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Preface

In modern financial practice, asset prices are modelled by means of stochas-
tic processes. Continuous-time stochastic calculus thus plays a central role
in financial modelling. The approach has its roots in the foundational work
of Black, Scholes and Merton. Asset prices are further assumed to be ratio-
nalizable, that is, determined by the equality of supply and demand in some
market. This approach has its roots in the work of Arrow, Debreu and McKen-
zie on general equilibrium.

This book is aimed at graduate students in mathematics or finance. Its
objective is to develop in continuous time the valuation of asset prices and
the theory of the equilibrium of financial markets in the complete market case
(the theory of optimal portfolio and consumption choice being considered as
part of equilibrium theory).

Firstly, various models with a finite number of states and dates are re-
viewed, in order to make the book accessible to masters students and to pro-
vide the economic foundations of the subject.

Four chapters are then concerned with the valuation of asset prices: one
chapter is devoted to the Black–Scholes formula and its extensions, another
to the yield curve and the valuation of interest rate products, another to the
problems linked to market incompletion, and a final chapter covers exotic
options.

Three chapters deal with “equilibrium theory”. One chapter studies the
problem of the optimal choice of portfolio and consumption for a representa-
tive agent in the complete market case. Another brings together a number of
results from the theory of general equilibrium and the theory of equilibrium
in financial markets, in a discrete framework. A third chapter deals with the



Radner equilibrium in continuous time in the complete market case, and its
financial applications.

Appendices provide a basic presentation of Brownian motion and of nu-
merical solutions to partial differential equations.

We acknowledge our debt and express our thanks to D. Duffie and
J.M. Lasry, and more particularly to N. El Karoui. We are grateful to
J. Hugonnier, J.L. Prigent, F. Quittard–Pinon, M. Schweizer and A. Shiryaev
for their comments. We also express our thanks to Anna Kennedy for translat-
ing the book, for her numerous comments, and for her never-ending patience.

Rose–Anne Dana
Monique Jeanblanc

Paris,
October 2002
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3.1.3 Itô’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.4 Multidimensional Processes . . . . . . . . . . . . . . . . . . . . . . . . . 87
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1

The Discrete Case

In this first chapter, we bring together results concerning both the valuation
of financial assets and equilibrium models, in a discrete framework: there are
two dates, and the asset prices only take a finite number of values. We have
chosen to introduce in the context of very simple models, concepts that will
be developed further on in the book, in the hope of easing the reader’s task.

1.1 A Model with Two Dates and Two States of the
World

Here we study a financial market with two dates, time 0 and time 1, in the
very simple case of two possible states of the world at time 1. Obviously, this
situation is not very realistic. It is a textbook case, which will allow us to
draw out concepts (such as hedging portfolios, arbitrage and the risk-neutral
measure), which will be useful for dealing with more sophisticated models,
describing more realistic situations.

1.1.1 The Model

The financial market that we are studying is made up of one stock, and one
riskless investment (such as a savings account).

At time 0 (today), the stock is worth S euros. At time 1 (tomorrow, or in
six months’ time), the stock will be worth either Su euros or Sd euros with
Sd < Su, depending on whether its price goes up or down. The outcome is not
known at time 0. We usually say that the stock is worth Su or Sd depending
on the “state of the world”.

The riskless investment has a rate of return equal to r (r > 0) : one euro
invested today will yield 1 + r euros at time 1 (whatever the state of the
world). This is why the investment is called riskless.

We now consider a call option (an option to buy). A call option is a
financial instrument: the buyer of the option pays the seller an amount q (the
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premium) at time 0, in return for the right, but not the obligation, to buy
the stock at time 1, and at a price K (the exercise price or strike), which is
set when the contract is signed at time 0. At the time when the buyer decides
whether or not to buy the stock, he knows its price, which here is either Su

or Sd. If the price of the stock at time 1 is greater than K, the option holder
buys the stock at the agreed price K and immediately sells it on, so making
a gain; otherwise, he does not buy it.

A put option (an option to sell) gives the right to its buyer to sell a stock
at a price K, which is agreed upon when the contract is signed.

The profit linked to a call is unlimited, and the losses are limited to q. For
a put, the profit is limited, and the losses are unlimited.

The valuation of an option consists in determining the price q of the option
under normal market conditions.

1.1.2 Hedging Portfolio, Value of the Option

Call Options

First, we consider the case where Sd ≤ K ≤ Su. The other two cases are not
as interesting: if K < Sd, the option holder will gain at least Sd −K whatever
the state of the world, and the seller will always make a loss (and the opposite
is true when Su < K).

Suppose then that Sd ≤ K ≤ Su. We will see how to build a “portfolio”
with the same payoff as the option at time 1. A portfolio is made up of a pair
(α, β), where α is the amount, in euros, invested in the riskless asset, and β is
the number of stocks the investor holds (α and β can be of any sign: one can
sell stocks one does not hold1, and borrow money). If (α, β) is the portfolio
held at time 0, its value in euros is α + βS. At time 1, this same portfolio is
worth:

α(1 + r) + βSu if we are in the first state of the world, the high state
(the stock price has risen),

α(1 + r) + βSd if we are in the second state of the world, the low state.

We say that a portfolio replicates the option if it has the same payoff at
time 1 as the option, and this whatever the state of the world. In other words,
the two following equalities must hold:

α(1 + r) + βSu = Su − K

α(1 + r) + βSd = 0 .

1 A short sale: we can short the stock, or have a short position in the stock. Having
a long position means holding the stock.
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By solving the linear system above, we can easily obtain a pair (α∗, β∗):

α∗ = − Sd(Su − K)
(Su − Sd)(1 + r)

; β∗ =
Su − K

Su − Sd
.

The price of the option is the value at time 0 of the portfolio (α∗, β∗), that
is

q = α∗ + β∗S =
Su − K

Su − Sd

(
S − Sd

1 + r

)
. (1.1)

This is a “fair price”: with the amount q received, the option seller can
buy a portfolio (α∗, β∗), which generates the gain Su − K if prices rise, and
which will then cover (or hedge) his losses (we call this a hedging portfolio2).
As to the option buyer, he is not prepared to pay more than q, because oth-
erwise he could use the money to build a portfolio which would yield more
than the option, for example using the same β∗ and an α that is larger than α∗.

To obtain the option pricing formula without assuming Sd ≤ K ≤ Su, we
use the same method. We look for a pair (α∗, β∗) such that

α∗(1 + r) + β∗Su = max (0, Su − K) := Cu ,

α∗(1 + r) + β∗Sd = max (0, Sd − K) := Cd .

We find β∗ =
Cu − Cd

Su − Sd
. Notice that β∗ ≥ 0. In other words, the hedging

portfolio of a call is a long position in the stock.

Moreover,

q := α∗ + β∗S =
1

1 + r
(πCu + (1 − π)Cd) , (1.2)

where
π :=

1
Su − Sd

((1 + r)S − Sd) . (1.3)

Put Options

Similarly, we can show that the price P of a put option satisfies

P :=
1

1 + r
(πPu + (1 − π)Pd) ,

where Pu = max (0, K − Su); Pd = max (0, K − Sd).
Of course, call options (options to buy) and put options (options to sell)

can themselves be either bought or sold.
The valuation principle employed here is very general, and can be applied

to other contingent claims. The cost of replicating a cash flow of Hu in the
high state and of Hd in the low state is 1

1+r (πHu + (1 − π)Hd).

2 The hedging portfolio covers the losses whatever the state of the world.
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1.1.3 The Risk-Neutral Measure, Put–Call Parity

The Risk-Neutral Probability Measure

Let us comment on the formulae in (1.2) and (1.3).
If Sd < (1 + r)S < Su, then π ∈]0, 1[. We can interpret (1.2) in terms of

“neutrality with respect to risk”. Equation (1.3) can be written

(1 + r)S = πSu + (1 − π)Sd . (1.4)

The left-hand side of (1.4) is the gain obtained by putting S euros into
a riskless investment, the right-hand side is the expected gain attained by
buying a stock at a price of S euros, if the probability of the high state of
world occurring is π, and if the low state of the world has probability (1−π).
Equality (1.4) translates the fact we are in a model that is “neutral with
respect to risk”: the investor would be indifferent to the choice between the
two possibilities for investment (the riskless one and the risky one) as his
(expected) gain remains the same. It is “as if” there were a probability π
attached to the states of the world, and under which the investor were neutral
with respect to risk.

Proposition 1.1.1. The price of a contingent claim (for example an option)
is the discounted value of the expected gain with respect to the “risk-neutral”
probability measure.

Proof. For a call option, the realized gain is equal to Cu or to Cd, depending on

the state of the world. As the present value of 1 euro at time 1 is
1

1 + r
euros at

time 0, so the present values of the realized gains are
1

1 + r
Cu and

1
1 + r

Cd.

The fair price of the option being given by (1.2), the result follows. �
There is another interpretation of this result: let S1 be the price of the asset

at time 1, and let P be the risk-neutral probability measure defined by P (S1 =
Su) = π, P (S1 = Sd) = 1 − π. The price of a call option is the expectation,
under this probability measure, of (S1 −K)+/(1 + r). Similarly, we can show
that the price of a put is the expectation under P of (K − S1)+/(1 + r).

Put–Call Parity

It is obvious that we have (S1 − K)+ − (K − S1)+ = S1 − K. Hence, taking
present values and expectations under the risk-neutral measure, and noticing
also that the expectation of S1/(1+r) is equal to S (property (1.4)), we obtain

C = P + S − K/(1 + r) (1.5)

where C is the price of the call and P is that of the put. This formula, which
we will later generalize, is known as the “put–call parity”.
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Remark 1.1.2. It would be tempting to model the situation by introducing the
probability of the event “the price goes up”. However, the proof above shows
that this probability does not come into the valuation formulae.

1.1.4 No Arbitrage Opportunities

An arbitrage opportunity occurs if, with an initial capital that is strictly
negative, an agent can obtain a positive level of wealth at time 1, or if, with
an amount capital that is initially zero, an agent can obtain a level of wealth
that is positive and not identically zero. We generally make the assumption
that no such opportunities exist.

Let us first show that there are no arbitrage opportunities (NAO) if and
only if Sd < (1 + r)S < Su.
If Sd < (1 + r)S < Su, there exists π ∈]0, 1[ such that (1 + r)S = πSu + (1 −
π)Sd. Suppose that (α, β) satisfies

α(1 + r) + βSu ≥ 0, α(1 + r) + βSd ≥ 0

with at least one strict inequality. Then, multiplying the first inequality by π
and the second by 1 − π, and by summing the two, we obtain α + βS > 0.
Similarly, if we have simply

α(1 + r) + βSu ≥ 0, α(1 + r) + βSd ≥ 0

then we deduce that α + βS ≥ 0. In neither case do we have an arbitrage
opportunity.
Conversely, if (1 + r)S ≤ Sd, then the agent can, at time 0, borrow S at a
rate of r, and buy the stock at price S. At time 1, he sells the stock for Su

or Sd, and repays his loan with (1 + r)S. So he has made a gain of at least
Sd − (1 + r)S ≥ 0. It is easy to apply an analogous reasoning to the case
Su < (1 + r)S.

We can justify the option valuation formula using the assumption of no
arbitrage opportunities. Let us assume that Sd ≤ K ≤ Su. If the price of
the option is q > q, where q is defined as in (1.2), then there is an arbitrage
opportunity:

• at time 0, we sell the option (even if we do not actually own it) at price q.
With q, we can build a hedging portfolio (α∗, β∗) as described previously,
and we invest the remaining money q − q at a rate of r. We have:

q = α∗ + (q − q) + β∗S .

The initial investment is zero.
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• at time 1:
– if the price of the stock is Su: the option is exercised by the buyer.

We buy the stock at price Su and hand it over to the option buyer
as agreed, at a price of K; the portfolio (α∗ + (q − q), β∗) is worth
Su − K + (q − q)(1 + r), and our final wealth is K − Su + [Su − K +
(q − q)(1 + r)] = (q − q)(1 + r), and is strictly positive,

– if the price of the stock is Sd: the option buyer does not exercise his
right, and we are left with the portfolio, which is worth

(q − q)(1 + r) > 0 .

Hence, we have strictly positive wealth in each state of the world with an
initial funding of zero, that is, an arbitrage opportunity.

We can reason analogously in the case q < q.
We will come back to the concept of no arbitrage opportunities repeatedly

throughout this book.

Exercise 1.1.3. Show by reasoning in terms of no arbitrage opportunities
that:

• the put–call parity formula holds,
• the price of a call is a decreasing function of the strike price,
• the price of a call is a convex function of the strike price.

We can turn to Cox–Rubinstein [72] for further consequences of no arbitrage
opportunities.

1.1.5 The Risk Attached to an Option

In this section, we assume that investors believe that the stock will rise with
probability p. The calculations here are carried out under this probability
measure.

Risk Linked to the Underlying

The rate of return on the stock is by definition R =
S1 − S

S
. Its expectation

is

mS =
pSu + (1 − p)Sd

S
− 1 ,

where p is the probability of being in state of the world u.
The risk of the stock is usually measured by the variance of the rate of

return of its price:

v2
S = p

(
Su − S

S
− mS

)2

+ (1 − p)
(

Sd − S

S
− mS

)2

,
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i.e.,

vS =
Su − Sd

S
(p(1 − p))1/2 .

We say that vS is the volatility of the asset.

Risk Linked to the Option

Let C be a call on the stock. The delta (∆) of the option is the number of
shares of the asset that are needed to replicate the option (it is the β of the

hedging portfolio given in (1.2)), i.e., ∆ =
Cu − Cd

Su − Sd
. This represents the

sensitivity of C to the price S of the underlying asset.

The elasticity Ω of the option is equal to
Cu − Cd

C

/
Su − Sd

S
,

i.e., Ω =
S

C
∆ where C is the price of the option. We denote by mC the

expectation of the rate of return on the option. The risk of the option is
measured by the variance of the rate of return on the option:

mC =
pCu + (1 − p)Cd

C
− 1

vC = {p(1 − p)}1/2 Cu − Cd

C
.

We have that vC = Ω vS : the risk of the call is equal to the product of the
elasticity of the option by the volatility of the underlying asset. The greater
the volatility of the underlying asset, the greater is the risk attached to the
call.

Proposition 1.1.4. The volatility of an option is greater than the volatility
of the underlying asset:

vC ≥ vS .

The excess rate of return of the call is greater than the excess rate return of
the asset:

mC − r ≥ mS − r .

Notice that this last property makes it worthwhile to purchase a call.

Proof. First, we show that Ω ≥ 1.

We have seen how C =
πCu + (1 − π)Cd

1 + r
where π =

(1 + r)S − Sd

Su − Sd
.

Thus

(1 + r) (S(Cu − Cd) − C(Su − Sd)) + (SuCd − SdCu) = 0 .

Using the relation Cu = (Su −K)+ and the equivalent formula for Cd, we
check that SuCd − SdCu ≤ 0, and hence that Ω ≥ 1.
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We would like to establish a relationship between mC and mS . To do this,
we use the hedging portfolio (α, β), which satisfies{

Suβ + (1 + r)α = Cu

Sdβ + (1 + r)α = Cd ,

as well as the equality C = α + Sβ. We then obtain (using β = ∆)

Su∆ − Cu = (1 + r)(S∆ − C)

Sd∆ − Cd = (1 + r)(S∆ − C) ,

and hence

p(Su∆ − Cu) + (1 − p)(Sd∆ − Cd) = (1 + r)(S∆ − C) .

Rearranging terms,

mSS∆ − mCC = r(S∆ − C)

where
mC − r = Ω(mS − r) .

The excess rate of return on the call is equal to Ω, the elasticity of the
option, multiplied by the excess rate of return on the asset (with Ω ≥ 1). �

In Chap. 3, we will study these concepts in continuous time.

1.1.6 Incomplete Markets

A Finite Number of States of the World

When the asset takes the value sj at time 1 in state of the world j with
j = 1, . . . , k, for k > 2, it is no longer possible to replicate the option, as we
obtain k equations (k > 2) with 2 unknowns. We consider contingent claims
that are of the form H = (h1, h2, . . . , hk), where hj corresponds to the payoff
in state of the world j. This contingent claim is replicable if there exists a pair
(α, θ) such that α(1 + r) + θS1 = H, that is such that

α(1 + r) + θsj = hj ; ∀j .

In this case, the price of the contingent claim H is the initial value h = α+θS
of the replicating portfolio.

The set P of risk-neutral probability measures is by definition the set of
probability measures Q that assign strictly positive probability to each state
of the world, and satisfy

EQ(S1) = S(1 + r) .



1.1 A Model with Two Dates and Two States of the World 9

The set of risk-neutral probabilities (q1, q2, . . . , qk) is determined by

qj > 0 for j = 1, 2, . . . , k

k∑
j=1

qj = 1

k∑
j=1

qjsj = (1 + r)S .

The price range associated with the contingent claim H is defined by]
inf

Q∈Q
EQ(H̃), sup

Q∈Q
EQ(H̃)

[
,

where H̃ is the discounted value of H, i.e., H̃ = H/(1 + r) in our model. We
will come back to the price range later. In the meantime, we note that if the
market is incomplete, and if H is replicable, then the value of EQ(H/(1 + r))
does not depend on the choice of risk-neutral measure Q. Indeed, if there
exists (α, θ) such that

α(1 + r) + θsj = hj , ∀j

then for any choice of risk-neutral probability measure (qj , 1 ≤ j ≤ k), we
have

EQ(H) =
k∑

j=1

qjhj =
k∑

j=1

qj(α(1 + r) + θsj) = α(1 + r) + θ(1 + r)S .

A Continuum of States of the World

Let (Ω,A, Q) be a given probability space. Let S be the price of the asset
at time 0. Suppose that there exist two numbers Sd and Su such that the
price at time 1 is a random variable S1 taking values in [Sd, Su], and with
a density f that is strictly positive on [Sd, Su]. Suppose moreover that Sd <
(1 + r)S < Su. Let P be the set of risk-neutral probability measures, that

is, the set of probability measures P such that EP

(
S1

1 + r

)
= S (condition

(1.4)). We need these probability measures to be equivalent to Q. In other
words, we need S1 to admit under P (or Q) a density function that is strictly
positive on [Sd, Su].

Proposition 1.1.5. For any convex function g (for example g(x) = (x −
K)+), we have

sup
P∈P

EP

(
g(S1)
1 + r

)
=

g(Su)
1 + r

S(1 + r) − Sd

Su − Sd
+

g(Sd)
1 + r

Su − S(1 + r)
Su − Sd

.
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If g is of class C1, we have

inf
P∈P

EP

(
g(S1)
1 + r

)
=

g
(
(1 + r)S

)
1 + r

.

Proof. Let g be a convex function. Let µ and ν be the slope and y-intersect
of the line that goes through the points with coordinates (Sd, g(Sd)) and
(Su, g(Su)). We then have:⎧⎪⎨⎪⎩

∀x ∈ [Sd, Su], g(x) ≤ µx + ν

g(Sd) = µSd + ν

g(Su) = µSu + ν ,

and hence, for all P ∈ P,

EP (g(S1)) ≤ µEP (S1) + ν = µS(1 + r) + ν .

As µ = g(Su)−g(Sd)
Su−Sd

and ν = g(Sd) − Sd
g(Su)−g(Sd)

Su−Sd
, we obtain an upper

bound.
Let P ∗ be the probability measure such that⎧⎪⎨⎪⎩

P ∗(S1 = Su) = p

P ∗(S1 = Sd) = 1 − p

EP∗(S1) = S(1 + r) .

The last condition above determines p (equal to the π appearing in formula
(1.3)):

p =
S(1 + r) − Sd

Su − Sd
, 1 − p =

Su − S(1 + r)
Su − Sd

.

We have EP∗(g(S1)) = µS(1 + r) + ν . The supremum is attained under P ∗.
We notice that this probability measure does not belong to P, as it does
not correspond to the case where S1 has a strictly positive density function.
However we can approach P ∗ with a sequence of probability measures Pn

belonging to P, in the sense that EP∗(g(S1)) = limEPn
(g(S1)).

Similarly, we can obtain a lower bound

inf
P∈P

EP

(
g(S1)
1 + r

)
=

g(S(1 + r))
1 + r

.

Indeed, if γ and δ are the slope and the y-intersect of the tangent to the curve
y = g(x) at the point with coordinates (S(1 + r), g(S(1 + r))), then

g(x) ≥ γx + δ, γS(1 + r) + δ = g(S(1 + r)) .

Hence EP (g(S1)) ≥ EP (γS1 + δ) = g(S(1+ r)), and the minimum is attained
by the Dirac measure at S(1 + r). �



1.1 A Model with Two Dates and Two States of the World 11

This result can be interpreted in terms of volatility. If S1 takes values in
[Sd, Su] and has expectation S(1 + r), then its variance is bounded below by
0 (this value is attained when S1 = S(1 + r)), and achieves a maximum when
S1 takes only the extreme values Sd and Su.

As we remarked earlier, if there does not exist a portfolio that replicates
the option, we cannot assign the option a unique price. We define the selling
price of the option as the minimal expenditure enabling the seller to hedge
himself: it is the smallest amount of money to be invested in a portfolio (α, β)
with final value greater than the value of the option g(S1). Hence the selling
price is

inf
(α,β)∈A

(α + βS)

with A = {(α, β)| α(1 + r) + βx ≥ g(x), ∀x ∈ [Sd, Su]}. We have

inf
(α,β)∈A

(α + βS) = sup
P∈P

EP

(
g(S1)
1 + r

)
.

Indeed, by definition of A, we have α(1 + r) + βS1 ≥ g(S1), and hence

inf
(α,β)∈A

(α + βS) ≥ sup
P∈P

EP

(
g(S1)
1 + r

)
.

Moreover, using the pair (µ, ν) from the previous section, we can check

that
(

ν

1 + r
, µ

)
is in A:

inf
(α,β)∈A

(α + βS) ≤ µS +
ν

1 + r
= sup

P∈P
EP

(
g(S1)
1 + r

)
.

The two problems,

sup
P∈P

EP

(
g(S1)
1 + r

)
and inf

(α,β)∈A
(α + βS)

are called “dual problems”.

We define the buying price of an option as the maximum amount that can
be borrowed against the option. The buying price of a call is then defined by:

sup
(α,β)∈C

(α + βS)

with C = {(α, β)| α(1 + r) + βx ≤ g(x), ∀x ∈ [Sd, Su]}.
Similarly, we get:

sup
(α,β)∈C

(α + βS) = inf
P∈P

EP

(
g(S1)
1 + r

)
.
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1.2 A One-Period Model with (d + 1) Assets and k
States of the World

We now construct a model that is slightly more complex than the previous
one. We consider the case of a one-period market with (d + 1) assets and k
states of the world. Here again, we do not claim to describe the real world (and
nor will we at any point of the book). Instead, we aim to draw out concepts
with which we can develop acceptable forms of model.

If Si is the price at time 0 of the i-th asset (i = 0, . . . , d), then let its value
at time 1 in state j be denoted by vi

j .

A portfolio (θ0, θ1, . . . , θd) is made up of θi stocks of type i, and therefore
its value at time 0 is

∑d
i=0 θiSi, and its value at time 1 is

∑d
i=0 θivi

j if we are
in the j-th state of the world.

Notation 1.2.1. The column vector S has components Si, and the column
vector θ has components θi.

Let V be the matrix of prices at time 1: that is the (k × (d + 1))-matrix
whose i-th column is made up of the prices of the i-th asset at time 1, that is
(vi

j , 1 ≤ j ≤ k).
We use matrix notation: θ · S =

∑d
i=0 θiSi is the scalar product of θ and

S, and V θ denotes the R
k-vector with components (V θ)j =

∑d
i=0 θivi

j .
We write V T for the matrix transpose of V , and ST for the vector transpose

of S.

A riskless asset is an asset worth (1 + r) at time 1 whatever the state of
the world, and worth 1 at time 0. The rate of interest r is used as both a

lending rate and as a borrowing rate for the sake of simplicity. Thus,
1

1 + r
is

the price that must be paid at time 0 in order to hold one euro at time 1 in
all states of the world.

Notation 1.2.2. R
k
+ denotes the set of vectors of R

k that have non-negative
components. R

k
++ denotes the set of vectors of R

k that have strictly positive
components. ∆k−1 refers to the unit simplex in R

k:

∆k−1 =

{
λ ∈ R

k
+ |

k∑
i=1

λi = 1

}
.

Let z and z′ be two vectors in R
k. We write z ≥ z′ to express zi ≥ z′i for all i.

Exercise 1.2.3. Show that if V is a k × (d + 1)-matrix, then there is an
equivalence between the statements:
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(i) The rank of the mapping associated with V is k.
(ii) The linear mapping associated with V is surjective, and the one associated

with V T is injective.

1.2.1 No Arbitrage Opportunities

We now introduce the concept of an arbitrage opportunity, which was touched
upon earlier.

The Assumption of No Arbitrage Opportunities

Definition 1.2.4. An arbitrage is a portfolio θ = (θ0, θ1, . . . , θd) with a non-
positive initial value S ·θ =

∑d
i=0 θiSi and a non-negative value V θ at time 1,

with at least one strict inequality. In other words, either S ·θ < 0 and V θ ≥ 0,
or S · θ = 0 and V θ ≥ 0 with a strict inequality in at least one state of the
world.
We say that there are no arbitrage opportunities when there is no arbi-
trage. That is to say, the following conditions must hold:

(i) V θ = 0 implies S · θ = 0 ,

(ii) V θ ≥ 0 , V θ �= 0 implies S · θ > 0 .

Indeed, in the first case, if we had V θ = 0 and S · θ < 0 (or S · θ > 0),
then the portfolio θ (or −θ) would be an arbitrage. In the second case, if
V θ ≥ 0, V θ �= 0 and S · θ ≤ 0, then θ would be an arbitrage.

An arbitrage opportunity is a means of obtaining wealth without any ini-
tial capital. Obviously an arbitrage opportunity could not exist without being
very quickly exploited. We therefore make the following assumption, referred
to as the assumption of no arbitrage opportunity (NAO).

The NAO Assumption: there exists no arbitrage opportunity.

Using the same notation as before, we recall a result from linear program-
ming:

Lemma 1.2.5 (Farkas’ Lemma). The implication V θ ≥ 0 ⇒ S ·θ ≥ 0 holds
if and only if there exists a sequence (βj)k

j=1 of non-negative numbers such
that Si =

∑k
j=1 vi

j βj , i ∈ {0, . . . , d}.
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We remark that the assumption of NAO is a little bit stronger than the
assumptions of Farkas’ Lemma, as according to the former, if the portfolio’s
payments are non-negative, and strictly positive in at least one state of the
world, then the price of the portfolio is strictly positive. From this we will
deduce (with a proof that is in fact simpler than that of Farkas’ Lemma) that
the βj are strictly positive.

We recall the Minkowski separation theorem.

Theorem 1.2.6 (The Minkowski Separation Theorem). Let C1 and C2

be two non-empty disjoint convex sets in R
k, where C1 is closed and C2 is

compact. Then there exists a family (a1, . . . , ak) of non-zero coefficients, and
two distinct numbers b1 and b2 such that

∀ x ∈ C1, ∀ y ∈ C2,

k∑
j=1

ajxj ≤ b1 < b2 ≤
k∑

j=1

ajyj .

Theorem 1.2.7. The NAO assumption is equivalent to the existence of a
sequence (βj)k

j=1 of strictly positive numbers, called state prices, such that

Si =
k∑

j=1

vi
j βj ; i ∈ {0, . . . , d} . (1.6)

Proof. (of Theorem 1.2.7)
Let ST be the row vector (S0, S1, . . . , Sd) and let U be the vector subspace
of R

k+1

U :=
{

z ∈ R
k+1 | z =

(−ST

V

)
x; x ∈ R

d+1

}
.

The assumption of NAO implies that U∩R
k+1
+ = {0}, so that in particular,

U ∩∆k = ∅. According to Minkowski’s theorem, there exists a set of non-zero
coefficients {βj ; j = 0, . . . , k} and two numbers b1 and b2, such that

k∑
j=0

βjzj ≤ b1 < b2 ≤
k∑

j=0

βjwj ; z ∈ U, w ∈ ∆k .

As 0 ∈ U , b1 ≥ 0, and hence, by choosing a vector w whose components
are all zero except for the j-th, which is equal to 1, we deduce that βj > 0,
∀ j ∈ {0, . . . , k}. Without loss of generality, we can take β0 = 1.

Then let β be the vector (β1, . . . , βk)T . Taking into account the form
of the elements of U , we write the inequality z0 +

∑k
j=1 βjzj ≤ 0 as

(−S + V T β) · x ≤ 0. Hence S = V T β, i.e., Si =
∑k

j=1 βjv
i
j with βj > 0,

j ∈ {1, . . . , k}.
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The proof of the converse is trivial. �
The vector β is called a state price vector: βj corresponds to the price at

time 0 of a product that is worth 1 at time 1 in state j, and 0 in all the other
states. We will come back to this interpretation later.

Probabilistic Interpretation of the State Prices

Until now in this section, we have not used probabilities. We will now give
a probabilistic interpretation of the NAO assumption and of Theorem 1.2.7.
Introducing probabilities will enable us to study more general models, and to
exploit the concept of NAO.

If asset 0 is riskless, then we have

v0
j = 1 + r, j ∈ {1, . . . , k} ,

and hence, using (1.6), for i = 0:

1
1 + r

=
k∑

j=1

βj .

Let us set πj = (1+r)βj . The πj are positive numbers such that
∑k

j=1 πj =
1. Therefore, they can be interpreted as probabilities on the different states
of the world. We have

Si =
1

1 + r

k∑
j=1

πjv
i
j i ∈ {1, . . . , d} .

We have thus constructed a probability measure under which the price Si of
the i-th asset is the expectation of its price at time 1, discounted using the
riskless rate.

If we construct a portfolio θ, we get:

(1 + r)
d∑

i=0

θiSi =
k∑

j=1

πj

d∑
i=0

θivi
j ,

where π is (as in Sect. 1.1) a probability measure that is neutral with respect to
risk: a riskless investment with initial value

∑d
i=0 θiSi yields (1+r)

∑d
i=0 θiSi,

which is equal to the expectation (under π) of the value of the portfolio at
time 1.

The rate of return on asset i in state j is by definition equal to (vi
j−Si)/Si.

The expectation of the rate of return on i is, under probability measure π,
equal to the rate of return on the riskless asset:
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k∑
j=1

πj

vi
j − Si

Si
= r .

Proposition 1.2.8. Under the assumption of NAO, if asset 0 is riskless, then
there exists a probability measure π on the states of the world, under which
the price at time 0 of asset i is equal to the expectation of its price at time 1,
discounted by the riskless rate:

Si =
1

1 + r

k∑
j=1

πjv
i
j . (1.7)

Exercise 1.2.9. Let V θ be the vector with components (V θ)j =
d∑

i=0

vi
j θi,

and let S · θ denote the scalar product S · θ =
d∑

i=0

Si θi.

a. Let z ∈ Im V . Let θ be any vector satisfying z = V θ. Show that, under
the assumption of NAO, the mapping π : z → S · θ does not depend on
the choice of θ, and defines a positive linear functional on Im V .

b. Show that π can be extended to a positive linear functional π on R
k. To

do this, show that for all ẑ �∈ Im V , there exists φ(ẑ) ∈ R such that

max {π(z′), z′ ≤ ẑ, z′ ∈ Im V } < φ(ẑ) < min {π(z′), z′ ≥ ẑ, z′ ∈ Im V } .

Next show that the mapping z +λẑ → π(z)+λφ(ẑ) is linear and positive,
and extends π to the space generated by Im V and ẑ.

c. Show, using the Riesz representation theorem, that π(z) = β · z with
β ∈ R

k
++.

d. Thence deduce Theorem 1.2.7

Exercise 1.2.10. Suppose that there are constraints on portfolios, modeled
by a closed convex cone C: θ ∈ C. For example:⎧⎨⎩

θi unconstrained for 0 ≤ i ≤ r
θi ≥ 0 for r + 1 ≤ i ≤ r + p
θi ≤ 0 for r + p + 1 ≤ i ≤ d.

Adapt the definition of NAO to the restriction to C.

1. Suppose that there are k ≥ 4 states of the world, and 4 assets. Asset 0 is
riskless, and the rate of interest is r. The other assets are risky, and their
returns are given by a matrix V . Suppose that the constraints are θ2 ≥ 0
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and θ3 ≤ 0. Let Ṽ =

⎡⎣ . . . . . . V . . .
0 0 1 0
0 0 0 −1

⎤⎦.

Show that NAO with restrictions on portfolios can be expressed as
(i) Ṽ θ = 0 ⇒ S · θ = 0.
(ii) Ṽ θ ∈ R

k
+, Ṽ θ �= 0 ⇒ S · θ > 0.

Hence deduce that there exists a probability measure π such that

S1 =
1

1 + r

k∑
j=1

v1
j πj , S2 ≥ 1

1 + r

k∑
j=1

v2
j πj and S3 ≤ 1

1 + r

k∑
j=1

v3
j πj .

2. For θ ∈ C, write NC(θ) = {p ∈ R
d+1|pT (θ − θ) ≤ 0, ∀θ ∈ C}. Show,

by generalizing the proof of Theorem 1.2.7, that NAO restricted to C, is
equivalent to the existence of β ∈ R

k
++ such that −S + V T β ∈ NC(0).

3. Recover the results of 1.

Exercise 1.2.11.

1. Suppose that there are 2 states of the world, and 2 assets, one riskless (the
rate of interest is taken to be r) and the other a stock worth either Su

or Sd at time 1. Suppose that the risky asset has purchase price S0 and
selling price S′

0 ≤ S0. We use the notation θ = θ+ − θ− for the amount of
stock held, and θ0 for the amount of riskless asset held. The cost of this
portfolio is then θ0 + θ+S0 − θ−S′

0, and it pays{
(1 + r)θ0 + (θ+ − θ−)Su in the high state, after an up-move
(1 + r)θ0 + (θ+ − θ−)Sd in the low state, after a down-move

Show, using Farkas’ Lemma, that there is NAO if and only if there exists
at least one probability measure π such that

S′
0 ≤ Suπ

1 + r
+

Sd(1 − π)
1 + r

≤ S0 .

The reader can introduce the matrix:⎡⎢⎢⎣
(1 + r) Su −Su

(1 + r) Sd −Sd

0 1 0
0 0 1

⎤⎥⎥⎦
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2. Suppose that there are d assets, with an injective gains matrix V . Suppose
that the cost φ(θ), φ : R

d → R of a portfolio θ ∈ R
d is a sublinear function,

that is, one satisfying{
φ(θ1 + θ2) ≤ φ(θ1) + φ(θ1) ∀(θ1, θ2) ∈ R

2d

φ(tθ) = tφ(θ) ∀ t ≥ 0 .

Notice that in particular, we have φ(0) = 0 and −φ(−θ) ≤ φ(θ). Let
U := {(z1, z2) ∈ R

k × R | ∃θ such that z1 ≤ −φ(θ) and z2 = V θ}. Show
that U is a convex cone.
We say that there is NAO if V θ = 0 ⇒ φ(θ) = 0, and V θ ∈ R

k
+, V θ �=

0 ⇒ φ(θ) > 0. Show that under the assumption of NAO, U ∩R
k+1
+ = {0} .

Show, by adapting the proof of Theorem 1.2.7, that NAO is equivalent to
the existence of a strictly positive β such that

−φ(−θ) ≤ βT V θ ≤ φ(θ).

Hence recover the results of the first question.

1.2.2 Complete Markets

Definition and Characterization

Definition 1.2.12. A market is complete if, for any vector w of R
k, we can

find a portfolio θ such that V θ = w; that is to say, there exists θ such that
d∑

i=0

θi vi
j = wj , j ∈ {1, . . . , k} .

A market is complete if we can choose a portfolio at time 0 in such a way
as to attain any given vector of wealth at time 1.

Proposition 1.2.13. A market is complete if and only if the matrix V is of
rank k.

Proof. Matrix V has rank k if and only if the mapping associated with V is
surjective; the equation V θ = w then has at least one solution. �

Economic Interpretation of State Prices

In a complete market, for any j ∈ {1, . . . , k}, there exists a portfolio θj such
that the payoff of θj satisfies V θj = (δ1,j , . . . , δk,j)T , with δi,j = 0 when i �= j,
and δj,j = 1 (the asset is then called an Arrow–Debreu asset). In an arbitrage-
free market, the initial value of θj is S · θj = βT V θj = βj . Therefore we can
interpret βj as the price to be paid at time 0 in order to have one euro at
time 1 in state j and nothing in the other states of the world. Hence the
terminology “state price”.

Moreover, we note that if there exists β such that V T β = S, then, as the
mapping associated with matrix V T is injective, the vector β is unique.
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The Risk-Neutral Probability Measure

In a complete market, there necessarily exists a riskless portfolio, that is a
portfolio θ such that (V θ)j = a for all j ∈ {1, . . . , k}. The initial value of this
portfolio is taken to be V0. The rate of return on the portfolio is (a− V0)/V0,
and will be denoted by r. Without loss of generality, we can assume asset 0
to be riskless, and we can normalize its price so that it is 1 at time 0, its
value at time 1 being 1 + r. If there exists a probability measure π satisfying
V T π = (1+ r)S, then it is unique. We then call it the “risk-neutral measure”.

1.2.3 Valuation by Arbitrage in the Case of a Complete Market

Let z be a vector of R
k. Under the assumption of NAO, if there exists a

portfolio θ = (θ0, θ1, . . . , θd) taking the value z at time 1, i.e., such that

d∑
i=0

θi vi
j = zj ,

then we say that z is replicable. The value of the portfolio at time 0 is z0 =∑d
i=0 θiSi, and this value does not depend on the hedging portfolio chosen.

Indeed, suppose that there exist two portfolios θ and θ̃ such that V θ = V θ̃
and S · θ > S · θ̃. The portfolio θ̃ − θ is an arbitrage opportunity. In the
complete market framework, there always exists a hedging portfolio.

Proposition 1.2.14. In a complete and arbitrage-free market, the initial
value of the payoff z ∈ R

k, delivered at time 1, is given by

1
1 + r

k∑
j=1

πj zj =
k∑

j=1

βj zj .

Remark 1.2.15. The initial value of z is a linear function of z.

Proof. (of Proposition 1.2.14)
The value of any hedging portfolio is z0 =

∑d
i=0 θi Si. It is enough to use

(1.6) or (1.7) and write

z0 =
d∑

i=0

θi
k∑

j=1

βj vi
j = β · z =

1
1 + r

k∑
j=1

πjzj .

�

Remark 1.2.16. The expression above has a two-fold advantage. It does not
depend on the portfolio, and it can be interpreted, as follows: the price at time
0 of the replicating portfolio (zj ; j = 1, . . . , k) is the discounted expectation
under π of its value at time 1.
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In the case of an option on the i-th asset, we have zj = sup (vi
j − K, 0),

and hence we get the arbitrage price

1
1 + r

k∑
j=1

πj sup (vi
j − K, 0) .

1.2.4 Incomplete Markets: the Arbitrage Interval

Generally speaking, it is not possible to valuate a product by arbitrage in
an incomplete market. If z is not replicable, then we can define an arbitrage
interval . We associate with any portfolio θ, its corresponding initial value θ ·S.

We define the selling price of z as the smallest amount of wealth that can
be invested in a portfolio θ in such a way that the final value of this portfolio
is greater than z. In the following, we suppose that there is a riskless asset.
The super-replication price is then

S(z) := inf{θ · S | (V θ)j ≥ zj ; ∀j} .

We define the purchase price of z as the maximal amount of money that
can be borrowed against z, i.e.,

S(z) := sup{θ · S | (V θ)j ≤ zj ; ∀j} .

First we note that S(z) is well-defined. Indeed, let us take θ̃ to be an ele-
ment of the non-empty set {θ | V θ ≥ z}. The set {θ |S ·θ ≤ S · θ̃ and V θ ≥ z}
is a compact set (from the NAO condition), on which the function S ·θ attains
its minimum.

Moreover, we can easily show that if S̄(z) �= S(z) and if the price S(z) of
the contingent asset z satisfies S(z) ≥ S̄(z) or S(z) ≤ S(z), then an arbitrage
occurs if we use strategies that include this new asset. If S̄(z) �= S(z) and if
the price S(z) of the contingent asset z satisfies S(z) < S(z) < S̄(z), then
there is NAO when we use strategies that include this new asset. Let us show
that, indeed, if a portfolio (θz, θ) satisfies θzz + V θ ≥ 0 and θzz + V θ �= 0,
then θzS(z) + S · θ > 0.

• If θz = 0, it follows from NAO.

• If θz < 0, we have V θ
−θz

≥ z, so that S · θ
−θz

≥ S̄(z) > S(z), and hence
θzS(z) + S · θ > 0.

• If θz > 0, we have z ≥ V θ
−θz

, so that S · θ
−θz

≤ S(z) < S(z), and hence
θzS(z) + S · θ > 0.
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In addition, we check that θzz +V θ = 0 implies θzS(z)+S ·θ = 0. Indeed,
as V θ

−θz
= z, so S(z) = S̄(z) = S(z) = S · θ

−θz
, and hence θzS(z) + S · θ = 0.

Therefore, there is NAO when we use strategies that include the new asset.
Finally, S(z) is sublinear: it satisfies

S(z + z′) ≤ S(z) + S(z′) and S(az) = aS(z) ∀a ∈ R+ .

Moreover, −S(−z) = S(z).

Let us now show that

S(z) = max{βT z | β ≥ 0, V T β = S} .

Indeed, for any θ such that V θ ≥ z, and any β ≥ 0 such that V T β = S, we
have S · θ = βT V θ ≥ βT z. Hence

min{S · θ | V θ ≥ z} ≥ max{βT z | β ≥ 0, V T β = S} .

In addition, if θ is a solution to min{V θ≥z} S ·θ, then there exists a Lagrange

multiplier3 β ≥ 0 such that S = V T β and β
T
(V θ − z) = 0. Hence

S(z) = S · θ = β
T
z ≤ max{βT z | β ≥ 0, V T β = S} .

The required equality follows.

If there is a riskless asset, we can normalize β, and hence

S(z) = max
{

Eπ(z)
1 + r

∣∣∣∣ V T π = (1 + r)S
}

.

The expression above represents the maximum of the expectation across all
the probability measures under which discounted prices are martingales. In
this way, we have generalized the results of Sect. 1.1.6.

Exercise 1.2.17. Arbitrage bounds in the presence of portfolio constraints.

We use the notation of Exercise 1.2.10, and restrict ourselves to portfolios
belonging to C. Let

S(z) := inf{θ · S | θ ∈ C, V θ ≥ z} .

(If there exists no θ ∈ C such that V θ ≥ z, we set S(z) := ∞).

1. Show that S(z) is well-defined and sublinear.

3 See annex.
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2. Show that S(z) = max{βT z | β ≥ 0, −S + V T β ∈ NC(0)}. (Recall that
if θ minimizes θ · S under the constraints θ ∈ C and V θ ≤ z, then there
exists β ≥ 0 and v ∈ NC(θ) such that S = βT V − v and βT (V θ − z) = 0).

Exercise 1.2.18. Arbitrage bounds in the case of transaction costs.

We use the assumptions and notation of Exercise 1.2.11. Suppose that
there is a riskless asset. In addition, for any z there exists θ such that V θ ≥ z,
and we define

S(z) := inf{φ(θ) |V θ ≥ z} .

1. Show that S(z) is well-defined, and sublinear.

2. Show that S(z) = max{βT z | β ≥ 0, φ(θ) ≥ βT V θ, ∀ θ}.
3. Calculate the purchase price for a call with strike K, where the rest of the

data is as in as in question 1 of Exercise 1.2.11. (First consider the case
S0 ≥ Su

1+r , and next the case S0 < Su

1+r ).

1.3 Optimal Consumption and Portfolio Choice in a
One-Agent Model

The two models introduced previously were purely financial. We now consider
a very simple economy, which has a single good for consumption, taken as
the numéraire, and a single economic agent. This agent has known resources
R0 > 0 a time 0, and his resources at time 1 given by Rj > 0 in state of the
world j.

In order to modify his future revenue, the agent can buy a portfolio of
assets at time 0, on condition that he does not run into debt. We assume that
the (d + 1) assets have the same characteristics as in the previous section.

The agent consumes: c0 is the amount of his consumption at time 0; cj

that of his consumption at time 1 in state of the world j.

The agent constructs a portfolio θ. The set of consumption–portfolio pairs
that are compatible with the agent’s revenue, is defined by the following in-
equalities:

(i) R0 ≥ c0 +
d∑

i=0

θi Si

(ii) Rj ≥ cj −
d∑

i=0

θi vi
j , j ∈ {1, . . . , k} .

(1.8)

The first constraint states that money invested in the portfolio comes from
the portion of revenue that has not been consumed, and the second, that
consumption at time 1 is covered by his resources and by the portfolio.



1.3 Optimal Consumption and Portfolio Choice in a One-Agent Model 23

The set of consumption strategies that are compatible with the agent’s
revenue is then:

B(S) :=
{
c ∈ R

k+1
+ ; ∃ θ ∈ R

d+1, satisfying (1.8)
}

.

The agent has “preferences” on R
k+1
+ , that is to say, a preorder (a reflex-

ive and transitive binary relation), written �, which is complete (any two
elements of R

k+1
+ can be compared). We say that u : R

k+1
+ → R is a utility

function that represents the preorder of preferences if u(c) ≥ u(c′) is equiva-
lent to c � c′. Historically, the concept of a utility function came before that
of a preorder of preferences. Utility functions have long been part of the basis
of economic theory ( “marginalist” theory). Later, much work sought to give
foundations to utility theory, by taking the preorders as a starting point.

We assume here that the investor’s preferences are represented by a func-
tion u from R

k+1
+ into R, which is strictly increasing with respect to each of its

variables, strictly concave and differentiable. We suppose that the agent max-
imizes his utility under budgetary constraints (1.8). The derivative u′ is called

the marginal utility. We assume moreover that
∂u

∂ci
(c0, . . . , ci, . . . , ck) → ∞

when ci → 0. This condition means that the agent has a strong aversion to
consuming nothing at time 0 or at time 1 in one of the states of the world.

1.3.1 The Maximization Problem

Let u be a utility function. We say that c∗ ∈ B(S) is an optimal consumption
if

u(c∗) = max {u(c); c ∈ B(S)} .

Existence of an Optimal Consumption

Proposition 1.3.1. There is an optimal solution if and only is S satisfies the
NAO assumption. The optimal solution is strictly positive.

Proof. Suppose that there exists an optimal solution (c∗0, c
∗
1) financed by

θ∗, and an arbitrage θa. We then have S · θa ≤ 0 and V θa ≥ 0 where
at least one of the inequalities is strict. It is true that the consumption
(c∗0 − S · θa, c∗1 + V θa) ∈ B(S) (an associated portfolio is θ∗ + θa). Using
the property of an arbitrage strategy, c∗0 − S · θa ≥ c∗0, c∗1 + V θa ≥ c∗1 with at
least one strict inequality. As u(c) is strictly increasing, this contradicts the
optimality of (c∗0, c

∗
1).

Conversely, let us show that under the assumption of NAO, if V is injective,
then there exists an optimal solution. A more general result will be proved in
Chap. 6. Let us show that the set
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θ ∈ R

d+1; ∃ c ∈ R
k+1
+ , satisfying (1.8)

}
is bounded. Suppose that, on the contrary, there exists a sequence (cn, θn)
satisfying (1.8), and such that ‖θn‖ → ∞, and let θ̂ be a limit point of the
sequence θn

‖θn‖ . We have

S · θn

‖θn‖
+

c0n

‖θn‖
≤ R0

‖θn‖
,

cjn

‖θn‖
≤ Rj

‖θn‖
+

V θn

‖θn‖
,

for all n, and hence S · θ̂ ≤ 0 and V θ̂ ≥ 0. By the NAO assumption, V θ̂ = 0,
and θ̂ = 0, so contradicting the fact that ‖θ̂‖ = 1. We deduce that B(S) is
closed and bounded, and thus compact, and hence that an optimal solution
c∗ does exist. Let us now show that c∗ is strictly positive.

As the function u is strictly increasing, the budget constraints (1.8) are
binding. Hence there exists θ∗ such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c∗0 +
d∑

i=0

θi∗Si − R0 = 0

c∗j −
d∑

i=0

θi∗vi
j − Rj = 0, j ∈ {1, . . . , k} .

Let ε satisfy c∗0 + εS · θ∗ > 0 and c∗j − ε(V θ∗)j > 0 for any j ∈ {1, . . . , k}. The
consumption (c0, c1, . . . , ck) where c0 = εS · θ∗ + c∗0 and cj = c∗j + ε(V θ∗)j for
any j ∈ {1, . . . , k} is in B(S) (an associated portfolio is (1 − ε)θ∗). As u is
concave,

u(c) − u(c∗) ≥ ε

⎛⎝S · θ∗ ∂u

∂c0
(c) −

k∑
j=1

(V θ∗)j
∂u

∂cj
(c)

⎞⎠ .

For ε small enough, if c∗0 = 0 or if c∗j = 0 for j ∈ {1, . . . , k}, the last expression
above is strictly positive: since if c∗0 = 0 (respectively c∗j = 0), S · θ∗ =
R0 > 0 (respectively (V θ∗)j < 0), and when ε → 0, ∂u

∂c0
(c) → ∞ (respectively

∂u
∂cj

(c) → ∞). This contradicts the optimality of c∗. �

Remark 1.3.2. It is important to take note of the conditions under which this
proposition holds. In the first part of the proof, we used the fact that u is
strictly increasing with respect to all of its variables. In the second part,
we used the non-negativity of consumption. The following exercises provide
very simple counterexamples to the statement of the proposition when these
conditions are no longer satisfied.
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Exercise 1.3.3.

1. Consider an economy in which there are two dates, 0 and 1. At time 1,
there are two possible states of the world. At time 0, an agent holding
one euro, can buy a portfolio made up of two assets whose payoffs are
represented by the payment vectors [1, 0] and [0, 1] respectively, and whose
prices are S1 = 1, S2 = 0. Further assume that the agent consumes c0.
At time 1, in addition to the payment vector of his portfolio, the agent
receives [1, 2] and consumes (c1, c2). Suppose that the agent has utility
function

u(c0, c1, c2) = c0 + min{c1, c2} .

Show that the agent’s consumption–portfolio problem admits a solution
(notice that the maximum utility that the agent can achieve, is 2). Is
the solution unique? Show that the financial market admits an arbitrage.
Comment on these results.

