INACT

Covers Unity 5.0

Joseph Hocking

Foreworn BY Jesse Schell

| | BITTIIT:

Unity in Action: Multiplatform game
development in C# with Unity 5

Joseph Hocking

/B vanninG puBLICATIONS

Copyright

For online information and ordering of this and other Manning books, please
visit www.manning.com. The publisher offers discounts on this book when
ordered in quantity. For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the
book, and Manning Publications was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is
Manning’s policy to have the books we publish printed on acid-free paper, and
we exert our best efforts to that end. Recognizing also our responsibility to
conserve the resources of our planet, Manning books are printed on paper that is
at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor: Scott Chaussee
PO Box 761 Copyeditor: Elizabeth Welch
m Shelter Island, NY 11964 Proofreader: Melody Dolab
Technical proofreader: Christopher Haupt

Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN: 9781617292323

http://www.manning.com

Printed in the United States of America

12345678910-EBM-20191817 1615

Brief Table of Contents

Copyright
Brief Table of Contents

Table of Contents

Foreword

Preface

Acknowledgments
About this Book

1. First steps

Chapter 1. Getting to know Unity

Chapter 2. Building a demo that puts you in 3D space

Chapter 3. Adding enemies and projectiles to the 3D game
Chapter 4. Developing graphics for your game

2. Getting comfortable

Chapter 5. Building a Memory game using Unity’s new 2D
functionality
Chapter 6. Putting a 2D GUI in a 3D game

Chapter 7. Creating a third-person 3D game: player movement and
animation

Chapter 8. Adding interactive devices and items within the game

3. Strong finish

Chapter 9. Connecting your game to the internet

Chapter 10. Playing audio: sound effects and music

Chapter 11. Putting the parts together into a complete game

Chapter 12. Deploying your game to players’ devices

Afterword

Appendix A. Scene navigation and keyboard shortcuts

Appendix B. External tools used alongside Unity
Appendix C. Modeling a bench in Blender

Appendix D. Online learning resources

Index

List of Figures
List of Tables

List of Listings

Table of Contents

Copyright
Brief Table of Contents

Table of Contents

Foreword

Preface

Acknowledgments
About this Book

1. First steps

Chapter 1. Getting to know Unity

1.1. Why is Unity so great?

1.1.1. Unity’s strengths and advantages

1.1.2. Downsides to be aware of

1.1.3. Example games built with Unity

1.2. How to use Unity

1.2.1. Scene view, Game view, and the Toolbar

1.2.2. Using the mouse and keyboard
1.2.3. The Hierarchy tab and the Inspector
1.2.4. The Project and Console tabs

1.3. Getting up and running with Unity programming

1.3.1. How code runs in Unity: script components

1.3.2. Using MonoDevelop, the cross-platform IDE
1.3.3. Printing to the console: Hello World!

1.4. Summary

Chapter 2. Building a demo that puts you in 3D space

2.1. Before you start...

2.1.1. Planning the project
2.1.2. Understanding 3D coordinate space

2.2. Begin the project: place objects in the scene

2.2.1. The scenery: floor, outer walls, inner walls

2.2.2. Lights and cameras
2.2.3. The player’s collider and viewpoint

2.3. Making things move: a script that applies transforms

2.3.1. Diagramming how movement is programmed
2.3.2. Writing code to implement the diagram

2.3.3. Local vs. global coordinate space

2.4. Script component for looking around: Mousel.ook

2.4.1. Horizontal rotation that tracks mouse movement

2.4.2. Vertical rotation with limits

2.4.3. Horizontal and vertical rotation at the same time

2.5. Keyboard input component: first-person controls

2.5.1. Responding to key presses

2.5.2. Setting a rate of movement independent of the
computer’s speed

2.5.3. Moving the CharacterController for collision detection

2.5.4. Adjusting components for walking instead of flying

2.6. Summary

Chapter 3. Adding enemies and projectiles to the 3D game

3.1. Shooting via raycasts

3.1.1. What is raycasting?

3.1.2. Using the command ScreenPointToRay for shooting
3.1.3. Adding visual indicators for aiming and hits

3.2. Scripting reactive targets

3.2.1. Determining what was hit
3.2.2. Alert the target that it was hit

3.3. Basic wandering Al

3.3.1. Diagramming how basic Al works

3.3.2. “Seeing” obstacles with a raycast

3.3.3. Tracking the character’s state

3.4. Spawning enemy prefabs
3.4.1. What is a prefab?

3.4.2. Creating the enemy prefab
3.4.3. Instantiating from an invisible SceneController

3.5. Shooting via instantiating objects

3.5.1. Creating the projectile prefab
3.5.2. Shooting the projectile and colliding with a target
3.5.3. Damaging the player

3.6. Summary

Chapter 4. Developing graphics for your game

4.1. Understanding art assets

4.2. Building basic 3D scenery: whiteboxing

4.2.1. Whiteboxing explained

4.2.2. Drawing a floor plan for the level

4.2.3. Laying out primitives according to the plan

4.3. Texture the scene with 2D images

4.3.1. Choosing a file format

4.3.2. Importing an image file
4.3.3. Applying the image

4.4. Generating sky visuals using texture images

4.4.1. What is a skybox?

4.4.2. Creating a new skybox material

4.5. Working with custom 3D models

4.5.1. Which file format to choose?
4.5.2. Exporting and importing the model

4.6. Creating effects using particle systems

4.6.1. Adjusting parameters on the default effect

4.6.2. Applying a new texture for fire

4.6.3. Attaching particle effects to 3D objects

4.7. Summary

2. Getting comfortable

Chapter 5. Building a Memory game using Unity’s new 2D
functionality

5.1. Setting everything up for 2D graphics

5.1.1. Preparing the project

5.1.2. Displaying 2D images (aka sprites)
5.1.3. Switching the camera to 2D mode

5.2. Building a card object and making it react to clicks
5.2.1. Building the object out of sprites

5.2.2. Mouse input code

5.2.3. Revealing the card on click

5.3. Displaying the various card images

5.3.1. Loading images programmatically
5.3.2. Setting the image from an invisible SceneController

5.3.3. Instantiating a grid of cards
5.3.4. Shuffling the cards

5.4. Making and scoring matches

5.4.1. Storing and comparing revealed cards

5.4.2. Hiding mismatched cards
5.4.3. Text display for the score

5.5. Restart button

5.5.1. Programming a UIButton component using
SendMessage
5.5.2. Calling IL.oadLevel from SceneController

5.6. Summary

Chapter 6. Putting a 2D GUI in a 3D game

6.1. Before you start writing code...

6.1.1. Immediate mode GUTI or advanced 2D interface?

6.1.2. Planning the layout
6.1.3. Importing Ul images

6.2. Setting up the GUI display

6.2.1. Creating a canvas for the interface

6.2.2. Buttons, images, and text labels

6.2.3. Controlling the position of Ul elements

6.3. Programming interactivity in the Ul

6.3.1. Programming an invisible UIController

6.3.2. Creating a pop-up window

6.3.3. Setting values using sliders and input fields

6.4. Updating the game by responding to events

6.4.1. Integrating an event system
6.4.2. Broadcasting and listening for events from the scene

6.4.3. Broadcasting and listening for events from the HUD

6.5. Summary

Chapter 7. Creating a third-person 3D game: player movement and
animation

7.1. Adjusting the camera view for third-person

7.1.1. Importing a character to look at
7.1.2. Adding shadows to the scene

7.1.3. Orbiting the camera around the player character

7.2. Programming camera-relative movement controls

7.2.1. Rotating the character to face movement direction
7.2.2. Moving forward in that direction

7.3. Implementing the jump action
7.3.1. Applying vertical speed and acceleration

7.3.2. Modifying the ground detection to handle edges and
slopes

7.4. Setting up animations on the player character

7.4.1. Defining animation clips in the imported model
7.4.2. Creating the animator controller for these animations
7.4.3. Writing code that operates the animator

7.5. Summary

Chapter 8. Adding interactive devices and items within the game

8.1. Creating doors and other devices

8.1.1. Doors that open and close on a keypress

8.1.2. Checking distance and facing before opening the door

8.1.3. Operating a color-changing monitor

8.2. Interacting with objects by bumping into them
8.2.1. Colliding with physics-enabled obstacles

8.2.2. Triggering the door with a pressure plate

8.2.3. Collecting items scattered around the level

8.3. Managing inventory data and game state

8.3.1. Setting up player and inventory managers

8.3.2. Programming the game managers
8.3.3. Storing inventory in a collection object: List vs.
Dictionary

8.4. Inventory Ul for using and equipping items

8.4.1. Displaying inventory items in the UI

8.4.2. Equipping a key to use on locked doors
8.4.3. Restoring the player’s health by consuming health packs

8.5. Summary

3. Strong finish

Chapter 9. Connecting your game to the internet

9.1. Creating an outdoor scene

9.1.1. Generating sky visuals using a skybox

9.1.2. Setting up an atmosphere that’s controlled by code

9.2. Downloading weather data from an internet service

9.2.1. Requesting WWW data using coroutines

9.2.2. Parsing XML
9.2.3. Parsing JSON
9.2.4. Affecting the scene based on Weather Data

9.3. Adding a networked billboard

9.3.1. Loading images from the internet
9.3.2. Displaying images on the billboard
9.3.3. Caching the downloaded image for reuse

9.4. Posting data to a web server

9.4.1. Tracking current weather: sending post requests
9.4.2. Server-side code in PHP

9.5. Summary

Chapter 10. Playing audio: sound effects and music

10.1. Importing sound effects

10.1.1. Supported file formats
10.1.2. Importing audio files

10.2. Playing sound effects

10.2.1. Explaining what’s involved: audio clip vs. source vs.
listener

10.2.2. Assigning a looping sound
10.2.3. Triggering sound effects from code

10.3. Audio control interface

10.3.1. Setting up the central AudioManager
10.3.2. Volume control Ul

10.3.3. Playing UI sounds

10.4. Background music
10.4.1. Playing music loops

10.4.2. Controlling music volume separately
10.4.3. Fading between songs

10.5. Summary

Chapter 11. Putting the parts together into a complete game
11.1. Building an action RPG by repurposing projects

11.1.1. Assembling assets and code from multiple projects

11.1.2. Programming point-and-click controls: movement and
devices

11.1.3. Replacing the old GUI with a new interface

11.2. Developing the overarching game structure

11.2.1. Controlling mission flow and multiple levels

11.2.2. Completing a level by reaching the exit
11.2.3. Losing the level when caught by enemies

11.3. Handling the player’s progression through the game

11.3.1. Saving and loading the player’s progress
11.3.2. Beating the game by completing three levels

11.4. Summary

Chapter 12. Deploying your game to players’ devices

12.1. Start by building for the desktop: Windows, Mac, and Linux

12.1.1. Building the application

12.1.2. Adjusting Player Settings: setting the game’s name and
icon

12.1.3. Platform-dependent compilation

12.2. Building for the web

12.2.1. Unity Player vs. HTML5/WebGL
12.2.2. Building the Unity file and a test web page

12.2.3. Communicating with JavaScript in the browser

12.3. Building for mobile apps: iOS and Android

12.3.1. Setting up the build tools
12.3.2. Texture compression

12.3.3. Developing plug-ins

12.4. Summary

Afterword

Game design
Marketing your game

Appendix A. Scene navigation and keyboard shortcuts

A.1. Scene navigation using the mouse
A.2. Commonly used keyboard shortcuts

Appendix B. External tools used alongside Unity

B.1. Programming tools

B.1.1. Visual Studio

B.1.2. Xcode

B.1.3. Android SDK

B.1.4. SVN, Git, or Mercurial

B.2. 3D art applications

B.2.1. Maya
B.2.2. 3ds Max

B.2.3. Blender

B.3. 2D image editors
B.3.1. Photoshop
B.3.2. GIMP
B.3.3. TexturePacker

B.4. Audio software

B.4.1. Pro Tools
B.4.2. Audacity

Appendix C. Modeling a bench in Blender

C.1. Building the mesh geometry
C.2. Texture-mapping the model

Appendix D. Online learning resources
D.1. Additional tutorials

Unity Manual

Script reference

Unity3D Student

Learn Unity3D

Game development at StackExchange
Maya LT Guide

D.2. Code libraries

Unify Community Wiki
Unity patterns

iTween

prime[31]

Play Games Services from Google

FMOD Studio
ProBuilder and Prototype
EPS Control

Index

List of Figures

List of Tables

List of Listings

Foreword

I started programming games in 1982. It wasn’t easy. We had no internet.
Resources were limited to a handful of mostly terrible books and magazines that
offered fascinating but confusing code fragments, and as for game engines—
well, there weren’t any! Coding games was a massive uphill battle.

How I envy you, reader, holding the power of this book in your hands. The
Unity engine has done so much to open game programming to so many people.
Unity has managed to strike an excellent balance by being a powerful,
professional game engine that’s still affordable and approachable for someone
just getting started.

Approachable, that is, with the right guidance. I once spent time in a circus
troupe run by a magician. He was kind enough to take me in and help guide me
toward becoming a good performer. “When you stand on a stage,” he
pronounced, “you make a promise. And that promise is ‘I will not waste your
time.’”

What I love most about Unity in Action is the “action” part. Joe Hocking wastes
none of your time and gets you coding fast—and not just nonsense code, but
interesting code that you can understand and build from, because he knows you
don’t just want to read his book, and you don’t just want to program his
examples—you want to be coding your own game.

And with his guidance, you’ll be able to do that sooner than you might expect.

Follow Joe’s steps, but when you feel ready, don’t be shy about diverging from
his path and breaking out on your own. Skip around to what interests you most
—try experiments, be bold and brave! You can always return to the text if you

get too lost.

But let’s not dally in this foreword—the entire future of game development is
impatiently waiting for you to begin! Mark this day on your calendar, for today
is the day that everything changed. It will be forever remembered as the day you
started making games.

JESSE SCHELL

CEO of ScHELL GAMES

AUTHOR OF THE ART OF GAME DESIGN

Preface

I’ve been programming games for quite some time, but only started using Unity
relatively recently. Unity didn’t exist when I first started developing games; the
first version was released in 2005. Right from the start, it had a lot of promise as
a game development tool, but it didn’t come into its own until several versions
later. In particular, platforms like iOS and Android (collectively referred to as
“mobile”) didn’t emerge until later, and those platforms factor heavily into
Unity’s growing prominence.

Initially, I viewed Unity as a curiosity, an interesting development tool to keep
an eye on but not actually use. During this time, I was programming games for
both desktop computers and websites and doing projects for a range of clients. I
was using tools like Blitz3D and Flash, which were great to program in but were
limiting in a lot of ways. As those tools started to show their age, I kept looking
for better ways to develop games.

I started experimenting with Unity around version 3, and then completely
switched to it when Synapse Games (the company I work for now) started
developing mobile games. At first, I worked for Synapse on web games, but we
eventually moved over to mobile games. And then we came full circle because
Unity enabled us to deploy to the web in addition to mobile, all from one
codebase!

I’ve always seen sharing knowledge as important, and I’ve taught game
development for the last several years. In large part I do this because of the
example set for me by the many mentors and teachers I’ve had. (Incidentally,
you may even have heard of one of my teachers because he was such an
inspiring person: Randy Pausch delivered the Last Lecture shortly before he
passed away in 2008.) I’ve taught classes at several schools, and I’ve always
wanted to write a book about game development.

In many ways, what I’ve written here is the book I wish had existed back when I
was first learning Unity. Among Unity’s many virtues is the availability of a
huge treasure trove of learning resources, but those resources tend to take the
form of unfocused fragments (like the script reference or isolated tutorials) and
require a great deal of digging to find what you need. Ideally, I’d have a book

that wrapped up everything I needed to know in one place and presented it in a
clear and logically constructed manner, so now I’m writing such a book for you.
I’m targeting people who already know how to program, but who are newcomers
to Unity, and possibly new to game development in general. The choice of
projects reflects my experience of gaining skills and confidence by doing a
variety of freelance projects in rapid succession.

In learning to develop games using Unity, you’re setting out on an exciting
adventure. For me, learning how to develop games meant putting up with a lot of
hassles. You, on the other hand, have the advantage of a single coherent resource
to learn from: this book!

Acknowledgments

I would like to thank Manning Publications for giving me the opportunity to
write this book. The editors I worked with, including Robin de Jongh and
especially Dan Maharry, helped me throughout this undertaking, and the book is
much stronger for their feedback. My sincere thanks also to the many others who
worked with me during the development and production of the book.

My writing benefited from the scrutiny of reviewers every step of the way.
Thanks to Alex Lucas, Craig Hoffman, Dan Kacenjar, Joshua Frederick, Luca
Campobasso, Mark Elston, Philip Taffet, René van den Berg, Sergio Arbeo
Rodriguez, Shiloh Morris, and Victor M. Perez. Special thanks to the notable
review work by technical development editor Scott Chaussee and by technical
proofreader Christopher Haupt. And I also want to thank Jesse Schell for writing
the foreword to my book.

Next, I’d like to recognize the people who’ve made my experience with Unity a
fruitful one. That, of course, starts with Unity Technologies, the company that
makes Unity (the game engine). I owe a debt to the community at
gamedev.stackexchange.com. I visit that QA site almost daily to learn from
others and to answer questions. And the biggest push for me to use Unity came
from Alex Reeve, my boss at Synapse Games. Similarly, I’ve picked up tricks
and techniques from my coworkers, and they all show up in the code I write.

Finally, I want to thank my wife Virginia for her support during the time I was
writing the book. Until I started working on it, I never really understood how
much a book project takes over your life and affects everyone around you.
Thank you so much for your love and encouragement.

About this Book

This is a book about programming games in Unity. Think of it as an intro to
Unity for experienced programmers. The goal of this book is straightforward: to
take people who have some programming experience but no experience with
Unity and teach them how to develop a game using Unity.

The best way of teaching development is through example projects, with
students learning by doing, and that’s the approach this book takes. I’ll present
topics as steps toward building sample games, and you’ll be encouraged to build
these games in Unity while exploring the book. We’ll go through a selection of
different projects every few chapters, rather than one monolithic project
developed over the entire book; sometimes other books take the “one monolithic
project” approach, but that can make it hard to jump into the middle if the early
chapters aren’t relevant to you.

This book will have more rigorous programming content than most Unity books
(especially beginners’ books). Unity is often portrayed as a list of features with
no programming required, which is a misleading view that won’t teach people
what they need to know in order to produce commercial titles. If you don’t
already know how to program a computer, I suggest going to a resource like
Codecademy first (the computer programming lessons at Khan Academy work
well, too) and then come back to this book after learning how to program.

Don’t worry about the exact programming language; C# is used throughout this
book, but skills from other languages will transfer quite well. Although the first
half of the book will take its time introducing new concepts and will carefully
and deliberately step you through developing your first game in Unity, the
remaining chapters will move a lot faster in order to take readers through
projects in multiple game genres. The book will end with a chapter describing
deployment to various platforms like the web and mobile, but the main thrust of
the book won’t make any reference to the ultimate deployment target because
Unity is wonderfully platform-agnostic.

As for other aspects of game development, extensive coverage of art disciplines
would water down how much the book can cover and would be largely about
software external to Unity (for example, the animation software used).

Discussion of art tasks will be limited to aspects specific to Unity or that all
game developers should know. (Note, though, that there is an appendix about
modeling custom objects.)

Roadmap

Chapter 1 introduces you to Unity, the cross-platform game development
environment. You’ll learn about the fundamental component system underlying
everything in Unity, as well as how to write and execute basic scripts.

Chapter 2 progresses to writing a demo of movement in 3D, covering topics like
mouse and keyboard input. Defining and manipulating both 3D positions and
rotations are thoroughly explained.

Chapter 3 turns the movement demo into a first-person shooter, teaching you
raycasting and basic Al. Raycasting (shooting a line into the scene and seeing
what intersects) is a useful operation for all sorts of games.

Chapter 4 covers art asset importing and creation. This is the one chapter of the
book that does not focus on code, because every project needs (basic) models
and textures.

Chapter 5 teaches you how to create a 2D game in Unity. Although Unity started
exclusively for 3D graphics, there’s now excellent support for 2D graphics.

Chapter 6 introduces you to the latest GUI functionality in Unity. Every game
needs a Ul, and the latest versions of Unity feature an improved system for
creating user interfaces.

Chapter 7 shows how to create another movement demo in 3D, only seen from
the third person this time. Implementing third-person controls will demonstrate a
number of key 3D math operations, and you’ll learn how to work with an
animated character.

Chapter 8 goes over how to implement interactive devices and items within your
game. The player will have a number of ways of operating these devices,
including touching them directly, touching triggers within the game, or pressing

a button on the controller.

Chapter 9 covers how to communicate with the internet. You’ll learn how to
send and receive data using standard internet technologies, like HTTP requests to
get XML data from a server.

Chapter 10 teaches how to program audio functionality. Unity has great support
for both short sound effects and long music tracks; both sorts of audio are crucial
for almost all video games.

Chapter 11 walks you through bringing together pieces from different chapters
into a single game. In addition, you’ll learn how to program point-and-click
controls and how to save the player’s game.

Chapter 12 goes over building the final app, with deployment to multiple
platforms like desktop, web, and mobile. Unity is wonderfully platform-
agnostic, enabling you to create games for every major gaming platform!

There are also four appendixes with additional information about scene
navigation, external tools, Blender, and learning resources.

Code conventions, requirements, and downloads

All the source code in the book, whether in code listings or snippets, is in a
fixed-width font like this, which sets it off from the surrounding
text. In most listings, the code is annotated to point out key concepts, and
numbered bullets are sometimes used in the text to provide additional
information about the code. The code is formatted so that it fits within the
available page space in the book by adding line breaks and using indentation
carefully.

The only software required is Unity; this book uses Unity 5.0, which is the latest
version as I write this. Certain chapters do occasionally discuss other pieces of
software, but those are treated as optional extras and not core to what you’re
learning.

Warning

Unity projects remember which version of Unity they were created in and will
issue a warning if you attempt to open them in a different version. If you see that
warning while opening this book’s sample downloads, click Continue and ignore
it.

The code listings sprinkled throughout the book generally show what to add or
change in existing code files; unless it’s the first appearance of a given code file,
don’t replace the entire file with subsequent listings. Although you can
download complete working sample projects to refer to, you’ll learn best by
typing out the code listings and only looking at the working samples for
reference. Those downloads are available from the publisher’s website at
www.manning.com/UnityinAction.

Author Online

The purchase of Unity in Action includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to
www.manning.com/UnityinAction. This page provides information on how to
get on the forum once you are registered, what kind of help is available, and the
rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part
of the author whose contribution to the forum remains voluntary (and unpaid).
We suggest you try asking the author some challenging questions lest his interest
stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

About the author

http://www.manning.com/UnityinAction
http://www.manning.com/UnityinAction

Joseph Hocking is a software engineer living in Chicago, specializing in
interactive media development. He works for Synapse Games as a developer of
web and mobile games, such as the recently released Tyrant Unleashed. He also
teaches classes in game development at Columbia College Chicago, and his
website is www.newarteest.com.

About the cover illustration

The figure on the cover of Unity in Action is captioned “Habit of the Master of
Ceremonies of the Grand Signior.” The Grand Signior was another name for a
sultan of the Ottoman Empire. The illustration is taken from Thomas Jefferys’ A
Collection of the Dresses of Different Nations, Ancient and Modern (4 volumes),
London, published between 1757 and 1772. The title page states that these are
hand-colored copperplate engravings, heightened with gum arabic. Thomas
Jefferys (1719-1771), was called “Geographer to King George II1.” An English
cartographer who was the leading map supplier of his day, Jeffreys engraved and
printed maps for government and other official bodies and produced a wide
range of commercial maps and atlases, especially of North America. His work as
a mapmaker sparked an interest in local dress customs of the lands he surveyed,
which are brilliantly displayed in this four-volume collection.

Fascination with faraway lands and travel for pleasure were relatively new
phenomena in the late eighteenth century and collections such as this one were
popular, introducing both the tourist as well as the armchair traveler to the
inhabitants of other countries. The diversity of the drawings in Jeffreys’ volumes
speaks vividly of the uniqueness and individuality of the world’s nations some
200 years ago. Dress codes have changed since then and the diversity by region
and country, so rich at the time, has faded away. It is now hard to tell the
inhabitant of one continent apart from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied
personal life, or a more varied and interesting intellectual and technical life.

At a time when it is hard to tell one computer book from another, Manning
celebrates the inventiveness and initiative of the computer business with book
covers based on the rich diversity of regional life of two centuries ago, brought
back to life by Jeffreys’ pictures.

http://www.newarteest.com

Part 1. First steps

It’s time to take your first steps in using Unity. If you don’t know anything about
Unity, that’s okay! I’'m going to start by explaining what Unity is, including
fundamentals of how to program games in it. Then we’ll walk through a tutorial
about developing a simple game in Unity. This first project will teach you a
number of specific game development techniques as well as give you a good
overview of how the process works.

Onward to chapter 1!

Chapter 1. Getting to know Unity

This chapter covers

What makes Unity a great choice
Operating the Unity editor
Programming in Unity
Comparing C# and JavaScript

If you’re anything like me, you’ve had developing a video game on your mind
for a long time. But it’s a big jump from simply playing games to actually
making them. Numerous game development tools have appeared over the years,
and we’re going to discuss one of the most recent and most powerful of these
tools. Unity is a professional-quality game engine used to create video games
targeting a variety of platforms. Not only is it a professional development tool
used daily by thousands of seasoned game developers, it’s also one of the most
accessible modern tools for novice game developers. Until recently, a newcomer
to game development (especially 3D games) would face lots of imposing
barriers right from the start, but Unity makes it easy to start learning these skills.

Because you’re reading this book, chances are you’re curious about computer
technology and you’ve either developed games with other tools or built other
kinds of software, like desktop applications or websites. Creating a video game
isn’t fundamentally different from writing any other kind of software; it’s mostly
a difference of degree. For example, a video game is a lot more interactive than
most websites and thus involves very different sorts of code, but the skills and
processes involved in creating both are similar. If you’ve already cleared the first
hurdle on your path to learning game development, having learned the
fundamentals of programming software, then your next step is to pick up some
game development tools and translate that programming knowledge into the
realm of gaming. Unity is a great choice of game development environment to
work with.

A warning about terminology

This book is about programming in Unity and is therefore primarily of interest to
coders. Although many other resources discuss other aspects of game
development and Unity, this is a book where programming takes front and
center.

Incidentally, note that the word developer has a possibly unfamiliar meaning in
the context of game development: developer is a synonym for programmer in
disciplines like web development, but in game development the word developer
refers to anyone who works on a game, with programmer being a specific role
within that. Other kinds of game developers are artists and designers, but this
book will focus on programming.

To start, go to the website www.unity3d.com to download the software. This
book uses Unity 5.0, which is the latest version as of this writing. The URL is a
leftover from Unity’s original focus on 3D games; support for 3D games remains
strong, but Unity works great for 2D games as well. Meanwhile, although
advanced features are available in paid versions, the base version is completely
free. Everything in this book works in the free version and doesn’t require Unity
Pro; the differences between those versions are in advanced features (that are
beyond the scope of this book) and commercial licensing terms.

1.1. Why is Unity so great?

Let’s take a closer look at that description from the beginning of the chapter:
Unity is a professional-quality game engine used to create video games targeting
a variety of platforms. That is a fairly straightforward answer to the
straightforward question “What is Unity?” However, what exactly does that
answer mean, and why is Unity so great?

1.1.1. Unity’s strengths and advantages

A game engine provides a plethora of features that are useful across many
different games, so a game implemented using that engine gets all those features
while adding custom art assets and gameplay code specific to that game. Unity
has physics simulation, normal maps, screen space ambient occlusion (SSAO),
dynamic shadows...and the list goes on. Many game engines boast such features,

http://www.unity3d.com

but Unity has two main advantages over other similarly cutting-edge game
development tools: an extremely productive visual workflow, and a high degree
of cross-platform support.

The visual workflow is a fairly unique design, different from most other game
development environments. Whereas other game development tools are often a
complicated mishmash of disparate parts that must be wrangled, or perhaps a
programming library that requires you to set up your own integrated
development environment (IDE), build-chain and whatnot, the development
workflow in Unity is anchored by a sophisticated visual editor. The editor is used
to lay out the scenes in your game and to tie together art assets and code into
interactive objects. The beauty of this editor is that it enables professional-
quality games to be built quickly and efficiently, giving developers tools to be
incredibly productive while still using an extensive list of the latest technologies
in video gaming.

Note

Most other game development tools that have a central visual editor are also
saddled with limited and inflexible scripting support, but Unity doesn’t suffer
from that disadvantage. Although everything created for Unity ultimately goes
through the visual editor, this core interface involves a lot of linking projects to
custom code that runs in Unity’s game engine. That’s not unlike linking in
classes in the project settings for an IDE like Visual Studio or Eclipse.
Experienced programmers shouldn’t dismiss this development environment,
mistaking it for some click-together game creator with limited programming
capability!

The editor is especially helpful for doing rapid iteration, honing the game
through cycles of prototyping and testing. You can adjust objects in the editor
and move things around even while the game is running. Plus, Unity allows you
to customize the editor itself by writing scripts that add new features and menus
to the interface.

Besides the editor’s significant productivity advantages, the other main strength
of Unity’s toolset is a high degree of cross-platform support. Not only is Unity
multiplatform in terms of the deployment targets (you can deploy to the PC,

web, mobile, or consoles), but it’s multiplatform in terms of the development
tools (you can develop the game on Windows or Mac OS). This platform-
agnostic nature is largely because Unity started as Mac-only software and was
later ported to Windows. The first version launched in 2005, but now Unity is up
to its fifth major version (with lots of minor updates released frequently).
Initially, Unity supported only Mac for both developing and deployment, but
within a few months Unity had been updated to work on Windows as well.
Successive versions gradually added more deployment platforms, such as a
cross-platform web player in 2006, iPhone in 2008, Android in 2010, and even
game consoles like Xbox and PlayStation. Most recently they’ve added
deployment to WebGL, the new framework for 3D graphics in web browsers.
Few game engines support as many deployment targets as Unity, and none make
deploying to multiple platforms so simple.

Meanwhile, in addition to these main strengths, a third and subtler benefit comes
from the modular component system used to construct game objects. In a
component system, “components” are mix-and-match packets of functionality,
and objects are built up as a collection of components, rather than as a strict
hierarchy of classes. In other words, a component system is a different (and
usually more flexible) approach to doing object-oriented programming, where
game objects are constructed through composition rather than inheritance. Figure
1.1 diagrams an example comparison.

Figure 1.1. Inheritance vs. components

INHERITANCE COMPONENT SYSTEM

Enemy Mobile enemy Mobile Shooter Stationary

l—{ Mobhile enamy - Enamy
Enamy component Enamy

| componant componant
Mobile shooter Motion

component

1 Stat onary shooter component Shooter componant

component

The separate inheritance branches

for mobile and stationary enemies The mix-and-match components

need separate duplicated shooter enable a single shooter component
classes. Every behavior change and new to be added anywhere it's needed,
enemy type requires a lot of refactoring. on both mobile and stationary enemies.

In a component system, objects exist on a flat hierarchy and different objects
have different collections of components, rather than an inheritance structure

where different objects are on completely different branches of the tree. This
arrangement facilitates rapid prototyping, because you can quickly mix-and-
match different components rather than having to refactor the inheritance chain
when the objects change.

Although you could write code to implement a custom component system if one
didn’t exist, Unity already has a robust component system, and this system is
even integrated seamlessly with the visual editor. Rather than only being able to
manipulate components in code, you can attach and detach components within
the visual editor. Meanwhile, you aren’t limited to only building objects through
composition; you still have the option of using inheritance in your code,
including all the best-practice design patterns that have emerged based on
inheritance.

1.1.2. Downsides to be aware of

Unity has many advantages that make it a great choice for developing games and
I highly recommend it, but I’d be remiss if I didn’t mention its weaknesses. In
particular, the combination of the visual editor and sophisticated coding, though
very effective with Unity’s component system, is unusual and can create
difficulties. In complex scenes, you can lose track of which objects in the scene
have specific components attached. Unity does provide search functionality for
finding attached scripts, but that search could be more robust; sometimes you
still encounter situations where you need to manually inspect everything in the
scene in order to find script linkages. This doesn’t happen often, but when it
does happen it can be tedious.

Another disadvantage that can be surprising and frustrating for experienced
programmers is that Unity doesn’t support linking in external code libraries. The
many libraries available must be manually copied into every project where
they’ll be used, as opposed to referencing one central shared location. The lack
of a central location for libraries can make it awkward to share functionality
between multiple projects. This disadvantage can be worked around through
clever use of version control systems, but Unity doesn’t support this
functionality out of the box.

Note

Difficulty working with version control systems (such as Subversion, Git, and
Mercurial) used to be a significant weakness, but more recent versions of Unity
work just fine. You may find out-of-date resources telling you that Unity doesn’t
work with version control, but newer resources will describe.meta files (the
mechanism Unity introduced for working with version-control systems) and
which folders in the project do or don’t need to be put in the repository. To start
out with, read this page in the documentation:
http://docs.unity3d.com/Manual/External VersionControlSystemSupport.html

A third weakness has to do with working with prefabs. Prefabs are a concept
specific to Unity and are explained in chapter 3; for now, all you need to know is
that prefabs are a flexible approach to visually defining interactive objects. The
concept of prefabs is both powerful and unique to Unity (and yes, it’s tied into
Unity’s component system), but it can be surprisingly awkward to edit prefabs.
Considering prefabs are such a useful and central part of working with Unity, I
hope that future versions improve the workflow for editing prefabs.

1.1.3. Example games built with Unity

You’ve heard about the pros and cons of Unity, but you might still need
convincing that the development tools in Unity can give first-rate results. Visit
the Unity gallery at http://unity3d.com/showcase/gallery to see a constantly
updated list of hundreds of games and simulations developed using Unity. This
section explores just a handful of games showcasing a number of genres and
deployment platforms.

Desktop (Windows, Mac, Linux)

Because the editor runs on the same platform, deployment to Windows or Mac is
often the most straightforward target platform. Here are a couple of examples of
desktop games in different genres:

e Guns of Icarus Online (figure 1.2), a first-person shooter developed by

Muse Games
Figure 1.2. Guns of Icarus Online

http://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html
http://unity3d.com/showcase/gallery

e Gone Home (figure 1.3), an exploration adventure developed by The
Fullbright Company

Figure 1.3. Gone Home

Mobile (iOS, Android)

Unity can also deploy games to mobile platforms like iOS (iPhones and iPads)
and Android (phones and tablets). Here are a few examples of mobile games in
different genres:

e Dead Trigger (figure 1.4), a first-person shooter developed by Madfinger
Games
Figure 1.4. Dead Trigger

e Bad Piggies (figure 1.5), a physics puzzle game developed by Rovio
Figure 1.5. Bad Piggies

e Tyrant Unleashed (figure 1.6), a collectible card game developed by

Synapse Games
Figure 1.6. Tyrant Unleashed

Console (PlayStation, Xbox, Wii)

Unity can even deploy to game consoles, although the developer must obtain
licensing from Sony, Microsoft, or Nintendo. Because of this requirement and
Unity’s easy cross-platform deployment, console games are often available on
desktop computers as well. Here are a couple examples of console games in
different genres:

e Assault Android Cactus (figure 1.7), an arcade shooter developed by Witch

Beam
Figure 1.7. Assault Android Cactus

CRCTUS

e The Golf Club (figure 1.8), a sports simulation developed by HB Studios
Figure 1.8. The Golf Club

[o &

As you can see from these examples, Unity’s strengths definitely can translate
into commercial-quality games. But even with Unity’s significant advantages

over other game development tools, newcomers may have a misunderstanding
about the involvement of programming in the development process. Unity is
often portrayed as simply a list of features with no programming required, which
is a misleading view that won’t teach people what they need to know in order to
produce commercial titles. Though it’s true that you can click together a fairly
elaborate prototype using preexisting components even without a programmer
involved (which is itself a pretty big feat), rigorous programming is required to
move beyond an interesting prototype to a polished game for release.

1.2. How to use Unity

The previous section talked a lot about the productivity benefits from Unity’s
visual editor, so let’s go over what the interface looks like and how it operates. If
you haven’t done so already, download the program from www.unity3d.com and
install it on your computer (be sure to include “Example Project” if that’s
unchecked in the installer). After you install it, launch Unity to start exploring
the interface.

You probably want an example to look at, so open the included example project;
a new installation should open the example project automatically, but you can
also select File > Open Project to open it manually. The example project is
installed in the shared user directory, which is something like
C:\Users\Public\Documents\Unity Projects\ on Windows, or Users/Shared/Unity/
on Mac OS. You may also need to open the example scene, so double-click the
Car scene file (highlighted in figure 1.9; scene files have the Unity cube icon)
that’s found by going to SampleScenes/Scenes/ in the file browser at the bottom
of the editor. You should be looking at a screen similar to figure 1.9.

Figure 1.9. Parts of the interface in Unity

http://www.unity3d.com

Scene and Game are
tabs for viewing the

The whole top area is the Toolbar.
To the left are buttons for looking

The inspector fills the right side.
This displays information about

the currently selected object
{a list of components mostly).

3D scene and playing
the game, respectively.

around and moving objects, and in
the middle is the Play button.

Hierarchy shows a

text list of all objects
in the scene, nested
according to how
they're linked together.
Drag objects in the
hierarchy to link them.

Project and Console
are tabs for viewing
all files in the project
and messages from
the code, respectively.

Navigate folders on the left, then
double-click the Car example scene.

The interface in Unity is split up into different sections: the Scene tab, the Game
tab, the Toolbar, the Hierarchy tab, the Inspector, the Project tab, and the
Console tab. Each section has a different purpose but all are crucial for the
game-building lifecycle:

You can browse through all the files in the Project tab.

You can place objects in the 3D scene being viewed using the Scene tab.
The Toolbar has controls for working with the scene.

You can drag and drop object relationships in the Hierarchy tab.

The Inspector lists information about selected objects, including linked
code.

¢ You can test playing in Game view while watching error output in the
Console tab.

This is just the default layout in Unity; all of the various views are in tabs and
can be moved around or resized, docking in different places on the screen. Later
you can play around with customizing the layout, but for now the default layout
is the best way to understand what all the views do.

1.2.1. Scene view, Game view, and the Toolbar

The most prominent part of the interface is the Scene view in the middle. This is
where you can see what the game world looks like and move objects around.
Mesh objects in the scene appear as, well, the mesh object (defined in a
moment). You can also see a number of other objects in the scene, represented
by various icons and colored lines: cameras, lights, audio sources, collision
regions, and so forth. Note that the view you’re seeing here isn’t the same as the
view in the running game—you’re able to look around the scene at will without
being constrained to the game’s view.

Definition

A mesh object is a visual object in 3D space. Visuals in 3D are constructed out of
lots of connected lines and shapes; hence the word mesh.

The Game view isn’t a separate part of the screen but rather another tab located
right next to Scene (look for tabs at the top left of views). A couple of places in
the interface have multiple tabs like this; if you click a different tab, the view is
replaced by the new active tab. When the game is running, what you see in this
view is the game. It isn’t necessary to manually switch tabs every time you run
the game, because the view automatically switches to Game when the game
starts.

Tip

While the game is running, you can switch back to the Scene view, allowing you
to inspect objects in the running scene. This capability is hugely useful for
seeing what’s going on while the game is running and is a helpful debugging tool
that isn’t available in most game engines.

Speaking of running the game, that’s as simple as hitting the Play button just
above the Scene view. That whole top section of the interface is referred to as the
Toolbar, and Play is located right in the middle. Figure 1.10 breaks apart the full
editor interface to show only the Toolbar at the top, as well as the Scene/Game
tabs right underneath.

Figure 1.10. Editor screenshot cropped to show Toolbar, Scene, and Game

Options for aspects of the scene to display
(e.g., toggle button to show lighting) Play Toolbar

61 + B3N] cmmerr - LY : [T -

L T g By .
*Lam .

Rl ¥ -

Rect
Scale
Rotate
Translate
Navigate Light
scene
Mesh object

At the left side of the Toolbar are buttons for scene navigation and transforming
objects—how to look around the scene and how to move objects. I suggest you
spend some time practicing looking around the scene and moving objects,
because these are two of the most important activities you’ll do in Unity’s visual
editor (they’re so important that they get their own section following this one).
The right side of the Toolbar is where you’ll find drop-down menus for layouts
and layers. As mentioned earlier, the layout of Unity’s interface is flexible, so the
Layouts menu allows you to switch between layouts. As for the Layers menu,
that’s advanced functionality that you can ignore for now (layers will be
mentioned in future chapters).

1.2.2. Using the mouse and keyboard

Scene navigation is primarily done using the mouse, along with a few modifier
keys used to modify what the mouse is doing. The three main navigation
maneuvers are Move, Orbit, and Zoom. The specific mouse movements for each
are described in appendix A at the end of this book, because they vary depending
on what mouse you’re using. Basically, the three different movements involve
clicking-and-dragging while holding down some combination of Alt (or Option
on Mac) and Ctrl. Spend a few minutes moving around in the scene to
understand what Move, Orbit, and Zoom do.

Tip

Although Unity can be used with one-or two-button mice, I highly recommend
getting a three-button mouse (and yes, a three-button mouse works fine on Mac
OS X).

Transforming objects is also done through three main maneuvers, and the three
scene navigation moves are analogous to the three transforms: Translate, Rotate,
and Scale (figure 1.11 demonstrates the transforms on a cube).

Figure 1.11. Applying the three transforms: Translate, Rotate, and Scale. (The lighter lines are the
previous state of the object before it was transformed.)

Translate Rotate Scale

QG &

When you select an object in the scene, you can then move it around (the
mathematically accurate technical term is translate), rotate the object, or scale
how big it is. Relating back to scene navigation, Move is when you Translate the
camera, Orbit is when you Rotate the camera, and Zoom is when you Scale the
camera. Besides the buttons on the Toolbar, you can switch between these
functions by pressing W, E, or R on the keyboard. When you activate a
transform, you’ll notice a set of color-coded arrows or circles appears over the
object in the scene; this is the Transform gizmo, and you can click-and-drag this
gizmo to apply the transformation.

There’s also a fourth tool next to the transform buttons. Called the Rect tool, it’s
designed for use with 2D graphics. This one tool combines movement, rotation,
and scaling. These operations have to be separate tools in 3D but are combined
in 2D because there’s one less dimension to worry about. Unity has a host of
other keyboard shortcuts for speeding up a variety of tasks. Refer to appendix A
to learn about them. And with that, on to the remaining sections of the interface!

1.2.3. The Hierarchy tab and the Inspector

Looking at the sides of the screen, you’ll see the Hierarchy tab on the left and
the Inspector on the right (see figure 1.12). Hierarchy is a list view with the
name of every object in the scene listed, with the names nested together
according to their hierarchy linkages in the scene. Basically, it’s a way of
selecting objects by name instead of hunting them down and clicking them
within Scene. The Hierarchy linkages group objects together, visually grouping
them like folders and allowing you to move the entire group together.

Figure 1.12. Editor screenshot cropped to show the Hierarchy and Inspector tabs

= Hierarchy @ @ Inspector | R
Creawe - | (arAl J [[ccTv Camera [static w
¥ Cameras i Tag | MainCamera ¢ | Layer| Default
CCTV Camera Prefab [Selest | Revert | Apply
P Free Look Camera Rig
- CarCameraRig ¥ ~ Transform e e ey m
B CeometryDynamic Position X0 ¥ [35.731| Z |221.80
» GeometryStatic Rotation X 0 Y |0 2|0
Ul Scale X1 Y1 Z|1
HE ¥ & [+ camera Kl &
= Colliders Clear Flags | Sieybox +]
E Wbl e mogound N
¥ Farticles ; z
b Helpers Culling Mask | Evrything #]
¥ Lights Projection | Perspective |
> ?‘W‘:“ Field of View . 410
Al :ers Clipping Flanes Near 1
F Lig t.s Far 4000
¥ CarTileCantrols Vi e
Accelerator % ID" L Yo
Brake
TiltSteerinput wil Hl
LookUpAndDownTouchpad Depth a
Rendering Path | Use Player Settings : J
Target Texture None (Render Texture) @
Occlusion Culling]
HOR -

The Inspector shows you information about the currently selected object. Select
an object and the Inspector is then filled with information about that object. The
information shown is pretty much a list of components, and you can even attach
or remove components from objects. All game objects have at least one
component, Transform, so you’ll always at least see information about
positioning and rotation in the Inspector. Many times objects will have several
components listed here, including scripts attached to that object.

1.2.4. The Project and Console tabs

At the bottom of the screen you’ll see Project and Console (see figure 1.13). As

with Scene and View, these aren’t two separate portions of the screen but rather
tabs that you can switch between. Project shows all the assets (art, code, and so
on) in the project. Specifically, on the left side of the view is a listing of the
directories in the project; when you select a directory, the right side of the view
shows the individual files in that directory. The directory listing in Project is
similar to the list view in Hierarchy, but whereas Hierarchy shows objects in the
scene, Project shows files that aren’t contained within any specific scene
(including scene files—when you save a scene, it shows up in Project!).

Figure 1.13. Editor screenshot cropped to show the Project and Console tabs

&8 Fropn [m [T i_
Craats ~
& maneti = Lampleloesas « Soeses -
¥l Anaatn
* aad Ecirar
¥ il Lemplrieset
e A
e Moy
* il Manu P Aeay Ry ang v gy g v g s L A e Ol g oy i Tl
s Mty
- LY
i Phigsacidanerialn
i Frefans

e T Chubmms T e

= Rript

s Shaden

i Tewnses
il Sl Al - —_—

Tip

Project view mirrors the Assets directory on disk, but you generally shouldn’t
move or delete files directly by going to the Assets folder. If you do those things
within the Project view, Unity will keep in sync with that folder.

The Console is the place where messages from the code show up. Some of these
messages will be debug output that you placed deliberately, but Unity also emits
error messages if it encounters problems in the script you wrote.

1.3. Getting up and running with Unity programming

Now let’s look at how the process of programming works in Unity. Although art
assets can be laid out in the visual editor, you need to write code to control them
and make the game interactive. Unity supports a few programming languages, in
particular JavaScript and C#. There are pros and cons to both choices, but you’ll
be using C# throughout this book.

Why choose C# over JavaScript?

All of the code listings in this book use C# because it has a number of
advantages over JavaScript and fewer disadvantages, especially for professional
developers (it’s certainly the language I use at work).

One benefit is that C# is strongly typed, whereas JavaScript is not. Now, there
are lots of arguments among experienced programmers about whether or not
dynamic typing is a better approach for, say, web development, but programming
for certain gaming platforms (such as iOS) often benefits from or even requires
static typing. Unity has even added the directive #pragma strict to force
static typing within JavaScript. Although technically this works, it breaks one of
the bedrock principles of how JavaScript operates, and if you’re going to do that,
then you’re better off using a language that’s intrinsically strongly typed.

This is just one example of how JavaScript within Unity isn’t quite the same as
JavaScript elsewhere. JavaScript in Unity is certainly similar to JavaScript in
web browsers, but there are lots of differences in how the language works in
each context. Many developers refer to the language in Unity as UnityScript, a
name that indicates similarity to but separateness from JavaScript. This “similar
but different” state can create issues for programmers, both in terms of bringing
in knowledge about JavaScript from outside Unity, and in terms of applying
programming knowledge gained by working in Unity.

Let’s walk through an example of writing and running some code. Launch Unity
and create a new project; choose File > New Project to open the New Project
window. Type a name for the project, and then choose where you want to save it.
Realize that a Unity project is simply a directory full of various asset and
settings files, so save the project anywhere on your computer. Click Create
Project and then Unity will briefly disappear while it sets up the project
directory.

Warning

Unity projects remember which version of Unity they were created in and will
issue a warning if you attempt to open them in a different version. Sometimes it
doesn’t matter (for example, just ignore the warning if it appears while opening

this book’s sample downloads), but sometimes you will want to back up your
project before opening it.

When Unity reappears you’ll be looking at a blank project. Next, let’s discuss
how your programs get executed in Unity.

1.3.1. How code runs in Unity: script components

All code execution in Unity starts from code files linked to an object in the
scene. Ultimately it’s all part of the component system described earlier; game
objects are built up as a collection of components, and that collection can include
scripts to execute.

Note

Unity refers to the code files as scripts, using a definition of “script” that’s most
commonly encountered with JavaScript running in a browser: the code is
executed within the Unity game engine, versus compiled code that runs as its
own executable. But don’t get confused because many people define the word
differently; for example, “scripts” often refer to short, self-contained utility
programs. Scripts in Unity are more akin to individual OOP classes, and scripts
attached to objects in the scene are the object instances.

As you’ve probably surmised from this description, in Unity, scripts are
components—not all scripts, mind you, only scripts that inherit from
MonoBehaviour, the base class for script components. MonoBehaviour
defines the invisible groundwork for how components attach to game objects,
and (as shown in listing 1.1) inheriting from it provides a couple of
automatically run methods that you can override. Those methods include
Start (), which is called once when the object becomes active (which is
generally as soon as the level with that object has loaded), and Update(),
which is called every frame. Thus your code is run when you put it inside these
predefined methods.

Definition

A frame is a single cycle of the looping game code. Nearly all video games (not
just in Unity, but video games in general) are built around a core game loop,
where the code executes in a cycle while the game is running. Each cycle
includes drawing the screen; hence the name frame (just like the series of still
frames of a movie).

Listing 1.1. Code template for a basic script component

1ging UnityEngine; <, —— ’
- S " nciuae namespaces ior
using System.Collections; p= P

Unity and Mono classes.

‘~ The syntax for inheritance

<
\- Put code in here that runs once.

= .
_ Put code in here that
runs every frame.

This is what the file contains when you create a new C# script: the minimal
boilerplate code that defines a valid Unity component. Unity has a script
template tucked away in the bowels of the application, and when you create a
new script it copies that template and renames the class to match the name of the
file (which is HelloWorld.cs in my case). There are also empty shells for
Start() and Update () because those are the two most common places to
call your custom code from (although I tend to adjust the whitespace around
those functions a tad, because the template isn’t quite how I like the whitespace
and I’m finicky about that).

To create a script, select C# Script from the Create menu that you access either
under the Assets menu (note that Assets and GameObjects both have listings for
Create but they’re different menus) or by right-clicking in the Project view. Type
in a name for the new script, such as HelloWorld. As explained later in the
chapter (see figure 1.15), you’ll click-and-drag this script file onto an object in
the scene. Double-click the script and it’ll automatically be opened in another
program called MonoDevelop, discussed next.

