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Preface to the Fourth Edition

The quarter of a century that elapsed since the publication of the third edition of Wind
Effects on Structures has seen a number of significant developments in micrometeo-
rology, extreme wind climatology, aerodynamic pressure measurement technology,
uncertainty quantification, the optimal integration of wind and structural engineering
tasks, and the use of “big data” for determining and combining effectively multiple
directionality-dependent time series of wind effects of interest. Also, following a 2004
landmark report by Skidmore Owings and Merrill LLP on large differences between
independent estimates of wind effects on the World Trade Center towers, it has
increasingly been recognized that transparency and traceability are essential to the
credibility of structural designs for wind. A main objective of the fourth edition of Wind
Effects on Structures is to reflect these developments and their consequences from a
design viewpoint. Progress in the developing Computational Wind Engineering field is
also reflected in the book.

Modern pressure measurements by scanners, and the recording and use of aerody-
namic pressure time series, have brought about a significant shift in the division of
tasks between wind and structural engineers. In particular, the practice of splitting the
dynamic analysis task between wind and structural engineers has become obsolete;
performing dynamic analyses is henceforth a task assigned exclusively to the structural
engineering analyst, as has long been the case in seismic design. This eliminates the
unwieldy, time-consuming back-and-forth between wind and structural engineers,
which typically discourages the beneficial practice of iterative design. The book provides
the full details of the wind and structural engineers’ tasks in the design process, and
up-to-date, user-friendly software developed for practical use in structural design
offices. In addition, new material in the book concerns the determination of wind
load factors, or of design mean recurrence intervals of wind effects, determined by
accounting for wind directionality.

The first author contributed Chapters 1–3; portions of Chapter 4; Chapters 5, 7,
and 8; Sections 9.1 and 9.3; Chapters 10–12 and 15; portions of Chapter 17 and Part
III; Part IV; and Appendices A, B, D, and E. The second author contributed Chapter 6;
Section 9.2; and Section 23.5. The authors jointly contributed Chapters 13, 14, 16,
and 18. They reviewed and are responsible for the entire book. Professor Robert
H. Scanlan contributed parts of Chapter 4 and of Part III. Appendix F, authored by
Skidmore Owings and Merrill LLP, is part of the National Institute of Standards and
Technology World Trade Center investigation. Chapter 17 is based on a doctoral
thesis by Dr. F. Habte supervised by the first author and Professor A. Gan Chowdhury.
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xx Preface to the Fourth Edition

Dr. Sejun Park made major contributions to Chapters 14 and 18 and developed the
attendant software. Appendix C is based on a paper by A. L. Pintar, D. Duthinh, and
E. Simiu.

We wish to pay a warm tribute to the memory of Professor Robert H. Scanlan
(1914–2001) and Dr. Richard D. Marshall (1934–2001), whose contributions to
aeroelasticity and building aerodynamics have profoundly influenced these fields.
The authors have learned much over the years from Dr. Nicholas Isyumov's work, an
example of competence and integrity. We are grateful to Professor B. Blocken of the
Eindhoven University of Technology and KU Leuven, Dr. A. Ricci of the Eindhoven
University of Technology, and Dr. T. Nandi of the National Institute of Standards
and Technology for their thorough and most helpful reviews of Chapter 6. We thank
Professor D. Zuo of Texas Tech University for useful comments on cable-stayed-bridge
cable vibrations. We are indebted to many other colleagues and institutions for their
permission to reproduce materials included in the book.

The references to the authors’ National Institute of Standards and Technology
affiliation are for purposes of identification only. The book is not a U.S. Government
publication, and the views expressed therein do not necessarily represent those of the
U.S. Government or any of its agencies.

Rockville, Maryland Emil Simiu
DongHun Yeo
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Introduction

The design of buildings and structures for wind depends upon the wind environment,
the aerodynamic effects induced by the wind environment in the structural system, the
response of the structural system to those effects, and safety requirements based on
uncertainty analyses and expressed in terms of wind load factors or design mean recur-
rence intervals of the response. For certain types of flexible structure (slender structures,
suspended-span bridges) aeroelastic effects must be considered in design.

I.1 The Wind Environment and Its Aerodynamic Effects

For structural design purposes the wind environment must be described: (i) in meteo-
rological terms, by specifying the type or types of storm in the region of interest (e.g.,
large-scale extratropical storms, hurricanes, thunderstorms, tornadoes); (ii) in microm-
eteorological terms (i.e., dependence of wind speeds upon averaging time, dependence
of wind speeds and turbulent flow fluctuations on surface roughness and height above
the surface); and in extreme wind climatological terms (directional extreme wind speed
data at the structure’s site, probabilistic modeling based on such data). Such descriptions
are provided in Chapters 1–3, respectively.

The description of the wind flows’ micrometeorological features is needed for three
main reasons. First, those features directly affect the structure’s aerodynamic and
dynamic response. For example, the fact that wind speeds increase with height above
the surface means that wind loads are larger at higher elevations than near the ground.
Second, turbulent flow fluctuations strongly influence aerodynamic pressures, and
produce in flexible structures fluctuating motions that may be amplified by resonance
effects. Third, micrometeorological considerations are required to transform measured
or simulated wind speed data at meteorological stations or other reference sites into
wind speed data at the site of interest.

Micrometeorological features are explicitly considered by the structural designer if
wind pressures or forces acting on the structure are determined by formulas specified
in code provisions. However, for designs based on wind-tunnel testing this is no longer
the case. Rather, the structural designer makes use of records of non-dimensional aero-
dynamic pressure data and of measured or simulated directional extreme wind speeds
at the site of interest, in the development of which micrometeorological features were
taken into account by the wind engineer and are implicit in those records. However, the
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integrity of the design process requires that the relevant micrometeorological features
on which those records are based be fully documented and accounted for.

To perform a design based on aerodynamic data obtained in wind-tunnel tests (or in
numerical simulations) the structural engineer needs the following three products:

1) Time series of pressures at large numbers of taps, non-dimensionalized with respect
to the wind tunnel (or numerical simulation) mean wind speed at the reference height
(commonly the elevation of the building roof) (Chapters 4–6).

2) Matrices of directional mean wind speeds at the site of interest, at the prototype
reference height.

3) Estimates of uncertainties in items (1) and (2) (Chapter 7).

These products, and the supporting documentation consistent with Building Infor-
mation Modeling (BIM) requirements to allow effective scrutiny, must be delivered
by the wind engineering laboratory to the structural engineer in charge of the design.
The wind engineer’s involvement in the structural design process ends once those
products are delivered. The design is then fully controlled by the structural engineer. In
particular, as was noted in the Preface, dynamic analyses need no longer be performed
partly by the structural engineer and partly by the wind engineer, but are performed
solely, and more effectively, by the structural engineer. This eliminates unwieldy,
time-consuming back-and-forth between the wind engineering laboratory and the
structural design office, which typically discourages the beneficial practice of iterative
design. Chapters 1–7 constitute Part I of the book.

I.2 Structural Response to Aerodynamic Excitation

The structural designer uses software that transforms the wind engineering data into
applied aerodynamic loads. This transformation entails simple weighted summations
performed automatically by using a software subroutine. Given a preliminary design, the
structural engineer performs the requisite dynamic analyses to obtain the inertial forces
produced by the applied aerodynamic loads. The effective wind loads (i.e., the sums of
applied aerodynamic and inertial loads) are then used to calculate demand-to-capacity
indexes (DCIs), inter-story drift, and building accelerations with specified mean recur-
rence intervals. This is achieved by accounting rigorously and transparently for (i) direc-
tionality effects, (ii) combinations of gravity effects and wind effects along the prin-
cipal axes of the structure and in torsion, and (iii) combinations of weighted bending
moments and axial forces inherent in DCI expressions. Typically, to yield a satisfactory
design (e.g., one in which the DCIs are not significantly different from unity), successive
iterations are required. All iterations use the same applied aerodynamic loads but differ-
ent structural members sizes. Part II of the book presents details on of the operations just
described, software for performing them, and examples of its use supported by a detailed
user’s manual and a tutorial. Also included in Part II is a critique of the high-frequency
force balance technique, commonly used in wind engineering laboratories before the
development of multi-channel pressure scanners, material on wind-induced discom-
fort in and around buildings, tuned mass dampers, and requisite wind load factors and
design mean recurrence intervals of wind effects.
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Part III presents fundamentals and applications related to aeroelastic phenomena:
vortex-induced vibrations, galloping, torsional divergence, flutter, and aeroelastic
response of slender towers, chimneys and suspended-span bridges. Part IV contains
material on trussed frameworks and plate girders, offshore structures, tensile mem-
brane structures, tornado wind and atmospheric pressure change effects, and tornado-
and hurricane-borne missile speeds.

Appendices A–E present elements of probability and statistics, elements of the the-
ory of random processes, the description of a modern peaks-over-threshold procedure
that yields estimates of stationary time series peaks and confidence bounds for those
estimates, elements of structural dynamics based on a frequency-domain approach still
used in suspended-span bridge applications, and elements of structural reliability that
provide an engineering perspective on the extent to which the theory is, or is not, useful
in practice. The final Appendix F is a highly instructive Skidmore Owings and Merrill
report on the estimation of the World Trade Center towers response to wind loads.
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1

Atmospheric Circulations

Wind, or the motion of air with respect to the surface of the Earth, is fundamentally
caused by variable solar heating of the Earth’s atmosphere. It is initiated, in a more
immediate sense, by differences of pressure between points of equal elevation. Such
differences may be brought about by thermodynamic and mechanical phenomena that
occur in the atmosphere both in time and space.

The energy required for the occurrence of these phenomena is provided by the sun in
the form of radiated heat. While the sun is the original source, the source of energy most
directly influential upon the atmosphere is the surface of the Earth. Indeed, the atmo-
sphere is to a large extent transparent to the solar radiation incident upon the Earth,
much in the same way as the glass roof of a greenhouse. That portion of the solar radi-
ation that is not reflected or scattered back into space may therefore be assumed to
be absorbed entirely by the Earth. The Earth, upon being heated, will emit energy in
the form of terrestrial radiation, the characteristic wavelengths of which are long (in the
order of 10𝜇) compared to those of heat radiated by the sun. The atmosphere, which is
largely transparent to solar but not to terrestrial radiation, absorbs the heat radiated by
the Earth and re-emits some of it toward the ground.

1.1 Atmospheric Thermodynamics

1.1.1 Temperature of the Atmosphere

To illustrate the role of the temperature distribution in the atmosphere in the production
of winds, a simplified version of model circulation will be presented. In this model the
vertical variation of air temperature, of the humidity of the air, of the rotation of the
Earth, and of friction are ignored, and the surface of the Earth is assumed to be uniform
and smooth.

The axis of rotation of the Earth is inclined at approximately 66∘ 30′ to the plane of
its orbit around the sun. Therefore, the average annual intensity of solar radiation and,
consequently, the intensity of terrestrial radiation, is higher in the equatorial than in the
polar regions. To explain the circulation pattern as a result of this temperature differ-
ence, Humphreys [1] proposed the following ideal experiment (Figure 1.1).

Assume that the tanks A and B are filled with fluid of uniform temperature up to level
a, and that tubes 1 and 2 are closed. If the temperature of the fluid in A is raised while
the temperature in B is maintained constant, the fluid in A will expand and reach the

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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BA

2

1

a

b

c

Figure 1.1 Circulation pattern due to temperature difference between two columns of fluid. Source:
From Ref. [1]. Copyright 1929, 1940 by W. J. Humphreys.

level b. The expansion entails no change in the total weight of the fluid contained in A.
The pressure at c therefore remains unchanged, and if tube 2 were opened, there would
be no flow between A and B. If tube 1 is opened, however, fluid will flow from A to B,
on account of the difference of head (b – a). Consequently, at level c the pressure in A
will decrease, while the pressure in B will increase. Upon opening tube 2, fluid will now
flow through it from B to A. The circulation thus developed will continue as long as the
temperature difference between A and B is maintained.

If tanks A and B are replaced conceptually by the column of air above the equator and
above the pole, in the absence of other effects an atmospheric circulation will develop
that could be represented as in Figure 1.2. In reality, the circulation of the atmosphere
is vastly complicated by the factors neglected in this model. The effect of these factors
will be discussed later in this chapter.

The temperature of the atmosphere is determined by the following processes:

• Solar and terrestrial radiation, as discussed previously
• Radiation in the atmosphere
• Compression or expansion of the air
• Molecular and eddy conduction
• Evaporation and condensation of water vapor.

1.1.2 Radiation in the Atmosphere

As a conceptual aid, consider the action of the following model. The heat radiated by the
surface of the Earth is absorbed by the layer of air immediately above the ground (or the



�

� �

�

1.1 Atmospheric Thermodynamics 5

Warm
air

Cold
air

Equator

North pole

ω

Figure 1.2 Simplified model of atmospheric circulation.

Figure 1.3 Transport of heat through
radiation in the atmosphere.

Heat radiated into
outer space

surface of the ocean) and reradiated by this layer in two parts, one going downward and
one going upward. The latter is absorbed by the next higher layer of air and again reradi-
ated downward and upward. The transport of heat through radiation in the atmosphere,
according to this conceptual model, is represented in Figure 1.3.

1.1.3 Compression and Expansion. Atmospheric Stratification

Atmospheric pressure is produced by the weight of the overlying air. A small mass (or
particle) of dry air moving vertically thus experiences a change of pressure to which
there corresponds a change of temperature in accordance with the Poisson dry adiabatic
equation

T
T0

=
(

p
p0

)0.288

(1.1)

A familiar example of the effect of pressure on the temperature is the heating of com-
pressed air in tire pump.

If, in the atmosphere, the vertical motion of an air particle is sufficiently rapid, the heat
exchange of that parcel with its environment may be considered to be negligible, that is,
the process being considered is adiabatic. It then follows from Poisson’s equation that
since ascending air experiences a pressure decrease, its temperature will also decrease.
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I : Lapse rate prevailing
    in the atmosphere

II : Adiabatic lapse rate

h
I

II
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T

T1
h1

T2′

T2

Figure 1.4 Lapse rates.

The temperature drop of adiabatically ascending dry air is known as the dry adiabatic
lapse rate and is approximately 1∘C/100 m in the Earth’s atmosphere.

Consider a small mass of dry air at position 1 (Figure 1.4). Its elevation and temper-
ature are denoted by h1 and T1, respectively. If the particle moves vertically upward
sufficiently rapidly, its temperature change will effectively be adiabatic, regardless of
the lapse rate (temperature variation with height above ground) prevailing in the atmo-
sphere. At position 2, while the temperature of the ambient air is T2, the temperature
of the element of air mass is T ′

2 =T1 – (h2 – h1) 𝛾a, where 𝛾a is the adiabatic lapse rate.
Since the pressure of the element and of the ambient air will be the same, it follows from
the equation of state that to the difference T ′

2 −T2 there corresponds a difference of
density between the element of air and the ambient air. This generates a buoyancy force
that, if T2 <T ′

2, acts upwards and thus moves the element farther away from its initial
position (superadiabatic lapse rate, as in Figure 1.4), or, if T2 >T ′

2, acts downwards, thus
tending to return the particle to its initial position. The stratification of the atmosphere
is said to be unstable in the first case and stable in the second. If T2 =T ′

2, that is, if
the lapse rate prevailing in the atmosphere is adiabatic, the stratification is said to be
neutral. A simple example of the stable stratification of fluids is provided by a layer of
water underlying a layer of oil, while the opposite (unstable) case would have the water
above the oil.

1.1.4 Molecular and Eddy Conduction

Molecular conduction is a diffusion process that effects a transfer of heat. It is achieved
through the motion of individual molecules and is negligible in atmospheric processes.
Eddy heat conduction involves the transfer of heat by actual movement of air in which
heat is stored.
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1.1.5 Condensation of Water Vapor

In the case of unsaturated moist air, as an element of air ascends and its temperature
decreases, at an elevation where the temperature is sufficiently low condensation will
occur and heat of condensation will be released. This is equal to the heat originally
required to change the phase of water from liquid to vapor, that is, the latent heat of
vaporization stored in the vapor. The temperature drop in the saturated adiabatically
ascending element is therefore slower than for dry air or moist unsaturated air.

1.2 Atmospheric Hydrodynamics

The motion of an elementary air mass is determined by forces that include a vertical
buoyancy force. Depending upon the temperature difference between the air mass and
the ambient air, the buoyancy force acts upwards (causing an updraft), downwards, or
is zero. These three cases correspond to unstable, stable, or neutral atmospheric strat-
ification, respectively. It is shown in Section 2.3.3 that, depending upon the absence or
a presence of a stably stratified air layer above the top of the atmospheric boundary
layer, called capping inversion, neutrally stratified flows can be classified into truly and
conventionally neutral flows.

The horizontal motion of air is determined by the following forces:

1) The horizontal pressure gradient force per unit of mass, which is due to the spatial
variation of the horizontal pressures. This force is normal to the lines of constant
pressure, called isobars, that is, it is directed from high-pressure to low-pressure
regions (Figure 1.5). Let the unit vector normal to the isobars be denoted by n, and
consider an elemental volume of air with dimensions dn, dy, dz, where the coordi-
nates n, y, z are mutually orthogonal. The net force per unit mass exerted by the
horizontal pressure gradient along the direction of the vector n is

dy dz

[
p −

(
p − 𝜕p

𝜕n
dn

)]
(dn dy dz 𝜌)

= 1
𝜌

𝜕p
𝜕n

(1.2)

where p denotes the pressure, and 𝜌 is the air density.
2) The deviating force due to the Earth’s rotation. If defined with respect to an absolute

frame of reference, the motion of a particle not subjected to the action of an external
force will follow a straight line. To an observer on the rotating Earth, however, the
path described by the particle will appear curved. The deviation of the particle with

Figure 1.5 Direction of pressure gradient force.
n

Direction of pressure
gradient force

High pressure

Low pressure

Isobar
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Vgr

Gradient wind level

Free atmosphere

δ (Boundary layer depth)

Figure 1.6 The atmospheric boundary layer.

respect to a straight line fixed with respect to the rotating Earth may be attributed to
an apparent force, the Coriolis force

Fc = m f v (1.3)

where m is the mass of the particle, f = 2𝜔 sin 𝜑 is the Coriolis parameter,
𝜔 = 0.7292× 10−4 s−1 is the angular velocity vector of the Earth, 𝜑 is the angle of
latitude, and v is the velocity vector of the particle referenced to a coordinate
system fixed with respect to the Earth. The force Fc is normal to the direction of the
particle’s motion, and is directed according to the vector multiplication rule.

3) The friction force. The surface of the Earth exerts upon the moving air a horizontal
drag force that retards the flow. This force decreases with height and becomes neg-
ligible above a height 𝛿 known as gradient height. The atmospheric layer between
the Earth’s surface and the gradient height is called the atmospheric boundary layer
(see Chapter 2). The wind velocity speed at height 𝛿 is called the gradient velocity,1
and the atmosphere above this height is called the free atmosphere (Figure 1.6).

In the free atmosphere an elementary mass of air will initially move in the direction of
the pressure gradient force – the driving force for the air motion − in a direction normal
to the isobar. The Coriolis force will be normal to that incipient motion, that is, it will
be tangent to the isobar. The resultant of these two forces, and the consequent motion
of the particle, will no longer be normal to the isobar, so the Coriolis force, which is
perpendicular to the particle motion, will change direction, and will therefore no longer
be directed along the isobar. The change in the direction of motion will continue until
the particle will move steadily along the isobar, at which point the Coriolis force will be
in equilibrium with the pressure gradient force, as shown in Figure 1.7.

Within the atmospheric boundary layer the direction of the friction force, denoted
by S, coincides with the direction of motion of the particle. During the particle’s steady
motion the resultant of the mutually orthogonal Coriolis and friction forces will bal-
ance the pressure gradient force, that is, will be normal to the isobars, meaning that
the friction force – and therefore the motion of the particle − will cross the isobars
(Figure 1.8). Since the friction force, which retards the wind flow and vanishes at the gra-
dient height, decreases as the height above the surface increases, the velocity increases

1 For “straight winds” (i.e., winds whose isobars are approximately straight), the term “geostrophic” is
substituted in the meteorological literature for “gradient.”



�

� �

�

1.2 Atmospheric Hydrodynamics 9

Fca
Fcb

P (pressure gradient
force)

High pressure

Low pressure

Initial
direction Direction III

Direction II

P P

Fc

Direction of
steady wind

(a) (b) (c)

Figure 1.7 Frictionless wind balance in geostrophic flow.
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Figure 1.8 Balance of forces in the atmospheric boundary layer.

Figure 1.9 Wind velocity spiral in the atmospheric boundary
layer.

α0

Vgr

with height (Figure 1.6). The Coriolis force, which is proportional to the velocity, also
increases with height. The combined effect of the Coriolis and friction forces causes the
angle between the isobars and the direction of motion within the ABL, shown as 𝛼0 in
Figures 1.8 and 1.9, to increase from zero at the gradient height to its largest value at the
Earth’s surface. The wind velocity in the boundary layer can therefore be represented by
a spiral, as in Figure 1.9. Under certain simplifying assumption regarding the effective
flow viscosity the spiral is called the Ekman spiral (see Section 2.3.1).
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If the isobars are curved, the horizontal pressure gradient force as well as the
centrifugal force associated with the motion on a curved path will act on the elemen-
tary mass of air in the direction normal to the isobars, and the resultant steady wind
will again flow along the isobars. Its velocity results from the relations

Vgrf ±
V 2

gr

r
=

dp∕dn
𝜌

(1.4)

where r is the radius of curvature of the air trajectory. If the mass of air is in the North-
ern Hemisphere, the positive or the negative sign is used according as the circulation
is cyclonic (around a center of low pressure) or anticyclonic (around a center of high
pressure).

1.3 Windstorms

1.3.1 Large-Scale Storms

Large-scale wind flow fields of interest in structural engineering may be divided into
two main types of storm: extratropical (synoptic) storms, and tropical cyclones. Synop-
tic storms occur at and above mid-latitudes. Because their vortex structure is less well
defined than in tropical storms, their winds are loosely called “straight winds.”

Tropical cyclones, known as typhoons in the Far East, and cyclones in Australia and
the Indian Ocean, generally originate between 5∘ and 20∘ latitudes. Hurricanes are
defined as tropical cyclones with sustained surface wind speeds of 74 mph or larger.
Tropical cyclones are translating vortices with diameters of hundreds of miles and
counterclockwise (clockwise) rotation in the Northern (Southern) hemisphere. Their
translation speeds vary from about 3–30 mph. As in a stirred coffee cup, the column
of fluid is lower at the center than at the edges. The difference between edge and
center atmospheric pressures is called pressure defect. Rotational speeds increase as
the pressure defect increases, and as the radius of maximum wind speeds, which varies
from 5 to 60 miles, decreases.

The structure and flow pattern of a typical tropical cyclone is shown in Figure 1.10.
The eye of the storm (Region I) is a roughly circular, relatively dry core of calm or light
winds surrounded by the eye wall. Region II contains the storm’s most powerful winds.
Far enough from the eye, winds in Region V, which decrease in intensity as the distance
from the center increases, are parallel to the surface. Where Regions V and II intersect
the wind speed has a strong updraft component that alters the mean wind speed pro-
file and is currently not accounted for in structural engineering practice. The source of
energy that drives the storm winds is the warm water at the ocean surface. As the storm
makes landfall and continues its path over land, its energy is depleted and its wind speeds
gradually decrease. Figure 1.11 shows a satellite image of Hurricane Irma. In the United
States hurricanes are classified in accordance with the Saffir–Simpson scale (Table 1.1).2

1.3.2 Local Storms

Foehn winds (called chinook winds in the Rocky Mountains area) develop downwind
of mountain ridges. Cooling of air as it is pushed upwards on the windward side of a

2 See Commentary, ASCE 7-16 Standard [2].
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Figure 1.10 Structure of a hurricane.

Figure 1.11 Satellite view of hurricane Irma. Source: National Oceanic and Atmospheric
Administration photo.

mountain ridge causes condensation and precipitation. The dry air flowing past the crest
warms as it is forced to descend, and is highly turbulent (Figure 1.12). A similar type
of wind is the bora, which occurs downwind of a plateau separated by a steep slope
from a warm plain.

Jet effect winds are produced by features such as gorges.
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Table 1.1 Saffir-Simpson scale and corresponding wind speedsa).

Category
Damage
potential

1-min speed at 10 m
over open water (mph)

3-s gust speed at 10 m over
open terrain exposure (mph)

N. Atlantic
examples

1 Minimal 74–95 81–105 Agnes 1972
2 Moderate 96–110 106–121 Cleo 1974
3 Extensive 111–129 122–142 Betsy 1965
4 Extreme 130–156 143–172 David 1979
5 Catastrophic ≥157 ≥173 Andrew 1992

a) For the definition of 1-minute and 3-second wind speeds see Section 2.1. Official speeds are in mph.

+20° C

+15° C
Rain

3,000 m–5° C

Snow

Figure 1.12 Foehn wind.

Thunderstorms occur as heavy rain drops, due to condensation of water vapor con-
tained in ascending warm, moist air, drag down the air through which they fall, causing
a downdraft that spreads on the earth’s surface (Figure 1.13). The edge of the spread-
ing cool air is the gust front. If the wind behind the gust front is strong, it is called
a downburst. Notable features of downbursts are the typical difference between the
profiles of their peak gusts near the ground and those of large-scale storms, and the dif-
ferences among the time histories of various thunderstorms [3] (Figure 1.14). According
to [5], the maximum winds (i.e., design level winds) rarely occur at the locations where
profiles differ markedly from the logarithmic law.

Microbursts were defined by Fujita [4] as slow-rotating small-diameter columns of
descending air which, upon reaching the ground, burst out violently (Figure 1.15). A
number of fatal aircraft accidents have been caused by microbursts. According to [5],
“because of the higher frequency and large individual area of a microburst, probabili-
ties of structural damage by microbursts with 50–100 mph wind speeds could be much
higher than those of tornadoes.”
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Figure 1.13 Section through a thunderstorm in the mature stage.

Tornadoes are small vortex-like storms, and can contain winds in excess of 100 m s−1

(Figure 1.16) [6, 7].
For unvented or partially unvented structures, the difference between atmospheric

pressure at the tornado periphery and the tornado center (i.e., the pressure defect)
typical of cyclostrophic storms is a significant design factor. For such structures, the dif-
ference between the larger atmospheric pressure that persists inside the structure and
the lower atmospheric pressure acting on the structure during the tornado passage
results in large, potentially destructive net pressures that must be accounted for in
design (see Chapter 27).

The National Weather Service and the U.S. Nuclear Regulatory Commission are
currently classifying tornado intensities in accordance with the Enhanced Fujita
Scale (EF-scale), agreed upon in a forum organized by Texas Tech University in
2001. The EF-scale, shown in Table 1.2, replaced the original Fujita scale following a
consensus opinion that the latter overestimated tornado wind speeds (see, e.g., [8]).
The EF scale is based on the highest 3-second wind speed estimated to have occurred
during the tornado’s life, and is shown in Table 1.2.

As noted in [9], “no tornado has been assigned an intensity of EF6 or greater, and there
is some question whether an EF6 or greater tornado would be identified if it did occur.”
For tornadoes that occur in areas containing no objects capable of resisting events with
intensity EF0 (e.g., in a corn field), no intensity estimate is possible. An additional diffi-
culty is that intensity estimates depend upon quality of construction. Since there are no
measurements of tornado speeds at heights above ground comparable to typical build-
ing heights, it is necessary to rely on largely subjective estimates, based primarily on
observations of damage.

For additional material on tornadoes, see Sections 3.4 and 5.3, and Chapters 27
and 28.
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Figure 1.14 Time histories of eight thunderstorm events. Source: Reprinted from Ref. [3], with permission from Elsevier.
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Figure 1.15 Andrews Air Force Base microburst on 1 August 1 1983. Its 149.7 mph peak speed was the
highest recorded in a microburst in the U.S [4].

Figure 1.16 Tornado funnel (Source: National Oceanic and Atmospheric Administration photo).
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Table 1.2 Tornado enhanced Fujita Scale.

Intensity Description
Enhanced Fujita Scale
3-s peak gust speed (mph)

EF0 Light damage 65–85
EF1 Moderate damage 86–110
EF2 Considerable damage 111–135
EF3 Severe damage 136–165
EF4 Devastating damage 166–200
EF5 Incredible damage >200
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The Atmospheric Boundary Layer

As indicated in Chapter 1, the Earth’s surface exerts on the moving air a horizontal
drag force whose effect is to retard the flow. This effect is diffused by turbulent mix-
ing throughout a region called the atmospheric boundary layer (ABL). In strong winds
the depth of the ABL ranges from a few hundred meters to a few kilometers, depending
upon wind speed, roughness of terrain, angle of latitude, and the degree to which the
stratification of the free flow (i.e., the flow above the ABL) is stable. Within the ABL the
mean wind speed varies as a function of elevation.

This chapter is devoted to studying aspects of ABL flow of interest from a structural
engineering viewpoint. Section 2.1 is concerned with the dependence of the wind
speed on averaging time. Section 2.2 presents the equations of mean motion in the
ABL. Sections 2.3 and 2.4 pertain to horizontally homogeneous flows over flat uniform
surfaces, and contain, respectively, theoretical as well as empirical results on the
dependence of wind speeds on height above the Earth’s surface, and the structure of
atmospheric turbulence. Section 2.5 concerns horizontally non-homogeneous flows
(i.e., flows affected by changes of surface roughness or by topographic features, and
flows in tropical storms and thunderstorms). Since the structural engineer is concerned
primarily with the effect of strong winds, it will be assumed that the ABL flow is neutrally
stratified. Indeed, in strong winds turbulent transport dominates the heat convection
by far, so that thorough turbulent mixing tends to produce neutral stratification, just as
in a shallow layer of incompressible fluid mixing tends to produce an isothermal state.
In flows of interest in structural engineering, a layer of stably stratified flow, called
the capping inversion, is present above the ABL and significantly affects the ABL’s
height.

2.1 Wind Speeds and Averaging Times

If the flow were laminar wind speeds would be the same for all averaging times. However,
owing to turbulent fluctuations, such as those recorded in Figure 2.1, the definition of
wind speeds depends on averaging time.

The peak 3-second gust speed is the peak of a storm’s speeds averaged over 3 seconds.
In 1995 it was adopted in the ASCE Standard as a measure of wind speeds. Similarly,
the peak 5-second gust speed is the largest speed averaged over 5 seconds. The 5-second
speed is reported by the National Weather Service ASOS (Automated Service Observing

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 2.1 Wind speed record.

System), and is about 2% less than the 3-second speed. The 28-mph peak of Figure 2.1
is, approximately, a 3-second speed.

The hourly wind speed is the speed averaged over 1 hour. It is commonly used as a
reference wind speed in wind tunnel simulations. Hence the need to estimate the hourly
speed corresponding to a 3-second (or a 1-minute, or a 10-minute) speed specified for
design purposes or recorded at weather stations. In Figure 2.1 the statistical features
of the record do not vary significantly (i.e., the record may be viewed as statistically
stationary, see Appendix B) over an interval of almost two hours; the hourly wind speed
is about 18.5 mph, or about 1/1.52 times the peak 3-second gust.

Sustained wind speeds, defined as wind speeds averaged over intervals in the order of
1 min, are used in both engineering and meteorological practice. The fastest 1-minute
wind speed or, for short, the 1-minute speed, is the storm’s largest 1-minute average wind
speed. The fastest-mile wind speed Uf is the storm’s largest speed in mph averaged over
a time interval tf = 3600/Uf . For example, a 60 mph fastest-mile wind speed is averaged
over a 60-second time interval.

Ten-minute wind speeds are wind speeds averaged over 10 min, and are used in World
Meteorological Organization (WMO) practice as well as in some standards and codes.

The ratio between the peak gust speed and the mean wind speed is called the gust
factor. Expressions for the relation between wind speeds with different averaging times
are provided in Section 2.3.7 as functions of parameters defined subsequently in this
chapter.
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2.2 Equations of Mean Motion in the ABL

The motion of the atmosphere is governed by the fundamental equations of contin-
uum mechanics, which include the equation of continuity – a consequence of the
principle of mass conservation, – and the equations of balance of momenta, that is,
the Navier–Stokes equations (see also Chapters 4 and 6). These equations must be
supplemented by phenomenological relations, that is, empirical relations that describe
the specific response to external effects of the medium being considered. (For example,
in the case of a linearly elastic material the phenomenological relations consist of the
so-called Hooke’s law.)

If the equations of continuity and the equations of balance of momenta are averaged
with respect to time, and if terms that can be shown to be negligible are dropped, the fol-
lowing equations describing the mean motion in the boundary layer of the atmosphere
are obtained:

U 𝜕U
𝜕x

+ V 𝜕U
𝜕y

+ W 𝜕U
𝜕z

+ 1
𝜌

𝜕p
𝜕x

− f V − 1
𝜌

𝜕𝜏u

𝜕z
= 0 (2.1)

U 𝜕V
𝜕x

+ V 𝜕V
𝜕y

+ W 𝜕V
𝜕z

+ 1
𝜌

𝜕p
𝜕y

+ f U − 1
𝜌

𝜕𝜏v

𝜕z
= 0 (2.2)

1
𝜌

𝜕p
𝜕z

+ g = 0 (2.3)

𝜕U
𝜕x

+ 𝜕V
𝜕y

+ 𝜕W
𝜕z

= 0 (2.4)

where U , V , and W are the mean velocity components along the axes x, y, and z of
a Cartesian system of coordinates whose z-axis is vertical; p, 𝜌, f , and g are the mean
pressure, the air density, the Coriolis parameter, and the acceleration of gravity, respec-
tively; and 𝜏u, 𝜏v are shear stresses in the x and y directions, respectively. The x-axis is
selected, for convenience, to coincide with the direction of the shear stress at the surface,
denoted by 𝜏0 (Figure 2.2).

It can be seen, by differentiating Eq. (2.3) with respect to x or y, that the vertical vari-
ation of the horizontal pressure gradient depends upon the horizontal density gradient.
For the purposes of this text it will be sufficient to consider only flows in which the hor-
izontal density gradient is negligible. The horizontal pressure gradient is then invariant

Figure 2.2 Coordinate axes.
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with height and thus has, throughout the boundary layer, the same magnitude as at the
boundary layer’s top:

𝜕p
𝜕n

= 𝜌

(
fV gr ±

V 2
gr

r

)
(2.5)

where V gr is the gradient velocity, r is the radius of curvature of the isobars, and n is the
direction of the gradient wind (see Eq. [1.4]).

The geostrophic approximation corresponds to the case where the curvature of the
isobars can be neglected. The gradient velocity is then called the geostrophic velocity
and is denoted by G. Eq. (2.5) then becomes

1
𝜌

𝜕p
𝜕x

= fV g

1
𝜌

𝜕p
𝜕y

= −fUg (2.6a,b)

where Ug and V g are the components of the geostrophic velocity G along the x- and
y-axes.

The boundary conditions for Eqs. (2.1)–(2.4) may be stated as follows: at the ground
surface the velocity vanishes, while at the top of the ABL the shear stresses vanish and
the wind flows with the gradient velocity V gr . In addition, an interaction between the
ABL and the capping inversion occurs (see Section 2.3.3).

2.3 Wind Speed Profiles in Horizontally Homogeneous Flow
Over Flat Surfaces

It may be assumed that in large-scale non-tropical storms, within a flat site of uniform
surface roughness with sufficiently long fetch, a region exists over which the flow is hor-
izontally homogeneous. The existence of horizontally homogeneous atmospheric flows
is supported by observations and distinguishes ABLs from two-dimensional boundary
layers such as occur along flat plates. In the latter case the flow in the boundary layer
is decelerated by the horizontal stresses, so that the boundary-layer thickness grows as
shown in Figure 2.3 [1]. In atmospheric boundary layers. In atmospheric boundary lay-
ers, however, the horizontal pressure gradient – which below the free atmosphere is only

Figure 2.3 Growth of a two-dimensional boundary layer along a flat plate.
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partly balanced by the Coriolis force (Figure 1.8) – re-energizes the flow and counteracts
the boundary-layer growth. Horizontal homogeneity of the flow is thus maintained [2].

Under equilibrium conditions, in horizontally homogeneous flow Eqs. (2.1) and (2.2),
in which Eq. (2.6a,b) are used, become

Vg − V = 1
𝜌f
𝜕𝜏u

𝜕z

Ug − U = 1
𝜌f
𝜕𝜏v

𝜕z
(2.7a,b)

The Ekman spiral was the first attempt to describe the ABL in mathematical terms, and
is presented in Section 2.3.1 for the sake of its historical interest. In the 1960s and 1970s
a major advance was achieved in the field of boundary-layer meteorology, based on an
asymptotic approach. As shown in Section 2.3.2, the asymptotic approach yields the
unphysical result that the mean speed component V vanishes throughout the boundary
layer’s depth, except at its top, where it has the value V g . In addition, the 1960s and 1970s
work did not consider the important effect of the capping inversion on the ABL height.
Section 2.3.3 introduces the contemporary classification of neutrally stratified ABLs
as functions of the Brunt-Väisäla frequency. The latter characterizes the interaction
between the ABL and the capping inversion, and provides expressions for the height of
the ABL that account for that interaction. Section 2.3.4 presents the logarithmic descrip-
tion of the mean wind speed within the lower layer of the ABL, called the surface layer,
as well as estimates of the surface layer’s depth. Section 2.3.5 presents the power law rep-
resentation of the wind speed profile which, though obsolete, is still being used in some
codes and standards, including the ASCE 7-16 Standard [3]. Section 2.3.6 discusses the
relation between characteristics of the ABL flows in different surface roughness regimes.
Section 2.3.7 provides details on the relation between wind speeds with different aver-
aging times.

2.3.1 The Ekman Spiral

The Ekman spiral model is obtained if it is assumed in Eq. (2.7a,b) that the shear stresses
are proportional to a fictitious constant K , called eddy viscosity, such that

𝜏u = 𝜌K 𝜕U
𝜕z

𝜏v = 𝜌K 𝜕V
𝜕z

(2.8a,b)

Equations (2.7) and (2.8) then become a system of differential equations with constant
coefficients. With the boundary conditions U = V = 0 for height above the surface z = 0,
and U = Ug , V = V g for z =∞, the solution of the system is

U = 1√
2

G[1 − e−az(cos az − sin az)]

V = 1√
2

G[1 − e−az(cos az + sin az)] (2.9a,b)

where a = [f ∕(2K)]1∕2. Equations (2.9a,b), which describe the Ekman spiral, are repre-
sented schematically in Figure 1.9. Observations are in sharp disagreement with these
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equations. For example, while according to Eq. (2.9a,b) the angle 𝛼0 between the surface
stress 𝜏0 and the geostrophic wind direction is 45∘, observations indicate that this angle
may range approximately between approximately 5∘ and 30∘ (see Section 2.3.3). The
cause of the discrepancies is the assumption, mathematically convenient but physically
incorrect, that the eddy viscosity is independent of height.

2.3.2 Neutrally Stratified ABL: Asymptotic Approach

A vast literature is available on the numerical solution of the equations of motion of the
fluid. A different type of approach, based on similarity and asymptotic considerations,
was developed in [2]. The starting point of the asymptotic approach is the division of
neutral boundary layers into two regions, a surface layer and an outer layer. In the surface
layer the shear stress 𝜏0 induced by the boundary-layer flow at the Earth’s surface must
depend upon the flow velocity at a distance z from the surface, the roughness length z0
that characterizes the surface roughness, and the density 𝜌 of the air, that is,

𝜏0i = F (Ui + V j, z, z0, 𝜌) (2.10)

where U and V are the components of the mean wind speed along the x and y directions
and i, j are unit vectors. Eq. (2.10) can be written in the non-dimensional form:

Ui + V j
u∗

= 𝜓1x

(
z
z0

)
i + 𝜓1y

(
z
z0

)
j (2.11)

where

u∗ =
(
𝜏0

𝜌

)1∕2

(2.12)

is the friction velocity and 𝚿1 = 𝜓1xi+𝜓1yj is a vector function to be determined.
Eq. (2.11), known as the law of the wall, is applicable in the surface layer, and can be
written in the form:

Ui + V j
u∗

= 𝜓1x

(
z
H

H
z0

)
i + 𝜓1y

(
z
H

H
z0

)
j (2.13)

where

H = cu∗∕f . (2.14)

H denotes the boundary-layer depth (i.e., the height to which the effect of the surface
shear stress has diffused in the flow), f is the Coriolis parameter, and on the basis of
data available in the 1960s it was assumed in [2] c≈ 0.25. As indicated earlier, the mean
velocity components U(H) and V (H) are denoted by Ug and V g, respectively, and their
resultant, denoted by G, is the geostrophic velocity.

In the outer layer it can be asserted that, at height z, the velocity reduction with
respect to G must depend upon the surface shear stress 𝜏0 and the air density 𝜌. The
non-dimensional expression for this dependence is the velocity defect law:

Ui + V j
u∗

=
Ugi + Vg j

u∗
+ 𝜓2x

( z
H

)
i + 𝜓2y

(
z
z0

)
j (2.15)

where 𝚿2 is a vector function to be determined.
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Consider, in Eqs. (2.13) and (2.15), the x components

Ui
u∗

= 𝜓1x

(
z
H

H
z0

)
i (2.16)

Ui
u∗

=
Ugi
u∗

+ 𝜓2x

( z
H

)
i (2.17)

From the observation that a multiplying factor inside the function 𝜓1x must be
equivalent to an additive function outside the function 𝜓2x, the following equations are
obtained:

U
u∗

= 1
k

(
ln z

H
+ ln H

z0

)
(2.18)

U
u∗

=
Ug

u∗
+ 1

k

(
ln z

H

)
(2.19)

for the surface and the outer layer, respectively. In Eqs. (2.18) and (2.19), k ≈ 0.40 is the
von Kármán constant, and the height z is measured from the elevation z0 above the
surface.

From Eq. (2.18) it follows immediately

U
u∗

= 1
k

(
ln z

z0

)
(2.20)

By equating Eqs. (2.18) and (2.19) in the overlap region, there results
Ug

u∗
= 1

k

(
ln H

z0

)
(2.21)

The logarithmic law is seen to apply to the U component of the wind velocity through-
out the depth of the boundary layer.

Consider now the components
V j
u∗

= 𝜓1y

(
z
H

H
z0

)
j (2.22)

V j
u∗

=
Vg j
u∗

+ 𝜓2y

( z
H

)
j (2.23)

It was assumed in [2, 4–6] that𝜓1y ≡ 0. Then, Eqs. (2.22) and (2.23) yield in the overlap
region

Vg j
u∗

+ 𝜓2y

( z
H

)
j = 0 (2.24)

that is,

𝜓2y

( z
H

)
= −

Vg

u∗

𝜓2y

( z
H

)
= B

k
(2.25a,b)

where, based on measurements available in the 1960s, it was assumed B/k ≈ 4.8 (e.g.,
[6]). It follows from Eqs. (2.23) and (2.25a,b) that

V (z) = 0 (z < H). (2.26)
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Since, for z = H, V (H) = Vg, Eq. (2.23) yields

Ψ2y(H∕H) = 0 (2.27)

and, by virtue of Eq. (2.26),

V (z) = Vg𝛿(H), (2.28)

where 𝛿 denotes the Dirac delta function. This physically unrealistic result is an
artifact of the asymptotic approach, which transforms the actual profile V (z) into the
non-physical profile represented by Eq. (2.28).

2.3.3 Brunt-Väisäla Frequency. Types of Neutrally Stratified ABLs

Brunt-Väisäla Frequency. In much of the theoretical work on ABL flow performed until
the 1990s or so, ABL flows for which the buoyancy flux at the surface, denoted by 𝜇, is
𝜇= 0 and𝜇 < 0 were defined as neutral and stable, respectively. This classification did not
consider the interaction between the ABL and the free flow (i.e., the flow above the ABL)
that, when stably stratified, can have a significant effect on the height of the ABL [7–9].

The interaction between the ABL and the stably stratified free flow above the ABL
is characterized by the non-dimensional parameter 𝜇N = N/| f |, where N is the
Brunt-Väisäla frequency. Consider an air particle with density 𝜌(z) at elevation z in
a stably stratified flow. If the particle is displaced by a small amount z′, it will be
subjected to an incremental pressure g[𝜌(z+ z′)− 𝜌(z)]. The motion of the particle will
be governed by the equation

𝜌(z)𝜕
2z′
𝜕t2 = g[𝜌(z + z′) − 𝜌(z)] (2.29)

𝜕2z′
𝜕t2 =

g
𝜌(z)

𝜕𝜌(z)
𝜕z

z′ (2.30)

Let

−
g
𝜌(z)

𝜕𝜌(z)
𝜕z

= N2 (2.31)

It follows from Eqs. (2.30) and (2.31) that, for positive values of 𝜕𝜌(z)/𝜕z (i.e., for a sta-
ble stratification of the free flow), z′ is a harmonic function with frequency N , which
drives the interaction between the stably stratified free flow and the ABL. (See also
[10, p. 136].)

Truly Neutral and Conventionally Neutral ABL Flows. Based on the dependence of
the ABL flow upon both 𝜇 and the non-dimensional parameter 𝜇N = N/| f |, neutrally
stratified ABL flows are classified into two categories [7–9]:

1) Truly neutral flows (𝜇≈ 0, N = 0), “observed during comparatively short transition
periods after sunset on a background of residual layers of convective origin,” “often
treated as irrelevant because of their transitional nature, and usually excluded from
data analysis.”

2) Conventionally neutral flows (𝜇≈ 0, N > 0) (i.e., neutrally stratified and interacting
with the stably stratified layer above the ABL), are characterized by negligible buoy-
ancy and a number 𝜇N ≠ 0; typically 50<𝜇N < 300. Recall that, in strong winds, the
buoyancy in the ABL may be assumed to be negligible owing to strong mechanical,
as opposed to thermal, turbulent mixing.
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Of these two categories it is the conventionally neutral flows that are of interest in
structural engineering applications.

Models of the ABL flow used in structural engineering applications have been based
on the assumption that the flow stratification is truly neutral. The failure of the asymp-
totic similarity approach to consider the effect of the capping inversion results in the
incorrect prediction of the ABL height, as is shown subsequently.

Integral Measures of the Conventionally Neutral ABL. The integral measures of the
ABL are the geostrophic drag coefficient, the cross-isobaric angle, and the ABL height.

For 𝜇N values typical of conventionally neutral flows (i.e., 50<𝜇N < 300), the depen-
dence of the geostrophic drag coefficient

Cg =
u∗

G
(2.32)

and of the cross-isobaric angle 𝛼0 upon the Rossby number

Ro = G
| f |z0

(2.33)

can be represented by the following expressions, based on measurements by Lettau [11]:

Cg =
0.205

log10(Ro) − 0.556
(2.34)

𝛼0 = 173.58
log10(Ro)

− 3.03 (2.35)

[12, 13, p. 338]. Also, for conventionally neutral ABLs,

1
H2 =

[
f 2

C2
R
+

N| f |
C2

CN

]
1
u2
∗

(2.36)

where CR ≈ 0.6 and CCN ≈ 1.36 [7–9]. Therefore the ABL height is

H =
Ch(𝜇N )u∗

f
(2.37)

where Ch(𝜇N ) = (1∕C2
R + 𝜇N∕C2

CN )
−1∕2. Note the difference with the expression for H in

Eq. (2.14) For any given friction velocity u*, Coriolis parameter f and surface roughness
length z0, the quantities G, 𝛼0 and H are obtained by using Eqs. (2.32)–(2.36).

Example 2.1 ABL integral measures. Mean wind speed and veering angle profiles.
Consider the following parameters: f = 10−4 s−1, N = 0.018 s−1, so 𝜇N = 180, and
z0 = 0.3 m (suburban terrain exposure), u* = 1.5 m s−1. It can be verified by using
Eq. (2.36) that Ch ≈ 0.10, so H= 0.10 × 1.5/10−4 = 1500 m. (According to Eq. (2.14),
H = 3750 m.) The trial value G= 41 m s−1 yields log10(Ro) = 6.14, u*/G≈ 0.037, to
which there corresponds G= 41 m s−1 and 𝛼0 ≈ 25∘. For z = 300 m, z/H = 0.20; for
z= 800 m, z/H = 0.53. Figures 2.4 and 2.5 show the dependence on height z of the
speeds U(z) and V (z), their resultant, and the angle 𝛼0(z), as obtained in [14] by
Computational Fluid Dynamics techniques. Note that the component V (800 m) and, a
fortiori, the component V (300 m), have negligible contributions to the resultant mean
wind speed, and that the veering angles 𝛼0(300 m) and 𝛼0(800 m) are approximately 2
and 6∘, respectively. Results for Ch = 0.19, based on [15, figure 7], are also included in
Figures 2.4 and 2.5.



�

� �

�

26 2 The Atmospheric Boundary Layer

U/u
*
, V/u

*
, (U2+V2)1/2/u

*

–15 –10 –5 0 5 10 15 20 25 30 35

z/
H

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U/u
*
 (Ch = 0.10)

V/u
*
 (Ch = 0.10)

(U2+V2)1/2/u
*
 (Ch = 0.10)

U/u
*
 (Ch = 0.19)

V/u
*
 (Ch = 0.19)

(U2+V2)1/2/u
*
 (Ch = 0.19)

Figure 2.4 Dependence of U∕u∗, V∕u∗, and
√

U2 + V2 on z/H.

α0 [°]
–25 –20 –15 –10 –5 0

z/
H

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ch = 0.10

Ch = 0.19
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No mathematical expression that uses the parameters z0 and u* is available for the
description of the wind profile throughout the depth of the ABL. However, Section 2.3.4
presents the relation between the friction velocity u* and the mean wind speed U(z)
in the lower portion of the ABL, and information on surface roughness lengths z0 for
various types of surface.

2.3.4 The Logarithmic Mean Wind Profile

The Logarithmic Law. Within the lower layer of the ABL whose height is denoted by
zs, the component V (z) of the mean wind velocity is at least one order of magnitude
smaller than the component U(z) and is therefore negligible in practice (see Figure 2.4).
The logarithmic law (Eq. [2.20]), renumbered here as Eq. (2.38),

U(z)
u∗

= 1
k

ln z
z0

(2.38)

is valid for all heights z above the Earth’s surface within the region z0 < z< zs. By virtue
of Eq. (2.38)

u∗ =
U(z)

2.5 ln(z∕z0)
(2.39)

where z< zs.
According to a belief predating modern ABL research but still persisting among some

wind engineers [16], zs ≈ 100 m. Also, according to the ASCE 7-16 Standard [3], the ABL
depth is independent of wind speed. In fact, the depth H of the ABL is proportional to
u* (see Eq. [2.37]). The relation

zs ≈ 0.02
u∗

f
(2.40)

where f is the Coriolis parameter (see Section 1.2) [2, 4–6], is a lower bound for the
height zs. Eq. (2.40) follows from the assumption that, in the region z0 < z< zs, the shear
stress 𝜏u differs little from the surface stress 𝜏0, and the component V of the velocity is
small. Integration of Eq. (2.7a,b) over the height zs yields

𝜏u = 𝜏0 + 𝜌f
∫

zs

z0

(Vg − V )dz ≈ 𝜏0 + 𝜌fV gzs (2.41)

or

|𝜌fV gzs| ≈ 𝜂𝜏0 (2.42)

where 𝜂 is a small number. Since 𝜏0 = 𝜌u2
∗ (Eq. [2.12]) and V g/u* =−B/k ≈ 4.8

(Eq. 2.25a,b),

zs =
𝜂u2

∗

fV g
= 𝜂k

f B
u∗ = b

u∗

f
(2.43)

According to [6] the logarithmic law holds, for practical purposes, even beyond
heights at which 𝜂 is in the order of 30%, meaning that b> 0.02.

Equations (2.39) and (2.40) show that the height zs over which the logarithmic law is
valid is approximately proportional to the wind speed U(z) (z0 < z < zs).
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Example 2.2 Estimation of friction velocity u*. Assume z= 10 m, U(z) = 30 m s−1 and
z0 = 0.03 m (open exposure). Eq. (2.39) yields u* = 2.07 m s−1.

Example 2.3 Estimation of surface layer depth zs. Assume u* = 2.07 m s−1 and
f = 10−4 s−1. According to Eq. (2.40) zs = 414 m.

Surface Roughness Lengths z0 and Surface Drag Coefficients. Tables 2.1–2.3 list surface
roughness lengths z0 based, respectively, on measurements included in the Commentary
to the ASCE 7-16 Standard [3], and specified in the Eurocode [21].

Table 2.1 Values of surface roughness length z0 and surface drag
coefficients 𝜅 for various types of terrain.

Type of Surface z0 (cm) 10−3
𝜿

Sanda) 0.01–0.1 1–2
Snow surface 0.1–0.6 2–3
Mown grass (≈0.01 m) 0.1–1 2–3
Low grass, steppe 1–4 3–5
Fallow field 2–3 4–5
High grass 4–10 5–8
Palmetto 10–30 8–13
Pine forest (mean height of trees:
15 m; one tree per 10 m2; zd = 12 mb))

90–100 28–30

Sparsely built-up suburbsc) 20–40 11–15
Densely built-up suburbs, townsc) 80–120 25–36
Centers of large citiesc) 200–300 62–110

a) [17].
b) [18].
c) Values of z0 to be used in conjunction with the assumption zd = 0 [19].

Table 2.2 Surface roughness lengths z0 as listed in ASCE 7-16 Commentary [3].

Type of surface z0, ft. (m)

Watera) 0.016–0.033 (0.005–0.01)
Open terrainb) 0.033–0.5 (0.01–0.15)
Urban and suburban terrain, wooded areasc) 0.5–2.3 (0.15–0.7)

a) The larger values apply over shallow waters (e.g., near shore lines). Approximate
typical value corresponding to ASCE 7-16 Exposure D: 0.016 ft. (0.005 m) (ASCE
Commentary). According to [20], for strong hurricanes z0 ≈ 0.001–0.003 m.

b) Approximate typical value corresponding to ASCE 7-16 Exposure C: 0.066 ft.
(0.02 m) (ASCE Commentary).

c) Value corresponding approximately to ASCE 7-16 Exposure B: 0.5 ft. (0.15 m);
this value is smaller than the typical value for ASCE 7-16 Exposure B: 1 ft.
(0.3 m) (ASCE Commentary).
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Table 2.3 Roughness lengths z0 as specified in Eurocode [21].

Type of surface z0 (m)

Sea or coastal areas exposed to the open sea 0.003
Lakes or flat and horizontal area with negligible vegetation and no obstacles 0.01
Areas with low vegetation and isolated obstacles like trees or buildings with separations
of maximum 20 obstacle heights (e.g., villages, suburban terrain, permanent forest)

0.05

Areas with regular cover of vegetation or buildings or with isolated obstacles with
separations of maximum 20 obstacle heights (villages, suburban terrain, forests)

0.30

Areas in which at least 15% of the surface is covered with buildings whose average
height exceeds 15 m

1.0

The surface drag coefficient is defined as

𝜅 =
[

k
ln(10∕z0)

]
(2.44)

where k = 0.4 is the von Kármán constant, and z0 is expressed in meters. Values of 𝜅
corresponding to various values of z0 are given in Table 2.1.

The surface drag coefficient 𝜅 for wind flow over water surfaces depends upon wind
speed. On the basis of a large number of measurements, the following empirical relations
were proposed for the range 4<U(10)< 20 m s−1 [22]:

𝜅 = 5.1 × 10−4[U(10)]0.46

𝜅 = 10−4[7.5 + 0.67U(10)] (2.45a,b)

where U(10) is the mean wind speed in m s−1 at 10 m above the mean water level [23].
According to [24], for wind speeds U(10)< 40 m s−1,

𝜅 = 0.0015
[

1 + exp
(
−U(10) − 12.5

1.56

)]−1

+ 0.00104 (2.46)

For additional information on the wind flow over the ocean, see [20, 25–27].
The following relation proposed by Lettau [28] may be used to estimate z0 for built-up

terrain:

z0 = 0.5Hob
Sob

Aob
(2.47)

where Hob is the average height of the roughness elements in the upwind terrain, Sob
is the average vertical frontal area presented by the obstacle to the wind, and Aob is the
average area of ground occupied by each obstruction, including the open area surround-
ing it.

Example 2.4 Application of the Lettau formula. Check the Eurocode value z0 = 1 m
indicated in Table 2.3 against Eq. (2.47), assuming the average building height is
Hob = 15 m, the average dimensions in plan of the buildings are 16× 16 m, and
Aob = 1600 m2. We have Sob = 15 × 16 = 240 m2, so the average area occupied by
buildings is 16 × 16/1600 = 16%. Eq. (2.47) yields z0 = 1.125 m.
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The surface roughness length z0 is a conceptual rather than a physical entity, and
cannot therefore be measured directly. It can in principle be determined by measuring
the mean wind speeds U(z1) and U(z2) at the elevations z1 and z2, respectively. However,
small errors in the measurement of the speeds can lead to large errors in the estimation
of the roughness length.

Example 2.5 Errors in roughness length estimates based on mean wind speed measure-
ments. Assume measurements of mean wind speeds U(z1) and U(z2) are available at ele-
vations z1 and z2 above ground. Eq. (2.38) yields U(z2)/U(z1)≡ r21 = ln(z2/z0)/ln(z1/z0).
After some algebra it follows that

z0 = exp
( r21 ln z1 − ln z2

r21 − 1

)
(2.48)

Let z1 = 10, z2 = 25 and z0 = 0.026 m. Eq. (2.38) yields U(z2)/U(z1) = 1.154. It follows
then from Eq. (2.48) that, indeed, z0 = 0.026 m. However, if measurement errors resulted
in a 5% error in r21, that is, if in Eq. (2.46) the ratio r21 = 1.05× 1.154 is used, the result
obtained is z0 = 0.13 m, rather than 0.026 m.

For a more effective approach to estimating roughness length, based on measurements
of turbulence intensity, see [29] and Example 2.14.

Zero-plane Displacement. On account of the finite height of the roughness elements,
the following empirical modification of Eq. (2.38) is required. The quantity z, rather than
denoting height above ground, is defined as

z = zgr − zd (2.49)

where zgr is the height above ground and zd is a length known as the zero-plane displace-
ment. The quantity z is called the effective height. It is suggested in [30] that reasonable
values of the zero plane displacement in cities may be obtained using the formula

zd = h −
z0

k
(2.50)

where h is the general roof-top level.

2.3.5 Power Law Description of ABL Wind Speed Profiles

The logarithmic law has long superseded the power law in meteorological practice.
Unlike the logarithmic law, the power law is strictly empirical. It was first proposed
about a century ago for open terrain in [31] and for built-up terrain in [32]. It is still
used in the United States [3], Canada [33], and Japan [34], primarily owing to the earlier
belief that the logarithmic law is only valid up to 50–100 m, even in strong winds.

The variation of wind speed with height can be expressed approximately as

U(z) = U(zref )
(

z
zref

)1∕𝛼

(2.51)

where zref is a reference height, for example 10 m above ground in open terrain. In
Eq. (2.51) the exponent 1/𝛼 depends upon surface roughness and upon averaging time,
the profiles being flatter as the averaging time decreases. The power law applied to
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3-second peak gust wind profiles has the same form as Eq. (2.51), however, in the ASCE
7 Standard its exponent is denoted by â rather than by 𝛼. Five-second peak gusts may
in practice be assumed to differ negligibly from 3-second gusts. Eq. (2.51) is assumed in
the ASCE 7 Standard and the National Building Code (NBC) of Canada to be valid up
to a height zg purported to represent the geostrophic height and referred to therein as
the gradient speed. Table 2.4 lists power law exponents and gradient heights zg speci-
fied in the ASCE Standard and the NBC specified for four surface exposure categories:
A (centers of large cities), B (suburban terrain), C (open terrain), and D (open water).
Category A was excluded from later versions of the ASCE 7 Standard, on account of the
poor agreement of the power law with actual wind speeds over centers of large cities.
It is shown in [62] that the values of zg assumed in the power law model can result in
strongly unconservative estimates of wind effects on super-tall buildings designed in
accordance with ASCE 7-16 provisions.

Example 2.6 Application of the power law. Let zref = 32.8 ft. (10 m), U3s(zref)= 55 mph,
α̂ = 1∕9.5 (open terrain). From Eq. (2.51), at 100 ft. above ground U3s(100 ft) = 55
(100/32.8)1/9.5 = 62 mph.

As noted by Panofsky and Dutton [35, p. 131], the power law can be fitted reasonably
well to the log law only over small height ranges.

2.3.6 ABL Flows in Different Surface Roughness Regimes

Wind speed maps are developed for structural engineering purposes for open terrain
exposure. Since most structures are not built in open terrain, it is necessary to deter-
mine wind speeds corresponding to the speeds specified in wind maps for exposures
other than open. This is done by using the fact that, in any given large-scale storm, the
geostrophic speed is independent of surface friction and therefore of terrain roughness
(Eq. [1.4]). We first consider the case in which wind profiles are described by the loga-
rithmic law. Next we consider the power law case.

Table 2.4 Power law exponents and gradient heights specified in the 1993–2016 versions of ASCE 7
Standard, and in the National Building Code of Canada (NBCC) [33].

Exposure Aa) Bb) Cc) Dd)

ASCE 7-93e) 1/𝛼
zg ft. (m)

1/3
1500 (457)

1/4.5
1200 (366)

1/7
900 (274)

1/10
700 (213)

NBCf) 1/𝛼
zg ft. (m)

0.4
1700 (520)

0.28
1300 (400)

0.16
900 (274)

–
–

ASCE 7g)

(1995–2016)
1∕�̂�
zg ft. (m)

–
–

1/7
1200 (366)

1/9.5
900 (274)

1/11.5
700 (213)

a) Centers of large cities.
b) Suburban terrain, towns.
c) Open terrain (e.g., airports).
d) Water surfaces.
e) Sustained speeds.
f ) Mean hourly speeds.
g) Peak 3-second gust speeds.
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Wind speeds described by the logarithmic law. Examples 2.7 and 2.8 consider,
respectively, the cases of suburban and ocean versus open exposure.

Example 2.7 It can be verified that, for f = 10−4 s−1, given a surface with open exposure
(z0 = 0.03 m), to a storm that produces a friction velocity u* = 2.5 m s−1 there corre-
sponds a geostrophic speed G≈ 83 m s−1. In accordance with the definition of Ro, for
suburban terrain exposure (z01 = 0.3 m), to G = 83 m s−1 there corresponds Ro1 = log
[83/(10−4 × 0.3)] = 6.44. From Eq. (2.34), Cg1 = 0.035, so u*1 = 83 × 0.035≈ 2.9 m s−1

(Eq. [2.32]), and the cross-isobaric angle is 𝛼01 ≈ 24 ∘ (Eq. [2.35]). From Eqs. (2.36) and
(2.37) there follows, for N = 0.01 s−1, Ch1 = 0.13 and H1 = 2.9 × 0.13/10−4 ≈ 3800 m (i.e.,
about half the asymptotic estimate H1 = 7250 m (Eq. [2.14]).

Example 2.8 For ocean surfaces, assuming G = 83 m s−1 and z01 = 0.003 m,
log10Ro1 = log (83/[10−4 × 0.003]) = 8.44, and Cg1 ≈ 0.026, so u*1 = 83 × 0.026 =
2.15 m s−1, and 𝛼01 ≈ 18∘. Eq. (2.36) yields H1 = 2800 m (vs. the asymptotic estimate
H1 = 5400 m) and Ch1 = 0.13.

Results close to those obtained by the relatively elaborate procedure used in
Examples 2.7 and 2.8 can be obtained by Biétry’s equation, adopted with a minor
modification in the Eurocode [21]:

u∗1

u∗
=
(z01

z0

)0.0706

(2.52)

Example 2.9 Application of Eq. (2.52). Let z0 = 0.03 m. If z01 = 0.3 m, u*1/u* = 1.18,
versus 2.9/2.5 = 1.16 as shown in Example 2.7; if z01 = 0.003 m, then u*1/u* = 0.86, versus
2.15/2.5 = 0.86 as shown in Example 2.8.

Wind speeds described by the power law. For strong winds, given the mean hourly
speed U(zopen) at the reference height zopen above open terrain with power law exponent
1/𝛼open, the mean hourly wind speed at height z above built-up terrain with power law
exponent 1/𝛼 is

U(z) = U(zopen)
(zg,open

zopen

)1∕𝛼open
(

z
zg

)1∕𝛼

(2.53)

where the product of the first two terms in the right-hand side is the gradient speed
above open terrain, U(zg,open). Since gradient speeds are not affected by surface rough-
ness, the gradient speed over built-up terrain, U(zg), is equal to U (zg,open). The last factor
in Eq. (2.53) transforms U(zg) into U(z) at height z above built-up terrain. A relation
similar to Eq. (2.53) is also used (with the appropriate values of the parameters zg and α̂
from Table 2.4) for 3-second peak gust speeds, denoted here by U3s (and in the ASCE 7
Standard by V ), and for sustained wind speeds such as fastest-mile speeds or 1-minute
speeds. In the ASCE 7 Standard, U3s(zopen = 10 m) is the 3-second basic wind speed, and
the product of the last two terms in Eq. (2.53) is denoted in the Standard by

√
Kz.

Example 2.10 Relation between wind speeds in different roughness regimes, power
law description. Denote the 3-second peak gust speed by U3s. Let U3s(32.8 ft) = 86 mph
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above open terrain (â = 9.5, zg = 274 m, Table 2.4). Eq. (2.53) yields U3s(45 m) = 45 m s−1

(open terrain). Using Table 2.4 and Eq. (2.53), above suburban terrain (â = 7.0 and
zg = 366 m), U3s(10 m) = 33 and U3s(45 m) = 40 m s−1.

2.3.7 Relation Between Wind Speeds with Different Averaging Times

The mean ratio r(t, z0, z) between the largest average t-second speed during a storm
with a 1-hour duration and that storm’s mean hourly (3600 s) speed is a function of
the averaging time t, the terrain roughness length z0, and the height above ground z
(Table 2.5). As noted in Section 2.1, the ratio U3s/U is called the gust factor.

Terrain with open exposure. For the particular case of open terrain exposure
(z0 ≈ 0.03–0.05 m) and a height above ground z= 10 m, the approximate ratio r is listed
for selected values of t as follows [36]:

These values are applicable to large-scale, non-tropical storms, over open terrain with
open exposure, and at the standard (10 m) height above ground. These values are appli-
cable only at the standard reference height over terrain with open exposure.

Example 2.11 Conversion of fastest-mile wind speed to mean hourly speed and to peak
3-second gust for open terrain. For a fastest-mile wind speed at 10 m over open terrain of
90 mph, the averaging time is 3600/90 = 40 s, and the corresponding hourly speed and
peak 3-second gust are 90/1.29 = 69.8 and 69.8× 1.52 = 106 mph, respectively.

Example 2.12 Conversion of peak 3-second gust speed to mean hourly speed for open
terrain. Let the peak 3-second gust speed at 10 m above ground in open terrain be
30 m s−1. For wind tunnel testing and structural purposes, winds characterized by that
gust speed are modeled by winds with a 30/1.52 = 20 m s−1 mean hourly speed at 10 m
above ground in open terrain.

Terrain with Exposure Other than Open. The following approximate relation may be
used:

Ut(z) = U(z) + c(t)[u2(z, z0)]1∕2

Ut(z) = U(z)

[
1 +

√
𝛽(z, z0)c(t)

2.5 ln(z∕z0)

]
(2.54a,b)

where Ut(z) is the peak speed averaged over t s within a record of approximately one
hour, U(z) is the mean wind speed for that record over terrain with surface roughness
z0, 𝛽(z0), c(t) are given in Tables 2.6 and 2.7. Following [10, Eq. (18.25b)],

𝛽(z, z0) = 𝛽(z0) exp
[
−1.5 z

H

]
(2.55)

where H is the ABL depth and z, z0, and H are in meters.

Table 2.5 Ratios r between t-s and mean hourly speeds at
10 m above open terrain.

t (s) 3 5 40 60 600 3600

1.52 1.49 1.29 1.25 1.1 1.0
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Table 2.6 Factor 𝛽 (z0).

z0 (m) 0.005 0.03 0.30 1.00

𝛽(z0) 6.5 6.0 5.25 4.9

Table 2.7 Factor c(t).

t (s) 1 10 20 30 50 100 200 300 600 1000 3600

c(t) 3.00 2.32 2.00 1.73 1.35 1.02 0.70 0.54 0.36 0.16 0

Note: coefficient c(t) is an approximate empirical peak factor which increases as t decreases.

Example 2.13 Conversion of Saffir–Simpson scale 1-minute speeds at 10 meters over
water to peak wind speeds at 10 m above open terrain, Category 4 hurricane. From
Table 1.1, the 1-minute speeds at 10 m above open water that define the weakest and
strongest Category 4 hurricanes are 130 and 156 mph, respectively. The conversion
depends on the assumed values of the surface roughness lengths z0 for open water and
open terrain. Relative large values of z0 are applicable to wind flow over water near
shorelines where the water is shallow, as opposed to flow over open water. Assuming
that for hurricane winds over open water z0 = 0.003 m, Eq. (2.54a,b) yields, with
𝛽(z0 ≈ 0.003 m)≈ 6.5, and c (60 s)≈ 1.29 (Tables 2.6 and 2.7):

Uw
60 s(10 m) = Uw(10 m)

[
1 + 2.55 × 1.29

2.5 ln(10∕0.003)

]

Uw(10 m) = 0.86Uw
60 s(10 m)

where the superscript w signifies “over open water.”

Assuming that over open terrain z0 = 0.04 m, Eqs. (2.38) and (2.52) yield

Uw(10 m) = U(10 m)
[0.003

0.04

]0.0706 ln(10∕0.003)
ln(10∕0.04)

U(10 m) = 0.816Uw(10 m)

where U(10 m) is the mean hourly wind speed over open terrain. It follows that

U(10 m) = 0.86 × 0.816Uw
60 s(10 m)

= 0.7Uw
60 s(10 m)

Therefore, the peak 3-second gust over open terrain is (Table 2.7):

U3 s(10 m) = 1.52 × 0.7 × Uw
60 s(10 m)

= 1.06Uw
60 s(10 m).

To the speed Uw
60 s(10 m) = 155 mph there then corresponds a calculated peak

3-second gust at 10 m over open terrain U3 s(10 m)≈ 164 mph. In the preceding
calculations it was assumed that relations that apply to horizontally homogeneous wind
flow (i.e., flow in synoptic storms) are also applicable to hurricanes, in which the isobars
are curved, rather than straight, and the flow is therefore horizontally inhomogeneous.
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2.4 ABL Turbulence in Horizontally Homogeneous Flow Over
Smooth Flat Surfaces

Except for winds with relatively low speeds under special temperature conditions, the
wind flow is not laminar (smooth). Rather, it is turbulent – it fluctuates in time and
space; that is, at any one point in space, the wind speed is a random function of time
(Figure 2.1), and at any one moment in time the wind speed is a random function of
position in space.

Atmospheric flow turbulence characterization is of interest in structural engineer-
ing applications for the following reasons. First, turbulence affects the definition of
the wind speed specified in engineering calculations, as shown in Sections 2.1 and
2.3.7. Second, by transporting particles from flow regions with high momentum into
low-speed regions, turbulence can influence significantly the wind flow around a
structure and, therefore, the aerodynamic pressures acting on the structure (Chapters 4
and 5). Therefore, to simulate correctly full-scale aerodynamic effects in the laboratory,
it is necessary to achieve laboratory flows that simulate the features of atmospheric
turbulence (Chapter 5). Third, turbulence produces resonant dynamic effects in flexible
structures that must be accounted for in structural design (Chapter 11).

Descriptors of the turbulence used in applications include the turbulence intensity
(Section 2.4.1), integral scales of turbulence (Section 2.4.2); and the spectra and the
cross-spectra of the turbulent velocity fluctuations (Sections 2.4.3 and 2.4.4).

2.4.1 Turbulence Intensities

The longitudinal turbulence intensity at a point with elevation z is defined as

Iu(z) =
u2(z, z0)

1∕2

U(z)
(2.56a)

that is, as the ratio of the r.m.s. of the longitudinal wind speed fluctuations u(z, t) to the
mean speed U(z), u(z, t) being parallel to U(z). Since

u2(z, z0)
1∕2

=
√
𝛽(z, z0) u∗ (2.56b)

where approximate values of 𝛽(z, z0) are given by Eq. (2.55) and Table 2.6, and by virtue
of the log law,

Iu(z) ≈
√
𝛽(z, z0)

2.5 ln(z∕z0)
(2.56c)

Example 2.14 Calculation of longitudinal turbulence intensity. For z0 = 0.03 m,
z = 20 m, Eq. (2.56c) and Table 2.6 yield Iu(z) ≈ 0.15.

Equation (2.56c) allows an approximate estimate of the roughness z0 based on the
measurement of Iu(z). Note that if the calculated roughness length z0 were significantly
different from 0.03 m, then a corresponding value of 𝛽 ≠ 6.0 would be assumed on the
basis of Table 2.6, and z0 would be obtained by successive approximations.

In the surface layer the decrease of u2(z, z0)
1∕2

with height is relatively slow (see,
e.g., [35, p. 185]) and is, conservatively, typically neglected in structural engineering
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calculations. The averaging time in Eq. (2.56) should be equal to the duration of strong
winds in a storm. Typical durations being considered are 1 hour, and 10 minutes. The
turbulence intensity decreases as the height above the surface increases, and vanishes
near the top of the ABL. Definitions similar to Eq. (2.56) are applicable to the lateral and
vertical turbulence intensities Iv(z) and Iw(z). In both these definitions the denominator
is U(z).

Measurements suggest that the turbulence intensity is typically higher by roughly 10%
in tropical cyclone than in extratropical storms [37, 38], see Section 2.5.3.

2.4.2 Integral Turbulence Scales

The velocity fluctuations in a flow passing a point are associated with an overall flow
disturbance consisting of a superposition of conceptual eddies transported by the mean
wind. Each eddy is viewed as causing at that point a periodic fluctuation with circular
frequency 𝜔 = 2𝜋n. The integral turbulence scales are measures of the spatial extent of
the overall flow disturbance.

In particular, the integral turbulence scale Lx
u is a measure of the size of the longitudinal

velocity components of the turbulent eddies. In a structural engineering context, Lx
u is

a measure of the extent to which the overall fluctuating disturbance associated with the
longitudinal wind speed fluctuation u will engulf a structure in the along-wind direction,
and will thus affect at the same time both its windward and leeward sides. If Lx

u is large
in relation to the along-wind dimension of the structure, the gust will engulf both sides.
The scales Ly

u and Lz
u are measures of the transverse and vertical spatial extent of the

fluctuating longitudinal component u of the wind speed. The scale Lx
w is a measure of

the longitudinal spatial extent of the vertical fluctuating component w. If the mean wind
is normal to a bridge span and Lx

w is large in relation to the deck width, the vertical wind
speed fluctuation w will act at any given time on the whole width of the deck. If we
now consider a panel normal to the mean wind direction, small values of Ly

u and Lz
u

compared with the dimensions of the panel indicate that the effect of the longitudinal
velocity fluctuations upon the overall wind loading is small. However, if Ly

u and Lz
u are

large, the eddy will envelop the entire panel, and that effect will be significant.
Mathematically, the integral turbulence scale Lx

u (also called integral turbulence
length) is defined as follows:

Lx
u =

∫

∞

0

1
u2

Ru1u2
(𝜉)d𝜉 (2.57)

where the overbar denotes mean value. The function Ru1u2
(𝜉) is defined as the autocor-

relation function of the longitudinal velocity components u (x1, y1, z1, t) and u (x1 + 𝜉,
y1, z1, t) Eq. (2.57) may be interpreted as follows. At any given time t, the fluctuation
u(x+ 𝜉, y, z) differs from u(x, y, z). The difference increases as the distance 𝜉 increases.
If 𝜉 = 0, the autocorrelation function is unity; if 𝜉 is small the two fluctuations are nearly
the same, so in Eq. (2.57) the autocorrelation function is close to unity and its product
by the elemental length d𝜉 is therefore close to d𝜉. On the other hand, if 𝜉 is large, the
fluctuations u(x, y, z) and u(x+ 𝜉, y, z) differ randomly from each other, and their prod-
ucts are positive for some values of 𝜉 and negative for others, so that their mean values
tend to be vanishingly small and contribute negligibly to Lx

u. This interpretation is equiv-
alent to stating that Lx

u is a measure of the size of the largest turbulent eddies of the flow,
that is, of the eddies characterized by large autocorrelation functions.
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Taylor Hypothesis. Frequency Space and Wavenumber Space. According to the Taylor
hypothesis it may be assumed, approximately, that the flow disturbance is “frozen” as it
travels with the mean velocity U(z), that is,

u(x1, 𝜏 + t) ≈ u(x1 − x∕U, 𝜏) (2.58)
where x = Ut, 𝜏 = time, and t is a finite time increment. This assumption implies that
every frequency component of the disturbance also travels essentially unchanged with
the mean velocity U . During a period T , an eddy whose harmonic motion at fixed x
has circular frequency 𝜔 = 2𝜋/T = 2𝜋n, where n = 1/T denotes the frequency, travels
with velocity U a distance UT = 𝜆, where 𝜆 = U/n is the wavelength. The wavenumber
is defined as 𝜅 = 2𝜋/𝜆 = 2𝜋n/U = 𝜔/U . The motion is defined by a cosine function with
argument 𝜔t− 𝜅x or, equivalently, 𝜅(Ut− x), meaning that for fixed t it is a harmonic
wave in the wavenumber space, and for fixed x it is harmonic function in the frequency
space.

By virtue of Taylor’s hypothesis, the integral turbulence length Lx
u, defined in Eq. (2.57)

by following a particle’s path (i.e., in Lagrangian terms) can alternatively be defined at a
fixed point (i.e., in Eulerian terms) as

Lx
u = U

∫

∞

0

1
u2

Ru(𝜏)d𝜏 (2.59)

where the autocorrelation function is defined by Eq. (B.21).
Measurements of Lx

u. Measurements show that Lx
u increases with height above ground

and as the terrain roughness decreases. The following strictly empirical expression was
proposed in [39] for Lx

u:
Lx

u ≈ Czm (2.60)
where the constants C and m are obtained from Figure 2.6.

Table 2.8 lists measured values of Lx
u and estimates based on Eq. (2.60).

The uncertainties in the value of Lx
u are seen to be significant.

On the basis of recent measurements at elevations z of up to about 95 m in open sea
exposure at mean speeds U(z) = 10 to 25 m s−1, it was suggested in [40], on a strictly

1000 10
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m

C

zo (meters)
10

1

10

Figure 2.6 Values of C and m as functions of z0. Source: Reprinted from [39], with permission from
Elsevier.
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Table 2.8 Measurements of integral turbulence scales Lx
u (m).

Exposure z z0 Range Avg. Eq. (2.60)

Opena) 31 0.03 60–460 200 180
Opena) 51 0.03 130–450 200 200
Opena) 81 0.03 60–650 300 230
Opena) 110 0.03 110–690 350 240
Opena) 151 0.03 120–630 400 250
Openb) 15 0.01 82 220
Openb) 17 0.04–0.10 55 120–160
Sub.b) 16 1.00 36 70

a) Measurements reported in [61].
b) Measurements reported in [39].

empirical basis, that Lx
u (z) ≈ 3.3 U(z)+ 30, where Lx

u is in meters and U is in m s−1, and
it was noted that Lx

u increased in the intervals 5–10, 10–20, 20–40, 40–60, and 60–80 m
elevation by approximately 7, 10, 10, 8 and 5%, respectively. The dependence of the inte-
gral length scale on the velocity at all elevations is not supported by theory, however.

According to [39], it may be assumed

Ly
u ≈ 0.33 Lx

u; Lz
u ≈ 0.5 Lx

u; Ly
w ≈ 0.4z (2.61a,b,c)

Section 2.4.3 presents the derivation of the integral turbulence length Lx
u from an

expression for the spectrum of the longitudinal velocity fluctuations, based on theory
and validated by measurements reported in [41] (see Eq. [2.77]).

2.4.3 Spectra of Turbulent Wind Speed Fluctuations

As indicated in Section 2.4.2, integral turbulence scales are measures of the average size
of the largest turbulent eddies of the flow. In some applications a more detailed descrip-
tion of the turbulent fluctuations is needed. For example, the resonant response of a
flexible structure is induced by velocity fluctuation components with frequencies equal
or close to the structure’s natural frequencies of vibration. To calculate that response,
measures are needed of the size of the turbulent eddies as a function of frequency, and
of the degree to which the turbulent fluctuations differ from each other as functions of
their relative position in space. These measures are provided by the spectral density and
the cross-spectral density functions.

The Energy Cascade. Turbulent velocity fluctuations in a flow with mean velocity U
may be viewed as a result of a superposition of eddies, each characterized by a periodic
motion with circular frequency 𝜔 = 2𝜋n (or of wavenumbers 𝜅). From the equations of
balance of momenta for the mean motion, the following equation may be derived:[

U 𝜕

𝜕x

(
q2

2

)
+ V 𝜕

𝜕y

(
q2

2

)
+ W 𝜕

𝜕z

(
q2

2

)]
−
[
𝜏u

𝜌

𝜕U
𝜕z

+
𝜏v

𝜌

𝜕V
𝜕z

]

+ 𝜕

𝜕z

[
w
(

p′

𝜌
+

q2

2

)]
+ 𝜀 = 0 (2.62)
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where the bars indicate averaging with respect to time,

q = (u2 + v2 + w2)1∕2 (2.63)

is the resultant fluctuating velocity, u, v, and w are turbulent velocity fluctuations in
the x, y, and z directions, respectively, p′ is the fluctuating pressure, and 𝜀 is the rate of
energy dissipation per unit mass. Eq. (2.62) is the turbulent kinetic energy equation, and
expresses the balance of turbulent energy advection (the terms in the first bracket), pro-
duction (the terms in the second bracket), diffusion (the terms in the third bracket), and
dissipation.

It can be shown that the inertial terms in these equations are associated with transfer
of energy from larger eddies to smaller ones, while the viscous terms account for
energy dissipation [42]. The latter is effected mostly by the smallest eddies in which
the shear deformations, and therefore the viscous stresses, are large. In the absence
of sources of energy, the kinetic energy of the turbulent motion will decrease, that is,
the turbulence will decay. If the viscosity effects are small, the decay time is long if
compared with the periods of the eddies in the high wavenumber range. The energy
of these eddies may therefore be considered to be approximately steady. This can only
be the case if the energy fed into them through inertial transfer from the larger eddies
is balanced by the energy dissipated through viscous effects. The small eddy motion is
then determined by the rate of energy transfer (or, equivalently, by the rate of energy
dissipation, denoted by 𝜀), and by the viscosity. The assumption that this is the case is
known as Kolmogorov’s first hypothesis. It follows from this assumption that, since small
eddy motion depends only upon the internal parameters of the flow, it is independent of
external conditions such as boundaries and that, therefore, local isotropy – the absence
of preferred directions of small eddy motion – obtains.

It may further be assumed that the energy dissipation is produced almost in its entirety
by the smallest eddies of the flow. Thus, at the lower end of the wavenumber subrange
to which Kolmogorov’s first hypothesis applies, the influence of the viscosity is small.
In this subrange, known as the inertial subrange, the eddy motion may be assumed
to be independent of viscosity, and thus determined solely by the rate of energy trans-
fer, 𝜀, which is equal to the rate of energy dissipation. This assumption is known as the
Kolmogorov second hypothesis.

The total kinetic energy of the turbulent motion may, correspondingly, be regarded as
a sum of contributions by each of the eddies of the flow. The function E(𝜅) representing
the dependence upon wavenumber 𝜅 of these energy contributions is defined as the
energy spectrum of the turbulent motion.

It follows that, for sufficiently high 𝜅

F[E(𝜅), 𝜅, 𝜀] = 0 (2.64)

The dimensions of the quantities within brackets in Eq. (2.64) are [L3T−2], [L−1], and
[L2T−3], respectively. From dimensional considerations it follows that

E(𝜅) = a1𝜀
2∕3𝜅−5∕3 (2.65)

in which a1 is a universal constant. On account of the isotropy, the expression for the
spectral density of the longitudinal velocity fluctuations,1 denoted by Eu(𝜅), is to within

1 A mathematical definition of spectra is presented in Appendix B.
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a constant similar to the constant in Eq. (2.65). Thus,

Eu(𝜅) = a𝜀2∕3𝜅−5∕3 (2.66)

in which it has been established by measurements that a≈ 0.5.
If expressed in terms of the frequency n, the spectral density is denoted by Su(n). Its

expression is determined by noting that

∫

∞

0
Eu(𝜅)d𝜅 =

∫

∞

0
Su(n)dn = u2 (2.67)

(see Eq. [B.15]), and 𝜅 = 2𝜋n/U . Therefore,

Su(n)dn = Eu(𝜅)d𝜅 (2.68)

Mathematically, the ordinates of a spectral density function are counterparts of the
squares of the amplitudes of a Fourier series. In a Fourier series the frequencies are dis-
crete, and the contribution of each harmonic component to the signal’s variance is finite.
In a spectral density plot the frequencies are continuous, and given a signal g(t), each
component Sg(n) has an infinitesimal contribution to the variance of g(t). Spectral den-
sity plots thus have to plots of squares of Fourier series harmonic components a relation
similar to the relation of a probability density function to a discrete probability plot.

Spectra in the Inertial Subrange. Measurements performed in the surface layer of the
atmosphere confirm the assumption that in horizontally homogeneous, neutrally strat-
ified flow the energy production is approximately balanced by the energy dissipation. It
then follows from Eq. (2.62) that the expression for this balance is, approximately,

𝜀 =
𝜏0

𝜌

dU(z)
dz

(2.69)

where
U(z)

u∗
= 1

k
ln
(

z
z0

)
(2.38)

If Eqs. (2.12), (2.67), and (2.38) are used,

𝜀 =
u3
∗

k z
(2.70)

For the inertial subrange, we substitute Eq. (2.70) in Eq. (2.66). Since 𝜅 = 2𝜋n/U(z),
there results

nSu(n)
u2
∗

≈ 0.26 f −2∕3 (2.71)

The left-hand side of Eq. (2.71) and the variable

f = nz
U (z)

(2.72)

are called, respectively, the reduced spectrum of the longitudinal velocity fluctuations
and, in honor of Kolmogorov’s student who developed Eq. (2.72), the Monin similar-
ity coordinate. Equation (2.71) was validated by extensive measurements, for example,
[43]. Its dependence on height above ground is significant for structural engineering
purposes since spectral ordinates within the inertial subrange typically cause the reso-
nant response of tall structures to wind loads. As is the case for the logarithmic law, for
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mean wind speeds at 10 m above ground greater than, say, 15 m s−1, it is reasonable to
apply Eq. (2.71) throughout the height range of interest to the structural engineer.

Spectra in the Lower-Frequency Range. The lower-frequency range, also called the
energy containing range, is defined between n ≈ 0 and the lower end of the inertial sub-
range, ns. Velocities in this range contribute the bulk of the quasi-static along-wind fluc-
tuating loading on structures. According to theoretical and numerical results reported
in [44] and [45], and to measurements reported in [41], for 0≤ n ≤nl, where nl is small
(i.e., in the order of 0.02 Hz or less), the spectral density may be assumed to be constant.
In particular, it follows from Eq. (2.59) and (B.25) that

Su(z, 0) =
4𝛽u2

∗Lx
u(z)

U(z)
. (2.73)

For frequencies nl ≤n ≤ ns, Su(z, n) = a(z)/n, where a(z) is determined from the con-
dition that, for n = ns, Su(z, n) is continuous, that is, satisfies Eq. (2.71).

Expressions for the Spectrum Proposed in the 1960s and 1970s. Kaimal’s spectrum has
the form [46]:

nSu(z, n)
u2
∗

=
105f

(1 + 33f )2∕3 (2.74)

where f is the Monin coordinate (Eq. [2.72]).
For open terrain, Eq. (2.74) does not satisfy the widely accepted requirement that the

area under the spectral curve should be approximately 6u2
∗. To satisfy this requirement

the coefficients 105 and 33 are replaced in Eq. (2.74) by the coefficients 200 and 50,
respectively:

nSu(z, n)
u2
∗

=
200f

(1 + 50f )2∕3 (2.75)

An expression for the spectrum proposed by Davenport [47] is no longer in use
because (i) it does not account for the dependence of the spectrum on height, and (ii) it
implies = 0. The ASCE 49-12 Standard has adopted the following expression, referred
to as the von Kármán spectrum [16, 48, 49]:

nSu(z, n)
u2
∗

=
4𝛽(nLx

u(z)∕U(z))
[1 + 70.8(nLx

u(z)∕U(z))2]5∕6 (2.76)

Equation (2.76) was developed for aeronautical applications in conjunction with a value
Lx

u = 760 m [48] at mid to high altitudes. It yields the correct expression for the spectrum
at n = 0, and reflects correctly the decay of the spectrum as a function of n in the iner-
tial subrange. However, it is universally accepted in the boundary-layer meteorological
community that spectral ordinates in that subrange are well represented by Eq. (2.71).
For Eq. (2.76) to be consistent with Eq. (2.71) it would be necessary that

Lx
u = 0.3𝛽3∕2z (2.77)

According to Eq. (2.77), for open terrain at 10 m above ground (𝛽 = 6.0, see Table 2.6),
Lx

u = 44 m, whereas according to ASCE 49-12 [16] Lx
u = 110 m.

Reference [35, p. 176] states: “We recommend that integral scales be avoided in
applications to atmospheric data. Many investigators have computed integral scales
from atmospheric data, but the results are badly scattered and cannot be organized.”
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For this reason it has been proposed to base the estimation of the integral scale Lx
u on the

frequency nmax for which the curve nSu(n) is a maximum. “Unfortunately, the curves
nSu(n) tend to be quite flat and sufficiently variable that nmax is not well defined” [35].
Reference [50] also warns against the use of this approach, and notes that it likely
underestimates Lx

u by a factor of 2 or 3.
Spectral Density Su(z, n) and Integral Scale [63]. A model of the spectrum Su(n) was

recently developed on the basis of theoretical studies (e.g., [44, 45]) and measurements
reported in [41]. Based on [41, figures 6 and 7], the spectral density of the longitudinal
velocity fluctuations can be written as

Su(z, z0, n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a(z, z0)
nl

0 < n < nl

a(z, z0)
n

nl ≤ n < ns

0.26u2
∗

(
z

U(z, z0)

)−2∕3

n−5∕3 ns ≤ n

(2.78a,b,c)

Equation (2.78c) was obtained from Eqs. (2.72) and (2.73). Using the notation
nsz

U(z)
= fs (2.79)

where, according to the measurements of [41, figure 8], f s ≈ 0.125, For n = ns, Eq. (2.78c)
becomes

Su(z, z0, ns) = 0.26u2
∗

(
z

U(z, z0)

)−2∕3

n−5∕3
s (2.80)

The condition that the functions defined by Eqs. (2.78b) and (2.78c) be continuous at
n = ns then yields

a(z) = 0.26u2
∗ f −2∕3

s (2.81)
The areas under the spectral curve in the intervals 0 ≤ n ≤ nl is [a(z)/nl]nl. The areas

under the spectral curve in the intervals nl ≤ n ≤ ns, and n ≥ ns are, respectively,

∫

ns

nl

0.26u2
∗ f −2∕3

s
dn
n

= 0.26u2
∗ f −2∕3

s ln
ns

nl
(2.82)

∫

nd

ns

0.26u2
∗

[
z

U(z)

]−2∕3

n−5∕3dn ≈ 0.39u2
∗ f −2∕3

s (2.83)

where nd is the very large frequency corresponding to the onset of dissipation by molec-
ular friction.

The total area under the spectral curve is 𝛽(z0)u2
∗. Therefore

𝛽(z0)u2
∗ = 0.26u2

∗ f −2∕3
s + 0.26u2

∗ f −2∕3
s ln

ns

nl
+ 0.39u2

∗ f −2∕3
s (2.84)

Equation (2.84) yields

nl = ns exp

[
−
𝛽(z0) − 0.26fs

−2∕3 − 0.39fs
−2∕3

0.26fs
−2∕3

]

= fs
U(z)

z
exp

[
−
𝛽(z0) − 0.65fs

−2∕3

0.26fs
−2∕3

]
(2.85)
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Figure 2.7 Spectral density plot, z = 10 m, U(10 m) = 30 m s−1, z0 = 0.03 m, f s = 0.125.

Equations (2.78a,b,c) are plotted in Figure 2.7 for z = 10 m, U(10 m) = 30 m s−1,
z0 = 0.03 m, f s = 0.125.

The integral turbulence scale is

Lx
u(z) =

Su(0, z)U(z)
4𝛽(z0)u2

∗
(2.86)

Lx
u(z) =

0.26fs
−5∕3

4𝛽(z0)
exp

[
𝛽(z0) − 0.65fs

− 2
3

0.26fs
− 2

3

]
z (2.87)

The expression for the integral scale is based on values of 𝛽 that are well established
and on validated models of the spectrum for both the inertial subrange and the low
frequency ranges. For sufficiently low values of z, 𝛽 is assumed to be constant and Lx

u(z)
is independent of wind speed.

Example 2.15 Let z = 10 m, U(10 m) = 5.39 m s−1, z0 = 0.04 m. Therefore 𝛽 ≈ 6.0
and u* = 0.39 m s−1. According to measurements reported in [41], f s = 0.125. Then
ns = 0.0674 Hz (Eq. [2.79]), nl = 2.56× 10−3 Hz (Eq. [2.85]), a(10 m) = 0.158 (Eq. [2.81]),
Su(nl, 10 m) = 61.7 m2 s−1 = Su(n = 0, 10 m) (Eqs. [2.77ab] and [2.77b]). The calculated
integral length is 9.11z = 91.1 m (Eq. [2.86]). The value provided in the ASCE 49-12
Standard is 110 m.

The measurements of [41] have consistently yielded the value f s = 0.125 at all six eleva-
tions for which data were obtained. Note, however, that the calculated length is sensitive
to the value of the frequency f s. In Example 2.15, assuming f s = 0.1, 0.125, and, as sug-
gested in [44], f s = 0.16, for z0 = 0.04 m and 𝛽 = 6, Eq. (2.87) yields (10 m) = 56.5, 91, and
171 m, respectively. This suggests that the recommendation by Panofsky and Dutton
[35] quoted earlier is indeed warranted. In addition, the finding that the curve nSu(n) is
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flat in the range nl < n< ns confirms the statement in [35] and [50] that the frequency for
which that curve attains a maximum yields no useful information on the integral length.

Dependence of Lx
u on wind speed at higher elevations, z. It was noted that, throughout

the sublayer within which the parameter 𝛽 is approximately constant, the integral tur-
bulence length is independent of wind speed. However, this appears to be no longer the
case for higher elevations z.

Let the height of the ABL be denoted by H . Since H is proportional to the friction
velocity u* (Eq. [2.37]), for given z the ratio z/H is lower for higher winds, mean-
ing that 𝛽(z, z0) decreases with height (Eq. [2.55]). Consider for example, the case
z0 = 0.04 m, z = 55 m, and U(z= 55 m) = 6.78 m s−1 (as in [41]). The logarithmic
law yields u*= 0.38 m s−1. If the order of magnitude of the boundary layer depth is
H≈ 0.1u*/f, where f is the Coriolis parameter (see, e.g., Examples 2.7 and 2.8), to
f= 10−4 s−1 there corresponds H≈ 380 m. Assuming the validity of Eq. (2.55),
𝛽(z, z0) = 6.0 exp (−1.5× 55/380)= 4.8. On the other hand, if U(z = 55 m) = 68 m s−1,
u* = 3.8 m s−1, H= 3800 m, and 𝛽(z, z0) = 6.0 exp(−1.5× 55/3800) = 5.9. It follows
from Eq. (2.87) with f s = 0.125 that the calculated value of the integral scale is 230 m if
U(z= 55 m) = 6.78 m s−1, and 463 m if U(z= 55 m) = 68 m s−1.

This example suggests that estimates of the integral scale at higher elevations depend
upon the wind speed at which the measured data were obtained, and that the measure-
ment reports should therefore include that speed.

Spectra of Vertical and Lateral Velocity Fluctuations. According to [51], up to an ele-
vation of about 50 m, the expression for the vertical velocity fluctuations, which may be
required for the design of some types of bridges, is

nSw(z, n)
u2
∗

=
33.6 f

1 + 10 f 5∕3 (2.88)

Equation (2.88) can be used for suspended-span bridge design. The expression for the
spectrum of the lateral turbulent fluctuations proposed in [46] is

nSv(z, n)
u2
∗

=
15 f

(1 + 10 f )5∕3 (2.89)

In Eqs. (2.88) and (2.89) the variable f is defined as in Eq. (2.72).

2.4.4 Cross-spectral Density Functions

The cross-spectral density function of turbulent fluctuations occurring at two different
points in space indicates the extent to which harmonic fluctuation components with
frequencies n at those points are in tune with each other or evolve at cross-purposes
(i.e., are or are not mutually coherent). For components with high frequencies, the dis-
tance in space over which wind speed fluctuations are mutually coherent is small. For
low-frequency components that distance is relatively large – in the order of integral
turbulence scales. An eddy corresponding to a component with frequency n is said to
envelop a structure if the distance over which the fluctuations with frequency n are rel-
atively coherent is comparable to the relevant dimension of the structure.

The expression for the cross-spectral density of two signals u1 and u2 is

Scr
u1u2

(r, n) = SC
u1u2

(r, n) + iSQ
u1u2

(r, n) (2.90)
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in which i =
√
−1, r is the distance between the points M1 and M2 at which the signals

occur, and the subscripts C and Q identify the co-spectrum and the quadrature spec-
trum of the two signals, respectively. The coherence function is defined as

Coh(r, n) = c2
u1u2

(r, n) + q2
u1u2

(r, n) (2.91)
where

c2
u1u2

(r, n) =
[SC

u1u2
(r, n)]2

S(z1, n)S(z2, n)
, q2

u1u2
(r, n) =

[SQ
u1u2

(r, n)]2

S(z1, n)S(z2, n)
(2.92a,b)

In Eqs. (2.91) and (2.92a,b), S(z1, n), and S(z2, n) are the spectra of the signals at points
M1 and M2. To larger integral turbulence scales there correspond increased values of
the coherence.

For ABL applications it is typically assumed that the quadrature spectrum is negligible.
The following expression for the cospectrum is used in applications:

SC
u1u2

(r, n) = S1∕2(z1, n)S1∕2(z2, n) exp(−f̂ ) (2.93)
where

f̂ =
n[C2

z (z2
1 − z2

2) + C2
y (z2

1 − z2
2)]

2

1
2
[U(z1) + U(z2)]

(2.94)

yi, zi are the coordinates of point Mi (i= 1, 2), and according to wind tunnel mea-
surements the values of the exponential decay coefficients may be assumed to be, very
approximately, Cz ≈ 10, Cy ≈ 16 [52]. Eqs. (2.93) and (2.94) reflect the intuitively obvious
fact that the cross-spectrum decreases as (i) the frequency n increases (since, for given
distance between the points M1 and M2, the mutual coherence is lower for small eddies
than for larger eddies), and/or (ii) the distance between the points increases. For lat-
eral fluctuations the expression for the cospectrum is similar, except that values Cz ≈ 7,
Cy ≈ 11 have been proposed [53]. For two points with the same elevation, the expres-
sion for the co-spectrum of the vertical fluctuations is also assumed to be similar, with
Cy ≈ 8 [53]. The exponential decay coefficients are in fact dependent upon surface rough-
ness and upon wind speed; these dependences are typically not accounted for in practice.

2.5 Horizontally Non-Homogeneous Flows

Horizontal non-homogeneities of atmospheric flows are due either to conditions at
the Earth’s surface (e.g., changes in surface roughness, topographic features) or to the
meteorological nature of the flow (as in the case of tropical cyclones, thunderstorms or
downbursts). While the structure of horizontally homogeneous flows is basically well
understood, the modeling of horizontally non-homogeneous flows is to a large extent
still incomplete or tentative. Computational Fluid Dynamics methods are increasingly
being used for a variety of surface roughness and topographic configurations. This
section contains information of interest for structural engineering purposes.

2.5.1 Flow Near a Change in Surface Roughness. Fetch and Terrain Exposure

Sites with uniform surface roughness are limited in size; the flows near their bound-
aries are therefore affected by the surface roughness of adjoining sites. Therefore, the
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surface roughness is not the sole factor that determines the wind profile at a site. The
profile also depends upon the distance (the fetch) over which that surface roughness
prevails upwind of the site. The terminology used in the ASCE 7 Standard therefore
distinguishes between surface roughness and exposure. For example, a site is defined as
having Exposure B if it has surface roughness B and surface roughness B prevails over a
sufficiently long fetch; for design purposes the wind profile at a site with Exposure B may
be described by the power law with parameters corresponding to surface roughness B.
Sections 2.3 and 2.4 consider only the case of long fetch. The ASCE 7 Standard provides
criteria on the fetch required to assume a given exposure.

