

Unity	in	Action:	Multiplatform	game
development	in	C#	with	Unity	5

Joseph	Hocking

Copyright

For	online	information	and	ordering	of	this	and	other	Manning	books,	please
visit	www.manning.com.	The	publisher	offers	discounts	on	this	book	when
ordered	in	quantity.	For	more	information,	please	contact

							Special	Sales	Department

							Manning	Publications	Co.

							20	Baldwin	Road

							PO	Box	761

							Shelter	Island,	NY	11964

							Email:	orders@manning.com

©2015	by	Manning	Publications	Co.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted,	in	any	form	or	by	means	electronic,	mechanical,	photocopying,	or
otherwise,	without	prior	written	permission	of	the	publisher.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	the
book,	and	Manning	Publications	was	aware	of	a	trademark	claim,	the
designations	have	been	printed	in	initial	caps	or	all	caps.

	Recognizing	the	importance	of	preserving	what	has	been	written,	it	is
Manning’s	policy	to	have	the	books	we	publish	printed	on	acid-free	paper,	and
we	exert	our	best	efforts	to	that	end.	Recognizing	also	our	responsibility	to
conserve	the	resources	of	our	planet,	Manning	books	are	printed	on	paper	that	is
at	least	15	percent	recycled	and	processed	without	elemental	chlorine.

Manning	Publications	Co.

20	Baldwin	Road

PO	Box	761

Shelter	Island,	NY	11964

Development	editor:	Dan	Maharry

Technical	development	editor:	Scott	Chaussee

Copyeditor:	Elizabeth	Welch

Proofreader:	Melody	Dolab

Technical	proofreader:	Christopher	Haupt

Typesetter:	Marija	Tudor

Cover	designer:	Marija	Tudor

ISBN:	9781617292323

http://www.manning.com

Printed	in	the	United	States	of	America

1	2	3	4	5	6	7	8	9	10	–	EBM	–	20	19	18	17	16	15

Brief	Table	of	Contents
Copyright
Brief	Table	of	Contents
Table	of	Contents
Foreword
Preface
Acknowledgments
About	this	Book

1.	First	steps

Chapter	1.	Getting	to	know	Unity
Chapter	2.	Building	a	demo	that	puts	you	in	3D	space
Chapter	3.	Adding	enemies	and	projectiles	to	the	3D	game
Chapter	4.	Developing	graphics	for	your	game

2.	Getting	comfortable

Chapter	5.	Building	a	Memory	game	using	Unity’s	new	2D
functionality
Chapter	6.	Putting	a	2D	GUI	in	a	3D	game
Chapter	7.	Creating	a	third-person	3D	game:	player	movement	and
animation
Chapter	8.	Adding	interactive	devices	and	items	within	the	game

3.	Strong	finish

Chapter	9.	Connecting	your	game	to	the	internet
Chapter	10.	Playing	audio:	sound	effects	and	music
Chapter	11.	Putting	the	parts	together	into	a	complete	game
Chapter	12.	Deploying	your	game	to	players’	devices

	Afterword

Appendix	A.	Scene	navigation	and	keyboard	shortcuts
Appendix	B.	External	tools	used	alongside	Unity
Appendix	C.	Modeling	a	bench	in	Blender
Appendix	D.	Online	learning	resources

Index

List	of	Figures

List	of	Tables

List	of	Listings

Table	of	Contents
Copyright
Brief	Table	of	Contents
Table	of	Contents
Foreword
Preface
Acknowledgments
About	this	Book

1.	First	steps

Chapter	1.	Getting	to	know	Unity

1.1.	Why	is	Unity	so	great?

1.1.1.	Unity’s	strengths	and	advantages
1.1.2.	Downsides	to	be	aware	of
1.1.3.	Example	games	built	with	Unity

1.2.	How	to	use	Unity

1.2.1.	Scene	view,	Game	view,	and	the	Toolbar
1.2.2.	Using	the	mouse	and	keyboard
1.2.3.	The	Hierarchy	tab	and	the	Inspector
1.2.4.	The	Project	and	Console	tabs

1.3.	Getting	up	and	running	with	Unity	programming

1.3.1.	How	code	runs	in	Unity:	script	components
1.3.2.	Using	MonoDevelop,	the	cross-platform	IDE
1.3.3.	Printing	to	the	console:	Hello	World!

1.4.	Summary

Chapter	2.	Building	a	demo	that	puts	you	in	3D	space

2.1.	Before	you	start...

2.1.1.	Planning	the	project
2.1.2.	Understanding	3D	coordinate	space

2.2.	Begin	the	project:	place	objects	in	the	scene

2.2.1.	The	scenery:	floor,	outer	walls,	inner	walls
2.2.2.	Lights	and	cameras
2.2.3.	The	player’s	collider	and	viewpoint

2.3.	Making	things	move:	a	script	that	applies	transforms

2.3.1.	Diagramming	how	movement	is	programmed
2.3.2.	Writing	code	to	implement	the	diagram
2.3.3.	Local	vs.	global	coordinate	space

2.4.	Script	component	for	looking	around:	MouseLook

2.4.1.	Horizontal	rotation	that	tracks	mouse	movement
2.4.2.	Vertical	rotation	with	limits
2.4.3.	Horizontal	and	vertical	rotation	at	the	same	time

2.5.	Keyboard	input	component:	first-person	controls

2.5.1.	Responding	to	key	presses
2.5.2.	Setting	a	rate	of	movement	independent	of	the
computer’s	speed
2.5.3.	Moving	the	CharacterController	for	collision	detection
2.5.4.	Adjusting	components	for	walking	instead	of	flying

2.6.	Summary

Chapter	3.	Adding	enemies	and	projectiles	to	the	3D	game

3.1.	Shooting	via	raycasts

3.1.1.	What	is	raycasting?
3.1.2.	Using	the	command	ScreenPointToRay	for	shooting
3.1.3.	Adding	visual	indicators	for	aiming	and	hits

3.2.	Scripting	reactive	targets

3.2.1.	Determining	what	was	hit
3.2.2.	Alert	the	target	that	it	was	hit

3.3.	Basic	wandering	AI

3.3.1.	Diagramming	how	basic	AI	works
3.3.2.	“Seeing”	obstacles	with	a	raycast
3.3.3.	Tracking	the	character’s	state

3.4.	Spawning	enemy	prefabs

3.4.1.	What	is	a	prefab?
3.4.2.	Creating	the	enemy	prefab
3.4.3.	Instantiating	from	an	invisible	SceneController

3.5.	Shooting	via	instantiating	objects

3.5.1.	Creating	the	projectile	prefab
3.5.2.	Shooting	the	projectile	and	colliding	with	a	target
3.5.3.	Damaging	the	player

3.6.	Summary

Chapter	4.	Developing	graphics	for	your	game

4.1.	Understanding	art	assets
4.2.	Building	basic	3D	scenery:	whiteboxing

4.2.1.	Whiteboxing	explained
4.2.2.	Drawing	a	floor	plan	for	the	level
4.2.3.	Laying	out	primitives	according	to	the	plan

4.3.	Texture	the	scene	with	2D	images

4.3.1.	Choosing	a	file	format
4.3.2.	Importing	an	image	file
4.3.3.	Applying	the	image

4.4.	Generating	sky	visuals	using	texture	images

4.4.1.	What	is	a	skybox?
4.4.2.	Creating	a	new	skybox	material

4.5.	Working	with	custom	3D	models

4.5.1.	Which	file	format	to	choose?
4.5.2.	Exporting	and	importing	the	model

4.6.	Creating	effects	using	particle	systems

4.6.1.	Adjusting	parameters	on	the	default	effect
4.6.2.	Applying	a	new	texture	for	fire
4.6.3.	Attaching	particle	effects	to	3D	objects

4.7.	Summary

2.	Getting	comfortable

Chapter	5.	Building	a	Memory	game	using	Unity’s	new	2D
functionality

5.1.	Setting	everything	up	for	2D	graphics

5.1.1.	Preparing	the	project
5.1.2.	Displaying	2D	images	(aka	sprites)
5.1.3.	Switching	the	camera	to	2D	mode

5.2.	Building	a	card	object	and	making	it	react	to	clicks

5.2.1.	Building	the	object	out	of	sprites
5.2.2.	Mouse	input	code

5.2.3.	Revealing	the	card	on	click

5.3.	Displaying	the	various	card	images

5.3.1.	Loading	images	programmatically
5.3.2.	Setting	the	image	from	an	invisible	SceneController
5.3.3.	Instantiating	a	grid	of	cards
5.3.4.	Shuffling	the	cards

5.4.	Making	and	scoring	matches

5.4.1.	Storing	and	comparing	revealed	cards
5.4.2.	Hiding	mismatched	cards
5.4.3.	Text	display	for	the	score

5.5.	Restart	button

5.5.1.	Programming	a	UIButton	component	using
SendMessage
5.5.2.	Calling	LoadLevel	from	SceneController

5.6.	Summary

Chapter	6.	Putting	a	2D	GUI	in	a	3D	game

6.1.	Before	you	start	writing	code...

6.1.1.	Immediate	mode	GUI	or	advanced	2D	interface?
6.1.2.	Planning	the	layout
6.1.3.	Importing	UI	images

6.2.	Setting	up	the	GUI	display

6.2.1.	Creating	a	canvas	for	the	interface
6.2.2.	Buttons,	images,	and	text	labels
6.2.3.	Controlling	the	position	of	UI	elements

6.3.	Programming	interactivity	in	the	UI

6.3.1.	Programming	an	invisible	UIController
6.3.2.	Creating	a	pop-up	window
6.3.3.	Setting	values	using	sliders	and	input	fields

6.4.	Updating	the	game	by	responding	to	events

6.4.1.	Integrating	an	event	system
6.4.2.	Broadcasting	and	listening	for	events	from	the	scene
6.4.3.	Broadcasting	and	listening	for	events	from	the	HUD

6.5.	Summary

Chapter	7.	Creating	a	third-person	3D	game:	player	movement	and
animation

7.1.	Adjusting	the	camera	view	for	third-person

7.1.1.	Importing	a	character	to	look	at
7.1.2.	Adding	shadows	to	the	scene
7.1.3.	Orbiting	the	camera	around	the	player	character

7.2.	Programming	camera-relative	movement	controls

7.2.1.	Rotating	the	character	to	face	movement	direction
7.2.2.	Moving	forward	in	that	direction

7.3.	Implementing	the	jump	action

7.3.1.	Applying	vertical	speed	and	acceleration
7.3.2.	Modifying	the	ground	detection	to	handle	edges	and
slopes

7.4.	Setting	up	animations	on	the	player	character

7.4.1.	Defining	animation	clips	in	the	imported	model
7.4.2.	Creating	the	animator	controller	for	these	animations
7.4.3.	Writing	code	that	operates	the	animator

7.5.	Summary

Chapter	8.	Adding	interactive	devices	and	items	within	the	game

8.1.	Creating	doors	and	other	devices

8.1.1.	Doors	that	open	and	close	on	a	keypress
8.1.2.	Checking	distance	and	facing	before	opening	the	door
8.1.3.	Operating	a	color-changing	monitor

8.2.	Interacting	with	objects	by	bumping	into	them

8.2.1.	Colliding	with	physics-enabled	obstacles
8.2.2.	Triggering	the	door	with	a	pressure	plate
8.2.3.	Collecting	items	scattered	around	the	level

8.3.	Managing	inventory	data	and	game	state

8.3.1.	Setting	up	player	and	inventory	managers
8.3.2.	Programming	the	game	managers
8.3.3.	Storing	inventory	in	a	collection	object:	List	vs.
Dictionary

8.4.	Inventory	UI	for	using	and	equipping	items

8.4.1.	Displaying	inventory	items	in	the	UI
8.4.2.	Equipping	a	key	to	use	on	locked	doors
8.4.3.	Restoring	the	player’s	health	by	consuming	health	packs

8.5.	Summary

3.	Strong	finish

Chapter	9.	Connecting	your	game	to	the	internet

9.1.	Creating	an	outdoor	scene

9.1.1.	Generating	sky	visuals	using	a	skybox
9.1.2.	Setting	up	an	atmosphere	that’s	controlled	by	code

9.2.	Downloading	weather	data	from	an	internet	service

9.2.1.	Requesting	WWW	data	using	coroutines
9.2.2.	Parsing	XML
9.2.3.	Parsing	JSON
9.2.4.	Affecting	the	scene	based	on	Weather	Data

9.3.	Adding	a	networked	billboard

9.3.1.	Loading	images	from	the	internet
9.3.2.	Displaying	images	on	the	billboard
9.3.3.	Caching	the	downloaded	image	for	reuse

9.4.	Posting	data	to	a	web	server

9.4.1.	Tracking	current	weather:	sending	post	requests
9.4.2.	Server-side	code	in	PHP

9.5.	Summary

Chapter	10.	Playing	audio:	sound	effects	and	music

10.1.	Importing	sound	effects

10.1.1.	Supported	file	formats
10.1.2.	Importing	audio	files

10.2.	Playing	sound	effects

10.2.1.	Explaining	what’s	involved:	audio	clip	vs.	source	vs.
listener
10.2.2.	Assigning	a	looping	sound
10.2.3.	Triggering	sound	effects	from	code

10.3.	Audio	control	interface

10.3.1.	Setting	up	the	central	AudioManager
10.3.2.	Volume	control	UI

10.3.3.	Playing	UI	sounds

10.4.	Background	music

10.4.1.	Playing	music	loops
10.4.2.	Controlling	music	volume	separately
10.4.3.	Fading	between	songs

10.5.	Summary

Chapter	11.	Putting	the	parts	together	into	a	complete	game

11.1.	Building	an	action	RPG	by	repurposing	projects

11.1.1.	Assembling	assets	and	code	from	multiple	projects
11.1.2.	Programming	point-and-click	controls:	movement	and
devices
11.1.3.	Replacing	the	old	GUI	with	a	new	interface

11.2.	Developing	the	overarching	game	structure

11.2.1.	Controlling	mission	flow	and	multiple	levels
11.2.2.	Completing	a	level	by	reaching	the	exit
11.2.3.	Losing	the	level	when	caught	by	enemies

11.3.	Handling	the	player’s	progression	through	the	game

11.3.1.	Saving	and	loading	the	player’s	progress
11.3.2.	Beating	the	game	by	completing	three	levels

11.4.	Summary

Chapter	12.	Deploying	your	game	to	players’	devices

12.1.	Start	by	building	for	the	desktop:	Windows,	Mac,	and	Linux

12.1.1.	Building	the	application
12.1.2.	Adjusting	Player	Settings:	setting	the	game’s	name	and
icon

12.1.3.	Platform-dependent	compilation

12.2.	Building	for	the	web

12.2.1.	Unity	Player	vs.	HTML5/WebGL
12.2.2.	Building	the	Unity	file	and	a	test	web	page
12.2.3.	Communicating	with	JavaScript	in	the	browser

12.3.	Building	for	mobile	apps:	iOS	and	Android

12.3.1.	Setting	up	the	build	tools
12.3.2.	Texture	compression
12.3.3.	Developing	plug-ins

12.4.	Summary

	Afterword

Game	design
Marketing	your	game

Appendix	A.	Scene	navigation	and	keyboard	shortcuts

A.1.	Scene	navigation	using	the	mouse
A.2.	Commonly	used	keyboard	shortcuts

Appendix	B.	External	tools	used	alongside	Unity

B.1.	Programming	tools

B.1.1.	Visual	Studio
B.1.2.	Xcode
B.1.3.	Android	SDK
B.1.4.	SVN,	Git,	or	Mercurial

B.2.	3D	art	applications

B.2.1.	Maya
B.2.2.	3ds	Max

B.2.3.	Blender

B.3.	2D	image	editors

B.3.1.	Photoshop
B.3.2.	GIMP
B.3.3.	TexturePacker

B.4.	Audio	software

B.4.1.	Pro	Tools
B.4.2.	Audacity

Appendix	C.	Modeling	a	bench	in	Blender

C.1.	Building	the	mesh	geometry
C.2.	Texture-mapping	the	model

Appendix	D.	Online	learning	resources

D.1.	Additional	tutorials

Unity	Manual
Script	reference
Unity3D	Student
Learn	Unity3D
Game	development	at	StackExchange
Maya	LT	Guide

D.2.	Code	libraries

Unify	Community	Wiki
Unity	patterns
iTween
prime[31]
Play	Games	Services	from	Google

FMOD	Studio
ProBuilder	and	Prototype
FPS	Control

Index

List	of	Figures

List	of	Tables

List	of	Listings

Foreword

I	started	programming	games	in	1982.	It	wasn’t	easy.	We	had	no	internet.
Resources	were	limited	to	a	handful	of	mostly	terrible	books	and	magazines	that
offered	fascinating	but	confusing	code	fragments,	and	as	for	game	engines—
well,	there	weren’t	any!	Coding	games	was	a	massive	uphill	battle.

How	I	envy	you,	reader,	holding	the	power	of	this	book	in	your	hands.	The
Unity	engine	has	done	so	much	to	open	game	programming	to	so	many	people.
Unity	has	managed	to	strike	an	excellent	balance	by	being	a	powerful,
professional	game	engine	that’s	still	affordable	and	approachable	for	someone
just	getting	started.

Approachable,	that	is,	with	the	right	guidance.	I	once	spent	time	in	a	circus
troupe	run	by	a	magician.	He	was	kind	enough	to	take	me	in	and	help	guide	me
toward	becoming	a	good	performer.	“When	you	stand	on	a	stage,”	he
pronounced,	“you	make	a	promise.	And	that	promise	is	‘I	will	not	waste	your
time.’”

What	I	love	most	about	Unity	in	Action	is	the	“action”	part.	Joe	Hocking	wastes
none	of	your	time	and	gets	you	coding	fast—and	not	just	nonsense	code,	but
interesting	code	that	you	can	understand	and	build	from,	because	he	knows	you
don’t	just	want	to	read	his	book,	and	you	don’t	just	want	to	program	his
examples—you	want	to	be	coding	your	own	game.

And	with	his	guidance,	you’ll	be	able	to	do	that	sooner	than	you	might	expect.
Follow	Joe’s	steps,	but	when	you	feel	ready,	don’t	be	shy	about	diverging	from
his	path	and	breaking	out	on	your	own.	Skip	around	to	what	interests	you	most
—try	experiments,	be	bold	and	brave!	You	can	always	return	to	the	text	if	you
get	too	lost.

But	let’s	not	dally	in	this	foreword—the	entire	future	of	game	development	is
impatiently	waiting	for	you	to	begin!	Mark	this	day	on	your	calendar,	for	today
is	the	day	that	everything	changed.	It	will	be	forever	remembered	as	the	day	you
started	making	games.

JESSE	SCHELL

CEO	of	SCHELL	GAMES

AUTHOR	OF	THE	ART	OF	GAME	DESIGN

Preface

I’ve	been	programming	games	for	quite	some	time,	but	only	started	using	Unity
relatively	recently.	Unity	didn’t	exist	when	I	first	started	developing	games;	the
first	version	was	released	in	2005.	Right	from	the	start,	it	had	a	lot	of	promise	as
a	game	development	tool,	but	it	didn’t	come	into	its	own	until	several	versions
later.	In	particular,	platforms	like	iOS	and	Android	(collectively	referred	to	as
“mobile”)	didn’t	emerge	until	later,	and	those	platforms	factor	heavily	into
Unity’s	growing	prominence.

Initially,	I	viewed	Unity	as	a	curiosity,	an	interesting	development	tool	to	keep
an	eye	on	but	not	actually	use.	During	this	time,	I	was	programming	games	for
both	desktop	computers	and	websites	and	doing	projects	for	a	range	of	clients.	I
was	using	tools	like	Blitz3D	and	Flash,	which	were	great	to	program	in	but	were
limiting	in	a	lot	of	ways.	As	those	tools	started	to	show	their	age,	I	kept	looking
for	better	ways	to	develop	games.

I	started	experimenting	with	Unity	around	version	3,	and	then	completely
switched	to	it	when	Synapse	Games	(the	company	I	work	for	now)	started
developing	mobile	games.	At	first,	I	worked	for	Synapse	on	web	games,	but	we
eventually	moved	over	to	mobile	games.	And	then	we	came	full	circle	because
Unity	enabled	us	to	deploy	to	the	web	in	addition	to	mobile,	all	from	one
codebase!

I’ve	always	seen	sharing	knowledge	as	important,	and	I’ve	taught	game
development	for	the	last	several	years.	In	large	part	I	do	this	because	of	the
example	set	for	me	by	the	many	mentors	and	teachers	I’ve	had.	(Incidentally,
you	may	even	have	heard	of	one	of	my	teachers	because	he	was	such	an
inspiring	person:	Randy	Pausch	delivered	the	Last	Lecture	shortly	before	he
passed	away	in	2008.)	I’ve	taught	classes	at	several	schools,	and	I’ve	always
wanted	to	write	a	book	about	game	development.

In	many	ways,	what	I’ve	written	here	is	the	book	I	wish	had	existed	back	when	I
was	first	learning	Unity.	Among	Unity’s	many	virtues	is	the	availability	of	a
huge	treasure	trove	of	learning	resources,	but	those	resources	tend	to	take	the
form	of	unfocused	fragments	(like	the	script	reference	or	isolated	tutorials)	and
require	a	great	deal	of	digging	to	find	what	you	need.	Ideally,	I’d	have	a	book

that	wrapped	up	everything	I	needed	to	know	in	one	place	and	presented	it	in	a
clear	and	logically	constructed	manner,	so	now	I’m	writing	such	a	book	for	you.
I’m	targeting	people	who	already	know	how	to	program,	but	who	are	newcomers
to	Unity,	and	possibly	new	to	game	development	in	general.	The	choice	of
projects	reflects	my	experience	of	gaining	skills	and	confidence	by	doing	a
variety	of	freelance	projects	in	rapid	succession.

In	learning	to	develop	games	using	Unity,	you’re	setting	out	on	an	exciting
adventure.	For	me,	learning	how	to	develop	games	meant	putting	up	with	a	lot	of
hassles.	You,	on	the	other	hand,	have	the	advantage	of	a	single	coherent	resource
to	learn	from:	this	book!

Acknowledgments

I	would	like	to	thank	Manning	Publications	for	giving	me	the	opportunity	to
write	this	book.	The	editors	I	worked	with,	including	Robin	de	Jongh	and
especially	Dan	Maharry,	helped	me	throughout	this	undertaking,	and	the	book	is
much	stronger	for	their	feedback.	My	sincere	thanks	also	to	the	many	others	who
worked	with	me	during	the	development	and	production	of	the	book.

My	writing	benefited	from	the	scrutiny	of	reviewers	every	step	of	the	way.
Thanks	to	Alex	Lucas,	Craig	Hoffman,	Dan	Kacenjar,	Joshua	Frederick,	Luca
Campobasso,	Mark	Elston,	Philip	Taffet,	René	van	den	Berg,	Sergio	Arbeo
Rodríguez,	Shiloh	Morris,	and	Victor	M.	Perez.	Special	thanks	to	the	notable
review	work	by	technical	development	editor	Scott	Chaussee	and	by	technical
proofreader	Christopher	Haupt.	And	I	also	want	to	thank	Jesse	Schell	for	writing
the	foreword	to	my	book.

Next,	I’d	like	to	recognize	the	people	who’ve	made	my	experience	with	Unity	a
fruitful	one.	That,	of	course,	starts	with	Unity	Technologies,	the	company	that
makes	Unity	(the	game	engine).	I	owe	a	debt	to	the	community	at
gamedev.stackexchange.com.	I	visit	that	QA	site	almost	daily	to	learn	from
others	and	to	answer	questions.	And	the	biggest	push	for	me	to	use	Unity	came
from	Alex	Reeve,	my	boss	at	Synapse	Games.	Similarly,	I’ve	picked	up	tricks
and	techniques	from	my	coworkers,	and	they	all	show	up	in	the	code	I	write.

Finally,	I	want	to	thank	my	wife	Virginia	for	her	support	during	the	time	I	was
writing	the	book.	Until	I	started	working	on	it,	I	never	really	understood	how
much	a	book	project	takes	over	your	life	and	affects	everyone	around	you.
Thank	you	so	much	for	your	love	and	encouragement.

About	this	Book

This	is	a	book	about	programming	games	in	Unity.	Think	of	it	as	an	intro	to
Unity	for	experienced	programmers.	The	goal	of	this	book	is	straightforward:	to
take	people	who	have	some	programming	experience	but	no	experience	with
Unity	and	teach	them	how	to	develop	a	game	using	Unity.

The	best	way	of	teaching	development	is	through	example	projects,	with
students	learning	by	doing,	and	that’s	the	approach	this	book	takes.	I’ll	present
topics	as	steps	toward	building	sample	games,	and	you’ll	be	encouraged	to	build
these	games	in	Unity	while	exploring	the	book.	We’ll	go	through	a	selection	of
different	projects	every	few	chapters,	rather	than	one	monolithic	project
developed	over	the	entire	book;	sometimes	other	books	take	the	“one	monolithic
project”	approach,	but	that	can	make	it	hard	to	jump	into	the	middle	if	the	early
chapters	aren’t	relevant	to	you.

This	book	will	have	more	rigorous	programming	content	than	most	Unity	books
(especially	beginners’	books).	Unity	is	often	portrayed	as	a	list	of	features	with
no	programming	required,	which	is	a	misleading	view	that	won’t	teach	people
what	they	need	to	know	in	order	to	produce	commercial	titles.	If	you	don’t
already	know	how	to	program	a	computer,	I	suggest	going	to	a	resource	like
Codecademy	first	(the	computer	programming	lessons	at	Khan	Academy	work
well,	too)	and	then	come	back	to	this	book	after	learning	how	to	program.

Don’t	worry	about	the	exact	programming	language;	C#	is	used	throughout	this
book,	but	skills	from	other	languages	will	transfer	quite	well.	Although	the	first
half	of	the	book	will	take	its	time	introducing	new	concepts	and	will	carefully
and	deliberately	step	you	through	developing	your	first	game	in	Unity,	the
remaining	chapters	will	move	a	lot	faster	in	order	to	take	readers	through
projects	in	multiple	game	genres.	The	book	will	end	with	a	chapter	describing
deployment	to	various	platforms	like	the	web	and	mobile,	but	the	main	thrust	of
the	book	won’t	make	any	reference	to	the	ultimate	deployment	target	because
Unity	is	wonderfully	platform-agnostic.

As	for	other	aspects	of	game	development,	extensive	coverage	of	art	disciplines
would	water	down	how	much	the	book	can	cover	and	would	be	largely	about
software	external	to	Unity	(for	example,	the	animation	software	used).

Discussion	of	art	tasks	will	be	limited	to	aspects	specific	to	Unity	or	that	all
game	developers	should	know.	(Note,	though,	that	there	is	an	appendix	about
modeling	custom	objects.)

Roadmap

Chapter	1	introduces	you	to	Unity,	the	cross-platform	game	development
environment.	You’ll	learn	about	the	fundamental	component	system	underlying
everything	in	Unity,	as	well	as	how	to	write	and	execute	basic	scripts.

Chapter	2	progresses	to	writing	a	demo	of	movement	in	3D,	covering	topics	like
mouse	and	keyboard	input.	Defining	and	manipulating	both	3D	positions	and
rotations	are	thoroughly	explained.

Chapter	3	turns	the	movement	demo	into	a	first-person	shooter,	teaching	you
raycasting	and	basic	AI.	Raycasting	(shooting	a	line	into	the	scene	and	seeing
what	intersects)	is	a	useful	operation	for	all	sorts	of	games.

Chapter	4	covers	art	asset	importing	and	creation.	This	is	the	one	chapter	of	the
book	that	does	not	focus	on	code,	because	every	project	needs	(basic)	models
and	textures.

Chapter	5	teaches	you	how	to	create	a	2D	game	in	Unity.	Although	Unity	started
exclusively	for	3D	graphics,	there’s	now	excellent	support	for	2D	graphics.

Chapter	6	introduces	you	to	the	latest	GUI	functionality	in	Unity.	Every	game
needs	a	UI,	and	the	latest	versions	of	Unity	feature	an	improved	system	for
creating	user	interfaces.

Chapter	7	shows	how	to	create	another	movement	demo	in	3D,	only	seen	from
the	third	person	this	time.	Implementing	third-person	controls	will	demonstrate	a
number	of	key	3D	math	operations,	and	you’ll	learn	how	to	work	with	an
animated	character.

Chapter	8	goes	over	how	to	implement	interactive	devices	and	items	within	your
game.	The	player	will	have	a	number	of	ways	of	operating	these	devices,
including	touching	them	directly,	touching	triggers	within	the	game,	or	pressing

a	button	on	the	controller.

Chapter	9	covers	how	to	communicate	with	the	internet.	You’ll	learn	how	to
send	and	receive	data	using	standard	internet	technologies,	like	HTTP	requests	to
get	XML	data	from	a	server.

Chapter	10	teaches	how	to	program	audio	functionality.	Unity	has	great	support
for	both	short	sound	effects	and	long	music	tracks;	both	sorts	of	audio	are	crucial
for	almost	all	video	games.

Chapter	11	walks	you	through	bringing	together	pieces	from	different	chapters
into	a	single	game.	In	addition,	you’ll	learn	how	to	program	point-and-click
controls	and	how	to	save	the	player’s	game.

Chapter	12	goes	over	building	the	final	app,	with	deployment	to	multiple
platforms	like	desktop,	web,	and	mobile.	Unity	is	wonderfully	platform-
agnostic,	enabling	you	to	create	games	for	every	major	gaming	platform!

There	are	also	four	appendixes	with	additional	information	about	scene
navigation,	external	tools,	Blender,	and	learning	resources.

Code	conventions,	requirements,	and	downloads

All	the	source	code	in	the	book,	whether	in	code	listings	or	snippets,	is	in	a
fixed-width	font	like	this,	which	sets	it	off	from	the	surrounding
text.	In	most	listings,	the	code	is	annotated	to	point	out	key	concepts,	and
numbered	bullets	are	sometimes	used	in	the	text	to	provide	additional
information	about	the	code.	The	code	is	formatted	so	that	it	fits	within	the
available	page	space	in	the	book	by	adding	line	breaks	and	using	indentation
carefully.

The	only	software	required	is	Unity;	this	book	uses	Unity	5.0,	which	is	the	latest
version	as	I	write	this.	Certain	chapters	do	occasionally	discuss	other	pieces	of
software,	but	those	are	treated	as	optional	extras	and	not	core	to	what	you’re
learning.

Warning

Unity	projects	remember	which	version	of	Unity	they	were	created	in	and	will
issue	a	warning	if	you	attempt	to	open	them	in	a	different	version.	If	you	see	that
warning	while	opening	this	book’s	sample	downloads,	click	Continue	and	ignore
it.

The	code	listings	sprinkled	throughout	the	book	generally	show	what	to	add	or
change	in	existing	code	files;	unless	it’s	the	first	appearance	of	a	given	code	file,
don’t	replace	the	entire	file	with	subsequent	listings.	Although	you	can
download	complete	working	sample	projects	to	refer	to,	you’ll	learn	best	by
typing	out	the	code	listings	and	only	looking	at	the	working	samples	for
reference.	Those	downloads	are	available	from	the	publisher’s	website	at
www.manning.com/UnityinAction.

Author	Online

The	purchase	of	Unity	in	Action	includes	free	access	to	a	private	web	forum	run
by	Manning	Publications,	where	you	can	make	comments	about	the	book,	ask
technical	questions,	and	receive	help	from	the	author	and	from	other	users.	To
access	the	forum	and	subscribe	to	it,	point	your	web	browser	to
www.manning.com/UnityinAction.	This	page	provides	information	on	how	to
get	on	the	forum	once	you	are	registered,	what	kind	of	help	is	available,	and	the
rules	of	conduct	on	the	forum.

Manning’s	commitment	to	our	readers	is	to	provide	a	venue	where	a	meaningful
dialogue	between	individual	readers	and	between	readers	and	the	author	can	take
place.	It	is	not	a	commitment	to	any	specific	amount	of	participation	on	the	part
of	the	author	whose	contribution	to	the	forum	remains	voluntary	(and	unpaid).
We	suggest	you	try	asking	the	author	some	challenging	questions	lest	his	interest
stray!

The	Author	Online	forum	and	the	archives	of	previous	discussions	will	be
accessible	from	the	publisher’s	website	as	long	as	the	book	is	in	print.

About	the	author

http://www.manning.com/UnityinAction
http://www.manning.com/UnityinAction

Joseph	Hocking	is	a	software	engineer	living	in	Chicago,	specializing	in
interactive	media	development.	He	works	for	Synapse	Games	as	a	developer	of
web	and	mobile	games,	such	as	the	recently	released	Tyrant	Unleashed.	He	also
teaches	classes	in	game	development	at	Columbia	College	Chicago,	and	his
website	is	www.newarteest.com.

About	the	cover	illustration

The	figure	on	the	cover	of	Unity	in	Action	is	captioned	“Habit	of	the	Master	of
Ceremonies	of	the	Grand	Signior.”	The	Grand	Signior	was	another	name	for	a
sultan	of	the	Ottoman	Empire.	The	illustration	is	taken	from	Thomas	Jefferys’	A
Collection	of	the	Dresses	of	Different	Nations,	Ancient	and	Modern	(4	volumes),
London,	published	between	1757	and	1772.	The	title	page	states	that	these	are
hand-colored	copperplate	engravings,	heightened	with	gum	arabic.	Thomas
Jefferys	(1719–1771),	was	called	“Geographer	to	King	George	III.”	An	English
cartographer	who	was	the	leading	map	supplier	of	his	day,	Jeffreys	engraved	and
printed	maps	for	government	and	other	official	bodies	and	produced	a	wide
range	of	commercial	maps	and	atlases,	especially	of	North	America.	His	work	as
a	mapmaker	sparked	an	interest	in	local	dress	customs	of	the	lands	he	surveyed,
which	are	brilliantly	displayed	in	this	four-volume	collection.

Fascination	with	faraway	lands	and	travel	for	pleasure	were	relatively	new
phenomena	in	the	late	eighteenth	century	and	collections	such	as	this	one	were
popular,	introducing	both	the	tourist	as	well	as	the	armchair	traveler	to	the
inhabitants	of	other	countries.	The	diversity	of	the	drawings	in	Jeffreys’	volumes
speaks	vividly	of	the	uniqueness	and	individuality	of	the	world’s	nations	some
200	years	ago.	Dress	codes	have	changed	since	then	and	the	diversity	by	region
and	country,	so	rich	at	the	time,	has	faded	away.	It	is	now	hard	to	tell	the
inhabitant	of	one	continent	apart	from	another.	Perhaps,	trying	to	view	it
optimistically,	we	have	traded	a	cultural	and	visual	diversity	for	a	more	varied
personal	life,	or	a	more	varied	and	interesting	intellectual	and	technical	life.

At	a	time	when	it	is	hard	to	tell	one	computer	book	from	another,	Manning
celebrates	the	inventiveness	and	initiative	of	the	computer	business	with	book
covers	based	on	the	rich	diversity	of	regional	life	of	two	centuries	ago,	brought
back	to	life	by	Jeffreys’	pictures.

http://www.newarteest.com

Part	1.	First	steps

It’s	time	to	take	your	first	steps	in	using	Unity.	If	you	don’t	know	anything	about
Unity,	that’s	okay!	I’m	going	to	start	by	explaining	what	Unity	is,	including
fundamentals	of	how	to	program	games	in	it.	Then	we’ll	walk	through	a	tutorial
about	developing	a	simple	game	in	Unity.	This	first	project	will	teach	you	a
number	of	specific	game	development	techniques	as	well	as	give	you	a	good
overview	of	how	the	process	works.

Onward	to	chapter	1!

Chapter	1.	Getting	to	know	Unity

This	chapter	covers

	

What	makes	Unity	a	great	choice
Operating	the	Unity	editor
Programming	in	Unity
Comparing	C#	and	JavaScript

If	you’re	anything	like	me,	you’ve	had	developing	a	video	game	on	your	mind
for	a	long	time.	But	it’s	a	big	jump	from	simply	playing	games	to	actually
making	them.	Numerous	game	development	tools	have	appeared	over	the	years,
and	we’re	going	to	discuss	one	of	the	most	recent	and	most	powerful	of	these
tools.	Unity	is	a	professional-quality	game	engine	used	to	create	video	games
targeting	a	variety	of	platforms.	Not	only	is	it	a	professional	development	tool
used	daily	by	thousands	of	seasoned	game	developers,	it’s	also	one	of	the	most
accessible	modern	tools	for	novice	game	developers.	Until	recently,	a	newcomer
to	game	development	(especially	3D	games)	would	face	lots	of	imposing
barriers	right	from	the	start,	but	Unity	makes	it	easy	to	start	learning	these	skills.

Because	you’re	reading	this	book,	chances	are	you’re	curious	about	computer
technology	and	you’ve	either	developed	games	with	other	tools	or	built	other
kinds	of	software,	like	desktop	applications	or	websites.	Creating	a	video	game
isn’t	fundamentally	different	from	writing	any	other	kind	of	software;	it’s	mostly
a	difference	of	degree.	For	example,	a	video	game	is	a	lot	more	interactive	than
most	websites	and	thus	involves	very	different	sorts	of	code,	but	the	skills	and
processes	involved	in	creating	both	are	similar.	If	you’ve	already	cleared	the	first
hurdle	on	your	path	to	learning	game	development,	having	learned	the
fundamentals	of	programming	software,	then	your	next	step	is	to	pick	up	some
game	development	tools	and	translate	that	programming	knowledge	into	the
realm	of	gaming.	Unity	is	a	great	choice	of	game	development	environment	to
work	with.

A	warning	about	terminology

This	book	is	about	programming	in	Unity	and	is	therefore	primarily	of	interest	to
coders.	Although	many	other	resources	discuss	other	aspects	of	game
development	and	Unity,	this	is	a	book	where	programming	takes	front	and
center.

Incidentally,	note	that	the	word	developer	has	a	possibly	unfamiliar	meaning	in
the	context	of	game	development:	developer	is	a	synonym	for	programmer	in
disciplines	like	web	development,	but	in	game	development	the	word	developer
refers	to	anyone	who	works	on	a	game,	with	programmer	being	a	specific	role
within	that.	Other	kinds	of	game	developers	are	artists	and	designers,	but	this
book	will	focus	on	programming.

To	start,	go	to	the	website	www.unity3d.com	to	download	the	software.	This
book	uses	Unity	5.0,	which	is	the	latest	version	as	of	this	writing.	The	URL	is	a
leftover	from	Unity’s	original	focus	on	3D	games;	support	for	3D	games	remains
strong,	but	Unity	works	great	for	2D	games	as	well.	Meanwhile,	although
advanced	features	are	available	in	paid	versions,	the	base	version	is	completely
free.	Everything	in	this	book	works	in	the	free	version	and	doesn’t	require	Unity
Pro;	the	differences	between	those	versions	are	in	advanced	features	(that	are
beyond	the	scope	of	this	book)	and	commercial	licensing	terms.

1.1.	Why	is	Unity	so	great?

Let’s	take	a	closer	look	at	that	description	from	the	beginning	of	the	chapter:
Unity	is	a	professional-quality	game	engine	used	to	create	video	games	targeting
a	variety	of	platforms.	That	is	a	fairly	straightforward	answer	to	the
straightforward	question	“What	is	Unity?”	However,	what	exactly	does	that
answer	mean,	and	why	is	Unity	so	great?

1.1.1.	Unity’s	strengths	and	advantages

A	game	engine	provides	a	plethora	of	features	that	are	useful	across	many
different	games,	so	a	game	implemented	using	that	engine	gets	all	those	features
while	adding	custom	art	assets	and	gameplay	code	specific	to	that	game.	Unity
has	physics	simulation,	normal	maps,	screen	space	ambient	occlusion	(SSAO),
dynamic	shadows...and	the	list	goes	on.	Many	game	engines	boast	such	features,

http://www.unity3d.com

but	Unity	has	two	main	advantages	over	other	similarly	cutting-edge	game
development	tools:	an	extremely	productive	visual	workflow,	and	a	high	degree
of	cross-platform	support.

The	visual	workflow	is	a	fairly	unique	design,	different	from	most	other	game
development	environments.	Whereas	other	game	development	tools	are	often	a
complicated	mishmash	of	disparate	parts	that	must	be	wrangled,	or	perhaps	a
programming	library	that	requires	you	to	set	up	your	own	integrated
development	environment	(IDE),	build-chain	and	whatnot,	the	development
workflow	in	Unity	is	anchored	by	a	sophisticated	visual	editor.	The	editor	is	used
to	lay	out	the	scenes	in	your	game	and	to	tie	together	art	assets	and	code	into
interactive	objects.	The	beauty	of	this	editor	is	that	it	enables	professional-
quality	games	to	be	built	quickly	and	efficiently,	giving	developers	tools	to	be
incredibly	productive	while	still	using	an	extensive	list	of	the	latest	technologies
in	video	gaming.

Note

Most	other	game	development	tools	that	have	a	central	visual	editor	are	also
saddled	with	limited	and	inflexible	scripting	support,	but	Unity	doesn’t	suffer
from	that	disadvantage.	Although	everything	created	for	Unity	ultimately	goes
through	the	visual	editor,	this	core	interface	involves	a	lot	of	linking	projects	to
custom	code	that	runs	in	Unity’s	game	engine.	That’s	not	unlike	linking	in
classes	in	the	project	settings	for	an	IDE	like	Visual	Studio	or	Eclipse.
Experienced	programmers	shouldn’t	dismiss	this	development	environment,
mistaking	it	for	some	click-together	game	creator	with	limited	programming
capability!

The	editor	is	especially	helpful	for	doing	rapid	iteration,	honing	the	game
through	cycles	of	prototyping	and	testing.	You	can	adjust	objects	in	the	editor
and	move	things	around	even	while	the	game	is	running.	Plus,	Unity	allows	you
to	customize	the	editor	itself	by	writing	scripts	that	add	new	features	and	menus
to	the	interface.

Besides	the	editor’s	significant	productivity	advantages,	the	other	main	strength
of	Unity’s	toolset	is	a	high	degree	of	cross-platform	support.	Not	only	is	Unity
multiplatform	in	terms	of	the	deployment	targets	(you	can	deploy	to	the	PC,

web,	mobile,	or	consoles),	but	it’s	multiplatform	in	terms	of	the	development
tools	(you	can	develop	the	game	on	Windows	or	Mac	OS).	This	platform-
agnostic	nature	is	largely	because	Unity	started	as	Mac-only	software	and	was
later	ported	to	Windows.	The	first	version	launched	in	2005,	but	now	Unity	is	up
to	its	fifth	major	version	(with	lots	of	minor	updates	released	frequently).
Initially,	Unity	supported	only	Mac	for	both	developing	and	deployment,	but
within	a	few	months	Unity	had	been	updated	to	work	on	Windows	as	well.
Successive	versions	gradually	added	more	deployment	platforms,	such	as	a
cross-platform	web	player	in	2006,	iPhone	in	2008,	Android	in	2010,	and	even
game	consoles	like	Xbox	and	PlayStation.	Most	recently	they’ve	added
deployment	to	WebGL,	the	new	framework	for	3D	graphics	in	web	browsers.
Few	game	engines	support	as	many	deployment	targets	as	Unity,	and	none	make
deploying	to	multiple	platforms	so	simple.

Meanwhile,	in	addition	to	these	main	strengths,	a	third	and	subtler	benefit	comes
from	the	modular	component	system	used	to	construct	game	objects.	In	a
component	system,	“components”	are	mix-and-match	packets	of	functionality,
and	objects	are	built	up	as	a	collection	of	components,	rather	than	as	a	strict
hierarchy	of	classes.	In	other	words,	a	component	system	is	a	different	(and
usually	more	flexible)	approach	to	doing	object-oriented	programming,	where
game	objects	are	constructed	through	composition	rather	than	inheritance.	Figure
1.1	diagrams	an	example	comparison.

Figure	1.1.	Inheritance	vs.	components

In	a	component	system,	objects	exist	on	a	flat	hierarchy	and	different	objects
have	different	collections	of	components,	rather	than	an	inheritance	structure

where	different	objects	are	on	completely	different	branches	of	the	tree.	This
arrangement	facilitates	rapid	prototyping,	because	you	can	quickly	mix-and-
match	different	components	rather	than	having	to	refactor	the	inheritance	chain
when	the	objects	change.

Although	you	could	write	code	to	implement	a	custom	component	system	if	one
didn’t	exist,	Unity	already	has	a	robust	component	system,	and	this	system	is
even	integrated	seamlessly	with	the	visual	editor.	Rather	than	only	being	able	to
manipulate	components	in	code,	you	can	attach	and	detach	components	within
the	visual	editor.	Meanwhile,	you	aren’t	limited	to	only	building	objects	through
composition;	you	still	have	the	option	of	using	inheritance	in	your	code,
including	all	the	best-practice	design	patterns	that	have	emerged	based	on
inheritance.

1.1.2.	Downsides	to	be	aware	of

Unity	has	many	advantages	that	make	it	a	great	choice	for	developing	games	and
I	highly	recommend	it,	but	I’d	be	remiss	if	I	didn’t	mention	its	weaknesses.	In
particular,	the	combination	of	the	visual	editor	and	sophisticated	coding,	though
very	effective	with	Unity’s	component	system,	is	unusual	and	can	create
difficulties.	In	complex	scenes,	you	can	lose	track	of	which	objects	in	the	scene
have	specific	components	attached.	Unity	does	provide	search	functionality	for
finding	attached	scripts,	but	that	search	could	be	more	robust;	sometimes	you
still	encounter	situations	where	you	need	to	manually	inspect	everything	in	the
scene	in	order	to	find	script	linkages.	This	doesn’t	happen	often,	but	when	it
does	happen	it	can	be	tedious.

Another	disadvantage	that	can	be	surprising	and	frustrating	for	experienced
programmers	is	that	Unity	doesn’t	support	linking	in	external	code	libraries.	The
many	libraries	available	must	be	manually	copied	into	every	project	where
they’ll	be	used,	as	opposed	to	referencing	one	central	shared	location.	The	lack
of	a	central	location	for	libraries	can	make	it	awkward	to	share	functionality
between	multiple	projects.	This	disadvantage	can	be	worked	around	through
clever	use	of	version	control	systems,	but	Unity	doesn’t	support	this
functionality	out	of	the	box.

Note

Difficulty	working	with	version	control	systems	(such	as	Subversion,	Git,	and
Mercurial)	used	to	be	a	significant	weakness,	but	more	recent	versions	of	Unity
work	just	fine.	You	may	find	out-of-date	resources	telling	you	that	Unity	doesn’t
work	with	version	control,	but	newer	resources	will	describe.meta	files	(the
mechanism	Unity	introduced	for	working	with	version-control	systems)	and
which	folders	in	the	project	do	or	don’t	need	to	be	put	in	the	repository.	To	start
out	with,	read	this	page	in	the	documentation:
http://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html

A	third	weakness	has	to	do	with	working	with	prefabs.	Prefabs	are	a	concept
specific	to	Unity	and	are	explained	in	chapter	3;	for	now,	all	you	need	to	know	is
that	prefabs	are	a	flexible	approach	to	visually	defining	interactive	objects.	The
concept	of	prefabs	is	both	powerful	and	unique	to	Unity	(and	yes,	it’s	tied	into
Unity’s	component	system),	but	it	can	be	surprisingly	awkward	to	edit	prefabs.
Considering	prefabs	are	such	a	useful	and	central	part	of	working	with	Unity,	I
hope	that	future	versions	improve	the	workflow	for	editing	prefabs.

1.1.3.	Example	games	built	with	Unity

You’ve	heard	about	the	pros	and	cons	of	Unity,	but	you	might	still	need
convincing	that	the	development	tools	in	Unity	can	give	first-rate	results.	Visit
the	Unity	gallery	at	http://unity3d.com/showcase/gallery	to	see	a	constantly
updated	list	of	hundreds	of	games	and	simulations	developed	using	Unity.	This
section	explores	just	a	handful	of	games	showcasing	a	number	of	genres	and
deployment	platforms.

Desktop	(Windows,	Mac,	Linux)

Because	the	editor	runs	on	the	same	platform,	deployment	to	Windows	or	Mac	is
often	the	most	straightforward	target	platform.	Here	are	a	couple	of	examples	of
desktop	games	in	different	genres:

	

Guns	of	Icarus	Online	(figure	1.2),	a	first-person	shooter	developed	by
Muse	Games
Figure	1.2.	Guns	of	Icarus	Online

http://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html
http://unity3d.com/showcase/gallery

Gone	Home	(figure	1.3),	an	exploration	adventure	developed	by	The
Fullbright	Company
Figure	1.3.	Gone	Home

Mobile	(iOS,	Android)

Unity	can	also	deploy	games	to	mobile	platforms	like	iOS	(iPhones	and	iPads)
and	Android	(phones	and	tablets).	Here	are	a	few	examples	of	mobile	games	in
different	genres:

	

Dead	Trigger	(figure	1.4),	a	first-person	shooter	developed	by	Madfinger
Games
Figure	1.4.	Dead	Trigger

Bad	Piggies	(figure	1.5),	a	physics	puzzle	game	developed	by	Rovio
Figure	1.5.	Bad	Piggies

Tyrant	Unleashed	(figure	1.6),	a	collectible	card	game	developed	by
Synapse	Games
Figure	1.6.	Tyrant	Unleashed

Console	(PlayStation,	Xbox,	Wii)

Unity	can	even	deploy	to	game	consoles,	although	the	developer	must	obtain
licensing	from	Sony,	Microsoft,	or	Nintendo.	Because	of	this	requirement	and
Unity’s	easy	cross-platform	deployment,	console	games	are	often	available	on
desktop	computers	as	well.	Here	are	a	couple	examples	of	console	games	in
different	genres:

	

Assault	Android	Cactus	(figure	1.7),	an	arcade	shooter	developed	by	Witch
Beam
Figure	1.7.	Assault	Android	Cactus

The	Golf	Club	(figure	1.8),	a	sports	simulation	developed	by	HB	Studios
Figure	1.8.	The	Golf	Club

As	you	can	see	from	these	examples,	Unity’s	strengths	definitely	can	translate
into	commercial-quality	games.	But	even	with	Unity’s	significant	advantages

over	other	game	development	tools,	newcomers	may	have	a	misunderstanding
about	the	involvement	of	programming	in	the	development	process.	Unity	is
often	portrayed	as	simply	a	list	of	features	with	no	programming	required,	which
is	a	misleading	view	that	won’t	teach	people	what	they	need	to	know	in	order	to
produce	commercial	titles.	Though	it’s	true	that	you	can	click	together	a	fairly
elaborate	prototype	using	preexisting	components	even	without	a	programmer
involved	(which	is	itself	a	pretty	big	feat),	rigorous	programming	is	required	to
move	beyond	an	interesting	prototype	to	a	polished	game	for	release.

1.2.	How	to	use	Unity

The	previous	section	talked	a	lot	about	the	productivity	benefits	from	Unity’s
visual	editor,	so	let’s	go	over	what	the	interface	looks	like	and	how	it	operates.	If
you	haven’t	done	so	already,	download	the	program	from	www.unity3d.com	and
install	it	on	your	computer	(be	sure	to	include	“Example	Project”	if	that’s
unchecked	in	the	installer).	After	you	install	it,	launch	Unity	to	start	exploring
the	interface.

You	probably	want	an	example	to	look	at,	so	open	the	included	example	project;
a	new	installation	should	open	the	example	project	automatically,	but	you	can
also	select	File	>	Open	Project	to	open	it	manually.	The	example	project	is
installed	in	the	shared	user	directory,	which	is	something	like
C:\Users\Public\Documents\Unity	Projects\	on	Windows,	or	Users/Shared/Unity/
on	Mac	OS.	You	may	also	need	to	open	the	example	scene,	so	double-click	the
Car	scene	file	(highlighted	in	figure	1.9;	scene	files	have	the	Unity	cube	icon)
that’s	found	by	going	to	SampleScenes/Scenes/	in	the	file	browser	at	the	bottom
of	the	editor.	You	should	be	looking	at	a	screen	similar	to	figure	1.9.

Figure	1.9.	Parts	of	the	interface	in	Unity

http://www.unity3d.com

The	interface	in	Unity	is	split	up	into	different	sections:	the	Scene	tab,	the	Game
tab,	the	Toolbar,	the	Hierarchy	tab,	the	Inspector,	the	Project	tab,	and	the
Console	tab.	Each	section	has	a	different	purpose	but	all	are	crucial	for	the
game-building	lifecycle:

	

You	can	browse	through	all	the	files	in	the	Project	tab.
You	can	place	objects	in	the	3D	scene	being	viewed	using	the	Scene	tab.
The	Toolbar	has	controls	for	working	with	the	scene.
You	can	drag	and	drop	object	relationships	in	the	Hierarchy	tab.
The	Inspector	lists	information	about	selected	objects,	including	linked
code.
You	can	test	playing	in	Game	view	while	watching	error	output	in	the
Console	tab.

This	is	just	the	default	layout	in	Unity;	all	of	the	various	views	are	in	tabs	and
can	be	moved	around	or	resized,	docking	in	different	places	on	the	screen.	Later
you	can	play	around	with	customizing	the	layout,	but	for	now	the	default	layout
is	the	best	way	to	understand	what	all	the	views	do.

1.2.1.	Scene	view,	Game	view,	and	the	Toolbar

The	most	prominent	part	of	the	interface	is	the	Scene	view	in	the	middle.	This	is
where	you	can	see	what	the	game	world	looks	like	and	move	objects	around.
Mesh	objects	in	the	scene	appear	as,	well,	the	mesh	object	(defined	in	a
moment).	You	can	also	see	a	number	of	other	objects	in	the	scene,	represented
by	various	icons	and	colored	lines:	cameras,	lights,	audio	sources,	collision
regions,	and	so	forth.	Note	that	the	view	you’re	seeing	here	isn’t	the	same	as	the
view	in	the	running	game—you’re	able	to	look	around	the	scene	at	will	without
being	constrained	to	the	game’s	view.

Definition

A	mesh	object	is	a	visual	object	in	3D	space.	Visuals	in	3D	are	constructed	out	of
lots	of	connected	lines	and	shapes;	hence	the	word	mesh.

The	Game	view	isn’t	a	separate	part	of	the	screen	but	rather	another	tab	located
right	next	to	Scene	(look	for	tabs	at	the	top	left	of	views).	A	couple	of	places	in
the	interface	have	multiple	tabs	like	this;	if	you	click	a	different	tab,	the	view	is
replaced	by	the	new	active	tab.	When	the	game	is	running,	what	you	see	in	this
view	is	the	game.	It	isn’t	necessary	to	manually	switch	tabs	every	time	you	run
the	game,	because	the	view	automatically	switches	to	Game	when	the	game
starts.

Tip

While	the	game	is	running,	you	can	switch	back	to	the	Scene	view,	allowing	you
to	inspect	objects	in	the	running	scene.	This	capability	is	hugely	useful	for
seeing	what’s	going	on	while	the	game	is	running	and	is	a	helpful	debugging	tool
that	isn’t	available	in	most	game	engines.

Speaking	of	running	the	game,	that’s	as	simple	as	hitting	the	Play	button	just
above	the	Scene	view.	That	whole	top	section	of	the	interface	is	referred	to	as	the
Toolbar,	and	Play	is	located	right	in	the	middle.	Figure	1.10	breaks	apart	the	full
editor	interface	to	show	only	the	Toolbar	at	the	top,	as	well	as	the	Scene/Game
tabs	right	underneath.

Figure	1.10.	Editor	screenshot	cropped	to	show	Toolbar,	Scene,	and	Game

At	the	left	side	of	the	Toolbar	are	buttons	for	scene	navigation	and	transforming
objects—how	to	look	around	the	scene	and	how	to	move	objects.	I	suggest	you
spend	some	time	practicing	looking	around	the	scene	and	moving	objects,
because	these	are	two	of	the	most	important	activities	you’ll	do	in	Unity’s	visual
editor	(they’re	so	important	that	they	get	their	own	section	following	this	one).
The	right	side	of	the	Toolbar	is	where	you’ll	find	drop-down	menus	for	layouts
and	layers.	As	mentioned	earlier,	the	layout	of	Unity’s	interface	is	flexible,	so	the
Layouts	menu	allows	you	to	switch	between	layouts.	As	for	the	Layers	menu,
that’s	advanced	functionality	that	you	can	ignore	for	now	(layers	will	be
mentioned	in	future	chapters).

1.2.2.	Using	the	mouse	and	keyboard

Scene	navigation	is	primarily	done	using	the	mouse,	along	with	a	few	modifier
keys	used	to	modify	what	the	mouse	is	doing.	The	three	main	navigation
maneuvers	are	Move,	Orbit,	and	Zoom.	The	specific	mouse	movements	for	each
are	described	in	appendix	A	at	the	end	of	this	book,	because	they	vary	depending
on	what	mouse	you’re	using.	Basically,	the	three	different	movements	involve
clicking-and-dragging	while	holding	down	some	combination	of	Alt	(or	Option
on	Mac)	and	Ctrl.	Spend	a	few	minutes	moving	around	in	the	scene	to
understand	what	Move,	Orbit,	and	Zoom	do.

Tip

Although	Unity	can	be	used	with	one-or	two-button	mice,	I	highly	recommend
getting	a	three-button	mouse	(and	yes,	a	three-button	mouse	works	fine	on	Mac
OS	X).

Transforming	objects	is	also	done	through	three	main	maneuvers,	and	the	three
scene	navigation	moves	are	analogous	to	the	three	transforms:	Translate,	Rotate,
and	Scale	(figure	1.11	demonstrates	the	transforms	on	a	cube).

Figure	1.11.	Applying	the	three	transforms:	Translate,	Rotate,	and	Scale.	(The	lighter	lines	are	the
previous	state	of	the	object	before	it	was	transformed.)

When	you	select	an	object	in	the	scene,	you	can	then	move	it	around	(the
mathematically	accurate	technical	term	is	translate),	rotate	the	object,	or	scale
how	big	it	is.	Relating	back	to	scene	navigation,	Move	is	when	you	Translate	the
camera,	Orbit	is	when	you	Rotate	the	camera,	and	Zoom	is	when	you	Scale	the
camera.	Besides	the	buttons	on	the	Toolbar,	you	can	switch	between	these
functions	by	pressing	W,	E,	or	R	on	the	keyboard.	When	you	activate	a
transform,	you’ll	notice	a	set	of	color-coded	arrows	or	circles	appears	over	the
object	in	the	scene;	this	is	the	Transform	gizmo,	and	you	can	click-and-drag	this
gizmo	to	apply	the	transformation.

There’s	also	a	fourth	tool	next	to	the	transform	buttons.	Called	the	Rect	tool,	it’s
designed	for	use	with	2D	graphics.	This	one	tool	combines	movement,	rotation,
and	scaling.	These	operations	have	to	be	separate	tools	in	3D	but	are	combined
in	2D	because	there’s	one	less	dimension	to	worry	about.	Unity	has	a	host	of
other	keyboard	shortcuts	for	speeding	up	a	variety	of	tasks.	Refer	to	appendix	A
to	learn	about	them.	And	with	that,	on	to	the	remaining	sections	of	the	interface!

1.2.3.	The	Hierarchy	tab	and	the	Inspector

Looking	at	the	sides	of	the	screen,	you’ll	see	the	Hierarchy	tab	on	the	left	and
the	Inspector	on	the	right	(see	figure	1.12).	Hierarchy	is	a	list	view	with	the
name	of	every	object	in	the	scene	listed,	with	the	names	nested	together
according	to	their	hierarchy	linkages	in	the	scene.	Basically,	it’s	a	way	of
selecting	objects	by	name	instead	of	hunting	them	down	and	clicking	them
within	Scene.	The	Hierarchy	linkages	group	objects	together,	visually	grouping
them	like	folders	and	allowing	you	to	move	the	entire	group	together.

Figure	1.12.	Editor	screenshot	cropped	to	show	the	Hierarchy	and	Inspector	tabs

The	Inspector	shows	you	information	about	the	currently	selected	object.	Select
an	object	and	the	Inspector	is	then	filled	with	information	about	that	object.	The
information	shown	is	pretty	much	a	list	of	components,	and	you	can	even	attach
or	remove	components	from	objects.	All	game	objects	have	at	least	one
component,	Transform,	so	you’ll	always	at	least	see	information	about
positioning	and	rotation	in	the	Inspector.	Many	times	objects	will	have	several
components	listed	here,	including	scripts	attached	to	that	object.

1.2.4.	The	Project	and	Console	tabs

At	the	bottom	of	the	screen	you’ll	see	Project	and	Console	(see	figure	1.13).	As

with	Scene	and	View,	these	aren’t	two	separate	portions	of	the	screen	but	rather
tabs	that	you	can	switch	between.	Project	shows	all	the	assets	(art,	code,	and	so
on)	in	the	project.	Specifically,	on	the	left	side	of	the	view	is	a	listing	of	the
directories	in	the	project;	when	you	select	a	directory,	the	right	side	of	the	view
shows	the	individual	files	in	that	directory.	The	directory	listing	in	Project	is
similar	to	the	list	view	in	Hierarchy,	but	whereas	Hierarchy	shows	objects	in	the
scene,	Project	shows	files	that	aren’t	contained	within	any	specific	scene
(including	scene	files—when	you	save	a	scene,	it	shows	up	in	Project!).

Figure	1.13.	Editor	screenshot	cropped	to	show	the	Project	and	Console	tabs

Tip

Project	view	mirrors	the	Assets	directory	on	disk,	but	you	generally	shouldn’t
move	or	delete	files	directly	by	going	to	the	Assets	folder.	If	you	do	those	things
within	the	Project	view,	Unity	will	keep	in	sync	with	that	folder.

The	Console	is	the	place	where	messages	from	the	code	show	up.	Some	of	these
messages	will	be	debug	output	that	you	placed	deliberately,	but	Unity	also	emits
error	messages	if	it	encounters	problems	in	the	script	you	wrote.

1.3.	Getting	up	and	running	with	Unity	programming

Now	let’s	look	at	how	the	process	of	programming	works	in	Unity.	Although	art
assets	can	be	laid	out	in	the	visual	editor,	you	need	to	write	code	to	control	them
and	make	the	game	interactive.	Unity	supports	a	few	programming	languages,	in
particular	JavaScript	and	C#.	There	are	pros	and	cons	to	both	choices,	but	you’ll
be	using	C#	throughout	this	book.

Why	choose	C#	over	JavaScript?

All	of	the	code	listings	in	this	book	use	C#	because	it	has	a	number	of
advantages	over	JavaScript	and	fewer	disadvantages,	especially	for	professional
developers	(it’s	certainly	the	language	I	use	at	work).

One	benefit	is	that	C#	is	strongly	typed,	whereas	JavaScript	is	not.	Now,	there
are	lots	of	arguments	among	experienced	programmers	about	whether	or	not
dynamic	typing	is	a	better	approach	for,	say,	web	development,	but	programming
for	certain	gaming	platforms	(such	as	iOS)	often	benefits	from	or	even	requires
static	typing.	Unity	has	even	added	the	directive	#pragma	strict	to	force
static	typing	within	JavaScript.	Although	technically	this	works,	it	breaks	one	of
the	bedrock	principles	of	how	JavaScript	operates,	and	if	you’re	going	to	do	that,
then	you’re	better	off	using	a	language	that’s	intrinsically	strongly	typed.

This	is	just	one	example	of	how	JavaScript	within	Unity	isn’t	quite	the	same	as
JavaScript	elsewhere.	JavaScript	in	Unity	is	certainly	similar	to	JavaScript	in
web	browsers,	but	there	are	lots	of	differences	in	how	the	language	works	in
each	context.	Many	developers	refer	to	the	language	in	Unity	as	UnityScript,	a
name	that	indicates	similarity	to	but	separateness	from	JavaScript.	This	“similar
but	different”	state	can	create	issues	for	programmers,	both	in	terms	of	bringing
in	knowledge	about	JavaScript	from	outside	Unity,	and	in	terms	of	applying
programming	knowledge	gained	by	working	in	Unity.

Let’s	walk	through	an	example	of	writing	and	running	some	code.	Launch	Unity
and	create	a	new	project;	choose	File	>	New	Project	to	open	the	New	Project
window.	Type	a	name	for	the	project,	and	then	choose	where	you	want	to	save	it.
Realize	that	a	Unity	project	is	simply	a	directory	full	of	various	asset	and
settings	files,	so	save	the	project	anywhere	on	your	computer.	Click	Create
Project	and	then	Unity	will	briefly	disappear	while	it	sets	up	the	project
directory.

Warning

Unity	projects	remember	which	version	of	Unity	they	were	created	in	and	will
issue	a	warning	if	you	attempt	to	open	them	in	a	different	version.	Sometimes	it
doesn’t	matter	(for	example,	just	ignore	the	warning	if	it	appears	while	opening

this	book’s	sample	downloads),	but	sometimes	you	will	want	to	back	up	your
project	before	opening	it.

When	Unity	reappears	you’ll	be	looking	at	a	blank	project.	Next,	let’s	discuss
how	your	programs	get	executed	in	Unity.

1.3.1.	How	code	runs	in	Unity:	script	components

All	code	execution	in	Unity	starts	from	code	files	linked	to	an	object	in	the
scene.	Ultimately	it’s	all	part	of	the	component	system	described	earlier;	game
objects	are	built	up	as	a	collection	of	components,	and	that	collection	can	include
scripts	to	execute.

Note

Unity	refers	to	the	code	files	as	scripts,	using	a	definition	of	“script”	that’s	most
commonly	encountered	with	JavaScript	running	in	a	browser:	the	code	is
executed	within	the	Unity	game	engine,	versus	compiled	code	that	runs	as	its
own	executable.	But	don’t	get	confused	because	many	people	define	the	word
differently;	for	example,	“scripts”	often	refer	to	short,	self-contained	utility
programs.	Scripts	in	Unity	are	more	akin	to	individual	OOP	classes,	and	scripts
attached	to	objects	in	the	scene	are	the	object	instances.

As	you’ve	probably	surmised	from	this	description,	in	Unity,	scripts	are
components—not	all	scripts,	mind	you,	only	scripts	that	inherit	from
MonoBehaviour,	the	base	class	for	script	components.	MonoBehaviour
defines	the	invisible	groundwork	for	how	components	attach	to	game	objects,
and	(as	shown	in	listing	1.1)	inheriting	from	it	provides	a	couple	of
automatically	run	methods	that	you	can	override.	Those	methods	include
Start(),	which	is	called	once	when	the	object	becomes	active	(which	is
generally	as	soon	as	the	level	with	that	object	has	loaded),	and	Update(),
which	is	called	every	frame.	Thus	your	code	is	run	when	you	put	it	inside	these
predefined	methods.

Definition

A	frame	is	a	single	cycle	of	the	looping	game	code.	Nearly	all	video	games	(not
just	in	Unity,	but	video	games	in	general)	are	built	around	a	core	game	loop,
where	the	code	executes	in	a	cycle	while	the	game	is	running.	Each	cycle
includes	drawing	the	screen;	hence	the	name	frame	(just	like	the	series	of	still
frames	of	a	movie).

Listing	1.1.	Code	template	for	a	basic	script	component

This	is	what	the	file	contains	when	you	create	a	new	C#	script:	the	minimal
boilerplate	code	that	defines	a	valid	Unity	component.	Unity	has	a	script
template	tucked	away	in	the	bowels	of	the	application,	and	when	you	create	a
new	script	it	copies	that	template	and	renames	the	class	to	match	the	name	of	the
file	(which	is	HelloWorld.cs	in	my	case).	There	are	also	empty	shells	for
Start()	and	Update()	because	those	are	the	two	most	common	places	to
call	your	custom	code	from	(although	I	tend	to	adjust	the	whitespace	around
those	functions	a	tad,	because	the	template	isn’t	quite	how	I	like	the	whitespace
and	I’m	finicky	about	that).

To	create	a	script,	select	C#	Script	from	the	Create	menu	that	you	access	either
under	the	Assets	menu	(note	that	Assets	and	GameObjects	both	have	listings	for
Create	but	they’re	different	menus)	or	by	right-clicking	in	the	Project	view.	Type
in	a	name	for	the	new	script,	such	as	HelloWorld.	As	explained	later	in	the
chapter	(see	figure	1.15),	you’ll	click-and-drag	this	script	file	onto	an	object	in
the	scene.	Double-click	the	script	and	it’ll	automatically	be	opened	in	another
program	called	MonoDevelop,	discussed	next.

1.3.2.	Using	MonoDevelop,	the	cross-platform	IDE

Programming	isn’t	done	within	Unity	exactly,	but	rather	code	exists	as	separate
files	that	you	point	Unity	to.	Script	files	can	be	created	within	Unity,	but	you	still
need	to	use	some	text	editor	or	IDE	to	write	all	the	code	within	those	initially
empty	files.	Unity	comes	bundled	with	MonoDevelop,	an	open	source,	cross-
platform	IDE	for	C#	(figure	1.14	shows	what	it	looks	like).	You	can	visit
www.monodevelop.com	to	learn	more	about	this	software,	but	the	version	to	use
is	the	version	bundled	along	with	Unity,	rather	than	a	version	downloaded	from
their	website,	because	some	modifications	were	made	to	the	base	software	in
order	to	better	integrate	it	with	Unity.

Figure	1.14.	Parts	of	the	interface	in	MonoDevelop

Note

MonoDevelop	organizes	files	into	groupings	called	a	solution.	Unity
automatically	generates	a	solution	that	has	all	the	script	files,	so	you	usually
don’t	need	to	worry	about	that.

Because	C#	originated	as	a	Microsoft	product,	you	may	be	wondering	if	you	can
use	Visual	Studio	to	do	programming	for	Unity.	The	short	answer	is	yes,	you
can.	Support	tools	are	available	from	www.unityvs.com	but	I	generally	prefer
MonoDevelop,	mostly	because	Visual	Studio	only	runs	on	Windows	and	using
that	IDE	would	tie	your	workflow	to	Windows.	That’s	not	necessarily	a	bad
thing,	and	if	you’re	already	using	Visual	Studio	to	do	programming	then	you

http://www.monodevelop.com
http://www.unityvs.com

could	keep	using	it	and	not	have	any	problems	following	along	with	this	book
(beyond	this	introductory	chapter,	I’m	not	going	to	talk	about	the	IDE).	Tying
your	workflow	to	Windows,	though,	would	run	counter	to	one	of	the	biggest
advantages	of	using	Unity,	and	doing	so	could	prove	problematic	if	you	need	to
work	with	Mac-based	developers	on	your	team	and/or	if	you	want	to	deploy
your	game	to	iOS.	Although	C#	originated	as	a	Microsoft	product	and	thus	only
worked	on	Windows	with	the	.NET	Framework,	C#	has	now	become	an	open
language	standard	and	there’s	a	significant	cross-platform	framework:	Mono.
Unity	uses	Mono	for	its	programming	backbone,	and	using	MonoDevelop
allows	you	to	keep	the	entire	development	workflow	cross-platform.

Always	keep	in	mind	that	although	the	code	is	written	in	MonoDevelop,	the
code	isn’t	actually	run	there.	The	IDE	is	pretty	much	a	fancy	text	editor,	and	the
code	is	run	when	you	hit	Play	within	Unity.

1.3.3.	Printing	to	the	console:	Hello	World!

All	right,	you	already	have	an	empty	script	in	the	project,	but	you	also	need	an
object	in	the	scene	to	attach	the	script	to.	Recall	figure	1.1	depicting	how	a
component	system	works;	a	script	is	a	component,	so	it	needs	to	be	set	as	one	of
the	components	on	an	object.

Select	GameObject	>	Create	Empty,	and	a	blank	GameObject	will	appear	in	the
Hierarchy	list.	Now	drag	the	script	from	the	Project	view	over	to	the	Hierarchy
view	and	drop	it	on	the	empty	GameObject.	As	shown	in	figure	1.15,	Unity	will
highlight	valid	places	to	drop	the	script,	and	dropping	it	on	the	GameObject	will
attach	the	script	to	that	object.	To	verify	that	the	script	is	attached	to	the	object,
select	the	object	and	look	at	the	Inspector	view.	You	should	see	two	components
listed:	the	Transform	component	that’s	the	basic	position/rotation/scale
component	all	objects	have	and	that	can’t	be	removed,	and	below	that,	your
script.

Figure	1.15.	How	to	link	a	script	to	a	GameObject

Note

Eventually	this	action	of	dragging	objects	from	one	place	and	dropping	them	on
other	objects	will	feel	routine.	A	lot	of	different	linkages	in	Unity	are	created	by
dragging	things	on	top	of	each	other,	not	just	attaching	scripts	to	objects.

When	a	script	is	linked	to	an	object,	you’ll	see	something	like	figure	1.16,	with
the	script	showing	up	as	a	component	in	the	Inspector.	Now	the	script	will
execute	when	you	play	the	scene,	although	nothing	is	going	to	happen	yet
because	you	haven’t	written	any	code.	Let’s	do	that	next!

Figure	1.16.	Linked	script	being	displayed	in	the	Inspector

Open	the	script	in	MonoDevelop	to	get	back	to	listing	1.1.	The	classic	place	to
start	when	learning	a	new	programming	environment	is	having	it	print	the	text
“Hello	World!”	so	add	this	line	inside	the	Start()	method,	as	shown	in	the
following	listing.

Listing	1.2.	Adding	a	console	message

What	the	Debug.Log()	command	does	is	print	a	message	to	the	Console	view
in	Unity.	Meanwhile	that	line	goes	in	the	Start()	method	because,	as	was
explained	earlier,	that	method	is	called	as	soon	as	the	object	becomes	active.	In
other	words,	Start()	will	be	called	once	as	soon	as	you	hit	Play	in	the	editor.
Once	you’ve	added	the	log	command	to	your	script	(be	sure	to	save	the	script),
hit	Play	in	Unity	and	switch	to	the	Console	view.	You’ll	see	the	message	“Hello
World!”	appear.	Congratulations,	you’ve	written	your	first	Unity	script!	In	later
chapters	the	code	will	be	more	elaborate,	of	course,	but	this	is	an	important	first
step.

“Hello	World!”	steps	in	brief

Let’s	reiterate	and	summarize	the	steps	from	the	last	several	pages:

1.		Create	a	new	project.

2.		Create	a	new	C#	script.

3.		Create	an	empty	GameObject.

4.		Drag	the	script	onto	the	object.

5.		Add	the	log	command	to	the	script.

6.		Press	Play!

You	could	now	save	the	scene;	that	would	create	a	.unity	file	with	the	Unity
icon.	The	scene	file	is	a	snapshot	of	everything	currently	loaded	in	the	game	so
that	you	can	reload	this	scene	later.	It’s	hardly	worth	saving	this	scene	because
it’s	so	simple	(just	a	single	empty	GameObject),	but	if	you	don’t	save	the	scene
then	you’ll	find	it	empty	again	when	you	come	back	to	the	project	after	quitting
Unity.

Errors	in	the	script

To	see	how	Unity	indicates	errors,	purposely	put	a	typo	in	the	HelloWorld	script.
For	example,	if	you	type	an	extra	parenthesis	symbol,	this	error	message	will
appear	in	the	Console	with	a	red	error	icon:

1.4.	Summary

In	this	chapter	you’ve	learned	that

	

Unity	is	a	multiplatform	development	tool.
Unity’s	visual	editor	has	several	sections	that	work	in	concert.
Scripts	are	attached	to	objects	as	components.
Code	is	written	inside	scripts	using	MonoDevelop.

Chapter	2.	Building	a	demo	that	puts	you	in	3D	space

This	chapter	covers

	

Understanding	3D	coordinate	space
Putting	a	player	in	a	scene
Writing	a	script	that	moves	objects
Implementing	FPS	controls

Chapter	1	concluded	with	the	traditional	“Hello	World!”	introduction	to	a	new
programming	tool;	now	it’s	time	to	dive	into	a	nontrivial	Unity	project,	a	project
with	interactivity	and	graphics.	You’ll	put	some	objects	into	a	scene	and	write
code	to	enable	a	player	to	walk	around	that	scene.	Basically,	it’ll	be	Doom
without	the	monsters	(something	like	what	figure	2.1	depicts).	The	visual	editor
in	Unity	enables	new	users	to	start	assembling	a	3D	prototype	right	away,
without	needing	to	write	a	lot	of	boilerplate	code	first	(for	things	like	initializing
a	3D	view	or	establishing	a	rendering	loop).

Figure	2.1.	Screenshot	of	the	3D	demo	(basically,	Doom	without	the	monsters)

It’s	tempting	to	immediately	start	building	the	scene	in	Unity,	especially	with
such	a	simple	(in	concept!)	project.	But	it’s	always	a	good	idea	to	pause	at	the
beginning	and	plan	out	what	you’re	going	to	do,	and	this	is	especially	important
right	now	because	you’re	new	to	the	process.

2.1.	Before	you	start...

Unity	makes	it	easy	for	a	newcomer	to	get	started,	but	let’s	go	over	a	couple	of
points	before	you	build	the	complete	scene.	Even	when	working	with	a	tool	as
flexible	as	Unity,	you	do	need	to	have	some	sense	of	the	goal	you’re	working
toward.	You	also	need	a	grasp	of	how	3D	coordinates	operate	or	you	could	get
lost	as	soon	as	you	try	to	position	an	object	in	the	scene.

2.1.1.	Planning	the	project

Before	you	start	programming	anything,	you	always	want	to	pause	and	ask
yourself,	“So	what	am	I	building	here?”	Game	design	is	a	huge	topic	unto	itself,
with	many	impressively	large	books	focused	on	how	to	design	a	game.
Fortunately	for	our	purposes,	you	only	need	a	brief	outline	of	this	simple	demo
in	mind	in	order	to	develop	a	basic	learning	project.	These	initial	projects	won’t
be	terribly	complex	designs	anyway,	in	order	to	avoid	distracting	you	from
learning	programming	concepts;	you	can	(and	should!)	worry	about	higher-level
design	issues	after	you’ve	mastered	the	fundamentals	of	game	development.

For	this	first	project	you’ll	build	a	basic	FPS	(first-person	shooter)	scene.	There
will	be	a	room	to	navigate	around,	players	will	see	the	world	from	their
character’s	point	of	view,	and	the	player	can	control	the	character	using	the
mouse	and	keyboard.	All	the	interesting	complexity	of	a	complete	game	can	be
stripped	away	for	now	in	order	to	concentrate	on	the	core	mechanic:	moving
around	in	a	3D	space.	Figure	2.2	depicts	the	roadmap	for	this	project,	basically
laying	out	the	mental	checklist	I	built	in	my	head:

Figure	2.2.	Roadmap	for	the	3D	demo

1.		Set	up	the	room:	create	the	floor,	outer	walls,	and	inner	walls.

2.		Place	the	lights	and	camera.

3.		Create	the	player	object	(including	attaching	the	camera	on	top).

4.		Write	movement	scripts:	rotate	with	the	mouse	and	move	with	the
keyboard.

Don’t	be	scared	off	by	everything	in	this	roadmap!	It	sounds	like	there’s	a	lot	in
this	chapter,	but	Unity	makes	it	easy.	The	upcoming	sections	about	movement
scripts	are	so	extensive	only	because	we’ll	be	going	through	every	line	to
understand	all	the	concepts	in	detail.	This	project	is	a	first-person	demo	in	order
to	keep	the	art	requirements	simple;	because	you	can’t	see	yourself,	it’s	fine	for
“you”	to	be	a	cylindrical	shape	with	a	camera	on	top!	Now	you	just	need	to
understand	how	3D	coordinates	work,	and	it	will	be	easy	to	place	everything	in
the	visual	editor.

2.1.2.	Understanding	3D	coordinate	space

If	you	think	about	the	simple	plan	we’re	starting	with,	there	are	three	aspects	to
it:	a	room,	a	view,	and	controls.	All	of	those	items	rely	on	you	understanding
how	positions	and	movements	are	represented	in	3D	computer	simulations,	and
if	you’re	new	to	working	with	3D	graphics	you	might	not	already	know	that
stuff.

It	all	boils	down	to	numbers	that	indicate	points	in	space,	and	the	way	those

numbers	correlate	to	the	space	is	through	coordinate	axes.	If	you	think	back	to
math	class,	you’ve	probably	seen	and	used	X-and	Y-axes	(see	figure	2.3)	for
assigning	coordinates	to	points	on	the	page,	which	is	referred	to	as	a	Cartesian
coordinate	system.

Figure	2.3.	Coordinates	along	the	X-and	Y-axes	define	a	2D	point.

Two	axes	give	you	2D	coordinates,	with	all	points	in	the	same	plane.	Three	axes
are	used	to	define	3D	space.	Because	the	X-axis	goes	along	the	page	horizontally
and	the	Y-axis	goes	along	the	page	vertically,	we	now	imagine	a	third	axis	that
sticks	straight	into	and	out	of	the	page,	perpendicular	to	both	the	X	and	Y	axes.
Figure	2.4	depicts	the	X-,	Y-,	and	Z-axes	for	3D	coordinate	space.	Everything
that	has	a	specific	position	in	the	scene	will	have	XYZ	coordinates:	position	of
the	player,	placement	of	a	wall,	and	so	forth.

Figure	2.4.	Coordinates	along	the	X-,	Y-,	and	Z-axes	define	a	3D	point.

In	Unity’s	Scene	view	you	can	see	these	three	axes	displayed,	and	in	the
Inspector	you	can	type	in	the	three	numbers	to	position	an	object.	Not	only	will
you	write	code	to	position	objects	using	these	three-number	coordinates,	but	you
can	also	define	movements	as	a	distance	to	move	along	each	axis.

Left-handed	vs.	right-handed	coordinates

The	positive	and	negative	direction	of	each	axis	is	arbitrary,	and	the	coordinates
still	work	no	matter	which	direction	the	axes	point.	You	simply	need	to	stay
consistent	within	a	given	3D	graphics	tool	(animation	tool,	game	development
tool,	and	so	forth).

But	in	almost	all	cases	X	goes	to	the	right	and	Y	goes	up;	what	differs	between
different	tools	is	whether	Z	goes	into	or	comes	out	of	the	page.	These	two
directions	are	referred	to	as	“left-handed”	or	“right-handed”;	as	this	figure
shows,	if	you	point	your	thumb	along	the	X-axis	and	your	index	finger	along	the
Y-axis,	then	your	middle	finger	points	along	the	Z-axis.

	

The	Z-axis	points	in	a	different	direction	on	the	left	hand	versus	the	right	hand.

	

Unity	uses	a	left-handed	coordinate	system,	as	do	many	3D	art	applications.
Many	other	tools	use	right-handed	coordinate	systems	(OpenGL,	for	example),
so	don’t	get	confused	if	you	ever	see	different	coordinate	directions.

Now	that	you	have	a	plan	in	mind	for	this	project	and	you	know	how	coordinates
are	used	to	position	objects	in	3D	space,	it’s	time	to	start	building	the	scene.

2.2.	Begin	the	project:	place	objects	in	the	scene

All	right,	let’s	create	and	place	objects	in	the	scene.	First	you’ll	set	up	all	the
static	scenery—the	floor	and	walls.	Then	you’ll	place	lights	around	the	scene
and	position	the	camera.	Last	you’ll	create	the	object	that	will	be	the	player,	the
object	to	which	you’ll	attach	scripts	to	walk	around	the	scene.	Figure	2.5	shows
what	the	editor	will	look	like	with	everything	in	place.

Figure	2.5.	Scene	in	the	Editor	with	floor,	walls,	lights,	a	camera,	and	the	player

Chapter	1	showed	how	to	create	a	new	project	in	Unity,	so	you’ll	do	that	now.
Remember:	Choose	File	>	New	Project	and	then	name	your	new	project	in	the
window	that	pops	up.	After	creating	the	new	project,	immediately	save	the
current	empty	default	scene,	because	the	project	doesn’t	have	any	Scene	file
initially.	The	scene	starts	out	empty,	and	the	first	objects	to	create	are	the	most
obvious	ones.

2.2.1.	The	scenery:	floor,	outer	walls,	inner	walls

Select	the	GameObject	menu	at	the	top	of	the	screen,	and	then	hover	over	3D
Object	to	see	that	drop-down	menu.	Select	Cube	to	create	a	new	cube	object	in
the	scene	(later	we’ll	use	other	shapes	like	Sphere	and	Capsule).	Adjust	the
position	and	scale	of	this	object,	as	well	as	its	name,	in	order	to	make	the	floor;
figure	2.6	shows	what	values	the	floor	should	be	set	to	in	the	Inspector	(it’s	only
a	cube	initially,	before	you	stretch	it	out).

Figure	2.6.	Inspector	view	for	the	floor

Note

The	numbers	for	position	can	be	any	units	you	want,	as	long	as	you’re	consistent
throughout	the	scene.	The	most	common	choice	for	units	is	meters	and	that’s
what	I	generally	choose,	but	I	also	use	feet	sometimes	and	I’ve	even	seen	other
people	decide	that	the	numbers	are	inches!

Repeat	the	same	steps	in	order	to	create	outer	walls	for	the	room.	You	can	create
new	cubes	each	time,	or	you	can	copy	and	paste	existing	objects	using	the
standard	shortcuts.	Move,	rotate,	and	scale	the	walls	to	form	a	perimeter	around
the	floor,	as	shown	in	figure	2.5.	Experiment	with	different	numbers	(for
example,	1,	4,	50	for	scale)	or	use	the	transform	tools	first	seen	in	section	1.2.2
(remember	that	the	mathematical	term	for	moving	and	rotating	in	3D	space	is
“transform”).

Tip

Also	recall	the	navigation	controls	so	that	you	can	view	the	scene	from	different
angles	or	zoom	out	for	a	bird’s-eye	view.	If	you	ever	get	lost	in	the	scene,	press	F
to	reset	the	view	on	the	currently	selected	object.

The	exact	transform	values	the	walls	end	up	with	will	vary	depending	on	how
you	rotate	and	scale	the	cubes	in	order	to	fit,	and	on	how	the	objects	are	linked
together	in	the	Hierarchy	view.	For	example,	in	figure	2.7	the	walls	are	all
children	of	an	empty	root	object,	so	that	the	Hierarchy	list	will	look	organized.	If
you	need	an	example	to	copy	working	values	from,	download	the	sample	project
and	refer	to	the	walls	there.

Figure	2.7.	The	Hierarchy	view	showing	the	walls	and	floor	organized	under	an	empty	object

Tip

Drag	objects	on	top	of	each	other	in	the	Hierarchy	view	to	establish	linkages.
Objects	that	have	other	objects	attached	are	referred	to	as	parent;	objects
attached	to	other	objects	are	referred	to	as	children.	When	the	parent	object	is
moved	(or	rotated	or	scaled),	the	child	objects	are	transformed	along	with	it.

Tip

Empty	game	objects	can	be	used	to	organize	the	scene	in	this	way.	By	linking
visible	objects	to	a	root	object,	their	Hierarchy	list	can	be	collapsed.	Be	warned:
before	linking	any	child	objects	to	it,	you	want	to	position	the	empty	root	object
at	0,	0,	0	to	avoid	any	positioning	oddities	later.

What	is	GameObject?

All	scene	objects	are	instances	of	the	class	GameObject,	similar	to	how	all
script	components	inherit	from	the	class	MonoBehaviour.	This	fact	was	more
explicit	with	the	empty	object	actually	named	GameObject	but	is	still	true
regardless	of	whether	the	object	is	named	Floor,	Camera,	or	Player.

GameObject	is	really	just	a	container	for	a	bunch	of	components.	The	main
purpose	of	GameObject	is	so	that	MonoBehaviour	has	something	to	attach
to.	What	exactly	the	object	is	in	the	scene	depends	on	what	components	have
been	added	to	that	GameObject.	Cube	objects	have	a	Cube	component,
Sphere	objects	have	a	Sphere	component,	and	so	on.

Once	the	outer	walls	are	in	place,	create	some	inner	walls	to	navigate	around.
Position	the	inner	walls	however	you	like;	the	idea	is	to	create	some	hallways
and	obstacles	to	walk	around	once	you	write	code	for	movement.

Now	the	scene	has	a	room	in	it,	but	without	any	lights	the	player	won’t	be	able
to	see	any	of	it.	Let’s	take	care	of	that	next.