1.3.2. Using MonoDevelop, the cross-platform IDE

Programming isn’t done within Unity exactly, but rather code exists as separate
files that you point Unity to. Script files can be created within Unity, but you still
need to use some text editor or IDE to write all the code within those initially
empty files. Unity comes bundled with MonoDevelop, an open source, cross-
platform IDE for C# (figure 1.14 shows what it looks like). You can visit
www.monodevelop.com to learn more about this software, but the version to use
is the version bundled along with Unity, rather than a version downloaded from
their website, because some modifications were made to the base software in
order to better integrate it with Unity.

Figure 1.14. Parts of the interface in MonoDevelop

Don’t hit the Run button within MonoDevelop; Script files open as tabs in the main viewing
hit Play in Unity to run the code. area. Multiple script files can be open at once.

Solution view
shows all script
files in the project.

Document Outline

may not be showing
by default. Select it
under Yiew > Pads PRRVE = T
and then drag the tab
to where you want it.

Note

MonoDevelop organizes files into groupings called a solution. Unity
automatically generates a solution that has all the script files, so you usually
don’t need to worry about that.

Because C# originated as a Microsoft product, you may be wondering if you can
use Visual Studio to do programming for Unity. The short answer is yes, you
can. Support tools are available from www.unityvs.com but I generally prefer
MonoDevelop, mostly because Visual Studio only runs on Windows and using
that IDE would tie your workflow to Windows. That’s not necessarily a bad
thing, and if you’re already using Visual Studio to do programming then you

http://www.monodevelop.com
http://www.unityvs.com

could keep using it and not have any problems following along with this book
(beyond this introductory chapter, I’'m not going to talk about the IDE). Tying
your workflow to Windows, though, would run counter to one of the biggest
advantages of using Unity, and doing so could prove problematic if you need to
work with Mac-based developers on your team and/or if you want to deploy
your game to iOS. Although C# originated as a Microsoft product and thus only
worked on Windows with the .NET Framework, C# has now become an open
language standard and there’s a significant cross-platform framework: Mono.
Unity uses Mono for its programming backbone, and using MonoDevelop
allows you to keep the entire development workflow cross-platform.

Always keep in mind that although the code is written in MonoDevelop, the
code isn’t actually run there. The IDE is pretty much a fancy text editor, and the
code is run when you hit Play within Unity.

1.3.3. Printing to the console: Hello World!

All right, you already have an empty script in the project, but you also need an
object in the scene to attach the script to. Recall figure 1.1 depicting how a
component system works; a script is a component, so it needs to be set as one of
the components on an object.

Select GameObject > Create Empty, and a blank GameObject will appear in the
Hierarchy list. Now drag the script from the Project view over to the Hierarchy
view and drop it on the empty GameObject. As shown in figure 1.15, Unity will
highlight valid places to drop the script, and dropping it on the GameObject will
attach the script to that object. To verify that the script is attached to the object,
select the object and look at the Inspector view. You should see two components
listed: the Transform component that’s the basic position/rotation/scale
component all objects have and that can’t be removed, and below that, your
script.

Figure 1.15. How to link a script to a GameObject

= Hierarchy

| s Click-and-drag the script from the

Project view up to the Hierarchy
view and release on the GameObject.

Main Camera
Directional Light

@ Project
Create *

r{:}’ﬁmmu Assels
%AII Materials
All Models
! All Prefabs HERoWord DRnusa D
() All scripts ' (#
I_
i Assets [Helloworld]

Note

Eventually this action of dragging objects from one place and dropping them on
other objects will feel routine. A lot of different linkages in Unity are created by
dragging things on top of each other, not just attaching scripts to objects.

When a script is linked to an object, you’ll see something like figure 1.16, with
the script showing up as a component in the Inspector. Now the script will
execute when you play the scene, although nothing is going to happen yet
because you haven’t written any code. Let’s do that next!

Figure 1.16. Linked script being displayed in the Inspector

) Inspector .|
gi ™ [GameObject
Tag | Untagged ¢ | Layer| Default

¥ .~ Transform

Position X0 Y0
Rotation X 0 Y 0
Scale X1 Y1l
v =/ & Hello World (Script)
I Script = Helloworld
[Add Component

Open the script in MonoDevelop to get back to listing 1.1. The classic place to
start when learning a new programming environment is having it print the text
“Hello World!” so add this line inside the Start () method, as shown in the
following listing.

Listing 1.2. Adding a console message

void Start (
Debug.Log("Hello World!" {\
Add the logging command here.

What the Debug.Log() command does is print a message to the Console view
in Unity. Meanwhile that line goes in the Start () method because, as was
explained earlier, that method is called as soon as the object becomes active. In
other words, Start () will be called once as soon as you hit Play in the editor.
Once you’ve added the log command to your script (be sure to save the script),
hit Play in Unity and switch to the Console view. You’ll see the message “Hello
World!” appear. Congratulations, you’ve written your first Unity script! In later
chapters the code will be more elaborate, of course, but this is an important first
step.

“Hello World!” steps in brief

Let’s reiterate and summarize the steps from the last several pages:

1. Create a new project.

2. Create a new C# script.

3. Create an empty GameObiject.

4. Drag the script onto the object.

5. Add the log command to the script.

6. Press Play!

You could now save the scene; that would create a .unity file with the Unity
icon. The scene file is a snapshot of everything currently loaded in the game so
that you can reload this scene later. It’s hardly worth saving this scene because
it’s so simple (just a single empty GameObject), but if you don’t save the scene
then you’ll find it empty again when you come back to the project after quitting
Unity.

Errors in the script

To see how Unity indicates errors, purposely put a typo in the HelloWorld script.
For example, if you type an extra parenthesis symbol, this error message will
appear in the Console with a red error icon:

3 Project | O cConsole |

| Clear L Collapse _ Clear on Play | Error Pause |
Assets /HelloWorld.cs(8,42): error C51525: Unexpected symbol ')', expecting "}
Script containing l\ Description

the error Lgcatmn within that script of the error
(line, character)

1.4. Summary

In this chapter you’ve learned that

Unity is a multiplatform development tool.

Unity’s visual editor has several sections that work in concert.
Scripts are attached to objects as components.

Code is written inside scripts using MonoDevelop.

Chapter 2. Building a demo that puts you in 3D space

This chapter covers

Understanding 3D coordinate space
Putting a player in a scene

Writing a script that moves objects
Implementing FPS controls

Chapter 1 concluded with the traditional “Hello World!” introduction to a new
programming tool; now it’s time to dive into a nontrivial Unity project, a project
with interactivity and graphics. You’ll put some objects into a scene and write
code to enable a player to walk around that scene. Basically, it’ll be Doom
without the monsters (something like what figure 2.1 depicts). The visual editor
in Unity enables new users to start assembling a 3D prototype right away,
without needing to write a lot of boilerplate code first (for things like initializing
a 3D view or establishing a rendering loop).

Figure 2.1. Screenshot of the 3D demo (basically, Doom without the monsters)

It’s tempting to immediately start building the scene in Unity, especially with
such a simple (in concept!) project. But it’s always a good idea to pause at the
beginning and plan out what you’re going to do, and this is especially important
right now because you’re new to the process.

2.1. Before you start...

Unity makes it easy for a newcomer to get started, but let’s go over a couple of
points before you build the complete scene. Even when working with a tool as
flexible as Unity, you do need to have some sense of the goal you’re working
toward. You also need a grasp of how 3D coordinates operate or you could get
lost as soon as you try to position an object in the scene.

2.1.1. Planning the project

Before you start programming anything, you always want to pause and ask
yourself, “So what am I building here?” Game design is a huge topic unto itself,
with many impressively large books focused on how to design a game.
Fortunately for our purposes, you only need a brief outline of this simple demo
in mind in order to develop a basic learning project. These initial projects won’t
be terribly complex designs anyway, in order to avoid distracting you from
learning programming concepts; you can (and should!) worry about higher-level
design issues after you’ve mastered the fundamentals of game development.

For this first project you’ll build a basic FPS (first-person shooter) scene. There
will be a room to navigate around, players will see the world from their
character’s point of view, and the player can control the character using the
mouse and keyboard. All the interesting complexity of a complete game can be
stripped away for now in order to concentrate on the core mechanic: moving
around in a 3D space. Figure 2.2 depicts the roadmap for this project, basically
laying out the mental checklist I built in my head:

Figure 2.2. Roadmap for the 3D demo

. Set up the boundaries AT s 2. Players need to be able to

of the room. First create e el P see the room. Put some lights
the floor, then the outer r—"4 e around the room, and place
:NaHE. and then place the “ the camera that will be the
inner walls. ' SO player’s view.

e 3. Create the primitive shape
for the player. Attach the
camera to the top of this,

so that as this object moves
the camera moves with it.

4. Write movement scripts
for the player. First write
code to rotate with the
mouse, then write code

to move with keyboard.

1. Set up the room: create the floor, outer walls, and inner walls.
2. Place the lights and camera.
3. Create the player object (including attaching the camera on top).

4. Write movement scripts: rotate with the mouse and move with the
keyboard.

Don’t be scared off by everything in this roadmap! It sounds like there’s a lot in
this chapter, but Unity makes it easy. The upcoming sections about movement
scripts are so extensive only because we’ll be going through every line to
understand all the concepts in detail. This project is a first-person demo in order
to keep the art requirements simple; because you can’t see yourself, it’s fine for
“you” to be a cylindrical shape with a camera on top! Now you just need to
understand how 3D coordinates work, and it will be easy to place everything in
the visual editor.

2.1.2. Understanding 3D coordinate space

If you think about the simple plan we’re starting with, there are three aspects to
it: a room, a view, and controls. All of those items rely on you understanding
how positions and movements are represented in 3D computer simulations, and
if you’re new to working with 3D graphics you might not already know that
stuff.

It all boils down to numbers that indicate points in space, and the way those

numbers correlate to the space is through coordinate axes. If you think back to
math class, you’ve probably seen and used X-and Y-axes (see figure 2.3) for
assigning coordinates to points on the page, which is referred to as a Cartesian
coordinate system.

Figure 2.3. Coordinates along the X-and Y-axes define a 2D point.

Yertical axis | Coordinates that define the point's
(usually labeled Y) _ position. The numbers are each
distance along one axis: (X, Y).

Horizontal axis
(labeled X)

Figure 2.3 Coordinates along the
X- and Y-axes define a 2D point.

Two axes give you 2D coordinates, with all points in the same plane. Three axes
are used to define 3D space. Because the X-axis goes along the page horizontally
and the Y-axis goes along the page vertically, we now imagine a third axis that
sticks straight into and out of the page, perpendicular to both the X and Y axes.
Figure 2.4 depicts the X-, Y-, and Z-axes for 3D coordinate space. Everything
that has a specific position in the scene will have XYZ coordinates: position of
the player, placement of a wall, and so forth.

Figure 2.4. Coordinates along the X-, Y-, and Z-axes define a 3D point.

Yertical axis ’
(labeled Y) * (6,7,5)

Where 2D coordinates had
two numbers, one along each

The 1'3;‘_5 ':' axis, 3D coordinates have
FE::FI]'an icular three numbers: (X, Y, Z).
o the page;

imagine this line
sticking straight
into and out
of the page.

Horizontal axis

(labeled X)

In Unity’s Scene view you can see these three axes displayed, and in the
Inspector you can type in the three numbers to position an object. Not only will
you write code to position objects using these three-number coordinates, but you
can also define movements as a distance to move along each axis.

:i_,eft-handed vs. right-handed coordinates

The positive and negative direction of each axis is arbitrary, and the coordinates
still work no matter which direction the axes point. You simply need to stay
consistent within a given 3D graphics tool (animation tool, game development
tool, and so forth).

But in almost all cases X goes to the right and Y goes up; what differs between
different tools is whether Z goes into or comes out of the page. These two
directions are referred to as “left-handed” or “right-handed”; as this figure
shows, if you point your thumb along the X-axis and your index finger along the
Y-axis, then your middle finger points along the Z-axis.

Left-handed i 1

CGOrdlﬂatES <) e ,________“{} : nght‘handEd

coordinates

The Z-axis points in a different direction on the left hand versus the right hand.

Unity uses a left-handed coordinate system, as do many 3D art applications.
Many other tools use right-handed coordinate systems (OpenGL, for example),
so don’t get confused if you ever see different coordinate directions.

Now that you have a plan in mind for this project and you know how coordinates
are used to position objects in 3D space, it’s time to start building the scene.

2.2. Begin the project: place objects in the scene

All right, let’s create and place objects in the scene. First you’ll set up all the
static scenery—the floor and walls. Then you’ll place lights around the scene
and position the camera. Last you’ll create the object that will be the player, the
object to which you’ll attach scripts to walk around the scene. Figure 2.5 shows
what the editor will look like with everything in place.

Figure 2.5. Scene in the Editor with floor, walls, lights, a camera, and the player

Lights — Both directional and
| point lights are in this scene.

Camera view —
The camera
object is located
right on top of
the player; these
angled white lines
indicate the
camera's field

of view.

Player — This is a basic capsule object.

Chapter 1 showed how to create a new project in Unity, so you’ll do that now.
Remember: Choose File > New Project and then name your new project in the
window that pops up. After creating the new project, immediately save the
current empty default scene, because the project doesn’t have any Scene file
initially. The scene starts out empty, and the first objects to create are the most
obvious ones.

2.2.1. The scenery: floor, outer walls, inner walls

Select the GameObject menu at the top of the screen, and then hover over 3D
Object to see that drop-down menu. Select Cube to create a new cube object in
the scene (later we’ll use other shapes like Sphere and Capsule). Adjust the
position and scale of this object, as well as its name, in order to make the floor;
figure 2.6 shows what values the floor should be set to in the Inspector (it’s only
a cube initially, before you stretch it out).

Figure 2.6. Inspector view for the floor

1. Position and scale the
cube in order to create

l. At the top you can type
in a name for the object.
For example, call the floor
object “Floor.”

Rotation X 0 ¥ 0 Fali
a floor for the room. Or Sk x50 ¥l z50
rather “cube,” since it T | Cube (Mevh Filter) [N
won't look like a cube 'f"; L] ﬂ%
. 7 i o Box Collider
anymore after being 14 Trigger o -
stretched out with v, emee Mg the vie coon
differing scale values it b
in diflfe%ent L m: 4 i = a new Cube object but don’t
: X1 ¥ 27 need to be adjusted right
i i ¥ | b Mbeth Renderer e now. These components
FRGTRIRE S pnsi e Gex oA include a Mesh II:]ill:er (to
is lowered very slightly Rrceive Shadows &l
® Materiaty define the geometry of the

to compensate for the
height; we set the Y scale

Use Light Probes.]

object), a Mesh Renderer

i et nidorrieien & Defaui-Diffuse Ge (to define the material on the
nsitiuned arﬁu]nd Shider | Cafiss) e object), and a Box Collider (so
iF;s arta Mgin Celor — that the object can be collided
: SRamcy eumre with during movement).
Temy =
i % e
Add Componeni |
Note

The numbers for position can be any units you want, as long as you’re consistent
throughout the scene. The most common choice for units is meters and that’s
what I generally choose, but I also use feet sometimes and I’ve even seen other
people decide that the numbers are inches!

Repeat the same steps in order to create outer walls for the room. You can create
new cubes each time, or you can copy and paste existing objects using the
standard shortcuts. Move, rotate, and scale the walls to form a perimeter around
the floor, as shown in figure 2.5. Experiment with different numbers (for
example, 1, 4, 50 for scale) or use the transform tools first seen in section 1.2.2
(remember that the mathematical term for moving and rotating in 3D space is
“transform”).

Tip

Also recall the navigation controls so that you can view the scene from different
angles or zoom out for a bird’s-eye view. If you ever get lost in the scene, press F
to reset the view on the currently selected object.

The exact transform values the walls end up with will vary depending on how
you rotate and scale the cubes in order to fit, and on how the objects are linked
together in the Hierarchy view. For example, in figure 2.7 the walls are all
children of an empty root object, so that the Hierarchy list will look organized. If
you need an example to copy working values from, download the sample project
and refer to the walls there.

Figure 2.7. The Hierarchy view showing the walls and floor organized under an empty object

= Hierarchy
Create ~ | (Crall
¥ Building
Floor
Outer Wall
Outer Wall
Outer Wall
Outer Wall

Tip

Drag objects on top of each other in the Hierarchy view to establish linkages.
Objects that have other objects attached are referred to as parent; objects
attached to other objects are referred to as children. When the parent object is
moved (or rotated or scaled), the child objects are transformed along with it.

Tip

Empty game objects can be used to organize the scene in this way. By linking
visible objects to a root object, their Hierarchy list can be collapsed. Be warned:
before linking any child objects to it, you want to position the empty root object
at 0, 0, 0 to avoid any positioning oddities later.

What is GameObject?

All scene objects are instances of the class GameObject, similar to how all
script components inherit from the class MonoBehaviour. This fact was more
explicit with the empty object actually named GameObject but is still true
regardless of whether the object is named F1loor, Camera, or Player.

GameObject is really just a container for a bunch of components. The main
purpose of GameObject is so that MonoBehaviour has something to attach
to. What exactly the object is in the scene depends on what components have
been added to that GameObject. Cube objects have a Cube component,
Sphere objects have a Sphere component, and so on.

Once the outer walls are in place, create some inner walls to navigate around.
Position the inner walls however you like; the idea is to create some hallways
and obstacles to walk around once you write code for movement.

Now the scene has a room in it, but without any lights the player won’t be able
to see any of it. Let’s take care of that next.

2.2.2. Lights and cameras

Typically you light a 3D scene with a directional light and then a series of point
lights. First start with a directional light; the scene probably already has one by
default, but if not then create one by choosing GameObject > Light and selecting
Directional Light.

=”.I‘ypes of lights

You can create several types of light sources, defined by how and where they
project light rays. The three main types are point, spot, and directional.

Point lights are a kind of light source where all the light rays originate from a
single point and project out in all directions, like a lightbulb in the real world.
The light is brighter up close because the light rays are bunched up.

Spot lights are a kind of light source where all the light rays originate from a
single point but only project out in a limited cone. No spot lights are used in the
current project, but these lights are commonly used to highlight parts of a level.

Directional lights are a kind of light source where all the light rays are parallel
and project evenly, lighting everything in the scene the same way. This is like the
sun in the real world.

The position of a directional light doesn’t affect the light cast from it, only the
rotation the light source is facing, so technically you could place that light
anywhere in the scene. I recommend placing it high above the room so that it
intuitively feels like the sun and so that it’s out of the way when you’re
manipulating the rest of the scene. Rotate this light and watch the effect on the
room; I recommend rotating it slightly on both the X-and Y-axes to get a good
effect. You can see an Intensity setting when you look in the Inspector (see
figure 2.8). As the name implies, that setting controls the brightness of the light.
If this were the only light, it’d have to be more intense, but because you’ll add a
bunch of point lights as well, this directional light can be pretty dim, like 0.6
Intensity.

Figure 2.8. Directional light settings in the Inspector

The remaining settings don't ¥ o bflught (FL0

n . Trpe Dhestignal C
need to be adjusted right St P - S
now. These settings include : wakda gl

; Caler [12 control the light's
the color of the light, shadows ety ;
st b e ligh, and even - Intensity 0t 7 | brightness, from 0
a silhouette prujlectiun N : : for completely dark.
& . Shadow Type Saft Shadows

(think of the Bat signal). s:mm:h 1

As for point lights, create several using the same menu and place them around
the room in dark spots in order to make sure all the walls are lit. You don’t want
too many (performance will degrade if the game has lots of lights), but one near
each corner should be fine (I suggest raising them to the tops of the walls), plus
one placed high above the scene (like a Y of 18) to give some variety to the light
in the room. Note that point lights have a setting for Range added to the
Inspector (see figure 2.9). This controls how far away the light reaches; whereas
directional lights cast light evenly throughout the entire scene, point lights are
brighter when an object is closer. The point lights lower to the floor should have
a range around 18, but the light placed high up should have a range of around 40
in order to reach the entire room.

Figure 2.9. Point light settings in the Inspector

v Mugh ko Here is where you control

Other than Range, ' :.:: ::Iq —— 9 light range, with the same
the settings for g = units as position and scale.
point lights are e 20
shoRoats Colar . __* (If you see an error about
o . i =t “realtime not supported,”
directional lights. BOUNCE INENSITY e | R : ek
ER m Just ignore it or switc
it e ihadem ! Baking to “Mixed.”)

The other kind of object needed in order for the player to see the scene is a
camera, but the “empty” scene already came with a main camera, so you’ll use
that. If you ever need to create new cameras (such as for split-screen views in
multiplayer games), Camera is another choice in the same GameObject menu as
Cube and Lights. The camera will be positioned around the top of the player so
that the view appears to be the player’s eyes.

2.2.3. The player’s collider and viewpoint

For this project, a simple primitive shape will do to represent the player. In the
GameObject menu (remember, hover over 3D Object to expand the menu) click
Capsule. Unity creates a cylindrical shape with rounded ends; this primitive
shape will represent the player. Position this object at 1.1 on the Y-axis (half the
height of the object, plus a bit to avoid overlapping the floor). You can move the
object on X and Z wherever you like, as long as it’s inside the room and not
touching any walls. Name the object Player.

In the Inspector you’ll notice that this object has a capsule collider assigned to it.
That’s a logical default choice for a capsule object, just like cube objects had a
box collider by default. But this particular object will be the player and thus
needs a slightly different sort of component than most objects. Remove the
capsule collider by clicking the gear icon toward the top-right of that component,
shown in figure 2.10; that will display a menu that includes the option Remove
Component. The collider is a green mesh surrounding the object, so you’ll see
the green mesh disappear after deleting the capsule collider.

Figure 2.10. Removing a component in the Inspector

ILdie AL L &4

¥ . Capsule (Mesh Filter) i = saus
Mesh @ Capsule B
v ¥/ capsule Collider (FIR-5) o
Is Trigger O Click this icon to access
Material Mone (Physic Mater © a menu with the
Center Remove Component option.
X0 Y 0 Z|0
Radius 0.5
Height 2
Direction | ¥-Axis $]
¥ . ¥ Mesh Renderer g =

e oa Pl el o - |

Instead of a capsule collider we’re going to assign a character controller to this
object. At the bottom of the Inspector there’s a button labeled Add Component;
click that button to open a menu of components that you can add. In the Physics
section of this menu you’ll find Character Controller; select that option. As the
name implies, this component will allow the object to behave like a character.

You need to complete one last step to set up the player object: attaching the
camera. As mentioned in the earlier section on floors and walls, objects can be
dragged onto each other in the Hierarchy view. Drag the camera object onto the
player capsule to attach the camera to the player. Now position the camera so
that it’ll look like the player’s eyes (I suggest a position of 0, 0.5, 0). If
necessary, reset the camera’s rotation to 0, 0, O (this will be off if you rotated the

capsule).

You’ve created all the objects needed for this scene. What remains is writing
code to move the player object.

2.3. Making things move: a script that applies transforms

To have the player walk around the scene, you’ll write movement scripts
attached to the player. Remember, components are modular bits of functionality
that you add to objects, and scripts are a kind of component. Eventually those
scripts will respond to keyboard and mouse input, but first just make the player
spin in place. This beginning will teach you how to apply transforms in code.
Remember that the three transforms are Translate, Rotate, and Scale; spinning an
object means changing the rotation. But there’s more to know about this task
than just “this involves rotation.”

2.3.1. Diagramming how movement is programmed

Animating an object (such as making it spin) boils down to moving it a small
amount every frame, with the frames playing over and over. By themselves
transforms apply instantly, as opposed to visibly moving over time. But applying
the transforms over and over causes the object to visibly move, just like a series
of still drawings in a flipbook. Figure 2.11 diagrams how this works.

Figure 2.11. The appearance of movement: cyclical process of transforming between still pictures

Frame 1 Frame 2 Frame 3 Frame 4
Rotate cube Rotate cube Rotate cube

by 15 degrees by 15 degrees by 15 degrees

Recall that script components have an Update () method that runs every
frame. To spin the cube, add code inside Update () that rotates the cube a
small amount. This code will run over and over every frame. Sounds pretty
simple, right?

2.3.2. Writing code to implement the diagram

Now let’s put in action the concepts just discussed. Create a new C# script
(remember it’s in the Create submenu of the Assets menu), name it Spin, and
write in the code from the following listing (don’t forget to save the file after
typing in it!).

Listing 2.1. Making the object spin

ublic float speed = 3.0f: <} <
: : pese \ Declare a public variable
for the speed of rotation.

transform.Rotate (0, speed, 0); <
) \ Put the Rotate command here
so that it runs every frame.

To add the script component to the player object, drag the script up from the
Project view and drop it onto Player in the Hierarchy view. Now hit Play and
you’ll see the view spin around; you’ve written code to make an object move!
This code is pretty much the default template for a new script plus two new
added lines, so let’s examine what those two lines do.

First there’s the variable for speed added toward the top of the class definition.
There are two reasons for defining the rotation speed as a variable: one is the
standard “no magic numbers” programming rule, and the second reason is
specific to how Unity displays public variables. Unity does something handy
with public variables in script components, as described in the following tip.

Tip

Public variables are exposed in the Inspector so that you can adjust the
component’s values after adding a component to a game object. This is referred
to as “serializing” the value, because Unity saves the modified state of the
variable.

Figure 2.12 shows what the script component looks like in the Inspector. You
can type in a new number, and then the script will use that value instead of the
default value defined in the code. This is a handy way to adjust settings for the
component on different objects, working within the visual editor instead of
hardcoding every value.

Figure 2.12. The Inspector displaying a public variable declared in the script

v |G| M Spin (Script) £,
Script {= Spin Q
Speed 3

The second line to examine from listing 2.1 is the Rotate () method. That’s
inside Update() so that the command runs every frame. Rotate() isa
method of the Transform class, so it’s called with dot notation through the
transform component of this object (as in most object-oriented languages,
this.transformis implied if you type transform). The transform is
rotated by speed degrees every frame, resulting in a smooth spinning
movement. But why are the parameters to Rotate () listed as (0, speed, 0) as
opposed to, say, (speed, 0, 0)?

Recall that there are three axes in 3D space, labeled X, Y, and Z. It’s fairly
intuitive to understand how these axes relate to positions and movements, but
these axes can also be used to describe rotations. Aeronautics describes rotations
in a similar way, so programmers working with 3D graphics often use a set of
terms borrowed from aeronautics: pitch, yaw, and roll. Figure 2.13 illustrates
what these terms mean; pitch is rotation around the X-axis, yaw is rotation
around the Y-axis, and roll is rotation around the Z-axis.

Figure 2.13. Illustration of pitch, yaw, and roll rotation of an aircraft

Pitch

Given that we can describe rotations around the X-, Y-, and Z-axes, that means
the three parameters for Rotate() are X, Y, and Z rotation. Because we only
want the player to spin around sideways, as opposed to tilting up and down,

there should only be a number given for the Y rotation, and just O for X and Z
rotation. Hopefully you can guess what will happen if you change the parameters
to (speed, 0, 0) and then play it; try that now!

There’s one other subtle point to understand about rotations and 3D coordinate
axes, embodied in an optional fourth parameter to the Rotate () method.

2.3.3. Local vs. global coordinate space

By default, the Rotate () method operates on what are called local
coordinates. The other kind of coordinates you could use are global. You tell the
method whether to use local or global coordinates using an optional fourth
parameter by writing either Space.Self or Space.Wor1d like so:

Rotate(@, speed, 0, Space.World)

Refer back to the explanation about 3D coordinate space, and ponder these
questions: Where is (0, 0, 0) located? What direction is the X-axis pointed in?
Can the coordinate system itself move around?

It turns out that every single object has its own origin point, as well as its own
direction for the three axes, and this coordinate system moves around with the
object. This is referred to as local coordinates. The overall 3D scene also has its
own origin point and its own direction for the three axes, and this coordinate
system never moves. This is referred to as global coordinates. Thus, when you
specify local or global for the Rotate () method, you’re telling it whose X-, Y-
, and Z-axes to rotate around (see figure 2.14).

Figure 2.14. Local vs. global coordinate axes

Global coordinate axes

Local coordinate axes

Note that these axes are
aligned to the tilted object
but are out of alignment
with the global coordinates.

If you’re new to 3D graphics, this is somewhat of a mind-bending concept. The
different axes are depicted in figure 2.14 (notice how “left” to the plane is a
different direction than “left” to the world) but the easiest way to understand
local and global is through an example.

First, select the player object and then tilt it a bit (something like 30 for X
rotation). This will throw off the local coordinates, so that local and global
rotations will look different. Now try running the Spin script both with and
without Space .Wor1d added to the parameters; if it’s too hard for you to
visualize what’s happening, try removing the spin component from the player
object and instead spin a tilted cube placed in front of the player. You’ll see the
object rotating around different axes when you set the command to local or
global coordinates.

2.4. Script component for looking around: MouseLook

Now you’ll make rotation respond to input from the mouse (that is, rotation of
the object this script is attached to, which in this case will be the player). You’ll
do this in several steps, progressively adding new movement abilities to the
character. First the player will only rotate side to side, and then the player will
only rotate up and down. Eventually the player will be able to look around in all
directions (rotating horizontally and vertically at the same time), a behavior
referred to as mouse-look.

Given that there will be three different types of rotation behavior (horizontal,
vertical, and both), you’ll start by writing the framework for supporting all three.
Create a new C# script, name it MouseL ook, and write in the code from the next
listing.

Listing 2.2. MouseL ook framework with enum for the Rotation setting

18ing UnityEngine;
18ing System.Collections;

Define an enum data
I ~— Sstructure to associate
'4_,/ names with settings.

Declare a public

variable to set in
RotationAxes axes RotationAxes.MouseXAndY; *1-/_ Unity’s editor.

i Bt e 2 Put code here for
hacizontsl votation havae o’ horizontal rotation only.
& o T UL Put code here for
N T e R d,r vertical rotation only.

ital and vertical rotation here c:\ Put code here for
both horizontal and
vertical rotation.

Notice that an enum is used to choose horizontal or vertical rotation for the
MouseL.ook script. Defining an enum data structure allows you to set values by
name, rather than typing in numbers and trying to remember what each number
means (is 0 horizontal rotation? Is it 1?). If you then declare a public variable
typed to that enum, that will display in the Inspector as a drop-down menu (see
figure 2.15), which is useful for selecting settings.

Figure 2.15. The Inspector displays public enum variables as a drop-down menu.

v || M Mouse Look (Script) &,
Script i MouselLook (o]
Axes | MouseX s |

Remove the Spin component (the same way you removed the capsule collider
earlier) and attach this new script to the player object instead. Use the Axes
menu to switch between code branches while working through the code. With

the horizontal/vertical rotation setting in place, you can fill in code for each
branch of the conditional.

2.4.1. Horizontal rotation that tracks mouse movement

The first and simplest branch is horizontal rotation. Start by writing the same
rotation command you used in listing 2.1 to make the object spin. Don’t forget to
declare a public variable for the rotation speed; declare the new variable after
axes but before Update(), and call the variable sensitivityHor because
speed is too generic a name once you have multiple rotations involved. Increase
the value of the variable to 9 this time because that value needs to be bigger once
the code starts scaling it (which will be soon). The adjusted code should look
like the following listing.

Listing 2.3. Horizontal rotation, not yet responding to the mouse

<, [ltalicized code was
‘- already in script; it's

: shown here for reference.
Declare a variable for

the speed of rotation.

<
N Put the Rotate command here

so that it runs every frame.

If you play the script now, the view will spin around just like before (only a lot
faster, because the Y rotation is 9 instead of 3). The next step is to make the
rotation react to mouse movement, so let’s introduce a new method:
Input.GetAxis(). The Input class has a bunch of methods for handling
input devices (such as the mouse) and the method GetAxis () returns numbers
correlated to the movement of the mouse (positive or negative, depending on the
direction of movement). GetAxis () takes the name of the axis desired as a
parameter, and the horizontal axis is called Mouse X.

If you multiply the rotation speed by the axis value, the rotation will respond to
mouse movement. The speed will scale according to mouse movement, scaling
down to zero or even reversing direction. The Rotate command now looks like
the next listing.

Listing 2.4. Rotate command adjusted to respond to the mouse

nput .Gethxis ("Mou X" * gensitivityHor, - T,

"\.\'

Mote the use of GetAxis()
to get mouse input.

Hit Play and then move the mouse around. As you move the mouse from side to
side, the view will rotate from side to side. That’s pretty cool! The next step is to
rotate vertically instead of horizontally.

2.4.2. Vertical rotation with limits

For horizontal rotation we’ve been using the Rotate () method, but we’ll take
a different approach with vertical rotation. Although that method is convenient
for applying transforms, it’s also kind of inflexible. It’s only useful for
incrementing the rotation without limit, which was fine for horizontal rotation,
but vertical rotation needs limits on how much the view can tilt up or down. The
following listing shows the vertical rotation code for MouseLook; a detailed
explanation of the code will come right after.

Listing 2.5. Vertical rotation for MouseL ook

_ Declare variables used

.._-P.z" for vertical rotation.

_ Declare a private variable
for the vertical angle.
Increment the
vertical angle based
on the mouse.

Clamp the vertical

angle between &l L1 ; tlonAxe: g 'y . . . S
minimum and 1 ! =T ! "
maximum limits,

et
I

Keep the same transform a1Eu Arier] t ' ny Eat o

; ,
Y angle (i.e., ‘-
no horizontal Create a new vector from
rotation). the stored rotation values.

Set the Axes menu of the MouseLook component to vertical rotation and play
the new script. Now the view won’t rotate sideways, but it’ll tilt up and down
when you move the mouse up and down. The tilt stops at upper and lower limits.

There are several new concepts in this code that need to be explained. First off,

we’re not using Rotate () this time, so we need a variable (called
_rotationX here, because vertical rotation goes around the X-axis) in which
to store the rotation angle. The Rotate () method increments the current
rotation, whereas this code sets the rotation angle directly. In other words, it’s the
difference between saying “add 5 to the angle” and “set the angle to 30.” We do
still need to increment the rotation angle, but that’s why the code has the -=
operator: to subtract a value from the rotation angle, rather than set the angle to
that value. By not using Rotate () we can manipulate the rotation angle in
various ways aside from only incrementing it. The rotation value is multiplied by
Input.GetAxis() just like in the code for horizontal rotation, except now
we ask for Mouse Y because that’s the vertical axis of the mouse.

The rotation angle is manipulated further on the very next line. We use
Mathf.Clamp() to keep the rotation angle between minimum and maximum
limits. Those limits are public variables declared earlier in the code, and they
ensure that the view can only tilt 45 degrees up or down. The Clamp () method
isn’t specific to rotation, but is generally useful for keeping a number variable
between limits. Just to see what happens, try commenting out the Clamp ()
line; now the tilt doesn’t stop at upper and lower limits, allowing you to even
rotate completely upside down! Clearly, viewing the world upside down is
undesirable; hence the limits.

Because the angles property of transformis a Vector3, we need to create a
new Vector3 with the rotation angle passed in to the constructor. The
Rotate() method was automating this process for us, incrementing the
rotation angle and then creating a new vector.

Definition

A vector is multiple numbers stored together as a unit. For example, a Vector3 is
3 numbers (labeled x, y, z).

Warning

The reason why we need to create a new Vector3 instead of changing values in
the existing vector in the transform is because those values are read-only for
transforms. This is a common mistake that can trip you up.

Euler angles vs. quaternion

You’re probably wondering why the property is called 1localEulerAngles
and not localRotation. First you need to know about a concept called
quaternions.

Quaternions are a different mathematical construct for representing rotations.
They’re distinct from Euler angles, which is the name for the X-, Y-, Z-axes
approach we’ve been taking. Remember the whole discussion of pitch, yaw, and
roll? Well, that method of representing rotations is Euler angles. Quaternions
are...different. It’s hard to explain what quaternions are, because they’re an
obscure aspect of higher math, involving movement through four dimensions. If
you want a detailed explanation, try reading the document found here:

www.flipcode.com/documents/matrfaq.html#Q47

It’s a bit easier to explain why quaternions are used to represent rotations:
interpolating between rotation values (that is, going through a bunch of in-
between values to gradually change from one value to another) looks smoother
and more natural when using quaternions.

To return to the initial question, it’s because 1ocalRotation is a quaternion,
not Euler angles. Unity also provides the Euler angles property to make
manipulating rotations easier to understand; the Euler angles property is
converted to and from quaternion values automatically. Unity handles the harder
math for you behind the scenes, so you don’t have to worry about handling it
yourself.

There’s one more rotation setting for MouseL.ook that needs code: horizontal and
vertical rotation at the same time.

2.4.3. Horizontal and vertical rotation at the same time

This last chunk of code won’t use Rotate() either, for the same reason: the
vertical rotation angle is clamped between limits after being incremented. That
means the horizontal rotation needs to be calculated directly now. Remember,

http://www.flipcode.com/documents/matrfaq.html#Q47

Rotate() was automating the process of incrementing the rotation angle (see
the next listing).

Listing 2.6. Horizontal and vertical MouseL ook

delta is the amount to
change the rotation by.

Increment the
rotation angle -,
by delta

The first couple of lines, dealing with _rotationX, are exactly the same as in
the last section. Just remember that rotating around the object’s X-axis is vertical
rotation. Because horizontal rotation is no longer being handled using the
Rotate() method, that’s what the delta and rotationY lines are doing.
Delta is a common mathematical term for “the amount of change,” so our
calculation of delta is the amount that rotation should change. That amount of
change is then added to the current rotation angle to get the desired new rotation
angle.

Finally, both angles, vertical and horizontal, are used to create a new vector
that’s assigned to the transform component’s angle property.

Disallow physics rotation on the player

Although this doesn’t matter quite yet for this project, in most modern FPS
games there’s a complex physics simulation affecting everything in the scene.
This will cause objects to bounce and tumble around; this behavior looks and
works great for most objects, but the player’s rotation needs to be solely
controlled by the mouse and not affected by the physics simulation.

For that reason, mouse input scripts usually set the freezeRotation
property on the player’s Rigidbody. Add this Start () method to the
MouseLook script:

tion Erue : \\— Check if this component exists.

(A Rigidbody is an additional component an object can have. The physics
simulation acts on Rigidbodies and manipulates objects they’re attached to.)

In case you’ve gotten lost on where to make the various changes and additions
we’ve gone over, the next listing has the full finished script. Alternatively,
download the example project.

Listing 2.7. The finished MouseLook script

using UnityEngine;
using System.Collections;

public class MouselLook : MonoBehaviour {
public enum RotationAxes {
MouseXAndY = 0,
MouseX = 1,
MouseY = 2

}

public RotationAxes axes = RotationAxes.MouseXAndY;

public float sensitivityHor = 9.0f;
public float sensitivityVert = 9.0f;

public float minimumVert = -45.0f;
public float maximumVert = 45.0f;
private float _rotationX = 0;

void Start() {
Rigidbody body = GetComponent<Rigidbody>();
if (body !'= null)
body.freezeRotation = true;

}

void Update() {
if (axes == RotationAxes.MouseX) {
transform.Rotate(0, Input.GetAxis("Mouse X") sensitivityHor, 0),

else if (axes == RotationAxes.MouseY) {
_rotationX -= Input.GetAxis('"Mouse Y") sensitivityVert;
rotationX = Mathf.Clamp(rotationX, minimumVert, maximumVert);

float rotationY = transform.localEulerAngles.y;

transform.localEulerAngles = new Vector3(_rotationX, rotationy,
0);

}
else {

_rotationX -= Input.GetAxis("Mouse Y") sensitivityVert;
rotationX = Mathf.Clamp(rotationX, minimumVert, maximumVert),

float delta = Input.GetAxis("Mouse X") sensitivityHor;
float rotationY = transform.localEulerAngles.y + delta;

transform.localEulerAngles = new Vector3(_rotationX, rotationy,
0);
}
}
}

When you run the new script, you’re able to look around in all directions while
moving the mouse. Great! But you’re still stuck in one place, looking around as
if mounted on a turret. The next step is moving around the scene.

2.5. Keyboard input component: first-person controls

Looking around in response to mouse input is an important part of first-person
controls, but you’re only halfway there. The player also needs to move in
response to keyboard input. Let’s write a keyboard controls component to
complement the mouse controls component; create a new C# script called
FPSInput and attach that to the player (alongside the MouseL.ook script). For the
moment set the MouseL.ook component to horizontal rotation only.

Tip

The keyboard and mouse controls explained here are split up into separate
scripts. You don’t have to structure the code this way, and you could have
everything bundled into a single “player controls” script, but a component
system (such as the one in Unity) tends to be most flexible and thus most useful
when you have functionality split into several smaller components.

The code you wrote in the previous section affected rotation only, but now we’ll

change the object’s position instead. As shown in listing 2.8, refer back to the
rotation code from before we added mouse input; type that into FPSInput, but
change Rotate() to Translate(). When you hit Play, the view slides up
instead of spinning around. Try changing the parameter values to see how the
movement changes (in particular, try swapping the first and second numbers);
after experimenting with that for a bit, you can move on to adding keyboard
input.

Listing 2.8. Spin code from the first listing, with a couple of minor changes

_ Not required, but you probably
public class FPSInput : MonoBehaviour { /_ want to increase the speed
ekl de 13t = F <

q\~ Changing Rotate() to Translate()

2.5.1. Responding to key presses

The code for moving according to key presses (shown in the following listing) is
similar to the code for rotating according to the mouse. The GetAxis()
method is used here as well, and in a very similar way. The following listing
demonstrates how to use that command.

Listing 2.9. Positional movement responding to key presses

Horizontal") * speed; *:-_ “Horizontal™ and “Vertical”
leltaZ Input .GetAxis ("Vertical") * speed = are indirect names for
late (deltaX, 0, deltaZ}; keyboard mappings.

As before, the Get Axis () values are multiplied by speed in order to determine
the amount of movement. Whereas before the requested axis was always “Mouse
something,” now we pass in either Horizontal or Vertical. These names are
abstractions for input settings in Unity; if you look in the Edit menu under
Project Settings and then look under Input, you’ll find a list of abstract input
names and the exact controls mapped to those names. Both the left/right arrow

keys and the letters A/D are mapped to Horizontal, whereas both the up/down
arrow keys and the letters W/S are mapped to Vertical.

Note that the movement values are applied to the X and Z coordinates. As you
probably noticed while experimenting with the Translate() method, the X
coordinate moves from side to side and the Z coordinate moves forward and
backward.

Put in this new movement code and you should be able to move around by
pressing either the arrow keys or WASD letter keys, the standard in most FPS
games. The movement script is nearly complete, but we have a few more
adjustments to go over.

2.5.2. Setting a rate of movement independent of the computer’s speed

It’s not obvious right now because you’ve only been running the code on one
computer (yours), but if you ran it on different machines it’d run at different
speeds. That’s because some computers can process code and graphics faster
than others. Right now the player would move at different speeds on different
computers because the movement code is tied to the computer’s speed. That is
referred to as frame rate dependent, because the movement code is dependent on
the frame rate of the game.

For example, imagine you run this demo on two different computers, one that
gets 30 fps (frames per second) and one that gets 60 fps. That means Update()
would be called twice as often on the second computer, and the same speed
value of 6 would be applied every time. At 30 fps the rate of movement would
be 180 units/second, and the movement at 60 fps would be 360 units/second. For
most games, movement speed that varies like this would be bad news.

The solution is to adjust the movement code to make it frame rate independent.
That means the speed of movement is not dependent on the frame rate of the
game. The way to achieve this is by not applying the same speed value at every
frame rate. Instead, scale the speed value higher or lower depending on how
quickly the computer runs. This is achieved by multiplying the speed value by
another value called deltaTime, as shown in the next listing.

Listing 2.10. Frame rate independent movement using deltaTime

void Update() {
float deltaX = Input.GetAxis("Horizontal") speed;
float deltaZ = Input.GetAxis("Vertical'") speed;
transform.Translate(deltaX Time.deltaTime, 0, deltaz
Time.deltaTime);

}

That was a simple change. The Time class has a number of properties and
methods useful for timing, and one of those properties is deltaTime. Because
we know that delta means the amount of change, that means deltaTime is the
amount of change in time. Specifically, deltaTime is the amount of time
between frames. The time between frames varies at different frame rates (for
example, 30 fps is a deltaTime of 1/30th of a second), so multiplying the
speed value by deltaTime will scale the speed value on different computers.

Now the movement speed will be the same on all computers. But the movement
script is still not quite done; when you move around the room you can pass
through walls, so we need to adjust the code further to prevent that.

2.5.3. Moving the CharacterController for collision detection

Directly changing the object’s transform doesn’t apply collision detection, so the
character will pass through walls. To apply collision detection, what we want to
do instead is use CharacterController. CharacterController is a component that
makes the object move more like a character in a game, including colliding with
walls. Recall that back when we set up the player, we attached a
CharacterController, so now we’ll use that component with the movement code
in FPSInput (see the following listing).

Listing 2.11. Moving CharacterController instead of Transform

Yariable for referencing
the CharacterController

<,
Y Access other
components attached
to the same object.

Limit diagonal movement
F ~ to the same speed as
Transform the ement Vect Magnitud nt paad </ movement along an axis.
movement
vector from
local to global
coordinates <
%_ Tell the CharacterController

to move by that vector.

This code excerpt introduces several new concepts. The first concept to point out
is the variable for referencing the CharacterController. This variable simply
creates a local reference to the object (code object, that is—not to be confused
with scene objects); multiple scripts can have references to this one
CharacterController instance.

That variable starts out empty, so before you can use the reference you need to
assign an object to it for it to refer to. This is where GetComponent () comes
into play; that method returns other components attached to the same
GameObject . Rather than pass a parameter inside the parentheses, you use the
C# syntax of defining the type inside angle brackets, <>.

Once you have a reference to the CharacterController, you can call Move () on
the controller. Pass in a vector to that method, similar to how the mouse rotation
code used a vector for rotation values. Also similar to how rotation values were
limited, use Vector3.ClampMagnitude() to limit the vector’s magnitude
to the movement speed; the clamp is used because otherwise diagonal movement
would have a greater magnitude than movement directly along an axis (picture
the sides and hypotenuse of a right triangle).

But there’s one tricky aspect to the movement vector here, and it has to do with
local versus global, as we discussed earlier for rotations. We’ll create the vector
with a value to move, say, to the left. That’s the player’s left, though, which may
be a completely different direction from the world’s left. That is, we’re talking
about left in local space, not global space. We need to pass a movement vector
defined in global space to the Move () method, so we’re going to need to
convert the local space vector into global space. Doing that conversion is

extremely complex math, but fortunately for us Unity takes care of that math for
us, and we simply need to call the method TransformDirection() in order
to, well, transform the direction.

Definition

Transform used as a verb means to convert from one coordinate space to another
(refer back to section 2.3.3 if you don’t remember what a coordinate space is).
Don’t get confused with the other definitions of transform, including both the
Transform component and the action of moving the object around the scene. It’s
sort of an overloaded term, because all these meanings refer to the same
underlying concept.

Test playing the movement code now. If you haven’t done so already, set the
MouseL.ook component to both horizontal and vertical rotation. You can look
around the scene fully and fly around the scene using keyboard controls. This is
pretty great if you want the player to fly around the scene, but what if you want
the player walking around on the ground?

2.5.4. Adjusting components for walking instead of flying

Now that collision detection is working, the script can have gravity and the
player will stay down against the floor. Declare a gravity variable and then use
that gravity value for the Y-axis, as shown in the next listing.

Listing 2.12. Adding gravity to the movement code

; e - : I Use the gravity value
2Mear VB rs. lampMagnlicugs (il VEMENe , sSpead H = s 2

tead of just 0.
ement .y wity; q/_ instea jus

Now there’s a constant downward force on the player, but it’s not always pointed
straight down, because the player object can tilt up and down with the mouse.
Fortunately everything we need to fix that is already in place, so we just need to
make some minor adjustments to how components are set up on the player. First

set the MouseLook component on the player object to horizontal rotation only.
Next add the MouseL.ook component to the camera object, and set that one to
vertical rotation only. That’s right; you’re going to have two different objects
responding to the mouse!

Because the player object now only rotates horizontally, there’s no longer any
problem with the downward force of gravity being tilted. The camera object is
parented to the player object (remember when we did that in the Hierarchy
view?), so even though it rotates vertically independently from the player, the
camera rotates horizontally along with the player.

Polishing the finished script

Use the RequireComponent () method to ensure that other components
needed by the script are also attached. Sometimes other components are optional
(that is, code that says “If this other component is also attached, then...”), but
sometimes you want to make the other components mandatory. Add the method
to the top of the script in order to enforce that dependency and give the required
component as a parameter.

Similarly, if you add the method AddComponentMenu() to the top of your
scripts, that script will be added to the component menu in Unity’s editor. Tell
the command the name of the menu item you want to add, and then the script
can be selected when you click Add Component at the bottom of the Inspector.
Handy!

A script with both methods added to the top would look something like this:

using UnityEngine;
using System.Collections;

[RequireComponent (typeof(CharacterController))]
[AddComponentMenu("Control Script/FPS Input")]
public class FPSInput : MonoBehaviour {

Listing 2.13 shows the full finished script. Along with the small adjustments to
how components are set up on the player, the player can walk around the room.
Even with the gravity variable being applied, you can still use this script for

flying movement by setting Gravity to 0 in the Inspector.

Listing 2.13. The finished FPSInput script

using UnityEngine;
using System.Collections;

[RequireComponent (typeof(CharacterController))]
[AddComponentMenu("Control Script/FPS Input")]
public class FPSInput : MonoBehaviour {

public float speed = 6.0f;

public float gravity = -9.8f;

private CharacterController charController;

void Start() {
charController = GetComponent<CharacterController>();

}

void Update() {
float deltaX = Input.GetAxis("Horizontal") speed;
float deltaZ = Input.GetAxis("Vertical'") speed;
Vector3 movement = new Vector3(deltaX, 0, deltaz);
movement = Vector3.ClampMagnitude(movement, speed);

movement.y = gravity;

movement *= Time.deltaTime;
movement = transform.TransformDirection(movement);
_charController.Move(movement);

}
}

Congratulations on building this 3D project! We covered a lot of ground in this
chapter, and now you’re well-versed in how to code movement in Unity. As
exciting as this first demo is, it’s still a long way from being a complete game.
After all, the project plan described this as a basic FPS scene, and what’s a
shooter if you can’t shoot? So give yourself a well-deserved pat on the back for
this chapter’s project, and then get ready for the next step.

2.6. Summary

In this chapter you learned that

3D coordinate space is defined by X-, Y-, and Z-axes.