Useful information on the flow in transition zones can be obtained by considering the
simple case of an abrupt roughness change along a line perpendicular to the direction
of the mean flow. Upwind of the discontinuity the flow is horizontally homogeneous
and, near the ground, is governed by the parameter z01. Downwind of the discontinu-
ity the flow will be affected by the surface roughness z02 over a height h(x), where x is
the downwind distance from the discontinuity. This height, known as the height of the
internal boundary layer, increases with x until the entire flow adjusts to the roughness
length z02. A well-accepted model of the internal boundary layer, which holds for both
smooth-to-rough and rough-to smooth transitions, is

h(x) ≈ 0.28 z0r

(
x

z0r

)0.8

(2.95)

[53], where z0r is the largest of the roughness lengths z01 and z02. The validity of Eq. (2.95)
is limited to h< 0.2 H, where H is the ABL height for very large x. Within the internal
boundary layer the flow adjusts to the new surface roughness as shown in Figure 2.8.

Example 2.16 Consider a zone with roughness length z02 = 0.30 m downwind of a
zone with roughness length z01 = 0.03 m. The estimated height of the internal boundary
layer at a distance x = 10 000 m downwind of the line of separation between the two
zones is h(10 000 m)≈ 350 m. The same result is valid if the zone with roughness length
z01 = 0.03 m is downwind of the zone with z02 = 0.30 m.

2.5.2 Wind Profiles over Escarpments

Topographic features alter the local wind environment and create wind speed increases
(speed-up effects), since more air has to flow through an area decreased, with respect
to the case of flat land, by the presence of the topographical feature. The procedure that
follows is specified in the ASCE 7-16 Standard [3] for the calculation of speed-up effects
on 2- or 3-D (two- or three-dimensional) isolated hills and 2-D ridges and escarpments.

z0r = z02

x

h(x)

z

z01

Figure 2.8 Internal boundary layer
h(x). Mean wind speed profile within
the internal boundary layer is adjusted
to the terrain roughness z02 > z01.
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H
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Speed-up

Figure 2.9 Two-dimensional escarpment.

The increase in the wind speeds due to the topography is reflected in the
exposure-dependent factor Kzt . The Standard provides speed-up models applica-
ble to 2-D ridges, 3-D isolated hills, and 2-D escarpments, provided that all the
following conditions are satisfied (see Figure 2.9 for notations):

1) No topographic features of comparable height exist for a horizontal distance of 100
times the height of the hill H or 3.2 km, whichever is less, from the point at which
the height H is determined.

2) The topographic feature protrudes above the height of upwind terrain features within
a 3.2 km radius by a factor of two or more in any quadrant.

3) The structure is located in the upper half of a hill or ridge or near the crest of an
escarpment.

4) H/Lh ≥ 0.2.
5) The height of the hill H exceeds 5.25 m for Exposures C and D, and 21 m for

Exposure B.

If any of the conditions 1–5 above is not satisfied, Kzt = 1.
The topographic factor is defined as Kzt = [V (z, x)/V (z)]2, where V (z)= 3-second peak

gust speed at height z above ground in horizontal terrain with no topographic feature.
The expression for Kzt is:

Kzt = (1 + K1K2K3)2 (2.96)

where the factor K1 accounts for the shape of the topographic feature, K2 accounts for
the variation of the speed-up as a function of distance from the crest, and K3 accounts for
the variation of the speed-up as a function of height above the surface of the topographic
feature. Values of and expressions for K1, K2, K3are given in ASCE 7-16. For example,
for H/Lh ≤ 0.5,

K1 = aH
Lh
, K2 = 1 − |x|

𝜇Lh
, K3 = exp

(
−𝛾z

Lh

)
(2.97a,b,c)

where for 2-D escarpments, 𝛾 = 2.5; 𝜇 = 1.5 (upwind of crest), 𝜇 = 4.0 (downwind of
crest); a= 0.75 (Exposure B), a= 0.85 (Exposure C), and a= 0.95 (Exposure D).
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Example 2.17 Topographic factor for a 2-D escarpment. The escarpment is assumed to
have Exposure B and dimensions H = 30.5 m, Lh = 122 m. The topography upwind of the
escarpment is assumed to satisfy conditions 1 and 2. The building is located at the top of
the escarpment, and the downwind distance (see Figure 2.9) between the crest and the
building’s windward face is x= 12.2 m. (In Figure 2.9 the building would be located to
the right of the crest.) We seek the quantity Kzt for elevation z = 7.6 m above ground at
x = 12.2 m.

Condition 4 is satisfied, since H/Lh = 30.5/122 = 0.25> 0.2, as is condition 5, since
H = 30.5 m> 21 m.

Since H/Lh < 0.5, Eqs. (2.97a,b,c) yield:

K1 = 0.75 × 30.5/122 = 0.1875,
K2 = 1 − 12.2/(4.0 × 122) = 0.975,
K3 = exp.(−2.5 × 7.6/122 = 0.855.

The topographic factor is

Kzt = (1+ 0.1875 × 0.975 × 0.855)2 = 1.162 = 1.35.

This result implies that at x = 12.2 m downwind of the crest and z = 7.6 m above
ground, the increased peak 3-second gust is 1.16 times larger than the peak 3-second
gust at 7.6 m above ground upwind of the escarpment, and the corresponding pressures
are (1.16)2 = 1.35 times larger than upwind of the escarpment.

2.5.3 Hurricane and Thunderstorm Winds

In current structural engineering practice it is assumed that flow models used for syn-
optic storms are acceptable for hurricanes and thunderstorms as well. Although they
are not yet sufficient for codification purposes, a number of research results on these
two types of storm have been obtained in recent years, of which the most significant are
briefly summarized or cited herein.

Hurricanes. Geophysical Positioning System (GPS) dropwindsonde (or dropsonde)
measurements of hurricane wind speed profiles yielded the following results: (i) On
average, in the storm’s outer vortex, wind speeds increase monotonically up to an ele-
vation of about 1 km, where they attain about 1.4 times their strength at 10 m; they then
decrease monotonically between 1 and 3 km, where they attain about 1.3 times their
strength at 10 m. (ii) On average, in the storm’s eyewall, wind speeds increase monoton-
ically up to an elevation of about 400 m, where they attain about 1.3 times their value at
10 m, after which they decrease monotonically between 400 and 3 km, where they attain
about 1.1 times their value at 10 m [54].

The turbulence intensity in hurricane winds was found to be larger by about 10% in
hurricanes than in synoptic storms [37, 38, 55]. Values of the longitudinal integral tur-
bulence scale Lx

u measured at 10 m elevation in hurricane Bonnie varied from 40 to
370 m [37]. Table 2.9 [37] lists measured values of Lx

u based on 10- and 60-min long
records at 5 and 10 m above ground, as well as values specified in the ASCE 49-12
Standard [16].

As expected, Lx
u decreases as the roughness length increases; it increases, in most

cases modestly, as the height z increases from 5 to 10 m. It is seen in Table 2.9 that the
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Table 2.9 Longitudinal integral length scales at 5 and 10 m elevations (m).

Record (length) [54]

Hurricane z0min z0max z 10 min. 60 min. Eq. (2.60)
ASCE
49-12 [16] Eq. (2.87)a)

Isidore 0.0011 0.0060 5
10

98
140

310
450

210–400
220–420 190 150

Gordon 0.0002 0.0014 10 176 365 370–450 190 165
Ivan 0.0080 0.0551 5

10
126
154

197
240

120–180
140–190 110 100

Ivan 0.0116 0.0497 5
10

105
123

314
366

120–130
130–140 110 100

Lili 0.0082 0.0589 5
10

82
94

189
226

90–180
110–190 110 100

a) Values obtained by using Eq. (2.87) were multiplied by 1.1 to account for the fact that fluctuations are
stronger in hurricanes than in extratropical storms.

ASCE 49-12 Standard [16] values are considerably smaller than the reported 60-min
measurements. It may be assumed that measurements of integral length scales are
affected by significant uncertainties, as was noted also in Section 2.4.2.

A hurricane wind speed record that clearly reflects the passage of the eye is shown in
Figure 2.10. The record was obtained at 15 m above ground by an ultrasonic anemome-
ter unit with a wind speed range of 0–65 m s−1 with a resolution of 0.01 m s−1, capable of
measuring instantaneous u, v, and w wind velocity components with a maximum sam-
pling rate of 32 Hz. The traces shown are 10-minute and 3-second moving averages of
data with a 10 Hz sampling rate. Note its non-stationary character, which contrasts with
the stationarity of Figure 2.1.

Thunderstorms. The cold air downdraft that, in a thunderstorm, spreads horizontally
over the ground, can be compared to a wall jet. Just as in a wall jet, the surface friction
retards the spreading flow.

Of particular interest is the first gust (or gust front) (Figures 1.14 and 2.11), that is, the
thunderstorm wind that can exhibit a considerable and relatively rapid change of speed
and direction. The wind speed increase and the time interval during which it occurs have
been called by some authors the gust size ΔV and the gust length Δt, respectively [55].
Depending upon thunderstorm intensity, the gust size may vary approximately from 3
to 30 m s−1, while the gust length may range from approximately less than 1–10 min.

According to numerical and laboratory simulations [56–58], as well as full-scale mea-
surements [59], near the ground the wind speed profiles along a thunderstorm gust front
can be quite different from a log-law profile. However, in current design practice it is
assumed that thunderstorm characteristics may for practical purposes be assumed to be
the same as those of large-scale storms. This assumption may be warranted, given that,
according to [60], the maximum winds (i.e., design level winds) within the thunderstorm
are rarely due to storms in which significant deviations from the log law occur. Defini-
tive statements on the micrometeorological and statistical characterization of thunder-
storms appear to be unwarranted at this time owing to the lack of sufficient full-scale
high-speed data.
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Figure 2.10 Hurricane wind speed traces. Source: Courtesy of Professor F. J. Masters, University of Florida.
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c.177m f. 444m

b. 90m e. 355m

a. 45m d. 266m

Figure 2.11 Thunderstorm wind speed records at six elevations above ground near Oklahoma City.
Source: Courtesy of National Severe Storms Laboratory, National Oceanic and Atmospheric Laboratory.
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3

Extreme Wind Speeds

Structures are designed to be safe and serviceable, meaning that their probabilities of
exceeding specified strength and serviceability limit states must be acceptably small.
These probabilities are functions of the wind speeds to which the structures are exposed.
The present chapter is concerned with the probabilistic estimation of extreme wind
speeds. Uncertainties in such estimates are discussed in Chapter 7. Materials that com-
plement this chapter are provided in Appendices A and C.

Section 3.1 provides simple, intuitive definitions of exceedance probabilities and mean
recurrence intervals (MRIs), and extends those definitions to wind speeds in mixed wind
climates (e.g., climates with both hurricane and non-hurricane winds, or with large-scale
extratropical storm and thunderstorm winds). Section 3.2 defines non-directional and
directional wind speed data in non-hurricane and hurricane-prone regions, and reviews
main sources of such data for the conterminous United States. Section 3.3 describes and
illustrates methods for estimating extreme wind speeds with specified MRIs. Section 3.4
is devoted to tornado climatology.

3.1 Cumulative Distributions, Exceedance Probabilities,
Mean Recurrence Intervals

Section 3.1.1 introduces these topics intuitively by using the example of a fair die,
and shows its relevance to the probabilistic characterization of extreme wind speeds.
Section 3.1.2 considers the case of mixed wind climates, in regions with, for example,
hurricane winds and significant non-hurricane winds, or large-scale extratropical
storm and thunderstorm winds.

3.1.1 Probability of Exceedance and Mean Recurrence Intervals

3.1.1.1 A Case Study: The Fair Die
We denote the outcome of throwing a fair die once by O. The probability, denoted by
P(O ≤ n) (n= 1, 2, …, 6), that the outcome (i.e., the event) O is less than or equal to
n is called the cumulative distribution function (CDF) of the event O. The CDF of the
outcome O ≤ n is P(O≤ n) = n/6. The probability of exceedance of the outcome n is
P(O> n)= 1− P(O≤ n)= 1− n/6. The MRI of the event O> n is defined as the inverse of
the probability of exceedance of that event, and is the average number of trials (throws)

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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required for O> n. Therefore MRI (O> n)= 1/(1− n/6). The MRI is also called the mean
return period (see also Section A.5.1).

Example 3.1 Mean recurrence interval of the outcome of throwing a die. For a fair die
the probability of exceedance P(O> 5) = 1 − P(O≤ 5) = 1 − 5/6 = 1/6. The MRI of the
event O> 5 is 1/(1/6) = 6 trials, that is, the outcome “six” occurs, on average, once in six
trials.

The probability of exceedance of an outcome n increases as the number of trials
increases. If the probability of non-exceedance of the outcome n in one trial is
P(O≤ n), owing to the independence of the outcomes (Section A.2.5), the probability
of non-exceedance of the outcome n in m trials is [P(O≤ n)]m. The probability of
exceedance of the outcome n in m trials is 1 − [P(O≤ n)]m. For example, the probability
of non-exceedance of the outcome “five” in two throws of a die is (5/6)2 = 25/36, and
the probability of exceedance of that outcome is 1 − 25/36 = 11/36.

3.1.1.2 Extension to Extreme Wind Speeds
Conceptually, the difference between the statement “the outcome of throwing a die
once exceeds n” and the statement “the largest wind speed V occurring in any one year
exceeds v,” is that the CDF of the largest speed in a year, P(V ≤ v), is continuous, whereas
P(O≤ n) is discrete. For any given n, P(O≤ n) is the same for any one trial (throw of a
die), and is independent of the outcomes of other trials. Similarly, except for, say, possi-
ble global warming effects, P(V ≤ v) is the same for any one trial (any one year), and is
independent of speeds occurring in other years.

The speed v with an N-year MRI is called the N-year speed. The MRI, in years, is

N(v) = 1
1 − P(V ≤ v)

(3.1)

Example 3.2 Probability of exceedance of the largest wind speed in a given data sam-
ple. Consider the sample of size nine of the largest measured yearly wind speeds 20,
18, 21, 25, 17, 24, 22, 20, 15 (in m s−1; the largest speed in the sample is shown in
bold type). There are n= 9 outcomes for which V ≤ 25 mph, out of n+ 1 = 10 possi-
ble outcomes (the 10th outcome being V > 25 m s−1). Hence the estimated probability
P(V ≤ 25 m s−1) = 9/10 = 0.9. The probability of exceedance of a 25 m s−1 largest yearly
speed is 1 − 0.9 = 0.1. The MRI of the event that the 25 m s−1 wind speed is exceeded in
any one year is 1/0.1 = 10 years. The probability of the event V ≤ 25 m s−1 in 30 years is
equal to the probability that V ≤ 25 m s−1 in the first year, and in the second year, and
in the 30th year, that is 0.930 = 0.04. The probability that V > 25 m s−1 in 30 years is then
1 – 0.04 = 0.96.

3.1.2 Mixed Wind Climates

We now consider wind speeds in regions exposed to both non-hurricane and hurricane
winds. We are interested in the probability that, in any one year, wind speeds regardless
of their meteorological nature are less than or equal to a specified speed, v.
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Let the random variables V H and V NH denote, respectively, the largest hurricane
wind speed and the largest non-hurricane wind speed in any one year. Further, let the
probability that V H ≤ v and the probability that V NH ≤ v be denoted, respectively, by
P(V H ≤ v) and P(V NH ≤ v). The random variable of interest is the maximum yearly speed
regardless of whether it is a hurricane or a non-hurricane wind speed, and is denoted by
max(V H , V NH). The statement “max(V H , V NH)≤ v” and the statement “V H ≤ v and
V NH ≤ v” are equivalent. Therefore, P[max(V H , V NH)≤ v] = P(V H ≤ v and V NH ≤ v). If
it assumed that V H and V NH are independent random variables, it follows (see Section
A.2.5) that

P[max(VH ,VNH) ≤ v] = P(VH ≤ v)P(VNH ≤ v) (3.2)

The probability distributions P(V NH ≤ v) and P(V H ≤ v) can be obtained as shown in
Section 3.1.1. With an appropriate change of notation, Eq. (3.2) is also applicable to
non-thunderstorm and thunderstorm wind speeds.

The probability of occurrence of the event V H > v or V NH > v is (Section A.2.1):
P(VH > v or VNH > v) = P(VH > v) + P(VNH > v)

= 1 − P(VH ≤ v)P(VNH ≤ v) (3.3a,b)

Example 3.3 Mean recurrence interval of the event V H > v and V NH > v. Assume that
the MRI of the event that non-hurricane wind speeds exceed 45 m s−1 is NNH = 120
years, and that the MRI of the event that hurricane wind speeds exceed 45 m s−1

is NH = 50 years. The respective CDFs are P(VNH ≤ 45 m s−1) = 1 − 1∕NNH =
0.99167, and P(VH ≤ 45 m s−1) = 1 − 1∕NH = 0.98. By Eq. (3.2) the CDF of the
45 m s−1 wind speed due to non-hurricane and hurricane winds is P(V H ≤ 45 and
V NH ≤ 45 m s−1) = P(V H ≤ 45 m s−1) P(V NH ≤ 45 m s−1) = 0.99167 × 0.98 = 0.972. By
Eq. (3.1) the MRI of the 45 m s−1 wind speed at the site is 1/(1 − 0.972) = 35.7 years.

Example 3.4 Probability of occurrence of the event V H > v or V NH > v. Assuming again
NNH = 120 years, NH = 50 years, Eq. (3.3a,b) yields P(V H > v or V NH > v) = P(V H > v)+
P(V NH > v) = (1 − 0.98)+ (1 − 0.99167) = 0.028/year (Eq. A.1).

3.2 Wind Speed Data

3.2.1 Meteorological and Micrometeorological Homogeneity of the Data

Extreme wind speed distributions differ depending upon the meteorological nature of
the storms being considered. For this reason, hurricane, synoptic storm, and thunder-
storm data should be analyzed separately. In addition, wind speed data within a data
sample must be micrometeorologically homogeneous, meaning that all the data in a set
must correspond to the same (i) height above the surface, (ii) surface exposure (e.g.,
open terrain), and (iii) averaging time (e.g., 3 s for peak wind gust speeds, 1 min, 10 min,
or 1 h). Wind speeds at 10 m above terrain with open exposure, and with the specified
averaging time (typically 3 seconds in the United States) are referred to as standardized
wind speeds. If data do not satisfy the micrometeorological homogeneity requirement,
they have to be transformed so that the requirement is satisfied (see Sections 2.3.4–2.3.7,
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Section 2.4.1, and Ref. [1], which show that as far as the surface exposure is concerned,
this task can be far from trivial).

3.2.2 Directional and Non-Directional Wind Speeds

Standard provisions for wind loads are based primarily on the use of non-directional
extreme wind speeds, that is, largest wind speeds in any one year or storm event, regard-
less of their direction. Directional extreme wind speeds, that is, largest wind speeds in
any one year or storm event for each of the directional sectors being considered, are
used to estimate wind effects on special structures at sites for which aerodynamic data
are available for a sufficient number of wind directions.

Denote the directional wind speeds by Uij (e.g., i= 1, 2; j= 1, 2, …, 8), where the
subscript i indicates the year or the storm event, and the subscript j indicates the wind
direction. For fixed i the corresponding non-directional wind speed is Ui = maxj(Uij).

Example 3.5 Directional and non-directional wind speeds. To illustrate the definitions
of directional and non-directional wind speeds we consider the following largest peak
3-second gusts in m s−1 recorded in two consecutive 1-year periods:1

Directional speed Uij

Non-directional
speed maxj(Uij)

j 1 (NE) 2 (E) 3 (SE) 4 (S) 5 (SW) 6 (W) 7 (NW) 8 (N)
i = 1 45 50 41 48 43 44 47 39 50
i = 2 39 47 43 54 40 42 36 38 54

The non-directional speeds are also shown (in bold type) in the list of directional
speeds.

3.2.3 Wind Speed Data Sets

3.2.3.1 Data in the Public Domain
Peak Directional Gust Speeds at 10 m Above Open Terrain (Standardized Wind Speeds).
Standardized peak gust speeds averaged over five seconds extracted from Automated
Surface Observing Systems (ASOS) records and transformed to correspond to a 10 m
elevation over terrain with open exposure are listed on the site https://www.nist.gov/
wind. The difference between 5-second peak gusts and the 3-second peak gusts specified
in the ASCE 7-16 Standard [2] is, in practice, negligibly small. The standardized data
are separated into thunderstorm and large-scale extratropical wind speeds. This was
accomplished using a procedure described in [3] and software available on https://www
.nist.gov/wind.

Simulated (Synthetic) Directional Tropical Storm/Hurricane Wind Speeds. Direc-
tional wind speeds are available for 55 coastline locations (“milestones”) along the

1 In the statistical literature a fixed time period is called an epoch.
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Figure 3.1 Locator map with coastal distance marked, in nautical miles. Source: National Oceanic and
Atmospheric Administration.

Gulf and Atlantic coasts, shown in Figure 3.1 (see [4, 5]). The speeds were obtained
by Monte Carlo simulation (see Section A.8) from approximately 100-year records of
hurricane climatological data (pressure defects, radii of maximum wind speeds, and
translation speeds and directions; see Section 1.3.1). Probabilistic descriptions of those
data were developed and used in conjunction with the physical model described by Eq.
(1.4) to obtain probabilistic models of the gradient speeds and directions. These models
were then transformed via empirical expressions into probabilistic models of surface
wind speeds and directions, and used for the Monte Carlo simulation of directional
speed data at each of the milestones. The simulated data based on [4] are listed on
https://www.nist.gov/wind. They consist of (i) estimated hurricane mean arrival rates,
and (ii) sets of 999 1-min coastline wind speeds in knots at 10 m above open terrain
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for 16 directions at 22.5∘ intervals (1 knot≈ 1.15 mph; 1 mph = 0.447 m s−1; nominal
ratios between 3-second speeds and 1-minute speeds and between 1-minute speeds
and 1-hour speeds are 1.22 and 1.25, respectively, see Table 2.5). At any given site, as
many of 20–40% of the total number of simulated hurricane wind speeds are negligibly
small. Such small or vanishing wind speeds occur, for example, where the hurricane
translation velocity counteracts the rotational velocity. For each of the 55 milestones
shown in Figure 3.1, the respective 999 simulated data can be used to obtain, by Monte
Carlo simulation, datasets of any desired size, see Section 3.3.7.

Non-directional hurricane wind speeds based on more recent simulations than those
described in [5] can be obtained, both for the coastline and for regions adjacent to the
coastline, from wind maps in ASCE 7-16 [2] for MRIs of up to 3000 years, and from wind
maps in [6] for MRIs of up to 107 years.

3.2.3.2 Data Available Commercially
Peak Directional Gust Speeds for Each of 36 Directions at 10∘ Intervals, recorded at
ASOS stations for periods of about 20 years or less (www.ncdc.noaa.gov/oa/ncdc.html).

Simulated Hurricane Directional Wind Speed Data. The methodology for obtaining
directional hurricane wind speeds described in [7] is similar to the methodology used
in [4], except that the various climatological and probabilistic models used therein have
been refined and are based on a larger number of data. Unlike the data based on [4], the
data based on [7] cover both coastlines and regions adjacent thereto.

Figure 3.2 shows approximate estimates of 2000-year (or 1700-year) mean hourly
hurricane wind speeds at 10 m above open terrain as estimated in [4], the ASCE 7-10
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Figure 3.2 Approximate estimates of mean hourly hurricane wind speeds at 10 m above ground over
terrain with open exposure. Source: After Refs. [4, 8–10].
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Standard [8] and Refs. [9, 10]. Note that there are no major differences among the various
estimates, except for: milestones 1100 and 2600, where speeds are likely overestimated
in [10]; milestones 700 and 1400, where speeds are likely underestimated in [4]; and
milestones 2300–2600, where wind speeds are likely underestimated in the ASCE 7-10
Standard.

3.3 N-year Speed Estimation from Measured Wind Speeds

Estimates of extreme wind speeds based on sets of measured wind speeds can be per-
formed by using two types of datasets. In the traditional epochal approach the dataset
being analyzed consists of the largest wind speeds recorded at the site of interest in each
of a number of consecutive fixed epochs. To avoid seasonality effects, the epoch most
commonly chosen is 1 year. The dataset then consists of the largest yearly wind speed
for each year of the period of record. In the more modern peaks-over-threshold (POT)
approach, the dataset considered in the analysis consists of wind speeds that exceed an
optimal threshold.

Section 3.3.1 explains the advantages of the peaks-over-threshold (POT) over the
epochal approach. Sections 3.3.2 discusses the probability distributions of the largest
values and their use in structural engineering. Section 3.3.3 presents methods for
estimating extreme speeds with any specified MRI N , based on the epochal approach.
Section 3.3.4 provides information on sampling errors in the estimation of extreme
wind speeds modeled by the Type I Extreme Value distribution. Section 3.3.5 concerns
the POT approach. Section 3.3.6 briefly discusses the spatial smoothing of extreme
wind speed estimates performed at multiple stations within meteorologically homo-
geneous areas. Section 3.3.7 concerns the development of large extreme wind speed
databases from relatively short records. Non-parametric estimation methods applicable
to extreme wind speeds are presented in Section A.9.

3.3.1 Epochal Versus Peaks-Over-Threshold Approach to Estimation
of Extremes

One advantage of the POT approach is that it allows the use of larger data samples than
the epochal approach, since speeds other than the largest annual speeds can also be
included in the data sample. This is illustrated in the following example.

Example 3.6 Sample sizes in epochal and POT approaches. Assume that in Year 1 the
largest speed is 36 m s−1 and the second largest speed is 34 m s−1, and that in Year 2
the largest speed is 43 m s−1 and the second and third largest speeds are 35 m s−1 and
31 m s−1, respectively. If a threshold of 32 m s−1 is chosen, the speeds during Years 1 and
2 included in the sample are 43 m s−1, 36 m s−1, 35 m s−1, and 34 m s−1 (four speeds). In
the epochal approach only two speeds are included in the sample: 36 m s−1 (Year 1) and
43 m s−1 (Year 2). If the threshold is very high, the advantage of a larger sample size is
lost. For example, if the threshold were 40 m s−1, only one speed – 43 m s−1 – would
be included in the two-year sample. If the threshold were very low, the sample would
include non-extreme wind speeds; this would result in incorrect – biased – estimates of
the extreme wind speeds.
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An additional advantage of the POT approach is that it allows an optimal selection of
the dataset being analyzed, by (i) excluding from the analysis data lower than an optimal
threshold that would result in biased estimates of the extremes, and (ii) ensuring that
the size of the dataset is sufficiently large to minimize sampling errors.

3.3.2 Extreme Value Distributions and Their Use in Wind Climatology

As indicated in Section A.6, a theoretical and empirical basis exists for the assumption
that probability distributions of the largest values are adequate for describing extreme
wind speeds probabilistically. It has been proven mathematically that three types of
such distributions exist, characterized by the length of the distribution tail: the Gumbel
distribution (also known as the Fisher-Tippett Extreme Value Type I or EV I distribu-
tion), the Fréchet (Fisher-Tippett EV II) distribution, and the reverse Weibull distribution
(Fisher-Tippett EV III distribution of the largest values).

The EV I and the EV II distributions have infinitely long distribution tails. This
means that their use can lead to estimates of large extremes, whose probabilities
of being exceeded depend upon the thickness of the distribution upper tails. The
EV I distributions tails are less thick than the tails of the EV II distributions, and
entail negligibly small probabilities of exceedance of very large extremes. However,
for EV II distributions, the distribution tails are thicker, and may result in estimates
of unrealistically high extreme wind speeds. The EV III distribution has finite tails,
meaning that, for wind speeds larger than the finite value of the distribution tail, the
probabilities of exceedance are zero.

Uncertainties inherent in the estimation process can result in extreme wind speed
data samples being spuriously best fitted by an EV II distribution when in fact an EV I
distribution would be appropriate. For this reason, the assumption that extreme wind
speeds are best fitted by an EV II distribution, used in the 1970s for the development
of the extreme wind speed maps of the American National Standard A58.1, was aban-
doned by consensus of the ASCE 7 Standard Committee on Loads in favor of the EV I
distribution.

Statistical estimates suggested that the EV III distribution may fit extreme wind
speed data samples better than the EV I distribution; on the basis of such estimates the
Australian/New Zealand Standard [11, Commentary C3.2] adopted the assumption
that the EV III distribution is representative of the behavior of extreme wind speeds.
However, estimates of the tail length of the EV III distribution are in practice prone to
large errors, and to avoid the underestimation of extreme wind speeds due to spurious
best fits, the ASCE 7 Standards Committee on Loads also decided against the use of the
EV III distribution. Unless otherwise indicated, it will be assumed in this chapter that
the EV I distribution is an appropriate probabilistic model of the extreme wind speeds.

The CDF of the EV I distribution is

FI(x) = exp
[
− exp

(
−x − 𝜇

𝜎

)]
(−∞ < x <∞; −∞ < 𝜇 < ∞; 0 < 𝜎 < ∞)

(3.4)

where 𝜇 and 𝜎, called the location and scale parameter, respectively, are related to the
mean value E(X) and standard deviation SD(X) of X by the expressions

E(X) = 𝜇 + 0.5772𝜎 (3.5a)
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SD(X) = 𝜋√
6
𝜎 (3.5b)

Inversion of Eq. (3.4) yields

x(FI) = 𝜇 − 𝜎 ln(− ln FI) (3.6)

or, by virtue of Eq. (3.1),

x(N) = 𝜇 − 𝜎 ln
[
− ln

(
1 − 1

N

)]

≈ 𝜇 + 𝜎 ln N (3.7a,b)

for large N .

3.3.3 Wind Speed Estimation by the Epochal Approach

This section presents two of the methods for estimating N-year wind speeds under
the assumption that the EV I distribution is appropriate: the method of moments and
Lieblein’s BLUE (Best Linear Unbiased Estimator) method.

3.3.3.1 Method of Moments
This method relies on calculated sample means E(V ) and standard deviations SD(V ) of
the sample of n wind speeds. The wind speed corresponding to an MRI N is obtained
from Eqs. (3.7) in which the parameters 𝜇 and 𝜎 are obtained from Eqs. (3.5).

Example 3.7 EV I Extreme Wind Estimation, Epochal Approach
Method of Moments. Assume that in a n = 14-year record at a site, the non-directional
largest yearly peak 3-second gust speeds from any direction (in m s−1) are: 36, 34,
35, 37, 33, 36, 40, 39, 41, 43, 33, 31, 28, 34. The epochal approach makes use of
the mean E(V ) = 35.71 m s−1 and standard deviation SD(V ) = 4.07 m s−1 of the
n largest annual speeds. From Eqs. (3.5) we obtain 𝜎 = 3.17 and 𝜇 = 33.90 (in
m s−1). Equations (3.7a,b) yield v(N = 50 years) = 46.27 m s−1 and 46.30 m s−1,
v(N = 3000 years) = 59.28 m s−1 and 59.28 m s−1, respectively.

BLUE Method. In the BLUE method the data are arranged in ascending order, that is,

v1 ≤ v2 ≤ · · · ≤ vn

The estimated parameters of the EV I distribution are then given by the expressions

𝜇 =
n∑

i=1
aivi, 𝜎 =

n∑
i=1

bivi (3.8)

where the vectors ai, bi are listed for n≤16 in [12, p. 20], and for n≤100 in the MATLAB
implementation of the BLUE method, which includes a user’s manual and an example
https://www.nist.gov/wind.

Example 3.8 EV I Extreme Wind Estimation, Epochal Approach, BLUE Method.
Consider the dataset of Example 3.7. The rank-ordered data are
28, 31, 33, 33, 34, 34, 35, 36, 36, 37, 39, 40, 41, 43.
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For the sake of clarity we follow in this example the BLUE method as presented in [12].
Using the coefficients ai (i = 1, 2, …, 14) [12, p. 20]:

𝜇 = 28 × 0.163309 + 31 × 0.125966 + 33 × 0.108230 + 33 × 0.095233
+ 34 × 0.084619 + 34 × 0.075484 + 35 × 0.067331 + 36 × 0.059866
+ 36 × 0.052891 + 37 × 0.046260 + 39 × 0.039847 + 40 × 0.033526
+ 41 × 0.027131 + 43 × 0.020317 = 33.64

𝜎 = 28 × (−0.285316) + 31 × (−0.098775) + 33 × (−0.045120)
+ 33 × 0.013039 + 34 × 0.008690 + 34 × 0.024282 + 35 × 0.035768
+ 36 × 0.044262 + 36 × 0.050418 + 37 × 0.054624 + 39 × 0.057083
+ 40 × 0.057829 + 41 × 0.056652 + 43 × 0.052642 = 3.96

Equation (3.7a) then yields

v(N = 50 years) = 49.09 m s−1, v(N = 3000 years) = 65.33 m s−1

The reader can verify that the same result is obtained by using the MATLAB software
referenced in this section. The method of moments, which is less efficient than the BLUE
method, produces in this case estimates of the 50 and 3000-year wind speeds lower than
the BLUE estimates by approximately 6 and 9%, respectively.

3.3.4 Sampling Errors in the Estimation of Extreme Speeds

The standard deviation of the errors in the estimation of extreme wind speeds with a
MRI N may be obtained from the following expression [13]:

SD(vN ) ≈ 0.78[1.64 + 1.46(ln N − 0.577) + 1.1(ln N − 0.577)2]1∕2 s√
n

(3.9)

where s is the sample standard deviation of the largest yearly wind speeds for the period
of record, and n is the sample size.

Example 3.9 At Great Falls, Montana, the largest yearly sustained fastest-mile wind
speeds in the period 1944–1977 (sample size n = 34) were
57, 65, 62, 58, 64, 65, 59, 65, 59, 60, 64, 65, 73, 60, 67, 50, 74,
60, 66, 55, 51, 60, 55, 60, 51, 51, 62, 51, 54, 52, 59, 56, 52, 49 (mph).

The sample mean and the standard deviation of for these data are V = 59.1 mph and
SD(V ) = 6.41 mph. From Eqs. (3.5), (3.7) and (3.9) it follows that for N = 50 years and
N= 1000 years,

v50 ≈ 75.8 mph SD(v50) ≈ 3.71 mph
v1000 ≈ 90.8 mph SD(v1000) ≈ 6.36 mph.

The probabilities that vÑ is contained in the intervals vÑ ± SD(vÑ ) and vÑ ± 2 SD(vÑ )
are approximately 68 and 95%, respectively. These intervals are called the 68 and 95%
confidence intervals for vÑ (see Section A.7.1).
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3.3.5 Wind Speed Estimation by the Peaks-Over-Threshold Approach

Among the methods available for estimating extreme wind speeds by the POT
approach we mention the method of moments and the de Haan method, both of
which are described in Section A.7.2, and the POT Poisson-processes methods used
in [14], which provide information on the uncertainty in the estimates. The plots of
Figure 3.3 show estimates by the de Haan method of 100, 1000, and 100,000-year
fastest-mile wind speeds at 6.1 m above ground in terrain with open exposure at
Green Bay, Wisconsin. The estimates are functions of threshold speeds (in mph). The
data consisted of the maximum wind speed for each of the successive 8-day intervals
within a 15-year record, and included no wind speed separated by less than 5 days. For
thresholds between about 38 and 32 mph (sample sizes of about 35–127), the estimated
100-year speeds are stable around 60 mph. The reliability of the estimate is poorer as
the MRI increases (this is clearly seen for the 100,000-year estimates). For thresholds
higher than 38 mph, the estimates are less stable for all three MRIs; that is, they vary
fairly strongly as a function of threshold. For thresholds lower than about 32 mph,
the estimates of the 100-yr speed are increasingly biased with respect to the 60 mph
estimate, owing to the presence in the data sample of low speeds unrepresentative of
the extremes. Including low speeds in a sample used for inferences on extreme speeds
can result in biased estimates, as would be the case if the heights of children were
included in a sample used to estimate the height of adults. For example, estimates of
extreme wind speeds based on wind speed data recorded every hour, the vast majority
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Figure 3.3 Estimated wind speeds with 100-, 1000-, and 100,000-year mean recurrence interval at
Green Bay, Wisconsin, as functions of threshold (mph).
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of which are low and meteorologically unrelated to the extreme wind speeds, would
be unrealistic. Modern extreme value statistics recognizes that to obtain dependable
estimates of extreme values it is necessary to “let the tails speak for themselves,” instead
of allowing estimates to be biased by data with small values, as is the case in Figure 3.3
for wind speeds below about 32 mph.

3.3.6 Spatial Smoothing

In developing wind maps results it is appropriate to apply spatial smoothing techniques
to reduce discrepancies among results obtained for stations contained in a meteoro-
logically homogeneous area of appropriate size. Such a technique was applied to the
development of wind speed maps specified in the ASCE 7-16 Standard, see Section 3.2
of [14].

A technique used for the development of U.S. maps specified in the ASCE 7-10 maps
consisted of considering groups of stations called “superstations,” and including identi-
cal subgroups of stations in more than one “superstation.” The application of this tech-
nique led to the demonstrably incorrect result that extreme wind speeds are uniform
throughout most of the contiguous United States.

3.3.7 Development of Large Wind Speed Datasets

A number of structural engineering applications require the use of large wind speed
datasets for use in non-parametric estimates of wind effects with long MRIs. A detailed
procedure for generating such data, including directional data, is presented in [15].
For material on Monte Carlo methods used for the development of large wind speed
databases, see Section A.8.

3.4 Tornado Characterization and Climatology

Tornado climatology studies and design criteria on tornado action on structures require
the characterization of tornadoes from the point of view of their flow modeling and their
intensities. Section 3.4.1 discusses tornado flow modeling based on atmospheric science
considerations, laboratory testing, numerical methods, and observations of tornadoes.
Section 3.4.2 is devoted to the use of tornado models, observations of tornadoes and
their effects, and statistical methods, for the estimation of wind speeds and associated
atmospheric pressure defects. Section 3.4.3 summarizes simplified, conservative models
of tornado structure that the U.S. Nuclear Regulatory Commission Office of Nuclear
Regulatory Research considers acceptable for the design of nuclear power plants.

3.4.1 Tornado Flow Modeling

Tornadoes are translating cyclostrophic flows that develop within severe thunder-
storms. Because their horizontal dimensions are relatively small (typically in the order
of 300 m), the probability that their maximum speeds at heights above ground in
the order of a few tens of meters or less will be measured by a sufficiently strong
instrument with fixed location, or any other instrument, is small. For his reason reliable
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measurements of such wind speeds are not available to date. Laboratory measurements
(see Chapters 5 and 27) have shed useful light on tornado flow structure, but are only
the beginning of efforts to improve current knowledge in this area of research.

A highly readable generic guide on tornado climatology is available in [16]. An anal-
ysis of information on more than 46 000 tornado segments (i.e., portions of or entire
tornadoes) reported in the contiguous United States from January 1950 through August
2003 was performed in [17] with a view to determining tornado strike probabilities and
maximum wind speeds for use in the development of design criteria for nuclear power
plants.

Section 3.4.2 briefly summarizes salient features of [17]. Section 3.4.3 summarizes U.S.
Nuclear Regulatory Commission (NRC) requirements on atmospheric pressure defects
and tornado wind speeds based on the recommendations of [17].

3.4.2 Summary of NUREG/CR-4461, Rev. 2 Report [17]

Of the 46 000 segments, more than 39 600 had sufficient information on location, inten-
sity, length and width to be used in the analysis. Estimates of and confidence intervals
for expected values are based in [17] on the assumption, first suggested in 1963 [18], that
lognormal distributions are appropriate. As in [16], it is noted in [17] that, even though
the number of reported tornadoes has been increasing since 1950 owing to improved
tornado observation techniques (Figure 3.4), the increase was limited to the least intense
tornadoes; however, the missing information on weaker tornadoes appears not to affect
significantly estimates of strike probabilities or maximum wind speeds.

Comprehensive estimates of tornado characteristics are presented in [17] for the
entire contiguous United States, for regions thereof, and for 1∘, 2∘, and 4∘ latitude and
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Figure 3.4 Number of EF0 tornadoes and total number of EF1 through EF5 tornadoes by year since
1950 [19].
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longitude boxes. The effect of the variation of the wind speed along and across the
tornado footprint was modeled by using results of studies summarized in [19].

Methods for estimating (i) tornado strike probabilities and (ii) conditional probabil-
ities that the maximum wind speed will exceed a specified value given that a tornado
strike has occurred, differ for point and finite-sized structures. For point structures only
estimates of tornado impact areas are necessary. For finite-size structures, in addition to
estimates of tornado impact areas, estimates of lengths of tornado paths associated with
various wind speeds are needed. These were based on [20]. For example, while for EF0
tornadoes 100% of the length of the tornado path has EF0 speeds, for an EF5 tornado
it was estimated that on average 0.135, 0.100, 0.190, 0.240, 0.185, and 0.150 of the total
path length have EF0, EF1, EF2, EF3, EF4, and EF5 wind speeds, respectively.

For point structures, the annual probability of exceedance of the speed uo at a point is
defined as the probability that a tornado will strike that point times the annual proba-
bility that the speed u will exceed the speed uo given that a tornado strike has occurred,
that is,

Pp(u ≥ uo) = Ps,p × Pp(u ≥ uo ∣ s) (3.10)
The annual strike probability is

Ps,p =
At

NAr
(3.11)

At is the total area in square miles impacted in N years by tornadoes in the region Ar
of interest, that is, the product of the expected area of a tornado in the region Ar by the
total number of tornado events that occurred in that region in N years, and N is the
number of years of record.

The probability of exceeding a speed uo given that a tornado has occurred is

Pp(u ≥ uo ∣ s) =
Au≥uo

At
(3.12)

where Au≥uo
is the total area impacted by wind speeds greater than uo; see also [18]. It is

assumed in [17] that Pp(u≥uo|s) is described by a Weibull distribution.
For the probability of exceedance of a speed uo within a finite-size structure, see [17].
Uncertainties in the estimation of the tornado strike probabilities and conditional

probabilities of tornado wind speeds are due to errors in the tornado footprint mod-
eling as a rectangle and in the estimation of the length, width and area of the tornado
footprint, the assumption that the structure’s characteristic dimension is 200 ft, and the
assignment of an incorrect EF (enhanced Fujita) scale to tornadoes in the database being
used. Adjustments for those errors are discussed in [19].

Recommendations in [17] of tornado design wind speeds with 105-, 106-, and 107-year
MRIs for the three regions defined in Figure 3.5 are based on the spatially averaged
estimated speeds for 2∘ longitude/latitude boxes and are shown in Table 3.1.

The American Nuclear Society ANSI/ANS-2.3-2011; R2016 Standard’s regionaliza-
tion of tornado wind speeds [22] differs somewhat from the regionalization of Figure 3.5.

3.4.3 Design-Basis Tornado for Nuclear Power Plants

The NRC Regulatory Guide 1.76 (Revision 1 March 2007) [21] provides guidance on
design-basis tornado and design-basis tornado-generated missiles for nuclear power
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Figure 3.5 Recommended design wind speeds with 107 years mean recurrence intervals [17].
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Table 3.1 Recommended tornado design wind speeds.

Wind Speed (mph)

Mean Recurrence
Interval (years) Region I Region II Region III

105 160 140 100
106 200 170 130
107 230 200 160

Table 3.2 Design-basis tornado wind field characteristics [21].

Region

Maximum
Wind Speed
m s−1 (mph)

Translational
Speed
m s−1 (mph)

Maximum
Rotational
Speed
m s−1 (mph)

Radius of
Maximum
Rotational
Speed
m (ft)

Pressure
Drop
mb (psi)

Pressure
Drop Rate
mb s−1 (psi s−1)

I 103 (230) 21 (46) 82 (184) 45.7 (150) 83 (1.2) 37 (0.5)
II 89 (200) 18 (40) 72 (160) 45.7 (150) 63 (0.9) 25 (0.4)
III 72 (160) 14 (32) 57 (128) 45.7 (150) 40 (0.6) 13 (0.2)

plants in the contiguous United States. For the regions shown in Figure 3.5, Table 3.2
reproduces the characteristics of the design-basis tornadoes provided in [21] and based
on the Rankine model combined with a translational velocity (Chapter 27). Design-basis
tornado-generated missiles are considered in Chapter 28.

For tornado vertical wind speeds, see Chapter 27. Wind field characterization of tor-
nadoes in the ANSI/ANS-2.3-2011; R2016 Standard [22] differs in some respects to that
of [21].

References

1 Masters, F.J., Vickery, P.J., Bacon, P., and Rappaport, E.N. (2010). Toward objective,
standardized intensity estimates from surface wind speed observations. Bulletin of
the American Meteorological Society 91: 1665–1681.

2 ASCE, “Minimum design loads for buildings and other structures (ASCE/SEI 7–16),”
in ASCE Standard ASCE/SEI 7–16, Reston, VA: American Society of Civil Engineers,
2016.

3 Lombardo, F.T., Main, J.A., and Simiu, E. (2009). Automated extraction and classifi-
cation of thunderstorm and non-thunderstorm wind data for extreme-value analysis.
Journal of Wind Engineering and Industrial Aerodynamics 97: 120–131.

4 Batts, M. E., Russell, L. R., Cordes, M. R., Shaver, J. R., and Simiu, E., Hurricane
wind speeds in the United States, Building Science Series 124, National Bureau of
Standards, Washington, DC, 1980. https://www.nist.gov/wind.

5 Batts, M.E., Russell, L.R., and Simiu, E. (1980). Hurricane wind speeds in the United
States. Journal of the Structural Division-ASCE 106: 2001–2016. https://www.nist
.gov/wind.



�

� �

�

References 71

6 Vickery, P.J., Wadhera, D., and Twisdale, L.A., “Technical basis for regulatory
guidance on design-basis hurricane wind speeds for nuclear power plants,”
NUREG/CR-7005, U.S. Nuclear Regulatory Commission, Washington, DC, 2011.

7 Vickery, P.J., Wadhera, D., Twisdale, L.A. Jr., and Lavelle, F.M. (2009). U.S. hurricane
wind speed risk and uncertainty. Journal of Structural Engineering 135: 301–320.

8 ASCE, “Minimum design loads for buildings and other structures (ASCE/SEI 7–10),”
in ASCE Standard ASCE/SEI 7–10, Reston, VA: American Society of Civil Engineers,
2010.

9 Vickery, P. and Twisdale, L. (1995). Prediction of hurricane wind speeds in the
United States. Journal of Structural Engineering 121: 1691–1699.

10 Georgiou, P.N., Davenport, A.G., and Vickery, B.J. (1983). Design wind speeds in
regions dominated by tropical cyclones. Journal of Wind Engineering and Industrial
Aerodynamics 13: 139–152.

11 AS/NZS, Structural design actions: wind actions: commentary (supplement to
AS/NZS 1170.2:2002), Sydney, Wellington: Standards Australia International, Stan-
dards New Zealand, 2002.

12 Lieblein, J., “Efficient Methods of Extreme-Value Methodology,” NBSIR 74–602,
National Bureau of Standards, Washington, DC, 1974. https://www.nist.gov/wind.

13 Gumbel, E.J. (1958). Statistics of Extremes. New York: Columbia University Press.
14 Pintar, A.L., Simiu, E., Lombardo, F. T., and Levitan, M. L., “Maps of Non-Hurricane

Non-Tornadic Wind Speeds with Specified Mean Recurrence Intervals for the Con-
tiguous United States Using a Two-Dimensional Poisson Process Extreme Value
Model and Local Regression,” NIST Special Publication 500-301, National Institute
of Standards and Technology, Gaithersburg, 2015. https://www.nist.gov/wind.

15 Yeo, D. (2014). Generation of large directional wind speed data sets for estimation
of wind effects with long return periods. Journal of Structural Engineering 140:
04014073. https://www.nist.gov/wind.

16 U.S. Tornado Climatology, National Climatic Data Center, Asheville, NC, 2008,
17 Ramsdell, J.V., Jr., and Rishel, J.P., Tornado Climatology of the Contiguous United

States, A.J. Buslik, Project Manager, NUREG/CR-4461, Rev. 2, PNNL-15112, Rev. 1,
Pacific Northwest National Laboratory, 2007.

18 Thom, H.C.S. (1963). Tornado probabilities. Monthly Weather Review 91: 730–736.
19 Reinhold, T.A. and Ellingwood, B.R., Tornado Risk Assessment, NUREG/CR-2944,

U.S. Nuclear Regulatory Commission, Washington, DC, 1982.
20 Twisdale, L.A. and Dunn, W.L., Tornado Missile Simulation and Design Method-

ology, Vols. 1 and 2. EPRI NP-2005, Electric Power Research Institute, Palo Alto,
California.

21 U.S. Nuclear Regulatory Commission, Regulatory Guide 1.76, Design-Basis Tornado
and Tornado Missiles for Nuclear Power Plants, Revision 1, 2007.

22 American Nuclear Society, ANSI/ANS-2.3-2011. Estimating tornado, hurricane, and
extreme straight wind characteristics at nuclear facility sites. La Grange Park, Illinois,
reaffirmed Jun 29, 2016.



�

� �

�

73

4

Bluff Body Aerodynamics

Aerodynamics is the study of air flows that interact with solid bodies. Streamlined bodies
have shapes that help to reduce drag forces. Bodies that are not streamlined are called
bluff.

Bluff body aerodynamics of interest in structural engineering applications is asso-
ciated with atmospheric flows, which are incompressible owing to their relatively low
speeds. With rare exceptions associated with stably stratified flows (see Section 1.1.3),
atmospheric flows of interest in structural design are turbulent. In addition to the turbu-
lence present in atmospheric flows, “signature turbulence” is generated by the presence
of the body in the flow. Turbulence significantly complicates the study of bluff body
aerodynamics.

Certain types of engineering structures can be subjected to aerodynamic forces gener-
ated by structural motions. These motions, called self-excited, are in turn affected by the
aerodynamic forces they generate. The structural behavior associated with self-excited
motions is termed aeroelastic, and is considered in Part III of the book.

As pointed out by Roshko, “the problem of bluff-body flow remains almost entirely
in the empirical, descriptive realm of knowledge” [1]. Although much progress is
being made in Computational Fluid Dynamics (CFD) and its application to wind
engineering (Computational Wind Engineering, or CWE), its application in structural
engineering practice remains limited [2]. Indeed, the simulation of flows over bluff bod-
ies in turbulent shear flows is a formidable problem, and the approximations required in
modeling the flow numerically can produce results that differ significantly and unpre-
dictably from each other depending upon those approximations. To follow Schuster [3],
conservative CFD applications are based on the paradigm “Develop, Validate, Apply,”
wherein end-users apply validated software to problems that fall within or at least not
too far from its range of validation. As pointed out in [3], a modified paradigm “Develop,
Apply, Validate” may be required under certain circumstances. This paradigm entails
large uncertainties that must be accounted for; how CFD methods may be applied and
ultimately developed and validated under those circumstances is discussed in [3] in the
context of NASA applications. In a civil engineering context, an informal “Develop,
Apply, Validate” approach has been implicit in low-risk CFD applications wherein
the effect of relatively large uncertainties is tolerable: for example, the prediction
of wind flows that cause easily remediable pedestrian discomfort around buildings
(see Chapter 15).

Section 4.1 reviews fundamental fluid dynamics equations. Section 4.2 considers
flows in a curved path and vortex flows. Section 4.3 discusses boundary layers and flow

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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separation. Section 4.4 is devoted to wake and vortex formations in two-dimensional
(2-D) flow. Section 4.5 concerns pressure, lift, drag and moment effects on 2-D bodies.
Section 4.6 presents information on flow effects in three dimensions.

4.1 Governing Equations

4.1.1 Equations of Motion and Continuity

Consider a fixed elemental volume dV in a fluid. The velocity vector is expressed as

u = u1i1 +u2i2 + u3i3 (4.1)

where i1, i2, i3 are unit vectors along the usual three fixed orthogonal axes.
The force acting on the fluid contained in the volume dV consists of two parts. The

first part is the body force caused by gravity, and is denoted by F𝜌dV , where 𝜌 is the fluid
density. The second part is due to the net action on the fluid of the internal stresses 𝜎ij
(i, j= 1, 2, 3). For example, the contribution to this action of the normal stress 𝜎11 (see
Figure 4.1) is

−𝜎11dx2dx3 +
(
𝜎11 +

𝜕𝜎11

𝜕x1
dx1

)
dx2dx3 =

𝜕𝜎11

𝜕x1
dx1dx2dx3

=
𝜕𝜎11

𝜕x1
dV (4.2)

It can be similarly shown that the net force component in the i direction due to the action
of all stresses 𝜎ij is

3∑
j=1

𝜕𝜎ij

𝜕xj
dV (4.3)

Denoting the components of F by Fi (i= 1, 2, 3), the force balance equations, given by
Newton’s second law, are

Dui

Dt
𝜌 dV = Fi 𝜌 dV +

3∑
j=1

𝜕𝜎ij

𝜕xj
dV (i = 1, 2, 3) (4.4)

dx3

∂x1

dx2

dx2dx3σ11dx2dx3

dx1

dx1σ11 +
∂σ11

Figure 4.1 Forces along the i direction on an elementary volume of fluid.
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where the operator D/Dt, known as the substantial or material derivative, is defined as
follows:

D
Dt

= 𝜕

𝜕t
+

3∑
i=1

𝜕

𝜕xi

dxi

dt

= 𝜕

𝜕t
+

3∑
i=1

ui
𝜕

𝜕xi
(4.5)

Since Eq. (4.4) is true for all volume elements, it may be divided by the factor dV , and
the equations of motion of a fluid particle can be written in component form as

𝜌
Dui

Dt
= 𝜌Fi +

3∑
j=1

𝜕𝜎ij

𝜕xj
(4.6)

We now consider the principle of mass conservation, which states that the rate at which
mass enters a system is equal to the rate at which mass leaves the system. If 𝜌 is constant,
mass conservation can be shown to imply

3∑
i=1

𝜕ui

𝜕xi
= 0 (4.7)

Equation (4.7) is called the equation of continuity.

4.1.2 The Navier–Stokes Equation

Unlike a solid, under static conditions a fluid cannot support any stresses other
than normal pressures. However, in dynamic situations, it may support shear in
a time-dependent manner. In most fluid-mechanical applications it is adequate to
assume that the stresses involved are normal pressures or ascribable to viscosity. Fluids
with internal shear stress proportional to the rate of change of velocity with distance
normal to that velocity are termed viscous or Newtonian. For example, the shear stress
𝜎12 in a simple 2-D flow is expressed as

𝜎12 = 𝜇
𝜕u1

𝜕x2
(4.8)

where the proportionality factor is defined as the fluid viscosity.
The units of viscosity are

𝜇 = force
area

×
length

velocity
= force × time

length2 = mass
length × time

Typical values of 𝜇 for air and water at 15∘C are

𝜇air = 1.783 × 10−5 kg m−1 s−1, 𝜇water = 1.138 × 10−3 kg m−1 s−1

By distinguishing in the stress tensor 𝜎ij at a fluid point the normal stress p (i.e., pressure)
and the deviatoric stress, defined as

dij = 2𝜇

(
eij −

1
3
𝛿ij

3∑
k=1

ekk

)
(i, j = 1, 2, 3) (4.9)
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where

eij =
1
2

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi

)
(4.10)

and

𝛿ij =

{
1, i = j
0, i ≠ j

(4.11)

The following expression for the stress 𝜎ij can be obtained:

𝜎ij = −p 𝛿ij + 2𝜇

(
eij −

1
3
𝛿ij

3∑
k=1

ekk

)
(4.12)

Using the expressions for stress in a Newtonian fluid results in the equations of motion,
known as Navier–Stokes equations:

𝜌
Dui

Dt
= 𝜌Fi −

𝜕p
𝜕xi

+ 𝜇

⎛⎜⎜⎜⎜⎝

3∑
j=1

𝜕2ui

𝜕x2
j
+ 1

3

𝜕
3∑

k=1

𝜕uk

𝜕xk

𝜕xi

⎞⎟⎟⎟⎟⎠
(4.13)

For an incompressible fluid (Eq. [4.7]), Eq. (4.13) can be written as

𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj
= −1

𝜌

𝜕p
𝜕xi

+ Fi + 𝜈
3∑

j=1

𝜕2ui

𝜕x2
j

(4.14)

where 𝜈 =𝜇/𝜌 is called the kinematic viscosity.
For air and water, at 15∘C

𝜈air = 1.455 × 10−5 m2 s−1, 𝜈water = 1.139 × 10−3 m2 s−1 (4.15)

4.1.3 Bernoulli’s Equation

Consider an incompressible, inviscid flow experiencing negligible body forces. If the
flow is steady, the fluid element of Figure 4.2 is subjected in the direction of the stream-
line (i.e., along the tangent at any instant to the flow velocity) to the force p dy dz, the
force – (p+ dp) dy dz, and the inertial force

𝜌 dx dy dz dU
dt

= 𝜌
dx
dt

dy dz dU

= 𝜌 dy dz U dU (4.16)

where dx/dt=U . The equation of equilibrium among those three forces yields –dp= 𝜌
U dU and, upon integration,

1
2
𝜌U2 + p = const (4.17)

Equation (4.17) is known as Bernoulli’s equation. The quantity 1/2𝜌U2 has the dimen-
sions of pressure and is called dynamic pressure. The quantity dp/dx is called the pressure
gradient in the x direction.
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p dy dz 

(p + dp)dy dz

dz

dx
dy

–ρ dx dy dz dU/dt

Figure 4.2 Flow-induced pressures and inertial force on an elemental volume of a fluid in motion.

Consider the streamline between two points, one of which is the stagnation point on
the windward face of a body immersed in the flow where U= 0, while the other is located
in the undisturbed flow far upstream of the body where the static pressure is p0 and the
velocity is U0. The pressure at the stagnation point (i.e., the stagnation pressure) is

pst = p0 +
1
2
𝜌U2

0 (4.18)

Bernoulli’s equation is widely used to interpret the relation between pressure and
velocity in atmospheric and wind tunnel flows. Detailed comments on Bernoulli’s
equation and its applicability, including to viscous flows, are provided in section 3.5
of [4].

4.2 Flow in a Curved Path: Vortex Flow

Consider a 2-D flow between two locally concentric streamlines with radii of curvature
r and r + dr (Figure 4.3). For the flow to maintain its curved path with tangential velocity
U at radius r, it must experience an acceleration U2/r toward the center of curvature.
Let the pressure acting on the fluid element under consideration be denoted by p. The
pressure differential between the streamlines at radii r and r+ dr, which is responsible
for this acceleration, is dp. The equation of motion for a fluid element shown in Figure 4.3
is then

dpdA = 𝜌 dr dA U2

r
(4.19)

where dA is the area of the element in a plan normal to the plan of Figure 4.3. Therefore

dp = 𝜌U2 dr
r

(4.20)

Bernoulli’s equation allows the calculation of the pressure along a curved path of the
flow. In particular, one may consider the case wherein the flow is circular and the value of
p in Eq. (4.17) is the same on all streamlines. This is the case of vortex flow. Differentiation
of Eq. (4.17) yields

𝜌U dU
dr

+
dp
dr

= 0 (4.21)

From Eqs. (4.20) and (4.21) there follows
dU
U

= −dr
r

(4.22)
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dA U

pdA
r

pdA +

STREAMLINES

dr

dr

d(pdA)
dr

Figure 4.3 Flow in a curved path.

Integration of Eq. (4.22) yields

Ur = const. (4.23)

This law states, for an incompressible and inviscid fluid, the theoretical hyperbolic rela-
tion between radius r and tangential velocity U in a free vortex. In an actual free vortex,
however, the effects of viscosity are present as well. Viscosity “locks” together a portion
of the fluid near the center and causes it to rotate as a rigid body, instead of as an inviscid
fluid described by Eq. (4.23). Thus, at the center of a free vortex the velocity increases
with radius, whereas according to Eq. (4.23) it decreases with increasing r. This decrease
actually occurs outward from a transition region in which U attains its maximum value.
The value of U in this region depends upon the fluid viscosity and the total angular
momentum of the vortex. Figure 4.4 illustrates qualitatively the pressure and velocity
dependence on radius in a free vortex occurring in a real fluid.

The free vortex is of interest in many flows that occur in engineering applications.
For example, atmospheric flows along curved isobars are described by generalizations
of Eq. (4.20). These have been described in Chapter 1, where additional Coriolis forces
have been included.

4.3 Boundary Layers and Separation

The viscosity of air at normal atmospheric pressures and temperatures has a relatively
small value. Nonetheless, in some circumstances this small viscosity plays an important
role. In particular, a consequential effect of the viscosity is the formation of boundary
layers.
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U
U = C/r

O

p

r

O

TRANSITION

r

Figure 4.4 Pressure and velocity dependence upon radius in a vortex flow.

Figure 4.5 Typical boundary-layer velocity profile. Height

Velocity

Consider an air flow over and along a stationary smooth surface. It is an experimental
fact that the air in contact with the surface adheres to it. This “no slip” condition causes a
retardation of the air motion in a layer near the surface called the boundary layer. Within
the boundary layer the velocity of the air increases from zero at the surface to its value
in the outer flow (as opposed to the boundary-layer flow). A boundary-layer velocity
profile is shown in Figure 4.5.

Since air has mass, its motion exhibits inertial effects, in accordance with Newton’s
second law and its application to fluids, the Navier–Stokes equations. Viscous flows are
therefore subjected to both inertial and viscous effects. The relation between these two
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effects is an index of the type of flow phenomena that may be expected to occur. The
non-dimensional parameter Re called the Reynolds number is a measure of the ratio of
inertial to viscous forces. For example, consider a volume of fluid with a typical dimen-
sion L. By Bernoulli’s theorem, the net pressure p− p0 caused by the fluid velocity U is
in the order of 1/2𝜌U2, and creates inertial forces on the fluid element enclosed by that
volume in the order of 𝜌U2L2. The viscous stresses on the element are in the order of
𝜇U/L, so viscosity-related forces are in the order of (𝜇U/L)L2 =𝜇UL. The ratio of inertial
to viscous forces is then in the order of

Re = 𝜌U2L2

𝜇UL
= 𝜌UL

𝜇
= UL

𝜈
(4.24)

A useful approximate value of the Reynolds number in air at about 20∘C and 760 mm
atmospheric pressure is 67,000 UL. If Re is large, inertial effects are predominant; if Re
is small, viscous effects predominate. L is a representative dimension of the body being
considered.

Boundary-layer separation occurs if the kinetic energy of the fluid particles in the
lower region of the boundary layer are no longer sufficient to overcome the pressures
that increase in the direction of the flow and thus produce adverse pressure gradients.
The flow in that region then becomes reversed, that is, separation is taking place
(Figure 4.6). Shear layers generate discrete vortices that are shed into the wake flow
behind the bluff body (Figure 4.7). Such vortices can cause high suctions near separation
points such as corners or eaves. A flow around a building with sharp edges is shown
schematically in Figure 4.8. The injection by turbulent fluctuations of high-momentum
particles from the outer layer into the zone of separated flow can produce flow reat-
tachment. Figure 4.9 shows an age-old streamlining measure aimed at reducing flow
separation and strong local roof suctions near the ridge under winds normal to the
end wall.

A visualization of flow separation for a bluff shape, and of the turbulent flow in the
separation zone, is shown in Figure 4.10a, in which the separation zone starts close to
windward edge. If the shape of the deck is streamlined, as opposed to being bluff, the
separation zone is narrower, and the turbulent flow about the upper face of the deck
almost disappears (Figure 4.10b).

Figure 4.11a shows the visualization of flow around a counterclockwise spinning base-
ball moving from left to right. Figure 4.11b is a schematic of the forces acting on the
baseball with velocity U and angular velocity 𝜔. The relative velocity of the flow with
respect to the ball is directed from right to left. Entrainment of fluid due to friction at
the surface of the spinning body increases the relative flow velocities with respect to the

Body surface
(flow boundary)

Shear layer

Reverse flow

Outer flow

Boundary

layer

Z

U

Figure 4.6 Velocity profile in the boundary layer and in the separation zone of a flow near a curved
body surface. Source: After [5].
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Figure 4.7 Flow separation at corner of obstacle.

Separation 
points

Reattachment 
point 

Shear layer

Wake

Separation
zone

Figure 4.8 Flow about a building with sharp edges. Source: After [5].

Figure 4.9 Three thatched cottages by a road, Rembrandt van Rijn (1606–1669), photo
Nationalmuseum, Sweden. Source: Count Kessin collection.
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(a)

(b)

Figure 4.10 Visualization of water flow over (a) a model bridge deck section and (b) a partially
streamlined model bridge deck section. Flow velocity is oriented from left to right. Source: Courtesy of
the National Aeronautical Establishment, National Research Council of Canada.

body near its top and decreases them near the bottom. By virtue of Bernoulli’s equation,
the static pressures are therefore lower near the top and higher near the bottom. The
flow asymmetry induced by spinning therefore results in a net lift force denoted by FM
in Figure 4.11b, called the Magnus force. In different aerodynamic contexts, flow asym-
metries due to body motions can under certain conditions be the cause of galloping and
other aeroelastic motions.

4.4 Wake and Vortex Formations in Two-Dimensional Flow

In the following discussion, the flow is assumed to be smooth (laminar) and 2-D, that is,
independent of the coordinate normal to the cross section of the body.
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(a)

FM

(b)

U

ω

FG

FD

Figure 4.11 (a) Flow around a spinning baseball. Source: Courtesy of the National Institute of

Standards and Technology. (b) Schematic showing forces acting on baseball with velocity
−→
U and

angular velocity 𝜔. Source: Reproduced from [6], with the permission of the American Association of
Physics Teachers.
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(a)

L

Re ≅ 0.3

(c) (d)

Re ≅ 250
Re ≥ 1000

(b)

Re ≅ 10

Figure 4.12 (a) Flow past a sharp-edged plate, Re ≅ 0.3. (b) Flow past a sharp-edged plate, Re ≅ 10.
(c) Flow past a sharp-edged plate, Re ≅ 250. (d) Flow past a sharp-edged plate, Re≥ 1000.

Consider a sharp-edged flat plate shown in Figure 4.12a. At a very low Reynolds num-
ber (e.g., Re ≅ 0.3, based on the characteristic length L shown in Figure 4.12a), the flow
turns the sharp corner and follows both front and rear contours of the plate. At Re ≅ 10,
obtained by increasing the flow velocity over the same plate, the flow separates at the
corners and creates two large, symmetric vortices that remain attached to the back of
the plate (Figure 4.12b). At Re≅ 50, the symmetrical vortices are broken, and replaced by
cyclically alternating vortices that form by turns at the top and at the bottom of the plate
and are swept downstream (Figure 4.12c). A full cycle of this phenomenon is defined as
the activity between the occurrence of some instantaneous flow configuration about the
body and the next identical configuration. At Re≥ 1000 (Figure 4.12d), the inertia forces
predominate; large distinct vortices have little possibility of forming and, instead, a gen-
erally turbulent wake is formed behind the plate, its two outer edges forming each a shear
layer consisting of a long series of smaller vortices that accommodate the wake region
to the adjacent smooth flow regions. These results dramatically illustrate the changes
in the flow with Reynolds number, proceeding from predominantly viscous effects to
predominantly inertial effects.

Next, the renowned case of 2-D flow about a circular cylinder (Figure 4.13) is briefly
examined. At extremely low Reynolds number based on the diameter of the cylinder
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(a)

(c)

(d) (e)

TURBULENT
WAKE

TURBULENT
WAKE(narrower)

VON KARMAN VORTEX TRAIL

Re ≅ 1

30 ≤ Re ≤ 5000

5000 ≤ Re ≤ 200000 Re ≥ 200000

(b)

Re ≅ 20

Figure 4.13 Flow past a circular cylinder. (a) Re ≅ 1; (b) Re ≅ 20; (c) 30≤ Re≤ 5000;
(d) 5000≤ Re≤ 200 000; (e) Re> 200 000. Source: From [6], by permission of the author and the
American Journal of Physics.

(Re ≅ 1) the flow, assumed laminar as it approaches, remains attached to the cylinder
throughout its complete periphery, as shown in Figure 4.13a. At Re ≅ 20, the flow form
remains symmetrical but flow separation occurs and large wake eddies are formed that
reside near the downstream surface of the cylinder, as suggested in Figure 4.13b. For
30≤Re≤ 5000, alternating vortices are shed from the cylinder and form a clear “vor-
tex street” downstream. This phenomenon was first reported by Bénard in 1908 [7];
in the English-speaking world its discovery is attributed to von Kármán, who reported
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it in 1911 [8] – the alternating vortices are universally referred to as a von Kármán
street, although some facetious aerodynamicists use the term boulevard Bénard. The
finer details of this striking occurrence are still not fully understood, and have been the
object of both experimental and theoretical studies (e.g., [9]). For 30≤Re< 5000. say,
there is established behind the cylinder a staggered, stable arrangement of vortices that
moves off downstream at a velocity somewhat less than that of the surrounding fluid.

As the Reynolds number increases into the range 5000≤Re≤ 200 000, the attached
flow upstream of the separation flow is laminar. In the separated flow, 3-D patterns are
observed, and transition to turbulent flow occurs in the wake – farther downstream
from the cylinder for the lower Reynolds numbers, and nearer the cylinder surface as
the Reynolds numbers increase. For the larger Reynolds numbers in this range, the
cylinder wake undergoes transition immediately after separation, and a turbulent wake
is produced between the separated shear layers (Figure 4.13d). Beyond Re= 200 000
(Figure 4.13e) the wake narrows appreciably, resulting in less drag.

Other bluff bodies, notably prisms with triangular, square, rectangular, and other cross
sections, give rise to analogous vortex-shedding phenomena (Figure 4.14).

The pronounced regularity of such wake effects was first reported by Strouhal [11],
who pointed out that the vortex shedding phenomenon can be described in terms of a
non-dimensional number, the Strouhal number:

St =
NsD
U

(4.25)

where Ns is the frequency of full cycles of vortex shedding, D is a characteristic
dimension projected on a plane, typically, normal to the wind velocity, and U is the

Figure 4.14 Flow around a rectangular cylinder (Re= 200). Source: Reprinted from [10], with
permission from Elsevier.
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Figure 4.15 Relation between the Strouhal number and the Reynolds number for circular cylinder.
Source: Reprinted from [12], with permission from Elsevier.

velocity of the oncoming flow, assumed laminar. The Strouhal number depends upon
the cross-sectional shape of the cylindrical body enveloped by the flow.

Figure 4.15 shows the relation of St to Re for a circular cylinder in the range
105 ≤ Re≤ 107. Coherent vortex shedding was noted to disappear at Reynolds numbers
beyond 4×105, and contrary to results reported by some observers and summarized in
[13], there was no significant increase of the Strouhal number.

Table 4.1 lists values of St for different cross-sectional shapes for Reynolds numbers
in the clear vortex-shedding range, the approach flow being laminar.

Figure 4.16 shows a vortex trail made visible by clouds over Jan Mayen Island (Arctic
Ocean). For additional material on vortex trails over oceans, see also [15].

As pointed out in [16], the establishment of a vortex trail can be inhibited by a split-
ter plate, as shown in Figure 4.17. The action of the plate is to prevent flow cross-over
between the two rows of vortices aft of the cylinder and thus to quiet the entire wake
flow. Qualitatively, the presence of the plate has the same type of effect as lengthening
the body in the stream direction and causing it to approach the form of a symmetric air-
foil. Following this type of approach, it can be seen that elongated bodies, oriented with
their long dimension parallel to the main flow, tend to elicit relatively narrow wakes.

If flows about square and rectangular prisms at high Reynolds numbers are compared
(Figure 4.18), the square is seen to produce flow separation followed by a wide, turbu-
lent wake, whereas the more elongated shapes may exhibit separation at leading corners
followed downstream by flow reattachment and, finally, once more, by flow separation
at the trailing edge. In contrast to the case of Figure 4.18b, if the rectangle is placed
with its long dimension normal to the flow, the wake exhibits a strong vortex-shedding
characteristic, followed at higher Re by a turbulent wake similar to that produced by the
sharp-edged plate (Figures 4.12c and d).
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Table 4.1 Strouhal number for a variety of shapes.

Wind Wind
Profile dimensions,

in mm
Profile dimensions,

in mm

t = 2.0 t = 1.0

t

t

50
Value of

St

0.120

0.147

12.5

0.137

Value of
St

0.156

Cylinder 11800 < Re < 19100

0.160

0.145

50

25

50 50

12.5

t = 1.0
t = 1.0

0.144 0.142

0.145

0.147

0.134

0.131

0.137

50 50

t = 0.5 t = 1.0

25 0.120 0.150
12.5

12.5

50

12.5

t = 1.0

50

25

25

50

t = 1.5
t = 1.0

50

100

t = 1.5
t = 1.0

0.145

50

12.5

12.5

25

25

0.121

0.143

t = 1.0
t = 1.0

0.140

0.15350

0.114

0.145

0.200

25

2525

25

25

25

0.135

t = 1.0
t = 1.0

0.145

0.16850

25

25 25

12.5

25

Source: From [14], ASCE.
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Figure 4.16 Satellite photo of Jan Mayen Island (Arctic Ocean). Source: Credits: NASA/CSFC/LaRC/JPL,
MISR Team.

Figure 4.17 Effect of splinter plate on flow behind a circular cylinder. Source: After [16].

4.5 Pressure, Lift, Drag, and Moment Effects
on Two-Dimensional Structural Forms

Figure 4.19 shows a section of a bluff body immersed in a flow of velocity U . The flow
will develop local pressures p over the body in accordance with the Bernoulli equation:

1
2
𝜌U2 + p = const (4.26)

where the constant holds along a streamline and U is the velocity on the streamline
immediately outside the boundary layer that forms on the body’s surface. The integration
of the pressures over the body results in a net force and moment. The components of the
force in the along-wind and across-wind directions are called drag and lift, respectively.
The drag, lift, and moment are affected by the shape of the body, the Reynolds number,
and the incoming flow turbulence.

The body may be designed with the purpose of minimizing drag and maximizing lift,
resulting in an airfoil-like shape. In many civil engineering applications the shape of
the body is typically fixed by other design objectives than purely aerodynamic ones.
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(b)

Figure 4.18 Flow separation and wake regions, square and rectangular cylinders.

FL

FD

Figure 4.19 Lift and drag on an arbitrary bluff body.

Nevertheless, the lift, drag, and moment induced by the fluid flows will remain of strong
interest because these are effects that must be designed against.

It is usual to refer to all pressures measured on a structural surface to the mean
dynamic pressure 1

2
𝜌U2 of the far upstream wind or the free stream wind at a distance

from the structure. Thus, non-dimensional pressure coefficients, Cp, are defined as

Cp =
p − p0

(1∕2)𝜌U2 (4.27)
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where U is the mean value of the reference wind speed and p – p0 is the pressure
difference between local and far upstream pressure p0. Such non-dimensional forms
enable the transfer of model experimental results to full scale, and the establishment of
reference values for cataloging the aerodynamic properties of given geometric forms.

Similarly, the net aerodynamic lift and drag forces per unit span FL and FD in the
across-wind and along-wind direction, respectively, can be rendered dimensionless and
expressed in terms of lift and drag coefficients, CL and CD:

CL =
FL

(1∕2)𝜌U2B
(4.28)

CD =
FD

(1∕2)𝜌U2B
(4.29)

where B is some typical reference dimension of the structure. For the net flow-induced
moment M about the elastic center the corresponding coefficient is

CM = M
(1∕2)𝜌U2B2 (4.30)

Figure 4.20 shows the dependence of the mean drag coefficient CD of circular cylin-
ders immersed in smooth flow. CD drops sharply in the range 2 × 105≤ Re≤ 5× 105. This
is called the critical region and corresponds to the transition from laminar to turbulent
flow in the boundary layer that forms on the surface of the cylinder. The turbulent mix-
ing that takes place in the boundary layer helps transport fluid with higher momentum
toward the surface of the cylinder. Separation then occurs much farther back and the
wake consequently narrows, producing a time averaged CD that is only about one third
of its highest value. As Re increases into the supercritical and then the transcritical range
(Re> 4×106), CD increases once more but remains much lower than its subcritical val-
ues. According to [12], drag coefficients in the transcritical range are about 25% lower
than those indicated in Figure 4.20.

Figure 4.21 depicts a typical distribution of the mean pressure coefficient about the
circular cylinder in smooth flow as a function of angular position. The pressures corre-
sponding to 𝜃 = 0∘ and 𝜃 = 180∘ are referred as the stagnation point and the base pres-
sure, respectively.

105
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Reynolds number, Re

106 107
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Figure 4.20 Evolution of the mean drag coefficient with Reynolds number for a circular cylinder.
Source: After [13]. Courtesy of National Physical Laboratory, UK.
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Re = 8.4 × 106
Re = 1.1 × 105

Figure 4.21 Influence of Reynolds number on pressure distribution over a circular cylinder. Source:
After [17].

Figure 4.22 illustrates the evolution with Reynolds number of the mean drag coef-
ficient of a square cylinder in smooth flow during successive modifications of its cor-
ners. Only the sharp-cornered square exhibits practically unchanging drag with change
of Reynolds number. This is accounted for by the early separation of the flow at the
upstream corners and the shortness of the afterbody that practically prevents flow reat-
tachment. Squares with rounded corners tend to possess the same kind of critical region
as the circular cylinder. Note also, for the circular cylinder, the dependence of the drag
upon the roughness of the cylinder surface – see [19].

Because of such effects, certain features of the flow in tests of wind tunnel models can
be assumed to be independent of the Reynolds number. This will be the case in some
situations in which the flow breaks cleanly away at some identifiable flows past a curved
body (e.g., a circular cylinder), this assumption is not warranted.

Table 4.2 shows mean values of CD and CL obtained in smooth flow for sectional
shapes used in construction. Experiments have shown that for the shapes of Table 4.2
the effects of turbulence are small.

The r.m.s. value of the fluctuating normal force coefficient CNrms on a square cylinder
with side B is shown in Figure 4.23 as a function of angle of attack 𝛼 with respect to the
mean wind direction. Here, the turbulence (with longitudinal integral scale 1.4B, lateral
integral scale 0.4B, and 10% turbulence intensity) lowers the highest normal force below,
and raises the lowest normal force slightly above, the respective values in laminar flow.
For the effects of turbulence on the aerodynamics of a square prism, see also [21]. For a
study of unsteady forces acting on rigid circular cylinders, see [22].
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Figure 4.22 Influence of Reynolds number, corner radius, and surface roughness on drag coefficient,
square to circular cylinders (r is the corner radius; k is the grain size of sand). Source: After [18].

For members with rectangular cross section the drag force depends upon (i) the ratio
b/h between the sides of the cross section and (ii) the turbulence in the oncoming flow.
If the ratio b/h is small, no flow reattachment occurs. Depending upon its intensity, the
turbulence can enhance the flow entrainment in the wake and, therefore, cause stronger
suctions and larger drag (Figure 4.24a). If the ratio b/h is sufficiently large, the turbulence
can cause flow reattachment that could not have occurred in smooth flow, and thus
results in lower drag (Figure 4.24b).

The dependence of the drag coefficient upon along-wind turbulence intensity in flow
with homogeneous turbulence is shown for two ratios b/h in Figure 4.25.

The effect of turbulence in the case of bodies with rounded shapes is, essentially, to
reduce the Reynolds number at which the critical region sets in. (The roughness of
the body surface (Figure 4.22) has a similar effect, since it promotes turbulence in the
boundary layer that forms on the body surface.) Fluid particle moments with higher
momentum are thus transported into the lower regions of the boundary layer and help
to overcome the adverse pressure gradient responsible for flow separation.

4.6 Representative Flow Effects in Three Dimensions

Most flows have a 3-D character. For example, if a hypothetical laminar flow consist-
ing of an air mass displaced uniformly as a single unit encounters an object, it will be
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Table 4.2 Two-dimensional drag and lift coefficients.

Profile and wind direction

2.03 0

CD

CD

CL

CL

1.96 –
2.01 0

2.04 0

1.81 0

2.0 0.3

1.83 2.07

1.99 –0.09

1.62 –0.48

2.01 0

1.99 –1.19

2.19 0

Source: From [14].
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Figure 4.23 Variation of the coefficient of fluctuating normal force, CNrms, with angle of attack for a
square prism. Source: From [20], reproduced with permission.

Higher
drag

Lower drag

(b)

= 0.5h
h

Higher
drag

Lower drag

(a)

= 0.1h
h

Figure 4.24 Separation layers in smooth flow (solid line) and in turbulent flow (interrupted line).
Source: After [23].
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Figure 4.25 Dependence of drag coefficient on turbulence intensity. Source: After [23].

diverted in several directions. Also, the passage of such a flow along a surface sets up
boundary-velocity gradients. And three-dimensionality is clearly inherent in turbulent
flows. Although the general equations for fluid flow remain available for application,
in structural engineering practice most aerodynamic studies rely partially or fully on
experiment.

4.6.1 Cases Retaining Two-Dimensional Features

The success of the 2-D flow models discussed in the previous section has in a few cases
been considerable because some actual flows retain certain 2-D features, at least to
a first approximation. Consider, for example, the case of a long rod of square cross
section in an air flow with uniform mean velocity normal to one face. Except near the
ends of the rod, the mean flow may, in some cases, be considered for practical pur-
poses as 2-D. However, the effects associated with flow fluctuations are not identical in
different strips, the differences between events that take place at any given time increas-
ing with separation distance. This is shown in Figure 4.26 for the pressure difference
between centerlines of top and bottom faces of the rod under both laminar and turbu-
lent approaching flow. It is observed that the three-dimensionality of the flow manifests
itself through spanwise loss of correlation rAB between pressure differences (measured
respectively between point A′ at section A and point B′ of section B), this correlation loss
being accentuated when turbulence is present in the oncoming flow. From this example
one may infer that fluctuating phenomena, including vortex shedding, cannot normally
be expected to be altogether uniform along the entire length of a cylindrical body, even if
the flow has uniform mean speed and the body is geometrically uniform. The animation
of Figure 4.27, based on wind tunnel measurements in turbulent boundary-layer flow,
clearly demonstrates the imperfect spatial coherence of pressures on a low-rise struc-
ture. Investigations reported in [24] were among the first to account explicitly for the
imperfect spatial coherence of aerodynamic pressures on low-rise structures.



�

� �

�

4.6 Representative Flow Effects in Three Dimensions 97

0
0

2

TURBULENT
STREAM

SMOOTH
STREAM

B′

B

D

rAB

4 6

rAB/D

8 1210

0.2

C
O

R
R

E
LA

T
IO

N
 C

O
E

F
F

IC
IE

N
T

, R
A

B

0.4

0.6

1.0

0.8 A′

A

U

Figure 4.26 Spanwise correlation of the fluctuating pressure difference across the center line of a long
square cylinder for flow normal to a face. Source: From [20], reproduced with permission.
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Figure 4.27 Fluctuating wind pressure model for 100 ft× 200 ft× 32 ft building in suburban terrain;
gable roof with 1/24 slope. Source: Based on 1 : 100 model scale boundary-layer wind tunnel
simulation, University of Western Ontario; animation created by Dr. A. Grazini. Mean wind speed
normal to end walls. Note asymmetry of pressures with respect to vertical plane containing ridge line.
(Video available at https://www.nist.gov/wind).
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Figure 4.28 Summary of model tests in smooth and boundary-layer flow. Source: From [25].
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In practice, mean flow conditions upwind of tall slender structures are usually not
uniform; indeed, in the atmospheric boundary layer the mean flow velocity increases
with height. Also, certain structures (e.g., stacks) are not geometrically uniform. These
important features – in addition to the incident turbulence – further decrease the coher-
ence of vortices shed in the wake of structures.

4.6.2 Structures in Three-Dimensional Flows: Case Studies

The complexities of wind flow introduced by the geometries of typical structures and by
the characteristics of the terrain and obstacles upstream emphasize the need to carry
out detailed studies of wind pressures experimentally using wind tunnel models and
simulation. Wind flows around buildings are prime examples of 3-D flows that cannot
be described acceptably by 2-D models. In order to give some idea of the type of results
so obtained and to emphasize the important roles of the boundary-layer velocity profile
and of the turbulence in such results, a few examples are cited below.

The existence of significant differences between drag or pressure coefficients mea-
sured in uniform and boundary-layer flow was first pointed out by Flachsbart in 1932
[25]. Figure 4.28b and c show the respective mean wind speed profiles, and Figure 4.28d
and e show pressure coefficient measurement results for wind normal to a building face
(Figure 4.28a). As shown in Chapter 5, a large number of large- and full-scale measure-
ments have been made in the intervening years, owing to the need to assess uncertainties
in data obtained in conventional wind tunnels.

Figures 4.29 and 4.30 are classic representations by Baines [26] of pressure distribu-
tions for structures under laminar and shear flows. Far more detailed measurement
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Figure 4.29 (a) Pressure distributions on the faces of a cube in a constant velocity field. Source:
From [26]. (b) Pressure distributions on the faces of a cube in a boundary-layer velocity field.
Source: From [26].
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Figure 4.30 (a) Pressure distributions over the sides and top of a tall building in a constant velocity
field. Source: From [26]. (b) Pressure distributions over the sides and top of a tall building in a
boundary-layer velocity field. Source: From [26].

results, including data on fluctuating pressures, are available in modern databases
containing results of wind tunnel measurements (NIST/UWO [27], TPU [28]), as well
as in reports on large- and full-scale measurements (e.g., [29–32]).

Load on secondary structural members (e.g., joists) are determined by the algebraic
sums of external and internal pressures acting on them. Figure 4.31 depicts the ideal
case in which (a) the building is hermetically sealed, so that the internal pressure is
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Figure 4.30 (Continued)

not affected by the external wind flow, (b) the building has openings on the windward
side only, in which case wind induces positive internal pressures, (c) the building has
openings on the leeward side, in which case wind induces internal suctions, and (d) the
building has openings on both the windward and leeward sides, in which case induces
internal pressures that may be either positive or negative. Wind-tunnel data on internal
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Figure 4.31 Mean internal pressures in buildings with various opening distributions. Source: From
[33], with permission from ASCE.

pressures are reported in [34–38]. Recent measurements of internal pressures on a
large-scale model of an industrial building, and comparisons with values specified in
the ASCE 7-16 Standard [39], are reported in [40].
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5

Aerodynamic Testing

5.1 Introduction

To date, testing remains the predominant means of obtaining aerodynamic data usable
for the design of engineering structures. It is well established that, for most applications,
the testing has to be performed in flows simulating the main features of atmospheric
flows.

A rigorous simulation of atmospheric flows would require that the non-dimensional
form of the equations of fluid motion and their attendant boundary conditions be the
same in the prototype and at model scale. This is not possible in practice, owing primarily
to the violation of the Reynolds number similarity requirement and the impossibility
of rigorously simulating turbulent atmospheric flows. Wind tunnel testing is therefore
an art that requires consideration of the errors inherent in imperfect simulations (see
Chapters 7 and 12). Attempts to quantify such errors are made by, among other means,
performing full-scale aerodynamic measurements, a difficult endeavor owing to large
uncertainties in the prototype wind flow that are often encountered in practice.

The purpose of this chapter is to discuss similarity requirements (Section 5.2),
describe aerodynamic testing facilities used for civil engineering purposes (Section 5.3),
consider the dependence of the aerodynamic response of wind tunnel models upon
Reynolds number and the turbulence characteristics of simulated atmospheric bound-
ary layer flows (Section 5.4), discuss blockage effects (Section 5.5), and describe and
comment on wind effects based on High Frequency Force Balance (HFFB) measure-
ments (Section 5.6) and on pressure measurements (Section 5.7). Aeroelastic testing,
including testing of suspended-span bridges, is discussed in Part III of the book. For a
rich source of useful information see [1].

5.2 Basic Similarity Requirements

5.2.1 Dimensional Analysis

Basic similarity requirements can be determined from dimensional analysis. For engi-
neering structures, it may be assumed that the aerodynamic force F on a body is a
function of flow density 𝜌, flow velocity U , a characteristic dimension D, a characteristic

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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frequency n, and the flow viscosity 𝜇. The following relation governing dimensional
consistency then holds:

F
d
= 𝜌𝛼U𝛽D𝛾n𝛿𝜇𝜀 (5.1)

where 𝛼, 𝛽, 𝛾 , 𝛿, 𝜀 are exponents to be determined. Each of the quantities 𝜌, U , D, n, 𝜇
can be expressed dimensionally in terms of the three fundamental quantities: mass M,
length L, and time T , so Eq. (5.1) can be written as

ML
T2

d
=
(M

L3

)𝛼( L
T

)𝛽
(L)𝛾

( 1
T

)𝛿( M
LT

)𝜀
(5.2)

(for the dimensions of the viscosity follow see Section 4.1.2). Dimensional consistency
requires that

M ∶ 1 = 𝛼 + 𝜀
L ∶ 1 = −3𝛼 + 𝛽 + 𝛾 − 𝜀
T ∶ − 2 = −𝛽 − 𝛿 − 𝜀 (5.3)

from which there follows, for example, that

𝛼 = 1 − 𝜀
𝛽 = 2 − 𝜀 − 𝛿
𝛾 = 2 − 𝜀 + 𝛿 (5.4)

Substitution of these relations in Eq. (5.1) yields

F
d
= 𝜌1−𝜀U2−𝜀−𝛿D2−𝜀+𝛿n𝛿𝜇𝜀 (5.5)

or

F
d
= 𝜌U2D2

(Dn
U

)𝛿( 𝜇

𝜌UD

)𝜀

(5.6)

meaning that the dimensionless force coefficient F/(𝜌U2D2) is a function of the dimen-
sionless ratios Dn/U and 𝜇/(𝜌UD) (or of their reciprocals).

Generally, an equation involving n physical variables can be written in terms of
p= n − k dimensionless parameters constructed from those original variables, where k
is the number of physical dimensions involved in the equation. This statement is a form
of the Buckingham 𝜋 theorem. In the preceding example, n = 5 (Eq. [5.1]), k = 3 (i.e.,
M, L, and T) and, as indicated following Eq. (5.6), p= 2.

In some wind engineering problems (e.g., the vibrations of suspended bridges) the
aerodynamic forces are also functions of the acceleration of gravity, g. By introduc-
ing g𝜁 into Eq. (5.1) it can easily be shown that the force is also a function of the
non-dimensional ratio U2/Dg, called the Froude number. The non-dimensional ratio
𝜌UD/𝜇=UD/𝜈 is the well-known Reynolds number and 𝜈 =𝜇/𝜌 is the kinematic vis-
cosity of the fluid (Section 4.1.2). The parameter nD/U is called the reduced frequency,
and its reciprocal is the reduced velocity. If the frequency n being considered is the
vortex shedding frequency, the reduced frequency is the Strouhal number (Section 4.4).
If n is replaced by the Coriolis parameter (Section 1.2), the reduced velocity is called
the Rossby number.



�

� �

�

5.2 Basic Similarity Requirements 107

5.2.2 Basic Scaling Considerations

Similarity requires that the reduced frequencies and the Reynolds numbers be the same
in the laboratory and in the prototype. This is true regardless of the nature of the fre-
quencies involved (e.g., vortex shedding frequencies, natural frequencies of vibration,
frequencies of the turbulent components of the flow), or of the densities being consid-
ered (e.g., fluid density, density of the structure). For example, if the reduced frequency
is the same in the prototype and in the laboratory (i.e., at model scale), applying this
requirement to the vortex shedding frequency nv and to the fundamental frequency of
vibration of the structure ns we have(nvD

U

)
p
=
(nvD

U

)
m

(5.7)

and (nsD
U

)
p
=
(nsD

U

)
m

(5.8)

where the indexes m and p stand for model and prototype, respectively.
It follows from Eqs. (5.7) and (5.8) that(ns

nv

)
p
=
(ns

nv

)
m

(5.9)

This is also true of the ratios of all other relevant quantities (lengths, densities, veloc-
ities). Thus, for the density of the structure and the density of the fluid it must be the
case that(

𝜌s

𝜌air

)
p
=
(
𝜌s

𝜌f

)
m

(5.10)

where 𝜌f is the density of the fluid in the laboratory. For the same reason(U(z1)
U(z2)

)
p
=
(U(z1)

U(z2)

)
m

(5.11)

where z1 and z2 are heights above the surface. In particular, if in the prototype the veloc-
ities conform to a power law with exponent 𝛼, it follows from Eq. (5.11) that in the
laboratory the velocities must conform to the power law with the same exponent 𝛼. To
see this, Eq. (5.11) is re-written as follows:

(z1

z2

)𝛼

p
=
(U(z1)

U(z2)

)
m

(5.12)

Since (z1/z2)p = (z1/z2)m by virtue of geometric similarity, it follows from the preceding
equation that similarity is satisfied if

(z1

z2

)𝛼

m
=
(U(z1)

U(z2)

)
m

(5.13)

Since there are three fundamental requirements concerning mass, length, and time,
three fixed choices of scale can be made. This choice determines all other scales. For
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example, let the length scale, the velocity scale, and the density scale be denoted by
𝜆L =Dm/Dp, 𝜆U =Um/Up, and 𝜆𝜌 = 𝜌m/𝜌p. The reduced frequency requirement(nD

U

)
p
=
(nD

U

)
m

(5.14)

controls the frequency scale, 𝜆n, for all pertinent test frequencies. From Eq. (5.14) it fol-
lows immediately that 𝜆n = 𝜆U/ 𝜆L. The time scale 𝜆T is the reciprocal of 𝜆n.

In principle, for similarity between prototype (i.e., full-scale) and laboratory flows
to be achieved, the respective Reynolds numbers Re=UD/𝜈 must be the same. This
requirement is referred to as Reynolds number similarity. In aerodynamic facilities for
testing models of structures the fluid being used is air at atmospheric pressure, and
Reynolds number similarity is unavoidably violated.

5.3 Aerodynamic Testing Facilities

To achieve similarity between the model and the prototype, it is in principle necessary
to reproduce at the requisite scale the characteristics of atmospheric flows, that is, (i)
the variation of the mean wind speed with height, and (ii) the turbulence characteristics.
The purpose of this section is to describe facilities intended to do so, including facilities
designed to simulate thunderstorm and tornado winds. Also described in this section
are facilities used for full- or large-scale tests of special structures such as lamp posts,
and for providing data on wind-driven rain intrusion and on snow deposition.

In long wind tunnels, a boundary layer with a depth of 0.5–1 m develops natu-
rally over a rough floor in test sections with lengths of the order of 20 m in length
(Figures 5.1–5.3). In such tunnels, as well as in tunnels with considerably shorter test
sections (e.g., 5–10 m), the depth of the boundary layer is increased above these values
by placing at the test section entrance passive devices such as spires (e.g., Figure 5.3),
grids, barriers, fences, singly or in combination, some of which are illustrated subse-
quently. The height of long tunnels may be adjusted to achieve a zero-pressure gradient
streamwise, which owing to energy losses associated with flow friction at the walls and
internal friction due to turbulence would otherwise not occur.

The following procedure for the design of spires with the configuration of Figure 5.5
was proposed in [4]1:

1) Select the desired boundary-layer depth, 𝛿.
2) Select the desired shape of the mean velocity profile defined by the power law

exponent, 𝛼.
3) Obtain the height h of the spires from the relation.

h = 1.39𝛿
1 + 𝛼∕2

(5.15)

4) Obtain the width b of the spire base from Figure 5.6, in which H is the height of the
tunnel test section.

1 The base dimension of the triangular splitter plate in Figure 5.5 is h/4; the lateral dimension is h/4. The
lateral spacing between the spires is h/2. The width of the tunnel need not be an integral multiple of h/2.
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Figure 5.1 Wind tunnel operated by Kawasaki Heavy Industries, Ltd., Japan, at its Akashi Technical Institute. (Wind speed range: 0.2–25 m s−1; test section
dimensions: 2.5× 3× 20 m.) Source: From: [2], with permission from ASCE.
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Figure 5.2 Development of boundary layer in a long wind tunnel. Source: After [3].

Figure 5.3 Wind tunnel, Colorado State University. Model and turntable are in the foreground and
spires are in the background. Source: Courtesy of Professor B. Bienkiewicz.

The desired mean wind profile occurs at a distance 6h downstream from the spires.
According to [4, 5], the wind tunnel floor downwind of the spires should be covered with
roughness elements, for example, cubes with height k such that

k
𝛿
= exp

[
2
3

ln
(D
𝛿

)
− 0.1161

(
2

Cf
+ 2.05

)1∕2
]

(5.16)

where D is the spacing of the roughness elements,

Cf = 0.136
(

𝛼

1 + 𝛼

)2
(5.17)

and 𝛼 is the exponent of the power law describing the mean wind speed profile.
According to [4, 5], Eqs. (5.16) and (5.17) are valid in the range 30<𝛿D2/k3 < 2000.
Some laboratories have adopted the system proposed in [4], others have used other
methods for designing their flow management system (see, e.g., Figure 5.4).
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Figure 5.4 Boundary-layer wind tunnel, University of Florence, Prato, Italy. Source: Courtesy of
Professor Claudio Borri.

Figure 5.5 A proposed spire configuration.
Source: Reprinted from [4], with permission from
Elsevier.
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Figure 5.6 Proposed graph for obtaining spire base
width. Source: Reprinted from [4], with permission
from Elsevier.

Various aerodynamic testing facilities are described in the following.
National Aeronautical Establishment, National Research Council of Canada. A short

wind tunnel with 9 m × 9 m cross section, designed for aeronautical applications, has
occasionally been used for civil engineering purposes, and is shown in Figure 5.7. The
drawback of this facility from a civil engineering point of view is that the test section is
too short to allow the flow to develop features with an acceptable resemblance to those
of the atmospheric boundary layer.

Figure 5.7 Spire and roughness arrays in a short wind tunnel. Source: Courtesy of the National
Aeronautical Establishment, National Research Council of Canada.
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Figure 5.8 Interior view of IBHS Research Center with full-scale specimens, placed on the 16.8 m
diameter turntable with a surface area of 220 m2. The 105-fan array with 300 hp motors is located on
the left side of the picture. Source: Courtesy of the Institute for Business & Home Safety.

IBHS Research Center. Figure 5.8 shows an outside and inside view of the Institute
for Business & Home Safety (IBHS) Research Center in South Carolina, a multi-peril
facility capable of testing structures subjected to realistic Category 1, 2, and 3 hurricanes,
extra-tropical windstorms, thunderstorm frontal winds, wildfires, and hailstorms. One
purpose of the test performed on the two buildings shown in Figure 5.8 was to offer a
vivid illustration of the benefits of robust construction by contrasting, in a video, the
good performance of the stronger of the two buildings and the collapse of the weaker
building.

Florida International University Wall of Wind Experimental Facility. The Wall of
Wind (WoW) is powered by twelve 4.9 m diameter fans and is capable of testing
in up to 70 m s−1 (157 mph) wind speeds (Figures 5.9 and 5.10). The test section is
6.1 m × 4.3 m, and the turntable diameter is 4.9 m. Testing can be performed at scales
approximately twice as large, and Reynolds numbers approximately five times as large,
as in facilities such as, for example, the wind tunnel in Figure 5.1. As can be seen in
Figure 5.10, the spires and floor roughness elements for the simulation are similar to
those used in typical wind tunnels. The facility can be used for destructive testing and
for the simulation of water intrusion due to wind-driven rain.

University of Florida (UF) Boundary Layer Wind Tunnel. The University of Florida’s
major aerodynamic testing facility is its boundary layer wind tunnel, with a 6 m wide, 3 m
high, and 40 m long test section, and a 16 m s−1 maximum flow speed (Figure 5.11). The
floor roughness elements, which help to simulate various surface exposures, are auto-
mated and individually controlled. This feature allows fine tuning of the boundary layer
at the test section, and rapid reconfiguring for efficient testing using multiple exposures.

Tornado Simulator, Iowa State University ( ISU). Basic ideas on facilities for tornado
simulation were developed in [6] and [7], among others. The ISU tornado simulator
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Figure 5.9 Twelve-fan wall of wind, Florida International University. Source: Courtesy of Professor A.
Gan Chowdhury.

Figure 5.10 Twelve-fan wall of wind, Florida International University: view of test section. Source:
Courtesy of Professor A. Gan Chowdhury.
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Figure 5.11 University of Florida boundary-layer wind tunnel. Source: Courtesy of Professor K. R.
Gurley.

is a modern version of the facility described in [6], and is shown schematically in
Figure 5.12 [8].

WindEEE Dome. The Wind Engineering, Energy and Environment (WindEEE) Dome
[9, 10] is an innovative hexagonal wind tunnel that allows for atmospheric boundary
layer simulations over extended areas and complex terrain, and of tornadoes, down-
bursts, and microbursts (Figures 5.13 and 5.14).

For the atmospheric boundary layer simulation mode (Figures 5.13a and 5.14), the
test section is 14 m wide, 3.8 m high, and 25 m long, and the maximum flow velocity
is 35 m s−1. The tornado simulation mode (Figures 5.13b) allows the modeling of cate-
gory F0–F3 tornado flows with vortex diameters of up to 4.5 m, translation speeds of up
to 2 m s−1, and flow velocities of up to 25 m s−1. The downburst/microburst simulation
mode (Figure 5.13c) can achieve flows with up to 2 m s−1 translation speeds and 30 m s−1

velocities.
One of the six walls shown in Figure 5.13 has four rows of 15 independently adjustable

fans each, used to simulate the atmospheric boundary layer flow. The other five walls
have each eight fans at their base. For the tornado simulation mode, directional vanes
are placed in front of each of those fans. The angle of orientation of the vanes can be
adjusted to impart the desired swirl ratio to the flow (i.e., the ratio between the tangential
velocity and the radial velocity in the vortex). Six large fans placed in the upper chamber
(Figure 5.13) produce an updraft shown schematically in Figure 5.13b. For details on
various capabilities of the WindEEE facility, including measurement capabilities,
see [9, 10].
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Figure 5.12 Iowa State University tornado simulator. Source: Courtesy of Professor P. Sarkar.