2.2.2.	Lights	and	cameras

Typically	you	light	a	3D	scene	with	a	directional	light	and	then	a	series	of	point
lights.	First	start	with	a	directional	light;	the	scene	probably	already	has	one	by
default,	but	if	not	then	create	one	by	choosing	GameObject	>	Light	and	selecting
Directional	Light.

Types	of	lights

You	can	create	several	types	of	light	sources,	defined	by	how	and	where	they
project	light	rays.	The	three	main	types	are	point,	spot,	and	directional.

Point	lights	are	a	kind	of	light	source	where	all	the	light	rays	originate	from	a
single	point	and	project	out	in	all	directions,	like	a	lightbulb	in	the	real	world.
The	light	is	brighter	up	close	because	the	light	rays	are	bunched	up.

Spot	lights	are	a	kind	of	light	source	where	all	the	light	rays	originate	from	a
single	point	but	only	project	out	in	a	limited	cone.	No	spot	lights	are	used	in	the
current	project,	but	these	lights	are	commonly	used	to	highlight	parts	of	a	level.

Directional	lights	are	a	kind	of	light	source	where	all	the	light	rays	are	parallel
and	project	evenly,	lighting	everything	in	the	scene	the	same	way.	This	is	like	the
sun	in	the	real	world.

The	position	of	a	directional	light	doesn’t	affect	the	light	cast	from	it,	only	the
rotation	the	light	source	is	facing,	so	technically	you	could	place	that	light
anywhere	in	the	scene.	I	recommend	placing	it	high	above	the	room	so	that	it
intuitively	feels	like	the	sun	and	so	that	it’s	out	of	the	way	when	you’re
manipulating	the	rest	of	the	scene.	Rotate	this	light	and	watch	the	effect	on	the
room;	I	recommend	rotating	it	slightly	on	both	the	X-and	Y-axes	to	get	a	good
effect.	You	can	see	an	Intensity	setting	when	you	look	in	the	Inspector	(see
figure	2.8).	As	the	name	implies,	that	setting	controls	the	brightness	of	the	light.
If	this	were	the	only	light,	it’d	have	to	be	more	intense,	but	because	you’ll	add	a
bunch	of	point	lights	as	well,	this	directional	light	can	be	pretty	dim,	like	0.6
Intensity.

Figure	2.8.	Directional	light	settings	in	the	Inspector

As	for	point	lights,	create	several	using	the	same	menu	and	place	them	around
the	room	in	dark	spots	in	order	to	make	sure	all	the	walls	are	lit.	You	don’t	want
too	many	(performance	will	degrade	if	the	game	has	lots	of	lights),	but	one	near
each	corner	should	be	fine	(I	suggest	raising	them	to	the	tops	of	the	walls),	plus
one	placed	high	above	the	scene	(like	a	Y	of	18)	to	give	some	variety	to	the	light
in	the	room.	Note	that	point	lights	have	a	setting	for	Range	added	to	the
Inspector	(see	figure	2.9).	This	controls	how	far	away	the	light	reaches;	whereas
directional	lights	cast	light	evenly	throughout	the	entire	scene,	point	lights	are
brighter	when	an	object	is	closer.	The	point	lights	lower	to	the	floor	should	have
a	range	around	18,	but	the	light	placed	high	up	should	have	a	range	of	around	40
in	order	to	reach	the	entire	room.

Figure	2.9.	Point	light	settings	in	the	Inspector

The	other	kind	of	object	needed	in	order	for	the	player	to	see	the	scene	is	a
camera,	but	the	“empty”	scene	already	came	with	a	main	camera,	so	you’ll	use
that.	If	you	ever	need	to	create	new	cameras	(such	as	for	split-screen	views	in
multiplayer	games),	Camera	is	another	choice	in	the	same	GameObject	menu	as
Cube	and	Lights.	The	camera	will	be	positioned	around	the	top	of	the	player	so
that	the	view	appears	to	be	the	player’s	eyes.

2.2.3.	The	player’s	collider	and	viewpoint

For	this	project,	a	simple	primitive	shape	will	do	to	represent	the	player.	In	the
GameObject	menu	(remember,	hover	over	3D	Object	to	expand	the	menu)	click
Capsule.	Unity	creates	a	cylindrical	shape	with	rounded	ends;	this	primitive
shape	will	represent	the	player.	Position	this	object	at	1.1	on	the	Y-axis	(half	the
height	of	the	object,	plus	a	bit	to	avoid	overlapping	the	floor).	You	can	move	the
object	on	X	and	Z	wherever	you	like,	as	long	as	it’s	inside	the	room	and	not
touching	any	walls.	Name	the	object	Player.

In	the	Inspector	you’ll	notice	that	this	object	has	a	capsule	collider	assigned	to	it.
That’s	a	logical	default	choice	for	a	capsule	object,	just	like	cube	objects	had	a
box	collider	by	default.	But	this	particular	object	will	be	the	player	and	thus
needs	a	slightly	different	sort	of	component	than	most	objects.	Remove	the
capsule	collider	by	clicking	the	gear	icon	toward	the	top-right	of	that	component,
shown	in	figure	2.10;	that	will	display	a	menu	that	includes	the	option	Remove
Component.	The	collider	is	a	green	mesh	surrounding	the	object,	so	you’ll	see
the	green	mesh	disappear	after	deleting	the	capsule	collider.

Figure	2.10.	Removing	a	component	in	the	Inspector

Instead	of	a	capsule	collider	we’re	going	to	assign	a	character	controller	to	this
object.	At	the	bottom	of	the	Inspector	there’s	a	button	labeled	Add	Component;
click	that	button	to	open	a	menu	of	components	that	you	can	add.	In	the	Physics
section	of	this	menu	you’ll	find	Character	Controller;	select	that	option.	As	the
name	implies,	this	component	will	allow	the	object	to	behave	like	a	character.

You	need	to	complete	one	last	step	to	set	up	the	player	object:	attaching	the
camera.	As	mentioned	in	the	earlier	section	on	floors	and	walls,	objects	can	be
dragged	onto	each	other	in	the	Hierarchy	view.	Drag	the	camera	object	onto	the
player	capsule	to	attach	the	camera	to	the	player.	Now	position	the	camera	so
that	it’ll	look	like	the	player’s	eyes	(I	suggest	a	position	of	0,	0.5,	0).	If
necessary,	reset	the	camera’s	rotation	to	0,	0,	0	(this	will	be	off	if	you	rotated	the
capsule).

You’ve	created	all	the	objects	needed	for	this	scene.	What	remains	is	writing
code	to	move	the	player	object.

2.3.	Making	things	move:	a	script	that	applies	transforms

To	have	the	player	walk	around	the	scene,	you’ll	write	movement	scripts
attached	to	the	player.	Remember,	components	are	modular	bits	of	functionality
that	you	add	to	objects,	and	scripts	are	a	kind	of	component.	Eventually	those
scripts	will	respond	to	keyboard	and	mouse	input,	but	first	just	make	the	player
spin	in	place.	This	beginning	will	teach	you	how	to	apply	transforms	in	code.
Remember	that	the	three	transforms	are	Translate,	Rotate,	and	Scale;	spinning	an
object	means	changing	the	rotation.	But	there’s	more	to	know	about	this	task
than	just	“this	involves	rotation.”

2.3.1.	Diagramming	how	movement	is	programmed

Animating	an	object	(such	as	making	it	spin)	boils	down	to	moving	it	a	small
amount	every	frame,	with	the	frames	playing	over	and	over.	By	themselves
transforms	apply	instantly,	as	opposed	to	visibly	moving	over	time.	But	applying
the	transforms	over	and	over	causes	the	object	to	visibly	move,	just	like	a	series
of	still	drawings	in	a	flipbook.	Figure	2.11	diagrams	how	this	works.

Figure	2.11.	The	appearance	of	movement:	cyclical	process	of	transforming	between	still	pictures

Recall	that	script	components	have	an	Update()	method	that	runs	every
frame.	To	spin	the	cube,	add	code	inside	Update()	that	rotates	the	cube	a
small	amount.	This	code	will	run	over	and	over	every	frame.	Sounds	pretty
simple,	right?

2.3.2.	Writing	code	to	implement	the	diagram

Now	let’s	put	in	action	the	concepts	just	discussed.	Create	a	new	C#	script
(remember	it’s	in	the	Create	submenu	of	the	Assets	menu),	name	it	Spin,	and
write	in	the	code	from	the	following	listing	(don’t	forget	to	save	the	file	after
typing	in	it!).

Listing	2.1.	Making	the	object	spin

To	add	the	script	component	to	the	player	object,	drag	the	script	up	from	the
Project	view	and	drop	it	onto	Player	in	the	Hierarchy	view.	Now	hit	Play	and
you’ll	see	the	view	spin	around;	you’ve	written	code	to	make	an	object	move!
This	code	is	pretty	much	the	default	template	for	a	new	script	plus	two	new
added	lines,	so	let’s	examine	what	those	two	lines	do.

First	there’s	the	variable	for	speed	added	toward	the	top	of	the	class	definition.
There	are	two	reasons	for	defining	the	rotation	speed	as	a	variable:	one	is	the
standard	“no	magic	numbers”	programming	rule,	and	the	second	reason	is
specific	to	how	Unity	displays	public	variables.	Unity	does	something	handy
with	public	variables	in	script	components,	as	described	in	the	following	tip.

Tip

Public	variables	are	exposed	in	the	Inspector	so	that	you	can	adjust	the
component’s	values	after	adding	a	component	to	a	game	object.	This	is	referred
to	as	“serializing”	the	value,	because	Unity	saves	the	modified	state	of	the
variable.

Figure	2.12	shows	what	the	script	component	looks	like	in	the	Inspector.	You
can	type	in	a	new	number,	and	then	the	script	will	use	that	value	instead	of	the
default	value	defined	in	the	code.	This	is	a	handy	way	to	adjust	settings	for	the
component	on	different	objects,	working	within	the	visual	editor	instead	of
hardcoding	every	value.

Figure	2.12.	The	Inspector	displaying	a	public	variable	declared	in	the	script

The	second	line	to	examine	from	listing	2.1	is	the	Rotate()	method.	That’s
inside	Update()	so	that	the	command	runs	every	frame.	Rotate()	is	a
method	of	the	Transform	class,	so	it’s	called	with	dot	notation	through	the
transform	component	of	this	object	(as	in	most	object-oriented	languages,
this.transform	is	implied	if	you	type	transform).	The	transform	is
rotated	by	speed	degrees	every	frame,	resulting	in	a	smooth	spinning
movement.	But	why	are	the	parameters	to	Rotate()	listed	as	(0,	speed,	0)	as
opposed	to,	say,	(speed,	0,	0)?

Recall	that	there	are	three	axes	in	3D	space,	labeled	X,	Y,	and	Z.	It’s	fairly
intuitive	to	understand	how	these	axes	relate	to	positions	and	movements,	but
these	axes	can	also	be	used	to	describe	rotations.	Aeronautics	describes	rotations
in	a	similar	way,	so	programmers	working	with	3D	graphics	often	use	a	set	of
terms	borrowed	from	aeronautics:	pitch,	yaw,	and	roll.	Figure	2.13	illustrates
what	these	terms	mean;	pitch	is	rotation	around	the	X-axis,	yaw	is	rotation
around	the	Y-axis,	and	roll	is	rotation	around	the	Z-axis.

Figure	2.13.	Illustration	of	pitch,	yaw,	and	roll	rotation	of	an	aircraft

Given	that	we	can	describe	rotations	around	the	X-,	Y-,	and	Z-axes,	that	means
the	three	parameters	for	Rotate()	are	X,	Y,	and	Z	rotation.	Because	we	only
want	the	player	to	spin	around	sideways,	as	opposed	to	tilting	up	and	down,

there	should	only	be	a	number	given	for	the	Y	rotation,	and	just	0	for	X	and	Z
rotation.	Hopefully	you	can	guess	what	will	happen	if	you	change	the	parameters
to	(speed,	0,	0)	and	then	play	it;	try	that	now!

There’s	one	other	subtle	point	to	understand	about	rotations	and	3D	coordinate
axes,	embodied	in	an	optional	fourth	parameter	to	the	Rotate()	method.

2.3.3.	Local	vs.	global	coordinate	space

By	default,	the	Rotate()	method	operates	on	what	are	called	local
coordinates.	The	other	kind	of	coordinates	you	could	use	are	global.	You	tell	the
method	whether	to	use	local	or	global	coordinates	using	an	optional	fourth
parameter	by	writing	either	Space.Self	or	Space.World	like	so:

Rotate(0,	speed,	0,	Space.World)

Refer	back	to	the	explanation	about	3D	coordinate	space,	and	ponder	these
questions:	Where	is	(0,	0,	0)	located?	What	direction	is	the	X-axis	pointed	in?
Can	the	coordinate	system	itself	move	around?

It	turns	out	that	every	single	object	has	its	own	origin	point,	as	well	as	its	own
direction	for	the	three	axes,	and	this	coordinate	system	moves	around	with	the
object.	This	is	referred	to	as	local	coordinates.	The	overall	3D	scene	also	has	its
own	origin	point	and	its	own	direction	for	the	three	axes,	and	this	coordinate
system	never	moves.	This	is	referred	to	as	global	coordinates.	Thus,	when	you
specify	local	or	global	for	the	Rotate()	method,	you’re	telling	it	whose	X-,	Y-
,	and	Z-axes	to	rotate	around	(see	figure	2.14).

Figure	2.14.	Local	vs.	global	coordinate	axes

If	you’re	new	to	3D	graphics,	this	is	somewhat	of	a	mind-bending	concept.	The
different	axes	are	depicted	in	figure	2.14	(notice	how	“left”	to	the	plane	is	a
different	direction	than	“left”	to	the	world)	but	the	easiest	way	to	understand
local	and	global	is	through	an	example.

First,	select	the	player	object	and	then	tilt	it	a	bit	(something	like	30	for	X
rotation).	This	will	throw	off	the	local	coordinates,	so	that	local	and	global
rotations	will	look	different.	Now	try	running	the	Spin	script	both	with	and
without	Space.World	added	to	the	parameters;	if	it’s	too	hard	for	you	to
visualize	what’s	happening,	try	removing	the	spin	component	from	the	player
object	and	instead	spin	a	tilted	cube	placed	in	front	of	the	player.	You’ll	see	the
object	rotating	around	different	axes	when	you	set	the	command	to	local	or
global	coordinates.

2.4.	Script	component	for	looking	around:	MouseLook

Now	you’ll	make	rotation	respond	to	input	from	the	mouse	(that	is,	rotation	of
the	object	this	script	is	attached	to,	which	in	this	case	will	be	the	player).	You’ll
do	this	in	several	steps,	progressively	adding	new	movement	abilities	to	the
character.	First	the	player	will	only	rotate	side	to	side,	and	then	the	player	will
only	rotate	up	and	down.	Eventually	the	player	will	be	able	to	look	around	in	all
directions	(rotating	horizontally	and	vertically	at	the	same	time),	a	behavior
referred	to	as	mouse-look.

Given	that	there	will	be	three	different	types	of	rotation	behavior	(horizontal,
vertical,	and	both),	you’ll	start	by	writing	the	framework	for	supporting	all	three.
Create	a	new	C#	script,	name	it	MouseLook,	and	write	in	the	code	from	the	next
listing.

Listing	2.2.	MouseLook	framework	with	enum	for	the	Rotation	setting

Notice	that	an	enum	is	used	to	choose	horizontal	or	vertical	rotation	for	the
MouseLook	script.	Defining	an	enum	data	structure	allows	you	to	set	values	by
name,	rather	than	typing	in	numbers	and	trying	to	remember	what	each	number
means	(is	0	horizontal	rotation?	Is	it	1?).	If	you	then	declare	a	public	variable
typed	to	that	enum,	that	will	display	in	the	Inspector	as	a	drop-down	menu	(see
figure	2.15),	which	is	useful	for	selecting	settings.

Figure	2.15.	The	Inspector	displays	public	enum	variables	as	a	drop-down	menu.

Remove	the	Spin	component	(the	same	way	you	removed	the	capsule	collider
earlier)	and	attach	this	new	script	to	the	player	object	instead.	Use	the	Axes
menu	to	switch	between	code	branches	while	working	through	the	code.	With

the	horizontal/vertical	rotation	setting	in	place,	you	can	fill	in	code	for	each
branch	of	the	conditional.

2.4.1.	Horizontal	rotation	that	tracks	mouse	movement

The	first	and	simplest	branch	is	horizontal	rotation.	Start	by	writing	the	same
rotation	command	you	used	in	listing	2.1	to	make	the	object	spin.	Don’t	forget	to
declare	a	public	variable	for	the	rotation	speed;	declare	the	new	variable	after
axes	but	before	Update(),	and	call	the	variable	sensitivityHor	because
speed	is	too	generic	a	name	once	you	have	multiple	rotations	involved.	Increase
the	value	of	the	variable	to	9	this	time	because	that	value	needs	to	be	bigger	once
the	code	starts	scaling	it	(which	will	be	soon).	The	adjusted	code	should	look
like	the	following	listing.

Listing	2.3.	Horizontal	rotation,	not	yet	responding	to	the	mouse

If	you	play	the	script	now,	the	view	will	spin	around	just	like	before	(only	a	lot
faster,	because	the	Y	rotation	is	9	instead	of	3).	The	next	step	is	to	make	the
rotation	react	to	mouse	movement,	so	let’s	introduce	a	new	method:
Input.GetAxis().	The	Input	class	has	a	bunch	of	methods	for	handling
input	devices	(such	as	the	mouse)	and	the	method	GetAxis()	returns	numbers
correlated	to	the	movement	of	the	mouse	(positive	or	negative,	depending	on	the
direction	of	movement).	GetAxis()	takes	the	name	of	the	axis	desired	as	a
parameter,	and	the	horizontal	axis	is	called	Mouse	X.

If	you	multiply	the	rotation	speed	by	the	axis	value,	the	rotation	will	respond	to
mouse	movement.	The	speed	will	scale	according	to	mouse	movement,	scaling
down	to	zero	or	even	reversing	direction.	The	Rotate	command	now	looks	like
the	next	listing.

Listing	2.4.	Rotate	command	adjusted	to	respond	to	the	mouse

Hit	Play	and	then	move	the	mouse	around.	As	you	move	the	mouse	from	side	to
side,	the	view	will	rotate	from	side	to	side.	That’s	pretty	cool!	The	next	step	is	to
rotate	vertically	instead	of	horizontally.

2.4.2.	Vertical	rotation	with	limits

For	horizontal	rotation	we’ve	been	using	the	Rotate()	method,	but	we’ll	take
a	different	approach	with	vertical	rotation.	Although	that	method	is	convenient
for	applying	transforms,	it’s	also	kind	of	inflexible.	It’s	only	useful	for
incrementing	the	rotation	without	limit,	which	was	fine	for	horizontal	rotation,
but	vertical	rotation	needs	limits	on	how	much	the	view	can	tilt	up	or	down.	The
following	listing	shows	the	vertical	rotation	code	for	MouseLook;	a	detailed
explanation	of	the	code	will	come	right	after.

Listing	2.5.	Vertical	rotation	for	MouseLook

Set	the	Axes	menu	of	the	MouseLook	component	to	vertical	rotation	and	play
the	new	script.	Now	the	view	won’t	rotate	sideways,	but	it’ll	tilt	up	and	down
when	you	move	the	mouse	up	and	down.	The	tilt	stops	at	upper	and	lower	limits.

There	are	several	new	concepts	in	this	code	that	need	to	be	explained.	First	off,

we’re	not	using	Rotate()	this	time,	so	we	need	a	variable	(called
_rotationX	here,	because	vertical	rotation	goes	around	the	X-axis)	in	which
to	store	the	rotation	angle.	The	Rotate()	method	increments	the	current
rotation,	whereas	this	code	sets	the	rotation	angle	directly.	In	other	words,	it’s	the
difference	between	saying	“add	5	to	the	angle”	and	“set	the	angle	to	30.”	We	do
still	need	to	increment	the	rotation	angle,	but	that’s	why	the	code	has	the	-=
operator:	to	subtract	a	value	from	the	rotation	angle,	rather	than	set	the	angle	to
that	value.	By	not	using	Rotate()	we	can	manipulate	the	rotation	angle	in
various	ways	aside	from	only	incrementing	it.	The	rotation	value	is	multiplied	by
Input.GetAxis()	just	like	in	the	code	for	horizontal	rotation,	except	now
we	ask	for	Mouse	Y	because	that’s	the	vertical	axis	of	the	mouse.

The	rotation	angle	is	manipulated	further	on	the	very	next	line.	We	use
Mathf.Clamp()	to	keep	the	rotation	angle	between	minimum	and	maximum
limits.	Those	limits	are	public	variables	declared	earlier	in	the	code,	and	they
ensure	that	the	view	can	only	tilt	45	degrees	up	or	down.	The	Clamp()	method
isn’t	specific	to	rotation,	but	is	generally	useful	for	keeping	a	number	variable
between	limits.	Just	to	see	what	happens,	try	commenting	out	the	Clamp()
line;	now	the	tilt	doesn’t	stop	at	upper	and	lower	limits,	allowing	you	to	even
rotate	completely	upside	down!	Clearly,	viewing	the	world	upside	down	is
undesirable;	hence	the	limits.

Because	the	angles	property	of	transform	is	a	Vector3,	we	need	to	create	a
new	Vector3	with	the	rotation	angle	passed	in	to	the	constructor.	The
Rotate()	method	was	automating	this	process	for	us,	incrementing	the
rotation	angle	and	then	creating	a	new	vector.

Definition

A	vector	is	multiple	numbers	stored	together	as	a	unit.	For	example,	a	Vector3	is
3	numbers	(labeled	x,	y,	z).

Warning

The	reason	why	we	need	to	create	a	new	Vector3	instead	of	changing	values	in
the	existing	vector	in	the	transform	is	because	those	values	are	read-only	for
transforms.	This	is	a	common	mistake	that	can	trip	you	up.

Euler	angles	vs.	quaternion

You’re	probably	wondering	why	the	property	is	called	localEulerAngles
and	not	localRotation.	First	you	need	to	know	about	a	concept	called
quaternions.

Quaternions	are	a	different	mathematical	construct	for	representing	rotations.
They’re	distinct	from	Euler	angles,	which	is	the	name	for	the	X-,	Y-,	Z-axes
approach	we’ve	been	taking.	Remember	the	whole	discussion	of	pitch,	yaw,	and
roll?	Well,	that	method	of	representing	rotations	is	Euler	angles.	Quaternions
are...different.	It’s	hard	to	explain	what	quaternions	are,	because	they’re	an
obscure	aspect	of	higher	math,	involving	movement	through	four	dimensions.	If
you	want	a	detailed	explanation,	try	reading	the	document	found	here:

www.flipcode.com/documents/matrfaq.html#Q47

It’s	a	bit	easier	to	explain	why	quaternions	are	used	to	represent	rotations:
interpolating	between	rotation	values	(that	is,	going	through	a	bunch	of	in-
between	values	to	gradually	change	from	one	value	to	another)	looks	smoother
and	more	natural	when	using	quaternions.

To	return	to	the	initial	question,	it’s	because	localRotation	is	a	quaternion,
not	Euler	angles.	Unity	also	provides	the	Euler	angles	property	to	make
manipulating	rotations	easier	to	understand;	the	Euler	angles	property	is
converted	to	and	from	quaternion	values	automatically.	Unity	handles	the	harder
math	for	you	behind	the	scenes,	so	you	don’t	have	to	worry	about	handling	it
yourself.

There’s	one	more	rotation	setting	for	MouseLook	that	needs	code:	horizontal	and
vertical	rotation	at	the	same	time.

2.4.3.	Horizontal	and	vertical	rotation	at	the	same	time

This	last	chunk	of	code	won’t	use	Rotate()	either,	for	the	same	reason:	the
vertical	rotation	angle	is	clamped	between	limits	after	being	incremented.	That
means	the	horizontal	rotation	needs	to	be	calculated	directly	now.	Remember,

http://www.flipcode.com/documents/matrfaq.html#Q47

Rotate()	was	automating	the	process	of	incrementing	the	rotation	angle	(see
the	next	listing).

Listing	2.6.	Horizontal	and	vertical	MouseLook

The	first	couple	of	lines,	dealing	with	_rotationX,	are	exactly	the	same	as	in
the	last	section.	Just	remember	that	rotating	around	the	object’s	X-axis	is	vertical
rotation.	Because	horizontal	rotation	is	no	longer	being	handled	using	the
Rotate()	method,	that’s	what	the	delta	and	rotationY	lines	are	doing.
Delta	is	a	common	mathematical	term	for	“the	amount	of	change,”	so	our
calculation	of	delta	is	the	amount	that	rotation	should	change.	That	amount	of
change	is	then	added	to	the	current	rotation	angle	to	get	the	desired	new	rotation
angle.

Finally,	both	angles,	vertical	and	horizontal,	are	used	to	create	a	new	vector
that’s	assigned	to	the	transform	component’s	angle	property.

Disallow	physics	rotation	on	the	player

Although	this	doesn’t	matter	quite	yet	for	this	project,	in	most	modern	FPS
games	there’s	a	complex	physics	simulation	affecting	everything	in	the	scene.
This	will	cause	objects	to	bounce	and	tumble	around;	this	behavior	looks	and
works	great	for	most	objects,	but	the	player’s	rotation	needs	to	be	solely
controlled	by	the	mouse	and	not	affected	by	the	physics	simulation.

For	that	reason,	mouse	input	scripts	usually	set	the	freezeRotation
property	on	the	player’s	Rigidbody.	Add	this	Start()	method	to	the
MouseLook	script:

(A	Rigidbody	is	an	additional	component	an	object	can	have.	The	physics
simulation	acts	on	Rigidbodies	and	manipulates	objects	they’re	attached	to.)

In	case	you’ve	gotten	lost	on	where	to	make	the	various	changes	and	additions
we’ve	gone	over,	the	next	listing	has	the	full	finished	script.	Alternatively,
download	the	example	project.

Listing	2.7.	The	finished	MouseLook	script

using	UnityEngine;

using	System.Collections;

public	class	MouseLook	:	MonoBehaviour	{

		public	enum	RotationAxes	{

				MouseXAndY	=	0,

				MouseX	=	1,

				MouseY	=	2

		}

		public	RotationAxes	axes	=	RotationAxes.MouseXAndY;

		public	float	sensitivityHor	=	9.0f;

		public	float	sensitivityVert	=	9.0f;

		public	float	minimumVert	=	-45.0f;

		public	float	maximumVert	=	45.0f;

		private	float	_rotationX	=	0;

		void	Start()	{

				Rigidbody	body	=	GetComponent<Rigidbody>();

				if	(body	!=	null)

								body.freezeRotation	=	true;

		}

		void	Update()	{

				if	(axes	==	RotationAxes.MouseX)	{

						transform.Rotate(0,	Input.GetAxis("Mouse	X")		sensitivityHor,	0);

				}

				else	if	(axes	==	RotationAxes.MouseY)	{

						_rotationX	-=	Input.GetAxis("Mouse	Y")		sensitivityVert;

						rotationX	=	Mathf.Clamp(rotationX,	minimumVert,	maximumVert);

						float	rotationY	=	transform.localEulerAngles.y;

						transform.localEulerAngles	=	new	Vector3(_rotationX,	rotationY,	

0);

				}

				else	{

						_rotationX	-=	Input.GetAxis("Mouse	Y")		sensitivityVert;

						rotationX	=	Mathf.Clamp(rotationX,	minimumVert,	maximumVert);

						float	delta	=	Input.GetAxis("Mouse	X")		sensitivityHor;

						float	rotationY	=	transform.localEulerAngles.y	+	delta;

						transform.localEulerAngles	=	new	Vector3(_rotationX,	rotationY,	

0);

				}

		}

}

When	you	run	the	new	script,	you’re	able	to	look	around	in	all	directions	while
moving	the	mouse.	Great!	But	you’re	still	stuck	in	one	place,	looking	around	as
if	mounted	on	a	turret.	The	next	step	is	moving	around	the	scene.

2.5.	Keyboard	input	component:	first-person	controls

Looking	around	in	response	to	mouse	input	is	an	important	part	of	first-person
controls,	but	you’re	only	halfway	there.	The	player	also	needs	to	move	in
response	to	keyboard	input.	Let’s	write	a	keyboard	controls	component	to
complement	the	mouse	controls	component;	create	a	new	C#	script	called
FPSInput	and	attach	that	to	the	player	(alongside	the	MouseLook	script).	For	the
moment	set	the	MouseLook	component	to	horizontal	rotation	only.

Tip

The	keyboard	and	mouse	controls	explained	here	are	split	up	into	separate
scripts.	You	don’t	have	to	structure	the	code	this	way,	and	you	could	have
everything	bundled	into	a	single	“player	controls”	script,	but	a	component
system	(such	as	the	one	in	Unity)	tends	to	be	most	flexible	and	thus	most	useful
when	you	have	functionality	split	into	several	smaller	components.

The	code	you	wrote	in	the	previous	section	affected	rotation	only,	but	now	we’ll

change	the	object’s	position	instead.	As	shown	in	listing	2.8,	refer	back	to	the
rotation	code	from	before	we	added	mouse	input;	type	that	into	FPSInput,	but
change	Rotate()	to	Translate().	When	you	hit	Play,	the	view	slides	up
instead	of	spinning	around.	Try	changing	the	parameter	values	to	see	how	the
movement	changes	(in	particular,	try	swapping	the	first	and	second	numbers);
after	experimenting	with	that	for	a	bit,	you	can	move	on	to	adding	keyboard
input.

Listing	2.8.	Spin	code	from	the	first	listing,	with	a	couple	of	minor	changes

2.5.1.	Responding	to	key	presses

The	code	for	moving	according	to	key	presses	(shown	in	the	following	listing)	is
similar	to	the	code	for	rotating	according	to	the	mouse.	The	GetAxis()
method	is	used	here	as	well,	and	in	a	very	similar	way.	The	following	listing
demonstrates	how	to	use	that	command.

Listing	2.9.	Positional	movement	responding	to	key	presses

As	before,	the	GetAxis()	values	are	multiplied	by	speed	in	order	to	determine
the	amount	of	movement.	Whereas	before	the	requested	axis	was	always	“Mouse
something,”	now	we	pass	in	either	Horizontal	or	Vertical.	These	names	are
abstractions	for	input	settings	in	Unity;	if	you	look	in	the	Edit	menu	under
Project	Settings	and	then	look	under	Input,	you’ll	find	a	list	of	abstract	input
names	and	the	exact	controls	mapped	to	those	names.	Both	the	left/right	arrow

keys	and	the	letters	A/D	are	mapped	to	Horizontal,	whereas	both	the	up/down
arrow	keys	and	the	letters	W/S	are	mapped	to	Vertical.

Note	that	the	movement	values	are	applied	to	the	X	and	Z	coordinates.	As	you
probably	noticed	while	experimenting	with	the	Translate()	method,	the	X
coordinate	moves	from	side	to	side	and	the	Z	coordinate	moves	forward	and
backward.

Put	in	this	new	movement	code	and	you	should	be	able	to	move	around	by
pressing	either	the	arrow	keys	or	WASD	letter	keys,	the	standard	in	most	FPS
games.	The	movement	script	is	nearly	complete,	but	we	have	a	few	more
adjustments	to	go	over.

2.5.2.	Setting	a	rate	of	movement	independent	of	the	computer’s	speed

It’s	not	obvious	right	now	because	you’ve	only	been	running	the	code	on	one
computer	(yours),	but	if	you	ran	it	on	different	machines	it’d	run	at	different
speeds.	That’s	because	some	computers	can	process	code	and	graphics	faster
than	others.	Right	now	the	player	would	move	at	different	speeds	on	different
computers	because	the	movement	code	is	tied	to	the	computer’s	speed.	That	is
referred	to	as	frame	rate	dependent,	because	the	movement	code	is	dependent	on
the	frame	rate	of	the	game.

For	example,	imagine	you	run	this	demo	on	two	different	computers,	one	that
gets	30	fps	(frames	per	second)	and	one	that	gets	60	fps.	That	means	Update()
would	be	called	twice	as	often	on	the	second	computer,	and	the	same	speed
value	of	6	would	be	applied	every	time.	At	30	fps	the	rate	of	movement	would
be	180	units/second,	and	the	movement	at	60	fps	would	be	360	units/second.	For
most	games,	movement	speed	that	varies	like	this	would	be	bad	news.

The	solution	is	to	adjust	the	movement	code	to	make	it	frame	rate	independent.
That	means	the	speed	of	movement	is	not	dependent	on	the	frame	rate	of	the
game.	The	way	to	achieve	this	is	by	not	applying	the	same	speed	value	at	every
frame	rate.	Instead,	scale	the	speed	value	higher	or	lower	depending	on	how
quickly	the	computer	runs.	This	is	achieved	by	multiplying	the	speed	value	by
another	value	called	deltaTime,	as	shown	in	the	next	listing.

Listing	2.10.	Frame	rate	independent	movement	using	deltaTime

...

void	Update()	{

		float	deltaX	=	Input.GetAxis("Horizontal")		speed;

		float	deltaZ	=	Input.GetAxis("Vertical")		speed;

		transform.Translate(deltaX		Time.deltaTime,	0,	deltaZ		

Time.deltaTime);

}

...

That	was	a	simple	change.	The	Time	class	has	a	number	of	properties	and
methods	useful	for	timing,	and	one	of	those	properties	is	deltaTime.	Because
we	know	that	delta	means	the	amount	of	change,	that	means	deltaTime	is	the
amount	of	change	in	time.	Specifically,	deltaTime	is	the	amount	of	time
between	frames.	The	time	between	frames	varies	at	different	frame	rates	(for
example,	30	fps	is	a	deltaTime	of	1/30th	of	a	second),	so	multiplying	the
speed	value	by	deltaTime	will	scale	the	speed	value	on	different	computers.

Now	the	movement	speed	will	be	the	same	on	all	computers.	But	the	movement
script	is	still	not	quite	done;	when	you	move	around	the	room	you	can	pass
through	walls,	so	we	need	to	adjust	the	code	further	to	prevent	that.

2.5.3.	Moving	the	CharacterController	for	collision	detection

Directly	changing	the	object’s	transform	doesn’t	apply	collision	detection,	so	the
character	will	pass	through	walls.	To	apply	collision	detection,	what	we	want	to
do	instead	is	use	CharacterController.	CharacterController	is	a	component	that
makes	the	object	move	more	like	a	character	in	a	game,	including	colliding	with
walls.	Recall	that	back	when	we	set	up	the	player,	we	attached	a
CharacterController,	so	now	we’ll	use	that	component	with	the	movement	code
in	FPSInput	(see	the	following	listing).

Listing	2.11.	Moving	CharacterController	instead	of	Transform

This	code	excerpt	introduces	several	new	concepts.	The	first	concept	to	point	out
is	the	variable	for	referencing	the	CharacterController.	This	variable	simply
creates	a	local	reference	to	the	object	(code	object,	that	is—not	to	be	confused
with	scene	objects);	multiple	scripts	can	have	references	to	this	one
CharacterController	instance.

That	variable	starts	out	empty,	so	before	you	can	use	the	reference	you	need	to
assign	an	object	to	it	for	it	to	refer	to.	This	is	where	GetComponent()	comes
into	play;	that	method	returns	other	components	attached	to	the	same
GameObject.	Rather	than	pass	a	parameter	inside	the	parentheses,	you	use	the
C#	syntax	of	defining	the	type	inside	angle	brackets,	<>.

Once	you	have	a	reference	to	the	CharacterController,	you	can	call	Move()	on
the	controller.	Pass	in	a	vector	to	that	method,	similar	to	how	the	mouse	rotation
code	used	a	vector	for	rotation	values.	Also	similar	to	how	rotation	values	were
limited,	use	Vector3.ClampMagnitude()	to	limit	the	vector’s	magnitude
to	the	movement	speed;	the	clamp	is	used	because	otherwise	diagonal	movement
would	have	a	greater	magnitude	than	movement	directly	along	an	axis	(picture
the	sides	and	hypotenuse	of	a	right	triangle).

But	there’s	one	tricky	aspect	to	the	movement	vector	here,	and	it	has	to	do	with
local	versus	global,	as	we	discussed	earlier	for	rotations.	We’ll	create	the	vector
with	a	value	to	move,	say,	to	the	left.	That’s	the	player’s	left,	though,	which	may
be	a	completely	different	direction	from	the	world’s	left.	That	is,	we’re	talking
about	left	in	local	space,	not	global	space.	We	need	to	pass	a	movement	vector
defined	in	global	space	to	the	Move()	method,	so	we’re	going	to	need	to
convert	the	local	space	vector	into	global	space.	Doing	that	conversion	is

extremely	complex	math,	but	fortunately	for	us	Unity	takes	care	of	that	math	for
us,	and	we	simply	need	to	call	the	method	TransformDirection()	in	order
to,	well,	transform	the	direction.

Definition

Transform	used	as	a	verb	means	to	convert	from	one	coordinate	space	to	another
(refer	back	to	section	2.3.3	if	you	don’t	remember	what	a	coordinate	space	is).
Don’t	get	confused	with	the	other	definitions	of	transform,	including	both	the
Transform	component	and	the	action	of	moving	the	object	around	the	scene.	It’s
sort	of	an	overloaded	term,	because	all	these	meanings	refer	to	the	same
underlying	concept.

Test	playing	the	movement	code	now.	If	you	haven’t	done	so	already,	set	the
MouseLook	component	to	both	horizontal	and	vertical	rotation.	You	can	look
around	the	scene	fully	and	fly	around	the	scene	using	keyboard	controls.	This	is
pretty	great	if	you	want	the	player	to	fly	around	the	scene,	but	what	if	you	want
the	player	walking	around	on	the	ground?

2.5.4.	Adjusting	components	for	walking	instead	of	flying

Now	that	collision	detection	is	working,	the	script	can	have	gravity	and	the
player	will	stay	down	against	the	floor.	Declare	a	gravity	variable	and	then	use
that	gravity	value	for	the	Y-axis,	as	shown	in	the	next	listing.

Listing	2.12.	Adding	gravity	to	the	movement	code

Now	there’s	a	constant	downward	force	on	the	player,	but	it’s	not	always	pointed
straight	down,	because	the	player	object	can	tilt	up	and	down	with	the	mouse.
Fortunately	everything	we	need	to	fix	that	is	already	in	place,	so	we	just	need	to
make	some	minor	adjustments	to	how	components	are	set	up	on	the	player.	First

set	the	MouseLook	component	on	the	player	object	to	horizontal	rotation	only.
Next	add	the	MouseLook	component	to	the	camera	object,	and	set	that	one	to
vertical	rotation	only.	That’s	right;	you’re	going	to	have	two	different	objects
responding	to	the	mouse!

Because	the	player	object	now	only	rotates	horizontally,	there’s	no	longer	any
problem	with	the	downward	force	of	gravity	being	tilted.	The	camera	object	is
parented	to	the	player	object	(remember	when	we	did	that	in	the	Hierarchy
view?),	so	even	though	it	rotates	vertically	independently	from	the	player,	the
camera	rotates	horizontally	along	with	the	player.

Polishing	the	finished	script

Use	the	RequireComponent()	method	to	ensure	that	other	components
needed	by	the	script	are	also	attached.	Sometimes	other	components	are	optional
(that	is,	code	that	says	“If	this	other	component	is	also	attached,	then...”),	but
sometimes	you	want	to	make	the	other	components	mandatory.	Add	the	method
to	the	top	of	the	script	in	order	to	enforce	that	dependency	and	give	the	required
component	as	a	parameter.

Similarly,	if	you	add	the	method	AddComponentMenu()	to	the	top	of	your
scripts,	that	script	will	be	added	to	the	component	menu	in	Unity’s	editor.	Tell
the	command	the	name	of	the	menu	item	you	want	to	add,	and	then	the	script
can	be	selected	when	you	click	Add	Component	at	the	bottom	of	the	Inspector.
Handy!

A	script	with	both	methods	added	to	the	top	would	look	something	like	this:

using	UnityEngine;

using	System.Collections;

[RequireComponent(typeof(CharacterController))]

[AddComponentMenu("Control	Script/FPS	Input")]

public	class	FPSInput	:	MonoBehaviour	{

...

Listing	2.13	shows	the	full	finished	script.	Along	with	the	small	adjustments	to
how	components	are	set	up	on	the	player,	the	player	can	walk	around	the	room.
Even	with	the	gravity	variable	being	applied,	you	can	still	use	this	script	for

flying	movement	by	setting	Gravity	to	0	in	the	Inspector.

Listing	2.13.	The	finished	FPSInput	script

using	UnityEngine;

using	System.Collections;

[RequireComponent(typeof(CharacterController))]

[AddComponentMenu("Control	Script/FPS	Input")]

public	class	FPSInput	:	MonoBehaviour	{

		public	float	speed	=	6.0f;

		public	float	gravity	=	-9.8f;

		private	CharacterController	charController;

		void	Start()	{

				charController	=	GetComponent<CharacterController>();

		}

		void	Update()	{

				float	deltaX	=	Input.GetAxis("Horizontal")		speed;

				float	deltaZ	=	Input.GetAxis("Vertical")		speed;

				Vector3	movement	=	new	Vector3(deltaX,	0,	deltaZ);

				movement	=	Vector3.ClampMagnitude(movement,	speed);

				movement.y	=	gravity;

				movement	*=	Time.deltaTime;

				movement	=	transform.TransformDirection(movement);

				_charController.Move(movement);

		}

}

Congratulations	on	building	this	3D	project!	We	covered	a	lot	of	ground	in	this
chapter,	and	now	you’re	well-versed	in	how	to	code	movement	in	Unity.	As
exciting	as	this	first	demo	is,	it’s	still	a	long	way	from	being	a	complete	game.
After	all,	the	project	plan	described	this	as	a	basic	FPS	scene,	and	what’s	a
shooter	if	you	can’t	shoot?	So	give	yourself	a	well-deserved	pat	on	the	back	for
this	chapter’s	project,	and	then	get	ready	for	the	next	step.

2.6.	Summary

In	this	chapter	you	learned	that

	

3D	coordinate	space	is	defined	by	X-,	Y-,	and	Z-axes.
Objects	and	lights	in	a	room	set	the	scene.
The	player	in	a	first-person	scene	is	essentially	a	camera.
Movement	code	applies	small	transforms	repeatedly	in	every	frame.
FPS	controls	consist	of	mouse	rotation	and	keyboard	movement.

Chapter	3.	Adding	enemies	and	projectiles	to	the	3D
game

This	chapter	covers

	

Taking	aim	and	firing,	both	for	the	player	and	for	enemies
Detecting	and	responding	to	hits
Making	enemies	that	wander	around
Spawning	new	objects	in	the	scene

The	movement	demo	from	the	previous	chapter	was	pretty	cool	but	still	not
really	a	game.	Let’s	turn	that	movement	demo	into	a	first-person	shooter.	If	you
think	about	what	else	we	need	now,	it	boils	down	to	the	ability	to	shoot,	and
things	to	shoot	at.	First	we’re	going	to	write	scripts	that	enable	the	player	to
shoot	objects	in	the	scene.	Then	we’re	going	to	build	enemies	to	populate	the
scene,	including	code	to	both	wander	around	aimlessly	and	react	to	being	hit.
Finally	we’re	going	to	enable	the	enemies	to	fight	back,	emitting	fireballs	at	the
player.	None	of	the	scripts	from	chapter	2	need	to	change;	instead,	we’ll	add
scripts	to	the	project—scripts	that	handle	the	additional	features.

I’ve	chosen	a	first-person	shooter	for	this	project	for	a	couple	of	reasons.	One	is
simply	that	FPS	games	are	popular;	people	like	shooting	games,	so	let’s	make	a
shooting	game.	A	subtler	reason	has	to	do	with	the	techniques	you’ll	learn;	this
project	is	a	great	way	to	learn	about	several	fundamental	concepts	in	3D
simulations.	For	example,	shooting	games	are	a	great	way	to	teach	raycasting.	In
a	bit	we’ll	get	into	the	specifics	of	what	raycasting	is,	but	for	now	you	just	need
to	know	that	it’s	a	tool	that’s	useful	for	many	different	tasks	in	3D	simulations.
Although	raycasting	is	useful	in	a	wide	variety	of	situations,	it	happens	that
using	raycasting	makes	the	most	intuitive	sense	for	shooting.

Creating	wandering	targets	to	shoot	at	gives	us	a	great	excuse	to	explore	code	for
computer-controlled	characters,	as	well	as	use	techniques	for	sending	messages
and	spawning	objects.	In	fact,	this	wandering	behavior	is	another	place	that
raycasting	is	valuable,	so	we’re	already	going	to	be	looking	at	a	different
application	of	the	technique	after	having	first	learned	it	with	shooting.	Similarly,

the	approach	to	sending	messages	that’s	demonstrated	in	this	project	is	also
useful	elsewhere.	In	future	chapters	you’ll	see	other	applications	for	these
techniques,	and	even	within	this	one	project	we’ll	go	over	alternative	situations.

Ultimately	we’ll	approach	this	project	one	new	feature	at	a	time,	with	the	game
always	playable	at	every	step	but	also	always	feeling	like	there’s	a	missing	part
to	work	on	next.	This	roadmap	breaks	down	the	steps	into	small,	understandable
changes,	with	only	one	new	feature	added	in	each	step:

1.		Write	code	enabling	the	player	to	shoot	into	the	scene.

2.		Create	static	targets	that	react	to	being	hit.

3.		Make	the	targets	wander	around.

4.		Spawn	the	wandering	targets	automatically.

5.		Enable	the	targets/enemies	to	shoot	fireballs	at	the	player.

Note

This	chapter’s	project	assumes	you	already	have	a	first-person	movement	demo
to	build	on.	We	created	a	movement	demo	in	chapter	2,	but	if	you	skipped	to	this
chapter	then	you	will	need	to	download	the	sample	files	for	chapter	2.

3.1.	Shooting	via	raycasts

The	first	new	feature	to	introduce	into	the	3D	demo	is	shooting.	Looking	around
and	moving	are	certainly	crucial	features	for	a	first-person	shooter,	but	it’s	not	a
game	until	players	can	affect	the	simulation	and	apply	their	skills.	Shooting	in
3D	games	can	be	implemented	with	a	few	different	approaches,	and	one	of	the
most	important	approaches	is	raycasting.

3.1.1.	What	is	raycasting?

As	the	name	indicates,	raycasting	is	when	you	cast	a	ray	into	the	scene.	Clear,
right?	Well,	okay,	so	what	exactly	is	a	ray?

Definition

A	ray	is	an	imaginary	or	invisible	line	in	the	scene	that	starts	at	some	origin
point	and	extends	out	in	a	specific	direction.

Raycasting	is	when	you	create	a	ray	and	then	determine	what	intersects	that	ray;
figure	3.1	illustrates	the	concept.	Consider	what	happens	when	you	fire	a	bullet
from	a	gun:	the	bullet	starts	at	the	position	of	the	gun	and	then	flies	forward	in	a
straight	line	until	it	hits	something.	A	ray	is	analogous	to	the	path	of	the	bullet,
and	raycasting	is	analogous	to	firing	the	bullet	and	seeing	where	it	hits.

Figure	3.1.	A	ray	is	an	imaginary	line,	and	raycasting	is	finding	where	that	line	intersects.

As	you	can	imagine,	the	math	behind	raycasting	often	gets	complicated.	Not
only	is	it	tricky	to	calculate	the	intersection	of	a	line	with	a	3D	plane,	but	you
need	to	do	that	for	all	polygons	of	all	mesh	objects	in	the	scene	(remember,	a
mesh	object	is	a	3D	visual	constructed	from	lots	of	connected	lines	and	shapes).
Fortunately,	Unity	handles	the	difficult	math	behind	raycasting,	but	you	still
have	to	worry	about	higher-level	concerns	like	where	the	ray	is	being	cast	from
and	why.

In	this	project	the	answer	to	the	latter	question	(why)	is	to	simulate	a	bullet	being
fired	into	the	scene.	For	a	first-person	shooter,	the	ray	generally	starts	at	the
camera	position	and	then	extends	out	through	the	center	of	the	camera	view.	In
other	words,	you’re	checking	for	objects	straight	in	front	of	the	camera;	Unity
provides	commands	to	make	that	task	simple.	Let’s	take	a	look	at	these

commands.

3.1.2.	Using	the	command	ScreenPointToRay	for	shooting

You’ll	implement	shooting	by	projecting	a	ray	that	starts	at	the	camera	and
extends	forward	through	the	center	of	the	view.	Projecting	a	ray	through	the
center	of	the	camera	view	is	a	special	case	of	an	action	referred	to	as	mouse
picking.

Definition

Mouse	picking	is	the	action	of	picking	out	the	spot	in	the	3D	scene	directly	under
the	mouse	cursor.

Unity	provides	the	method	ScreenPointToRay()	to	perform	this	action.
Figure	3.2	illustrates	what	happens.	The	method	creates	a	ray	that	starts	at	the
camera	and	projects	at	an	angle	passing	through	the	given	screen	coordinates.
Usually	the	coordinates	of	the	mouse	position	are	used	for	mouse	picking,	but
for	first-person	shooting	the	center	of	the	screen	is	used.	Once	you	have	a	ray,	it
can	be	passed	to	the	method	Physics.Raycast()	to	perform	raycasting
using	that	ray.

Figure	3.2.	ScreenPointToRay()	projects	a	ray	from	the	camera	through	the	given	screen
coordinates.

Let’s	write	some	code	that	uses	the	methods	we	just	discussed.	In	Unity	create	a
new	C#	script,	attach	that	script	to	the	camera	(not	the	player	object),	and	then
write	the	code	from	the	next	listing	in	it.

Listing	3.1.	RayShooter	script	to	attach	to	the	camera

You	should	note	a	number	of	things	in	this	code	listing.	First,	the	camera
component	is	retrieved	in	Start(),	just	like	the	CharacterController	in	the
previous	chapter.	Then	the	rest	of	the	code	is	put	in	Update()	because	it	needs
to	check	the	mouse	over	and	over	repeatedly,	as	opposed	to	just	one	time.	The
method	Input.GetMouseButtonDown()	returns	true	or	false
depending	on	whether	the	mouse	has	been	clicked,	so	putting	that	command	in	a
conditional	means	the	enclosed	code	runs	only	when	the	mouse	has	been
clicked.	You	want	to	shoot	when	the	player	clicks	the	mouse;	hence	the
conditional	check	of	the	mouse	button.

A	vector	is	created	to	define	the	screen	coordinates	for	the	ray	(remember	that	a
vector	is	several	related	numbers	stored	together).	The	camera’s	pixelWidth
and	pixelHeight	values	give	you	the	size	of	the	screen,	so	dividing	those
values	in	half	gives	you	the	center	of	the	screen.	Although	screen	coordinates	are
2D,	with	only	horizontal	and	vertical	components	and	no	depth,	a	Vector3	was
created	because	ScreenPointToRay()	requires	that	data	type	(presumably
because	calculating	the	ray	involves	arithmetic	on	3D	vectors).
ScreenPointToRay()	was	called	with	this	set	of	coordinates,	resulting	in	a
Ray	object	(code	object,	that	is,	not	a	game	object;	the	two	can	be	confusing
sometimes).

The	ray	is	then	passed	to	the	Raycast()	method,	but	it’s	not	the	only	object
passed	in.	There’s	also	a	RaycastHit	data	structure;	RaycastHit	is	a
bundle	of	information	about	the	intersection	of	the	ray,	including	where	the

intersection	happened	and	what	object	was	intersected.	The	C#	syntax	out
ensures	that	the	data	structure	manipulated	within	the	command	is	the	same
object	that	exists	outside	the	command,	as	opposed	to	the	objects	being	separate
copies	in	the	different	function	scopes.

Finally	the	code	calls	the	Physics.Raycast()	method.	This	method	checks
for	intersections	with	the	given	ray,	fills	in	data	about	the	intersection,	and
returns	true	if	the	ray	hit	anything.	Because	a	Boolean	value	is	returned,	this
method	can	be	put	in	a	conditional	check,	just	as	you	used
Input.GetMouseButtonDown()	earlier.

For	now	the	code	emits	a	console	message	to	indicate	when	an	intersection
occurred.	This	console	message	displays	the	3D	coordinates	of	the	point	where
the	ray	hit	(the	XYZ	values	we	discussed	in	chapter	2).	But	it	can	be	hard	to
visualize	where	exactly	the	ray	hit;	similarly,	it	can	be	hard	to	tell	where	the
center	of	the	screen	is	(that	is,	where	the	ray	shoots	through).	Let’s	add	visual
indicators	to	address	both	problems.

3.1.3.	Adding	visual	indicators	for	aiming	and	hits

Our	next	step	is	to	add	two	kinds	of	visual	indicators:	an	aiming	spot	on	the
center	of	the	screen,	and	a	mark	in	the	scene	where	the	ray	hit.	For	a	first-person
shooter	the	latter	is	usually	bullet	holes,	but	for	now	you’re	going	to	put	a	blank
sphere	on	the	spot	(and	use	a	coroutine	to	remove	the	sphere	after	one	second).
Figure	3.3	shows	what	you’ll	see.

Figure	3.3.	Shooting	repeatedly	after	adding	visual	indicators	for	aiming	and	hits

Definition

Coroutines	are	a	Unity-specific	way	of	handling	tasks	that	execute	incrementally

over	time,	as	opposed	to	how	most	functions	make	the	program	wait	until	they
finish.

First	let’s	add	indicators	to	mark	where	the	ray	hits.	Listing	3.2	shows	the	script
after	making	this	addition.	Run	around	the	scene	shooting;	it’s	pretty	fun	seeing
the	sphere	indicators!

Listing	3.2.	RayShooter	script	with	sphere	indicators	added

The	new	method	is	SphereIndicator(),	plus	a	one-line	modification	in	the
existing	Update()	method.	This	method	creates	a	sphere	at	a	point	in	the
scene	and	then	removes	that	sphere	a	second	later.	Calling
SphereIndicator()	from	the	raycasting	code	ensures	that	there	will	be
visual	indicators	showing	exactly	where	the	ray	hit.	This	function	is	defined	with
IEnumerator,	and	that	type	is	tied	in	with	the	concept	of	coroutines.

Technically,	coroutines	aren’t	asynchronous	(asynchronous	operations	don’t	stop
the	rest	of	the	code	from	running;	think	of	downloading	an	image	in	the	script	of
a	website),	but	through	clever	use	of	enumerators,	Unity	makes	coroutines
behave	similarly	to	asynchronous	functions.	The	secret	sauce	in	coroutines	is	the
yield	keyword;	that	keyword	causes	the	coroutine	to	temporarily	pause,
handing	back	the	program	flow	and	picking	up	again	from	that	point	in	the	next
frame.	In	this	way,	coroutines	seemingly	run	in	the	background	of	a	program,
through	a	repeated	cycle	of	running	partway	and	then	returning	to	the	rest	of	the
program.

As	the	name	implies,	StartCoroutine()	sets	a	coroutine	in	motion.	Once	a
coroutine	is	started,	it	keeps	running	until	the	function	is	finished;	it	just	pauses
along	the	way.	Note	the	subtle	but	significant	point	that	the	method	passed	to
StartCoroutine()	has	a	set	of	parentheses	following	the	name:	this	syntax
means	you’re	calling	that	function,	as	opposed	to	passing	its	name.	The	called
function	runs	until	it	hits	a	yield	command,	at	which	point	the	function	pauses.

SphereIndicator()	creates	a	sphere	at	a	specific	point,	pauses	for	the
yield	statement,	and	then	destroys	the	sphere	after	the	coroutine	resumes.	The
length	of	the	pause	is	controlled	by	the	value	returned	at	yield.	A	few	different
types	of	return	values	work	in	coroutines,	but	the	most	straightforward	is	to
return	a	specific	length	of	time	to	wait.	Returning	WaitForSeconds(1)
causes	the	coroutine	to	pause	for	one	second.	Create	a	sphere,	pause	for	one
second,	and	then	destroy	the	sphere:	that	sequence	sets	up	a	temporary	visual
indicator.

Listing	3.2	gave	you	indicators	to	mark	where	the	ray	hits.	But	you	also	want	an
aiming	spot	in	the	center	of	the	screen,	so	that’s	done	in	the	next	listing.

Listing	3.3.	Visual	indicator	for	aiming

Another	new	method	has	been	added	to	the	RayShooter	class,	called
OnGUI().	Unity	comes	with	both	a	basic	and	more	advanced	user	interface	(UI)
system;	because	the	basic	system	has	a	lot	of	limitations,	we’ll	build	a	more
flexible	advanced	UI	in	future	chapters,	but	for	now	it’s	much	easier	to	display	a
point	in	the	center	of	the	screen	using	the	basic	UI.	Much	like	Start()	and
Update(),	every	MonoBehaviour	automatically	responds	to	an	OnGUI()
method.	That	function	runs	every	frame	right	after	the	3D	scene	is	rendered,
resulting	in	everything	drawn	during	OnGUI()	appearing	on	top	of	the	3D
scene	(imagine	stickers	applied	to	a	painting	of	a	landscape).

Definition

Render	is	the	action	of	the	computer	drawing	the	pixels	of	the	3D	scene.
Although	the	scene	is	defined	using	XYZ	coordinates,	the	actual	display	on	your
monitor	is	a	2D	grid	of	colored	pixels.	Thus	in	order	to	display	the	3D	scene,	the
computer	needs	to	calculate	the	color	of	all	the	pixels	in	the	2D	grid;	running
that	algorithm	is	referred	to	as	rendering.

Inside	OnGUI()	the	code	defines	2D	coordinates	for	the	display	(shifted
slightly	to	account	for	the	size	of	the	label)	and	then	calls	GUI.Label().	That
method	displays	a	text	label;	because	the	string	passed	to	the	label	is	an	asterisk
(*),	you	end	up	with	that	character	displayed	in	the	center	of	the	screen.	Now	it’s
much	easier	to	aim	in	our	nascent	FPS	game!

Listing	3.3	also	added	some	cursor	settings	to	the	Start()	method.	All	that’s
happening	is	that	the	values	are	being	set	for	cursor	visibility	and	locking.	The

script	will	work	perfectly	fine	if	you	omit	the	cursor	values,	but	these	settings
make	first-person	controls	work	a	bit	more	smoothly.	The	mouse	cursor	will	stay
in	the	center	of	the	screen,	and	to	avoid	cluttering	the	view	it	will	turn	invisible
and	will	only	reappear	when	you	hit	Esc.

Warning

Always	remember	that	you	can	hit	Esc	to	unlock	the	mouse	cursor.	While	the
mouse	cursor	is	locked,	it’s	impossible	to	click	the	Play	button	and	stop	the
game.

That	wraps	up	the	first-person	shooting	code...well,	that	wraps	up	the	player’s
end	of	the	interaction,	anyway,	but	we	still	need	to	take	care	of	targets.

3.2.	Scripting	reactive	targets

Being	able	to	shoot	is	all	well	and	good,	but	at	the	moment	players	don’t	have
anything	to	shoot	at.	We’re	going	to	create	a	target	object	and	give	it	a	script	that
will	respond	to	being	hit.	Or	rather,	we’ll	slightly	modify	the	shooting	code	to
notify	the	target	when	hit,	and	then	the	script	on	the	target	will	react	when
notified.

3.2.1.	Determining	what	was	hit

First	you	need	to	create	a	new	object	to	shoot	at.	Create	a	new	cube	object
(GameObject	>	3D	Object	>	Cube)	and	then	scale	it	up	vertically	by	setting	the
Y	scale	to	2	and	leaving	X	and	Z	at	1.	Position	the	new	object	at	0,	1,	0	to	put	it
on	the	floor	in	the	middle	of	the	room,	and	name	the	object	Enemy.	Create	a	new
script	called	ReactiveTarget	and	attach	that	to	the	newly	created	box.	Soon	you’ll
write	code	for	this	script,	but	leave	it	at	the	default	for	now;	you’re	only	creating
the	script	file	because	the	next	code	listing	requires	it	to	exist	in	order	to
compile.	Go	back	to	RayShooter.cs	and	modify	the	raycasting	code	according	to
the	following	listing.	Run	the	new	code	and	shoot	the	new	target;	debug
messages	appear	in	the	console	instead	of	sphere	indicators	in	the	scene.

Listing	3.4.	Detecting	whether	the	target	object	was	hit

Notice	that	you	retrieve	the	object	from	RaycastHit,	just	like	the	coordinates
were	retrieved	for	the	sphere	indicators.	Technically,	the	hit	information	doesn’t
return	the	game	object	hit;	it	indicates	the	Transform	component	hit.	You	can
then	access	gameObject	as	a	property	of	transform.

Then,	you	use	the	method	GetComponent()	on	the	object	to	check	whether
it’s	a	reactive	target	(that	is,	if	it	has	the	ReactiveTarget	script	attached).	As	you
saw	previously,	that	method	returns	components	of	a	specific	type	that	are
attached	to	the	GameObject.	If	no	component	of	that	type	is	attached	to	the
object,	then	GetComponent()	won’t	return	anything.	You	check	whether
null	was	returned	and	run	different	code	in	each	case.

If	the	hit	object	is	a	reactive	target,	the	code	emits	a	debug	message	instead	of
starting	the	coroutine	for	sphere	indicators.	Now	let’s	inform	the	target	object
about	the	hit	so	that	it	can	react.

3.2.2.	Alert	the	target	that	it	was	hit

All	that’s	needed	in	the	code	is	a	one-line	change,	as	shown	in	the	following
listing.

Listing	3.5.	Sending	a	message	to	the	target	object

Now	the	shooting	code	calls	a	method	of	the	target,	so	let’s	write	that	target
method.	In	the	ReactiveTarget	script,	write	in	the	code	from	the	next	listing.	The

target	object	will	fall	over	and	disappear	when	you	shoot	it;	refer	to	figure	3.4.

Figure	3.4.	The	target	object	falling	over	when	hit

Listing	3.6.	ReactiveTarget	script	that	dies	when	hit

Most	of	this	code	should	already	be	familiar	to	you	from	previous	scripts,	so
we’ll	only	go	over	it	briefly.	First,	you	define	the	method	ReactToHit(),
because	that’s	the	method	name	called	in	the	shooting	script.	This	method	starts
a	coroutine	that’s	similar	to	the	sphere	indicator	code	from	earlier;	the	main
difference	is	that	it	operates	on	the	object	of	this	script	rather	than	creating	a
separate	object.	Expressions	like	this.gameObject	refer	to	the
GameObject	that	this	script	is	attached	to	(and	the	this	keyword	is	optional,
so	code	could	refer	to	gameObject	without	anything	in	front	of	it).

The	first	line	of	the	coroutine	function	makes	the	object	tip	over.	As	discussed	in
chapter	2,	rotations	can	be	defined	as	an	angle	around	each	of	the	three
coordinate	axes,	X	Y,	and	Z.	Because	we	don’t	want	the	object	to	rotate	side	to
side	at	all,	leave	Y	and	Z	as	0	and	assign	an	angle	to	the	X	rotation.

Note

The	transform	is	applied	instantly,	but	you	may	prefer	seeing	the	movement
when	objects	topple	over.	Once	you	start	looking	beyond	this	book	for	more
advanced	topics,	you	might	want	to	look	up	tweens,	systems	used	to	make
objects	move	smoothly	over	time.

The	second	line	of	the	method	uses	the	yield	keyword	that’s	so	significant	to
coroutines,	pausing	the	function	there	and	returning	the	number	of	seconds	to
wait	before	resuming.	Finally,	the	game	object	destroys	itself	in	the	last	line	of
the	function.	Destroy(this.gameObject)	is	called	after	the	wait	time,
just	like	the	code	called	Destroy(sphere)	before.

Warning

Be	sure	to	call	Destroy()	on	this.gameObject	and	not	simply	this!
Don’t	get	confused	between	the	two;	this	only	refers	to	this	script	component,
whereas	this.gameObject	refers	to	the	object	the	script	is	attached	to.

The	target	now	reacts	to	being	shot;	great!	But	it	doesn’t	do	anything	else	on	its
own,	so	let’s	add	more	behavior	to	make	this	target	a	proper	enemy	character.

3.3.	Basic	wandering	AI

A	static	target	isn’t	terribly	interesting,	so	let’s	write	code	that’ll	make	the	enemy
wander	around.	Code	for	wandering	around	is	pretty	much	the	simplest	example
of	AI;	artificial	intelligence	(AI)	refers	to	computer-controlled	entities.	In	this
case	the	entity	is	an	enemy	in	a	game,	but	it	could	also	be	a	robot	in	the	real
world,	or	a	voice	that	plays	chess,	for	example.

3.3.1.	Diagramming	how	basic	AI	works

There	are	a	number	of	different	approaches	to	AI	(seriously,	artificial
intelligence	is	a	major	area	of	research	for	computer	scientists),	but	for	our
purposes	we’ll	stick	with	a	simple	approach.	As	you	become	more	experienced
and	your	games	get	more	sophisticated,	you’ll	probably	want	to	explore	various
approaches	to	AI.

Figure	3.5	depicts	the	basic	process.	Every	frame,	the	AI	code	will	scan	around
its	environment	to	determine	whether	it	needs	to	react.	If	an	obstacle	appears	in
its	way,	the	enemy	turns	to	face	a	different	direction.	Regardless	of	whether	the
enemy	needs	to	turn,	it	will	always	move	forward	steadily.	Thus	the	enemy	will
ping-pong	around	the	room,	always	moving	forward	and	turning	to	avoid	walls.

Figure	3.5.	Basic	AI:	cyclical	process	of	moving	forward	and	avoiding	obstacles

The	actual	code	will	look	pretty	familiar,	because	it	moves	enemies	forward
using	the	same	commands	as	moving	the	player	forward.	The	AI	code	will	also
use	raycasting,	similar	to	but	in	a	different	context	from	shooting.

3.3.2.	“Seeing”	obstacles	with	a	raycast

As	you	saw	in	the	introduction	to	this	chapter,	raycasting	is	a	technique	that’s
useful	for	a	number	of	tasks	within	3D	simulations.	One	easily	grasped	task	was
shooting,	but	another	place	raycasting	can	be	useful	is	for	scanning	around	the
scene.	Given	that	scanning	around	the	scene	is	a	step	in	AI	code,	that	means
raycasting	is	used	in	AI	code.

Earlier	you	created	a	ray	that	originated	at	the	camera,	because	that’s	where	the
player	was	looking	from;	this	time	you’ll	create	a	ray	that	originates	at	the
enemy.	The	first	ray	shot	out	through	the	center	of	the	screen,	but	this	time	the
ray	will	shoot	forward	in	front	of	the	character;	figure	3.6	illustrates	this.	Then
just	like	the	shooting	code	used	RaycastHit	information	to	determine
whether	anything	was	hit	and	where,	the	AI	code	will	use	RaycastHit
information	to	determine	whether	anything	is	in	front	of	the	enemy	and,	if	so,
how	far	away.

Figure	3.6.	Using	raycasting	to	“see”	obstacles

One	difference	between	raycasting	for	shooting	and	raycasting	for	AI	is	the
radius	of	the	ray	detected	against.	For	shooting	the	ray	was	treated	as	infinitely
thin,	but	for	AI	the	ray	will	be	treated	as	having	a	large	cross-section;	in	terms	of
the	code,	this	means	using	the	method	SphereCast()	instead	of
Raycast().	The	reason	for	this	difference	is	that	bullets	are	tiny,	whereas	to

check	for	obstacles	in	front	of	the	character	we	need	to	account	for	the	width	of
the	character.

Create	a	new	script	called	WanderingAI,	attach	that	to	the	target	object
(alongside	the	ReactiveTarget	script),	and	write	the	code	from	the	next	listing.
Play	the	scene	now	and	you	should	see	the	enemy	wandering	around	the	room;
you	can	still	shoot	the	target	and	it	reacts	the	same	way	as	before.

Listing	3.7.	Basic	WanderingAI	script

The	listing	added	a	couple	of	variables	to	represent	the	speed	of	movement	and
from	how	far	away	to	react	to	obstacles.	Then	a	Translate()	method	was
added	in	the	Update()	method	in	order	to	move	forward	continuously
(including	the	use	of	deltaTime	for	frame	rate–independent	movement).	In
Update()	you’ll	also	see	raycasting	code	that	looks	a	lot	like	the	shooting
script	from	earlier;	again,	the	same	technique	of	raycasting	is	being	used	here	to
see	instead	of	shoot.	The	ray	is	created	using	the	enemy’s	position	and	direction,
instead	of	using	the	camera.

As	explained	earlier,	the	raycasting	calculation	was	done	using	the	method
Physics.SphereCast().	This	method	takes	a	radius	parameter	to
determine	how	far	around	the	ray	to	detect	intersections,	but	in	every	other
respect	it’s	exactly	the	same	as	Physics.Raycast().	This	similarity
includes	how	the	command	fills	in	hit	information,	checks	for	intersections	just
like	before,	and	uses	the	distance	property	to	be	sure	to	react	only	when	the
enemy	gets	near	an	obstacle	(as	opposed	to	a	wall	across	the	room).

When	the	enemy	has	a	nearby	obstacle	right	in	front	of	it,	the	code	rotates	the
character	a	semi-random	amount	toward	a	new	direction.	I	say	“semi-random”
because	the	values	are	constrained	to	minimum	and	maximum	values	that	make
sense	for	this	situation.	Specifically,	we	use	the	method	Random.Range()
that	Unity	provides	for	obtaining	a	random	value	between	constraints.	In	this
case	the	constraints	were	just	slightly	beyond	an	exact	left	or	right	turn,	allowing
the	character	to	turn	sufficiently	to	avoid	obstacles.

3.3.3.	Tracking	the	character’s	state

One	oddity	of	the	current	behavior	is	that	the	enemy	keeps	moving	forward	after
falling	over	from	being	hit.	That’s	because	right	now	the	Translate()
method	runs	every	frame	no	matter	what.	Let’s	make	small	adjustments	to	the
code	in	order	to	keep	track	of	whether	or	not	the	character	is	alive—or	to	put	it
in	another	(more	technical)	way,	we	want	to	track	the	“alive”	state	of	the
character.	Having	the	code	keep	track	of	and	respond	differently	to	the	current
state	of	the	object	is	a	common	code	pattern	in	many	areas	of	programming,	not
just	AI.	More	sophisticated	implementations	of	this	approach	are	referred	to	as
state	machines,	or	possibly	even	finite	state	machines.

Definition

Finite	state	machine	(FSM)	is	a	code	structure	in	which	the	current	state	of	the
object	is	tracked,	well-defined	transitions	exist	between	states,	and	the	code
behaves	differently	based	on	the	state.

We’re	not	going	to	implement	a	full	FSM,	but	it’s	no	coincidence	that	a	common
place	to	see	the	initials	FSM	is	in	discussions	of	AI.	A	full	FSM	would	have
many	states	for	all	the	different	behaviors	of	a	sophisticated	AI,	but	in	this	basic
AI	we	just	need	to	track	whether	or	not	the	character	is	alive.	The	next	listing
adds	a	Boolean	value,	_alive,	toward	the	top	of	the	script,	and	the	code	needs
occasional	conditional	checks	of	that	value.	With	those	checks	in	place,	the
movement	code	only	runs	while	the	enemy	is	alive.

Listing	3.8.	WanderingAI	script	with	“alive”	state	added

The	ReactiveTarget	script	can	now	tell	the	WanderingAI	script	when	the	enemy
is	or	isn’t	alive	(see	the	following	listing).

Listing	3.9.	ReactiveTarget	tells	WanderingAI	when	it	dies

AI	code	structure

The	AI	code	in	this	chapter	is	contained	within	a	single	class	so	that	learning	and
understanding	it	is	straightforward.	This	code	structure	is	perfectly	fine	for
simple	AI	needs,	so	don’t	be	afraid	that	you’ve	done	something	“wrong”	and
that	a	more	complex	code	structure	is	an	absolute	requirement.	For	more
complex	AI	needs	(such	as	a	game	with	a	wide	variety	of	highly	intelligent
characters),	a	more	robust	code	structure	can	help	facilitate	developing	the	AI.

As	alluded	to	in	chapter	1’s	example	for	composition	versus	inheritance,
sometimes	you’ll	want	to	split	chunks	of	the	AI	into	separate	scripts.	Doing	so
will	enable	you	to	mix	and	match	components,	generating	unique	behavior	for
each	character.	Think	about	the	similarities	and	differences	between	your
characters,	and	those	differences	will	guide	you	as	you	design	your	code

architecture.	For	example,	if	your	game	has	some	enemies	that	move	by
charging	headlong	at	the	player	and	some	that	slink	around	in	the	shadows,	you
may	want	to	make	Locomotion	a	separate	component.	Then	you	can	create
scripts	for	both	LocomotionCharge	and	LocomotionSlink,	and	use	different
Locomotion	components	on	different	enemies.

The	exact	AI	code	structure	you	want	depends	on	the	design	of	your	specific
game;	there’s	no	one	“right”	way	to	do	it.	Unity	makes	it	easy	to	design	flexible
code	architectures	like	this.

3.4.	Spawning	enemy	prefabs

At	the	moment	there’s	just	one	enemy	in	the	scene,	and	when	it	dies,	the	scene	is
empty.	Let’s	make	the	game	spawn	enemies	so	that	whenever	the	enemy	dies,	a
new	one	appears.	This	is	easily	done	in	Unity	using	a	concept	called	prefabs.

3.4.1.	What	is	a	prefab?

Prefabs	are	a	flexible	approach	to	visually	defining	interactive	objects.	In	a
nutshell,	a	prefab	is	a	fully	fleshed-out	game	object	(with	components	already
attached	and	set	up)	that	doesn’t	exist	in	any	specific	scene	but	rather	exists	as	an
asset	that	can	be	copied	into	any	scene.	This	copying	can	be	done	manually,	to
ensure	that	the	enemy	object	(or	other	prefab)	is	the	same	in	every	scene.	More
important,	though,	prefabs	can	also	be	spawned	from	code;	you	can	place	copies
of	the	object	into	the	scene	using	commands	in	scripts	and	not	only	by	doing	it
manually	in	the	visual	editor.

Definiton

An	asset	is	any	file	that	shows	up	in	the	Project	view;	these	could	be	2D	images,
3D	models,	code	files,	scenes,	and	so	on.	I	mentioned	the	term	asset	briefly	in
chapter	1,	but	I	didn’t	emphasize	it	until	now.

The	term	for	one	of	these	copies	of	a	prefab	is	an	instance,	analogous	to	how	the

word	instance	refers	to	a	specific	code	object	created	from	a	class.	Try	to	keep
the	terminology	straight;	prefab	refers	to	the	game	object	existing	outside	of	any
scene,	whereas	instance	refers	to	a	copy	of	the	object	that’s	placed	in	a	scene.

Definition

Also	analogous	to	object-oriented	terminology,	instantiate	is	the	action	of
creating	an	instance.

3.4.2.	Creating	the	enemy	prefab

To	create	a	prefab,	first	create	an	object	in	the	scene	that	will	become	the	prefab.
Because	our	enemy	object	will	become	a	prefab,	we’ve	already	done	this	first
step.	Now	all	we	do	is	drag	the	object	down	from	the	Hierarchy	view	and	drop	it
in	the	Project	view;	this	will	automatically	save	the	object	as	a	prefab	(see	figure
3.7).	Back	in	the	Hierarchy	view	the	original	object’s	name	will	turn	blue	to
signify	that	it’s	now	linked	to	a	prefab.	If	you	wanted	to	edit	the	prefab	further
(such	as	by	adding	new	components),	you’d	make	those	changes	on	the	object	in
the	scene	and	then	select	GameObject	>	Apply	Changes	To	Prefab.	But	we	don’t
want	the	object	in	the	scene	anymore	(we’re	going	to	spawn	the	prefab,	not	use
the	instance	already	in	the	scene),	so	delete	the	enemy	object	now.

Figure	3.7.	Drag	objects	from	Hierarchy	to	Project	in	order	to	create	prefabs.

Warning

The	interface	for	working	with	prefabs	is	somewhat	awkward,	and	the
relationship	between	prefabs	and	their	instances	in	scenes	can	be	brittle.	For
example,	you	often	have	to	drag	a	prefab	into	a	scene	to	edit	it,	and	then	delete
the	object	once	you’re	done	editing.	In	the	first	chapter	I	mentioned	this	as	a
downside	to	Unity,	and	I	hope	the	workflow	with	prefabs	improves	in	future
versions	of	Unity.

Now	we	have	the	actual	prefab	object	to	spawn	in	the	scene,	so	let’s	write	code
to	create	instances	of	the	prefab.

3.4.3.	Instantiating	from	an	invisible	SceneController

Although	the	prefab	itself	doesn’t	exist	in	the	scene,	there	has	to	be	some	object
in	the	scene	for	the	enemy	spawning	code	to	attach	to.	What	we’ll	do	is	create	an
empty	game	object;	we	can	attach	the	script	to	that,	but	the	object	won’t	be
visible	in	the	scene.

Tip

The	use	of	empty	GameObjects	for	attaching	script	components	is	a	common
pattern	in	Unity	development.	This	trick	is	used	for	abstract	tasks	that	don’t
apply	to	any	specific	object	in	the	scene.	Unity	scripts	are	intended	to	be
attached	to	visible	objects,	but	not	every	task	makes	sense	that	way.

Choose	GameObject	>	Create	Empty,	rename	the	new	object	to	Controller,
and	then	set	its	position	to	0,	0,	0	(technically	the	position	doesn’t	matter
because	the	object	isn’t	visible,	but	putting	it	at	the	origin	will	make	life	simpler
if	you	ever	parent	anything	to	it).	Create	a	script	called	SceneController,	as
shown	in	the	following	listing.

Listing	3.10.	SceneController	that	spawns	the	enemy	prefab

Attach	this	script	to	the	controller	object,	and	in	the	Inspector	you’ll	see	a
variable	slot	for	the	enemy	prefab.	This	works	similarly	to	public	variables,	but
there’s	an	important	difference	(see	the	following	warning).

Warning

I	recommend	private	variables	with	SerializeField	to	reference	objects	in
Unity’s	editor	because	you	want	to	expose	that	variable	in	the	Inspector	but	don’t
want	the	value	to	be	changed	by	other	scripts.	As	explained	in	chapter	2,	public
variables	show	up	in	the	Inspector	by	default	(in	other	words,	they’re	serialized
by	Unity),	so	most	tutorials	and	sample	code	you’ll	see	use	public	variables	for
all	serialized	values.	But	these	variables	can	also	be	modified	by	other	scripts
(these	are	public	variables,	after	all);	in	many	cases,	you	don’t	want	the	value	to

be	modified	in	code	but	only	set	in	the	Inspector.

Drag	up	the	prefab	asset	from	Project	to	the	empty	variable	slot;	when	the	mouse
gets	near,	you	should	see	the	slot	highlight	to	indicate	that	the	object	can	be
linked	there	(see	figure	3.8).	Once	the	enemy	prefab	is	linked	to	the
SceneController	script,	play	the	scene	in	order	to	see	the	code	in	action.	An
enemy	will	appear	in	the	middle	of	the	room	just	like	before,	but	now	if	you
shoot	the	enemy	it	will	be	replaced	by	a	new	enemy.	Much	better	than	just	one
enemy	that’s	gone	forever!

Figure	3.8.	Drag	the	enemy	prefab	from	Project	up	to	the	Enemy	Prefab	slot	in	the	Inspector.

Tip

This	approach	of	dragging	objects	onto	the	Inspector’s	variable	slots	is	a	handy
technique	that	comes	up	in	a	lot	of	different	scripts.	Here	we	linked	a	prefab	to
the	script,	but	you	can	also	link	to	objects	in	the	scene,	or	even	specific
components	(because	the	code	needs	to	call	public	methods	in	that	specific
component).	In	future	chapters	we’ll	use	this	technique	again.

The	core	of	this	script	is	the	Instantiate()	method,	so	take	note	of	that

line.	When	we	instantiate	the	prefab,	that	creates	a	copy	in	the	scene.	By	default,
Instantiate()	returns	the	new	object	as	a	generic	Object	type,	but	Object	is
pretty	useless	directly	and	we	need	to	handle	it	as	a	GameObject.	In	C#,	use
the	as	keyword	for	typecasting	to	convert	from	one	type	of	code	object	into
another	type	(written	with	the	syntax	original-object	as	new-type).

The	instantiated	object	is	stored	in	_enemy,	a	private	variable	of	type
GameObject	(and	again,	keep	straight	the	distinction	between	a	prefab	and	an
instance	of	the	prefab;	enemyPrefab	stores	the	prefab	whereas	_enemy
stores	the	instance).	The	if	statement	that	checks	the	stored	object	ensures	that
Instantiate()	is	called	only	when	_enemy	is	empty	(or	null,	in	coder-
speak).	The	variable	starts	out	empty,	so	the	instantiating	code	runs	once	right
from	the	beginning	of	the	session.	The	object	returned	by	Instantiate()	is
then	stored	in	_enemy	so	that	the	instantiating	code	won’t	run	again.

Because	the	enemy	destroys	itself	when	shot,	that	empties	the	_enemy	variable
and	causes	Instantiate()	to	be	run	again.	In	this	way,	there’s	always	an
enemy	in	the	scene.

	

Destroying	GameObjects	and	memory	management

It’s	somewhat	unexpected	that	existing	references	become	null	when	an	object
destroys	itself.	In	a	memory-managed	programming	language	like	C#,	normally
you	aren’t	able	to	directly	destroy	objects;	you	can	only	dereference	them	so	that
they	can	be	destroyed	automatically.	This	is	still	true	within	Unity,	but	the	way
GameObjects	are	handled	behind	the	scenes	makes	it	look	like	they	were
destroyed	directly.

To	display	objects	in	the	scene,	Unity	has	to	have	a	reference	to	all	objects	in	its
scene	graph.	Thus	even	if	you	removed	all	references	to	the	GameObject	in
your	code,	there	would	still	be	this	scene	graph	reference	preventing	the	object
from	being	destroyed	automatically.	Because	of	this,	Unity	provided	the	method
Destroy()	to	tell	the	game	engine	“Remove	this	object	from	the	scene
graph.”	As	part	of	that	behind-the-scenes	functionality,	Unity	also	overloaded
the	==	operator	to	return	true	when	checking	for	null.	Technically	that	object

still	exists	in	memory,	but	it	may	as	well	not	exist	anymore,	so	Unity	has	it
appearing	to	be	null.	You	could	confirm	this	by	calling	GetInstanceID()
on	the	destroyed	object.

Note,	though,	that	the	developers	of	Unity	are	considering	changing	this
behavior	to	more	standard	memory	management.	If	they	do,	then	the	spawning
code	will	need	to	change	as	well,	probably	by	swapping	the	(_enemy==null)
check	with	a	new	parameter	like	(_enemy.isDestroyed).	Refer	to	their
blog/Facebook	page:

https://www.facebook.com/unity3d/posts/10152271098591773

(If	most	of	this	discussion	was	Greek	to	you,	then	don’t	worry	about	it;	this	was
a	tangential	technical	discussion	for	people	interested	in	these	obscure	details.)

3.5.	Shooting	via	instantiating	objects

All	right,	let’s	add	another	bit	of	functionality	to	the	enemies.	Much	as	we	did
with	the	player,	first	we	made	them	move—now	let’s	make	them	shoot!	As	I
mentioned	back	when	introducing	raycasting,	that	was	just	one	of	the	approaches
to	implementing	shooting.	Another	approach	involves	instantiating	prefabs,	so
let’s	take	that	approach	to	making	the	enemies	shoot	back.	The	goal	of	this
section	is	to	see	figure	3.9	when	playing.

Figure	3.9.	Enemy	shooting	a	“fireball”	at	the	player

https://www.facebook.com/unity3d/posts/10152271098591773

3.5.1.	Creating	the	projectile	prefab

Whereas	the	shooting	before	didn’t	involve	any	actual	projectile	in	the	scene,
this	time	shooting	will	involve	a	projectile	in	the	scene.	Shooting	with	raycasting
was	basically	instantaneous,	registering	a	hit	the	moment	the	mouse	was	clicked,
but	this	time	enemies	are	going	to	emit	fireballs	that	fly	through	the	air.
Admittedly,	they’ll	be	moving	pretty	fast,	but	it	won’t	be	instantaneous,	giving
the	player	a	chance	to	dodge	out	of	the	way.	Instead	of	using	raycasting	to	detect
hits,	we’ll	use	collision	detection	(the	same	collision	system	that	keeps	the
moving	player	from	passing	through	walls).

The	code	will	spawn	fireballs	in	the	same	way	that	enemies	spawn:	by
instantiating	a	prefab.	As	explained	in	the	previous	section,	the	first	step	when
creating	a	prefab	is	to	create	an	object	in	the	scene	that	will	become	the	prefab,
so	let’s	create	a	fireball.	To	start,	choose	GameObject	>	3D	Object	>	Sphere.
Rename	the	new	object	Fireball.	Now	create	a	new	script,	also	called
Fireball,	and	attach	that	script	to	this	object.	Eventually	we’ll	write	code	in	this
script,	but	leave	it	at	default	for	now	while	we	work	on	a	few	other	parts	of	the
fireball	object.	So	that	it	appears	like	a	fireball	and	not	just	a	gray	sphere,	we’re
going	to	give	the	object	a	bright	orange	color.	Surface	properties	such	as	color
are	controlled	using	materials.

Definition

A	material	is	a	packet	of	information	that	defines	the	surface	properties	of	any

3D	object	that	the	material	is	attached	to.	These	surface	properties	can	include
color,	shininess,	and	even	subtle	roughness.

Choose	Assets	>	Create	>	Material.	Name	the	new	material	something	like
Flame.	Select	the	material	in	the	Project	view	in	order	to	see	the	material’s
properties	in	the	Inspector.	As	figure	3.10	shows,	click	the	color	swatch	labeled
Albedo	(that’s	a	technical	term	that	refers	to	the	main	color	of	a	surface).
Clicking	that	will	bring	up	a	color	picker	in	its	own	window;	slide	both	the
rainbow-colored	bar	on	the	right	side	and	main	picking	area	to	set	the	color	to
orange.

Figure	3.10.	Setting	the	color	of	a	material

We’re	also	going	to	brighten	up	the	material	to	make	it	look	more	like	fire.
Adjust	the	Emission	value	(one	of	the	other	attributes	in	the	Inspector).	It
defaults	to	0,	so	type	in	.3	to	brighten	up	the	material.

Now	you	can	turn	the	fireball	object	into	a	prefab	by	dragging	the	object	down
from	Hierarchy	into	Project,	just	as	you	did	with	the	enemy	prefab.	Great,	we
have	a	new	prefab	to	use	as	a	projectile!	Next	up	is	writing	code	to	shoot	using
that	projectile.

3.5.2.	Shooting	the	projectile	and	colliding	with	a	target

Let’s	make	some	adjustments	to	the	enemy	in	order	to	emit	fireballs.	Because

code	to	recognize	the	player	will	require	a	new	script	(just	like	ReactiveTarget
was	required	by	the	code	to	recognize	the	target),	first	create	a	new	script	and
name	that	script	PlayerCharacter.	Attach	this	script	to	the	player	object	in	the
scene.

Now	open	up	WanderingAI	and	add	to	the	code	from	the	following	listing.

Listing	3.11.	WanderingAI	additions	for	emitting	fireballs

You’ll	notice	that	all	the	annotations	in	this	listing	refer	to	similar	(or	the	same)
bits	in	previous	scripts.	Previous	code	listings	already	showed	everything	needed
for	emitting	fireballs;	now	we’re	mashing	together	and	remixing	bits	of	code	to
fit	in	the	new	context.	Just	like	in	SceneController,	you	need	to	add	two
GameObject	fields	toward	the	top	of	the	script:	a	serialized	variable	for	linking
the	prefab	to,	and	a	private	variable	for	keeping	track	of	the	instance	copied	by
the	code.	After	doing	a	raycast,	the	code	checks	for	the	PlayerCharacter	on	the
object	hit;	this	works	just	like	when	the	shooting	code	checked	for
ReactiveTarget	on	the	object	hit.	The	code	that	instantiates	a	fireball	when	there
isn’t	already	one	in	the	scene	works	like	the	code	that	instantiates	an	enemy.	The
positioning	and	rotation	are	different,	though;	this	time,	you	place	the	instance
just	in	front	of	the	enemy	and	point	it	in	the	same	direction.

