(b) Calculate and plot the autocorrelations of the series of forecast errors e,(3).

(c) Calculate and plot the correlations between the forecast errors e,(2) and e,(j) for
j=12,...,6.

Let the vector e’ = (e, e,, ..., e;) have for its elements the forecast errors made
1,2, ..., L steps ahead, all from the same origin ¢. Then if @’ = (415405 -5 Qii 1)
are the corresponding uncorrelated random shocks, show that

e=Ma where M=| v» wv; 1 -0

| Vi1 VL2 Vi3 1_
Also, show that (e.g., Box and Tiao, 1976; Tiao et al., 1975) X, the covariance matrix
of thee’s,is X, = UZMM, and hence that a test to determine if a set of subsequently
realized values z,, {, 2,45, ... , Z, 1 Of the series taken jointly differ significantly from
the forecasts made at the origin 7 is obtained by referring

’ L
o € (MM)"'e aa_l
ex, T —;Zaﬂ

a a j=1
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5.7.

5.8.

5.9.

5.10.
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to a chi-square distribution with L degrees of freedom. Note that a, ; is the one-step-
ahead forecast error calculated from z,,; — 2, ;_;(1).

Suppose that a quarterly economic time series is well represented by the model
Vz, =0.5+ (1 - 1.0B +0.5B%)aq,

with 62 = 0.04.

(a) Given z4g3 = 130,a47 = 0.3, a43 = 0.2, calculate and plot the forecasts Z,g(/)
forl=1,2,...,12.

(b) Calculate and insert the 80% probability limits on the graph.

(c) Express the series and forecasts in integrated form.

Consider the annual Wolfer sunspot numbers for the period 1770-1869 listed as
Series E in Part Five of this text. The same series is available for the longer period
1700-1988 as "sunspot.year" in the datasets package of R. You can use either
data set. Suppose that the series can be represented by an autoregressive model of
order 3.

(a) Plot the time series and comment. Does the series look stationary?

(b) Generate forecasts and associated probability limits for up to 20 time periods
ahead for the series.

(c) Perform a square root transformation of the data and repeat (a) and (b) above.

(d) Use the function BoxCox.ar() in the TSA package of R to show that the square
root transformation is appropriate for this series; see help(BoxCox.ar) for details.
(Note: Adding a small amount, for example, 1/2, to the series, eliminates zero
values and allows the program to consider a log transformation as an option).

A time series representing a global mean land—ocean temperature index from 1880
to 2009 is available in a file called ‘‘gtemp’’ in the astsa package of R. The data are
temperature deviations, measured in degree centigrades, from the 1951-1980 average
temperature, as described by Shumway and Stoffer (2011, p. 5). Assume that a third-
order autoregressive model is appropriate for the first differences w, = (1 — B)z, of
this series.

(a) Plot the time series z, and the differenced series w, using R.

(b) Generate forecasts and associated probability limits for up to 20 time periods
ahead for this series using the function sarima.for() without including a constant
term in the model.

(¢) Generate the same forecasts and probability limits as in part (b) but with a
constant term now added to the model. Discuss your findings and comment on
the implications of including a constant in this case.

For the model (1 — 0.6B)(1 — B)z; = (1 + 0.3B)a,, express explicitly in the state-
space form of (5.5.2) and (5.5.3), and write out precisely the recursive relations of
the Kalman filter for this model. Indicate how the (exact) forecasts Z,,;, and their
forecast error variances v, |, are determined from these recursions.



PART TWO

STOCHASTIC MODEL BUILDING

We have seen that an ARIMA model of order (p, d, q) provides a class of models capable
of representing time series that, although not necessarily stationary, are homogeneous and
in statistical equilibrium in many respects.

The ARIMA model is defined by the equation

$(B)(1 — B)'z, = 6, + 0(B)aq,

where ¢(B) and 6(B) are operators in B of degree p and ¢, respectively, whose zeros lie
outside the unit circle. We have noted that the model is very general, including as spe-
cial cases autoregressive models, moving average models, mixed autoregressive—moving
average models, and the integrated forms of all three.

Iterative Approach to Model Building. The development of a model of this kind to describe
the dependence structure in an observed time series is usually best achieved by a three-stage
iterative procedure based on identification, estimation, and diagnostic checking.

1. By identification we mean the use of the data, and of any information on how the
series was generated, to suggest a subclass of parsimonious models worthy to be
entertained.

2. By estimation we mean efficient use of the data to make inferences about the param-
eters conditional on the adequacy of the model entertained.

3. By diagnostic checking we mean checking the fitted model in its relation to the data
with intent to reveal model inadequacies and so to achieve model improvement.
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In Chapter 6, which follows, we discuss model identification, in Chapter 7 estimation of
parameters, and in Chapter 8 diagnostic checking of the fitted model. In Chapter 9 we
expand on the class of models developed in Chapters 3 and 4 to the seasonal ARIMA
models, and all the model building techniques of the previous chapters are illustrated
by applying them to modeling and forecasting seasonal time series. In Chapter 10 we
consider some additional topics that represent extensions beyond the linear ARIMA class
of models such as conditional heteroscedastic time series models, nonlinear time series
models, and fractionally integrated long memory processes, which allow for certain more
general features in the time series than are possible in the linear ARIMA models. Unit root
testing is also discussed in this chapter.



MODEL IDENTIFICATION

In this chapter, we discuss methods for identifying nonseasonal autoregressive integrated
moving average (ARIMA) time series models. Identification methods are rough procedures
applied to a set of data to indicate the kind of model that is worthy of further investigation.
The specific aim here is to obtain some idea of the values of p, d, and g needed in the
general linear ARIMA model and to obtain initial estimates for the parameters. The tentative
model specified provides a starting point for the application of the more formal and efficient
estimation methods described in Chapter 7. The examples used to demonstrate the model-
building process will include Series A-F that have been discussed in earlier chapters and
are listed in the Collection of Time Series in Part Five of this book. The series are also
available electronically at http://pages.stat.wisc.edu/ reinsel/bjr-data/.

6.1 OBJECTIVES OF IDENTIFICATION

It should first be said that identification and estimation necessarily overlap. Thus, we may
estimate the parameters of a model, which is more elaborate than the one we expect to
use, so as to decide at what point simplification is possible. Here we employ the estimation
procedure to carry out part of the identification. It should also be explained that identification
is necessarily inexact. It is inexact because the question of what types of models occur in
practice and in what specific cases depends on the behavior of the physical world and
therefore cannot be decided by purely mathematical argument. Furthermore, because at
the identification stage no precise formulation of the problem is available, statistically
“inefficient’” methods must necessarily be used. It is a stage at which graphical methods
are particularly useful and judgment must be exercised. However, it should be kept in mind
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180 MODEL IDENTIFICATION

that the preliminary identification commits us to nothing except tentative consideration of
a class of models that will later be efficiently fitted and checked.

6.1.1 Stages in the Identification Procedure

Our task, then, is to identify an appropriate subclass of models from the general ARIMA
family

$(B)VIz, = 6, + 6(B)aq, (6.1.1)

which may be used to represent a given time series. Our approach will be as follows:

1. To assess the stationarity of the process z, and, if necessary, to difference z, as many
times as is needed to produce stationarity, hopefully reducing the process under study
to the mixed autoregressive—moving average process:

d(B)w, = 6y + 0(B)a,
where
w,=(-B)z, =Viz

2. To identify the resulting autoregressive—moving average (ARMA) model for w,.

Our principal tools for putting steps 1 and 2 into effect will be the sample autocorrelation
function and the sample partial autocorrelation function. They are used not only to help
guess the form of the model but also to obtain approximate estimates of the parameters.
Such approximations are often useful at the estimation stage to provide starting values for
iterative procedures employed at that stage. Some additional model identification tools may
also be employed and are discussed in Section 6.2.4.

6.2 IDENTIFICATION TECHNIQUES

6.2.1 Use of the Autocorrelation and Partial Autocorrelation Functions in
Identification

Identifying the Degree of Differencing. We have seen in Section 3.4.2 that for a stationary
mixed autoregressive—moving average process of order (p,0, q), ¢(B)Z, = 0(B)a,, the
autocorrelation function satisfies the difference equation

P¢(B)p, =0,k >gq

Also, if ¢(B) = Hle(l — G, B), the solution of this difference equation for the kth auto-
correlation is, assuming distinct roots, of the form

pszlG’l‘+A2G’2‘+---+ApG’; k>q-p (6.2.1)

The stationarity requirement that the zeros of ¢(B) lie outside the unit circle implies that
the roots Gy, G, ..., Gp lie inside the unit circle.
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This expression shows that in the case of a stationary model in which none of the roots
lie close to the boundary of the unit circle, the autocorrelation function will quickly ‘‘die
out’’ for moderate and large k. Suppose now that a single real root, say G, approaches
unity, so that

G =1-6
where 6 is some small positive quantity. Then, since for k large
pr = Ay(1 — ko)

the autocorrelation function will not die out quickly and will fall off slowly and very nearly
linearly. A similar argument may be applied if more than one of the roots approaches
unity.

Therefore, a tendency for the autocorrelation function not to die out quickly is taken as
an indication that a root close to unity may exist. The estimated autocorrelation function
tends to follow the behavior of the theoretical autocorrelation function. Therefore, failure
of the estimated autocorrelation function to die out rapidly might logically suggest that
we should treat the underlying stochastic process as nonstationary in z,, but possibly as
stationary in Vz,, or in some higher difference.

However, even though failure of the estimated autocorrelation function to die out rapidly
suggests nonstationarity, the estimated autocorrelations need not be extremely high even
at low lags. This is illustrated in Appendix A6.1, where the expected behavior of the
estimated autocorrelation function is considered for the nonstationary (0, 1, 1) process
Vz, = (1 — OB)a,. The ratio E[c;]/E|[cq] of expected values falls off only slowly, but
depends initially on the value of 8 and on the number of observations in the series, and
need not be close to unity if @ is close to 1. We illustrate this point again in Section 6.3.4
for Series A.

For the reasons given, it is assumed that the degree of differencing d, necessary to
achieve stationarity, has been reached when the autocorrelation function of w, = V9z, dies
out fairly quickly. In practice, d is normally O, 1, or 2, and it is usually sufficient to inspect
the first 20 or so estimated autocorrelations of the original series, and of its first and second
differences, if necessary.

Overdifferencing. Once stationarity is achieved, further differencing should be avoided.
Overdifferencing introduces extra serial correlation and increases model complexity. To
illustrate this point, assume that the series z, follows a random walk so that the differenced
series w, = (1 — B)z, = a, is white noise and thus stationary. Further differencing of w;, leads
to (1 — B)w, = (1 — B)a,, which is a MA(1) model for w, with parameter # = 1. Thus, the
resulting model for z, would be an ARIMA(O0, 2, 1) model instead of the simpler ARIMA(O,
1, 0) model. The model with 6 = 1 is noninvertible and the pure autoregressive representa-
tion does not exit. Noninvertibility also causes problems at the parameter estimation stage
in that approximate maximum likelihood methods tends to produce biased estimates in
this case.

Figure 6.1 shows the autocorrelation and partial autocorrelation functions of a time series
oflength 200 generated from a random walk model with innovations variance equal to 1. The
first 1000 observations were discarded to eliminate potential start-up effects. The estimated
autocorrelations up to lag 20 of the original series and its first and second differences are
shown in the graph. The autocorrelations of the original series fail to damp out quickly,
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FIGURE 6.1 Estimated autocorrelation and partial autocorrelation functions for a simulated ran-
dom walk process and its first (d = 1) and second (d = 2) differences.

indicating a need for differencing. The autocorrelations of w, = Vz;, on the other hand,
are all small, demonstrating that stationarity has now been achieved. The autocorrelation
function of the second differences w, = V?z, also indicates stationarity, but it has a spike
at lag 1 showing the extra correlation that has emerged because of overdifferencing. The
value of r| is close to —0.5, which is consistent with the lag 1 autocorrelation coefficient
for an MA(1) model with 6 = 1. Figure 6.1 can be reproduced in R as follows:

V V.V V V V V V V V V V

RW=arima.sim(list (order=c(0,1,0)),n=200,n.start=1000)

acfO=acf (RW, 20)
pacfO=pacf (RW, 20)
acfl=acf (diff (RW),20)
pacfl=pacf (diff (RW), 20)
acf2=acf (diff (diff (RwW)),20)
pacf2=pacf (diff (diff (RW))
par (mfrow=c(3,2))

plot (acf0,main='d=0")
plot (pacf0,main="d=0")
plot (
(

120)

acfl,ylim=c(-0.5,0.5),main="d=1")

plot (pacfl,ylim=c(-0.5,0.5) ,main="d=1")
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> plot(acf2,ylim=c(-0.5,0.5) ,main='d=2")
> plot(pacf2,ylim=c(-0.5,0.5),main="d=2")

Identifying a Stationary ARMA Model for the Differenced Series. Having tentatively
decided on the degree of differencing d, we examine the patterns of the estimated autocor-
relation and partial autocorrelation functions of the differenced series, w, = (1 — B)?z,, to
determine a suitable choice for the orders p and g of the autoregressive and moving average
operators. Here we recall the characteristic behavior of the theoretical autocorrelation and
partial autocorrelation functions for moving average, autoregressive, and mixed processes,
discussed in Chapter 3.

Briefly, whereas the autocorrelation function of an autoregressive process of order
p tails off, its partial autocorrelation function has a cutoff after lag p. Conversely, the
autocorrelation function of a moving average process of order g has a cutoff after lag g,
while its partial autocorrelation function tails off. If both the autocorrelations and partial
autocorrelations tail off, a mixed process is suggested. Furthermore, the autocorrelation
function for a mixed process, containing a pth-order autoregressive component and a gth-
order moving average component, is a mixture of exponentials and damped sine waves
after the first g—p lags. Conversely, the partial autocorrelation function for a mixed process
is dominated by a mixture of exponentials and damped sine waves after the first p—q lags
(see Table 3.2).

In general, autoregressive (moving average) behavior, as measured by the autocorrela-
tion function, tends to mimic moving average (autoregressive) behavior as measured by the
partial autocorrelation function. For example, the autocorrelation function of a first-order
autoregressive process decays exponentially, while the partial autocorrelation function cuts
off after the first lag. Correspondingly, for a first-order moving average process, the au-
tocorrelation function cuts off after the first lag. Although not precisely exponential, the
partial autocorrelation function is dominated by exponential terms and has the general
appearance of an exponential.

Of particular importance are the autoregressive and moving average processes of first
and second order and the simple mixed (1, d, 1) process. The properties of the theoretical
autocorrelation and partial autocorrelation functions for these processes are summarized
in Table 6.1, which requires careful study and provides a convenient reference table. The
reader should also refer to Figures 3.2, 3.7, and 3.10, which show typical behavior of
the autocorrelation function and the partial autocorrelation function for the second-order
autoregressive process, the second-order moving average process, and the simple mixed
ARMAC(1, 1) process.

6.2.2 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations

Estimated autocorrelations can have rather large variances and can be highly autocorrelated
with each other. For this reason, detailed adherence to the theoretical autocorrelation func-
tion cannot be expected in the estimated function. In particular, moderately large estimated
autocorrelations can occur after the theoretical autocorrelation function has damped out,
and apparent ripples and trends can occur in the estimated function that have no basis in the
theoretical function. In employing the estimated autocorrelation function as a tool for iden-
tification, it is usually possible to be fairly sure about broad characteristics, but more subtle
indications may or may not represent real effects. For these reasons, two or more related
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TABLE 6.1 Behavior of the Autocorrelation Functions for the dth Difference of an ARIMA Process of Order (p, d, )*

Order
(1,d,0) 0.d. 1) (2,d,0) 0,d,2) (1.d, 1)
Behavior of p, Decays Only p, Mixture of Only p; and Decays
exponentially nonzero exponentials P, onzero exponentially
or damped from first lag
sine wave
Behavior of ¢, Only ¢, Exponential Only ¢, and Dominated by Dominated by
nonzero dominates ¢, nonzero mixture of exponential decay
decay exponential or from first lag
damped sine wave
o -0, n=p) —0:(1-6,) A=-01p)(h —0))
Preliminar; =p = = P = p=—-"127 U
4 i Ty W= e+ T TR 2.,
estimates from
¢ e ¢
n=—7— =
2 2= Ty R ) 191
Admissible region —-1<¢ <1 ~1i%6; i -1<¢, <1 -1<6,<1 -1<¢ <1
b+ <1 0,+6,<1 -1<6, <1
b= <1 0,-6,<1
@ Table A and Charts B-D are included at the end of this book to facilitate the of estimates of the for first-order moving average, second-order

autoregressive, second-order moving average, and the mixed ARMA(L, 1) processcs.
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models may need to be entertained and investigated further at the estimation and diagnostic
checking stages of model building.

In practice, it is important to have some indication of how far an estimated value may
differ from the corresponding theoretical value. In particular, we need some means for
judging whether the autocorrelations and partial autocorrelations are effectively zero after
some specific lag g or p, respectively. For larger lags, on the hypothesis that the process is
moving average of order g, we can compute standard errors of estimated autocorrelations
from the simplified form of Bartlett’s formula (2.1.15), with sample estimates replacing
theoretical autocorrelations. Thus,

1/2

6lra] ~ ———[1 + 24154+ )] k>q (6.2.2)

= a2
For the partial autocorrelations, we use the result quoted in (3.2.36) that, on the hypoth-
esis that the process is autoregressive of order p, the standard error for estimated partial
autocorrelations of order p 4+ 1 and higher is
a2 1
61l = 7 k>p (6.2.3)
It was shown by Anderson (1942) that for moderate n, the distribution of an estimated
autocorrelation coefficient, whose theoretical value is zero, is approximately normal. Thus,
on the hypothesis that the theoretical autocorrelation p; is zero, the estimate r; divided
by its standard error will be approximately distributed as a unit normal variate. A similar
result is true for the partial autocorrelations. These facts provide an informal guide as to
whether theoretical autocorrelations and partial autocorrelations beyond a particular lag are
essentially zero.

6.2.3 Identification of Models for Some Actual Time Series

Series A-D. In this section, the model specification tools described above are applied to
some of the actual time series that we encountered in earlier chapters. We first discuss
potential models for Series A to D plotted in Figure 4.1. As remarked in Chapter 4 on
nonstationarity, we expect Series A, C, and D to possess nonstationary characteristics since
they represent the ‘‘uncontrolled’” behavior of certain process outputs. Similarly, we would
expect the IBM stock price Series B to have no fixed level and to be nonstationary.

The estimated autocorrelations of z, and the first differences Vz, for Series A-D are
shown in Figure 6.2. Figure 6.3 shows the corresponding estimated partial autocorrelations.
The two figures were generated in R using commands similar to those used to produce
Figure 6.1. For the chemical process concentration readings in Series A, the autocorrelations
for Vz, are small after the first lag. This suggests that this time series might be described by
an IMA(O, 1, 1) model. However, from the autocorrelation function of z;, it is seen that after
lag 1 the correlations do decrease fairly regularly. Therefore, an alternative is that the series
follows a mixed ARMA(1, 0, 1) model. The partial autocorrelation function of z, seems to
support this possibility. We will see later that the two alternatives result in virtually the
same model. For the stock price Series B, the results confirm the nonstationarity of the
original series and suggest that a random walk model (1 — B)z, = q, is appropriate for this
series.

The estimated autocorrelations of the temperature Series C also indicate nonstationarity.
The roughly exponential decay in the autocorrelations for the first difference suggests a
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FIGURE 6.2 Estimated autocorrelation functions of the original series (d = 0), and their first
differences (d = 1) for Series A-D.

process of order (1, 1,0), with an autoregressive parameter ¢ around 0.8. Alternatively,
we notice that the autocorrelations of Vz, decay at a relatively slow rate, suggesting
that further differencing might be needed. The autocorrelation and partial autocorrelation
functions of the second differences V?z, (not shown) were rather small, suggesting a white
noise process for the second differences. This implies that an IMA(0, 2, 0) model might
also be appropriate for this series. Thus, the possibilities are

(1-0.8B)(1 - B)z, = q,
(1 - B)’z, =aq,

The second model is very similar to the first, differing only in the choice of 0.8 rather than
1.0 for the autoregressive coefficient.

Finally, the autocorrelation and partial autocorrelation functions for the viscosity
Series D suggest that an AR(1) model (1 — ¢B)z; = a, with ¢ around 0.8 might be ap-
propriate for this series. Alternatively, since the autocorrelation coefficients decay at a
relatively slow rate, we will also consider the model (1 — B)z, = g, for this series.

Series E and F. Series E shown in the top graph of Figure 6.4 represents the annual Wolfer
sunspot numbers over the period 1770-1869. This series is likely to be stationary since
the number of sunspots is expected to remain in equilibrium over long periods of time.
The autocorrelation and partial autocorrelation functions in Figure 6.4 show characteristics
similar to those of an AR(2) process. However, as will be seen later, a marginally better
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FIGURE 6.3 Estimated partial autocorrelation functions of the original series (d = 0), and their
first differences (d = 1) for Series A-D.

fit is obtained using an AR(3) model. The fit can be improved further using a square root
or log-transformation of the series. An autoregressive model of order nine is suggested by
the order selection routine ar() in the R package that selects AR order based on the Akaike
information criterion (AIC) to be discussed in Section 6.2.4. Other options considered in the
literature include nonlinear time series models, such as bilinear or threshold autoregressive
models, discussed briefly in Section 10.3.

Series F introduced in Chapter 2 represents the yields of a batch chemical process.
The series is expected to be stationary since the batches are processed under uniformly
controlled conditions. The stationarity is confirmed by Figure 6.5 that shows a graph of
the series along with the autocorrelation and partial autocorrelation functions of the series
and its first differences. The results for the undifferenced series suggest that a first-order
autoregressive model might be appropriate for this series.

A summary of the models tentatively identified for Series A to F is given in Table 6.2.
Note that for Series C and F, the alternative models suggested above have been made
slightly more general for further illustrations later on.

Notes on the identification procedure. The graphs of the autocorrelation and partial au-
tocorrelation functions shown above were generated using R. In assessing the estimated
correlation functions, it is very helpful to plot one or two standard error limits around zero
for the estimated coefficients. Limits from the R package are included in the graphs dis-
played above. These limits are approximate two standard error limits, +2 / \/En), determined
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Series E: Sunspot numbers 1770-1869
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FIGURE 6.4 Estimated autocorrelation and partial autocorrelation functions of the sunspot series

(Series E) and its first differences.

under the assumption that all the theoretical autocorrelation coefficients are zero so that
the series is white noise. If a hypothesis about a specific model is postulated, alternative
limits could be determined from Bartlett’s formula as discussed above. When the calcula-
tions are performed in R, inclusion of the argument ci.type=‘ma’ in the acf() function

TABLE 6.2 Tentative Identification of Models for Series A-F

Degree of Identification
Series Differencing Apparent Nature of Differenced Series for z,
A Either 0 Mixed first-order AR with first-order MA (1,0, 1)
orl First-order MA ©0,1,1)
B 1 First-order MA ©0,1,1)
C Either 1 First-order AR (1,1,0)
or 2 Uncorrelated noise 0,2,2)¢
D Either 0 First-order AR (1,0,0)
orl Uncorrelated noise 0,1,1)*
E Either 0 Second-order AR (2,0,0)
or0 Third-order AR (3,0,0)
F 0 Second-order AR 2,0,0)

@ The order of the moving average operator appears to be zero, but the more general form is retained for

subsequent consideration.
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Series F: Yield from a Batch Chemical Process
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FIGURE 6.5 Estimated autocorrelation and partial autocorrelation functions for the yield of a batch
chemical process (Series F) and its first differences.

yields confidence bounds computed based on the assumption that the true model is
MA(k - 1).
Three other points concerning this identification procedure need to be mentioned:

1.

Simple differencing of the kind we have used will not produce stationarity in series
containing seasonal components. In Chapter 9, we discuss the appropriate modifica-
tions for such seasonal time series.

. As discussed in Chapter 4, a nonzero value for 6 in (6.1.1) implies the existence of

a systematic polynomial trend of degree d. For the nonstationary models in Table
6.2, a value of 6, = 0 can perfectly well account for the behavior of the series.
Occasionally, however, there will be some real physical phenomenon requiring the
provision of such a component. In other cases, it might be uncertain whether or not
such a provision should be made. Some indication of the evidence supplied by the
data, for the inclusion of 6, in the model, can be obtained at the identification stage
by comparing the mean w of w, = V?z, with its approximate standard error, using
oX(w) = n_lai}[l +2p,(w) + 2py(w) + 1.

. It was noted in Section 3.4.2 that, for any ARMAC(p, q) process with p — g > 0, the

whole positive half of the autocorrelation function will be a mixture of damped sine
waves and exponentials. This does not, of course, prevent us from tentatively identi-
fying g, because (a) the partial autocorrelation function will show p — ¢ ‘‘anomalous’’
values before behaving like that of an MA(q) process, and (b) ¢ must be such that the
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autocorrelation function could take, as starting values following the general pattern,
pq back to p_(,_4_1).

6.2.4 Some Additional Model Identification Tools

Although the sample autocorrelation and partial autocorrelation functions are extremely
useful in model identification, there are sometimes cases involving mixed models where
they can provide ambiguous results. This may not be a serious problem since, as has been
emphasized, model specification is always tentative and subject to further examination,
diagnostic checking, and modification, if necessary. Nevertheless, there has been consider-
able interest in developing additional tools for use at the model identification stage. These
include the R and S array approach proposed by Gray et al. (1978), the generalized partial
autocorrelation function studied by Woodward and Gray (1981), the inverse autocorrela-
tion function considered by Cleveland (1972) and Chatfield (1979), the extended sample
autocorrelation function of Tsay and Tiao (1984), and the use of canonical correlation anal-
ysis as examined by Akaike (1976), Cooper and Wood (1982), and Tsay and Tiao (1985).
Model selection criteria such as the AIC criterion introduced by Akaike (1974a) and the
Bayesian Information Criterion (BIC) of Schwarz (1978) are also useful supplementary
tools.

Canonical Correlation Methods. For illustration, we briefly discuss the use of canonical
correlation analysis for model identification. In general, for two sets of random variables,
Y, =011Y12 Y1) and Yy = (a1, Y235 -+ » ¥p;)» Of dimensions k and / (assume k <
I), canonical correlation analysis involves determining linear combinations U; = a;Y1
and V; = b;Yz, i =1,...,k,and corresponding correlations p(i) = corr[U;, V;] with p(1) >
p(2) 2 -+ = p(k) = 0. The linear combinations are chosen so that the U; and V; are mutually
uncorrelated for i # j, U; and V| have the maximum possible correlation p(1) among all
linear combinations of Y| and Y, U, and V, have the maximum possible correlation p(2)
among all linear combinations of Y| and Y, that are uncorrelated with U, and ¥V}, and so
on. The resulting correlations p(i) are called the canonical correlations between Y | and
Y ,, and the variables U; and V; are the corresponding canonical variates. If Q = cov[Y]

denotes the covariance matrix of Y = (Y”, le), , with Q; ;= cov[Y,, Y j], then it is known

that the values p?(i) are the ordered eigenvalues of the matrix 91_119 129;21 Q,, and the
vectors a;, such that U; = a;Yl, are the corresponding (normalized) eigenvectors; that is,

the p2(i) and a; satisty
POl - Q['Q,Q)Q; 1, =0  i=1,....k (6.2.4)

with pz(l) > 22> > pz(k) > 0 (e.g., Anderson (1984), p. 490). Similarly, one can
define the notion of partial canonical correlations between Y | and Y ,, given another set
of variables Y5, as the canonical correlations between Y| and Y, after they have been
“‘adjusted’’ for the effects of Y 5 by linear regression on Y3, analogous to the definition of
partial correlations as discussed in Section 3.2.5. A useful property to note is that if there
exist (at least) s < k linearly independent linear combinations of Y| that are completely
uncorrelated with Y, say U = A’Y | such that cov[Y,, U] = Q,,; A = 0, then there are (at
least) s zero canonical correlations between Y| and Y,. This follows easily from (6.2.4)
since there will be (at least) s linearly independent eigenvectors satisfying (6.2.4) with
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corresponding p(i) = 0. In effect, then, the number s of zero canonical correlations is equal
to s = k — r, where r = rank(Q2,).

In the ARMA time series model context, following the approach of Tsay and Tiao (1985),
we consider Y, = (%, Z,_¢, ..., %,_,) and examine the canonical correlation structure
between the variables Y, , and

s ~ ~ I
Yoimjo1 =Gjots Zjgs s Zisjoim)

for various combinations of m = 0,1, ... and j =0, 1, ... A key feature to recall is that the
autocovariance function y; of an ARMA(p, q) process Z; satisfies (3.4.2), and, in particular,

P
J’k—z¢i7k—i=0 k> q
i=1

Thus, for example, if m > p, there is (at least) one linear combination of Y, ,,

p
zZ, - Z ¢z =0,-¢y, ..., —q&p, 0,....00Y,, = a'Ym’t (6.2.5)
i=1
such that
q
a'y,,=a - Z 0;a,-;
i=1

whichis uncorrelatedwith Y, ,_;_, for j > g. In particular, then, form = pand j = g, there
is one zero canonical correlation between Y ,, and Y ,,_,_;, as well as between Y ,; and
Y,.—j-1.J > g, andbetweenY , ,andY, , . |, m > p, whilein general it is not difficult to
establish that there are s = min(m + 1 — p, j + 1 — q) zero canonical correlations between
Y,,and Y, , ;| for m>p and j > q. Hence, one can see that determination of the
structure of the zero canonical correlations between Y, ; and Y, ,_;_; for various values
of m and j will serve to characterize the orders p and g of the ARMA model, and so the
canonical correlations will be useful in model identification. We note the special cases of
these canonical correlations are as follows. First, when m = 0, we are simply examining the
autocorrelations p; | between z; and z,_;_;, which will all equal zero in an MA(g) process
for j > q. Second, when j = 0, we are examining the partial autocorrelations ¢, | 41
between z, and z,_,_;, given z,_{, ..., z;_,,, and these will all equal zero in an AR(p)
process for m > p. Hence, the canonical correlation analysis can be viewed as an extension
of the analysis of the autocorrelation and partial autocorrelation functions of the process.

In practice, based on (6.2.4), one is led to consider the sample canonical correlations
p(i), which are determined from the eigenvalues of the matrix:

-1
(21‘ Y’"”Y;"J> (Zt Y”’”Y:n,f—j—l)
-1
!/ 4
x (Z[ Ymat_j_lYm,l‘—j—l> <Zt Y”’J—j_lYm,l>
(6.2.6)

for various values of lag j =0,1,... and m =0, 1,.... Tsay and Tiao (1985) use a chi-
squared test statistic approach based on the smallest eigenvalue (squared sample canonical
correlation) A(m, j) of (6.2.6). They propose the statistic c¢(m, j) = —(n —m — j)In[1 —
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A(m, j)/d(m, j)], where d(m, j) =1 +2 Zle riz(w’),j > 0, r;(w") denotes the sample au-

tocorrelation at lag i of w) = z, — <}3(]’ Y2,y == Wz, and the ¢V are estimates of
the ¢,’s obtained from the eigenvector (see, for example, equation (6.2.5)) corresponding
to A(m, j). The statistic c(m, j) has an asymptotic )(12 distribution when m = p and j > ¢
or when m > p and j = g and can be used to test whether there exists a zero canonical
correlation in theory. Hence if the sample statistics exhibit a pattern such that they are all
insignificant, relative to a )(12 distribution, for m > p and j > g for some p and g values, then
the model might reasonably be identified as an ARMA(p, q) for the smallest values (p, q)
such that this pattern holds. Tsay and Tiao (1985) also show that this procedure is valid for
nonstationary ARIMA models ¢(B)z, = 8(B)a;, in the sense that the overall order p + d
of the generalized AR operator ¢(B) can be determined by the procedure, without initially
deciding on differencing of the original series z,.

Canonical correlation methods were previously also proposed for ARMA modeling by
Akaike (1976) and Cooper and Wood (1982). Their approach is to perform a canon-
ical correlation analysis between the vector of present and past values, P, =Y, =
(24 Z,_1+ .-+ Z;_y), and the vector of future values, F, | = (Z,,1, Z,. ...)'. In practice,
the finite lag m used to construct the vector of present and past values P, may be fixed by
use of an order determination criterion such as Akaike information criteria to be discussed
a little later in this section, applied to fitting of AR models of various orders. The canonical
correlation analysis is performed sequentially by adding elements to F,,; one at a time,
starting with F", = (Z,), until the first zero canonical correlation between P, and the
F,_, is determined. Akaike (1976) uses an AIC-type criterion called deviance information
criterion (DIC) to judge whether the smallest sample canonical correlation can be taken
to be zero, while Cooper and Wood (1982) use a traditional chi-squared statistic approach
to assess the significance of the smallest canonical correlation, although as pointed out by
Tsay (1989a), to be valid in the presence of a moving average component, this statistic
needs to be modified.

At a given stage in the procedure, when the smallest sample canonical correlation
between P, and F f+ | 1s first judged to be 0 and Z,, g is the most recent variable to be
included in F ;k+1’ a linear combination of Z,, g ; in terms of the remaining elements of

F ;:_ , is identified that is uncorrelated with the past. Specifically, the linear combination

Ziikel — Z,K=1 ® ;214 k41— of the elements in the vector F ;:1 of future values is (in theory)
determined to be uncorrelated with the past P,. Hence, this canonical correlation analysis

procedure determines that the forecasts Z,(K + 1) of the process satisfy

K
2(K+1)— Z¢12’(K+ 1-j)=6,
j=1

By reference to the relation (5.3.2) in Section 5.3, for a stationary process, this implies that
an ARMA model is identified for the process, with K = max{p, q}.

As can be seen, in the notation of Tsay and Tiao (1985), the methods of Akaike and
Cooper and Wood represent canonical correlation analysis between Y, , and Y, _; .,
for various n =1, 2, .... Since the Tsay and Tiao method considers canonical correlation
analysis between Y, and Y, ,_;_; for various combinations of m=0,1,... and j =
0,1, ..., it is more general and, in principle, it is capable of providing information on the
orders p and g of the AR and MA parts of the model separately, rather than just the maximum
of these two values. In practice, when using the methods of Akaike and Cooper and Wood,
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the more detailed information on the individual orders p and g would be determined at the
stage of maximum likelihood estimation of the parameters of the ARMA(K, K) model.

Use of Model Selection Criteria. Another approach to model selection involves the use
of information criteria such as AIC proposed by Akaike (1974a) or the Bayesian infor-
mation criteria of Schwarz (1978). In the implementation of this approach, a range of
potential ARMA models are estimated by maximum likelihood methods to be discussed
in Chapter 7, and for each model, a criterion such as AIC (normalized by sample size n),
given by

—2 In (maximized likelihood) + 2r
n

AIC,, = ~ ln(?rg) + r% + constant
" n

or the related BIC given by

In(n)

n

_ A2
BIC,, =In(6,) +r

is evaluated. Here, 6'5 is the maximum likelihood estimate of 63, and r = p+q+ 1is the
number of estimated parameters, including a constant term. In the above criteria, the first
term essentially corresponds to —2 /n times the log of the maximized likelihood, while the
second term is a ‘‘penalty factor’” for inclusion of additional parameters in the model. In
the information criteria approach, models that yield a minimum value for the criterion are
to be preferred, and the AIC or BIC values are compared among various models as the
basis for selection of the model. Hence, since the BIC criterion imposes a greater penalty
for the number of estimated model parameters than does AIC, use of minimum BIC for
model selection would always result in a chosen model whose number of parameters is no
greater than that chosen under AIC.

Hannan and Rissanen (1982) proposed a two-step model selection procedure that avoids
the need to maximize the likelihood function for multiple combinations of p and q. At the
first step, one fits an AR model of sufficiently high order m* to the series Z,. The residuals
a, from the fitted AR(m™*) model provide estimates of the innovations a, in the ARMA(p, q)
model. At the second step, one regresses Z, on Z,_y, ..., Z,_, and &,_y, ..., d,_,, for various
combinations of p and g. That is, one fits approximate models of the form

P q
2= b5 — D 0,4 +a (6.2.7)
Jj=1 j=1

using ordinary least squares, and the estimated error variance, uncorrected for degrees of
freedom, is denoted by 6'[2”1. Then, using the BIC criterion, the order (p, q¢) of the ARMA

model is chosen as the one that minimizes ln(8§’ q) + (p + ¢) In(n)/n. Hannnan and Rissanen
show that, under very general conditions, the estimators of p and g chosen in this manner
tend almost surely to the true values. The appeal of this procedure is that computation of
maximum likelihood estimates over a wide range of possible ARMA models is avoided.
While these order selection procedures are useful, they should be viewed as supple-
mentary tools to assist in the model selection process. In particular, they should not be
used as a substitute for careful examination of the estimated autocorrelation and partial
autocorrelation functions of the series, and critical examination of the residuals @, from
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a fitted model should always be included as a major part of the overall model selection
process.

6.3 INITIAL ESTIMATES FOR THE PARAMETERS

6.3.1 Uniqueness of Estimates Obtained from the Autocovariance Function

While a given ARMA model has a unique autocovariance structure, the converse is not true
without additional conventions imposed for uniqueness, as we discuss subsequently. At
first sight this would seem to rule out the use of the estimated autocovariances as a means of
identification. However, we show in Section 6.4 that the estimated autocovariance function
may indeed be used for this purpose. The reason is that, although there exists a multiplicity
of ARMA models possessing the same autocovariance function, there exists only one that
expresses the current value of w, = V9z,, exclusively in terms of previous history and in
stationary invertible form.

6.3.2 Initial Estimates for Moving Average Processes

As shown in Chapter 3, the first g autocorrelations of a MA(g) process are nonzero and can
be written in terms of the parameters of the model as

—0) + 0,041 + 020,42 + - + 0,0
o= —— LKL T 2k T k=1,2,....q 6.3.1)
1467+, + - + 02

The expression (6.3.1) for py, p,, ..., Py in terms of 6, 60,, ... ,Hq, supplies g equations in
g unknowns. Preliminary estimates of the 8’s can be obtained by substituting the estimates
ry for p; in (6.3.1) and solving the resulting nonlinear equations. A preliminary estimate

of 0'2 may then be obtained from
7o =0.(1+67 + - +062)

by substituting the preliminary estimates of the ’s and replacing y, = O"%] by its estimate
¢o. The numerical values of the estimated autocorrelation coefficients r; for the series z
are conveniently obtained from R as follows:

> ac=acf (z)
> ac

Preliminary Estimates for a (0, d, 1) Process. Table A in Part Five relates p; to ;, and by
substituting r;(w) for p; can be used to provide initial estimates for any (0, d, 1) process
w, = (1 — 6, B)a,, where w, = V?z,.

Preliminary Estimates for a (0, d, 2) Process. Chart C in Part Five relates p; and p, to
0, and 6,, and by substituting r(w) and r,(w) for p; and p, can be used to provide initial
estimates for any (0, d, 2) process.

In obtaining preliminary estimates in this way, the following points should be kept in
mind:
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1. The autocovariances are second moments of the joint distribution of the w’s. Thus,
the parameter estimates are obtained by equating sample moments to their theoretical
values. It is well known that the method of moments is not necessarily efficient and
can produce poor estimates for models that include moving average terms. However,
the rough estimates obtained can be useful in obtaining fully efficient estimates,
because they supply an approximate idea of ‘‘where in the parameter space to look”’
for the most efficient estimates.

2. In general, the equation (6.3.1), obtained by equating moments, will have multiple
solutions. For instance, when ¢ = 1,

| (63.2)
pL= 3.
e
and hence from 012 +(1/p1)0; + 1 =0, we see that both
- 11/2
91 = _L + 1 5~
201 [@p)
and
- 11/2
1 1
0, = 5 5~ (6.3.3)
P [@p)

are possible solutions. For illustration, the first lag autocorrelation of the first dif-
ference of Series A is about —0.4. Substitution in (6.3.3) yields the pair of solutions
6, ~ 0.5 and 0; ~ 2.0. However, the chosen value ; ~ 0.5 is the only value that
lies within the invertibility interval —1 < 6; < 1. In fact, it is shown in Section 6.4.1
that it is always true that only one of the multiple solutions of (6.3.1) can satisfy the
invertibility condition.

Examples. Series A, B, and D were all identified in Table 6.2 as possible IMA processes
of order (0, 1, 1). We have seen in Section 4.3.1 that this model may be written in following
the alternative forms:

Vz, =(1 -6,B)a,
Vz, = Aga,_1 + Va, Ag=1-6y)

[So]

z, = Ay Z 1- /lo)j_lz,_j +a,

Jj=1

Using Table A in Part Five, the approximate estimates of the parameters shown in Table 6.3
were obtained.
Series C has been tentatively specified in Table 6.2 as an IMA(0, 2, 2) process:

V2z,=(1-6,B-6,B%)aq,
or equivalently,

V2z, = (4gV + 4))a,_, + Va,
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TABLE 6.3 Initial Estimates of Parameters for Series A, B, and D

Series r| 91 ;10 =1-0,
A —0.41 0.5 0.5
B 0.09 -0.1 1.1
D —0.05 0.1 0.9

Since the first two sample autocorrelations of V2z, are very close to zero, Chart C in Part
Five gives0; = 0,60, =0,sothat A =1+6, =1and 4; =1 — 68 — 6, = 1. On this basis,
the series would be represented by

V2Z, = q, (6.3.4)

This would mean that the second difference, szt, was very nearly a random (white noise)
series.

6.3.3 Initial Estimates for Autoregressive Processes

For an assumed AR process of order 1 or 2, initial estimates for ¢; and ¢, can be calculated
by substituting estimates r; for the theoretical autocorrelations p; in the formulas of Table
6.1, which are obtained from the Yule—Walker equations (3.2.6). In particular, for an AR(1),
¢, = ry, and for an AR(2),

~ =r1(1—r2)

2 l—r%

é Ehls (6.3.5)
22 — 1_r2 I,

1

where (;131, ; denotes the estimated jth autoregressive parameter in a process of order p. The
corresponding formulas given by the Yule—Walker equations for higher order schemes may
be obtained by substituting the r; for the p; in (3.2.7). Thus,

2 _p-l
= Rp r, (6.3.6)
where R,, is an estimate of the p X p matrix P, as depicted following (3.2.6) in 3.2.2, of
autocorrelations up to order p — 1, and r,= (ry,r, .., rp)’. For example, if p = 3, (6.3.6.)
becomes
2 -1
®31 L r n r
b= 1 ry (6.3.7)
<1333 ryorp 1 3

A simple recursive method due to Levinson and Durbin for obtaining the estimates for an
AR(p) from those of an AR(p — 1) was discussed in Appendix A3.2.

It will be shown in Chapter 7 that in contrast to the situation for MA processes, the
autoregressive parameters obtained from (6.3.6) approximate the fully efficient maximum
likelihood estimates.
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Example. Series E representing the sunspot data behaves in its undifferenced form like'
an autoregressive process of second order:

(1-¢,B-¢,B>)zZ, =aq,

Substituting the estimates r; = 0.81 and r, = 0.43, obtained using R, into (6.3.5), we have
¢, =1.32and ¢, = —0.63.

As a second example, consider again Series C identified as either of order (1, 1,0) or
possibly (0, 2, 2). The first possibility would give

(1-¢,B\VZ, =aq,

with ¢, = 0.81, since r; for Vz, is 0.81.

This example is interesting because it makes clear that the two alternative models that
have been identified for this series are closely related. On the supposition that the series is
of order (0, 2,2), we found in (6.3.4) that this simplifies to

(1-B)(1 - B)z; = q, (6.3.8)
The alternative
(1-0.81B)(1 - B)z, =aq, (6.3.9)

is very similar.

6.3.4 Initial Estimates for Mixed Autoregressive—-Moving Average Processes

It is often found, either initially or after suitable differencing, that w, = V¢z, is most
economically represented by a mixed ARMA process:

d(B)w, = 0(B)a,

As noted in Section 6.2.1, a mixed process is indicated if both the autocorrelation and partial
autocorrelation functions tail off rather than either having a cutoff feature. Another helpful
fact in identifying the mixed process is that after lag ¢ — p, the theoretical autocorrelations
of the mixed process behave like the autocorrelations of a pure autoregressive process
d(B)w, = a, (see (3.4.3)). In particular, if the autocorrelation function of the dth difference
appears to be falling off exponentially from an aberrant first value r;, we would suspect
that we have a process of order (1, d, 1) that is,

(1-¢,Byw, = (1 —0,B)a, (6.3.10)

where w, = Vz,.

I'The sunspot series has been the subject of much investigation. Early references include Schuster (1906), Yule
(1927), and Moran (1954). The series does not appear to be adequately represented by a second-order autoregres-
sive process. A model related to the underlying mechanism at work would, of course, be the most satisfactory.
More recent work has suggested empirically that a second-order autoregressive model would provide a better fit
if a suitable transformation such as log or square root were first applied to z. Inclusion of a higher order term, at
lag 9, in the AR model also improves the fit. Other possibilities include the use of nonlinear time series models,
such as bilinear or threshold autoregressive models (e.g., see Section 10.3), as has been investigated by Subba
Rao and Gabr (1984), Tong and Lim (1980), and Tong (1983,1990).
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Approximate values for the parameters of the process (6.3.10) are obtained by substi-
tuting the estimates r; (w) and r,(w) for p; and p, in the expression (3.4.8). This gives

i (1—¢0,)(d, - b))
1+ @f —2¢,6,

ry =ri$;

Chart D in Part Five relates p; and p, to ¢ and 6; can be used to provide initial estimates
of the parameters for any (1, d, 1) process.

For example, using Figure 6.2, Series A was identified as of order (0,1, 1), with 6,
about 0.5. Looking at the autocorrelation function of z, rather than that of w, = Vz,, we see
from r; onward the autocorrelations decay roughly exponentially, although slowly. Thus,
an alternative specification for Series A is that it is generated by a stationary process of
order (1,0, 1). The estimated autocorrelations and the corresponding initial estimates of the
parameters are then

r =057 r,=050 ¢ ~087 0, ~048
This identification yields the approximate model of order (1,0, 1):
(1-09B)z, = (1 —0.5B)q,
whereas the previously identified model of order (0, 1, 1), given in Table 6.5, is
(1-B)z;, =(1 =0.5B)aq,
Again we see that the ‘‘alternative’” models are nearly the same.
Compensation between Autoregressive and Moving Average Operators. The alternative
models identified above are even more alike than they appear. This is because small

changes in the autoregressive operator of a mixed model can be nearly compensated by
corresponding changes in the moving average operator. In particular, if we have a model

[1-(1-6)Blz,=(1—-6B)a,
where 6 is small and positive, we can write
1-B)z,=[1-(1- §BI™'(1 - B)(1 - 0B)a,

={1=6B[1+(1 =8B+ (1-6>B>+--1}(1-0B)q,
=[1—-(0 +6)Bla, +termsin a,_,, a,_3, --- ,of order 6

6.3.5 Initial Estimate of Error Variance

For comparison with the more efficient methods of estimation to be described in Chapter 7,
it is interesting to see how much additional information about the model can be extracted at
the identification stage. We have already shown how to obtain initial estimates (qS, 0) of the
parameters (¢, 0) in the ARMA model, identified for an appropriate difference w, = V¥z,
of the series. In this section we show how to obtain preliminary estimates of the error
variance ag, and in Section 6.3.6 we show how to obtain an approximate standard error for
the sample mean w of the appropriately differenced series.
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An initial estimate of the error variance may be obtained by substituting an estimate ¢
in the expression for the variance y, given in Chapter 3. Thus, substituting in (3.2.8), an
initial estimate of 0'5 for an AR process may be obtained from

82 =co(l = yry — dyry — = = 1)) (6.3.11)
Similarly, from (3.3.3), an initial estimate for a MA process may be obtained from

~2 €
by = ——————— (6.3.12)
1+67+ - +062
q
The form of the estimate for a mixed process is, in general, more complicated. However,
for the important ARMA(1,1) process, it takes the form (see (3.4.7))
1-¢?
62=————0 (6.3.13)
1+67 —2¢,0,

For example, consider the (1, 0, 1) model identified for Series A. Using (6.3.13) with
¢, =0.87,60, =0.48, and ¢y = 0.1586, we obtain the estimate 6'2 =0.098.

6.3.6 Approximate Standard Error for w

The general ARIMA model, for which the mean p,,, of w, = V¥z, is not necessarily zero,
may be written in any one of the three forms:

¢(B)(w, — p,,) = 0(B)a, (6.3.14)
P¢(B)w; = 0y + 6(B)a; (6.3.15)
0(B)w; = 0(B)(a, + &) (6.3.16)
where
_ 0y (=0 — 0, = —0))E
T ===, 1-bi—br—
Hence, if 1 - ¢y —¢py— -+ —¢,#0and 1 -0, — 0, —--- — 0, # 0, p,, = 0 implies that

0y = 0 and & = 0. Now, in general, when d = 0, u, will not be zero. However, consider
the eventual forecast function associated with the general model (6.3.14) when d > 0.
With y,,, = 0, this forecast function already contains an adaptive polynomial component of
degree d — 1. The effect of allowing y,, to be nonzero is to introduce a fixed polynomial
term into this function of degree d. For example, if d = 2 and y,, is nonzero, the forecast
function Z,(/) includes a quadratic component in /, in which the coefficient of the quadratic
term is fixed and does not adapt to the series. Because models of this kind are often
inapplicable when d > 0, the hypothesis that 4, = 0 will frequently not be contradicted by
the data. Indeed, as we have indicated, we usually assume that y,, = 0 unless evidence to
the contrary presents itself.

At this, the identification stage of model building, an indication of whether or not a
nonzero value for y,, is needed may be obtained by comparison of w = Z;’zl w, /n with



200 MODEL IDENTIFICATION

its approximate standard error (see Section 2.1.5). With n = N — d differences available,

@ =nlyy Yo =n Yy,
that is,
o2(w) =n"ly () (6.3.17)

where y(B) is the autocovariance generating function defined in (3.1.10) and y(1) is its
value when B = B! = 1 is substituted.
For illustration, consider the process of order (1, d, 0):

A= ¢B)(w, — p,) = a
with w, = V?z,. From (3.1.11), we obtain
o2

(1-¢B)(1 - ¢F)

y(B) =
SO
o?(w) =n"'(1 - ¢p)"*c>

2 _ 2 2
Buto; =07, (1 — ¢7), s0

N T
o (w) = — = —
n(l—-¢2? nl-¢
and
12
G@WW[M]
n(1—¢)

Now ¢ and ai) are estimated by r; and ¢, respectively, as defined in (2.1.11) and (2.1.12).
Thus, for a (1, d, 0) process, the required standard error is given by

Proceeding in this way, the expressions for ¢(w) given in Table 6.4 may be obtained.

Tentative Identification of Models A-F. Table 6.5 summarizes the models tentatively
identified for Series A to F, with the preliminary parameter estimates inserted. These
parameter values are used as initial guesses for the more efficient estimation methods to be
described in Chapter 7.

6.3.7 Choice Between Stationary and Nonstationary Models in Doubtful Cases

As the results in Tables 6.2 and 6.5 suggest, the preliminary identification of the need
for differencing and of the degree of differencing is not always easily determined. The
apparent ambiguity in identifying models for Series A, C, and D (particularly with regard
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TABLE 6.4 Approximate Standard Error for w, where w, = V9z, and z, is an ARIMA Process
of Order (p, d, q)

(1,d,0) 0,d,1)
(1 +r) 12 co(1+2r)) 12
n(l—r) n
(2,d,0) 0,d,?2)
e +r)(1 =22 41" ey(1+2r, +2r)12
n(l—r)(1-ry) n

to the degree of differencing) is, of course, more apparent than real. It arises whenever the
roots of ¢(B) = 0 approach unity. When this happens, it becomes less and less important
whether a root near unity is included in ¢(B) or an additional difference is included
corresponding to a unit root. A more precise evaluation is possible using the estimation
procedures discussed in Chapter 7 and, in particular, the more formal unit root testing
procedures to be discussed in Chapter 10. However, the following should be kept in mind:

1. From time series that are necessarily of finite length, it is never possible to prove that
a zero of the autoregressive operator is exactly equal to unity.

2. There is, of course, no sudden transition from stationary behavior to nonstationary
behavior. This can be understood by considering the behavior of the simple mixed

TABLE 6.5 Summary of Models Identified for Series A-F, with Initial Estimates Inserted

Series  Differencing  w + &(w)” 62 =, Identified Model 62
A Either 0 17.06 + 0.10 0.1586 z,—0.87z,_, =245 0.098
+a, —0.48a,_,
or 1 0.002+0011 01364  Vz,=a,—0.53a, 0.107
B 1 ~0.28 +0.41 52.54 Vz,=a,+0.09, , 522
C Either 1 ~0.035+0.047 00532  Vz,—081Vz_ =a, 0.019
or2 ~0.003+£0.008 00198  V2z =a —0.09%, 0.020
~0.07a,_,
D Either 0 9.13 + 0.04 03620  z,—086z_, =1324a,  0.093
or 1 0.004+0017 00965  Vz,=a,—005a, 0.096
E Either 0 46.9 + 5.4 13822 z,—132z,_, +0.63z_,  289.0
=149+aq,
or 0 46.9 + 5.4 13822 z,—137z,_, +0.74z,_,  287.0
~0.08z,_; = 13.7 + ,
F 0 511+ 11 139.80  z,+032z_,-0.18z_, 1150
=583+a,

4 When d = 0, read z for w.
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model
(1-¢1B)z,—u) =(1—-6;B)a,

Series generated by such a model behave in a more nonstationary manner as ¢ increases
toward unity. For example, a series with ¢p; = 0.99 can wander away from its mean y and
not return for very long periods. It is as if the attraction that the mean exerts in the series
becomes less and less as ¢p; approaches unity, and finally, when ¢, is equal to unity, the
behavior of the series is completely independent of .

In doubtful cases, there may be an advantage in employing the nonstationary model
rather than the stationary alternative (e.g., in treating a ¢, whose estimate is close to unity,
as being equal to unity). This is particularly true in forecasting and control problems. Where
¢ is close to unity, we do not really know whether the mean of the series has meaning or
not. Therefore, it may be advantageous to employ the nonstationary model, which does not
include a fixed mean p. If we use such a model, forecasts of future behavior will not in any
way depend on an estimated mean, calculated from a previous period, which may have no
relevance to the future level of the series.

6.4 MODEL MULTIPLICITY

6.4.1 Multiplicity of Autoregressive-Moving Average Models

With the normal distribution assumption, knowledge of the first and second moments
of a probability distribution implies complete knowledge of the distribution. In partic-
ular, knowledge of the mean of w, = V9z, and of its autocovariance function uniquely
determines the probability structure or w,. We now show that although this unique prob-
ability structure can be represented by a multiplicity of linear ARMA models, uniqueness
is achieved in the model when we introduce the appropriate stationarity and invertibility
restrictions.

Suppose that w,, having autocovariance generating function y(B), is represented by the
linear ARMA model

$(B)w, = 6(B)a, (6.4.1)

where the zeros of ¢(B) and of §(B) lie outside the unit circle. Then, this model may also
be written as

p q

H(1 -G,Bw, = H(1 — H;B)aq, (6.4.2)

i=1 Jj=1

where the G~! are the roots of ¢(B) = 0 and Hj‘1 are the roots of (B) = 0, and G;, Hj lie
inside the unit circle. Using (3.1.11), the autocovariance generating function for w is

P q
yB =[Ja-6B"'0-6FH"[]d-HB(-H,F)s?
i=1 =1

J



MODEL MULTIPLICITY 203

Multiple Choice of Moving Average Parameters. Since
(1- H;B)(1 - H;F) = Hj2(1 - H;'B)(1-H;'F)

it follows that any one of the stochastic models
p q
(1-GBuw, =[Ja- H' B)ka,

i=1 j=1

can have the same autocovariance generating function if the constant k is chosen appropri-
ately. In the above, it is understood that for complex roots, reciprocals of both members of
the conjugate pair will be taken (so as to always obtain real-valued coefficients in the MA
operator). However, if a real root H is inside the unit circle, H —1 will lie outside, or if a
complex pair, say H; and H,, are inside, then the pair H 1_1 and H; U will lie outside. It
follows that there will be only one stationary invertible model of the form (6.4.2), which
has a given autocovariance function.

Backward Representations. Now y(B) also remains unchanged if in (6.4.2) we replace
1-G;Bby1—-G;Forl—H;Bbyl— H;F.Thus, all the stochastic models

p q
H(1 - G,BHw, = H(1 ~ H;B*)q,
i=1 j=1

have identical autocovariance structure. However, representations containing the operator
B~! = F refer to future w’s and/or future a’s, so that although stationary and invertible
representations exist in which w; is expanded in terms of future w’s and a’s, only one such
representation, (6.4.2), exists that relates w, entirely to past history.

A model form that, somewhat surprisingly, is of practical interest is that in which all
B’s are replaced by F’s in (6.4.1), so that

d(F)w, = 6(F)e,

where e, is a sequence of independently distributed random variables having mean zero
and variance aez = 02. This then is a stationary invertible representation in which w;, is
expressed entirely in terms of future w’s and e’s. We refer to it as the backward form of
the process, or more simply as the backward process.