(a) (b) (c)

Figure 5.13 Schematic cross section: (a) Atmospheric boundary-layer simulation mode; (b) tornado
flow simulation mode; (c) downburst/microburst simulation mode. Source: Courtesy Professor H.
Hangan.
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Figure 5.14 View of test section. Source: Courtesy Professor H. M. Hangan.

Politecnico di Milano, Milan, Italy. The test section of its large-scale aerodynamic test-
ing facility is 13.85 m wide, 3.85 m high, and 35 m long, and the maximum wind speed
is 16 m s−1.2

Centre Scientifique et Technique du Bâtiment (CSTB), Nantes, France. The test
section of its large-scale boundary-layer wind tunnel (Figures 5.15 and 5.16) is 4 m
wide, 1.7–3.5 m high, and 15 m long, and the maximum wind speed is 30 m s−1. Note
in Figures 5.15 and 5.16 that the passive flow management devices being used are
different depending upon type of application. Like other prominent laboratories, CSTB

Figure 5.15 Test section of boundary-layer wind tunnel. Source: Photo Florence Joubert; courtesy of
CSTB.

2 No picture available at the time of printing.
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Figure 5.16 Test section of boundary-layer wind tunnel. Source: Courtesy of CSTB. Note that for this
application the flow management devices placed at the entrance to the test section are radically
different from the typical spires.

operates large facilities for testing: wind-driven rain intrusion (Figure 5.17); roofing
(Figure 5.18); snow deposition (Figure 5.19); and other applications.

Technical University Eindhoven (TUE). The TUE boundary-layer wind tunnel test
section is 27 m long, 3 m wide, and 2 m high. Wind speeds can be as high as 30 m s−1. The
wind tunnel is designed for build environment, maritime, sports, vehicle aerodynamics,
air quality, and wind energy applications. Both open and closed circuit modes are feasi-
ble (Figure 5.20). Measurement equipment includes 3-D Laser Doppler Anemometry.

Figure 5.17 Wind-driven rain intrusion test. Source: Courtesy of CSTB.
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Figure 5.18 Roofing test. Source: Courtesy of CSTB.

Figure 5.19 Snow deposition test. Source: Courtesy of CSTB.
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Figure 5.20 TUE boundary layer wind tunnel. Source: Courtesy of Professor B. Blocken.

5.4 Wind Tunnel Simulation of Atmospheric Boundary Layers

5.4.1 Effect of Type of Spires and Floor Roughness Elements

Figure 5.21 [11] shows the mean velocity and the longitudinal and vertical turbulence
intensity profiles at (i) 6.1 m and (ii) 18.3 m downwind of the test section entrance, for
flows obtained by using three different types of spires, the wind floor being covered by
staggered 12.7 mm cubes spaced 50.8 mm apart. In Figure 5.21 the boundary-layer thick-
ness 𝛿, the mean wind speed at elevation 𝛿, and the power law exponent 𝛼 are denoted
by delta, Uinf, and EXP, respectively. It was assumed in the study that the mean flow
with power law exponent 𝛼 = 0.16 at station x= 6.1 m and 𝛼 = 0.29 at station x= 18.3 m
are approximately representative of open terrain and suburban terrain, respectively.

Some modelers adopt a geometric scale equal to the ratio between the boundary-layer
thickness measured in the laboratory and values zg of Table 2.4, even though the
latter are nominal, rather than physically significant. The use of this geometric
scaling criterion for the simulations of Figure 5.21 yielded the geometric scales
𝛿 / zg = 0.75/274= 1/365 for the flow with open exposure (𝛼 = 0.16), and 1/400 for the
flow with built-up terrain exposure (𝛼 = 0.29). The respective measured longitudinal
turbulence intensities at 50 m above ground are 0.07 and 0.15, versus about 0.15 and
0.225, estimated using Eq. (2.56) for atmospheric boundary-layer flows. As expected,
the discrepancy between the longitudinal turbulence intensity in the wind tunnel and
the target value in the atmosphere is more severe at the station x= 6.1 m, which would
correspond to the fetch available in a typical short wind tunnel.

Figure 5.22 [11] shows spectra of the longitudinal velocity fluctuations measured at
station x= 18.3 m, and elevation z/𝛿 = 0.05 in the three flows described in Figure 5.21.
For nz/U(z)= 1.0, the spectra corresponding to two of the three types of spires differ
from each other by a factor greater than two.
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Figure 5.21 Wind tunnel flow features at (a) 6.1 m and (b) 18.3 m downwind of spires, obtained by
using three types of spire configurations. Source: Reprinted with permission from [11].
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Figure 5.22 Spectra of longitudinal velocity fluctuations measured at 18.3 m downwind of spires.
Source: Reprinted with permission from [11].

That wind tunnels with different flow management devices can result in flows with
different properties and, hence, in different aerodynamic pressures on bodies immersed
in those flows was confirmed by a round robin set of tests reported in [12] (https://
www.nist.gov/wind). The tests were conducted by six reputable wind tunnels in the US,
Canada, France, and Japan on a model of an industrial building with both open and
suburban terrain exposure. Coefficients of variation (CoV) of wind effects determined
on the basis of the test results differed significantly from laboratory to laboratory and
were found to be as high as 40%.

5.4.2 Effect of Integral Scale and Turbulence Intensity

It is assumed in current practice (see, e.g., ASCE 49-12 Standard [13] and ASCE 7-16
Standard [14]) that wind tunnel flows are satisfactory if, in addition to the mean wind
profiles, they reproduce the longitudinal turbulence intensity and, to some degree at
least, the longitudinal integral scale of turbulence typical of atmospheric boundary-layer
flows. This section discusses the extent to which this assumption is warranted.

Integral Scale and Turbulence Intensity. Some laboratories assume that the integral
length is a valid characterization of turbulence for wind tunnel testing purposes. In prin-
ciple, the geometric scale of the simulation should be consistent with the relation

Dm

Dp
=

(Lx
u)m

(Lx
u)p

(5.18)

where the indexes m and p stand for model and prototype, respectively. However, the
usefulness of Eq. (5.18) is questionable for three reasons. First, estimates of integral



�

� �

�

5.4 Wind Tunnel Simulation of Atmospheric Boundary Layers 123

lengths are typically highly uncertain. Second, the small-scale turbulence transports
into the separation bubble free flow particles with large momentum, thus promoting
flow reattachment and strongly affecting pressure distributions near separation points
[15]; the integral scale is not a significant factor in this phenomenon. Third, integral tur-
bulent scales similar to those occurring in the atmosphere are not achievable in typical
conventional wind tunnels at geometric scales used for the simulation of wind effects
on low-rise buildings (e.g., 1 : 50–1 : 100). This is the case because the size of the eddies
associated in the atmosphere with low-frequency flow fluctuations is too large to be
accommodated at such scales in wind tunnels with test-section widths of the order
of 1.5–3 m. These fluctuations contribute most of the turbulence intensity in atmo-
spheric boundary-layer flows. For these reasons the ASCE 7-16 considerably relaxes
the requirement inherent in Eq. (5.18). In addition, it follows from the low-frequency
fluctuation deficit in conventional wind tunnels that equal simulated and prototype tur-
bulence intensities may not produce similar aerodynamic effects because the respective
flows have different frequency content.

Compensating for Missing Low-Frequency Fluctuations. The effect of the low-
frequency fluctuation deficit in conventional boundary-layer wind tunnel tests at
geometric scales of the order of 1 : 100 can be compensated for by assuming that
the energy of those fluctuations is concentrated at frequencies close to or equal to
zero. Since zero-frequency (infinite-period) velocity fluctuations are in effect constant
velocities, this assumption entails adding to the aerodynamic pressures measured in
the wind tunnel, via post-processing, a constant pressure

pd = 1
2
𝜌CpU2

def (5.19)

In Eq. (5.19), 𝜌 is the air density, Cp is the mean pressure coefficient measured in
the wind tunnel, and U2

def is the estimated area under the spectral density function of
the low-frequency contributions not reproduced in the wind tunnel. This approach is
conservative because it implies perfect spatial coherence of the pressures that would
be induced by the missing fluctuation components, when in reality that coherence is
imperfect. For an alternative approach see [16].

5.4.3 Effects of Reynolds Number Similarity Violation

In principle, for similarity between prototype and wind tunnel flows to be achieved,
the respective Reynolds numbers must be the same. This requirement is referred to as
Reynolds number similarity. In aerodynamic facilities for testing models of structures
the fluid being used is air at atmospheric pressure, and Reynolds number similarity is
unavoidably violated.

The aerodynamic behavior of the bodies depends upon whether the boundary layers
that form on the curved surfaces are laminar or (partially or fully) turbulent. Since
boundary layers occurring at high Reynolds numbers are turbulent, it is logical to
attempt the reproduction of full-scale flows around smooth cylinders by changing
laminar boundary layers into turbulent ones. This can be done by providing the surface
with roughness elements [17].
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According to [18] the thickness e of the roughness element should satisfy the relations
Ue/𝜈 > 400 and e/D< 0.01, where U is the mean speed, 𝜈 is the kinematic viscosity, and
D is the characteristic transverse dimension of the object. For the tower shown in plan in
Figure 5.23, the roughness was achieved by fixing onto the surface of the 1/200 model 32
equidistant vertical wires. Three sets of experiments are reported in [18], in which the
surface of the cylinder was (i) smooth, (ii) provided with 0.6 mm wires (e/D= 7×103),
and (iii) provided with 1 mm wires, respectively. It was found that the highest mean
and peak pressures were more than twice as high on the smooth model than on the
models provided with wires. The differences between pressures on the model and with
0.6 mm and the model with 1 mm wires were small. The influence of the roughness on
the magnitude of the mean pressures at 20 m (full scale) below the top of the building is
shown in Figure 5.23, in which

Cp =
p − pr
1
2
𝜌U2

r
(5.20)

where p is the measured mean pressure, pr is the static reference pressure, Ur is the
mean speed at the top of the building, and 𝜌 is the air density.

Unlike bodies with rounded shapes, bodies with sharp edges have fixed separation
points (Figure 4.18), whose separation at the edges is independent of Reynolds num-
ber. It has therefore been hypothesized that flows around such bodies are similar at full
scale and in the wind tunnel, even if Reynolds number similarity is violated. However, in
the wind tunnel friction forces are larger in relation to inertial forces than at full scale.

Smooth model

–2

+

–

–

–

–1 +1

SW Wind

0

Models with 0.6 mm and
with 1 mm wires

Cp

Figure 5.23 Influence of model surface roughness on pressure distribution. Source: Courtesy of
Cebtre Scentifique et Technique du B

˘

atiment, Nantes, France.
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This affects the local vorticity at edges and corners in the wind tunnel, resulting in local
pressures typically weaker than at full scale. Examples are shown in Section 5.4.4.

5.4.4 Comparisons of Wind Tunnel and Full-Scale Pressure Measurements

Figure 5.24 shows that the negative peak pressures measured at a corner of a low-rise
building can be significantly stronger at full scale than in the wind tunnel.

Additional comparisons of pressures on the Texas Tech building and its wind tunnel
models tested at Colorado State University and the University of Western Ontario were
published in [20]. Figure 5.25 shows that wind tunnel measurements are acceptable for
the wall pressures but inadequate for the roof corner.

Figure 5.26a and b show comparisons between wind tunnel and full-scale measure-
ments of pressures at the Commerce Court tower, Toronto. The wind tunnel values were
provided at the design stage and are represented by open circles. The solid lines join aver-
age values of estimates derived from full-scale measurements; the shaded areas indicate
the standard deviation of the full-scale estimates (in Figure 5.26 the notation RMSM
denotes the root mean square value about the mean). Note that fluctuating pressures
attributable to fluctuating lift differ at some points significantly in the wind tunnel from
their full-scale counterparts.

For some tall buildings, the loss of high-frequency velocity fluctuations content in
the laboratory can also reduce the strength of the resonant fluctuations induced on the
model by the oncoming flow.
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Figure 5.24 Minimum pressure coefficients at building corner, eave level, Texas Tech University
experimental building, full-scale and wind tunnel measurements. Source: From [19].
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5.5 Blockage Effects

A body placed in a wind tunnel will partially obstruct the passage of air, causing the
flow to accelerate. This effect is called blockage. If the blockage is substantial, the flow
around the model, and the model’s aerodynamic behavior, are no longer representative
of prototype conditions.

Corrections for blockage depend upon the body shape, the nature of the aerodynamic
effect of concern (i.e., whether drag, lift, Strouhal number, and so forth), the characteris-
tics of the wind tunnel flow, and the relative body/wind tunnel dimensions. Basic studies
of blockage are summarized in [22], which contains a bibliography on this topic. For drag
measured in closed wind tunnels it is concluded in [22] that the following approximate
relation may be used for the great majority of model configurations in all flows, including
boundary-layer flows:

CDc
=

CD

1 + K S∕C
(5.21)

where CDc
is the corrected drag coefficient, CD is the drag coefficient measured in the

wind tunnel, S is the reference area for the drag coefficients CDc
and CD, and C is the wind

tunnel cross-sectional area. The ratio S/C is called the blockage ratio. The coefficient K
has been determined only for a limited number of situations. For example, for a bar with
rectangular cross section spanning the entire height of a wind tunnel with nominally
smooth flow, K was determined to depend upon the ratio a/b as shown in Figure 5.27,
where a and b are the dimensions of the along-wind and across-wind sides of the rect-
angular cross section, respectively.

In practice, it may be assumed that for 2% blockage ratios the blockage corrections
are about 5%, and that to a first approximation the blockage correction is proportional
to the blockage ratio [22].

For a basic study of blockage effects on bluff-body aerodynamics, see [24].
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Figure 5.27 Blockage correction factor K for two-dimensional prism ratio a/b in nominally smooth
flow [23].
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5.6 The High-Frequency Force Balance

The HFFB approach uses rigid test models supported at the base by a high-frequency
force (i.e., a rigid) balance. The balance allows measurements of strains proportional to
the base bending moments, shears and torsional moments, and experiences very small
deformations that render the model motions negligibly small (Figure 5.28).

The HFFB approach is applicable primarily to buildings with approximately
straight-line fundamental modal shapes in sway along the principal axes of the
building. The expression for the base moment generated by the wind load in the
x-direction is

Mb,x(t) =
∫

H

0
wx(z, t)zdz (5.22)

where H= building height, wx(z, t)=wind loading parallel to the x-direction per unit
height, and z= elevation above ground. Assuming that the fundamental modal shape is
a straight line, the generalized force in the x-direction is also given by right-hand side
of Eq. (5.22). Owing to this coincidence, measurement of the base moment yields the
generalized force Qx1(t):

Qx1(t) =
∫

H

0
wx(z, t)(z∕H)dz (5.23)

where z/H is the fundamental modal shape. The estimation of the fundamental
frequency of vibration from the analysis of the structure, and the specification of the
damping ratio, then allow the approximate estimation of the dynamic response (see
Chapter 11). Similar statements apply to the generalized force in the y-direction [25].

While the generalized aerodynamic torsional moment has the expression

Q𝜙1(t) =
∫

H

0
T(z, t)𝜑T1(z)dz (5.24)

BUILDING MODEL

WIND TUNNEL FLOOR

Figure 5.28 Schematic of force-balance
model.
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where T(z, t) is the aerodynamic torsional moment per unit height, and 𝜑T1(z) is the
fundamental mode of vibration in torsion, the base aerodynamic torsional moment mea-
sured in the wind tunnel is

Q𝜙1,HFFB(t) =
∫

H

0
T(z, t)dz. (5.25)

Since 𝜑T1(z)≠ 1, the measured base torsional moment cannot be a substitute for the
fundamental generalized torsional moment Q𝜑1(t). In addition, the HFFB approach
provides no information on the contribution of higher modes of vibration to the
response.

If the fundamental modes of vibration in the x and y directions do not vary linearly
with height, the measured base bending moments are inadequate substitutes for the
expressions of the respective modal generalized forces. Corrections accounting for
the actual modal shapes can be applied, but they depend upon the distribution of the
wind pressures, which until the 1990s could not be obtained by measurements and was
therefore generally unknown, especially for buildings affected by aerodynamic interfer-
ence effects. The corrections, and the corresponding approximations of the generalized
torques and moments, therefore depended upon educated guesses concerning the wind
pressure distribution. In the 1980s, 1990s, and even the first years of the 2000s, the
design of tall buildings was based on the HFFB approach that, in spite of its limitations,
was a step forward with respect to earlier practices.

The HFFB procedure has two advantages: it is relatively fast and inexpensive, and it is
compatible with the presence of architectural details that may render difficult the use of
pressure taps in some cases. The procedure is convenient for use in preliminary studies
of aerodynamic alternatives for which only qualitative results are required.

5.7 Simultaneous Pressure Measurements at Multiple Taps

Figure 5.29 shows a model with the large number of pressure taps for which simulta-
neous pressure measurements are enabled by modern electronic scanning systems. In
contrast, Figure 5.30 shows typical tap locations for models subjected to tests compatible
with the capabilities available in the late 1970s, on the basis of which ASCE 7 Standard
provisions were developed in the 1980s. In addition of the fact that the spatial resolu-
tion of the pressure taps is two orders of magnitude higher in modern practice than in
the 1970s, the quality of the inferences based on the models with large numbers of taps
is due to the fact that, unlike their 1970s predecessors, all data obtained by electronic
scanning systems can be recorded and therefore allow transparent post-processing.

A widely used simultaneous pressure measuring system is the Electronic Pres-
sure Scanning System developed by Scanivalve Corporation (www.scanivalve.com)
(Figure 5.31). A pressure measuring system includes an Electronic Pressure Scan-
ning Module (e.g., ZOC33 with 64 pressure sensors), a Digital Service Module (e.g.,
DSM4000, which can service up to eight Electronic Pressure Scanning Modules, i.e.,
up to 512 sensors, and contains an embedded computer, RAM memory, and a hard
disk drive), a pressure calibration system, auxiliary instrumentation to regulate supply
of clean, dry air, and data acquisition software.
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Figure 5.29 Building model in wind tunnel. Source: From [26].
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Figure 5.30 Pressure tap arrangement
in typical 1970s tests. Source: After [27].

The connection between the Electronic Pressure Scanning Module and the pressure
taps is made through plastic tubes. A test model with tubes connecting the pressure
taps to the scanning module is shown in Figure 5.32. Tube characteristics must conform
to requirements assuring that no significant distortion of pressures acting at the taps
occurs [28, 29].
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Figure 5.31 View of electronic multi-channel pressure scanning system (www.scanivalve.com).

Figure 5.32 Tubes installed on a small-scale test building.
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6

Computational Wind Engineering

6.1 Introduction

Computational Fluid Dynamics (CFD) is a vast field aimed at describing fluid flows
using numerical methods. Computational Wind Engineering (CWE) is a CFD subfield
whose main objective is to produce descriptions of aerodynamic wind effects on the
built environment. In particular, descriptions are sought for use in the structural design
of buildings and other structures. It is symptomatic that, while addressing recent CWE
accomplishments, state-of-the-art surveys [1–3] mention few if any applications to
structural design practice. This is because, to date, with rare exceptions [4], structural
designers cannot rely on CWE with the degree of confidence required to ensure the
safety of structures whose failure may result in loss of life. However, CWE is increasingly
being used in such applications as the evaluation of pedestrian comfort in zones of
intensified wind speeds (see Chapter 15) and the estimation of wind effects on solar
collectors in solar power plants [5].

In a number of cases CWE can provide solutions that may be used for preliminary
design purposes if backed by proper validation – see the UK Design Manual for Roads
and Bridges (BD 49/01) [6], the Eurocode (prEN 1991-1-4) [7], and the Architectural
Institute of Japan Guidebook [8]. Currently, CWE research is aimed at creating tools
allowing the development of aerodynamic data usable for structural design even in the
absence of closely related ad-hoc experimental validation.

The purpose of this chapter is to present a brief compendium of selected informa-
tion on CWE modeling, numerical issues, and verification and validation procedures,
with a view to acquainting wind and structural engineers with the CWE vocabulary and
facilitating dialogue between wind and structural engineers on the one hand and CWE
professionals on the other.

It is shown in Chapter 12 that uncertainties in the aerodynamic pressures have con-
siderably less weight in the global uncertainty budget than do uncertainties in the wind
speeds; for this reason, their effect on the estimates of overall effects of the flow on the
structure are less severe than is the case in automotive or aeronautics applications.

The mathematical model used in CWE simulations consists of the governing
equations of the flow (Section 6.2). The governing equations need to be discretized,
and grids within a computational domain are generated for implementing the dis-
cretization (Section 6.3). The requisite initial and boundary conditions are considered
in Section 6.4. Numerical solutions for the flow as represented by the discretized com-
putational model are briefly discussed in Section 6.5. Section 6.6 concerns numerical

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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stability issues. Section 6.7 summaries turbulence models. Section 6.8 is a concise
introduction to verification and validation (V&V), and uncertainty quantification
(UQ). Section 6.9 considers the role of wind tunnel testing and CWE prospects in
the simulation of aerodynamic effects. Section 6.10 briefly discusses best practice
guidelines (PBG).

6.2 Governing Equations

Fluid flows are described by the equation of continuity (conservation of mass) and the
Navier–Stokes equations (conservation of momentum). CWE only considers incom-
pressible air flow (see Chapter 4), for which the equation of continuity is

𝜕Ui

𝜕xi
= 0 (6.1)

where Ui are the velocity components in the xi directions in a Cartesian coordinate
system (i= 1, 2, 3). Einstein notation is used in Eq. (6.1) and subsequent equations.

The Navier–Stokes equations are
𝜕Ui

𝜕t
+ Uj

𝜕Ui

𝜕xj
= −1

𝜌

𝜕p
𝜕xi

+ 𝜈
𝜕2Ui

𝜕xj𝜕xj
+ fi (6.2)

where p is the pressure, ν is the fluid kinematic viscosity, and f i is the vector representing
body forces (e.g., the gravity or the pressure-gradient force). The non-dimensional form
of Eqs. (6.1) and (6.2) highlights the dependence of the flow on the Reynolds number Re:

𝜕U∗
i

𝜕x∗
i
= 0 (6.3)

𝜕U∗
i

𝜕t∗
+ U∗

j

𝜕U∗
i

𝜕x∗
j
= −

𝜕p∗

𝜕x∗
i
+ 1

Re
𝜕2U∗

i

𝜕x∗
j 𝜕x∗

j
+ f ∗i (6.4)

where the non-dimensional variables based on reference length (Lref) and velocity (Uref)
are defined as:

x∗
i =

xi

Lref
, U∗

i =
Ui

Uref
, t∗ = t

Lref∕Uref
=

tUref

Lref
, p∗ =

p
𝜌U2

ref

, f ∗ =
fi

U2
ref L

−1
ref

(6.5)

6.3 Discretization Methods and Grid Types

Discretization of the governing equations (Eqs. [6.1] and [6.2]) in CWE is commonly
performed using finite difference, finite volume, or finite element methods (FDM, FVM,
or FEM, respectively). All methods discretize the computational domain using grids
and approximate the governing partial differential equations by systems of algebraic
equations. FDM, typically restricted to simple geometries, uses Taylor series or polyno-
mial fitting to approximate at each grid point the derivatives that appear in the governing
equations. FVM, the most commonly used discretization technique, solves the integral
form of the governing equations in a domain subdivided into small contiguous control
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(a) Structured regular grids (c) Block-structured grids(b) Unstructured grids

Figure 6.1 Types of grid.

volumes. The method defines the control volume boundaries, rather than the computa-
tional nodes, and the values of the variables are approximated at the cell faces from the
values at the control volume centers. FEM is similar to FVM, but uses weight functions
aimed at minimizing approximation errors [9]. Its main advantage is that it is readily
applicable to flows with complex geometries.

Through the grid generation process, the computational domain is composed of by
a large number of cells consisting of nodes (vertexes) and lines joining adjacent nodes,
thus defining a grid (also called mesh). Grids can be structured or unstructured. Struc-
tured grids (Figure 6.1a) are defined as families of grid lines such that lines of a single
family do not cross each other, and lines of a family cross lines of other families only
once [10]. Unstructured grids (Figure 6.1b) usually consist of triangles or quadrilaterals
in two dimensions and tetrahedra and hexahedra in three dimensions, typically in irreg-
ular patterns. The generation of unstructured grids can be automated in computational
domains with any level of geometric complexity. However, unstructured grids require
more computational memory and entail higher costs than structured grids.

For parallel computing, structured grids can be based on a multi-block approach, in
which a domain with complex geometries is decomposed into multiple blocks (zones)
with simple geometries (Figure 6.1c). Interfaces between blocks should be located in
regions in which the flow characteristics (e.g., pressure and velocity gradient) are not
rapidly changing. Unstructured grids are typically decomposed into zones by an algo-
rithm embedded in a mesh generation program.

6.4 Initial and Boundary Conditions

Simulations are of two generic types: (i) steady-state simulations, applied to equilibrium
problems, and (ii) marching simulations, applied to transient problems. In equilibrium
problems, the governing equations are solved once to determine the time-independent
solution. In marching problems, the equations are solved at each time step, starting
from the initial conditions, to determine the time-dependent solution as it advances
in time. Appropriate initial and boundary conditions in conjunction with the governing
equations are required for constructing a well-posed mathematical model of the flow.

6.4.1 Initial Conditions

For time-dependent simulations, initial values are generally imposed in the computa-
tional domain. The most effective initial conditions are solutions of the fully developed
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flow obtained from previous simulations. Results from steady-state simulations can be
employed to expedite the turbulence development in transient flow simulations.

6.4.2 Boundary Conditions

Boundary conditions (BC) are typically defined in terms of boundary values of the
unknown field and their derivatives. BC commonly used in CWE applications are
listed next.

Dirichlet boundary conditions assign at the boundary a constant 𝜙0 value for the vari-
able 𝜙:

𝜙 = 𝜙0. (6.6)

If𝜙 is a pressure or a velocity, Eq. (6.6) describes a constant pressure or a constant veloc-
ity field at the boundary condition, respectively.
Von Neumann boundary conditions assign at the boundary a constant gradient of the
variable 𝜙:

𝜕𝜙

𝜕n
= 𝜙0 (6.7)

where n is normal to the boundary.
Convective boundary conditions (also called non-reflective BC) approximate the variable
𝜙 at a boundary near which the flow is convective but exhibits no diffusive effects, that
is, for an upstream reference velocity Uref

𝜕𝜙

𝜕t
+ Uref ⋅ ∇𝜙 = 0. (6.8)

Periodic boundary conditions (also called cyclic BC) approximate cyclically repeating
behavior as follows:

𝜙(t)|B = 𝜙(t)|B+L (6.9)

where B represents a boundary and L is the characteristic length of periodicity.
No-slip wall boundary conditions are applied to viscous flow bounded by a solid wall
where the flow velocity relative to the wall vanishes, that is, for a stationary wall

UP = U⟂ = 0 (6.10)

where UP and U⟂ are the tangential and normal components of the velocity vector,
respectively. This boundary condition is typically used near the wall when the grids in
that region are fine enough to resolve the flow throughout the viscous sublayer (i.e., for
z+ < 1, where z+ =u*z/𝜈, z is the direction normal to wall and u* is the friction velocity.).
Slip (or inviscid) wall boundary conditions model a zero-shear solid wall (i.e., no friction
at the interface of fluid and structure). Thus, the velocity component normal to the wall
is zero:

U⟂ = 0 (6.11)

and the gradients normal to the wall of the velocity components are assumed to be
zero:

∇UP ⋅ n = ∇U⟂ ⋅ n = 0. (6.12)

This can be used for a wall above which viscous effects are negligible or for a far boundary
field that influences negligibly the flow physics of interest.
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Symmetry Boundary Conditions are employed on a plane when the flow is assumed to be
symmetric with respect at that plane. Thus, there is no fluxes across the plane, meaning
that the velocity normal to the boundary is zero:

U⟂ = 0. (6.13)

In addition, the gradient of the velocity tangent to the symmetry plane in the direction
normal to that plane is zero:

∇UP ⋅ n = 0, (6.14)

which means that the shear stress is zero, but the normal stress is not zero (∇U⟂ ⋅n≠ 0)
on the symmetry plane, which is not the cases in the no-slip and slip wall boundary
condition. Another requirement is zero gradient of all scalar quantities 𝜙s normal to the
symmetry plane:

∇𝜙s ⋅ n = 0. (6.15)

6.5 Solving Equations

For CWE applications modeled by nonlinear partial differential equations, matrix
equations are solved by iterative methods in which the initial solution is assumed,
the equation is linearized, and the solution is improved by repeating the process until
an acceptable solution is obtained. More details of the solutions of the systems of
equations are provided in [10, Chapter 5].

In incompressible flow, a difficulty arises in the solution of the governing equations,
since no independent equation for the pressure is available. The conservation of momen-
tum equations contain pressure gradient terms and, in combination with the continuity
equation, can be used to determine the pressure field as a function of time and space
using methods discussed in [10, Chapter 7], [11] and [12].

6.6 Stability

Numerical approximations to the governing equations may exhibit unstable behavior,
that is, they may magnify errors that occur as a result of discretization. Stability is
assured by satisfying the Courant–Friedrichs–Lewy (CFL) condition, which requires
that the distance traveled by a fluid element per time step not be larger than the distance
between adjacent grid points [13, 14]. In 1-D simulations, the CFL condition is

CFL = U Δt
Δx

≤ Cmax (6.16)

where U and Δx are the flow velocity and the grid size in the x streamwise direction,
respectively,Δt is the chosen time step, and Cmax is the upper bound of the CFL number,
which is less than unity and can vary depending on numerical schemes employed for
solving the equations. If Cmax = 0.8 is chosen, the largest time step used in the simulation
is estimated as

Δtmax = 0.8Δx
U

(6.17)
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The CFL condition can be extended to 3-D simulations as follows:

CFL = max
(

U
Δx

,
V
Δy
,

W
Δz

)
Δt ≤ Cmax (6.18a)

or

CFL =
(

U
Δx

+ V
Δy

+ W
Δz

)
Δt ≤ Cmax (6.18b)

The corresponding largest time step can be estimated by Eq. (6.18a) or, more conserva-
tively, by Eq. (6.18b).

6.7 Turbulent Flow Simulations

6.7.1 Resolved and Modeled Turbulence

A turbulent flow consists of turbulent motions over broad range of length and time
scales, as illustrated by the energy spectrum E(𝜅) per unit of wave number 𝜅 in
Figure 6.2, from energy-containing eddies to energy-dissipation eddies. The smallest
scales of turbulent flow, associated with energy-dissipation eddies [15], are:

l𝜂 ≡
(
𝜈3

𝜀

)1∕4

(length)

𝜏𝜂 ≡

(
𝜈

𝜀

)1∕2
(time)

u𝜂 ≡ (𝜈𝜀)1∕4 (velocity) (6.19a,b,c)
where 𝜈 is the kinematic viscosity and 𝜀 is the rate of energy dissipation of the turbu-
lent kinetic energy k, defined as k = (1∕2)uiui. For details on the energy spectrum see
Section 2.4.3.

Strategies for the simulation of turbulence motions depend on the extent to which
eddy motions are resolved on the one hand and modeled empirically on the other
(Figure 6.2). Direct Numerical Simulation (DNS) resolves all turbulent scales and
uses no turbulence modeling (Section 6.7.2). Large Eddy Simulation (LES) resolves
the large-scale turbulent eddies and models the small-scale eddies (Section 6.7.3). In
steady Reynolds-Averaged Navier–Stokes Simulation (RANS1) all turbulent eddies are
modeled. Unsteady Reynolds-Averaged Navier–Stokes simulation (URANS) models all
turbulent eddies but resolves low-frequency motions associated with unsteadiness
in the mean flow, such as vortex-shedding (Section 6.7.4). Hybrid RANS/LES employs
the RANS approach near walls and LES in regions far from the walls (Section 6.7.5).
Simulation costs increase as the resolved part of the simulation increases. The resolved
and modeled parts in each turbulence model are illustrated in Figure 6.2.

6.7.2 Direct Numerical Simulation (DNS)

DNS is the most reliable approach to the simulation of turbulent flows. It consists of
solving the discretized governing equations of the fluid motion by explicitly resolving
all scales of turbulence down to the dissipation scale, without resorting to empirical

1 Reynolds-Averaged Navier-Stokes Simulation is also referred to as Reynolds-Averaged Numerical
Simulation.
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Figure 6.2 Turbulence spectrum.

turbulence modeling. DNS must satisfy the following conditions. First, the smallest
resolved scales must be in the order of the dissipation scales, that is, in the order
of 1 mm for atmospheric boundary layer (ABL) flow. Second, the dimensions of the
computational domain (Lx, Ly, Lz in the x, y, z directions) must be significantly larger
than (i) the largest scales of the turbulent flow (the scales can be in the order of
hundreds of meters for ABL flow, and (ii) the characteristic length of the structure
for signature turbulence [11, 16]. In addition, the domain must be sufficiently large to
reduce the blockage effect to an acceptable level (e.g., 2–5% blockage ratio).

Under the assumption that in the of energy-dissipating range the eddies can be
resolved by four-point grids in each direction (Δx=Δy=Δz= l𝜂/4), the number of cells
can be estimated as the ratio of the volume of the computational domain to the volume
of a cell, that is,

Nxyz =
LxLyLz

(l𝜂∕4)3 (6.20)

Assuming for a full-scale simulation that Lx = 1000 m, Ly = Lz= 100 m, and l𝜂 = 0.001 m,
Nxyz is in the order of 1018. It can be shown that the corresponding minimum number
of time-steps in a simulation with turnover time T0 over which the largest eddies, with
scale l0, break down into eddies with dissipation scales l𝜂 , is in the order of

Nt =
T0

Δt
=

l0∕k1∕2

l𝜂∕(4k1∕2)
= 4

l0

l𝜂
(6.21)
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where the square root of the turbulent kinetic energy has the dimension of a velocity.
For Lx = 1000 m, Ly = Lz= 100 m, l0 = 150 m, and l𝜂 = 0.001 m, Nt = 6× 105, and the
computational cost of the DNS simulation for this example is commensurate with Nxyz
Nt ≈ 1023.

For boundary layer flows near a wall, the first in a direction normal to the wall should
be located at a distance z+ ≈ 1 from the wall; there should be 3–5 cells in the direction
normal to the wall up to z+ < 10. The grid sizes should be Δx+ ≈ 10–15 in the direc-
tion of the tangent to the wall, and Δy+ ≈ 5 in the cross-stream direction (Δx+ =u*Δx/𝜈
and Δy+ =u*Δy/𝜈) [17]. Therefore, the grid sizes are inversely proportional to friction
velocity u* and, therefore, to the Reynolds number of the flow.

Using current computer technology, DNS can only be applied to practical problems
for which the Reynolds numbers are low. For CWE applications, time, and memory
requirements for DNS simulations are prohibitive to date. It has been estimated that
DNS simulations may become feasible for the analysis of common engineering problems
by 2050–2080 [18, 19].

6.7.3 Large Eddy Simulations (LES)

LES resolves the time-averaged and unsteady motions of large-scale turbulent eddies,
and models small, subgrid-scale (SGS) eddies. The large-scale eddies contain most
of the energy of the flow and have the largest contribution to the Reynolds stress
tensor 𝜏 ij:

𝜏ij = uiuj (i, j = 1, 2, 3) (6.22)

where ui is the fluctuating velocity component in the i-th direction, the subscripts
1, 2, and 3 represent the x, y, and z directions, respectively, and the overbar denotes
time-averaging. The size of the small eddies to be modeled is determined by the filter
width ΔSGS. The small eddies are approximately isotropic and do not depend upon the
characteristics of large-scale flow.
The velocity field for the unfiltered motion can be written as

U(x, t) = ũ(x, t) + u′
SGS(x, t) (6.23)

where ũ(x, t) is the velocity in the filtered motion and u′
SGS(x, t) is the sub-filtered tur-

bulent velocity. The filtered velocity can be obtained using explicit filter functions (e.g.,
top-hat or Gaussian filter function [20]) or through an implicit filtering process by grid
scales. While the former approach is used for fundamental turbulence studies, the lat-
ter is commonly used in applications. The filtering approach attenuates small eddies
whose sizes are smaller than ΔSGS, and leaves the large and intermediate-scale eddies
unchanged. Figure 6.3 illustrates the spatially filtered velocity as affected by the filter
width [21].

To resolve the motion of large and intermediate-scale eddies, LES uses the governing
equations based on filtered variables:

𝜕ũi

𝜕xi
= 0 (6.24)

𝜕ũi

𝜕t
+
𝜕ũiũj

𝜕xj
= −1

𝜌

𝜕p̃
𝜕xi

+ 𝜈
𝜕2ũi

𝜕xi𝜕xj
−
𝜕𝜏R

ij

𝜕xj
+ f̃i (6.25)
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Figure 6.3 Illustration of unfiltered velocity field U(x) and resolved velocity field ũi(x) based on filter
width Δi (i = 1, 2) [21]. Reprinted from Figure 2.4 of Large-Eddy Simulation in Hydraulics, W. Rodi, G.
Constantinescu, and T. Stoesser, 2013, CRC Press [20], with permission from Taylor & Francis.

where f̃ i is the filtered external force vector per unit mass, and the SGS stress tensor,
called residual stress tensor, is

𝜏R
ij = ŨiUj − ũiũj. (6.26)

The SGS stress can be decomposed into an isotropic and a deviatoric part

𝜏R
ij =

1
3
𝛿ij𝜏

R
kk + 𝜏

r
ij (6.27)

where 𝛿ij is the Kronecker delta and k = 1, 2, 3. Substituting Eq. (6.27) into Eq. (6.25), the
LES governing equations become

𝜕ũi

𝜕t
+
𝜕ũiũj

𝜕xj
= −1

𝜌

𝜕p̃∗

𝜕xi
+ 𝜈

𝜕2ũi

𝜕xj𝜕xj
−
𝜕𝜏r

ij

𝜕xj
+ f̃i (6.28)

where

p̃∗ = p + 1
3
𝜌𝛿ij𝜏

R
kk . (6.29)

Closure of Eq. (6.28) requires the development of SGS models, that is, models of the
deviatoric SGS stress 𝜏r

ij. The models predict effects of the SGS stresses on the resolved
motion whose length scales depend upon the filter width ΔSGS. For uniform grids with
mesh size Δ, ΔSGS =Δ. For non-uniform grids, ΔSGS = (ΔxΔyΔz)1/3, for example.

The widely used Smagorinsky SGS model [22] approximates the deviatoric SGS stress
𝜏r

ij by assuming the validity of Boussinesq’s eddy viscosity hypothesis [23], according to
which the deviatoric part of the Reynolds stress is proportional to the strain rate tensor
of the filtered (resolved) velocities, S̃ij ≡ (1∕2)(𝜕ũi∕𝜕xj + 𝜕ũj∕𝜕xi), that is,

𝜏r
ij = −2𝜈t,SGSS̃ij (6.30)

where 𝜈t, SGS is the kinematic eddy viscosity to be modeled under the assumption that
the eddy viscosity is proportional to a typical length scale lSGS and a velocity scale
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qSGS of the flow. The SGS turbulent eddy viscosity in the Smagorinsky model can be
expressed as

𝜈t,SGS ∝ lSGSqSGS

= (CsΔSGS)2|S̃| (6.31)

where the characteristic length and velocity scales are (Cs ΔSGS) and (CsΔSGS ∣ S̃ ∣),
respectively, the Smagorinsky constant Cs varies, depending upon the flow, between
0.1 and 0.2 [24], and ∣ S̃ ∣= (2S̃ijS̃ij)1∕2. This model has been widely used on account of
its simplicity and computational efficiency. However, the use of a constant value for
Cs makes it difficult to predict accurately complex flows. For example, Cs ≈ 0.17, as
determined for isotropic homogeneous turbulence [25], should be decreased for flow
with strong mean shear, especially near a wall [26], in order to reduce the amount of
dissipation introduced by the SGS model and the resulting spurious SGS stresses [11].
For this reason, in the Smagorinsky model a near-wall correction is required to capture
the near-wall effects.

To address the shortcomings of the Smagorinsky model, dynamic SGS models have
been proposed for non-isotropic flows [27, 28], in which the model parameter is
automatically reduced near the wall from its value for isotropic flow. Improved SGS
models still need to be developed for complex geometry and highly anisotropic flow
applications.

Reliable LES simulations require sufficiently fine spatial and temporal scales. The grid
sizes should be l𝜂 ≪ΔSGS ≪ l0 (see Figure 6.2). The computational domain size required
for LES simulations is the same as for DNS. To resolve flows in the wall region, the
typical requisite grid sizes close to the wall are Δx+ ≈ 50 in the along-wall (streamwise)
direction and Δy+ ≤ 15 in the cross-stream direction; in the normal-to-wall direction
the first grid point from the wall should be at z+ ≈ 1 while at least three grid points in
the viscous region (1≤ z+ ≤ 10) and 30–50 grid points within the boundary layer are
required [20]. The total number of grid points for wall-resolving LES is smaller than for
DNS [29], but it is still prohibitively expensive, particularly for high Reynolds number
flows over wall-mounted structures. Approaches to reducing the computational cost
include using wall-layer models (called Wall-Modeled LES or WMLES) [30], or using
hybrid RANS-LES methods [31], are discussed in Section 6.7.5.

6.7.4 Reynolds-Averaged Navier–Stokes Simulation (RANS)

RANS are a primary approach for practical turbulent flow simulations owing to their
simplicity and relatively low computational cost. RANS simulates the averaged fields of
turbulent flows by solving the Reynolds-averaged Navier–Stokes equations.

In RANS, the flow field is divided by Reynolds decomposition into a mean flow field
and a fluctuating field. For example, the flow velocity can be expressed as:

U(x, t) = u(x, t) + u′
RANS(x, t) (6.32)

where u is the time-averaged velocity and u′
RANS is the fluctuating component. Steady

RANS, based on time-averaging, is used to simulate time-independent flow. URANS,
based on ensemble-averaging, simulates time- and space-dependent flow. It has been
noted that, “while all turbulent flows are unsteady, not every unsteadiness is turbulence.”



�

� �

�

6.7 Turbulent Flow Simulations 145

U (t) = u(t) + uʹ

RANS
(t)

W
in

d 
ve

lo
ci

ty

Time

u (t)

RANS (t)uʹ

t

u (t)

Figure 6.4 Illustration of Reynolds decomposition (U(t) = u(t) + u′
RANS(t)).

For example, in flows with a large-scale periodicity due to vorticity shed in the wake of
a structure, that periodicity would be suppressed by time-averaging, but is preserved
under ensemble-averaging. URANS is applied to such flows (Figure 6.4).

The equations of Reynolds-averaged flow field are derived by applying the ensemble-
averaging operation (Eq. [6.32]) to the governing equations (Eqs. [6.1] and [6.2]). Using
the decomposition and noting that Ui = u, the governing equations for URANS are
derived as

𝜕ui

𝜕xi
= 0 (6.33)

𝜕ui

𝜕t
+ 𝜕

𝜕xj
uiuj = −1

𝜌

𝜕p
𝜕xi

+ 𝜈
𝜕2ui

𝜕xi𝜕xj
−
𝜕𝜏ij

𝜕xj
+ f i (6.34)

where 𝜏 ij is the Reynolds stress tensor:

𝜏ij ≡ u′
RANSi u′

RANSj = UiUj − uiuj. (6.35)

Equation (6.35) accounts for momentum flux generated by all turbulent fluctuations,
while the residual stresses in LES (Eq. [6.26]) exclude the contribution of resolved tur-
bulent fluctuations. Note that the first term in the left-hand side of Eq. (6.34) does not
exist in the steady RANS governing equations.

The URANS governing equations cannot be solved because the Reynolds stresses are
unknown. To close the system, it is required that the Reynolds stresses be approximated
in terms of the averaged quantities. Under the Boussinesq approximation (see Eq. [6.30]
in LES) the Reynolds stress tensor is

𝜏ij = −2𝜈t,RANSSij (6.36)

where Sij ≡ (1∕2)(𝜕ui∕𝜕xj + 𝜕uj∕𝜕xi) is the rate of strain tensor of averaged flow field
and 𝜈t,RANS is the RANS turbulent eddy viscosity to be modeled, similar to Eq. (6.31) in
LES, as:

𝜈t,RANS ∝ lRANS qRANS

= C𝜇lRANS qRANS. (6.37)
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In Eq. (6.37), lRANS and qRANS are the typical length and velocity scales of a turbulent flow,
respectively and C𝜇 is a non-dimensional constant determined in a calibration proce-
dure.

A broad selection of closure models of the Reynolds stresses is available [32],
including linear eddy viscosity models, nonlinear eddy viscosity models, and Reynolds
stress models. Among linear eddy viscosity models, the SST (Shear Stress Transport)
model [33] and the Spalart–Allmaras (S–A) model [34] are considered, capable of
predicting reliably flows around bluff bodies with strong adverse pressure gradients and
massive flow separation. For example, SST uses the k-𝜔 model [32] for boundary-layer
(or inner layer) flows and the k-𝜀 model [35, 36] for low shear layer (or outer layer)
flows. A blending function is employed for the transition between the two models.
For details see [37].

The spatial and temporal requirements for RANS simulations are much less demand-
ing than for DNS and LES. However, RANS simulations should have sufficiently fine
grids to capture the change of the averaged flow field, especially for near-wall regions
characterized by high velocity-gradient flow. The RANS models typically have two
options for the treatment of near-wall flow: (i) resolving the flow (called low-Re model)
and (ii) using wall functions (high-Re model). In the flow near the wall, low-Re RANS
models generally require grid resolutions as fine as LES in the direction normal to
the wall, but much coarser grids in the wall-tangential streamwise and across-stream
directions than LES. The increase in aspect ratios of cells near the wall can therefore
lead to a substantial reduction in the total number of cells. For the high-Re RANS
models using typical wall functions, the grid closest to a wall should be located in
the log layer beyond the viscous sublayer (e.g., 30< z+ < 500 where the upper limit
depends on the Reynolds number of the flow), so that the wall functions can bridge
the gap between the near-wall and the fully turbulent flow region. This option can
save considerable computational time due to the alleviated grid requirement, but
the performance can be poor, especially for flows around bluff bodies, since wall
functions are generally developed for relatively simple flows, such as flows over
flat plates.

6.7.5 Hybrid RANS/LES Simulation

URANS models typically perform unsatisfactorily for massively separated flows char-
acterized by large turbulence scales [16]. Such flows can be better simulated by LES.
However, LES simulations of high Reynolds number flows over wall-mounted structures
are still challenging, owing to the prohibitive grid requirements for near-wall regions.
To alleviate the near-wall grid resolution problem in massively separated flows, hybrid
RANS/LES models have been proposed, for example [31, 38]. These models work in
the RANS mode for near-wall flow regions, and transition to the LES model for regions
away from the wall. The near-wall flow is simulated by a less accurate but computation-
ally more efficient RANS, and large turbulent eddies from massively separated flow are
resolved by LES at manageable computational cost.

Detached Eddy Simulations (DES) [31] are the most widely used hybrid RANS/LES
model for flows over wall-mounted structures at high Reynolds numbers, including
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Figure 6.5 Types of grid in boundary layers. The dashed line represents the velocity profile [39].
Source: Reproduced with permission of ANNUAL REVIEWS.

flows over bluff bodies of interest in wind engineering. DES is a non-zonal type2 of model
that modifies the original RANS model and includes a transition from RANS to LES. The
DES S–A [31] and DES SST hybrid models [37] are based on the S–A RANS [34] and
the SST RANS model [33], respectively.

The computational cost of DES is much lower than for LES, but is still higher than
RANS. Grid generation strategy is much more complicated for DES than for RANS or
LES. As reported in [16, 39, 40], the DES model induces “grey areas” in which the flow is
not adequately solved by either pure RANS or pure LES. In those areas the turbulence
energy modeled in RANS may not be adequately transferred to LES-resolved turbulence
energy. This effect, called Modeled-Stress-Depletion (MSD), may cause premature sepa-
ration due to inadequate grid spacing (Grid-Induced Separation, or GIS) [39]. As shown
in Figure 6.5, the grid sizes in boundary-layer flow are assumed to be Δx≈Δy≫Δz (i.e.,
Δmax =max [Δx, Δy, Δz] =Δx), where the x, y, and z directions are the along-wind, the
across-wind, and the normal-to-wall direction, respectively. In the DES formulation,
for grids with Δmax/𝛿 > 1 (see Figure 6.5a), the RANS mode is activated in the whole
boundary layer. If Δmax/𝛿 < 1 (Figure 6.5b, c), the switch from RANS to LES is activated
within the boundary layer thickness. This causes unphysical behaviors associated with
MSD and GIS. Updated versions of DES, called Delayed DES (DDES) [41] and Improved
DDES (IDDES) [42], have been proposed that attempt to improve upon DES. For grids
with Δmax/𝛿 < 0.5 to 1 (Figure 6.5b), DDES and IDDES prevent LES mode activation. For
grids with Δmax/𝛿≪ 1 (Figure 6.5c), IDDES fully enables the LES mode, except for wall
modeling, which is performed in the RANS mode, as in Wall-Modeled LES. DES perfor-
mance depends upon type of grid as represented in Figure 6.5. In particular, it has been
observed that in some instances the DES performance does not necessarily improve if
the grid size is reduced [39, 43].

2 Another approach to hybrid RANS/LES models is a zonal model, with distinct zones occupied by pure
RANS and pure LES, and discontinuous solutions at interfacing boundaries. See details in [16].
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(a) 2-D SST RANS (CD = 0.78)

(b) 2-D SST URANS (CD = 1.73)

(c) 3-D SST URANS (CD = 1.24)

(d) S-A DES (coarse grid, CD = 1.16)

(e) S-A DES (fine grid, CD = 1.26)

(f) SST DES (fine grid, CD = 1.28)

S-A: Spalart-Allmaras
SST: Shear Stress Transport

Figure 6.6 Vorticity iso-surfaces
around a circular cylinder
(Re= 5× 104, experimental drag
coefficient CD = 1.15–1.25) [39].
Source: Reproduced with
permission of Annual Reviews.

6.7.6 Performance of Turbulence Models

Figure 6.6 shows visualizations of resolved vortical flow structures around a circular
cylinder simulated using various turbulence models [39]. As expected, 2-D (steady)
RANS cannot predict the vortex shedding (Figure 6.6a). Note that even 3-D steady
RANS cannot accurately predict the averaged flow characteristics in such unsteady
and separated flows [44]. Two-dimensional URANS allows the simulation of 2-D large
eddies associated with vortex shedding, but does not capture 3-D flow structures
(Figure 6.6b). 3-D URANS captures 3-D flow structures, but cannot resolve smaller
flow structures using finer grids (Figure 6.6c) [45]. DES predicts 3-D flow structures
up to finer scales than URANS (Figures 6.6d and e); with a sufficiently fine grid it can
resolve fine flow structures in the separated flow region. Figures 6.6e and f show that
the performance of DES in the LES region does not depend significantly upon the
choice of its RANS models (i.e., whether S–A or SST) [39].

6.8 Verification and Validation. Uncertainty Quantification

The credibility of CWE simulations depends upon the quality of the physical modeling,
the competence of the analysts performing the simulations, the simulations’ verification
and validation (V&V), and the UQ of the simulation results [46]. The analyst’s depth of
understanding of the modeling details and of the simulation results plays a decisive role
in the simulation process.

V&V consists of procedures required for assessing the accuracy of simulation results.
Uncertainty quantification is aimed at identifying, characterizing, and estimating
quantitatively the factors in the analysis that affect the accuracy of the simulation
results [46, 47]. The amount of research into V&V and UQ is vast [48–53]. This
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section is limited to introducing the reader to a few salient features of their respective
procedures. Section 6.8.1 briefly discusses sources of inaccuracy in CWE simulations.
Section 6.8.2 is a summary description of V&V aims and procedures. Section 6.8.3 is
concerned with UQ.

6.8.1 Sources of Inaccuracy in CWE Simulations

Although, as shown in Section 6.8.3, errors and uncertainties are distinct concepts, it will
be convenient in this section to refer to both as errors. Errors arising in CWE simulation
results are typically of four types [11, 46]: (i) physical modeling, (ii) discretization, (iii)
iteration, and (iv) programing/user errors.

Physical modeling errors, 𝛿model, are differences between the behavior of the real phys-
ical object and its model counterpart:

𝛿model = pmodel − preal (6.38)

where pmodel and preal are the respective response values of interest (e.g., velocity or pres-
sure). They arise from approximations of complex behavior in the governing equations
(e.g., approximations inherent in turbulence models), effects of computational domain
size and boundary conditions, and assumptions on fluid properties (e.g., constant air
density and temperature).

Discretization errors, 𝛿h, are differences between the exact analytical solution of a
mathematical model and the exact solution of the model’s discretized counterpart:

𝛿h = ph − pmodel (6.39)

where ph is the response calculated from the discretized model. Discretization error
should be estimated for every new type of grid, solution scheme, or application. Among
the sources associated with numerical errors, the discretization errors are usually the
largest and their estimation is the most challenging [46].

Iterative errors, 𝛿it, are differences between the exact and computed solutions of the
discretized equations,

𝛿it = pcomp − ph (6.40)

where pcomp is the solution obtained from a computing machine, which may entail
round-off errors and convergence errors inherent in iterative methods. Round-off
errors resulting from low precision in computer calculations can affect the stability
of the solutions. In simulations with a stable scheme and negligible round-off error
accumulation, the round-off errors are usually very small compared to other errors [11].
The iteration–convergence errors are present because a linearized system of discretized
equations is typically solved iteratively. In general, iterative errors are at least one or two
orders of magnitude lower than the discretization errors [11]. However, if a flow solver
uses implicit time integration for unsteady simulations, a loose iterative convergence
criteria at each time step may lead to significant influence on accuracy of the numerical
solution [64].

Programing/user errors, caused by mistakes or bugs in the software, can be classified
into two types [46]: critical errors by which the software cannot execute a simulation or
generate reasonable results, and less critical but still non-negligible errors due to dor-
mant software faults that may not be easily identified by code verification. User errors
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are due to blunders or mistakes from users in input preparation for simulation and in
post-processing for output data analysis. Human errors generally are not easily detected,
especially when large-scale simulations of complex systems are performed.

6.8.2 Verification and Validation

The objective of verification and validation (V&V) is to establish the credibility of a com-
putational model by assessing the degree of accuracy of the simulation results [46]. The
philosophy, definition, and procedure of V&V on modeling and simulation have been
developed in practicing communities, such as AIAA (American Institute of Aeronau-
tics and Astronautics) [50], ASME (American Society of Mechanical Engineers) [48, 49],
and DOE (Department of Energy) [53].

Verification is the process of determining that a computational model accurately rep-
resents the underlying mathematical model and its solution [49]. Validation is the pro-
cess of determining the degree to which a model is an accurate representation of the real
world from the perspective of the intended uses of the model [50]. V&V processes start
with determining the intended uses of the computational model. The accuracy require-
ments for the responses of interest are determined accordingly. Verification process
addresses the correct implementation of a numerical model in a code and the estima-
tion of numerical errors in solutions of discretized equations. Model validation process
employs the verified simulation results and relevant experimental data and assesses
the predictive capacity of the model. If the agreement between model predictions and
experimental outcomes satisfies the accuracy requirement, the V&V processes end. A
successful V&V can claim that the accuracy of the computational model is adequate for
the intended use of the model. Otherwise, the V&V processes are repeated by updating
the model and, if necessary, carrying out additional experiments until the agreement
is acceptable. For details see [49]. Note that the documentation of the V&V activities
and results serves not only for justifying the current intended use, but also for providing
information/experience for potential future uses.

Verification is limited to estimating numerical errors and is not concerned with the
accuracy of physical modeling. The verification process can be divided into code verifica-
tion and solution verification. Code verification addresses the correct implementation of
the numerical algorithm in the computer code by evaluating the error for a known highly
accurate solution referred to as verification benchmark. Code verification in grid-based
simulations can be performed by a systematic discretization convergence test (e.g., [54])
and its convergence to a benchmark solution. Practical approaches have been developed,
for example, the method of manufactured solutions [55], to generate analytical solutions
required for code verification. Code verification is usually performed by code develop-
ers/vendors, but should also be performed for specific applications by CWE users of
commercial/open-source codes [46, 48].

After the code verification is completed, solution verification is conducted. The solu-
tion verification deals with (i) correctness of the input and output data for a particular
solution of a problem of interest and (ii) numerical accuracy (error/uncertainty estima-
tion) for the simulated solution in the discretized time and space domain [46]. Numer-
ical solutions and the errors inherent in them (𝛿h in Eq. [6.39] and 𝛿it in Eq. [6.40])
estimated in the solution verification process are considered in the validation process.
For typical CWE problems, numerical errors can be estimated a posteriori, for example,
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by using multiple simulations with different grid resolutions [47]. Solution verification
should be performed by CWE users and be required by structural engineers who use
CWE simulation results for structural design.

The interest of CWE users in V&V lies in validation of a computational model for the
intended use. The validation process assesses the accuracy of the computational model
by comparison with experimental data, quantifies predictive uncertainty in interpola-
tion or extrapolation of the model, and evaluates the acceptability of the model for the
intended use [46, 56].

6.8.3 Quantification of Errors and Uncertainties

Error and uncertainty are often used interchangeably. In particular, this is the case in
Chapters 7 and 12 for applications unrelated to CWE. However, in the AIAA V&V guide
for CFD [50] errors are defined as recognizable deficiencies in all phases or activities of
modeling and simulation that are not due to lack of knowledge, whereas uncertainties
are defined as potential deficiencies in any phase or activity of the modeling process that
are due to lack of knowledge.

Errors can be classified as acknowledged errors and unacknowledged errors.
Acknowledged errors can be identified and eliminated (e.g., round-off errors, dis-
cretization errors, iterative errors). Unacknowledged errors cannot be found or
removed (e.g., programming errors, improper use of the CWE code). Uncertainties
can be classified as aleatory and epistemic. Aleatory (irreducible) uncertainties are
associated with inherent randomness (e.g., input parameters of a model). Epistemic
(reducible) uncertainties are related to a lack of knowledge of (or information on) a
physical model. For details, see [46].

The ASME V&V approach [48] provides quantitative evaluations of uncertainties in
simulation results by comparison with their counterparts in experiments, and employs
concepts and definitions of error and uncertainty borrowed from metrology [57].

6.9 CWE versus Wind Tunnel Testing

Wind tunnel testing is currently an indispensable tool used (i) to obtain aerodynamic
or aeroelastic data on special structures for which no such data are available, and (ii) to
improve standard provisions. Its drawbacks include the following: (i) its first costs and
the maintenance costs are high; (ii) testing is time-consuming; (iii) it typically entails
violation of the Reynolds number and of other similarity criteria applicable to certain
types of special structures (e.g., air-supported structures); and (iv) it is not consistently
reliable (see Appendix F for high-rise building and [58] for low-rise building testing).

As computer technology and numerical techniques have evolved, the prospect of
performing CWE simulations has become increasingly attractive, given their following
potential advantages: (i) ready availability; (ii) relatively low initial and maintenance
costs; (iii) relatively fast turnover times; (iv) less restrictive model scale limitations; (v)
capability to solve multi-physics problems (e.g., wind-structure interaction or rain-wind
scenarios), and (vi) as is also the case for wind tunnel simulations, the fact that errors
and uncertainties affecting the estimation of aerodynamic effects have significantly less
weight than their wind climatological counterparts – see Chapter 12. However, CWE is
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not yet accepted as a structural design tool because, typically, its results cannot be used
confidently. Wind tunnel testing and, whenever possible, full-scale measurements, will
still be required for validation purposes until CWE will have evolved into a fully reliable
independent tool.

6.10 Best Practice Guidelines

Using CWE for selected applications requires the development of appropriate mathe-
matical models, computational grids and domains, spatial and temporal discretization
schemes, solvers, turbulence models, boundary conditions, and convergence criteria,
capable of being successfully subjected to rigorous V&V procedures. Best practice
guidelines can facilitate the use of such development, and cover general applications
[59] as well as specific fields, such as urban environmental wind [60, 61], nuclear power
plants (e.g., nuclear reactor safety application [62], dry cask application [63]), and
structural loads on buildings [8]. Best practice guidelines cover a limited number of
simulations. Therefore, it is recommended that V&V procedures be applied to simu-
lations that deviate in any significant aspect from existing simulations covered by the
guidelines.
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7

Uncertainties in Wind Engineering Data

7.1 Introduction

Structural design for wind is affected by errors and uncertainties1 in the measurement
and modeling of the micrometeorological, wind climatological, and aerodynamic factors
that determine the wind load.

Uncertainty quantification is a complex task on which research is ongoing. Owing to
insufficient information and data, it is in many cases necessary to estimate uncertainties
not only on the basis of measurements and statistical theory, but also by making
use of subjective assessments, inferences from past practice, and simplified structural
reliability methods (see Appendix E).2 To provide context on the use of the uncertainties
discussed in this chapter, Section 7.2 presents a simple statistical framework, originally
developed in [1], that relates uncertainty estimates to the development of safety factors
with respect to wind loads, called wind load factors. The wind load factor specified in
the pre-2010 versions of the ASCE 7 Standard is larger than unity (ASCE: American
Society of Civil Engineers). The 2010 and 2016 versions of the Standard specify a wind
load factor equal to unity, and to make up for this change, specify far longer mean
recurrence intervals (MRIs) of the design wind speeds than their pre-2010 counterparts
(e.g., 700 years in lieu of 50 years). Section 7.3 discusses the uncertainties considered
in this chapter. These are used in Chapter 12 to define wind load factors and mean
recurrence intervals of design wind effects.

7.2 Statistical Framework for Estimating Uncertainties in the
Wind Loads

The peak wind effect is a random variable: it varies from realization to realization. The
following approximate expressions commonly hold for the expectation and coefficient
of variation (CoV, i.e., ratio of the standard deviation to the expectation) of the peak

1 For convenience, the term “uncertainties” also applies to errors and uncertainties as defined in Chapter 6.
2 The use of far more elaborate and rigorous methods than those developed so far for civil engineering
purposes is required by NASA and the Department of Energy for a wide variety of applications. Such
methods, which are beyond the scope of this chapter, are discussed in NASA’s Handbook for models and
simulations available at https://standards.nasa.gov/standard/nasa/nasa-hdbk-7009, and in other documents
mentioned in Chapters 6 and 12.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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wind effect ppk (e.g., pressure, force, moment) with an N-year mean recurrence
interval:

ppk(N) ≈ a Ez KdG(𝜃m) Cp,pk(𝜃m)U
2
(zref ,N) (7.1)

CoV[ppk(N)] ≈ {CoV2(Ez) + CoV2(Kd) + CoV2[G(𝜃m)] + CoV2[Cp,pk(𝜃m)]

+ 4CoV2[U(zref ,N)]}1∕2 (7.2)

In Eq. (7.1) the factor a is a constant that depends upon the type of wind effect, and
the overbar denotes expectation. Ez is a surface exposure factor defined by the wind
profile and specified in the ASCE Standard; the subscript z denotes height above the
surface. The aerodynamically most unfavorable wind direction is denoted by 𝜃m. Kd is a
wind directionality reduction factor that accounts for the fact that the direction 𝜃m and
the direction of the largest directional wind speeds typically do not coincide. The peak
aerodynamic coefficient Cp,pk(𝜃m) depends upon the area being considered, which can
be as small as a roof tile or as large as an entire building. Once this dependence is taken
into account, for rigid structures the gust response factor G is unity. Flexible structures
experience dynamic effects that depend on both wind engineering and structural
engineering features. The factor G that characterizes dynamic effects is considered in
Chapter 12. U(zref , N) is the wind speed with an N-year MRI, estimated from largest
wind speed data regardless of direction. The uncertainty in the wind speed U(zref , N)
is due to measurement, micrometeorological, and probabilistic modeling errors, and
to the limited size of the data sample on which the estimation is based. According to
approximate estimates similar to those of [1], CoV(Ez)≈ 0.16, CoV[Cp,pk(𝜃m)]≈ 0.12
and, on the basis of wind speed data at seven locations not exposed to hurricane
winds, 0.09<CoV[U(N = 50 years)]< 0.16. Research reported in [2] suggests that
CoV(Kd)≈ 0.10.

Derivation of Eqs. (7.1) and (7.2). Consider the product p= xy of two random variables
x and y with means x, y, fluctuations about the mean x′, y′, and variances x′2, y′2. Then

p = p + p′

= (x + x′)(y + y′)
= xy + xy′ + yx′ (7.3)

p = x y (7.4)
p′2 = x2y′2 + y2x′2 + 2x yx′y′ (7.5)

p′2 = x2y′2 + y2x′2 + 2x yx′y′ (7.6)

If x′, y′ are independent, the last term in Eq. (7.6) vanishes, and

CoV2(p) = CoV2(y) + CoV2(x) (7.7)

However, if x≡ y, as in the case of the square of the wind speeds, it follows from Eq. (7.6)
that p′2 = 4 x2x′2; hence the factor 4 in Eq. (7.2). It is easy to see that Eqs. (7.4) and (7.7)
can be extended to a product of any number of mutually independent variables.

The larger the individual uncertainties in the factors that determine the wind loading,
the larger the overall uncertainty in the wind effect ppk(N) being considered, and the
larger the requisite wind load factor. For example, for a site at which wind speed data are
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obtained from weather balloon measurements (or from wind speeds at locations with
poorly defined surface roughness conditions, and/or from a short extreme wind speed
data record), the overall uncertainty in the wind effect and therefore the corresponding
wind load are greater than for a site at which the wind speed measurements are more
reliable. Similarly, uncertainties in the measurement of aerodynamic pressures can be
large if obtained in wind engineering laboratories that use inadequate simulation and
measurement techniques.

Equations (7.1) and (7.2) make it possible to consider the effects of individual
uncertainties collectively, rather than in isolation, and enable the estimation of the
uncertainty in the overall wind effect as a function of individual uncertainties. This
allows a rational allocation of resources when considering the reduction of any individ-
ual uncertainty. For example, when using public databases of pressure coefficients, the
lack of data directly applicable to a building with a particular set of dimensions requires
the use of interpolations. This can result in errors as large as 15%, say. The reduction
of such errors would require the development of databases with larger sets of model
dimensions. However, if the 15% error in the pressure coefficient resulted in an error
in the estimation of the design wind effect of only 5%, say, the expensive development
of a database with higher resolution might in practice be considered unnecessary (see
Section 12.4.2).

Structural engineers have pointed out that wind engineering laboratory reports do
not provide any indication on the requisite magnitude of the wind load factor (see
Appendix F), or of augmented design mean recurrence intervals, consistent with
the uncertainties specific to the project at hand. Equations (7.1) and (7.2), or similar
estimates, make it possible to depart from the notion that “one wind load factor fits
all.” They enable a differentiated approach that accounts, albeit approximately, for the
explicit dependence of the wind load factor on individual uncertainties, which may
differ for some structures from their typical values. The wind engineering laboratory
can therefore help to achieve safe structural designs by providing, in addition to point
estimates, uncertainty estimates of relevant aerodynamic and wind climatological
features.

7.3 Individual and Overall Uncertainties

As noted in Section 7.1, uncertainty quantification is typically difficult or impossible to
achieve rigorously, and must therefore be based wholly or in part on subjective assess-
ments based on consensus among informed professionals, in addition to being based on
measurements, physical considerations, and statistical methods.

7.3.1 Uncertainties in the Estimation of Extreme Wind Speeds

Large-Scale Extratropical Storms and Thunderstorms. It is reasonable to assume that
the distributions of extreme wind speeds in large-scale extratropical storms and thun-
derstorms are Extreme Value Type I, with parameters that differ at the same site for
the two types of storm. It is therefore possible to estimate the respective uncertainties
by accounting for (i) measurement errors and (ii) sampling errors in the estimation of
wind speeds for each of the two types of storm. For design wind speeds with specified
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mean recurrence intervals, sampling errors may be determined by using, for example,
Eq. (3.9).

If the terrain exposure around the anemometer tower is open, measurement errors
may be assumed to be relatively small, that is, in the order of 5%, say. However, if the
terrain around the tower is built up, the conversion of wind speeds measured at the site
to standardized wind speeds (i.e., wind speeds averaged over a specified time interval,
e.g., 3 s, at a specified elevation, e.g., 10 m, above terrain with open exposure), the errors
can be considerably larger (see [18]). Errors are likely to be even larger if wind speed
measurements are performed using weather balloon data.3

Hurricanes. Hurricane wind speeds used for structural design are obtained by simu-
lations that involve: the physical modeling of the hurricane wind flow at high altitudes
(Section 1.3.1 and Eq. [1.4]); observations of pressure defects, radii of maximum
rotational wind speeds, and storm translation speeds and directions (see Section 3.2.3);
probabilistic models based on observations; empirical methods for transforming wind
speeds at high altitudes into surface wind speeds; and calibration of the physical and
probabilistic models against the rare available direct measurements of hurricane wind
speeds, or against inferences on hurricane wind speeds based on observed hurricane
wind damage to buildings and other structures. Added to the uncertainties inherent in
the physical and probabilistic models used in the simulations are statistical uncertainties
due to the relatively small number of hurricane events at various locations on the Gulf
and Atlantic coasts. In particular, available observations may not include the occurrence
of abrupt changes of direction of the hurricane translation velocity, resulting in the
possible failure of engineering models to predict high wind speeds and/or storm surge.
The lack of such observations might explain why, according to the ASCE 7 Standard,
estimated design wind speeds in the New York City area are the same as, for example, in
Arizona or western Massachusetts, or the failure to predict hurricane Sandy’s severity
[4]. Since rigorous estimates of uncertainties in hurricane wind speeds are in practice
not possible, it is typically necessary to resort to engineering judgment. It is argued in
[5] that theoretical models of natural phenomena such as hurricanes or earthquakes,
while useful, should be superseded by prudent risk management considerations that
weigh the relatively modest additional costs of conservative design against the costs
of potential catastrophic failures. Even though, in spite of efforts reported in [6] and
[7], the rigorous estimation of uncertainties in hurricane wind speeds is difficult if not
impossible in the current state of the art, it is definitely the case that these uncertainties
are greater than their counterparts for extratropical storms (note that the estimated
uncertainties are considerably smaller in [6] than in [7]).

7.3.2 Uncertainties in the Estimation of Exposure Factors

Exposure factors represent ratios between squares of the wind speeds at various eleva-
tions over suburban terrain or water surfaces and their counterparts at 10 m above the
open terrain. Wind profiles within cities, especially city centers, cannot be described in
general terms, and are simulated in wind tunnels that reproduce to scale the built envi-
ronment, as required, for example, in [8]. Wind tunnel simulations for locations with
surface exposure difficult to define tend to reduce the uncertainty in the exposure factor.

3 Useful information on uncertainties inherent in weather balloon measurements could be obtained by
performing such measurements at a location where reliable surface observations are available.
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7.3.3 Uncertainties in the Estimation of Pressure Coefficients

Errors in the laboratory estimation of pressure coefficients are due to: (i) the violation of
the Reynolds number in wind tunnels and, to a lesser extent, in large-scale aerodynamic
facilities; (ii) differences between simulated and full-scale atmospheric boundary-layer
flows; (iii) laboratory measurement errors; (iv) the estimation of pressure coefficient
time history peaks; (v) the duration of the pressure coefficient record; and (vi) possible
errors due to blockage (Chapter 5).

(i) Reynolds Number Effects. Wind tunnel simulations of aerodynamic pressures are
typically performed at geometric scales in the order of 1 : 50–1 : 500 and velocity scales
of about 1 : 4, say. Since in wind tunnels commonly used for structural engineering appli-
cations the fluid is air, that is, the same as for the prototype, Reynolds number similarity
is typically violated by a factor in the order of 100–1000. In some large-scale aerody-
namic facilities, the geometric and the velocity scales are in the order of 1 : 10–1 : 50
and 1 : 1–1 : 2, respectively, so that the Reynolds number is violated by a factor in the
order of 1 : 10–1 : 100.

The violation of the Reynolds number can be especially consequential for aerody-
namic pressures on bodies with rounded shapes. As shown in Chapters 4 and 5, this
is the case because, at the high Reynolds numbers typical of wind flows around build-
ings, the boundary layer that forms at the surface of the body is typically turbulent. The
turbulent fluctuations transport particles with large momentum from the free flow into
the boundary layer, thus helping the boundary-layer flow to overcome negative pressure
gradients, and causing flow separation to occur farther downstream, thus reducing the
drag on the body with respect to its value at lower Reynolds numbers. A remedial mea-
sure commonly used in wind tunnel simulations is to force the boundary-layer flow to be
turbulent by rendering the body surface rougher. However, the resulting flow still differs
from the high Reynolds number flow. This contributes to increasing the uncertainty in
the pressure coefficients.

It has been argued that the violation of the Reynolds number is not consequential for
flows around bodies with sharp corners, since for such bodies flow separation occurs
at the corners, regardless of Reynolds number. This argument is not necessarily borne
out by comparisons between full-scale and wind tunnel measurements. This has been
shown in [9], which reported that peak negative pressure coefficients measured in the
wind tunnel can underestimate their prototype counterparts by as much as a 25% (see
Section 5.4.4). In such cases corrections of wind tunnel data, based on comparisons
between full-scale and laboratory, are warranted. A systematic effort to develop such
corrections remains to be performed. Positive pressure coefficients measured in the
wind tunnel appear to be adequate, however.

(ii) Errors in the Simulation of Atmospheric Boundary Layer (ABL) Flows. Wind tun-
nel simulations of ABL profiles and turbulence are largely empirical (see Chapter 5).
They depend upon the length of the test section, the type of roughness used to retard
the flow near the wind tunnel floor, and the geometry of, and distance between, the
spires placed at the entrance into the test section to help transform uniform flows into
shear flows. Such simulations can achieve flows bearing at least a qualitative resem-
blance between simulated and prototype flows.

Differences between wind tunnel flows can result in significant differences between
the respective pressure coefficient measurements. An international round-robin test
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reported in [10] showed that the coefficients of variation of the peak pressure coefficients
measured in six reputable wind tunnel laboratories were as high as 10–40%. On the other
hand, after the elimination of suspected outliers from results of tests performed by 12
laboratories, the respective measurements of pressures on a square cylinder were con-
sidered to be acceptable provided that the wind profiles and the turbulence intensities
did not differ significantly from laboratory to laboratory [11].

For wind tunnel tests performed at relatively large geometric scales (e.g., 1 : 100 for
low-rise buildings, rather than, say, 1 : 500 for tall buildings), an additional simulation
problem arises: the inability to simulate in the wind tunnel the low-frequency portion
of the longitudinal velocity spectra (see, e.g., [12]).

(iii) Uncertainties Associated with Measurement Equipment. A significant con-
tributor to pressure measurement errors is the calibration of dynamic pressures in
tubing systems connecting models to sensors. The pressure waves propagating inside
a thin, circular tube distort the aerodynamic pressures on the model owing to the
acoustic and visco-thermal effects brought about by fluid action on the tube [13].
According to [14], uncertainties associated with measurement equipment are typically
approximately 10%.

(iv) Statistical Estimation of Pressure Coefficient Peaks. Appendix C describes a pow-
erful peaks-over-threshold method that estimates peak pressure coefficients and their
probability distributions. An alternative method is discussed in the following.

Let the pressure coefficient record Cp(t) for any given direction 𝜃 have length T and
be divided into a number n of subintervals (“epochs”) of length T/n. The peak value of
the pressure coefficient in any one epoch i (i= 1, 2,…, n) (i.e., over any one subinterval
of length T/n), denoted by Cp,pk i(T/n), forms a data sample of size n. It is assumed that
the epochs are sufficiently large that their respective peaks are independent, and that the
data are identically distributed. Experience has shown that, typically, the data Cp,pk i(T/n)
are best fitted by a Type I Extreme Value (EV I) cumulative distribution function (see
Eqs. [3.4] and [3.5]):

P
[
Cp,pk

(T
n

)]
= exp

⎧⎪⎨⎪⎩
− exp
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−
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𝜎
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, (7.8)

where P[Cp,pk(T/n)] is the probability that the variate Cp,pk(T/n) is not exceeded
during any one epoch of length T/n. The probability Fr[Cp,pk (T/n)] that the variate
Cp,pk (T/n) is not exceeded during the 1st epoch, and the 2nd epoch, …, and the rth
epoch, is
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(7.9)

Inversion of Eq. (7.9) yields

Cp,pk

(T
n

)|Fr = (𝜇 + 𝜎 ln r) − 𝜎 ln(− ln Fr) (7.10)
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Equation 7.9 shows that Fr is an EV I cumulative distribution function with location
parameter 𝜇+ 𝜎 ln r and scale parameter 𝜎 (see Eqs. [3.4]–[3.6]). The expectation of the
largest Cp,pk(T/n)|Fr values over r epochs, denoted by Cp,pk(T∕n, r), is

Cp,pk

(T
n
, r
)
= (𝜇 + 𝜎 ln r) + 0.5772 𝜎 (7.11)

(see Eq. [3.5a]). It follows from Eqs. (7.10) and (7.11) that

− ln[− ln Fr(Cp,pk)] = 0.5772 (7.12)

hence

Fr(Cp,pk) = exp[− exp(−0.5772)] = 0.5704 (7.13)

Equation (7.13) may be interpreted as follows. Given a large number of realizations, in
57% of the cases the observed peak will be lower, and in 43% of the cases it will be larger
than the expected value. The parameters 𝜇 and 𝜎 can be estimated from the sample of
data Cp,pk i(T/n) (i = 1, 2,…, n) by using, for example, the BLUE estimator or the method
of moments (Section 3.3.3).

In applications, design peak pressures are currently estimated by substituting in
Eq. (7.10) estimated values for the “true” values of the parameters 𝜇 and 𝜎, and assuming
the probability Fr = 0.78 or 0.8 (as specified in [15, p. 22]), rather than Fr = 0.5704.
The use of the probability Fr = 0.8, rather than Fr = 0.5704, is an instance of double
counting, since it increases in Eq. (7.1) the pressure (or force) coefficient above its
expected value, while also accounting in Eq. (7.2) for the deviation of the pressure from
its expected value [16].

It has been argued that the use of the 0.78 or 0.8 value of Fr is consistent with storm
durations in excess of 1 hour (e.g., 3 hours). However, if a storm duration longer than 1
hour were assumed, the expected peak corresponding to it should be estimated directly
by using in Eq. (7.9) a value of r consistent with that duration. Also, the assumption
that storm durations are longer than one hour would be at variance with U.S. standard
practice, which follows the convention of 1-hour storm durations.

For a thorough study of peaks of time series of pressure coefficients, see [17].
(v) Estimation of Pressure Coefficient Peaks from Short Records. In some applications

the available records are short. This is the case, for example, for pressure measurements
performed in large aerodynamic facilities, where operation time is expensive.

Example 7.1 Consider a T= 90-second long record of pressure coefficients at the tap
of a roof on a model with length scale 1 : 8 and velocity scale 1 : 2. The length of the
prototype counterpart of the record is obtained from the condition

Tp =
( Lp

Lm

)(Um

Up

)
Tm = 8 ×

(1
2

)
× 90 seconds = 360 seconds.

Let n= 16. The prototype length of each subinterval is then Tp/16= 360/16=
22.5 seconds.

For the 360-second prototype record being considered, the mean and standard
deviation of the sample consisting of the peak pressures of the 16 subintervals (epochs)
are assumed to be |E[Cp,pk(T/n)]|= 4.72 and SD[Cp,pk(T/n)]= 0.75, respectively, to
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which there correspond the estimated Type I Extreme Value distribution parameters
(Eq. [3.5]):

𝜎

(T
n

)
=
√

6
𝜋

SD
(T

n

)
= 0.78 × 0.75 = 0.585 and

𝜇

(T
n

)
= Cp,pk

(T
n

)
− 0.5772 𝜎

(T
n

)
= 4.72 − 0.5772 × 0.585 = 4.38.

The estimated means of the peak Cp,pk(T/16= 22.5 s, r) for r = 16 and r = 160 (i.e., for
a 360-s and a 3600-s long prototype record) are

||||Cp,pk

( T
16
, r = 16

)|||| = 𝜇 + 𝜎 ln r + 0.5772𝜎 = 4.38 + 0.585 ln 16

+ 0.5772 × 0.585 = 6.34

(Eq. [7.13]) and
||||Cp,pk

( T
16
, r = 160

)|||| = 𝜇 + 𝜎 ln r + 0.5772𝜎 = 4.38 + 0.585 ln(160)

+ 0.5772 × 0.585 = 7.70.

The standard deviations of the sampling errors in the estimation of the mean peak
Cp,pk(T/16= 22.5 seconds, r) can be obtained from Eq. (3.9). Note that in both cases the
sample size is n= 16.

7.3.4 Uncertainties in Directionality Factors

According to a study reported in [2], uncertainties in the directionality factors may be
assumed to be typically in the order of 10%.
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8

Structural Design for Wind

An Overview

This chapter starts with a brief history of approaches to the design of structures for wind
(Section 8.1). It then presents an overview of two design procedures based on recently
developed technology allowing the simultaneous measurement of pressure time histo-
ries at large numbers of taps placed on wind tunnel models.1 Both procedures depend
on “big data” processing and entail iterative computations (including dynamics calcula-
tions) that, once the wind climatological and aerodynamic data are provided by the wind
engineer, are most effectively performed by the structural engineer. The first of these
procedures is called Database-Assisted Design (DAD) and is discussed in Section 8.2.
DAD uses recorded time series of randomly varying pressure coefficients to determine,
by rigorously accounting for dynamic and directional effects, peak demand-to-capacity
indexes (DCIs) with specified mean recurrence intervals (MRIs) for any desired num-
ber of structural members (for details on DCIs see Chapter 13). DAD can be applied
to buildings regardless of the complexity of their shape. (Examples of buildings with
complex shapes are the CCTV building, the Shanghai World Financial Center, and the
Burj Khalifa tower.) The second procedure, discussed in Section 8.3, uses time series of
measured pressure coefficients only for the computation of the aerodynamic and inertial
forces acting at the building floor levels, following which it determines static wind loads
used to calculate design DCIs with specified MRIs. If the resulting DCIs are close to their
counterparts produced by the DAD procedure, those loads can be regarded as equiva-
lent static wind loads (ESWLs). It can be inferred from Chapter 14 that, unlike DAD, the
procedure for determining ESWLs is typically applicable only to buildings with relatively
simple geometries (e.g., buildings with rectangular shape in plan). Section 8.4 briefly
compares the DAD and ESWL procedures; in particular, it discusses the verification of
ESWL results against benchmark values obtained by DAD.

8.1 Modern Structural Design for Wind: A Brief History

Modern structural design for wind emerged in the 1960s as a synthesis of the following
developments:
• Modeling of the neutrally stratified atmospheric boundary layer flow, including (i) the

variation of wind speeds with height above the ground as functions of upwind surface
roughness, and (ii) the properties of atmospheric turbulence.

1 These procedures may be inapplicable in the rare cases in which the configuration of the building models
does not allow the placement of pressure taps.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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• Probabilistic modeling of extreme wind speeds.
• Modeling of pressures induced on a face of a rectangular building by atmospheric

flow normal to that face.
• Frequency-domain modeling of the dynamic along-wind response produced by atmo-

spheric flow normal to a building face.

The increase of wind speeds with height above ground was first reported by Helmann
in 1917 [1]. The aerodynamic effects of turbulent shear flows were first researched by
Flachsbart in 1932 [2] (Figure 4.31).2 Flachsbart’s work influenced the approach to the
1933 tests of the Empire State Building reported by Dryden and Hill [5]. Probabilistic
models of extreme values for geophysical applications were developed by Gumbel in the
1940s [6]. A pioneering approach to the analytical estimation of the dynamic response of
bodies immersed in turbulent flow was developed by Liepmann in 1952 [7]. A synthesis
of these developments was first achieved in the 1960s by Davenport [8, 9], a University
of Bristol student of the eminent engineer Sir Alfred Pugsley. However, that synthesis
could not account for wind effects induced by vorticity shed in the wake of the struc-
ture, by winds skewed with respect to a building face or affected by the presence of
neighboring buildings, or for aeroelastic behavior. Specialized wind tunnels were there-
fore developed in the 1960s with a view to simulating the atmospheric boundary layer
flow and its aerodynamic, dynamic, and aeroelastic effects on structures.

During the 1970s wind tunnel techniques were not sufficiently developed to allow
the accurate determination of wind effects for structural design purposes. Information
on wind effects was based in large part on non-simultaneous pressures measured at
typically small numbers of taps (e.g., six taps for a model that currently accommodates
hundreds of pressure taps – see Figures 5.29 and 5.30), with unavoidable errors that can
be significant.

An improvement in the capability to determine wind effects was achieved in the
late 1970s with the development of the high frequency force balance (HFFB) [10]. The
HFFB approach, used in conjunction with frequency-domain analyses, is applied to tall
buildings designed to have no unfavorable aeroelastic response under realistic extreme
wind loading – that is, in practice, to all well-designed tall buildings. HFFB provides
time histories of the effective (aerodynamic and dynamic) base moments induced by
the wind loads. Its chief drawback is that it provides no information on the distribution
of the wind loads with height, since that distribution cannot be inferred from the base
moments or shears (see, e.g., [11]). The loading information needed to calculate the
demand-to-capacity ratios therefore depended largely on guesswork, especially for
buildings influenced aerodynamically by neighboring structures. Nevertheless, the
HFFB approach can be useful in the preliminary phase of the design process, for
the rapid if only qualitative aerodynamic assessment of building configurations,
orientations, and aerodynamic features. The HFFB approach is also useful for buildings
with facade configurations that do not allow the effective placing of pressure taps.

From the 1990s on, the development of the pressure scanner (see Section 5.7) has rad-
ically changed the approach to structural design for wind and has rendered the HFFB
approach largely obsolete. The pressure scanner allows the simultaneous measurement

2 Flachsbart was dismissed by the Nazi authorities for refusing to divorce his Jewish wife [3] and was
therefore unable to complete his research. Some of his results were re-discovered independently by Jensen in
the 1960s [4].
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of pressures at as many as hundreds of taps and, therefore, the capture of the pressures’
variation as a function of time and spatial separation. To exploit this new measure-
ment technology two computer-intensive procedures have been developed, which are
used in conjunction with time-domain analyses: Database-assisted Design and Equiv-
alent Static Wind Loads (ESWL), applicable, like the HFFB procedure, to tall buildings
designed to have no unfavorable aeroelastic response under realistic extreme wind load-
ing. Introductions to DAD and ESWL procedures are presented in Sections 8.2 and 8.3,
respectively.

8.2 Database-Assisted Design

DAD is a computer-intensive technique based on the full use of aerodynamic pressure
data for structural design purposes. It provides benchmark values against which
results of procedures based on ESWLs can be assessed. DAD uses time-domain
methods, which are typically more straightforward, transparent, and effective than
their frequency-domain counterparts.

Structural design for wind uses two types of wind engineering data: (i) time series
of pressure coefficients on a structure measured simultaneously at multiple taps, and
(ii) wind climatological data at the building site. The task of the wind engineering labo-
ratory is to deliver these data as well as estimates of the uncertainties inherent in them.

The tasks of the structural engineer are the following:

1. Select the structural system, and determine the structure’s preliminary member sizes
based on a simplified model of the wind loading (e.g., a static wind loading taken from
standard provisions). The structural design so achieved is denoted by D0.

2. For the design D0, determine the system’s mechanical properties, including the modal
shapes, natural frequencies of vibration, and damping ratios, as well as the requisite
influence coefficients; and develop on their basis a dynamic model of the structure.
P-Δ and P-𝛿 effects can be accounted for by using, for example, the geometric stiff-
ness matrix (Chapter 9).

3. From the time histories of simultaneously measured pressure coefficients, determine
the time histories of the randomly varying aerodynamic loads induced at all floor
levels by directional mean wind speeds U(𝜃) for a sufficient number of speeds U
(e.g., 20 m s−1 <U ≤ 80 m s−1, say) and directions 𝜃 (0∘ ≤ 𝜃 < 360∘). The reference
height for the mean wind speeds is typically assumed to be the height of the structure
(Chapter 10).

4. For each of the directional wind speeds defined in task 3, perform the dynamic anal-
ysis of the structure D0 to obtain the time histories at floor k of (i) the inertial forces
induced by the respective aerodynamic loads and (ii) the effective wind-induced loads
Fk[U(𝜃), t] applied at the structure’s center of mass. The lateral loading determined
in this task consists of the three components acting along the principal axes x, y, and
the torsional axis 𝜗 (Chapter 11).

5. For each cross section m of interest, use the appropriate influence coefficients to
determine time series of the DCIs induced by the combination of factored gravity
loads and effective wind loads obtained in task 4. The DCIs are the left-hand sides of
the design interaction equations, and are typically used to size members subjected to
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more than one type of internal force. For example, the interaction equations for steel
members subjected to flexure and axial forces are [12]:

If
Pr

𝜙pPn
≥ 0.2,

Pr

𝜙pPn
+ 8

9

( Mrx

𝜙mMnx
+

Mry

𝜙mMny

)
≤ 1.0, (8.1)

If
Pr

𝜙pPn
< 0.2,

Pr

2𝜙pPn
+
( Mrx

𝜙mMnx
+

Mry

𝜙mMny

)
≤ 1.0, (8.2)

In Eqs. (8.1) and (8.2), Pr and Pn are the required and available tensile or compres-
sive strength; Mrx and Mnx are the required and available flexural strength about
the strong axis; Mry and Mny are the required and available flexural strength about the
weak axis; 𝜙p and 𝜙m are resistance factors.3 The required strengths are based on
combinations of wind and gravity effects specified in the applicable code. A similar,
though simpler expression for the DCI, is applied to shear forces. Additional material
on DCIs is provided in Chapter 13.

6. For each cross section m of interest, construct the response surfaces of the peak com-
bined effects being sought as functions of wind speed and direction; that is, for each
of the directional wind speeds considered in task 3, determine the corresponding
peak of the DCI time series (e.g., Eqs. [8.1] and [8.2]), and construct from the results
so obtained the peak DCI response surface. The response surfaces are properties
of the structure, dependent upon its aerodynamic and mechanical characteristics,
but independent of the wind climate. They provide for each cross section of interest
the peak DCIs as functions of wind speed and direction. Response surfaces are also
constructed for peak inter-story drift ratios and peak accelerations. For details, see
Chapter 13.

7. Use the information contained in the response surfaces and the matrices of direc-
tional wind speeds at the site to determine, by accounting for wind directionality, the
design DCIs, that is, the peak DCIs with the specified MRI N for the cross sections
of interest. For each cross section m the steps required for this purpose are:

(i) In the directional wind speed matrix [Uij], where i and j denote the storm num-
ber identifier and the wind direction, respectively, replace the entries Uij by the
peak DCIs DCIpk

m (U = Ui, 𝜃 = 𝜃j) taken from the response surface for the cross
section m.

(ii) Transform the matrix [DCIpk
m (Ui, 𝜃j)] so obtained into the vector {maxj[DCIpk

m
(Ui, 𝜃j)]}T where T denotes transpose, by disregarding in each row i all entries
lower than maxj[DCIpk

m (Ui, 𝜃j)].
(iii) Rank-order the quantities maxj[DCIpk

m (Ui, 𝜃j)] and use non-parametric statistics
in conjunction with the mean annual rate of storm arrival 𝜆, to obtain the design
DCIs, that is, the quantities DCIpk

m (N) (Chapter 13 and Section A.8). Similar
operations are performed for inter-story drift ratios and accelerations.

If, for the member being considered, the design DCI is approximately unity, the design
of that member is satisfactory from a strength design viewpoint. If the uncertainties
in the wind velocity and/or the aerodynamic data are significantly larger than their

3 Some indexes used in Eqs. (8.1) and (8.2) are used elsewhere in this book in different contexts, in which
they are clearly defined.
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typical values on which code requirements are based, the design MRIs will exceed the
MRIs specified in, for example, the ASCE 7-16 Standard, and can be determined as in
Section 12.5 [13].

In general, the preliminary design D0 does not satisfy the strength and/or service-
ability design criteria. The structural members are then re-sized to produce a modified
structural design D1. This iterative process continues until the final design is satisfac-
tory. If necessary, to help satisfy serviceability criteria, motion mitigation devices such
as Tuned Mass Dampers are used (Chapter 16).

Tasks 2 through 7 are repeated as necessary until the design DCIs are close to unity,
to within serviceability constraints. Each iteration entails a re-sizing of the structural
members consistent with the respective estimated design DCIs.

Features of interest of the DAD approach are summarized next:

• The wind engineer performs wind engineering tasks, and the structural engineer
performs structural engineering tasks. The wind engineer’s tasks are to provide the
requisite aerodynamic and wind climatological data, with the respective uncertainty
estimates. These data are used by the structural engineer to determine the stochastic
aerodynamic loading and perform the dynamic analyses required to obtain the
effective wind-induced loading, as well as all the subsequent operations resulting
in the structure’s final design. Included in these operations is the estimation of the
design DCIs, inter-story drift ratios, and building accelerations with the respective
specified MRIs, consistent with the uncertainties in the aerodynamic and the wind
climatological data (Chapter 13). This division of tasks is efficient and establishes
clear lines of accountability for the wind engineer and for the structural engineer.
The structural engineer’s role in designing structures for wind thus becomes similar
to the role of the designer of structures for seismic effects, whose tasks include
performing the requisite dynamic analyses.

• DAD allows higher modes of vibration and any modal shape to be rigorously
accounted for.

• Wind effects with specified MRIs obtained by accounting for wind directionality are
determined by the structural engineer rigorously and transparently, as functions of
the properties of the structure inherent in the final structural design.

• The aerodynamics and wind climatological data provided by the wind engineer, as
well as the operations performed by the structural engineer, can be recorded and doc-
umented in detail, allowing the full development of Building Information Modeling
(BIM) for the structural design for wind [14]. This feature enables ready traceability
and detailed scrutiny of the data by the project stakeholders.

• Owing to currently available computational capabilities the requisite tasks can be
readily performed in engineering offices.

• Combined wind effects, including DCIs, induced by wind loads acting on all building
facades as well as by wind-induced torsion, are determined automatically by using
specialized software. The software can be accessed via links provided at the end of
this chapter.

Typically, satisfactory designs for strength, that is, designs resulting, to within service-
ability constraints, in DCIs close to unity, require more than one iteration, owing to
possibly significant successive changes in member sizes and in the structure’s dynamic
properties. As noted earlier, once the aerodynamic and wind climatological data, as
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well as estimates of the respective uncertainties, are provided by the wind engineer,
the calculations – including all dynamic calculations – are performed by the structural
engineer. This eliminates unnecessary, time-consuming interactions, required in ear-
lier practices, between the wind engineering laboratory and the structural engineering
office.

8.3 Equivalent Static Wind Loads

The ESWL procedure presented in this book is a variant of DAD and, like DAD, requires
the wind engineer to provide wind climatological data at the building site, time series of
pressure coefficients measured simultaneously at multiple taps, and measures of uncer-
tainties inherent in those data. As in the case of DAD, once these tasks are completed,
the ESWL-based design process is fully the responsibility of the structural engineer. The
ESWL procedure, which by definition yields design DCIs that approximate their bench-
mark counterparts determined by DAD, is typically applicable to structures with simple
geometries.

The structural engineer’s tasks 1–4 are identical to their counterparts for DAD. The
subsequent tasks are performed for each of the wind speeds and directions considered
in task 3, as follows:

4a. Determine the static loads FESWL
kx,p (U, 𝜃), and acting at the mass center of floor k

(k = 1, 2, …, nf ) in the direction of the building’s principal axes x, y, and about the
torsional axis𝜗, where the subscript p (p= 1, 2,…, pmax) identifies distinct wind load-
ing cases WLCp associated with superpositions of the three EWSL loads, and pmax
is a function of the number npit of points in time (pit) used to obtain the peak effects
of interest [15]. This task is described in detail in Chapter 14.

5. For each cross section m of interest, calculate the internal forces used to determine
its DCI, and substitute their expressions into the expressions for the DCIs (e.g.,
Eq. [8.1]). This task requires the use of (i) the static wind loads determined in task 4a,
(ii) the influence coefficients, and required to calculate the wind-induced internal
forces, and (iii) the factored gravity loads and the respective influence coefficients.
For example, is the internal force induced at cross section m by a unit force acting
in direction x at the center of mass of floor k. The wind-induced internal forces are
denoted by. Their expression is

f ESWL
m,p (U, 𝜃) =

nf∑
k=1

rmk,xFESWL
kx,p (U, 𝜃) +

nf∑
k=1

rmk,yFESWL
ky,p (U, 𝜃) +

nf∑
k=1

rmk,ϑFESWL
kϑ,p (U, 𝜃)

(8.3)

6. The corresponding DCIs, denoted by DCIm,p, are obtained by substituting the cal-
culated internal forces into the expressions for the DCIs. For design purposes only
the largest of these DCIs is of interest, that is,

DCIRS,ESWL
m (U, 𝜃) = maxp(DCIESWL

m,p (U, 𝜃)) (8.4)

The surface representing, for each cross section m of interest, the dependence of
its demand-to-capacity index DCIm upon wind speed U and direction 𝜃, is called
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the response surface for the cross section m. (The superscript RS denotes “response
surface.”)

7. Use the response surfaces constructed in task 6, the climatological wind speed
matrix at the building site [Uij], and the non-parametric statistical procedure
described in detail in Chapter 13, to determine the design peak DCIs with the
specified N-year MRI. As was also noted for the DAD procedure, depending
upon the uncertainties in the aerodynamic and climatological wind speed data as
determined by the wind engineering laboratory, the design MRI may have to differ
from the value specified, for example, in the ASCE 7-16 Standard, in which case it
can be determined as indicated in Chapter 12.

If the design DCIs determined in task 7 differ significantly from unity, the structure’s
members are re-sized to create a new design D1. Tasks 2–7 are then performed on that

Calculation of combined
gravity and wind effects

□ Demand-to-capacity indexes
□ Inter-story drift ratios, acceler.

Task 6

Preliminary design

Modeling of structure 
using lumped masses

□ Structural and dynamic properties
(including 2nd-order effects)

Dynamic analyses
□ Effective lateral floor loads

□ Displacements, Accelerations

Response surfaces
(peak wind effects)

Design wind effects
with specified MRIs

Appropriate 
design ?

Aerodyn. pressure coeff.
database from wind
tunnel tests or CFD

simulations
(including uncertainties)

Load combination cases

Directional wind speed 
database at building site 
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Analysis of a full model
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- Internal forces due to
  gravity loads
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design MRIs

Figure 8.1 Flowchart describing DAD and ESWL procedures [16].



�

� �

�

176 8 Structural Design for Wind

design. This process is iterated until a structural design is achieved for which, in each
structural member, the design DCI is close to unity, to within serviceability constraints.
As is the case for DAD, all calculations are automated. The requisite software can be
accessed via the link provided at the end of this chapter.

8.4 DAD versus ESWL

The ESWL procedure has the same useful features listed for the DAD procedure in
Section 8.2. It has been argued that, at least for the time being, some structural engi-
neers may prefer performing the design for wind by using ESWLs. However, since both
the DAD and the ESWL procedures are automated, the amount of labor required on
the part of the structural engineer is the same regardless of which procedure is used.
In addition, it is worth noting that while design for seismic loads was originally based
on static seismic loads, structural engineering culture has evolved to the point where
this is no longer necessarily the case. Design for wind is expected to undergo a similar
evolution.

Given the substitution of static loads for the actual stochastic loads, it is appropriate
to verify the extent to which the ESWL procedure actually results in structural designs
approximately equivalent to those produced by DAD. This is achieved by comparing
DCIs induced by ESWL and DAD (see Chapter 18). The use of peak DCIs obtained by
DAD as benchmarks against which DCIs induced by ESWL can be verified is justified
by the superior accuracy inherent in the DAD procedure.

A flowchart describing the sequence of operations leading to the final structural
design by the DAD and the ESWL procedures is shown in Figure 8.1 [16]. The software
DAD_ESWL version 1.0, a detailed user’s manual [17], and a tutorial with detailed
examples [18], are available for the two procedures at https://www.nist.gov/wind.
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9

Stiffness Matrices, Second-Order Effects, and Influence
Coefficients

For structures with linearly elastic material behavior, structural, and dynamic analyses
can be performed by using stiffness matrices (Section 9.1) and accounting as necessary
for second-order effects (e.g., via geometric stiffness matrices, Section 9.2). Influence
coefficients, representing wind effects of interest induced by unit loads acting at mass
centers along the structure’s principal axes, and unit torsional moments about the cen-
ters of mass are considered in Section 9.3.

Stiffness matrices, geometric stiffness matrices, and influence coefficients can be
determined by using finite element software. Second-order effects can be determined
by a variety of methods other than the geometric stiffness matrix method, including
the simple moment amplification method [1]. Software and user manuals described
and accessible via links provided in Chapters 17 and 18 contain modules that perform
the requisite calculations.