Objects and lights in a room set the scene.

The player in a first-person scene is essentially a camera.
Movement code applies small transforms repeatedly in every frame.
FPS controls consist of mouse rotation and keyboard movement.

Chapter 3. Adding enemies and projectiles to the 3D
game

This chapter covers

Taking aim and firing, both for the player and for enemies
Detecting and responding to hits

Making enemies that wander around

Spawning new objects in the scene

The movement demo from the previous chapter was pretty cool but still not
really a game. Let’s turn that movement demo into a first-person shooter. If you
think about what else we need now, it boils down to the ability to shoot, and
things to shoot at. First we’re going to write scripts that enable the player to
shoot objects in the scene. Then we’re going to build enemies to populate the
scene, including code to both wander around aimlessly and react to being hit.
Finally we’re going to enable the enemies to fight back, emitting fireballs at the
player. None of the scripts from chapter 2 need to change; instead, we’ll add
scripts to the project—scripts that handle the additional features.

I’ve chosen a first-person shooter for this project for a couple of reasons. One is
simply that FPS games are popular; people like shooting games, so let’s make a
shooting game. A subtler reason has to do with the techniques you’ll learn; this
project is a great way to learn about several fundamental concepts in 3D
simulations. For example, shooting games are a great way to teach raycasting. In
a bit we’ll get into the specifics of what raycasting is, but for now you just need
to know that it’s a tool that’s useful for many different tasks in 3D simulations.
Although raycasting is useful in a wide variety of situations, it happens that
using raycasting makes the most intuitive sense for shooting.

Creating wandering targets to shoot at gives us a great excuse to explore code for
computer-controlled characters, as well as use techniques for sending messages
and spawning objects. In fact, this wandering behavior is another place that
raycasting is valuable, so we’re already going to be looking at a different
application of the technique after having first learned it with shooting. Similarly,

the approach to sending messages that’s demonstrated in this project is also
useful elsewhere. In future chapters you’ll see other applications for these
techniques, and even within this one project we’ll go over alternative situations.

Ultimately we’ll approach this project one new feature at a time, with the game
always playable at every step but also always feeling like there’s a missing part
to work on next. This roadmap breaks down the steps into small, understandable
changes, with only one new feature added in each step:

1. Write code enabling the player to shoot into the scene.
2. Create static targets that react to being hit.

3. Make the targets wander around.

4. Spawn the wandering targets automatically.

5. Enable the targets/enemies to shoot fireballs at the player.

Note

This chapter’s project assumes you already have a first-person movement demo
to build on. We created a movement demo in chapter 2, but if you skipped to this
chapter then you will need to download the sample files for chapter 2.

3.1. Shooting via raycasts

The first new feature to introduce into the 3D demo is shooting. Looking around
and moving are certainly crucial features for a first-person shooter, but it’s not a
game until players can affect the simulation and apply their skills. Shooting in
3D games can be implemented with a few different approaches, and one of the
most important approaches is raycasting.

3.1.1. What is raycasting?

As the name indicates, raycasting is when you cast a ray into the scene. Clear,
right? Well, okay, so what exactly is a ray?

Definition

A ray is an imaginary or invisible line in the scene that starts at some origin
point and extends out in a specific direction.

Raycasting is when you create a ray and then determine what intersects that ray;
figure 3.1 illustrates the concept. Consider what happens when you fire a bullet
from a gun: the bullet starts at the position of the gun and then flies forward in a
straight line until it hits something. A ray is analogous to the path of the bullet,
and raycasting is analogous to firing the bullet and seeing where it hits.

Figure 3.1. A ray is an imaginary line, and raycasting is finding where that line intersects.

A ray projected 4
through a 3D scene y
L
\\‘
Y Point of
“._ intersection,
Origin of the ray i.e., where
(imagine a gun) the ray hit

As you can imagine, the math behind raycasting often gets complicated. Not
only is it tricky to calculate the intersection of a line with a 3D plane, but you
need to do that for all polygons of all mesh objects in the scene (remember, a
mesh object is a 3D visual constructed from lots of connected lines and shapes).
Fortunately, Unity handles the difficult math behind raycasting, but you still
have to worry about higher-level concerns like where the ray is being cast from
and why.

In this project the answer to the latter question (why) is to simulate a bullet being
fired into the scene. For a first-person shooter, the ray generally starts at the
camera position and then extends out through the center of the camera view. In
other words, you’re checking for objects straight in front of the camera; Unity
provides commands to make that task simple. Let’s take a look at these

commands.

3.1.2. Using the command ScreenPointToRay for shooting

You’ll implement shooting by projecting a ray that starts at the camera and
extends forward through the center of the view. Projecting a ray through the
center of the camera view is a special case of an action referred to as mouse
picking.

Definition

Mouse picking is the action of picking out the spot in the 3D scene directly under
the mouse cursor.

Unity provides the method ScreenPointToRay () to perform this action.
Figure 3.2 illustrates what happens. The method creates a ray that starts at the
camera and projects at an angle passing through the given screen coordinates.
Usually the coordinates of the mouse position are used for mouse picking, but
for first-person shooting the center of the screen is used. Once you have a ray, it
can be passed to the method Physics.Raycast () to perform raycasting
using that ray.

Figure 3.2. ScreenPointToRay () projects a ray from the camera through the given screen
coordinates.

The camera is the origin The screen
of this ray, similar to the (i.e., the camera’s window
gun previously. into the 3D scene)

>

Ray projects from
the camera through this
point on the screen

Let’s write some code that uses the methods we just discussed. In Unity create a
new C# script, attach that script to the camera (not the player object), and then
write the code from the next listing in it.

Listing 3.1. RayShooter script to attach to the camera

ﬁul'.l'.l.“hh {:-1h-:|'-:l:|m|:|l:|n|.'r|ts
f attached to the same object.
<}

The middle of the id T t ~ Respond to the mouse button.
screen fs half its -,
width and height.

e
i

Create the ray at I i _
that pesition using x (A b : : ; i % The raycast fills a referenced
ScreenPointToRay(). ' it variable with information.

Retrieve coordinates
where the ray hit.

You should note a number of things in this code listing. First, the camera
component is retrieved in Start (), just like the CharacterController in the
previous chapter. Then the rest of the code is put in Update () because it needs
to check the mouse over and over repeatedly, as opposed to just one time. The
method Input.GetMouseButtonDown() returns true or false
depending on whether the mouse has been clicked, so putting that command in a
conditional means the enclosed code runs only when the mouse has been
clicked. You want to shoot when the player clicks the mouse; hence the
conditional check of the mouse button.

A vector is created to define the screen coordinates for the ray (remember that a
vector is several related numbers stored together). The camera’s pixelWidth
and pixelHeight values give you the size of the screen, so dividing those
values in half gives you the center of the screen. Although screen coordinates are
2D, with only horizontal and vertical components and no depth, a Vector3 was
created because ScreenPointToRay () requires that data type (presumably
because calculating the ray involves arithmetic on 3D vectors).
ScreenPointToRay() was called with this set of coordinates, resulting in a
Ray object (code object, that is, not a game object; the two can be confusing
sometimes).

The ray is then passed to the Raycast () method, but it’s not the only object
passed in. There’s also a RaycastHit data structure; RaycastHit is a
bundle of information about the intersection of the ray, including where the

intersection happened and what object was intersected. The C# syntax out
ensures that the data structure manipulated within the command is the same
object that exists outside the command, as opposed to the objects being separate
copies in the different function scopes.

Finally the code calls the Physics.Raycast () method. This method checks
for intersections with the given ray, fills in data about the intersection, and
returns true if the ray hit anything. Because a Boolean value is returned, this
method can be put in a conditional check, just as you used
Input.GetMouseButtonDown () earlier.

For now the code emits a console message to indicate when an intersection
occurred. This console message displays the 3D coordinates of the point where
the ray hit (the XYZ values we discussed in chapter 2). But it can be hard to
visualize where exactly the ray hit; similarly, it can be hard to tell where the
center of the screen is (that is, where the ray shoots through). Let’s add visual
indicators to address both problems.

3.1.3. Adding visual indicators for aiming and hits

Our next step is to add two kinds of visual indicators: an aiming spot on the
center of the screen, and a mark in the scene where the ray hit. For a first-person
shooter the latter is usually bullet holes, but for now you’re going to put a blank
sphere on the spot (and use a coroutine to remove the sphere after one second).
Figure 3.3 shows what you’ll see.

Figure 3.3. Shooting repeatedly after adding visual indicators for aiming and hits

Sphere indicates
where the wall
was hit

. /

Target point i .
& e — e
in the center —

of the screen J

Definition

Coroutines are a Unity-specific way of handling tasks that execute incrementally

over time, as opposed to how most functions make the program wait until they
finish.

First let’s add indicators to mark where the ray hits. Listing 3.2 shows the script
after making this addition. Run around the scene shooting; it’s pretty fun seeing
the sphere indicators!

Listing 3.2. RayShooter script with sphere indicators added

_ This function is mostly the same
i " raycasting code from listing 3.1.
<

Launch a coroutine
in response to a hit.
= P

Coroutines use
J.f"' IEnumerator functions.

{'L_ The yield keyword tells
i h :
r{sphere) ; . . : coroutines wnere to pause
}_ Remove this GameObject
and clear its memory.

The new method is SphereIndicator (), plus a one-line modification in the
existing Update () method. This method creates a sphere at a point in the
scene and then removes that sphere a second later. Calling
SpherelIndicator () from the raycasting code ensures that there will be
visual indicators showing exactly where the ray hit. This function is defined with
TEnumerator, and that type is tied in with the concept of coroutines.

Technically, coroutines aren’t asynchronous (asynchronous operations don’t stop
the rest of the code from running; think of downloading an image in the script of
a website), but through clever use of enumerators, Unity makes coroutines
behave similarly to asynchronous functions. The secret sauce in coroutines is the
yield keyword; that keyword causes the coroutine to temporarily pause,
handing back the program flow and picking up again from that point in the next
frame. In this way, coroutines seemingly run in the background of a program,
through a repeated cycle of running partway and then returning to the rest of the
program.

As the name implies, StartCoroutine() sets a coroutine in motion. Once a
coroutine is started, it keeps running until the function is finished; it just pauses
along the way. Note the subtle but significant point that the method passed to
StartCoroutine() has a set of parentheses following the name: this syntax
means you’re calling that function, as opposed to passing its name. The called
function runs until it hits a yield command, at which point the function pauses.

SpherelIndicator () creates a sphere at a specific point, pauses for the
yield statement, and then destroys the sphere after the coroutine resumes. The
length of the pause is controlled by the value returned at yield. A few different
types of return values work in coroutines, but the most straightforward is to
return a specific length of time to wait. Returning WaitForSeconds (1)
causes the coroutine to pause for one second. Create a sphere, pause for one
second, and then destroy the sphere: that sequence sets up a temporary visual
indicator.

Listing 3.2 gave you indicators to mark where the ray hits. But you also want an
aiming spot in the center of the screen, so that’s done in the next listing.

Listing 3.3. Visual indicator for aiming

'ursor . lockStat. ursorLockMode . Locked; Hide the mouse cursor at
ursor . visible = false; the center of the screen.

_ - : : :i.' % o :) The command GUI.Label()
amera.pixelHeight/: giz ; j.r’_ displays text on screen.
<

Another new method has been added to the RayShooter class, called

ONGUI (). Unity comes with both a basic and more advanced user interface (UI)
system; because the basic system has a lot of limitations, we’ll build a more
flexible advanced UI in future chapters, but for now it’s much easier to display a
point in the center of the screen using the basic UI. Much like Start () and
Update(), every MonoBehaviour automatically responds to an OnGUI ()
method. That function runs every frame right after the 3D scene is rendered,
resulting in everything drawn during ONGUI () appearing on top of the 3D
scene (imagine stickers applied to a painting of a landscape).

Definition

Render is the action of the computer drawing the pixels of the 3D scene.
Although the scene is defined using XYZ coordinates, the actual display on your
monitor is a 2D grid of colored pixels. Thus in order to display the 3D scene, the
computer needs to calculate the color of all the pixels in the 2D grid; running
that algorithm is referred to as rendering.

Inside ONGUI () the code defines 2D coordinates for the display (shifted
slightly to account for the size of the label) and then calls GUI.Label(). That
method displays a text label; because the string passed to the label is an asterisk
(*), you end up with that character displayed in the center of the screen. Now it’s
much easier to aim in our nascent FPS game!

Listing 3.3 also added some cursor settings to the Start () method. All that’s
happening is that the values are being set for cursor visibility and locking. The

script will work perfectly fine if you omit the cursor values, but these settings
make first-person controls work a bit more smoothly. The mouse cursor will stay
in the center of the screen, and to avoid cluttering the view it will turn invisible
and will only reappear when you hit Esc.

Warning

Always remember that you can hit Esc to unlock the mouse cursor. While the
mouse cursor is locked, it’s impossible to click the Play button and stop the
game.

That wraps up the first-person shooting code...well, that wraps up the player’s
end of the interaction, anyway, but we still need to take care of targets.

3.2. Scripting reactive targets

Being able to shoot is all well and good, but at the moment players don’t have
anything to shoot at. We’re going to create a target object and give it a script that
will respond to being hit. Or rather, we’ll slightly modify the shooting code to
notify the target when hit, and then the script on the target will react when
notified.

3.2.1. Determining what was hit

First you need to create a new object to shoot at. Create a new cube object
(GameObject > 3D Object > Cube) and then scale it up vertically by setting the
Y scale to 2 and leaving X and Z at 1. Position the new object at 0, 1, 0 to put it
on the floor in the middle of the room, and name the object Enemy. Create a new
script called ReactiveTarget and attach that to the newly created box. Soon you’ll
write code for this script, but leave it at the default for now; you’re only creating
the script file because the next code listing requires it to exist in order to
compile. Go back to RayShooter.cs and modify the raycasting code according to
the following listing. Run the new code and shoot the new target; debug
messages appear in the console instead of sphere indicators in the scene.

Listing 3.4. Detecting whether the target object was hit

Retrieve the object
o the ray hit.

ey 5
_ Check for the ReactiveTarget
component on the object.

Notice that you retrieve the object from RaycastHit, just like the coordinates
were retrieved for the sphere indicators. Technically, the hit information doesn’t
return the game object hit; it indicates the Transform component hit. You can
then access gameObject as a property of transform.

Then, you use the method GetComponent () on the object to check whether
it’s a reactive target (that is, if it has the ReactiveTarget script attached). As you
saw previously, that method returns components of a specific type that are
attached to the GameObject. If no component of that type is attached to the
object, then GetComponent () won’t return anything. You check whether
null was returned and run different code in each case.

If the hit object is a reactive target, the code emits a debug message instead of
starting the coroutine for sphere indicators. Now let’s inform the target object
about the hit so that it can react.

3.2.2. Alert the target that it was hit

All that’s needed in the code is a one-line change, as shown in the following
listing.
Listing 3.5. Sending a message to the target object

Call a method of the target instead
/' of just emitting the debug message.
<F

Now the shooting code calls a method of the target, so let’s write that target
method. In the ReactiveTarget script, write in the code from the next listing. The

target object will fall over and disappear when you shoot it; refer to figure 3.4.

Figure 3.4. The target object falling over when hit

Listing 3.6. ReactiveTarget script that dies when hit

using UnityEngine;
using System.Collections;

public class ReactiveTarget : MonoBehaviour {

public void ReactToHit () {

StartCoroutine (Die()) ; Q\- Method called by the
) shooting script

private IEnumerator Die() ({ o\v Enlniih it 15 d
this.transform.Rotate(-75, 0, 0); opple the enemy, wait |.o seconds,
then destroy the enemy.

yield return new WaitForSeconds(1.5f);

Destroy(this.game0bject) ; " .
Object can des itself
} _ Obj troy

:. just like a separate object.

Most of this code should already be familiar to you from previous scripts, so
we’ll only go over it briefly. First, you define the method ReactToHit (),
because that’s the method name called in the shooting script. This method starts
a coroutine that’s similar to the sphere indicator code from earlier; the main
difference is that it operates on the object of this script rather than creating a
separate object. Expressions like this.gameObject refer to the
GameObject that this script is attached to (and the this keyword is optional,
so code could refer to gameOb ject without anything in front of it).

The first line of the coroutine function makes the object tip over. As discussed in
chapter 2, rotations can be defined as an angle around each of the three
coordinate axes, X Y, and Z. Because we don’t want the object to rotate side to
side at all, leave Y and Z as 0 and assign an angle to the X rotation.

Note

The transform is applied instantly, but you may prefer seeing the movement
when objects topple over. Once you start looking beyond this book for more
advanced topics, you might want to look up tweens, systems used to make
objects move smoothly over time.

The second line of the method uses the yield keyword that’s so significant to
coroutines, pausing the function there and returning the number of seconds to
wait before resuming. Finally, the game object destroys itself in the last line of
the function. Destroy(this.gameObject) is called after the wait time,
just like the code called Destroy(sphere) before.

Warning

Be sure to call Destroy () on this.gameObject and not simply this!
Don’t get confused between the two; this only refers to this script component,
whereas this.gameObject refers to the object the script is attached to.

The target now reacts to being shot; great! But it doesn’t do anything else on its
own, so let’s add more behavior to make this target a proper enemy character.

3.3. Basic wandering Al

A static target isn’t terribly interesting, so let’s write code that’ll make the enemy
wander around. Code for wandering around is pretty much the simplest example
of AI; artificial intelligence (AI) refers to computer-controlled entities. In this
case the entity is an enemy in a game, but it could also be a robot in the real
world, or a voice that plays chess, for example.

3.3.1. Diagramming how basic AI works

There are a number of different approaches to Al (seriously, artificial
intelligence is a major area of research for computer scientists), but for our
purposes we’ll stick with a simple approach. As you become more experienced
and your games get more sophisticated, you’ll probably want to explore various
approaches to Al.

Figure 3.5 depicts the basic process. Every frame, the Al code will scan around
its environment to determine whether it needs to react. If an obstacle appears in
its way, the enemy turns to face a different direction. Regardless of whether the
enemy needs to turn, it will always move forward steadily. Thus the enemy will
ping-pong around the room, always moving forward and turning to avoid walls.

Figure 3.5. Basic Al: cyclical process of moving forward and avoiding obstacles

Step 1:
Move forward a little bit

Step 2:
Raycast forward to look >
for obstacles

Step 3:
Turn away from obstacles

Step 4: »

Frame rendered, return to Step 1

The actual code will look pretty familiar, because it moves enemies forward
using the same commands as moving the player forward. The AI code will also
use raycasting, similar to but in a different context from shooting.

3.3.2. “Seeing” obstacles with a raycast

As you saw in the introduction to this chapter, raycasting is a technique that’s
useful for a number of tasks within 3D simulations. One easily grasped task was
shooting, but another place raycasting can be useful is for scanning around the
scene. Given that scanning around the scene is a step in Al code, that means
raycasting is used in Al code.

Earlier you created a ray that originated at the camera, because that’s where the
player was looking from; this time you’ll create a ray that originates at the
enemy. The first ray shot out through the center of the screen, but this time the
ray will shoot forward in front of the character; figure 3.6 illustrates this. Then
just like the shooting code used RaycastHit information to determine
whether anything was hit and where, the AT code will use RaycastHit
information to determine whether anything is in front of the enemy and, if so,
how far away.

Figure 3.6. Using raycasting to “see” obstacles

Every frame the Al character
projects a ray in front of it in
order to detect obstacles.
Here the character is facing
a wall, so the raycast will
detect a close obstacle.

One difference between raycasting for shooting and raycasting for Al is the
radius of the ray detected against. For shooting the ray was treated as infinitely
thin, but for Al the ray will be treated as having a large cross-section; in terms of
the code, this means using the method SphereCast () instead of

Raycast (). The reason for this difference is that bullets are tiny, whereas to

check for obstacles in front of the character we need to account for the width of
the character.

Create a new script called WanderingAl, attach that to the target object
(alongside the ReactiveTarget script), and write the code from the next listing.
Play the scene now and you should see the enemy wandering around the room;
you can still shoot the target and it reacts the same way as before.

Listing 3.7. Basic WanderingAlI script

Yalues for the speed of movement and
" how far away to react to obstacles

Move forward
~ continuously every frame,

o' regardless of tur ning
Do raycasting with ! 1y i n, trar ward) ; < o
a circumference — \
around the ray. Y if 1 h "agt (ra f t hit A ray at the same position
if (hit.distan I wcleRan and pointing the same
Turn toward a A 1 T T Rang 1 1 direction as the character

semirandom
new direction.

The listing added a couple of variables to represent the speed of movement and
from how far away to react to obstacles. Then a Translate() method was
added in the Update () method in order to move forward continuously
(including the use of deltaTime for frame rate-independent movement). In
Update() you’ll also see raycasting code that looks a lot like the shooting
script from earlier; again, the same technique of raycasting is being used here to
see instead of shoot. The ray is created using the enemy’s position and direction,
instead of using the camera.

As explained earlier, the raycasting calculation was done using the method
Physics.SphereCast (). This method takes a radius parameter to
determine how far around the ray to detect intersections, but in every other
respect it’s exactly the same as Physics.Raycast (). This similarity
includes how the command fills in hit information, checks for intersections just
like before, and uses the distance property to be sure to react only when the
enemy gets near an obstacle (as opposed to a wall across the room).

When the enemy has a nearby obstacle right in front of it, the code rotates the
character a semi-random amount toward a new direction. I say “semi-random”
because the values are constrained to minimum and maximum values that make
sense for this situation. Specifically, we use the method Random.Range()
that Unity provides for obtaining a random value between constraints. In this
case the constraints were just slightly beyond an exact left or right turn, allowing
the character to turn sufficiently to avoid obstacles.

3.3.3. Tracking the character’s state

One oddity of the current behavior is that the enemy keeps moving forward after
falling over from being hit. That’s because right now the Translate()
method runs every frame no matter what. Let’s make small adjustments to the
code in order to keep track of whether or not the character is alive—or to put it
in another (more technical) way, we want to track the “alive” state of the
character. Having the code keep track of and respond differently to the current
state of the object is a common code pattern in many areas of programming, not
just Al. More sophisticated implementations of this approach are referred to as
state machines, or possibly even finite state machines.

Definition

Finite state machine (FSM) is a code structure in which the current state of the
object is tracked, well-defined transitions exist between states, and the code
behaves differently based on the state.

We’re not going to implement a full FSM, but it’s no coincidence that a common
place to see the initials FSM is in discussions of Al. A full FSM would have
many states for all the different behaviors of a sophisticated Al, but in this basic
Al we just need to track whether or not the character is alive. The next listing
adds a Boolean value, _alive, toward the top of the script, and the code needs
occasional conditional checks of that value. With those checks in place, the
movement code only runs while the enemy is alive.

Listing 3.8. WanderingAlI script with “alive” state added

0_ Boolean value to track
whether the enemy is alive

L,
\- Initialize that value.

i :‘-.'1 I'_“ .Translate | 0, speed * Time.deltaTime) ; q\— Only move if the

character is alive.

s e Q\ Public method allowing outside
ST R code to affect the “alive™ state

The ReactiveTarget script can now tell the WanderingAl script when the enemy
is or isn’t alive (see the following listing).

Listing 3.9. ReactiveTarget tells WanderingAI when it dies

iblic void ReactToHit
WanderingAl behavio:z setComponent«<WanderinghlIs>() ;

Qﬁ_ Check if this character has a
WanderingAl script; it might not.

Al code structure

The Al code in this chapter is contained within a single class so that learning and
understanding it is straightforward. This code structure is perfectly fine for
simple Al needs, so don’t be afraid that you’ve done something “wrong” and
that a more complex code structure is an absolute requirement. For more
complex Al needs (such as a game with a wide variety of highly intelligent
characters), a more robust code structure can help facilitate developing the Al.

As alluded to in chapter 1’s example for composition versus inheritance,
sometimes you’ll want to split chunks of the Al into separate scripts. Doing so
will enable you to mix and match components, generating unique behavior for
each character. Think about the similarities and differences between your
characters, and those differences will guide you as you design your code

architecture. For example, if your game has some enemies that move by
charging headlong at the player and some that slink around in the shadows, you
may want to make Locomotion a separate component. Then you can create
scripts for both LocomotionCharge and LocomotionSlink, and use different
Locomotion components on different enemies.

The exact Al code structure you want depends on the design of your specific
game; there’s no one “right” way to do it. Unity makes it easy to design flexible
code architectures like this.

3.4. Spawning enemy prefabs

At the moment there’s just one enemy in the scene, and when it dies, the scene is
empty. Let’s make the game spawn enemies so that whenever the enemy dies, a
new one appears. This is easily done in Unity using a concept called prefabs.

3.4.1. What is a prefab?

Prefabs are a flexible approach to visually defining interactive objects. In a
nutshell, a prefab is a fully fleshed-out game object (with components already
attached and set up) that doesn’t exist in any specific scene but rather exists as an
asset that can be copied into any scene. This copying can be done manually, to
ensure that the enemy object (or other prefab) is the same in every scene. More
important, though, prefabs can also be spawned from code; you can place copies
of the object into the scene using commands in scripts and not only by doing it
manually in the visual editor.

Definiton

An asset is any file that shows up in the Project view; these could be 2D images,
3D models, code files, scenes, and so on. I mentioned the term asset briefly in
chapter 1, but I didn’t emphasize it until now.

The term for one of these copies of a prefab is an instance, analogous to how the

word instance refers to a specific code object created from a class. Try to keep
the terminology straight; prefab refers to the game object existing outside of any
scene, whereas instance refers to a copy of the object that’s placed in a scene.

Definition

Also analogous to object-oriented terminology, instantiate is the action of
creating an instance.

3.4.2. Creating the enemy prefab

To create a prefab, first create an object in the scene that will become the prefab.
Because our enemy object will become a prefab, we’ve already done this first
step. Now all we do is drag the object down from the Hierarchy view and drop it
in the Project view; this will automatically save the object as a prefab (see figure
3.7). Back in the Hierarchy view the original object’s name will turn blue to
signify that it’s now linked to a prefab. If you wanted to edit the prefab further
(such as by adding new components), you’d make those changes on the object in
the scene and then select GameObject > Apply Changes To Prefab. But we don’t
want the object in the scene anymore (we’re going to spawn the prefab, not use
the instance already in the scene), so delete the enemy object now.

Figure 3.7. Drag objects from Hierarchy to Project in order to create prefabs.

K= Hierarchy '

———
Craate = | [GrAll

Controller
Drag the object
> Floor from Hierarchy view
oy into Project view to
Point light
Point light . Create a prefab.
Point light LY
Point light N
Point light i A
Assets
i 4 i P e 8 4L
fShooter ReactiveTarg... %] Scene SceneControl
Enemy (GameObject)

Warning

The interface for working with prefabs is somewhat awkward, and the
relationship between prefabs and their instances in scenes can be brittle. For
example, you often have to drag a prefab into a scene to edit it, and then delete
the object once you’re done editing. In the first chapter I mentioned this as a
downside to Unity, and I hope the workflow with prefabs improves in future
versions of Unity.

Now we have the actual prefab object to spawn in the scene, so let’s write code
to create instances of the prefab.

3.4.3. Instantiating from an invisible SceneController

Although the prefab itself doesn’t exist in the scene, there has to be some object
in the scene for the enemy spawning code to attach to. What we’ll do is create an
empty game object; we can attach the script to that, but the object won’t be
visible in the scene.

Tip

The use of empty GameOb jects for attaching script components is a common
pattern in Unity development. This trick is used for abstract tasks that don’t
apply to any specific object in the scene. Unity scripts are intended to be
attached to visible objects, but not every task makes sense that way.

Choose GameObject > Create Empty, rename the new object to Controller,
and then set its position to 0, 0, 0 (technically the position doesn’t matter
because the object isn’t visible, but putting it at the origin will make life simpler
if you ever parent anything to it). Create a script called SceneController, as
shown in the following listing.

Listing 3.10. SceneController that spawns the enemy prefab

Serialized variable
~~ for linking to the
prefab object

2 . .
™ A private variable to keep track of

—t id Update the enemy instance in the scene

Fa 2

K
Only spawn a new
enemy if there
isn't already one
in the scene.

L2

_ The method that copies
the prefab object

Attach this script to the controller object, and in the Inspector you’ll see a
variable slot for the enemy prefab. This works similarly to public variables, but
there’s an important difference (see the following warning).

Warning

I recommend private variables with SerializeField to reference objects in
Unity’s editor because you want to expose that variable in the Inspector but don’t
want the value to be changed by other scripts. As explained in chapter 2, public
variables show up in the Inspector by default (in other words, they’re serialized
by Unity), so most tutorials and sample code you’ll see use public variables for
all serialized values. But these variables can also be modified by other scripts
(these are public variables, after all); in many cases, you don’t want the value to

be modified in code but only set in the Inspector.

Drag up the prefab asset from Project to the empty variable slot; when the mouse
gets near, you should see the slot highlight to indicate that the object can be
linked there (see figure 3.8). Once the enemy prefab is linked to the
SceneController script, play the scene in order to see the code in action. An
enemy will appear in the middle of the room just like before, but now if you
shoot the enemy it will be replaced by a new enemy. Much better than just one
enemy that’s gone forever!

Figure 3.8. Drag the enemy prefab from Project up to the Enemy Prefab slot in the Inspector.

© inspector | F
a Controller [|Static
Tag|untagged % | Layer| Default
¥ .~ Transform [T
Positlon X O YO0 Z|0
Rotation X 0 Y0 Z\0
Scale X1 Y1 Zil
¥ || [Scene Comtroller (Script) [TES
Script (= SceneController o
. iﬁal‘n%ﬂ
Enemy Prefab None {Game Object
-j
| P - |
Assets 4

erials |

e

fahs ey i

s [I { Drag the‘prefah from
— Project view to a slot

in the Inspector.

Tip

This approach of dragging objects onto the Inspector’s variable slots is a handy
technique that comes up in a lot of different scripts. Here we linked a prefab to
the script, but you can also link to objects in the scene, or even specific
components (because the code needs to call public methods in that specific
component). In future chapters we’ll use this technique again.

The core of this script is the Instantiate() method, so take note of that

line. When we instantiate the prefab, that creates a copy in the scene. By default,
Instantiate() returns the new object as a generic Object type, but Object is
pretty useless directly and we need to handle it as a GameObject. In C#, use
the as keyword for typecasting to convert from one type of code object into
another type (written with the syntax original-object as new-type).

The instantiated object is stored in _enemy, a private variable of type
GameObject (and again, keep straight the distinction between a prefab and an
instance of the prefab; enemyPrefab stores the prefab whereas _enemy
stores the instance). The 1f statement that checks the stored object ensures that
Instantiate() is called only when _enemy is empty (or null, in coder-
speak). The variable starts out empty, so the instantiating code runs once right
from the beginning of the session. The object returned by Instantiate() is
then stored in _enemy so that the instantiating code won’t run again.

Because the enemy destroys itself when shot, that empties the _enemy variable
and causes Instantiate() to be run again. In this way, there’s always an
enemy in the scene.

Destroying GameObjects and memory management

It’s somewhat unexpected that existing references become null when an object
destroys itself. In a memory-managed programming language like C#, normally
you aren’t able to directly destroy objects; you can only dereference them so that
they can be destroyed automatically. This is still true within Unity, but the way
GameObjects are handled behind the scenes makes it look like they were
destroyed directly.

To display objects in the scene, Unity has to have a reference to all objects in its
scene graph. Thus even if you removed all references to the GameObject in
your code, there would still be this scene graph reference preventing the object
from being destroyed automatically. Because of this, Unity provided the method
Destroy() to tell the game engine “Remove this object from the scene
graph.” As part of that behind-the-scenes functionality, Unity also overloaded
the == operator to return true when checking for null. Technically that object

still exists in memory, but it may as well not exist anymore, so Unity has it
appearing to be null. You could confirm this by calling GetInstanceID()
on the destroyed object.

Note, though, that the developers of Unity are considering changing this
behavior to more standard memory management. If they do, then the spawning
code will need to change as well, probably by swapping the (_enemy==null)
check with a new parameter like (_enemy.isDestroyed). Refer to their
blog/Facebook page:

https://www.facebook.com/unity3d/posts/10152271098591773

(If most of this discussion was Greek to you, then don’t worry about it; this was
a tangential technical discussion for people interested in these obscure details.)

3.5. Shooting via instantiating objects

All right, let’s add another bit of functionality to the enemies. Much as we did
with the player, first we made them move—now let’s make them shoot! As I
mentioned back when introducing raycasting, that was just one of the approaches
to implementing shooting. Another approach involves instantiating prefabs, so
let’s take that approach to making the enemies shoot back. The goal of this
section is to see figure 3.9 when playing.

Figure 3.9. Enemy shooting a “fireball” at the player

https://www.facebook.com/unity3d/posts/10152271098591773

3.5.1. Creating the projectile prefab

Whereas the shooting before didn’t involve any actual projectile in the scene,
this time shooting will involve a projectile in the scene. Shooting with raycasting
was basically instantaneous, registering a hit the moment the mouse was clicked,
but this time enemies are going to emit fireballs that fly through the air.
Admittedly, they’ll be moving pretty fast, but it won’t be instantaneous, giving
the player a chance to dodge out of the way. Instead of using raycasting to detect
hits, we’ll use collision detection (the same collision system that keeps the
moving player from passing through walls).

The code will spawn fireballs in the same way that enemies spawn: by
instantiating a prefab. As explained in the previous section, the first step when
creating a prefab is to create an object in the scene that will become the prefab,
so let’s create a fireball. To start, choose GameObject > 3D Object > Sphere.
Rename the new object Fireball. Now create a new script, also called
Fireball, and attach that script to this object. Eventually we’ll write code in this
script, but leave it at default for now while we work on a few other parts of the
fireball object. So that it appears like a fireball and not just a gray sphere, we’re
going to give the object a bright orange color. Surface properties such as color
are controlled using materials.

Definition

A material is a packet of information that defines the surface properties of any

3D object that the material is attached to. These surface properties can include
color, shininess, and even subtle roughness.

Choose Assets > Create > Material. Name the new material something like
Flame. Select the material in the Project view in order to see the material’s
properties in the Inspector. As figure 3.10 shows, click the color swatch labeled
Albedo (that’s a technical term that refers to the main color of a surface).
Clicking that will bring up a color picker in its own window; slide both the
rainbow-colored bar on the right side and main picking area to set the color to
orange.

Figure 3.10. Setting the color of a material

[@ nspector | i m
J Flame -
Shader | Sundasd :
| Rendering Mode | Opague '
Main Maps
& Albeda _f_;_l:f .
B
© Normal Map A |
Click the color © Height Map ¥ Colars Adjust hue on the

o Occlusion |

swatch to bring
2 © Emisshon
up color picker A bt

[* |
Al - right side and value
in the main area
1} /.
-

We’re also going to brighten up the material to make it look more like fire.
Adjust the Emission value (one of the other attributes in the Inspector). It
defaults to O, so type in . 3 to brighten up the material.

Now you can turn the fireball object into a prefab by dragging the object down
from Hierarchy into Project, just as you did with the enemy prefab. Great, we
have a new prefab to use as a projectile! Next up is writing code to shoot using
that projectile.

3.5.2. Shooting the projectile and colliding with a target

Let’s make some adjustments to the enemy in order to emit fireballs. Because

code to recognize the player will require a new script (just like ReactiveTarget
was required by the code to recognize the target), first create a new script and
name that script PlayerCharacter. Attach this script to the player object in the
scene.

Now open up WanderingAl and add to the code from the following listing.
Listing 3.11. WanderingAlI additions for emitting fireballs

. Add these two fields before
%= any methods, just like in
SceneContraller.

The same null _ : -

GameObject pamacRRach MoRbdeny = Divian . . The playeris

logic as L ' 3 * detected in the same

> 1 irebal 1 =

SceneController ‘_. ; , S ; e . " way as the target
= e object in RayShooter.

The Instantiate() t 18for r forme it (Vector3.f] » 1,51 ‘\x

method here is fireba Erans ; 1 I trans! ca f b

just like it was in

SceneController. Place the fireball in front

of the enemy and point
in the same direction.

You’ll notice that all the annotations in this listing refer to similar (or the same)
bits in previous scripts. Previous code listings already showed everything needed
for emitting fireballs; now we’re mashing together and remixing bits of code to
fit in the new context. Just like in SceneController, you need to add two
GameObject fields toward the top of the script: a serialized variable for linking
the prefab to, and a private variable for keeping track of the instance copied by
the code. After doing a raycast, the code checks for the PlayerCharacter on the
object hit; this works just like when the shooting code checked for
ReactiveTarget on the object hit. The code that instantiates a fireball when there
isn’t already one in the scene works like the code that instantiates an enemy. The
positioning and rotation are different, though; this time, you place the instance
just in front of the enemy and point it in the same direction.

Once all the new code is in place, a new Fireball Prefab slot will appear when
you view the component in the Inspector, like the Enemy Prefab slot in the
SceneController component. Click the enemy prefab in the Project view and the
Inspector will show that object’s components, as if you’d selected an object in
the scene. Although the earlier warning about interface awkwardness often

applies when editing prefabs, the interface makes it easy to adjust components
on the object, and that’s all we’re doing. As shown in figure 3.11, drag up the
fireball prefab from Project onto the Fireball Prefab slot in the Inspector (again,
just as you did with SceneController).

Figure 3.11. Drag the fireball prefab from Project up to the Fireball Prefab slot in the Inspector.

¥ || ¥ Wandering Al (Script) (WIS
Script [WanderingAl o
Speed (3 |
Obstacle Range |5 = O!I:
Fireball Prefab Mone (Game Objec| ©

-

" Drag the prefab from
Project view to a slot
in the Inspector.

i Fireball

Now the enemy will fire at the player when the player is directly ahead of
it...well, try to fire; the bright orange sphere appears in front of the enemy, but it
just sits there because we haven’t written its script yet. Let’s do that now. The
next listing shows the code for the Fireball script.

Listing 3.12. Fireball script that reacts to collisions

Fireball eh
pu loat spee f
pu 1t damage
id Updat {
transf n.Transla 1 i) . I
E This function is called
when another object
collides with this trigger.
1d OnTrigge: ter (Collider othe: { -Cv-} E&
PlayerCharacter player ther GetComponent<PlayverCharacter
if | ey != null) | <+
Debug.Log("Player hit*}; _ Check if the other object

is a PlayerCharacter.

The crucial new bit to this code is the OnTriggerEnter () method. That
method is called automatically when the object has a collision, such as colliding
with the walls or with the player. At the moment this code won’t work entirely;
if you run it, the fireball will fly forward thanks to the Translate() line, but
the trigger won’t run, queuing up a new fireball by destroying the current one.
There need to be a couple of other adjustments made to components on the
fireball object. The first change is making the collider a trigger. To adjust that,
click the Is Trigger check box in the Sphere Collider component.

Tip

A Collider component set as a trigger will still react to touching/overlapping
other objects, but it will no longer stop other objects from physically passing
through.

The fireball also needs a Rigidbody, a component used by the physics system in
Unity. By giving the fireball a Rigidbody component, you ensure that the physics
system is able to register collision triggers for that object. In the Inspector, click
Add Component and choose Physics > Rigidbody. In the component that’s
added, deselect Use Gravity (see figure 3.12) so that the fireball won’t be pulled
down due to gravity.

Figure 3.12. Turn off gravity in the Rigidbody component.

¥ A Rigidbody W &
Mass 1
Drag 0
Angular Drag 0.05
Use Gravity Ck———"7—"""
Is Kinematic L] Uncheck
Interpolate | None N thie waliia
Collision Detection | Discrete
P Constraints

Play now, and fireballs are destroyed when they hit something. Because the
fireball-emitting code runs whenever there isn’t already a fireball in the scene,
the enemy will shoot more fireballs at the player. Now there’s just one more bit
remaining for shooting at the player: making the player react to being hit.

3.5.3. Damaging the player

Earlier you created a PlayerCharacter script but left it empty. Now you’ll write
code to have it react to being hit, as the following listing shows.

Listing 3.13. Player that can take damage

void Start() | ~ Initialize the health value.

ic void Hurt (int damage) ({ i Decrement the player’s health.
- th -= damage; <t

Debug.Log("Health: " + _health);

The listing defines a field for the player’s health and reduces the health on
command. In later chapters we’ll go over text displays to show information on
the screen, but for now we can just display information about the player’s health
using debug messages.

Now we need to go back to the Fireball script to call the player’s Hurt ()
method. Replace the debug line in the Fireball script with
player.Hurt(damage) to tell the player they’ve been hit. And that’s the
final bit of code we needed!

Whew, that was a pretty intense chapter, with lots of code being introduced.
Between the previous chapter and this one, you now have most of the
functionality in place for a first-person shooter.

3.6. Summary

In this chapter you’ve learned that

A ray is an imaginary line projected into the scene.

For both shooting and sensing obstacles, do a raycast with that line.
Making a character wander around involves basic Al.

New objects are spawned by instantiating prefabs.

Coroutines are used to spread out functions over time.

Chapter 4. Developing graphics for your game

This chapter covers

Understanding art assets

Understanding whiteboxing

Using 2D images in Unity

Importing custom 3D models

Building particle effects

We’ve been focusing mostly on how the game functions and not as much on how
the game looks. That was no accident—this book is mostly about programming
games in Unity. Still, it’s important to understand how to work on and improve
the visuals. Before we get back to the book’s main focus on coding different
parts of the game, let’s spend a chapter learning about game art so that your
projects won’t always end with just blank boxes sliding around.

All of the visual content in a game is made up of what are called art assets. But
what exactly does that mean?

4.1. Understanding art assets

An art asset is an individual unit of visual information (usually a file) used by
the game. It’s an overarching umbrella term for all visual content; image files are
art assets, 3D models are art assets, and so on. Indeed, the term art asset is
simply a specific case of an asset, which you’ve learned is any file used by the
game (such as a script}—hence the main Assets folder in Unity. Table 4.1 lists
and describes the five main kinds of art assets used in building a game.

Table 4.1. Types of art assets

Type of art asset Definition of this type
2D image Flat pictures. To make a real-world analogy, 2D images are like paintings and
photographs.
3D model 3D virtual objects (almost a synonym for “mesh objects”). To make a real-world
analogy, 3D models are like sculptures.
Material A packet of information that defines the surface properties of any object that the

material is attached to. These surface properties can include color, shininess, and
even subtle roughness.

Animation A packet of information that defines movement of the associated object. These
are detailed movement sequences created ahead of time, as opposed to code that
calculates positions on the fly.

Particle system An orderly mechanism for creating and controlling large numbers of small
moving objects. Many visual effects are done this way, such as fire, smoke, or
spraying water.

Creating art for a new game generally starts with either 2D images or 3D models
because those assets form a base on which everything else relies. As the names
imply, 2D images are the foundation of 2D graphics, whereas 3D models are the
foundation of 3D graphics. Specifically, 2D images are flat pictures; even if you
have no previous familiarity with game art, you’re probably already familiar
with 2D images from the graphics used on websites. Three-dimensional models,
on the other hand, may be unfamiliar to a newcomer, so I’m providing the
following definition.

Definition

A model is a 3D virtual object. In chapter 1 you were introduced to the term
mesh object; 3D model is practically a synonym. The terms are frequently used
interchangeably, but mesh object strictly refers to the geometry of the 3D object
(the connected lines and shapes) whereas model is a bit more ambiguous and
often includes other attributes of the object.

The next two types of assets on the list are materials and animations. Unlike 2D
images and 3D models, materials and animations don’t do anything in isolation
and are much harder for newcomers to understand. Two-dimensional images and
3D models are easily understood through real-world analogs: paintings for the
former, sculptures for the latter. Materials and animations aren’t as directly
relatable to the real world. Instead, both are abstract packets of information that
layer onto 3D models. For example, materials were already introduced in a basic
sense in chapter 3.

Definition

A material is a packet of information that defines the surface properties of any
3D object that the material is attached to. These surface properties can include
color, shininess, and even subtle roughness.

Continuing the art analogy, you can think of a material as the media (clay, brass,
marble, and so on) that the sculpture is made of. Similarly, an animation is also
an abstract layer of information that’s attached to a visible object.

Definition

An animation is a packet of information that defines movement of the associated
object. Because these movements can be defined independently from the object
itself, they can be used in a mix-and-match way with multiple objects.

For a concrete example, think about a character walking around. The overall
position of the character is handled by the game’s code (for example, the
movement scripts you wrote in chapter 2). But the detailed movements of feet
hitting the ground, arms swinging, and hips rotating are an animation sequence
that’s being played back; that animation sequence is an art asset.

To help you understand how animations and 3D models relate to each other, let’s
make an analogy to puppeteering: the 3D model is the puppet, the animator is
the puppeteer who makes the puppet move, and the animation is a recording of
the puppet’s movements.

The movements defined this way are created ahead of time and are usually
small-scale movements that don’t change the overall positioning of the object.
This is in contrast to the sort of large-scale movements that were done in code in
previous chapters.

The final kind of art asset from table 4.1 is a particle system (see the following
definition).

Definition

A particle system is an orderly mechanism for creating and controlling large
numbers of moving objects. These moving objects are usually small—hence the
name particle—but they don’t have to be.

Particle systems are useful for creating visual effects, such as fire, smoke, or
spraying water. The particles (that is, the individual objects under the control of
a particle system) can be any mesh object that you choose, but for most effects
the particles will be a square displaying a picture (a flame spark or a smoke puff,
for example).

Much of the work of creating game art is done in external software, not within
Unity itself. Materials and particle systems are created within Unity, but the
other art assets are created using external software. Refer to appendix B to learn
more about external tools; a variety of art applications are used for creating 3D
models and animation. Three-dimensional models created in an external tool are
then saved as an art asset that’s imported by Unity. I use Blender in appendix C
when explaining how to model (download it from www.blender.org), but that’s
just because Blender is open source and thus available to all readers.

Note

The project download for this chapter includes a folder named “scratch.”
Although that folder is in the same place as the Unity project, it’s not part of the
Unity project; that’s where I put extra external files.

As you work through the project for this chapter, you’ll see examples of most of
these types of art assets (animations are a bit too complex for now and will be
addressed later in the book). You’re going to build a scene that uses 2D images,
3D

models, materials, and a particle system. In some cases you’ll bring in already
existing art assets and learn how to import them into Unity, but at other times
(especially with the particle system) you’ll create the art asset from scratch
within Unity.

This chapter only scratches the surface of game art creation. Because this book

http://www.blender.org

focuses on how to do programming in Unity, extensive coverage of art
disciplines would reduce how much the book could cover. Creating game art is a
giant topic in and of itself, easily able to fill several books. In most cases a game
programmer would need to partner with a game artist who specializes in that
discipline. That said, it’s extremely useful for game programmers to understand
how Unity works with art assets and possibly even create their own rough
standins to be replaced later (commonly known as programmer art).

Note

Nothing in this chapter directly requires projects from the previous chapters. But
you’ll want to have movement scripts like the ones from chapter 2 so that you
can walk around the scene you’ll build; if necessary, you can grab the player
object and scripts from the project download. Similarly, this chapter ends with
moving objects that are similar to the ones created in previous chapters.

4.2. Building basic 3D scenery: whiteboxing

The first content creation topic we’ll go over is whiteboxing. This process is
usually the first step in building a level on the computer (following designing the
level on paper). As the name implies, you block out the walls of the scene with
blank geometry (that is, white boxes). Looking at the list of different art assets,
this blank scenery is the most basic sort of 3D model, and it provides a base on
which to display 2D images. If you think back to the primitive scene you created
in chapter 2, that was basically whiteboxing (you just hadn’t learned the term
yet). Some of this section will be a rehash of work done in the beginning of
chapter 2, but we’ll cover the process a lot faster this time as well as discuss
more new terminology.

Note

Another term that is frequently used is grayboxing. It means the same thing. I
tend to use whiteboxing because that was the term I first learned, but others use
grayboxing and that term is just as accepted. The actual color used varies,
anyway, similar to how blueprints aren’t necessarily blue.

4.2.1. Whiteboxing explained

Blocking out the scene with blank geometry serves a couple of purposes. First,
this process enables you to quickly build a “sketch” that will be progressively
refined over time. This activity is closely associated with level design and/or
level designers.

Definition

Level design is the discipline of planning and creating scenes in the game (or
levels). A level designer is a practitioner of level design.

As game development teams have grown in size and team members have
become more specialized, a common level-building workflow is for the level
designer to create a first version of the level through whiteboxing. This rough
level is then handed over to the art team for visual polish. But even on a tiny
team, where the same person is both designing levels and creating art for the

game, this workflow of first doing whiteboxing and then polishing the visuals
generally works best; you have to start somewhere, after all, and whiteboxing
gives a clear foundation on which to build up the visuals.

A second purpose served by whiteboxing is that the level reaches a playable state
very quickly. It may not be finished (indeed, a level right after whiteboxing is far
from finished) but this rough version is functional and can support gameplay. At
a minimum, the player can walk around the scene (think of the demo from
chapter 2). In this way you can test to make sure the level is coming together
well (for example, are the rooms the right size for this game?) before investing a
lot of time and energy in detailed work. If something is off (say you realize the
spaces need to be bigger), then it’s much easier to change and retest while you’re
at the stage of whiteboxing.

Moreover, being able to play the under-construction level is a huge morale boost.
Don’t discount this benefit: building all the visuals for a scene can take a great
deal of time, and it can start to feel like a slog if you have to wait a long time
before you can experience any of that work in the game. Whiteboxing builds a
complete (if primitive) level right away, and it’s exciting to then play the game
as it continually improves.

All right, so you understand why levels start with whiteboxing; now let’s
actually build a level!

4.2.2. Drawing a floor plan for the level

Building a level on the computer follows designing the level on paper. We’re not
going to get into a huge discussion about level design; just as chapter 2 noted
about game design, level design (which is a subset of game design) is a large
discipline that could fill up an entire book by itself. For our purposes we’re
going to draw a basic level with little “design” going into the plan, in order to
give us a target to work toward.

Figure 4.1 is a top-down drawing of a simple layout with four rooms connected

by a central hallway. That’s all we need for a plan right now: a bunch of
separated areas and interior walls to place. In a real game, your plan would be
more extensive and include things like enemies and items.

Figure 4.1. Floor plan for the level: four rooms and a central corridor

Wall - Player start

You could practice whiteboxing by building this floor plan, or you could draw
your own simple level to practice that step, too. The specifics of the room layout
matters little for this exercise. The important thing for our purposes is to have a
floor plan drawn so that we can move forward with the next step.