Equation (6.4.2) is not the most general form of a stationary invertible linear ARMA
model having the autocovariance generating function y (B). For example, the model (6.4.2)

may be multiplied on both sides by any factor 1 — Q B. Thus, the process

J

p q
(1-0B[]a-6Bw,=01-0B]]1-H,Ba,
i=1 =1

has the same autocovariance structure as (6.4.2). This fact will present no particular dif-
ficulty at the identification stage, since we will be naturally led to choose the simplest
representation, and so for uniqueness we require that there be no common factors between
the AR and MA operators in the model. However, as discussed in Chapter 7, we need to
be alert to the possibility of common factors in the estimated AR and MA operators when
fitting the process.
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Finally, we reach the conclusion that a stationary-invertible model, in which a cur-
rent value w; is expressed only in terms of previous history and which contains
no common factors between the AR and MA operators, is uniquely determined by the
autocovariance structure.

Proper understanding of model multiplicity is of importance for a number of reasons:

1. We are reassured by the foregoing argument that the autocovariance function can
logically be used to identify a linear stationary-invertible ARMA model that expresses
w; in terms of previous history.

2. The nature of the multiple solutions for moving average parameters obtained by
equating moments is clarified.

3. The backward process
d)(F)wr = H(F)et

obtained by replacing B by F in the linear ARMA model, is useful in estimating
values of the series that have occurred before the first observation was made.

Now we consider reasons 2 and 3 in greater detail.

6.4.2 Multiple Moment Solutions for Moving Average Parameters

In estimating the g parameters 6,, 0,, ... , 6, in the MA model by equating autocovariances,
we have seen that multiple solutions are obtained. To each combination of roots, there will
be a corresponding linear representation, but to only one such combination will there be an
invertible representation in terms of past history.

For example, consider the MA(1) process in w;:

w, = (1 —0,B)a,

and suppose that y,(w) and y;(w) are known and we want to deduce the values of 8; and
2 .
o, Since

vo=(1+0Ds>  y=-002 y=0 k>1 (6.4.3)
then
Y0 -1
—-==07'+0
no b

and if (6; =6, 0'2 = ¢?) is a solution for given y, and y,, so is (6; = 9‘1,0'3 = 6%¢?).
Apparently, then, for given values of y, and y, there are a pair of possible models:

w; = (1 -0B)g,
and

w, =(1-0"'B)a, (6.4.4)
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with var{a,] = 62 and var[e,] = 62 = 626>, If —1 < @ < 1, then (6.4.4) is not an invertible
representation. However, this model may be written as

w, = [(1 =67 B)(=0F)|(-67'Ba,)
Thus, after setting e, = —a,_; /6, the model becomes
w; =(1-6F)e, (6.4.5)

where e, has the same variance as a,. Thus, (6.4.5) is simply the ‘‘backward’’ process,
which is dual to the forward process:

w, = (1-0B)a, (6.4.6)

Just as the shock g, in (6.4.6) is expressible as a convergent sum of current and previous
values of w,

a, = w; +0w,_; + sz,_z + -
the shock e, in (6.4.5) is expressible as a convergent sum of current and future values of w:

e, =w,+0w, |+ sz,ﬂ + -
Thus, the root 8~! would produce an ‘invertible’” process, but only if a representation
of the shock e, in terms of future values of w were permissible. The invertibility regions
shown in Table 6.1 delimit acceptable values of the parameters, given that we express the
shock in terms of previous history.

6.4.3 Use of the Backward Process to Determine Starting Values

Suppose that a time series w;, w,, ..., W, is available from a process

In Chapter 7, problems arise where we need to estimate the values w, w_;, w_,, and so
on, of the series that occurred before the first observation was made. This happens because
““‘starting values’” are needed for certain basic recursive calculations used for estimating the
parameters in the model. Now, suppose that we require to estimate w_;, given wy, ... , W,
The discussion of Section 6.4.1 shows that the probability structure of w, ..., w,, is equally
explained by the forward model (6.4.7), or by the backward model

G(F)w, = 6(F)e, (6.4.8)

The value w_;, thus, bears exactly the same probability relationship to the
sequence wi,Ww,,...,w,, as does the value w,,,,; to the sequence w,,w,_i,
W,_s, ..., w;. Thus, to estimate a value / + 1 periods before observations started, we can

first consider what would be the optimal estimate or forecast / + 1 periods after the series
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ended, and then apply this procedure to the reversed series. In other words, we *‘forecast’’
the reversed series. We call this ‘‘back forecasting.””

APPENDIX A6.1 EXPECTED BEHAVIOR OF THE ESTIMATED
AUTOCORRELATION FUNCTION FOR A NONSTATIONARY PROCESS

Suppose that a series of N observations z;, z,, ...,z is generated by a nonstationary
(0,1, 1) process

Vz, = (1 —0B)a,
and the estimated autocorrelations r, are computed, where

Sk _ zljijk(zt - E)(ZH_k -7Z)

N =2
‘o E,=1 (z,—2)

ry =

Some idea of the behavior of these estimated autocorrelations may be obtained by deriving
expected values for the numerator and denominator of this expression and considering the
ratio. We will write, following Wichern (1973),

_ Ele]
E[co]
N K El(z, — Dz — 7]

>N Elz -2

S[rk]

After straightforward but tedious algebra, we find that

(N = K)[(1 — 0)*(N? =1 + 2k% — 4kN) — 60]
N(N = D[(N + 1)(1 — 6)2 + 66]

Elr ] = (A6.1.1)

For 0 close to zero, &[r;] will be close to unity, but for large values of 6, it can be
considerably smaller than unity, even for small values of k. Figure A6.1 illustrates this
fact by showing values of &[r,] for § = 0.8 with N =100 and N = 200. Although, as
anticipated for a nonstationary process, the ratios &[r; ] of expected values fail to damp out
quickly, it will be seen that they do not approach the value 1 even for small lags.

Similar effects may be demonstrated whenever the parameters approach values where
cancellation on both sides of the model would produce a stationary process. For instance,
in the example above we can write the model as

(1-B)z; =[(1 - B)+6Bla,
where 6 = 0.2. As 6 tends to zero, the behavior of the process would be expected to come

closer and closer to that of the white noise process z, = a,, for which the autocorrelation
function is zero for lags k > 0.
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FIGURE A6.1 £[r,] = E[c,]/Elc,] for series generated by Vz, = (1 — 0.8B)a,.
EXERCISES

6.1. Given the five identified models and the corresponding values of the estimated auto-
correlations of w, = V¢z, in the following table:

Identified Model
p d q Estimated Autocorrelations
(1) 1 1 0 r;=0.72
2) 0 1 1 r,=-041
3) 1 0 1 r, =0.40,r, =0.32
4) 0 2 2 r,=0.62,r,=0.13
(@) 2 1 0 ry=0.93,r, =0.81

(a) Obtain preliminary estimates of the parameters analytically.
(b) Check these estimates using the charts and tables in Part Five of the book.

(¢) Write down the identified models in backward shift operator notation with the
preliminary estimates inserted.

6.2. For the (2, 1, 0) process considered on line (5) of Exercise 6.1, the sample mean and
variance of w, = Vz, are w = 0.23 and sfo = (.25. If the series contains N = 101
observations,

(a) show that a constant term needs to be included in the model,



208

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

MODEL IDENTIFICATION

express the model in the form w, — ¢, w, , — pw, , = a, with numerica
(b) exp th del in the f ; W,y hW,_y = 0y + a, with 1
values inserted for the parameters, including an estimate of 0'3.

Consider the chemical process temperature readings referred to as Series C in this
book.

(a) Plot the original series and the series of first differences using R.

(b) Use the R package to calculate and plot the ACF and PACF of this series. Repeat
the calculation for the first and second differences of the series.

(¢) Specify a suitable model, or models, for this series. Use the method of moments
to obtain preliminary parameter estimates for the series.

Quarterly measurements of the gross domestic product (GDP) in the United Kingdom
over the period 1955-1969 are included in Series P in Part Five of this book.

(a) Calculate and plot the ACF and PACEF of this series.

(b) Repeat the analysis in part (a) for the first differences of the series.

(¢) Identify a model for the series. Would a log transformation of the data be helpful?
(d) Obtain preliminary estimates for the parameters and for their standard errors.

(e) Obtain preliminary estimates for y, and 0'3.

Quarterly UK unemployment rate (in thousands) is part of Series P analyzed in Exercise
6.4. Repeat parts (a) to (e) of Exercise 6.4 for this series.

A time series defined by z, = 1000 logy(H,), where H, is the price of hogs recorded
annually by the U.S. Census of Agriculture on January 1 for each of the 82 years, from
1867 to 1948 is listed as Series Q in the Collection of Time Series in Part Five. This
is a well-known time series analyzed by Quenouille (1957), and others.

(a) Plot the series. Compute and plot the ACF and PACF of the series.
(b) Identify a time series model for the series.

Measurements of the annual flow of the river Nile at Ashwan from 1871 to 1970 are
available as series ‘‘Nile’’ in the datasets package in R; type help(Nile) for details.

(a) Plot the series and compute the ACF and PACEF for the series.
(b) Repeat the analysis in part (a) for the differenced series.
(c) Identify a model for the series. Are there any unusual features worth noting.

The file ‘‘EuStockMarkets’’ in the R datasets package contains the daily closing
prices of four major European stock indices: Germany DAX (Ibis), Switzerland SMI,
France CAC, and UK FTSE. The data are sampled in business time, so weekends and
holidays are omitted.

(a) Plot each of the four series and compute the ACF and PACF for the series.

(b) Repeat the analysis in part (a) for the differenced series.

(c) Identify a model for the series. Are there any unusual features worth noting.

Download a time series of your choice from the Internet. Plot the time series and
identify a suitable model for the series.
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This chapter deals with the estimation of the parameters in ARIMA models and provides a
general account of likelihood and Bayesian methods for parameter estimation. It is assumed
that a suitable model of this form has been selected using the model specification tools
described in Chapter 6. After the parameters have been estimated, the fitted model will be
subjected to diagnostic checks and goodness-of-fit tests to be described in the next chapter.
As pointed out by R. A. Fisher, for tests of goodness of fit to be relevant, it is necessary
that efficient use of data should have been made in the fitting process. If this is not so,
inadequacy of fit may simply arise because of the inefficient fitting and not because the
form of the model is inadequate. This chapter examines in detail maximum likelihood
estimation under the normality assumption and describes least-squares approximations that
are suitable for many series.

It is assumed that the reader is familiar with certain basic ideas in estimation theory.
Appendices A7.1 and A7.2 summarize some important results in normal distribution theory
and linear least-squares that are useful for this chapter. Throughout the chapter, bold type
is used to denote vectors and matrices. Thus, X = {x;;} is a matrix with x;; an element in
the ith row and jth column, and X’ is the transpose of the matrix X.

7.1 STUDY OF THE LIKELIHOOD AND SUM-OF-SQUARES FUNCTIONS

7.1.1 Likelihood Function

Suppose that we have a sample of N observations, z with which we associate an
N-dimensional random variable, whose known probability distribution p(z|&) depends
on some unknown parameters €. We use the vector & to denote a general set of parameters
and, in particular, it could refer to the p + g + 1 parameters (¢, 6, 0'2) of the ARIMA model.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
© 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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Before the data are available, p(z|&) will associate a density with each different outcome
z of the experiment, for fixed &£. After the data have become available, we are led to
contemplate the various values of & that might have given rise to the fixed set of observations
z actually obtained. The appropriate function for this purpose is the likelihood function
L(&|z), which is of the same form as p(z|&), but in which z is now fixed but & is variable.
It is only the relative value of L(£|z) that is of interest, so that the likelihood function is
usually regarded as containing an arbitrary multiplicative constant.

It is often convenient to work with the log-likelihood function In[L(&|z)] = I(€|z),
which contains an arbitrary additive constant. One reason that the likelihood function is of
fundamental importance in estimation theory is because of the likelihood principle, urged
on somewhat different grounds by Fisher (1956), Barnard (1949), and Birnbaum (1962).
This principle says that, given that the assumed model is correct, all that the data have to
tell us about the parameters is contained in the likelihood function, all other aspects of the
data being irrelevant. From a Bayesian point of view, the likelihood function is equally
important, since it is the component in the posterior distribution of the parameters that
comes from the data.

For a complete understanding of the parameter estimation in a specific case, it is nec-
essary to carefully study of the likelihood function, or in the Bayesian framework, the
posterior distribution of the parameters, which in the cases we consider, is dominated by
the likelihood. In many examples, for moderate and large samples, the log-likelihood func-
tion will be unimodal and can be approximated adequately over a sufficiently extensive
region near the maximum by a quadratic function. In such cases, the log-likelihood function
can be described by its maximum and its second derivatives at the maximum. The values
of the parameters that maximize the likelihood function, or equivalently the log-likelihood
function, are called maximum likelihood (ML) estimates. The second derivatives of the
log-likelihood function provide measures of ‘‘spread’” of the likelihood function and can
be used to calculate approximate standard errors for the estimates.

The limiting properties of maximum likelihood estimates are usually established for
independent observations. But as was shown by Whittle (1953), they may be extended
to cover stationary time series. Other early literature on the parameter estimation in time
series models includes Barnard et al. (1962), Bartlett (1955), Durbin (1960), Grenander
and Rosenblatt (1957), Hannan (1960), and Quenouille (1942, 1957).

7.1.2 Conditional Likelihood for an ARIMA Process

Let us suppose that the N = n+ d original observations z form a time series that we

denote by z_y 1, ..., 2y, 21, 23, ..., Z2,. We assume that this series is generated by an
ARIMA(p, d, g) model. From these observations, we can generate a serieswofn = N —d
differences wy, w,, ..., w, where w, = vd z,. Thus, the general problem of fitting the pa-

rameters ¢ and 6 of the ARIMA model (6.1.1) is equivalent to fitting to the w,’s, the
stationary and invertible! ARMA(p, g) model, which may be written as

a; = W; = U, — oty — =+ = P, + 010,

+6,a,_5+ - +0,a,_, (7.1.1)

where w0, = w, — p are the mean-centered observations.

ISpecial care is needed to ensure that estimate lies in the invertible region. See Appendix A7.7.
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For d > 0, it is often appropriate to assume that ¢ = 0. When this is not appropriate, we
assume that the series mean 1w = E:’zl w, /n is substituted for y. For many sample sizes
common in practice, this approximation will be adequate. However, if desired, ¢ can be
included as an additional parameter to be estimated.

The a,’s cannot be calculated immediately from (7.1.1) because of the difficulty of
starting up the difference equation. However, suppose that the p values w,, of the w,’s and
the g values a,, of the a,’s prior to the start of the w;, series were given. Then, for any choice
of parameters (¢, 8), we could calculate successively a set of values a,(¢, O|w,,a,, W), =

1,2,...,n. Now, assuming that the a,’s are normally distributed, their probability
density is
n a2
(@, a, ...,a,) x (62" ?exp |- —L
pay.ay. ....a,) x (o))" exp ;263

Given the data w, the log-likelihood associated with the parameter values (¢, 0, 03), con-
ditional on the choice of (w,, a,), would then be

2 __E 2 _S*(¢’9)
1.(¢,0,0,) = > In(c)) —20_3 (7.1.2)
where
S*(¢’ 0) = Z a[2(¢9 9|W*, a*,W) (713)

=1

In the above equations, a subscript asterisk is used on the likelihood and sum-of-squares
functions to emphasize that they are conditional on the choice of the starting values. We
notice that the conditional log-likelihood /,, involves the data only through the conditional
sum-of-squares function. It follows that contours of /, for any fixed value of 02 in the space
of (¢, 0, 63) are contours of .S, that these maximum likelihood estimates are the same as
the least-squares estimates, and that in general, we can, on the normal assumption, study the
behavior of the conditional likelihood by studying the conditional sum-of-squares function.
In particular for any fixed GZ, 1, is a linear function of .S,.. The parameter values obtained
by minimizing the conditional sum-of-squares function S, (¢, 0) will be called conditional
least-squares estimates.

7.1.3 Choice of Starting Values for Conditional Calculation

We will shortly discuss the calculation of the unconditional likelihood, which, strictly, is
what we need for parameter estimation. However, when » is moderate or large, a sufficient
approximation to the unconditional likelihood is often obtained by using the conditional
likelihood with suitable values substituted for the elements of w, and a, in (7.1.3). One
procedure is to set the elements of w, and of a, equal to their unconditional expectations.
The unconditional expectations of the elements of a, are zero, and if the model contains no
deterministic part, and in particular if 4 = 0, the unconditional expectations of the elements
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TABLE 7.1 Sum-of-Squares Functions for the Model Vz, = (1 — 6B)a, Fitted to the IBM
Data

0 A=1-6 S.(0) S(0) 0 A=1-6 S.(0) S(0)

-0.5 1.5 23,929 23,928 0.1 0.9 19,896 19,896

-0.4 1.4 21,595 21,595 0.2 0.8 20,851 20,851

-0.3 1.3 20,222 20,222 0.3 0.7 22,315 22,314

-0.2 1.2 19,483 19,483 0.4 0.6 24,471 24,468

-0.1 1.1 19,220 19,220 0.5 0.5 27,694 27,691
0.0 1.0 19,363 19,363

of w, will also be zero?. However, this approximation can be poor if some of the roots
of ¢(B) = 0 are close to the boundary of the unit circle, so that the process approaches
nonstationarity. This is also true if some of the roots of 8(B) = 0 are close to the boundary
of the invertibility region. Setting the presample values equal to zero could in these cases
introduce a large transient, which is slow to die out. For a pure AR(p) model, a more reliable
approximation procedure, and one we employ sometimes, is to use (7.1.1) to calculate the
a,;’s from a,,; onward, thus using actual values of the w;’s throughout. Using this method,
we have only n — p= N — p —d values of a,, but the slight loss of information will be
unimportant for long series.

For seasonal series, discussed in Chapter 9, the conditional approximation is not always
satisfactory and the unconditional calculation becomes necessary. Inclusion of the deter-
minant in the unconditional likelihood function can also be important for seasonal time
series.

Example: IMA(0, 1, 1) Process. To illustrate the recursive calculation of the conditional
sum of squares .S,, we consider the IMA(O, 1, 1) model tentatively identified in Section 6.4
for the IBM data in Series B. The model is

Vz,=(1-0B)a, —1<6<1 (7.1.4)

so thata, = w; + 0a,_;, where w, = Vz, and E[w,] = 0. Thus, for the particular parameter
value 6 = 0.5, the a,’s are calculated recursively from

a; = w; +0.5a,_;
setting the initial value a, equal to zero. Proceeding in this way, we find that

368
5.0.5)= Y a*(8 = 0.5]a = 0) = 27,694

t=1

The conditional sums of squares .S, (0) are shown in Table 7.1 for values of 8 from —0.5 to
+0.5 in steps of 0.1. We note that .S, () has its minimum for § = —0.1. This is consistent
with the preliminary moment estimate of —0.09 derived for this series in Chapter 6.

21f the assumption E|w,| = u # 0 is appropriate, we can substitute i for each of the elements of w,,.
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7.1.4 Unconditional Likelihood, Sum-of-Squares Function, and Least-Squares
Estimates

Assuming that the N = n + d observations are generated by an ARIMA model, the uncon-
ditional log-likelihood is given by

S(¢.0)

2
Zaa

1($,0,02) = f(¢,0) — gln(aj) - (7.1.5)

where f(¢, 0) involves the determinant in the joint density of the w,’s and is a function of
¢ and 6. The unconditional sum-of-squares function is given by

S($.0)= Y la,|w. .61 +[e,]Q"[e,] (7.1.6)
=1

where [a,|w, ¢, 0] = E[a,|w, ¢, 0] denotes the expectation of a, conditional on w, ¢, and
6. When the meaning is clear from the context, we will further abbreviate this conditional
expectation to [a,]. In (7.1.6),

— - /
e, = (wl_p, ey wO,al_q, ,ao)

represents the p + ¢ initial values of the w, and a, prior to t =1, Qai = cov[e,] is the
covariance matrix of e, and

[e*] = ([wl—pL cee s [l’b()]a [al—q]7 (RN} [a()]),

denotes the vector of conditional expectations (‘‘back-forecasts’”) of the initial values,
given w, ¢, and 0. An alternative way to represent S(¢, 0) is as

S(¢.0)= ) la]
t=—00

which in comparison with (7.1.6) indicates that Z?z_oo[a,]2 = [e*]’Q_1 [e.].

Usually, f(¢,0) is of importance only for small n. For moderate and large values
of n, (7.1.5) is dominated by S(¢, 0)/ 263, and thus the contours of the unconditional
sum-of-squares function in the space of the parameters (¢, 0) are very nearly contours
of the likelihood and log-likelihood. It follows, in particular, that the parameter estimates
obtained by minimizing the sum of squares (7.1.6), which we call (unconditional or exact)
least-squares estimates, will usually provide very close approximations to the maximum
likelihood estimates. From a Bayesian viewpoint, on assumptions discussed in Section 7.5,
for all AR(p) and MA(q), essentially the posterior density is a function only of S(¢, 6).
Hence, very nearly the least-squares estimates are those with maximum posterior density.
In the remainder of this section and in Section 7.1.5, the main emphasis will be on the
unconditional sum-of-squares function S(¢, ) in (7.1.6), and its use in calculating least-
squares estimates. An alternate method for calculation of the unconditional sum of squares
and likelihood functions based on the state-space model and innovations approach will be
discussed in Section 7.4.

In the calculation of the unconditional sum of squares, the [a,]’s are computed recursively
by taking conditional expectations in (7.1.1). A preliminary back-calculation provides the
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values [w_;] and [a_;], j =0,1,2,... (i.e., the back-forecasts) needed to start off the
forward recursion.

Calculation of the Unconditional Sum of Squares for a Moving Average Process. For
illustration, we reconsider the IBM stock price example using only the first 10 values of
the series.3 For the IMA(O, 1, 1) model, the only back-forecast that is needed for S(8) is
[ag]. We begin by describing an approximate, but nevertheless accurate, method to obtain
[ag]. Recall from Section 6.4.3 that the model for w, may be written in either the forward
or backward forms:

w, = (1 -0B)aq, w, = (1 —0F)e,

and where again ¢ = E[w,] is assumed equal to zero. Hence, we can write

[et] = [wt] + 6[e1+1] (7.1.7)
[a] = [w,] + Ola,_] (7.1.8)
where [w,] = w, for t =1,2,...,n and is the back-forecast of w, for t < 0. These are

the two basic equations that we need in the computations. A convenient format for the
calculations is shown in Table 7.2. We begin by entering in the table what we know:

1. The data values zy, zq, ..., 29, from which we can calculate the first differences
wi, Wy, ..., Wy.

2. The values [eg], [e_1], ..., which are zero, since eq, e_y, ... are distributed indepen-
dently of w.

3. The values [a_;],[a_5],..., which are zero, because for any MA(gq) pro-
cess, a_g,a_,_y,... are distributed independently of w. However, note that
[agl, la_{1, ..., [a_q +1] will be nonzero and can be obtained by back-forecasting.

Thus, in the present example, [a,] is computed this way.

Beginning at the end of the series, (7.1.7) is now used to compute the [e;]’s for
t=9,8,7,...,1. We start the backward process by setting [e;q] = 0. The effect of this
approximation will be to introduce a transient into the system. However, for series of mod-
erate length, the effect will typically be negligible by the time the beginning of the series is
reached and thus will not affect the calculation of the a,’s. If desired, the adequacy of this
approximation can be checked in any given case by performing a second iterative cycle.

Thus, to start the recursion in Table 7.2, in the row corresponding to t = 9, we enter a
zero in the sixth column for the unknown value 0.5[eg]. Then, using (7.1.7), we obtain

[69] = [M)g] + 0.5[610]
= LU9 + O = —3

3In practice, of course, useful parameter estimates could not be obtained from as few as 10 observations. We
utilize this data subset merely to illustrate the calculations.
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TABLE 7.2 Calculation of the [a]’s from the First 10 Values of Series B, Using 6 = 0.5

t z, [a,] 0.5[a,_,] [w,] O.5[et+1] [e,] u,
-1 [458.4] 0 0 0 0 0
0 460 1.6 0 1.6 -1.6 0 =-2.1
1 457 -2.2 0.8 -3.0 -0.1 -3.1 —4.1
2 452 —6.1 —1.1 -5.0 4.8 -0.2 =23
3 459 3.9 -3.0 7.0 2.6 9.6 8.5
4 462 5.0 2.0 3.0 2.3 53 9.5
5 459 -0.5 2.5 -3.0 7.6 4.6 9.2
6 463 3.7 -0.2 4.0 11.1 15.1 19.4
7 479 17.9 1.9 16.0 6.2 22.2 314
8 493 22.9 9.0 14.0 -1.5 12.5 27.5
9 490 8.5 11.5 -3.0 0 -3.0 8.5
s0 0.5[eg] = —1.5 can be entered in the line = 8, which enables us to compute [eg], and

so on. Finally, we obtain
[eg] = [wg] + Ole;]

that is, 0 = [wy] — 1.6, which gives [wy] = 1.6, and thereafter [w_,]=0,h=1,2,3,....
Now, using (7.1.8) with ¢t = 0, we obtain

[ag] = [wo] + 6la_;] = 1.6+ (0.5)(0) = 1.6

and we can then continue the forward calculations of the remaining [a,]’s, leading to
S50.5) = Z?zo[ath.S,w]2 = 1016.406.

An alternative method that yields exact estimates of the presample values is presented
in Appendix A7.3. For the model considered above, this method involves first com-
puting the values a,(ay = 0), which we abbreviate as a?, by the conditional method as
a? =w; + Ga?_l,t =1,2,...,n, using ag =0 as the initial value. Then a backward re-
cursion is performed to obtain u, = a? + 6u, ., beginning from ¢ =n, down to t =0,
with u, . = 0 as the starting value. Finally, then, the exact estimate of [a,] is given by
lao] = —uy(1 — 6%)/(1 — 6%"+D), Using this starting value, the [a,] are computed from the
forward recursion [a,] = w; + 0[a,_1],t =1,2,...,n, as in (7.1.8) and the exact sum of
squares becomes S(0) = Z:’zo[a,]z.

In the above example, by first computing the a? using a forward recursion setting a
= 0, we obtain the values of u, by the backward recursion for r = 9,8, ..., 0, displayed
in the final column of Table 7.2. Hence, we obtain the exact estimate of a as [ay] =
—ug(1 — 62)/(1 — 62"*+D) = 1,549, This value is very close to the approximate value of
1.545 obtained by the backward model approach, and the small difference has essentially
no effect on the calculation of the remaining values [a,]. Using the exact method for the

entire series, we find that the unconditional sum of squares for 8 = 0.5 is

368
S(0.5)= Y'[4,10.5, wl* = 27,691
=0
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which for this particular example is very close to the conditional value S, (0.5) = 27, 694.
The unconditional sum of squares .S(), for values of § between —0.5 and +0.5, have been
added to Table 7.1 and are very close to the conditional values S..(8) computed earlier.

7.1.5 General Procedure for Calculating the Unconditional Sum of Squares

In the above example, w, was a first-order moving average process, with zero mean. It
followed that all forecasts for lead times greater than 1 were zero and consequently that only
one preliminary value (the back-forecast [w,] = 1.6) was required to start the recursive cal-
culations using the approximate approach, and only one value [g] in the exact approach. For
a gth-order moving average process, g nonzero preliminary values [wy], [w_1], ..., [w;_4]
would be needed, or equivalently, the g values [ag], [a_(], ..., [a;_ gl in the exact approach,
with S(0) = Z:’zl_ q[a,]z. Special procedures, which we discuss in Section 7.3.1, are avail-
able for estimating parameters in autoregressive models. However, we show in Appendix
A7.3 that the procedure described in this section can supply the unconditional sum of
squares for any ARIMA model.
Specifically, suppose that the w,’s are generated by the stationary forward model

$(B)iw, = 0(B)a, (7.1.9)

where w, = V¢z, and i, = w, — pu. Then, they could equally well have been generated by
the backward model

G(F)i, = 0(F)e, (7.1.10)

As before, in the approximate method that utilizes the backward model, we could first
employ (7.1.10) to supply back-forecasts [w_;|w, ¢, 0]. Theoretically, the presence of
the autoregressive operator ensures a series of such estimates that is infinite in extent.
However, assuming stationarity, the estimates [«0,] at and beyond some point ¢ = —Q, with
O of moderate size, become essentially equal to zero. Thus, to a sufficient approximation,
we can write

% 0
, = ¢~ (BYO(B)a, = ) wa,_; = Y wa,
e e

This means that the original mixed process could be replaced by a moving average process
of order Q, and the procedure for moving averages outlined in Section 7.1.4 may be used.

Thus, in general, the dual set of equations for generating the conditional expectations
[a,|¢, 0, w] is obtained by taking conditional expectations in (7.1.10) and (7.1.9). That is,

P(F)w,] = 0(F)le] (7.1.11)
is first used to generate the backward forecasts and then

d(B)[w;] = O(B)[a,] (7.1.12)
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is used to generate the [a,]’s. If we find that the forecasts are negligible in magnitude
beyond some lead time Q, the recursive calculation goes forward with

le_;|$.0,w]=0  j=0,1,2,...
la_;l$.0,w]l=0 j>0-1 (7.1.13)

and the sum of squares is approximated by S(¢, ) = Z?: 1_Q[a,]2. As mentioned earlier,
a second iterative cycle in this approximate method could be used, if desired.

Alternatively, for the general model (7.1.9), the exact method discussed in Appendix
A7.3 can be used to obtain the sum of squares as

n

S@.0) = ) [ +(w,] - Cla, K™ (Iw,] - C'[a,]) (7.1.14)

t=1-¢q

Here, the vectors [w,]’ = ([@;_p), ..., [ip]) and [a,] = (laj_4) ..., [ag]) are the exact
back-forecasted values obtained as in (A7.3.12). They are given by [e..] = ([w.]’,[a,]") =
D_IF'u, where the values u,, t = 1, ..., nof the vector u are obtained through the backward
recursionu; = a? +01u g + - + 0 u,, , withzeroinitial valuesu, | = -+ = u,,, = 0,and
the a? are the conditional values of the a, computed from (7.1.12) using zero initial values,
a(l)_q = = ag =0and w(l)_p = = ng = 0. After solving the equations D[e,] = F'u, as
described in (A7.3.12), the exact [a,]’s are then calculated through the recursion

la] = [@,] = §1[B,_1] = = — ,[,_,] + Oy[a,_i] + - +6,[a,_,] (7.1.15)

for t=1,2,...,n using the exact back-forecasts as starting values, with [w;] = @, for
1 <t < n. The matrices C, K, D, and F necessary for the computation in (7.1.14) are
defined explicitly in Appendix A7.3.

Comment on the Approximation. We saw that for the IMA(O, 1, 1) model fitted to the
IBM Series B, the conditional sums of squares provides a very close approximation to
the unconditional value. This will generally be the case for sufficiently long nonseasonal
time series. However, as is discussed further in Chapter 9, for seasonal series, in particu-
lar, the conditional approximation becomes less satisfactory and the unconditional sum of
squares should ordinarily be computed. Moreover, including the determinant in the like-
lihood function to obtain exact maximum likelihood estimates of the parameters can be
beneficial if the roots of the moving average operator are close to the unit circle.
Simulation studies have been performed by Dent and Min (1978) and Ansley and
Newbold (1980) to empirically investigate and compare the performance of the conditional
least-squares, unconditional least-squares, and maximum likelihood estimators for ARMA
models. Generally, the conditional and unconditional least-squares estimators serve as
satisfactory approximations to the maximum likelihood estimator for large-sample sizes.
However, the simulation evidence suggests a preference for the maximum likelihood esti-
mator for small- or moderate-sample sizes, especially if the moving average operator has
a root close to the boundary of the invertibility region. Some additional information on the
relative performance of the different estimators was provided by Hillmer and Tiao (1979)
and Osborn (1982), who examined the expected values of the conditional sum of squares,
the unconditional sum of squares, and the log-likelihood for an MA(1) model, as functions
of the unknown parameter 6, for different sample sizes n. These studies provide an idea of
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FIGURE 7.1 Plot of S(0) for Series B.

how the corresponding estimators will behave for various sample sizes, and the results are
consistent with those obtained from simulation studies.

7.1.6 Graphical Study of the Sum-of-Squares Function

The sum-of-squares function S(@) for the IBM data given in Table 7.1 is plotted in
Figure 7.1. The overall minimum sum of squares is at about § = —0.09 (4 = 1.09), which
is the least-squares estimate and, on the assumption of normality, a close approximation to
the maximum likelihood estimate of the parameter 6.

The graphical study of the sum-of-squares functions is readily extended to two parame-
ters by evaluating the sum of squares over a suitable grid of parameter values and plotting
contours. As discussed earlier, on the assumption of normality, the contours are very nearly
likelihood contours. Figure 7.2 shows a grid of S(4, 41) values for Series B fitted with the
IMA(O, 2, 2) model:

V2z,=(1-6,B-60,B%)a,
=[1-Q-4—4)B—- (14— 1)B?lq, (7.1.16)
or in the form
V2z, = (4yV + A)a,_, + V?a,

The minimum sum of squares in Figure 7.2 is at about A, = 1.09 and A; = 0.0. The plot
thus confirms that the preferred model in this case is an IMA(O, 1, 1) process. The device
illustrated here, of fitting a model somewhat more elaborate than that expected to be
needed, can provide a useful confirmation of the original identification. The elaboration of
the model should be made, of course, in the direction *‘feared’’ to be necessary.
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FIGURE 7.2 Values of S(4y, 4;) X 1072 for Series B on a grid of (4, 4;) values and approximate
contours.

Three Parameters. When we wish to study models with three parameters, two-dimensional
contour diagrams for a number of values of the third parameter can be drawn. For illustra-
tion, part of such a series of diagrams is shown in Figure 7.3 for Series A, C, and D. In
each case, the ‘‘elaborated’” model

V2z,=(1-6,B - 0,B* — 0;B%)q,
=[1=Q=A_,—Ag—A)B—(4g+24_; - 1)B*> + i_B’lq,

or
V2z, = (A V2 + 4V + A)a,_, + V3a,

has been fitted, leading to the conclusion that the best-fitting models of this type* are as
shown in Table 7.3.

The inclusion of additional parameters (particularly A_,) in this fitting process is not
strictly necessary, but we have included them to illustrate the effect of overfitting and to
show how closely our identification seems to be confirmed for these series.

4We show later in Section 7.2.5 that slightly better fits are obtained in some cases with closely related models
containing ‘‘stationary’’ autoregressive terms.
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FIGURE 7.3 Sum-of-squares contours for Series A, C, and D (shaded lines indicate boundaries of
the invertibility regions).

TABLE 7.3 IMA Models Fitted to Series A, C, and D

Series A o A Fitted Series

A 0 0.3 0.0 Vz, =0.3a,_, +Va,

C 0 1.1 0.8 V2z, =1.1Va,_; + 0.8a,_; + Vg,
D 0 0.9 0.0 Vz, =009a,_, + Va,

7.1.7 Examination of the Likelihood Function and Confidence Regions

The likelihood function is not, of course, plotted merely to indicate maximum likelihood
values. The graph of this function contains the totality of information that comes from the
data. In some fields of study, cases can occur where the likelihood function has two or more
peaks and also where the likelihood function contains sharp ridges and spikes. In each such
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case, the likelihood function is trying to tell us something that we need to know. Thus, the
existence of two peaks of approximately equal heights implies that there are two sets of
parameter values that might explain the data. The existence of obliquely oriented ridges
means that a value of one parameter, considerably different from its maximum likelihood
value, could explain the data if accompanied by a value of the other parameter, which
deviated appropriately. To understand the estimation fully, it is thus useful to examine the
likelihood function both analytically and graphically.

Need for Care in Interpreting the Likelihood Function. Care is needed in interpreting
the likelihood function. For example, results discussed later, which assume that the log-
likelihood is approximately quadratic near its maximum, will clearly not apply to the
three-parameter cases depicted in Figure 7.3. However, these examples are exceptional
because here we are deliberately overfitting the model. If the simpler model is justified,
we should expect to find the likelihood function contours truncated near its maximum by a
boundary in the higher dimensional parameter space. However, quadratic approximations
could be used if the simpler identified model rather than the overparameterized model was
fitted.

Special care is needed when the maximum of the likelihood function may be on or near
a boundary. Consider the situation shown in Figure 7.4 and suppose we know a priori that
a parameter f§ > f;. The maximum likelihood within the permissible range of f is at B,
where f/ = ff, not at A or at C. It will be noticed that the first derivative of the likelihood is
in this case nonzero at the maximum likelihood value and that the quadratic approximation
is certainly not an adequate representation of the likelihood.

When a class of estimation problems are examined initially, it is important to plot the
likelihood function to identify potential issues. After the behavior of a potential model is
well understood, and knowledge of the situation indicates that it is appropriate to do so, we
may take certain shortcuts, which we now consider. We begin by considering expressions
for the variances and covariances of maximum likelihood estimates, appropriate when the
log-likelihood is approximately quadratic and the sample size is moderately large.

In what follows, it is convenient to define a vector  whose k = p + ¢q elements are
the autoregressive and moving average parameters ¢ and 0. Thus, the complete set of

Bo

B—

FIGURE 7.4 Hypothetical likelihood function with a constraint § > f,,.
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p+q+1=k+ 1 parameters of the ARMA process may be written as ¢, 6, 0'2; oras f3, o-i;
or simply as &.

Variances and Covariances of ML Estimates. For the appropriately parameterized ARMA
model, it will often happen that over the relevant’ region of the parameter space, the log-
likelihood is approximately quadratic in the elements of B (i.e., of ¢ and ), so that

k
Zlij(ﬁi_ﬁi)(ﬂj_ﬁj) (7.1.17)

Jj=1

1) =1(B,c2) =~ I(B,o2) +

k
=1

N =

1

where, to the approximation considered, the derivatives

_ 2B, o))

are constant. For large n, the influence of the term f (¢, 0) in (7.1.5) can be ignored in most
cases. Hence, /(f, 02) will be essentially quadratic in g if this is true for S(f). Alternatively,
1(B, 03) will be essentially quadratic in f if the conditional expectations [a;| B, w] in (7.1.6)
are approximately locally linear in the elements of B. Thus, for moderate- and large-sample
sizes n, when the local quadratic approximation (7.1.17) is adequate, useful approximations
to the variances and covariances of the estimates and approximate confidence regions may
be obtained.

(7.1.18)

Information Matrix for the Parameters B. The (k X k) matrix —{E[l;;]} =1 (p) is re-
ferred to (Fisher, 1956; Whittle, 1953) as the information matrix for the parameters f,
where the expectation is taken over the distribution of w. For a given value of 0'2, the
variance-covariance matrix V(f) for the ML estimates f is, for large samples, given by
the inverse of this information matrix, that is,

V() ~ {(-Ell;1} " =17'(p) (7.1.19)

For example, if k = 2, the large-sample variance—covariance matrix is

40 cov[/?l,ﬁzll lE[ln]E[llz]]_l

v lcov[/?l, Bl V) Ell15] Elly,]

In addition, the ML estimates f§ obtained from a stationary invertible ARMA process
were shown to be asymptotically distributed as multivariate normal with mean vector 8
and covariance matrix I_l(ﬂ) (e.g., Mann and Wald, 1943; Whittle, 1953; Hannan, 1960;
Walker, 1964) in the sense that n'/2(f — ) converges in distribution to the multivariate
normal N {0, I;l(ﬂ)} as n — oo, where I (B) = limn~'I(B). The specific form of the
information matrix I(f) and the limiting matrix L, (8) for ARMA(p, ¢) models are described
in Section 7.2.6, and details on the asymptotic normality of the estimator f are examined
for the special case of AR models in Appendix A7.5.

3Say over a 95% confidence region.
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Now, using (7.1.5), we have

~
I 207 (7.1.20)
where
_ 0*S(BIw)
YT 0p0p;
Furthermore, if for large samples, we approximate the expected values of /;; or of .S;; by
the values actually observed, then, using (7.1.19), we obtain

V() ~ {-Ell;;1}" = 262{E[S;1} 7! =~ 262({S;} 7 (7.1.21)
Thus, for k = 2,

[02sp) 25|
op? 9p,0b,

V() =202
0’S(B)  I’S(P)
0B10fy  op?

If S(p) were exactly quadratic in f over the relevant region of the parameter space, then
all the derivatives S;; would be constant over this region. In practice, the .S;; will vary
somewhat, and we will usually assume that the derivatives are determined at or near the
point B. Now, it is shown in the Appendices A7.3 and A7.4 that an estimate® of 62 is
provided by

2 _ SB)

O-a
n

(7.1.22)

and that for large samples, 6'3 and f are uncorrelated. Finally, the elements of (7.1.21) may
be estimated from

covlf;, B;1 = 2628" (7.1.23)

where the (k x k) matrix {S%/} is given by { S} = {.5;;}~" and the expression (7.1.23) is
understood to define the variance V(ﬁi) when j = i.

Approximate Confidence Regions for the Parameters. In particular, these results allow
us to obtain the approximate variances of our estimates. By taking the square root of these
variances, we obtain approximate standard errors (SE) of the estimates. The standard error
of an estimate ﬁi is denoted by SE[ﬁi]. When we have to consider several parameters
simultaneously, we need some means of judging the precision of the estimates jointly.
One means of doing this is to determine a confidence region. If, for given aZ,l(ﬁ, 0'3)

is approximately quadratic in B in the neighborhood of B, then using (7.1.19) (see also

6 Arguments can be advanced for using the divisor n — k = n — p — g rather than n in (7.1.22), but for moderate-
sample sizes, this modification does not make much difference.



224 PARAMETER ESTIMATION

TABLE 7.4 S(A) and Its First and Second
Differences for Various Values of A for Series B

A=1-6 S(4) V(S) V2(S)
1.5 23,928 2,333 960
1.4 21,595 1,373 634
1.3 20,222 739 476
1.2 19,483 263 406
1.1 19,220 —143 390
1.0 19,363 —533 422
0.9 19,896 =955 508
0.8 20,851 —1,463 691
0.7 22,314 -2,154 1069
0.6 24,468 -3,223
0.5 27,691

Appendix A7.1), an approximate 1 — € confidence region will be defined by

=22 > EAB = BBy = B) < 1K) (7.1.24)
i

where ;(Ez(k) is the significance point exceeded by a proportion & of the y? distribution,
having k degrees of freedom.

Alternatively, using the approximation (7.1.21) and substituting the estimate of (7.1.22)
for O'Z, the approximate confidence region is given by’

1

DS = BB — By < 26252k (7.1.25)
j
However, for a quadratic S(f) surface
A 1 o N
S(B)~Sh) =5 2 ; S8 = BBy~ B) (7.1.26)

Thus, using (7.1.22) and (7.1.25), we finally obtain the result that the approximate 1 — &
confidence region is bounded by the contour on the sum-of-squares surface, for which

){f(k)]

(7.1.27)
n

S(p) =SB ll +

Examples of the Calculation of Approximate Confidence Intervals and Regions.

1. Example: Series B. For Series B, values of S(4) and of its differences are shown
in Table 7.4. The second difference of S(4) is not constant, and thus S(4) is not
strictly quadratic. However, in the range from A = 0.85 to 1 = 1.35, V2(.S) does not
change greatly, so that (7.1.27) can be expected to provide a reasonably close approx-

7A somewhat closer approximation based on the F distribution, which takes account of the approximate samplin

pp pp pling
distribution of 6—2, may be employed. For moderate-sample sizes this refinement does not make much practical
difference.
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imation. With a minimum value .S (2) = 19,216, the critical value S(1), defining an
approximate 95% confidence interval, is then given by

3.84
S =19,216<1 294N _ 19,41
(A) +368) 9,416

Reading off the values of A corresponding to S(4) = 19,416 in Figure 7.1, we obtain
an approximate confidence interval 0.98 < 4 < 1.19.

Alternatively, we can employ (7.1.25). Using the second difference at A = 1.1,
given in Table 7.4, to approximate the derivative, we obtain

%S 390
Sy = — = >
942~ (0.1)

Also, using (7.1.22), &2 =19,216/368 = 52.2. Thus, the 95% confidence interval,
defined by (7.1.25), is

39 1,09 < 2x52.2x3.84

0.1)2

thatis, |4 — 1.09| < 0.10. Thus, the interval is 0.99 < A < 1.19, which agrees closely
with the previous calculation.

In this example, where there is only a single parameter 4, the use of (7.1.24) and
(7.1.25)is equivalent to using an interval A+ u, /26(2), where u, 2 is the value, which
excludes a proportion £/2 in the upper tail of the standard normal distribution. An

approximate standard error for A,6(0) = \/ Z&gSl‘ll , is obtained from (7.1.23). In the

present example,

N 2
V() = 26287 = % = 0.00268

and the approximate standard error is 6(4) = 1/0.00268 = 0.052. Thus, the approxi-
mate 95% confidence interval is 4 + 1.966(4) = 1.09 + 0.10, as before.

Finally, we show later in Section 7.2.6 that it is possible to evaluate (7.1.19)
analytically, for large samples from an MA(1) process, yielding

A A2=12
LR

For the present example, substituting 2 =1.09 for A, we find that V(i) ~ 0.00269,
which agrees closely with the previous estimate and so yields the same standard error
of 0.052 and the same confidence interval.

. Example: Series C. In the identification of Series C, one model that was entertained
was a (0, 2, 2) process. To illustrate the application of (7.1.27) for more than one
parameter, Figure 7.5 shows an approximate 95% confidence region (shaded) for A,
and A; of Series C. For this example, S(i) =4.20,n = 224, and ;(3.05(2) =5.99,
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FIGURE 7.5 Sum-of-squares contours with shaded 95% confidence region for Series C, assuming
a model of order (0, 2, 2).

so that the approximate 95% confidence region is bounded by the contour for
which

S(lg, A) = 4.20 (1 + %) =431

7.2 NONLINEAR ESTIMATION

7.2.1 General Method of Approach

The plotting of the sum-of-squares function is of particular importance in the study of new
estimation problems because it ensures that any peculiarities in the estimation situation
show up. When we are satisfied that anomalies are unlikely, other methods may be used.

We have seen that for most cases, the maximum likelihood estimates are closely ap-
proximated by the least-squares estimates, which minimize

S(@.0) = Yl +e,)Q '[e,]
=1

and in practice, this function can be approximated by a finite sum Zle_ Q[a,]z.

In general, considerable simplification occurs in the minimization with respect to f,
of a sum of squares Zle[f,(ﬁ)]2, if each f,(B) (t =1,2,...,n) is a linear function of the
parameters . We now show that the autoregressive and moving average models differ with
respect to the linearity of the [a,]. For the purely autoregressive process, [a,] = ¢(B)[i0,] =
[@,] - Zleq’)i[zl),_i] and

oal o,
29 = L0l + HB o
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Now for u > 0, [i0,] = w, and 0[iD,]/d¢; = 0, while for u < 0, [i0,] and I[w,]/0¢p; are
both functions of ¢. Thus, except for the effect of *‘starting values,’’ [a,] is linear in the
¢’s. By contrast, for the pure moving average process,

ola] _ - -1
dﬂj =60 (B)[w,_j]+9 (B)_()Hj

oliv,]

[a,] = 7' (B)[w0,]

so that the [a,]’s are always nonlinear functions of the moving average parameters.

We will see in Section 7.3 that special simplifications occur in obtaining least-squares
and maximum likelihood estimates for the autoregressive process. We show in the present
section how, by iterative application of linear least-squares, estimates may be obtained for
any ARMA process.

Linearization of the Model. In what follows, we continue to use f§ as a general symbol for
the k = p + q parameters (¢, 0). We need, then, to minimize

n n
S@.0) = Y lalw.pr= Y la)
t=1-Q =1-0
Expanding [a,] in a Taylor series about its value corresponding to some guessed set of
parameter values B, = (B g, f20» --- » By 0)> We have approximately
k
la] = la,o] = D (B = Bio)x., (7.2.1)
i=1

where [a; o] = [a,|W, By] and
_a[a,]
op; B=h

Now, if Xisthe (n + Q) X k matrix {x, ;}, then the n + Q equations (7.2.1) may be expressed
as

Xti =

[ag] = X(B — By) + [a]

where [a,] and [a] are column vectors with n + QO elements.

The adjustments f§ — B,, which minimize S(8) = S(¢, 6) = [a]’[a], may now be ob-
tained by linear least-squares, that is, by ‘‘regressing’’ the [a,]’s onto the x’s. This gives the
usual linear least-squares estimates, as presented in Appendix A7.2.1, of the adjustments
as B — By = (X’X)~'X'[a,], hence, f = B, + (X’X)~'X'[a,]. Because the [q,]’s will not
be exactly linear in the parameters B, a single adjustment will not immediately produce the
final least-squares values. Instead, the adjusted values ﬁ are substituted as new guesses and
the process is repeated until convergence occurs. Convergence is faster if reasonably good
guesses, such as may be obtained at the identification stage, are used initially. If sufficiently
bad initial guesses are used, the process may not converge at all.

7.2.2 Numerical Estimates of the Derivatives

The derivatives x,; may be obtained directly, as we illustrate later. They can also
be computed numerically using a general nonlinear least-squares routine. This is done



228 PARAMETER ESTIMATION

by perturbing the parameters ‘‘one at a time.”” Thus, for a given model, the val-
ues [a;|w, B1 0, P20, Prol fort =1—0, ..., n are calculated recursively, using what-
ever preliminary ‘‘back-forecasts’’ may be needed. The calculation is then repeated for
la;|w, B0 + 61, P20, --- » Brol, then for [a,|W, By o, Boo + 62, ..., By o], and so on. The neg-
ative of the required derivative is then given to sufficient accuracy using

[atIW, ﬁl,O’ ey ﬁ[’o, AN ﬂk’o] — [at|W, ﬂl,O’ ceey ﬁi,O + 5[’ ey ﬁk,O]

X = > (7.2.2)

]

The numerical method described above has the advantage of universal applicability and
requires us to program the calculation of the [a,]’s only, not their derivatives. General
nonlinear estimation routines, which essentially require only input instructions on how to
compute the [a,]’s, are generally available. In some versions, it is necessary to choose the
6’s in advance. In others, the program itself carries through a preliminary iteration to find
suitable 6’s. Many programs include special features to avoid overshoot and to speed up
convergence.

Provided that the least-squares solution is not on or near a constraining boundary, the
value of X = X; from the final iteration may be used to compute approximate variances,
covariances, and confidence intervals. Thus, similar to the usual linear least-squares results
in Appendix A7.2.3,

(X[;Xl;)‘lag

will approximate the variance—covariance matrix of the /’s, and 02 will be estimated by

62 =S(P/n.

7.2.3 Direct Evaluation of the Derivatives

We now show that it is also possible to obtain derivatives directly, but additional re-
cursive calculations are needed. To illustrate the method, it is sufficient to consider an
ARMAC(1, 1) process, which can be written in either of the forms as

e = w; — pw, . + ey,

a, =w; —dw,_; +0a,_;

We have seen in Section 7.1.4, how the two versions of the model may be used in al-
ternation, one providing initial values with which to start off a recursion with the other.
We assume that a first computation has already been made yielding values of [e,], of [a;],
and of [wy], [w_{], ..., [w;_pl, as in Section 7.1.5, and that [w_pl, [w_g_1], ... and hence
la_pl.la_g_], ... are negligible. We now show that a similar dual calculation may be used
in calculating derivatives.

Using the notation aﬁ‘w to denote the partial derivative d[a,]/d¢, we obtain

(@) ( (#)
et¢ = wt¢) - d)wg)l + eezfl — Wl (7.2.3)

0 0 0 0
e = w® - pu® +06” + [e,y,] (7.2.5)
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d” = uw?” - pu® + 047, +la_)] (7.2.6)
Now,
Ll = e t=1,2 (7.2.7)
=1l4...,n 2.
W® = W@ =0
and
[e_;1=0 j=0,1,...,n (7.2.8)
Consider equations (7.2.3) and (7.2.4). By setting e;ﬁ)l = 01in (7.2.3), we can begin a
back recursion, which using (7.2.7) and (7.2.8) eventually allows us to compute w(_‘i;) for
j=0,1,...,0—1. Since a(_d’Q), a(_¢Q)_l, ... can be taken to be zero, we can now use (7.2.4)

to compute recursively the required derivatives afd)). In a similar way, (7.2.5) and (7.2.6)

()

can be used to calculate the derivatives a,’.

7.2.4 General Least-Squares Algorithm for the Conditional Model

An approximation that we have sometimes used with long series is to set starting values for
the a,’s, and hence for the derivatives in the x,’s, equal to their unconditional expectations
of zero and then to proceed directly with the forward recursions. The effect is to introduce
a transient into both the g, and the x, series, the latter being slower to die out since the x,’s
depend on the g,’s. In some instances, where there is an abundance of data (say, 200 or
more observations), the effect of the approximation can be nullified at the expense of some
loss of information, by discarding, say, the first 10 calculated values.

If we adopt the approximation, an interesting general algorithm for this conditional
model results. The ARMA(p, g) model can be written as

a, =0~ (B)$(B)W,
where w, = V9z,, 0, = w, — y and
O(B)=1-6,B—--—06,B' —--0,B
¢B)=1—-¢B— - _¢ij — ...¢po
If the first guesses for the parameters f = (¢, 0) are B, = (¢, 6;), then

a0 = 05" (B)go(B),

and
da, da,
- —| =u; =u,_ - —| =V U,
a¢jﬂ t,j t—j ()9, po i —i
where
u, = 05" (B), = ¢3'(B)ay (7.2.9)

v, = —0;%(B)o(B)W, = —0; ' (B)a, (7.2.10)
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The a,’s, u,’s, and v,’s may be calculated recursively, with starting values for a,’s, u,’s,
and v,’s set equal to zero, as follows:

a0 = W, — Py oWy — =+ — ¢p o, + 61081
o 0,00, g0 (7.2.11)
up =0y gy + o+ 0,01y + W, (7.2.12)
= Prot1 + o F Dpolly_p T4 (7.2.13)
0y = O10Uy1 + - + O, 0Ur_y — Ay (7.2.14)

Corresponding to (7.2.1), the approximate linear regression equation becomes

p q
a9= Y (; = 0+ (6= 0,0)v,_; +a, (7.2.15)

j=1 i=1

The adjustments are then the regression coefficients of a,, on the u,_; and the v,_;. By
adding the adjustments to the first guesses (¢, 6), a set of ‘‘second guesses’’ are formed
and these now take the place of (¢, 6,) in a second iteration, in which new values of
a, 0, Uy and v, are computed, until convergence eventually occurs.

Alternative Form for the Algorithm. The approximate linear expansion (7.2.15) can be
written in the form

q
(@, — b;0)B ¢y (Ba,g— D (6, — 0,0)B'0;" (B)a,o + a,
j=1 i=1

= —[p(B) — po(B)Id; ' (B)a, + [6(B) — 6(B)16;  (B)ay +

p
a0 = ‘
that is,

a9 = —p(B)0; " (B)a, o] + O(B)I6;" (B)a, ] + a, (7.2.16)

which presents the algorithm in an interesting form.

Application to an IMA(0, 2, 2) process. To illustrate the calculation with the conditional
approximation, consider the estimation of least-squares values 6, 8, for Series C using the
model of order (0, 2, 2):

w, = (1-6,B—6,B%aq,
with w, = V?z,,

ao = w; +0, 00,10+ 00829
U = =a,0+ 0, g0y + 0,002
Using the initial values 6 5 = 0.1 and 6, = 0.1, the first adjustments to 0, ; and 8, o

are found by ‘‘regressing’’ a, , on v,_; and v,_,. The process is repeated until convergence
occurs. Successive parameter estimates are shown in Table 7.5.
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TABLE 7.5 Convergence of Parameter
Estimates for IMA (0, 2, 2) Process

Iteration 0, 0,
0 0.1000 0.1000
1 0.1247 0.1055
2 0.1266 0.1126
3 0.1286 0.1141
4 0.1290 0.1149
5 0.1292 0.1151
6 0.1293 0.1152
7 0.1293 0.1153
8 0.1293 0.1153

7.2.5 ARIMA Models Fitted to Series A-F

In Table 7.6, we summarize the models fitted by the iterative least-squares procedure of
Sections 7.2.1 and 7.2.2 to Series A—F. The models fitted were identified in Chapter 6 and
summarized in Tables 6.2 and 6.5. In the case of Series A, C, and D, two possible models
were identified and subsequently fitted. For Series A and D, the alternative models involve
the use of a stationary autoregressive operator (1 — ¢ B) instead of the unit-root operator
(1 — B). Examination of Table 7.6 shows that in both cases the autoregressive model results
in a slightly smaller residual variance although the models are very similar. Even though
a slightly better fit is possible with a stationary model, the IMA(O, 1, 1) model might be

TABLE 7.6 Summary of Models Fitted to Series A-F“

Series Number of Fitted Models Residual Variance?
Observations
A 197 z,—092z,_, =145+4a, - 0.58qa,_, 0.097
(+0.04) (£0.08)
Vz, =a,—0.70q,_, 0.101
(£0.05)
B 369 Vz, =a,+0.09q,_, 52.2
(£0.05)
C 226 Vz,—0.82Vz,_, = q, 0.018
(£0.04)
V2z,=a,—0.13a,_, — 0.12q,_, 0.019
(£0.07) (+0.07)
D 310 z, —0.87z,_, = 1.17 + q, 0.090
(+0.03)
Vz, =a,—0.06q,_, 0.096
(£0.06)
E 100 z,=1435+1.42z,_, - 0.73z,_, + q, 227.8
(£0.07) (+0.07)
z,=11314+157z,_, —1.02z,_, + 0.21z,_5 + q, 218.1
(£0.10) (£0.15) (£0.10)
F 70 z, = 58.87 —0.342z,_, +0.19z,_, + q, 112.7

(0.12) (£0.12)

@ The values (+) under each estimate denote the standard errors of those estimates.
b Obtained from S(¢, 6)/n.
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preferable in these cases on the grounds that unlike the stationary model, it does not assume
that the series has a fixed mean. This is especially important in predicting future values
of the series. For if the level does change, a model with d > 0 will continue to track it,
whereas a model for which d = 0 will be tied to a mean level that may have become out of
date. It must be noted, however, that for Series D formal unit root testing to be discussed
further in Section 10.1 does not support the need for differencing and suggests a preference
for the stationary AR(1) model. Also, unit root testing for Series C indicates a preference
for the ARIMAC(1, 1, 0) model over a model in terms of second differences. Unit root
testing for Series A within the ARMA(1, 1) model, though, does not reject the need for the
nonstationary operator (1 — B) for the autoregressive part.