9.1 Stiffness Matrices

To define the stiffness matrix of the linearly elastic structural system of a building with
nf floors, consider the flexibility matrix

[a] =
⎡⎢⎢⎣

[xi,1x xi,2x … xi,nf x] [xi,1y xi,2y … xi,nf y] [xi,1𝜗 xi,2𝜗… xi,nf 𝜗
]

[yi,1x yi,2x … yi,nf x] [yi,1y yi,2y … yi,nf y] [yi,1𝜗 yi,2𝜗 … yi,nf 𝜗
]

[𝜗i,1x 𝜗i,2x … 𝜗i,nf x] [𝜗i,1y 𝜗i,2y … 𝜗i,nf y] [𝜗i,1𝜗 𝜗i,2𝜗… 𝜗i,nf 𝜗
]

⎤⎥⎥⎦
(9.1)

which consists of nine component sub-matrices represented in the right-hand side of
Eq. (9.1) by their respective ith rows (i= 1, 2,…, nf ); for example, the entry denoted
in Eq. (9.1) by [ yi, 1x, yi, 2x,… yi,nf x] represents the matrix

⎡⎢⎢⎢⎢⎣

y1,1x y1,2x … y1,nf x
y2,1x y2,2x … y2,nf x

⋮
ynf ,1x ynf ,2x … ynf ,nf x

⎤⎥⎥⎥⎥⎦
(9.2)

The size of matrix [a] is 3nf × 3nf . The terms of matrix [a] are displacements in the x or
y direction or torsional rotations about the mass center of floor i (i= 1,2,…, nf ) due to a
unit horizontal force in the x or y direction or a unit torsional moment about the mass
center of floor j (j= 1,2,…, nf ), and can be obtained by using standard structural analysis

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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programs. (For example, the term y1,2x is the y displacement of the mass center of floor
1 due to a unit horizontal force acting at the mass center of floor 2 in direction x.)

The stiffness matrix of the system is the inverse of the matrix [a]:

[k] = [a]−1, (9.3)

As follows from Eq. (9.3), the product [k][a] is the identity matrix. In the matrix [k], for
example, the restoring force k1x,2y represents the horizontal force in the x direction at
the mass center of floor 1, induced by a unit horizontal displacement in the y direction
at the mass center of floor 2.

For structures with members of known sizes and properties the matrix [k] is deter-
mined by using standard finite element software.

9.2 Second-Order Effects

Wind forces induce horizontal displacements that give rise to overturning moments
acting at every floor, equal to the weight of the floor times the floor’s horizontal dis-
placements. These overturning moments result in an amplification of the wind effects.
The study of second-order effects is concerned with this amplification and its structural
and dynamic consequences.

In linear elastic analysis equilibrium is based on the undeformed geometry of
the structure. In elastic, geometrically nonlinear analysis, equilibrium is based on the
deformed geometry of the structure, while the material behavior is assumed to be
elastic; in inelastic, geometrically nonlinear analysis the equilibrium is based on the
deformed geometry and the material behavior is assumed to be inelastic [1]. In this
book, unless otherwise indicated, the structural behavior is assumed to be elastic. The

∆

P

P

δ

Figure 9.1 P-Δ
(member chord) and
P-𝛿 (member curvature)
effects.

analysis includes both chord rotation effects due to sway at the
member ends (i.e., P-Δ effects), and member curvature effects
(i.e., P-𝛿 effects) [2]. Both effects are illustrated in Figure 9.1.

In Chapter 18 second-order effects are determined by the geo-
metric stiffness method, in which the total displacements of the
structure are obtained by subtracting from the stiffness matrix
[k] a geometric matrix [kg] developed as shown in [1]. The resul-
tant matrix, denoted by [ks] and henceforth referred to as the
effective matrix, is “softer” than the matrix [k], and replaces the
latter in calculations of the structural response to wind and grav-
ity loading, including calculations of influence coefficients and
dynamic response. In the geometric stiffness method, the vari-
ation of transverse displacements along the member’s length is
commonly approximated by a cubic polynomial. An example of
the derivation of terms of the matrix [kg] for a two-dimensional
beam-column member with six degrees of freedom is shown in
[2]. As is the case for the matrix [k], for structures with known
member sizes and properties the matrix [kg] can be calculated
by using standard finite element software [3]. This approach has
limitations noted in [2], which appear not to be significant for
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tall buildings subjected to wind loads. It is suggested, however, that the validity of this
statement be the object of further research, and that an alternative approach to the esti-
mation of second-order effects be considered if necessary.

9.3 Influence Coefficients

Influence coefficients are used in conjunction with wind and gravity loads acting on
the structure to determine internal forces, displacements, and accelerations induced by
those loads. Consider the aerodynamic wind load time series Fkx[U(𝜃), t], Fky[U(𝜃), t],
Fk𝜗[U(𝜃), t], induced along the principal axes and in torsion by wind with mean
speed U and direction 𝜃 at reference height zref , acting at the center of mass of floor
k (k= 1, 2,…, nf ). The time series of the internal forces denoted by fm[U(𝜃), t] induced
by those load time series at a cross section m can be written as the sum

fm[U(𝜃), t] =
nf∑

k=1
{rmk,x Fkx[U(𝜃), t] + rmk,y Fky[U(𝜃), t] + rmk,𝜗Fk𝜗[U(𝜃), t] } (9.4)

where the influence coefficients rmk,x, rmk,y, rmk,𝜗 are internal forces induced at cross
section m by a unit load acting at the center of mass of floor k along the axes x and
y and around the vertical axis. Similar relations apply to displacements and accelera-
tions, and to gravity loads. For any specified wind speed and direction, the wind load
time series are computed from time histories of pressure coefficients provided by the
wind engineer (see Chapter 10).
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10

Aerodynamic Loads

Main Structure, Secondary Members, and Cladding

10.1 Introduction

Aerodynamic loads are based on time series of aerodynamic pressure coefficients mea-
sured simultaneously at multiple taps on the surfaces of the wind tunnel building model.
Two main cases are considered in this chapter. In the first case, the objective is to deter-
mine, for specific structures, aerodynamic loads at the center of mass of each floor,
on main members, on secondary members (e.g., purlins and girts), and on cladding.
In the second case, the objective is to develop standard provisions on pressure coeffi-
cients. In both cases details of the procedures for determining the loading differ to some
extent depending upon whether the pressure taps are placed in orthogonal patterns, as is
the case for the National Institute of Standards and Technology/University of Western
Ontario (NIST/UWO) database https://www.nist.gov/wind [1], or in non-orthogonal
patterns, as in the Tokyo Polytechnic University (TPU) database [2].

Section 10.2 discusses orthogonal and non-orthogonal tap placement patterns and
the determination of individual tap tributary areas. Section 10.3 is concerned with the
determination of aerodynamic loads at floor levels, and on main members, secondary
members, and cladding. Section 10.4 describes a method used to develop standard pro-
visions on pressure coefficients as functions of areas contained within specified zones.
Section 10.5 concerns wind-driven rain intrusion.

10.2 Pressure Tap Placement Patterns and Tributary Areas

Pressure taps may be placed in orthogonal or non-orthogonal patterns. Examples of
orthogonal pressure tap patterns are shown Figure 10.1, which shows rectangular trib-
utary areas of pressure taps represented by cross symbols.

A non-orthogonal pattern is shown in Figure 10.2a, in which circles indicate pressure
tap locations. Individual tap tributary areas are conveniently calculated using Voronoi
diagrams [5]. The diagrams can be derived from Delaunay triangulation [6], which
connects a given set of point taps to form triangles that: (i) do not overlap, (ii) cover the
entire interior space, and (iii) do not have any tap within the triangle’s circumcircle.
The corresponding Voronoi diagram is created by drawing perpendicular bisectors to
the sides of the triangles. Regions formed from these bisectors contain one tap each and
bound an area containing points that are closer to that tap than to any other tap. The

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 10.1 Rectangular tap tributary areas: (a) simple tap array; (b) tap array with varying tap
density [3].

(a) (b) (c) (d)

Figure 10.2 Example of non-orthogonal pattern of pressure tap placement and of tributary area
assignments [4]. Source: With permission from ASCE.

Voronoi MATLAB function [7] can generate both Delaunay triangulation and Voronoi
diagrams. Figure 10.2b connects the taps using Delaunay triangulation. Figure 10.2c
shows how a Voronoi diagram can be derived from the Delaunay triangulation.
Figure 10.2d shows the Voronoi diagram; the bounded area created around a tap is the
tributary area of that tap.

10.3 Aerodynamic Loading for Database-Assisted Design

Pressure data on the structure’s envelope are provided as time series of non-dimensional
pressure coefficients Cp, typically based on the hourly mean wind speed V H at the build-
ing roof height H

Cp =
p

1
2
𝜌V 2

H

(10.1)

where p is the net pressure relative to the atmospheric pressure and 𝜌 is the air density
(1.225 kg m−3 for 15∘C air at sea level).
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From the similarity requirement for the reduced frequency nD/V , where n is the
sampling frequency and D is a characteristic dimension of the structure, it follows that
the prototype time interval Δtp = 1/np is

Δtp =
Dp

Dm

Vm

Vp
Δtm (10.2)

where the subscripts p and m stand for prototype and model, respectively, Dm/Dp is the
geometric scale, V m/V p is the velocity scale, and Δtm is the reciprocal of the sampling
frequency nm at model scale.

Calculations of aerodynamic pressure coefficients based on pressure measurements
at taps placed on wind tunnel models require:

1) The creation of virtual pressure taps at each edge of the model surface. The time series
of the pressure coefficients at those taps are obtained by extrapolation from the time
histories at the outermost and next to outermost pressure taps (Figure 10.3a). This
operation is necessary because actual pressure taps cannot be placed at the struc-
ture’s edges.

2) The generation of a mesh for interpolations between time series of pressure coeffi-
cients measured at actual taps or estimated at virtual taps (Figure 10.3b). Each mesh
element has dimensions ΔB×ΔH , where ΔB = B/(2nB), ΔH = H/(2 N), B is the
building width, H is the building height (including, for buildings with parapets, the
parapet height, in which case the height of the uppermost mesh element is equal to
the height of the parapet), nB is the number of pressure taps in each pressure tap row,

B
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N-1th Floor (Top)

N-2th Floor

2nd Floor

1st Floor

Mesh 

(a) Virtual taps at edges (b) Mesh for interpolating 
pressures

H−N·h

ϑ

Real or virtual tap
Center of mesh cell 

(c) Floor forces on lumped-
mass system 

yn

y
x

xn

…

θn

In
te

rp
ol

at
io

n

C
al

c.
 fl

oo
r 

lo
ad

s

Extrapolation

Figure 10.3 (a) Actual and virtual pressure tap locations, (b) Interpolation mesh on model surface and
points of application of wind forces obtained by interpolation at centers of mesh cells (h = floor
height), (c) Wind forces applied at floor-level lumped masses.
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(a) Tributary area for Nth floor
(shaded area)

(b) Tributary area for typical floors 1 to N-1 
(shaded area)

h

Lumped-Mass

H−N·h

ΔH

ΔB

Figure 10.4 Tributary areas for calculation of floor wind loads.

and N is the number of floors. Software described and applied in Chapter 18 offers
the option of carrying out the interpolations by any of three methods supported by
MATLAB. An alternative method is described in [8].

3) For multi-story buildings, time series of floor wind loads are applied at the floor cen-
ters of mass. They are determined as functions of time series of pressure coefficients
obtained by interpolation, of the respective tributary areas (Figure 10.4), and of the
mean wind speeds at the elevation of the top of the building. The wind loads consist,
at each floor, of forces acting along the two principal directions of the structure, and
a torsional moment (Figure 10.3c).

It is typically assumed that pressure coefficients do not depend significantly upon
Reynolds number and are therefore identical for the model and the prototype. However,
for the design of cladding, a more conservative approach may be adopted to account for
the fact that wind tunnel simulations may underestimate peak suctions, as shown in
Figure 5.24.

10.4 Peaks of Spatially Averaged Pressure Coefficients
for Use in Code Provisions

10.4.1 Pressures Within an Area A Contained in a Specified Pressure Zone

Standards specify pressures applicable to areas of various sizes A contained in specified
zones (e.g., middle, edge, or corner zones of roofs or walls) within which it is assumed for
practical design purposes that the pressures are uniform. Except for an area A covering
the entire area of the zone being considered, the number of areas of specified size A
within a zone exceeds unity. To develop standard provisions on pressure coefficients,
the following steps are required [9]:
1) Identify all areas of size A within the zone (see Section 10.4.2).
2) Determine the tributary area Bl of each tap l contained in the zone.
3) For each of the areas A, determine its intersections, al, with the tap tributary

areas Bl. For example, let the four rectangles shown in Figure 10.5 represent tap
tributary areas B1, B2, B3, B4, and let the area A of interest be the shaded area of
Figure 10.5. The intersections of area A with the areas Bl (l = 1, 2, 3, 4) are denoted by
al (l = 1, 2, 3, 4).



�

� �

�

10.4 Peaks of Spatially Averaged Pressure Coefficients for Use in Code Provisions 187

Figure 10.5 Intersection of
four pressure tap tributary
areas (cells) with shaded
area A [9].

4) For each wind direction 𝜃j, and for each of the areas of
size A within the zone being considered, obtain the time
history

p(A, t, 𝜃j) =
∑

l
pl(t, 𝜃j)

al

A
(10.3a)

∑
l

al = A (10.3b)

where pl(t, 𝜃j) is the time history of the pressure
induced by wind with direction 𝜃j at the tap contained
in area Bl.

5) Determine, for each of the areas A and for each of the directions 𝜃j, the peak
of the time history p(A, t, 𝜃j) using, for example, the procedure described in
Appendix C. (Alternatively, the procedure described in https://www.nist.gov/wind
may be used. This requires the partitioning of the record into equal segments
and the creation of a sample of peak values consisting of the peak of each of the
segments.) The largest of all those peaks is the pressure being sought for codification
purposes.

6) Divide that pressure by the dynamic pressure (1/2)𝜌 maxj[U2(zref , 𝜃j)] to obtain the
corresponding pressure coefficient Cp(A, t).

For compliance with ASCE 7 Standard requirements, the pressure coefficients
Cp(A, t) are re-scaled to be consistent with 3-second peak gust wind speeds, and are
reduced via multiplication by a directionality reduction factor (see Section 13.5).

10.4.2 Identifying Areas A Within a Specified Pressure Zone

Pressure Taps with Rectangular Tributary Areas. The summation process in Eq. (10.3a)
is simplest when the cells representing the tributary areas of the taps are rectangular
(Figure 10.1a). Special consideration must be given to areas A in edge and corner zones
since such areas generally do not coincide with cell boundaries (see, e.g., Figure 10.5),
and to cases in which grids of different densities merge, as indicated by arrows in
Figure 10.1b.

To see how various areas of size A are determined within a specified zone with
area larger than A, consider the six-cell zone with orthogonal tap placement shown
in Figure 10.6 [9]. We seek the number of distinct rectangles with areas A within that
zone. The areas A may consist of one cell, or of rectangular conterminous aggregates of
two, three, four, or six cells. There are six possible rectangular areas consisting of one
cell each. The cell on the upper left corner is denoted Aa. To Aa is added a cell in the
downward y-direction; the two-cell rectangle so obtained is denoted Aa2. With this
step, the lower boundary of the zone is reached; therefore, no additional cell can be
added in direction y. To the cell selected in step Aa, one cell is added in direction s,
rightward. The two-cell rectangle so obtained is denoted Aa3,1. In a next step, denoted
Aa3,2, an additional cell is added, again in direction s, rightward. Thus, two additional
rectangles have been created in step Aa3. With step Aa3,2 the rightmost boundary
of the zone has been reached, so further expansion in the direction s is not possible.
Next, step Ab consists of adding to the cell selected in step Aa via expansion in both
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Aa Initialize at upper left Ba Initialize Ca Initialize

Ca2 Expand in y

Ca3 Expand in s

Cb Expand in y and s

Fa Initialize

Aa2 Expand down in y

Aa3,1 & Aa3, 2 Expand right in s

Ab Expand in y and s

Ab2 Expand in y: impossible

Ba2 Expand in y: impossible

Ba3,1 & Ba3, 2 Expand in s

Bb Expand in y and s: impossible

Ea Initialize

Ea2 Expand in y

Ab3 Expand in s

Da Initialize

Da2 Expand in y: impossible

Da3 Expand in s

Figure 10.6 Six-cell zone with orthogonal tap placement [9].

directions, y downward and s rightward. Thus, a rectangle consisting of four cells is
created. Expansion in the direction y downward is attempted in step Ab2, but is not
possible. Step Ab3 consists of expanding in the s direction rightward, which results in a
six-cell rectangle. All possibilities of expansion from the single cell selected in step Aa
being exhausted, one proceeds to the next initial cell direction rightward (step Ba). The
procedure is repeated until all possible initial cells have been used. Figure 10.6 shows
six rectangles formed by one cell, seven rectangles formed by two cells, two rectangles
formed by three cells, two rectangles formed by four cells, and one rectangle formed
by six cells, for a total of eighteen rectangles. If the cells are rectangles of unit area,
for the zone of area 6 the following numbers of pressure time series result: 6 with area
A = 1; 7 with area A = 2; 2 with area A = 3; 2 with area A = 4; and 1 with area A = 6. In
this example, areas A have aspect ratios ranging from 1 to 3. We need to calculate the
peak average pressure coefficient for each of the 6 one-cell areas; for each of the seven
two-cell areas; and so forth.

To limit the number of combinations for large zones, the aspect ratio of the rectan-
gles formed by the aggregation of cells is limited to four at most. This aspect ratio covers
many practical units of components and cladding, and allows consideration of long, nar-
row zones along the edges of roofs and walls. The number of area combinations increases
very quickly with the size of the grid, for example, a 19× 8 grid produces 4290 areas of
aspect ratio≤4, whereas a subset 16× 7 of the same grid produces 2351 such areas.

If the zone being studied overlaps areas of different tap density, the coarser density is
used overall, and full and partial cell areas in the high-density region are combined as
needed. Figure 10.7a shows a portion of a zone with two grid densities. To conform with
the coarser grid, the two rows of three cells at the bottom of the figure are transformed
into two rectangles each (Figure 10.7b).
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(a) (b)

Figure 10.7 Combination of areas with different tap densities.

Example 10.1 Results are shown for Building 7 (open country exposure) of the
NIST/UWO database (data set jp1, https://www.nist.gov/wind [1]. The building
(Figure 10.8a) was modeled at a 1 : 100 scale, and data were collected for 100 seconds
at 500 Hz; its full-scale width, length and height are 12.2 m (40 ft), 19.1 m (62.5 ft)
and 12.2 m (40 ft), respectively, and its roof slope is 4.8∘. The peak averaged pressure
coefficients were re-scaled to be consistent with ASCE 7-10 Standard [10] 3-second
peak gust wind speeds. Figure 10.8b shows that ASCE 7-10 specifications, in which
peak wind pressure coefficients are denoted by (GCp), underestimate negative pressures
over almost all of the areas within the corner zone by factors of up to 2.3. These results,
and a thorough study in [11], confirm the finding that negative pressures specified in
the ASCE 7-10 Standard tend to be strongly unconservative.

Pressure Taps with Polygonal Tributary Areas. To produce intersections of tap trib-
utary areas with rectangular areas A contained within a specified zone, each building
façade and roof surface is swept in small discrete steps by overlaid rectangles with area
A. The first set of rectangles with area A have sides equal to the horizontal and vertical
distances between adjacent taps, that is, the smallest possible useful rectangles. In the
subsequent sets, the sizes of the rectangles are progressively increased horizontally, ver-
tically, and both horizontally and vertically, until the largest rectangle is determined by
the dimensions of the facade. Step-wise offsetting of each of those sets of rectangles by
amounts equal to the smallest distances between taps ensures that no rectangular area
A for which the averaged pressure coefficient needs to be calculated is missed.

Example 10.2 Consider the wall represented in Figure 10.2. Let the smallest horizon-
tal and vertical distances between taps be 2 m. Two sets of rectangular areas A are shown
in the figure: a set consisting of a 2× 2 m grid (Figure 10.9a), and a set consisting of a
2× 4 m grid (Figure 10.9c). Figure 10.9b shows 2× 2 m rectangles with 1 m offset in the x
and y directions. Figure 10.9d shows rectangles with dimensions 2× 4 m and 1 m offset
in the x direction. In Figure 10.9, all the shaded areas contain pressures. As the rectan-
gle’s borders cross outside a building surface, partial or incomplete elements created by
such borders are neglected. They are represented in Figure 10.9 as blank areas within
the façades. Table 10.1 lists grids with minimum sizes A= 2× 2 m and maximum sizes
A= 3× 3 m, with no offset, with 1 m offsets, and with 2 m offsets.
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Figure 10.8 (a) Building 7 corner, with pressure taps (1 ft2 = 0.0929 m2); (b) Peak of averaged pressure
time histories. Source: After [9].

The method just described was programmed using MATLAB [7] to process build-
ings available in TPU’s low-rise building pressures database, specifically case numbers
13–108 [2]. The wind tunnel tests of low-rise buildings without eave were performed at
a length scale of 1/100, velocity scale of 1/3 (i.e., a 3/100 time scale), for suburban ter-
rain. At a reference height of 0.1 m, the turbulence intensity was 0.25 and the test wind
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offsetoffset
(a) (b) (c) (d)

Figure 10.9 Example of superposed rectangular surfaces with areas A = 2 m× 2 and A= 2 m× 4 m,
with no offsets and with 1 m offsets offsets [4]. Source: With permission from ASCE.

Table 10.1 Grid areas and offset combinations.

Grid size Offset

x (m) y (m) x direction y direction

2 2 0 0
2 2 0 1
2 2 1 0
2 2 1 1
2 3 0 0
2 3 0 1
2 3 0 2
2 3 1 0
2 3 1 1
2 3 1 2
3 2 0 0
3 2 0 1
3 2 1 0
3 2 1 1
3 2 2 0
3 2 2 1
3 3 0 0
3 3 0 1
3 3 0 2
3 3 1 0
3 3 1 1
3 3 1 2
3 3 2 0
3 3 2 1
3 3 2 2
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Figure 10.10 TPU low-rise building showing geometric parameters. Source: From [2]. Courtesy of
Professor Y. Tamura, Tokyo Polytechnic University.

velocity was 7.4 m s−1, which corresponds to a 22 m s−1 mean hourly wind speed at a
10 m height in full scale. Wind pressure time-history data were recorded at 500 Hz for
18 seconds, or 18× 100/3 seconds = 10-minute full scale. An example of such a building
is shown in Figure 10.10.

TPU’s aerodynamic database incorporates a moving average calculation for the pres-
sure time series data. Denoting the data sampling interval by Δt and the net pressure
above ambient at tap i at time t by pi(t, 𝜃), TPU defines the pressure denoted by p(i, t, 𝜃)
at tap i at time t as

p(i, t, 𝜃) = avg[pi(t − Δt, 𝜃), pi(t, 𝜃), pi(t + Δt, 𝜃)] (10.4)

An example of a building from the TPU database is shown in Figure 10.10.
Consider building TP-1 (case 61 of the database, B= 16 m, D = 24 m, H0 = 12 m, roof
slope 4.8∘, see Figure 10.10). Figure 10.11 shows the Voronoi diagram applied to that
building; the pressure taps are indicated by circles, bounded by the polygons that define
the tributary areas. With the tributary areas in place, the overlaid rectangle/offset
combinations can then be specified. The smallest overlaid rectangle was chosen as
2× 2 m, based on the minimum 2 m tap spacing; the largest was chosen to be 7× 7 m.
The rectangles were incremented from 2× 2 m up to 7× 7 m by increments of 0.5 m,
and were offset in increments of 0.5 m in the x and y directions.

Based on these rectangle/offset combinations, the total number of combinations is
9801, each rectangle having an aspect ratio of 3.5 or less. ASCE 7-16 Commentary
limits the aspect ratio of areas relevant to the design of components and cladding to 3.
The process by which peaks of average pressures are calculated as functions of areas
within code-specified zones involves the use of Boolean algebra and the MATLAB
function Polybool, and is repeated for all available tested wind directions 𝜃: 0∘, 15∘,
30∘, 45∘, 60∘, 75∘, and 90∘. For additional details on the method and its application to
the assessment of ASCE 7 Standard provisions, see [4], in which it is noted that the
TPU tap and wind direction resolution are lower than their NIST/UWO counterparts,
particularly for buildings for which ASCE 7 Standard edge zones and corner zones
have small dimensions. Nevertheless, no significant differences were found between
wind loads on main structural members based on [1] on the one hand and [2] on the
other [12].
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Surface 4

Surface 6
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Surface 2

Figure 10.11 Tributary areas achieved using the Voronoi diagram [4]. Source: With permission from
ASCE.

10.5 Aerodynamic Pressures and Wind-Driven Rain

Recent advances in the area of wind-driven rain water intrusion include the develop-
ment of full-scale testing under conditions simulating (i) atmospheric boundary layer
hurricane force winds and (ii) up to 760 mm h−1. rain simulated by continuous spray-
ing of water through a plumbing system with spray nozzles [13]. The frontal area of the
wind and wind-driven-rain field simulated in [13] exceeded 30 m2. Measurements were
performed of the amount of water intruded through nailed and through self-adherent
heavy and light secondary water barriers, and of internal and external aerodynamic pres-
sures induced by the wind flow. Tests of specimens with different slopes showed that the
severity of the intrusion increases as the roof slope decreases.

Additional testing described in [14] was conducted using records of tropical cyclone
wind-driven rain data as a basis for the development of the target parameters considered
in the simulation, including raindrop size distribution. The results of the tests were used
to propose enhancements to simplified test protocols specified in current standards.
For additional material on rain water intrusion due to directly impinging rain drops and
surface runoff, see [15] and references quoted therein.
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Dynamic and Effective Wind-Induced Loads

11.1 Introduction

Unlike seismic loads, which consist of forces of inertia, wind loads consist of sums of
applied aerodynamic forces and forces of inertia. Rigid structures are by definition struc-
tures for which wind-induced forces of inertia are negligible. Flexible structures are
defined as structures for which the wind-induced forces of inertia are significant.

The forces of inertia are due to resonant amplification effects. A well-known example
of resonant amplification is the effect on a bridge of a military formation marching in
lock-step at a frequency equal or close to the bridge’s fundamental frequency of vibra-
tion. The effects of successive steps are additive: a first step causes a deflection whose
maximum is reached when the second step strikes. The second step causes an additional
deflection and subsequent steps keep adding to the response. The randomly fluctuating
wind loading can be represented as a sum of harmonic components (see Appendices B
and D). Wind-induced resonant amplification effects are caused by harmonic loading
components with frequencies equal or close to the natural frequencies of vibration of
the structure.

The forces of inertia are yielded by dynamic analyses based on second-order ordinary
differential equations of motion, in accordance with Newton’s second law. The analyses
can be performed by solving the equations of motion in the frequency domain or in the
time domain. The use of the frequency domain approach was predominant in the 1960s,
primarily because it does not require the direct solution of the differential equations;
instead, the latter are converted to algebraic equations via Fourier transformation (see
Appendix D).

The development of pressure scanners allows the simultaneous wind tunnel mea-
surement of pressure time histories at large numbers of taps mounted on the external
surfaces of rigid building models. Inherent in the measurements is phase information on
pressure fluctuations and, therefore, information on the extent to which the pressures
acting at different points on the structure are in or out of phase; that is, the extent to
which those pressures are mutually coherent (see Figure 4.27 for an illustrative anima-
tion). It is currently a routine task to obtain, via simple weighted summations of pressure
time histories, the time histories of the wind-induced forces acting on the structure (see
Chapter 10). Once those time histories are determined, it is again a routine matter to
solve numerically the equations of wind-induced motion of the structure in the time
domain.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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The purpose of this chapter is to present the basic theory that governs the
multi-degree-of-freedom behavior of structural systems assumed to be linearly elastic.
Section 11.2 discusses the simple case of the linear single-degree-of-freedom system.
The multi-degree-of-freedom case is considered in Section 11.3. The solution of the
structure’s equations of motion yields the forces of inertia induced by the wind loading,
as well as the structure’s displacements and accelerations. Section 11.4 concerns, for
any specified direction of the wind speed, the determination of the corresponding
effective wind loads, defined as the sum of the aerodynamic and inertial loads.

In the High Frequency Force Balance (HFFB) approach dynamic response calculations
are performed partly by the structural engineer and partly by the wind engineer. This
practice is left over from the late 1970s, when dynamic calculations were performed
in the frequency domain to avoid computations involving the solution of differential
equations of motion. The drawbacks of this practice include: (i) difficulties in the estima-
tion of combined wind effects, (ii) the lack of information on the distribution of the wind
loads with height, which prevents the realistic determination of wind effects in structural
members, (iii) the impossibility of determining the dynamic response in higher modes
of vibration, and (iv) the need to resort to correction factors to compensate, with varying
degrees of approximation, for the errors due to the assumptions that the shape of the
fundamental modes of vibration in sway are linear and that the shape of the fundamen-
tal torsional mode is independent of height. These drawbacks are especially significant
for buildings affected aerodynamically by neighboring buildings. The advances in com-
putational capabilities achieved in the twenty-first century render the HFFB approach
obsolete – in the sense in which, for example, the moment distribution method is obso-
lete. This is the case for detailed, final design purposes, although the use of the HFFB
approach for rapid, preliminary design purposes remains warranted.

11.2 The Single-Degree-of-Freedom Linear
System

x(t)
F(t)

M
B

A

Figure 11.1
Single-degree-
of-freedom
system.

The system of Figure 11.1 consists of a particle of mass M concentrated
at point B of a member AB with linear elastic behavior and negligible
mass. The particle is subjected to a force F(t).

The displacement x(t) of the mass m is opposed by (i) a restoring force
−kx supplied by the elastic spring inherent in the member AB and (ii)
a damping force −c dx/dt ≡ cẋ1 where k is the system’s stiffness (i.e., the
magnitude of the restoring force corresponding to a unit displacement x
of the mass M) and c is the damping coefficient. Both k and c are assumed
to be constant. The inverse of the system’s stiffness k is referred to as the
flexibility of the system (i.e., the system’s displacement corresponding to
a unit restoring force).

Newton’s second law states that the product of the particle’s mass by
its acceleration, Mẍ, is equal to the total force applied to the particle.
The equation of motion of the system is then

Mẍ = −cẋ − kx + F(t) (11.1)

1 Here and elsewhere in the book the dot denotes differentiation with respect to time, that is, ẋ ≡ dx∕dt.
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With the notations n1 =
√

k∕M∕(2𝜋) and 𝜁1 = c∕(2
√

kM) where n1 denotes the
frequency of vibration of the oscillator2 and 𝜁1 is the damping ratio (i.e., the ratio of
the damping c to the critical damping ccr = 2

√
kM beyond which the system’s motion

would no longer be oscillatory), Eq. (11.1) becomes

ẍ + 2𝜁1(2𝜋 n1)ẋ + (2𝜋 n1)2x = F(t)
M

(11.2)

For structures, 𝜁1 is typically small (in the order of 1%). We note for future reference
that the product of the system’s stiffness and flexibility is k ×(1/k)= 1, and that the sys-
tem’s kinetic energy and strain energy are T = 1/2 M ẋ2 and V = ∫ kx dx = 1/2 kx2.

An alternative derivation of the equation of free vibrations of the undamped and
unforced system (i.e., of the system with c= 0 and F(t)≡ 0) can be obtained from the
system’s Lagrangian:

L = T − V (11.3)

where T is the total kinetic energy and V is the potential energy (e.g., strain energy) of
the system.

For the system under consideration,

L = 1
2

Mẋ2 − 1
2

kx2 (11.4)

From Lagrange’s equations

d
dt

(
𝜕L
𝜕q̇i

)
− 𝜕L
𝜕qi

= 0 (11.5)

where the generalized coordinate qi ≡ x (i= 1) it follows that

Mẍ + kx = 0 (11.6)

11.3 Time-Domain Solutions for 3-D Response
of Multi-Degree-of-Freedom Systems

Figure 11.2 Torsional
deformation of
Meyer–Kiser building
in 1926 Miami
hurricane. Source:
From [1].

In general, the dynamic response to wind of flexible buildings with
linearly elastic behavior entails translational motions (sway) along
their principal axes and torsional motions about the building’s
elastic center. The torsional motions are due to the eccentricity
of the aerodynamic and inertial forces with respect to the elastic
center. An example of torsional deformations induced by wind is
shown in Figure 11.2.

The system’s equations of free vibration are obtained by
following steps analogous to those that led, for the single
degree-of-freedom system, to Eq. (11.6).

2 The quantity 2𝜋n is called circular frequency and is commonly denoted by 𝜔.
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11.3.1 Natural Frequencies and Modes of Vibration

The total kinetic energy of a structure with nf masses (e.g., nf floors) is

T = 1
2

nf∑
n=1

(mnẋ2
n + mnẏ2

n + In�̇�
2
n) (11.7)

where xn, yn are the displacements of the mass mn in the x and y directions, respectively,
𝜗n is the torsional rotation of the nth mass about its elastic center, and nf is the total
number of masses.

The total strain energy of the system is

V = 1
2
{q}T [k]{q}, (11.8)

{q}T = {x1, x2,… , xnf
, y1,y2,… , ynf

, 𝜗1, 𝜗2,… , 𝜗nf
} (11.9)

where T denotes tranpose, and [k] is the stiffness matrix (see Section 9.1).
For the freely vibrating structure, the displacements of the mass center and the tor-

sional rotation about the mass center at the elevation zi of the ith floor form a vector
{w(t)} of dimension 3nf . Its terms are denoted as follows:

w1(t) = x1(t), w2(t) = x2(t),… ,wnf
(t) = xnf

(t);

wnf +1(t) = y1(t), wnf +2(t) = y2(t),… ,w2nf
(t) = ynf

(t);

w2nf +1(t) = 𝜗1(t), w2nf +2(t) = 𝜗2(t),… ,w3nf
(t) = 𝜗nf

(t). (11.10)

The equations of motion of the undamped, freely vibrating system

[M]{ẅ(t)} + [k]{w(t)} = {0} (11.11)

are obtained from the Lagrange equations (Eq. [11.5]). In Eq. (11.11) [M] is a diagonal
matrix of the floor masses (for sway motions) or mass moments of inertia (for tor-
sional motions). Equation (11.11) are coupled owing to the cross-terms of the matrix [k].
Assume solutions of the form:

{w(t)} = {A} cos(𝜔t + 𝜑) (11.12)

where {A} is a vector to be defined subsequently. Substitution of these solutions in Eq.
(11.11) yields

(−[M]𝜔2 + [k]){A} = {0} (11.13)

Equation (11.13) is a system of linear homogeneous equations in the unknowns A1,
A2,…, Anf

, that is,

(k11 − M1𝜔
2)A1+ k12A2 +… …+ k1nf

A3nf
= 0

k21A1+ (k22 − M2𝜔
2)A2 +… …+ k2 nf

A3nf
= 0

k3nf 1A1+ k3nf 2A2 +… …+ (k3nf 3nf
− M3nf

𝜔2)A3nf
= 0

(11.14)

For Eq. (11.14) to have non-zero solutions, the determinant of the coefficients of the
unknowns {A} must vanish. This condition yields a 3nf -degree equation in 𝜔2 called the
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Figure 11.3 First four normal modes of a cantilever beam.

characteristic equation. Its 3nf roots are called eigenvalues. The rank-ordered frequen-
cies 𝜔1 <𝜔2 < · · ·<𝜔3nf

are called the system’s natural frequencies of vibration. To each
of the 3nf eigenvalues there corresponds an eigenvector with 3nf components obtained
from Eq. (11.14), which defines a natural (or normal) mode of vibration. The eigenvec-
tors corresponding to the 3nf eigenvalues {𝜔} form a 3nf × 3nf matrix [𝜙]. For i≠ j the
vectors {𝜙i} and {𝜙j} can be shown to be mutually orthogonal with respect to mass or
mass moments of inertia weighting, that is

3nf∑
k=1

𝜙ik𝜙jkMk = 0 (i ≠ j) (11.15)

The free vibrations, with their normal modal shapes and associated frequencies, are
properties of the structural system, independent of the loads. The first four normal
modes along one of the principal axes of a continuous cantilever beam are shown in
Figure 11.3.

11.3.2 Solutions of Equations of Motion of Forced System

The equations of motion of the forced system are

[M]{ẅ(t)} + [k]{w(t)} = {F(t)} (11.16)

where {F(t)} is the vector of the wind forces (torsional moments) with components
Fx1(t), Fx2(t),… , Fxnf

(t), Fy1(t), Fy2(t),… , Fynf
(t),M𝜗1(t),M𝜗2(t),… ,M𝜗nf

(t) acting at the
centers of mass of floors 1, 2,…, nf . The variables w(t) can be written as

{w(t)} = [𝜙]{𝜉(t)}, (11.17)

where [𝜙] is the matrix consisting of the 3nf eigenvectors {𝜙j} (j= 1,2,…, 3nf ), and the
coefficients {𝜉 (t)}, called generalized coordinates, indicate what fraction of each mode
enters the given deflection pattern. Substitution of Eq. (11.17) into Eq. (11.16) yields

[M][𝜙]{𝜉(t)} + [k][𝜙]{𝜉(t)} = {F(t)} (11.18)
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Premultiplication of Eq. (11.18) by [𝜙]T, where the superscript T denotes transpose,
yields:

[𝜙]T[M][𝜙]{𝜉(t)} + [𝜙]T[k][𝜙]{𝜉(t)} = [𝜙]T{F(t)} (11.19)
Owing to the orthogonality of the eigenvectors, Eq. (11.19), to which modal viscous

damping terms proportional to the modal damping ratios 𝜁m are added, can be written as

Mm𝜉m(t) + 2Mm𝜔m𝜁m𝜉(t) + Mm𝜔
2
m𝜉(t) = {[𝜙]T{F(t)}}m (m = 1, 2,… , 3nf )

(11.20)
In Eq. (11.20), the quantities Mm = [[𝜙]T[M][𝜙]]m and the quantities in right-hand

side of Eq. (11.20) are called the m-th mode generalized masses and generalized
forces, respectively. It follows from the unforced equation of motion of the system
that Mm𝜔m

2 = [[𝜙]T[k][𝜙]]m. Once Eq. (11.20) are solved numerically, the physical
coordinates {w(t)} (i.e., the coordinates x1(t), x2(t),…, xnf

(t), y1(t), y2(t),…, ynf
(t),

𝜗1(t), 𝜗2(t),…, 𝜗nf
(t) are given by Eq. (11.17), which can be written as

{w(t)} =
mmax∑
m=1

𝜙m𝜉m(t) (11.21)

where mmax is the highest mode that contributes significantly to the response. Accel-
erations {ẅ(t)} are obtained by differentiating Eq. (11.21) twice, the second derivatives
of the generalized coordinates being known once Eq. (11.20) are solved. The requisite
numerical calculations are performed using software that outputs directly the natural
frequencies and modes of vibration of the structure and the forces of inertia induced by
the wind loading being considered.

The total time-dependent wind-induced forces acting on the structure consist of the
sums of the applied aerodynamic forces and the inertial forces associated with the struc-
ture’s dynamic response. If tuned mass dampers are used to reduce the magnitude of the
dynamic response, they can be viewed as additional masses connected to the structure
by springs and damping-producing devices; for details see Chapter 16.

11.4 Simultaneous Pressure Measurements and Effective
Wind-induced Loads

One of the inputs to Eq. (11.20) is the vector {F(t)} of the applied aerodynamic loads
(Eq. [11.16]). Figure 11.4 is an example of the placement of taps used to obtain time
histories of simultaneously wind-induced pressure coefficients.

The applied aerodynamic forces and torsional moments induced by wind with speeds
U(zref , 𝜃w), where 𝜃w is the wind direction and zref is the reference height, act at the
locations of the pressure taps and are obtained from measured time histories of aero-
dynamic force coefficients. Their resultants acting at the mass centers of each floor or
group of floors are obtained as indicated in Section 10.3 and are added algebraically to
their inertial counterparts, thus yielding the effective wind-induced lateral forces and
torsional moment at the center of mass of each floor. These are used in conjunction
with influence coefficients (Section 9.3) to determine internal forces and their weighted
combinations; this forms the basis on which the building’s structural members are sized,
as shown in subsequent chapters.
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Figure 11.4 Example of pressure tap arrangement on the facades of a building model. Source:
Courtesy of Dr. I. Venanzi, University of Perugia, and Dr. G. Bartoli, University of Florence.

Reference

1 Schmit, F.E. (1926). The Florida hurricane and its effects. Engineering News Record 97:
624–627.
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12.1 Introduction

A 2004 landmark report by Skidmore Owings and Merrill (Appendix F) noted the
absence in wind engineering laboratory reports of information or guidance pertaining
to wind load factors. The latter depend upon uncertainties in the micrometeorological,
aerodynamic and wind climatological parameters that govern structural design. These
uncertainties can differ in some cases from those on which standard provisions are
based. The purpose of this chapter is to discuss the development for such cases of
appropriate wind load factors (or, if wind load factors are specified to be equal to
unity, of appropriately augmented mean recurrence intervals (MRI) of design wind
effects – see Section 12.5).

Attempts to develop design criteria applicable to structural systems have been unsuc-
cessful owing in large part to difficulties arising in the reliability analysis of statically
indeterminate structures. For this reason, strength design criteria are generally focused
on individual structural members (see Appendix E). In modern codes, factors assuring
that probabilities of failure are acceptably low differ according to whether they apply to
loads or resistances, and are called load and resistance factors, respectively (hence the
term “load and resistance factors design,” or LRFD). Load factors depend upon the type
of load (e.g., dead, live, snow, wind loads), and are defined as the quantities by which
nominal loads or load effects need to be multiplied to obtain the design loads. Their
magnitude is so calibrated that the resulting structural designs are comparable to proven
designs based on past practices.

The calibration is of necessity imperfect owing to the variety of materials, construction
techniques and design procedures used in past practices. However, a feature of past
practices that was preserved in LRFD is the choice of MRIs of nominal wind effects,
which are approximately 50 or 100 years, a choice largely based on engineering judgment
and experience.

The load factor that multiplies the nominal N-year wind load is called the N-year wind
load factor and is denoted by 𝛾w(N). In pre-2010 versions of the ASCE 7 Standard the
wind load factor was specified to be approximately 1.6. In the 2010 and 2016 versions,
to simplify the design process the wind load factor was specified to be unity. However,
to compensate for the reduction of the load factor from 1.6 to 1, and achieve design
wind effects approximately equal to those implicit in pre-2010 ASCE 7 Standard require-
ments, the MRIs of the design wind speeds associated with a wind load factor equal to
unity were augmented from 50 or 100 to 700 and 1700 years, respectively. In addition,

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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wind speeds with a 3000-year MRI are currently specified for structures classified as
essential, such as, for example, fire and police stations.

Uncertainties in quantities that determine wind-induced effects on rigid structures
were discussed in Chapter 7. For flexible structures uncertainties in the dynamic fea-
tures of the structure come into play as well, and are discussed in Section 12.2. The
definition of the wind load factor is introduced in Section 12.3, which also discusses
the calibration of the wind load factor with respect to past practice. Section 12.4 pro-
vides examples of the dependence of the wind load factor upon uncertainties specific
to particular design situations. The examples show that the uncertainty in the wind
speeds dominates the other individual uncertainties. Section 12.5 concerns the use of
augmented design MRIs in lieu of products of wind load factors larger than unity by
nominal wind loads or wind effects.1

12.2 Uncertainties in the Dynamic Response

The dynamic response of the structure depends upon its dynamic properties (natural
frequencies, modal shapes, and damping ratios). The uncertainty in the dynamic
response can in principle be estimated approximately by performing Monte Carlo sim-
ulations of the response, based on assumed probability distributions of the structure’s
dynamic properties. In practice, the estimation of the uncertainty must be performed
largely on the basis of engineering judgment and experience by accounting for, among
others, the cracking behavior of reinforced concrete and the behavior of joints in some
types of steel structures. It is suggested that for flexible structures the assumption
CoV(G)≈ 0.12 used in the development of the wind load factor specified in earlier
versions of the ASCE 7 Standard is reasonable for preliminary calculations based on
Eq. (7.2).

1 It was mentioned in Chapter 7 that NASA and the Department of Energy require the use of far more
elaborate approaches to uncertainty quantification than are currently available for civil engineering
purposes – see, for example, https://standards.nasa.gov/standard/nasa/nasa-hdbk-7009, which provides
“technical information, clarification, examples, processes, and techniques to help institute good modeling
and simulation practices in … NASA. As a companion guide to NASA-STD-7009, the Handbook provides a
broader scope of information than may be included in a Standard and promotes good practices in the
production, use, and consumption of NASA modeling and simulation products. NASA-STD-7009 specifies
what a modeling and simulation activity shall or should do (in the requirements) but does not prescribe how
the requirements are to be met, which varies with the specific engineering discipline, or who is responsible
for complying with the requirements, which depends on the size and type of project. A guidance document,
which is not constrained by the requirements of a Standard, is better suited to address these additional
aspects and provide necessary clarification.” As indicated in [1], the NASA Jet Propulsion Laboratory at the
California Institute of Technology “is pursuing Quantification of Margins and Uncertainty (QMU)
technology to enable certification of models and simulations for extrapolation to poorly-testable …
conditions,…, and provides a formalism for establishing credibility of a ‘digital twin’ that would predict
system performance under difficult-to-test conditions.” Among the tools used in QMU are Sandia’s Sierra
Mechanics and Multiphysics tools on models and simulations, Sandia’s DAKOTA uncertainty analysis tool,
the ASME V&V 10-2006 Guide for Verification and Validation in Computational Solid Mechanics, the AIAA
Guide for the Verification of Computational Fluid Dynamics Simulation, and Department of Energy and
Defense Guidelines and Recommended Practices. These tools and recommended practices are outside the
scope of this chapter, but it may be anticipated that adapting them or their principles for civil engineering
applications will be considered in the future.
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12.3 Wind Load Factors: Definition and Calibration

The design peak wind effect with a 50-year MRI is defined as

ppk des(N = 50 years) ≈ ppk(N = 50 years){1 + 𝛽 CoV[ppk(N = 50 years)]} (12.1)

where ppk(N= 50 years) is the expectation, and CoV[ppk(N = 50 years)] is the coefficient
of variation, of the peak wind effect ppk with a 50-year MRI. For codification purposes
the factor 𝛽 is determined by calibration with respect to past practice and consensus
among expert practitioners; the value 𝛽 ≈ 2 suggested in [2] appears to be reasonable
and is adopted here for illustrative purposes. The quantity

𝛾w(N = 50 years) = 1 + 𝛽 CoV[ppk(N = 50 years)] (12.2)
is the wind load factor by which the nominal expected peak wind effect with MRI
N = 50 years must be multiplied to yield the design peak wind effect. Therefore,

ppk des(N = 50 years) ≈ 𝛾w(N = 50 years) ppk(N = 50 years). (12.3)

Example 12.1 For a rigid building, with the notations of Eq. (7.2), let CoV(Ez) ≈ 0.12,
CoV(Kd) ≈ 0.1, CoV[G(𝜃m)] ≈ 0.05, say, where 𝜃m defines the most unfavorable wind
direction, CoV[Cp,pk(𝜃m)] ≈ 0.12, and CoV[U(N = 50 years)] ≈ 0.12 (see [2]). It follows
from Eq. (7.2) that CoV[ppk(N)] = 0.315 and, with 𝛽 = 2.0, 𝛾w ≈ 1.63, as calculated in
Eq. (12.4):

𝛾w = 1 + 2 (0.122 + 0.12 + 0.052 + 0.122 + 4 × 0.122)1∕2 ≈ 1.63 (12.4)
This is, approximately, the value adopted in the ASCE 7-05 Standard [3, 4].

The following excerpt from [2, pp. 6, 7] illustrates the problems arising in the calibra-
tion of the factor 𝛽 with respect to past practice:

…reliability with respect to wind … loads appears to be relatively low compared
to that for gravity loads,…, at least according to the methods used for structural
safety checking in conventional design.2 These are methods which are simpli-
fied representations of real building behavior and they have presumably given
satisfactory performance in the past. It was decided to propose load factors for
combinations involving wind … loads that will give calculated 𝛽 values which are
comparable to those existing in current practice, and not to attempt to raise these
values to those for gravity loads by increasing the nominal loads or the load fac-
tors for wind … loading. Based on the information given here the profession may
well feel challenged (1) to justify more explicitly (by analysis or test) why current
simplified wind … calculations may be yielding conservative estimates of loads,
resistances or safety; (2) to justify why current safety levels for gravity loads are
higher than necessary if indeed this is true; (3) to explain why lower safety levels
are appropriate for wind… vis-à-vis gravity loads, or (4) to agree to raise the wind
… loads or load factors to achieve a similar reliability as that inherent in gravity
loads. While the authors feel that arguments can be cited in favor and against all
four options, they decided that this report is not the appropriate forum for what
should be a profession-wide debate.

2 According to those methods the factor 𝛽 for gravity loads is 3.0, rather than 2.0 [2].
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12.4 Wind Load Factors vs. Individual Uncertainties

Equations (7.1, 7.2, 12.2 and 12.3) show that the uncertainty in the peak wind effect and,
therefore, the magnitude of the wind load factor, depend upon the individual uncertain-
ties that appear in the right-hand side of Eq. (7.2). This section examines, for various
cases of interest, the degree to which the influence of an individual uncertainty on the
magnitude of the wind load factor is significant. Except as otherwise noted, the individ-
ual uncertainties being considered are assumed to be those of Example 12.1.

12.4.1 Effect of Wind Speed Record Length

Assume that the length of the record of the largest yearly wind speeds to which there
corresponds the value CoV[U(N= 50 years)] ≈ 0.12 is 30 years. That value is due to
measurement and sampling errors for which the CoVs are assumed to be 0.07 and 0.1,
respectively. It was seen that to the CoVs of the uncertainties considered in Example 12.1,
there corresponds a wind load factor 𝛾w ≈ 1.63. Assume now that the record length on
the basis of which the sampling errors in the estimation of the 50-year speed was esti-
mated was only 10 years, as may be the case for remote locations for which few reliable
meteorological measurements are available. Since the standard deviation of the sam-
pling error is approximately proportional to the reciprocal of the square root of the
sample size (see Eq. 3.9), the coefficient of variation characterizing the sampling errors
may be assumed to be

√
3 times larger than for the case in which the record length is

30 years. Therefore, CoV[U(N)]≈ [0.072 + (0.1×
√

3)2]1/2 ≈ 0.187. Instead of 𝛾w ≈ 1.6, it
follows from Eq. (12.2) that the estimated wind load factor is

𝛾w = 1 + 2 (0.122 + 0.12 + 0.052 + 0.122 + 4 × 0.1872)1∕2 ≈ 1.85 (12.5)

The ratio between the wind load factors based on the 10-year wind speed record
and the 30-year record of wind speeds, all other uncertainties being unchanged, is
approximately 1.14. This is in part a consequence of the multiplication of CoV[U(N)]
by the factor 4 (see Eq. 7.2), owing to which the contribution to the wind load factor of
the uncertainty in the wind speed dominates the contributions of the other individual
uncertainties.

12.4.2 Effect of Aerodynamic Interpolation Errors

Large sets of aerodynamic pressure data used for database-assisted design cannot cover
all possible model dimensions and roof slopes. For this reason, interpolations based on
databases with limited numbers of models are typically necessary in the design pro-
cess. According to calculations reported in [5], such interpolations entail errors that,
depending upon the number of models in the database, can have CoVs as large as 0.15,
say. Accounting for this CoV in the expression for the load factor

𝛾w = 1 + 2 [0.122 + 0.12 + 0.052 + (0.122 + 0.152) + 4 × 0.122]1∕2 ≈ 1.70 (12.6)

rather than 1.63; that is, the increase in the estimated value of the wind load factor in
this example is approximately 5%. This result suggests that the number of models in large
aerodynamic databases does not necessarily have to be increased unless the CoVs of the
interpolation errors in the estimation of the pressure coefficients exceed 15%, say.



�

� �

�

12.4 Wind Load Factors vs. Individual Uncertainties 207

12.4.3 Number of Pressure Taps Installed on Building Models

The lower the number of taps placed on the model, the larger will be the errors in the
estimation of the wind effects. Figures 5.29 and 5.30 show the vast difference between
the numbers of taps typically used before and after the development of pressure scanners
to determine wind loads. For strength design purposes, useful assessments of the extent
to which the number of pressure taps installed on the building model is adequate by
modern standards can be made by comparing base shears and moments obtained by
high-frequency force balance measurements to their counterparts based on pressure
time histories at the taps [6]; or, in some cases, by comparing wind effects based on all
the available taps on the one hand and on, say, half the number of taps on the other.

12.4.4 Effect of Reducing Uncertainty in the Terrain Exposure Factor

Ad-hoc wind tunnel testing that reproduces to scale the built environment of the struc-
ture being designed has the advantage of reducing the uncertainty in the terrain expo-
sure factor. Because the wind tunnel simulation of the atmospheric flow is imperfect, the
reduction may be relatively modest, from CoV(Ez) = 0.12 (as in [2]) to CoV(Ez) = 0.05,
say. For a rigid structure, this would result in a less than 3% reduction of the wind load
factor from 𝛾w ≈ 1.63 (see Eq. [12.4]) to 𝛾w ≈ 1.59:

𝛾w = 1 + 2(0.052 + 0.102 + 0.052 + 0.122 + 4 × 0.122)1∕2 ≈ 1.59 (12.7)

12.4.5 Flexible Buildings

Flexible structures experience dynamic effects that may be expressed in terms of a
dynamic response factor, G. According to [2], typically CoV(G)≈ 0.12. This value
is based on early studies of uncertainties in the along-wind response [7]. In some
instances, natural frequencies, modal shapes and modal damping ratios are dependent
upon factors that are difficult to quantify and on which relatively few reliable data
exist. For example, estimates of the extent to which cracking of concrete influences the
structure’s stiffness characteristics may still be affected by significant uncertainties. For
these reasons the coefficients of variation of the uncertainty in the dynamic effects may
be larger than 0.12.

Non-zero values of CoV(G) increase the coefficient of variation of the peak wind effect
and will therefore result in wind load factors larger than their rigid structure coun-
terparts. This explains the quest by structural engineers for ad-hoc wind load factors
applicable to tall buildings (see Appendix F). Assuming, for example, that CoV(G)= 0.12
and that the other individual uncertainties affecting the wind load factor have the values
used in Eq. (12.4),

𝛾w = 1 + 2(0.122 + 0.12 + 0.122 + 0.122 + 4 × 0.122)1∕2 ≈ 1.67 (12.8)
rather than 1.63 for the rigid structure case. If, in addition, the length of the wind speed
record is 10 years and CoV[U(N)] = 0.187, as in Section 12.4.1, 𝛾w = 1.88.

12.4.6 Notes

1) Except for the uncertainty in the wind speed, individual uncertainties in the quan-
tities that determine wind effects typically have relatively small or negligible effects



�

� �

�

208 12 Wind Load Factors and Design Mean Recurrence Intervals

on the magnitude of the wind load factors. This fact should be considered before
significant resources are devoted to efforts to reduce these uncertainties.

2) The magnitude of the wind load factor can be affected significantly by uncertainties
in the wind speeds that are larger than those typically assumed in standards. This
is especially true of hurricane wind speeds, for which estimates of uncertainties are
difficult to determine reliably.

3) Wind load factors are larger for flexible buildings than for rigid buildings, and the
joint effect of uncertainties in the dynamic response and of larger than typical uncer-
tainties in the wind speeds can result in large increases in the wind load factors.
Standard provisions on the wind tunnel procedure should clearly indicate this fact.

4) It was shown that typical uncertainties in pressure coefficients obtained in wind tun-
nel tests have relatively minor effects on the magnitude of the wind load factor. This
suggests that the use of Computational Wind Engineering simulations to obtain esti-
mates of pressure coefficients should be acceptable for practical purposes as long as
the CoVs of the uncertainties in those estimates are lower than, say, 15%.

12.5 Wind Load Factors and Design Mean Recurrence
Intervals

ASCE 7-05 Standard and earlier versions specified a typical MRI of the design wind
speed N = 50 years, and a wind load factor 𝛾w ≈ 1.6. Later versions instead specify no
wind load factor (i.e., a wind load factor 𝛾w = 1), and an augmented MRI N1 of the
design wind speed such that the design wind loads are approximately the same in the
earlier and the current standards. Since wind effects determined in accordance with
conventional provisions of the ASCE 7 Standard are proportional to the square of the
wind speeds U , this condition yields the relation

U2(N1) = 𝛾wU2(N). (12.9)

For N = 50 years (100 years) and 𝛾w ≈ 1.6, this relation was assumed to yield N1 =
700 years (1700 years). These values correspond to typical probability distributions
of extreme wind speeds. Since those probabilities can depend fairly strongly on
geographical location, the values N1 of the MRIs of the design wind speeds and wind
effects may turn out to differ, in some cases significantly, from 700 or 1700 years.

Example 12.2 Let the mean E(U) and the standard deviation SD(U) of the extreme
annual wind speed sample be 59 and 6.41 mph, respectively. The 50- and 700-years wind
speeds are estimated by Eq. (3.7b) to be 75.6 and 88.9 mph, respectively. The design wind
effect is

ppk des = c𝛾wU2(N = 50 years)

= cU2(N1 years)

where c is a coefficient that reflects the relation between wind effect and the square of
the wind speed. Therefore, from Eq. (12.9),

U(N1 years) = 𝛾w
1∕2 U (50 years)
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where N can be estimated using Eqs. (3.5) and (3.7). For 𝛾w = 1.6, U(N1 years) =
95.6 mph (rather than 88.9 mph) and N1 ≈ 2700 years, rather than N1= 700 years as
specified in the ASCE 7-16 Standard. For 𝛾w = 1.5, U(N1 years) = 92.6 mph and
N1 ≈ 1500 years.

This example shows that, like the wind load factors, the MRIs of the design wind effects
should be specified by accounting for the wind climate statistics and the specific uncer-
tainties in the micrometeorological, wind climatological, aerodynamic, directionality,
and dynamic features of the structure of interest. In light of this example it appears that
the validity of the neat correspondence suggested in [8, figure 3] between MRIs and
factors 𝛽 (see Eq. [12.3]) is not warranted.
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13

Wind Effects with Specified MRIs: DCIs, Inter-Story Drift, and
Accelerations

13.1 Introduction

Wind directionality is accounted for in different ways depending upon whether the wind
climatological data consist of directional or non-directional wind speeds, as defined in
Section 3.2.2.

If the design is based on directional wind speeds, as is commonly the case for designs
using wind tunnel test results, wind effects with specified mean recurrence intervals
(MRIs) are determined by accounting explicitly for the dependence of both the wind
speeds and the wind effects upon direction. For the database-assisted design approach
this requires:

1) The use of matrices of directional wind speeds [Uij] provided by the wind engineer-
ing laboratory, where Uij is the mean wind speed at top of building in storm event
i (i= 1, 2, …, ns) from direction 𝜃 = 𝜃j (j = 1, 2, …, nd), based on a sample of mea-
sured or simulated directional wind speeds. The number ns of storms for which wind
speeds are available in the matrix [Uij] must be sufficiently large to allow the reliable
estimation by non-parametric statistics of wind effects with the required MRI. If,
as is the case for the ASCE 7-10 and ASCE 7-16 Standards, the MRI is 700 years
or larger, Monte Carlo simulations are used to meet this requirement (see [1], and
Sections 3.3.7 and A.8).

2) The development, for each type of wind effect of interest (e.g., base shear, base
moment, internal force, peak demand-to-capacity index [DCI], displacement,
acceleration) of time series R(U , 𝜃, t), representing the dependence of the wind
effect R upon the wind speed U , the direction 𝜃 and the time t. The length T of the
time series R(U, 𝜃, t) is equal to the length of the time series of pressure coefficients
provided by the wind engineering laboratory. However, the peak value of R(U, 𝜃,
t), that is, maxt(R(U, 𝜃, t)), henceforth denoted as Rpk(U, 𝜃), can be determined for
time series with any specified length T1 >T by using, for example, the procedure
described in Section 7.3.3 (v), or the procedure in Appendix C. The response
surface is the three-dimensional plot of Rpk(U, 𝜃) as a function of wind speed U and
direction 𝜃 (Section 13.2).

3) The transformation of the directional wind speed matrix [Uij] into the matrix
[Rpk(Uij)]. This is accomplished by substituting the quantities Rpk(Uij) for the wind
velocities Uij in the matrix [Uij] (Sections 13.3.1 and 13.3.2).

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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4) The transformation of the matrices [Rpk(Uij)] into vectors {Ri} = maxj(Rpk(Uij)) by
disregarding in each windstorm i all wind effects Rpk(Uij) lower than the largest wind
effect, maxj(Rpk(Uij)), occurring in that storm (Section 13.3.3).

5) The application to the ns rank-ordered quantities {Ri} of the non-parametric sta-
tistical estimation procedure in Section A.9 for regions with one or two types of
windstorm, to obtain the wind effects R(N) with the specified MRI (Section 13.4).

If the design is based on non-directional wind speeds, which is the case if directional
wind speed data are not available, the design is based on pressure coefficients and wind
speeds with the respective most unfavorable directions, which typically do not coin-
cide. It follows from the assumed linear dependence of the mean wind loads upon the
square of the non-directional wind speeds that the MRI of the wind loads is the same
as the MRI of the wind speeds. However, a correction factor smaller than unity, called
wind directionality factor, is applied to the wind effect to account approximately for the
non-coincidence of the most unfavorable pressure and wind directions (Section 13.5).

Material on DCIs and on inter-story drift and accelerations is provided in
Sections 13.6 and 13.7, respectively.

A method for estimating directionality effects developed in the 1970s, and still being
used by some wind engineering laboratories, is described in Section B.6, which discusses
the reasons why the method is impractical and prone to yielding inadequate estimates of
the wind effects being sought. In addition, that method is viewed by structural engineers
as lacking transparency, as indicated in Appendix F. An alternative method proposed in
[2] is also being used by some laboratories, in spite of the fact that it can yield uncon-
servative results.

In practical applications, operations covered by this chapter can be performed by
using software for which links are provided in Chapters 17 and 18.

13.2 Directional Wind Speeds and Response Surfaces

Once the wind engineering laboratory provides the requisite aerodynamic and wind cli-
matological data as affected by terrain exposure at the structure’s site, the structural
engineer’s first step toward determining peak wind effects R(N), where N denotes the
specified MRI, is to develop response surfaces, that is, three-dimensional plots repre-
senting the dependence of peak wind effects Rpk(Uij) upon wind speed and direction. A
response surface is constructed for each wind effect of interest. An example of response
surface for a peak DCI (involving the axial force and bending moment at a given member
cross section) is shown in Figure 13.1.

In general, owing to nonlinearities inherent in resonance effects and/or column insta-
bility, the ordinates of the DCI response surfaces are not proportional to the squares of
the wind speeds. The wind effect of interest must therefore be determined separately for
each wind speed and direction.

The response surfaces are properties of the structure independent of the wind climate.
As shown subsequently, they are used in a simple non-parametric statistical procedure
that yields peak wind effects with any specified MRI.

Response surfaces for DCIs are developed as follows. Consider the time series of
the effective forces Fkx(U, 𝜃, t), Fky(U, 𝜃, t), Fk𝜗(U, 𝜃, t) (t = time) induced by wind with
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Figure 13.1 Response surface for the peak demand-to-capacity index of a cross section m as a
function of wind speed and direction.

speed U from direction 𝜃, and acting at the center of mass of floor k (= 1, 2,…, nf ) in
the directions of the building’s principal axes and in torsion, respectively. The internal
forces fm(U, 𝜃, t) induced by the effective wind forces at any given cross section m can
be written as

fm(U, 𝜃, t) =
nf∑

k=1
rmk,x Fkx(U, 𝜃, t) +

nf∑
k=1

rmk,y Fky(U, 𝜃, t) +
nf∑

k=1
rmk,𝜗 Fk𝜗(U, 𝜃, t)

(13.1)
where rmk,x, rmk,y, rmk,𝜗 are influence coefficients (see Section 9.3). Equation (13.1)
is then used to obtain time series of demand-to-capacity DCIs at cross sections m,
denoted by DCIm(U, 𝜃, t), in which it is recalled that effects of factored gravity loads are
also accounted for. A similar approach is used for displacements and accelerations.

13.3 Transformation of Wind Speed Matrix into Vectors
of Largest Wind Effects

13.3.1 Matrix of Largest Directional Wind Speeds

In the following we focus on the DCIpk
m (Uij) induced in cross section m by the wind speed

Uij acting in storm i from direction j at the building site. Similar approaches can be used
for any other wind effects.

Consider, for illustrative purposes, the 3× 4 matrix of wind speeds (in m s−1)

[Uij] =
⎡⎢⎢⎢⎣

34 𝟒𝟓 32 44
37 39 36 𝟓𝟏
42 44 35 𝟒𝟔

⎤⎥⎥⎥⎦
(13.2)

at the site of the structure. (See Section 3.2.3 for wind speed data that are available or
that can be developed by simulation from such data.) Under the convention inherent
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in the notation Uij, the 3× 4 matrix corresponds to three storm events and four wind
directions, that is, i = 1, 2, 3 and j= 1, 2, 3, 4. For example, the wind speed that occurs
in the second storm event from the third direction is U23 = 36 m s−1. (The entries in
the wind speed matrix could be, for example, mean hourly speeds at the elevation of
the top of the structure with direction j over terrain with suburban exposure.) In the
matrix of Eq. (13.2) the largest wind speeds in each of the three storms are indicated in
bold type.

13.3.2 Transformation of Matrix [Uij] into Matrix of Demand-to-Capacity
Indexes [DCIpk

m (Uij)]

Transform the matrix [Uij] into the matrix [DCIpk
m (Uij)] by substituting for the quantities

Uij the ordinates DCIpk
m (Uij) of the cross section m response surface. Assume that these

quantities are DCIs, and that the result of this operation is the matrix

[DCIpk
m (Uij)] =

⎡⎢⎢⎢⎣

0.70 𝟏.𝟎𝟐 0.80 0.68
0.83 0.83 𝟏.𝟎𝟏 0.91
𝟏.𝟎𝟕 0.98 0.96 0.74

⎤⎥⎥⎥⎦
(13.3)

13.3.3 Vector {DCIm,i} = {maxj(DCIpk
m (Uij))}

The directional wind effects induced by the wind speeds occurring in storm i depend
upon the wind direction j. It is only the largest of those wind effects, that is, DCIm,i =
maxj (DCIpk

m (Uij)) (i= 1, 2, 3), that are of interest from a design viewpoint. These largest
wind effects, shown in bold type in Eq. (13.3), form a vector {1.02, 1.01, 1.07}T, where T
denotes transpose. Note that DCIm,i is not necessarily induced by the speed maxj(Uij).
For example, DCIm,3 = 1.07 is not induced by the speed maxj(U3j) = U34 = 46 m s−1, but
rather by the speed U31 = 42 m s−1.

The components of the vector {DCIm,i} constitute the sample of the largest peak wind
effects occurring in each of the ns storm events (in this example i = 1, 2, 3; ns = 3).
The estimation of the response with any specified MRI is based on this sample, used in
conjunction with the mean annual rate of occurrence of the storms (see Section 13.4).

13.4 Estimation of Directional Wind Effects with Specified
MRIs

The peak wind effects DCIm(N), where N denotes the specified MRI in years, could in
principle be determined by using parametric statistics. This would entail the fitting of
a cumulative distribution function (CDF) to the sample DCIm,i (i= 1, 2, …, ns). The
variate DCIm with an MRI Nf , where Nf is the number of average time intervals between
successive storms, corresponds in the example of Section 13.3 to a CDF ordinate P = 1
– 1/Nf . However, the designer is interested in the variate DCIm with an MRI N in years,
rather than in average time intervals between successive storms. Since the mean annual
rate of storm arrival is 𝜆, N = Nf / 𝜆. For example, if the storms being considered are
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tropical cyclones, it is typically the case that 𝜆< 1 storm/year, so N >Nf . The converse
is true for the case 𝜆> 1 storm/year. Therefore, the variate DCIm with an MRI N , DCIm
(N), corresponds to the ordinate P = 1 – 1/(𝜆N) of the CDF fitted to the data sample
DCIm,i (i = 1, 2, …, ns).

A drawback of parametric statistics for this type of application would be that few stud-
ies have been performed on, and little is known about, the best fitting types of probability
distribution of the various wind effects (as opposed to wind speeds). If, as is the case
for the ASCE 7-16 Standard, the MRIs of interest are large (e.g., 300–3000 years), the
uncertainty inherent in the choice of the best fitting type of probability distribution
may entail significant probabilistic modeling errors. It is therefore prudent to use the
non-parametric approach.

The application of non-parametric statistics requires the development by the wind
engineering laboratory of synthetic directional wind speed samples from measured
directional wind data. The development entails three phases. In the first phase the
measured directional wind speeds are processed by the wind engineer so that they are
micrometeorologically consistent with the wind speeds used in the development of the
directional aerodynamic pressure time series. In the second phase the directional wind
speed data so obtained are fitted to Extreme Value Type I distributions (see Chapters
3 and Appendix A), which are widely accepted as appropriate for the probabilistic
description of extreme wind speeds. A probability distribution is fitted to the wind
speeds from each direction j. When doing so, it may be assumed for practical purposes
that wind speeds from different directions are for practical purposes mutually indepen-
dent, provided that the respective azimuths do not differ by less than 10∘, say. In the
third phase the Extreme Value Type I distributions are used to develop by Monte Carlo
simulation (see Section A.8) the requisite large sets of directional extreme wind speed
data [1]. These sets are provided to the structural engineer by the wind engineering
laboratory.

The structural engineer can then use the simulated extreme wind speed data as input
to software subroutines for the estimation of wind effects with specified MRIs. This
approach is implemented in the software presented in Chapters 17 and 18, which uses
the procedure of Section A.9.1 for regions with a single type, or Section A.9.2 for regions
with two types of storm hazard (e.g., synoptic storms and thunderstorms).

13.5 Non-Directional Wind Speeds: Wind Directionality
Reduction Factors

If dynamic effects are negligible, design wind loads W std(N) are typically based in stan-
dards on:
• non-directional sets of pressure or force coefficients Cp = maxj(Cpj), where Cpj is the

peak directional force or pressure coefficient corresponding to wind direction j (j= 1,
2,…, jmax; e.g., jmax = 16)

• wind speeds with an N-year MRI, U(N), estimated from the non-directional wind
speeds data Ui =maxj(Uij), where Uij is the largest directional wind speed from direc-
tion j during storm event i, defined for the appropriate terrain exposure, height above
ground, and averaging time
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• a factor Kd that accounts for directionality effects

Therefore,

Wstd(N) = a Kd Cp U2(N) (13.4)

where a is a constant. The wind directionality factor Kd is defined as the ratio of cal-
culated wind effects Wdir(N) and Wnd(N) that account and do not account for wind
directionality, respectively.

Kd ≈
Wdir(N)

Wnd(N)
(13.5)

where the numerator and the denominator are estimated, respectively, from the data

Wi dir = a maxj(CpjUij
2) (13.6)

and

Wi nd = a maxj(Cpj) (maxj (Uij))2 (13.7)

(i= 1, 2,…, ns; the indexes “dir” and “nd” stand for “directional” and “non-directional”).
It is clear that, typically, W i nd >W i dir and that Kd < 1.

Example 13.1 Consider the directional wind speed matrix [Uij] of Eq. (13.2). Assume
that the directional aerodynamic coefficients Cpj are 0.7, 0.8, 1.2, and 0.6 for directions
j= 1, 2, 3, and 4, respectively. It can be easily verified that the entries in Table 13.1 are
smaller for column (2) than for column (1).

For the simplified estimated value of W std(N) to be reasonably correct, it is required
that the directionality factor in Eq. (13.4) be approximately equal to the ratio W dir(N)/
W nd(N). According to the ASCE 7 Standard this is the case for typical buildings if
Kd = 0.85, reflecting the fact that the climatologically and aerodynamically most unfa-
vorable wind directions typically do not coincide. Calculations reported in [3] indicate
that the use of this value in design is typically reasonable, although for hurricane-prone
regions it is prudent to use the value Kd = 0.9.

Table 13.1 Comparison of non-directional and directional wind
load estimates.

(1) (2)

I
maxj (Cj) maxj(Uij

2) (m2 s−2)
(non-directional)

maxj[Cj Uij
2] (m2 s−2)

(directional)

1 1.2× 452 = 2430 0.8× 452 = 1620 (j = 2)
2 1.2× 512 = 3121 1.2× 362 = 1561 (j = 3)
3 1.2× 462 = 2539 0.8× 442 = 1549 (j = 2)
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13.6 Demand-to-Capacity Indexes

This section is a brief presentation of material on DCIs for steel and reinforced concrete
buildings. The DCIm is a measure of the degree to which the strength of a structural
cross section m is adequate. In general, the index is defined as a ratio or sum of ratios
of the required internal forces to the respective available capacities. A DCI larger than
unity indicates that the design of the cross section being considered is inadequate.

The general expression for the DCIs used in design is

DCIPM(t) = f
( Pu(t)
𝜙pPn(t)

,
Mu(t)
𝜙mMn(t)

)
≤ 1 (13.8)

DCIVT(t) = f
( Vu(t)
𝜙vVn(t)

,
Tu(t)
𝜙tTn(t)

)
≤ 1 (13.9)

where the symbols P, M, V, and T represent compressive or tensile strength, flexural
strength, shear strength, and torsional strength, respectively; the subscripts u and n indi-
cate required and available strength, respectively; and𝜙i resistance factors (i = p, m, v, t,
corresponding to axial, flexural, shear, and torsional strength, respectively). The available
strength is specified by the AISC Steel Construction Manual [4] for steel structures, and
the ACI Building Code Requirements for Structural Concrete [5], or other documents.
For details on the application of [4] and [5] in the context of this book see [6, 7].

13.7 Inter-Story Drift and Floor Accelerations

The approach to determining wind effects with specified MRIs considered in Sections
13.2–13.4 is applicable, in particular, to inter-story drift ratios and floor accelerations.

The time-series of the inter-story drift ratios at the kth story, dk,x(t) and dk,y(t), corre-
sponding to the x- and y-principal axis of the building, are (Figure 13.2):

dk,x(t) =
[xk(t) − Dk,y𝜗k(t)] − [xk−1(t) − Dk−1,y𝜗k−1(t)]

hk
(13.10a)

dk,y(t) =
[yk(t) + Dk,x𝜗k(t)] − [yk−1(t) + Dk−1,x𝜗k−1(t)]

hk
(13.10b)

Figure 13.2 Position parameters at floor k
for inter-story drift and accelerations.

Column line
of interest

Dk,x

Dk,y

xk

yk

ϑk
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where xk(t), yk(t), and 𝜗k(t) are the displacements and rotation at the mass center at the
kth floor, Dk,x and Dk,y are distances along the x- and y-axis from the mass center on the
kth floor to the point of interest on that floor, and hk is the kth story height.

The time-series of the resultant acceleration at floor k, ak,r(t) is yielded by the expres-
sion:

ak,r(t) =
√

[ẍk(t) − Dk,y�̈�k(t)]2 + [ÿk(t) + Dk,x�̈�k(t)]2 (13.11)

where accelerations ẍk(t), ÿk(t), and �̈�k(t) of the mass center at the kth floor pertain to the
x-, y-, and 𝜗- (i.e., rotational) axis, and Dk,x and Dk,y are the distances along the x- and
y- axis from the mass center to the point of interest on the kth floor (Figure 13.2).
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14

Equivalent Static Wind Loads

14.1 Introduction

This chapter presents a procedure for determining equivalent static wind loads (ESWLs)
on mid- and high-rise buildings. A similar procedure is presented in [1] and [2] and is
demonstrated in a case study in Chapter 18.

The tasks performed by using ESWLs, commonalities and differences between those
tasks and the tasks performed by using Database-Assisted Design (DAD), and compar-
ative ESWL and DAD features, were considered in Sections 8.3 and 8.4. Section 14.2
describes a procedure for determining ESWLs. It follows from the description of that
procedure that ESWL-based designs are typically limited to buildings with simple
geometries. For structures with complex geometries, risk-consistent designs require
the use of the more computer-intensive – and more accurate – DAD procedure.

Like DAD, the ESWL procedures presented in this chapter and in [1, 2] are user-
friendly, transparent, readily subjected to effective public scrutiny, and easily integrated
into Building Information Modeling (BIM) systems. Also, like DAD, ESWL renders
obsolete the High Frequency Force Balance (HFFB) practice wherein analyses of
wind-induced dynamic effects are performed by the wind engineer in the absence
of information of the distribution of the wind loads with height. In contrast to
HFFB, ESWL allows iterative structural designs to be readily performed with no
time-consuming back-and-forth interactions between the wind and the structural
engineer. For structures with relatively simple shapes, wind effects calculated by using
ESWL approximate reasonably closely their DAD counterparts. The latter may serve
as reliable benchmarks against which ESWL calculations can be verified. However, the
ESWL procedure can be less effective if wind speeds from a direction that is unfavorable
from a structural point of view are dominant. Also, for structures with complex shapes
the ESWL procedure may be inapplicable.

14.2 Estimation of Equivalent Static Wind Loads

Earlier approaches to the estimation of ESWLs are described in [3–5]. This section
describes an approach to structural design that, typically, induces in structural mem-
bers DCIs approximately equal to their counterparts obtained by using DAD. As noted
earlier, like other ESWL approaches, the approach presented in this section is applicable
only to structures with relatively simple shapes.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 14.1 Lumped mass structure with fluctuating wind loads acting in the direction x.
(a) fluctuating wind loads in DAD and (b) equivalent static wind loads in ESWL. Typically, owing to
imperfect spatial correlations, peak wind-induced loads at different floors do not occur at the same
times.

We first consider the simple though physically unrealistic case in which the wind loads
are assumed to act on the structure only in the direction x of a principal axis of the
building. We denote the effective (i.e., aerodynamic plus dynamic) randomly fluctuating
load at floor k by Fkx(t), where k = 1, 2,… nf (see Figure 14.1). Assume for the sake of
simplicity that all floors have height h. The sum of the moments of the loads maxt(Fkx(t))
with respect to the building base is

Mb0,y = h[maxt (F1x(t)) + 2 maxt (F2x(t)) +… + nf maxt (Fnf x(t))] (14.1)

Owing to the imperfect spatial correlation between any pair of time-dependent
floor loads, the peak of the actual base moment Mb,y(t) induced by the effective loads
Fkx(t) is

maxt(Mb,y(t)) < Mb0,y (14.2)

Denote by FESWL
kx the ESWL acting at the floor k. In order for the static loads FESWL

kx
to produce a peak base moment maxt(Mb,y(t)), the peak floor loads, maxt(Fkx(t)), are
multiplied by a reduction coefficient 𝛼Myt1

such that

FESWL
kx = 𝛼Myt1

maxt(Fkx(t)) (14.3a)

𝛼Myt1
=

maxt(Mb,y(t))
Mb0,y

(14.3b)

where t1 is the time of occurrence of the peak base moment maxt(Mb,y(t)). The ESWLs
FESWL

kx determined as described here are acceptable for design purposes if they induce



�

� �

�

14.2 Estimation of Equivalent Static Wind Loads 221

in each structural member DCIs approximately equal to the peak DCIs induced by the
fluctuating loads.

The equivalence of static and fluctuating forces must apply to the internal forces fm(t)
at all cross sections m within the structure, where

fm(t) = rm1,x F1x(t) + rm2,x F2x(t) +… + rmnf ,x Fnf x(t) (14.4)

m= 1, 2,…, mmax identifies the cross section being considered, and rmk,x (k= 1,
2,…, nf) are influence coefficients; that is, the loads FESWL

kx must satisfy the system of
equations

maxt(fm(t)) = rm1,xFESWL
1x + rm2,xFESWL

2x +…+ rmnf ,xFESWL
nf x

(m = 1, 2,… ,mmax; k = 1, 2,… , nf ) (14.5)

Since mmax > nf , Eq. (14.5) cannot be satisfied exactly and, in certain cases, even
approximately. In reality, loads induced by wind with given velocity U(𝜃) do not act
along direction x only, as was assumed for simplicity in Eqs. (14.1–14.5). Rather, they
act simultaneously along the structure’s principal axes x and y, and about the vertical
torsional axis, 𝜗. In addition, during any one storm, the structure is subjected to winds
from all directions 𝜃, with each of the velocities U(𝜃) inducing three simultaneous loads
along the axes x, y, and about the axis 𝜗. It is shown in Chapter 18 that if directional
wind effects are accounted for, equations analogous to Eq. (14.5) can in practice be
satisfied to within an approximation in the order of 10% or less. This is attributed to
the fact that, for some wind directions, those equations overestimate, while for other
directions they underestimate the wind effects being sought. However, if the extreme
wind climate is dominated by winds with direction unfavorable from a structural
point of view, for some members the approximation may be in the order of 20%
or more.

If a member experiences effects of three simultaneous fluctuating loads, an approx-
imate estimate of the peak of the combined effects induced in the member by those
loads can be obtained by the following approach. Three wind loading cases (WLCs) are
considered. In the first WLC, denoted by WLC1, the peak effect induced by the first
load, called the WLC1 principal load, is added to the effects induced by the second and
third loads, called WLC1 companion loads, at the time t1 of occurrence of that peak.
In the second (third) WLC case, denoted by WLC2 (WLC3), the peak effect induced by
the second (third) load, called the WLC2 (WLC3) principal load, is added to the effects
induced by the first and third (second) loads, called WLC2 (WLC3) companion loads, at
the time t2 (t3) of occurrence of that peak. Of the three WLCs, only the WLC producing
the largest wind effect is retained for design purposes.

By applying this approach to the problem at hand, we have

FESWL
kx = 𝛼

princ
Myt1

maxt(Fkx(t)) (14.6)

where

𝛼
princ
Myt1

=
maxt(Mb,y(t))

Mb0,y
=

Mb,y(t1)
Mb0,y

(14.7)

t1 is the time of occurrence of the peak of Mb,y(t), and Mb0,y is the base moment induced
by the loads maxt(Fkx(t)) (k = 1, 2,…, nf ). The superscript “princ” indicates that the



�

� �

�

222 14 Equivalent Static Wind Loads

reduction factor 𝛼princ
Myt1

applied to the loads maxt(Fkx(t)) acting in the x direction cor-
responds to the peak value of the base moment Mb,y. We rewrite Eq. (14.6) in the form

FESWL
kx = 𝛼

princ
Myt1

⎧⎪⎪⎨⎪⎪⎩

maxt(Fnf x(t))
⋮

maxt(F2x(t))
maxt(F1x(t))

⎫⎪⎪⎬⎪⎪⎭
(14.8)

For the companion loads we have

FESWL
ky = 𝛼

comp
Mxt1

⎧⎪⎪⎨⎪⎪⎩

maxt(Fnf y(t))
⋮

maxt(F2y(t))
maxt(F1y(t))

⎫⎪⎪⎬⎪⎪⎭
(14.9)

where

𝛼
comp
Mxt1

=
Mb,x(t1)

Mb0,x
(14.10)

and

FESWL
k𝜗 = 𝛼

comp
M𝜗t1

⎧⎪⎪⎨⎪⎪⎩

maxt(Fnf 𝜗
(t))

⋮

maxt(F2𝜗(t))
maxt(F1𝜗(t))

⎫⎪⎪⎬⎪⎪⎭
(14.11)

where

𝛼
comp
M𝜗t1

=
Mb,𝜗(t1)

Mb0,𝜗
(14.12)

The procedure just described is based on the “point-in-time” (PIT) estimator of the
peak of a sum of random time series. A similar but more reliable estimator was devel-
oped in [6] and is based on the “multiple points-in-time” (MPIT) estimator, illustrated in
Figure 14.2. The MPIT approach makes use of rank-ordered peaks in each time series of
base moments and base torsion. Let the number of largest values of time series Mb,x
be npit = 4 (see the upper four ‘circle’ symbols in Figure 14.2a). Denote the times of
occurrence of these values by tj (j= 1, 2, 3, 4). The moments Mb,x(tj), called princi-
pal components, are combined with the values Mb,y(tj) and Mb,𝜗(tj) (see ‘x’ symbols in
Figure 14.2b and c), called companion components. The same procedure is used for the
lowest (negative) values of Mb,x. Next, the procedure is used for the npit = 4 peak posi-
tive values and the peak negative values of Mb,y, and finally for Mb,𝜗. The total number
of WLCs is then 4× 2× 3= 24. It is shown in the case study of Chapter 18 that the accu-
racy of the estimated DCIs (i.e., the degree to which the DCIs obtained by ESWL are
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close to the peak DCIs obtained by DAD) improves as the number npit of points in time
increases. For additional details that further explain the accuracy of ESWLs estimated
by the approach presented in this chapter, see Sections 8.3 and 8.4.

DAD and ESWL computations can be performed by using, respectively, the DAD and
the ESWL option of the DAD_ESWL version 1.0 software (see Chapter 18).
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15

Wind-Induced Discomfort in and Around Buildings

15.1 Introduction

It is required that structures subjected to wind loads be sufficiently strong to perform
adequately from a structural safety viewpoint. For tall buildings the designer must also
take into account wind-related serviceability requirements, meaning that structures
should be so designed that their wind-induced motions will not cause unacceptable
discomfort to the building occupants.

Wind-induced discomfort is also of concern in the context of the serviceability of out-
door areas within a built environment. Certain building and open space configurations
may give rise to relatively intense local wind flows. It is the designer’s task to ascertain
in the planning stage the possible existence of zones in which such flows would cause
unacceptable discomfort to users of the outdoor areas of concern. Appropriate design
decisions must be made to eliminate such zones if they exist.

The notion of unacceptable discomfort may be defined as follows. In any given design
situation, various degrees of wind-induced discomfort may be expected to occur with
certain frequencies that depend upon the features of the design and the wind climate at
the location in question. The discomfort is unacceptable if these frequencies are judged
to be too high. Statements specifying maximum acceptable frequencies of occurrence
for various degrees of discomfort are known as comfort criteria. In practice, reference is
made to a suitable parameter, various values of which are associated with various degrees
of discomfort. In the case of wind-induced structural motions the relevant parameter
is the building acceleration at the top floors. In criteria pertaining to the serviceabil-
ity of pedestrian areas, the parameter employed is an appropriate measure of the wind
speed near the ground at the location of concern. It is therefore necessary to assign max-
imum probabilities of exceedance to the parameters corresponding to various degrees
of discomfort.

Verifying the compliance of a design with requirements set forth in a given set of
comfort criteria involves two steps. First, an estimate must be obtained of the wind
velocities under the action of which the parameter of concern will exceed the critical
values specified by the comfort criteria. Second, the probabilities of exceedance of those
velocities must be estimated on the basis of appropriate wind climatological informa-
tion. The design is regarded as adequate if the probabilities so estimated are lower than
the maximum acceptable probabilities specified by the comfort criteria.

The development of comfort criteria for the design of tall buildings is discussed in
Section 15.2. Comfort criteria for pedestrian areas are considered in Sections 15.3–15.5.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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15.2 Occupant Wind-Induced Discomfort in Tall Buildings

15.2.1 Human Response to Wind-Induced Vibrations

Studies of human response to mechanical vibrations have been conducted predomi-
nantly by the aerospace industry. Because the frequencies of vibration of interest in
aerospace applications is relatively high (usually 1–35 Hz), the usefulness of these stud-
ies to the structural engineer is generally limited. Nevertheless, results obtained for
high frequencies have been extrapolated to frequencies lower than 1 Hz [1], as shown in
Table 15.1.

Results of experiments aimed at establishing perception thresholds for periodic
motions of 0.067–0.2 Hz suggested that about 50% of the subjects reported perception
thresholds of 1–0.6% g, respectively [2]. According to [3], for frequencies of 0.1–0.25 Hz
perception thresholds vary between 0.6 and 0.3% g, respectively. It is noted in [4] that
creaking noises that occur during building motions tend to increase significantly the
feeling of discomfort and should be minimized by proper detailing.

Based on the results reported in [2], [5] proposed a simple criterion that limits the
average number of 1% g accelerations at the top occupied floor to at most 12 per year. On
the basis of interviews with building occupants it was tentatively suggested in [6] that:
“The return periods, for storms causing an rms horizontal acceleration at the building
top that exceeds 0.5 % g, shall not be less than 6 years. The rms shall represent an average
over the 20-min period of the highest storm intensity and be spatially averaged over the
building floor.”

The first step in verifying the compliance of a design with requirements set forth in
comfort criteria is the estimation, for each wind direction, of the speeds that would
induce the acceleration levels of interest. Database-assisted design methods can be used
for obtaining plots of wind speed versus accelerations for the wind velocities that induce
critical building accelerations. An example of such a plot is shown in Figure 15.1. If
tuned mass dampers are used to reduce building motions, the accelerations can be esti-
mated by methods mentioned in Chapter 16. The second step is the estimation of the
frequency of occurrence of accelerations higher than the critical value specified in the
comfort criteria. The frequency may be defined as the mean number of days per year
during which the maximum wind speeds exceed the values corresponding to the plot of
Figure 15.1. This information can be obtained from wind speed data typically available

Table 15.1 Proposed correspondence between degrees of user discomfort and
the accelerations causing them.

Degree of discomfort perceived
Accelerations (as percentages of discomfort
from the acceleration of gravity, g)

Imperceptible <1/2% g
Perceptible 1/2–1 1/2% g
Annoying 1 1/2–5% g
Very Annoying 5–15% g
Intolerable >15% g
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Figure 15.1 Wind speeds inducing critical building accelerations.

in the United States in the public domain (see Section 3.2.3). For details on research
concerning human discomfort due to building motions see, for example, [7].

15.3 Comfort Criteria for Pedestrian Areas Within a Built
Environment

The problem of wind-induced discomfort in pedestrian areas is not new (Figure 15.2).
For the sake of its historical interest, we reproduce in Figure 15.3 a note by the great
naturalist Buffon describing the flow changes occurring upwind of a tower, for which
it offers a charming but no longer tenable explanation. A translation of the note
follows.

On reflected wind
I must report here an observation which it seems to me has escaped the atten-
tion of physicists, even though everyone is in a position to verify it. It seems that
reflected wind is stronger than direct, and the more so as one is closer the obsta-
cle that reflects it. I have experienced this a number of times by approaching a
tower that is about 100 feet high and is situated on the north end of my garden
in Montbard. When a strong wind blows from the south, up to thirty steps from
the tower one feels strongly pushed, after which there is an interval of five of six
steps where one ceases to be pushed and where the wind, which is reflected by the
tower, is so to speak in equilibrium with the direct wind. After this, the closer one
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Figure 15.2 The Gust. Lithograph by Marlet. Source: Photo Bibliothèque Nationale de France.

approaches the tower, the more the wind reflected by it is violent. It pushes you
back much more strongly than the direct wind pushed you forward. The cause of
this effect, which is a general one, and can be experienced against all large build-
ings, against sheer cliffs, and so forth, is not difficult to find. The air in the direct
wind acts only with its ordinary speed and mass; in the reflected wind the speed
is slightly lower, but the mass is considerably increased by the compression that
the air suffers against the obstacle that reflects it, and as the momentum of any
motion is composed of the speed multiplied by the mass, the momentum is con-
siderably larger after the compression than before. It is a mass of ordinary air that
pushes you in the first case, and it is a mass of air that is once or twice as dense
that pushes you back in the second case.

15.3.1 Wind Speeds, Pedestrian Discomfort, and Comfort Criteria

Observations of wind speeds on people and calculations involving the rate of working
against the wind suggest that the following degrees of discomfort are induced by
wind speeds V at 2 m above ground, averaged over 10 min–1 h: V = 5 m s−1: onset of
discomfort; V= 10 m s−1: definitely unpleasant; V= 20 m s−1: dangerous [8]. According
to [8], if mean speeds V occur less than 10% of the time, complaints about wind
conditions are unlikely to arise. If such speeds occur between 10 and 20% of the
time, complaints might arise. For frequencies in excess than 20%, remedial mea-
sures are necessary. An alternative set of comfort criteria proposed in [9] is shown
in Table 15.2.
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Figure 15.3 Facsimile of note on reflected wind. Source: From Histoire Naturelle, Générale et Particulière,
Contenant les Epoques de la Nature, Par M. le Comte de Buffon, Intendant du Jardin et du Cabinet du Roi, de
l’Académie Française, de celle des Sciences, etc., Tome Treizième. A Paris, De l’Imprimerie Royale, 1778.

A more elaborate view of pedestrian comfort, that accounts for local climate character-
istics other than wind speeds, including thermal characteristics, is discussed in [10].

15.4 Zones of High Surface Winds Within a Built Environment

15.4.1 Wind Effects Near Tall Buildings

As noted in [8], high wind speeds occurring at pedestrian level around tall buildings are
in general associated with the following types of flow:

1) Vortex flows that develop near the ground (Figures 15.4 and 15.5).
2) Corner streams (Figure 15.4).
3) Air flows through ground floor openings connecting the windward to the leeward

side of a building (Figure 15.4), or cross-flows from the windward side of one building
to the leeward side of a neighboring building (Figure 15.6).
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Table 15.2 Comfort criteria for various pedestrian areas.

Criterion Area Description Limiting Wind Speed Frequency of Occurrence

1 Plazas and Parks Gusts to about 6 m s−1 10% of the time (about
1000 h yr− 1)

2 Walkways and other Gusts to about 12 m s−1 1 or 2 times a month (about
50 h yr− 1) areas subject to
pedestrian access

3 All of the above Gusts to about 20 m s−1 About 5 h yr− 1

4 All of the above Gusts to about 25 m s−1 Less than 1 h yr− 1

Wind direction

Vortex
flow Through–

flow

Corner streams
H

B

h
C

L

W

B
A

Figure 15.4 Regions of high surface winds around a tall building. Source: By permission of the
Director, Building Research Establishment, U.K. Copyright, Controller of Her Britannic Majesty’s
Stationery Office (HMSO).

The flow visualization of Figure 15.5 was obtained by injecting smoke into the airstream.
The flow patterns in the immediate vicinity of the windward face are consistent with the
fact that pressures are highest at roughly two-thirds of the height of the taller building;
that is, the air flows from zones of higher to zones of lower pressure. Part of the air
deflected downward by the building forms a vortex and thus sweeps the ground in a
reverse flow (area A, marked “vortex flow” in Figure 15.4). Another part is accelerated
around the building corners and forms jets that sweep the ground near the building
sides (areas B, marked “corner streams” in Figure 15.4). If an opening connecting
the windward to the leeward side is present at or near the ground level, part of the
descending air will be sucked from the zone of relatively low pressures (suctions) on the
leeward side. A through-flow will thus sweep the area C in Figure 15.4. Through-flows
of this type have caused serious discomfort to users of the MIT Earth Sciences Building
in Cambridge, Massachusetts, a structure about 20 stories in height. Cross-flows
between pairs of buildings are caused by similar pressure differences, as shown
in Figure 15.6.
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Figure 15.5 Wind flow in front of a tall building (wind blowing from left to right). Source: By
permission of the Director, Building Research Establishment, U.K. Copyright, Controller of HMSO.

Main wind direction

Lo
ca

l w
in

d 
di

re
ct

io
n +

–

–

–

–

–

–

+

+

+

+

Low buildings

Figure 15.6 Cross-flow between two tall buildings. Source: By permission of the Director, Building
Research Establishment, U.K. Copyright, Controller of HMSO.
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15.4.2 Wind Speeds at Pedestrian Level in a Basic Reference Case [8]

The pattern of the surface wind flow within a site depends in a complex way upon the
relative location, the dimensions, the shapes, and certain of the architectural features
of the building of interest, upon the roughness and the topographical features of the
terrain around the site, and upon the possible presence near the site of one or several tall
buildings. To study the surface flow under conditions significantly different from those
depicted schematically in Figures 15.4 and 15.6 it may be necessary to conduct wind
tunnel tests or perform Computational Wind Engineering simulations (e.g., [11, 12]),
either of which can provide useful, if approximate, information.
However, for suburban built environments that retain a basic similarity with the config-
urations of Figures 15.4–15.6, and in which the height of the buildings does not exceed
100 m or so, information based on aerodynamic studies reported in [8] is useful for the
prediction of surface winds in a wide range of practical situations. The surface winds
depend upon the dimensions H , W , L, and h defined in Figure 15.4 and are expressed
in terms of ratios V/V H , where V and V H are mean speeds at pedestrian level and at
elevation H , respectively. In certain applications, it is useful to estimate the ratio V/V 0,
where V 0 is the mean speed at 10 m above ground in open terrain. The ratios V/V 0 can
be obtained as follows:

V
V0

= V
VH

VH

V0
(15.1)

Approximate ratios V H/V 0 corresponding to suburban built environments suggested in
[8] are listed in in Table 15.3.
In the material that follows, the wind direction is assumed to be normal to the building
face unless otherwise stated.
Speeds in Vortex Flow. V A and V H denote the maximum mean wind speed at pedestrian
level in zone A and the mean speed at elevation H , respectively (Figure 15.4). Approxi-
mate ratios V A/V H are given in Figure 15.7 as functions of W/H for various rations L/H
and for the ranges of values H/h shown. The height h corresponded in the model tests to
typical heights of suburban buildings (7–16 m). It is noted that as the building becomes
slenderer (as the ratio W/H decreases) the ratio V A/V H decreases.
Typical examples of the variation of V A with individual variables are shown in
Figure 15.8. If the distance L between the low-rise and high-rise building is small, the
vortex cannot penetrate effectively between the buildings and V A is small. If L is very
large or if h is very small, the vortex that forms upwind of the tall building will be poorly
organized and weak; V A will therefore be relatively low. If h approaches the value of H ,
the taller building will in effect be sheltered and the speed V A will thus be low.
It is noted that the ratio V A/V H is in the order of 0.5 for a range of practical situations.
Speeds in Corner Streams. Figure 15.9 shows the approximate dependence of the ratio
V B/V H upon H/h, where V B is the largest mean speed at pedestrian level in the zones
swept by the corner stream, and V H is the mean speed at elevation H . Examples of the

Table 15.3 Approximate ratios VH/V0.

H (m) 20 30 40 50 60 70 80 90 100
V H /V 0 0.73 0.82 0.89 0.94 0.99 1.04 1.08 1.11 1.14



�

� �

�

15.4 Zones of High Surface Winds Within a Built Environment 233

0.1

0.2

V
A
/V

H

0.3

0.4

0.5

0.6

0.7

0
0

0.1

0.2

W/H

V
A
/V

H

0.3

0.4

0.5

0.6

0.7

0
0

0.1

0.2

V
A
/V

H

0.3

0.4

0.5

0.6

0.7

0
0 1.0 1.5

W/H
2.0

0.5 1.0 1.5 2.0

0.1

0.2

W/H

V
A
/V

H 0.3

0.4

0.5

0
0 0.5 1.0 1.5 2.0

0.5 1.0
W/H

L/H = 0.25
8 ≥ H/h ≥ 2

L/H = 0.5
8 ≥ H/h ≥ 2

L/H = 1.0
8 ≥ H/h ≥ 2

L/H = 2.0
4 ≥ H/h ≥ 2

1.5

Figure 15.7 Ratios VA/VH [8]. Source: By permission of the Director, Building Research Establishment,
U.K. Copyright, Controller of HMSO.

variation of V B with the variables H , L, W , h, and 𝜃 are given in Figure 15.10. The speed
V B varies weakly with the angle 𝜃 between the mean wind direction and the normal to
the building face. However, the orientation of the corner streams and, hence, the position
of the point of maximum speed V B may depend significantly upon the direction of the
mean wind.
Information about the wind speed field around the corner of a wide building model
(H= 0.4 m, W = 0.4 m) is given in Figure 15.11. The wind speed decreases rather slowly
within a distance from the building corner approximately equal to H . The ratio Y/(D/2),
where Y is defined as in Figure 15.11 and D is the building depth, provides an approx-
imate measure of the position of the corner stream. Measured values of this ratio for
various values of H and of W/(D/2) are shown in Figure 15.12.
It is noted that the ratio V B/V H is approximately 0.95 for a range of practical situations.
Speeds in a Through-Flow. Let V C denote the maximum mean wind speed through a
ground floor passageway connecting the windward and the leeward side of a building
(Figure 15.4). Figure 15.13 shows the approximate dependence of the ratio V C/V H upon
the parameter H/h. Examples of the variation of V C with H , W , L, h, and 𝜃 are given
in Figure 15.14. The data of Figures 15.13 and 15.14 are based on tests in which the
entrances to the passageways were sharp-edged. If the edges of the entrance are rounded
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Figure 15.8 Examples of the variation of VA with individual parameters [8]. Source: By permission of
the Director, Building Research Establishment, U.K. Copyright, Controller of HMSO.
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Figure 15.9 Ratios VB/VH [8]. Source: By permission of the Director, Building Research Establishment,
U.K. Copyright, Controller of HMSO.
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Figure 15.10 Examples of the variation of VB with individual parameters [8]. Source: By permission of
the Director, Building Research Establishment, U.K. Copyright, Controller of HMSO.

to form a bellmouth shape, the speeds V C are reduced with respect to those data by as
much as 25%. It is noted that the ratio V C/V H is approximately 1.2 for a range of practical
situations.

As noted earlier, the approximate validity of the information provided in Figures 15.7–
15.14 is limited to buildings with regular shape in plan and heights of 100 m or less.