Once	all	the	new	code	is	in	place,	a	new	Fireball	Prefab	slot	will	appear	when
you	view	the	component	in	the	Inspector,	like	the	Enemy	Prefab	slot	in	the
SceneController	component.	Click	the	enemy	prefab	in	the	Project	view	and	the
Inspector	will	show	that	object’s	components,	as	if	you’d	selected	an	object	in
the	scene.	Although	the	earlier	warning	about	interface	awkwardness	often

applies	when	editing	prefabs,	the	interface	makes	it	easy	to	adjust	components
on	the	object,	and	that’s	all	we’re	doing.	As	shown	in	figure	3.11,	drag	up	the
fireball	prefab	from	Project	onto	the	Fireball	Prefab	slot	in	the	Inspector	(again,
just	as	you	did	with	SceneController).

Figure	3.11.	Drag	the	fireball	prefab	from	Project	up	to	the	Fireball	Prefab	slot	in	the	Inspector.

Now	the	enemy	will	fire	at	the	player	when	the	player	is	directly	ahead	of
it...well,	try	to	fire;	the	bright	orange	sphere	appears	in	front	of	the	enemy,	but	it
just	sits	there	because	we	haven’t	written	its	script	yet.	Let’s	do	that	now.	The
next	listing	shows	the	code	for	the	Fireball	script.

Listing	3.12.	Fireball	script	that	reacts	to	collisions

The	crucial	new	bit	to	this	code	is	the	OnTriggerEnter()	method.	That
method	is	called	automatically	when	the	object	has	a	collision,	such	as	colliding
with	the	walls	or	with	the	player.	At	the	moment	this	code	won’t	work	entirely;
if	you	run	it,	the	fireball	will	fly	forward	thanks	to	the	Translate()	line,	but
the	trigger	won’t	run,	queuing	up	a	new	fireball	by	destroying	the	current	one.
There	need	to	be	a	couple	of	other	adjustments	made	to	components	on	the
fireball	object.	The	first	change	is	making	the	collider	a	trigger.	To	adjust	that,
click	the	Is	Trigger	check	box	in	the	Sphere	Collider	component.

Tip

A	Collider	component	set	as	a	trigger	will	still	react	to	touching/overlapping
other	objects,	but	it	will	no	longer	stop	other	objects	from	physically	passing
through.

The	fireball	also	needs	a	Rigidbody,	a	component	used	by	the	physics	system	in
Unity.	By	giving	the	fireball	a	Rigidbody	component,	you	ensure	that	the	physics
system	is	able	to	register	collision	triggers	for	that	object.	In	the	Inspector,	click
Add	Component	and	choose	Physics	>	Rigidbody.	In	the	component	that’s
added,	deselect	Use	Gravity	(see	figure	3.12)	so	that	the	fireball	won’t	be	pulled
down	due	to	gravity.

Figure	3.12.	Turn	off	gravity	in	the	Rigidbody	component.

Play	now,	and	fireballs	are	destroyed	when	they	hit	something.	Because	the
fireball-emitting	code	runs	whenever	there	isn’t	already	a	fireball	in	the	scene,
the	enemy	will	shoot	more	fireballs	at	the	player.	Now	there’s	just	one	more	bit
remaining	for	shooting	at	the	player:	making	the	player	react	to	being	hit.

3.5.3.	Damaging	the	player

Earlier	you	created	a	PlayerCharacter	script	but	left	it	empty.	Now	you’ll	write
code	to	have	it	react	to	being	hit,	as	the	following	listing	shows.

Listing	3.13.	Player	that	can	take	damage

The	listing	defines	a	field	for	the	player’s	health	and	reduces	the	health	on
command.	In	later	chapters	we’ll	go	over	text	displays	to	show	information	on
the	screen,	but	for	now	we	can	just	display	information	about	the	player’s	health
using	debug	messages.

Now	we	need	to	go	back	to	the	Fireball	script	to	call	the	player’s	Hurt()
method.	Replace	the	debug	line	in	the	Fireball	script	with
player.Hurt(damage)	to	tell	the	player	they’ve	been	hit.	And	that’s	the
final	bit	of	code	we	needed!

Whew,	that	was	a	pretty	intense	chapter,	with	lots	of	code	being	introduced.
Between	the	previous	chapter	and	this	one,	you	now	have	most	of	the
functionality	in	place	for	a	first-person	shooter.

3.6.	Summary

In	this	chapter	you’ve	learned	that

	

A	ray	is	an	imaginary	line	projected	into	the	scene.
For	both	shooting	and	sensing	obstacles,	do	a	raycast	with	that	line.
Making	a	character	wander	around	involves	basic	AI.
New	objects	are	spawned	by	instantiating	prefabs.
Coroutines	are	used	to	spread	out	functions	over	time.

Chapter	4.	Developing	graphics	for	your	game

This	chapter	covers

	

Understanding	art	assets

	

Understanding	whiteboxing

	

Using	2D	images	in	Unity

	

Importing	custom	3D	models

	

Building	particle	effects

	

We’ve	been	focusing	mostly	on	how	the	game	functions	and	not	as	much	on	how
the	game	looks.	That	was	no	accident—this	book	is	mostly	about	programming
games	in	Unity.	Still,	it’s	important	to	understand	how	to	work	on	and	improve
the	visuals.	Before	we	get	back	to	the	book’s	main	focus	on	coding	different
parts	of	the	game,	let’s	spend	a	chapter	learning	about	game	art	so	that	your
projects	won’t	always	end	with	just	blank	boxes	sliding	around.

All	of	the	visual	content	in	a	game	is	made	up	of	what	are	called	art	assets.	But
what	exactly	does	that	mean?

	

4.1.	Understanding	art	assets

An	art	asset	is	an	individual	unit	of	visual	information	(usually	a	file)	used	by
the	game.	It’s	an	overarching	umbrella	term	for	all	visual	content;	image	files	are
art	assets,	3D	models	are	art	assets,	and	so	on.	Indeed,	the	term	art	asset	is
simply	a	specific	case	of	an	asset,	which	you’ve	learned	is	any	file	used	by	the
game	(such	as	a	script)—hence	the	main	Assets	folder	in	Unity.	Table	4.1	lists
and	describes	the	five	main	kinds	of	art	assets	used	in	building	a	game.

	

Table	4.1.	Types	of	art	assets

Type	of	art	asset Definition	of	this	type

2D	image Flat	pictures.	To	make	a	real-world	analogy,	2D	images	are	like	paintings	and
photographs.

3D	model 3D	virtual	objects	(almost	a	synonym	for	“mesh	objects”).	To	make	a	real-world
analogy,	3D	models	are	like	sculptures.

Material A	packet	of	information	that	defines	the	surface	properties	of	any	object	that	the
material	is	attached	to.	These	surface	properties	can	include	color,	shininess,	and
even	subtle	roughness.

Animation A	packet	of	information	that	defines	movement	of	the	associated	object.	These
are	detailed	movement	sequences	created	ahead	of	time,	as	opposed	to	code	that
calculates	positions	on	the	fly.

Particle	system An	orderly	mechanism	for	creating	and	controlling	large	numbers	of	small
moving	objects.	Many	visual	effects	are	done	this	way,	such	as	fire,	smoke,	or
spraying	water.

Creating	art	for	a	new	game	generally	starts	with	either	2D	images	or	3D	models
because	those	assets	form	a	base	on	which	everything	else	relies.	As	the	names
imply,	2D	images	are	the	foundation	of	2D	graphics,	whereas	3D	models	are	the
foundation	of	3D	graphics.	Specifically,	2D	images	are	flat	pictures;	even	if	you
have	no	previous	familiarity	with	game	art,	you’re	probably	already	familiar
with	2D	images	from	the	graphics	used	on	websites.	Three-dimensional	models,
on	the	other	hand,	may	be	unfamiliar	to	a	newcomer,	so	I’m	providing	the
following	definition.

	

Definition

A	model	is	a	3D	virtual	object.	In	chapter	1	you	were	introduced	to	the	term
mesh	object;	3D	model	is	practically	a	synonym.	The	terms	are	frequently	used
interchangeably,	but	mesh	object	strictly	refers	to	the	geometry	of	the	3D	object
(the	connected	lines	and	shapes)	whereas	model	is	a	bit	more	ambiguous	and
often	includes	other	attributes	of	the	object.

	

The	next	two	types	of	assets	on	the	list	are	materials	and	animations.	Unlike	2D
images	and	3D	models,	materials	and	animations	don’t	do	anything	in	isolation
and	are	much	harder	for	newcomers	to	understand.	Two-dimensional	images	and
3D	models	are	easily	understood	through	real-world	analogs:	paintings	for	the
former,	sculptures	for	the	latter.	Materials	and	animations	aren’t	as	directly
relatable	to	the	real	world.	Instead,	both	are	abstract	packets	of	information	that
layer	onto	3D	models.	For	example,	materials	were	already	introduced	in	a	basic
sense	in	chapter	3.

	

Definition

A	material	is	a	packet	of	information	that	defines	the	surface	properties	of	any
3D	object	that	the	material	is	attached	to.	These	surface	properties	can	include
color,	shininess,	and	even	subtle	roughness.

	

Continuing	the	art	analogy,	you	can	think	of	a	material	as	the	media	(clay,	brass,
marble,	and	so	on)	that	the	sculpture	is	made	of.	Similarly,	an	animation	is	also
an	abstract	layer	of	information	that’s	attached	to	a	visible	object.

	

Definition

An	animation	is	a	packet	of	information	that	defines	movement	of	the	associated
object.	Because	these	movements	can	be	defined	independently	from	the	object
itself,	they	can	be	used	in	a	mix-and-match	way	with	multiple	objects.

	

For	a	concrete	example,	think	about	a	character	walking	around.	The	overall
position	of	the	character	is	handled	by	the	game’s	code	(for	example,	the
movement	scripts	you	wrote	in	chapter	2).	But	the	detailed	movements	of	feet
hitting	the	ground,	arms	swinging,	and	hips	rotating	are	an	animation	sequence
that’s	being	played	back;	that	animation	sequence	is	an	art	asset.

To	help	you	understand	how	animations	and	3D	models	relate	to	each	other,	let’s
make	an	analogy	to	puppeteering:	the	3D	model	is	the	puppet,	the	animator	is
the	puppeteer	who	makes	the	puppet	move,	and	the	animation	is	a	recording	of
the	puppet’s	movements.

The	movements	defined	this	way	are	created	ahead	of	time	and	are	usually
small-scale	movements	that	don’t	change	the	overall	positioning	of	the	object.
This	is	in	contrast	to	the	sort	of	large-scale	movements	that	were	done	in	code	in
previous	chapters.

The	final	kind	of	art	asset	from	table	4.1	is	a	particle	system	(see	the	following
definition).

	

Definition

A	particle	system	is	an	orderly	mechanism	for	creating	and	controlling	large
numbers	of	moving	objects.	These	moving	objects	are	usually	small—hence	the
name	particle—but	they	don’t	have	to	be.

	

Particle	systems	are	useful	for	creating	visual	effects,	such	as	fire,	smoke,	or
spraying	water.	The	particles	(that	is,	the	individual	objects	under	the	control	of
a	particle	system)	can	be	any	mesh	object	that	you	choose,	but	for	most	effects
the	particles	will	be	a	square	displaying	a	picture	(a	flame	spark	or	a	smoke	puff,
for	example).

Much	of	the	work	of	creating	game	art	is	done	in	external	software,	not	within
Unity	itself.	Materials	and	particle	systems	are	created	within	Unity,	but	the
other	art	assets	are	created	using	external	software.	Refer	to	appendix	B	to	learn
more	about	external	tools;	a	variety	of	art	applications	are	used	for	creating	3D
models	and	animation.	Three-dimensional	models	created	in	an	external	tool	are
then	saved	as	an	art	asset	that’s	imported	by	Unity.	I	use	Blender	in	appendix	C
when	explaining	how	to	model	(download	it	from	www.blender.org),	but	that’s
just	because	Blender	is	open	source	and	thus	available	to	all	readers.

	

Note

The	project	download	for	this	chapter	includes	a	folder	named	“scratch.”
Although	that	folder	is	in	the	same	place	as	the	Unity	project,	it’s	not	part	of	the
Unity	project;	that’s	where	I	put	extra	external	files.

	

As	you	work	through	the	project	for	this	chapter,	you’ll	see	examples	of	most	of
these	types	of	art	assets	(animations	are	a	bit	too	complex	for	now	and	will	be
addressed	later	in	the	book).	You’re	going	to	build	a	scene	that	uses	2D	images,
3D

models,	materials,	and	a	particle	system.	In	some	cases	you’ll	bring	in	already
existing	art	assets	and	learn	how	to	import	them	into	Unity,	but	at	other	times
(especially	with	the	particle	system)	you’ll	create	the	art	asset	from	scratch
within	Unity.

This	chapter	only	scratches	the	surface	of	game	art	creation.	Because	this	book

http://www.blender.org

focuses	on	how	to	do	programming	in	Unity,	extensive	coverage	of	art
disciplines	would	reduce	how	much	the	book	could	cover.	Creating	game	art	is	a
giant	topic	in	and	of	itself,	easily	able	to	fill	several	books.	In	most	cases	a	game
programmer	would	need	to	partner	with	a	game	artist	who	specializes	in	that
discipline.	That	said,	it’s	extremely	useful	for	game	programmers	to	understand
how	Unity	works	with	art	assets	and	possibly	even	create	their	own	rough
standins	to	be	replaced	later	(commonly	known	as	programmer	art).

	

Note

Nothing	in	this	chapter	directly	requires	projects	from	the	previous	chapters.	But
you’ll	want	to	have	movement	scripts	like	the	ones	from	chapter	2	so	that	you
can	walk	around	the	scene	you’ll	build;	if	necessary,	you	can	grab	the	player
object	and	scripts	from	the	project	download.	Similarly,	this	chapter	ends	with
moving	objects	that	are	similar	to	the	ones	created	in	previous	chapters.

	

	

4.2.	Building	basic	3D	scenery:	whiteboxing

The	first	content	creation	topic	we’ll	go	over	is	whiteboxing.	This	process	is
usually	the	first	step	in	building	a	level	on	the	computer	(following	designing	the
level	on	paper).	As	the	name	implies,	you	block	out	the	walls	of	the	scene	with
blank	geometry	(that	is,	white	boxes).	Looking	at	the	list	of	different	art	assets,
this	blank	scenery	is	the	most	basic	sort	of	3D	model,	and	it	provides	a	base	on
which	to	display	2D	images.	If	you	think	back	to	the	primitive	scene	you	created
in	chapter	2,	that	was	basically	whiteboxing	(you	just	hadn’t	learned	the	term
yet).	Some	of	this	section	will	be	a	rehash	of	work	done	in	the	beginning	of
chapter	2,	but	we’ll	cover	the	process	a	lot	faster	this	time	as	well	as	discuss
more	new	terminology.

	

Note

Another	term	that	is	frequently	used	is	grayboxing.	It	means	the	same	thing.	I
tend	to	use	whiteboxing	because	that	was	the	term	I	first	learned,	but	others	use
grayboxing	and	that	term	is	just	as	accepted.	The	actual	color	used	varies,
anyway,	similar	to	how	blueprints	aren’t	necessarily	blue.

	

	

4.2.1.	Whiteboxing	explained

Blocking	out	the	scene	with	blank	geometry	serves	a	couple	of	purposes.	First,
this	process	enables	you	to	quickly	build	a	“sketch”	that	will	be	progressively
refined	over	time.	This	activity	is	closely	associated	with	level	design	and/or
level	designers.

	

Definition

Level	design	is	the	discipline	of	planning	and	creating	scenes	in	the	game	(or
levels).	A	level	designer	is	a	practitioner	of	level	design.

	

As	game	development	teams	have	grown	in	size	and	team	members	have
become	more	specialized,	a	common	level-building	workflow	is	for	the	level
designer	to	create	a	first	version	of	the	level	through	whiteboxing.	This	rough
level	is	then	handed	over	to	the	art	team	for	visual	polish.	But	even	on	a	tiny
team,	where	the	same	person	is	both	designing	levels	and	creating	art	for	the

game,	this	workflow	of	first	doing	whiteboxing	and	then	polishing	the	visuals
generally	works	best;	you	have	to	start	somewhere,	after	all,	and	whiteboxing
gives	a	clear	foundation	on	which	to	build	up	the	visuals.

A	second	purpose	served	by	whiteboxing	is	that	the	level	reaches	a	playable	state
very	quickly.	It	may	not	be	finished	(indeed,	a	level	right	after	whiteboxing	is	far
from	finished)	but	this	rough	version	is	functional	and	can	support	gameplay.	At
a	minimum,	the	player	can	walk	around	the	scene	(think	of	the	demo	from
chapter	2).	In	this	way	you	can	test	to	make	sure	the	level	is	coming	together
well	(for	example,	are	the	rooms	the	right	size	for	this	game?)	before	investing	a
lot	of	time	and	energy	in	detailed	work.	If	something	is	off	(say	you	realize	the
spaces	need	to	be	bigger),	then	it’s	much	easier	to	change	and	retest	while	you’re
at	the	stage	of	whiteboxing.

Moreover,	being	able	to	play	the	under-construction	level	is	a	huge	morale	boost.
Don’t	discount	this	benefit:	building	all	the	visuals	for	a	scene	can	take	a	great
deal	of	time,	and	it	can	start	to	feel	like	a	slog	if	you	have	to	wait	a	long	time
before	you	can	experience	any	of	that	work	in	the	game.	Whiteboxing	builds	a
complete	(if	primitive)	level	right	away,	and	it’s	exciting	to	then	play	the	game
as	it	continually	improves.

All	right,	so	you	understand	why	levels	start	with	whiteboxing;	now	let’s
actually	build	a	level!

	

4.2.2.	Drawing	a	floor	plan	for	the	level

Building	a	level	on	the	computer	follows	designing	the	level	on	paper.	We’re	not
going	to	get	into	a	huge	discussion	about	level	design;	just	as	chapter	2	noted
about	game	design,	level	design	(which	is	a	subset	of	game	design)	is	a	large
discipline	that	could	fill	up	an	entire	book	by	itself.	For	our	purposes	we’re
going	to	draw	a	basic	level	with	little	“design”	going	into	the	plan,	in	order	to
give	us	a	target	to	work	toward.

Figure	4.1	is	a	top-down	drawing	of	a	simple	layout	with	four	rooms	connected

by	a	central	hallway.	That’s	all	we	need	for	a	plan	right	now:	a	bunch	of
separated	areas	and	interior	walls	to	place.	In	a	real	game,	your	plan	would	be
more	extensive	and	include	things	like	enemies	and	items.

	

Figure	4.1.	Floor	plan	for	the	level:	four	rooms	and	a	central	corridor

You	could	practice	whiteboxing	by	building	this	floor	plan,	or	you	could	draw
your	own	simple	level	to	practice	that	step,	too.	The	specifics	of	the	room	layout
matters	little	for	this	exercise.	The	important	thing	for	our	purposes	is	to	have	a
floor	plan	drawn	so	that	we	can	move	forward	with	the	next	step.

	

4.2.3.	Laying	out	primitives	according	to	the	plan

Building	the	whitebox	level	in	accordance	with	the	drawn	floor	plan	involves
positioning	and	scaling	a	bunch	of	blank	boxes	to	be	the	walls	in	the	diagram.	As
described	in	section	2.2.1,	select	GameObject	>	3D	Object	>	Cube	to	create	a
blank	box	that	you	can	position	and	scale	as	needed.

	

Note

It	isn’t	required,	but	instead	of	cube	objects	you	may	want	to	use	the	QuadsBox
object	in	the	project	download.	This	object	is	a	cube	constructed	of	six	separate
pieces	to	give	you	more	flexibility	when	applying	materials.	Whether	or	not	you
use	this	object	depends	on	your	desired	workflow;	for	example,	I	don’t	bother
with	QuadsBox	because	all	the	whitebox	geometry	will	be	replaced	by	new	art
later	anyway.

	

The	first	object	will	be	the	floor	of	the	scene;	in	the	Inspector,	rename	the	object
and	lower	it	to	-.5	Y	in	order	to	account	for	the	height	of	the	box	itself	(figure	4.2
depicts	this).	Then	stretch	the	object	along	the	X-and	Z-axes.

	

Figure	4.2.	Inspector	view	of	the	box	positioned	and	scaled	for	the	floor

Repeat	these	steps	to	create	the	walls	of	the	scene.	You	probably	want	to	clean
up	the	Hierarchy	view	by	making	walls	as	children	of	a	common	base	object

(remember,	position	the	root	object	at	0,	0,	0,	and	then	drag	objects	onto	it	in
Hierarchy),	but	that’s	not	required.	Also	put	a	few	simple	lights	around	the	scene
so	that	you	can	see	it;	referring	back	to	chapter	2,	create	lights	by	selecting	them
in	the	Light	submenu	of	the	GameObject	menu.	The	level	should	look	something
like	figure	4.3	once	you’re	done	with	whiteboxing.

	

Figure	4.3.	Whitebox	level	of	the	floor	plan	in	figure	4.1

Set	up	your	player	object	or	camera	to	move	around	(create	the	player	with	a
character	controller	and	movement	scripts;	refer	to	chapter	2	if	you	need	a	full
explanation).	Now	you	can	walk	around	the	primitive	scene	in	order	to
experience	your	work	and	test	it	out.	And	that’s	how	you	do	whiteboxing!	Pretty
simple—but	all	you	have	right	now	is	blank	geometry,	so	let’s	dress	up	the
geometry	with	pictures	on	the	walls.

	

Exporting	whitebox	geometry	to	external	art	tools

Much	of	the	work	when	adding	visual	polish	to	the	level	is	done	in	external	3D
art	applications	like	Blender.	Because	of	this,	you	may	want	to	have	the
whitebox	geometry	in	your	art	tool	to	refer	to.	By	default	there’s	no	export
option	for	primitives	laid	out	within	Unity.	But	third-party	scripts	are	available
that	add	this	functionality	to	the	editor.	Most	such	scripts	allow	you	to	select	the
geometry	in	the	scene	and	then	hit	an	Export	button	(chapter	1	mentioned	that
scripts	can	customize	the	editor).

These	custom	scripts	usually	export	geometry	as	an	OBJ	file	(OBJ	is	one	of
several	file	types	discussed	later	in	this	chapter).

On	the	Unity3D	website,	click	the	search	button	and	type	obj	exporter.	Or
you	can	go	here	for	one	example:	http://wiki.unity3d.com/index.php?
title=ObjExporter

	

4.3.	Texture	the	scene	with	2D	images

The	level	at	this	point	is	a	rough	sketch.	It’s	playable,	but	clearly	a	lot	more	work
needs	to	be	done	on	the	visual	appearance	of	the	scene.	The	next	step	in
improving	the	look	of	the	level	is	applying	textures.

	

Definition

A	texture	is	a	2D	image	being	used	to	enhance	3D	graphics.	That’s	literally	the
totality	of	what	the	term	means;	don’t	confuse	yourself	by	thinking	that	any	of
the	various	uses	of	textures	are	part	of	how	the	term	is	defined.	No	matter	how
the	image	is	being	used,	it’s	still	referred	to	as	a	texture.

	

Note

The	word	texture	is	routinely	used	as	both	a	verb	and	a	noun.	In	addition	to	the
noun	definition,	the	word	describes	the	action	of	using	2D

images	in	3D	graphics.

http://wiki.unity3d.com/index.php?title=ObjExporter

	

Textures	have	a	number	of	uses	in	3D	graphics,	but	the	most	straightforward	use
is	to	be	displayed	on	the	surface	of	3D	models.

Later	in	the	chapter	we’ll	discuss	how	this	works	for	more	complex	models,	but
for	our	whiteboxed	level,	the	2D	images	will	act	as	wallpaper	covering	the	walls
(see	figure	4.4).

	

Figure	4.4.	Comparing	the	level	before	and	after	textures

As	you	can	see	from	the	comparison	in	figure	4.4,	textures	turn	what	was	an
obviously	unreal	digital	construct	into	a	brick	wall.	Other	uses	for	textures
include	masks	to	cut	out	shapes	and	normal	maps	to	make	surfaces	bumpy;	later
you	may	want	to	look	up	more	information	about	textures	in	resources
mentioned	in	appendix	D.

	

4.3.1.	Choosing	a	file	format

A	variety	of	file	formats	is	available	for	saving	2D	images,	so	which	should	you
use?	Unity	supports	the	use	of	many	different	file	formats,	so	you	could	choose

any	of	the	ones	shown	in	table	4.2.

	

Table	4.2.	2D	image	file	formats	supported	by	Unity

File	type Pros	and	cons

PNG Commonly	used	on	the	web.	Lossless	compression;	has	an	alpha	channel.
JPG Commonly	used	on	the	web.	Lossy	compression;	no	alpha	channel.
GIF Commonly	used	on	the	web.	Lossy	compression;	no	alpha	channel.	(Technically	the	loss

isn’t	from	compression;	rather,	data	is	lost	when	the	image	is	converted	to	8-bit.
Ultimately	it	amounts	to	the	same	thing.)

BMP Default	image	format	on	Windows.	No	compression;	no	alpha	channel.
TGA Commonly	used	for	3D	graphics;	obscure	everywhere	else.	No	or	lossless	compression;

has	an	alpha	channel.
TIFF Commonly	used	for	digital	photography	and	publishing.	No	or	lossless	compression;	no

alpha	channel.
PICT Default	image	format	on	old	Macs.	Lossy	compression;	no	alpha	channel.
PSD Native	file	format	for	Photoshop.	No	compression;	has	an	alpha	channel.	The	main

reason	to	use	this	file	format	would	be	the	advantage	of	using	Photoshop	files	directly.

Definition

The	alpha	channel	is	used	to	store	transparency	information	in	an	image.	The
visible	colors	come	in	three	“channels”	of	information:	Red,	Green,	and	Blue.
Alpha	is	an	additional	channel	of	information	that	isn’t	visible	but	controls	the
visibility	of	the	image.

	

Although	Unity	will	accept	any	of	the	images	shown	in	table	4.2	to	import	and
use	as	a	texture,	the	various	file	formats	vary	considerably	in	what	features	they
support.	Two	factors	in	particular	are	important	for	2D	images	imported	as
textures:	how	is	the	image	compressed,	and	does	it	have	an	alpha	channel?

The	alpha	channel	is	a	straightforward	consideration:	because	the	alpha	channel
is	used	often	in	3D	graphics,	it’s	better	when	the	image	has	an	alpha	channel.
Image	compression	is	a	slightly	more	complicated	consideration,	but	it	boils

down	to	“lossy	compression	is	bad”:	both	no	compression	and	lossless
compression	preserve	the	image	quality,	whereas	lossy	compression	reduces	the
image	quality	(hence	the	term	lossy)	as	part	of	reducing	the	file	size.

Between	these	two	considerations,	the	two	file	formats	I	recommend	for	Unity
textures	are	either	PNG	or	TGA.	Targas	(TGA)	used	to	be	the	favorite	file
format	for	texturing	3D	graphics,	before	PNG	had	become	widely	used	on	the
internet;	these	days	PNG	is	almost	equivalent	technologically	but	is	much	more
widespread,	because	it’s	useful	both	on	the	web	and	as	a	texture.

PSD	is	also	commonly	recommended	for	Unity	textures,	because	it’s	an
advanced	file	format	and	it’s	convenient	that	the	same	file	you	work	on	in
Photoshop	also	works	in	Unity.	But	I	tend	to	prefer	keeping	work	files	separate
from	“finished”	files	that	are	exported	over	to	Unity	(this	same	mind-set	comes
up	again	later	with	3D	models).

The	upshot	is	that	all	the	images	I	provide	in	the	example	projects	are	PNG,	and
I	recommend	that	you	work	with	that	file	format	as	well.	With	this	decision
made,	it’s	time	to	bring	some	images	into	Unity	and	apply	them	to	the	blank
scene.

	

4.3.2.	Importing	an	image	file

Let’s	start	creating/preparing	the	textures	we’ll	use.	The	images	used	to	texture
levels	are	usually	tileable	so	that	they	can	be	repeated	across	large	surfaces	like
the	floor.

	

Definition

A	tileable	image	(sometimes	referred	to	as	a	seamless	tile)	is	an	image	where
opposite	edges	match	up	when	placed	side	by	side.	This	way	the	image	can	be
repeated	without	any	visible	seams	between	the	repeats.	The	concept	for	3D

texturing	is	just	like	wallpapers	on	web	pages.

	

You	can	obtain	tileable	images	in	several	different	ways,	such	as	manipulating
photographs	or	even	painting	them	by	hand.

Tutorials	and	explanations	of	these	techniques	can	be	found	in	a	variety	of	books
and	websites,	but	we	don’t	want	to	get	bogged	down	with	that	right	now.	Instead,
let’s	grab	a	couple	of	tileable	images	from	one	of	the	many	websites	that	offer	a
catalog	of	such	images	for	3D	artists	to	use.	For	example,	I	obtained	a	couple	of
images	from	www.cgtextures.com	(see	figure	4.5)	to	apply	to	the	walls	and	floor
of	the	level;	find	a	couple	of	images	you	think	look	good	for	the	floor	and	walls.

	

Figure	4.5.	Seamlessly	tiling	stone	and	brick	images	obtained	from	CGTextures.com

Download	the	images	you	want	and	prepare	them	for	use	as	textures.
Technically,	you	could	use	the	images	directly	as	they	were	downloaded,	but
those	images	aren’t	ideal	for	use	as	textures.	Although	they’re	certainly	tileable
(the	important	aspect	of	why	we’re	using	these	images),	they	aren’t	the	right	size
and	they’re	the	wrong	file	format.	Textures	should	be	sized	in	powers	of	2.	For

http://www.cgtextures.com

reasons	of	technical	efficiency,	graphics	chips	like	to	handle	textures	in	sizes	that
are	2N:	4,	8,	16,	32,	64,	128,	256,	512,	1024,	2048	(the	next	number	is	4096,	but
at	that	point	the	image	is	too	big	to	use	as	a	texture).	In	your	image	editor
(Photoshop,	GIMP,	or	whatever;	refer	to	appendix	B)	scale	the	downloaded
image	to	256x256,	and	save	it	as	a	PNG.

Now	drag	the	files	from	their	location	in	the	computer	into	the	Project	view	in
Unity.	This	will	copy	the	files	into	your	Unity	project	(see	figure	4.6),	at	which
point	they’re	imported	as	textures	and	can	be	used	in	the	3D	scene.	If	dragging
the	file	over	would	be	awkward,	you	could	instead	right-click	in	Project	and
select	Import	New	Asset	to	get	a	file	picker.

	

Figure	4.6.	Drag	images	from	outside	Unity	to	import	them	into	the	Project	view.

	

Tip

Organizing	your	assets	into	separate	folders	is	probably	a	good	idea	as	your
projects	start	to	get	more	complex;	in	the	Project	view,	create	folders	for	Scripts
and	Textures	and	then	move	assets	into	the	appropriate	folders.	Simply	drag	files
to	their	new	folder.

	

Warning

Unity	has	several	keywords	that	it	responds	to	in	folder	names,	with	special
ways	of	handling	the	contents	of	these	special	folders.	Those	keywords	are
Resources,	Plugins,	Editor,	and	Gizmos.	Later	in	the	book	we’ll	go	over	what
some	of	these	special	folders	do,	but	for	now	avoid	naming	any	folders	with
those	words.

	

Now	the	images	are	imported	into	Unity	as	textures,	ready	to	use.	But	how	do
we	apply	the	textures	to	objects	in	the	scene?

	

4.3.3.	Applying	the	image

Technically,	textures	aren’t	applied	to	geometry	directly.	Instead,	textures	can	be
part	of	materials,	and	materials	are	applied	to	geometry.	As	explained	in	the
intro,	a	material	is	a	set	of	information	defining	the	properties	of	a	surface;	that
information	can	include	a	texture	to	display	on	that	surface.	This	indirection	is
significant	because	the	same	texture	can	be	used	with	multiple	materials.	That
said,	typically	each	texture	goes	with	a	different	material,	so	for	convenience
Unity	allows	you	to	drop	a	texture	onto	an	object	and	then	it	creates	a	new

material	automatically.	If	you	drag	a	texture	from	Project	view	onto	an	object	in
the	scene,	Unity	will	create	a	new	material	and	apply	the	new	material	to	the
object;	figure	4.7	illustrates	the	maneuver.	Try	that	now	with	the	texture	for	the
floor.

	

Figure	4.7.	One	way	to	apply	textures	is	by	dragging	them	from	Project	onto	Scene	objects.

Besides	that	convenience	method	of	automatically	creating	materials,	the
“proper”	way	to	create	a	material	is	through	the	Create	submenu	of	the	Assets
menu;	the	new	asset	will	appear	in	the	Project	view.	Now	select	the	material	to
show	its	properties	in	the	Inspector	(you’ll	see	something	like	figure	4.8)	and
drag	a	texture	to	the	main	texture	slot;	the	setting	is	called	Albedo	(that’s	a
technical	term	for	the	base	color)	and	the	texture	slot	is	the	square	to	the	side	of
the	panel.	Meanwhile,	drag	the	material	up	from	Project	onto	an	object	in	the
scene	to	apply	the	material	to	that	object.	Try	these	steps	now	with	the	texture
for	the	wall:	create	a	new	material,	drag	the	wall	texture	into	this	material,	and
drag	the	material	onto	a	wall	in	the	scene.

	

Figure	4.8.	Select	a	material	to	see	it	in	the	Inspector,	then	drag	textures	to	the	material	properties.

You	should	now	see	the	stone	and	brick	images	appearing	on	the	surface	of	the
floor	and	wall	objects,	but	the	images	look	rather	stretched-out	and	blurry.
What’s	happening	is	the	single	image	is	being	stretched	out	to	cover	the	entire
floor.	What	you	want	instead	is	for	the	image	to	repeat	a	few	times	over	the	floor
surface.	You	can	set	this	using	the	Tiling	property	of	the	material;	select	the
material	in	Project	and	then	change	the	Tiling	number	in	the	Inspector	(with
separate	X	and	Y	values	for	tiling	in	each	direction).	Make	sure	you’re	setting
the	tiling	of	the	main	map	and	not	the	secondary	map	(this	material	supports	a
secondary	texture	map	for	advanced	effects).	The	default	tiling	is	1	(that’s	no
tiling,	with	the	image	being	stretched	over	the	entire	surface);	change	the
number	to	something	like	8	and	see	what	happens	in	the	scene.	Change	the
numbers	in	both	materials	to	tiling	that	looks	good.

Great,	now	the	scene	has	textures	applied	to	the	floor	and	walls!	You	can	also
apply	textures	to	the	sky	of	the	scene;	let’s	look	at	that	process.

	

4.4.	Generating	sky	visuals	using	texture	images

The	brick	and	stone	textures	gave	a	much	more	natural	look	to	the	walls	and
floor.	Yet	the	sky	is	currently	blank	and	unnatural;	we	also	want	a	realistic	look

for	the	sky.	The	most	common	approach	to	this	task	is	a	special	kind	of	texturing
using	pictures	of	the	sky.

	

4.4.1.	What	is	a	skybox?

By	default,	the	camera’s	background	color	is	dark	blue.	Ordinarily	that	color	fills
in	any	empty	area	of	the	view	(for	example,	above	the	walls	of	this	scene),	but
it’s	possible	to	render	pictures	of	the	sky	as	background.	This	is	where	the
concept	of	a	skybox	comes	in.

	

Definition

A	skybox	is	a	cube	surrounding	the	camera	with	pictures	of	the	sky	on	each	side.
No	matter	what	direction	the	camera	is	facing,	it’s	looking	at	a	picture	of	the	sky.

	

Properly	implementing	a	skybox	can	be	tricky;	figure	4.9	shows	a	diagram	of
how	a	skybox	works.	There	are	a	number	of	rendering	tricks	needed	so	that	the
skybox	will	appear	as	a	distant	background.	Fortunately	Unity	already	takes	care
of	all	that	for	you.

	

Figure	4.9.	Diagram	of	a	skybox

New	scenes	actually	come	with	a	very	simple	skybox	already	assigned.	This	is
why	the	sky	has	a	gradient	from	light	to	dark	blue,	rather	than	being	a	flat	dark
blue.	If	you	open	the	lighting	window	(Window	>	Lighting)	the	first	setting	is
Skybox	and	the	slot	for	that	setting	says	Default.	This	setting	is	in	the
Environment	Lighting	panel;	this	window	has	a	number	of	settings	panels
related	to	the	advanced	lighting	system	in	Unity,	but	for	now	we	only	care	about
the	first	setting.

Just	like	the	brick	textures	earlier,	skybox	images	can	be	obtained	from	a	variety
of	websites.	Search	for	skybox	textures;	for	example,	I	obtained	several	great
skyboxes	from	www.93i.de,	including	the	TropicalSunnyDay	set.	Once	this
skybox	is	applied	to	the	scene,	you	will	see	something	like	figure	4.10.

	

Figure	4.10.	Scene	with	background	pictures	of	the	sky

http://www.93i.de

As	with	other	textures,	skybox	images	are	first	assigned	to	a	material,	and	that
gets	used	in	the	scene.	Let’s	examine	how	to	create	a	new	skybox	material.

	

4.4.2.	Creating	a	new	skybox	material

First,	create	a	new	material	(as	usual,	either	right-click	and	Create,	or	choose
Create	from	the	Assets	menu)	and	select	it	to	see	settings	in	the	Inspector.	Next
you	need	to	change	the	shader	used	by	this	material.	The	top	of	the	material
settings	has	a	Shader	menu	(see	figure	4.11).	In	section	4.3	we	pretty	much
ignored	this	menu	because	the	default	works	fine	for	most	standard	texturing,
but	a	skybox	requires	a	special	shader.

	

Figure	4.11.	The	drop-down	menu	of	available	shaders

	

Definition

A	shader	is	a	short	program	that	outlines	instructions	for	how	to	draw	a	surface,
including	whether	to	use	any	textures.	The	computer	uses	these	instructions	to
calculate	the	pixels	when	rendering	the	image.	The	most	common	shader	takes
the	color	of	the	material	and	darkens	it	according	to	the	light,	but	shaders	can
also	be	used	for	all	sorts	of	visual	effects.

	

Every	material	has	a	shader	that	controls	it	(you	could	kind	of	think	of	a	material
as	an	instance	of	a	shader).	New	materials	are	set	to	the	Standard	shader	by
default.	This	shader	displays	the	color	of	the	material	(including	the	texture)
while	applying	basic	dark	and	light	across	the	surface.

For	skyboxes	there’s	a	different	shader.	Click	the	menu	in	order	to	see	the	drop-
down	list	(see	figure	4.11)	of	all	the	available	shaders.	Move	down	to	the
Skybox	section	and	choose	6	Sided	in	the	submenu.

With	this	shader	active,	the	material	now	has	six	large	texture	slots	(instead	of

just	the	small	Albedo	texture	slot	that	the	standard	shader	had).	These	six	texture
slots	correspond	to	the	six	sides	of	a	cube,	so	these	images	should	match	up	at
the	edges	in	order	to	appear	seamless.	For	example,	figure	4.12	shows	the
images	for	the	sunny	skybox.

	

Figure	4.12.	Six	sides	of	a	skybox—images	for	top,	bottom,	front,	back,	left,	and	right

Import	the	skybox	images	into	Unity	the	same	way	you	brought	in	the	brick
textures:	drag	the	files	into	the	Project	view	or	right-click	in	Project	and	select
Import	New	Asset.	There’s	one	subtle	import	setting	to	change;	click	the
imported	texture	to	see	its	properties	in	the	Inspector,	and	change	the	Wrap
Mode	setting	(shown	in	figure	4.13)	from	Repeat	to	Clamp	(don’t	forget	to	click
Apply	when	you’re	done).	Ordinarily	textures	can	be	tiled	repeatedly	over	a
surface;	for	this	to	appear	seamless,	opposite	edges	of	the	image	bleed	together.
But	this	blending	of	edges	can	create	faint	lines	in	the	sky	where	images	meet,	so
the	Clamp	setting	(similar	to	the	Clamp()	function	in	chapter	2)	will	limit	the
boundaries	of	the	texture	and	get	rid	of	this	blending.

	

Figure	4.13.	Correct	faint	edge	lines	by	adjusting	the	Wrap	mode.

Now	you	can	drag	these	images	to	the	texture	slots	of	the	skybox	material.	The
names	of	the	images	correspond	to	the	texture	slot	to	assign	them	to	(such	as	left
or	front).	Once	all	six	textures	are	linked	up,	you	can	use	this	new	material	as	the
skybox	for	the	scene.	Open	the	lighting	window	again	and	set	this	new	material
to	the	Skybox	slot;	either	drag	the	material	to	that	slot,	or	click	the	tiny	circle
icon	to	bring	up	a	file	picker.

	

Tip

By	default,	Unity	will	display	the	skybox	(or	at	least	its	main	color)	in	the
editor’s	Scene	view.	You	may	find	this	color	distracting	while	editing	objects,	so
you	can	toggle	the	skybox	on	or	off.	Across	the	top	of	the	Scene	view’s	pane	are
buttons	that	control	what’s	visible;	look	for	the	Effects	button	to	toggle	the
skybox	on	or	off.

	

Woohoo,	you’ve	learned	how	to	create	sky	visuals	for	your	scene!	A	skybox	is
an	elegant	way	to	create	the	illusion	of	a	vast	atmosphere	surrounding	the	player.
The	next	step	in	polishing	the	visuals	in	your	level	is	to	create	more	complex	3D
models.

	

4.5.	Working	with	custom	3D	models

In	the	previous	sections	we	looked	at	applying	textures	to	the	large	flat	walls	and
floors	of	the	level.	But	what	about	more	detailed	objects?	What	if	we	want,	say,
interesting	furniture	in	the	room?	We	can	accomplish	that	by	building	3D	models
in	external	3D	art	apps.	Recall	the	definition	from	the	introduction	to	this

chapter:	3D	models	are	the	mesh	objects	in	the	game	(that	is,	the	three-
dimensional	shapes).	Well,	we’re	going	to	import	a	3D	mesh	of	a	simple	bench.

Applications	widely	used	for	modeling	3D	objects	include	Autodesk’s	Maya	and
3ds	Max.	Those	are	both	expensive	commercial	tools,	so	the	sample	for	this
chapter	uses	the	open	source	app	Blender.	The	sample	download	includes	a
.blend	file	that	you	can	use;	figure	4.14	depicts	the	bench	model	in	Blender.	If
you’re	interested	in	learning	how	to	model	your	own	objects,	you’ll	find	an
exercise	in	appendix	C	about	modeling	this	bench	in	Blender.

	

Figure	4.14.	The	bench	model	in	Blender

Besides	custom-made	models	created	by	yourself	or	an	artist	you’re	working
with,	many	3D	models	are	available	for	download	from	game	art	websites.	One
great	resource	for	3D	models	is	Unity’s	Asset	Store	here:
https://www.assetstore.unity3d.com

	

4.5.1.	Which	file	format	to	choose?

Now	that	you’ve	made	the	model	in	Blender,	you	need	to	export	the	asset	out

https://www.assetstore.unity3d.com

from	that	software.	Just	as	with	2D	images,	a	number	of	different	file	formats	are
available	for	you	to	use	when	exporting	out	the	3D	model,	and	these	file	types
have	various	pros	and	cons.	Table	4.3	lists	the	3D	file	formats	that	Unity
supports.

	

Table	4.3.	3D	Model	file	formats	supported	by	Unity

File	type Pros	and	cons

FBX Mesh	and	Animation;	recommended	option	when	available.
Collada	(DAE) Mesh	and	Animation;	another	good	option	when	FBX	isn’t	available.
OBJ Mesh	only;	this	is	a	text	format,	so	sometimes	useful	for	streaming	over	the	internet.
3DS Mesh	only;	a	pretty	old	and	primitive	model	format.
DXF Mesh	only;	a	pretty	old	and	primitive	model	format.
Maya Works	via	FBX;	requires	this	application	to	be	installed.
3ds	Max Works	via	FBX;	requires	this	application	to	be	installed.
Blender Works	via	FBX;	requires	this	application	to	be	installed.

Choosing	between	these	options	boils	down	to	whether	or	not	the	file	supports
animation.	Because	Collada	and	FBX	are	the	only	two	options	that	include
animation	data,	those	are	the	two	options	to	choose.	Whenever	it’s	available	(not
all	3D	tools	have	it	as	an	export	option),	FBX	export	tends	to	work	best,	but	if
you’re	using	a	tool	without	FBX	export,	then	Collada	works	well,	too.	In	our
case,	Blender	supports	FBX	export	so	we’ll	use	that	file	format.

Note	that	the	bottom	of	table	4.3	lists	several	3D	art	applications.	Unity	allows
you	to	directly	drop	those	application’s	files	into	your	project,	which	seems
handy	at	first,	but	that	functionality	has	several	caveats.	For	starters,	Unity
doesn’t	load	those	application	files	directly;	instead,	it	exports	the	model	behind
the	scenes	and	loads	that	exported	file.	Because	the	model	is	being	exported	to
FBX	or	Collada	anyway,	it’s	preferable	to	do	that	step	explicitly.	Furthermore,
this	export	requires	that	you	have	the	relevant	application	installed.	This
requirement	is	a	big	hassle	if	you	plan	to	share	files	among	multiple	computers
(for	example,	a	team	of	developers	working	together).	I	don’t	recommend	using
Blender	(or	Maya	or	whatever)	files	directly	in	Unity.

	

4.5.2.	Exporting	and	importing	the	model

All	right,	it’s	time	to	export	the	model	from	Blender	and	then	import	it	into
Unity.	First	open	the	bench	in	Blender	and	then	choose	File	>	Export	>	FBX.
Once	the	file	is	saved,	import	it	into	Unity	the	same	way	that	you	import	images.
Drag	the	FBX

file	from	the	computer	into	Unity’s	Project	view	or	right-click	in	Project	and
choose	Import	New	Asset.	The	3D	model	will	be	copied	into	the	Unity	project
and	show	up	ready	to	be	put	in	the	scene.

	

Note

The	sample	download	includes	the	.blend	file	so	that	you	can	practice	exporting
the	FBX	file	from	Blender;	even	if	you	don’t	end	up	modeling	anything	yourself,
you	may	need	to	convert	downloaded	models	into	a	format	Unity	accepts.	If	you
want	to	skip	all	steps	involving	Blender,	use	the	provided	FBX	file.

	

There	are	a	few	default	settings	used	to	import	the	model	that	you	want	to
change	immediately.	First,	Unity	defaults	imported	models	to	a	very	small	scale
(refer	to	figure	4.15,	which	shows	what	you	see	in	the	Inspector	when	you	select
the	model);	change	the	Scale	Factor	to	100	to	partially	counteract	the	.01	File
Scale.	You	may	also	want	to	click	the	Generate	Colliders	check	box,	but	that’s
optional;	without	a	collider	you	can	walk	through	the	bench.	Then	switch	to	the
Animation	tab	in	the	import	settings	and	deselect	Import	Animation	(you	didn’t
animate	this	model).

	

Figure	4.15.	Adjust	import	settings	for	the	3D	model.

That	takes	care	of	the	imported	mesh.	Now	for	the	texture;	when	Unity	imported
the	FBX	file,	it	also	created	a	material	for	the	bench.	This	material	defaults	to
blank	(just	like	any	new	material),	so	assign	the	bench	texture	(the	image	in
figure	4.16)	in	the	same	way	that	you	assigned	bricks	to	the	walls	earlier:	drag
the	texture	image	into	Project	to	import	it	into	Unity,	and	then	drag	the	imported
texture	onto	the	texture	slot	of	the	bench	material.	The	image	looks	somewhat
odd,	with	different	parts	of	the	image	appearing	on	different	parts	of	the	bench;
the	model’s	texture	coordinates	were	edited	to	define	this	mapping	of	image-to-
mesh.

	

Figure	4.16.	The	2D	image	for	the	bench	texture

	

Definition

Texture	coordinates	are	an	extra	set	of	values	for	each	vertex	that	assigns
polygons	to	areas	of	the	texture	image.	Think	about	it	like	wrapping	paper;	the
3D	model	is	the	box	being	wrapped,	the	texture	is	the	wrapping	paper,	and	the
texture	coordinates	represent	where	on	the	wrapping	paper	each	side	of	the	box
will	go.

	

Note

Even	if	you	don’t	want	to	model	the	bench,	you	may	want	to	read	the	detailed
explanation	of	texture	coordinates	in	appendix	C.	The	concept	of	texture
coordinates	(as	well	as	other	related	terms	like	UVs	and	mapping)	can	be	useful
to	know	when	programming	games.

	

New	materials	are	often	too	shiny,	so	you	may	want	to	reduce	the	Smoothness
setting	(smoother	surfaces	are	more	shiny)	to	0.	Finally,	having	adjusted
everything	as	needed,	you	can	put	the	bench	in	the	scene.	Drag	the	model	up
from	the	Project	view	and	place	it	in	one	room	of	the	level;	as	you	drag	the
mouse,	you	should	see	it	in	the	scene.	Once	you	drop	it	in	place,	you	should	see
something	like	figure	4.17.	Congratulations;	you	created	a	textured	model	for	the
level!

	

Figure	4.17.	The	imported	bench	in	the	level

	

Note

We’re	not	going	to	do	it	in	this	chapter,	but	typically	you’d	also	replace	the
whitebox	geometry	with	models	created	in	an	external	tool.	The	new	geometry
might	look	essentially	identical,	but	you’ll	have	much	more	flexibility	to	set
UVs	for	the	texture.

	

Animating	characters	with	Mecanim

The	model	we	created	is	static,	sitting	still	where	placed.	You	can	also	animate	in
Blender	and	then	play	the	animation	in	Unity.	The	process	of	creating	3D
animation	is	long	and	involved,	but	this	isn’t	a	book	about	animation	so	we’re
not	going	to	discuss	that	here.	As	had	already	been	mentioned	for	modeling,
there	are	a	lot	of	existing	resources	if	you	want	to	learn	more	about	3D
animation.	But	be	warned:	it	is	a	huge	topic.	There’s	a	reason	“animator”	is	a
specialized	role	within	game	development.

Unity	has	a	sophisticated	system	for	managing	animations	on	models,	a	system
called	Mecanim.	The	special	name	Mecanim	identifies	the	newer,	more
advanced	animation	system	that	was	recently	added	to	Unity	as	a	replacement
for	the	older	animation	system.

The	older	system	is	still	around,	identified	as	legacy	animation.	But	the	legacy
animation	system	may	be	phased	out	in	a	future	version	of	Unity,	at	which	point
Mecanim	will	be	the	animation	system.

Although	we	don’t	work	with	any	animations	in	this	chapter,	we’ll	play
animations	on	a	character	model	in	chapter	7.

	

4.6.	Creating	effects	using	particle	systems

Besides	2D	images	and	3D	models,	the	remaining	type	of	visual	content	that
game	artists	create	are	particle	systems.	The	definition	in	this	chapter’s
introduction	explained	that	particle	systems	are	orderly	mechanisms	for	creating
and	controlling	large	numbers	of	moving	objects.	Particle	systems	are	useful	for
creating	visual	effects,	such	as	fire,	smoke,	or	spraying	water.

For	example,	the	fire	effect	in	figure	4.18	was	created	using	a	particle	system.

	

Figure	4.18.	Fire	effect	created	using	a	particle	system

Whereas	most	other	art	assets	are	created	in	external	tools	and	imported	into	the
project,	particle	systems	are	created	within	Unity	itself.	Unity	provides	some
flexible	and	powerful	tools	for	creating	particle	effects.

	

Note

Much	like	the	situation	with	the	Mecanim	animation	system,	there	used	to	be	an
older	legacy	particle	system	and	the	newer	system	had	a	special	name,	Shuriken.
At	this	point	the	legacy	particle	system	is	entirely	phased	out,	so	the	separate
name	is	no	longer	necessary.

	

To	begin,	create	a	new	particle	system	and	watch	the	default	effect	play.	From
the	GameObject	menu,	choose	Particle	System,	and	you’ll	see	basic	white
puffballs	spraying	upward	from	the	new	object.	Or	rather,	you’ll	see	particles
spraying	upward	while	you	have	the	object	selected;	when	you	select	a	particle
system,	the	particle	playback	panel	is	displayed	in	the	corner	of	the	screen	and
indicates	how	much	time	has	elapsed	(see	figure	4.19).

	

Figure	4.19.	Playback	panel	for	a	particle	system

The	default	effect	looks	pretty	neat	already,	but	let’s	go	through	the	extensive	list
of	parameters	you	can	use	to	customize	the	effect.

	

4.6.1.	Adjusting	parameters	on	the	default	effect

Figure	4.20	shows	the	entire	list	of	settings	for	a	particle	system.	We’re	not
going	to	go	through	every	single	setting	in	that	list;	instead,	we’ll	look	at	the
settings	relevant	to	making	the	fire	effect.	Once	you	understand	how	a	few	of	the
settings	work,	the	rest	should	be	fairly	self-explanatory.	Each	of	the	settings
labels	is	in	fact	a	whole	information	panel.	Initially	only	the	first	information
panel	is	expanded;	the	rest	of	the	panels	are	collapsed.	Click	on	the	setting	label
to	expand	that	information	panel.

	

Figure	4.20.	The	Inspector	displays	settings	for	a	particle	system	(pointing	out	settings	for	the	fire
effect).

	

Tip

Many	of	the	settings	are	controlled	by	a	curve	displayed	at	the	bottom	of	the
Inspector.	That	curve	represents	how	the	value	changes	over	time:	the	left	side	of
the	graph	is	when	the	particle	first	appears,	the	right	side	is	when	the	particle	is
gone,	the	bottom	is	a	value	of	0,	and	the	top	is	the	maximum	value.	Drag	points

around	the	graph,	and	double-click	or	right-click	on	the	curve	to	insert	new
points.

	

Adjust	parameters	of	the	particle	system	as	indicated	in	figure	4.20	and	it’ll	look
more	like	a	jet	of	flame.

	

4.6.2.	Applying	a	new	texture	for	fire

Now	the	particle	system	looks	more	like	a	jet	of	flame,	but	the	effect	still	needs
the	particles	to	look	like	flame,	not	white	blobs.	That	requires	importing	a	new
image	into	Unity.	Figure	4.21	depicts	the	image	I	painted;	I	made	an	orange	dot
and	used	the	Smudge	tool	to	draw	out	the	tendrils	of	flame	(and	then	I	drew	the
same	thing	in	yellow).	Whether	you	use	this	image	from	the	sample	project,
draw	your	own,	or	download	a	similar	one,	you	need	to	import	the	image	file
into	Unity.	As	explained	before,	drag	image	files	into	the	Project	view,	or	choose
Assets	>	Import	New	Asset.

	

Figure	4.21.	The	image	used	for	fire	particles

Just	like	with	3D	models,	textures	aren’t	applied	to	particle	systems	directly;	you

add	the	texture	to	a	material	and	apply	that	material	to	the	particle	system.	Create
a	new	material	and	then	select	it	to	see	its	properties	in	the	Inspector.	Drag	the
fire	image	from	Project	up	to	the	texture	slot.	That	linked	the	fire	texture	to	the
fire	material,	so	now	you	want	to	apply	the	material	to	the	particle	system.
Figure	4.22	shows	how	to	do	this;	select	the	particle	system,	expand	Renderer	at
the	bottom	of	the	settings,	and	drag	the	material	onto	the	Material	slot.

	

Figure	4.22.	Assign	a	material	to	the	particle	system

As	you	did	for	the	skybox	material,	you	need	to	change	the	shader	for	a	particle
material.	Click	the	Shader	menu	near	the	top	of	the	material	settings	to	see	the
list	of	available	shaders.	Instead	of	the	standard	default,	a	material	for	particles
needs	one	of	the	shaders	under	the	Particles	submenu.	As	shown	in	figure	4.23,
in	this	case	we	want	Additive	(Soft).	This	will	make	the	particles	appear	to	be
hazy	and	brighten	the	scene,	just	like	a	fire.

	

Figure	4.23.	Setting	the	shader	for	the	fire	particle	material

	

Definition

Additive	is	a	shader	that	adds	the	color	of	the	particle	to	the	color	behind	it,	as
opposed	to	replacing	the	pixels.	This	makes	the	pixels	brighter	and	makes	black
on	the	particle	turn	invisible.	The	opposite	is	Multiply,	which	makes	everything
darker;	these	shaders	have	the	same	visual	effect	as	the	Additive	and	Multiply
layer	effects	in	Photoshop.

	

With	the	fire	material	assigned	to	the	fire	particle	effect,	it’ll	now	look	like	the
effect	shown	earlier	in	figure	4.18.	This	looks	like	a	pretty	convincing	jet	of
flame,	but	the	effect	doesn’t	only	work	when	sitting	still;	next	let’s	attach	it	to	an
object	that	moves	around.

	

4.6.3.	Attaching	particle	effects	to	3D	objects

Create	a	sphere	(remember,	GameObject	>	3D	Object	>	Sphere).	Create	a	new
script	called	BackAndForth,	as	shown	in	the	following	listing,	and	attach	it	to
the	new	sphere.

	

Listing	4.1.	Moving	an	object	back	and	forth	along	a	straight	path

Run	this	script	and	the	sphere	glides	back	and	forth	in	the	central	corridor	of	the
level.	Now	you	can	make	the	particle	system	a	child	of	the	sphere	and	the	fire
will	move	with	the	sphere.	Just	like	with	the	walls	of	the	level,	in	the	Hierarchy
view	drag	the	particle	object	onto	the	sphere	object.

	

Warning

You	usually	have	to	reset	the	position	of	an	object	after	making	it	the	child	of
another	object.	For	example,	we	want	the	particle	system	at	0,	0,	0	(this	is
relative	to	the	parent).	Unity	will	preserve	the	placement	of	an	object	from
before	it	was	linked	as	a	child.

	

Now	the	particle	system	moves	along	with	the	sphere;	the	fire	isn’t	deflecting
from	the	movement,	though,	which	looks	unnatural.

That’s	because	by	default	particles	move	correctly	only	in	the	local	space	of	the
particle	system.	To	complete	the	flaming	sphere,	find	Simulation	Space	in	the
particle	system	settings	(it’s	in	the	top	panel	of	figure	4.20)	and	switch	from
Local	to	World.

	

Note

In	this	script	the	object	moves	back	and	forth	in	a	straight	line,	but	video	games
commonly	have	objects	moving	around	complex	paths.	Unity	comes	with
support	for	complex	navigation	and	paths;	see
https://docs.unity3d.com/Manual/Navigation.html	to	read	about	it.

	

I’m	sure	that	at	this	point	you’re	itching	to	apply	your	own	ideas	and	add	more
content	to	this	sample	game.	You	should	do	that—you	could	create	more	art
assets,	or	even	test	your	skills	by	bringing	in	shooting	mechanics	developed	in
chapter	3.	In	the	next	chapter	we’ll	switch	gears	to	a	different	game	genre	and
start	over	with	a	new	game.	Even	though	future	chapters	will	switch	to	different
game	genres,	everything	from	these	first	four	chapters	will	still	apply	and	will	be
useful.

	

https://docs.unity3d.com/Manual/Navigation.html

4.7.	Summary

In	this	chapter	you’ve	learned	that

	

Art	asset	is	the	term	for	all	individual	graphics.

	

Whiteboxing	is	a	useful	first	step	for	level	designers	to	block	out	spaces.

	

Textures	are	2D	images	displayed	on	the	surface	of	3D	models.

	

3D	models	are	created	outside	Unity	and	imported	as	FBX	files.

	

Particle	systems	are	used	to	create	many	visual	effects	(fire,	smoke,	water,
and	so	on).

	

Part	2.	Getting	comfortable

You’ve	built	your	first	game	prototypes	in	Unity,	so	now	you’re	ready	to	stretch
yourself	by	tackling	some	other	game	genres.	At	this	point	the	rhythms	of
working	within	Unity	should	feel	familiar:	create	a	script	with	such	and	such
function,	drag	this	object	to	that	slot	in	the	Inspector,	and	so	forth.	You’re	not
tripping	over	details	of	the	interface	so	much	anymore,	which	means	the
remaining	chapters	don’t	need	to	rehash	the	basics.

Let’s	run	through	a	succession	of	additional	projects	that	will	progressively	teach
you	more	and	more	about	developing	games	in	Unity.

Chapter	5.	Building	a	Memory	game	using	Unity’s
new	2D	functionality

This	chapter	covers

	

Displaying	2D	graphics	in	Unity
Making	objects	clickable
Loading	new	images	programmatically
Maintaining	and	displaying	state	using	UI	text
Loading	levels	and	restarting	the	game

Up	to	now	we’ve	been	working	with	3D	graphics.	But	you	can	also	work	with
2D	graphics	in	Unity,	so	in	this	chapter	you’ll	build	a	2D	game	to	learn	about
that.	We’re	going	to	develop	the	classic	children’s	game	Memory:	we’ll	display	a
grid	of	card	backs,	reveal	the	card	front	when	it’s	clicked,	and	score	matches.
These	mechanics	cover	the	basics	you	need	to	know	in	order	to	develop	2D
games	in	Unity.

Although	Unity	originated	as	a	tool	for	3D	games,	it’s	used	often	for	2D	games
as	well.	Recent	versions	of	Unity	(starting	with	version	4.3,	released	near	the	end
of	2013)	have	added	the	ability	to	display	2D	graphics,	but	even	before	then	2D
games	were	already	being	developed	in	Unity	(especially	mobile	games	that
took	advantage	of	Unity’s	cross-platform	nature).	In	prior	versions	of	Unity,
game	developers	required	a	third-party	framework	(such	as	2D	Toolkit	from
Unikron	Software)	to	emulate	2D	graphics	within	Unity’s	3D	scenes.	Eventually
the	core	editor	and	game	engine	were	modified	to	incorporate	2D	graphics,	and
this	chapter	will	teach	you	about	that	newer	functionality.

The	2D	workflow	in	Unity	is	more	or	less	the	same	as	the	workflow	to	develop	a
3D	game:	import	art	assets,	drag	them	into	a	scene,	and	write	scripts	to	attach	to
the	objects.	The	primary	kind	of	art	asset	in	2D	graphics	is	called	a	sprite.

Definition

Sprites	are	2D	images	displayed	directly	on	the	screen,	as	opposed	to	images

displayed	on	the	surface	of	3D	models	(that	is,	textures).

You	can	import	2D	images	into	Unity	as	sprites	in	much	the	same	way	you	can
import	images	as	textures	(see	chapter	4).	Technically	these	sprites	will	be
objects	in	3D	space,	but	they’ll	be	flat	surfaces	all	oriented	along	the	Z-axis.
Because	they’ll	all	face	the	same	direction,	you	can	point	the	camera	straight	at
the	sprites	and	players	will	only	be	able	to	discern	their	movements	along	the	X-
and	Y-axes	(that	is,	two	dimensions).

In	chapter	2	we	discussed	the	coordinate	axes:	having	three	dimensions	adds	a
Z-axis	perpendicular	to	the	X-and	Y-axes	you	were	already	familiar	with.	Two
dimensions	are	just	those	X-and	Y-axes	(that’s	what	your	teacher	was	talking
about	in	math	class!).

5.1.	Setting	everything	up	for	2D	graphics

We’re	going	to	create	the	classic	game	of	Memory.	For	those	unfamiliar	with	this
game,	a	series	of	cards	will	be	dealt	out	facedown.	Every	card	will	have	a
matching	card	located	somewhere	else,	but	the	player	can’t	tell	what	the	various
cards	are.	The	player	can	turn	over	two	cards	at	a	time,	attempting	to	find
matching	cards;	if	the	two	cards	chosen	aren’t	a	match,	they’ll	flip	back	and	then
the	player	can	guess	again.

Figure	5.1	shows	a	mockup	of	the	game	we’re	going	to	build;	compare	this	to
the	roadmap	diagram	from	chapter	2.

Figure	5.1.	Mockup	of	what	the	Memory	game	will	look	like

Note	that	the	mockup	this	time	depicts	exactly	what	the	player	will	see	(whereas
the	mockup	for	a	3D	scene	depicted	the	space	around	the	player	and	then	where
the	camera	went	for	the	player	to	see	through).	Now	that	you	know	what	we’ll
be	building,	it’s	time	to	get	to	work!

5.1.1.	Preparing	the	project

The	first	step	is	to	gather	up	and	display	graphics	for	our	game.	In	much	the
same	way	as	building	the	3D	demo	previously,	you	want	to	start	the	new	game
by	putting	together	the	minimum	set	of	graphics	for	the	game	to	operate,	and
after	that’s	in	place	you	can	start	programming	the	functionality.

That	means	we’ll	need	to	create	everything	depicted	in	figure	5.1:	card	backs	for
hidden	cards,	a	series	of	card	fronts	for	when	they	turn	over,	a	score	display	in
one	corner,	and	a	reset	button	in	the	opposite	corner.	We	also	need	a	background
for	the	screen,	so	all	together	our	art	requirements	sum	up	to	figure	5.2.

Figure	5.2.	Art	assets	required	for	the	Memory	game

Tip

As	always,	a	finished	version	of	the	project,	including	all	necessary	art	assets,
can	be	downloaded	from	www.manning.com/hocking,	this	book’s	website.	You
can	copy	the	images	from	there	to	use	in	your	own	project.

Gather	together	the	needed	images,	and	then	create	a	new	project	in	Unity.	In	the
New	Project	window	that	comes	up	you’ll	notice	a	couple	of	buttons	at	the
bottom	(shown	in	figure	5.3)	that	let	you	switch	between	2D	and	3D	mode.	In
previous	chapters	we’ve	worked	with	3D	graphics,	and	because	that’s	the	default
value	we	haven’t	been	concerned	with	this	setting.	In	this	chapter,	though,	you’ll
want	to	switch	to	2D	mode	when	creating	a	new	project.

Figure	5.3.	Create	new	projects	in	either	2D	or	3D	mode	with	these	buttons.

2D	Editor	mode	and	2D	Scene	view

The	2D/3D	setting	for	new	projects	adjusts	two	different	settings	within	Unity’s
editor,	both	of	which	you	can	adjust	manually	later	if	you	wish.	Those	two
settings	are	the	2D	Editor	mode	and	the	2D	Scene	view.	The	2D	Scene	view

http://www.manning.com/hocking

controls	how	the	scene	is	displayed	within	Unity;	toggle	the	2D	button	along	the
top	of	the	Scene	view.

You	set	2D	Editor	mode	by	opening	the	Edit	menu	and	selecting	Editor	from	the
Project	Settings	drop-down	menu.	Within	those	settings	you’ll	see	the	Default
Behavior	Mode	setting	with	selections	for	either	3D	or	2D.

Setting	the	editor	to	2D	mode	causes	imported	images	to	be	set	to	Sprite;	as	you
saw	in	chapter	4,	normally	images	import	as	textures.	2D	Editor	mode	also
causes	new	scenes	to	lack	the	default	3D	lighting	setup;	this	lighting	doesn’t
harm	2D	scenes,	but	it’s	unnecessary.	If	you	ever	need	to	remove	it	manually,
delete	the	directional	light	that	comes	with	new	scenes	and	turn	off	the	skybox	in
the	lighting	window	(click	the	tiny	circle	icon	for	a	file	picker	and	choose	None
from	the	list).

With	the	new	project	for	this	chapter	created	and	set	for	2D,	we	can	start	putting
our	images	into	the	scene.

5.1.2.	Displaying	2D	images	(aka	sprites)

Drag	all	the	image	files	into	the	Project	view	to	import	them;	make	sure	the
images	are	imported	as	sprites	and	not	textures.	(This	is	automatic	if	the	editor	is
set	to	2D.	Select	an	asset	to	see	its	import	settings	in	the	Inspector.)	Now	drag
the	table_top	sprite	(our	background	image)	up	from	the	Project	view	into
the	empty	scene,	and	then	save	the	scene.	As	with	mesh	objects,	in	the	Inspector
there’s	a	Transform	component	for	the	sprite;	type	0,	0,	5	to	position	the
background	image.

Tip

Another	import	setting	to	take	note	of	is	Pixels-To-Units.	Because	Unity	was
previously	a	3D	engine	that	recently	had	2D	graphics	grafted	in,	one	unit	in
Unity	isn’t	necessarily	one	pixel	in	the	image.	You	could	set	the	Pixels-To-Units
setting	to	1:1	but	I	recommend	leaving	it	at	the	default	of	100:1	(because	the
physics	engine	doesn’t	work	properly	at	1:1,	and	the	default	is	better	for
compatibility	with	others’	code).

Animated	sprites

Although	we’re	going	to	use	only	still	images	for	this	project,	2D	games
commonly	have	animated	sprites.	Animated	sprites	are	created	by	drawing	each
of	the	frames	of	the	animation	and	then	displaying	the	frames	in	sequence	within
Unity.

The	multiple	frames	can	be	imported	as	separate	images,	but	games	usually	have
all	the	frames	of	animation	laid	out	on	a	single	image,	called	a	sprite	sheet.
Sprite	sheets	can	be	generated	automatically	by	Unity,	or	they	can	be	created
using	a	tool	like	Texture	Packer	(see	appendix	B).	When	importing	a	sprite	sheet,
set	Sprite	Mode	to	Multiple	in	the	Sprite	settings.

The	sprite	sheet	will	still	appear	in	the	Project	view	as	a	single	asset,	but	if	you
click	the	arrow	on	the	asset	it’ll	expand	out	and	show	all	the	individual	sprites.
Instead	of	dragging	sprites	into	the	scene	one	at	a	time,	you	can	select	a	bunch	to
drag	in	together.

The	0	for	X	and	Y	position	are	straightforward	(this	sprite	will	fill	the	entire
screen,	so	you	want	it	at	the	center),	but	that	5	for	Z	position	might	seem	odd.
For	2D	graphics,	shouldn’t	only	X	and	Y	matter?	Well,	X	and	Y	are	the	only
coordinates	that	matter	for	positioning	the	object	on	the	2D	screen;	Z	coordinates
still	matter	for	stacking	objects	on	top	of	each	other,	though.	Lower	Z	values	are
closer	to	the	camera,	so	sprites	with	lower	Z	values	are	displayed	on	top	of	other
sprites	(refer	to	figure	5.4).	Accordingly,	the	background	sprite	should	have	the
highest	Z	value.	We’ll	set	our	background	to	a	positive	Z	position,	and	then	give
everything	else	a	0	or	negative	Z	position.

Figure	5.4.	How	sprites	stack	along	the	Z-axis

Other	sprites	will	be	positioned	with	values	up	to	two	decimal	places	because	of
the	Pixels-To-Units	setting	mentioned	earlier.	A	ratio	of	100:1	means	that	100
pixels	in	the	image	are	1	unit	in	Unity;	put	another	way,	1	pixel	is	.01	units.	But
before	we	put	any	more	sprites	into	the	scene,	let’s	set	up	the	camera	for	this
game.

Creating	atlases	using	Sprite	Packer

As	mentioned	in	the	sidebar	“Animated	Sprites,”	you	can	have	multiple	sprites
laid	out	in	a	single	image.	The	image	is	usually	called	a	sprite	sheet	when
multiple	frames	of	a	single	2D	animation	are	combined	into	one,	but	the	more
general	term	for	multiple	images	combined	into	one	is	an	atlas.

Sprite	sheets	are	useful	in	order	to	keep	frames	of	animation	together,	but	sprite
atlases	are	also	often	used	for	still	images.	That’s	because	atlases	can	optimize
the	performance	of	sprites	in	two	ways:	1)	by	reducing	the	amount	of	wasted
space	in	images	by	packing	them	tightly,	and	2)	by	reducing	the	draw	calls	of	the
video	card	(every	new	image	that’s	loaded	causes	a	bit	more	work	for	the	video
card).

Sprite	atlases	can	be	created	using	external	tools	(switch	to	Multiple	in	the	Sprite
settings)	and	that	approach	certainly	will	work.	But	Unity	includes	a	Sprite
Packer	that	will	pack	together	multiple	sprites	automatically.	To	use	this	feature,

enable	Sprite	Packer	in	Editor	settings	(found	under	Edit	>	Project	Settings).
Now	write	a	name	in	Packing	Tag	option	when	looking	at	the	Import	settings	of
a	sprite	image;	Unity	will	pack	together	sprites	with	the	same	packing	tag	into
one	atlas.	For	more	information,	look	at	Unity’s	documentation:

http://docs.unity3d.com/Manual/SpritePacker.html

5.1.3.	Switching	the	camera	to	2D	mode

Now	let’s	adjust	settings	on	the	main	camera	in	the	scene.	You	might	think	that
because	the	Scene	view	is	set	to	2D,	what	you	see	in	Unity	is	what	you’ll	see	in
the	game.	Somewhat	non-intuitively,	though,	that	isn’t	the	case.

Warning

Whether	or	not	the	Scene	view	is	set	to	2D	has	nothing	to	do	with	the	camera
view	in	the	running	game.

It	turns	out	that	regardless	of	whether	the	Scene	view	is	set	to	2D	mode,	the
camera	in	the	game	is	set	independently.	This	can	be	handy	in	many	situations	so
that	you	can	toggle	the	Scene	view	back	to	3D	in	order	to	work	on	certain	effects
within	the	scene.	This	disconnect	does	mean	that	what	you	see	in	Unity	isn’t
necessarily	what	you	see	in	the	game,	and	it	can	be	easy	for	beginners	to	forget
this.

The	most	important	camera	setting	to	adjust	is	Projection.	The	camera	projection
is	probably	already	correct	because	you	created	the	new	project	in	2D	mode,	but
this	is	still	important	to	know	about	and	worth	double-checking.	Select	the
camera	in	Hierarchy	to	show	its	settings	in	the	Inspector,	and	then	look	for	the
Projection	setting	(see	figure	5.5).	For	3D	graphics	the	setting	should	be
Perspective,	but	for	2D	graphics	the	camera	projection	should	be	Orthographic.

Figure	5.5.	Camera	settings	to	adjust	for	2D	graphics

http://docs.unity3d.com/Manual/SpritePacker.html

Definition

Orthographic	is	the	term	for	a	flat	camera	view	that	has	no	perspective	apparent.
This	is	the	opposite	of	a	Perspective	camera,	where	closer	objects	appear	larger
and	lines	recede	into	the	distance.

Although	the	Projection	mode	is	the	most	important	camera	setting	for	2D
graphics,	there	are	a	few	other	settings	for	us	to	adjust	as	well.	Next	we’ll	look	at
Size;	that	setting	is	under	Projection.	The	camera’s	orthographic	size	determines
the	size	of	the	camera	view	from	the	center	of	the	screen	up	to	the	top	of	the
screen.	In	other	words,	set	Size	to	half	the	pixel	dimensions	of	the	screen	you
want.	If	you	later	set	the	resolution	of	the	deployed	game	to	the	same	pixel
dimensions,	you’ll	get	pixel-perfect	graphics.

Definition

Pixel-perfect	means	one	pixel	on	the	screen	corresponds	to	one	pixel	in	the
image	(otherwise,	the	video	card	will	make	the	images	subtly	blurry	while
scaling	up	to	fit	the	screen).

For	example,	let’s	say	you	want	a	pixel-perfect	1024x768	screen.	That	means	the
camera	height	should	be	384	pixels.	Divide	that	by	100	(because	of	the	pixels-to-

units	scale)	and	you	get	3.84	for	the	camera	size.	Again,	that	math	is
SCREEN_SIZE	2	100f	(f	as	in	float,	rather	than	an	int	value).	Given
that	the	background	image	is	1024x768	(select	the	asset	to	check	its
dimensions),	then	clearly	this	value	of	3.84	is	what	we	want	for	our	camera.

The	two	remaining	adjustments	to	make	in	the	Inspector	are	the	camera’s
background	color	and	Z	position.	As	mentioned	previously	for	sprites,	higher	Z
positions	are	further	away	into	the	scene.	Thus	the	camera	should	have	a	pretty
low	Z	position;	set	the	position	of	the	camera	to	0,	0,	-100.	The	camera’s
background	color	should	probably	be	black;	the	default	color	is	blue,	and	that’ll
look	odd	displayed	along	the	sides	if	the	screen	is	wider	than	the	background
image	(which	is	likely).	Click	the	color	swatch	next	to	Background	and	set	the
color	picker	to	black.

Now	save	the	scene	as	Scene	and	hit	Play;	you’ll	see	the	Game	view	filled	with
our	tabletop	sprite.	As	you	saw,	getting	to	this	point	wasn’t	completely	obvious
(again,	that’s	because	Unity	was	a	3D	game	engine	that	recently	had	2D	graphics
grafted	in).	But	the	tabletop	is	completely	bare,	so	our	next	step	is	to	put	a	card
on	the	table.

5.2.	Building	a	card	object	and	making	it	react	to	clicks

Now	that	the	images	are	all	imported	and	ready	to	use,	let’s	build	the	card
objects	that	form	the	core	of	this	game.	In	Memory,	all	the	cards	are	initially	face
down,	and	they’re	only	face	up	temporarily	when	you	choose	a	pair	of	cards	to
turn	over.	To	implement	this	functionality,	we’re	going	to	create	objects	that
consist	of	multiple	sprites	stacked	on	top	of	one	another.	Then	we’ll	write	code
that	makes	the	cards	reveal	themselves	when	clicked	with	the	mouse.

5.2.1.	Building	the	object	out	of	sprites

Drag	one	of	the	card	images	into	the	scene.	Use	one	of	the	card	fronts,	because
you’ll	add	a	card	back	on	top	to	hide	the	image.	Technically	the	position	right
now	doesn’t	matter,	but	eventually	it	will	matter	so	you	may	as	well	position	the
card	at	-3,	1,	0.	Now	drag	the	card_back	sprite	into	the	scene.	Make	this	new
sprite	a	child	of	the	previous	card	sprite	(remember,	in	the	Hierarchy	drag	the
child	object	onto	the	parent	object)	and	then	set	its	position	to	0,	0,	-.1	(Keep	in

mind	that	this	position	is	relative	to	the	parent,	so	this	means	“Put	it	at	the	same
X	Y	but	move	it	closer	on	Z.”)

Tip

Instead	of	the	Move,	Rotate,	and	Scale	tools	that	we	used	in	3D,	in	2D	mode	we
use	a	single	manipulation	tool	called	the	Rect	Tool.	In	2D	mode	this	tool	is
selected	automatically,	or	you	can	click	the	rightmost	navigation	button	in	the
top-left	corner	of	Unity.	With	this	tool	active,	click	and	drag	objects	to	do	all
three	operations	(move/rotate/scale)	in	two	dimensions.

With	the	card	back	in	place	as	depicted	in	figure	5.6,	the	graphics	are	in	place	for
a	reactive	card	that	can	be	revealed.

Figure	5.6.	Hierarchy	linking	and	position	for	the	card	back	sprite

5.2.2.	Mouse	input	code

In	order	to	respond	when	the	player	clicks	on	them,	the	card	sprites	need	to	have
a	collider	component.	New	sprites	don’t	have	a	collider	by	default,	so	they	can’t
be	clicked	on.	We’re	going	to	attach	a	collider	to	the	root	card	object,	but	not	to
the	card	back,	so	that	only	the	card	front	and	not	the	card	back	will	receive
mouse	clicks.	To	do	this,	select	the	root	card	object	in	Hierarchy	(don’t	click	the
card	in	the	scene,	because	the	card	back	is	on	top	and	you’ll	select	that	part
instead)	and	then	click	the	Add	Component	button	in	the	Inspector.	Select
Physics	2D	(not	Physics,	because	that	system	is	for	3D	physics	and	this	is	a	2D
game),	and	then	choose	a	box	collider.

Besides	a	collider,	the	card	needs	a	script	in	order	to	be	reactive	to	the	player
clicking	on	it,	so	let’s	write	some	code.	Create	a	new	script	called
MemoryCard.cs	and	attach	this	script	to	the	root	card	object	(again,	not	the	card

back).	The	following	listing	shows	the	code	that	makes	the	card	emit	debug
messages	when	clicked.

Listing	5.1.	Emitting	debug	messages	when	clicked

Tip

If	you’re	not	in	this	habit	yet,	organizing	your	assets	into	separate	folders	is
probably	a	good	idea;	create	folders	for	scripts	and	drag	files	within	the	Project
view.	Just	be	careful	to	avoid	the	special	folder	names	Unity	responds	to:
Resources,	Plugins,	Editor,	and	Gizmos.	Later	in	the	book	we’ll	go	over	what
some	of	these	special	folders	do,	but	for	now	avoid	naming	any	folders	with
those	words.

Nice,	we	can	click	on	the	card	now!	Just	like	Update(),	OnMouseDown()	is
another	function	provided	by	MonoBehaviour,	this	time	responding	when	the
object	is	clicked	on.	Play	the	game	and	watch	messages	appear	in	the	console.
But	this	only	prints	to	the	console	for	testing;	we	want	the	card	to	be	revealed.

5.2.3.	Revealing	the	card	on	click

Rewrite	the	code	to	match	what’s	shown	in	the	next	listing	(the	code	won’t	run
quite	yet	but	don’t	worry).

Listing	5.2.	Script	that	hides	the	back	when	the	card	is	clicked

There	are	two	key	additions	to	the	script:	a	reference	to	an	object	in	the	scene,
and	the	SetActive()	method	that	deactivates	that	object.	The	first	part,	the
reference	to	an	object	in	the	scene,	is	similar	to	what	we’ve	done	in	previous
chapters:	mark	the	variable	as	serialized,	and	then	drag	the	object	from
Hierarchy	over	to	the	variable	in	the	Inspector.	With	the	object	reference	set,	the
code	will	now	affect	the	object	in	the	scene.

The	second	key	addition	to	the	code	is	the	SetActive	command.	That
command	will	deactivate	any	GameObject,	making	that	object	invisible.	If	we
now	drag	card_back	in	the	scene	to	this	script’s	variable	in	the	Inspector,
when	you	play	the	game	the	card	back	disappears	when	you	click	the	card.
Hiding	the	card	back	will	reveal	the	card	front;	we’ve	accomplished	yet	another
important	task	for	the	Memory	game!	But	this	is	still	only	one	card,	so	now	let’s
create	a	bunch	of	cards.

5.3.	Displaying	the	various	card	images

We’ve	programmed	a	card	object	that	initially	shows	the	card	back	but	reveals
itself	when	clicked.	That	was	a	single	card,	but	the	game	needs	a	whole	grid	of
cards,	with	different	images	on	most	cards.	We’ll	implement	the	grid	of	cards
using	a	couple	concepts	seen	in	previous	chapters,	along	with	some	new
concepts	you	haven’t	seen	before.	Chapter	3	included	both	the	notions	of	1)
using	an	invisible	SceneController	component	and	2)	instantiating	clones	of	an
object.	This	time	the	SceneController	will	apply	different	images	to	different
cards.

5.3.1.	Loading	images	programmatically

There	are	four	card	images	in	the	game	we’re	creating.	All	eight	cards	on	the
table	(two	for	each	symbol)	will	be	created	by	cloning	the	same	original,	so
initially	all	cards	will	have	the	same	symbol.	We’ll	have	to	change	the	image	on
the	card	in	the	script,	loading	different	images	programmatically.

To	examine	how	images	can	be	assigned	programmatically,	let’s	write	some
simple	test	code	(that	will	be	replaced	later)	to	demonstrate	the	technique.	First
add	the	code	from	the	following	listing	to	the	MemoryCard	script.

Listing	5.3.	Test	code	to	demonstrate	changing	the	sprite	image

After	you	save	this	script,	the	new	image	variable	will	appear	in	the	Inspector
because	it	has	been	set	as	serialized.	Drag	a	sprite	up	from	the	Project	view	(pick
one	of	the	card	images,	and	not	the	same	as	the	image	already	in	the	scene)	and
drop	it	on	the	Image	slot.	Now	run	the	scene,	and	you’ll	see	the	new	image	on
the	card.

The	key	to	understanding	this	code	is	to	know	about	the	SpriteRenderer
component.	You’ll	notice	in	figure	5.7	that	the	card	back	object	has	just	two
components,	the	standard	Transform	component	on	all	objects	in	the	scene,	and
a	new	component	called	Sprite	Renderer.	This	component	makes	it	a	sprite
object	and	determines	which	sprite	asset	will	be	displayed.	Note	that	the	first
property	in	the	component	is	called	Sprite	and	links	to	one	of	the	sprites	in	the
Project	view;	the	property	can	be	manipulated	in	code,	and	that’s	precisely	what
this	script	does.

Figure	5.7.	A	sprite	object	in	the	scene	has	the	SpriteRenderer	component	attached	to	it.

As	it	did	with	CharacterController	and	custom	scripts	in	previous	chapters,	the
GetComponent()	method	returns	other	components	on	the	same	object,	so
we	use	it	to	reference	the	SpriteRenderer	object.	The	sprite	property	of
SpriteRenderer	can	be	set	to	any	sprite	asset,	so	this	code	sets	that	property
to	the	Sprite	variable	declared	at	the	top	(which	we	filled	with	a	sprite	asset	in
the	editor).

Well,	that	wasn’t	too	hard!	But	it’s	only	a	single	image;	we	have	four	different
images	to	use,	so	now	delete	the	new	code	from	listing	5.3	(it	was	only	a	quick
demonstration	of	how	the	technique	works)	to	prepare	for	the	next	section.

5.3.2.	Setting	the	image	from	an	invisible	SceneController

Recall	in	chapter	3	how	we	created	an	invisible	object	in	the	scene	to	control
spawning	objects.	We’re	going	to	take	that	approach	here	as	well,	using	an
invisible	object	to	control	more	abstract	features	that	aren’t	tied	to	any	specific
object	in	the	scene.	First	create	an	empty	GameObject	(remember,	select	menu
GameObject	>	Create	Empty).	Then	create	a	new	script	SceneController.cs	in
the	Project	view,	and	drag	this	script	asset	onto	the	controller	GameObject.
Before	writing	code	in	the	new	script,	first	add	the	contents	of	the	next	listing	to
the	MemoryCard	script	instead	of	what	you	saw	in	listing	5.3.

Listing	5.4.	New	public	methods	in	MemoryCard.cs

The	primary	change	from	previous	listings	is	that	we’re	now	setting	the	sprite
image	in	SetCard()	instead	of	Start().	Because	that’s	a	public	method	that
takes	a	sprite	as	a	parameter,	you	can	call	this	function	from	other	scripts	and	set
the	image	on	this	object.	Note	that	SetCard()	also	takes	an	ID	number	as	a
parameter,	and	the	code	stores	that	number.	Although	we	don’t	need	the	ID	quite
yet,	soon	we’ll	write	code	that	compares	cards	for	matches,	and	that	comparison
will	rely	on	the	IDs	of	the	cards.

Note

Depending	on	what	programming	languages	you’ve	used	in	the	past,	you	may
not	be	familiar	with	the	concept	of	“getters”	and	“setters.”	Long	story	short,
those	are	functions	that	run	when	you	attempt	to	access	the	property	associated
with	them	(for	example,	retrieving	the	value	of	card.id).	There	are	multiple
reasons	to	use	getters	and	setters,	but	in	this	case	the	id	property	is	read-only
because	there’s	only	a	function	to	get	the	value	and	not	set	it.

Lastly,	note	that	the	code	has	a	variable	for	the	controller;	even	as
SceneController	starts	cloning	card	objects	to	fill	the	scene,	the	card	objects	also
need	a	reference	back	to	the	controller	to	call	its	public	methods.	As	usual,	when
the	code	references	objects	in	the	scene,	drag	the	controller	object	in	Unity’s
editor	to	the	variable	slot	in	the	Inspector.	Do	this	once	for	this	single	card	and
all	of	the	copies	to	come	later	will	have	the	reference	as	well.

With	that	additional	code	now	in	MemoryCard,	write	the	code	from	the	next
listing	in	SceneController.