2. The data here is the same as that of the previous question, except that
the agent’s utility function is given by

u(c0, c1, c2) = −(c0 − 1)2 − (c1 − 1)2 − (c2 − 2)2 .

Show that the agent’s consumption–portfolio problem admits a solution.
Comment on the result.

3. We no longer assume the consumption to be positive. At time 0, an agent
holding one euro, can buy an asset, whose payment vector is [1, 1], and
whose price is S1 = 1. At time 1, in addition to the payment vector of his
portfolio, the agent receives [1, 2]. We assume that his utility function is

u(c0, c1, c2) = c0 + c1 + c2 .

Show that the financial market does not admit arbitrage, and that nev-
ertheless, the agent’s consumption–portfolio problem does not admit a
solution.

Asset Valuation Formula

As c∗ is strictly positive, it follows from the method of Lagrange multipliers,
that a necessary and sufficient condition for c∗ to be optimal, is for there to
exist θ∗ ∈ R

d+1 and λ∗ ∈ R
k+1
+ such that⎧⎪⎪⎨⎪⎪⎩

∂u

∂c0
(c∗) − λ∗

0 = 0

∂u

∂cj
(c∗) − λ∗

j = 0 , j ∈ {1, . . . , k} ,

(1.9.i)
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λ∗
0S

i −
k∑

j=1

λ∗
jv

i
j = 0 , i ∈ {0, . . . , d} , (1.9.ii)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ∗

0

(
c∗0 +

d∑
i=0

θi∗Si − R0

)
= 0

λ∗
j

(
cj

∗ −
d∑

i=0

θi∗vi
j − Rj

)
= 0 , j ∈ {1, . . . , k} .

(1.9.iii)

The assumption that u is strictly increasing, implies that its derivatives are
strictly positive. Hence, from (1.9.i ), we have λ∗ ∈ R

k+1
++ and we can write

expression (1.9.iii) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c∗0 +

d∑
i=0

θi∗Si − R0 = 0

c∗j −
d∑

i=0

θi∗vi
j − Rj = 0, j ∈ {1, . . . , k} .

(1.9.iv)

Defining βj as

βj =
λ∗

j

λ∗
0

=
∂u/∂cj

∂u/∂c0
(c∗) , (1.10)

the βj are strictly positive, and, using (1.9.ii), we obtain a formula for evalu-
ating the price of the assets:

Si =
k∑

j=1

βj vi
j . (1.11)

The interest rate is given by the expression:

1 + r =
∂u/∂c0(c∗)

k∑
j=1

∂u/∂cj(c∗)

. (1.12)

Finally, eliminating θi∗ from the equations in (1.9.iv), we get

c∗0 +
k∑

j=1

βjc
∗
j = R0 +

k∑
j=1

βjRj .
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The Complete Market Case

In the case of a complete market with no arbitrage, the optimization problem
under constraints, defined by (1.8), takes a simpler form. As the market is
complete, there exists a unique β such that S = V T β. Let us define the
inequality

c0 +
k∑

j=1

βjcj ≤ R0 +
k∑

j=1

βjRj . (1.13)

This is the budgetary constraint placed on an agent who buys a consumption
of cj at a contingent price of βj .

If the market is complete

B(S) =
{
c ∈ R

k+1
+ satisfying (1.13)

}
.

Indeed, if c ∈ B(S), using (1.9.iv) to eliminate θ, we can show that c satisfies
(1.13).

Conversely, let c satisfy (1.13). If the market is complete, there exists θ
such that

cj −
d∑

i=0

θivi
j − Rj = 0 for all j ∈ {1, . . . , k} .

Using (1.9.iv) and (1.13), we can show that (1.8) is satisfied, and hence that
c ∈ B(S).

Thus we are brought back to a maximization problem under a single bud-
getary constraint c0 +

∑k
j=1 cjβj ≤

∑k
j=1 Rjβj + R0. Formula (1.10) then

follows trivially. We observe that the price in state j is proportional to the
marginal utility of consumption in state j.

As we showed previously, if there is a riskless asset, the βj can be in-
terpreted in terms of risk-neutral probabilities βj = πj

1+r . The risk-neutral
probability of state j is therefore proportional to the marginal utility of con-
sumption in state j. We note that by using risk-neutral probabilities, we can
write constraint (1.12), if asset 0 is riskless, as

c0 +
k∑

j=1

cj

1 + r
πj ≤ R0 +

k∑
j=1

Rj

1 + r
πj .

The consumption at time 0, plus the value, discounted by the risk-free
return, of the expectation with respect to π of consumption at time 1, is
less than or equal to the revenue at time 0, plus the discounted expectation
of the revenue at time 1. This formulation of the constraint will be used in
continuous time, in Chaps. 4 and 8, as it allows us to transform a path-wise
constraint into a constraint on an expected value.
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The Incomplete Market Case

We suppose that there is a riskless asset. We write P for the set of probability
measures π satisfying V T π = (1 + r)S. If c ∈ B(S) and π ∈ P, we have

c0 +
k∑

j=1

cj

1 + r
πj ≤ R0 +

k∑
j=1

Rj

1 + r
πj .

We use the notation
V (π) = max u(c)

where the maximum is taken over the c that satisfy the constraint

c0 +
k∑

j=1

cj

1 + r
πj ≤ R0 +

k∑
j=1

Rj

1 + r
πj .

Thus we obtain
u(c∗) ≤ minπ∈P V (π) .

As the corresponding necessary and sufficient first order conditions are
satisfied, it follows from (1.10) and (1.11) that u(c∗) = V (β(1 + r)) where β
is defined as in (1.10). Therefore we have:

u(c∗) = minπ∈PV (π) .

We refer to such a π as a “minimax” probability measure.

1.3.2 An Equilibrium Model with a Representative Agent

We take as given the endowments (R0, . . . , Rk) of the agent, and the asset
prices S. A pair ((R0, . . . , Rk), S) is an equilibrium if the optimal solution to
the agent’s consumption–portfolio problem is ((R0, . . . , Rk), 0d+1). In other
words, at price S, the agent does not carry out any transactions. Let z be a
contingent claim, and let S(z) be its price. We say that the claim is valued at
equilibrium if, when it is introduced into the financial markets in equilibrium,
the optimal demand θz for the claim is zero. In other words, writing R for the
agent’s random endowments at time 1 and C for his consumption vector at
time 1, the optimal solution to the problem

max u(c0, c) under the constraints
c0 + θ · S + θzS(z) ≤ R0

C ≤ R + V θ + θzz

is given by (R0, . . . , Rk) and by the associated portfolio (0d+1, 0z).
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Proposition 1.3.4. If ((R0, . . . , Rk), S) is an equilibrium, then the interest
rate and the asset prices are given by:

1 + r =
∂u/∂c0(R0, . . . , Rk)

k∑
j=1

∂u/∂cj(R0, . . . , Rk)

and

Si =
k∑

j=1

∂u/∂cj(R0, . . . , Rk)
∂u/∂c0(R0, . . . , Rk)

vi
j for all i = {1, . . . , d} .

The equilibrium price of a contingent claim z ∈ R
k is:

S(z) =
k∑

j=1

∂u/∂cj(R0, . . . , Rk)
∂u/∂c0(R0, . . . , Rk)

zj .

Proof. The first part of the proposition follows from (1.10) and (1.11) with
(c∗) = (R0, . . . , Rk). To prove the second part, we suppose that the agent’s
consumption–portfolio problem

max u(c0, c) under the constraints
c0 + θ · S + θzS(z) ≤ R0

C ≤ R + V θ + θzz

has for optimal solution ((R0, . . . , Rk), 0d+1, 0z). According to the Kuhn–
Tucker theorem, there exists λ̃ ∈ R

k+1
+ such that

i) ∂u
∂c0

(R0, . . . , Rk) − λ̃0 = 0

ii) ∂u
∂cj

(R0, . . . , Rk) − λ̃j = 0 , j ∈ {1, . . . , k}

iii) λ̃0S
i =

∑k
j=1 λ̃jv

i
j , i ∈ {0, . . . , d}

iv) λ̃0S(z) =
∑k

j=1 λ̃jzj .

The equilibrium price of a contingent asset follows trivially from these formu-
lae. �

Exercise 1.3.5. Consider an economy with two dates 0 and 1. At time 1,
there are two states of the world. At time 0, an agent holding one euro
can buy a portfolio made up of two assets with respective payment vec-
tors [1, 1] and [2, 0]. Assume moreover that he consumes c0. At time 1,
in addition to the payment vector of his portfolio, the agent receives [1, 2]
and consumes (c1, c2). Suppose the agent has utility function u(c0, c1, c2) =
log(c0) + 1

2 (log(c1) + log(c2)). Suppose that the agent’s optimal strategy is to
buy nothing. What are the assets’ equilibrium prices? What is the risk-neutral
probability measure?
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1.3.3 The Von Neumann–Morgenstern Model, Risk Aversion

First of all, we present the theory for decisions taken over one period. In the
interests of simplicity, we assume here that there is only a single consumption
good.

Let P be the set of probability measures on (R+,B(R+)). In particular, if
there are only a finite number of states, if state j occurs with probability µj ,
and if consumption C at time 1 is a random variable taking values cj , then
the probability law µC of C with µC =

∑k
j=1 µjδcj

is an element of P.

We make the assumption that only the consequences of random events
(that is possible cash flows and their probabilities) are taken into account.
This assumption comes down to supposing that the agent’s preferences are
not expressed on the positive or zero random variables, but directly on P.
We use the notation � for the preorder of the agent’s preferences, which is
assumed to be complete. We say that u : P → R is a utility function that
represents the preorder of preferences if u(µ) ≥ u(µ′) is equivalent to µ � µ′.

We say that the utility is Von Neumann–Morgenstern if there exists v :
R+ → R such that

u(µ) =
∫ ∞

0

v(x)dµ(x) .

In the particular case µC =
∑k

j=1 µjδcj
, the VNM utility is written

u(µC) =
k∑

j=1

µjv(cj) ,

so that our criterion is to maximize the expectation of the consumption’s
utility.

We do not discuss here the abundant literature that establishes axioms
on the preorder of preferences on P in such a way that it admits a VNM
representation.

We say that the agent is risk averse if

v(E(C)) ≥ E(v(C)), for all C .

Thus an investor prefers a future consumption E(C) with certainty, to a
consumption c1 with probability µ1, a consumption c2 with probability µ2, . . . ,
a consumption ck with probability µk.

If the agent has a preorder on all finite probabilities, the presence of risk
aversion is equivalent to the concavity of v. Indeed, if v is concave, then
according to Jensen’s inequality4, we have v(E(C)) ≥ E(v(C)), for all C.
4 See for example Chung [58].
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Conversely, we suppose that v(E(C)) ≥ E(v(C)) for all C. Let (x, y) ∈ R
2
+.

We consider the random variable C worth x with probability α and y with
probability 1 − α. As

v(E(C)) = v(αx + (1 − α)y) ≥ E(v(C)) = αv(x) + (1 − α)v(y) ,

by letting α, x and y vary, we obtain the concavity of v.

We say that an investor is risk-neutral, if v is an affine function. Then

v(E(C)) = E(v(C)), for all C .

When an agent is risk averse, we define the risk premium ρ(C) linked to
the random consumption C: it is the amount the investor is prepared to give
up in order to obtain, with certainty, a consumption level equal to E(C). As
v is a continuous, strictly increasing and strictly concave function, for all C
there exists ρ(C) ≥ 0 such that

v(E(C) − ρ(C)) = E (v(C)) . (1.14)

The amount E(C)−ρ(C) is called the certainty equivalent of C, and ρ is called
the risk premium. When the investor is risk-neutral, E[v(C)] = v[E(C)], so
that ρ(C) = 0. We now assume that there are a finite number of states,
that consumption C at time 1 is a random variable taking values cj with
probability µj , and that v is of class C2. Using Taylor’s expansion, on the
condition that the values cj taken by the consumption C are close enough to
E(C), we get

v(cj) � v[E(C)] + [cj − E(C)]v′[E(C)] +
[cj − E(C)]2

2
v′′[E(C)] .

Taking expectations on both sides,

E[v(C)] =
k∑

j=1

µjv(cj) � v[E(C)] + v′′[E(C)]
Var C

2
.

Expanding the first term of (1.13), using Taylor’s expansion once again,
we get

v[E(C) − ρ(C)] � v[E(C)] − ρ(C)v′[E(C)]

and hence we can evaluate ρ(C):

ρ(C) � − v′′[E(C)]
2v′[E(C)]

Var C .

The coefficient Ia(v, x) = −v′′(x)
v′(x

is called the absolute risk aversion co-

efficient of v. Thus the certainty equivalent of C is approximately equal to
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E(C) − Ia(v,E(C))
2

Var C, which as a first approximation justifies the choice
of a mean–variance criterion.

Exercise 1.3.6. We denote by N (µ, σ2) the normal distribution with mean
µ and variance σ2. Let C

law= N (µ, σ2) and v(c) = −e−βc, β > 0. Show that
Ia(v, x) = β for any x and that E(C) − ρ(C) = µ − β

2 σ2. (Here we can use

that fact that C
law= µ + σY , where Y

law= N (0, 1)). In this particular case, the
certainty equivalent of C is exactly equal to E(C) − α

2
Var C.

Exercise 1.3.7. Calculate the absolute risk aversion index in the following
cases: v(c) = cγ

γ with 0<γ<1, v(c) = ln c.

1.3.4 Optimal Choice in the VNM Model

We return to the two date model considered in Sect. 1.3.1, and assume that
at time 1, state j occurs with probability µ = (µj)k

j=1. We suppose here that
there is a riskless asset, and that the market is complete. The investor has
preferences on R×P. Let us look at the special case in which the preferences
can be represented by a utility function that is “additively separable” with
respect to time:

u(c0, C) = v0(c0) + α E(v(C)) = v0(c0) + α

k∑
j=1

µj v(cj)

0 < α < 1

where α is a discount factor, and where v0 and v are strictly concave, strictly
increasing C2 functions satisfying

lim
x→0

v′
0(x) = ∞ , lim

x→0
v′(x) = ∞ ,

lim
x→∞

v′
0(x) = 0 , lim

x→∞
v′(x) = 0 .

Let I0 :]0,∞[ → ]0,∞[ (respectively I :]0,∞[ → ]0,∞[) be the inverse function
of v0′ (respectively of v′). The functions I0 and I are continuous and strictly
decreasing. Denote the riskless rate by r.

In this special case, formulae (1.11) and (1.12) become:

1 + r = α

∑k
j=1 µjv

′(c∗j )
v′
0(c

∗
0)

= α
E(v′(C∗))

v′
0(c

∗
0)

(1.15)

Si = α

∑k
j=1 µjv

′(c∗j )v
i
j

v′
0(c

∗
0)

=
1

1 + r
E(V iv′(C∗)) (1.16)
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where V i and C∗ are random variables taking the values vi
j and c∗j respectively.

Let us show how to obtain the optimal solution in explicit form. Indeed,
the investor solves the following problem P:

max v0(c0) + α
k∑

j=1

µj v(cj) under the constraint

c0 +
k∑

j=1

cj

1 + r
πj ≤ R0 +

k∑
j=1

Rj

1 + r
πj .

Let λ be the Lagrange multiplier associated with the constraint. We have

v′
0(c

∗
0) = λ

αµjv
′(c∗j ) = λ

πj

1+r , ∀ j = 1, . . . , k ,
(1.17)

and hence
c∗0 = I0(λ)

c∗j = I

(
πjλ

µj(1 + r)α

)
, ∀ j = 1, . . . , k .

(1.18)

The Lagrange multiplier λ is determined by the budget constraint, and satis-
fies the following equation:

I0(λ) +
1

1 + r

k∑
j=1

πjI

(
λπj

µj(1 + r)α

)
= R0 +

1
1 + r

k∑
j=1

πjRj . (1.19)

As the function x → I0(x) + 1
1+r

k∑
j=1

πjI

(
πjx

µj(1 + r)α

)
is a decreasing func-

tion from ]0,∞[ into itself, equation (1.16) has a unique solution. Once the
Lagrange multiplier has been determined, we can deduce the optimal con-
sumption from (1.15), and then finally obtain the optimal portfolio using the
relation V θ∗ = C∗ − R.

Let us show that under the assumption that the agent is in equilibrium,
we can give an estimate of the risk-neutral probability.

Replacing c∗0 by R0 and C∗ by R, it follows from (1.14) that

λ = v
′
0(R0) = α(1 + r)E(v′(R))

and that

πj = µj
v′(Rj)

E(v′(R))
. (1.20)



34 1 The Discrete Case

This expression for the risk-neutral probability does not depend on future
consumption. Using Taylor’s expansion, we get:

v′(Rj) � v′[E(R)] + [Rj − E(R)]v′′[E(R)] .

Taking expectations,
E[v′(R)] � v′[E(R)] .

Hence

πj

µj
� 1 +

[Rj − E(R)]v′′[E(R)]
v′[E(R)]

= 1 + Ia(v,E(R))(E(R) − Rj) .

The greater the agent’s index of absolute aversion to risk for E(R) and
the greater the difference between the average value of his resources and his
resources in a given state j, the greater is the risk-neutral probability of state
j occurring.

If the investor had a neutral attitude to risk (v′ = cst), he would be
prepared to pay

αµj

v′
0(R0)

at time 0 in order to receive 1 euro tomorrow in the

state of the world j. If he is risk averse, he is prepared to pay
αµjv

′(Rj)
v′
0(R0)

today

so as to receive 1 euro tomorrow in state of the world j.

To summarize, we have used two different approaches:

• the assumption of no arbitrage opportunities enabled us to construct a
probability measure under which we are neutral with respect to risk,

• the introduction of a utility function and of exogenous (or subjective)
probabilities led us firstly to define the concept of risk aversion, secondly
to obtain valuation formula (1.16), and finally to exhibit a risk-neutral
probability measure.

We remark on the fact that these two risk-neutral probability measures are
equivalent.

Exercise 1.3.8.

1. We assume that the market is complete and that v0(c) = v(c) = log(c).
Calculate I0, I and the optimal solution. Carry out the corresponding
calculations when v0(c) = 0 and v(c) = log(c), and similarly obtain I0, I
and the optimal solution for v0(c) = v(c) = cα, 0 < α < 1.

2. We consider an economy with two dates, 0 and 1. At time 1, there are two
states of the world. At time 0, an agent does not own anything and can buy
for a price [1, 1], a portfolio of two assets whose respective payment vectors
are [1,−1] and [2,−2]. At time 1, in addition to the payment vector of
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his portfolio, the agent receives [1, 1] and consumes (c1, c2). Suppose that
the agent has a VNM utility function, that he attributes the probabilities
( 1
2 , 1

2 ) to the two states of the world, and that his utility index is u(c) =
log c. Show that the agent’s consumption–portfolio problem has a solution,
and that nevertheless, the market admits an arbitrage. Comment on these
results.

Exercise 1.3.9. We consider an economy with two dates 0 and 1. There are
three states of the world at time 1. At time 0, an agent does not own any-
thing, and he can buy a portfolio of three assets that have respective payment
vectors [1, 1, 1], [3, 2, 1] and [1, 2, 6], and respective prices S1 = 1, S2 = 2 and
S3 = 3. He must not run into debt. The agent does not consume at time 0. At
time 1, in addition to the payment vector of his portfolio, the agents receives
[1, 2, 1] in the different states, and consumes (c1, c2, c3).

1. Calculate the state prices and the interest rate. Show that the market
is complete. Calculate the risk-neutral probability. Show that the set of
consumptions that the agent can achieve at time 1 is given by

{c ∈ R
3 | c1 + c2 + c3 ≤ 4} .

2. We assume that the agent attributes the probabilities (1
3 , 1

3 , 1
3 ) to the dif-

ferent states of the world, and that he has a VNM utility function of
index u(x) = log(x). Calculate his optimal consumption and portfolio.
How would the results change if the agent attributed the probabilities
( 1
2 , 1

4 , 1
4 ) to the different states of the world?

3. Suppose that the agent can only buy a portfolio that contains the two
first assets. Calculate the interest rate, and characterize the set of risk-
neutral probabilities. Find the set of its extrema. Show that the set of
consumptions that can be attributed to the agent at time 1 is

{c ∈ R
3 | c2 ≤ 2,

1
2
(c1 + c3) ≤ 1} .

Calculate the optimal consumption and portfolio when the agent at-
tributes probabilities (1

3 , 1
3 , 1

3 ) to the states of the world, and has a VNM
utility function with index u(x) = log(x).

4. We suppose that the agent can, without running into debt, purchase a
portfolio made up of the three assets, and that in addition he can buy a
positive amount of asset 2.
Characterize the set of risk-neutral probabilities. Find the set of its ex-
trema. Calculate the agent’s optimal consumption and portfolio when he
affects the probabilities (1

3 , 1
3 , 1

3 ) to the states of the world, and has a
VNM utility function with index u(x) = log(x).
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1.3.5 Equilibrium Models with Complete Financial Markets

The Representative Agent

We now study a simple model in order to illustrate the effect of introducing
financial markets into an economy. This model will be further developed in
Chap. 6.

Consider an exchange economy with a single consumption good and m
economic agents. We suppose that there are (d + 1) assets, with the same
characteristics as in the previous sections. We assume the market to be com-
plete.

Agent h has an initial endowment of eh0 units of the good at time 0, and
knows that he will receive ehj units of the good at time 1 in state of the
world j. To modify his future resources, he can, at time 0, buy a portfolio of
securities θh = (θ0

h, . . . , θd
h) on condition that he does not run into debt.

Given a price S for the assets, we define the agent’s budget set as the set of
consumption plans which he can carry out with his initial wealth and future
income:

Bh(S) := {c ∈ R
k+1
+ | ∃θ ∈ R

d+1,

eh0 ≥ c0 + θ·S; ehj ≥ cj − (V θ)j , j ∈ {1, . . . , k}}.

As in Sect. 1.3.3, we suppose that agent h has preferences that are represented
by a VNM utility function of the form

uh(c0, C) = vh0(c0) + α

k∑
j=1

µjvh1(cj) .

We suppose here that all the agents have the same discount factor α.

Definition 1.3.10. The collection {S, (ch, θh);h = 1, . . . , m} is an equilib-
rium of the economy with financial markets if, given S

1. ch maximizes uh(ch0, Ch) under the constraint ch = (ch0, Ch) ∈ Bh(S),

2.
m∑

h=1

chj =
m∑

h=1

ehj := ej , j ∈ {1, . . . , k},

3.
m∑

h=1

θh = 0.

In other words, the market in the good clears (equality 2) and the security
market also clears (equality 3).

Remark 1.3.11. If v0
h and vh are strictly increasing, and if V is injective, then

equality 3 is implied by 1 and 2. Indeed, as the utility functions are strictly
increasing, at equilibrium the constraints are binding. Therefore we have ehj =
chj − (V θh)j for all h and j ∈ {1, . . . , k}. As

∑m
h=1 ehj =

∑m
h=1 chj for j ∈

{1, . . . , k}, we have V
(∑m

h=1 θh

)
= 0, which implies

∑m
h=1 θh = 0.
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We suppose now that an equilibrium exists. We can use the first order
necessary and sufficient conditions of the precious section. Hence for all h,

Si = α
k∑

j=1

µj
v′

h(chj)
v′

h0(ch0)
vi

j =
k∑

j=1

1
1 + r

µj
v′

h(chj)
E(v′

h(Ch))
vi

j , (1.19)

1
1 + r

= α

k∑
j=1

µj
v′

h(chj)
v′

h0(ch0)
. (1.20)

Under the assumption of complete markets, the equation S = V T β has a
unique solution. Under this assumption, the ratios

v′
h(chj)

v′
h0(ch0)

are therefore independent of h.

Let us then consider a fictitious agent, the “representative agent”, whose util-
ity is

u(c0, C) := v0(c0) + α

k∑
j=1

µjv(cj) ,

where

v0(c):=max

{
m∑

h=1

vh0(ch)
v′

h0(ch0)
;

m∑
h=1

ch = c

}

v(c):=max

{
m∑

h=1

vh(ch)
v′

h0(ch0)
;

m∑
h=1

ch = c

}
.

Using the first order necessary and sufficient conditions of these new opti-
mization problems, we check that

u(e0, e) =
m∑

h=1

v0h(ch0)
v′

h0(ch0)
+ α

k∑
j=1

m∑
h=1

vh(chj)
v′

h0(ch0)
µj ,

where e is a random variable taking the value ej with probability µj . Using
the first order conditions and the implicit function theorem, we show that v0

and v are differentiable, that v′
0(e0) = 1 and that

v′(ej) =
v′

h(chj)
v′

h0(ch0)
j = 1, . . . , k .

Hence, (1.20) can be rewritten as

1
1 + r

= αE(v′(e)) (1.21)
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Si =
1

1 + r

k∑
j=1

µj
v′(ej)

E(v′(e))
vi

j =
1

1 + r

[
E(V i) + Cov

(
v′(e)

E(v′(e))
, V i

)]
(1.22)

where V i is a random variable taking value vi
j .

The formula above plays a very important role in the financial literature,
as it shows that when there is a equilibrium, the price of an asset is only a
function of aggregate endowment (and not of each individual’s endowment).
In the next section, we will look at the relationship more closely.

Exercise 1.3.12. Consider an economy with two dates, two agents, two states
of the world, and one good in each state. Suppose that the agents have utility
functions v0h(c) = vh(c) = log(c), h = 1, 2 and assign probabilities 1

2 to
the states of the world. Assume that the agents have endowments e01 = 1,
e1 = (1, 3) and e02 = 2, e2 = (3, 1). Assume that the two assets are traded at
time 0: the riskless asset, and an asset that pays 1 in state 1 and 0 in state 2.
Find the equilibrium of this economy.

The Capital Asset Pricing Model (CAPM) Formula

This model will be developed in greater generality in Chap. 6.
We suppose that the agents have quadratic utility functions (i.e., v′

h(c) =
−ahc + bh with ah > 0 for all h), and that at equilibrium the agents have
strictly positive consumption. In this particular case, we can easily check that
v′ is linear and decreasing, that is

v′(c) = −ac + b (with a > 0) .

Equation (1.22) then becomes

Si =
1

1 + r

[
E(V i) − a

E(v′(e))
Cov(e, V i)

]
. (1.23)

Formula (1.23) is called the CAPM (Capital Asset Pricing Model) formula.
As long as E(v′(e)) > 0, the price of asset i is therefore greater than the
discounted expectation of returns, if it is negatively correlated with e (i.e.,
Cov(e, V i) ≤ 0): the asset provides a form of insurance.

If we introduce ρi = V i

Si , the return on asset i, and M , such that e = V M
(M is called the market portfolio), we can express (1.23) in the form

E(ρi) − (1 + r) =
a

E(v′(e))
Cov (ρi, e) =

aS · M
E(v′(e))

Cov(ρi, ρM ) ,

setting ρM = e
S·M (ρM is the return on the market portfolio). We then get,

in particular:
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E(ρM ) − (1 + r) =
aS · M
E(v′(e))

Var ρM .

From this we deduce

E(ρi) − (1 + r) =
Cov (ρi, ρM )

Var ρM
{E(ρM ) − (1 + r)} . (1.24)

This formula, which links the excess return on an asset to the return on
the market portfolio, is called the beta formula, where the βi coefficient is
given by Cov(ρi, ρM )

Var ρM
. We note that βi is the coefficient of the regression of

ρi on ρM . In valuation models for financial assets (or in the CAPM: Capital
Asset Pricing Model), it is interpreted as a sensitivity factor to the risk of
asset i. We find that the risk premium for asset i, that is E(ρi)− (1 + r), is a
linear function of its β.

An Approximate CAPM Formula

More generally, taking any utility function for the representative agent, let us
suppose that the ej are close to E(e). We then obtain an approximation of
the CAPM formula. Indeed,

v′(ej)
E(v′(e))

� 1 + α[E(e) − ej ] ,

where α is the representative agent’s index of absolute aversion to the risk in
E(e). Formula (1.22) then becomes

Si � E(V i)
1 + r

− α

1 + r
Cov (e, V i) . (1.25)

Notes

The financial literature in discrete time is extensive, and it would be quite
impossible to give a detailed bibliography here. We restrict ourselves to a few
books, which provide the basics: Elliott and Van Der Hoek [150], (2004),Huang
and Litzenberger [197], (1988), Pliska [301], (1997), Mel’nikov [271], (1999),
Shreve [337], (2004), the first part of Shiryaev [336], (1999), Le Roy and
Werner [252], (2001), Cvitanic and Zapatero [79], (2002) and the first part of
Föllmer and Schied [162], (2004).

The initial formulation and use of the NAO assumption are due to Ross
[316, 317], (1976, 1978). Varian [359], (1988) gives a summary of this approach
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and Cochrane [61] develops its applications to asset pricing. For the proba-
bilistic aspects, see Bingham and Kiesel [33] (1998) and Björk [34] (1998).

For the axiomatic approach to the Von Neumann–Morgenstern utility, the
reader can consult the books of Huang and Litzenberger [197], (1988), Kreps
[244], (1990), and Le Roy and Werner [252], (2001), and Föllmer and Schied
[162], (2004).

The problem of choosing an optimal consumption and portfolio in incom-
plete markets, or in the presence of portfolio constraints, was originally studied
by He and Pearson [185], (1991). Different solution methods are presented in
Pliska [301], (1997) and Mel’nikov [271], (1999).

The options literature goes back to Merton [273, 274], (1973). That too is
vast. We have only given the basic definitions here. The reader is referred to
Cox–Rubinstein [72], (1985). Wilmott’s books [369, 370], (1998, 2001) provide
a good introduction to the problem of valuation and hedging. A more detailed
study of our own and other references will be given in the chapter on exotic
options.

We will study the equilibria of financial markets more thoroughly in
Chap. 6.

For optimization in finite dimensions and duality properties, the reader
can refer to Rockafellar [312], (1970), Luenberger [260],(1969), Hiriart-Urruty
and Lemaréchal [192], (1996), and Florenzano and Le Van [159], (2000).
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ANNEX 1

Optimization under Constraints, the Kuhn–Tucker Theorem with
Linear Constraints

Let C be an open convex set in R
n.

We consider the following problem denoted Pαβ and formulated for α =
(α1, . . . , αp) ∈ R

p and β = (β1, . . . , βq) ∈ R
q, by:

max f(x), under the constraints
fi(x) ≤ αi, ∀i = 1, . . . , p,
gj(x) = βj , ∀j = 1, . . . , q,
x ∈ C

where the function f : C → R is concave and differentiable, and where the
functions fi : C → R, i = 1, . . . , p and gj j = 1, . . . , q are affine. We call f
the objective function. We write K for the admissible set

K = {x ∈ C | fi(x) ≤ αi, ∀i = 1, . . . , p, gj(x) = βj , ∀j = 1 . . . q} .

Theorem Let x̄ ∈ K. Then x̄ is a solution to Pαβ if and only if there exists
(λ̄, µ̄) ∈ R

p
+ × R

q such that

1. ∇f(x̄) =
∑p

i=1 λ̄i∇fi(x̄) +
∑q

j=1 µ̄j∇gj(x̄),

2. λ̄i(fi(x̄) − αi) = 0, ∀i = 1, . . . , p.

We call (λ̄, µ̄) the Lagrange multipliers or the Kuhn–Tucker multi-
pliers



2

Dynamic Models in Discrete Time

To make it easier to approach to continuous-time models, we present here
a dynamic model in discrete time and with a finite horizon. This allows us
specify such concepts as self-financing, arbitrage and complete markets, and
to show how martingales, though not part of the initial data of the model,
can be used to give the problem a pleasing form.

We consider a model in discrete time, with a finite horizon. There are d+1
assets, whose prices at each time n are represented by a random variable. We
define the concept of a self-financing strategy, and of an arbitrage opportunity.

Under the assumption that the underlying probability space is finite, we
provide two proofs that the assumption of NAO is equivalent to the exis-
tence of a probability measure under which discounted prices are martingales.
The first uses a separation theorem, and the second, the results obtained in
Chap. 1. Indeed, we establish that to any informational structure, we can
associate a tree, and that the condition of “no arbitrage opportunities” de-
fined previously is equivalent to a concept of no arbitrage opportunities at
each node of the tree. This enables us to use the results obtained for a one
period model, and to give an alternative proof of the existence of a probability
measure under which discounted prices are martingales.

Once we have defined complete markets, we show that under the assump-
tion of NAO, this property is equivalent to the uniqueness of the martingale
measure, which is equivalent to P , and under which discounted prices are
martingales.

Next we tackle the problem of valuation. First we focus on replicable vari-
ables, which are such that they can be attained with a self-financing strategy,
whose value we will determine. In the case of a complete market, we show
that the value at time 0 of any given strategy, is equal to the expectation of
its discounted payoff under the unique martingale measure.
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As an example, we describe the binomial model of Cox, Ross and Ru-
binstein, and by taking its limit, we then obtain the Black–Scholes model.

Next, under a finite horizon, we present two models of optimal portfolio
choice. In the first, the criterion is the maximization of the utility of final
wealth, and in the second, it is the maximization of the utility of the con-
sumption stream.

Finally, in the last section, we describe the problems encountered under
an infinite horizon.

The annex recalls the definitions and main properties of conditional ex-
pectation and martingales.

2.1 A Model with a Finite Horizon

Let (Ω,F , P ) be a probability space equipped with a filtration (Fn)N
n=0, that is

to say, with an increasing family of sub-σ-fields F : F0 ⊆ F1 ⊆ · · · ⊆ FN = F .
The paths ω ∈ Ω are a generalization of the concept of different states of the
world.

The σ-field F0 is the trivial σ-field (F0 = {φ,Ω}). The σ-field Fn repre-
sents the information that is known at time n. The increasing nature of the
family of σ-fields translates the fact that there is no “loss” of information.

A sequence of random variables (Sn, n ≤ N) is Fn-adapted if Sn is Fn-
measurable for all n ≤ N . In other words, the information known at time
n includes knowledge of the value taken by the random variable Sn. The
increasing nature of the filtration implies that any Fn-measurable variable is
also Fk-measurable for all k > n. A F0-measurable variable is (a.s.) equal to
a constant.

When the space (Ω,F) is endowed with two probability measures P and
Q, we specify that a property is true for (Ω,F) equipped with P (respectively
with Q), by saying that the property is true “under P” (respectively under
Q).

The financial market is made up of d+1 assets, whose prices at time n are
given by a random vector Sn = (S0

n, S1
n, . . . , Sd

n)T , with values in R
d+1
+ . The

asset 0 is assumed to be riskless: S0
n = (1+ r)nS0

0 where r is the interest rate,
which is assumed to be constant for the sake of simplicity. We take S0

0 = 1.

We suppose that the vector Sn is Fn-measurable.

Definition 2.1.1. A portfolio strategy is a family θ = (θn)N
n=1 of random

vectors θn = (θ0
n, θ1

n, . . . , θd
n) such that

∀ 1 ≤ n ≤ N, ∀i ≥ 0, θi
n is Fn−1-measurable .
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The vector θn is the portfolio at time n: θi
n represents the number of

shares of the asset i that are held at time n. We do not place any restrictions
on the sign of θi

n, which means that short sales and borrowing are allowed.
The condition of measurability reflects the fact that θ is “predictable1”. This
means that the investor chooses his portfolio of assets θi

n “just before n”; i.e.,
with only knowledge of the information described by Fn−1. In particular, he
does not yet know the price Sn.

We denote by Vn(θ) = θn · Sn the scalar product
∑d

i=0 θi
nSi

n, which
represents the value of the portfolio at time n > 0. The random variable
Vn(θ) is Fn-measurable. For any sequence of r.v. (Xn), we use the notation
∆Xn = Xn − Xn−1.

Definition 2.1.2. A portfolio strategy θ is self-financing if

θn · Sn = θn+1 · Sn, n ∈ {1, . . . , N − 1} .

This means that no additional funds are introduced, no money is with-
drawn, and that transactions do not entail costs. The variations of the value
of the portfolio are due only to the variations in the assets’ prices. The amount
θn ·Sn is the value of the portfolio after time n and (strictly) before time n+1,
and θn+1 ·Sn is the value of the portfolio after it has been readjusted, strictly
before time n + 1, and before the prices change (the predictability of θn). We
write V0(θ) = θ1 · S0, which represents the initial value of the portfolio. We
note that V0 is F0-measurable.

We can write the self-financing condition as follows:

Vn(θ) = θn−1 · Sn−1 + θn · Sn − θn · Sn−1

= Vn−1(θ) + θn · ∆Sn, n ≥ 1 .
(2.1)

2.2 Arbitrage with a Finite Horizon

2.2.1 Arbitrage Opportunities

Definition 2.2.1. An arbitrage opportunity is a self-financing strategy θ such
that

(i) P (V0(θ) = 0) = 1
(ii) P (VN (θ) ≥ 0) = 1 ; P (VN (θ) > 0) > 0 .

The investor has no capital initially, and at time N he ends up with
non-negative wealth, which is positive on a set of positive measure (and so
E(VN (θ)) > 0).

1 We will come back to this concept in Chap. 3.
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Definition 2.2.2. Two probability measures P and Q defined on the same
probability space (Ω,F) are equivalent if, for all A ∈ F ,

P (A) = 0 ⇐⇒ Q(A) = 0 .

It is easy to see that the set of arbitrage opportunities is identical for two
equivalent probability measures.

2.2.2 Arbitrage and Martingales

Let us now show that the assumption of NAO is equivalent to the existence of
a probability measure, which is equivalent to P , and under which discounted
prices are martingales.

Notation 2.2.3. We denote by Ŝ the vector of discounted prices, i.e.,

Ŝi
n = Si

n/S0
n .

We have V̂n(θ) = Vn(θ)/S0
n =

∑d
i=0 θi

n · Ŝi
n = V0(θ) +

∑n
k=1 θk · ∆Ŝk for

n > 0 and V̂0(θ) = V0(θ). The same arbitrage opportunities arise for S and
for Ŝ. A self-financing strategy satisfies

θn · Ŝn = θn+1 · Ŝn ,

hence
V̂n+1(θ) = V̂n(θ) + θn+1 · ∆Ŝn+1, n ∈ {1, . . . , N} . (2.2)

Proposition 2.2.4. We suppose that there exists a martingale measure, in
other words, a probability measure Q that is equivalent to P , and such that the
vector Ŝ = (1, Ŝ1, Ŝ2, . . . , Ŝd) is a martingale under Q. Then

(
V̂n(θ), n ≥ 0

)
is a martingale under Q.

Proof. Let Q be a probability measure that is equivalent to P and such that
Ŝ is a martingale under Q. Let θ be a self-financing strategy. Let us show
that V̂ (θ) is a martingale under Q. It is obvious that V̂n(θ) is Fn-adapted.
We denote by EQ( · |F) the conditional expectation under Q. Using (2.2), we
obtain

EQ(V̂n+1(θ) − V̂n(θ) | Fn) = EQ(θn+1 · ∆Ŝn+1 | Fn)

= EQ(θn+1 · (Ŝn+1 − Ŝn) | Fn) = θn+1 · EQ(Ŝn+1 − Ŝn | Fn) ,

since θn+1 is Fn-measurable (we use property g of the conditional expecta-
tion2). Hence, as Ŝ is a Fn-martingale under Q,

EQ(V̂n+1(θ) − V̂n(θ)|Fn) = 0 .

�
2 See annex.



2.2 Arbitrage with a Finite Horizon 47

Proposition 2.2.5. We suppose that there exists a probability measure Q
that is equivalent to P and such that the vector of discounted prices Ŝ =
(1, Ŝ1, Ŝ2, . . . , Ŝd) is a martingale under Q. Then, there are no arbitrage op-
portunities.

Proof. Since the process V̂n(θ) is a martingale for any self-financing strategy
θ, we have (using properties a and c of the conditional expectation, and the
fact that V̂0(θ) = V0(θ)):

EQ(V̂N (θ)) = EQ(V̂0(θ)) = EQ(V0(θ)) .

If the strategy has zero initial value, we have EQ(V̂N (θ)) = 0, hence θ cannot
be an arbitrage opportunity. �

We can establish the converse of Proposition 2.2.5.

Theorem 2.2.6. We suppose that there are no arbitrage opportunities. Then
there exists a probability measure Q that is equivalent to P and such that,
under Q, the vector of discounted prices is a martingale.

Proof. Let us assume that Ω is finite, with P ({ω}) > 0, for all ω ∈ Ω; we
reproduce the proof of Harrison–Pliska [178]. The proof is analogous to the
one in Chap. 1, as we are working in a space of finite dimension. Another
proof is provided in the next section.

Let C be the set of non-negative F-measurable random variables such that
E(X) = 1. This set is convex and compact.

Let Γ be the set of F-measurable random variables X, such that there
exists a self-financing strategy θ satisfying V0(θ) = 0 and X = VN (θ). The
set is a closed vector space. If there are no opportunities for arbitrage, then
Γ and C are disjoint. According to Minkowski’s theorem, there exists a linear
functional L such that

L(X) = 0 , X ∈ Γ ,

L(X) > 0 , X ∈ C .

Hence, there exists a random variable l such that

∀ X ∈ C
∑
ω∈Ω

l(ω)X(ω) > 0

∀ X = VN (θ) ∈ Γ
∑
ω∈Ω

l(ω) VN (θ)(ω) = 0 .

It follows from the first property that, ∀ ω ∈ Ω, l(ω) > 0. Let Λ =
∑

ω∈Ω l(ω)
and
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Q({ω}) =
l(ω)
Λ

.

We check that Q is equivalent to P : the only null set is the empty set.

It remains to check the martingale property. If θ∗ is a predictable process
taking values in R

d, θ∗ = (θ1
n, θ2

n, . . . , θd
n)n≤N , we can construct θ0, a process

taking values in R and such that the strategy (θ0, θ1, . . . , θd) is self-financing
and has zero initial value. By induction, it suffices to choose θ0

1 such that
θ0
1S

0
0 = −∑d

i=1 θi
1S

i
0 (zero initial value), and θ0

n+1 such that

θ0
n+1S

0
n = θ0

nS0
n +

d∑
i=1

Si
n(θi

n − θi
n+1) (self-financing condition) .

By construction (θ0, θ∗) is predictable.

Thus, writing θ = (θ0, θ∗), for all n ≤ N :

V̂n(θ) = θ0
n + θ1

nŜ1
n + · · · + θd

nŜd
n .

Using (2.2) and the equalities ∆Ŝ0
n = 0 and V̂0(θ) = 0, we obtain

V̂n(θ) =
n∑

j=1

(
θ1

j ∆Ŝ1
j + · · · + θd

j ∆Ŝd
j

)
.

Thus, using the definition of Q, we obtain, for all θ∗

EQ

( N∑
j=1

θ1
j ∆Ŝ1

j + · · · + θd
j ∆Ŝd

j

)
= EQ(V̂N (θ))

=
1
Λ

∑
ω

l(ω) V̂N (θ)(ω) = 0

and thus that EQ(θi
nŜi

n) = EQ(θi
nŜi

n−1) for any Fn−1-measurable random
variable θi

n. This is equivalent to the martingale property of Ŝi (under Q).
�

The theorem remains true in discrete time when Ω is no longer finite.
See for example Dalang, Morton and Willinger [80], Schachermayer [325], and
Kabanov and Kramkov [225].

Remark 2.2.7. In Harrison and Kreps [177] for example, one comes across the
following definition of an arbitrage opportunity: it is a self-financing strategy
such that

P (VN (θ) ≥ 0) = 1 ; P (VN (θ) > 0) > 0

and
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P (V0(θ) ≤ 0) = 1 .

We remark that the assumption on VN can be written EP [VN (θ)] > 0; VN (θ) ≥
0 P -a.s.. It is obvious that the arbitrage opportunities defined in Sect. 2.2.1
are arbitrage opportunities in the sense of Harrison and Kreps.

Theorem 2.2.6 enables us to prove the converse. We suppose that there
are no arbitrage opportunities, in the sense of Sect. 2.2.1. Then there exists a
probability measure Q under which V̂n(θ) is a martingale for any self-financing
strategy. We have V̂0(θ) = EQ(V̂N (θ) | F0). Hence, since V̂N (θ) is positive
and has strictly positive expectation (under P and under Q, as P and Q are
equivalent), we obtain that V̂0(θ) = V0(θ) is positive with strictly positive
expectation; there are no arbitrage opportunities in the sense of Harrison and
Kreps.

Definition 2.2.8. The model is arbitrage-free if there exist no arbitrage op-
portunities.

Notation 2.2.9. We denote by P the set of probability measures that are equiv-
alent to P and that make discounted prices into martingales.

2.3 Trees

Let Ω be finite with P ({ω}) > 0 for all ω ∈ Ω. We want to show that to
any filtration we can associate a tree, and that the NAO property defined
previously is equivalent to a concept of NAO at each node of the tree.

Example 2.3.1. Let Ω = {ω1, ω2, ω3, ω4, ω5}, F0 = {∅, Ω} and Fi, i = 1, . . . , 3
be the σ-algebras generated by the following partitions of Ω :

F1 = {{ω1, ω2, ω3}, {ω4}, {ω5}}
F2 = {{ω1}, {ω2, ω3}, {ω4}, {ω5}}
F3 = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}} .

To this filtration, we associate the following tree: at time 0, there is a
single node; at time 1, there are three nodes, the first corresponds to the
atom of F1, {ω1, ω2, ω3}, the second to {ω4}, the third to {ω5}. At time 2,
there are four nodes corresponding to the four atoms of F2. The two first
correspond respectively to {ω1} and to {ω2, ω3} and follow on from the time-
1 node {ω1, ω2, ω3}. Finally, at time 3, there are five nodes, one for each state



50 2 Dynamic Models in Discrete Time

of the world. The first corresponds to {ω1} and follows on from the time-1
node {ω1, ω2, ω3} and from the time-2 node {ω1}.

Thus we find that to each node of the tree, we can associate, on the one
hand its past, and on the other, the set of states of the world that follow it.

Fig. 2.1. Example 2.3.1
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•

•
•

•

•

More generally, let us suppose that we are given a filtration (Fn)N
n=0, and

let Fn be the partition of Ω induced by the non-trivial atoms of Fn. We
suppose that Fn has In elements that we denote by Ai

n, i ≤ In. To this
filtration we associate the following tree. At time 0, there is a single node.
At time 1, there are I1 nodes, each corresponding to an atom Ai

1 of F1. Each
atom of F1 is the union of atoms of F2: Ai

1 = ∪j∈Ji
1
Aj

2. The node i therefore
has J i

1 successors. At time 2, there are I2 nodes, each corresponding to an
atom of F2, and succeeding a unique node, the atom from which it emerges.
The node j of the tree at time n is the atom Aj

n of Fn.

Let j be a node of the tree at time n. We denote by ∆n(j) the set of nodes
succeeding j at time n + 1:

∆n(j) = {Al
n+1 ∈ Fn+1 | Al

n+1 ⊆ Aj
n} .

We can identify any Fn-measurable real-valued mapping with a mapping
from Fn into R. A portfolio strategy θ = (θ1, . . . , θN ) is a family of mappings
θ = (θn)N

n=1 such that θn : Fn−1 → R
d+1.
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As the price process is assumed to be adapted to the filtration, Sn is
constant on Aj

n. The prices are therefore well-defined at each node of the tree.
We denote their value at the node j and at the time n by Sn(j).

Fig. 2.2. A General Tree

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

A1
1

A1
2

A1
3

A2
j

A2
j + 1

A2
j + 2

A2
j + 3

A2
j + 4

A2
j + 5

A3
h

j A3
h + 1

A3
h + 2

2(j)

n = 0 n = 1 n = 2

Definition 2.3.2. We say that there is arbitrage on the tree if there exists
n, 0 ≤ n < N, Aj

n ∈ Fn and θn+1 ∈ R
d+1 such that one of the two following

equivalent conditions is satisfied:

1) θn+1 · (Ŝn+1 − Ŝn) ≥ 0, ∀ ω ∈ Aj
n with a strict inequality for ω ∈ Al

n+1 ∈
∆n(j),

2) θn+1 · Sn ≤ 0, ∀ ω ∈ Aj
n and θn+1 · Sn+1 ≥ 0, ∀ ω ∈ Aj

n with a strict
inequality for ω ∈ Al

n+1 ∈ ∆n(j).

Lemma 2.3.3. Conditions 1) and 2) of the previous definition are equivalent.

Proof. Let us first show that 1) implies 2). Let θn+1 satisfy 1), and let θ̃n+1

be defined by

θ̃0
n+1 = −

d∑
j=1

θj
n+1Ŝ

j
n and θ̃j

n+1 = θj
n+1, ∀j ≥ 1 .

By construction, θ̃n+1 · Sn = 0 and
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θ̃n+1 · Sn+1 = −S0
n+1

d∑
j=1

θj
nŜj

n +
d∑

j=1

θj
nSj

n+1

= S0
n+1(θn+1 · (Ŝn+1 − Ŝn)) ≥ 0, ∀ω ∈ Aj

n

with the inequality being strict for ω ∈ Al
n+1. Hence 2) holds.

Conversely, if θn+1 satisfies 2)

θ0
n+1 +

d∑
j=1

θj
n+1Ŝ

j
n ≤ 0 and θ0

n+1 +
d∑

j=1

θj
n+1Ŝ

j
n+1 ≥ 0 on Aj

n

with the inequality being strict for all ω ∈ Al
n+1. Subtracting one inequality

from the other,
θn+1 · (Ŝn+1 − Ŝn) ≥ 0, ∀ ω ∈ Aj

n

with the inequality being strict for ω ∈ Al
n+1. Hence 1) holds. �

Proposition 2.3.4. Under the assumption of NAO on the tree, there exists
a probability measure Q on Ω, which is equivalent to P , and under which
discounted prices are martingales.

Proof. Let us consider the set of nodes at time n + 1 and springing from Aj
n:

∆n(j) = {Al
n+1 ∈ Fn+1 | Al

n+1 ⊆ Aj
n} .

As there is NAO between the node j and its successor nodes, according to
Proposition 1.2.8 there exists a family of real numbers πn(Aj

n, A

n), � ∈ ∆n(j)

denoted by πn(j, �) such that

(i) πn(j, �) > 0,
(ii)

∑

∈∆n(j) πn(j, �) = 1,

(iii) Ŝi
n(j) =

∑

∈∆n(j) πn(j, �) Ŝi

n+1(�).

The πn(j, �) can be interpreted as transition probabilities between times
n and n + 1 for going between node j and its successors. Let Q be the unique
probability measure on Ω such that Q(Al

n+1) = πn(j, �)Q(Aj
n) and Q(A0) = 1.