The limits under the coefficients in Table 7.6 represent the standard errors of the estimates
obtained from the covariance matrix (X[’;XI;)_lz%g, as described in Section 7.2.1. Note that

the estimate <;33 in the AR(3) model, fitted to the sunspot Series E, is 2.1 times its standard
error, indicating that a marginally better fit is obtained by the third-order autoregressive
process, as compared with the second-order autoregressive process. This is in agreement
with a conclusion reached by Moran (1954).

Parameter Estimation Using R. Parameter estimation for ARIMA models based on the
methods described above is available in the R software package. The relevant tools in-
clude the arima() command in the stats package and the sarima() command in the astsa
package. Details of the commands are obtained by typing help(arima) and help(sarima)
in R. Using the arima() command, the order of the model is specified using the argument
order=c(p,d,q), and the estimation method is specified by method=c("CSS") for condi-
tional least-squares and method=c("ML") for the full maximum likelihood method. The
sarima() fits the ARIMA(p, d, q) model to a series z by maximum likelihood using the
command sarima(z,p,d,q).

For illustration, we first use the arima() routine in the stats package to estimate the
parameters the ARIMA(3, 0, 0) model for the sunspot data in Series E. The relevant
command and a partial model output are provided below.

> arima(ts(seriesE),order=c(3,0,0),method=c("CSS"))

Coefficients:
arl ar2 ar3 intercept
1.5519 -1.0069 0.2076 46.7513
s.e. 0.0980 0.1540 0.0981 5.9932
sigma”2 estimated as 219.3: log-likelihood = -411.42, aic = NA

We see that the estimates of the autoregressive parameters are very close to the values
provided in Table 7.6. However, using this routine, the intercept reported in the output is
the mean of the series, so that the constant term in the model needs to be calculated as
90 =4l - (]31 - (]32 - q§3). This gives an estimate for the constant of 11.57.

The commands and a partial output from performing the analysis using sarima() are as
follows:

> library (astsa}
> sarima(ts(seriesE),3,0,0)
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Coefficients:
arl ar2 ar3 xmean
1.5531 -1.0018 0.2063 48.4443
s.e. 0.0981 0.1544 0.0989 6.0706

sigma”™2 estimated as 218.2: log-likelihood=-412.49, aic 834.99
SAIC: [1] 6.465354, SAICc: [1] 6.491737, $BIC: [1] 5.569561

The results are close to the earlier ones. The sarima() command has an advantage in that
model diagnostics of the type discussed in Chapter 8 below are provided automatically
as part of the output (see, e.g., Figures 8.2 and 8.3). This allows the user to efficiently
evaluate the adequacy of a fitted model and make comparisons between alternative models.
For example, by fitting both the AR(2) and the AR(3) models to the sunspot series, it is
readily seen that the AR(3) model provides a better fit to the data. Moreover, the fit can be
improved by using a square root or log transformation of the series, although a Q-Q plot
still indicates a departure from normality of the standardized residuals.

7.2.6 Large-Sample Information Matrices and Covariance Estimates

In this section, we examine in more detail the information matrix and the covariance matrix
of the parameter estimates. Denote by X = [U : V], the n X (p + ¢) matrix of the time lagged
u;s and U;S defined in (7.2.13) and (7.2.14), when the elements of B, are the true values of
the parameters, for a sample size n sufficiently large for end effects to be ignored. Then,
since x,; = —d[a,]/dp; and using (7.1.20),

o1 [s®]_ 1 |xolaldal| 1|
Ell;] = _EE [aﬂiaﬂj] = 2F l; op; 9p; ] - _a_gE lg‘ x”ix”j]

o
a

the information matrix for (¢, 0) for the mixed ARMA model is

v'uu'v
I(¢,0) = E[X'X]6;2=E VU VIV o? (7.2.17)
that is,
Y 70D = D] 700 (=D y, (1= g) ]
yuu(l) yuu(o) o yuu(p - 2)| yuu(l) yuv(o) yul}(z - CI)
: : N : :
S| Y =D 7P =2) - 1(0) 1Y@ =1 7P =2) = 1P — @)
= no

a J/MU(O) yuu(l) Yuu(p - 1)| yUu(O) yUu(l) A yuu(q - 1)
yuu(_l) yuy(o) yuv(p - 2)| yyy(l) yuu(o) o yuu(q - 2)
: : : | : : :

| 7o = @) 72 = @) = 1P = D[700(@ = D) V(@ =2) = 7,(0)

(72.18)
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where y,,(k) and y,,,(k) are the autocovariances for the ©,’s and the v,’s, and y,,,(k) are the
cross-covariances defined by

Yur(K) = ¥y (=k) = E[uv,44 ] = Elvuy_g]

The large-sample covariance matrix for the maximum likelihood estimates may be obtained
using

V(0 ~T"(¢,0)

Estimates of I(¢ 0) and hence of V(¢ 9) may be obtained by evaluating the U ’s and
v,’s with ﬂo = ﬁ and omitting the expectation sign in (7.2.17) leading to V(¢, ) =
(X 9. €3 )_1 64, or by substituting standard sample estimates of the autocovariances and
cross—covariances in (7.2.18). Theoretical large-sample results can be obtained by noticing
that, with the elements of f; equal to the true values of the parameters, equations (7.2.13)
and (7.2.14) imply that the derived series u, and v, follow autoregressive processes defined
by

¢(Bu, = a, 0(B)v, = —a,

It follows that the autocovariances that appear in (7.2.18) are those for pure autoregressive
processes, and the cross-covariances are the negative of those between two such processes
generated by the same a,’s.

We illustrate the use of this result with a few examples.

Covariance Matrix of Parameter Estimates for AR(p) and MA(q) Processes. Let I ,(¢)
be the p X p autocovariance matrix of p successive observations from an AR(p) process
with parameters ¢’ = (¢, ¢,, ..., ®,). Then, using (7.2.18), the p X p covariance matrix of

the estimates qS is given by
V(@) = n7'oT, (9) (7.2.19)

Let I';(6) be the g X g autocovariance matrix of g successive observations from an AR(g)
process with parameters o = (0,0,,...,0,). Then, using (7.2.18), the g X g covariance

matrix of the estimates 6 in an MA(q) model is

V() ~ n—lagrq—l(e) (7.2.20)

Covariances for the Zeros of an ARMA Process. It is occasionally useful to parameterize
an ARMA process in terms of the zeros of ¢(B) and 8(B). In this case, a particularly simple
form is obtained for the covariance matrix of the parameter estimates.

Consider the ARMA(p, q) process parameterized in terms of its zeros (assumed to be
real and distinct), so that

p q
[[a-6Bw, =]]a-H;Bx,
i=1

Jj=1
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or

V4 q
a=[Ja-eB[]a-HB "%

i=1 j=1

The derivatives of the a,’s are then such that

u, = =00 (1-G,B)'a
t,i aG[ i t—1

0, = -0 _ ~(1-H;B)'a
t.j aHj J t—1

Hence, using (7.2.18), for large samples, the information matrix for the roots is such that

n~'I(G, H)
1-6H" (-GG — (1-G,G)" |-1-GH)" - ~(1-G,H)"
: : : | : :
| a -GG (1-G,G)T' - —Gﬁ)‘l \—(1 -G,H) ™ - —(1-G,H)™!
~(1-GH) "' -1 -GH)" - —(1-G,H)'| 1-H) - (1-HH)"
|- -GH)" -(1-G,H)™" ~ —(1 —Gqu)‘l‘ (I-HH)" - (- H{?)_l |
(7.2.21)
Examples: For an AR(2) process (1 — G| B)(1 — G, B)i, = a,;, we have
-1 -1
. 1-GH" (1-G,Gy~!
V(G,,Gy) = n! -1 2-1
(1-G,Gy™ (1-Gy)~
1 1-G,G, [1=GD1 -GGy ~(1 -G -G3) 722
T (G, -G,y | —(1-GH(1 - G3) (1-GH(1-G,Gy) o

Exactly parallel results will be obtained for a second-order moving average process.
Similarly, for the ARMAC(1,1) process (1 — ¢ B)io, = (1 — 6 B)a,, on setting ¢ = G| and
0 = H, in (7.2.21), we obtain

A—¢? —(1—-¢0)"
-(1-¢o)" (1-6*"

V(43, 9) ~ ! [

- 1= ¢*)(1 = ¢0) (1 —¢*)(1 — 6?
11 ¢9l< $)(1 = ¢0) (1 - ¢*)( )] (1223

T (-0 | (1=¢H(1—-6%) (10671 - ¢6)

The results for these two processes illustrate a duality property between the information
matrices for the autoregressive model and the general ARMA(p, g) model. Namely, suppose
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that the information matrix for parameters (G, H) of the ARMA(p, g) model

J

p q
H(l - G,Bw, =[[(1- H;B)q,
i=1 =1

is denoted as I{ G, H|(p, )}, and suppose, correspondingly, that the information matrix for
the parameters (G, H) in the pure AR(p + g) model

14 q
[[a-aB]]a-HBw, =q
i=1

Jj=1

is denoted as

oo |Lon ]

LG, H|(p+4,0)} = lm

where the matrix is partitioned after the pth row and column. Then, for moderate and large
samples, we can see directly from (7.2.21) that

Yo HGH] (7.2.24)

Hence, since for moderate and large samples, the inverse of the information matrix provides
a close approximation to the covariance matrix V(G, H) of the parameter estimates, we
have, correspondingly,

VG H|(p, 9} ~ V{G, -H|(p + ¢,0)} (7.2.25)

7.3 SOME ESTIMATION RESULTS FOR SPECIFIC MODELS

In Appendices A7.3, A7.4, and A7.5, some estimation results for special cases are derived.
These, and results obtained earlier in this chapter, are summarized here for reference.

7.3.1 Autoregressive Processes

It is possible to obtain estimates of the parameters of a pure autoregressive process by
solving certain linear equations. We show in Appendix A7.4:

1. How exact least-squares estimates may be obtained by solving a linear system of
equations (see also Section 7.5.3).

2. How, by slight modification of the coefficients in these equations, a close approxi-
mation to the exact maximum likelihood equations may be obtained.

3. How conditional least-squares estimates, as defined in Section 7.1.3, may be obtained
by solving a system of linear equations of the form of the standard linear regression
model normal equations.
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4. How estimates that are approximations to the least-squares estimates and to the
maximum likelihood estimates may be obtained using the estimated autocorrelations
as coefficients in the linear Yule—Walker equations.

The estimates obtained in item 1 are, of course, identical with those given by direct
minimization of S(¢), as described in general terms in Section 7.2. The estimates in 4 are
the well-known approximations due to Yule and Walker. They are useful as first estimates
at the identification stage but can differ appreciably from estimates 1, 2, or 3, in some cases.
For instance, differences can occur for an AR(2) model if the parameter estimates (;'31 and
¢32 are highly correlated, as is the case for the AR(2) model fitted to Series E in Table 7.6.

Yule—Walker Estimates. The Yule—Walker estimates (6.3.6) are

~

$=R7'r
where
I rp—1 r
R=| 1 T r=|" (7.3.1)
Fpoi Fp—p 1 rp

In particular, the estimates for the AR(1) and the AR(2) processes are

AR(1) : b, =r
2
N r(1=r) A Fp—r
ARQ2) : b, = 1—22 b, = 2‘ (7.3.2)
1- i 1- "
It is shown in Appendix A7.4 that an approximation to S(¢) is provided by
n
S@) =) w(1-re (7.3.3)
t=1
so that
o S .
52 = T¢ = c(1 -1’ ) (7.3.4)

where ¢, is the sample variance of the w,’s. A parallel expression relates ag and y,, the
theoretical variance of the w,’s [see (3.2.8)], namely,

o2 =yy(1-p')

where the elements of p and of ¢ are the theoretical values. Thus, from (7.2.19) and
Appendix A7.5, the covariance matrix for the estimates ¢ is

V() =n eI =n7l(1-p'¢p)P! (7.3.5)

where I and P = (1/y,)I are the autocovariance and autocorrelation matrices of p succes-
sive values of the AR(p) process.
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In particular, for the AR(1) and AR(2) processes, we find that
AR(1) : V(p) =~n 11— ¢? (7.3.6)
1-¢3 =11+ )

' |
ARQ) Vb= |y (g 1-¢;

(7.3.7)

Estimates of the variances and covariances are obtained by substituting estimates of the
parameters in (7.3.5). Thus,

Vig)=n'1-r$R! (7.3.8)

Using (7.3.7) it is readily shown that the correlation between the estimates of the AR(2)
parameters is approximately equal to —p;. This implies, in particular, that a large lag-
1 correlation in the series can give rise to unstable estimates, which may explain the
differences between the Yule—Walker and the least squares estimates noted above.

7.3.2 Moving Average Processes

Maximum likelihood estimates 6 for moving average processes may, in simple cases, be
obtained graphically, as illustrated in Section 7.1.6, or more generally, by the iterative
calculation described in Section 7.2.1. From (7.2.20), it follows that for moderate and large
samples, the covariance matrix for the estimates of the parameters of a gth-order moving
average process is of the same form as the corresponding matrix for an autoregressive pro-
cess of the same order. Thus, for the MA(1) and MA(2) processes, we find, corresponding
to (7.3.6) and (7.3.7)

MA(1) : V@) ~n~'(1-6% (7.3.9)

1-65 —6(1+6,)

) A AN =1
MAQ2) : V(0,,0,) =n -0,(1+6,) 1- 95

(7.3.10)

7.3.3 Mixed Processes

Maximum likelihood estimates (¢b, 8) for mixed processes, as for moving average processes,
may be obtained graphically in simple cases, and more generally, by iterative calculation.
For moderate and large samples, the covariance matrix may be obtained by evaluating and
inverting the information matrix (7.2.18). In the important special case of the ARMAC(1, 1)
process

(1-¢B)w, =(1-0B)q,
we obtain, as in (7.2.23),

L 1—¢0 [(1=8D1=90) (1 -1 -6

V@0 =m0 =03 [ (1 - 21— 02 (1 - 02)(1 - $0)

(7.3.11)

It is noted that when ¢ = 0, the variances of ¢ and @ are infinite. This is to be expected,
for in this case the factor (1 — ¢ B) = (1 — 6 B) cancels on both sides of the model, which
becomes

w; = a;
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This is a particular case of parameter redundancy, which we discuss further in Section
7.3.5.

7.3.4 Separation of Linear and Nonlinear Components in Estimation

Itis occasionally of interest to make an analysis in which the estimation of the parameters of
the mixed model is separated into its basic linear and nonlinear parts. Consider the general
mixed model ¢(B)w, = 0(B)a,, which we write as a, = ¢(B)0_1(B)LD,, or

a, = $(B)(g,]0) (7.3.12)
where
(10) = 07 (Bt
that is,
w, = 0(B)(¢,|0) (7.3.13)

For any given set of 0’s, the €,’s may be calculated recursively from (7.3.13), which may
be written as

& =W, +01&_1+0,6,_ 0+ + qu,_q

The recursion may be started by setting unknown ¢,’s equal to zero. Having calculated
the g,’s, the conditional estimates ¢ may readily be obtained. These are the estimated
autoregressive parameters in the linear model (7.3.12), which may be written as

a, =& — Qg — gy — = ¢p£;_p (7.3.14)

As discussed in Section 7.3.1, the least-squares estimates of the autoregressive param-
eters may be found by direct solution of a set of linear equations. In simple cases, we can
examine the behavior of S(q@e, 0) and find its minimum by computing S(d;o, 0) on a grid
of 0 values and plotting contours.

Example Using Series C. One possible model for Series C considered earlier is the
ARIMA(1, 1, 0) model (1 — ¢B)w, = a;, with w, = Vz, and E[w,] = 0. Consider now
the somewhat more elaborate model (1 — ¢ B)w, = (1 — 6, B — 6, B?)a,. Following the ar-
gument given above, the process may be thought of as resulting from a combination of the
nonlinear model €, = w, + 6,¢,_ + 0,¢€,_, and the linear model a, = €, — ¢p¢,_;.

For each choice of the nonlinear parameters @ = (6, 6,) within the invertibility region,
a set of €,’s was calculated recursively. Using the Yule—Walker approximation, an estimate

~

¢ = r(e) could now be obtained together with

S(g.0) = Y €21 = ri(e)]
=1

This sum of squares was plotted for a grid of values of #; and 6, and its contours are shown
in Figure 7.6. We see that a minimum close to 8; = 6, = 0 is indicated, at which point
ri(e) = 0.805. Thus, within the whole class of models of order (1, 1, 2), the simple (1, 1,
0) model (1 — 0.8B)Vz, = a, is confirmed to provide an adequate representation.
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FIGURE 7.6 Counters of S(¢,, 0) for Series C plotted over the admissible parameter space for
the 0’s.

7.3.5 Parameter Redundancy
The model ¢(B)w; = 6(B)a; is identical to the model

(1 - aB)p(B)i; = (1 - aB)8(B)a,

in which both autoregressive and moving average operators are multiplied by the same
factor, 1 — aB. Serious difficulties in the estimation procedure will arise if a model is fitted
that contains a redundant factor. Therefore, care is needed in avoiding the situation where
redundant or near-redundant common factors occur. The existence of redundancy is not
always obvious. For example, one can see the common factor in the ARMA(2, 1) model

(1-13B+0.4B»w, = (1-0.5B)q,
only after factoring the left-hand side to obtain
(1-0.5B)(1-0.8B)t, = (1 —0.5B)a,

that is, (1 — 0.8 B)iv; = a,.
In practice, it is not just exact cancellation that causes difficulties, but also near-
cancellation. For example, suppose that the true model was

(1-0.4B)(1 - 0.8B)it, = (1 - 0.5B)q, (7.3.15)

If an attempt was made to fit this model as ARMA(2, 1), extreme instability in the parameter
estimates could arise because of near-cancellation of the factors (1 — 0.4B) and (1 — 0.5B),
on the left- and right-hand sides. In this case, combinations of parameter values yielding
similar [a,]’s and so similar likelihoods can be found, and a change of parameter value on
the left can be nearly compensated by a suitable change on the right. The sum-of-squares
contour surfaces in the three-dimensional parameter space will thus approach obliquely
oriented cylinders, and a line of ‘‘near least-squares’’ solutions rather than a clearly defined
point minimum will be found.

From a slightly different viewpoint, we can write the model (7.3.15) in terms of an
infinite autoregressive operator. Making the necessary expansion, we find that

(1-0.700B - 0.030B%> — 0.015B> — 0.008 B* — --)ib, = q,
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Thus, very nearly, the model is
(1-0.7B)t0; = a; (7.3.16)

The instability of the estimates, obtained by attempting to fit an ARMA(2, 1) model, would
occur because we would be trying to fit three parameters in a situation that could almost be
represented by one.

A principal reason for going through the identification procedure prior to fitting the
model is to avoid difficulties arising from parameter redundancy and to achieve parsimony
in parameterization.

Redundancy in the ARMA(1,1) Model. The simplest model where the possibility occurs
for direct cancellation of factors is the ARMA(1, 1) process:

(1= ¢B), = (1 - 0B)a,

In particular, if ¢ = 6, then whatever common value they have, @, = a,, so that w0, is
generated by a white noise process. The data then cannot supply information about the
common parameter, and using (7.3.11), q§ and § have infinite variances. Furthermore,
whatever the values of ¢ and 6, S(¢, ) must be constant on the line ¢p = 6. This is
illustrated in Figure 7.7, which shows a sum-of-squares plot for the data of Series A.
However, for these data, the least-squares values ¢ = 0.92 and § = 0.58 correspond to
a point that is not particularly close to the line ¢ = 6, and no difficulties occur in the
estimation of these parameters.

In practice, if the identification technique we have recommended is adopted, these
difficulties will be avoided. An ARMAC(1, 1) process in which ¢ is very nearly equal to 0
will normally be identified as white noise, or if the difference is nonnegligible, as an AR(1)
or MA(1) process with a single small coefficient.

In summary:

1. We should avoid mixed models containing near common factors, and we should be
alert to the difficulties that can result.

FIGURE 7.7 Sum-of-squares plot for Series A.
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2. We will automatically avoid such models if we use identification and estimation
procedures intelligently.

7.4 LIKELIHOOD FUNCTION BASED ON THE STATE-SPACE MODEL

In Section 5.5, we introduced the state-space model formulation of the ARMA process along

with Kalman filtering and described its use for prediction. This approach also provides a

convenient method to evaluate the exact likelihood function for an ARMA model. The use

of this approach has been suggested by Jones (1980), Gardner et al. (1980), and others.
The state-space model form of the ARMA(p, ¢) model given in Section 5.5 is

Y, =®Y, ;+%¥a, and w,=HY, (7.4.1)

where Y; = (w,, W,(1), ..., w,(r = 1)),r =max(p,q+ 1), H= (1,0, ...,0),

[0 1 0. 0]
0 0 1 0
D = :
0O 0 O 1
| & bry e o 1 |

and ¥ = (1,y, ..., ¥,_;). The Kalman filter equations (5.5.6)—(5.5.9) provide one-step-
ahead forecasts Y, ,_; = E[Y,|w,_,, ..., w;] of the state vector Y, and the error covariance

matrix V,,_; = E[(Y, — Y,|,_1 Y, - Y,h_l )']. Specifically, for the state—space form of the
ARMA(p, g) model, these recursive equations are

Y, =Y, +Kw, -, with K, =V, H[HV, H]' (7.4.2)

where @;,_; = HY ,;_;, and

Vi =0¥, iy Vg =@V, @ + o WY (7.4.3)

with
Vi =1 =-KHIV,, (7.4.4)
for t = 1,2;... ,n. In particular, then, the first component of the forecast vector is
Wy =Y,y = Elwy|w,_y, ... ,wi], a4y, = w, — Wy, is the one-step innovation,

and the element 620, = HV,,_ \H = E[(w, - Lb,lt_l)z] is the one-step forecast error vari-
ance.

To obtain the exact likelihood function of the vector of n observations W =
(wy, Wy, ..., w,) using the above results, we note that the joint distribution of w can
be factored as

n
pwlg.0.02) = [ [ pwilw,_y. ..., w15 ,0,62) (7.4.5)

=1
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where p(w;|w;_y, ..., wy; ¢, 0, 0'2) denotes the conditional distribution of w, given
w;_1, ... , w;. Under normality of a;, this conditional distribution is normal with conditional
mean ty,—; = E[w/|w;_y, ... ... , w1] and conditional variance 621), = E[(w; — Lf),h_])z].
Hence, the joint distribution of w can be conveniently expressed as

A 2
1 " (W, — Wyq)
p(W.0.62) = H(sz 0) "2 exp R L (7.4.6)
2 2 Py v,
where the quantities @,,_; and ath are easily determined recursively from the Kalman
filter procedure. The initial values needed to start the Kalman filter recursions are given
by Yo = 0, an r-dimensional vector of zeros, and Vj,y = cov[Y]. The elements of V,

can readily be determined as a function of the autocovariances y; and the werghts y; of
the ARMA(p, g) process w;, making use of the relation w,,; = 0,(j) + Zk oWkt jk
from Chapter 5. See Jones (1980) for further details. For example, in the case of an
ARMA(1, 1) model for w;, we have Y/ = (w,, ,(1)), so

-2 -2
Y0 71 o, Y0 o, 7N
V0|0 = COV[Y()] = 2 = UZ ‘12 _2a
Y1 Yo~ O, L TR Yo — 1

Italsois generally the case that the one-step-ahead forecasts i,},_; and the corresponding
error variances agv, rather quickly approach their steady-state forms, in which case the
Kalman filter calculations at some stage (beyond time ¢, say) could be switched t0 the
simpler form ,,_; = Zle d;w,_; — Z 04, ;1> and o2v, = varla,,_,] = o2, for
1> t,, where a,,_; = w; — Wy;_,. For example refer to Gardner et al. (1980) for further
details. On comparison of (7.4.6) with expressions given earlier in (7.1.5) and (7.1.6), and
also (A7.3.11)and (A7.3.13), the unconditional sum-of-squares function can be represented

in two equivalent forms as

no 42

S(.0) = Z[at]h g, = 3 !

v
=1 !

where a,,_; = w, — td;,_, and also MP2 =1 = |Q|D| = []._, v,

Innovations Method. The likelihood function expressed in the form of (7.4.6) is generally
referred to as the innovations form, and the quantities Ay = Wy — 12),|,_1,t =1,...,n,
are the (finite-sample) innovations. Calculation of the likelihood function in this form,
based on the state-space representation of the ARMA process and associated Kalman
filtering algorithms, has been proposed by many authors including Gardner et al. (1980),
Harvey and Phillips (1979), and Jones (1980). The innovations form of the likelihood can
also be obtained without directly using the state-space representation through the use of
an ‘‘innovations algorithm’’ (e.g., see Ansley, 1979; Brockwell and Davis, 1991). This
method essentially involves a Cholesky decomposition of an n X n band covariance matrix

of the derived MA(q) process:
LU: = w; — d)lwt—l — et = ¢pwt—p =a - elat—l - ant—q

More specifically, using the notation of Appendix A7.3, we write the ARMA model
relations for n observations as Ld,w =Lya+ Fe,, where a' =(a,a,... ,a,) and e; =
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(Wi—ps ..., Wp,a1_g; ..., ag) is the (p + g)-dimensional vector of pre-sample values. Then,
the covariance matrix of the vector of derived variables Lyw is

T, = cov[Lyw] = cov[Lya + Fe,] = 62(LyL, + FQF') (7.4.7)

which is a band matrix. That is, I',, is a matrix with nonzero elements only in a band
about the main diagonal of maximum bandwidth m = max(p, ¢), and of bandwidth g after
the first m rows since cov([w), w f +J] 0 for j > q. The innovations algorithm obtains the
(square-root-free) Cholesky decomposition of the band matrix L9L'0 + FQF’ as GDG’,
where G is a lower triangular band matrix with bandwidth corresponding to that of I',,,
and with ones on the diagonal, and D is a diagonal matrix with positive diagonal elements
vt =1,...,n. Hence, cov[w] = o2L;'GDG’ L;)_l and the quadratic form in the exponent
of the likelihood function (7.4.6) is

w {cov[w]}'w = —w (L GDG’ Hly

O'
a
" a
1 I—1 1 tlr—1
=—eD e=— 7.4.8
Lepe= L3 049
a
where e = G_1L¢w= (a1|0,a2|1,...,an|n_1)’ is the vector of innovations, which are

computed recursively from Ge = Lgw. Thus, the innovations can be obtained re-
CurSiVely as a1|0 = wl,a2|1 =Wy — ¢1LU1 + 6‘1’1a1|0, ,am|m_1 =w, zl 1 (i) Wy, —i +

m—1
E, 1 ei,m—lam—ilm—i—l’and

p q
Q-1 = Wy — Z ¢iw,_; + Z 0;1-11—i)1-i-1 (7.4.9)
i= i=1

for t > m, where the tth row of the matrix G has the form
[0,...,0,=0,,y,....—01,_1,1,0,...,0]

with the 1 in the #th (i.e., diagonal) position. In addition, the coefficients §;,_; in (7.4.9)
and the diagonal (variance) elements v, are obtained recursively through the Cholesky
decomposition procedure. In particular, the v, are given by the recursion

yo(w Z 2 oy for t>m (7.4.10)

where yy(w')/o? = var[w]]/c? =1 +Z/ | J

The ‘‘innovations’’ state-space approach to evaluating the exact likelihood function has
also been shown to be quite useful in dealing with estimation problems for ARMA models
when the series has missing values; see, for example, Jones (1980), Harvey and Pierse
(1984), and Wincek and Reinsel (1986).

The exact likelihood function calculated using the Kalman filtering approach can be
maximized using numerical optimization algorithms. These typically require the first partial
derivatives of the log-likelihood with respect to the unknown parameters, and it is often
beneficial to use analytical derivatives. From the form of the likelihood in (7.4.6), it is
seen that this involves obtaining partial derivatives of the one-step predictions t0;,_; and
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of the error variances agv, foreacht =1, ..., n. Wincek and Reinsel (1986) show how the
exact derivatives of a;,_; = w; — tWy,— and 621), = var[a,),_] with respect to the model
parameters ¢, 0, and o-a2 can be obtained recursively through differentiation of the updating
and prediction equations. This in turn leads to an explicit form of iterative calculations for
the maximum likelihood estimation associated with the likelihood (7.4.6), similar to the
nonlinear least-squares procedures detailed in Section 7.2.

7.5 ESTIMATION USING BAYES’ THEOREM

7.5.1 Bayes’ Theorem

In this section, we again use the symbol & to represent a general vector of parameters. Bayes’
theorem tells us that if p(&) is the probability distribution for £ prior to the collection of the
data, then p(&|z), the distribution of & posterior to the data z, is obtained by combining the
prior distribution p(&) and the likelihood L(&|z) in the following way:

p(&)L(&|z)

e 7.5.1
J p@L(&lz)dé (72D

p(&lz) =

The denominator merely ensures that p(£|z) integrates to 1. The important part of the
expression is the numerator, from which we see that the posterior distribution is proportional
to the prior distribution multiplied by the likelihood. Savage (1962) showed that prior and
posterior probabilities can be interpreted as subjective probabilities. In particular, often
before the data are available, we have very little knowledge about &, and we would be
prepared to agree that over the relevant region, it would have appeared a priori just as likely
that & had one value as another. In this case, p(&) could be taken as locally uniform, and
hence p(&|z) would be proportional to the likelihood.

It should be noted that for this argument to hold, it is not necessary for the prior density
of £ to be uniform over its entire range (which for some parameters could be infinite). By
requiring that it be locally uniform, we mean that it be approximately uniform in the region
in which the likelihood is appreciable and that it does not take an overwhelmingly large
value outside that region.

Thus, if £ were the weight of a chair, we could certainly say a priori that it weighed more
than an ounce and less than a ton. It is also likely that when we obtained an observation z by
weighing the chair on a weighing machine, which had an error standard deviation o, we
could honestly say that we would have been equally happy with a priori values in the range
z + 30. The exception would be if the weighing machine said that an apparently heavy chair
weighed, say, 10 ounces. In this case, the likelihood and the prior would be incompatible,
and we should not, of course, use Bayes’ theorem to combine them but would check the
weighing machine and, if this turned out to be accurate, inspect the chair more closely.

There is, of course, some arbitrariness in this idea. Suppose that we assumed the
prior distribution of £ to be locally uniform. This then implies that the distribution of
any linear function of ¢ is also locally uniform. However, the prior distribution of some
nonlinear transformation @« = a(&) (such as @ = log &) could not be exactly locally uniform.
This arbitrariness will usually have very little effect if we are able to obtain fairly precise
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estimates of £&. We will then be considering & only over a small range, and over such a
range the transformation from & to, say, log & would often be very nearly linear.

Jeffreys (1961) has argued that it is best to choose the metric a(¢) so that Fisher’s
measure of information I, = —E[d°/da?] is independent of the value of a, and hence
of £. This is equivalent to choosing a(&) so that the limiting variance of its maximum
likelihood estimate is independent of £ and is achieved by choosing the prior distribution
of £ to be proportional to /1.

Jeffreys justified this choice of prior on the basis of its invariance to the parameterization
employed. Specifically, with this choice, the posterior distributions for a(&) and for &, where
a(¢) and & are connected by a one-to-one transformation, are such that p(&|z) = p(a|z)
da/dé. The same result may be obtained (Box and Tiao, 1973) by the following argument.
If for large samples, the expected likelihood function for a(&) approaches a normal curve,
then the mean and variance of the curve summarize the information to be expected from the
data. Suppose, now, that a transformation a(£) can be found in which the approximating
normal curve has nearly constant variance whatever the true values of the parameter. Then,
in this parameterization, the only information in prospect from the data is conveyed by the
location of the expected likelihood function. To say that we know essentially nothing a
priorirelative to this prospective observational information is to say that we regard different
locations of a as equally likely a priori. Equivalently, we say that a should be taken as
locally uniform.

The generalization of Jeffreys’ rule to deal with several parameters is that the joint prior
distribution of parameters & be taken proportional to

2
_E [ 021 ]
0¢;0¢;
Ithas been urged (e.g., Jenkins, 1964) that the likelihood itself is best considered and plotted

in that metric a for which I, is independent of a. If this is done, it will be noted that the
likelihood function and the posterior density function with uniform prior are proportional.

1/2

1|'/2 = (7.5.2)

7.5.2 Bayesian Estimation of Parameters

We now consider the estimation of the parameters in an ARIMA model from a Bayesian
point of view. It is shown in Appendix A7.3 that the exact likelihood of a time series z of
length N = n + d from an ARIMA(p, d, q) process is of the form

S(¢,0
L@ﬂ@=§”@®ﬁptl%l] (75.3)
20}
where
S@.0) = la,lw. $,0F +[e,]Q'[e,] (7.5.4)
t=1

If we have no prior information about 6, ¢, or 0, and since information about ¢, would
supply no information about ¢ and 0, it is sensible, following Jeffreys, to employ a prior
distribution for ¢, 8, and ¢, of the form

p(¢.6.0,) x [1(¢.0)]'/ %!
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It follows that the posterior distribution is

m] 7155

§($.0.0,12) & 07 "IN, 0)|'/2 £ (. 0) exp l— oo
o
a
If we now integrate (7.5.5) from zero to infinity with respect to ¢,, we obtain the exact
joint posterior distribution of the parameters ¢ and 6 as

p(@,01z) < |1(¢, 0|2 £ (¢, 0){S(¢,0)) /2 (7.5.6)

7.5.3 Autoregressive Processes

If z, follows an ARIMA(p, d, 0) process, then w, = V?z, follows a pure AR(p) process. It
is shown in Appendix A7.4 that for such a process, the factors [I(¢)|'/2 and f(¢), which in
any case are dominated by the term in .S(¢), essentially cancel. This yields the remarkably
simple result that given the assumptions, the parameters ¢ of the AR(p) process in w, have
the posterior distribution

p(Plz) x {S(¢)}™"/? (7.5.7)

By this argument, then, the sum-of-squares contours, which are approximate likelihood
contours, are, when nothing is known a priori, also contours of posterior probability.

Joint Distribution of the Autoregressive Parameters. It is shown in Appendix A7.4 that
for the pure AR process, the least-squares estimates of the ¢’s that minimize S(¢) = ¢;D¢u
are given by

$=D,'d (7.5.8)
where ¢/ = (1, ¢"),
D, Dy,  Dy3 =+ Dypyy
4 D‘13 D, = D:23 D'33 D3,:p+1
Dy pi1 D3 pi1 D3 p1 +* Dpyi pi
D= lD“|_d,] (7.5.9)
=,
and
Dyj = Dj; = 0 + Wiy Wiy + -+ Wiy - W1 (7.5.10)

It follows that

S@) =vs2+ (- $)D,d— ) (7.5.11)
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where
st = S(V‘i’) v=n—p (7.5.12)
and
S(¢) = §,Dd, = D;; - ¢'D,¢ = D;; —d'D;'d (7.5.13)

Thus, we can write

(¢ $'Dd-P) |

p(Plz) x 052 (7.5.14)
Equivalently,
~ N —n/2
1Y S — b, — b))
p(Plz) o | 1+ — (7.5.15)
where
_PS@) _
ij = a9, 04’, i+1,j+1

It follows that, a posteriori, the parameters of an autoregressive process have a multiple ¢
distribution (A7.1.13), with v = n — p degrees of freedom.
In particular, for the special case p = 1, (¢p — ) /s P is distributed exactly in a Student ¢

distribution with n — 1 degrees of freedom where, using the general results given above, ¢
and s § are given by

172
. D D D
p=—12 5= L Puf T2 (7.5.16)
D,, n—1 D,, DDy,

The quantity s e for large samples, tends to [(1 — ¢2)/n]'/2 and in the sampling theory

framework is identical with the large-sample “‘standard error’” for ¢p. However, when using
this and similar expressions within the Bayesian framework, it is to be remembered that it
is the parameters (¢ in this case) that are random variables. Quantities such as ¢ and s P2
which are functions of data that have already occurred, are regarded as fixed.

Normal Approximation. For samples of size n > 50, in which we are usually interested,
the normal approximation to the ¢ distribution is adequate. Thus, very nearly, ¢ has a joint
p-variate normal distribution N { ¢, D ! 2} having mean vector ¢ and variance—covariance

matrix D712,
p “a

Bayesian Regions of Highest Probability Density. In summarizing what the posterior
distribution has to tell us about the probability of various ¢ values, it is useful to indicate a
region of highest probability density, called for short an HPD region (Box and Tiao, 1965).
A Bayesian 1 — € HPD region has the following properties:
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1. Any parameter point inside the region has higher probability density than any point
outside.

2. The total posterior probability mass within the region is 1 — &.

Since ¢ has a multiple # distribution, it follows, using the result (A7.1.4), that
Pr{(¢ — §")D,(¢p — ) < ps_F.(p,v)} =1 —¢ (7.5.17)
defines the exact 1 — € HPD region for ¢p. Now, forv = n — p > 100,

PF.(p,v) = y*(p)
Also,

N . 1 o A
@-$Dy(p-d)=>5 ) ; S, (i — )b, — b))

-
Thus, approximately, the HPD region defined in (7.5.17) is such that
3N S = by — b)) < 25242 (p) (7.5.18)
P

which if we set 6'5 = sg is identical with the confidence region defined by (7.1.25).

Although these approximate regions are identical, it will be remembered that their
interpretation is different. From a sampling theory viewpoint, we say that if a confidence
region is computed according to (7.1.25), then for each of a set of repeated samples, a
proportion 1 — € of these regions will include the true parameter point. From the Bayesian
viewpoint, we are concerned only with the single sample z, which has actually been
observed. Assuming the relevance of the noninformative prior distribution that we have
taken, the HPD region includes that proportion 1 — € of the resulting probability distribution
of ¢, given z, which has the highest density. In other words, the probability that the value
of ¢, which gave rise to the data z, lies in the HPD region is 1 — e.

Using (7.5.11),(7.5.12), and (7.5.18), for large samples the approximate 1 — £ Bayesian
HPD region is bounded by a contour for which

(7.5.19)

) 2(p)
S() = S@P) ll + Ifnp ]

which corresponds exactly with the confidence region defined by (7.1.27).

7.5.4 Moving Average Processes

If z, follows an ARIMA(O, d, q) process, then w, = de, follows a pure MA(q) process.
Because of the duality in estimation results and in the information matrices, in particular,
between the autoregressive model and the moving average model, it follows that in the
moving average case the factors |I(0)|1/ 2 and f(0) in (7.5.6), which in any case are
dominated by S(0), also cancel for large samples. Thus, corresponding to (7.5.7), we find
that the parameters 6 of the MA(q) process in w, have the posterior distribution

p(0]z) x [S(0)]"/? (7.5.20)
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Again the sum-of-squares contours are, for moderate samples, essentially exact contours
of posterior density. However, because [a,] is not a linear function of the 6’s, S(0) will
not be exactly quadratic in 8, though for large samples it will often be nearly so within the
relevant ranges. In that case, we have approximately

1 A \
S(0) = vs> + 5 Z Z S0, — 0,6, - 0,
i

where vsi = S()and v = n — q. It follows, after substituting for .S(0) in (7.5.20) and using
the exponential approximation, that the following holds:

1. For large samples, 0 is approximately distributed in a multivariate normal distribution
N{0.2{S;;}7's7}.

2. An approximate HPD region is defined by (7.5.18) or (7.5.19), with g replacing p,
and O replacing ¢.

Example: Posterior Distribution of A = 1 — 0 for an IMA(0, 1, 1) Process. To illustrate,
Figure 7.8 shows the approximate posterior density distribution p(4|z) from the data of
Series B. It is seen to be approximately normal with its mode at A = 1.09 and having a
standard deviation of about 0.05. A 95% Bayesian HPD interval covers essentially the same
range, 0.98 < 4 < 1.19, as did the 95% confidence interval. Note that the density has been
normalized to have unit area under the curve.

7.5.5 Mixed Processes
If z, follows an ARIMAC(p, d, g) process, then w, = vd z, follows an ARMA (p, q) process
¢(B)L{~)t = G(B)at

°r
7 -
6F
5_

T 4 i

p(|2)

3_
2 -
1+
0 A/l 1 kl 1
08 09 1.0 1.1 1.2 1.3 14

A ———p

FIGURE 7.8 Posterior density p(4|z) for Series B.
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It can be shown that for such a process the factors |I(¢, 0)| 172 and f(¢,0)in (7.5.5) do not
exactly cancel. Instead we can show, based on (7.2.24), that

11, 0)|'/2 £ (,0) = J(¢*|$.0) (7.5.21)

In (7.5.21), the ¢*’s are the p + g parameters obtained by multiplying the autoregressive
and moving average operators:

( —ngB—(,b;BZ— _¢Z+4Bp+q) =(1 —¢B— - —d’po)X(] —-6,B— - _qutI)
and J is the Jacobian of the transformation from ¢ to (¢, 0), that is,

p(, 012) x J (¢* |, O)[S(¢p, O)] "/ (7.5.22)

In particular, for the ARMA(1, 1) process, ¢’i‘ =¢+0, q’)’2‘ =—¢0,J = |¢p— 6|, and

p($,012) | — 0|[S(¢, )]/ (7.5.23)

In this case, we see that the Jacobian will dominate in a region close to the line ¢ = 6 and
will produce zero density on the line. This is sensible because the sum of squares S(¢, 6)
will take the finite value Z:’zl IZ)tz for any ¢ = 0 and corresponds to our entertaining the
possibility that @, is white noise. However, in our derivation, we have not constrained the
range of the parameters. The possibility that ¢p = 0 is thus associated with unlimited ranges
for the (equal) parameters. The effect of limiting the parameter space by, for example,
introducing the requirements for stationarity and invertibility (-1 < ¢ < 1,-1 <60 < 1)
would be to produce a small positive value for the density, but this refinement seems
scarcely worthwhile.

The Bayesian analysis reinforces the point made in Section 7.3.5 that estimation diffi-
culties will be encountered with the mixed model and, in particular, with iterative solutions,
when there is near redundancy in the parameters (i.e., near common factors between the
AR and MA parts). We have already seen that the use of preliminary identification will
usually ensure that these situations are avoided.

APPENDIX A7.1 REVIEW OF NORMAL DISTRIBUTION THEORY

A7.1.1 Partitioning of a Positive-Definite Quadratic Form

Consider the positive-definite quadratic form Q, = x’27'x. Suppose that the px 1
vector X is partitioned after the p th element, so that x’ = (x; : xé) = (X1, X, 00 X,
Xp 41 x,), and suppose that the p X p matrix X is also partitioned after the p, th row and
column, so that

le |212
Y=
2,12 Z22
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It is readily verified that £~! can be represented as

. I-x7lz, | |27 0 I o
0| I 0 |():22_ 12 11212)_ 2:,12 11|I

Then, since

,E_l ( ! ' lz—lz ) X lZIll 0 ] ( X1 )
0 |y -= 22 — XXX

Qp =x'27'x can always be written as a sum of two quadratic forms Qp1 and sz
containing p; and p, elements, respectively, where

0,=0, +0,

_ oyl

Q, =x XX (A7.1.1)

0y, :(X2_2,1221_11X1)I(222_ 12 11212) (XZ zi, 11X1)
We may also write for the determinant of X

12| = |2 |2 - 12 11212| (A7.1.2)

A7.1.2 Two Useful Integrals

Let z’Cz be a positive-definite quadratic form in z, which has g elements, so that z’ =

(21, 29, ... ,zq), where —c0 < z; < 00,i=1,2,...,4, and let a, b, and m be positive real
numbers. Then, it may be shown that
' —(m+q)/2 br)4/2T 2
/ <a L2 CZ> dz = DT m/2) (A7.1.3)
R b a"/2|C["/*I(m + q)/2]

where the g-fold integral extends over the entire z space R, and

-/Z’CZ>qF0 (1+2/Cz/m) "/ 24y

Jr (1 +2/Cz/m)~ "/ 2z

= /°° p(F|q,m)dF (A7.1.4)
Fy

where the function p(F|q, m) is the probability density of the F distribution with ¢ and m
degrees of freedom and is defined by

p(Flg,m

a/2T 2] —(m+q)/2
_ @/l + O/2 p g2 ( iF) ! F>0 (A7.15)
m

I'(q/2)I(m/2)

If m tends to infinity, then

’ —(m+q)/2
(1 + 2 Cz) tends to e~ @C0)/2
m
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and writing gF = ;(2, we obtain from (A7.1.4) that

—(2'Cz)/2
fz’Cz>)(§ e / dz

/R e~ @C2)/2 47

= / , P lody? (A7.1.6)
Zo

where the function p(x2|q) is the probability density of the y? distribution with g degrees
of freedom, and is defined by

2N 1 2y@-2)/2=2*/2 250 A7.1.7
p(x°lg) 2‘1/2F(q/2)()() e X (A7.1.7)

Here and elsewhere p(x) is used as a general notation to denote a probability density
function for a random variable x.

A7.1.3 Normal Distribution
The random variable x is normally distributed with mean p and standard deviation o, or
N(u,62), if its probability density is

p(x) = 27)~1/2(62)" /2= (=7 /20 (A7.1.8)
Thus, the unit normal variate u = (x — u)/o has a distribution N (0, 1). Table E in Part Five

shows ordinates p(u,) and values u, such that Pr{u > u,} = ¢ for chosen values of ¢.

Multinormal Distribution. The vectorx’ = (x 19X9s cees X p) of random variables has a joint
p-variate normal distribution N { u, X} if its probability density function is

P(X) = Qr) P/2E |V 2= (T (x=p)/2 (A7.1.9)

The multinormal variate x has mean vector u = E[Xx] and variance—covariance matrix X =
cov[x]. The probability density contours are ellipsoids defined by (x — u)E~'(x — p) =
constant. For illustration, the elliptical contours for a bivariate (p = 2) normal distribution
are shown in Figure A7.1.

At the point x = u, the multivariate normal distribution has its maximum density

max p(x) = p(u) = Qo) "?|5| 7/
The y? Distribution as the Probability Mass Outside a Density Contour of the Multivari-

ate Normal. For the p-variate normal distribution, (A7.1.9), the probability mass outside
the density contour defined by

x=-p'Ex-w =g
is given by the y? integral with p degrees of freedom:

(o]
/ PP |p)d 1
12

0

where the y2 density function is defined as in (A7.1.7). Table F in Part Five shows values
of x2(p), such that Pr{ x> > y?(p)} = & for chosen values of .
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Contours of bivariate distribution p (x;|x;)

Conditional distribution

p (x21x10)
T o
*2
Marginal distribution /
p(x1)
Moy =g+ Bay (x— )

Il X10

X | e———p

FIGURE A7.1 Contours of a bivariate normal distribution showing the marginal distribution p(x,)
and the conditional distribution p(x,|x,,) at x; = x,.

Marginal and Conditional Distributions for the Multivariate Normal Distribution. Sup-
pose that the vector of p = p; + p, random variables is partitioned after the first p; elements,
so that

! ! . AN .
X —(x1 .xz)—(xl,xz,...,xpl .xp1+1,...,xp1+p2)

and that the variance—covariance matrix is

v = lzll |212]
2/12 Z:22
Then using (A7.1.1) and (A7.1.2), we can write the multivariate normal distribution for

the p = p; + p, variates as the marginal distribution of x; multiplied by the conditional
distribution of x, given Xy, that is,

p(x) = p(Xq,Xy) = p(X)p(X,[X;)

(= /41),2_111(’(1—/41)]
2

(% — #2.1),2521‘11("2 - ”2.1)]

= Qo)™ 2|1Z,, 7 2 exp [

X (27) P22 |2y 11172 exp l— >

(A7.1.10)
where

DISETIED SIED 0 e 3 (A7.1.11)
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and pr 1 = pr + Pr1(x; — 1) = E[X5|x;] define regression hyperplanes in (p; + py)-
dimensional space, tracing the loci of the (conditional) means of the p, elements of x,
as the p; elements of x; vary. The p, X p; matrix of regression coefficients is given by
Boi =T,y

Both marginal and conditional distributions for the multivariate normal are therefore
multivariate normal distributions. It is seen that for the multivariate normal distribution,
the conditional distribution p(xX,|X;) is, except for location (i.e., mean value), identical
whatever the value of x; (i.e., multivariate normal with identical variance—covariance
matrix X5, 11).

Univariate Marginals. In particular, the marginal density for a single element x; (i =
1,2,...,p)is N(y;, al.z), a univariate normal with mean y; equal to the ith element of p and
variance aiz equal to the ith diagonal element of X.

Bivariate Normal. For illustration, the marginal and conditional distributions for a bivariate
normal are shown in Figure A7.1. In this case, the marginal distribution of x{ is N (4, 612),
while the conditional distribution of x, given x; is

O
N {Mz + pa—z(xl - ), 021 - ,,2)}
1

where p = (6/0,)p, ; is the correlation coefficient between x; and x, and f, | = 6,/ af
is the regression coefficient of x, on x;.

A7.1.4 Student’s ¢t Distribution

The random variable x is distributed as a scaled ¢ distribution with mean yx and scale
parameter s and with v degrees of freedom, denoted as #(y, s2, v), if its probability density
is

o= () () 3

(x — )’
vs2

1+

—(v+1)/2
] (A7.1.12)

Thus, the standardized ¢ variate t = (x — u)/s has distribution #(0, 1, v). Table G in Part
Five shows values ¢, such that Pr{¢ > t,} = ¢ for chosen values of €.

Approach to Normal Distribution. For large v, the product
(5)r(5) (3)
2 2 2

tends to unity, while the right-hand bracket in (A7.1.12) tends to e~/ 232)("_”)2. Thus, if
for large v we write s> = ¢, the ¢ distribution tends to the normal distribution (A7.1.8).

Multiple t Distribution. Let g’ = (uy, s, ..., Hp) beapx 1 vectorand S a p X p positive-
definite matrix. Then, the vector random variable x has a scaled multivariate ¢ distribution
t(u, S, v), with mean vector u, scaling matrix S, and v degrees of freedom if its probability
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density is

px) = <2n>—f’/2|S|“/2(§>_p/2F () (5)

ave-lie _ —(v+p)/2
o [1+(X w's(x Il)]
\%

(A7.1.13)

The probability contours of the multiple ¢ distribution are ellipsoids defined by (x —
u'S™!(x — u) = constant.

Approach to the Multinormal Form. For large v, the product

(5) " (5 (3)
2 2 2
tends to unity; also, the right-hand bracket in (A7.1.13) tends to e_("_”),sfl(x_”)/ 2 Thus,

if for large v we write S = X, the multiple 7 tends to the multivariate normal distribution
(A7.1.9).

APPENDIX A7.2 REVIEW OF LINEAR LEAST-SQUARES THEORY

A7.2.1 Normal Equations and Least Squares

The linear regression model is assumed to be
w; = P11 + Poxip + o+ Prxiy + e (A7.2.1)

where the w;(i=1,2,...,n) are observations on a response or dependent vari-
able obtained from an experiment in which the independent variables x;;,x;, ...,
x;; take on known fixed values, the f; are unknown parameters to be estimated from the
data, and the e; are uncorrelated random errors having zero means and the same common
variance ¢2.

The relations (A7.2.1) may be expressed in matrix form as

w Xy X1 - X [ By €
Wy Xa1 X9 - X || Ba €
= A RS
wy, Xnl Xn2 --+ Xk ﬂk €n
or
w=Xp+e (A7.2.2)

where the n X k matrix X is assumed to be of full rank k. Gauss’s theorem of least-squares
may be stated (Barnard, 1963) in the following form: The estimates [;" = (ﬁl, Bz, . ﬁk)
of the parameters f, which are linear in the observations and unbiased for f and which
minimize the mean square error among all such estimates of any linear function 4,8, +
Ayfy + -+ + A, Py, of the parameters, are obtained by minimizing the sum of squares

S(B) =ee=(w—XB)(w-Xp) (A7.2.3)
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To establish the minimum of .S(f), we note that the vector w — X may be decomposed
into two vectors w — Xf and X(f — f) according to

w-Xg=w-XB+X(p-p (A7.2.4)
Hence, provided that we choose § so that X’(w — X ) = 0, that is,
X'X)B=X'w (A7.2.5)
it follows that
SB) =SB +B-p'XXEB-P) (A7.2.6)

and the vectors w — Xﬁ and X(ﬁ — p) are orthogonal. Since the second term on the right-
hand side of (A7.2.6) is a positive-definite quadratic form, it follows that the minimum is
attained when f = 8, where

B =XX)"X'w

is the least-squares estimate of f given by the solution to the normal equation (A7.2.5).

A7.2.2 Estimation of Error Variance

Using (A7.2.3) and (A7.2.5), the sum of squares at the minimum is
SPB=w-Xp(w-Xp) =ww-pXXj (A7.2.7)
Furthermore, if we define

,_ SB)
T n—k

s (A7.2.8)

it may be shown that E[s?] = 62, and hence s> provides an unbiased estimate of the error
2

variance o“.
A7.2.3 Covariance Matrix of Least-Squares Estimates
The covariance matrix of the least-squares estimates f is defined by
V(B) = covB. B']
= cov[(X'X)"'X'w, W X(X'X)"!]
= (X'X)" X cov[w, wXX'X)"!
= (X'X) 162 (A7.2.9)

since cov[w, w'] = Io2.

A7.2.4 Confidence Regions

Assuming normality, the quadratic forms S(ﬁ) and (ﬁ - p'X’ X(ﬁ — p) in (A7.2.6) are
independently distributed as o2 times chi-squared random variables with n — k and k
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degrees of freedom, respectively. Hence,
B-BXXB-Pn-—k
SB) k
is distributed as F(k,n — k). Using (A7.2.8), it follows that

B - B)X'X(B - P) < ks*F.(k,n— k) (A7.2.10)

defines a 1 — € confidence region for f.

A7.2.5 Correlated Errors
Suppose that the errors e in (A7.2.2) have a known covariance matrix V, and let P be an
n X nnonsingular matrix such that vl =ppP / 62,50 that P’VP = Is2. Then, (A7.2.2) may
be transformed into
P'w=PXp+Pe

or

w'=X"p +e* (A7.2.11)
where w* = P'w and X* = P’X. The covariance matrix of e* = P'e in (A7.2.11)is

cov[P'e,e'P] = P'covle,¢']P = P'VP = I¢*
Hence, we may apply ordinary least-squares theory with V = I6? to the transformed model
(A7.2.11), in which w is replaced by w* = P’w and X by X* = P’X. Thus, we obtain the
estimates
BG — (X*/X*)—IX*IW*

with V(B5) = cov[f] = 62(X*X*)~L. In terms of the original variables X and w of the
regression model, since PP = O'ZV_I, the estimate is

Be = XPP'X) ' X'PP'w = X'V IX)"IX'V~lw (A7.2.12)
with
V(Bg) = covlhgl = X'VX)™!
The estimator ﬁG in (A7.2.12) is generally referred to as the generalized least-squares
(GLS) estimator, and it follows that this is the estimate of f obtained by minimizing the

generalized sum of squares function

SPIV) = (w—-Xp)'V ' (w-Xp)
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APPENDIX A7.3 EXACT LIKELIHOOD FUNCTION FOR MOVING
AVERAGE AND MIXED PROCESSES

To obtain the required likelihood function for an MA(g) model, we have to derive the
probability density function for a series w' = (w 1> W, ..., w,) assumed to be generated by
an invertible moving average model of order q:

li)r = at - 9161,_1 - 02(%_2 —_ .. ant—q (A731)

where @, = w, — u, with ¢ = E[w,]. Under the assumption that the a,’s and the @,’s are
normally distributed, the joint density may be written as

(A7.3.2)

/M A(0.9)

-n/2 WM W

p(W|0,02, 1) = 2zc2) T IMOD| /2 exp lTnz
a

where (M;P’q))_lag denotes the n X n covariance matrix of the w,’s for an ARMA(p, q)
process. We now consider a convenient way of evaluating W’ Milo’q)vv, and for simplicity,
we suppose that y = 0, so that w; = ;.