15.4.3 Case Studies

Case 1: Model of a Building in Utrecht, The Netherlands [13]. The model of a building
with height H = 80 m, width W= 80 m, depth D= 22 m, H/h= 8.0, and L/H = 0.5, is
shown in plan in Figure 15.15. Contours of ratios V/V H , shown in Figure 15.15 for south
and north winds, were obtained in wind tunnel tests [13]. Ratios V A/V H and V B/V H are
about 0.65 at the centerline of the building and 0.90, respectively, versus the values 0.60
and 1.00 from Figures 15.7 and 15.9− a reasonably good agreement. Note that the vortex
flow is asymmetrical and contains regions in which the ratios V/V H are as high as 0.8.
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Figure 15.11 Surface wind speed field in a corner stream [8]. Source: By permission of the Director,
Building Research Establishment, U.K. Copyright, Controller of HMSO.
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Research Establishment, U.K. Copyright, Controller of HMSO.
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Figure 15.13 Ratios VC /VH [8]. Source: By permission of the Director, Building Research Establishment,
U.K. Copyright, Controller of HMSO.

Case 2: Model of Place Desjardins, Montreal [14]. Figure 15.16 shows a 1 : 400 model of
a design considered for a development in Place Desjardins, Montreal. Tests were con-
ducted only for the predominant wind direction shown in the Figure 15.17. Surface flow
patterns were observed by using thread tufts taped to the model surfaces, a wool tuft on
the end of a hand-held rod, and a liquid mixture of kerosene-chalk (china clay) sprayed
over the horizontal surfaces of the model. As the wind blows over the model, the mix-
ture is swept away from the high-speed zones and accumulates in zones of stagnating
flow. After the evaporation of the kerosene, the white accumulations of chalk indicate
zones of low speeds while areas that are dark indicate zones surface winds are high.
Wind speed measurements were made in the latter zones.
The numbers in Figure 15.17 are ratios of mean wind speeds at the locations shown to the
mean speed V (1) at 1.8 m above ground at the northwest corner of the development. The
percentages in the figure represent turbulent intensities, and the arrows show the direc-
tion of the wind component that was measured by the probe. The quantities not between
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Figure 15.14 Examples of the variation of VC with individual parameters [8]. Source: By permission of
the Director, Building Research Establishment, U.K. Copyright, Controller of HMSO.

parentheses correspond to measurements made in the absence of a projected 50-story
tower near the southwest corner of the development. Results of measurements made
with the tower in place are shown in parentheses. The presence of the tower changed
the ratios of the wind speeds at locations 8 and 10 to the wind speed V (1) from 3.11 to
2.96 to approximately 3.38 and 2.48, respectively.
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Figure 15.15 Plan view, Case 1. Source: After [13].

The results just listed correspond to the case of the uncovered mall. In the absence of
the tower, covering the mall reduced the mean wind speeds by a factor of almost three
at location 8; however, there was no reduction at location 10; with the tower in place,
it reduced the mean wind speeds by a factor of five at location 8 and a factor of 1.67 at
location 10.
Case 3: Commerce Court Plaza, Toronto [15, 16]. A wind tunnel model and a plan view
of the Commerce Court project in Toronto are shown in Figures 15.18 and 15.19. Sur-
face flow patterns obtained by smoke visualization are shown for two wind directions in
Figures 15.20 and 15.21 [15]. Ratios V/V H , where V and V H are mean wind speeds are
2.7 and 240 m above ground, were obtained from measurements in the wind tunnel and,
after the completion of the structures, on the actual site. The results of the measurements
are shown in Figure 15.22 as functions of wind direction for locations 1 through 7. The
agreement between wind tunnel and full-scale values is generally acceptable, although
differences of 30%, 50%, and larger can be noted in certain cases.
After the completion of the Commerce Court Plaza, conditions were found to be
particularly annoying on windy days for pedestrians walking from the relatively pro-
tected zone north of the 32-story tower into the flow funneled through the passageway
2–3 (see Figure 15.19). Wind tunnel tests indicated that the provision of screens at
the ground level as shown in Figure 15.23a would result at locations 2, 5, and 6 in
reductions of undesirable mean speeds in the order of 40%. However, the placement
of screens was rejected for architectural reasons. Instead, potted evergreens about 3 m
high were placed as shown in Figure 15.23b. This reduced the mean speeds by about
20% at locations 2, 10% at location 5, and 33% at location 6.
Case 4: Shopping Center, Croydon, England [8]. An office building 75 m tall, 70 m wide,
and 18 m deep adjoins a shopping center 75 m long. A passageway 12 m wide and 3.7 m
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Figure 15.16 Place Desjardins model. Source: Courtesy of the National Aeronautical Establishment,
National Research Council of Canada.

high underneath the building connects the shopping center on the west side of the build-
ing to the street on the east side (Figure 15.24). The complex was designed and built
without a roof over the shopping mall. After the completion of the building complex,
it became apparent that remedial measures were necessary to reduce wind speeds in
the passageway and the shopping mall. The ground level wind flow was investigated in
the wind tunnel, first for the complex as initially built (with the mall not covered), and
then with various arrangements of roofs over the mall and screens within the passage-
way. Ratios V/V H measured in the wind tunnel (V and V H are the mean speeds at 1.8
and 75 m above ground, respectively) are shown in Figure 15.24 for three cases. For the
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Figure 15.17 Wind speed ratios and turbulence intensities, place Desjardins. Source: Courtesy of the
National Aeronautical Establishment, National Research Council of Canada.

complex as first built, the highest values of the ratio V/V H were 0.68 in the vortex flow
zone and 1.01 in the through-flow zone. The provision of a full roof over the mall but of
no screens within the passageway reduced considerably pedestrian level speeds caused
by west winds. However, with east winds, the flow was trapped under the roof and the
wind speeds within the mall were, for this reason, high; as shown in Figure 15.24, the
speeds were also high at the east entrance of the passageway. A solid roof close to the
tall building followed by a partial roof over the rest of the mall, and a screen obstructing
75% of the passageway area resulted in a significant reduction of surface winds.
The solution actually applied, which proved effective, was to provide (i) a full roof over
the entire mall and (ii) screens with 75% blockage in the passageway.
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Figure 15.18 Commerce Court model. Source: Reprinted from [15], with permission from Elsevier.

15.5 Frequencies of Ocurrence of Unpleasant Winds

15.5.1 Detailed Estimation Procedure

Let V 0(V , 𝜃) denote the wind speeds at 10 m above ground in open terrain that induce
pedestrian winds V blowing from direction 𝜃 at a given location in a built environment.
The frequency of occurrence of wind speeds larger than V , denoted by f V is, approxi-
mately,

f V =
n∑

i=1
f V0
i (15.2)

where f V0
i are the frequencies of occurrence in open terrain of winds with speeds

larger than V 0(V , 𝜃i) and the directions 𝜃i −
𝜋

n
< 𝜃 < 𝜃i +

𝜋

n
, where 𝜃i = 2𝜋i/n (i= 1,

2,…, n). In practical applications a 16-point compass is sometimes used, so that
n= 16.
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Figure 15.19 Plan view, Commerce Court. Source: Reprinted from [15], with permission from Elsevier.
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Figure 15.20 Surface wind flow pattern, Commerce Court (east wind). Source: Courtesy of Professor A.
G. Davenport.
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Figure 15.21 Surface wind flow pattern, Commerce Court (southwest wind). Source: Courtesy of
Professor A. G. Davenport.

To obtain f V it is necessary, first, to estimate the values of V 0(V , 𝜃i). From wind clima-
tological data it is then possible to estimate the frequencies f V0

i . The speed V 0(V , 𝜃i) can
be written as

V0(V , 𝜃i) =
1

V∕VH(𝜃i)
V0(𝜃i)
VH(𝜃i)

V (15.3)

The ratios V 0(𝜃i)/V H(𝜃i) characterize the site micrometeorologically. For standard
roughness conditions in open terrain, these ratios depend upon the elevation H and
upon the roughness conditions upwind of the site. The ratios V /V H(𝜃i) are obtained
from wind tunnel tests.
Consider, for example, all three-hour interval observations in a year (8 obs day−1 ×
365 days= 2920 obs), and assume that 58 of these observations represent north-
northwesterly (NNW) winds with speeds in excess of 6 m s−1. The frequency of
occurrence of such wind can then be estimated as f 6

1 = 58/2920= 2%. It is desirable
to base frequency estimates on several years of data. In some applications it may be
of interest to estimate frequencies for individual seasons or for a grouping of seasons.
Also, data for times not relevant from a pedestrian comfort viewpoint (e.g., between
11 p.m.–5 a.m.) may in some cases be eliminated from the data set.
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Figure 15.22 Surface mean wind speeds at the Commerce Court Plaza, Commerce Court. Source: Reprinted from [15], with permission from Elsevier.
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Figure 15.23 Remedial measures at Commerce Court: (a) screens; (b) trees. Source: After [17].

15.5.2 Simplified Estimation Procedure

A simplified version of the procedure just presented is suggested in [8] for built environ-
ments similar in configuration to the basic reference case (Figure 15.4). In this version,
the aerodynamic information used, rather than being a function of wind direction, is
limited to the results given, for example, in Figures 15.7, 15.9 and 15.13. The ratios



�

� �

�

15.5 Frequencies of Ocurrence of Unpleasant Winds 247

As first built

With full roof and no screen

East wind

With partial roof and 75% screen

0.26

0.48

0.21

0.07

0.45

0.17

0.17

0.52

0.17

0.44

0.61

0.23

0.52

0.67

0.43

0.56

0.63

0.47

0.78

0.71

0.53

1.01

0.88

0.59

As first built

With full roof and no screen

West wind

With partial roof and 75% screen

0.72

0.32

0.40

0.36

0.28

0.19

0.49

0.27

0.23

0.65

0.25

0.23

0.68

0.20

0.28

0.65

0.19

0.19

0.57

0.24

0.17

0.53

0.49

0.23

Figure 15.24 Model test results, Croydon [8]. Source: By permission of the Director, Building Research
Establishment, U.K. Copyright, Controller of HMSO.

V H/V 0 of mean wind at elevation H in the in the built environment to mean wind at 10 m
above ground in open terrain may be taken from Table 15.2 or determined as shown in
Section 2.3.6. The requisite climatological information consists of the of the frequen-
cies of occurrence of all winds with speeds in excess of various values V 0, regardless
of their direction. According to [8], this simplified procedure provides generally reli-
able indications on the serviceability of pedestrian areas in a built environment of the
type represented in Figure 15.4, provided that it is used in conjunction with the comfort
criteria proposed in [8].

To illustrate the procedure proposed in [8], consider the case of a building complex
for which H = 70 m, W= 50 m, L= 35 m, and h= 10 m. (For these notations see
Figure 15.4.). From Figures 15.7 and 15.9, V A/V H ≈ 0.6 and V B/V H ≈ 0.95, where
V A and V B are the highest mean speeds in the vortex and corner flow, respectively.
For H= 70 m, V H/V 0 ≈ 1.04 (Table 15.2), so V A/V 0 ≈ 0.63 and V B/V 0 ≈ 1.00. Given
the requisite wind speed data it is possible to estimate the frequencies of winds
V A > 5 and V B > 5 m s−1. In order for V A > 5, V 0 > 5/0.63= 8 m s−1. For V B > 5 m s−1,
V 0 > 5/1.00= 5.00 m s−1. The frequency of 5 m s−1 winds depends upon the local wind
climate. If that frequency exceeds 20%, according to the comfort criterion of [8] (see
Section 15.2.1), the wind conditions at the site are unacceptable.
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16

Mitigation of Building Motions

Tuned Mass Dampers

16.1 Introduction

Tuned mass dampers (TMDs) are the most commonly used devices for reducing tall
structure accelerations and inter-story drift due to translation and torsion. Generally,
TMD effects are not taken into account in strength calculations.

The TMD was invented in 1909 by Frahm and was originally used in mechanical engi-
neering systems. Since the 1970s TMDs have been used to mitigate building motions.
Examples of buildings in which TMDs were used include the Citicorp Center, New York
City, the John Hancock tower, Boston (equipped with dual TMDs designed to control
both drift and torsional motions), and the Taipei 101 tower. For additional examples,
see [1]. Basic TMD theory was developed in [2].

TMDs consist of one or more masses in the order of 2% of the total mass of the
structure, added to and interacting dynamically with the structure through springs and
damping devices. The structure’s motion is reduced by the forces of inertia due to the
motion of the TMDs. A schematic view of a TMD operating on the top floor of the Citi-
corp Center building is shown in Figure 16.1. The mass of the TMD consists in this case
of a 400-ton concrete block bearing on a thin oil film. The TMD structural stiffness is
provided by pneumatic springs that can be tuned to the actual frequency of vibration
of the building as determined experimentally in the field. The damping is provided by
hydraulic shock absorbers. The system included fail-safe devices to prevent excessive
travel of the concrete block [3]. Descriptions and theory applicable to buildings are pre-
sented in [1] for various types of TMD, including translation and pendular TMDs placed
at or near the top of the building, TMD pairs placed at opposite sides of the top building
floor, designed to reduce torsional motions, and TMDs installed at several elevations,
tuned to reduce motions in more than one mode of vibration. Dampers that produce
forces of inertia due to fluid motion have also been used. Early contributions to the
design of TMDs for building motion control were made in [3] and [4]. For recent devel-
opments on multi-degree-of-freedom system TMDs under random excitation see [5],
which provides comprehensive references.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 16.1 Tuned mass damper system, Citicorp Center, New York City. Source: Courtesy of MTS
Systems Corp., Minneapolis.

16.2 Single-Degree-of-Freedom Systems

Figure 16.2 is a TMD schematic, in which m, c, k, and md, cd, kd are the mass,
viscous damping coefficient and spring constant of the structure idealized as a
single-degree-of-freedom system (SDOF) and of the TMD, respectively.

Assume that the forcing function p(t) in Figure 16.2 is harmonic. The equations of
motion of the system are

m ẍ + c ẋ + k x = p sinΩt + cd ẋd + kd xd (16.1)
md(ẍ + ẍd) + cdẋd + kdxd = 0 (16.2)

where x is the displacement of the SDOF system and xd is the displacement of the TMD
with respect to the SDOF system. The solutions of Eqs. (16.1) and (16.2) are harmonic
and have amplitudes

X =
p
k

H, x =
p
kd

Hd (16.3a,b)

where the dynamic amplification factors (also known as mechanical admittance func-
tions) of the structure and of the TMD are denoted by H and Hd:

H =

√
(𝛽2

d − 𝛽2)2 + (2𝜁d𝛽𝛽d)2

|D| , Hd = 𝛽2

|D| (16.4a,b)

|D| = {[−𝛽2
d𝛽

2𝛾 + (1 − 𝛽2)(𝛽2
d − 𝛽2) − 4𝜁𝜁d𝛽d𝛽

2]2

+ 4[𝜁𝛽(𝛽2
d − 𝛽2) + 𝜁d𝛽d𝛽(1 − 𝛽2(1 + 𝛾))]2}1∕2 (16.5)
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Figure 16.2 Schematic of a damped
system equipped with a damped tuned
mass damper. k kd

cd

m md

x x + xd

p(t)

c

(see, e.g., [2]). In Eqs. (16.4a,b) and (16.5) the following non-dimensional parameters are
used:

𝛽 = Ω
𝜔

= Ω√
k∕m

, 𝛽d =
𝜔d

𝜔
=

√
kd∕md√
k∕m

(16.6a,b)

𝜁 = c
2
√

km
, 𝜁d =

cd

2
√

kdmd

(16.7a,b)

An optimal design of TMD should consider the largest acceptable levels of the response
of the structure and the TMD, that is, H and Hd. Figure 16.3 shows, for a given set of 𝛾 , 𝛽d,
and 𝜁 values, and for several values of 𝜁d, the dependence of the dynamic amplification
factor H upon the non-dimensionalized excitation frequency 𝛽. For 𝜁d = 0 the amplifi-
cation factor H of the structure has two separate peaks, as does the amplification factor
Hd of the TMD. As 𝜁d increases up to 𝜁d opt (i.e., approximately 0.09, see Eq. [16.9]), the
ordinates of the two peaks of the factors H and Hd decrease. As 𝜁d increases further, the
two peaks of H and Hd merge into one peak. For H , that peak increases as 𝜁d approaches
unity, whereas for Hd the peak continues to decrease. As shown in Figure. 16.3, if the
ratio 𝛽 of the excitation frequency to the natural frequency 𝜔 of the structure is con-
tained in the interval 0.85–1.15, the TMD reduces the response by amounts that depend
upon that ratio.
As explained in [1, p. 247], because of the dependence of |D| upon 𝜁, no analytical

expressions can be obtained for the optimal tuning frequency ratio 𝛽d opt and optimal
damping 𝜁d opt as functions of the mass ratio 𝛾 . Numerical calculations are therefore
resorted to. The reader is referred to [1] for plots of the calculated optimal values of H
and Hd as functions of md/m for various values of 𝜁.

The optimal values of the parameters 𝛽d and 𝜁d as functions of md∕m and 𝜁 can be
obtained from the following expressions based on curve fitting schemes proposed in [6]:

𝛽d opt =

(√
1 − 0.5 md∕m
1 + md∕m

+
√

1 − 2𝜁2 − 1

)

− (2.375 − 1.034
√

md∕m − 0.426 md∕m)𝜁
√

md∕m

− (3.730 − 16.903
√

md∕m + 20.496 md∕m)𝜁2
√

md∕m (16.8)

𝜁d opt =

√
3𝛾

8(1 + md∕m)(1 − 0.5md∕m)

+ (0.151𝜁 − 0.170𝜁2) + (0.163𝜁 + 4.980𝜁2)md∕m (16.9)
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Figure 16.3 Dynamic amplification factor H and Hd as functions 𝛽 with various values of 𝜁d
(md∕m = 0.03, 𝛽d = 0.97, 𝜁 = 0.02).

For a single-degree-of-freedom linear oscillator with no TMD the largest possible
value of the mechanical admittance function is

HSD = 1

2𝜁SD

√
1 − 𝜁2

SD

(16.10)

where 𝜁SD denotes the oscillator’s damping ratio. For 𝜁SD in the order of 0.02, say,

HSD ≈ 1
2𝜁SD

(16.11)

Similarly, the equivalent damping for the mass m provided to the system described by
Eqs. (16.1) and (16.2) can be written as

𝜁e =
1

2Hopt
(16.12)
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Example 16.1 Following [1, p. 251], it is assumed that the damping ratio is 𝜁 = 0.02,
and that the dynamic amplification factor Hopt and the ratio between the amplitudes of
the TMD and the structure are limited by the inequalities

Hopt < 7 (16.13)
Hd opt

Hopt
< 6 (16.14)

that is, Hd opt < 42. From [1, figure 5.28] it follows that for 𝜁 = 0.02 the required ratio
md∕m ≈ 0.03. From [1, figure 5.29] it follows that Eq. (16.14) is satisfied. The value
𝛽d opt , the stiffness kd, and the optimal damping ratio 𝜁d opt are then obtained from Eqs.
(16.8), (16.6b), and (16.9), respectively. The equivalent damping provided by the TMD
is 1/(2Hopt)≈ 0.07.

16.3 TMDs for Multiple-Degree-of-Freedom Systems

Figure 16.4 shows a two-degree-of-freedom (2-DOF) system. The equations of motion
of masses m1, m2, and md are [1]:

m1ẍ1 + c1ẋ1 + k1x1 − k2(x2 − x1) − c2(ẋ2 − ẋ1) = p1 (16.15)
m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) − kdxd − cdẋd = p2 (16.16)
md ẍd + cdẋd + kdxd = −mdẍ2 (16.17)

Expressing x1 and x2 in terms of model shapes and generalized coordinates{
x1
x2

}
=
[
𝜙11 𝜙12
𝜙21 𝜙22

]{
q1
q2

}
or x = 𝚽 q (16.18a,b)

where 𝚽 is the modal matrix and q is the generalized coordinate vector. Based on the
orthogonality of natural modes, Eqs. (16.15) and (16.16) are transformed into the uncou-
pled equations of a SDOF structure:

m∗
j q̈j + c∗j q̇j + k∗

j qj = 𝜙j1p1 + 𝜙j2(p2 + cdẋd + kdxd) for j = 1, 2 (16.19)

k1

c1

m1

x1

p1(t)

c2 cd

m2 md

k2 kd

x2 x2 + xd

p2(t)

Figure 16.4 Two-DOF system with tuned mass damper.
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where the modal mass, stiffness, and damping matrices are defined as

m∗
j = 𝚽T

j M𝚽j (16.20)
c∗j = 𝚽T

j C𝚽j (16.21)
k∗

j = 𝚽T
j K𝚽j (16.22)

In Eqs. (16.20)–(16.22), the j-th modal vector of 𝚽 is

𝚽j =
[
𝜙1j
𝜙2j

]
(16.23)

Consider the case of a TMD designed to control the first modal response (i.e., j = 1). If
the external forcing frequency is close to 𝜔1 =

√
k1∕m1, the response in the first mode

dominates. Equations (16.18a,b) then yield x2 ≈ 𝜙21 q1, and

q1 =
x2

𝜙21
(16.24)

Substitution of Eq. (16.24) into Eq. (16.19) in which j = 1 yields

m∗
1eẍ2 + c∗1eẋ2 + k∗

1ex2 = p∗
1e + cdẋd + kdxd (16.25)

where the equivalent mass, damping, stiffness, and force matrices are

m∗
1e =

m∗
1

𝜙2
21

(16.26)

k∗
1e =

k∗
1

𝜙2
21

(16.27)

c∗1e ≈ 𝛼k∗
1e (16.28)

p∗
1e =

𝜙11p1 + 𝜙12p2

𝜙21
(16.29)

Equation 16.28 is derived under the assumption that damping is proportional to the
stiffness [1].

Equations (16.25) and (16.17) have the same form as Eqs. (16.1) and (16.2), respec-
tively. Therefore, with appropriate changes of notation, the solutions discussed in
Section 16.2 are also applicable to Eqs. (16.25) and (16.17). For details and a numerical
example, see [1].

Reference [5] presents a frequency-domain approach to the optimization of TMDs
installed at several levels of multiple-degree-of-freedom structures subjected to wind
loads defined by their power spectral densities.
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17

Rigid Portal Frames

Case Study

17.1 Introduction

Conventional methods for determining wind loads on rigid structural systems, as
defined by the “analytical method” of the ASCE 7 Standard [1], involve the use of tables
and plots contained in standards and codes. Wind effects determined by such methods
can differ from those consistent with laboratory measurements by amounts that can
exceed 50% [2, 3]. This is due in part to the severe data storage limitations inherent in
conventional standards, in which vast amounts of aerodynamic data varying randomly
in time and space are reduced to a far smaller number of enveloping time-invariant
data. In addition, for low-rise buildings of the type covered by [1], the specified wind
loads, referred to in the standard as “pseudo-loads,” do not account for (i) the distance
between frames, which affects the spatial coherence of the aerodynamic pressures
impinging on the frames, and (ii) the structural system’s actual member sizes and,
therefore, the influence coefficients used in the structural calculations. Lastly, the ASCE
7 provisions are based on wind tunnel experiments conducted in part between three
and four decades ago with obsolete pressure measurement technology, no archived
records of pressure measurements, and numbers of building geometries and pressure
taps lower by more than one order of magnitude than those of current aerodynamic
databases [4]. In contrast, in the DAD approach “pseudo-loads” are replaced by close
approximations to the actual loads.

This chapter presents an application of the DAD approach to the design of portal
frames, wherein time-domain methods allow wind effects to be calculated by using large
numbers of stored time series of measured pressure coefficients, and wind effect com-
binations are performed objectively and rigorously via summations of time series. The
DAD approach accounts naturally for the imperfect spatial coherence of pressures act-
ing at different points of the structure, examples of which are shown in the visualization
of Figure 4.27.

Software for the application of the DAD approach to rigid structures was first
developed for frames of simple gable roof buildings in [5]. This chapter presents an
updated version of this approach and a case study reported in [6] that calculates
peak demand-to-capacity indexes (DCIs) directly used by the structural engineer to
size structural members of gable roof building frames. The aerodynamic pressure
coefficients used in [5] and [6] were taken from the NIST/UWO database [7]. Results
based on the NIST/UWO and the Tokyo Polytechnic University (TPU) database

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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[8] – the largest available to date – were found in [9] to yield comparable results.
Calculations reported in [6] confirmed this conclusion.

Checking the adequacy of a member cross section consists of ascertaining that, subject
to possible serviceability and constructability constraints, its DCI is close to unity. If
the DCI does not satisfy this condition, the cross section is redesigned. The member
properties based on this iteration process can then be used to recalculate the influence
coefficients by which revised wind loads are transformed into wind effects, and to check
the adequacy of the resulting DCIs.

Since the capacity of members in compression is determined by stability considera-
tions, their DCIs depend nonlinearly upon axial load and are therefore not proportional
to the squares of the wind speeds. For this reason, to estimate wind effects with the req-
uisite mean recurrence intervals it is necessary to produce DCI response surfaces (see
Section 13.2). The estimation of the peak DCIs from DCI time series can be performed
by a multiple-points-in-time method based on observed peak values [10]. An alternative
approach to the estimation of peaks, based on rigorous statistical methods, and capable
of producing error estimates, is presented in Appendix C.

The peak DCI response surfaces are properties of the structure, independent of the
wind climate, and depend upon the structure’s terrain exposure, aerodynamic behavior,
structural system, and member sizes. The response surfaces are used in conjunction with
non-parametric statistics to estimate peak DCIs with any specified mean recurrence
intervals (MRIs) (Sections 13.4 and A.9). Since the design MRIs specified in [1] are in the
order of hundreds or thousands of years, the use of non-parametric statistics requires
the wind speed data sets to be commensurately large. Databases of simulated hurricane
wind speeds that meet this requirement are available, see Section 3.2.3, and Monte Carlo
simulations can be performed to develop large wind speed data sets from smaller sets
of measured data [11].

The results obtained in the case study presented in this chapter confirm the existence
of significant errors in the estimation of wind effects by the ASCE 7 Standard envelope
procedure. The requisite software and a detailed user’s manual are available in [12].

The DAD procedure as used in this chapter is typically applicable to any low- or
mid-rise buildings, in addition to simple buildings with gable roofs, portal frames, and
bracing parallel to the ridge. Depending upon the preferences of the user, alternative
methods for the estimation of time series peaks, the interpolation of results based on
buildings with dimensions different from those of the building of interest, and the esti-
mation of secondary effects, may be used in lieu of the methods employed in [6].

17.2 Aerodynamic and Wind Climatological Databases

Aerodynamic databases are developed by wind engineering laboratories and contain
time histories of simultaneously measured pressure coefficients at large numbers of taps.
Figure 17.1 shows a building model with the locations of the taps. Pressure coefficient
time-history databases for one-of-a-kind structures are obtained in ad-hoc wind tunnel
tests, rather than from pre-existing databases.

Climatological databases are also developed by wind engineering laboratories. They
typically consist of directional or non-directional extreme wind speeds that account for
the building’s directional terrain exposure, and cover periods in the order of typically
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Figure 17.1 Wind tunnel model of an industrial building. Source: Courtesy of the Boundary Layer
Wind Tunnel Laboratory, University of Western Ontario.

tens of years of measured data or as many as thousands of years of synthetic data, as
well as providing the mean rate of arrival of storm events per year (Section A.6.4).
Directional wind speed data Uij (i= 1, 2,…, ns; j= 1, 2,…, nd) are typically presented
in the form of ns × nd matrices, in which ns is the number of storm events and nd is
the number of wind directions (e.g., nd = 16); non-directional wind speed data sets are
vectors with components Ui (i = 1, 2,…, ns), where Ui = largest wind speed in storm
i, regardless of direction (see Chapter 13). The climatological database considered in
the case study presented in this chapter consisted of directional hurricane wind speeds
generated by Monte Carlo simulations for 999 storm events and 16 wind directions
(Section 3.2.3).

17.3 Structural System

The structural system being considered consists of equally spaced moment-resisting
steel portal frames commonly used in low-rise industrial buildings (Figure 17.2). Roof
and wall panels form the exterior envelope of the buildings and are attached to purlins
and girts supported by the frames. Bracing is provided in the planes of the exterior
walls parallel to the ridge. The coupling between frames due to the roof diaphragms
is neglected. The purlins and girts are attached to the frames by hinges. The purlins and
girts act as bracings to the outer flanges, and the inner flanges are also braced. The fol-
lowing limitations are imposed: (i) The taper should be linear or piecewise linear, and
(ii) the taper slope should typically not exceed 15∘ [13].
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Figure 17.2 Schematic of the structural system.

17.4 Overview of the Design Procedure

The sizing of the structural members requires calculations of the respective peak DCIs.
The DCIs pertaining to axial forces and bending moments at any cross sections of the
frames are determined using Eqs. (8.1) and (8.2). A similar, simpler equation pertains to
shear forces [14].

The wind forces acting along the axis parallel to the ridge and the torsional moment
about the structure’s elastic center are resisted by secondary bracing members; hence
only the wind forces due to winds normal to the building’s ridge contribute to the frame
DCIs. Therefore, for the application at hand the quantities with subscript y in Eqs. (8.1)
and (8.2) need not be considered. The time histories of the internal forces in the expres-
sions for the DCIs are computed as sums of factored load effects due to wind loads
and gravity loads. Design for strength requires considering the following five LRFD load
combination cases [1]:

Case 1 : 1.4D,
Case 2 : 1.2D+ 1.6 L+ 0.5Lr,
Case 3 : 1.2D+ 1.6Lr + 0.5W,
Case 4 : 1.2D+ 1.0W+ 0.5Lr,
Case 5 : 0.9D+ 1.0W,

where D, Lr, and W denote dead load, roof live load and wind load, respectively. The
dead load includes both superimposed dead load and frame self-weight. The superim-
posed dead load and roof live load are assumed to be uniformly distributed on the roof
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surface. They impose forces on the frame through the frame-purlin connections in the
vertical downward direction. Self-weights are determined by dividing the frames into
sufficiently large numbers of elements. The directional wind speeds matrix (see Section
13.3.1) and the mean annual rate of storm arrival were assumed to be those listed for
Miami (milepost 1450 in Figure 3.1).

The member capacities are determined as specified in [13, 14]. To comply with AISC
requirements on second-order effects, a first-order analysis method can be used that
accounts for geometric imperfections [6, 14]. The axial capacity of a member in com-
pression is the smaller of the calculated in-plane and out-of-plane buckling capacities
computed by the method of successive approximations described in [15].

Equations (8.1) and (8.2) and their shear force counterpart maintain the phase rela-
tionship among the axial force, bending moments and shear force, hence they result in
DCIs that rigorously reflect the actual combined wind effects.

The preliminary design of the structure starts with an informed guess as to the struc-
tural system’s member sizes, that is, with a preliminary design denoted by D0, to which
there corresponds a set of influence coefficients denoted by IC0. The wind loads applied
to this preliminary design are taken from the standard or code being used. For the case
study presented here the loads used for the preliminary design were obtained from the
ASCE 7 Standard [1].

As performed in [6], the next step is the calculation of the peak DCIs with the speci-
fied mean recurrence interval N inherent in the design D0 (see Chapter 13). Unless those
DCIs are close to unity, the cross sections are modified. This results in a new design, D1,
for which the corresponding set of influence coefficients, IC1 is calculated. A new set
of DCIs is calculated, based again on the wind loads taken from the standard. The pro-
cedure is repeated until a design Dn is achieved such that the effect of using a new set
of influence coefficients, ICn+ 1, is negligible, that is, until the design Dn+ 1 is in prac-
tice identical to the design Dn. At this point the procedure is applied by using, instead
of the ASCE 7 Standard wind pressures, wind pressures based on the time histories of
the pressure coefficients taken from the aerodynamics database. This results in a design
Dn+ 2, to which there corresponds a set of influence coefficients ICn+ 2 and a new set of
DCIs. The cross sections are then modified and the calculations are repeated until the
DCIs are close to unity. Typically, this will be the final design Dfinal, although the user
may perform an additional iteration to check that convergence of the DCIs to unity has
been achieved, to within constructability and serviceability constraints. For the struc-
tural system considered in this chapter the approach just described was found to yield
the requisite results faster than the alternative approach in which the loads based on
the aerodynamic database are used to determine the designs D1 through Dn+ 1. This is
due to the fact that load estimates specified in [1] for the type of structure depicted in
Figure 17.1 are less unrealistic than those specified in [1] for other types of structure.

17.5 Interpolation Methods

For the databases with large numbers of data measured on models with different dimen-
sions to be of practical use, simple and reliable interpolation schemes need to be devel-
oped that enable the prediction of wind responses for building dimensions not available
in the databases. This issue was addressed in, among others, Refs [5, 6, 16].
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The interpolation scheme presented in detail in [6] produces responses of the building
of interest that, unless the interpolations are performed between buildings with signifi-
cantly different dimensions, differ from the actual responses by amounts in the order of
5–10%. It is shown in Section 12.4.2 that even larger errors are typically inconsequential
from a structural design viewpoint.

17.6 Comparisons Between Results Based on DAD and on
ASCE 7 Standard

This section presents results of comparisons between 700-year (i) DAD-based DCIs
involving axial forces and moments, denoted by DCIPM, and DCIs involving shear
forces, denoted by DCIV, to their counterparts based on the ASCE 7-10 Standard
(Chapter 28). Additional sets of comparisons are reported in [6]. Unless otherwise
specified, the assumed frame spacing was 7.6 m. Results are shown for the first interior
frame. The frame supports were assumed to be pinned, and all the calculations were
conducted for the “enclosed” building enclosure category.

17.6.1 Buildings with Various Eave Heights

For buildings with various eave heights, Figure 17.3 shows ratios of DCIPMs based on
DAD to their counterparts based on the ASCE 7-10 Standard, Chapter 28. The buildings
had the following dimensions: B = 24.4 m, L = 38.1 m, roof slope = 4.8∘, and H = 4.9 m,
7.3 m, and 9.8 m.

In most cases represented in Figure 17.3 the DCIs are underestimated by the ASCE
7-10 Standard provisions, especially for suburban exposure.
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Figure 17.3 DCIDAD/DCIASCE as a function of eave height.
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Figure 17.4 DCIDAD/DCIASCE as a function of roof slope.

17.6.2 Buildings with Various Roof Slopes

For buildings with different roof slopes, Figure 17.4 shows ratios between DCIPMs com-
puted by using DAD and the ASCE 7-10 Standard, Chapter 28. The buildings have the
following dimensions: B = 24.4 m, L = 38.1 m, H = 7.3 m, and roof slope = 4.8, 14.0, and
26.7∘.

Owing to a strong discontinuity of the pressure coefficient variation at roof slopes
of about 22∘, interpolations cannot be performed between wind effects on roofs with
slopes lower than 22∘ on the one hand and larger than 22∘ on the other [17].
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18

Tall Buildings

Case Studies1

18.1 Introduction

Tall buildings can be designed by using the Database-Assisted Design (DAD) option,
or the related Equivalent Static Wind Loads (ESWL) option, of the DAD_ESWL v. 1.0
software. Both options are available at https://www.nist.gov/wind. A user’s manual [1]
provides detailed guidance on the use of the software and its application to several
examples, including steel and reinforced concrete building examples.

The purpose of this chapter is to introduce the reader to that software and illustrate
the application of its two options. Section 18.2 briefly discusses an approach to per-
forming a structure’s preliminary design, and outlines the subsequent iterative use of
DAD_ESWL to perform the final design. Section 18.3 lists the contributions of the wind
engineering laboratory to the design process. Section 18.4 is an introduction to the soft-
ware. Section 18.5 briefly presents the application of the DAD approach and of the
ESWL approach to the structural design of a 47-story steel building. The software is
also applicable to the design of mid-rise buildings via the simple device of using as input
appropriately large values of the natural frequencies of vibration in the fundamental
sway and torsional modes and disregarding higher modes.

18.2 Preliminary Design and Design Iterations

The structural design process starts with the development of a preliminary design. This
entails the choice of a structural system for the building being considered (e.g., moment
frames), the geometry and morphological features of which must be consistent with
architectural and other non-structural design requirements. The member sizes of the
preliminary system are initially guessed at by the structural designer on the basis of
experience. This will produce a system that, typically, will not meet strength and service-
ability requirements. It is therefore advisable to redesign the structural system produced
by the structural engineer’s educated guesses by using for the wind loading simple mod-
els specified, for example, in the ASCE 7 Standard for buildings of all heights. The new
design so obtained is referred to here as design D0.

The structural engineer must check the adequacy of design D0, that is, whether it
satisfies the specified strength and serviceability when subjected to realistic, rather

1 Major contributions to this chapter by Dr. Sejun Park are acknowledged with thanks.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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than simplified wind loads. The information inherent in design D0, and the data
provided by the wind engineering laboratory, are used by the structural engineer in
the DAD_ESWL software to determine the members’ demand-to-capacity indexes
(DCIs), inter-story drift ratios, and accelerations, with the respective specified design
mean recurrence intervals (Chapter 13). For strength design, it is required that no
member DCI exceed unity, or be significantly less than unity except as required by
serviceability constraints. If, as is typically the case for design D0, these requirements
are not satisfied, the members’ cross sections need to be modified, and the software
is applied iteratively to successive designs D1, D2, …, until a satisfactory final design
is achieved.

18.3 Wind Engineering Contribution to the Design Process

Realistic wind loads must be based on the following information provided by the wind
engineering laboratory:

1) Aerodynamic data, consisting of pressure coefficient time series obtained simulta-
neously at multiple taps on the façades of the building model, either from ad-hoc
wind tunnel tests (or, in the future, by ad-hoc Computational Wind Engineering
[CWE] simulations), or from databases such as [2, 3]. The following prototype data
are required: Elevation of the reference wind speed (usually the elevation of the top of
the building), wind directions, sampling rate, number of sampling points, and coor-
dinates defining the location of the taps on the building façades.

2) Wind climatological data, consisting of q matrices nsq × ndq of directional wind
speed data, and the respective rates of storm arrival, of up to q types of storm
(see Section A.9), where, depending upon the wind climate, q= 1 (e.g., synoptic
storms only), q= 2 (e.g., hurricanes and thunderstorms), or q= 3 (e.g., hurricanes,
nor’easterns, and thunderstorms). The nsq rows correspond to a number nsq of
storms (see Sections 13.3.1, 3.2.3, and [4]); the ndq columns correspond to, say,
ndq = 16–36 wind directions. The matrix entries are mean wind speeds averaged
over, say, 30–60 minutes, at the location of the empty (pre-construction) building
site and the elevation of the reference wind speed (see item 1)).

3) Measures of uncertainty in the pressure coefficients and the directional wind speeds,
to be used in procedures for producing estimates of wind load factors or of aug-
mented design mean recurrence intervals of the wind effects of interest (see Chapters
7 and 12).

The contribution of the wind engineering laboratory to the design process is com-
pleted once the information described here is delivered to the structural engineer. The
same information is used, with no modification, for the analysis of each of the iterative
designs.

18.4 Using the DAD_ESWL Software

For a structure with given mechanical properties, the DAD_ESWL software is used by
the structural engineer to determine the effects of interest induced by combinations of
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(i) gravity loads and (ii) wind loads based on the aerodynamic and wind climatological
information provided by the wind engineering laboratory. This section provides a sum-
mary description of the DAD_ESWL software, based on the detailed description avail-
able in [1].

18.4.1 Accessing the DAD_ESWL Software

DAD_ESWL v. 1.0 can be accessed via the website https://www.nist.gov/wind. The
stand-alone executable version of DAD_ESWL requires installation of MCRIn-
staller.exe, which is available on the main page. The website includes, among others,
the input files for the examples described in Section 18.5.

18.4.2 Project Directory and its Contents

It is recommended that a directory named DAD_ESWL, with the structure shown in
Figure 18.1, be created for each project on the user’s local drive. The directory saves
all downloaded files and directories. It is recommended that the executable file for the
software, DAD_ESWL_v1p0.exe, be included in the project directory.

The “Aerodynamic_data” directory contains data files (.MAT format): (i) identify-
ing each of the pressure taps located on the exterior building surfaces, (ii) listing their
coordinates, and (iii) containing pressure coefficient time series from wind-tunnel test-
ing (or, in the future, from CWE simulations) corresponding to a sufficient number of
directions, to allow the construction of the requisite response surfaces (see Sections 8.2
and 13.2).

The “Building_data” directory includes the building’s geometric and structural data
(members’ properties, mass matrix, influence coefficients, internal forces of members
induced by gravity loads, and modal dynamic properties). The building’s structural
data are calculated and prepared in advance by using finite element software, following
the user’s choice of whether second-order effects are accounted for or disregarded (see
Chapter 9). The alternative option of using OpenSees to obtain the building’s structural
data is available (see [1] for details), in which case the “OpenSees” directory is added.

Figure 18.1 Recommended directory structure.
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The “Climatological_data_1,” “Climatological_data_2,” and “Climatological_data_3”
directories contain simulated directional wind speed data of up to three distinct types
of storm.

The “Output” directory contains results of calculations performed by DAD_ESWL.

18.4.3 Software Activation. Graphical User Interface

To run the software, the user double-clicks the DAD_ESWL_v1p0.exe file in the project
directory. This opens a panel (Figure 18.2) of the Graphical User Interface (GUI) allow-
ing the user to select the type of structure (steel or reinforced concrete). Clicking the
button “Start” opens the first of five pages that prompt the user to (i) fill in values of
requisite data (e.g., building dimensions, modal periods), (ii) choose between various
options (e.g., second-order effects accounted for or disregarded, use of input from FE
analyses or OpenSees, use of DAD or ESWL procedure), and (iii), after clicking “Browse”
buttons, fill in the respective paths and names of input files used in the calculations to
be performed by DAD_ESWL. At the bottom of each of the five pages there is a group of
five buttons called input panel navigator: Bldg. modeling, Wind loads, Resp. surface,
Wind effects, and Results & Plots (see Figure 18.3). These are activated in succession as
the calculations proceed. In addition to the input panel navigator, the five pages contain
the following buttons: Save inputs, used to save input data, data file paths, and selected
options as MAT files for future use in DAD_ESWL; Open inputs, used to download
the saved input data and allowing empty boxes and unselected options in the input pan-
els to be filled and activated; and Exit, which can be clicked at any time to terminate
DAD_ESWL.

Figure 18.2 Structural type selection panel.
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Figure 18.3 Page of “Bldg. modeling.”

18.5 Steel Building Design by the DAD and the ESWL
Procedures: Case Studies

18.5.1 Building Description

The structure being considered is a 47-story steel building with rigid diaphragm floors,
outriggers and belt truss system, and dimensions 40× 40× 160 m in depth, width, and
height, respectively (Figure 18.4). The structure consists of approximately 2300 columns,
3950 beams, and 2300 diagonal bracings. Columns are of three types: core, external
core, and interior columns. Beams are of three types: exterior, internal, and core beams.
Diagonal bracings are of two types: core and outrigger bracings. Each type of structural
member has the same dimensions for 10 successive floors of the building’s lowest 40
floors, and for the seven highest floors. The columns and bracings consist of built-up hol-
low structural sections (HSS), and the beams consist of rolled W-sections selected from
the AISC Steel Construction Manual [5]. The steel grade is ASTM A570 steel, grade 50.
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The structure is assumed to be sited in open terrain exposure in South Carolina, near
the shoreline of milepost 1950 (for a map showing milepost locations see Figure 3.1).
The wind speed data being used are the NIST hurricane data transformed into hourly
mean speeds at the elevation of the top of the building at the empty building site. The
orientation angle of the building is 270∘ clockwise from the north, that is, one of the four
identical façades of the building faces east. The aerodynamic pressure coefficient time
histories are obtained from the Tokyo Polytechnic University (TPU) high-rise build-
ing aerodynamic database [6]. Wind direction is defined by the clockwise angle 𝜃w,
with the positive x-axis heading east, and the y-axis heading north (see Figure 18.4d).
A total of 60 types of structural members are selected for the final design: six types
of column, seven types of beam, and two types of bracing, at the 1st, 17th, 33rd, and
45th floors.

Task 1 (Figure 8.1 in Chapter 8) consists of performing the preliminary design based
on, for example, ASCE 7–16 Standard provisions for “buildings of all heights.” This task
yielded the member sizes listed in Table 18.1.

Table 18.1 Member sizes for the preliminary design denoted by D0 (in mm), and member
nomenclaturea).

Member type Section ID Sectional type Depth Width
Flange
thickness

Web
thickness

Bracing D01–16 Box/Tube 350 350 14 14
D17–32 Box/Tube 300 300 14 14
D33–47 Box/Tube 200 200 12 12

Column Int01–16 Box/Tube 700 700 30 30
Int17–32 Box/Tube 500 500 24 24
Int33–47 Box/Tube 300 300 15 15
Core01–16 Box/Tube 1500 1500 60 60
Core17–32 Box/Tube 1200 1200 50 50
Core33–47 Box/Tube 1000 1000 40 40
ExCore01–16 Box/Tube 1200 1200 50 50
ExCore17–32 Box/Tube 1000 1000 40 40
ExCore33–47 Box/Tube 800 800 30 30

Beam W10X26 I/Wide Flange 261.62 146.56 11.18 6.60

a) D01–16: Diagonal bracing, floors 1–16 and all outriggers and belt trusses.
D17–32: Diagonal bracing, floors 17–32.
D33–47: Diagonal bracing, floors 33–47.
Int01–16: Internal columns, 1–16.
Int17–32: Internal columns, floors 17–32.
Int33–47: Internal columns, floors 33–47.
Core01–16: Core columns, floors 1–16.
Core17–32: Core columns, floors 17–32.
Core33–47: Core columns, floors 33–47.
ExCore01–16: External Core Columns, floors 1–16.
ExCore17–32: External Core Columns, floors 17–32.
ExCore33–47: External Core Columns, floors 33–47.
W10X26: All beams.
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18.5.2 Using the DAD and the ESWL Options

This section is a brief summary of salient features of the user’s manual in [1], which
describes the software in detail.

DAD option. Task 2 (Figure 8.1 and Section 8.2) begins by clicking the button “Start”
shown in Figure 18.2, and selecting the “Steel Structure” option. This opens the page
shown in Figure 18.3. The page activated by the button “Bldg. modeling” contains a
“Building information” and a “Structural properties” panel. The user fills in the requisite
data (i.e., “No. of stories,” “Building height,” and so forth) and selects the appropriate
option where a choice is offered (i.e., for this example, “Second-order analysis” rather
than “Linear,” and “Input analysis results from arbitrary FE software” rather than “Use
OpenSees,”). The user also clicks the “Browse” buttons and fills in the respective paths
and file names containing the results (obtained by FE or OpenSees, depending upon the
analyst’s choice) available in the “Building_data” directory (Figure 18.1).

Task 3 starts by clicking the button “Wind loads” at the bottom of the GUI page shown
in Figure 18.5. The user fills in the requisite data (i.e., “Model length scale,” “Wind direc-
tions,” and so forth) in the “Wind tunnel test/CWE data” panel and clicks the “Calculate
floor wind loads from pressures measured at taps on building model facade” option in

Figure 18.5 Page “Wind loads.”
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the “Floor wind loads at model scale [N and N.m]” subpanel. After clicking the “Browse”
buttons, the user selects the appropriate files from the “Aerodynamic_data” directory
(Figure 18.1). Input files for the pressure coefficient data (Cp_XXXpX.mat), tap iden-
tification (tap_loc.mat), and tap coordinates (tap_coord.mat) are provided by the wind
engineering laboratory, as indicated in Section 18.3. The user then selects the interpola-
tion method for calculating the floor wind loads (right-hand side of this panel). Clicking
the button “Calculate floor wind loads” starts the automatic calculation of the floor wind
loads, and activates a pop-up window showing the progress of the computations. The
wind pressure information can be checked by clicking the button “Display.” The floor
wind loading data are saved for each direction in the user-specified directory (in this
example, “WL_floors,” as shown in Figure 18.5). The “Wind speed range” panel specifies
the wind speeds used for the construction of response surfaces discussed in Sections 8.2
and 13.2. In this example, wind speeds from 20 to 80 m s−1 in increments of 10 m s−1 were
used. Finally, the 80% selection that pertains to ASCE 7-16 Standard section 31.4.4 was
made in the “Lower limit requirement” panel.

The page opened by clicking the button “Resp. surface” contains three panels
(Figure 18.6). The “Load combination cases” panel specifies the gravity and wind load

Figure 18.6 Page “Resp. surface.”
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combinations including the associated load factors. The “Calculation option” panel
requires the user to choose between using the DAD and the ESWL approach. The user
must specify the length of the initial part of the time series of inertial forces that is
discarded in order to eliminate non-stationary effects.

Tasks 4, 5, and 6 require the use of the information provided in the “Response
surface” panel, and consist of calculating the ordinates of the response surfaces that
yield peak member DCIs, inter-story drift ratios, and accelerations. These are obtained
by performing dynamic analyses of the structure D0 for each of the directional wind
speeds with directions entered in the panel “Wind tunnel test/CWE data” and speeds
entered in the panel “Wind speed range” of the page “Wind loads.” Task 4 determines,
for each of those directional wind speeds, the effective loads consisting of the sums of
the aerodynamic and inertial loads. Task 5 uses the appropriate influence coefficients
to determine time series of the DCIs induced by combinations of factored gravity
loads and the effective wind loads obtained in Task 4. Task 6 consists of calculating the
ordinates of the response surfaces for peak DCIs, inter-story drift ratios, and accelera-
tions induced in structural members by each of the directional wind speeds considered
in Task 4.

Task 7 is executed by attending to the panels “Wind climatological data” and “Design
responses for specified MRIs” of Figure 18.7 (page “Wind effects”). Typically, the wind

Figure 18.7 Page “Wind effects.”
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Figure 18.8 Page “Results & Plots.”

engineering laboratory provides directional mean wind speed data at the elevation of
the top of the building roof at the empty site of the building. The page “Results & Plots”
allows the user to show the calculated wind effects (i.e., DCIs, inter-story drift ratios,
and accelerations) with specified MRIs, as shown in Figure 18.8. Superscripts P, M, V,
and T of DCIs stand for axial load (P) and bending moment (M), shear force (V), and
torsion (T), respectively. As expected, DCI values for design D0 were typically inade-
quate. The design was modified accordingly to yield design D1; an additional iteration
yielded design D2. Details are provided subsequently.

ESWL option. Tasks 1 through 4 are identical for both ESWL and DAD. How-
ever, unlike DAD, ESWL requires completing Task 4a, which consists of calculating
Equivalent Static Wind Loads (see Figure 8.1). To do so, in the page “Resp. sur-
face” (Figure 18.6) and the panel “Calculation options,” the user chooses the option
“ESWL (only applicable for DCIs)” and responds to the prompt “No. of Multiple
Points-In-Time” (see Section 3.2) in [1]. Tasks 5, 6, and 7 are performed by using the
same pages as those used for the DAD option, but with the input required for ESWLs.

DCIs for selected members are listed in Table 18.2 for designs D0, D1, and D2. Mem-
ber sizes for design D2 are shown in Table 18.3. The results of the ESWL calculations
depend upon the number of points in time npit . Calculations performed for the example
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Table 18.2 DCIs (axial force and bending moments) based on DAD and on ESWL for designs D0, D1
and D2.

D0 D1 D2

Member IDa) Method 1st 17th 33rd 45th 1st 17th 33rd 45th 1st 17th 33rd 45th

CC DAD 0.89 1.14 1.51 0.42 0.78 0.76 0.59 0.13 0.83 0.88 0.84 0.87
ESWL 0.89 1.13 1.51 0.42 0.76 0.74 0.57 0.13 0.83 0.88 0.84 0.86

CEW DAD 0.62 0.97 1.53 0.37 0.65 0.76 0.68 0.15 0.96 0.80 0.88 0.87
ESWL 0.62 0.96 1.52 0.37 0.66 0.74 0.66 0.15 0.95 0.80 0.88 0.87

CI DAD 0.81 1.08 1.64 0.30 0.84 0.85 0.77 0.13 0.83 0.90 1.00 0.80
ESWL 0.81 1.07 1.62 0.29 0.84 0.84 0.75 0.13 0.83 0.90 0.99 0.79

COL DAD 1.99 1.62 1.02 0.36 0.79 0.62 0.52 0.15 0.84 0.62 0.90 0.91
ESWL 2.01 1.61 1.02 0.36 0.76 0.59 0.49 0.10 0.84 0.62 0.89 0.90

CES DAD 0.78 1.18 1.73 0.39 0.67 0.78 0.69 0.15 0.72 0.90 0.95 0.89
ESWL 0.78 1.17 1.69 0.38 0.67 0.75 0.66 0.14 0.72 0.90 0.95 0.88

COR DAD 1.37 1.44 1.57 0.61 1.10 0.92 0.63 0.23 0.56 0.67 0.87 0.78
ESWL 1.38 1.42 1.55 0.60 1.11 0.88 0.59 0.22 0.56 0.67 0.86 0.78

BESW DAD 0.66 1.00 1.00 0.66 0.63 0.96 1.00 0.66 0.91 0.98 0.69 0.97
ESWL 0.64 0.97 0.97 0.64 0.61 0.95 0.97 0.65 0.90 0.98 0.69 0.96

BES DAD 0.65 0.96 0.93 0.60 0.62 0.93 0.92 0.57 0.62 0.95 0.96 0.83
ESWL 0.63 0.93 0.91 0.58 0.60 0.92 0.90 0.56 0.61 0.94 0.96 0.83

BI DAD 0.86 1.40 1.62 1.50 0.85 1.34 1.56 1.42 0.85 0.88 0.95 0.97
ESWL 0.85 1.39 1.62 1.48 0.85 1.34 1.54 1.40 0.85 0.88 0.93 0.97

BOS DAD 0.77 0.78 0.81 0.62 0.77 0.77 0.80 0.62 0.77 0.78 0.81 0.90
ESWL 0.76 0.77 0.79 0.62 0.77 0.77 0.79 0.61 0.77 0.77 0.80 0.90

BEWS DAD 0.70 1.18 1.26 0.88 0.56 0.95 1.05 0.74 0.87 0.68 0.77 0.75
ESWL 0.67 1.13 1.24 0.87 0.58 0.95 1.00 0.71 0.85 0.67 0.77 0.75

BEW DAD 0.69 1.17 1.26 0.79 0.56 0.96 1.02 0.67 0.87 0.69 0.74 0.99
ESWL 0.67 1.13 1.19 0.77 0.57 0.96 1.01 0.67 0.85 0.68 0.74 0.99

BOW DAD 0.82 0.87 0.95 0.65 0.76 0.80 0.87 0.63 0.78 0.82 0.89 0.93
ESWL 0.83 0.86 0.93 0.64 0.77 0.80 0.86 0.63 0.78 0.82 0.89 0.92

XOS DAD 0.73 0.76 0.79 0.35 0.67 0.70 0.79 0.35 0.69 0.71 0.85 0.80
ESWL 0.74 0.70 0.73 0.33 0.70 0.64 0.67 0.31 0.69 0.71 0.83 0.80

XOE DAD 0.82 0.71 1.10 0.44 0.72 0.63 0.86 0.35 0.68 0.62 0.46 0.82
ESWL 0.83 0.71 1.03 0.42 0.73 0.60 0.80 0.35 0.68 0.60 0.45 0.82

a) CC= corner column; CEW= external column at west side of the building plan; CI= internal column;
COL= core column at left side of the core; CES= external column at south; COR= core column at right
side of the core; BESW= external beam at southern west; BES= external beam at south; BI= internal
beam; BOS= core beam at south; BEWS= external beam at western south; BEW= external beam at
west; BOW= core beam at west; XOS= core bracing at south; XOE= core bracing at east. See
Figure 18.4d for details.
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Table 18.3 Member sizes for design D2 (in mm), and member nomenclaturea).

Members’ type Section ID Depth Width
Flange
thickness

Web
thickness

Bracing D01–16 Box/Tube 350 350 14 14
D17–32 Box/Tube 300 300 14 14
D33–40 Box/Tube 200 200 12 12
D41–47 Box/Tube 145 145 9 9

Column Int01–16 Box/Tube 600 600 35 35
Int17–32 Box/Tube 400 400 15 15
Int33–40 Box/Tube 254 254 13 13
Int41–47 Box/Tube 230 230 10 10
Core01–10 Box/Tube 1800 1800 100 100
Core11–20 Box/Tube 1600 1600 80 80
Core21–30 Box/Tube 1200 1200 50 50
Core31–40 Box/Tube 565 565 25 25
Core41–47 Box/Tube 550 550 24 24
ExCore01–16 Box/Tube 1300 1300 60 60
ExCore17–32 Box/Tube 1100 1100 45 45
ExCore33–47 Box/Tube 1000 1000 40 40

Beam W10X39 I/Wide Flange 251.97 202.95 13.46 8.00
W10X26 I/Wide Flange 261.62 146.56 11.18 6.60
W10X19 I/Wide Flange 259.08 102.11 10.03 6.35

a) D01–16: Diagonal bracing from floors 1–16 and for all outriggers and belt trusses.
D17–32: Diagonal bracing from floors 17–32.
D33–40: Diagonal bracing from floors 33–40.
D41–47: Diagonal bracing from floors 41–47.
Int01–16: Internal column from floors 1–16.
Int17–32: Internal column from floors 17–32.
Int33–40: Internal column from floors 33–40.
Int41–47: Internal column from floors 41–47.
Core01–10: Core column from floors 1–10.
Core11–20: Core column from floors 11–20.
Core21–30: Core column from floors 21–30.
Core31–40: Core column from floors 31–40.
Core41–47: Core column from floors 41–47.
ExCore01–16: External Core Column from floors 1–16.
ExCore17–32: External Core Column from floors 17–32.
ExCore33–47: External Core Column from floors 33–47.
W10X39: Beam from floors 1–20.
W10X26: Beam from floors 21–35.
W10X19: Beam from floors 36–47.
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presented in this section indicated that the use of npit < 10 could result in the under-
estimation of some peak DCIs by over 10% or more, whereas for npit ≥ 10 the largest
underestimation was almost constant at 3%.

To assess the efficiency of the ESWL procedure, the ratio r between ESWL and DAD
computational times required to calculate design DCIs with MRI= 1700 years was
obtained as a function of (i) the number of points npit and (ii) the number of members
being analyzed. The dependence of the ratio r upon npit was found to be almost
negligible. For 60 members r was approximately 0.4. The relative efficiency of the ESWL
procedure increases when larger numbers of structural members are selected. For 1000
members r was approximately 0.2. The computation times for the DAD calculations
were found to be fully compatible with practical capabilities of structural design offices.
The computational times can be reduced by using parallel computing.

The differences between DAD- and ESWL-based DCIs are sufficiently small in this
case that the designs D1 and D2 obtained by the DAD procedure on the one hand and
the ESWL procedure on the other are the same for all the members considered in
Tables 18.1 and 18.3. As pointed out in Chapter 14, this may not be the case for wind
climates where winds from an unfavorable wind direction are dominant. As was also
pointed out in Chapter 14, the ESWL procedure may not be practicable for buildings
with irregular shapes.

For the number of members considered in the case study presented in this section, the
ESWL procedure computation time on a personal computer was in the order of hours.2
The computational time would have increased had the number of distinct members and
the number of storm events been larger.

The amount of steel required for design D1 was approximately 50% greater than for
design D0, that is, the capacities of the members in the preliminary design D0 were too
low. The iteration that followed the design D1 resulted in a design D2 for which the
amount of steel was approximately 20% lower than for design D1. The evolution of the
successive designs can be followed by considering Table 18.2.
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Part III

Aeroelastic Effects

Fundamentals and Applications

Certain types of civil engineering structures can experience aerodynamic forces gener-
ated by structural motions. These motions, called self-excited, are in turn affected by the
aerodynamic forces they generate. The structural behavior associated with self-excited
motions is called aeroelastic. The purpose of Part III is to provide an introduction to
aeroelastic phenomena occurring in flexible civil engineering structures. Chapters 19,
20, and 21 consider, respectively, fundamental aspects of aeroelasticity phenomena asso-
ciated with vortex lock-in, galloping and torsional divergence, and flutter. Presented here
are applications are to chimneys with circular cross-sections and other slender struc-
tures including tall buildings (Chapter 22), and to suspended-span bridges (Chapter 23).

Iconic examples of aeroelastic instability are the flutter of the Brighton Chain Pier
Bridge (termed “undulation” in the 1800s) (Figure III.1) and, more than one century
later, the flutter of the original Tacoma-Narrows Bridge (Figure III.2).

To describe the interaction between aerodynamic forces and structural motions it is
in principle necessary to solve the full equations of motion describing the flow, with
time-dependent boundary conditions imposed by the moving structure. Even though
progress is being made in the numerical solution of some aeroelastic problems, for bluff
bodies immersed in shear, turbulent flow, the description of aeroelastic effects still relies
largely on laboratory testing and empirical modeling. Owing to the violation of the
Reynolds number similarity criterion, the applicability to the prototype of laboratory
test results and of associated empirical models needs to be assessed as thoroughly as
possible. However, for carefully modeled structures, aeroelastic test results are generally
assumed to yield reasonably realistic results.

For additional fundamental and applied material on aeroelasticity in civil engineering,
see [3]. The rich experience of the Japanese school of suspended-span bridge aeroe-
lasticity is reflected in the abundant material contributed by Miyata in [4]. Ovalling
oscillations, which can occur, for example, in certain types of silos, are considered in
[5] and, using a Computational Wind Engineering (CWE) approach, in [6]. Aeroelastic
motions of textile structures are considered in Chapter 26 (see, e.g., [7]).

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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SKETCH showing the manner in which the 3rd. span of the CHAIN PIER at BRIGHTON undulated
just before it gave way in a storm on the 20th of November 1836.

255 feet

SKETCH showing the appearance of the 3rd span after it gave way.

Figure III.1 Brighton chain pier failure, 1836. Source: From [1].

Figure III.2 Flutter of Tacoma Narrows suspension bridge, 1940. Source: From [2].
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A number of empirical models allow design decisions to be based on results of rel-
atively simple wind tunnel test results. For example, the designer of suspended-span
bridges can account for the possibility of flutter by using empirical data, known as flut-
ter derivatives, that can be measured in the laboratory. A more thorough approach can
make use of detailed observations of flow patterns associated with the aeroelastic behav-
ior of typically simple shapes. Fundamental studies of this type are considered in [4]; an
example is reported in detail, with exemplary rigor, in [8].
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19

Vortex-Induced Vibrations

19.1 Lock-In as an Aeroelastic Phenomenon

The shedding of vortices in the wake of a body gives rise to fluctuating lift forces. If the
body is flexible, or if it has elastic supports, it will experience motions due to aerody-
namic forces and, in particular, to the fluctuating lift force. As long as the motions are
sufficiently small they do not affect the vortex-shedding frequency Ns, which remains
proportional to the wind speed, in accordance with the relation

Ns =
U St

D
(19.1)

(Section 4.4), where the Strouhal number, St, depends upon body geometry and the
Reynolds number, D is a characteristic body dimension, and U is the mean velocity of
the uniform flow, or a representative mean velocity in shear flow.

If the vortex-induced transverse deformations are sufficiently large, within an inter-
val NsD/St −ΔU<U<NsD/St +ΔU , where ΔU/U is in the order of a few percent, the
vortex shedding frequency no longer satisfies Eq. (19.1). Rather, because the body defor-
mations influence the flow, the vortex shedding frequency will be constant for all wind
speeds within that interval (Figure 19.1). This is an aeroelastic effect: while the flow
affects the body motion, the body motion in turn affects the flow insofar as it produces
lock-in; that is, a synchronization of the vortex-shedding frequency with the frequency
of vibration of the body.

19.2 Vortex-Induced Oscillations of Circular Cylinders

A variety of vortex-induced oscillation models are available in which the aeroelastic
forces depend upon adjustable parameters fitted to match experimental results. By con-
struction, those models provide a reasonable description of the observed aeroelastic
motions. However, the empirical models may not be valid as a motion predictor for
conditions other than those of the experiments.

Consider a rigid circular cylinder in uniform, smooth flow. The across-wind force act-
ing on the cylinder is approximately

F(t) = 1
2
𝜌U2DCLS sin𝜔st (19.2)

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 19.1 Frequency of vortex shedding in the wake of an elastic structure as a function of wind
velocity.

where 𝜔s = 2𝜋Ns, Ns satisfies the Strouhal relation (Eq. [19.1]), and CLS is a lift
coefficient. For a circular cylinder in uniform smooth flow and Reynolds number
40<Re< 3 × 105, CLS ≈ 0.6 [1, p. 7]).

For a cylinder allowed to oscillate, Eq. (19.2) is inadequate for two reasons. First,
the across-wind force increases with oscillation amplitude until a limiting amplitude
is reached. Second, the spanwise correlation of the across-wind force also increases, as
indicated in Figure 19.2.

Let y denote the across-wind displacement of a cylinder of unit length for which the
imperfect spanwise force correlation is not explicitly accounted for. The equation of
motion of the cylinder can be written as

mÿ + cẏ + ky =  (y, ẏ, ÿ, t) (19.3)
where m is the cylinder mass, c is the mechanical damping constant, k is the spring stiff-
ness, and  is the fluid-induced force per unit span, which may be dependent on the
displacement y and its first and second derivatives, as well as on time. Most empirical
models recognize the near-sinusoidal response of the cylinder at the Strouhal frequency
and the natural frequency of vibration of the structure. Unless the velocity is at the
lock-in values the response gives rise to a beating oscillation. Figure 19.3 parts a–c show
the displacements y and their spectral densities for an elastically supported cylinder
before, at, and after lock-in, respectively.

Scanlan [4] proposed the following simple model:

m[ÿ + 2𝜁𝜔1ẏ + 𝜔2
1y] = 1

2
𝜌U2D

[
Y1(K)

(
1 − 𝜀

y2

D2

)
ẏ
U

+ Y2(K)
y
D

+ CL(K) sin(𝜔t + 𝜙)
]

(19.4)

where m is the body mass per unit length, 𝜁 is the damping ratio, 𝜔1 is the frequency
of vibration of the body, D is the cylinder’s diameter, U is the flow velocity, 𝜌 is the
density of the fluid, K=𝜔D/U is the reduced frequency, and the vortex-shedding
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Figure 19.2 The effect of increasing the oscillation amplitude a/2 of a circular cylinder of diameter D
on the correlation between pressures at points separated by distance r along a generator: (a) smooth
flow; (b) flow with 11% turbulence intensity. Reynolds number: 2× 104. Source: Reprinted from [2]
with permission of Cambridge University Press.

frequency n=𝜔/2𝜋 satisfies the Strouhal relation n=U St/D; Y 1, Y 2, 𝜀, and CL are
adjustable parameters that must be fitted to experimental results. As is the case for
the van der Pol oscillator, the amplitude y is self-limiting. The first term within the
brackets in the right-hand side of Eq. (19.4) is proportional to ẏ and may therefore be
viewed as a damping term of aerodynamic origin. For low amplitudes y that term is
positive, meaning that the sum of the mechanical and aerodynamic damping forces can
be negative, in agreement with the physical fact that the flow promotes the cylinder’s
motion by transferring energy to the body. The reverse is true for high amplitudes,
where the body loses energy by transferring it to the flow.

At lock-in, 𝜔 ≈ 𝜔1, and the last two terms in the right-hand side of Eq. (19.4) are rela-
tively small and can be neglected. Then Y 1 and 𝜀 remain to be determined by experiment.
At steady amplitudes the average energy dissipation per cycle is zero, so that

∫

T

0

[
4m𝜁𝜔 − 𝜌UDY1

(
1 − 𝜀

y2

D2

)]
ẏ2dt = 0 (19.5)
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Figure 19.3 Across-flow oscillations y/D of elastically supported circular cylinder: (a) before lock-in; (b)
at lock-in; (c) after lock-in. The Strouhal frequency and the natural frequency of vibration of the body,
f s and f n, respectively, are shown in the spectral density plots S(f ) [3], with permission from the
American Society of Civil Engineers (ASCE).

where T= 2𝜋/𝜔. Assuming that the oscillation y(t) is practically harmonic,

y = y0 cos𝜔 t (19.6)

leads to the results

∫

T

0
ẏ2dt = 𝜔y2

0 𝜋 (19.7)

∫

T

0
y2ẏ2dt = 𝜔y4

0
𝜋

4
(19.8)

Then Eq. (19.5) yields the steady amplitude solution

y0

D
= 2

[Y1 − 8𝜋SscSt
𝜀Y1

]1∕2

(19.9)
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where St is the Strouhal number and

Ssc =
𝜁m
𝜌D2 (19.10)

is the Scruton number.
If, at lock-in velocity, the mechanical model is displaced to an initial amplitude A0

and then released, it will undergo a decaying response until it reaches a steady state
with amplitude y0 given by Eq. (19.9) (Figure 19.4). A time-dependent expression for the
decaying oscillation amplitude, derived in [5], yields the maximum amplitudes shown
in Figure 19.5, which are close to those yielded by an empirical formula obtained in [5]
and plotted in Figure 19.5:

y0

D
= 1.29

[1 + 0.43(8𝜋2St2Ssc)]3.35
(19.11)

y

Figure 19.4 Decaying oscillation to steady state of bluff, elastically sprung model under vortex lock-in
excitation.

1.0
0.00

0.05

0.10

1.5 2.0 2.5 3.0 3.5 4.0

yo/D

Scruton number

Experiment
Eq. 19.11

Figure 19.5 Maximum amplitudes versus Scruton number. Experiment: o; Eq. (19.11): - - - -. Source:
Reprinted from [6], with permission from Elsevier.
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19.3 Across-Wind Response of Chimneys and Towers
with Circular Cross Section

A model similar to Eq. (19.4) was developed in [7] for application to the design of
chimneys and towers with circular cross-section. Differences between this model and
Eq. (19.4) are as follows. It is noted in [7] that 𝜌U2Y 2(K ) ≪ m𝜔2

1. The term Y 2(K )y/D is
therefore neglected, and since the actual motion of the chimneys or towers is random
rather than periodic, the term 𝜀y2/D2 of Eq. (19.4) is replaced by the ratio y2∕(𝜆D)2

where 𝜆 is a coefficient whose physical significance is discussed subsequently. The term

1
2
𝜌U2DY1(K)

(
1 − 𝜀

y2

D2

)
ẏ
U

(19.12)

of Eq. (19.4) is written in the form

2𝜔1𝜌D2Ka0

(
U

Ucr

)(
1 −

y2

(𝜆D)2

)
ẏ (19.13)

where Ka0(U/Ucr) is an aerodynamic coefficient and Ucr =𝜔1D/(2𝜋 St) is the velocity
that produces vortex shedding with frequency n1. This term is equated to the product
−2m𝜁a𝜔1, where 𝜁a is defined as the aerodynamic ratio, which may thus be written as

𝜁a = −𝜌D2

m
Ka0

(
U

Ucr

)[
1 −

y2

(𝜆D)2

]
(19.14)

For y2
1∕2

= 𝜆D the aerodynamic damping vanishes, so the structure no longer experi-
ences aeroelastic effects causing the response to increase. The coefficient 𝜆may thus be
interpreted as the ratio between the limiting r.m.s. value of the aeroelastic response and
the diameter D. The total damping ratio of the system is then

𝜁t = 𝜁 + 𝜁a (19.15)

where 𝜁 is the mechanical damping ratio. The aeroelastic effects are thus introduced
by substituting into the equation of motion the total damping 𝜁 t for the mechanical
damping ratio 𝜁 .

This simple approach was validated in [7] against experimental results shown in
Figure 19.6, which represents the dependence of the measured response 𝜂rms = y2

1∕2
∕D

upon the reduced wind speed 2𝜋U/𝜔1D for various damping ratios 𝜁 . Figure 19.7
shows calculated versus measured ratios y2

max
1∕2

∕D for various values of the damp-
ing parameter Ks =m𝜁/(𝜌D2), where y2

max
1∕2

is the r.m.s. response corresponding to
the most unfavorable reduced wind speed. In Figure 19.7, (i) the forced vibration regime
corresponds to vibrations induced quasi-statically by the vorticity in the wake of the
cylinder, and (ii) the lock-in regime corresponds to vibrations due to aeroelastic effects.
A transition regime is observed between (i) and (ii). Turbulence in the oncoming flow
decreases the coherence of the vorticity shed in the wake of the body, and reduces the
magnitude of the across-wind response. Vibrations typical of these regimes are shown
in Figure 19.8. The ratios of the peak to r.m.s. response are about 4.0 in the forced
vibration regime and about

√
2 in the lock-in regime.
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Figure 19.6 Response of a model stack of circular cross section and length L for different values of the
mechanical damping (Re subcritical). Source: From [8]. Courtesy of National Physical Laboratory, U.K.

Based on inferences from experimental data available in the literature, [7] devel-
oped curves representing (i) the dependence upon Reynolds number of the largest
value of Ka0(U/Ucr) in smooth flow, Ka0max, and (ii) the dependence of the ratio
Ka0(U/Ucr)/Ka0max upon U/Ucr for smooth flow and flows with various turbulence
intensities u2

1∕2
∕U (Figure 19.9).

For a vertical structure experiencing random motions described by the relation

y2(z) =
∑

i
𝜉2

i y2
i (z) (19.16)

where y2 is the r.m.s. response, 𝜉i and yi are the r.m.s. modal coefficient and the modal
shape, respectively, for mode i [9], the following expression is proposed for the total
damping in the ith mode:

𝜁ti = 𝜁i + 𝜁ai (19.17)

𝜁ai = −
𝜌D2

0

mei

⎡⎢⎢⎣
2K1i − K2i

𝜉2
i

D2
0

⎤⎥⎥⎦
(19.18)

K1i =
∫

h
0 Ka0(z)

[
D(z)
D0

]2
y2

i (z)dz

∫
h

0 y2
i (z)dz

(19.19)
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Figure 19.7 Measured and estimated response in smooth flow. Source: Reprinted from [7], with
permission from Elsevier.

K2i =
∫

h
0 Ka0(z)y4

i (z)dz

𝜆2 ∫
h

0 y2
i (z)dz

(19.20)

where 𝜁 i and 𝜁ai are the mechanical and the aerodynamic damping in the ith mode of
vibration, respectively, D0 is the diameter at elevation z= 0, D(z) is the diameter at ele-
vation z, h is the height of the structure, mei

is the equivalent mass per unit length in the
i-th mode of vibration, defined as

mei =
Mi

∫
h

0 y2
i (z)dz

(19.21)
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Figure 19.8 Simulated displacement histories for low, moderate, and high mechanical damping.
Source: Reprinted from [7], with permission from Elsevier.
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Figure 19.9 Dependence of ratio K a0/K a0max upon ratio U/Ucr for various turbulence intensities.
Source: Reprinted from [7], with permission from Elsevier.
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and Mi is the generalized mass in the ith mode. Equations 19.17–19.20 are based on
the assumption that aeroelastic effects occurring at various elevations are linearly
superposable.

For the relatively small values of the response that are acceptable for chimneys and
stacks, the estimated response depends weakly upon the assumed value of 𝜆. It is sug-
gested in [9] that the value 𝜆= 0.4 is reasonable for use in estimates of the response of
concrete chimneys.
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20

Galloping and Torsional Divergence

20.1 Galloping Motions

Galloping is a large-amplitude aeroelastic oscillation (one to ten or more cross-sectional
dimensions of the body) that can be experienced by elastically restrained cylindrical
bodies with certain types of cross-section (e.g., square section, D-section, ice laden
power cables). For material on wake galloping of power transmission lines grouped in
bundles, see, for example, Ref. [1].

20.1.1 Glauert–Den Hartog Necessary Condition for Galloping Motion

Consider first a fixed cylinder immersed in a flow with velocity Ur . Assume the angle
of attack is 𝛼 (Figure 20.1). The positive y-coordinate in Figure 20.1 is downward. The
mean drag and lift are, respectively,

D(𝛼) = 1
2
𝜌U2

r BCD(𝛼), (20.1)

L(𝛼) = 1
2
𝜌U2

r BCL(𝛼) (20.2)

The sum of the projections of these components on the direction y is

Fy(𝛼) = −D(𝛼) sin 𝛼 − L(𝛼) cos 𝛼 (20.3)

If Fy(𝛼) is written in the alternative form

Fy(𝛼) =
1
2
𝜌U2BCFy

(𝛼) (20.4)

where U=Ur cos 𝛼, it is easily verified that there follows from Eqs. (20.1)–(20.4)

CFy
(𝛼) =

−[CL(𝛼) + CD(𝛼) tan 𝛼]
cos 𝛼

(20.5)

Consider now the case in which, in a flow with velocity U , the body oscillates in the
across-flow direction y (Figure 20.2). The magnitude of the relative velocity of the flow
with respect to the moving body is denoted by Ur and can be written as

Ur = (U2 + ẏ2)1∕2 (20.6)

The angle of attack, denoted by 𝛼, is

𝛼 = arctan
ẏ
U

(20.7)

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 20.1 Lift and drag on a fixed bluff object.
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Figure 20.2 Effective angle of attack on an oscillating
bluff object.

The equation of motion of the body in the y direction is

m[ÿ + 2𝜁𝜔1ẏ + 𝜔2
1y] = Fy (20.8)

where m is the mass per unit length, 𝜁 is the damping ratio, and𝜔1 is the natural circular
frequency. Fy denotes the aerodynamic force acting on the body in the direction normal
to the mean flow. It is assumed that the mean aerodynamic lift and drag coefficients
CL(𝛼) and CD(𝛼) for the oscillating body and for the fixed body are the same, so that
Fy(𝛼) is given by Eq. (20.4) and CFy

(𝛼) is given by Eq. (20.5).
Consider now the case of incipient (small) motion, that is, the condition in the vicinity

of ẏ = 0, wherein

𝛼 ≈
ẏ
U

≈ 0 (20.9)

For this condition

Fy ≈
dFy

d𝛼

|||||𝛼=0

𝛼 (20.10)

Differentiation of Eq. (20.5) yields
dCFy

d𝛼

|||||𝛼=0

= −
(dCL

d𝛼
+ CD

)
𝛼=0

(20.11)

The equation of motion thus takes the form

m[ÿ + 2𝜁𝜔1ẏ + 𝜔2
1y] = −1

2
𝜌U2B

(dCL

d𝛼
+ CD

)
𝛼=0

ẏ
U

(20.12)

Considering the aerodynamic (right-hand) side of Eq. (20.12) as a contribution to the
overall system damping, the net damping coefficient of the system is

2m𝜔1𝜁 +
1
2
𝜌UB

(dCL

d𝛼
+ CD

)
𝛼=0

= d (20.13)
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The condition for the occurrence of instability is that d< 0. Since 𝜁 > 0, for this
condition to be satisfied it is necessary that(dCL

d𝛼
+ CD

)
𝛼=0

< 0 (20.14)

Equation (20.14) is the Glauert–Den Hartog necessary condition for incipient gallop-
ing motion (a sufficient condition being d< 0) [1]. It follows from Eq. (20.14) that circular
cylinders, for which dCL

d𝛼
= 0, cannot gallop.

The physical interpretation of Eq. (20.14) is the following. Let the body experience a
small perturbation from its position of equilibrium that causes it to acquire a velocity ẏ.
The perturbation causes an asymmetry in the aerodynamic forces that act on the body.
If the body’s aerodynamic properties are such that this asymmetry causes the initial
velocity to increase, galloping motion will occur. Otherwise the body will be restored to
its position of equilibrium.

To summarize: the susceptibility of a slender prismatic body to galloping instabil-
ity can be assessed by evaluating its mean lift and drag coefficients and determining
whether the left-hand side of Eq. (20.14) is negative. For example, plots of the drag and
lift coefficients show that according to the Glauert–Den Hartog criterion the octagonal
cylinder of Figure 20.3 is susceptible to galloping for angles −5∘

<𝛼 < 5∘ [2].
For a simple demonstration of the galloping motion of a square cylinder, see https://

www.nist.gov/wind.
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Figure 20.3 Force coefficients for an octagonal cylinder (Re= 1.2× 106). Source: Courtesy of Dr. R. H.
Scanlan.
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Tests have shown that the derivatives
dCFy

d𝛼
are not dependent upon the frequency

of the body motion and can be obtained from aerodynamic force measurements on
the fixed body. The quantities

dCFy

d𝛼
are called steady-state aerodynamic lift coefficient

derivatives or, for short, steady-state aerodynamic derivatives. In the case of flutter, the
aeroelastic behavior is characterized by quantities of a similar nature, called flutter aero-
dynamic derivatives that, unlike the steady-state derivatives that characterize galloping
motion, depend upon the oscillation frequency. This difference is commented upon in
Chapter 23.

20.1.2 Modeling of Galloping Motion

Galloping motion was described in [3] by developing the lift coefficient CFy
in powers

of ẏ
U

:

CFy
(𝛼) = A1

(
ẏ
U

)
− A2

(
ẏ
U

)2 ẏ
|ẏ| − A3

(
ẏ
U

)3

+ A5

(
ẏ
U

)5

− A7

(
ẏ
U

)7

(20.15)

If the dependence of CD and CL upon 𝛼 is known, the coefficients A1 through A7 can be
evaluated as follows. First, the coefficient CFy

is plotted against tan 𝛼 = ẏ
U

using Eq. (20.5).
The coefficients in Eq. (20.15) can then be estimated on the basis of this plot, for example
by using a least squares technique. Reference [3] applies the methods of Kryloff and
Bogoliuboff [4] to the resulting nonlinear equation, postulating as a first approximation
the solution

y = a cos(𝜔1t + 𝜙) (20.16)

where a and 𝜙 are considered to be slowly varying functions of time. Depending upon
whether the coefficient A1 is less than, equal to, or larger than zero, three basic types of
curves CFy

are identified as functions of 𝛼, with the corresponding galloping response
amplitudes as functions of the reduced velocity U/D𝜔1 – see Figure 20.4. The only pos-
sible oscillatory motions are those with amplitudes a traced in full lines. If the speed
increases from U0 to U2 (Figure 20.4a), the amplitude of the response is likely to jump
from the lower to the upper branch of the solid curve. If the speed decreases from U2
to U0 the jump occurs from the upper to the lower curve.

An elegant mathematical investigation into the nonlinear modeling of galloping
motions is reported in [5].

20.1.3 Galloping of Two Elastically Coupled Square Cylinders

Reference [6] describes an experiment conducted in a water tunnel on the behavior
of a system of two elastically restrained and coupled aluminum square bars with sides
h1 = h2 = 6.35 mm and length 0.215 m. The spring constants were k1 = 56, k2 = 78, and
k12 = 145 N m−1 (Figure 20.5). To prevent displacements due to drag, the bar ends were
attached to fixed points by thin wires with lengths r = 400 mm. The bars were observed
to gallop in phase, but except for relatively low flow speeds U , this oscillatory form alter-
nated in unpredictable, chaotic fashion with a second oscillatory form wherein the two
bars galloped with higher frequency in opposite phases (Figures 20.6a, b). The mean
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Figure 20.4 Three basic types of across-wind force coefficients and the corresponding galloping
response amplitudes a. Source: From [3]. With permission from the American Society of Civil Engineers
(ASCE).

Figure 20.5 Schematic of double galloping oscillator.
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Figure 20.6 (a) Observed time history of displacement y1; (b) observed time history of displacements
y1 (solid line) and y2 (interrupted line). Source: From [6].
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exit time of the system from the region of phase space corresponding to the in-phase
oscillations decreased as the flow velocity increased.

20.2 Torsional Divergence

Torsional divergence, also called lateral buckling, can occur on airfoils or bridge decks.
Like galloping, it can be modeled by using aerodynamic properties measured on the
body at rest.

The parameters of the torsional divergence problem are shown in Figure 20.7, in which
U is the horizontal wind velocity, 𝛼 is the angle of rotation of the bridge deck about the
elastic axis, and k𝛼 is the torsional stiffness.

The aerodynamic moment per unit span is:

M(𝛼) = 1
2
𝜌U2B2CM(𝛼) (20.17)

where B is the bridge deck width and CM(𝛼) is the aerodynamic moment coefficient
about the elastic axis. For small 𝛼

M(𝛼) ≈ 1
2
𝜌U2B2

[
CM(0) +

dCM

d𝛼
||||𝛼=0

𝛼

]
(20.18)

Let 𝜆 = 1
2
𝜌U2B2 > 0. Equating M(𝛼) to the internal torsional moment k𝛼 𝛼 yields

𝛼 =
𝜆CM(0)

k𝛼 − 𝜆
dCM

d𝛼
|||𝛼=0

(20.19)

Divergence occurs when 𝛼 goes to infinity for vanishing values of the denominator in
Eq. (20.19). The critical divergence velocity is

Ucr =

√√√√ 2k𝛼
𝜌B2 dCM

d𝛼
|||𝛼=0

(20.20)

In most cases of interest in civil engineering applications the critical divergence veloc-
ities are well beyond the range of velocities normally considered in design.

ELASTIC
AXIS

kα
U α

Figure 20.7 Parameters for the torsional divergence problem.
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Flutter

Flutter is an aeroelastic phenomenon that occurs in flexible bodies with relatively
flat shapes, such as airplane wings and bridge decks. It involves oscillations with
amplitudes that grow in time and can result in catastrophic structural failure. Like other
aeroelastic phenomena, flutter entails the solution of equations of motion involving
inertial, mechanical damping, elastic restraint, and aerodynamic forces (including
forces induced by self-excited motions) that depend upon the ambient flow and the
shape and motion of the body.

Assume that the mechanical damping is negligible. The motion of the body is aeroe-
lastically stable if, following a small perturbation away from its position of equilibrium,
the body will revert to that position owing to stabilizing self-excited forces associated
with the perturbation. As the flow velocity increases, the aerodynamic forces acting on
the body change, and for certain elongated body shapes, at a critical value of the flow
velocity the self-excited forces may cause the body to be neutrally stable. For velocities
larger than the critical velocity the oscillations initiated by a small perturbation from
the position of equilibrium will grow in time. The self-excited forces that cause these
growing oscillations can be viewed as producing a negative aerodynamic damping effect.

The main difficulty in solving the flutter problem for bridges is the development of
expressions for the self-excited forces. For thin airfoil flutter in incompressible flow,
expressions for the self-excited forces due to small oscillations have been derived by
Theodorsen [1]. However, the airfoil solutions are in general not applicable to bridge
sections.

Although it is accompanied at all times by vortex shedding with frequency equal to the
flutter frequency, flutter is a phenomenon distinct from vortex-induced oscillation. The
latter entails aeroelastic flow-structure interactions only for flow velocities at which
the frequency of the vortex shedding is equal or close to the structure’s natural fre-
quency; for velocities higher or lower than those at which lock-in occurs the oscillations
are much weaker than at lock-in. In contrast, for velocities higher than those at which
flutter sets in, the strength of the oscillations increases monotonically with velocity.

To date, one of the most influential contributions to solving the flutter problem for
bridges is Scanlan’s simple conceptual framework wherein the self-excited forces due to
small bridge deck oscillations can be characterized by fundamental functions called flut-
ter aerodynamic derivatives [2]. As shown earlier, in the galloping case the self-excited
forces depend on the steady-state derivatives dCFy

∕d𝛼 that are not significantly affected
by vorticity and may therefore be obtained from measurements on the fixed body. In
contrast, owing to the elongated shapes of bodies susceptible to flutter, the aerodynamic

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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derivatives of a body susceptible to flutter must be obtained from measurements on the
oscillating body. This is the case because the aerodynamic pressures on the body are sig-
nificantly affected by vortices induced by, and occurring at the frequency of, the torsional
oscillations of the bridge.

In its detail, flutter in practically all cases involves nonlinear aerodynamics. It has been
possible in a number of instances, however, to treat the problem successfully by lin-
ear analytical approaches. This is the case for two main reasons: First, the supporting
structure is usually treatable as linearly elastic and its actions dominate the form of the
response, which is usually an exponentially modified sinusoidal oscillation. Second, it is
the incipient or starting condition, which may be treated as having only small amplitude,
that separates the stable and unstable regimes. These two main features enable a flutter
analysis to be based on the standard stability considerations of linear elastic systems.

It is characteristic of flutter as a typical self-excited oscillation that, by means of its
deflections and their time derivatives, a structural system taps off energy from the wind
flow. If the system is given an initial disturbance, its motion will either decay or grow
according to whether the energy of motion extracted from the flow is less than or exceeds
the energy dissipated by the system through mechanical damping. The theoretical divid-
ing line between the decaying and the sustained sinusoidal oscillation due to an initial
disturbance, is then recognized as the critical flutter condition.

Section 21.1 considers two-dimensional (2-D) bridge deck behavior in smooth flow.
Section 21.2 briefly reviews the expression for the aerodynamic lift and moment act-
ing on airfoils. Section 21.3 introduces the aerodynamic lift, drag and moment acting
on bridge decks. Section 21.4 concerns the solution of the flutter equations for bridges.
Section 21.5 discusses the bridge response to turbulent wind in the presence of aeroe-
lastic effects.

21.1 Formulation of the Two-Dimensional Bridge Flutter
Problem in Smooth Flow

In the 2-D case the bridge deformations are the same throughout the bridge span. Bridge
decks are typically symmetrical, that is, their elastic and mass centers coincide. The
dependence of flutter derivatives upon the oscillation frequency n of the fluttering body
can be expressed in terms of the non-dimensional reduced frequency

K = 2𝜋Bn∕U, (21.1)

where B is the width of the deck, and U is the mean wind flow velocity. If the horizon-
tal displacement p of the deck is also taken into account, the equations of motion of a
two-dimensional section of a symmetrical bridge deck with linear mechanical damping
and elastic restoring forces in smooth flow can be written as

mḧ + chḣ + khh = Lae (21.2a)
I�̈� + c𝛼�̇� + k𝛼𝛼 = Mae (21.2b)
mp̈ + cpṗ + kpp = Dae (21.2c)

where h, 𝛼, and p are the vertical displacement, torsional angle, and horizontal displace-
ment of the bridge deck, respectively (see Figure 21.1 for notations pertaining to h and 𝛼;
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α
U

ab

b = B/2 h

B

Figure 21.1 Notations.

similar notations are applicable to airfoils). A unit span is acted upon by the aeroelastic
lift Lae, moment Mae, and drag Dae, and has mass m, mass moment of inertia I, vertical,
torsional and horizontal restoring forces with stiffness kh, k𝛼 , and kp, respectively, and
mechanical damping coefficients ch, c𝛼 , and cp.

21.2 Aeroelastic Lift and Moment Acting on Airfoils

It is instructive at this point to briefly consider the modeling of the aeroelastic lift Lh and
moment M𝛼 acting on airfoils as shown in Figure 21.1. (For airfoils, p displacements are
negligible.) Using basic principles of potential flow theory and an elegant mathematical
technique involving conformal mapping, Theodorsen showed that, for small airfoil
motions in incompressible flow, the expressions for Lh and M𝛼 are linear in h and 𝛼 and
their first and second derivatives [1]. The coefficients in these expressions, called aero-
dynamic coefficients, are defined in terms of the complex function C(K )= F(K )+ iG(K ),
known as Theodorsen’s circulation function (Figure 21.2), in which K= b 𝜔/U is the
reduced frequency, b is the half-chord of the airfoil, U is the flow velocity, and 𝜔 is the
circular frequency of oscillation.

Theodorsen’s theory yields the following expressions for the harmonically oscillating
lift and moment:

Lae = −𝜋𝜌b2(U�̇� + ḧ − ab�̈�) − 2𝜋𝜌UC(K)
[
U𝛼 + ḣ + b

(1
2
− a

)
�̇�

]
(21.3a)

Mae = −𝜋𝜌b2
{(1

2
− a

)
Ub�̇� + b2

(1
8
+ a2

)
�̈� − abḧ

}

+ 2𝜋𝜌U
(1

2
+ a

)
b2C(K)

[
U𝛼 + ḣ + b

(1
2
− a

)
�̇�

]
(21.3b)

where a is the constant defining the distance ab from the mid-chord to the rotation
point, 𝜌 is the air density.

It was shown in Section 20.1.1 that a galloping body experiences a single-degree-of-
freedom motion, and that, for small displacements, the aeroelastic force acting on the
body is linear with respect to the time rate of change of the across-wind displacement y,
the proportionality factor being a function of aerodynamic origin. Airfoil flutter entails
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Figure 21.2 Functions F(K) and G(K).

motions with two degrees of freedom (h and 𝛼), and the expressions for the aeroelastic
forces acting on the body are therefore more elaborate than in the galloping case,
although conceptually they are related. Indeed, for small displacements the aeroelastic
forces can be written as sums of terms that, like their galloping counterpart, are linear
with respect to the rates of change of h and 𝛼, the factors of proportionality being
also functions of aerodynamic origin. However, unlike in the case of galloping, terms
proportional to 𝛼 come into play as well, and the factors of proportionality depend
upon the reduced frequency.

21.3 Aeroelastic Lift, Drag And Moment Acting on Bridge
Decks

By analogy with Theodorsen’s results, empirical expressions were proposed for the
aeroelastic forces acting on bridge decks of the type [2–6]:

Lae =
1
2
𝜌U2B

[
KH∗

1(K) ḣ
U

+ KH∗
2(K)B�̇�

U
+ K2H∗

3 (K)𝛼

+K2H∗
4 (K)h

B
+ KH∗

5(K)
ṗ
U

+ K2H∗
6 (K)

p
B

]
(21.4a)

Mae =
1
2
𝜌U2B2

[
KA∗

1(K) ḣ
U

+ KA∗
2(K)B�̇�

U
+ K2A∗

3(K)𝛼

+K2A∗
4(K)h

B
+ KA∗

5(K)
ṗ
U

+ K2A∗
6(K)

p
B

]
(21.4b)

Dae =
1
2
𝜌U2B

[
KP∗

1(K)
ṗ
U

+ KP∗
2(K)B�̇�

U
+ K2P∗

3(K)𝛼

+K2P∗
4(K)P

B
+ KP∗

5(K) ḣ
U

+ K2P∗
6(K)h

B

]
(21.4c)
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where K= 2𝜋nB/U and n is the oscillation frequency. For bridges the elastic and mass
centers coincide; that is, a= 0. Terms proportional to ḧ, �̈�, and p̈ (i.e., so-called added
mass terms, reflecting the forces due to the body motion that result in fluid accelerations
around the body) are negligible in bridge engineering applications and do not appear in
Eqs. (21.4a–c). The role of the terms in h and p is to account for changes in the frequency
of vibration of the body due to aeroelastic effects, while the terms in 𝛼 reflect the role
of the angle of attack. The quantities ḣ∕U and B�̇�∕U are effective angles of attack (e.g.,
the ratio ḣ∕U has the same significance as in the case of galloping, i.e. it represents the
angle of attack of the relative velocity of the flow with respect to the moving body). In
Eqs. (21.4) the terms containing first derivatives of the displacements are measures of
aerodynamic damping. If, among these terms, only those associated with the coefficients
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Figure 21.3 Aerodynamic coefficients H∗
i and A∗

i for bodies shown in Figure 21.4. Source: After [8] with
permission of Professor Partha Sarkar.
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H1
* , A2

* , and P1
* are significant, the total (mechanical plus aerodynamic) damping can

be written as
ch − 1/2𝜌UBKH1

∗, c𝛼 − 1/2𝜌UB3KA2
∗, cp − 1/2𝜌UBKP1

∗ (21.5a,b,c)
for the vertical, torsional, and horizontal degree of freedom, respectively.

The non-dimensional coefficients Hi
* , Ai

* , and Pi
* are known as flutter derivatives.1

Unlike in the galloping case where, owing to the absence of significant vortex-induced
pressures on the body, the derivatives can be obtained experimentally from static tests
(that is, tests in which the body is at rest), for the flutter case the coefficients of the
displacements and their time rate of change must be obtained experimentally from

GREAT  BELT EAST BRIDGE

NORMANDY BRIDGE

AIRFOIL

TSURUMI FAIRWAY BRIDGE

31000

27000

22300

10220 17580

3660

34000
38000

3050

3469

4400

Figure 21.4 Box decks for three bridges (dimensions in millimeters) and airfoil. Source: After [8] with
permission of Professor Partha Sarkar.

1 Equations (21.4a–c) are formulated in terms of real variables, viewed by some practitioners to be best
suited for structural engineering purposes. An alternative wherein the aeroelastic forces and the
displacements they induce in the bridge are expressed in terms of complex variables is preferred by some
practitioners, insofar as it may offer insights into phase relationships among various aeroelastic forces and
displacements – see [7].
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measurements on the oscillating deck, which, owing to its elongated shape, is affected
by vortex-induced pressures. For this reason, those coefficients are called motional
aerodynamic derivatives, as opposed to the steady-state aerodynamic derivatives that
characterize the galloping phenomenon.

Figure 21.3 shows aerodynamic coefficients H∗
i and A∗

i for a thin airfoil and three
streamlined box decks depicted in Figure 21.4.

The original Tacoma Narrows bridge (Figure III.2) had negligible H1
* values for all

K , meaning that the total damping (Eqs. [21.5a,b,c]) for motion in the h direction was
positive, thus precluding flutter in the vertical degree of freedom. The effect of hori-
zontal deck motions p(t) was not significant. However, A2

* was positive for values of
K such that for mean velocities greater than about 20 m s−1 the total damping given by
Eqs. (21.5a,b,c) was negative, resulting in flutter motions involving only the torsional
degree of freedom. The bridge’s susceptibility to flutter was due to the use of an “H”
section (the horizontal line in the “H” representing the deck, and the vertical lines repre-
senting the girders supporting it). Owing to their inherent instability “H” bridge sections
are no longer used.

21.4 Solution of the Flutter Equations for Bridges

The solution of the flutter equations can be obtained if plots of the flutter derivatives
Hi

* , Ai
* , and Pi

* are available from measurements as functions of K . It is assumed that
the expressions for h, 𝛼, and p are proportional to ei𝜔t . These expressions are inserted
into Eqs. (21.4), and the determinant of the amplitudes of h, 𝛼, and p is set to zero as
the basic stability solution. For each value of K a complex equation in 𝜔 =𝜔1 + i𝜔2 is
obtained. The flutter velocity is the velocity for Uc for which 𝜔2 ≈ 0, that is

Uc =
B𝜔1

Kc
(21.6)

where Kc is the value of K for which 𝜔 ≈ 𝜔1.
A time-domain approach to the study of suspension bridge aeroelastic behavior is

presented in [9] and [10]. For a simplified approach to determining the critical flutter
velocity, see [11].

21.5 Two-Dimensional Bridge Deck Response to Turbulent
Wind in the Presence of Aeroelastic Effects

The expressions for the aeroelastic forces in the turbulent flow have the same form as for
the smooth flow case (Eqs. [21.4]). However, the aerodynamic coefficients Hi

* , Ai
* , Pi

*

should be obtained from measurements in turbulent flow, since turbulence may affect
the aerodynamics of the bridge deck by changing the configuration of the separation
layers and the position of reattachment points. Through complex aerodynamic mecha-
nisms, turbulence can affect the flutter derivatives and, therefore, the flutter velocity – in
some instances favorably but possibly also unfavorably [12].
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The buffeting forces per unit span may be written as follows:

Lb = −1
2
𝜌U2B

[
2CL

u(x, t)
U

+
(dCL

d𝛼
+ CD

)
w(x, t)

U

]
(21.7a)

Mb = 1
2
𝜌U2B2

[
2CM

u(x, t)
U

+
(dCM

d𝛼

)
w(x, t)

U

]
(21.7b)

Db = 1
2
𝜌U2B

[
2CD

u(x, t)
U

]
(21.7c)

where B is the deck width, and U +u(x, t) and w(t) are the wind speed components in the
x (along-wind) and vertical directions, respectively. For example, Eq. (21.7c) is derived
from the expression for the total (mean plus fluctuating) drag force D:

D = D + Db = 1
2
𝜌CDB[U + u(t)]2 ≈ 1

2
𝜌CDB[U2 + 2Uu(t)] (21.8)

where U is the mean flow velocity, u(t) is the along-wind (longitudinal) component of
the turbulent velocity fluctuation at time t, and the mean drag force is defined as

D = 1
2
𝜌U2BCD (21.9)

the drag coefficient CD is measured in turbulent flow, and the square of the ratio u(x,
t)/U is neglected. For the two-dimensional case, the solution of the buffeting problem
in the presence of aeroelastic effects is obtained from Eqs. (21.2), in the right-hand sides
of which the sums Lae + Lb, Mae +Mb, Dae +Db are substituted, respectively, for Lae, Mae,
and Dae as defined by Eqs. (21.4) [12].

The two-dimensional case can provide useful insights into the behavior of a bridge.
However, to be useful in applications to actual bridges, it is necessary to obtain the
solution of the three-dimensional case, in which the bridge displacement and the
aerodynamic forces are functions of position along the span. This solution is considered
in Chapter 23.
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22

Slender Chimneys and Towers

This chapter presents material that complements Chapter 19 on the response of towers
and chimneys with circular cross section and allows the practical calculation of that
response (Section 22.1); it briefly discusses issues related to the aeroelastic response of
slender structures with square or rectangular cross section (Section 22.2); and describes
methods of alleviating wind-induced oscillations of slender structures (Section 22.3).

22.1 Slender Chimneys with Circular Cross Section

22.1.1 Slender Chimneys Assumed to be Rigid

In turbulent flow the nominal across-wind response 𝜎nom
y of a chimney is due to a super-

position of two across-wind loads. The first across-wind load, due to vortex shedding in
the tower’s wake, has the expression

L1(z, t) =
1
2
𝜌CL(z, t)D(z)U2(z) (22.1)

(the notations from Chapter 19 are used in this section). The spectral density of the lift
force L1(z, t) is

SL1
(z, n) =

[1
2
𝜌D(z)U2(z)

]2
SCL

(z, n) (22.2)

According to [1], measurements indicate that the spectral density SCL
(z, n) can be rep-

resented by the bell-shaped function

nSCL
(z, n)

C2
L

= 1√
𝜋Bns

exp

{
−
[1 − (n∕ns)

B

]2
}

(22.3)

where n denotes frequency, ns is the vortex-shedding frequency given by the relation

ns =
St U(z)

D(z)
(22.4)

St is the Strouhal number, and B is an empirical parameter that determines the spread
(bandwidth) of the spectral curve. This model is consistent with results of full-scale mea-
surements (Figure 22.1).