Since Q(ω) > 0, ∀ ω, Q is equivalent to P . Relation (iii) then becomes:

Ŝi
n = EQ(Ŝi

n+1 | Fn) .

The prices, discounted by the riskless rate of return, are martingales. �

Proposition 2.3.5. There is NAO in the model if and only if there is NAO
on the tree.
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Proof. If there is NAO on the tree, then there exists a probability measure Q
on Ω under which the asset prices, discounted by the riskless rate of return,
are martingales. According to Proposition 2.2.5, there is then NAO in the
model.

Conversely, if there are no arbitrage opportunities in the model, then there
exists Q satisfying Q(An) > 0, ∀An ∈ Fn, ∀ n and under which prices,
discounted by the riskless rate of return, are martingales. Let

πn(j, �) =

⎧⎪⎨⎪⎩
Q(Al

n+1)

Q(Aj
n)

if Al
n+1 ⊆ Aj

n

0 otherwise .

As Ŝi
n = EQ(Ŝi

n+1 | Fn),

Ŝi
n(j) =

∑

∈∆n(j)

πn(j, �) Ŝi
n+1(�) .

Therefore, θn · Sn+1(l) ≥ 0 with a strict inequality for at least one l, implies
θn · Sn(j) > 0. There is NAO on the tree. �

2.4 Complete Markets with a Finite Horizon

Definition 2.4.1. A FN -measurable random variable X is said to be replica-
ble3 if there exists a self-financing strategy θ such that VN (θ) = X.

Definition 2.4.2. A market is complete if any FN -measurable random vari-
able X is replicable

In other words, a market is complete if any FN -measurable random vari-
able X satisfies X =

∑d
i=0 θi

NSi
N where θ is a self-financing strategy.

Using (2.2), it is easy to show that such a r.v. X can be written

(S0
N )−1X = V̂0(θ) +

N∑
n=1

θn · ∆Ŝn ,

which we can also write in the form

(S0
N )−1X = V̂0(θ) +

∫ N

0

θ dŜ ,

3 The words attainable and hedgeable are also used.
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where
∫ N

0
θ dŜ is defined as the integral of the step function that equals θn on

]n, n + 1], with respect to Ŝ. After a change of measure, this is a martingale
if the model is arbitrage-free.

In the next chapter, we will extend this concept to continuous-time pro-
cesses: in a complete arbitrage-free market, any FN -measurable random vari-
able can be written, after discounting, as the integral of a predictable4 process,
with respect to the discounted price process, which is itself a martingale.

2.4.1 Characterization

Proposition 2.4.3. An arbitrage-free market is complete if and only if there
exists a unique probability measure Q that is equivalent to P and under which
discounted prices martingales.

Proof. Let us first prove the direct implication:
We suppose the market to be arbitrage-free and complete, and we suppose
that P1 and P2 belong to P. Let X be a FN -measurable random variable.
There exists a strategy θ such that X = VN (θ), that is, after discounting,
such that

X

S0
N

= V̂N (θ) .

We have already remarked that V̂n(θ) is a P1-martingale (and a P2-martingale).
Hence

EPi
(V̂N (θ)) = EPi

(V0(θ)) = V0(θ) .

It follows that

EP1

(
X

S0
N

)
= EP2

(
X

S0
N

)
.

As this equality holds for all FN -measurable X, , we have P1 = P2 on FN .

Proof of the converse:

Assume that there exists a unique equivalent martingale probability mea-
sure P ∗. Let us prove that the market is complete.

We reproduce the proof of Lamberton-Lapeyre [250].
We suppose that the market is arbitrage-free, but not complete. Hence

there exists a non-replicable random variable. Then the space E of random
variables of the form:

U0 +
N∑

n=1

θn · ∆Ŝn (2.3)

4 A property of measurability, which we will come back to.
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(with U0 constant, and with (θ1
n, . . . , θd

n)1≤n≤N a predictable process), is a
strict subspace of the space of all the random variables defined on (Ω,F). En-
dow the space of random variables with the scalar product (X,Y ) → E∗(XY ).
Then there exists a non-zero X, orthogonal to E . Let us now set:

P ∗∗({ω}) =
(

1 +
X(ω)

2‖X‖∞

)
P ∗({ω})

where ‖X‖∞ = supω∈Ω |X(ω)|. Note that P ∗∗ is a probability measure
(P ∗∗(Ω) = 1 as the constant random variable equal to 1 belongs to E , and
hence, by orthogonality, E∗(X) = 0), equivalent to P , and not equal to P ∗

(as X is non-zero). As discounted prices are martingales under P ∗, we have
in addition:

EP∗∗

( N∑
n=1

θn · ∆Ŝn

)

= EP∗

( N∑
n=1

θn · ∆Ŝn

)
+

1
2‖X‖∞

EP∗

(
X

N∑
n=1

θn · ∆Ŝn

)
= 0

since Ŝn is a P ∗-martingale and X is orthogonal to E . This entails, by a
reasoning used previously, that (Ŝn)0≤n≤N is a P ∗∗-martingale, thus contra-
dicting the assumption that P ∗ was a unique equivalent martingale measure.
Hence the market is complete. �

Remark 2.4.4. Proposition 2.4.3 is true in general, even in the case of contin-
uous time. The proof then makes use of a predictable representation theorem,
and of some very subtle theorems of Jacod. We refer the interested reader
to Harrison and Pliska [179], Jacod [205], and to the articles by Delbaen and
Schachermayer, [96, 97].

2.5 Valuation

Under the hypothesis of NAO, replicable variables can be valuated.

Proposition 2.5.1. Let X be a replicable random variable, and let θ be a self-
financing strategy such that VN (θ) = X. The value of V0(θ) does not depend
on the choice of θ, and is called the value of X at time 0. We have

V0(θ) = EQ(X(S0
N )−1)

for any self-financing strategy θ and for any probability measure Q under which
discounted prices are martingales.



56 2 Dynamic Models in Discrete Time

Proof. Let θ1 = (θn,1)n≤N and θ2 = (θn,2)n≤N be two self-financing strategies
such that VN (θ1) = VN (θ2) = X. We suppose that V0(θ1) > V0(θ2). Let θ∗ be
the d-dimensional process that corresponds to the risky part of θ2 − θ1:

θ∗ := (θ1
n,2 − θ1

n,1, . . . , θ
d
n,2 − θd

n,1)n≤N

where θn,1 = (θi
n,1)i≤d (respectively θn,2 = (θi

n,2)i≤d).

As in Theorem 2.2.6, we can construct a process θ0 such that the strategy
(θ0, θ∗) is self-financing and has zero initial value. Writing (ψ0,0) for a strategy
(ψ0, 0, . . . , 0), which only involves investing in the riskless asset, and noticing
that VN is linear with respect to the strategy, we have

VN (θ0, θ∗) = VN (θ2 − θ1) + VN (θ0 − (θ0
2 − θ0

1),0)

= VN (θ0 − (θ0
2 − θ0

1),0) .

As the strategies θ1 and θ2 are self-financing, the strategy (θ0 − (θ0
2 − θ0

1),0)
also is, as it is the difference of self-financing strategies. Using the definition
of θ0,

VN (θ0, θ∗) = VN (θ0 − (θ0
2 − θ0

1),0) = (1 + r)N V0(θ0 − (θ0
2 − θ0

1),0)

= − (1 + r)N V0(θ2 − θ1) > 0 .

Thus we can obtain a strategy with zero initial value, and such that
VN (θ0, θ∗) > 0, which is impossible according to the assumption of NAO.
Hence V0(θ1) = V0(θ2). If Q1 and Q2 are two probability measures under
which discounted prices are martingales, then

EQ1(V̂N (θ)) = EQ2(V̂N (θ)) (= V0(θ))

for any self-financing strategy θ. �

Remark 2.5.2. If we know that P contains a unique measure Q, the result of
Proposition 2.5.1 is obvious, since V0(θ) = EQ(V̂N (θ).

The same proof shows that if there exists a strategy θ such that VN (θ) = 0
and V0(θ) < 0, then there exists an arbitrage opportunity. This proof will be
generalized in Chap. 3.

2.5.1 The Complete Market Case

When the market is arbitrage-free and complete, we can value all FN -
measurable random variables. We need to calculate:

EQ

(
X

S0
N

)
= V0(θ) .
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More generally, noting that V̂n(θ) is a Q-martingale, we have

Vn(θ) = S0
n EQ

(
X

S0
N

∣∣∣∣ Fn

)
.

We call Vn(θ) the price of X at time n. It is interesting to note that the
calculation depends on Q (and not on P ).

In particular, if we want to price a call with maturity N on the asset S1,
and if asset 0 is riskless and has rate of return r, then the value of the call at
time n is

Vn(θ) = (1 + r)nEQ

(
(S1

N − K)+

(1 + r)N

∣∣∣∣Fn

)
.

The value of a put at time n is

Vn(θ) = (1 + r)nEQ

(
(K − S1

N )+

(1 + r)N

∣∣∣∣Fn

)
.

We can check that the put–call parity holds, by noticing that

(Sn − K)+ = Sn − K + (K − Sn)+ .

The strategy θ that enabled us to valuate X can be interpreted as a hedging
strategy for the seller of the contract X.

More generally, we can valuate a cash flow, that is a process (Xn)N
n=1

adapted to the filtration. Its value at time n is

Vn(θ) = (1 + r)nEQ

(
N∑

t=n

Xt

(1 + r)t

∣∣∣∣Fn

)
.

2.6 An Example

2.6.1 The Binomial Model

This model was developed by Cox, Ross and Rubinstein [71]. There are two
assets:

• a riskless asset whose rate of return r is independent of the time period
and of the state of the world,

• a stock whose rate of return between the time n and the time n + 1 can
be either u, or d with d < 1 + r < u.

At time 0, the stock is worth S. At time 1, the stock can be worth either
Su or Sd, and at time 2, Su2 Sud or Sd2. The price of the stock at time n
depends only on the number of up-moves between time 0 and time n, and can
be worth Sun, Sun−1d, . . . , Sdn.
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In this model, a state of the world is a sequence of values that the stock
takes between time 0 and time N . The partition F1 has two elements, the set
of the states of the world such that the stock is worth either Su or Sd at time
1. Similarly, the partition F2 has four elements, the set of the states of the
world such that the stock is worth Su at time 1, then Su2 at time 2, Su then
Sud, Sd then Sdu and finally Sd then Sd2. At time n, Fn has 2n elements.

We can associate a tree with this model. At time n, there are 2n nodes,
and for all j and for all n, ∆n(j) has only two elements.

Fig. 2.3. Tree for the Binomial Model
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As we have shown in the previous section, if there is NAO in the model,
then there exists probability π for moving between a time-n node and its “up”
successor at time n + 1, which is independent of the node and of the instant
in time, and where, using (iii) from the proof of Proposition 2.3.4:

π =
1

u − d
{1 + r − d} .

In this binomial model, π depends neither on the instant in time, nor on the
position of the node in the tree.

As the market is complete, there exists a unique martingale measure, which
we can obtain explicitly as was done in Proposition 2.3.4. As the price of the
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stock at time n depends only of the number of up-moves between time 0
and time n, under this new measure, Sn is a random variable which has the
binomial distribution with parameters n and π:

Q(Sn = ujdn−jS) =
(

n

j

)
πj(1 − π)n−j

where (
n

j

)
=

n!
j!(n − j)!

.

2.6.2 Option Valuation

We can now compute the value of a European option. If we work with n
periods, we have

C =
1

(1 + r)n
EQ(Sn − K)+

and hence

C =
1

(1 + r)n

n∑
j=0

(
n

j

)
πj(1 − π)n−j(ujdn−jS − K)+ . (2.4)

Let us rewrite (2.4) in a slightly different form. Let

η = inf{j ∈ N | ujdn−jS − K > 0} .

If [[α]] denotes the integer part of α, that is to say the integer such that
[[α]] ≤ α < [[α]] + 1, we can see that

η =
[[

lnK/Sdn

lnu/d

]]
+ 1 where ln is the natural logarithm .

(in financial terms, η is the minimum number of up-moves that are required
over n periods in order to be “in the money”, i.e., to make a strictly positive
profit). We then have (using the definition of ( · )+)

C =
1

(1 + r)n

n∑
j=η

(
n

j

)
πj(1 − π)n−j(ujdn−jS − K) .

The coefficient d(n, j;π) =
(
n
j

)
πj(1− π)n−j represents the probability that a

random variable with the binomial distribution of parameters n and π, takes
the value j. Let us introduce the notation:

D(n, η;π) =
n∑

j=η

d(n, j;π) .

Using the definition of π and the equality 1 − πu
1+r = d−dπ

1+r , we obtain the
following result.
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Proposition 2.6.1. The price of a call option in the binomial model is given
by

C = S
n∑

j=η

nj

(
πu

1 + r

)j (
d − dπ

1 + r

)n−j

− K

(1 + r)n
D(n, η;π)

= S D

(
n, η;

πh

1 + r

)
− K

(1 + r)n
D(n, η;π) .

(2.5)

The same reasoning establishes the price of a put:

P =
1

(1 + r)n

n∑
j=0

(
n

j

)
πj(1 − π)n−j(K − ujdn−jS)+ .

We can show that the put–call parity is still satisfied.

2.6.3 Approaching the Black–Scholes Model

We would like to take the limit of (2.5) in order to approach a continuous-time
model. We study the financial market on an interval of time T . Firstly, we

suppose that we have n periods of length
T

n
, and we study a binomial model

over these n periods. Next we let n tend to infinity, whilst T stays fixed.

The Choice of Parameters

We have supposed that the coefficients u, d, r and π, which appear in (2.5), do
not depend on the period we are looking at, but they do of course depend on

the length of the period. Here, the length of each period is
T

n
. The coefficients

will thus depend on n. Let us write them un, dn, rn and πn.

If our aim is to approach the continuous-time model, we must ensure the
equality between the returns in continuous-time, and those in discrete time
when we let n → ∞. Thus we must have:

lim
n→∞

(1 + rn)n = eρT

where ρ is the instantaneous rate of return. To explain our choice of un and
dn, we need to carry out a few calculations.

We divide the interval [0, T ] up into n periods of length
T

n
. Let Sn be the

asset price evaluated in the binomial model after n periods.
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If j denotes the number of up-moves, this price is Sn(j) := Suj
ndn−j

n ,
which can be written

ln
Sn

S
= J ln

un

dn
+ n ln dn

where J is a random variable which has the binomial distribution with param-
eters n and pn, where pn denotes the probability of an up-move (we suppose
that this probability does not depend on the period). In particular, we have
E(J) = npn and Var (J) = npn(1− pn). We denote by nνn the expectation of

ln
(

Sn

S

)
, and by nσ2

n its variance.

Let ST be the asset price at time T . We require the discrete model to pro-

duce a price Sn that tends to ST in the sense that the expectation E

(
ln

ST

S

)
of the logarithm of the return on the asset is approximated by the expecta-

tion of ln
(

Sn

S

)
. Similarly, we impose an analogous condition on the variances:

Var
(

ln
ST

S

)
must be the limit of Var

(
ln

Sn

S

)
.

Using the distribution of Sn, we obtain:⎧⎪⎪⎪⎨⎪⎪⎪⎩
nνn = n

(
pn ln

un

dn
+ ln dn

)
nσ2

n = npn(1 − pn)
(

ln
un

dn

)2

.

We take pn = 1/2 for the sake of simplicity. We noticed earlier that the
price of the option did not depend on the value that this probability took.

We then impose on the coefficients un and dn to be such that nνn converges
to νT and nσ2

n converges to σ2T , where ν and σ2 represent the expectation
and variance of the “instantaneous” logarithm of the return on the asset, i.e.,

σ2T = Var
(

ln
ST

S

)
and V T = E

[
ln

ST

S

]
.

To achieve this, we can take for example,

un = eν T
n +σ

√
T
n , dn = eν T

n −σ
√

T
n . (2.6)

Proposition 2.6.2. Under the previous conditions, Sn/S converges in distri-
bution to eνT+σ

√
TG where G is a standard Gaussian variable.

Proof. Indeed,

ln
(

Sn

S

)
= J ln

un

dn
+ n ln dn

= νT +
σ
√

T√
n

(2J − n)
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The central limit theorem applied to J , which is the sum of n independent
identically distributed random variables with the Bernoulli distribution of
mean 1/2 and variance 1/4, implies that

J − n/2√
n/4

=
2J − n√

n

converges in distribution to a standard normal variable. It follows that

νT +
σ
√

T√
n

(2J − n)

converges in distribution to a Gaussian variable with mean νT and variance
σ2T . �

Limit of the Option Price

We study the behaviour of

S D

(
n , ηn;

πnun

1 + rn

)
− K

(1 + rn)n
D(n, ηn;πn)

with

ηn =
[[

ln K/Sdn
n

ln un/dn

]]
+ 1 and πn =

1 + rn − dn

un − dn
.

We produce detailed calculations for D(n, ηn;πn).
D(n, η;π) = 1−P (Yn < η) where Yn is the sum of n independent random

variables with the Bernoulli distribution with parameters π (here π depends
on n as well as on η, we omit the subscript n to lighten the notation). Then

P (Yn < η) = P

(
Yn − nπ√
nπ(1 − π)

<
η − nπ√
nπ(1 − π)

)
.

Using the definition of η and (2.6), we see that

ηn =
1
2
n +

ln K
S − νT

2σ
√

T

√
n + o(

√
n) .

Replacing πn by its value as a function of un and dn, we obtain

πn − 1
2
�

√
T

2σ
√

n

(
ρ − ν − 1

2
σ2

)
.

As a result,
ηn − nπn√
nπn(1 − πn)

converges to
ln K/S −

(
ρ − 1

2σ2
)
T

σ
√

T
.
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It remains to apply the central limit theorem. The classic version of the
theorem does not apply here, as the probability laws involved depend on n.
We can use Lindeberg’s theorem5. We can also check the result ourselves:

Proposition 2.6.3. For all n, let (X1,n;X2,n; . . . ;Xn,n) be n independent
identically distributed random variables distributed according to the probability
law P (Xi,n = 1) = 1 − P (Xi,n = 0) = πn. Let Yn =

∑n
i=1 Xi,n.

Then Yn−nπn√
nπn(1−πn)

converges in distribution (when n tends to infinity) to

the standard normal distribution.

Proof. We use characteristic functions. Let φ(t) = E(exp itX) be the charac-
teristic function associated with a random variable X. If X has zero expec-
tation and variance 1, then we have φ(t) = 1 − t2

2 + o(t2). As the random
variables Xi,n are independent,

E

(
exp it

Yn − nπn√
nπn(1 − πn)

)
=

{
E

(
exp it

X1,n − πn√
nπn(1 − πn)

)}n

.

The variables
X1,n − πn√
nπn(1 − πn)

have zero expectation and variance 1/n,

hence we can check that

E

(
exp it

X1,n − πn√
nπn(1 − πn)

)
= 1 − t2

2n
+ o

(
1
n

)
.

Hence the characteristic function of
Yn − nπn√
nπn(1 − πn)

converges to exp
(
− t2

2

)
.

�

The Black–Scholes Formula

Bringing together the results above, we obtain

D(n, ηn;πn) → 1 − φ

(
ln K/S − (ρ − 1/2σ2)T

σ
√

T

)
where

φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du .

It remains to note that 1 − φ(x) = φ(−x), to obtain

5 See Chung [58].
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D(n, ηn;πn) → φ

(
ln S/K + (ρ − 1/2σ2)T

σ
√

T

)
.

The same methods can be applied to study D(n, ηn; πnun/1 + rn).

Theorem 2.6.4. When n → ∞, under conditions (2.6), C converges to

S φ(d) − K e−ρT φ(d − σ
√

T )

with

d =
ln (S/K) + ρT

σ
√

T
+

1
2

σ
√

T .

This formula is known as the Black–Scholes formula. We will give a direct
proof of the formula in a more general setting in Chap. 3. We notice that the
limit does not depend on µ.

The Case of a Put

We obtain that the price of a put converges to

K e−ρT φ(δ + σ
√

T ) − S φ(δ)

with

δ =
ln (K/S) − ρT

σ
√

T
− 1

2
σ
√

T .

Hence we can check the put–call parity formula holds:

C = P + S − e−ρT K .

2.7 Maximization of the Final Wealth

In this section, we suppose Ω to be finite. An investor, with initial wealth x
at time 0, maximizes the expectation of a utility function of his final wealth.
More specifically, let U : R+ → R satisfy:

U1 U is strictly concave, strictly increasing, and of class C1,
U2 limx→+∞ U ′(x) = 0, limx→0 U ′(x) = ∞.

Let I :]0,∞[→]0,∞[ be the inverse of U ′. If follows from U1 that I is
strictly decreasing and continuous.

We suppose that the investor solves the following problem P:

Maximize EP

[
U (VN (θ))

]
under the contraints
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{
VN (θ) ≥ 0

V0(θ) = x

where VN (θ) = θN · SN and where θ is a self-financing strategy.

Proposition 2.7.1. There is an optimal strategy if and only if there is NAO.

Proof. If there is an arbitrage opportunity θ̃, then for any self-financing strat-
egy θ with initial value x, the strategy θ̃ + θ is a self-financing strategy with
initial value x and VN (θ̃ + θ) ≥ VN (θ) a.e. with a strict inequality on a set of
strictly positive measure. Therefore, there cannot be an optimal solution.

Conversely, let us consider the set C of positive terminal values of wealth
that the investor can achieve with a self-financing strategy:

C = {VN (θ) | VN (θ) ≥ 0, V0(θ) = x, θ self-financing } .

Let us show that the set C is the positive cone of the set

K = {VN (θ) |V0(θ) = x, θ self-financing } .

We show that

K =

{(
x +

N∑
k=1

θk∆Ŝk

)
S0

N , θ a predictable process taking values in R
d

}
.

Indeed, it follows from (2.2) that if θ is self-financing, then

V̂N (θ) = V0(θ) +
N∑

k=1

θk∆Ŝk = x +
N∑

k=1

θk∆Ŝk .

Conversely, for a given predictable process θ taking values in R
d, we define

the process θ0 by the self-financing condition

θ0
1 = x −

d∑
j=1

θj
1S

j
1, θ0

n+1 = θ0
n +

d∑
j=1

(θj
n − θj

n+1)Ŝ
j
n .

The final wealth associated with this strategy depends only on θ, and equals(
x +

N∑
k=1

θk∆Ŝk

)
S0

N .

The set K is the translation of a vector space of finite dimension, and is
therefore a closed convex set. We show that the set C is compact. As we have
NAO, there exists a martingale measure Q. According to Proposition 2.2.4,
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EQ

(
VN

S0
N

)
= x .

Since Q(ω) > 0, ∀ω, then 0 ≤ VN (ω) ≤ xS0
N

Q(ω) , ∀ω, and so C is bounded. The
function U being continuous, the optimization problem has a solution. The
optimal final wealth V ∗

N is unique, as U is strictly concave. �

Proposition 2.7.2. The optimal final wealth V ∗
N is strictly positive, and

Q(ω) =
P (ω)S0

NU ′(V ∗
N (ω))

EP (S0
NU ′(V ∗

N ))

is a martingale measure.

Proof. Let us first show that V ∗
N is strictly positive. We suppose that there

exists AN ∈ FN such that V ∗
N = 0 on AN . We denote by θ the strategy

that involves investing everything in the riskless asset up until time N : θ0
n =

x, ∀n ≥ 1, and θj
n = 0, ∀n ≥ 1, ∀j ≥ 1. We then have VN (θ) = S0

Nx. Let us
consider the strategy εθ + (1 − ε)θ∗ where θ∗N · SN = V ∗

N . We have

EP [U((1 − ε)V ∗
N + εVN ) − U(V ∗

N )] ≥ ε
[
EP (1AN

U ′[(1 − ε)V ∗
N + εVN ]VN )

+ EP (1Ac
N

U ′[(1 − ε)V ∗
N + εVN ](VN − V ∗

N ))
]

For a sufficiently small ε, the expression on the left-hand side is strictly
positive since U ′((1−ε)V ∗

N +εVN ) → ∞ on AN when ε → 0. This contradicts
the optimality of V ∗

N .

We remark that for any self-financing strategy θ with initial value x, we
have

VN (θ) = S0
N

[
x +

N∑
k=1

θk ·
(
Ŝk − Ŝk−1

)]
.

As in the proof of Theorem 2.2.6, if θ̃ is a predictable process taking values in
R

d, θ̃ = (θ1
n, θ2

n, . . . , θd
n)n≤N , we can construct θ0, a process taking values in

R and such that the strategy (θ0, θ1, . . . , θd) is self-financing and with initial
value x. Let

W (θ̃) = EP

[
U

(
S0

N

(
x +

N∑
k=1

θk · (Ŝk − Ŝk−1)

))]
.

The investor’s problem can be written as an optimization problem without
constraints:

max W (θ̃)
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θ̃ predictable,

where θj
n is Fn−1-measurable, and can be identified as a vector of R

In−1 and
where θj

n1An−1 can be identified as one of its components. As the first order
conditions are necessary and sufficient, the partial derivatives of W (θ̃) with
respect to the variables θj

n1An−1 are zero at θ∗, ∀n, ∀An−1 ∈ Fn−1, ∀j. Hence,
in particular, by differentiating with respect to θj

n1An−1 , we obtain∑
ω∈An−1

P (ω)U ′(V ∗
N (ω))S0

N (ω)(Ŝj
n(ω) − Ŝj

n−1(ω)) = 0 ,

and hence

1An−1(ω)Ŝj
n−1(ω) =

∑
ω∈An−1

P (ω)U ′(V ∗
N (ω)) S0

N (ω)Ŝj
n(ω)

∑
ω∈An−1

P (ω)U ′(V ∗
N (ω))S0

N (ω)
.

This expression holds for all An−1 ∈ Fn−1 and for all n, so we have

Ŝj
n−1 =

EP (U ′(V ∗
N )Ŝj

n | Fn−1)
EP (U ′(V ∗

N ) | Fn−1)
.

Hence, using Bayes’ rule,

Ŝj
n−1 = EQ(Ŝj

n | Fn−1)

where

Q(ω) =
P (ω)S0

N (ω)U ′(V ∗
N (ω))

EP (S0
N (ω)U ′(V ∗

N (ω)))
.

�

Proposition 2.7.3. If the market is complete and without arbitrage, then
V ∗

N = I
(

λL
S0

N

)
where Q is the unique martingale measure, where L = dQ

dP

and where λ is determined by the equation EQ

(
I
(

λL
S0

N

)
1

S0
N

)
= x.

Proof. As the market is complete, there exists a unique martingale measure
Q, and the set of positive final wealth attainable from an initial wealth of x
is therefore: {

VN | VN ≥ 0, EQ

(
VN

S0
N

)
= x

}
.

Let L = dQ
dP be the density of Q with respect to P . The investor’s problem

comes down to an optimization problem with a single constraint.

Maximize EP

[
U(VN )

]
under the contraints
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⎧⎪⎨⎪⎩
VN ≥ 0

EP

(
LVN

S0
N

)
= x

Let λ be the Lagrange multiplier associated with the problem. V ∗
N is optimal

if and only if it is the optimal solution to the problem:

Maximize EP

[
U(VN ) − λ

LVN

S0
N

]
under the constraint

VN ≥ 0

and EP

(
LVN

S0
N

)
= x. Since U ′(0) = ∞, we recover the fact that V ∗

N > 0 and

U ′(V ∗
N ) = Lλ

S0
N

. Hence V ∗
N = I( λL

S0
N

). Let us show that λ is determined by

the equation EQ

(
I
(

λL
S0

N

)
1

S0
N

)
= x. The mapping λ → EQ

(
I
(

λL
S0

N

)
1

S0
N

)
is

strictly decreasing from R+ into R+. Therefore there exists a unique λ such
that EQ

(
1

S0
N

I( λL
S0

N
)
)

= x. �

2.8 Optimal Choice of Consumption and Portfolio

In this section, we suppose once again that Ω is finite. We now suppose that
there is a single good for consumption at each date and in each state of the
world, and that this good is taken as numéraire. We assume that the investor
has initial wealth x at time 0, and maximizes the expectation of the utility of
his consumption stream. Hence he solves the problem:

max E

[
N∑

n=0

αnU(cn)

]
(where U satisfies the assumptions U1 and U2) under self-financing con-
straints that we write:

θn · Sn = cn + θn+1 · Sn, 0 < n < N

x = c0 + θ1 · S0

(2.7)

θN · SN = cN (2.8)

and
cn ≥ 0, ∀ n (2.9)

where θn is Fn−1-measurable and where cn is Fn-measurable for all n. We say
that the strategy θ finances (cn)N

n=0.
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Equations (2.7) and (2.8) are equivalent to

V0 = x − c0

V̂n = x +
n∑

k=1

θk · (Ŝk − Ŝk−1) −
n−1∑
k=0

ck

S0
k

0 < n ≤ N

VN = cN .

(2.10)

Proposition 2.8.1. There is an optimal strategy if and only if there is NAO.
The optimal consumption is unique.

Proof. We suppose that there is an optimal stream (c∗n)N
n=0 financed by θ∗,

and an arbitrage opportunity θ̃. Then the strategy θ̃ + θ∗, which finances
the stream cn, 0 ≤ n < N, cN = (θ̃N + θN ) · SN , has initial value x and
U(cN ) ≥ U(c∗N ) with the inequality being strict on a set of strictly positive
measure. Therefore, there can be no optimal solution.

Conversely, let us consider the set

C =
{
(cn)N

n=0, cn ≥ 0 ∀n | there exists θ satisfying (2.7) and (2.8)
}

.

It is a convex set. As in Proposition 2.7.1, we show that

C =
{

(cn)N
n=0, cn ≥ 0 ∀n | there exists a predictable θ ,

taking values in R
dand such that

N∑
k=0

ĉk = x +
N∑

k=1

θk(Ŝk − Ŝk−1)
}

.

The set
{

x +
∑N

k=1 θk(Ŝk − Ŝk−1), θ predictable
}

is closed, as a trans-
lated vector space; C is thus closed.

Let us show that C is also compact. As there is NAO, there exists a
martingale measure Q. Since

cN

S0
N

= x +
N∑

k=1

θk · (Ŝk − Ŝk−1) −
N−1∑
k=0

ck

S0
k

,

and

EQ

(
N∑

k=0

ck

S0
k

)
= x ,

C is bounded. As the function U is continuous, the optimization problem
has a solution. Finally, as the function U is strictly concave, the optimal
consumption stream is unique. �
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Proposition 2.8.2. The optimal consumption (c∗n)N
n=1 is strictly positive, and

Q(ω) =
P (ω)U ′(c∗N (ω))

EP (U ′(c∗N ))

is a martingale measure.

Proof. The proof of the strict positivity of the optimal consumption stream
(c∗n)N

n=0 is identical to that of Proposition 2.7.2, and is therefore omitted. We
remark that the utility associated with a self-financing strategy θ with initial
value x, is

E

[
U(x − θ1 · S0) +

N−1∑
k=1

αkU((θk − θk+1) · Sk) + αNU(θN · SN )
]

. (2.11)

As the optimal consumption stream (c∗n)N
n=0 is strictly positive, we obtain by

differentiating (2.11) with respect to θj
n1An−1 ,∑

ω∈An−1

P (ω)
[
−U ′(c∗n−1)S

j
n−1 + αU ′(c∗n)Sj

n

]
= 0, ∀ j = 0, . . . , d

and hence

αn−1Sj
n−1U

′(c∗n−1) = αnEP

(
U ′(c∗n)Sj

n | Fn−1

)
, j = 0, . . . , d . (2.12)

It follows from (2.12) that αnSj
nU ′(c∗n) is a martingale for all j = 0, . . . , d. In

particular, for j = 0, we obtain that

αn(1 + r)nU ′(c∗n) (2.13)

is a martingale, and hence that

Sj
n−1U

′(c∗n−1)
(1 + r)n−1U ′(c∗n−1)

=
EP (Sj

NU ′(c∗N ) | Fn−1)
(1 + r)NEP (U ′(c∗N ) | Fn−1)

.

In other words, applying Bayes’ rule (see annex),

Ŝj
n−1 = EQ(Ŝj

N | Fn−1) (2.14)

where
dQ

dP
=

U ′(c∗N )
E(U ′(c∗N ))

.

�
Proposition 2.8.3. If the market is complete, c∗n = I

(
λLn

αnS0
n

)
where Q is

the unique martingale measure, where L = dQ
dP , where Ln = EP (L | Fn) and

where λ is determined by the equation

N∑
n=0

EP

(
Ln

S0
n

I

(
λLn

αnS0
n

))
= x .
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Proof. As this proof is very similar to that of Proposition 2.7.3, we content
ourselves with giving its outline.

Since the market is complete, there exists a unique martingale measure Q,
and the set of non-negative consumption streams that are attainable with an
initial wealth of x is therefore:{

(cn)N
n=0, cn ≥ 0, ∀n | EQ

(
N∑

n=0

cn

S0
n

)
= x

}
.

Let LN = dQ
dP be the density of Q with respect to P on FN , and let Ln =

EP [LN |Fn]. Using EQ(Xn) = EP (LnXn) for any Fn-measurable random
variable Xn,

EQ

(
N∑

n=0

cn

S0
n

)
= EP

(
N∑

n=0

cnLn

S0
n

)
.

The investor’s problem then comes down to an optimization problem with
a single constraint:

Maximize
N∑

n=0

αnEP

[
U(cn)

]
⎧⎪⎪⎨⎪⎪⎩

cn ≥ 0, 0 ≤ n ≤ N

N∑
n=0

EP

(
cnLn

S0
n

)
= x .

Let λ be the Lagrange multiplier associated with this relation. Since c∗n > 0 we
have αnU ′(c∗n) = Lnλ

S0
n

, ∀n, and hence c∗n = I( λLn

S0
nαn ) where λ is determined

by the equation

N∑
n=0

EP

(
Ln

S0
n

I

(
λLn

αnS0
n

))
= x ,

which admits a unique solution. �

When the market is incomplete, the optimal solution can be calculated
by generalizing to a dynamic framework, the method presented in Chap. 1
Sect. 1.3. It is also possible to use the method of dynamic programming,
which we outline here.

For our exposition, we take the tree associated with the filtration (Fn)0≤n≤N .
Using the notation introduced in Sec. 2.3, we define a sequence of value func-
tions, as follows. Let x ∈ R+ represent wealth.

VN (x) = U(x)

∀AN−1 ∈ FN−1, VN−1(x,AN−1) = max U(cN−1) + αE
(
VN (θN · SN ) | AN−1

)
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under the contraints

x = cN−1 + θN · SN−1

cN−1 ≥ 0 .

We write cN−1(x,AN−1) and θN (x,AN−1) for the optimal solution of this
problem. VN−1(x,AN−1) represents the maximal utility that can be attained
at the node AN−1 of the tree, for an investor who only lives for the last period
between times N − 1 and N , has at his disposal a amount of wealth x, and
adjusts his consumption between times N − 1 and N .

∀AN−2 ∈ FN−2, VN−2(x,AN−2)

= max U(cN−2) + αE
(
VN−1(θN−1 · SN−1, . ) | AN−2

)
x = cN−2 + θN−1 · SN−2

cN−2 ≥ 0 ,

where VN−1(y, . ) is the r.v. that equals VN−1(y,AN−1) at the node AN−1.
By backward induction, we define

∀At ∈ Ft, Vt(x,At) = max U(ct) + αE
(
Vt+1(θt+1 · St+1, . ) | At

)
x = ct + θt+1 · St

ct ≥ 0 .

We denote by ct(x,At) and θt+1(x,At) the optimal solution to this problem.

The sequences
(
Vt(x,At), ct(x,At), θt(x,At)

)
0≤t≤N

are known, so we
use them to deduce the optimal consumption and portfolio:

c∗0 = c0(x), θ∗1 = θ1(x)

c∗1 =
[
c1(θ∗1 · S1, A1)

]
A1∈F1

θ∗2 =
[
θ2(θ∗1 · S1, A1)

]
A1∈F1

and at time t,

c∗t =
[
ct(θ∗t · St, At)

]
At∈Ft

θ∗t+1 =
[
θt+1(θ∗t · St, At)

]
At∈Ft

where a Ft-measurable variable is identified with the vector of the values it
takes on the atoms of time t.

Remark 2.8.4. As in Propositions 2.7.2 and 2.8.2, it is possible to show that
under the assumptions U1 and U2, ct(x,At) > 0, ∀ (t, At, x). Having
eliminated the consumption, we deduce, using the envelope theorem, that
VN1(., AN−1) is differentiable ∀ AN−1, and by backward induction, that
Vt(x,At) is differentiable ∀ At and that V ′

t (x,At) = U ′(ct(x,At)). In par-
ticular,

V ′
t (θ∗t · St, At) = U ′(c∗t ) . (2.15)
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However, at time t, once the consumption has been eliminated, the investor
solves the optimization problem without contraints

max
θt+1

U(x − θt+1 · St) + αE
(
Vt(θt+1 · St+1, ·) | At

)
.

By differentiating this expression with respect to θt+1 and using (2.15), we
recover equation (2.12):

Sj
t = αEP

(
U ′(c∗t+1)
U ′(c∗t )

Sj
t+1 | Ft

)
, j = 0, . . . , d .

2.9 Infinite Horizon

The theory that we have developed in the previous sections comes up against
a number of difficulties when the dynamic model has an infinite and countable
number of periods, even if we assume that at each date, there are only a finite
number of states of nature.

The first difficulty is linked to the fact that an investor can “roll over” his
debt indefinitely. As an illustration, let us give an example, which is due to
Pliska [301].

We consider the binomial model of Sect. 2.6.1 with an infinite horizon,
and where we suppose that u = 1, d = 0.9 and r = 0. We are going to show
that an investor can ensure that he gains 1 euro in the future, without owning
anything at time 0.

At time 0, he borrows 10 euros, which he invests in stock. At time 1, if
the price of the stock has risen, he sells his portfolio and receives 11 euros, he
repays his debt, and thus has a gain of 1 euro. If on the contrary, the price has
fallen, and the value of his portfolio is now only 9 euros, he borrows 11 euros,
which he invests in the stock, so that with what he held previously, he has
constructed a portfolio of 20 euros in stock. His debt is now 10 + 11 = 21 eu-
ros. At time 2, if the price of the stock goes up, he sells his portfolio, receives
22 euros, repays his debt and so has a gain of 1 euro. If the price goes down,
the value of the portfolio is now only 18 euros, and he borrows 22 euros (so
doubling his stake) and he now owes a total of 22 + 11 + 10 euros. At time
n ≥ 2, if the price has fallen n times, the value of his portfolio is 9× 2n−1 eu-
ros, the investor has borrowed 10 + 11(1 + · · ·+ 2n−2) = 11× 2n−1 − 1 euros,
and his net wealth is −(11 × 2n−1 − 1) + 9 × 2n−1 = −2n + 1 euros.

When there are a finite number of periods, the event “the price falls n
times running” has a strictly positive probability, and the strategy put for-
ward above is not an arbitrage opportunity. However, when there are an in-
finite and countable number of periods, the probability that the price falls
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every time is zero, and the strategy is an arbitrage opportunity.

To avoid this type of strategy, it suffices for example to impose that the
wealth be uniformly bounded below, or that strategies be uniformly bounded.

The definition of NAO runs into still more difficulties. We specify our
model, in order to explain them.

Let (Ω,F , P ) be a probability space equipped with a filtration (Fn)∞n=0

where F0 = {φ,Ω}.
As in the previous sections, there are d + 1 assets. Their prices at time n,

Sn = (S0
n, S1

n, . . . , Sd
n)T , are taken to be Fn-adapted. Asset 0 is assumed to be

riskless: S0
0 = 1, S0

n = (1 + r)n where r is the interest rate, which we assume
to be constant.

A portfolio strategy is a family θ = (θn)∞n=1 of random vectors θn =
(θ0

n, θ1
n, . . . , θd

n) such that

∀ n, ∀i ≥ 0, θi
n is Fn−1-measurable.

and ∃k > 0 such that ‖θn‖ ≤ k, ∀ n .

A portfolio strategy θ is self-financing if

θn · Sn = θn+1 · Sn, ∀ n ≥ 1 .

At first, it seems natural to generalize Definition 2.2.1 as follows:
A “finite” arbitrage opportunity is a self-financing strategy θ such that

(i) P (V0(θ) = 0) = 1,

(ii) ∃N such that P (VN (θ) ≥ 0) = 1; P (VN (θ) > 0) > 0.

It is then easy to generalize Proposition 2.2.5, and to show that if there
exists a martingale measure equivalent to P , then there are no finite arbitrage
opportunities. The following example, which we owe to Schachermayer [326],
shows that the converse is not true. In the following example, there are no
finite arbitrage opportunities, and there exists a martingale measure Q, but
it is not equivalent to P .

We consider a binomial model with an infinite horizon, and where r = 0
and Sn = Sn−1 + εn + αn, ∀n ≥ 1 with the αn being constants in
]0, 1[. We suppose that under P , the r.v. (εn)∞n=1 are independent and that
P (εn = 1) = P (εn = −1) = 1

2 , ∀ n ≥ 1.

In such a model, there exists a unique martingale measure Q defined by
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Q(εn = 1) =
1 − αn

2
, Q(εn = −1) =

1 + αn

2
, ∀ n ≥ 1 ,

where the random variables (εn)∞n=1 are independent. We then have with
ηi = ±1, 1 ≤ i ≤ n,

dQ

dP
(ε1 = η1, ε2 = η2, . . . , εn = ηn) =

n∏
i=1

(1 − ηiαi) ,

and dQ
dP |Fn

= Πn
i=1(1−εiαi). It follows from Kakutani’s theorem (see Williams

[367] p. 150) that Q is equivalent to P on F∞ if and only if
∞∑

n=1

√
1 + αn +

√
1 − αn < ∞, which is equivalent to

∞∑
n=1

α2
n < ∞. It follows from this same

theorem that unless this condition is satisfied, Q is singular with respect to
P .

Thus we are led to define a more restrictive notion of NAO. Developing
the ideas of Kreps [242] and Schachermayer [326] has shown that by giving a
good definition of NAO, we can obtain an equivalence between NAO and the
existence of an equivalent martingale measure.

Moreover, we have shown in Sects. 2.7 and 2.8 that when there are a finite
number of states of nature and periods, there is an equivalence between NAO,
the existence of an equivalent martingale measure, and the existence of an op-
timal solution to the problem of an optimal consumption–portfolio choice. We
now show that under certain assumptions, we can extend Proposition 2.8.2.

We denote by C, the set of adapted real-valued processes (cn)n≥0 such
that supn‖cn‖∞ < ∞.

As in Sect. 2.8, we suppose that there is a single consumption good at
each time and in each state of the world, and that it is taken as numéraire.
We assume that an investor, with initial wealth x at time 0, maximizes the
expectation of the utility of his consumption stream, i.e., he solves the prob-
lem:

max E

[ ∞∑
n=0

αnU(cn)

]
(with U satisfying the assumptions U1 and U2) under the self-financing con-
straits, which we write

θn · Sn = cn + θn+1 · Sn, ∀ n > 0
x = c0 + θ1 · S0 ,
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where we suppose moreover that (cn, θn+1)n≥0 ∈ Cd+2 and cn ≥ 0, ∀ n.

Proposition 2.9.1. If there is an optimal consumption stream (c∗n)∞n=1, and
if there exists m > 0 such that c∗n ≥ m, ∀n, then there exists a martingale
measure Q, which is equivalent to P , and dQ

dP = limn
U ′(c∗n(ω))

EP (U ′(c∗n)) .

Proof. The proof is analogous to that of Proposition 2.8.2. We note that the
utility associated with a self-financing strategy θ with initial value x, is

E

[
U(x − θ1 · S0) +

∞∑
k=1

αkU((θk − θk−1) · Sk)
]
, 0 < α < 1 .

By differentiating with respect to θn and proceeding as in the proof of Propo-
sition 2.8.2, we obtain that

αn(1 + r)nU ′(c∗n)

is a martingale, that U ′(c∗n(ω))
EP (U ′(c∗n)) is a martingale and that

Ŝj
n−1 = EQ̂

(
Ŝj

n | Fn−1

)
where dQ

dP |Fn
= U ′(c∗n)

EP (U ′(c∗n)) . The martingale U ′(c∗n(ω))
EP (U ′(c∗n)) is positive and uni-

formly integrable since m ≤ c∗n ≤ M, ∀n ≥ 0. It thus converges in L1(P ) to
limn

U ′(c∗n(ω))
EP (U ′(c∗n)) . Hence we have

Ŝj
n−1 = EQ(Ŝj

n | Fn), with
dQ

dP
= lim

n

U ′(c∗n(ω))
EP (U ′(c∗n))

.

�

Remark 2.9.2.

1. The assumption that c∗n ≥ m, ∀n means that (c∗n) is in the interior of l∞+ .

2. If we introduce an exogenous dividend process (dn)n∈N ∈ Cd+1 with
d0 = 0, ∀ n, we write the self-financing constraints in the form

θn · (Sn + dn) = cn + θn+1 · Sn, ∀ n > 0
x = c0 + θ1 · S0 .

We define the discounted gains process by

Ĝj
n = Ŝj

n +
n∑

k=1

d̂j
k, with d̂k =

dk

(1 + r)k
.



2.9 Infinite Horizon 77

Then, under the same assumptions and using the same notation as in
Proposition 2.9.1, we find that the discounted gains process is a martingale

Ĝj
n = EQ(Ĝj

n+1 | Fn), j = 1, . . . , d with
dQ

dP
= lim

n

U ′(c∗n(ω))
EP (U ′(c∗n))

,

which can also be written in the following form, called “Lucas’ formula”

Sj
n =

1
U ′(c∗n)

EP

( ∞∑
k=n+1

αk−nU ′(c∗k)dj
k | Fn

)
, j = 1, . . . , d .

Notes

Sect. 2.2 is heavily based on the papers Harrison and Kreps, [177], (1979)
and Harrison and Pliska, [178], (1981). Theorem 2.2.6 has been extended to
the case of an infinite number of states of nature by Dalang, Morton and
Willinger, [80], (1989). The problems of arbitrage with portfolio constraints
or with transaction costs have been studied by Jouini and Kallal, [221, 222],
(1995), Schuger, [328], (1996), Jouini and Napp [223] (2001).

The procedure for taking limits in Sect. 2.6 is due to Cox, Ross and Ru-
binstein, [71], (1979). It may be tempting to work in discrete time and obtain
results in continuous time by taking the limit of the discrete-time model. This
approach is often very difficult to implement. We refer to the book of Pri-
gent [303] (2002) for recent results. American options, superhedging under
constraints are studied in Föllmer and Schied [162] (2004).

For Sect. 2.8, we could have considered more general forms of utility func-
tion. For example, Epstein and Zin, [153], (1989) use recursive utilities, Dunn
and Singleton [130], (1986) use utilities that at time t depend both on the con-
sumption at time t and on past consumption, and Epstein and Wang, [152],
(1994) assume that agents have multiple priors over states of the world. We
can also introduce portfolio constraints or obtain an explicit solution when
the market is incomplete (see Pliska, [301], 1997).
We have not dealt with the dynamic version of the CCAPM. The reader is
referred to Huang and Litzenberger, [197], (1988). For a model with hetero-
geneous beliefs, see Jouini and Napp [220].

For the case where the state process is a Markov chain, we can consult
Duffie, [114], (1991), and for the dynamic programming and economic mod-
eling aspects, Stokey and Lucas, [346], (1989).

When the market is incomplete, one can consult Föllmer and Schied [162]
(2004) for superhedging and minimization of the hedging error.
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ANNEX 2

Conditional Expectation and Martingales

The book Chung [58] is a good reference for the definitions and properties
relating to martingales in discrete time.

Definition Let X be an integrable random variable, and let G be a sub-σ-field
of F . The conditional expectation of X with respect to G, denoted by E(X|G),
is the unique (up to an equality that holds almost surely) random variable such
that

(i) E(X|G) is a G-measurable random variable;

(ii)
∫

G
E(X|G)dP =

∫
G

XdP, ∀G ∈ G.

The conditional expectation satisfies the following properties:

Property

a. The conditional expectation is linear: if Y is integrable and if a and b are
two real numbers, E(aX + bY |G) = aE(X|G) + bE(Y |G).

b. It is increasing: if Y ≤ X, E(Y |G) ≤ E(X|G).

c. If X belongs to L2(P ), E(X|G) is the projection of X onto L2(G).

d. If X is G-measurable, E(X|G) = X.

e. E(E(X|G)) = E(X).

f. If Gi are two sub-σ-fields of F such that G1 ⊆ G2, we have

E(E(X|G1)|G2) = E(E(X|G2)|G1) = E(X|G1) .

g. If X and Y belong to L2(P ) and if Y is G-measurable:

E(XY |G) = Y E(X|G) .

h. Fatou’s lemma: if |Xn| ≤ Y where Y is integrable, and if Xn converges a.s.
to X, then E(Xn|G) converges a.s. to E(X|G).

i. Jensen’s inequality: for g a convex function, we have

E(g(X))|F) ≥ g[E(X|F)] .
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All the inequalities and equalities above hold almost surely.

Definition A sequence of r.v’s (Mn)0≤n≤N adapted to (Fn; 0 ≤ n ≤ N) is a
martingale under P if

(i) Mn is integrable with respect to P , 0 ≤ n ≤ N,

(ii) EP (Mn+1 | Fn) = Mn, 0 ≤ n ≤ N − 1,

where EP (·|Fn) denotes the conditional expectation with respect to Fn, and
where the space (Ω,F) is equipped with the probability measure P .

A sequence of random vectors Sn = (Si
n, i ≤ d) is a martingale if the

sequences (Si
n, 0 ≤ n ≤ N) are martingales. We denote by EP (Sn+1 | Fn) the

vector with components EP (Si
n+1 | Fn).

Uniform Integrability

Definition A family of random variables (Xi, i ∈ I) is said to be uniformly
integrable if

lim
a→∞

sup
i∈ I

∫
|xi|≤a

|Xi|dP = 0 .

In particular, if there exists an integrable Y such that |Xi| ≤ Y, ∀i ∈ I,
then the family (Xi, i ∈ I) is uniformly integrable.

Change of Probability Measure: the Radon-Nicodym Density

Definition Let P and Q be two equivalent probability measures on (Ω,F).
There exists a F-measurable positive random variable f such that for every

A ∈ F , Q(A) = EP (f1A). We write:
dQ

dP
= f .