Using the model (A7.3.1), we can write down the n equations:

w,=a,—01a,_; —0,a,_5— ... —0,a,_, t=12,...,n)

These n equations can be conveniently expressed in matrix form in terms of the
n-dimensional vectors W = (w;,w,,...,w,) and a' =(a,a,,...,a,), and the
g-dimensional vector of preliminary values a; =(a,_ ¢ G—gs e agp) as

w = Lya+Fa,

where Ly is an n X n lower triangular matrix with I’s on the leading diagonal, —6; on the
first subdiagonal, —6, on the second subdiagonal, and so on, with 8; = 0 for i > g. Further,
F is an n X ¢ matrix with the form F = (B;, 0') where B, is g X g equal to

6, O, 0,
0 0 0
q 2
B,=- ;
0 0 0

Now the joint distribution of the n + g values, which are the elements of (a’, a;), is
_ 1
p(a, a*|a§) = (27[63) +0/2 oxp l——(a’a + a;a*)]
262
Noting that the transformation from (a, a,) to (w, a,) has unit Jacobian and a = Lgl(w -

Fa,), the joint distribution of w = Lya + Fa, and a, is

p(w,a,|o, 0'2) = (ero-g)_('”q)/2 exp l—2—125(9, a*)]
(0}

a
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where
1y =
S(0,a,) = (w-— Fa*)'L; L, l(w—TFa,) + ala, (A7.3.3)
Now, let 4, be the vector of values that minimize S(6, a,), which from generalized least-
squares theory can be shown to equal 4, = D‘IF'L;'ILEIW, where D =1, + F' L;‘nglF.
Then, using the result (A7.2.6), we have
S(0,a,) =S + (a, —a,)D(a, —4a,)
where
S(6) = 5(0.4,) = (w-Fa, YL 'L (w—Fa,) + &4, (A7.3.4)

is a function of the observations w but not of the preliminary values a,,. Thus,

p(w,2,10,6%) = 2r02)~ "0 Zexp {——212 [S(0) + (a, —4,)D(a, —4,)] }
o
a

However, since the joint distribution of w and a,, can be factored as
p(w.a,10,02) = p(w|0,02)p(a,|w. 6. 072)
it follows, similar to (A7.1.10), that

p(a,w, 0,6%) = 2763)74/? | D |'/? exp l—riz(a* -4,)D(a, - ﬁ*)] (A7.3.5)

a

a

p(w|6,62) = 2r6>)™? | D [71/2 exp [—TLS(G))] (A7.3.6)

We can now deduce the following:

1. From (A7.3.5), we see that &, is the conditional expectation of a, given w and 6.
Thus, using the notation introduced in Section 7.1.4, we obtain

a, =[a,|w,0] =[a,]

where [a] = L;l(w — F[a,]) is the conditional expectation of a given w and 6, and
using (A7.3.4):

S(0) =[al'lal + [a,)[a,] = ) [a,] (A7.3.7)

t=1—q

To compute S(0), the quantities [a,] = [a,|w, 8] may be obtained by using the es-
timates [a,] = ([a l_q], [az_q], ..., [ag]) obtained as above by back-forecasting for
preliminary values, and computing the elements [a,], [a], ..., [a,] of [a] recursively
from the relation Ly[a] = w — F[a,] as

la] = w, +6y[a,_1+ ... +8,la_,) (=12, ...
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Note that if the expression for 4, is utilized in (A7.3.4), after rearranging we obtain
S6) =wL',' @, - L;"FD"'F'L, L, 'w = a”a" — &' Da,

where a® = L;lw denotes the vector whose elements a? can be calculated recursively
? =w, + Gla?_l + e+ an?_q,t =1,2,...,n, by setting the initial values a,
. . / .
equal to zero. Hence, the first term described above, S, (0) = a¥al = Z?: l(a?)z, is
the conditional sum-of-squares function, given a, = 0, as discussed in Section 7.1.2.

2. In addition, we find that

from a

0,9) _ 7 /-1 -1 —1gry 1—1\7 -1
MO0 =L@, - L'FD'F'L; L,
and S(0) = w'M9'w. Also, by comparing (A7.3.6) and (A7.3.2), we have
D~ = M|

3. The back-forecasts 4, = [a,] can be calculated most conveniently from 4, = D™'F/u

(i.e.,by solving D4, = F'u), whereu = L;‘nglw = L;‘la0 = (uy,uy, ... ,u,) . Note

that the elements u; of u are calculated through a backward recursion as

up=a) + 0y + .+ O0u,

from t = n down to t = 1, using zero starting values u, | = ... = Upyg = 0, where
the a? denote the estimates of the a, conditional on the zero starting values a, = 0.
Also, the vector h = F'u consists of the elements h;=- Z{:] Opjsitisj =1,....q.
4. Finally, using (A7.3.6) and (A7.3.7), the unconditional likelihood is given exactly by

L(6, 52 |w) = (62)™/?|D|~/%exp {—21—2 Z [a,]z} (A7.3.8)

%4 t=1—q

For example, in the MA(1) model with ¢ = 1, we have F' = —(6,0, ...,0),an n-dimensional
vector, and L, is such that L;l has first column equal to (1, 0, 6%, ...,0" 1Y, so that

Iy -1 2, g4 o _ 1=620*D
D=1+FL 'L, F=1+6"+6"+...+6"" = ———
6 6 1 _ 92
In addition, the conditional values a” are computed recursively as a’ = w; + Ha?_l,t =
1,2, ...,n, using the zero initial value ag = 0, and the values of the vector u = Lé,_laO are

computed in the backward recursion as u, = a? +0u,y, fromt =ntot =1, withu,,; =0.
Then,

up(l = 6%)

a, =[ag] = -D7'0u; = D7y, = T
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where uy = ag + Ou; = Ouy, and the exact likelihood for the MA(1) process is

2 2v-nj2_ (1= 6%/ 1 v, 2
L(0, O'a IW) = (O'a) WCXP _ﬁ g[at] (A739)
a t=

Extension to the Autoregressive and Mixed Processes. The method outlined above may
be readily extended to provide the unconditional likelihood for the general mixed model

P(B)w, = 0(B)a, (A7.3.10)

which, with w, = vd z;, defines the general ARIMA process. Details of the derivation
have been presented by Newbold (1974) and Ljung and Box (1979), while an alternative
approach to obtain the exact likelihood that uses the Cholesky decomposition of a band
covariance matrix (i.e., the innovations method as discussed in Section 7.4) was given by
Ansley (1979). First, assuming a zero mean for the process, the relations for the ARMA
model may be written in matrix form, similar to before, as

Lyw = Lja + Fe,

where L, is an n X n matrix of the same form as Ly but with ¢;’s in place of 6;’s, e =

(w,,al)= (Wy_ps - s W, @1 _ys - » ) i the (p + g)-dimensional vector of initial values,
and
A B
Fo l p q]
0 0
with
b, byt o By 0, 0,1 - 0,
0 ¢, ... b 0 6, .0,
O EE and - Be=o
0 0 .4, 0 0 .0,

Let QGZ = Ele,e! ] denote the covariance matrix of e,. This matrix has the form

or, C’
Qo2 = l @’ 0'2

a1 ¢,

where I', = E[w,w/] is a p X p matrix with (i, j)th element y;_;, and 02C = E[a,w/]
has elements defined by Ela;_,w;_,] = o-azwj_,-_erq for j—i—p+q >0 and O other-
wise. The y, are the coefficients in the infinite MA operator y(B) = ¢~ 1(B)O(B) =
ZZO:o v, B*,w, = 1, and are easily determined recursively through equations in Section
3.4. The autocovariances y; in I', can directly be determined in terms of the coefficients
¢;, ;, and ag, through use of the first (p + 1) equations (3.4.2) (see, e.g., Ljung and Box,
1979).
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Similar to the result in (A7.3.3), since a = L;l (L oW~ Fe,) and e, are independent, the
joint distribution of w and e, is

p(W,e,|9,0,02) = 2ne2)~ P2 |Q|71/2 exp l—#S(dJ, 0, e*)]
a

where
S(¢.0.e,) = (Lyw—Fe,)L 'L (Lyw —Fe,) + €. Q7 'e,
Again, by generalized least-squares theory, we can show that
S(¢.0.e,) = S(,0) + (e, —&,)'D(e, — &,)
where
S(p,0) = S(¢,0,8,)=aa+& Q"¢ (A7.3.11)

is the unconditional sum-of-squares function and

é, = Ele,|w,¢.0] =[e,] =D'F'L; 'L, 'L,w (A7.3.12)

represents the conditional expectation of the preliminary values e,, with D =Q! +
F'L;7'L,'F, and 4 = [a] = L' (L,w — F&,). By factorization of the joint distribution
of w and e, we can obtain

- - _ 1
p(W|$,6.07) = 2r0;)™"/21Q| 72 DI exp [—ﬁsw, 9)] (A7.3.13)

a

as the unconditional likelihood. It follows immediately from (A7.3.13) that the maximum
likelihood estimate for aaz is given by &5 = .S(¢, 0) /n, where ¢ and 6 denote maximum
likelihood estimates.

Again, we note that S(¢,0) =Y\ [a,]* + & Q7'¢,, and the elements [a,],[as], ...,
[a,] of 4 = [a] are computed recursively from the relation Ly[a] = Ld,w —Fle,] as

la,] = w, — pylw, ] = ... = p,lw,_, 1+ 01[a,_ |1+ ... +0,la,_,]
for t = 1,2, ..., n, using the back-forecasted values [e,] for the preliminary values, with
[w,] = w,fort = 1,2, ..., n. Inaddition, the back-forecasts &, = [e,] can be calculated from

é, =D 'F'u, where u = L;‘nglL(ﬁw = L;‘lao, and the elements u, of u are calculated
through the backward recursion as

_ 0
up=a; + 0y + .+ 0,

with starting values u,,; = ... =u,,, =0, and the a? are the elements of a® = L;1L¢w
and denote the estimates of the a, conditional on zero starting values e, = 0. Also, the



264 PARAMETER ESTIMATION

vector h = F/u consists of the p + ¢ elements:

J
Azl¢p_j+iui j = l,...,p
i=
h; =

j=p
—qu_j+p+iui j=p+1,...,p+q
i=1

Finally, using (A7.1.1) and (A7.1.2), in S(¢,0) we may write &’ Q~'¢, = a’a, + (W, —
C'a,)K~!(W, — C'a,), so that we have

S@.0)= ) [al +W, - Ca)K W, -C4,) (A7.3.14)
t=1—q

where K = 67", — C'C, as well as |Q|=|K]|.
Therefore, in general, the likelihood associated with a series z of n + d values generated
by any ARIMA process is given by

S(¢, 0
L(¢,0,02z) = 2rc2)™/? IMP9|1/2 exp l—%l (A7.3.15)
a

where
n
S@.0) = Y la,)* +&Q7"e,
t=1

and |M;”"7)| = Q"' D|~! = |[K|7!|D|~!. Also, by expressing the mixed ARMA model
as an infinite moving average w, = (1 + y B + y/232 + ...)a,, and referring to results for
the pure MA model, it follows that in the unconditional sum-of-squares function for the
mixed model, we have the relation that é;ﬂ_lé* = Z?=_oo[az]2~ Hence, we also have the
representation S(¢, 0) = Z:’z_m[at]z, and in practice the values [a,] may be computed
recursively with the summation proceeding from some point # = 1 — Q, beyond which the
[a,]’s are negligible.

Special Case: AR(p). Inthe special case of a pure AR(p) model, the results described above
simplify somewhat. We then have e, =w,,Q=0,"T,, Ly=1,D= 021“;1 +FF=

agl“;l + A;AP, and W, = D_lF’Ld,W = D_IA;Lllwp, where w; = (wy, wy, ... ,w,) and
L, is the p X p upper left submatrix of L. It can then be shown that the back-forecasts i,
are determined from the relations i, = ¢ ;| + -+ + P,y .1 =0,—1,...,1— p, with

w, = w, for 1 <t < n, and hence these are the same as values obtained from the use of
the backward model approach, as discussed in Section 7.1.4, for the special case of the AR
model. Thus, we obtain the exact sum of squares as S(¢) = X, [a,]* + GZW;F;IW*.

To illustrate, consider the first-order autoregressive process in w;,

w; —pw,_; =a, (A7.3.16)



EXACT LIKELIHOOD FUNCTION FOR MOVING AVERAGE AND MIXED PROCESSES 265

where w, might be the dth difference V¥z, of the actual observations and a series z of
length n 4+ d observations is available. To compute the likelihood (A7.3.15), we require

S(@) = Yl + (1 - "
t=1
= Y (w, = pw,_)* + (w; — pidy)? + (1 — pHl}
t=2

since '} = 79 = 62(1 — $*)~!. Now, because D = agl“l_l +AA = agyo_l +¢2=1,and
hence i, = ¢uw,, substituting this into the last two terms of .S(¢) above, it reduces to

n
S@) =Y w, = pw,_)* + (1 - ¢Hw? (A7.3.17)
=2
as a result that may be obtained more directly by methods discussed in Appendix A7.4.

Special case: ARMA(1,1). As an example for the mixed model, consider the ARMA(1, 1)
model

w, — w,_, =a, — 0a,_, (A7.3.18)

Then, we have €/, = (wy, (), A| = ¢, B; = —0, and

-2

o7y 1
20 — 2 a
GaQ—Gal 1 1]

with 62yy = (1 + 6% — 2¢9) /(1 — ¢*). Thus, we have

1 -1
_ o-! Sy -lp _ 1
D=0 +FL L' F=——| =
6,v— 1 o, Y0
1_02}1 ¢2 —¢6
T |00 o

and the estimates of the initial values are obtained as é, =D~'h, where h' =
(hy, hy) = (¢, —0)u,, the u, are obtained from the backward recursion u, = a? + u, |,

u,,; =0, and a? =w; — qﬁw?_l + Qa?_l,t =1,2,...,n, are obtained using the zero initial

values wg = ag = 0, with w? = w, for 1 <t < n. Thus, the exact sum of squares is obtained
as
n A A N2
Wy — a4
S($.0) = Yla* + (_02—0) (A7.3.19)
t=0 Ga Yo~ 1

with [a,] = w, — ¢plw,_ 1+ 0la,_ 1.t =1,2,....n, and 62— 1 =K=(¢p—0)?/(1 -
$?). In addition, we have | MV |= {| K || D |}~!, with

1— 6% (¢ —0)*

K||ID|=1+
IK|D| e
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APPENDIX A7.4 EXACT LIKELIHOOD FUNCTION FOR AN
AUTOREGRESSIVE PROCESS

We now suppose that a given series W = (wy, w,, ..., w,) is generated by the pth-order
stationary autoregressive model:

Wy — Grw_ — prw,_p — - — ¢pwt—p =4a

where, temporarily, the w,’s are assumed to have mean y = 0, but as before, the argument
can be extended to the case where y # 0. Assuming normality for the a,’s and hence for
the w,’s, the joint probability density function of the w,’s is

(A7.4.1)

wMPOw
(Wi, 0;) = (2n0,) "2 IMPO| Zexp [——2;2
a

and because of the reversible character of the general process, the n X n matrix M;”’O)
is symmetric about both of its principal diagonals. Such a matrix is said to be doubly
symmetric. Now,

PWI, 67) = (0,11, Wya, .. s Wy Wy B, 62)p(W,, |, 07
where W = (wy, w,, ..., w,). The first factor on the right may be obtained by making use
of the distribution
1 n
p(ap+1, ey an) = (2”62)_(H—P)/2exp l—j af] (A7428)
o
a t=p+1
For fixed Wy, (ap+1, ...,a,)and (pr, ..., w,) are related by the transformation
Apr1 = Wpy1 — ¢lwp - ¢pwl
a, =W, — d)lwn—l -t d)pwn—p
which has unit Jacobian. Thus, we obtain
p(wp+lv ceey wn | wp9 ¢’ 62)
= 2n62) """ 2exp —Lz (W, — pyw,_; — - — ¢pw,_p)2] (A7.4.2b)
a t=p+1
Also,
2 = (2 062) /2 NP0 1/2 _ L wMeo
p(w ’ |¢’ Ga) - (27[60) IMP | eXp [ 263 WpMp Wp]
Thus,

(A7.4.3)

. -S
p(Wl$,67) = 2ro) /2 IMPO |2 exp lz—(f)]

a
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where
n
S(é) = Z Zm(mwiwf + ) (W= rwy = = 10, ,) (A7.4.4)
i=1 j= t=p+1
Also,
-1
7/0 Y1 o J/p—l
_ 141 Yo J/p—z
MPO = () = tniy)lon=| L | o (A7.4.5)
Yp—17p2 " Yo
where vy, 7y,...,7,-; are the theoretical autocovariances of the process, and

|M(1”0) | = |M(p,0) l.
p n

Now, let n = p + 1, so that

p D
w M;i?) ptl = Z Zm(")w wj + (Wpet = P11, = o1,y = - —¢pw1)2
i=1 j=1
Then,
- | ¢ by | =4, |
| ¢p¢p—1 p— ‘ ¢P 1
(») : : : :
Mgl = M ‘ T : ; |
E : | =
00 0| | T =4, —dpq ] 1

and the elements of Mg,p ) = M;p ) can now be deduced from the consideration that both

M;” ) and M;’f , are doubly symmetric. Thus, for example,

o [ -] [
S I T B B

and after equating elements in the two matrices, we have
M _ D) _ g _ 42
M"=m =1-4¢
Proceeding in this way, we find for processes of orders 1 and 2:
nH _ 2 My _ 2
M,"=1-¢; IM | =1-¢]

1-¢7  —¢i(1+ )
- L 5

—p1(1+ ) 1—¢§
IMP| = (1 + ¢)*[(1 = $p)? = ¢7]



268 PARAMETER ESTIMATION

For example, when p = 1,

pwlg, 07) = 2xo,) (1 = ¢*)'/exp {—; l(l - pHuwi + Z(w ¢w,_1>2] }

t=2

which checks with the result obtained in (A7.3.17). The process of generation must lead to
matrices M‘(Dp), whose elements are guadratic in the ¢’s.

Thus, it is clear from (A7.4.4) that not only is S(¢) = w’ Mf,p )w a quadratic form in
the w,’s, but it is also quadratic in the parameters ¢p. Writing ¢; =(1,¢1, ¢, ... ,d)p), it is
clearly true that for some (p + 1) X (p + 1) matrix D whose elements are quadratic functions
of the w,’s,

N0 Y
wMPw=¢ D¢,
Now, write

Dll _D12 _D13 _Dl,p+1

=Dy Dy  Dy3 -+ Dypyy
D=| | o o (A7.4.6)

_Dl,p+l D2,p+1 D3,p+1 Dp+1,p+1

Inspection of (A7.4.4) shows that the elements D;; are “‘symmetric’” sums of squares and
lagged products, defined by

Dij = Dji = WiW; + Wi Wi + -+ Wy jWyy g (A7.4.7)

where the sum D;; containsn — (i — 1) — (j — 1) terms.
Finally, we can write the exact probability density, and hence the exact likelihood, as

p(Wgp, 02) = L(¢p, 62|w) = (27;52)_”/2|M§)p)|1/2exp l#] (A7.4.8)
O-a
where
S(¢) = WZMZP)WP + Z (W, — pyw,_; — =+ — ‘l)pwt—p)z = ¢/MD¢M (A7.4.9)
t=p+1

and the log-likelihood is

S(¢)

(¢, c%w) = ——1n(62)+ 1|M<P>| 202

(A7.4.10)
For example, when p = 1, we have

S(¢) = (1 - $Huw? + Z(wt — ¢,

n—1

—Zw —205210; 1w, + ¢ Zw =Dy, —2¢Dy, + ¢’ Dy,

t=2
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Maximum Likelihood Estimates. Differentiating with respect to 0'2 and each of the ¢’s in
(A7.4.10), we obtain

a _ n S
%02 292 + 202 (A7.4.11)
a a a
ol _
op. =M;+o, 2(Dl,j+1 — 1Dy 1 — = pDpiy jy1)
J
j=12....p (A7.4.12)

where
1 ()
_ 6(51n|Mp b
J a¢j
Hence, maximum likelihood estimates may be obtained by equating these expressions to

zero and solving the resultant equations.
We have at once from (A7.4.11)

2 _ S(¢)

O-u
n

(A7.4.13)

Estimates of ¢. A difficulty occurs in dealing with equation (A7.4.12) since, in general,
the quantities M; (j = 1,2, ..., p) are complicated functions of the ¢’s. We consider briefly
four alternative approximations.

1. Least-Squares Estimates. Since the expected value of S(¢) is proportional to n, while
the value of |M§,p )| is independent of n, (A7.4.8) is for moderate or large sample sizes

dominated by the term in S(¢) and the term in |M§,p )| is, by comparison, small.
If we ignore the influence of this term, then

2 W)~ P n(e?) — SP)
(¢, o51W) = = In(oy) o (A7.4.14)

a

and the estimates 43 of ¢ obtained by maximization of (A7.4.14) are the least-squares
estimates obtained by minimizing S(¢). Now, from (A7.4.9), S(¢) = qb;DqSu, where
Disa (p+ 1) X (p+ 1) matrix of symmetric sums of squares and products, defined
in (A7.4.7). Thus, on differentiating, the minimizing values are

Dyy = ¢ Dy +$y Doz + ++ + $, D i
D13 = (]31D23 + (£2D33 + -+ (ﬁpD3’p+1 (A7415)

D1 =¢1Dypy1 + D3 1+ + DDy pyy
which, in an obvious matrix notation, can be written as

d=D,$
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so that
$=D,'d

These least-squares estimates also maximize the posterior density (7.5.15).

2. Approximate Maximum Likelihood Estimates. We now recall an earlier result (3.2.3),

which may be written as

Yi=d1vi1—bavja— =y, =0 j>0 (A7.4.16)

Also, on taking expectations in (A7.4.12) and using the fact that E[0l/d¢ 1= 0, we
obtain

Moy +(n=j)y; = (n=Jj = Dyryy = (n=j = Debay; 5
— e =(n=j=pb,ri_, =0 (A7.4.17)
After multiplying (A7.4.16) by n and subtracting the result from (A7.4.17), we obtain
Mol = jy; =G+ Dy, — = G +p)byyiey
Therefore, on using D, ;;1/(n — j — i) as an estimate of y|;_;, a natural estimate
of M;c2 is

Dy D, 41 , Dpi1 1
o (A D = = (4 P,
n—j n—j—1 n—j—p

Substituting this estimate in (A7.4.12) yields

i ~ o2 D1,1+1 _ DZ,j+1 o Dp+l,j+l
dd)j_ a n—j Th—j—1 Pp—j—p
j=12,....,p (A7.4.18)

leading to a set of linear equations of the form (A7.4.15), but now with

* nDU

D? =
iR G-D-G-D

replacing D;;.

. Conditional Least-Squares Estimates. For moderate and relatively large n, we might

also consider the conditional sum-of-squares function, obtained by adopting the
procedure in Section 7.1.3. This yields the sum of squares given in the exponent of
the expression in (A7.4.2),

n
2
S = D (W, —bjw,_y = —dw,_,)
t=p+1
and is the sum of squares associated with the conditional distribution of w,, , ..., w,,
given w = (w;, w,, ..., wp). Conditional least-squares estimates are obtained by

minimizing S,(¢), which is a standard linear least-squares regression problem
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associated with the linear model w; = ¢iw;_ + pow;_o + -+ + Pyw;_p + a1 =
p+1,...,n. This results in the familiar least-squares estimates ¢ = f);‘&, as in
(A7.2.5), where ﬁp has (i, j) th element D[j = Z:’=p+1 w,_;w,_; and d has ith ele-
mentd, = YL w,_w,.

4. Yule-Walker Estimates. Finally, if n is moderate or large, as an approximation, we

may replace the symmetric sums of squares and products in (A7.4.15) by n times

the appropriate autocovariance estimate. For example, D;;, where |i — j| = k, would
be replaced by nc;, = Z:':_Ik W, W, . On dividing by nc, throughout in the resultant
equations, we obtain the following relations expressed in terms of the estimated

autocorrelations r;, = ¢ /cg:

r=¢r+gori o dpr,
rp=¢giri+oy+ -+ dyr, o

rp=@1rp 1 or, o+t

These are the well-known Yule—Walker equations.

In the matrix notation (7.3.1), they can be written r = R(f), so that
¢=R!r (A7.4.19)

which corresponds to equations (3.2.7), with r substituted for p, and R for P,,.

To illustrate the differences among the four estimates, take the case p = 1. Then, M, O'Z =
—7y; and, corresponding to (A7.4.12), the exact maximum likelihood estimate of ¢ is the
solution of

n n—1
=71+ Dp—¢Dp=-r + 2 wwy_y — ¢Z wt2 =0
t=2 =2

Note that y; = 62¢p/(1 — ¢*) and the maximum likelihood solution for 62,62 = S(¢)/n
from (A7.4.13), can be substituted in the expression for y; in the likelihood equation above,
where S(¢p) = D;; —2¢ D, + ¢2D22 as in (A7.4.9). This results in a cubic equation in ¢,
whose solution yields the maximum likelihood estimate of ¢. Upon rearranging, the cubic
equation for ¢ can be written as

(n—1)Dpyd® — (n = 2)D,p* — (nDyy + Dy )+ nDyy = 0 (A7.4.20)

and there is a single unigue solution to this cubic equation such that -1 < ¢ < 1 (e.g.,
Anderson, 1971, p. 354).
Approximation 1 corresponds to ignoring the term y, altogether, yielding

n
Zt=2 Wil Dy,

n—1_2 D
P wy 22

=
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Approximation 2 corresponds to substituting the estimate Z:'=2 w,w,_, [(n—1) for y,,
yielding
Do Ww,_y/(n—1) _n—=2Dy

Y wr/(n-2)  n—1Dxp

¢?=

Approximation 3 corresponds to the standard linear model least-squares estimate obtained

by regression of w, on w,_; fort =2,3, ..., n, so that
n
a Z,=2 Wil Dy,
’= Sow? Dy +u?
=2 Wi 22 T W)

In effect, this can be viewed as obtained by substituting d)w? for y; in the likelihood
equation above for ¢.

Approximation 4 replaces the numerator and denominator by standard autocovariance
estimates (2.1.12), yielding

n
~ Z;:Q Wiy ¢ D,
¢ = = = =7

1= 57
n 2
Yy Wy < Dy,

Usually, as in this example, for moderate and large samples, the differences between
the estimates given by the various approximations will be small. We have often employed
the least-squares estimates given by approximation 1 which can be computed directly from
(A7.4.15). However, for computer calculations, it is often simplest, even when the fitted
model is autoregressive, to use the general iterative algorithm described in Section 7.2.1,
which computes least-squares estimates for any ARMA process.

. 2 . . . .
Estimate of o -- Using approximation 4 with (A7.4.9) and (A7.4.13),

o S ol L= |
0'2= n¢ :c0[1:¢]l:;T] l;]

On multiplying out the right-hand side and recalling that r — R = 0, we find that

62 =cy(1 - ) = cy(1 - r'R7'r) = ¢(1 — $'Rep) (A7.4.21a)

It is readily shown that 03 can be similarly written in terms of the theoretical autocorrela-
tions:

o2 =yy(l—p'dp)=ry(1 - p'P;lp) =7o(1 — ¢'P,p) (A7.4.21b)

agreeing with the result (3.2.8).
Parallel expressions for &2 may be obtained for approximations 1, 2, and 3.

Information Matrix. Differentiating for a second time in (A7.4.11) and (A7.4.18), we
obtain

0l _ n S@)

(22  2c2)?  (62)}

(A7.4.22a)
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2
Pl g2l

———— >0, (A7.4.22b)
(6209, o,
__ 0 onDun (A7.4.22¢)
Ipiop; — otn—i—j -
Now, since
0,
it follows that for moderate or large samples,
2
E —% ~0
d(05)0¢;
and
K¢, o) = [IP)|I(c})
where
0%l n
I(6?)=E |- =
(@) l 0(63)2] 2(c2)?
Now, using (A7.4.22c), we have
_ il e Mop L oMy
I(¢p)=-E [0¢;0¢j] ~ EI’P = ?Pp = n(Mp ) (A7.4.23)
a a
Hence,
2o A 001
(¢ 0,)| ~ 2(0—2)2|M” |
a

Variances and Covariances of Estimates of Autoregressive Parameters. Now, in circum-
stances fully discussed by Whittle (1953), the inverse of the information matrix supplies the
asymptotic variance—covariance matrix of the maximum likelihood (ML) estimates. More-
over, if the log-likelihood is approximately quadratic and the maximum is not close to a
boundary, even if the sample size is only moderate, the elements of this matrix will normally
provide adequate approximations to the variances and covariances of the estimates.

Thus, using (A7.4.23) and (A7.4.21b) gives

V() =1""(p) = n'MP = n~' 7T,
_ =11 _ p-1 -1
=n (1 pPp p)Pp
=n1(1- ¢’Pp¢)P;1 =n"11- p’qb)P;l (A7.4.24)
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In particular, for autoregressive process of first and second order,

V() ~n'(1-¢%
1—¢2  —¢;(1+¢y)

pory o]
V@D =ml g ey 1-¢2

(A7.4.25)

Estimates of the variances and covariances may be obtained by substituting estimates for
the parameters in (A7.4.25). For example, we may substitute r;’s for p;’s and ¢ for ¢ in
(A7.4.24) to obtain

V() =n'1-r'¢)R! (A7.4.26)

APPENDIX A7.5 ASYMPTOTIC DISTRIBUTION OF ESTIMATORS FOR
AUTOREGRESSIVE MODELS

We provide details on the asymptotic distribution of least-squares estimator of the param-
eters ¢ = (¢, ..., (l)p)’ for a stationary AR(p) model [i.e., all roots of ¢(B) = 0 lie outside
the unit circle],

P
w; = Z ¢iw,_; +a,
i=1

based on a sample of n observations, where the w, are assumed to have mean y = 0 for
simplicity, and the g, are assumed to be independent random variates, with zero means,
variances 0'2, and finite fourth moments. It is then established that

n2 - d)— N{0,02T5' ()} (A75.1)

asn — oo, where I ,(¢) is the p X p autocovariance matrix of p successive values from the

AR(p) process. Hence, for large n the distribution of ¢ is approximately normal with mean
vector ¢ and covariance matrix V(¢) ~ n~! o-ﬁl“;l(q)), that is, N {¢p, n™! UZFP_l((IJ)}.
We can write the AR(p) model as

w, = w;_lqﬁ +a, (A7.5.2)
where w;_l =(Wi_1s .- w,_P). For convenience, assume that observations Wi_ps ..o Wy
are available in addition to wy, ..., w,, so that the (conditional) least-squares estimator of

¢ is obtained by minimizing the sum of squares:
n
S(@) =) (w,—w_,¢)?
=1

Asn — oo, the treatment of the p initial observations becomes negligible, so that conditional
and unconditional LS estimators are asymptotically equivalent. From the standard results
on LS estimates for regression models, we know that the LS estimate of ¢ in the AR(p)



ASYMPTOTIC DISTRIBUTION OF ESTIMATORS FOR AUTOREGRESSIVE MODELS 275

model (A7.5.2) is then given by

n -1 n
$= (Z w,_lw;_1> > Wi, (A7.5.3)
=1 t=1

Substituting the expression for w, from (A7.5.2) in (A7.5.3), we see that

n -1 n

7 /

p=¢+ <Zwt—1W,_1> Zwt—lat
=1 t=1

so that

1 n
n2Y w,_a, (A7.5.4)
t=1

”1/2(‘13 -¢)= (”_1 Z Wt—lw;_1>
t=1

Notice that the information matrix for this model situation is simply

1 azS(qb)]_i" ——
I(¢) = 26312[ 2900 | = 07 & E[wf_lw,_l]—agr,,@)

so that nI"}(¢p) = I71(¢p) = O’ZF;I(¢) as appears in (A7.5.1).

We let U, = w,_;a, and argue that these terms have zero mean, covariance matrix
o-iI‘p(qb), and are mutually uncorrelated. That is, noting that w,_; and a, are indepen-
dent (e.g., elements of w,_; are functions of a,_,a,_,, ..., independent of a,), we have
E[w;_1a,] = E[w,_1]E[a,] = 0, and again by independence of the terms al2 and w,_lw;_1 ,

covlw,_ja,] = Elw,_ja,a,w_ 1= E[a’1E[w,_Ww!_ 1= 02T ,(¢)

In addition, for any / > 0,

'
t+1—1]

= E[atwt—lwg+/_1]E[a[+]] =0

COV[Wt_l a;, WH_]_] at+l] = E[wt—l alaH'lw

because a,,, is independent of the other terms. By similar reasoning,
cov[W,_1a,, Wiiy—18,411]1 =0

for any / < 0. Hence, the quantity Y." | w,_,a, in (A7.5.4) is the sum of n uncorrelated
terms each with zero mean and covariance matrix 631‘ p(d)).
Now, in fact, the partial sums

Sn=iU,Ezn:Wt_lat n=1,2,...
=1 =1

form a martingale sequence (with respect to the o fields generated by the collection of
random variables {a,, a,_y, ...}), characterized by the property that E[S, ,la,.a,_1,...] =
S,. This clearly holds since S, | = w,a,,; + S,

Elw,a, la,.a,_,...1=wW,Ela,,la, a, ., ..]=wW,E[a, ]1=0

n—1>
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and S, = Z?zl w,_,a, is a function of a,,a,_,, ... so that E[S,|a,,a,_;,...] =S,. In this
context, the terms U, = w,_, a, are referred to as a martingale difference sequence. Then,

by a martingale central limit theorem (e.g., Billingsley, 1999),

D
n12¢'S, — N{0,02'T (¢)c}

for any vector or constants ¢/ = (¢ - ,cp), and by use of the Cramer—Wold device, it
follows that

n
D
n28, = n 2 Y w,_ja,— N{0,62T ()} (A7.5.5)

=1

. P
as n — oo. Also, we know that the matrix n~! Zle wt_lw:_l—> p(q)), as an n — oo,

by a weak law of large numbers, since the (i, j) th element of the matrix is 7(i — j) =
n~! Z:’zl w,_jw,_;, which converges in probability to y(i — j) by consistency of sample
autocovariances 7(i — j). Hence, it follows by continuity that

n -1
(”_1 2 Wr—1W§_1> -z r'@ (A7.5.6)
t=1

Therefore, by a standard limit theory result, applying (A7.5.5) and (A7.5.6) in (A7.5.4), we
obtain that

12 - $)=> ;' (@IN (0,027} (A75.7)

which leads to the result (A7.5.1).

In addition, it is easily shown that the Yule—Walker (Y W) estimator q~5 = R~ !r, discussed
in Section 7.3.1, is asymptotically equivalent to the LS estimator considered here, in the
sense that

~ ~_ P
n'2($—¢)— 0
. . . 4wl = N
as n — oo. For instance, we can write the YW estimate as ¢ = I‘p ¥, whereI', = joR and

. . . . . 2 a—1
¥, = for. For notational convenience, we write the LS estimate in (A7.5.3) as ¢ = I‘p ¥»

I — -1y ! 5 — Ly
where we denote I', = n~" 3, w,_yw_ and 7, =n" 3} w,_w,. Then, we have

" A1, =1
n'2(@—g)=n'AT§,-T, 7,

=1 P SO R
= n1/2rp G, =7, +n1/2(I‘p -T,

)7, (A7.5.8)

, : 208 o\ 1200 _ 1\
and we can readily determine that both » (yp — yp)—> 0 and n (I‘IJ - Fp)—> 0 as

n — oo, and consequently also
A1l ] =1 S a 1P
nl/z(I‘p -I,H=T, n'/2T,-T)F"—0

p

N ~ P
Therefore, n'/2(¢p — ¢)— 0 follows directly from (A7.5.8).
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APPENDIX A7.6 EXAMPLES OF THE EFFECT OF PARAMETER
ESTIMATION ERRORS ON VARIANCES OF FORECAST ERRORS
AND PROBABILITY LIMITS FOR FORECASTS

The variances and probability limits for the forecasts given in Section 5.2.4 are based on the
assumption that the parameters (¢, ) in the ARIMA model are known exactly. In practice,
it is necessary to replace these by their estimates (¢, 8). To gain some insight into the effect
of estimation errors on the variance of the forecast errors, we consider the special cases of
the nonstationary IMA(O, 1, 1) and the stationary first-order autoregressive processes. It
is shown that for these processes and for parameter estimates based on series of moderate
length, the effect of such estimation errors is small.

IMA(0, 1, 1) Processes. Writing the model Vz, =a, —fa,_; fort+1,t+1-1,...,t+1,
and summing, we obtain

Zip = Zp = Ay + (1= 0)(ayg + -+ a40) — g,

Denote by z,(/|6) the lead / forecast when the parameter 6 is known exactly. On taking
conditional expectations at time ¢, for / = 1,2, ..., we obtain

2,(110) = z, — Oa,
2,(10) = 2,(110)  1>2

Hence, the lead / forecast error is

e,(110) =z, — 2,(|6)
=a + (1= 0)(ay_y + - +ay)

and the variance of the forecast error at lead time [ is
V() = E[eX(11)] = o2[1 + (I — )A?] (A7.6.1)

where A =1-6.
However, if 6 is replaced by its estimate 6, obtained from a time series consisting of n
values of w, = Vz,, then,

2,(110) = z, — 04,
2,310)=2,116) 1>2
where 4, = z, — 2,_;(1|6). Hence, the lead [ forecast error using 6 is

e,(110) = z,,; — 2(11)
= 2,4 — 2, + 04,

=¢,(110) — (0a, — Ba,) (A7.6.2)

Since Vz, = (1 — B)a, = (1 — dB)a,, it follows that

. (1-93)
a,= — a,
1-0B
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and on eliminating 4, from (A7.6.2), we obtain

; 0-0
e, (116) = e, (116) — —a,
- 6B
Now,
A A A -1
6—0 0—0 0-06)B
—a, = 1+ a,
1-6B 1-6B 1-6B

0-0 [ (0-@)3]
~ 1— ;

- 1-6B 1-6B
= (0 - 0)(a, + 0a,_, +6%a,_, + )
= (0 =01 +20a,,+30%a,5 + ) (A7.6.3)

On the assumption that the forecast and the estimate  are based on essentially nonover-
lapping data, § and a;,a,_y, ... are independent. Also, 6 will be approximately normally
distributed about @ with variance (1 — 62)/n, for moderate-sized samples. On these as-
sumptions the variance of the expression in (A7.6.3) may be shown to be

2
o 2
%a (14 31+0°
n nl—6?

Thus, provided that || is not close to unity,

2
%a

varle,(110)] = o2[1+ (I — 1)A*] + (A7.6.4)

n

Clearly, the proportional change in the variance will be greatest for / = 1, when the exact
forecast error variance reduces to ag. In this case, for parameter estimates based on a series
of moderate length, the probability limits will be increased by a factor (n + 1)/n.

First-Order Autoregressive Processes. Writing the AR(1) model Z, = ¢z,_; + a, at time
t + [ and taking conditional expectations at time ¢, the lead / forecast, given the true value
of the parameter ¢, is

Zlp) = pZ,( — 11¢) = ¢'2,
Similarly,
ZU1) = d2,(1 - 11) = §'%,
and hence
e(119) = Z,4 — Z,U1d) = e,(11$) + (¢' — P))z, (A7.6.5)

Because e,(I|¢p) = Z,, — Z,(|}) = ayyy + bpa,y_y + - + ¢! 'a,,, is independent of ¢
and Z,, it follows from (A7.6.5) that

Ele}(I|$)] = Ele;(I|$)] + E[£/(d' — ')*]
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Again, as in the MA(1) case, the estimate ¢ is assumed to be essentially independent of
Z,, and for sufficiently large n, ¢ will be approximately normally distributed about a mean

qS with variance (1 — ¢%)/n. So using (5.4.16) and E[22(¢' — §')?] =~ E[Z1E[(¢' — ¢')*],
with E[Z tz] =y = ag/(l — ¢2), on the average
21-¢? L E[(¢' - ')
var[e,(I|$)] =~ o2 — +0? T (A7.6.6)

When I = 1, using E[(¢ — $)?] ~ (1 — ¢?)/n,

2 2
N o, 1—4¢
varle,(1|¢)] ~ o, + 1—¢2 n

=o(1+ %) (A7.6.7)

For [ > 1, we have
P - =9 -{p—(d-P}Y 2¢' — (¢ — 1/ (p- D)} =1/ (p - )

since the remaining terms involving (¢ — @) forj =2, ...,1are of smaller order. Thus, on
the average, from (A7.6.6) we obtain

varle, (1] = varle,(|$)] + ——5 E[’¢*" V(& - $)’]

12420-1)
= varle,(I|p)] + ¢TG§

and the discrepancy is again of order n~!

General-Order Autoregressive Processes. Related approximation results for the effect of
parameter estimation errors on forecast error variances have been given by Yamamoto
(1976) for the general AR(p) model. In particular, we briefly consider the approximation
for one-step-ahead forecasts in the AR(p) case. Write the model at time ¢ + 1 as

5 5 5 = =
Zip =01+ g2+ P2yt a =20 +ay
where z = (2, %,y ..., Z41_,) and ¢' = (¢, ¢, ..., ¢,). Then,
2t(1|¢) =$1Z+ oz o ¢pzt+1—p = i:(ﬁ

and similarly, Z,(1 ) = i;d;, where ¢ is the ML estimate of ¢ based on n observations.
Hence,

e(11¢) = e,(119) + Z,(¢ — §) (A7.6.8)

Using similar independence properties as above, as well as cov[Z,] = I, and the asymptotic
distribution approximation for (i)(see, e.g.,[7.2.19] and [A7.4.23]) that cov[d)] ~n- a2r 1
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it follows that

E[eX(1|1$)] = El[e*(1|¢)] + E[{Z(¢ — $)}*]
= o2 + w{E[zZ1E[(¢ — §)(d — $)'1)

= 62 + tr{Fpn_lagI‘;l}
Thus, the approximation for one-step-ahead forecast error variance,
varfe,(11¢)] ~ o2 (1 + 3) (A7.6.9)
n

is readily obtained for the AR model of order p.

APPENDIX A7.7 SPECIAL NOTE ON ESTIMATION OF MOVING AVERAGE
PARAMETERS

If the least-squares iteration that involves moving average parameters is allowed to stray
outside the invertibility region, parameter values can readily be found that apparently
provide sums of squares smaller than the true minimum. However, these do not provide
appropriate estimates and are quite meaningless. To illustrate, suppose that a series has
been generated by the first-order moving average model w, = (1 — §B)a, with—1 < 6 < 1.
Then, the series could equally well have been generated by the corresponding backward
process w; = (1 — 0F)e, with 0'3 = 0'2. Now, the latter process can also be written as
w,=(1- 6‘1B)a,, where now 07! is outside the invertibility region. However, in this
representation 0'2 = 6292 and is itself a function of @. Therefore, a valid estimate of 6~
will not be provided by minimizing Y, t2 = 6? > atz. Indeed, this has its minimum at
0! = 0.
The difficulty may be avoided:

1. By using as starting values rough preliminary estimates within the invertibility region
obtained at the identification stage.

2. By checking that all moving average estimates, obtained after convergence has ap-
parently occurred, lie within the invertibility region.

It is also possible to write least-squares programs such that estimates are constrained to
lie within the invertibility region, and to check that moving average estimates lie within the
invertibility region after each step of the iterative least-squares estimation procedure.

EXERCISES

7.1. The following table shows calculations for an (unrealistically short) series z, for
which the (0, 1, 1) model w, = Vz;, = (1 — 6 B)a, is being considered with § = —0.5
and with an unknown starting value a,.
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t z, w,=Vz, a, =w,—0.5a,_,
0 40 a,

1 42 2 2 —0.50a,

2 47 5 4+ 0.25q,

3 47 0 -2 -0.13aq,

4 52 5 6 + 0.06q,

5 51 -1 —4 —0.03q,

6 57 6 8+ 0.02q,

7 59 2 —2-0.01q,

(a) Confirm the entries in the table.

(b) Show that the conditional sum of squares is
7

> (@] - 05,0y = 0)* = 5,(~0.5]0) = 144.00

=1
7.2. Using the data in Exercise 7.1:
(a) Show (using least-squares) that the value 4, of a; that minimizes S, (—0.5|0) is

i D050)+ (4)(=025) + -+ +(~2)(0.0078) _ Y, 0'a)
o= -

12 40.52 + -+ +0.00782 R

where a? = (4,10, ag = 0) are the conditional values. Compare this expression
for a, with that for the exact back-forecast [ay] in the MA(1) model, where the
expression for [a,] is given preceding the equation (A7.3.9) in Appendix A7.3,
and verify that the two expressions are identical.

(b) By first writing this model in the backward form w, = (1 — 0 F)e; and recursively
computing the e’s, show that the value of a; obtained in (a) is the same as that
obtained by the back-forecasting method.

7.3. Using the value of 4, calculated in Exercise 7.2:
(a) Show that the unconditional sum of squares .S(—0.5) is 143.4.
(b) Show that for the (0, 1, 1) model, for large n,

&2

_ _ 0
$(0) = $,(010) ~ —"

7.4. For the process w, = u,, + (1 —0B)a, show that for long series the variance—
covariance matrix of the maximum likelihood estimates /i, 6 is approximately

(1 - 0)%62 0
n! ¢
0 1— 62

7.5. (a) Problems were experienced in obtaining a satisfactory fit to a series, the last 16
values of which were recorded as follows:

129, 135, 130, 130, 127, 126, 131, 152,
123, 124, 131, 132, 129, 127, 126, 124
Plot the series and suggest where the difficulty might lie.
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(b) In fitting a model of the form (1 — ¢ B — ¢2B2)z, =(1-6B)a; to a set of
data, convergence was slow and the coefficient estimates in successive iterations
oscillated wildly. Final estimates having large standard errors were obtained as
follows: 431 =1.19, ¢§2 = —0.34, § = 0.52. Can you suggest an explanation for
the unstable behavior of the model? Why should preliminary identification have
eliminated the problem?

(¢) In fitting the model V?z, = (1 — 6, B — 6, B*)a, convergence was not obtained.
The last iteration yielded the values §; = 1.81, 6, = 0.52. Can you explain the
difficulty?

7.6. For the ARIMAC(1, 1, 1) model (1 — ¢ B)w, = (1 — 0B)a,, where w, = Vz;:
(a) Write down the linearized form of the model.

(b) Set out how you would start off the calculation of the conditional nonlinear
least-squares algorithm with start values ¢ = 0.5 and 6 = 0.4 for a series whose
first nine values are shown below.

tooz, |t oz
0 149 5 150
1 145 6 147
2 152 7 142
3 144 8 146
4 150

7.7. (a) Show that the second-order autoregressive model Z, = ¢ Z,_;+ 2,
+ a, may be written in orthogonal form as

. b . <~ b1 . >
3 = v (2, -2z )+a
e R I T ‘

suggesting that the approximate estimates

. Fp—F
i and ¢, = 2
1—¢, 1-r

2
ry of !

Of ¢2

are uncorrelated for long series. R R
(b) Starting from the variance—covariance matrix of ¢; and ¢, or otherwise, show

that the variance—covariance matrix of r; and ¢, for long series is given approx-

imately by
2 2
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7.8. The preliminary model identification performed in Chapter 6 suggested that either an
ARIMAC(1, 1, 0) or an ARIMA(O, 2, 2) model might be appropriate for the chemical
process temperature readings in Series C. The series is available for download from
http://pages.stat.wisc.edu/ reinsel/bjr-data/.

(a) Estimate the parameters of the ARIMA(1, 1, 0) for this series using R.
(b) Estimate the parameters of the ARIMA(O, 2, 2) model and compare the results
with those in part (a).


http://pages.stat.wisc.edu/reinsel/bjr-data/

7.9.

7.10.

7.11.

7.12.
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Repeat the analysis in Exercise 7.8 by fitting (a) an AR(1) and (b) an ARMA(O, 1, 1)
model to the chemical process viscosity readings in Series D.

Daily air quality measurements in New York, from May to September 1973, are
available in a file called ‘airquality’ in the R datasets package. The file provides
data on four air quality variables: mean ozone levels at Roosevelt Island, solar
radiation at Central Park, maximum daily temperature at La Guardia Airport, and
average wind speeds at La Guardia Airport.

(a) Identify suitable models for the daily temperature and wind speed series.

(b) Estimate the parameters of selected models and comment.

Consider the solar radiation series that is part of the New York airquality data file
described in Problem 7.10. This series has a few missing values.

(a) Impute suitable estimates of the missing values. (Note: A formal procedure for
estimating missing values is described in Chapter 13, but is not needed here).

(b) Identify a model for the resulting series.
(¢) Estimate the parameters of selected model and comment.
Refer to the annual river flow measurements in the time series ‘Nile’ analyzed in

Exercise 6.7. Estimate the parameters of the model or models identified for this time
series and comment.
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The model having been identified and the parameters estimated, diagnostic checks are then
applied to the fitted model. One useful method of checking a model is to overfit, that is, to
estimate the parameters in a model somewhat more general than that which we believe to be
true. This method assumes that we can guess the direction in which the model is likely to be
inadequate. Therefore, it is necessary to supplement this approach by less specific checks
applied to the residuals from the fitted model. These allow the data themselves to suggest
modifications to the model. In this chapter, we describe two such checks that employ
(1) the autocorrelation function of the residuals and (2) the cumulative periodogram of the
residuals. Some alternative diagnostic procedures are also discussed. Numerical examples
are included to demonstrate the results.

8.1 CHECKING THE STOCHASTIC MODEL

8.1.1 General Philosophy

Suppose that using a particular time series, the model has been identified and the parameters
estimated using the methods described in Chapters 6 and 7. The question remains of deciding
whether this model is adequate. If there is evidence of serious inadequacy, we need to know
how the model should be modified in the next iterative cycle. What we are doing is described
only partially by the words *‘testing goodness of fit.”” We need to discover in what way a
model is inadequate, so as to suggest appropriate modification. To illustrate, by reference
to familiar procedures outside time series analysis, the scrutiny of residuals for the analysis
of variance, described by Anscombe (1961) and Anscombe and Tukey (1963), and the

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
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criticism of factorial experiments, leading to normal plotting and other methods, described
by Daniel (1959), would be called diagnostic checks.

All models are approximations and no model form can ever represent the truth absolutely.
Given sufficient data, statistical tests can discredit models that could nevertheless be entirely
adequate for the purpose at hand. Alternatively, tests can fail to indicate serious departures
from assumptions because of small sample sizes or because these tests are insensitive to the
types of discrepancies that occur. The best policy is to devise the most sensitive statistical
procedures possible but be prepared to employ models that exhibit slight lack of fit. If
diagnostic checks, which have been thoughtfully devised, are applied to a model fitted to
a reasonably large body of data and fail to show serious discrepancies, then we should feel
comfortable using that model.

8.1.2 Opverfitting

One technique that can be used for diagnostic checking is overfitting. Having identified
what is believed to be a correct model, we actually fit a more elaborate one. This puts
the identified model in jeopardy because the more elaborate model contains additional
parameters covering feared directions of discrepancy. Careful thought should be given to
the question of how the model should be augmented. In particular, in accordance with the
discussion on model redundancy in Section 7.3.5, it would not make sense to add factors
simultaneously to both sides of the ARMA model. Moreover, if the analysis fails to show
that the additions are needed, we have, of course, not proved that our model is correct. A
model is only capable of being ‘‘proved’’ in the biblical sense of being put to the test. As
was recommended by Saint Paul in his first epistle to the Thessalonians, what we can do is
to ‘‘Prove all things; hold fast to that which is good.”’

Example of Overfitting. As an example, we consider again some IBM stock price data.
For this analysis, data were employed that are listed as Series B’ in the Collection of Time
Series in Part Five of this book. This series consists of IBM stock prices for the period'
June 29, 1959-June 30, 1960. The (0, 1, 1) model

Vz, =(1-0B)q,

with 4y = 1 — § = 0.90, was identified and fitted to the 255 available observations.
The (0, 1, 1) model can equally well be expressed in the form

Vz, = Apa;_1 + Va,

The extended model that was considered in the overfitting procedure was the (0, 3, 3)
process

V3z,=(1-6,B—0,B* - 0;,B%)q,
or using (4.3.21), in the form

V3z, = (4gV2+ 4V + A)a,_, + Va,

IThe IBM stock data previously considered, referred to as Series B, cover a different period, May 17,
1961-November 2, 1962.
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While this model may seem overly elaborate, the immediate motivation for extending the
model in this particular way was to test a suggestion made by Brown (1962) that the series
should be forecasted by an adaptive quadratic forecast function. Now, it was shown in
Chapter 5 that an IMA(O, g, g) process has for its optimal forecasting function an adaptive
polynomial of degree g — 1. Thus, for the extended (0, 3, 3) model above, the optimal lead
I forecast function is the quadratic polynomial in /:

2,(1) = b + 61 + 6012

where the coefficients bg), b(lt), and b(zt) are adjusted as each new piece of data becomes
available.

By comparison, the model we have identified is an IMA(O, 1, 1) process, which yields
a forecast function

2,(1) = by 8.1.1)

This is a “‘polynomial in I’ of degree zero. Hence, the model implies that the forecast
Z,(I) is independent of /, that is, the forecast at any particular time ¢ is the same for one
step ahead, two steps ahead, and so on. In other words, the series contains information
only on the future level of the series, and nothing about slope or curvature. At first sight,
this is somewhat surprising because, using hindsight, quite definite linear and curvilinear
trends appear to be present in the series. Therefore, it is worthwhile to check whether
nonzero values of 4; and 4,, which would produce predictable trends, actually occur.
Sum-of-squares grids for S(4, 4,|4) similar to those shown in Figure 7.2 were produced
for g = 0.7, 0.9, and 1.1, which showed a minimum close to A, = 0.9, 4, = 0, and 4, = 0.
It was clear that values of 4; > 0 and 4, > 0 lead to higher sum of squares, and do not
support augmenting the identified IMA(O, 1, 1) model in these directions. This implies, in
particular, that a quadratic forecast function would give worse instead of better forecasts
than those obtained from (8.1.1), as was indeed shown to be the case in Section A5.3.3.

Computations in R. Estimation of the parameters in the more elaborate IMA(O, 3, 3)
models for the IBM series using R also shows that the model can be simplified. The
relevant commands along with a partial model output are provided below:

>library (astsa}

>ibm2=read.table ("ibm2.txt", header=TRUE}
>ibm.ts=ts (ibm2)

>sarima (ibm.ts, 0,3, 3)

Coefficients:
mal maz ma3
-2.0215 1.0686 -0.0469
s.e. 0.0705 0.1370 0.0692 sigma”2 estimated as 25.5

> polyroot (c(l,-2.0215,1.0686,-0.0469))
1.013484+0.0058321 1.013484-0.0058321i 20.757680+0.0000001

>sarima (ibm.ts,0,1,1)

Coefficients:
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mal constant
-0.0848 0.3028
s.e. 0.0634 0.2878 sigma”2 estimated as 25.1

We note that the parameter estimates §; and 6, in the IMA(0, 3, 3) model are highly sig-
nificant. However, the large estimates are introduced as compensation for overdifferencing
by setting d = 3 in this model. This is confirmed by finding the roots of the moving average
polynomial using the command polyroot() in R. The results, which are included above,
show that two of the roots are very close to one. Hence, cancellation is possible, reducing
the IMA(O, 3, 3) model to a IMA(O, 1, 1) model. The IMA(O, 1, 1) model also provides a
slightly better fit to the data as can be seen from the smaller value of 62 in the R output for
this model.

8.2 DIAGNOSTIC CHECKS APPLIED TO RESIDUALS

The method of overfitting, by extending the model in a particular direction, assumes that
we know what kind of discrepancies are to be feared. Procedures less dependent upon such
knowledge are based on the analysis of residuals. It cannot be too strongly emphasized that
visual inspection of a plot of the residuals themselves is an indispensable first step in the
checking process.

8.2.1 Autocorrelation Check

Suppose that a model ¢(B)w, = 6(B)a, has been fitted to the observed time series with
ML estimates (¢, 0) obtained for the parameters. The quantities

a, = 0-'(B)p(B)w, (8.2.1)

are then referred to as the residuals. The residuals are computed recursively from 9(B)&, =

~

P(B)w, as

using either zero initial values (conditional method) or back-forecasted initial values (exact
method) for the initial d,’s and ,’s. Now, it is possible to show that, if the model is

adequate,
a,=a,+0 L
\/n

As the series length increases, the d,’s become close to the white noise a,’s. Therefore,
one might expect that study of the d,’s could indicate the existence and nature of model
inadequacy. In particular, recognizable patterns in the estimated autocorrelation function
of the d,’s could point to appropriate modifications in the model. This point is discussed
further in Section 8.3.

Now, suppose that the form of the model was correct and that we knew the true parameter
values ¢ and 6. Then, using (2.1.13) and a result of Anderson (1942), the estimated
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autocorrelations ry(a), of the a,’s, would be uncorrelated and distributed approximately
normally about zero with variance n_l, and hence with a standard error of n~'/2. We could
use these facts to assess approximately the statistical significance of apparent departures of
these autocorrelations from zero.