4.2.3. Laying out primitives according to the plan

Building the whitebox level in accordance with the drawn floor plan involves
positioning and scaling a bunch of blank boxes to be the walls in the diagram. As
described in section 2.2.1, select GameObject > 3D Object > Cube to create a
blank box that you can position and scale as needed.

Note

It isn’t required, but instead of cube objects you may want to use the QuadsBox
object in the project download. This object is a cube constructed of six separate
pieces to give you more flexibility when applying materials. Whether or not you
use this object depends on your desired workflow; for example, I don’t bother
with QuadsBox because all the whitebox geometry will be replaced by new art
later anyway.

The first object will be the floor of the scene; in the Inspector, rename the object
and lower it to -.5'Y in order to account for the height of the box itself (figure 4.2
depicts this). Then stretch the object along the X-and Z-axes.

Figure 4.2. Inspector view of the box positioned and scaled for the floor

Name of the object

@ Inspector] -
v Floor [Istatic
Tag | Untagged # | Layer| Default]
¥ .~ Transform W =
~-Position X D Y -05 |Z D |
| Rotation XD 40 'zlo _
\Scale X 60 Y1 240 5]
Position of the floor f
(lowered slightly to Scale out
account for thickness) on X and Z

Repeat these steps to create the walls of the scene. You probably want to clean
up the Hierarchy view by making walls as children of a common base object

(remember, position the root object at 0, 0, 0, and then drag objects onto it in
Hierarchy), but that’s not required. Also put a few simple lights around the scene
so that you can see it; referring back to chapter 2, create lights by selecting them
in the Light submenu of the GameObject menu. The level should look something
like figure 4.3 once you’re done with whiteboxing.

Figure 4.3. Whitebox level of the floor plan in figure 4.1

The Player object

A room (blocked
out with
interior walls)

A light (there are several
throughout the level)

Set up your player object or camera to move around (create the player with a
character controller and movement scripts; refer to chapter 2 if you need a full
explanation). Now you can walk around the primitive scene in order to
experience your work and test it out. And that’s how you do whiteboxing! Pretty
simple—but all you have right now is blank geometry, so let’s dress up the
geometry with pictures on the walls.

Exporting whitebox geometry to external art tools

Much of the work when adding visual polish to the level is done in external 3D
art applications like Blender. Because of this, you may want to have the
whitebox geometry in your art tool to refer to. By default there’s no export
option for primitives laid out within Unity. But third-party scripts are available
that add this functionality to the editor. Most such scripts allow you to select the
geometry in the scene and then hit an Export button (chapter 1 mentioned that
scripts can customize the editor).

These custom scripts usually export geometry as an OBJ file (OBJ is one of
several file types discussed later in this chapter).

On the Unity3D website, click the search button and type obj exporter. Or

you can go here for one example: http://wiki.unity3d.com/index.php?
title=ObjExporter

4.3. Texture the scene with 2D images

The level at this point is a rough sketch. It’s playable, but clearly a lot more work
needs to be done on the visual appearance of the scene. The next step in
improving the look of the level is applying textures.

Definition

A texture is a 2D image being used to enhance 3D graphics. That’s literally the
totality of what the term means; don’t confuse yourself by thinking that any of
the various uses of textures are part of how the term is defined. No matter how
the image is being used, it’s still referred to as a texture.

Note

The word texture is routinely used as both a verb and a noun. In addition to the
noun definition, the word describes the action of using 2D

images in 3D graphics.

http://wiki.unity3d.com/index.php?title=ObjExporter

Textures have a number of uses in 3D graphics, but the most straightforward use
is to be displayed on the surface of 3D models.

Later in the chapter we’ll discuss how this works for more complex models, but
for our whiteboxed level, the 2D images will act as wallpaper covering the walls

(see figure 4.4).

Figure 4.4. Comparing the level before and after textures

Before texturing After applying textures
{(only shading from lights) (1 floor texture, 1 on all walls)

As you can see from the comparison in figure 4.4, textures turn what was an
obviously unreal digital construct into a brick wall. Other uses for textures
include masks to cut out shapes and normal maps to make surfaces bumpy; later
you may want to look up more information about textures in resources
mentioned in appendix D.

4.3.1. Choosing a file format

A variety of file formats is available for saving 2D images, so which should you
use? Unity supports the use of many different file formats, so you could choose

any of the ones shown in table 4.2.

Table 4.2. 2D image file formats supported by Unity

File type Pros and cons
PNG Commonly used on the web. Lossless compression; has an alpha channel.
JPG Commonly used on the web. Lossy compression; no alpha channel.
GIF Commonly used on the web. Lossy compression; no alpha channel. (Technically the loss

isn’t from compression; rather, data is lost when the image is converted to 8-bit.
Ultimately it amounts to the same thing.)

BMP Default image format on Windows. No compression; no alpha channel.

TGA Commonly used for 3D graphics; obscure everywhere else. No or lossless compression;
has an alpha channel.

TIFF Commonly used for digital photography and publishing. No or lossless compression; no
alpha channel.

PICT Default image format on old Macs. Lossy compression; no alpha channel.

PSD Native file format for Photoshop. No compression; has an alpha channel. The main

reason to use this file format would be the advantage of using Photoshop files directly.

Definition

The alpha channel is used to store transparency information in an image. The

visible colors come in three “channels” of information: Red, Green, and Blue.

Alpha is an additional channel of information that isn’t visible but controls the
visibility of the image.

Although Unity will accept any of the images shown in table 4.2 to import and
use as a texture, the various file formats vary considerably in what features they
support. Two factors in particular are important for 2D images imported as
textures: how is the image compressed, and does it have an alpha channel?

The alpha channel is a straightforward consideration: because the alpha channel
is used often in 3D graphics, it’s better when the image has an alpha channel.
Image compression is a slightly more complicated consideration, but it boils

down to “lossy compression is bad”: both no compression and lossless
compression preserve the image quality, whereas lossy compression reduces the
image quality (hence the term lossy) as part of reducing the file size.

Between these two considerations, the two file formats I recommend for Unity
textures are either PNG or TGA. Targas (TGA) used to be the favorite file
format for texturing 3D graphics, before PNG had become widely used on the
internet; these days PNG is almost equivalent technologically but is much more
widespread, because it’s useful both on the web and as a texture.

PSD is also commonly recommended for Unity textures, because it’s an
advanced file format and it’s convenient that the same file you work on in
Photoshop also works in Unity. But I tend to prefer keeping work files separate
from “finished” files that are exported over to Unity (this same mind-set comes
up again later with 3D models).

The upshot is that all the images I provide in the example projects are PNG, and
I recommend that you work with that file format as well. With this decision
made, it’s time to bring some images into Unity and apply them to the blank
scene.

4.3.2. Importing an image file

Let’s start creating/preparing the textures we’ll use. The images used to texture
levels are usually tileable so that they can be repeated across large surfaces like
the floor.

Definition

A tileable image (sometimes referred to as a seamless tile) is an image where
opposite edges match up when placed side by side. This way the image can be
repeated without any visible seams between the repeats. The concept for 3D

texturing is just like wallpapers on web pages.

You can obtain tileable images in several different ways, such as manipulating
photographs or even painting them by hand.

Tutorials and explanations of these techniques can be found in a variety of books
and websites, but we don’t want to get bogged down with that right now. Instead,
let’s grab a couple of tileable images from one of the many websites that offer a
catalog of such images for 3D artists to use. For example, I obtained a couple of
images from www.cgtextures.com (see figure 4.5) to apply to the walls and floor
of the level; find a couple of images you think look good for the floor and walls.

Figure 4.5. Seamlessly tiling stone and brick images obtained from CGTextures.com

Download the images you want and prepare them for use as textures.
Technically, you could use the images directly as they were downloaded, but
those images aren’t ideal for use as textures. Although they’re certainly tileable
(the important aspect of why we’re using these images), they aren’t the right size
and they’re the wrong file format. Textures should be sized in powers of 2. For

http://www.cgtextures.com

reasons of technical efficiency, graphics chips like to handle textures in sizes that
are 2N: 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 (the next number is 4096, but
at that point the image is too big to use as a texture). In your image editor
(Photoshop, GIMP, or whatever; refer to appendix B) scale the downloaded
image to 256x256, and save it as a PNG.

Now drag the files from their location in the computer into the Project view in
Unity. This will copy the files into your Unity project (see figure 4.6), at which
point they’re imported as textures and can be used in the 3D scene. If dragging
the file over would be awkward, you could instead right-click in Project and
select Import New Asset to get a file picker.

Figure 4.6. Drag images from outside Unity to import them into the Project view.

A folder in your computer

| L'OWNIoaa

- %3; Project view in Unity

BrickLargeBare003 (T LA @ Project]
2.png g

Assets » Textures

3 A =l
\.'—I!h.'_'_-' "‘}_
s

-

-4

|
. __ﬂ-r“";; il

—

Tip

Organizing your assets into separate folders is probably a good idea as your
projects start to get more complex; in the Project view, create folders for Scripts
and Textures and then move assets into the appropriate folders. Simply drag files
to their new folder.

Warning

Unity has several keywords that it responds to in folder names, with special
ways of handling the contents of these special folders. Those keywords are
Resources, Plugins, Editor, and Gizmos. Later in the book we’ll go over what
some of these special folders do, but for now avoid naming any folders with
those words.

Now the images are imported into Unity as textures, ready to use. But how do
we apply the textures to objects in the scene?

4.3.3. Applying the image

Technically, textures aren’t applied to geometry directly. Instead, textures can be
part of materials, and materials are applied to geometry. As explained in the
intro, a material is a set of information defining the properties of a surface; that
information can include a texture to display on that surface. This indirection is
significant because the same texture can be used with multiple materials. That
said, typically each texture goes with a different material, so for convenience
Unity allows you to drop a texture onto an object and then it creates a new

material automatically. If you drag a texture from Project view onto an object in
the scene, Unity will create a new material and apply the new material to the
object; figure 4.7 illustrates the maneuver. Try that now with the texture for the
floor.

Figure 4.7. One way to apply textures is by dragging them from Project onto Scene objects.

Assets » Textures

BrickRound0067 (Texture2D}

Besides that convenience method of automatically creating materials, the
“proper” way to create a material is through the Create submenu of the Assets
menu; the new asset will appear in the Project view. Now select the material to
show its properties in the Inspector (you’ll see something like figure 4.8) and
drag a texture to the main texture slot; the setting is called Albedo (that’s a
technical term for the base color) and the texture slot is the square to the side of
the panel. Meanwhile, drag the material up from Project onto an object in the
scene to apply the material to that object. Try these steps now with the texture
for the wall: create a new material, drag the wall texture into this material, and
drag the material onto a wall in the scene.

Figure 4.8. Select a material to see it in the Inspector, then drag textures to the material properties.

| @ inspector |
BrickLargeBare0032
Shader | Standard

_JESSEE * Teu_tu_res
Rendering Mode | Opaque

vl ; Main Maps
B ickLargeBare0032 e2D)
% T".,I':" ,5\' o Albedo

o .-;: v _:’ £ z
T, Yt © Metallic O
ST AETLT S BrickRoundO...)
- Smoothness)
HM\‘R-_ ____________,- @ Mormal Map
& Heinht Man

You should now see the stone and brick images appearing on the surface of the
floor and wall objects, but the images look rather stretched-out and blurry.
What’s happening is the single image is being stretched out to cover the entire
floor. What you want instead is for the image to repeat a few times over the floor
surface. You can set this using the Tiling property of the material; select the
material in Project and then change the Tiling number in the Inspector (with
separate X and Y values for tiling in each direction). Make sure you’re setting
the tiling of the main map and not the secondary map (this material supports a
secondary texture map for advanced effects). The default tiling is 1 (that’s no
tiling, with the image being stretched over the entire surface); change the
number to something like 8 and see what happens in the scene. Change the
numbers in both materials to tiling that looks good.

Great, now the scene has textures applied to the floor and walls! You can also
apply textures to the sky of the scene; let’s look at that process.

4.4. Generating sky visuals using texture images

The brick and stone textures gave a much more natural look to the walls and
floor. Yet the sky is currently blank and unnatural; we also want a realistic look

for the sky. The most common approach to this task is a special kind of texturing
using pictures of the sky.

4.4.1. What is a skybox?

By default, the camera’s background color is dark blue. Ordinarily that color fills
in any empty area of the view (for example, above the walls of this scene), but
it’s possible to render pictures of the sky as background. This is where the
concept of a skybox comes in.

Definition

A skybox is a cube surrounding the camera with pictures of the sky on each side.
No matter what direction the camera is facing, it’s looking at a picture of the sky.

Properly implementing a skybox can be tricky; figure 4.9 shows a diagram of
how a skybox works. There are a number of rendering tricks needed so that the
skybox will appear as a distant background. Fortunately Unity already takes care
of all that for you.

Figure 4.9. Diagram of a skybox

The skybox — functionality needed:
Render behind everything else in the scene.

Stay centered on the camera, so that
it will seem too far away for the
player's movements to affect it.

Full brightness with no shading applied,
to avoid any lighting differences
between sides of the cube.

New scenes actually come with a very simple skybox already assigned. This is
why the sky has a gradient from light to dark blue, rather than being a flat dark
blue. If you open the lighting window (Window > Lighting) the first setting is
Skybox and the slot for that setting says Default. This setting is in the
Environment Lighting panel; this window has a number of settings panels
related to the advanced lighting system in Unity, but for now we only care about
the first setting.

Just like the brick textures earlier, skybox images can be obtained from a variety
of websites. Search for skybox textures; for example, I obtained several great
skyboxes from www.93i.de, including the TropicalSunnyDay set. Once this
skybox is applied to the scene, you will see something like figure 4.10.

Figure 4.10. Scene with background pictures of the sky

http://www.93i.de

As with other textures, skybox images are first assigned to a material, and that
gets used in the scene. Let’s examine how to create a new skybox material.

4.4.2. Creating a new skybox material

First, create a new material (as usual, either right-click and Create, or choose
Create from the Assets menu) and select it to see settings in the Inspector. Next
you need to change the shader used by this material. The top of the material
settings has a Shader menu (see figure 4.11). In section 4.3 we pretty much
ignored this menu because the default works fine for most standard texturing,
but a skybox requires a special shader.

Figure 4.11. The drop-down menu of available shaders

© Inspector | &+
_- skybox & #
et ——_> Shader | Skybox/6 Sided .
Standard
Tint Color
ShﬂdEF Exposure Standard (Specular setup) {
FX |
property Rotation = :
of a material Front(+2) H wobile > |
Nature »
Particles »
e emnt] — 6 Sided Skybox [
(Cubemap Sprites > I
SkYbDI Procedural i [
- Unlit 13
shader in h I_
the menu SEURURN L0y Shaders >

Definition

A shader is a short program that outlines instructions for how to draw a surface,
including whether to use any textures. The computer uses these instructions to
calculate the pixels when rendering the image. The most common shader takes
the color of the material and darkens it according to the light, but shaders can
also be used for all sorts of visual effects.

Every material has a shader that controls it (you could kind of think of a material
as an instance of a shader). New materials are set to the Standard shader by
default. This shader displays the color of the material (including the texture)
while applying basic dark and light across the surface.

For skyboxes there’s a different shader. Click the menu in order to see the drop-
down list (see figure 4.11) of all the available shaders. Move down to the
Skybox section and choose 6 Sided in the submenu.

With this shader active, the material now has six large texture slots (instead of

just the small Albedo texture slot that the standard shader had). These six texture
slots correspond to the six sides of a cube, so these images should match up at
the edges in order to appear seamless. For example, figure 4.12 shows the
images for the sunny skybox.

Figure 4.12. Six sides of a skybox—images for top, bottom, front, back, left, and right

Skybox images from 93i.de: up, down, front, back, left, right

Import the skybox images into Unity the same way you brought in the brick
textures: drag the files into the Project view or right-click in Project and select
Import New Asset. There’s one subtle import setting to change; click the
imported texture to see its properties in the Inspector, and change the Wrap
Mode setting (shown in figure 4.13) from Repeat to Clamp (don’t forget to click
Apply when you’re done). Ordinarily textures can be tiled repeatedly over a
surface; for this to appear seamless, opposite edges of the image bleed together.
But this blending of edges can create faint lines in the sky where images meet, so
the Clamp setting (similar to the Clamp () function in chapter 2) will limit the
boundaries of the texture and get rid of this blending.

Figure 4.13. Correct faint edge lines by adjusting the Wrap mode.

Faint lines

[npecier B |
may be | ™ TropicabunmDayBack2048 bmport Setmgs. 9
visible at - fpmn, ...50 change
the edges of Texture Tyese 5-_!.;:‘.5.':" ___t the Wrap Mode
Alphs from Grayveabe [T T
the skybox B _ ———— of the textures
5 wrap Heade (e t]
IMAEES... fikter Mode = i) from Repeat

L O to Clamp.

Now you can drag these images to the texture slots of the skybox material. The
names of the images correspond to the texture slot to assign them to (such as left
or front). Once all six textures are linked up, you can use this new material as the
skybox for the scene. Open the lighting window again and set this new material
to the Skybox slot; either drag the material to that slot, or click the tiny circle
icon to bring up a file picker.

Tip

By default, Unity will display the skybox (or at least its main color) in the
editor’s Scene view. You may find this color distracting while editing objects, so
you can toggle the skybox on or off. Across the top of the Scene view’s pane are
buttons that control what’s visible; look for the Effects button to toggle the
skybox on or off.

Woohoo, you’ve learned how to create sky visuals for your scene! A skybox is
an elegant way to create the illusion of a vast atmosphere surrounding the player.
The next step in polishing the visuals in your level is to create more complex 3D
models.

4.5. Working with custom 3D models

In the previous sections we looked at applying textures to the large flat walls and
floors of the level. But what about more detailed objects? What if we want, say,
interesting furniture in the room? We can accomplish that by building 3D models
in external 3D art apps. Recall the definition from the introduction to this

chapter: 3D models are the mesh objects in the game (that is, the three-
dimensional shapes). Well, we’re going to import a 3D mesh of a simple bench.

Applications widely used for modeling 3D objects include Autodesk’s Maya and
3ds Max. Those are both expensive commercial tools, so the sample for this
chapter uses the open source app Blender. The sample download includes a
.blend file that you can use; figure 4.14 depicts the bench model in Blender. If
you’re interested in learning how to model your own objects, you’ll find an
exercise in appendix C about modeling this bench in Blender.

Figure 4.14. The bench model in Blender

This includes both the 3D mesh geometry
and a texture applied to the mesh.

Besides custom-made models created by yourself or an artist you’re working
with, many 3D models are available for download from game art websites. One
great resource for 3D models is Unity’s Asset Store here:
https://www.assetstore.unity3d.com

4.5.1. Which file format to choose?

Now that you’ve made the model in Blender, you need to export the asset out

https://www.assetstore.unity3d.com

from that software. Just as with 2D images, a number of different file formats are
available for you to use when exporting out the 3D model, and these file types
have various pros and cons. Table 4.3 lists the 3D file formats that Unity
supports.

Table 4.3. 3D Model file formats supported by Unity

File type Pros and cons
FBX Mesh and Animation; recommended option when available.
Collada (DAE) Mesh and Animation; another good option when FBX isn’t available.
OBJ Mesh only; this is a text format, so sometimes useful for streaming over the internet.
3DS Mesh only; a pretty old and primitive model format.
DXF Mesh only; a pretty old and primitive model format.
Maya Works via FBX; requires this application to be installed.
3ds Max Works via FBX; requires this application to be installed.
Blender Works via FBX; requires this application to be installed.

Choosing between these options boils down to whether or not the file supports
animation. Because Collada and FBX are the only two options that include
animation data, those are the two options to choose. Whenever it’s available (not
all 3D tools have it as an export option), FBX export tends to work best, but if
you’re using a tool without FBX export, then Collada works well, too. In our
case, Blender supports FBX export so we’ll use that file format.

Note that the bottom of table 4.3 lists several 3D art applications. Unity allows
you to directly drop those application’s files into your project, which seems
handy at first, but that functionality has several caveats. For starters, Unity
doesn’t load those application files directly; instead, it exports the model behind
the scenes and loads that exported file. Because the model is being exported to
FBX or Collada anywayj, it’s preferable to do that step explicitly. Furthermore,
this export requires that you have the relevant application installed. This
requirement is a big hassle if you plan to share files among multiple computers
(for example, a team of developers working together). I don’t recommend using
Blender (or Maya or whatever) files directly in Unity.

4.5.2. Exporting and importing the model

All right, it’s time to export the model from Blender and then import it into
Unity. First open the bench in Blender and then choose File > Export > FBX.
Once the file is saved, import it into Unity the same way that you import images.
Drag the FBX

file from the computer into Unity’s Project view or right-click in Project and
choose Import New Asset. The 3D model will be copied into the Unity project
and show up ready to be put in the scene.

Note

The sample download includes the .blend file so that you can practice exporting
the FBX file from Blender; even if you don’t end up modeling anything yourself,
you may need to convert downloaded models into a format Unity accepts. If you
want to skip all steps involving Blender, use the provided FBX file.

There are a few default settings used to import the model that you want to
change immediately. First, Unity defaults imported models to a very small scale
(refer to figure 4.15, which shows what you see in the Inspector when you select
the model); change the Scale Factor to 100 to partially counteract the .01 File
Scale. You may also want to click the Generate Colliders check box, but that’s
optional; without a collider you can walk through the bench. Then switch to the
Animation tab in the import settings and deselect Import Animation (you didn’t
animate this model).

Figure 4.15. Adjust import settings for the 3D model.

Default size is W
too small so set] bt et
scale to 100. @ msecer
q oo G
[Gpan Turn off
Scale Factor L1600 T 7 animation
File Scale 001 IJE{H.HEE
. Mesh Compression | o
Optional: Generate Read/Write Enabled li the bench
a collider or you Optimize Mesh] is static.
can walk through Bovtvas
Generate Coliders [
the bench. IEEEEED =

That takes care of the imported mesh. Now for the texture; when Unity imported
the FBX file, it also created a material for the bench. This material defaults to
blank (just like any new material), so assign the bench texture (the image in
figure 4.16) in the same way that you assigned bricks to the walls earlier: drag
the texture image into Project to import it into Unity, and then drag the imported
texture onto the texture slot of the bench material. The image looks somewhat
odd, with different parts of the image appearing on different parts of the bench;
the model’s texture coordinates were edited to define this mapping of image-to-
mesh.

Figure 4.16. The 2D image for the bench texture

This image relates to the model
using “texture coordinates.”

To understand the concept of
texture coordinates, refer to appendix C.

Definition

Texture coordinates are an extra set of values for each vertex that assigns
polygons to areas of the texture image. Think about it like wrapping paper; the
3D model is the box being wrapped, the texture is the wrapping paper, and the
texture coordinates represent where on the wrapping paper each side of the box
will go.

Note

Even if you don’t want to model the bench, you may want to read the detailed
explanation of texture coordinates in appendix C. The concept of texture
coordinates (as well as other related terms like UV's and mapping) can be useful
to know when programming games.

New materials are often too shiny, so you may want to reduce the Smoothness
setting (smoother surfaces are more shiny) to 0. Finally, having adjusted
everything as needed, you can put the bench in the scene. Drag the model up
from the Project view and place it in one room of the level; as you drag the
mouse, you should see it in the scene. Once you drop it in place, you should see
something like figure 4.17. Congratulations; you created a textured model for the
level!

Figure 4.17. The imported bench in the level

Note

We’re not going to do it in this chapter, but typically you’d also replace the
whitebox geometry with models created in an external tool. The new geometry
might look essentially identical, but you’ll have much more flexibility to set
UVs for the texture.

Animating characters with Mecanim

The model we created is static, sitting still where placed. You can also animate in
Blender and then play the animation in Unity. The process of creating 3D
animation is long and involved, but this isn’t a book about animation so we’re
not going to discuss that here. As had already been mentioned for modeling,
there are a lot of existing resources if you want to learn more about 3D
animation. But be warned: it is a huge topic. There’s a reason “animator” is a
specialized role within game development.

Unity has a sophisticated system for managing animations on models, a system
called Mecanim. The special name Mecanim identifies the newer, more
advanced animation system that was recently added to Unity as a replacement
for the older animation system.

The older system is still around, identified as legacy animation. But the legacy
animation system may be phased out in a future version of Unity, at which point
Mecanim will be the animation system.

Although we don’t work with any animations in this chapter, we’ll play
animations on a character model in chapter 7.

4.6. Creating effects using particle systems

Besides 2D images and 3D models, the remaining type of visual content that
game artists create are particle systems. The definition in this chapter’s
introduction explained that particle systems are orderly mechanisms for creating
and controlling large numbers of moving objects. Particle systems are useful for
creating visual effects, such as fire, smoke, or spraying water.

For example, the fire effect in figure 4.18 was created using a particle system.

Figure 4.18. Fire effect created using a particle system

Whereas most other art assets are created in external tools and imported into the
project, particle systems are created within Unity itself. Unity provides some
flexible and powerful tools for creating particle effects.

Note

Much like the situation with the Mecanim animation system, there used to be an
older legacy particle system and the newer system had a special name, Shuriken.
At this point the legacy particle system is entirely phased out, so the separate
name is no longer necessary.

To begin, create a new particle system and watch the default effect play. From
the GameObject menu, choose Particle System, and you’ll see basic white
puffballs spraying upward from the new object. Or rather, you’ll see particles
spraying upward while you have the object selected; when you select a particle
system, the particle playback panel is displayed in the corner of the screen and
indicates how much time has elapsed (see figure 4.19).

Figure 4.19. Playback panel for a particle system

Pause or reset the particle
effect playing in the scene.

Particle Effect

Click and drag the label
“Playback Time” to play
back and forth.

The default effect looks pretty neat already, but let’s go through the extensive list
of parameters you can use to customize the effect.

4.6.1. Adjusting parameters on the default effect

Figure 4.20 shows the entire list of settings for a particle system. We’re not
going to go through every single setting in that list; instead, we’ll look at the
settings relevant to making the fire effect. Once you understand how a few of the
settings work, the rest should be fairly self-explanatory. Each of the settings
labels is in fact a whole information panel. Initially only the first information
panel is expanded; the rest of the panels are collapsed. Click on the setting label
to expand that information panel.

Figure 4.20. The Inspector displays settings for a particle system (pointing out settings for the fire
effect).

Looping: The particle system keeps
playing forever; leave default.

Lifetime: How long the particle exists; reduce to 3.
- Speed: How fast the particle is moving; reduce to I

Size: How big the particle is; leave default.

Rotation: The orientation of the particle; click the arrow
menu to change to Between Constants, set to 0 and 180,

~ Color: Tint the particles. We want a dim orange,
like RGB values 182, 101, 58.

Local simulation space is fine for a still particle system,
but World may be better for a system that's moving.

Emission: How quickly particles are emitted; leave
default.

Shape: The shape of the area emitted from. The
default is a wide cone, but we want a small box
to make a tight jet of flame (set Box, all numbers 0.2).

| @
| ®
o
@
@
o

i

Size over Lifetime: The particle grows and shrinks while
it moves. The default is off; turn this on and click the

~ arrow to set a curve that quickly grows from 0 and then
slowly shrinks back to 0 (as illustrated here).

Rotation over Lifetime: The particle rotates while it
moves, The default is off, turn this on and set Random
Between to -80 and 80 to make different particles
rotate in different directions.

ek B L B

I-'..|r.r.|-:l e System Curves
-1 Renderer: Set what each particle looks like. You could

even set this to a mesh, but leave it as Billboard and
drag in a new material (explained shortly).

Add points to the curve by double-clicking or
right-click and select Add Key.

Tip

Many of the settings are controlled by a curve displayed at the bottom of the
Inspector. That curve represents how the value changes over time: the left side of
the graph is when the particle first appears, the right side is when the particle is
gone, the bottom is a value of 0, and the top is the maximum value. Drag points

around the graph, and double-click or right-click on the curve to insert new
points.

Adjust parameters of the particle system as indicated in figure 4.20 and it’1l look
more like a jet of flame.

4.6.2. Applying a new texture for fire

Now the particle system looks more like a jet of flame, but the effect still needs
the particles to look like flame, not white blobs. That requires importing a new
image into Unity. Figure 4.21 depicts the image I painted; I made an orange dot
and used the Smudge tool to draw out the tendrils of flame (and then I drew the
same thing in yellow). Whether you use this image from the sample project,
draw your own, or download a similar one, you need to import the image file
into Unity. As explained before, drag image files into the Project view, or choose
Assets > Import New Asset.

Figure 4.21. The image used for fire particles

Just like with 3D models, textures aren’t applied to particle systems directly; you

add the texture to a material and apply that material to the particle system. Create
a new material and then select it to see its properties in the Inspector. Drag the
fire image from Project up to the texture slot. That linked the fire texture to the
fire material, so now you want to apply the material to the particle system.
Figure 4.22 shows how to do this; select the particle system, expand Renderer at
the bottom of the settings, and drag the material onto the Material slot.

Figure 4.22. Assign a material to the particle system

Iv‘ Renderer
Render Mode Eillboard 5
MNormal Direction 1 . .
Material © BIR-Rapile (Materah

Assets » Materials sort Made Neme | :
Sorting Fudge 0 i
Cast Shadows :/

F Receive Shadows vy
. |Max Particle Size 1.

BrickLargeBa,.. BrickRoundo...

As you did for the skybox material, you need to change the shader for a particle
material. Click the Shader menu near the top of the material settings to see the
list of available shaders. Instead of the standard default, a material for particles
needs one of the shaders under the Particles submenu. As shown in figure 4.23,
in this case we want Additive (Soft). This will make the particles appear to be
hazy and brighten the scene, just like a fire.

Figure 4.23. Setting the shader for the fire particle material

@ Inspector ; i =
fire_particle o
Shader | Particles Additive (Soly J
Particle Textup >'2ndard
Standard (Specular setup)
Tiling FX »
Offset cul | 4
| Mobile > |
Soft Particles F Mature [|
Particles >
+ Additive (Soft) Skybox [
Alpha Blended Sprites | 4
Alpha Blended Premultiply ul 1 3
Multiply Unlit »>
Multiply (Double)
VertexLit Blended Legacy Shaders *

~Additive-Multiply —

Definition

Additive is a shader that adds the color of the particle to the color behind it, as
opposed to replacing the pixels. This makes the pixels brighter and makes black
on the particle turn invisible. The opposite is Multiply, which makes everything
darker; these shaders have the same visual effect as the Additive and Multiply
layer effects in Photoshop.

With the fire material assigned to the fire particle effect, it’ll now look like the
effect shown earlier in figure 4.18. This looks like a pretty convincing jet of
flame, but the effect doesn’t only work when sitting still; next let’s attach it to an
object that moves around.

4.6.3. Attaching particle effects to 3D objects

Create a sphere (remember, GameObject > 3D Object > Sphere). Create a new
script called BackAndForth, as shown in the following listing, and attach it to
the new sphere.

Listing 4.1. Moving an object back and forth along a straight path

These are the positions the
/~ object moves between,
<

Which direction is the
{“,--- object currently moving in?

Make an extra bounced = true; ‘= Toggle the direction back and forth.

movement this =
frame if the object o
switched directions.

Run this script and the sphere glides back and forth in the central corridor of the
level. Now you can make the particle system a child of the sphere and the fire
will move with the sphere. Just like with the walls of the level, in the Hierarchy
view drag the particle object onto the sphere object.

Warning

You usually have to reset the position of an object after making it the child of
another object. For example, we want the particle system at 0, 0, 0 (this is
relative to the parent). Unity will preserve the placement of an object from
before it was linked as a child.

Now the particle system moves along with the sphere; the fire isn’t deflecting
from the movement, though, which looks unnatural.

That’s because by default particles move correctly only in the local space of the
particle system. To complete the flaming sphere, find Simulation Space in the
particle system settings (it’s in the top panel of figure 4.20) and switch from
Local to World.

Note

In this script the object moves back and forth in a straight line, but video games
commonly have objects moving around complex paths. Unity comes with
support for complex navigation and paths; see
https://docs.unity3d.com/Manual/Navigation.html to read about it.

I’m sure that at this point you’re itching to apply your own ideas and add more
content to this sample game. You should do that—you could create more art
assets, or even test your skills by bringing in shooting mechanics developed in
chapter 3. In the next chapter we’ll switch gears to a different game genre and
start over with a new game. Even though future chapters will switch to different
game genres, everything from these first four chapters will still apply and will be
useful.

https://docs.unity3d.com/Manual/Navigation.html

4.7. Summary

In this chapter you’ve learned that

Art asset is the term for all individual graphics.

Whiteboxing is a useful first step for level designers to block out spaces.

Textures are 2D images displayed on the surface of 3D models.

3D models are created outside Unity and imported as FBX files.

Particle systems are used to create many visual effects (fire, smoke, water,
and so on).

Part 2. Getting comfortable

You’ve built your first game prototypes in Unity, so now you’re ready to stretch
yourself by tackling some other game genres. At this point the rhythms of
working within Unity should feel familiar: create a script with such and such
function, drag this object to that slot in the Inspector, and so forth. You’re not
tripping over details of the interface so much anymore, which means the
remaining chapters don’t need to rehash the basics.

Let’s run through a succession of additional projects that will progressively teach
you more and more about developing games in Unity.

Chapter 5. Building a Memory game using Unity’s
new 2D functionality

This chapter covers

Displaying 2D graphics in Unity

Making objects clickable

Loading new images programmatically
Maintaining and displaying state using UI text
Loading levels and restarting the game

Up to now we’ve been working with 3D graphics. But you can also work with
2D graphics in Unity, so in this chapter you’ll build a 2D game to learn about
that. We’re going to develop the classic children’s game Memory: we’ll display a
grid of card backs, reveal the card front when it’s clicked, and score matches.
These mechanics cover the basics you need to know in order to develop 2D
games in Unity.

Although Unity originated as a tool for 3D games, it’s used often for 2D games
as well. Recent versions of Unity (starting with version 4.3, released near the end
of 2013) have added the ability to display 2D graphics, but even before then 2D
games were already being developed in Unity (especially mobile games that
took advantage of Unity’s cross-platform nature). In prior versions of Unity,
game developers required a third-party framework (such as 2D Toolkit from
Unikron Software) to emulate 2D graphics within Unity’s 3D scenes. Eventually
the core editor and game engine were modified to incorporate 2D graphics, and
this chapter will teach you about that newer functionality.

The 2D workflow in Unity is more or less the same as the workflow to develop a
3D game: import art assets, drag them into a scene, and write scripts to attach to
the objects. The primary kind of art asset in 2D graphics is called a sprite.

Definition

Sprites are 2D images displayed directly on the screen, as opposed to images

displayed on the surface of 3D models (that is, textures).

You can import 2D images into Unity as sprites in much the same way you can
import images as textures (see chapter 4). Technically these sprites will be
objects in 3D space, but they’ll be flat surfaces all oriented along the Z-axis.
Because they’ll all face the same direction, you can point the camera straight at
the sprites and players will only be able to discern their movements along the X-
and Y-axes (that is, two dimensions).

In chapter 2 we discussed the coordinate axes: having three dimensions adds a
Z-axis perpendicular to the X-and Y-axes you were already familiar with. Two
dimensions are just those X-and Y-axes (that’s what your teacher was talking
about in math class!).

5.1. Setting everything up for 2D graphics

We’re going to create the classic game of Memory. For those unfamiliar with this
game, a series of cards will be dealt out facedown. Every card will have a
matching card located somewhere else, but the player can’t tell what the various
cards are. The player can turn over two cards at a time, attempting to find
matching cards; if the two cards chosen aren’t a match, they’ll flip back and then
the player can guess again.

Figure 5.1 shows a mockup of the game we’re going to build; compare this to
the roadmap diagram from chapter 2.

Figure 5.1. Mockup of what the Memory game will look like

Score: 1

Score - the number Reset button — click
of matches made this to start over

Cards - initially facedown, show image when clicked

Note that the mockup this time depicts exactly what the player will see (whereas
the mockup for a 3D scene depicted the space around the player and then where
the camera went for the player to see through). Now that you know what we’ll
be building, it’s time to get to work!

5.1.1. Preparing the project

The first step is to gather up and display graphics for our game. In much the
same way as building the 3D demo previously, you want to start the new game
by putting together the minimum set of graphics for the game to operate, and
after that’s in place you can start programming the functionality.

That means we’ll need to create everything depicted in figure 5.1: card backs for
hidden cards, a series of card fronts for when they turn over, a score display in
one corner, and a reset button in the opposite corner. We also need a background
for the screen, so all together our art requirements sum up to figure 5.2.

Figure 5.2. Art assets required for the Memory game

Card back

Background (table top)

@ Reset button

Card front
(4 different symbols)

Tip

As always, a finished version of the project, including all necessary art assets,
can be downloaded from www.manning.com/hocking, this book’s website. You
can copy the images from there to use in your own project.

Gather together the needed images, and then create a new project in Unity. In the
New Project window that comes up you’ll notice a couple of buttons at the
bottom (shown in figure 5.3) that let you switch between 2D and 3D mode. In
previous chapters we’ve worked with 3D graphics, and because that’s the default
value we haven’t been concerned with this setting. In this chapter, though, you’ll
want to switch to 2D mode when creating a new project.

Figure 5.3. Create new projects in either 2D or 3D mode with these buttons.

1D setting 3D 2D e

at the bottom
of the window Aceot narkanos

QD Editor mode and 2D Scene view

The 2D/3D setting for new projects adjusts two different settings within Unity’s
editor, both of which you can adjust manually later if you wish. Those two
settings are the 2D Editor mode and the 2D Scene view. The 2D Scene view

http://www.manning.com/hocking

controls how the scene is displayed within Unity; toggle the 2D button along the
top of the Scene view.

2D view toggle button

Global | G
e _ € Came
d :| | RCE 3| 20 ¥ | S | Effects * Gizmo:

2D Scene view toggle

You set 2D Editor mode by opening the Edit menu and selecting Editor from the
Project Settings drop-down menu. Within those settings you’ll see the Default
Behavior Mode setting with selections for either 3D or 2D.

¥ INSpPecior I =
\w-. Editor Settings i,
Unity Remote
Device | None &)
Version Control
Mode | Hidden Met Files
WWW Security Emulation
Host URL http:/ fwww.mydomain.ce

Asset Serialization

Mode | Mixed i 2D/3D Behavior Mode menu

Default Behavior Mode /—X/

Mode (20 5 ¢ |

Sprite Packer

Maode | Disabled : Default Behavior Mode setting within

Edit = Project Settings > Editor

Setting the editor to 2D mode causes imported images to be set to Sprite; as you
saw in chapter 4, normally images import as textures. 2D Editor mode also
causes new scenes to lack the default 3D lighting setup; this lighting doesn’t
harm 2D scenes, but it’s unnecessary. If you ever need to remove it manually,
delete the directional light that comes with new scenes and turn off the skybox in
the lighting window (click the tiny circle icon for a file picker and choose None
from the list).

With the new project for this chapter created and set for 2D, we can start putting
our images into the scene.

5.1.2. Displaying 2D images (aka sprites)

Drag all the image files into the Project view to import them; make sure the
images are imported as sprites and not textures. (This is automatic if the editor is
set to 2D. Select an asset to see its import settings in the Inspector.) Now drag
the table_top sprite (our background image) up from the Project view into
the empty scene, and then save the scene. As with mesh objects, in the Inspector
there’s a Transform component for the sprite; type ©, 0, 5 to position the
background image.

Tip

Another import setting to take note of is Pixels-To-Units. Because Unity was
previously a 3D engine that recently had 2D graphics grafted in, one unit in
Unity isn’t necessarily one pixel in the image. You could set the Pixels-To-Units
setting to 1:1 but I recommend leaving it at the default of 100:1 (because the
physics engine doesn’t work properly at 1:1, and the default is better for
compatibility with others’ code).

Animated sprites

Although we’re going to use only still images for this project, 2D games
commonly have animated sprites. Animated sprites are created by drawing each
of the frames of the animation and then displaying the frames in sequence within
Unity.

The multiple frames can be imported as separate images, but games usually have
all the frames of animation laid out on a single image, called a sprite sheet.
Sprite sheets can be generated automatically by Unity, or they can be created
using a tool like Texture Packer (see appendix B). When importing a sprite sheet,
set Sprite Mode to Multiple in the Sprite settings.

Multiple frames are laid out in a grid in one image.

| ERE—

FEEEEEEE
w s ey w
4 0 SN= %

- ’E-e}

__ Import the image into Unity.

\ Set to Multiple

Y
!

Texture Type Sprite (2D | uGUI B in tf_'le import
Sprite Mode | Multiple p— settings.
Packing Tag

Pixels To Units 100

A sprite sheet image can be imported into Unity.

The sprite sheet will still appear in the Project view as a single asset, but if you
click the arrow on the asset it’ll expand out and show all the individual sprites.
Instead of dragging sprites into the scene one at a time, you can select a bunch to
drag in together.

The 0 for X and Y position are straightforward (this sprite will fill the entire
screen, so you want it at the center), but that 5 for Z position might seem odd.
For 2D graphics, shouldn’t only X and Y matter? Well, X and Y are the only
coordinates that matter for positioning the object on the 2D screen; Z coordinates
still matter for stacking objects on top of each other, though. Lower Z values are
closer to the camera, so sprites with lower Z values are displayed on top of other
sprites (refer to figure 5.4). Accordingly, the background sprite should have the
highest Z value. We’ll set our background to a positive Z position, and then give
everything else a 0 or negative Z position.

Figure 5.4. How sprites stack along the Z-axis

Stacked sprites seenin 2D ————= 3D (Perspective) view
(Orthographic) view

Sprites

Other sprites will be positioned with values up to two decimal places because of
the Pixels-To-Units setting mentioned earlier. A ratio of 100:1 means that 100
pixels in the image are 1 unit in Unity; put another way, 1 pixel is .01 units. But
before we put any more sprites into the scene, let’s set up the camera for this
game.

Creating atlases using Sprite Packer

As mentioned in the sidebar “Animated Sprites,” you can have multiple sprites
laid out in a single image. The image is usually called a sprite sheet when
multiple frames of a single 2D animation are combined into one, but the more
general term for multiple images combined into one is an atlas.

Sprite sheets are useful in order to keep frames of animation together, but sprite
atlases are also often used for still images. That’s because atlases can optimize
the performance of sprites in two ways: 1) by reducing the amount of wasted
space in images by packing them tightly, and 2) by reducing the draw calls of the
video card (every new image that’s loaded causes a bit more work for the video
card).

Sprite atlases can be created using external tools (switch to Multiple in the Sprite
settings) and that approach certainly will work. But Unity includes a Sprite
Packer that will pack together multiple sprites automatically. To use this feature,

enable Sprite Packer in Editor settings (found under Edit > Project Settings).
Now write a name in Packing Tag option when looking at the Import settings of
a sprite image; Unity will pack together sprites with the same packing tag into
one atlas. For more information, look at Unity’s documentation:

http://docs.unity3d.com/Manual/SpritePacker.html

5.1.3. Switching the camera to 2D mode

Now let’s adjust settings on the main camera in the scene. You might think that
because the Scene view is set to 2D, what you see in Unity is what you’ll see in
the game. Somewhat non-intuitively, though, that isn’t the case.

Warning

Whether or not the Scene view is set to 2D has nothing to do with the camera
view in the running game.

It turns out that regardless of whether the Scene view is set to 2D mode, the
camera in the game is set independently. This can be handy in many situations so
that you can toggle the Scene view back to 3D in order to work on certain effects
within the scene. This disconnect does mean that what you see in Unity isn’t
necessarily what you see in the game, and it can be easy for beginners to forget
this.

The most important camera setting to adjust is Projection. The camera projection
is probably already correct because you created the new project in 2D mode, but
this is still important to know about and worth double-checking. Select the
camera in Hierarchy to show its settings in the Inspector, and then look for the
Projection setting (see figure 5.5). For 3D graphics the setting should be
Perspective, but for 2D graphics the camera projection should be Orthographic.

Figure 5.5. Camera settings to adjust for 2D graphics

http://docs.unity3d.com/Manual/SpritePacker.html

2 Inspector | " =

= [Main Camera [JStatic -
Tag | MainCamera * | Layer | Default %
¥ .~ Transform i,
Position x0 Y0 z -100

Background color —._ Rotation x0 Y0 z'0

Scale X1 Y1 z1
v &% VM Camera e
i [Clear Flags | Skybox + |
Perspective/Orthographic ‘> Background - E
projection _ Culling Mask [Everything : |
Projection | Orthographic ~

5 = Size 3.84
Camera size ! Clipping Planes Mear 0.3
Far 1000

(half the screen height)

Wicsamunrt Daoct

Definition

Orthographic is the term for a flat camera view that has no perspective apparent.
This is the opposite of a Perspective camera, where closer objects appear larger
and lines recede into the distance.

Although the Projection mode is the most important camera setting for 2D
graphics, there are a few other settings for us to adjust as well. Next we’ll look at
Size; that setting is under Projection. The camera’s orthographic size determines
the size of the camera view from the center of the screen up to the top of the
screen. In other words, set Size to half the pixel dimensions of the screen you
want. If you later set the resolution of the deployed game to the same pixel
dimensions, you’ll get pixel-perfect graphics.

Definition

Pixel-perfect means one pixel on the screen corresponds to one pixel in the
image (otherwise, the video card will make the images subtly blurry while
scaling up to fit the screen).

For example, let’s say you want a pixel-perfect 1024x768 screen. That means the
camera height should be 384 pixels. Divide that by 100 (because of the pixels-to-

units scale) and you get 3.84 for the camera size. Again, that math is
SCREEN_SIZE 2 100f (f asin float, rather than an int value). Given
that the background image is 1024x768 (select the asset to check its
dimensions), then clearly this value of 3.84 is what we want for our camera.

The two remaining adjustments to make in the Inspector are the camera’s
background color and Z position. As mentioned previously for sprites, higher Z
positions are further away into the scene. Thus the camera should have a pretty
low Z position; set the position of the camera to 0, 0, -100. The camera’s
background color should probably be black; the default color is blue, and that’1l
look odd displayed along the sides if the screen is wider than the background
image (which is likely). Click the color swatch next to Background and set the
color picker to black.

Now save the scene as Scene and hit Play; you’ll see the Game view filled with
our tabletop sprite. As you saw, getting to this point wasn’t completely obvious
(again, that’s because Unity was a 3D game engine that recently had 2D graphics
grafted in). But the tabletop is completely bare, so our next step is to put a card
on the table.

5.2. Building a card object and making it react to clicks

Now that the images are all imported and ready to use, let’s build the card
objects that form the core of this game. In Memory, all the cards are initially face
down, and they’re only face up temporarily when you choose a pair of cards to
turn over. To implement this functionality, we’re going to create objects that
consist of multiple sprites stacked on top of one another. Then we’ll write code
that makes the cards reveal themselves when clicked with the mouse.

5.2.1. Building the object out of sprites

Drag one of the card images into the scene. Use one of the card fronts, because
you’ll add a card back on top to hide the image. Technically the position right
now doesn’t matter, but eventually it will matter so you may as well position the
card at -3, 1, 0. Now drag the card_back sprite into the scene. Make this new
sprite a child of the previous card sprite (remember, in the Hierarchy drag the
child object onto the parent object) and then set its position to 0, 0, -.1 (Keep in

mind that this position is relative to the parent, so this means “Put it at the same
X Y but move it closer on Z.”)

Tip

Instead of the Move, Rotate, and Scale tools that we used in 3D, in 2D mode we
use a single manipulation tool called the Rect Tool. In 2D mode this tool is
selected automatically, or you can click the rightmost navigation button in the
top-left corner of Unity. With this tool active, click and drag objects to do all
three operations (move/rotate/scale) in two dimensions.

With the card back in place as depicted in figure 5.6, the graphics are in place for
a reactive card that can be revealed.

Figure 5.6. Hierarchy linking and position for the card back sprite

Card back is a child of the card front sprite.

ey BN v ESTe— e« Position slightly in front
mckground Tag | mtagpes__ 3] Liyar| e ; of the parent sprite.
visarces | TA Towtem e,
card ::::0" X0 Y : ; -0 (Remember, this is the
ben X0 ¥ L o4 =
g o ik local position relative
R re——— e to the parent.)

5.2.2. Mouse input code

In order to respond when the player clicks on them, the card sprites need to have
a collider component. New sprites don’t have a collider by default, so they can’t
be clicked on. We’re going to attach a collider to the root card object, but not to
the card back, so that only the card front and not the card back will receive
mouse clicks. To do this, select the root card object in Hierarchy (don’t click the
card in the scene, because the card back is on top and you’ll select that part
instead) and then click the Add Component button in the Inspector. Select
Physics 2D (not Physics, because that system is for 3D physics and this is a 2D
game), and then choose a box collider.

Besides a collider, the card needs a script in order to be reactive to the player
clicking on it, so let’s write some code. Create a new script called
MemoryCard.cs and attach this script to the root card object (again, not the card

back). The following listing shows the code that makes the card emit debug
messages when clicked.

Listing 5.1. Emitting debug messages when clicked

e e T (e Ry _ This function is called
e Sl q/ when the object is clicked.

<, .
_ Just emit a test message
to the console for now.

Tip

If you’re not in this habit yet, organizing your assets into separate folders is
probably a good idea; create folders for scripts and drag files within the Project
view. Just be careful to avoid the special folder names Unity responds to:
Resources, Plugins, Editor, and Gizmos. Later in the book we’ll go over what
some of these special folders do, but for now avoid naming any folders with
those words.

Nice, we can click on the card now! Just like Update(), OnMouseDown () is
another function provided by MonoBehaviour, this time responding when the
object is clicked on. Play the game and watch messages appear in the console.
But this only prints to the console for testing; we want the card to be revealed.

5.2.3. Revealing the card on click

Rewrite the code to match what’s shown in the next listing (the code won’t run
quite yet but don’t worry).

Listing 5.2. Script that hides the back when the card is clicked

_ Variable that appears
/" in the Inspector
a’ p

_ Only run deactivate code if the
{Jf object is currently active/visible.

g

_ ?Et the object to
inactive/invisible.

There are two key additions to the script: a reference to an object in the scene,
and the SetActive () method that deactivates that object. The first part, the
reference to an object in the scene, is similar to what we’ve done in previous
chapters: mark the variable as serialized, and then drag the object from
Hierarchy over to the variable in the Inspector. With the object reference set, the
code will now affect the object in the scene.

The second key addition to the code is the SetActive command. That
command will deactivate any GameOb ject, making that object invisible. If we
now drag card_back in the scene to this script’s variable in the Inspector,
when you play the game the card back disappears when you click the card.
Hiding the card back will reveal the card front; we’ve accomplished yet another
important task for the Memory game! But this is still only one card, so now let’s
create a bunch of cards.