Listing	5.5.	First	pass	at	SceneController	for	the	Memory	game

For	now	this	is	a	short	snippet	to	demonstrate	the	concept	of	manipulating	cards
from	SceneController.	Most	of	this	should	already	be	familiar	to	you	(for
example,	in	Unity’s	editor,	drag	the	card	object	to	the	variable	slot	in	the
Inspector),	but	the	array	of	images	is	new.	As	shown	in	figure	5.8,	in	the
Inspector	you	can	set	the	number	of	elements.	Type	in	4	for	the	array	length,	and
then	drag	the	sprites	for	card	images	onto	the	array	slots.	Now	these	sprites	can
be	accessed	in	the	array,	like	any	other	object	reference.

Figure	5.8.	The	filled-in	array	of	sprites

Incidentally,	we	used	the	Random.Range()	method	in	chapter	3,	so	hopefully
you	recall	that.	The	exact	boundary	values	didn’t	matter	there,	but	this	time	it’s
important	to	note	that	the	minimum	value	is	inclusive	and	may	be	returned,
whereas	the	return	value	is	always	below	the	maximum.

Hit	Play	to	run	this	new	code.	You’ll	see	different	images	being	applied	to	the
revealed	card	each	time	you	run	the	scene.	The	next	step	is	to	create	a	whole	grid
of	cards,	instead	of	just	one.

5.3.3.	Instantiating	a	grid	of	cards

SceneController	already	has	a	reference	to	the	card	object,	so	now	you’ll	use	the
Instantiate()	method	(see	the	next	listing)	to	clone	the	object	numerous
times,	like	spawning	objects	in	chapter	3.

Listing	5.6.	Cloning	the	card	eight	times	and	positioning	in	a	grid

Although	this	script	is	much	longer	than	the	previous	listing,	there’s	not	a	lot	to
explain	because	most	of	the	additions	are	straightforward	variable	declarations
and	math.	The	oddest	bit	of	this	code	is	probably	the	if/else	statement	that	begins
if	(i	==	0	&&	j	==	0).	What	that	conditional	does	is	either	choose	the
original	card	object	for	the	first	grid	slot	or	clone	the	card	object	for	all	other
grid	slots.	Because	the	original	card	already	exists	in	the	scene,	if	you	copied	the
card	at	every	iteration	of	the	loop	you’d	end	up	with	one	too	many	cards	in	the
scene.	The	cards	are	then	positioned	by	offsetting	them	according	to	the	number
of	iterations	through	the	loop.

Tip

Just	as	when	moving	3D	objects,	2D	objects	can	be	moved	by	manipulating
transform.position	to	different	points	on	the	screen,	and	this	position
could	be	incremented	repeatedly	in	Update().	But	as	you	saw	when	moving
the	first-person	player,	collision	detection	isn’t	applied	when	adjusting
transform.position	directly.	To	move	2D	objects	with	collision	detection,
you’ll	probably	want	to	adjust	rigidbody2D.velocity	after	assigning
Physics2D	components.

Run	the	code	now	and	a	grid	of	eight	cards	will	be	created	(as	depicted	in	figure
5.9).	The	last	step	in	preparing	the	grid	of	cards	is	to	organize	them	into	pairs,
instead	of	them	being	random.

Figure	5.9.	The	grid	of	eight	cards	that	are	revealed	when	you	click	on	them

5.3.4.	Shuffling	the	cards

Instead	of	making	every	card	random,	we’ll	define	an	array	of	all	the	card	IDs
(numbers	0	through	3	twice,	for	a	pair	of	each	card)	and	then	shuffle	that	array.
We’ll	then	use	this	array	of	card	IDs	when	setting	cards,	rather	than	making	each
one	random.	The	following	listing	shows	the	code.

Listing	5.7.	Placing	cards	from	a	shuffled	list

Now	when	you	hit	Play	the	grid	of	cards	will	be	a	shuffled	assortment	that
reveals	exactly	two	of	each	card	image.	The	array	of	cards	was	run	through	the
Knuth	(also	known	as	Fisher-Yates)	shuffle	algorithm,	a	simple	yet	effective	way
of	shuffling	the	elements	of	an	array.	This	algorithm	loops	through	the	array	and
swaps	every	element	of	the	array	with	a	randomly	chosen	other	array	position.

You	can	click	on	all	the	cards	to	reveal	them,	but	the	game	of	Memory	is
supposed	to	proceed	in	pairs;	a	bit	more	code	is	needed.

5.4.	Making	and	scoring	matches

The	last	step	in	making	a	fully	functional	Memory	game	is	checking	for
matches.	Although	we	now	have	a	grid	of	cards	that	are	revealed	when	clicked,
the	various	cards	don’t	affect	each	other	in	any	way.	In	the	game	of	Memory,
every	time	a	pair	of	cards	is	revealed	we	should	check	to	see	if	the	revealed

cards	match.

This	abstract	logic—checking	for	matches	and	responding	appropriately—
requires	that	cards	notify	SceneController	when	they’ve	been	clicked.	That
requires	the	additions	to	SceneController.cs	shown	in	the	next	listing.

Listing	5.8.	SceneController,	which	must	keep	track	of	revealed	cards

The	CardRevealed()	method	will	be	filled	in	momentarily;	we	needed	the
empty	scaffolding	for	now	to	refer	to	in	MemoryCard.cs	without	any	compiler
errors.	Note	that	there	is	a	read-only	getter	again,	this	time	used	to	determine
whether	another	card	can	be	revealed;	the	player	can	only	reveal	another	card
when	there	aren’t	already	two	cards	revealed.

We	also	need	to	modify	MemoryCard.cs	to	call	the	(currently	empty)	method	in
order	to	inform	SceneController	when	a	card	is	clicked.	Modify	the	code	in
MemoryCard.cs	according	to	the	following	listing.

Listing	5.9.	MemoryCard.cs	modifications	for	revealing	cards

If	you	were	to	put	a	debug	statement	inside	CardRevealed()	in	order	to	test
the	communication	between	objects,	you’d	see	the	test	message	appear

whenever	you	click	a	card.	Let’s	first	handle	one	revealed	card.

5.4.1.	Storing	and	comparing	revealed	cards

The	card	object	was	passed	into	CardRevealed(),	so	let’s	start	keeping	track
of	the	revealed	cards.	Write	the	code	from	the	following	listing.

Listing	5.10.	Keeping	track	of	revealed	cards	in	SceneController

The	listing	stores	the	revealed	cards	in	one	of	the	two	card	variables,	depending
on	whether	the	first	variable	is	already	occupied.	If	the	first	variable	is	empty,
then	fill	it;	if	it’s	already	occupied,	fill	the	second	variable	and	check	the	card
IDs	for	a	match.	The	debug	statement	prints	either	true	or	false	in	the
console.

At	the	moment	the	code	doesn’t	respond	to	matches—it	only	checks	for	them.
Now	let’s	program	the	response.

5.4.2.	Hiding	mismatched	cards

We’ll	use	coroutines	again	because	the	reaction	to	mismatched	cards	should
pause	to	allow	the	player	to	see	the	cards.	Refer	back	to	chapter	3	for	a	full
explanation	of	coroutines;	long	story	short,	using	a	coroutine	will	allow	us	to
pause	when	checking	for	a	match.	The	next	listing	shows	more	code	for	you	to
add	to	SceneController.

Listing	5.11.	SceneController,	which	either	scores	matches	or	hides	missed	matches

First	add	a	_score	value	to	track;	then	launch	a	coroutine	to	CheckMatch()
when	a	second	card	is	revealed.	In	that	coroutine	there	are	two	code	paths,
depending	on	whether	the	cards	match.	If	they	do	match,	the	coroutine	doesn’t
pause;	the	yield	command	gets	skipped	over.	But	if	the	cards	don’t	match,	the
coroutine	pauses	for	half	a	second	before	calling	Unreveal()	on	both	cards,
hiding	them	again.	Finally,	whether	or	not	a	match	was	made,	the	variables	for
storing	cards	are	both	nulled	out,	paving	the	way	for	revealing	more	cards.

When	you	play	the	game,	mismatched	cards	will	display	briefly	before	hiding
again.	There	are	debug	messages	when	you	score	matches,	but	we	want	the	score
displayed	as	a	label	on	the	screen.

5.4.3.	Text	display	for	the	score

Displaying	information	to	the	player	is	half	of	the	reason	for	a	UI	in	a	game	(the
other	half	is	receiving	input	from	the	player;	UI	buttons	are	discussed	in	the	next

section).

Definition

UI	stand	for	user	interface.	Another	closely	related	term	is	GUI	(graphical	user
interface),	which	refers	to	the	visual	part	of	the	interface,	such	as	text	and
buttons,	and	which	is	what	a	lot	of	people	mean	when	they	say	UI.

Unity	has	multiple	ways	to	create	text	displays.	One	way	is	to	create	a	3D	text
object	in	the	scene.	This	is	a	special	mesh	component,	so	first	create	an	empty
object	to	attach	this	component	to.	From	the	GameObject	menu,	choose	Create
Empty.	Then	click	the	Add	Component	button	and	choose	Mesh	>	Text	Mesh.

Note

That	name,	3D	text,	might	sound	incompatible	with	a	2D	game,	but	don’t	forget
that	this	is	technically	a	3D	scene	that	looks	flat	because	it’s	being	seen	through
an	orthographic	camera.	That	means	we	can	put	3D	objects	into	the	2D	game	if
we	want—they’re	just	displayed	in	a	flat	perspective.

Position	this	object	at	-4.75,	3.65,	-10;	that’s	475	pixels	to	the	left	and	365	pixels
up,	putting	it	in	the	top-left	corner,	and	nearer	to	the	camera	so	that	it’ll	appear
on	top	of	other	game	objects.	In	the	Inspector,	look	for	the	Font	setting	toward
the	bottom;	click	the	little	circle	button	to	bring	up	a	file	selector,	and	then	pick
the	Arial	font	that’s	available.	Enter	Score:	as	the	Text	setting.	Correct
positioning	also	requires	Upper	Left	for	the	Anchor	setting	(this	controls	how
letters	expand	out	as	they’re	typed),	so	change	this	if	needed.	By	default	the	text
appears	blurry,	but	that’s	easily	fixed	by	adjusting	the	settings	shown	in	figure
5.10.

Figure	5.10.	Inspector	settings	for	a	text	object	to	make	the	text	sharp	and	clear

If	we	imported	a	new	TrueType	font	into	the	project	we	could	use	that	instead,
but	for	our	purposes	the	default	font	is	fine.	Oddly	enough,	a	bit	of	size
adjustment	is	needed	to	make	the	default	text	sharp	and	clear.	First	set	the
TextMesh	component’s	Font	Size	setting	to	a	very	large	value	(I	used	80).	Now
scale	the	object	down	to	be	very	small	(like	.1,	.1,	1).	Increasing	Font	Size	added
a	lot	of	pixels	to	the	text	displayed,	and	scaling	the	object	compressed	those
pixels	into	a	smaller	space.

Manipulating	this	text	object	requires	just	a	few	adjustments	in	the	scoring	code
(see	the	next	listing).

Listing	5.12.	Displaying	the	score	on	a	text	object

As	you	can	see,	text	is	a	property	of	the	object	that	you	can	set	to	a	new	string.
Drag	the	text	in	the	scene	to	the	variable	you	just	added	to	SceneController,	and

then	hit	Play.	Now	you	should	see	the	score	displayed	while	you	play	the	game
and	make	matches.	Huzzah,	the	game	works!

5.5.	Restart	button

At	this	point	the	Memory	game	is	fully	functional.	You	can	play	the	game,	and
all	the	essential	features	are	in	place.	But	this	playable	core	is	still	lacking	the
overarching	functionality	that	players	expect	or	need	in	a	finished	game.	For
example,	right	now	you	can	play	the	game	only	once;	you	need	to	quit	and
restart	in	order	to	play	again.	Let’s	add	a	control	to	the	screen	so	that	players	can
start	the	game	over	without	having	to	quit.

This	functionality	breaks	down	into	two	tasks:	create	a	UI	button,	and	reset	the
game	when	that	button	is	clicked.	Figure	5.11	shows	what	the	game	will	look
like	with	the	restart	button.

Figure	5.11.	Complete	Memory	game	screen,	including	the	Start	button

Neither	task	is	specific	to	2D	games,	by	the	way;	all	games	need	UI	buttons,	and
all	games	need	the	ability	to	reset.	We’ll	go	over	both	topics	to	round	out	this
chapter.

5.5.1.	Programming	a	UIButton	component	using	SendMessage

First	place	the	button	sprite	in	the	scene;	drag	it	up	from	the	Project	view.	Give	it
a	position	like	4.5,	3.25,	-10;	that	will	place	the	button	in	the	top-right	corner
(that’s	450	pixels	to	the	right	and	325	pixels	up)	and	move	it	nearer	to	the
camera	so	that	it’ll	appear	on	top	of	other	game	objects.	Because	we	want	to	be
able	to	click	on	this	object,	give	it	a	collider	(just	as	with	the	card	object,	select
Add	Component	>	Physics	2D	>	Box	Collider).

Note

As	alluded	to	in	the	previous	section,	Unity	provides	multiple	ways	to	create	UI
displays,	including	an	advanced	UI	system	introduced	in	the	most	recent
versions	of	Unity.	For	now	we’ll	build	the	single	button	out	of	standard	display
objects.	The	next	chapter	will	teach	you	about	the	advanced	UI	functionality;	the
UI	for	both	2D	and	3D	games	is	ideally	built	with	that	system.

Now	create	a	new	script	called	UIButton.cs	and	assign	that	script	(shown	in	the
following	listing)	to	the	button	object.

Listing	5.13.	Code	to	make	a	generic	and	reusable	UI	button

The	majority	of	this	code	happens	inside	a	series	of	OnMouseSomething
functions;	like	Start()	and	Update(),	these	are	a	series	of	functions
automatically	available	to	all	script	components	in	Unity.	MouseDown	was
mentioned	back	in	section	5.2.2,	but	all	these	functions	respond	to	mouse
interactions	if	the	object	has	a	collider;	MouseOver	and	MouseExit	are	a
pair	of	events	used	for	hovering	the	mouse	cursor	over	an	object:	MouseOver
is	the	moment	when	the	mouse	cursor	first	moves	over	an	object,	and
MouseExit	is	the	moment	when	the	mouse	cursor	moves	away.	Similarly,
MouseDown	and	MouseUp	are	a	pair	of	events	for	clicking	the	mouse.
MouseDown	is	the	moment	when	the	mouse	button	is	physically	pressed,	and
MouseUp	is	the	moment	when	the	mouse	button	is	released.

You	can	see	that	this	code	tints	the	sprite	when	the	mouse	hovers	over	it	and
scales	the	sprite	when	it’s	clicked	on.	In	both	cases	you	can	see	that	the	change
(in	color	or	scale)	happens	when	the	mouse	interaction	begins,	and	then	the
property	returns	to	default	(either	white	or	scale	1)	when	the	mouse	interaction
ends.	For	scaling,	the	code	uses	the	standard	transform	component	that	all
GameObjects	have.	For	tint,	though,	the	code	uses	the	SpriteRenderer
component	that	sprite	objects	have;	the	sprite	is	set	to	a	color	that’s	defined	in
Unity’s	editor	through	a	public	variable.

In	addition	to	returning	the	scale	to	1,	SendMessage()	is	called	when	the
mouse	is	released.	SendMessage()	calls	the	function	of	the	given	name	in	all
components	of	that	GameObject.	Here	the	target	object	for	the	message,	as	well
as	the	message	to	send,	are	both	defined	by	serialized	variables.	This	way,	the
same	UIButton	component	can	be	used	for	all	sorts	of	buttons,	with	the	target	of
different	buttons	set	to	different	objects	in	the	Inspector.

Normally	when	doing	object-oriented	programming	in	a	strongly	typed	language
like	C#,	you	need	to	know	the	type	of	a	target	object	in	order	to	communicate
with	that	object	(for	example,	to	call	a	public	method	of	the	object,	like	calling
target-Object.SendMessage()	itself).	But	scripts	for	UI	elements	may
have	lots	of	different	types	of	targets,	so	Unity	provides	the	SendMessage()
method	to	communicate	specific	messages	with	a	target	object	even	if	you	don’t
know	exactly	what	type	of	object	it	is.

Warning

Using	SendMessage()	is	less	efficient	for	the	CPU	than	calling	public
methods	on	known	types	(that	is,	using
object.SendMessage("Method")	versus	component.Method())	so
only	use	SendMessage()	when	it’s	a	big	win	in	terms	of	making	the	code
simpler	to	understand	and	work	with.	As	a	general	rule	of	thumb,	that	will	only
be	the	case	if	there	could	be	lots	of	different	types	of	objects	receiving	the
message;	in	situations	like	that,	the	inflexibility	of	inheritance	or	even	interfaces
will	hinder	the	game	development	process	and	discourage	experimentation.

With	this	code	written,	wire	up	the	public	variables	in	the	button’s	Inspector.	The
highlight	color	can	be	set	to	whatever	you’d	like	(although	the	default	cyan
looks	pretty	good	on	a	blue	button).	Meanwhile,	put	the	SceneController	object
in	the	target	object	slot,	and	then	type	Restart	as	the	message.

If	you	play	the	game	now,	there’s	a	Reset	button	in	the	top-right	corner	that
changes	color	in	response	to	the	mouse,	and	it	makes	a	slight	visual	“pop”	when
clicked	on.	But	an	error	message	was	emitted	when	you	clicked	the	button;	in
the	console	you’ll	see	an	error	about	there	not	being	a	receiver	for	the	Restart
message.	That’s	because	we	haven’t	written	a	Restart()	method	in
SceneController,	so	let’s	add	that	next.

5.5.2.	Calling	LoadLevel	from	SceneController

The	SendMessage()	from	the	button	attempts	to	call	Restart()	in	the
SceneController,	so	let’s	add	that	(see	the	next	listing).

Listing	5.14.	SceneController	code	that	reloads	the	level

You	can	see	the	one	thing	Restart()	does	is	call
Application.LoadLevel().	That	command	loads	a	saved	scene	asset
(that	is,	the	file	created	when	you	click	Save	Scene	in	Unity).	Pass	the	method
the	name	of	the	scene	you	want	to	load;	in	my	case	the	scene	was	saved	with	the
name	Scene,	but	if	you	used	a	different	name,	pass	that	to	the	method	instead.

Hit	Play	to	see	what	happens.	Reveal	a	few	cards	and	make	a	few	matches;	if
you	then	click	the	Reset	button,	the	game	starts	over,	with	all	cards	hidden	and	a
score	of	0.	Great,	just	what	we	wanted!

As	the	name	LoadLevel()	implies,	this	method	can	load	different	levels.	But
what	exactly	happens	when	a	level	loads,	and	why	does	this	reset	the	game?
What	happens	is	that	everything	from	the	current	level	(all	objects	in	the	scene,
and	thus	all	scripts	attached	to	those	objects)	is	flushed	from	memory,	and	then
everything	from	the	new	scene	is	loaded.	Because	the	“new”	scene	in	this	case	is
the	saved	asset	of	the	current	scene,	everything	is	flushed	from	memory	and	then
reloaded	from	scratch.

Tip

You	can	mark	specific	objects	to	exclude	from	the	default	memory	flush	when	a
level	is	loaded.	Unity	provides	the	DontDestroyOnLoad()	method	to	keep
an	object	around	in	multiple	scenes;	we’ll	use	this	method	on	parts	of	the	code
architecture	in	later	chapters.

Another	game	successfully	completed!	Well,	“completed”	is	a	relative	term;	you
could	always	implement	more	features,	but	everything	from	the	initial	plan	is
done.	Many	of	the	concepts	from	this	2D	game	apply	to	3D	games	as	well,
especially	the	checking	of	game	state	and	loading	levels.	Time	to	switch	gears
yet	again	and	move	away	from	this	Memory	game	and	on	to	new	projects.

5.6.	Summary

In	this	chapter	you’ve	learned	that

	

Displaying	2D	graphics	in	Unity	uses	an	orthographic	camera.
For	pixel-perfect	graphics,	the	camera	size	should	be	half	the	screen	height.
Clicking	on	sprites	requires	that	you	first	assign	2D	colliders	to	them.
New	images	for	the	sprites	can	be	loaded	programmatically.
UI	text	can	be	made	using	3D	text	objects.
Loading	levels	resets	the	scene.

Chapter	6.	Putting	a	2D	GUI	in	a	3D	game

This	chapter	covers

	

Comparing	old	(pre-Unity	4.6)	and	new	GUI	systems
Creating	a	canvas	for	the	interface
Positioning	UI	elements	using	anchor	points
Adding	interactivity	to	the	UI	(buttons,	sliders,	and	so	on)
Broadcasting	and	listening	for	events	from	the	UI

In	this	chapter	you’ll	build	a	2D	interface	display	for	a	3D	game.	So	far,	we’ve
focused	on	the	virtual	scene	itself	while	building	a	first-person	demo.	But	every
game	needs	abstract	interaction	and	information	displays	in	addition	to	the
virtual	scene	the	gameplay	takes	place	in.	This	is	true	for	all	games,	whether	2D
or	3D,	first-person	shooter	or	puzzle	game.

These	abstract	interaction	displays	are	referred	to	as	the	UI,	or	more	specifically
the	GUI.	GUI	refers	to	the	visual	part	of	the	interface,	such	as	text	and	buttons
(see	figure	6.1).	Technically,	the	UI	includes	nongraphical	controls,	such	as	the
keyboard	or	gamepad,	but	people	tend	to	be	referring	to	the	graphical	parts	when
they	say	“user	interface.”

Figure	6.1.	The	GUI	(a	heads-up	display,	or	HUD)	you’ll	create	for	a	game

Although	any	software	requires	some	sort	of	UI	in	order	for	the	user	of	that
software	to	control	it,	games	often	use	their	GUI	in	a	slightly	different	way	from

other	software.	In	a	website,	for	example,	the	GUI	basically	is	the	website	(in
terms	of	visual	representation).	In	a	game,	though,	text	and	buttons	are	often	an
additional	overlay	on	top	of	the	game	view,	a	kind	of	display	called	a	HUD.

Definition

A	heads-up	display	(HUD)	superimposes	graphics	on	top	of	the	view	of	world.
The	concept	of	a	HUD	originated	with	military	jets	so	that	pilots	could	see
crucial	information	without	having	to	look	down.	Similarly,	a	GUI	superimposed
on	the	game	view	is	referred	to	as	the	HUD.

This	chapter	will	show	how	to	build	the	game’s	HUD	using	the	latest	UI	tools	in
Unity.	As	you	saw	in	chapter	5,	Unity	provides	multiple	ways	to	create	UI
displays.	This	chapter	demonstrates	the	new	UI	system	available	with	Unity	4.6
and	later.	I’ll	also	discuss	the	previous	UI	system	and	the	advantages	of	the	new
system.

To	learn	about	the	UI	tools	in	Unity,	you’ll	build	on	top	of	the	first-person
shooter	(FPS)	project	from	chapter	3.	The	project	in	this	chapter	will	involve
these	steps:

1.		Planning	the	interface

2.		Placing	UI	elements	on	the	display

3.		Programming	interactions	with	the	UI	elements

4.		Making	the	GUI	respond	to	events	in	the	scene

5.		Making	the	scene	respond	to	actions	on	the	GUI

Note

This	chapter	is	largely	independent	of	the	project	you	build	on	top	of—it	just
adds	a	graphical	interface	on	top	of	an	existing	game	demo.	All	the	examples	in
this	chapter	are	built	on	top	of	the	FPS	created	in	chapter	3,	and	you	could
download	that	sample	project,	but	you’re	free	to	use	whatever	game	demo	you’d
like.

Copy	the	project	from	chapter	3	and	open	the	copy	to	start	working	on	this
chapter.	As	usual,	the	art	assets	you	need	are	in	the	sample	download.	With	those
files	set	up,	you’re	ready	to	start	building	the	game’s	UI.

6.1.	Before	you	start	writing	code...

To	start	building	the	HUD,	you	first	need	to	understand	how	the	UI	system
works.	Unity	provides	multiple	approaches	to	building	a	game’s	HUD,	so	we
need	to	go	over	how	those	systems	work.	Then	we	can	briefly	plan	the	UI	and
prepare	the	art	assets	that	we’ll	need.

6.1.1.	Immediate	mode	GUI	or	advanced	2D	interface?

From	its	first	version,	Unity	came	with	an	immediate	mode	GUI	system,	and	that
system	makes	it	easy	to	put	a	clickable	button	on	the	screen.	Listing	6.1	shows
the	code	to	do	that;	simply	attach	this	script	to	any	object	in	the	scene.	For
another	example	of	immediate	mode	UI,	recall	the	target	cursor	displayed	in
chapter	3.	This	GUI	system	is	entirely	based	on	code,	with	no	work	in	Unity’s
editor.

Definition

Immediate	mode	refers	to	explicitly	issuing	draw	commands	every	frame,	versus
a	system	where	you	define	all	the	visuals	once	and	then	for	every	frame	the
system	knows	what	to	draw	without	you	having	to	tell	it	again.	The	latter
approach	is	called	retained	mode.

Listing	6.1.	Example	of	a	button	using	the	immediate	mode	GUI

The	core	of	the	code	in	this	listing	is	the	OnGUI()	method.	Much	like
Start()	and	Update(),	every	MonoBehaviour	automatically	responds	to
OnGUI().	That	function	runs	every	frame	after	the	3D	scene	is	rendered,
providing	a	place	to	put	GUI	drawing	commands.	This	code	draws	a	button;	note
that	the	command	for	a	button	is	executed	every	frame	(that	is,	in	immediate
mode	style).	The	button	command	is	used	in	a	conditional	that	responds	when
the	button	is	clicked.

Because	the	immediate	mode	GUI	makes	it	easy	to	get	a	few	buttons	onscreen
with	a	minimum	of	effort,	we’ll	use	it	for	examples	in	future	chapters	(especially
chapter	8).	But	making	default	buttons	is	about	the	only	thing	easy	to	create	with
that	system,	so	the	latest	versions	of	Unity	now	have	a	new	interface	system
based	on	2D	graphics	laid	out	in	the	editor.	It	takes	a	bit	more	effort	to	set	up,
but	you’ll	probably	want	to	use	the	newer	interface	system	in	finished	games
because	it	produces	more	polished	results.

The	new	UI	system	works	in	retained	mode,	so	the	graphics	are	laid	out	once
and	then	drawn	every	frame	without	needing	to	be	continually	redefined.	In	this
system,	graphics	for	the	UI	are	placed	in	Unity’s	editor.	This	provides	two
advantages	over	the	immediate	mode	UI:	1)	you	can	see	what	the	UI	looks	like
while	placing	UI	elements,	and	2)	this	system	makes	it	straightforward	to
customize	the	UI	with	your	own	images.

To	use	this	system	you’re	going	to	import	images	and	then	drag	objects	into	the
scene.	Next	let’s	plan	how	this	UI	will	look.

6.1.2.	Planning	the	layout

The	HUD	for	most	games	is	only	a	few	different	UI	controls	repeated	over	and
over.	That	means	this	project	doesn’t	need	to	be	a	terribly	complex	UI	in	order
for	you	to	learn	how	to	build	a	game’s	UI.	You’re	going	to	put	a	score	display
and	a	settings	button	in	the	corners	of	the	screen	(see	figure	6.2)	over	the	main
game	view.	The	settings	button	will	bring	up	a	pop-up	window,	and	that	window
will	have	both	a	text	field	and	a	slider.

Figure	6.2.	Planned	GUI

For	this	example,	those	input	controls	will	be	used	for	setting	the	player’s	name
and	movement	speed,	but	ultimately	those	UI	elements	could	control	any
settings	relevant	to	your	game.

Well,	that	plan	was	pretty	simple!	The	next	step	is	bringing	in	the	images	that	are
needed.

6.1.3.	Importing	UI	images

This	UI	requires	some	images	to	display	for	things	like	buttons.	The	UI	is	built
from	2D	images	like	the	graphics	in	chapter	5,	so	you’ll	follow	the	same	two
steps:

1.		Import	images	(if	needed,	set	them	to	Sprite).

2.		Drag	the	sprites	into	the	scene.

To	accomplish	these	steps,	first	drag	the	images	into	Project	view	to	import
them,	and	then	in	the	Inspector	change	their	Texture	Type	setting	to	Sprite	(2D
And	UI).

Warning

The	Texture	Type	setting	defaults	to	Texture	in	3D	projects	and	to	Sprite	in	2D
projects.	If	you	want	sprites	in	a	3D	project,	you	need	to	adjust	this	setting
manually.

Get	all	the	needed	images	from	the	sample	download	(see	figure	6.3)	and	then
import	the	images	into	your	project.	Make	sure	all	the	imported	assets	are	set	to
Sprite;	you’ll	probably	need	to	adjust	Texture	Type	in	the	settings	displayed	after
importing.

Figure	6.3.	Images	that	are	needed	for	this	chapter’s	project

These	sprites	comprise	the	buttons,	score	display,	and	pop-up	that	you’ll	create.
Now	that	the	images	are	imported,	let’s	put	these	graphics	onto	the	screen.

6.2.	Setting	up	the	GUI	display

The	art	assets	are	the	same	kind	of	2D	sprites	we	used	in	chapter	5,	but	the	use
of	those	assets	in	the	scene	is	a	bit	different.	Unity	provides	special	tools	to	make
the	images	a	HUD	that’s	displayed	over	the	3D	scene,	rather	than	displaying	the
images	as	part	of	the	scene.	The	positioning	of	UI	elements	also	has	some
special	tricks,	because	of	the	needs	of	a	display	that	may	change	on	different
screens.

6.2.1.	Creating	a	canvas	for	the	interface

One	of	the	most	fundamental	and	nonobvious	aspects	of	how	the	UI	system
works	is	that	all	images	must	be	attached	to	a	canvas	object.

Tip

Canvas	is	a	special	kind	of	object	that	Unity	renders	as	the	UI	for	a	game.

Open	the	GameObject	menu	to	see	the	various	kinds	of	objects	you	can	create;
in	the	UI	category,	choose	Canvas.	A	canvas	object	will	appear	in	the	scene	(it

may	be	clearer	to	rename	the	object	HUD	Canvas).	This	object	represents	the
entire	extent	of	the	screen,	and	it’s	huge	relative	to	the	3D	scene	because	it	scales
one	pixel	of	the	screen	to	one	unit	in	the	scene.

Warning

When	you	create	a	canvas	object,	an	EventSystem	object	is	automatically
created,	too.	That	object	is	required	for	UI	interaction	but	you	can	otherwise
ignore	it.

Switch	to	2D	view	mode	(refer	to	figure	6.4)	and	double-click	the	canvas	in	the
Hierarchy	in	order	to	zoom	out	and	view	it	fully.	The	2D	view	mode	is	automatic
when	the	entire	project	is	2D,	but	in	a	3D	project	this	toggle	must	be	clicked	to
switch	between	the	UI	and	the	main	scene.	To	return	to	viewing	the	3D	scene,
toggle	the	2D	view	mode	off	and	then	double-click	the	building	to	zoom	to	that
object.

Figure	6.4.	A	blank	canvas	object	in	the	Scene	view

Tip

Don’t	forget	this	tip	from	chapter	4:	across	the	top	of	the	Scene	view’s	pane	are
buttons	that	control	what’s	visible,	so	look	for	the	Effects	button	to	turn	off	the
skybox.

The	canvas	has	a	number	of	settings	that	you	can	adjust.	First	is	the	Render
Mode	option;	leave	this	at	the	default	setting,	but	you	should	know	what	the
three	possible	settings	mean:

	

Screen	Space—Overlay	—Renders	the	UI	as	2D	graphics	on	top	of	the
camera	view	(this	is	the	default	setting).
Screen	Space—Camera	—Also	renders	the	UI	on	top	of	the	camera	view,
but	UI	elements	can	rotate	for	perspective	effects.
World	Space	—Places	the	canvas	object	within	the	scene,	as	if	the	UI	were
part	of	the	3D	scene.

The	two	modes	besides	the	initial	default	can	sometimes	be	useful	for	specific
effects	but	are	slightly	more	complicated.

The	other	important	setting	is	Pixel	Perfect.	This	setting	causes	the	rendering	to
subtly	adjust	the	position	images	so	that	they’re	always	perfectly	crisp	and	sharp
(as	opposed	to	blurring	them	when	positioned	between	pixels).	Go	ahead	and
select	that	check	box.	Now	the	HUD	canvas	is	set	up,	but	it’s	still	blank	and
needs	sprites.

6.2.2.	Buttons,	images,	and	text	labels

The	canvas	object	defines	an	area	to	display	as	the	UI,	but	it	still	requires	sprites
to	display.	If	you	refer	back	to	the	UI	mockup	in	figure	6.2,	there’s	an	image	of
the	block/enemy	in	the	top-left	corner,	text	displaying	the	score	next	to	that,	and
a	gear-shaped	button	in	the	top-right	corner.	Accordingly,	in	the	UI	section	of	the
GameObject	menu	are	options	to	create	an	image,	text,	or	button.	Create	one	of
each.

UI	elements	need	to	be	a	child	of	the	canvas	object	in	order	to	display	correctly.
Unity	does	this	automatically,	but	remember	that	as	usual	you	can	drag	objects
around	the	Hierarchy	view	(see	figure	6.5)	to	make	parent-child	linkages.

Figure	6.5.	Canvas	with	an	image	linked	in	the	Hierarchy	view

Objects	within	the	canvas	can	be	parented	together	for	positioning	purposes,	just
like	any	other	objects	in	the	scene.	For	example,	you	may	want	to	drag	the	text
object	onto	the	image	so	that	the	text	will	move	with	the	image.	Similarly,	the
default	button	object	has	a	text	object	as	its	child;	this	button	doesn’t	need	a	text
label,	so	delete	the	text	object.

Roughly	position	the	UI	elements	into	their	corners.	In	the	next	section	we’ll
make	the	positions	exact;	for	now,	just	drag	the	objects	until	they’re	pretty	much
in	position.	Click	and	drag	the	image	object	to	the	top-left	of	the	canvas;	the
button	goes	in	the	top	right.

Tip

As	noted	in	chapter	5,	you	use	the	Rect	tool	in	2D	mode.	I	described	it	as	a
single	manipulation	tool	that	encompasses	all	three	transforms:	Move,	Rotate,
and	Scale.	These	operations	have	to	be	separate	tools	in	3D	but	are	combined	in
2D	because	that’s	one	less	dimension	to	worry	about.	In	2D	mode,	this	tool	is
selected	automatically,	or	you	can	click	the	button	in	the	top-left	corner	of	Unity.

At	the	moment	the	images	are	both	blank.	If	you	select	a	UI	object	and	look	at
the	Inspector,	you	should	see	a	Source	Image	slot	near	the	top	of	the	image
component.	As	shown	in	figure	6.6,	drag	over	sprites	(remember,	not	textures!)
from	the	Project	view	to	assign	images	to	the	objects.	Assign	the	enemy	sprite	to
the	image	object,	and	the	gear	sprite	to	the	button	object	(click	Set	Native	Size
after	assigning	sprites	to	properly	size	the	image	object).

Figure	6.6.	Assign	2D	sprites	to	the	Image	property	of	UI	elements.

That	took	care	of	the	appearance	of	both	the	enemy	image	and	the	gear	button.
As	for	the	text	object,	there	are	a	bunch	of	settings	in	the	Inspector.	First,	type	a
single	number	in	the	large	Text	box;	this	text	will	be	overwritten	later,	but	it’s
useful	because	it	looks	like	a	score	display	within	the	editor.	The	text	is	small,	so
increase	the	Font	Size	to	24	and	make	the	style	Bold.	You	also	want	to	set	this
label	to	left	horizontal	alignment	(see	figure	6.7)	and	middle	vertical	alignment.
For	now	the	remaining	settings	can	be	left	at	their	default	values.

Figure	6.7.	Settings	for	a	UI	text	object

Note

Besides	the	Text	box	and	alignment,	the	most	common	property	to	adjust	is	the
font.	You	can	import	a	TrueType	font	into	Unity,	and	then	put	that	font	in	the
Inspector.

Now	that	sprites	have	been	assigned	to	the	UI	images,	and	the	score	text	is	set
up,	you	can	hit	Play	to	see	the	HUD	on	top	of	the	3D	game.	As	shown	in	figure

6.8,	the	canvas	displayed	in	Unity’s	editor	shows	the	bounds	of	the	screen,	and
UI	elements	are	drawn	onto	the	screen	in	those	positions.

Figure	6.8.	The	GUI	as	seen	in	the	editor	(left)	and	when	playing	the	game	(right)

Great,	you	made	a	HUD	with	2D	images	displayed	over	the	3D	game!	One	more
complex	visual	setting	remains:	positioning	UI	elements	relative	to	the	canvas.

6.2.3.	Controlling	the	position	of	UI	elements

All	UI	objects	have	an	anchor,	displayed	in	the	editor	as	a	target	X	(see	figure
6.9).	An	anchor	is	a	flexible	way	of	positioning	objects	on	the	UI.

Figure	6.9.	The	anchor	point	of	an	image	object

Definition

The	anchor	of	an	object	is	the	point	where	an	object	attaches	to	the	canvas	or
screen.	It	determines	what	that	object’s	position	is	measured	relative	to.

Positions	are	values	like	“50	pixels	on	the	X-axis.”	But	that	leaves	the	question:
50	pixels	from	what?	This	is	where	anchors	come	in.	The	purpose	of	an	anchor
is	that	while	the	object	stays	in	place	relative	to	the	anchor	point,	the	anchor
moves	around	relative	to	the	canvas.	The	anchor	is	defined	as	something	like
“center	of	the	screen,”	and	then	the	anchor	will	stay	centered	while	the	screen
changes	size.	Similarly,	setting	the	anchor	to	the	right	side	of	the	screen	will
keep	the	object	rooted	to	the	right	side	even	if	the	screen	changes	size	(for
example,	if	the	game	is	played	on	different	monitors).

The	easiest	way	to	understand	what	I’m	talking	about	is	to	see	it	in	action.	Select
the	image	object	and	look	over	at	the	Inspector.	Anchor	settings	(see	figure	6.10)
will	appear	right	below	the	transform	component.	By	default,	UI	elements	have
their	anchor	set	to	Center,	but	you	want	to	set	the	anchor	to	Top	Left	for	this
image;	figure	6.10	shows	how	to	adjust	that	using	the	Anchor	Presets.

Figure	6.10.	How	to	adjust	anchor	settings

Change	the	gear	button’s	anchor	as	well.	Set	it	to	Top	Right	for	this	object;	click
the	top-right	Anchor	Preset.	Now	try	scaling	the	window	left	and	right;	click	and
drag	on	the	side	of	the	Scene	view.	Thanks	to	the	anchors,	the	UI	objects	will
stay	in	their	corners	while	the	canvas	changes	size.	As	figure	6.11	shows,	these
UI	elements	are	now	rooted	in	place	while	the	screen	moves.

Figure	6.11.	Anchors	stay	in	place	while	the	screen	changes.

Tip

Anchor	points	can	adjust	scale	as	well	as	position.	We’re	not	going	to	explore
that	functionality	in	this	chapter,	but	each	corner	of	the	image	can	be	rooted	to	a
different	corner	of	the	screen.	In	figure	6.11	the	images	didn’t	change	size,	but
we	could	adjust	the	anchors	so	that	when	the	screen	changes	size,	the	image
stretches	with	it.

All	of	the	visual	setup	is	done,	so	it’s	time	to	program	interactivity.

6.3.	Programming	interactivity	in	the	UI

Before	you	can	interact	with	the	UI,	you	need	to	have	a	mouse	cursor.	If	you
recall,	this	game	adjusted	Cursor	settings	in	the	Start()	method	of	the
RayShooter	code.	Those	settings	lock	and	hide	the	mouse	cursor,	a	behavior	that
works	for	the	controls	in	an	FPS	game	but	that	interferes	with	using	the	UI.
Remove	those	lines	from	RayShooter.cs	so	that	you	can	click	on	the	HUD.

As	long	as	you	have	RayShooter.cs	open,	you	could	also	make	sure	not	to	shoot
while	interacting	with	the	GUI.	The	following	listing	shows	the	code	for	that.

Listing	6.2.	Adding	a	GUI	check	to	the	code	in	RayShooter.cs

Now	you	can	play	the	game	and	click	the	button,	although	it	doesn’t	do	anything
yet.	You	can	watch	the	tinting	of	the	button	change	as	you	mouse	over	it	and
click.	This	mouseover	and	click	behavior	is	a	default	tint	that	can	be	changed	for
each	button,	but	the	default	looks	fine	for	now.	You	could	speed	up	the	default
fading	behavior;	Fade	Duration	is	a	setting	in	the	button	component,	so	try
decreasing	that	to	.01	to	see	how	the	button	changes.

Tip

Sometimes	the	default	interaction	controls	of	the	UI	also	interfere	with	the	game.
Remember	the	EventSystem	object	that	was	created	automatically	along	with	the
canvas?	That	object	controls	the	UI	interaction	controls,	and	by	default	it	uses
the	arrow	keys	to	interact	with	the	GUI.	You	may	need	to	turn	off	the	arrow	keys
in	EventSystem:	in	the	settings	for	EventSystem,	deselect	the	check	box	Send
Navigation	Event.

But	nothing	else	happens	when	you	click	the	button	because	you	haven’t	yet
linked	it	up	to	any	code.	Let’s	take	care	of	that	next.

6.3.1.	Programming	an	invisible	UIController

In	general,	UI	interaction	is	programmed	with	a	standard	series	of	steps	that’s	the
same	for	all	UI	elements:

1.		Create	a	UI	object	in	the	scene	(the	button	created	in	the	previous
section).

2.		Write	a	script	to	call	when	the	UI	is	operated.

3.		Attach	that	script	to	an	object	in	the	scene.

4.		Link	UI	elements	(such	as	buttons)	to	the	object	with	that	script.

To	follow	these	steps,	first	we	need	to	create	a	controller	object	to	link	to	the
button.	Create	a	script	called	UIController	(shown	in	the	following	listing)	and
drag	that	script	onto	the	controller	object	in	the	scene.

Listing	6.3.	UIController	script	used	to	program	buttons

Tip

You	might	be	wondering	why	we	need	separate	objects	for	SceneController	and
UIController.	Indeed,	this	scene	is	so	simple	that	you	could	have	one	controller
handling	both	the	3D	scene	and	the	UI.	As	the	game	gets	more	complex,	though,
it’ll	become	increasingly	useful	for	the	3D	scene	and	the	UI	to	be	separate
modules,	communicating	indirectly.	This	notion	extends	well	beyond	games	to
software	in	general;	software	engineers	refer	to	this	principle	as	separation	of
concerns.

Now	drag	objects	to	component	slots	in	order	to	wire	them	up.	Drag	the	score
label	(the	text	object	we	created	before)	to	the	UIController’s	text	slot.	The	code
in	UIController	sets	the	text	displayed	on	that	label.	Currently	the	code	displays
a	timer	to	test	the	text	display;	that	will	be	changed	to	the	score	later.

Next,	add	an	OnClick	entry	to	the	button	to	drag	the	controller	object	onto.
Select	the	button	to	see	its	settings	in	the	Inspector.	Toward	the	bottom	you
should	see	an	OnClick	panel;	initially	that	panel	is	empty,	but	(as	you	can	see	in
figure	6.12)	you	can	click	the	+	button	to	add	an	entry	to	that	panel.	Each	entry
defines	a	single	function	that	gets	called	when	that	button	is	clicked;	the	listing
has	both	a	slot	for	an	object	and	a	menu	for	the	function	to	call.	Drag	the
controller	object	to	the	object	slot,	and	then	look	for	UIController	in	the	menu;
select	OnOpenSettings()	in	that	section.

Figure	6.12.	The	OnClick	panel	toward	the	bottom	of	the	button	settings

Responding	to	other	mouse	events

OnClick	is	the	only	event	that	the	button	component	exposes,	but	UI	elements
can	respond	to	a	number	of	different	interactions.	To	go	beyond	the	default
interactions,	use	an	EventTrigger	component.

Add	a	new	component	to	the	button	object	and	look	for	the	Event	section	of	the
component’s	menu.	Select	EventTrigger	from	that	menu.	Although	the	button’s
OnClick	responded	only	to	a	full	click	(the	mouse	button	being	pressed	down
and	then	released),	let’s	try	responding	to	the	mouse	button	being	pressed	down
but	not	released.	Perform	the	same	steps	as	for	OnClick,	only	responding	to	a
different	event.	First	add	another	method	to	UIController:

...

public	void	OnPointerDown()	{

			Debug.Log("pointer	down");

}

...

Now	click	Add	New	Event	Type	to	add	a	new	type	to	the	EventTrigger
component.	Choose	Pointer	Down	for	the	event.	This	will	create	an	empty	panel
for	that	event,	just	like	OnClick	had.	Click	the	+	button	to	add	an	event	listing,
drag	the	controller	object	to	this	entry,	and	select	OnPointerDown()	in	the
menu.	There	you	go!

Play	the	game	and	click	the	button	to	output	debug	messages	in	the	console.
Again,	the	code	is	currently	random	output	in	order	to	test	the	button’s
functionality.	What	we	want	to	do	is	open	a	settings	pop-up,	so	let’s	create	that
pop-up	window	next.

6.3.2.	Creating	a	pop-up	window

The	UI	has	a	button	to	open	a	pop-up	window,	but	there’s	no	pop-up	yet.	That

will	be	a	new	image	object,	along	with	several	controls	(such	as	buttons	and
sliders)	attached	to	that	object.	The	first	step	is	to	create	a	new	image,	so	choose
GameObject	>	UI	>	Image.	Just	as	before,	the	new	image	has	a	slot	in	the
Inspector	called	Source	Image.	Drag	a	sprite	to	that	slot	to	set	this	image.	This
time	use	the	sprite	called	popup.

Ordinarily,	the	sprite	is	stretched	over	the	entire	image	object;	this	was	how	the
score	and	gear	images	worked,	and	you	clicked	the	Set	Native	Size	button	to
resize	the	object	to	the	size	of	the	image.	This	behavior	is	the	default	for	image
objects,	but	the	pop-up	will	do	something	different.

As	you	can	see	in	figure	6.13,	the	image	component	has	an	Image	Type	setting.
This	setting	defaults	to	Simple,	which	was	the	correct	image	type	earlier.	For	the
pop-up,	though,	set	Image	Type	to	Sliced.

Figure	6.13.	Settings	for	the	image	component,	including	Image	Type

Definition

A	sliced	image	is	split	up	into	nine	sections	that	scale	differently	from	one
another.	By	scaling	the	edges	of	the	image	separately	from	the	middle,	you
ensure	that	the	image	can	scale	to	any	size	you	want	while	it	maintains	its	sharp
and	crisp	edges.	In	other	development	tools,	these	kinds	of	images	often	have
“9”	somewhere	in	the	name	(such	as	9-slice,	9-patch,	scale-9)	to	indicate	the	9
sections	of	the	image.

After	you	switch	to	a	sliced	image,	Unity	may	display	an	error	in	the	component
settings,	complaining	that	the	image	doesn’t	have	a	border.	That’s	because	the
popup	sprite	doesn’t	have	the	nine	sections	defined	yet.	To	set	that	up,	first
select	the	popup	sprite	in	the	Project	view.	In	the	Inspector	you	should	see	a
Sprite	Editor	button	(see	figure	6.14);	click	that	button	and	the	Sprite	Editor
window	will	appear.

Figure	6.14.	Sprite	Editor	button	in	the	Inspector	and	a	pop-up	window

In	the	Sprite	Editor	you	can	see	green	lines	that	indicate	how	the	image	will	be
sliced.	Initially	the	image	won’t	have	any	border	(that	is,	all	of	the	Border
settings	are	0).	Increase	the	border	width	of	all	four	sides,	which	will	result	in
the	border	shown	in	figure	6.14.	Because	all	four	sides	(Left,	Right,	Bottom,	and
Top)	have	the	border	set	to	12	pixels	wide,	the	border	lines	will	overlap	into	nine
sections.	Close	the	editor	window	and	apply	the	changes.

Now	that	the	sprite	has	the	nine	sections	defined,	the	sliced	image	will	work
correctly	(and	the	Image	component	settings	will	show	Fill	Center;	make	sure
that	setting	is	on).	Click	and	drag	the	blue	indicators	in	the	corner	of	the	image
to	scale	it	(switch	to	the	Rect	tool	described	in	chapter	5	if	you	don’t	see	any
scale	indicators).	The	border	sections	will	maintain	their	size	while	the	center
portion	scales.

Because	the	border	sections	maintain	their	size,	a	sliced	image	can	be	scaled	to
any	size	and	still	have	crisp	edges.	This	is	perfect	for	UI	elements—different
windows	may	be	different	sizes	but	should	still	look	the	same.	For	this	pop-up,
enter	a	width	of	250	and	a	height	of	200	to	make	it	look	like	figure	6.15	(also,
center	it	on	position	0,	0,	0).

Figure	6.15.	Sliced	image	scaled	to	dimensions	of	the	pop-up

Tip

How	UI	images	stack	on	top	of	each	other	is	determined	by	their	order	in	the
Hierarchy	view.	In	the	Hierarchy	list,	drag	the	pop-up	object	above	other	UI
objects	(always	staying	attached	to	the	canvas,	of	course).	Now	move	the	pop-up
around	within	the	Scene	view;	you	can	see	how	images	overlap	the	pop-up
window.	Finally	drag	the	pop-up	to	the	bottom	of	the	canvas	hierarchy	so	that	it
will	display	on	top	of	everything	else.

The	pop-up	object	is	set	up	now,	so	write	some	code	for	it.	Create	a	script	called
SettingsPopup	(see	the	next	listing)	and	drag	that	script	onto	the	pop-up	object.

Listing	6.4.	SettingsPopup	script	for	the	pop-up	object

Next,	open	UIController.cs	to	make	a	few	adjustments,	as	shown	in	the
following	listing.

Listing	6.5.	Adjusting	UIController	to	handle	the	pop-up

This	code	adds	a	slot	for	the	pop-up	object,	so	drag	the	pop-up	to	UIController.
Now	the	pop-up	will	be	closed	initially	when	you	play	the	game,	and	it’ll	open
when	you	click	the	settings	button.

At	the	moment	there’s	no	way	to	close	it	again,	so	add	a	close	button	to	the	pop-
up.	The	steps	are	pretty	much	the	same	as	for	the	button	created	earlier:	choose
GameObject	>	UI>	Button,	position	the	new	button	in	the	top-right	corner	of	the
pop-up,	drag	the	close	sprite	to	this	UI	element’s	Source	Image	property,	and
then	click	Set	Native	Size	to	correctly	resize	the	image.	Unlike	with	the	previous
button	we	actually	want	this	text	label,	so	select	the	text	and	type	Close	in	the
text	field,	and	set	Color	to	white.	In	the	Hierarchy	view,	drag	this	button	onto	the
pop-up	object	so	that	it	will	be	a	child	of	the	pop-up	window.	And	as	a	final
touch	of	polish,	adjust	the	button	transition	to	a	Fade	Duration	value	of	.01	and	a
darker	Normal	Color	setting	of	110,	110,	110,	255.

To	make	the	button	close	the	pop-up,	it	needs	an	OnClick	entry;	click	the	+
button	on	the	button’s	OnClick	panel,	drag	the	pop-up	window	into	the	object
slot,	and	choose	Close()	from	the	function	list.	Now	play	the	game	and	this
button	will	close	the	pop-up	window.

The	pop-up	window	has	been	added	to	the	HUD.	The	window	is	currently	blank,
though,	so	let’s	add	some	controls	to	it	next.

6.3.3.	Setting	values	using	sliders	and	input	fields

Adding	some	controls	to	the	settings	pop-up	involves	two	main	steps,	like	the
buttons	we	made	earlier.	You	create	UI	elements	attached	to	the	canvas,	and	link

those	objects	to	a	script.	The	input	controls	we	need	are	a	slider	and	a	text	field,
and	there	will	be	a	static	text	label	to	identify	the	slider.	Choose	GameObject	>
UI	>	Text	to	create	the	text	object,	GameObject	>	UI	>	InputField	to	create	the
text	field,	and	GameObject	>	UI	>	Slider	to	create	the	slider	object	(see	figure
6.16).

Figure	6.16.	Input	controls	added	to	the	pop-up	window

Make	all	three	objects	children	of	the	pop-up	by	dragging	them	in	the	Hierarchy
view	and	then	position	them	as	indicated	in	the	figure,	lined	up	in	the	middle	of
the	pop-up.	Set	the	text	to	Speed	so	that	it	can	be	a	label	for	the	slider.	The
input	field	is	for	typing	in	text,	and	Text	is	shown	in	the	box	before	the	player
types	something	else;	set	this	value	to	Name.	You	can	leave	the	options	Content
Type	and	Line	Type	at	their	defaults;	if	desired,	you	can	use	Content	Type	to
restrict	typing	to	things	like	only	letters	or	only	numbers,	whereas	you	can	use
Line	Type	to	switch	from	a	single	line	to	multiline	text.

Warning

You	won’t	be	able	to	click	the	slider	if	the	text	label	covers	it.	Make	sure	the	text
object	appears	under	the	slider	by	placing	it	above	the	slider	in	the	Hierarchy.

As	for	the	slider	itself,	several	settings	appear	toward	the	bottom	of	the
component	inspector.	Min	Value	is	set	to	0	by	default;	leave	that.	Max	Value
defaults	to	1,	but	make	it	2	for	this	example.	Similarly,	both	Value	and	Whole
Numbers	can	be	left	at	their	defaults;	Value	controls	the	starting	value	of	the
slider,	and	Whole	Numbers	constrains	it	to	0	1	2	rather	than	decimal	values	(a
constraint	we	don’t	want).

And	that	wraps	up	all	the	objects.	Now	you	need	to	write	the	code	that	the
objects	are	linked	to;	add	the	methods	shown	in	the	following	listing	to
SettingsPopup.cs.

Listing	6.6.	SettingsPopup	methods	for	the	pop-up’s	input	controls

Great,	there	are	methods	for	the	controls	to	use.	Starting	with	the	input	field,	in
settings	you’ll	see	an	End	Edit	panel;	events	listed	here	are	triggered	when	the
user	finishes	typing.	Add	an	entry	to	this	panel,	drag	the	pop-up	to	the	object
slot,	and	choose	OnSubmitName()	in	the	function	list.

Warning

Be	sure	to	select	the	function	in	the	End	Edit	panel’s	top	section,	Dynamic
String,	and	not	the	bottom	section,	Static	Parameters.	The	OnSubmitName()
function	appears	in	both	sections,	but	selecting	it	under	Static	Parameters	will
send	only	a	single	string	defined	ahead	of	time;	dynamic	string	refers	to
whatever	value	is	typed	in	the	input	field.

Follow	these	same	steps	for	the	slider:	look	for	the	event	panel	toward	the	end	of
the	component	settings	(in	this	case,	the	panel	is	OnValueChanged),	click	+	to
add	an	entry,	drag	in	the	settings	pop-up,	and	choose	OnSpeedValue()	in	the
list	of	dynamic	value	functions.

Now	both	of	the	input	controls	are	connected	to	code	in	the	pop-up’s	script.	Play
the	game,	and	watch	the	console	while	you	move	the	slider	or	press	Enter	after
typing	input.

Saving	settings	between	plays	using	PlayerPrefs

A	few	different	methods	are	available	for	saving	persistent	data	in	Unity,	and	one

of	the	simplest	is	called	PlayerPrefs.	Unity	provides	an	abstracted	way	(that	is,
you	don’t	worry	about	the	details)	to	save	small	amounts	of	information	that
works	on	all	platforms	(with	their	differing	filesystems).	PlayerPrefs	aren’t	too
useful	for	large	amounts	of	data	(in	chapter	11	we’ll	use	other	methods	to	save
the	game’s	progress),	but	they’re	perfect	for	saving	settings.

PlayerPrefs	provide	simple	commands	to	get	and	set	named	values	(it	works	a
lot	like	a	hash	table	or	dictionary).	For	example,	you	can	save	the	speed	setting
by	adding	the	line	PlayerPrefs.SetFloat("speed",	speed);	inside
the	OnSpeedValue()	method	of	the	SettingsPopup	script.	That	method	will
save	the	float	in	a	value	called	speed.

Similarly,	you’ll	want	to	initialize	the	slider	to	the	saved	value.	Add	the
following	code	to	SettingsPopup:

using	UnityEngine.UI;

...

[SerializeField]	private	Slider	speedSlider;

void	Start()	{

			speedSlider.value	=	PlayerPrefs.GetFloat("speed",	1);

}

...

Note	that	the	get	command	has	both	the	value	to	get	as	well	as	a	default	value
in	case	speed	wasn’t	previously	saved.

Although	the	controls	generate	debug	output,	they	still	don’t	actually	affect	the
game.	Making	the	HUD	affect	the	game	(and	vice	versa)	is	the	topic	of	the	final
section	of	this	chapter.

6.4.	Updating	the	game	by	responding	to	events

Up	to	now,	the	HUD	and	main	game	have	been	ignoring	each	other,	but	they
ought	to	be	communicating	back	and	forth.	That	could	be	accomplished	via
script	references	as	we’ve	done	for	other	sorts	of	interobject	communication,	but
that	approach	would	have	major	downsides.	In	particular,	doing	so	would	tightly
couple	the	scene	and	the	HUD;	you	want	to	keep	them	fairly	independent	from
each	other	so	that	you	can	freely	edit	the	game	without	worrying	that	you’ve

broken	the	HUD.

To	alert	the	UI	of	actions	in	the	scene,	we’re	going	to	make	use	of	a	broadcast
messenger	system.	Figure	6.17	illustrates	how	this	event	messaging	system
works:	scripts	can	register	to	listen	for	an	event,	other	code	can	broadcast	an
event,	and	listeners	will	be	alerted	about	broadcast	messages.	Let’s	go	over	a
messaging	system	to	accomplish	that.

Figure	6.17.	Diagram	of	the	broadcast	event	system	we’ll	implement

Tip

C#	does	have	a	built-in	system	for	handling	events,	so	you	might	wonder	why
we	don’t	use	that.	Well,	the	built-in	event	system	enforces	targeted	messages,
whereas	we	want	a	broadcast	messenger	system.	A	targeted	system	requires	the
code	to	know	exactly	where	messages	originate	from;	broadcasts	can	originate
from	anywhere.

6.4.1.	Integrating	an	event	system

To	alert	the	UI	of	actions	in	the	scene,	we’re	going	to	make	use	of	a	broadcast
messenger	system.	Although	Unity	doesn’t	have	this	feature	built	in,	a	great
script	for	this	purpose	exists	online.	Among	the	resources	listed	in	appendix	D	is
the	Unify	community	wiki;	this	is	a	repository	of	free	code	contributed	by	other
developers.	Their	messenger	system	is	great	for	providing	a	decoupled	way	of
communicating	events	to	the	rest	of	the	program.	When	some	code	broadcasts	a
message,	that	code	doesn’t	need	to	know	anything	about	the	listeners,	allowing
for	a	great	deal	of	flexibility	in	switching	around	or	adding	objects.

Create	a	script	called	Messenger	and	paste	in	the	code	from	this	page	on
Unify:	http://wiki.unity3d.com/index.php/CSharpMessenger_Extended

Then	you	also	need	to	create	a	script	called	GameEvent	(see	the	following
listing).

Listing	6.7.	GameEvent	script	to	use	with	Messenger

public	static	class	GameEvent	{

			public	const	string	ENEMY_HIT	=	"ENEMY_HIT";

			public	const	string	SPEED_CHANGED	=	"SPEED_CHANGED";

}

The	script	in	the	listing	defines	a	constant	for	a	couple	of	event	messages;	the
messages	are	more	organized	this	way,	and	you	don’t	have	to	remember	and	type
the	message	string	all	over	the	place.

Now	the	event	messenger	system	is	ready	to	use,	so	let’s	start	using	it.	First	we’ll
communicate	from	the	scene	to	the	HUD,	and	then	we’ll	go	in	the	other
direction.

6.4.2.	Broadcasting	and	listening	for	events	from	the	scene

Up	to	now	the	score	display	has	displayed	a	timer	as	a	test	of	the	text	display
functionality.	But	we	want	to	display	a	count	of	enemies	hit,	so	let’s	modify	the
code	in	UIController.	First	delete	the	entire	Update()	method,	because	that
was	the	test	code.	When	an	enemy	dies,	it	will	emit	an	event,	so	the	following
listing	makes	UIController	listen	for	that	event.

Listing	6.8.	Adding	event	listeners	to	UIController

http://wiki.unity3d.com/index.php/CSharpMessenger_Extended

First	notice	the	Awake()	and	OnDestroy()	methods.	Much	like	Start()
and	Update(),	every	MonoBehaviour	automatically	responds	when	the
object	awakes	or	is	removed.	A	listener	gets	added	and	removed	in
Awake()/OnDestroy().	This	listener	is	part	of	the	broadcast	messaging
system,	and	it	calls	OnEnemyHit()	when	that	message	is	received.
OnEnemyHit()increments	the	score	and	then	puts	that	value	in	the	score
display.

The	event	listeners	are	set	up	in	the	UI	code,	so	now	we	need	to	broadcast	that
message	whenever	an	enemy	is	hit.	The	code	to	respond	to	hits	is	in
RayShooter.cs,	so	emit	the	message	as	shown	in	the	following	listing.

Listing	6.9.	Broadcast	event	message	from	RayShooter

Play	the	game	after	adding	that	message	and	watch	the	score	display	when	you
shoot	an	enemy.	You	should	see	the	count	going	up	every	time	you	make	a	hit.
That	covers	sending	messages	from	the	3D	game	to	the	2D	interface,	but	we	also
want	an	example	going	in	the	other	direction.

6.4.3.	Broadcasting	and	listening	for	events	from	the	HUD

In	the	previous	section,	an	event	was	broadcast	from	the	scene	and	received	by
the	HUD.	In	a	similar	way,	UI	controls	can	broadcast	a	message	that	both
players	and	enemies	listen	for.	In	this	way,	the	settings	pop-up	can	affect	the
settings	of	the	game.	Open	WanderingAI.cs	and	add	the	code	from	the	next
listing.

Listing	6.10.	Event	listener	added	to	WanderingAI

Awake()	and	OnDestroy()	add	and	remove,	respectively,	an	event	listener
here,	too,	but	the	methods	have	a	value	this	time.	That	value	is	used	to	set	the
speed	of	the	wandering	AI.

Tip

The	code	in	the	previous	section	just	used	a	generic	event,	but	this	messaging
system	can	pass	a	value	along	with	the	message.	Supporting	a	value	in	the
listener	is	as	simple	as	adding	a	type	definition;	note	the	<float>	added	to	the
listener	command.

Now	make	the	same	changes	in	FPSInput.cs	to	affect	the	speed	of	the	player.
The	code	in	the	next	listing	is	almost	exactly	the	same	as	that	in	listing	6.10,
except	that	the	player	has	a	different	number	for	baseSpeed.

Listing	6.11.	Event	listener	added	to	FPSInput

Finally,	broadcast	the	speed	values	from	SettingsPopup	in	response	to	the	slider,
as	shown	in	the	following	listing.

Listing	6.12.	Broadcast	message	from	SettingsPopup

Now	the	enemy	and	player	have	their	speed	changed	when	you	adjust	the	slider.
Hit	Play	and	try	it	out!

Exercise:	Changing	the	speed	of	spawned	enemies

Currently	the	speed	value	is	only	updated	for	enemies	already	in	the	scene	and
not	for	newly	spawned	enemies;	new	enemies	aren’t	created	at	the	correct	speed
setting.	I’ll	leave	it	as	an	exercise	for	you	to	figure	out	how	to	set	the	speed	on
spawned	enemies.	Here’s	a	hint:	add	a	SPEED_CHANGED	listener	to
SceneController,	because	that	script	is	where	enemies	are	spawned	from.

You	now	know	how	to	build	a	graphical	interface	using	the	new	UI	tools	offered
by	Unity.	This	knowledge	will	come	in	handy	in	all	future	projects,	even	as	we
explore	different	game	genres.

6.5.	Summary

In	this	chapter	you’ve	learned	that

	

Unity	has	both	an	immediate	mode	GUI	system	as	well	as	a	newer	system
based	on	2D	sprites.
Using	2D	sprites	for	a	GUI	requires	that	the	scene	have	a	canvas	object.
UI	elements	can	be	anchored	to	relative	positions	on	the	adjustable	canvas.
Set	the	Active	property	to	turn	UI	elements	on	and	off.
A	decoupled	messaging	system	is	a	great	way	to	broadcast	events	between
the	interface	and	the	scene.

Chapter	7.	Creating	a	third-person	3D	game:	player
movement	and	animation

This	chapter	covers

	

Adding	real-time	shadows	to	the	scene
Making	the	camera	orbit	around	its	target
Changing	rotation	smoothly	using	the	Lerp	algorithm
Handling	ground	detection	for	jumping,	ledges,	and	slopes
Applying	and	controlling	animation	for	a	lifelike	character

In	this	chapter	you’ll	create	another	3D	game,	but	this	time	you’ll	be	working	in
a	new	game	genre.	If	you	think	back	to	chapter	2,	you	built	a	movement	demo
for	a	first-person	game.	Now	you’re	going	to	write	another	movement	demo,	but
this	time	it’ll	involve	third-person	movement.	The	most	important	difference	is
the	placement	of	the	camera	relative	to	the	player:	a	player	sees	through	their
character’s	eyes	in	first-person	view,	and	the	camera	is	placed	outside	the
character	in	third-person	view.	This	view	is	probably	familiar	to	you	from
adventure	games,	like	the	long-lived	Legend	of	Zelda	series,	or	the	more	recent
Uncharted	series	of	games	(refer	ahead	to	figure	7.3	if	you	want	to	see	a
comparison	of	first-person	and	third-person	views).

The	project	in	this	chapter	is	one	of	the	more	visually	exciting	prototypes	we’ll
build	in	this	book.	Figure	7.1	shows	how	the	scene	will	be	constructed.	Compare
this	with	the	diagram	(figure	2.2)	of	the	first-person	scene	we	created	in	chapter
2.

Figure	7.1.	Roadmap	for	the	third-person	movement	demo

Figure	7.2.	Wireframe	view	of	the	model	we’ll	use	in	this	chapter

You	can	see	that	the	room	construction	is	the	same,	and	the	use	of	scripts	is
much	the	same.	But	the	look	of	the	player,	as	well	as	the	placement	of	the
camera,	are	different	in	each	case.	Again,	what	defines	this	as	a	“third-person”
view	is	that	the	camera	is	outside	the	player’s	character	and	looking	inward	at
that	character.	We’ll	use	a	model	that	looks	like	a	humanoid	character	(rather
than	a	primitive	capsule)	because	now	players	can	actually	see	themselves.

Recall	that	two	of	the	types	of	art	assets	discussed	in	chapter	4	were	3D	models
and	animations.	The	term	3D	model	is	almost	a	synonym	for	mesh	object;	the
3D	model	is	the	static	shape	defined	by	vertices	and	polygons	(that	is,	mesh

geometry).	For	a	humanoid	character,	this	mesh	geometry	is	shaped	into	a	head,
arms,	legs,	and	so	forth	(see	figure	7.2).

As	usual,	we’ll	focus	on	the	last	step	in	the	roadmap:	programming	objects	in	the
scene.	Here’s	a	recap	of	our	plan	of	action:

1.		Import	a	character	model	into	the	scene.

2.		Implement	camera	controls	to	look	at	the	character.

3.		Write	a	script	that	enables	the	player	to	run	around	on	the	ground.

4.		Add	the	ability	to	jump	to	the	movement	script.

5.		Play	animations	on	the	model	based	on	its	movements.

Copy	the	project	from	chapter	2	to	modify	it,	or	create	a	new	Unity	project	(be
sure	it’s	set	to	3D,	not	the	2D	project	from	chapter	5)	and	copy	over	the	scene
file	from	chapter	2’s	project;	either	way,	also	grab	the	scratch	folder	from	this
chapter’s	download	to	get	the	character	model	we’ll	use.

Note

We’re	going	to	build	this	chapter’s	project	in	the	walled	area	from	chapter	2.
We’ll	keep	the	walls	and	lights	but	replace	the	player	and	all	scripts.	If	you	need
them,	download	the	sample	files	from	that	chapter.

Assuming	you’re	starting	with	the	completed	project	from	chapter	2	(the
movement	demo,	not	later	projects),	let’s	delete	everything	we	don’t	need	for
this	chapter.	First	disconnect	the	camera	from	the	player	in	the	Hierarchy	list
(drag	the	camera	object	off	the	player	object).	Now	delete	the	player	object;	if
you	hadn’t	disconnected	the	camera	first	then	that	would	be	deleted	too,	but
what	you	want	is	to	delete	only	the	player	capsule	and	leave	the	camera.
Alternatively,	if	you	already	deleted	the	camera	by	accident,	create	a	new	camera
object	by	selecting	GameObject	>	Camera.

Delete	all	the	scripts	as	well	(which	involves	removing	the	script	component
from	the	camera	as	well	as	deleting	the	files	in	the	Project	view),	leaving	only

the	walls,	floor,	and	lights.

7.1.	Adjusting	the	camera	view	for	third-person

Before	we	can	write	code	to	make	the	player	move	around,	we	need	to	put	a
character	in	the	scene	and	set	up	the	camera	to	look	at	that	character.	We’ll
import	a	faceless	humanoid	model	to	use	as	the	player	character,	and	then	place
the	camera	above	at	an	angle	to	look	down	at	the	player	obliquely.	Figure	7.3
compares	what	the	scene	looks	like	in	first-person	view	with	what	the	scene	will
look	like	in	third-person	view	(shown	with	a	few	large	blocks	that	we’ll	add	in
this	chapter).

Figure	7.3.	Side-by-side	comparison	of	first-person	and	third-person	views

We	prepared	the	scene	already,	so	now	let’s	put	a	character	model	into	the	scene.

7.1.1.	Importing	a	character	to	look	at

The	scratch	folder	for	this	chapter’s	download	includes	both	the	model	and	the
texture;	as	you’ll	recall	from	chapter	4,	FBX	is	the	model	and	TGA	is	the
texture.	Import	the	FBX	file	into	the	project;	either	drag	the	file	into	the	Project
view,	or	right-click	in	the	Project	view	and	select	Import	New	Asset.	Then	look
in	the	Inspector	to	adjust	import	settings	for	the	model.	Later	in	the	chapter
you’ll	adjust	imported	animations,	but	for	now	you	need	to	make	only	a	couple
of	adjustments	in	the	Model	tab.	First	change	the	Scale	Factor	value	to	10	(to
partially	counteract	the	File	Scale	value	of	.01)	so	that	the	model	will	be	the
correct	size.

A	bit	farther	down	you’ll	find	the	Normals	option	(see	figure	7.4).	This	setting

controls	how	lighting	and	shading	appear	on	the	model,	using	a	3D	math	concept
known	as,	well,	normals.

Figure	7.4.	Import	settings	for	the	character	model

Definition

Normals	are	direction	vectors	sticking	out	of	polygons	that	tell	the	computer
which	direction	the	polygon	is	facing.	This	facing	direction	is	used	for	lighting
calculations.

The	default	setting	for	Normals	is	Import,	which	will	use	the	normals	defined	in
the	imported	mesh	geometry.	But	this	particular	model	doesn’t	have	correctly
defined	normals	and	will	react	in	odd	ways	to	lights.	Instead,	change	the	setting
to	Calculate	so	that	Unity	will	calculate	a	vector	for	the	facing	direction	of	every
polygon.

Once	you’ve	adjusted	these	two	settings,	click	the	Apply	button	in	the	Inspector.
Next	import	the	TGA	file	into	the	project	and	then	assign	this	image	as	the
texture	in	a	material.	Select	the	player	material	in	the	Materials	folder.	Drag	the
texture	image	onto	the	empty	texture	slot	in	the	Inspector.	Once	the	texture	is
applied	you	won’t	see	a	dramatic	change	in	the	model’s	color	(this	texture	image
is	mostly	white),	but	there	are	shadows	painted	into	the	texture	that’ll	improve
the	look	of	the	model.

With	the	texture	applied,	drag	the	player	model	from	the	Project	view	up	into	the
scene.	Position	the	character	at	0,	1.1,	0	so	that	it’ll	be	in	the	center	of	the	room
and	raised	up	to	stand	on	the	floor.	Great,	we	have	a	third-person	character	in	the
scene!

Note

The	imported	character	has	his	arms	stuck	straight	out	to	the	sides,	rather	than
the	more	natural	arms-down	pose.	That’s	because	animations	haven’t	been
applied	yet;	that	arms-out	position	is	referred	to	as	the	T-pose	and	the	standard	is
for	animated	characters	to	default	to	a	T-pose	before	they’re	animated.

7.1.2.	Adding	shadows	to	the	scene

Before	we	move	on,	I	want	to	explain	a	bit	about	the	shadow	being	cast	by	the
character.	We	take	shadows	for	granted	in	the	real	world,	but	shadows	aren’t
guaranteed	in	the	game’s	virtual	world.	Fortunately	Unity	can	handle	this	detail,
and	shadows	are	turned	on	for	the	default	light	that	comes	with	new	scenes.
Select	the	directional	light	in	your	scene	and	then	look	in	the	Inspector	for	the
Shadow	Type	option.	That	setting	(shown	in	figure	7.5)	is	already	on	Soft
Shadows	for	the	default	light,	but	notice	the	menu	also	has	a	No	Shadows
option.

Figure	7.5.	Before	and	after	casting	shadows	from	the	directional	light

That’s	all	you	need	to	do	to	set	up	shadows	in	this	project,	but	there’s	a	lot	more
you	should	know	about	shadows	in	games.	Calculating	the	shadows	in	a	scene	is
a	particularly	time-consuming	part	of	computer	graphics,	so	games	often	cut

corners	and	fake	things	in	various	ways	in	order	to	achieve	the	visual	look
desired.	The	kind	of	shadow	cast	from	the	character	is	referred	to	as	real-time
shadow	because	the	shadow	is	calculated	while	the	game	is	running	and	moves
around	with	moving	objects.	A	perfectly	realistic	lighting	setup	would	have	all
objects	casting	and	receiving	shadows	in	real	time,	but	in	order	for	the	shadow
calculations	to	run	fast	enough,	real-time	shadows	are	limited	in	how	the
shadows	look	or	which	lights	can	even	cast	shadows.	Note	that	only	the
directional	light	is	casting	shadows	in	this	scene.

Another	common	way	of	handling	shadows	in	games	is	with	a	technique	called
lightmapping.

Definition

Lightmaps	are	textures	applied	to	the	level	geometry,	with	pictures	of	the
shadows	baked	into	the	texture	image.

Definition

Drawing	shadows	onto	a	model’s	texture	is	referred	to	as	baking	the	shadows.

Because	these	images	are	generated	ahead	of	time	(rather	than	while	the	game	is
running),	they	can	be	very	elaborate	and	realistic.	On	the	downside,	because	the
shadows	are	generated	ahead	of	time,	they	won’t	move.	Thus,	lightmaps	are
great	to	use	for	static	level	geometry,	but	they	aren’t	useful	for	dynamic	objects
like	characters.	Lightmaps	are	generated	automatically	rather	than	being	painted
by	hand.	The	computer	calculates	how	the	lights	in	the	scene	will	illuminate	the
level	while	subtle	darkness	builds	up	in	corners.	In	Unity,	the	system	for
rendering	lightmaps	is	called	Enlighten,	so	you	can	look	up	that	keyword	in
Unity’s	manual.

Whether	or	not	to	use	real-time	shadows	or	lightmaps	isn’t	an	all-or-nothing
choice.	You	can	set	the	Culling	Mask	property	on	a	light	so	that	real-time
shadows	are	used	only	for	certain	objects,	allowing	you	to	use	the	higher-quality
lightmaps	for	other	objects	in	the	scene.	Similarly,	though	you	almost	always
want	the	main	character	to	cast	shadows,	sometimes	you	don’t	want	the
character	to	receive	shadows;	all	mesh	objects	have	settings	to	cast	and	receive

shadows	(see	figure	7.6).

Figure	7.6.	The	Cast	Shadows	and	Receive	Shadows	settings	in	the	Inspector

Definition

Culling	is	a	general	term	for	removing	unwanted	things.	The	word	comes	up	a
lot	in	computer	graphics	in	many	different	contexts,	but	in	this	case	culling	mask
is	the	set	of	objects	you	want	to	remove	from	shadow	casting.

All	right,	now	you	understand	the	basics	of	how	to	apply	shadows	to	your
scenes.	Lighting	and	shading	a	level	can	be	a	big	topic	unto	itself	(books	about
level	editing	will	often	spend	multiple	chapters	on	lightmapping),	but	here	we
restrict	ourselves	to	turning	on	real-time	shadows	on	one	light.	And	with	that,
let’s	turn	our	attention	to	the	camera.

7.1.3.	Orbiting	the	camera	around	the	player	character

In	the	first-person	demo,	the	camera	was	linked	to	the	player	object	in	Hierarchy
view	so	that	they’d	rotate	together.	In	third-person	movement,	though,	the	player
character	will	be	facing	different	directions	independently	of	the	camera.
Therefore,	you	don’t	want	to	drag	the	camera	onto	the	player	character	in	the
Hierarchy	view	this	time.	Instead,	the	camera’s	code	will	move	its	position	along
with	the	character	but	will	rotate	independently	of	the	character.

First,	place	the	camera	where	you	want	it	to	be	relative	to	the	player;	I	went	with
position	0,	3.5,	-3.75	to	put	the	camera	above	and	behind	the	character	(reset
rotation	to	0,	0,	0	if	needed).	Then	create	a	script	called	OrbitCamera	(see	the

next	listing).	Attach	the	script	component	to	the	camera	and	then	drag	the	player
character	into	the	Target	slot	of	the	script.	Now	you	can	play	the	scene	to	see	the
camera	code	in	action.

Listing	7.1.	Camera	script	for	rotating	around	a	target	while	looking	at	it

As	you’re	reading	through	the	listing,	note	the	serialized	variable	for	target.
The	code	needs	to	know	what	object	to	orbit	the	camera	around,	so	this	variable
is	serialized	in	order	to	appear	within	Unity’s	editor	and	have	the	player
character	linked	to	it.	The	next	couple	of	variables	are	rotation	values	that	are
used	in	the	same	way	as	in	the	camera	control	code	from	chapter	2.	And	there’s
an	_offset	value	declared;	_offset	is	set	within	Start()	to	store	the
position	difference	between	the	camera	and	target.	This	way,	the	relative	position
of	the	camera	can	be	maintained	while	the	script	runs.	In	other	words,	the
camera	will	stay	at	the	initial	distance	from	the	character	regardless	of	which
way	it	rotates.	The	remainder	of	the	code	is	inside	the	LateUpdate()
function.

Tip

LateUpdate()	is	another	method	provided	by	MonoBehaviour	and	it’s
very	similar	to	Update();	it’s	a	method	run	every	frame.	The	difference,	as	the
name	implies,	is	that	LateUpdate()	is	called	on	all	objects	after	Update()
has	run	on	all	objects.	This	way,	we	can	ensure	that	the	camera	updates	after	the
target	has	moved.

First,	the	code	increments	the	rotation	value	based	on	input	controls.	This	code
looks	at	two	different	input	controls—horizontal	arrow	keys	and	horizontal
mouse	movement—so	a	conditional	is	used	to	switch	between	them.	The	code
checks	if	horizontal	arrow	keys	are	being	pressed;	if	they	are,	then	it	uses	that
input,	but	if	not,	it	checks	the	mouse.	By	checking	the	two	inputs	separately,	the
code	can	rotate	at	different	speeds	for	each	type	of	input.

Next,	the	code	positions	the	camera	based	on	the	position	of	the	target	and	the
rotation	value.	The	transform.position	line	is	probably	the	biggest
“aha!”	in	this	code,	because	it	provides	some	crucial	math	that	you	haven’t	seen
before	in	previous	chapters.	Multiplying	a	position	vector	by	a	quaternion	(note
that	the	rotation	angle	was	converted	to	a	quaternion	using
Quaternion.Euler)	results	in	a	position	that’s	shifted	over	according	to	that
rotation.	This	rotated	position	vector	is	then	added	as	the	offset	from	the
character’s	position	in	order	to	calculate	the	position	for	the	camera.	Figure	7.7
illustrates	the	steps	of	the	calculation	and	provides	a	detailed	breakdown	of	this
rather	conceptually	dense	line	of	code.

Figure	7.7.	The	steps	for	calculating	the	camera’s	position

Note

The	more	mathematically	astute	among	you	may	be	thinking	“Hmm,	that
transforming-between-coordinate-systems	thing	in	chapter	2...can’t	we	do	that
here,	too?”	The	answer	is,	yes,	we	could	transform	the	offset	position	using	a
rotated	coordinate	system	to	get	the	rotated	offset.	But	that’d	require	setting	up
the	rotated	coordinate	system	first,	and	it’s	more	straightforward	not	to	need	that
step.

Finally,	the	code	uses	the	LookAt()	method	to	point	the	camera	at	the	target;
this	function	points	one	object	(not	just	cameras)	at	another	object.	The	rotation
value	calculated	before	was	used	to	position	the	camera	at	the	correct	angle
around	the	target,	but	in	that	step	the	camera	was	only	positioned	and	not
rotated.	Thus	without	the	final	LookAt	line,	the	camera	position	would	orbit
around	the	character	but	wouldn’t	necessarily	be	looking	at	it.	Go	ahead	and
comment	out	that	line	to	see	what	happens.

The	camera	has	its	script	for	orbiting	around	the	player	character;	next	up	is	code
that	moves	the	character	around.

7.2.	Programming	camera-relative	movement	controls

Now	that	the	character	model	is	imported	into	Unity	and	we’ve	written	code	to
control	the	camera	view,	it’s	time	to	program	controls	for	moving	around	the
scene.	Let’s	program	camera-relative	controls	that’ll	move	the	character	in
various	directions	when	arrow	keys	are	pressed,	as	well	as	rotate	the	character	to
face	those	different	directions.

What	does	“camera-relative”	mean?

The	whole	notion	of	“camera-relative”	is	a	bit	nonobvious	but	very	crucial	to
understand.	This	is	similar	to	the	local	versus	global	distinction	mentioned	in
previous	chapters:	“left”	points	in	different	directions	when	you	mean	“left	of
the	local	object”	or	“left	of	the	entire	world.”	In	a	similar	way,	when	you	“move
the	character	to	the	left,”	do	you	mean	toward	the	character’s	left,	or	the	left	side
of	the	screen?

The	camera	in	a	first-person	game	is	placed	inside	the	character	and	moves	with
it,	so	no	distinction	exists	between	the	character’s	left	and	the	camera’s	left.	A
third-person	view	places	the	camera	outside	the	character,	though,	and	thus	the
camera’s	left	may	be	pointed	in	a	different	direction	from	the	character’s	left.	For
example,	they’re	literally	opposite	directions	if	the	camera	is	looking	at	the	front
of	the	character.	Thus	we	have	to	decide	what	we	want	to	have	happen	in	our
specific	game	and	controls	setup.

Although	occasionally	games	do	it	the	other	way,	most	third-person	games	make
their	controls	camera-relative.	When	the	player	presses	the	left	button,	the
character	moves	to	the	left	of	the	screen,	not	the	character’s	left.	Over	time	and
through	experiments	with	trying	out	different	control	schemes,	game	designers
have	figured	out	that	players	find	the	controls	more	intuitive	and	easier	to
understand	when	“left”	means	“left	side	of	the	screen”	(which,	not
coincidentally,	is	also	the	player’s	left).

Implementing	camera-relative	controls	involves	two	primary	steps:	first	rotate
the	player	character	to	face	the	direction	of	the	controls,	and	then	move	the
character	forward.	Let’s	write	the	code	for	these	two	steps	next.

7.2.1.	Rotating	the	character	to	face	movement	direction

First	we’ll	write	code	to	make	the	character	face	in	the	direction	of	the	arrow
keys.	Create	a	C#	script	called	RelativeMovement	(see	listing	7.2).	Drag	that
script	onto	the	player	character,	and	then	link	the	camera	to	the	target
property	of	the	script	component	(just	like	you’d	linked	the	character	to	the
target	of	the	camera	script).	Now	the	character	will	face	different	directions
when	you	press	the	controls,	facing	directions	relative	to	the	camera,	or	stand
still	when	you’re	not	pressing	any	arrow	keys	(that	is,	when	rotating	using	the
mouse).

Listing	7.2.	Rotating	the	character	relative	to	the	camera

The	code	in	this	listing	starts	the	same	way	as	listing	7.1	did,	with	a	serialized
variable	for	target.	Just	as	the	previous	script	needed	a	reference	to	the	object
it’d	orbit	around,	this	script	needs	a	reference	to	the	object	it’ll	move	relative	to.
Then	we	get	to	the	Update()	function.	The	first	line	of	the	function	declares	a
Vector3	value	of	0,	0,	0.	It’s	important	to	create	a	zeroed	vector	and	fill	in	the
values	later	rather	than	simply	create	a	vector	later	with	the	movement	values
calculated,	because	the	vertical	and	horizontal	movement	values	will	be
calculated	in	different	steps	and	yet	they	all	need	to	be	part	of	the	same	vector.

Next	we	check	the	input	controls,	just	as	we	have	in	previous	scripts.	Here’s
where	X	and	Z	values	are	set	in	the	movement	vector,	for	horizontal	movement

around	the	scene.	Remember	that	Input.GetAxis()	returns	0	if	no	button	is
pressed,	and	it	varies	between	1	and	–1	when	those	keys	are	being	pressed;
putting	that	value	in	the	movement	vector	sets	the	movement	to	the	positive	or
negative	direction	of	that	axis	(the	X-axis	is	left-right,	and	the	Z-axis	is	forward-
backward).

The	next	several	lines	are	where	the	movement	vector	is	adjusted	to	be	camera-
relative.	Specifically,	TransformDirection()	is	used	to	transform	from
Local	to	Global	coordinates.	This	is	the	same	thing	we	did	with
TransformDirection()	in	chapter	2,	except	this	time	we’re	transforming
from	the	target’s	coordinate	system	instead	of	from	the	player’s	coordinate
system.	Meanwhile,	the	code	just	before	and	after	the
TransformDirection()	line	is	aligning	the	coordinate	system	for	our
needs:	first	store	the	target’s	rotation	to	restore	later,	and	then	adjust	the	rotation
so	that	it’s	only	around	the	Y-axis	and	not	all	three	axes.	Finally	perform	the
transformation	and	restore	the	target’s	rotation.

All	of	that	code	was	for	calculating	the	movement	direction	as	a	vector.	The	final
line	of	code	applies	that	movement	direction	to	the	character	by	converting	the
Vector3	into	a	Quaternion	using	Quaternion.LookDirection()
and	assigning	that	value.	Try	running	the	game	now	to	see	what	happens!

Smoothly	rotating	(interpolating)	by	using	Lerp

Currently,	the	character’s	rotation	snaps	instantly	to	different	facings,	but	it’d
look	better	if	the	character	smoothly	rotated	to	different	facings.	We	can	do	so
using	a	mathematical	operation	called	Lerp.	First	add	this	variable	to	the	script:

public	float	rotSpeed	=	15.0f;

Then	replace	the	existing	transform.rotation...	line	at	the	end	of
listing	7.2	with	the	following	code:

...

						Quaternion	direction	=	Quaternion.LookRotation(movement);

						transform.rotation	=	Quaternion.Lerp(transform.rotation,

										direction,	rotSpeed	*	Time.deltaTime);

				}

		}

}

Now	instead	of	snapping	directly	to	the	LookRotation()	value,	that	value	is
used	indirectly	as	the	target	direction	to	rotate	toward.	The
Quaternion.Lerp()	method	smoothly	rotates	between	the	current	and
target	rotations	(with	the	third	parameter	controlling	how	quickly	to	rotate).

Incidentally,	the	term	for	smoothly	changing	between	values	is	interpolate;	you
can	interpolate	between	two	of	any	kind	of	value,	not	just	rotation	values.	Lerp	is
a	quasi-acronym	for	“linear	interpolation,”	and	Unity	provides	Lerp	methods	for
vectors	and	float	values,	too	(to	interpolate	positions,	colors,	or	anything).
Quaternions	also	have	a	closely	related	alternative	method	for	interpolation
called	Slerp	(for	spherical	linear	interpolation).	For	slower	turns,	Slerp	rotations
may	look	better	than	Lerp.