Conditional Expectation

If is important to be able to express the conditional expectation of a random
variable X under Q with respect to its conditional expectation under P .

Property [Bayes’ Rule] We have

EQ(X |G) =
EP (Xf |G)
EP (f |G)

.
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The Black–Scholes Formula

In Chap. 2, we obtained the Black–Scholes formula by taking the limit of the
binomial model. In this chapter, we present two further methods for obtaining
the formula, and then show how analogous results can be obtained in a more
general framework. The financial market comprises d risky assets, and one
bond or riskless asset. Asset prices are modeled by means of a Brownian
motion, using the notion of stochastic integral.

The first section is for the benefit of readers who are not familiar with
stochastic calculus. We recall the definitions and basic results: Brownian mo-
tion, the stochastic integral with respect to Brownian motion, Itô processes,
Itô’s lemma, and Girsanov’s theorem.

We approach the issue of the NAO assumption in the second section. An
immediate warning: the equivalences obtained in Chap. 2 cannot entirely be
generalized to continuous time.

The third section is devoted to the classic Black–Scholes formula. We
present two methods for deriving it: one is based on solving partial differ-
ential equations, and the other on martingale theory. We then study how the
value of an option varies as a function of the model’s parameters.

In the fourth section, we price a financial product that pays dividends at
each date, as well as a final dividend, in a financial market comprising one
security modeled by a Markov diffusion process. We show that the arbitrage
price is a solution to a partial differential equation, and can be expressed in
terms of a conditional expectation.

Complementary probability results are to be found in the annex.

3.1 Stochastic Calculus

In this section, we recall some useful concepts and theorems from probability,
and briefly present the model that we will be using.
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We work on a finite interval of time [0, T ] and on a probability space
(Ω,F , P ). When working with several different probability measures on the
same space (Ω,F), we specify that we are working with probability measure
P (respectively Q), by saying that we are under P (respectively under Q). We
use the notation EP for the expectation under P .

3.1.1 Brownian Motion and the Stochastic Integral

We have chosen to model the random phenomena that occur, by means of
a Brownian motion. This is a process with continuous paths and stationary
independent increments. More precisely:

Definition 3.1.1. B = (Bt , t ≥ 0) is a real-valued Brownian motion starting
from 0 on (Ω,F , P ) if

a) P (B0 = 0) = 1,
b) ∀ 0 ≤ s ≤ t, the real-valued random variable Bt − Bs follows the normal

distribution with mean 0 and variance t − s,
c) ∀ 0 = t0 < t1 < · · · < tp, the variables (Btk

− Btk−1 , 1 ≤ k ≤ p) are
independent.

We also use the notation B(t) for Bt.
It can be shown that the mapping t → Bt(ω) is continuous for almost all

ω, i.e., the Brownian motion’s paths are (almost surely) continuous.

An “intuitive” approach to Brownian motion is given in Appendix A.
Merton [276] provides a justification for the use of Brownian motion.

We generalize the definition above, to obtain a Brownian motion with
values in R

k:

Definition 3.1.2. B = (Bi , i ≤ k) is a k-dimensional Brownian motion if
Bi are independent real-valued Brownian motions.

A filtration (Ft, t ≥ 0) on the probability space (Ω,F , P ) describes the
flow of information available to an investor: if A ∈ Ft, the investor knows at
time t, whether or not A has occurred. We assume that a Brownian motion
(Bt, t ≥ 0) is constructed on (Ω,F , P ) and we set FB

t = σ(Bs, s ≤ t). We
will use the augmented filtration Ft generated by FB

t and the P -null sets (for
technical reasons). This filtration is increasing, i.e., Fs ⊂ Ft for s ≤ t. We
say that a process (Xt, t ≥ 0) is Ft-adapted if Xt is Ft-measurable for any
t. We write Et(·) = E(· |Ft) for the conditional expectation of a variable with
respect to Ft.

Consider for a moment a model in which the price St of a stock is given by
a Brownian motion, so that St = Bt. If an agent owns θ(t) shares at time t,
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and trades at times tk, the value at time tK of a self-financing portfolio with
initial value x, is x+

∑K
k=1 θ(tk){B(tk)−B(tk−1)} (formula (2.1) in Chap. 2).

If we want trading to occur at any time t, we need to define a mathematical
tool allowing us to replace the sum above – which resembles a Riemann sum
– by something on which time acts continuously. We will replace it by an
integral, written

∫ T

0
θ(s) dB(s), which we call the stochastic integral of θ with

respect to B, and define as the limit (in L2) of the sum above1 (see annex).

It is easy to show that, for a fairly large class of processes θ, we can define
the stochastic integral of θ with respect to B. It soon becomes apparent that
we need to impose measurability conditions on θ: in Chap. 2 we assumed
θ(tk) to be Ftk−1-measurable, and described the resulting process as being
predictable. The concept of a predictable process2 is defined for processes
indexed by t, t ∈ R+ . In particular, a left-continuous process (such that the
mapping t �→ Xt(ω) is continuous on the left for almost all ω) is predictable.

To define the stochastic integral
∫ T

0
θ(s) dB(s), we also need integrability

conditions for θ.

Definition 3.1.3. We denote by Θ, the set of predictable processes such that∫ T

0

θ2(t) dt < ∞ a.s. .

It can be shown that the stochastic integral
∫ T

0
θ(s) dB(s) is well-defined

for θ ∈ Θ. We have of course
∫ t

s
dB(u) = B(t) − B(s).

The stochastic integral with respect to Brownian motion has an extremely
interesting property: it is a martingale3, as long as additional integrability
conditions hold.

The following result is an important tool:

Proposition 3.1.4. If θ ∈ Θ and if E
[∫ T

0
θ2(s) ds

]
< ∞, then the stochastic

integral
(
Mt =

∫ t

0
θ(s) dB(s) ; t ≤ T

)
defines a process M , which is a mar-

tingale with zero expectation and with variance E
(
M2

t

)
= E

[∫ t

0
θ2(s) ds

]
.

Exercise 3.1.5. Show that
(
B2(t) − t , t ≥ 0

)
is a martingale. One could pro-

ceed by showing that E
(
B2(t) − B2(s) |Fs

)
= t − s, and noticing that this

equals E
(
[B(t) − B(s)]2|Fs

)
.

1 For a detailed study of stochastic integrals with respect to Brownian motion, see
Chung and Williams [59], or Karatzas and Shreve [233].

2 An exact definition is to be found in the annex.
3 See annex.
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This exercise emphasizes one of the difficulties of stochastic calculus. The
formula

∫ t

0
B(s) dBs = 1

2 B2
t is obviously wrong, as it would imply that the

process equal to t is a martingale. Itô’s lemma provides explicit formulae to
use for integration. Levy’s theorem (see Revuz–Yor [307]) states that, if X is
a continuous process such that X and (X2

t − t, t ≥ 0) are martingales, then
X is a Brownian motion.

3.1.2 Itô Processes. Girsanov’s Theorem

Definition 3.1.6. The process X = (Xt, t ∈ [0, T ]) is a real-valued Itô pro-
cess, if there exists an adapted process µ(t) and a predictable process σ(t)
satisfying∫ T

0

|µ(s)|ds < ∞ P -a.s. ;
∫ T

0

σ2(s) ds < ∞ P -a.s. ,

and such that Xt = X0+
∫ t

0
µ(s) ds+

∫ t

0
σ(s) dB(s), t ∈ [0, T ], where (Bt , t ≥

0) is a real-valued Brownian motion.

The equality above is written more concisely as follows,

dXt = µ(t) dt + σ(t) dBt

X(0) = X0 ,
(3.1)

in order to develop a formal calculus that is analogous to differential calcu-
lus. The coefficient µ(t) is called the drift; σ is the diffusion coefficient (see
Appendix A for an intuitive approach).

The drift term often complicates calculations; moreover, it causes the pro-
cess to loose its martingale property: an Itô process is only a martingale when
µ ≡ 0. To revert to this case, we use Girsanov’s theorem. Under reasonable
assumptions, a change of probability measure transforms an Itô process into
a stochastic integral. Let us state the theorem – without proof – in a special
case (refer to the annex for a more general statement of the theorem, and
additional comments).

Theorem 3.1.7 (Girsanov’s Theorem). Let (Lt , t ≥ 0) be the process
defined by

Lt = exp
{∫ t

0

h(s) dBs −
1
2

∫ t

0

h2(s) ds

}
,

where (h(s), 0 ≤ s ≤ T ) is an adapted bounded process.
The process (Lt , t ≥ 0) is the unique solution4 to

dLt = Ltht dBt, L0 = 1 ,

4 Cf. the annex to Chap. 4.
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and satisfies E(Lt) = 1, ∀t ∈ [0, T ].
The process (Lt , t ≥ 0) is a martingale.
Let Q be the probability measure defined on (Ω,FT ) by Q(A) = EP (1A LT ).
Under Q, the process B∗ defined by B∗

t = Bt−
∫ t

0
h(s)ds is a Brownian motion.

In particular, if h(t) = −µ(t)σ−1(t) is bounded, the process B∗
t = Bt +∫ t

0
µ(s)σ−1(s) ds is a Q-Brownian motion, and the Itô process (Xt , t ≥ 0)

defined by (3.1) can be written

dXt = µ(t) dt + σ(t)
{
dB∗

t − µ(t)σ−1(t) dt
}

= σ(t) dB∗
t .

Thus Xt is a stochastic integral with respect to a Brownian motion under Q.
It is a Q-martingale if

EQ

{∫ T

0

σ2(s) ds

}
= EP

{
LT

∫ T

0

σ2(s) ds

}

= EP

{∫ T

0

Lsσ
2(s) ds

}
< ∞ .

It is useful to note that the Girsanov transformation alters the drift but leaves
the diffusion coefficient unchanged.

3.1.3 Itô’s Lemma

If we assume that all asset prices follow Itô processes, then we will need to
evaluate expressions of the form f(t,Xt), and to specify their dynamics. The
method for doing this is given by Itô’s lemma.

Denote by C1,2
b ([0, T ]×R , R) the set of functions f(t, x) that are continu-

ous, of class C1 with respect to t and C2 with respect to x, and with bounded
derivatives.

Lemma 3.1.8 (Itô’s lemma5).
Let f ∈ C1,2

b ([0, T ] × R , R) and let X be an Itô process:

dXt = µ(t) dt + σ(t) dB(t) .

Let Yt = f(t,Xt). Then Y is an Itô process that satisfies

dYt =
∂f

∂t
(t,Xt)dt +

∂f

∂x
(t,Xt)µ(t)dt

+
∂f

∂x
(t,Xt)σ(t)dB(t) +

1
2

∂2f

∂x2
(t,Xt)σ2(t)dt

(3.2)

5 See Appendix A for an intuitive approach.
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or, in the more concise form,

dYt =
∂f

∂t
dt +

∂f

∂x
dX(t) +

1
2

∂2f

∂x2
σ2(t)dt .

The boundedness condition on the derivatives is required for the integrals
to make sense. It can be dropped when the integrals are known to exist.
The stochastic integral will only be a martingale if the derivative of f with
respect to the space variables, is sufficiently integrable. Whilst taking a vigi-
lant approach to the validity of the results, we do not give an explicit set of
conditions, so as not to weigh down our exposition.

Remark 3.1.9. The formula above differs from that for the differentiation of a
composition of functions, which would lead to ∂f

∂t dt + ∂f
∂xdXt, by the addition

of the term 1
2

∂2f
∂x2 σ2(t)dt. However, the formula is still very straightforward to

use.

Here are two examples:

Example 3.1.10. Let

dXt = aXt dt + bXt dB(t) ,

X0 > 0 ,

where a and b are constants.
It is possible to show that Xt takes strictly positive values. This enables

us to define Yt = ln Xt where ln denotes the natural logarithm. The function
ln x does not belong to C1,2

b , but Itô’s formula remains valid nevertheless; the
stochastic integral involved is well-defined, as are the ordinary integrals. Thus
we have:

dYt = 0 +
1

Xt
aXt dt +

1
Xt

bXt dB(t) − 1
2

1
X2

t

(bXt)
2 dt

=
(

a − 1
2
b2

)
dt + b dB(t) ,

which means that (see (3.1))

Y (t) = Y0 +
∫ t

0

(
a − 1

2
b2

)
ds +

∫ t

0

b dB(s)

= lnX0 +
(

a − 1
2
b2

)
t + bB(t) .

The variable Yt is normally distributed with mean ln X0 +
(
a − 1

2 b2
)
t

and variance b2t. Hence the name “lognormal” (whose logarithm is normally
distributed) for the process X, which is also called the geometric Brownian
motion.
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Example 3.1.11. Let Xt = x +
∫ t

0
b(s) ds +

∫ t

0
σ(s) dBs and Yt = exp Xt. To

calculate dYt , set f(x) = ex. We have f ′(x) = f ′′(x) = ex. In addition,
dXt = b(t) dt + σ(t) dBt. Hence

dYt = Ytb(t) dt + Ytσ(t) dBt + 1/2Ytσ
2(t) dt

= Yt

(
dXt + 1/2σ2(t)dt

)
,

which can be expressed as d (exp Xt) = (exp Xt)
(

dXt +
1
2
σ2(t)dt

)
.

Exercise 3.1.12. Let B be a real-valued Brownian motion.
Using Itô’s lemma,and assuming the stochastic integral to be well-defined,

show that

B2(t) − t = 2
∫ t

0

B(s) dB(s) .

Exercise 3.1.13. Let X be a process satisfying

dXt = Xt (µ(t) dt + σ(t) dBt)
X0 > 0 ,

where σ(t) is assumed to be bounded. Let Yt = Xt exp−
∫ t

0
µ(s)ds. Show that

dYt = Ytσ(t) dBt.

Hence deduce that Xt = E
(
XT exp−

∫ T

t
µ(s)ds |Ft

)
.

3.1.4 Multidimensional Processes

We take a d-dimensional Itô process, that is a vector S∗ = (S1, S2, . . . , Sd)T

driven by a k-dimensional Brownian motion B = (B1, B2, . . . , Bk)T :

dSi(t) = µi(t) dt + σi(t) dB(t) , (3.3)

where σi is the row vector (σi,1, σi,2, . . . , σi,k) and where we use the matrix
notation: ∫ t

0

σi(s) dB(s) =
k∑

j=1

∫ t

0

σi,j(s) dBj(s) .

We can also write (3.3) in the form dS∗(t) = µ(t) dt + σ(t) dB(t). We
suppose that

For all (i, j), µi is an adapted process

and σi,j is a predictable process, such that∫ T

0

|µi(t)|dt < ∞ a.s.;
∫ T

0

|σi,j(t)|2 dt < ∞ a.s. .

(3.4)
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3.1.5 Multidimensional Itô’s Lemma

Let X = (X1, X2, . . . , Xd)T be a d-dimensional Itô process following

dXt = µt dt + σt dBt , (3.5)

where µt is a Ft-adapted process with values in R
d, where σt is a random and

predictable (d×k)-matrix, and where B is a k-dimensional Brownian motion,
with (µ, σ) satisfying (3.4). We write µt and σt instead of µ(t) and σ(t) to
lighten the notation6.

Notation 3.1.14. If A is a square matrix (Ai,j)i,j , we use the notation tr A :=∑n
i=1 Ai,i for the sum of its diagonal terms.

There is a generalization of Itô’s lemma to multidimensional processes:

Lemma 3.1.15. Let f ∈ C1,2([0, T ] × R
d ; R). We write fx(t, x) for the row

vector
[

∂f

∂xi
(t, x)

]
i=1,...,d

; fxx(t, x) for the matrix
[

∂2f

∂xi ∂xj
(t, x)

]
i,j

, and

write ft(t, x) =
∂f

∂t
(t, x).

Let Yt = f(t,Xt), where Xt satisfies (3.5). Then

dYt =
{

ft(t,Xt) + fx(t,Xt)µt +
1
2

tr
[
σtσ

T
t fxx(t,Xt)

]}
dt

+ fx(t,Xt)σt dBt . (3.6)

We can give a more concise form to this formula by introducing the nota-
tion L for the operator defined on C1,2([0, T ]×R

d , R), and depending on the
coefficients µ and σ of the process for X:

Lf(t, x) = ft(t, x) + fx(t, x)µt +
1
2

tr
[
σtσ

T
t fxx(t, x)

]
.

The operator L is called the infinitesimal generator of the diffusion. Using this
notation, equality (3.6) becomes

dYt = Lf(t,Xt)dt + fx(t,Xt)σt dBt .

We can also write

dYt = ft(t,Xt) +
∑

i

fxi
(t,Xt) dXi

t +
1
2

∑
i,j

fxixj
(t,Xt) dXi

tdXj
t

where the product dXidXj is evaluated using the convention dt dt = 0,
dt dBi

t = 0 and dBi
t dBj

t = δi,j dt, where δi,j is the Kronecker delta, which is
worth 1 when i = j and 0 otherwise.
6 Taking care not to confusion them with partial derivatives.
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3.1.6 Examples

a) Let (Bt , t ≥ 0) be a real-valued Brownian motion and let X be a 2-
dimensional Itô process, defined by X = (X1, X2)T where{

dX1
t = µ1

t dt + σ1
t dBt

dX2
t = µ2

t dt + σ2
t dBt .

We write this process as

dXt = µt dt + σt dBt with µt =
(

µ1
t

µ2
t

)
and σt =

(
σ1

t

σ2
t

)
.

Let Yt = X1
t X2

t . We apply Itô’s formula with f(x1, x2) = x1x2. We have

σtσ
T
t =

[
|σ1

t |2 σ1
t σ2

t

σ1
t σ2

t |σ2
t |2

]
and fxx(t, x) =

(
0 1
1 0

)
.

Hence tr
(
σtσ

T
t fxx

)
= 2σ1

t σ2
t and

dYt =
(
X1

t µ2
t + X2

t µ1
t + σ1

t σ2
t

)
dt +

(
X1

t σ2
t + X2

t σ1
t

)
dBt ,

i.e.,
d
(
X1

t X2
t

)
= X1

t dX2
t + X2

t dX1
t + σ1

t σ2
t dt .

This rule is known as integration by parts. It reads:∫ t

0

X1
s dX2

s = X1
t X2

t − X1
0X2

0 −
∫ t

0

X2
s dX1

s −
∫ t

0

σ1
sσ2

s ds .

b) Let B = (B1, B2)T be a 2-dimensional Brownian motion and let dXt =
µt dt + Σt dBt be a 2-dimensional Itô process where

µt =
(

µ1
t

µ2
t

)
Σt =

[
σ1,1

t σ1,2
t

σ2,1
t σ2,2

t

]
and Xt =

(
X1

t

X2
t

)
.

Using the expanded form:

dXi
t = µi

tdt + σi,1
t dB1

t + σi,2
t dB2

t .

We write σ1
t for the vector

(
σ1,1

t

σ2,1
t

)
and σ2

t for the vector
(

σ1,2
t

σ2,2
t

)
. We get

ΣtΣ
T
t =

[
‖σ1

t ‖2 σ1
t · σ2

t

σ1
t · σ2

t ‖σ2
t ‖2

]
where σ1 · σ2 denotes the scalar product of the two vectors.

Let Yt = X1
t X2

t . Itô’s formula leads to
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dYt = X1
t dX2

t + X2
t dX1

t + σ1
t · σ2

t dt

= X1
t dX2

t + X2
t dX1

t +
(
σ1,1

t σ1,2
t + σ2,1

t σ2,2
t

)
dt .

This rule of calculation is easy to apply: we write formally dYt = X1
t dX2

t +
X2

t dX1
t +dX1

t dX2
t and evaluate the product dX1

t dX2
t using the following

formal rules

dt dt = 0 ; dB1
t dB2

t = 0 , dBi
t dBi

t = dt .

Exercise 3.1.16. Let dSi(t) = Si(t)(rdt + σidBi(t)) be two Itô processes,
with B1 and B2 independent Brownian motions. Set S(t) =

√
S1

t S2
t .

Show that dS(t) = S(t)
(
r − 1

8 (σ2
1 + σ2

2)
)
dt +

1
2
(
σ1 dB1

t + σ2 dB2
t

)
. Fur-

thermore, show that there exists a Brownian motion B3 such that

dS(t) = S(t)(r − 1
8
(
σ2

1 + σ2
2)
)
dt +

1
2

√
σ2

1 + σ2
2 dB3

t .

Exercise 3.1.17. Suppose{
dXt = m(µ − Xt)dt + γdB1

t

dYt = a(α − Yt)dt + c
√

Yt dB2
t ,

where B1 and B2 are independent Brownian motions. Let f ∈ C1,2,2(R+×R×
R). Apply d’Itô’s formula to f(t, x, y). Show that the infinitesimal generator
of the pair (X,Y ) is

Lf(t, x, y) =
1
2
γ2f ′′

xx +
1
2
c2yf ′′

yy + m(µ − x)f ′
x + a(α − y)f ′

y + f ′
t .

Exercise 3.1.18. Suppose{
dXt = Xt(µXdt + σXdBt)
dYt = Yt(µY dt + σY dBt) ,

and let Z = X
Y . Show that dZt = Zt(µZdt + σZdBt) with µZ = µX − µY +

σY (σY − σX)T and σZ = σX − σY .

3.2 Arbitrage and Valuation

3.2.1 Financing Strategies

Let Z be a FT -measurable random variable. Can we attain Z with a financing
strategy? Let us specify our vocabulary.

We assume that there are d risky assets, whose prices Si, i ∈ {1, . . . , d}
are assumed to follow the Itô processes
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dSi(t) = µi(t) dt + σi(t) dB(t) ,

where the coefficients µ and σ satisfy conditions (3.4). Asset 0 is a riskless
asset

dS0
t = S0

t r(t) dt , S0(0) = 1 ,

where r(t) is a positive adapted process satisfying
∫ T

0
r(t) dt < ∞ a.s.. Asset

0 is said to be riskless, even when r(t) follows a stochastic process, as S0
t

is known once r is known: S0
t = exp

∫ t

0
r(s)ds. On the other hand, Sj

t is not
known explicitly, even when the coefficients µ and σ are, because the Brownian
motion is a source of randomness.

We write St for the price vector of the (d + 1) assets

St = (S0
t , S1

t , . . . , Sd
t )T ,

and S∗
t = (S1

t , . . . , Sd
t )T for the price vector of risky assets.

If θ = (θ0, . . . , θd) represents the number of stocks held of each type, that
is to say the portfolio, then the wealth at time T is given by x+

∫ T

0
θ(s)dS(s),

where x is the initial wealth and where∫ T

0

θ(s) dS(s) =
d∑

i=0

∫ T

0

θi(s) dSi(s)

=
∫ T

0

θ0(s)S0(s)r(s)ds +
d∑

i=1

[∫ T

0

θi(s)µi(s) ds +
∫ T

0

θi(s)σi(s) dB(s)
]

.

In order for the stochastic integrals involved to make sense, we need to
impose integrability conditions on θ, µ and σ, in addition to the measurability
conditions:

Definition 3.2.1. For i ≥ 1, denote by Θ(Si) the set of processes θi that are
predictable, and satisfy∫ T

0

|θi(s)µi(s)|ds < ∞ a.s. ,

∫ T

0

(θi(s))2 ‖σi(s)‖2 ds < ∞ a.s.

where the norm of vector v is defined by ‖v‖2 =
∑k

j=1 v2
j .

Denote by Θ(S0) the set of processes θ0 that are adapted, and satisfy∫ T

0
|θ0(s)| r(s)S0

sds < ∞.
We write θ ∈ Θ(S) to express {θj ∈ Θ(Sj); 0 ≤ j ≤ d}.
Definition 3.2.2. θ ∈ Θ(S) finances Z if

θt · St = θ0 · S0 +
∫ t

0

θs dSs ∀ t ≤ T , P-a.s. (3.7.i)

and θT · ST = Z P-a.s. (3.7.ii)
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Condition (3.7.i) is referred to as the self-financing condition, and is the
continuous time version of condition (2.1) in Chap. 2. Indeed, suppose that
the prices St are constant on the interval [n, n + 1[, and that θ is constant on
]n, n + 1] 7. Condition (3.7.i) can be written as

θn+1 · Sn+1 = θn · Sn +
∫ n+1

n

θs dSs = θn · Sn + θn+1 · (Sn+1 − Sn) .

Hence θn+1 · Sn = θn · Sn.

3.2.2 Arbitrage and the Martingale Measure

Definition 3.2.3. An arbitrage opportunity is a strategy that satisfies (3.7.i)
with

P (θT · ST ≥ 0) = 1
P (θT · ST > 0) > 0
P (θ0 · S0 = 0) = 1 .

In other words, θT ·ST is a positive random variable that has strictly positive
expectation.

We can replace the first two conditions by E(θT ·ST ) > 0 and P (θT ·ST ≥
0) = 1.

We work under the assumption that there are no opportunities
for arbitrage. This assumption is often replaced by the assumption:

(H) There exists a probability measure Q that is equivalent to
P and such that the vector of discounted prices St/S0

t is a Q-
martingale.

Definition 3.2.4. An equivalent martingale measure Q (EMM for short) is a
probability measure that is equivalent to P and such that, under Q, discounted
prices are martingales. Such a measure is also called a risk-neutral measure.

Let us study the link between hypothesis (H) and the assumption of NAO.

Assume that (H) holds. Suppose that we are in the case where the riskless
asset has a constant price S0

t = 1. Assume that the risky asset follows, under
Q, the stochastic differential equation

dSt = Stσ(t) dBt .

In this case, there is no arbitrage opportunity such that
EQ

∫ T

0
‖θ(s)σ(s)Ss‖2ds < ∞: under this integrability condition,

∫ t

0
θs dSs is a

Q-martingale with zero expectation. The self-financing condition is satisfied
7 The asymmetry is due to the predictable nature of the portfolio.
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under Q (P and Q are equivalent). Hence taking expectations under Q in
(3.7.i), it follows that

EQ(θT · ST ) = θ0 · S0 + EQ

[∫ T

0

θs dS1
s

]
= θ0 · S0 .

As θ0 ·S0 is F0-measurable and hence constant, it follows that θ0 ·S0 cannot be
zero when EQ(θT ·ST ) > 0, which would be the case if we had EP (θT ·ST ) > 0.

In the most general case, hypothesis (H) does not imply NAO. Suppose
now that we are in the case of a single risky asset, whose price satisfies St = Bt,
and of a bond with a constant price equal to 1. Dudley [109] showed that for
any positive and FT -measurable random variable Y, there exists a predictable
process θ1 such that

∫ T

0
θ1

s dBs = Y. We can then construct θ0 such that the
strategy (θ0, θ1) is self-financing and has zero initial value: it is enough to take

θ0
t =

∫ t

0

θ1
s dBs − θ1

t Bt .

The strategy (θ0, θ1) is then an arbitrage opportunity.

Stricker [348] showed that under (H), there does not exist an elementary
strategy that constitutes an arbitrage opportunity. An elementary strategy is
such that there exists a sequence of real numbers t0 < t1 < · · · < tp with

θs =
p−1∑
i=0

1]ti,ti+1](s)ψi

for ψi a Fti
-measurable variable.

Another way to avoid arbitrage opportunities under hypothesis (H) is to
limit ourselves to strategies θ such that Mt =

∫ t

0
θ(s) dSs is bounded below8.

In this case, (Mt , t ≥ 0) is a local9 martingale bounded below, and thus a
supermartingale under Q, and satisfies EQ(Mt) ≤ 0, t ∈ [0, T ]. This implies
NAO, for if θ were a strategy with zero initial wealth, we would have

EQ(θt · St) = EQ

(∫ t

0

θs dSs

)
≤ 0 .

The study of the converse is even more delicate. Thus, we cannot show
(H) and NAO to be equivalent in all generality. Specific references are given
in the notes.

8 Dybrig and Huang [132].
9 The definition is to be found in the annex.
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3.2.3 Valuation

As in the previous chapters, assuming that there is NAO, we will show that,
if θ and ϕ are two strategies that finance Z, then θ0 · S0 = ϕ0 · S0.

Definition 3.2.5. Under NAO, if θ is a strategy that finances Z, then θ0 ·S0

is the arbitrage price of Z and π(Z)t := θt · St is the “implicit price” of Z
at time t.

Proposition 3.2.6. Under NAO, the arbitrage price is well-defined.

Proof. Let θ and ϕ be two self-financing strategies such that θT ·ST = ϕT ·ST .
Let us show that θ0 ·S0 = ϕ0 ·S0 under the assumption of NAO. Suppose that
θ0 · S0 > ϕ0 · S0. Intuitively, we would buy a portfolio ϕ at price ϕ0 · S0, sell
θ at price θ0 · S0 and invest the difference between the two, which is positive,
in the riskless asset. At time T , we would sell ϕ and buy θ at the same price,
and make a profit from the riskless investment. More formally, let

ψt := ϕt − θt = (ϕi
t − θi

t)0≤i≤d ,

and let ψ∗, which corresponds to the risky assets, be such that

ψ∗
t = (ϕi

t − θi
t)1≤i≤d .

We can construct γ0
t such that γ = (γ0, ψ∗) is a self-financing strategy

with zero initial value: it is enough to take γ0(0) such that

γ0(0)S0(0) + ψ∗(0) · S∗(0) = 0 ,

and to construct γ0(t) as a solution to

γ0(t)S0(t) + ψ∗(t) · S∗(t) =
∫ t

0

γ0(s) dS0(s) +
∫ t

0

ψ∗(s) dS∗(s) .

This equation can be solved as a differential equation with a perturbation
function, by noticing that

∫ t

0
γ0(s) dS0(s) =

∫ t

0
γ0(s)r(s)S0(s) ds is an ordi-

nary integral. From the expressions

γ0(0)S0(0) + ψ∗(0) · S∗(0) = 0

and
ψ0(0)S0(0) + ψ∗(0)S∗(0) < 0 ,

we obtain γ0(0) − ψ0(0) > 0 .

The strategy γ −ψ is self-financing (as it is the difference of self-financing
strategies), its risky component is zero, and (γ −ψ)T ·ST = (γ0 −ψ0)(0)S0

T .
Hence γT ·ST = (γ −ψ)T ·ST +ψT ·ST = (γ −ψ)T ·ST > 0, and γ would
be an arbitrage opportunity. �

We have not studied the market’s completeness: can any random variable
Z be financed? In broad terms, the market is complete when k = d and if the
matrix σ is invertible. We will come back to this topic in the next chapter,
and in Chap. 9.
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3.3 The Black–Scholes Formula: the One-Dimensional
Case

3.3.1 The Model

Consider a first security, to be called a bond, with the price process (S0
t , t ≥ 0)

defined by the differential equation{
dS0

t = rS0
t dt , r positive and constant

S0
0 = 1 ,

and a second security, whose price (S1
t , t ≥ 0) satisfies the stochastic differen-

tial equation {
dS1

t = µS1
t dt + σS1

t dBt

S1
0 > 0 ,

where µ and σ are two constants, σ is non-zero, and (Bt, t ≥ 0) is a real-valued
Brownian motion.

In Sect. 3.2.3 we described how the existence of a probability measure,
under which the discounted price S1,a

t := e−rtS1
t is a martingale, is related to

the absence of arbitrage opportunities. Let us show that such a probability
measure exists in the model we have here.

A direct application of Itô’s lemma shows that

dS1,a
t = S1,a

t [(µ − r)dt + σ dBt] .

Girsanov’s theorem will enable us to transform (S1,a
t , t ≥ 0) into a martingale.

Let (Lt, t ≥ 0) be the process satisfying dLt = −(µ− r)σ−1LtdBt, L0 =
1.

Girsanov’s theorem shows that under the probability measure Q defined

on FT by
dQ

dP
= LT , the process (S1,a

t , t ≥ 0) satisfies dS1,a
t = S1,a

t σ dB∗
t ,

where B∗
t := Bt + (µ − r)σ−1t is a Q-Brownian motion. The probability

measure Q is equivalent to P .
Using the first part of Girsanov’s theorem, which ensures that the solution

to dXt = Xth dBt is a martingale when h is bounded, we find that S1,a is a
Q-martingale. The discounted price of the riskless asset is constant and equal
to 1, so it is also a Q-martingale!

Note that S1,a
t = exp

[
σB∗

t − 1
2
σ2t

]
, which entails that S1,a

t (and hence

S1
t ) is positive.

Under Q, the risky asset’s price satisfies
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dS1
t = S1

t (r dt + σ dB∗
t ) .

We call Q the risk-neutral measure (the measure that is neutral with respect
to risk), as under Q the two assets have the same expected rate of return r.

Theorem 3.3.1. In a model with two assets

dS0
t = rS0

t dt , dS1
t = µS1

t dt + σS1
t dBt ,

there exists a probability measure Q that is equivalent to P , and such that
discounted prices are martingales under Q.

We now take a random variable Z = g
(
S1

T

)
where g is a non-negative function,

and we seek to obtain its implicit price. In the case where g(x) = (x−K)+ =
max(x − K , 0), we are looking at a European option with strike price K.

Definition 3.3.2. A European call option (a European option to buy) is a
contract that gives the right (but not the obligation) to buy at time T (the
maturity) a stock at price K (the strike or exercise price), which is fixed when
the contract is signed.

If S1
T ≥ K, the option enables its owner to buy the asset at price K and

then sell it immediately at price S1
T : the difference S1

T − K between the two
prices is the realized gain. If S1

T < K, the gain is zero.

3.3.2 The Black–Scholes Formula

Let C1,2([0, T ] × R+ , R) be the set of functions f from [0, T ] × R+ into R,
and of class C1 with respect to t and C2 with respect to x.

We suppose that there exists C ∈ C1,2([0, T ] × R+ , R) such that

π(Z)t = C(t, S1
t ) , t < T

g(x) = C(T, x) , x ∈ R+ .

Let Yt = C(t, S1
t ). From Itô’s lemma:

dYt =
(

µ S1
t Cx(t, S1

t ) + Ct(t, S1
t ) +

1
2
σ2(S1

t )2 Cxx(t, S1
t )
)

dt

+ σS1
t Cx(t, S1

t )dBt (3.8)

where

Ct =
∂C

∂t
, Cx =

∂C

∂x
, Cxx =

∂2C

∂x2
.

Using the notation L for the infinitesimal generator of the diffusion (St, t ≥ 0),
defined on C1,2([0, T ] × R+ , R) by
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LC = µxCx + Ct +
1
2
σ2x2 ∂2C

∂x2
,

we can rewrite (3.8) as

dYt = LC(t, S1
t )dt + σS1

t Cx(t, S1
t ) dBt . (3.9)

Suppose that there exists a strategy θ that finances Z. We have not yet
shown that such a strategy exists, but we will construct one shortly. The
strategy θ is represented by a pair (α, β) where α (respectively β) is the
number of bonds (respectively risky assets) held.

Thus, if St = (S0
t , S1

t ):

θt · St = αtS
0
t + βtS

1
t

= θ0 · S0 +
∫ t

0

θs dSs

= α0S
0
0 + β0S

1
0 +

∫ t

0

αs dS0
s +

∫ t

0

βs dS1
s

= C(t, S1
t ) = Yt ,

hence a new expression for dYt is:

dYt = αt dS0
t + βt dS1

t

= rαtS
0
t dt + βt

(
µS1

t dt + σS1
t dBt

)
=

(
rαtS

0
t + µβtS

1
t

)
dt + σβtS

1
t dBt . (3.10)

Comparing (3.9) and (3.10), and identifying dt terms, we obtain

LC(t, S1
t ) = rαtS

0
t + µβtS

1
t . (3.11)

Identifying the coefficients of dBt, we have

σS1
t Cx(t, S1

t ) = σβtS
1
t , (3.12)

and we still have
αtS

0
t + βtS

1
t = C(t, S1

t ) . (3.13)

From (3.12) we draw
βt = Cx(t, S1

t ) ,

which we substitute into (3.13) to get

αt =
{
C(t, S1

t ) − S1
t Cx(t, S1

t )
} (

S0
t

)−1
.

Thus we have obtained a financing strategy for Z as a function of its
implicit price. By substitution into (3.11),
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LC(t, S1
t ) = r

[
C(t, S1

t ) − S1
t Cx(t, S1

t )
]
+ µCx(t, S1

t )S1
t .

After replacing LC with its full expression, and carrying out simplifica-
tions, this last equality can be written

rS1
t Cx(t, S1

t ) + Ct(t, S1
t ) +

1
2
σ2(S1

t )2Cxx(t, S1
t ) = rC(t, S1

t )

t ∈ [0, T ] ; P-a.s. (3.14)

with of course
C(T, S1

T ) = g(S1
T ) a.s. .

It is important to note that µ does not appear in (3.14).

We can easily show that, whilst (3.14) a priori holds for all t, and for
almost every ω, it is also satisfied when we replace S1

t by x with x > 0, since
the support of the law for S1

t is [0,∞].

Hence, we find that C satisfies the parabolic equation10 :

⎧⎪⎪⎨⎪⎪⎩
rx Cx(t, x) + Ct(t, x) +

1
2
σ2x2Cxx(t, x) = r C(t, x) ,

x ∈]0,∞[ , t ∈]0, T [ ,

C(T, x) = g(x) , x ∈]0,∞[ (boundary condition) .

(3.15)

Let us summarize the results:

Theorem 3.3.3. Let (S0
t , t ≥ 0) be the price of a bond dS0

t = rS0
t dt, and let

(S1
t , t ≥ 0) be the price of the risky asset satisfying dS1

t = µS1
t dt + σS1

t dBt.
Let Z = g

(
S1

T

)
be a positive random variable, with π(Z)t as its implicit price.

We assume that there exists C ∈ C1,2([0, T ] × R+, R) such that

π(Z)t = C(t, S1
t ) , t < T

g(x) = C(T, x) , x ∈ R+ .

Then C satisfies the parabolic equation⎧⎪⎪⎨⎪⎪⎩
rx Cx(t, x) + Ct(t, x) +

1
2
σ2x2Cxx(t, x) = r C(t, x) ,

x ∈]0,∞[ , t ∈]0, T [ ,

C(T, x) = g(x) , x ∈]0,∞[ .

(3.15)

A strategy θ that finances Z is given by θ = (α, β) where

αt =
{
C(t, S1

t ) − S1
t Cx(t, S1

t )
} (

S0
t

)−1

βt = Cx(t, S1
t ) .

10 The boundary condition is fixed at the final point in time, which is not the case
with the classical types of parabolic equations.
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In general, it is not straightforward to obtain an explicit solution to the
parabolic equation above. Probabilistic calculations provide an expression for
its solution.

Suppose x and t to be fixed, and Zx,t
s to be the process indexed by s,

(t ≤ s ≤ T ), and defined by

Zx,t
s = x + r

∫ s

t

Zx,t
u du + σ

∫ s

t

Zx,t
u dBu .

Zx,t
s is initialized at point x at time t: Zx,t

t = x. After time t, it follows the
same dynamics as dZ(u) = rZudu + σZudBu.

We have the following result, known as the Feynman-Kac formula 11:

Theorem 3.3.4. For a positive-valued function g ∈ C2(R) such that g, g′ and
g′′ are all Lipschitz12, the function

C(t, x) := E
[
e−r(T−t) g(Zx,t

T )
]

(3.16)

is the unique Lipschitz solution to (3.15).

Remark 3.3.5. In the case of European option “pricing”, g(x) = (x−K)+ does
not satisfy the theorem’s regularity conditions at the point x = K. However
the theorem’s result can be extended to piecewise regular, Lipschitz functions.

A good exercise involves checking that the theorem implies that our choice
of α and β is satisfactory, in that (α, β) is admissible (i.e., the pair belongs
to Θ(S)) and finances g(S1

T ). We can show that the model is complete, that
is to say, that there exists a financing strategy for any square integrable FT -
measurable random variable Z. This result requires new probabilistic tools
(the representation theorem) and will be discussed in the next chapter.

3.3.3 The Risk-Neutral Measure

We are going to give another valuation method, which involves working un-
der the risk-neutral probability measure Q defined by dQ = LT dP (see
Sect. 3.3.1).

We have seen that under Q, the risky asset’s price satisfies

dS1
t = S1

t (r dt + σ dB∗
t ) .

If we construct a portfolio as in (3.13),
11 The proof of this result rests on Itô’s lemma and on the martingale properties of

stochastic integrals. See Sect. 5 of the annex.
12 A function g is Lipschitz on R if there exists k > 0 such that |g(x)−g(y)| ≤ k|x−y|

for all x, y.
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Yt = αtS
0
t + βtS

1
t ,

we can check that under Q

dYt = αtS
0
t r dt + βtS

1
t (r dt + σ dB∗

t )
= Ytr dt + dMt ,

where (Mt, t ≥ 0) is defined by dMt = βtS
1
t σ dB∗

t . Under integrability con-
ditions, (Mt, t ≥ 0) is a martingale. This implies (using Itô’s lemma) that
(e−rtYt, t ≥ 0) is a martingale13 (equal to Mt up to a constant). Hence we
get (from the martingale property) :

e−rtYt = EQ(e−rT YT | Ft)

and, using the fact that the process (St, t ≥ 0) is Markov,

Yt = C(t, S1
t ) = EQ(e−r(T−t)g(S1

T ) | Ft) .

Theorem 3.3.6. The implicit price of g
(
S1

T

)
is given by

EQ

[
e−r(T−t) g

(
S1

T

)
| Ft

]
where Q is the risk-neutral measure.

In particular, at time t = 0

C(0, x) = EQ

[
e−rT g(S1

T )
]

= EP

[
e−rT g(ZT )

]
where (Zt, t ≥ 0) satisfies dZt = Zt (r dt + σ dBt) , Z0 = x , and we recover
formula (3.16).

For a general time t, elementary calculations involving conditional expec-
tations lead to the same result as (3.16), using the fact that under Q

S1
T = S1

t exp
[
r(T − t) + σ(B∗

T − B∗
t ) − 1

2
σ2(T − t)

]
.

We can easily recover the hedging portfolio, by applying Itô’s lemma to
C(t, S1

t ). Indeed,

dC(t, S1
t ) =

∂C

∂t
(t, S1

t ) dt +
∂C

∂x
(t, S1

t ) dS1
t +

1
2

(S1
t σ)2

∂2C

∂x2
(t, S1

t )dt .

Using the fact that e−rtC(t, S1
t ) is a martingale, and setting the coefficient of

the dBt term to zero, we recover partial differential equation (3.15). We can
decompose C(t, S1

t ) into

C(t, S1
t ) = αtS

0
t + βtS

1
t

where αt = {C(t, S1
t ) − S1

t Cx(t, S1
t )}(S0

t )−1 and βt = Cx(t, S1
t ). It is enough

to transfer the values of α and β into the expression for dC to check that α , β
is indeed a self-financing hedging portfolio.
13 This is a generalization of the results of Chap. 2.
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3.3.4 Explicit Calculations

In our model, the coefficients r and σ being constants, we can take the calcu-
lations further, using equation (3.16).

We saw (Example (3.1.10)) that a process satisfying

dZs = rZs ds + σZs dBs

has a lognormal law. Here, if the initial point in time is t, then the logarithm
of Zx,t

s is distributed according to N
[
log Zx,t

t +
(
r − 1

2σ2
)
(s − t) , σ2(s − t)

]
,

or alternatively, Z = exp U where U is normally distributed.

Hence we calculate

E
[
e−r(T−t) g(Zx,t

T )
]

= e−r(T−t) E
[
g(Zx,t

T )
]

= e−r(T−t)

∫ +∞

−∞
g(eu) fT−t(u) du ,

where fT−t(u) is the probability density function of the normal distribution
with mean

log x +
(
r − 1

2
σ2
)
(T − t)

and variance σ2(T − t).

When g has an explicit form, we can develop these calculations further.
Let us take the case g(x) = (x − K)+.

Let φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du =

1√
2π

∫ +∞

−x

e−u2/2 du. Using the ex-

pression

∫ +∞

−∞
g(eu)fT−t(u) du

=
∫
{u>ln K}

eu fT−t(u) du − K

∫
{u>ln K}

fT−t(u) du ,

we obtain

C(t, x) = x φ

(
1

σ
√

T − t

{
ln
( x

K

)
+ (T − t)

(
r +

σ2

2

)})
− Ke−r(T−t)φ

(
1

σ
√

T − t

{
ln
( x

K

)
+ (T − t)

(
r − σ2

2

)})
, (3.17)

with C(T, x) = (x − K)+. Hence we obtain the same formula as in Sect. 2.6.
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Theorem 3.3.7 (The Black–Scholes Formula). The price of a call is
given by

C(0, x) = xφ(d1) − K e−rT φ(d2)

where

d1 =
1

σ
√

T

{
log

( x

K

)
+ T

(
r +

σ2

2

)}
, d2 = d1 − σ

√
T .

We also have

C(t, x) = xφ (d1(t)) − K e−r(T−t) φ (d2(t))

where

d1(t) =
1

σ
√

T − t

{
ln

( x

K

)
+(T−t)

(
r +

σ2

2

)}
, d2(t) = d1(t)−σ

√
T − t .

Exercise 3.3.8. Rework the previous calculations as follows.

a. Write ST = St exp Y where St and Y are independent. Determine the
distribution of Y .

b. Show that if U follows a normal distribution with mean m and variance
σ2 under Q, then Q(eU > u) = φ((m − lnu)/σ) and EQ(eU1U>u) =
em+σ2/2φ(m + σ2 − u).

c. Thence deduce the value of C(0, x) and of C(t, x).

These results can be generalized to the case where r, µ and σ are deter-
ministic functions of t. Then we obtain:

C(t, x) = xφ (d1(t)) − Ke−
∫ T

t
r(s)ds φ (d2(t))

C(T, x) = (x − K)+

where

d1(t) =
{

ln
( x

K

)
+
∫ T

t

(
r(s) +

σ2(s)
2

)
ds

} {√∫ T

t

σ2(s)ds

}−1

d2(t) =
{

ln
( x

K

)
+
∫ T

t

(
r(s) − σ2(s)

2

)
ds

} {√∫ T

t

σ2(s)ds

}−1

.

Exercise 3.3.9. Establish the Black–Scholes formula for the price P (t, x) of
a put (the option to sell) where g(x) = (K − x)+. Establish the so-called
put–call parity formula C(t, x) = P (t, x) + x − Ke−r(T−t).
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Exercise 3.3.10. Assume that the coefficients r and σ are time-dependent.
Write Rt

T = exp
[
−
∫ T

t
r(s)ds

]
and Σ2(t, T ) =

∫ T

t
σ2(s)ds. Let Φm,Σ2 be the

normal probability density function of mean m = ln(x/Rt
T )−Σ2(t, T )/2 and

variance Σ2(t, T ). We want to evaluate g(S1
T ).

Show that C(t, x) = Rt
T

∫
R

g(ey)Φm,Σ2(y) dy and, by differentiating under

the integral sign, that
∂C

∂x
(t, x) =

∫
R

g′(ey+Σ2(t,T )/2)Φm,Σ2(y) dy.

3.3.5 Comments on the Black–Scholes Formula

We have established that the price of a call with strike K and maturity T is
given, in the case of constant coefficients, by:

C(0, x) = x φ(d1) − K e−rT φ(d2) (3.18)

where d1 and d2 depend on the parameters x, K, T , r and σ:

d1 =
1

σ
√

T

{
log

( x

K

)
+ T

(
r +

σ2

2

)}
; d2 = d1 − σ

√
T .

We note that C(0, x) is a homogeneous function of degree 1 in (x,K).

Dependence of C on x

It is interesting to see how the call price evolves as a function of the underlying

asset’s price, i.e., to evaluate
∂C

∂x
. This is called the delta, and is a generaliza-

tion of the ∆ of Sect. 1.1.5 of Chap. 1. It is the amount of risky asset held in
the hedging portfolio, which is made up of the underlying asset and the bond
(see Theorem 3.3.3 ).

Intuitively, if the market rate of the underlying asset increases, then so
does that of the call option.

Differentiating (3.18), a straightforward but tedious calculation, shows

that
∂C

∂x
= φ(d1). Another approach involves writing C(0, x) as E(e−rT (Zx,0

T −
K)+) (as in (3.16)). Since

Zx,0
T = x exp

[(
r − 1

2
σ2
)
T + σBT

]
(Example 3.1.10) ,

we get

C(0, x) = E
(
x exp

(
σBT − 1

2
σ2T ) − e−rT K

)+
= E

(
x exp

(
−σBT − 1

2
σ2T ) − e−rT K

)+
,
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as BT has the same distribution as −BT . We differentiate the expression under
the expectation sign.

The derivative of the integrand equals exp
(
−σBT − 1

2σ2T
)
1BT ≤d2

√
T ,

except at points such that BT = d2

√
T , which constitute a negligible set.

Thus we obtain

∂C

∂x
= E

[
exp

(
−σBT − 1

2
σ2T

)
1BT ≤d2

√
T

]
.

Defining the probability measure P ∗ by dP ∗ =
[
exp (−σBT − 1

2σ2T )
]

dP , we
get

∂C

∂x
= P ∗(BT ≤ d2

√
T ) = P ∗

[
BT + σT ≤ (d2 + σ

√
T )

√
T
]

= P ∗
[

B∗
T√
T

≤ d2 + σ
√

T

]
= φ

(
d2 + σ

√
T
)

= φ(d1)

since B∗
t = Bt +σt is a Brownian motion under P ∗. The term φ(d1) is positive

(and smaller than 1) so that when the stock price increases, the call price
(premium) also increases. A one euro change in the market rate of the stock
corresponds to a delta euro change in the price of the call.

Sensitivity to Volatility

The option buyer speculates, and the greater the fluctuations in the price of
the underlying, the more he is prepared to pay for the option. Let us check
that this intuition holds.

When a financial product satisfies the stochastic differential equation

dS1
t = µS1

t dt + σS1
t dBt ,

it is customary to say that σ represents the volatility of the product. Intu-
itively, σ represents the typical deviation of dS1

S1 , and is linked to the risk
that the asset carries (the higher the coefficient, the greater the impact of the
random term). Applying Itô’s lemma to C(t, S1

t ) yields

dCt =
∂C

∂t
dt +

∂C

∂x
dS1

t +
1
2

(σS1
t )2

∂2C

∂x2
dt

=
(

∂C

∂t
+

∂C

∂x
µS1

t +
1
2

(σS1
t )2

∂2C

∂x2

)
dt +

∂C

∂x
σS1

t dBt ,

so that the volatility of the call is
1
C

∂C

∂x
S1σ, which we can write as vc =

S1

C
∂C
∂x vS . Setting η =

S1

C
∆, we find that the volatility of the call is propor-

tional to the volatility of the underlying stock: vc = ηvS . This generalizes the
discrete-time result.
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Moreover, we have seen that

dCt

Ct
= µc dt + σc dBt ,

with

µc =
1
Ct

(
∂C

∂t
+

1
2

(σS1
t )2

∂2C

∂x2
+

∂C

∂x
µS1

t

)
;

that is, taking into account the differential equation for C,

µc =
1
Ct

(
rCt − rS1

t

∂C

∂x

)
+

1
Ct

∂C

∂x
µS1

t ,

hence

µc − r =
S1

t

Ct

∂C

∂x
(µ − r) ,

which is a generalization of the results of Sect. 1.1.5.
Notice that

η =
S1

C

∂C

∂x
=

S1φ(d1)
S1φ(d1) − Ke−rT φ(d2)

≥ 1 .