Now, in practice, we do not know the frue parameter values. We have only the esti-
mates ((ﬁ, é), from which, using (8.2.1), we can calculate not the a,’s but the 4,’s. The
autocorrelations r (@) of the d,’s can yield valuable evidence concerning lack of fit and
the possible nature of model inadequacy. However, it was pointed out by Durbin (1970)
that it might be dangerous to assess the statistical significance of apparent discrepancies
of these autocorrelations r; (@) from their theoretical zero values on the basis of a standard
error n~'/2, appropriate to the r;(a)’s. Durbin was able to show, for example, that for the
AR(1) process with parameter ¢, the variance of r(4) is ¢*n~!, which can be substantially
smaller than n~!. The large-sample variances and covariances for all the autocorrelations
of the 4,’s from any ARMA process were subsequently derived by Box and Pierce (1970).
They showed that while in all cases, a reduction in variance can occur for low lags, and that
at these low lags the r,(a)’s can be highly correlated, these effects usually disappear rather
quickly at high lags. Thus, the use of n~!/2 as the standard error for r; (&) would underes-
timate the statistical significance of apparent departures from zero of the autocorrelations
at low lags but could usually be employed for moderate or high lags.

For illustration, the large-sample one- and two-standard-error limits of the residual
autocorrelations 7, (4)’s, for two AR(1) processes and two AR(2) processes, are shown in
Figure 8.1. These also supply the corresponding approximate standard errors for moving
average processes with the same parameters as indicated in the figure. It is evident that,
except at moderately high lags, n~!/2 provides an upper bound for the standard errors of
the r,(a)’s rather than the standard errors themselves. If for low lags we use the standard
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FIGURE 8.1 Standard-error limits for residual autocorrelations r, (4).
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error n~'/2 for the ri(a@)’s, we may seriously underestimate the significance of apparent
discrepancies.

8.2.2 Portmanteau Lack-of-Fit Test

In addition to considering the (@) s individually, an indication is often needed of whether,
say, the first 10-20 autocorrelations of the d,’s taken as a whole indicate inadequacy of the
model. Suppose that we have the first K autocorrelations? ri@) (k=1,2,...,K) fromany
ARIMA(p, d, g) model, then it is possible to show (Box and Pierce, 1970) that if the fitted
model is appropriate,

K
Q=n Z r2(a) (8.2.2)
k=1

is approximately distributed as y?(K — p — q), where n = N — d is the number of w’s used
to fit the model. On the other hand, if the model is inappropriate, the average values of O
will be inflated. Therefore, an approximate ‘ ‘portmanteau’’ test of the hypothesis of model
adequacy, designed to take account of the difficulties discussed above, may be made by
referring an observed value of Q to the percentage points of this y? distribution.

However, Ljung and Box (1978) later showed that, for sample sizes common in practice,
the chi-squared distribution may not provide an adequate approximation to the distribution
of the statistic Q under the null hypothesis, with the values of Q tending to be somewhat
smaller than what is expected under the chi-squared distribution. Empirical evidence to
support this was also presented by Davies et al. (1977). Ljung and Box (1978) proposed a
modified form of the statistic,

K
O =n(n+2) Y (n=k)"'ri@ (8.2.3)

k=1

such that the modified statistic has, approximately, the mean E[Q] ~ K — p — g of the
12(K — p — q) distribution. The motivation for (8.2.3) is that a more accurate value for
the variance of r(a) from a white noise series is (n — k)/n(n + 2), rather than 1/n used in
(8.2.2). This modified form of the portmanteau test statistic has been recommended for use
as having a null distribution that is much closer to the y>(K — p — g) distribution for typical
sample sizes n. Because of its computationally convenient form, this statistics has been
implemented in many software packages and has become widely used in applied work.
We emphasize, however, that this statistic should not be used as a substitute for careful
examination of the residuals and their individual autocorrelation coefficients, and for other
diagnostic checks on the fitted model.

Remark. Diagnostic checks based on the residuals and their autocorrelation coefficients
are conveniently performed using R. Having fitted a model m1 to the observed series, the
command tsdiag(m1$residuals, gof.lag=20) provides a plot of the standardized residuals,
a plot of the first 20 residual autocorrelation coefficients, and a plot of the p-values for the

21t is assumed here that K is taken sufficiently large so that the weights y; in the model, written in the form
w; = ¢‘1(B)0(B)a, = y(B)a, will be negligibly small after j = K.
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portmanteau statistic Q for increasing values of K. However, while these diagnostics are
useful, it appears that the command tsdiag(), at present, determines p-values for O using
a chi-square distribution with K rather than K — p — g degrees of freedom. An alternative
is to use diagnostic tools in the R package astsa, where this problem does not appear. An
illustration of the use of this package is provided below.

An Empirical Example. In Chapter 7, we examined two potential models for a time series
of chemical temperature readings referred to as Series C. The two models were (1) the
IMA(0, 2, 2) model V2z, = (1 — 0.13B — 0.12B?)a, and (2) the ARIMA(1, 1, 0) model
(1 -0.82B)Vz, = a,. It was decided that the second model gave a preferable representation
of the series. Model diagnostics for the IMA(0, 2, 2) model generated using R are provided
in Figure 8.2. These include graphs of the standardized residuals, the residual autocor-
relation coefficients r(a,), for lags k =1, ...,25, a normal Q-Q plot of the standardized
residuals, and a plot of the p-values for the portmanteau statistic Q in (8.2.3) determined
for increasing values of K. The graph of the standardized residuals reveals some large
residuals around ¢ = 60, but apart from that there are no issues. The Q—Q plot confirms
the presence of three large residuals but indicates that the normal approximation is adequate
otherwise.

Approximate two-standard-error upper bounds on the residual autocorrelation coeffi-
cients are included in the graph of the autocorrelation function. Since there are n = 224
observations after differencing the series, the approximate upper bound for the standard

Standardized residuals

T !
0 50 100 150 200

ACF of residuals Normal Q-Q plot of std residuals

|
o

ACF
2 02
|
:___
T
[

=

Sample quantiles 3
4 0
\

Lag Theoretical quantiles
p values for Ljung-Box statistic

«©_|

o O

=

o <

Z o] o ©

Q | ° o ° °
olt-e--0--F . .. .08 _o5--0--90--0--2..9_ o --0--9--0-
S T T T T

5 10 15 20

Lag

FIGURE 8.2 Model diagnostics for the ARIMA(O, 2, 2) model fitted to the temperature readings
in Series C.
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error of a single autocorrelation is 1/4/224 ~ 0.07. While most of the individual autocor-
relations fall within the two-standard-error bounds, several values including r3(d), ro(d),
r11(4), r17(a), r2(@), and rp5(a) are close to these bounds. Of course, occasional large devi-
ations occur even in random series, but taking these results as a whole, there is a suspicion
of some lack of fit. This is confirmed by examining the p-values of the portmanteau statistic
shown in the bottom graph of Figure 8.2. We note that most of the p-values are at or near
the 5% level indicating some lack of fit. This is especially the case for the larger values of
K, where the chi-squared distribution is expected to provide a valid approximation.

Model diagnostics for the ARIMA(1, 1, 0) model (1 —0.82B)Vz, = g, fitted to the
same time series are displayed in Figure 8.3. The graph of the residual autocorrelation
function shows fewer large values for this model. This is also reflected in the p-values of
the portmanteau statistic shown at the bottom of the graph. These diagnostic checks show
a clear improvement over the IMA(O, 2, 2) model examined in Figure 8.2. The graph of
the standardized residuals and the normal Q-Q plot reveal that outliers are still present,
however. Methods for outlier detection and adjustments will be discussed in Section 13.2,
where the ARIMA(1, 1, 0) model for Series C is refitted allowing the outliers at t = 58, 59,
and 60. Allowing these outliers in the parameter estimation changes the estimate ¢ only
slightly from 0.82 to 0.85. However, a larger change occurs in the estimate of the residual
variance, which is reduced by about 26% when the outliers are accounted for in the model.

Before proceeding, we note that Figures 8.2 and 8.3 can be reproduced in R using the
following commands:
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FIGURE 8.3 Model diagnostics for the ARIMA(1, 1, 0) model fitted to the temperature readings
in Series C.



292 MODEL DIAGNOSTIC CHECKING

>library (astsa)
>geriesC=read.table("seriesC.txt", header=T)

>sarima (seriesC,0,2,2,no.constant=TRUE) % Figure 8.2
>sarima (seriesC,1,1,0,no.constant=TRUE) % Figure 8.3

Portmanteau Tests for Series A-F. Table 8.1 summarizes the values of the criterion Q in
(8.2.3) based on K = 25 residual autocorrelations for the models fitted to Series A-F in
Table 7.11. However, in regards to the choice of K, a somewhat smaller value would be
recommended for use in practice, especially for shorter series such as Series E and F, since
the asymptotic theory involved in the distribution of the statistic O relies on K growing
(but only slowly, such that K /n — 0) as the series length n increases. In addition, as noted
by Ljung (1986), smaller values of K also have advantages in terms of increased power.
This is particularly true for nonseasonal series, where the lack of fit is expected to be most
evident in residual autocorrelations at the first few lags.

Inspection of Table 8.1 shows that only two suspiciously large values of Q occur.
One is the value O = 36.2 obtained after fitting the IMA(O, 2, 2) model to Series C,
which we have discussed already. The other is the value QO = 38.8 obtained after fitting an
IMA(O, 1, 1) model to Series B. This suggests some model inadequacy since the 5 and
2.5% points for y? with 24 degrees of freedom are 36.4 and 39.3, respectively. The nature
of possible model inadequacy for Series B will be examined further in Section 8.2.3.

Other Portmanteau Statistics to Test Model Adequacy. Instead of a portmanteau statistic
based on residual autocorrelations, as in (8.2.3), one could alternatively consider a test for
model adequacy based on residual partial autocorrelations. If the model fitted is adequate,
the associated error process a, is white noise and one should expect the residual partial
autocorrelation at any lag k, which we denote as ¢, (@), not to be significantly different
from zero. Therefore, a test for model adequacy can be based on the statistic

K
0" =n(n+2) Z(n —k~'¢7, @ (8.2.4)

k=1

TABLE 8.1 Summary of Results of Portmanteau Test Applied to Residuals of Various Models
Fitted to Series A-F

Series n= Fitted Model 0 Degrees
N—-d of

Freedom
A 197 z,—092z,_;, =145+ a, — 0.58a,_, 284 23
196 Vz,=a,—-0.70a,_, 31.9 24
B 368 Vz, =a,+0.09q,_, 38.8 24
C 225 Vz,-0.82Vz,_, =a, 31.3 24
224 V2z,=a,—0.13a,_, — 0.12a,_, 36.2 23
D 310 z,—0.87z,_, = 1.17 + q, 11.5 24
309 Vz, =a, —0.06a,_, 18.8 24
E 100 z,—142z,_, +0.73z,_, = 1435+ q, 26.8 23
100 z,— 157z, +1.02z,_, —0.21z,_; = 11.31 + q, 20.0 22

F 70 z,+0.34z,_, —0.19z, , = 58.87 +q, 14.7 23
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Under the hypothesis of model adequacy, Monti (1994) argued that the statistic O* in (8.2.4)
is asymptotically distributed as y2(K — p — q), analogous to the asymptotic distribution of
the statistic Q in (8.2.3). Hence, a test of model adequacy can be based on referring the value
of O to the upper critical value determined from this distribution. The test based on Q*
has been found to be typically at least as powerful as Q in detecting departures from model
adequacy, and it seems to be particularly sensitive when the alternative model includes a
higher order moving average term. In practice, since residual partial autocorrelations are
routinely available, we could consider using both the statistic Q in (8.2.3) and Q* in (8.2.4)
simultaneously in standard model checking procedures.

Another portmanteau goodness-of-fit test statistic based on a general measure of mul-
tivariate dependence was proposed by Pefia and Rodriguez (2002). Denote the correlation
matrix up to order (lag) K of the residuals 4, from the fitted ARIMA(p, d, g) model by

1 r@ r@ .. rg@ |

ri@ 1 ri@) ... rg_1(d
Py@=|n@ r@ 1 . rg,
_rK(ﬁ) rK—l(é) rK—2(é) 1 |

The proposed statistic is based on the determinant of this correlation matrix, a general
measure of dependence in multivariate analysis, and is given by

Dy = n(1 — [Py (a)|'/%) (8.2.5)

An alternate interpretation for the statistic is obtained from the following relation given by
Pefia and Rodriquez (2002)

K
Pr(@]'/* =TTt - g @1*+-0/x
k=1

where the ékk(&) are the residual partial autocorrelations as in (8.2.4). This expression
shows that |P k()] 1/K is also a weighted function of the first K partial autocorrelations of
the residuals. However, in comparison to the statistics (8.2.3) and (8.2.4), relatively more
weight is given to the lower lag residual correlations in the statistic (8.2.5). The asymptotic
distribution of D x 1s shown to be a linear combination of K-independent 72(1) random
variates, which can be approximated by a gamma distribution (see Pefia and Rodriguez,
2002). The authors also proposed and recommended a modification of the statistic D K>
here denoted as Dy, in which the residual autocorrelations r (@) used to form f’K(&) are
replaced by the modified values v/(n + 2)/(n — k)r; (@), similar to the modifications used
in the O and Q* statistics. Simulation evidence indicates that the statistic D may provide
considerable increase in power over the statistics Q and Q* in many cases, due to its greater
sensitivity to the lower lag residual correlations. Application of this procedure to detection
of several types of nonlinearity, by using sample autocorrelations of squared residuals étz,
was also explored in Pefia and Rodriguez (2002). (For discussion of nonlinearities, see
Sections 10.2 and 10.3).

Pefia and Rodriguez (2006) proposed a modification of their earlier test that
has the same asymptotic distribution as Dy but better performance in finite sam-
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ples. The modified test statistics has the form DZ =-n Z,’;l wyIn[1 — d;ik(ﬁ)], where
wy =(K+1—k)/(K + 1). The statistic is thus proportional to a weighted average of
the squared partial autocorrelation coefficients with larger weights given to low-order
coefficients and smaller weights to high-order coefficients. The authors considered two
approximations to the asymptotic distribution of this statistic, and demonstrated using sim-
ulation that the test performs well. Several other authors have extended the work of Pefia
and Rodriguez (2002) and proposed portmanteau statistics that are asymptotically similar
to their statistics; for a discussion and references, see Fisher and Gallagher (2012). See also
Li (2004) for a more detailed discussion of diagnostic testing.

8.2.3 Model Inadequacy Arising from Changes in Parameter Values

Another form of model inadequacy occurs when the form of the model remains the same
but the parameters change over a prolonged period of time. In fact, it appears that this can
explain the possible inadequacy of the (0, 1, 1) model fitted to the IBM data.

Table 8.2 shows the results obtained by fitting (0, 1, 1) models separately to the first
and second halves of Series B as well as to the complete series. Denoting the estimates of
4= 1— 0 obtained from the two halves by 4, and 4,, we find that the standard error of
Ay — A is /(0.070)2 + (0.074)2 = 0.102. Since the difference 4; — 4, = 0.26 is 2.6 times
its standard error, it is likely that a real change in A has occurred. Inspection of the O values
suggests that the (0, 1, 1) model, with parameters appropriately modified for different
time periods, might explain the series more exactly. The estimation results for the residual
variances 62 also strongly indicate that a real change in variability has occurred between
the two halves of the series.

This is confirmed by Figure 8.4 that shows the standardized residuals and other model
diagnostics for the IMA(O, 1, 1) model fitted to Series B. An increase in the standardized
residuals around time ¢ = 236 indicates a change in the characteristics of the series around
that time. In fact, fitting the IMA(O, 1, 1) model separately to the first 235 observations
and to the remaining 134 observations yields the estimates 91 = —0.26, &31 = 24.55, and

92 =-0.02, 6'22 = 99.49, respectively. Hence, a substantial increase in variability during
the latter portion of the series is clearly indicated. Additional approaches to explain and
account for inadequacy in the overall IMA(O, 1, 1) model for Series B, which include al-
lowance for conditional heteroscedasticity in the noise, nonlinearity, and mixture transition
distributions, have been discussed by Tong (1990) and Le et al. (1996), among others.
Some of these modeling approaches will be surveyed in general in Chapter 10.

TABLE 8.2 Comparison of IMA(0, 1, 1) Models Fitted to First and Second Halves of Series B

Residual Degrees
6() = Variance of

n 0 i=1-0 [@]1/2 62 0 Freedom
First half 184 -0.29 1.29 +0.070 26.3 24.6 24
Second half 183 —0.03 1.03 +0.074 77.3 37.1 24

Complete 368 -0.09 1.09 +0.052 522 38.8 24
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FIGURE 84 Model diagnostics for the IMA(O, 1, 1) model fitted to the IBM daily closing stock
prices in Series B.

8.2.4 Score Tests for Model Checking

An alternative to the direct use of overfitting in model checking is provided by the Lagrange
multiplier or score test procedure, which is also closely related to the portmanteau test
procedure. The general score test procedure was presented by Silvey (1959), and its use
in diagnostic checking for ARIMA models was discussed initially by Godfrey (1979) and
Poskitt and Tremayne (1980). A computational advantage of the score test procedure is that
it requires maximum likelihood estimation of parameters only under the null model under
test, but it yields tests asymptotically equivalent to the corresponding likelihood ratio tests
obtained by directly overfitting the model. Furthermore, the score test statistic is easily
computed in the form of the sample size n times a coefficient of determination from a
particular ‘‘auxiliary’’ regression.

Hence, we assume that an ARMA(p, ¢) model has been fitted by the maximum likelihood
method to the observations i, and we want to assess the adequacy of the model by testing
this null model against the alternative of an ARMA(p + r, g) model or of an ARMA(p, g+ r)
model. That is, for the ARMA(p +r, q) alternative, we test Hy: ¢, = - =¢,,, =0,
while for the ARMA(p, g + r) alternative, we test Hy: 6, = --- = 0,,, = 0. The score
test procedure is based on the first partial derivatives, or scores, of the log-likelihood
function with respect to the model parameters of the alternative model, but evaluated at
the ML estimates obtained under the null model. The log-likelihood function is essentially
given by I = —(n/2)In(c?) — (%a;z) Y, a?. So, the partial derivatives of / with respect
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to the parameters (¢, 0) are
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Asin (7.2.9) and (7.2.10), we have

da, da,
o T Ui Y R
o0, 20,
where u, = 0~1(B)i, = ¢~ (B)a,, and v, = —0~!(B)a,. Given residuals 4, obtained from

ML fitting of the null model, as

p q
4, =1, - Y i, + ) b4, 1=12...n
Jj=1 j=1
the u,’s and v,’s evaluated under the ML estimates of the null model can be calculated
recursively, starting with initial values set equal to zero, for example, as
u =+ Oyu_y + - +0u,_,
v =—d,+0v,_;+-+0,0,_,

The score vector of first partial derivatives with respect to all the model parameters
can be expressed as

dl 1 o/

— =—X'a 8.2.6

T (8.2.6)
where a = (ay, ..., a,)’ and X denotes the n X (p + g + r) matrix whose 7th row consists of

(Ug—ts e s Uy p_ps Vi_1s -5 Vi) 1 the case of the ARMA(p + r, q) alternative model and
(Ug—ts oee s U ps Vi_s -+ 5 Vi—g—,) In the case of the ARMA(p, g + r) alternative model. Then,
similar to (7.2.17), since the large-sample information matrix for B can be consistently
estimated by 672X'X, where 62 =n~! Y | 4> = n~'24, it follows that the score test

statistic for testing that the additional r parameters are equal to zero is

_AXX'X)'Xa

o2
a

A (8.2.7)

Godfrey (1979) noted that the computation of the test statistic in (8.2.7) can be given the
interpretation as being equal to n times the coefficient of determination in an auxiliary
regression equation. That is, if the alternative model is ARMA(p + r, g), we consider the
auxiliary regression equation

é, =QU_q+ -+ ap+ru,_p_, + ﬂlvt—l + -+ ﬂql)t_q + &
while if the alternative model is ARMA(p, g + r), we consider the regression equation

=g+ o+ o+t P Ut E
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Let £, denote the residuals from the ordinary least-squares estimation of this regression
equation. Then from (8.2.7), it is seen that A can be expressed, essentially, as

2 A2 2
_ n(Xy G = X1 &) —al1 21 &

n a0 T on a2

o1 X 4
which is n times the coefficient of determination of the regression of the @,’s on the u,_;’s
and the v,_;’s. Under the null hypothesis that the fitted ARMA(p, g) model is correct, the

statistic A has an asymptotic y? distribution with r degrees of freedom, and the null model
is rejected as inadequate for large values of A.

As argued by Godfrey (1979) and others, rejection of the null model by the score test
procedure should not be taken as evidence to adopt the specific alternative model involved,
but simply as evidence against the adequacy of the fitted model. Similarly, the score test
is expected to have reasonable power even when the alternative model is not correctly
specified. Poskitt and Tremayne (1980) showed, for example, that the score test against
an ARMA(p + r,q) model alternative is asymptotically identical to a test against an
ARMA(p, g + r) alternative. Hence, the score test procedure may not be sensitive to the
particular model specified under the alternative, but its performance will, of course, depend
on the choice of the number r of additional parameters specified.

We also note an alternative form for the score statistic A. By the ML estimation
procedure, it follows that the first partial derivatives, 0l/d¢ s J = 1,....p, and 0l/00;,
Jj=1,...,q, will be identically equal to zero when evaluated at the ML estimates. Hence,
the score vector, d//df, will contain only r nonzero elements when evaluated at the ML
estimates from the null model, these being the partial derivatives with respect to the addi-
tional r parameters of the alternative model. Thus, the score statistic in (8.2.7) can also be
viewed as a quadratic form in these r nonzero values, whose matrix in the quadratic form
is a consistent estimate of the inverse of the covariance matrix of these » score values when
evaluated at the ML estimates obtained under the null model. Since these r score values are
asymptotically normal with zero means under the null model, the validity of the asymptotic
x2(r) distribution under the null hypothesis is easily seen.

Newbold (1980) noted that a score test against the alternative of r additional parameters
is closely related to an appropriate test statistic based on the first r residual autocorrelations
r (@) from the fitted model. The test statistic is essentially a quadratic form in these first
r residual autocorrelations, but of a more complex form than the portmanteau statistic
in (8.2.2). As a direct illustration, suppose that the fitted or null model is a pure AR(p)
model, and the alternative is an ARMA(p, r) model. Then, it follows from above that the
variables v,_ ; are identical to —a,_ o since 8(B) = 1 under the null model. Hence, the
nonzero elements of the score vector in (8.2.6) are equal to —n times the first r residual
autocorrelations, r;(d), ..., r.(d) from the fitted model, and the score test is thus directly
seen to be a quadratic form in these first r residual autocorrelations.

A

8.2.5 Cumulative Periodogram Check

In some situations, particularly in the fitting of seasonal time series, which are discussed
in Chapter 9, it may be feared that we have not adequately taken into account the periodic
characteristics of the series. Therefore, we are on the lookout for periodicities in the
residuals. The autocorrelation function will not be a sensitive indicator of such departures
from randomness because periodic effects will typically dilute themselves among several
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autocorrelations. The periodogram, on the other hand, is specifically designed for the
detection of periodic patterns in a background of white noise.
The periodogram of a time series a,, t = 1,2, ..., n, as defined in Section 2.2.1, is

n 2 n 2
I(f) = % <2 a, cos(2x f,¢)> + <Z a, sin2x f,.t)> (8.2.8)

=1 t=1

where f; = i/n is the frequency. Thus, it is a device for correlating the a,’s with sine and
cosine waves of different frequencies. A pattern with given frequency f; in the residuals
is reinforced when correlated with a sine or cosine wave at that same frequency, and so
produces a large value of I(f;).

Cumulative Periodogram. Bartlett (1955) and other authors have shown that the cumula-
tive periodogram provides an effective means for the detection of periodic nonrandomness.

The power spectrum p(f) for white noise has a constant value 20'2 over the frequency
domain 0-0.5 cycle. Consequently, the cumulative spectrum for white noise

!
P(f) = /0 p(g)dg (8.2.9)

plotted against f is a straight-line running from (0, 0) to (0.5, 62), that is, P(f)/c2 is a
straight-line running from (0, 0) to (0.5, 1).

The periodogram I(f) provides an estimate of the power spectrum at frequency f. In
fact, for white noise, E[I1(f)] = 202, and hence the estimate is unbiased. It follows that

(1/n) Z{: 1 I(f;) provides an unbiased estimate of the integrated spectrum P(f j), and

(D)
C(fj) = n—32 (8.2.10)

an estimate of P(fj)/as, where s2 is an estimate of GZ. We will refer to C(fj) as the
normalized cumulative periodogram.

Now, if the model was adequate and the parameters known exactly, the a,’s could be
computed from the data and would yield a white noise series. For a white noise series, the
plot of C(f;) against f; would be scattered about a straight-line joining the points (0, 0)
and (0.5, 1). On the other hand, model inadequacies would produce nonrandom a,’s, whose
cumulative periodogram could show systematic deviations from this line. In particular,
periodicities in the a,’s would tend to produce a series of neighboring values of I(f;) that
were large. These large ordinates would reinforce each other in C(f;) and form a bump on
the expected straight line.

In practice, we do not know the exact values of the parameters, but only their es-
timated values. Hence, we do not have the a,’s, but only the estimated residuals a,’s.
However, for large samples, the periodogram for the @,’s will have similar properties to
that for the a,’s. Thus, careful inspection of the periodogram of the @,’s can provide a
useful additional diagnostic check, particularly for indicating periodicities taken account of
inadequately.
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Example: Series C. We have seen that Series C is well fitted by the (1, 1, 0) model:
(1-0.82B)Vz, = q,
and somewhat less well by the IMA(O, 2, 2) model:
V2z,=(1-0.13B—0.12B%)q,

which is rather similar to it. We illustrate the cumulative periodogram test by showing
what happens when we analyze the residual a’s after fitting to the series an inadequate
IMA(O0, 1, 1) model:

Vz, = (1 - 0B)a,

where the least squares estimate of 6 is found to be —0.65. The normalized cumulative
periodogram plot of the residuals from this model is shown in Figure 8.5(a). We see im-
mediately that there are marked departures from linearity in the cumulative periodogram.
These departures are very pronounced at low frequencies, as might be expected, for ex-
ample, if the degree of differencing is insufficient. Figure 8.5(b) shows the corresponding
plot for the best-fitting IMA(O, 2, 2) model. The points of the cuamulative periodogram now
cluster more closely about the expected line, although, as we have seen in Table 8.1 and
Figure 8.2, other evidence points to the inadequacy of this model.

It is wise to indicate on the diagram the period as well as the frequency. This makes
for easy identification of the bumps that occur when residuals contain periodicities. For
example, in monthly sales data, bumps near periods 12, 24, 36, and so on might indicate
that seasonal effects were accounted for inadequately.

The probability relationship between the cumulative periodogram and the integrated
spectrum is precisely the same as that between the empirical cumulative frequency func-
tion and the cumulative distribution function. For this reason we can assess deviations
of the periodogram from that expected if the 4,’s were white noise, by use of the
Kolmogorov—-Smirnov test. Using this test, we can place limit lines about the theoreti-
cal line. The limit lines are such that if the 4, series were white noise, the cumulative
periodogram would deviate from the straight line sufficiently to cross these limits only
with the stated probability. Now, because the 4,’s are fitted values and not the true 4,’s,
we know that even when the model is correct, they will not precisely follow a white noise
process. Thus, as a test for model inadequacy, application of the Kolmogorov—Smirnov
limits will indicate only approximate probabilities. However, it is worthwhile to show these
limits on the cumulative periodogram to provide a rough guide as to what deviations to
regard with skepticism and what to take more note of.

The limit lines are such that for a truly random or white noise series, they would be
crossed a proportion € of the time. They are drawn at distances +K, / \/E above and below
the theoretical line, where ¢ = (n — 2)/2 for n even and (n — 1)/2 for n odd. Approximate
values for K, are given in Table 8.3.

TABLE 8.3 Coefficients for Calculating Approximate Probability Limits for Cumulative Pe-
riodogram Test

€ 0.01 0.05 0.10 0.25
K 1.63 1.36 1.22 1.02

(3
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FIGURE 8.5 Series C: cumulative periodograms of residuals from best-fitting models (a) of order
(0, 1, 1) and (b) of order (0, 2, 2).

For Series C, g = (224 —2)/2 =111, and the 5% limit lines inserted on Figure 8.5
deviate from the theoretical line by amounts +1.36/4/111 = +0.13. Similarly, the 25%
limit lines deviate by +1.02/4/111 = +0.10.

Conclusions. Each of the model checking procedures described above has essential ad-
vantages and disadvantages. Checks based on the study of the estimated autocorrelation
function and the cumulative periodogram, although they can point out unsuspected pecu-
liarities of the series, may not be particularly sensitive. Tests for specific departures by
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overfitting are more sensitive but may fail to warn of trouble other than that specifically
anticipated. Portmanteau tests based on the residual autocorrelation and partial autocorre-
lations, while not always sensitive, provide convenient summary measures that are easy to
use. As a result, they are now available in many software packages.

8.3 USE OF RESIDUALS TO MODIFY THE MODEL

8.3.1 Nature of the Correlations in the Residuals When an Incorrect Model Is Used

When the autocorrelation function of the residuals from a fitted model indicates that the
model is inadequate, it is necessary to consider in what way the model should be modified.
In Section 8.3.2, we show how the autocorrelations of the residuals can be used to suggest
such modifications. As an introduction, we consider the effect of fitting an incorrect model
on the autocorrelation function of the residuals.

Suppose that the correct model is

$(B)iw, = 0(B)a,
but that an incorrect model
$o(B)w; = 0y(B)b,
is used. Then the residuals b,, in the incorrect model, will be correlated and since
b, = 65 (B)O(B)dy(B)¢~" (B)a, (83.1)
the autocovariance generating function of the b,’s will be
o165 (B)O, (F)O(B)O(F)do(B)po(F)p~" (B)~' (F)] (8.3.2)

For example, suppose that in an IMA(O, 1, 1) process, instead of the correct value 8, we
use some other value 6. Then the residuals b, would follow the mixed process of order
(1,0, 1):

(1-6yB)b, = (1 —0B)aq,
and using (3.4.8), we have

. (1= 00,0, — 0)
LT 1462 -200,
pj=p0"" j=2.3...

For example, suppose that in the IMA(O, 1, 1) process,
Vz, = (1 -0B)g,
we took 8, = 0.8 when the correct value was 6 = 0. Then

0, =0.8 0 =0.0
p; =0.8 pj= 0.8/
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Thus, the b,”s would be highly autocorrelated and, since (1 — 0.8 B)b, = Vz, = a;, b, would
follow the autoregressive process

(1-0.8B)b; = a,
8.3.2 Use of Residuals to Modify the Model
Suppose that the residuals b, from the model
bo(B)VPz, = 6,(B)b, (8.3.3)

appear to be nonrandom, that is, to deviate from white noise behavior. Using the auto-
correlation function of b,, the methods of Chapter 6 may now be applied to identify a
model:

¢ (B)V/1b, = 0,(B)a, (8.3.4)
for the b, series.On eliminating b, between (8.3.3) and (8.3.4), we arrive at a new model:
bo(B)p,(B)VV z, = 6,(B)8,(B)a, (8.3.5)

which can now be fitted and diagnostically checked.
For example, suppose that a series had been wrongly identified as an IMA(O, 1, 1)
process and fitted to give the model:

Vz, = (1 +0.6B)b, (8.3.6)
Also, suppose that a model
Vb, = (14 0.8B)aq, (8.3.7)

was identified for this residual series. Then on eliminating b, between (8.3.6) and (8.3.7),
we would obtain

V2z, = (1+0.6B)Vb,
= (1+0.6B)(1 —0.8B)q,

=(1-0.2B—-0.48B%aq,

which would suggest that an IMA(O, 2, 2) process should now be entertained.
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EXERCISES

8.1.

8.2.

8.3.

84.

The following are the first 30 residuals obtained when a tentative model was fitted
to a time series:

t Residuals

1-6 0.78 0.91 0.45 -0.78 -1.90 -2.10
7-12 -0.54 -1.05 0.68 -3.77 —1.40 -1.77
13-18 1.18 0.02 1.29 -1.30 -6.20 —1.89
19-24 0.95 1.49 1.08 0.80 2.02 1.25
25-30 0.52 2.31 1.64 0.78 1.99 1.36

Plot the values and state any reservations you have concerning the adequacy of
the model.

The residuals from a model Vz, = (1 — 0.6 B)aq, fitted to a series of N = 82 observa-
tions yielded the following residual autocorrelations:

k rJ(a) k r (@)

1 039 6 -0.13
2 020 7 —0.05
3 0.09 8 0.06
4 0.04 9 0.11
5 0.09 10 0.02

(a) Plot the residual ACF and determine whether there are any abnormal values
relative to white noise behavior.

(b) Calculate the chi-square statistic Q for lags up to K = 10 and check whether the
residual autocorrelation function as a whole is indicative of model inadequacy.

(¢) What modified model would you now tentatively entertain, fit, and check?

A long series containing N = 326 observations was split into two halves and a
(1, 1,0) model (1 — ¢ B)Vz, = q, identified, fitted, and checked for each half. If the
estimates of the parameter ¢ for the two halves are (V) = 0.5 and ¢@ = 0.7, is there
any evidence that the parameter ¢ has changed?

(a) Show that the variance of the sample mean z of n observations from a stationary
AR(1) process (1 — ¢B)Z, = a, is given by
2
o
var[z] 0 —2—
n(l - ¢)?

(b) The yields from consecutive batches of a chemical process obtained under fairly
uniform conditions of process control were shown to follow a stationary AR(1)
process (1 + 0.5B)Z, = a,. A technical innovation is made at a given point in time
leading to 85 data points with mean z; = 41.0 and residual variance S21 =0.1012

before the innovation is made and 60 data points with z, = 43.5 and siz = 0.0895
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after the innovation. Is there any evidence that the innovation has improved
(increased) the yield?

8.5. Suppose that a (0, 1, 1) model Vz, = (1 — 8B)e,, corresponding to the use of an
exponentially weighted moving average forecast, with € arbitrarily chosen to be
equal to 0.5, was used to forecast a series that was, in fact, well represented by the
(0, 1,2) model Vz, = (1 = 0.9B + O.ZBz)a,.

(a) Calculate the autocorrelation function of the lead 1 forecast errors e, obtained
from the (0, 1, 1) model.

(b) Show how this ACF could be used to identify a model for the e, series, leading
to the identification of a (0, 1, 2) model for the z, series.

8.6. Two time series models, AR(2) and AR(3), were fitted to the yearly time series
of sunspot numbers for the period 1770-1869 in Chapter 7. The sunspot data are
available for the slightly longer time period 1700-1988 as series ‘sunspot.year’ in
the datasets package in R; type help(sunspot.year) for details. Perform diagnostic
checking to determine the adequacy of the AR(2) and AR(3) models for this longer
time period. Are there alternative models that you would consider for this series?
Would you recommend that a data transformation be used in this case?

8.7. Monthly sales, {Y,}, of a company over a period of 150 months are provided as part
of Series M in Part 5 of this book. This series is also available as series BJ sales
along with a related series BJ sales.lead in the datasets package in R.

(a) Plot the data and comment.

(b) Perform a statistical analysis to determine a suitable model for this series. Esti-
mate the parameters using the maximum likelihood method.

(¢) Repeat the analysis for the series of leading indicator BJ sales.lead that is part
of the same dataset.

(d) Perform diagnostic checking to determine if there is any lack of fit in the models
selected for the two series?

8.8 Global mean surface temperature deviations (from the 1951-1980 average level) are
available for the period 1880-2009 as series *gtemp2’ in the astsa package in R.

(a) Plot the data and comment. Are there any unusual features worth noting?

(b) Perform a statistical analysis to determine a suitable model for this series. Esti-
mate the parameters using the maximum likelihood method.

(c) Is there evidences of any lack of fit in the models selected for this series?

(d) Can you suggest an alternative way to analyze this time series? How might an
analysis of model generated forecasts impact your choice of model?

8.9 Refer to the daily air quality measurements for New York, May to September 1973,
analyzed in Problem 7.10 of Chapter 7. Perform diagnostic checks to determine the
adequacy of the models fitted to average daily temperature and wind speed series.

8.10 Repeat the analysis in Problem 8.9 by performing diagnostic checks on the model,
or models, considered for the solar radiation series in Problem 7.11.



ANALYSIS OF SEASONAL TIME SERIES

In Chapters 3-8, we have considered the properties of a class of linear stochastic models,
which are of value in representing stationary and nonstationary time series, and we have
seen how these models may be used for forecasting. We then considered the practical
problems of identification, fitting, and diagnostic checking that arise when relating these
models to actual data. In this chapter, we apply these methods to analyzing and forecasting
seasonal time series. A key focus is on seasonal multiplicative time series models that
account for time series dependence across seasons as well as between adjacent values
in the series. These models are extensions of the ARIMA models discussed in earlier
chapters. The methodology is illustrated using a time series commonly referred to as the
airline data in the time series literature. We also describe an alternate structural component
model approach to representing stochastic seasonal and trend behavior that includes the
possibility of the components being deterministic. The chapter concludes with a brief
discussion of regression models with autocorrelated errors. These models could include
deterministic sine or cosine terms to describe the seasonal behavior of the series.

9.1 PARSIMONIOUS MODELS FOR SEASONAL TIME SERIES

Figure 9.1 shows monthly totals of international airline passengers for the 12-year period
from January 1949 to December 1960. This series was discussed by Brown (1962) and is
listed as Series G in Part Five of this book. The series is also included as series ‘‘AirPassen-
gers’’ in the R datasets package and is conveniently downloaded from there. The series
shows a marked seasonal pattern since travel is at its highest in the late summer months,
while a secondary peak occurs in the spring. Many other series, particularly sales data,
show similar seasonal characteristics.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
© 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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FIGURE 9.1 Totals of international airline passengers in thousands (Series G).

In general, we say that a series exhibits periodic behavior with period s, when similarities
in the series occur after s basic time intervals. In the above example, the basic time interval
is 1 month and the period is s = 12 months. However, examples occur when s can take on
other values. For example, s = 4 for quarterly data showing seasonal effects within years.
It sometimes happens that there is more than one period. Thus, because bills tend to be paid
monthly, we would expect weekly business done by a bank to show a periodicity of about
4 within months, while monthly business shows a periodicity of 12.

9.1.1 Fitting Versus Forecasting

A common method of analyzing seasonal time series in the past was to decompose the
series arbitrarily into three components: a trend, a seasonal component, and a random
component. The trend might be fitted by a polynomial and the seasonal component by a
Fourier series. A forecast was then made by projecting these fitted functions. However,
such methods could give misleading results if applied indiscriminately. For example, we
have seen that the behavior of IBM stock prices in Series B is closely approximated by the
random walk model Vz, = q,, that is,

-1
zt=zo+2a,_j 9.1.1)
Jj=0

This implies that 2,(/) = z,. In other words, the best forecast of future values of the stock is
very nearly today’s price. While it is true that short segments of Series B look as if they might
be fitted by quadratic curves, this simply reflects the fact that a sum of random deviates
can sometimes have this appearance. There is no basis for the use of a quadratic forecast
function, which would produce very poor forecasts for this particular series. Similarly,
while deterministic trend and seasonal components can provide a good fit to the data, they
are often too rigid when it comes to forecasting. In this section, we introduce a seasonal
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time series model that requires very few parameters and avoids the assumption of a trend
and seasonal component that remains fixed over time.

9.1.2 Seasonal Models Involving Adaptive Sines and Cosines

The general linear model

(S (S
5= 1t ta =) va_;+a (9.1.2)
j=1 Jj=1

with suitable values for the coefficients z; and y; can be used to describe many seasonal
time series. The problem is to choose a suitable parsimonious parameterization for such
models. We have seen that for nonseasonal series, it is usually possible to obtain a useful
and parsimonious representation in the form

p(B)z; = 0(B)a, (9.1.3)

Moreover, the generalized autoregressive operator @(B) determines the eventual forecast
function, which is the solution of the difference equation

P(B)z, (1) =0

where B is understood to operate on /. In representing seasonal behavior, we want the
forecast function to trace out a periodic pattern. A first thought might be that ¢(B) should
produce a forecast function consisting of a mixture of sines and cosines, and possibly
mixed with polynomial terms, to allow changes in the level of the series and changes in
the seasonal pattern. Such a forecast function could arise naturally within the structure of
the general model (9.1.3). For example, with monthly data, a forecast function that is a sine
wave with a 12-month period, adaptive in phase and amplitude, will satisfy the difference
equation

(1-V3B+BY)2,()=0

where B is understood to operate on /. However, periodic behavior may not be economically
represented by mixtures of sines and cosines. Many sine—cosine components would, for
example, be needed to represent sales data affected by Christmas, Easter, and other seasonal
buying. To take an extreme case, sales of fireworks in Britain are largely confined to the
weeks immediately before November 5, when the abortive attempt of Guy Fawkes to blow
up the Houses of Parliament is celebrated. An attempt to represent the ‘‘single spike’” of
fireworks sales data directly by sines and cosines might be unprofitable. It is clear that a
more careful consideration of the problem is needed.

Now, in our previous analysis, we have not necessarily estimated all the components
of @(B). Where differencing d times was needed to induce stationarity, we have written
@(B) = ¢(B)(1 — B)?, which is equivalent to setting d roots of the equation @(B) =0
equal to unity. When such a representation proved adequate, we could proceed with the
simpler analysis of w, = V¥z,. Thus, we have used V = 1 — B as a simplifying operator. In
other problems, different types of simplifying operators might be appropriate. For example,
the consumption of fuel oil for heat is highly dependent on ambient temperature, which,
because the Earth rotates around the sun, is known to follow approximately a sine wave with
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period of 12 months. In analyzing sales of fuel oil, it might then make sense to introduce

1- \/EB +B’asa simplifying operator, constituting one of the contributing components
of the generalized autoregressive operator ¢(B). If such a representation proved useful, we

could then proceed with the simpler analysis of w, = (1 — \/5 B + B?)z,. This operator is
of the homogeneous nonstationary variety, having zeros e*27/12) on the unit circle.

9.1.3 General Multiplicative Seasonal Model

Simplifying Operator 1—B*. The fundamental fact about seasonal time series with period
s is that observations that are s intervals apart are similar. Therefore, one can expect that
the operation B®z, = z,_, will play a particularly important role in the analysis of seasonal
series. Furthermore, since nonstationarity is to be expected in the series z;, z;_g, Z,_5,, ...
the simplifying operation

Vz,=(1-B%)z, =2, — z,_,
should be useful. This nonstationary operator 1 — B* has s zeros !(2nk/ S)(k =0,1,...,5s —
1) evenly spaced on the unit circle. Moreover, the eventual forecast function satisfies

(1 = B*)2,(I) = 0 and so may (but need not) be represented by a full complement of sines
and cosines:

z,(h= b0 + Z blj cos — + sz sin -
j=1

where the b’s are adaptive coefficients, and where [s/2] = %s if s is even and [s/2] =
S(s = 1)if s is odd.

Multiplicative Model. When a series exhibits seasonal behavior with known periodicity s,
it is useful to display the data in the form of a table containing s columns, such as Table 9.1,
which shows the logarithms of the airline data. For seasonal data, special care is needed in
selecting an appropriate transformation. In this example, data analysis supports the use of
the logarithm (see Section 9.3.5).

The arrangement of Table 9.1 emphasizes the fact that, in periodic data, there are not one
but two time intervals of importance. For this example, these intervals correspond to months
and years. Specifically, we expect relationships to occur (a) between the observations for
successive months in a particular year and (b) between the observations for the same month
in successive years. The situation is somewhat like that in a two-way analysis of variance
model, where similarities can be expected between observations in the same column and
between observations in the same row.

For the airline data, the seasonal effect implies that an observation for a particular
month, say April, is related to the observations for previous Aprils. Suppose that the #-th
observation z, is for the month of April. We might be able to link this observation z, to
observations in previous Aprils by a model of the form

®(B*)VPz, = (B, 9.1.4)



TABLE 9.1 Natural Logarithms of Monthly Passenger Totals (Measured in Thousands) in International Air Travel (Series G)

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1949 4718 4771 4.883 4.860 4.796 4.905 4997 4.997 4913 4.779 4.644 4.771
1950 4745 4.836 4.949 4.905 4.828 5.004 5.136 5.136 5.063 4.890 4736 4.942
1951 49771 5.011 5.182 5.094 5.147 5.182 5.293 5.293 5215 5.088 4.984 5.112
1952 5.142 5.193 5.263 5.199 5.209 5.384 5.438 5.489 5.342 5.252 5.147 5.268
1953 5.278 5.278 5.464 5.460 5.434 5.493 5.576 5.606 5.468 5.352 5.193 5.303
1954 5318 5.236 5.460 5.245 5.455 5.576 5.710 5.680 5.557 5.434 5313 5.434
1955 5.489 5.451 5.587 5.595 5.598 5.753 5.807 5.849 5.743 5.613 5648 5.628
1956 5.649 5.624 5.759 5.746 5.762 5.924 6.023 6.004 5.872 5.724 5.602 5724
1957 5753 5.707 5.875 5.852 5.872 6.045 6.142 6.146 6.001 5.849 5720 5.817
1958 5.829 5.762 5.892 5.852 5.894 6.075 6.196 6.225 6.001 5.883 5737 5.820
1959 5.886 5.835 6.006 5.981 6.040 6.157 6.306 6.326 6.138 6.009 5.892 6.004
1960 6.033 5.969 6.038 6.133 6.157 6.282 6.433 6.407 6.230 6.133 5.966 6.068

309
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where s = 12,V = 1 — B%, and ®(B*), ©(B*) are polynomials in B’ of degrees P and Q,
respectively, and satisfying stationarity and invertibility conditions. Similarly, a model

O(B*)VPz,_| = O(B)a,_, (9.1.5)

might be used to link the current behavior for March with previous March observations,
and so on, for each of the 12 months. Moreover, it is usually reasonable to assume that the
parameters @ and @ contained in these monthly models would be approximately the same
for each month.

Now the error components, &,, &,_j, ..., in these models would not in general be uncor-
related. For example, the total of airline passengers in April 1960, while related to previous
April totals, would also be related to totals in March 1960, February 1960, January 1960,
and so on. Thus, we would expect that a, in (9.1.4) would be related to &;_; in (9.1.5) and to
@;_,, and so on. Therefore, to account for such relationships, we introduce a second model

d(B)V%a, = 0(B)a, 9.1.6)

where now g, is a white noise process and ¢(B) and 6(B) are polynomials in B of degrees p
and ¢, respectively, and satisfying stationarity and invertibility conditions, and V = V| =
1-B.

Substituting (9.1.6) in (9.1.4), we obtain a general multiplicative model

¢,(BYPp(B)VIVPz, = 0,(B)Oy(B)a, 9.1.7)

where, for this particular example, s = 12. Also, the subscripts p, P, g, and O have been
added to indicate the orders of the various operators. The resulting multiplicative process
will be said to be of order (p, d, q) X (P, D, Q),. A similar argument can be used to obtain
models with three or more periodic components to take care of multiple seasonalities.

In the next two sections, we examine some basic forms of the seasonal model introduced
above and demonstrate their potential for forecasting. We also consider the problems of
identification, estimation, and diagnostic checking that arise in relating such models to data.
No new principles are needed to do this, merely an application of the procedures and ideas
already discussed in Chapters 6—8. This is illustrated in the next section where a seasonal
ARIMA model of order (0, 1, 1) X (0, 1, 1), is used to represent the airline data.

9.2 REPRESENTATION OF THE AIRLINE DATA BY A MULTIPLICATIVE
(0,1, 1) x (0, 1, 1);, MODEL

9.2.1 Multiplicative (0, 1, 1) X (0, 1, 1);, Model

We have seen that a simple and widely applicable stochastic model for the analysis of
nonstationary time series, which contains no seasonal component, is the IMA(O, 1, 1)
process. Suppose, following the argument presented above, that we have a seasonal time
series and employ the model

Vi,z, = (1 —0B?)q,
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for linking z’s 1-year apart. Suppose further that we employ a similar model
Va, = (1 — 0B)a,

for linking a’s 1-month apart, where in general # and ® will have different values. Then,
on combining these expressions, we obtain the seasonal multiplicative model

VViz, =1 -6B)1 - G)Blz)a, 9.2.1)
of order (0, 1, 1) X (0, 1, 1);,. The model written explicitly is
Z[ — zt—l - Zt—lz + Zt—13 = a, - Hat_l - @a,_lz + 0@(1[_13 (922)

The invertibility region for this model, required by the condition that the roots of (1 —
6B)(1 — ®B'?) = 0 lie outside the unit circle, is defined by the inequalities —1 < 6 < 1
and —1 < O < 1. Note that the moving average operator (1 — 0 B)(1 — ®OB%)=1-6B -
O®B!'2 + O B'3, on the right-hand side of (9.2.1), is of order ¢ + sQ = 1 + 12(1) = 13.

We will show below that the logged airline data are well represented by a model of
this form, where to a sufficient approximation, = 0.4, ® = 0.6, and 62=1.34x1073.
However, as a preliminary, we first consider how this model and with these parameter
values inserted can be used to forecast future values of the series.

9.2.2 Forecasting

In Chapter 4, we saw that there are three basically different ways of considering the
general model, each giving rise to a different way of viewing the forecast in Chapter 5. We
consider now these three approaches for the forecasting of the seasonal model introduced
above.

Difference Equation Approach. Forecasts are best computed directly from the difference
equation itself. Thus, since

Zepl = Zpi—1 F 2112 = Zepi-13 F Gy — 001 = O +00ayy, 13 (9.2.3)

after setting 0 = 0.4, ® = 0.6, the minimum mean square error forecast at lead time / and
origin ¢ is given immediately by

Z(D) = (2011 + Zpgo12 = Zegi-13 + 0y — 040,y = 064,415 +0.24a,,_ 5]
(9.2.4)
where

[241] = Elz4441245 215+ 5 0, 0]

is the conditional expectation of z,,, taken at origin z. In this expression, the parameters are
assumed to be known, and knowledge of the series z;,z,_y, ... is assumed to extend into
the remote past.

Practical application depends upon the following facts:

1. Invertible models fitted to actual data usually yield forecasts that depend appreciably
only on recent values of the series.
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2. The forecasts are insensitive to small changes in parameter values such as are intro-
duced by estimation errors.

Now

_JEw 70 925
a.. j<0
[a,1 = {O’” 50 (9.2.6)

Thus, to obtain the forecasts, we simply replace unknown z’s by forecasts and unknown
a’s by zeros. The known a’s are, of course, the one-step-ahead forecast errors already
computed, thatis, a, = z; — Z,_;(1).

For example, to obtain the 3-months-ahead forecast, we have

Zi43 = Zyp + Zo9 = Z10 T 4ry3 — 044,45 — 0.6a, 9 +0.24a,_
Taking conditional expectations at the origin ¢ gives
2,3)=2,2)+ z,_9 — 2;_19 — 0.6a;_¢ + 0.244a,_,,

Substituting a,_¢ = z,_¢ — 2,_19(1) and a,_;y = z,_19 — Z,_1;(1) on the right-hand side also
yields

2,(3) = 2,(2) + 0.4z,_g — 0.76z, 0 + 0.62,_o(1) — 0.242,_,,(1) (9.2.7)

which expresses the forecast in terms of previous z’s and previous forecasts of z’s.

Figure 9.2 shows the forecasts for lead times up to 36 months, all made at the arbitrarily
selected origin, July 1957. We see that the simple model, containing only two parameters,
faithfully reproduces the seasonal pattern and supplies excellent forecasts. It is to be
remembered, of course, that like all predictions obtained from the general linear stochastic
model, the forecast function is adaptive. When changes occur in the seasonal pattern, these
will be appropriately projected into the forecast. It will be noticed that when the 1-month-
ahead forecast is too high, there is a tendency for all future forecasts from the point to
be high. This is to be expected because, as has been noted in Appendix AS5.1, forecast
errors from the same origin, but for different lead times, are highly correlated. Of course,
a forecast for a long lead time, such as 36 months, may necessarily contain a fairly large
error. However, in practice, an initially remote forecast will be updated continually, and as
the lead shortens, greater accuracy will be possible.

The preceding forecasting procedure is robust to moderate changes in the parameter
values. Thus, if we used @ = 0.5 and ® = 0.5, instead of @ = 0.4 and © = 0.6, the forecasts
would not be greatly affected. This is true even for forecasts made several steps ahead
(e.g., 12 months). The approximate effect on the one-step-ahead forecasts of modifying
the values of the parameters can be seen by studying the sum-of-squares surface. Thus, we
know that the approximate confidence region for the k parameters f is bounded, in general,
by the contour S(f) = S(ﬁ)[l + )(f(k) /n], which includes the true parameter point with
probability 1 — €. Therefore, we know that, had the true parameter values been employed,
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FIGURE 9.2 Airline data with forecasts for 1, 2, 3, ..., 36 months ahead, all made from an arbitrary
selected origin, July 1957.

with this same probability the mean square of the one-step-ahead forecast errors could not
have been increased by a factor greater than 1 + ;(z(k) /n.

Forecast Function, Its Updating, and the Forecast Error Variance. In practice, the
difference equation procedure is by far the simplest and most convenient way for actually
computing forecasts and updating them. However, the difference equation itself does not
reveal very much about the nature of the forecasts and their updating. To cast light on these
aspects, we now consider the forecasts from other points of view.

Forecast Function. Using (5.1.12) yields z,,; = 2,(I) + e,(I), where
e()=ay +yia 1+ + W ay 9.2.8)

Now, the moving average operator on the right-hand side of (9.2.1) is of order 13. Hence,
for I > 13, the forecasts satisfy the difference equation

1-B)(1-B%z()=0 [>13 (9.2.9)

where, in this equation, B operates on the lead time /.

We now write I = (r,m) = 12r+ m,r =0,1,2,...and m= 1,2, ..., 12, to represent a
lead time of r years and m months, so that, for example, / = 15 = (1, 3). Then, the forecast
function, which is the solution of (9.2.9), with starting conditions given by the first 13
forecasts, is of the form

2()=2,(r,m)=b" +rb”  1>0 (9.2.10)
This forecast function contains 13 adjustable coefficients b b b® b, These

0,1°°0,2> "2 70,12° 1
represent 12 monthly contributions and 1 yearly contribution and are determined by the
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FIGURE 9.3 Seasonal forecast function generated by the model VV,z, = (1 — § B)(1 — ®B*)a,,
with s = 5.
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first 13 forecasts. The nature of this function is more clearly understood from Figure 9.3,
which shows a forecast function of this kind, but with period s = 5, so that there are six

adjustable coefficients p  p? .,bg) p"

0,1°70,2> " 5771
Equivalently, since 2,(/) satisfies (9.2.9) and the roots of (1 — B)(1 — Blz) =0 are
1,1,—1,ex022k/12) j =1 .. 5 on the unit circle, the forecast function, as in (5.3.3), can

be represented as

5
8o ® 2rjl .. [ 27jl D1\ o 1O 4 450
z,(l)—z [bljcos<7>+szsm<T + b= + b + b1
j=1

This shows that 2,(/) consists of a mixture of sinusoids at the seasonal frequencies
2zj/12,j=1,...,6, plus a linear trend with slope bT(I). The coefficients b(ltj) bg},bg),

and b’lk(') in the expression above are all adaptive with regard to the forecast origin 7, being
determined by the first 13 forecasts. In comparison to (9.2.10), it is clear, for example, that
b(lt) = IZbTm, and represents the annual rate of change in the forecasts Z,(/), whereas b’lk(t)
is the monthly rate of change.

The w Weights. To determine updating formulas and to obtain the variance of the forecast
error ¢,(/) in (9.2.8), we need the y weights in the form z, = Z;io w;a,_; of the model.
We can write the moving average operator in (9.2.1) in the form

(1-6B)(1 —©B'?) = (V + AB)(V{, + AB'?)
where A=1-0,A=1-0,V;, =1- B!2. Hence, the model may be written as

VVi,z, = (V + AB)(V,, + AB'?)q,
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By equating coefficients in VV,w(B) = (V + AB)(V{, + ABIZ), it can be seen that the
w weights satisfy yo=1ly1—ywo=4A—-Lyp—-wi—w=A-Ly;z—-yp—y+
wo=U—-DA-1D,and y; —y;_1 —y;_12 + w;_13 = 0 otherwise. Thus, the y weights
for this process are

yr=yy ==y =4 vip=4+A
Vi3=wy ==y =A1+A) v = A1+ A)+A
1/125=l//26= eee =l[/35 =ﬂ,(1+2/\) l[/36=i(1+2/\)+/\
and so on. Writing y; as ¥, ,, = W1p,4,, Where r =0,1,2,... and m = 1,2, ..., 12, refer,

respectively, to years and months, we obtain
m =M1 +rA)+0A (9.2.11)

where

5= 1 whenm =12
| 0 whenm # 12

Updating. The general updating formula (5.2.5) is
Zim (D) =20+ D +yan,
Thus, if m # s =12,
(t+1) (t+1) _ 4 (1)
bo,m +rby) = bo,m+1 +rb)” + (A+riNa,,
and on equating coefficients of r, the updating formulas are

(t+1) (1)
bt = b L+ e

b('“) b + AAay,, 9.2.12)
Alternatively, if m = s = 12,

byt bV = b0+ (4 DB + G+ A+ rana,y,

and in this case,

@+ _ 0 4 40
BT = b0, 4B + (4 + Nayy,

b = b(l” + AAa,, (9.2.13)

In studying these relations, it should be remembered that bg:;ll) will be the updated

version of b(t) T Thus, if the origin ¢ was January of a particular year, bg)z would be the

coefficient for March. After a month had elapsed, we should move the forecast origin to
February and the updated version for the March coefficient would now be nglrl).
Forecast Error Variance. Knowledge of the y weights enables us to calculate the variance
of the forecast errors at any lead time /, using the result (5.1.16), namely

V)= +yl+ +y} )o? (9.2.14)
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Thus, setting 4 = 0.6, A = 0.4, GZ =1.34x 1073 in (9.2.11) and (9.2.14), the estimated
standard deviations 6(/) of the forecast errors of the log airline data are readily calculated
for different lead times.