Currently	the	character	is	rotating	in	place	without	moving;	in	the	next	section
we’ll	add	code	for	moving	the	character	around.

Note

Because	sideways	facing	uses	the	same	keyboard	controls	as	orbiting	the
camera,	the	character	will	slowly	rotate	while	the	movement	direction	points
sideways.	This	doubling	up	of	the	controls	is	desired	behavior	in	this	project.

7.2.2.	Moving	forward	in	that	direction

As	you’ll	recall	from	chapter	2,	in	order	to	move	the	player	around	the	scene,	we
need	to	add	a	character	controller	component	to	the	player	object.	Select	the
character	and	then	choose	Components	>	Physics	>	Character	Controller.	In	the
Inspector	you	should	slightly	reduce	the	controller’s	radius	to	.4,	but	otherwise
the	default	settings	are	all	fine	for	this	character	model.

The	next	listing	shows	what	you	need	to	add	in	the	RelativeMovement	script.

Listing	7.3.	Adding	code	to	change	the	player’s	position

If	you	play	the	game	now,	you	can	see	the	character	(stuck	in	a	T-pose)	moving
around	in	the	scene.	Pretty	much	the	entirety	of	this	listing	is	code	you’ve
already	seen	before,	so	I’ll	just	review	everything	briefly.

First,	there’s	a	RequireComponent()	method	at	the	top	of	the	code.	As
explained	in	chapter	2,	RequireComponent()	will	force	Unity	to	make	sure
the	GameObject	has	a	component	of	the	type	passed	into	the	command.	This	line
is	optional;	you	don’t	have	to	require	it,	but	without	this	component	the	script
will	have	errors.

Next	there’s	a	movement	value	declared,	followed	by	getting	this	script	a
reference	to	the	character	controller.	As	you’ll	recall	from	previous	chapters,
GetComponent()	returns	other	components	attached	to	the	given	object,	and
if	the	object	to	search	on	isn’t	explicitly	defined,	then	it’s	assumed	to	be
this.GetComponent()	(that	is,	the	same	object	as	this	script).

Movement	values	are	assigned	based	on	the	input	controls.	This	was	in	the
previous	listing,	too;	the	change	here	is	that	we	also	account	for	the	movement
speed.	Multiply	both	movement	axes	by	the	movement	speed,	and	then	use
Vector3.Clamp-Magnitude()	to	limit	the	vector’s	magnitude	to	the
movement	speed;	the	clamp	is	needed	because	otherwise	diagonal	movement
would	have	a	greater	magnitude	than	movement	directly	along	an	axis	(picture

the	sides	and	hypotenuse	of	a	right	triangle).

Finally,	at	the	end	we	multiply	the	movement	values	by	deltaTime	in	order	to
get	frame	rate–independent	movement	(recall	that	“frame	rate-independent”
means	the	character	moves	at	the	same	speed	on	different	computers	with
different	frame	rates).	Pass	the	movement	values	to
CharacterController.Move()	to	make	the	movement.

This	handles	all	the	horizontal	movement;	next	let’s	take	care	of	vertical
movement.

7.3.	Implementing	the	jump	action

In	the	previous	section	we	wrote	code	to	make	the	character	run	around	on	the
ground.	In	the	chapter	introduction,	though,	I	also	mentioned	making	the
character	jump,	so	let’s	do	that	now.	Most	third-person	games	do	have	a	control
for	jumping.	And	even	if	they	don’t,	they	almost	always	have	vertical	movement
from	the	character	falling	off	ledges.	Our	code	will	handle	both	jumping	and
falling.	Specifically,	this	code	will	have	gravity	pulling	the	player	down	at	all
times,	but	occasionally	an	upward	jolt	will	be	applied	when	the	player	jumps.

Before	we	write	this	code,	let’s	add	a	few	raised	platforms	to	the	scene.	There’s
currently	nothing	to	jump	on	or	fall	off	of!	Create	a	couple	more	cube	objects,
and	then	modify	their	positions	and	scale	to	give	the	player	platforms	to	jump
on.	In	the	sample	project,	I	added	two	cubes	and	used	these	settings:	Position	5,
.75,	5	and	Scale	4,	1.5,	4;	Position	1,	1.5,	5.5	and	Scale	4,	3,	4.	Figure	7.8	shows
the	raised	platforms.

Figure	7.8.	A	couple	of	raised	platforms	added	to	the	sparse	scene

7.3.1.	Applying	vertical	speed	and	acceleration

As	mentioned	when	we	first	started	writing	the	RelativeMovement	script	in
listing	7.2,	the	movement	values	are	calculated	in	separate	steps	and	added	to	the
movement	vector	progressively.	The	next	listing	adds	vertical	movement	to	the
existing	vector.

Listing	7.4.	Adding	vertical	movement	to	the	RelativeMovement	script

As	usual	we	start	by	adding	a	few	new	variables	to	the	top	of	the	script	for
various	movement	values,	and	initialize	the	values	correctly.	Then	we	skip	down
to	just	after	the	big	if	statement	for	horizontal	movement,	where	we’ll	add
another	big	if	statement	for	vertical	movement.	Specifically,	the	code	will
check	if	the	character	is	on	the	ground,	because	the	vertical	speed	will	be
adjusted	differently	depending	on	whether	the	character	is	on	the	ground.
CharacterController	includes	isGrounded	for	checking	whether	the
character	is	on	the	ground;	this	value	is	true	if	the	bottom	of	the	character

controller	collided	with	anything	in	the	last	frame.

If	the	character	is	on	the	ground,	then	the	vertical	speed	value	(the	private
variable	_vertSpeed)	should	be	reset	to	essentially	nothing.	The	character
isn’t	falling	while	on	the	ground,	so	obviously	its	vertical	speed	is	0;	if	the
character	then	steps	off	a	ledge,	we’re	going	to	get	a	nice,	natural-looking
motion	because	the	falling	speed	will	accelerate	from	nothing.

Note

Well,	not	exactly	0;	we’re	actually	setting	the	vertical	speed	to	minFall,	a
slight	downward	movement,	so	that	the	character	will	always	be	pressing	down
against	the	ground	while	running	around	horizontally.	There	needs	to	be	some
downward	force	in	order	to	run	up	and	down	on	uneven	terrain.

The	exception	to	this	grounded	speed	value	is	if	the	jump	button	is	clicked.	In
that	case,	the	vertical	speed	should	be	set	to	a	high	number.	The	if	statement
checks	GetButtonDown(),	a	new	input	function	that	works	much	like
GetAxis()	does,	returning	the	state	of	the	indicated	input	control.	And	much
like	Horizontal	and	Vertical	input	axes,	the	exact	key	assigned	to	Jump	is	defined
by	going	to	Input	settings	under	Edit	>	Project	Settings	(the	default	key
assignment	is	Space—that	is,	the	spacebar).

Getting	back	to	the	larger	if	condition,	if	the	character	is	not	on	the	ground,
then	the	vertical	speed	should	be	constantly	reduced	by	gravity.	Note	that	this
code	doesn’t	simply	set	the	speed	value	but	rather	decrements	it;	this	way,	it’s
not	a	constant	speed	but	rather	a	downward	acceleration,	resulting	in	a	realistic
falling	movement.	Jumping	will	happen	in	a	natural	arc,	as	the	character’s
upward	speed	gradually	reduces	to	0	and	it	starts	falling	instead.

Finally,	the	code	makes	sure	the	downward	speed	doesn’t	exceed	terminal
velocity.	Note	that	the	operator	is	“less	than”	and	not	“greater	than,”	because
downward	is	a	negative	speed	value.	Then	after	the	big	if	statement,	assign	the
calculated	vertical	speed	to	the	Y-axis	of	the	movement	vector.

And	that’s	all	you	need	for	realistic	vertical	movement!	By	applying	a	constant
downward	acceleration	when	the	character	isn’t	on	the	ground,	and	adjusting	the

speed	appropriately	when	the	character	is	on	the	ground,	the	code	creates	nice
falling	behavior.	But	this	all	depends	on	detecting	the	ground	correctly,	and
there’s	a	subtle	glitch	we	need	to	fix.

7.3.2.	Modifying	the	ground	detection	to	handle	edges	and	slopes

As	explained	in	the	previous	section,	the	isGrounded	property	of
CharacterController	indicates	whether	the	bottom	of	the	character
controller	collided	with	anything	in	the	last	frame.	Although	this	approach	to
detecting	the	ground	works	the	majority	of	the	time,	you’ll	probably	notice	that
the	character	seems	to	float	in	the	air	while	stepping	off	edges.	That’s	because
the	collision	area	of	the	character	is	a	surrounding	capsule	(you	can	see	it	when
you	select	the	character	object)	and	the	bottom	of	this	capsule	will	still	be	in
contact	with	the	ground	when	the	player	steps	off	the	edge	of	the	platform.
Figure	7.9	illustrates	the	problem.	This	won’t	do	at	all!

Figure	7.9.	Diagram	showing	the	character	controller	capsule	touching	the	platform	edge

Similarly,	if	the	character	stands	on	a	slope,	the	current	ground	detection	will
cause	problematic	behavior.	Try	it	now	by	creating	a	sloped	block	against	the
raised	platforms.	Create	a	new	cube	object	and	set	its	transform	values	to
Position	-1.5,	1.5,	5	Rotation	0,	0,	-25	Scale	1,	4,	4.

If	you	jump	onto	the	slope	from	the	ground,	you’ll	find	that	you	can	jump	again
from	midway	up	the	slope	and	thereby	ascend	to	the	top.	That’s	because	the
slope	does	touch	the	bottom	of	the	capsule	obliquely	and	the	code	currently
considers	any	collision	on	the	bottom	to	be	solid	footing.	Again,	this	won’t	do;
the	character	should	slide	back	down,	not	have	solid	footing	to	jump	from.

Note

Sliding	back	down	is	only	desired	on	steep	slopes.	On	shallow	slopes,	such	as
uneven	ground,	we	want	the	player	to	run	around	unaffected.	If	you	want	one	to
test	on,	make	a	shallow	ramp	by	creating	a	cube	and	set	it	to	Position	5.25,	.25,
.25	Rotation	0,	90,	75	Scale	1,	6,	3.

All	these	problems	have	the	same	root	cause:	checking	for	collisions	on	the
bottom	of	the	character	isn’t	a	great	way	of	determining	if	the	character	is	on	the
ground.	Instead,	let’s	use	raycasting	to	detect	the	ground.	In	chapter	3	the	AI
used	raycasting	to	detect	obstacles	in	front	of	it;	let’s	use	the	same	approach	to
detect	surfaces	below	the	character.	Cast	a	ray	straight	down	from	the	player’s
position.	If	it	registers	a	hit	just	below	the	character’s	feet,	that	means	the	player
is	standing	on	the	ground.

This	does	introduce	a	new	situation	to	handle:	when	the	raycast	doesn’t	detect
ground	below	the	character	but	the	character	controller	is	colliding	with	the
ground.	As	in	figure	7.9,	the	capsule	still	collides	with	the	platform	while	the
character	is	walking	off	the	edge.	Figure	7.10	adds	raycasting	to	the	diagram	in
order	to	show	what	will	happen	now:	the	ray	doesn’t	hit	the	platform,	but	the
capsule	does	touch	the	edge.	The	code	needs	to	handle	this	special	situation.

Figure	7.10.	Diagram	of	raycasting	downward	while	stepping	off	a	ledge

In	this	case,	the	code	should	make	the	character	slide	off	the	ledge.	The	character
will	still	fall	(because	it’s	not	standing	on	the	ground),	but	it’ll	also	push	away
from	the	point	of	collision	(because	it	needs	to	move	the	capsule	away	from	the
platform	it’s	hitting).	Thus	the	code	will	detect	collisions	with	the	character
controller	and	respond	to	those	collisions	by	nudging	away.

The	following	listing	adjusts	the	vertical	movement	with	everything	we	just

discussed.

Listing	7.5.	Using	raycasting	to	detect	the	ground

This	listing	contains	much	of	the	same	code	as	the	previous	listing;	the	new	code
is	interspersed	throughout	the	existing	movement	script	and	this	listing	needed
the	existing	code	for	context.	The	first	line	adds	a	new	variable	to	the	top	of	the
RelativeMovement	script.	This	variable	is	used	to	store	data	about	collisions
between	functions.

The	next	several	lines	do	raycasting.	This	code	also	goes	below	horizontal
movement	but	before	the	if	statement	for	vertical	movement.	The	actual
Physics.Raycast()	call	should	be	familiar	from	previous	chapters,	but	the

specific	parameters	are	different	this	time.	Although	the	position	to	cast	a	ray
from	is	the	same	(the	character’s	position),	the	direction	will	be	down	this	time
instead	of	forward.	Then	we	check	how	far	away	the	raycast	was	when	it	hit
something;	if	the	distance	of	the	hit	is	at	the	distance	of	the	character’s	feet,	then
the	character	is	standing	on	the	ground,	so	set	hitGround	to	true.

Warning

It’s	a	little	nonobvious	how	the	check	distance	is	calculated,	so	let’s	go	over	that
in	detail.	First	take	the	height	of	the	character	controller	(which	is	the	height
without	the	rounded	ends)	and	then	add	the	rounded	ends.	Divide	this	value	in
half	because	the	ray	was	cast	from	the	middle	of	the	character	(that	is,	already
halfway	down)	to	get	the	distance	to	the	bottom	of	the	character.	But	we	really
want	to	check	a	little	beyond	the	bottom	of	the	character	to	account	for	tiny
inaccuracies	in	the	raycasting,	so	divide	by	1.9	instead	of	2	to	get	a	distance
that’s	slightly	too	far.

Having	done	this	raycasting,	use	hitGround	instead	of	isGrounded	in	the
if	statement	for	vertical	movement.	Most	of	the	vertical	movement	code	will
remain	the	same,	but	add	code	to	handle	when	the	character	controller	collides
with	the	ground	even	though	the	player	isn’t	over	the	ground	(that	is,	when	the
player	walks	off	the	edge	of	the	platform).	There’s	a	new	isGrounded
conditional	added,	but	note	that	it’s	nested	inside	the	hitGround	conditional
so	that	isGrounded	is	only	checked	when	hitGround	doesn’t	detect	the
ground.

The	collision	data	includes	a	normal	property	(again,	a	normal	vector	says
which	way	something	is	facing)	that	tells	us	the	direction	to	move	away	from	the
point	of	collision.	But	one	tricky	thing	is	that	we	want	the	nudge	away	from	the
contact	point	to	be	handled	differently	depending	on	which	direction	the	player
is	already	moving:	when	the	previous	horizontal	movement	is	toward	the
platform,	we	want	to	replace	that	movement	so	that	the	character	won’t	keep
moving	in	the	wrong	direction;	but	when	facing	away	from	the	edge,	we	want	to
add	to	the	previous	horizontal	movement	in	order	to	keep	the	forward
momentum	away	from	the	edge.	The	movement	vector’s	facing	relative	to	the
point	of	collision	can	be	determined	using	the	dot	product.

Definition

The	dot	product	is	one	kind	of	mathematical	operation	that	can	be	done	on	two
vectors.	Long	story	short,	the	dot	product	of	two	vectors	ranges	between	-1	and
1,	with	1	meaning	they	point	in	exactly	the	same	direction,	and	-1	when	they
point	in	exactly	opposite	directions.	Don’t	confuse	“dot	product”	and	“cross
product”;	the	cross	product	is	a	different	but	also	commonly	seen	vector	math
operation.

Vector3	includes	a	Dot()	function	to	calculate	the	dot	product	of	two	given
vectors.	If	we	calculate	the	dot	product	between	the	movement	vector	and	the
collision	normal,	that	will	return	a	negative	number	when	the	two	directions	face
away	from	each	other	and	a	positive	number	when	the	movement	and	the
collision	face	the	same	direction.

Finally,	the	very	end	of	listing	7.5	adds	a	new	method	to	the	script.	In	the
previous	code	we	were	checking	the	collision	normal,	but	where	did	that
information	come	from?	It	turns	out	that	collisions	with	the	character	controller
are	reported	through	a	callback	function	called
OnControllerColliderHit()	that	MonoBehaviour	provides;	in	order
to	respond	to	the	collision	data	anywhere	else	in	the	script,	that	data	must	be
stored	in	an	external	variable.	That’s	all	the	method	is	doing	here:	storing	the
collision	data	in	_contact	so	that	this	data	can	be	used	within	the	Update()
method.

Now	the	errors	are	corrected	around	platform	edges	and	on	slopes.	Go	ahead	and
play	to	test	it	out	by	stepping	over	edges	and	jumping	onto	the	steep	slope.	This
movement	demo	is	almost	complete.	The	character	is	moving	around	the	scene
correctly,	so	only	one	thing	remains:	animating	the	character	out	of	the	T-pose.

7.4.	Setting	up	animations	on	the	player	character

Besides	the	more	complex	shape	defined	by	mesh	geometry,	a	humanoid
character	needs	animations.	In	chapter	4	you	learned	that	an	animation	is	a
packet	of	information	that	defines	movement	of	the	associated	3D	object.	The
concrete	example	I	gave	was	of	a	character	walking	around,	and	that	situation	is

exactly	what	you’re	going	to	be	doing	now!	The	character	is	going	to	run	around
the	scene,	so	you’ll	assign	animations	that	make	the	arms	and	legs	swing	back
and	forth.	Figure	7.11	shows	what	it’ll	look	like	when	the	character	has	an
animation	playing	while	it	moves	around	the	scene.

Figure	7.11.	Character	moving	around	with	a	run	animation	playing

A	good	analogy	with	which	to	understand	3D	animation	is	to	think	about
puppeteering:	3D	models	are	the	puppets,	the	animator	is	the	puppeteer,	and	an
animation	is	a	recording	of	the	puppet’s	movements.	Animations	can	be	created
with	a	few	different	approaches;	most	character	animation	in	modern	games
(certainly	all	the	animations	on	this	chapter’s	character)	uses	a	technique	called
skeletal	animation.

Definition

Skeletal	animation	is	a	kind	of	animation	where	a	series	of	bones	are	set	up
inside	the	model,	and	then	the	bones	are	moved	around	during	the	animation.
When	a	bone	moves,	the	model’s	surface	linked	to	that	bone	moves	along	with
it.

As	the	name	implies,	skeletal	animation	makes	the	most	intuitive	sense	when
simulating	the	skeleton	inside	a	character	(figure	7.12	illustrates	this),	but	the
“skeleton”	is	an	abstraction	that’s	useful	any	time	you	want	a	model	to	bend	and
flex	while	still	having	a	definite	structure	to	how	it	moves	(for	example,	a
tentacle	that	waves	around).	Although	the	bones	move	rigidly,	the	model	surface
around	the	bones	can	bend	and	flex.

Figure	7.12.	Skeletal	animation	of	a	humanoid	character

Achieving	the	result	illustrated	in	figure	7.11	involves	several	steps:	first	define
animation	clips	in	the	imported	file,	then	set	up	the	controller	to	play	those
animation	clips,	and	finally	incorporate	that	animation	controller	in	your	code.
The	animations	on	the	character	model	will	be	played	back	according	to	the
movement	scripts	you’ll	write.

Of	course	the	very	first	thing	you	need	to	do,	before	any	of	those	steps,	is	turn	on
the	animation	system.	Select	the	player	model	in	the	Project	view	to	see	its
Import	settings	in	the	Inspector.	Select	the	Animations	tab	and	make	sure	Import
Animation	is	checked.	Then	go	to	the	Rig	tab	and	switch	Animation	Type	from
Generic	to	Humanoid	(this	is	a	humanoid	character,	naturally).	Note	that	this	last
menu	also	has	a	Legacy	setting;	Generic	and	Humanoid	are	both	settings	within
the	umbrella	term	Mecanim.

Explaining	Unity’s	Mecanim	animation	system

Unity	has	a	sophisticated	system	for	managing	animations	on	models,	called
Mecanim.	Mecanim	is	based	on	skeletal	animation,	the	style	of	animation
defined	in	this	chapter.	The	special	name	Mecanim	identifies	the	newer,	more
advanced	animation	system	that	was	recently	added	to	Unity	as	a	replacement
for	the	older	animation	system.	The	older	system	is	still	around,	identified	as
Legacy	animation,	but	it	may	be	phased	out	in	a	future	version	of	Unity,	at	which
point	Mecanim	will	simply	be	the	animation	system.

Although	the	animations	we’re	going	to	use	are	all	included	in	the	same	FBX
file	as	our	character	model,	one	of	the	major	advantages	of	Mecanim’s	approach
is	that	you	can	apply	animations	from	other	FBX	files	to	a	character.	For
example,	all	of	the	human	enemies	can	share	a	single	set	of	animations.	This	has
a	number	of	advantages,	including	keeping	all	your	data	organized	(models	can
go	in	one	folder,	whereas	animations	go	in	another	folder)	as	well	as	saving	time
spent	animating	each	separate	character.

Click	the	Apply	button	at	the	bottom	of	the	Inspector	in	order	to	lock	these
settings	onto	the	imported	model	and	then	continue	defining	animation	clips.

Warning

You	may	notice	a	warning	(not	an	error)	in	the	console	that	says	“conversion
warning:	spine3	is	between	humanoid	transforms.”	That	specific	warning	isn’t	a
cause	for	worry;	it	indicates	that	the	skeleton	in	the	imported	model	has	extra
bones	beyond	the	skeleton	that	Mecanim	expects.

7.4.1.	Defining	animation	clips	in	the	imported	model

The	first	step	in	setting	up	animations	for	our	character	is	defining	the	various
animation	clips	that’ll	be	played.	If	you	think	about	a	lifelike	character,	different
movements	can	happen	at	different	times:	sometimes	the	player	is	running
around,	sometimes	the	player	is	jumping	on	platforms,	and	sometimes	the
character	is	just	standing	there	with	its	arms	down.	Each	of	these	movements	is	a
separate	“clip”	that	can	play	individually.

Often	imported	animations	come	as	a	single	long	clip	that	can	be	cut	up	into
shorter	individual	animations.	To	split	up	the	animation	clips,	first	select	the
Animations	tab	in	the	Inspector.	You’ll	see	a	Clips	panel,	shown	in	figure	7.13;
this	lists	all	the	defined	animation	clips,	which	initially	are	one	imported	clip.
You’ll	notice	+	and	–	buttons	at	the	bottom	of	the	list;	you	use	these	buttons	to
add	and	remove	clips	on	the	list.	Ultimately	we	need	four	clips	for	this	character,
so	add	and	remove	clips	as	necessary	while	you	work.

Figure	7.13.	The	Clips	list	in	Animation	settings

When	you	select	a	clip,	information	about	that	clip	(shown	in	figure	7.14)	will
appear	in	the	area	below	the	list.	The	top	of	this	information	area	shows	the
name	of	this	clip,	and	you	can	type	in	a	new	name.	Name	our	first	clip	idle.
Define	Start	and	End	frames	for	this	animation	clip;	this	allows	you	to	slice	a
chunk	out	of	the	longer	imported	animation.	For	the	idle	animation	enter	Start	3
and	End	141.	Next	up	are	the	Loop	settings.

Figure	7.14.	Information	about	the	selected	animation	clip

Definition

Loop	refers	to	a	recording	that	plays	over	and	over	repeatedly.	A	looping
animation	clip	is	one	that	plays	again	from	the	start	as	soon	as	playback	reaches
the	end.

The	idle	animation	loops,	so	select	both	Loop	Time	and	Loop	Pose.	Incidentally,
the	green	indicator	dot	tells	you	when	the	pose	at	the	beginning	of	the	clip

matches	the	pose	at	the	end	for	correct	looping;	this	indicator	turns	yellow	when
the	poses	are	somewhat	off,	and	it	turns	red	when	the	start	and	end	poses	are
completely	different.

Below	the	Loop	settings	are	a	series	of	settings	related	to	the	root	transform.	The
word	root	means	the	same	thing	for	skeletal	animation	as	it	does	for	a	hierarchy
connected	within	Unity:	the	root	object	is	the	base	object	that	everything	else	is
connected	to.	Thus	the	animation	root	can	be	thought	of	as	the	base	of	the
character,	and	everything	else	moves	relative	to	that	base.	There	are	a	few
different	settings	here	for	setting	up	that	base,	and	you	may	want	to	experiment
here	when	working	with	your	own	animations.	For	our	purposes,	though,	the
settings	should	be	Body	Orientation,	Center	Of	Mass,	and	Center	Of	Mass,	in
that	order.

Now	click	Apply	and	you’ve	added	an	idle	animation	clip	to	your	character.	Do
the	same	for	two	more	clips:	walk	starts	at	frame	144	and	ends	at	169,	and	run
starts	at	171	and	ends	at	190.	All	the	other	settings	should	be	the	same	as	for	idle
because	they’re	also	animation	loops.

The	fourth	animation	clip	is	jump,	and	the	settings	for	that	clip	differ	a	bit.	First,
this	isn’t	a	loop	but	rather	a	still	pose,	so	don’t	select	Loop	Time.	Set	the	Start
and	End	to	190.5	and	191;	this	is	a	single-frame	pose,	but	Unity	requires	that
Start	and	End	be	different.	The	animation	preview	below	won’t	look	quite	right
because	of	these	tricky	numbers,	but	this	pose	will	look	fine	in	the	game.

Click	Apply	to	confirm	the	new	animation	clips,	and	then	move	on	to	the	next
step:	creating	the	animation	controller.

7.4.2.	Creating	the	animator	controller	for	these	animations

The	next	step	is	to	create	the	animator	controller	for	this	character.	This	step
allows	us	to	set	up	animation	states	and	create	transitions	between	those	states.
Various	animation	clips	are	played	during	different	animation	states,	and	then
our	scripts	will	cause	the	controller	to	shift	between	animation	states.

This	might	seem	like	an	odd	bit	of	indirection—putting	the	abstraction	of	a
controller	between	our	code	and	the	actual	playing	of	animations.	You	may	be
familiar	with	systems	where	you	directly	play	animations	from	your	code;

indeed,	the	old	Legacy	animation	system	worked	in	exactly	that	way,	with	calls
like	Play("idle").	But	this	indirection	enables	us	to	share	animations
between	models,	rather	than	only	being	able	to	play	animations	that	are	internal
to	this	model.	In	this	chapter	we	won’t	take	advantage	of	this	ability,	but	keep	in
mind	that	it	can	be	helpful	when	you’re	working	on	a	larger	project.	You	can
obtain	your	animations	from	several	sources,	including	multiple	animators,	or
you	can	buy	individual	animations	from	stores	online	(such	as	Unity’s	Asset
Store).

Begin	by	creating	a	new	animator	controller	asset	(Assets	>	Create>	Animator
Controller—not	Animation,	a	different	sort	of	asset).	In	the	Project	view	you’ll
see	an	icon	with	a	funny-looking	network	of	lines	on	it	(see	figure	7.15);	rename
this	asset	to	player.	Select	the	character	in	the	scene	and	you’ll	notice	this
object	has	a	component	called	Animator;	any	model	that	can	be	animated	has
this	component,	in	addition	to	the	Transform	component	and	whatever	else
you’ve	added.	The	Animator	component	has	a	Controller	slot	for	you	to	link	a
specific	animator	controller,	so	drag	and	drop	your	new	controller	asset	(and	be
sure	to	uncheck	Root	Motion).

Figure	7.15.	Animator	controller	and	Animator	component

The	animator	controller	is	a	tree	of	connected	nodes	(hence	the	icon	on	that
asset)	that	you	can	see	and	manipulate	by	opening	the	Animator	view.	This	is
another	view	just	like	Scene	or	Project	(shown	in	figure	7.16)	except	this	view
isn’t	open	by	default.	Select	Animator	from	the	Window	menu	(be	careful	not	to
get	confused	with	the	Animation	window;	that’s	a	separate	selection	from
Animator).	The	node	network	displayed	here	is	whichever	animator	controller	is
currently	selected	(or	the	animator	controller	on	the	selected	character).

Figure	7.16.	The	Animator	view	with	our	completed	animator	controller

Tip

Remember	that	you	can	move	tabs	around	in	Unity	and	dock	them	wherever	you
like	in	order	to	organize	the	interface.	I	like	to	dock	the	Animator	right	next	to
the	Scene	and	Game	windows.

Initially	there	are	only	two	default	nodes,	for	Entry	and	Any	State.	You’re	not
going	to	use	the	Any	State	node.	Instead,	you’ll	drag	in	animation	clips	to	create
new	nodes.	In	the	Project	view,	click	the	arrow	on	the	side	of	the	model	asset	to
expand	that	asset	and	see	what	it	contains.	Among	the	contents	of	this	asset	are
the	animation	clips	you	defined	(see	figure	7.17),	so	drag	those	clips	into	the
Animator	view.	Don’t	bother	with	the	walking	animation	(that	could	be	useful
for	other	projects)	and	drag	in	idle,	run,	and	jump.

Figure	7.17.	Expanded	model	asset	in	Project	view

Right-click	on	the	Idle	node	and	select	Set	As	Layer	Default	State.	That	node
will	turn	orange	while	the	other	nodes	stay	gray;	the	default	animation	state	is
where	the	network	of	nodes	starts	before	the	game	has	made	any	changes.	You’ll
need	to	link	the	nodes	together	with	lines	indicating	transitions	between

animation	states;	right-click	on	a	node	and	select	Make	Transition	in	order	to
start	dragging	out	an	arrow	that	you	can	click	on	another	node	to	connect.
Connect	nodes	in	the	pattern	shown	in	figure	7.16	(be	sure	to	make	transitions	in
both	directions	for	most	nodes,	but	not	from	jump	to	run).	These	transition	lines
determine	how	the	animation	states	connect	to	each	other,	and	control	the
changes	from	one	state	to	another	during	the	game.

Warning

While	working	in	the	Animator	view,	you	may	see	an	error	about
AnimationStateMachine.TransitionEditionContext.BuildNames.	Simply	restart
Unity;	this	seems	to	be	a	harmless	bug.

The	transitions	rely	on	a	set	of	controlling	values,	so	let’s	create	those
parameters.	In	the	top	left	of	figure	7.16	is	a	tab	called	Parameters;	click	that	to
see	a	panel	with	a	+	button	for	adding	parameters.	Add	a	float	called	Speed	and	a
Boolean	called	Jumping.	Those	values	will	be	adjusted	by	our	code,	and	they’ll
trigger	transitions	between	animation	states.

Click	on	the	transition	lines	to	see	their	settings	in	the	Inspector	(see	figure
7.18).	Here’s	where	we’ll	adjust	how	the	animation	states	change	when	the
parameters	change.	For	example,	click	on	the	Idle-to-Run	transition	to	adjust	the
conditions	of	that	transition.	Under	Conditions,	choose	Speed,	Greater,	and	0.1.
Turn	off	Has	Exit	Time	(that	would	force	playing	the	animation	all	the	way
through,	as	opposed	to	cutting	short	immediately	when	the	transition	happens).
Then	click	the	arrow	next	to	the	Settings	label	in	order	to	see	that	entire	menu;
other	transitions	should	be	able	to	interrupt	this	one,	so	change	the	Interruption
Source	menu	from	None	to	Current	State.	Repeat	this	for	all	the	transitions	in
table	7.1.

Figure	7.18.	Transition	settings	in	the	Inspector

Table	7.1.	Conditions	for	all	transitions	in	this	animation	controller

Transition Condition Interruption

Idle-to-Run Speed	greater	than	.1 Current	State
Run-to-Idle Speed	less	than	.1 None
Idle-to-Jump Jumping	is	true None
Run-to-Jump Jumping	is	true None
Jump-to-Idle Jumping	is	false None

In	addition	to	these	menu-based	settings,	there’s	a	complex	visual	interface
shown	in	figure	7.18	just	above	the	Condition	setting.	This	graph	allows	you	to
visually	adjust	the	length	in	time	of	a	transition.	The	default	transition	time	looks
fine	for	both	transitions	between	Idle	and	Run,	but	all	of	the	transitions	to	and
from	Jump	should	be	shorter	so	that	the	character	will	snap	faster	between	the
jump	animation.	The	shaded	area	of	the	graph	indicates	how	long	the	transition
takes;	to	see	more	detail,	use	Alt+left-click	to	pan	across	the	graph	and
Alt+right-click	to	scale	it	(these	are	the	same	controls	as	navigating	in	the	Scene
view).	Use	the	arrows	on	top	of	the	shaded	area	to	shrink	it	to	under	4
milliseconds	for	all	three	Jump	transitions.

Finally,	you	can	perfect	the	animation	network	by	selecting	the	animation	nodes
one	at	a	time	and	adjusting	the	ordering	of	transitions.	The	Inspector	will	show	a
list	of	all	transitions	to	and	from	that	node;	you	can	drag	items	in	the	list	(their
drag	handles	are	the	icon	on	the	left	side)	to	reorder	them.	Make	sure	the	Jump
transition	is	on	top	for	both	the	Idle	and	Run	nodes	so	that	the	Jump	transition

has	priority	over	the	other	transitions.	While	you’re	looking	at	these	settings	you
can	also	change	the	playback	speed	if	the	animation	looks	too	slow	(Run	looks
better	at	1.5	speed).

The	animation	controller	is	set	up,	so	now	we	can	operate	the	animations	from
the	movement	script.

7.4.3.	Writing	code	that	operates	the	animator

Finally,	you’ll	add	methods	to	the	RelativeMovement	script.	As	explained
earlier,	most	of	the	work	of	setting	up	animation	states	is	done	in	the	animation
controller;	only	a	small	amount	of	code	is	needed	to	operate	a	rich	and	fluid
animation	system	(see	the	following	listing).

Listing	7.6.	Code	for	setting	values	in	the	Animator	component

Again,	much	of	this	listing	is	repeated	from	previous	listings;	the	animation	code

is	a	handful	of	lines	interspersed	throughout	the	existing	movement	script.	Pick
out	the	_animator	lines	in	order	to	find	additions	to	make	in	your	code.

The	script	needs	a	reference	to	the	Animator	component,	and	then	the	code	sets
values	(either	floats	or	Booleans)	on	the	animator.	The	only	somewhat
nonobvious	bit	of	code	is	the	condition	(_contact	!=	null)	before	setting
the	Jumping	Boolean.	That	condition	prevents	the	animator	from	playing	the
jump	animation	right	from	the	start.	Even	though	the	character	is	technically
falling	for	a	split	second,	there	won’t	be	any	collision	data	until	the	character
touches	the	ground	for	the	first	time.

And	there	you	have	it!	Now	we	have	a	nice	third-person	movement	demo,	with
camera-relative	controls	and	character	animation	playing.

7.5.	Summary

In	this	chapter	you’ve	learned	that

	

Third-person	view	means	the	camera	moves	around	the	character	instead	of
inside	the	character.
Simulated	shadows,	like	real-time	shadows	and	lightmaps,	improve	the
graphics.
Controls	can	be	relative	to	the	camera	instead	of	relative	to	the	character.
You	can	improve	on	Unity’s	ground	detection	by	casting	a	ray	downward.
Sophisticated	animation	set	up	with	Unity’s	animator	controller	results	in
lifelike	characters.

Chapter	8.	Adding	interactive	devices	and	items
within	the	game

This	chapter	covers

	

Programming	doors	that	the	player	can	open	(triggered	with	a	keypress	or
collision)
Enabling	physics	simulations	that	scatter	a	stack	of	boxes
Building	collectible	items	that	players	store	in	their	inventory
Using	code	to	manage	game	state,	such	as	inventory	data
Equipping	and	using	inventory	items

Implementing	functional	items	is	the	next	topic	we’re	going	to	focus	on.
Previous	chapters	covered	a	number	of	different	elements	of	a	complete	game:
movement,	enemies,	the	user	interface,	and	so	forth.	But	our	projects	have
lacked	anything	to	interact	with	other	than	enemies,	nor	have	they	had	much	in
the	way	of	game	state.	In	this	chapter,	you’ll	learn	how	to	create	functional
devices	like	doors.	We’ll	also	discuss	collecting	items,	which	involves	both
interacting	with	objects	in	the	level	and	tracking	game	state.	Games	often	have
to	track	state	like	the	player’s	current	stats,	progress	through	objectives,	and	so
on.	The	player’s	inventory	is	an	example	of	this	sort	of	state,	so	you’ll	build	a
code	architecture	that	can	keep	track	of	items	collected	by	the	player.	By	the	end
of	this	chapter,	you’ll	have	built	a	dynamic	space	that	really	feels	like	a	game!

We’ll	start	by	exploring	devices	(such	as	doors)	that	are	operated	with
keypresses	from	the	player.	After	that,	you’ll	write	code	to	detect	when	the
player	collides	with	objects	in	the	level,	enabling	interactions	like	pushing
objects	around	or	collecting	inventory	items.	Then	you’ll	set	up	a	robust	MVC
(Model-View-Controller)-style	code	architecture	to	manage	data	for	the
collected	inventory.	Finally,	you’ll	program	interfaces	to	make	use	of	the
inventory	for	gameplay,	such	as	requiring	a	key	to	open	a	door.

Warning

Previous	chapters	were	relatively	self-contained	and	didn’t	technically	require

projects	from	earlier	chapters,	but	this	time	some	of	the	code	listings	make	edits
to	scripts	from	chapter	7.	If	you	skipped	directly	to	this	chapter,	download	the
sample	project	for	chapter	7	in	order	to	build	on	that.

The	example	project	will	have	these	devices	and	items	strewn	about	the	level
randomly.	A	polished	game	would	have	a	lot	of	careful	design	behind	the
placement	of	items,	but	there’s	no	need	to	carefully	plan	out	a	level	that	only
tests	functionality.	Even	so,	though	the	placement	of	objects	will	be	haphazard,
the	chapter	opening	bullets	lay	out	the	order	in	which	we’ll	implement	things.

As	usual,	the	explanations	build	up	the	code	step	by	step,	but	if	you	want	to	see
all	the	finished	code	in	one	place,	you	can	download	the	sample	project.

8.1.	Creating	doors	and	other	devices

Although	levels	in	games	mostly	consist	of	static	walls	and	scenery,	they	also
usually	incorporate	a	lot	of	functional	devices	as	well.	I’m	talking	about	objects
that	the	player	can	interact	with	and	operate—things	like	lights	that	turn	on	or	a
fan	that	starts	turning.	The	specific	devices	can	vary	a	lot	and	are	mostly	limited
only	by	your	imagination,	but	they	almost	all	use	the	same	sort	of	code	to	have
the	player	activate	the	device.	We’ll	implement	a	couple	of	examples	in	this
chapter,	and	then	you	should	be	able	to	adapt	this	same	code	to	work	with	all
sorts	of	other	devices.

8.1.1.	Doors	that	open	and	close	on	a	keypress

The	first	kind	of	device	we’ll	program	is	a	door	that	opens	and	closes,	and	we’re
going	to	start	with	operating	the	door	by	pressing	a	key.	There	are	lots	of
different	kinds	of	devices	you	could	have	in	a	game,	and	lots	of	different	ways	of
operating	those	devices.	We’re	eventually	going	to	look	at	a	couple	of	variations,
but	doors	are	the	most	common	interactive	devices	found	in	games,	and	using
items	with	a	keypress	is	the	most	straightforward	approach	to	start	with.

The	scene	has	a	few	spots	where	a	gap	exists	between	walls,	so	place	a	new
object	that	blocks	the	gap.	I	created	a	new	cube	object	and	then	set	its	transform
to	Position	2.5	1.5	17	and	Scale	5	3	.5,	creating	the	door	shown	in	figure	8.1.

Figure	8.1.	Door	object	fit	into	a	gap	in	the	wall

Create	a	C#	script,	call	it	DoorOpenDevice,	and	put	that	script	on	the	door
object.	This	code	(shown	in	the	next	listing)	will	cause	the	object	to	operate	as	a
door.

Listing	8.1.	Script	that	opens	and	closes	the	door	on	command

The	first	variable	defines	the	offset	that’s	applied	when	the	door	opens.	The	door
will	move	this	amount	when	it	opens,	and	then	it	will	subtract	this	amount	when
it	closes.	The	second	variable	is	a	private	Boolean	for	tracking	whether	the	door
is	open	or	closed.	In	the	Operate()	method,	the	object’s	transform	is	set	to	a
new	position,	adding	or	subtracting	the	offset	depending	on	whether	the	door	is
already	open;	then	_open	is	toggled	on	or	off.

As	with	other	serialized	variables,	dPos	appears	in	the	Inspector.	But	this	is	a
Vector3	value,	so	instead	of	one	input	box	there	are	three,	all	under	the	one
variable	name.	Type	in	the	relative	position	of	the	door	when	it	opens;	I	decided
to	have	the	door	slide	down	to	open,	so	the	offset	was	0	-2.9	0	(because	the	door
object	has	a	height	of	3,	moving	down	2.9	leaves	just	a	tiny	sliver	of	the	door
sticking	up	out	of	the	floor).

Note

The	transform	is	applied	instantly,	but	you	may	prefer	seeing	the	movement
when	the	door	opens.	As	mentioned	back	in	chapter	3,	you	can	use	tweens	to
make	objects	move	smoothly	over	time.	The	word	tween	means	different	things
in	different	contexts,	but	in	game	programming	it	refers	to	code	commands	that
cause	objects	to	move	around;	appendix	D	mentions	iTween,	one	good	tweening
system	for	Unity.

Now	other	code	needs	to	call	Operate()	to	make	the	door	open	and	close	(the
single	function	call	handles	both	cases).	We	don’t	yet	have	that	other	script	on
the	player;	writing	that	is	the	next	step.

8.1.2.	Checking	distance	and	facing	before	opening	the	door

Create	a	new	script	and	name	it	DeviceOperator.	The	following	listing
implements	a	control	key	that	operates	nearby	devices.

Listing	8.2.	Device	control	key	for	the	player

The	majority	of	the	script	in	this	listing	should	look	familiar,	but	a	crucial	new
method	is	at	the	center	of	this	code.	First,	establish	a	value	for	how	far	away	to
operate	devices	from.	Then,	in	the	Update()	function,	look	for	keyboard
input;	since	the	Jump	key	is	already	being	used	by	the	RelativeMovement	script,
this	time	we’ll	respond	to	Fire3	(which	is	defined	in	the	project’s	input	settings
as	the	left	Command	key).

Now	we	get	to	the	crucial	new	method:	OverlapSphere().	This	method
returns	an	array	of	all	objects	that	are	within	a	given	distance	of	a	given	position.
By	passing	in	the	position	of	the	player	and	the	radius	variable,	this	detects	all
objects	near	the	player.	What	you	actually	do	with	this	list	can	vary	(for
example,	perhaps	you	just	set	off	a	bomb	and	want	to	apply	an	explosive	force),
but	in	this	situation	we	want	to	attempt	to	call	Operate()	on	all	nearby
objects.

That	method	is	called	via	SendMessage()	instead	of	the	typical	dot	notation,
an	approach	you	also	saw	with	UI	buttons	in	previous	chapters.	As	was	the	case
there,	the	reason	to	use	SendMessage()	is	because	we	don’t	know	the	exact
type	of	the	target	object	and	that	command	works	on	all	GameObjects.	But	this
time	we’re	going	to	pass	the	option	DontRequireReceiver	to	the	method.
This	is	because	most	of	the	objects	returned	by	OverlapSphere()	won’t
have	an	Operate()	method;	normally	SendMessage()	prints	an	error
message	if	nothing	in	the	object	received	the	message,	but	in	this	case	the	error
messages	would	be	distracting	because	we	already	know	most	objects	will
ignore	the	message.

Once	the	code	is	written,	you	can	attach	this	script	to	the	player	object.	Now	you
can	open	and	close	the	door	by	standing	near	it	and	pressing	the	key.

There’s	one	little	detail	we	can	fix.	Currently	it	doesn’t	matter	which	way	the
player	is	facing,	as	long	as	the	player	is	close	enough.	But	we	could	also	adjust
the	script	to	only	operate	devices	the	player	is	facing,	so	let’s	do	that.	Recall
from	chapter	7	that	you	can	calculate	the	dot	product	for	checking	facing.	That’s
a	mathematical	operation	done	on	a	pair	of	vectors	that	returns	a	range	between
-1	and	1,	with	1	meaning	they	point	in	exactly	the	same	direction	and	-1	when
they	point	in	exactly	opposite	directions.	The	next	listing	shows	the	new	code	in
the	DeviceOperator	script.

Listing	8.3.	Adjusting	DeviceOperator	to	only	operate	devices	that	the	player	is	facing

To	use	the	dot	product,	we	first	determine	the	direction	to	check	against.	That
would	be	the	direction	from	the	player	to	the	object;	make	a	direction	vector	by
subtracting	the	position	of	the	player	from	the	position	of	the	object.	Then	call
Vector3.Dot()	with	both	that	direction	vector	and	the	forward	direction	of
the	player.	When	the	dot	product	is	close	to	1	(specifically,	this	code	checks
greater	than	.5),	that	means	the	two	vectors	are	close	to	pointing	in	the	same
direction.

With	this	adjustment	made,	the	door	won’t	open	and	close	when	the	player	faces
away	from	it,	even	if	the	player	is	close.	And	this	same	approach	to	operating
devices	can	be	used	with	any	sort	of	device.	To	demonstrate	that	flexibility,	let’s
create	another	example	device.

8.1.3.	Operating	a	color-changing	monitor

We’ve	created	a	door	that	opens	and	closes,	but	that	same	device-operating	logic
can	be	used	with	any	sort	of	device.	We’re	going	to	create	another	device	that’s
operated	in	the	same	way;	this	time,	we’ll	create	a	color-changing	display	on	the
wall.

Create	a	new	cube	and	place	it	so	that	one	side	is	barely	sticking	out	of	the	wall.
For	example,	I	went	with	Position	10.9	1.5	-5.	Now	create	a	new	script	called
ColorChangeDevice	and	attach	that	script	(shown	in	the	next	listing)	to	the
wall	display.	Now	run	up	to	the	wall	monitor	and	hit	the	same	“operate”	key	as
used	with	the	door;	you	should	see	the	display	change	color,	as	figure	8.2
illustrates.

Figure	8.2.	Color-changing	display	embedded	in	the	wall

Listing	8.4.	Script	for	a	device	that	changes	color

To	start	with,	declare	the	same	function	name	as	the	door	script	used.	“Operate”
is	the	function	name	that	the	device	operator	script	uses,	so	we	need	to	use	that
name	in	order	for	it	to	be	triggered.	Inside	this	function,	the	code	assigns	a
random	color	to	the	object’s	material	(remember,	color	isn’t	an	attribute	of	the
object	itself,	but	rather	the	object	has	a	material	and	that	material	can	have	a
color).

Note

Although	the	color	is	defined	with	Red,	Blue,	and	Green	components	as	is
standard	in	most	computer	graphics,	the	values	in	Unity’s	Color	object	vary
between	0	and	1,	instead	of	0	and	255,	as	is	common	in	most	places	(including
Unity’s	color	picker	UI).

All	right,	so	we’ve	gone	over	one	approach	to	interacting	with	devices	in	the
game	and	have	even	implemented	a	couple	of	different	devices	to	demonstrate.
Another	way	of	interacting	with	items	is	by	bumping	into	them,	so	let’s	go	over
that	next.

8.2.	Interacting	with	objects	by	bumping	into	them

In	the	previous	section,	devices	were	operated	by	keyboard	input	from	the
player,	but	that’s	not	the	only	way	players	can	interact	with	items	in	the	level.
Another	very	straightforward	approach	is	to	respond	to	collisions	with	the
player.	Unity	handles	most	of	that	for	you,	by	having	collision	detection	and
physics	built	into	the	game	engine.	Unity	will	detect	collisions	for	you,	but	you
still	need	to	program	the	object	to	respond.

We’ll	go	over	three	collision	responses	that	are	useful	for	games:

	

Push	away	and	fall	over
Trigger	a	device	in	the	level
Disappear	on	contact	(for	item	pickups)

8.2.1.	Colliding	with	physics-enabled	obstacles

To	start,	we’re	going	to	create	a	pile	of	boxes	and	then	cause	the	pile	to	collapse
when	the	player	runs	into	it.	Although	the	physics	calculations	involved	are
complicated,	Unity	has	all	of	that	built	in	and	will	scatter	the	boxes	in	a	realistic
way	for	us.

By	default	Unity	doesn’t	use	its	physics	simulation	to	move	objects	around.	That
can	be	enabled	by	adding	a	Rigidbody	component	to	the	object.	This	concept
was	first	discussed	back	in	chapter	3,	because	the	enemy’s	fireballs	also	needed	a
Rigidbody	component.	As	I	explained	in	that	chapter,	Unity’s	physics	system
will	act	only	on	objects	that	have	a	Rigidbody	component.	Click	Add
Component	and	look	for	Rigidbody	under	the	Physics	menu.

Create	a	new	cube	object	and	then	add	a	Rigidbody	component	to	it.	Create
several	such	cubes	and	position	them	in	a	neat	stack.	For	example,	in	the	sample
download	I	created	five	boxes	and	stacked	them	into	two	tiers	(see	figure	8.3).

Figure	8.3.	Stack	of	five	boxes	to	collide	with

The	boxes	are	now	ready	to	react	to	physics	forces.	To	have	the	player	apply	a
force	to	the	boxes,	make	the	small	addition	shown	in	the	following	listing	to	the
RelativeMovement	script	(this	is	one	of	the	scripts	written	in	the	previous
chapter)	that’s	on	the	player.

Listing	8.5.	Adding	physics	force	to	the	RelativeMovement	script

There’s	not	a	ton	to	explain	about	this	code:	whenever	the	player	collides	with
something,	check	if	the	collided	object	has	a	Rigidbody	component.	If	so,	apply
a	velocity	to	that	Rigidbody.

Play	the	game	and	then	run	into	the	pile	of	boxes;	you	should	see	them	scatter
around	realistically.	And	that’s	all	you	had	to	do	to	activate	physics	simulation
on	a	stack	of	boxes	in	the	scene!	Unity	has	physics	simulation	built	in,	so	we
didn’t	have	to	write	much	code.	That	simulation	can	cause	objects	to	move
around	in	response	to	collisions,	but	another	possible	response	is	firing	trigger
events,	so	let’s	use	those	trigger	events	to	control	the	door.

8.2.2.	Triggering	the	door	with	a	pressure	plate

Whereas	previously	the	door	was	operated	by	a	keypress,	this	time	the	door	will
open	and	close	in	response	to	the	character	colliding	with	another	object	in	the
scene.	Create	yet	another	door	and	place	it	in	another	wall	gap	(I	duplicated	the
previous	door	and	moved	the	new	door	to	-2.5	1.5	-17).	Now	create	a	new	cube
to	use	for	the	trigger	object,	and	select	the	Is	Trigger	check	box	for	the	collider
(this	step	was	illustrated	when	making	the	fireball	in	chapter	3).	In	addition,	set
the	object	to	the	Ignore	Raycast	layer;	the	top-right	corner	of	the	Inspector	has	a
Layer	menu.	Finally,	you	should	turn	off	shadow	casting	from	this	object
(remember,	this	setting	is	under	Mesh	Renderer	when	you	select	the	object).

Warning

These	tiny	steps	are	easy	to	miss	but	very	important:	to	use	an	object	as	a	trigger,
be	sure	to	turn	on	Is	Trigger.	In	the	Inspector,	look	for	the	check	box	in	the
Collider	component.	Also,	change	the	layer	to	Ignore	Raycast	so	that	the	trigger
object	won’t	show	up	in	raycasting.

Note

When	trigger	objects	were	first	introduced	in	chapter	3,	the	object	needed	to
have	a	Rigidbody	component	added.	Rigidbody	wasn’t	required	for	the	trigger
this	time	because	the	trigger	would	be	responding	to	the	player	(versus	colliding
with	a	wall,	the	earlier	situation).	In	order	for	triggers	to	work,	either	the	trigger
or	the	object	entering	the	trigger	need	to	have	Unity’s	physics	system	enabled;	a
Rigidbody	component	fulfills	this	requirement,	but	so	does	the	player’s
CharacterController.

Position	and	scale	the	trigger	object	so	that	it	both	encompasses	the	door	and
surrounds	an	area	around	the	door;	I	used	Position	-2.5	1.5	-17	(same	as	the
door)	and	Scale	7.5	3	6.	Additionally,	you	may	want	to	assign	a	semitransparent
material	to	the	object	so	that	you	can	visually	distinguish	trigger	volumes	from
solid	objects.	Create	a	new	material	using	the	Assets	menu,	and	select	the	new
material	in	the	Project	view.	Looking	at	the	Inspector,	the	top	setting	is
Rendering	Mode	(currently	set	to	the	default	value	of	Opaque);	select
Transparent	in	this	menu.

Now	click	its	color	swatch	to	bring	up	the	Color	Picker	window.	Pick	green	in
the	main	part	of	the	window,	and	lower	the	alpha	using	the	bottom	slider.	Drag
this	material	from	Project	onto	the	object;	figure	8.4	shows	the	trigger	with	this
material.

Figure	8.4.	Trigger	volume	surrounding	the	door	it	will	trigger

Definition

Triggers	are	often	referred	to	as	volumes	rather	than	objects	in	order	to
conceptually	differentiate	solid	objects	from	objects	you	can	move	through.

Play	the	game	now	and	you	can	freely	move	through	the	trigger	volume;	Unity
still	registers	collisions	with	the	object,	but	those	collisions	don’t	affect	the
player’s	movement	anymore.	To	react	to	the	collisions,	we	need	to	write	code.
Specifically,	we	want	this	trigger	to	control	the	door.	Create	a	new	script	called
DeviceTrigger	(see	the	following	listing).

Listing	8.6.	Code	for	a	trigger	that	controls	a	device

This	listing	defines	an	array	of	target	objects	for	the	trigger;	even	though	it’ll
only	be	a	list	of	one	most	of	the	time,	it’s	possible	to	have	multiple	devices
controlled	by	a	single	trigger.	Loop	through	the	array	of	targets	to	send	a
message	to	all	the	targets.	This	loop	happens	inside	the	OnTriggerEnter()
and	OnTriggerExit()	methods.	These	functions	are	called	once	when
another	object	first	enters	and	exits	the	trigger	(as	opposed	to	being	called	over
and	over	while	the	object	is	inside	the	trigger	volume).

Notice	that	the	messages	being	sent	are	different	than	before;	now	we	need	to
define	the	functions	Activate()	and	Deactivate()	on	the	door.	Add	the
code	in	the	next	listing	to	the	door	script.

Listing	8.7.	Adding	activate	and	deactivate	functions	to	the	DoorOpenDevice	script

The	new	Activate()	and	Deactivate()	methods	are	much	the	same	code
as	the	Operate()	method	from	earlier,	except	now	there	are	separate	functions
to	open	and	close	the	door	instead	of	only	one	function	that	handles	both	cases.

With	all	the	needed	code	in	place	you	can	now	use	the	trigger	volume	to	open
and	close	the	door.	Put	the	DeviceTrigger	script	on	the	trigger	volume	and	then
link	the	door	to	the	targets	property	of	that	script;	in	the	Inspector,	first	set
the	size	of	the	array	and	then	drag	objects	from	the	Hierarchy	view	over	to	slots
in	the	targets	array.	Because	we	have	only	one	door	that	we	want	to	control	with
this	trigger,	type	1	in	the	array’s	Size	field	and	then	drag	that	door	into	the	target
slot.

With	all	of	this	done,	play	the	game	and	watch	what	happens	to	the	door	when
the	player	walks	toward	and	away	from	it.	It’ll	open	and	close	automatically	as
the	player	enters	and	leaves	the	trigger	volume.

That’s	another	great	way	to	put	interactivity	into	levels!	But	this	trigger	volume
approach	doesn’t	only	work	with	devices	like	doors;	you	can	also	use	this
approach	to	make	collectible	items.

8.2.3.	Collecting	items	scattered	around	the	level

Many	games	include	items	that	can	be	picked	up	by	the	player.	These	items
include	equipment,	health	packs,	and	power-ups.	The	basic	mechanism	of
colliding	with	items	to	pick	them	up	is	simple;	most	of	the	complicated	stuff
happens	after	items	are	picked	up,	but	we’ll	get	to	that	a	bit	later.

Create	a	sphere	object	and	place	it	hovering	at	about	waist	height	in	an	open	area
of	the	scene.	Make	the	object	small,	like	Scale	.5	.5	.5,	but	otherwise	prepare	it
like	you	did	with	the	large	trigger	volume.	Select	the	Is	Trigger	setting	in	the
collider,	set	the	object	to	the	Ignore	Raycast	layer,	and	then	create	a	new	material
to	give	the	object	a	distinct	color.	Because	the	object	is	small,	you	don’t	want	to
make	it	semitransparent	this	time,	so	don’t	turn	down	the	alpha	slider	at	all.
Also,	as	mentioned	in	chapter	7,	there	are	settings	for	removing	the	shadows	cast
from	this	object;	whether	or	not	to	use	the	shadows	is	a	judgment	call,	but	for
small	pickup	items	like	this	I	prefer	to	turn	them	off.

Now	that	the	object	in	the	scene	is	ready,	create	a	new	script	to	attach	to	that

object.	Call	the	script	CollectibleItem	(see	the	following	listing).

Listing	8.8.	Script	that	makes	an	item	delete	itself	on	contact	with	the	player

This	script	is	extremely	short	and	simple.	Give	the	item	a	name	value	so	that
there	can	be	different	items	in	the	scene.	OnTriggerEnter()destroys	itself.
There’s	also	a	debug	message	being	printed	to	the	console;	eventually	it	will	be
replaced	with	useful	code.

Warning

Be	sure	to	call	Destroy()	on	this.gameObject	and	not	this!	Don’t	get
confused	between	the	two;	this	only	refers	to	this	script	component,	whereas
this.gameObject	refers	to	the	object	the	script	is	attached	to.

Back	in	Unity,	the	variable	you	added	to	the	code	should	become	visible	in	the
Inspector.	Type	in	a	name	to	identify	this	item;	I	went	with	energy	for	my	first
item.	Then	duplicate	the	item	a	few	times	and	change	the	name	of	the	copies;	I
also	created	ore,	health,	and	key	(these	names	must	be	exact	because	they’ll
be	used	in	code	later	on).	Also	create	separate	materials	for	each	item	in	order	to
give	them	distinct	colors:	I	did	light	blue	energy,	dark	gray	ore,	pink	health,	and
yellow	key.

Tip

Rather	than	a	name	like	we’ve	done	here,	items	in	more	complex	games	often
have	an	identifier	used	to	look	up	further	data.	For	example,	one	item	might	be
assigned	id	301,	and	id	301	correlates	to	such-and-such	display	name,	image,

description,	and	so	forth.

Now	make	prefabs	of	the	items	so	that	you	can	clone	them	throughout	the	level.
In	chapter	3	I	explained	that	dragging	an	object	from	the	Hierarchy	view	down
to	the	Project	view	will	turn	that	object	into	a	prefab;	do	that	for	all	four	items.

Note

The	object’s	name	will	turn	blue	in	the	Hierarchy	list;	blue	names	indicate
objects	that	are	instances	of	a	prefab.	Right-click	a	prefab	instance	to	pick	Select
Prefab	and	select	the	prefab	that	the	object	is	an	instance	of.

Drag	out	instances	of	the	prefabs	and	place	the	items	in	open	areas	of	the	level;
even	drag	out	multiple	copies	of	the	same	item	to	test	with.	Play	the	game	and
run	into	items	to	“collect”	them.	That’s	pretty	neat,	but	at	the	moment	nothing
happens	when	you	collect	an	item.	We’re	going	to	start	keeping	track	of	the
items	collected;	to	do	that,	we	need	to	set	up	the	inventory	code	structure.

8.3.	Managing	inventory	data	and	game	state

Now	that	we’ve	programmed	the	features	of	collecting	items,	we	need
background	data	managers	(similar	to	web	coding	patterns)	for	the	game’s
inventory.	The	code	we’ll	write	will	be	similar	to	the	MVC	architectures	behind
many	web	applications.	Their	advantage	is	in	decoupling	data	storage	from	the
objects	that	are	displayed	on	screen,	allowing	for	easier	experimentation	and
iterative	development.	Even	when	the	data	and/or	displays	are	complex,	changes
in	one	part	of	the	application	don’t	affect	other	parts	of	the	application.

That	said,	such	structures	vary	a	lot	between	different	games.	Not	every	game
has	the	same	data-management	needs,	so	it	wouldn’t	make	sense	for	Unity	to
enforce	a	rule	that	“Every	game	must	use	such-and-such	design	pattern.”	It
would’ve	been	counterproductive	to	introduce	those	sorts	of	concepts	too	soon,
because	people	would	be	misled	into	thinking	they	need	that	before	they	can
make	any	game.

For	example,	a	roleplaying	game	will	have	very	high	data-management	needs,	so
you	probably	want	to	implement	something	like	an	MVC	architecture.	A	puzzle
game,	though,	has	little	data	to	manage,	so	building	a	complex	decoupled
structure	of	data	managers	would	be	overkill.	Instead,	the	game	state	can	be
tracked	in	the	scene-specific	controller	objects	(indeed,	that’s	how	we	handled
game	state	in	previous	chapters).

In	this	project	we	need	to	manage	the	player’s	inventory.	Let’s	set	up	the	code
structure	for	that.

8.3.1.	Setting	up	player	and	inventory	managers

The	general	idea	here	is	to	split	up	all	the	data	management	into	separate,	well-
defined	modules	that	each	manages	its	own	area	of	responsibility.	We’re	going	to
create	separate	modules	to	maintain	player	state	in	PlayerManager	(things
like	the	player’s	health)	and	maintain	the	inventory	list	in
InventoryManager.	These	data	managers	will	behave	like	the	Model	in
MVC;	the	Controller	is	an	invisible	object	in	most	scenes	(it	wasn’t	needed	here,
but	recall	SceneController	in	previous	chapters),	and	the	rest	of	the	scene	is
analogous	to	the	View.

There	will	be	a	higher-level	“manager	of	managers”	that	keeps	track	of	all	the
separate	modules.	Besides	keeping	a	list	of	all	the	various	managers,	this	higher-
level	manager	will	control	the	lifecycle	of	the	various	managers,	especially
initializing	them	at	the	start.	All	the	other	scripts	in	the	game	will	be	able	to
access	these	centralized	modules	by	going	through	the	main	manager.
Specifically,	other	code	can	use	a	number	of	static	properties	in	the	main
manager	in	order	to	connect	with	the	specific	module	desired.

Design	patterns	for	accessing	centralized	shared	modules

Over	the	years	a	variety	of	design	patterns	have	emerged	to	solve	the	problem	of
connecting	parts	of	a	program	to	centralized	modules	that	are	shared	throughout
the	program.	For	example,	the	Singleton	pattern	was	enshrined	in	the	original
“Gang	of	Four”	book	about	design	patterns.

But	that	pattern	has	fallen	out	of	favor	with	many	software	engineers,	so	they
use	alternative	patterns	like	service	locator	and	dependency	injection.	In	my

code	I	use	a	compromise	between	the	simplicity	of	static	variables	and	the
flexibility	of	a	service	locator.

This	design	leaves	the	code	simple	to	use	while	also	allowing	for	swapping	in
different	modules.	For	example,	requesting	InventoryManager	using	a
singleton	will	always	refer	to	the	exact	same	class	and	thus	will	tightly	couple
your	code	to	that	class;	on	the	other	hand,	requesting	Inventory	from	a	service
locator	leaves	the	option	to	return	either	InventoryManager	or
DifferentInventoryManager.	Sometimes	it’s	handy	to	be	able	to	switch
between	a	number	of	slightly	different	versions	of	the	same	module	(deploying
the	game	on	different	platforms,	for	example).

In	order	for	the	main	manager	to	reference	other	modules	in	a	consistent	way,
these	modules	must	all	inherit	properties	from	a	common	base.	We’re	going	to
do	that	with	an	interface;	many	programming	languages	(including	C#)	allow
you	to	define	a	sort	of	blueprint	that	other	classes	need	to	follow.	Both
PlayerManager	and	InventoryManager	will	implement	a	common
interface	(called	IGameManager	in	this	case)	and	then	the	main	Managers
object	can	treat	both	PlayerManager	and	InventoryManager	as	type
IGameManager.	Figure	8.5	illustrates	the	setup	I’m	describing.

Figure	8.5.	Diagram	of	the	various	modules	and	how	they’re	related

Incidentally,	whereas	all	of	the	code	architecture	I’ve	been	talking	about	consists
of	invisible	modules	that	exist	in	the	background,	Unity	still	requires	scripts	to

be	linked	to	objects	in	the	scene	in	order	to	run	that	code.	As	we’ve	done	with
the	scene-specific	controllers	in	previous	projects,	we’re	going	to	create	an
empty	GameObject	to	link	these	data	managers	to.

8.3.2.	Programming	the	game	managers

All	right,	so	that	explained	all	the	concepts	behind	what	we’ll	do;	it’s	time	to
write	the	code.	To	start	with,	create	a	new	script	called	IGameManager	(see	the
next	listing).

Listing	8.9.	Base	interface	that	the	data	managers	will	implement

Hmm,	there’s	barely	any	code	in	this	file.	Note	that	it	doesn’t	even	inherit	from
MonoBehaviour;	an	interface	doesn’t	do	anything	on	its	own	and	exists	only
to	impose	structure	on	other	classes.	This	interface	declares	one	property	(a
variable	that	has	a	getter	function)	and	one	method;	both	need	to	be	implemented
in	any	class	that	implements	this	interface.	The	status	property	tells	the	rest	of
the	code	whether	this	module	has	completed	its	initialization.	The	purpose	of
Startup()	is	to	handle	initialization	of	the	manager,	so	initialization	tasks
happen	there	and	the	function	sets	the	manager’s	status.

Notice	that	the	property	is	of	type	ManagerStatus;	that’s	an	enum	we
haven’t	written	yet,	so	create	the	script	ManagerStatus.cs	(see	the	next	listing).

Listing	8.10.	ManagerStatus:	possible	states	for	IGameManager	status

public	enum	ManagerStatus	{

			Shutdown,

			Initializing,

			Started

}

This	is	another	file	with	barely	any	code	in	it.	This	time	we’re	listing	the
different	possible	states	that	managers	can	be	in,	thereby	enforcing	that	the
status	property	will	always	be	one	of	these	listed	values.

Now	that	IGameManager	is	written,	we	can	implement	it	in	other	scripts.
Listings	8.11	and	8.12	contain	code	for	PlayerManager	and	InventoryManager.

Listing	8.11.	InventoryManager

Listing	8.12.	PlayerManager

For	now,	InventoryManager	is	a	shell	that	will	be	filled	in	later,	whereas
PlayerManager	has	all	the	functionality	needed	for	this	project.	These
managers	both	inherit	from	the	class	MonoBehaviour	and	implement	the

interface	IGameManager.	That	means	the	managers	both	gain	all	the
functionality	of	MonoBehaviour	while	also	needing	to	implement	the
structure	imposed	by	IGameManager.	The	structure	in	IGameManager	was
one	property	and	one	method,	so	the	managers	define	those	two	things.

The	status	property	was	defined	so	that	the	status	could	be	read	from
anywhere	(the	getter	is	public)	but	only	set	within	this	script	(the	setter	is
private).	The	method	in	the	interface	is	Startup(),	so	both	managers	define
that	function.	In	both	managers	initialization	completes	right	away
(InventoryManager	doesn’t	do	anything	yet,	whereas	PlayerManager
sets	a	couple	of	values),	so	the	status	is	set	to	Started.	But	data	modules	may
have	long-running	tasks	as	part	of	their	initialization	(such	as	loading	saved
data),	in	which	case	Startup()	will	launch	those	tasks	and	set	the	manager’s
status	to	Initializing.	Change	status	to	Started	after	those	tasks
complete.

Great—we’re	finally	ready	to	tie	everything	together	with	a	main	manager-of-
managers!	Create	one	more	script	and	call	it	Managers	(see	the	following
listing).

Listing	8.13.	The	Manager-of-Managers!

The	most	important	parts	of	this	pattern	are	the	static	properties	at	the	very	top.
Those	enable	other	scripts	to	use	syntax	like	Managers.Player	or
Managers.Inventory	to	access	the	various	modules.	Those	properties	are
initially	empty,	but	they’re	filled	immediately	when	the	code	runs	in	the
Awake()	method.

Tip

Just	like	Start()	and	Update(),	Awake()	is	another	method	automatically
provided	by	MonoBehaviour.	It’s	similar	to	Start(),	running	once	when
the	code	first	starts	running.	But	in	Unity’s	code-execution	sequence,	Awake()
is	even	sooner	than	Start(),	allowing	for	initialization	tasks	that	absolutely
must	run	before	any	other	code	modules.

The	Awake()	method	also	lists	the	startup	sequence,	and	then	launches	the
coroutine	to	start	all	the	managers.	Specifically,	the	function	creates	a	List
object	and	then	uses	List.Add()	to	add	the	managers.

Definition

List	is	a	collection	data	structure	provided	by	C#.	List	objects	are	similar	to
arrays:	they’re	declared	with	a	specific	type	and	store	a	series	of	entries	in
sequence.	But	a	List	can	change	size	after	being	created,	whereas	arrays	are
created	at	a	static	size	that	can’t	change	later.

Warning

The	collection	data	structures	are	contained	in	a	new	namespace	that	you	must
include	in	the	script;	notice	the	additional	using	statement	at	the	top	of	the
script.	Don’t	forget	this	detail	in	your	scripts!

Because	all	the	managers	implement	IGameManager,	this	code	can	list	them
all	as	that	type	and	can	call	the	Startup()	method	defined	in	each.	The
startup	sequence	is	run	as	a	coroutine	so	that	it	will	run	asynchronously,	with
other	parts	of	the	game	proceeding	too	(for	example,	a	progress	bar	animated	on
a	startup	screen).

The	startup	function	first	loops	through	the	entire	list	of	managers	and	calls
Startup()	on	each	one.	Then	it	enters	a	loop	that	keeps	checking	whether	the
managers	have	started	up	and	won’t	proceed	until	they	all	have.	Once	all	the
managers	are	started,	the	startup	function	finally	alerts	us	to	this	fact	before
finally	completing.

Tip

The	managers	we	wrote	earlier	have	such	simple	initialization	that	there’s	no
waiting,	but	in	general	this	coroutine-based	startup	sequence	can	elegantly
handle	long-running	asynchronous	startup	tasks	like	loading	saved	data.

Now	all	of	the	code	structure	has	been	written.	Go	back	to	Unity	and	create	a
new	empty	GameObject;	as	usual	with	these	sorts	of	empty	code	objects,
position	it	at	0,0,0	and	give	the	object	a	descriptive	name	like	Game
Managers.	Attach	the	script	components	Managers,	PlayerManager,	and

InventoryManager	to	this	new	object.

When	you	play	the	game	now	there	should	be	no	visible	change	in	the	scene,	but
in	the	console	you	should	see	a	series	of	messages	logging	the	progress	of	the
startup	sequence.	Assuming	the	managers	are	starting	up	correctly,	it’s	time	to
start	programming	the	inventory	manager.

8.3.3.	Storing	inventory	in	a	collection	object:	List	vs.	Dictionary

The	actual	list	of	items	collected	could	also	be	stored	as	a	List	object.	The	next
listing	adds	a	List	of	items	to	InventoryManager.

Listing	8.14.	Adding	items	to	InventoryManager

Two	key	additions	were	made	to	InventoryManager.	One,	we	added	a	List
object	to	store	items	in.	Two,	we	added	a	public	method,	AddItem(),	that
other	code	can	call.	This	function	adds	the	item	to	the	list	and	then	prints	the	list
to	the	console.	Now	let’s	make	a	slight	adjustment	in	the	CollectibleItem	script
to	call	the	new	AddItem()	method	(see	the	following	list).

Listing	8.15.	Using	the	new	InventoryManager	in	CollectibleItem

...

void	OnTriggerEnter(Collider	other)	{

			Managers.Inventory.AddItem(name);

			Destroy(this.gameObject);

}

...

Now	when	you	run	around	collecting	items,	you	should	see	your	inventory
growing	in	the	console	messages.	This	is	pretty	cool,	but	it	does	expose	one
limitation	of	List	data	structures:	as	you	collect	multiples	of	the	same	type	of
item	(such	as	collecting	a	second	Health	item),	you’ll	see	both	copies	listed,
instead	of	aggregating	all	items	of	the	same	type	(refer	to	figure	8.6).	Depending
on	your	game,	you	may	want	the	inventory	to	track	each	item	separately,	but	in
most	games	the	inventory	should	aggregate	multiple	copies	of	the	same	item.	It’s
possible	to	accomplish	this	using	List,	but	it’s	done	more	naturally	and
efficiently	using	Dictionary	instead.

Figure	8.6.	Console	message	with	multiples	of	the	same	item	listed	multiple	times

Definition

Dictionary	is	another	collection	data	structure	provided	by	C#.	Entries	in	the
dictionary	are	accessed	by	an	identifier	(or	key)	rather	than	by	their	position	in
the	list.	This	is	similar	to	a	hash	table	but	more	flexible,	because	the	keys	can	be
literally	any	type	(for	example,	“Return	the	entry	for	this	GameObject”).

Change	the	code	in	InventoryManager	to	use	Dictionary	instead	of	List.
Replace	everything	from	listing	8.14	with	the	code	from	the	following	listing.

Listing	8.16.	Dictionary	of	items	in	InventoryManager

Overall	this	code	looks	the	same	as	before,	but	a	few	tricky	differences	exist.	If
you	aren’t	already	familiar	with	Dictionary	data	structures,	note	that	it	was
declared	with	two	types.	Whereas	List	was	declared	with	only	one	type	(the
type	of	values	that’ll	be	listed),	a	Dictionary	declares	both	the	type	of	keys
(that	is,	what	the	identifiers	will	be)	and	the	type	of	values.

A	bit	more	logic	exists	in	the	AddItem()	method.	Whereas	before	every	item
was	appended	to	the	List,	now	we	need	to	check	if	the	Dictionary	already
contains	that	item;	that’s	what	the	ContainsKey()	method	is	for.	If	it’s	a	new
entry,	then	we’ll	start	the	count	at	1,	but	if	the	entry	already	exists,	then
increment	the	stored	value.

Play	with	the	new	code	and	you’ll	see	the	inventory	messages	have	an
aggregated	count	of	each	item	(refer	to	figure	8.7).

Figure	8.7.	Console	message	with	multiples	of	the	same	item	aggregated

Whew,	finally,	collected	items	are	managed	in	the	player’s	inventory!	This
probably	seems	like	a	lot	of	code	to	handle	a	relatively	simple	problem,	and	if
this	were	the	entire	purpose	then,	yeah,	it	was	overengineered.	The	point	of	this
elaborate	code	architecture,	though,	is	to	keep	all	the	data	in	separate	flexible
modules,	a	useful	pattern	once	the	game	gets	more	complex.	For	example,	now
we	can	write	UI	displays	and	the	separate	parts	of	the	code	will	be	much	easier
to	handle.

8.4.	Inventory	UI	for	using	and	equipping	items

The	collection	of	items	in	your	inventory	can	be	used	in	multiple	ways	within
the	game,	but	all	of	those	uses	first	rely	on	some	sort	of	inventory	UI	so	that
players	can	see	their	collected	items.	Then,	once	the	inventory	is	being	shown	to
the	player,	you	can	program	interactivity	into	the	UI	by	enabling	players	to	click
on	their	items.	Again,	we’ll	program	a	couple	of	specific	examples	(equipping	a
key	and	consuming	health	packs),	and	then	you	should	be	able	to	adapt	this	code
to	work	with	other	types	of	items.

Note

As	mentioned	in	chapter	6,	Unity	has	both	an	older	immediate	mode	GUI	and	a
newer	sprite-based	UI	system.	We’ll	use	the	immediate	mode	GUI	in	this	chapter
because	that	system	is	faster	to	implement	and	requires	less	setup;	less	setup	is
great	for	practice	exercises.	The	sprite-based	UI	system	is	more	polished,
though,	and	for	an	actual	game	you’d	want	a	more	polished	interface.

8.4.1.	Displaying	inventory	items	in	the	UI

To	show	the	items	in	a	UI	display,	we	first	need	to	add	a	couple	more	methods	to
InventoryManager.	Right	now	the	item	list	is	private	and	only	accessible	within
the	manager;	in	order	to	display	the	list,	though,	that	information	must	have
public	methods	for	accessing	the	data.	Add	two	methods	shown	in	the	following
listing	to	InventoryManager.

Listing	8.17.	Adding	data	access	methods	to	InventoryManager

The	GetItemList()	method	returns	a	list	of	items	in	the	inventory.	You
might	be	thinking,	“Wait	a	minute,	didn’t	we	just	spend	lots	of	effort	to	convert
the	inventory	away	from	a	List?”	The	difference	now	is	that	each	type	of	item
will	only	appear	once	in	the	list.	If	the	inventory	contains	two	health	packs,	for
example,	the	name	“health”	will	still	only	appear	once	in	the	list.	That’s	because
the	List	was	created	from	the	keys	in	the	Dictionary,	not	from	every
individual	item.

The	GetItemCount()	method	returns	a	count	of	how	many	of	a	given	item
are	in	the	inventory.	For	example,	call	GetItemCount("health")	to	ask
“How	many	health	packs	are	in	the	inventory?”	This	way,	the	UI	can	display	a
number	of	each	item	along	with	displaying	each	item.

With	these	methods	added	to	InventoryManager,	we	can	create	the	UI	display.
Let’s	display	all	the	items	in	a	horizontal	row	across	the	top	of	the	screen.	The
items	will	be	displayed	using	icons,	so	we	need	to	import	those	images	into	the
project.	Unity	handles	assets	in	a	special	way	if	those	assets	are	in	a	folder	called
Resources.

Tip

Assets	placed	into	the	Resources	folder	can	be	loaded	in	code	using	the	method
Resources.Load().	Otherwise,	assets	can	only	be	placed	in	scenes	through
Unity’s	editor.

Figure	8.8	shows	the	four	icon	images,	along	with	the	directory	structure
showing	where	to	put	those	images.	Create	a	folder	called	Resources	and	then
create	a	folder	called	Icons	inside	it.

Figure	8.8.	Image	assets	for	equipment	icons	placed	inside	the	Resources	folder

The	icons	are	all	set	up,	so	create	a	new	empty	GameObject	named
Controller	and	then	assign	it	a	new	script	called	BasicUI	(see	the	next
listing).

Listing	8.18.	BasicUI	displays	the	inventory

This	listing	displays	the	collected	items	in	a	horizontal	row	(see	figure	8.9)	along
with	displaying	the	number	collected.	As	mentioned	in	chapter	3,	every
MonoBehaviour	automatically	responds	to	an	OnGUI()	method.	That
function	runs	every	frame	right	after	the	3D	scene	is	rendered.

Figure	8.9.	UI	display	of	the	inventory

Inside	OnGUI(),	first	define	a	bunch	of	values	for	positioning	UI	elements.
These	values	are	incremented	when	we	loop	through	all	the	items	in	order	to
position	UI	elements	in	a	row.	The	specific	UI	element	drawn	is	GUI.Box;
those	are	noninteractive	displays	that	show	text	and	images	inside	boxes.

The	method	Resources.Load()	is	used	to	load	assets	from	the	Resources
folder.	This	method	is	a	handy	way	to	load	assets	by	name;	notice	that	the	name
of	the	item	is	passed	as	a	parameter.	We	have	to	specify	a	type	to	load;
otherwise,	the	return	value	for	that	method	is	a	generic	object.

The	UI	shows	us	what	items	have	been	collected.	Now	we	can	actually	use	the
items.

8.4.2.	Equipping	a	key	to	use	on	locked	doors

Let’s	go	over	a	couple	of	examples	of	using	inventory	items	so	that	you	can
extrapolate	out	to	any	type	of	item	you	want.	The	first	example	involves
equipping	a	key	required	to	open	the	door.

At	the	moment,	the	DeviceTrigger	script	doesn’t	pay	attention	to	your	items
(because	that	script	was	written	before	the	inventory	code).	The	next	listing
shows	how	to	adjust	that	script.

Listing	8.19.	Requiring	a	key	in	DeviceTrigger

...

public	bool	requireKey;

void	OnTriggerEnter(Collider	other)	{

			if	(requireKey	&&	Managers.Inventory.equippedItem	!=	"key")	{

						return;

			}

...

As	you	can	see,	all	that’s	needed	is	a	new	public	variable	in	the	script	and	a
condition	that	looks	for	an	equipped	key.	The	requireKey	Boolean	appears	as
a	check	box	in	the	Inspector	so	that	you	can	require	a	key	from	some	triggers	but
not	others.	The	condition	at	the	beginning	of	OnTriggerEnter()	checks	for
an	equipped	key	in	InventoryManager;	that	requires	that	you	add	the	code
from	the	next	listing	to	InventoryManager.

Listing	8.20.	Equipping	code	for	InventoryManager

At	the	top	add	the	equippedItem	property	that	gets	checked	by	other	code.
Then	add	the	public	method	EquipItem()	to	allow	other	code	to	change
which	item	is	equipped.	That	method	equips	an	item	if	it	isn’t	already	equipped,
or	unequips	if	that	item	is	already	equipped.

Finally,	in	order	for	the	player	to	equip	an	item,	add	that	functionality	to	the	UI.
The	following	listing	will	add	a	row	of	buttons	for	that	purpose.

Listing	8.21.	Equip	functionality	added	to	BasicUI

GUI.Box()	is	used	again	to	display	the	equipped	item.	But	that	element	is
noninteractive,	so	the	row	of	Equip	buttons	is	drawn	using	GUI.Button()
instead.	That	method	creates	a	button	that	executes	the	code	inside	the	if
statement	when	clicked.

With	all	the	needed	code	in	place,	select	the	requireKey	option	in
DeviceTrigger	and	then	play	the	game.	Try	running	into	the	trigger	volume
before	equipping	a	key;	nothing	happens.	Now	collect	a	key	and	click	the	button
to	equip	it;	running	into	the	trigger	volume	opens	the	door.

Just	for	fun,	you	could	put	a	key	at	Position	-11	5	-14	to	add	a	simple	gameplay
challenge	to	see	if	you	can	figure	out	how	to	reach	the	key.	Whether	or	not	you
try	that,	let’s	move	on	to	using	health	packs.

8.4.3.	Restoring	the	player’s	health	by	consuming	health	packs

Using	items	to	restore	the	player’s	health	is	another	generally	useful	example.
That	requires	two	code	changes:	a	new	method	in	InventoryManager	and	a	new
button	in	the	UI	(see	listings	8.22	and	8.23,	respectively).

Listing	8.22.	New	method	in	InventoryManager

Listing	8.23.	Adding	a	health	item	to	Basic	UI

The	new	ConsumeItem()	method	is	pretty	much	the	reverse	of	AddItem();
it	checks	for	an	item	in	the	inventory	and	decrements	if	the	item	is	found.	It	has
responses	to	a	couple	of	tricky	cases,	such	as	if	the	item	count	decrements	to	0.
The	UI	code	calls	this	new	inventory	method,	and	it	calls	the
ChangeHealth()	method	that	PlayerManager	has	had	from	the

beginning.

If	you	collect	some	health	items	and	then	use	them,	you’ll	see	health	messages
appear	in	the	console.	And	there	you	go—multiple	examples	of	how	to	use
inventory	items!

8.5.	Summary

In	this	chapter	you’ve	learned	that

	

Both	keypresses	and	collision	triggers	can	be	used	to	operate	devices.
Objects	with	physics	enabled	can	respond	to	collision	forces	or	trigger
volumes.
Complex	game	state	is	managed	via	special	objects	that	can	be	accessed
globally.
Collections	of	objects	can	be	organized	in	List	or	Dictionary	data
structures.
Tracking	the	equip	state	of	items	can	be	used	to	affect	other	parts	of	the
game.

Part	3.	Strong	finish

You	know	a	fair	amount	about	Unity	by	now.	You	know	how	to	program	the
player’s	controls,	how	to	create	enemies	that	wander	around,	and	how	to	add
interactive	devices	to	the	game.	You	even	know	how	to	build	a	game	using	both
2D	and	3D	graphics!	That’s	almost	everything	you	need	to	know	in	order	to
develop	a	complete	game,	but	not	quite.	You	still	need	to	learn	about	a	few	final
tasks	like	putting	audio	in	the	game,	and	you	need	to	understand	how	to	put
together	all	the	disparate	pieces	we’ve	been	working	with.

This	is	the	home	stretch,	with	just	four	chapters	left!

Chapter	9.	Connecting	your	game	to	the	internet

This	chapter	covers

	

Generating	visuals	for	the	sky	using	a	skybox
Downloading	data	using	WWW	objects	in	coroutines
Parsing	common	data	formats	like	XML	and	JSON
Displaying	images	downloaded	from	the	internet
Sending	data	to	a	web	server

In	this	chapter	you’ll	learn	how	to	send	and	receive	data	over	a	network.	The
projects	built	in	previous	chapters	represented	a	variety	of	game	genres,	but	all
have	been	isolated	to	the	player’s	machine.	As	you	know,	connecting	to	the
internet	and	exchanging	data	is	increasingly	important	for	games	in	all	genres.
Many	games	exist	almost	entirely	over	the	internet,	with	constant	connection	to
a	community	of	other	players;	games	of	this	sort	are	referred	to	as	MMOs
(massively	multiplayer	online)	and	are	most	widely	known	through	MMORPGs
(MMO	role-playing	games).	Even	when	a	game	doesn’t	require	such	constant
connectivity,	modern	video	games	usually	incorporate	features	like	reporting
scores	to	a	global	list	of	high	scores.	Unity	provides	support	for	such
networking,	so	we’ll	be	going	over	those	features.

Unity	supports	multiple	approaches	to	network	communication,	since	different
approaches	are	better	suited	to	different	needs.	However,	this	chapter	will	mostly
cover	the	most	general	sort	of	internet	communication:	issuing	HTTP	requests.

What	are	HTTP	requests?

I	assume	most	readers	know	what	HTTP	requests	are,	but	here’s	a	quick	primer
just	in	case:	HTTP	is	a	communication	protocol	for	sending	requests	to	and
receiving	responses	from	web	servers.	For	example,	when	you	click	a	link	on	a
web	page,	your	browser	(the	client)	sends	out	a	request	to	a	specific	address,	and
then	that	server	responds	with	the	new	page.	HTTP	requests	can	be	set	to	a
variety	of	methods,	in	particular	either	GET	or	POST	to	retrieve	or	to	send	data.

HTTP	requests	are	reliable,	and	that’s	why	the	majority	of	the	internet	is	built
around	them.	The	requests	themselves,	as	well	as	the	infrastructure	for	handling
such	requests,	are	designed	to	be	robust	and	handle	a	wide	range	of	failures	in
the	network.

In	an	online	game	built	around	HTTP	requests,	the	game	developed	in	Unity	is
essentially	a	thick	client	that	communicates	with	the	server	in	an	Ajax	style.	As	a
good	comparison,	imagine	how	a	modern	single-page	web	application	works	(as
opposed	to	old-school	web	development	based	on	web	pages	generated	server-
side).	The	familiarity	of	this	approach	can	be	misleading	for	experienced	web
developers.	Video	games	often	have	much	more	stringent	performance
requirements	than	web	applications,	and	these	differences	can	affect	design
decisions.

Warning

Time	scales	can	be	vastly	different	between	web	apps	and	videogames.	Half	a
second	can	seem	like	a	short	wait	for	updating	a	website,	but	pausing	even	just	a
fraction	of	that	time	can	be	excruciating	in	the	middle	of	a	high-intensity	action
game.	The	concept	of	“fast”	is	definitely	relative	to	the	situation.

Online	games	usually	connect	to	a	server	specifically	intended	for	that	game;	for
learning	purposes,	however,	we’ll	connect	to	some	freely	available	internet	data
sources,	including	both	weather	data	and	images	we	can	download.	The	last
section	of	this	chapter	does	require	you	to	set	up	a	custom	web	server;	that
section	is	optional	because	of	that	requirement,	although	I’ll	explain	an	easy	way
to	do	it	with	open-source	software.