The cross-spectral density of the load L1(z, t) can be expressed as [3]:

SL1
(z1, z2, n) = S1∕2

L1
(z1, n)S

1∕2
L1

(z2, n)R0(z1, z2, n) (22.5)

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 22.1 Power spectral density of lift force coefficients CL measured on the Hamburg television
tower. Source: Reprinted from [2], with permission from Elsevier.

where the coherence function is assumed to be

R0(z1, z2, n) = cos(2ar) exp[−(ar)2] (22.6)

r =
2 ∣ z1 − z2 ∣

D(z1) + D(z2)
(22.7)

The parameter a is a measure of the decay of the cross-spectral function SL1
(z1, z2, n)

with the distance |z1 – z2|. Associated with the parameter a is a correlation length l,
a measure of the spatial separation beyond which the force fluctuations are no longer
correlated.

The second lift force, denoted by L2(t), is the projection on the across-wind direction
of the drag force induced by the resultant of the mean velocity U(z) and the lateral
turbulent velocity v(z,t). In large-scale turbulence, this force has an angle of attack
with respect to the along-wind direction equal to v/U , and its projection on that
direction is

L2(t) =
1
2
𝜌CDU2(z)v(z, t)

U(z)
(22.8)

The aerodynamic parameters depend upon: the Reynolds number

Re(z) = 67,000 U(z) D(z) (22.9)

where U(z) is the wind speed at elevation z in m s−1 and D(z) is the outside diameter
in meters; the turbulence in the oncoming flow; the aspect ratio h/D(h), where h is the
height of the structure; and the relative surface roughness k/D of the structure, where k is
the height of the roughness elements. For steel stacks and reinforced concrete chimneys
and towers 10–5<∼ k/D <∼10−3 [4].

The dependence of CD upon Reynolds number and surface roughness is represented
in Figure 4.22 for cylinders with aspect ratios h/D(h) ≳ 20. For cylinders with aspect
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ratios 10< h/D(h)< 20 it may be assumed that up to the elevation h – D(h) the drag
coefficient has the value

CD = Cs
D

[
1 − 0.015

(
20 − h

D(h)

)]
(22.10)

where Cs
D is the value of the drag coefficient taken from Figure 4.22. From elevation

h – D(h) to the top of the structure the drag coefficient may be assumed to have the value
CD = 1.4Cs

D regardless of aspect ratio [5]. The main effect of turbulence is to decrease the
Reynolds number corresponding to the onset of the critical region defined in Figure 4.22.

The following values of the Strouhal number are suggested in [5]:
St = 0.20 Re<∼ 2 × 105 (22.11a)
0.22<∼ St <∼ 0.45 2 × 105 <∼ Re<∼ 2 × 106 (22.11b)

St = c
{

0.23 − 0.007
[

log10

(
k
d

)
+ 5

]}
Re ≳ 2 × 106 (22.11c)

For 2 ×105 <∼ Re<∼ 2 ×106 the vortex shedding is random, and the Strouhal number given
by Eq. (22.11b) corresponds to the predominant frequencies of the flow fluctuations in
the wake. In Eq. (22.11c) the coefficient c depends upon the aspect ratio as follows:

c =
⎧⎪⎨⎪⎩

1.00 h
D(h)

≥ 30

0.736 + 0.012
[

h
D(h)

− 8.0
]

8 < h
D(h)

< 30
(22.12a,b)

Note that the values given by Eq. (22.11b) differ from those, obtained in a more recent
study, shown in Figure 4.15.
The following values of the r.m.s. lift coefficient are suggested for design purposes [5]:

C2
L

1∕2
≈

⎧⎪⎪⎨⎪⎪⎩

0.45 Re<∼ 2 × 105

0.14 2 × 105 <∼ Re<∼ 2 × 106

d
{

0.15 + 0.035
[
5 + log10

(
k
D

)]2
}

Re ≥ 2 × 106

(22.13a,b,c)
where

d ≈
⎧⎪⎨⎪⎩

1.00 h
D(h)

≳ 12

0.8 + 0.05
[

h
D(h)

− 8.0
]

8 < h
D(h)

< 12
(22.14a,b)

No information appears to be available on the dependence of the lift coefficient upon
turbulence intensity. It is suggested in [3, 5] that

B2 ≈ 0.082 + 2u2

U2 (22.15)

where u2 is the mean square value of the longitudinal velocity fluctuations and U is the
mean speed. According to [6] it may be assumed B = 0.18 for all flows.

For Re> 2 ×105 it is suggested in [3, 5] that a = 1/3 (see Eq. [22.6]), to which there
corresponds a correlation length l ≈ D. For Re< 2 × 105, l ≈ 2.5D [7].
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22.1.2 Flexible Slender Chimneys

The mechanical damping ratios 𝜁 i in the ith mode of vibration depend upon the type of
structure. Suggested values are as follows [4]:

Unlined steel stacks and similar structures: 0.002–0.010
Lined steel stacks: 0.004–0.016
Reinforced concrete chimneys and towers: 0.004–0.020.

The following approximate expressions are suggested in [3, 5] for the aeroelastic
parameter Ka0:

Ka0

(
U

Ucr

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 U
Ucr
< 0.85

ai

(
3.5 U

Ucr
− 2.95

)
0.85 ≤

U
Ucr
< 1.0

0.55ai 1.0 ≤
U

Ucr
< 1.1

ai

(
2.75 − 2 U

Ucr

)
1.1 ≤

U
Ucr
< 1.3

ai

(
0.46 − 0.25 U

Ucr

)
1.3 ≤

U
Ucr
< 1.84

0 1.84 ≤
U

Ucr

(22.16a,b,c,d,e,f)

where

ai = a1 a2 a3 a4 (22.17)

a1 =
⎧⎪⎨⎪⎩

1.0 Re < 104

1.8 104
≤ Re < 105

1.0 Re ≥ 105
(22.18a,b,c)

a2 =

{
2.0 U(10 m)<∼ 12 ms−1

1.0 U(10 m) ≳ 12 ms−1 (22.19a,b)

a3 = 0.9 + 0.2 [log10(k∕D) + 5] (22.20)

a4 =
⎧⎪⎨⎪⎩

1.0 h
D(h)

≥ 12.5

1.0 − 0.04
(

12.5 − h
D(h)

)
h

D(h)
< 12.5

(22.21a,b)

where Ucr = nD/St (see Section 19.3 and Figure 19.9).

22.1.3 Approximate Expressions for the Across-Wind Response

The across-wind response in the ith mode of vibration may be estimated as

𝜎yi(z) = 𝜉2
i

1∕2
yi(z) (22.22)

Yi(z) = gyi𝜎yi(z) (22.23)

gyi = [2 ln(3600 ni)]
1
2 + 0.577

[2 ln(3600 ni)]
1
2

(22.24)
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𝜉2
i

1∕2
= 𝜉2

nom,i

1∕2
⌊

𝜁i

(𝜁i + 𝜁ai)

⌋1∕2

(22.25)

Si(z) = (2𝜋ni)2
∫

h

z
m(z1)Yi(z1)dz1 (22.26)

i(z) = (2𝜋ni)2
∫

h

z
m(z1)Yi(z1)(z1 − z)dz1 (22.27)

where 𝜎yi(z) is the rms of the deflection at elevation z in the ith mode of vibration, 𝜉2
i

1∕2

is the r.m.s. of the corresponding generalized coordinate, yi(z) is the ith modal shape,
Y i(z) is the peak deflection in the ith mode of vibration, gyi is the peak factor, ni is the

natural frequency in the ith mode in Hz, 𝜉2
nom,i

1∕2
is the rms nominal generalized coor-

dinate in the ith mode (which corresponds to the response estimated by assuming that
no aeroelastic effects occur and that the motion is affected only by mechanical damping
in the ith mode), 𝜁 i is the structural damping in the ith mode, 𝜁ai is the aerodynamic
damping in the ith mode. Si(z) and i(z) are the shear force and the bending moment
at elevation z due to the across-wind response in the ith mode, and m(z) is the mass of
the structure per unit length. Note that, for the ith mode, the ratio of peak acceleration
to peak deflection is approximately (2𝜋ni)2 (see Eq. [B.16b]).

To estimate the across-wind response, expressions are needed for the rms of the nom-
inal generalized coordinate in the ith mode, 𝜉2

nom,i

1∕2
, and the aerodynamic damping

in the ith mode, 𝜁ai. These expressions are given next for (i) structures with constant
cross section and (ii) tapered structures. In both cases, the expressions are valid only
for relatively small ratios 𝜎yi(h)

D(h)
, for example 3% or less, to which there would correspond

negligible values of the second term within the bracket of Eq. (19.18). In practice, the
design of the structure is acceptable only if the ratio 𝜎yi(h)

D(h)
is small.

Structures with Constant Cross Section. The following approximate expressions based
on the approach described in Section 22.1.1 were proposed in [6]:

𝜉2
nom,i

1∕2
=

0.035C2
L

1∕2
(l∕D)1∕2

𝜁
1∕2
i St2

𝜌D3

Mi

[
D
∫

h

0
y2

i (z)dz
]1∕2

(22.28)

𝜁ai ≈ −𝜌D2

Mi
Ka0(1)

∫

h

0
y2

i (z)dz (22.29)

where 𝜌 ≃ 1.25 kg m−3 is the air density, Mi is the generalized mass in the ith mode, l
is the correlation length (see Section 22.1.1) and D is the outside diameter. The critical
wind speed corresponding to the ith mode of vibration has the expression

Ucr,i =
niD
St

(22.30)

Information on the mechanical damping ratios 𝜁 i is given in Section 22.1.2. Information
on the parameters St, C2

L, and Ka0 is given in Sections 22.1.1 and 22.1.2. In Eqs. (22.19a,b)
the speed U(10 m) corresponding to the ith mode is

U(10 m) =
ln
(

10
z0

)

ln
[(

5
6

)
h
z0

]Ucr,i (22.31)
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where h is the height of the structure in meters and z0 is the roughness length in meters
for the terrain that determines the wind profile over the upper half of the chimney
(Table 2.1).

Example 22.1 Consider a chimney with h= 193.6 m, D= 17.63 m, n1 = 0.364 Hz,
y1(z/h) = (z/h)1.67, m(z) = 58,000 kg m−1 for z≤ h/2, m(z) = 41,000 kg m−1 for z> h/2,
M1 = 1.87 ×106 kg. It is assumed 𝜁1= 0.02, k/D = 10−5, and z0 = 0.05 m. We seek the
response in the first mode.

Assuming tentatively St = 0.22, the critical wind speed at elevation 5 h/6 = 161.3 m
is Ucr, 1 = 29.2 m s−1 (Eq. [22.30]), to which there corresponds a Reynolds number
Re= 3.4 ×107 > 2 ×106. The aspect ratio is h/D ≃ 11. It can be verified that

St = 0.178 (Eqs. [22.11c] and [22.12b])
l = D (since Re> 2 ×105)
C2

L

1∕2
= 0.143 (Eqs. [22.13a,b,c] and [22.14a,b])

∫
h

0 y2
1(z)dz = 44.7 m

𝜉2
nom,1

1∕2
= 0.115 m (Eq. [22.28])

U(10) = 19.1 m s−1 > 12 m s−1 (Eqs. [22.30] and [22.31])
Ka0 (1) = 0.465 (Eqs. [22.16–22.21])
𝜁a1 =−0.0043 (Eq. [22.29])
𝜉2

1

1∕2
= 0.130 m (Eq. [22.25])

gy1 = 3.94 (Eq. [22.24])

𝜎y1(z) = 0.130
(

z
193.6

)1.67
m (Eq. [22.22])

Y 1(z) = 0.51
(

z
193.6

)1.67
m (Eq. [22.23])

1(0) = 1150 × 106 Nm (Eq. [22.27])

The results of the calculations depend strongly upon, in particular, the assumed value
of the structural damping ratio 𝜁1. Had the value 𝜁1 = 0.01 been appropriate, the results
obtained would have been larger than those obtained in this example by a factor of ([0.02
− 0.0043]/[0.01 − 0.0043])1/2 ≃ 1.66 (Eq. [22.25]).

Tapered Structures. The following approximate expressions based on the approach
described in Section 22.1.1 were proposed in [6]:

𝜉2
nom,i(zei

)
1∕2

≃
0.016C2

L

1∕2( l
D

)1∕2
𝜌D4(zei

)yi(zei
)

𝜁
1∕2
i St2Mi𝛽

1∕2(zei
)

(22.32)

𝛽(zei
) ≃

0.1D(zei
)

zei

− dD(z)
dz

|||||z=zei

(22.33)

𝜁ai(zei
) = −

𝜌D2
0

Mi ∫

h

0
Ka0

(
U(z)

Ucr(zei
)

)[
D(z)
D0

]2

y2
i (z)dz (22.34)
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where the notations of Eq. (22.28) are used, D0 is the outside diameter at the base, zei
is

the elevation corresponding to the critical velocity

Ucr(zei
) =

niD(zei
)

St
(22.35)

U(z)
Ucr(zei

)
=

ln(z∕z0)
ln(zei

∕z0)
(22.36)

and z0 is the terrain roughness that determines the wind profile over the upper half of
the structure.

Since, as in Eq. (22.25),

𝜉2
i (zei

)
1∕2

= 𝜉2
nom,i(zei

)
1∕2

(
𝜁i

𝜁i + 𝜁ai(zei
)

)1∕2

(22.37)

it follows that the maximum response in the ith mode corresponds to the maximum
value taken on by the function

Fi(zei
) =

D4(zei
)yi(zei

)
{𝛽(zei

)[𝜁i + 𝜁ai(zei
)]}1∕2 (22.38)

To determine that value, it is in practice necessary to calculate Fi(zei
), and in particular

𝜁ai(zei
), for a sufficient number of elevations 0 < zei

< h.
As pointed out in [8], if the structure is very lightly tapered (i.e., if dD(z)

dz
|||z=zei

, and there-
fore 𝛽(ze1

) is small – see Eq. [22.33]), the chimney is assumed to behave as if it had a
constant outside diameter D equal to the average diameter of its top third [6], and Eqs.
(22.28)–(22.30) are applied with the same values of the parameters St, C2

L

1∕2
and cor-

relation length D (or, for Re< 105, 2.5 D) as those used in Eq. (22.32). In practice, it is
therefore necessary to calculate both the value of the response yielded by Eqs. (22.32)
and (22.34) and the value yielded by Eqs. (22.28) and (22.29). The response to be assumed
for structural design purposes is the smaller of these two values [1].

22.2 Aeroelastic Response of Slender Structures with Square
and Rectangular Cross Section

Along-Wind Aeroelastic Response. Aerodynamic damping in tall buildings results from
the interaction between the fluctuating aerodynamic forces acting on the building and
the fluctuating building motions they induce. Since the aerodynamic damping is due
to the building motion, it affects in the most general case the along-wind, across-wind,
and torsional motions. In this section, attention is restricted to the aerodynamic
damping affecting the along-wind motion of an isolated building with a rectangular
shape in plan.

The aerodynamic along-wind force depends upon the relative wind speed with respect
to the moving structure. If the structure is sufficiently rigid, it experiences no significant
motion, and the relative wind speed with respect to the structure is equal, in practice,
to the oncoming wind speed. However, if the structure is flexible, its motions can be
significant, and the relative wind speed with respect to the structure is equal to the



�

� �

�

322 22 Slender Chimneys and Towers

time-dependent difference between the oncoming fluctuating speed and the speed of the
moving structure. The procedure for estimating the aerodynamic damping presented in
this section was developed in [9].

The displacement at elevation z is written as

x(z, t) =
N∑

i=1
𝜙i(z)𝜉i(t) (22.39)

where N = number of normal modes being considered and 𝜉i(t) and 𝜙i(z) = generalized
coordinate and modal shapes corresponding to the ith normal mode of vibration,
respectively. In the ith modal equation of motion the generalized force is

Qi(t) =
L∑

l=1
𝜙i(zl)Fl(zl, t) (22.40)

where L = total number of taps on the windward and leeward faces, m(z) = mass distri-
bution, and Fl (zl, t) = excitation force associated with tap l at elevation zl.

The force Fl(zl, t) can be written as

Fl(zl, t) =
1
2
𝜌[U(zl) + u(zl, t) − ẋ(zl, t)]2Cl(zl)Al (22.41)

where U(zl) and u(zl) are the mean and the fluctuating wind speed at elevation zl, ẋ(zl, t)
is the time-dependent along-wind displacement of the building at elevation zl, Cl (zl) is
the mean pressure coefficient at zl, and Al is the tributary area of tap l. Equation (22.41)
may be interpreted as follows. The aerodynamic damping depends upon the degree to
which the fluctuating excitation of the structure is in phase or out of phase with the
wind-induced velocity ẋ. If the excitation and the velocity are in phase, the relative fluc-
tuating velocity u(zl, t) − ẋ(zl, t) is lower than the fluctuating velocity u(zl, t), meaning
that the fluctuating response of the structure will decrease; in other terms, the aerody-
namic damping will be positive. The opposite is true if the excitation and the building
velocity are in opposite phases.

In applying Eqs. (22.39)–(22.41), an iterative procedure is used. The force Fl is calcu-
lated first by neglecting the speeds ẋ(zl, t). The resulting equation of motion is used to
calculate a first approximation to those speeds. This approximation is then used in Eq.
(22.41) and the corresponding equation of motion to obtain a second approximation
to ẋ(zl, t). This process continues until the nth and the (n – 1)th approximations differ
insignificantly. The aerodynamic damping value was obtained by a trial-and-error
procedure where successive total damping ratios were input in the database-assisted
design software described in Chapter 18, until the resulting r.m.s. displacements were
approximately equal to the displacements calculated by the iterative procedure just
described.

For a 60-story building with dimensions 45.7× 30.5 m in plan and height H = 185 m,
and mean wind speed normal to the building’s wider face, the procedure described in
[9] and summarized in this section yielded values of the aerodynamic damping that
were positive, larger as the reduced wind increased, weakly dependent upon the modal
shapes, and negligible for practical purposes even for mean wind speeds at the top of
the building as high as 70 m s−1. The results obtained for this case were comparable for
practical purposes to those obtained in wind tunnel tests (Figure 22.2a) [10].
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In view of the uncertainties associated with the estimation of the along-wind
aerodynamic damping, it is prudent to neglect its favorable effect on the along-wind
response.

Across-Wind Aeroelastic Response. Unlike for along-wind response, no practical
analytical approach is available for the estimation of across-wind response. Based on
wind tunnel test results, Figure 22.2b shows that for sufficiently high reduced velocities
the aerodynamic damping can be negative (i.e., destabilizing), although this is not
the case for ratios D/B sufficiently larger than unity. For details see [10], which notes
that the wind velocities for which the across-wind aerodynamic damping becomes
negative are much lower than the wind velocities at which galloping oscillations
can occur.

(a) Along-wind response

2
(%)

(%)

D/B = 1
D/B = 0.5
D/B = 0.33

quasi-steady theory

D/B = 1
D/B = 2
D/B = 3

quasi-steady theory

D/B = 0.33(CD = 0.90)

D/B = 0.5(CD = 1.02)

D/B = 1(CD = 1.05)

D/B = 1(CD = 1.05)

D/B = 2(CD = 0.75)

D/B = 3(CD = 0.70)

D

B

D

B

1

0

0 1 2 3 4 5 6
reduced wind velocity

ae
ro

dy
na

m
ic

 d
am

pi
ng

 r
at

io
 ζ
a
,
X

ae
ro

dy
na

m
ic

 d
am

pi
ng

 r
at

io
 ζ
a
,
X

(a) D/B ≦ 1

7 8 9 10 11 12
UH

BDno

–1

2

1

0

–1
0 1 2 3 4 5 6

reduced wind velocity
(b) D/B ≧ 1

7 8 9 10 11 12

×

×

×
×

×

×

×

× ×

×

×
×

×

×

×

×

UH

BDno

Figure 22.2 Aerodynamic damping as a function of reduced wind velocity and side ratio D/B (1%
mechanical aerodynamic damping). Source: Reprinted from [10], with permission from Elsevier.
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(b) Across-wind response
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Figure 22.2 (Continued)

A schematic of the simple experimental set-up used to obtain the results reported in
[10] is shown in Figure 22.3.

For the flexible structures with square cross section tested in [10] a sufficient
condition assuring adequacy of the design from an aeroelastic point of view is that the
wind speeds that may be expected during the life of the structure be lower than the
lowest speed, denoted by Ul, which induces across-wind resonant oscillations. This
statement is consistent with the test results of Figure 22.2b, which show that negative
aerodynamic damping occurs at wind speeds higher than Ul. The necessary condition
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sand

laser displacement transducers

floor

gimbal

model (balsa)

wind velocity

coil spring

oil damper

Figure 22.3 Experimental set-up for tests reported in [10]. Source: Reprinted from [10], with
permission from Elsevier.

for galloping (Eq. [20.14], modified to account for shear, turbulent flow) should also
be considered. A similar approach may be employed for structures with rectangular
shapes in plan.

For additional material on aerodynamic damping see, for example, [11].

22.3 Alleviation of Vortex-Induced Oscillations

A common method of alleviating vortex-induced oscillations is the provision of “spoiler”
devices that destroy or reduce the coherence of shed vortices [12, 13].

The helical strake system, first proposed by Scruton [14], consists of three rectangular
strakes with a pitch of one revolution in five diameters and a strake (radial) height of
0.10 m diameter (to 0.13 m diameter for very lightly damped structures) applied over
the top 33–40% of the stack height. The effectiveness of the system is not impaired by a
gap of 0.005D between the strake and the cylinder surface [15]. Reference [16] reports
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Figure 22.4 Steel chimney with helical
strakes. Source: Reprinted from [16], with
permission from Elsevier.

the remarkable results obtained by using this system (with 5-mm thick strakes, 0.6-m
strake height, and 30-m pitch) in the case of a 145-m all and 6-m diameter steel stack
(Figure 22.4).

For Reynolds numbers Re< 2× 105 or so, in flow with about 15% turbulence intensity,
helical strakes were found to reduce the peak of the across-wind resonant oscillations by
a factor of about two, as opposed to a factor of about 100 in smooth flow [17]. It appears
that the performance of strakes can be unsatisfactory in the case of stacks grouped in a
row [18]. Also, wind tunnel tests indicate that for large vibration amplitudes (e.g., 3–5%
of the diameter), the vortex street re-establishes itself, and the aerodynamic devices
become ineffective [19]. It is noted that strakes increase drag, as shown in Figure 22.5.

Shrouds were also found to be effective in reducing the coherence of shed vortices. A
schematic view of a shroud fitted to a stack is shown in Figure 22.6. Results of wind tun-
nel experiments reported in [15, 20] showed that oscillations were substantially reduced
with only the 25% of the model height shrouded. The most effective shrouds were found
to be those with a gap width w = 0.12D and an open-area ratio between 20 and 36%
(with length of square s= 0.052D to 0.070D)

Improvements in the behavior of the structure under wind loads can be achieved by
using tuned mass dampers (see Chapter 16) and similar devices, and/or by increasing
the mechanical damping, and affecting the aerodynamic response of the structure by
designing buildings with chamfered corners (see [21]), tapered shapes, and/or discon-
tinuous changes of shape. An aerodynamic device used in the design of the New York
City 85-floor, 425 m tall 432 Park Avenue building consists of leaving the mechanical
floors open to allow air to pass through the building, thus disrupting the vorticity shed
in the building’s wake.



�

� �

�

References 327

Plain cylinder

Plain cylinder

Reynolds number (ℛℯ)

T

D

1.5

1.0

0.5

D
ra

g 
co

ef
fic

ie
nt

 C
D
 b

as
ed

 o
n 

cy
lin

de
r 

di
am

et
er

105 106 107

Cylinder
with strakes

T/D = 0.12

T/D = 0.06

Figure 22.5 Effect of strakes on drag coefficient. Source: From [20]. Courtesy of National Physical
Laboratory, U.K.

Figure 22.6 View of a shroud fitted to a stack. Source: After [15].

s

L

l

D

Gap w

References

1 Vickery, B.J. and Clark, A.W. (1972). Lift or across-wind response of tapered stacks.
Journal of the Structural Division 98: 1–20.

2 Ruscheweyh, H. (1976). Wind loading on the television tower, Hamburg, Germany.
Journal of Wind Engineering and Industrial Aerodynamics 1: 315–333.



�

� �

�

328 22 Slender Chimneys and Towers

3 Vickery, B.J. and Basu, R.I. (1983). Across-wind vibrations of structures of circular
cross-section. Part I. Development of a mathematical model for two-dimensional
conditions. Journal of Wind Engineering and Industrial Aerodynamics 12: 49–73.

4 Basu, R. I. and Vickery, B. J., “A comparison of model and full-scale behavior in
wind of towers and chimneys,” in Wind Tunnel Modeling for Civil Engineering
Applications (Proceedings of the International Workshop on Wind Tunnel Modeling
Criteria and Techniques in Civil Engineering Applications, Gaithersburg, MD, USA,
April 1982), T. A. Reinhold, ed., 1st ed., Cambridge, UK: Cambridge University
Press, 1982.

5 Basu, R. I., “Across-Wind Response of Slender Structures of Circular Cross Section
to Atmospheric Turbulence,” Research Report BLWT-23983, University of Western
Ontario, London, Ontario, Canada, 1983.

6 Vickery, B.J. and Basu, R. (1983). Simplified approaches to the evaluation of the
across-wind response of chimneys. Journal of Wind Engineering and Industrial
Aerodynamics 14: 153–166.

7 Davenport, A.G. and Novak, M. (2002). Vibrations of structures induced by Wind
(Chapter 29, Part II). In: Harris’ Shock and Vibration Handbook, 5th ed. (ed. C.M.
Harris and A.G. Piersol), 29.21–29.46. New York: McGraw-Hill.

8 Vickery, B. J., “The aeroelastic modeling of chimneys and towers,” in Wind Tun-
nel Modeling for Civil Engineering Applications (Proceedings of the International
Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineer-
ing Applications, Gaithersburg, MD, USA, April 1982), T. A. Reinhold, ed., 1st ed.
Cambridge, UK: Cambridge University Press, 1982.

9 Gabbai, R. and Simiu, E. (2010). Aerodynamic damping in the along-wind response
of tall buildings. Journal of Structural Engineering 136: 117–119.

10 Marukawa, H., Kato, N., Fujii, K., and Tamura, Y. (1996). Experimental evaluation of
aerodynamic damping of tall buildings. Journal of Wind Engineering and Industrial
Aerodynamics 59: 177–190.

11 Kareem, A. and Gurley, K. (1996). Damping in structures: its evaluation and treat-
ment of uncertainty. Journal of Wind Engineering and Industrial Aerodynamics 59:
131–157.

12 Zdravkovich, M.M. (1981). Review and classification of various aerodynamic and
hydrodynamic means for suppressing vortex shedding. Journal of Wind Engineering
and Industrial Aerodynamics 7: 145–189.

13 Zdravkovich, M.M. (1984). Reduction of effectiveness of means for suppressing
wind-induced oscillation. Engineering Structures 6: 344–349.

14 Scruton, C., “Note on a device for the suppression of the vortex-induced oscillations
of flexible structures of circular or near circular section, with special reference to its
applications to tall stacks,” NPL Aero Report No. 1012, National Physical Laboratory,
Teddington, UK, 1963.

15 Walshe, D.E. and Wooton, L.R. (1970). Preventing wind-induced oscillations of
structures of circular section. Proceedings of the Institution of Civil Engineers 47:
1–24.

16 Hirsch, G. and Ruscheweyh, H. (1975). Full-scale measurements on steel chimney
stacks. Journal of Wind Engineering and Industrial Aerodynamics 1: 341–347.



�

� �

�

References 329

17 Gartshore, I. S., Khanna, J., and Laccinole, S., “The Effectiveness of Vortex Spoilers
on a Circular Cylinder In Smooth and Turbulent Flow,” in Wind Engineering (Pro-
ceedings of the Fifth International Conference, Fort Collins, Colorado, USA, July
1979), J. E. Cermak, ed., Pergamon, 1980, pp. 1371–1379.

18 Ruscheweyh, H. (1981). Straked in-line steel stacks with low mass-damping parame-
ter. Journal of Wind Engineering and Industrial Aerodynamics 8: 203–210.

19 Ruscheweyh, H. (1994). Vortex excited vibrations. In: Wind-Excited Vibrations of
Structures (ed. H. Sockel), 51–84. Wein/New York: Springer-Verlag.

20 Wooton, L.R. and Scruton, C. (1971). Aerodynamic stability. In: Modern Design of
Wind-Sensitive Structures, 65–81. London, UK: Construction Industry Research and
Information Association.

21 Simiu, E. and Miyata, T. (2006). Design of Buildings and Bridges for Wind: A Prac-
tical Guide for ASCE-7 Standard Users and Designers of Special Structures, 1st ed.
Hoboken, NJ: Wiley.



�

� �

�

331

23

Suspended-Span Bridges

23.1 Introduction

Suspended-span (i.e., suspension and cable-stayed) bridges must withstand drag forces
induced by the mean wind. In addition, they may experience aeroelastic effects, which
may include vortex-induced oscillations (Chapter 19), flutter, and buffeting in the
presence of self-excited forces (Chapter 21). The study of these effects is possible only
on the basis of information provided by wind tunnel tests. Various types of such tests
are described in Section 23.2. Vortex-induced vibrations of bridge decks are considered
in Section 23.3. Section 23.4 is concerned with bridge buffeting in the presence of
aeroelastic effects. Vibrations occurring in cables of cable-stayed bridges are discussed
in Section 23.5.

The action of wind must be taken into account not only for the completed bridge,
but also for the bridge in the construction stage. In general, the same methods of testing
and analysis apply in both cases. To decrease the vulnerability of the partially completed
bridge to wind, temporary ties and damping devices are used [1, 2]. Also, to minimize
the risk of strong wind loading, construction usually takes place in seasons with low
probabilities of occurrence of severe storms.

In addition to the deck and stay cables, aeroelastic phenomena may affect the bridge’s
tower and hangers, on which detailed material is available in [1].

23.2 Wind Tunnel Testing

The following three types of wind tunnel tests are commonly used to obtain information
on the aerodynamic behavior of suspended-span bridges:
1) Tests on models of the full bridge. In addition to being geometrically similar to the

full bridge, such models must satisfy similarity requirements pertaining to mass dis-
tribution, reduced frequency, mechanical damping, and shapes of vibration modes
(see Chapter 5). The construction of full bridge models is therefore elaborate and
their cost is high. Their usual scale is in the order of 1/300. A view of a full-scale
bridge model in a large, specially built wind tunnel, is shown in Figure 23.1.

2) Tests on three-dimensional partial-bridge models. In such models the main span (or
half of the main span) is reproduced in the laboratory. Typically, a support struc-
ture consisting of taut wires or a catenary supports the simulated deck. The model is
typically immersed in a simulated boundary-layer flow.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 23.1 Model of Akashi Strait suspension bridge. Source: Courtesy of T. Miyata of Yokohama
University and M. Kitagawa, Honshu-Shikoku Bridge Authority, Tokyo.

3) Tests on section models. Section models consist of representative spanwise sections
of the deck constructed to scale, with spring supports at the ends to allow both
vertical and torsional motion. The model is provided with end plates or other devices
that reduce aerodynamic end effects (Figure 23.2). Section models are relatively
inexpensive and are built to scales in the order of 1 : 50–1 : 25. They are useful for
performing initial assessments of a bridge deck’s aeroelastic stability, and allow the
measurement of the fundamental aerodynamic characteristics of the bridge deck
on the basis of which comprehensive analytical studies can be carried out. These
characteristics include:
a) The steady-state drag, lift, and moment coefficient, defined as

CD = D
1
2
𝜌U2B

(23.1a)

CL = L
1
2
𝜌U2B

(23.1b)

CM = M
1
2
𝜌U2B2

(23.1c)

where D, L, and M are the mean drag, lift and moment per unit span, respectively,
𝜌 is the air density, B is the deck width, and U is the mean wind speed in the
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Figure 23.2 Section model of the Halifax Narrows Bridge. Source: Courtesy of Boundary-Layer Wind
Tunnel Laboratory, University of Western Ontario.
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Figure 23.3 Drag, lift and aerodynamic moment coefficients for replacement Tacoma Narrows
Bridge [3].
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oncoming flow at the deck elevation. The aerodynamic coefficients are usually
plotted as functions of the angle 𝛼 between the horizontal plane and the plane
of the bridge deck. Coefficients CD, CL, and CM are shown in Figure 23.3 for
the open-truss bridge deck of the replacement Tacoma Narrows Bridge [3] and
in Figure 23.4 for a proposed streamlined box section of the New Burrard Inlet
Crossing [4].
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Figure 23.4 Drag, lift, and aerodynamic moment coefficients for proposed deck of New Burrard Inlet
Crossing [4]. Source: Courtesy of National Aeronautical Establishment, National Research Council of
Canada.
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b) The motional aerodynamic coefficients. These coefficients characterize the
self-excited forces acting on the oscillating bridge and are discussed in
Section 21.3. Examples of motional aerodynamic coefficients, first introduced
for bridge decks by Scanlan and Tomko in 1971 [5], are given in Figure 21.3.

c) The Strouhal number, St.
For details on a type of test that allows along-wind motion of the model, see [6].

23.3 Response to Vortex Shedding

Open truss sections generally “shred” the oncoming flow to such an extent that large,
coherent vortices cannot occur, and vortex-induced oscillations of the deck are weak.
However, severe vortex-induced oscillations of bluff deck sections of the box type are
known to have occurred. A soffit plate and fairings with various dimensions were added
to the original section, with the results shown in Figure 23.5 [7]. The water surface was
in this case close to the underside of the bridge and was modeled in the wind tunnel
tests. Additional shapes of streamlined bridge deck forms are shown in Figure 23.6. For
additional material on remedial aerodynamic measures, see [1].

15
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Figure 23.5 Vertical amplitudes of vortex-induced oscillations for various bridge deck sections of the
proposed Long Creek’s Bridge. Source: Courtesy of National Research Council, Canada.
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+ +

Figure 23.6 Streamlined bridge deck forms.

We now present an approach to the estimation of the bridge vortex-induced response
[8]. Let the equation of motion of the section with unit spanwise length have the form,
similar to the simplified version of Eq. (19.4):

m(ḧ + 2𝜁h𝜔hḣ + 𝜔2
hh) = 1

2
𝜌U2BKH∗

1

(
1 − 𝜀h2

B2

)
ḣ
U

(23.2)

where K =𝜔B/U , and H∗
1 , 𝜀 are aerodynamic parameters obtainable experimentally.

Derivations similar to those of Section 19.2 yield the non-dimensionalized steady-state
amplitude h0 of the bridge deck section model:

h0

B
= 2

(H∗
1 − 4Scr

𝜀H∗
1

)1∕2

(23.3)

where Scr = 𝜁hm/(𝜌B2) is the Scruton number. The coefficient H∗
1 may be viewed as

the value obtained at low oscillation amplitudes by any one of the several identifica-
tion schemes employed to obtain flutter derivatives. If the steady-state vortex-induced
amplitude h0 is measured in a section model test, then

𝜀 = 4
H∗

1 − 4Scr

(h0∕B)2H∗
1

(23.4)

However, if H∗
1 is not obtained from a low-amplitude model test, but instead the model

is allowed to oscillate down from an initial larger amplitude A0 to a steady, locked-in
state of measured amplitude h0, the value of H∗

1 may be determined from

KH∗
1 = m

2𝜌B2

(
𝛼

h2
0

B2 + 16𝜋𝜁hSt

)
(23.5)

where K= 2𝜋 St, St is the Strouhal number,

𝛼 = −4StB2

nh2
0

ln

(
A2

0 − R2
nh2

0

A2
0 − h2

0

)
(23.6)

and Rn is the ratio of the response amplitudes of the first to the nth cycle of amplitude
decay [8].



�

� �

�

23.3 Response to Vortex Shedding 337

The information given in Eq. (23.3) is applicable to the section model only. To
extrapolate it to the full bridge, it is necessary to consider the oscillatory structural
mode involved (usually a simple, low-frequency mode) as well as the spanwise
correlation of the lock-in forces. In Eq. (23.2) it is therefore further assumed that

h(x, t) = 𝜙(x)B𝜉(t) (23.7)

where 𝜙(x) is the dimensionless modal shape associated with the frequency 𝜔h of the
deck excited by the locked-in vorticity. The corresponding generalized coordinate 𝜉(t)
is assumed to undergo purely sinusoidal oscillations

𝜉(t) = 𝜉0 cos 𝜔t (23.8)

at the Strouhal frequency, that is, where

𝜔 = 2𝜋StU
B

= 𝜔h (23.9)

If h from Eq. (23.7) is inserted into Eq. (23.2) and the result is multiplied by B 𝜙(x),
the action of the section dx of the structure associated with the spanwise point with
coordinate x is described by the equation

m(x)B2𝜙2(x)[𝜉(t) + 2𝜁h𝜔h�̇�(t) + 𝜔2
h𝜉(t)]dx

= 1
2
𝜌UB3KH∗

1[1 − 𝜀𝜙2(x)𝜉2(t)]𝜙2(x)�̇�(t)f (x)dx (23.10)

in which f (x) is a function inserted to account for spanwise loss of coherence in the
vortex-related forces.

If integration of Eq. (23.10) is performed over the full bridge span, there results

I[𝜉(t) + 2𝜁h𝜔h�̇�(t) + 𝜔2
h𝜉(t)] =

1
2
𝜌UB3LKH∗

1[C2 − 𝜀C3𝜉
2(t)]�̇�(t) (23.11)

where I is the generalized full-bridge inertia of the mode in question and

C2 =
∫span

𝜙2(x)f (x)dx
L

(23.12)

C4 =
∫span

𝜙4(x)f (x)dx
L

(23.13)

The strength of the vortex-induced forces is dependent upon the local oscillation
amplitude of the structure. There is also a loss of coherence with spanwise separation.
For example, Figure 19.2 shows the correlations between local lateral pressures sepa-
rated spanwise along cylinders displaced sinusoidally in the vertical direction with vari-
ous amplitudes. It is suggested that the correlation loss can be approximated by selecting
f (x) to be the mode shape𝜑(x) normalized to unit value at its highest point. For example,
with a mode representing a half-sinusoid over a span L, f (x) may be estimated as

f (x) = sin(𝜋x∕L) (23.14)

At steady-state amplitude, as noted earlier, the damping energy balance per cycle of
oscillation will be zero, a condition that defines the vortex-induced amplitude

𝜉0 = 2
(C2H∗

1 − 4Scr

𝜀C4H∗
1

)1∕2

(23.15)
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where the Scruton number is defined as

Scr =
𝜁hI
𝜌B4L

(23.16)

For the case of a sinusoidal mode the values of C2 and C4, respectively, are

C2 =
∫

L

0
sin3 𝜋x

L
dx
L

= 0.4244 (23.17a)

C4 =
∫

L

0
sin5 𝜋x

L
dx
L

= 0.3395 (23.17b)

For a study of conditions for the occurrence of vortex shedding on a large cable stayed
bridge based on full-scale data obtained by a monitoring system, see [9].

23.4 Flutter and Buffeting of the Full-Span Bridge

23.4.1 Theory

The flutter phenomenon was studied in some detail in Chapter 21 under the assumption
that two-dimensional geometrical conditions hold. For a full-span bridge, the deforma-
tions of the deck are functions of position along the span so that this assumption is no
longer valid. This section presents a generalization of the results of Chapter 21 to the
case of a full-span bridge. An example is included.

Let h(x, t), p(x, t), and α(x, t) represent, respectively, the vertical, sway, and twist deflec-
tions of a reference spanwise point x of the deck of a full bridge:

h(x, t) =
N∑

i=1
hi(x)B𝜉i(t) (23.18a)

𝛼(x, t) =
N∑

i=1
𝛼i(x)𝜉i(t) (23.18b)

p(x, t) =
N∑

i=1
pi(x)𝜉i(t) (23.18c)

where hi(x), 𝛼i(x), pi(x) are, respectively, the values of the ith modal shape at point x of
the deck and 𝜉i(t) is the generalized coordinate of the ith mode.

If Ii is the generalized inertia of the full bridge in mode i, the equation of motion for
that mode is

Ii(𝜉i + 2𝜁i𝜔i�̇�i + 𝜔2
i 𝜉i) = Qi (23.19)

where 𝜁 i, 𝜔i are the mechanical damping ratio and the circular natural frequency (in
radians) of the ith mode, respectively, and

Qi =
∫deck

[(Lae + Lb)hiB + (Dae + Db)piB + (Mae + Mb)𝛼i]dx (23.20)

is the generalized force in the ith mode of vibration. The subscripts “ae” and “b” signify
“aeroelastic” and “buffeting,” respectively. It is assumed that the following definitions of
forces per unit span at section x hold:
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Aeroelastic (self-excited) forces under sinusoidal motion:

Lae =
1
2
𝜌U2B

[
KH∗

1(K) ḣ
U

+ KH∗
2(K)B�̇�

U
+ K2H∗

3 (K)𝛼 + K2H∗
4 (K)h

B

]
(23.21a)

Mae =
1
2
𝜌U2B2

[
KA∗

1(K) ḣ
U

+ KA∗
2(K)B�̇�

U
+ K2A∗

3(K)𝛼 + K2A∗
4(K)h

B

]
(23.21b)

Dae =
1
2
𝜌U2B

[
KP∗

1(K)
ṗ
U

+ KP∗
2(K)B�̇�

U
+ K2P∗

3(K)𝛼 + K2P∗
4(K)

p
B

]
(23.21c)

Buffeting forces:

Lb = 1
2
𝜌U2B

[
2CL

u(x, t)
U

+
(dCL

d𝛼
+ CD

)
w(x, t)

U

]
(23.22a)

Mb = 1
2
𝜌U2B2

[
2CM

u(x, t)
U

+
(dCM

d𝛼

)
w(x, t)

U

]
(23.22b)

Db = 1
2
𝜌U2B

[
2CD

u(x, t)
U

]
(23.22c)

In Eqs. (23.21) and (23.22) it is assumed that there is no interaction between the aeroe-
lastic and the buffeting forces. However, the interaction is implicit in Eq. (23.22) if the
aeroelastic forces are measured in turbulent flow (see, e.g., [10, 12]).

In what follows only a single-mode approximation to the total response will be pos-
tulated. This is justifiable by the observation that typically just one prominent mode
will become unstable and dominate the flutter response of a three-dimensional bridge
model in the wind tunnel. In this single-mode form of analysis, any mode i may be con-
sidered in Eqs. (23.18)–(23.22). When all but the flutter derivatives shown in Eq. (23.21)
are considered as being of lesser importance, the expression for the generalized force is

Qi =
1
2
𝜌U2B2l

{KB
U

[H∗
1 Ghihi

+ P∗
1Gpipi

+ A∗
2G𝛼i𝛼i

]�̇� + K2A∗
3G𝛼i𝛼i

𝜉i

}

+
∫deck

[LbhiB + DbpiB + Mb𝛼i]dx (23.23)

in which

Gqiqi
=
∫deck

q2
i (x)

dx
l

[qi = hi, pi or 𝛼i] (23.24)

and l is the span length. Because of the linearity of the resulting equation of motion the
conditions of system stability are independent of the buffeting forces.

Equation (23.19) may be rewritten with a new frequency 𝜔i0, a new damping ratio 𝛾 i,
and a buffeting force Qib, as follows:

𝜉i + 2𝛾i𝜔i0�̇�i + 𝜔2
i0𝜉i =

Qib(t)
Ii

(23.25)

where

𝜔2
i0 = 𝜔2

i −
𝜌B4l
2Ii

𝜔2A∗
3G𝛼i𝛼i

(23.26)

2𝛾𝜔i0 = 2𝜁i𝜔i −
𝜌B4l
2Ii

𝜔[H∗
1 Ghihi

+ P∗
1Gpipi

+ A∗
2G𝛼i𝛼i

] (23.27)
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Qib(t) =
1
2
𝜌U2B2l

∫deck
[LbhiB + DbpiB + Mb𝛼i]dx (23.28)

Flutter. For instability to occur it is necessary that the damping ratio 𝛾 i ≤ 0. This leads
to the single-mode flutter instability criterion

H∗
1 Ghihi

+ P∗
1Gpipi

+ A∗
2G𝛼i𝛼i

≥
4𝜁iIi

𝜌B4l

[
1 + 𝜌B4l

2Ii
A∗

3G𝛼i𝛼i

]1∕2

(23.29)

in which the only significant flutter derivatives H∗
1 ,P

∗
1 ,A

∗
2,A

∗
3 have been retained. An

assumption inherent in this criterion is that the flutter derivatives retain full coherence
throughout the deck span. The effect of the reduced coherence can be seen in a reduction
of the values of the quantities Gqiqi

.
In practice, the flutter derivatives H∗

1 and P∗
1 are typically negative, while A∗

2 may take
on positive values for sufficiently large values of the reduced velocity U/(nB). The effect
of the flutter derivative A∗

3 – an “aerodynamic stiffness” effect – is in many practical
cases negligible since the structural stiffness is typically considerably larger than the
aerodynamic stiffness.

Buffeting. The generalized force may be written as
Qib(t)

Ii
= 𝜌U2B2l

2Ii ∫deck
[Lhi + Dpi + M𝛼i]

dx
l

(23.30)

where L, M, and D are, respectively, the quantities between brackets in Eqs. (23.22a, b
and c). Defining the functions

𝜑(x) = 2[CLhi(x) + CDpi(x) + CM𝛼i(x)] (23.31a)

𝜓(x) =
(dCL

d𝛼
+ CD

)
hi(x) +

dCM

d𝛼
𝛼i(x) (23.31b)

the integrand of Eq. (23.30) becomes

Lhi + Dpi + M𝛼i = 𝜑(x)u(x, t)
U

+ 𝜓(x)w(x, t)
U

(23.32)

Information on the turbulent flow fluctuations u and w is available in the form of spec-
tral densities Su(n) and Sw(n), respectively (see Chapter 2). This motivates the adoption
of a frequency domain approach to the solution of Eq. (23.25). It is shown in [11] that
the frequency domain counterpart of Eq. (23.25) yields the result

S𝜉i𝜉i
(𝜔) =

[𝜌U2B2l∕(2Ii)]2

𝜔4
i0[(1 − (𝜔∕𝜔i0)2)2 + (2𝛾i𝜔∕𝜔i0)2] ∫ ∫deck

1
U2

[
𝜑(xa)𝜑(xb)Suu

(
xa, xb, 𝜔

)

+𝜓(xa)𝜓(xb)Sww
(
xa, xb, 𝜔

) dxa

l

] dxb

l
(23.33)

In Eq. (23.33) the effect of the cross-spectra of the fluctuations u and w has been
neglected. The distributed cross power spectral densities are assumed to take the real
forms (neglecting their imaginary components).

Suu(xa, xb, 𝜔) = Su(𝜔) exp
(
−

Cu ∣ xa − xb ∣
l

)
(23.34a)

Sww(xa, xb, 𝜔) = Sw(𝜔) exp
(
−

Cw ∣ xa − xb ∣
l

)
(23.34b)
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Expressions for the spectra Su(𝜔) and Sw(𝜔) and values of Cu and Cw are suggested in
Chapter 2. The standard deviation of 𝜉i is

𝜎𝜉i
=
[
∫

∞

0
S𝜉i𝜉i

(n)dn
]1∕2

(23.36)

where n=𝜔/2𝜋. From Eqs. (23.18) it follows that
𝜎hi

(x) = hi(x)B𝜎𝜉i
(23.37a)

𝜎pi
(x) = pi(x)B𝜎𝜉i

(23.37b)
𝜎𝛼i

(x) = 𝛼i(x)𝜎𝜉i
(23.37c)

23.4.2 Example: Critical Flutter Velocity and Buffeting Response of Golden
Gate Bridge

This section presents a set of calculations developed by Scanlan on the basis of tests
performed by Ragget that illustrate the approaches developed in Section 23.4.1 [11].
A 1 : 50 scale model section was used to obtain flutter derivatives H∗

i and A∗
i (i= 1, …,

4). A set of those derivatives for zero-degree angle of attack in smooth flow is shown in
Figures 23.7 and 23.8. This example presents calculations that illustrate the use of the
approach described in this section.

The vibration modes and frequencies of the bridge, together with their modal integrals
Gqiqi

, were obtained for the first eight modes with the results given in Table 23.1. Modal
forms are suggested by the notations S (symmetric), AS (antisymmetric), L (lateral), V
(vertical), and T (torsion). Values of the modal integrals Gqiqi

suggest the importance
of the mode, in Table 23.1 the largest in each category (i.e., vertical, lateral, torsion) is
underlined. The most pronounced modes are mode 6 (vertical), mode 1 (lateral), and
mode 7 (antisymmetric torsion).

Flutter. The torsional aerodynamic damping coefficient A∗
2 exhibits a pronounced

change of sign with increasing velocity, indicating the possibility of single-degree of

0 42 6 8 10
–7.0

0.0

7.0

14.0

21.0

U / nB
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Figure 23.7 Flutter derivatives H∗
i (i = 1, 2, 3, 4). Golden Gate Bridge. Source: Courtesy of

Dr. J. D. Raggett, West Wind Laboratory, Carmel, CA.
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Figure 23.8 Flutter derivatives A∗
i (i = 1, 2, 3, 4). Golden Gate Bridge. Source: Courtesy of

Dr. J. D. Raggett, West Wind Laboratory, Carmel, CA.

Table 23.1 Frequencies, types of modal forms, and modal integrals
for Golden Gate Bridge.

Frequency Type Ghi hi
Gpi pi

G
𝜶i𝜶i

1 0.049 L 2.62E-16 3.33E-01 8.03E-05
2 0.087 ASV1 3.25E-01 7.39E-15 1.77E-15
3 0.112 L 1.72E-14 3.09E-01 1.24E-02
4 0.129 SV1 1.90E-01 7.82E-14 1.16E-14
5 0.140 V 1.91E-01 5.58E-14 2.43E-14
6 0.164 V 3.44E-01 3.87E-13 1.25E-14
7 0.192 AST1 6.67E-12 3.32E-02 1.29E+ 00
8 0.197 ST1 2.50E-12 2.47E-01 2.55E-01

freedom torsional flutter (Figure 23.8). Mode 7 is the torsional mode with both the
lowest frequency and the greatest Gqiqi

value, and was selected as the most vulnerable
to flutter instability (Figure 23.9). In the case of the original Tacoma Narrows Bridge
the lowest antisymmetric mode was also the most-flutter prone. In the Golden Gate
Bridge case this mode is practically a complete sine wave along the main span, with a
node at the center, and practically zero amplitude on the two side spans.

The pertinent parameters are
𝜁7 = 0.005 (assumed)
I7 = 8.5 × 109 lb ft s2

𝜌= 2.38 × 10−6 kip ft−4 s2 = 0.00238 lb ft−4 s2 = 0.002378 slugs/ft3

B= 90 ft
L= 6451 ft
G𝛼7𝛼7

= 1.29
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Figure 23.9 Calculated peak-to-peak displacements induced by buffeting in four selected modes.

The flutter criterion in this case reduces to

A∗
2 ≥

4𝜁7I7

𝜌B4G𝛼7𝛼7

= 0.131

From the graph for A∗
2 (Figure 23.8) the corresponding reduced velocity value (with

n= n7 = 0.192 Hz) is
U
nB

= 4.32

which corresponds to a critical laminar flow flutter velocity

Ucr = (4, 32)(0.192)(90)= 74.65 ft s−1 (22.75 m s−1)

Buffeting. The four modes listed in Table 23.2 are mainly active over the main span.
The following data were used: lMS = 4144 ft. (main span length); z0 = 0.02 ft;

z= 220 ft (deck height); u*= U/[2.5 ln(z/z0)]; CD = 0.34; CL = 0.215; dCL/d𝛼 = 3.15;
CM = 0; dCM/d𝛼 =−0.111. The modal shapes were assumed to have the shape of
simple sinusoids: hSV 1 = h0 sin(𝜋x/lMS); hASV 1 = h0 sin(2𝜋x/lMS); 𝛼SV 1 = 𝛼0 sin(𝜋x/lMS);
𝛼ASV 1 = 𝛼0 sin(2𝜋x/lMS). Equations (23.33)–(23.37) were then used to obtain the results
of Figure 23.9.

Table 23.2 Generalized inertia of full bridge for four modes.

Mode i Frequency (Hz) 10−9 Ii (lb ft s2)

ASV1 2 0.0870 15.71
SV1 4 0.1285 6.15
AST1 7 0.1916 8.50
ST1 8 0.1972 8.59
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23.5 Stay Cable Vibrations

23.5.1 Cable Vibration Characteristics

Stayed-bridge cables have low damping, small mass, and low bending stiffness. They
can experience two types of vibration: (i) low-amplitude, high-frequency vortex-induced
vibrations, and (ii) large-amplitude, low-frequency vibrations under skewed winds that
include rain-wind-induced vibrations and dry galloping. This section considers only
vibrations of the latter type.

According to full-scale field observations,

• Wind speeds at the onset of the vibrations can vary from 6 to 40 m s−1 [13, 14].
• Stays are vulnerable to excitation by skewed winds with directions making either a

negative or a positive angle with the direction normal to the plane containing the
cable [15–17].

• Vibrations were observed mostly in rainy weather [18, 19], but also occurred in the
absence of rain [13, 17].

• Vibrations occurred in winds with both low and high turbulence intensity [19, 20].
• Vibrations occurred in low modes of vibration, mostly with frequencies of 1∼3 Hz

[15], but also in simultaneous multiple vibration modes [13, 21].
• Stay cables susceptible to excitation (e.g., polyethylene tube-lapped cables) had

smooth surfaces [15, 22].
• Reynolds numbers ranged from 6× 104 to 2× 105 (sub-critical regime) [22, 23].
• The maximum acceleration of the cables varied between 4 g and 10 g, where g is the

gravitational acceleration (≈9.81 m s−2) [16, 19, 24].
• Peak-to-peak amplitudes could several times a cable diameter [13, 24].

The wide range of the observed data suggests that no single mechanism can explain
the cable vibration phenomenon. The proposed mechanisms can be roughly divided into
two main categories: “high speed vortex-induced vibration” and “galloping instability.”

According to [25], for vibrations occurring in rainy weather, rain water flowing down-
ward owing to gravity forms a rivulet on the lower surface of the cable. As the wind
becomes stronger, another rivulet forms on the upper surface, in which the forces due
to wind, gravity and water surface tension are balanced. Cable oscillations cause the
rivulets to oscillate around their mean positions, thus changing the points of separation
of the wind flow, and affecting the pressure distribution, around the cable. This results
in forces that cause the cable to vibrate. However, to date the fundamental mechanism
of these vibrations remains uncertain, and could not be clarified by wind tunnel testing.
For references on wind-rain induced vibrations see [1, 25, 26].

23.5.2 Mitigation Approaches

Common mechanical approaches to mitigating low-frequency, large-amplitude stay
cable vibrations include increasing the damping by installing dampers and using
cross-ties. The damping ratios of stay cables are typically in the range of 0.1–0.5%
[26]. Most types of wind-induced vibrations can be reduced to acceptable levels by
increasing the Scruton number Sc =m𝜁/(𝜌D2) (Eq. [19.10]) by increasing the cable mass
and damping. For rain-wind-induced vibrations it is recommended that Sc > 10 [26].
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Owing to the geometrical constraints of bridge decks, dampers are typically attached
to stay cables near cable anchorage and are designed to mitigate the cable vibrations in
the fundamental modes. Transverse restrainers (e.g., cross-ties) between stay cables are
commonly used to effectively mitigate the in-plane global mode cable vibrations [27],
which give rise to local modes of vibration of the interconnected stays. Their excessive
use may affect the aesthetics of the bridges.

Aerodynamic countermeasures include the modification of cable cross sections (by
using, e.g., helical strakes and pattern-indented surfaces), with a view to disturbing
the formation of water rivulets on the stay cables, which could cause the rain-wind
induced vibrations [1]. According to [26], a Scruton number Sc > 5 is recommended if
both mechanical and aerodynamic countermeasures are used in a cable system. It was
reported in [28] that the effectiveness of aerodynamic countermeasures can be weaken
if the Scruton number is less than 8.
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24

Trussed Frameworks and Plate Girders

This chapter reviews the aerodynamic behavior of trussed frameworks and plate girders,
including single trusses and girders, systems consisting of two or more parallel trusses
or girders, and square and triangular towers. Test results are often presented from sev-
eral sources with a view to allowing an assessment of the errors that may be expected
in typical wind tunnel measurements. Throughout this chapter, the aerodynamic coef-
ficients are referred to and should be used in conjunction with the effective area of the
framework, Af .

For any given wind speed, the principal factors that determine the wind load acting
on a trussed framework are:

• The aspect ratio, 𝜆; that is, the ratio of the length of the framework to its width. If
end plates or abutments are provided, the flow around the framework is essentially
two-dimensional.

• The solidity ratio, 𝜑; that is, the ratio of the effective to the gross area of the frame-
work.1 For any solidity ratio, 𝜑, the wind load is for practical purposes independent
of the truss configuration, that is, of whether a diagonal truss, a K-truss, and so forth,
is involved.

• The shielding of portions of the framework by other portions located upwind. The
degree to which shielding occurs depends upon the configuration of the spatial frame-
work. If the framework consists of parallel trusses (or girders), the shielding depends
on the number and spacing of the trusses (or girders).

• The shape of the members; that is, whether the members are rounded or have sharp
edges. Forces on rounded members depend on Reynolds number Re and on the
roughness of the member surface (see Figure 4.22). For trusses with sharp edges,
the effect of the Reynolds number and of the shape and surface roughness of the
member is, in practice, negligible.

• The turbulence in the oncoming flow. The effect of turbulence on the drag force acting
on frameworks with sharp-edged members is relatively small in most cases of practi-
cal interest [1–6]. A similar conclusion appears to be valid for frameworks composed
of members with circular cross section in flows with subcritical Reynolds numbers.

1 The effective area of a plane truss is the area of the shadow projected by its members on a plane parallel to
the truss, the projection being normal to that plane. The gross area of a plane truss is the area contained
within the outside contour of that truss. The effective area and the gross area of a spatial framework are
defined, respectively, as the effective area and the gross area of its upwind face.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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For this reason, and owing to scaling difficulties, in most cases wind tunnel tests for
trussed frameworks are to this day conducted in smooth flow [3–6].

• The orientation of the framework with respect to mean wind direction.

Wind forces on ancillary parts (e.g., ladders, antenna dishes, solar panels) must be
taken into account in design in addition to the wind forces on the trussed frameworks
themselves. Drag and interference effects on microwave dish antennas and their
supporting towers were studied in [7]. Drag coefficients for an unshrouded isolated
microwave dish with depth-to-diameter ratio 0.24 were found to be largest for angles
of 0–30∘ between wind direction and the horizontal projection of the normal to the
dish surface, and are almost independent of the flow turbulence (CD ≈ 1.4). For a single
dish, the ratio f a between the incremental total drag on the tower due to the addition
of a single dish and the drag for the isolated dish depends on the wind direction, and it
is higher than unity (as high as 1.3) for the most unfavorable directions. This is due to
the flow accelerations induced in the dish. As more dishes are added at the same level
of a tower, interference factors are still greater than unity, but tend to decrease as the
number of dishes increases.

Various petrochemical and other industrial facilities consist of complex assemblies
of pipes, reservoirs, vessels, ladders, frames, trusses, beams, and so forth, for which the
determination of overall wind loads is typically difficult. Estimates of wind loads for such
facilities are discussed in some detail in [8].

24.1 Single Trusses and Girders

Figure 24.1 summarizes measurement of the drag coefficient C(1)
D for a single truss with

infinite aspect ratio normal to the wind. The data of Figure 24.1 were obtained in the
1930s in Göttingen by Flachsbart for trusses with sharp-edged members [1, 2], and in the
late 1970s at the National Maritime Institute, U.K. (NMI) for trusses with sharp-edged
and trusses with members of circular cross section (all NMI measurements reported
in this chapter were conducted at Reynolds numbers 104 <Re <∼ 7 × 104). It is seen
that the differences between the Göttingen and the NMI results are approximately 15%
or less. For single trusses normal to the wind and composed of sharp-edged members,
Figure 24.2 shows ratios C(1)

D (𝜆)∕C(1)
D (𝜆 = ∞) of the drag coefficients corresponding to

an aspect ratio 𝜆 and to an infinite aspect ratio.
Drag coefficients C(1)

D reported in [3] for trusses normal to the wind, composed of
sharp-edged members, and having aspect ratios 1/6<𝜆 < 6 are listed in the first line
of Table 24.1. The second line of Table 24.1 lists values C(1)

D (𝜆 = ∞) obtained from the
drag coefficients of [3] through multiplication by the appropriate correction factor taken
from Figure 24.2.

Figure 24.3 [7] summarizes results of tests on trusses with members of circular cross
section (𝜆 = ∞) conducted in the subsonic wind tunnel at Porz-Wahn, Germany [9, 10]
and in the compressed air tunnel of the National Physical Laboratory, UK [11].2 Note

2 Figures 24.3 and 24.16–24.19 are reproduced with permission of CIDECT (Comité International pour le
Développenent et l’Etude de la de la Construction Tubulaire) from H.B. Walker, ed., Wind Forces on Unclad
Tubular Structures. They are based in part on research work carried out by CIDECT and reported in [9, 10].
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Figure 24.1 Drag coefficient C(1)
D for single truss, 𝜆 =∞, wind normal to truss. Source: From [6].
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Table 24.1 Drag coefficients for simple trusses.

𝝋 0.14 0.29 0.47 0.77 1.0

C(1)
D

(
1
6
< 𝜆 < 6

)
[3] 1.40± 5% 1.54± 5% 1.27± 5% 1.18± 5% 1.28± 5%

C(1)
D (𝜆 = ∞) ∼1.45 ∼1.65 ∼1.45 ∼1.35 ∼2.10

1.3

1.0
U

0.5
Values on curves
indicate solidity

ratio φ

(1)
CD

0.2

3 4 5 6 7 8 9 105 32 2Re4 5 6 7 8 9 106

λ = ∞

0
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Figure 24.3 Drag coefficient C(1)
D for single truss with members of circular cross section, 𝜆 =∞, wind

normal to truss [7]. Source: Courtesy Comité International pour le Développement et l’Etude de la
Construction Tubulaire and Constructional Steel Research and Development Organization.

that for Re< 105 the drag coefficients of Figure 24.3 differ by about 5% or less from the
corresponding results of Figure 24.1.

The aerodynamic force normal to a rectangular plate with aspect ratio 𝜆 = 5–10 is
larger when the yaw angle (i.e., the horizontal angle between the mean wind direction
and the normal to the trusses) is 𝛼 ≈ 40∘ than if the wind is normal to the plate; however,
for trusses with solidity ratio 𝜑< 4 or so the maximum drag occurs when the wind is
normal to the truss [1].

24.2 Pairs of Trusses and of Plate Girders

We consider a pair of identical, parallel trusses and denote the drag coefficient corre-
sponding to the total aerodynamic force normal to the trusses by C(2)

D (𝛼), where 𝛼 is the
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yaw angle. For brevity, C(2)
D (0) is denoted by C(2)

D . The cases where the wind is normal
to the truss (𝛼 = 0∘) and where 𝛼 ≠ 0∘ are considered in Sections 24.2.1 and 24.2.2,
respectively.

24.2.1 Trusses Normal to Wind

Two parallel trusses normal to the wind affect each other aerodynamically, so that the
drag on the upwind and on the downwind truss will have drag coefficients ΨIC

(1)
D and

ΨIIC
(1)
D , respectively, where C(1)

D is the drag coefficient for a single truss normal to the
wind and, in general, ΨI ≠ ΨII ≠ 1. It follows that

C(2)
D = C(1)

D (ΨI + ΨII) (24.1)

Figure 24.4 shows values ofΨI andΨII reported in [12], as functions of the solidity ratio
𝜑, the ratio between the truss spacing in the along-wind direction, e, and the truss width,
d. Values of ΨI and ΨII, also reported in [12], for four types of truss with sharp-edged
members and aspect ratio 𝜆 = 9.5 are shown in Figure 24.5. On the basis of the data
in Figures 24.4 and 24.5, [12] proposed the use for design purposes of the conservative
values C(2)

D ∕C(1)
D given, for e/d> 1.0, in Figure 24.6.

Measurements conducted at NMI on trusses with infinite aspect ratios are summa-
rized in Figure 24.7. The following approximate expressions based on the results of
Figure 24.7 are suggested in [6]:

C(2)
D

C(1)
D

= 2 − 𝜑0.45
( e

d

)𝜑−0.45
for 0 < 𝜑 < 0.5 (24.2)

for trusses with sharp-edged members, and

C(2)
D

C(1)
D

= 2 − 𝜑e
0.45

( e
d

)𝜑e−0.45
(24.3)

for trusses composed of members with circular cross section. The nominal solidity ratio
𝜑e in Eq. (24.3) is related to the actual solidity ratio as shown in Figure 24.8.

Table 24.2 lists ratios C(2)
D ∕C(1)

D for trusses with sharp-edged members and aspect ratio
𝜆 = 8 [4].

Example 24.1 Consider a truss with sharp-edged members, solidity ratio 𝜑 = 0.18,
spacing ratio e/d = 1.0, and aspect ratio 𝜆 = ∞. According to both the Flachsbart and
the NMI tests, C(1)

D ≈ 1.70 (Figure 24.1), and C(2)
D ∕C(1)

D = ΨI + ΨII ≈ 1.5 (Figures 24.4a
and 24.7a), so C(2)

D = 1.70 × 1.55 ≈ 2.65. According to the deliberately conserva-
tive Figure 24.6, C(2)

D ∕C(1)
D ≈ 1.83, which exceeds by about 20% the value based on

Figures 24.4a and 24.7a.

24.2.2 Trusses Skewed with Respect to Wind Direction

We now consider the case in which the yaw angle is 𝛼 ≠0∘. For certain values of 𝛼 the
effectiveness of the shielding decreases, and the drag coefficient C(2)

D (𝛼) characterizing
the total force normal to the trusses is larger than the value C(2)

D .
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Figure 24.4 Factors ΨI and ΨII for three types of truss with sharp-edged members and infinite aspect
ratio [12].
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Figure 24.6 Approximate ratios
C(2)

D ∕C(1)
D proposed for design

purposes in [12].
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Ratios max {C(2)
D (𝛼)}∕C(1)

D reported in [3] for trusses with sharp-edged members and
aspect ratio 𝜆 = 8 are shown in Table 24.3. For example, for e/d = 1.0, 𝜑 = 0.286, and
𝜆 = 8, the ratio {C(2)

D (𝛼)}∕C(1)
D ≈ 1.77 (Table 24.3) versus C(2)

D / C(1)
D ≈ 1.59 (Table 24.2).

24.2.3 Pairs of Solid Plates and Girders

Figure 24.9 shows the dependence of the factors ΨI and ΨII (see Eq. [24.1]) upon the
spacing ratio e/d for a solid disk and for three girders normal to the wind [12, 13]. For
certain values of the horizontal angle 𝛼 between the wind direction and the normal to the
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Figure 24.8 Equivalent solidity ratio 𝜑e
for trusses with members of circular
cross section and solidity ratio 𝜑. Source:
From [6].
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Table 24.2 Ratios C(2)
D ∕C(1)

D for trusses with sharp-edged members and aspect
ratio 𝜆 = 8, wind normal to trusses.

e/d 0.12 0.2 0.26 0.5 0.75 1.0 1.5 2.0

𝝋

0.136 1.35 1.67 1.73 1.84 1.83 1.84 — —
0.286 1.14 1.47 1.43 1.56 1.59 1.59 — —
0.464 1.22 1.29 1.32 1.32 1.33 1.33 1.34 —
0.773 1.16 1.15 1.13 1.10 1.09 1.08 1.01 1.01
1.0 1.01 1.01 1.01 1.00 1.01 0.99 0.95 0.91

Source: After [5].

plates, the ratio C(2)
D (𝛼)/C(2)

D may be larger than unity. For example, for a plate with aspect
ratio 𝜆= 4 and spacing ratio e/d = 0.5, if 40∘ ≤ 𝛼 ≤ 65∘, then {C(2)

D (𝛼)}∕C(2)
D ≈ 1.20 [5].

24.3 Multiple Frame Arrays

The first attempts to measure aerodynamic forces on multiple frame arrays were
reported in [5, 6]. For frames normal to the wind, the drag coefficients for the first,
second, …, n-th frame may be written as Ψ1C(1)

D , Ψ2C(1)
D ,…, ΨnC(1)

D , where C(1)
D is the
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Table 24.3 Ratios max {C(2)
D (𝛼)}∕C(1)

D for trusses with sharp-edged
members, 𝜆 = 8.

e/d 0.25 0.50 0.75 1.0 1.5 2.0

𝝋

0.15 1.85 1.85 1.86 1.88 1.93 1.99
0.3 1.62 1.66 1.71 1.77 1.87 1.97
0.5 1.40 1.48 1.54 1.61 1.76 1.94
0.8 1.14 1.19 1.38 1.48 1.71 1.84
1.0 1.01 1.27 1.36 1.43 1.61 1.69

Source: After [5].
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Figure 24.9 Factors ΨI and ΨII for
two parallel solid plates (girders)
[12, 13].

drag coefficient for a single frame normal to the wind. The drag coefficient for the array
of frames normal to the wind is then

C(n)
D = C(1)

D (Ψ1 + Ψ2 + · · · + Ψn) (24.4)

Factors Ψj (j = 1, 2,…, n) for arrays of three, four, and five parallel trusses with
sharp-edged members and infinite aspect ratio are given in Figure 24.10 for spacings
e/d= 0.5 and e/d = 1 [6]. Figure 24.11 show plots of drag coefficients C(n)

D for the same
arrays with members of circular and angle cross section [6].
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Figure 24.10 Factors Ψj (j= 1, 2,…, n)
for arrays of n parallel trusses (n = 3,
4, and 5) with sharp-edged members,
𝜆 = ∞, wind normal to trusses. (a)
Spacing ratio e/d = 0.5. (b) Spacing
ratio e/d= 1.0. Source: From [6].
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Figure 24.11 Drag coefficients C(n)
D for arrays

of n parallel trusses, 𝜆 = ∞, wind normal to
trusses. (a) Spacing ratio e/d = 0.5. (b)
Spacing ratio e/d= 1.0. Source: From [6].
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24.4 Square and Triangular Towers

The aerodynamic coefficients given in this chapter are in all cases referred to, and
should be used in conjunction with, the effective area of the framework, Af . For
square and rectangular towers Af is the effective area of one of the identical faces
of the tower. The dynamic response of the towers can be determined conservatively
as shown in Appendix D. The width of the structure used as input should be the
actual width of the framework. This ensures that the lateral coherence of the load
fluctuations is taken into account. The depth (along-wind dimension) of the framework
should be assumed to be zero in order not to overestimate the favorable effect of the
imperfect along-wind cross-correlations of the fluctuating loads. Finally, the area of
the framework per unit height at any given elevation, used to estimate the mean and
the fluctuating drag forces, should be equal to the effective area per unit height at that
elevation.

24.4.1 Aerodynamic Data for Square and Triangular Towers

The results of wind force measurement on square towers can be expressed in terms of
the aerodynamic coefficients CN (𝛼) and CT (𝛼) associated, respectively, with the wind
force components N and T (N ≥ T) normal to the faces of the tower (Figure 24.12)
and in terms of the aerodynamic coefficient CF (𝛼) associated with the total wind force
F acting at a yaw angle 𝛼 = tan−1(T/N). Note that CF (𝛼) = [C2

N (𝛼) + C2
T (𝛼)]

1/2, since, as
indicated earlier, all aerodynamic coefficients are referenced to the effective area of one
face of the framework, Af .

For a triangular tower (which has in practice and is therefore assumed here to have
equal sides in plan), the results of the measurements can be expressed in terms of the
aerodynamic coefficients CF (𝛼) (Figure 24.13). The aerodynamic coefficients CF (0∘) and
CF (60∘) correspond, respectively, to wind forces acting in a direction normal to a side
and along the direction of a median (Figure 24.13).

Square Towers Composed of Sharp-Edged Members. Measurements of loads on
a tapered square tower model with sharp-edges members, aspect ratio 𝜆≈∞, and

T

F N

𝛼

Figure 24.12 Notations.

solidity ratio averaged over the height of the tower 𝜑 ≈ 0.19
(ranging from 𝜑 = 0.13 at the base to 𝜑 = 0.47 at the top)
were reported in the 1930s [14]. Until recently these mea-
surements have been the principal source of data on square
towers. The coefficients CN (𝛼), CT (𝛼), and CF (𝛼) obtained in
[4] are listed for various angles 𝛼 in Table 24.4.

For 𝛼 = 45∘ the values of CN (𝛼) and CT (𝛼) should be
equal; as pointed out in [14], the 4% difference between
these values in Table 24.4 is due to measurement errors.
Note that the value CN (0∘) = 2.54 is close to the val-
ues inferred from [3] and [6], which are, respectively,
CN (0∘) = C(2)

D ≈1.5 × 1.73 = 2.60 (as obtained by linear
interpolation for 𝜑= 0.19 and e/d = 1.0 from Tables 24.1 and
24.2), and CN (0∘) = C(2)

D ≈ 1.7(0.93+ 0.58) = 2.57 (Eq. [24.1],
Figures 24.1 and 24.7a). Note also that while the largest
tension (compression) in the tower columns is caused by
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(a)

F(0°)

60°60°

F(60°)

𝛼 = 60°

(b)

F(30°)

𝛼 = 30°

(c)

Figure 24.13 Notations.

Table 24.4 Aerodynamic coefficients: CN(𝛼), CT (𝛼), and CF(𝛼) for a square
tower, 𝜑≈ 0.19 and 𝜆 ≈∞ [14].

𝜶 0∘ 9∘ 18∘ 27∘ 36∘ 45∘

CN (𝛼) 2.54 2.75 2.97 3.01 2.84 2.60
CT (𝛼) — 0.19 0.70 1.36 2.05 2.49
CF (𝛼) 2.54 2.76 3.05 3.30 3.50 3.60

3.0

2.5

2.0

C
F
(0

°)

1.5

1.0
0 0.2 0.4 0.6 0.8 1.0

𝜑

Angle members—turbulent flow.

Angle members—smooth flow.

Square shped members—smooth flow.

Figure 24.14 Drag coefficients CF(0∘) for square tower with sharp-edged members measured at NMI.
Source: From [4].

winds acting in the direction 𝛼 = 45∘, the largest stresses in the bracing members occur
for 𝛼 = 27∘.

Measurements of forces on square towers with sharp-edged members (𝜆 ≈ ∞) were
more recently conducted at NMI [4]. Coefficients CF (0∘) and ratios CF (𝛼)/CF (0∘) based
on these measurements are shown in Figures 24.14 and 24.15, respectively. Note, for
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Figure 24.15 Ratios CF(𝛼)/CF(0∘) for a
square tower with sharp-edged members
measured at NMI. Source: From [4].
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Figure 24.16 Drag coefficients CF(0∘) for a square tower with members of circular cross section
measured at the National Maritime Institute [7]. Source: Courtesy Comité International pour le
Développenent et l’Etude de la de la Construction Tubulaire and Constructional Steel Research and
Development Organization.
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Figure 24.17 Drag coefficients CF(45∘) for square tower with sharp-edged members measured at the
National Maritime Institute [7]. Source: Courtesy Comité International pour le Développenent et
l’Etude de la de la Construction Tubulaire and Constructional Steel Research and Development
Organization.

example, that for𝜑≈ 0.19, CF (0∘)≈ 2.60 (Figure 24.14), versus CF (0∘)= 2.54, as obtained
in [14] (Table 24.4). The agreement is less good for the ratio CF (45∘)/CF (0∘), which is
about 1.12 according to Figure 24.15, and about 1.40 according to data of Table 24.4.

Square Towers Composed of Members with Circular Cross Sections. Figures 24.16 and
24.17 [9] represent, respectively, aerodynamic coefficients CF (0∘) and CF (45∘) as func-
tions of Reynolds number Re for towers with aspect ratio 𝜆 = ∞, based on wind tunnel
test results reported in [9, 10]. The values CF (45∘) of Figure 24.17 may be regarded as
conservative envelopes that account for the loadings in the most unfavorable direc-
tions. Results of NMI tests in both smooth and turbulent flow at Reynolds numbers
Re ≈ 2× 104 for solidity ratios 𝜑 = 0.17, 𝜑 = 0.23, and 𝜑 = 0.31 (𝜆 = ∞) match the
curves of Figures 24.16 and 24.17 to within about 5% [4].

Triangular Towers Composed of Members with Circular Cross Sections. Figures 24.18
and 24.19 [9] represent proposed aerodynamic coefficients CF (0∘) ≈ CF (60∘) and
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Figure 24.18 Drag coefficients CF(0∘) and CF(60∘) for triangular tower with members of circular cross
section [7]. Source: Courtesy Comité International pour le Développenent et l’Etude de la de la
Construction Tubulaire and Constructional Steel Research and Development Organization.
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Figure 24.19 Drag coefficients CF(30∘) for triangular tower with members of circular cross section [8].
Source: Courtesy Comité International pour le Développenent et l’Etude de la de la Construction
Tubulaire and Constructional Steel Research and Development Organization.
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CF (30∘) as functions of Reynolds number Re for towers with aspect ratio 𝜆 = ∞,
based on measurements reported in [9–11].
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Offshore Structures

Wind loads affect offshore structures during construction, towing, and in service. They
are a significant design factor, especially in the case of large compliant platforms such
as guyed towers and tension leg platforms.

Wind also affects the flight of helicopters near offshore platform landing decks [1–3],
as potentially dangerous conditions may be created by flow separation at the edges of
the platform. Let the horizontal distance between the upstream edge of the platform and
of the helideck be denoted by d, and the depth of the upstream surface producing the
separated flow be denoted by t. On the basis of wind tunnel tests it has been suggested
that the elevation h of the helideck with respect to the platform edge should vary from
at least h≈ 0.2 t if d ≈ 0 to at least h ≈ 0.5 t if d ≈ t [2].

This chapter contains information on wind loads on offshore structures of various
types (Section 25.1) and on the treatment of dynamic effects on compliant structures
(Section 25.2).

25.1 Wind Loading on Offshore Structures

Methods for calculating wind loads on offshore platforms are recommended in [4–8].
However, laboratory and full-scale measurements indicate that these methods may, in
some instances, have serious limitations, particularly insofar as they do not account for
the presence of lift forces, and account insufficiently or not at all for shielding and mutual
interference effects. For example, according to wind tunnel test results obtained for a
jack-up (self-elevating) platform [9], the methods of [4] and [5] overestimate wind loads
on jack-up units by at least 35%. Estimates based on full-scale data for an anchored
semisubmersible platform [10] suggest that the method of [5] overpredicts wind loads
by as much as 100%.

This section briefly reviews a number of wind tunnel tests conducted for semisub-
mersible units and for a large guyed tower platform. Wind tunnel test information on
jack-up units, jacket structures in the towing mode, and on two types of concrete plat-
form is available, for example, in [9] and [11–14].

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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25.1.1 Wind Loads on Semisubmersible Units

A schematic view of a semisubmersible unit used for tests reported in [15] is shown in
Figure 25.1.1

The side force and the heeling moment coefficients are defined as

CY = Y
(1∕2)𝜌U2(50)As

(25.1)

CK = K
(1∕2)𝜌U2(50)AsHs

(25.2)

where Y is the side force, K is the heeling moment, 𝜌 is the air density, U(50) is the mean
wind speed at 50 m above sea level, As is the projected side area, and Hs is the elevation
of the center of gravity of As. The coefficients CY and CK are obtained separately for
the overwater and the underwater part of the unit. The overwater coefficients reflect
the action of wind and should be obtained in flow simulating the atmospheric boundary
layer. The overwater coefficients reflect account for hydrodynamic effects and should
therefore be measured in uniform flow.

Figures 25.2 and 25.3 show values of CY and CK measured in [15] for the case of an
upright draft2 TM0∘ ≈ 10.85 m (corresponding, for the unit being modeled, to a displace-
ment3 of 17,730 tons). As noted in [15], the purpose of the tests for the underwater part
is to determine the elevation of the center of reaction (i.e., the point of application of the
resultant of the underwater forces) or the free-floating unit.
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Figure 25.1 Schematic view of a semisubmersible unit model [15].

1 Figures 25.1–25.6 are excerpted from Bjeregaard, E. and Velschou, S. (May 1978). Wind Overturning
Effect on a Semisubmersible. Paper OTC 3063, Proceedings, Offshore Technology Conference, Houston, TX.
Copyright 1978 Offshore Technology Conference.
2 The upright draft TM0∘ is the depth of immersion of the unit in even heel condition (i.e., for an angle of
heel 𝜙 = 0∘).
3 The displacement is the volume of water displaced by the immersed part of the unit.
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Figure 25.2 Values CY and CK as functions of wind direction Ψ at different angles of heel 𝜙 for the
overwater part [15].
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Figure 25.3 Values CY and CK as functions of wind direction Ψ at different angles of heel 𝜙 for the
underwater part [15].

Figure 25.4 shows estimated values of the heeling forces induced by 100-knot beam
winds (winds blowing along the x-axis) for various values of the upright draft TM0∘ and
of the angle of heel 𝜙. The elevations of the center of action of the overwater (wind)
force and of the center of reaction on the underwater part are shown in Figure 25.5.
It is seen that as the angle of heel increases the elevation of the center of action of
the wind force decreases. This decrease is due to lift forces arising at nonzero angles
of heel 𝜙.
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The healing lever is defined as the ratio of the overturning moment to the displace-
ment of the vessel. Values of the heeling lever for 100-knot beam winds, obtained from
wind tests of [15] on the one hand and by using the American Bureau of Shipping
method [4] on the other, are shown in Figure 25.6. (The displacements listed in [15]
for the 6.43, 9.00, and 15.25 m drafts are 12,740, 16,963, and 19,495 tons, respectively.)
It is seen that for large angles of heel the differences between the two sets of values
are significant. This is largely due to the failure of [4] to account for the effects of lift.
It is noted in [16] that the largest overturning moments are commonly induced by
quartering winds.
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Figure 25.6 Wind heeling levers
obtained from wind tunnel tests and
from the American Bureau of
Shipping (ABS) method [15].
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In the tests of [15] and [16] the water surface was modeled by the rigid horizontal
surface of the wind tunnel flow. Following the method described in [17], texts reported in
[18] were also conducted by placing the model in a tank filled with viscoelastic material
up to the level of the wind tunnel flow. This facilitates the testing of models of partially
submerged units. Reference [18] also includes results of tests conducted in the presence
of rigid obstructions aimed at representing water waves. The results revealed that water
waves could increase the overturning moments substantially. This suggests the need for
improving the simulation of the sea surface in laboratory tests.

The aerodynamic tests of the Ocean Ranger semisubmersible4 is reported in [19].
The problem of combining hydrodynamic and wind loads was addressed by conduct-
ing 1 : 100 scale aerodynamic model tests in turbulent flow over a floor with rigid waves,
and using lightweight lines to apply the measured mean and fluctuating wind forces and
moments to a 1 : 40 hydrodynamic model tested in conditions simulating those expe-
rienced during the storm. Additional wind tunnel tests of semisubmersible units are
reported in [20–22].

25.1.2 Wind Loads on a Guyed Tower Platform

Reference [23] presents results of wind tunnel measurements on a 1 : 120 scale model
of the overwater part of a structure similar to Exxon’s Lena guyed tower platform.
A schematic of the platform, installed in over 300 m of water in the Gulf of Mexico, is
shown in Figure 25.7; see also Figure 25.8 and the expression for wind speeds averaged

4 The Ocean Ranger had capsized on February 15, 1982 in Hibernia Field, 315 km southeast of St. John’s
Newfoundland, in a storm with 17–20 m wave heights and 120–130 km h−1. wind speeds. It was the world’s
largest submersible offshore drilling platform, 46 m high from keel to operations deck and with 120 m long
pontoons. All of the 84 crew members were lost in the accident.
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Figure 25.7 Schematic view of the Lena guyed tower platform [24]. Source: With permission from
ASCE.

over at least one minute recommended by the U.S. Geological Survey [7] for use within
the Gulf of Mexico:

U(z) = U(10)
( z − zd

10 − zd

)0.1128

(25.3)

where z is the elevation above still water in meters, and zd = 2.2 m. The air/water bound-
ary was modeled by the rigid horizontal surface of the wind tunnel floor. Force and
moment coefficients were defined by relations of the type

CF = F
(1∕2)𝜌U2(16)AR

(25.4)

CM = M
(1∕2)𝜌U2(16)ARLR

(25.5)

where F and M are the mean force and moment of interest, 𝜌 is the air density, U(16)
is the mean wind speed at 16 ft above the surface, and the reference area AR and length
LR were chosen as 1 ft2 and 1 ft, respectively. The force and moments obtained in [23]
are represented in Figure 25.9, which also shows the notations for the respective aero-
dynamic coefficients. The moments characterized by the coefficients CMD and CMT
were taken with respect to a distance of 6.2 in (62 ft full scale) below the still water level.
The measured values of the aerodynamic coefficients are represented in Figure 25.10
for several platform configurations. The configuration for the base case was the same
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Figure 25.9 Notations. Source: From [23]. Copyright 1982 Offshore Technology Conference.

as in Figure 25.8, except that the deck structure was not enclosed. Additional results
in [23] show that the effect of enclosing the deck is negligible, as is the effect of the
well conductors. Removing the flares boom results in torsional moment reductions, but
has negligible effects otherwise. It is shown in [23] that drag forces and drag moments
based on wind tunnel measurements are smaller by about 30 and 20%, respectively, than
calculated values based on [7]. To check the extent to which the results depend upon
the laboratory facility being used, the same structure was subsequently tested inde-
pendently in a different wind tunnel [25]. In most cases of significance from a design
viewpoint the results obtained in [25] were larger than those of [23] by amounts that
did not exceed 20–30%.
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Figure 25.10 Wind tunnel test results. Source: From [23]. Copyright 1982 Offshore Technology
Conference.
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25.2 Dynamic Wind Effects on Compliant Offshore Structures

Compliant offshore platforms are designed to experience significant motions under
load. An advantage of compliance is that the forces of inertia due to the motion of the
platform tend to counteract the external loads. For large offshore platforms installed
in deep water an additional advantage is that the natural frequencies of the platform
motions in the surge, sway, and yaw5 degrees of freedom are very low (e.g., from
1/30 to 1/150 Hz, depending upon type of platform and water depth). Wave motions
have narrow spectra centered about relatively high frequencies (e.g., from 1/15 Hz
for extreme events to about 1 Hz for service conditions). Thus, aside from possible
second-order effects, compliant platforms do not exhibit dynamic amplifications of
wave-induced response.

Unlike wave motions, wind speed fluctuations in the atmospheric boundary layer
are characterized by broadband spectra. For this reason, it has been surmised that
wind-induced dynamic amplification effects on compliant structures are significant
[23, 26]. A more guarded assessment of the effects of wind gustiness was presented
in [27] as a part of an evaluation of the response to environmental loads of the
North Sea Hutton tension leg platform (Figure 25.11, see also [28]). According to
[27]: “Wind gusts are typically broad-banded and may contain energy which could
excite surge motions at the natural period. These would be controlled by surge damp-
ing. Theoretical and experimental research is required to clarify the importance of
this matter.”

Investigations into the behavior of tension leg platforms under wind loads reported in
[29] and [30] were based on the assumption that the response to wind is described by a
system with proportional damping, with damping ratio in the order of 5%. However, it
was shown in [31] that for structures comparable to the Hutton platform the effective
hydrodynamic damping is considerably stronger, and that the wind-induced dynamic
amplification for low-frequency motions is for this reason negligible. Section 25.2.1
describes the approach used in [31] to estimate the response of a tension leg platform
to wind in the presence of current and waves, and a simple method for estimating the
order of magnitude of the damping inherent in the hydrodynamic loads.

25.2.1 Turbulent Wind Effects on Tension Leg Platform Surge

Under the assumption that the external loads are parallel to one of the sides of the plat-
form shown in Figure 25.11, the equation of surge motion can be written as

Mẍ = Fx(t) (25.6)

where

Fx(t) ≈ Fu(t) + Fh(t) + R(t) (25.7)

and Fu(t), Fh(t), and R(t) denote the wind force, the hydrodynamic force, and the restor-
ing force, respectively. Not included in Eq. (25.7) is the damping force due to internal

5 Displacements in the longitudinal, transverse, and vertical direction are called surge, sway, and heave,
respectively. Rotations in a transverse, longitudinal, and horizontal plane are called roll, pitch, and yaw,
respectively.
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Figure 25.11 Schematic view of the Hutton tension leg
platform. Source: From [28]. Copyright 1982 Offshore
Technology Conference.

friction within the structure, which is negligible compared to the damping forces due to
hydrodynamic effects.

Wind Loads. To estimate the wind-induced drag force it is assumed that the elemental
drag force per unit of area projected on a plane P normal to the mean wind speed is

p(y, z, t) = 1
2
𝜌aCp(y, z)[u(y, z, t) − ẋ(t)]2 (25.8)

where 𝜌a is the air density, Cp(y, z) is the pressure coefficient at elevation z and horizon-
tal coordinate y in the plane P, t is the time, x is the surge displacement, the dot denotes
differentiation with respect to time, and u(z, y, t) is the wind speed upwind of the struc-
ture in the direction of the mean wind. The speed u(z, y, t) can be expressed as a sum of
the mean speed U(z) and the fluctuating speed u′(y, z, t):

u(z, y, t) = U(z) + u′(z, y, t) (25.9)

The total wind-induced drag force is

Fu(t) =
∫Aa

p(y, z, t)dydz (25.10)

where Aa is the projection of the above-water part of the platform on a plane normal to
the mean wind speed.
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The mean wind speeds and the turbulence spectrum and co-spectrum can be modeled
as in Chapter 2. Neglecting second-order terms, it follows from Eqs. (25.8)–(25.10) that
the mean wind-induced drag is

Fu(t) =
1
2
𝜌aCaAaU2(za) (25.11)

where the overall aerodynamic drag coefficient is

Ca = 1
AaU2(za)∫Aa

Cp(y, z)U2(z)dydz (25.12)

and za is the elevation of the aerodynamic center of the above-water part of the platform.
The fluctuating part of the wind-induced drag is

F ′
u,r(t) = 𝜌a

∫Aa

Cp(y, z)U(z)u′(z, t)dydz (25.13)

where the subscript r refers to the fact that the platform is at rest. As shown in [31], the
spectral density of the fluctuating part of the wind-induced drag is

SFu,r
(n) = [𝜌aCaAaU(za)]2Su,eq(n) (25.14)

where, for typical drilling and production platform geometries, the equivalent wind fluc-
tuation spectrum can be defined as

Su,eq(n) ≈ Su(za, n)J(n) (25.15)

J(n) is a reduction factor that accounts for the imperfect spatial coherence if the fluctu-
ations u′ with the expression

J(n) ≈ − 2
E

{
− exp(−E) +

(
1 − 1

E

)
[exp(−E) − 1]

}
(25.16)

E = Cyb n
U(za)

(25.17)

where b is the width of main deck and Cy is the horizontal exponential decay coefficient
in Eq. (2.94).

Hydrodynamic Loads. The total hydrodynamic load Fh can be written

Fh = Fv + Fe − Aẍ − Bẋ (25.18)

where Fv is the total hydrodynamic viscous force, Fe is the total wave-induced exciting
force, A is the surge-added mass, and B is the surge wave-radiation damping coefficient.
It was assumed for convenience in [31] that the wave motion is monochromatic, hence
the absence of second-order drift forces in Eq. (25.18). It was also assumed that B= 0,
since the radiation damping at low frequencies is negligible [32, 33].

The total wave-induced exciting force and the surge-added mass can be estimated
numerically on the basis of potential theory. Alternatively, they may be assumed to be
given by the inertia component of the Morison equation

A ≈ 𝜌w

∑
i

∑
j
∀ij(Cmij − 1) (25.19)
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Fe ≈ 𝜌w

∑
i

∑
j
∀ijCmij

{
𝜕vij

𝜕t
+ [vi + vij − ẋ]

𝜕vij

𝜕X

}
(25.20)

[34, p. 31], where 𝜌w is the water density, ∀ij is the elemental volume of the submerged
structure, Cmij is the surge inertia coefficient corresponding to ∀ij, X is the horizontal
distance from some arbitrary origin to the center of ∀ij along the direction parallel to
surge motion, vi and vij are the current velocity and horizontal particle velocity due to
wave motion, respectively, at the center of ∀ij. Equations (25.19) and (25.20) may be
employed if for the component being considered the ratio of diameter to wave length,
D/L ≤ 0.2 [34, p. 283]. Since for Tw ≈ 15 s, L= gTw

2/2𝜋, it follows that, for members of
typical tension leg platform structures for which D< 20 m or so, the use of Eqs. (25.19)
and (25.20) is acceptable if three-dimensional flow effects are not taken into account.
The wave motion can be described by deep water linear theory, so

vij =
𝜋H
Tw

e−kwzi cos
(

kwXj −
2𝜋t
Tw

)
(25.21)

where H is the wave height and kw is the wave number given by

kw = 1
g

(
2𝜋
Tw

)2

(25.22)

[34, p. 157]. The total hydrodynamic viscous load may be described by the viscous com-
ponent of Morison’s equation

Fv = 0.5𝜌w

∑
i

∑
j

CdijApij ∣ vi + vij − ẋ ∣ [vi + vij − ẋ] (25.23)

where Apij is the area of elemental volume∀ij projected on a plane normal to the direction
of the current, and Cdij is the drag coefficient corresponding to Apij.

If the relative motion of the body with respect to the fluid is harmonic, the drag and
inertia coefficients in the Morison equation can be determined on the basis of exper-
imental results as functions of local oscillatory Reynolds number, Re= 2𝜋 D2/(𝜈 Tf ),
Keulegan–Carpenter number, K=VTf /D, and relative body roughness, where D is the
diameter of the body, 𝜈 is the kinematic viscosity, and V and Tj are the amplitude and
period of the relative fluid-body velocity. However, actual relative fluid-body motions
are not harmonic. This introduces uncertainties in the determination of the drag and
inertia coefficients even if experimental information for harmonic relative motions were
available in terms of Re and K . Unfortunately, such information is not available for the
small numbers K (in the order of 2) and the large Reynolds numbers (in the order of 106)
of interest in tension leg platform design. For this reason calculations should be carried
out for various sets of values Cd, Cm, and investigations should be conducted into the
sensitivity of the results to changes in these values.

Restoring Force. The surge-restoring force in a tension leg platform is supplied by the
horizontal projection of the total force in the tethers. Most of this force is the result of
pretensioning, which is achieved by ballasting the floating platform, tying it by means
of the tethers to the foundations at the sea floor, then deballasting it. The tension forces
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Figure 25.12 Notations.

in the tethers should exceed the compression forces induced
by pitching and rolling moments due to extreme loads.

Under the assumption that the tethers are straight at all
times, the restoring force can be written as

R(t) ≃ −(T + ΔT) x
ln + Δln

(25.24)

where T is the initial pretensioning force, ΔT is the incre-
mental tension due to surge motion, ln is the nominal length
of the tethers at x= 0, Δln is the incremental length, and

T + ΔT
ln + Δln

≃ T
ln

+ CNL[1 −
√

1 − (x∕ln)2] (25.25)

where CNL is the downdraw coefficient, equal to the weight of
water displaced as the draft is increased by a unit length [32]
(Figure 25.12).

In reality, hydrodynamic and inertia forces cause the teth-
ers to deform transversely. The angle between the horizon-
tal and the tangent to the tether axis at the platform heel
can therefore differ significantly for the values correspond-
ing to the case of a straight tether. Nevertheless, owing to the

relatively small role of the restoring force in the dynamics of typical tension leg plat-
forms, the effect of such differences on the motion of the platforms appears to be negli-
gible for practical purposes [35–37].

Surge Response. The surge response is obtained by solving Eq. (25.6). This equation is
nonlinear, the strongest contribution to the nonlinearity being due to the hydrodynamic
viscous load Fv. Its solution is sought in the time domain.

The nominal natural period in surge is

Tn = 2𝜋
(Meff

k

)1∕2

(25.26)

where Meff is the coefficient of the term in ẍ and k is the coefficient of the term in x in
Eq. (25.6). From Eqs. (25.6), (25.18), and (25.24) it follows that

Tn = 2𝜋
[ (M + A)ln

T

]1∕2

(25.27)

A calculated time history of the surge response is represented in Figure 25.13 as a
function of time for a platform with the geometrical configuration of Figure 25.14, under
the following assumptions: platform mass M= 34.3× 106 kg; total initial tension in legs
T= 1.56× 105 kN (it follows from these assumptions and Eqs. (25.19) and (25.27) that
for the platform of Figure 25.14 the nominal natural frequency is Tn = 100 s); Mori-
son equation coefficients Cmij = 1.8, Cdij = 0.6; wave height and period H = 25 m and
Tw = 15 s, respectively; current speed varying from 1.4 m s−1 at the mean water level to
0.15 m s−1 at 550 m depth; aerodynamic parameter CaAa = 4320 m2; elevation of aero-
dynamic center za = 50 m; atmospheric boundary layer parameters 𝜅 = 0.002, 𝛽 = 6.0,
Lx

u = 180 m, Cy = 16 (see Chapter 2); and mean wind speed U(za)= 45 m s−1. It is shown
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Figure 25.13 Calculated time history of a surge response [31].
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in [31] that the contributions of the mean wind speed and the wind speed fluctuations
about the mean are about 40 and 12%, respectively. It can be verified that this conclusion
is equivalent to stating that wind-induced resonant amplification effects are negligible
in the cases investigated in [31].

Sensitivity studies showed that the results were affected insignificantly by uncertain-
ties with respect to the actual values of the atmospheric boundary-layer parameters.
It is shown in [31] that the damping ratio in a linear system equivalent to the nonlin-
ear system studies in this section is in the order of 𝜁 ≈ 0.5 and 𝜁 ≈ 0.2 for the platforms
with ln ≈ 600 m and ln ≈ 150 m, respectively. The coefficients Cdij = 0.6 and Cmij = 1.8 on
which these results were based may not be realistic for members with large diameters,
such as those depicted in Figure 25.14. The use of alternative values for those coefficients
showed that the damping ratios were in all cases sufficiently large to prevent the occur-
rence of significant wind-induced dynamic amplification effects. However, for some
values of Cdij, calculations in which the assumed currents would be lower than those
of [31] could result in reduced nominal damping rations for certain wind climatological
conditions. Because wind-wave tests violate Reynolds number and Keulegan–Carpenter
number similarity, they cannot provide a reliable indication of the equivalent damping
ratio for the prototype. This is a continuing cause of uncertainty in the assessment of
dynamic effects induced by wind acting alone or, in the case of a nonlinear analysis, in
conjunction with wave-induced slow drift.
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Tensile Membrane Structures

Tensile membrane structures owe their capacity to resist loads to tension stresses in
membranes supported by cables, columns, other members such as beams or arches,
and/or pressurized air [1, 2].

For a number of small structures with commonly used simple shapes (cones,
ridge-and-valley shapes, hyperbolic paraboloids also known as saddle shapes, can-
tilevered canopies), external and internal constant pressure coefficients specified for
well-defined zones on the membrane surfaces are available in the literature (e.g., [3, 4])
in formats similar to those used in codes and standards for ordinary structures.
Tentative aerodynamic information is also provided in [3] for the preliminary design of
certain types of open stadium roofs.

For tensile membrane structures with unusual shapes and/or with long-spans (e.g.,
exceeding 100 m, say) it is necessary to resort to wind tunnel testing. Commonly per-
formed on rigid models, such testing can provide time histories of pressures at large
numbers of points on the structures’ surfaces. The deformations induced by the time-
and space-dependent aerodynamic pressures can be calculated by accounting for geo-
metric and material non-linearities and for dynamic effects. Because these deformations
are typically large and can therefore significantly affect the structure’s shape, the rigid
model that reproduces the original surface needs to be modified accordingly. The mod-
ified rigid model is used to measure a new set of pressure time histories. The stresses
and deformations induced by those pressures can then be determined with improved
accuracy [5].

Deformations measured in aeroelastic tests are reported in [6], which notes that the
prototype Froude number was reproduced in the laboratory. No other information on
the aeroelastic testing technique is provided in [6].

Computational Wind Engineering (CWE) simulations are increasingly being per-
formed with a view to modeling aerodynamic or aeroelastic response [7]. Their results
have been validated in some cases (see, e.g., [8]). In the absence of appropriate validation
CWE results are generally not accepted for design purposes.