Forecasts as a Weighted Average of Previous Observations. If we write the model in the
form

(]
zZy = Zﬂjzt_j +a,
j=1

the one-step-ahead forecast is

oo
z(1) = 2 TjZi41-j
i

J

The = weights may be obtained by equating coefficients in
(1-B)(1-B%=(1-6B)(1-0B%*(1—-mB—-n,B>—-)
Thus,

m=0"11-0)  j=12,...11
7, =01 -0)+ (1 -0)
73 =021 -60)—(1-6)(1-0) (9.2.15)

n;—0m;_ —On;_15 +6007;_3 j=>14

These weights are plotted in Figure 9.4 for the parameter values # = 0.4 and ® = 0.6.
The reason that the weight function takes the particular form shown in the figure may
be understood as follows: the process (9.2.1) may be written as

AB AB!?
az+1=<1_ 1—9B><1_1——(9B12>Zt+1 (9.2.16)

A

1

42 36 30 24 18 12 6
]

FIGURE 9.4 The = weights for (0,1, 1) X (0, 1, 1), process fitted to the airline data (f = 0.4,0 =
0.6).
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We now use the notation EWMA (z,) to mean an exponentially weighted moving average,
with parameter A = 1 — 6 of values z;, z,_1, z,_», ..., so that

EWMA,(z,) = z, = Az, + A0z, + A0z, 5 + -

A
1-6B
Similarly, we use EWMA , (z,) to mean an exponentially weighted moving average, with
parameter A = 1 — 0, of values z;, z,_15, Z;_o4, ... , SO that

A

EWMAA(ZI) = m Z;

= Az, + AOz,_j, + A®*z,_py + -

Substituting 2,(1) = z,,; — a,,1, in (9.2.16), we obtain
z,(1) = EWMA,(z;,) + EWMA ,\(z;_1; — EWMA(z,_1,)) (9.2.17)

Thus, the forecast is an EWMA taken over previous months, modified by a second EWMA
of discrepancies found between similar monthly EWMAs and actual performance in pre-
vious years. As a particular case, if § = 0(4=1), (9.2.17) would reduce to

21(1) = ZI + EWMAA(ZI—II - Zt_12)
=2z, + Al(Z_11 = 2i212) + O(2 93 — 24_94) + -]

which shows that first differences are forecast as the seasonal EWMA of first differences
for similar months from previous years.

For example, suppose that we were attempting to predict December sales for a depart-
ment store. These sales would include a heavy component from Christmas buying. The first
term on the right-hand side of (9.2.17) would be an EWMA taken over previous months up
to November. However, we know this will be an underestimate, so we correct it by taking
a second EWMA over previous years of the discrepancies between actual December sales
and the corresponding monthly EWMASs taken over previous months in those years.

The forecasts for lead times / > 1 can be generated from the 7z weights by substituting
forecasts of shorter lead time for unknown values, as displayed in the general expression
(5.3.6) of Section 5.3.3. Alternatively, explicit values for the weights applied directly to
Z;, Z;_1> Z;_p, ... Mmay be computed, for example, from (5.3.9) or from (A5.2.3).

Calculation of Forecasts in R. Forecasts of future values of a time series that follows a
multiplicative seasonal model can be calculated using R. A convenient option available in
R is the command sarima.for() in the astsa package. For a series z, that follows a mul-
tiplicative model with period s, the command is sarima.for(z,n.ahead,p,d,q,P,D,Q,s),
where n.ahead is the lead time. Thus, to generate forecasts up to 24 steps ahead for the
logged airline series using the model VV,z, = (1 — #B)(1 — ®B'?)a,, the commands are

library (astsa)

ap=ts (seriesG, start=c(1949,1), frequency=12)
log.AP=1og (ap)
ml=sarima.for(log.AP,24,0,1,1,0,1,1,12)

)

ml % retrieves output from a file

V V. V V V

The outputincludes the forecasts (‘ ‘pred’”) and the prediction errors (*‘se’’) of the forecasts.
A graph of the forecasts with +2 prediction error limits attached is provided as part of the
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FIGURE 9.5 Forecasts along with +2 prediction error limits for the logarithm of the airline data
generated from the model VV,,z, = (1 — B)(1 — ®B"?)aq,.

output. Figure 9.5 shows the forecasts generated for the logged airline data using these
commands.

9.2.3 Model Identification

The identification of the nonseasonal IMA(O, 1, 1) process depends upon the fact that,
after taking first differences, the autocorrelations for all lags beyond the first are zero. For
the multiplicative (0, 1, 1) X (0, 1, 1)1, process (9.2.1), the only nonzero autocorrelations of
VV,z, are those at lags 1, 11, 12, and 13. In fact, from (9.2.2) the model is viewed as

w; =a; — 9(1,_1 - @at_l2 + 9@(1,_13

which is an MA model of order 13 for w, = VV,z,. The autocovariances of w, are thus
given by

Yo =1[1+6+ 0%+ (00)*lo7 = (1 + 6*)(1 + ©%)5

71 =[-0 — ©(00)]c? = —0(1 + ©%)5>

711 = 000> (9.2.18)
Y12 = [-© — 0(60)]0? = —O(1 + 67)5?
Y13 = 9@63

In particular, these expressions imply that

—0 -0

=—— and = —
=T 2= T en
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FIGURE 9.6 Estimated autocorrelation function of logged airline data: (a) undifferenced series,
(b) first differenced series, (c) seasonally differenced series, and (d) series with regular and seasonal
differencing.

so that the value p, is unaffected by the presence of the seasonal MA factor (1 — ®B2)in
the model (9.2.1), while the value of p,, is unaffected by the nonseasonal or regular MA
factor (1 — 6 B).

Figure 9.6 shows the estimated autocorrelations of the airline data for (a) the logged
series, z,, (b) the logged series differenced with respect to months only, Vz,, (c) the
logged series differenced with respect to years only, V,z,, and (d) the logged series
differenced with respect to months and years, VV,z,. The autocorrelations for z, are large
and fail to die out at higher lags. While simple differencing reduces the correlations in
general, a very heavy periodic component remains. This is evidenced particularly by very
large correlations at lags 12, 24, 36, and 48. Simple differencing with respect to period 12
results in correlations which are first persistently positive and then persistently negative.
By contrast, the differencing VV, markedly reduces correlations throughout.

The autocorrelations of VV,z, exhibit spikes at lags 1 and 12, compatible with the
theoretical autocovariances in (9.2.18) for model (9.2.1). As an alternative, however, the
autocorrelations for V|,z, might be viewed as dying out at a slow exponential rate beginning
from lag one. Hence, there is also the possibility that V,z, may follow a nonseasonal
ARMAC(1, 1) model with ¢ relatively close to one, rather than a nonstationary IMA(O, 1, 1)
model asin (9.2.1). However, in practice, the distinction between these two models may not
be substantial and the latter model will not be explored further here. The choice between the
nonstationary and stationary AR(1) factor could, in fact, be tested using unit root procedures
similar to those described in Section 10.1 of the next chapter.
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The autocorrelation functions shown in Figure 9.6 was generated in R using the following
commands:

library (astsa)

log.AP=log(ts(seriesG))

par (mfrow=c(2,2))

acf (log.AP,50,main="(a) ")

acf (diff (log.AP),50,main=" (b))
acf(diff(log.AP,12),50,main=" (c)’)
acf(diff (diff (log.AP,12)),50,main="(d) ')

V V.V V V V V

On the assumption that the model is of the form (9.2.1), the variances for the estimated
higher lag autocorrelations are approximated by Bartlett’s formula (2.1.15), which in this
case becomes

1+ 2(”% + p%l + p%z + p%3)
varlr,] = k> 13 9.2.19)

n

Substituting estimated correlations for the p’s and setting n = 144 — 13 = 131 in (9.2.19),
where n = 131 is the number of differences VV,z,, we obtain a standard error 6(r) ~ 0.11.
The dashed lines shown in Figure 9.6 are approximate two-standard-error limits computed
under the assumption that there is no autocorrelation in the series so that var[r;] = 1/n.

Preliminary Estimates. As with the nonseasonal model, by equating appropriate observed
sample correlations to their expected values, approximate values can be obtained for the
parameters 6 and ©. On substituting the sample estimates r; = —0.34 and r, = —0.39 in
the expressions

-0 -0

e e

we obtain rough estimates § ~ 0.39 and © ~ 0.48. A table summarizing the behavior of the
autocorrelation function for some specimen seasonal models, useful in identification and
in obtaining preliminary estimates of the parameters, is given in Appendix A9.1.

9.2.4 Parameter Estimation

Contours of the sum-of-squares function S(6, ®) for the model (9.2.1) fitted to the airline
data are shown in Figure 9.7, together with the appropriate 95% confidence region. The
least-squares estimates (LE) are seen to be very nearly = 0.4 and 6 = 0.6. The grid of
values for S(6, ®) was computed using the technique described in Chapter 7. It was shown
there that given n observations w from a linear process defined by

$(B)w; = 0(B)a,

the quadratic form w'M,,w, which appears in the exponent of the likelihood, can always
be expressed in terms of a sum of squares of the conditional expectation of a’s
and a quadratic function of the conditional expectation of the p+ ¢ initial values
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FIGURE 9.7 Contours of S(0,®) with shaded 95% confidence region for the model VV ,z, =
(1 -60B)(1 — ®B'?)q, fitted to the airline data.

€, = (W_p, ..., Wy, a1y, ... ,ap)’, that is,
n n
WM, w=S(¢,0)= Y [a]> = [a]*+[e]Q '[e,]
t=—00 t=1

where [q,] = [a;|W, ¢, 0],[e,] = [e,|w, ¢, 0], and cov[e,] = 0'29. Furthermore, S(¢, 0)
plays a central role in the estimation of the parameters ¢ and @ from both a sampling theory
and a likelihood or Bayesian point of view.

The computation for seasonal models follows precisely the course described in Section
7.1.5 for nonseasonal models. The airline series has N = 144 observations. This reduces
to n=131 observations after the differencing w; = VV,z,. The [4,] in S(6,®) can be
calculated recursively using an approximate approach that iterates between the forward
and backward versions of the (0, 1, 1) X (0, 1, 1);, model. Alternatively, an exact method
discussed in Appendix A7.3 and also used in Section 7.1.5 can be employed. For the present
model, this involves first computing the conditional estimates of the a,, using zero initial

values a(j]z = a(l“ == ag = 0, through a recursive calculation as
0 _ 0 0 _ 0 —
a, =w;+0ba_, +0a_,,—00a_,, t=1,...,n (9.2.20)

Then a backward recursion is used to obtain a series u; as
— 40 —
up=a; +0u ) +Oupy gy — 00U, 3 t=n,..,1

using zero initial values u,,; = - = u, 13 = 0. Finally, the exact estimate for the vector
of initial values a; = (a_qy,...,a,) is obtained by solving the equations D[a,] = F'u,
as described in (A7.3.12) of Appendix A7.3. Letting h = Fu= (h_19,h_11, ..., ho)’, the
values h_; are computed as

h—j = _(eu_j+1 + @u_j+12 - 9®u_j+13)
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with u_ ;=0,j=0. Once the initial values are estimated, the remaining [a,] values for
t=1,2,...,nare calculated recursively as in (9.2.20), and hence the exact sum of squares

50,0) =Y 2" [a,? is obtained.

Iterative Calculation of Least-Squares Estimates 0, ®. While it is essential to plot
sums-of-squares surfaces in a new situation, or whenever difficulties arise, an iterative lin-
earization technique may be used in straightforward situations to supply the least-squares
estimates and their approximate standard errors. The procedure has been set out in Section
7.2.1, and no new difficulties arise in estimating the parameters of seasonal models.

For the present example, we can write approximately

at’o = (9 - 90)xt71 + (@ - @0)xt,2 + a,

where

da, da,
X, = —— X9 = ——
5l 20 00,0y 2 00 009

and where 6 and O, are guessed values and a, ; = [a,]6), ©y]. As explained and illustrated
in Section 7.2.2, the derivatives are most easily computed numerically. Alternatively, the
derivatives could be obtained to any degree of accuracy by recursive calculation.

Proceeding this way and using as starting values, the preliminary estimates § = 0.39, 0 =
0.48 obtained above, parameter estimates correct to two decimals are available in three
iterations. The estimated variance of the residuals is 82 = 1.34 x 1073, From the inverse
of the matrix of sums of squares and products of the x’s on the last iteration, the standard
errors of the estimates may now be calculated. The least-squares estimates followed by
their standard errors are then

agreeing closely with the values obtained from the sum-of-squares plot.

Large-Sample Variances and Covariances for the Estimates. As in Section 7.2.6, large-
sample formulas for the variances and covariances of the parameter estimates may be
obtained. In this case, from the model equation w, = a, — 0a,_; — ®a,_;, + 00a,_,3, the
derivatives x, | = —da,/d0 are seen to satisfy

X —0x, 1 —Ox;_151 +00x,_13;,+a,_1 —0qg_13=0

hence (1 — §B)(1 — ®B'%)x, | = —(1 — ©B'?)a,_y, or simply (1 — 0B)x, | = —a,_;. Thus,
using a similar derivation for x, , = —da, /00, we obtain that

R

~(1-0B)'a, ==Y 0/Bla,_,
j=0

X1

[oo]
Xp2—(1-0B?) g, =-) 0B,
i=0
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Therefore, for large samples, the information matrix is

(1 __02)—1 911(1 __912())—1

1(6,0) =n 011(1 _ 612@)—1 (1- @2)—1

Provided that |6| is not close to unity, the off-diagonal term is negligible, and approximate
values for the variances and covariances of 6 and © are

VO ~n'1-6> V©O)~n'(1-6?%
cov[d,B] ~ 0 (9.2.21)

In the present example, substituting the values 6 = 0.40, 0= 0.61, and n = 131, we obtain
V(0) ~ 0.0064 V(©) ~ 0.0048
and
0(0)~0.08  (0)~0.07

which, to this accuracy, are identical with the values obtained directly from the iteration.
It is also interesting to note that the parameter estimates 6 and 0, associated with months
and years, respectively, are virtually uncorrelated.

Parameter Estimation in R. The parameters of the model
VViz, =w, = (1 —6B)(1 — ©B'?)q,

can be estimated in R using the command sarima(log.AP,p,d,q,P,D,Q,5=12) in the
astsa package as demonstrated below. The resulting estimates of the two parameters 0
and O are 0.40 and 0.56, respectively, with corresponding standard errors of 0.09 and 0.07.
The full likelihood function, including the determinant, is used for parameter estimation,
which accounts for the difference between the parameter estimates derived above and those
obtained in R. Also, in viewing the output, it should be noted that R defines the moving
average operators with positive signs, in contrast to the negative signs used in this text.

library (astsa)

log.AP=log(ts (seriesG))

ml.AP=sarima (log.AP, 0,1,1,0,1,1,S8=12)
ml.AP % Retrieves output from file

vV V. V V

OUTPUT:

Call:

stats:arima (x=xdata,order=c(p,d,q),seasonal= list (order=c(P,D,Q),
period=S) ,optim.control=1list (trace=trc,REPORT=1,reltol=tol))

Coefficients:
mal smal
-0.4018 -0.5569
s.e. 0.0896 0.0731

sigma”™2 estimated as 0.001348: log likelihood=244.7, aic=-483.4
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9.2.5 Diagnostic Checking

Before proceeding further, we check the adequacy of fit of the model by examining the
residuals from the fitted model.

Autocorrelation Checks. The standardized residuals calculated from the fitted model and
the estimated autocorrelations of the residuals are shown in Figure 9.8. The figure is
generated as part of the output from the estimation command *‘sarima’’ in R. The residual
autocorrelations do not present evidence of any lack of fit, since none of the values fall
outside the approximate two-standard-error limits of 0.18. This conclusion is also supported
by the p values of the portmanteau statistics Q = n(n + 2) sz=l r(a)/(n — k) which are
shown for different values of K in the last part of the graph.

Periodogram Check. The cumulative periodogram (see Section 8.2.5) for the residuals is
shown in Figure 9.9. The Kolmogorov—Smirnov 5 and 25% probability limits, which as
we have seen in Section 8.2.5 supply a very rough guide to the significance of apparent
deviations, fail in this instance to indicate any significant departure from the assumed
model.
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FIGURE 9.8 Diagnostic checks on the residuals from the fitted model.
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FIGURE 9.9 Cumulative periodogram check on residuals from the model VV,,z, = (1 —
0.40B)(1 — 0.61B'%)a,, fitted to the airline data.

9.3 SOME ASPECTS OF MORE GENERAL SEASONAL ARIMA MODELS

9.3.1 Multiplicative and Nonmultiplicative Models

In previous sections, we discussed methods of dealing with seasonal time series, and in
particular, we examined an example of a multiplicative model. We have seen how this
model can provide a useful representation with remarkably few parameters. It now remains
to study other seasonal models of this kind, and insofar as new considerations arise, the
associated processes of identification, estimation, diagnostic checking, and forecasting.

Suppose, in general, that we have a seasonal effect associated with period s. Then, the
general class of multiplicative models may be typified in the manner shown in Figure 9.10.
In the multiplicative model, it is assumed that the *‘between periods’’ development of the
series is represented by some model

Op(B)IVPz,,, = 0y(BY)a,,,
while ‘‘within periods’’ the a’s are related by
¢,(B)Va,,, =0,(Ba,,,

Obviously, we could change the order in which we considered the two types of models and
in either case obtain the general multiplicative model

¢, (BY®p(BHVIVPz, , =0,(B)Oy(Ba,, (9.3.1)

where a, ,, is a white noise process with zero mean. In practice, the usefulness of models such
as (9.3.1) depends on how far it is possible to parameterize actual time series parsimoniously
in these terms. In fact, experience has shown that this is possible for a variety of seasonal
time series coming from widely different sources. While the multiplicative model (9.2.1)
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Within periods
d

\%
Moving average parameters (0,,0,,...,0,)
Autoregressive parameters (¢, ¢2,...,p)
v? 211 | 212 Zim | 0| Z1s
Moving average
Between parameters Zy1 | 222 Zom | | Zas
periods (0,,0,,...,0y)

Autoregressive
parameters Z,0 | 2.2 Zow | 0 | Zs
(@,.0,,....0,)

FIGURE 9.10 Two-way table for multiplicative seasonal model.

has been found to fit many time series, other models of the form (9.3.1) have also been
found to be useful in practise.

Itis not possible to obtain a completely adequate fit with multiplicative models for all se-
ries. One modification that is sometimes useful allows the mixed moving average operator
to be nonmultiplicative. By this is meant that we replace the operator 6,(B)Oy(B*) on the
right-hand side of (9.3.1) by a more general moving average operator 9;‘* (B). Alternatively,
or in addition, it may be necessary to replace the autoregressive operator ¢,(B)® p(B*)
on the left by a more general autoregressive operator ¢1’§* (B). Some examples of nonmul-
tiplicative models are given in Appendix A9.1. These are numbered 4, 4a, 5, and 5a.

In those cases where a nonmultiplicative model is found necessary, experience suggests
that the best-fitting multiplicative model can provide a good starting point from which to
construct a better nonmultiplicative model. The situation is reminiscent of the problems
encountered in analyzing two-way analysis of variance tables, where additivity of row and
column constants may or may not be an adequate assumption, but may provide a good
point of departure.

Our general strategy for relating multiplicative or nonmultiplicative models to data is
that which we have already discussed and illustrated in some detail in Section 9.2. Using
the autocorrelation function for guidance:

1. The series is differenced with respect to V and/or V, so as to produce stationarity.

2. By inspection of the autocorrelation function of the suitably differenced series, a
tentative model is selected.

3. From the values of appropriate autocorrelations of the differenced series, preliminary
estimates of the parameters are obtained. These can be used as starting values in the
search for the least-squares or maximum likelihood estimates.

4. After fitting, the diagnostic checking process applied to the residuals either may lead
to the acceptance of the tentative model or, alternatively, may suggest ways in which
it can be improved, leading to refitting and repetition of the diagnostic checks.

As a few practical guidelines for model specification, we note that for seasonal series
the order of seasonal differencing D needed would almost never be greater than one, and
especially for monthly series with s = 12, the orders P and Q of the seasonal AR and MA
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operators ®(B*) and @(B*) would rarely need to be greater than 1. This is particularly so
when the series length of available data is not sufficient to warrant a more complicated
form of model with P > 1 or Q > 1.

9.3.2 Model Identification

A useful aid in model identification is the listin Appendix A9.1 that gives the autocovariance
structure of w, = V4V f,) z, for anumber of simple seasonal models. This list makes no claim
to be comprehensive. However, it does include some frequently encountered models, and
the reader should have no difficulty in discovering the characteristics of others that may
seem useful. It should be emphasized that rather simple models, such as models 1 and 2 in
the appendix, have provided adequate representations for many seasonal series.

Since the multiplicative seasonal ARMA models for the differences w; = VVz, may
be viewed as special forms of ARMA models with orders p + sP and g + sQ, their auto-
covariances can be derived from the principles of Chapter 3, as was done in the previous
section for the MA model w, = a, — 6a,_; — ©Oa,_, + 00a,_;5. For further illustration,
consider the model

(1 - ¢B)w, = (1 — OB%)q,

which is a special form of ARMA model with AR order 1 and MA order s. First, since
the y weights for this model for w;, satisfy y; —¢y;_; =0,j=1,....,5 — 1, we have
v = ¢,j=1,...,s—1,aswell as y, = ¢° — © and W; = ¢w;_1,j > s.Itis then easy to
see that the autocovariances for w, will satisfy

Yo =dr1+o,(1-Oy))

vp=¢yi_1—0Ow,_;  j=1...s 9.3.2)

Yi =drj- Jj>s

Solving the first two equations for y, and y;, we obtain

_ 21—@(¢>s—®)—<f>s®2021+®2—2¢S@

Y0 o, 1_¢2 2 1_¢2
= 2P0 O -¢710 _ 141467 ¢'0)-¢"'6
1 a 1_¢2 a 1_¢2

with 7, = ¢y;_y — 020/ = ¢plyy — 070 /(1 = ¢*) /(1 = $*),j = 1,...,s and y; =
¢vj—1 =& v, J > 5. Hence, in particular, for monthly data with s =12 and |¢| not
too close to one, the autocorrelation function p ; fo; this process will behave, for low lags,
similarly to that of a regular AR(1) process, p; =~ ¢’/ for small j, while the value of p;, will
be close to —@/(1 + ©?).

A fact of considerable utility in deriving autocovariances of a multiplicative process is
that for such a process, the autocovariance generating function (3.1.11) is the product or
the generating functions of the components. Thus, in (9.3.1) if the component models for
Véz and VPa,,

¢,(B\V?z, =0,(B)a,  ®p(B)VPa, =0Oy(B)a,
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have autocovariance generating function y(B) and I'(B*), the autocovariance generating
function for w, = V¢VPz in (9.3.1) is

y(B)I'(B%)

Another point to be remembered is that it may be useful to parameterize more general
models in terms of their departures from related multiplicative forms in a manner now
illustrated.

The three-parameter nonmultiplicative operator

1-6,B—0,B"” —0,;B" (9.3.3)
employed in models 4 and 5 in the appendix may be written as
(1-6,B)(1 —6,,B"?) — kB"
where
k =601, = (=013)

An estimate of k that was large compared with its standard error would indicate the need for
a nonmultiplicative model in which the value of 65 is not tied to the values of 6, and 6,,.
On the other hand, if k is small, then on writing §; = 6, 6,, = ©, the model approximates
the multiplicative (0, 1, 1) X (0,1, 1);, model.

9.3.3 Parameter Estimation

No new problems arise in the estimation of the parameters of general seasonal models.
The unconditional sum of squares is computed quite generally by the methods set out
fully in Section 7.1.5 and illustrated further in Section 9.2.4. As always, contour plotting
can illuminate difficult situations. In well-behaved situations, iterative least-squares with
numerical determination of derivatives yield rapid convergence to the least-squares esti-
mates, together with approximate variances and covariances of the estimates. Recursive
procedures can be derived in each case, which allow direct calculation of derivatives, if
desired.

Large-Sample Variances and Covariances of the Estimates. The large-sample informa-
tion matrix I(¢h, 0, @, ®) is given by evaluating E[X’X], where, as in Section 7.2.6, X is
the n X (p + g + P + Q) matrix of derivatives with reversed signs. Thus, for the general
multiplicative model

a, = 07 (B)®™(B*)p(B)D(B*)w,

where w, = V¢ Vi) z,, the required derivatives are

da, ; da .
et 0—1 B)B' Tt — @—l B%)B*

26, (B)Ba, 20, (B)B 4

d . 0 .
a; _ —(l)_l(B)Bjat a; _ _q)—l(BS)BSJat

9¢; 00,
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Approximate variances and covariances of the estimates are obtained as before, by inverting
the matrix I(¢, 0, @, @).

9.3.4 Eventual Forecast Functions for Various Seasonal Models

We now consider the characteristics of the eventual forecast functions for a number of
seasonal models. For a seasonal model with single periodicity s, the eventual forecast
function at origin ¢ for lead time / is the solution of the difference equation

H(B)YD(BHVIVPLz (1) =0

Table 9.2 shows this solution for various choices of the difference equation; also shown is
the number of initial values on which the behavior of the forecast function depends.

In Figure 9.11, the behavior of each forecast function is illustrated for s = 4. It will
be convenient to regard the lead time / = rs 4+ m as referring to a forecast r years and m
quarters ahead. In the diagram, an appropriate number of initial values (required to start the
forecast off and indicated by bold dots) has been set arbitrarily and the course of the forecast

Autoregressive
operator
(1) 1-058° 3
[
2) 1-8°

(3) (1-B)(1-05 B

(4) (1-B)(1-B")

(5) (1—-0.5B)(1-B")

6) (1-B)(1-B')

(1) (1-BY(1-B")

FIGURE9.11 Behavior of the seasonal forecast function for various choices of the general seasonal
autoregressive operator.
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TABLE 9.2 Eventual Forecast Functions for Various Generalized Autoregressive Operators

Generalized Number of Initial
Autoregressive Eventual Forecast Function Values on which
Operator 2(r, m)° Forecast Function Depends
(1)1 - @B p+ (b, — )P
2)1-B° bo.m
G)( = B)Y1—®B*)  by+ (b, — b)® +b, { 11_2 } s+1
4) (1= B)(1 - B*) bom +byr s+1
1 —_ Sr
() (1-pBY1—B*) by, +b¢"" {%} s+1
(6) (1 — B)(1 — B*)? by + byt + %bzr(r— 1) 2s+1
(7 (1 = B?*(1 - B by + by + (m = 1)b,]r + %bzsr(r -1 s+2

2Coefficients b are all adaptive and depend upon forecast origin .

function traced to the end of the fourth period. When the difference equation involves an
autoregressive parameter, its value has been set equal to 0.5.
The constants b m» b1 and so on, appearing in the solutions in Table 9.2, should strictly

be indicated by bg)m, b(lt), and so on, since each one depends on the origin ¢ of the forecast,
and these constants are adaptively modified each time the origin changes. The superscript
t has been omitted temporarily to simplify notation.

The operator labeled (1) in Table 9.2 is stationary, with the model containing a fixed
mean y. It is autoregressive in the seasonal pattern, and the forecast function decays with
each period, approaching closer and closer to the mean.

Operator (2) in Table 9.2 is nonstationary in the seasonal component. The forecasts for
a particular quarter are linked from year to year by a polynomial of degree 0. Thus, the
basic forecast of the seasonal component is exactly reproduced in forecasts of future years.

Operator (3) in Table 9.2 is nonstationary with respect to the basic time interval but
stationary in the seasonal component. Operator (3) in Figure 9.11 shows the general level
of the forecast approaching asymptotically the new level

by

by +
"T1-@

where, at the same time, the superimposed predictable component of the stationary seasonal
effect dies out exponentially.

In Table 9.2, operator (4) is the limiting case of the operator (3) as @ approaches unity.
The operator is nonstationary with respect to both the basic time interval and the periodic
component. The basic initial forecast pattern is reproduced, as is the incremental yearly
increase. This is the type of forecast function given by the multiplicative (0, 1, 1) X (0, 1, 1),
process fitted to the airline data.

Operator (5) is nonstationary in the seasonal pattern but stationary with respect to the
basic time interval. The pattern approaches exponentially an asymptotic basic pattern

bypm!
1= ¢

Z,(co,m) = by, +
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Operator (6) is nonstationary in both the basic time interval and the seasonal component.
An overall quadratic trend occurs over years, and a particular kind of modification occurs
in the seasonal pattern. Individual quarters not only have their own level by ,, but also
their own rate of change of level b, ,,. Therefore, when this kind of forecast function is
appropriate, we can have a situation where, for example, as the lead time is increased, the
difference in summer over spring sales can be forecast to increase from one year to the
next, while at the same time, the difference in autumn over summer sales can be forecast
to decrease.

In Table 9.2, operator (7) is again nonstationary in both the basic time interval and in the
seasonal component, and there is again a quadratic tendency over years with the incremental
changes in the forecasts from one quarter to the next changing linearly. However, in this
case, they are restricted to have a common rate of change.

9.3.5 Choice of Transformation

It is particularly true for seasonal models that the weighted averages of previous data
values, which comprise the forecasts, may extend far back into the series. Care is therefore
needed in choosing a transformation in terms or which a parsimonious linear model will
closely apply over a sufficient stretch of the series. Simple graphical analysis can often
suggest such a transformation. Thus, an appropriate transformation may be suggested by
determining in what metric the amplitude of the seasonal component s roughly independent
of the level of the series. To illustrate how a data-based transformation may be chosen more
exactly, denote the untransformed airline data by x, and let us assume that some power
transformation [z = x* for 4 # 0, z = In(x) for A = 0] may be needed to make the model
(9.2.1) appropriate. Then, as suggested in Section 4.1.3, the approach of Box and Cox
(1964) may be followed, and the maximum likelihood value obtained by fitting the model
to xY = (x* — 1)/ Ax*~! for various values of A, and choosing the value of A that results
in the smallest residual sum of squares s . In this expression, x is the geometric mean of
the series x, and it is easily shown that x¥ = x In(x). For the airline data, we find

A S, A S, A S,

—04 13,825.5 -0.1 11,627.2 02 11,784.3
-03 12,794.6 0.0 11,458.1 03 12,180.0
-02 12,046.0 0.1 11,5543 0.4 12,633.2

The maximum likelihood value is thus close to 4 = 0, confirming the appropriateness of
the logarithmic transformation for the airline series.

9.4 STRUCTURAL COMPONENT MODELS AND DETERMINISTIC
SEASONAL COMPONENTS

A traditional method to represent a seasonal time series has been to decompose the series
into trend, seasonal, and noise components, as z; = T; +.5; + N,, where the trend 7, and
seasonal component .S, are represented as deterministic functions of time using polynomial
and sinusoidal functions, respectively. However, as noted in Section 9.1.1, the deterministic
nature of the trend and seasonal components limits the applicability of these models.
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Subsequently, models that permit random variation in the trend and seasonal components,
referred to as structural component models, have become increasingly popular for time
series modeling (e.g., Harvey, 1989; Harvey and Todd, 1983; Gersch and Kitagawa, 1983;
Kitagawa and Gersch, 1984; Hillmer and Tiao, 1982; and Durbin and Koopman, 2012).
We discuss these models briefly in the following sections.

9.4.1 Structural Component Time Series Models

In general, a univariate structural component time series model is one in which an observed
series z, is formulated as the sum of unobservable component or "signal" time series.
Although the components are unobservable and cannot be uniquely specified, they will
usually have direct meaningful interpretation, such as representing the seasonal behavior
or the long-term trend of an economic time series or a physical signal that is corrupted
by measurement noise in the engineering setting. Thus, the models attempt to describe
the main features of the series as well as provide a basis for forecasting, signal extrac-
tion, seasonal adjustments, and other applications. For a monthly time series, the trend 7,
might be assumed to follow a simple random walk model or some extension such as the
ARIMA(O, 1, 1) model (1 — B)T, = (1 — #B)a,, or the AIRMA(0, 2,2) model (1 — B)’T, =
(1 - 6, B — 6,B?)a,, while the seasonal component might be specified as a *‘seasonal ran-
dom walk’” (1 — B'2)S, = b,, where q, and b, are independent white noise processes.

An appeal of this structural modeling approach, especially for seasonal adjustments
and signal extraction, is that Kalman filtering and smoothing methods based on state-
space formulations of the model, as discussed in Section 5.5, can be employed. The exact
likelihood function can be constructed based on the state-space model form, as described
in Section 7.4, and used for parameter estimation. The Kalman filtering and smoothing
procedures can then be used to obtain estimates of the unobservable component series
such as the trend {7;} and seasonal {.S;} components, which are now included as elements
within the state vector Y; in the general state-space model (5.5.4) and (5.5.5).

Basic Structural Model. As a specific illustration, consider the basic structural model
(BSM) for seasonal time series with period s as formulated by Harvey (1989). The model
is defined by z, =T, + S, + ¢,, where T, follows the ‘‘local linear trend model’” defined
by

=T +b_1+n BP=F1+& (9.4.1)
and S, follows the ‘‘dummy variable seasonal component model’’ defined by
(1+B+B*+...+BHS, =0, (9.4.2)

where #,, &, @,, and g, are mutually uncorrelated white noise processes with zero means
and variances 0'3, o2, o-i, and o-?, respectively.

This local linear trend model is a stochastic generalization of the deterministic linear
trend T; = a + ft, where a and f are constants. In (9.4.1), the effect of the random distur-
bance #, is to allow the level of the trend to shift up and down, while &, allows the slope
to change. As special limiting cases, if o-? =0, then §, = p,_; and so f; is a fixed constant

g for all ¢ and the trend follows the random walk with drift (1 — B)T;, = f + #,. If 03 =0

in addition, then (9.4.1) collapses to the deterministic model T, = T,_; + por T, = a + ft.
The seasonal component model (9.4.2) requires the seasonal effects .S, to sum to zero over
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s consecutive values of a seasonal period, subject to a random disturbance with mean zero
which allows the seasonal effects to change gradually over time. Again, a special limiting
case of deterministic seasonal components with a fixed seasonal pattern about an average
of zero, S, = S,_; with S, +.S,_ + ... + S,_;41 = 0, occurs when 0}20 = 0. Thus, one at-
traction of a model such as (9.4.1) and (9.4.2) is that it generalizes a regression-type in
which the trend is represented by a fixed straight line and the seasonality by fixed seasonal
effects using indicator variables, by allowing the trend and seasonality to vary over time,
and still yields the deterministic components as special limiting cases.

We illustrate the state-space representation of the model (9.4.1) and (9.4.2) for the case
of quarterly time series with s = 4. For this, we define the state vector as

Y, =T, B, Sp S St—2),

and let a, = (1, &,, ). Then we have the transition equation

[ T, 11 0 0 Ol7T,] [t 0 o0
B, 01 0 0 0]l 0 1 0f[n
Y,=| S |=|10 0 -1 -1 =1 S_[+]0 0 1f]¢ (9.4.3)
S, 0 0 0 0|lS._,] [0 0 0]l
S, 5 00 0 1 o|ls;| |00 o0

or Y,=®Y,_; +WYa,, together with the observation equation z, =T, + S, +¢, =
[1 0 1 0 O0]Y,+¢ =HY, +¢, Hence, the variance component parameters of the
structural model can be estimated by maximum likelihood methods using the state-space
representation and innovations form of the likelihood function, as discussed in Sections
5.5 and 7.4. Once these estimates are obtained, the desired optimal smoothed estimates
Tt|n = E[T;|zy, ..., z,] and S'tm = E[S;|zy, ..., z,] of the trend and seasonal components
based on the observed series zy, ..., z, can readily be obtained by applying the Kalman
filtering and smoothing techniques to the state-space representation.

Relation to ARIMA Model. 1t should be noted from general results of Appendix A4.3
that structural models such as the BSM have an equivalent ARIMA model representation,
which is sometimes referred to as its reduced form in this context. For instance, the process
T, defined by the local linear trend model (9.4.1) satisfies

(1-BY’T,=(1-B)f_; +(1 = By, =&_, +(1 - By,

It follows from Appendix A4.3.1 that &,_; + (1 — B)#; can be represented as an MA(1)
process (1 — #B)a,, so that (1 — B)2T, = (1 — 6B)a, and T, has the ARIMA(0, 2, 1) model
as areduced form. For another illustration, consider z, = T; + S, + N,, where it is assumed
that

(1-B)T,=(1-67B)a, (1-B?)S,=(1-06,B%p,
and N, = ¢, is white noise. Then, we have

(1-B)(1 - B"?)z,
= (1= B")(1-6;B)a, + (1 — B)(1 -—0,B)b, + (1 — B)(1 — B"?)c,



334 ANALYSIS OF SEASONAL TIME SERIES

and according to the developments in Appendix A4.3, the right-hand-side expression above
can be represented as the MA model (1 — 6, B — 6;,B'> — 0,3B"3)¢,, where ¢, is white
noise, since the right-hand side will have nonzero autocovariances only at the lags 0, 1,
11, 12, and 13. Under additional structure, the MA operator could have the multiplicative
form, but in general we see that the foregoing structural model, z, = T, + S, + N,, has an
equivalent ARIMA model representation as

(1-B)(1 =Bz, =(1-60,B-0,,B —0,;B),

Example: Airline Data. Harvey (1989, Sec. 4.5) reported results of maximum likelihood
estimation of the BSM defined by (9.4.1) and (9.4.2) for the logged monthly airline pas-
senger data, using the data period from 1949 to 1958. The ML estimates were such that
62 =0 and 6}20 was very small relative to 83 and 6'3. The zero estimate 62 = 0 implies
that the model (9.4.1) for the trend T; reduces to the random walk with constant drift,
(1 - B)T, = f + n,, while the seasonal component model is (1 + B+ ... + B“)S, = w;.
Differencing the series z, thus implies that

w, = (1 - B)(1 - Bz, =(1 - B)1 - BT, +(1-B)(1-B"?)S,
+(1 = B)(1 — B?)g,
= (1= B, +(1 - BYw, + (1 - B)(1 - B

It readily follows that the autocovariances of the differenced series w, = VV,z, for this
model are

70 = 205 + 66620 + 4662

7= —40'2) - 20'5

v, =02 (9.4.4)
711 = ‘73

— 2 2
]/12 = _O-VI - 26&

=713

and y; = 0 otherwise. In particular, these give the autocorrelations

2 2
g = C7£+26w
1= 75 0 2 2
266+0';1+30'w
2 2
2O'E+6n
P12

2(20’3 + 65 + 30'3))

and p;; = p13 = 0'52/[2(2662 + 0'3 + 30}2(;)]'

The autocorrelations calculated using estimates of the variance components given in
Table 4.5.3 of Harvey (1989) are shown in Table 9.3 for the logged airline data. Also
shown in Table 9.3 are the autocorrelations for the differenced series w, = VV,z, in
the seasonal (0,1,1)x (0, 1,1);, model. These were calculated from (9.2.18) using the
parameter estimates & = 0.396, 0= 0.614, and 6'02 =1.34x%x1073 reported in Section 9.2.4.
Table 9.3 shows a close agreement between the two sets of autocorrelations. Hence, for the
logged airline data, both modeling approaches provide very similar representations of the
basic trend and seasonality in the series.
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TABLE 9.3 Comparison of the Autocorrelations of w, = VV ,z, for the Basic Structural

Model and the Seasonal ARIMA Model (0,1, 1) x (0,1, 1),, for Logged Airline Data

Model P P2 P P12 P13
Basic structural model -0.26 0.00 0.12 -0.49 0.12
ARIMA (0,1,1) %X (0,1,1),, -0.34 0.00 0.15 -0.45 0.15

9.4.2 Deterministic Seasonal and Trend Components and Common Factors

Now in some applications, particularly in the physical sciences, a seasonal or trend com-
ponent could be nearly deterministic. For example, suppose the seasonal component can
be approximated as

6
2z jt . [ 2njt
S, =/30+j§l [ﬂlj cos <—12 ) + pj sin <—12 >]

where the f coefficients are constants. We note that this can be viewed as a special
case of the previous examples, since S, satisfies (1 + B+ B> + ... + B'1)S, = 12, or
(1 — B'?)S, = 0. Now, ignoring the trend component for the present and assuming that
z, = S, + N,, where (1 — B'2)S, = 0 and N, = (1 — 8y B)a,, say, we find that z, follows
the seasonal ARIMA model

(1- Bz, =(1-6yB)(1-B%)aq,

However, we now notice the presence of a common factor of 1 — B'? in both the generalized
AR operator and the MA operator of this model; equivalently, we might say that ® = 1
for the seasonal MA operator @(B!2) = (1 — ®B'?). This is caused by and, in fact, is
indicative of the presence of the deterministic seasonal component ; in the original form
of the model.

In general, the presence of deterministic seasonal or trend components in the structure
of a time series z; is characterized by common factors of (1 — B®) or (1 — B) in the
generalized AR operator and the MA operator of the model. We can state the result
more formally as follows. Suppose that z, follows the model @(B)z, = 6, + 6(B)a,, and
the operators @(B) and 6(B) contain a common factor G(B), so that ¢(B) = G(B)@;(B)
and 6(B) = G(B)#,(B). Hence, the model is

G(B)p(B)z; = 0y + G(B)8,(B)a, (9.4.5)

LetG(B)=1- g B — --- — g.B" and suppose that this polynomial has roots Gl_l, cees Gr‘l
which are distinct. Then, the common factor G(B) can be canceled from both sides of the
above model, but a term of the form erz | ciGl’, needs to be added. Thus, the model (9.4.5)
can be expressed in the equivalent form as

,
@1(B)z, = co, + 2 ¢;G' + 6,(B)a, (9.4.6)
i=1

where the ¢; are constants, and c, is a term that satisfies G(B)cy, = 6. Modifications of
the result for the case where some of the roots Gi‘l are repeated are straightforward.
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Thus, it is seen that an equivalent representation for the above model is
@, (B)z, = x, +0,(B)a,

where x; is a deterministic function of ¢ that satisfies G(B)x, = . Note that roots in G(B)
corresponding to ‘‘stationary factors,”” such that |G;| < 1, will make a contribution to the
component x, that is only transient and so negligible, and hence these terms may be ignored.
Thus, only those factors whose roots correspond to nonstationary ‘‘differencing’’ and other
““simplifying’’ operators, such as (1 — B) and (1 — B¥), with roots |G;| = 1 need to be in-
cluded in the deterministic component x,. These common factors will, of course, give rise to
deterministic functions in x, that are of the form of polynomials, sine and cosine functions,
and products of these, depending on the roots of the common factor G(B).

Examples. For a few simple examples, the model (1 — B)z, = 6, + (1 — B)#;(B)a, has an
equivalent form z, = ¢; + 6yt + 6;(B)a,, which occurs upon cancellation of the common
factor (1 — B), while the model (1 — /3B + Bz, =0y + (1 - V3B + B?)0,(B)a, has
an equivalent model form as z, = ¢y + ¢; cos(2zt/12) + ¢, sin(2zt/12) + 0,(B)a,, where
(1= /3 + ey = 6.

Detection of a deterministic component such as x, above in a time series z, may occur
after an ARIMA model is estimated and common or near-common factors are identified.
Hence, the ARIMA time series methodology, in a sense, can indicate when a time series
may contain deterministic seasonal or trend components. The presence of a deterministic
component is characterized by a factor in the MA operator with roots on, or very near to the
unit circle, which correspond to a differencing factor that has been applied to the original
series in the formulation of the ARIMA model. When this situation occurs, the series is
sometimes said to be ‘‘over-differenced’’. Formal tests for the presence of a unit root in the
MA operator implying the presence of a deterministic component, have been developed by
Saikkonen and Luukkonen (1993), Leybourne and McCabe (1994), and Tam and Reinsel
(1997, 1998), among others. These tests can also be viewed as tests for unit roots in the
generalized AR operator @(B) in the sense that if one performs the differencing and then
concludes that the MA operator does not have a unit root, then the unit root in the AR
operator is supported.

Deterministic components implied by the cancellation of factors could be estimated
directly by a combination of regression models and ARIMA time series methods, as will
be discussed in Section 9.5. An additional consequence of the presence of deterministic
factors for forecasting is that at least some of the coefficients b in the general forecast
function 2,(!) for z,,; in (5.3.3) will not be adaptive but will be deterministic (fixed)
constants. Results such as those described above concerning the relationship between
common factors in the generalized AR and the MA operators of ARIMA models and the
presence of deterministic polynomial and sinusoidal components have been discussed by
Abraham and Box (1978), Harvey (1981), and Bell (1987).

9.4.3 Estimation of Unobserved Components in Structural Models

A common problem of interest for the structural model is the estimation of the unobservable
series .S, from values of the observed series z,. We suppose that S, and z, are stationary
processes with zero means and autocovariance functions y (/) = E[S;S,,] and y,(I) =
E[z,z,,1], and cross-covariance function y, (/) = E[S,z,,,]. Then, specifically, suppose
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we observe the values z;,7 < 7, and want to determine the linear filter
(69
S, = Z vz, =07 (B)z, (9.4.7)
u=0

of {z,} such that the value S, is close to .S, in the mean square error sense, that is,
E[(S, — $,)%] is a minimum among all possible linear filters. A typical model for which
this problem arises is the ‘‘signal extraction’’ model, in which there is a signal .S, of interest,
but what is observed is a noise-corrupted version of the signal so that

z,=S8,+N,

where N, is a noise component. The problem then is to estimate values of the signal series .S,
given values on the observed series z;. Often, the filtering and smoothing algorithms for the
state-space model, as discussed in Section 5.5.3, can be applied to this situation. However,
while these algorithms are computationally attractive in practice, explicit expressions for
the coefficients vff) in (9.4.7) cannot usually be obtained directly from the state-space
algorithms. These expressions can be derived more readily in the ‘‘classical’’ approach,
which assumes that an infinite extent of observations is available for filtering or smoothing.
This section provides a brief overview of some classical filtering and smoothing results
that can be used to study the coefficients in (9.4.7). Typically, from a practical point of
view, the classical results provide a good approximation to exact filtering and smoothing
results that are based on a finite sample of observations z1, ..., z,.

Smoothing and Filtering for Time Series. We suppose that {z,} has the infinite MA
representation

oo

z, =y(B)a, = z Via_;
Jj=0

where the a, are white noise with variance 0'5. Also, let g,(B) = Z;’;_oo ¥.5(j) B’ be the
cross-covariance generating function between z, and ;. Then, it can be derived (e.g.,
Whittle, 1963, Chapters 5 and 6; Priestley, 1981, Chapter 10) that the optimal linear filter
for the estimate S, = >'°° vz, = v (B)z,, where v”(B) = Yoo " B, is given by

B*! B
O(B) = — I [ g“f )] (9.4.8)
oow(B) | w(B™) |4
Here, for a general operator v(B) = Z;’;_w v; B/, the notation [v(B)] + is used to denote

>* v B
j=0"J

To derive the result (9.4.8) for the optimal linear filter, note that, since z, = y(B)a;, the
linear filter can be expressed as

S, = v(B)z, = v (B)y(B)a, = h'”(B)a,

where A(B) = v(9(B)y(B) = Z;io h;T)Bj. Then, we can determine the coefficients h;T)

to minimize the mean squared error E[(S, — S,)2] = E[(S, — Z;io h;.r)ar_ 7. Since the
{a,} are mutually uncorrelated, by standard linear least-squares arguments the values of
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the coefficients that minimize this mean squared error are

(r) _ COV[aT—j’ Sl‘] _ J/as(j +t—1)

= j >0
J var[a,_;] o—g /=
Hence, the optimal linear filter is
1 w 1
HOB) = = X vai +1= DB = —[B™ g, (B, (9.4.9)
a j=0 a

where g,.(B) denotes the cross-covariance generating function between a; and S,.
Also, note that y,,(j) = cov[ X2 Wiay_;» Sy ;1 = Do Wives(i +.j), so it follows that
g,,(B) = y/(B‘l)gas(B). Therefore, the optimal linear filter in (9.4.9) is h(B) =
(1/63)[B" g, (B)/w(B~1)],, and, hence, the optimal filter in terms of S, = v(”(B)z,
is 0(B) = h(B)/w(B), which yields the result (9.4.8). The mean squared error of the
optimal filter, since S, = Z;io h;.r)ar_ ;» 18 easily seen from the above derivation to be

oo

E[(S, - $)%] = E[S] - E[8?] = var[S,] 62 ) {hﬁ.’)f

Jj=0

In the smoothing case where 7 = 400, that is, we estimate .S, based on the infinite record
of observations z,,, —co < u < o0, by alinear filter S, = >°? v,z , = v(B)z,, the result
(9.4.8) for the optimal filter reduces to

_ 8.5(B) _ 8.5(B)
gzz(B) Ggll/(B)W(B_l)

u(B) 9.4.10)

For the signal extraction problem, we have z, = S, + N,, where it is usually assumed that
the signal {.S;} and the noise process {N,} are independent. Thus, in this case we have
g,,(B) = g,,(B), and so in the smoothing case 7 = +o0, we have v(B) = g,(B)/g,,(B) or
0(B) = g,5(B)/[8,5(B) + gun(B)].

Smoothing Relations for the Signal Plus Noise or Structural Components Model. The
preceding results can be applied specifically to the model z, = S; + N,, where we assume
that the signal process {.S,} and the noise process { IV, } are independent and satisfy ARMA
models, ¢,(B)S; = 6,(B)b; and ¢,(B)N; = 6,,(B)c;, where b, and c, are independent white
noise processes with variances 6> and 062. It follows from Appendix A4.3 that the observed
process z, also satisfies an ARMA model ¢(B)z, = 8(B)a,, where ¢(B) = ¢ (B)¢,(B),
assuming no common factors in the AR operators. It then follows that the optimal lin-
ear “‘smoother”” S, = Y v,z , = 0(B)z, of S,, based on the infinite set of values

U=—00
z,,—00 < u < o0, has a filter given by

_ 8,(B) 0, ¢(B)H(B~)0,(B)O,(B™)

B) = =
B = B 220B0B Ve, (Brg B

(9.4.11)

In practice, since the series .S, and N, are not observable, the models for .S, and N, would
usually not be known. Thus, the optimal filter would not be known in practice. However, by
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developing a model for the observed series z, and placing certain restrictions on the form of
the models for .S; and N, beyond those implied by the model for z,, e.g., by assuming N, is
white noise with the largest possible variance, one may obtain reasonable approximations
to the optimal filter o(B). While optimal smoothing results, such as (9.4.10), have been
derived for the case where S, and N, are stationary processes, Bell (1984) showed that the
results extend to the nonstationary case under reasonable assumptions for the nonstationary
signal .S, and noise N, processes.

As noted earlier, an alternative to the classical filtering approach in the structural com-
ponents models is to express the model in state-space form and use Kalman filtering and
smoothing techniques to estimate the components, as illustrated, for example, by Kitagawa
and Gersch (1984). For further discussion of this approach, see also Harvey (1989) and
Durbin and Koopman (2012).

Seasonal Adjustments. The filtering and smoothing methods described above have appli-
cations to seasonal adjustments of economic and business time series (i.e., estimating and
removing the seasonal component from the series). Approaches of the type discussed were
used by Hillmer and Tiao (1982) to decompose a time series uniquely into mutually inde-
pendent seasonal, trend, and irregular components. A model-based approach to seasonal
adjustments was also considered by Cleveland and Tiao (1976). Seasonal adjustments are
commonly performed by statistical agencies in the U.S. and elsewhere, and the methods
used have received considerable attention in the literature. For an overview and further dis-
cussion, see, for example, Ghysels and Osborn (2001, Chapter 4), Bell and Sotiris (2010),
Chu, Tiao, and Bell (2012), and Bell, Chu, and Tiao (2012).

9.5 REGRESSION MODELS WITH TIME SERIES ERROR TERMS

The previous discussion of deterministic components in Section 9.4.2 motivates considera-
tion of time series models that include regression terms such as deterministic sine and cosine
functions to represent seasonal behavior or stochastic predictor variables, in addition to a
serially correlated ‘‘noise’” or error term. We will assume that the noise series N, follows
a stationary ARMA process; otherwise, differencing may be need to be considered. Thus,
letting w, be a “‘response’’ series of interest, we wish to represent w; in terms of its linear
dependence on k explanatory or predictor time series variables x,q, ..., x,; as follows:

W, =Xy + Poxp+ -+ Bxu+ N, t=1,...n (9.5.1)

where the errors N, follow a zero-mean ARMA(p, ¢q) model, ¢(B)N, = 6(B)a,. The tradi-
tional linear regression model was reviewed briefly in Appendix A7.2. Using similar nota-
tions with w = (wy, ..., w,), N =(Ny,...,N,),and B = (§,, ..., ), the model (9.5.1)
may be written in matrix form as w = X + N, and with covariance matrix V = cov[N1].
In the standard regression model, the errors N, are assumed to be uncorrelated with
common variance 612\[, so that V = UJZVI, and the ordinary least squares (LS) estimator
p= (X'X)"'X'w has well-known properties such as cov[f] = GIZV(X, X)~!. However, in
the case of autocorrelated errors, this property no longer holds and the ordinary least-squares
estimator has covariance matrix

cov[f] = X'X) X' VX(X'X) ™!

Moreover, standard inference procedures based on the # and F distributions are no longer
valid due to the lack of independence.
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When cov[N] =V # 6]2VI, the best linear unbiased estimator of B is the generalized
least-squares (GLS) estimator given by

B =XVIX)TIX'Vlw (9.5.2)

which has cov[ﬁG] = (X’V™'X)~!. The estimator ﬁG is the best linear unbiased estimator
in the sense that var[c’ ﬁG] is a minimum among all possible linear unbiased estimators
of B, for every arbitrary k-dimensional vector of constants ¢’ = (¢, ..., ¢;); in particular,
var[c’ ﬁG] < var[c/ ﬁ] holds relative to the ordinary LS estimator ﬁ It follows that ﬁG
in (9.5.2) is the estimate of f obtained by minimizing the generalized sum of squares
SP;V)=(w-— Xﬂ)’V‘l(w — Xp) with V given. This estimator also corresponds to the
maximum likelihood estimator under the assumption of normality of the errors when the
covariance matrix V is known. Of course, a practical limitation to use of the GLS estimate
/§G is that the ARMA noise model and its parameters ¢ and 6 needed to determine V must
be known, which is typically not true in practice. This motivates an iterative model building
and estimation procedure discussed below.