The	plan	for	this	chapter	is	to	go	over	multiple	uses	of	HTTP	requests	so	that
you	can	learn	how	they	work	within	Unity:

1.		Set	up	an	outdoor	scene	(in	particular,	build	a	sky	that	can	react	to	the
weather	data).

2.		Write	code	to	request	weather	data	from	the	internet.

3.		Parse	the	response	and	then	modify	the	scene	based	on	the	data.

4.		Download	and	display	an	image	from	the	internet.

5.		Post	data	to	your	own	server	(in	this	case,	a	log	of	what	the	weather
was).

The	actual	game	that	you’ll	use	for	this	chapter’s	project	matters	little.
Everything	in	this	chapter	will	add	new	scripts	to	an	existing	project	and	won’t
modify	any	of	the	existing	code.	For	the	sample	code,	I	used	the	movement
demo	from	chapter	2,	mostly	so	that	we	can	see	the	sky	in	first-person	view
when	it	gets	modified.	The	project	for	this	chapter	isn’t	directly	tied	into	the
gameplay,	but	obviously	for	most	games	you	create	you	would	want	the
networking	tied	to	the	gameplay	(for	example,	spawning	enemies	based	on
responses	from	the	server).

On	to	the	first	step!

9.1.	Creating	an	outdoor	scene

Because	we’re	going	to	be	downloading	weather	data,	we’ll	first	set	up	an
outdoor	area	where	the	weather	will	be	visible.	The	trickiest	part	of	that	will	be
the	sky,	but	first	let’s	take	a	moment	to	apply	outdoors-looking	textures	on	the
level	geometry.

Just	as	in	chapter	4,	I	obtained	a	couple	images	from	www.cgtextures.com	to
apply	to	the	walls	and	floor	of	the	level.	Remember	to	change	the	size	of	the
downloaded	images	to	a	power	of	2,	such	as	256x256.	Then	import	the	images
into	the	Unity	project,	create	materials,	and	assign	the	images	to	the	materials
(that	is,	drag	an	image	into	the	texture	slot	of	the	material).	Drag	the	materials
onto	the	walls	or	floor	in	the	scene,	and	increase	tiling	in	the	material	(try
numbers	like	8	or	9	in	one	or	both	directions)	so	that	the	image	won’t	be
stretched	in	an	ugly	way.

Once	the	ground	and	walls	are	taken	care	of,	it’s	time	to	address	the	sky.

9.1.1.	Generating	sky	visuals	using	a	skybox

http://www.cgtextures.com

Start	by	importing	the	skybox	images	as	you	did	in	chapter	4:	go	to	www.93i.de
to	download	skybox	images.	This	time	get	the	images	for	the	DarkStormy	set	in
addition	to	TropicalSunnyDay	(the	sky	will	be	more	complex	in	this	project).
Import	these	textures	into	the	Project	view,	and	(as	explained	in	chapter	4)	set
their	Wrap	Mode	to	Clamp.

Now	create	a	new	material	to	use	for	this	skybox.	At	the	top	of	the	settings	for
this	material,	click	the	Shader	menu	in	order	to	see	the	drop-down	list	with	all
the	available	shaders.	Move	down	to	the	Skybox	section	and	choose	6-Sided	in
that	submenu.	With	this	shader	active,	the	material	now	has	six	texture	slots
(instead	of	only	the	small	Albedo	texture	slot	that	the	standard	shader	had).

Drag	the	SunnyDay	skybox	images	to	the	texture	slots	of	the	new	material.	The
names	of	the	images	correspond	to	the	texture	slot	to	assign	them	to	(top,	front,
and	so	on)	Once	all	six	textures	are	linked	up,	you	can	use	this	new	material	as
the	skybox	for	the	scene.

Assign	this	skybox	material	in	the	Lighting	window	(Window	>	Lighting).
Assign	the	material	for	your	skybox	to	the	Skybox	slot	at	the	top	of	the	window
(either	drag	the	material	over	or	click	the	little	circle	button	next	to	the	slot).	Hit
Play	and	you	should	see	something	like	figure	9.1.

Figure	9.1.	Scene	with	background	pictures	of	the	sky

Great,	now	you	have	an	outdoors	scene!	A	skybox	is	an	elegant	way	to	create	the
illusion	of	a	vast	atmosphere	surrounding	the	player.	But	the	skybox	shader	built
into	Unity	does	have	one	significant	limitation:	the	images	can	never	change,

http://www.93i.de

resulting	in	a	sky	that	appears	completely	static.	We’ll	address	that	limitation	by
creating	a	new	custom	shader.

9.1.2.	Setting	up	an	atmosphere	that’s	controlled	by	code

The	images	in	the	TropicalSunnyDay	set	look	great	for	a	sunny	day,	but	what	if
we	want	to	transition	between	sunny	and	overcast	weather?	This	will	require	a
second	set	of	sky	images	(some	pictures	of	a	cloudy	sky)	so	we	need	a	new
shader	for	the	skybox.

As	explained	in	chapter	4,	a	shader	is	a	short	program	with	instructions	for	how
to	render	the	image.	That	implies	that	you	can	program	new	shaders,	and	that	is
in	fact	the	case.	We’re	going	to	create	a	new	shader	that	takes	two	sets	of	skybox
images	and	transitions	between	them.	Fortunately	a	shader	for	this	purpose
already	exists	in	the	Unify	Community	wiki’s	collection	of	scripts:
http://wiki.unity3d.com/index.php?title=SkyboxBlended

In	Unity	create	a	new	shader	script:	go	to	the	Create	menu	just	like	when	you
create	a	new	C#	script,	but	select	Shader	instead.	Name	the	asset
SkyboxBlended	and	then	double-click	the	shader	to	open	the	script.	Copy	the
code	from	that	wiki	page	and	paste	it	into	the	shader	script.	The	top	line	says
Shader	"Skybox/Blended",	which	tells	Unity	to	add	the	new	shader	into
the	shader	list	under	the	Skybox	category	(the	same	category	as	the	regular
skybox).

Note

We’re	not	going	to	go	over	all	the	details	of	the	shader	program	right	now.
Shader	programming	is	a	pretty	advanced	computer	graphics	topic	and	thus
outside	the	scope	of	this	book.	You	may	want	to	look	that	up	after	you’ve
finished	this	book;	if	so,	start	here:
http://docs.unity3d.com/Manual/ShadersOverview.html

Now	you	can	set	your	material	to	the	Skybox	Blended	shader.	There	are	12
texture	slots,	in	two	sets	of	six	images.	Assign	TropicalSunnyDay	images	to	the
first	six	textures	just	as	before;	for	the	remaining	textures,	use	the	DarkStormy
set	of	skybox	images.

http://wiki.unity3d.com/index.php?title=SkyboxBlended
http://docs.unity3d.com/Manual/ShadersOverview.html

This	new	shader	also	added	a	Blend	slider	near	the	top	of	the	settings.	The	Blend
value	controls	how	much	of	each	set	of	skybox	images	you	want	to	display;
when	you	adjust	the	slider	from	one	side	to	the	other,	the	skybox	transitions	from
sunny	to	overcast.	You	can	test	by	adjusting	the	slider	and	playing	the	game,	but
manually	adjusting	the	sky	isn’t	terribly	helpful	while	the	game	is	running,	so
let’s	write	some	code	to	transition	the	sky.

Create	an	empty	object	in	the	scene	and	name	it	Controller.	Create	a	new
script	and	name	it	WeatherController.	Drag	that	script	onto	the	empty	object,	and
then	write	the	following	listing	in	that	script.

Listing	9.1.	WeatherController	script	that	transitions	from	sunny	to	overcast

I’ll	point	out	a	number	of	things	in	this	code,	but	the	key	new	method	is
SetFloat(),	which	appears	almost	at	the	bottom.	Everything	up	to	that	point
should	be	fairly	familiar,	but	that	one	is	new.	The	method	sets	a	number	value	on
the	material.	Which	value	specifically	is	the	first	parameter	to	that	method.	In
this	case,	the	material	has	a	property	called	Blend	(note	that	material	properties
in	code	start	with	an	underscore).

As	for	the	rest	of	the	code,	a	few	variables	are	defined,	including	both	the

material	and	a	light.	For	the	material	you	want	to	reference	the	blended	skybox
material	we	just	created,	but	what’s	with	the	light?	That’s	so	that	the	scene	will
also	darken	when	transitioning	from	sunny	to	overcast;	as	the	Blend	value
increases,	we’ll	turn	down	the	light.	The	directional	light	in	the	scene	acts	as	the
main	light	and	provides	illumination	everywhere;	drag	that	light	into	the
Inspector.

Note

The	advanced	lighting	system	(called	Enlighten)	in	Unity	takes	the	skybox	into
account	in	order	to	achieve	realistic	results.	However,	this	lighting	approach
won’t	work	right	with	a	changing	skybox,	so	you	may	want	to	turn	it	off.	In	the
Lighting	window	you	can	turn	off	Continuous	Baking	(this	term	was	defined	in
chapter	7)	at	the	bottom;	now	it	will	only	update	when	you	click	the	button.	Set
the	Blend	of	the	skybox	to	the	middle	for	an	average	look,	and	then	click	Build
at	the	bottom	of	the	Lighting	window	to	bake	lightmaps	(a	folder	called	Scene	is
added	to	your	project;	don’t	touch	that	folder).

When	the	script	starts,	it	initializes	the	intensity	of	the	light.	The	script	will	store
the	starting	value	and	consider	that	to	be	“full”	intensity.	This	full	intensity	will
be	used	later	in	the	script	when	dimming	the	light.

Then	the	code	increments	a	value	every	frame	and	uses	that	value	to	adjust	the
sky.	Specifically,	it	calls	SetOvercast()	every	frame,	and	that	function
encapsulates	the	multiple	adjustments	made	to	the	scene.	I’ve	already	explained
what	SetFloat()	is	doing	so	we	won’t	go	over	that	again,	and	the	last	line
adjusts	the	intensity	of	the	light.

Now	play	the	scene	to	watch	the	code	running.	You’ll	see	what	figure	9.2
depicts:	over	a	couple	of	seconds	you’ll	see	the	scene	transition	from	a	sunny
day	to	dark	and	overcast.

Figure	9.2.	Before	and	after:	scene	transition	from	sunny	to	overcast

Warning

One	unexpected	quirk	about	Unity	is	that	the	“Blend”	change	on	the	material	is
permanent.	Unity	resets	objects	in	the	scene	when	the	game	stops	running,	but
assets	that	were	linked	directly	from	the	Project	view	(such	as	the	skybox
material)	are	changed	permanently.	This	only	happens	within	Unity’s	editor
(changes	don’t	carry	over	between	plays	after	the	game	is	deployed	outside	the
editor)	and	thus	can	result	in	frustrating	bugs	if	you	forget	about	it.

It’s	pretty	cool	watching	the	scene	transition	from	sunny	to	overcast.	But	this
was	all	just	a	setup	for	the	actual	goal:	having	the	weather	in	the	game	sync	up	to
real-world	weather	conditions.	For	that,	we	need	to	start	downloading	weather
data	from	the	internet.

9.2.	Downloading	weather	data	from	an	internet	service

Now	that	we	have	the	outdoors	scene	set	up,	we	can	write	code	that	will
download	weather	data	and	modify	the	scene	based	on	that	data.	This	task	will
provide	a	good	example	of	retrieving	data	using	HTTP	requests.	A	web	service
for	free	weather	data	is	OpenWeatherMap;	you’ll	use	their	API	(application
programming	interface,	a	way	to	access	their	service	using	code	commands
instead	of	a	graphical	interface)	located	at	http://openweathermap.org/api

Definition

A	web	service	or	web	API	is	a	server	connected	to	the	internet	that	returns	data
upon	request.	There’s	no	technical	difference	between	a	web	API	and	a	website;
a	website	is	a	web	service	that	happens	to	return	the	data	for	a	web	page,	and

http://openweathermap.org/api

browsers	interpret	HTML	data	as	a	visible	document.

The	code	you’ll	write	will	be	structured	around	the	same	Managers
architecture	from	chapter	8.	This	time	you’ll	have	a	WeatherManager	class
that	gets	initialized	from	the	central	manager-of-managers.	WeatherManager
will	be	in	charge	of	retrieving	and	storing	weather	data,	but	to	do	so	it’ll	need	the
ability	to	communicate	with	the	internet.

To	accomplish	that,	you’ll	create	a	utility	class	called	NetworkService.
NetworkService	will	handle	the	details	of	connecting	to	the	internet	and
making	HTTP	requests.	WeatherManager	can	then	tell	NetworkService
to	make	those	requests	and	pass	back	the	response.	Figure	9.3	shows	how	this
code	structure	will	operate.

Figure	9.3.	Diagram	showing	how	the	networking	code	will	be	structured

For	this	to	work,	obviously	WeatherManager	will	need	to	have	access	to	the
NetworkService	object.	You’re	going	to	address	this	by	creating	the	object
in	Managers	and	then	injecting	the	NetworkService	object	into	the	various
managers	when	they’re	initialized.	In	this	way	not	only	will
WeatherManager	have	a	reference	to	the	NetworkService,	but	so	will
any	other	managers	you	create	later.

To	start	bringing	over	the	Managers	code	architecture	from	chapter	8,	first
copy	over	ManagerStatus	and	IGameManager	(remember	that
IGameManager	is	the	interface	that	all	managers	must	implement,	whereas
ManagerStatus	is	an	enum	that	IGameManager	uses).	You’ll	need	to
modify	IGameManager	slightly	to	accommodate	the	new	NetworkService
class,	so	create	a	new	script	called	NetworkService	(leave	it	empty	for	now;

you’ll	fill	it	in	later)	and	then	adjust	IGameManager	as	shown	in	listing	9.2.

Listing	9.2.	Adjusting	IGameManager	to	include	NetworkService

Next	let’s	create	WeatherManager	to	implement	this	slightly	adjusted	interface.
Create	a	new	C#	script	(see	the	following	listing).

Listing	9.3.	Initial	script	for	WeatherManager

This	initial	pass	at	WeatherManager	doesn’t	really	do	anything.	For	now	it’s
just	the	minimum	amount	that	IGameManager	requires	that	the	class
implements:	declare	the	status	property	from	the	interface,	as	well	as
implement	the	Startup()	function.	You’ll	fill	in	this	empty	framework	over
the	next	few	sections.	Finally,	copy	over	Managers	from	chapter	8	and	adjust	it
to	start	up	WeatherManager	(see	the	next	listing).

Listing	9.4.	Managers.cs	adjusted	to	initialize	WeatherManager

And	that’s	everything	needed	codewise	for	the	Managers	code	architecture.	As
you	have	in	previous	chapters,	create	the	game	managers	object	in	the	scene	and
then	attach	both	Managers	and	WeatherManager	to	the	empty	object.	Even
though	the	manager	isn’t	doing	anything	yet,	you	can	see	startup	messages	in	the
console	when	it’s	set	up	correctly.

Whew,	there	were	quite	a	few	“boilerplate”	things	to	get	out	of	the	way!	Now	we
can	get	on	with	writing	the	networking	code.

9.2.1.	Requesting	WWW	data	using	coroutines

NetworkService	is	currently	an	empty	script,	so	you	can	write	code	in	it	to	make
HTTP	requests.	The	primary	class	you	need	to	know	about	is	WWW.	Unity
provides	the	WWW	class	to	communicate	with	the	internet.	Instantiating	a	WWW
object	using	a	URL	will	send	a	request	to	that	URL.

Coroutines	can	work	with	the	WWW	class	to	wait	for	the	request	to	complete.
Coroutines	were	first	introduced	back	in	chapter	3,	where	we	used	them	to	pause
some	code	for	a	set	period	of	time.	Recall	the	explanation	given	there:	coroutines
are	special	functions	that	seemingly	run	in	the	background	of	a	program,	in	a
repeated	cycle	of	running	partway	and	then	returning	to	the	rest	of	the	program.
When	used	along	with	the	StartCoroutine()	method,	the	yield	keyword
causes	the	coroutine	to	temporarily	pause,	handing	back	the	program	flow	and
picking	up	again	from	that	point	next	frame.

In	chapter	3	the	coroutines	yielded	at	WaitForSeconds(),	an	object	that
caused	the	function	to	pause	for	a	specific	number	of	seconds.	Yielding	a
coroutine	with	WWW	will	pause	the	function	until	that	network	request	completes.
The	program	flow	here	is	similar	to	making	asynchronous	Ajax	calls	in	a	web
application:	first	you	send	a	request,	then	you	continue	with	the	rest	of	the
program,	and	after	some	time	you	receive	a	response.

That	was	the	theory;	now	let’s	write	the	code

All	right,	let’s	implement	this	stuff	in	our	code.	First	open	the	NetworkService
script	and	replace	the	default	template	with	the	contents	of	the	following	listing.

Listing	9.5.	Making	HTTP	requests	in	NetworkService

Remember	the	code	design	explained	earlier:	WeatherManager	will	tell
NetworkService	to	go	fetch	data.	Thus	all	this	code	doesn’t	actually	run	yet;
you’re	setting	up	code	that	will	be	called	by	WeatherManager	a	bit	later.	To
explore	this	code	listing,	let’s	start	at	the	bottom	and	work	our	way	up.

Writing	coroutine	methods	that	cascade	through	each	other

GetWeatherXML()	is	the	coroutine	method	that	outside	code	can	use	to	tell
NetworkService	to	make	an	HTTP	request.	Notice	that	this	function	has
IEnumerator	for	its	return	type;	methods	used	in	coroutines	must	have
IEnumerator	declared	as	the	return	type.

It	might	look	odd	at	first	that	GetWeatherXML()	doesn’t	have	a	yield
statement.	Coroutines	are	paused	by	the	yield	statement,	which	implies	that
every	coroutine	must	yield	somewhere.	It	turns	out	that	the	yielding	can	cascade

through	multiple	methods.	If	the	initial	coroutine	method	itself	calls	another
method,	and	that	other	method	yields	part	of	the	way	through,	then	the	coroutine
will	pause	inside	that	second	method	and	resume	there.	Thus	the	yield
statement	in	CallAPI()	pauses	the	coroutine	that	was	started	in
GetWeatherXML();	figure	9.4	shows	this	code	flow.

Figure	9.4.	Diagram	showing	how	the	network	coroutine	works

The	next	potential	head-scratcher	is	the	callback	parameter	of	type	Action.

Understanding	how	the	callback	works

When	the	coroutine	is	started,	the	method	is	called	with	a	parameter	called
callback,	and	callback	has	the	type	Action.	But	what	is	an	Action?

Definition

The	type	Action	is	a	delegate	(C#	has	a	few	approaches	to	delegates,	but	this
one	is	the	simplest).	Delegates	are	references	to	some	other	method/function.
They	allow	you	to	store	the	function	(or	rather	a	pointer	to	the	function)	in	a
variable	and	to	pass	that	function	as	a	parameter	to	another	function.

If	you’re	unfamiliar	with	the	concept	of	delegates,	realize	that	they	enable	you	to
pass	around	functions	just	as	you	do	numbers	and	strings.	Without	delegates,
you	can’t	pass	around	functions	to	call	later—you	can	only	directly	call	the
function	then.	With	delegates	you	can	tell	code	about	other	methods	to	call	later.
This	is	useful	for	many	purposes,	especially	for	implementing	callback
functions.

Definition

A	callback	is	a	function	used	to	communicate	back	to	the	calling	object.	Object
A	could	tell	Object	B	about	one	of	the	methods	in	A.	B	could	later	call	A’s
method	to	communicate	back	to	A.

For	example,	in	this	case	the	callback	is	used	to	communicate	the	response	data
back	after	waiting	for	the	HTTP	request	to	complete.	In	CallAPI()	the	code
first	makes	an	HTTP	request,	then	yields	until	that	request	completes,	and	finally
uses	callback()	to	send	back	the	response.

Note	the	<>	syntax	used	with	the	Action	keyword;	the	type	written	in	the
angle	brackets	declares	the	parameters	required	to	fit	this	Action.	In	other
words,	the	function	this	Action	points	to	must	take	parameters	matching	the
declared	type.	In	this	case	the	parameter	is	a	single	string,	so	the	callback
method	must	have	a	signature	like	this:

MethodName(string	value)

The	concept	of	a	callback	may	make	more	sense	after	you’ve	seen	it	in	action,
which	you	will	in	listing	9.6;	this	initial	explanation	is	so	that	you’ll	recognize
what’s	going	on	when	you	see	that	additional	code.

The	rest	of	listing	9.5	is	pretty	straightforward.	IsResponseValid()	checks
for	errors	in	the	HTTP	response.	There	are	two	kinds	of	errors:	the	request
could’ve	failed	due	to	a	bad	internet	connection,	or	the	data	returned	could	be
malformed	in	some	way.	A	const	value	is	declared	with	the	URL	to	make	the
request	to.	(Incidentally,	you	can	change	this	URL	to	get	weather	for	different
locations.)

Making	use	of	the	Networking	code

That	wraps	up	the	code	in	NetworkService.	Now	let’s	use
NetworkService	in	WeatherManager;	the	next	listing	shows	the	additions	to
that	script.

Listing	9.6.	Adjusting	WeatherManager	to	use	NetworkService

Three	primary	changes	are	made	to	the	code	in	this	manager:	starting	a	coroutine
to	download	data	from	the	internet,	setting	a	different	startup	status,	and	defining
a	callback	method	to	receive	the	response.

Starting	the	coroutine	is	simple.	Most	of	the	complexity	behind	coroutines	was
already	handled	in	NetworkService,	so	calling	StartCoroutine()	is	all
you	need	to	do	here.	Then	you	set	a	different	startup	status,	because	the	manager
isn’t	actually	finished	initializing;	it	needs	to	receive	data	from	the	internet
before	startup	is	complete.

Warning

Always	start	networking	methods	using	StartCoroutine();	don’t	just	call
the	function	normally.	This	can	be	easy	to	forget	because	creating	WWW	objects
outside	of	a	coroutine	doesn’t	generate	any	sort	of	compiler	error.

When	you	call	the	StartCoroutine()	method,	you	need	to	invoke	the
method.	That	is,	actually	type	the	parentheses—()—and	don’t	just	provide	the
name	of	the	function.	In	this	case,	the	coroutine	method	needs	a	callback
function	as	its	one	parameter,	so	let’s	define	that	function.	We’ll	use
OnXMLDataLoaded()	for	the	callback;	notice	that	this	method	has	a	string
parameter,	which	fits	the	Action<string>	declaration	from
NetworkService.	The	callback	function	doesn’t	do	a	lot	right	now;	the
debug	line	simply	prints	the	received	data	to	the	console	to	verify	that	the	data
was	received	correctly.	Then	the	last	line	of	the	function	changes	the	startup
status	of	the	manager	to	say	that	it’s	completely	started	up.

Hit	Play	to	run	the	code.	Assuming	you	have	a	solid	internet	connection,	you
should	see	a	bunch	of	data	appear	in	the	console.	This	data	is	simply	a	long
string,	but	the	string	is	formatted	in	a	specific	way	that	we	can	make	use	of.

9.2.2.	Parsing	XML

Data	that	exists	as	a	long	string	usually	has	individual	bits	of	information
embedded	within	the	string.	You	extract	those	bits	of	information	by	parsing	the
string.

Definition

Parsing	means	analyzing	a	chunk	of	data	and	dividing	it	up	into	separate	pieces
of	information.

In	order	to	parse	the	string,	it	needs	to	be	formatted	in	a	way	that	allows	you	(or
rather,	the	parser	code)	to	identify	separate	pieces.	There	are	a	couple	of	standard
formats	commonly	used	to	transfer	data	over	the	internet;	the	most	common
standard	format	is	XML.

Definition

XML	stands	for	Extensible	Markup	Language.	It’s	a	set	of	rules	for	encoding
documents	in	a	structured	way,	similar	to	HTML	web	pages.

Fortunately,	Unity	(or	rather	Mono,	the	code	framework	built	into	Unity)
provides	functionality	for	parsing	XML.	The	weather	data	we	requested	is
formatted	in	XML,	so	we’re	going	to	add	code	to	WeatherManager	to	parse
the	response	and	extract	the	cloudiness.	Put	the	URL	into	a	web	browser	in	order
to	see	the	code;	there’s	a	lot	there,	but	we’re	only	interested	in	the	node	that
contains	something	like	<clouds	value="40"	name="scattered
clouds"/>.

In	addition	to	adding	code	to	parse	XML,	we’re	going	to	make	use	of	the	same
messenger	system	we	did	in	chapter	6.	That’s	because	once	the	weather	data	is

downloaded	and	parsed,	we	still	need	to	inform	the	scene	about	that.	Create	a
script	called	Messenger	and	paste	in	the	code	from	this	page	on	the	Unify
wiki:	http://wiki.unity3d.com/index.php/CSharpMessenger_Extended

Then	you	need	to	create	a	script	called	GameEvent	(see	the	next	listing).	As
explained	in	chapter	6,	this	messenger	system	is	great	for	providing	a	decoupled
way	of	communicating	events	to	the	rest	of	the	program.

Listing	9.7.	GameEvent	code

public	static	class	GameEvent	{

			public	const	string	WEATHER_UPDATED	=	"WEATHER_UPDATED";

}

Once	the	messenger	system	is	in	place,	adjust	WeatherManager	as	shown	in	the
following	listing.

Listing	9.8.	Parsing	XML	in	WeatherManager

You	can	see	that	the	most	important	changes	were	made	inside
OnXMLDataLoaded().	Previously	this	method	simply	logged	the	data	to	the
console	to	verify	that	data	was	coming	through	correctly.	This	listing	adds	a	lot
of	code	to	parse	the	XML.

First	create	a	new	empty	XML	document;	this	is	an	empty	container	that	you	can
fill	with	a	parsed	XML	structure.	The	next	line	parses	the	data	string	into	a
structure	contained	by	the	XML	document.	Then	we	start	at	the	root	of	the	XML

http://wiki.unity3d.com/index.php/CSharpMessenger_Extended

tree	so	that	everything	can	search	up	the	tree	in	subsequent	code.

At	this	point	you	can	search	for	nodes	within	the	XML	structure	in	order	to	pull
out	individual	bits	of	information.	In	this	case,	<clouds>	is	the	only	node
we’re	interested	in.	First	find	that	node	in	the	XML	document,	and	then	extract
the	value	attribute	from	that	node.	This	data	defines	the	cloud	value	as	a	0-100
integer,	but	we’re	going	to	need	it	as	a	0-1	float	in	order	to	adjust	the	scene	later.
Converting	that	is	a	simple	bit	of	math	added	to	the	code.

Finally,	after	extracting	out	the	cloudiness	value	from	the	full	data,	broadcast	a
message	that	the	weather	data	has	been	updated.	Currently	nothing	is	listening
for	that	message,	but	the	broadcaster	doesn’t	need	to	know	anything	about
listeners	(indeed,	that’s	the	entire	point	of	a	decoupled	messenger	system).	Later
we’ll	add	a	listener	to	the	scene.

Great—we’ve	written	code	to	parse	XML	data!	But	before	we	move	on	to
applying	this	value	to	the	visible	scene,	I	want	to	go	over	another	option	for	data
transfer.

9.2.3.	Parsing	JSON

Before	continuing	to	the	next	step	in	the	project,	let’s	explore	an	alternative
format	for	transferring	data.	XML	is	one	common	format	for	data	transferred
over	the	internet,	but	another	common	format	is	called	JSON.

Definition

JSON	stands	for	JavaScript	Object	Notation.	Similar	in	purpose	to	XML,	JSON
was	designed	to	be	a	lightweight	alternative.	Although	the	syntax	for	JSON	was
originally	derived	from	JavaScript,	the	format	is	not	language-specific	and	is
readily	used	with	a	variety	of	programming	languages.

Unlike	XML,	Mono	doesn’t	come	with	a	parser	for	this	format.	There	are	a
number	of	good	JSON	parsers	available	that	you	could	download,	such	as
MiniJSON	(https://gist.github.com/darktable/1411710).	Create	a	script	called
MiniJSON	and	paste	in	that	code.	Now	you	can	use	this	library	to	parse	JSON
data.	We’ve	been	getting	XML	from	the	OpenWeatherMap	API,	but	as	it

https://gist.github.com/darktable/1411710

happens	they	can	also	send	the	same	data	formatted	as	JSON.	To	do	that,	modify
NetworkService	according	to	the	next	listing.

Listing	9.9.	Making	NetworkService	request	JSON	instead	of	XML

This	is	pretty	much	the	same	as	the	code	to	download	XML	data,	except	that	the
URL	is	slightly	different.	The	data	returned	from	this	request	has	the	same
values,	but	it’s	formatted	differently.	This	time	we’re	looking	for	a	chunk	like
"clouds":{"all":40}.

There	wasn’t	a	ton	of	additional	code	required	this	time.	That’s	because	we	set
up	the	code	for	requests	into	nicely	parceled	separate	functions,	so	every
subsequent	HTTP	request	will	be	easy	to	add.	Nice!	Now	let’s	modify
WeatherManager	to	request	JSON	data	instead	of	XML	(see	the	following
listing).

Listing	9.10.	Modifying	WeatherManager	to	request	JSON	instead

As	you	can	see,	the	code	for	working	with	JSON	looks	similar	to	the	code	for
XML.	The	only	real	difference	is	that	this	JSON	parser	works	with	a	standard
Dictionary	instead	of	a	custom	document	container	like	XML	did.	There’s	a
command	to	deserialize,	and	that	may	be	an	unfamiliar	word.

Definition

Deserialize	means	pretty	much	the	same	thing	as	parse.	This	is	the	reverse	of
serialize,	which	means	to	encode	a	batch	of	data	into	a	form	that	can	be
transferred	and	stored,	such	as	a	JSON	string.

Aside	from	the	different	syntax,	all	the	steps	are	exactly	the	same.	Extract	the
value	from	the	data	chunk	(for	some	reason	the	value	is	called	all	this	time,	but
that’s	just	a	quirk	of	the	API)	and	do	some	simple	math	to	convert	the	value	to	a
0-1	float.

With	that	done,	it’s	time	to	apply	the	value	to	the	visible	scene.

9.2.4.	Affecting	the	scene	based	on	Weather	Data

Regardless	of	exactly	how	the	data	is	formatted,	once	the	cloudiness	value	is
extracted	from	the	response	data,	we	can	use	that	value	in	the
SetOvercast()	method	of	WeatherController.	Whether	XML	or
JSON,	the	data	string	ultimately	gets	parsed	into	a	series	of	words	and	numbers.
The	SetOvercast()	method	takes	a	number	as	a	parameter.	In	section	9.1.2
we	used	a	number	incremented	every	frame,	but	we	could	just	as	easily	use	the
number	returned	by	the	weather	API.

The	next	listing	shows	the	full	WeatherController	script	again	after
modifications.

Listing	9.11.	WeatherController	that	reacts	to	downloaded	weather	data

Notice	that	the	changes	aren’t	only	additions;	several	bits	of	test	code	got
removed.	Specifically,	we	removed	the	local	cloudiness	value	that	was

incremented	every	frame;	we	don’t	need	that	anymore,	because	we’ll	use	the
value	from	WeatherManager.

A	listener	gets	added	and	removed	in	Awake()/OnDestroy()	(these	are
MonoBehaviour’s	functions	called	when	the	object	awakes	or	is	removed).
This	listener	is	part	of	the	broadcast	messaging	system,	and	it	calls
OnWeatherUpdated()	when	that	message	is	received.
OnWeatherUpdated()	retrieves	the	cloudiness	value	from
WeatherManager	and	calls	SetOvercast()	using	that	value.	In	this	way,
the	appearance	of	the	scene	is	controlled	by	downloaded	weather	data.

Run	the	scene	now	and	you’ll	see	the	sky	update	according	to	the	cloudiness	in
the	weather	data.	You	may	see	it	take	time	to	request	the	weather;	in	a	real	game,
you’d	probably	want	to	hide	the	scene	behind	a	loading	screen	until	the	sky
updates.

	

Game	networking	beyond	HTTP

HTTP	requests	are	robust	and	reliable,	but	the	latency	between	making	a	request
and	receiving	a	response	can	be	a	little	slow	for	many	games.	HTTP	requests	are
therefore	a	good	way	of	doing	relatively	slow-paced	messages	to	a	server	(such
as	moves	in	a	turn-based	game,	or	submission	of	high	scores	for	any	game),	but
something	like	a	multiplayer	FPS	would	need	a	different	approach	to
networking.

These	different	approaches	involve	various	communication	technologies,	as	well
as	techniques	to	compensate	for	lag.	For	example,	Unity	uses	the	RakNet
networking	library	through	a	system	called	remote	procedure	calls	(RPCs).

The	cutting	edge	for	networked	action	games	is	a	complex	topic	that	goes
beyond	the	scope	of	this	book.	You	can	look	up	more	information	on	your	own,
starting	here:	http://docs.unity3d.com/Manual/NetworkReferenceGuide.html.

Now	that	you	know	how	to	get	numerical	and	string	data	from	the	internet,	let’s

http://docs.unity3d.com/Manual/NetworkReferenceGuide.html

do	the	same	thing	with	an	image.

9.3.	Adding	a	networked	billboard

Although	the	responses	from	a	web	API	are	almost	always	text	strings	formatted
in	XML	or	JSON,	many	other	sorts	of	data	are	transferred	over	the	internet.
Besides	text	data,	the	most	common	kind	of	data	requested	is	images.	Unity’s
WWW	object	can	be	used	to	download	images,	too.

You’re	going	to	learn	about	this	task	by	creating	a	billboard	that	displays	an
image	downloaded	from	the	internet.	You	need	to	code	two	steps:	downloading
an	image	to	display,	and	applying	that	image	to	the	billboard	object.	Then,	as	a
third	step,	you’ll	improve	the	code	so	that	the	image	will	be	stored	to	use	on
multiple	billboards.

9.3.1.	Loading	images	from	the	internet

First	let’s	write	the	code	to	download	an	image.	You’re	going	to	download	some
public	domain	landscape	photography	(see	figure	9.5)	to	test	with.	The
downloaded	image	won’t	be	visible	on	the	billboard	yet;	I’ll	show	you	a	script	to
display	the	image	in	the	next	section,	but	before	that,	let’s	get	code	in	place	that
will	retrieve	the	image.

Figure	9.5.	Image	of	Moraine	Lake	in	Banff	National	Park,	Canada

The	code	architecture	for	downloading	an	image	looks	much	the	same	as	the
architecture	for	downloading	data.	A	new	manager	module	(called
ImagesManager)	will	be	in	charge	of	downloaded	images	to	be	displayed.
Once	again,	the	details	of	connecting	to	the	internet	and	sending	HTTP	requests
will	be	handled	in	NetworkService,	and	ImagesManager	will	call	upon
NetworkService	to	download	images	for	it.

The	first	addition	to	code	is	in	NetworkService.	The	following	listing	adds
image	downloading	to	that	script.

Listing	9.12.	Downloading	an	image	in	NetworkService

The	code	that	downloads	an	image	looks	almost	identical	to	the	code	for
downloading	data.	The	primary	difference	is	the	type	of	callback	method;	note
that	the	callback	takes	a	Texture2D	this	time	instead	of	a	string.	That’s	because
you’re	sending	back	the	relevant	response:	you	downloaded	a	string	of	data

before—now	you’re	downloading	an	image.	The	next	listing	contains	code	for
the	new	ImagesManager.	Create	a	new	script	and	enter	that	code.

Listing	9.13.	Creating	ImagesManager	to	retrieve	and	store	images

The	most	interesting	part	of	this	code	is	GetWebImage();	everything	else	in
this	script	consists	of	standard	properties	and	methods	that	implement	the
manager	interface.	When	GetWebImage()	is	called,	it’ll	return	(via	a	callback
function)	the	web	image.	First	it’ll	check	if	_webImage	already	has	a	stored
image:	if	not,	it’ll	invoke	the	network	call	to	download	the	image.	If
_webImage	already	has	a	stored	image,	GetWebImage()	will	send	back	the
stored	image	(rather	than	downloading	the	image	anew).

Note

Currently	the	downloaded	image	is	never	being	stored,	which	means
_webImage	will	always	be	empty.	Code	that	specifies	what	to	do	when
_webImage	is	not	empty	is	already	in	place,	so	you’ll	adjust	the	code	to	store
that	image	in	the	following	sections.	This	adjustment	is	in	a	separate	section

because	it	involves	some	tricky	code	wizardry.

Of	course,	just	like	all	manager	modules,	ImagesManager	needs	to	be	added
to	Managers;	the	following	listing	details	the	additions	to	Managers.cs.

Listing	9.14.	Adding	the	new	manager	to	Managers.cs

...

[RequireComponent(typeof(ImagesManager))]

...

public	static	ImagesManager	Images	{get;	private	set;}

...

void	Awake()	{

			Weather	=	GetComponent<WeatherManager>();

			Images	=	GetComponent<ImagesManager>();

			startSequence	=	new	List<IGameManager>();

			startSequence.Add(Weather);

			_startSequence.Add(Images);

			StartCoroutine(StartupManagers());

}

...

Unlike	how	we	set	up	WeatherManager,	GetWebImage()	in
ImagesManager	isn’t	called	automatically	on	startup.	Instead,	the	code	waits
until	invoked;	that’ll	happen	in	the	next	section.

9.3.2.	Displaying	images	on	the	billboard

The	ImagesManager	you	just	wrote	doesn’t	do	anything	until	it’s	called	upon,
so	now	we’ll	create	a	billboard	object	that	will	call	methods	in
ImagesManager.	First	create	a	new	cube	and	then	place	it	in	the	middle	of	the
scene,	at	something	like	Position	0	1.5	-5	and	Scale	5	3	.5	(see	figure	9.6).

Figure	9.6.	The	billboard	object,	before	and	after	displaying	the	downloaded	image

You’re	going	to	create	a	device	that	operates	just	like	the	color-changing	monitor
in	chapter	8.	Copy	the	DeviceOperator	script	and	put	it	on	the	player.	As	you
may	recall,	that	script	will	operate	nearby	devices	when	the	Fire3	button	is
pressed	(which	is	defined	in	the	project’s	input	settings	as	the	left	Command
key).	Also	create	a	script	for	the	billboard	device	called	WebLoadingBillboard,
put	that	script	on	the	billboard	object,	and	enter	the	code	from	the	next	listing.

Listing	9.15.	WebLoadingBillboard	device	script

This	code	does	two	primary	things:	it	calls
ImagesManager.GetWebImage()	when	the	device	is	operated,	and	it
applies	the	image	from	the	callback	function.	Textures	are	applied	to	materials	so
you	can	change	the	texture	in	the	material	that’s	on	the	billboard.	Figure	9.6
shows	what	the	billboard	will	look	like	after	you	play	the	game.

AssetBundles:	How	to	download	other	kinds	of	assets

Downloading	an	image	is	fairly	straightforward	using	the	WWW	object,	but	what
about	other	kinds	of	assets,	like	mesh	objects	and	prefabs?	WWW	has	properties
for	text	and	images,	but	other	assets	are	a	bit	more	complicated.

Unity	can	download	any	kind	of	asset	through	a	mechanism	called
AssetBundles.	Long	story	short,	you	first	package	up	some	assets	into	a	bundle,
and	then	Unity	can	extract	the	assets	after	downloading	the	bundle.	The	details
of	both	creating	and	downloading	AssetBundles	are	beyond	the	scope	of	this
book;	if	you	want	to	learn	more,	start	by	reading	this	section	of	Unity’s	manual:

http://docs.unity3d.com/Manual/AssetBundlesIntro.html

Great,	the	downloaded	image	is	displayed	on	the	billboard!	But	this	code	could
be	optimized	further	to	work	with	multiple	billboards.	Let’s	tackle	that
optimization	in	the	next	section.

9.3.3.	Caching	the	downloaded	image	for	reuse

As	noted	in	section	9.3.1,	ImagesManager	doesn’t	yet	store	the	downloaded
image.	That	means	the	image	will	be	downloaded	over	and	over	for	multiple
billboards.	This	is	inefficient,	because	it’ll	be	the	same	image	each	time.	To
address	this,	we’re	going	to	adjust	ImagesManager	to	cache	images	that	have
been	downloaded.

Definition

Cache	means	to	keep	stored	locally.	The	most	common	(but	not	only!)	context
involves	images	downloaded	from	the	internet.

The	key	is	to	provide	a	callback	function	in	ImagesManager	that	first	saves
the	image,	and	then	calls	the	callback	from	WebLoadingBillboard.	This	is
tricky	to	do	(as	opposed	to	the	current	code	that	uses	the	callback	from
WebLoadingBillboard)	because	the	code	doesn’t	know	ahead	of	time	what
the	callback	from	WebLoadingBillboard	will	be.	Put	another	way,	there’s
no	way	to	write	a	method	in	ImagesManager	that	calls	a	specific	method	in
WebLoadingBillboard	because	the	code	doesn’t	know	what	that	specific
method	will	be.	The	way	around	this	conundrum	is	to	use	lambda	functions.

Definition

http://docs.unity3d.com/Manual/AssetBundlesIntro.html

A	lambda	function	(also	called	an	anonymous	function)	is	a	function	that	doesn’t
have	a	name.	Such	functions	are	usually	created	on	the	fly	inside	other	functions.

Lambda	functions	are	a	tricky	code	feature	supported	in	a	number	of
programming	languages,	including	C#.	By	using	a	lambda	function	for	the
callback	in	ImagesManager,	the	code	can	create	the	callback	function	on	the
fly	using	the	method	passed	in	from	WebLoadingBillboard.	Thus	you
don’t	need	to	know	the	method	to	call	ahead	of	time,	because	this	lambda
function	doesn’t	exist	ahead	of	time!	The	following	listing	shows	how	to	do	this
voodoo	in	ImagesManager.

Listing	9.16.	Lambda	function	for	callback	in	ImagesManager

The	main	change	was	in	the	function	passed	to
NetworkService.DownloadImage().	Previously	the	code	was	passing
through	the	same	callback	method	from	WebLoadingBanner.	After	the
change,	though,	the	callback	sent	to	NetworkService	was	a	separate	lambda
function	declared	on	the	spot	that	called	the	method	from
WebLoadingBanner.	Take	note	of	the	syntax	to	declare	a	lambda	method:	()
=>	{}.

Making	the	callback	a	separate	function	made	it	possible	to	do	more	than	call	the
method	in	WebLoadingBanner;	specifically,	the	lambda	function	also	stores
a	local	copy	of	the	downloaded	image.	Thus	GetWebImage()	only	has	to
download	the	image	the	first	time;	all	subsequent	calls	will	use	the	locally	stored
image.

Because	this	optimization	applies	to	subsequent	calls,	the	effect	will	be
noticeable	only	on	multiple	billboards.	Let’s	duplicate	the	billboard	object	so
that	there	will	be	a	second	billboard	in	the	scene.	Select	the	billboard	object,	hit
Duplicate	(look	under	the	Edit	menu	or	right-click),	and	move	the	duplicate	over
(for	example,	change	the	X	position	to	18).

Now	play	the	game	and	watch	what	happens.	When	you	operate	the	first
billboard,	there	will	be	a	noticeable	pause	while	the	image	downloads	from	the
internet.	But	when	you	then	walk	over	to	the	second	billboard,	the	image	will
appear	immediately	because	it	has	already	been	downloaded.

This	is	an	important	optimization	for	downloading	images	(there’s	a	reason	web
browsers	cache	images	by	default).	There’s	one	more	major	networking	task
remaining	to	go	over:	sending	data	back	to	the	server.

9.4.	Posting	data	to	a	web	server

We’ve	gone	over	multiple	examples	of	downloading	data,	but	we	still	need	to
see	an	example	of	sending	data.	This	last	section	does	require	you	to	have	a
server	to	send	requests	to,	so	this	section	is	optional.	But	it’s	easy	to	download
open-source	software	to	set	up	a	server	to	test	on.

I	recommend	XAMPP	for	a	test	server.	Go	to	www.apachefriends.org	to
download	XAMPP.	Once	that’s	installed	and	the	server	is	running,	you	can
access	XAMPP’s	htdocs	folder	with	the	address	http://localhost/just	like	you
would	a	server	on	the	internet.	Once	you	have	XAMPP	up	and	running,	create	a
folder	called	ch9	in	htdocs;	that’s	where	you’ll	put	the	server-side	script.

Whether	you	use	XAMPP	or	your	own	existing	web	server,	the	actual	task	will
be	to	post	weather	data	to	the	server	when	the	player	reaches	a	checkpoint	in	the
scene.	This	checkpoint	will	be	a	trigger	volume,	just	like	the	door	trigger	in
chapter	8.	You	need	to	create	a	new	cube	object,	position	the	object	off	to	one
side	of	the	scene,	set	the	collider	to	Trigger,	and	apply	a	semitransparent	material
like	you	did	in	the	previous	chapter	(remember,	set	the	material’s	Rendering
Mode).	Figure	9.7	shows	the	checkpoint	object	with	a	green	semitransparent
material	applied.

Figure	9.7.	The	checkpoint	object	that	triggers	data	sending

http://www.apachefriends.org

Now	that	the	trigger	object	is	in	the	scene,	let’s	write	the	code	that	it	invokes.

9.4.1.	Tracking	current	weather:	sending	post	requests

The	code	that’s	invoked	by	the	checkpoint	object	will	cascade	through	several
scripts.	As	with	the	code	for	downloading	data,	the	code	for	sending	data	will
involve	WeatherManager	telling	NetworkService	to	make	the	request,	while
NetworkService	handles	the	details	of	HTTP	communication.	The	next	listing
shows	the	adjustments	you	need	to	make	to	NetworkService.

Listing	9.17.	Adjusting	NetworkService	to	post	data

First,	notice	that	CallAPI()	has	a	new	parameter.	This	is	a	table	of	arguments
to	send	along	with	the	HTTP	request.	Within	CallAPI()	a	WWWForm	object
may	be	created	according	to	that	table	of	arguments.	Normally	WWW	sends	a	GET
request,	but	WWWForm	will	change	it	to	a	POST	request	to	send	data.	All	the
other	changes	in	the	code	react	to	that	central	change	(for	example,	modifying
GetWhatever()	code	because	of	the	CallAPI()	parameters).

The	next	listing	shows	what	you	need	to	add	in	WeatherManager.

Listing	9.18.	Adding	code	to	WeatherManager	that	sends	data

...

public	void	LogWeather(string	name)	{

			StartCoroutine(_network.LogWeather(name,	cloudValue,	OnLogged));

}

private	void	OnLogged(string	response)	{

			Debug.Log(response);

}

...

Finally,	make	use	of	that	code	by	adding	a	checkpoint	script	to	the	trigger
volume	in	the	scene.	Create	a	script	called	CheckpointTrigger,	put	that	script	on
the	trigger	volume,	and	enter	the	contents	of	the	next	listing.

Listing	9.19.	CheckpointTrigger	script	for	the	trigger	volume

An	Identifier	slot	will	appear	in	the	Inspector;	name	it	something	like
checkpoint1.	Run	the	code	and	data	will	be	sent	when	you	enter	the
checkpoint.	The	response	will	indicate	an	error,	though,	because	there’s	no	script
on	the	server	to	receive	the	request.	That’s	the	last	step	in	this	section.

9.4.2.	Server-side	code	in	PHP

The	server	needs	to	have	a	script	to	receive	data	sent	from	the	game.	Coding
server	scripts	is	beyond	the	scope	of	this	book,	so	we	won’t	go	into	detail	here.
We’ll	just	whip	up	a	PHP	script	because	that’s	the	easiest	approach.	Create	a	text
file	in	htdocs	(or	wherever	your	web	server	is	located)	and	name	the	file	api.php
(see	listing	9.20).

Listing	9.20.	Server	script	written	in	PHP	that	receives	our	data

Note	that	this	script	writes	received	data	into	data.txt,	so	you	also	need	to	put	a
text	file	with	that	name	on	the	server.	Once	api.php	is	in	place,	you’ll	see
weather	logs	appear	in	data.txt	when	triggering	checkpoints	in	the	game.	Great!

9.5.	Summary

In	this	chapter	you’ve	learned	that

	

Skybox	is	designed	for	sky	visuals	that	render	behind	everything	else.
Unity	provides	WWW	to	download	data.
Common	data	formats	like	XML	and	JSON	can	be	parsed	easily.
Materials	can	display	images	downloaded	from	the	internet.
WWW	can	also	post	data	to	a	web	server.

Chapter	10.	Playing	audio:	sound	effects	and	music

This	chapter	covers

	

Importing	and	playing	audio	clips	for	various	sound	effects
Using	2D	sounds	for	the	UI	and	3D	sounds	in	the	scene
Modulating	the	volume	of	all	sounds	when	they	play
Playing	background	music	while	the	game	is	going	on
Fading	in	and	out	between	different	background	tunes

Although	graphics	get	most	of	the	attention	when	it	comes	to	content	in	video
games,	audio	is	crucial,	too.	Most	games	play	background	music	and	have	sound
effects.	Accordingly,	Unity	has	audio	functionality	so	that	you	can	put	sound
effects	and	music	into	your	games.	Unity	can	import	and	play	a	variety	of	audio
file	formats,	adjust	the	volume	of	sounds,	and	even	handle	sounds	playing	from
a	specific	position	within	the	scene.

This	chapter	starts	with	sound	effects	rather	than	music.	Sound	effects	are	short
clips	that	play	along	with	actions	in	the	game	(such	as	a	gunshot	that	plays	when
the	player	fires),	whereas	the	sound	clips	for	music	are	longer	(often	running	into
minutes)	and	playback	isn’t	directly	tied	to	events	in	the	game.	Ultimately,	both
boil	down	to	the	same	kind	of	audio	files	and	playback	code,	but	the	simple	fact
that	the	sound	files	for	music	are	usually	much	larger	than	the	short	clips	used
for	sound	effects	(indeed,	files	for	music	are	often	the	largest	files	in	the	game!)
merits	covering	them	in	a	separate	section.

The	complete	roadmap	for	this	chapter	will	be	to	take	a	game	without	sound	and
do	the	following:

1.		Import	audio	files	for	sound	effects.

2.		Play	sound	effects	for	the	enemy	and	for	shooting.

3.		Program	an	audio	manager	to	control	volume.

4.		Optimize	the	loading	of	music.

5.		Control	music	volume	separately	from	sound	effects,	including	cross-
fading	tracks.

Note

This	chapter	is	largely	independent	of	the	project	you	build;	it	simply	adds	audio
capabilities	on	top	of	an	existing	game	demo.	All	of	the	examples	in	this	chapter
are	built	on	top	of	the	FPS	created	in	chapter	3	and	you	could	download	that
sample	project,	but	you’re	free	to	use	whatever	game	demo	you’d	like.

Once	you	have	an	existing	game	demo	copied	to	use	for	this	chapter,	you	can
tackle	the	first	step:	importing	sound	effects.

10.1.	Importing	sound	effects

Before	you	can	play	any	sounds,	you	obviously	need	to	import	the	sound	files
into	your	Unity	project.	First	you’ll	collect	sound	clips	in	the	desired	file	format,
and	then	you’ll	bring	the	files	into	Unity	and	adjust	them	for	your	purposes.

10.1.1.	Supported	file	formats

Much	as	you	saw	with	art	assets	in	chapter	4,	Unity	supports	a	variety	of	audio
formats	with	different	pros	and	cons.	Table	10.1	lists	the	audio	file	formats	that
Unity	supports.

Table	10.1.	Audio	file	formats	supported	by	Unity

File	type Pros	and	cons

WAV Default	audio	format	on	Windows.	Uncompressed	sound	file.
AIF Default	audio	format	on	Mac.	Uncompressed	sound	file.
MP3 Compressed	sound	file;	sacrifices	a	bit	of	quality	for	much	smaller	files.
OGG Compressed	sound	file;	sacrifices	a	bit	of	quality	for	much	smaller	files.
MOD Music	tracker	file	format.	A	specialized	kind	of	efficient	digital	music.
XM Music	tracker	file	format.	A	specialized	kind	of	efficient	digital	music.

The	primary	consideration	differentiating	audio	files	is	the	compression	applied.
Compression	reduces	the	file’s	size	but	accomplishes	that	by	throwing	out	a	bit

of	information	in	the	file.	Audio	compression	is	clever	about	only	throwing	out
the	least	important	information	so	that	the	compressed	sound	still	sounds	good.
Nevertheless,	it’s	a	small	loss	of	quality,	so	you	should	choose	uncompressed
audio	when	the	sound	clip	is	short	and	thus	wouldn’t	be	a	large	file.	Longer
sound	clips	(especially	music)	should	use	compressed	audio,	because	the	audio
clip	would	be	prohibitively	large	otherwise.

Unity	adds	a	small	wrinkle	to	this	decision,	though...

Tip

Although	music	should	be	compressed	in	the	final	game,	Unity	can	compress	the
audio	after	you’ve	imported	the	file.	Thus,	when	developing	a	game	in	Unity
you	usually	want	to	use	uncompressed	file	formats	even	for	lengthy	music,	as
opposed	to	importing	compressed	audio.

How	digital	audio	works

In	general,	audio	files	store	the	waveform	that’ll	be	created	in	the	speakers	when
the	sound	plays.	Sound	is	a	series	of	waves	that	travel	through	the	air,	and
different	sounds	are	made	with	different	sizes	and	frequencies	of	sound	waves.
Audio	files	record	these	waves	by	sampling	the	wave	repeatedly	at	short	time
intervals	and	saving	the	state	of	the	wave	at	each	sample.

Recordings	that	sample	the	wave	more	frequently	get	a	more	accurate	recording
of	the	wave	changing	over	time—there’s	less	gap	between	changes.	But	more
frequent	samples	mean	more	data	to	save,	resulting	in	a	larger	file.	Compressed
sound	files	reduce	the	file	size	through	a	number	of	tricks,	including	tossing	out
data	at	sound	frequencies	that	aren’t	noticeable	to	listeners.

Music	trackers	are	a	special	type	of	sequencer	software	used	to	create	music.
Whereas	traditional	audio	files	store	the	raw	waveform	for	the	sound,	sequencers
store	something	more	akin	to	sheet	music:	the	tracker	file	is	a	sequence	of	notes,
with	information	like	intensity	and	pitch	stored	with	each	note.	These	“notes”
consist	of	little	waveforms,	but	the	total	amount	of	data	stored	is	reduced
because	the	same	note	is	used	repeatedly	throughout	the	sequence.	Music
composed	this	way	can	be	efficient,	but	this	is	a	fairly	specialized	sort	of	audio.

Because	Unity	will	compress	the	audio	after	it’s	been	imported,	you	should
always	choose	either	WAV	or	AIF	file	format.	You’ll	probably	need	to	adjust	the
import	settings	differently	for	short	sound	effects	and	longer	music	(in	particular,
to	tell	Unity	when	to	apply	compression),	but	the	original	files	should	always	be
uncompressed.

There	are	various	ways	to	create	sound	files	(for	example,	appendix	B	mentions
tools	like	Audacity	that	can	record	sounds	from	a	microphone),	but	for	our
purposes	we’ll	download	some	sounds	from	one	of	the	many	free	sound
websites.	We’re	going	to	use	a	number	of	clips	downloaded	from
www.freesound.org	and	get	the	clips	in	WAV	file	format.

Warning

“Free”	sounds	are	offered	under	a	variety	of	licensing	schemes,	so	always	make
sure	that	you’re	allowed	to	use	the	sound	clip	in	the	way	you	intend.	For
example,	many	free	sounds	are	for	noncommercial	use	only.

The	sample	project	uses	the	following	public	domain	sound	effects	(of	course,
you	can	choose	to	download	your	own	sounds;	look	for	a	0	license	listed	on	the
side):

	

“thump”	by	hy96
“ding”	by	Daphne_in_Wonderland
“swish	bamboo	pole”	by	ra_gun
“fireplace”	by	leosalom

Once	you	have	the	sound	files	to	use	in	your	game,	the	next	step	is	to	import	the
sounds	into	Unity.

10.1.2.	Importing	audio	files

After	gathering	together	some	audio	files,	you	need	to	bring	them	into	Unity.
Just	as	you	did	with	art	assets	in	chapter	4,	you	have	to	import	audio	assets	into

http://www.freesound.org

the	project	before	they	can	be	used	in	the	game.

The	actual	mechanics	of	importing	files	are	simple	and	are	the	same	as	with
other	assets:	drag	the	files	from	their	location	on	the	computer	to	the	Project
view	within	Unity	(create	a	folder	called	Sound	FX	to	drag	the	files	into).
Well,	that	was	easy!	But	just	like	other	assets,	there	are	import	settings	(shown	in
figure	10.1)	to	adjust	in	the	Inspector.

Figure	10.1.	Import	settings	for	audio	files

Leave	Force	To	Mono	unchecked.	That	refers	to	mono	versus	stereo	sound;	often
sounds	are	recorded	in	stereo,	where	there	are	actually	two	waveforms	in	the
file,	one	each	for	the	left	and	right	ears/speakers.	To	save	on	file	size,	you	might
want	to	halve	the	audio	information	so	that	the	same	waveform	is	sent	to	both
speakers	rather	than	separate	waves	sent	to	the	left	and	right	speakers.

Next	are	check	boxes	for	Load	In	Background	and	Preload	Audio	Data.	The
preload	setting	relates	to	balancing	playback	performance	and	memory	usage;
preloading	audio	will	consume	memory	while	the	sound	waits	to	be	used	but
will	avoid	having	to	wait	to	load.	Loading	audio	in	the	background	of	the
program	will	allow	the	program	to	keep	running	while	the	audio	is	loading;	this
is	generally	a	good	idea	for	long	music	clips	so	that	the	program	won’t	freeze.
But	this	means	the	audio	won’t	start	playing	right	away;	usually	you	want	to
keep	this	setting	off	for	short	sound	clips	to	ensure	that	they	load	completely
before	they	play.	Because	the	imported	clips	are	short	sound	effects,	you	should
leave	Load	In	Background	off.

Finally,	the	most	important	settings	are	Load	Type	and	Compression	Format.
Compression	Format	controls	the	formatting	of	the	audio	data	that’s	stored.	As
discussed	in	the	previous	section,	music	should	be	compressed;	choose	Vorbis
(it’s	the	name	of	a	compressed	audio	format)	in	that	case.	Short	sound	clips	don’t

need	to	be	compressed,	so	choose	PCM	(Pulse	Code	Modulation,	the	technical
term	for	the	raw,	sampled	sound	wave)	for	these	clips.	The	third	setting,
ADPCM,	is	a	variation	on	PCM	and	occasionally	results	in	slightly	better	sound
quality.

Load	Type	controls	how	the	data	from	the	file	will	be	loaded	by	the	computer.
Because	computers	have	limited	memory	and	audio	files	can	be	large,
sometimes	you	want	the	audio	to	play	while	it’s	streaming	into	memory,	saving
the	computer	from	needing	to	have	the	entire	file	loaded	at	once.	But	there’s	a	bit
of	computing	overhead	when	streaming	audio	like	this,	so	audio	plays	fastest
when	it’s	loaded	into	memory	first.	Even	then	you	can	choose	whether	the
loaded	audio	data	will	be	in	compressed	form	or	if	it	will	be	decompressed	for
faster	playback.	Because	these	sound	clips	are	short,	they	don’t	need	to	stream
and	can	be	set	to	Decompress	On	Load.

At	this	point,	the	sound	effects	are	all	imported	and	ready	to	use.

10.2.	Playing	sound	effects

Now	that	you	have	some	sound	files	added	to	the	project,	you	naturally	want	to
play	the	sounds.	The	code	for	triggering	sound	effects	isn’t	terribly	hard	to
understand,	but	the	audio	system	in	Unity	does	have	a	number	of	different	parts
that	must	work	in	concert.

10.2.1.	Explaining	what’s	involved:	audio	clip	vs.	source	vs.	listener

Although	you	might	expect	that	playing	a	sound	is	simply	a	matter	of	telling
Unity	which	clip	to	play,	it	turns	out	that	you	must	define	three	different	parts	in
order	to	play	sounds	in	Unity:	AudioClip,	AudioSource,	and	AudioListener.	The
reason	for	breaking	apart	the	sound	system	into	multiple	components	has	to	do
with	Unity’s	support	for	3D	sounds:	the	different	components	tell	Unity
positional	information	that	it	uses	for	manipulating	3D	sounds.

	

2D	vs.	3D	sound

Sounds	in	games	can	be	either	2D	or	3D.	2D	sounds	are	what	you’re	already
familiar	with:	standard	audio	that	plays	normally.	The	moniker	“2D	sound”
mostly	means	“not	3D	sound.”

3D	sounds	are	specific	to	3D	simulations	and	may	not	already	be	familiar	to	you;
these	are	sounds	that	have	a	specific	location	within	the	simulation.	Their
volume	and	pitch	are	influenced	by	the	movement	of	the	listener.	For	example,	a
sound	effect	triggered	in	the	distance	will	sound	very	faint.

Unity	supports	both	kinds	of	audio,	and	you	decide	if	an	audio	source	should
play	audio	as	2D	sounds	or	3D	sounds.	Things	like	music	should	be	2D	sounds,
but	using	3D	sounds	for	most	sound	effects	will	create	immersive	audio	in	the
scene.

As	an	analogy,	imagine	a	room	in	the	real	world.	The	room	has	a	stereo	playing
a	CD.	If	a	man	comes	into	the	room,	he	hears	it	clearly.	When	he	leaves	the
room	he	hears	it	more	quietly,	and	eventually	not	at	all.	Similarly,	if	we	move	the
stereo	around	the	room,	he’ll	hear	the	music	changing	volume	as	it	moves.	As
figure	10.2	illustrates,	in	this	analogy	the	CD	is	an	AudioClip,	the	stereo	is	an
AudioSource,	and	the	man	is	the	AudioListener.

Figure	10.2.	Diagram	of	the	three	things	you	control	in	Unity’s	audio	system

The	first	of	the	three	different	parts	is	an	Audio	Clip.	That	refers	to	the	actual
sound	file	that	we	imported	in	the	last	section.	This	raw	waveform	data	is	the
foundation	for	everything	else	the	audio	system	does,	but	audio	clips	don’t	do

anything	by	themselves.

The	next	kind	of	object	is	an	Audio	Source.	This	is	the	object	that	plays	audio
clips.	This	is	an	abstraction	over	what	the	audio	system	is	actually	doing,	but	it’s
a	useful	abstraction	that	makes	3D	sounds	easier	to	understand.	A	3D	sound
played	from	a	specific	audio	source	is	located	at	the	position	of	that	audio
source;	2D	sounds	also	must	be	played	from	an	audio	source,	but	the	location
doesn’t	matter.

The	third	kind	of	object	involved	in	Unity’s	audio	system	is	an	Audio	Listener.
As	the	name	implies,	this	is	the	object	that	hears	sounds	projected	from	audio
sources.	This	is	another	abstraction	on	top	of	what	the	audio	system	is	doing
(obviously	the	actual	listener	is	the	player	of	the	game!),	but—much	like	how
the	position	of	the	audio	source	gives	the	position	that	the	sound	is	projected
from—the	position	of	the	audio	listener	gives	the	position	that	the	sound	is	heard
from.

Advanced	sound	control	using	Audio	Mixers

Audio	Mixers	are	a	new	feature	added	in	Unity	5.	Rather	than	playing	audio
clips	directly,	audio	mixers	enable	you	to	process	audio	signals	and	apply
various	effects	to	your	clips.	Learn	more	about	AudioMixer	in	Unity’s
documentation;	for	example,	watch	this	tutorial	video:
https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-
beta/audiomixer-and-audiomixer-groups

Although	both	audio	clips	and	AudioSource	components	have	to	be	assigned,	an
AudioListener	component	is	already	on	the	default	camera	when	you	create	a
new	scene.	Typically	you	want	3D	sounds	to	react	to	the	position	of	the	viewer.

10.2.2.	Assigning	a	looping	sound

All	right,	now	let’s	set	our	first	sound	in	Unity!	The	audio	clips	were	already
imported,	and	the	default	camera	has	an	AudioListener	component,	so	we	only
need	to	assign	an	AudioSource	component.	We’re	going	to	put	a	crackling	fire
sound	on	the	Enemy	prefab,	the	enemy	character	that	wanders	around.

https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-beta/audiomixer-and-audiomixer-groups

Note

Because	the	enemy	will	sound	like	it’s	on	fire,	you	might	want	to	give	it	a
particle	system	so	that	it	looks	like	it’s	on	fire.	You	can	copy	over	the	particle
system	created	in	chapter	4	by	making	the	particle	object	into	a	prefab	and	then
choosing	Export	Package	from	the	Asset	menu.	Alternatively,	you	could	redo	the
steps	from	chapter	4	here	to	create	a	new	particle	object	from	scratch	(drag	the
Enemy	prefab	into	the	scene	to	edit	it	and	then	choose	GameObject	>	Apply
Changes	To	Prefab).

Usually	you	need	to	drag	a	prefab	into	the	scene	in	order	to	edit	it,	but	you	can
edit	the	prefab	asset	directly	when	you’re	just	adding	a	component	onto	the
object.	Select	the	Enemy	prefab	so	that	its	properties	appear	in	the	Inspector.
Now	add	a	new	component;	choose	Audio	>	Audio	Source.	An	AudioSource
component	will	appear	in	the	Inspector.

Tell	the	audio	source	what	sound	clip	to	play.	Drag	an	audio	file	from	the	Project
view	up	to	the	Audio	Clip	slot	in	the	Inspector;	we’re	going	to	use	the
“fireplace”	sound	effect	for	this	example	(refer	to	figure	10.3).

Figure	10.3.	Settings	for	the	AudioSource	component

Skip	down	a	bit	in	the	settings	and	select	both	Play	On	Awake	and	Looping	(of
course,	make	sure	that	Mute	isn’t	checked).	Play	On	Awake	tells	the	audio
source	to	begin	playing	as	soon	as	the	scene	starts	(in	the	next	section	you’ll

learn	how	to	trigger	sounds	manually	while	the	scene	is	running).	Looping	tells
the	audio	source	to	keep	playing	continuously,	repeating	the	audio	clip	when
playback	is	over.

You	want	this	audio	source	to	project	3D	sounds.	As	explained	earlier,	3D
sounds	have	a	distinct	position	within	the	scene.	That	aspect	of	the	audio	source
is	adjusted	using	the	Spatial	Blend	setting.	That	setting	is	a	slider	between	2D
and	3D;	set	it	to	3D	for	this	audio	source.

Now	play	the	game	and	make	sure	your	speakers	are	turned	on.	You	can	hear	a
crackling	fire	coming	from	the	enemy,	and	the	sound	becomes	faint	if	you	move
away	because	you	used	a	3D	audio	source.

10.2.3.	Triggering	sound	effects	from	code

Setting	the	AudioSource	component	to	play	automatically	is	handy	for	some
looping	sounds,	but	for	the	majority	of	sound	effects	you’ll	want	to	trigger	the
sound	with	code	commands.	That	approach	still	requires	an	AudioSource
component,	but	now	the	audio	source	will	only	play	sound	clips	when	told	to	by
the	program,	instead	of	automatically	all	the	time.

Add	an	AudioSource	component	to	the	player	object	(not	the	camera	object).
You	don’t	have	to	link	in	a	specific	audio	clip	because	the	audio	clips	will	be
defined	in	code.	You	can	turn	off	Play	On	Awake	because	sounds	from	this
source	will	be	triggered	in	code.	Also,	adjust	Spatial	Blend	to	3D	because	this
sound	is	located	in	the	scene.

Now	make	the	additions	shown	in	the	next	listing	to	RayShooter,	the	script	that
handles	shooting.

Listing	10.1.	Sound	effects	added	in	the	RayShooter	script

The	new	code	includes	several	new	serialized	variables	at	the	top	of	the	script.
Drag	the	player	object	(the	object	with	an	AudioSource	component)	to	the
soundSource	slot	in	the	Inspector.	Then	drag	the	audio	clips	to	play	onto	the
sound	slots;	“swish”	is	for	hitting	the	wall	and	“ding”	is	for	hitting	the	enemy.

The	other	two	lines	added	are	PlayOneShot()	methods.	That	method	causes
an	audio	source	to	play	a	given	audio	clip.	Add	those	methods	inside	the
target	conditional	in	order	to	play	sounds	when	different	objects	are	hit.

Note

You	could	set	the	clip	in	the	AudioSource	and	call	Play()	to	play	the	clip.
Multiple	sounds	would	cut	each	other	off,	though,	so	we	used
PlayOneShot()	instead.	Replace	PlayOneShot()	with	this	code	and
shoot	a	bunch	rapidly	to	see	(er,	hear)	the	problem:

soundSource.clip=hitEnemySound;	soundSource.Play();

All	right,	play	the	game	and	shoot	around.	You	now	have	several	different	sound
effects	in	the	game.	These	same	basic	steps	can	be	used	to	add	all	sorts	of	sound
effects.	A	robust	sound	system	in	a	game	requires	a	lot	more	than	just	a	bunch	of
disconnected	sounds,	though;	at	a	minimum,	all	games	should	offer	volume
control.	You’ll	implement	that	control	next	through	a	central	audio	module.

10.3.	Audio	control	interface

Continuing	the	code	architecture	established	in	previous	chapters,	you’re	going
to	create	an	AudioManager.	Recall	that	the	Managers	object	has	a	master	list
of	various	code	modules	used	by	the	game,	such	as	a	manager	for	the	player’s
inventory.	This	time	you’ll	create	an	audio	manager	to	stick	into	the	list.	This
central	audio	module	will	allow	you	to	modulate	the	volume	of	audio	in	the
game	and	even	mute	it.	Initially	you’ll	only	worry	about	sound	effects,	but	in
later	sections	you’ll	extend	the	AudioManager	to	handle	music	as	well.

10.3.1.	Setting	up	the	central	AudioManager

The	first	step	in	setting	up	AudioManager	is	to	put	in	place	the	Managers	code
framework.	From	the	chapter	9	project,	copy	over	IGameManager,
ManagerStatus,	and	NetworkService;	we	won’t	change	them.
(Remember	that	IGameManager	is	the	interface	that	all	managers	must
implement,	whereas	ManagerStatus	is	an	enum	that	IGameManager	uses.
NetworkService	provides	calls	to	the	internet	and	won’t	be	used	in	this
chapter.)

Note

Unity	will	probably	issue	a	warning	because	NetworkService	is	assigned
but	not	used.	You	can	just	ignore	Unity’s	warning;	we	want	to	enable	the	code
framework	to	access	the	internet,	even	though	we	don’t	use	that	functionality	in
this	chapter.

Also	copy	over	the	Managers	file,	which	will	be	adjusted	for	the	new
AudioManager.	Leave	it	be	for	now	(or	comment	out	the	erroneous	sections	if
the	sight	of	compiler	errors	drives	you	crazy!).	Create	a	new	script	called
AudioManager	that	the	Managers	code	can	refer	to	(see	the	following	listing).

Listing	10.2.	Skeleton	code	for	AudioManager

This	initial	code	looks	just	like	managers	from	previous	chapters;	this	is	the
minimum	amount	that	IGameManager	requires	that	the	class	implements.	The
Managers	script	can	now	be	adjusted	with	the	new	manager	(see	the	next
listing).

Listing	10.3.	Managers	script	adjusted	with	AudioManager

As	you	have	in	previous	chapters,	create	the	Game	Managers	object	in	the
scene	and	then	attach	both	Managers	and	AudioManager	to	the	empty
object.	Playing	the	game	will	show	the	managers	startup	messages	in	the
console,	but	the	audio	manager	doesn’t	do	anything	yet.

10.3.2.	Volume	control	UI

With	the	bare-bones	AudioManager	set	up,	it’s	time	to	give	it	volume	control
functionality.	These	volume	control	methods	will	then	be	used	by	UI	displays	in
order	to	mute	the	sound	effects	or	adjust	the	volume.

You’ll	use	the	new	UI	tools	that	were	the	focus	of	chapter	6.	Specifically,	you’re
going	to	create	a	pop-up	window	with	a	button	and	a	slider	to	control	volume
settings	(see	figure	10.4).	I’ll	list	the	steps	involved	without	going	into	detail;	if
you	need	a	refresher,	refer	back	to	chapter	6:

Figure	10.4.	UI	display	for	mute	and	volume	control

1.		Import	popup.png	as	a	sprite	(set	Texture	Type	to	Sprite).

2.		In	Sprite	Editor,	set	a	12-pixel	border	on	all	sides	(remember	to	apply
changes).

3.		Create	a	canvas	in	the	scene	(GameObject	>	UI	>	Canvas).

4.		Turn	on	the	Pixel	Perfect	setting	for	the	canvas.

5.		(Optional)	Name	the	object	HUD	Canvas	and	switch	to	2D	view	mode.

6.		Create	an	image	connected	to	that	canvas	(GameObject	>	UI	>	Image).

7.		Name	the	new	object	Settings	Popup.

8.		Assign	the	popup	sprite	to	the	image’s	Source	Image.

9.		Set	Image	Type	to	Sliced	and	turn	on	Fill	Center.

10.		Position	the	pop-up	image	at	0,	0	to	center	it.

11.		Scale	the	pop-up	to	250	width	and	150	height.

12.		Create	a	button	(GameObject	>	UI	>	Button).

13.		Parent	the	button	to	the	pop-up	(that	is,	drag	it	in	the	Hierarchy).

14.		Position	the	button	at	0,	40.

15.		Expand	the	button’s	hierarchy	in	order	to	select	its	text	label.

16.		Change	the	text	to	say	Toggle	Sound.

17.		Create	a	slider	(GameObject	>	UI	>	Slider).

18.		Parent	the	slider	to	the	pop-up	and	position	at	0,	15.

Those	were	all	the	steps	to	create	the	settings	pop-up!	Now	that	the	pop-up	has
been	created,	let’s	write	code	that	it’ll	work	with.	This	will	involve	both	a	script
on	the	pop-up	object	itself,	as	well	as	volume	control	functionality	that	the	pop-
up	script	calls.	First	adjust	the	code	in	AudioManager	according	to	the	next
listing.

Listing	10.4.	Volume	control	added	to	AudioManager

Properties	for	soundVolume	and	soundMute	were	added	to	AudioManager.
For	both	properties,	the	get	and	set	functions	were	implemented	using	global
values	on	AudioListener.	The	AudioListener	class	can	modulate	the
volume	of	all	sounds	received	by	all	AudioListener	instances.	Setting
AudioManager’s	soundVolume	property	has	the	same	effect	as	setting	the
volume	on	AudioListener.	The	advantage	here	is	encapsulation:	everything
having	to	do	with	audio	is	being	handled	in	a	single	manager,	without	code
outside	the	manager	needing	to	know	the	details	of	the	implementation.

With	those	methods	added	to	AudioManager,	you	can	now	write	a	script	for	the
pop-up.	Create	a	script	called	SettingsPopup	and	add	the	contents	of	the
following	listing.

Listing	10.5.	SettingsPopup	script	with	controls	for	adjusting	the	volume

This	script	has	two	methods	that	affect	the	properties	of	AudioManager:
OnSoundToggle()	sets	the	soundMute	property,	and	OnSoundValue()
sets	the	soundVolume	property.	As	usual,	link	in	the	SettingsPopup	script	by
dragging	it	onto	the	Settings	Popup	object	in	the	UI.

Then,	in	order	to	call	the	functions	from	the	button	and	slider,	link	the	pop-up
object	to	interaction	events	in	those	controls.	In	the	Inspector	for	the	button,	look
for	the	panel	labeled	OnClick.	Click	the	+	button	to	add	a	new	entry	to	this
event.	Drag	Settings	Popup	to	the	object	slot	in	the	new	entry	and	then	look	for
SettingsPopup	in	the	menu;	select	OnSoundToggle()	to	make	the	button	call
that	function.

The	method	used	to	link	the	function	applies	to	the	slider	as	well.	First	look	for
the	interaction	event	in	a	panel	of	the	slider’s	settings;	in	this	case,	the	panel	is
called	OnValueChanged.	Click	the	+	button	to	add	a	new	entry	and	then	drag
Settings	Popup	to	the	object	slot.	In	the	function	menu	find	the	SettingsPopup
script	and	then	choose	OnSoundVolume()	under	Dynamic	Float.

Warning

Remember	to	choose	the	function	under	Dynamic	Float	and	not	Static
Parameter!	Although	the	method	appears	in	both	sections	of	the	list,	in	the	latter
case	it	will	only	receive	a	single	value	typed	in	ahead	of	time.

The	settings	controls	are	now	working,	but	there’s	one	more	script	we	need	to

address	the	fact	that	the	pop-up	is	currently	always	covering	up	the	screen.	A
simple	fix	is	to	make	the	pop-up	only	open	when	you	hit	the	M	key.	Create	a
new	script	called	UIController,	link	that	script	to	the	Controller	object	in	the
scene,	and	write	the	code	shown	in	the	next	listing.

Listing	10.6.	UIController	that	toggles	the	settings	pop-up

To	wire	up	this	object	reference,	drag	the	settings	pop-up	to	the	slot	on	this
script.	Play	now	and	try	changing	the	slider	(remember	to	activate	the	UI	by
hitting	M)	while	shooting	around	to	hear	the	sound	effects;	you’ll	hear	the	sound
effects	change	volume	according	to	the	slider.

10.3.3.	Playing	UI	sounds

You’re	going	to	make	another	addition	to	AudioManager	now	to	allow	the	UI	to
play	sounds	when	buttons	are	clicked.	This	task	is	more	involved	than	it	seems
at	first,	owing	to	Unity’s	need	for	an	AudioSource.	When	sound	effects	issued
from	objects	in	the	scene,	it	was	fairly	obvious	where	to	attach	the	AudioSource.
But	UI	sound	effects	aren’t	part	of	the	scene,	so	you’ll	set	up	a	special

AudioSource	just	for	AudioManager	to	use	when	there	isn’t	any	other	audio
source.

Create	a	new	empty	GameObject	and	parent	it	to	the	main	Game	Managers
object;	this	new	object	is	going	to	have	an	AudioSource	used	by	AudioManager,
so	call	the	new	object	Audio.	Add	an	AudioSource	component	to	this	object
(leave	the	Spatial	Blend	setting	at	2D	this	time,	because	the	UI	doesn’t	have	any
specific	position	in	the	scene)	and	then	add	the	code	shown	in	the	next	listing	to
use	this	source	in	AudioManager.

Listing	10.7.	Play	sound	effects	in	AudioManager

A	new	variable	slot	will	appear	in	the	Inspector;	drag	the	Audio	object	onto	this
slot.	Now	add	the	UI	sound	effect	to	the	pop-up	script	(see	the	following	listing).

Listing	10.8.	Adding	sound	effects	to	SettingsPopup

Drag	the	UI	sound	effect	onto	the	variable	slot;	I	used	the	2D	sound	“thump.”
When	you	press	the	UI	button,	that	sound	effect	plays	at	the	same	time	(well,
when	the	sound	isn’t	muted,	of	course!).	Even	though	the	UI	doesn’t	have	any
audio	source	itself,	AudioManager	has	an	audio	source	that	plays	the	sound
effect.

Great,	we’ve	set	up	all	our	sound	effects!	Now	let’s	turn	our	attention	to	music.

10.4.	Background	music

You’re	going	to	add	some	background	music	to	the	game,	and	you’ll	do	that	by
adding	music	to	AudioManager.	As	explained	in	the	chapter	introduction,	music
clips	aren’t	fundamentally	different	from	sound	effects.	The	way	digital	audio
functions	through	waveforms	is	the	same,	and	the	commands	for	playing	the
audio	are	largely	the	same.	The	main	difference	is	the	length	of	the	audio,	but
that	difference	cascades	out	into	a	number	of	consequences.

For	starters,	music	tracks	tend	to	consume	a	large	amount	of	memory	on	the
computer,	and	that	memory	consumption	must	be	optimized.	You	must	watch
out	for	two	areas	of	memory	issues:	having	the	music	loaded	into	memory
before	it’s	needed,	and	consuming	too	much	memory	when	loaded.

Optimizing	when	music	loads	is	done	using	the	Resources.Load()
command	introduced	in	chapter	8.	As	you	learned,	this	command	allows	you	to
load	assets	by	name;	though	that’s	certainly	one	handy	feature,	that’s	not	the
only	reason	to	load	assets	from	the	Resources	folder.	Another	key	consideration
is	delaying	loading;	normally	Unity	loads	all	assets	in	a	scene	as	soon	as	the
scene	loads,	but	assets	from	Resources	aren’t	loaded	until	the	code	manually
fetches	them.	In	this	case,	we	want	to	lazy-load	the	audio	clips	for	music.
Otherwise,	the	music	could	consume	a	lot	of	memory	while	it	isn’t	even	being
used.

Definition

Lazy-loading	is	when	a	file	isn’t	loaded	ahead	of	time	but	rather	is	delayed	until
it’s	needed.	Typically	data	responds	faster	(for	example,	the	sound	plays
immediately)	if	it’s	loaded	in	advance	of	use,	but	lazy-loading	can	save	a	lot	of
memory	when	responsiveness	doesn’t	matter	as	much.

The	second	memory	consideration	is	dealt	with	by	streaming	music	off	the	disc.
As	explained	in	section	10.1.2,	streaming	the	audio	saves	the	computer	from
ever	needing	to	have	the	entire	file	loaded	at	once.	The	style	of	loading	was	a
setting	in	the	Inspector	of	the	imported	audio	clip.

Ultimately	there	are	several	steps	to	go	through	for	playing	background	music,
including	steps	to	cover	these	memory	optimizations.

10.4.1.	Playing	music	loops

The	process	of	playing	music	involves	the	same	series	of	steps	as	UI	sound
effects	did	(background	music	is	also	2D	sound	without	a	source	within	the
scene),	so	we’re	going	to	go	through	all	the	steps	again:

1.		Import	audio	clips.

2.		Set	up	an	AudioSource	for	AudioManager	to	use.

3.		Write	code	to	play	the	audio	clips	in	AudioManager.

4.		Add	music	controls	to	the	UI.

Each	step	will	be	modified	slightly	to	work	with	music	instead	of	sound	effects.
Let’s	look	at	the	first	step.

Step	1:	Import	audio	clips

Obtain	some	music	by	downloading	or	recording	tracks.	For	the	sample	project	I
went	to	www.freesound.org	and	downloaded	the	following	public	domain	music
loops:

	

“loop”	by	Xythe/Ville	Nousiainen
“Intro	Synth”	by	noirenex

Drag	the	files	into	Unity	to	import	them	and	then	adjust	their	import	settings	in
the	Inspector.	As	explained	earlier,	audio	clips	for	music	generally	have	different
settings	than	audio	clips	for	sound	effects.	First,	the	audio	format	should	be	set
to	Vorbis,	for	compressed	audio.	Remember,	compressed	audio	will	have	a
significantly	smaller	file	size.	Compression	also	degrades	the	audio	quality
slightly,	but	that	slight	degradation	is	an	acceptable	trade-off	for	long	music
clips;	set	Quality	to	50%	in	the	slider	that	appears.

The	next	import	setting	to	adjust	is	Load	Type.	Again,	music	should	stream	from
the	disc	rather	than	being	loaded	completely.	Choose	Streaming	from	the	Load
Type	menu.	Similarly,	turn	on	Load	In	Background	so	that	the	game	won’t	pause

http://www.freesound.org

or	slow	down	while	music	is	loading.

Even	after	you	adjust	all	the	import	settings,	the	asset	files	must	be	moved	to	the
correct	location	in	order	to	load	correctly.	Remember	that	the
Resources.Load()	command	requires	that	the	assets	be	in	the	Resources
folder.	Create	a	new	folder	called	Resources,	create	a	folder	within	that	called
Music,	and	drag	the	audio	files	into	the	Music	folder	(see	figure	10.5).

Figure	10.5.	Music	audio	clips	placed	inside	the	Resources	folder

That	took	care	of	step	number	1.

Step	2:	Set	up	an	AudioSource	for	AudioManager	to	use

Step	2	is	to	create	a	new	AudioSource	for	music	playback.	Create	another	empty
GameObject,	name	this	object	Music	1	(instead	of	just	Music	because	we’ll
add	Music	2	later	in	the	chapter),	and	parent	it	to	the	Audio	object.

Add	an	AudioSource	component	to	Music	1	and	then	adjust	the	settings	in	the
component.	Deselect	Play	On	Awake	but	turn	on	the	Loop	option	this	time;
whereas	sound	effects	usually	only	play	once,	music	plays	over	and	over	in	a
loop.	Leave	the	Spatial	Blend	setting	at	2D,	because	music	doesn’t	have	any
specific	position	in	the	scene.

You	may	want	to	reduce	the	Priority	value,	too.	For	sound	effects,	this	value
didn’t	matter,	so	we	left	the	value	at	the	default	128.	But	for	music	you	probably
want	to	lower	this	value,	so	I	set	the	music	source	to	60.	This	value	tells	Unity
which	sounds	are	most	important	when	layering	multiple	sounds;	somewhat
counterintuitively,	lower	values	are	higher	priority.	When	too	many	sounds	are
playing	simultaneously,	the	audio	system	will	start	discarding	sounds;	by	making
music	higher	priority	than	sound	effects,	you	ensure	the	music	will	keep	playing
when	too	many	sound	effects	trigger	at	the	same	time.

Step	3:	Write	code	to	play	the	audio	clips	in	AudioManager

The	Music	audio	source	has	been	set	up,	so	add	the	code	shown	in	the	next
listing	to	AudioManager.

Listing	10.9.	Playing	music	in	AudioManager

As	usual,	the	new	serialized	variables	will	be	visible	in	the	Inspector	when	you
select	the	object	Game	Managers.	Drag	Music	1	into	the	audio	source	slot.
Then	type	in	the	names	of	the	music	files	in	the	two	string	variables:	intro-
synth	and	loop.

The	remainder	of	the	added	code	calls	commands	for	loading	and	playing	music
(or,	in	the	last	added	method,	stopping	the	music).	The	Resources.Load()
command	loads	the	named	asset	from	the	Resources	folder	(taking	into	account
that	the	files	are	placed	in	the	Music	subfolder	within	Resources).	A	generic
object	is	returned	by	that	command,	but	the	object	can	be	converted	to	a	more
specific	type	(in	this	case,	an	AudioClip)	using	the	as	keyword.

The	loaded	audio	clip	is	then	passed	into	the	PlayMusic()	method.	This
function	sets	the	clip	in	the	AudioSource	and	then	calls	Play().	As	I	explained
earlier,	sound	effects	are	better	implemented	using	PlayOneShot(),	but
setting	the	clip	in	the	AudioSource	is	a	more	robust	approach	for	music,
allowing	you	to	stop	or	pause	the	playing	music.

Step	4:	Add	music	controls	to	the	UI

The	new	music	playback	methods	in	AudioManager	won’t	do	anything	unless
they’re	called	from	elsewhere.	Let’s	add	more	buttons	to	the	audio	UI	that	will
play	different	music	when	pressed.	Here	again	are	the	steps	enumerated	with
little	explanation	(refer	back	to	chapter	6	if	needed):

1.		Change	the	pop-up’s	width	to	350	(to	fit	more	buttons).

2.		Create	a	new	UI	button	and	parent	it	to	the	pop-up.

3.		Set	the	button’s	width	to	100	and	position	to	0,	-20.

4.		Expand	the	button’s	hierarchy	to	select	the	text	label	and	set	that	to
Level	Music.

5.		Repeat	these	steps	twice	more	to	create	two	additional	buttons.

6.		Position	one	at	-105,	-20	and	the	other	at	105,	-20	(so	they	appear	on
either	side).

7.		Change	the	first	text	label	to	Intro	Music	and	the	last	text	label	to
No	Music.

Now	the	pop-up	has	three	buttons	for	playing	different	music.	Write	a	method
(shown	in	the	following	listing)	in	SettingsPopup	that	will	be	linked	to	each
button.

Listing	10.10.	Adding	music	controls	to	SettingsPopup

Note	that	the	function	takes	an	int	parameter	this	time;	normally	button
methods	don’t	have	a	parameter	and	are	simply	triggered	by	the	button.	In	this
case,	we	need	to	distinguish	between	the	three	buttons,	so	the	buttons	will	each
send	a	different	number.