5.3. Displaying the various card images

We’ve programmed a card object that initially shows the card back but reveals
itself when clicked. That was a single card, but the game needs a whole grid of
cards, with different images on most cards. We’ll implement the grid of cards
using a couple concepts seen in previous chapters, along with some new
concepts you haven’t seen before. Chapter 3 included both the notions of 1)
using an invisible SceneController component and 2) instantiating clones of an
object. This time the SceneController will apply different images to different
cards.

5.3.1. Loading images programmatically

There are four card images in the game we’re creating. All eight cards on the
table (two for each symbol) will be created by cloning the same original, so
initially all cards will have the same symbol. We’ll have to change the image on
the card in the script, loading different images programmatically.

To examine how images can be assigned programmatically, let’s write some
simple test code (that will be replaced later) to demonstrate the technique. First
add the code from the following listing to the MemoryCard script.

Listing 5.3. Test code to demonstrate changing the sprite image

Reference to the Sprite
<" asset that will be loaded

ponent<SpriteRendere: aprit image; < : 2
_ 3et the sprite for this

* SpriteRenderer component.

After you save this script, the new image variable will appear in the Inspector
because it has been set as serialized. Drag a sprite up from the Project view (pick
one of the card images, and not the same as the image already in the scene) and
drop it on the Image slot. Now run the scene, and you’ll see the new image on
the card.

The key to understanding this code is to know about the SpriteRenderer
component. You’ll notice in figure 5.7 that the card back object has just two
components, the standard Transform component on all objects in the scene, and
a new component called Sprite Renderer. This component makes it a sprite
object and determines which sprite asset will be displayed. Note that the first
property in the component is called Sprite and links to one of the sprites in the
Project view; the property can be manipulated in code, and that’s precisely what
this script does.

Figure 5.7. A sprite object in the scene has the SpriteRenderer component attached to it.

Sprite asset displayed
on this Sprite object

v -. M sprite Renderer @ &
Sprite ldiamond-symbol o]
Color ,_..-—ZZ::{]}?

Color that tints this Sprite object
(default is white for no tint)

As it did with CharacterController and custom scripts in previous chapters, the
GetComponent () method returns other components on the same object, so
we use it to reference the SpriteRenderer object. The sprite property of
SpriteRenderer can be set to any sprite asset, so this code sets that property
to the Sprite variable declared at the top (which we filled with a sprite asset in
the editor).

Well, that wasn’t too hard! But it’s only a single image; we have four different
images to use, so now delete the new code from listing 5.3 (it was only a quick
demonstration of how the technique works) to prepare for the next section.

5.3.2. Setting the image from an invisible SceneController

Recall in chapter 3 how we created an invisible object in the scene to control
spawning objects. We’re going to take that approach here as well, using an
invisible object to control more abstract features that aren’t tied to any specific
object in the scene. First create an empty GameObject (remember, select menu
GameObject > Create Empty). Then create a new script SceneController.cs in
the Project view, and drag this script asset onto the controller GameObject.
Before writing code in the new script, first add the contents of the next listing to
the MemoryCard script instead of what you saw in listing 5.3.

Listing 5.4. New public methods in MemoryCard.cs

I Added getter function (an
public int id { ~ idiom commeon in languages
gat {returr id; <+ like C# and Java)

_ Public method that other scripts can

o/ usetopass new sprites to this object

PR AR W Ty SpriteRenderer code line just like

e
in the deleted example code

The primary change from previous listings is that we’re now setting the sprite
image in SetCard () instead of Start (). Because that’s a public method that
takes a sprite as a parameter, you can call this function from other scripts and set
the image on this object. Note that SetCard() also takes an ID number as a
parameter, and the code stores that number. Although we don’t need the ID quite
yet, soon we’ll write code that compares cards for matches, and that comparison
will rely on the IDs of the cards.

Note

Depending on what programming languages you’ve used in the past, you may
not be familiar with the concept of “getters” and “setters.” Long story short,
those are functions that run when you attempt to access the property associated
with them (for example, retrieving the value of card. id). There are multiple
reasons to use getters and setters, but in this case the id property is read-only
because there’s only a function to get the value and not set it.

Lastly, note that the code has a variable for the controller; even as
SceneController starts cloning card objects to fill the scene, the card objects also
need a reference back to the controller to call its public methods. As usual, when
the code references objects in the scene, drag the controller object in Unity’s
editor to the variable slot in the Inspector. Do this once for this single card and
all of the copies to come later will have the reference as well.

With that additional code now in MemoryCard, write the code from the next
listing in SceneController.

Listing 5.5. First pass at SceneController for the Memory game

bli) i) ol " — : Reference for the
public class SceneController : MonoBehaviour | .
- I i ; Q/ card in the scene
[SerializeField] private MemoryCard originalCard;

<+
N_ An array for references
to the sprite assets

| originalCard.SetCaraild, imagesiidl}; 4_ Call the public method we
, added to MemoryCard.

For now this is a short snippet to demonstrate the concept of manipulating cards
from SceneController. Most of this should already be familiar to you (for
example, in Unity’s editor, drag the card object to the variable slot in the
Inspector), but the array of images is new. As shown in figure 5.8, in the
Inspector you can set the number of elements. Type in 4 for the array length, and
then drag the sprites for card images onto the array slots. Now these sprites can
be accessed in the array, like any other object reference.

Figure 5.8. The filled-in array of sprites

Type in how many ¥ || ¥ Scene Controller (Script) e
Script ' SceneController =
array elements. Original Card = Memory Card (MemoryCare @
¥ Images

= Size 4
—_Element 0 Eldiamond-symbol =)
Drag Sprite assets E.!er;;ﬁt_I__——L‘-*ﬂcrescent—wmtlul (=]
onto array elements. ER— R °
Element 3 Elheart-symbol o

Incidentally, we used the Random.Range () method in chapter 3, so hopefully
you recall that. The exact boundary values didn’t matter there, but this time it’s
important to note that the minimum value is inclusive and may be returned,
whereas the return value is always below the maximum.

Hit Play to run this new code. You’ll see different images being applied to the
revealed card each time you run the scene. The next step is to create a whole grid
of cards, instead of just one.

5.3.3. Instantiating a grid of cards

SceneController already has a reference to the card object, so now you’ll use the
Instantiate() method (see the next listing) to clone the object numerous
times, like spawning objects in chapter 3.

Listing 5.6. Cloning the card eight times and positioning in a grid

Yalues for how many grid
o~ spaces to make and how

< far apart to place them

_—_y

7

The position of for [(int : -

the first card; all £ ' i .

other cards will be Ramervoard nard a

offset from here. e . i .-\ A container reference for either
)] i the original card or the copies

Nested loops to define both
_ /7 columns and rows of the grid

For 2D graphics,
you only need to
offset Xand ¥
keep I the same.

Although this script is much longer than the previous listing, there’s not a lot to
explain because most of the additions are straightforward variable declarations
and math. The oddest bit of this code is probably the if/else statement that begins
if (1 == 0 & & j == 0). What that conditional does is either choose the
original card object for the first grid slot or clone the card object for all other
grid slots. Because the original card already exists in the scene, if you copied the
card at every iteration of the loop you’d end up with one too many cards in the
scene. The cards are then positioned by offsetting them according to the number
of iterations through the loop.

Tip

Just as when moving 3D objects, 2D objects can be moved by manipulating
transform.position to different points on the screen, and this position
could be incremented repeatedly in Update (). But as you saw when moving
the first-person player, collision detection isn’t applied when adjusting
transform.position directly. To move 2D objects with collision detection,
you’ll probably want to adjust rigidbody2D.velocity after assigning
Physics2D components.

Run the code now and a grid of eight cards will be created (as depicted in figure
5.9). The last step in preparing the grid of cards is to organize them into pairs,
instead of them being random.

Figure 5.9. The grid of eight cards that are revealed when you click on them

o/ [go [
o/[o o] o

o

Instead of making every card random, we’ll define an array of all the card IDs
(numbers 0 through 3 twice, for a pair of each card) and then shuffle that array.
We’ll then use this array of card IDs when setting cards, rather than making each
one random. The following listing shows the code.

5.3.4. Shuffling the cards

Listing 5.7. Placing cards from a shuffled list

Much of this listing is
- context to show where

Declare an integer the additions go.

array with a pair

= imber . 1f Y- iy (T k <
fl:nf IDs fn.;lg all -\'a_ Call a function that will shuffle
our card sprites. the elements of the array.

%_ Retrieve IDs from the shuffled
list instead of random numbers.

T n
\‘\ Here's an implementation of
the Knuth shuffle algorithm.

Now when you hit Play the grid of cards will be a shuffled assortment that
reveals exactly two of each card image. The array of cards was run through the
Knuth (also known as Fisher-Yates) shuffle algorithm, a simple yet effective way
of shuffling the elements of an array. This algorithm loops through the array and
swaps every element of the array with a randomly chosen other array position.

You can click on all the cards to reveal them, but the game of Memory is
supposed to proceed in pairs; a bit more code is needed.

5.4. Making and scoring matches

The last step in making a fully functional Memory game is checking for
matches. Although we now have a grid of cards that are revealed when clicked,
the various cards don’t affect each other in any way. In the game of Memory,
every time a pair of cards is revealed we should check to see if the revealed

cards match.

This abstract logic—checking for matches and responding appropriately—
requires that cards notify SceneController when they’ve been clicked. That
requires the additions to SceneController.cs shown in the next listing.

Listing 5.8. SceneController, which must keep track of revealed cards

Getter function that returns
public bool canReveal - false if there's already a
" — L q-/ second card revealed

The CardRevealed() method will be filled in momentarily; we needed the
empty scaffolding for now to refer to in MemoryCard.cs without any compiler
errors. Note that there is a read-only getter again, this time used to determine
whether another card can be revealed; the player can only reveal another card
when there aren’t already two cards revealed.

We also need to modify MemoryCard.cs to call the (currently empty) method in
order to inform SceneController when a card is clicked. Modify the code in
MemoryCard.cs according to the following listing.

Listing 5.9. MemoryCard.cs modifications for revealing cards

Notify the
controller
when this —,

h \
card is =
revealed.

Check the controller’s
canReveal property, to

" make sure only two cards
are revealed at a time.

< A public method so that SceneController
" can hide the card again (by turning
card_back back on)

If you were to put a debug statement inside CardRevealed () in order to test
the communication between objects, you’d see the test message appear

whenever you click a card. Let’s first handle one revealed card.

5.4.1. Storing and comparing revealed cards

The card object was passed into CardRevealed(), so let’s start keeping track
of the revealed cards. Write the code from the following listing.

Listing 5.10. Keeping track of revealed cards in SceneController

<, Store card objects in one of the two
: vealed rd “_ card variables, depending on if the
Compare the f : first variable is already occupied.

IDs of the two —~,
revealed cards. “& Debug.Log

The listing stores the revealed cards in one of the two card variables, depending
on whether the first variable is already occupied. If the first variable is empty,
then fill it; if it’s already occupied, fill the second variable and check the card
IDs for a match. The debug statement prints either t rue or false in the
console.

At the moment the code doesn’t respond to matches—it only checks for them.
Now let’s program the response.

5.4.2. Hiding mismatched cards

We’ll use coroutines again because the reaction to mismatched cards should
pause to allow the player to see the cards. Refer back to chapter 3 for a full
explanation of coroutines; long story short, using a coroutine will allow us to
pause when checking for a match. The next listing shows more code for you to
add to SceneController.

Listing 5.11. SceneController, which either scores matches or hides missed matches

o : q_ Another variable to add to the list
near the top of SceneController

StartCoroutine (CheckMatch i The only changed line in this
function—<calls the coroutine
when both cards are revealed

SCC =4+] . i
iz, RN N “_ Increment the score if the
g . Log { " L revealed cards have matching IDs.

G_ Unreveal the cards if
they do not match.

q\ Clear out the variables whether
or not a match was made.

First add a _score value to track; then launch a coroutine to CheckMatch ()
when a second card is revealed. In that coroutine there are two code paths,
depending on whether the cards match. If they do match, the coroutine doesn’t
pause; the yield command gets skipped over. But if the cards don’t match, the
coroutine pauses for half a second before calling Unreveal () on both cards,
hiding them again. Finally, whether or not a match was made, the variables for
storing cards are both nulled out, paving the way for revealing more cards.

When you play the game, mismatched cards will display briefly before hiding
again. There are debug messages when you score matches, but we want the score
displayed as a label on the screen.

5.4.3. Text display for the score

Displaying information to the player is half of the reason for a Ul in a game (the
other half is receiving input from the player; UI buttons are discussed in the next

section).

Definition

UI stand for user interface. Another closely related term is GUI (graphical user
interface), which refers to the visual part of the interface, such as text and
buttons, and which is what a lot of people mean when they say UL.

Unity has multiple ways to create text displays. One way is to create a 3D text
object in the scene. This is a special mesh component, so first create an empty
object to attach this component to. From the GameObject menu, choose Create
Empty. Then click the Add Component button and choose Mesh > Text Mesh.

Note

That name, 3D text, might sound incompatible with a 2D game, but don’t forget
that this is technically a 3D scene that looks flat because it’s being seen through
an orthographic camera. That means we can put 3D objects into the 2D game if
we want—they’re just displayed in a flat perspective.

Position this object at -4.75, 3.65, -10; that’s 475 pixels to the left and 365 pixels
up, putting it in the top-left corner, and nearer to the camera so that it’ll appear
on top of other game objects. In the Inspector, look for the Font setting toward
the bottom; click the little circle button to bring up a file selector, and then pick
the Arial font that’s available. Enter Score : as the Text setting. Correct
positioning also requires Upper Left for the Anchor setting (this controls how
letters expand out as they’re typed), so change this if needed. By default the text
appears blurry, but that’s easily fixed by adjusting the settings shown in figure
5.10.

Figure 5.10. Inspector settings for a text object to make the text sharp and clear

¥ .~ Transform (-8
Set the object’s Pasition %[-475 ¥ [3.65 z-10
scale very small. Rogation 10 L zo
= Scale X 0.1 ¥ (0.1 Zl0.1
¥ . Mesh Renderer e
Cast Shadows [on_ b
Receive Shadows |
= Materials
Use Light Probes o
Reflection Probes | Blend Frobes &)
Anchor Override Nane (Transform) @
¥ Text Mesh ue
i [|Score:
Offzet 2 :u
Character Size i
A Line Spacing [1 Set the font
mhe‘f settings = Anchor | uppes tet: i) size very large.
mentioned: Alignment [Leht t)
Text, Anchor, and Font Tab Size [4
Fant Size [80 <
Fant Style [Mormal i)
Rich Text s
~* Font |4 Arial]
Calor {] #

If we imported a new TrueType font into the project we could use that instead,
but for our purposes the default font is fine. Oddly enough, a bit of size
adjustment is needed to make the default text sharp and clear. First set the
TextMesh component’s Font Size setting to a very large value (I used 80). Now
scale the object down to be very small (like .1, .1, 1). Increasing Font Size added
a lot of pixels to the text displayed, and scaling the object compressed those
pixels into a smaller space.

Manipulating this text object requires just a few adjustments in the scoring code
(see the next listing).

Listing 5.12. Displaying the score on a text object

[SerializeField] private TextMesh

scoreLabel ;

private

IEnumerator CheckMatch() 1{
if firastRevealed.id _secondRevealed.id) | The text displayed is
_Boore++; a property to set
scoreLabel .text = "Score: " + _score; a/_ on text objects.

As you can see, text is a property of the object that you can set to a new string.
Drag the text in the scene to the variable you just added to SceneController, and

then hit Play. Now you should see the score displayed while you play the game
and make matches. Huzzah, the game works!

5.5. Restart button

At this point the Memory game is fully functional. You can play the game, and
all the essential features are in place. But this playable core is still lacking the
overarching functionality that players expect or need in a finished game. For
example, right now you can play the game only once; you need to quit and
restart in order to play again. Let’s add a control to the screen so that players can
start the game over without having to quit.

This functionality breaks down into two tasks: create a UI button, and reset the
game when that button is clicked. Figure 5.11 shows what the game will look
like with the restart button.

Figure 5.11. Complete Memory game screen, including the Start button

Neither task is specific to 2D games, by the way; all games need UI buttons, and
all games need the ability to reset. We’ll go over both topics to round out this
chapter.

5.5.1. Programming a UIButton component using SendMessage

First place the button sprite in the scene; drag it up from the Project view. Give it
a position like 4.5, 3.25, -10; that will place the button in the top-right corner
(that’s 450 pixels to the right and 325 pixels up) and move it nearer to the
camera so that it’ll appear on top of other game objects. Because we want to be
able to click on this object, give it a collider (just as with the card object, select
Add Component > Physics 2D > Box Collider).

Note

As alluded to in the previous section, Unity provides multiple ways to create Ul
displays, including an advanced Ul system introduced in the most recent
versions of Unity. For now we’ll build the single button out of standard display
objects. The next chapter will teach you about the advanced UI functionality; the
UI for both 2D and 3D games is ideally built with that system.

Now create a new script called UIButton.cs and assign that script (shown in the
following listing) to the button object.

Listing 5.13. Code to make a generic and reusable UI button
Reference a target object

_/~ toinform about clicks.

<, .
‘_ Tint the button when the
mouse hovers over it.

— A > The button's size pops
Lty i B : : : /~ abit when it's clicked.

<+, Send a message to the
*= target object when the
button is clicked.

The majority of this code happens inside a series of OnMouseSomething
functions; like Start () and Update(), these are a series of functions
automatically available to all script components in Unity. MouseDown was
mentioned back in section 5.2.2, but all these functions respond to mouse
interactions if the object has a collider; MouseOver and MouseEXxit are a
pair of events used for hovering the mouse cursor over an object: MouseOver
is the moment when the mouse cursor first moves over an object, and
MouseExit is the moment when the mouse cursor moves away. Similarly,
MouseDown and MouseUp are a pair of events for clicking the mouse.
MouseDown is the moment when the mouse button is physically pressed, and
MouseUp is the moment when the mouse button is released.

You can see that this code tints the sprite when the mouse hovers over it and
scales the sprite when it’s clicked on. In both cases you can see that the change
(in color or scale) happens when the mouse interaction begins, and then the
property returns to default (either white or scale 1) when the mouse interaction
ends. For scaling, the code uses the standard transform component that all
GameObjects have. For tint, though, the code uses the SpriteRenderer
component that sprite objects have; the sprite is set to a color that’s defined in
Unity’s editor through a public variable.

In addition to returning the scale to 1, SendMessage() is called when the
mouse is released. SendMessage () calls the function of the given name in all
components of that GameObject. Here the target object for the message, as well
as the message to send, are both defined by serialized variables. This way, the
same UIButton component can be used for all sorts of buttons, with the target of
different buttons set to different objects in the Inspector.

Normally when doing object-oriented programming in a strongly typed language
like C#, you need to know the type of a target object in order to communicate
with that object (for example, to call a public method of the object, like calling
target-Object.SendMessage() itself). But scripts for UI elements may
have lots of different types of targets, so Unity provides the SendMessage ()
method to communicate specific messages with a target object even if you don’t
know exactly what type of object it is.

Warning

Using SendMessage () is less efficient for the CPU than calling public
methods on known types (that is, using
object.SendMessage("Method") versus component .Method()) so
only use SendMessage () when it’s a big win in terms of making the code
simpler to understand and work with. As a general rule of thumb, that will only
be the case if there could be lots of different types of objects receiving the
message; in situations like that, the inflexibility of inheritance or even interfaces
will hinder the game development process and discourage experimentation.

With this code written, wire up the public variables in the button’s Inspector. The
highlight color can be set to whatever you’d like (although the default cyan
looks pretty good on a blue button). Meanwhile, put the SceneController object
in the target object slot, and then type Restart as the message.

If you play the game now, there’s a Reset button in the top-right corner that
changes color in response to the mouse, and it makes a slight visual “pop” when
clicked on. But an error message was emitted when you clicked the button; in
the console you’ll see an error about there not being a receiver for the Restart
message. That’s because we haven’t written a Restart () method in
SceneController, so let’s add that next.

5.5.2. Calling LoadLevel from SceneController

The SendMessage() from the button attempts to call Restart () in the
SceneController, so let’s add that (see the next listing).

Listing 5.14. SceneController code that reloads the level

public void Restart |

ADTE lication.LoadlLevel ("Scena"

<>_ The scene asset is loaded
with this command.

You can see the one thing Restart () does is call
Application.LoadLevel(). That command loads a saved scene asset
(that is, the file created when you click Save Scene in Unity). Pass the method
the name of the scene you want to load; in my case the scene was saved with the
name Scene, but if you used a different name, pass that to the method instead.

Hit Play to see what happens. Reveal a few cards and make a few matches; if
you then click the Reset button, the game starts over, with all cards hidden and a
score of 0. Great, just what we wanted!

As the name LoadLevel() implies, this method can load different levels. But
what exactly happens when a level loads, and why does this reset the game?
What happens is that everything from the current level (all objects in the scene,
and thus all scripts attached to those objects) is flushed from memory, and then
everything from the new scene is loaded. Because the “new” scene in this case is
the saved asset of the current scene, everything is flushed from memory and then
reloaded from scratch.

Tip

You can mark specific objects to exclude from the default memory flush when a
level is loaded. Unity provides the DontDestroyOnLoad () method to keep
an object around in multiple scenes; we’ll use this method on parts of the code
architecture in later chapters.

Another game successfully completed! Well, “completed” is a relative term; you
could always implement more features, but everything from the initial plan is
done. Many of the concepts from this 2D game apply to 3D games as well,
especially the checking of game state and loading levels. Time to switch gears
yet again and move away from this Memory game and on to new projects.

5.6. Summary

In this chapter you’ve learned that

Displaying 2D graphics in Unity uses an orthographic camera.

For pixel-perfect graphics, the camera size should be half the screen height.
Clicking on sprites requires that you first assign 2D colliders to them.

New images for the sprites can be loaded programmatically.

UI text can be made using 3D text objects.

Loading levels resets the scene.

Chapter 6. Putting a 2D GUI in a 3D game

This chapter covers

Comparing old (pre-Unity 4.6) and new GUI systems
Creating a canvas for the interface

Positioning Ul elements using anchor points

Adding interactivity to the UI (buttons, sliders, and so on)
Broadcasting and listening for events from the Ul

In this chapter you’ll build a 2D interface display for a 3D game. So far, we’ve
focused on the virtual scene itself while building a first-person demo. But every
game needs abstract interaction and information displays in addition to the
virtual scene the gameplay takes place in. This is true for all games, whether 2D
or 3D, first-person shooter or puzzle game.

These abstract interaction displays are referred to as the UI, or more specifically
the GUI. GUI refers to the visual part of the interface, such as text and buttons
(see figure 6.1). Technically, the Ul includes nongraphical controls, such as the
keyboard or gamepad, but people tend to be referring to the graphical parts when
they say “user interface.”

Figure 6.1. The GUI (a heads-up display, or HUD) you’ll create for a game

Settings button:
Part of the HUD
displayed over
the game view

Pop-up window
displayed over
the game view

A wall within the
scene: This is the
main game view.

Although any software requires some sort of Ul in order for the user of that
software to control it, games often use their GUI in a slightly different way from

other software. In a website, for example, the GUI basically is the website (in
terms of visual representation). In a game, though, text and buttons are often an
additional overlay on top of the game view, a kind of display called a HUD.

Definition

A heads-up display (HUD) superimposes graphics on top of the view of world.
The concept of a HUD originated with military jets so that pilots could see
crucial information without having to look down. Similarly, a GUI superimposed
on the game view is referred to as the HUD.

This chapter will show how to build the game’s HUD using the latest UI tools in
Unity. As you saw in chapter 5, Unity provides multiple ways to create Ul
displays. This chapter demonstrates the new Ul system available with Unity 4.6
and later. I’ll also discuss the previous Ul system and the advantages of the new
system.

To learn about the Ul tools in Unity, you’ll build on top of the first-person
shooter (FPS) project from chapter 3. The project in this chapter will involve
these steps:

1. Planning the interface

2. Placing UI elements on the display

3. Programming interactions with the UI elements
4. Making the GUI respond to events in the scene

5. Making the scene respond to actions on the GUI

Note

This chapter is largely independent of the project you build on top of—it just
adds a graphical interface on top of an existing game demo. All the examples in
this chapter are built on top of the FPS created in chapter 3, and you could
download that sample project, but you’re free to use whatever game demo you’d
like.

Copy the project from chapter 3 and open the copy to start working on this
chapter. As usual, the art assets you need are in the sample download. With those
files set up, you’re ready to start building the game’s UI.

6.1. Before you start writing code...

To start building the HUD, you first need to understand how the UI system
works. Unity provides multiple approaches to building a game’s HUD, so we
need to go over how those systems work. Then we can briefly plan the UI and
prepare the art assets that we’ll need.

6.1.1. Immediate mode GUI or advanced 2D interface?

From its first version, Unity came with an immediate mode GUI system, and that
system makes it easy to put a clickable button on the screen. Listing 6.1 shows
the code to do that; simply attach this script to any object in the scene. For
another example of immediate mode Ul, recall the target cursor displayed in
chapter 3. This GUI system is entirely based on code, with no work in Unity’s
editor.

Definition

Immediate mode refers to explicitly issuing draw commands every frame, versus
a system where you define all the visuals once and then for every frame the
system knows what to draw without you having to tell it again. The latter
approach is called retained mode.

Listing 6.1. Example of a button using the immediate mode GUI

Function called every frame

oL .|:'...-: . - I-'. .'1-;'.. BasicUIl : MoncBehaviour { ﬂ-’)’/_ after Ever}-lhing else renders

if sUI . Button (new Rectc (10, 10, 40, 20), "Tesat" 1 T

A

Parameters: position X, pos
Y, width, height, text label

The core of the code in this listing is the ONGUI () method. Much like
Start() and Update(), every MonoBehaviour automatically responds to
ONnGUI(). That function runs every frame after the 3D scene is rendered,
providing a place to put GUI drawing commands. This code draws a button; note
that the command for a button is executed every frame (that is, in immediate
mode style). The button command is used in a conditional that responds when
the button is clicked.

Because the immediate mode GUI makes it easy to get a few buttons onscreen
with a minimum of effort, we’ll use it for examples in future chapters (especially
chapter 8). But making default buttons is about the only thing easy to create with
that system, so the latest versions of Unity now have a new interface system
based on 2D graphics laid out in the editor. It takes a bit more effort to set up,
but you’ll probably want to use the newer interface system in finished games
because it produces more polished results.

The new UI system works in retained mode, so the graphics are laid out once
and then drawn every frame without needing to be continually redefined. In this
system, graphics for the UI are placed in Unity’s editor. This provides two
advantages over the immediate mode UI: 1) you can see what the UI looks like
while placing Ul elements, and 2) this system makes it straightforward to
customize the UI with your own images.

To use this system you’re going to import images and then drag objects into the
scene. Next let’s plan how this UI will look.

6.1.2. Planning the layout

The HUD for most games is only a few different UI controls repeated over and
over. That means this project doesn’t need to be a terribly complex Ul in order
for you to learn how to build a game’s UI. You’re going to put a score display
and a settings button in the corners of the screen (see figure 6.2) over the main
game view. The settings button will bring up a pop-up window, and that window
will have both a text field and a slider.

Figure 6.2. Planned GUI

Settings button:
2 Open pop-up window
Score display, when clicked
with both an
image and text
wame Close button:

Speed Close the pop-up

Pop-up window window

in the center

of the screen. Input controls:
Open with the — Text input for name,
gear button. slider for speed

For this example, those input controls will be used for setting the player’s name
and movement speed, but ultimately those UI elements could control any
settings relevant to your game.

Well, that plan was pretty simple! The next step is bringing in the images that are
needed.

6.1.3. Importing UI images

This UI requires some images to display for things like buttons. The Ul is built
from 2D images like the graphics in chapter 5, so you’ll follow the same two
steps:

1. Import images (if needed, set them to Sprite).

2. Drag the sprites into the scene.

To accomplish these steps, first drag the images into Project view to import
them, and then in the Inspector change their Texture Type setting to Sprite (2D
And UI).

Warning

The Texture Type setting defaults to Texture in 3D projects and to Sprite in 2D
projects. If you want sprites in a 3D project, you need to adjust this setting
manually.

Get all the needed images from the sample download (see figure 6.3) and then
import the images into your project. Make sure all the imported assets are set to
Sprite; you’ll probably need to adjust Texture Type in the settings displayed after
importing.

Figure 6.3. Images that are needed for this chapter’s project

® A 5o »

close enemy gear popup
This image will be This image will be This image will be This image will be a
the close button the score display in the settings button in scaled background
on the pop-up. the top-left corner. the top-right corner. of the pop-up.

These sprites comprise the buttons, score display, and pop-up that you’ll create.
Now that the images are imported, let’s put these graphics onto the screen.

6.2. Setting up the GUI display

The art assets are the same kind of 2D sprites we used in chapter 5, but the use
of those assets in the scene is a bit different. Unity provides special tools to make
the images a HUD that’s displayed over the 3D scene, rather than displaying the
images as part of the scene. The positioning of UI elements also has some
special tricks, because of the needs of a display that may change on different
screens.

6.2.1. Creating a canvas for the interface

One of the most fundamental and nonobvious aspects of how the UI system
works is that all images must be attached to a canvas object.

Tip

Canvas is a special kind of object that Unity renders as the UI for a game.

Open the GameObject menu to see the various kinds of objects you can create;
in the UI category, choose Canvas. A canvas object will appear in the scene (it

may be clearer to rename the object HUD Canvas). This object represents the
entire extent of the screen, and it’s huge relative to the 3D scene because it scales
one pixel of the screen to one unit in the scene.

Warning

When you create a canvas object, an EventSystem object is automatically
created, too. That object is required for Ul interaction but you can otherwise
ignore it.

Switch to 2D view mode (refer to figure 6.4) and double-click the canvas in the
Hierarchy in order to zoom out and view it fully. The 2D view mode is automatic
when the entire project is 2D, but in a 3D project this toggle must be clicked to
switch between the UI and the main scene. To return to viewing the 3D scene,
toggle the 2D view mode off and then double-click the building to zoom to that
object.

Figure 6.4. A blank canvas object in the Scene view

2D view mode:
Switch to this view when
working in 2D, including the UL.

Canvas object (S I = — -
displayed in the
Scene view If you see the colored
arrows of the
manipulator, that

means the Rect tool is

It is scaled very
large because

I unit in :het NOT on. That button is
scene = | pixel in the top-left corner
on the Ul

of Unity; you will see
blue dots on every

The borders of the corner of a 2D object.

canvas scale to match
the game’s screen.

Tip

Don’t forget this tip from chapter 4: across the top of the Scene view’s pane are
buttons that control what’s visible, so look for the Effects button to turn off the
skybox.

The canvas has a number of settings that you can adjust. First is the Render
Mode option; leave this at the default setting, but you should know what the
three possible settings mean:

e Screen Space—Overlay —Renders the Ul as 2D graphics on top of the
camera view (this is the default setting).

e Screen Space—Camera —Also renders the Ul on top of the camera view,
but UI elements can rotate for perspective effects.

e World Space —Places the canvas object within the scene, as if the UI were
part of the 3D scene.

The two modes besides the initial default can sometimes be useful for specific
effects but are slightly more complicated.

The other important setting is Pixel Perfect. This setting causes the rendering to
subtly adjust the position images so that they’re always perfectly crisp and sharp
(as opposed to blurring them when positioned between pixels). Go ahead and
select that check box. Now the HUD canvas is set up, but it’s still blank and
needs sprites.

6.2.2. Buttons, images, and text labels

The canvas object defines an area to display as the UI, but it still requires sprites
to display. If you refer back to the UI mockup in figure 6.2, there’s an image of
the block/enemy in the top-left corner, text displaying the score next to that, and
a gear-shaped button in the top-right corner. Accordingly, in the UI section of the
GameObject menu are options to create an image, text, or button. Create one of
each.

UI elements need to be a child of the canvas object in order to display correctly.
Unity does this automatically, but remember that as usual you can drag objects
around the Hierarchy view (see figure 6.5) to make parent-child linkages.

Figure 6.5. Canvas with an image linked in the Hierarchy view

Canvas object e
Paimt kght
Paimt kght
Point Nght
Paint bight
Paint light

Image object RS Cimas
(child of Canvas in /| ewenssystem
the Hierarchy)

Objects within the canvas can be parented together for positioning purposes, just
like any other objects in the scene. For example, you may want to drag the text
object onto the image so that the text will move with the image. Similarly, the
default button object has a text object as its child; this button doesn’t need a text
label, so delete the text object.

Roughly position the UI elements into their corners. In the next section we’ll
make the positions exact; for now, just drag the objects until they’re pretty much
in position. Click and drag the image object to the top-left of the canvas; the
button goes in the top right.

Tip

As noted in chapter 5, you use the Rect tool in 2D mode. I described it as a
single manipulation tool that encompasses all three transforms: Move, Rotate,
and Scale. These operations have to be separate tools in 3D but are combined in
2D because that’s one less dimension to worry about. In 2D mode, this tool is
selected automatically, or you can click the button in the top-left corner of Unity.

At the moment the images are both blank. If you select a UI object and look at
the Inspector, you should see a Source Image slot near the top of the image
component. As shown in figure 6.6, drag over sprites (remember, not textures!)
from the Project view to assign images to the objects. Assign the enemy sprite to
the image object, and the gear sprite to the button object (click Set Native Size
after assigning sprites to properly size the image object).

Figure 6.6. Assign 2D sprites to the Image property of Ul elements.

|. Drag Sprite from ¥ 1 hmage Giesipn e ;)
Project view up to Sawrce Image ~{Henermy - L. ...and the image will
Kiilivee Intsee sobtin Colar &l ~ 1 appear on the Ul element.
g 88 Mazerial Nane (Materual k2]
Image | Siemgia |
Aspect [
Assets = Graphics » | e idiva Sire gl
‘ @ i 3. Click Set Native Size to
tiase resize the image correctly.

That took care of the appearance of both the enemy image and the gear button.
As for the text object, there are a bunch of settings in the Inspector. First, type a
single number in the large Text box; this text will be overwritten later, but it’s
useful because it looks like a score display within the editor. The text is small, so
increase the Font Size to 24 and make the style Bold. You also want to set this
label to left horizontal alignment (see figure 6.7) and middle vertical alignment.
For now the remaining settings can be left at their default values.

Figure 6.7. Settings for a Ul text object

v || o Text Seripy Qe
The Ul object displays Text
text typed here. _.)5
Character £ Importa TrueType font to
Font Lo Aral |e use that font; set it here.
Fant Style | Bald i)
Font Size 24
Line Spacing 1
These buttons adjust h::.::“ o
the horizontal and Alignment - [% |3 le
vertical alignment I _«q-mwu“m S
Uf thE‘ text. Vertical Owverflow | 'Ium:abe I |
Best Fit -
Color I

Note

Besides the Text box and alignment, the most common property to adjust is the
font. You can import a TrueType font into Unity, and then put that font in the
Inspector.

Now that sprites have been assigned to the UI images, and the score text is set
up, you can hit Play to see the HUD on top of the 3D game. As shown in figure

6.8, the canvas displayed in Unity’s editor shows the bounds of the screen, and
UI elements are drawn onto the screen in those positions.

Figure 6.8. The GUI as seen in the editor (left) and when playing the game (right)

The Canvas displayed HUD overlays the main
in the editor. game scene when playing.

Great, you made a HUD with 2D images displayed over the 3D game! One more
complex visual setting remains: positioning Ul elements relative to the canvas.

6.2.3. Controlling the position of UI elements

All UI objects have an anchor, displayed in the editor as a target X (see figure
6.9). An anchor is a flexible way of positioning objects on the UI.

Figure 6.9. The anchor point of an image object

Anchor point icon

The Image
object

Definition

The anchor of an object is the point where an object attaches to the canvas or
screen. It determines what that object’s position is measured relative to.

Positions are values like “50 pixels on the X-axis.” But that leaves the question:
50 pixels from what? This is where anchors come in. The purpose of an anchor
is that while the object stays in place relative to the anchor point, the anchor
moves around relative to the canvas. The anchor is defined as something like
“center of the screen,” and then the anchor will stay centered while the screen
changes size. Similarly, setting the anchor to the right side of the screen will
keep the object rooted to the right side even if the screen changes size (for
example, if the game is played on different monitors).

The easiest way to understand what I’'m talking about is to see it in action. Select
the image object and look over at the Inspector. Anchor settings (see figure 6.10)
will appear right below the transform component. By default, UI elements have
their anchor set to Center, but you want to set the anchor to Top Left for this
image; figure 6.10 shows how to adjust that using the Anchor Presets.

Figure 6.10. How to adjust anchor settings

¥ O Rect Tramsform ﬁﬂ\. Anchor Presets %
canter Pos X Pos Y Pos Z Shifi: Also ser ot Al Also set position | .10 open the entire
[69873 | -5097 |0 - I~ Wl cenwn right preseery Anchor presets menu.
§| e beighe [
100 100 iR 1] |0 |22 = :
» Anchors | : You can type in exact
Pivot % 0.5 ¥ios | |) = numbers for the anchor
Rotation X 0 ¥ 0 @ §|0 0| (m)|a = point, but usually the
Scale X1 ¥l Zn = : = presets work best. For
B = B = example, press this button
. - to set a top-right anchor.
Click the Anchor button 5 : o a top-nig K.
g8 [0y |0 E

(it looks like a target)...
(Stretch presets affect

the image size as well
as position.)

sneich

o | [o] [§] [m] [=f

Change the gear button’s anchor as well. Set it to Top Right for this object; click
the top-right Anchor Preset. Now try scaling the window left and right; click and
drag on the side of the Scene view. Thanks to the anchors, the UI objects will
stay in their corners while the canvas changes size. As figure 6.11 shows, these
UI elements are now rooted in place while the screen moves.

Figure 6.11. Anchors stay in place while the screen changes.

Drag the side of the
Scene view to change
the size of the screen.

The Canvas scales with
it, and the images stay
positioned at their

anchors in the corners.

Tip

Anchor points can adjust scale as well as position. We’re not going to explore
that functionality in this chapter, but each corner of the image can be rooted to a
different corner of the screen. In figure 6.11 the images didn’t change size, but
we could adjust the anchors so that when the screen changes size, the image
stretches with it.

All of the visual setup is done, so it’s time to program interactivity.

6.3. Programming interactivity in the Ul

Before you can interact with the Ul, you need to have a mouse cursor. If you
recall, this game adjusted Cursor settings in the Start () method of the
RayShooter code. Those settings lock and hide the mouse cursor, a behavior that
works for the controls in an FPS game but that interferes with using the UL
Remove those lines from RayShooter.cs so that you can click on the HUD.

As long as you have RayShooter.cs open, you could also make sure not to shoot
while interacting with the GUI. The following listing shows the code for that.

Listing 6.2. Adding a GUI check to the code in RayShooter.cs

III/.,-o—tﬁ- using Unit '_.'I'ZI:._.' ine . Events yatems;
I s Italicized code was already in
Include U Vo 1d UEl.. E : ; . . Q/_ ﬁ{ﬁpti shown for reference
system code f (Input.GetMouseButtonDown (0) &&
frameworks |EventSystem. current . IsPointerOverGameObiect | {

“N_ Check that GUI
isn't being used

Now you can play the game and click the button, although it doesn’t do anything
yet. You can watch the tinting of the button change as you mouse over it and
click. This mouseover and click behavior is a default tint that can be changed for
each button, but the default looks fine for now. You could speed up the default
fading behavior; Fade Duration is a setting in the button component, so try
decreasing that to .01 to see how the button changes.

Tip

Sometimes the default interaction controls of the UI also interfere with the game.
Remember the EventSystem object that was created automatically along with the
canvas? That object controls the Ul interaction controls, and by default it uses
the arrow keys to interact with the GUI. You may need to turn off the arrow keys
in EventSystem: in the settings for EventSystem, deselect the check box Send
Navigation Event.

But nothing else happens when you click the button because you haven’t yet
linked it up to any code. Let’s take care of that next.

6.3.1. Programming an invisible UIController

In general, Ul interaction is programmed with a standard series of steps that’s the
same for all UI elements:

1. Create a UI object in the scene (the button created in the previous
section).

2. Write a script to call when the UI is operated.
3. Attach that script to an object in the scene.

4. Link UI elements (such as buttons) to the object with that script.

To follow these steps, first we need to create a controller object to link to the
button. Create a script called UIController (shown in the following listing) and
drag that script onto the controller object in the scene.

Listing 6.3. UIController script used to program buttons

‘— Import Ul code framework.

< .
“_ Reference Text object in

id Updat { scene to set text property

nopenSectcings \ <}
% Method called by

bug.Log("open settings"); e i
settings button

Tip

You might be wondering why we need separate objects for SceneController and
UlIController. Indeed, this scene is so simple that you could have one controller
handling both the 3D scene and the UI. As the game gets more complex, though,
it’ll become increasingly useful for the 3D scene and the UI to be separate
modules, communicating indirectly. This notion extends well beyond games to
software in general; software engineers refer to this principle as separation of
concerns.

Now drag objects to component slots in order to wire them up. Drag the score
label (the text object we created before) to the UIController’s text slot. The code
in UIController sets the text displayed on that label. Currently the code displays
a timer to test the text display; that will be changed to the score later.

Next, add an OnClick entry to the button to drag the controller object onto.
Select the button to see its settings in the Inspector. Toward the bottom you
should see an OnClick panel; initially that panel is empty, but (as you can see in
figure 6.12) you can click the + button to add an entry to that panel. Each entry
defines a single function that gets called when that button is clicked; the listing
has both a slot for an object and a menu for the function to call. Drag the
controller object to the object slot, and then look for UIController in the menu;
select ONOpenSettings() in that section.

Figure 6.12. The OnClick panel toward the bottom of the button settings

OnClick event panel near -

the bottom of settings . On Click D
B And 0. [Contmlsr.OnOpsntatings. & Drag an object in the scene to
p ta 4 b dd [(F Contri_ &} ! the object slot, then choose
ress the + buttonto a _ a function in the menu.
an entry in the panel. L o+ =

Responding to other mouse events

OnClick is the only event that the button component exposes, but UI elements
can respond to a number of different interactions. To go beyond the default
interactions, use an EventTrigger component.

Add a new component to the button object and look for the Event section of the
component’s menu. Select EventTrigger from that menu. Although the button’s
OnClick responded only to a full click (the mouse button being pressed down
and then released), let’s try responding to the mouse button being pressed down
but not released. Perform the same steps as for OnC1lick, only responding to a
different event. First add another method to UIController:

public void OnPointerDown() {
Debug.Log("pointer down");

}

Now click Add New Event Type to add a new type to the EventTrigger
component. Choose Pointer Down for the event. This will create an empty panel
for that event, just like ONClick had. Click the + button to add an event listing,
drag the controller object to this entry, and select OnPointerDown() in the
menu. There you go!

Play the game and click the button to output debug messages in the console.
Again, the code is currently random output in order to test the button’s
functionality. What we want to do is open a settings pop-up, so let’s create that
pop-up window next.

6.3.2. Creating a pop-up window

The UI has a button to open a pop-up window, but there’s no pop-up yet. That

will be a new image object, along with several controls (such as buttons and
sliders) attached to that object. The first step is to create a new image, so choose
GameObject > Ul > Image. Just as before, the new image has a slot in the
Inspector called Source Image. Drag a sprite to that slot to set this image. This
time use the sprite called popup.

Ordinarily, the sprite is stretched over the entire image object; this was how the
score and gear images worked, and you clicked the Set Native Size button to
resize the object to the size of the image. This behavior is the default for image
objects, but the pop-up will do something different.

As you can see in figure 6.13, the image component has an Image Type setting.
This setting defaults to Simple, which was the correct image type earlier. For the
pop-up, though, set Image Type to Sliced.

Figure 6.13. Settings for the image component, including Image Type

Change the pop-up ¥ . M 1mage (scripy (TS The Set Native Size button
image from Simple Source Image Elpopup o only applies to Simple and
to Sliced. o S : |2 is replaced by a check box
Material _w.Hune {Material) (] for Fill Center
Image Type Sliced i
Fill Centar -

Definition

A sliced image is split up into nine sections that scale differently from one
another. By scaling the edges of the image separately from the middle, you
ensure that the image can scale to any size you want while it maintains its sharp
and crisp edges. In other development tools, these kinds of images often have
“9” somewhere in the name (such as 9-slice, 9-patch, scale-9) to indicate the 9
sections of the image.

After you switch to a sliced image, Unity may display an error in the component
settings, complaining that the image doesn’t have a border. That’s because the
popup sprite doesn’t have the nine sections defined yet. To set that up, first
select the popup sprite in the Project view. In the Inspector you should see a
Sprite Editor button (see figure 6.14); click that button and the Sprite Editor
window will appear.

Figure 6.14. Sprite Editor button in the Inspector and a pop-up window

...to open a window and
edit the sprite's borders.

[([—

Typein LR B T (Left Right
Bottom Top) numbers to
adjust the green border
slices. For the pop-up
sprite, set all borders
Click the Sprite Editor to 12 pixels.

button...

In the Sprite Editor you can see green lines that indicate how the image will be
sliced. Initially the image won’t have any border (that is, all of the Border
settings are 0). Increase the border width of all four sides, which will result in
the border shown in figure 6.14. Because all four sides (Left, Right, Bottom, and
Top) have the border set to 12 pixels wide, the border lines will overlap into nine
sections. Close the editor window and apply the changes.

Now that the sprite has the nine sections defined, the sliced image will work
correctly (and the Image component settings will show Fill Center; make sure
that setting is on). Click and drag the blue indicators in the corner of the image
to scale it (switch to the Rect tool described in chapter 5 if you don’t see any
scale indicators). The border sections will maintain their size while the center
portion scales.

Because the border sections maintain their size, a sliced image can be scaled to
any size and still have crisp edges. This is perfect for UI elements—different
windows may be different sizes but should still look the same. For this pop-up,
enter a width of 250 and a height of 200 to make it look like figure 6.15 (also,
center it on position 0, 0, 0).

Figure 6.15. Sliced image scaled to dimensions of the pop-up

Tip

How UI images stack on top of each other is determined by their order in the
Hierarchy view. In the Hierarchy list, drag the pop-up object above other Ul
objects (always staying attached to the canvas, of course). Now move the pop-up
around within the Scene view; you can see how images overlap the pop-up
window. Finally drag the pop-up to the bottom of the canvas hierarchy so that it
will display on top of everything else.

The pop-up object is set up now, so write some code for it. Create a script called
SettingsPopup (see the next listing) and drag that script onto the pop-up object.

Listing 6.4. SettingsPopup script for the pop-up object

using UnityEngine;

using System.Collections;

public class SettingsPopup : MonoBehaviour | .
, Turn the object on to

public '-:’."—‘llﬂ Open() i q/- open the window.

gameQbject .SetActive(true) ;

I--k_al' T LT (Deactivate this object

Mo _ <3/- to close the window.
gameObject .SetActive (false) ;

!

Next, open UlController.cs to make a few adjustments, as shown in the
following listing.

Listing 6.5. Adjusting UIController to handle the pop-up

[SerializeField] private SettingsPopup settingsPopup;
void Start () {
settingsPopup.Close() ;

ﬂ\v Close the pop-up when
the game starts.

public void OnOpenSettings()

4

settingsPopup.Openi) ; e
SRR ﬂ_ Replace the debug text with
the pop-up’s method.

This code adds a slot for the pop-up object, so drag the pop-up to UIController.
Now the pop-up will be closed initially when you play the game, and it’ll open
when you click the settings button.

At the moment there’s no way to close it again, so add a close button to the pop-
up. The steps are pretty much the same as for the button created earlier: choose
GameObject > UI> Button, position the new button in the top-right corner of the
pop-up, drag the close sprite to this UI element’s Source Image property, and
then click Set Native Size to correctly resize the image. Unlike with the previous
button we actually want this text label, so select the text and type C1lose in the
text field, and set Color to white. In the Hierarchy view, drag this button onto the
pop-up object so that it will be a child of the pop-up window. And as a final
touch of polish, adjust the button transition to a Fade Duration value of .01 and a
darker Normal Color setting of 110, 110, 110, 255.

To make the button close the pop-up, it needs an OnClick entry; click the +
button on the button’s OnClick panel, drag the pop-up window into the object
slot, and choose Close() from the function list. Now play the game and this
button will close the pop-up window.

The pop-up window has been added to the HUD. The window is currently blank,
though, so let’s add some controls to it next.

6.3.3. Setting values using sliders and input fields

Adding some controls to the settings pop-up involves two main steps, like the
buttons we made earlier. You create UI elements attached to the canvas, and link

those objects to a script. The input controls we need are a slider and a text field,
and there will be a static text label to identify the slider. Choose GameObject >
UI > Text to create the text object, GameObject > UI > InputField to create the
text field, and GameObject > UI > Slider to create the slider object (see figure
6.16).

Figure 6.16. Input controls added to the pop-up window

Input controls
on the pop-up: The close button is
in the top corner,

. while a text label
was placed just

over the slider.

a text InputField

a numerical Slider

Make all three objects children of the pop-up by dragging them in the Hierarchy
view and then position them as indicated in the figure, lined up in the middle of
the pop-up. Set the text to Speed so that it can be a label for the slider. The
input field is for typing in text, and Text is shown in the box before the player
types something else; set this value to Name. You can leave the options Content
Type and Line Type at their defaults; if desired, you can use Content Type to
restrict typing to things like only letters or only numbers, whereas you can use
Line Type to switch from a single line to multiline text.

Warning

You won’t be able to click the slider if the text label covers it. Make sure the text
object appears under the slider by placing it above the slider in the Hierarchy.

As for the slider itself, several settings appear toward the bottom of the
component inspector. Min Value is set to 0 by default; leave that. Max Value
defaults to 1, but make it 2 for this example. Similarly, both Value and Whole
Numbers can be left at their defaults; Value controls the starting value of the
slider, and Whole Numbers constrains it to @ 1 2 rather than decimal values (a
constraint we don’t want).

And that wraps up all the objects. Now you need to write the code that the
objects are linked to; add the methods shown in the following listing to
SettingsPopup.cs.

Listing 6.6. SettingsPopup methods for the pop-up’s input controls

ﬂ__ This will trigger when the user
types in the input field.

G\ This will trigger when the
user adjusts the slider.