9.5.1 Model Building, Estimation, and Forecasting Procedures for Regression
Models

When a regression model is fitted to time series data, one should always consider the
possibility that the errors are autocorrelated. Often, a reasonable approach to identify an
appropriate model for the error N, is first to obtain the least-squares estimate ﬁ, and then
compute the corresponding regression model residuals

Nt =W — ﬁlxtl - ﬁ2x12 -t ﬂAkxtk (9.5.3)

This residual series can be examined by the usual time series methods, such as inspection
of its sample ACF and PACEF, to identify an appropriate ARMA model for N,. This would
typically be adequate to specify a tentative model for the error term N,, especially when
the explanatory variables x,; are deterministic functions such as sine and cosine functions,
or polynomial terms. In such cases, it is known (e.g., Anderson, 1971, Section 10.2) that
the least-squares estimator for f is an asymptotically efficient estimator relative to the
best linear estimator. In addition, it is known that the sample autocorrelations and partial
autocorrelations calculated using the residuals from the preliminary least-squares fit are
asymptotically equivalent to those obtained from the actual noise series N, (e.g., Anderson,
1971, Section 10.3; Fuller, 1996, Section 9.3).
Hence, the complete model that we consider is

w,=x'B+N, ¢B(1—-B)¥N,=0B)a, t=1,....n 9.5.4)

where x, = (x,;, ... , x,;)'. Estimates of all parameters can be obtained by maximum like-
lihood methods. The resulting estimate for § has the GLS form

N - -1 A
fo=xV'X) XV 'w

A

but where V is replaced by the estimate V obtained from the MLEs <l31, ,¢3p, 91, ,Hq

of the ARMA parameters for N,. Also, cov[ﬁG] ~ X' V_IX)‘I. The estimation can be
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performed iteratively, alternating between calculation of ﬂG for glven estimates ¢ and 0,
and reestimation of ¢ and 6, given ﬂG and the estimated noise series N =w,—x ﬂG

Transformed Model. With the ARMA model specified for N,, the computation of the
generalized least-squares estimator of ff can be carried out in a computationally convenient
manner as follows. Let P’ be a lower triangular matrix, such that P’VP = agl, that is,
v-l=pP/ og. Then, as in Appendix A7.2.5, the GLS estimator can be obtained from the
transformed regression model

Pw=PXB+PN (9.5.5)

orw* = X*B + a, where the transformed variables are w* = P'w, X* = P’X,anda = P'N.
Since the covariance matrix of the error vector a = P’ N in the transformed model is

covla] = P'cov[N]P = P'VP = 6’1

we can now use ordinary least-squares to estimate f in the transformed model. That is, the
GLS estimator of f is obtained as the LS estimator in terms of the transformed variables
w* and X* as

Bo = X'X)7TXw' with  covifgl = c2(X'X) (9.5.6)

However, since the ARMA parameters for N, are not known in practice, one must
still iterate between the computation of f; using the current estimates of ¢ and 0 to

form the transformation matrix f’,, and estimation of the ARMA parameters based on
N, =w, - x! B constructed from the current estimate of . The computational procedure
used to determine the exact sum-of-squares function for the specified ARMA model will
also essentially determine the nature of the transformation matrix P’. For instance, the
innovations algorithm described in Section 7.4 gives the sum of squares for an ARMA
model as S(¢, 0) = aﬁw’V‘lw =¢'Dle, where e = G_1L¢W and D = diag(vy, ... ,v,),
and G and Ly are specific lower triangular matrices. Hence, the innovations algo-
rithm can be viewed as providing the transformation matrix P’ = D~V 2G_1L¢ such that

wt =D/ 2G_lLd)w = P'w has covariance matrix of the ‘‘standard’’ form

cov[w*] = P'cov[w]P = D™/2G 'L cov[WIL),G'~' D™/ = 571

Therefore, the required transformed variables w* = P'w and X* = P’X in (9.5.6) can
be obtained by applying the innovations algorithm recursive calculations (e.g.,(7.4.9)) to
the series w = (wy, ..., w,) and to each column, X; = (Xypr . r X)) s i =1,..., k, of the
matrix X.

Example. We take the simple example of an AR(1) model, (1 — ¢ B)N, = a,, for the noise
N,, for illustration. Then the covariance matrix V of N has (i, j)th element given by
Viej = o2¢li=71 /(1 — ¢?). The n x n matrix P’ such that P"VP = ¢ I has its (1, 1) element

equal to (1 — ¢>2)1/ 2, its remaining diagonal elements equal to 1, its first subdiagonal
elements equal to —¢, and all remaining elements equal to zero. Hence, the transformed
variables are w} = (I — )" 2w, and w' = w, — pw,_;,t = 2,3, ..., n, and similarly for
the transformed explanatory variables x7;. In effect, with AR(1) errors, the original model
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(9.5.1) has been transformed by applying the AR(1) operator (1 — ¢ B) throughout the
equation to obtain

w; — pwi_y = Pr(x — dxi—1,1) + Po(xp — Ppxi_12) + -
+ B — dx_1 1) + a4 (9.5.7)

or, equivalently, wj = f,x7, + p,x7, + - + fx}, + a,, where the errors a, now are uncor-
related. Thus, ordinary least-squares applies to the transformed regression model, and the
resulting estimator is the same as the GLS estimator in the original regression model.

Generalization of the transformation procedure to higher order AR models is
straightforward. Apart from special treatment for the initial p observations, the trans-
formed variables are w; = ¢(B)w, = w, — pjw,_y — - — p,w,_, and x}; = ¢(B)x,; =
Xpj— D1 Xy ;= = PpX_p;s i =1,... k. The exact form of the transformation in the
case of mixed ARMA models will be more complicated [an approximate form is
w; =~ O_I(B)d)(B)w,, and so on] but can be determined through the same procedure as
is used to construct the exact sum-of-squares function for the ARMA model.

Forecasting. Forecasting for regression models with time series errors is straightforward
when future values x,,,; of the explanatory variables are known, as would be the case
for deterministic functions such as sine and cosine functions, for example. Then, based on
forecast origin ¢, the lead / forecast of

Wi = P1Xppn + o+ BeXpg e+ Nigy

based on past values through time ¢, is
Wi(1) = Byxpay + PaXiaip + o + BeXpars + No(D) 9.5.8)

where N,(l) is the usual /-step-ahead forecast of N,,; from the ARMA(p,q) model,
¢(B)N, = 0(B)a,, based on the past values of the noise series N,. The forecast error
is
I-1
e;() = wyy — ()= Ny — N() = Z Vil 9.5.9)
i=0

with V' (I) = var[e,(/)] = 0'3 Zf;(l) t//l.2 , just the forecast error and its variance from the ARMA

model for the noise series N,, where the y; are the coefficients in y(B) = ¢~ 1(B)O(B) for
the noise model.

Example. For the model

2t . (2mt
w, = Py + P cos <E> + f, sin (E) + N,
where (1 — ¢ B)N, = a,, the forecasts are
2n(t+1 |27+ 1 ~
w,(l) = fy + B, cos [%] + f, sin [”(T)] + N,()

with ]\7,(1) = ¢ N,. Note that these forecasts are similar in functional form to those that
would be obtained in an ARMA(1, 3) model (with zero constant term) for the series
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(1-B)(1- \/5 B + B*)w,, except that the f§ coefficients in the forecast function for the
regression model case are deterministic, not adaptive, as was noted at the end of Section
9.4.2.

In practice, estimates of f and the time series model parameters would be used to obtain
the estimated noise series N, from which forecasts of future values would be made. The
effect of parameter estimation errors on the variance of the corresponding forecast error was
investigated by Baillie (1979) for regression models with autoregressive errors, generalizing
a similar study by Yamamoto (1976) conducted for pure autoregressive models.

More detailed discussions of regression analysis with time series errors are given by
Harvey and Phillips (1979) and by Wincek and Reinsel (1986), who also consider the
possibility of missing data. A state-space approach with associated Kalman filtering calcu-
lations, as discussed in Section 7.4, can be employed for the regression model with time
series errors, and this corresponds to one particular choice for the transformation matrix
P’ in the above discussion. A specific application of the use of regression models with
time series errors to model calendar effects in seasonal time series was given by Bell and
Hillmer (1983), while Reinsel and Tiao (1987) used regression models with time series
errors to model atmospheric ozone data for estimation of trends.

One common application of regression models for seasonal time series is where season-
ality can be modeled as a deterministic seasonal mean model. Then, for monthly seasonal
data, for example, we might consider a model of the form

6
2z jt . [ 2xjt
z, = Py + Z [ﬂlj Cos (—) +ﬂ2j sin <—>
st 12 12

where N, is modeled as an ARIMA process. As an example, Reinsel and Tiao (1987)
consider the time series z; of monthly averages of atmospheric total column ozone measured
at the station Aspendale, Australia, for the period from 1958 to 1984. This series is highly
seasonal, and so in terms of ARIMA modeling, the seasonal differences w, = (1 — Blz)z,,
were considered. Based on the sample ACF and PACF of w;,, the following model was
specified and estimated,

+N, (9.5.10)

(1-0.48B—0.22B*)(1 — B'?)z, = (1 - 0.99 B'?)q,

and the model was found to be adequate. We see that this model contains a near-common
seasonal difference factor (1 — B'2), and consequently, it is equivalent to the model that
contains a deterministic seasonal component, z, = S, + N,, of exactly the form given
in (9.5.10), and where N, follows the AR(2) model, (1 — 0.48B — 0.22B?)N, = a,. This
model was estimated using regression methods similar to those discussed above.

Sometimes, the effects of a predictor variable {x, } on z; are not confined to a single time
period ¢, but the effects are more dynamic over time and are ‘‘distributed’’ over several
time periods. With a single predictor variable, this would lead to models of the form

2, = Po+ Bix; + Byxiy + P3x; o+ + Ny

where N, might be an ARIMA process. For parsimonious modeling, the regression coeffi-
cients f; can be formulated as specific functions of a small number or unknown parameters.
Such models are referred to as transfer function models or dynamic regression models, and
will be considered in detail in Chapters 11 and 12.
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Remark. Note that regression models with autocorrelated errors can be fitted to data using
the arima() function in R with an argument Xreg added to account for regression terms;
type help(arima) for details. For further discussion, see also Venables and Ripley (2002).
An alternative available in the MTS package of R is the function tfm1() that can be used
to fit a regression model with a single input variable X,. We demonstrate the use of this
function to develop a dynamic regression model in Chapter 12. A similar function which
allows for two input series is also available in the MTS package of R.

9.5.2 Restricted Maximum Likelihood Estimation for Regression Models

A detracting feature of the maximum likelihood estimator (MLE) of the ARMA parameters
in the linear regression model (9.5.1) is that the MLE can produce a nonnegligible bias for
small to moderate sample sizes. This bias could have significant impact on inferences of the
regression parameters B based on the GLS estimation, through the approximation
cov|[ ﬁ gl = (X'V-1X)~!, where V involves the ML estimates of the ARMA parameters. One
“‘preventive’’ approach for reducing the bias is to use the restricted maximum likelihood
(REML) estimation procedure, also known as the residual maximum likelihood estimation
procedure, for the ARMA model parameters.

The REML method has been popular and commonly used in the estimation of variance
components in mixed-effects linear models. For ARMA models, this procedure has been
used by Cooper and Thompson (1977) and Tunnicliffe Wilson (1989), among others.
Cheang and Reinsel (2000, 2003) compared the ML and REML estimation methods, and
bias characteristics in particular, for time series regression models with AR and ARMA
noise (as well as fractional ARIMA noise, see Section 10.4). They established approximate
bias characteristics for these estimators, and confirmed empirically that REML typically
reduces the bias substantially over ML estimation. Consequently, the REML approach
leads to more accurate inferences about the regression parameters.

The REML estimation of the parameters in the ARMA noise models differs from the
ML estimation in that it explicitly takes into account the fact that the regression parameters
p are unknown and must be estimated (i.e., estimation of ARMA parameters relies on
the residuals N, = w, — x/ B rather than the *‘true’” noise N, = w, — x/f). In the REML
estimation method, the estimates of ¢, 8, and 0'2 are determined so as to maximize the
restricted likelihood function. This is the likelihood function based on observation of
the “‘residual vector’’ of error contrasts u = H'w only, whose distribution is free of the
regression parameters f, rather than the likelihood based on the ‘full” vector of observations
w. Here, H' is any (n — k) X n full rank matrix such that H'X = 0, so the regression effects
are eliminated in u = H'w and its distribution is free of the parameters .

Assuming normality, the distribution of w is normal with mean vector E(w) = Xf and
covariance matrix cov[w] =V, which we write as V = GZV* for convenience of notation.
Then, u = H'w has normal distribution with zero mean vector and covariance matrix
covlu] = agH’V*H. Thus, the likelihood of ¢, 6, and 0'3 based on u, that is, the density of
u, is

p(ul,0,0%) = 2ro?) "RV, H| T2 exp l—%u’(H'V*H)_lu]
(o}

a
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It has been established (e.g., Harville, 1974, 1977), however, that this likelihood (i.e.,
density) can be expressed in an equivalent form that does not involve the particular choice
of error contrast matrix H' as

L.($.0.07) = p(u|¢, 6, 02)

2. —(n—k)/2

= 2762 IX'X|'2|v,|1/2

xIX'VIX| T exp l—zl—ZS(BG,q;, 9)] (9.5.11)
(0}
a

where

S(Bg. 9,0 = (Ww—XPg) V. (w-XBg)
= WV - VIIXXVIIX) T XV Dw

and B = (X,V;IX)_IX,V;IW. Evaluation of the restricted likelihood (9.5.11) requires
little additional computational effort beyond that of the ‘‘full’’ likelihood, only the ad-
ditional factor | X’ V;1X|. Therefore, numerical determination of the REML estimates of
¢, 0, and GZ is very similar to methods for ML estimation of the ARMA model parameters.
However, one difference is that the REML estimate of ‘73 takes into account the loss in
degrees of freedom that results from estimating the regression parameters and is given
by 62 =SB, $.0)/(n— k) as opposed to S(Bg. ¢, 0)/n for the ML estimate, although
arguments can be put forth for use of the divisor n — k — p — g rather than n — k in the
REML estimate 63. For further discussion and details related to REML estimation, see
Tunnicliffe Wilson (1989) and Cheang and Reinsel (2000, 2003).

APPENDIX A9.1 AUTOCOVARIANCES FOR SOME SEASONAL MODELS

See the following Table A9.1:



TABLE A9.1 Autocovariances for Some Seasonal Models

Model (Autocovariances of w,) /! f;f Special Characteristics
(1w, = (1-0B)1 - OB)q, 7o=(1L+07)(1+62) (@) Fomt =Zn
w, = a, =04, — Oa,_,+90a,_,_, n=-(1+6) () pomt = by = 1104
523 Yoo = 00
7, =—06(1 +0%)
Vsl = Vs-1

All other autocovariances are zero.

(2) (1 - ®B*)w, = (I - 6B)(1 - OB*)a, 7o=0+0%[1 +(©—- 0P x(1- )] (@) 7oe1 = 7ot
w, — Ow,_, = a,— fa,_, — Oa,_, + 00a,_,_, n=-0[1+O-®Px(1-0)"] By, =y, j25+2
523 7o =00 — D — DO - OF x (1 - D]
7o=—(1+67)[0 - - 0O - PP x (1 -]

Vo4l = Vst
7, =Py j2s+2

Fors > 4,75.73,. , are all zero.
3)w,=(1-6,B—16,B%) 7o=(1+62+02)(1 +©2 +0})

X(1-0,B° - 0,B")q, 71 =—0,(1-6,)(1+ 6} +6})

w,=a,—6,a,, —0ha,, —Oa,_, 7 =-6,(1+06] +6))
+0,04,_,; +0,000a,_, Y2 =0,0,(1-0,) () 73521 = V2o
=00, 5, + 6,030, 751 = 010,(1 = 6,)(1 - ©,)
+0200,5, 7o = =041 = ©,)(1 + 07 +63)

s>5 Tsr1 = Vsm1

V252 = 0,0,
Va5m1 = 01(1 - 6,)0,
72 = =0y (1 +67 +62)

T2s41 = 2521
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TABLE A9.1  (continued)

Model

(Autocovariances of w,)/o? Special Characteristics

(3a) Special case of model 3
w,=(1-06,B - 0,B%)(1 - ©B°)q,
w, =a,—6,a,_, — 0,a,, - Oa,_,

+6,0a,_,_, + 6,04,

s s-2

s25

(3b) Special case of model 3
w,=(1-6B)(1-06,B - 9232‘)11,
w,=a,—6a,_, —©,a,_,+00a,_,,

=054, + 00,8, 5,
=3

@ w,=(1-6,B-0B -0, B*)a,
w, = a,—01a, =04, = 0,410,y

s2>3

T2e42 = V252

All other autocovariances are zero.

70=(1+6} +03)(1+6%) @) 752 = Y2
7 ==0,(1-6))(1+6%) (OF AT S

Vss2 = V52
All other autocovariances are zero.

70=(1+06°)(1 +6] +6}) @71 =on
n=-0(1+6;+6}) (®) 2021 = Voot
=00,(1-6,)

—-0,(1-0,)(1+6%)

V2541 = V251

All other autocovariances are zero.

ro=1+67+62+062, (a) In general,
n=-6+6,6,, Voot # Tont
Voot = 018, Nls # Tont
75 ==0, 4616,

Tort = bt

All other autocovariances are zero
(continued)
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TABLE A9.1 (continued)

Model

(Autocovariances of w,)/o?

Special Characteristics

(4a) Special case of model 4
w,=(1-0B-0B)a,
w,= g, G0, — 0,6,
s23

(5)(1-®Bw, =(1-0,B-0,B°

1
Oy B e,

W, = Ow,_ = a,—0,a,_, —0;a,.,
~Og1Gig

23

(5a) Special case of model S
(1= ®BYw, = (1-0,B - 6,B)a
w, = dw,_ =a — 6,0, —bsa,_,

w23

ro=1+6+6?

n=-6
Vo1 = 0,6,
7, =—b,

All other autocovariances are zero.
O, —®P (0, +6,®)
=140
1o [ -
0, - ®)0,,, +6,9)
1- a2
Lol e,ﬂ

n=-6+

1—a?

[ 0,—®
vy==0,-®)(1-®

Vo1 = (0, = @) [91

+(6

sl

9}
+6,®) [sl +® ;‘7 =

6,-®
Tont == +6,9) |1 =@

=0y j2s+2
For s > 4,7y. ... 7,_ are all zero.

0} + (0, — o7

=1+ -
g -
7 =6, [17@
_ 06, -9
)
DT — (6, — D)(1 — DY)
RS
Dy j2s+1

For s > 4,73, ..., 7,5 are all zero.

-0,

(a) Unlike model 4,

71 =0

@) 7ot # Zon

Bz, =@y, j2zs+2

(a) Unlike model 5,

71 = P1y
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EXERCISES

9.1.

9.2.

9.3.

Show that the seasonal difference operator 1 — B!2, often useful in the analysis of
monthly data, may be factorized as follows:

(1-B2)y=(1+B)(1-V3B+B>(1-B+B>(1+B(1+B+B
x(1+V3B+ BY)(1 - B)

Plot the zeros of this expression in the unit circle and show by actual numerical
calculation and plotting of the results that the factors in the order given above
correspond to sinusoids with frequencies (in cycles per year) of 6, 5,4, 3, 2, 1, together
with a constant term. [For example, the difference equation (1 — B + B?)x, = 0 with
arbitrary starting values x; =0,x, =1 yields x3 =1,x4, = 0,x5 = —1, and so on,
generating a sine wave of frequency 2 cycles per year.]

A method that has sometimes been used for ‘‘deseasonalizing’” monthly time series
employs an equally weighted 12-month moving average:

El‘ = L(Zt + Zi + -+ Zl‘—ll)
12

(a) Using the decomposition (1 — B'?) = (1 — B)(1 + B+ B> + --- + B'!), show
that 12(z, — z,_,) = (1 — B'?)z,.

(b) The exceedance for a given month over the previous moving average may be
computed as z, — z,_;. A quantity u, may then be calculated that compares the
current exceedance with the average of similar monthly exceedances experienced
over the last k years. Show that u, may be written as

B l_BIZ B121_Bl2k
=(1-— ] — —
“ < 121—B>< k 1—312)2’

It has been shown (Tiao et al., 1975) that monthly averages for the (smog-producing)
oxidant level in Azusa, California, may be represented by the model

(1-B"%)z,=(1+02B)(1-09B"%a, ¢2=1.0

(a) Compute and plot the y; weights of this model.
(b) Compute and plot the z; weights of this model.

(¢) Calculate the standard deviations of the forecast errors 3 months and 12 months
ahead.

(d) Obtain the eventual forecast function.
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94.

9.5.

9.6.

9.7.

9.8.

ANALYSIS OF SEASONAL TIME SERIES

The monthly oxidant averages in parts per hundred million in Azusa from January
1969 to December 1972 were as follows:

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1969 21 26 41 39 67 51 78 93 75 41 29 26
1970 20 32 37 45 61 65 87 091 81 49 36 20
1971 24 33 33 40 36 62 77 68 58 41 30 1.6
1972 19 3.0 45 42 48 57 71 48 42 23 21 1.6

Using the model of Exercise 9.3, compute the forecasts for the next 24 months.
(Approximate unknown a’s by zeros.)

Thompson and Tiao (1971) have shown that the outward station movements of
telephones (logged data) in Wisconsin are well represented by the model

(1-05B%1 - Bz, =(1-02B°-03B"2-0.2B")q,

Obtain and plot the autocorrelation function of w, = (1 — Blz)z, forlags 1,2, ...,24.

Consider the airline series analyzed earlier in this chapter. We have seen that the

logarithm of the series is well represented by the multiplicative model w, = (1 —

0B)(1 - ©,B'%)q,

(a) Compute and plot the 36-step-ahead forecasts and associated +2 forecast error
limits for the logged series.

(b) Use theresults in part (a) to obtain 12-step-ahead forecasts and associated forecast
error limits for the original series. Plot the results.

Quarterly earnings per share of the U.S. company Johnson & Johnson are available
for the period 1960-1980 as series *JohnsonJohnson’ in the R datasets package.

(a) Plot the time series using the graphics capabilities in R.
(b) Determine a variance stabilizing transformation for the series.

(c) Plot the autocorrelation functions and identify a suitable model (or models) for
the series.

(d) Estimate the parameters of the model (or models) identified in part (c) and assess
the statistical significance of the estimated parameters.

(e) Perform diagnostic checks to determine the adequacy of the fitted model.

(f) Compute and plot the /-step-ahead forecasts and associated two-standard-error
prediction limits, / = 1, ... , 4, for this series.

Monthly Mauna Loa atmospheric CO, concentration readings for the period

1959-1997 are available as series ‘co,’ in the R datasets package.

(a) Plot the time series and comment on the pattern in the data.

(b) Examine the autocorrelation structure and develop a suitable time series model
for this series.

(¢) Compute and plot the 12-step-ahead forecasts and associated two-standard-error
prediction limits.
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9.9. A time series representing the total monthly electricity generated in the United States

9.10.

9.11.

9.12.

(in millions of kilowatt-hours) for the period January 1970 to December 2005 is

available as series ‘electricity’ in the R TSA package.

(a) Plot the series and comment. Is a variance stabilizing transformation needed for
this case?

(b) Determine a suitable model for the series following the iterative three-stage pro-
cedure of model identification, parameter estimation, and diagnostics checking.

(c) Is there evidence of a deterministic seasonal pattern in this series? If so, how
would this impact your choice of model for this series?

Consider the time series model w; = f, + N, where N, follows the AR(1) model

N, = ¢N,_; + a,. Assume that a series of length » is available for analysis.

(a) Assuming that the parameter ¢ is known, derive the generalized least-squares
estimator of the constant f in this model.

(b) Repeat the derivation in part (a) assuming that N, follows the seasonal AR model
Nt = ¢4Nt—4 + a;.

Suppose the quarterly seasonal process {z,} is represented as z, = .S; + a,,;, where
S, follows a ‘‘seasonal random walk>> model (1 — B*)S, = 6, + ay,, and a;, and
a,, are independent white noise processes with variances 631 and 0'52, respectively.
Show that z, follows the seasonal ARIMA model (1 — B4)zt =0+ (- ®B4)a,,
and determine expressions for ® and 0'5 in terms of the variance parameters of the
other two processes. Discuss the implication if the resulting value of ® is equal (or

very close) to one, with regard to deterministic seasonal components.

Monthly averages of hourly ozone readings in downtown Los Angeles for the period
from January 1955 to December 1972 are included as Series R in Part 5 of this book;
see also http://pages.stat.wisc.edu/reinsel/bjr-data/.

(a) Plot the time series and comment.

(b) Develop a suitable time model for this time series. Discuss the adequacy of the
selected model.
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ADDITIONAL TOPICS AND EXTENSIONS

In previous chapters, the properties of linear autoregressive—moving average models have
been examined extensively and it has been shown how these models can be used to
represent stationary and nonstationary time series that arise in practice. This chapter will
discuss additional topics that either supplement or extend the material presented in earlier
chapters. We begin by discussing unit root tests that can be used as a supplementary tool
to determine whether a time series is unit root nonstationary and can be transformed to a
stationary series through differencing. This topic is discussed in Section 10.1. Unit root
testing has received considerable attention in the econometrics literature, in particular,
since it appears to be a common starting point for applied research in macroeconomics. For
example, unit root tests are an integral part of the methodology used to detect long-term
equilibrium relationships among nonstationary economic time series, commonly referred
to as cointegration. In Section 10.2, we consider models for conditional heteroscedastic
time series, which exhibit periods of differing degrees of volatility or variability depending
on the past history of the series. Such behavior is common in many economic and financial
time series, in particular. In Section 10.3, we introduce several classes of nonlinear time
series models, which are capable of capturing some distinctive features in the behavior of
processes that deviate from linear Gaussian time series. Finally, Section 10.4 looks at models
for long memory processes, which are characterized by the much slower convergence to
zero of their autocorrelation function p, as k — oo compared with the dependence structure
of ARMA processes.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
© 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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10.1 TESTS FOR UNIT ROOTS IN ARIMA MODELS

As discussed in earlier chapters, the initial decision concerning the need for differencing
is based, informally, on characteristics of the time series plot of z, and of its sample
autocorrelation function. In particular, a failure of the autocorrelations r; to dampen out
sufficiently quickly would indicate that the time series is nonstationary and needs to
be differenced. This can be evaluated further using formal tests for unit roots in the
autoregressive operator of the model. Testing for unit roots has received considerable
attention in the time series literature motivated by econometric applications, in particular.
Early contributions to this area include work by Dickey and Fuller (1979, 1981). These
authors proposed tests based on the conditional least-squares estimator for an autoregressive
process and the corresponding ‘‘¢-statistic.”” While the underlying concepts are fairly
straightforward, a number of challenges arise in practice. In particular, the distribution
theory for parameter estimates and associated test statistics developed for stationary time
series do not apply when a unit root is present in the model. The asymptotic distributions
are functions of standard Brownian motions and do not have convenient closed-form
expressions. As a result, the percentiles of the distributions needed to perform the tests
have to be evaluated using numerical approximations or by simulation. Moreover, the form
of the test statistics and their asymptotic distributions are impacted by the presence of
deterministic terms such as constants or time trends in the model. The size and power
characteristics of unit root tests can also be a concern for shorter time series. This section
provides a brief description of the tests proposed by Dickey and Fuller and summarizes
some of the subsequent developments. For a more detailed discussion of unit root testing,
see, for example, Hamilton (1994) and Fuller (1996). Reviews of unit root tests and their
applications are provided by Dickey et al. (1986), Pantula et al. (1994), Phillips and Xiao
(1998), and Haldrup et al. (2013), among others.

10.1.1 Tests for Unit Roots in AR Models

Simple AR(1) Model. To introduce unit root testing, we first examine the simple AR(1)
model z, = ¢z,_| +a,,t =1,2,...,n, with z; = 0 and no constant term. We are interested
in testing the hypothesis that ¢ = 1 so that the series follows a random walk. The conditional
least-squares (CLS) estimator of ¢ is given by

n n
thz Zi-1%4 Z,:z 2419
- s = ¢ + n—2

— =
Zf:z Z ZI=2 2

In the stationary case with |¢| < 1, the statistic n'/2(¢ — ¢) has an approximate normal
distribution with zero mean and variance (1 — ¢?). However, when ¢ = 1, so that z, =

b=

Z;_:}) a,_;+zg in the integrated form, it can be shown that

1 on
n Z;:Q 24144
So~n 2
n Zt=2 211

bounded in probability as n — oo, with both the numerator and denominator possessing
nondegenerate and nonnormal limiting distributions. Hence, in the nonstationary case the
estimator ¢ approaches its true value ¢ = 1 with increasing sample size n at a faster rate
than in the stationary case.

ng-1= =0,()
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The limiting distribution of n((f) — 1) was studied by Dickey and Fuller (1979) who
showed that under the null hypothesis ¢ = 1

2 =1

~ D
n¢p-1)— T

(10.1.1)
where (U, A) = (X2, v2Z2, X2, 212y, Z), withy; = 2(=1)"*1/[(2i — 1)x], and the Z, are
iid N(0, 1) distributed random variables. An equivalent representation for the distribution
is given by

' Bu)d B
n(ds_l)g/ol(u) ()
i Bw)?du

S(B(1Y? = 1)

where B(u) is a (continuous-parameter) standard Brownian motion process on [0, 1]; see
Chan and Wei (1988). Such a process is characterized by the properties that B(0) = 0, in-
crements over nonoverlapping intervals are independent, and B(u + s) — B(s) is distributed
as normal N (0, u). Basically, B(u) is the limit as n — oo of the process

a2 o172

zZ = a
e [nu] P z t

a a r=1

where [nu] denotes the largest integer part of nu, 0 < u < 1.

By the functional central limit theorem (Billingsley, 1999; Hall and Heyde, 1980,
Section 4.2), n=1/ 2z[m,]/ o, converges in law as n — oo to the standard Brownian motion
process { B(u),0 < u < 1}. The random walk model z, = z,_; + a, with z; = 0 implies that

Z,_10; = l(zt2 - ztz_1 - atz), so that

n n D 0_2
Yz, e, = % [n_lzfl -n 'y af] — 7"[)3(1)2 —1] (10.1.3)
=2

D P
since n~'22 = 62(n""/2z, /6,)*— 62B(1)* while n~! Y7 a>— 62 by the law of large
numbers. In addition,

n Uz, 2 > 1
Yz = aj/ ——— ) du+o,(H)— ag/ B(u)*du (10.1.4)
0 0

=2 %a
by the continuous mapping theorem (Billingsley, 1999; Hall and Heyde, 1980, p. 276).
Hence, these last two results establish the representation (10.1.2).

The limiting distribution of n(¢ — 1) described above does not have a closed-form rep-
resentation but it can be evaluated numerically using simulation. Tables for the percentiles
of the limiting distribution are given by Fuller (1996, Appendix 10.A). Fuller also provides
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tables for the limiting distribution of the ‘‘Studentized’’ statistic

~

¢p—1

- (10.1.5)
sa(Xies th—l)_l/z

T =

where 52 = (n —2)"(X]_, 22 — ¢ X, z,_, 2,) is the residual mean square. These results

can be used to test the random walk hypothesis that ¢p = 1. Since the alternative hypothesis
of stationarity is one-sided, the test rejects ¢ = 1 when 7 is sufficiently negative. The test
based on 7 is commonly referred to as the Dickey—Fuller (DF) test in the literature.

Higher Order AR Models. To extend the results to higher order models, we consider a gen-
eralized AR(p + 1) process z, = Zf:ll ®;z; +a, or p(B)z, = a;, where ¢(B) contains
a single unit root so that @(B) = ¢(B)(1 — B) and ¢(B) =1 — Zj;l ¢ij is a stationary
AR operator of order p. Hence,

p
@(B)z, = p(B)(1 = B)z, = 2z, — 2,1 — Z bi(zj -z i)+ g
j=1
Testing for a unit root in @(B) is then equivalent to testing p = 1 in the model

Z, = pzZ; 1+

P
¢j(zt_j - Zt—j—l) + a;

j=1

or equivalently testing p — 1 = 0 in the model

)4
(Z =z =(p= Dz + 2 bz =2y ) + 4
=1

In fact, for any generalized AR(p + 1) model z, = Zf:ll ®;z;_j + a, it is seen that the
model can be written in an equivalent form as

p
w,=(p= Dz + Y b +a, (10.1.6)
j=1

where w, =z, —z,_;, p—1=—¢(1) = Zf: @;—1,and ¢; = Zle @; — 1. Hence, the

existence of a unit root in the AR operator ¢(B) is equivalent to p = Zj’: p; =1

Based on this last form of the model, let (p — 1, <f51, ,(l;p) denote the usual condi-
tional least-squares estimates of the parameters in (10.1.6) obtained by regressing w, on
Zy_y, W1, .- » W;_p, - Then, under the unit root model where p = 1 and ¢(B) is stationary,
it follows from Fuller (1996, Theorem 10.1.2 and Corollary 10.1.2.1) that

" -1/2
B-1/ sa< > z?_1>

t=p+2
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has the same limiting distribution as the Studentized statistic 7 in (10.1.5) for the AR(1)
model, while (n — p — 1)(p — 1)c, where ¢ = Z;i() w; with w(B) = ¢~ Y(B), has approxi-

mately the same distribution as the statistic n(qﬁ — 1) for the AR(1) model. Also, it follows
that the statistic, denoted as 7, formed by dividing (5 — 1) by its estimated standard er-
ror from the least-squares regression will be asymptotically equivalent to the statistic
(- 1)/{sa(2:'=er2 zf_l)‘l/z}, and hence will have the same limiting distribution as the
statistic 7 for the AR(1) case; see Said and Dickey (1984).

The test statistic £ formed from the regression of w, on z,_;, w;_y, ..., w,_, as described
above can thus be used to test for a unit root in the AR(p + 1) model @(B)z, = a;. This
is the well-known augmented Dickey—Fuller (ADF) test. Furthermore, as shown by Fuller
(1996, Theorem 10.1.2), the limiting distribution of the least-squares estimates ((f)l ey ¢3p)
for the parameters of the stationary operator ¢(B) in the model is the same as the standard
asymptotic distribution for least-squares estimates obtained by regressing the stationary
differenced series w;, on wy_yj, ..., w;_,. The estimation results for the stationary AR model
discussed earlier in Section 7.2.6 are therefore valid in this case.

Inclusion of a Constant Term. The results described above extend with suitable modifi-
cations to the more practical case where a constant term 6, is included in the least-squares
regression. Under stationarity, the constant is related to the mean of the process and equals
Op=0—@; = =@, )p = (1 — p)u. The least-squares regression yields a test statistic
analogous to 7 above denoted by 7,,, although the limiting distribution of this test statistic
is derived under the assumption that 6, = 0 under the null hypothesis ¢ = 1. For example,
for the AR(1) model z;, = ¢pz,_; + 6y + a, with 8, = (1 — ¢)u, the least-squares estimator
for ¢ is

5 i Gimt = Z0)G — Z) (10.1.7)

Y] _
27:2(11—1 - 2(1))2

where Z,=(m-1D7'Y",z ;,i=0,1 so that ¢, =¢+X ,(z_, - Z)a,/
Z:’zz (2,4 —Z(l))z. When ¢ =1, the representation for the limiting distribution of

n(cﬁﬂ — 1) analogous to (10.1.2) is given by

! B(u)d Bu) — £B(1
G, — 1y %, T BOBW = £BD) 1018

fi Bw?du — &

where & = fol B(u)du, and it is assumed that 8, = (1 — ¢)u = 0 when ¢ = 1. The corre-

sponding Studentized test statistic for ¢ = 1 in the AR(1) case is

~ qgﬂ -1

T, = - T (10.1.9)
Sal Xy (241 — Zay)°]

The limiting distribution of 7, readily follows from the result in (10.1.8). Tables of per-
centiles of the distribution of 7, when ¢ = 1 are provided by Fuller (1996, p. 642). Note
that under ¢ = 1, since z;, = Z;_:é a,_; + 2 in the truncated random shock or integrated

form, the terms z, — Z, and z,_; — Z(;, do not involve the initial value z,. Therefore, the
distribution theory for the least-squares estimator ¢ ,, does not depend on any assumption
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concerning z,. Also, the results for the first-order AR(1) model with a constant term extend
to higher order autoregressive models in much the same way as it does when the constant
term 6, is absent from the model. The tables developed for the percentiles of the limiting
distribution of statistic %, can thus be used for higher order AR models as well.

The procedures described above are based on conditional LS estimation or equivalently
on the conditional likelihood assuming that the noise term a, follows a normal distribution.
Pantula et al. (1994) studied unconditional likelihood estimation for the AR model with a
unit root. They showed that the limiting distributions of estimators and test statistics for unit
root based on the unconditional likelihood are different from those based on the conditional
approach. For example, in the simple AR(I) model z; = ¢pz,_; + a, with no constant term
included in the estimation, the unconditional log-likelihood is

I(p,02) = —g In(c2) + %m(l - %)

1

202
a

Dz = bz, )P + (1 - ¢z}
t=2

as shown in Appendix A7.4. The unconditional ML estimator (ﬁ, which maximizes [(¢, ag),
is a root of the cubic equation in ) given by (A7.4.20). Pantula et al. (1994) derived the
asymptotic distribution of n(¢p; — 1) and concluded, using Monte Carlo studies, that tests
for unit root in AR models based on the unconditional maximum likelihood estimator
are more powerful than those based on the conditional maximum likelihood estimator for
moderate values of n.

Processes with Deterministic Linear Trend. The asymptotic distribution theory related
to the least-squares estimator ‘i’u in (10.1.7) depends heavily on the condition that the
constant term 6, is zero under the null hypothesis ¢ = 1, since the behavior of the process
z, = z,_1 + 0y + a; differs fundamentally between the cases 6, =0 and 6, # 0. When
6y = 0, the process is a random walk with zero drift. When 6, # 0, the model can be written
as z; = Oyt + zy + u,, where u, = u,_; + a,. The process {z,} is now a random walk with
drift and its long-term behavior in many respects is dominated by the deterministic linear
trend term 6t contained in z,. If 6 has a nonzero value under the hypothesis ¢ = 1, then
n3/2(<73ﬂ — 1) converges in distribution to N (0, 120‘2/93) as n — oo. Thus, when 6 # 0 the
asymptotic normal distribution theory applies to the least-squares estimator ¢ ., and to the
corresponding test statistic %ﬂ. For details, see Fuller (1996, Section 10.1.2) and Hamilton
(1994, Section 17.4).

For a time series that exhibits a persistent trend, it is often of interest to determine whether
the trend arises from the drift term of a random walk or it is due to a deterministic trend added
to a stationary AR(1) model, for example. The previous formulation of the AR(1) model
with nonzero constant z, = ¢z,_; + 6, + a, does not allow this, since when | ¢ |< 1 this
model implies a process with constant mean y = E[z,] = 6,/(1 — ¢), independent of time.
An alternate formulation of the AR(1) model that allows for a deterministic linear time
trend that is not linked to ¢ is

z, = a+ 6yt + u, where u, = du;_ +a; t=1,...,n (10.1.10)

This model has a linear trend with slope 6 # 0 regardless of whether ¢ =1 or ¢ # 1. It
is of interest to note the relation between parameters in this form relative to the previous
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form. Applying the operator (1 — ¢ B) to (10.1.10), the model can be expressed as
z, =@z, +ay+ 6yt +a, (10.1.11)

where ay = a(1 — ¢) + @8, and 6, = 6,(1 — ¢). Hence, in this form ay = 6, and 6, =0
are obtained under ¢ = 1, so that z, = z,_; + 6 + a,. The presence of the linear time trend
in (10.1.10) thus leads to a model with a nonzero constant but a zero coefficient for the
time trend under the null hypothesis ¢ = 1. The constant 6, is referred to as a drift term
and measures the expected change in the series when the time increases by one unit.

A common procedure to test for a unit root in this model is to perform least-squares
estimation with the linear trend term ¢ in addition to the constant included in the regression.
The resulting estimator of ¢, denoted as (f)r, is such that the limiting distribution of n((f)r -
1), under ¢ = 1, does not depend on the value of the constant ay = 6, but still requires
the coefficient 6 of the time variable ¢ to be zero under the null hypothesis. Hence, this
estimator (f)r can be used as the basis of a valid test of ¢ = 1 regardless of the value
of the constant 6. Tables of percentiles of the null distribution of n(q3, — 1) and of the
corresponding Studentized statistic 7, are available in Fuller (1996, p. 642).

Alternative procedures to test ¢ = 1 in the presence of a possible deterministic linear
trend, which are valid regardless of the value of the constant term, have been proposed by
several authors. Bhargava (1986) developed a locally most powerful invariant test for unit
roots. Schmidt and Phillips (1992) used a score (or Lagrange multiplier (LM)) test for the
model (10.1.10), and Ahn (1993) extended this approach to allow for a more general ARMA
model for the noise process u,. Elliott et al. (1996) used a point optimal testing approach
with maximum power against a local alternative for the same model. The power gains were
obtained by a preliminary generalized least-squares (GLS) detrending procedure using a
local alternative to ¢ = 1, followed by use of the least-squares estimate ¢ and corresponding
test statistic 7 obtained from the detrended series. Subsequent contributions to this area
include work by Ng and Perron (2001), Perron and Qu (2007), and Harvey et al. (2009),
among others.

10.1.2 Extensions of Unit Root Testing to Mixed ARIMA Models

The test procedures described above and other similar ones have been extended to testing
for unit roots in mixed ARIMA(p, 1, g) models (e.g., see Said and Dickey (1984, 1985)
and Solo (1984b)), as well as models with higher order differencing (e.g., see Dickey
and Pantula (1987)). Said and Dickey (1984) showed that the Dickey—Fuller procedure,
which was originally developed for autoregressive models of known order p, remains valid
asymptotically for an ARIMA(p, 1, g) model where p and g are unknown. The authors
approximated the mixed model by an autoregressive model of sufficiently high order and
applied the ADF test to the resulting AR model. The approximation assumes that the
lag length of the autoregression increases with the length of the series, n, at a controlled
rate less than n'/3. Phillips (1987) and Phillips and Perron (1988) proposed a number of
unit root tests that have become popular in the econometrics literature. These tests differ
from the ADF tests in how they deal with serial correlation and heteroscedasticity in the
error process. Thus, while the ADF tests approximate the ARMA structure by a high-
order autoregression, the Phillips and Perron tests deal with serial correlation by directly
modifying the test statistics to account for serial correlation. Likelihood ratio type of unit
root tests have also been considered for the mixed ARIMA model based on both conditional
and unconditional normal distribution likelihoods by Yap and Reinsel (1995) and Shin and
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Fuller (1998), among others. Simulation studies suggest that these tests often perform better
than 7-type test statistics for mixed ARIMA models.

Motivated by problems in macroeconomics and related fields, the literature has continued
to grow and many other extensions have been developed. These include the use of bootstrap
methods for statistical inference as discussed, for example, by Palm et al. (2008). The use
of Bayesian methods for unit root models has also been considered. The problem of
distinguishing unit root nonstationary series from series with structural breaks such as level
shifts or trend changes has been considered by many researchers. The methodology has
also been extended and modified to deal with more complex series involving nonlinearities,
time-varying volatility, and fractionally integrated processes with long-range dependence.
Tests with a null hypothesis of stationarity, rather than unit root nonstationarity, have also
been proposed in the literature. For further discussion and references, see, for example,
Phillips and Xiao (1998) and Haldrup et al. (2013).

Example: Series C. To illustrate unit root testing, consider the series of temperature
readings referred to as Series C. Two potential models identified for this series in Chapter 6
were the ARIMAC(1, 1, 0) and the ARIMA(O, 2, 0). Since there is some doubt about the need
for the second differencing in the ARIMA(0, 2, 0) model, with the alternative model being
a stationary AR(1) for the first differences, we investigate this more formally. The AR(1)
model Vz, = ¢Vz,_, + a, for the first differences can be written as V2z, = (¢ — 1)Vz,_, +
a,;, and in this form the conditional least-squares regression estimate $—1=-0.187is
obtained, with an estimated standard error of 0.038, and 63 = 0.018. Note that this implies
¢ = 0.813 similar to results in Tables 6.5 and 7.6. The Studentized statistic to test ¢p = 1
is 7 = —4.87, which is far more negative than the lower one percentage point of —2.58 for
the distribution of 7 in the tables of Fuller (1996). Also, f'ﬂ = —4.96 was obtained when a
constant term is included in the AR(1) model for Vz,. Hence, these estimation results do
not support the need for second differencing and point to a preference for the ARIMA(1,
1, 0) model.

Implementation in R. Tests for unit roots can be performed using the package fUnitRoots
available in the FinTS package in R. If Z represents the time series of interest, the command
used to perform the augmented Dickey—Fuller test is

> adfTest (z, lags, type=c("nc","c","ct")

where lags denotes the number of lags in the autoregressive model and type indicates
whether or not a constant or trend should be included in the fitted model. The argument
““nc’’ specifies that no constant should be included in the model, ‘‘c’’ is used for con-
stant only, and “‘ct’’ specifies a trend plus a constant. For lags equal to 0, the test is the
original Dickey—Fuller test. Otherwise, lags represents the order of the stationary autore-
gressive polynomial in (10.1.6). For a mixed ARMA model, it represents the order of the
autoregressive approximation to this model.
The calculations for Series C described above can be performed in R as follows:

> library (fUnitRoots)
> adfTest (diff (ts(seriesC)),0,type=c("nc"))

Title: Augmented Dickey-Fuller Test
Test Results:
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PARAMETER::

Lag Order: O

STATISTIC: Dickey-Fuller: -4.8655
P VALUE: 0.01

> adfTest (diff (ts(seriesC)),0,type=c("c"))

Title: Augmented Dickey-Fuller Test
Test Results:

PARAMETER:

Lag Order: 0

STATISTIC: Dickey-Fuller: -4.962

P VALUE: 0.01

The values of the test statistics agree in both cases with those quoted in the example. Note
that the output shows the p value but does not give the critical value for the test. If the
critical values are needed, they can be obtained in R using the command

>adfTable (trend=c("nc","c","ct"), statistic=c("nc","c","ct"))

Example: Series A. For further illustration, consider Series A that represents concentra-
tion readings of a chemical process at 2-hour intervals and has n = 197 observations. In
Chapters 6 and 7, two possible ARMA/ARIMA models were proposed for this series.
One is the nearly nonstationary ARMA(1, 1) model, (1 — ¢B)z, = 6, + (1 — 6B)a,, with
estimates <;3 = 0.92,@ = 0.58, é() = 1.45,and 62 = 0.0974. The second is the nonstationary
ARIMA(O, 1, 1) model, (1 — B)z, = (1 — 8 B)a,, with estimates 6 =0.71 and 6’2 = 0.1004.
Below we use the ADF test to test the hypothesis that differencing is needed so that the series
follows the ARIMA(O, 1, 1) model. To determine the order k of the autoregressive approx-
imation to this model, we first use the R command ar(z) to select a suitable value for k
based on the AIC criterion. The output suggests an AR(6) model, which is then used for
the test. A slightly different choice of k does not alter the conclusion.

> library (fUnitRoots)
> ar(diff (ts(seriesh)),aic=TRUE)

Call: ar(x = diff(ts(seriesh)), aic = TRUE)
Coefficients:

123456

-0.6098 -0.3984 -0.3585 -0.3175 -0.3142 -0.2139
Order selected 6 sigma”2 estimated as 0.09941

> adfTest (ts(seriesA),6,type=c("nc"))

Title: Augmented Dickey-Fuller Test
Test Results:

PARAMETER:

Lag Order: 6

STATISTIC: Dickey-Fuller: 0.6271

P VALUE: 0.8151
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The p values are large and the test does not reject the null hypothesis that the series
needs to be differenced, suggesting that ARIMA(O, 1, 1) is the preferred model. A similar
conclusion was reached by Solo (1984b) who used a Lagrange multiplier test to determine
the need for differencing.

10.2 CONDITIONAL HETEROSCEDASTIC MODELS

This section presents an overview of some models that have been developed to describe
time-varying variability or volatility in a time series. To first introduce some notation, we
note that the ARMA(p, q) process ¢(B)z, = 6y + 0(B)a, can be written as the sum of a
predictable part and a prediction error as

z, = Elz,|F,_ 11+ q,

where F;_; represents the past information available at time ¢ — 1 and a, represents the
prediction error. For the ARMA model, F,_; is a function of past observations and past error
terms, but could more generally include external regression variables X;. The assumption
made thus far is that the prediction errors a, are independent random variables with a
constant variance Var[a,] = 0'2 that is independent of the past. However, this assumption
appears inconsistent with the heteroscedasticity often seen for time series in business and
economics, in particular. For example, financial time series such as stock returns often
exhibit periods when the volatility is high and periods when it is lower. This characteristic
feature, or stylized fact, is commonly referred to as volatility clustering. For illustration,
Figure 10.1(a) shows the weekly S&P 500 Index over the period January 3, 2000 to
May 27, 2014 for a total of 751 observations. The log returns calculated as In(p,/p,_;) =
In(p,) — In(p,_;), where p, represents the original time series, are shown in Figure 10.1(b).
We note that while the original time series is nonstationary, the returns fluctuate around a
stable mean level. However, the variability around the mean changes and volatility clusters
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FIGURE 10.1 (a) Time plot of the weekly S&P 500 Index from January 3, 2000 to May 27, 2014,
and (b) the weekly log returns on the S&P 500 Index.



362 ADDITIONAL TOPICS AND EXTENSIONS

are clearly visible. Note the high volatility during and following the 2008 financial crisis, in
particular. Another common feature of financial time series is that the marginal distributions
are leptokurtic and tend to have heavier tails than those of a normal distribution. A number of
other stylized facts have been documented and investigated for financial data (for discussion
and references, see, for example, Terdsvirta et al., 2010, Chapter 8).

The autoregressive conditional heteroscedastic (ARCH) model was introduced by Engle
(1982) to describe time-varying variability in a series of inflation rates. An extension of this
model called the generalized conditional heteroscedastic (GARCH) model was proposed by
Bollerslev (1986). These models are capable of describing not only volatility clustering but
also features such as heavy-tailed behavior that is common in many economic and financial
time series. Still, there are other features related to volatility that are not captured by the
basic ARCH and GARCH models. This has led to a number of extensions and alternative
formulations aimed at addressing these issues. This section presents a brief description of
the ARCH and GARCH models along with some extensions proposed in the literature.
The literature in this area is extensive and only a select number of developments will be
discussed. A more complete coverage can be found in survey papers by Bollerslev et al.
(1992, 1994), Bera and Higgins (1993), Li et al. (2003), and Teridsvirta (2009), among
others. Volatility modeling is also discussed in several time series texts, including Franses
and van Dijk (2000), Mills and Markellos (2008), Terasvirta et al. (2010), and Tsay (2010).
Textbooks devoted to volatility modeling include Francq and Zakoian (2010) and Xekalaki
and Degiannakis (2010).

10.2.1 The ARCH Model

For a stationary ARMA process, the unconditional mean of the series is constant over time
while the conditional mean E[z,|F,_;] varies as a function of past observations. Parallel
to this, the ARCH model assumes that the unconditional variance of the error process is
constant over time but allows the conditional variance of a, to vary as a function of past
squared errors. Letting 0'12 = var[a,| F,_,] denote the conditional variance of a,, given the
past F;_;, the basic ARCH(s) model can be formulated as

a, = o (10.2.1)

where {e,} is a sequence of iid random variables with mean zero and variance 1, and

2 2 2
o, =agtma,_, + - +aa_; (10.2.2)
with ay >0, ; >0, for i=1,...,s—1, and a; > 0. The parameter constraints are

imposed to ensure that the conditional variance ‘712 is positive. The additional constraint
Zle @; < 1 ensures that the a, are covariance stationary with finite unconditional variance
ag. For some time series, such as stock returns, the original observations are typically
serially uncorrelated and the a, are observed directly. Alternatively, the a, can be the noise
sequence associated with an ARMA or regression-type model. For modeling purposes, the
e; in (10.2.1) are usually assumed to follow a standard normal or a Student ¢-distribution.
The ARCH model was used by Engle (1982) to study the variance of UK inflation rates
and by Engle (1983) to describe the variance of U.S. inflation rates. The ARCH model
and its later extensions by Bollerslev (1986) and others quickly found other applications.
For example, Diebold and Nerlove (1989) showed that the ARCH model may be used to
generate statistically and economically meaningful measures of exchange rate volatility.
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Bollerslev (1987) used the GARCH extension of the ARCH model to analyze the condi-
tional volatility of financial returns observed at a monthly or higher frequency. In Weiss
(1984), ARMA models with ARCH errors were used to model the time series behavior of 13
different U.S. macroeconomic time series. Bollerslev et al. (1992) describe a large number
of other applications in their review of volatility models. While a majority of applications
have been in finance and economics, the models have also been used in other fields. For
example, Campbell and Diebold (2005) used volatility models in their analysis of the daily
average temperatures for four U.S. cities. The models have also been used for variables
such as wind speeds, air quality measurements, earthquake series, and in the analysis of
speech signals. For selected references, see Francq and Zekoian (2010, p. 12).

Some Properties of the ARCH Model. To establish some properties of the ARCH model,
we first examine the ARCH(1) model where

o} = var[a,|F,_|]1= Ela; | F_;]1=ay+aya’ (10.2.3)
with ay > 0 and a; > 0. The form of the model shows that the conditional variance o> will
be large if a,_; was large in absolute value and vice versa. A large (small) value of atz will
in turn tend to generate a large (small) value of a,, thus giving rise to volatility clustering.

It follows from (10.2.1) that E [a, | F,_;] = 0. The unconditional mean of a; is also zero
since

Ela]=E |Ela, | F_]| =0
Furthermore, the a, are serially uncorrelated since for j > 0,
Elaa, ;1= E |Elaa,_; | F,_|]| = E [a,_;Ela, | F,_;]| =0

But the a, are not mutually independent since they are interrelated through their conditional
variances. The lack of serial correlation is an important property that makes the ARCH
model suitable for modeling asset returns that are expected to be uncorrelated by the
efficient market hypothesis.

We also assume that the a, have equal unconditional variances, var[q,] = E [atz] = ai,
for all 7, so that the process is weakly stationary. If ; < 1, the unconditional variance exists
and equals

o2 = varfa,] = — (10.2.4)
1—a
This follows since
O'Z = E[atz] =F [E[at2 | Ft_l]] = Elay + “1“,2_1] =qy+ alag
Further substituting a = 0'2(1 — ay) from (10.2.4) into (10.2.3), we see that
ol =o>+a(a_ | —o2) (10.2.5)
or, equivalently, 0'12 - UZ = al(af_l - 0'2). Hence, the conditional variance of a, will

be above the unconditional variance whenever at2_ is larger than the unconditional

2

a

1
variance o
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To study the tail behavior of a;, we examine the fourth moment yuy = E [a?]. If a, is
normally distributed, conditional on the past, then

E[a;l | F,_ 1= 3(7:1' = 3(a + ozlatz_l)2
Therefore, the fourth unconditional moment of a; satisfies
Ela)] = E [Eld} | F,_|1] =3 [a] + 209, Ela’ ]+ a}E[a] |]]
Thus, if {a,} is fourth-order stationary so that yy = E [af] =F [af_l], then
~ 3(ag + 209, 02) _ 3ag(l —a})

g = = (10.2.6)
+ 1 - 3d? (1 - a)?(1 - 3a?)

Since uy = E [af] > 0, this expression shows that @; must satisfy 0 < a; < 1/ \/5 in order
for a, to have finite fourth moment. Further, if x denotes the unconditional kurtosis of a,,
then

Ela}]  3(1-a))
(Bt 1=30

K =

This value exceeds 3, the kurtosis of the normal distribution. Hence, the marginal distri-
bution of a, has heavier tails than those of the normal distribution. This is an additional
feature of the ARCH model that makes it useful for modeling financial asset returns where
heavy-tailed behavior is the norm.

To derive an alternative form of the ARCH process, we let v, = a? 2

; —o-z,sothataz2 =
atz + v;. The random variables v, then have zero mean and they are serially uncorrelated
since

El(a; - o))a;_; — 0} )1 = E[E{(a; — o])a;_; = 0, ) | Fi_1}]
=El(a;_; -0} DE((a] =0]) | F.}]1=0

Further, since 62 = o + a; atz_l, we find that the ARCH(1) model can be written as

a=ay+aa | +u, (10.2.7)

This form reveals that the process of squared errors ‘112 can be viewed as an AR(1) model with
uncorrelated innovations v,. The innovations are heteroscedastic and also non-Gaussian in
this case, however.

For the ARCH(s) model in (10.2.2), we similarly have

atz=a0+a1a2 ++a,a

—1 sd_s T U

so that the at2 has the form of an AR(s) process. Other results related to the moments and the
kurtosis of the ARCH(1) model also extend to higher order ARCH models. In particular, if
Y, @; < 1, then the unconditional variance is

2 _ )

2= — 0
! 1_2};1“1‘
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as shown by Engle (1982). Necessary and sufficient conditions for the existence of higher
order even moments of the ARCH(s) process were given by Milhgj (1985).

Forecast Errors for the ARCH Model. Forecasts of a future value z;,; generated from
ARMA models with iid errors a, have forecast errors that depend on the lead time !/
but are independent of the time origin ¢ from which the forecasts are made. Baillie and
Bollerslev (1992) showed that the minimum mean square error forecasts of z,,; are the
same irrespective of whether the shocks g, are heteroscedastic or not. For an ARMA process
with ARCH errors, this implies, in particular, that the one-step-ahead forecast error equals
a,,1 while the [-step-ahead forecast error can be written as e, (/) = Z;B Wia - With yg
= 1. The presence of conditional heteroscedasticity will, however, impact the variance of
the forecast errors.
For an ARCH(1) process, the conditional variance of the one-step-ahead forecast error
a,, is given by (10.2.5) as
Ele/(DIF] = o},

=0 +a(a — o) (10.2.8)

The conditional variance of the one-step-ahead forecast error can thus be smaller or larger
than the unconditional variance depending on the difference between the last squared error
a* and 2.