Go	through	the	typical	steps	to	connect	a	button	to	this	code:	add	an	entry	to	the
OnClick	panel	in	the	Inspector,	drag	the	pop-up	to	the	object	slot,	and	choose	the
appropriate	function	from	the	menu.	This	time,	there	will	be	a	text	box	for	typing
in	a	number,	because	OnPlayMusic()	takes	a	number	for	a	parameter.	Type	1
for	Intro	Music,	2	for	Level	Music,	and	anything	else	for	No	Music	(I
went	with	0).	The	switch	statement	in	OnMusic()	plays	intro	music	or	level
music	depending	on	the	number,	or	stops	the	music	as	a	default	if	the	number
isn’t	1	or	2.

When	you	press	the	music	buttons	while	the	game	is	playing,	you’ll	hear	the
music.	Great!	The	code	is	loading	the	audio	clips	from	the	Resources	folder.
Music	plays	efficiently,	although	there	are	still	two	bits	of	polish	we’ll	add:
separate	music	volume	control	and	cross-fading	when	changing	the	music.

10.4.2.	Controlling	music	volume	separately

The	game	already	has	volume	control,	and	currently	that	affects	the	music,	too.
Most	games	have	separate	volume	controls	for	sound	effects	and	music,	though,
so	let’s	tackle	that	now.

The	first	step	is	to	tell	the	music	AudioSources	to	ignore	settings	on
AudioListener.	We	want	volume	and	mute	on	the	global	AudioListener	to
continue	to	affect	all	sound	effects,	but	we	don’t	want	this	volume	to	apply	to
music.	Listing	10.10	includes	code	to	tell	the	music	source	to	ignore	the	volume
on	AudioListener.	The	code	in	the	following	listing	also	adds	volume	control
and	mute	for	music,	so	add	it	to	AudioManager.

Listing	10.11.	Controlling	music	volume	separately	in	AudioManager

The	key	to	this	code	is	realizing	you	can	adjust	the	volume	of	an	AudioSource
directly,	even	though	that	audio	source	is	ignoring	the	global	volume	defined	in
AudioListener.	There	are	properties	for	both	volume	and	mute	that	manipulate
the	individual	music	source.

The	Startup()	method	initializes	the	music	source	with	both
ignoreListener-Volume	and	ignoreListenerPause	turned	on.	As

the	names	suggest,	those	properties	cause	the	audio	source	to	ignore	the	global
volume	setting	on	AudioListener.

You	can	hit	Play	now	to	verify	that	the	music	is	no	longer	affected	by	the
existing	volume	control.	Now	let’s	add	a	second	UI	control	for	the	music
volume;	start	by	adjusting	SettingsPopup	according	to	the	next	listing.

Listing	10.12.	Music	volume	controls	in	SettingsPopup

There’s	not	a	lot	to	explain	about	this	code—it’s	mostly	repeating	the	sound
volume	controls.	Obviously	the	AudioManager	properties	used	have	changed
from	soundMute/soundVolume	to	musicMute/musicVolume.

In	the	editor,	create	a	button	and	slider	just	as	you	did	before.	Here	are	those
steps	again:

1.		Change	the	pop-up’s	height	to	225	(to	fit	more	controls).

2.		Create	a	UI	button.

3.		Parent	the	button	to	the	pop-up.

4.		Position	the	button	at	0,	-60.

5.		Expand	the	button’s	hierarchy	in	order	to	select	its	text	label.

6.		Change	the	text	to	Toggle	Music.

7.		Create	a	slider	(from	the	same	UI	menu).

8.		Parent	the	slider	to	the	pop-up	and	position	at	0,	-85.

Link	up	these	UI	controls	to	the	code	in	SettingsPopup.	Find	the
OnClick/OnValueChanged	panel	in	the	UI	element’s	settings,	click	the	+	button
to	add	an	entry,	drag	the	pop-up	object	to	the	object	slot,	and	select	the	function
from	the	menu.	The	functions	you	need	to	pick	are	OnMusicToggle()	and
OnMusicValue()	from	the	Dynamic	Float	section	of	the	menu.

Now	run	this	code	and	you’ll	see	that	the	controls	affect	sound	effects	and	music
separately.	This	is	getting	pretty	sophisticated,	but	there’s	one	more	bit	of	polish
remaining:	cross-fade	between	music	tracks.

10.4.3.	Fading	between	songs

As	a	final	bit	of	polish,	let’s	make	AudioManager	fade	in	and	out	between
different	background	tunes.	Currently	the	switch	between	different	music	tracks
is	pretty	jarring,	with	the	sound	suddenly	cutting	off	and	changing	to	the	new
track.	We	can	smooth	out	that	transition	by	having	the	volume	of	the	previous
track	quickly	dwindle	away	while	the	volume	quickly	rises	from	0	on	the	new
track.	This	is	a	simple	but	clever	bit	of	code	that	combines	both	the	volume
control	methods	you	just	saw,	along	with	a	coroutine	to	change	the	volume
incrementally	over	time.

Listing	10.13	adds	a	lot	of	bits	to	AudioManager,	but	most	revolve	around	a
simple	concept:	now	that	we’ll	have	two	separate	audio	sources,	play	separate
music	tracks	on	separate	audio	sources,	and	incrementally	increase	the	volume
of	one	source	while	simultaneously	decreasing	the	volume	of	the	other	(as	usual,
italicized	code	was	already	in	the	script	and	is	shown	here	for	reference).

Listing	10.13.	Cross-fade	between	music	in	AudioManager

The	first	addition	is	a	variable	for	the	second	music	source.	While	keeping	the
first	AudioSource	object,	duplicate	that	object	(make	sure	the	settings	are	the
same—select	Loop)	and	then	drag	the	new	object	into	this	Inspector	slot.	The
code	also	defines	AudioSource	variables	active	and	inactive	but	those	are
private	variables	used	within	the	code	and	not	exposed	in	the	Inspector.
Specifically,	those	variables	define	which	of	the	two	audio	sources	is	considered
“active”	or	“inactive”	at	any	given	time.

The	code	now	calls	a	coroutine	when	playing	new	music.	This	coroutine	sets	the
new	music	playing	on	one	AudioSource	while	the	old	music	keeps	playing	on
the	old	audio	source.	Then	the	coroutine	incrementally	increases	the	volume	of
the	new	music	while	incrementally	decreasing	the	volume	of	the	old	music.
Once	the	cross-fading	is	complete	(that	is,	the	volumes	have	completely
exchanged	places),	the	function	swaps	which	audio	source	is	considered	“active”
and	“inactive.”

Great!	We’ve	completed	the	background	music	for	our	game’s	audio	system.

FMOD:	a	tool	for	game	audio

The	audio	system	in	Unity	is	powered	by	FMOD,	a	popular	audio	programming
library.	The	library	is	available	at	www.fmod.org,	but	it’s	already	integrated	into
Unity.	Unity	has	many	features	of	FMOD	integrated,	although	it	lacks	the
library’s	most	advanced	features	(you	can	visit	their	website	to	learn	about	those
features).

Such	advanced	audio	features	are	offered	through	FMOD	Studio	(a	plug-in	that
adds	more	functionality	to	Unity),	but	the	examples	in	this	chapter	will	stick	to
the	functionality	built	into	Unity.	That	core	functionality	comprises	the	most
important	features	for	a	game’s	audio	system.	Most	game	developers	have	their
audio	needs	served	quite	well	by	this	core	functionality,	but	the	plug-in	is	useful
for	those	wishing	to	get	even	more	intricate	with	their	game’s	audio.

10.5.	Summary

In	this	chapter	you’ve	learned	that

http://www.fmod.org

	

Sound	effects	should	be	uncompressed	audio	and	music	should	be
compressed,	but	use	the	WAV	format	for	both	because	Unity	applies
compression	to	imported	audio.
Audio	clips	can	be	2D	sounds	that	always	play	the	same	or	3D	sounds	that
react	to	the	listener’s	position.
The	volume	of	sound	effects	is	easily	adjusted	globally	using	Unity’s
AudioListener.
You	can	set	volume	on	individual	audio	sources	that	play	music.
You	can	fade	background	music	in	and	out	by	setting	the	volume	on
individual	audio	sources.

Chapter	11.	Putting	the	parts	together	into	a	complete
game

This	chapter	covers

	

Assembling	objects	and	code	from	other	projects
Programming	point-and-click	controls
Upgrading	the	UI	from	the	old	to	a	new	system
Loading	new	levels	in	response	to	objectives
Setting	up	win/loss	conditions
Saving	and	loading	the	player’s	progress

The	project	in	this	chapter	will	tie	together	everything	from	previous	chapters.
Most	chapters	have	been	pretty	self-contained,	and	there	was	never	any	end-to-
end	look	at	the	entire	game.	I’ll	walk	you	through	pulling	together	pieces	that
had	been	introduced	separately	so	that	you	know	how	to	build	a	complete	game
out	of	all	the	pieces.	I’ll	also	discuss	the	encompassing	structure	of	the	game,
including	switching	levels	and	especially	ending	the	game	(for	example,	Game
Over	when	you	die,	Success	when	you	reach	the	exit).	And	I’ll	show	you	how	to
save	the	game,	because	saving	the	player’s	progress	becomes	increasingly
important	as	the	game	grows	in	size.

Warning

Much	of	this	chapter	will	use	tasks	that	were	explained	in	detail	in	previous
chapters,	so	I’ll	move	through	steps	quickly.	If	certain	steps	confuse	you,	refer	to
the	relevant	previous	chapter	(for	example,	chapter	6	about	the	UI)	for	a	more
detailed	explanation.

This	chapter’s	project	is	a	demo	of	an	action	RPG.	In	this	sort	of	game,	the
camera	is	placed	high	and	looks	down	sharply	(see	figure	11.1),	and	the
character	is	controlled	by	clicking	the	mouse	where	you	want	to	go;	you	may	be
familiar	with	the	game	Diablo,	which	is	an	action	RPG	like	this.	I’m	switching

to	yet	another	game	genre	so	that	we	can	squeeze	in	one	more	genre	before	the
end	of	the	book!

Figure	11.1.	Screenshot	of	the	top-down	viewpoint

In	full,	the	project	in	this	chapter	will	be	the	biggest	game	yet.	It’ll	feature	the
following:

	

A	top-down	view	with	point-and-click	movement
The	ability	to	click	on	devices	to	operate	them
Scattered	items	you	can	collect
Inventory	that’s	displayed	in	a	UI	window
Enemies	wandering	around	the	level
The	ability	to	save	the	game	and	restore	your	progress
Three	levels	that	must	be	completed	in	sequence

Whew,	that’s	a	lot	to	pack	in;	good	thing	this	is	almost	the	last	chapter!

11.1.	Building	an	action	RPG	by	repurposing	projects

We’ll	develop	the	action	RPG	demo	by	building	on	the	project	from	chapter	8.
Copy	that	project’s	folder	and	open	the	copy	in	Unity	to	start	working.	Or,	if	you
skipped	directly	to	this	chapter,	download	the	sample	project	for	chapter	8	in
order	to	build	on	that.

The	reason	we’re	building	on	the	chapter	8	project	is	that	it’s	the	closest	to	our
goal	for	this	chapter	and	thus	will	require	the	least	modification	(when	compared
to	other	projects).	Ultimately,	we’ll	pull	together	assets	from	several	chapters,	so
technically	it’s	not	that	different	than	if	we	started	with	one	of	those	projects	and
pulled	in	assets	from	chapter	8.

Here’s	a	recap	of	what’s	in	the	project	from	chapter	8:

	

A	character	with	an	animation	controller	already	set	up
A	third-person	camera	that	follows	the	character	around
A	level	with	floors,	walls,	and	ramps
Lights	and	shadows	all	placed
Operable	devices,	including	a	color-changing	monitor
Collectible	inventory	items
Back-end	managers	code	framework

This	hefty	list	of	features	covers	quite	a	bit	of	the	action	in	the	RPG	demo
already,	but	there’s	a	bit	more	that	we’ll	either	need	to	modify	or	add.

11.1.1.	Assembling	assets	and	code	from	multiple	projects

All	right,	the	first	modifications	will	be	to	update	the	managers	framework	and
to	bring	in	computer-controlled	enemies.	For	the	former	task,	recall	that	updates
to	the	framework	were	made	in	chapter	9,	which	means	those	updates	aren’t	in
the	project	from	chapter	8.	For	the	latter	task,	recall	that	you	programmed	an
enemy	in	chapter	3.

Updating	the	managers	framework

Updating	the	managers	is	a	fairly	simple	task,	so	let’s	get	that	out	of	the	way
first.	The	IGameManager	interface	was	modified	in	chapter	9	(see	the	next
listing).

Listing	11.1.	Adjusted	IGameManager

public	interface	IGameManager	{

			ManagerStatus	status	{get;}

			void	Startup(NetworkService	service);

}

The	code	in	this	listing	adds	a	reference	to	NetworkService,	so	also	be	sure	to
copy	over	that	additional	script;	drag	the	file	from	its	location	in	the	chapter	9
project	(remember,	a	Unity	project	is	a	folder	on	your	disc,	so	get	the	file	from
there)	and	drop	it	in	the	new	project.	Now	modify	Managers.cs	to	work	with	the
changed	interface	(see	the	following	listing).

Listing	11.2.	Changing	a	bit	of	code	in	the	Managers	script

Finally,	adjust	both	InventoryManager	and	PlayerManager	to	reflect	the	changed
interface.	The	next	listing	shows	the	modified	code	from	InventoryManager;
PlayerManager	needs	the	same	code	modifications	but	with	different	names.

Listing	11.3.	Adjusting	InventoryManager	to	reflect	IGameManager

Once	all	the	minor	code	changes	are	in,	everything	should	still	act	as	before.
This	update	should	work	invisibly,	and	the	game	still	works	the	same.	That
adjustment	was	easy,	but	the	next	one	will	be	harder.

Bring	over	the	AI	enemy

Besides	the	NetworkServices	adjustments	from	chapter	9,	you	also	need	the	AI
enemy	from	chapter	3.	Implementing	enemy	characters	involved	a	bunch	of
scripts	and	art	assets,	so	you	need	to	import	all	those	assets.

First	copy	over	these	scripts	(remember,	WanderingAI	and	ReactiveTarget	were
behaviors	for	the	AI	enemy,	Fireball	was	the	projectile	fired,	the	enemy	attacks
the	PlayerCharacter	component,	and	SceneController	handles	spawning
enemies):

	

PlayerCharacter.cs
SceneController.cs
WanderingAI.cs
ReactiveTarget.cs
Fireball.cs

Similarly,	get	the	Flame	material,	Fireball	prefab,	and	Enemy	prefab	by	dragging
those	files	in.	If	you	got	the	enemy	from	chapter	10	instead	of	3,	you	also	need
the	added	fire	particle	material.

After	copying	over	all	the	required	assets,	the	links	between	assets	will	probably
be	broken,	so	you’ll	need	to	relink	everything	in	order	to	get	them	to	work.	In
particular,	scripts	are	probably	not	correctly	connected	to	the	prefabs.	For
example,	the	Enemy	prefab	has	two	missing	scripts	in	the	Inspector,	so	click	the
circle	button	(indicated	in	figure	11.2)	to	choose	WanderingAI	and
ReactiveTarget	from	the	list	of	scripts.	Similarly,	check	the	Fireball	prefab	and
relink	that	script	if	needed.	Once	you’re	through	with	the	scripts,	check	the	links
to	materials	and	textures.

Figure	11.2.	Linking	a	script	to	a	component

Now	add	SceneController.cs	to	the	controller	object	and	drag	the	Enemy	prefab
onto	that	component’s	Enemy	slot	in	the	Inspector.	You	may	need	to	drag	the
Fireball	prefab	onto	the	Enemy’s	script	component	(select	the	Enemy	prefab	and
look	at	WanderingAI	in	the	Inspector).	Also	attach	PlayerCharacter.cs	to	the
player	object	so	that	enemies	will	attack	the	player.

Play	the	game	and	you’ll	see	the	enemy	wandering	around.	The	enemy	shoots
fireballs	at	the	player,	although	it	won’t	do	much	damage;	select	the	Fireball

prefab	and	set	its	Damage	value	to	10.

Note

Currently	the	enemy	isn’t	particularly	good	at	tracking	down	and	hitting	the
player.	In	this	case,	I’d	start	by	giving	the	enemy	a	wider	field	of	vision	(using
the	dot	product	approach	from	chapter	8).	Ultimately,	though,	you’ll	spend	a	lot
of	time	polishing	a	game,	and	that	includes	iterating	on	the	behavior	of	enemies.
Polishing	a	game	to	make	it	more	fun,	though	crucial	for	a	game	to	be	released,
isn’t	something	you’ll	do	in	this	book.

The	other	issue	is	that	when	you	wrote	this	code	in	chapter	3,	the	player’s	health
was	an	ad	hoc	thing	for	testing.	Now	the	game	has	an	actual	PlayerManager,	so
modify	PlayerCharacter	according	to	the	next	listing	in	order	to	work	with	health
in	that	manager.

Listing	11.4.	Adjusting	PlayerCharacter	to	use	health	in	PlayerManager

At	this	point	you	have	a	game	demo	with	pieces	assembled	from	multiple
previous	projects.	An	enemy	character	has	been	added	to	the	scene,	making	the
game	more	threatening.	But	the	controls	and	viewpoint	are	still	from	the	third-
person	movement	demo,	so	let’s	implement	point-and-click	controls	for	an
action	RPG.

11.1.2.	Programming	point-and-click	controls:	movement	and	devices

This	demo	needs	a	top-down	view	and	mouse	control	of	the	player’s	movement
(refer	back	to	figure	11.1).	Currently	the	camera	responds	to	the	mouse,	whereas
the	player	responds	to	the	keyboard	(that	is,	what	was	programmed	in	chapter	7),
which	is	the	reverse	of	what	you	want	in	this	chapter.	In	addition,	you’ll	modify
the	color-changing	monitor	so	that	devices	are	operated	by	clicking	on	them.	In

both	cases,	the	existing	code	isn’t	terribly	far	from	what	you	need;	you’ll	make
adjustments	to	both	the	movement	and	device	scripts.

Top-down	view	of	the	scene

First,	you’ll	raise	the	camera	to	8	Y	to	position	it	for	an	overhead	view.	You’ll
also	adjust	OrbitCamera	to	remove	mouse	controls	from	the	camera	and	only	use
arrow	keys	(see	the	following	listing).

Listing	11.5.	Adjusting	OrbitCamera	to	remove	mouse	controls

The	camera’s	Near/Far	clipping	planes

As	long	as	you’re	adjusting	the	camera,	I	want	to	point	out	the	Near/Far	clipping
planes.	These	settings	never	came	up	before	because	the	defaults	are	fine,	but
you	may	need	to	adjust	these	in	some	future	project.

Select	the	camera	in	the	scene	and	look	for	the	Clipping	Planes	section	in	the
Inspector;	both	Near	and	Far	are	numbers	you’ll	type	here.	These	values	define
near	and	far	boundaries	within	which	meshes	are	rendered:	polygons	closer	than
the	Near	clipping	plane	or	farther	than	the	Far	clipping	plane	aren’t	drawn.

You	want	the	Near/Far	clipping	planes	as	close	together	as	possible	while	still
being	far	enough	apart	to	render	everything	in	your	scene.	When	those	planes	are
too	far	apart	(Near	is	too	close	or	Far	is	too	far),	the	rendering	algorithm	can	no
longer	tell	which	polygons	are	closer.	This	results	in	a	characteristic	rendering
error	called	z-fighting	(as	in	the	Z-axis	for	depth)	where	polygons	flicker	on	top
of	each	other.

With	the	camera	raised	even	higher,	the	view	when	you	play	the	game	will	be
top-down.	At	the	moment,	though,	the	movement	controls	still	use	the	keyboard,

so	let’s	write	a	script	for	point-and-click	movement.

Writing	the	movement	code

The	general	idea	for	this	code	(illustrated	in	figure	11.3)	will	be	to	automatically
move	the	player	toward	its	target	position.	This	position	is	set	by	clicking	in	the
scene.	In	this	way,	the	code	that	moves	the	player	isn’t	directly	reacting	to	the
mouse	but	the	player’s	movement	is	being	controlled	indirectly	by	clicking.

Figure	11.3.	Diagram	of	how	point-and-click	controls	work

Note

This	movement	algorithm	is	useful	for	AI	characters	as	well.	Rather	than	using
mouse	clicks,	the	target	position	could	be	on	a	path	that	the	character	follows.

To	implement	this,	create	a	new	script	called	PointClickMovement	and	replace
the	RelativeMovement	component	on	the	player.	Start	coding
PointClickMovement	by	pasting	in	the	entirety	of	RelativeMovement	(because
you	still	want	most	of	that	script	for	handling	falling	and	animations).	Then
adjust	the	code	according	to	the	next	listing.

Listing	11.6.	New	movement	code	in	PointClickMovement	script

Almost	everything	at	the	beginning	of	the	Update()	method	was	gutted,
because	that	code	was	handling	keyboard	movement.	Notice	that	this	new	code
has	two	main	if	statements:	one	that	runs	when	the	mouse	clicks,	and	one	that
runs	when	a	target	is	set.

When	the	mouse	clicks,	set	the	target	according	to	where	the	mouse	clicked.
Here’s	yet	another	great	use	for	raycasting:	to	determine	which	point	in	the	scene
is	under	the	mouse	cursor.	The	target	position	is	set	to	where	the	mouse	hits.

As	for	the	second	conditional,	first	rotate	to	face	the	target.
Quaternion.Slerp()	rotates	smoothly	to	face	the	target,	rather	than
immediately	snapping	to	that	rotation.	Then,	transform	the	forward	direction
from	the	player’s	local	coordinates	to	global	coordinates	(in	order	to	move

forward).	Finally,	check	the	distance	between	the	player	and	the	target:	if	the
player	has	almost	reached	the	target,	decrement	the	movement	speed	and
eventually	end	movement	by	removing	the	target	position.

Exercise:	Turn	off	jump	control

Currently	this	script	still	has	the	jump	control	from	RelativeMovement.	The
player	still	jumps	when	the	spacebar	is	pressed,	but	there	shouldn’t	be	a	jump
button	with	point-and-click	movement.	Here’s	a	hint:	adjust	the	code	inside	the
'if	(hitGround)'	conditional	branch.

This	takes	care	of	moving	the	player	using	mouse	controls.	Play	the	game	to	test
it	out.	Next	let’s	make	devices	operate	when	clicked	on.

Operating	devices	using	the	mouse

In	chapter	8	(and	here	until	we	adjust	the	code),	devices	were	operated	by
pressing	a	button.	Instead,	they	should	operate	when	clicked	on.	To	do	this,
you’ll	first	create	a	base	script	that	all	devices	will	inherit	from;	the	base	script
will	have	the	mouse	control,	and	devices	will	inherit	that.	Create	a	new	script
called	BaseDevice	and	write	the	code	from	the	following	listing.

Listing	11.7.	BaseDevice	script	that	operates	when	clicked	on

Most	of	this	code	happens	inside	OnMouseDown()	because

MonoBehaviour	calls	that	method	when	the	object	is	clicked	on.	First,	it
checks	the	distance	to	the	player,	and	then	it	uses	dot	product	to	see	if	the	player
is	facing	the	device.	Operate()	is	an	empty	shell	to	be	filled	in	by	devices	that
inherit	this	script.

Note

This	code	looks	in	the	scene	for	an	object	with	the	Player	tag,	so	assign	this
tag	to	the	player	object.	Tag	is	a	drop-down	menu	at	the	top	of	the	Inspector;	you
can	define	custom	tags	as	well,	but	several	tags	are	defined	by	default,	including
Player.	Select	the	player	object	to	edit	it,	and	then	select	the	Player	tag.

Now	that	BaseDevice	is	programmed,	you	can	modify	ColorChangeDevice	to
inherit	from	that	script.	The	following	listing	shows	the	new	code.

Listing	11.8.	Adjusting	ColorChangeDevice	to	inherit	from	BaseDevice

Because	this	script	inherits	from	BaseDevice	instead	of	MonoBehaviour,	it
gets	the	mouse	control	functionality.	Then	it	overrides	the	empty	Operate()
method	to	program	the	color	changing	behavior.

Now	the	device	will	operate	when	you	click	on	it.	Also	remove	the	player’s
Device-Operator	script	component,	because	that	script	operates	devices	using	the
control	key.

This	new	device	input	brings	up	an	issue	with	the	movement	controls:	currently
the	movement	target	is	set	any	time	the	mouse	clicks,	but	you	don’t	want	to	set
the	movement	target	when	clicking	on	devices.	You	can	fix	this	issue	by	using
layers;	similar	to	how	a	tag	was	set	on	the	player,	objects	can	be	set	to	different

layers	and	the	code	can	check	for	that.	Adjust	PointClickMovement	to	check	for
the	object’s	layer	(see	the	next	listing).

Listing	11.9.	Adjusting	mouse	click	code	in	PointClickMovement

This	listing	adds	a	conditional	inside	the	mouse	click	code	to	see	if	the	clicked
object	is	on	the	Ground	layer.	Layers	(like	Tags)	is	a	drop-down	menu	at	the	top
of	the	Inspector;	click	it	to	see	the	options.	Also	like	tags,	several	layers	are
already	defined	by	default.	You	want	to	create	a	new	layer,	so	choose	Edit
Layers	in	the	menu.	Type	Ground	in	an	empty	layer	slot	(probably	slot	8;
NameToLayer()	in	the	code	converts	names	into	layer	numbers	so	that	you
can	say	the	name	instead	of	the	number).

Now	that	the	Ground	layer	has	been	added	to	the	menu,	set	ground	objects	to	the
Ground	layer—that	means	the	floor	of	the	building,	along	with	the	ramps	and
platforms	that	the	player	can	walk	on.	Select	those	objects,	and	then	select
Ground	in	the	Layers	menu.

Play	the	game	and	you	won’t	move	when	clicking	on	the	color-changing
monitor.	Great,	the	point-and-click	controls	are	complete!	One	more	thing	to
bring	into	this	project	from	previous	projects	is	the	improved	UI.

11.1.3.	Replacing	the	old	GUI	with	a	new	interface

Chapter	8	used	Unity’s	old	immediate-mode	GUI	because	that	approach	was
simpler	to	code.	But	the	UI	from	chapter	8	doesn’t	look	as	nice	as	the	one	from
chapter	6,	so	let’s	bring	over	that	interface	system.	The	newer	UI	is	more
visually	polished	than	the	old	GUI;	figure	11.4	shows	the	interface	you’re	going
to	create.

Figure	11.4.	The	UI	for	this	chapter’s	project

First,	you’ll	set	up	the	UI	graphics.	Once	the	UI	images	are	all	in	the	scene,	you
can	attach	scripts	to	the	UI	objects.	I’ll	list	the	steps	involved	without	going	into
detail;	if	you	need	a	refresher,	refer	back	to	chapter	6:

1.		Import	popup.png	as	a	sprite	(choose	Texture	Type).

2.		In	the	Sprite	Editor,	set	a	12-pixel	border	on	all	sides	(remember	to
apply	changes).

3.		Create	a	canvas	in	the	scene	(GameObject	>	UI	>	Canvas).

4.		Choose	the	Pixel	Perfect	setting	of	the	canvas.

5.		Optional:	Name	the	object	HUD	Canvas	and	switch	to	2D	view	mode.

6.		Create	a	Text	object	connected	to	that	canvas	(GameObject	>	UI	>	Text).

7.		Set	the	Text	object’s	anchor	to	top-left	and	position	100,	-40.

8.		Type	Health:	as	the	text	on	the	label.

9.		Create	an	image	connected	to	that	canvas	(GameObject	>	UI	>	Image).

10.		Name	the	new	object	Inventory	Popup.

11.		Assign	the	pop-up	sprite	to	the	image’s	Source	Image.

12.		Set	Image	Type	to	Sliced	and	select	Fill	Center.

13.		Position	the	pop-up	image	at	0,	0	and	scale	the	pop-up	to	250	width
150	height.

Note

Recall	how	to	switch	between	viewing	the	3D	scene	and	the	2D	interface:	toggle
2D	view	mode	and	double-click	either	the	Canvas	or	the	Building	to	zoom	to
that	object.

Now	you	have	the	Health	label	in	the	corner	and	the	large	blue	pop-up	window
in	the	center.	Let’s	program	these	parts	first	before	getting	deeper	into	the	UI
functionality.	The	interface	code	will	use	the	same	Messenger	system	from
chapter	6,	so	copy	over	the	Messenger	script.	Then	create	a	GameEvent	script
(see	the	following	listing).

Listing	11.10.	GameEvent	script	to	use	with	this	Messenger	system

public	static	class	GameEvent	{

			public	const	string	HEALTH_UPDATED	=	"HEALTH_UPDATED";

}

For	now	only	one	event	is	defined;	over	the	course	of	this	chapter	you’ll	add	a
few	more	events.	Broadcast	this	event	from	PlayerManager.cs	(shown	in	the	next
listing).

Listing	11.11.	Broadcasting	the	health	event	from	PlayerManager.cs

The	event	is	broadcast	every	time	ChangeHealth()	finishes	to	tell	the	rest	of
the	program	that	the	health	has	changed.	You	want	to	adjust	the	health	label	in
response	to	this	event,	so	create	a	UIController	script	(see	the	next	listing).

Listing	11.12.	The	script	UIController,	which	handles	the	interface

Attach	this	script	to	the	Controller	object	and	remove	BasicUI.	Also,	create	an
InventoryPopup	script	(add	an	empty	public	Refresh()	method	for	now;	the
rest	will	be	filled	in	later)	and	attach	it	to	the	pop-up	window	(the	Image	object).
Now	you	can	drag	the	pop-up	to	the	reference	slot	in	the	Controller’s
component;	also	link	the	health	label	to	the	Controller.

The	health	label	changes	when	you	get	hurt	or	use	health	packs,	and	pressing	M
toggles	the	pop-up	window.	One	last	detail	to	adjust	is	that	currently	clicking	on
the	pop-up	window	causes	the	player	to	move;	just	as	with	devices,	you	don’t
want	to	set	the	target	position	when	the	UI	has	been	clicked	on.	Make	the
adjustment	shown	in	the	next	listing	to	PointClickMovement.

Listing	11.13.	Checking	the	UI	in	PointClickMovement

using	UnityEngine.EventSystems;

...

void	Update()	{

			Vector3	movement	=	Vector3.zero;

			if	(Input.GetMouseButton(0)	&&

					!EventSystem.current.IsPointerOverGameObject())	{

			...

Note	that	the	conditional	checks	whether	or	not	the	mouse	is	on	the	UI.	That
completes	the	overall	structure	of	the	interface,	so	now	let’s	deal	with	the
inventory	pop-up	specifically.

Implementing	the	Inventory	pop-up

The	pop-up	window	is	currently	blank	but	it	should	display	the	player’s
inventory	(depicted	in	figure	11.5).	These	steps	will	create	the	UI	objects:

1.		Create	four	images	and	parent	them	to	the	pop-up	(that	is,	drag	objects
in	the	Hierarchy).

2.		Create	four	text	labels	and	parent	them	to	the	pop-up.

3.		Position	all	the	images	at	0	Y	and	X	values	-75,	-25,	25,	and	75.

4.		Position	the	text	labels	at	50	Y	and	X	values	-75,	-25,	25,	and	75.

5.		Set	the	text	(not	the	anchor!)	to	Center	alignment,	Bottom	vertical	align,
and	Height	60.

6.		In	Resources,	set	all	inventory	icons	as	Sprite	(instead	of	Textures).

7.		Drag	these	sprites	to	the	Source	Image	slot	of	the	Image	objects	(also	set
Native	Size).

8.		Enter	x2	for	all	the	text	labels.

9.		Add	another	text	label	and	two	buttons,	all	parented	to	the	pop-up.

10.		Position	this	text	label	at	-120,	-55	and	set	Right	alignment.

11.		Type	Energy:	for	the	text	on	this	label

12.		Set	both	buttons	to	Width	60,	then	Position	at	-50	Y	and	X	values	0	or
70.

13.		Type	Equip	on	one	button	and	Use	on	the	other.

Figure	11.5.	Diagram	of	the	inventory	UI

These	are	the	visual	elements	for	the	inventory	pop-up;	next	is	the	code.	Write
the	contents	of	the	following	listing	into	the	InventoryPopup	script.

Listing	11.14.	Full	script	for	InventoryPopup

Whew,	that	was	a	long	script!	With	this	programmed,	it’s	time	to	link	together
everything	in	the	interface.	The	script	component	now	has	the	various	object
references,	including	the	two	arrays;	expand	both	arrays	and	set	to	a	length	of	4
(see	figure	11.6).	Drag	the	four	images	to	the	icons	array,	and	drag	the	four
text	labels	to	the	labels	array.

Figure	11.6.	Arrays	displayed	in	the	Inspector

Note

If	you	aren’t	sure	which	object	is	linked	where	(they	all	look	the	same),	click	the
slot	in	the	Inspector	to	see	that	object	highlighted	in	the	Hierarchy	view.

Similarly,	slots	in	the	component	reference	the	text	label	and	buttons	at	the
bottom	of	the	pop-up.	After	linking	those	objects,	you’ll	add	OnClick	listeners
for	both	buttons.	Link	these	events	to	the	pop-up	object,	and	choose	either
OnEquip()	or	OnUse()	as	appropriate.

Finally,	add	an	EventTrigger	component	to	all	four	of	the	item	images.	The
InventoryPopup	script	modifies	this	component	on	each	icon,	so	they	better	have
this	component!	You’ll	find	EventTrigger	under	Add	Component	>	Event	(it
may	be	more	convenient	to	copy/paste	the	component	by	clicking	the	little	gear
button	in	the	top	corner	of	the	component:	select	Copy	Component	from	one
object	and	then	Paste	As	New	on	the	other).	Add	this	component	but	don’t
assign	event	listeners,	because	that’s	done	in	the	InventoryPopup	code.

And	that	completes	the	inventory	UI!	Play	the	game	to	watch	the	inventory	pop-
up	respond	when	you	collect	items	and	click	buttons.	We’re	now	finished
assembling	parts	from	previous	projects;	next	I’ll	explain	how	to	build	a	more
expansive	game	from	this	beginning.

11.2.	Developing	the	overarching	game	structure

Now	that	you	have	a	functioning	action	RPG	demo,	we’re	going	to	build	the
overarching	structure	of	this	game.	By	that	I	mean	the	overall	flow	of	the	game
through	multiple	levels	and	progressing	through	the	game	by	beating	levels.
What	we	got	from	chapter	8’s	project	was	a	single	level,	but	the	roadmap	for	this
chapter	specified	three	levels.

Doing	this	will	involve	decoupling	the	scene	even	further	from	the	Managers
back	end,	so	you’ll	broadcast	messages	about	the	managers	(just	as
PlayerManager	broadcasts	health	updates).	Create	a	new	script	called
StartupEvent	(listing	11.15);	define	these	events	in	a	separate	script	because
these	events	go	with	the	reusable	Managers	system,	whereas	GameEvent	is
specific	to	the	game.

Listing	11.15.	The	StartupEvent	script

public	static	class	StartupEvent	{

			public	const	string	MANAGERS_STARTED	=	"MANAGERS_STARTED";

			public	const	string	MANAGERS_PROGRESS	=	"MANAGERS_PROGRESS";

}

Now	it’s	time	to	start	adjusting	Managers,	including	broadcasting	these	new
events!

11.2.1.	Controlling	mission	flow	and	multiple	levels

Currently	the	project	has	only	one	scene,	and	the	Game	Managers	object	is	in
that	scene.	The	problem	with	that	is	that	every	scene	will	have	its	own	set	of
game	managers,	whereas	you	actually	want	a	single	set	of	game	managers
shared	by	all	scenes.	To	do	that,	you’ll	create	a	separate	Startup	scene	that
initializes	the	managers	and	then	shares	that	object	with	the	other	scenes	of	the
game.

We’re	also	going	to	need	a	new	manager	to	handle	progress	through	the	game.
Create	a	new	script	called	MissionManager	(as	shown	in	the	next	listing).

Listing	11.16.	MissionManager

For	the	most	part,	there’s	nothing	unusual	going	on	in	this	listing,	but	note	the
LoadLevel()	method	near	the	end;	although	I	mentioned	that	method	before
(in	chapter	5),	it	wasn’t	important	until	now.	That’s	Unity’s	method	for	loading	a
scene	file;	in	chapter	5	you	used	it	to	reload	the	one	scene	in	the	game,	but	you
can	load	any	scene	by	passing	in	the	name	of	the	scene	file.

Attach	this	script	to	the	Game	Managers	object	in	the	scene.	Also	add	a	new
component	to	the	Managers	script	(see	the	following	listing).

Listing	11.17.	Adding	a	new	component	to	the	Managers	script

Most	of	this	code	should	already	be	familiar	to	you	(adding	MissionManager	is
just	like	adding	other	managers),	but	there	are	two	new	parts.	One	is	the	event
that	sends	two	integer	values;	you	saw	both	generic	valueless	events	and
messages	with	a	single	number	before,	but	you	can	send	an	arbitrary	number	of
values	with	the	same	syntax.

The	other	new	bit	of	code	is	the	DontDestroyOnLoad()	method.	It’s	a
method	provided	by	Unity	for	persisting	an	object	between	scenes.	Normally	all
objects	in	a	scene	are	purged	when	a	new	scene	loads,	but	by	using
DontDestroyOnLoad()	on	an	object,	you	ensure	that	that	object	will	still	be
there	in	the	new	scene.

Separate	scenes	for	startup	and	level

Because	the	Game	Managers	object	will	persist	in	all	scenes,	you	must

separate	the	managers	from	individual	levels	of	the	game.	In	Project	view,
duplicate	the	scene	file	(Edit	>	Duplicate)	and	then	rename	the	two	files
appropriately:	one	Startup	and	the	other	Level1.	Open	Level1	and	delete	the
Game	Managers	object	(it’ll	be	provided	by	Startup).	Open	Startup	and	delete
everything	other	than	Game	Managers,	Controller,	HUD	Canvas,	and
EventSystem.	Remove	the	script	components	on	Controller,	and	delete
the	UI	objects	(health	label	and	InventoryPopup)	parented	to	the	Canvas.

The	UI	is	currently	empty,	so	create	a	new	slider	(see	figure	11.7)	and	then	turn
off	its	Interactable	setting.	The	Controller	object	also	has	no	script
components	anymore,	so	create	a	new	StartupController	script	and	attach	that	to
the	Controller	object	(see	the	following	listing).

Figure	11.7.	The	Startup	scene	with	everything	unnecessary	removed

Listing	11.18.	The	new	StartupController	script

Next,	link	the	Slider	object	to	the	slot	in	the	Inspector.	One	last	thing	to	do	in
preparation	is	add	the	two	scenes	to	Build	Settings.	Building	the	app	will	be	the
topic	of	the	next	chapter,	so	for	now	choose	File	>	Build	Settings	to	see	and
adjust	the	list	of	scenes.	Click	the	Add	Current	button	to	add	a	scene	to	the	list
(load	both	scenes	and	do	this	for	each).

Note

You	need	to	add	the	scenes	to	Build	Settings	so	that	they	can	be	loaded.	If	you
don’t,	Unity	won’t	know	what	scenes	are	available.	You	didn’t	need	to	do	this	in
chapter	5	because	you	weren’t	actually	switching	levels—you	were	reloading	the
current	scene.

Now	you	can	launch	the	game	by	hitting	Play	from	the	Startup	scene.	The	Game
Managers	object	will	be	shared	in	both	scenes.

Warning

Because	the	managers	are	loaded	in	the	Startup	scene,	you	always	need	to	launch
the	game	from	that	scene.	You	could	remember	to	always	open	that	scene	before
hitting	Play,	but	there’s	a	script	on	the	Unify	wiki	that	will	automatically	switch
to	a	set	scene	when	you	click	Play:
http://wiki.unity3d.com/index.php/SceneAutoLoader.

This	structural	change	handles	the	sharing	of	game	managers	between	different
scenes,	but	you	still	don’t	have	any	success	or	failure	conditions	within	the	level.

http://wiki.unity3d.com/index.php/SceneAutoLoader

11.2.2.	Completing	a	level	by	reaching	the	exit

To	handle	level	completion,	you’ll	put	an	object	in	the	scene	for	the	player	to
touch,	and	that	object	will	inform	MissionManager	when	the	player	reaches	the
objective.	This	will	involve	the	UI	responding	to	a	message	about	level
completion,	so	add	another	GameEvent	(see	the	following	listing).

Listing	11.19.	Level	Complete	added	to	GameEvent.cs

public	static	class	GameEvent	{

			public	const	string	HEALTH_UPDATED	=	"HEALTH_UPDATED";

			public	const	string	LEVEL_COMPLETE	=	"LEVEL_COMPLETE";

}

Now	add	a	new	method	to	MissionManager	in	order	to	keep	track	of	mission
objectives	and	broadcast	the	new	event	message	(see	the	next	listing).

Listing	11.20.	Objective	method	in	MissionManager

...

public	void	ReachObjective()	{

			//	could	have	logic	to	handle	multiple	objectives

			Messenger.Broadcast(GameEvent.LEVEL_COMPLETE);

}

...

Adjust	the	UIController	script	to	respond	to	that	event	(as	shown	in	the	next
listing).

Listing	11.21.	New	event	listener	in	UIController

You’ll	notice	that	this	listing	has	a	reference	to	a	text	label.	Open	the	Level1
scene	to	edit	it,	and	create	a	new	UI	text	object.	This	label	will	be	a	level
completion	message	that	appears	in	the	middle	of	the	screen.	Set	this	text	to
Width	240,	Height	60,	Center	for	both	Align	and	Vertical-align,	and	Font	Size
22.	Type	Level	Complete!	in	the	text	area	and	then	link	this	text	object	to
the	levelEnding	reference	of	UIController.

Finally,	we’ll	create	an	object	that	the	player	touches	to	complete	the	level
(figure	11.8	shows	what	the	objective	looks	like).	This	will	be	similar	to
collectible	items:	it	needs	a	material	and	a	script,	and	you’ll	make	the	entire
thing	a	prefab.

Figure	11.8.	Objective	object	that	the	player	touches	to	complete	the	level

Create	a	cube	object	at	Position	18,	1,	0.	Select	the	Is	Trigger	option	of	the	Box
Collider,	turn	off	Cast/Receive	Shadows	in	Mesh	Renderer,	and	set	the	object	to
the	Ignore	Raycast	layer.	Create	a	new	material	called	objective;	make	it
bright	green	and	set	the	shader	to	Unlit	>	Color	for	a	flat,	bright	look.

Next,	create	the	script	ObjectiveTrigger	(shown	in	the	next	listing)	and	attach
that	script	to	the	objective	object.

Listing	11.22.	Code	for	ObjectiveTrigger	to	put	on	objective	objects

Drag	this	object	from	the	Hierarchy	into	Project	view	to	turn	it	into	a	prefab;	in
future	levels,	you	could	put	the	prefab	in	the	scene.	Now	play	the	game	and	go
reach	the	objective.	The	completion	message	shows	when	you	beat	the	level.

Next	let’s	have	a	failure	message	show	when	you	lose.

11.2.3.	Losing	the	level	when	caught	by	enemies

The	failure	condition	will	be	when	the	player	runs	out	of	health	(because	of	the
enemy	attacking).	First	add	another	GameEvent:

public	const	string	LEVEL_FAILED	=	"LEVEL_FAILED";

Now	adjust	PlayerManager	to	broadcast	this	message	when	health	drops	to	0	(as
shown	in	the	next	listing).

Listing	11.23.	Broadcast	Level	Failed	from	PlayerManager

Add	a	small	method	to	MissionManager	for	restarting	the	level	(see	the	next
listing).

Listing	11.24.	MissionManager,	which	can	restart	the	current	level

...

public	void	RestartCurrent()	{

			string	name	=	"Level"	+	curLevel;

			Debug.Log("Loading	"	+	name);

			Application.LoadLevel(name);

}

...

With	that	in	place,	add	another	event	listener	to	UIController	(shown	in	the
following	listing).

Listing	11.25.	Responding	to	Level	Failed	in	UIController

Play	the	game	and	let	the	enemy	shoot	you	several	times;	the	level	failure
message	will	appear.	Great	job—the	player	can	now	complete	and	fail	levels!
Building	off	that,	the	game	must	keep	track	of	the	player’s	progress.

11.3.	Handling	the	player’s	progression	through	the	game

Right	now	the	individual	level	operates	independently,	without	any	relation	to
the	overall	game.	You’ll	add	two	things	that	will	make	progress	through	the
game	feel	more	complete:	saving	the	player’s	progress	and	detecting	when	the
game	(not	just	the	level)	is	complete.

11.3.1.	Saving	and	loading	the	player’s	progress

Saving	and	loading	the	game	is	an	important	part	of	most	games.	Unity	and
Mono	provide	I/O	functionality	that	you	can	use	for	this	purpose.	Before	you	can

start	using	that,	though,	you	must	add	UpdateData()	for	both
MissionManager	and	InventoryManager.	That	method	will	work	just	as	it	does	in
PlayerManager	and	will	enable	code	outside	the	manager	to	update	data	within
the	manager.	Listing	11.26	and	listing	11.27	show	the	changed	managers.

Listing	11.26.	UpdateData()	method	in	MissionManager

Listing	11.27.	UpdateData()	method	in	InventoryManager

Now	that	the	various	managers	all	have	UpdateData()	methods,	the	data	can
be	saved	from	a	new	code	module.	Saving	the	data	will	involve	a	procedure
referred	to	as	serializing	the	data.

Definition

Serialize	means	to	encode	a	batch	of	data	into	a	form	that	can	be	stored.

You’ll	save	the	game	as	binary	data,	but	note	that	C#	is	also	fully	capable	of
saving	text	files.	For	example,	the	JSON	strings	you	worked	with	in	chapter	9
were	data	serialized	as	text.	Previous	chapters	used	PlayerPrefs	but	in	this
project	you’re	going	to	save	a	local	file	(PlayerPrefs	are	limited	to	one	megabyte
and	are	only	intended	to	save	a	handful	of	values).	Create	the	script
DataManager	(see	the	next	listing).

Warning

You	can’t	access	the	filesystem	in	a	web	game.	This	is	a	security	feature	that
means	a	web	game	can’t	save	a	local	file.	To	save	data	for	web	games,	post	the
data	to	your	server.

Listing	11.28.	New	script	for	DataManager

During	Startup()	the	full	file	path	is	constructed	using
Application.persistentDataPath,	a	location	Unity	provides	to	store
data	in.	The	exact	file	path	differs	on	different	platforms,	but	Unity	abstracts	it
behind	this	static	variable	(incidentally,	this	path	includes	both	Company	Name
and	Product	Name	from	Player	Settings,	so	adjust	those	if	needed).	The
File.Create()	method	will	create	a	binary	file;	call
File.CreateText()	if	you	want	a	text	file.

Warning

When	constructing	file	paths,	the	path	separator	is	different	on	different
computer	platforms.	C#	has	Path.DirectorySeparatorChar	to	account
for	this.

Open	the	Startup	scene	to	find	Game	Managers.	Add	the	DataManager	script
component	to	the	Game	Managers	object,	and	then	add	the	new	manager	to
the	Managers	script	(listing	11.29).

Listing	11.29.	Adding	DataManager	to	Managers.cs

Warning

Because	DataManager	uses	other	managers	(in	order	to	update	them),	you
should	make	sure	that	the	other	managers	appear	earlier	in	the	startup	sequence.

Finally,	add	buttons	to	use	functions	in	DataManager	(figure	11.9	shows	the
buttons).	Create	two	buttons	parented	to	the	HUD	Canvas	(not	in	the	Inventory
pop-up).	Call	them	(set	the	attached	text	objects)	Save	Game	and	Load
Game,	set	Anchor	to	bottom-right,	and	position	them	at	-100,65	and	-100,30.

Figure	11.9.	Save	and	Load	buttons	on	the	bottom	right	of	the	screen

These	buttons	will	link	to	functions	in	UIController,	so	write	those	methods	(as
shown	in	the	following	listing).

Listing	11.30.	Save	and	Load	methods	in	UIController

...

public	void	SaveGame()	{

			Managers.Data.SaveGameState();

}

public	void	LoadGame()	{

			Managers.Data.LoadGameState();

}

...

Link	these	functions	to	OnClick	listeners	in	the	buttons	(add	a	listing	in	the
OnClick	setting,	drag	in	the	UIController	object,	and	select	functions	from	the
menu).	Now	play	the	game,	pick	up	a	few	items,	use	a	health	pack	to	increase
your	health,	and	then	save	the	game.	Restart	the	game	and	check	your	inventory
to	verify	that	it’s	empty.	Hit	Load;	you	now	have	the	health	and	items	you	had
when	you	saved	the	game!

11.3.2.	Beating	the	game	by	completing	three	levels

As	implied	by	our	saving	of	the	player’s	progress,	this	game	can	have	multiple
levels,	not	just	the	one	level	you’ve	been	testing.	To	properly	handle	multiple
levels,	the	game	must	detect	not	only	the	completion	of	a	single	level,	but	also
the	completion	of	the	entire	game.	First	add	yet	another	GameEvent:

public	const	string	GAME_COMPLETE	=	"GAME_COMPLETE";

Now	modify	MissionManager	to	broadcast	that	message	after	the	last	level	(see
the	next	listing).

Listing	11.31.	Broadcasting	Game	Complete	from	MissionManager

...

public	void	GoToNext()	{

			...

			}	else	{

						Debug.Log("Last	level");

						Messenger.Broadcast(GameEvent.GAME_COMPLETE);

			}

}

Respond	to	that	message	in	UIController	(as	shown	in	the	following	listing).

Listing	11.32.	Adding	an	event	listener	to	UIController

...

Messenger.AddListener(GameEvent.GAME_COMPLETE,	OnGameComplete);

...

Messenger.RemoveListener(GameEvent.GAME_COMPLETE,	OnGameComplete);

...

private	void	OnGameComplete()	{

			levelEnding.gameObject.SetActive(true);

			levelEnding.text	=	"You	Finished	the	Game!";

}

...

Try	completing	the	level	to	watch	what	happens:	move	the	player	to	the	level
objective	to	complete	the	level	as	before.	You’ll	first	see	the	Level	Complete
message,	but	after	a	couple	of	seconds	it’ll	change	to	a	message	about
completing	the	game.

Adding	more	levels

At	this	point	you	can	add	an	arbitrary	number	of	additional	levels,	and
MissionManager	will	watch	for	the	last	level.	The	final	thing	you’ll	do	in	this
chapter	is	add	a	few	more	levels	to	the	project	in	order	to	demonstrate	the	game
progressing	through	multiple	levels.

Duplicate	the	Level1	scene	file	twice	(Unity	should	automatically	increment	the
numbers	to	Level2	and	Level3)	and	add	the	new	levels	to	Build	Settings	(so	that
they	can	be	loaded	during	gameplay).	Modify	each	scene	so	that	you	can	tell	the

difference	between	levels;	feel	free	to	rearrange	most	of	the	scene,	but	there	are
several	essential	game	elements	that	you	must	keep:	the	player	object	that’s
tagged	Player,	the	floor	object	set	to	the	Ground	layer,	and	the	objective	object,
Controller,	HUD	Canvas,	and	EventSystem.

Tip

By	default,	the	lighting	system	regenerates	the	lightmaps	when	the	level	is
loaded.	But	this	only	works	while	you	are	editing	the	level;	lightmaps	won’t	be
generated	when	loading	levels	while	the	game	is	running.	As	you	did	in	chapter
9,	you	can	turn	off	Continuous	Baking	in	the	lighting	window	(Window	>
Lighting)	and	then	click	Build	to	bake	lightmaps	(remember,	don’t	touch	the
Scene	folder	that’s	created).

You	also	need	to	adjust	MissionManager	to	load	the	new	levels.	Change
maxLevel	to	3	by	changing	the	call	UpdateData(0,	1);	to
UpdateData(0,	3);.

Now	play	the	game	and	you’ll	start	on	Level1	initially;	reach	the	level	objective
and	you’ll	move	on	to	the	next	level!	Incidentally,	you	can	also	save	on	a	later
level	to	see	that	the	game	will	restore	that	progress.

Exercise:	Integrating	audio	into	the	full	game

Chapter	10	was	all	about	implementing	audio	in	Unity.	I	didn’t	explain	how	to
integrate	that	into	this	chapter’s	project,	but	at	this	point	you	should	understand
how.	I	encourage	you	to	practice	your	skills	by	integrating	the	audio
functionality	from	the	previous	chapter	into	this	chapter’s	project.	Here’s	a	hint:
change	the	key	to	toggle	the	audio	settings	pop-up	so	that	it	doesn’t	interfere
with	the	inventory	pop-up.

You	now	know	how	to	create	a	full	game	with	multiple	levels.	The	obvious	next
task	is	the	final	chapter:	getting	your	game	into	the	hands	of	players.

11.4.	Summary

In	this	chapter	you’ve	learned	that

	

Unity	makes	it	easy	to	repurpose	assets	and	code	from	a	project	in	a
different	game	genre.
Another	great	use	for	raycasting	is	to	determine	where	in	the	scene	the
player	is	clicking.
Unity	has	simple	methods	for	both	loading	levels	and	persisting	certain
objects	between	levels.
You	progress	through	levels	in	response	to	various	events	within	the	game.
You	can	use	the	I/O	methods	that	come	with	C#	to	store	data	at
Application	.persistentDataPath.

Chapter	12.	Deploying	your	game	to	players’	devices

This	chapter	covers

	

Building	an	application	package	for	various	platforms
Assigning	build	settings,	such	as	the	app	icon	or	name
Interacting	with	the	web	page	for	web	games
Developing	plugins	for	apps	on	mobile	platforms

Throughout	the	book	you’ve	learned	how	to	program	various	games	within
Unity,	but	the	crucial	last	step	has	been	missing:	deploying	those	games	to
players.	Until	a	game	is	playable	outside	the	Unity	editor,	it’s	of	little	interest	to
anyone	other	than	the	developer.	Unity	shines	at	this	last	step,	with	the	ability	to
build	applications	for	a	huge	variety	of	gaming	platforms.	This	final	chapter	will
go	over	how	to	build	games	for	these	various	platforms.

When	I	speak	of	building	for	a	platform,	I’m	referring	to	generating	an
application	package	that	will	run	on	that	platform.	On	every	platform	(Windows,
iOS,	and	so	on)	the	exact	form	of	a	built	application	differs,	but	once	the
executable	has	been	generated,	that	app	package	can	be	played	without	Unity
and	can	be	distributed	to	players.	A	single	Unity	project	can	be	deployed	to	any
platform	without	needing	to	be	redone	for	each.

This	“build	once,	deploy	anywhere”	capability	applies	to	the	vast	majority	of	the
features	in	your	games,	but	not	to	everything.	I	would	estimate	that	95%	of	the
code	written	in	Unity	(for	example,	almost	everything	we’ve	done	so	far	in	this
book)	is	platform-agnostic	and	will	work	just	as	well	across	all	platforms.	But
there	are	a	few	specific	tasks	that	differ	for	different	platforms,	so	we’ll	go	over
those	platform-specific	areas	of	development.

In	total,	the	basic	free	version	of	Unity	is	capable	of	building	apps	for	the
following	platforms:

	

Windows	PC
Mac	OS	X
Linux
Web	(both	the	web	player	and	WebGL)
iOS
Android
Blackberry	10

In	addition,	through	specially	licensed	modules,	Unity	can	build	apps	for	the
following:

	

XBox	360
XBox	One
PlayStation	3
PlayStation	4
PS	Vita
Wii	U
Windows	Phone	8

Whew,	that	full	list	is	really	long!	Frankly,	that’s	almost	comically	long,	way
more	than	the	supported	platforms	of	almost	any	other	game	development	tool
out	there.	This	chapter	will	focus	on	the	first	six	platforms	listed	because	those
platforms	are	of	primary	interest	to	the	majority	of	people	exploring	Unity,	but
keep	in	mind	how	many	options	are	available	to	you.

To	see	all	these	platforms,	open	the	Build	Settings	window.	That’s	the	window
you	used	in	the	previous	chapter	to	add	scenes	to	be	loaded;	to	access	it,	choose
File	>	Build	Settings.	In	chapter	11	you	only	cared	about	the	list	at	the	top,	but
now	you	want	to	pay	attention	to	the	buttons	at	the	bottom	(see	figure	12.1).
You’ll	notice	a	lot	of	space	taken	up	by	the	list	of	platforms;	the	currently	active
platform	is	indicated	with	the	Unity	icon.	Select	platforms	in	this	list	and	then
click	the	Switch	Platform	button.

Figure	12.1.	The	Build	Settings	window

Warning

When	in	a	big	project,	switching	platforms	often	takes	quite	a	bit	of	time	to
complete;	make	sure	you’re	ready	to	wait.	This	is	because	Unity	recompresses
all	assets	(such	as	textures)	in	an	optimal	way	for	each	platform.

Also	across	the	bottom	of	this	window	are	the	Player	Settings	and	Build	buttons.
Click	Player	Settings	to	view	settings	for	the	app	in	the	Inspector,	such	as	the
name	and	icon	for	the	app.	Clicking	Build	launches	the	build	process.

Tip

Build	And	Run	does	the	same	thing	as	Build,	plus	it	automatically	runs	the	built
application.	I	usually	want	to	do	that	part	manually,	so	I	rarely	use	Build	And
Run.

When	you	click	Build,	the	first	thing	that	comes	up	is	a	file	selector	so	that	you
can	tell	Unity	where	to	generate	the	app	package.	Once	you	select	a	file	location,
the	build	process	starts.	Unity	creates	an	executable	app	package	for	the
currently	active	platform;	let’s	go	over	the	build	process	for	the	most	popular
platforms:	desktop,	web,	and	mobile.

12.1.	Start	by	building	for	the	desktop:	Windows,	Mac,	and	Linux

The	simplest	place	to	start	when	first	learning	to	build	Unity	games	is	by
deploying	to	desktop	computers—Windows	PC,	Mac	OS	X,	or	Linux.	Because
Unity	runs	on	desktop	computers,	that	means	you’ll	build	an	app	for	the
computer	you’re	already	using.

Note

Open	up	any	project	to	work	with	in	this	section.	Seriously,	any	Unity	project
will	work;	in	fact,	I	strongly	suggest	using	a	different	project	in	every	section	to
drive	home	the	fact	that	Unity	can	build	any	project	to	any	platform!

12.1.1.	Building	the	application

First	choose	File	>	Build	Settings	to	open	the	Build	Settings	window.	By	default,
the	current	platform	will	be	set	to	PC,	Mac,	and	Linux,	but	if	that	isn’t	current,
select	the	correct	platform	from	the	list	and	click	Switch	Platform.

On	the	right	side	of	the	window	you’ll	notice	the	Target	Platform	menu.	This
menu	lets	you	choose	between	Windows	PC,	Mac	OS	X,	and	Linux.	All	three
are	treated	as	one	platform	in	the	list	on	the	left	side,	but	these	are	very	different
platforms,	so	choose	the	correct	one.

Once	you’ve	chosen	your	desktop	platform,	click	Build.	A	file	dialog	pops	up,
allowing	you	to	choose	where	the	built	application	will	go.	Change	to	a	safe
location	if	necessary	(the	default	location	is	usually	within	the	Unity	project,
which	isn’t	a	great	place	to	put	builds).	Then	the	build	process	starts;	this	could
take	a	while	for	a	big	project,	but	the	build	process	should	be	fast	for	the	tiny
demos	we’ve	been	making.

Custom	postbuild	script

Although	the	basic	build	process	works	fine	in	most	situations,	you	may	want	a
series	of	steps	to	be	taken	(such	as	moving	help	files	into	the	same	directory	as
the	application)	every	time	you	build	your	game.	You	can	easily	automate	such

tasks	by	programming	them	in	a	script	that	will	execute	after	the	build	process
completes.

First,	create	a	new	folder	in	the	Project	view	and	name	that	folder	Editor;	any
scripts	that	affect	Unity’s	editor	(and	that	includes	the	build	process)	must	go	in
the	Editor	folder.	Create	a	new	script	in	that	folder,	rename	it	TestPostBuild,	and
write	the	following	code	in	it:

using	UnityEngine;

using	UnityEditor;

using	UnityEditor.Callbacks;

public	static	class	TestPostBuild	{

			[PostProcessBuild]

			public	static	void	OnPostprocessBuild(BuildTarget	target,	string

												pathToBuiltProject)	{

						Debug.Log("build	location:	"	+	pathToBuiltProject);

			}

}

The	directive	[PostProcessBuild]	tells	the	script	to	run	the	function	that’s
immediately	after	it.	That	function	will	receive	the	location	of	the	built	app;	you
could	then	use	that	location	with	the	various	filesystem	commands	provided	by
C#.	For	now	the	file	path	is	being	printed	to	the	console	to	test	that	the	script
works.

The	application	will	appear	in	the	location	you	chose;	double-click	it	to	run	it,
like	any	other	program.	Congrats,	that	was	easy!	Building	applications	is	a	snap,
but	the	process	can	be	customized	in	a	number	of	ways;	let’s	look	at	how	to
adjust	the	build.

12.1.2.	Adjusting	Player	Settings:	setting	the	game’s	name	and	icon

Go	back	to	the	Build	Settings	window,	but	this	time	click	Player	Settings	instead
of	Build.	A	huge	list	of	settings	will	appear	in	the	Inspector	(see	figure	12.2);
these	settings	control	a	number	of	aspects	of	the	built	application.

Figure	12.2.	Player	settings	displayed	in	the	Inspector

Because	of	the	large	number	of	settings,	you’ll	probably	want	to	look	them	up	in
Unity’s	manual;	the	relevant	doc	page	is	http://docs.unity3d.com/Manual/class-
PlayerSettings.html.

The	first	three	settings	at	the	top	are	easiest	to	understand:	Company	Name,
Product	Name,	and	Default	Icon.	Type	in	values	for	the	first	two.	Company
Name	is	the	name	for	your	development	studio,	and	Product	Name	is	the	name
of	this	specific	game.	Then	drag	an	image	from	the	Project	view	(import	an
image	into	the	project	if	needed)	to	set	that	image	as	the	icon;	when	the	app	is
built,	this	image	will	appear	as	the	application’s	icon.

Quality	settings

The	built	application	is	also	affected	by	project	settings	located	under	the	Edit
menu.	In	particular,	the	visual	quality	of	the	final	app	can	be	tuned	here.	Go	to
Project	Settings	in	the	Edit	menu	and	then	choose	Quality	from	the	drop-down
menu.

Quality	settings	appear	in	the	Inspector,	and	the	most	important	settings	are	the
grid	of	check	marks	at	the	top.	The	different	platforms	that	Unity	can	target	are
listed	as	icons	across	the	top,	and	the	possible	quality	settings	are	listed	along	the
side.	The	boxes	are	checked	for	quality	settings	available	for	that	platform,	and
the	check	box	is	highlighted	green	for	the	setting	being	used.	Most	of	the	time
these	settings	default	to	Fastest	(which	is	the	lowest	quality)	but	you	can	change
to	Fantastic	quality	if	things	look	bad;	if	you	click	the	down	arrow	underneath	a
platform’s	column,	a	pop-up	menu	will	appear.

http://docs.unity3d.com/Manual/class-PlayerSettings.html

It	seems	a	bit	redundant	that	this	UI	has	both	check	boxes	and	the	Default	menu,
but	there	you	have	it.	Different	platforms	often	have	different	graphical
capabilities,	so	Unity	allows	you	to	set	different	quality	levels	for	different	build
targets	(such	as	highest	quality	on	desktop	and	lower	quality	on	mobile).

Customizing	the	icon	and	name	of	the	application	are	important	for	giving	it	a
finished	appearance.	Another	useful	way	of	customizing	the	behavior	of	built
applications	is	with	platform-dependent	code.

12.1.3.	Platform-dependent	compilation

By	default,	all	the	code	you	write	will	run	the	same	way	on	all	platforms.	But
Unity	provides	a	number	of	compiler	directives	(known	as	platform	defines)	that
cause	different	code	to	run	on	different	platforms.	You’ll	find	the	full	list	of
platform	defines	on	this	page	of	the	manual:
http://docs.unity3d.com/Manual/PlatformDependent-Compilation.html.

As	that	page	indicates,	there	are	directives	for	every	platform	that	Unity
supports,	allowing	you	to	run	separate	code	on	every	platform.	Usually	the
majority	of	your	code	doesn’t	have	to	be	inside	platform	directives,	but
occasionally	small	bits	of	the	code	need	to	run	differently	on	different	platforms.
Some	code	assemblies	only	exist	on	one	platform	(for	example,	chapter	11
mentioned	that	filesystem	access	isn’t	available	on	the	web	player),	so	you	need
to	have	platform	compiler	directives	around	those	commands.	The	following
listing	shows	how	to	write	such	code.

http://docs.unity3d.com/Manual/PlatformDependent-Compilation.html

Listing	12.1.	PlatformTest	script	showing	how	to	write	platform-dependent	code

Create	a	script	called	PlatformTest	and	write	the	code	from	this	listing	in	it.
Attach	that	script	to	an	object	in	the	scene	(any	object	will	do	for	testing),	and	a
small	message	will	appear	in	the	top-left	of	the	screen.	When	you	play	the	game
within	Unity’s	editor,	the	message	will	say	“Running	in	the	Editor,”	but	if	you
build	the	game	and	run	the	built	application,	the	message	will	say	“Running	on
Desktop.”	Different	code	is	being	run	in	each	case!

For	this	test	we	used	the	platform	define	that	treats	all	desktop	platforms	as	one,
but	as	indicated	on	that	doc	page,	separate	platform	defines	are	available	for
Windows,	Mac,	and	Linux.	In	fact,	there	are	platform	defines	for	all	the
platforms	supported	by	Unity	so	that	you	can	run	different	code	on	each.	Let’s
move	on	to	the	next	important	platform:	the	web.

12.2.	Building	for	the	web

Although	desktop	platforms	are	the	most	basic	targets	to	build	for,	another
important	platform	for	Unity	games	is	deployment	to	the	web.	This	refers	to
games	that	run	within	a	web	browser	and	can	thus	be	played	over	the	internet.

12.2.1.	Unity	Player	vs.	HTML5/WebGL

Previously,	Unity	had	to	deploy	web	builds	in	a	form	that	plays	within	a	custom
browser	plug-in.	This	has	long	been	necessary	because	3D	graphics	aren’t	built-
in	for	web	browsers.	In	the	last	few	years,	though,	a	standard	has	emerged	for
3D	graphics	on	the	web	called	WebGL.	Technically,	WebGL	is	separate	from
HTML5,	although	the	two	terms	are	related	and	are	often	used	interchangeably.

Unity	5	has	added	WebGL	to	the	platforms	list	of	the	Build	window,	and	future
versions	may	even	make	it	the	new	main	avenue	for	doing	web	builds.	In	part,
these	changes	in	Unity’s	web	build	are	being	driven	by	strategic	decisions	made
within	Unity	(the	company).	These	changes	are	also	being	driven	by	pushes
from	browser	makers,	who	are	moving	away	from	custom	plugins	and
embracing	HTML5/WebGL	as	the	way	to	do	interactive	web	applications,
including	games.

Regardless	of	the	form	of	the	final	built	app,	the	process	for	doing	a	web	build	is
almost	exactly	the	same	for	both	a	web	player	and	WebGL.	The	following
sections	will	describe	the	process	for	the	web	player,	so	you	should	also	use	that
platform.	The	text	will	mention	spots	where	the	code	you	write	differs	slightly
for	WebGL.

12.2.2.	Building	the	Unity	file	and	a	test	web	page

Open	a	different	project	(again,	this	is	to	emphasize	how	any	project	will	work)
and	open	the	Build	Settings	window.	Switch	the	platform	to	Web	Player	and	then
click	the	Build	button.	A	file	selector	will	come	up;	type	in	the	name	WebTest
for	this	application,	and	change	to	a	safe	location	if	necessary	(that	is,	a	location
not	within	the	Unity	project).

The	build	process	will	now	create	two	files:	the	actual	Unity	game	will	have	the
extension	.unity3d,	and	there	will	be	a	bare-bones	web	page	for	playing	that
game.	Open	this	web	page	and	the	game	should	be	embedded	in	the	middle	of
the	otherwise	blank	page.

There’s	nothing	particularly	special	about	this	page;	it’s	just	an	example	to	test
your	game	with.	It’s	possible	to	customize	the	code	on	that	page,	or	even	provide
your	own	web	page	(with	the	Unity	code	copied	over).	One	of	the	most
important	customizations	to	make	is	enabling	communication	between	Unity	and
the	browser,	so	let’s	go	over	that	next.

12.2.3.	Communicating	with	JavaScript	in	the	browser

A	Unity	web	game	can	communicate	with	the	browser	(or	rather	with	JavaScript
running	in	the	browser),	and	these	messages	can	go	in	both	directions:	from
Unity	to	the	browser,	and	from	the	browser	to	Unity.	Sending	messages	to	the

browser	is	straightforward:	Unity	has	a	couple	of	special	commands	that	directly
run	code	in	the	browser.

For	messages	from	the	browser	the	methodology	is	slightly	more	involved:
JavaScript	in	the	browser	identifies	an	object	by	name,	and	then	Unity	passes	the
message	to	the	named	object	in	the	scene.	Thus	you	must	have	an	object	in	the
scene	that	will	receive	communications	from	the	browser.

To	demonstrate	these	tasks,	create	a	new	script	in	Unity	called	WebTestObject.
Also	create	an	empty	object	in	the	active	scene	called	Listener	(the	object	in
the	scene	must	have	that	exact	name,	because	that’s	the	name	used	in	the	code).
Attach	the	new	script	to	that	object,	and	then	write	in	the	code	from	the	next
listing.

Listing	12.2.	WebTestObject	script	for	testing	communication	with	the	browser

Now	build	for	web	again	to	update	the	game	with	this	new	code.	Unity’s	web
build	is	ready	now,	but	the	web	page	also	needs	to	be	adjusted.	You	need	to	add
a	couple	of	functions	to	the	JavaScript	on	the	page,	as	well	as	add	a	button	to	the
HTML.	Add	the	JavaScript	code	and	the	HTML	tag	in	the	following	listing;	the
JavaScript	functions	go	at	the	end	of	the	<script>	tag,	and	the	HTML	button
goes	at	the	end	of	the	page’s	<body>.

Listing	12.3.	JavaScript	and	HTML	that	enable	browser–Unity	communication

Open	the	web	page	to	test	this	code	out.	To	test	communication	from	Unity	to
the	browser,	the	WebTestObject	script	in	Unity	will	call	a	function	in	the
browser	when	you	click	within	Unity;	try	clicking	a	few	times	and	you’ll	see	an
alert	box	appear	in	the	browser.	The	Application.ExternalCall()
method	will	run	the	named	JavaScript	function.	Unity	also	has
Application.ExternalEval()	for	sending	messages	to	the	browser;	in
that	case,	arbitrary	snippets	of	JavaScript	are	run	in	the	browser,	rather	than
calling	a	defined	function.	Most	of	the	time	it’s	better	to	call	functions	(to	keep
JavaScript	and	Unity	compartmentalized),	but	sometimes	it’s	useful	to	run
arbitrary	snippets,	such	as	this	code	to	reload	the	page:

Application.ExternalEval("location.reload();");

JavaScript	in	the	web	page	can	also	send	a	message	to	Unity;	click	the	button	on
the	web	page	and	you’ll	see	the	changed	message	displayed	in	Unity.	The
button’s	HTML	tag	links	to	a	JavaScript	function,	and	that	function	calls
SendMessage()	on	the	Unity	instance.	This	method	calls	a	named	function
on	a	named	object	within	Unity;	the	first	parameter	is	the	name	of	the	object,	the
second	parameter	is	the	name	of	the	method,	and	the	third	parameter	is	a	string
to	pass	in	while	calling	the	method.	Listing	12.3	calls	RespondToBrowser()
from	the	WebTestObject	script.

Note

WebGL	builds	can	also	communicate	with	JavaScript	in	the	web	page,	and	the
code	to	do	so	is	almost	exactly	the	same.	Indeed,	it	is	exactly	the	same	for
communicating	from	Unity	to	the	page.	As	for	the	other	direction—from	the
page	to	Unity—the	SendMessage()	method	has	the	same	parameters	but	no

longer	requires	the	u.getUnity()	prefix.

That	wraps	up	browser	communication	for	web	builds;	there’s	one	more
platform	(or	rather,	set	of	platforms)	to	discuss	building	apps	for:	mobile	apps.

12.3.	Building	for	mobile	apps:	iOS	and	Android

Mobile	apps	are	another	important	build	target	for	Unity.	My	gut	impression
(totally	not	scientific)	is	that	mobile	games	are	the	largest	number	of	commercial
games	created	using	Unity.

Definition

Mobile	refers	to	handheld	computing	devices	that	people	carry	around.	The
designation	started	with	smartphones	but	now	includes	tablets.	The	two	most
widely	used	mobile	computing	platforms	are	iOS	(from	Apple)	and	Android
(from	Google).

Setting	up	the	build	process	for	mobile	apps	is	more	complicated	than	either
desktop	or	web	builds,	so	this	is	an	optional	section—optional	as	in	only	read
through	it	and	not	actually	do	the	steps;	I’ll	still	write	as	if	you’re	working	along,
but	you’d	have	to	buy	a	developer	license	for	iOS	and	install	all	the	developer
tools	for	Android.

Warning

Mobile	devices	are	undergoing	so	much	innovation	that	the	exact	build	process
is	likely	to	be	slightly	different	by	the	time	you	read	this.	The	high-level
concepts	are	probably	still	true,	but	you	should	look	at	up-to-date	documentation
online	for	an	exact	rundown	on	the	commands	to	execute	and	buttons	to	push.
For	starters,	here	are	the	doc	pages	from	Apple	and	Google:

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html

http://developer.android.com/tools/building/index.html

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html
http://developer.android.com/tools/building/index.html

Touch	input

Input	on	mobile	devices	works	differently	than	on	the	desktop	or	the	web.
Mobile	input	is	done	by	touching	the	screen,	rather	than	with	the	mouse	and
keyboard.	Unity	has	input	functionality	for	handling	touches,	including	code	like
Input.touchCount	and	Input.GetTouch().

You	may	want	to	use	these	commands	to	write	platform-specific	code	on	mobile
devices.	Handling	input	that	way	can	be	a	hassle,	though,	so	a	number	of	code
frameworks	are	available	to	streamline	the	use	of	touch	input.	For	example,	I	use
FingerGestures	(http://fingergestures.fatalfrog.com/).

All	right,	with	those	caveats	out	of	the	way,	I’ll	explain	the	overall	build	process
for	both	iOS	and	Android.	Keep	in	mind	that	these	platforms	occasionally
change	the	details	of	the	build	process.

12.3.1.	Setting	up	the	build	tools

Mobile	devices	are	all	separate	from	the	computer	you’re	developing	on,	and
that	separateness	makes	the	process	of	building	and	deploying	to	devices	slightly
more	complex.	You’ll	need	to	set	up	a	variety	of	specialized	tools	before	you	can
click	Build.

Setting	up	iOS	build	tools

At	a	high	level,	the	process	of	deploying	a	Unity	game	on	iOS	requires	first
building	an	Xcode	project	from	Unity	and	then	building	the	Xcode	project	into
an	IPA	(iOS	App	Package)	using	Xcode.	Unity	can’t	build	the	final	IPA	directly
because	all	iOS	apps	have	to	go	through	Apple’s	build	tools.	That	means	you
need	to	install	Xcode	(Apple’s	programming	IDE),	including	the	iOS	SDK.

Warning

That	means	you	have	to	be	working	on	a	Mac—Xcode	only	runs	on	OS	X.
Developing	a	game	within	Unity	can	be	done	on	either	Windows	or	Mac,	but
building	the	iOS	app	must	be	done	on	a	Mac.

http://fingergestures.fatalfrog.com/

Get	Xcode	from	Apple’s	website,	in	the	developer	section:
https://developer.apple.com/xcode/downloads/.

Note

If	you	aren’t	already	a	licensed	developer,	you	need	to	be	in	order	to	go	through
all	these	steps	and	build	an	iOS	app.	The	iOS	Developer	Program	costs	$99/year;
enroll	at	https://developer.apple.com/programs/ios/.

Once	Xcode	is	installed,	go	back	to	Unity	and	switch	to	iOS.	You	need	to	adjust
the	Player	settings	for	the	iOS	app	(remember,	open	Build	Settings	and	click
Player	Settings).	You	should	already	be	on	the	iOS	tab	of	the	Player	settings,	but
click	the	iPhone	icon	tab	if	needed.	Scroll	down	to	Other	Settings	and	then	look
for	Identification.	Bundle	Identifier	needs	to	be	adjusted	so	that	Apple	will
correctly	identify	the	app.

Note

Both	iOS	and	Android	use	Bundle	Identifier	the	same	way,	so	that	setting	is
important	on	both	platforms.	The	identifier	should	follow	the	same	convention
as	that	for	any	code	package:	all	lowercase	in	the	form
com.companyname.productname.

Another	important	setting	that	applies	to	both	iOS	and	Android	is	Bundle
Version	(this	is	the	version	number	of	the	app).	Most	of	the	settings	beyond	that
are	platform-specific,	though;	for	example,	recently	iOS	added	a	short	version
number	that	will	be	visible	to	players,	separate	from	the	main	bundle	version.
There’s	also	a	setting	for	Scripting	Backend;	Mono	was	always	used	before,	but
the	new	IL2CPP	back	end	can	support	platform	updates,	like	64-bit	binaries.

Now	click	Build	in	Unity.	Select	the	location	for	the	built	files,	and	that’ll
generate	an	Xcode	project	in	that	location.	The	Xcode	project	that	results	can	be
modified	directly	if	you	want	(some	simple	modifications	could	be	part	of	the
postbuild	script).	Regardless,	open	the	Xcode	project;	the	built	folder	has	many

https://developer.apple.com/xcode/downloads/
https://developer.apple.com/programs/ios/

files,	but	double-click	the	.xcodeproj	file	(it	has	an	icon	of	a	blueprint).	Xcode
will	open	with	this	project	loaded;	Unity	already	took	care	of	most	of	the	needed
settings	in	the	project,	but	you	do	need	to	adjust	the	provisioning	profiles	being
used.

iOS	provisioning	profiles

Of	all	the	aspects	of	iOS	development,	provisioning	profiles	change	the	most
frequently	and	are	the	most	unusual.	In	short,	these	are	files	used	for
identification	and	authorization.	Apple	tightly	controls	what	apps	can	run	on
what	devices;	apps	submitted	to	Apple	for	approval	use	special	provisioning
profiles	that	allow	them	to	work	through	the	App	Store,	whereas	apps	in
development	use	provisioning	profiles	that	are	specific	to	registered	devices.

You’ll	need	to	add	both	your	iPhone’s	UDID	(an	ID	specific	to	your	device)	and
the	app’s	ID	(the	Bundle	Identifier	in	Unity)	to	a	control	panel	at	iOS	Dev
Center,	Apple’s	website	for	iOS	developers.	For	a	complete	explanation	of	this
process,	visit	https://developer.apple.com/devcenter/ios/index.action.

Select	your	app	in	the	project	list	on	the	left	side	of	Xcode.	Several	tabs	relevant
to	the	selected	project	will	appear;	go	to	Build	Settings	and	scroll	down	to	Code
Signing	to	set	the	provisioning	profiles	(see	figure	12.3).	Also	make	sure
Scheme	Destination	at	the	top	is	set	to	iOS	Device	and	not	the	simulator	(some
build	options	are	grayed	out	if	this	is	wrong).

Figure	12.3.	Provisioning	profile	settings	in	Xcode

https://developer.apple.com/devcenter/ios/index.action

Once	the	provisioning	profiles	are	set,	you’re	ready	to	build	the	app.	From	the
Product	menu,	choose	either	Run	or	Archive.	There	are	a	lot	of	options	in	the
Product	menu,	including	the	tantalizingly	named	Build,	but	for	our	purposes	the
two	options	that	are	useful	are	either	Run	or	Archive.	Build	generates	executable
files	but	doesn’t	bundle	them	for	iOS,	whereas

	

Run	will	test	the	application	on	an	iPhone	connected	to	the	computer	with	a
USB	cable.
Archive	will	create	an	application	package	that	can	be	sent	to	other
registered	devices	(what	Apple	refers	to	as	“ad-hoc	distribution”).

Archive	doesn’t	create	the	app	package	directly	but	rather	creates	a	bundle	in	an
intermediate	stage	between	the	raw	code	files	and	an	IPA.	The	created	archive
will	be	listed	in	Xcode’s	Organizer	window;	in	that	window,	click	the	Distribute
button	in	order	to	generate	an	IPA	file	from	the	archive.	Figure	12.4	shows	this
process;	after	you	click	Distribute,	you’ll	be	asked	if	you	want	to	distribute	the
app	on	the	store	or	ad	hoc.

Figure	12.4.	Distribute	archived	iOS	apps	from	the	Organizer	window.

If	you	choose	ad	hoc	distribution,	you’ll	end	up	with	an	IPA	file	that	can	be	sent
to	testers.	You	could	send	the	file	directly	for	them	to	install	through	iTunes,	but
it’s	more	convenient	to	use	TestFlight	(https://developer.apple.com/testflight/)	to
handle	distributing	and	installing	ad	hoc	builds.

Setting	up	Android	build	tools

Unlike	iOS	apps,	Unity	can	generate	the	APK	(Android	Application	Package)
directly.	This	requires	pointing	Unity	to	the	Android	SDK,	which	includes	the
necessary	compiler.	Download	the	Android	SDK	from	the	Android	website;	then
choose	this	file	location	in	Unity’s	preferences	(see	figure	12.5).	You	can
download	the	SDK	here:	http://developer.android.com/sdk/index.html.

Figure	12.5.	Unity	preference	setting	to	point	to	Android	SDK

After	setting	the	Android	SDK	in	Unity’s	preferences,	you	need	to	specify	the
Bundle	Identifier	just	as	you	did	for	iOS.	You’ll	find	Bundle	Identifier	in	Player
Settings;	set	it	to	com.companyname.productname	(as	explained	in	section
12.3.1).	Then	click	Build	to	start	the	process.	As	with	all	builds,	it’ll	first	ask
where	to	save	the	file.	Then	it’ll	create	an	APK	file	in	that	location.

Now	that	you	have	the	app	package,	you	must	install	it	on	a	device.	You	can	get
the	APK	file	onto	an	Android	phone	by	downloading	the	file	from	the	web	or	by
transferring	the	file	via	a	USB	cable	connected	to	your	computer	(an	approach

https://developer.apple.com/testflight/
http://developer.android.com/sdk/index.html

referred	to	as	sideloading).	The	details	of	how	to	transfer	files	onto	your	phone
vary	for	every	device,	but	once	there	it	can	be	installed	using	a	file	manager	app.
I	don’t	know	why	file	managers	aren’t	built	into	Android,	but	you	can	install	one
for	free	from	the	Play	Store.	Navigate	to	your	APK	file	within	the	file	manager
and	then	install	the	app.

As	you	can	see,	the	basic	build	process	for	Android	is	a	lot	simpler	than	the
build	process	for	iOS.	Unfortunately,	the	process	of	customizing	the	build	and
implementing	plugins	is	more	complicated	than	with	iOS;	you’ll	learn	how	in
section	12.3.3.	Before	that,	let’s	talk	about	texture	compression.

12.3.2.	Texture	compression

Assets	can	add	a	lot	of	file	size	to	an	app,	and	this	certainly	includes	textures.	To
reduce	their	file	size,	you	can	compress	assets	in	some	way;	mobile	apps	in
particular	need	to	be	careful	about	using	too	much	space,	so	these	apps	apply
compression	to	their	textures.	A	variety	of	methods	exist	to	compress	images,
with	different	pros	and	cons	to	each	method.	Because	of	these	pros	and	cons,
you	may	need	to	adjust	how	Unity	compresses	the	textures.

It’s	essential	to	manage	texture	compression	on	mobile	devices,	but	technically
textures	are	often	compressed	on	other	platforms,	too.	But	you	don’t	have	to	pay
as	much	attention	to	compression	on	other	platforms	for	various	reasons	(the
chief	reason	is	that	the	platform	is	more	technologically	mature).	On	mobile
devices,	you	need	to	pay	closer	attention	to	texture	compression	because	the
devices	are	touchier	about	this	detail.

Unity	compresses	textures	for	you;	in	most	development	tools	you	need	to
compress	images	yourself,	but	in	Unity	you	generally	import	uncompressed
images,	and	then	Unity	applies	image	compression	in	the	import	settings	for	the
image	(see	figure	12.6).

Figure	12.6.	Texture	compression	settings	in	the	Inspector

These	compression	settings	are	the	default,	and	you	may	need	to	adjust	them	for
specific	images.	In	particular,	image	compression	is	trickier	on	Android.	This	is
mostly	due	to	the	fragmentation	of	Android	devices:	because	all	iOS	devices	use
pretty	much	the	same	video	hardware,	iOS	apps	can	have	texture	compression
optimized	for	their	graphics	chips	(the	GPU).	Android	apps	don’t	enjoy	the	same
uniformity	of	hardware,	so	their	texture	compression	has	to	aim	for	the	lowest
common	denominator.

To	be	more	specific,	all	iOS	devices	use	PowerVR	GPUs;	thus,	iOS	apps	can	use
the	optimized	PVR	texture	compression.	Some	Android	devices	also	use
PowerVR	chips,	but	they	just	as	frequently	use	Adreno	chips	from	Qualcomm,
Mali	GPUs	from	ARM,	or	other	options.	As	a	result,	Android	apps	generally
rely	on	Ericsson	Texture	Compression	(ETC),	a	compression	algorithm
supported	by	all	Android	devices.	Unfortunately,	ETC	(ETC1,	anyway;	the
successor	under	development	is	ETC2)	doesn’t	support	alpha	transparency,	so
images	with	alpha	transparency	can’t	be	compressed	using	that	algorithm.

Unity	recompresses	images	when	you	switch	platforms.	On	Android,	Unity	gets
around	the	transparent	image	limitation	by	converting	images	with	transparency
to	16-bit	instead	of	compressing	them.	Converting	images	to	16-bit	does	lower
their	file	size,	but	it	does	so	at	the	cost	of	reducing	image	quality.	Because	of
this,	on	Android	you	sometimes	need	to	manually	reset	the	compression	of
individual	images,	determining	image	by	image	which	ones	need	transparency
versus	which	ones	can	have	ETC	(better	image	quality	and	no	transparency),	and
deciding	which	transparent	images	need	reduced	file	size	versus	which	ones	can
be	made	uncompressed.

If	you	need	to	adjust	compression	on	a	texture,	adjust	the	settings	shown	in
figure	12.6.	Change	Texture	Type	to	Advanced	in	order	to	access	those	settings,
and	set	Android	(click	the	Android	icon	tab)	to	override	the	default	compression.

Adjusting	texture	compression	is	an	important	optimization	detail	on	Android.
The	topic	of	the	next	section	is	important	for	both	iOS	and	Android:	developing
native	plugins.

12.3.3.	Developing	plugins

Unity	has	a	huge	amount	of	functionality	built	in,	but	that	functionality	is	mostly
limited	to	features	common	across	all	platforms.	Taking	advantage	of	platform-
specific	toolkits	(such	as	Play	Game	Services	on	Android)	often	requires	add-on
plugins	for	Unity.

Tip

A	variety	of	premade	mobile	plugins	are	available	for	iOS-and	Android-specific
features;	appendix	D	lists	a	few	places	to	get	mobile	plugins.	These	plugins
operate	in	the	manner	described	in	this	section,	except	that	the	plug-in	code	is
already	written	for	you.

The	process	for	communicating	back	and	forth	with	native	plugins	is	similar	to
the	process	for	communicating	with	the	browser.	On	the	Unity	side	of	things,
there	are	special	commands	that	call	functions	within	the	plug-in.	On	the	plug-
in’s	side,	the	plug-in	can	use	SendMessage()	to	send	a	message	to	an	object
in	Unity’s	scene.	The	exact	code	looks	different	on	different	platforms,	but	the
general	idea	is	always	the	same.