The option carries greater risk than the underlying asset.

The Market Portfolio

We define a market portfolio as a portfolio made up of one bond and one
stock. Its value at time t is Mt = S0

t + S1
t , hence

dMt =
(
rS0

t + µS1
t

)
dt + σS1

t dBt ,

which we can write
dMt

Mt
= µM dt + σM dBt .

Recall that Covt(X,Y ) = Et(XY ) − Et(X)Et(Y ). Using the Itô process
notation (in which we identify dXt with ∆Xt, as is explained in the appendix)
and assuming that X1 and X2 satisfy

dXi
t = µi dt + σi dBt ,

we get
Covt

(
dX1

t ,dX2
t

)
= σ1σ2 .

It follows that

Covt

(
dMt

Mt
,
dS1

t

S1
t

)
=

σ2S1
t

S0
t + S1

t

and hence that

µS − r =
(

Covt

(
dM
M , dS1

S1

)
Vart dM/M

)
(µM − r) .
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The Gamma

In practice, the delta’s sensitivity in the variations of the underlying market
rate is an important parameter for risk management. We introduce the gamma
of an option, which is the derivative of the delta with respect to the stock price,

that is
∂2C

∂x2
.

As
∂C

∂x
= φ(d1) , and since φ′(d1) = 1√

2π
exp−d2

1
2 ,

∂2C

∂x2
=

1
xσ

√
T

φ′(d1) =
1√

2πTσx
exp−d2

1

2
.

Therefore, the price of a call is a convex function of the price of the underlying.

Time to Maturity

Time has a very significant effect on options reaching maturity. Indeed, we
have

C(t, S1
t ) = S1

t φ [d1(t)] − Ke−r(T−t) φ [d2(t)] ,

with

d1(t) =
1

σ
√

T − t

{
log

x

K
+ (T − t)

(
r +

σ2

2

)}
and ∂2C

∂x2 (t, S1
t ) = 1

S1
t σ

√
T−t

φ′ [d1(t)] ; this last expression tends to 0 as t tends
to T .

The greater the time to expiry, the higher the price of the call. Therefore,

it is useful to evaluate the price’s sensitivity to time, that is to calculate
∂C

∂τ
,

setting τ = T − t.

∂C

∂τ
= xφ′(d1)d′1(τ) + rKe−rτφ(d2) − Ke−rτφ′(d2)d′2(τ) .

Notice that

φ′(d2) = φ′(d1) e−σ2 τ
2 eσ

√
τd1 =

x

K
φ′(d1) erτ

and
d′2(τ) = d′1(τ) − σ/2

√
τ ,

so that
∂C

∂τ
= rKe−rτφ(d2) + Ke−rτφ′(d2)σ/2

√
τ ,

i.e.,
∂C

∂τ
=

xσ

2
√

τ
φ′(d1) + Ke−rτrφ(d2) ,

which is positive. The price of a call is an increasing function of maturity.

Exercise 3.3.11. Show that the price of a call is a convex and decreasing
function of the strike price.
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3.4 Extension of the Black–Scholes Formula

We are now going to generalize the formula obtained in the previous section
to the multidimensional case with stocks paying dividends.

3.4.1 Financing Strategies

The market comprises (d + 1) assets: one bond (riskless) and d stocks. The
price vector of the (d + 1) assets is denoted by St, and that of the d risky
assets, by S∗

t .

We suppose that asset i, including the bond, pays a dividend. We write
(Di

t, i ≥ 0) for the dividend paid by one share of asset i up until time t.

We call the process G : Gt = St + Dt the gains process. We assume G to
be an Itô process. In formal terms, the total gain of a portfolio θ (capital plus
dividend) is given by∫ t

0

θ(s) dGs :=
∫ t

0

θ(s) dSs +
∫ t

0

θ(s) dDs .

However, we only assume the existence of
∫

θ dG, that is we impose that θ
belongs to Θ(G).

Definition 3.4.1. Let Z be a positive-valued FT -measurable variable. We say
that θ ∈ Θ(G) finances Z if

θt · St = θ0 · S0 +
∫ t

0

θ(s) dG(s) t ∈ [0, T ] ; a.s.

θT · ST = Z a.s. .

We can generalize this definition by adding a dividend rate to Z.

Definition 3.4.2. Let Z ∈ FT and let (ζt, t ≥ 0) be a Ft-adapted process such
that

∫ T

0
|ζ(s)|ds < ∞ a.s.. We say that θ ∈ Θ(G) finances (ζ, Z) if

⎧⎪⎨⎪⎩ θt · St = θ0 · S0 +
∫ t

0

θ(s) dG(s) −
∫ t

0

ζ(s) ds , t ∈ [0, T ] ; a.s.

θT · ST = Z a.s. .

We can also interpret ζ in terms of consumption (see Chaps. 4 and 8) or in
terms of refinancing costs (see 2.4). The amount θ0 ·S0 is the implicit price at
time 0 of (ζ, Z). Under NAO, this price only depends on (ζ, Z). The implicit
price at time t is π(ζ, Z)t = θt · St.

If there is a riskless asset with return r, the discounted gain is the process
Gd defined by Gd

t = RtSt +
∫ t

0
RsdDs. It is easy to show that if θ finances

(ζ, Z), and if we use the notation Vt = θt · St, we get
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RtVt = θ0 · S0 +
∫ t

0

θ(s) dGd(s) −
∫ t

0

R(s)ζ(s) ds .

In particular, if Gd is a Q-martingale, we obtain

RtVt = EQ

(
RT VT +

∫ T

t

R(s)ζ(s)ds |Ft

)
.

3.4.2 The State Variable

We now assume that the economy is described by a state vector Yt ∈ R
d,

satisfying the stochastic differential equation

dYt = ν(t, Yt) dt + η(t, Yt) dBt (3.19)

where (Bt, t ≥ 0) is a given m-dimensional Brownian motion, ν is a function
from [0, T ] × R

d with values in R
d, and η is a function from [0, T ] × R

d with
d × m-matrix values.

We suppose that ν and η are measurable, and Lipschitz in x, uniformly
with respect to t. This ensures that there is a unique14 process Y satisfying
(3.19).

We assume that the prices of risky assets are functions of Yt, so that

S∗
t = Y(t, Yt) ,

where Y is a function of C1,2([0, T ] × R
d, Rd) such that the matrix Yy =(

∂Yi

∂yj

)
i,j

is invertible. This assumption corresponds to the fact that the mar-

ket is complete, and will enable us to obtain the existence of a portfolio that
finances a terminal value.

The bond is assumed to have a constant price S0
t = 1.

The dividend processes are given by the rates, and are assumed to be
functions of Yt :

dDt

dt
= (r(t, Yt) , δ(t, Yt) ) ,

where r(t, y) represents the short term interest rate, and δ(t, y) ∈ R
d is the

dividend rate.

14 For precise information on stochastic differential equations and on the concepts
of the existence and uniqueness of their solutions, one can refer to Rogers and
Williams [315], Karatzas and Shreve [233], or Øksendal [294].
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3.4.3 The Black–Scholes Formula

We consider financing strategies for (ζ, Z) in the case

ζt = ∆(t, Yt) where ∆ : [0, T ] × R
d → R

Z = g(YT ) where g : R
d → R .

We assume that there exists a function C ∈ C1,2([0, T ] × R
d , R) such

that π(ζ, Z)t = C(t, Yt), and a portfolio θ that finances (ζ, Z). We want to
determine C. Let

Vt := π(ζ, Z)t = θt · St .

Using the fact that θ finances (ζ, Z), we obtain

dVt = θt dGt − ∆(t, Yt)dt = θt dSt + θt dDt − ∆(t, Yt)dt

= αt dS0
t + βt dS∗

t + {αtr(t, Yt) + βt · δ(t, Yt)}dt − ∆(t, Yt)dt

for θt = (αt, βt) with αt ∈ R, βt ∈ R
d.

We use Itô’s lemma to calculate dS∗
t , noticing that dS0

t = 0 since S0
t = 1.

Thus, taking L to be the infinitesimal generator associated with Y ,

dVt = {βt · [LY(t, Yt) + δ(t, Yt)] + [αtr(t, Yt) − ∆(t, Yt)]} dt

+ βt · Yy(t, Yt) η(t, Yt) dBt . (3.20)

Moreover, from Vt = C(t, Yt) we obtain

dVt = LC(t, Yt)dt + Cy(t, Yt) · η(t, Yt) dBt . (3.21)

Identifying the coefficients of dBt in (3.20) and (3.21) yields:

βt · Yy(t, Yt) = Cy(t, Yt) ,

and hence, as Yy is invertible,

βT
t = CT

y Y−1
y

and C(t, Yt) = αt + βt · S∗
t = αt + Cy · Y−1

y S∗
t . Hence

αt = C − Cy · Y−1
y S∗

t .

We now identify the dt coefficients in (3.20) and (3.21), and substitute in
the above expressions for αt and βt. It follows that

Cy · Y−1
y (LY + δ − rS∗

t ) = ∆ + LC − rC .

We now look for an explicit expression for the operator L, which depends
on the coefficients ν and η of the process for Y . For d = 1, writing Yyy for the

matrix with components
(

∂2Y
∂yi ∂yj

)
i,j

, we get
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Cy · Y−1
y

(
Yyν + Yt +

1
2

tr (ηηT Yyy) + δ − rS∗
t

)
= ∆ − rC + Cyν + Ct +

1
2

tr (ηηT Cyy) .

(For d > 1, the term tr (ηηT Yyy) is defined as a vector whose coordinates
correspond to the components of Y).

Setting

γ(t, Yt) = −Y−1
y (t, Yt)

{
Yt(t, Yt) +

1
2

tr (ηηT Yyy(t, Yt)) + δ − rY(t, Yt)
}

,

and cancelling out the Cyν terms, we find that

Cyγ + Ct +
1
2

tr (ηηT Cyy) = rC − ∆ .

Denote by L̂ the operator

L̂C = Cyγ + Ct +
1
2

tr
(
ηηT Cyy

)
.

The function C is a solution to the partial differential equation

L̂C − rC = −∆ , (3.22)

and is subject to the boundary condition

C(T, y) = g(y) . (3.23)

We can obtain representations of solutions to (3.22) and (3.23) by applying
the Feynman-Kac formula:

Theorem 3.4.3. Under regularity conditions15, the unique solution to (3.22)-
(3.23) is given by

C(t, y) = E

{∫ T

t

e−φ(s) ∆
(
s,W y,t

s

)
ds + e−φ(T ) g

(
W y,t

T

)}
where the process W y,t

s is the unique solution to{
dW y,t

s = γ(s,W y,t
s ) ds + η(s,W y,t

s ) dBs

W y,t
t = y ,

and where φ(s) =
∫ s

t
r(u,W y,t

u ) du.
15 We need to impose regularity conditions (differentiability and growth conditions)

on C to obtain the uniqueness of the solution. To have the existence and unique-
ness of the solution, it is enough for all the functions involved to be C2, Lipschitz
and with Lipschitz first and second order derivatives. We can refer to Krylov [245]
or to Varadhan [358].
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The function C represents the implicit price of a financing strategy for
(ζ, Z) in the case where ζt = ∆(t, Yt) and Z = g(YT ).

Remark 3.4.4. The results of Theorem 3.4.3 still hold when T is a stopping
time. This sort of problem occurs in the pricing of American options, where
we are dealing with a free boundary problem.

When ∆ depends on the whole history of the process, the results are still
valid, but we no longer have a PDE.

3.4.4 Special Case

We are going to write the Black–Scholes formula in the special case where
S∗

t = Yt is a one dimensional process that we write S1. We assume that

dS1(t) = µ(t, S1
t ) dt + σ(t, S1

t )dBt .

In this case, the implicit price of a financing strategy for (ζ, Z) when ζt =
∆(t, S1

t ) and Z = g(S1
T ) is the unique solution to

L̂C − rC = −∆ ,

subject to the boundary condition

C(T, x) = g(x) ,

where
L̂C = r(t, x)xC ′

x + C ′
t +

1
2
σ(t, x)C ′′

xx .

The solution can be written in the form

C(t, x) = E

{∫ T

t

e−φ(s) ∆(s,W x,t
s )ds + e−φ(T ) g(W x,t

T )
}

where W x,t
s is the unique process solution to{

dW x,t
s = W x,t

s r(s,W x,t
s ) ds + σ(s,W x,t

s ) dBs

W x,t
t = x ,

and where φ(s) =
∫ s

t
r(u,W x,t

u ) du.

3.4.5 The Risk-Neutral Measure

Let us return to the general case, and show that we can also obtain the results
of Theorem 3.4.3 by using the concept of the risk-neutral probability measure.

A risk-neutral probability measure Q is such that the discounted gains
process
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Gd
t = RtSt +

∫ t

0

RsdDs

is a Q-martingale. Let θ be a financing strategy for (ζ, Z) and let Vt = θt ·Gt .
We have

RtVt +
∫ t

0

Rsζs ds = V0 +
∫ t

0

θs dGa
s .

If
(∫ t

0
θsdGd

s, t ≥ 0
)

were a Q-martingale (which would be the case under inte-

grability conditions placed on θ), we would have RtVt = EQ

(
Z +

∫ T

t
Rsζsds |Ft

)
.

To determine Q, we note that

dGd
t = Rt

[(
∂Y
∂t

+ ν
∂Y
∂y

+
1
2
η2 ∂2Y

∂y2
+ δ − rY

)
(t, Yt)

]
dt

+
(

η
∂Y
∂y

)
(t, Yt) dBt .

Let

h(t, Yt) =
(

∂Y
∂t

+ ν
∂Y
∂y

+
1
2
η2 ∂2Y

∂y2
+ δ − rY

)
(t, Yt)

[
η

∂Y
∂y

]−1

(t, Yt) ,

and let Q be the measure that is equivalent to P and is defined by Girsanov’s
probability density16 dLt = −htLtdBt. This probability measure is such that

dB̃t = dBt + htdt

is a Q-Brownian motion. Under Q the state variable has the dynamics

dYt = −
(

∂Y
∂t

+
1
2
η2 ∂2Y

∂y2
+ δ − rY

)
(t, Yt)

[
∂Y
∂y

]−1

(t, Yt) dt

+ η(t, Yt) dB̃t .

As a result, the price of a financing strategy for (∆(t, Yt), g(YT )) is

C(t, y) = EQ

{∫ T

t

e−φ(s) ∆(s,Ws)ds + e−φ(T ) g(WT ) |Wt = y

}
where Ws solves

dWs = γ(s,Ws) ds + η(s,Ws) dB̃s , W t
t = y

with φ(s) =
∫ s

t
r(u,Wu) du and

γ(s, x) = −
(

∂Y
∂t

+
1
2
η2 ∂2Y

∂y2
+ δ − rY

)
(t, x)

[
∂Y
∂y

]−1

(t, x) .

16 Under integrability conditions, which do in fact hold if all the parameters, func-
tions and their partial derivatives are bounded.
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3.4.6 Example

Take the case of 3 assets, with r = 0, ∆ = 0, D = 0, and with B, a 2-
dimensional Brownian motion. We assume that

St = Y(Yt, t) = Yt and g(YT ) = max (Y 1
T − Y 2

T , 0) ,

where Y satisfies an equation of the same type as (3.19). We assume that

dY 1
t = ν1

t dt + σ1Y 1
t dBt

dY 2
t = ν2

t dt + σ2Y 2
t dBt ,

where σ1 and σ2 are constant vectors. This corresponds to the option to
exchange one unit of asset 1 for one unit of asset 2 at time T .

The generalized Black–Scholes equation is then written Ct+ 1
2 tr(ηηT Cyy) =

0, and the process W y,t
s satisfies dW y,t

s = η(W y,t
s )dBs where

η(y1, y2) =
[
σ1,1y1 σ1,2y1

σ2,1y2 σ2,2y2

]
with σi =

[
σi,1

σ1,2

]
.

Then
C(t, y) = C(t, y1, y2) = y1φ(d1) − y2φ(d2) ,

where
φ(x) =

1√
2π

∫ x

−∞
e−u2/2 du ;

d1 = log
{

y1

y2
+

1
2
V 2(T − t)

}
1

V
√

T − t
,

d2 = d1 − V
√

T − t ; V 2 = ‖σ1 − σ2‖2 .

3.4.7 Applications of the Black–Scholes Formula

To summarize, the Black–Scholes formula has enabled us to draw out two
concepts.

Asset Prices

A financial agent wants to sell (δ, Z). What price is he willing to accept?
Meanwhile, a buyer would pay at most C(t, Yt); for at a higher price than
C(t, Yt), he could find a strategy that would give him a greater gain than Z.



114 3 The Black–Scholes Formula

Hedging Strategies

In order to receive a cash flow (δ, Z), we must be prepared to incur risks.
We can hedge ourselves against these risks, by following the strategy θt =
(−at,−bt) that finances (−δ,−Z). To implement this strategy, we have to
pay out −a0S

0
0 − b0 · S∗

0 initially. This is the hedging cost.

In this model, we have not taken into account transaction costs or other
market imperfections (e.g., portfolio constraints).

Notes

Chung and Williams [59], (1983), is a good reference book for stochastic inte-
gration. Protter [304], (2005), contains numerous results on stochastic integra-
tion and stochastic differential equations, in great generality. Readers that are
more interested in Brownian motion, can refer to Karatzas and Shreve [233],
(1991), Rogers and Williams [315], (1988), and to Revuz and Yor [307], (1999),
who study it in detail. The Feymann-Kac formulae that we have used, are cov-
ered by Varadhan [358], (1980), Krylov [245] (1980), and Rogers and Williams
[315], (1988). A detailed study of the links between partial differential equa-
tions and stochastic calculus is carried out in Varadhan [358], (1980), and in
Karatzas and Shreve [233], (1991). The reader can also refer to Øksendal [294],
(1998), which is an excellent first approach to all of these issues and to Shreve
[338], (2004), Mikosch [278],(1999), and Steele [345],(2001), for stochastic cal-
culus “with finance in view”

We have contented ourselves with models whose price processes are con-
tinuous. Stochastic processes involving jumps are introduced in Merton [275],
(1976). Models with jumps, in which asset prices are modeled by Poisson pro-
cesses, are to be found in Jeanblanc-Picqué and Pontier [215], (1990), and in
Lamberton and Lapeyre [250], (1997). Extensions to general processes with
jumps are given by Aase and Øksendal [1], (1988), Shiryaev [336], (1999),
Madan [261], (2001), and are presented in detail in Cont and Tankov [64],
(2004), the collective Deutsche Bank book [295], (2002), and in the forthcom-
ing book of Jeanblanc et al. [216].

More general set–ups (the price process as a semi-martingale) are studied
by Föllmer and Sonderman [163], (1986) and Schweizer [330] (1991). For a
general approach, see Shiryaev [336] (1999).

The classic work concerning the options market is the Cox and Rubin-
stein book [72], (1985), which contains numerous notes and interesting ref-
erences. Kat [235], (2001), provides varied and up-to-date applications. The
book Jarrow and Rudd [213], (1983), is very accessible, and takes an intuitive
approach to the stochastic calculus. The series of Wilmott’s books [369, 370],
(1998, 2001) presents an interesting and accurate practitioner’s approach, as
do Overhaus et al. [295], (2000), and Brockhaus et al. [46], (2000).
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The Black–Scholes formula, which originated in Black and Scholes, [37],
(1973), has since been studied by many authors: one of the first articles was
Merton’s [274], (1973); later Harrison and Pliska [179], (1983), studied the
formula using stochastic calculus, drawing their inspiration from the discrete-
time methods of Cox et al. [71], (1979).

We have only looked at the case of European options. American options
(giving the right to exercise at any time between 0 and maturity) are covered
in Karatzas [229], (1988), Lamberton and Lapeyre [250], (1997) as well as in
Elliott and Kopp [149], (1998). The options literature is extensive, due to the
diversity of options available. We will return to this topic in Chap. 9.

An altogether different problem is that of valuation in the presence of
transaction costs or of constraints. It is no longer possible to replicate the
option. The problem of valuation with transaction costs has been addressed
by Bensaid, Lesne, Pagès and Sheikmann [27], (1992), in discrete time, and
by Davis, Panas and Zariphopoulou [89], (1993) and Cvitanić [32, 74], (1996,
2001), in continuous time.

We have only looked at pricing in the case of complete markets. When
there is financing strategy for a product, its valuation is straightforward. In
the opposite case (the incomplete market case) the problem is much harder.
We will come back to it in Chap. 8.

The Black–Scholes formula only produces an explicit result when the coef-
ficients (r and σ) are deterministic. When volatility is random, the market is
in general incomplete. A presentation of such models can be found in Fouque
et al. [164], (2000). El Karoui and Jeanblanc-Picqué [139], (1991), show that
if we can put deterministic bounds on the volatility, then we can deduce a
price range and a hedging strategy.

The study of the relationship between arbitrage and the existence of a
probability measure that is equivalent to P and turns discounted prices into
martingales, was taken on by Harrison and Kreps [177], (1979), and by Harri-
son and Pliska [178], (1981), in a space Ω that has a finite number of elements,
and in discrete time. A good approach to the problem in continuous time is
to be found in the book Müller [284], (1987).

We have shown that in discrete time, the assumption of no arbitrage is
equivalent to the existence of a probability measure Q, equivalent to the his-
toric probability P , and under which discounted prices are martingales (a mar-
tingale measure). The same is not true in continuous time. In the continuous-
time case, we need to introduce restrictions on the strategies that we use (see
Dalang et al. [80], (1989); Morton [281], (1989), Delbaen and Schachermayer
[96, 97, 98], (1993,1994, 2005), Kabanov [224], (2001), Xia and Yan [372],
(2001).

Arbitrage with constraints and/or transaction costs are studied in Ka-
banov and Stricker, [227], (2002).
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More generally, various authors been interested in models with asset prices
driven by semi-martingales. The reader can consult for example Shiryaev [336],
(1999), for a general presentation and references.

The link between market completeness and the uniqueness of the martin-
gale measure has been studied by Harrison and Pliska [179], (1983). Further
information can be found in Björk [34], (1998), Bingham and Kiesel [33],
(1998), Shiryaev [336], (1999).
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ANNEX 3

In this annex, we present definitions and precise results pertaining to mar-
tingales, the stochastic integral, stochastic differential equations, and to the
link between partial differential equations and stochastic calculus, without
carrying out any proofs.

Let (Ω,F , P ) be a probability space, let (Bt)t≥0 be a real-valued Brownian
motion and let Ft = σ(Bs , s ≤ t) be its natural filtration completed by the
addition of null sets. Recall that a process X such that for all t, the random
variable Xt is Ft-measurable, is said to be adapted. A process is said to be
continuous if for P -almost all ω, the mapping t → Xt(ω) is continuous.

1 Martingales

Definition (Mt, t ≥ 0) is a martingale with respect to the filtration Ft if

• (Mt, t ≥ 0) is a Ft-adapted process,
• Mt is integrable for all t, that is to say that E(|Mt|) < ∞,
• Mt = Et(Ms), when 0 ≤ t ≤ s, where Et denotes the conditional expecta-

tion with respect to Ft.

(Mt, t ≥ 0) is a supermartingale with respect to the filtration Ft if

• (Mt, t ≥ 0) is a Ft-adapted process,
• Mt is integrable for all t,
• Mt ≥ Et(Ms), when 0 ≤ t ≤ s.

If (Mt, t ≥ 0) is a martingale, then E(Mt) = E(M0), ∀t.
If (Mt, t ≤ T ) is a martingale, the process is fully determined by its final

value: Mt = E(MT |Ft).
If M is a martingale, then for any adapted bounded process ψ,

E

(
MT

∫ T

0

ψ(s) ds

)
= E

(∫ T

0

Msψ(s) ds

)
.

(Check this holds for any step–function ψ, and use limits).

We need a weaker notion of martingale: that of a local martingale. Let us
define this new object.

Definition A stopping time is a random variable T : Ω → R+ such that
(T ≤ t) ∈ Ft , t ∈ R+. A local martingale (Mt)t≥0 is an adapted process such
that there exists a sequence of stopping times Tn satisfying

Tn ≤ Tn+1 ; Tn −→
n→+∞

+∞ ,

and such that for any n, (Mt∧Tn
)t≥0 is a martingale.
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When working with local martingales, we can revert to the study of mar-
tingales, by introducing the sequence Tn. Some of the properties that are true
for t ∧ Tn, hold true when n → ∞. We then say that we are working by
localization.

A martingale is a local martingale, this follows from Doob’s optional sam-
pling theorem:

Theorem Let M be a continuous martingale and let T be a stopping time.
The process MT = (MT

t = Mt∧T , t ≥ 0) is a martingale.
If M is a uniformly integrable martingale, if S and T are two stopping

times such that S ≤ T , then E(MT |FS) = MS.

Proposition If M is a continuous positive local martingale then it is a
supermartingale.

Proof. As (Mt, t ≥ 0) is a local martingale , there exists a sequence of stopping
times Tn such that, for all n, E(Mt∧Tn

|Fs) = Ms∧Tn
. Let n tend to infinity.

We can apply Fatou’s lemma for conditional expectations, as M is positive.
It follows, using the continuity of M , that:

Ms = lim
n→∞

E(Mt∧Tn
|Fs) ≥ E( lim

n→∞
Mt∧Tn

|Fs) = E(Mt|Fs) .

�
A continuous semi-martingale17 is a continuous process (Xt, t ≥ 0) such

that Xt = Mt + At where M is a continuous local martingale and A is a
continuous process of finite variation.

2 The Itô Integral

To define the stochastic integral of a process with respect to Brownian
motion, we start by defining

∫ t

0
h(s) dBs when h is a “elementary” process:

Definition We say that h is an elementary process if there exist (ti)i≤n ;
0 = t0 < t1 < · · · < tn such that

h(t) = h0 1[t0,t1](t) +
n−1∑
i=1

hi 1]ti,ti+1](t) ,

where for any i, hi is a bounded Fti
-measurable random variable .

The elementary processes play the role of step–functions.

Definition Let h be an elementary process. We define the random variable
I(h), denoted

∫∞
0

h(s) dBs, by

17 See Revuz and Yor [307] p. 121.
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I(h) =
n−1∑
i=0

hi

[
Bti+1 − Bti

]
.

We define the process It(h), also denoted
∫ t

0
h(s) dBs, by I(h) := I

(
h 1[0,t]

)
.

Property Let h be an elementary process. The following properties hold:

a) the process (It(h), t ≥ 0) is a continuous martingale,
b) the process (I2

t (h) −
∫ t

0
h2(s) ds, t ≥ 0) is a continuous martingale,

c) E(I2
t (h)) = E

[∫ t

0
h2(s) ds

]
.

These properties are easy to prove using the elementary properties of Brow-
nian motion and of conditional expectations. Property c) follows from b), and
shows us that the mapping h → I(h) is an isometry from the space of elemen-
tary processes equipped with the norm L2(Ω×[0,∞[ , P×dt) into L2(Ω,F , P ).
Using the sets’ density, we can extend the isometry:

Definition Let Λ be the set of processes h such that there exists a sequence
hn of elementary processes that converge to h in L2(Ω × [0, T ] , dP × dt).

For h ∈ Λ, define

I(h) = lim
n→∞

I(hn)

It(h) = I
(
h 1[0,t]

)
.

The isometry property shows that I(h) is well-defined, and that we have:

Property For h ∈ Λ, (It(h) , t ≥ 0) and
(
I2
t (h) −

∫ t

0
h2(s) ds , t ≥ 0

)
are

continuous martingales.

It remains to determine a class of processes that is a subset of Λ.

Definition A process h is said to be predictable if it is measurable with respect
to the σ-field on (Ω × R+) generated by left-continuous adapted processes.

This σ-field is also generated18 by sets of the form ]s, t]×As where As ∈ Fs,
and {0} × A0 where A0 ∈ F0.

Property Λ contains predictable processes h such that E
[∫∞

0
h2(s) ds

]
< ∞.

We now recall the properties of the stochastic integral that are used most
frequently.

Property
We suppose that the processes h and g belong to Λ. We write It(h) =∫ t

0
h(u)dBu. The following properties hold:

18 See Chung and Williams [59] Chap. 3.
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a) The martingale property.I(h) is a martingale:

E

(∫ t

0

h(u)dBu|Fs

)
=

∫ s

0

h(u)dBu , ∀s ≤ t .

In particular E(It(h)) = 0.
b) The increasing process associated with It(h): The process({∫ t

0
h(u)dBu

}2

−
∫ t

0
h2(s)ds, t ≥ 0

)
is a martingale. Equivalently, the

increasing process associated with It(h) is
∫ t

0
h2(s)ds.

Thence we deduce that the variance of It(h) is
∫ t

0
E(h2(s)))ds.

Similarly we have

E

(∫ t

0

h(u) dBu

∫ t

0

g(u) dBu

)
= E

(∫ t

0

h(s)g(s) ds

)
.

Note that Λ contains the left-continuous processes belonging to L2(Ω ×
[0,∞[ , P × dt). In fact, when we integrate with respect to Brownian motion,
Λ contains the adapted, measurable (i.e., such that (t, ω) → h(t, ω) is BR ×
F-measurable) processes belonging to L2(Ω × [0,∞[ , P × dt). Predictable
processes were introduced to enable us to define the concept of stochastic
integration with respect to any square-integrable martingale.

The integrability condition placed on h is very strong. We would like to
weaken it, to the detriment of some of the properties of our stochastic integral.
Fortunately, the loss is not a serious one.

Definition Let Θ(B) be the set of predictable processes such that∫ t

0

h2(s) ds < ∞ P-a.s. for any t ∈ R+ .

By considering the stopping times Tp = inf
{
t > 0 ,

∫ t

0
h2(s) ds > p

}
, we

can define the martingale
∫ t∧Tp

0
h(s) dBs. It is enough to let p tend to infinity

to obtain the following result:

Proposition For h ∈ Θ(B), the process
∫ t

0
h(s) dBs is a local martingale.

3 Girsanov’s Theorem

We are going to study the influence of certain changes of probability mea-
sure on Gaussian variables, in order to gain a better understanding of the
workings of Girsanov’s Theorem.
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a) Gaussian Variables

Let X be a normally distributed random variable with expectation E(X)
and variance VarX. The Laplace transform of X is

E(eλX) = exp(λE(X) + 1/2λ2 Var X) .

A family of random variables is said to be Gaussian, if any linear combi-
nation of these random variables is also Gaussian.

The limit of Gaussian variables is Gaussian. In particular,
∫ t

s
Xudu is a

Gaussian variable if the family (Xu, s ≤ u ≤ t) is Gaussian.
If (X,Y ) is a Gaussian vector, the distribution of X conditional on Y

is a Gaussian distribution with expectation E(X |Y ) and with the condi-
tional variance as its variance. It follows that E(eλX |Y ) = exp(λE(X |Y ) +
1/2λ2 VarY X).

b) Change of Measure for a Gaussian Variable

Proposition Let X be a Gaussian variable with mean m and variance σ2.
Let L = exp

[
h(X − m) − 1

2h2σ2
]

where h is a constant. The variable L is
positive, has expectation 1, and defines a probability density function: let Q be
such that dQ = LdP . Under Q, the variable X is a Gaussian variable with
variance σ2 and mean m + hσ2.

Proof. We give an explicit expression for the density of X under Q, by eval-
uating

EQ(f(X)) = EP (Lf(X))

=
1√
2πσ

∫
R

f(x) exp
(

h(x − m) − 1
2
h2σ2 − (x − m)2

2σ2

)
dx

=
1√
2πσ

∫
R

f(x) exp− 1
2σ2

(x − m − hσ2)2dx .

The density of X under Q is then

1√
2πσ

exp− 1
2σ2

(
x − m − hσ2

)2
,

which proves the proposition. �

c) Change of Measure

Recall that two probability measures P and Q defined on (Ω,F) are equiv-
alent if P (A) = 0 ⇔ Q(A) = 0.

• The Radon–Nikodym density:

Let P and Q be two equivalent probability measures. There exists a pos-
itive F-measurable random variable f , such that Q(A) = EP (f1A). We

use the notation
dQ

dP
= f .



122 3 The Black–Scholes Formula

• Conditional expectation:

It is important to be able to express the conditional expectation of a
variable X under Q, with respect to its conditional expectation under P .
We have

EQ(X |G) =
EP (Xf |G)
EP (f |G)

.

d) The Brownian Motion Case

It is easy to show that if B is a Brownian motion, then the process(
exp(λBt −

λ2

2
t), t ≥ 0

)
is a martingale, for any λ. The converse can eas-

ily be obtained, using the fact that the equality E
(
eλX |G

)
= E

(
eλX

)
implies

the independence of X and G. This result can be generalized: if Xt = µt+σBt

then exp
(
λXt − (µλ + 1

2σ2λ2)t
)

is a martingale for any λ, and conversely.
Using these properties, and the change of measure rule for conditional

expectations, we can check that if Xt = µt + σBt, and if Q is defined on FT

by dQ = LT dP with

Lt = exp
(

γXt − (µγ +
1
2
σ2γ2)t

)
,

then the process Xt can be written as

Xt =
(
µ + γσ2

)
t + σB̃t ,

where B̃ is a Q-Brownian motion.

e) Girsanov’s Theorem

It is easy to prove that a similar result to that of paragraph b) holds for
a Gaussian vector, and easy to convince oneself that Girsanov’s theorem is
valid when the process h is elementary.

Remark Let L(h) be the martingale exponential, defined in Girsanov’s theo-
rem by Lt(h) = 1 +

∫ t

0
Ls(h)hs dBs, and let Q be the measure defined on FT

by Q(A) = EP (1ALT ). This measure has total mass 1 as LT has expectation
1. Moreover, if A ∈ Ft we have Q(A) = EP (1ALt). Indeed, using the prop-
erties of conditional expectation, and the martingale property of Lt, we get
EP (1ALT ) = EP [1AEP (LT |Ft)] = EP (1ALt).

Let us now state the multidimensional version of Girsanov’s Theorem.

Theorem Let B = (B1, B2, . . . , Bd)T be a d-dimensional Brownian motion.
Let ht = (h1

t , h
2
t , . . . , h

d
t ) be a predictable process such that∫ T

0

‖hs‖2 ds < ∞ P-a.s. .
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The process

Lt(h) := exp
∫ t

0

h(s) dBs −
1
2

∫ t

0

‖hs‖2 ds

satisfies Lt(h) = 1+
∑d

i=1

∫ t

0
Ls(h)hi

s dBi
s; it is a continuous local martingale.

If E(LT (h)) = 1, then the process L(h) is a martingale, and Q(A) =
E(1ALT ) defines a probability measure on (Ω,FT ) such that Q(A) = E(1ALt)
for A ∈ Ft.

The process (B∗
t = Bt −

∫ t

0
hs ds, 0 ≤ t ≤ T ) is a (Ω,Ft, Q) Brownian

motion.

Remark It is enough for h to be adapted and to belong in L2(dt), for then we
know how to define the stochastic integral with respect to Brownian motion.

If h is bounded, we can show that E(LT (h)) = 1. In fact, for this last

condition to hold, it is sufficient to have E

(
exp

1
2

∫ T

0

‖hs‖2 ds

)
< ∞ (the

Novikov condition). Improved sets of conditions are to be found in Karatzas
and Shreve [233].

f) The Martingale Exponential

We can show that if Mt is a continuous, strictly positive martingale (with
respect to a Brownian filtration), then there exists qt such that

∫ t

0
q2(s)ds <

∞, a.s. and Mt = exp
(∫ t

0
q(s)dBs −

1
2

∫ t

0

q2(s)ds

)
.

4 Stochastic Differential Equations

A stochastic differential equation is an equation of the form

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dBs ,

or in the condensed form

dXt = b(t,Xt)dt + σ(t,Xt)dBt . (1)

The data of the problem is given by b, σ, the space Ω, the Brownian motion
B, and the initial condition X0, which we take to be constant. The unknown
is the process X. The problem, as in the case of ordinary differential equa-
tions, is to show that when certain conditions are imposed on the coefficients,
differential equation (1) has a unique solution, in the sense that two solutions
are equal a.s.. We say that X is a diffusion.

It is also a Markov process: let Xs,x
t be the solution to (1) with the initial

condition at time s: (Xs,x
s = x). For t ≥ s, we have
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E(f(Xt)|Fs) = Φ(Xs) ,

where Φ(x) = E (f(Xs,x
t )).

Theorem We assume that the coefficients b and σ are Lipschitz in x, and
this uniformly with respect to t. That is, we assume that there exists K such
that for any t ∈ [0, T ], x ∈ R, y ∈ R

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ K|x − y| ,

|b(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + |x|2) .

Then there exists a unique solution to differential equation (1).

In particular, if we want to solve the stochastic differential equation dXt =
Xt θt dBt, X0 = 1, the unique solution is

Xt = exp
[∫ t

0

θs dBs −
1
2

∫ t

0

‖θs‖2 ds

]
.

This is a martingale whenever θ is bounded. Moreover, when the integrals are
defined, Xt is positive.

5 Partial Differential Equations

We take two functions b and σ from [0, T ] × R into R, and satisfying the
conditions of the previous theorem. Let L the operator defined on C1,2([0, T ]×
R , R) by

Lf(t, x) = ft(t, x) + fx(t, x)b(t, x) +
1
2
σ2(t, x)fxx(t, x) .

We say that L is the infinitesimal generator of diffusion X.

We take as given a final value, that is a function g from R into R. We now
look for solutions to the following problem P: find f such that

Lf(t, x) = 0 , ∀x ∈ R, ∀t ∈ [0, T ]

f(T, x) = g(x) , ∀x ∈ R .

For any (t, x), we can define the process Zt,x as the solution to

Zt,x(u) = x +
∫ u

t

b(s, Zt,x
s )ds +

∫ u

t

σ(s, Zt,x
s )dBs . (2)

It is the diffusion with infinitesimal generator L, and initial point x at time t.
Let f be a solution to P. Then applying Itô’s Lemma to f(u,Zt,x

u ) yields

f(T,Zt,x
T ) = f(t, Zt,x

t ) +
∫ T

t

Lf(s, Zt,x
s )ds +

∫
t

,T fx(s, Zt,x
s )σ(s, Zt,x

s )dBs ,
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which, as Lf = 0 and f(T, x) = g(x), leads to

g(Zt,x
T ) = f(t, x) +

∫ T

t

fx(s, Zv
s )σ(s, Zv

s )dBs .

Hence, under the required integrability conditions, we can deduce that f(t, x) =
E(g(Zt,x

T )).

We can generalize the problem, and look for solutions to

Lf(t, x) = rf(t, x) , x ∈ R , ∀t ∈ [0, T ] ,

f(T, x) = g(x) ,
(3)

where r is a constant. We can show that:

Theorem If g ∈ C2
b (R) and if g, g′ and g′′ are Lipschitz, then the function

f(t, x) := E
[
e−r(T−t) g(Zt,x

T )
]

is the unique Lipschitz solution to (3).

Let us give a sketch proof of the theorem. Let f be a solution to (3). We
apply Itô’s formula to er(T−s) f(s , Zt,x

s ), (t fixed, t ≤ s ≤ T ). We obtain

f(T,Zt,x
T ) − er(T−t) f(t, Zt,x

t )

=
∫ T

t

er(T−s)

[
−rf(s, Zt,x

s ) +
∂f

∂s
(s, Zt,x

s ) +
1
2
(σ(s, Zt,x

s ))2
∂2f

∂x2
(s, Zt,x

s )
]
ds

+
∫ T

t

er(T−s) ∂f

∂x
(s, Zt,x

s )dZt,x
s

=
∫ T

t

er(T−s)

{
−rf +

∂f

∂s
+ b

∂f

∂x
+

1
2

σ2 ∂2f

∂x2

}
(s, Zt,x

s ) ds

+
∫ T

t

er(T−s) ∂f

∂x
(s, Zt,x

s )σ(s, Zt,x
s ) dBs .

The first integral (with respect to time) is zero, because f is a solution to
(3).

We take the expectations of the two remaining terms. Under regularity
conditions, the integral with respect to B is the value at time T of a martin-
gale that is zero at time t, and hence its expectation is also zero. Using the
boundary condition, this entails

E[g(Zt,x
T ) − er(T−t) f(t, x)] = 0 ,

and hence we obtain the result.



4

Portfolios Optimizing Wealth and
Consumption

In this chapter, we give a generalization of the model studied in Chap. 1
Sect. 1.3.

The financial market is that of Chap. 3: it is given by a continuous-time
model, comprising a riskless asset and d risky assets. The market is complete.
An investor with an initial wealth of x at time 0 maximizes the sum of the
expected utility of consumption over the planning horizon and the expected
utility of wealth at the end of the planning horizon, without running into debt.

Firstly, we show how dynamic programming can be used to study the prob-
lem in the case of constant or deterministic coefficients. This method provides
an explicit characterization of the optimal portfolio in terms of the value func-
tion, which, under regularity conditions, solves the Hamilton–Jacobi–Bellman
equation. This is a non-linear equation and in general it is difficult to solve.

Using the techniques of stochastic calculus (our fundamental tool here is
the predictable representation theorem, which we recall in the annex), we
show that the dynamic constraint on wealth remaining positive is equivalent
to a single constraint on an expectation. We then obtain the existence of
a portfolio and of a consumption plan enabling us to achieve the required
optimization. Thus we prove the market’s completeness. We then go on to
study the properties of the value function.

Finally, we show how in the case of deterministic coefficients, we can ex-
press the solution in terms of partial differential equations of the parabolic
type, and thus reduce the problem to the study of two Cauchy problems,
which are easier to solve than the Hamilton–Jacobi–Bellman equation.

4.1 The Model

We consider a financial market of (d+1) assets, whose dynamics are modeled
as in Chap. 3 Sect. 3.2.
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The first asset is riskless, and its price S0 satisfies the following equation

dS0(t) = S0(t) r(t) dt,

S0(0) = 1 .

The prices of the d risky assets satisfy the stochastic differential equation

dSi(t) = Si(t)
{

bi(t) dt +
d∑

j=1

σi,j(t) dBj
t

}
,

where B = (B1, B2, . . . , Bd)T is a d-dimensional Brownian motion. Denote by
Ft the σ-field generated by the paths of B up until t and then completed; F0

is the σ-field generated by the negligible sets. We work with a finite horizon,
that is with t ∈ [0, T ].

We lay down the following hypotheses1.

H(i) The processes r, b and σ are measurable, Ft-adapted and uniformly
bounded on ([0, T ] × Ω); r is positive.

H(ii) The matrix σ(t) is invertible, its inverse is bounded for all t ∈ [0, T ]
and the process σ(t) is predictable.

We will show (Proposition 4.4.3 and Sect. 4.7) that under these hypotheses,
the market is complete and presents no arbitrage opportunities.

An agent has an initial wealth of x at time 0. He chooses a portfolio. Let
θi(t) be the number of shares of type i in his possession at time t. His wealth
at time t is therefore

X(t) =
d∑

i=0

θi(t)Si(t) . (4.1)

We suppose that the agent uses a self-financing strategy, and that his
consumption between times 0 and t is given by

∫ t

0
c(s)ds, where c is a positive

Ft-adapted process: the strategy θ finances c, in the sense of the previous
chapter.

As a result, the agent’s wealth X(t) satisfies

X(t) = θ(t) · S(t) = x +
∫ t

0

θ(s) dS(s) −
∫ t

0

c(s) ds ,

where S = (S0, S1, . . . , Sd)T and where · denotes the scalar product. We can
also write this in the form{

dXt =
∑d

i=0 θi(t) dSi(t) − c(t) dt ,

X0 = x .

1 These assumptions can be refined. See Karatzas and Shreve [233].
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We will now write the equation in a form that is more convenient for
subsequent calculations. Let πi be the amount of wealth invested in the i-
th risky asset, so that πi(t) = θi(t)Si(t) for i ≥ 1. Using (4.1), and writing
Xπ,c for the wealth process associated with (πi, 1 ≤ i ≤ d) and with the
consumption c, we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXπ,c
t = {Xπ,c

t r(t) − c(t)} dt +
d∑

i=1

πi(t) {bi(t) − r(t)} dt

+
d∑

i,j=1

πi(t)σi,j(t) dBj
t ,

Xπ,c
0 = x .

(4.2)

We denote by π(t) the vector (π1(t), . . . , πd(t))T , which is also referred to as
the agent’s portfolio of risky assets at time t. No sign restrictions are made
(the agent may borrow or sell assets short).

For equation (4.2) to have a unique solution2, we impose the following
conditions on the parameters c and π.

H(iii) c is a positive adapted process such that
∫ T

0
c(t) dt < ∞ P -a.s.

H(iv) π is predictable, and satisfies
∫ T

0
‖π(t)‖2 dt < ∞ P -a.s. where ‖·‖

denotes the norm of a vector.

As the coefficients b, r and σ are bounded, the process Xπ,c is an Itô
process.

Exercise 4.1.1. Using Itô’s formula, check that

S∗(t) = S∗(0) exp
{∫ t

0

{
b(s) − 1

2
σ(s)σT (s)

}
ds +

∫ t

0

σ(s) dBs

}
,

where S∗(t) = [S1(t), . . . , Sd(t)]T , and that

Xπ,c
t R(t) = x +

∫ t

0

R(s)
{
−c(s) + π(s)T (b(s) − r(s)1)

}
ds

+
∫ t

0

R(s)π(s)T σ(s) dBs ,

where 1 represents the vector (1, . . . , 1)T and where R(t) = exp
[
−
∫ t

0
r(s) ds

]
.

2 See Rogers and Williams [315] or Karatzas and Shreve [233].
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4.2 Optimization

We assume that the investor’s preferences are represented by an additively
separable function of his rate of change in consumption and of his final wealth.
More precisely:

Notation 4.2.1. Let U1 and U2 be two functions from R+ into R, and satisfy-
ing:

U1 U is strictly concave, strictly increasing and of class C1,

U2 limx→+∞ U ′(x) = 0.

Assumption U1 shows us that the function U ′ is strictly decreasing. Thus
it admits a continuous inverse, denoted I and defined on ]U ′(∞), U ′(0)[. As-
sumption U2 shows that I is defined on ]0, U ′(0)[. We extend I at 0, on the
right of U ′(0), when U ′(0) is finite.

Notation 4.2.2. For a given pair (π, c), we use the notation

J(x;π, c) := E

{∫ T

0

U1(c(t))dt + U2(X
π,c
T )

}
where E denotes expectation under P and where x is the initial value of Xπ,c

t ,
i.e., x = Xπ,c

0 .

We suppose here that the investor seeks to maximize J(x;π, c) under a
path-wise constraint: his wealth Xπ,c must remain positive (the investor is
not allowed to run into debt).

4.3 Solution in the Case of Constant Coefficients

4.3.1 Dynamic Programming

We describe the principle of dynamic programming in the case where the
coefficients r, b and σ are deterministic, with a view to using these results
in a later section. We only actually solve the problem in the case of constant
coefficients.

The reasoning behind dynamic programming is as follows: we suppose that
if we had wealth Xα at time α, then we would be able to optimize between
times α and T , and this for all Xα. We then look at the set of strategies
that produce wealth Xα at time α, and pick the best of these strategies.
To formalize this argument, we need to introduce a new parameter: a time-
parameter for our initial point in time (until now, the initial point was always
taken to be time 0).
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Let α ∈]0, T [. Let us describe the dynamics for the wealth process Xα,x
t of

an agent with an initial capital of x at time α. It is easy to show that in our
model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXα,x
t = [Xα,x

t r(t) − c(t)] dt +
d∑

i=1

πi(t) [bi(t) − r(t)] dt

+
d∑

i,j=1

πi(t)σi,j(t) dBj
t ,

Xα,x
α = x ,

(4.3)

for α ≤ t ≤ T . The process (Xα,x
t , t ≥ α) also depends on (π, c), but to lighten

the notation, we have written Xα,x
t instead of Xα,x;c,π

t . We use the notation
1 for the vector (1, . . . , 1)T .

Definition 4.3.1. A pair (π, c) is admissible for an initial wealth equal to
x at time α, if it satisfies H(iii) and H(iv), and if the associated wealth
Xα,x

t remains positive between times α and T . We will denote the set of such
admissible pairs by A(α, x).

Thus, to optimize between times α and T is a matter of maximizing, over
A(x, α), the value of

J(α, x;π, c) := E

{∫ T

α

U1(ct)dt + U2(X
α,x
T )

}
.

4.3.2 The Hamilton–Jacobi–Bellman Equation

Let V be the value function, i.e.,

V (α, x) := sup {J(α, x;π, c) ; (π, c) ∈ A(α, x)} .

A pair (π∗, c∗) is optimal if it is admissible, and if J(α, x;π∗, c∗) = V (α, x).
The principle of dynamic programming3 can be written:

The Principle of Dynamic Programming For all (α, x), for all t ≥ α

V (α, x) = sup
(π,c)∈A(α,x)

E

{∫ t

α

U1(cs)ds + V (t,Xα,x;π,c
t )

}
. (4.4)

Assuming regularity conditions on the value function4, this function is to
be found as one of the solutions to the so-called Hamilton–Jacobi–Bellman
equation:
3 Refer to the annex for an intuitive approach, and to the work of Fleming and

Rishel [155] for an exhaustive study.
4 Refer to the annex for an approach to the proof.
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The Hamilton–Jacobi–Bellman Equation

∂V

∂t
(t, x) + sup

(π,c)∈R+×Rd

{
[xrt − c + πT (bt − rt1)]

∂V

∂x
(t, x)

+
1
2
‖πT σt‖2 ∂2V

∂x2
(t, x) + U1(c)

}
= 0 ; t ∈ [0, T [ , x ∈ R++ (4.5)

with the boundary conditions

V (T, x) = U2(x) , x ≥ 0 ;
V (t, 0) = 0 , t ∈ [0, T ] .