Conditional variances of multistep-ahead forecast errors e,(/) can also be shown to
depend on the past squared errors based on

-1
Ele;(h) | F1= Y v Ela},,_; | F]
j=0

where for the ARCH(1) model

Ela;,,|F,] = E[E(a;,, | F)]

— 2
=Qq + alE[aH_h_l | E]

=ay(l + oy +---+a{’_1)+afat2 for h>0
From this and using (10.2.4) it can be verified that

-1 -1
EleX() | F1=02 Y v?+ Y yla (@ - 02) (10.2.9)
j=0 j=0

which simplifies to (10.2.8), for I = 1. The first term on the right-hand side of this expression
is the conventional prediction error variance assuming that the errors a, are homoscedastic
while the second term reflects the impact of the ARCH effects. This term varies over time
and can again be positive or negative depending on the difference at2 - 0'2. The variance
of the predicted values thus varies over time and can be larger or smaller than that under
homoscedasticity. For the general ARCH(s) model, the second term on the right-hand side

will be a function of s past values a2, ..., a*

120 S
If the time series z, follows an AR(1) model, the y weights are given by y; = ¢l
If ¢ equals zero, so that the mean of the series is a constant independent of the past,

expression (10.2.9) simplifies to o2 + ozi(at2 — 62). We note that this is the conditional
I-step-ahead forecast of the conditional variance 6t2+ , for the ARCH(1) model. This forecast
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could be calculated more directly as E[o-t2+l |F]=ap + a E[aterl_1 | F;], where E[at2+l_1 | F;]
can be generated recursively from the AR model for alz. The result follows by setting
ap =02(1 —a,)

0 a 17+

10.2.2 The GARCH Model

The ARCH model has a disadvantage in that it often requires a high lag order s to adequately
describe the evolution of volatility over time. An extension of the ARCH model called the
generalized ARCH, or GARCH, model was introduced by Bollerslev (1986) to overcome
this issue. The GARCH(s, r) model assumes that a, = o,e,, where the {e,} again are iid
random variables with mean zero and variance 1, and where o, is given by

N r
o = ay+ 2 @a® + 2 Bior, (10.2.10)
i=1 j=1

withayg > 0,0, 20, i=1,...,s=1, a; >0, ﬂj >0, j=1,....,r—1,and g, > 0. These
parameter constraints are sufficient for the conditional variance 0[2 to be positive. Nelson
and Cao (1992) showed that these constraints can be relaxed slightly to allow some of
the parameters to be negative while the conditional variance still remains positive. The
additional constraint Z:”:l(ai + ;) < 1, where m = max(s, r) with @; = 0, for i > s, and
p ;= 0, for j > r, ensures that the unconditional variance 02 is finite.

The simplest and most widely used model in this class is the GARCH(1, 1) model where

2 _ 2 _ 2 2
o, = Ela, | Fi_l=ay+ aja;_ | + ﬁl"t—l

Since the constants a; and f; are positive, we see that a large value of af_l or atz_l results in

a large value of atz. As for the ARCH process, this model therefore accounts for volatility
clustering.
Assuming that @; + f; < 1, the unconditional variance of a; is

o-Z =varla,] = ay/[1 — (a; + f1)]

Also, assuming that the conditional distributions are normal, the fourth unconditional
moment of a; is finite provided that (a; + ﬂ1)2 + 20:% < 1 (Bollerslev, 1986). In addition,
the kurtosis of the marginal distribution of a, equals

_E@) 3= (a + )7
[E@)]> 11— (ay +B)? - 2a]

As in the ARCH case, the unconditional distribution of a, thus has heavier tails than
the normal distribution and is expected to give rise to a higher frequency of extreme
observations or ‘‘outliers’’ than would be the case under normality.

Now let v, = at2 - atz so that 0'12 = at2 — v, where the v, have zero mean and are serially
uncorrelated. We then see that the GARCH(1, 1) model can be rearranged as at2 - =
oy + 0‘1‘1,2_1 + ﬂl(atz_l —U;_1),0r

al =ag+ (o) +par | +u,— Biv,_, (10.2.11)



CONDITIONAL HETEROSCEDASTIC MODELS 367

The process of squared errors thus has the form of an ARMA(1, 1) model with uncorrelated
innovations v,. The v, are in general heteroscedastic, however. In the special case of f; = 0,
the model reduces to at2 =ay+ ozlatz_l + v;, which is the AR(1) form of the ARCH(1)
model. For the general GARCH(s, r) process, expression (10.2.11) generalizes to

m N
2 2
a; =ay+ Z(a,- +Ba;_; + v, — Z Biv;_;
i=1 i=1

which has the form of an ARMA process for at2 with AR order equal to m =max(r, s). The
autocorrelation structure of al2 also mimics that of the ARMA process provided that fourth
unconditional moment of g; is finite (Bollerslev, 1988).

The necessary and sufficient condition for second-order stationarity of the GARCH(s, r)
process is

D+ D =D +p)<1
i=1 i=1 i=1

When this condition is met, the unconditional variance is

aaz = var[a,] = oco/ ll - Z(ai + ﬁi)]

i=1

This was shown by Bollerslev (1986) who also gave necessary and sufficient conditions for
the existence of all higher order moments for the GARCH(1, 1) model and the fourth-order
moments for GARCH(1, 2) and GARCH(2, 1) models. Extensions of these results have
been given by He and Teridsvirta (1999) and Ling and McAleer (2002), among others. The
expressions for the higher order moments and the constraints on the parameters needed
to ensure their existence become more complex for the higher order models. The model
specification also becomes more difficult. On the other hand, numerous studies have shown
that low-order models such as the GARCH(1, 1), GARCH(2, 1), and GARCH(1, 2) models
are often adequate in practice, with the GARCH(1, 1) model being the most popular.

10.2.3 Model Building and Parameter Estimation

Testing for ARCH/GARCH Effects. The preceding results motivate the use of the ACF
and PACEF of the squares at2 for model specification and for basic preliminary checking
for the presence of ARCH/GARCH effects in the errors a,. For an ARMA model with
heteroscedastic errors, a starting point for the analysis is an examination of the sample
ACF and PACEF of the squared residuals &12 obtained from fitting an ARMA model to the
observed series. In particular, let r,(4%) denote the sample autocorrelations of the squared
residuals &tz so that

n—k n
~2 ~2 A2\ 22 ~2 A2 ~A2\2
(@ = Y@ - 6@, — 62) / Y@ -62)
=1 =1

where &2 =n"! Y ﬁtz is the residual variance estimate. Analogous to the modified

portmanteau statistic described in Section 8.2.2, McLeod and Li (1983) proposed the
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portmanteau statistic

K
0@ =n(n+2) 2 ri(@)/(n—k) (10.2.12)
k=1

to detect departures from the ARMA assumptions. As a portmanteau test, this test does
not assume a specific alternative, but the type of departures for which Q(42) can be useful
includes conditional heteroscedasticity in the form of ARCH/GARCH effects, and bilinear
type of nonlinearity in the conditional mean of the process (see Section 10.3 for discussion of
bilinear models). McLeod and Li (1983) showed that the statistic O(4?) has approximately
the y? distribution with K degrees of freedom under the assumption that the ARMA model
alone is adequate. The distribution is similar to that of the usual portmanteau statistic QO
based on the residuals @,, with the exception that the degrees of freedom in the case of
(10.2.12) are not affected by the fact that p + ¢ ARMA parameters have been estimated.
The potentially more powerful portmanteau statistics by Pefia and Rodriguez (2002, 2006)
discussed in Section 8.2 could also be applied to the squared residuals &12.

An alternative test for ARCH effects is the score or Lagrange multiplier test proposed by
Engle (1982). The score statistic A for testing the null hypothesis Hy: ; =0,i=1,...,s,
has a convenient form and can be expressed as n times the coefficient of determination in
the least-squares fitting of the auxiliary regression equation

étz =ay+ alétz_l + azdf_z + -t asétz_s + &

Assuming normality of the a,’s, the score statistic A has an asymptotic y? distribution
with s degrees of freedom under the null model of no ARCH effects. The test procedure is
thus to fit a time series model to the observed series, save the residuals 4,, and regress the
squared residuals on a constant and s lagged values of the &tz. The resulting value of nR?
is then referred to a y? distribution with s degrees of freedom. Even though this test was
derived for the ARCH(s) model, it has been shown to be useful for detecting other forms
of conditional heteroscedasticity as well. Also, the test is asymptotically equivalent to the
McLeod-Li portmanteau test based on the autocorrelations of the squared residuals (see
Luukkonen et al., 1988b). Thus, although the latter was derived as a pure significance test,

itis also a LM test against ARCH effects.

Parameter Estimation. The parameter estimation for models with ARCH or GARCH
errors is typically performed using the conditional maximum likelihood method. For
estimation of an ARMA model ¢(B)z, = 6, + 0(B)a, with ARCH or GARCH errors
a,, we assume that a, is conditionally normally distributed as N (O, 6,2). The z, are
then conditionally normal, given z,_{,z,_,,..., and from the joint density function
p(z) =TI, p(z; | z,_y, ..., z;) we obtain the log-likelihood function

n

n
1 1
I =log(L) = —g log(@7) - D log(e?) - 3 Y a/o? (10.2.13)
=1

=1

where a, =z, — Y ¢z, — 0+ X, 6,a,_; and o} is given by (10.2.2) or (10.2.10).
A discussion of the iterative maximization of the likelihood function along with other
results related to the parameter estimation can be found, for example, in Engle (1982), Weiss
(1984, 1986), and Bollerslev (1986). When an ARMA model with ARCH or GARCH errors
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is fitted to the series, the information matrix of the log-likelihood is block diagonal with
respect to the conditional mean and variance parameters, so that iterations can be carried
out separately with respect to the two sets of parameters. The so-called BHHH algorithm
by Berndt, Hall, Hall, and Hausman (1974) provides a convenient method to perform
the calculations. This algorithm has the advantage that only first-order derivatives are
needed for the optimization. These derivatives can be evaluated numerically or analytically.
Use of analytical first derivatives is often recommended as they improve the precision of
the parameter estimates. Provided that the fourth-order moment of the process is finite,
the resulting estimates of the ARMA—ARCH parameters are consistent and asymptotically
normal as shown by Weiss (1986).

The normal distribution was originally proposed by Engle (1982) to model the con-
ditional distribution of the disturbances a,. As discussed earlier, the conditional normal
distribution results in a leptokurtic unconditional distribution. Nevertheless, in financial
applications the normal distribution sometimes fails to capture the excess kurtosis that is
present in stock returns and other variables. To overcome this drawback, Bollerslev (1987)
suggested using a standardized Student ¢-distribution with v > 2 degrees of freedom for the
estimation. The density function of the ¢-distribution is

I((v+1)/2) <1+ 2 >—<v+1)/2
T(v/2)\/z(v -2) v—-2)

where I'(v) = f0°° e *x"~!dx is the Gamma function and v measures the tail thickness.
As is well known, the distribution is symmetric around zero and approaches a normal
distribution as v — oo. For v > 4, the fourth moment exists and the conditional kurtosis
equals 3(v — 2)/(v — 4). Since this value exceeds 3, the tails are heavier than those of the
normal distribution. The log-likelihood function based on the #-distribution is given by

f(xlv) =

2 2

n 2
1 4
_5 Z llog(atz) +(1+ V)lOg(l + m)]

t=1

I=log(L)y=n [logF <v+ 1)> —log <Z> — %log(n(v —2))]

Here, v is either prespecified or estimated jointly with other parameters. If v is specified
in advance, values between 5 and 8 are often used; see Tsay (2010). With v prespecified,
the conditional likelihood function is maximized by minimizing the second term of the
likelihood function given above.

Nelson (1991) suggested using the generalized error distribution (GED) for the estima-
tion. The density function of a GED random variable normalized to have mean zero and
variance one is given by

n exp(=0.5]|x/A|")

fx|n) = A20+1/D1(1 /1)

where 4 = [2-2/PT'(1/n)/T(3/n)]'/%. For the tail thickness parameter n = 2, the
distribution equals the normal distribution used in (10.2.13). For # < 2, the distribution
has thicker tails than the normal distribution. The reverse is true for # > 2. Box and Tiao
(1973) call the GED distribution an exponential power distribution.



370 ADDITIONAL TOPICS AND EXTENSIONS

In addition to having excess kurtosis, the distribution of a, may also be skewed. A
discussion of potential sources for skewness can be found in He et al. (2008). To allow for
skewness as well as heavy tails, the likelihood calculations can be based on skewed versions
for the Student #-distribution and the GED distributions available in software packages such
as R. Other forms of skewed distributions have also been considered.

In practice, it is often difficult to know whether the specified probability distribution is the
correct one. An alternative approach is to continue to base the parameter estimation on the
normal likelihood function in (10.2.13). This method is commonly referred to as the quasi-
maximum likelihood (QML) estimation. The asymptotic properties of the resulting QML
estimator for the ARCH, GARCH, and ARMA-GARCH models have been studied by
many authors with early contributions provided by Weiss (1986) and Bollerslev and
Wooldridge (1992). For further discussion and references, see, for example, Francq
and Zakoian (2009, 2010).

Diagnostic Checking. Methods for model checking include informal graphical checks us-
ing time series plots and O—Q plots of the residuals along with a study of their dependence
structure. The assumption underlying the ARCH and GARCH models is that the standard-
ized innovations a,/c, are independent and identically distributed. Having estimated the
parameters of model, the adequacy of the mean value function can be checked by examining
the autocorrelation and partial autocorrelation functions of the standardized residuals &, /6.
Similar checks on the autocorrelation and partial autocorrelations of the squared standard-
ized residuals are useful for examining the adequacy of the volatility model. These checks
are often supplemented by the portmanteau test proposed by McLeod and Li (1983) or the
score test proposed by Engle (1982). However, while these statistics can provide useful
indications of lack of fit, their asymptotic distributions are impacted by the estimation of the
ARCH or GARCH parameters. Li and Mak (1994) derived an alternative portmanteau statis-
tic that asymptotically follows the correct ;(12< distribution. This statistic is a quadratic form
in the first m autocorrelations of the squared standardized residuals but has a more complex
form than the Q statistic in (10.2.12). Analogous modifications of Engle’s score test based
on ARCH residuals were discussed by Lundbergh and Terésvirta (2002). More recent
contributions to model checking include work by Wong and Ling (2005), Ling and Tong
(2011), Fisher and Gallagher (2012), and many others.

10.2.4 An Illustrative Example: Weekly S&P 500 Log Returns

To demonstrate the model building process, we consider the weekly log returns on the
S&P 500 Index displayed in Figure 10.1(b) for the period January 3, 2000 to May 27,
2014. Figure 10.2 shows the ACF of the returns along with the ACF of the squared returns.
We note that there is little, if any, serial correlation in the returns themselves. The mean
value function g, will thus be taken as a constant. However, the squared returns are clearly
correlated and show a pattern consistent with that of an ARCH or a GARCH model. The
PACEF of the squared returns (not shown) has a pattern that persists over several lags
suggesting that a GARCH may be appropriate for the volatility.

The parameters can be estimated in R using the function garchFit() in the fGarch
package. The normal distribution is the default error distribution for the ARCH or GARCH
models. Other options include the Student ¢-distribution and the GED distributions along
with skewed versions of these distributions. For demonstration, we will fit a GARCH(1, 1)
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FIGURE 10.2 Autocorrelation functions for (a) the S&P 500 weekly log returns and (b) the squared
weekly log returns.

model with normal errors to the returns. The R commands and a partial model output are
provided below, where the log returns are denoted by SPrtn:

>library (£Garch)
>ml=garchFit (“garch(1l,1),data=SPrtn, trace=F)
>summary (ml) % Retrieve model output

Title: GARCH Modelling

Call: garchFit (formula="garch(1l,1),data=SPrtn, trace=F)

Mean and Variance Equation: data ~ garch(1l,1)
Conditional Distribution: norm
Coefficient (s) :
mu omega alphal betal
2.1875e-03 3.5266e-05 2.1680e-01 7.3889e-01
Error Analysis:
Estimate Std. Error t value Pr(>|t])
mu 2.187e-03 6.875e-04 3.182 0.00146 =**
omega 3.527e-05 1.153e-05 3.058 0.00223 **
alphal 2.168e-01 4.189e-02 5.176 2.27e-07 **%*
betal 7.389e-01 4.553e-02 16.230 < 2e-16 **%*
Standardised Residuals Tests:
Statistic p-Value
Jarque-Bera Test Chi®2 77.92548 0
Shapiro-Wilk Test R W 0.9815283 3.990011e-08
Ljung-Box Test R Q(10) 6.910052 0.7339084
Ljung-Box Test R Q(20) 16.43491 0.689303
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Ljung-Box Test R™2 0Q(10) 12.64346 0.244295
Ljung-Box Test R™2 0Q(20) 18.15442 0.5772367
LM Arch Test R TR"™2 14.05565 0.297169

Information Criterion Statistics:
AIC BIC SIC HQIC
-4.751772 -4.727132 -4.751829 -4.742278

Letting w, denote the log returns, the fitted model is
w, = 0.002187 + a,, o, =0.000035+0.2168a; | +0.738907 |

where all the parameter estimates are statistically significant. The portmanteau tests for
serial correlation in the standardized residuals and in their squared values indicate no
lack of fit. However, the Jarque—-Bera and Shapiro—Wilk tests for normality suggest that
the model is not fully adequate. To examine this issue, the Student ¢-distribution and
its skewed version were tested by adding the argument cond.dist="std" and cond.dist
="sstd", respectively, to the garchFit command. The GED distribution and its skewed
version were also tested. Although these modifications improved the fit, the results are for
simplicity not shown here.

The standardized residuals from the fitted model and the ACF of the squared standardized
residuals are shown in Figure 10.3. A normal Q-Q plot is also included in this graph.
Visual inspection of the standardized residuals and the Q—Q plot confirms the results of
the normality tests discussed above. The ACF of the squared residuals indicates no lack
of fit although a marginally significant correlation is present at lag 1. This value would be
reduced by fitting a GARCH(1, 2) model to the data. But this potential refinement is not
pursued here. Finally, estimates of the conditional standard deviation ¢, are displayed in
Figure 10.4(a). Figure 10.4(b) displays the volatility shown earlier in Figure 10.1(b) with
two standard deviation limits now superimposed around the series. A variety of other graphs
can be generated using the R command plot(m1), where m1 refers to the fitted model.
In addition, /-step-ahead forecasts of future volatility based on the conditional standard
deviations shown in Figure 10.4 can be generated using the R command predict(m1,I).

10.2.5 Extensions of the ARCH and GARCH Models

While the ARCH and GARCH models allow for volatility clustering and capture thick-
tailed behavior of the underlying unconditional distributions, they do not account for certain
other features that are commonly observed in financial data. For example, so-called leverage
effects are often observed in stock returns, where a negative innovation tends to increase
the volatility more than a positive innovation of the same magnitude. In symmetric ARCH
and GARCH models, on the other hand, the variance depends on the magnitude of the
innovations but not their signs. Another limitation of the basic ARCH and GARCH models
is the assumption that the conditional mean of the process is unaffected by the volatility.
This assumption ignores the so-called risk premium that relates to the fact that investors
expect to receive higher returns as compensation for taking on riskier assets. The presence
of this feature would generate a positive relationship between expected return and volatility.
Below we describe some extensions and modifications of the ARCH and GARCH models
that have been proposed to address such issues.
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FIGURE 10.3 Model diagnostics for the GARCH(1, 1) model fitted to the S&P 500 weekly log
returns: (a) standardized residuals, (b) autocorrelation function of the squared standardized residuals,
and (c) a normal Q-Q plot of the standardized residuals.
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FIGURE 10.4 Conditional standard deviations for the S&P 500 weekly log returns (a) and the
weekly log returns with two standard deviation limits imposed (b).
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Exponential GARCH Models. The earliest model that allows for an asymmetric response
due to leverage effects is the exponential GARCH, or EGARCH, model introduced by
Nelson (1991). The EGARCH(1, 1) model is defined as a, = o,¢;, where

ln(atz) =aqy+gle,_1) + ﬂlln(af_l)
The function g(e,_;) determines the asymmetry and is defined as the weighted innovation
gle, ) = e,y +rille | — E(le,_; 1]
where a; and y; are real constants. The model then becomes
In(6}) = g+ aye,_; +vilei| —v1E(le,_]) + pyIn(o; )

From here it is easy to see that a positive shock has the effect (a; + y;)e,_; while a negative
shock has the effect (a; — y;)e;_;. The use of g(e,_;) thus allows the model to respond
asymmetrically to ‘‘good news’’ and ‘‘bad news.”’” Since bad news typically has a larger
impact on volatility than good news, the value of a; is expected to be negative when
leverage effects are present. Note that since the EGARCH model describes the relation
between the logarithm of the conditional variance atz and past information, the model does

not require any restrictions on the parameters to ensure that 0'12 is nonnegative. The general
EGARCH(s, r) model has the form

ln(atz) =qp+ Z gi(e,_p) + Z ﬁjln(o-tz—j)
i=1 Jj=1

with
gl-(e,_i) =a;e,_; + 7i(|e1_i| - E(|e1_i|)

However, as in the GARCH case, the first-order model is the most popular in practice.

Nelson (1991) specified the likelihood function assuming that the errors follow a gener-
alized error distribution that includes the normal distribution as a special case. Properties of
the QML estimator based on the normality assumption for the EGARCH(1, 1) model were
studied by Straumann and Mikosch (2006) who verified the conditions for consistency of
this estimator. Further properties and details related to the model building process can be
found in Tsay (2010) and Terisvirta et al. (2010), for example.

The GJR and Threshold GARCH Models. The so-called GJIR-GARCH model of Glosten,
Jagannathan, and Runkle (1993) and the threshold GARCH model of Zakoian (1994)
provide an alternative way to allow for asymmetric effects of positive and negative volatility
shocks. Starting from the GARCH(1, 1) model, the GJR model assumes that the parameter
associated with a?_l depends on the sign of the shock so that

2 2 2
Ut = Qq + (al + yllt_l)at_l + ﬂlgl—l

where the indicator variable I,_; assumes the value 1 if a,_; is negative and zero if it is
positive. The constraints on the parameters needed to ensure that the conditional variance
0'[2 is nonnegative are readily derived from those of the GARCH(1, 1) process. Using this
formulation, the noise term a,_; has a coefficient a; + y; when it is negative, and a; when
it is positive. This allows negative shocks to have a larger impact on the volatility. The



CONDITIONAL HETEROSCEDASTIC MODELS 375

GJR model is relatively simple and empirical studies have shown that the model performs
well in practice. For general GARCH(s, r), the model generalizes to

N r
2 _ 2 2
oy =ay+ Z(ai +vil,_pa;_, + z ,Bjar_j
i=1 Jj=1

although applications with r and s greater than 1 seem to be very rare. Zakoian (1994)
introduced a model with the same functional form as the GJR model, but instead of
modeling the conditional variance, Zakoian models the conditional standard deviation.
Since the coefficient associated with a,_; changes its value as a,_; crosses the threshold
zero, Zakoian referred to this model as a threshold GARCH, or TGARCH, model.

Nonlinear Smooth Transition Models. For the threshold model described above, the
impact of past shocks changes abruptly as a,_; crosses the zero threshold. Attempts have
been made in the literature to develop nonlinear extensions of ARCH and GARCH models
that allow for more flexibility and a smoother transition as a lagged value a,_; crosses a
specified threshold. These extensions include the logistic smooth transition GARCH model
proposed by Hagerud (1997), and a similar model proposed independently by Gonzélez-
Rivera (1998). This model assumes that the model parameters a; in the ARCH or GARCH
model are not constant but functions of the lagged a,_; so that a; = a; + ay; F(a,_;), i =
1,...,s, where F(-) is a transition function. Hagerud considered two transition functions,
the logistic and the exponential. The GARCH(s, r) model with a logistic transition function
has the form

N r
2 _ 2 2
ol = ay+ Y [ay; +ay Fla,_)la>, + Bior;
i=1 =1

J

where

Flage— L1
1+ exp(—fa,_;) 2
with 8 > 0. In contrast to the GJR model that follows one process when the innovations
are positive and another process when the innovations are negative, the transition between
the two states is smooth in the present model. Hagerud provided conditions for stationarity
and nonnegativity of the conditional variances.

Lanne and Saikkonen (2005) proposed a smooth transition GARCH process that uses
the lagged conditional variance 6[2_1 as the transition variable, and is suitable for describing
high persistence in the conditional variance. The first-order version of this model can be
written as

2 _ 2 L2 2
O-l = Qq + alat_l + 51G1(9, O't_l) + ﬁlct_l

where the transition function G(6; atz_l) is a continuous, monotonically increasing bounded

function of atz_]. Lanne and Saikkonen used the cumulative distribution function of the
gamma distribution as the transition function. The original purpose for introducing this
model was to remedy a tendency of GARCH models to exaggerate the persistence in
volatility as evidenced by X(e; + f;) often being very close to one. Using empirical examples
involving exchange rates, the authors showed that this formulation alleviates the problem
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of exaggerated persistence. For further discussion of these and related models, see, for
example, Mills and Markellos (2008) and Terésvirta (2009).

GARCH-M Models. Many theories in finance postulate a direct relationship between the
expected return on an investment and its risk. To account for this, the GARCH-in-mean,
or GARCH-M, model, allows the conditional mean of a GARCH process to depend on
the conditional variance (7[2. This model originates from the ARCH-M model proposed by
Engle et al. (1987). The mean value function is specified as

He=Po+ ﬂlg(atz)

where g(atz) is a positive-valued function and f; is a positive constant called the risk
premium parameter. An increase or decrease in the conditional mean is here associated
with the sign of the partial derivative of the function g(c?) with respect to ¢2. In many
applications, g(atZ) is taken to be the identity function or the square root function so that
g(o-tz) = 012 or g(o-tz) = o,. The parameters of the GARCH-M model can be estimated using
the maximum likelihood method. However, because of the dependence of the conditional
mean on the conditional variance, the information matrix is no longer block diagonal with
respect to the conditional mean and variance parameters. This makes joint maximization
of the likelihood function with respect to the two sets of parameters necessary. Also,
consistent estimation of the parameters in the GARCH-M models requires the full model
be correctly specified. Applications of the GARCH-M model to stock returns, exchange
rates, and interest rates were discussed by Bollerslev et al. (1992).

IGARCH and FIGARCH Models. As noted earlier, the GARCH(1, 1) model is weakly sta-
tionary assuming that (a; + f;) < 1. When the GARCH model is applied to high-frequency
financial data, it is often found that a; + f; is close to or equal tol. Engle and Bollerslev
(1986) refer to a model with @; + f; = 1 as an integrated GARCH, or IGARCH, model.
The motivation is that this implies a unit root in the autoregressive part of the ARMA(1, 1)
representation of the GARCH(1, 1) model for at2 in (10.2.11). With a; + f; = 1, the model
becomes (1 — B)at2 = ay+ Vv, — f1v,_;. Similar to a random walk process, this process is
not mean reverting since the unconditional variance of the process is not finite. Also, the
impact of a large shock on the forecasts of future values will not diminish for increasing lead
times. But while the GARCH(1,1) process is not weakly stationary, Nelson (1990) showed
that the process has time-invariant probability distributions and is thus strictly stationary. A
necessary condition for strict stationarity is E[/n(a; atz_1 + f1)] < 0. For further discussion
of this model, see, for example, Terdsvirta (2009).

Fractionally integrated GARCH, or FIGARCH, models have also been proposed in the
literature. These differ from the IGARCH model in that the degree of differencing d is
allowed to be a fraction rather than a constant. The FIGARCH(1, 1) model, in particular,
is of the form (1 — B)dat2 = ay+ Vv, — f1v;_1, where d is a constant such that 0 < d < 0.5.
For the FIGARCH model, the empirical autocorrelations of at2 need not be very large but
they decay very slowly as the lag k increases. This is indicative of so-called long memory
behavior in the series. Models involving fractional differencing will be discussed further
in Section 10.4 in relation to long-range dependence in the conditional mean ;.

Other Models. Numerous other models have been proposed to account for conditional
heteroscedasticity. For example, a natural extension of the ARCH(s) model specified in
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(10.2.1) is to let 67 = ag + a, Qa,_, where a,_ = (a_1,...,a,_;)' and Q is a s X5
nonnegative definite matrix. The ARCH(s) model is then a special case that requires
that Q be diagonal. One way that the above form can arise is through the conditional
heteroscedastic ARMA (CHARMA) model specification discussed by Tsay (1987). Other
approaches to volatility modeling include the random coefficient autoregressive model of
Nicholls and Quinn (1982) and the stochastic volatility models of Melino and Turnbull
(1990), Jacquier et al. (1994), and Harvey et al. (1994). A brief description of the stochastic
volatility models is provided below.

10.2.6 Stochastic Volatility Models

Stochastic volatility models are similar to GARCH models but introduce a stochastic
innovation term to the equation that describes the evolution of the conditional variance o-tz.
To ensure positiveness of the conditional variances, stochastic volatility models are defined
in terms of ln(o-tz) instead of atz. A basic version of a stochastic volatility model is defined

by a, = 0,e; as in (10.2.1) with ln(atz) satisfying
In(e?) = ay + By In(6? ) + -+ + B, In(c7 ) + v, (10.2.14)

where e, are iid normal N (0, 1), v, are iid normal N (0, 0'5), {e;} and {v,} are independent
processes, and the roots of the characteristic equation 1 — Z;zl B; B/ = 0 are outside the unit

circle. Note, for example, the stochastic volatility model equation for r = 1 is ln(atz) =ay+
I ln(atz_l) + v,, which is somewhat analogous to the GARCH(1, 1) model equation, 0'12 =
ay + By 0'12_  + “1“,2_1~ Alternatively, replacing g(e,_;) by v, in the EGARCH(I, 1) model,
we obtain (10.2.14) with r = 1. Some properties of the stochastic volatility model for
r = 1 are provided by Jacquier et al. (1994). Also note that we may write at2 = atzetz so that
In(a?) = In(c?) + In(e?). This allows the stochastic volatility model to be viewed as a state-
space model, with the last relation representing the observation equation and the transition
equation being developed from (10.2.14). Difficulty in parameter estimation is increased
for stochastic volatility models, however, since likelihoods based on the state-space model
are non-Gaussian. Quasi-likelihood methods may thus be needed. Jacquier et al. (1994)
give a good summary of estimation techniques, including quasi-likelihood methods with
Kalman filtering and the expectation maximization (EM) algorithm and Markov chain
Monte Carlo (MCMC) methods. They also provide a comparison of estimation results
between the different methods.

A discussion and examples of the use of Markov chain Monte Carlo methods for
parameter estimation can also be found in Tsay (2010, Chapter 12). A general overview of
the stochastic volatility literature is given by a collection of articles in the books edited by
Shephard (2005) and Andersen et al. (2009).

10.3 NONLINEAR TIME SERIES MODELS

Many processes occurring in the natural sciences, engineering, finance, and economics
exhibit some form of nonlinear behavior. This includes features that can not be modeled
using Gaussian linear processes such as lack of time reversibility evidenced, for exam-
ple, by pseudocyclical patterns where the values slowly rise to a peak and then quickly
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decline to a trough. Time series that exhibit occasional bursts of outlying values are also
unlikely under the linear Gaussian assumption. The prevalence of such series has led to
an interest in developing nonlinear time series models that can account for such behavior.
Nonlinear models proposed in the literature include bilinear models, threshold autore-
gressive (TAR) models, exponential autoregressive (EXPAR) models, and stochastic or
random coefficient models. These models describe nonlinearities in the conditional mean
as opposed to nonlinearities in the conditional variance as discussed in Section 10.2. When
nonlinearities are present, model identification and estimation become more complicated,
including the fundamental problem of which type of nonlinear model might be useful for
a particular time series. This section presents a brief description of some nonlinear models
that have been proposed in the literature. More comprehensive discussions are available in
texts such as Tong (1983, 1990), Priestley (1988), Franses and van Dijk (2000), Fan and
Yao (2003), Tsay (2010, Chapter 4), and Teridsvirta et al. (2010).

10.3.1 Classes of Nonlinear Models

Many nonlinear ARMA models can be viewed as special cases of the following general
form:

zi =1 (Y Dz = = (Y )z,
=00(Y,_p)+a,—60,(Y,_a_y — - —0,Y,_a_, (10.3.1)
where
Yt—l = (Zt—l’ ey Zt—p’ i 15 ey at_q)’

and ¢;(Y,_;) and 6;(Y,_,) are functions of the ‘‘state vector’” Y,_; at time ¢ — 1. For
specific cases, we mention the following models.

1. Bilinear Models.  Letthe ¢; be constants,andset6,(Y,_;) = b; + Zl’;l b;;z,_;. Then
we have the model

q k g

Z =1z == bpz =0+ a,— ) ba_;— Y D bz _a_; (103.2)

j=1 i=1 j=1

Equivalently, with the notations p* = max(p, k), ¢; =0, i > p, b; ;= 0,i>k, and
a;(t) = ijlbijat_j, (10.3.2) can be expressed in the form

p q
z, = [ — 0,01z, = Oy +a,— ) bja,_;
i=1 j=1

and be viewed in the form of an ARMA model with random coefficients for the AR
parameters, which are linear functions of past values of the innovations process a;.
The statistical properties of bilinear models were studied extensively by Granger and
Anderson (1978). Methods for analysis and parameter estimation were also studied
by Subba Rao (1981) and Subba Rao and Gabr (1984), and various special cases of
these models have been examined by subsequent authors.
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Conditions for stationarity and other properties have been studied for the gen-
eral bilinear model by Tuan (1985, 1986) and Liu and Brockwell (1988), in par-
ticular. For example, consider the simple first-order bilinear model z, — ¢, z,_; =
a; — by1z;_1a,_1. It is established that a condition for second-order stationarity of
such a process {z,} is d)% + Gib%l < 1, and that the autocovariances of z, under sta-
tionarity will satisfy y; = ¢,y;_; for j > 1. Thus, this process will have essentially
the same autocovariance structure as an ARMAC(1, 1) process. This example high-
lights the fact that moments higher than the second order are typically needed in
order to distinguish between linear and nonlinear models.

2. Amplitude-Dependent Exponential AR Models. Let §; =0, and set ¢;(Y,_;) =

—e? .
b; + m;e”““-1, where ¢ > 0 is a constant. Then we have

(b; + me~%-1)z,_, = a, (10.3.3)
1

p
Z; —

i=

This class of models was introduced by Haggan and Ozaki (1981), with an aim to
construct models that reproduce features of nonlinear random vibration theory.

3. Threshold AR, or TAR, Models. Let 6; = 0,i > 1, and for some integer time lag d
and some ‘‘threshold’’ constant c, let

@
¢, ifz,_y<c
$i(Y1-1) = { @ t

ifz,_;>c

0 ifz,_,<c
O (Y1) = (22) .
¢, ifz_g>c

Then we have the model

P
1 1 1 .
0(())+Z¢§ )z,_i+a§) ifz,_y;<c
z, = " (10.3.4)
2 2 2 .
9(())+Z¢f. )z,_,-+a§) ifz,_y>c

i=1

where {ail)} and {afz)} are each white noise processes with variances 6]2
respectively (e.g., we can take aij ) = o;a,). The value c is called the threshold pa-
rameter and d is the delay parameter. A special case arises when the parameter ¢
is replaced by a lagged value of the series itself, resulting in a model called the
self-exciting TAR (SETAR) model.

The model (10.3.4) readily extends to an ‘‘/-threshold’’” model of the form

and o-%,

p
=00+ ¢Vz_ +ad” it <z y<¢ =11
i=1
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with threshold parameters ¢; < ¢; < -+- < ¢;_1 (and ¢y = —00, ¢; = +00), which de-
fine a partition of the real line into / subintervals. The first-order threshold model,

z, = 0(()’) +¢Vz,_ + at(’) if cjm1 <z Z¢j

for example, may thus be regarded as a piecewise linear approximation to a general
nonlinear first-order model z, = g(z,_;) + a;, where g(-) is some general nonlinear
function.

The TAR models were introduced by Tong (1978) and Tong and Lim (1980) and
discussed in detail by Tong (1983, 1990). Tong (2007) gives a brief discussion of their
origin. The basic threshold AR model can be seen as a piecewise linear AR model, with a
somewhat abrupt change from one equation or ‘‘regime’’ to another dependent on whether
or not a threshold value ¢; is exceeded by z,_,. A generalization that allows for less abrupt
transition from one regime to another has been developed as a class of models known as
smooth transition AR (STAR) models; see, for example, Terdsvirta (1994) and Terésvirta
et al. (2010). For the case of a single threshold / = 1, the basic form of a STAR model is

p p
1 1 2 2
z, = 0(() )+ Z ¢I(. )z,_i + (6’(() )+ Z ¢§ )z,_i) F(z;_y) +a,
i=1

i=1

where F(z) = 1/[1 + exp{—y(z — ¢)}] in the case of a logistic STAR model and in the
normal STAR model F(z) = ®(y(z — ¢)), with ®(-) equal to the cumulative distribution
function of the standard normal distribution. By letting y — oo, we see that F(z) tends
to the indicator function, and the usual two-regime TAR model (10.3.4) is obtained as a
special case. The TAR model and its extensions have been used to model nonlinear series in
many diverse areas such as finance and economics, the environmental sciences, hydrology,
neural science, population dynamics, and physics; for selected references, see Fan and Yao
(2003, p. 126).

Other types of nonlinear models include the stochastic or random coefficient models.
For example, in the simple AR(1) model we consider z, = ¢,z,_; + a;, where ¢, is not a
constant but is a stochastic parameter. Possible assumptions on the mechanism generating
the ¢, include (i) the ¢, are iid random variables with mean ¢ and variance aé, independent
of the process {a,}, and (ii) the ¢, follow an AR(1) process themselves,

b —p=ald_ 1 —P)+e

where ¢ is the mean of the ¢, process and the e, are iid random variables with mean O
and variance af, independent of a,. Estimation for the first case was considered in detail
by Nicholls and Quinn (1982), while the second case may in principle be estimated using
state-space methods (e.g., Ledolter, 1981).

Additional classes of nonlinear models include the general state-dependent model form
(10.3.1) examined extensively by Priestley (1980, 1988), or more general nonparametric
autoregressive model forms such as nonlinear additive autoregressive models considered
by Chen and Tsay (1993), and adaptive spline threshold autoregressive models used by
Lewis and Stevens (1991). Nonparametric and semiparametric methods such as kernel
regression and artificial neural networks have also been used to model nonlinearity. A
review of nonlinear time series models with special emphasis on nonparametric methods
was provided by Tjgstheim (1994). More recent discussions of the developments in this
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area can be found in Fan and Yao (2003), Gao (2007), and Terésvirta et al. (2010). A
discussion of nonlinear models with applications to finance is provided by Tsay (2010,
Chapter 4).

10.3.2 Detection of Nonlinearity

Many methods have been proposed to detect nonlinearity of a time series. In addition to
informal graphical methods and inspection of higher order moments, such as third- and
fourth-order moments, these include more formal test procedures by Hinich (1982), Subba
Rao and Gabr (1980), McLeod and Li (1983), Keenan (1985), Tsay (1986a), Petruccelli
and Davies (1986), Luukkonen et al. (1988a), and others. Some of these tests exploit the
nonlinear dependence structure that is reflected in the higher order moments, and many
of the tests are developed as portmanteau tests based on a linear model, with an alterna-
tive not explicitly specified. Other tests are Lagrange multiplier or score-type procedures
against specified alternative models. For example, the tests of Luukkonen et al. (1988a)
are score-type tests against STAR alternatives. The tests of Subba Rao and Gabr (1980)
and Hinich (1982) are nonparametric tests that use a bispectral approach, while the test of
Petruccelli and Davies (1986) is based on cumulative sums of standardized residuals from
autoregressive fitting to the data. The portmanteau test statistic (10.2.12) of McLeod and
Li (1983) is based on sample autocorrelations of squared residuals &,2 from a fitted linear
ARMA model. This test was introduced as a test for nonlinearity, although simulations
suggest that it may be more powerful against ARCH alternatives. A modest gain in power
may be possible by basing the nonlinearity checks on the portmanteau statistics proposed
by Pefia and Rodriguez (2002, 2006).

Keenan (1985) proposed an F'-test for nonlinearity using an analogue of Tukey’s single-
degree-of-freedom test for nonadditivity. The test is also similar to the regression specifi-
cation error test (RESET) proposed by Ramsey (1969) for linear regression models. The
test can be implemented by first fitting an AR(m) model to the observed series z,, where
m is a suitably selected order. The fitted values are retained and their squares are added
as a predictor variable to the AR(m) model. This model is then refitted and the coeffi-
cient associated with the predictor variable is tested for significance. This procedure thus
amounts to determining whether inclusion of the squared predicted values helps improve
the prediction.

Tsay (1986a) proposed an extension based on testing whether second-order terms have
additional predictive ability. The procedure can be carried out as follows: First fit a linear
AR(m) model and obtain the residuals 4, from this fit. Then consider the M = %m(m +1)
component vector

2 2 !

Z,=(2,_ 1 s 2 2412125 -+ > Zt—mt1 Z1=m)
consisting of all squares and distinct cross-products of the lagged values z,_;, ..., z,_,,. Now
perform a multivariate least-squares regression of the elements of Z, on the set of regressors
{1,z,_{,...,z;_,} and obtain the multivariate residual vectors U,, fort =m+1,...,n.

Finally, perform a least-squares regression d, = f]:ﬂ + ¢, of the AR(m) model residuals 4,
on the M -dimensional vectors ff, as regressor variables, and let F be the F ratio of the
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regression mean square to the error mean square from that regression, so that

oY é,nff;)(z,z 0,0\, Oa)/M 035
zt=m+1ét/(n_m_M_ 9]

Under the assumption of linearity, F' has, for large n, an approximate F distribution with
M and n — m — M — 1 degrees of freedom, and the null hypothesis of linearity is rejected
for large values of F. Extension to a procedure for residuals a, from a fitted ARMAC(p, q)
model was also mentioned by Tsay (1986a).

If one aggregates or condenses the information in the M-dimensional vector Z, into
a single variable ﬁtz =y + =, $,2z,_,)?, which is the square of the fitted value from the
AR(m) model, and performs the remaining steps outlined above, one obtains the earlier test
by Keenan (1985). The associated test statistic is

X 2,0 /(X a7)
Z:l=m+l é\tz/(n —2m-2)

with 1 and n — 2m — 2 degrees of freedom. Luukkonen et al. (1988b) and Tong (1990,
Section 5.3) noted a score test interpretation of the procedures proposed by Keenan (1985)
and Tsay (1986a). Both tests are available in the TSA package of R and can be implemented
using the commands Keenan.test(z) and Tsay.test(z). For further discussion, see Tsay
(2010, Chapter 4).

F=

10.3.3 An Empirical Example

For illustration, we consider modeling of the Canadian lynx dataset, consisting of annual
numbers of Canadian lynx trapped in the MacKenzie River district for the period 1821
to 1934. The series is available in the R datasets package. For several reasons, the
log;, transformation of the data is used in the analysis, denoted as z;, t =1, ..., n, with
n = 114. Examination of the time series plot of z, in Figure 10.5 shows a very strong
cyclical behavior, with period around 10 years. It also shows an asymmetry or lack of time
reversibility in that the sample values rise to their peak or maximum values more slowly
than they fall away to their minimum values (typically, about 6-year segments of rising and
4-year segments of falling). This is a feature exhibited by many nonlinear processes. There
are biological/population reasons that would also support a nonlinear process, especially
one involving a threshold mechanism; see, for example, Tong (1990).

The sample ACF and PACF of the series {z,} are shown in Figure 10.6. The ACF
exhibits the cyclic feature clearly, and based on features of the sample PACF a linear
AR(4) model is initially fitted to the series, with 6'2 = 0.0519. The presence of some
moderate autocorrelation at higher lags, around lags 10 and 12, in the residuals from the
fitted AR(4) model suggested the following more refined model that was estimated by
conditional LS:

z, = 1.149 + 1.038z,_, — 0.413z, , +0.252z, , — 0.229z, ,
+0.1882, g — 0232z, 15+ a, (10.3.6)

with residual variance estimate &2 = 0.0380.
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FIGURE 10.5 Logarithms (base 10) of the Canadian lynx time series for 1821-1934, with forecasts
for 90 periods ahead from (a) the TAR model and (b) the linear subset AR(12) model.

Some diagnostics of this fitted model suggest possible nonlinearity. Specifically, there
is strong autocorrelation in the squared residuals étz at lag 2, with rz(éz) = 0.401, and
nonlinear features exist in scatter plots of the ‘‘fitted values’’ z, = z,_;(1) and residuals
a; = z; — £,_1(1) versus lagged values z,_;, for lags j = 2,3,4. But the tests by Keenan
(1985) and Tsay (1986a), implemented in the TSA package of R, are inconclusive in that
the Keenan test rejects linearity whereas the Tsay test does not (see the output below).
However, it appears that the failure of the Tsay test to detect the nonlinearity may be due
to the way the package computes the Tsay statistic. This computation uses 77 parameters
and results in an observation/parameter ratio of 114/77 < 2, which is too small for valid
inference.
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Series: logqo(lynx)
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FIGURE 10.6 Autocorrelation and partial autocorrelation functions for the logarithm of the
Canadian lynx series.

library (TSA)

data (lynx)

z=10gl0 (lynx)

Keenan.test (z)
Stest.stat: 11.66997
Sp.value: 0.000955
Sorder: 11

> Tsay.test (z)

Stest.stat: 1.316

Sp.value: 0.2256

Sorder: 11

V V. V V

Tong (1990) specified a TAR model, with time delay of d = 2 and threshold value of about
¢ = 3.10 for this series. A threshold version of the AR model in (10.3.6), with two phases
and terms at lags 1, 2, 3, 4, 9, and 12, was estimated by conditional LS. After eliminating
nonsignificant parameter estimates, we arrived at the following estimated threshold AR
model:
z, = 1.3206 + 0.9427z,_; — 0.2161z,_,
—0.1411z,_p, +a" if z_, <3.10
= 1.8259 4+ 1.1971z,_; — 0.7266z,_, + 0.1667z,_q

~0.2229z,_, +a”  if z_,>3.10

with residual variance estimates 62 = 0.0249 and 62 = 0.0386 (pooled 6> = 0.0328).
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The approximate ‘‘eventual’’ forecast function from this model will lead to periodic
limit cycle behavior with an approximate period of 9 years (see Tong (1990) for discussion
of limit cycles). Although exact minimum MSE forecasts 2,(/) for lead times / > 2 are not
easily computed for the fitted threshold AR model, approximate forecasts for larger / can
be obtained by projecting series values forward with future white noise terms aﬁ') set to 0
(see Teridsvirta et al. (2010, Chapter 14) for other options). Values obtained in this way for
the eventual forecast function from the TAR model are depicted for 90 years, / = 1, ..., 90,
in Figure 10.5(a). These values exhibit a limit cycle with a period of essentially 9 years
(in fact, the period is 28 years with 3 “‘subcycles’’), and the asymmetric feature of slower
rise to peak values and faster fall to minimum values is visible. In contrast, the stationary
linear AR model will give a forecast function in the form of very slowly damped sinusoidal
oscillations that will eventually decay to the mean value of the process, 2.90. This forecast
function is shown in Figure 10.5(b).

Other nonlinear models have been considered for the Canadian lynx data. For examples,
Subba Rao and Gabr (1984) have estimated a bilinear model for these data, an AR(2)
model with random coefficients was fitted by Nicholls and Quinn (1982), and an amplitude-
dependent exponential AR model of order 11 was fitted to the mean-adjusted log lynx data
by Haggan and Ozaki (1981).

104 LONG MEMORY TIME SERIES PROCESSES

The autocorrelation function p, of a stationary ARMA(p, q) process decreases rapidly as
k — o0, since the autocorrelation function is geometrically bounded so that

lpi| < CR, k=1,2,...

where C > 0 and 0 < R < 1. Processes with this property are often referred to as short
memory processes. Stationary processes with much more slowly decreasing autocorrelation
function, known as long memory processes, have

p~CE¥L as ko o (10.4.1)

where C > 0and —0.5 < d < 0.5. Empirical evidence suggests that long memory processes
are common in fields as diverse as hydrology (e.g., Hurst, 1951; McLeod and Hipel, 1978),
geophysics, and financial economics. The sample autocorrelations of such processes are
not necessarily large, but tend to persist over a long period. The latter could suggest a
need for differencing to achieve stationarity, although taking a first difference may be too
extreme. This motivates the notion of fractional differencing and consideration of the class
of fractionally integrated processes.

10.4.1 Fractionally Integrated Processes

A notable class of stationary long memory processes z; is the fractionally integrated ARMA,
or ARFIMA, processes defined for —0.5 < d < 0.5 by the relation

@(B)(1 - B)'z, = 6(B)a, (10.4.2)
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where {a,} is a white noise sequence with zero mean and variance 0'2, and ¢(B) =0 and
0(B) = 0 have all roots greater than one in absolute value. The class of models in (10.4.2)
was initially proposed and studied by Granger and Joyeux (1980) and Hosking (1981) as an
intermediate compromise between fully integrated ARIMA processes and short memory
ARMA processes. More comprehensive treatments of these models can be found in texts
by Beran (1994), Robinson (2003), and Palma (2007).

For d > —1, the operator (1 — B)? in (10.4.2) is defined by the binomial expansion

(1-B) = Z;erj (10.4.3)
j=0

where 7y = 1 and

rj-d H k—1-d

A i=1,2,... 10.4.4
" T TG+ DI(=d) k J (10.4.4)

0<k<j

and I'(x) is the gamma function. Hence, the z; follow the simple recursion

j—1-d
Ty = f 7Ty

A particular special case is the fractionally integrated white noise process w;, defined
by

(1-B)Yw, =a,

For —0.5 < d < 0.5, since the power series expansion of y(B) = (1 — B = Z;';Oy/jBf
converges for | B| < 1, it follows that such a process {w, } is stationary and has the infinite
MA representation

(e8]

w, = - B)a, = 2 wa,_; (10.4.5)

Jj=0

where

Irgj+d) H k—l+d~ 1 4o

v, = m = . F(d)J as j— o (10.4.6)

0<k<j

It can also be shown (Hosking, 1981; Brockwell and Davis, 1991, Chapter 12) that the
fractionally integrated white noise process has variance

() = va] ]_a2ar(1—2d)
Yo(w) = var[w,] = T _
and ACF
_T(h+d)(1—d) _ k—1+d 3
”h(w)_—r(h—d+1)r(d)_ H —— k=12 (10.4.7)

0<k<h

In particular, we have p;(w) = d /(1 — d), and py(w) = [(h—14+d)/(h —d)]p,_(w). It
follows, using Stirling’s formula ['(x) ~ V/2ze™**!(x — 1)*~1/2 as x — oo, that the ACF
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behaves like

pp(w) ~ h”‘lw as h - ©
I'(d)
the characteristic feature of the ACF of a long memory process. In addition, by use of the
Levinson—Durbin recursion algorithm described in Appendix A3.2, values for the partial
autocorrelations of the fractionally integrated white noise process can be determined by
induction and shown tobe ¢, =d/(k—d),k=1,....

The fractionally integrated white noise process itself may be of limited use in modeling
long memory behavior since the single parameter d can allow for only a restrictive class
of autocorrelation function forms. This process can be useful, however, in building of the
more general class of long memory processes. In fact, we can see from the above definition
that a fractionally integrated ARMA(p, d, q) process, ¢p(B)(1 — B)dzt = 0(B)a,, can be
interpreted as an ‘‘ARMA(p, q) process driven by fractionally integrated white noise,”’
that is, {z,} satisfies ¢(B)z, = (B)w,, with (1 — B)?w, = a,. From general results on
linear filtering, we see that the exact autocovariance function of {z;} can be expressed
in terms of the autocovariance function of the fractionally integrated white noise process
{w,} as

[So i e o]

Th(2) = Y DWW k(W) (10.4.8)

j=0 k=0
where the y; are the coefficients in w(B) = ¢p(B)~10(B) = Z;io y/ij and
,» TI'A-2d)I'(h+d)
“T'(th—d + DHDI'A)T'(1 - d)

, (=D = 2d)
“T(h—d+ DI(1—h—d)

Yr(w) = yo(w)pp(w) = o

o

is the autocovariance function of the fractionally integrated white noise process {w;, }.
In terms of the spectrum, from (3.1.12) the spectrum of a fractionally integrated ARIMA
(p,d, q) process {z,} is

~i2nf|~2d |6(e=277)|2
|p(e=i27/)|2

where p,(f) = 202|1 — e727/ | 724 = 262[2sin(x £)] 7> is the spectrum of the fractionally
integrated white noise process. In particular, we see that p_(f) does not remain finite as

p.(f)=20%1-¢ 0<f< (10.4.9)

=

f—=0for0<d< % Since sin(x) ~ x as x — 0, we have the behavior that

lo(D)I?
(D)2

which is a distinguishing feature of the spectrum of long memory processes, for 0 < d < %

pz<f>~2a§[ ](an>—2dsc*f-2d as  f =0

Two Simple Special Cases. In practice, ARIMA(p, d, g) models are likely to be most useful
for small values of p and g. So, we mention a few specific details given by Hosking (1981)
about characteristics of two of the simplest such models. First, consider the fractional
ARIMAC(1, d,0) model, (1 — ¢B)(1 — B)dz, = a,, with AR parameter —1 < ¢ < 1. Then
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(1- ¢B)z, =wsorz, =(1— (;')B)_1 w; = Z;io (l)jw,_j, sousing (10.4.7) and (10.4.8) with
w; = ¢’ it follows that the autocorrelation function of {z,} is

() Fd+1,1;1—d+5¢)+ Fd-1,1;1—d - 1;¢) -1
T 1-¢ F(l+d,1;1—-d;¢)

pi(2)

where F(a, b; c; x) is the hypergeometric function defined by

ab  ala+Dbb+1) ,
Flabicix)=1+ 22 Q4T 00+ )2
@biex)=l+ xt+ = T 1.2

(e8]

_ I'(c) 2 I'la+I'(b+ k) ok
I'(a)I'(b) I'(c + k)k!

k=0

and

70(2) = row) Y\ Y ¢ p;y(w)
j=0 k=0
Yo(w) ool(1=2d) F(1 +d,1;1 - d; p)

=1_¢2[2F(d,1;1—d;¢)—1]= T —d) )

Given ¢ and d, values of F(d+1,1;1—d +1;¢) required in computing the y,;(z) =
70(2)p;(z) may be obtained more conveniently using the recurrence relation

F(d+l—1,1;1—d+l—l;¢)=IdZ—i_lll¢F(d+l,l;l—d+l;¢)+1

Second, for the fractional ARIMA(O, d, 1) model, (1 — B)? z; = (1 —6B)a,, with—1 < 0 <

1, we have z, = (1 — §B)w;,. So again using (10.4.7) and (10.4.8), now with y; = 1,y =
—0, and v = 0 for j > 1, we find that

71(2) = 1(0)[(1 + 6%)py(w) = Oy (w) — 0p;_1 (10)]

and the ACF of {z,} is

al> — (1 —d)?
zZ) = w)—m——m—m—m—mmmm
p1(2) = py( )12_(1_61)2
where
20d 17!
- 1—92[1+02——]
a=( ) T4
with

21(1 — 2d)
10(2) = rp(W)[1 + 6 = 20p,(w)] = la—] [1 +6? lzfdd]

T(1 — d)? -
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10.4.2 Estimation of Parameters

We first briefly mention the sampling properties of the sample mean

HOME

t=1

for estimation of the mean y = E[z,] from a fractionally integrated ARMA process. From
the general result that var[z] = (yo(2)/n)[1 + 2 ZZ;% {(n—h)/n}p,(2)] and the property
that p(z) ~ Ch*-1 ag h - o0, it follows that

n'~var[z] - C*

for —0.5 < d < 0.5, where C* > 0 is a certain constant. Hence, we see that var[Z] ~
C*/n'=24 whereas for short memory processes (d = 0), the variance of the sample mean
behaves like var[Z] ~ C*/n. Thus, for 0 < d < 0.5, the process mean u can be much less
accurately estimated by the sample mean. Equivalently, a much longer series length n is
required for accurate estimation of y for long memory processes. Hosking (1996) derived
asymptotic distribution results for sample autocorrelations j,;(z) of long memory processes.

Estimation of the parameters d, ¢, 6, and o-Z in a fractionally integrated ARIMA (p, d, q)
process can be performed by maximum likelihood (e.g., Sowell, 1992). However, direct
evaluation of the exact likelihood function is rather slow due partly to the complicated
nature of the autocovariance function of the process. Therefore, approximate ML estimation
methods have been considered by Beran (1994, 1995) and others. Another convenient
approach is to obtain an estimate of the parameter d initially by certain methods (e.g., using
a frequency-domain nonparametric approach; see Geweke and Porter-Hudak (1983)), and
then estimate ¢, 0, and 03 by relatively standard ML methods for the given estimate of
d. Asymptotic normality and the form of limiting covariance matrix of (approximate) ML
estimators have been established by Beran (1995) and argued by Li and McLeod (1986).
Notice that for d > 0.5, the fractionally integrated ARMA process is nonstationary. For
such cases, in practice the typical procedure is to first difference the nonstationary process
in the usual way, thus reducing it to a fractionally integrated process with a parameter d in
the ‘‘stationary’” range —0.5 < d < 0.5.

One approximate maximum likelihood estimation method is suggested by expressing
the general fractional ARIMA process z, in (10.4.2) in the infinite AR form as

[e]
> Tz, =aq (10.4.10)
j=1
where

7*(B)=1- Y 7'B/ = 07 (B)p(B)(1 - B)
j=1

The n;.‘ coefficients can be obtained recursively based on the relation 8(B)z*(B) =
¢(B)(1 — B)? = @(B), similar to