Warning

Just	as	with	the	initial	build	process,	the	process	for	developing	mobile	plugins
tends	to	change	frequently—not	the	Unity	end	of	the	process,	but	the	native	code
part.	I’ll	cover	things	at	a	high	level,	but	you	should	look	for	up-to-date
documentation	online.

Also,	plugins	for	both	platforms	are	put	in	the	same	place	within	Unity.	Create	a
folder	in	the	Project	view	called	Plugins;	much	as	with	folders	like	Editor,	Unity
handles	the	Plugins	folder	in	a	special	way.	In	this	case,	Unity	looks	for	plug-in

files	within	the	Plugins	folder.	Then,	inside	Plugins	create	two	folders	for
Android	and	iOS;	Unity	copies	the	contents	of	those	folders	when	doing	a	build.

iOS	plugins

The	“plug-in”	is	really	just	some	native	code	that	gets	called	by	Unity.	First
create	a	script	in	Unity	to	handle	the	native	code;	call	this	script	TestPlugin	(see
the	next	listing).

Listing	12.4.	TestPlugin	script	that	calls	iOS	native	code	from	Unity

First,	note	that	the	static	Initialize()	function	creates	a	permanent	object
in	the	scene	so	that	you	don’t	have	to	do	it	manually	in	the	editor.	You	haven’t
previously	seen	code	to	create	an	object	from	scratch	because	it’s	a	lot	simpler	to
use	a	prefab	in	most	cases,	but	in	this	case	it’s	cleaner	to	create	the	object	in	code
(so	that	you	can	use	the	plug-in	script	without	editing	the	scene).

The	main	wizardry	going	on	here	involves	the	DLLImport	and	static
extern	commands.	Those	commands	tell	Unity	to	link	up	to	functions	in	the
native	code	you	provide.	Then	you	can	use	those	referenced	functions	in	this
script’s	methods	(with	a	check	to	make	sure	the	code	is	running	on	iPhone/iOS).

Next	you’ll	use	these	plug-in	functions	to	test	them.	Create	a	new	script	called
MobileTestObject,	create	an	empty	object	in	the	scene,	and	then	attach	the	script
(see	the	next	listing)	to	the	object.

Listing	12.5.	Using	the	plug-in	from	MobileTestObject

The	script	in	this	listing	initializes	the	plug-in	object	and	then	calls	plug-in
methods	in	response	to	touch	input.	Once	this	is	running	on	the	device,	you’ll
see	the	test	message	in	the	corner	change	whenever	you	tap	the	screen.

The	final	thing	left	to	do	is	to	write	the	native	code	that	TestPlugin	references.
Code	on	iOS	devices	is	written	using	Objective	C	and/or	C,	so	we	need	both	a	.h
header	file	and	a	.mm	implementation	file.	As	described	earlier,	they	need	to	go
in	the	folder	Plugins/iOS/	in	the	Project	view.	Create	TestPlugin.h	and
TestPlugin.mm	there;	in	the	.h	file	write	the	code	from	the	following	listing.

Listing	12.6.	TestPlugin.h	header	for	iOS	code

#import	<Foundation/Foundation.h>

@interface	TestObject	:	NSObject	{

NSString*	status;

}

@end

Look	for	an	explanation	about	iOS	programming	to	understand	what	this	header
is	doing;	explaining	iOS	programming	is	beyond	this	introductory	book.	Write
the	code	from	the	next	listing	in	the	.mm	file.

Listing	12.7.	TestPlugin.mm	implementation

#import	"TestPlugin.h"

@implementation	TestObject

@end

NSString*	CreateNSString	(const	char*	string)

{

if	(string)

return	[NSString	stringWithUTF8String:	string];

else

return	[NSString	stringWithUTF8String:	""];

}

char*	MakeStringCopy	(const	char*	string)

{

if	(string	==	NULL)

return	NULL;

char*	res	=	(char*)malloc(strlen(string)	+	1);

strcpy(res,	string);

return	res;

}

extern	"C"	{

				const	char*	TestString(const	char*	string)	{

								NSString*	oldString	=	CreateNSString(string);

								NSString*	newString	=	[oldString	uppercaseString];

								return	MakeStringCopy([newString	UTF8String]);

				}

				float	TestNumber()	{

								return	(arc4random()	%	100)/100.0f;

				}

}

Again,	a	detailed	explanation	of	this	code	is	a	bit	beyond	this	book.	Note	that
many	of	the	string	functions	are	there	to	convert	between	how	Unity	represents
string	data	and	what	the	native	code	uses.

Tip

This	sample	only	communicates	in	one	direction,	from	Unity	to	the	plug-in.	But
the	native	code	could	also	communicate	to	Unity	by	using	the
UnitySendMessage()	method.	You	can	send	a	message	to	a	named	object
in	the	scene;	during	initialization	the	plug-in	created
TestPlugin_instance	to	send	messages	to.

With	the	native	code	in	place,	you	can	build	the	iOS	app	and	test	it	on	a	device.
Very	cool!	That’s	how	to	make	an	iOS	plug-in,	so	let’s	look	at	Android,	too.

Android	plugins

To	create	an	Android	plug-in,	the	Unity	side	of	things	is	almost	exactly	the	same.
We	don’t	need	to	change	MobileTestObject	at	all.	Make	the	additions	shown	in
the	following	listing	in	TestPlugin.

Listing	12.8.	Modifying	TestPlugin	to	use	the	Android	plug-in

You’ll	notice	most	of	the	additions	happen	inside	UNITY_ANDROID	platform
defines;	as	explained	earlier	in	the	chapter,	these	compiler	directives	cause	code
to	apply	only	to	certain	platforms	and	are	omitted	on	other	platforms.	Whereas
the	iOS	code	wasn’t	doing	anything	that	would	break	on	other	platforms	(it
won’t	do	anything,	but	it	won’t	cause	errors,	either),	the	code	for	Android
plugins	will	only	compile	when	Unity	is	set	to	the	Android	platform.

In	particular,	note	the	calls	to	AndroidJNI.	That’s	the	system	within	Unity	for
connecting	to	native	Android.	The	other	possibly	confusing	word	that	appears	is
Activity;	in	Android	apps,	an	activity	is	an	app	process.	Unity	is	an	activity
of	the	Android	app,	so	the	plug-in	code	needs	access	to	that	activity	to	pass	it
around	when	needed.

Finally,	you	need	the	native	Android	code.	Whereas	iOS	code	is	written	in
languages	like	Objective	C	and	C,	Android	is	programmed	in	Java.	But	we	can’t
simply	provide	the	raw	Java	code	for	the	plug-in;	the	plug-in	must	be	a	JAR
packaged	from	the	Java	code.	Here	again,	the	details	of	Android	programming

are	out	of	scope	for	a	Unity	intro,	but	for	reference	the	following	listing	shows
an	Ant	build	file	(replace	paths	with	locations	on	your	computer;	especially
notice	Unity’s	classes.jar	to	use	when	building	Android	plugins)	and	listing
12.10	shows	the	Java	code	for	the	plug-in	being	used.

Listing	12.9.	Script	build.xml	that	generates	a	JAR	from	the	Java	code

<?xml	version="1.0"	encoding="UTF-8"?>

<project	name="TestPluginJava">

				<!--	Change	this	in	order	to	match	your	configuration	-->

				<property	name="sdk.dir"

						value="LOCATION	OF	ANDROID	SDK">

				<property	name="target"	value="android-18">

				<property	name="unity.androidplayer.jarfile"

							value="ApplicationsUnity/Unity.app/Contents/PlaybackEngines/

					AndroidPlayer/development/bin/classes.jar">

				<!--	Source	directory	-->

				<property	name="source.dir"

value="LOCATION	OF	THIS	PROJECTAssets/Plugins/	Android/TestPlugin"	>

				<!--	Output	directory	for	.class	files-->

				<property	name="output.dir"

value="LOCATION	OF	THIS	PROJECTAssets/Plugins/	

Android/TestPlugin/classes">

				<!--	Name	of	the	jar	to	be	created.	Please	note	that	the	name

						should	match	the	name	of	the	class	and	the	name

				placed	in	the	AndroidManifest.xml-->

				<property	name="output.jarfile"	value="..TestPlugin.jar">

						<!--	Creates	the	output	directories	if	they	don't	exist	yet.	-->

				<target	name="-dirs"		depends="message">

								<echo>Creating	output	directory:	${output.dir}	<echo>

								<mkdir	dir="${output.dir}"	>

				<target>

			<!--	Compiles	this	project's	.java	files	into	.class	files.	-->

				<target	name="compile"	depends="-dirs"

						description="Compiles	project's	.java	files	into	.class	files">

								<javac	encoding="ascii"	target="1.6"	debug="true"

										destdir="${output.dir}"	verbose="${verbose}"

										includeantruntime="false">

												<src	path="${source.dir}"	>

												<classpath>

																<pathelement

																		location="${sdk.dir}\platforms\${target}ndroid.jar">

																<pathelement	location="${unity.androidplayer.jarfile}">

												<classpath>

								</javac>

				</target>

				<target	name="build-jar"	depends="compile">

								<zip	zipfile="${output.jarfile}"	basedir="${output.dir}"	>

				<target>

				<target	name="clean-post-jar">

									<echo>Removing	postbuild-jar-clean</echo>

									<delete	dir="${output.dir}">

				<target>

				<target	name="clean"

						description="Removes	output	files	created	by	other	targets.">

								<delete	dir="${output.dir}"	verbose="${verbose}"	>

				<target>

				<target	name="message">

					<echo>Android	Ant	Build	for	Unity	Android	Plugin</echo>

								<echo>			message:						Displays	this	message.</echo>

								<echo>			clean:					Removes	output	files	created	by	other	

targets.

										</echo>

								<echo>			compile:			Compiles	.java	files	into	.class	files.

</echo>

								<echo>			build-jar:	Compiles	.class	files	into	.jar	file.

</echo>

				</target>

</project>

Listing	12.10.	TestPlugin.java	that	compiles	into	a	JAR

package	com.companyname.testplugin;

public	class	TestPlugin	{

private	static	int	number	=	0;

public	static	int	getNumber()	{

number++;

return	number;

}

public	static	String	getString(String	message)	{

return	message.toLowerCase();

}

}

Android’s	manifest	and	resources	folder

It	wasn’t	required	for	this	simple	test	plug-in,	but	Android	plugins	often	must
edit	the	manifest	file.	All	Android	apps	are	controlled	by	a	main	configuration
file	called	AndroidManifest.xml;	Unity	creates	a	basic	manifest	file	if	you	don’t
provide	one,	but	you	could	provide	one	manually	by	putting	it	in
Plugins/Android/alongside	the	plug-in	JAR.

When	an	Android	app	is	built,	Unity	puts	the	generated	manifest	file	in	the	Temp
folder	at	StagingArea/AndroidManifest.xml;	copy	that	file	to	manually	edit	it
(the	downloaded	code	includes	a	sample	manifest	file).

Similarly,	there’s	a	folder	called	res	where	you	can	put	resources	like	custom
icons;	you	could	create	res	in	the	Android	plugins	folder.

The	JAR	file	generated	by	that	build	script	goes	in	Plugins/Android	(people
often	put	the	entire	Java	project	here	for	clarity,	but	technically	only	the	JAR
matters).	Now	build	the	game,	and	then	the	message	will	change	whenever	you
tap	the	screen.	Also,	like	the	iOS	plug-in,	an	Android	plug-in	could	use
UnityPlayer.UnitySendMessage()	to	communicate	with	the	object	in
the	scene	(the	Java	code	would	need	to	import	Unity’s	Android	Player
library/JAR).

I	know	I	glossed	over	a	lot	in	developing	Android	JARs,	but	that’s	because	the
process	is	both	too	complicated	and	changes	frequently.	If	you	become	advanced
enough	to	develop	plugins	for	your	Android	games,	you’re	going	to	have	to	look
up	documentation	on	Android’s	developer	website.

Congratulations,	you’ve	reached	the	end!

Congratulations,	you	now	know	the	steps	for	deploying	a	Unity	game	to	mobile
devices.	The	basic	build	process	for	all	platforms	is	simple	(just	a	single	button),
but	customizing	the	app	on	various	platforms	can	get	complicated.	Now	you’re
ready	to	get	out	there	and	build	your	own	games!

12.4.	Summary

In	this	chapter	you’ve	learned	that

	

Unity	can	build	executable	applications	for	a	huge	variety	of	platforms,
including	desktop	computers,	mobile	devices,	and	websites.
A	host	of	settings	can	be	applied	to	builds,	including	details	like	the	icon	for
the	app	and	the	name	that	appears.
Web	games	can	interact	with	the	web	page	they’re	embedded	in,	allowing
for	all	kinds	of	interesting	web	apps.
Unity	supports	custom	plugins	in	order	to	extend	its	functionality.

Afterword

At	this	point,	you	know	everything	you	need	to	know	in	order	to	build	a
complete	game	using	Unity—everything	from	a	programming	standpoint,	that	is;
a	top-notch	game	needs	fantastic	art	and	sounds,	too.	But	success	as	a	game
developer	involves	a	lot	more	than	technical	skills.	Let’s	face	it—learning	Unity
isn’t	your	end	goal.	Your	goal	is	to	create	successful	games,	and	Unity	is	just	a
tool	(granted,	a	very	good	tool)	to	get	you	to	that	goal.

Beyond	the	technical	skills	to	implement	everything	in	the	game,	you	need	an
additional	intangible	attribute:	grit.	I’m	talking	about	the	doggedness	and
confidence	to	keep	working	on	a	challenging	project	and	see	it	through	to	the
end,	what	I	sometimes	refer	to	as	“finishing	ability.”	There’s	only	one	way	to
build	up	your	finishing	ability,	and	that’s	to	complete	lots	of	projects.	That	seems
like	a	catch-22	(to	gain	the	ability	to	complete	projects,	you	first	need	to
complete	a	lot	of	projects),	but	the	key	point	to	recognize	is	that	small	projects
are	way	easier	to	complete	than	large	projects.

Thus,	the	path	forward	is	to	first	build	a	lot	of	small	projects—because	those	are
easy	to	complete—and	work	up	to	larger	projects.	Many	new	game	developers
make	the	mistake	of	tackling	a	project	that’s	too	large.	They	make	this	mistake
for	two	main	reasons:	they	want	to	copy	their	favorite	(big)	game,	and	everyone
underestimates	how	much	work	it	takes	to	make	a	game.	The	project	seemingly
starts	off	fine	but	quickly	gets	bogged	down	in	too	many	challenges,	and
eventually	the	developer	gets	dejected	and	quits.

Instead,	someone	new	to	game	development	should	start	small.	Start	with
projects	so	small	that	they	almost	seem	trivial;	the	projects	in	this	book	are	the
sort	of	“small,	almost	to	the	point	of	trivial”	projects	that	you	should	start	with.
If	you’ve	done	all	the	projects	in	this	book,	then	you’ve	already	gotten	a	lot	of
these	starter	projects	out	of	the	way.	Try	something	bigger	for	your	next	project,
but	be	wary	of	making	too	big	a	jump.	You’ll	build	up	your	skills	and	confidence
so	you	can	get	a	little	more	ambitious	each	time.

You’ll	hear	this	same	advice	almost	any	time	you	ask	how	to	start	developing
games.	For	example,	Unity	asked	the	web	series	Extra	Credits	(a	great	series
about	game	development)	to	do	some	videos	about	starting	in	game	dev,	and

you’ll	find	those	videos	here:

	

http://unity3d.com/learn/tutorials/modules/beginner/your-first-game/

Game	design

The	entire	Extra	Credits	series	goes	way	beyond	this	handful	of	videos
sponsored	by	Unity.	It	covers	a	lot	of	ground	but	mostly	focuses	on	the
discipline	of	game	design.

Definition

Game	design	is	the	process	of	defining	a	game	by	creating	its	goals,	rules,	and
challenges.	Game	design	is	not	to	be	confused	with	visual	design,	which	is
designing	appearance,	not	function;	this	is	a	common	mistake	because	the
average	person	is	most	familiar	with	“design”	in	the	context	of	“graphic	design.”

Definition

One	of	the	most	central	parts	of	game	design	is	crafting	game	mechanics;	these
are	individual	actions	(or	systems	of	actions)	within	a	game.	The	mechanics	in	a
game	are	often	set	up	by	its	rules,	whereas	the	challenges	in	a	game	generally
come	from	applying	the	mechanics	to	specific	situations.	For	example,	walking
around	the	game	is	a	mechanic,	whereas	a	maze	is	a	kind	of	challenge	based	on
that	mechanic.

Thinking	about	game	design	can	be	tricky	for	newcomers	to	game	development.
On	the	one	hand,	the	most	successful	(and	satisfying	to	create!)	games	are	built
with	interesting	and	innovative	game	mechanics.	On	the	other	hand,	worrying
too	much	about	the	design	of	your	first	game	can	distract	you	from	other	aspects
of	game	development,	like	learning	how	to	program	a	game.	You’re	better	off
starting	out	by	aping	the	design	of	existing	games	(remember,	I’m	only	talking
about	starting	out;	cloning	existing	games	is	great	for	initial	practice,	but
eventually	you’ll	have	enough	skills	and	experience	to	branch	out	further).

http://unity3d.com/learn/tutorials/modules/beginner/your-first-game/

That	said,	any	successful	game	developer	should	be	curious	about	game	design.
There	are	lots	of	ways	to	learn	more	about	game	design—you	already	know
about	the	Extra	Credits	videos,	but	here	are	some	other	websites:

	

www.gamasutra.com
www.lostgarden.com
www.sloperama.com

There	are	also	a	number	of	great	books	on	the	subject,	such	as	the	following:

	

Game	Design	Workshop,	Third	Edition,	by	Tracy	Fullerton	(A	K
Peters/CRC	Press,	2014)
A	Theory	of	Fun	for	Game	Design,	Second	Edition,	by	Raph	Koster
(O’Reilly	Media,	2013)
The	Art	of	Game	Design,	Second	Edition,	by	Jesse	Schell	(A	K	Peters/CRC
Press,	2014)

Marketing	your	game

In	the	Extra	Credits	videos	the	fourth	video	is	about	marketing	your	game.
Sometimes	game	developers	put	off	thinking	about	marketing.	They	only	want
to	think	about	building	the	game	and	not	marketing	it,	but	that	attitude	will
probably	result	in	a	failed	game.	The	best	game	in	the	world	still	won’t	be
successful	if	nobody	knows	about	it!

The	word	marketing	often	evokes	thoughts	of	ads,	and	if	you	have	the	budget,
then	running	ads	for	your	game	is	certainly	one	way	to	market	it.	But	there	are
lots	of	low-cost	or	even	free	ways	to	get	the	word	out	about	your	game.	Specifics
tend	to	change	over	time,	but	overall	strategies	mentioned	in	that	video	include
tweeting	about	your	game	(or	posting	on	social	media	in	general,	not	just
Twitter)	and	creating	a	trailer	video	to	share	on	YouTube	with	reviewers,
bloggers,	and	so	on.	Be	persistent	and	get	creative!

Now	go	and	create	some	great	games.	Unity	is	an	excellent	tool	for	doing	just

http://www.gamasutra.com
http://www.lostgarden.com
http://www.sloperama.com

that,	and	you’ve	learned	how	to	use	it.	Good	luck	on	your	journey!

Appendix	A.	Scene	navigation	and	keyboard	shortcuts

Operating	Unity	is	done	through	mouse	and	keyboard,	but	it	isn’t	obvious	to	a
newcomer	how	the	mouse	and	keyboard	are	used	in	Unity.	In	particular,	the	most
basic	sort	of	mouse	and	keyboard	input	is	navigating	around	the	scene	and
looking	around	the	3D	objects.	Unity	also	has	a	number	of	keyboard	commands
for	commonly	used	operations.

I’ll	explain	the	input	controls	here,	but	there	are	also	a	couple	of	web	pages	you
could	refer	to	(these	are	the	relevant	pages	in	Unity’s	online	manual):

	

http://docs.unity3d.com/Documentation/Manual/SceneViewNavigation.html

http://docs.unity3d.com/Documentation/Manual/UnityHotkeys.html

	

A.1.	Scene	navigation	using	the	mouse

Scene	navigation	is	primarily	done	with	three	main	navigation	maneuvers:
Move,	Orbit,	and	Zoom.	The	three	different	movements	involve	clicking	and
dragging	while	holding	down	some	combination	of	Alt	(or	Option	on	the	Mac)
and	Control.	The	exact	controls	vary	for	one-,	two-,	and	three-button	mice;	table
A.1	lists	all	the	controls.

	

Table	A.1.	Scene	navigation	controls	for	various	kinds	of	mice

Navigation	action Three-button	mouse Two-button	mouse One-button	mouse

Move Middle	button	click/drag Alt+Command+left-
click/drag

Alt+Command+click/drag

Orbit Hold	Alt+left-click/drag Alt+left-click/drag Alt+click/drag
Zoom Hold	Alt+right-click/drag Alt+right-click/drag Alt+Ctrl+click/drag

http://docs.unity3d.com/Documentation/Manual/SceneViewNavigation.html
http://docs.unity3d.com/Documentation/Manual/UnityHotkeys.html

	

Note

Although	Unity	can	be	used	with	one-or	two-button	mice,	I	highly	recommend
getting	a	three-button	mouse	(and	yes,	a	three-button	mouse	works	fine	on	Mac
OS	X).

	

Besides	the	navigation	maneuvers	done	using	the	mouse,	there	are	also	some
view	controls	based	on	the	keyboard.	If	you	hold	down	the	right	button	on	the
mouse,	the	WASD	keys	on	the	keyboard	can	be	used	to	walk	around	in	the
manner	common	to	most	first-person	games.	Hold	Shift	during	any	other	control
to	move	faster.	But	most	important,	if	you	press	F	while	an	object	is	selected,	the
view	will	pan	and	zoom	to	focus	on	that	object.	If	you	get	lost	while	navigating
your	scene,	a	common	“escape	hatch”	is	to	select	an	object	listed	in	the
Hierarchy	and	then	press	F.

	

A.2.	Commonly	used	keyboard	shortcuts

Unity	has	a	number	of	keyboard	commands	to	quickly	access	important
functions.	The	most	important	keyboard	shortcuts	are	W,	E,	R,	and	T:	those
buttons	activate	the	transform	tools	Translate,	Rotate,	and	Scale	(refer	back	to
chapter	1	if	you	don’t	recall	what	the	transform	tools	do)	as	well	as	the	2D	Rect
tool.	Because	those	keys	are	right	next	to	each	other,	it’s	common	to	leave	your
left	hand	on	those	keys	while	your	right	hand	operates	the	mouse.

In	addition	to	the	transform	tools,	there	are	a	number	of	keyboard	shortcuts;
table	A.2	lists	many	useful	keyboard	shortcuts	in	Unity.

	

Table	A.2.	Useful	keyboard	shortcuts

Keystroke Function

W Translate	(move	the	selected	object)
E Rotate	(rotate	the	selected	object)
R Scale	(resize	the	selected	object)
T Rect	tool	(manipulate	2D	objects)
F Focus	view	on	the	selected	object
V Snap	to	vertices
Ctrl/Command+Shift+N New	GameObject
Ctrl/Command+P Play	game
Ctrl/Command+R Refresh	project
Ctrl/Command+1 Set	current	window	to	Scene	view
Ctrl/Command+2 Set	to	Game	view
Ctrl/Command+3 Set	to	Inspector	view
Ctrl/Command+4 Set	to	Hierarchy	view
Ctrl/Command+5 Set	to	Project	view
Ctrl/Command+6 Set	to	Animation	view

Unity	responds	to	a	number	of	other	keyboard	shortcuts	as	well,	but	they	get
increasingly	obscure	the	further	down	the	list	we	get.

	

Appendix	B.	External	tools	used	alongside	Unity

Developing	a	game	using	Unity	relies	on	a	variety	of	external	software	tools	for
taking	care	of	various	tasks.	In	chapter	1	we	already	discussed	one	external	tool;
MonoDevelop	is	technically	a	separate	application,	even	though	it’s	bundled
along	with	Unity.	In	a	similar	manner,	developers	rely	on	an	array	of	external
tools	to	do	work	not	internal	to	Unity.

This	isn’t	to	say	that	Unity	is	lacking	capabilities	that	it	ought	to	have.	Rather,
the	game	development	process	is	so	complex	and	multifaceted	that	any	well-
designed	piece	of	software	with	a	clear	focus	and	clean	separation	of	concerns
will	inevitably	limit	itself	to	being	good	at	a	limited	subset	of	the	process.	In	this
case,	Unity	concentrates	on	being	the	glue	and	the	engine	that	brings	together	all
the	content	of	a	game	and	makes	it	function.	Creating	all	that	content	is	done
with	other	tools;	let’s	take	a	look	at	several	categories	of	software	that	could	be
useful	to	you.

B.1.	Programming	tools

We’ve	already	looked	at	MonoDevelop,	the	most	significant	programming	tool
used	alongside	Unity.	But	there	are	a	handful	of	other	programming	tools	to	be
aware	of,	as	you’ll	see	in	this	section.

B.1.1.	Visual	Studio

As	mentioned	in	chapter	1,	although	Unity	comes	with	MonoDevelop	and	you
can	use	that	IDE	on	both	Windows	and	Mac,	on	Windows	you	could	also	choose
to	use	Visual	Studio.	Recently	Microsoft	acquired	SyntaxTree,	a	company	that
has	been	improving	the	integration	of	Visual	Studio:

	

http://unityvs.com

B.1.2.	Xcode

http://unityvs.com

Xcode	is	the	programming	environment	provided	by	Apple	(in	particular	an
IDE,	but	also	including	SDKs	for	Apple	platforms).	Although	you’d	still	be
doing	the	vast	majority	of	the	work	within	Unity,	you	need	to	use	Xcode	to
deploy	a	game	to	iOS.	That	work	often	involves	debugging	or	profiling	your	app
using	the	tools	in	Xcode:

	

https://developer.apple.com/xcode/

B.1.3.	Android	SDK

Similar	to	how	you	need	to	install	Xcode	in	order	to	deploy	to	iOS,	you	need	to
download	the	Android	SDK	in	order	to	deploy	to	Android.	Unlike	when	building
an	iOS	game,	you	don’t	need	to	fire	up	any	development	tools	outside	of	Unity
—you	simply	have	to	set	preferences	in	Unity	that	point	to	the	Android	SDK:

	

http://developer.android.com/sdk/index.html

B.1.4.	SVN,	Git,	or	Mercurial

Any	decent-sized	software	development	project	will	involve	a	lot	of	complex
revisions	to	code	files,	so	programmers	have	developed	a	class	of	software
called	VCS	(version	control	system)	to	handle	this	problem.	Three	of	the	most
popular	systems	are	Subversion	(also	known	as	SVN),	Git,	and	Mercurial;	if	you
don’t	already	use	a	VCS,	I	highly	recommend	starting	to	use	one.	Unity	fills	the
project	folder	with	temp	files	and	workspace	settings,	but	the	only	two	folders
that	need	to	be	in	version	control	are	Assets	(make	sure	your	version	control	is
picking	up	the	meta	files	generated	by	Unity)	and	Project	Settings:

	

http://subversion.apache.org/
http://git-scm.com/
http://mercurial.selenic.com/wiki/Mercurial

https://developer.apple.com/xcode/
http://developer.android.com/sdk/index.html
http://subversion.apache.org/
http://git-scm.com/
http://mercurial.selenic.com/wiki/Mercurial

B.2.	3D	art	applications

Although	Unity	is	perfectly	capable	of	handling	2D	graphics	(and	chapters	5	and
6	focus	on	2D	graphics),	it	originated	as	a	3D	game	engine	and	continues	to	have
strong	3D	graphics	features.	Many	3D	artists	work	with	at	least	one	of	the
software	packages	described	in	this	section.

B.2.1.	Maya

Maya	is	a	3D	art	and	animation	package	with	deep	roots	in	moviemaking.
Maya’s	feature	set	covers	almost	every	task	that	comes	up	for	3D	artists,	from
crafting	beautiful	cinematic	animations	to	making	efficient	game-ready	models.
3D	animation	done	in	Maya	(such	as	a	character	walking)	can	be	exported	over
to	Unity:

	

www.autodesk.com/products/autodesk-maya/overview

B.2.2.	3ds	Max

The	other	widely	used	3D	art	and	animation	package,	3ds	Max	offers	an	almost
identical	feature	set	and	is	quite	comparable	in	workflow	to	Maya.	3ds	Max	runs
only	on	Windows	(whereas	other	tools,	including	Maya,	are	cross-platform),	but
it’s	used	just	as	often	in	the	game	industry:

	

www.autodesk.com/products/autodesk-3ds-max/overview

B.2.3.	Blender

Though	not	as	commonly	used	in	the	game	industry	as	either	3ds	Max	or	Maya,
Blender	is	also	comparable	to	those	other	applications.	Blender	also	covers
almost	all	3D	art	tasks,	and	best	of	all,	Blender	is	open	source.	Given	that	it’s
available	for	free	on	all	platforms,	Blender	is	the	only	3D	art	application	that’s
assumed	to	be	available	by	this	book:

http://www.autodesk.com/products/autodesk-maya/overview
http://www.autodesk.com/products/autodesk-3ds-max/overview

	

www.blender.org

B.3.	2D	image	editors

2D	images	are	crucial	to	all	games,	be	they	displayed	directly	for	2D	games	or	as
textures	on	the	surface	of	3D	models.	Several	2D	graphics	tools	come	up	often
in	game	development,	as	you’ll	see	in	this	section.

B.3.1.	Photoshop

Photoshop	is	easily	the	most	widely	used	2D	image	application	there	is.	The
tools	in	Photoshop	can	be	used	for	touching	up	existing	images,	applying	image
filters,	or	even	painting	pictures	from	scratch.	Photoshop	supports	dozens	of
different	file	formats,	including	all	image	formats	used	in	Unity:

	

www.photoshop.com

B.3.2.	GIMP

An	acronym	standing	for	GNU	Image	Manipulation	Program,	this	is	the	best-
known	open	source	2D	graphics	application.	GIMP	trails	Photoshop	in	both
features	and	usability,	but	it’s	still	a	useful	image	editor,	and	you	can’t	beat	the
price!

	

www.gimp.org

B.3.3.	TexturePacker

Whereas	the	previously	mentioned	tools	are	all	used	beyond	just	the	field	of
game	development,	TexturePacker	is	only	useful	for	game	development.	But	it’s
very	good	at	the	task	it	was	designed	for:	assembling	sprite	sheets	to	use	in	2D

http://www.blender.org
http://www.photoshop.com
http://www.gimp.org

games.	If	you’re	developing	a	2D	game,	then	you	probably	want	to	try	out
TexturePacker:

	

www.codeandweb.com/texturepacker

B.4.	Audio	software

A	dizzying	array	of	audio	production	tools	are	available,	including	both	sound
editors	(that	work	with	raw	waveforms)	and	sequencers	(that	compose	music
using	a	sequence	of	notes).	To	give	a	taste	of	the	audio	software	available,	this
section	looks	at	two	major	sound-editing	tools	(other	examples	beyond	this	list
include	Logic,	Ableton,	and	Reason).

B.4.1.	Pro	Tools

This	audio	software	boasts	many	useful	features	and	is	considered	the	industry
standard	by	countless	music	producers	and	audio	engineers.	It’s	frequently	used
for	all	sorts	of	professional	audio	work,	including	game	development:

	

www.avid.com/US/products/family/Pro-Tools

B.4.2.	Audacity

Although	nowhere	near	as	useful	for	professional	audio	work,	Audacity	is	a
handy	sound	editor	for	small-scale	audio	work,	like	preparing	short	sound	files
to	use	as	sound	effects	in	a	game.	This	is	a	popular	choice	for	those	looking	for
open	source	sound	editing	software:

	

http://audacity.sourceforge.net/

http://www.codeandweb.com/texturepacker
http://www.avid.com/US/products/family/Pro-Tools
http://audacity.sourceforge.net/

Appendix	C.	Modeling	a	bench	in	Blender

In	chapters	2	and	4	we	looked	at	creating	levels	with	large	flat	walls	and	floors.
But	what	about	more	detailed	objects?	What	if	you	want,	say,	interesting
furniture	in	the	room?	You	can	accomplish	that	by	building	3D	models	in
external	3D	art	apps.	Recall	the	definition	from	the	introduction	to	chapter	4:	3D
models	are	the	mesh	objects	in	the	game	(that	is,	the	three-dimensional	shapes).
In	this	appendix	I’ll	show	you	how	to	create	a	mesh	object	of	a	simple	bench
(see	figure	C.1).

Figure	C.1.	Diagram	of	the	simple	bench	you’re	going	to	model

While	appendix	B	lists	a	number	of	3D	art	tools,	we’ll	use	Blender	for	this
exercise	because	it’s	open	source	and	thus	accessible	to	all	readers.	You’ll	create
a	mesh	object	in	Blender	and	export	that	out	to	an	art	asset	that	works	with
Unity.

Tip

Modeling	is	a	huge	topic,	but	we’ll	cover	only	a	handful	of	modeling	functions
that	will	allow	you	to	create	the	bench.	If	you	want	to	keep	learning	more	about
modeling	after	this	chapter,	look	to	some	of	the	many	books	and	tutorials	on	the
subject	(to	start	with,	look	at	the	learning	resources	on	www.blender.org).

Warning

I	used	Blender	2.67,	so	the	explanations	and	screenshots	come	from	that	version
of	the	software.	Newer	versions	of	Blender	are	released	frequently,	and	there
may	be	slight	changes	to	the	placement	of	buttons	or	names	of	commands.

http://www.blender.org

C.1.	Building	the	mesh	geometry

Launch	Blender;	the	initial	default	screen	looks	like	figure	C.2,	with	a	cube	in
the	middle	of	the	scene.	Use	the	middle-mouse	button	to	manipulate	the	camera
view:	click	and	drag	to	tumble,	Shift	with	click-drag	to	pan,	and	Control	with
click-drag	to	zoom.

Figure	C.2.	The	initial	default	screen	in	Blender

Blender	starts	out	in	Object	mode,	which,	as	the	name	implies,	is	when	you
manipulate	entire	objects,	moving	them	around	the	scene.	To	edit	a	single	object
in	detail,	you	must	switch	to	Edit	mode;	figure	C.3	shows	the	menu	you	use
(Edit	appears	in	this	menu	only	when	an	object	is	selected,	and	Blender	starts	out
with	the	object	selected).	Similarly,	when	you	first	switch	to	Edit	mode,	Blender
is	set	to	Vertex	Selection	mode,	but	there	are	buttons	(refer	to	figure	C.4)	that	let
you	switch	between	Vertex,	Edge,	and	Face	Selection	modes.	The	various
selection	modes	allow	you	to	select	different	mesh	elements.

Figure	C.3.	Menu	for	switching	from	Object	to	Edit	mode

Figure	C.4.	Controls	along	the	bottom	of	the	viewport

Definition

Mesh	elements	are	the	vertices,	edges,	and	faces	that	comprise	the	geometry	of
the	mesh—in	other	words,	the	individual	corner	points,	the	lines	connecting	the
points,	and	the	shapes	filled	in	between	connected	lines.

Fundamental	mouse	and	keyboard	shortcuts	in	Blender

Also	depicted	in	figure	C.4	are	the	various	transform	tools.	As	in	Unity,	the
transforms	are	Translate,	Rotate,	and	Scale.	The	first	button	toggles	the
Transform	Gizmo	(the	arrows	in	the	scene)	on	and	off;	I	recommend	leaving	that
gizmo	on,	because	otherwise	you	can	only	access	the	transform	tools	via
keyboard	shortcuts.	The	keyboard	shortcuts	in	Blender	are	often	unexpected,	as
is	the	mouse	functionality.

For	example,	though	the	use	of	the	middle-mouse	to	manipulate	the	camera
makes	intuitive	sense,	selecting	elements	in	the	scene	is	done	with	the	right
mouse	button	(in	most	applications	the	left	mouse	button	selects	things).	Even
weirder,	a	box	selection	is	done	by	pressing	B	and	then	left-clicking-and-
dragging.	You	add	to	the	selection	(as	opposed	to	replace	the	selection)	by

holding	Shift	while	clicking	on	elements,	and	you	clear	the	selection	by	pressing
A.

These	are	the	basic	controls	for	using	Blender,	so	now	we’ll	see	some	functions
for	editing	the	model.	To	start	with,	scale	the	cube	into	a	long,	thin	plank.	Select
every	vertex	of	the	model	(be	sure	to	also	select	vertices	on	the	side	of	the	object
facing	away)	and	then	switch	to	the	Scale	tool.	Click-drag	the	blue	arrow	for	the
Z-axis	to	scale	down	vertically,	and	then	click-drag	the	green	arrow	for	Y	to
scale	out	sideways	(see	figure	C.5).

Figure	C.5.	Mesh	scaled	into	a	long,	thin	plank

Switch	to	Face	Selection	mode	(use	the	button	indicated	in	figure	C.4)	and	select
both	small	ends	of	the	plank.	Now	click	on	the	Mesh	menu	at	the	bottom	of	the
viewport	and	select	Extrude	Individual	(see	figure	C.6).	As	you	move	the	mouse
you’ll	see	additional	sections	added	to	the	ends	of	the	plank;	move	them	out
slightly	and	then	left-click	to	confirm.	This	additional	section	is	only	the	width
of	the	bench	legs,	giving	you	a	little	additional	geometry	to	work	with.

Figure	C.6.	In	the	Mesh	menu	use	Extrude	Individual	to	pull	out	extra	sections.

Definition

Extrude	is	when	you	push	out	new	geometry	with	a	cross-section	in	the	shape	of
the	selected	faces.	The	two	different	extrude	commands	define	what	to	do	when
multiple	elements	are	selected:	Extrude	Individual	treats	each	element	as	a
separate	piece	to	extrude,	whereas	Extrude	Region	treats	the	entire	selection	as	a
single	piece.

Now	look	at	the	bottom	of	the	plank	and	select	the	two	thin	faces	on	each	end.
Use	the	Extrude	Individual	command	again	to	pull	down	legs	for	the	bench
(refer	to	figure	C.7).

Figure	C.7.	Select	the	thin	faces	underneath	the	bench	and	pull	down	legs.

The	shape	is	complete!	But	before	you	export	the	model	over	to	Unity,	you	want
to	take	care	of	texturing	the	model.

C.2.	Texture-mapping	the	model

3D	models	can	have	2D	images	(referred	to	as	textures)	displayed	on	their
surface.	How	exactly	the	2D	images	relate	to	the	3D	surface	is	straightforward
for	a	large	flat	surface	like	a	wall;	simply	stretch	the	image	across	the	flat
surface.	But	what	about	an	oddly	shaped	surface,	like	the	sides	of	the	bench?
This	is	where	it	becomes	important	to	understand	the	concept	of	texture
coordinates.

Texture	coordinates	define	how	parts	of	the	texture	relate	to	parts	of	the	mesh.

These	coordinates	assign	mesh	elements	to	areas	of	the	texture.	Think	about	it
like	wrapping	paper	(see	figure	C.8);	the	3D	model	is	the	box	being	wrapped,	the
texture	is	the	wrapping	paper,	and	the	texture	coordinates	represent	where	on	the
wrapping	paper	each	side	of	the	box	will	go.	The	texture	coordinates	define
points	and	shapes	on	the	2D	image;	those	shapes	correlate	to	polygons	on	the
mesh,	and	that	part	of	the	image	appears	on	that	part	of	the	mesh.

Figure	C.8.	Wrapping	paper	makes	a	good	analogy	for	how	texture	coordinates	work.

Tip

Another	name	for	texture	coordinates	is	UV	coordinates.	This	name	comes	from
the	fact	that	texture	coordinates	are	defined	using	the	letters	U	and	V,	like
coordinates	on	the	3D	model	are	defined	using	X,	Y,	and	Z.

The	technical	term	for	correlating	part	of	one	thing	to	part	of	another	is	mapping
—hence	the	term	texture	mapping	for	the	process	of	creating	texture	coordinates.
Coming	from	the	wrapping	paper	analogy,	another	name	for	the	process	is

unwrapping.	And	then	there	are	terms	created	by	mashing	up	the	other
terminology,	like	UV	unwrapping;	there	are	a	lot	of	essentially	synonymous
terms	surrounding	texture	mapping,	so	try	not	to	get	confused.

Traditionally	the	process	of	texture	mapping	has	been	wickedly	complicated,	but
fortunately	Blender	provides	tools	to	make	the	process	fairly	simple.	First	you
define	seams	on	the	model;	if	you	think	further	about	wrapping	around	a	box	(or
better	yet,	think	about	the	other	direction,	unfolding	a	box)	you’ll	realize	that	not
every	part	of	a	3D	shape	can	remain	seamless	when	unfolded	into	two
dimensions.	There	will	have	to	be	seams	in	the	3D	form	where	the	sides	come
apart.	Blender	enables	you	to	select	edges	and	declare	them	as	seams.

Switch	to	Edge	Selection	mode	(see	the	buttons	in	figure	C.4)	and	select	edges
along	the	outside	of	the	bottom	of	the	bench.	Now	select	Mesh	>	Edges	>	Mark
Seam	(see	figure	C.9).	This	tells	Blender	to	separate	the	bottom	of	the	bench	for
purposes	of	texture	mapping.	Do	the	same	thing	for	the	sides	of	the	bench,	but
don’t	separate	the	sides	entirely.	Instead,	only	seam	edges	running	up	the	legs	of
the	bench;	this	way,	the	sides	will	remain	connected	to	the	bench	while
spreading	out	like	wings.

Figure	C.9.	Seam	edges	along	the	bottom	of	the	bench	and	along	the	legs

Once	all	the	seams	are	marked,	run	the	Texture	Unwrap	command.	First	select
the	entire	mesh	(don’t	forget	the	side	of	the	object	facing	away).	Next,	choose
Mesh	>	UV	Unwrap	>	Unwrap	to	create	the	texture	coordinates.	But	you	can’t

see	the	texture	coordinates	in	this	view;	Blender	defaults	to	a	3D	view	of	the
scene.	To	see	the	texture	coordinates	you	must	switch	from	3D	View	to	UV
Editor,	using	the	Viewports	menu	located	on	the	far	left	of	the	toolbar	(not	the
word	View	but	the	little	icon;	see	figure	C.10).

Figure	C.10.	Switch	from	3D	View	to	UV	Editor,	where	the	texture	coordinates	are	displayed.

Now	you	can	see	the	texture	coordinates.	You	can	see	the	polygons	of	the	bench
laid	out	flat,	separated	and	unfolded	according	to	the	seams	you	marked.	To
paint	a	texture,	you	have	to	see	these	UV	coordinates	in	your	image-editing
program.	Referring	again	to	figure	C.10,	under	the	UVs	menu	choose	Export	UV
Layout;	save	the	image	as	bench.png	(this	name	will	also	be	used	later	when
importing	into	Unity).

Open	this	image	in	your	image	editor	and	paint	colors	for	the	various	parts	of
your	texture.	Painting	different	colors	for	different	UVs	will	put	different	colors
on	those	faces.	For	example,	figure	C.11	shows	darker	blue	where	the	bottom	of
the	bench	was	unfolded	on	the	top	of	the	UV	layout,	and	red	was	painted	on	the
sides	of	the	bench.	Now	the	image	can	be	brought	back	into	Blender	to	texture
the	model;	select	Image	>	Open	Image.

Figure	C.11.	Paint	colors	over	the	exported	UVs	and	then	bring	the	texture	into	Blender.

At	this	point	you	can	return	to	the	3D	view	(using	the	same	menu	you	used	to
switch	to	UV	Editor).	You	still	can’t	see	the	texture	on	the	model,	but	that	only
requires	a	couple	more	steps.	You	need	to	delete	the	default	light	and	then	turn
on	textures	in	the	viewport	(see	figure	C.12).

Figure	C.12.	Delete	the	default	light	and	view	the	texture	on	the	model.

To	delete	the	light,	first	switch	back	to	Object	mode	in	order	to	select	it	(using
the	same	menu	you	used	to	switch	to	Edit	mode).	Press	X	to	delete	a	selected
object;	delete	the	camera	while	you’re	at	it.	Finally,	go	to	the	Viewport	Shading
menu	to	switch	to	Texture.	Now	you	can	see	the	finished	bench,	with	texture
applied!

Go	ahead	and	save	the	model	now.	Blender	will	save	the	file	with	the	.blend
extension,	using	the	native	file	format	for	Blender.	Use	the	native	file	format	to

work	in	so	that	all	the	features	of	Blender	will	be	preserved	correctly,	but	later
you’ll	have	to	export	the	model	to	a	different	file	format	for	importing	into
Unity.	Note	that	the	texture	image	isn’t	actually	saved	in	the	model	file;	what’s
saved	is	a	reference	to	the	image,	but	you	still	need	the	image	file	that’s	being
referenced.

Appendix	D.	Online	learning	resources

This	book	is	designed	to	be	a	complete	introduction	to	game	development	in
Unity,	but	there’s	a	lot	more	to	learn	beyond	this	introduction.	There	are	lots	of
great	resources	online	you	can	use	to	go	further	after	finishing	this	book.

D.1.	Additional	tutorials

Many	sites	exist	that	provide	directed	information	on	a	variety	of	topics	within
Unity.	Several	of	these	are	even	provided	officially	by	the	company	behind
Unity.

Unity	Manual

This	is	the	comprehensive	user	manual	provided	by	Unity.	Not	only	is	the
manual	useful	for	looking	up	information,	but	the	list	of	topics	is	useful	by	itself
for	giving	users	a	full	idea	of	what	Unity	is	capable	of:

http://docs.unity3d.com/Documentation/Manual/index.html

Script	reference

Unity	programmers	end	up	reading	this	resource	more	than	any	other	(at	least,	I
do!).	The	user	manual	covers	the	capabilities	of	the	engine	and	use	of	the	editor,
but	the	script	reference	is	a	thorough	reference	to	Unity’s	entire	API	(application
programming	interface).	Every	Unity	command	is	listed	here:

http://docs.unity3d.com/Documentation/ScriptReference/index.html

Unity3D	Student

This	site	provides	a	large	library	of	tutorials	covering	an	array	of	topics.	Most
importantly,	the	tutorials	are	all	videos.	This	may	be	good	or	bad	depending	on
your	perspective;	if	you	are	someone	who	likes	to	watch	video	tutorials,	then	this
is	a	good	site	to	check	out:

http://docs.unity3d.com/Documentation/Manual/index.html
http://docs.unity3d.com/Documentation/ScriptReference/index.html

www.unity3dstudent.com

Learn	Unity3D

Part	of	the	same	family	of	websites	as	Unity	3D	Student,	the	Learn	Unity	3D	site
is	similar	in	purpose	but	provides	slightly	different	information	in	a	very
different	format	(more	of	a	news	site	with	articles	of	interest	to	learners).	It’s
another	good	site	to	browse	through	for	tutorials:

http://learnunity3d.com/

Game	development	at	StackExchange

This	is	another	great	information	site	with	a	different	format	from	the	previous
ones	listed.	Rather	than	a	series	of	self-contained	tutorials,	StackExchange
presents	a	mostly	text	QA	that	encourages	searching.	StackExchange	has
sections	about	a	huge	array	of	topics;	this	is	the	area	of	the	site	focused	on	game
development.	For	what	it’s	worth,	I	look	for	Unity	information	here	almost	as
often	as	I	use	the	script	reference:

http://gamedev.stackexchange.com/

Maya	LT	Guide

As	described	earlier	in	appendix	B,	external	art	applications	are	a	crucial	part	of
creating	visually	stunning	games.	Many	resources	are	available	that	teach	about
Maya,	3ds	Max,	Blender,	or	any	of	the	other	3D	art	applications	out	there.
Appendix	C	offers	a	tutorial	about	Blender.	Meanwhile,	here’s	one	online	guide
about	using	Maya	LT	(which	is	a	less	expensive	and	game	development–oriented
version	of	Maya):

http://steamcommunity.com/sharedfiles/filedetails/?id=242847724

D.2.	Code	libraries

Although	the	previously	listed	resources	provide	tutorials	and/or	learning
information	about	Unity,	the	sites	in	this	section	provide	code	that	can	be	used	in

http://www.unity3dstudent.com
http://learnunity3d.com/
http://gamedev.stackexchange.com/
http://steamcommunity.com/sharedfiles/filedetails/?id=242847724

your	projects.	Libraries	and	plugins	are	another	kind	of	resource	that	can	be
useful	for	new	developers,	both	for	using	directly	but	also	for	learning	from	(by
reading	their	code).

Unify	Community	Wiki

This	wiki	is	a	central	database	of	code	contributions	from	many	developers,	and
the	scripts	hosted	here	cover	a	wide	range	of	functionality.	Throughout	this
book,	I	sometimes	directed	you	to	specific	scripts	hosted	here	(the	event	system
and	the	JSON	parser,	for	example).	There	are	certainly	many	more	useful	scripts
you	can	find	here:

http://wiki.unity3d.com/index.php/Scripts

Unity	patterns

The	library	of	scripts	here	isn’t	nearly	as	extensive	as	at	the	Unify	wiki,	but
there’s	some	useful	code	to	look	through,	along	with	some	illuminating	tutorials:

http://unitypatterns.com/

iTween

As	mentioned	briefly	in	chapters	3	and	8,	a	kind	of	motion	effect	commonly
used	in	games	is	referred	to	as	a	tween.	This	is	a	kind	of	movement	where	a
single	code	command	can	set	an	object	moving	to	a	target	over	a	certain	amount
of	time.	Tweening	functionality	can	be	added	to	Unity	via	a	number	of	libraries,
and	here’s	one	good	option:

http://itween.pixelplacement.com/index.php

prime[31]

Unity	provides	deployment	to	mobile	platforms	like	iOS	and	Android,	but	the
actual	platform-specific	features	are	limited	to	core	features.	You	can	add	a	lot	of
more	specific	features	through	plugins,	and	prime[31]	has	many	such	plugins:

https://prime31.com/

http://wiki.unity3d.com/index.php/Scripts
http://unitypatterns.com/
http://itween.pixelplacement.com/index.php
https://prime31.com/

Play	Games	Services	from	Google

On	iOS,	Unity	has	GameCenter	integration	built	in	so	that	your	games	can	have
platform-native	leaderboards	and	achievements.	The	equivalent	system	on
Android	is	called	Google	Play	Games;	although	this	isn’t	built	into	Unity,
Google	maintains	a	plug-in:

https://github.com/playgameservices/playgames-plugin-for-unity

FMOD	Studio

The	audio	functionality	built	into	Unity	works	well	for	simply	playing	back
recordings	but	can	be	limited	for	advanced	sound	design	work.	FMOD	Studio	is
an	advanced	sound	design	tool	that	has	a	free-to-use	(but	not	necessarily	publish)
Unity	plug-in.	Scroll	down	to	find	it	in	their	Downloads	page:

www.fmod.org/download/

ProBuilder	and	Prototype

ProBuilder	and	Prototype	are	add-ons	that	enable	powerful	level	editing	within
Unity.	ProBuilder	costs	money	for	professional	features	like	flexible	texturing,
but	Prototype	is	free	and	ideal	for	use	in	the	white-boxing	workflow	from
chapter	4:

www.protoolsforunity3d.com/prototype/

FPS	Control

FPS	Control	is	a	suite	of	tools	and	code	designed	to	ease	the	creation	of	FPS
(first-person	shooter)	games.	This	framework	grew	out	of	a	popular	series	of
video	tutorials:

www.fpscontrol.com/features

https://github.com/playgameservices/play-games-plugin-for-unity
http://www.fmod.org/download/
http://www.protoolsforunity3d.com/prototype/
http://www.fpscontrol.com/features

Index
[SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Y]

SYMBOL

<>	syntax

	

2D	sound	
3D	art	tools

	

3D	sound

	

3DS	format	
3ds	Max

A

Action	keyword

	

Action	type	
AddComponentMenu()	method	
additives	
ADPCM	
AI	(artificial	intelligence)
		overview
		tracking	character's	state

AIF	format	
Ajax	
alpha	channel	
anchor	points	
Android
		build	tools	for
		developing	plug-ins	for

		SDK

	

AndroidManifest.xml	file

	

Animator	view	
anonymous	functions	
API	(application	programming	interface)	
artificial	intelligence.	
				See	AI.

Assault	Android	Cactus	
AssetBundles	
assets	
atlas	
atmosphere	controlled	by	code	
Audacity,	2nd

	

AudioClip	component	
AudioListener	component	
AudioManager	component	
AudioMixer	
AudioSource	component,	2nd,	3rd

Awake()	method

B

	

Bad	Piggies	
baking	shadows	
Blender,	2nd
		building	mesh	geometry
		texture-mapping	model

	

BMP	format	
broadcast	messenger	system

	

C

C#	vs.	JavaScript	
cache	
callbacks

	

children,	defined	
Clamp()	method	
clips,	animation	
Collada	format	
collections	
collision	detection	
color-changing	monitor	example	
compiler	directives	
compression
		audio	files
		mobile	deployment
		platform	changes	and

	

Console	tab	
ContainsKey()	method	
controllers	
coordinates,	left-handed	vs.	right-handed	
coroutines
		cascading	methods
		overview

cross-platform	support	
culling,	defined

D

Dead	Trigger	
delta	
deltaTime	property,	2nd

dependency	injection

	

deserialization

	

Destroy()	method,	2nd,	3rd

Diablo	game	
Dictionary	objects	
directional	lights	
DLLImport	command	
DontDestroyOnLoad()	method

	

dot	product	
DXF	format	
dynamic	strings

E

editor	modes

	

Enlighten

	

ETC	(Ericsson	Texture	Compression)	
Euler	angles	
events,	HUD	
EventTrigger	component	
Extensible	Markup	Langauge.	
				See	XML.

ExternalCall()	method	
ExternalEval()	method	
extrude	commands

F

facing	objects	
Fade	Duration	setting	

Far	clipping	plane	
FBX	format,	2nd,	3rd

field	of	vision	
FingerGestures	
finite	state	machines.	
				See	FSM.

first-person	shooter.	
				See	FPS.

floor-plans	
FMOD	library	
FMOD	Studio	
FPS	(first-person	shooter),	2nd

FPS	Control	
frame	rate	dependent	
frames	
freezeRotation	property	
FSM	(finite	state	machines)

G

Game	view	
GameObject	class	
GET	method	
GetAxis()	method	
GetComponent()	method,	2nd

GetInstanceID()	method	
GetMouseButtonDown()	method	
GetTouch()	method	
GIF	format	
GIMP	
Git,	2nd

global	vs.	local	coordinate	space	
Gone	Home	
Google	Play	Games	
graphical	user	interface.	
				See	GUI.

	

grayboxing	
ground	detection	
GUI	(graphical	user	interface),	2nd

Guns	of	Icarus	Online

H

heads-up	display.	
				See	HUD.

health,	player	
Hello	World!	example	
Hierarchy	tab	
horizontal	rotation,	2nd

HTML5	(Hypertext	Markup	Language,	2nd

HTTP	requests,	2nd

	

humanoid	characters	
Hypertext	Markup	Language	5.	
				See	HTML5.

I

IDE	(integrated	development	environment)	
IGameManager	interface,	2nd,	3rd

ignoreListenerPause	property	
ignoreListenerVolume	property

	

immediate	mode	vs.	retained	mode	
Initialize()	function	
input	fields	
instances	
instantiation
		defined

		shooting	with	instantiating	objects
				creating	projectile	prefabs
				damaging	player
				overview
				shooting	projectiles

	

integrated	development	environment.	
				See	IDE.

	

interpolation

	

iOS
		build	tools	for
		developing	plug-ins	for

iTween

J

JavaScript
		C#	vs.
		communicating	with

JPG	format	
JSON	(JavaScript	Object	Notation)

	

K

	

keyboard	shortcuts,	2nd

Knuth	algorithm

L

lambda	functions	
latency	
LateUpdate()	method	
lazy-loading	
Learn	Unity3D	site	
left-handed	coordinates	
Lerp

	

lighting,	2nd

lightmapping,	2nd

List	objects	
Load()	method	
local	vs.	global	coordinate	space

	

lossy	compression

M

managers,	inventory	data	
massively	multiplayer	online.	
				See	MMOs.

materials,	2nd

Maya,	2nd,	3rd

Mecanim	system,	2nd

	

Mercurial,	2nd

mesh	objects,	2nd,	3rd

MMORPGs	(MMO	role-playing	games)	
MMOs	(massively	multiplayer	online)

	

MOD	format	
Model-View-Controller.	
				See	MVC.

modeling	in	Blender
		building	mesh	geometry
		texture-mapping	model

MonoBehaviour	class,	2nd,	3rd,	4th

	

MonoDevelop,	2nd

mouse
		operating	devices	using
		scene	navigation	using

mouse	picking

	

MP3	format

	

MVC	(Model-View-Controller)

N

navigation,	mouse	
Near	clipping	plane

	

NetworkService	
normals

O

OBJ	format,	2nd

OGG	format	
OnClick	event	
OnControllerColliderHit()	callback	function	
OnGUI()	method,	2nd,	3rd

OnMouseDown()	method	
orthographic,	defined

	

P

parent,	defined	
parsing	data
		defined
		JSON
		XML

	

Path.DirectorySeparatorChar	
PCM	(Pulse	Code	Modulation)	
persistent	data	
Photoshop	
PICT	format	
pixel-perfect	
platforms	
PlayerPrefs

	

PNG	format	
point	lights

	

POST	method	
postbuild	scripts	
posting	data
		overview
		sending	post	requests
		server-side	code	in	PHP

	

PowerVR

	

pressure	plate	
prime[31]	
Pro	Tools	
ProBuilder	
programmer	art

	

Project	tab	
projects,	planning	
Prototype	
provisioning	profiles	
PSD	format	
Pulse	Code	Modulation.	
				See	PCM.

Q

QuadsBox	
Quality	settings	
quaternions

R

RakNet	networking	library	
Range()	method	
Raycast()	method

	

rays

	

real-time	shadow	
remote	procedure	calls.	
				See	RPCs.

rendering,	defined	

RequireComponent()	method,	2nd

	

Resources	folder	
Resources.Load()	command	
retained	mode	vs.	immediate	mode	
right-handed	coordinates	
Rotate()	method	
rotation
		horizontal,	2nd
		vertical

	

RPCs	(remote	procedure	calls)

	

S

scene	navigation	
Scene	view	
SceneController

	

Screen	Space	
screen	space	ambient	occlusion.	
				See	SSAO.

ScreenPointToRay()	method	
script	components	
SendMessage()	method,	2nd

serialization,	2nd

service	locator	
shaders,	2nd

shadows

	

sideloading	
skeletal	animation	
sky	visuals,	2nd

skybox	
Slerp	
sliced	images	
sliders

	

soundMute	property	
soundVolume	property	
SphereCast()	method	
spot	lights	
Sprite	Packer	
SpriteRenderer	component

	

spritesheets	
SSAO	(screen	space	ambient	occlusion)	
StackExchange	
Start()	method,	2nd

StartCoroutine()	method	
state	machines

	

SVN	(Subversion),	2nd

SyntaxTree

T

T-pose	
Target	Platform	menu

	

terminology	
TestFlight	
texture	coordinates,	2nd

TexturePacker

	

TGA	format	
The	Golf	Club

	

this	keyword	
TIFF	format	
tileable	images	
Time	class

	

touch	input	
touchCount	property	
transforming,	defined	
Translate()	method,	2nd

triggers	
tutorials
		Learn	Unity3D
		Maya	LT	guide
		script	reference
		StackExchange
		Unity	manual
		Unity3D	Student

	

tweening	
Tyrant	Unleashed

U

UI	(user	interface),	2nd

UIController	
Unity
		advantages
		C#	vs.	JavaScript
		Console	tab
		disadvantages

		example	games	built	with
				console
				desktop
				mobile
		Game	view
		Hello	World!	example
		Hierarchy	tab
		history	of
		Inspector	in
		interface
		mouse	and	keyboard	usage
		Project	tab
		Scene	view
		script	components
		toolbar	in
		using	MonoDevelop

	

Unity	Player	
Unity3D	Student	
UnitySendMessage()	method,	2nd

unwrapping	
Update()	method,	2nd

user	interface.	
				See	UI.

using	statements	
UV	unwrapping

V

variables	
VCS	(version	control	system)	
vectors	
vertical	rotation	
visual	indicators	
Visual	Studio,	2nd

Vorbis	format,	2nd

W

WAV	format

	

web	services	
WebGL	
whiteboxing	
World	Space	
WWW	class,	2nd

X

XAMPP	
Xcode,	2nd

XM	format	
XML	(Extensible	Markup	Langauge)

Y

yield	keyword

List	of	Figures

Chapter	1.	Getting	to	know	Unity

Figure	1.1.	Inheritance	vs.	components
Figure	1.2.	Guns	of	Icarus	Online
Figure	1.3.	Gone	Home
Figure	1.4.	Dead	Trigger
Figure	1.5.	Bad	Piggies
Figure	1.6.	Tyrant	Unleashed
Figure	1.7.	Assault	Android	Cactus
Figure	1.8.	The	Golf	Club
Figure	1.9.	Parts	of	the	interface	in	Unity
Figure	1.10.	Editor	screenshot	cropped	to	show	Toolbar,	Scene,	and	Game
Figure	1.11.	Applying	the	three	transforms:	Translate,	Rotate,	and	Scale.
(The	lighter	lines	are	the	previous	state	of	the	object	before	it	was
transformed.)
Figure	1.12.	Editor	screenshot	cropped	to	show	the	Hierarchy	and	Inspector
tabs
Figure	1.13.	Editor	screenshot	cropped	to	show	the	Project	and	Console	tabs
Figure	1.14.	Parts	of	the	interface	in	MonoDevelop
Figure	1.15.	How	to	link	a	script	to	a	GameObject
Figure	1.16.	Linked	script	being	displayed	in	the	Inspector

Chapter	2.	Building	a	demo	that	puts	you	in	3D	space

Figure	2.1.	Screenshot	of	the	3D	demo	(basically,	Doom	without	the
monsters)
Figure	2.2.	Roadmap	for	the	3D	demo
Figure	2.3.	Coordinates	along	the	X-and	Y-axes	define	a	2D	point.
Figure	2.4.	Coordinates	along	the	X-,	Y-,	and	Z-axes	define	a	3D	point.

Figure	2.5.	Scene	in	the	Editor	with	floor,	walls,	lights,	a	camera,	and	the
player
Figure	2.6.	Inspector	view	for	the	floor
Figure	2.7.	The	Hierarchy	view	showing	the	walls	and	floor	organized	under
an	empty	object
Figure	2.8.	Directional	light	settings	in	the	Inspector
Figure	2.9.	Point	light	settings	in	the	Inspector
Figure	2.10.	Removing	a	component	in	the	Inspector
Figure	2.11.	The	appearance	of	movement:	cyclical	process	of	transforming
between	still	pictures
Figure	2.12.	The	Inspector	displaying	a	public	variable	declared	in	the	script
Figure	2.13.	Illustration	of	pitch,	yaw,	and	roll	rotation	of	an	aircraft
Figure	2.14.	Local	vs.	global	coordinate	axes
Figure	2.15.	The	Inspector	displays	public	enum	variables	as	a	drop-down
menu.

Chapter	3.	Adding	enemies	and	projectiles	to	the	3D	game

Figure	3.1.	A	ray	is	an	imaginary	line,	and	raycasting	is	finding	where	that
line	intersects.
Figure	3.2.	ScreenPointToRay()	projects	a	ray	from	the	camera	through	the
given	screen	coordinates.
Figure	3.3.	Shooting	repeatedly	after	adding	visual	indicators	for	aiming	and
hits
Figure	3.4.	The	target	object	falling	over	when	hit
Figure	3.5.	Basic	AI:	cyclical	process	of	moving	forward	and	avoiding
obstacles
Figure	3.6.	Using	raycasting	to	“see”	obstacles
Figure	3.7.	Drag	objects	from	Hierarchy	to	Project	in	order	to	create	prefabs.
Figure	3.8.	Drag	the	enemy	prefab	from	Project	up	to	the	Enemy	Prefab	slot
in	the	Inspector.
Figure	3.9.	Enemy	shooting	a	“fireball”	at	the	player

Figure	3.10.	Setting	the	color	of	a	material
Figure	3.11.	Drag	the	fireball	prefab	from	Project	up	to	the	Fireball	Prefab
slot	in	the	Inspector.
Figure	3.12.	Turn	off	gravity	in	the	Rigidbody	component.

Chapter	4.	Developing	graphics	for	your	game

Figure	4.1.	Floor	plan	for	the	level:	four	rooms	and	a	central	corridor
Figure	4.2.	Inspector	view	of	the	box	positioned	and	scaled	for	the	floor
Figure	4.3.	Whitebox	level	of	the	floor	plan	in	figure	4.1
Figure	4.4.	Comparing	the	level	before	and	after	textures
Figure	4.5.	Seamlessly	tiling	stone	and	brick	images	obtained	from
CGTextures.com
Figure	4.6.	Drag	images	from	outside	Unity	to	import	them	into	the	Project
view.
Figure	4.7.	One	way	to	apply	textures	is	by	dragging	them	from	Project	onto
Scene	objects.
Figure	4.8.	Select	a	material	to	see	it	in	the	Inspector,	then	drag	textures	to
the	material	properties.
Figure	4.9.	Diagram	of	a	skybox
Figure	4.10.	Scene	with	background	pictures	of	the	sky
Figure	4.11.	The	drop-down	menu	of	available	shaders
Figure	4.12.	Six	sides	of	a	skybox—images	for	top,	bottom,	front,	back,	left,
and	right
Figure	4.13.	Correct	faint	edge	lines	by	adjusting	the	Wrap	mode.
Figure	4.14.	The	bench	model	in	Blender
Figure	4.15.	Adjust	import	settings	for	the	3D	model.
Figure	4.16.	The	2D	image	for	the	bench	texture
Figure	4.17.	The	imported	bench	in	the	level
Figure	4.18.	Fire	effect	created	using	a	particle	system
Figure	4.19.	Playback	panel	for	a	particle	system

Figure	4.20.	The	Inspector	displays	settings	for	a	particle	system	(pointing
out	settings	for	the	fire	effect).
Figure	4.21.	The	image	used	for	fire	particles
Figure	4.22.	Assign	a	material	to	the	particle	system
Figure	4.23.	Setting	the	shader	for	the	fire	particle	material

Chapter	5.	Building	a	Memory	game	using	Unity’s	new	2D	functionality

Figure	5.1.	Mockup	of	what	the	Memory	game	will	look	like
Figure	5.2.	Art	assets	required	for	the	Memory	game
Figure	5.3.	Create	new	projects	in	either	2D	or	3D	mode	with	these	buttons.
Figure	5.4.	How	sprites	stack	along	the	Z-axis
Figure	5.5.	Camera	settings	to	adjust	for	2D	graphics
Figure	5.6.	Hierarchy	linking	and	position	for	the	card	back	sprite
Figure	5.7.	A	sprite	object	in	the	scene	has	the	SpriteRenderer	component
attached	to	it.
Figure	5.8.	The	filled-in	array	of	sprites
Figure	5.9.	The	grid	of	eight	cards	that	are	revealed	when	you	click	on	them
Figure	5.10.	Inspector	settings	for	a	text	object	to	make	the	text	sharp	and
clear
Figure	5.11.	Complete	Memory	game	screen,	including	the	Start	button

Chapter	6.	Putting	a	2D	GUI	in	a	3D	game

Figure	6.1.	The	GUI	(a	heads-up	display,	or	HUD)	you’ll	create	for	a	game
Figure	6.2.	Planned	GUI
Figure	6.3.	Images	that	are	needed	for	this	chapter’s	project
Figure	6.4.	A	blank	canvas	object	in	the	Scene	view
Figure	6.5.	Canvas	with	an	image	linked	in	the	Hierarchy	view
Figure	6.6.	Assign	2D	sprites	to	the	Image	property	of	UI	elements.
Figure	6.7.	Settings	for	a	UI	text	object
Figure	6.8.	The	GUI	as	seen	in	the	editor	(left)	and	when	playing	the	game

(right)
Figure	6.9.	The	anchor	point	of	an	image	object
Figure	6.10.	How	to	adjust	anchor	settings
Figure	6.11.	Anchors	stay	in	place	while	the	screen	changes.
Figure	6.12.	The	OnClick	panel	toward	the	bottom	of	the	button	settings
Figure	6.13.	Settings	for	the	image	component,	including	Image	Type
Figure	6.14.	Sprite	Editor	button	in	the	Inspector	and	a	pop-up	window
Figure	6.15.	Sliced	image	scaled	to	dimensions	of	the	pop-up
Figure	6.16.	Input	controls	added	to	the	pop-up	window
Figure	6.17.	Diagram	of	the	broadcast	event	system	we’ll	implement

Chapter	7.	Creating	a	third-person	3D	game:	player	movement	and	animation

Figure	7.1.	Roadmap	for	the	third-person	movement	demo
Figure	7.2.	Wireframe	view	of	the	model	we’ll	use	in	this	chapter
Figure	7.3.	Side-by-side	comparison	of	first-person	and	third-person	views
Figure	7.4.	Import	settings	for	the	character	model
Figure	7.5.	Before	and	after	casting	shadows	from	the	directional	light
Figure	7.6.	The	Cast	Shadows	and	Receive	Shadows	settings	in	the
Inspector
Figure	7.7.	The	steps	for	calculating	the	camera’s	position
Figure	7.8.	A	couple	of	raised	platforms	added	to	the	sparse	scene
Figure	7.9.	Diagram	showing	the	character	controller	capsule	touching	the
platform	edge
Figure	7.10.	Diagram	of	raycasting	downward	while	stepping	off	a	ledge
Figure	7.11.	Character	moving	around	with	a	run	animation	playing
Figure	7.12.	Skeletal	animation	of	a	humanoid	character
Figure	7.13.	The	Clips	list	in	Animation	settings
Figure	7.14.	Information	about	the	selected	animation	clip
Figure	7.15.	Animator	controller	and	Animator	component

Figure	7.16.	The	Animator	view	with	our	completed	animator	controller
Figure	7.17.	Expanded	model	asset	in	Project	view
Figure	7.18.	Transition	settings	in	the	Inspector

Chapter	8.	Adding	interactive	devices	and	items	within	the	game

Figure	8.1.	Door	object	fit	into	a	gap	in	the	wall
Figure	8.2.	Color-changing	display	embedded	in	the	wall
Figure	8.3.	Stack	of	five	boxes	to	collide	with
Figure	8.4.	Trigger	volume	surrounding	the	door	it	will	trigger
Figure	8.5.	Diagram	of	the	various	modules	and	how	they’re	related
Figure	8.6.	Console	message	with	multiples	of	the	same	item	listed	multiple
times
Figure	8.7.	Console	message	with	multiples	of	the	same	item	aggregated
Figure	8.8.	Image	assets	for	equipment	icons	placed	inside	the	Resources
folder
Figure	8.9.	UI	display	of	the	inventory

Chapter	9.	Connecting	your	game	to	the	internet

Figure	9.1.	Scene	with	background	pictures	of	the	sky
Figure	9.2.	Before	and	after:	scene	transition	from	sunny	to	overcast
Figure	9.3.	Diagram	showing	how	the	networking	code	will	be	structured
Figure	9.4.	Diagram	showing	how	the	network	coroutine	works
Figure	9.5.	Image	of	Moraine	Lake	in	Banff	National	Park,	Canada
Figure	9.6.	The	billboard	object,	before	and	after	displaying	the	downloaded
image
Figure	9.7.	The	checkpoint	object	that	triggers	data	sending

Chapter	10.	Playing	audio:	sound	effects	and	music

Figure	10.1.	Import	settings	for	audio	files
Figure	10.2.	Diagram	of	the	three	things	you	control	in	Unity’s	audio	system

Figure	10.3.	Settings	for	the	AudioSource	component
Figure	10.4.	UI	display	for	mute	and	volume	control
Figure	10.5.	Music	audio	clips	placed	inside	the	Resources	folder

Chapter	11.	Putting	the	parts	together	into	a	complete	game

Figure	11.1.	Screenshot	of	the	top-down	viewpoint
Figure	11.2.	Linking	a	script	to	a	component
Figure	11.3.	Diagram	of	how	point-and-click	controls	work
Figure	11.4.	The	UI	for	this	chapter’s	project
Figure	11.5.	Diagram	of	the	inventory	UI
Figure	11.6.	Arrays	displayed	in	the	Inspector
Figure	11.7.	The	Startup	scene	with	everything	unnecessary	removed
Figure	11.8.	Objective	object	that	the	player	touches	to	complete	the	level
Figure	11.9.	Save	and	Load	buttons	on	the	bottom	right	of	the	screen

Chapter	12.	Deploying	your	game	to	players’	devices

Figure	12.1.	The	Build	Settings	window
Figure	12.2.	Player	settings	displayed	in	the	Inspector
Figure	12.3.	Provisioning	profile	settings	in	Xcode
Figure	12.4.	Distribute	archived	iOS	apps	from	the	Organizer	window.
Figure	12.5.	Unity	preference	setting	to	point	to	Android	SDK
Figure	12.6.	Texture	compression	settings	in	the	Inspector

Appendix	C.	Modeling	a	bench	in	Blender

Figure	C.1.	Diagram	of	the	simple	bench	you’re	going	to	model
Figure	C.2.	The	initial	default	screen	in	Blender
Figure	C.3.	Menu	for	switching	from	Object	to	Edit	mode
Figure	C.4.	Controls	along	the	bottom	of	the	viewport
Figure	C.5.	Mesh	scaled	into	a	long,	thin	plank

Figure	C.6.	In	the	Mesh	menu	use	Extrude	Individual	to	pull	out	extra
sections.
Figure	C.7.	Select	the	thin	faces	underneath	the	bench	and	pull	down	legs.
Figure	C.8.	Wrapping	paper	makes	a	good	analogy	for	how	texture
coordinates	work.
Figure	C.9.	Seam	edges	along	the	bottom	of	the	bench	and	along	the	legs
Figure	C.10.	Switch	from	3D	View	to	UV	Editor,	where	the	texture
coordinates	are	displayed.
Figure	C.11.	Paint	colors	over	the	exported	UVs	and	then	bring	the	texture
into	Blender.
Figure	C.12.	Delete	the	default	light	and	view	the	texture	on	the	model.

List	of	Tables

Chapter	4.	Developing	graphics	for	your	game

Table	4.1.	Types	of	art	assets
Table	4.2.	2D	image	file	formats	supported	by	Unity
Table	4.3.	3D	Model	file	formats	supported	by	Unity

Chapter	7.	Creating	a	third-person	3D	game:	player	movement	and	animation

Table	7.1.	Conditions	for	all	transitions	in	this	animation	controller

Chapter	10.	Playing	audio:	sound	effects	and	music

Table	10.1.	Audio	file	formats	supported	by	Unity

Appendix	A.	Scene	navigation	and	keyboard	shortcuts

Table	A.1.	Scene	navigation	controls	for	various	kinds	of	mice
Table	A.2.	Useful	keyboard	shortcuts

List	of	Listings

Chapter	1.	Getting	to	know	Unity

Listing	1.1.	Code	template	for	a	basic	script	component
Listing	1.2.	Adding	a	console	message

Chapter	2.	Building	a	demo	that	puts	you	in	3D	space

Listing	2.1.	Making	the	object	spin
Listing	2.2.	MouseLook	framework	with	enum	for	the	Rotation	setting
Listing	2.3.	Horizontal	rotation,	not	yet	responding	to	the	mouse
Listing	2.4.	Rotate	command	adjusted	to	respond	to	the	mouse
Listing	2.5.	Vertical	rotation	for	MouseLook
Listing	2.6.	Horizontal	and	vertical	MouseLook
Listing	2.7.	The	finished	MouseLook	script
Listing	2.8.	Spin	code	from	the	first	listing,	with	a	couple	of	minor	changes
Listing	2.9.	Positional	movement	responding	to	key	presses
Listing	2.10.	Frame	rate	independent	movement	using	deltaTime
Listing	2.11.	Moving	CharacterController	instead	of	Transform
Listing	2.12.	Adding	gravity	to	the	movement	code
Listing	2.13.	The	finished	FPSInput	script

Chapter	3.	Adding	enemies	and	projectiles	to	the	3D	game

Listing	3.1.	RayShooter	script	to	attach	to	the	camera
Listing	3.2.	RayShooter	script	with	sphere	indicators	added
Listing	3.3.	Visual	indicator	for	aiming
Listing	3.4.	Detecting	whether	the	target	object	was	hit
Listing	3.5.	Sending	a	message	to	the	target	object
Listing	3.6.	ReactiveTarget	script	that	dies	when	hit

Listing	3.7.	Basic	WanderingAI	script
Listing	3.8.	WanderingAI	script	with	“alive”	state	added
Listing	3.9.	ReactiveTarget	tells	WanderingAI	when	it	dies
Listing	3.10.	SceneController	that	spawns	the	enemy	prefab
Listing	3.11.	WanderingAI	additions	for	emitting	fireballs
Listing	3.12.	Fireball	script	that	reacts	to	collisions
Listing	3.13.	Player	that	can	take	damage

Chapter	4.	Developing	graphics	for	your	game

Listing	4.1.	Moving	an	object	back	and	forth	along	a	straight	path

Chapter	5.	Building	a	Memory	game	using	Unity’s	new	2D	functionality

Listing	5.1.	Emitting	debug	messages	when	clicked
Listing	5.2.	Script	that	hides	the	back	when	the	card	is	clicked
Listing	5.3.	Test	code	to	demonstrate	changing	the	sprite	image
Listing	5.4.	New	public	methods	in	MemoryCard.cs
Listing	5.5.	First	pass	at	SceneController	for	the	Memory	game
Listing	5.6.	Cloning	the	card	eight	times	and	positioning	in	a	grid
Listing	5.7.	Placing	cards	from	a	shuffled	list
Listing	5.8.	SceneController,	which	must	keep	track	of	revealed	cards
Listing	5.9.	MemoryCard.cs	modifications	for	revealing	cards
Listing	5.10.	Keeping	track	of	revealed	cards	in	SceneController
Listing	5.11.	SceneController,	which	either	scores	matches	or	hides	missed
matches
Listing	5.12.	Displaying	the	score	on	a	text	object
Listing	5.13.	Code	to	make	a	generic	and	reusable	UI	button
Listing	5.14.	SceneController	code	that	reloads	the	level

Chapter	6.	Putting	a	2D	GUI	in	a	3D	game

Listing	6.1.	Example	of	a	button	using	the	immediate	mode	GUI
Listing	6.2.	Adding	a	GUI	check	to	the	code	in	RayShooter.cs
Listing	6.3.	UIController	script	used	to	program	buttons
Listing	6.4.	SettingsPopup	script	for	the	pop-up	object
Listing	6.5.	Adjusting	UIController	to	handle	the	pop-up
Listing	6.6.	SettingsPopup	methods	for	the	pop-up’s	input	controls
Listing	6.7.	GameEvent	script	to	use	with	Messenger
Listing	6.8.	Adding	event	listeners	to	UIController
Listing	6.9.	Broadcast	event	message	from	RayShooter
Listing	6.10.	Event	listener	added	to	WanderingAI
Listing	6.11.	Event	listener	added	to	FPSInput
Listing	6.12.	Broadcast	message	from	SettingsPopup

Chapter	7.	Creating	a	third-person	3D	game:	player	movement	and	animation

Listing	7.1.	Camera	script	for	rotating	around	a	target	while	looking	at	it
Listing	7.2.	Rotating	the	character	relative	to	the	camera
Listing	7.3.	Adding	code	to	change	the	player’s	position
Listing	7.4.	Adding	vertical	movement	to	the	RelativeMovement	script
Listing	7.5.	Using	raycasting	to	detect	the	ground
Listing	7.6.	Code	for	setting	values	in	the	Animator	component

Chapter	8.	Adding	interactive	devices	and	items	within	the	game

Listing	8.1.	Script	that	opens	and	closes	the	door	on	command
Listing	8.2.	Device	control	key	for	the	player
Listing	8.3.	Adjusting	DeviceOperator	to	only	operate	devices	that	the
player	is	facing
Listing	8.4.	Script	for	a	device	that	changes	color
Listing	8.5.	Adding	physics	force	to	the	RelativeMovement	script
Listing	8.6.	Code	for	a	trigger	that	controls	a	device

Listing	8.7.	Adding	activate	and	deactivate	functions	to	the
DoorOpenDevice	script
Listing	8.8.	Script	that	makes	an	item	delete	itself	on	contact	with	the	player
Listing	8.9.	Base	interface	that	the	data	managers	will	implement
Listing	8.10.	ManagerStatus:	possible	states	for	IGameManager	status
Listing	8.11.	InventoryManager
Listing	8.12.	PlayerManager
Listing	8.13.	The	Manager-of-Managers!
Listing	8.14.	Adding	items	to	InventoryManager
Listing	8.15.	Using	the	new	InventoryManager	in	CollectibleItem
Listing	8.16.	Dictionary	of	items	in	InventoryManager
Listing	8.17.	Adding	data	access	methods	to	InventoryManager
Listing	8.18.	BasicUI	displays	the	inventory
Listing	8.19.	Requiring	a	key	in	DeviceTrigger
Listing	8.20.	Equipping	code	for	InventoryManager
Listing	8.21.	Equip	functionality	added	to	BasicUI
Listing	8.22.	New	method	in	InventoryManager
Listing	8.23.	Adding	a	health	item	to	Basic	UI

Chapter	9.	Connecting	your	game	to	the	internet

Listing	9.1.	WeatherController	script	that	transitions	from	sunny	to	overcast
Listing	9.2.	Adjusting	IGameManager	to	include	NetworkService
Listing	9.3.	Initial	script	for	WeatherManager
Listing	9.4.	Managers.cs	adjusted	to	initialize	WeatherManager
Listing	9.5.	Making	HTTP	requests	in	NetworkService
Listing	9.6.	Adjusting	WeatherManager	to	use	NetworkService
Listing	9.7.	GameEvent	code
Listing	9.8.	Parsing	XML	in	WeatherManager
Listing	9.9.	Making	NetworkService	request	JSON	instead	of	XML

Listing	9.10.	Modifying	WeatherManager	to	request	JSON	instead
Listing	9.11.	WeatherController	that	reacts	to	downloaded	weather	data
Listing	9.12.	Downloading	an	image	in	NetworkService
Listing	9.13.	Creating	ImagesManager	to	retrieve	and	store	images
Listing	9.14.	Adding	the	new	manager	to	Managers.cs
Listing	9.15.	WebLoadingBillboard	device	script
Listing	9.16.	Lambda	function	for	callback	in	ImagesManager
Listing	9.17.	Adjusting	NetworkService	to	post	data
Listing	9.18.	Adding	code	to	WeatherManager	that	sends	data
Listing	9.19.	CheckpointTrigger	script	for	the	trigger	volume
Listing	9.20.	Server	script	written	in	PHP	that	receives	our	data

Chapter	10.	Playing	audio:	sound	effects	and	music

Listing	10.1.	Sound	effects	added	in	the	RayShooter	script
Listing	10.2.	Skeleton	code	for	AudioManager
Listing	10.3.	Managers	script	adjusted	with	AudioManager
Listing	10.4.	Volume	control	added	to	AudioManager
Listing	10.5.	SettingsPopup	script	with	controls	for	adjusting	the	volume
Listing	10.6.	UIController	that	toggles	the	settings	pop-up
Listing	10.7.	Play	sound	effects	in	AudioManager
Listing	10.8.	Adding	sound	effects	to	SettingsPopup
Listing	10.9.	Playing	music	in	AudioManager
Listing	10.10.	Adding	music	controls	to	SettingsPopup
Listing	10.11.	Controlling	music	volume	separately	in	AudioManager
Listing	10.12.	Music	volume	controls	in	SettingsPopup
Listing	10.13.	Cross-fade	between	music	in	AudioManager

Chapter	11.	Putting	the	parts	together	into	a	complete	game

Listing	11.1.	Adjusted	IGameManager

Listing	11.2.	Changing	a	bit	of	code	in	the	Managers	script
Listing	11.3.	Adjusting	InventoryManager	to	reflect	IGameManager
Listing	11.4.	Adjusting	PlayerCharacter	to	use	health	in	PlayerManager
Listing	11.5.	Adjusting	OrbitCamera	to	remove	mouse	controls
Listing	11.6.	New	movement	code	in	PointClickMovement	script
Listing	11.7.	BaseDevice	script	that	operates	when	clicked	on
Listing	11.8.	Adjusting	ColorChangeDevice	to	inherit	from	BaseDevice
Listing	11.9.	Adjusting	mouse	click	code	in	PointClickMovement
Listing	11.10.	GameEvent	script	to	use	with	this	Messenger	system
Listing	11.11.	Broadcasting	the	health	event	from	PlayerManager.cs
Listing	11.12.	The	script	UIController,	which	handles	the	interface
Listing	11.13.	Checking	the	UI	in	PointClickMovement
Listing	11.14.	Full	script	for	InventoryPopup
Listing	11.15.	The	StartupEvent	script
Listing	11.16.	MissionManager
Listing	11.17.	Adding	a	new	component	to	the	Managers	script
Listing	11.18.	The	new	StartupController	script
Listing	11.19.	Level	Complete	added	to	GameEvent.cs
Listing	11.20.	Objective	method	in	MissionManager
Listing	11.21.	New	event	listener	in	UIController
Listing	11.22.	Code	for	ObjectiveTrigger	to	put	on	objective	objects
Listing	11.23.	Broadcast	Level	Failed	from	PlayerManager
Listing	11.24.	MissionManager,	which	can	restart	the	current	level
Listing	11.25.	Responding	to	Level	Failed	in	UIController
Listing	11.26.	UpdateData()	method	in	MissionManager
Listing	11.27.	UpdateData()	method	in	InventoryManager
Listing	11.28.	New	script	for	DataManager
Listing	11.29.	Adding	DataManager	to	Managers.cs
Listing	11.30.	Save	and	Load	methods	in	UIController

Listing	11.31.	Broadcasting	Game	Complete	from	MissionManager
Listing	11.32.	Adding	an	event	listener	to	UIController

Chapter	12.	Deploying	your	game	to	players’	devices

Listing	12.1.	PlatformTest	script	showing	how	to	write	platform-dependent
code
Listing	12.2.	WebTestObject	script	for	testing	communication	with	the
browser
Listing	12.3.	JavaScript	and	HTML	that	enable	browser–Unity
communication
Listing	12.4.	TestPlugin	script	that	calls	iOS	native	code	from	Unity
Listing	12.5.	Using	the	plug-in	from	MobileTestObject
Listing	12.6.	TestPlugin.h	header	for	iOS	code
Listing	12.7.	TestPlugin.mm	implementation
Listing	12.8.	Modifying	TestPlugin	to	use	the	Android	plug-in
Listing	12.9.	Script	build.xml	that	generates	a	JAR	from	the	Java	code
Listing	12.10.	TestPlugin.java	that	compiles	into	a	JAR

	Copyright
	Brief Table of Contents
	Table of Contents
	Foreword
	Preface
	Acknowledgments
	About this Book
	Part 1. First steps
	Chapter 1. Getting to know Unity
	Chapter 2. Building a demo that puts you in 3D space
	Chapter 3. Adding enemies and projectiles to the 3D game
	Chapter 4. Developing graphics for your game

	Part 2. Getting comfortable
	Chapter 5. Building a Memory game using Unity’s new 2D functionality
	Chapter 6. Putting a 2D GUI in a 3D game
	Chapter 7. Creating a third-person 3D game: player movement and animation
	Chapter 8. Adding interactive devices and items within the game

	Part 3. Strong finish
	Chapter 9. Connecting your game to the internet
	Chapter 10. Playing audio: sound effects and music
	Chapter 11. Putting the parts together into a complete game
	Chapter 12. Deploying your game to players’ devices

	Afterword
	Appendix A. Scene navigation and keyboard shortcuts
	Appendix B. External tools used alongside Unity
	Appendix C. Modeling a bench in Blender
	Appendix D. Online learning resources
	Index
	List of Figures
	List of Tables
	List of Listings