Great, there are methods for the controls to use. Starting with the input field, in
settings you’ll see an End Edit panel; events listed here are triggered when the
user finishes typing. Add an entry to this panel, drag the pop-up to the object
slot, and choose OnSubmitName () in the function list.

Warning

Be sure to select the function in the End Edit panel’s top section, Dynamic
String, and not the bottom section, Static Parameters. The OnSubmitName ()
function appears in both sections, but selecting it under Static Parameters will
send only a single string defined ahead of time; dynamic string refers to
whatever value is typed in the input field.

Follow these same steps for the slider: look for the event panel toward the end of
the component settings (in this case, the panel is OnValueChanged), click + to
add an entry, drag in the settings pop-up, and choose OnSpeedValue() in the
list of dynamic value functions.

Now both of the input controls are connected to code in the pop-up’s script. Play
the game, and watch the console while you move the slider or press Enter after

typing input.

Saving settings between plays using PlayerPrefs

A few different methods are available for saving persistent data in Unity, and one

of the simplest is called PlayerPrefs. Unity provides an abstracted way (that is,
you don’t worry about the details) to save small amounts of information that
works on all platforms (with their differing filesystems). PlayerPrefs aren’t too
useful for large amounts of data (in chapter 11 we’ll use other methods to save
the game’s progress), but they’re perfect for saving settings.

PlayerPrefs provide simple commands to get and set named values (it works a
lot like a hash table or dictionary). For example, you can save the speed setting
by adding the line PlayerPrefs.SetFloat("speed", speed); inside
the OnSpeedValue() method of the SettingsPopup script. That method will
save the float in a value called speed.

Similarly, you’ll want to initialize the slider to the saved value. Add the
following code to SettingsPopup:

using UnityEngine.UI,;

[SerializeField] private Slider speedSlider;
void Start() {
speedSlider.value = PlayerPrefs.GetFloat("speed", 1);

}

Note that the get command has both the value to get as well as a default value
in case speed wasn’t previously saved.

Although the controls generate debug output, they still don’t actually affect the
game. Making the HUD affect the game (and vice versa) is the topic of the final
section of this chapter.

6.4. Updating the game by responding to events

Up to now, the HUD and main game have been ignoring each other, but they
ought to be communicating back and forth. That could be accomplished via
script references as we’ve done for other sorts of interobject communication, but
that approach would have major downsides. In particular, doing so would tightly
couple the scene and the HUD; you want to keep them fairly independent from
each other so that you can freely edit the game without worrying that you’ve

broken the HUD.

To alert the UI of actions in the scene, we’re going to make use of a broadcast
messenger system. Figure 6.17 illustrates how this event messaging system
works: scripts can register to listen for an event, other code can broadcast an
event, and listeners will be alerted about broadcast messages. Let’s go over a
messaging system to accomplish that.

Figure 6.17. Diagram of the broadcast event system we’ll implement

Messenger is a central module
that routes messages between
broadcasters and listeners.

Other objects can tell the

Objects can register to :
Messenger to broadcast specific

listen for specific events,

assigning a function events. Messenger will route Il'.hE
as the callback. message to everything listening
Messenger for that event.
Hataoho = Add listenear
BroadcastObj
= Awake() I I~ = Broadcast massage <

= Uipdate()
= DnEveniRecaived

Tip

C# does have a built-in system for handling events, so you might wonder why
we don’t use that. Well, the built-in event system enforces targeted messages,
whereas we want a broadcast messenger system. A targeted system requires the
code to know exactly where messages originate from; broadcasts can originate
from anywhere.

6.4.1. Integrating an event system

To alert the UI of actions in the scene, we’re going to make use of a broadcast
messenger system. Although Unity doesn’t have this feature built in, a great
script for this purpose exists online. Among the resources listed in appendix D is
the Unify community wiki; this is a repository of free code contributed by other
developers. Their messenger system is great for providing a decoupled way of
communicating events to the rest of the program. When some code broadcasts a
message, that code doesn’t need to know anything about the listeners, allowing
for a great deal of flexibility in switching around or adding objects.

Create a script called Messenger and paste in the code from this page on
Unify: http://wiki.unity3d.com/index.php/CSharpMessenger_Extended

Then you also need to create a script called GameEvent (see the following
listing).

Listing 6.7. GameEvent script to use with Messenger

public static class GameEvent {
public const string ENEMY_HIT = "ENEMY_HIT",;
public const string SPEED_CHANGED = "SPEED_CHANGED",;

}

The script in the listing defines a constant for a couple of event messages; the
messages are more organized this way, and you don’t have to remember and type
the message string all over the place.

Now the event messenger system is ready to use, so let’s start using it. First we’ll
communicate from the scene to the HUD, and then we’ll go in the other
direction.

6.4.2. Broadcasting and listening for events from the scene

Up to now the score display has displayed a timer as a test of the text display
functionality. But we want to display a count of enemies hit, so let’s modify the
code in UlIController. First delete the entire Update () method, because that
was the test code. When an enemy dies, it will emit an event, so the following
listing makes UlIController listen for that event.

Listing 6.8. Adding event listeners to UIController

http://wiki.unity3d.com/index.php/CSharpMessenger_Extended

Declare which
1 Awak: ,-"(_ method responds to
idl : I ' : <3 event ENEMY_HIT.

IMY HIT, nEnemyHict) ; "—~"—x_\

L]
When an object is destroyed, use
the cleanup listener to avoid errors.

Label . text ore . ToString() ; 4:_\
. Initialize the score to 0.

<t :
_ Increment the score in
response to the event.

First notice the Awake () and OnDestroy() methods. Much like Start ()
and Update(), every MonoBehaviour automatically responds when the
object awakes or is removed. A listener gets added and removed in

Awake ()/OnDestroy (). This listener is part of the broadcast messaging
system, and it calls OnEnemyHit () when that message is received.
OnEnemyHit ()increments the score and then puts that value in the score
display.

The event listeners are set up in the UI code, so now we need to broadcast that
message whenever an enemy is hit. The code to respond to hits is in
RayShooter.cs, so emit the message as shown in the following listing.

Listing 6.9. Broadcast event message from RayShooter

= gl i Message broadcast added
arget .ReactToHit () ; - hit
Messenger.Broadcast (GameEvent . ENEMY HIT) ; <1/ e

Play the game after adding that message and watch the score display when you
shoot an enemy. You should see the count going up every time you make a hit.
That covers sending messages from the 3D game to the 2D interface, but we also
want an example going in the other direction.

6.4.3. Broadcasting and listening for events from the HUD

In the previous section, an event was broadcast from the scene and received by
the HUD. In a similar way, UI controls can broadcast a message that both
players and enemies listen for. In this way, the settings pop-up can affect the
settings of the game. Open WanderingAl.cs and add the code from the next
listing.

Listing 6.10. Event listener added to WanderingAl

f}\'\h Base speed that is adjusted
by the speed setting

senger«<float AddListene: ;amaEveant . SPEEI "HANGELD, nSpeaedChanged

{k\"-.,_ Method that was declared in listener
for event SPEED_CHANGED

Awake () and OnDestroy() add and remove, respectively, an event listener
here, too, but the methods have a value this time. That value is used to set the
speed of the wandering Al.

Tip

The code in the previous section just used a generic event, but this messaging
system can pass a value along with the message. Supporting a value in the
listener is as simple as adding a type definition; note the <f1loat> added to the
listener command.

Now make the same changes in FPSInput.cs to affect the speed of the player.
The code in the next listing is almost exactly the same as that in listing 6.10,
except that the player has a different number for baseSpeed.

Listing 6.11. Event listener added to FPSInput

*~ This value is changed from listing 6.10.

Finally, broadcast the speed values from SettingsPopup in response to the slider,
as shown in the following listing.

Listing 6.12. Broadcast message from SettingsPopup

< 5
M Send slider value
as <float> event

Now the enemy and player have their speed changed when you adjust the slider.
Hit Play and try it out!

Exercise: Changing the speed of spawned enemies

Currently the speed value is only updated for enemies already in the scene and
not for newly spawned enemies; new enemies aren’t created at the correct speed
setting. I’1l leave it as an exercise for you to figure out how to set the speed on
spawned enemies. Here’s a hint: add a SPEED_CHANGED listener to
SceneController, because that script is where enemies are spawned from.

You now know how to build a graphical interface using the new Ul tools offered
by Unity. This knowledge will come in handy in all future projects, even as we
explore different game genres.

6.5. Summary

In this chapter you’ve learned that

Unity has both an immediate mode GUI system as well as a newer system
based on 2D sprites.

Using 2D sprites for a GUI requires that the scene have a canvas object.
UI elements can be anchored to relative positions on the adjustable canvas.
Set the Active property to turn Ul elements on and off.

A decoupled messaging system is a great way to broadcast events between
the interface and the scene.

Chapter 7. Creating a third-person 3D game: player
movement and animation

This chapter covers

Adding real-time shadows to the scene

Making the camera orbit around its target

Changing rotation smoothly using the Lerp algorithm
Handling ground detection for jumping, ledges, and slopes
Applying and controlling animation for a lifelike character

In this chapter you’ll create another 3D game, but this time you’ll be working in
a new game genre. If you think back to chapter 2, you built a movement demo
for a first-person game. Now you’re going to write another movement demo, but
this time it’ll involve third-person movement. The most important difference is
the placement of the camera relative to the player: a player sees through their
character’s eyes in first-person view, and the camera is placed outside the
character in third-person view. This view is probably familiar to you from
adventure games, like the long-lived Legend of Zelda series, or the more recent
Uncharted series of games (refer ahead to figure 7.3 if you want to see a
comparison of first-person and third-person views).

The project in this chapter is one of the more visually exciting prototypes we’ll
build in this book. Figure 7.1 shows how the scene will be constructed. Compare
this with the diagram (figure 2.2) of the first-person scene we created in chapter
2.

Figure 7.1. Roadmap for the third-person movement demo

3. Turn on shadows for this
scene. We can see the player

now, so shadows are important.
I. Set up the walls, floor,

and lights in the room.
Simply import this from
previous projects.

4. Position the camera for
this demo. The camera
should be outside the
character, looking down at it.

1. Import the character.
Use a humanoid model

5. Write movement scripts for

th?s time, becatuse ina . the camera and player. First
third-person view, the - write code to orbit the camera
player can see the character. around the character, then write

. code to move the character
around (including jumping!).

Figure 7.2. Wireframe view of the model we’ll use in this chapter

You can see that the room construction is the same, and the use of scripts is
much the same. But the look of the player, as well as the placement of the
camera, are different in each case. Again, what defines this as a “third-person”
view is that the camera is outside the player’s character and looking inward at
that character. We’ll use a model that looks like a humanoid character (rather
than a primitive capsule) because now players can actually see themselves.

Recall that two of the types of art assets discussed in chapter 4 were 3D models
and animations. The term 3D model is almost a synonym for mesh object; the
3D model is the static shape defined by vertices and polygons (that is, mesh

geometry). For a humanoid character, this mesh geometry is shaped into a head,
arms, legs, and so forth (see figure 7.2).

As usual, we’ll focus on the last step in the roadmap: programming objects in the
scene. Here’s a recap of our plan of action:

1. Import a character model into the scene.

2. Implement camera controls to look at the character.

3. Write a script that enables the player to run around on the ground.
4. Add the ability to jump to the movement script.

5. Play animations on the model based on its movements.

Copy the project from chapter 2 to modify it, or create a new Unity project (be
sure it’s set to 3D, not the 2D project from chapter 5) and copy over the scene
file from chapter 2’s project; either way, also grab the scratch folder from this
chapter’s download to get the character model we’ll use.

Note

We’re going to build this chapter’s project in the walled area from chapter 2.
We’ll keep the walls and lights but replace the player and all scripts. If you need
them, download the sample files from that chapter.

Assuming you’re starting with the completed project from chapter 2 (the
movement demo, not later projects), let’s delete everything we don’t need for
this chapter. First disconnect the camera from the player in the Hierarchy list
(drag the camera object off the player object). Now delete the player object; if
you hadn’t disconnected the camera first then that would be deleted too, but
what you want is to delete only the player capsule and leave the camera.
Alternatively, if you already deleted the camera by accident, create a new camera
object by selecting GameObject > Camera.

Delete all the scripts as well (which involves removing the script component
from the camera as well as deleting the files in the Project view), leaving only

the walls, floor, and lights.

7.1. Adjusting the camera view for third-person

Before we can write code to make the player move around, we need to put a
character in the scene and set up the camera to look at that character. We’ll
import a faceless humanoid model to use as the player character, and then place
the camera above at an angle to look down at the player obliquely. Figure 7.3
compares what the scene looks like in first-person view with what the scene will
look like in third-person view (shown with a few large blocks that we’ll add in
this chapter).

Figure 7.3. Side-by-side comparison of first-person and third-person views

First-person demo Third-person demo

F'[‘i‘.

We prepared the scene already, so now let’s put a character model into the scene.

7.1.1. Importing a character to look at

The scratch folder for this chapter’s download includes both the model and the
texture; as you’ll recall from chapter 4, FBX is the model and TGA is the
texture. Import the FBX file into the project; either drag the file into the Project
view, or right-click in the Project view and select Import New Asset. Then look
in the Inspector to adjust import settings for the model. Later in the chapter
you’ll adjust imported animations, but for now you need to make only a couple
of adjustments in the Model tab. First change the Scale Factor value to 10 (to
partially counteract the File Scale value of .01) so that the model will be the
correct size.

A bit farther down you’ll find the Normals option (see figure 7.4). This setting

controls how lighting and shading appear on the model, using a 3D math concept
known as, well, normals.

Figure 7.4. Import settings for the character model

BT Ro | Animations) Set the Scale Factor to
Meshes partially counteract File
e = = Scale. This determines
Mesh Compression | Off :] — how big the model is in
Read/Write Enabled Unity, compared to how
Optimize Mesh = o .
import Blendshapes big it was in the
Generate Colliders [3D art tool.

Swap UVs L

Generate Lightmap UA[_

Normals & Tangents ~ Select how to
A | Calcuiane =~ bhandle Normals
Tangents Calculate &

S En R R o on the model.

Definition

Normals are direction vectors sticking out of polygons that tell the computer
which direction the polygon is facing. This facing direction is used for lighting
calculations.

The default setting for Normals is Import, which will use the normals defined in
the imported mesh geometry. But this particular model doesn’t have correctly
defined normals and will react in odd ways to lights. Instead, change the setting
to Calculate so that Unity will calculate a vector for the facing direction of every

polygon.

Once you’ve adjusted these two settings, click the Apply button in the Inspector.
Next import the TGA file into the project and then assign this image as the
texture in a material. Select the player material in the Materials folder. Drag the
texture image onto the empty texture slot in the Inspector. Once the texture is
applied you won’t see a dramatic change in the model’s color (this texture image
is mostly white), but there are shadows painted into the texture that’ll improve
the look of the model.

With the texture applied, drag the player model from the Project view up into the
scene. Position the character at 0, 1.1, 0 so that it’ll be in the center of the room
and raised up to stand on the floor. Great, we have a third-person character in the
scene!

Note

The imported character has his arms stuck straight out to the sides, rather than
the more natural arms-down pose. That’s because animations haven’t been
applied yet; that arms-out position is referred to as the T-pose and the standard is
for animated characters to default to a T-pose before they’re animated.

7.1.2. Adding shadows to the scene

Before we move on, I want to explain a bit about the shadow being cast by the
character. We take shadows for granted in the real world, but shadows aren’t
guaranteed in the game’s virtual world. Fortunately Unity can handle this detail,
and shadows are turned on for the default light that comes with new scenes.
Select the directional light in your scene and then look in the Inspector for the
Shadow Type option. That setting (shown in figure 7.5) is already on Soft
Shadows for the default light, but notice the menu also has a No Shadows
option.

Figure 7.5. Before and after casting shadows from the directional light

I v g

@,
Trpe Dimchons I
Bakirvg e i
Colar { 12
RE e
Bounce intensity ——
Shadow Type o Bhadown A f
Strength T Select the Directional light
L S Spesity Setiag t and turn on Soft Shadows.

That’s all you need to do to set up shadows in this project, but there’s a lot more
you should know about shadows in games. Calculating the shadows in a scene is
a particularly time-consuming part of computer graphics, so games often cut

corners and fake things in various ways in order to achieve the visual look
desired. The kind of shadow cast from the character is referred to as real-time
shadow because the shadow is calculated while the game is running and moves
around with moving objects. A perfectly realistic lighting setup would have all
objects casting and receiving shadows in real time, but in order for the shadow
calculations to run fast enough, real-time shadows are limited in how the
shadows look or which lights can even cast shadows. Note that only the
directional light is casting shadows in this scene.

Another common way of handling shadows in games is with a technique called
lightmapping.

Definition

Lightmaps are textures applied to the level geometry, with pictures of the
shadows baked into the texture image.

Definition

Drawing shadows onto a model’s texture is referred to as baking the shadows.

Because these images are generated ahead of time (rather than while the game is
running), they can be very elaborate and realistic. On the downside, because the
shadows are generated ahead of time, they won’t move. Thus, lightmaps are
great to use for static level geometry, but they aren’t useful for dynamic objects
like characters. Lightmaps are generated automatically rather than being painted
by hand. The computer calculates how the lights in the scene will illuminate the
level while subtle darkness builds up in corners. In Unity, the system for
rendering lightmaps is called Enlighten, so you can look up that keyword in
Unity’s manual.

Whether or not to use real-time shadows or lightmaps isn’t an all-or-nothing
choice. You can set the Culling Mask property on a light so that real-time
shadows are used only for certain objects, allowing you to use the higher-quality
lightmaps for other objects in the scene. Similarly, though you almost always
want the main character to cast shadows, sometimes you don’t want the
character to receive shadows; all mesh objects have settings to cast and receive

shadows (see figure 7.6).

Figure 7.6. The Cast Shadows and Receive Shadows settings in the Inspector

Shadows are projected

from this mesh. —

v | M Mesh Renderer | L %,
Cast Shadows | On s |

Receive Shadows {Qj

__ This mesh darkens from
shadows projected onto it.

Definition

Culling is a general term for removing unwanted things. The word comes up a
lot in computer graphics in many different contexts, but in this case culling mask
is the set of objects you want to remove from shadow casting.

All right, now you understand the basics of how to apply shadows to your
scenes. Lighting and shading a level can be a big topic unto itself (books about
level editing will often spend multiple chapters on lightmapping), but here we
restrict ourselves to turning on real-time shadows on one light. And with that,
let’s turn our attention to the camera.

7.1.3. Orbiting the camera around the player character

In the first-person demo, the camera was linked to the player object in Hierarchy
view so that they’d rotate together. In third-person movement, though, the player
character will be facing different directions independently of the camera.
Therefore, you don’t want to drag the camera onto the player character in the
Hierarchy view this time. Instead, the camera’s code will move its position along
with the character but will rotate independently of the character.

First, place the camera where you want it to be relative to the player; I went with
position 0, 3.5, -3.75 to put the camera above and behind the character (reset
rotation to 0, O, O if needed). Then create a script called OrbitCamera (see the

next listing). Attach the script component to the camera and then drag the player
character into the Target slot of the script. Now you can play the scene to see the
camera code in action.

Listing 7.1. Camera script for rotating around a target while looking at it

Serialized reference to the
" object to orbit around

Fa

<

Store the starting position
~ offset between the camera
<+ and the target.

Either rotate the camera
7 slowly using arrow keys..
e

...0r rotate quickly
" with the mouse.
<

Maintain the starting
offset, shifted
according to the

camera’s rotation. :
= -._\.

No matter where the camera is relative
to the target, always face the target.

As you’re reading through the listing, note the serialized variable for target.
The code needs to know what object to orbit the camera around, so this variable
is serialized in order to appear within Unity’s editor and have the player
character linked to it. The next couple of variables are rotation values that are
used in the same way as in the camera control code from chapter 2. And there’s
an _offset value declared; _offset is set within Start () to store the
position difference between the camera and target. This way, the relative position
of the camera can be maintained while the script runs. In other words, the
camera will stay at the initial distance from the character regardless of which
way it rotates. The remainder of the code is inside the LateUpdate()
function.

Tip

LateUpdate() is another method provided by MonoBehaviour and it’s
very similar to Update (); it’s a method run every frame. The difference, as the
name implies, is that LateUpdate () is called on all objects after Update ()
has run on all objects. This way, we can ensure that the camera updates after the
target has moved.

First, the code increments the rotation value based on input controls. This code
looks at two different input controls—horizontal arrow keys and horizontal
mouse movement—so a conditional is used to switch between them. The code
checks if horizontal arrow keys are being pressed; if they are, then it uses that
input, but if not, it checks the mouse. By checking the two inputs separately, the
code can rotate at different speeds for each type of input.

Next, the code positions the camera based on the position of the target and the
rotation value. The transform.position line is probably the biggest
“aha!” in this code, because it provides some crucial math that you haven’t seen
before in previous chapters. Multiplying a position vector by a quaternion (note
that the rotation angle was converted to a quaternion using
Quaternion.Euler) results in a position that’s shifted over according to that
rotation. This rotated position vector is then added as the offset from the
character’s position in order to calculate the position for the camera. Figure 7.7
illustrates the steps of the calculation and provides a detailed breakdown of this
rather conceptually dense line of code.

Figure 7.7. The steps for calculating the camera’s position

Multiply the offset vector by a quaternion
to get the rotated offset position.

transform.position = target.position - (rotation * _offset);

Then determine the position for the camera by
subtracting the rotated offset from the target's position.

l. Define a position to use as 1. Multiply the offset position 3. Subtract from the player's
the offset for the camera. with a quaternion to get the position to figure out where
rotated offset position. to offset relative to the player.
Offset Position s
4] Final Camera
Pasition []

Player's Position

Note

The more mathematically astute among you may be thinking “Hmm, that
transforming-between-coordinate-systems thing in chapter 2...can’t we do that
here, too?” The answer is, yes, we could transform the offset position using a
rotated coordinate system to get the rotated offset. But that’d require setting up
the rotated coordinate system first, and it’s more straightforward not to need that
step.

Finally, the code uses the LOOKAt () method to point the camera at the target;
this function points one object (not just cameras) at another object. The rotation
value calculated before was used to position the camera at the correct angle
around the target, but in that step the camera was only positioned and not
rotated. Thus without the final LOOKATt line, the camera position would orbit
around the character but wouldn’t necessarily be looking at it. Go ahead and
comment out that line to see what happens.

The camera has its script for orbiting around the player character; next up is code
that moves the character around.

7.2. Programming camera-relative movement controls

Now that the character model is imported into Unity and we’ve written code to
control the camera view, it’s time to program controls for moving around the
scene. Let’s program camera-relative controls that’ll move the character in
various directions when arrow keys are pressed, as well as rotate the character to
face those different directions.

What does “camera-relative” mean?

The whole notion of “camera-relative” is a bit nonobvious but very crucial to
understand. This is similar to the local versus global distinction mentioned in
previous chapters: “left” points in different directions when you mean “left of
the local object” or “left of the entire world.” In a similar way, when you “move
the character to the left,” do you mean toward the character’s left, or the left side
of the screen?

The camera in a first-person game is placed inside the character and moves with
it, so no distinction exists between the character’s left and the camera’s left. A
third-person view places the camera outside the character, though, and thus the
camera’s left may be pointed in a different direction from the character’s left. For
example, they’re literally opposite directions if the camera is looking at the front
of the character. Thus we have to decide what we want to have happen in our
specific game and controls setup.

Although occasionally games do it the other way, most third-person games make
their controls camera-relative. When the player presses the left button, the
character moves to the left of the screen, not the character’s left. Over time and
through experiments with trying out different control schemes, game designers
have figured out that players find the controls more intuitive and easier to
understand when “left” means “left side of the screen” (which, not
coincidentally, is also the player’s left).

Implementing camera-relative controls involves two primary steps: first rotate
the player character to face the direction of the controls, and then move the
character forward. Let’s write the code for these two steps next.

7.2.1. Rotating the character to face movement direction

First we’ll write code to make the character face in the direction of the arrow
keys. Create a C# script called RelativeMovement (see listing 7.2). Drag that
script onto the player character, and then link the camera to the target
property of the script component (just like you’d linked the character to the
target of the camera script). Now the character will face different directions
when you press the controls, facing directions relative to the camera, or stand
still when you’re not pressing any arrow keys (that is, when rotating using the
mouse).

Listing 7.2. Rotating the character relative to the camera

This script needs a
~ reference to the object
<+ to move relative to.

—t
Ve

Start with vector
(0, 0, 0) and add
movement
components
progressively.

Only handle movement while
/ arrow keys are pressed.
<

Keep the initial rotation to restore

; [;-"- after finishing with the target object.
ransform movement fad

direction from Local -
to Global coordinates, &=

ALY

LookRotation() calculates a quaternion
facing in that direction

The code in this listing starts the same way as listing 7.1 did, with a serialized
variable for target. Just as the previous script needed a reference to the object
it’d orbit around, this script needs a reference to the object it’ll move relative to.
Then we get to the Update () function. The first line of the function declares a
Vector3 value of 0, 0, 0. It’s important to create a zeroed vector and fill in the
values later rather than simply create a vector later with the movement values
calculated, because the vertical and horizontal movement values will be
calculated in different steps and yet they all need to be part of the same vector.

Next we check the input controls, just as we have in previous scripts. Here’s
where X and Z values are set in the movement vector, for horizontal movement

around the scene. Remember that Input .GetAxis () returns O if no button is
pressed, and it varies between 1 and —1 when those keys are being pressed;
putting that value in the movement vector sets the movement to the positive or
negative direction of that axis (the X-axis is left-right, and the Z-axis is forward-
backward).

The next several lines are where the movement vector is adjusted to be camera-
relative. Specifically, TransformDirection() is used to transform from
Local to Global coordinates. This is the same thing we did with
TransformDirection() in chapter 2, except this time we’re transforming
from the target’s coordinate system instead of from the player’s coordinate
system. Meanwhile, the code just before and after the
TransformDirection() line is aligning the coordinate system for our
needs: first store the target’s rotation to restore later, and then adjust the rotation
so that it’s only around the Y-axis and not all three axes. Finally perform the
transformation and restore the target’s rotation.

All of that code was for calculating the movement direction as a vector. The final
line of code applies that movement direction to the character by converting the
Vector3into a Quaternion using Quaternion.LookDirection()
and assigning that value. Try running the game now to see what happens!

Smoothly rotating (interpolating) by using Lerp

Currently, the character’s rotation snaps instantly to different facings, but it’d
look better if the character smoothly rotated to different facings. We can do so
using a mathematical operation called Lerp. First add this variable to the script:

public float rotSpeed = 15.0f;

Then replace the existing transform.rotation. .. line at the end of
listing 7.2 with the following code:

Quaternion direction = Quaternion.LookRotation(movement);
transform.rotation = Quaternion.Lerp(transform.rotation,
direction, rotSpeed * Time.deltaTime);

Now instead of snapping directly to the LookRotation() value, that value is
used indirectly as the target direction to rotate toward. The
Quaternion.Lerp() method smoothly rotates between the current and
target rotations (with the third parameter controlling how quickly to rotate).

Incidentally, the term for smoothly changing between values is interpolate; you
can interpolate between two of any kind of value, not just rotation values. Lerp is
a quasi-acronym for “linear interpolation,” and Unity provides Lerp methods for
vectors and float values, too (to interpolate positions, colors, or anything).
Quaternions also have a closely related alternative method for interpolation
called Slerp (for spherical linear interpolation). For slower turns, Slerp rotations
may look better than Lerp.

Currently the character is rotating in place without moving; in the next section
we’ll add code for moving the character around.

Note

Because sideways facing uses the same keyboard controls as orbiting the
camera, the character will slowly rotate while the movement direction points
sideways. This doubling up of the controls is desired behavior in this project.

7.2.2. Moving forward in that direction

As you’ll recall from chapter 2, in order to move the player around the scene, we
need to add a character controller component to the player object. Select the
character and then choose Components > Physics > Character Controller. In the
Inspector you should slightly reduce the controller’s radius to .4, but otherwise
the default settings are all fine for this character model.

The next listing shows what you need to add in the RelativeMovement script.

Listing 7.3. Adding code to change the player’s position

The surrounding lines are
o~ context for placing the
RequireComponent() method.

Here's a pattern you've seen in
previous chapters, used for getting
access to other components.

Overwrite the existing X and I

Limit diagenal /~ lines to apply movement speed.
movement to the same =k it horInput * Speed; <
speed as movement —, I
along an axis. p¥S
Remember to always multiply
~ movements by deltaTime to make
</ them frame rate-independent.

If you play the game now, you can see the character (stuck in a T-pose) moving
around in the scene. Pretty much the entirety of this listing is code you’ve
already seen before, so I'll just review everything briefly.

First, there’s a RequireComponent () method at the top of the code. As
explained in chapter 2, RequireComponent () will force Unity to make sure
the GameObject has a component of the type passed into the command. This line
is optional; you don’t have to require it, but without this component the script
will have errors.

Next there’s a movement value declared, followed by getting this script a
reference to the character controller. As you’ll recall from previous chapters,
GetComponent () returns other components attached to the given object, and
if the object to search on isn’t explicitly defined, then it’s assumed to be
this.GetComponent () (that is, the same object as this script).

Movement values are assigned based on the input controls. This was in the
previous listing, too; the change here is that we also account for the movement
speed. Multiply both movement axes by the movement speed, and then use
Vector3.Clamp-Magnitude () to limit the vector’s magnitude to the
movement speed; the clamp is needed because otherwise diagonal movement
would have a greater magnitude than movement directly along an axis (picture

the sides and hypotenuse of a right triangle).

Finally, at the end we multiply the movement values by deltaTime in order to
get frame rate—independent movement (recall that “frame rate-independent”
means the character moves at the same speed on different computers with
different frame rates). Pass the movement values to
CharacterController.Move() to make the movement.

This handles all the horizontal movement; next let’s take care of vertical
movement.

7.3. Implementing the jump action

In the previous section we wrote code to make the character run around on the
ground. In the chapter introduction, though, I also mentioned making the
character jump, so let’s do that now. Most third-person games do have a control
for jumping. And even if they don’t, they almost always have vertical movement
from the character falling off ledges. Our code will handle both jumping and
falling. Specifically, this code will have gravity pulling the player down at all
times, but occasionally an upward jolt will be applied when the player jumps.

Before we write this code, let’s add a few raised platforms to the scene. There’s
currently nothing to jump on or fall off of! Create a couple more cube objects,
and then modify their positions and scale to give the player platforms to jump
on. In the sample project, I added two cubes and used these settings: Position 5,
.75, 5 and Scale 4, 1.5, 4; Position 1, 1.5, 5.5 and Scale 4, 3, 4. Figure 7.8 shows
the raised platforms.

Figure 7.8. A couple of raised platforms added to the sparse scene

Position I, 1.5, 5.5
Scale 4, 3, 4

Position 5, .75, 5
Scale 4, 1.5, 4

7.3.1. Applying vertical speed and acceleration

As mentioned when we first started writing the RelativeMovement script in
listing 7.2, the movement values are calculated in separate steps and added to the
movement vector progressively. The next listing adds vertical movement to the
existing vector.

Listing 7.4. Adding vertical movement to the RelativeMovement script

Initialize the vertical speed
~ to the minimum falling speed at
ead nFall; < the start of the existing function.

CharacterController has an
f,r isGrounded property to check if
3 the controller is on the ground.

o
g

React to the jJump

button while on rert S i minFall; If not on the ground, then

the ground. ~ apply gravity until terminal
| <’ velocity is reached.

The end of listing 7.3, so
~ that you can see where
< this new code goes

As usual we start by adding a few new variables to the top of the script for
various movement values, and initialize the values correctly. Then we skip down
to just after the big 1f statement for horizontal movement, where we’ll add
another big 1f statement for vertical movement. Specifically, the code will
check if the character is on the ground, because the vertical speed will be
adjusted differently depending on whether the character is on the ground.
CharacterController includes isGrounded for checking whether the
character is on the ground; this value is true if the bottom of the character

controller collided with anything in the last frame.

If the character is on the ground, then the vertical speed value (the private
variable _ver tSpeed) should be reset to essentially nothing. The character
isn’t falling while on the ground, so obviously its vertical speed is 0; if the
character then steps off a ledge, we’re going to get a nice, natural-looking
motion because the falling speed will accelerate from nothing.

Note

Well, not exactly 0; we’re actually setting the vertical speed to minFall, a
slight downward movement, so that the character will always be pressing down
against the ground while running around horizontally. There needs to be some
downward force in order to run up and down on uneven terrain.

The exception to this grounded speed value is if the jump button is clicked. In
that case, the vertical speed should be set to a high number. The i statement
checks GetButtonDown(), a new input function that works much like
GetAxis () does, returning the state of the indicated input control. And much
like Horizontal and Vertical input axes, the exact key assigned to Jump is defined
by going to Input settings under Edit > Project Settings (the default key
assignment is Space—that is, the spacebar).

Getting back to the larger 1f condition, if the character is not on the ground,
then the vertical speed should be constantly reduced by gravity. Note that this
code doesn’t simply set the speed value but rather decrements it; this way, it’s
not a constant speed but rather a downward acceleration, resulting in a realistic
falling movement. Jumping will happen in a natural arc, as the character’s
upward speed gradually reduces to 0 and it starts falling instead.

Finally, the code makes sure the downward speed doesn’t exceed terminal
velocity. Note that the operator is “less than” and not “greater than,” because
downward is a negative speed value. Then after the big if statement, assign the
calculated vertical speed to the Y-axis of the movement vector.

And that’s all you need for realistic vertical movement! By applying a constant
downward acceleration when the character isn’t on the ground, and adjusting the

speed appropriately when the character is on the ground, the code creates nice
falling behavior. But this all depends on detecting the ground correctly, and
there’s a subtle glitch we need to fix.

7.3.2. Modifying the ground detection to handle edges and slopes

As explained in the previous section, the 1sGrounded property of
CharacterController indicates whether the bottom of the character
controller collided with anything in the last frame. Although this approach to
detecting the ground works the majority of the time, you’ll probably notice that
the character seems to float in the air while stepping off edges. That’s because
the collision area of the character is a surrounding capsule (you can see it when
you select the character object) and the bottom of this capsule will still be in
contact with the ground when the player steps off the edge of the platform.
Figure 7.9 illustrates the problem. This won’t do at all!

Figure 7.9. Diagram showing the character controller capsule touching the platform edge

...but the collision capsule around
the character is still touching the
platform edge. As a result, the player

The character has completel
P J appears to be floating in the air.

stepped off the platform...

Similarly, if the character stands on a slope, the current ground detection will
cause problematic behavior. Try it now by creating a sloped block against the
raised platforms. Create a new cube object and set its transform values to
Position -1.5, 1.5, 5 Rotation 0, 0, -25 Scale 1, 4, 4.

If you jump onto the slope from the ground, you’ll find that you can jump again
from midway up the slope and thereby ascend to the top. That’s because the
slope does touch the bottom of the capsule obliquely and the code currently
considers any collision on the bottom to be solid footing. Again, this won’t do;
the character should slide back down, not have solid footing to jump from.

Note

Sliding back down is only desired on steep slopes. On shallow slopes, such as
uneven ground, we want the player to run around unaffected. If you want one to
test on, make a shallow ramp by creating a cube and set it to Position 5.25, .25,
.25 Rotation 0, 90, 75 Scale 1, 6, 3.

All these problems have the same root cause: checking for collisions on the
bottom of the character isn’t a great way of determining if the character is on the
ground. Instead, let’s use raycasting to detect the ground. In chapter 3 the Al
used raycasting to detect obstacles in front of it; let’s use the same approach to
detect surfaces below the character. Cast a ray straight down from the player’s
position. If it registers a hit just below the character’s feet, that means the player
is standing on the ground.

This does introduce a new situation to handle: when the raycast doesn’t detect
ground below the character but the character controller is colliding with the
ground. As in figure 7.9, the capsule still collides with the platform while the
character is walking off the edge. Figure 7.10 adds raycasting to the diagram in
order to show what will happen now: the ray doesn’t hit the platform, but the
capsule does touch the edge. The code needs to handle this special situation.

Figure 7.10. Diagram of raycasting downward while stepping off a ledge

...but the collision capsule around
the character is still touching the
platform edge. The code must
handle this situation.

Raycasting straight down from
the middle correctly detects
that the character isn't
standing on the ground...

In this case, the code should make the character slide off the ledge. The character
will still fall (because it’s not standing on the ground), but it’ll also push away
from the point of collision (because it needs to move the capsule away from the
platform it’s hitting). Thus the code will detect collisions with the character
controller and respond to those collisions by nudging away.

The following listing adjusts the vertical movement with everything we just

discussed.

Listing 7.5. Using raycasting to detect the ground

liderHit ntackt; G-\.

Needed to store collision
data between functions
Check if the

player is falling. RaycastHit hit;

b if vertSps

L
rd
The distance to check
against (extend slightly
beyond the bottom of

th I < e
" Spow) r\ Instead of using isGrounded,

e e R N : " check the raycasting result.

Raycasting didn't detect
_ ground, but the capsule
unded) | o 1 touching the ground.

Respond slightly
differently depending on
whether the character is —,

facing the contact point. = if (Vectord.Dot (movement, _contact.i
]
ement *= Time.deltaTime; Store the collision data
ntroller . Move (movement) ; in the callback when a
collision is detected.
ler lliderHit ontrollerColliderHit hit d‘.l-"'/;

This listing contains much of the same code as the previous listing; the new code
is interspersed throughout the existing movement script and this listing needed
the existing code for context. The first line adds a new variable to the top of the
RelativeMovement script. This variable is used to store data about collisions
between functions.

The next several lines do raycasting. This code also goes below horizontal
movement but before the 1f statement for vertical movement. The actual
Physics.Raycast () call should be familiar from previous chapters, but the

specific parameters are different this time. Although the position to cast a ray
from is the same (the character’s position), the direction will be down this time
instead of forward. Then we check how far away the raycast was when it hit
something; if the distance of the hit is at the distance of the character’s feet, then
the character is standing on the ground, so set hitGround to true.

Warning

It’s a little nonobvious how the check distance is calculated, so let’s go over that
in detail. First take the height of the character controller (which is the height
without the rounded ends) and then add the rounded ends. Divide this value in
half because the ray was cast from the middle of the character (that is, already
halfway down) to get the distance to the bottom of the character. But we really
want to check a little beyond the bottom of the character to account for tiny
inaccuracies in the raycasting, so divide by 1.9 instead of 2 to get a distance
that’s slightly too far.

Having done this raycasting, use hitGround instead of 1isGrounded in the
1f statement for vertical movement. Most of the vertical movement code will
remain the same, but add code to handle when the character controller collides
with the ground even though the player isn’t over the ground (that is, when the
player walks off the edge of the platform). There’s a new 1sGrounded
conditional added, but note that it’s nested inside the hitGround conditional
so that 1isGrounded is only checked when hitGround doesn’t detect the
ground.

The collision data includes a normal property (again, a normal vector says
which way something is facing) that tells us the direction to move away from the
point of collision. But one tricky thing is that we want the nudge away from the
contact point to be handled differently depending on which direction the player
is already moving: when the previous horizontal movement is toward the
platform, we want to replace that movement so that the character won’t keep
moving in the wrong direction; but when facing away from the edge, we want to
add to the previous horizontal movement in order to keep the forward
momentum away from the edge. The movement vector’s facing relative to the
point of collision can be determined using the dot product.

Definition

The dot product is one kind of mathematical operation that can be done on two
vectors. Long story short, the dot product of two vectors ranges between -1 and
1, with 1 meaning they point in exactly the same direction, and -1 when they
point in exactly opposite directions. Don’t confuse “dot product” and “cross
product”; the cross product is a different but also commonly seen vector math
operation.

Vector3includes a Dot () function to calculate the dot product of two given
vectors. If we calculate the dot product between the movement vector and the
collision normal, that will return a negative number when the two directions face
away from each other and a positive number when the movement and the
collision face the same direction.

Finally, the very end of listing 7.5 adds a new method to the script. In the
previous code we were checking the collision normal, but where did that
information come from? It turns out that collisions with the character controller
are reported through a callback function called
OnControllerColliderHit () that MonoBehaviour provides; in order
to respond to the collision data anywhere else in the script, that data must be
stored in an external variable. That’s all the method is doing here: storing the
collision data in _contact so that this data can be used within the Update ()
method.

Now the errors are corrected around platform edges and on slopes. Go ahead and
play to test it out by stepping over edges and jumping onto the steep slope. This
movement demo is almost complete. The character is moving around the scene
correctly, so only one thing remains: animating the character out of the T-pose.

7.4. Setting up animations on the player character

Besides the more complex shape defined by mesh geometry, a humanoid
character needs animations. In chapter 4 you learned that an animation is a
packet of information that defines movement of the associated 3D object. The
concrete example I gave was of a character walking around, and that situation is

exactly what you’re going to be doing now! The character is going to run around
the scene, so you’ll assign animations that make the arms and legs swing back
and forth. Figure 7.11 shows what it’ll look like when the character has an
animation playing while it moves around the scene.

Figure 7.11. Character moving around with a run animation playing

The character is now moving
its arms and legs, instead
of sliding around in a T-pose.

A good analogy with which to understand 3D animation is to think about
puppeteering: 3D models are the puppets, the animator is the puppeteer, and an
animation is a recording of the puppet’s movements. Animations can be created
with a few different approaches; most character animation in modern games
(certainly all the animations on this chapter’s character) uses a technique called
skeletal animation.

Definition

Skeletal animation is a kind of animation where a series of bones are set up
inside the model, and then the bones are moved around during the animation.
When a bone moves, the model’s surface linked to that bone moves along with
it.

As the name implies, skeletal animation makes the most intuitive sense when
simulating the skeleton inside a character (figure 7.12 illustrates this), but the
“skeleton” is an abstraction that’s useful any time you want a model to bend and
flex while still having a definite structure to how it moves (for example, a
tentacle that waves around). Although the bones move rigidly, the model surface
around the bones can bend and flex.

Figure 7.12. Skeletal animation of a humanoid character

Bone (invisible in Unity) Visible mesh

The arm bone was moved and
the arm mesh moved with it.

Achieving the result illustrated in figure 7.11 involves several steps: first define
animation clips in the imported file, then set up the controller to play those
animation clips, and finally incorporate that animation controller in your code.
The animations on the character model will be played back according to the
movement scripts you’ll write.

Of course the very first thing you need to do, before any of those steps, is turn on
the animation system. Select the player model in the Project view to see its
Import settings in the Inspector. Select the Animations tab and make sure Import
Animation is checked. Then go to the Rig tab and switch Animation Type from
Generic to Humanoid (this is a humanoid character, naturally). Note that this last
menu also has a Legacy setting; Generic and Humanoid are both settings within
the umbrella term Mecanim.

Explaining Unity’s Mecanim animation system

Unity has a sophisticated system for managing animations on models, called
Mecanim. Mecanim is based on skeletal animation, the style of animation
defined in this chapter. The special name Mecanim identifies the newer, more
advanced animation system that was recently added to Unity as a replacement
for the older animation system. The older system is still around, identified as
Legacy animation, but it may be phased out in a future version of Unity, at which
point Mecanim will simply be the animation system.

Although the animations we’re going to use are all included in the same FBX
file as our character model, one of the major advantages of Mecanim’s approach
is that you can apply animations from other FBX files to a character. For
example, all of the human enemies can share a single set of animations. This has
a number of advantages, including keeping all your data organized (models can
go in one folder, whereas animations go in another folder) as well as saving time
spent animating each separate character.

Click the Apply button at the bottom of the Inspector in order to lock these
settings onto the imported model and then continue defining animation clips.

Warning

You may notice a warning (not an error) in the console that says “conversion
warning: spine3 is between humanoid transforms.” That specific warning isn’t a
cause for worry; it indicates that the skeleton in the imported model has extra
bones beyond the skeleton that Mecanim expects.

7.4.1. Defining animation clips in the imported model

The first step in setting up animations for our character is defining the various
animation clips that’ll be played. If you think about a lifelike character, different
movements can happen at different times: sometimes the player is running
around, sometimes the player is jumping on platforms, and sometimes the
character is just standing there with its arms down. Each of these movements is a
separate “clip” that can play individually.

Often imported animations come as a single long clip that can be cut up into
shorter individual animations. To split up the animation clips, first select the
Animations tab in the Inspector. You’ll see a Clips panel, shown in figure 7.13;
this lists all the defined animation clips, which initially are one imported clip.
You’ll notice + and — buttons at the bottom of the list; you use these buttons to
add and remove clips on the list. Ultimately we need four clips for this character,
so add and remove clips as necessary while you work.

Figure 7.13. The Clips list in Animation settings

| aliowed In percents |

= Clips Start End + /- buttons to add
Animation clips listed L more clips to the fist
by name, along with =
the start and end frames Py [Takeoo: o,

When you select a clip, information about that clip (shown in figure 7.14) will
appear in the area below the list. The top of this information area shows the
name of this clip, and you can type in a new name. Name our first clip idle.
Define Start and End frames for this animation clip; this allows you to slice a
chunk out of the longer imported animation. For the idle animation enter Start 3
and End 141. Next up are the Loop settings.

Figure 7.14. Information about the selected animation clip
The name of the

E idle TR
animation clip;
type a new one here. s

L#ngih 5.750 24 FFS
L —— |00 |
ﬁ_'_.'_-,__.-n-—-_: — =F_"--"°"'—--.'\ —

sart 3 End 141

Set Start and End

Turn on looping playback
(including an option to blend
together the start and end poses).

This color indicates when the start

B Loop Time [~ and end poses match (for looping):
frames for this clip. Loop Pose o toopmacn O Green is very matched.
CycleOffset 0 Yellow is similar poses.
Root Transform Romtian Red is completely different poses.
Bake Into Pose [toop manch ()

Based I,Ipun [i.tﬁti‘l Body Orsentation] I'.'-
i)

Offset

Root Transform Positian (Y) Select how each component of
Bake Into Pose [toop mach O the root will be transformed
Based Upon T (rotation, vertical position,
g 0 horizontal position).

Root Transform Position (XZ)
Bake Into Pose [toop mateh ()
Based Upon Canter of Mass Y el

Definition

Loop refers to a recording that plays over and over repeatedly. A looping
animation clip is one that plays again from the start as soon as playback reaches

the end.

The idle animation loops, so select both Loop Time and Loop Pose. Incidentally,
the green indicator dot tells you when the pose at the beginning of the clip

matches the pose at the end for correct looping; this indicator turns yellow when
the poses are somewhat off, and it turns red when the start and end poses are
completely different.

Below the Loop settings are a series of settings related to the root transform. The
word root means the same thing for skeletal animation as it does for a hierarchy
connected within Unity: the root object is the base object that everything else is
connected to. Thus the animation root can be thought of as the base of the
character, and everything else moves relative to that base. There are a few
different settings here for setting up that base, and you may want to experiment
here when working with your own animations. For our purposes, though, the
settings should be Body Orientation, Center Of Mass, and Center Of Mass, in
that order.

Now click Apply and you’ve added an idle animation clip to your character. Do
the same for two more clips: walk starts at frame 144 and ends at 169, and run
starts at 171 and ends at 190. All the other settings should be the same as for idle
because they’re also animation loops.

The fourth animation clip is jump, and the settings for that clip differ a bit. First,
this isn’t a loop but rather a still pose, so don’t select Loop Time. Set the Start
and End to 190.5 and 191; this is a single-frame pose, but Unity requires that
Start and End be different. The animation preview below won’t look quite right
because of these tricky numbers, but this pose will look fine in the game.

Click Apply to confirm the new animation clips, and then move on to the next
step: creating the animation controller.

7.4.2. Creating the animator controller for these animations

The next step is to create the animator controller for this character. This step
allows us to set up animation states and create transitions between those states.
Various animation clips are played during different animation states, and then
our scripts will cause the controller to shift between animation states.

This might seem like an odd bit of indirection—putting the abstraction of a
controller between our code and the actual playing of animations. You may be
familiar with systems where you directly play animations from your code;

indeed, the old Legacy animation system worked in exactly that way, with calls
like Play("idle"). But this indirection enables us to share animations
between models, rather than only being able to play animations that are internal
to this model. In this chapter we won’t take advantage of this ability, but keep in
mind that it can be helpful when you’re working on a larger project. You can
obtain your animations from several sources, including multiple animators, or
you can buy individual animations from stores online (such as Unity’s Asset
Store).

Begin by creating a new animator controller asset (Assets > Create> Animator
Controlle—not Animation, a different sort of asset). In the Project view you’ll
see an icon with a funny-looking network of lines on it (see figure 7.15); rename
this asset to player. Select the character in the scene and you’ll notice this
object has a component called Animator; any model that can be animated has
this component, in addition to the Transform component and whatever else
you’ve added. The Animator component has a Controller slot for you to link a
specific animator controller, so drag and drop your new controller asset (and be
sure to uncheck Root Motion).

Figure 7.15. Animator controller and Animator component

The Animator Controller (as it ¥ £ & Animator [wE Uncheck Root Motion,
appears in the Project view) Conteplles Ly 8 which will move the player
T Awatar = playerAvatar o

object around the scene
PR e along with the animation.

Culling Mode g That is desirable for some
""""""""""" B animations, but not ours.

player

Apply Root Motion [}

The animator controller is a tree of connected nodes (hence the icon on that
asset) that you can see and manipulate by opening the Animator view. This is
another view just like Scene or Project (shown in figure 7.16) except this view
isn’t open by default. Select Animator from the Window menu (be careful not to
get confused with the Animation window; that’s a separate selection from
Animator). The node network displayed here is whichever animator controller is
currently selected (or the animator controller on the selected character).

Figure 7.16. The Animator view with our completed animator controller

A series of number or Boolean values can be created here to
control the animations. The currently active state transitions
between states on the graph when these values change.

Each node on the graph is an animation
state. The named animation clip plays
when the controller is in that state.

(The orange node is the default
animation state, before any
transitions happen.)

The lines connecting nodes are
“transitions.” Transitions have a
direction for transitioning from A to B.

Tip

Remember that you can move tabs around in Unity and dock them wherever you
like in order to organize the interface. I like to dock the Animator right next to
the Scene and Game windows.

Initially there are only two default nodes, for Entry and Any State. You’re not
going to use the Any State node. Instead, you’ll drag in animation clips to create
new nodes. In the Project view, click the arrow on the side of the model asset to
expand that asset and see what it contains. Among the contents of this asset are
the animation clips you defined (see figure 7.17), so drag those clips into the
Animator view. Don’t bother with the walking animation (that could be useful
for other projects) and drag in idle, run, and jump.