The form of tensile membrane structures must be consistent with specified (i) geo-
metric boundary conditions (support geometry, and cable or fixed edges) and (ii) cable
and fabric prestress. Form finding is an intricate process that requires the use of special-
ized software (see, e.g., www.formfinder.at). Prestressing and anticlastic shapes (shapes
with double curvature, i.e., saddle forms) are designed to prevent the occurrence of
membrane flutter and of compression in the membrane and cables. For structures with
common shapes, classified as small (i.e., with dimensions in the order of 10 m to less

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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than 100 m), it is suggested in [3] that the sum of the ratios of prestress in the warp and
weft directions (in kN m−1) to the respective radii of curvature (in m) is a useful indica-
tor of structural behavior: if the sum exceeds 0.3 kN m−2 the performance was typically
found to be sound, whereas if it is less than 0.2 kN m−2 a detailed investigation of wind
effects is in order.

Based on results of a carefully designed round robin exercise, it is noted in [9] that
different form-finding procedures can yield significantly different forms. It is strongly
emphasized in [9] that geometric and material nonlinearities render the structural anal-
ysis far more complex than is the case for typical structures. For this reason, and in
the absence of a clear and consistent basis for ensuring structural safety by accounting
for the various uncertainties inherent in the analysis, it was found in [9] that estimated
design stress factors varied among the round robin participants between 2.8 and 7.1.

In addition to aerodynamic information applicable to the design of small membrane
structures with simple shapes, [3] provides tentative information that may be used for
the preliminary design of a few types of open stadium roofs. Measurements of pressures
performed on rigid models by using pneumatic averaging are described extensively in
[6]. Similar, though much more complete and accurate pressure measurements, can
currently be performed by using the pressure scanner technique. Such measurements,
performed iteratively following the approach described in [5], can be employed in
nonlinear finite-element static and dynamic analyses to obtain the requisite design
information. While analyses of this type can in principle follow the database-assisted
design approaches described in Part II of this book, it is shown in [10] that they
present formidable difficulties that can result in incorrect response predictions. This
can be the case even if the use of follower wind forces (see, e.g., [11]) (i.e., wind
forces that change direction by remaining normal to the moving membrane surface)
is included in the analyses; see also [12]. However, according to [13], for a low-profile
cable-reinforced air-supported structure, full-scale measurements in strong winds
showed that wind-tunnel pressure measurements on a rigid model, used in conjunction
with a straightforward linear model of the dynamic response, provided a reasonable
representation of the structure’s behavior under wind loads.
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Tornado Wind and Atmospheric Pressure Change Effects

27.1 Introduction

Tornadoes are storms containing the most powerful of all winds. Their probabilities of
occurrence at any one location are low compared to those of other extreme winds. It has
therefore been generally considered that the cost of designing structures to withstand
tornado effects is significantly higher than the expected loss associated with the risk
of a tornado strike, risk being defined as the product of the loss by its probability of
occurrence. For this reason, tornado-resistant design requirements are not included in
current building codes or standards. This is changing, however, as efforts are underway
to develop standard requirements for the design of such facilities as fire stations, police
stations, hospitals, and power plants, whose survival of a tornado strike is considered
essential from a community resilience point of view. The consequences of failure would
be especially grave for nuclear power plants. In the United States, construction permits
or operating licenses for nuclear power plants are issued or continued only if their design
is consistent with Regulatory Guides issued by the U.S. Nuclear Regulatory Commission
or is otherwise acceptable to the Regulatory staff of that agency [1, 2].

Tornado effects may be divided into three groups:

1) Wind pressures caused by the direct aerodynamic action of the air flow on the struc-
ture.

2) Atmospheric pressure change effects.
3) Impactive forces caused by tornado-borne missiles.

This chapter and Chapter 28 present design criteria and procedures developed to
ensure an adequate representation of tornado effects on nuclear power plants.

Reference [1] uses a model of the tornado wind flow characterized by the following
parameters: (i) maximum rotational wind speed, (ii) translational wind speed of the
tornado vortex V tr , (iii) radius of maximum rotational wind speed Rm, (iv) pressure
drop pa, and (v) rate of pressure drop dpa/dt. Values of these parameters specified
by the U.S. Nuclear Regulatory Commission [1] as a design basis for nuclear power
plants are listed in Section 3.4.3. The use of this model for the estimation of wind
pressures on structures is discussed in Section 27.2. Section 27.3 is concerned with
atmospheric pressure change loading. Recent experimental work on the modeling
of tornadoes and of the pressures they induce on buildings is briefly reviewed in
Section 27.4. Tornado-borne missile speeds are discussed in Chapter 28, which also
discusses hurricane-borne missile speeds.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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27.2 Wind Pressures

A procedure for calculating wind pressures, proposed in [3], assumes the following:

1) The wind velocities, and therefore the wind pressures, do not vary with height above
ground.

2) The rotational velocity component (Figure 27.1) is given by the expressions:

VR = r
Rm

VRm
(0 ≤ r ≤ Rm) (27.1)

VR =
Rm

r
VRm

(r ≥ Rm) (27.2)

where VRm
is the maximum rotational wind speed and Rm is the radius of maximum

rotational wind speed.
3) The wind flow model described by Eqs. (27.1) and (27.2) moves horizontally with a

translation velocity V tr . The corresponding maximum wind speed is

Vmax = VRm
+ Vtr (27.3)

The flow described by Eqs. (27.1)–(27.3) is called the combined Rankine vortex
(Figure 27.1).

The wind pressure pw, used in designing structures or parts thereof, may be written as

pw = qF Cp + qMCpi (27.4)

where Cp is the external pressure coefficient, Cpi is the internal pressure coefficient, qF
is the basic external pressure, and qM is the basic internal pressure. The quantities qF
and qM may be calculated as follows:

qF = CF
s pmax (27.5)

qM = CM
s pmax (27.6)

pmax =
1
2
𝜌V 2

max (27.7)

VR

Vtr

Figure 27.1 Rankine
combined vortex model.
Source: From [1].

where 𝜌 is the air density and V max is the maximum horizon-
tal wind speed (Table 3.2). If V max is expressed in mph and
pmax in lb ft−2, (1/2)𝜌= 0.00256 lb ft−2 mph−2. The quantities
CF

s and CM
s are reduction (or size) coefficients that account

for the non-uniformity in space of the tornado wind field.
CF

s can be determined from Figure 27.2 as a function of the
ratio L/Rm, where L is the horizontal dimension, normal to
the wind direction, of the tributary area of the structural ele-
ment concerned (if the wind load is distributed among several
structural elements, e.g., by a horizontal diaphragm, L is the
horizontal dimension, normal to the wind direction, of the
total area tributary to those elements). If the size and dis-
tribution of the openings are relatively uniform around the
periphery of the structure, CM

s is determined in the same way
as CF

s using a value of L equal to the horizontal dimension of
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s [3].

the structure normal to the wind direction. If the sizes and distribution of the openings
are not uniform, the following weighted averaging procedure is used:
1) Determine the quantity r1/Rm such that

r1

Rm
=

Rm

r1 + L
(27.8)

2) Locate the plan of the structure drawn at appropriate scale within the non-
dimensional pressure profile of Figure 27.3, with the left end of the structure at the
coordinate r1/Rm.

3) Determine Cq from Figure 27.3 for each exposed opening.
4) Determine CM

s from Eq. (27.9).

CM
s =

∑N
i A0iCqi∑N

i A0i

(27.9)

where A0i is the area of the opening at location i, Cqi is the factor Cq at location
i, and N is the number of openings. The coefficient Cq in Figure 27.3 represents
non-dimensionalized wind pressures and was calculated using Eqs. (27.1)–(27.3) and
(27.7). To obtain Figure 27.2, the non-dimensionalized pressures of Figure 27.3 were
integrated between the limits r1 and r1 + L, where r1 is given by Eq. (27.8), and the
results of the integration were normalized; the coefficient CF

s is thus an approximate
measure of the average pressure coefficient over the interval L [3].

Numerical Example. The sizes and distribution of the openings (not represented in
Figure 27.4) are assumed to be uniform around the periphery of the structure. The ratio
between area of openings and the total wall area is A0/Aw = 0.25. It is assumed that
V max = 200 mph (89.4 m s−1), Rm = 150 ft (46 m). The pressures on the 100 ft (30.5 m) side
walls induced by wind blowing in the direction shown in Figure 27.4 are calculated as
follows:

pmax = 0.00256 × 2002 = 102.4 lb ft−2 (4900 N m−2) (Eq.[27.7])
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Figure 27.4 Schematic view of building.

Basic external pressures:
L = 200 ft (61 m)

L
Rm

= 1.33
CF

s = 0.57 (Figure 27.2)
qF = 0.57 × 102.4= 58 lb ft−2 (2800 N m−2) (Eq. [27.5])

Basic internal pressures:
CF

s = 0.57 (Figure 27.2)
qM = 0.57 × 102.4= 58 lb ft−2 (2800 N m−2) (Eq. [27.6])
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The pressure coefficients are assumed in this example to have the following values:
Cp =−0.7
Cpi =±0.3

Wind pressure:
pw =−0.7 × 58 – 0.3 × 58=−58 lb ft−2 (−2800 N m−2) (Eq. [27.4])

27.3 Atmospheric Pressure Change Loading

Consider the cyclostrophic equation (Eq. [1.4], in which the term affected by the Coriolis
acceleration may be neglected), written as

dpa

dr
= −𝜌

V 2
R

r
(27.10)

where dpa/dr is the atmospheric pressure gradient at radius r from the center of the
tornado vortex. To obtain the pressure drop pa, Eq. (27.10) is integrated from infinity
to r. Using the expression for V t given by Eqs. (27.1) and (27.2),

pa(r) = 𝜌
V 2

Rm

2

(
2 − r2

R2
m

)
(0 ≤ r ≤ Rm) (27.11a)

pa(r) = 𝜌
V 2

Rm

2
R2

m

r2 (Rm ≤ r < ∞) (27.11b)

In structures with no openings (i.e., unvented structures), the internal pressure remains
equal to the atmospheric pressure before the passage of the tornado. Therefore, during
the passage of the tornado the difference between the internal pressure and the atmo-
spheric pressure is equal to pa. It follows from Eqs. (27.11) that the maximum value of
pa, which occurs at r = 0, is

pmax
a = 𝜌V 2

Rm
(27.12)

If the structures are completely open, the internal and external pressures are equal-
ized, for practical purposes, instantaneously, so the loading due to atmospheric pres-
sure changes approaches zero. In structure with openings (i.e., vented structures), the
internal pressures change during the tornado passage by an amount pi(t). Denoting the
atmospheric pressure change by pa(t), the atmospheric differential pressure that acts on
the external walls is pa(t) – pi(t).

A useful model for pa(t) can be obtained by assuming in Eqs. (27.11) that r=V tr t,
where V tr is the tornado translation speed and t is the time. A simpler model in which
the variation of pa(t) with time is given by the graph of Figure 27.5 may also be used. The
time varying internal pressures pi(t) may be estimated by iteration as follows. Assume
that the building consists of a number n of compartments. The air mass in compartment
N , where N≤ n, at time tj+ 1 is denoted by W N (tj+ 1) and may be written as

WN (tj+1) = WN (tj) + [GN(in)(tj) − GN(out)(tj)]Δt (27.13)

where GN(in) and GN(out) denote the mass of air flowing into and out of compartment N
per unit of time, respectively, and Δt is the time increment. The air mass flow rates GN
can be calculated as functions of the pressures outside and within the compartment N ,
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Figure 27.5 Idealized atmospheric pressure change versus time function [3].

and of relevant geometrical parameters, including opening sizes, as shown subsequently.
The internal pressure in compartment N at time tj+ 1, piN (tj+ 1), is then written as

piN(tj+1) =
[WN (tj+1)

WN (tj)

]k

piN (tj) (27.14)

where k= 1.4 is the ratio of specific heat of air at constant pressure to specific heat of air
at constant volume. The air mass flow rate can be modeled as follows:

G = 0.6CcA2[2𝛾1(p1 − p2)]1∕2 (27.15)

where the non-dimensional compressibility coefficient Cc has the expression

Cc =

{(p2

p1

)2∕k k
k − 1

[1 − (p2∕p1)(k−1)∕k

1 − p2∕p1

] [ 1 − (A2∕A1)2

1 − (A2∕A1)2(p2∕p1)2∕k

]}1∕2

(27.16)

and A1 is the area (on the side of compartment 1) of the wall between compartments
1 and 2, A2 is the area connecting compartments 1 and 2, k = 1.4, p1 is the pressure
in compartment 1, p2 is the pressure in compartment 2 (p2 < p1), and 𝛾1 is the mass
per unit volume of air in compartment 1. If, in compartments provided with a blowout
panel, the differential pressure exceeds the design pressure for a panel, the blowout area
is transformed into a wall opening. To account for three-dimensional effects disregarded
in Eq. (27.15), the atmospheric differential pressures on external walls obtained by the
procedure just described are multiplied by a factor of 1.2 [3].

Figure 27.6 is an illustration of the pressure distribution and of the flow pattern
in a building during depressurization. An illustration of a structure depressurization
model with values of geometric parameters required as input in the calculations, and
an example of a calculated corresponding differential pressure–time history, are shown
in Figures 27.7 and 27.8, respectively.
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Figure 27.8 Differential pressure–time history for compartments 1 and 3. Input time history based on
Figure 27.5 using 3Rm/Vtr = 9 s and pa = 432 lb ft−2 [3].

27.4 Experimental Modeling of Tornado-Like Wind Flows

Facilities aimed to simulate tornado flows have been developed since the early in the
early 1970s (e.g., [4–7]; see Figures 5.12 and 5.13 for two examples). Their objective is to
produce vortex flows with a strong rotation combined with a radial sink flow [8].

From the non-dimensional Navier–Stokes equations in cylindrical coordinates,
Lewellen [9] established that such flows depend upon three non-dimensional parame-
ters: the aspect ratio a= h/r0, where h and r0 are the axial inflow height and the updraft
radius, respectively; the swirl ratio S; and a radial Reynolds number Rer =Q/(2𝜋𝜈),
where 𝜈 is the kinematic viscosity and Q is the volumetric flow rate per unit axial length.
A commonly used expression for the swirl ratio is

S =
r0Γ
2Qh

(27.17)

where the circulation Γ

Γ = 2𝜋r0Vtmax
(27.18)

and V t,max is the maximum tangential velocity. Experimental and numerical results
showed that flows with, approximately, swirl ratios S< 0.5 and S> 1.0 produced one-cell
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and multiple-cell vortices, respectively [10, 11]. In addition, it is established that the
wind flows depend upon terrain roughness (e.g., [12]). Descriptions of flow fields
associated with various values of S and Rer are presented in [8] and, with the added
benefit of modern measurement and flow visualization techniques, in [7]. A transition,
from laminar axisymmetric core to a turbulent core with greatly expanded radius,
termed vortex breakdown, is noted in [13]; the transition is due to development of an
adverse pressure gradient as the laminar core spreads out in radius with increasing
downstream distance [8, 13, 14].

Measurements of pressures induced by tornadoes on structures are reported in [6, 11,
15–17]. It appears that aerodynamic pressures induced by tornadoes on lateral walls of
low-rise buildings may differ in some cases than those induced by straight winds; this
is especially the case for suctions on roofs, owing to suctions induced by atmospheric
pressure defects on fully unvented structures.
In situ observations reported in [18] are a first, promising attempt to document the
structure of tornado wind flows near the ground.
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Tornado- and Hurricane-Borne Missile Speeds

28.1 Introduction

Debris produced by wind-induced damage to structures, and various other objects that
may be carried by strong winds, can acquire sufficiently high speeds to cause serious
damage to the structures or building components they impact during their flight. Dam-
age that may be produced by certain types of objects, for example roof gravel and light
fences, can be avoided by appropriately regulating their use in high wind zones; objects
such as roof pavers can be prevented from becoming wind-borne by adequately attach-
ing them to their supporting structure; and openings can be protected from damage
through the use of shutters.

However, for the design of nuclear power plants or other facilities whose failure
to perform adequately could be catastrophic, specific allowance must be made in
design for the impacts produced by wind-borne missiles in tornadoes or hurricanes.
The purpose of this chapter is to review approaches to determining tornado- and
hurricane-borne missile speeds for structural design purposes. Sections 28.2 and 28.3
concern tornado-borne and hurricane-borne missiles, respectively. For additional
information on wind-borne debris hazards see [17].

28.2 Tornado-Borne Missile Speeds

To estimate speeds attained by an object under the action of aerodynamic forces induced
by tornado winds, a set of assumptions is needed concerning:

• The aerodynamic characteristics of the object.
• The detailed features of the wind flow field.
• The initial position of the object with respect to the ground and to the tornado center

and the translation velocity vector.

For the design of nuclear power plants, objects commonly considered as potential mis-
siles include bluff bodies such as planks, steel rods, steel pipes, utility poles, and auto-
mobiles.1 This section reviews approaches to the tornado-borne missile problem based
on (i) deterministic and (ii) probabilistic modeling.

1 Information on the behavior of automobiles in strong winds is presented in [1, 2].

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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28.2.1 Deterministic Modeling of Design-Basis Missile Speeds

Equations of Motion and Aerodynamic Modeling. The motion of an object can be
described by solving a system of three equations of balance of momenta and three
equations of balance of moments of momenta. For bluff bodies in motion, a major
difficulty in writing these six equations is that the aerodynamic forcing functions are
not known.

In the absence of a satisfactory model for the aerodynamic description of the missile
as a rigid body, it is customary to resort to the alternative of describing the missile as a
material point acted upon by a drag force

D = 1/2𝜌CDA|Vw − VM|(Vw − VM) (28.1)

where 𝜌 is the air density, Vw is the wind velocity, VM is the missile velocity, A is a suit-
ably chosen area, and CD is the corresponding drag coefficient. This model is reasonable
if, during its motion, the missile either maintains a constant or almost constant attitude
with respect to the relative velocity vector Vw −VM, or has a tumbling motion such that,
with no significant errors, a mean value of the quantity CD A can be used in the expres-
sion for the drag D. The assumption of a constant body attitude with respect to the flow
would be credible if the aerodynamic force were applied at all times exactly at the center
of mass of the body – which is highly unlikely – or if the body rotation induced by a
non-zero aerodynamic moment with respect to the center of mass were prevented by
aerodynamic forces intrinsic in the body-fluid system. There is no evidence to this effect,
so the assumption that wind-borne missiles will tumble during their flight is reasonable.

Assuming then that Eq. (28.1) is valid and that the average lift force vanishes under
tumbling conditions, the motion of the missile viewed as a three-degree-of freedom
system is governed by the relation

dVM

dt
= 1

2
𝜌

CDA
m

|Vw −VM|(Vw −VM) − gk (28.2)

where g is the acceleration of gravity, k is the unit vector along the vertical axis, and m
is the mass of the missile. It follows form Eq. (28.2) that for a given flow field and given
initial conditions the motion depends only upon the value of the parameter a=CDA/m.
For a tumbling body this value can, in principle, be determined experimentally. Unfortu-
nately, little information on this topic appears to be available. Information on tumbling
motions under flow conditions corresponding to Mach numbers 0.5–3.5 is available
in [3]. Those data were extrapolated in [4] to lower subsonic speeds; according to this
extrapolation, for a randomly tumbling cube the quantity CDA/m equals, approximately,
the average of the projected areas corresponding to “all positions statistically possible”
times the respective static drag coefficients [4, pp. 13–17 and 14–16]. In the absence
of more experimental information, it appears reasonable to assume that the effective
product CDA is given by the expression

CDA = c(CD1
+ CD2

+ CD3
) (28.3)

where CDi
Ai(i = 1, 2, 3) are products of the projected areas corresponding to the cases

in which the principal axes of the body are parallel to the vector Vw −VM times the
respective static drag coefficients, and c is a coefficient assumed to be 0.50 for planks,
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rods, pipes and poles, and 0.33 for automobiles. In the case of circular cylindrical bodies
(rods, pipes, poles) the assumption c= 0.5 is conservative.

Computation of Missile Speeds. A computer program for calculating and plotting tra-
jectories and velocities of tornado-borne missiles is listed in [5]. The program includes
specialized subroutines incorporating the assumed model for the tornado wind field
and the assumed drag coefficients (which may vary as functions of Reynolds number).
Input statements include values of relevant parameters and the initial conditions of the
missile motion.

In Eq. (28.2) both Vw and VM are referenced with respect to an absolute frame. The
velocity Vw is usually specified as a sum of two parts. The first part represents the wind
velocity of a stationary tornado vortex and is referenced with respect to a cylindrical
coordinate system. The second part represents a translation velocity of the tornado with
respect to an absolute frame of reference. Transformations required to represent Vw in
an absolute frame are derived in [5] and are incorporated in the computer program.

Maximum calculated horizontal missile speed V max
Mh are reported in [5] as functions

of the parameter CDA/m under the following assumptions:

• The rotational velocity of the tornado vortex V R is described by Eq. (28.1).
• The radial velocity component V r and the vertical velocity component V z are given

by the expressions suggested in [6]:

Vr = 0.50VR (28.4)
Vz = 0.67VR (28.5)

The radial component is directed toward the center of the vortex; the vertical com-
ponent is directed upward.

• The translation velocity of the tornado vortex V tr is directed along the x-axis.
• The initial conditions (at time t = 0) are x(0)=Rm, y(0)= 0, z(0)= 40 m, VMx

= 0,
VMy

= 0, VMz
= 0, where x, y, z are the coordinates of the center of mass of the missile

and VMx
, V y, VMz

are the missile velocity components along the x-, y-, and z-axes.
Also, at t = 0, the center of the tornado vortex coincides with the origin O of the
coordinate axes.

Similar calculations were performed independently by the U.S. Nuclear Regulatory
Commission for a set of potential missiles listed in Table 28.1, assuming the validity of
the tornado model with the characteristics listed in Table 3.2 for Regions I, II, and III
(corresponding to Regions 1, 2, and 3 in Figure 3.5). For details see [1].

The ANSI/ANS-2.3-2011; R2016 Standard [7] contains a number of differences in the
specification of missile speeds with respect to the values of [1].

A critique of various models of the wind field in tornadoes was recently pre-
sented in [8], and a novel, improved modeling of tornado-borne missile flight was
proposed in [9].

28.2.2 Probabilistic Modeling of Design-Basis Missile Speeds

Reference [10] proposed a procedure for estimating speeds with 107-year mean recur-
rence intervals of postulated missiles that strike a given set of targets within a nuclear
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Table 28.1 Design-basis tornado missile spectrum and maximum horizontal speeds Vmax
Mh .

Missile Type
Schedule 40
Pipe Automobile

Solid Steel
Sphere

Regions I and II
5 m× 2 m× 1.3 mDimensions 0.168 m dia. ×

4.58 m long Region III (1 in. dia.)
4.5 m × 1.7 m × 1.5 m

2.54 cm dia.

Regions I and II
1810 kgMass 130 kg
Region III
1178 kg

0.0669 kg

Regions I and II
0.0070 m2 kg−1

CDA/m 0.0043 m2 kg−1

Region III
0.0095 m2 kg−1

0.0034 m2 kg−1

Region I 41 m s−1 41 m s−1 8 m s−1

VMh
max Region II 34 m s−1 34 m s−1 7 m s−1

Region III 24 m s−1 24 m s−1 6 m s−1

power plant or similar installation. The procedure is based on assumptions concerning
the number and location of potential missiles, the magnitude of the force opposing mis-
sile takeoff, the direction of the tornado axis of translation, and the size of the target
area. The results of the calculations depend upon the parameter CDA/m and the ratio
k between the minimum aerodynamic force required to cause missile takeoff and the
weight of the missile. A listing of the computer program used in the procedure is avail-
able in [11].

A more elaborate approach to the development of a risk-informed approach is pro-
posed in [12], which defines a missile impact probability (MIP) as the number of hits
per missile per unit of target area. In this approach the hit frequency given a target
structure is proportional to the tornado frequency, the number of missiles, the target
area, and the MIP, and can be used for probabilistic risk assessments of core damage
and radioactive release. In [12] the MIP was computed using data from [13]. The MIP
depends on tornado characteristics, height of target, shielding inherent in the configu-
ration of buildings in a plant, and area of spread of the missiles’ initial location, and is
independent of tornado frequency.

An innovative approach that does not require the use of Monte Carlo simulations is
described in [14], which uses a three-degree-of-freedom model of the missile motion
rather than a six-degree-of freedom model. The translating tornado wind velocity field
can be described either by using the Rankine vortex or the Fujita model. Also included
in this approach is a model for the lifting of potential missiles initially located on the
ground in the tornado path.
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28.3 Hurricane-Borne Missile Speeds

Calculated hurricane-borne missile speeds for the design of nuclear power plants are
listed in [15] for the missiles considered in [1] and, in addition, for a plate-like and a
plank-like missile that arise from metallic siding dislodged during a tornado event.

The assumptions on the basis of which the calculations were performed and the
properties of the missiles being considered are considered in Section 28.3.1. A sample
of results of the numerical calculations is presented in Section 28.3.2. Closed form
as opposed to numerical solutions can be obtained for the case of wind speeds
independent of height above ground, and are presented in Section 28.3.3. The closed
form equations provide useful insights into the missiles dynamic behavior as a function
of the various parameters of the motion (initial conditions, hurricane wind speeds,
parameters defining missile properties). A summary of the numerical results of interest
for regulatory purposes is presented in [16].

28.3.1 Basic Assumptions

This section considers the assumptions on the basis of which the calculations were per-
formed.
1) Unlike for tornadoes, for hurricanes winds updraft speeds may be neglected. It fol-

lows that forces tending to increase the elevation of the missile with respect to the
ground level may be assumed to be negligible as well. In particular, no updraft forces
are available to lift automobiles.

2) The missiles start their motion with zero initial velocity from an elevation h above
ground. As was the case for the tornado missile analyses performed for Regulatory
Guide 1.76, it was assumed h = 40 m. In addition, the assumptions h= 30, 20, and
10 m were used.
These assumptions imply that the change in the hurricane wind field through which
the missile travel during its flight time is small. Indeed, for h= 40 m the flight time
tmax, that is, the time it takes the missile to reach the ground from its initial eleva-
tion is

tmax =
(

2 × 40
g

)1∕2

≈ 2.86 seconds

where g = 9.81 m s−2 is the acceleration of gravity. Therefore, for all the elevations
h assumed in the calculations, tmax < 3 s. Let the hurricane speed be 100 m s−1, say,
and the radius of maximum wind speed be 1.5 km (the vast majority of hurricanes
have radii of maximum wind speeds one order of magnitude larger). Assume
conservatively that the horizontal distance traveled by the missile is in the order of
100 m s−1 × 3 s= 300 m, and that the missile’s horizontal trajectory is tangent to the
circle with radius 1.5 km, assumed conservatively to represent the hurricane’s radius
of maximum wind speeds. At the end of the trajectory the distance from the center
of the circle to the missile will then be

r = 1500
cos

[
tan−1 (300∕1500)

] = 1530 m. (28.6)
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For practical purposes, the wind flows at 1500 and 1530 m from the center can be
assumed to be the same. The differences between wind fields at the beginning and
end of the missile trajectory (i.e., over a time interval in the order of 3 s) may similarly
be assumed to be small.

3) Suburban terrain exposure and open terrain exposure represent, respectively, Expo-
sure B and C as defined in the ASCE 7 Standard. For open terrain exposure, the wind
speed vh considered in the calculations represents the peak 3-second gust speed, and
varies with height above ground z in accordance with the power law

vopen
h (z)

vopen
h (10)

=
( z

10

)1∕9.5
(28.7a)

where (10) is the peak 3-second gust speed at 10 m above ground in open terrain.
A simplified model of the wind field adopted in the ASCE 7-05 Standard (2006)
is based on the assumption that the retardation of the wind flow by friction at the
ground surface becomes negligible at an elevation, referred to conventionally as the
gradient height, z= 274 m. At the gradient height the wind speed is, in accordance
with Eq. (28.7a), (274 m)= 1.42 (10 m). In that simplified model it is further assumed
that for suburban terrain exposure the retardation of the wind flow by friction at
the ground surface becomes negligible at a gradient height z= 366 m. (The retar-
dation of the wind flow by surface friction is effective up to higher elevations than
over open exposure because the friction is stronger over suburban than over open
terrain.)
For suburban terrain exposure the wind speed considered in the calculations repre-
sents the peak 3-second gust speed, and varies with height above ground z in accor-
dance with the power law

vsub
h (z)

vsub
h (366 m)

=
( z

366 m

)1∕7
(28.7b)

(z in meters). Since (366 m)= 1.42 (10 m), Eq. (28.7b) can be written as

vsub
h (z)

vopen
h (10)

= 1.42
( z

366

)1∕7
(28.7c)

For example, if vopen
h (10 m) = 40 and 150 m s−1 (𝛼 = 1/9.5), then vsub

h (10 m) = 34
and 127.5 m s−1 (𝛼 = 1/7), respectively. The equations of motion of the missiles used
in conjunction with Eqs. (28.7a) and (28.7b) can only be solved numerically. Results of
numerical calculations are presented in Section 28.3.2. For simplified representations
of the hurricane flow field it is possible to solve the equations of motion in closed
form. Such closed form solutions are presented in Section 28.3.3.

4) As in the case of tornado-borne missiles, the aerodynamic force acting on a missile
at any point of its trajectory was assumed to be proportional to the square of the
velocity at that point times the parameter

a = 1
2
𝜌CD

A
m

(28.8)
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where 𝜌 is the air density (≈1.2 kg m−3), CD is the drag coefficient characterizing the
average aerodynamic pressure acting on the missile, A is the effective area of the
missile, that is, the area by which pressures must be multiplied to yield the aero-
dynamic force, and m is the mass of the missile. For a plank with length and width
3.05 m× 0.305 m, A= 0.93 m2, mass m= 3.8 kg (steel board batten siding coated in
PVC); for a slab with length and width 3.05 m× 1.53 m, A= 4.67 m2, mass m= 38 kg.
The assumptions concerning the areas A are conservative. For these two missiles
it is assumed CD = 1.2. Therefore, a= 0.176 and a= 0.0885 m−1, respectively. For
the other missiles being considered the parameters a have the same values as in
Table 28.1.

Software for the calculation of hurricane-borne missile speeds based on the assump-
tions listed in this section is available at https://www.nist.gov/wind.

28.3.2 Numerical Solutions

Reference [15] lists:

• Terminal horizontal missile speeds (i.e., horizontal speeds at the time the missile
reaches the ground).

• Terminal total missile speeds (i.e., resultants of the horizontal and vertical missile
speeds at the time the missile reaches the ground).

• Maximum horizontal wind speeds (i.e., largest horizontal wind speeds reached during
the missile flight).

• Maximum total missile speeds.

for the following conditions:

• Wind flows corresponding to 3-second wind speeds (10 m)= 40–150 m s−1 in incre-
ments of 10 m s−1 at 10 m above terrain with open exposure, (i) over open terrain, and
(ii) over suburban terrain.

• Missiles starting from rest from elevations 40, 30, 20, and 10 m.

For values of the parameter a< 0.006 (in particular, for the four missiles covered by
Regulatory Guide 1.76) the differences between the maximum missile speeds and the
speeds at the time the missiles reach the ground level are not significant. However, for
values of the parameter a> 0.006 m−1 those differences can be large. The explanation
for the decrease of the missile speeds from their maximum values is the following. After
reaching those maximum speeds, the difference vh − vmh between the hurricane wind
speed and the horizontal missile speed can become negative as the missile moves at
lower elevations where, owing to friction at the ground level, hurricane speeds are low.
The missile motion is then decelerated.

Figure 28.1 shows an example of results obtained by numerical calculations.
For example, for hurricanes and tornadoes with 230 mph (103 m s−1) maximum
3-second wind speeds at 10 m above terrain with open exposure, calculated maximum
horizontal speeds of missiles listed in Table 28.1 are shown in Table 28.2.

Results obtained in [15] were used to develop Regulatory Guide 1.221 [16].
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Figure 28.1 Maximum total missile speeds (in m s−1) for parameters 0.005 m−1 < a< 0.200 m−1 and
wind speeds over terrain with open exposure (10 m)= 40, 50,…,150 m s−1. Missiles start at 40 m above
ground level.

Table 28.2 Calculated maximum horizontal missile
speeds in hurricanes and tornadoes, in m s−1.

Hurricanes
Tornadoes
(Region I)

Solid steel sphere 48 8
Schedule 40 pipe 54 41
5 m automobile 68 41

28.3.3 Simplified Flow Field: Closed Form Solutions

It is now shown that a closed form solution can be obtained under the assumption that
the wind speed vh does not depend on height above ground. To check the validity of
the algorithm by which they were obtained, numerical solutions corresponding to that
assumption, were compared to their closed form counterparts. It was assumed that the
vertical drag force is negligible and that the parameter a is given by Eq. (28.8).
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The equation of horizontal motion of the missile can be written as:
dvmh

dt
= a(vh − vmh)2 (28.9)

where vmh is the horizontal missile velocity.
Equation (28.9) can be written as follows:

−
d(vh − vmh)

dt
= a(vh − vmh)2 (28.10)

Let vh − vmh = y. Eq. (28.10) becomes

−
dy
dt

= ay2 (28.11)

It follows that

−
dy
y2 = adt (28.12)

1
y
= at + C (28.13)

vh − vmh = 1
at + C

(28.14)

vmh = vh −
1

at + C
(28.15)

For t= 0, vmh = 0, so C= 1/vh. Therefore

vmh = vh −
vh

avht + 1
. (28.16)

For example, for vh = 100 m s−1, a= 0.0042 m−1, a 40 m initial elevation of the mis-
sile and, therefore, it takes the missile a time t= (2× 40/9.81)1/2 = 2.86 s to reach the
ground level under the action of gravity, and the horizontal missile speed at that time is
vmh = 100–100/(1.20+ 1)= 54.55 m s−1.

The horizontal distance traveled by the missile in 2.86 s is a small fraction of the hurri-
cane’s radius of maximum wind speeds, assumed conservatively to be 1.5 km. Denoting
the horizontal position of the missile by xmh, with the change of variable

t + 1
(avh)

= 𝜏 (28.17)

integration of Eq. (28.18), in which vmh = dxmh/dx, yields

xmh = vh𝜏 − (1∕a) log 𝜏

𝜏0
+ B (28.18)

where the integration constant C was written in the form C=B + (1/a)ln 𝜏0, and 𝜏0 is
the value taken on by 𝜏 for t= 0. After some algebra, since for t= 0, xmh = 0,

x = vht − 1
a

log(1 + avht). (28.19)

For vh = 100 m s−1, a= 0.0042 m−1, t= 2.86 seconds, xmh = 286 – (1/0.0042) log
(1+ 2.86× 0.0042× 100)= 98 m.
It is shown in [15] that this result differs negligibly from its counterparts obtained
numerically, thus verifying the numerical procedure being used. A similar verification
was performed for tornado-borne missile speeds.
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Appendix A

Elements of Probability and Statistics

A.1 Introduction

A.1.1 Definition and Purpose of Probability Theory

Following Cramér [1], probability theory will be defined as a mathematical model for the
description and interpretation of phenomena showing statistical regularity. Examples
are phenomena such as the wind intensity at a given location, the turbulent wind speed
fluctuations at a point, the pressure fluctuations on the surface of a building, or the fluc-
tuating response of a structure to wind loads. Probabilistic models arising in connection
with the wind loading of structures are discussed in Sections A.1–A.6.

Consider an experiment that can be repeated an indefinite number of times and whose
outcome can be the occurrence or non-occurrence of an event A. If, for large values of
trials n, the ratio m/n, called the relative frequency of the event A, differs little from some
unique limiting value P(A), the number P(A) is defined as the probability of occurrence
of event A. For example, if a coin is tossed, the ratio of the number of heads observed in
a very large recorded sequence of H’s (heads) and T’s (tails) should be close to 1/2 so that,
in any one toss, the probability of occurrence of a head would be 1/2. Consider, however,
the recorded sequence

H T H T H T H T H T H T

consisting of alternating H’s and T’s. If, in this sequence, the observed outcome of a toss
is a head, the probability of a head in the next toss will not be 1/2 [2].

Indeed, for the definition of probability just advanced to be meaningful, it is required
that the sequence (S) previously referred to satisfy the condition of randomness. This
condition states that the relative frequency of event A must have the same limiting value
in the sequence (S) as in any partial sequence that might be selected from it in any arbi-
trary way, the number of terms in any sequence being sufficiently large, and the selection
being made in the absence of any information on the outcomes of the experiment [3].
The hypothesis that limiting values of the relative frequencies exist is confirmed for a
wide variety of random phenomena by a large body of empirical evidence.

A.1.2 Statistical Estimation

Data obtained from observations must be fitted to mathematical models provided
by probability theory by using statistical methods. Such methods fall into two broad

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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categories: parametric and non-parametric. Parametric models aim to estimate
parameters of the probabilistic models. Non-parametric (parameter-free) models are
typically applied to large samples of rank-ordered data, obtained in some applications
by numerical simulation.

Like probability theory, statistics is a vast field. Basic statistical notions and meth-
ods used in applications connected with the wind loading of structures are discussed in
Chapter 3 and Appendices C and E.

References that complement the material covered in this Appendix include [4–13].

A.2 Fundamental Relations

A.2.1 Addition of Probabilities

Consider two events, A1 and A2, associated with an experiment. Assume that these
events are mutually exclusive (i.e., cannot occur at the same time). The event that either
A1 or A2 will occur is denoted by A1 ∪ A2. The probability of this event is

P(A1 ∪ A2) = P(A1) + P(A2) (A.1)

The empirical basis of the addition rule (Eq. [A.1]) is that, if the relative frequency
of event A1 is m1/n and that of event A2 is m2/n, the frequency of either A1 or A2 is
(m1 +m2)/n. Equation (A.1) then follows from the relation between frequencies and
probabilities, and can obviously be extended to any number of mutually exclusive events
A1, A2,…, An.

Example A.1 For a fair die the probability of throwing a “five” is 1/6 and the probability
of throwing a “six” is 1/6. The probability of throwing either a “five” or a “six” is then
1/6+ 1/6 = 1/3.

Let the non-occurrence of event A be denoted by A. Events A and A are mutually
exclusive. Also, the event that A either occurs or does not occur is certain; that is, its
probability is unity:

P(A ∪ A) = 1 (A.2a)

Equation (A.2a) follows immediately from the addition rule (Eq. [A.1]) applied to the
events A and A, the probabilities of which are the limiting values of the relative fre-
quencies m/n and (n−m)/n, respectively. The probability that A does not occur can be
written as

P(A) = 1 − P(A) (A.2b)

Two events for which Eq. (A.2b) holds are said to be complementary.

A.2.2 Compound and Conditional Probabilities: The Multiplication Rule

Consider events A and B that may occur at the same time. The probability of the event
that A and B will occur simultaneously is called the compound probability of events A
and B, and is denoted by P(A1 ∩ A2). The probability of event A given that event B has
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already occurred is denoted by P(A|B) and is known as the conditional probability of
event A under the condition that B has already occurred. Formally, P(A|B) is defined as
follows:

P(A ∣ B) = P(A ∩ B)
P(B)

(A.3a)

In Eq. (A.3a) it is assumed that P(B)≠ 0. Similarly, if P(A)≠ 0,

P(B ∣ A) = P(A ∩ B)
P(A)

(A.3b)

Example A.2 In a certain region, records show that in an average year 60 days are
windy, 200 days are cold, and 50 days are both windy and cold. Let the probability that a
day will be windy and the probability that a day will be cold be denoted by P(W ) and P(C),
respectively. If it is known that condition C (i.e., cold weather) prevails, the probability
that a day is windy, P(W |C), is

P(W ∩ C)
P(C)

=
(50∕365)
(200∕365)

= 50
200

.

From Eqs. (A.3a) and (A.3b) it follows that
P(A ∩ B) = P(B)P(A ∣ B)

= P(A)P(B ∣ A) (A.4)

Equation (A.4) is referred to as the multiplication rule of probability theory.

A.2.3 Total Probabilities

If the events B1, B2, …, Bn are mutually exclusive and P(B1)+P(B2)+ · · · +P(Bn) = 1, the
probability of event A is

P(A) = P(A ∣ B1)P(B1) + P(A ∣ B2)P(B2) + · · · + P(A ∣ Bn)P(Bn) (A.5)

Equation (A.5) is referred to as the theorem of total probability.

Example A.3 With reference to the previous example, we denote the probability of
occurrence of winds as P(W ), the probability of occurrence of winds given that a day is
cold as P(W |C), the probability that a day is not cold as P(W ∣ C), the probability that
a day is cold as P(C), and the probability that a day is not cold as P(C). From Eq. (A.5) it
follows that

P(W ) = P(W ∣ C)P(C) + P(W ∣ C)P(C)

=
( 50

200

)( 200
365

)
+
( 10

165

)(165
365

)
=
( 60

365

)

A.2.4 Bayes’ Rule

If B1, B2, …, Bn are n simultaneously exclusive events, the conditional probability of
occurrence of Bi given that the event A has occurred is

P(Bi ∣ A) =
P(A ∣ Bi)P(Bi)

P(A ∣ B1)P(B1) + · · · + P(A ∣ Bn)P(Bn)
(A.6)
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Equation (A.6) follows immediately from Eqs. (A.3b) and (A.4) (in which B is replaced
by Bi) and Eq. (A.5). Equation (A.6) allows the calculation of the posterior probabilities
P(Bi|A) in terms of the prior probabilities P(B1), P(B2), …, P(Bn) and the conditional
probabilities P(A|B1), P(A|B2), …, P(A|Bn).

Example A.4 On the basis of experience with destructive effects of previous tor-
nadoes, it was estimated subjectively that the maximum wind speeds in a tornado
were 50–70 m s−1. It was further estimated, also subjectively, that the likelihood of the
speeds being about 50, 60, and 70 m s−1 is P(50) = 0.3, P(60) = 0.5, and P(70) = 0.2.
These values are prior probabilities. According to a subsequent failure investigation
the speed was 50 m s−1. However, associated with the investigation were uncertainties
that were estimated subjectively in terms of conditional probabilities P(5̂0|Vtrue),
that is, of probabilities that the speed estimated on the basis of the investigation is
50 m s−1 given that the actual speed of the tornado was Vtrue. The estimated values
of P(5̂0|Vtrue) were

P(5̂0|50) = 0.6
P(5̂0|60) = 0.3
P(5̂0|70) = 0.1

It follows from Eq. (A.6) that the posterior probabilities, that is, the probabilities calcu-
lated by taking into account the information due to the failure investigation, are

P(50 ∣ 5̂0) = P(5̂0 ∣ 50)P(50)
P(5̂0 ∣ 50)P(50) + P(5̂0 ∣ 60)(P(60) + P(5̂0 ∣ 70)P(70)

= 0.51
P(60|5̂0) = 0.43
P(70|5̂0) = 0.06

Whereas the prior probabilities favored the assumption that the speed was 60 m s−1,
according to the calculated posterior probabilities it is more likely that the speed was
only 50 m s−1. This result is, of course, useful only to the extent that the various subjective
estimates assumed in the calculations are reasonably correct.

A.2.5 Independence

In the example following Eq. (A.3b), the occurrence of winds and the occurrence of
low temperatures were not independent events. Indeed, in the region in question, if the
weather is cold, the probability of windiness increases.

Assume now that event A consists of the occurrence of a rainy day in Pensacola,
Florida, and event B consists of an increase in the world market price of gold. It is
reasonable to state that the probability of rain in Pensacola is in no way dependent
upon whether such an increase has occurred or not. In this case it is then natural to
state that

P(A ∣ B) = P(A) (A.7)
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Two events A and B for which Eq. (A.7) holds are called stochastically1 independent. By
virtue of Eqs. (A.1) and (A.7), an alternative definition of independence is

P(A ∩ B) = P(A)P(B) (A.8)

Example A.5 The probability that one part of a mechanism will be defective is 0.01;
for another part, independent of the first, this probability is 0.02. The probability that
both parts will be defective is 0.01× 0.02 = 0.0002.

Three events A, B, and C are (stochastically) independent only if, in addition to
Eq. (A.8), the following relations hold:

P(A ∩ C) = P(A)P(C)
P(B ∩ C) = P(B)P(C)

P(A ∩ B ∩ C) = P(A)P(B)P(C) (A.9)

In general, n events are said to be independent if relations similar to Eq. (A.9) hold for
all combinations of two or more events.

A.3 Random Variables and Probability Distributions

A.3.1 Random Variables: Definition

Let a numerical value be assigned to each of the events that may occur as a result of an
experiment. The resulting set of possible numbers is defined as a random variable.

Example A.6

(1) A coin is tossed. The numbers zero and one are assigned to the outcome heads and
the outcome tails, respectively. The set of numbers zero and one constitutes a ran-
dom variable.

(2) To each measurement of a quantity, a number is assigned equal to the result of that
measurement. The set of all possible results of the measurements constitutes a ran-
dom variable.

Random variables are called discrete or continuous according to whether they may take
on values restricted to a set of integers (as in Example A.6 (1)), or any value on a seg-
ment of the real axis (as in Example A.6 (2)). It is customary to denote random variables
by capital letters (e.g., X, Y , Z). Specific values that may be taken on by these random
numbers are then denoted by the corresponding lower case letters (x, y, or z).

A.3.2 Histograms, Probability Density Functions, Cumulative Distribution
Functions

Let the range of the continuous random variable X associated with an experiment be
divided into equal intervals ΔX. Assume that, if the experiment is carried out n times,

1 The word stochastic means “connected with random experiments and reliability,” and is derived from the
Greek 𝜎𝜏o𝜒𝛼𝜁o𝜇𝛼𝜄, meaning “to aim at, seek after, guess, surmise.”
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n1

n2

n3 n4

n5

n6

n7

n8
n9

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9
X

Figure A.1 Histogram.

the number of times that X has taken on values in the given intervals X1 −X0, X2 −X1,
…, Xi −Xi−1, … is n1, n2, …, ni, …, respectively. A graph in which the numbers ni are
plotted as in Figure A.1 is called a histogram (similar graphs may be plotted for discrete
variables.)

Let the ordinates of the histogram in Figure A.1 be divided by nΔX. The resulting
diagram is called the frequency density distribution. The relative frequency of the
event Xi− 1 < X ≤ Xi is then equal to the product of the ordinate of the frequency
distribution, ni/(nΔX) by the interval ΔX. Since the area under the histogram is
(n1 + n2 + · · · + ni + · · ·)ΔX = nΔX, the total area under the frequency density diagram
is unity.

As ΔX becomes very small so that ΔX = dx and as n becomes very large, the ordinates
of the frequency density distribution approach in the limit values denoted by f (x), where
x denotes a value that may be taken on by the random variable X. The function f (x) is
known as the probability density function (PDF) of the random variable X (Figure A.2a).
It follows from this definition that the probability of the event x < X ≤ x + dx is equal
to f (x)dx, and that

∫

∞

−∞
f (x)dx = 1. (A.10a)

In the experiment reflected in Figure A.1 the number of times that X has assumed
values smaller than Xi is equal to the sum n1 + n2 + · · · + ni. Similarly, the probability
that X ≤ x, called the cumulative distribution function (CDF) of the random variable X
and denoted by F(x), can be written as

F(x) =
∫

x

−∞
f (x)dx (A.10b)

that is, the ordinate at X in Figure A.2b is equal to the shaded area of Figure A.2a.
It follows from Eq. (A.10b) that

f (x) = dF(x)
dx

(A.11)
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Figure A.2 (a) Probability density function.
(b) Cumulative distribution function.

X

x

f(x)

X

F(x)

(a)

x
(b)

A.3.3 Changes of Variable

We consider here only the change of variable y= (x− a)/b, where a and b are constants.
We assume the CDF FX(x) is known, and we seek the CDF FY (y) and the PDF f Y (y). We
can write

FX(x) = P(X ≤ x)

= P
(X − a

b
≤

x − a
b

)
= FY (y) (A.12a,b,c)

Since Eq. (A.12c) implies that dFX(x) = dFY (y), or f X(x)dx = f Y (y)dy, it follows that

fX(x) =
1
b

fY (y) (A.13)

A.3.4 Joint Probability Distributions

Let X and Y be two continuous random variables, and let f (x, y)dxdy be the probability
that x < X ≤ x + dx and y < Y ≤ y + dy. The quantity f (x, y) is called the joint PDF
of the random variables X and Y (Figure A.3). The probability that X ≤ x and Y ≤ y is
called the joint cumulative probability distribution of X and Y and is denoted by F(x, y).
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f(x, y)

X

Y

Figure A.3 Probability density function f (x, y).

From the definition of f (x, y)dxdy it follows that

F(x, y) =
∫

x

−∞ ∫

y

−∞
f (x, y)dx dy (A.14a)

and

∫

∞

−∞ ∫

∞

−∞
f (x, y)dx dy = 1 (A.14b)

It follows from Eq. (A.14a) that

f (x, y) =
𝜕2F(x, y)
𝜕x𝜕y

(A.15)

If f (x, y) is known, the probability that x < X ≤ x + dx, denoted by f X(x)dx, is
obtained by applying the addition rule to the probabilities f (x, y) dx dy over the entire
Y domain:

fX(x) =
∫

∞

−∞
f (x, y) dy (A.16)

The function f X(x) is called the marginal PDF of X.
Finally, the probability that y < Y ≤ y + dy under the condition that x < X ≤ x +

dx is denoted by f (y|x)dy. The function f (y|x) is known as the conditional probability
function of Y given that X = x. If Eq. (A.3a) is used, it follows that

f (y ∣ x) =
f (x, y)
fX(x)

(A.17)

If X and Y are independent, f (y|x) = f Y (y) and

f (x, y) = fX(x)fY (y) (A.18)

Similar definitions hold for any number of discrete or continuous random variables.
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A.4 Descriptors of Random Variable Behavior

A.4.1 Mean Value, Median, Mode, Standard Deviation, Coefficient
of Variation, and Correlation Coefficient

The complete description of the behavior of a random variable is provided by its proba-
bility distribution (in the case of several variables, by their joint probability distribution).
Useful if less detailed information is provided by such descriptors as the mean value,
the median, the mode, the standard deviation. and, in the case of two variables, their
correlation coefficient.

The mean value, also known as the expected value or the expectation, of the discrete
random variable, X, is defined as

E(X) =
m∑

i=1
xi fi (A.19)

where m is the number of values taken on by x. The counterpart of Eq. (A.19) in terms
of relative frequencies of the quantity E(X) is

E(X) =
m∑

i=1
xi

ni

n
(A.20)

If the random variable X is continuous, the expected value of X is written in complete
analogy with Eq. (A.18) as

E(X) =
∫

∞

−∞
x f (x) dx (A.21)

The median of a continuous random variable X is the value x that corresponds to the
value 1/2 of the CDF. The mode of X corresponds to the maximum value of the PDF.
Since Prob (x < X ≤ x + dx) = f(x) dx, the mode may be interpreted as the value of
the variable that has the largest probability of occurrence in any given trial. The mean
value, the median, and the mode are measures of location.

The expected value of the quantity [x−E(X)]2 is the variance of the variable X. By
virtue of the definition of the expected value (Eq. [A.21]), the variance can be written as

Var(x) = E{[X − E(X)]2}

=
∫

∞

−∞
[x − E(X)]2f (x)dx (A.22)

The quantity SD(X) = [Var(X)]1/2 is the standard deviation of the random variable X.
The ratio SD(X)/E(X) is the coefficient of variation (CoV) of X. The variance, the standard
deviation, and the CoV are useful measures of the scatter (or dispersion) of the random
variable about its mean.

The correlation coefficient of two continuous random variables X and Y is defined as

Corr(X,Y ) =
∫

∞
−∞ ∫

∞
−∞[x − E(X)] [y − E(Y )] f (x, y) dx dy

SD(X)SD(Y )
(A.23)

The correlation coefficient is similarly defined if the variables are discrete. It can be
shown that

−1 ≤ Corr(X,Y ) ≤ 1 (A.24)
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It follows from Eq. (A.23) that if two random variables are linearly related:

Y = a + bX (A.25)

then

Corr(X,Y ) = ±1 (A.26)

The sign in the right-hand side of Eq. (A.26) is the same as that of the coefficient b in
Eq. (A.25). It can be proved that, conversely, Eq. (A.26) implies Eq. (A.25). The correla-
tion coefficient may thus be viewed as an index of the extent to which two variables are
linearly related.

If X and Y are independent, then Corr(X, Y )= 0. This follows from Eqs. (A.23), (A.18),
and (A.21). However, the relation Corr(X, Y ) = 0 does not necessarily imply the inde-
pendence of X and Y [4].

A.5 Geometric, Poisson, Normal, and Lognormal
Distributions

A.5.1 The Geometric Distribution

Consider an experiment of the type known as Bernoulli trials, in which (i) the only
possible outcomes are the occurrence and the non-occurrence of an event A, (ii) the
probability s of the event A is the same for all trials, and (iii) the outcomes of the trials
are independent of each other.

Let the random variable N be equal to the number of the trial in which the event A
occurs for the first time. The probability p(n) that event A will occur on the nth trial
is equal to the probability that event A will not occur on each of the first n− 1 trials
and will occur on the nth trial. Since the probability of non-occurrence of event A in
one trial is 1− s (Eq. [A.2]), and since the n trials are independent, it follows from the
multiplication rule (Eq. [A.8])

p(n) = (1 − s)n−1s (n = 1, 2, 3,…) (A.27)

This probability distribution is known as the geometric distribution with parameter s.
The probability P(n) that event A will occur at least once in n trials can be found as

follows. The probability that event A will not occur in n trials is (1− s)n. The probability
that it will occur at least once is therefore

P(n) = 1 − (1 − s)n (A.28)

The expected value of N is, by virtue of Eqs. (A.19) and (A.27),

N =
∞∑

n=1
n(1 − s)n−1s (A.29)

The sum of this series can be shown to be

N = 1
s

(A.30)

The quantity N is called the mean return period, or the mean recurrence interval
(MRI).
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Example A.7 For a die, the probability that a “four” occurs in a trial is s = 1/6. If the
total number of trials is large, it may be expected that in the long run a “four” will appear
on average once in N = 1∕(1∕6) = 6 trials. The extension of the Mean Recurrence Inter-
vals (MRI) concept to extreme wind speeds is discussed in Section 3.1.1.

A.5.2 The Poisson Distribution

Consider a class of events, each of which occurs independently of the other and with
equal likelihood at any time 0 ≤ t ≤ T. A random variable is defined, consisting of the
number N of events that will occur during an arbitrary time interval 𝜏 = t2 − t1(t1 ≥ 0,
t1 < t2 ≤ T). Let p(n, 𝜏) denote the probability that n events will occur during the inter-
val 𝜏 . If it is assumed that p(n, 𝜏) is not influenced by the occurrence of any number of
events at times outside this interval, it can be shown that

p(n, 𝜏) = (𝜆𝜏)n

n!
e−𝜆𝜏 (n = 0, 1, 2, 3,…) (A.31)

If Eqs. (A.21) and (A.22) are used, it is found that the expected value and the variance of
n are both equal to 𝜆𝜏. Since 𝜆𝜏 is the expected number of events occurring during time
𝜏, the parameter 𝜆 is called the average rate of arrival of the process and represents the
expected number of events per unit of time.

The applicability of Poisson’s distribution may be illustrated in connection with the
incidence of telephone calls in a telephone exchange. Consider an interval of, say,
15 minutes, during which the average rate of arrival of calls is constant. During any
subinterval of those 15 minutes the incidence of a number n of calls is as likely as during
any other equal subinterval. In addition, it may be assumed that individual calls are
independent of each other. Therefore, Eq. (A.31) applies to any time subinterval 𝜏 lying
within the 15-minute interval.

Example A.8 The estimated mean annual rate of arrival of hurricanes in Miami is
λ = 0.56∕year. Consider a period 𝜏 = 3 years. Therefore, λτ = 1.68. What is the proba-
bility that there will be two hurricane occurrences in Miami during a period τ = 3 years?

From Eq. (A.31), p(n = 2, τ = 3) = 0.263.

A.5.3 Normal and Lognormal Distributions

Consider a random variable X that consists of a sum of small, independent contributions
X1, X2, …, Xn. It can be proved that, under very general conditions, if n is large, the PDF
of X is

f (x) = 1√
2𝜋𝜎x

exp
[
−
(x − 𝜇x)2

2𝜎2
x

]
(A.32)

where 𝜇x = E(X) and 𝜎2
x = Var(X) are the mean value and the variance of X, respec-

tively. This statement is known as the central limit theorem. The distribution represented
by Eq. (A.32) is called normal or Gaussian. It can be shown that the distribution of a
linear function of a normally distributed variable is also normal, as is the sum of inde-
pendent normally distributed variables.

If the distribution of the variable Z = ln X is normal, the distribution of X is called
lognormal. Lognormal distributions are heavy-tailed, meaning that the ordinates of its



�

� �

�

422 Appendix A: Elements of Probability and Statistics

PDF are still significant for values X for which the ordinates of the Gaussian PDF are
negligibly small.

A.6 Extreme Value Distributions

A.6.1 Extreme Value Distribution Types

Let the variable X be the largest of n independent random variables Y 1, Y 2, …, Y n. The
inequality X ≤ x .implies Y1 ≤ x, Y2 ≤ x,… , Yn ≤ x. Therefore

F(X ≤ x) = Prob(Y1 ≤ x,Y2 ≤ x,… ,Yn ≤ x)
= FY1

(x)FY2
(x)… FYn

(x) (A.33a,b)

where, to obtain Eq. (A.33b) from Eq. (A.33a), the generalized form of Eq. (A.8) is used.
In the particular case in which the variables Y i are identically distributed (i.e., have the
same distribution FY (x)FY (x)), Eq. (A.33b) becomes

FX(x) = [FY (x)]n (A.34)

The distribution FY (y) is called the underlying or the initial distribution of the vari-
able Y , which constitutes the parent population from which the largest values X have
been extracted. It has been shown that, depending upon the properties of the initial
distribution, there exist three types of extreme value distributions: the Fisher–Tippett
Type I, Type II, and Type III distributions of the largest values, also known as the Gum-
bel, Fréchet, and reverse Weibull distributions. In extreme wind climatology the initial
distributions can be tentatively determined only for a few types of storm, that do not
include, for example, tropical storms. For this reason, in practice, the choice among the
three distributions can only be made on an empirical basis (see Section A.7).

A.6.1.1 Extreme Value Type I Distribution

FI(x) = exp
[
− exp

(
−x − 𝜇

𝜎

)]
(−∞ < x <∞;−∞ < 𝜇 < ∞; 0 < 𝜎 < ∞)

(A.35)

where 𝜇 and 𝜎 are the location and scale parameter, respectively. Equations (A.35),
(A.21), and (A.22) yield the mean value and the standard deviation of the variate X:

E(X) = 𝜇 + 0.5722𝜎 (A.36a,b)

SD(X) = 𝜋√
6
𝜎

The percentage point function, defined as the inverse of the CDF, is

x(FI) = 𝜇 − 𝜎 ln(− ln FI) (A.37)

The estimated extreme value with MRI = N years can be determined from
Eqs. (A.35)–(A.37),

vI(N) = E(X) + 0.78SD(X)(ln N − 0.577) (A.38)

where N = 1∕[1 − F(x)].
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A.6.1.2 Extreme Value Type II Distribution

FII(x) = exp
[
−
(x − 𝜇

𝜎

)−𝛾]
(𝜇 < x < ∞;−∞ < 𝜇 < ∞; 0 < 𝜎 < ∞; 𝛾 > 0)

(A.39)

where 𝜇, 𝜎 and 𝛾 are the location, scale and shape (or tail length) parameters. For 𝛾 > 2
both the mean value and the standard deviation of the variate X diverge.

A.6.1.3 Extreme Value Type III Distribution

FIII(x) = exp
[
−
(
−x − 𝜇

𝜎

)𝛾]
(x < 𝜇) (A.40)

x(FIII) = 𝜇 − 𝜎[− ln(FIII)]1∕𝛾 (A.41)

The mean value and the standard deviation of the variate X are related to the parameters
𝜇, 𝜎 and 𝛾 as follows:

SD(X) = 𝜎

{
Γ
(

1 + 2
𝛾

)
−
[
Γ
(

1 + 1
𝛾

)]2
}1∕2

(A.42)

E(X) = 𝜇 − 𝜎 Γ
(

1 + 1
𝛾

)
(A.43)

where Γ is the gamma function.
In wind engineering practice it is typically assumed that the Extreme Value Type

I (Gumbel) distribution is an appropriate distributional model. The rationale for this
assumption is discussed in Section 3.3.2.

A.6.2 Generalized Extreme Value (GEV) Distribution

The GEV distribution is applied to independent extreme data (e.g., extreme wind speeds,
peak wind effects) that exceed an optimal threshold. Its CDF is

FGEV (x;𝜇, 𝜎, k) = exp
{
−
[
1 + k

(x − 𝜇
𝜎

)]−1∕k
}

(A.44)

where 1 + k(x − 𝜇)∕𝜎 > 0, − ∞ < 𝜇 < ∞ , and 0 < 𝜎 < ∞ .

For the shape parameter k > 0 and k < 0 Eq. (A.44) corresponds to the EV II and
EV III distribution, respectively. In the limit k = 0, the GEV CDF is

FGEV (x;𝜇, 𝜎, 0) = exp
[
− exp

(
−x − 𝜇

𝜎

)]
(A.45)

and corresponds to the EV I distribution. Equation (A.45) is the conditional CDF of the
variate X, given that X >u, where u is a sufficiently large, optimal threshold. The GEV is
used with a different notation in Section C.2.

A.6.3 Generalized Pareto Distribution (GPD)

The GPD is applied to differences between independent extreme data and an optimal
threshold. Its expression is

for c ≠ 0 FGPD(y; a, c) = 1 −
(

1 + c
y
a

)−1∕c
(A.46)
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for c = 0 FGPD(y; a, 0) = 1 − exp
(
−

y
a

)
(A.47)

where a> 0; y≥ 0 when c≥ 0, and 0≤ y≤− a/c when c< 0.
Equation (A.46) is the conditional CDF of the excess of the variate X over the optimal

threshold u, Y = X − u, given X >u for u sufficiently large. The tail length parameters
c> 0, c = 0, and c< 0 correspond, respectively, to EV II, EV I, and EV III distribution
tails. For c = 0 (Eq. [A.47]) the expression between braces is understood in a limiting
sense as the exponential exp(−y∕a).

The relations between the parameters a and c and the mean value E(Y ) and standard
deviation SD(Y ) of the variate Y are [14]

a = 1
2

E(Y )

[
1 +

(
E(Y )

SD(Y )

)2
]

(A.48a)

c = 1
2

[
1 −

(
E(Y )

SD(Y )

)2
]

(A.48b)

A.6.4 Mean Recurrence Intervals (MRIs) for Epochal
and Peaks-over-Threshold (POT) Approaches

Epochal Approach. Consider the largest value of the variate X within each of number
of fixed epochs, each assumed to be one year. Given the CDF F(x) of the variate X, the
probability of exceedance of x is 1 − F(x), and the MRI in years is N = 1∕[1 − F(x)].

POT Approach. We first consider the GEV distribution. Let 𝜆 denote the average
number per unit time (i.e., the mean rate of arrival) of exceedances of the thresh-
old u by the variate X, and let the unit of time be 1 year. The average number of
exceedances in N years is then 𝜆 N . An average epoch – the average length of time
between successive exceedances – is then equal to 1/𝜆 years. For example, if 𝜆 = 2
exceedances/year, the average epoch is 1/2 years; if 𝜆 = 0.5 exceedances/year the
average epoch is 2 years. The MRI, in terms of the number of average epochs between
exceedances of the value x, is 1∕F(X > x) = 𝜆N . Therefore, the MRI of the event X > x
in years is

N = 1
𝜆[1 − F(X < x)]

(A.49)

F(X < x) = 1 − 1
𝜆N

(A.50)

A similar equation, in which Y = X − u and y = x − u are substituted in Eq. (A.50) for
X and x, applies to the Generalized Pareto Distribution, that is,

F(Y < y) = 1 − 1
𝜆N

(A.51)

1 −
(

1 + c
y
a

)−1∕c
= 1 − 1

𝜆N
(A.52)

Therefore

y = −a [1 − (𝜆N)c]
c

(A.53)
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and the value being sought is

x(N) = y + u (A.54)

where N is the MRI of x in years.

A.7 Statistical Estimates

A.7.1 Goodness of Fit, Confidence Intervals, Estimator Efficiency

Data obtained from observations may be viewed as observed values of random variables.
The behavior of the data may then be assumed to be described by models governing
the behavior of random variables, that is, by mathematical models used in probability
theory.

In practical applications, from the nature of the phenomenon being investigated and
on the basis of observations, one must infer the probability distribution that will ade-
quately describe the behavior of the data and, unless a non-parametric approach is used,
the parameters of that distribution; or at least some characteristics of that distribution,
for example the mean and the standard deviation.

In practice, given a set of observed data, or a data sample, it is hypothesized in the
parametric approach that its behavior can be modeled by means of some probability dis-
tribution believed to be appropriate. This hypothesis must then be tested. Techniques
are available that incorporate some measure of the degree of agreement, or goodness of
fit, between the model (including hypothesized values of its parameters) and the data
or, conversely, of the degree to which the data deviate from the model. Techniques
that allow the selection of the most appropriate distributional model and the estima-
tion of its best fitting parameters include, among others, the method of moments, least
squares, the probability plot correlation coefficient and DATAPLOT, and maximum
likelihood. For details on such techniques see also the publicly available NIST SEMAT-
ECH e-Handbook of Statistical Methods [13] and R: A Language and Environment for
Statistical Computing [12]. For details on W-statistics, see Appendix C.

An estimator is defined as a function 𝛼(X1, X2,… , Xn) of the sample data such that
𝛼 is a reasonable approximation of the unknown value 𝛼 of the distribution parameter or
characteristic being sought. As a function of random variables Xi (i = 1, 2,… , n), 𝛼
is itself a random variable. This is illustrated by the following example.

Consider the observed sequence of 14 outcomes of an experiment consisting of the
tossing of a coin:

H T T T H T H H T H H H T H (A.55a)
The random numbers associated with this experiment are the numbers zero and one,
which are assigned to the outcome heads and the outcome tails, respectively. The data
sample corresponding to the observed outcome is then

0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0 (A.55b)
This sample is assumed to be extracted from an infinite population that, in the case

of an ideally fair coin, will have a mean value, denoted in this case by 𝛼, equal to 1/2.
A reasonable estimator for the mean 𝛼 is the sample mean:

â = 1
n

n∑
i=1

Xi (A.56)
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where n is the sample size and Xi are the observed data. For the sample of size 14 in
Eq. (A.55b), 𝛼 = 3∕7. If the samples consisting of the first seven and the last seven obser-
vations in Eq. (A.55b) are used, 𝛼 = 4∕7 and 𝛼 = 2∕7, respectively.

As a random variable an estimator 𝛼 will have a certain probability distribution with
non-zero dispersion about the true value 𝛼. Thus, given a sample of statistical data,
it is not possible to calculate the true value 𝛼 being sought. Rather, confidence inter-
vals can be estimated of which it can be stated, with a specified confidence level q,
that they contain the unknown value 𝛼. Typically, a nominal 95% confidence interval
is considered, which corresponds for the Gaussian distribution to Ê(X) ± 2ŜD(X) where
Ê(X) and ŜD(X) denote the estimated mean value and standard deviation of the vari-
ate X.

In order for the confidence interval corresponding to a given confidence level q to be
as narrow as possible it is desirable that the estimator being used be efficient. Of two
different estimators 𝛼1 and 𝛼2 of the same quantity being estimated, the estimator 𝛼1 is
said to be more efficient if E[(𝛼1 − 𝛼)2] < E[(𝛼2 − 𝛼)2].

A.7.2 Parameter Estimation for Extreme Wind Speed Distributions

Among the numerous methods for estimation of extreme wind distribution parameters
by the epochal approach we mention the method of moments as applied to the EV I
distribution, and the Lieblein method, which was developed specifically for the EV I
distribution. Both are covered in Section 3.3.3.

For the POT approach, wind speed data separated by intervals of five days or more may
be regarded as independent, although more rigorous methods for declustering data are
available (see Appendix C, in which Poisson processes are applied to the estimation of
extremes). Let the wind speed data be denoted by xi.

Generalized Pareto Distribution (GPD). The analysis is performed on data xi −u,
where u denotes the threshold. If the threshold u is too large, the size of the data sample
will be small and the estimated values will be affected by large sampling errors. If the
threshold is too low, the estimates biased by the presence in the sample of non-extreme
wind data. The analysis is carried out for a sufficiently large set of thresholds u. For
a subset of those thresholds the analysis will yield approximately the same estimated
values of the parameters being sought. A threshold within that subset, referred to
as optimal, yields the estimates being sought. The determination of the subset is
performed visually, and is subjective and slow. An objective approach is presented in
Appendix C. Two methods for the estimation of the GPD are now presented. In the
method of moments the estimated GPD parameters are obtained by applying Eq. (A.48)
to the sample mean value and standard deviation of the data yi. From Eq. (A.54) it
follows that the estimated wind speed with an N-year MRI is

x̂(N) = ŷ(N) + u (A.57)

where u is an optimal threshold. In the de Haan method [15], the number of data
above the threshold is denoted by k, so that the threshold u represents the (k + 1)th
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highest data point. We have 𝜆 = k∕nyears, where nyears is the length of the record
in years. The highest, second highest, …, kth highest, (k + 1)th highest data points
are denoted by Xn,n, Xn−1,n, …, Xn−(k+ 1),n, Xn−k,n ≡ u, respectively. Compute the
quantities

M(r)
n = 1

k

k−1∑
i=0

[ln(Xn−1.n) − ln(Xn−k,n)]r, r = 1, 2 (A.58)

The estimators of c and a are

ĉ = M(1)
n + 1 − 1

2[1 − (M(1)
n )2∕M(2)

n ]
, â =

uM(1)
n

𝜌1
(A.59a,b)

𝜌1 = 1, ĉ ≥ 0; 𝜌1 = 1∕(1 − ĉ), ĉ ≤ 0. (A.60a,b)

Figure 3.3 is a POT plot of the estimated wind speeds obtained by Eqs. (A.59) and
(A.60) as functions of threshold u (in mph), and of sample size corresponding to the
threshold u.

Generalized Extreme Value Distribution (GEV ). The GEV distribution is applied to
data that exceed a threshold u. Unlike in the GPD, the statistical analysis is performed on
the data themselves, rather than on the differences between the data and the threshold,
see Appendix C.

A.8 Monte Carlo Methods

Monte Carlo methods are a branch of mathematics pertaining to experiments on ran-
dom numbers. The simulation of the statistics of interest is achieved by appropriate
transformations of sequences of random numbers. The new sequences thus obtained
may be viewed as data, the sample statistics of which are representative of the statistical
properties of interest.

The following example illustrates the application of Monte Carlo techniques. We con-
sider a sequence of uniformly distributed random numbers 0< yi < 1 (i= 1, 2,…, n). The
numbers yi are viewed as values of the CDF FI (xi) of a variate X with EV I distribution,
that is, yi = FI (xi). From Eq. (A.37) it the follows that

x(yi) = 𝜇 − 𝜎 ln(− ln yi) (A.61)

From the sample x(yi) (i = 1, 2, …, n) of the variate X, it is possible to obtain estimates of
𝜇, 𝜎, and percentage points x(FI) for any specified FI . The procedure is repeated a large
number m of times. A number m of sets of values 𝜇, 𝜎, and x̂(FI), and corresponding
histograms, can then be obtained. From the m sets, statistics of those estimates can be
produced. For example, large directional wind speed datasets of synoptic windstorms
can be generated from relatively short measured wind datasets by using Monte Carlo
simulations [16].
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A.9 Non-Parametric Statistical Estimates

A.9.1 Single Hazards

Consider a data sample of size n at a location where the mean arrival rate of the variate
of interest 𝜆/year. If the rate were 𝜆= 1/year, the estimated probability that the highest
value of the variate in the set would be exceeded is 1/(n+ 1), and the corresponding
estimated MRI would be N = n + 1 years (on average n+ 1 “trials” would be required
for a storm to exceed that highest valued, Section 3.1.1.2, Example 3.2). The estimated
probability that the qth highest value of the variate in the set is exceeded is q/(n+ 1),
the corresponding estimated MRI in years is N = (n + 1)∕q, and the rank of the variate
with MRI N is q = (n + 1)∕N .

In general 𝜆≠ 1, and the estimated MRI is therefore N = (n + 1)∕(q𝜆) years.
For example, if n= 999 hurricane wind speed data, and 𝜆= 0.5/year, the esti-
mated MRI of the event that the highest wind speed in the sample will occur is
N = (n + 1)∕q𝜆 = 1000∕0.5 = 2000 years, the estimated MRI of the second highest
speed is 1000 years, and so forth. The rank of the speed with a specified MRI N is
q = (n + 1)∕(N𝜆).2

Example A.9 Non-parametric MRI estimates for hurricane wind speeds from a spec-
ified directional sector at a specified coastal location. The use of non-parametric esti-
mates of MRIs is illustrated for quantities forming a vector vk (k = 1, 2,…, n, where n is
the number of trials). The methodology is the same regardless of the nature of the vari-
ate, which can represent wind effects or, as in this example, hurricane wind speeds. We
consider speeds blowing from the 22.5∘ sector centered on the SW (i.e., 225∘) direction
at milestone 2250 (near New York City), where 𝜆= 0.305/year. The data being used were
obtained from the site https://www.nist.gov/wind, as indicated in Section 3.1. They are
rank-ordered in Table A.1. It is sufficient to consider the first 55 rank-ordered data, since
higher-rank data are small.

The q-th largest speed in the set of 999 speeds corresponds to a MRI N = (n + 1)∕
(q𝜆) = 1000∕(0.305q). For the first highest and second highest speeds listed in Table A.1
N = 1000∕0.305 = 3279 years and N = 1000∕(0.305 × 2) = 1639 years, respectively.
The peak 3-second gust speed with a 100-year MRI has rank q = 1000/(0.305×100) =
32.78, that is, 33, and is seen from Table A.1 to be 17 m s−1. Note that the precision
of the estimates is poorer for higher-ranking speeds, owing to the relatively large
differences between successive higher-ranking speeds in Table A.1 (e.g., 54 vs. 39 m s−1

for the highest vs. the second highest speed). For this reason, it is appropriate to
develop datasets covering periods longer by a factor of 3, say, than the specified
design MRI.

A.9.2 Multiple Hazards

We now consider the case of multiple hazards, for example synoptic wind speeds and
thunderstorm wind speeds, or hurricanes and earthquakes.

2 A formula that takes into account the possibility that two or more hurricanes may occur at a site in any
one year, and is more exact for short MRIs (e.g., 5 years), is: N = 1∕{1 − exp[−𝜆q∕(n + 1)]}. For example, for
n = 999, 𝝀 = 0.5, and q = 2, N = 1000.5 years.
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Table A.1 Rank-ordered peak 3-second gust speeds (in m s−1) from SW direction
at 10 m above open terrain for 22.5∘ sector at milepost 2550 (1-minute speed in
knots = 0.625× 3-second speed in m s−1).

Rank q SW 225∘ Rank q SW 225∘ Rank q SW 225∘

1 54 19 19 39 14
2 39 20 19 40 14
3 33 21 18 41 14
4 30 22 18 42 13
5 27 23 18 43 13
6 26 24 17 44 13
7 26 25 17 45 13
8 23 26 17 46 13
9 23 27 17 47 13

10 22 28 17 48 12
11 22 29 17 49 12
12 21 30 17 50 12
13 20 31 17 51 11
14 20 32 17 52 10
15 20 33 17 53 10
16 19 34 16 54 9
17 19 35 16 55 2
18 19 36 16 … …

Example A.10 Assume that the mean annual rates of synoptic storm and thun-
derstorm arrival at the location of interest are 𝜆s = 4∕year and 𝜆t = 3.5∕year. The
rank-ordered DCIs induced in a structural member by 10 000 synthetic synoptic storms
and 10 000 thunderstorms are listed in Table A.2.

The MRI of DCIs> 1.00 induced by synoptic storms is N s = (ns + 1)∕(qs𝜆s) =
10001∕(5 × 4) = 500 years, so the probability that the DCI induced by synoptic winds
is greater than 1.00 is 1/500 in any one year. Similarly, the probability that the DCI
induced by thunderstorm winds is greater than 1.00 is 1/[10 001/(9× 3.5)] = 1/317 in
any one year. The probability that the DCI induced by synoptic winds or by thunder-
storms is greater than 1.00 is 1/500+ 1/317 in any one year (hint: see Section 3.1.2,
Eq. [3.3]). This corresponds to an MRI of the occurrence of the event DCI> 1.00 equal
to N ≈ 194 years.

A similar approach can be used for regions, such as South Carolina and Hawaii, sub-
jected to both hurricane and earthquake hazards, see [17]. For the approach to be appli-
cable in this case it is necessary to provide – in addition to a probabilistic model of the
extreme wind speeds at the location of interest and a procedure for determining the
DCI (demand-to-capacity) indexes induced in the structure by those speeds, – a prob-
abilistic model of the strength of the seismic events at that location and a procedure for
determining the DCIs induced in the structure by those events.
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Table A.2 Rank-ordered DCIs Induced by synoptic storm and
thunderstorm winds.

DCIs Induced by
Synoptic Storms

DCIs Induced by
Thunderstorms

Rank DCI Rank DCI

1 1.34
2 1.30
3 1.26
4 1.23

1 1.22
5 1.21

2 1.16
6 1.18

3 1.10 7 1.10
4 1.04

8 1.02
5 1.01 9 1.01
6 0.99

10 0.98
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Random Processes

Consider a process the possible outcomes of which form a collection (or an ensemble) of
functions of time {y(t)}. A member of the ensemble is called a sample function or a ran-
dom signal. The process is called a random process if the values of the sample functions
at any particular time constitute a random variable.

Let a numerical value be assigned to each of the events that may occur as a result of
an experiment. The resulting set of possible numbers is defined as a random variable.
Examples: (i) If a coin is tossed, the numbers zero and one assigned to the outcome
heads and to the outcome tails constitute a discrete random variable. (ii) To each mea-
surement of a quantity a number is assigned to the result of that measurement. The set
of all possible results of the measurements constitutes a continuous random variable.

A time-dependent random process is stationary if its statistical properties (e.g., the
mean and the mean square value) do not depend upon the choice of the time origin
and do not vary with time. A stationary random signal is thus assumed to extend over
the entire time domain. The ensemble average, or expectation, of a random process is
the average of the values of the member functions at any particular time. A stationary
random process is ergodic if its time averages equal its ensemble averages. Ergodicity
requires that every sample function be typical of the entire ensemble.

A stationary random signal may be viewed as a superposition of harmonic oscilla-
tions over a continuous range of frequencies. Some basic results of harmonic analysis
are reviewed in Sections B.1 and B.2. The spectral density function (Section B.3), the
autocovariance function (Section B.4), the cross-covariance function, the co-spectrum,
the quadrature spectrum, and the coherence function (Section B.5) are defined next.
Mean upcrossing and outcrossing rates are introduced in Section B.6. The estimation of
peaks of Gaussian random signals is considered in Section B.7.

B.1 Fourier Series and Fourier Integrals

Consider a periodic function x(t) with zero mean and period T . It can be easily shown
that

x(t) = C0 +
∞∑

k=1
Ck cos(2𝜋kn1t − 𝜙k) (B.1)

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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where n1 = 1/T is the fundamental frequency and

C0 = 1
T ∫

T∕2

−T∕2
x(t)dt (B.1a)

Ck = (A2
k + B2

k)
1∕2 (B.1b)

𝜙k = tan−1 Bk

Ak
(B.1c)

Ak = 2
T ∫

T∕2

−T∕2
x(t) cos(2𝜋kn1t)dt (B.1d)

Bk = 2
T ∫

T∕2

−T∕2
x(t) sin(2𝜋kn1t)dt (B.1e)

Equation (B.1) is the Fourier series expansion of the periodic function x(t).
If a function y(t) is nonperiodic, it is still possible to regard it as periodic with infinite

period. It can be shown that if y(t) is piecewise differentiable in every finite interval, and
if the integral

∫

∞

−∞
|y(t)|dt (B.2)

exists, the following relation holds:

y(t) =
∫

∞

−∞
C(n) cos[2𝜋nt − 𝜙(n)]dn (B.3)

In Eq. (B.3), called the Fourier integral of y(t) in real form, n is a continuously varying
frequency, and

C(n) = (A2(n) + B2(n))1∕2 (B.3a)

𝜙(n) = tan−1 B(n)
A(n)

(B.3b)

A(n) =
∫

∞

−∞
y(t) cos(2𝜋nt)dt (B.3c)

B(n) =
∫

∞

−∞
y(t) sin(2𝜋nt)dt (B.3d)

From Eqs. (B.3a) through (B.3d) and the identities

sin𝜙 = tan𝜙
(1 + tan2𝜙)1∕2

(B.4a)

cos𝜙 = 1
(1 + tan2𝜙)1∕2

(B.4b)

it follows that

∫

∞

−∞
y(t) cos[2𝜋nt − 𝜙(n)]dt = C(n) (B.5)

The functions y(t) and C(n), which satisfy the symmetrical relations Eqs. (B.3) and (B.5),
form a Fourier transform pair.
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Successive differentiation of Eq. (B.3) yields

ẏ(t) = −
∫

∞

−∞
2𝜋nC(n) sin[2𝜋nt − 𝜙(n)]dn (B.6a)

ÿ(t) = −
∫

∞

−∞
4𝜋2n2C(n) cos[2𝜋nt − 𝜙(n)]dn (B.6b)

B.2 Parseval’s Equality

The mean square value of the periodic function x(t) with period T (Eq. (B.1)) is

𝜎2
x = 1

T ∫

T∕2

−T∕2
x2(t)dt (B.7)

Substitution of Eq. (B.1) into Eq. (B.7) yields

𝜎2
x =

∞∑
k=0

Sk (B.8)

where S0 = C2
0 and Sk = 1/2 C2

k (k = 1, 2,…). The quantity Sk is the contribution to the
mean square value of x(t) of the harmonic component with frequency kn1. Equation (B.8)
is a form of Parseval’s equality.

For a nonperiodic function for which an integral Fourier expression exists, Eqs. (B.3)
and (B.5) yield

∫

∞

−∞
y2(t)dt =

∫

∞

−∞
y(t)

∫

∞

−∞
C(n) cos[2𝜋nt − 𝜙(n)]dn dt

=
∫

∞

−∞
C(n)

∫

∞

−∞
y(t) cos[2𝜋nt − 𝜙(n)]dt dn

=
∫

∞

−∞
C2(n)dn

= 2
∫

∞

0
C2(n)dn. (B.9)

Equation (B.9) is the form taken by Parseval’s equality in the case of a nonperiodic
function.

B.3 Spectral Density Function of a Random Stationary Signal

A relation similar to Eq. (B.8) is now sought for functions generated by stationary pro-
cesses. The spectral density of such functions is defined as the counterpart of the quan-
tities Sk .

Let z(t) be a stationary random signal with zero mean. Because it does not satisfy
the condition (B.2), z(t) does not have a Fourier transform. An auxiliary function y(t) is
therefore defined as follows (Figure B.1):

y(t) = z(t)
(
−T

2
< t < T

2

)
(B.10a)
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z(t)

y(t)

T

Figure B.1 Definition of function y(t).

y(t) = 0 elsewhere (B.10b)

The function y(t) so defined is nonperiodic, satisfies condition (B.2), and thus has a
Fourier integral. From the definition of y(t) it follows that

lim
T→∞

y(t) = z(t) (B.11)

By virtue of Eqs. (B.9) and (B.10), the mean square value of y(t) is

𝜎2
y = lim

T→∞

1
T ∫

T∕2

−T∕2
y2(t)dt

= 1
T ∫

∞

−∞
y2(t)dt

= 2
T ∫

∞

0
C2(n)dn (B.12)

The mean square of the function z(t) is then

𝜎2
z = lim

T→∞
𝜎2

y

= lim
T→∞

2
T ∫

∞

0
C2(n)dn (B.13)

With the notation

Sz(n) = lim
T→∞

2
T

C2(n) (B.14)

Equation (B.13) becomes

𝜎2
z =

∫

∞

0
Sz(n)dn. (B.15)

The function Sz(n) is defined as the spectral density function of z(t). To each frequency
n (0< n<∞) there corresponds an elemental contribution S(n) dn to the mean square
value 𝜎2

z ; 𝜎2
z is equal to the area under the spectral density curve Sz(n). Because in
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Eq. (B.15) the spectrum is defined for 0< n<∞ only, Sz(n) is called the one-sided spec-
tral density function of z(t). This definition of the spectrum is used throughout this text.
A different convention may be used where the spectrum is defined for −∞< n<∞, and
the integration limits in Eq. (B.15) are −∞ to ∞. This convention yields the two-sided
spectral density function of z(t).

From Eqs. (B.6a,b), following the same steps that led from Eq. (B.3) to Eq. (B.14), there
result the expressions for the spectral density of the first and second derivative of a ran-
dom process:

Sż(n) = 4𝜋2n2Sz(n) (B.16a)
Sz̈(n) = 16𝜋4n4Sz(n) (B.16b)

B.4 Autocorrelation Function of a Random Stationary Signal

From Eqs. (B.3a), (B.3c) and (B.3d), it follows that
2
T

C2(n) = 2
T
[A2(n) + B2(n)]

= 2
T
[A(n)A(n) + B(n)B(n)]

= 2
T

[
∫

∞

−∞
y(t1) cos(2𝜋nt1)dt1

∫

∞

−∞
y(t2) cos(2𝜋nt2)dt2

+
∫

∞

−∞
y(t1) sin(2𝜋nt1)dt1

∫

∞

−∞
y(t2) sin(2𝜋nt2)dt2

]

= 2
T ∫

∞

−∞ ∫

∞

−∞
y(t1)y(t2) cos[2𝜋n(t2 − t1)]dt1dt2. (B.17)

Using the notations 𝜏 = t2 − t1 and

R̃(𝜏) = 1
T ∫

∞

−∞
y(t1)y(t1 + 𝜏)dt1, (B.18)

Equation (B.17) can be written as

2
T

C2(n) = 2
∫

∞

−∞
R̃(𝜏) cos(2𝜋n𝜏)d𝜏 (B.19)

Equations (B.19), (B.11), and (B.14) thus yield

Sz(n) =
∫

∞

−∞
2Rz(𝜏) cos(2𝜋n𝜏)d𝜏 (B.20)

where

Rz(𝜏) = lim
T→∞

1
T ∫

T∕2

−T∕2
z(t)z(t + 𝜏)dt. (B.21)

The function Rz(𝜏) is defined as the autocovariance function of z(t) and provides a mea-
sure of the interdependence of the variable z at times t and t + 𝜏 . From the stationarity
of z(t), it follows that

Rz(𝜏) = Rz(−𝜏). (B.22)
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Since Rz(𝜏) is an even function of 𝜏 ,

∫

∞

−∞
2Rz(𝜏) sin(2𝜋n𝜏)d𝜏 = 0. (B.23)

A comparison of Eqs. (B.5) and (B.20) shows that Sz(n) and 2Rz(𝜏) form a Fourier
transform pair. Therefore,

Rz(𝜏) =
1
2 ∫

∞

−∞
Sz(n) cos(2𝜋n𝜏)dn. (B.24a)

Since, as follows from Eq. (B.20), Sz(n) is an even function of n, Eq. (B.24a) may be
written as

Rz(𝜏) =
∫

∞

0
Sz(n) cos(2𝜋n𝜏)dn. (B.24b)

Similarly, by virtue of Eqs. (B.20) and (B.22),

Sz(n) = 4
∫

∞

0
Rz(𝜏) cos(2𝜋n𝜏)d𝜏 (B.25)

The definition of the autocovariance function (Eq. (B.21)) yields

Rz(0) = 𝜎2
z (B.26)

For 𝜏 > 0 the products z(t)z(t+ 𝜏) are not always positive as is the case for 𝜏 = 0, so

Rz(𝜏) < 𝜎2
z (B.27)

For large values of 𝜏 , the values z(t) and z(t + 𝜏) bear no relationship to each other, so

lim
𝜏→∞

Rz(𝜏) = 0 (B.28)

The non-dimensional quantity Rz(𝜏)∕𝜎2
z , called the autocorrelation function of the

function z(t), is equal to unity for 𝜏 = 0 and vanishes for 𝜏 =∞.

B.5 Cross-Covariance Function, Co-Spectrum, Quadrature
Spectrum, Coherence

Consider two stationary signals z1(t) and z2(t) with zero means. The function

Rz1z2
(𝜏) = lim

T→∞

1
T ∫

T∕2

−T∕2
z1(t)z2(t + 𝜏) dt (B.29)

is defined as the cross-covariance function of the signals z1(t) and z2(t). From this defi-
nition and the stationarity of the signals, it follows that

Rz1z2(𝜏) = Rz2z1(−𝜏). (B.30)

However, in general, Rz1z2
(𝜏) ≠ Rz1z2

(−𝜏). For example, if z2(t)≡ z1(t − 𝜏0), it can imme-
diately be seen from Figure B.2 that

Rz1z2(𝜏0) = Rz1(0) (B.31)
Rz1z2(−𝜏0) = Rz1(2𝜏0) (B.32)
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z1(t)

z2(t)

a

a

b

b

τ0

τ0

2τ0

Figure B.2 Functions z1(t) and z2(t) = z1(t−𝜏0).

The co-spectrum and the quadrature spectrum of the signals z1(t) and z2(t) are defined,
respectively, as

SC
z1z2(n) = ∫

∞

−∞
2Rz1z2(𝜏) cos(2𝜋n𝜏)d𝜏 (B.33)

SQ
z1z2(n) = ∫

∞

−∞
2Rz1z2(𝜏) sin(2𝜋n𝜏)d𝜏. (B.34)

It follows from Eq. (B.30) that

SC
z1z2(n) = SC

z2z1(n) (B.35a)
SQ

z1z2(n) = −SQ
z2z1(n) (B.35b)

The coherence function is a measure of the correlation between components with fre-
quency n of two signals z1(t) and z2(t), and is defined as

Cohz1z2(n) =

{
[SC

z1z2(n)]
2 + [SQ

z1z2(n)]
2

Sz1(n)Sz2(n)

}1∕2

(B.36)

Example B.1 The animation in Figure 4.27 shows pressures on the exterior surface
of a building, induced by wind blowing in the direction shown by the arrow. If pres-
sures at any two points were perfectly coherent spatially, at any given time the shades
representing their intensity would be the same regardless of the distance between the
points.

B.6 Mean Upcrossing and Outcrossing Rate for a Gaussian
Process

Let z(t) be a stationary differentiable process with mean zero. The process crosses a
level k at least once in a time interval (t, t +Δt) if z(t)< k and z(t +Δt)> k. If z(t) has
smooth samples and Δt is sufficiently small, z(t) will have a single k-crossing with pos-
itive slope, (i.e. a single k-upcrossing). The probability of occurrence of the event
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Cluster Cluster

Figure B.3 Upcrossings of a random process (indicated by rectangles). Clusters are groups of two or
more local peaks within an interval defined by two successive upcrossings.

{z(t)< k, z(t +Δt)> k} can be approximated by the probability of the event
{z(t)< k < z(t)+ ż(t) Δt}. The mean rate of k-upcrossings of z(t) is

v(k) =
∫

∞

0
żfz,ż(b, ż)dż (B.37a)

where fz,żdenotes the joint probability density function of z(t), ż(t). For a stationary pro-
cess the variables z and ż are independent,1 so

𝜈(k) = E[ż(t)+ ∣ z(t) = k] fz(k) (B.37b)
= E[ż(t)+] fz(k) (B.37c)

where fz denotes the probability density function of z(t), and E[ż(t)+ ∣ z(t) = k] denotes
the expectation of the positive part of ż(t) conditional on z(t) = k. A plot showing zero
upcrossings of a random process is shown in Figure B.3.

If z(t) is a stationary Gaussian process with mean zero,

fż,z(z, ż) =
1

2𝜋𝜎ż𝜎z
̇exp

[
−1

2

(
z2

𝜎2
z
+ ż2

𝜎2
ż

)]
(B.38)

and the mean k-upcrossing rate is

𝜈(k) = E[ż(t)+] f (k)

=
𝜎ż√
2𝜋

1√
2𝜋𝜎z

exp
(
− k2

2𝜎2
z

)
(B.39)

where 𝜎z and 𝜎ż denote the standard deviations of z(t) and ż(t).
Equation (B.37a) can be extended to the case in which the random process is a vector

x. Let 𝜈D denote the mean rate at which the random process (i.e., the tip of the vector
with specified origin O) crosses in an outward direction the boundary FD of a region
containing the point O. The rate 𝜈D has the expression

𝜈D =
∫FD

dx
∫

∞

0
ẋnfx,ẋn

(x, ẋn)dẋn (B.40)

1 For a stationary process E[z2(t)] = const., so dE[z2(t)]/dt = 2E[z(t)dz(t)/dt] = 0 for a fixed arbitrary time t,
meaning that z(t) and dz(t)/dt are uncorrelated. If z(t) is Gaussian, so is dz(t)/dt. It then follows from the
expression for the joint Gaussian distribution of two correlated variables that if their correlation vanishes the
two variates are independent.
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where ẋn is the projection of the vector ẋ on the normal to FD, and fx,ẋn
(x, ẋn) is the joint

probability distribution of x and ẋn. Eq. (B.40) can be written as

𝜈D =
∫FD

{
∫

∞

0
ẋnfẋn

[ẋn|X = x]dẋn

}
fX(x)dx

=
∫FD

E∞
0 [Ẋn ∣ X = x] fX(x)dx (B.41)

where f X (X) = probability density of the vector X, and E∞
0 [Ẋn ∣X = x] is the aver-

age of the positive values of Ẋn given that X = x. If Ẋn and X are independent,
E∞

0 [Ẋn ∣X = x] = E∞
0 [Ẋn].

Equation (B.41) has been used in an attempt to estimate mean recurrence intervals
of directional wind effects that exceed (outcross) a limit state defined by a boundary
FD. Objections to this approach include: the perception by structural engineers that it
lacks transparency (see Appendix F); the fact that the vector x, which represents a struc-
tural response to wind (e.g., a demand-to-capacity index) may be non-Gaussian; the fact
that the limit state boundary cannot be defined unless the structural design is finalized,
which is in practice not the case at the time the outcrossing calculations are performed;
and the fact that, if the size of the available directional wind speeds data is small, rather
than creating a larger data set by Monte Carlo simulation some practitioners make use
of what are purported to be parent population data; that is, non-extreme wind speeds
that may include morning breezes and other types of wind that differ from a meteoro-
logical point of view from the extremes, and cannot therefore constitute a reliable basis
for estimating extreme values.

B.7 Probability Distribution of the Peak Value of a Random
Signal with Gaussian Marginal Distribution

The probability distribution of the set of values z(t) of the random process is called the
marginal distribution of that process. Since

𝜎2
z =

∫

∞

0
Sz(n) dn (B.42)

𝜎2
z̈ = 4𝜋2

∫

∞

0
n2Sz(n) dn (B.43)

(Eq. [B.16a]), denoting

𝜈 = (1∕2𝜋)(𝜎ẋ∕𝜎x) (B.44)
𝜅 = k∕𝜎x, (B.45)

it follows from Eq. (B.39) that the upcrossing rate of the level 𝜅 (in units of standards
deviations of the process) is

E(𝜅) = 𝜈 exp
(
−𝜅

2

2

)
(B.46)
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where

𝜈 =

[
∫

∞
0 n2Sz(n)dn
∫

∞
0 Sz(n)dn

]1∕2

(B.47)

is the mean zero upcrossing rate, that is,

𝜈 = E(0). (B.48)

Peaks greater than k𝜎z may be regarded as rare events. Their probability distribution
may therefore be assumed to be of the Poisson type. The probability that in the time
interval T there will be no peaks equal to or larger than k𝜎z can therefore be written as

p(0,T) = exp[−E(k)T] (B.49)

The probability p(0, T) can be viewed as the probability that, given the interval T , the
ratio K of the largest peak to the r.m.s. value of z(t) is less than 𝜅, that is,

P(K < 𝜅 ∣T) = exp[−E(𝜅)T] (B.50)

The probability density function of K , that is, the probability pK (𝜅|T) that
𝜅 <K<𝜅 + d𝜅, is obtained from Eq. (B.50) by differentiation:

P(𝜅 ∣T) = 𝜅T E(𝜅) exp[−E(𝜅)T] (B.51)

The expected value of the largest peak occurring in the interval T may then be calcu-
lated as

K =
∫

∞

0
𝜅pK (𝜅 ∣T)d𝜅 (B.52)

The integral of Eq. (B.52) is, approximately,

K = (2 ln 𝜈T)1∕2 + 0.577
(2 ln 𝜈T)1∕2 (B.53)

[1], where 𝜈 is given by Eq. (B.47).
The estimation of statistics of peaks of random signals with arbitrary marginal prob-

ability distributions is discussed in detail in Appendix C.

Reference

1 Davenport, A.G. (1964). Note on the distribution of the largest value of a random
function with application to gust loading. Journal of the Institution of Civil Engineers
24: 187–196.



�

� �

�

443

Appendix C

Peaks-Over-Threshold Poisson-Process Procedure for Estimating
Peaks∗

C.1 Introduction

The estimation of the distribution of the peak of a random process y(t) with specified
duration T from a single finite time series of length T1 ≤T , and of the corresponding
uncertainties, has applications in:

• Extreme wind climatology, where the time series consists of a record of extreme wind
speeds over a time interval T1 =N1 years, and the statistics of the largest wind speed
during a longer time interval T =N years are of interest.

• Aerodynamics and structural engineering, where a time series of length T1 of
wind effects (e.g., measured pressure coefficients, or calculated internal forces,
demand-to-capacity indexes, inter-story drift, accelerations) is available, and the
statistics of the peak wind effect for a time series with length T ≥T1 are of interest.

For the particular case in which the marginal distribution of a process y(t) is Gaussian,
a closed-form expression for the distribution of the peak is available (see Section B.7). If
the distribution is not Gaussian, a nonlinear mapping procedure, referred to as “transla-
tion,” has been developed by which those statistics can be obtained [1]. The translation
procedure depends heavily on the user’s ability to choose an appropriate marginal prob-
ability distribution. In practice, because of the difficulty of this task, the performance of
the translation method can be unsatisfactory.

A simple procedure in which the time history of length T1 is divided into n equal
segments (epochs) was proposed in [2]. A data sample is created consisting of the peak
of each of those segments, and a Gumbel Cumulative Distribution Function (CDF) is
fitted to that sample. The length T1/n of the segments must be sufficient for the peaks
of different segments to be mutually independent. To obtain the largest peak for a time
history of length T = rT1/n (r ≥ n) the Gumbel CDF describing the probabilistic behav-
ior of the segment peaks is raised to the r-th power. Because that CDF is an exponential
function, this operation results in an alternative Gumbel distribution that describes the
probabilistic behavior of the peak of the time history of length T [3]. This procedure
is most efficiently implemented by using the BLUE (Best Linear Unbiased Estimator)
method to estimate the parameters of the Gumbel distribution of the segment peaks (see
Section 3.3.3 and [4]; https://www.nist.gov/wind). However, as shown in Section C.3, a

* Dr. A. L. Pintar’s leading role in the development and application of the procedure described in this Appendix
is acknowledged with thanks.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure C.1 Time history of pressure
coefficients.

drawback of the BLUE method is that the estimates can depend significantly on n, with
no criterion for an optimal choice of n being available in the literature.

The purposes of this Appendix are: (i) to describe a Peaks-over-Threshold (POT),
Poisson-process procedure for the estimation of the distribution of the peak of a sta-
tionary random process of specified duration (Section A.2) and of the corresponding
uncertainties; and (ii) to assess the performance of the procedure through compari-
son of its results with observed data and with results obtained by the BLUE method.
A software implementation of the procedure applicable to time histories of pressures or
pressure effects (e.g. internal forces in structural members), that leverages the R environ-
ment for statistical computing and graphics [5], is available in [6] (https://github.com/
usnistgov/potMax), which also contains detailed instructions for installation and use.
The procedure is described and illustrated in what follows with reference to the time
history of pressure coefficients of Figure C.1. To allow the reader to replicate the cal-
culations described herein we note that the data were obtained from the NIST-UWO
Aerodynamic Database for Rigid Buildings [7], [https://www.nist.gov/wind], dataset jp1
Building 7, open terrain, tap 1715 at middle of eave, sampling rate 500 Hz, wind direc-
tion 270∘. For similar software applied to the estimation of extreme wind speeds, see
Section 3.3.5.

C.2 Peak Estimation by Peaks-Over-Threshold
Poisson-Process Procedure

Description of Procedure. The POT approach is applied to observations y(t) within a
time series that exceed a threshold u. The POT approach is chosen over the epochal
approach for two reasons. First, the POT approach generally allows the use of more
observations than does the epochal approach, potentially leading to less uncertainty.
Second, and more important, a procedure is available for an optimal selection of the
threshold u [8].