(4.6)

Using the infinitesimal generator L associated with the diffusion X, the
HJB equation can be written

∂V

∂t
(t, x) + sup

(π,c)

(LV (t, x) + U1(c)) = 0 .

In the annex, we will give an example of conditions under which the value
function solves the HJB equation.

If we know that there exists an optimal pair (π∗, c∗), and that the value
function satisfies the HJB equation, then we can determine that pair. Indeed,
as the value function V satisfies the HJB equation, we have for all t

∂V

∂t
(t,X∗

t ) +
[
rtX

∗
t − c∗t + (bt − rt1)T π∗(t)

] ∂V

∂x
(t,X∗

t )

+
1
2
‖σT

t π∗(t)‖2 ∂2V

∂x2
(t,X∗

t ) ≤ −U1(c∗t ) .

Hence, by applying Itô’s formula to V (t,X∗
t ) between times 0 and T , taking

expectations (as long as the stochastic integral involved is indeed a martin-
gale), and using the boundary conditions, we get

0 = V (0, x) − E(U2(X∗
T ))

+ E

{∫ T

0

[
∂V

∂t
(s,X∗

s ) +
[
rsX

∗
s − c∗s + (bs − rs1)T π∗(s)

]
× ∂V

∂x
(s,X∗

s ) +
1
2
‖σT

s π∗(s)‖2 ∂2V

∂x2
(s,X∗

s )
]

ds

}
≤ V (0, x) − E

[∫ T

0

U1(c∗s)ds + U2(X∗
T )
]

.

As the pair (π∗, c∗) is optimal,
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V (0, x) = E

[∫ T

0

U1(c∗s)ds + U2(X∗
T )
]

.

Hence, the previous inequality becomes an equality, yielding,

E

{∫ T

0

[
∂V

∂t
(s,X∗

s ) +
[
rsX

∗
s − c∗s + (bs − rs1)T π∗(s)

] ∂V

∂x
(s,X∗

s )

+
1
2
‖σT

s π∗(s)‖2 ∂2V

∂x2
(s,X∗

s ) + U1(c∗s)
]

ds

}
= 0 .

The expression above can only hold if the integrand is identically zero, for
it is a sum of terms that are all either negative or zero. As, by assumption, the
value function satisfies the HJB equation, this implies that (π∗, c∗) maximizes,
for all t,

[
rtX

∗
t − ct + (bt − rt1)T π(t)

] ∂V

∂x
(t,X∗

t )+
1
2
‖σT

t π(t)‖2 ∂2V

∂x2
(t,X∗

t )+U1(ct) ;

i.e.,

c∗t = I1

(
∂V

∂x
(t,X∗

t )
)

and

π∗
t = −(σtσ

T
t )−1(bt − rt1)

∂V

∂x
(t,X∗

t )
{

∂2V

∂x2
(t,X∗

t )
}−1

.

If the stochastic integral is not a martingale, we apply the same reasoning
only working by localization.

Proposition 4.3.2. Suppose that there exists an optimal pair, and that the
value function satisfies the HJB equation. Under the previous assumptions,
the optimal consumption–portfolio pair corresponding to a wealth equal x at
time t, is given by

c∗t = I1

[
∂V

∂x
(t, x)

]
(4.7)

π∗
t = −

[
σtσ

T
t

]−1
[bt − rt1]

∂V

∂x
(t, x)

[
∂2V

∂x2
(t, x)

]−1

. (4.8)

We say of such a pair that it is in feedback form, to express the fact that
it is determined at time t as a function of the optimal wealth at time t.

Remark 4.3.3. It is extremely important to underline the following points.
Firstly, in general it is difficult to solve the HJB equation explicitly and

obtain the value function.
Secondly, the optimal pair that we have exhibited depends on the optimal

wealth, which would still need to be determined.
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Thirdly, the particular form of the HJB equation enabled us to exhibit
an optimal couple, on condition that such a couple existed. In particular, the
assumption of optimality implies that the pair is admissible. These results can
easily be extended to the case where the utility function depends on time.

Equation (4.8) has played a very important role in the financial literature,
since

πt

‖πt‖
is independent of the utility functions. The equation provides a

mutual fund theorem.

There are solutions to the HJB equation that are not value functions for
our problem. Let us clarify the link between the two concepts:

Theorem 4.3.4. Let v be a function of C1,2(]0, T [×R+, R+) satisfying (4.5)
and the boundary conditions

v(T, x) = U2(x) , x ≥ 0 ;
v(t, 0) = 0 , t ∈ [0, T ] .

Then V (t, x) ≤ v(t, x), 0 ≤ t < T , 0 ≤ x < ∞ , where V is the value function
defined in (4.4).

Proof. Let v be a solution to the HJB equation, and let Xt,x be the process
initialized at x at time t and associated with the admissible pair (π, c). We
write

τn = T ∧ inf
{

s ∈ [t, T ] | Xt,x
s = n or Xt,x

s =
1
n

or
∫ s

t

‖π(u)‖2 du = n

}
,

which is a stopping time. Due to the boundedness conditions on the processes
up until time τn, the stochastic integral∫ τn

t

∂v

∂s
(s,Xt,x

s )πT (s)σ(s) dBs

is the value at time τn of a martingale that is zero at time t, and it therefore
has zero expectation.

Using Itô’s Lemma, we show that

E
[
v(τn, Xt,x

τn
)
]

= v(t, x) + E

[∫ τn

t

[
∂v

∂s
(s,Xt,x

s ) +
{
rsX

t,x
s − cs + πT (s)(bs − rs1)

}
× ∂v

∂x
(s,Xt

s) +
1
2
‖πT

s σs‖2 ∂2v

∂x2
(s,Xt,x

s )
]

ds

]
≤ v(t, x) − E

[∫ τn

t

U1(cs) ds

]
.

Hence the result follows by letting n tend to infinity, and by taking the supre-
mum over the set of admissible pairs. �
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It is important to note that we have not used the boundary condition
v(t, 0) = 0. We could have hoped for the HJB equation to have a unique
solution satisfying our boundary conditions, but this is not the case.

However, using general theorems5, we can prove the following result:

Theorem 4.3.5. Let v be a solution to the HJB equations that satisfies the
conditions of Theorem 4.3.4 , and let (c∗, π∗) be the pair defined in Proposi-
tion 4.3.2.

If the pair is admissible, then v is the value function and the pair (c∗, π∗)
is optimal.

This result is derived from the fact that the optimal pair at time t only
depends on the optimal wealth at time t (and not on wealth before time t).
This is called a “feedback control”.

This method may seem convenient. However, we must not forget that
it assumes knowledge of the value function (whereas it is not possible in
general to solve equation (4.5)) and of the optimal wealth, which must remain
positive. Nonetheless, on a simple example, the method allows us to bring the
calculations to their conclusion.

Exercise 4.3.6. The same approach can be used to study the case where

J(x;π, c) := E

{∫ T

0

Γ (t)U1(c(t))dt + Γ (T )U2(X
π,c
T )

}

with Γ (t) = exp
[
−
∫ t

0
γ(s) ds

]
, where the process γ is positive and adapted.

The function we are to maximize is:

J(α, x;π, c) := E

{∫ T

α

Γα
t U1[c(t)]dt + Γα

T U2(Xα
T )
}

,

where Γα
t = exp

[
−
∫ t

α
γ(s) ds

]
, and the value function is

V (α, x) = sup
(π,c)∈A(α,x)

E

{∫ t

α

Γα
s U1(cs)ds + Γα

t V (t,Xπ,c
t )

}
.

Show that the HJB equation is then

∂v

∂t
− γtv + sup

(c,π)∈R+×Rd

{
∂v

∂x
[xrt − c + πT (bt − rt1)]

+
1
2

∂2v

∂x2
‖πT · σt‖2 + U1(x)

}
= 0 .

Find the optimal pair.
5 See Fleming and Rishel [155] p. 158.
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4.3.3 A Special Case

Let us find a complete solution to the optimization problem in the case where
U1(x) = xα, 0 < α < 1, U2(x) = 0, and where the coefficients r, b and σ are
constants.

The previous theorem, and a little intuition, will enable us to determine
the value function and the optimal pair. We place ourselves in the case where
d = 1 (one risky asset) so as to avoid excessively heavy calculations.

The HJB equation is then

∂v

∂t
+ sup

(π,c)∈R×R+

[
(xr − c + π(b − r))

∂v

∂x
+

1
2
π2σ2 ∂2v

∂x2
+ cα

]
= 0 .

We shall look for a value function of the form V (t, x) = [p(t)]1−α
xα. We

will then choose p(t) in such a way that V solves the HJB equation.

Using the previous workings (or solving the HJB equation in this particular

case), along with the equality I(y) =
( y

α

) 1
α−1

, we find that the optimal
consumption at time t for a wealth equal to x at time t, is worth

c(t, x) =
x

p(t)
,

and that the optimal portfolio is

π(t, x) =
b − r

σ2

x

1 − α
.

If V satisfies the HJB equation, with the supremum being attained by the
pair (c, π) defined above, then p must satisfy{

p′(t) − νp(t) + 1 = 0
p(T ) = 0 ,

where

ν = − α

1 − α

(
r +

1
2

(b − r)2

σ2(1 − α)

)
.

This equation admits as a solution

p(t) =
1
ν

(1 − exp −ν(T − t)) ,

which is non-zero on ]0, T [.
The wealth associated with the pair (c∗, π∗) satisfies

dX∗
t = X∗

t

[(
r − 1

p(t)
+ η2 1

1 − α

)
dt − η

1 − α
dBt

]
,
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with η = −b − r

σ
, and is therefore positive. The pair (c∗, π∗) is then admis-

sible, and the wealth equals

x exp
[∫ t

0

[
r − 1

p(s)
+ η2 1

1 − α
− 1

2
( η

1 − α

)2] ds −
∫ t

0

η

1 − α
dBs

]
.

Using the explicit form of p, it is straightforward to evaluate the various
integrals, to obtain

X∗
t = x

p(t)
p(0)

exp
1

1 − α

[(
r +

1
2
η2
)
t − ηBt

]
.

The hypotheses H(iii) and H(iv) of integrability for c and π hold as a
result of the integrability of exp(aBt) for a constant, and hence as a result of
the parameters of the problem being constant.

Exercise 4.3.7. Calculate (c∗, X∗
T ) in the case where U1(x) = U2(x) = xα,

0 < α < 1, and then in the case where U1(x) = U2(x) = ln x.

In the case of more general utility functions, it is difficult to have an
intuition for the form that the value function takes. We will now draw on an-
other approach, that will lead to solving Cauchy problems instead of the HJB
equation (which we will come back to in a special case: that of deterministic
coefficients).

4.4 Admissible Strategies

We return to the general case: an agent seeks a strategy that will maximize
a function of his consumption and final wealth, amongst all those strategies
under which his wealth remains positive at all times.

When it is under the form X(t) ≥ 0, this constraint is difficult to check
(it is an infinite-dimensional constraint). We will give it a form that does not
depend on the paths of X, and is one-dimensional. To do this, as we have
often done in previous chapters, we work under the risk-neutral measure. Let

η(t) = − [σ(t)]−1 (b(t) − r(t)1) (4.9)

and let

Lt = exp
{∫ t

0

η(s) dBs −
1
2

∫ t

0

‖η(s)‖2 ds

}
.

Under the hypothesis H, the process η is bounded. We can then use Gir-
sanov’s theorem (in its multi-dimensional form).

Let Q be the probability measure equivalent to P and defined on FT by
dQ = LT dP . Let B̃t = Bt −

∫ t

0
η(s)ds. This is a Q-Ft-Brownian motion.
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Under Q, all prices have the same expected return and are governed by the
stochastic differential equation

dSi(t) = Si(t)
{

r(t) dt +
∑

j

σi,j(t) dB̃j
t

}
,

and the wealth X satisfies{
dXπ,c

t = [Xπ,c(t)r(t) − c(t)] dt +
∑

i,j πi(t)σi,j(t) dB̃j
t

Xπ,c(0) = x ,

or, in a closed form,

Xπ,c(t)R(t) = x −
∫ t

0

c(s)R(s) ds +
∫ t

0

R(s)πT (s)σ(s) dB̃s , (4.10)

for R(t) the discount factor defined by

R(t) = exp
[
−
∫ t

0

r(s) ds

]
.

Definition 4.4.1. The pair (π, c) is admissible for an initial wealth x, if the
process Xπ,c defined by (4.10) has non-negative values6. Denote by A(x) the
set of admissible pairs.

We give a more practical form to the path-wise constraint X(t) ≥ 0,
t ∈ [0, T ].

Let us return to equation (4.10).
If the pair (π, c) is admissible, then the process

Mt := x +
∫ t

0

R(s)πT (s)σ(s) dB̃s

is a local Q-martingale (σ is bounded) equal to Xπ,c(t)R(t) +
∫ t

0
c(s)R(s) ds,

which is a positive local martingale. It is therefore a Q-supermartingale (see
annex to Chap. 3), which satisfies EQ(MT ) ≤ M0. Hence we deduce the
following result.

Proposition 4.4.2. Let (π, c) be an admissible pair and let Xπ,c(T ) be the
associated final wealth. Then

EQ

(
Xπ,c(T )R(T ) +

∫ T

0

c(s)R(s) ds

)
≤ x . (4.11)

6 Under P or under Q, the result is the same.
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Formula (4.11) is the continuous-time equivalent of the formula obtained
in Sect. 1.3 of Chap. 1.

Let us prove the converse, which is given by:

Proposition 4.4.3. Let c be a process that satisfies H(iii), and let Z be a
FT -measurable non-negative random variable, such that

EQ

(
ZRT +

∫ T

0

R(s)c(s) ds

)
= x . (4.12)

Then there exists a predictable portfolio π such that the pair (π, c) is admissible
and such that the associated final wealth Xπ,c

T is equal to Z. In particular, the
market is complete.

Remark 4.4.4. If

EQ

(
ZRT +

∫ T

0

R(s)c(s) ds

)
≤ x ,

then there exists a predictable portfolio π such that the pair (π, c) is admissible
and such that the associated final wealth Xπ,c

T is then lesser than or equal to
Z.

Indeed, we can construct a positive and FT -measurable Z1 such that Z1 ≥
Z and

EQ

(
Z1RT +

∫ T

0

R(s)c(s) ds

)
= x .

Proof. (of Proposition 4.4.3)
Note that if there exists a portfolio π such that the pair (π, c) is admissible
and such that the associated wealth Xπ,c has final value Xπ,c

T = Z, then the
local Q-martingale

Mt = x +
∫ t

0

R(s)πT (s)σ(s) dB̃(s) (4.13)

is positive, since it can be written as

Mt = Xπ,c(t)R(t) +
∫ t

0

R(s) c(s) ds .

Hence M is a supermartingale. Moreover, by assumption EQ(MT ) = x =
EQ(M0). We can easily deduce that the supermartingale M is in fact a mar-
tingale, and satisfies

Mt = EQ (MT |Ft) = EQ

(
Xπ,c

T R(T ) +
∫ T

0

R(s)c(s) ds
∣∣Ft

)
.

Let us now show the existence of a π satisfying (4.13), by using the pre-
dictable representation theorem (see annex).
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For a given pair (Z, c), the process

Mt = EQ

(
ZR(T ) +

∫ T

0

R(s)c(s) ds | Ft

)
is a martingale under Q. According to the predictable representation theorem,
there exists a predictable process ϕ, such that

∫ T

0
‖ϕ(s)‖2ds < ∞ a.s. and

Mt = M0 +
∫ t

0

ϕ(s) dB̃s .

As the pair (Z, c) satisfies (4.12), we have M0 = EQ(MT ) = x.
Thus, let π be the process defined by

π(t) = [R(t)]−1 [
σT (t)

]−1
ϕT (t) t ∈ [0, T ]

and let Xπ,c(t) be defined by

Xπ,c(t)R(t) = x +
∫ t

0

ϕ(s) dB̃(s) −
∫ t

0

R(s) c(s) ds .

Let us check that Xπ,c is the wealth process associated with the pair (π, c),
and that the pair is admissible. By construction,

Xπ,c(t)R(t) = x +
∫ t

0

R(s)πT (s)σ(s) dB̃(s) −
∫ t

0

R(s) c(s) ds ,

hence Xπ,c is the wealth process associated with (π, c). Moreover,

Xπ,c(t)R(t) = Mt −
∫ t

0

R(s) c(s) ds

= EQ

(
ZR(T ) +

∫ T

t

R(s)c(s) ds | Ft

)
, (4.14)

which is positive. We also get Xπ,c
T = Z.

Finally, as the measurability and integrability conditions placed on the
pair (π, c) are satisfied, the pair is admissible. �
Exercise 4.4.5. Show that if a strategy finances a positive final wealth and
a positive consumption, then the associated wealth always remains positive.

We can use the fact that

RtXt = EQ

(
RT XT +

∫ T

t

R(s)c(s) ds |Ft

)
.

Remark 4.4.6. Under P , constraint (4.11) can be written as

EP

(
LT RT XT +

∫ T

0

L(s)R(s)c(s) ds

)
= x .
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4.5 Existence of an Optimal Pair

The optimization problem involves maximizing J(x;π, c) over the set of ad-
missible pairs (π, c), that is, over the set of pairs such that the associated
final wealth Xπ,c(T ) is positive and such that the pair (c,Xπ,c

T ) satisfies the
constraint

EP

{∫ T

0

L(t)R(t)c(t) dt + L(T )R(T )Xπ,c(T )
}

≤ x . (4.11)

Write V (x) := sup {J(x;π, c) ; (π, c) ∈ A(x)}. We are first going to deter-
mine a pair (c∗, X∗

T ) that maximizes

E

{∫ T

0

U1(c(t))dt + U2(XT )

}

and satisfies constraint (4.11). From there we will deduce a pair (c∗, π∗) that
is admissible, according to the workings of Sect. 4.4.

Though it is an abuse of notation, we will write

J(x;π,Xπ,c
T ) := EP

{∫ T

0

U1(c(t)) dt + U2(X
π,c
T )

}
.

We will say that the pair (XT , c) is admissible when (4.11) is satisfied.
First, we establish an elementary property of utility functions, which will

prove to be very important later on.

Proposition 4.5.1. If U satisfies U1 and U2, then

U (I(y)) − y I(y) = max {U(c) − cy , c ≥ 0} (4.15)

Proof. The result follows directly from the concavity of U . Indeed,

U (I(y)) − U(c) ≥ U ′ (I(y)) (I(y) − c) .

If I(y) > 0, U ′(I(y)) = y, and hence

U(I(y)) − U(c) ≥ y(I(y) − c) .

If I(y) = 0, y ≥ U ′(0), and hence

U(0) − U(c) ≥ −U ′(0)c ≥ −yc .

�
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4.5.1 Construction of an Optimal Pair

A Candidate to the Title

To construct an optimal pair, we will use the method of Lagrange multipliers,
which will guide us in making an intuitive choice for the optimal pair. It will
then remain to check the results of our intuition. We introduce the Lagrangian
for the constrained problem. For λ ∈ R+, we define

L(c,XT ;λ) = E

{∫ T

0

U1(c(t))dt + U2(XT )
}

+ λE

{
x −

(∫ T

0

LtRtct dt + LT RT XT

)}
.

A sufficient condition for (c∗, X∗
T ) to be optimal is for there to exist a

Lagrange multiplier λ∗ ∈ R++ such that (c∗, X∗
T , λ∗) is a saddle point of L,

that is to say that for all (c,XT , λ), (c,XT ) satisfying (4.11) and λ ∈ R+,

L(c,XT ;λ∗) ≤ L(c∗, X∗
T ;λ∗) ≤ L(c∗, X∗

T ;λ) .

The second inequality implies that the pair (c∗, X∗
T ) saturates the constraint.

The first inequality implies that the pair is optimal. Thus, we can determine
λ∗.

To satisfy the first inequality, we look for a (c∗t , X
∗
T ) such that for all (t, ω),

c∗t (ω) maximizes U1(c(t, ω))−λ∗LtRtc(t, ω), and for all ω, X∗
T (ω) maximizes

U2(X(T, ω)) − λ∗LT RT X(T, ω).
According to Proposition 4.5.1, this brings us to study the pair

c∗t = I1(λ∗ζt) ; X∗
T = I2(λ∗ζT ), (4.16)

where
ζt = R(t)Lt . (4.17)

As we remarked earlier, λ∗ must be such that the constraint (4.11) is
saturated, i.e., such that

E

{∫ T

0

ζtI1(λ∗ζt) dt + ζT I2(λ∗ζT )
}

= x . (4.18)

We will later prove the existence of λ∗.

Checking the Optimality of the Solution

Assume that there exists λ∗ satisfying (4.18). Let c∗ and X∗ be defined as in
(4.16).

We need to check that this pair is optimal. Using property 4.5.1 for utility
functions, it is clear that the gain
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J(x; c,X(T )) := E

[∫ T

0

U1[c(s)] ds + U2 [X(T )]
]

satisfies

J(x; c,X(T )) ≤ E

[∫ T

0

U1[I1(ys)] ds + U2 [I2(yT )]
]

+ E

[∫ T

0

ys[c(s) − I1(ys)] ds + yT [XT − I2(yT )]
]

for any positive Fs-adapted process ys and for any pair(c,XT ).

By choosing ys := λ∗R(s)Ls = λ∗ζs, we get for any admissible pair
(c, π),

J(x; c,X(T )) ≤ E

{∫ T

0

U1(c∗s) ds + U2 (X∗
T )
}

= J(x; c∗, X∗
T )

where the pair (c∗, X∗
T ) is admissible by the choice of λ∗. Hence we obtain the

optimality of (c∗, X∗).

Existence of the Optimal Pair

In order to obtain the existence of λ∗, we now introduce a new assumption
on the utility functions U1 and U2.

U3

{
LRI1(λζ) ∈ L1(Ω × [0, T ] ; dP × dt) ∀λ > 0 ,

LT RT I2(λζT ) ∈ L1(Ω; dP ) ∀λ > 0 .

This assumption is given in terms of I1 and I2; L, R and ζ are taken as
given.

Lemma 4.5.2. Under assumptions U1.2.3, the function X defined on R+ by

X (y) = E

{∫ T

0

ζt I1(yζt) dt + ζT I2(yζT )
}

(4.19)

is strictly decreasing on [0, ȳ] for ȳ = inf{y | X (y) = 0}, is continuous and
satisfies

lim
y→0

X (y) = +∞ , lim
y→+∞

X (y) = 0 .

Therefore, X has a continuous inverse Y. There exists λ∗ satisfying (4.18).

Proof. The proof does not present any difficulties. We show separately that
X is left-continuous and right-continuous, by monotone convergence and by
dominated convergence7. Then we need only define λ∗ = Y(x). �
7 See Karatzas et al. [231], Lemma 4.2.
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4.5.2 The Value Function

It is then easy to obtain the value function for the problem. By substituting
in for c∗ and X∗

T , we obtain

V (x) = G(Y(x)) ,

where G is defined on R+ by

G(y) = E

{∫ T

0

U1 [I1(yζt)] dt + U2 [I2(yζT )]
}

. (4.20)

Under the assumption

U4 Ui if of class C2 and U ′′
i is increasing, i = 1, 2,

we can show8 that G and X are of class C1 and that G′(y) = yX ′(y). It
remains to justify the differentiation of G under the integral sign.

Note that X and G are of the form

E

{∫ T

0

ζth1(yζt) dt + ζT h2(yζT )
}

for chosen functions hi. We have already encountered functions of this type in
Chap. 3, and we know that they are associated with the solutions to parabolic
equations. We will be exploiting this feature in the next section.

Thus we have used techniques based on martingales and on concavity,
to show the existence of an optimal pair (c∗, X∗

T ). By martingale techniques
again, we have associated to this pair, a portfolio π∗ such that the pair (c∗, π∗)
is admissible.

Let bring together the results obtained.

Theorem 4.5.3. Under assumptions U1.2.3 on utility functions U1 and U2,
there exists an optimal pair (π∗, c∗) ∈ A(x) such that

J (x;π∗, c∗) = sup {J(x;π, c), (π, c) ∈ A(x)} .

Let Y be the inverse of the function X defined by (4.19) and let ζt = LtRt.
The pair (π∗, c∗) is determined by

c∗t = I1 (Y(x)ζt) ,

π∗
t is the portfolio associated with c∗t and with the final wealth X∗

T , with
X∗

T = I2 (Y(x)ζT )

where the functions Ii are the inverse functions of the U ′
i . Moreover, we have

J(x;π∗, c∗) = G(Y(x))

where G is defined by (4.20).
8 See Karatzas et al. [231], Proposition 4.4.
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Exercise 4.5.4. Returning to Exercise 4.3.6, show that the previous results
remain true when ζt = LtRtΓ

−1
t .

Let us show, by means of a few calculations, how this method can be used
to produce an explicit expression for the pair (c∗, π∗).

4.5.3 A Special Case

We return to the example given in Sect. 4.3.3, with U1(x) = xα, 0 < α < 1,
U2(x) = 0, where the coefficients r, b and σ are constants. We are going to
show how we can use stochastic calculus to give a more precise solution to the
problem.

Let us write U for the function U1, and I for the inverse of U ′. An expres-
sion for I is immediate:

I(y) =
( y

α

)1/α−1

.

The optimal consumption is given by I (Y(x)ζt) where Y(x) satisfies

x = E

[∫ T

0

ζtI[Y(x)ζt] dt

]
=

(Y(x)
α

)1/(α−1)

E

[∫ T

0

ζ
α/(α−1)
t dt

]
.

Setting

K−1 := E

[∫ T

0

ζ
α/(α−1)
t dt

]
,

we get Y(x) = α(Kx)α−1 and

c∗t = I (Y(x)ζt) = xKζ
1/(α−1)
t .

To obtain the optimal portfolio, we need the predictable representation of the
martingale

Mt = EQ

[∫ T

0

R(s) c∗(s) ds | Ft

]
,

for if U2(x) = 0, then the optimal final wealth is zero. More precisely, we need
to determine ϕ such that

Mt = x +
∫ t

0

ϕ(s) dB̃s ,

where, as before, B̃ denotes the Q-Ft-Brownian motion

B̃t = Bt − ηt with η = −(b − r)σ−1 .

We will then have

π∗(t) = [R(t)]−1 ϕ(t)σ−1 = ertσ−1ϕ(t) .
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As the coefficients are constants, we obtain

ζt = e−rt exp (ηBt − η2t/2) ,

and hence, setting β = 1/(α − 1) and ν = r(1 + β) − 1
2η2β(β + 1) (the same

ν as in 4.3.3) and introducing the martingale exponential

L̃t = exp (ηβB̃t −
1
2
η2β2t) ,

we see that
Rtc

∗
t = xKRtζ

β
t = xKL̃te−νt ,

and that the martingale M can be given explicitly as a function of L̃:

Mt = EQ

(∫ T

0

Rsc
∗
s ds|Ft

)
= xK

∫ t

0

e−νsL̃s ds + xK

∫ T

t

e−νsEQ(L̃s|Ft) ds .

Since L̃ is a Q-Ft-martingale, we obtain

Mt = xK

[∫ t

0

e−νsL̃s ds +
e−νt − e−νT

ν
L̃t

]
.

Using dL̃t = ηβL̃t dB̃t, and the rules of stochastic calculus,

dMt = xK

[
e−νtL̃tdt +

L̃t

ν
d
(
e−νt − e−νT

)
+

e−νt − e−νT

ν
dL̃t

]

=
xKηβ

ν
L̃t

(
e−νt − e−νT

)
dB̃t .

It follows that

π∗
t =

xKηβ

νσ

(
e−νt − e−νT

)
ertL̃t =

xK(b − r)
σ2(α − 1)ν

(exp −ν(T−t)−1) ζ
1/α−1
t .

We also obtain νK−1 = 1 − e−νT and

G(y) =
( y

α

) α
α−1 1 − e−νT

ν

V (x) = (x)α

(
1 − e−νT

ν

)1−α

.

Thus we recover the formulae obtained in Sect. 4.3.3.
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Exercise 4.5.5. Study the case U1(x) = U2(x) = xδ, 0 < δ < 1. Show that

I(x) =
(x

δ

)1/δ−1

X (y) = E

{∫ T

0

ζt

(yζt

δ

)1/δ−1dt + ζT

(yζT

δ

)1/δ−1
}

= y1/δ−1 K

with

K = E

{∫ T

0

ζ
δ/δ−1
t dt + ζ

δ/δ−1
T

}
δ1/1−δ .

Check that we also get G(y) = yδ/δ−1 δK and V (x) = δxδK1−δ, and that
the optimal pair is given by

c∗t =
x

K

(
ζt

δ

)1/δ−1

; X∗
T =

x

K

(
ζT

δ

)1/δ−1

.

Note that c∗ and X∗
T are proportional to the initial wealth x. This is also

true in the case of lnx. It can be shown that ln and xδ are the only utility
functions that have this property.

4.6 Solution in the Case of Deterministic Coefficients

In this section, we assume that the coefficients r, b and σ are deterministic.
Let us find the optimal portfolio at each point in time.

We retrace the steps of our study of Sect. 4.2, and make use of the dynamic
programming principle.

Let us use the notation

Rα
t := exp

[
−
∫ t

α

r(s) ds

]
Lα

t := exp
[∫ t

α

η(s) dBs −
1
2

∫ t

α

‖η(s)‖2 ds

]
,

where the process η is defined by (4.9). The process (Lα
t , α ≤ t ≤ T ) is

a P -martingale satisfying dLα
t = ηtL

α
t dBt. The condition for admissibility

between times α and T is written

EQα

(∫ T

α

Rα
t ct dt + Rα

T Xα
T

)
≤ x ,

where Qα = Lα
T P .

As in Sect. 4.3.1, we write A(α, x) for the set of pairs (π, c) that are
admissible between times α and T for a level of wealth x at time α. Let
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V (α, x) := sup
(π,c)∈A(α,x)

J(α, x;π, c) .

By transposing the workings of the previous section, we obtain an optimal
pair: setting, for s ≥ α (α and x are fixed)

cα∗
s = I1(Y(α, x) ζα

s ) , Xα∗
T = I2(Y(α, x) ζα

T ) ,

where Y(α, ·) is the inverse function of X (α, ·) with

X (α, y) = E

{∫ T

α

Lα
t Rα

t I1(yζα
t ) dt + Lα

T Rα
T I2(yζα

T )
}

for
ζα
t = Lα

t Rα
t .

Using Itô’s lemma, it can easily be shown that

dζα
t = ζα

t [−rtdt + ηt dBt ] . (4.21)

4.6.1 The Value Function and Partial Differential Equations

The value function V (α, x) can be determined as in the previous section, by
means of a function G defined by

G(α, y) = E

{∫ T

α

U1 [I1(yζα
t )] dt + U2 [I2(yζα

T )]
}

.

Let H be the set of class C1,2 functions on [0, T ] × R
∗
+, such that there

exist K and α > 0 with

sup
0≤t≤T

|H(t, y)| ≤ K(1 + yα + y−α) , y > 0 . (4.22)

The results established in the previous chapter, along with equation (4.21),
satisfied by ζα, yield the following result.

Theorem 4.6.1. If h1 and h2 are in H,

H(α, y) = E

{∫ T

α

h1 (yζα
t ) dt + h2 (yζα

T )
}

is the unique solution in H to the partial differential equations with boundary
conditions⎧⎨⎩

∂H

∂t
− rty

∂H

∂y
+

1
2
‖ηt‖2 y2 ∂2H

∂y2
= −h1 , t ∈ [α, T ] y > 0 ,

H(T, y) = h2(y) y > 0 .

(4.23)
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We are led to make a new assumption on the utility functions.

U5 The functions Ui ◦ Ii and y → yIi(y) belong in H .

We then obtain

Proposition 4.6.2. Under the assumptions U1 to U5, the value function
V (α, x) is given by

V (α, x) = G (α,Y(α, x)) ,

where G is the unique solution to (4.23) that is associated with hi = Ui ◦ Ii,
and where Y(α, ·) is the inverse function of X (α, ·) ; X (α, y) is defined by

X (α, y) =
T (α, y)

y
,

where T (α, y) is the unique solution to (4.23) associated with hi(y) = y Ii(y).

Moreover,
∂V

∂x
(α, x) = Y(α, x).

Thus we have reduced the problem to two Cauchy problems. We can use
these results to determine the optimal wealth.

4.6.2 Optimal Wealth

Is is also possible to give an explicit expression for the optimal wealth and
for the optimal portfolio. We saw in (4.14) that the wealth associated with a
final wealth XT and with a consumption (ct, 0 ≤ t ≤ T ), is given by

X(t)R(t) = EQ

[
XT R(T ) +

∫ T

t

R(s)c(s) ds | Ft

]
.

The results of Sect. 4.5 show that the optimal wealth at time t is given by:

X∗(t)R(t) = EQ

[
R(T ) I2(Y(x)ζT ) +

∫ T

t

R(s) I1(Y(x)ζs) ds | Ft

]
.

Using the fact that

EQ [Z |Ft] =
EP [ZLT |Ft]
EP [LT |Ft]

we obtain

X∗(t) = ζ−1
t EP

[
ζT I2(Y(x)ζT ) +

∫ T

t

ζs I1(Y(x)ζs) ds | Ft

]
.

The process ζ is Markov with respect to Ft, since its coefficients are deter-
ministic. Hence
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X∗(t) = ζ−1
t EP

[
ζT I2(Y(x)ζT ) +

∫ T

t

ζs I1(Y(x)ζs) ds | ζt

]
,

and ζ satisfies
ζs = ζt ζt

s , t < s ,

where ζt
s is independent of ζt. Using the same notation as in Proposition 4.6.2,

where

T (t, y) = EP

(
yζt

T I2

(
yζt

T

)
+
∫ T

t

yζt
s I1

(
yζt

s

)
ds

)
,

we can see that

X∗(t) = (Y(x)ζt)
−1 T (t, Y(x)ζt) = X (t, Y(x)ζt) .

In addition, the function T satisfies the partial differential equation (cf. (4.23))

∂T
∂t

− rty
∂T
∂y

+
1
2
‖ηt‖2 y2 ∂2T

∂y2
= −y I1(y)

and the boundary condition

T (T, y) = y I2(y) .

Remark 4.6.3. Cox and Huang [68] applied similar kinds of working to the case
of Markovian coefficients, that is to coefficients of the form r(St, t), σ(St, t).

We can also give the partial differential equation satisfied by X (t, y) =
T (t,y)

y . We find that

∂X
∂t

− rtX + y
(
−rt + ‖ηt‖2

) ∂X
∂y

+
1
2
‖ηt‖2 y2 ∂2X

∂y2
= −I1(y) , (4.24)

with the boundary condition

X (T, y) = I2(y) .

4.6.3 Obtaining the Optimal Portfolio

In all generality, the optimal portfolio is obtained by applying a predictable
representation theorem. We return to the dynamic programming principle,
and to the workings of Sect. 4.2.

The HJB equation has led us to a candidate to the title of optimal pair:

c∗t = I1

{
∂V

∂x
(t,X∗

t )
}

,

π∗
t = −[a(t)]−1 (bt − rt1)

∂V

∂x
(t,X∗

t )
{

∂2V

∂x2
(t,X∗

t )
}−1

.
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We saw (Proposition 4.6.2) that
∂V

∂x
(t, x) = Y(t, x). We fall back on

c∗t = I1 (Y(t,X∗
t )) , (4.25i)

and we obtain

π∗
t = −[a(t)]−1 (bt − rt1) Y(t, X∗

t )
{

∂Y
∂x

(t,X∗
t )
}−1

. (4.25ii)

It remains to check that this pair is indeed optimal. To do this, it is enough
to verify that X∗

t is associated with the pair (c∗t , π
∗
t ) expressed in its feedback

form.

Since
X∗(t) = X (t,Y(x)ζt) ,

it follows from Itô’s lemma and from (4.24) that

dX∗(t) = (rtX
∗
t − c∗t ) dt + π∗T

t [(bt − rt1)dt + σtdWt] , (4.26)

and the result follows.

Remark 4.6.4. Cox and Huang [68] first determine the optimal wealth process
and from there deduce the optimal portfolio. They find an analogous expres-
sion to (4.25ii), even though they use the function X rather than the function

Y (it is enough to notice that
(

∂Y
∂x

)−1

= X ′(y)).

4.7 Market Completeness and NAO

We work under the hypotheses given in (H).
An arbitrage opportunity is a portfolio π such that

(i) (π, 0) ∈ A(0)

(ii) the wealth process Xπ,0 satisfies P (Xπ,0
T > 0) > 0 .

Proposition 4.7.1. In the model described in Sect. 4.1, and under the hy-
potheses (H), the market is complete and there are no arbitrage opportunities.

It is straightforward to check that there are no arbitrage opportunities in
our model: as (4.11) is satisfied, we have for (π, 0) ∈ A(0)

EP (LT RT Xπ,0
T ) ≤ 0 .

The approach developed in the proof of Proposition 4.4.3 enables us to
valuate an asset. We have seen that if Z is a positive FT -measurable random
variable such that EQ(ZR(T )) is known and is equal to x, then there exists
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a portfolio π such that the strategy (π, 0) attains the final wealth Z, with an
initial wealth equal to x. Thus with an initial capital of x, we could build a
portfolio π enabling us to attain Z at time T . The value of this portfolio at
time t would then be defined by V (t) with

R(t)Vt = EQ (ZR(T ) | Ft)

(using (4.14) with c = 0, as in this case the agent has no consumption).
Taking into account (4.16), this equation can also be written as

Vt =
EP (ζT Z |Ft)

ζt
=

EP (ZU ′
2(X

∗
T ) |Ft)

U ′
1(c

∗
t )

=
EP (ZU ′

1(c
∗
T ) |Ft)

U ′
1(c

∗
t )

,

where we are using the marginal utilities.
As any positive FT -measurable random variable can be attained with an

admissible strategy by choosing an initial capital v, the market is complete.
Notice that, when we restrict ourselves to square-integrable portfolios, the

portfolio that attains Z is unique. To see this, it is enough to check that if π1

and π2 both belong to A(x) and finance Z, then the process

(M1 − M2)(t) =
∫ t

0

R(s) (π1(s) − π2(s))T σ(s) dB̃s

is a Q-martingale that is zero at time T , and hence is itself zero. Taking
its second moment, and observing that σ is invertible, we obtain for all t:
π1(t) = π2(t) a.s..

Notes

The problem of finding an optimal portfolio was first solved in Merton [272],
(1971), using the methods of dynamic programming. The methods of stochas-
tic calculus, and in particular the martingale representation theorem, have
made it possible to prove the existence of an optimal strategy in a very gen-
eral framework. We can consult Karatzas et al. [231], (1987), Cox and Huang
[68], (1988). All these authors place themselves in a complete market frame-
work. These theories then enable us to exhibit a hedging portfolio. The case of
deterministic coefficients is particularly interesting, as the optimal portfolio–
consumption pair can then be given in feedback form.

The method presented here applies to the case of complete markets with
dynamics driven by processes to which the predictable representation theorem
can be applied. In particular, this is the case when prices are driven by pro-
cesses with jump components. Merton [275], (1976), studied the case where
stock prices display such discontinuities. His work was later taken up by Aase
and Øksendal [1], (1988), and then by Jeanblanc-Picqué and Pontier [215],
(1990), and by Shirakawa [334] (1991).
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The notion of a viscosity solution is used to prove the existence and unique-
ness of the solution to the HJB equation. (Shreve and Soner [339], (1991),
Zariphopoulou [378], (1994)). The main reference on the HJB equation is
Fleming and Soner [156] (1993).

The case in which transaction costs or constraints intervene is much more
difficult. It has been studied by Constantinides [63], (1986), and later by
Davis and Normann [88], (1990), and Shreve and Soner [340], (1994). A recent
approach is given in Cvitanić [32, 74], (1996, 2001).

The issue of optimal hedging in an incomplete market has been studied by
Föllmer and Sondermann [163], (1986), Bouleau and Lamperton [41], (1989),
Schweizer [329, 330], (1988, 1991). He and Pearson [185, 186], (1991), Shreve
and Xu [342, 343], (1992), Fleming and Zariphopoulou [157], (1991), Duffie,
Fleming, Soner and Zariphopoulou [117], (1997), and Cvitanić and Karatzas
[75], (1993), have worked on the case where there are additional constraints
on the portfolio.

More recently, the problem of optimizing the final wealth or consump-
tion has been addressed in incomplete markets. The first results of note were
obtained by Pagès [297], (1989), who characterized the set of equivalent mea-
sures to P making discounted prices into martingales, and studied the case of
an optimal consumption. Subsequent results have been obtained by He and
Pearson [185, 186], (1991), and then Karatzas et al. [232], (1990). He and
Pagès [184], (1993), El Karoui and Jeanblanc [138], (1998) looked at the case
where the agent has revenues.

Optimization under an infinite horizon and with an asymptotic criterion
has been studied by Morton and Pliska [282] (1995), Foldes [160], (1990),
Huang and Pagès [198], (1992), and by Konno, Suzuki and Pliska [239], (1993).

Problems involving a recursive utility function, were first touched upon by
Duffie and Epstein [116], (1992), Duffie and Skiadias [124], (1994) and, using
the concept of backward stochastic differential equation, by El Karoui, Peng
and Quenez [143], (1997). Detemple and Zapatero [102], (1992), introduced
utility functions that depend on earlier consumption (habit formation).

Finally, we point out the numerical methods developed for dealing with
such problems (Sulem [349], (1992), Fitzpatrick and Fleming [154] (1991)).

Lecture notes by Cvitanić [32], (1996), Karatzas [230], (1997), Korn [240]
(1998) and Karatzas and Shreve [233] give the most recent results, along with
detailed and complete bibliographies.
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ANNEX 4

1 The Predictable Representation Property

a) The Brownian Motion Case

Let (Bt)t≥0 be a d-dimensional Brownian motion. We denote by Ft the
filtration obtained by completing σ(Bs , s ≤ t), that is by adding the null sets.

Theorem 9 Let (Mt, t ≥ 0) be a continuous Ft-martingale that is zero at time
0. Then there exists a unique predictable process (φt, t ≥ 0) such that

Mt =
d∑

i=1

∫ t

0

φi(s) dBi
s =

∫ t

0

φ(s) dBs

and ∫ t

0

φ2(s) ds < ∞ P-a.s. t ∈ [0, T ] .

If moreover E(M2
T ) < ∞, then E

∫ T

0
φ2(s) ds < ∞.

In particular, the predictable representation theorem enables us to define
the stochastic integral with respect to a Ft-martingale:∫ t

0

ψ(s)dMs :=
∫ t

0

ψ(s)φ(s) dBs .

Let (Bt)t≥0 be a P -Brownian motion, and let Ft be its filtration. Let

Lt be a Girsanov density Lt = exp
{∫ t

0
h(s) dBs − 1

2

∫ t

0
h2(s) ds

}
, where h is

bounded. We then know that B̃t = Bt −
∫ t

0
h(s) ds is a Q-Brownian motion.

In general, the filtration F̃t = σ(B̃s , s ≤ t) is not equal to Ft. However, we
can show10 that the predictable representation theorem still holds under Q:

Theorem Any continuous Q-Ft martingale can be written in the form∫ t

0
φ(s) dB̃s, where φ is a predictable process satisfying:∫ t

0

φ2(s) ds < ∞ P-a.s. (or Q-a.s.) .

b) The General Case

If (M, t ≥ 0) is a (local) martingale, not necessarily adapted to the Brow-
nian filtration, we can develop the definition of a stochastic integral with
respect to M .
9 See Karatzas and Shreve [233].

10 Revuz and Yor [307] Exercise 1.27, Chap. VIII, Sec. 1.
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Let M be a Gt-P -martingale. We say that M has the predictable repre-
sentation property for (Gt-P ) if any P -Gt-martingale that is zero at time zero,
can be written as

∫ t

0
φ(s) dMs where φ is a Gt-predictable process.

Example Let B be a d-dimensional Brownian motion, and let Ft be its filtra-
tion.

If Mt =
∫ t

0
σs dBs where rank σ(s) = d a.s. on Ω × [0, T ], then M is

a d-dimensional process that has the predictable representation property for
(Ft, P ). Indeed, if (Xt, t ≥ 0) is a Ft-martingale, then dXt = φt dBt where
φt is predictable. As we have dMt = σt dBt, we can deduce that dXt =
φtσ

−1
t dMt.

2 Dynamic Programming

We will content ourselves with an intuitive approach to the results con-
cerning dynamic programming. The interested reader can refer to Fleming
and Rishel [155] or to Krylov [245] for the full proofs.

The principle behind dynamic programming is a very general principle
from the theory of stochastic control, and holds under very general assump-
tions. The idea is as follows:

• if we use one strategy on the interval [α, t] and another strategy on the
interval [t, T ], we obtain a strategy on [α, T ],

• if we are given a strategy on the interval [α, T ], we can decompose it into
one strategy on [α, t] and one strategy on [t, T ].

Of course, the strategies need to be “glued back together” together “by con-
tinuity”.

The first remark leads to

E

{∫ t

α

U1(cs) ds + V (t,Xα
t )

}
≤ V (α, x) ,

since V (t,Xα
t ) corresponds to using an optimal strategy on [t, T ], and since

combining a strategy on [α, t] and a strategy on [t, T ] (in our case, the optimal
strategy) produces a strategy on [α, T ].

The equality

V (α, x) = sup
(π,c)∈A(α,x)

E

{∫ t

α

U1(cs)ds + V (t,Xα,x;π,c
t )

}
follows from the fact that an optimal strategy on [α, T ] yields an optimal
strategy on [t, T ].
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If we accept the principle of dynamic programming, it is just as easy to
have the intuition for the HJB equation.

Firstly, we apply Itô’s lemma to V (t,Xα,x
t ) between times α and α + h

V (α + h,Xα,x
α+h) − V (α, x) =

∫ α+h

α

∂V

∂t
(s,Xα

s )ds

+
∫ α+h

α

∂V

∂x
(s,Xα,x

s )dXα,x
s +

1
2

∫ α+h

α

∂2V

∂x2
(s,Xα,x

s ) ‖πT
s σs‖2 ds .

We then use the principle of dynamic programming under the form

V (α, x) ≥ E

[∫ α+h

α

U1(cs) ds + V (α + h,Xα,x
α+h)

]
.

If follows that

0 ≥ E

{∫ α+h

α

[
U1(cs) +

∂V

∂t
(s,Xα,x

s ) +
{
Xα,x

s rs − cs + πT
s (bs − rs1)

}
× ∂V

∂x
(s,Xα,x

s ) +
1
2
‖πT

s σs‖2 ∂2V

∂x2
(s,Xα,x

s )
]

ds

+
∫ α+h

α

πT
s σs

∂V

∂x
(s,Xα,x

s ) dBs

}
.

These workings are purely formal: we would need to check the integrabil-
ity conditions.

Next, we divide through by h, and let h tend to 0. Still only formally, it
follows that

0 ≥ U1(cα) +
∂V

∂t
(α, x)

+ {xrα − cα + πα(bα − rα1)} ∂V

∂x
(α, x) +

1
2
‖πT

α σα‖2 ∂2V

∂x2
(α, x) .

Hence the relationship that holds for all π, c:

0 ≥ ∂V

∂t
(α, x)

+sup
π,c

{
U1(c)+{xrα − c + π(bα − rα1)} ∂V

∂x
(α, x)+

1
2
‖πT σα‖2 ∂2V

∂x2
(α, x)

}
.

The HJB equation follows as a result: if an optimal pair exists, then the
inequalities above become equalities.

We are now going to state without proof the conditions under which the
value function is a solution to the HJB equation.
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We take a special case: that of constant coefficients, with U2 = 0. We set
U = U1.

Let L be the operator defined by

LH(t, y) = −∂H

∂t
(t, y) + ry

∂H

∂y
(t, y) − 1

2
‖η‖2 y2 ∂2H

∂y2
(t, y)

with η = −σ−1(b − r1).

We suppose that there exist functions G and S in C1,3([0, T ] × R++, R+)
such that {

LG(t, y) = U(I(y)) t ∈ [0, T ] , y ∈ R++

G(T, y) = 0 y ∈ R++{
LS(t, y) = y I(y) t ∈ [0, T ] , y ∈ R++

S(T, y) = 0 y ∈ R++

and such that G, ∂G
∂y , S and ∂S

∂y satisfy polynomial growth conditions of the
type

max
0≤t≤T

H(t, y) ≤ M(1 + y−λ + yλ) , y ∈ R++

where M and λ are strictly positive constants. We also assume that U is of
class C2.

It can then be shown11 that the following result holds.

Theorem Under the previous assumptions, the value function is of class
C1,2([0, T ]×R++) and satisfies the HJB equation (4.5) as well as the boundary
conditions (4.6).

11 See Karatzas and Shreve [233], Chap. 5 Theorem 8.22.
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The Yield Curve

The uncertainty attached to the future movements of interest rates is an
important part of the theory of financial decision making. Most agents are
risk-averse, and risk is linked in particular to interest rates. Investment deci-
sions and asset/liability management are often very sensitive to perturbations
of the yield curve. To hedge interest rate risk, the markets use increasingly
complicated financial products (forward contracts, futures contracts, options
on contracts). These constitute the forward markets.

It is therefore important to understand the factors that drive interest rates,
to model the yield curve, to analyze financial instruments such as options on
zero coupon bonds, and to develop strategies for hedging interest rate risk.

5.1 Discrete-Time Model

We adopt a model, in which transactions take place at set times indexed by
integers, and entail no cost. We work under the assumption of no arbitrage,
and of the existence of a martingale measure.

Someone who borrows one euro at time n, will have to pay back F (n,N)
euros at time N , when the loan is due to be repaid. We call F (n,N) the
forward price of 1 euro.

If S(n) is the price of a financial product given in units of time n, the
forward price of S is expressed in units of time N as SF (n) = S(n)F (n,N).

Definition 5.1.1. A zero coupon bond with maturity N is a security that pays
one euro at time N and does not generate any cash flows before N .

The price at time n of a zero coupon bond with maturity N (n ≤ N) is
denoted by P (n,N). It is the price of one euro paid out at time N . We have
P (N,N) = 1. The forward price of 1 euro and the price of a zero coupon bond
are linked by the relationship F (n,N) = [P (n,N)]−1 (from the assumption
of NAO).
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We define the instantaneous forward rate by f(n,N) := ln
P (n,N)

P (n,N + 1)
,

and the spot rate by r(n) := f(n, n). We have P (n, n + 1) = e−r(n).

The term structure of rates is given by the study either of the family
P (n, .), or of the family f(n, .). One approach involves studying the dynamics
of the yield curve, that is, expressing f(n,N) as a function of today’s curve
f(0, N).