Figure 7.17. Expanded model asset in Project view

Click the arrow to
expand an asset
and see its contents. plape oy pehvit Bty e o e -’ Pliresuaiar

The imported model contains
the various animation clips.

Right-click on the Idle node and select Set As Layer Default State. That node
will turn orange while the other nodes stay gray; the default animation state is
where the network of nodes starts before the game has made any changes. You’ll
need to link the nodes together with lines indicating transitions between

animation states; right-click on a node and select Make Transition in order to
start dragging out an arrow that you can click on another node to connect.
Connect nodes in the pattern shown in figure 7.16 (be sure to make transitions in
both directions for most nodes, but not from jump to run). These transition lines
determine how the animation states connect to each other, and control the
changes from one state to another during the game.

Warning

While working in the Animator view, you may see an error about
AnimationStateMachine.TransitionEditionContext.BuildNames. Simply restart
Unity; this seems to be a harmless bug.

The transitions rely on a set of controlling values, so let’s create those
parameters. In the top left of figure 7.16 is a tab called Parameters; click that to
see a panel with a + button for adding parameters. Add a float called Speed and a
Boolean called Jumping. Those values will be adjusted by our code, and they’ll
trigger transitions between animation states.

Click on the transition lines to see their settings in the Inspector (see figure
7.18). Here’s where we’ll adjust how the animation states change when the
parameters change. For example, click on the Idle-to-Run transition to adjust the
conditions of that transition. Under Conditions, choose Speed, Greater, and 0.1.
Turn off Has Exit Time (that would force playing the animation all the way
through, as opposed to cutting short immediately when the transition happens).
Then click the arrow next to the Settings label in order to see that entire menu;
other transitions should be able to interrupt this one, so change the Interruption
Source menu from None to Current State. Repeat this for all the transitions in
table 7.1.

Figure 7.18. Transition settings in the Inspector

idle > rum e Uncheck this value for
i et most transitions, so
NI b that the animation

TR LY e can be interrupted.

Click a transition
to select it and
see its settings.

Has Exin Time w's Change this setting if
o ~ the transition itself can

Exit Time 09565217 .
Transision Duratkss 004347426 also be interrupted.

These arrows control
how long the transition
takes (hold Alt to
navigate this graph).

Define conditions for
transitioning between
animation states when
the parameters change.

Table 7.1. Conditions for all transitions in this animation controller

Transition Condition Interruption
Idle-to-Run Speed greater than .1 Current State
Run-to-Idle Speed less than .1 None
Idle-to-Jump Jumping is true None
Run-to-Jump Jumping is true None
Jump-to-Idle Jumping is false None

In addition to these menu-based settings, there’s a complex visual interface
shown in figure 7.18 just above the Condition setting. This graph allows you to
visually adjust the length in time of a transition. The default transition time looks
fine for both transitions between Idle and Run, but all of the transitions to and
from Jump should be shorter so that the character will snap faster between the
jump animation. The shaded area of the graph indicates how long the transition
takes; to see more detail, use Alt+left-click to pan across the graph and
Alt+right-click to scale it (these are the same controls as navigating in the Scene
view). Use the arrows on top of the shaded area to shrink it to under 4
milliseconds for all three Jump transitions.

Finally, you can perfect the animation network by selecting the animation nodes
one at a time and adjusting the ordering of transitions. The Inspector will show a
list of all transitions to and from that node; you can drag items in the list (their
drag handles are the icon on the left side) to reorder them. Make sure the Jump
transition is on top for both the Idle and Run nodes so that the Jump transition

has priority over the other transitions. While you’re looking at these settings you
can also change the playback speed if the animation looks too slow (Run looks
better at 1.5 speed).

The animation controller is set up, so now we can operate the animations from
the movement script.

7.4.3. Writing code that operates the animator

Finally, you’ll add methods to the RelativeMovement script. As explained
earlier, most of the work of setting up animation states is done in the animation
controller; only a small amount of code is needed to operate a rich and fluid
animation system (see the following listing).

Listing 7.6. Code for setting values in the Animator component

~ Added inside the Start() function

=}

T
b

Just below the if statement
for horizontal movement

—t

Don't trigger this value
right at the beginning
of the level.

Again, much of this listing is repeated from previous listings; the animation code

is a handful of lines interspersed throughout the existing movement script. Pick
out the _animator lines in order to find additions to make in your code.

The script needs a reference to the Animator component, and then the code sets
values (either floats or Booleans) on the animator. The only somewhat
nonobvious bit of code is the condition (_contact != null) before setting
the Jumping Boolean. That condition prevents the animator from playing the
jump animation right from the start. Even though the character is technically
falling for a split second, there won’t be any collision data until the character
touches the ground for the first time.

And there you have it! Now we have a nice third-person movement demo, with
camera-relative controls and character animation playing.

7.5. Summary

In this chapter you’ve learned that

e Third-person view means the camera moves around the character instead of
inside the character.

e Simulated shadows, like real-time shadows and lightmaps, improve the
graphics.

e Controls can be relative to the camera instead of relative to the character.

¢ You can improve on Unity’s ground detection by casting a ray downward.

e Sophisticated animation set up with Unity’s animator controller results in
lifelike characters.

Chapter 8. Adding interactive devices and items
within the game

This chapter covers

e Programming doors that the player can open (triggered with a keypress or
collision)

Enabling physics simulations that scatter a stack of boxes

Building collectible items that players store in their inventory

Using code to manage game state, such as inventory data

Equipping and using inventory items

Implementing functional items is the next topic we’re going to focus on.
Previous chapters covered a number of different elements of a complete game:
movement, enemies, the user interface, and so forth. But our projects have
lacked anything to interact with other than enemies, nor have they had much in
the way of game state. In this chapter, you’ll learn how to create functional
devices like doors. We’ll also discuss collecting items, which involves both
interacting with objects in the level and tracking game state. Games often have
to track state like the player’s current stats, progress through objectives, and so
on. The player’s inventory is an example of this sort of state, so you’ll build a
code architecture that can keep track of items collected by the player. By the end
of this chapter, you’ll have built a dynamic space that really feels like a game!

We’ll start by exploring devices (such as doors) that are operated with
keypresses from the player. After that, you’ll write code to detect when the
player collides with objects in the level, enabling interactions like pushing
objects around or collecting inventory items. Then you’ll set up a robust MVC
(Model-View-Controller)-style code architecture to manage data for the
collected inventory. Finally, you’ll program interfaces to make use of the
inventory for gameplay, such as requiring a key to open a door.

Warning

Previous chapters were relatively self-contained and didn’t technically require

projects from earlier chapters, but this time some of the code listings make edits
to scripts from chapter 7. If you skipped directly to this chapter, download the
sample project for chapter 7 in order to build on that.

The example project will have these devices and items strewn about the level
randomly. A polished game would have a lot of careful design behind the
placement of items, but there’s no need to carefully plan out a level that only
tests functionality. Even so, though the placement of objects will be haphazard,
the chapter opening bullets lay out the order in which we’ll implement things.

As usual, the explanations build up the code step by step, but if you want to see
all the finished code in one place, you can download the sample project.

8.1. Creating doors and other devices

Although levels in games mostly consist of static walls and scenery, they also
usually incorporate a lot of functional devices as well. I’m talking about objects
that the player can interact with and operate—things like lights that turn on or a
fan that starts turning. The specific devices can vary a lot and are mostly limited
only by your imagination, but they almost all use the same sort of code to have
the player activate the device. We’ll implement a couple of examples in this
chapter, and then you should be able to adapt this same code to work with all
sorts of other devices.

8.1.1. Doors that open and close on a keypress

The first kind of device we’ll program is a door that opens and closes, and we’re
going to start with operating the door by pressing a key. There are lots of
different kinds of devices you could have in a game, and lots of different ways of
operating those devices. We’re eventually going to look at a couple of variations,
but doors are the most common interactive devices found in games, and using
items with a keypress is the most straightforward approach to start with.

The scene has a few spots where a gap exists between walls, so place a new
object that blocks the gap. I created a new cube object and then set its transform
to Position 2.5 1.5 17 and Scale 5 3 .5, creating the door shown in figure 8.1.

Figure 8.1. Door object fit into a gap in the wall

Create a C# script, call it DoorOpenDevice, and put that script on the door
object. This code (shown in the next listing) will cause the object to operate as a
door.

Listing 8.1. Script that opens and closes the door on command

using UnityEngine;
using System.Collections;

T L PRI TN SUNT R The position to offset to
pu ..1. l. ke .l"...-l'.z;\.p..] 4...,,.1 e : MonoBehaviour | d_/- when the door opens
[SerializeField] private Vectorl dPos;

private bool _open;

ﬂ_ A Boolean to keep track of the
public void Operate() f{ open state of the door
if { open) |
v oA, T 4 i Q\d Open or close the door
Vector3 pos = transform.position - dPos; e S
transform.position = pos; P & P >

} else |
Vector3 pos = transform.position + dPos;
transform.position = pos;

1

I

_open = !_open;

The first variable defines the offset that’s applied when the door opens. The door
will move this amount when it opens, and then it will subtract this amount when
it closes. The second variable is a private Boolean for tracking whether the door
is open or closed. In the Operate () method, the object’s transform is set to a
new position, adding or subtracting the offset depending on whether the door is
already open; then _open is toggled on or off.

As with other serialized variables, dP0Os appears in the Inspector. But this is a
Vector3 value, so instead of one input box there are three, all under the one
variable name. Type in the relative position of the door when it opens; I decided
to have the door slide down to open, so the offset was 0 -2.9 0 (because the door
object has a height of 3, moving down 2.9 leaves just a tiny sliver of the door
sticking up out of the floor).

Note

The transform is applied instantly, but you may prefer seeing the movement
when the door opens. As mentioned back in chapter 3, you can use tweens to
make objects move smoothly over time. The word tween means different things
in different contexts, but in game programming it refers to code commands that
cause objects to move around; appendix D mentions iTween, one good tweening
system for Unity.

Now other code needs to call Operate() to make the door open and close (the
single function call handles both cases). We don’t yet have that other script on
the player; writing that is the next step.

8.1.2. Checking distance and facing before opening the door

Create a new script and name it DeviceOperator. The following listing
implements a control key that operates nearby devices.

Listing 8.2. Device control key for the player

How far away from the
" player to activate devices
s

Respond to the input button
__/.f' defined in Unity's input settings

r/..--m
OverlapSphere() i 1= pera ;
returns a list of -andMessaqednt iong . DontRequireReceiver <

B
nearby objects. !

SendMessage() tries to call the named
function, regardless of the target’s type.

The majority of the script in this listing should look familiar, but a crucial new
method is at the center of this code. First, establish a value for how far away to
operate devices from. Then, in the Update() function, look for keyboard
input; since the Jump key is already being used by the RelativeMovement script,
this time we’ll respond to Fire3 (which is defined in the project’s input settings
as the left Command key).

Now we get to the crucial new method: Over lapSphere(). This method
returns an array of all objects that are within a given distance of a given position.
By passing in the position of the player and the radius variable, this detects all
objects near the player. What you actually do with this list can vary (for
example, perhaps you just set off a bomb and want to apply an explosive force),
but in this situation we want to attempt to call Operate() on all nearby
objects.

That method is called via SendMessage () instead of the typical dot notation,
an approach you also saw with Ul buttons in previous chapters. As was the case
there, the reason to use SendMessage () is because we don’t know the exact
type of the target object and that command works on all GameObjects. But this
time we’re going to pass the option DontRequireReceiver to the method.
This is because most of the objects returned by OverlapSphere() won’t
have an Operate() method; normally SendMessage() prints an error
message if nothing in the object received the message, but in this case the error
messages would be distracting because we already know most objects will
ignore the message.

Once the code is written, you can attach this script to the player object. Now you
can open and close the door by standing near it and pressing the key.

There’s one little detail we can fix. Currently it doesn’t matter which way the
player is facing, as long as the player is close enough. But we could also adjust
the script to only operate devices the player is facing, so let’s do that. Recall
from chapter 7 that you can calculate the dot product for checking facing. That’s
a mathematical operation done on a pair of vectors that returns a range between
-1 and 1, with 1 meaning they point in exactly the same direction and -1 when
they point in exactly opposite directions. The next listing shows the new code in
the DeviceOperator script.

Listing 8.3. Adjusting DeviceOperator to only operate devices that the player is facing

ransit ET 1 r'ward ilrecrion . L
-\\\
rate” \

lessageQptions.DontRegquireReceiv Only send the
message when facing
the right direction

To use the dot product, we first determine the direction to check against. That
would be the direction from the player to the object; make a direction vector by
subtracting the position of the player from the position of the object. Then call
Vector3.Dot () with both that direction vector and the forward direction of
the player. When the dot product is close to 1 (specifically, this code checks
greater than .5), that means the two vectors are close to pointing in the same
direction.

With this adjustment made, the door won’t open and close when the player faces
away from it, even if the player is close. And this same approach to operating
devices can be used with any sort of device. To demonstrate that flexibility, let’s
create another example device.

8.1.3. Operating a color-changing monitor

We’ve created a door that opens and closes, but that same device-operating logic
can be used with any sort of device. We’re going to create another device that’s
operated in the same way; this time, we’ll create a color-changing display on the
wall.

Create a new cube and place it so that one side is barely sticking out of the wall.
For example, I went with Position 10.9 1.5 -5. Now create a new script called
ColorChangeDevice and attach that script (shown in the next listing) to the
wall display. Now run up to the wall monitor and hit the same “operate” key as
used with the door; you should see the display change color, as figure 8.2
illustrates.

Figure 8.2. Color-changing display embedded in the wall

Listing 8.4. Script for a device that changes color

uging UnityEngine;
using System.Collections;
public class ColorChangeDavice : MonoBehaviour | ENSEMN-R Ui whths e .
P i = 48 ﬁ/“ same name as the door script.
The numbers are public void Operate() |
RGE values that Color random = new Color (Random.Range {0f,1£),
range from 0 to I.J\\-b Random.Range {0f,1f), Random.Range{0f,1f});
GetComponent<Renderer=() .material.color = random; The color is set in
} the material attached
to the object.

»

To start with, declare the same function name as the door script used. “Operate
is the function name that the device operator script uses, so we need to use that
name in order for it to be triggered. Inside this function, the code assigns a
random color to the object’s material (remember, color isn’t an attribute of the
object itself, but rather the object has a material and that material can have a
color).

Note

Although the color is defined with Red, Blue, and Green components as is
standard in most computer graphics, the values in Unity’s Color object vary
between 0 and 1, instead of 0 and 255, as is common in most places (including
Unity’s color picker UI).

All right, so we’ve gone over one approach to interacting with devices in the
game and have even implemented a couple of different devices to demonstrate.
Another way of interacting with items is by bumping into them, so let’s go over
that next.

8.2. Interacting with objects by bumping into them

In the previous section, devices were operated by keyboard input from the
player, but that’s not the only way players can interact with items in the level.
Another very straightforward approach is to respond to collisions with the
player. Unity handles most of that for you, by having collision detection and
physics built into the game engine. Unity will detect collisions for you, but you
still need to program the object to respond.

We’ll go over three collision responses that are useful for games:

e Push away and fall over
e Trigger a device in the level
¢ Disappear on contact (for item pickups)

8.2.1. Colliding with physics-enabled obstacles

To start, we’re going to create a pile of boxes and then cause the pile to collapse
when the player runs into it. Although the physics calculations involved are
complicated, Unity has all of that built in and will scatter the boxes in a realistic
way for us.

By default Unity doesn’t use its physics simulation to move objects around. That
can be enabled by adding a Rigidbody component to the object. This concept
was first discussed back in chapter 3, because the enemy’s fireballs also needed a
Rigidbody component. As I explained in that chapter, Unity’s physics system
will act only on objects that have a Rigidbody component. Click Add
Component and look for Rigidbody under the Physics menu.

Create a new cube object and then add a Rigidbody component to it. Create
several such cubes and position them in a neat stack. For example, in the sample
download I created five boxes and stacked them into two tiers (see figure 8.3).

Figure 8.3. Stack of five boxes to collide with

Each box has a RigidBody
component. Their positions are:

-42 5 -23
-42 5 -2
42 5 -l
-42 L5 -L.9
-42 L5 -7

The boxes are now ready to react to physics forces. To have the player apply a
force to the boxes, make the small addition shown in the following listing to the
RelativeMovement script (this is one of the scripts written in the previous
chapter) that’s on the player.

Listing 8.5. Adding physics force to the RelativeMovement script

Q/— Amount of force to apply

public float pushForce = 3.0f;

void OnControllerColliderHit (ControllerColliderHit hit) |
_contact = hit; Check if the collided

<l’/— object has a Rigidbody to

Rigidbody body = hit.collider.attachedRigidbody; receive physics forces.

if (body != null && !body.isKinematic) |
body.velocity = hit .moveDirection * pushForce;

} Q_ Apply velocity to
| the physics body.

There’s not a ton to explain about this code: whenever the player collides with
something, check if the collided object has a Rigidbody component. If so, apply
a velocity to that Rigidbody.

Play the game and then run into the pile of boxes; you should see them scatter
around realistically. And that’s all you had to do to activate physics simulation
on a stack of boxes in the scene! Unity has physics simulation built in, so we
didn’t have to write much code. That simulation can cause objects to move
around in response to collisions, but another possible response is firing trigger
events, so let’s use those trigger events to control the door.

8.2.2. Triggering the door with a pressure plate

Whereas previously the door was operated by a keypress, this time the door will
open and close in response to the character colliding with another object in the
scene. Create yet another door and place it in another wall gap (I duplicated the
previous door and moved the new door to -2.5 1.5 -17). Now create a new cube
to use for the trigger object, and select the Is Trigger check box for the collider
(this step was illustrated when making the fireball in chapter 3). In addition, set
the object to the Ignore Raycast layer; the top-right corner of the Inspector has a
Layer menu. Finally, you should turn off shadow casting from this object
(remember, this setting is under Mesh Renderer when you select the object).

Warning

These tiny steps are easy to miss but very important: to use an object as a trigger,
be sure to turn on Is Trigger. In the Inspector, look for the check box in the
Collider component. Also, change the layer to Ignore Raycast so that the trigger
object won’t show up in raycasting.

Note

When trigger objects were first introduced in chapter 3, the object needed to
have a Rigidbody component added. Rigidbody wasn’t required for the trigger
this time because the trigger would be responding to the player (versus colliding
with a wall, the earlier situation). In order for triggers to work, either the trigger
or the object entering the trigger need to have Unity’s physics system enabled; a
Rigidbody component fulfills this requirement, but so does the player’s
CharacterController.

Position and scale the trigger object so that it both encompasses the door and
surrounds an area around the door; I used Position -2.5 1.5 -17 (same as the
door) and Scale 7.5 3 6. Additionally, you may want to assign a semitransparent
material to the object so that you can visually distinguish trigger volumes from
solid objects. Create a new material using the Assets menu, and select the new
material in the Project view. Looking at the Inspector, the top setting is
Rendering Mode (currently set to the default value of Opaque); select
Transparent in this menu.

Now click its color swatch to bring up the Color Picker window. Pick green in
the main part of the window, and lower the alpha using the bottom slider. Drag
this material from Project onto the object; figure 8.4 shows the trigger with this
material.

Figure 8.4. Trigger volume surrounding the door it will trigger

Box with a semitransparent
. material surrounding
the door it triggers

Definition

Triggers are often referred to as volumes rather than objects in order to
conceptually differentiate solid objects from objects you can move through.

Play the game now and you can freely move through the trigger volume; Unity
still registers collisions with the object, but those collisions don’t affect the
player’s movement anymore. To react to the collisions, we need to write code.
Specifically, we want this trigger to control the door. Create a new script called
DeviceTrigger (see the following listing).

Listing 8.6. Code for a trigger that controls a device

| | _ List of target objects that
E 1 gl - | 1Cel =] —
this trigger will activate
ializeFie 1d] i i Q'/ g8
id OnTri Collider other) | d_ OnTriggerEnter() is called
rea I t target in targets) | when another object enters
target.SendMessage ("Activate"); the trigger volume...
1
!
OnTriggerExit (Cc l1lider other { d\\ ...'ﬂ'here‘ﬂﬁ OnrrigEErEIit” iS
oreach (G object target in targets) | - called when an object leaves
target . SendMessage ("Deactivata") ; the tr‘igg&r volume.

This listing defines an array of target objects for the trigger; even though it’ll
only be a list of one most of the time, it’s possible to have multiple devices
controlled by a single trigger. Loop through the array of targets to send a
message to all the targets. This loop happens inside the OnTriggerEnter ()
and OnTriggerExit () methods. These functions are called once when
another object first enters and exits the trigger (as opposed to being called over
and over while the object is inside the trigger volume).

Notice that the messages being sent are different than before; now we need to
define the functions Activate() and Deactivate() on the door. Add the
code in the next listing to the door script.

Listing 8.7. Adding activate and deactivate functions to the DoorOpenDevice script

publi id Activat
if oD { e
°? oo R ‘ i ; g Q\ Only open the door if it
eCLUOr 5 JOE - cransrorm.position 4 adFos ; -
" . ' isn't already open.
."'.".‘.'..'_.-t-'.l.'f'l'..'|".-:.'.‘.'.-1‘-.'.1 omn Ei'f.'.._.-_; r P
:.:E-_—:'; = true:
T L . : Similarly, only close the door
'|'. Ublic void Deactivate () 1 T M
if it isn’t already closed.
if | open : {}f 1"
ect =1 tran il i iE
transform.positic o8
-!' |

The new Activate() and Deactivate() methods are much the same code
as the Operate () method from earlier, except now there are separate functions
to open and close the door instead of only one function that handles both cases.

With all the needed code in place you can now use the trigger volume to open
and close the door. Put the DeviceTrigger script on the trigger volume and then
link the door to the targets property of that script; in the Inspector, first set
the size of the array and then drag objects from the Hierarchy view over to slots
in the targets array. Because we have only one door that we want to control with
this trigger, type 1 in the array’s Size field and then drag that door into the target
slot.

With all of this done, play the game and watch what happens to the door when
the player walks toward and away from it. It’ll open and close automatically as
the player enters and leaves the trigger volume.

That’s another great way to put interactivity into levels! But this trigger volume
approach doesn’t only work with devices like doors; you can also use this
approach to make collectible items.

8.2.3. Collecting items scattered around the level

Many games include items that can be picked up by the player. These items
include equipment, health packs, and power-ups. The basic mechanism of
colliding with items to pick them up is simple; most of the complicated stuff
happens after items are picked up, but we’ll get to that a bit later.

Create a sphere object and place it hovering at about waist height in an open area
of the scene. Make the object small, like Scale .5 .5 .5, but otherwise prepare it
like you did with the large trigger volume. Select the Is Trigger setting in the
collider, set the object to the Ignore Raycast layer, and then create a new material
to give the object a distinct color. Because the object is small, you don’t want to
make it semitransparent this time, so don’t turn down the alpha slider at all.
Also, as mentioned in chapter 7, there are settings for removing the shadows cast
from this object; whether or not to use the shadows is a judgment call, but for
small pickup items like this I prefer to turn them off.

Now that the object in the scene is ready, create a new script to attach to that

object. Call the script CollectibleItem (see the following listing).

Listing 8.8. Script that makes an item delete itself on contact with the player

<}_. Type the name of this
item in the Inspector.

This script is extremely short and simple. Give the item a name value so that
there can be different items in the scene. ONTriggerEnter () destroys itself.
There’s also a debug message being printed to the console; eventually it will be
replaced with useful code.

Warning

Be sure to call Destroy () on this.gameObject and not this! Don’t get
confused between the two; this only refers to this script component, whereas
this.gameObject refers to the object the script is attached to.

Back in Unity, the variable you added to the code should become visible in the
Inspector. Type in a name to identify this item; I went with energy for my first
item. Then duplicate the item a few times and change the name of the copies; I
also created ore, health, and key (these names must be exact because they’ll
be used in code later on). Also create separate materials for each item in order to
give them distinct colors: I did light blue energy, dark gray ore, pink health, and
yellow key.

Tip

Rather than a name like we’ve done here, items in more complex games often
have an identifier used to look up further data. For example, one item might be
assigned id 301, and id 301 correlates to such-and-such display name, image,

description, and so forth.

Now make prefabs of the items so that you can clone them throughout the level.
In chapter 3 I explained that dragging an object from the Hierarchy view down
to the Project view will turn that object into a prefab; do that for all four items.

Note

The object’s name will turn blue in the Hierarchy list; blue names indicate
objects that are instances of a prefab. Right-click a prefab instance to pick Select
Prefab and select the prefab that the object is an instance of.

Drag out instances of the prefabs and place the items in open areas of the level;
even drag out multiple copies of the same item to test with. Play the game and
run into items to “collect” them. That’s pretty neat, but at the moment nothing
happens when you collect an item. We’re going to start keeping track of the
items collected; to do that, we need to set up the inventory code structure.

8.3. Managing inventory data and game state

Now that we’ve programmed the features of collecting items, we need
background data managers (similar to web coding patterns) for the game’s
inventory. The code we’ll write will be similar to the MVC architectures behind
many web applications. Their advantage is in decoupling data storage from the
objects that are displayed on screen, allowing for easier experimentation and
iterative development. Even when the data and/or displays are complex, changes
in one part of the application don’t affect other parts of the application.

That said, such structures vary a lot between different games. Not every game
has the same data-management needs, so it wouldn’t make sense for Unity to
enforce a rule that “Every game must use such-and-such design pattern.” It
would’ve been counterproductive to introduce those sorts of concepts too soon,
because people would be misled into thinking they need that before they can
make any game.

For example, a roleplaying game will have very high data-management needs, so
you probably want to implement something like an MVC architecture. A puzzle
game, though, has little data to manage, so building a complex decoupled
structure of data managers would be overkill. Instead, the game state can be
tracked in the scene-specific controller objects (indeed, that’s how we handled
game state in previous chapters).

In this project we need to manage the player’s inventory. Let’s set up the code
structure for that.

8.3.1. Setting up player and inventory managers

The general idea here is to split up all the data management into separate, well-
defined modules that each manages its own area of responsibility. We’re going to
create separate modules to maintain player state in PlayerManager (things
like the player’s health) and maintain the inventory list in
InventoryManager. These data managers will behave like the Model in
MVC; the Controller is an invisible object in most scenes (it wasn’t needed here,
but recall SceneController in previous chapters), and the rest of the scene is
analogous to the View.

There will be a higher-level “manager of managers” that keeps track of all the
separate modules. Besides keeping a list of all the various managers, this higher-
level manager will control the lifecycle of the various managers, especially
initializing them at the start. All the other scripts in the game will be able to
access these centralized modules by going through the main manager.
Specifically, other code can use a number of static properties in the main
manager in order to connect with the specific module desired.

Design patterns for accessing centralized shared modules

Over the years a variety of design patterns have emerged to solve the problem of
connecting parts of a program to centralized modules that are shared throughout
the program. For example, the Singleton pattern was enshrined in the original
“Gang of Four” book about design patterns.

But that pattern has fallen out of favor with many software engineers, so they
use alternative patterns like service locator and dependency injection. In my

code I use a compromise between the simplicity of static variables and the
flexibility of a service locator.

This design leaves the code simple to use while also allowing for swapping in
different modules. For example, requesting InventoryManager using a
singleton will always refer to the exact same class and thus will tightly couple
your code to that class; on the other hand, requesting Inventory from a service
locator leaves the option to return either InventoryManager or
DifferentInventoryManager. Sometimes it’s handy to be able to switch
between a number of slightly different versions of the same module (deploying
the game on different platforms, for example).

In order for the main manager to reference other modules in a consistent way,
these modules must all inherit properties from a common base. We’re going to
do that with an interface; many programming languages (including C#) allow
you to define a sort of blueprint that other classes need to follow. Both
PlayerManager and InventoryManager will implement a common
interface (called IGameManager in this case) and then the main Managers
object can treat both PlayerManager and InventoryManager as type
IGameManager. Figure 8.5 illustrates the setup I’'m describing.

Figure 8.5. Diagram of the various modules and how they’re related

PlayerManager
Managers

* static Player IGameManager

* static Inventory

+ List<iGameManager: InventoryManager
<IGz ers

IGameManager

Incidentally, whereas all of the code architecture I've been talking about consists
of invisible modules that exist in the background, Unity still requires scripts to

be linked to objects in the scene in order to run that code. As we’ve done with
the scene-specific controllers in previous projects, we’re going to create an
empty GameObject to link these data managers to.

8.3.2. Programming the game managers

All right, so that explained all the concepts behind what we’ll do; it’s time to
write the code. To start with, create a new script called IGameManager (see the
next listing).

Listing 8.9. Base interface that the data managers will implement

<H\“ This is an enum we need to define.

Hmm, there’s barely any code in this file. Note that it doesn’t even inherit from
MonoBehaviour; an interface doesn’t do anything on its own and exists only
to impose structure on other classes. This interface declares one property (a
variable that has a getter function) and one method; both need to be implemented
in any class that implements this interface. The status property tells the rest of
the code whether this module has completed its initialization. The purpose of
Startup() is to handle initialization of the manager, so initialization tasks
happen there and the function sets the manager’s status.

Notice that the property is of type ManagerStatus; that’s an enum we
haven’t written yet, so create the script ManagerStatus.cs (see the next listing).

Listing 8.10. ManagerStatus: possible states for IGameManager status

public enum ManagerStatus {
Shutdown,
Initializing,
Started

This is another file with barely any code in it. This time we’re listing the
different possible states that managers can be in, thereby enforcing that the
status property will always be one of these listed values.

Now that IGameManager is written, we can implement it in other scripts.
Listings 8.11 and 8.12 contain code for PlayerManager and InventoryManager.

Listing 8.11. InventoryManager

Un

: S Import new data structures
hl IF,_],. q_/_ {used in listing 8.14).
public class Inventory haviou
1 i R nagerStatus status {get; private set;|]
Any long- 0-\ Property can be read

i ubllic veld Starky I - from anywhere but only
running startu - ubl volid Scartu ¥
I:Isk'&l F.S[l:l here. 4 \\-}F '_,-.I.':. g l g (" Im I ['.'. Y MATAgE set within this seript.

ityEngine;
te
Le

using Sy

MonoBeha ur, IGameManager {

ar starting...");

‘J\'-.R_ For long-running tasks, use
status ‘Initializing’ instead.

Listing 8.12. PlayerManager

using UnityEngine;
uging System.Collections;

ugsing System.Collections.Generic;

public class PlayerManager : MonoBehaviour, IGameManager | cj—\\
public ManagerStatus status {get; private set;]
Inherit a class and
public int health {get; private set;) implement an interface.
public int maxHealth {get; private set;|}

public wvoid Startup() 1
Debug.Log("Player manager starting...");
health = 50;

maxHealth = 100

LULE

These values could be
initialized with saved data.

status ManagerStatus.Started;

public void ChangeHealth({int walue) |{
health += wvalue;
if (health > maxHealth)

Q_ Other scripts can't set health
directly but can call this function.

health = maxHealth;

} (health < 0)
F = (=
i

Debug.Log("Health: " + health + "/" + maxHealth);

For now, InventoryManager is a shell that will be filled in later, whereas
PlayerManager has all the functionality needed for this project. These
managers both inherit from the class MonoBehaviour and implement the

interface IGameManager. That means the managers both gain all the
functionality of MonoBehaviour while also needing to implement the
structure imposed by IGameManager. The structure in IGameManager was
one property and one method, so the managers define those two things.

The status property was defined so that the status could be read from
anywhere (the getter is public) but only set within this script (the setter is
private). The method in the interface is Startup(), so both managers define
that function. In both managers initialization completes right away
(InventoryManager doesn’t do anything yet, whereas PlayerManager
sets a couple of values), so the status is set to Started. But data modules may
have long-running tasks as part of their initialization (such as loading saved
data), in which case Startup() will launch those tasks and set the manager’s
status to Initializing. Change status to Started after those tasks
complete.

Great—we’re finally ready to tie everything together with a main manager-of-
managers! Create one more script and call it Managers (see the following
listing).

Listing 8.13. The Manager-of-Managers!

1ging System.Collections.Generi Ensure that the various

-~ :
! anagers exist.
o managers exist

Static properties that

Manager: M ehaviour | ~ other code uses to
itic PlayerManager Player {get; privat t; </ access managers

sameManage: startSeguence; <,

%,

The list of managers to loop
through during startup sequence

Launch the startup

."-'- 1 r
o/ sequence asynchronously.

Keep looping until all
‘:_/.-" managers are started,

{:\,__ Pause for one frame
before checking again.

The most important parts of this pattern are the static properties at the very top.
Those enable other scripts to use syntax like Managers.Player or
Managers.Inventory to access the various modules. Those properties are
initially empty, but they’re filled immediately when the code runs in the
Awake (') method.

Tip

Just like Start () and Update(), Awake () is another method automatically
provided by MonoBehaviour. It’s similar to Start (), running once when
the code first starts running. But in Unity’s code-execution sequence, Awake ()
is even sooner than Start (), allowing for initialization tasks that absolutely
must run before any other code modules.

The Awake () method also lists the startup sequence, and then launches the
coroutine to start all the managers. Specifically, the function creates a List
object and then uses List.Add () to add the managers.

Definition

List is a collection data structure provided by C#. List objects are similar to
arrays: they’re declared with a specific type and store a series of entries in
sequence. But a List can change size after being created, whereas arrays are
created at a static size that can’t change later.

Warning

The collection data structures are contained in a new namespace that you must
include in the script; notice the additional using statement at the top of the
script. Don’t forget this detail in your scripts!

Because all the managers implement IGameManager, this code can list them
all as that type and can call the Startup () method defined in each. The
startup sequence is run as a coroutine so that it will run asynchronously, with
other parts of the game proceeding too (for example, a progress bar animated on
a startup screen).

The startup function first loops through the entire list of managers and calls
Startup() on each one. Then it enters a loop that keeps checking whether the
managers have started up and won’t proceed until they all have. Once all the
managers are started, the startup function finally alerts us to this fact before
finally completing.

Tip

The managers we wrote earlier have such simple initialization that there’s no
waiting, but in general this coroutine-based startup sequence can elegantly
handle long-running asynchronous startup tasks like loading saved data.

Now all of the code structure has been written. Go back to Unity and create a
new empty GameObject; as usual with these sorts of empty code objects,
position it at 0,0,0 and give the object a descriptive name like Game
Managers. Attach the script components Managers, PlayerManager, and

InventoryManager to this new object.

When you play the game now there should be no visible change in the scene, but
in the console you should see a series of messages logging the progress of the
startup sequence. Assuming the managers are starting up correctly, it’s time to
start programming the inventory manager.

8.3.3. Storing inventory in a collection object: List vs. Dictionary

The actual list of items collected could also be stored as a L1st object. The next
listing adds a List of items to InventoryManager.

Listing 8.14. Adding items to InventoryManager

=
\\-- Initialize the empty item list.

<t .
N_ Print console message
of the current inventory.

.:h‘\, Other scripts can’t manipulate the
item list directly but can call this.

Two key additions were made to InventoryManager. One, we added a List
object to store items in. Two, we added a public method, AddItem(), that
other code can call. This function adds the item to the list and then prints the list
to the console. Now let’s make a slight adjustment in the Collectibleltem script
to call the new AddItem() method (see the following list).

Listing 8.15. Using the new InventoryManager in Collectibleltem

void OnTriggerEnter(Collider other) {
Managers.Inventory.AddItem(name);
Destroy(this.gameObject);

}

Now when you run around collecting items, you should see your inventory
growing in the console messages. This is pretty cool, but it does expose one
limitation of List data structures: as you collect multiples of the same type of
item (such as collecting a second Health item), you’ll see both copies listed,
instead of aggregating all items of the same type (refer to figure 8.6). Depending
on your game, you may want the inventory to track each item separately, but in
most games the inventory should aggregate multiple copies of the same item. It’s
possible to accomplish this using List, but it’s done more naturally and
efficiently using Dictionary instead.

Figure 8.6. Console message with multiples of the same item listed multiple times

@ Items: energy health ore health energy ore key
UnityEngine.Debug:Log{Object)

Definition

Dictionary is another collection data structure provided by C#. Entries in the
dictionary are accessed by an identifier (or key) rather than by their position in
the list. This is similar to a hash table but more flexible, because the keys can be
literally any type (for example, “Return the entry for this GameObject”).

Change the code in InventoryManager to use Dictionary instead of List.
Replace everything from listing 8.14 with the code from the following listing.

Listing 8.16. Dictionary of items in InventoryManager

<
“_ Dictionary is declared with two
public void Startup . types: the key and the value.

q\'_ Check for existing entries
before entering new data.

Overall this code looks the same as before, but a few tricky differences exist. If
you aren’t already familiar with Dictionary data structures, note that it was
declared with two types. Whereas L1St was declared with only one type (the
type of values that’ll be listed), a Dictionary declares both the type of keys
(that is, what the identifiers will be) and the type of values.

A bit more logic exists in the AddItem() method. Whereas before every item
was appended to the List, now we need to check if the Dictionary already
contains that item; that’s what the ContainsKey () method is for. If it’s a new
entry, then we’ll start the count at 1, but if the entry already exists, then
increment the stored value.

Play with the new code and you’ll see the inventory messages have an
aggregated count of each item (refer to figure 8.7).

Figure 8.7. Console message with multiples of the same item aggregated

@ Items: energy(1) health(2) ore(2) key(1)
UnityEngine.Debug:Log(Object)

Whew, finally, collected items are managed in the player’s inventory! This
probably seems like a lot of code to handle a relatively simple problem, and if
this were the entire purpose then, yeah, it was overengineered. The point of this
elaborate code architecture, though, is to keep all the data in separate flexible
modules, a useful pattern once the game gets more complex. For example, now
we can write Ul displays and the separate parts of the code will be much easier
to handle.

8.4. Inventory Ul for using and equipping items

The collection of items in your inventory can be used in multiple ways within
the game, but all of those uses first rely on some sort of inventory Ul so that
players can see their collected items. Then, once the inventory is being shown to
the player, you can program interactivity into the Ul by enabling players to click
on their items. Again, we’ll program a couple of specific examples (equipping a
key and consuming health packs), and then you should be able to adapt this code
to work with other types of items.

Note

As mentioned in chapter 6, Unity has both an older immediate mode GUI and a
newer sprite-based UI system. We’ll use the immediate mode GUI in this chapter
because that system is faster to implement and requires less setup; less setup is
great for practice exercises. The sprite-based Ul system is more polished,
though, and for an actual game you’d want a more polished interface.

8.4.1. Displaying inventory items in the Ul

To show the items in a Ul display, we first need to add a couple more methods to
InventoryManager. Right now the item list is private and only accessible within
the manager; in order to display the list, though, that information must have
public methods for accessing the data. Add two methods shown in the following
listing to InventoryManager.

Listing 8.17. Adding data access methods to InventoryManager

ﬂ-_ Returns a List of all
the Dictionary keys

<
__ Returns how many of that
item are in inventory

The GetItemList () method returns a list of items in the inventory. You
might be thinking, “Wait a minute, didn’t we just spend lots of effort to convert
the inventory away from a L1st?” The difference now is that each type of item
will only appear once in the list. If the inventory contains two health packs, for
example, the name “health” will still only appear once in the list. That’s because
the List was created from the keys in the Dictionary, not from every
individual item.

The GetItemCount () method returns a count of how many of a given item
are in the inventory. For example, call GetItemCount ("health") to ask
“How many health packs are in the inventory?” This way, the Ul can display a
number of each item along with displaying each item.

With these methods added to InventoryManager, we can create the UI display.
Let’s display all the items in a horizontal row across the top of the screen. The
items will be displayed using icons, so we need to import those images into the
project. Unity handles assets in a special way if those assets are in a folder called
Resources.

Tip

Assets placed into the Resources folder can be loaded in code using the method
Resources.Load(). Otherwise, assets can only be placed in scenes through
Unity’s editor.

Figure 8.8 shows the four icon images, along with the directory structure
showing where to put those images. Create a folder called Resources and then
create a folder called Icons inside it.

Figure 8.8. Image assets for equipment icons placed inside the Resources folder
Assets » Resources » lcons
Enengy health key ore

The icons are all set up, so create a new empty GameObject named
Controller and then assign it a new script called BasicUI (see the next
listing).

Listing 8.18. BasicUI displays the inventory

Display a message if the
inventory is empty.

..-"/.:

The method that
loads assets
from the
Resources folder

=,
\ &=

'-'\-k. Shift sideways each
time through the loop.

This listing displays the collected items in a horizontal row (see figure 8.9) along
with displaying the number collected. As mentioned in chapter 3, every
MonoBehaviour automatically responds to an ONnGUI () method. That
function runs every frame right after the 3D scene is rendered.

Figure 8.9. UI display of the inventory

Inside ONGUI (), first define a bunch of values for positioning UI elements.
These values are incremented when we loop through all the items in order to
position Ul elements in a row. The specific UI element drawn is GUI . BOX;

those are noninteractive displays that show text and images inside boxes.

The method Resources.Load() is used to load assets from the Resources
folder. This method is a handy way to load assets by name; notice that the name
of the item is passed as a parameter. We have to specify a type to load;
otherwise, the return value for that method is a generic object.

The UI shows us what items have been collected. Now we can actually use the
items.

8.4.2. Equipping a key to use on locked doors

Let’s go over a couple of examples of using inventory items so that you can
extrapolate out to any type of item you want. The first example involves
equipping a key required to open the door.

At the moment, the DeviceTrigger script doesn’t pay attention to your items
(because that script was written before the inventory code). The next listing
shows how to adjust that script.

Listing 8.19. Requiring a key in DeviceTrigger

public bool requireKey;

void OnTriggerEnter(Collider other) {
if (requireKey && Managers.Inventory.equippedItem != "key") {
return;
}

As you can see, all that’s needed is a new public variable in the script and a
condition that looks for an equipped key. The requireKey Boolean appears as
a check box in the Inspector so that you can require a key from some triggers but
not others. The condition at the beginning of OnTriggerEnter () checks for
an equipped key in InventoryManager; that requires that you add the code
from the next listing to InventoryManager.

Listing 8.20. Equipping code for InventoryManager

Key (nar k& egquipped] = nar i \ Check that inventory
Juip] - has the item and it
Debug.Log ("Equipped " + name) ; isn't already equipped.

At the top add the equippedItem property that gets checked by other code.
Then add the public method EquipItem() to allow other code to change
which item is equipped. That method equips an item if it isn’t already equipped,
or unequips if that item is already equipped.

Finally, in order for the player to equip an item, add that functionality to the UI.
The following listing will add a row of buttons for that purpose.

Listing 8.21. Equip functionality added to BasicUI

m_ Italicized code was already in the

script, shown here for reference.

: : ! Display the currently
string equipped = Managers.Inventory.egquippedItem; " . ;
equipped item,
T juipped f at juipp

height+buffer; Loop through all items

/~ to make buttons.
<’

uip "+iter 1 <, .
T N L P rERL fa _ Run the contained code

if the button is clicked.

GUI.Box() is used again to display the equipped item. But that element is
noninteractive, so the row of Equip buttons is drawn using GUI .Button()
instead. That method creates a button that executes the code inside the 1T
statement when clicked.

With all the needed code in place, select the requireKey option in
DeviceTrigger and then play the game. Try running into the trigger volume
before equipping a key; nothing happens. Now collect a key and click the button
to equip it; running into the trigger volume opens the door.

Just for fun, you could put a key at Position -11 5 -14 to add a simple gameplay
challenge to see if you can figure out how to reach the key. Whether or not you
try that, let’s move on to using health packs.

8.4.3. Restoring the player’s health by consuming health packs

Using items to restore the player’s health is another generally useful example.
That requires two code changes: a new method in InventoryManager and a new

button in the UI (see listings 8.22 and 8.23, respectively).

Listing 8.22. New method in InventoryManager

public ol nelten Y , /,« Check if the item is in inventory.
if { items.ContainsKey ({name { <}
items [name] i
if (items[name] == 0} { ﬂ\ R h if
items.Remove (name) ; emove the entry |
the count goes to 0.

} else { ; g
Debug.Log("cannot consume " + name) :Q\— HE!’:pDﬂSE if that item
aturn falde iIsn't in inventory

isplayIte

wch (string it in itemLis Italicized code was
F (GUT.Button {new Rect (posX, posY, widch, height - already in script, shown
" +1Cem { here for reference.

Start of
new code \\D E fivan health®
if (GUI.Button(new Rect I width
! .-__1___\\'
Player.ChangeHealth (25) ; Run the contained
code if the button
is clicked.

The new ConsumeItem() method is pretty much the reverse of AddItem();
it checks for an item in the inventory and decrements if the item is found. It has
responses to a couple of tricky cases, such as if the item count decrements to 0.
The UI code calls this new inventory method, and it calls the
ChangeHealth() method that PlayerManager has had from the

beginning.

If you collect some health items and then use them, you’ll see health messages
appear in the console. And there you go—multiple examples of how to use
inventory items!

8.5. Summary

In this chapter you’ve learned that

e Both keypresses and collision triggers can be used to operate devices.

¢ Objects with physics enabled can respond to collision forces or trigger
volumes.

e Complex game state is managed via special objects that can be accessed
globally.

e Collections of objects can be organized in List or Dictionary data
structures.

e Tracking the equip state of items can be used to affect other parts of the
game.

Part 3. Strong finish

You know a fair amount about Unity by now. You know how to program the
player’s controls, how to create enemies that wander around, and how to add
interactive devices to the game. You even know how to build a game using both
2D and 3D graphics! That’s almost everything you need to know in order to
develop a complete game, but not quite. You still need to learn about a few final
tasks like putting audio in the game, and you need to understand how to put
together all the disparate pieces we’ve been working with.

This is the home stretch, with just four chapters left!

Chapter 9. Connecting your game to the internet

This chapter covers

Generating visuals for the sky using a skybox
Downloading data using WWW objects in coroutines
Parsing common data formats like XML and JSON
Displaying images downloaded from the internet
Sending data to a web server

In this chapter you’ll learn how to send and receive data over a network. The
projects built in previous chapters represented a variety of game genres, but all
have been isolated to the player’s machine. As you know, connecting to the
internet and exchanging data is increasingly important for games in all genres.
Many games exist almost entirely over the internet, with constant connection to
a community of other players; games of this sort are referred to as MMOs
(massively multiplayer online) and are most widely known through MMORPGs
(MMO role-playing games). Even when a game doesn’t require such constant
connectivity, modern video games usually incorporate features like reporting
scores to a global list of high scores. Unity provides support for such
networking, so we’ll be going over those features.

Unity supports multiple approaches to network communication, since different
approaches are better suited to different needs. However, this chapter will mostly
cover the most general sort of internet communication: issuing HTTP requests.

What are HTTP requests?

I assume most readers know what HTTP requests are, but here’s a quick primer
just in case: HTTP is a communication protocol for sending requests to and
receiving responses from web servers. For example, when you click a link on a
web page, your browser (the client) sends out a request to a specific address, and
then that server responds with the new page. HTTP requests can be set to a
variety of methods, in particular either GET or POST to retrieve or to send data.

HTTP requests are reliable, and that’s why the majority of the internet is built
around them. The requests themselves, as well as the infrastructure for handling
such requests, are designed to be robust and handle a wide range of failures in
the network.

In an online game built around HTTP requests, the game developed in Unity is
essentially a thick client that communicates with the server in an Ajax style. As a
good comparison, imagine how a modern single-page web application works (as
opposed to old-school web development based on web pages generated server-
side). The familiarity of this approach can be misleading for experienced web
developers. Video games often have much more stringent performance
requirements than web applications, and these differences can affect design
decisions.

Warning

Time scales can be vastly different between web apps and videogames. Half a
second can seem like a short wait for updating a website, but pausing even just a
fraction of that time can be excruciating in the middle of a high-intensity action
game. The concept of “fast” is definitely relative to the situation.

Online games usually connect to a server specifically intended for that game; for
learning purposes, however, we’ll connect to some freely available internet data
sources, including both weather data and images we can download. The last
section of this chapter does require you to set up a custom web server; that
section is optional because of that requirement, although I’ll explain an easy way
to do it with open-source software.

The plan for this chapter is to go over multiple uses of HTTP requests so that
you can learn how they work within Unity:

1. Set up an outdoor scene (in particular, build a sky that can react to the
weather data).

2. Write code to request weather data from the internet.

3. Parse the response and then modify the scene based on the data.
4. Download and display an image from the internet.

5. Post data to your own server (in this case, a log of what the weather
was).

The actual game that you’ll use for this chapter’s project matters little.
Everything in this chapter will add new scripts to an existing project and won’t
modify any of the existing code. For the sample code, I used the movement
demo from chapter 2, mostly so that we can see the sky in first-person view
when it gets modified. The project for this chapter isn’t directly tied into the
gameplay, but obviously for most games you create you would want the
networking tied to the gameplay (for example, spawning enemies based on
responses from the server).

On to the first step!

9.1. Creating an outdoor scene

Because we’re going to be downloading weather data, we’ll first set up an
outdoor area where the weather will be visible. The trickiest part of that will be
the sky, but first let’s take a moment to apply outdoors-looking textures on the
level geometry.

Just as in chapter 4, I obtained a couple images from www.cgtextures.com to
apply to the walls and floor of the level. Remember to change the size of the
downloaded images to a power of 2, such as 256x256. Then import the images
into the Unity project, create materials, and assign the images to the materials
(that is, drag an image into the texture slot of the material). Drag the materials
onto the walls or floor in the scene, and increase tiling in the material (try
numbers like 8 or 9 in one or both directions) so that the image won’t be
stretched in an ugly way.

Once the ground and walls are taken care of, it’s time to address the sky.

9.1.1. Generating sky visuals using a skybox

http://www.cgtextures.com

Start by importing the skybox images as you did in chapter 4: go to www.93i.de
to download skybox images. This time get the images for the DarkStormy set in
addition to TropicalSunnyDay (the sky will be more complex in this project).
Import these textures into the Project view, and (as explained in chapter 4) set
their Wrap Mode to Clamp.

Now create a new material to use for this skybox. At the top of the settings for
this material, click the Shader menu in order to see the drop-down list with all
the available shaders. Move down to the Skybox section and choose 6-Sided in
that submenu. With this shader active, the material now has six texture slots
(instead of only the small Albedo texture slot that the standard shader had).

Drag the SunnyDay skybox images to the texture slots of the new material. The
names of the images correspond to the texture slot to assign them to (top, front,
and so on) Once all six textures are linked up, you can use this new material as

the skybox for the scene.