The steps of the procedure are as follows:

1) Reverse the signs of the time series, if necessary. The procedure is developed for pos-
itive peaks. The peaks of interest in Figure C.1 being negative, the signs of this time
series were reversed. If analysts are interested in both positive and negative peaks,
the procedure is applied twice, first with the original signs, and second with reversed
signs.
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2) Choose a model. For the reasons indicated in Section 3.3.2, it is assumed for wind
climatological purposes that the peaks of the variate y(t) are described probabilis-
tically by an Extreme Value Type I (EV I) distribution. For the same reasons, the
restriction to the EV I distribution also holds for the peak of time series considered
in aerodynamics and structural engineering applications. However, if interested in
considering EV II or EV III distributional models, the analyst can choose to do so,
as is indicated subsequently. Supposing that the variables (t, y) follow a Poisson pro-
cess with intensity function 𝜆(t, y), the random number of peak values of y events
that occur in a time interval t2 – t1 and have magnitude between y1 and y2 can be
described by the Poisson distribution

p(n) =

[
∫

t2
t1
∫

y2
y1
𝜆(t, y)dt dy

]n

n!
exp

[
−
∫

t2

t1
∫

y2

y1

𝜆(t, y)dt dy
]

(C.1)

Let us consider the particular case in which the intensity function 𝜆(t, y) = const. and
y2 is the largest possible value of y (under the assumptions that the peaks y have an
EV I or EV II distribution, y2 is infinitely large; if y has an EV III distribution it has a
finite upper bound). In that case the expected number of events is (y1 – y2)(t2 – t1) 𝜆,
where the constant intensity function 𝜆 is the rate of arrival of those events. How-
ever, Eq. (C.1) allows for more complex cases. In one such case the random process
is not stationary. For example, if y represents wind speeds in either synoptic storms
or thunderstorms, the process y should have two different constant intensity func-
tions (rates of arrival), 𝜆syn and 𝜆th, applicable to the time intervals in which there
occur synoptic storms and thunderstorms, respectively. In the case of a stationary
process, for peak values y that cross a high threshold, asymptotic arguments lead to
the expressions

𝜆(t, y) = 1
𝜎

[
1 +

k(y − 𝜇)
𝜎

]−1−1∕k

+
(C.2)

𝜆(t, y) = 1
𝜎

exp
{

−(y − 𝜇)
𝜎

}
(C.3)

[9]. In Eq. (C.2) the subscript “+” means that negative values of the quantity 1+ k(y−𝜇)
𝜎

are raised to zero. Depending upon whether k > 0 or k < 0, Eq. (C.2) is the POT
equivalent of a Type II (Fréchet) or Type III (reverse Weibull) extreme value dis-
tribution, respectively. Equation (C.3) is the POT equivalent to the Type I (Gum-
bel) extreme value distribution; it is the limit as k approaches zero of Eq. (C.2). The
POT Poisson-process procedure is designated as FpotMax if used with Eq. (C.2) and
GpotMax if used with Eq. (C.3); the letters F and G stand for “full” and “Gumbel,”
respectively. The parameters 𝜇 and 𝜎 are, respectively, the location and scale param-
eters of the distribution of the peak value of y(t). The volume 𝜆(t, y)dt dy is equal to
the expected number of peaks per elemental area dt dy.

3) Decluster. Figure C.2a depicts the same raw time series as Figure C.1. Thresholded
variants with the threshold u= 1.8 and u= 2.0 are depicted in Figure C.2b and
Figure C.2c, respectively. In raw time series successive peaks can be separated by
time intervals smaller than the time between an upcrossing of the mean and the
subsequent downcrossing of the mean (see Appendix B, Figure B.3). Such successive
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Figure C.2 (a) Raw time series, observations in raw time series, (b) above threshold u= 1.8, and
(c) above threshold u= 2.0.

peaks are typically strongly correlated, as shown by Figure C.3, where it is seen that
the autocorrelation function remains strong and positive for observations separated
by more than 40 increments of time (in this case 40/[500 Hz]= 0.08 seconds).
Poisson processes are not appropriate for highly autocorrelated data without further
processing because of the independence assumption that underlies them.
Clusters are data blocks within time intervals defined by an upcrossing of the mean
and the subsequent downcrossing of the mean (see Figure B.4). Declustering is an
operation that is effective in removing the high autocorrelation from the data. It
proceeds by discarding, in each cluster, all data other than the cluster maximum.
Figure C.4 displays the counterparts of Figure C.2 after declustering. The estimated
autocorrelation function of the data analysis of the time series in Figure C.4a shows
that declustering is highly effective. After removing the autocorrelation in the
series, or declustering, the use of Poisson processes as models for crossings of a
high threshold is justified. They are used for such purposes in many papers, for
example [8, 10–12].
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Figure C.3 Estimated autocorrelation function for the time series in Figure C.2a.

4) Select optimal threshold. Historically, a hurdle to the use of the POT models has
been the appropriate choice of a threshold. Since the threshold dictates the data that
are included in (or omitted from) the sample used to fit the model, its impact on
the results can be large. The extreme value model becomes more appropriate as the
threshold increases (as more non-extreme values of the variate are excluded from the
sample being analyzed), but the threshold cannot be too high because too few obser-
vations will remain for fitting the model, since observations are taken over a finite
period of time. Any approach to choosing a threshold must balance these competing
aspects. A common and easy to implement approach – though not necessarily
optimal – is to pick a high quantile of the series, e.g. 95% [13, p. 489]. The approach
of [8] is superior insofar as it uses an optimal threshold based on the fit of the
model to the data, as judged by the statistics, called W-statistics, defined in [11, Eq.
(1.30)]. The W-statistic is unitless and defines a transformation of the data such that,
if the Poisson-process model were perfectly correct, the transformed data would
follow exactly an exponential distribution with mean one. Figure C.5 shows a plot of
the ordered W-statistics versus quantiles of the standard exponential distribution
using the optimal threshold for the series in Figure C.4a. If the data fitted perfectly
to the model, the points would fall exactly on the diagonal line. The threshold is
chosen by creating such a plot for a sequence of potential thresholds and selecting
the threshold that minimizes the maximum absolute vertical distance to the
diagonal line. This method for selecting the threshold is comparable to the method
used in [14].

5) Estimate model parameters. The model parameters, 𝜂 = (𝜇, 𝜎) for the intensity func-
tion in Eq. (C.1) are estimated by maximum likelihood from the set of declustered
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Figure C.4 (a) Declustered time series; resulting observations (b) above u= 1.8, and (c) above u= 2.0.
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Figure C.6 Histogram of the estimated distribution of the peak value starting with the time series
depicted in Figure C.4a. The triangle shows the mean of the distribution.

data corresponding to the chosen threshold. The likelihood is given in Equation (2)
of [8], and maximum likelihood is discussed in, for example [15, Section 7.2.2].

6) Empirically build the distribution of the peak by Monte Carlo simulation. A series of
desired length T , is generated from the fitted model, and the peak of the generated
series is recorded. This is repeated nmc times. The recorded peaks form an empirical
approximation to the distribution of the peak. A histogram of the simulated peaks
over 100 seconds, with nmc = 1000 for the example data set, is shown in Figure C.6,
in which the mean value is marked by the triangle.

7) Quantify uncertainty. The objective of the computations is to estimate the distribu-
tion of the peak of the time series under study. Thus, the uncertainty in the estimate of
the entire distribution of the peak is being quantified, not just, for example, the uncer-
tainty in the mean of that distribution. To accomplish this, a second layer of Monte
Carlo sampling is performed. The input to step 6 was the maximum likelihood esti-
mate of the vector 𝜂, denoted by 𝜂. However, because only a finite sample is available,
these estimates are uncertain. That uncertainty may be described using the multivari-
ate Gaussian distribution. More specifically, one may sample values of 𝜂 that are also
consistent with observed time series, and repeat step 6 for those new parameter val-
ues a number nboot of times. The result of step 7 is nboot empirical approximations to
the distribution of the peak. For clarity Figure C.7 shows only nboot = 50 replicates of
the distribution of the peak for the example data set. Typically, 1000 replicates, say,
may be used. The bar shown in Figure C. 7 depicts an 80% confidence interval for the
mean, which is calculated from 1000 replicates. This technique is an approximation
to a bootstrap algorithm [16, 20].
Discussion of Results. The dashed line in Figure C.8 shows the peak estimated by
GpotMax applied to the entire time series of duration 100 seconds. This estimate is
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close to the observed peak of the time series, shown by the solid line. The squares
show the results of six analyses performed on six partitions of the same time series,
each of length 100 s/6. The GpotMax estimates closely track the observed peaks
(i.e., the circles) for each of the partitions. For each partition, GpotMax may also
be used to calculate the mean of the distribution of the peak for a duration of
100 seconds, shown by the triangles in Figure C.8. The six individual partitions can
yield estimates that differ by as much as approximately 25% from the estimate based
on the entire 100-second time series. However, the average of these six estimates,
shown by the dashed line, is reasonably close to the global estimate and the observed
100-second peak.
As noted earlier, the full version of the algorithm based on Eq. (C.1), referred to as
FpotMax, does not assume that the tail length parameter of the distribution of peaks
is zero. It is shown in [17] that the estimates by GpotMax and FpotMax of the distri-
butions of the peaks are similar for five representative pressure taps of the building
model examined herein, and are close to the observed peaks. GpotMax, rather than
FpotMax, may therefore be used in practice, unless there were one or two very large
peaks relative to other threshold crossings.

C.3 Dependence of Peak Estimates by BLUE Upon Number
of Partitions

Peaks were estimated using the epochal method for two probabilities of non-exceedance,
p= 0.78 and p= 0.5704. The latter corresponds to the mean of the Gumbel distribution,
while the former is commonly used by wind tunnel operators [18] and is close to the
number 0.80 specified in the ISO 4354 [19]. For a number of partitions 10≤ n ≤ 24
the estimated peaks for tap 708, wind direction 360∘, varied between 3.72 and 4.20 for
p= 0.78, and between 3.48 and 3.82 for p= 0.57. For comparison, the single GpotMax
and FpotMax estimates were 3.41 and 3.35, respectively, and the observed peak was 3.24.

C.4 Summary

Current procedures for estimating peaks of pressure time series have drawbacks that
motivated the development of the new procedure, one advantage of which is that it typ-
ically results in an extreme value data set larger than is the case for epochal procedures.
The translation procedure has the drawback that it depends upon the estimate of the
marginal distribution of a non-Gaussian time series, which is typically difficult to per-
form reliably. The epochal procedure used in conjunction with the BLUE estimation of
the Gumbel parameters depends, in some cases very significantly, upon the number of
partitions being used.

The procedure described in this Appendix is based on a Poisson process model for
quantities y that exceed a specified threshold u of the time series being considered. The
estimate depends upon the choice of the threshold. A criterion is available that allows
the analyst to make an optimal choice (according to a specified metric) of the thresh-
old value.
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Two versions of the proposed procedure are available. One version, denoted by Fpot-
Max, includes estimation of a tail length parameter resulting in a tail of the Fréchet or the
reverse Weibull distribution type. The second version, denoted by GpotMax, assumes
that the tail length parameter vanishes, resulting in a tail of the Gumbel distribution
type. Typically GpotMax results in fully satisfactory estimates and should in practice be
used for structural design applications, which include the analysis of wind speed time
series, of time series of pressure coefficients, or of wind effects such as internal forces,
demand-to-capacity indexes, inter-story drift, and floor accelerations.
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Appendix D

Structural Dynamics

Frequency-Domain Approach

D.1 Introduction

The mathematical model for wind-induced dynamic response is Newton’s second law,
that is, an ordinary second-order differential equation. In Part II of the book, the solu-
tion to this equation was obtained by time-domain methods. This approach is currently
feasible because (i) forcing functions can be obtained as functions of time from simulta-
neously measured aerodynamic time histories, and (ii) computer capabilities allow the
ready solution of the differential equations of motion of the dynamical systems of inter-
est. Neither of these two capabilities was available until relatively recently. For this rea-
son, the differential equations were transformed via Fourier transformation into more
tractable algebraic functions in the frequency domain, and forcing functions were thus
defined via spectral and cross-spectral densities. Frequency-domain solutions of struc-
tural dynamics problems remain useful for certain applications and can provide helpful
insights into wind-induced structural dynamics.

Section D.2 presents the building blocks of the frequency-domain approach for the
single-degree-of-freedom system. Section D.3 presents basic results obtained for con-
tinuously distributed linear systems. Section D.4 is an interesting application of those
results: the determination of the along-wind response of a tall building with rectangular
shape in plan to wind normal to one of its faces.

D.2 The Single-Degree-of-Freedom Linear System

Consider the single-degree-of-freedom motion of a particle of mass M subjected to a
time-dependent force F(t). The particle is restrained by an elastic spring with stiffness k.
Its motion is damped by a viscous damper with coefficient c. The particle’s displacement
x(t) is opposed by (i) a restoring force −kx and (ii) a damping force −c dx/dt ≡ −cẋ,
where the stiffness k and the damping coefficient c are assumed to be constant. Newton’s
second law states that the product of the particle’s mass by its acceleration, Mẍ, equals
the total force applied to the particle. The equation of motion of the system is

Mẍ = −cẋ − kx + F(t) (D.1)

With the notations n1 =
√

k∕M∕(2𝜋) and 𝜁1 = c∕(2
√

kM), where n1 denotes the fre-
quency of vibration of the oscillator1, and 𝜁1 is the damping ratio (i.e., the ratio of the

1 The quantity 2𝜋n is called circular frequency and is commonly denoted by 𝜔.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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damping c to the critical damping 𝜁cr = 2
√

kM beyond which the system’s motion would
no longer be oscillatory), Eq. (D.1) becomes

ẍ + 2𝜁 (2𝜋n1)ẋ + (2𝜋n1)2 x = F(t)
M

(D.2)

For structures, 𝜁1 is typically small (in the order of 1%).

D.2.1 Response to a Harmonic Load

In the particular case of a harmonic load F(t)= F0 cos2𝜋nt, it can be verified by substi-
tution that the steady-state solution of Eq. (D.2) is

x(t) = H(n)F0 cos(2𝜋nt − 𝜃) (D.3)
where

H(n) = 1
4𝜋2n2

1M{[1 − (n∕n1)2]2 + 4𝜁2
1 (n∕n1)2}1∕2

(D.4)

𝜃 = tan−1 2𝜁1(n∕n1)
1 − (n∕n1)2 (D.5)

The quantity 𝜃 is the phase angle, and H(n) is the system’s mechanical admittance func-
tion (or mechanical amplification factor). For n= n1, that is, if the frequency of the
harmonic forcing function coincides with the frequency of vibration of the oscillator, the
amplitude of the response is largest, and is inversely proportional to the damping ratio
𝜁1. In this case, the motion exhibits resonance. In the particular case F(t)= F0 sin2𝜋nt,
the steady state response can be written as

x(t) = H(n)F0 sin(2𝜋nt − 𝜃) (D.6)

D.2.2 Response to an Arbitrary Load

Let the system described by Eq. (D.2) be subjected to the action of a load equal to the unit
impulse function 𝛿(t) acting at time t= 0, that is, to a load defined as follows (Figure D.1):

𝛿(t) = 0 for t ≠ 0 (D.7)

lim
Δt→0 ∫

Δt

0
𝛿(t)dt = 1 for t = 0. (D.8)

The response of the system to the load 𝛿(t) depends on time and is denoted by G(t).

Δt

t

δ(t)

δ(0) = lim      δ(t)dt = 1
Δt→0

Δt

0

Figure D.1 Unit impulse function.
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Figure D.2 Load F(t).

t, τ

F(t)

t

0 τ

An arbitrary load F(t) (Figure D.2) may be described as a sum of elemental impulses
of magnitude F(𝜏 ′) d𝜏 ′ each acting at time 𝜏 ′. Since the system is linear, the response at
time t to each such impulse is G(t − 𝜏 ′)F(𝜏 ′) d𝜏 ′. The total response is

x(t) =
∫

t

−∞
G(t − 𝜏 ′)F(𝜏 ′)d𝜏 ′ (D.9)

The limits of the integral indicate that all the elemental impulses that have acted before
time t have been taken into account. Denoting 𝜏 = t − 𝜏 ′, Eq. (D.9) becomes

x(t) =
∫

∞

0
G(𝜏)F(t − 𝜏)d𝜏 (D.10)

Let F(t)= F0 cos 2𝜋nt. It follows from Eqs. (D.3) and (D.10) that

H(n) cos 𝜃 =
∫

∞

0
G(𝜏) cos 2𝜋n𝜏d𝜏 (D.11a)

H(n) sin 𝜃 =
∫

∞

0
G(𝜏) sin 2𝜋n𝜏d𝜏 (D.11b)

Equations (D.11a) and (D.11b) yield Eqs. (D.12a) and (D.12b), whose summation yields
Eq. (D.13):

H2(n)cos2 𝜃 =
∫

∞

0 ∫

∞

0
G(𝜏1) cos 2𝜋n𝜏1G(𝜏2) cos 2𝜋n𝜏2d𝜏1d𝜏2 (D.12a)

H2(n)sin2𝜃 =
∫

∞

0 ∫

∞

0
G(𝜏1) sin 2𝜋n𝜏1G(𝜏2) sin 2𝜋n𝜏2d𝜏1d𝜏2 (D.12b)

H2(n) =
∫

∞

0 ∫

∞

0
G(𝜏1)G(𝜏2) cos 2𝜋n (𝜏1 − 𝜏2)d𝜏1d𝜏2 (D.13)

D.2.3 Response to a Stationary Random Load

Now let the load F(t) be a stationary process with spectral density SF (n). Using Eqs.
(B.20), (B.21), and (D.10), we obtain the spectral density of the system response as
follows:

Sx(n) = 2
∫

∞

−∞
Rx(𝜏) cos 2𝜋n𝜏d𝜏
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= 2
∫

∞

−∞

[
lim

T→∞

1
T ∫

T∕2

−T∕2
x(t)x(t + 𝜏)dt

]
cos 2𝜋n𝜏d𝜏

= 2
∫

∞

−∞

{
lim

T→∞

1
T ∫

T∕2

−T∕2
dt

[
∫

∞

0
G(𝜏1)F(t − 𝜏1)d𝜏1

×
∫

∞

0
G(𝜏2)F(t + 𝜏 − 𝜏2)d𝜏2

]}
cos 2𝜋n𝜏d𝜏

= 2
∫

∞

0
G(𝜏1)

{
∫

∞

0
G(𝜏2)

[
∫

∞

−∞
RF (𝜏 + 𝜏1 − 𝜏2) cos 2𝜋n𝜏d𝜏

]
d𝜏2

}
d𝜏1

= 2
∫

∞

0 ∫

∞

0
G(𝜏1)G(𝜏2) cos 2𝜋n(𝜏1 − 𝜏2)d𝜏1d𝜏2

×
∫

∞

−∞
RF (𝜏 + 𝜏1 − 𝜏2) cos 2𝜋n(𝜏 + 𝜏1 − 𝜏2)d(𝜏 + 𝜏1 − 𝜏2)

+ 2
∫

∞

0 ∫

∞

0
G(𝜏1)G(𝜏2) sin 2𝜋n(𝜏1 − 𝜏2)d𝜏1d𝜏2

×
∫

∞

−∞
RF (𝜏 + 𝜏1 − 𝜏2) sin 2𝜋n(𝜏 + 𝜏1 − 𝜏2)d(𝜏 + 𝜏1 − 𝜏2) (D.14)

where, in the last step, the following identity is used:

cos2𝜋n𝜏 ≡ cos 2𝜋n[(𝜏 + 𝜏1 − 𝜏2) − (𝜏1 − 𝜏2)] (D.15)

From Eqs. (B.20), (B.23), (D.12a,b), and (D.13), there follows

Sx(n) = H2(n)SF (n) (D.16)

This relation between frequency-domain forcing and response is useful in applications.

D.3 Continuously Distributed Linear Systems

D.3.1 Normal Modes and Frequencies: Generalized Coordinates, Mass
and Force

D.3.1.1 Modal Equations of Motion
A linearly elastic structure with continuously distributed mass per unit length m(z) and
low damping can be shown to vibrate in resonance with the exciting force if the latter has
certain sharply defined frequencies called the structure’s natural frequencies of vibra-
tion. Associated with each natural frequency is a mode, or modal shape, of the vibrating
structure. The first four normal modes xi(z) (i= 1, 2, 3, 4) of a vertical cantilever beam
with running coordinate z are shown in Figure 11.3. The natural modes and frequencies
are structural properties independent of the loads.

A deflection x(z,t) along a principal axis of a continuous system, due to time-
dependent forcing, can in general be written in the form

x(z, t) =
∑

i
xi(z)𝜉i(t) (D.17)

where the functions 𝜉i(t) are called the generalized coordinates of the system, and xi(z)
denotes the modal shape in the ith mode of vibration. For a building, similar expressions
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hold for deflections y(z,t) in the direction of its second principal axis, and for horizontal
torsional angles 𝜑(z,t). For structures whose centers of mass and elastic centers do not
coincide, the x, y, and𝜑motions are coupled, as is shown in Section D.4, which presents
the development of the equations of motion for this general case.

In this section, we limit ourselves to presenting the modal equations of motion corre-
sponding to the particular case of translational motion along a principal axis x:

𝜉i(t) + 2𝜁i(2𝜋ni)�̇�(t) + (2𝜋ni)2 𝜉i(t) =
Qi(t)
Mi

(i = 1, 2, 3,…) (D.18)

where 𝜁 i, ni, Mi, and Qi are the ith mode damping ratio, natural frequency, generalized
mass, and generalized force, respectively,

Mi =
∫

H

0
[xi(z)]2m(z)dz (D.19)

Qi =
∫

H

0
p(z, t)xi(z)dz (D.20)

where m(z) is the mass of the structure per unit length, p(z, t) is the load acting on the
structure per unit length, and H is the structure’s height. For a concentrated load acting
at z= z1,

p(z, t) = F(t)𝛿(z − z1) (D.21)

where 𝛿(z – z1) is defined, with a change of variable, as in Eq. (D.8),

Qi(t) = lim
Δz→0 ∫

z1+Δz

z1

p(z, t)xi(z)dz

= xi(z1)F(t) (D.22)

D.3.2 Response to a Concentrated Harmonic Load

If a concentrated load

F(t) = F0 cos 2𝜋nt (D.23)

is acting on the structure at a point of coordinate z1, by virtue of Eq. (D.22) the general-
ized force in the ith mode is

Qi(t) = F0 xi(z1) cos 2𝜋nt (D.24)

and the steady-state solutions of Eq. (D.18) are similar to the solution Eq. (D.3) of a
single-degree-of-freedom system under a harmonic load:

𝜉i(t) = F0 xi(z1)Hi(n) cos(2𝜋nt − 𝜃i) (D.25)

where

Hi(n) =
1

4𝜋2n2
i Mi{[1 − (n∕n1)2]2 + 4𝜁2

i (n∕ni)2}1∕2
(D.26)

𝜃i = tan−1 2𝜁i(n∕ni)
1 − (n∕ni)2 (D.27)
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The response of the structure at a point of coordinate z is then

x(z, t) = F0

∑
i

xi(z)xi(z1)Hi(n) cos(2𝜋nt − 𝜃i) (D.28)

It is convenient to write Eq. (D.28) in the form

x(z, t) = F0H(z, z1, n) cos[2𝜋nt − 𝜃(z, z1, n)] (D.29)

where, as follows immediately from Eqs. (B.4a) and (B.4b),

H(z, z1, n) =
⎧⎪⎨⎪⎩

[∑
i

xi(z)xi(z1)Hi(n) cos 𝜃i

]2

+

[∑
i

xi(z)xi(z1)Hi(n) sin 𝜃i

]2⎫⎪⎬⎪⎭

1∕2

(D.30)

𝜃(z, z1, n) = tan−1

∑
i

xi(z)xi(z1)Hi(n) sin 𝜃i

∑
i

xi(z)xi(z1)Hi(n) cos 𝜃i
(D.31)

Similarly, the steady state response at a point of coordinate z to a concentrated load

F(t) = F0 sin 2𝜋nt (D.32)

acting at a point of coordinate z1 can be written as

x(z, t) = F0H(z, z1, n) sin[2𝜋nt − 𝜃(z, z1, n)] (D.33)

D.3.3 Response to a Concentrated Stationary Random Load

Let the response at a point of coordinate z to a concentrated unit impulsive load 𝛿(t)
acting at time t = 0 at a point of coordinate z1 be denoted G(z, z1, t). Following the same
reasoning that led to Eq. (D.10), the response x(z,t) to an arbitrary load F(t) acting at a
point of coordinate z1 is

x(z, t) =
∫

∞

0
G(z, z1, 𝜏)F(t − 𝜏)d𝜏 (D.34)

Note the complete similarity of Eqs. (D.29), (D.33), and (D.34) to Eqs. (D.3), (D.6), and
(D.10), respectively. Therefore, the same steps that led to Eq. (D.16) yield the relation
between the spectra of the random forcing and the response:

Sx(z, z1, n) = H2(z, z1, n)SF (n) (D.35)

D.3.4 Response to Two Concentrated Stationary Random Loads

Let x(z,t) denote the response at a point of coordinate z to two stationary loads F1(t)
and F2(t) acting at points with coordinates z1 and z2, respectively. The autocovariance
of x(z,t) is (see Eq. [B.21]):

Rx(z, 𝜏) = lim
T→∞

1
T ∫

T∕2

−T∕2
x(z, t)x(z, t + 𝜏)dt
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= lim
T→∞

1
T ∫

T∕2

−T∕2

[
∫

∞

0
G(z, z1, 𝜏1)F1(t − 𝜏1)d𝜏1

+
∫

∞

0
G(z, z2, 𝜏1)F2(t − 𝜏1)d𝜏1

]

×
[
∫

∞

0
G(z, z1, 𝜏2)F1(t + 𝜏 − 𝜏2)d𝜏2 +

∫

∞

0
G(z, z2, 𝜏2)F2(t + 𝜏 − 𝜏2)d𝜏2

]
dt

=
∫

∞

0
G(z, z1, 𝜏1)

[
∫

∞

0
G(z, z1, 𝜏2)RF1

(𝜏 + 𝜏1 − 𝜏2)d𝜏2

]
d𝜏1

+
∫

∞

0
G(z, z2, 𝜏1)

[
∫

∞

0
G(z, z2, 𝜏2)RF2

(𝜏 + 𝜏1 − 𝜏2)d𝜏2

]
d𝜏1

+
∫

∞

0
G(z, z1, 𝜏1)

[
∫

∞

0
G(z, z2, 𝜏2)RF1F2

(𝜏 + 𝜏1 − 𝜏2)d𝜏2

]
d𝜏1

+
∫

∞

0
G(z, z2, 𝜏1)

[
∫

∞

0
G(z, z1, 𝜏2)RF1F2

(𝜏 + 𝜏1 − 𝜏2)d𝜏2

]
d𝜏1 (D.36)

The spectral density of the displacement x(z,t) is

Sx(z, n) = 2
∫

∞

−∞
Rx(z, 𝜏) cos 2𝜋n𝜏d𝜏

= 2
∫

∞

−∞
Rx(z, 𝜏) cos 2𝜋n[(𝜏 + 𝜏1 − 𝜏2) − (𝜏1 − 𝜏2)]d(𝜏 + 𝜏1 − 𝜏2) (D.37)

Substitute the right-hand side of Eq. (D.36) for Rx(z, 𝜏) in Eq. (D.37). Using the
relations

H(z, zi, n) cos 𝜃(z, zi, n) =
∫

∞

0
G(z, zi, 𝜏) cos 2𝜋n𝜏d𝜏 (D.38a)

H(z, zi, n) sin 𝜃(z, zi, n) =
∫

∞

0
G(z, zi, 𝜏) sin 2𝜋n𝜏d𝜏 (D.38b)

(which are similar to Eqs. [D.11a] and [D.11b]), and

H(z, z1, n)H(z, z2, n) cos[𝜃(z, z1, n) − 𝜃(z, z2, n)]

=
∫

∞

0 ∫

∞

0
G(z, z1, 𝜏1)G(z, z2, 𝜏2) cos 2𝜋n(𝜏1 − 𝜏2)d𝜏1d𝜏2 (D.39a)

H(z, z1, n)H(z, z2, n) sin[𝜃(z, z1, n) − 𝜃(z, z2, n)]

=
∫

∞

0 ∫

∞

0
G(z, z1, 𝜏1)G(z, z2, 𝜏2) sin 2𝜋n(𝜏1 − 𝜏2)d𝜏1d𝜏2 (D.39b)

which are derived from Eqs. (D.38a) and (D.38b), and following the steps that led to Eq.
(D.16), there results

Sx(z, n) = H2(z, z1, n) SF1
(n) + H2(z, z2, n) SF2

(n)
+ 2H(z, z1, n) H(z, z2, n){SC

F1F2
(n) cos[𝜃(z, z1, n) − 𝜃(z, z2, n)]

+ SQ
F1F2

(n) sin[𝜃(z, z1, n) − 𝜃(z, z2, n)]} (D.40)
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where SC
F1F2

(n) and SQ
F1F2

(n) are the co-spectrum and quadrature spectrum of the forces
F1(t) and F2(t), defined by Eqs. (B.33) and (B.34), respectively.

D.3.5 Effect of the Correlation of the Loads upon the Magnitude of the
Response

Let two stationary random loads F1(t) ≡ F2(t) act at points of coordinates z1 and z2,
respectively. The loads F1(t) and F2(t) are perfectly correlated. By definition, in this case
SC

F1F2
(n) = SC

F1
(n), and SQ

F1F2
(n) = 0 (Eqs. [B.21] and [B.29], [B.20] and [B.33]; [B.23] and

[B.34]). From Eq. (D.40),

Sx(z, n) = {H2(z, z1, n) + H2(z, z2, n)
+ 2H(z, z1, n) H(z, z2, n) cos[𝜃(z, z1, n) − 𝜃(z, z2, n)]}SF1

(n) (D.41)

If z1 = z2,

Sx(z, n) = 4H2(z, z1, n)SF1
(n) (D.42)

Consider now two loads F1(t) and F2(t) for which the cross-covariance RF1F2
(𝜏) = 0.

Then, by Eqs. (B.33) and (B.34),

SC
F1F2

(n) = SQ
F1F2

(n) = 0 (D.43)

and, if SF1
(n) ≡ SF2

(n),

Sx(z, n) = [H2(z, z1, n) + H2(z, z2, n)] SF1
(n) (D.44)

If z1 = z2,

Sx(z, n) = 2H2(z, z1, n) SF1
(n) (D.45)

The spectrum of the response to the action of the two uncorrelated loads is in this case
only half as large as in the case of the perfectly correlated loads.

D.3.6 Distributed Stationary Random Loads

The spectral density of the response to a distributed stationary random load can be
obtained by generalizing Eq. (D.40) to the case where an infinite number of elemental
loads, rather than two concentrated loads, are acting on the structure. Thus, if the load
is distributed over an area A, and if it is noted that in the absence of torsion the mechan-
ical admittance functions are independent of the across-wind coordinate y, the spectral
density of the along-wind fluctuations may be written as

Sx(z, n) =
∫A∫A

H(z, z1, n)H(z, z2, n){SC
p′

1p′
2
(n) cos[𝜃(z, z1, n) − 𝜃(z, z2, n)]

+ SQ
p′

1p′
2
(n) sin[𝜃(z, z1, n) − 𝜃(z, z2, n)]}dA1A2 (D.46)
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where p′
1 and p′

2 denote pressures acting at points of coordinates (y1, z1) and (y2, z2),
respectively. It can be verified that from Eq. (D.46) there follows2

Sx(z, n) =
1

16𝜋4

∑
i

∑
j

xi(z)xj(z)
n2

i n2
j MiMj

× 1
{[1 − (n∕ni)2]2 + 4𝜁2

i (n∕ni)2}{[1 − (n∕nj)2]2 + 4𝜁2
j (n∕nj)2}

×

[{[
1 −

(
n
ni

)2
][

1 −
(

n
nj

)2
]
+ 4𝜁i𝜁j

n
ni

n
nj

}

×
∫A∫A

xi(z1)xj(z2)SC
p′

1p′
2
(n)dA1dA2

+

{
2𝜁j

n
nj

[
1 −

(
n
ni

)2
]
− 2𝜁i

n
ni

[
1 −

(
n
nj

)2
]}

×
∫A∫A

xi(z1)xj(z2)S
Q
p′

1p′
2
(n)dA1dA2

]
(D.47)

If the damping is small and the resonant peaks are well separated, the cross-terms in
Eq. (D.47) become negligible, and

Sx(z, n) =
∑

i

x2
i (z)∫A∫Axi(z1)xi(z2)SC

p′
1p′

2
(n)dA1dA2

16𝜋4n4
i M2

i {[1 − (n∕ni)2]2 + 4𝜁2
i (n∕ni)2}

(D.48)

D.4 Example: Along-Wind Response

To illustrate the application of the material presented in Section D.3.6, we consider the
along-wind response of tall buildings subjected to pressures per unit area p(y, z, t) =
p(z) + p′(y, z, t) (Figure D.3).

Mean Response. The along-wind deflection induced by the mean pressures p(z) is

x(z) = B
∑

i

∫
H

0 p(z)xi(z)dz
4𝜋2n2

i Mi
xi(z) (D.49)

Consider the case of loading induced by wind with longitudinal speed U(z,t)=U(z) +
u(z, t) normal to a building face. The sum of the mean pressures p(z) acting on the wind-
ward and leeward faces of the building is then

p(z) = 1∕2 𝜌(Cw + Cl)BU
2
(z) (D.50)

2 By using Eqs. (D.30) and (D.31), (D.26) and (D.27), and (B.4a,b). For a derivation of Eq. (D.47) in terms of
complex variables, see [1].
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x

z

y

B D

H

p(y,z,t)dA

Figure D.3 Schematic view of a
building.

where 𝜌 is the air density; Cw and Cl are the values, averaged over the building width
B, of the mean positive pressure coefficient on the windward face and of the negative
pressure coefficient on the leeward face, respectively; and U(z) is the mean wind speed
at elevation z in the undisturbed oncoming flow. Equation (D.49) then becomes

x(z) = 1
2
𝜌(Cw + Cl)B

∑
i

∫
H

0 U
2
(z)xi(z)dz

4𝜋2n2
i Mi

xi(z) (D.51)

Fluctuating Response: Deflections and Accelerations. The co-spectrum of the pressures
at points M1, M2 of coordinates (y1, z1), (y2, z2), respectively, can be written as

SC
p′

1p′
2
= S1∕2

p′ (z1, n)S
1∕2
p′ (z2, n)Coh(y1, y2, z1, z2, n)N(n) (D.52)

where S1∕2
p′ (z, n) is the spectral density of the fluctuating pressures at point Pi (i= 1, 2),

Coh(y1, y2, z1, z2, n) is the coherence of pressures, both of which are acting on the same
building face, and N(n) is the coherence of pressures, one of which is acting on the wind-
ward face, while the other is acting on the leeward face of the building. By definition, if
both P1 and P2 are on the same building face, N(n) ≡ 1. Since

p(z, t) ≈ 1
2
𝜌C[U(z) + u(z, t)]2 (D.53)

where C (which is equal to Cw or Cl, depending upon whether the pressure acts on the
windward or leeward face) is the average pressure coefficient,

Sp′ (zi, n) ≃ 𝜌2C2U
2
(zi)Su(zi, n) (D.54)

where we used the fact that u2 is small in relation to 2U(z)u(z).
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Equation (D.48) then becomes

Sx(z, n) ≈
𝜌2

16𝜋4

∑
i

x2
i (z)[C

2
w + 2CwClN(n) + C2

l ]
n4

i M2
i {[1 − (n∕ni)2]2 + 4𝜁2

i (n∕ni)2}

×
∫

B

0 ∫

B

0 ∫

H

0 ∫

H

0
xi(z1)xi(z2)U(z1)U(z2)

× S1∕2
u (z1)S

1∕2
u (z2)Coh(y1, y2, z1, z2, n)dy1dy2dz1dz2 (D.55)

The coherence Coh(y1, y2, z1, z2, n) may be expressed as in Chapter 2. A simple, ten-
tative expression for the function N(n), a measure of the coherence between pressures
on the windward and leeward faces, is:

N(n) = 1 for nU(z)∕D < 0.2 (D.56a)
N(n) = 0 for nU(z)∕D ≥ 0.2 (D.56b)

where D is the depth of the building (Figure D.3).
The mean square value of the fluctuating along-wind deflection is (Eq. [B.15])

𝜎2
x (z) =

∫

∞

0
Sx(z, n)dn (D.57)

From Eq. (B.16b) it follows that the mean square value of the along-wind accelera-
tion is

𝜎2
ẍ (z) = 16𝜋4

∫

∞

0
n4Sx(z, n)dn (D.58)

The expected value of the largest peak of the fluctuating along-wind deflection occur-
ring in the time interval T is

xmax = Kx(z)𝜎x(z) (D.59)

where (see Eqs. [B.52] and [B.47])

Kx(z) = [2 ln vx(z)T]1∕2 + 0.577
[2 ln vx(z)T]1∕2 (D.60)

vx(z) =

[
∫

∞
0 n2Sx(z, n)dn
∫

∞
0 Sx(z, n)dn

]1∕2

(D.61)

Similarly, the largest peak of the along-wind acceleration is, approximately,

ẍmax(z) = Kz̈(z)𝜎ẍ(z) (D.62)

Kẍ(z) = [2 ln vẍ(z)T]1∕2 + 0.577
[2 ln vẍ(z)T]1∕2 (D.63)

vẍ(z) =

[
∫

∞
0 n6Sx(z, n)dn
∫

∞
0 n4Sx(z, n)dn

]1∕2

(D.64)

It can be shown that the mean square value of the deflection may be written, approxi-
mately, as a sum of two terms: the “background term” that entails no resonant amplifica-
tion, and is due to the quasi-static effect of the fluctuating pressures, and the “resonant
term,” which is associated with resonant amplification due to force components with
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frequencies equal or close to the fundamental natural frequency of the structure, and is
inversely proportional to the damping ratio [2, p. 212].
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Appendix E

Structural Reliability

E.1 Introduction

The objective of structural reliability is to develop criteria resulting in acceptably low
probabilities that structures will fail to perform adequately under dead, live, and envi-
ronmental loads. Adequate performance is defined as the non-exceedance of specified
limit states.

The following are examples of limit states:

• Demand-to-capacity indexes (DCIs) may not significantly exceed unity (strength limit
state).

• Buildings essential from a community resilience point of view (e.g., hospitals, police
stations, fire stations, power plants) must not collapse under loads induced by extreme
events (collapse limit state).

• Inter-story drift may not exceed a specified limit dependent upon type of cladding
and/or partitions (serviceability limit state).

• Accelerations may not exceed a specified peak or r.m.s. value (serviceability limit
state).

• The performance of equipment essential to the building functionality must not be
affected by the occurrence of an extreme event (serviceability limit state).

• Cladding performance must not result in damage to the structure’s contents (service-
ability limit state).

Other limit states may be specified, depending upon the building, its contents, and
its functions. Associated with the exceedance of any limit state is a minimum allowable
mean recurrence interval (MRI). The more severe the consequences of exceeding the
limit state, the larger are the minimum allowable MRIs.

Building codes specify strength limit states. For example, the ASCE Standard 7-16
specifies a 700-year MRI of the event that the strength of structural members of typi-
cal structures will be exceeded (for critical structures whose failure would cause loss of
life the Standard specifies a higher MRIs). The specified MRIs are not based on explicit
estimates of failure probabilities, but rather on professional consensus based on experi-
ence, intuition, or belief. Limit states not related to life safety and associated MRIs may
be established by agreement among the owner, the designer, and the insurer, although
some non-structural limit states may require compliance with regulatory requirements.

In the early phases of its development it was believed that structural reliability could
assess the performance of any structural system by performing the following steps:

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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(i) clear and unambiguous definition of limit states, (ii) specification of design criteria
on acceptable probabilities of exceedance of the limit states, and (iii) checking whether,
for the structure being designed, those criteria are satisfied.

The clear definition of certain limit states can be a difficult task. For redundant
structural systems, as opposed to individual structural members, structural safety
assessments via reliability calculations are typically not possible in the present state of
the art. In addition, probability distribution tails, which determine failure probabilities,
are in many cases unknown. Finally, the specification of the acceptable failure proba-
bility for any limit state can be a complex economic or political issue that exceeds the
bounds of structural engineering.

In view of apparently insuperable difficulties inherent in the original goals of struc-
tural reliability, the discipline has settled for more modest goals. Under the demand
inherent in the wind and gravity loads with specified MRIs and/or affected by their
respective load factors, each member cross section must experience DCIs lower than
or approximately equal to unity. Past experience with wind effects on buildings suggests
that the member-by-member approach just described is safe,1 even though it does not
provide any explicit indication of the probability of exceedance of the incipient collapse
limit state.

Improved forecasting capabilities, which allow sufficient time for evacuation, have
resulted in massively reduced loss of life due to hurricanes, particularly in developed
countries. The motivation to perform research into failure limit states has been far
stronger for seismic regions than for regions with strong winds, and the ASCE 7
Standard specifies seismic design criteria based on nonlinear analyses, consistent
with the requirement that the structure not collapse under a Maximum Considered
Earthquake with a 2500-year MRI. The development of similar design criteria and
research into nonlinear structural behavior are only beginning to be performed for
structures subjected to wind loads. Such development is necessary, among other
reasons, because evacuation can be impractical or hampered by traffic problems, hence
the need for certain structures to be capable of safely surviving strong winds.

Section E.2 explains why the use of probability distributions of demand and capacity
may be problematic in structural engineering practice. Subsequent sections are devoted
to Load and Resistance Factor Design (LRFD) and its limitations (Section E.3), structural
strength reserve (Section E.4), design MRIs for multi-hazard regions (Section E.5). The
calibration of design MRIs for structures experiencing significant dynamic effects or
for which errors in the estimation of extreme wind effects are significantly larger than
the typical errors accounted for in the ASCE 7-16 Standard is considered in Chapters 7
and 12.

E.2 The Basic Problem of Structural Safety

Assume that the probability distribution of the demand Q and the capacity R
P(q, r) = Prob(Q ≤ q,R ≤ r) (E.1)

is known. The probability that q<Q< q+ dq and r<R< r + dr is f (q, r)dq ds. The prob-
ability of failure is the probability that r< q (the shaded area in Figure E.1):

Pf =
∫

∞

0
dq

∫

q

0
f (q, r)dr (E.2)

1 The degree to which this is the case depends upon the structure’s strength reserve, see Section E.5.
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Q

R

dq

q

q

f (q,r)

Figure E.1 Domain of
integration for calculation
of probability of failure.

Since the loads and resistances are independent (i.e.,
f (q,r) = f Q(q)f R(r)),

Pf =
∫

∞

0
fQ(q)

∫

q

0
fR(r)dr dq

=
∫

∞

0
fQ(q)FR(q) dq (E.3a, b)

where f Q is the probability density function of the demand
(load), and f R and FR are the probability density and
the cumulative distribution functions of the capacity
(resistance), respectively.

The integrand of Eq. (E.3a, b) depends upon the upper and
lower tail of the distributions f Q and FR, respectively (Figure E.2). Typically, it is not
possible to ascertain what those distributions are. For this reason, a fully probabilistic
approach to the estimation of structural reliabilities is in most cases not feasible.

E.3 First-Order Second-Moment Approach: Load and
Resistance Factors

The first order-second moment (FOSM) approach considered in this section was devel-
oped, primarily in the 1970s, following the realization that structural reliability theory
based on explicit estimation of failure probabilities is not achievable in practice.

E.3.1 Failure Region, Safe Region, and Failure Boundary

Consider a member subjected to a load Q, and let the load that induces a given limit
state (e.g., first yield) be denoted by R. Both Q and R are random variables that define
the load space. Failure occurs for any pair of values for which

R − Q < 0 (E.4)

The safe region is defined by the inequality

R − Q > 0 (E.5)

The failure boundary separates the failure and the safe regions, and is defined by the
relation

R − Q = 0 (E.6)

FR

fQ

Q,R

Figure E.2 Probability density function f Q and cumulative distribution function FR.
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Relations similar to Eqs. (E.4)–(E.6) hold in the load effect space, defined by the
variables Qe and Re, where Qe is an effect (e.g., the stress) induced in a member by
the load Q, and Re is the corresponding limit state (e.g., the yield stress). The failure
boundary is then

Re − Qe = 0 (E.7)

Henceforth we use for simplicity the notations Q, R for both the load space and the
load effect space. In general, Q and R are functions of independent random variables
X1, X2,…, Xn (e.g., terrain roughness, aerodynamic coefficients, wind speeds, natural
frequencies, damping ratios, strength) called basic variables, that is,

Q = Q(X1,X2,… ,Xm) (E.8)
R = R(Xm+1,Xm+2,… ,Xn) (E.9)

Substitution of Eqs. (E.8) and (E.9) into Eq. (E.6) yields the failure boundary in the
space of the basic variables, defined by the equation (Figure E.3):

g(X1,X2,… ,Xn) = 0 (E.10)

It can be useful in applications to map the failure region, the safe region, and the failure
boundary onto the space of variables Y 1 and Y 2, defined by transformations

Y1 = ln R (E.11)
Y2 = ln Q (E.12)

On the failure boundary, R = Q, so in the coordinates Y 1, Y 2 the failure boundary is
Y 1 = Y 2.

E.3.2 Safety Indexes

Denote by S the failure boundary in the space of the reduced variables xi red =
(Xi − Xi)∕𝜎xi,where the variables Xi are mutually independent, and Xi and 𝜎xi are,
respectively, the mean and standard deviation of Xi. (The subscript “red” stands for
“reduced.”) The reliability index, denoted by 𝛽, is defined as the shortest distance in
this space between the origin (i.e., the image in the space of the reduced variables of

Q

R

Failure region:
g(X1,…,Xn) < 0

Safe region:
g(X1,…,Xn) > 0

Fail
ur

e b
ou

nd
ar

y: 
g(X 1

,…
,X n)

 =
 0

Figure E.3 Safe region, failure region, and failure
boundary.
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the point with coordinates Xi) and the failure boundary S. The point on the boundary
S closest to the origin, and its image in the space of the original basic variables Xi, are
called the design point. For any given structural problem, the numerical value of the
safety index depends upon the set of variables being considered.

Assume that the load Q and resistance R follow the normal distribution. It is conve-
nient to express the random variables in non-dimensional terms as follows:

qred = Q − Q
𝜎Q

,

rred = R − R
𝜎R

. (E.13a, b)

The failure surface (Eq. [E.6]) has the following expression in the space of the reduced
coordinates:

𝜎Ssred − 𝜎Qqred + R − Q = 0 (E.14)
The coordinates of points A, B in Figure E.4 are, respectively:(

R − Q
𝜎Q

, 0

)
and

(
0, −(R − Q)

𝜎R

)
(E.15)

The slope of failure surface line is
𝛼 = tan−1(OB∕OA) = tan−1(𝜎Q∕𝜎R) (E.16)

The slope of line (L) normal to the failure surface is −1/tan−1(𝜎Q/𝜎R). The design point
D is the intersection of the failure surface and line (L). Its coordinates (q∗

red, r
∗
red) are

q∗
red = 𝛽 sin 𝛼 = (R − Q)

𝜎Q

𝜎2
R + 𝜎2

Q

r∗red = −𝛽 cos 𝛼 = −(R − Q)
𝜎R

𝜎2
R + 𝜎2

Q
(E.17a, b)

O

B

A

Failure surface S: R – Q = 0
(L)

OD= β

rred

qred

D = Design point

α

D(q* )
red, red

r* = (β sin α, – β cos α) OA =  R – Q  /σQ





OB =  R – Q  /σR





tanα = σQ /σR

Figure E.4 Index 𝛽 in the space of the reduced variables qred and rred.



�

� �

�

472 Appendix E: Structural Reliability

where the distance 𝛽 between the origin and the failure surface in the space of reduced
variables is defined as the safety index. From Eqs. (E.17) if follows that

𝛽 = R − Q
(𝜎2

R + 𝜎2
Q)1∕2

(E.18)

Example E.1 Assume that the resistance is deterministic, that is, R≡ R. The mapping
of the failure boundary

Q − R = 0

onto the space of the reduced variate qred = (Q − Q)∕𝜎Q is a point q∗
red such that Q = R,

that is, q∗
red = (R − Q)∕𝜎Q (Figure E.5). The asterisk denotes the design point. The origin

in that space is the point for which qred = 0, and corresponds to Q = Q. The distance
𝜎r = 0 between the origin and the failure boundary is the safety index 𝛽 = (R − Q)∕𝜎Q,
since in this case in Eq. (E.18). The case Q – R> 0 (load larger than resistance) corre-
sponds to failure. In the space of the reduced variable failure occurs for qred > q∗

red, that
is qred >𝛽.

The larger the ratio 𝛽 = (R − Q)∕𝜎Q, the smaller is the probability of failure. The relia-
bility index thus provides an indication on a member’s safety. However, this indication is
largely qualitative, unless information is available on the probability distribution of the
variate Q.

Instead of operating in the load space R, Q, consider the failure boundary in the trans-
formed space defined by Eqs. (E.11) and (E.12). If Q and R are assumed to be mutually
independent and lognormally distributed, the distribution of Y 1, Y 2, and Y 2 – Y 1 (i.e.,
lnQ, lnR, and ln(R/Q), respectively) will be normal. Following the same steps as in the
normal distribution case, but applying them to the variables Y 1 and Y 2, the safety index
becomes

𝛽 =
Y 1 − Y 2

(𝜎2
Y 1 + 𝜎

2
Y 2)1∕2

(E.19)

Expansion in a Taylor series yields the expression

Y1 = ln R + (R − R) 1
R
− 1

2
(R − R)2 1

R
2 +… (E.20)

qred

F
ai

lu
re

 b
ou

nd
ar

y

0

Design point
*qred

β

Figure E.5 Index 𝛽 for member with random load and
deterministic resistance.
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O      

B

A

D (In Q)*red, (In R)*red   = (β sin α, – β cos α)

(L)

OD = β

(ln R)red

(ln Q)red

Failure surface ln R – ln Q = 0

OA =  ln R − ln Q /VQ

D = Design point

tan α = VQ/VR

α

OB =  ln R − ln Q /VR

Figure E.6 Index 𝛽 for member with random load and random resistance in the space of the reduced
variables (lnR)red and (lnQ)red.

and a similar expression for Y 2. Averaging these expressions, neglecting second and
higher order terms, and using the notations 𝜎R∕R = VR, 𝜎Q∕Q = VQ, the safety index
can be expressed as:

𝛽 ≈ ln R − ln Q
(V 2

R + V 2
Q)1∕2

(E.21)

Figure E.6 is the counterpart of Figure E.4 obtained by substituting in Eq. (E.18)
ln R, ln Q, VR, VQ for R, Q, 𝜎R, 𝜎Q, respectively.

Note: The approach wherein only means and standard deviations (or coefficients of
variation) are used is called the “first-order second moment” (FOSM) approach.

E.3.3 Reliability Indexes and Failure Probabilities

The probability of failure is
Pf = Prob[(R − Q) ≤ 0]

= Prob(g ≤ 0) (E.22)
If the variates R and Q are normally distributed, the probability distribution of

R – Q = g is also normal. It follows then from Eq. (E.22) that
Pf = Fg(0) (E.23)

(Figure E.7) where Fg is the Gaussian cumulative distribution of g, or

Pf = Pr(g ≤ 0)

= Φ
(

0 − g
𝜎g

)

= Φ

(
− R − Q
(𝜎2

R + 𝜎2
Q)1∕2

)

= Φ(−𝛽)
= 1 − Φ(𝛽) (E.24a,b,c,d,e)
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0 g

fg(g)

βσg

Pf = Fg(0)

g

Figure E.7 Probability distribution function f g (g) of variate g = R – Q. The probability of failure is equal
to the area under the curve f g (g) for g< 0.

where Φ is the standard normal cumulative distribution function and 𝛽 is defined by
Eq. (E.18).

If the variates R and Q are lognormally distributed (meaning that their logarithms are
normally distributed), the probability of failure is

Pf = Pr(ln R − ln Q ≤ 0)

= 1 − Φ

(
ln R − ln Q

(𝜎2
ln R + 𝜎2

ln Q)1∕2

)

≈ 1 − Φ(𝛽) (E.25a,b,c)
where the fraction in Eq. (E.25b) is equal to the safety index defined in Eq. (E.21). The
usefulness of Eq. (E.24e) and (E.25c) is limited by the fact that typically neither the load
nor the resistance is normally or lognormally distributed.

E.3.4 Partial Safety Factors: Load and Resistance Factor Design

Consider a structure characterized by a set of variables with means Xi and standard
deviations 𝜎i, and design points X∗

i (i= 1, 2,…, n) in the space of the original variables.
By definition

X∗
i = Xi + 𝜎Xi

x∗
i red (E.26)

Equation (E.26) can be written in the form

X∗
i = 𝛾Xi

Xi (E.27)

where
𝛾Xi

= 1 + VXi
x∗

i red (E.28)

and VXi
= 𝜎Xi

∕Xi; the asterisk denotes the design point. Let i= 1, 2; X1 = Q, X2 = R; and
𝛾X1

≡ 𝛾Q 𝛾X2
≡ 𝜑R. The quantities 𝛾Q, 𝜑R are called the load and the resistance factor,

respectively.
We consider now the case Y 1 = ln R and Y 2 = ln Q, on which current design practice

is based. The counterpart to Eqs (E.26) is

(ln Q)∗red = (ln Q)∗ − ln Q
VQ

(E.29)
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Since (lnQ)* = 𝛽sinα, where tan 𝛼 = V Q/V R (see Figure E.6) and 𝛽 is defined by
Eq. (E.21), it follows that

ln(Q∗∕Q) = VQ𝛽sin𝛼 (E.30)
(see Figure E.6). Therefore

Q∗

Q
= exp(VQ𝛽sin𝛼). (E.31)

Since Q∗ = 𝛾QQ, the load factor is
𝛾Q = exp(VQ𝛽sin𝛼). (E.32)

Similarly, the resistance factor is
𝜑R = exp(−VR𝛽cos𝛼). (E.33)

In Eqs. (E.29)–(E.33), 𝛽 is defined by Eq. (E.21).
The following linear approximation to Eq. (E.26) has been developed for use in

standards [1]:
𝛾Q = 1 + 0.55𝛽VQ (E.34)

Equation (E.34) can in many instances be a poor approximation to Eq. (E.32).

E.3.5 Calibration of Safety Index 𝜷, Wind Directionality, and Mean
Recurrence Intervals of Wind Effects

Because the approach to the calculation of the safety index by methods that presuppose
the universal validity of the lognormal distribution can be unsatisfactory, load factors
specified explicitly or implicitly in the ASCE 7 Standard have been calibrated against
past practice using uncertainty estimates and engineering judgment – see Chapters 7
and 12.

If wind directionality is considered by explicitly taking into account the directional
distribution of the wind speeds at the building site, rather than by using wind direction-
ality factors as specified by the ASCE 7 Standard, MRIs of the design wind effects are no
longer equal to the MRIs of the design wind speeds – see Chapter 13 for details.

E.4 Structural Strength Reserve

The design of structural members by LRFD methods ensures that they do not experi-
ence unacceptable behavior as they attain the respective strength limit states. However,
it is desirable that, even if those limit states are exceeded, the performance of the struc-
ture remains acceptable in some sense. A structure with large strength reserve is one
for which this is the case for wind effects with MRIs significantly larger than the MRIs
inducing strength limit states.

Strength reserve can be assessed by estimating MRIs of incipient collapse or other
appropriate performance measures. Sections E.4.1 and E.4.2 provide such estimates for
portal frames for a single wind direction and by considering the effect of all wind direc-
tions, respectively, and note a thorough study of post-elastic behavior of tall buildings
subjected to wind [2].
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E.4.1 Portal Frame Ultimate Capacity Under Wind with Specified Direction

For low-rise industrial steel buildings with gable roofs and portal frames, nonlinear
push-over studies have been conducted in which the buildings were subjected to two
sets of wind pressures [3]. One set consisted of wind pressures based on aerodynamic
information specified for low-rise structures in the ASCE 7 Standard. The second set
consisted of simultaneous wind pressures measured and recorded in the wind tunnel
at a large number of taps on the building model’s surface. The structural design of the
frames was based on ASCE 7 Standard loads and the Allowable Stress Design approach.
The objectives of the studies were: (i) to compare the strength reserve levels estimated
by using (a) the simplified wind loads inherent in the ASCE Standard, and (b) recorded
time series of wind tunnel pressures, and (ii) to examine the degree to which the strength
reserve can be increased by the adoption of alternative designs. The following alternative
features of the lateral bracing and joint stiffening were considered:

1) (a) 2.5 m spacing, and (b) 6 m spacing of lateral bracing of rafter bottom flanges.
2) Knee (a) horizontal and vertical stiffeners, and (b) horizontal, vertical, and diagonal

stiffeners.
3) Ridge (a) without and (b) with vertical stiffener at ridge.

Strength analyses were performed for the load combinations involving wind. Calcula-
tions were performed of the ratio 𝜆 between ultimate and allowable wind load for each
load combination being considered, the ultimate wind load corresponding to incipient
failure through local or global instability as determined by using a finite element analysis
program. Reducing the distance between bracings of the rafter’s lower flanges increased
the strength reserve more effectively than providing diagonal stiffeners in the knee joint
(Figure E.8). Significant differences were found between the values of 𝜆 obtained under
loading by pressures specified in the ASCE 7 Standard provisions and loading by the
more realistic pressures measured in the wind tunnel. For details see [4].

E.4.2 Portal Frame Ultimate Capacity Estimates Based on Multi-Directional
Wind Speeds

The following methodology was developed for the estimation of MRIs of ultimate wind
effects by accounting for wind directionality [5]:

(a) (b)

Figure E.8 Local buckling in knee (a) with and (b) without diagonal stiffener: industrial building steel
portal frame.
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1) Using recorded wind tunnel pressure data, obtain the loads that induce peak internal
forces (axial forces, bending moments, shear forces) at a number of cross sections
deemed to be critical. Obtain the loads corresponding to a unit wind speed at 10 m
above ground over open terrain for, say, 16 or 36 wind directions spanning the 360∘
range. These loads, multiplied by the square of wind speeds U considered in design,
are used in step 2.

2) Using nonlinear finite element analyses, determine the wind speed from each direc-
tion 𝜃i that causes the frame to experience incipient failure, defined as the onset of
deformations that increase so fast under loads that implicit nonlinear finite element
analyses fail to converge to a solution.

3) From available wind climatological data create, by simulation, time series of direc-
tional wind speeds with length td that exceeds the anticipated MRIs of the failure
events [6].

4) Count the number nf of cases in which directional wind speeds in the time series
created in step 3 exceed the directional wind speeds determined in step 2 to pro-
duce incipient failure events. The MRI in years of the failure event is estimated as
N = td/nf .

This methodology was applied to an industrial low-building portal frame located in
a hurricane-prone region. The frame was strengthened by triangular stiffeners at the
column supports and by haunches and horizontal, vertical, and diagonal stiffeners at
the knee joints. Owing to such strengthening the estimated failure MRI was in this case
quite high (100,000 years, corresponding to a nominal 1/1000 probability that the frame
will fail during a 100-year life).

E.4.3 Nonlinear Analysis of Tall Buildings Under Wind Loads

An extensive study of post-elastic behavior of high-rise buildings subjected to wind loads
is presented in [2], which incorporates and adapts methods and results obtained for
structures that behave nonlinearly under seismic loads. Future research may consider
the possibility that, under the strong wind loading inducing nonlinear behavior in struc-
tural members, tall buildings might experience aeroelastic (or, to introduce a new but
apposite term, aeroplastic) effects.

E.5 Design Criteria for Multi-Hazard Regions

E.5.1 Strong Winds and Earthquakes

Structures in regions subjected to both strong earthquakes and strong winds are cur-
rently designed by considering separately loads induced by earthquakes and by winds,
and basing the final design on the more demanding of those loads. The rationale for
this approach has been that the probability of simultaneous occurrence of both earth-
quakes and high winds is negligibly small. It is shown in this section that implicit in this
approach are probabilities of failure that can be greater by a factor of up to two than
their counterparts for structures exposed to wind only or to earthquakes only.

An intuitive illustration of this statement follows. Assume that a motorcycle racer
applies for insurance against personal injuries. The insurer will calculate a rate
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commensurate with the probability that the racer will be injured in a motorcycle
accident. Assume now that the motorcycle racer is also a high-wire artist. The insur-
ance rate would then be increased, since the probability that an injury will occur during
a specified period of time, either in a motorcycle or high-wire accident, will be greater
than the probability associated with risk due to only one of these types of accident. This
is true even though the nature of the injuries in the two types of event may differ. This
argument is expressed formally as

P(s1 ∪ s2) = P(s1) + P(s2) (E.35)

where P(s1) = annual probability of event s1 (injury due to a motorcycle accident),
P(s2) = annual probability of event s2 (injury due to a high-wire accident), and
P(s1 ∪ s2) = probability of injury due to a motorcycle or a high-wire accident.

Equation (E.35) is applicable to structures as well, particularly to members experienc-
ing large demands under lateral loads (e.g., columns in lower floors). For details and case
studies, see [7, 8].

E.5.2 Winds and Storm Surge

Unlike earthquakes and windstorms, winds and storm surge are not independent events.
Therefore, for some applications it is necessary to consider their simultaneous effects.
This entails the following steps: (i) select a stochastic set of hurricane storm tracks in the
region of interest; (ii) use the selected storm tracks to generate time histories of wind
speeds and corresponding time histories of storm surge heights at sites affected by those
wind speeds; (iii) use those time histories to calculate time series of wind and storm
surge effects; and (iv) obtain from those time series estimates of joint effects of wind
and storm surge with the mean recurrence intervals of interest [9, 10]. In this approach
the calculations are performed in the load effect space.

An important factor in the estimation of storm surge heights is the bathymetry at and
near the site of interest. To be realistic, storm surge intensities must be based on current
information on local bathymetry, which can change significantly over time.

References

1 Ravindra, M.K.G., Theodore, V., and Cornell, C.A. (1978). Wind and snow load
factors for use in LRFD. Journal of the Structural Division 104: 1443–1457.

2 Mohammadi, A., “Wind performance-based design of high-rise buildings,”
Doctoral dissertation, Department of Civil and Environmental Engineering, Florida
International University, 2016.

3 Jang, S., Lu, L.W., Sadek, F., and Simiu, E. (2002). Database-assisted wind load
capacity estimates for low-rise steel frames. Journal of Structural Engineering 128:
1594–1603.

4 Duthinh, D. and Fritz, W.P. (2007). Safety evaluation of low-rise steel structures
under wind loads by nonlinear database-assisted technique. Journal of Structural
Engineering 133: 587–594. (https://www.nist.gov/wind).



�

� �

�

Appendix E: Structural Reliability 479

5 Duthinh, D., Main, J.A., Wright, A.P., and Simiu, E. (2008). Low-rise steel structures
under directional winds: mean recurrence interval of failure. Journal of Structural
Engineering 134: 1383–1388.

6 Yeo, D. (2014). Generation of large directional wind speed data sets for estimation
of wind effects with long return periods. Journal of Structural Engineering 140:
04014073. https://www.nist.gov/wind.

7 Duthinh, D. and Simiu, E. (2010). Safety of structures in strong winds and earth-
quakes: multihazard considerations. Journal of Structural Engineering 136: 330–333.
https://www.nist.gov/wind).

8 Crosti, C., Duthinh, D., and Simiu, E. (2010). Risk consistency and synergy in
multi-hazard design. Journal of Structural Engineering 137: 1–6.

9 Phan, L. T., Simiu, E., McInerney, M. A., Taylor, A. A., and Powell, M. D., “Method-
ology for the Development of Design Criteria for Joint Hurricane Wind Speed and
Storm Surge Events: Proof of Concept,” NIST Technical Note 1482, National Insti-
tute of Standards and Technology, Gaithersburg, MD, 2007. https://www.nist.gov/
wind.

10 Phan, L. T., Slinn, D. N., and Kline, S. W., “Introduction of Wave Set-up Effects and
Mass Flux to the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) Model,”
NISTIR 7689, National Institute of Standards and Technology, Gaithersburg, MD,
2010. https://www.nist.gov/wind.



�

� �

�

481

Appendix F

World Trade Center Response to Wind

A Skidmore Owings and Merrill Report

Note. The material that follows reproduces NIST document NCSTAR1–2, Appendix D,
dated April 13 2004, (http://wtc.nist.gov/NCSTAR1/NCSTAR1-2index.htm) submitted
by Skidmore, Owings and Merrill LLP, Chicago, Illinois (wtc.nist.gov). The documents
listed in Sections F.1, F.2, and F.3 are not in the public domain, but are believed to
be obtainable under the provisions of the Freedom of Information Act. The material
illustrates difficulties encountered by practicing structural engineers in evaluating wind
engineering laboratory reports, and contains useful comments on the state of the art in
wind engineering at the time of its writing. The text that follows is identical to the text
of the Skidmore, Owings and Merrill report, except for numbering of the headings.

F.1 Overview

F.1.1 Project Overview

The objectives for Project 2 of the WTC Investigation include the development of
reference structural models and design loads for the WTC Towers. These will be used
to establish the baseline performance of each of the towers under design gravity and
wind loading conditions. The work includes expert review of databases and baseline
structural analysis models developed by others as well as the review and critique of the
wind loading criteria developed by NIST.

F.1.2 Report Overview

This report covers work on the development of wind loadings associated with Project 2.
This task involves the review of wind loading recommendations developed by NIST for
use in structural analysis computer models. The NIST recommendations are derived
from wind tunnel testing/wind engineering reports developed by independent wind
engineering consultants in support of insurance litigation concerning the WTC towers.
The reports were provided voluntarily to NIST by the parties to the insurance litigation.

As the third party outside experts assigned to this Project, SOM’s role during this task
was to review and critique the NIST-developed wind loading criteria for use in computer
analysis models. This critique was based on a review of documents provided by NIST,
specifically the wind tunnel/wind engineering reports and associated correspondence
from independent wind engineering consultants and the resulting interpretation and
recommendations developed by NIST.

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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F.2 NIST-Supplied Documents

F.2.1 Rowan Williams Davies Irwin (RWDI) Wind Tunnel Reports

Final Report, Wind-Induced Structural Responses World Trade Center – Tower 1,
New York, New York, Project Number: 02-1310A, October 4, 2002; Final Report,
Wind-Induced Structural Responses World Trade Center – Tower 2, New York, New
York, Project Number:02-1310B, October 4, 2002.

F.2.2 Cermak Peterka Petersen, Inc. (CPP) Wind Tunnel Report

Wind-Tunnel Tests – World Trade Center, New York, NY
CPP Project 02-2420
August 2002

F.2.3 Correspondence

Letter dated October 2, 2002 from Peter Irwin/RWDI to Matthys Levy/Weidlinger
Associates, Re: Peer Review of Wind Tunnel Tests
World Trade Center, RWDI Reference #02-1310

Weidlinger Associates Memorandum dated March 19, 2003 from Andrew Cheung to
Najib Abboud, Re: Errata to WAI Rebuttal Report

Letter dated September 12, 2003 from Najib N. Abboud/Hart-Weidlinger to S. Shyam
Sunder and Fahim Sadek/NIST, Re: Responses to NIST’s Questions on “Wind-Induced
Structural Responses, World Trade Center, Project Number 02-1310A and 02-1310B,
October 2002, by RWDI, Prepared for Hart-Weidlinger”

Letter dated April 6, 2004
From: Najib N. Abboud /Weidlinger Associates
To: Fahim Sadek and Emil Simiu
Re: Response to NIST’s question dated March 30, 2004 regarding “Final Report,
Wind- Induced Structural Responses, World Trade Center – Tower 2, RWDI, Oct 4,
2002”

F.2.4 NIST Report, Estimates of Wind Loads on the WTC Towers, Emil Simiu
and Fahim Sadek, April 7, 2004

F.3 Discussion and Comments

F.3.1 General

This report covers a review and critique of the NIST recommended wind loads derived
from wind load estimates provided by two independent private sector wind engineer-
ing groups, RWDI and CPP. These wind engineering groups performed wind tunnel
testing and wind engineering calculations for various private sector parties involved in
insurance litigation concerning the destroyed WTC Towers in New York. There are
substantial disparities (greater than 40%) in the predictions of base shears and base
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overturning moments between the RWDI and CPP wind reports. NIST has attempted to
reconcile these differences and provide wind loads to be used for the baseline structural
analysis.

F.3.2 Wind Tunnel Reports and Wind Engineering

The CPP estimated wind base moments far exceed the RWDI estimates. These differ-
ences far exceed SOM’s experience in wind force estimates for a particular building by
independent wind tunnel groups.

In an attempt to understand the basis of the discrepancies, NIST performed a critique
of the reports. Because the wind tunnel reports only summarize the wind tunnel test
data and wind engineering calculations, precise evaluations are not possible with the
provided information. For this reason, NIST was only able to approximately evaluate
the differences. NIST was able to numerically estimate some corrections to the CPP
report but was only able to make some qualitative assessments of the RWDI report. It
is important to note that wind engineering is an emerging technology and there
is no consensus on certain aspects of current practice. Such aspects include the
correlation of wind tunnel tests to full-scale (building) behavior, methods and compu-
tational details of treating local statistical (historical) wind data in overall predictions
of structural response, and types of suitable aeroelastic models for extremely tall and
slender structures. It is unlikely that the two wind engineering groups involved with the
WTC assessment would agree with NIST in all aspects of its critique. This presumptive
disagreement should not be seen as a negative, but reflects the state of wind tunnel
practice. It is to be expected that well-qualified experts will respectfully disagree with
each other in a field as complex as wind engineering.

SOM’s review of the NIST report and the referenced wind tunnel reports and
correspondence has only involved discussions with NIST; it did not involve direct
communication with either CPP or RWDI. SOM has called upon its experience with
wind tunnel testing on numerous tall building projects in developing the following
comments.

F.3.2.1 CPP Wind Tunnel Report
The NIST critique of the CPP report is focused on two issues: a potential overestimation
of the wind speed and an underestimation of load resulting from the method used
for integrating the wind tunnel data with climatic data. NIST made an independent
estimate of the wind speeds for a 720-year return period. These more rare wind events
are dominated by hurricanes that are reported by rather broad directional sectors
(22.5∘). The critical direction for the towers is from the azimuth direction of 205–210∘.
This wind direction is directly against the nominal “south” face of the towers (the plan
north of the site is rotated approximately 30 degrees from the true north) and generates
dominant cross-wind excitation from vortex shedding. The nearest sector data are
centered on azimuth 202.5∘ (SSW) and 225∘ (SW). There is a substantial drop (12%) in
the NIST wind velocity from the SSW sector to the SW sector. The change in velocity
with direction is less dramatic in the CCP 720-year velocities or in the ARA hurricane
wind roses included in the RWDI report. This sensitivity to directionality is a cause
for concern in trying to estimate a wind speed for a particular direction. However, it
should be noted that the magnitude of the NIST interpolated estimated velocity for
the 210 azimuth direction is similar to the ARA wind rose. The reduction of forces has



�

� �

�

484 Appendix F: World Trade Center Response to Wind

been estimated by NIST based on a square of the velocity, however, a power of 2.3 may
be appropriate based on a comparison of the CPP 50-year (nominal) and 720-year base
moments and velocities.

The NIST critique of the CPP use of sector by sector approach of integrating wind
tunnel and climatic data is fairly compelling. The likelihood of some degree of under-
estimation is high but SOM is not able to verify the magnitude of error (15%), which is
estimated by NIST. This estimate would need to be verified by future research, as noted
by NIST.

F.3.2.2 RWDI Wind Tunnel Report
The NIST critique of RWDI has raised some issues but has not directly estimated the
effects. These concerns are related to the wind velocity profiles with height used for
hurricanes and the method used for up-crossing.

NIST questioned the profile used for hurricanes and had an exchange of correspon-
dence with RWDI. While RWDI’s written response is not sufficiently quantified to
permit a precise evaluation of NIST’s concerns, significant numerical corroboration on
this issue may be found in the April 6 letter (Question 2) from N. Abboud (Weidlinger
Associates) to F. Sadek and E. Simiu (NIST).

NIST is also concerned about RWDI’s up-crossing method used for integrating wind
tunnel test data and climatic data. This method is computationally complex and verifica-
tion is not possible because sufficient details of the method used to estimate the return
period of extreme events are not provided.

F.3.2.3 Building Period used in Wind Tunnel Reports
SOM noted that both wind tunnel reports use fundamental periods of vibrations that
exceed those measured in the actual (north tower) buildings. The calculation of building
periods are at best approximate and generally underestimate the stiffness of a building
thus overestimating the building period. The wind load estimates for the WTC tow-
ers are sensitive to the periods of vibration and often increase with increased period as
demonstrated by a comparison of the RWDI base moments with and without P-Delta
effects. Although SOM generally recommends tall building design and analysis be based
on P-Delta effects, in this case even the first order period analysis (without P-Delta)
exceeds the actual measurements. It would have been desirable for both RWDI and CPP
to have used the measured building periods.

F.3.2.4 NYCBC Wind Speed
SOM recommends that the wind velocity based on a climatic study or ASCE 7-02 wind
velocity be used in lieu of the New York City Building Code (NYCBC) wind velocity.
The NYCBC wind velocity testing approach does not permit hurricanes to be accommo-
dated by wind tunnel testing as intended by earlier ASCE 7 fastest mile versions because
it is based on a method that used an importance factor to correct 50-year wind speeds
for hurricanes. Because the estimated wind forces are not multiplied by an importance
factor, this hurricane correction is incorporated in analytical methods of determining
wind forces but is lost in the wind tunnel testing approach of determining wind forces.
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F.3.2.5 Incorporating Wind Tunnel Results in Structural Evaluations
It is expected that ASCE 7 load factors will also be used for member forces for evaluating
the WTC towers. Unfortunately, the use of ASCE 7 with wind tunnel-produced loadings
is not straightforward. Neither wind tunnel report gives guidance on how to use the
provided forces with ASCE 7 load factors.

The ASCE 7 load factors are applied to the nominal wind forces and, according to the
ASCE 7 commentary, are intended to scale these lower forces up to wind forces asso-
ciated with long return period wind speeds. The approach of taking 500-year return
period wind speeds and dividing the speeds by the square root of 1.5 to create a nominal
design wind speed; determining the building forces from these reduced nominal design
wind speeds; and then magnifying these forces by a load factor (often 1.6) is, at best,
convoluted. For a building that is as aerodynamically active as the WTC, an approach
of directly determining the forces at the higher long return period wind speeds would
be preferred. The CPP data did provide the building forces for their estimates of both
720-years (a load factor of 1.6) and the reduced nominal design wind speeds. A compar-
ison of the wind forces demonstrates the potential error in using nominal wind speeds
in lieu of directly using the underlying long period wind speeds.

It should also be noted that the analytical method of calculating wind forces in ASCE
7 provides an importance factor of 1.15 for buildings such as the WTC in order to
provide more conservative designs for buildings with high occupancies. Unfortunately,
no similar clear guidance is provided for high occupancy buildings where the wind
loads are determined by wind tunnel testing. Utilizing methods provided in the ASCE 7
Commentary would suggest that a return period of 1800 years with wind tunnel-derived
loads would be comparable to the ASCE 7 analytical approach to determining wind
loads for a high occupancy building.

It would be appropriate for the wind tunnel private sector laboratories or NIST, as
future research beyond the scope of this project, to address how to incorporate wind
tunnel loadings into an ASCE 7-based design.

F.3.2.6 Summary
The NIST review is critical of both the CPP and RWDI wind tunnel reports. It finds
substantive errors in the CPP approach and questions some of the methodology used by
RWDI. It should be noted that boundary layer wind tunnel testing and wind engineering
is still a developing branch of engineering and there is not industry-wide consensus on
all aspects of the practice. For this reason, some level of disagreement is to be expected.

Determining the design wind loads is only a portion of the difficulty. As a topic of
future research beyond the scope of this project, NIST or wind tunnel private sector
laboratories should investigate how to incorporate these wind tunnel-derived results
with the ASCE 7 Load Factors.

F.3.3 NIST Recommended Wind Loads

NIST recommends a wind load that is between the RWDI and CPP estimates. The
NIST recommended values are approximately 83% of the CPP estimates and 115% of
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the RWDI estimates. SOM appreciates the need for NIST to reconcile the disparate
wind tunnel results. It is often that engineering estimates must be done with less than
the desired level of information. In the absence of a wind tunnel testing and wind
engineering done to NIST specifications, NIST has taken a reasonable approach to
estimate appropriate values to be used in the WTC study. However, SOM is not able to
independently confirm the precise values developed by NIST.

The wind loads are to be used in the evaluation of the WTC structure. It is therefore
recommended that NIST provide clear guidelines on what standards are used in the
evaluations and how they are to incorporate the provided wind loads.
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Index

a
Accelerations, building 217, 464

and human discomfort 226
Across-wind response 287

chimneys, towers, and stacks 292, 318,
323

suspended-span bridges 335, 338
tall buildings 321

Added mass 309, 378
Addition of probabilities 412
Adiabatic lapse rate 6
Admittance, mechanical 252, 254, 456, 462
Advection, turbulent energy 39
Aerodynamic damping 289, 294, 309, 319,

321, 341
negative 305, 323
positive 322

Aerodynamic derivatives
flutter 305
motional 311
Scanlan 308, 310
steady-state 300

Aerodynamic loads 171, 183
Aerodynamics

bluff body 73
bridge deck, improvement of 335
tall buildings, improvement of 326

Aeroelastic behavior 170, 283, 300, 312
Aeroelastic instability 283
Aeroelastic testing 105, 385
Air-supported structures 151, 386
Air viscosity 75
Alleviation of wind-induced response 325,

344
Along-wind response 321, 455, 463

bridges 338
tall buildings 207

Angle of attack 92, 125, 297, 309, 316, 341

Animation, wind pressures 97
ANSI/ANS-2.3-2011 68, 70, 401
Antenna dishes 350
Anticyclonic circulations 10
Arrival, rate of see Rate of arrival
ASCE 7 Standard 10, 21, 27, 31, 46, 58,

66, 102, 122, 173, 192, 209, 211, 273,
468

ASOS see Automated Surface Observing
Systems

Aspect ratio 146, 188, 192, 316, 349, 396
Atmospheric, boundary layer 8, 17

circulations 3
hydrodynamics 7
motions 19
pressure 5, 10, 13, 66, 78, 108, 123, 184,

389
thermodynamics 3
turbulence 35
wind tunnel simulation 120

Autocorrelation 36, 437, 446
Autocovariance function 437, 460
Automated Surface Observing Systems

(ASOS) 17, 58, 60
Averaging times, wind speeds 17, 30, 33, 57,

215

b
Balance, frictionless wind 8
Barotropic flows 51
Baseball aerodynamics 80
Base pressure 91
Bayes’ rule 413
Bénard 85
Bernoulli equation 76, 80, 89
Blockage

numerical simulation 141
wind tunnel testing 127

Wind Effects on Structures: Modern Structural Design for Wind, Fourth Edition. Emil Simiu and DongHun Yeo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Bluff body aerodynamics see Aerodynamics
Bora winds 11
Boundary layers, atmospheric 8, 17

depth 8, 22, 44, 108
internal 46
laminar 123
thickness of 20
turbulent 96

Boussinesq approximation 143, 145
Bridge decks, buffeting response 312, 338

flutter 305
galloping 297
torsional divergence 303
vortex-induced response 287

Bridge response in turbulent flow 339
Brighton Chain Pier failure 283
Brunt-Väisäla frequency 24
Buffeting, of bridges 312, 338

of tall buildings 463
Buffon, on pedestrian-level winds 227
Buildings, database-assisted design 171

equivalent static wind loads 219

c
Cable

bundled 297
roofs 385
vibration 344–345

Calibration, tubing systems 130
Capping inversion 7, 17, 20, 21, 25
Center, aerodynamic 378

elastic 198, 262, 306
mass 171, 174, 179, 198, 306

Central limit theorem 421
CFD see Computational Fluid Dynamics
Change of terrain roughness 45
Chimneys 315

across-wind response 315, 318, 323
Chinook winds 10
Circular frequency 36, 197, 298, 307, 455
Circulations, atmospheric 3
Cladding design 186, 188, 192
Climatology 62, 66
Clusters 446
Coefficient of variation (CoV) 157, 205, 419
Coefficients, aerodynamic 292, 307, 312, 372

drag and lift force 91
moment 91
pressure 90

Coherence 45, 316, 337, 340, 378, 439, 464
Comfort criteria 225, 227

Computational Fluid Dynamics 25, 45, 73,
135, 204

Computational Wind Engineering 73, 135,
232, 268, 385

Condensation 4, 7, 11, 12
Conditional probabilities 68, 412
Conditions

boundary 138
initial 137

Confidence intervals 425
extreme wind predictions 64, 67

Confidence level 426
Construction stage, bridges 331
Continuity, equation of 19, 74, 136, 139
Coriolis

effects and wind tunnel testing 106
forces 8, 78
parameter 8, 19, 22, 25, 27, 44, 106

Correlation see Autocorrelation;
Cross-correlation, cross-covariance
function

Correlation coefficient 419
Co-spectrum 439, 462, 464
Courant–Friedrichs–Lewy (CFL) condition

139
Critical divergence velocity 303
Critical flutter velocity 312, 341
Critical region, flow about cylinders 91
Cross-correlation, cross-covariance function

361, 438, 462
Cross-spectral density function 44, 315, 340
Cross-spectrum 44, 315, 340 see also

Cross-spectral density function
of turbulence fluctuations 44

Cumulative distribution functions 55, 162,
214, 416, 443, 473

CWE see Computational Wind Engineering
Cyclones

extratropical 10, 45, 215
tropical 10

Cyclostrophic
equation 393
wind 13, 66

Cylinders, flow past 84, 90, 96, 123, 148, 287,
297

d
DAD see Database-assisted design
Dampers 200, 226, 251, 326, 344, 455
Damping

aerodynamic (see Aerodynamic damping)



�

� �

�

Index 489

critical 197, 456
negative 305, 323
ratio 128, 197, 200, 204, 254, 288, 292, 298,

318, 322, 338, 344, 376, 382, 455, 470
tall buildings 171, 207

Database-assisted design 171
flexible buildings 267
interpolation procedures 263
NIST/UWO database 100, 183, 189, 259,

444
rigid buildings 259
Tokyo Polytechnic University (TPU)

database 100, 183, 190, 259, 273
DCI see Demand-to-capacity index
Debris, wind-borne 404
Declustering 426, 446
De Haan estimation 65, 426
Demand-to-capacity index 171, 174, 211,

217
Density function, probability

spectral (see Spectral density function)
Depressurization, during tornado passage

394
Derivatives, material 75

motional (see Flutter)
substantial 75

DES see Detached Eddy Simulation
Design wind effects 175, 203, 209
Detached Eddy Simulation 146
Deviating force 7
Deviatoric stress 75

SGS 143
Diffusion, turbulent energy 6, 39
Dimensional analysis 105
Directional data, simulation of 66
Directionality, effects of wind 158

database-assisted design approach 173,
214

outcrossing approach 434
sector-by-sector approach 212

Directionality factor 215, 457
uncertainty in 164

Directional wind speed data 58, 60, 175, 261,
268, 427

Direct Numerical Simulation (DNS) 140
Discomfort, wind-induced 225

building occupant 226
in pedestrian area 227

Dissipation, turbulent energy 39, 140
Distribution function, cumulative 55, 162,

214, 416, 443, 473

Distribution, probability 415
Fréchet (see Fréchet distribution)
Gaussian (see Normal distribution)
Generalized Extreme Value (see Generalized

Extreme Value (GEV) distribution)
Generalized Pareto (see Generalized Pareto

distribution)
geometric 420
Gumbel (see Gumbel distribution)
joint 417
of largest values:
lognormal (see Lognormal distribution)
mixed 57
normal (see Normal distribution)
of peaks in random signals 441
Poisson (see Poisson distribution)
reverse Weibull (see Reverse Weibull

distribution)
Type I (see Gumbel distribution)
Type II (see Fréchet distribution)
Type III (see Reverse Weibull distribution)

Divergence 303
DNS see Direct Numerical Simulation
Downdraft, thunderstorms 12, 49
Drag 8, 91, 312, 331, 349, 361, 374, 377, 400

coefficient (see Coefficients, aerodynamic,
drag and lift force)

Drift, inter-story 217
Duration, storm 33, 36, 163
Dynamic pressure 76, 90, 162
Dynamic response 195
Dynamics, structural 455

e
Earthquakes and winds, multi-hazard regions

428
Eddies, turbulent 36, 38, 140, 142, 146
Eddy conduction 6
Eddy viscosity 21, 143
Effective wind loads 171, 196, 276
Efficiency, estimator 425
Ekman layer, turbulent 21
Ekman spiral 21
Elastic center, eccentricity of 197
Energy cascade 38, 141
Energy dissipation 39, 140, 289
Energy production 40
Energy spectrum, turbulent 39, 140
Energy, turbulent kinetic 39, 140, 142
Enhanced Fujita (EF) scale 13, 16, 68
Ensemble 144, 433
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Epochal approach, estimation of extreme
speeds 61, 63, 424

Equivalent static wind loads 174, 219
Ergodic processes 433
Errors

acknowledged 151
aerodynamic interpolation 206
convergence 149
discretization 149
dynamic response 204
estimates, extreme wind effects 157
extreme wind estimation 159
iterative 149
modeling 158, 215
physical modeling 149
programming/user 149
round off 149
sampling 61, 62, 64
unacknowledged 151

Escarpments, flow over 46
Estimates, extreme wind speeds 63, 65
Estimators, efficiency of 425
Exceedance probabilities 55
Exposure categories 31
Extratropical storms 36, 49, 55, 159
Extreme Value (EV) distribution, joint

Generalized Extreme Value distribution
423

Generalized Pareto distribution 423
reverse Weibull (see Reverse Weibull

distribution)
Type I (see Gumbel distribution)
Type II (see Fréchet distribution)
Type III (see Reverse Weibull distribution)

Extreme wind speeds and effects 55, 211
non-parametric methods for estimating

215, 428
parametric methods for estimating 214,

426
Eye, hurricane 10, 49
Eyewall 10, 48

f
Fastest-mile wind 18, 33, 484
Fetch 20, 46, 120
Finite Difference Method (FDM) 136
Finite Element Method (FEM) 136
Finite Volume Method (FVM) 137
First gust 12, 49
First-order second moment reliability 469
Flachsbart 99, 170

Flexible buildings 225, 267, 321, 455
Flow

reattachment 80, 87, 92, 93, 123, 312
reversal 80, 230
separation 80, 85, 87, 91, 93, 96, 123, 124,

146, 147, 161, 171, 289, 312, 344, 367
Flutter 305

aerodynamic derivatives, flutter 305
analysis, three-dimensional 338
critical velocity (see Critical flutter velocity)
formulation of problem for

two-dimensional bridge 306
Scanlan flutter derivatives 308, 310
torsional 342
turbulent flow-induced flutter 312
vortex-induced oscillation and flutter 305

Foehn winds 10
Fourier integrals 433
Fourier series 433
Fourier transform pair 434, 438
Fréchet distribution 62, 423, 445, 452
Free atmosphere 8, 20
Frequency

circular (see Circular frequency)
natural 253, 288, 305, 338, 380, 458
reduced 106, 108, 185, 288, 306, 331

Friction, effect on air flow 8
Frictionless wind balance
Friction velocity 22, 25, 32, 44
Froude number 106, 385

g
Galloping 297

of coupled bars 300
power line 297
suspension-span bridge 305, 308, 309, 311
wake 297

Gaussian distribution, see Normal distribution
Generalized coordinates 197, 199, 200, 255,

319, 322, 338, 458
Generalized Extreme Value (GEV)

distribution 423
Generalized force 459
Generalized mass 191
Generalized Pareto distribution 423
Geostrophic height 31
Geostrophic wind 22
Glauert-Den Hartog criterion 297
Goodness of fit 425
Gradient height 8, 31, 404
Gradient velocity 8, 20
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Grids
structured 137
unstructured 137

Gumbel distribution 62, 422
Gust front, see First gust
Gust speeds 17, 57
Guyed towers 367

h
Harmonic load, response to 456
Helicopter landing decks, offshore platforms

367
HFFB see High-Frequency Force Balance
High-Frequency Force Balance 128
Hills, wind flow over 47
Histograms 415
Hourly wind speed 18, 32
H-shaped cross section 311
Human response to vibrations 226
Hurricane-borne missile speeds 405
Hurricanes 10

definition of 10
estimation of extreme winds in 60
simulations of 58, 60
structure of 10, 48
turbulence intensities in 48
uncertainties in hurricane wind speeds

160
wind flows in 10

Hybrid RANS/LES 146
Hydrodynamics, atmospheric 7

i
Impulse function, unit see Unit impulse

function
Incompressible flow 73, 76, 136, 139
Independence, stochastic 414
Inertial subrange, spectra in 39, 40, 141
Influence coefficients 181
Instabilities, aeroelastic 283
Integral turbulence scale

closed-form expression for 42
definition 36
dependence on height 37, 43
relation to turbulence spectrum 42

Intensity function 445
Intensity, turbulence see Turbulence intensities
Interaction equations 172
Internal boundary layer 46
Internal pressures 100, 390, 394
Inter-story drift 217

Inviscid fluids 78
Isobars 7
Isotropy, local 39

j
Jet-effect winds 11
Jet, wall 49
Joint probability distribution 417

k
Keulegan-Carpenter number 379
Kinematic viscosity 76
Kolmogorov 39

l
Lapse rate see Adiabatic lapse rate
Large Eddy Simulation 142

wall-modeled 144
Largest values see Extreme value (EV)

distribution, joint
LES see Large Eddy Simulation
Lieblein’s method, BLUE (best linear unbiased

estimator) 63
Lift 89, 287, 307, 308

coefficients (see Coefficients, aerodynamic,
drag and lift force)

Load and resistance factor design (LRFD)
203, 262, 468, 475

Load factors, wind see Wind load factor
Location parameter 163
Lock-in, vortex-induced 287
Logarithmic law 27

range of validity 27
Lognormal distribution 421
Low-frequency turbulence and flow

simulation 123
Low-rise buildings 259

m
Mature stage of storm 13
Mean recurrence intervals 55, 214, 424

design 173, 208, 428, 468
Mean return period 55, 214, 424
Mean turbulent field closure 38
Mean value 419
Mean velocity profiles see Wind speed profiles
Median 419
Microburst 12, 115
Micrometeorology xix
Missiles

hurricane-borne 405
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Missiles (contd.)
tornado-borne 399

Mixed wind climates 56
Modal shapes 128, 171, 199, 207, 293, 319,

322, 338, 458
Modes, normal see Normal modes
Modes of vibration 129, 198, 344
Molecular conduction 6
Moments, method of 63, 425
Monin coordinate 40
Monte Carlo methods 59, 66, 204, 211, 215,

402, 427, 449
Morison equation 378
MRI see Mean recurrence intervals
Multi-degree-of-freedom systems 197, 255
Multi-hazard regions, design criteria for 477
Multiplication rule, probabilities 413

n
National Building Code of Canada 31
Natural frequencies of vibration 38, 107,

198, 305, 376, 458
Net pressures 13, 80, 184, 192
Neutral stratification 6, 17, 25
Newtonian fluids 75
Nondirectional wind speeds 58, 60, 212, 215
Nonlinear response 180, 476, 477
Non-parametric statistical estimates 215,

428
multiple hazards 428
single hazard 428

Non-parametric statistics, extreme winds and
effects 61, 66, 172, 211, 215, 260

Normal distribution 421
Normal modes 199, 322, 458
No-slip condition 138

o
Occupant comfort, tall buildings 226
Ocean, winds over 29
Offshore structures 367
Orthogonality of normal modes 200, 255
Outcrossing approach to wind directionality

439
Outer layer, atmospheric 22

p
Parametric estimates, extreme values 214,

426
Parent population 422
Parseval’s equality 435

P-Δ/P-δ effects see Second-order effects
Peak gust speed 16, 18, 58
Peak pressures, comparisons between

measurements of 125
Peaks in random signals 441
Peaks-over-threshold

approach, estimation of extreme speeds
61

Poisson process, estimation of peaks 444
Pedestrian discomfort 227
Percentage point function 422
Poisson distribution 421
Power law, wind profiles 30
Power lines 297
Pressure

coefficients 90
defect in hurricanes 10
distributions on bluff bodies 92, 99, 124
drop in tornadoes 389
dynamic (see Dynamic pressure)
gradient force 7, 19, 76, 80, 393
internal 100
scanning systems 129, 131

Probability density function 415
Probability distribution see Distribution,

probability
Probability theory 411
Production, turbulent energy 39
Profiles, wind speed see Wind speed profiles

q
Quadrature spectrum 45, 438, 462
Quartering winds 370
Quasi-static response 465

r
Rain 193, 344
Randomness 151, 411
Random processes 433
Random signals 433
Random variables 433
RANS see Reynolds-Averaged Navier-Stokes

Simulation
Rate of arrival 59, 172, 214, 261, 268, 421,

424, 427, 428, 445
Reattachment, flow 80, 87, 92, 93, 123, 312
Reduced frequency 106, 108, 185, 288, 306,

331
Reduced velocity 106, 300, 323, 340
Reliability, structural see Structural reliability
Residual stress tensor 143



�

� �

�

Index 493

Resonance 456
Resonant amplification
Resonant response 38, 40, 195, 324, 465
Response

background 465
fluctuating 464
in frequency domain 455
nonlinear (see Nonlinear response)
quasi-static (see Quasi-static response)
resonant (see Resonant response)
surfaces 212
tall buildings, preliminary estimates 267
in time domain 197

Return period 56, 226, 420
Reversal, flow see Flow, reversal
Reverse Weibull distribution 423, 452
Reynolds-Averaged Navier-Stokes Simulation

unsteady RANS (URANS) 140, 144
Reynolds number

definition 80
dependence of Strouhal number on 87
effect on aerodynamics, bodies with sharp

edges 124
effect on drag, bodies with round edges

91, 93, 327
violation of, in the wind tunnel 123, 161

Reynolds stress tensor 142, 145
Ridges, wind flow over 47
Rigid buildings see Low-rise buildings
Rigid portal frames 259
Roof, air-supported 386
Rossby number similarity 106
Roughness length 22, 28
Roughness regimes, wind speeds in different

31
Roughness, terrain see Terrain Roughness

s
Saffir-Simpson scale 12

conversion of, to speeds above open terrain
34

Sampling errors in extreme speeds estimation
64

Scale parameter 62, 422
Scanlan flutter derivatives 308, 310
Scruton number 291, 336, 344
Second-order effects 180
Section models, bridge testing 332
Self-excited motions 73, 283, 305
Semisubmersible platforms 368
Separation, flow see Flow, separation

Serviceability requirements, tall buildings
173, 267, 467

SGS see Subgrid scale
Shape parameter see Tail length parameter
Shear stress 19, 22, 27, 75, 139
Shrouds 326
Similarity requirements, wind tunnel testing

105
Simulation of random processes, Monte Carlo

see Monte Carlo methods
Simultaneous pressure measurements 129,

200
Single-degree-of-freedom systems 196, 252,

455
Skidmore, Owings and Merrill

wind load factor 481
World Trade Center 481

Slender towers 315
Snow deposition 108, 119
Solar heating of Earth’s surface 3
Spatial coherence 96, 123, 259, 378
Spatially averaged pressure coefficients 186
Spatial smoothing 66
Spectral density function

definition 435
of lateral velocity fluctuations 38
of longitudinal velocity fluctuations 44
of multi-degree-of-freedom system

response 458
of one-degree-of-freedom system response

457, 463
one-sided 437
of turbulent energy (see Energy spectrum,

turbulent)
two-sided 437
of vertical velocity fluctuations 44

Spectrum see Spectral density function
Speed-up effects 46
Splitter plates 87
Spoiler devices 325
Stable stratification 6, 7, 24
Stacks 99, 292, 315, 325
Stagnation pressure 77
Standard deviation 419
Stationarity, statistical 49, 437
Stationary random signal 433
Statistics 411
Stiffness matrix 179, 198
Stochastic 415
Storm surge 478
Straight winds 8, 10
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Strake systems 325, 345
Stratification, flow 17, 25

atmospheric 7
conventionally neutral 24
neutral (see Neutral stratification)
stable (see Stable stratification)
truly neutral 24
unstable (see Unstable stratification)

Strength reserve 475
Stress tensor 75
Strouhal number 86, 88, 106, 287
Structural dynamics 455

frequency-domain analysis 455
time-domain analysis 197

Structural engineering tasks 173, 175
Structural reliability 467
Subgrid scale 142
Supercritical range, flow about cylinder in 91
Superstations 66
Surface drag coefficients 29
Surface layer

atmospheric 21, 22, 35, 40
wind profile 27

Surface roughness, effect on pressure 93, 124
Surface shear 22
Surface wind in built environment 229
Suspended-span bridge see Bridge decks,

buffeting response
Sustained wind speeds 18, 32
Synoptic storms 10, 34, 48, 57

t
Tacoma narrows bridge 283, 311, 333, 342
Tail length parameter

Generalized Extreme Value distribution
423

Generalized Pareto distribution 424
Type II distribution 423
Type III distribution 62, 423

Tall buildings see Flexible buildings
Taylor’s hypothesis 37
Tensile membrane structures 385
Tension leg platforms 376
Tensor, stress see Stress tensor
Terrain exposure, ASCE Standard 31
Terrain roughness 31
Tests, statistical 425
Theodorsen 305, 307, 308
Thermodynamics, atmospheric 3
Threshold 61, 65, 226, 423, 426, 443
Thunderstorms 12, 49, 55, 58, 66, 159

TMD devices see Tuned mass dampers
Topographic effects, ASCE Standard 46
Topographic factor 47
Tornado-borne missile speeds 399
Tornadoes 13, 66, 68, 389, 399

simulators 113, 115
Torsional

deformation 197
divergence 303
flutter 342
occupant discomfort due to 226
response, flexible buildings 197
tuned mass dampers 16

Total probability, theorem of 413
Towers

with circular cross section 292, 315
trussed 361

Tropical cyclones 10
extreme winds 62
statistics 60
structure of 10, 48

Trussed frameworks 349
Tuned mass dampers 251
Turbulence, atmospheric see Atmospheric,

boundary layer, turbulence
cross-spectrum (see Cross-spectrum)
effect on aerodynamics 89, 92, 93, 122
effect on bridge stability 312
in flows with stable stratification 136
integral scales (see Integral turbulence scale)
intensities (see Turbulence intensities)
mechanical 24
modeled 140, 142, 144, 146
resolved 140, 142
simulation of 105, 135
smallest scales 39, 140
spectrum (see Spectral density function)

Turbulence intensities 35, 122
Type I extreme value distribution see Gumbel

distribution
Type II extreme value distribution see Fréchet

distribution
Type III extreme value distribution see

Reverse Weibull distribution

u
Ultimate structural capacity 476
Uncertainties

aleatory 151
epistemic 151
individual 159
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overall 159
in pressure coefficients 161
quantification 148, 157, 204
in wind effects estimation 159

Underlying distribution 422
Unit impulse function 456
Unstable stratification 6
Upcrossing rate, mean 439
Updrafts 7, 10, 115

v
Variance 419
Variation, coefficient of see Coefficient of

variation
Veering angle 9, 22, 25
Velocity defect law 22
Velocity fluctuations

coherence 45
co-spectrum 45
cross-spectrum 44
lateral 44
longitudinal 36, 40, 120
quadrature spectrum 45
spectrum 38
vertical 44

Velocity profiles see Wind speed profiles
Verification and Validation (V&V) 148
Vibrations

cable (see Cable vibration)
human response to 226

Viscosity, air 75
eddy (see Eddy viscosity)
kinematic (see Kinematic viscosity)
units 75
water 75

Viscous effects 39, 79, 80, 84, 138
von Kármán constant 23, 29
von Kármán spectrum 41
von Kármán vortex trail 85
Vortex

flow 77, 229, 232
formations, two-dimensional flow 77
shedding 86, 96, 106, 287, 292, 305, 315,

335
trail behind cylinder 85

Vortex-induced
lift 287
lock-in 287
oscillations 287
response

alleviation of 325

bridges 335
stacks 315
towers 292
two-dimensional flow 287

w
Wake galloping 297
Wake in two-dimensional flow 82
Wall jet 49
Wall, law of 22
Wall unit 142, 144, 146
Wavelength 37
Wavenumber 37, 140, 141
Weibull distribution see Reverse Weibull

distribution
Wind-borne debris 404
Wind directionality factor 212, 216, 475
Wind-driven rain intrusion 108, 118, 183
Wind effects, matrix of 214
Wind engineering tasks 173, 175
Wind load factor 208

design MRI (see Mean recurrence intervals,
design)

Wind loads, peaks 443
Wind pressures, fluctuating 97
Wind speed data 57

data sets, description and access to 58
directional 58
micrometeorological homogeneity of 57
nondirectional 58

Wind speed profiles 20
in different roughness regimes 31
logarithmic law 27 (see Logarithmic law)
near a change of surface roughness 45
near change of roughness 45
neutral stratification 20
non-horizontal terrain 46
over hills 46
over water 29, 34
power law 30 (see Power law, wind

profiles)
Wind speeds in different roughness regimes,

relation between 31
Wind speeds, matrix of 213
Windstorms 10
Wind tunnel procedure, ASCE Standard 122
Wind tunnel testing 105

blockage 127
dimensional analysis 105
effect of incoming turbulence 122
low-rise buildings 123, 125



�

� �

�

496 Index

Wind tunnel testing (contd.)
similarity requirements 105
suspended-span bridges 331
tall buildings 128
types of 108
variation of results among laboratories

122, 485

violation of Reynolds number in 123, 151,
161

World Trade Center 481
estimated response to wind 483

z
Zero plane displacement 30