In a deterministic model, the relationship between rates of different ma-
turities must be such that P (n, n + 1)P (n + 1, N) = P (n,N), for all n and
N , so as to avoid arbitrage opportunities between the zero coupon bonds of
different maturities: to obtain 1 euro at time N , we must pay P (n,N) at
time n; we could also pay P (n + 1, N) at time n + 1, which comes down to
paying P (n, n + 1)P (n + 1, N) at time n. In this case, we have in particular
f(0, N) = f(n,N) = r(N), ∀n ≤ N . In a deterministic model, the instanta-
neous forward rate depends only on its maturity.

To study a model in an uncertain world, Ho and Lee [193] make the fol-
lowing assumptions:

• the price of zero coupon bonds depends only on the number of up-
movements in rates between times 0 and n,

• the price at time n + 1 of a zero coupon with maturity N differs from
the price obtained in the deterministic case by the addition of a random
perturbation function h,

• the perturbation function h is only a function of time to maturity and of
the behaviour of the price between times n and n + 1.

At time n, there are n + 1 states of the world. For each of these states
at time n, there are two possible states at time n + 1, depending on whether
the price increases or decreases. The price at time n of a zero coupon bond
with maturity N , is P (n,N ; j), where j refers to the number of increases
before time n. The condition imposed on the prices corresponding to different
maturities is

P (n + 1, N) =
P (n,N)

P (n, n + 1)
h(n + 1, N) ; n + 1 ≤ N ,

where h is a perturbation function. In more detail:

P (n + 1, N ; j) =
P (n,N ; j)

P (n, n + 1; j)
h(0 ;n + 1, N) ,

P (n + 1, N ; j + 1) =
P (n,N ; j)

P (n, n + 1; j)
h(1 ;n + 1, N) .

We suppose that h(1;n + 1, N) ≥ h(0;n + 1, N).
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The random nature of the perturbation becomes clearer if we introduce
the random variable Yn+1 that is worth 1 if the prices increases between times
n and n + 1, and 0 otherwise. We assume the (Yn, n ≥ 1) to be independent
and identically distributed1 under the risk-neutral probability measure.

The move in P (n,N) is given by

P (n + 1, N) =
P (n,N)

P (n, n + 1)
h(Yn+1;n + 1, N) (5.1)

where h(. ;n + 1, N) depends only on N − n. We have h(. ;N,N) = 1.
As was noted previously, in world of certainty, the assumption of no ar-

bitrage implies that h is identically 1. In our model of an uncertain world,
we need to impose a condition that precludes all arbitrage opportunities be-
tween zero coupon bonds of different maturities. This will translate into a
specification of the perturbation function.

We will now prove the following result.

Theorem 5.1.2. Under the assumption of no arbitrage opportunities, there
exists δ > 1 and π ∈ [0, 1] such that

πh(0;n,N) + (1 − π)h(1;n,N) = 1 (5.2)

and

h(0;n,N) =
1

π + (1 − π)δN−n
; h(1;n,N) =

δN−n

π + (1 − π)δN−n
. (5.3)

Proof. We saw in Chaps. 1 and 2, that when the state space is finite, the
assumption of no arbitrage is equivalent to the existence of a risk-neutral
probability measure, under which discounted prices are martingales.

The discount factor can be expressed as a function of the prices of zero
coupon bonds: the factor that discounts prices given at time n corresponds to
today’s value for one euro at time n, and is given by:

A(0, n) =
n∏

k=1

P (k − 1, k) .

Hence the sequence (A(0, n)P (n,N), n ≤ N) is a martingale, for any value
of N .

The relationship (5.1) can written

A(0, n + 1)P (n + 1, N) = A(0, n)P (n,N)h(Yn+1;n + 1, N) .

Taking conditional expectations relative to Fn, we find that the conditional
expectation of h(Yn+1;n + 1, N) is equal to 1, i.e.,
1 See El Karoui and Saada [148] for a generalization.
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πnh(0 ;n + 1, N) + (1 − πn)h(1 ;n + 1, N) = 1 ,

where πn is equal to E(Yn+1 = 0 |Fn). The number πn does not depend on n,
as the Yn are independent and identically distributed.

In our model, we have assumed that the price at time n does not depend
on the path taken. We can calculate P (n+2, N), assuming that the price rose
between n and n + 1, and then fell. Then we find that

P (n + 2, N ; j + 1) =
P (n,N ; j)h(1 ;n + 1, N)h(0 ;n + 2, N)

P (n, n + 1; j)P (n + 1, n + 2; j + 1)

=
P (n,N ; j)h(1 ;n + 1, N)h(0;n,N)

P (n, n + 2; j)h(1 ;n + 1, n + 2)
.

Similarly, we can carry out the calculations, assuming that the price first fell
and then rose:

P (n + 2, N ; j + 1) =
P (n,N ; j)h(1 ;n + 2, N)h(0 ;n + 1, N)

P (n, n + 2; j)h(0 ;n + 1, n + 2)
.

By equating two results, we find that:

h(1 ;n + 1, N)h(0 ;n + 2, N)h(0 ;n + 1, n + 2)
= h(1 ;n + 2, N)h(0 ;n + 1, N)h(1 ;n + 1, n + 2) .

Using (5.2) and the assumption that h(. ;n,N) depends only on (N − n),
we find, setting s = N − n − 1 and h(. ; s) = h(. ; t, t + s),

(1 − π) (1 − πh(0 ; s))h(0; s − 1)h(0 ; 1)
= (1 − πh(0 ; s − 1))h(0 ; s) (1 − πh(0 ; 1)) .

We can write this expression as
1

h(0 ; s + 1)
=

δ

h(0 ; s)
+ γ , where δ

and γ are defined by

h(0 ; 1) =
1

π + (1 − π) δ
and γ =

π(h(0 ; 1) − 1)
(1 − π)h(0 ; 1)

.

We obtain the expression (5.3) by solving this difference equation, using the
condition h(0 ; 0) = 1. The inequality δ > 1 then follows from h(1; s) ≥ h(0; s).

�
From here, we will deduce the movements in the spot rate

r(n) = − ln P (n, n + 1) .

We will show that the number of up-moves in the price is an explanatory
variable, and we will express the price of zero coupons and the forward and
spot rates as functions of this variable. More precisely, we will prove:
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Theorem 5.1.3. Let P (0, N) be today’s curve of zero coupon bond prices, and
let f(0, N) be the spot instantaneous forward rate curve. We have

P (n,N) =
P (0, N)
P (0, n)

n∏
j=1

h(Yj ; j,N)
h(Yj ; j, n)

and

f(n,N) = f(0, N) + ln(1/δ)
n∑

j=1

Yj + ln
π + (1 − π) δN

π + (1 − π) δN−n

r(n) = f(0, n) + ln(1/δ)
n∑

j=1

Yj + ln(π + (1 − π) δn) .

Proof. Our choice of model entails

P (n,N) =
P (0, N)
P (0, n)

n∏
j=1

h(Yj ; j,N)
h(Yj ; j, n)

.

Let us set ψ(n,N) =
h(1 ;n,N)
h(0 ;n,N)

= δN−n. Noticing that

h(Yj ; j,N) = ψ(j,N)Yj h(0; j,N) ,

we obtain an expression for the instantaneous forward rates:

f(n,N) = ln
P (n,N)

P (n,N + 1)
= ln

P (0, N)
P (0, N + 1)

+
n∑

j=1

Yj (lnψ(j,N) − lnψ(j,N + 1))

+
n∑

j=1

(lnh(0 ; j,N) − lnh(0 ; j,N + 1)) .

After simplification, this equals

ln
P (0, N)

P (0, N + 1)
+ ln(1/δ)

n∑
j=1

Yj + ln
π + (1 − π) δN

π + (1 − π) δN−n
.

�

Remark 5.1.4. The variance of the spot rate is given by (ln δ)2nq(1−q), where
q is the expectation of Yj , and it converges to infinity with n. This is an
important drawback to the model. Furthermore, the forward and spot rates
can become negative2. Therefore this model is not satisfactory.
2 Sandmann and Sonderman [321] have studied a model that precludes this possi-

bility.
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5.2 Continuous-Time Model

Two main approaches are used in continuous time. The first involves modeling
the prices of zero coupon bonds in a way that is consistent with the assumption
of NAO, and thence deducing an expression for the spot rate. The second
approach uses the spot rate as an explanatory variable. We present these two
approaches and we show, on a few examples, how these models lead to the
valuation of interest rate products.

5.2.1 Definitions

We give the same definitions as in discrete time. A zero coupon bond with
maturity T is a security that pays one euro at time T , and provides no other
cash flows between times t and T . We assume that for all T , there exists a
zero coupon bond with maturity T 3.

The price at time t of a zero coupon bond with maturity T is denoted by
P (t, T ). We have P (T, T ) = 1.

If S(t) is the price of a financial asset in units of time t, we call the forward

price of S, its price expressed in units of time T , i.e., SF (t) =
S(t)

P (t, T )
.

We introduce the yield to maturity at time t, Y (t, T ), defined by

P (t, T ) = exp [−(T − t)Y (t, T )] .

The forward spot rate at time t with maturity T is

f(t, T ) = −
[
∂ lnP (t, θ)

∂θ

]
θ=T

.

Thus we have

Y (t, T ) =
1

T − t

∫ T

t

f(t, u) du and P (t, T ) = exp

(
−
∫ T

t

f(t, u) du

)
.

The instantaneous spot rate is

r(t) = lim
T→t

Y (t, T ) := −
[
∂ lnP (t, T )

∂T

]
T=t

= f(t, t) .

The yield curve is given by the function θ → Y (t, θ).

The discount factor is
3 In practice, this assumption does not hold.
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R(t) := exp
(
−
∫ t

0

r(s) ds

)
.

At each time t, we can observe a range of rates: the family s → Y (t, s + t)
of interest rates with maturities s + t, observed at time t. We would like to
study the behaviour of the curve Y (t, θ) as a function of today’s yield curve,
which is Y (0, θ).

In a deterministic model, we must have

P (t, T ) = P (t, u)P (u, T ) , ∀ t ≤ u ≤ T ,

to preclude arbitrage opportunities. Thence, under the assumption of dif-
ferentiability, we deduce the existence of a real-valued function r such that
P (t, T ) = exp

(
−
∫ T

t
r(s) ds

)
. As in the discrete model, we can check that

f(t, T ) = f(0, T ) = r(T ) , ∀ t ≤ T and that Y (t, T ) = 1
T−t

∫ T

t
r(u) du. The

yield to maturity is thus the average value of the spot rate.

In a stochastic model, as usual we take a probability space equipped with
a filtration Ft, which we assume to be a Brownian filtration. We assume that
at time t, the price P (t, .) of zero coupon bonds is known, i.e., the P (t, .) are
Ft-measurable variables. To give the assumption of NAO an explicit form, we
assume that the processes P (. , T ) are positive, adapted, and continuous, and
that P (t, T ) is continuously differentiable with respect to T .

We assume that there exists a probability measure Q under which dis-
counted prices are square-integrable martingales: in particular, under Q, the
process (R(t)P (t, T ), t ≥ 0) is a martingale. This property holds for all T , in
order to preclude arbitrage opportunities between products of different matu-
rities.

The property leads to some interesting results. First of all, since P (T, T ) =
1, it must be the case that P (0, T ) = EQ(R(T )), and that

P (t, T ) = EQ

[
exp

(
−
∫ T

t

r(u) du

) ∣∣∣Ft

]
. (5.4)

Remark 5.2.1. Using the notation LT = dQ
dP

∣∣
Ft

and Lt = EP (LT |Ft), the pre-
dictable representation theorem implies4 that there exists an adapted process
q such that

Lt = exp
(∫ t

0

q(s) dBs − 1/2
∫ t

0

q2(s)ds

)
.

Using the predictable representation theorem again, we deduce that for each
maturity T , there is an adapted process σ(t, T ) such that under P ,

4 See Heath–Jarrow–Morton [189] or Lamberton–Lapeyre [250].
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dP (t, T ) = P (t, T )
(
(r(t) − q(t)σ(t, T )) dt + σ(t, T ) dB̃t

)
,

where B̃ is a P -Ft-Brownian motion. The quantity q(t)σ(t, T ) is the difference
between the riskless rate and the average rate of return on the zero coupon
bond. The process q is called the risk premium.

5.2.2 Change of Numéraire

The Forward Measure

The value at time t of a deterministic cash flow F received at time T is

FP (t, T ) = F EQ

[
exp

(
−
∫ T

t

r(u) du

) ∣∣∣Ft

]
.

If the cash flow is random, its value at time t is

EQ

[
F exp

(
−
∫ T

t

r(u) du

) ∣∣∣Ft

]
.

We can give an interpretation of this formula, by introducing the notation
FcP (t, T ) for the certainty equivalent of F , defined by

Fc =
1

P (t, T )
EQ

[
F exp

(
−
∫ T

t

r(u) du

) ∣∣∣Ft

]
.

We will re-write this last equality using a change of probability measure.

By the assumption of NAO, the process R(t)P (t, T ) is a Q-martingale, so
its expectation is constant and equal to P (0, T ).

For all T , the process
(

ζT
t :=

R(t)P (t, T )
P (0, T )

, t ≥ 0
)

is a positive

Q-martingale with expectation 1. Therefore, we can use ζT
t as the density

of change of measure or Radon-Nicodym density. Let QT be the probability
measure defined5 on (Ω,FT ) by QT (A) = EQ(ζT

t 1A), for all A ∈ Ft. When T
is fixed, we will use the notation: ζt = ζT

t .

Definition 5.2.2. The probability measure QT defined on Ft by
dQT

dQ
= ζT

t

is called the T -forward measure.

With this notation,
Fc = EQT

(F |Ft) .

5 As described in Sect. 3 of the annex to Chap. 3, we check that QT is well-defined.
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When F is the value of a security, the certainty equivalent Fc is called the
forward price of F .

When r is deterministic, QT = Q.
The measure QT is the martingale measure that corresponds to choosing

the zero coupon bond with maturity T as numéraire, as the property below
makes explicit.

Property 5.2.3. If (Xt, t ≥ 0) is a price process, its forward price
(Xt/P (t, T ), t ≥ 0) is a martingale under QT .

Proof. Take T to be fixed. Let (Xt, t ≤ T ) be a price process. By definition
of the martingale measure Q, the discounted price process XtR(t) is a Q-
martingale. We want to show that (Xt/P (t, T ); t ≤ T ) is a QT -martingale.
According to the formula for conditional expectations under a change of mea-
sure6, we have

EQT

[
Xt

P (t, T )
|Fs

]
=

EQ

[
Xtζt

P (t,T ) |Fs

]
EQ[ζt |Fs]

=
EQ [XtRt |Fs]

P (0, T )ζs
=

Xs

P (s, T )
.

�

Forward and Futures Contracts

We now define these two financial products.
A forward contract with maturity T and with as underlying, an asset whose

price at time t is Vt, is a contract that entitles its holder to buy or to sell the
asset at time T , at a price that is set when the contract is signed (at time t).
This contract does not entail any cash flows when it reaches maturity.

The price of the contract refers to the price Gt at which it was agreed (at
t, when the contract was signed) that the asset would traded at time T .

A futures contract is a forward contract with continuous readjustment.
More precisely, a futures contract with expiry T , written on an asset whose
price is Vt at time t, is a contract which sets a price (the price of the contract)
that provides the basis for “margin calls”. Each player gives a guarantee, in
the form of a deposit that is placed in a current account to his name. At each
day’s close of trade, each player’s position is readjusted. If there is a loss, the
player must finance it; if there is a gain, his account will be credited. The
underlying is delivered at time T , at the price of time T , rather than at the
price agreed upon in the contract. Let us give an example taken from Aftalion
and Poncet [2].

6 Sect. 4 of the annex to Chap. 3.
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Example 5.2.4. On October 15 1990, an investor sold a contract on a notional
bond7, with maturity in December 1990, at a rate of 97.52. As the contract’s
nominal value was 500 000 FRF, and as a change in rate of 0.01% corresponded
to 50 FRF, the following table gives the margin changes generated by this
position, up until the day before the position was brought to a close (a minus
sign indicates a loss, that is a margin contribution, and a plus sign indicates
a gain, hence a margin restitution).

Date Closing rate Margin
15/10 97.86 −1 700 FRF
16/10 97.70 + 800 FRF
17/10 97.10 +3 000 FRF
18/10 96.74 +1 800 FRF
19/10 96.22 +2 600 FRF
22/10 96.50 −1 400 FRF
23/10 96.06 +2 200 FRF

The player bought back the contract on October 24, at the rate of 96.00. The
margin changes left him a net sum of 7 300 FRF, to which we must add the
results of his trades on October 24, that is 300 FRF – the difference between
the rate at which the contract was bought back (96.00) and the closing rate
on October 23 (96.06). Of course, the total effect of margin changes and
of the gain (or loss) that occurs on the day that the position is closed out
(in this case a total of 7 600 FRF) corresponds to the difference between the
initial ask price8 and the final bid price9, i.e., to 500 000(97.52−96.00)/100 =
7 600 FRF.

Proposition 5.2.5. The price at time t of a forward contract with maturity
T , on an asset whose price process is given by V (s), is

G(t) = EQT
(V (T )|Ft) .

The price of a futures contract (the futures price) is

H(t) = EQ(V (T )|Ft) .

If r is deterministic, the forward and futures prices are equal.

Proof. To obtain the price of a forward contract, we use the fact that the
process Xt defined by

7 Notional bonds provide the basis for contracts on the MATIF, the French futures
exchange, which is the context of this example.

8 The price that a seller in the market asks for.
9 The price that a buyer in the market is prepared to bid.



5.2 Continuous-Time Model 169

is a price process.

A futures contract can be characterized as an asset whose dividend process
is given by the process H, and whose price process is zero. We seek to calculate
the futures price associated with obtaining VT , that is, the value at time t of
a dividend process H such that HT = VT . Let Rt

s = exp
(
−
∫ s

t
r(u) du

)
.

The cumulative dividend process (see Sect. 3.4.4) HR
s =

∫ s

t
Rt

udHu is a Q-
martingale. If we assume r to be positive and bounded, then the process R is
bounded above and below, and from the equality dHR

s = Rt
sdHs, we deduce

that H is a Q-martingale. Hence Ht = EQ(HT |Ft), as required. �

The Spot Rate

Proposition 5.2.6. Let T be fixed. The forward spot rate (f(t, T ), t ≤ T ) is
a QT -martingale

f(t, T ) = EQT
[rT |Ft] , t ≤ T , (5.5)

that equals the price of a forward contract written on the spot rate.
In particular, f(0, T ) = EQT

(r(T )) is the price at time 0 of a forward
contract written on the spot rate with the same maturity T .

The price of a zero coupon bond can be expressed as a function of the spot
rate by

P (t, T ) = exp

(
−
∫ T

t

EQs
[rs |Ft] ds

)
, t ≤ T . (5.6)

Proof. By definition, the forward rate f(t, T ) is equal to

− lim
h→0

P (t, T + h) − P (t, T )
hP (t, T )

.

The process P (t, T + h) is a price process, therefore from Property 5.2.3,
P (t, T + h)

P (t, T )
is a QT -martingale. As a result

f(t, T ) = − lim
h→0

1
h

EQT
{(P (T, T + h) − 1) |Ft} ,

so that f(t, T ) = EQT
[rT |Ft]. Under QT , f(t, T ) is the best L2 estimator of

r(T ), for Ft given. By definition, lnP (t, T ) = −
∫ T

t
f(t, s)ds, hence

P (t, T ) = exp

(
−
∫ T

t
EQs

[rs |Ft] ds

)
.

�

Xt = 0 for t < T

XT = VT − Gt at T,
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Exercise 5.2.7. Let P f (t, T, T ∗) := P (t, T ∗)/P (t, T ) be the forward price at
time t, in units of time T , of a zero coupon bond with maturity T ∗ > T . Using
Jensen’s inequality, show that the forward spot rate Y f (t, T, T ∗) defined by

P f (t, T, T ∗) = exp
(
−(T ∗ − T )Y f (t, T, T ∗)

)
is a QT -submartingale.

Forward Price, Futures Price

We can specify the relationship between the forward price and the futures
price. By definition of QT , for any product Z ∈ L2(Ω,FT , Q),

EQT
[Z |Ft] = EQ

[
Z

ζ(T )
ζ(t)

|Ft

]
.

Moreover, Proposition 5.2.6 and the properties of the exponential show
that

ζT

ζt
=

RT

RtP (t, T )
= exp

[∫ T

t

(f(t, u) − r(u)) du

]

= 1 +
∫ T

t

(f(t, u) − r(u)) exp
{∫ u

t

(f(t, v) − r(v))dv

}
du

= 1 +
∫ T

t

ζu
u

ζu
t

(f(t, u) − r(u)) du .

(the equality between the third and fourth terms is obtained using the formula

exp

(∫ T

t

g(u) du

)
= 1 +

∫ T

t

g(u)
(

exp
∫ u

t

g(v) dv

)
du ,

which is established by differentiating with respect to T ).

When the variables Zi are Fu-measurable, we use the notation

CovQu
(Z1, Z2 |Fs) = EQu

(Z1 Z2 |Fs) − EQu
(Z1 |Fs)EQu

(Z2 |Fs)

= EQu

(
(Z1 − EQu

(Z1 |Fs))Z2 |Fs

)
,

for their conditional covariance with respect to Fs, under Qu.
We write Zu = EQ(Z|Fu). Using

EQ

(
Z

ζu
u

ζu
t

(f(t, u) − r(u)) |Ft

)
= EQu

(Zu (f(t, u) − r(u)) |Ft) ,

and taking into account the fact that f(t, u) = EQu
(r(u)|Ft), we obtain
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EQT
(Z |Ft) = EQ(Z |Ft) −

∫ T

t

CovQu
(Zu, r(u) |Ft) du (5.7)

In particular,

EQT
(Z) = EQ(Z) −

∫ T

0

CovQu
(Zu, r(u)) du .

Proposition 5.2.8. The price at time 0 of a forward contract with maturity
T , written on Z, is the price at time 0 of a futures contract with the same
characteristics, minus a covariance bias.

5.2.3 Valuation of an Option on a Coupon Bond

The price of a European option with payoff h(T ) at time T is given by

C(t) = R−1
t EQ [h(T )RT |Ft] .

Let us consider an option with maturity T on a product that makes de-
terministic payments Fn at times Tn, T < Tn < Tn+1, and let V (t) =∑N

n=1 FnP (t, Tn).

Theorem 5.2.9. The price of a European option with strike K and maturity
T written on an asset that makes the payouts Fn at times Tn is

C(0) =
N∑

n=1

FnP (0, Tn)Qn [V (T ) > K] − KP (0, T )QT [V (T ) > K] ,

where Qn is the Tn-forward measure.

Proof. By definition,

C(0) = EQ(RT (V (T ) − K)+) = EQ

⎡⎣RT

(
N∑

n=1

FnP (T, Tn) − K

)+
⎤⎦ ,

which can be written

C(0) =
N∑

n=1

FnEQ

[
RT P (T, Tn)1{V (T )>K}

]
− KEQ

[
RT 1{V (T )>K}

]
.

By definition of Qn, we have

EQ

[
RT P (T, Tn)1{V (T )>K}

]
= P (0, Tn)EQn

[
1{V (T )>K}

]
,

which produce the result required. �
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Exercise 5.2.10. Show that if r is constant, then the price of a European
option with maturity T , strike K and with, as the underlying, the forward
contract Ft on an asset with constant volatility σ, is:

Ct = e−r(T−t) (FtΦ(d1) − KΦ(d2)) ,

with d1 =
ln(FtK

−1) + σ2

2 (T − t)
σ
√

T − t
, d2 = d1 − σ

√
T − t. This is known as

Black’s formula.

5.3 The Heath–Jarrow–Morton Model

This model specifies the dynamics of zero coupon bonds under the assumption
of NAO. We then study the evolution of the yield curve.

5.3.1 The Model

We suppose that for any maturity, the dynamics of the zero coupon bond with
maturity T are given by

dP (t, T ) = P (t, T )
(
(r(t) − q(t)σ(t, T ))dt + σ(t, T )dB̃t

)
,

where B̃ is a Brownian motion under the historical probability measure P , and
where σ is a matrix of adapted, bounded coefficients, which are continuous in
t and continuously differentiable with respect to T .

The process q is the risk premium (see Remark 5.2.1), and is assumed
to be bounded. The instantaneous return of the zero coupon bond is r(t) −
q(t)σ(t, T ).

As P (T, T ) = 1, we assume that σ(T, T ) = 0.

Under the risk-neutral measure Q, the price dynamics of the zero coupon
bond are:

dP (t, T ) = P (t, T ) (r(t)dt + σ(t, T )dBt) (5.8)

where B is defined by dBt = dB̃t − q(t)dt, and is a Q-Ft-Brownian motion.

Let I(t, T ) := σ(t, T )σ∗(t, T ) (where * denotes the transpose), and let us
assume that EQ

(
exp 1

2

∫ T

0
I(s, T )ds

)
< ∞ and that EQ

∣∣ ∂
∂tσ(s, t)

∣∣2 < ∞.
We then have:

P (t, T ) = P (0, T ) exp
{∫ t

0

σ(s, T )dBs −
1
2

∫ t

0

I(s, T )ds +
∫ t

0

r(s)ds

}
(5.9)

and

ζT
t = exp

{∫ t

0

σ(s, T )dBs −
1
2

∫ t

0

I(s, T )ds

}
. (5.10)
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Theorem 5.3.1. The forward spot rates are given by

f(t, T ) = f(0, T ) −
∫ t

0

∂σ

∂T
(s, T ) dBs +

∫ t

0

∂σ

∂T
(s, T )σ∗(s, T ) ds

and the spot rate satisfies

r(t) = f(0, t) −
∫ t

0

∂σ

∂T
(s, t) dBs +

∫ t

0

∂σ

∂T
(s, t)σ∗(s, t) ds .

Proof. Formula (5.9) can be written as

lnP (t, T ) = lnP (0, T ) +
∫ t

0

r(s) ds − 1
2

∫ t

0

I(s, T ) ds +
∫ t

0

σ(s, T ) dBs ,

t ≤ T . (5.11)

We differentiate this expression with respect to T , to get

∂

∂T
lnP (t, T ) =

∂

∂T
lnP (0, T ) − 1

2

∫ t

0

∂

∂T
I(s, T ) ds +

∫ t

0

∂

∂T
σ(s, T ) dBs ,

and hence the expression for the forward spot rate.

It now remains to use

r(t) =
[
− ∂

∂T
lnP (t, T )

]
T=t

,

to obtain the expression for the spot rate. The forward spot rate is a biased
estimator of the spot rate, where the bias is independent of the volatility.
In the historical world (under P ), the risk premium must be taken into
account. �

Remark 5.3.2. Using (5.10), we can see that dζt = σ(t, T )ζt dBt. Applying
Girsanov’s theorem, we find that the vector BQT

t := Bt −
∫ t

0
σ(s, T ) ds is a

QT -Brownian motion: once again we find that under QT , f(t, T ) = f(0, T ) −∫ t

0

∂σ

∂T
(s, T ) dBQT

s is a martingale.

Exercise 5.3.3. Using the fact that

EQ (r(T ) |Ft) = f(0, T ) −
∫ t

0

∂σ

∂T
(s, T ) dBs +

∫ t

0

∂σ

∂T
(s, T )σ∗(s, T ) ds

+
1
2

∫ T

t

EQ(
∂I

∂T
(s, T ) |Ft) ds ,
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show that

f(t, T ) = EQ (r(T ) |Ft) +
1
2

∫ T

t

EQ

(
∂I

∂T
(s, T ) |Ft

)
ds .

Using covariance calculations, establish the fact that

f(t, T ) = EQ (r(T ) |Ft) + CovQ

(
r(T ),

∫ T

t

σ(s, T ) dBs |Ft

)
,

and next, using (5.11), show that

f(t, T ) = EQ (r(T ) |Ft) +
∫ T

t

CovQ (r(s), r(T ) |Ft) ds

− 1
2

∫ T

t

CovQ (I(s, T ), r(T ) |Ft) ds .

5.3.2 The Linear Gaussian Case

The Gaussian model is a model in which the volatility of the zero coupon bond
is deterministic, and the spot rate is a Gaussian diffusion (Jamshidian [208],
El Karoui et al [141, 142]). In this framework, we obtain a Black–Scholes type
formula for the valuation of options on zero coupon bonds.

The Model

As before, we take as given for any maturity, the dynamics of zero coupon
bond prices under the historic measure:

dP (t, T ) = P (t, T )
(
(r(t) − q(t)σ(t, T ))dt + σ(t, T )dB̃t

)
,

where B̃ is a one-dimensional Brownian motion under P , and where σ is a
bounded deterministic function of class C1 with respect to its second variable.
We continue to assume that σ(T, T ) = 0.

Under the risk-neutral measure, we have

dP (t, T ) = P (t, T ) (r(t)dt + σ(t, T ) dBt)

where B is a Brownian motion under Q.

The results that were proved in the previous section here take the form:

Theorem 5.3.4. The price at time t of a zero coupon bond is
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P (t, T )

=
P (0, T )
P (0, t)

exp
[∫ t

0

(σ(s, T ) − σ(s, t)) dBs +
1
2

∫ t

0

(σ2(s, t) − σ2(s, T )) ds

]
,

t ≤ T .

The forward spot rate is given by

f(t, T ) = f(0, T ) −
∫ t

0

∂

∂T
σ(s, T ) dBs +

∫ t

0

σ(s, T )
∂

∂T
σ(s, T ) ds .

The spot rate satisfies

r(t) = f(0, t) −
∫ t

0

∂

∂T
σ(s, t) dBs +

∫ t

0

σ(s, t)
∂

∂T
σ(s, t) ds , ∀t . (5.12)

Because σ is deterministic, the spot rate, as well as the forward spot rate,
are Gaussian processes. (They can therefore take negative values, though after
parameter calibration, this only occurs with a small probability).

These formulae give the dynamics of zero coupon bond prices, and of the
spot and forward rates. These dynamics depend only on today’s yield curve
and on the volatility. The forward spot rate f(0, t) is a biased estimator of
the forward spot rate f(t, T ) and of the spot rate r(t). The bias term depends
only on the volatility.

By definition of Y , we obtain:

Y (t, T ) = Y f (0, t, T ) −
∫ t

0

σ(s, T ) − σ(s, t)
T − t

dBs

+
1
2

∫ t

0

σ2(s, T ) − σ2(s, t)
T − t

ds , t ≤ T (5.13)

where

Y f (0, t, T ) =
1

T − t

∫ T

t

f(0, s)ds .

The yield curve at time t can be obtained from the initial curve by means
of a random term and of the deterministic risk premium that depends only
on the volatility.

Change of Numéraire

Let us return to the issue of a changing numéraire. We would like to interpret
the biases in the previous formulae in terms of covariances. The variances and
covariances are not altered by a change of measure of the Girsanov kind; and,



176 5 The Yield Curve

the volatility σ being deterministic, it has the same distribution under Q as
under QT .

As commented on earlier,

CovQs
(EQ(r(T )|Fs), r(s)) = CovQ (r(T ), r(s))

and, using (5.7),

f(t, T ) = EQT
(r(T ) |Ft) = EQ (r(T ) |Ft) −

∫ T

t

CovQ (r(s), r(T ) |Ft) ds .

In particular,

f(0, t) = EQ(r(t)) −
∫ t

0

CovQ(r(s), r(t)) ds .

According to (5.12), r(t) = EQ(r(t)) −
∫ t

0

∂

∂T
σ(s, t) dBs, hence we get

r(t) = f(0, t) −
∫ t

0

∂

∂T
σ(s, t) dBs +

∫ t

0

CovQ (r(s), r(t)) ds .

Using (5.13) we also obtain:

Y (t, T ∗) = Y f (0, t, T ∗) −
∫ t

0

σ(s, T ∗) − σ(s, t)
T ∗ − t

dBQT
s

+
1
2

∫ t

0

σ2(s, T ∗) − σ2(s, t)
T ∗ − t

ds

−
∫ t

0

σ(s, T ∗) − σ(s, t)
T ∗ − t

σ(s, T ) ds

= Y f (0, t, T ∗) −
∫ t

0

σ(s, T ∗) − σ(s, t)
T ∗ − t

dBQT
s

+
1
2
(T ∗ − t)VarQ Yt,T∗ − (T − t)CovQ(Yt,T , Yt,T∗) .

The instantaneous rate contains a drift term that depends on the corre-
lation between rates at earlier dates. Under Qt, the instantaneous rate has
expectation

EQt
(Yt,T ) = Y f (0, t, T ) +

1
2
(T − t)VarQ Yt,T .

It is the price at time 0 of a forward contract with maturity t on the rate
between times t and T . At time t, the expectation under Qt of Yt,T equals
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the forward rate plus a positive risk premium that is proportional to VarYt,T .
Under Q,

EQ(Yt,T ) = Y f (0, t, T ) +
1
2
(T − t)Var Yt,T +

∫ t

0

Cov (Yt,T , r(s)) ds .

Thus it is also the price of a futures contract on the rate for the period
(t, T ). If the correlation between times 0 and t is positive, the price of the
futures contract is higher than the price of the forward contract. Under QT ,
by exploiting the relationship between forward and futures prices, we can
write:

EQT
(Yt,T∗) = EQt

(Yt,T∗) −
∫ t

0

Cov (Yt,T∗ , r(s)) ds

= EQt
(Yt,T∗) − (T − t)Cov (Yt,T∗ , Yt,T )

= Y f (0, t, T ∗) +
T − t

2
VarQ Yt,T − (T − t)Cov(Yt;T∗ , Yt,T ) .

Exercise 5.3.5. Let P f (t, T, T ∗) :=
P (t, T ∗)
P (t, T )

, t ≤ T be the forward price

of a zero coupon bond with maturity T ∗. Show that

P f (t, T, T ∗) = P f (0, T, T ∗)

× exp
[∫ t

0

[σ(s, T ∗) − σ(s, T )] dBs −
1
2

∫ t

0

[σ2(s, T ∗) − σ2(s, T )] ds

]
.

Using Property 5.2.3, check that P f (t, T, T ∗) is a martingale under QT .
Thence deduce that

P f (t, T, T ∗) = P f (0, T, T ∗)

× exp
[∫ t

0

[σ(s, T ∗) − σ(s, T )] dBQT
s − 1

2

∫ t

0

[σ(s, T ∗) − σ(s, T )]2 ds

]
.

A Special Case

Let us consider the case σ(s, t) = σ(t−s) where σ is a constant. We then have

f(t, T ) = f(0, T ) + σ2t

(
T − t

2

)
− σBt .

As remarked upon earlier, the forward spot rates are Gaussian, and can be-
come negative with a positive probability.

r(t) = f(0, t) +
σ2t2

2
− σBt .
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The spot rate is equal to the forward rate between times 0 and t, plus a
random perturbation and an adjustment factor. It too can be negative with a
positive probability. From the expression P (t, T ) = exp

(
−
∫ T

t
f(t, s)ds

)
, we

also obtain

P (t, T ) = exp

(
−
∫ T

t

f(0, s)ds − σ2 Tt

2
(T − t) + σ(T − t)Bt

)
.

This formula has a drawback: Bt is not observable. We remedy the situation
by using the spot rate

P (t, T ) = exp

(
−
∫ T

t

(f(0, s) − f(0, t))ds − σ2t
(T − t)2

2
− (T − t)r(t)

)
.

This last formula depends only on observables, and only one parameter re-
mains to be estimated.

Exercise 5.3.6. We suppose that σ(s, t) = σ
1 − e−λ(t−s)

λ
. Show that rt =

EQ(rT )−σZt where Zt =
∫ t

0
e−λ(t−s)dBs. Next show that f(t, T ) = EQ(f(t, T ))−

σ e−λ(T−t)Zt and that Y (t, T ) = EQ(Y (t, T )) − σ
1 − e−λt

λt
Zt.

Valuation of a Call on a Zero Coupon Bond

We would like to valuate a call with strike K and maturity T , on a zero coupon
bond with maturity T ∗. The value of the call at maturity (that is at time T )
is

(P (T, T ∗) − K)+ ,

hence C(t) = EQ

(
(P (T, T ∗) − K)+ exp

(
−
∫ T

t
r(s)ds

)
|Ft

)
. If we choose the

zero coupon bond of maturity T as numéraire, the associated probability
measure is QT , and as we saw (in Exercise 5.3.5),

dP f
t,T,T∗ = P f

t,T,T∗ {σ(t, T ∗) − σ(t, T )} dBQT

t .

By definition of QT , we have

C(0) = EQ

(
(P (T, T ∗) − K)+ exp

(
−
∫ T

0

r(s) ds

))

= P (0, T )EQT

((
P f

T,T,T∗ − K
)+

)
.

Let Σ(t) = σ(t, T ∗) − σ(t, T ) and Σ2 =
∫ T

0
Σ2(s)ds. Analogous calculations

to those of the Black–Scholes formula show that:
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C(0) = P (0, T )
(
P f

0,T,T∗Φ(d) − KΦ(d − Σ)
)

where

d =
(

ln
P f (0, T, T ∗)

K
+

1
2
Σ2

)
/Σ .

5.4 When the Spot Rate is Given

Let us now assume that the spot rate is given.

We suppose that under the historic measure P , the spot rate r(t) follows the
Itô process defined by

dr(t) = f(t, rt) dt + ρ(t, rt) dB̃t (5.14)

where B̃ is a one-dimensional P -Brownian motion, and f and ρ are continuous
functions, which satisfy growth and Lipschitz conditions such that equation
(5.14) admits a unique solution10.

As with the Black–Scholes formula, we assume that the value P (t, T ) of
a zero coupon bond is a function of r(t), which we write P (t, T ; r(t)), where
P (t, T ; r) belongs to C1,1,2(R+ × R+ × R).

Itô’s formula leads to (T is considered to be fixed, and we write P (t, T )
instead of P (t, T ; r(t))):

dP (t, T ) =
(

∂P

∂t
+ f

∂P

∂r
+

1
2
ρ2 ∂2P

∂r2

)
(t, T )dt + ρ

∂P

∂r
(t, T )dB̃t

= P (t, T )(µtdt + σtdB̃t)

with

µ(t, T ) =
1

P (t, T )

(
∂P

∂t
+ f

∂P

∂r
+

1
2
ρ2 ∂2P

∂r2

)
(t, T ) (5.15i)

and

σ(t, T ) =
ρ(t, r(t))
P (t, T )

∂P

∂r
(t, T ) . (5.15ii)

The assumption of no arbitrage leads us to use the measure Q under which
discounted prices all have the same expected return. Here, using Girsanov’s

theorem, we get
dQ

dP

∣∣∣
Ft

= Lt, with dLt = qtLtdBt and where q(s) =

10 In practice, we choose simple expressions for f , ρ and q, depending on parameters.
These parameters are then estimated by calibrating or fitting the theoretical yield
curve to the observed yield curve.
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µ(s, T ) − r(s)
σ(s, T )

. Thus we obtain (by noting that as Q does not depend on T ,

nor does q) that all the discounted prices P (s, t) are Q-martingales, i.e., that

P (s, t) = EQ

(
P (t, t) exp

(
−
∫ t

s

r(u)du

)
|Fs

)
; s ≤ t (5.16)

or, under the historic probability measure, that

P (s, t) = EP

(
exp

{∫ t

s

q(u)dBu − 1/2
∫ t

s

q2
udu −

∫ t

s

r(u)du

}
|Fs

)
.

We exploit the Q-martingale property of P (s, t; r(s)) exp
[
−
∫ s

0
r(u) du

]
,

by saying that the infinitesimal generator associated with the diffusion is zero.
Hence

∂P

∂t
+ (f + ρq)

∂P

∂r
+

1
2
ρ2 ∂2P

∂r2
− rP = 0 . (5.17)

This type of equation is known as an evolution equation. Thus we recover

dP (t, T ) = P (t, T )
(
(r(t) − q(t)σ(t, T )) dt + σ(t, T )dB̃t

)
=
(

P (t, T )r(t) − ρq
∂P

∂r

)
dt + ρ

∂P

∂r
dB̃t . (5.18)

This evolution equation applies to any security linked to interest rates, as
long as the security does not pay out coupons. For a numerical solution to the
equation, we need to assign it a terminal condition. For a zero coupon bound,
this terminal condition is P (T, T ) = 1.

Exercise 5.4.1. Let us show how, following the approach of Vasicek [360],
(1977), we can recover the result above, reasoning by no arbitrage between
zero coupon bonds of different maturities. We suppose that the price of a zero
coupon bond has the dynamics

dP (t, T ) = P (t, T )(µtdt + σtdB̃t) ,

and that P (t, t) = 1. At time t, the agent sells an amount π1(t) of zero coupon
bonds of maturity s1, and buys an amount π2(t) of zero coupon bonds of
maturity s2. We have

dπi(t) = πi(t)
{

µ(t, si)dt + σ(t, si)dB̃t

}
.

The resulting portfolio has value π := π2−π1. Show that if π were an arbitrage
portfolio, then we would have

π2(t)µ(t, s2) − π1(t)µ(t, s1) = π(t)r(t) ,

π2(t)σ(t, s2) − π1(t)σ(t, s1) = 0 ,

and that the existence of an arbitrage portfolio implies that
µ(t, s) − r(t)

σ(t, s)
must be constant and independent of s. We denote this term by q(t, r); it is
the market price of risk. Check that we recover equation (5.17).
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5.5 The Vasicek Model

We now study a special case, by specifying the dynamics of the spot rate.

5.5.1 The Ornstein–Uhlenbeck Process

In this model, we suppose that under P the spot rate satisfies the stochastic
differential equation

drt = a(b − r(t))dt + ρdB̃t ; r(0) = r0 , (5.19)

where a, b and ρ are strictly positive constants. This process is known as the
Ornstein–Uhlenbeck process. The instantaneous mean is proportional to the
difference between the value of b and the value of r(t). A pull–back force tends
to bring r(t) closer to the value of b.

Proposition 5.5.1. The explicit form of the solution to (5.19) is

r(t) = (r0 − b)e−at + b + ρ

∫ t

0

e−a(t−u) dB̃u . (5.20)

Proof. It is enough to note that applying Itô’s lemma to (5.19) yields

d(eatrt) = eat(abdt + ρdB̃t) ,

and to then integrate this last equation. �
If r0 is a constant, then r(t) is a Gaussian variable with mean (r0−b)e−at+b

and variance
ρ2

2a
(1−e−2at). In particular, it is not a positive random variable.

More generally, if r(0) is a Gaussian random variable that is independent
of the Brownian motion B, then the family r(t) is a random Gaussian function
with expectation and variance (carry out the workings using (5.20))

EP (r(t)) = b
(
1 − e−at) + e−atEP (r(0)

)
,

VarP r(t) = ρ0 e−2at + ρ2 1 − e−2at

2a
,

CovP (r(t), r(s)) =ρ0e−a(t+s) + ρ2

∫ s

0

e−a(s−u)e−a(t−u)du

= e−a(t+s)

(
ρ0 + ρ2 e2as − 1

2a

)
,

for s ≤ t and where ρ0 denotes the variance of r(0). We can also calculate the
conditional expectation and conditional variance of r(t):
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Proposition 5.5.2. If (r(t), t ≥ 0) is a process as in (5.19), we have for s ≤ t

EP (r(t) |Fs) = b + (r(s) − b) e−a(t−s) , (5.21)

and

VarP (r(t) |Fs) =
ρ2

2a

(
1 − e−2a(t−s)

)
,

where
VarP (r(t) |Fs) = EP

(
r2(t) |Fs

)
− (EP (r(t) |Fs))

2
.

Proof. These results can be obtained directly from the expression for r(t)

r(t) = (r(s) − b) e−a(t−s) + b + ρ

∫ t

s

e−a(t−u)dB̃u .

The workings for the variance are carried out in the same way, using the fact
that

VarP (r(t) |Fs) = VarP ρ

∫ t

s

e−a(t−u) dB̃u .

Thence, we deduce the expressions for the expectation and variance of
r(t), as well as

EP

(∫ t

s

r(u) du |Fs

)
=

∫ t

s

EP (r(u) |Fs) du

= b(t − s) + (r(s) − b)
1 − e−a(t−s)

a
.

Similar calculations, involving this time the covariances, show that

VarP

(∫ t

s

r(u) du |Fs

)
= − ρ2

2a3
(1−e−a(t−s))2+

ρ2

a2

(
(t−s)− 1 − e−a(t−s)

a

)
.

�

Proposition 5.5.3. The variable
∫ t

0
r(s)ds is a Gaussian variable with mean

bt + (r0 − b)
1 − e−at

a
and variance − ρ2

2a3

(
1 − e−at

)2 +
ρ2

a2

(
t − 1 − e−at

a

)
.

Moreover,

EP

(∫ t

s

r(u) du |Fs

)
= b(t − s) + (r(s) − b)

1 − e−a(t−s)

a
, (5.22i)

and

VarP

(∫ t

s

r(u) du |Fs

)
=

− ρ2

2a3

(
1 − e−a(t−s)

)2

+
ρ2

a2

(
(t − s) − 1 − e−a(t−s)

a

)
. (5.22ii)
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5.5.2 Determining P (t, T ) when q is Constant

We give two methods for determining P (s, t) explicitly. The first uses the
valuation partial differential equation, and the second involves using (5.4)
and the distribution of r. We suppose that q is constant.

The Valuation Equation

We look for a solution to (5.17) of the form P (t, T ) = exp(αr(t) + β), where
the coefficients (α, β) depend on θ = T − t. They must then satisfy

−α′(θ)rP − β′(θ)P + (a(b − r) + ρq)α(θ)P +
ρ2

2
α2(θ)P − rP = 0 .

Hence α and β are solutions to⎧⎪⎨⎪⎩
α′(θ) + aα(θ) + 1 = 0

−β′(θ) + a(b + ρq)α(θ) + ρ2

2 α2(θ) = 0 ,

with initial conditions α(0) = 0 and β(0) = 0 coming from P (T, T ) = 1. This
yields⎧⎪⎪⎨⎪⎪⎩

α(θ) =
1
a

(
e−aθ − 1

)
β(θ) = −

(
b +

ρq

a
− ρ2

2a2

)
θ −

(
b +

ρq

a
− ρ2

a2

)
e−aθ

a
− ρ2

4a3
e−2aθ − K ,

where the constant K is chosen in such a way that β(0) = 0.
We find

β(θ) = −Y (∞)θ +
1 − e−aθ

a

(
Y (∞) − ρ2

2a2

)
+

ρ2

4a3

(
1 − e−2aθ

)
,

where Y (∞) = b +
ρq

a
− ρ2

2a2
represents the return on a zero coupon bond

with infinite maturity, as appears in the following formulae. Thus we obtain:

P (t, T ) = exp(−Y (∞)(T − t) +
(
1 − e−a(T−t)

) Y (∞) − r(t)
a

− ρ2

4a3

(
1 − e−a(T−t)

)2

. (5.23)

Using (5.18) (or differentiating (5.23)), we get:

dP (t, T ) = P (t, T )
(
(r(t) +

ρq

a
(1 − e−a(T−t)) dt − ρ

a
(1 − e−a(T−t)) dB̃t

)
.

(5.24)
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Theorem 5.5.4. In the Vasicek model, the dynamics of the forward rate are
given by

f(t, T ) = Y (∞) − e−a(T−t) (Y (∞) − r(t)) +
ρ2

2a2

(
1 − e−a(T−t)

)
e−a(T−t) ,

therefore

f(t, T ) − E (r(T ) |Ft) =
(

Y (∞) − b +
ρ2

2a2
e−a(T−t)

)(
1 − e−a(T−t)

)
.

This model can be criticized on several grounds: the coefficients are con-
stant over time, and f(t,∞), the long rate with infinite maturity, is constant,
which does not occur in practice.

We have that σ(t, T ) =
ρ

a

(
1 − e−a(T−t)

)
: the further out the maturity,

the greater the volatility. We also have µ(t,∞) = r(t) +
ρq

a
and σ(t,∞) =

ρ

a
.

The rate Y (t, T ) = − 1
T − t

lnP (t, T ) is easily calculated:

Y (t, T ) = Y (∞) + (r(t) − Y (∞))
1 − e−a(T−t)

a(T − t)
+

(
1 − e−a(T−t)

)2
ρ2

4a3(T − t)
.

If we study the function T → Y (t, T ) (the so-called yield curve), we see that

Y (t, t) = r(t) and Y (t, T ) −→
T→∞

Y (∞) .

Moreover,

• if r(t) ≤ Y (∞) − ρ2

4a2
, the curve is strictly increasing,

• if Y (∞)− ρ2

4a2
≤ r(t) ≤ Y (∞)+

ρ2

2a2
, it is increasing and then decreasing,

• and if Y (∞) +
ρ2

2a2
< r(t), the curve is strictly decreasing.

If we define R(t, θ) = Y (t, t + θ), we see that R(t, θ) −→
θ→∞

Y (∞) (which is

independent of t).

The different shapes of this yield curve correspond to many of the curves
observed in the markets. Nevertheless, some of the observed curves cannot be
obtained in this model. Moreover, the problem of calibrating the parameters
has not been satisfactorily solved, and r(t) and R(∞) are not truly observ-
ables. In addition, the rates can become negative.
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Calculation of the Conditional Expectation

Under Q, the process for r follows

dr(t) = a (bq − r(t)) dt + ρdBt

where bq = b +
ρq

a
and where B is a Q-Brownian motion. The price of a zero

coupon bond with maturity T is

P (t, T ) = EQ

[
exp−

∫ T

t

r(s)ds |Ft

]
.

As r is Gaussian, it follows (see Annex 3) that P (t, T ) is a function of
r(t) of the form exp(αr(t) + β) = exp [EQ(X |Ft) − 1/2Vart X], where X =
−
∫ T

t
r(u) du. Using the results of Proposition 5.5.3, we recover formula (5.23).

5.6 The Cox–Ingersoll–Ross Model

5.6.1 The Cox–Ingersoll–Ross Process

Cox–Ingersol–Ross [70] introduced a model where, in the risk-neutral world11,
the spot rate is driven by the equation

drt = a(b − rt) dt + ρ
√

rt dBt, r(0) = r0 (5.25)

with a, b and ρ positive.
We can show that this equation admits a unique solution12 that is positive,

but we do not have an explicit form for it. The solution does not reach 0 if
2ab ≥ ρ2.

Theorem 5.6.1. Let r(t) be the process satisfying

drt = a(b − rt)dt + ρ
√

rtdBt .