Assign this skybox material in the Lighting window (Window > Lighting).
Assign the material for your skybox to the Skybox slot at the top of the window
(either drag the material over or click the little circle button next to the slot). Hit
Play and you should see something like figure 9.1.

Figure 9.1. Scene with background pictures of the sky

Great, now you have an outdoors scene! A skybox is an elegant way to create the
illusion of a vast atmosphere surrounding the player. But the skybox shader built
into Unity does have one significant limitation: the images can never change,

http://www.93i.de

resulting in a sky that appears completely static. We’ll address that limitation by
creating a new custom shader.

9.1.2. Setting up an atmosphere that’s controlled by code

The images in the TropicalSunnyDay set look great for a sunny day, but what if
we want to transition between sunny and overcast weather? This will require a
second set of sky images (some pictures of a cloudy sky) so we need a new
shader for the skybox.

As explained in chapter 4, a shader is a short program with instructions for how
to render the image. That implies that you can program new shaders, and that is
in fact the case. We’re going to create a new shader that takes two sets of skybox
images and transitions between them. Fortunately a shader for this purpose
already exists in the Unify Community wiki’s collection of scripts:
http://wiki.unity3d.com/index.php?title=SkyboxBlended

In Unity create a new shader script: go to the Create menu just like when you
create a new C# script, but select Shader instead. Name the asset
SkyboxBlended and then double-click the shader to open the script. Copy the
code from that wiki page and paste it into the shader script. The top line says
Shader "Skybox/Blended", which tells Unity to add the new shader into
the shader list under the Skybox category (the same category as the regular
skybox).

Note

We’re not going to go over all the details of the shader program right now.
Shader programming is a pretty advanced computer graphics topic and thus
outside the scope of this book. You may want to look that up after you’ve
finished this book; if so, start here:
http://docs.unity3d.com/Manual/ShadersOverview.html

Now you can set your material to the Skybox Blended shader. There are 12
texture slots, in two sets of six images. Assign TropicalSunnyDay images to the
first six textures just as before; for the remaining textures, use the DarkStormy
set of skybox images.

http://wiki.unity3d.com/index.php?title=SkyboxBlended
http://docs.unity3d.com/Manual/ShadersOverview.html

This new shader also added a Blend slider near the top of the settings. The Blend
value controls how much of each set of skybox images you want to display;
when you adjust the slider from one side to the other, the skybox transitions from
sunny to overcast. You can test by adjusting the slider and playing the game, but
manually adjusting the sky isn’t terribly helpful while the game is running, so
let’s write some code to transition the sky.

Create an empty object in the scene and name it Controller. Create a new
script and name it WeatherController. Drag that script onto the empty object, and
then write the following listing in that script.

Listing 9.1. WeatherController script that transitions from sunny to overcast

Reference the material in Project
K;’_ view, not only objects in the scene.

_ Initial intensity of the light is
A S - o _/~ considered “full” intensity.

Increment the value every frame
),-“_ for a continuous transition.
<}

_ Adjust both the material’s Blend
/~ value and the light’s intensity.

I’1l point out a number of things in this code, but the key new method is
SetFloat (), which appears almost at the bottom. Everything up to that point
should be fairly familiar, but that one is new. The method sets a number value on
the material. Which value specifically is the first parameter to that method. In
this case, the material has a property called Blend (note that material properties
in code start with an underscore).

As for the rest of the code, a few variables are defined, including both the

material and a light. For the material you want to reference the blended skybox
material we just created, but what’s with the light? That’s so that the scene will
also darken when transitioning from sunny to overcast; as the Blend value
increases, we’ll turn down the light. The directional light in the scene acts as the
main light and provides illumination everywhere; drag that light into the
Inspector.

Note

The advanced lighting system (called Enlighten) in Unity takes the skybox into
account in order to achieve realistic results. However, this lighting approach
won’t work right with a changing skybox, so you may want to turn it off. In the
Lighting window you can turn off Continuous Baking (this term was defined in
chapter 7) at the bottom; now it will only update when you click the button. Set
the Blend of the skybox to the middle for an average look, and then click Build
at the bottom of the Lighting window to bake lightmaps (a folder called Scene is
added to your project; don’t touch that folder).

When the script starts, it initializes the intensity of the light. The script will store
the starting value and consider that to be “full” intensity. This full intensity will
be used later in the script when dimming the light.

Then the code increments a value every frame and uses that value to adjust the
sky. Specifically, it calls SetOvercast () every frame, and that function
encapsulates the multiple adjustments made to the scene. I’ve already explained
what SetFloat () is doing so we won’t go over that again, and the last line
adjusts the intensity of the light.

Now play the scene to watch the code running. You’ll see what figure 9.2
depicts: over a couple of seconds you’ll see the scene transition from a sunny
day to dark and overcast.

Figure 9.2. Before and after: scene transition from sunny to overcast

Sunny before transition Overcast after transition

Warning

One unexpected quirk about Unity is that the “Blend” change on the material is
permanent. Unity resets objects in the scene when the game stops running, but
assets that were linked directly from the Project view (such as the skybox
material) are changed permanently. This only happens within Unity’s editor
(changes don’t carry over between plays after the game is deployed outside the
editor) and thus can result in frustrating bugs if you forget about it.

It’s pretty cool watching the scene transition from sunny to overcast. But this
was all just a setup for the actual goal: having the weather in the game sync up to
real-world weather conditions. For that, we need to start downloading weather
data from the internet.

9.2. Downloading weather data from an internet service

Now that we have the outdoors scene set up, we can write code that will
download weather data and modify the scene based on that data. This task will
provide a good example of retrieving data using HTTP requests. A web service
for free weather data is OpenWeatherMap; you’ll use their API (application
programming interface, a way to access their service using code commands
instead of a graphical interface) located at http://openweathermap.org/api

Definition

A web service or web API is a server connected to the internet that returns data
upon request. There’s no technical difference between a web API and a website;
a website is a web service that happens to return the data for a web page, and

http://openweathermap.org/api

browsers interpret HTML data as a visible document.

The code you’ll write will be structured around the same Managers
architecture from chapter 8. This time you’ll have a WeatherManager class
that gets initialized from the central manager-of-managers. WeatherManager
will be in charge of retrieving and storing weather data, but to do so it’ll need the
ability to communicate with the internet.

To accomplish that, you’ll create a utility class called NetworkService.
NetworkService will handle the details of connecting to the internet and
making HTTP requests. WeatherManager can then tell NetworkService
to make those requests and pass back the response. Figure 9.3 shows how this
code structure will operate.

Figure 9.3. Diagram showing how the networking code will be structured

l. Manager gets

WeatherM
asked for data. et

1. Manager tells Service
to make request.

NetworkService
|* « GetData()

*» HTTPRequesi{)
* OnResponse()

3. Service sends HTTP

: response back to Manager.
GameManager

For this to work, obviously WeatherManager will need to have access to the
NetworkService object. You’re going to address this by creating the object
in Managers and then injecting the NetworkService object into the various
managers when they’re initialized. In this way not only will
WeatherManager have a reference to the NetworkService, but so will
any other managers you create later.

To start bringing over the Managers code architecture from chapter 8, first
copy over ManagerStatus and IGameManager (remember that
IGameManager is the interface that all managers must implement, whereas
ManagerStatus is an enum that IGameManager uses). You'll need to
modify IGameManager slightly to accommodate the new NetworkService
class, so create a new script called NetworkService (leave it empty for now;

you’ll fill it in later) and then adjust IGameManager as shown in listing 9.2.

Listing 9.2. Adjusting IGameManager to include NetworkService

The Startup function now takes one
d_'f_ parameter: the injected object.

Next let’s create WeatherManager to implement this slightly adjusted interface.
Create a new C# script (see the following listing).

Listing 9.3. Initial script for WeatherManager

LS 1Ng
'ollections;

11itvEngine ;
11
item.Collections.Generic;

Network = Service; q- Store the injECtEd
status = ManagerStatus.Started; NetworkService object.

This initial pass at WeatherManager doesn’t really do anything. For now it’s
just the minimum amount that IGameManager requires that the class
implements: declare the sStatus property from the interface, as well as
implement the Startup() function. You’ll fill in this empty framework over
the next few sections. Finally, copy over Managers from chapter 8 and adjust it
to start up WeatherManager (see the next listing).

Listing 9.4. Managers.cs adjusted to initialize WeatherManager

using UnityEngine;
using System.Collections;

using System.Collections.Generic; Hequhethenew1hanager

_ _ qf instead of player and inventory.
[RequireComponent (typeof (WeatherManager))]
public class Managers : MonoBehaviour |

public static WeatherManager Weather {get; private set;]
private List<IGameManager> _startSequence;

void Awake () |

Weather = GetComponent<WeatherManager=();

_BtartSeguence new List<IGameManager=>();
_startSequence.fdd (Weather);

StartCoroutine (StartupManagers()) ;

)
plsae i i s St Instantiate NetworkService
private -._...11'.n._...¢1~t,1:' StartupManagers|() . - ﬂ‘/‘ to inje-:tin all managers.
NetworkService network = new MNetworkService();
foreach (IGameManager manager in _startSeguence)
manager .Startup (network) ; z
} Q_ Pass the network service to
managers during startup.
yield return null;
int numModules = _startSequence.Count;
int numReady = 0;
while (numReady =< numModules)
int lastReady = numReady;
numReady = 0;
foreach (IGameManager manager in _startSequence) 'l
if (manager.status ManagerStatus.Started) |
numReady++;
}
if (numReady = lastReady)
Debug.Log("Progress: " + numReady + "/" + numModules) ;
yield return null;
]

Debug.Log("All managers started up");

And that’s everything needed codewise for the Managers code architecture. As
you have in previous chapters, create the game managers object in the scene and
then attach both Managers and WeatherManager to the empty object. Even

though the manager isn’t doing anything yet, you can see startup messages in the
console when it’s set up correctly.

Whew, there were quite a few “boilerplate” things to get out of the way! Now we
can get on with writing the networking code.

9.2.1. Requesting WWW data using coroutines

NetworkService is currently an empty script, so you can write code in it to make
HTTP requests. The primary class you need to know about is WWW. Unity
provides the WWW class to communicate with the internet. Instantiating a WwWW
object using a URL will send a request to that URL.

Coroutines can work with the WWW class to wait for the request to complete.
Coroutines were first introduced back in chapter 3, where we used them to pause
some code for a set period of time. Recall the explanation given there: coroutines
are special functions that seemingly run in the background of a program, in a
repeated cycle of running partway and then returning to the rest of the program.
When used along with the StartCoroutine() method, the yield keyword
causes the coroutine to temporarily pause, handing back the program flow and
picking up again from that point next frame.

In chapter 3 the coroutines yielded at WaitForSeconds(), an object that
caused the function to pause for a specific number of seconds. Yielding a
coroutine with WWW will pause the function until that network request completes.
The program flow here is similar to making asynchronous Ajax calls in a web
application: first you send a request, then you continue with the rest of the
program, and after some time you receive a response.

That was the theory; now let’s write the code

All right, let’s implement this stuff in our code. First open the NetworkService
script and replace the default template with the contents of the following listing.

Listing 9.5. Making HTTP requests in NetworkService

 URL to send request to

<3

iy
“~ Check for errors in the response

"_ HTTP request sent by

Pause while ,-"FL- ik B creating a WWW object
downloading.

Break out of the _‘,-'/-_' ; S Delegate can be called just

coroutine if error J like the original function

<} . .
% yield cascades through coroutine
methods that call each other.

Remember the code design explained earlier: WeatherManager will tell
NetworkService to go fetch data. Thus all this code doesn’t actually run yet;
you’re setting up code that will be called by WeatherManager a bit later. To
explore this code listing, let’s start at the bottom and work our way up.

Writing coroutine methods that cascade through each other

GetWeatherXML () is the coroutine method that outside code can use to tell
NetworkService to make an HTTP request. Notice that this function has
TEnumerator for its return type; methods used in coroutines must have
TEnumerator declared as the return type.

It might look odd at first that GetWeatherXML () doesn’t have a yield
statement. Coroutines are paused by the yield statement, which implies that
every coroutine must yield somewhere. It turns out that the yielding can cascade

through multiple methods. If the initial coroutine method itself calls another
method, and that other method yields part of the way through, then the coroutine
will pause inside that second method and resume there. Thus the yield
statement in CallAPI () pauses the coroutine that was started in
GetWeatherXML(); figure 9.4 shows this code flow.

Figure 9.4. Diagram showing how the network coroutine works

|. Manager tells Service
WeatherManager to mah_':e r‘eque“_ MNetworkService

(do this by starting
+ GetDatal() { coroutine). - » HTTPRequest() { 2. In Service, one

StartCoroutine() CallAPI() | method calls another.
« OnResponse() * CallAPI() |
yield WWwW 3. Coroutine pauses
at yield statement
' caliback .
4. Service sends HTTP , ' in the second method.
response back to Manager. J |

The next potential head-scratcher is the callback parameter of type Action.

Understanding how the callback works

When the coroutine is started, the method is called with a parameter called
callback, and callback has the type Action. But what is an Action?

Definition

The type Action is a delegate (C# has a few approaches to delegates, but this
one is the simplest). Delegates are references to some other method/function.
They allow you to store the function (or rather a pointer to the function) in a
variable and to pass that function as a parameter to another function.

If you’re unfamiliar with the concept of delegates, realize that they enable you to
pass around functions just as you do numbers and strings. Without delegates,
you can’t pass around functions to call later—you can only directly call the
function then. With delegates you can tell code about other methods to call later.
This is useful for many purposes, especially for implementing callback
functions.

Definition

A callback is a function used to communicate back to the calling object. Object
A could tell Object B about one of the methods in A. B could later call A’s
method to communicate back to A.

For example, in this case the callback is used to communicate the response data
back after waiting for the HTTP request to complete. In Cal1API () the code
first makes an HTTP request, then yields until that request completes, and finally
uses callback() to send back the response.

Note the <> syntax used with the Action keyword; the type written in the
angle brackets declares the parameters required to fit this Action. In other
words, the function this Action points to must take parameters matching the
declared type. In this case the parameter is a single string, so the callback
method must have a signature like this:

MethodName(string value)

The concept of a callback may make more sense after you’ve seen it in action,
which you will in listing 9.6; this initial explanation is so that you’ll recognize
what’s going on when you see that additional code.

The rest of listing 9.5 is pretty straightforward. IsSResponseValid() checks
for errors in the HTTP response. There are two kinds of errors: the request
could’ve failed due to a bad internet connection, or the data returned could be
malformed in some way. A const value is declared with the URL to make the
request to. (Incidentally, you can change this URL to get weather for different
locations.)

Making use of the Networking code

That wraps up the code in NetworkService. Now let’s use
NetworkService in WeatherManager; the next listing shows the additions to
that script.

Listing 9.6. Adjusting WeatherManager to use NetworkService

_— — Start loading data
e i i /~ from the internet.
StarcCoroutine network.GetWeatherXM nXMLDataLoaded : <3

st atus ManagerStatus.Initializing; cl-\'

_ Instead of Started, make
the status Initializing.
Loaded (string dats T,
_ Callback method once
the data is loaded

Three primary changes are made to the code in this manager: starting a coroutine
to download data from the internet, setting a different startup status, and defining
a callback method to receive the response.

Starting the coroutine is simple. Most of the complexity behind coroutines was
already handled in NetworkService, so calling StartCoroutine() is all
you need to do here. Then you set a different startup status, because the manager
isn’t actually finished initializing; it needs to receive data from the internet
before startup is complete.

Warning

Always start networking methods using StartCoroutine(); don’t just call
the function normally. This can be easy to forget because creating WWW objects
outside of a coroutine doesn’t generate any sort of compiler error.

When you call the StartCoroutine () method, you need to invoke the
method. That is, actually type the parentheses—()—and don’t just provide the
name of the function. In this case, the coroutine method needs a callback
function as its one parameter, so let’s define that function. We’ll use
OnXMLDatalLoaded() for the callback; notice that this method has a string
parameter, which fits the Action<string> declaration from
NetworkService. The callback function doesn’t do a lot right now; the
debug line simply prints the received data to the console to verify that the data
was received correctly. Then the last line of the function changes the startup
status of the manager to say that it’s completely started up.

Hit Play to run the code. Assuming you have a solid internet connection, you
should see a bunch of data appear in the console. This data is simply a long
string, but the string is formatted in a specific way that we can make use of.

9.2.2. Parsing XML

Data that exists as a long string usually has individual bits of information
embedded within the string. You extract those bits of information by parsing the
string.

Definition

Parsing means analyzing a chunk of data and dividing it up into separate pieces
of information.

In order to parse the string, it needs to be formatted in a way that allows you (or
rather, the parser code) to identify separate pieces. There are a couple of standard
formats commonly used to transfer data over the internet; the most common
standard format is XML.

Definition

XML stands for Extensible Markup Language. It’s a set of rules for encoding
documents in a structured way, similar to HTML web pages.

Fortunately, Unity (or rather Mono, the code framework built into Unity)
provides functionality for parsing XML. The weather data we requested is
formatted in XML, so we’re going to add code to WeatherManager to parse
the response and extract the cloudiness. Put the URL into a web browser in order
to see the code; there’s a lot there, but we’re only interested in the node that
contains something like <clouds value="40" name="scattered
clouds"/>.

In addition to adding code to parse XML, we’re going to make use of the same
messenger system we did in chapter 6. That’s because once the weather data is

downloaded and parsed, we still need to inform the scene about that. Create a
script called Messenger and paste in the code from this page on the Unify

wiki: http://wiki.unity3d.com/index.php/CSharpMessenger Extended

Then you need to create a script called GameEvent (see the next listing). As
explained in chapter 6, this messenger system is great for providing a decoupled
way of communicating events to the rest of the program.

Listing 9.7. GameEvent code

public static class GameEvent {
public const string WEATHER_UPDATED = "WEATHER_UPDATED";
}

Once the messenger system is in place, adjust WeatherManager as shown in the
following listing.

Listing 9.8. Parsing XML in WeatherManager

Be sure to add needed
/7 using statements.

*-\'__ Cloudiness is modified internally
but read-only elsewhere.

ﬁ\‘_ Parse XML into a

searchable structure

<,)
% Pull out a single

CI.'.}I"I'I'i rt the A ode from the data.
=g
I

value to a A
0-1 float.

-

%+,
% Broadcast message to
inform the other scripts.

You can see that the most important changes were made inside
OnXMLDatalLoaded(). Previously this method simply logged the data to the
console to verify that data was coming through correctly. This listing adds a lot
of code to parse the XML.

First create a new empty XML document; this is an empty container that you can
fill with a parsed XML structure. The next line parses the data string into a
structure contained by the XML document. Then we start at the root of the XML

http://wiki.unity3d.com/index.php/CSharpMessenger_Extended

tree so that everything can search up the tree in subsequent code.

At this point you can search for nodes within the XML structure in order to pull
out individual bits of information. In this case, <clouds> is the only node
we’re interested in. First find that node in the XML document, and then extract
the value attribute from that node. This data defines the cloud value as a 0-100
integer, but we’re going to need it as a 0-1 float in order to adjust the scene later.
Converting that is a simple bit of math added to the code.

Finally, after extracting out the cloudiness value from the full data, broadcast a
message that the weather data has been updated. Currently nothing is listening
for that message, but the broadcaster doesn’t need to know anything about
listeners (indeed, that’s the entire point of a decoupled messenger system). Later
we’ll add a listener to the scene.

Great—we’ve written code to parse XML data! But before we move on to
applying this value to the visible scene, I want to go over another option for data
transfer.

9.2.3. Parsing JSON

Before continuing to the next step in the project, let’s explore an alternative
format for transferring data. XML is one common format for data transferred
over the internet, but another common format is called JSON.

Definition

JSON stands for JavaScript Object Notation. Similar in purpose to XML, JSON
was designed to be a lightweight alternative. Although the syntax for JSON was
originally derived from JavaScript, the format is not language-specific and is
readily used with a variety of programming languages.

Unlike XML, Mono doesn’t come with a parser for this format. There are a
number of good JSON parsers available that you could download, such as
MiniJSON (https://gist.github.com/darktable/1411710). Create a script called
MiniJSON and paste in that code. Now you can use this library to parse JSON
data. We’ve been getting XML from the OpenWeatherMap API, but as it

https://gist.github.com/darktable/1411710

happens they can also send the same data formatted as JSON. To do that, modify
NetworkService according to the next listing.

Listing 9.9. Making NetworkService request JSON instead of XML

<

™

The URL is slightly
different this time.

This is pretty much the same as the code to download XML data, except that the
URL is slightly different. The data returned from this request has the same

values, but it’s formatted differently. This time we’re looking for a chunk like
"clouds":{"all":40}.

There wasn’t a ton of additional code required this time. That’s because we set
up the code for requests into nicely parceled separate functions, so every
subsequent HTTP request will be easy to add. Nice! Now let’s modify
WeatherManager to request JSON data instead of XML (see the following
listing).

Listing 9.10. Modifying WeatherManager to request JSON instead

18 1 11g I <F
_ Be sure to add needed
i . using statement.
bli p(H vic 1 i
1q . Log T 1ge ita :
Network
Nnetwork = garvice;: = rE'quEST_
StartCoroutine | network.GetWeatherJSON (OnJSONDataLoaded)) ; C'-/ changed
tatus = Mar 14 | Initializing;
e . — . _ . Instead of custom XML container,
pubDlLic vold nJSONDataLloaded (8trl ng aata L " 9 9
. arse into Dictiona
Dictionary<string, object> dict; <J/_ P g
dict Jaon.Deserialize (data) as Dictionary<string,objects;
k 1 Cir loud
it lary<string, ob] 1i 1 1 ;
loudvalue = {(long)clouds(["all”] 100f; The syntax has changed,
Debug.Log{"Value: " + cloudvalue); but this code is still d'DiI"IE,
the same things.
] Broad i ATH ! I
tat Mana | d

As you can see, the code for working with JSON looks similar to the code for
XML. The only real difference is that this JSON parser works with a standard
Dictionary instead of a custom document container like XML did. There’s a
command to deserialize, and that may be an unfamiliar word.

Definition

Deserialize means pretty much the same thing as parse. This is the reverse of
serialize, which means to encode a batch of data into a form that can be
transferred and stored, such as a JSON string.

Aside from the different syntax, all the steps are exactly the same. Extract the
value from the data chunk (for some reason the value is called all this time, but
that’s just a quirk of the API) and do some simple math to convert the value to a
0-1 float.

With that done, it’s time to apply the value to the visible scene.

9.2.4. Affecting the scene based on Weather Data

Regardless of exactly how the data is formatted, once the cloudiness value is
extracted from the response data, we can use that value in the

SetOvercast () method of WeatherController. Whether XML or
JSON, the data string ultimately gets parsed into a series of words and numbers.
The SetOvercast () method takes a number as a parameter. In section 9.1.2
we used a number incremented every frame, but we could just as easily use the
number returned by the weather API.

The next listing shows the full WeatherController script again after
modifications.

Listing 9.11. WeatherController that reacts to downloaded weather data

P Add/Remove event listeners.

’ . . o Use the cloudiness value
Pl race F 1 JONWEeatiner pd AiCed [rﬂm Wea[herHana er
SetOvercast (Managers.Weather.cloudValue) ; -r./ e

Notice that the changes aren’t only additions; several bits of test code got
removed. Specifically, we removed the local cloudiness value that was

incremented every frame; we don’t need that anymore, because we’ll use the
value from WeatherManager.

A listener gets added and removed in Awake () /0nDestroy () (these are
MonoBehaviour’s functions called when the object awakes or is removed).
This listener is part of the broadcast messaging system, and it calls
OnwWeatherUpdated() when that message is received.
OnWeatherUpdated() retrieves the cloudiness value from
WeatherManager and calls SetOvercast () using that value. In this way,
the appearance of the scene is controlled by downloaded weather data.

Run the scene now and you’ll see the sky update according to the cloudiness in
the weather data. You may see it take time to request the weather; in a real game,
you’d probably want to hide the scene behind a loading screen until the sky
updates.

Game networking beyond HTTP

HTTP requests are robust and reliable, but the latency between making a request
and receiving a response can be a little slow for many games. HTTP requests are
therefore a good way of doing relatively slow-paced messages to a server (such
as moves in a turn-based game, or submission of high scores for any game), but
something like a multiplayer FPS would need a different approach to
networking.

These different approaches involve various communication technologies, as well
as techniques to compensate for lag. For example, Unity uses the RakNet
networking library through a system called remote procedure calls (RPCs).

The cutting edge for networked action games is a complex topic that goes
beyond the scope of this book. You can look up more information on your own,
starting here: http://docs.unity3d.com/Manual/NetworkReferenceGuide.html.

Now that you know how to get numerical and string data from the internet, let’s

http://docs.unity3d.com/Manual/NetworkReferenceGuide.html

do the same thing with an image.

9.3. Adding a networked billboard

Although the responses from a web API are almost always text strings formatted
in XML or JSON, many other sorts of data are transferred over the internet.
Besides text data, the most common kind of data requested is images. Unity’s
WWW object can be used to download images, too.

You’'re going to learn about this task by creating a billboard that displays an
image downloaded from the internet. You need to code two steps: downloading
an image to display, and applying that image to the billboard object. Then, as a
third step, you’ll improve the code so that the image will be stored to use on
multiple billboards.

9.3.1. Loading images from the internet

First let’s write the code to download an image. You’re going to download some
public domain landscape photography (see figure 9.5) to test with. The
downloaded image won’t be visible on the billboard yet; I'll show you a script to
display the image in the next section, but before that, let’s get code in place that
will retrieve the image.

Figure 9.5. Image of Moraine Lake in Banff National Park, Canada

The code architecture for downloading an image looks much the same as the
architecture for downloading data. A new manager module (called
ImagesManager) will be in charge of downloaded images to be displayed.
Once again, the details of connecting to the internet and sending HTTP requests
will be handled in NetworkService, and ImagesManager will call upon
NetworkService to download images for it.

The first addition to code is in NetworkService. The following listing adds
image downloading to that script.

Listing 9.12. Downloading an image in NetworkService

q_ Put this const up near the

http://upleoad.wikimedia.org/wikipedia/commons/c/ct top with the other URLs.

public IEnumerator DownloadImage (Action<Texture2D> callback) |{ 4}_\\
WWW www = new WWWi{webImage) ;

vield return www; This callback takes a
~allback (www.texture) ; TexturelD instead of a string.

The code that downloads an image looks almost identical to the code for
downloading data. The primary difference is the type of callback method; note
that the callback takes a Texture2D this time instead of a string. That’s because
you’re sending back the relevant response: you downloaded a string of data

before—now you’re downloading an image. The next listing contains code for
the new ImagesManager. Create a new script and enter that code.

Listing 9.13. Creating ImagesManager to retrieve and store images

~ VYariable to store downloaded image

<+

Check if
the image _f

is already
stored.

=

<}
ﬁ_ Invoke callback right away (don't
download) if there's a stored image.

The most interesting part of this code is GetWebImage(); everything else in
this script consists of standard properties and methods that implement the
manager interface. When GetWebImage () is called, it’ll return (via a callback
function) the web image. First it’ll check if _webImage already has a stored
image: if not, it’ll invoke the network call to download the image. If
_webImage already has a stored image, GetWebImage () will send back the
stored image (rather than downloading the image anew).

Note

Currently the downloaded image is never being stored, which means
_webImage will always be empty. Code that specifies what to do when
_webImage is not empty is already in place, so you’ll adjust the code to store
that image in the following sections. This adjustment is in a separate section

because it involves some tricky code wizardry.

Of course, just like all manager modules, ImagesManager needs to be added
to Managers; the following listing details the additions to Managers.cs.

Listing 9.14. Adding the new manager to Managers.cs

[RequireComponent (typeof (ImagesManager))]
public static ImagesManager Images {get; private set;}

void Awake() {
Weather = GetComponent<WeatherManager>();
Images = GetComponent<ImagesManager>();

startSequence = new List<IGameManager>();
startSequence.Add(Weather);
_startSequence.Add(Images);

StartCoroutine(StartupManagers());

Unlike how we set up WeatherManager, GetWebImage() in
ImagesManager isn’t called automatically on startup. Instead, the code waits
until invoked; that’ll happen in the next section.

9.3.2. Displaying images on the billboard

The ImagesManager you just wrote doesn’t do anything until it’s called upon,
so now we’ll create a billboard object that will call methods in
ImagesManager. First create a new cube and then place it in the middle of the
scene, at something like Position 0 1.5 -5 and Scale 5 3 .5 (see figure 9.6).

Figure 9.6. The billboard object, before and after displaying the downloaded image

Billboard without image Billoard with downloaded image

You’re going to create a device that operates just like the color-changing monitor
in chapter 8. Copy the DeviceOperator script and put it on the player. As you
may recall, that script will operate nearby devices when the Fire3 button is
pressed (which is defined in the project’s input settings as the left Command
key). Also create a script for the billboard device called WebL oadingBillboard,
put that script on the billboard object, and enter the code from the next listing.

Listing 9.15. WebLoadingBillboard device script

using UnityEngine;

using System.Collections;

public class WeblLoadingBillboard : MonoBehaviour | Call the method in

public void Operate(} | ImagesManager.
Managers . Images.GetWebImage (OnWebImage) ;

I.

! Downloaded

private void OnWebImage (Texture2D image) | .maEEISaPPPed
il e A P : o/_ to the material
GetComponent<Renderars() .material mainTexture = image;

’ in the callback

K

}

This code does two primary things: it calls

ImagesManager .GetWebImage () when the device is operated, and it
applies the image from the callback function. Textures are applied to materials so
you can change the texture in the material that’s on the billboard. Figure 9.6
shows what the billboard will look like after you play the game.

AssetBundles: How to download other kinds of assets

Downloading an image is fairly straightforward using the WwWW object, but what
about other kinds of assets, like mesh objects and prefabs? WWW has properties
for text and images, but other assets are a bit more complicated.

Unity can download any kind of asset through a mechanism called
AssetBundles. Long story short, you first package up some assets into a bundle,
and then Unity can extract the assets after downloading the bundle. The details
of both creating and downloading AssetBundles are beyond the scope of this
book; if you want to learn more, start by reading this section of Unity’s manual:

http://docs.unity3d.com/Manual/AssetBundlesIntro.html

Great, the downloaded image is displayed on the billboard! But this code could
be optimized further to work with multiple billboards. Let’s tackle that
optimization in the next section.

9.3.3. Caching the downloaded image for reuse

As noted in section 9.3.1, ImagesManager doesn’t yet store the downloaded
image. That means the image will be downloaded over and over for multiple
billboards. This is inefficient, because it’ll be the same image each time. To
address this, we’re going to adjust ImagesManager to cache images that have
been downloaded.

Definition

Cache means to keep stored locally. The most common (but not only!) context
involves images downloaded from the internet.

The key is to provide a callback function in ImagesManager that first saves
the image, and then calls the callback from WebLoadingBillboard. Thisis
tricky to do (as opposed to the current code that uses the callback from
WebLoadingBillboard) because the code doesn’t know ahead of time what
the callback from WebLoadingBillboard will be. Put another way, there’s
no way to write a method in ImagesManager that calls a specific method in
WebLoadingBillboard because the code doesn’t know what that specific
method will be. The way around this conundrum is to use lambda functions.

Definition

http://docs.unity3d.com/Manual/AssetBundlesIntro.html

A lambda function (also called an anonymous function) is a function that doesn’t
have a name. Such functions are usually created on the fly inside other functions.

Lambda functions are a tricky code feature supported in a number of
programming languages, including C#. By using a lambda function for the
callback in ImagesManager, the code can create the callback function on the
fly using the method passed in from WebLoadingBillboard. Thus you
don’t need to know the method to call ahead of time, because this lambda
function doesn’t exist ahead of time! The following listing shows how to do this
voodoo in ImagesManager.

Listing 9.16. Lambda function for callback in ImagesManager

Store
downloaded J"'(

<+ . . g .
: ™ Callback is used in lambda function instead
image -

of sent directly to Network3ervice

The main change was in the function passed to
NetworkService.DownloadImage(). Previously the code was passing
through the same callback method from WebLoadingBanner. After the
change, though, the callback sent to NetworkService was a separate lambda
function declared on the spot that called the method from
WebLoadingBanner. Take note of the syntax to declare a lambda method: ()

=> {}.

Making the callback a separate function made it possible to do more than call the
method in WebLoadingBanner; specifically, the lambda function also stores
a local copy of the downloaded image. Thus GetWebImage () only has to

download the image the first time; all subsequent calls will use the locally stored
image.

Because this optimization applies to subsequent calls, the effect will be
noticeable only on multiple billboards. Let’s duplicate the billboard object so
that there will be a second billboard in the scene. Select the billboard object, hit
Duplicate (look under the Edit menu or right-click), and move the duplicate over
(for example, change the X position to 18).

Now play the game and watch what happens. When you operate the first
billboard, there will be a noticeable pause while the image downloads from the
internet. But when you then walk over to the second billboard, the image will
appear immediately because it has already been downloaded.

This is an important optimization for downloading images (there’s a reason web
browsers cache images by default). There’s one more major networking task
remaining to go over: sending data back to the server.

9.4. Posting data to a web server

We’ve gone over multiple examples of downloading data, but we still need to
see an example of sending data. This last section does require you to have a
server to send requests to, so this section is optional. But it’s easy to download
open-source software to set up a server to test on.

I recommend XAMPP for a test server. Go to www.apachefriends.org to
download XAMPP. Once that’s installed and the server is running, you can
access XAMPP’s htdocs folder with the address http://localhost/just like you
would a server on the internet. Once you have XAMPP up and running, create a
folder called ch9 in htdocs; that’s where you’ll put the server-side script.

Whether you use XAMPP or your own existing web server, the actual task will
be to post weather data to the server when the player reaches a checkpoint in the
scene. This checkpoint will be a trigger volume, just like the door trigger in
chapter 8. You need to create a new cube object, position the object off to one
side of the scene, set the collider to Trigger, and apply a semitransparent material
like you did in the previous chapter (remember, set the material’s Rendering
Mode). Figure 9.7 shows the checkpoint object with a green semitransparent
material applied.

Figure 9.7. The checkpoint object that triggers data sending

http://www.apachefriends.org

Trigger volume:
Box with a semitransparent
material

Now that the trigger object is in the scene, let’s write the code that it invokes.

9.4.1. Tracking current weather: sending post requests

The code that’s invoked by the checkpoint object will cascade through several
scripts. As with the code for downloading data, the code for sending data will
involve WeatherManager telling NetworkService to make the request, while
NetworkService handles the details of HTTP communication. The next listing
shows the adjustments you need to make to NetworkService.

Listing 9.17. Adjusting NetworkService to post data

Address of the private const scring localhpi "hetp: /flocalhost/ch9/apl .php™;
server-side -
script: I:hal‘lgl! private IEnumerator CallAPI({string url, Hashtable args, Action<scring=
this il needed. callback) | C‘—\

WWW www 3

Added arguments to
CallAPI() parameters

Send arguments along with
WWW using WYWWForm.

oString(), arg.Value.ToString()

‘d\ WWWForm automatically changes
the request from GET to POST,

Calls modified
because of

" changed
parameters

™ Define a table of

arguments to send.

Send timestamp along
with the cloudiness.

First, notice that Cal1API () has a new parameter. This is a table of arguments
to send along with the HTTP request. Within Cal1API () a WWWForm object
may be created according to that table of arguments. Normally WWW sends a GET
request, but WWWForm will change it to a POST request to send data. All the
other changes in the code react to that central change (for example, modifying
GetWhatever () code because of the CallAPI() parameters).

The next listing shows what you need to add in WeatherManager.

Listing 9.18. Adding code to WeatherManager that sends data

public void LogWeather(string name) {
StartCoroutine(_network.LogWeather(name, cloudValue, OnLogged));
}

private void OnLogged(string response) {
Debug.Log(response);

}

Finally, make use of that code by adding a checkpoint script to the trigger
volume in the scene. Create a script called CheckpointTrigger, put that script on
the trigger volume, and enter the contents of the next listing.

Listing 9.19. CheckpointTrigger script for the trigger volume

kpointTrigger : MonoBehaviour |

Track if the checkpoint has
{:/‘ already been triggered.

Call to send data
inagers.Weather.LogWeather (identifier) ; -:21-/_

An Identifier slot will appear in the Inspector; name it something like
checkpointl. Run the code and data will be sent when you enter the
checkpoint. The response will indicate an error, though, because there’s no script
on the server to receive the request. That’s the last step in this section.

9.4.2. Server-side code in PHP

The server needs to have a script to receive data sent from the game. Coding
server scripts is beyond the scope of this book, so we won’t go into detail here.
We’ll just whip up a PHP script because that’s the easiest approach. Create a text
file in htdocs (or wherever your web server is located) and name the file api.php

(see listing 9.20).

Listing 9.20. Server script written in PHP that receives our data

~ Extract post data into variables
wt
<}

Write _.'/h i & put ntents (Sfilena = nbdr 1, E E APFPEMI K EX K_‘\
the file. — !
Define the filename
to write to.

Note that this script writes received data into data.txt, so you also need to put a
text file with that name on the server. Once api.php is in place, you’ll see
weather logs appear in data.txt when triggering checkpoints in the game. Great!

9.5. Summary

In this chapter you’ve learned that

Skybox is designed for sky visuals that render behind everything else.
Unity provides WWW to download data.

Common data formats like XML and JSON can be parsed easily.
Materials can display images downloaded from the internet.

WWW can also post data to a web server.

Chapter 10. Playing audio: sound effects and music

This chapter covers

Importing and playing audio clips for various sound effects
Using 2D sounds for the UI and 3D sounds in the scene
Modulating the volume of all sounds when they play
Playing background music while the game is going on
Fading in and out between different background tunes

Although graphics get most of the attention when it comes to content in video
games, audio is crucial, too. Most games play background music and have sound
effects. Accordingly, Unity has audio functionality so that you can put sound
effects and music into your games. Unity can import and play a variety of audio
file formats, adjust the volume of sounds, and even handle sounds playing from
a specific position within the scene.

This chapter starts with sound effects rather than music. Sound effects are short
clips that play along with actions in the game (such as a gunshot that plays when
the player fires), whereas the sound clips for music are longer (often running into
minutes) and playback isn’t directly tied to events in the game. Ultimately, both
boil down to the same kind of audio files and playback code, but the simple fact
that the sound files for music are usually much larger than the short clips used
for sound effects (indeed, files for music are often the largest files in the game!)
merits covering them in a separate section.

The complete roadmap for this chapter will be to take a game without sound and
do the following:

1. Import audio files for sound effects.
2. Play sound effects for the enemy and for shooting.
3. Program an audio manager to control volume.

4. Optimize the loading of music.

5. Control music volume separately from sound effects, including cross-
fading tracks.

Note

This chapter is largely independent of the project you build; it simply adds audio
capabilities on top of an existing game demo. All of the examples in this chapter
are built on top of the FPS created in chapter 3 and you could download that
sample project, but you’re free to use whatever game demo you’d like.

Once you have an existing game demo copied to use for this chapter, you can
tackle the first step: importing sound effects.

10.1. Importing sound effects

Before you can play any sounds, you obviously need to import the sound files
into your Unity project. First you’ll collect sound clips in the desired file format,
and then you’ll bring the files into Unity and adjust them for your purposes.

10.1.1. Supported file formats

Much as you saw with art assets in chapter 4, Unity supports a variety of audio
formats with different pros and cons. Table 10.1 lists the audio file formats that
Unity supports.

Table 10.1. Audio file formats supported by Unity

File type Pros and cons
WAV Default audio format on Windows. Uncompressed sound file.
ATF Default audio format on Mac. Uncompressed sound file.
MP3 Compressed sound file; sacrifices a bit of quality for much smaller files.
OGG Compressed sound file; sacrifices a bit of quality for much smaller files.
MOD Music tracker file format. A specialized kind of efficient digital music.
XM Music tracker file format. A specialized kind of efficient digital music.

The primary consideration differentiating audio files is the compression applied.
Compression reduces the file’s size but accomplishes that by throwing out a bit

of information in the file. Audio compression is clever about only throwing out
the least important information so that the compressed sound still sounds good.
Nevertheless, it’s a small loss of quality, so you should choose uncompressed
audio when the sound clip is short and thus wouldn’t be a large file. Longer
sound clips (especially music) should use compressed audio, because the audio
clip would be prohibitively large otherwise.

Unity adds a small wrinkle to this decision, though...

Tip

Although music should be compressed in the final game, Unity can compress the
audio after you’ve imported the file. Thus, when developing a game in Unity
you usually want to use uncompressed file formats even for lengthy music, as
opposed to importing compressed audio.

How digital audio works

In general, audio files store the waveform that’ll be created in the speakers when
the sound plays. Sound is a series of waves that travel through the air, and
different sounds are made with different sizes and frequencies of sound waves.
Audio files record these waves by sampling the wave repeatedly at short time
intervals and saving the state of the wave at each sample.

Recordings that sample the wave more frequently get a more accurate recording
of the wave changing over time—there’s less gap between changes. But more
frequent samples mean more data to save, resulting in a larger file. Compressed
sound files reduce the file size through a number of tricks, including tossing out
data at sound frequencies that aren’t noticeable to listeners.

Music trackers are a special type of sequencer software used to create music.
Whereas traditional audio files store the raw waveform for the sound, sequencers
store something more akin to sheet music: the tracker file is a sequence of notes,
with information like intensity and pitch stored with each note. These “notes”
consist of little waveforms, but the total amount of data stored is reduced
because the same note is used repeatedly throughout the sequence. Music
composed this way can be efficient, but this is a fairly specialized sort of audio.

Because Unity will compress the audio after it’s been imported, you should
always choose either WAV or AIF file format. You’ll probably need to adjust the
import settings differently for short sound effects and longer music (in particular,
to tell Unity when to apply compression), but the original files should always be
uncompressed.

There are various ways to create sound files (for example, appendix B mentions
tools like Audacity that can record sounds from a microphone), but for our
purposes we’ll download some sounds from one of the many free sound
websites. We’re going to use a number of clips downloaded from
www.freesound.org and get the clips in WAV file format.

Warning

“Free” sounds are offered under a variety of licensing schemes, so always make
sure that you’re allowed to use the sound clip in the way you intend. For
example, many free sounds are for noncommercial use only.

The sample project uses the following public domain sound effects (of course,
you can choose to download your own sounds; look for a 0 license listed on the
side):

“thump” by hy96

“ding” by Daphne_in_Wonderland
“swish bamboo pole” by ra_gun
“fireplace” by leosalom

Once you have the sound files to use in your game, the next step is to import the
sounds into Unity.

10.1.2. Importing audio files

After gathering together some audio files, you need to bring them into Unity.
Just as you did with art assets in chapter 4, you have to import audio assets into

http://www.freesound.org

the project before they can be used in the game.

The actual mechanics of importing files are simple and are the same as with
other assets: drag the files from their location on the computer to the Project
view within Unity (create a folder called Sound FX to drag the files into).
Well, that was easy! But just like other assets, there are import settings (shown in
figure 10.1) to adjust in the Inspector.

Figure 10.1. Import settings for audio files

Should stereo sounds be O inspector S
converted to mono? ding impon Semings 2. Ready the sound by loading
] it ahead of time and/or
1= Farce To Moo - behind the scenes while
Data !Drmat ba:Rore;fe ; Londm macvaronnd. L7 - other code is running?
(possibly compressed) audio Preioad Audio Data Bt
P Y P

in. Choose PCM or Yorbis.

(A slider for Quality will | NENE-NEST M N

. | Load Type Deiompaess On Load 3 Load all at once or
appear if you choose | Compression Format | rou . stream this audio?
Yorhis fﬂrrl'li."lt.} | Samnple Rate Seming | Presses Sarmgie Rt 8

Leave Force To Mono unchecked. That refers to mono versus stereo sound; often
sounds are recorded in stereo, where there are actually two waveforms in the

file, one each for the left and right ears/speakers. To save on file size, you might
want to halve the audio information so that the same waveform is sent to both
speakers rather than separate waves sent to the left and right speakers.

Next are check boxes for Load In Background and Preload Audio Data. The
preload setting relates to balancing playback performance and memory usage;
preloading audio will consume memory while the sound waits to be used but
will avoid having to wait to load. Loading audio in the background of the
program will allow the program to keep running while the audio is loading; this
is generally a good idea for long music clips so that the program won’t freeze.
But this means the audio won’t start playing right away; usually you want to
keep this setting off for short sound clips to ensure that they load completely
before they play. Because the imported clips are short sound effects, you should
leave Load In Background off.

Finally, the most important settings are L.oad Type and Compression Format.
Compression Format controls the formatting of the audio data that’s stored. As
discussed in the previous section, music should be compressed; choose Vorbis
(it’s the name of a compressed audio format) in that case. Short sound clips don’t

need to be compressed, so choose PCM (Pulse Code Modulation, the technical
term for the raw, sampled sound wave) for these clips. The third setting,
ADPCM, is a variation on PCM and occasionally results in slightly better sound
quality.

Load Type controls how the data from the file will be loaded by the computer.
Because computers have limited memory and audio files can be large,

sometimes you want the audio to play while it’s streaming into memory, saving
the computer from needing to have the entire file loaded at once. But there’s a bit
of computing overhead when streaming audio like this, so audio plays fastest
when it’s loaded into memory first. Even then you can choose whether the
loaded audio data will be in compressed form or if it will be decompressed for
faster playback. Because these sound clips are short, they don’t need to stream
and can be set to Decompress On Load.

At this point, the sound effects are all imported and ready to use.

10.2. Playing sound effects

Now that you have some sound files added to the project, you naturally want to
play the sounds. The code for triggering sound effects isn’t terribly hard to
understand, but the audio system in Unity does have a number of different parts
that must work in concert.

10.2.1. Explaining what’s involved: audio clip vs. source vs. listener

Although you might expect that playing a sound is simply a matter of telling
Unity which clip to play, it turns out that you must define three different parts in
order to play sounds in Unity: AudioClip, AudioSource, and AudioListener. The
reason for breaking apart the sound system into multiple components has to do
with Unity’s support for 3D sounds: the different components tell Unity
positional information that it uses for manipulating 3D sounds.

QD vs. 3D sound

Sounds in games can be either 2D or 3D. 2D sounds are what you’re already
familiar with: standard audio that plays normally. The moniker “2D sound”
mostly means “not 3D sound.”

3D sounds are specific to 3D simulations and may not already be familiar to you;
these are sounds that have a specific location within the simulation. Their
volume and pitch are influenced by the movement of the listener. For example, a
sound effect triggered in the distance will sound very faint.

Unity supports both kinds of audio, and you decide if an audio source should
play audio as 2D sounds or 3D sounds. Things like music should be 2D sounds,
but using 3D sounds for most sound effects will create immersive audio in the
scene.

As an analogy, imagine a room in the real world. The room has a stereo playing
a CD. If a man comes into the room, he hears it clearly. When he leaves the
room he hears it more quietly, and eventually not at all. Similarly, if we move the
stereo around the room, he’ll hear the music changing volume as it moves. As
figure 10.2 illustrates, in this analogy the CD is an AudioClip, the stereo is an
AudioSource, and the man is the AudioListener.

Figure 10.2. Diagram of the three things you control in Unity’s audio system

AudioListener

AudioClip AudioSource

fd

.

| = |
A 4

The first of the three different parts is an Audio Clip. That refers to the actual
sound file that we imported in the last section. This raw waveform data is the
foundation for everything else the audio system does, but audio clips don’t do

anything by themselves.

The next kind of object is an Audio Source. This is the object that plays audio
clips. This is an abstraction over what the audio system is actually doing, but it’s
a useful abstraction that makes 3D sounds easier to understand. A 3D sound
played from a specific audio source is located at the position of that audio
source; 2D sounds also must be played from an audio source, but the location
doesn’t matter.

The third kind of object involved in Unity’s audio system is an Audio Listener.
As the name implies, this is the object that hears sounds projected from audio
sources. This is another abstraction on top of what the audio system is doing
(obviously the actual listener is the player of the game!), but—much like how
the position of the audio source gives the position that the sound is projected
from—the position of the audio listener gives the position that the sound is heard
from.

Advanced sound control using Audio Mixers

Audio Mixers are a new feature added in Unity 5. Rather than playing audio
clips directly, audio mixers enable you to process audio signals and apply
various effects to your clips. Learn more about AudioMixer in Unity’s
documentation; for example, watch this tutorial video:
https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-
beta/audiomixer-and-audiomixer-groups

Although both audio clips and AudioSource components have to be assigned, an
AudioListener component is already on the default camera when you create a
new scene. Typically you want 3D sounds to react to the position of the viewer.

10.2.2. Assigning a looping sound

All right, now let’s set our first sound in Unity! The audio clips were already
imported, and the default camera has an AudioListener component, so we only
need to assign an AudioSource component. We’re going to put a crackling fire
sound on the Enemy prefab, the enemy character that wanders around.

https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-beta/audiomixer-and-audiomixer-groups

Note

Because the enemy will sound like it’s on fire, you might want to give it a
particle system so that it looks like it’s on fire. You can copy over the particle
system created in chapter 4 by making the particle object into a prefab and then
choosing Export Package from the Asset menu. Alternatively, you could redo the
steps from chapter 4 here to create a new particle object from scratch (drag the
Enemy prefab into the scene to edit it and then choose GameObject > Apply
Changes To Prefab).

Usually you need to drag a prefab into the scene in order to edit it, but you can
edit the prefab asset directly when you’re just adding a component onto the
object. Select the Enemy prefab so that its properties appear in the Inspector.
Now add a new component; choose Audio > Audio Source. An AudioSource
component will appear in the Inspector.

Tell the audio source what sound clip to play. Drag an audio file from the Project
view up to the Audio Clip slot in the Inspector; we’re going to use the
“fireplace” sound effect for this example (refer to figure 10.3).

Figure 10.3. Settings for the AudioSource component

¥ O] o Audio Source Qe
The AudioClip cdioo o RLLTI i
to p}ar ~ Output None (Audio Mixer Group) | ©
Mute O
Bypass Effects O Should this audio

Bypass Listener Effect | —_—

Bypass Reverb Zones Jv/”"-_f- play as soon as the

Play On Awake & scene starts?
Loop B
Spatial Blend can set Priority e ® e L L
this audio source to Volume —ee)T '
. : Should the
either 2D or 3D. Pich —TT
= = playback loop?
Spatial Blend 2—5 1
Reverh Zone Mix = = |1

¥ 3D Sound Semings

Skip down a bit in the settings and select both Play On Awake and Looping (of
course, make sure that Mute isn’t checked). Play On Awake tells the audio
source to begin p