Its conditional expectation and conditional variance are given by

EQ(r(t) |Fs) = r(s)e−a(t−s) + b
(
1 − e−a(t−s)

)
,

VarQ(r(t) |Fs) = r(s)
ρ2

(
e−a(t−s) − e−2a(t−s)

)
a

+
bρ2

(
1 − e−a(t−s)

)2
2a

.

11 If we were to work under the historic measure, we would assume that the spot
rate satisfies (5.25) under P and that q(t) = α

√
r(t), where α is a constant.

12 See Ikeda and Watanabe [204] p. 222 or Karlin [234].
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Proof. By definition, for s ≤ t, we have

r(t) = r(s) + a

∫ t

s

(b − r(u))du + ρ

∫ t

s

√
r(u) dBu , (5.26)

and, applying Itô’s formula,

r2(t) = r2(s) + 2a
∫ t

s

(b − r(u))r(u)du + 2ρ
∫ t

s

(r(u))3/2dBu + ρ2

∫ t

s

r(u)du

= r2(s) + (2ab + ρ2)
∫ t

s

r(u)du − 2a

∫ t

s

r2(u)du + 2ρ
∫ t

s

(r(u))3/2dBu .

(5.27)

Assuming that the stochastic integrals that appear in the equalities above
have zero expectation, we obtain for s = 0

EQ(rt) = r0 + a

(
bt −

∫ t

0

EQ(ru)du

)
,

and

EQ(r2(t)) = r2(0) + (2ab + ρ2)
∫ t

0

EQ(r(u))du − 2a

∫ t

0

EQ(r2(u))du .

Solving the equation Φ(t) = r0+a
(
bt −

∫ t

0
Φ(u)du

)
, which can be transformed

into the differential equation Φ′(t) = a(b − Φ(t)), we obtain

E[r(t)] = b + (r(0) − b)e−at .

Similarly, we calculate

Var[r(t)] =
ρ2

a

(
1 − e−at

) [
r(0)e−at +

b

2
(1 − e−at)

]
,

and the conditional expectation and variance of r:

EQ(r(t) |Fs) = r(s)e−a(t−s) + b
(
1 − e−a(t−s)

)
,

VarQ(r(t) |Fs) = r(s)
ρ2

(
e−a(t−s) − e−2a(t−s)

)
a

+
bρ2

(
1 − e−a(t−s)

)2
2a

.

�
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5.6.2 Valuation of a Zero Coupon Bond

Proposition 5.6.2. The price of a zero coupon bond with maturity T is of
the form

P (t, T ) = Φ(T − t)e−r(t)Ψ(T−t) (5.28)

with

Φ(s) =
[

2γe(a+γ)s/2

(a + γ)(eγs − 1) + 2γ

] 2ab
ρ2

Ψ(s) =
2(eγs − 1)

(a + γ)(eγs − 1) + 2γ
, γ = (a2 + 2ρ2)1/2 .

Proof. Once again, we present two methods.

The Valuation Equation

The valuation equation is given by

∂P

∂t
+ a(b − r)

∂P

∂r
+

1
2
ρ2r

∂2P

∂r2
− rP = 0 , (5.29)

with P (T, T ) = 1. If we look for solutions to (5.29) in the form (5.28), we

find that Φ and Ψ are solutions to
1
2
ρ2Ψ2 + aΨ + Ψ ′ = 1 , Ψ(0) = 0 and

Φ′ = −abΨΦ , Φ(0) = 0. It is straightforward to check that there is a solution
to the valuation equation, under the required form.

Calculation of the Conditional Expectation

Another method involves using probabilistic results to calculate

P (t, T ) = EQ

[
exp

(
−
∫ T

t

r(s)ds

) ∣∣∣Ft

]
.

To do this, we need the conditional distribution of the variable

exp

(
−
∫ T

t

r(s)ds

)
.

We can check13 that
13 See Revuz–Yor [307].
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EQ

[
exp

(
−
∫ T

t

r(s)ds

) ∣∣∣Ft

]

= EQ

[
exp

(
−
∫ T

t

r(s)ds

) ∣∣∣ rt

]
= F (T − t, rt)

with F (s, x) = EQ

[
exp

(
−
∫ s

0
rx(u)du

)]
, rx being the process that is a solution

to (5.25), with initial value x.

We show how to obtain the Laplace transform of
∫ s

0
rx(u)du.

Let G(s, x) = EQ

[
exp

(
−µ

∫ s

0
rx(u)du

)]
be that Laplace transform. Using

results on partial differential equation (see Sect. 3 of Annex 3), we look for G
as a solution to

∂G

∂t
=

ρ2

2
x

∂2G

∂x2
+ a(b − x)

∂G

∂x
− µxG

subject to the initial condition G(0, x) = 1. This is in fact equation (5.29). �

Exercise 5.6.3. This is a generalization of the previous models (Hull and
White [202], 1990).
We suppose that under P ,

dr(t) = (θ(t) + a(t)(b − r(t)) dt + σ(t) dB̃t .

Show that P must satisfy

∂P

∂t
+ (Φ(t) − a(t)r)

∂P

∂r
+

1
2
σ2(t)

∂2P

∂r2
− rP = 0

where Φ(t) = a(t)b + θ(t) − q(t)σ(t).

Exercise 5.6.4. The two-factor model of Schaeffer and Schwartz [327], (1984).
The explanatory variables are the long rate �(t) and the difference between
the long rate and the spot rate, e(t) = r(t) − �(t). We assume that under P ,

det = m(µ − et)dt + γ dB̃1(t)

d�t = a(b − �t)dt + c
√

�t dB̃2(t)

where B̃1 and B̃2 are independent Brownian motions. We assume that the
risk premia are given by q1 for e and by q2

√
� for �. The zero coupon bond

has the value

P (t, T ; e, �) = EQ

(
exp

(
−
∫ T

t

r(u) du

) ∣∣∣ et = e, �t = �

)
.

Show that P satisfies
1
2
γ2P ′′

ee +
1
2
c2�P ′′



 +m(µ+ q1γ − e)P ′
e +a(b+ q2�c− �)P ′


 +P ′
t − (e+ �)P = 0 .
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Notes

The results of the first section (the discrete-time model) have been generalized
by Jensen and Nielsen [217], (1998), who assume that the perturbation func-
tion depends on the number of up-moves, and by Sandmann and Sondermann
[321], (1992). By considering the spot rate as a state variable, El Karoui and
Saada [148], (1992), have shown that the forward spot rate depends on the
spot rate in a linear fashion. The continuous time model can be introduced
as a limit of the (discrete) Ho and Lee model. This approach was developed
Heath–Jarrow–Morton [187], (1990). A detailed carried out by El Karoui and
Saada [148], (1992), looks closely at the assumption of path-independence.
Their calculations provided the inspiration for our exposition of the results
concerning expressions for the yield curve.

The section in continuous time owes a great deal to Nicole El Karoui
([141, 142], (1992), and [136], (1993)). We give her our heartfelt thanks for
allowing us to follow her lecture notes and papers in this way.

Presentations of the futures contract can by found in Duffie [113], (1989)
and Hull [200], (2000).

Over the last few years, a new approach to studying the term structure of
interest rates has been used. By means of the martingale measure, this method
gives no arbitrage prices that depend only on the market price of risk. The
starting point is a model of the dynamics of the zero coupon bonds, rather than
of the interest rates. Today’s yield curve is taken to be exogenous to the model
and a model for the evolution of the yield curve is then developed. Martingale
methods produce, in most cases, necessary and sufficient conditions for no
arbitrage. The absence of arbitrage between the prices of zero coupon bonds
of different maturities translates into the existence of a probability measure Q,
under which discounted prices are martingales (Heath–Jarrow–Morton [188],
(1990), Jamshidian [207, 208] (1989, 1991), El Karoui et al. [141, 142] (1992)).
We model the price dynamics under Q, and study the dynamics of the yield
curve.

The first articles to use the concept of the martingale measure in inter-
est rate modeling, are Artzner and Delbaen [15], (1989), and Heath–Jarrow–
Morton [187, 188], (1990). The approach makes it possible to valuate interest
rate products: thus El Karoui and Rochet, [146], (1990) priced options on
zero coupon bonds. The linear Gaussian case has been studied in detail by
Jamshidian [208], (1991), and by El Karoui et al. [148] (1992). The sections
concerning the Markovian model and the linear Gaussian case are directly
inspired by El Karoui et al. [141, 142] (1992). These papers also contain nu-
merous applications, along with a study of the quadratic Gaussian case. The
forward measure has used by Geman [169], (1989), El Karoui–Rochet [146]
(1990) and Geman–El Karoui–Rochet [170], (1995) to study the valuation of
a variety of options.
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Brennan and Schwartz [44], (1979), Jamshidian [206, 207], (1989),
Longstaff and Schwartz [258], (1992), El Karoui and Lacoste [140], (1992),
Duffie and Kan [120], (1993), Frachot and Lesne [165], (1993) also develop
multi-factor models.

We have not addressed the issue of parameter calibration, or of the statis-
tics of processes linked to the yield curve. The theory enables us to calculate
the yield curve explicitly, once we have chosen a model, and identified the risk
premium and the parameters. However, in practice, estimating the parame-
ters from historical data for the short rate, and then building a yield curve in
a Vasicek or Cox–Ingersol–Ross model, does not produce satisfactory results.
Moreover, the risk premium is a function of the spot rate and of time (rather
than of maturity), yet most models assume it to be constant, which is not
satisfactory. Another method involves adjusting the risk premium parameter
in such a way that the associated yield curve is as close as possible to the
observed rates. We then find parameters that are stable over time, which is
in contradiction to the underlying model. The reader is referred to Brigo and
Mercurio [45], (2001).

Martellini and Priaulet’s book [265], (2000), is an excellent introduction to
interest rates. Lecture notes by Björk (published in [32], (1997)), Björk’s paper
[35], (2001), Musiela and Rutkowski’s book [285], (1997), and Rebonato [306],
(1996), present more elaborate models, and constitute of quasi-exhaustive
study of yield curve modeling.
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Equilibrium of Financial Markets in Discrete
Time

What are the effects of introducing financial markets into an economy? How
are stock prices determined? These are some of the questions that the current
theory of equilibrium in financial markets seeks to address.

As we showed in the previous chapters, necessary conditions that prices
(or gains) must satisfy follow from the NAO assumption: for example, there
must exist a probability measure under which prices (or gains), discounted
by the riskless rate, are martingales. However the compatibility of investors’
choices has not been taken into account. The theory of equilibrium in financial
markets set out here, on the other hand, takes investor preferences as a basis
for explaining how stock prices are determined. The theory originated with
Arrow [12] in 1953, and takes as its starting point the “theory of general
equilibrium”.

Recall that the theory of general equilibrium, which was initiated by Wal-
ras, explains the prices of economic goods using the equality of supply and
demand. The first proofs of the existence (and uniqueness) of a Walras equi-
librium are owed to Wald [361], (1936), however it was only at the beginning
of the fifties that the theory was formalized in all generality, and that a body
of existence proofs was given by Arrow–Debreu [13], (1954), McKenzie [270],
(1959), Gale [168], (1955), Kuhn [246, 247], (1956), Nikaido [293], (1956) and
Uzawa [356], (1956).

During the same period, Arrow [12], (1953) in “Le rôle des valeurs
boursières pour la repartition la meilleure des risques”, and then Debreu,
[90], (1953) in “Economie de l’incertain”, showed that the theory of general
equilibrium, originally a static and deterministic theory, could be extended
to the case where the future is uncertain, by introducing the concept of con-
tingent goods. In the same article, Arrow [12] noted that as the introduction
of these new concepts assumed a great number of markets to be open, so it
required agents to have a huge computational capacity. Thus he suggested
creating financial markets in order to lessen the number of open markets. The
modern theory of equilibrium in financial markets is built on Arrow’s idea.
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Radner’s 1972 paper [305] “Existence of Equilibrium of Plans, Prices and
Price Expectations in a Sequence of Markets” plays a central part in the the-
ory, for several reasons. On the one hand, Radner transposes Arrow’s model
into a dynamic framework, and introduces a more general class of assets than
was considered by Arrow. Because he shows that, even when there are only a
few assets, an exchange economy with financial markets can have an equilib-
rium, his article is the starting point for the “theory of incomplete markets”.
On the other hand, Radner introduces the concept of “rational expectations”
into the Arrow model. The concept, which was first introduced by Muth [286]
in 1961, has gained considerable importance in economic theory over the last
thirty years, thus giving Radner a precursory role.

In the following, we will be using the notation below. Let x and y be two
vectors in R

h.

x ≥ y if and only if xi ≥ yi for all i = 1, . . . , h.
x > y if and only if x ≥ y and x �= y.
x � y if and only if xi > yi for all i = 1, . . . , h.
x · y denotes the scalar product of the two vectors.
R

h
+ denotes the set of vectors x in R

h such that x ≥ 0, and R
h
++ denotes

the set of vectors x of R
h such that x � 0.

6.1 Equilibrium in a Static Exchange Economy

We first recall the concept of a pure exchange economy within Arrow–Debreu
theory. A l-good and m-consumer exchange economy is described by the data

1. the agents’ sets of consumptions, which are here assumed to equal R
l
+,

2. the agents’ sets of endowments ei ∈ R
l
++ (i = 1, . . . , m),

3. the agents’ sets of preferences, which are represented by utility functions
ui : R

l
+ → R, (i = 1, . . . , m). Here we assume that

U1 the functions ui are continuous, strictly concave, and increasing,
for all (i = 1, . . . , m).

Under “perfect competition”, consumers cannot influence prices. Given a
set of prices p = (p1, . . . , pl) ∈ R

l
++, the set of all the goods that agent i can

buy at price p, given his endowment

Bi(p) = {c ∈ R
l
+ | p · c ≤ p · ei} ,

is called the budget set of agent i.

When p � 0, it can easily be shown that Bi(p) is a convex compact set.
We suppose that agent i maximizes his utility function over his budget set.
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As his utility function is assumed to be continuous and strictly concave, the
agent chooses a unique vector of goods, denoted by di(p) ∈ R

l
+, which is called

the agent’s demand at price p. As his preferences are increasing, the budget
constraint is binding at di(p), and we have

p · di(p) = p · ei for all i .

Definition 6.1.1. A collection (p , di(p) , i = 1, . . . , m) is an equilibrium if

i) p � 0

ii)
m∑

i=1

di(p) =
m∑

i=1

ei := e .
(6.1)

The name “aggregate excess demand function” is given to the function
z =

∑m
i=1 (di − ei). The price system p is an equilibrium price if and only if:

p � 0 and z(p) = 0 . (6.1’)

Thus, an equilibrium price has the remarkable property of containing all
the information in the economy that the individual agents require. Indeed, if
each individual reacts to the price system according to his own endowments
and preferences, without knowing those of others, then their individual de-
mands are globally coherent.

From the mathematical point of view, proofs of the existence of an equi-
librium come down to searching for the zeros of the aggregate excess demand
function. Barring exceptional cases, existence proofs use a fixed point argu-
ment. The proofs fall into three categories. In the first, we find proofs that use
either a fixed point theorem, such as those of Brouwer or Kakutani, or anal-
ogous arguments. In this category we find for example proofs carried out in
the fifties, and proofs of the existence of an equilibrium in infinite dimensions.
Proofs of this kind do not required any assumptions of differentiability. The
second category uses combinatorial algorithms for calculating fixed points,
based on Sperner’s lemma (cf. Scarf [323, 324]), and dates back to the early
seventies. The third category uses differential topology (the work of Debreu
[92, 93], Dierker[103, 104], Balasko [20], Mas-Colell [267] and the references
therein, and Smale); and is the most recent. The approach was developed in
order to study the qualitative properties of equilibrium. In particular, this
type of proof has been applied in the theory of incomplete markets. Problems
related to the existence of an equilibrium have led to a great deal of progress
in the mathematical theory of fixed points.

We present here two proofs of the existence of an equilibrium, both using
Brouwer’s or Kakutani’s theorems.

The first proof is purely topological, and is the more classic approach. It is
carried out in the space of goods R

l
+. The second proof, the Negishi method,
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is carried out in the space R
m
+ , where m is the number of agents. The proof

is particularly interesting when the space of goods is infinite dimensional and
the number of agents is finite, as we will see in Chap. 7, in continuous-time
models.

6.2 The Demand Approach

For this method, we work directly with the excess demand function z. We can
show1 that the function z : R

l
++ → R

l has the following properties:

Proposition 6.2.1.

1. z is homogeneous of degree zero, i.e., z(αp) = z(p) for all p � 0 and
α > 0.

2. z is continuous on R
l
++.

3. z satisfies Walras’ law, i.e., p · z(p) = 0 for all p � 0.
4. If pn −→

n→∞
p and pj = 0, then ‖z(pn)‖ −→

n→∞
∞.

5. z is bounded below: z(p) ≥ −e for all p.

As the excess demand function is positively homogeneous, we assume that

p ∈ ∆l−1 =
{

p ∈ R
l
+ ,

l∑
k=1

pk = 1
}

.

Recall that a correspondence F (also called a many-valued function) from
X into Y , is a mapping from X into P(Y ) the set of subsets of Y . In other
words, a correspondence differs from a mapping in that F (x) can contain more
than a single point. The graph of F : X → Y is the set

graphF = {(x, y) ∈ X × Y , y ∈ F (x)} .

First, let us recall the following theorem:

Theorem 6.2.2 (Brouwer’s Theorem). Any continuous mapping from the
simplex ∆l−1 into itself admits a fixed point.

The theorem admits the following extension to correspondences:

Theorem 6.2.3 (Kakutani’s Theorem2). Let S be a non-empty compact
convex subset of R

l, let ϕ be a convex non-empty valued correspondence from
S into S, and whose graph is closed. Then ϕ has a fixed point. That is, there
exists x ∈ S such that x ∈ ϕ(x).

1 Mas-Colell et al. [268] pp. 581-582.
2 Aliprantis and Border [4].
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This leads us to deduce the following result.

Lemma 6.2.4 ( Gale–Nikaido–Debreu Lemma). Let S be a convex closed
subset of the unit simplex ∆l−1. Let f be a continuous function from S into
R

l such that p · f(p) = 0 for all p. Then there exists p∗ ∈ S such that

p · f(p∗) ≤ 0 for all p ∈ S . (6.2)

Proof. Let us consider the correspondence µ : f(S) → S defined by

µ(z) = {p ∈ S | p · z = max{q · z | q ∈ S}} .

The correspondence µ is convex compact valued, and we can easily show that
the graph of µ is closed. Let us consider the correspondence from S×f(S) into
itself, defined by: (p, z) �→ (µ(z), f(p)). Its values are convex and non-empty,
and its graph is closed. It follows from Kakutani’s theorem, that there exists
(p∗, z∗) such that p∗ ∈ µ(z∗) and z∗ = f(p∗). Hence

p · f(p∗) = p · z∗ ≤ p∗ · z∗ = p∗ · f(p∗) = 0 for all p ∈ S .

�
We can now finish our proof of the existence of an equilibrium.

Theorem 6.2.5. Under the assumption U1, there exists an equilibrium.

Proof. If we could apply the Gale–Nikaido–Debreu lemma to the simplex ∆l−1

and to the function z, the proof of the existence of an equilibrium would be
immediate. Indeed, if p · z(p∗) ≤ 0 for all p ∈ ∆l−1 then z(p∗) ≤ 0, but as
p∗ · z(p∗) = 0 (Walras’ law) then necessarily z(p∗) = 0. Unfortunately the
Gale–Nikaido–Debreu lemma does not apply to the aggregate excess demand
function z, as it is not continuous on the boundary of the simplex. This leads
us to truncate the simplex, and to work by taking limits.

For n ∈ N, let

∆l−1
n =

{
p ∈ ∆l−1 | pj ≥ 1

n
, j ∈ {1, . . . , l}

}
.

As the restriction of z to ∆l−1
n is continuous, it then follows from the GND

lemma that there exists p∗n ∈ ∆l−1
n such that

p · z(p∗n) ≤ 0 , p ∈ ∆l−1
n . (6.3)

Since the sequence (p∗n) is in ∆l−1, it has a limit point p∗. Let us show
that p∗ � 0. According to Proposition 6.2.1 (4), it is enough to show that the
sequence z(p∗n) is bounded. From Proposition 6.2.1 (5), it is bounded below

by −e. Moreover, if z(p∗n) = (zk(p∗n))l
k=1, by applying (6.3) to pj =

1
l
, for all

j and for n large enough, we obtain:
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z1(p∗n) ≤ −
l∑

k=2

zk(p∗n) ≤
l∑

k=2

ek .

The sequence z1(p∗n) is therefore bounded above, and a similar reasoning
can be used to show that the sequences zk(p∗n) for k = 2, . . . , l are also bounded
above.

Therefore p∗ � 0, and from Proposition 6.2.1 (2), z(p∗) is a limit point of
the sequence z(p∗n).

As the sequence of truncated simplices ∆l−1
n is increasing, we have

p · z(p∗) ≤ 0 for all p ∈ ∆l−1
n , and by taking limits as n → ∞, we have

p · z(p∗) ≤ 0, p ∈ ∆l−1. Hence z(p∗) ≤ 0. Since p∗ · z(p∗) = 0, we have
z(p∗) = 0, and hence the existence of an equilibrium. �

6.3 The Negishi Method

Although purely topological proofs do exist, here we give an exposition of the
Negishi method under fairly restrictive assumptions of differentiability on the
utility functions ui, so as to emphasize formulae that also appear in continuous
time.
In addition to the previous assumptions, we suppose

U2 For all i, ui is C2 on R
l
++.

U3 For all i, ui satisfies the “Inada conditions”:
∂ui

∂xj
(x) → ∞ if xj → 0,

where the other components of x are fixed.

6.3.1 Pareto Optima

Definition 6.3.1. An allocation (ci)m
i=1 ∈ (Rl

+)m is a Pareto optimum if there
do not exist (c′i)

m
i=1 ∈ (Rl

+)m with
∑m

i=1 c′i ≤ e such that ui(c′i) ≥ ui(ci) for
all i, and uj(c′j) > uj(cj) for at least one j.

Definition 6.3.2. A pair (p , (ci)m
i=1 ∈ (Rl

+)m) is an equilibrium with transfer
payments, if for all i,{

ci maximizes ui(ci) under the constraint
p · ci ≤ p · ci

and if
∑m

i=1 ci = e.

Thus, we can see that (p , (ci)m
i=1 ∈ (Rl

+)m) would be an equilibrium if
agent i had ci as his initial endowment. We would need to “transfer” p·(ei−ci)
to him in order to attain an equilibrium.
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The Negishi method rests on the first and second welfare theorems, which
state that any equilibrium is a Pareto optimum, and that any Pareto optimum
is an equilibrium with transfer payments. An equilibrium is therefore a Pareto
optimum whose transfer payments are zero. Thus we start by characterizing
Pareto optima.

6.3.2 Two Characterizations of Pareto Optima

Let α ∈ ∆m−1. We will call α a utility weight vector, as we will construct
an aggregate utility function by attributing the weight αi to agent i. Let us
consider the problem Pα for a given e:

Pα

⎧⎪⎨⎪⎩
maximize {α1u1(c1) + · · · + αmum(cm)}
under the constraints
ci ≥ 0 for all i and

∑m
i=1 ci ≤ e .

We obtain the following result:

Proposition 6.3.3. (ci)m
i=1 is a Pareto optimum if and only if there exists

a utility weight vector α ∈ ∆m−1 such that (ci)m
i=1 is the optimal solution to

problem Pα.

Proof. It is easy to show that the solution to Pα is Pareto optimal. Conversely,
let us show that we can associate with any Pareto optimum (ci)m

i=1, a utility
weight vector α ∈ ∆m−1 such that (ci)m

i=1 is the optimal solution to the
associated problem Pα.

Let us consider the following sets:

A =

{
(ci)m

i=1 | ci ≥ 0 for all i ,
m∑

i=1

ci ≤ e

}
,

U = {(ui(ci))m
i=1 | (ci)m

i=1 ∈ A} ,

and

V =
{

z ∈ R
m | zi ≥ ui(ci) for all i ,

zj > uj(cj) for at least one j

}
.

It is straightforward to show that U is convex and compact, and that V is
non-empty and convex, and by definition of the Pareto optimum, U∩V = ∅. It
follows from Minkowski’s Theorem3, that there exists a family of coefficients
(α1, . . . , αm) that are all non-zero, and satisfy

3 See Chap. 1, Sect. 1.2.
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m∑
i=1

αiwi ≤
m∑

i=1

αiz
i w ∈ U , z ∈ V . (6.4)

Let us apply (6.4) to the pair w = [ui(ci)] and z = [u1(c1) + t , u2(c2)
. . . , um(cm)] for t > 0. By cancelling out terms, we obtain tα1 ≥ 0 for all
t > 0, and hence α1 ≥ 0, and by symmetry, αi ≥ 0 for all i. As (6.4) is
homogeneous in α, and as the αi are not all zero, we can assume that α =
(α1, . . . , αm) ∈ ∆m−1. Finally, as [ui(ci)]mi=1 ∈ V (closure of V ), (6.4) implies
that

m∑
i=1

αiui(ci) ≤
m∑

i=1

αiui(ci) (6.5)

for all (ci)m
i=1 such that ci ≥ 0 for every i and

∑m
i=1 ci ≤ e. Hence (ci)m

i=1 is a
solution to problem Pα. �

Let us use Proposition 6.3.3 to obtain another characterization of Pareto
optima.

Let us fix α ∈ ∆m−1, and consider problem Pα. It can easily be seen
that if αi = 0, then ci(α) = 0. Under Inada’s condition, we can show that if
αi > 0, then ci(α) � 0. (The property does not hold without the condition.)
Therefore there exists a vector of Lagrange multipliers λ = (λ1, . . . , λl), λ � 0
such that, for all i such that αi > 0:

αi grad ui(ci) = λ . (6.6)

This relationship implies that the utility weight vector that we attribute
to a Pareto optimum, is unique. Indeed, assume that cp+1 = · · · = cm = 0.
Then αp+1 = · · · = αm = 0, and if [ grad ui(ci)]1 denotes the first component
of grad ui(ci), we have

α1[ grad u1 (c1)]1 = α2[ grad u2 (c2)]1 = . . . = αp[ grad up (cp)]1 .

As
∑p

i=1 αi = 1, the αi are uniquely determined. �

Let us define the aggregate utility:⎧⎪⎨⎪⎩
u(α, e) = max {α1u1(c1) + · · · + αmum(cm)}
under the constraints
ci ≥ 0 , for all i and

∑
i ci ≤ e .

(6.7)

We now prove the second welfare theorem.

Proposition 6.3.4. An allocation (ci)m
i=1 is a Pareto optimum if and only

if, when α is the associated utility weight vector,
(
p(α), (ci)m

i=1) with p(α) =
grad u(α, e) is an equilibrium with transfer payments.
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Proof. Let us first show that if (p(α), (ci)m
i=1) is an equilibrium with transfer

payments, then (ci)m
i=1 is a Pareto optimum. If not, there would exist an

allocation (c′i)
m
i=1 ∈ (Rl

+)m with
∑m

i=1 c′i ≤ e such that ui(c′i) ≥ ui(ci) for all i,
and with a strict inequality for some j. We would then have p(α)·c′i ≥ p(α)·ci

for all i, and p(α) · c′j > p(α) · cj for at least one j. Hence we would have
p(α) ·∑m

i=1 c′i > p(α) · e, which contradicts the inequality
∑m

i=1 c′i ≤ e.

Now let (ci)m
i=1 be a Pareto optimum, and let α be the associated utility

weight vector. Assume further that α1 > 0, α2 > 0, . . . , αp > 0 and that
αp+1 = · · · = αm = 0. Consider the following system of (p + 1)l equations
with (p + 1)l unknowns (ci, λ) ∈ (Rl

+)p × R
l
++:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α1 grad u1(c1) = λ
...
αp grad up(cp) = λ∑p

i=1 ci = e .

(6.8)

Let G be the matrix below (I denotes the unit matrix of L(Rl, Rl))⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
∂2u1

∂x2
1

(c1) 0 0 I

0 α2
∂2u2

∂x2
2

(c2) I

. . .

0 0 αp
∂2up

∂xp2
(cp) I

I I I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
G can then be written

G =
[

A B
BT 0

]
where A ∈ L(Rpl, Rpl) is negative definite and B ∈ L(Rl, Rpl) has rank l.

Let us show that Ker G = {0}. Let (X,Y ) ∈ R
pl × R

l be such that
G
(
X
Y

)
= 0. Then we get AX + BY = 0 and BT X = 0, and hence −X =

A−1BY and Y T BT A−1BY = 0. Thus BY = 0. As B is injective, Y = 0 and
hence X = 0.

It follows from the local inversion theorem that ((ci)m
i=1 , λ) is a differen-

tiable function of e. The function u(α, ·) is then also a differentiable function
of e. Using differential notation, we obtain from (6.6),

du =
∑

i :αi>0

αi grad ui(ci) dci = λ
∑

i :αi>0

dci = λ de

and hence
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λ = grad u(α, e) . (6.9)

We set:

p(α) = grad u(α, e) = αi grad ui(ci) for all i such that αi > 0 . (6.10)

As a result of (6.10), for all i such that αi > 0, ci is a solution to the
optimization problem Pi:

Pi

⎧⎪⎨⎪⎩
max ui(ci)
under the constraints
p(α) · ci ≤ p(α) · ci .

If αi = 0, then trivially ci = 0 is the optimal solution to Pi. Hence
(p(α) , ci ; i = 1, . . . , m) is an equilibrium with transfer payments. �

6.3.3 Existence of an Equilibrium

We deduce the following results:

Theorem 6.3.5. Under the assumptions U1, U2 and U3, there exists an
equilibrium.

Proof. Let α ∈ ∆m−1 and let [ci(α)]mi=1 be the optimal solution to the associ-
ated problem Pα. Let (p(α) · (ci(α) − ei))m

i=1 be the associated transfers. Let
us prove the existence of an α∗, called the “equilibrium weight” such that the
transfers are zero for all of the agents.

Let Φ : ∆m−1 → R
l be the transfer function defined as follows:

Φi(α) = p(α) · (ci(α) − ei) , for all i . (6.11)

By definition, α∗ is an equilibrium weight if and only if it is a zero of Φ.
To show that Φ admits a zero, we first show that Φ is continuous. To

do this, notice that it follows from the theorem of the maximum (see an-
nex) that [ci(α)]mi=1, the solution to Pα, is a continuous function of α. As
p(α) = αi grad ui[ci(α)] for all i such that αi > 0, the mapping α → p(α)
is also continuous, and hence Φ is continuous. Moreover, Φ has the following
properties:

m∑
i=1

Φi(α) = p(α) ·
(
−e +

m∑
i=1

ci(α)
)

= 0 . (6.12)

If αi = 0 , then ci(α) = 0 and hence Φi(α) = −p(α) · ei < 0 . (6.13)

Next we use the theorem below, which is a generalization of Brouwer’s
theorem. Let H = {c ∈ R

m ,
∑m

i=1 ci = 0}.
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Theorem 6.3.6. Let Φ : ∆m−1 → H be continuous and satisfy the boundary
condition

if αi = 0 , Φi(α) < 0 .

Then there exists α0 � 0 such that Φ(α0) = 0.

Proof. Let Φ−
i = max(−Φi, 0). Under this notation, Φ−

i (α) = 0 is equivalent
to Φi(α) ≥ 0.

Let us consider the continuous mapping from ∆m−1 into itself, defined by:

Gi(α) =
αi + Φ−

i (α)
1 +

∑m
i=1 Φ−

i (α)
.

It follows from Brouwer’s theorem that G has a fixed point α0. There are
two possible cases. Either Φi(α0) = 0 for all i and our proof is finished, or
there exists i such that Φi(α0) > 0 (since

∑m
i=1 Φi(α0) = 0 we cannot have

Φi(α0) ≤ 0 for all i). From the boundary condition, α0i �= 0.

Therefore we have α0i =
α0i

1 +
∑m

i=1 Φ−
i (α0)

. Hence
∑m

i=1 Φ−
i (α0) = 0.

This implies that Φ−
i (α0) = 0, so that Φi(α0) ≥ 0 for all i. As

∑m
i=1 Φi(α0) =

0, we have Φi(α0) = 0 for all i. The boundary condition implies that α0 � 0.
�

Remark 6.3.7. The existence of a zero for Φ is equivalent to the existence of
a fixed point for the mapping Φ + Id.

Moreover, as
∑m

i=1 Φi = 0, the mapping Φ + Id has values in{
x ∈ R

m | ∑m
i=1 xi = 1

}
, which is the plane containing the unit simplex

∆m−1. Instead of looking for a fixed point of a continuous mapping from the
simplex into itself, as in Brouwer’s theorem, we look for the fixed point of a
continuous mapping from the simplex into the plane containing the simplex.
We have a boundary condition

if αi = 0 , (Φ + Id)i(α) = Φi(α) < 0 .

This condition is called “outward,” as at the boundary of the simplex, the
vector field Φ+Id points towards the outside of the simplex. For this reason,
the result is considered to be a generalized form of Brouwer’s theorem.

Remark 6.3.8. Assume Φ : ∆m−1 → H to be continuous, and to satisfy the
“inward” condition at the edge: when αi = 0, Φi(α) > 0. Then Φ admits a
strictly positive zero. Obviously, it is enough to change Φ into −Φ.

6.4 The Theory of Contingent Markets

As mentioned in the introduction, Arrow [12], (1953) in “Le rôle des valeurs
boursières pour la répartition la meilleure des risques” and then Debreu [90],
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(1953) in “Economie de l’incertain” showed how the static and deterministic
theory of equilibrium could be generalized to the multi-period case and to
the case with uncertainty, on condition that a good is defined not only by its
physical characteristics, but also by the state of the world, the date of its use,
and on the condition that there are open markets for all these goods. Let us
specify these ideas in a simple case.

We consider an exchange economy with two dates, m agents and l goods.
A time 1, the future is uncertain, and there are k possible states of the world.
There are open markets for all the goods in all states of nature. That is to
say that an agent can buy a contract for the delivery of a given merchandise
in a given state of the nature. The contract is paid for, even though the
delivery does not take place unless the specified event occurs. Agent i can
therefore make consumption plans ci(j) ∈ R

l
+ for state j. The vector ci =

(ci(1), ci(2), . . . , ci(k)) ∈ (Rl
+)k is called the contingent consumption plan. Let

us assume that agent i has preferences over the set of contingent consumption
plans, and that they are represented by a utility function ui : (Rl

+)k → R.
Finally, let ei = (ei(1), . . . , ei(k)) be the endowment vector of agent i where
ei(j) denotes the endowment in goods of agent i in state j.

Thus the exchange economy is characterized by the list:(
(Rl

+)k , ui , ei ; i = 1, . . . , m
)

.

Let pl(j) be the price of good l to be delivered if state j occurs. The vector
p = [p(1), . . . , p(k)] ∈ (Rl

+)k is called a set of contingent prices.

Given p ∈ (Rl
++)k, the agent determines his budget set, that is to say, the

set of plans that are compatible with his set of endowments:

Bi(p) =
{
ci ∈ (Rl

+)k | p · ci ≤ p · ei

}
(6.14)

where

p · ci =
k∑

j=1

p(j) · ci(j) .

Definition 6.4.1. A contingent Arrow–Debreu equilibrium is a set of con-
tingent prices p∗ ∈ (Rl

++)k and a set of contingent plans (c∗i )
m
i=1 ∈ (Rl

+)km

such that

1. c∗i maximizes ui(ci) under the constraint ci ∈ Bi(p∗) for all i = 1, . . . , m.
2. The markets clear, i.e.,

∑m
i=1 c∗i =

∑m
i=1 ei.

If we make the assumption U1, then there exists a contingent Arrow–
Debreu equilibrium. This approach has two drawbacks: first of all, it requires
a large number of markets to be open (in the previous example there are
kl markets). Secondly, the contingent goods are not always for sale. Hence
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Arrow’s idea, put forward in the article referenced above, of introducing a
number k of securities, in order to show the economy can be organized with
k + l markets, instead of with kl contingent markets. We describe this model
in the case of an economy with two dates (one period).

6.5 The Arrow–Radner Equilibrium Exchange Economy
with Financial Markets with Two Dates

As in the previous model, there are two dates. At time 1, the future is un-
certain, and there are k possible states of the world at time 2. Agent i has
uncertain endowments, and as before, ei(j) denotes the endowment of agent
i in state j. This time however, there are no markets for goods delivered in
the future. On the other hand, agents can buy portfolios of securities during
the first period. Anticipating the price levels for time 2, they can make con-
sumption plans in terms of the income that they anticipate getting from their
exogenous endowments and from their securities.

In this model, we make the assumption that agents have “rational expec-
tations”, in other words, the prices that they expected prices do occur. Agents
then exchange goods in the one state that does come about, in markets that
we call the “spot markets”. Let us now fully specify the model.

First we describe the financial part of the economy. There are d securities.
Each asset is characterized by the dividend it yields in each state of nature.
We say that an asset is “real” if its dividend is expressed in units of the good.
We say that it is “nominal” if there is a numéraire in each state of nature, and
if the dividend is expressed in monetary units. In the latter case, the matrix
V whose i-th column represents the dividend of asset i in the various states,
is called the “dividend matrix”.

V =

i-th asset
↓⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
1 . . . vi

1 . . . vd
1

...
v1

j . . . vi
j . . . vd

j
...

v1
k . . . vi

k . . . vd
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
← j-th state

From now on, we assume that assets are nominal. The agents construct
portfolios for themselves. A portfolio θ is a vector in R

d, whose components
can be negative (short selling is allowed). The payoff of this portfolio in state
j is (V θ)j . The securities are traded at time 1 at price S ∈ R

d
+. We suppose

that the agents cannot run into debt, hence that S · θi ≤ 0 for all i, where θi

is the portfolio of agent i.
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Given expected prices p = [p(1), . . . , p(k)] ∈ (Rl
+)k, agents make consump-

tion plans c = [c(1), c(2), . . . , c(k)] ∈ (Rl
+)k (where c(j) is the consumption in

state j) for time 2.

We say that a pair (ci, θi) ∈ R
lk
+ ×R

d is feasible if it satisfies the following
constraints{

S · θi ≤ 0
p(j) · c(j) ≤ (V θi)j + p(j) · e(j) for all j = 1, . . . , k .

(6.15)

We define the budget set of agent i as the set of consumption plans that
he could finance using his exogenous endowments and the income from the
securities that he bought at time 1 (without going into debt). That is :

Bi(p, S) =
{
ci ∈ R

lk
+ | ∃ θi ∈ R

d , (ci, θi) satisfies (6.15)
}

. (6.16)

We assume that the agents have preferences over the set of consumption
plans, and that these are represented by utility functions ui : (Rl

+)k → R

satisfying assumption U1.

Definition 6.5.1. A Radner equilibrium is made up of

• a set of prices for the securities S ∈ R
d
+,

• expected prices p ∈ (Rl
+)k,

• portfolios of assets (θ1, . . . , θm) and consumption plans (c1, . . . , cm) such
that

1. a) ci maximizes ui(ci) under the constraint

ci ∈ Bi(p, S) for all i = 1, . . . , m ,

b) (ci, θi) satisfies (6.15).
2. The markets clear, i.e.,

a)
∑m

i=1 ci =
∑m

i=1 ei ,

b)
∑m

i=1 θi = 0 .

Remark 6.5.2. If we assume V to be injective, then the equality
∑m

i=1 θi = 0
is satisfied if 1 and 2b) are.

Indeed, suppose that the preferences are increasing and that the con-
straints are binding at the optimum. It is then the case that p(j) · (ci(j) −
ei(j)) = (V θi)j , for all (i, j). By summing over i, and using 2a), we thus
obtain V

(∑m
i=1 θi

)
= 0. As V is injective,

∑m
i=1 θi = 0.

Suppose now that (p, S, ci, θi ; i = 1, . . . , m) is a Radner equilibrium. A
necessary condition for equilibrium is for there to be no arbitrage, i.e., there
must not exist any portfolio θ ∈ R

d satisfying S ·θ ≤ 0 and V θ > 0 (otherwise,
the wealth of all the agents could become infinite, and there could be no
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equilibrium). As we saw in Chap. 1, there then exists β ∈ R
k
++ such that

S = V T β.

Henceforth, we will distinguish two separate cases: the one in which
rank V = k (called the complete markets case) and the one in which
rank V < k, the incomplete markets case.

6.6 The Complete Markets Case

We eliminate θ from (6.15) by multiplying the j-th line of (6.15) by βj , and
then summing over all the lines. Using the fact that S = V T β, we obtain

k∑
j=1

βjp(j) · [ci(j) − ei(j)] ≤ 0 . (6.17)

We set p∗(j) = βjp(j), and obtain

k∑
j=1

p∗(j) · [ci(j) − ei(j)] ≤ 0 . (6.18)

Let us define
Bi(p∗) = {c ∈ R

lk
+ | p∗ · c ≤ p∗ · ei} .

Thus we have shown that Bi(p, S) ⊆ Bi(p∗).

Conversely, let us show that Bi(p∗) ⊆ Bi(p, S) if S = V T β, β ∈ R
k
++ and

p(j) = p∗(j)
βj

. Let ci ∈ Bi(p∗). As rank V = k, there exists θi such that

(V θi)j =
p∗(j)
βj

· [ci(j) − ei(j)] = p(j) · [ci(j) − ei(j)] ∀ j . (6.19)

Equation (6.17) entails that

S · θi =
k∑

j=1

βj(V θi)j ≤ 0 , (6.20)

and (6.19) and (6.20) then imply that ci ∈ Bi(p, S).

Hence we can deduce the following result (sometimes called the equivalence
theorem):

Theorem 6.6.1. If (p, S, ci, θi ; i = 1, . . . , m) is a Radner equilibrium, then
there exists β ∈ R

k
++ such that S = V T β and such that (p∗, ci ; i = 1, . . . , m)

is a contingent Arrow–Debreu equilibrium with p∗(j) = p(j)βj.
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Conversely, if (p∗, c∗i ; i = 1, . . . , m) is a contingent Arrow–Debreu equilib-
rium, then for any β ∈ R

k
++, there exists θi, i = 1, . . . , m such that (p, V T β,

ci, θi ; i = 1, . . . , m) is a Radner equilibrium with p(j) =
p∗(j)
βj

.

Proof. The first implication follows from the equality Bi(p, V T β) = Bi(p∗).
For the converse, let us assume that the k first column vectors of V are linearly
independent. Write V = (V 1, V 2) where V 1 is the matrix made up of the first
k columns of V , and θi = (θ1

i , θ2
i ) ∈ R

k × R
d−k. V 1 is then injective. Let us

define θ
1

i for all i, by

(V 1θ
1

i )j = p(j) · [ci(j) − ei(j)] and θ
2

i = 0 .

According to Remark 6.5.2, the equality
∑m

i=1 ci =
∑m

i=1 ei implies that∑m
i=1 θi

1 = 0 (as V 1 is injective). Trivially, we have
∑m

i=1 θ
i

2 = 0. �
Under the assumptions made previously (the utility functions are contin-

uous, strictly concave and increasing, and agents’ endowments are strictly
positive in all states), as there exists a contingent Arrow–Debreu equilibrium,
we have the following corollary:

Corollary 6.6.2. Under the assumption U1, if rank V = k (i.e., if the mar-
kets are complete), for all β ∈ R

k
++, there exists an equilibrium with financial

markets, where S = V T β.

Remark 6.6.3. The proof given above is based on two ideas: that at equilibrium
there is no arbitrage, and that markets are complete. These two ideas will recur
in continuous time.

The Special Case of a One-Good Economy

Let us assume that there is only a single consumption good in each state of
nature, and let us take it as numéraire (the dividend given by an asset in
each state is expressed in units of the good). In this case, the spot price is
identically equal to 1. Theorem 6.6.1 then becomes :

Theorem 6.6.4. In the special case of an one-good economy, if (S, ci, θi ; i =
1, . . . , m) is a Radner equilibrium in which the consumption good is taken
as numéraire in each state of nature, then there exists β ∈ R

k
++ such that

S = V T β and such that (β, ci ; i = 1, . . . , m) is a contingent Arrow–Debreu
equilibrium.

Conversely, if (p∗, ci ; i = 1, . . . , m) is a contingent Arrow–Debreu equilib-
rium, then there exists θi, i = 1, . . . , m such that (V T p∗, ci, θi ; i = 1, . . . , m) is
a Radner equilibrium in which the consumption good is taken as the numéraire
in each state of nature.
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In the special case of a one-good economy, we see that there are as many
equilibrium prices for assets as there are contingent Arrow–Debreu equilibrium
prices in an economy. In general, the equilibrium is not unique. However,
note the fundamental result, proved by Debreu [92]: for utility functions that
are fixed “generically with respect to endowments”, an exchange economy
has a finite number of equilibria (we call the situation one of determinacy,
as opposed to the indeterminacy of an infinite number of equilibria). In the
special case where the agents’ utility functions are additively separable, we can
give conditions on agent’s coefficients of relative risk aversion and endowments,
in such at way that the equilibrium is unique.

Remark 6.6.5. Recall, under the assumption that there is only one consump-
tion good in each state, the probabilistic interpretation of these results. As
the market is complete, there is a riskless portfolio (whose payoff is equal to
1 in all states). For the sake of simplicity, we take it to be asset 0, as we
will do later, in Chap. 7. Let the asset’s price be S0. We define the interest

rate r by S0 =
1

1 + r
. Hence we deduce from the formula S = V T β that∑k

j=1 βj = 1
1+r . Therefore, we can interpret the βj(1 + r) as probabilities. It

follows from Debreu’s result that there are a finite number of interest rates r
and probabilities, which are compatible with the equality of supply and de-
mand. In some special cases (if there is a unique contingent Arrow–Debreu
equilibrium), the interest rate and these probabilities are completely deter-
mined by the equality of supply and demand.

In the complete markets case, Theorems 6.6.1 and 6.6.4 show that the
introduction of financial markets does not change agents’ consumption at
equilibrium. What is the point then, of introducing the financial markets?
The aim is to reduce the number of markets or transactions. Indeed, in the
one-period model with contingent markets, we need to open kl markets. In
the model with financial markets, we need only open d+ l markets. When the
number of states is sufficiently large, d + l < kl. When the number of dates
is increased, in the first case the number of markets increases exponentially,
whereas in the second, it increases linearly.

In the incomplete markets case, the introduction of financial markets
changes agents’ consumption at equilibrium.

Under the assumption of a single consumption good in each state of nature,
whether or not the markets are complete, asset prices are determined by the
equality of supply and demand. If there is more than one consumption good
in each state of nature, and if the assets are nominal, then asset prices are
subject to the condition of no arbitrage, and there is an indeterminacy in the
price of the assets, which is linked to the choice of numéraire.
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6.7 The CAPM

We now present the CAPM4 as a special case of the Arrow-Radner model
with two dates and with an infinite number of states at time 2. The CAPM is
a necessary condition for equilibrium obtained under restrictive assumptions
on agents’ preferences. We will see in the next chapter how the introduction
of continuous time enables us to relax the very restrictive assumptions of the
CAPM. Nonetheless, we will be led to introduce an assumption of market
completeness.

We consider an exchange economy with two dates, with a single consump-
tion good, taken as the numéraire, and comprising m agents.

At time 1, there is a stock market comprising d assets (that is to say that
the agents own shares of the assets). We assume that the payoff of the j-th
asset at time 2 is a random variable dj with finite variance, and defined on
a probability space (Ω,F , P ). Without loss of generality, we can assume that
the assets’ payoffs are linearly independent.

Agent i has uncertain endowments for time 2, which are modeled by the
random variable ei defined on (Ω,F , P ). At time 1, he can modify his future
resources by constructing a portfolio θi = (θ1

i , . . . , θd
i ), on the condition that

he does not run into debt. The resources that will be at his disposal at time
2 are: ci = ei +

∑d
j=1 θj

i d
j .

Let C be the finite-dimensional vector space generated by the (dj , j =
1, . . . , d). We endow C with a scalar product 〈c, c′〉 = E(cc′). Let ‖c‖2 be the
associated norm. Note that 〈1, c〉 = E(c). We suppose that:

(i) ei ∈ C for all i (we can interpret ei as a payoff on an initial portfolio).

(ii) The aggregate wealth e =
∑m

i=1 ei is a.s. not equal to a constant.

(iii) d1 = 1, that is to say that there exists a riskless asset. In a later remark,
we will show how this condition can be relaxed.

In the following, we no longer assume U1 to hold, but instead we make
the following assumption:

U3 the agents have preferences on the elements of C, and these are
represented by utility functions Ui : C → R, (i = 1, . . . , m), which have
the property of “aversion to variance”, that is to say that for any pair
(c, c′) ∈ C2 satisfying E(c) = E(c′), the inequality Var (c) < Var (c′)
implies that Ui(c) > Ui(c′) .

Remark 6.7.1. It is usually assumed that agents’ utility functions depend only
on the expectation and on the variance of the random variables, that is, that
they are of the form Ũi(E(c),Var c) where Ũi is increasing with respect to
4 Capital Asset Pricing Model
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its first coordinate and decreasing with respect to its second. Assumption U5
is less restrictive. To prove the existence of an equilibrium, we would need
stronger assumptions.

Given a set of prices S ∈ R
d for assets, agent i chooses a portfolio θi =

(θ1
i , . . . , θd

i ) in such a way as to

maximize Ui

(
ei +

d∑
j=1

θj
i d

j
)

under the constraint

S · θi ≤ 0 .

The inequality above means that the agent cannot run into debt.

Given a price set S, the budget set is no longer bounded, as in the previous
section. Therefore this problem may not have a solution.

Definition 6.7.2. We say that (S , θi ; i = 1, . . . , m) is in equilibrium if

1. For each i, θi maximizes Ui

(
ei +

∑d
j=1 θj

i d
j
)

under the constraint

S · θi ≤ 0.

2. The security market clears, that is to say that
∑m

i=1 θi = 0.

We do not discuss the existence of an equilibrium here. The CAPM is
a necessary condition for equilibrium. Sufficient conditions are discussed in
Nielsen [290, 291], (1989), and Allingham [6], (1991). An elementary proof
of existence, under the assumption of the existence of a riskless asset (but
without the assumption that C is finite dimensional) is to be found in Dana
[83], (1999). In this case, there exists an equilibrium if the agents’ utility
functions are concave functions of the expectation and variance of the random
variables, and are increasing with respect to the expectation coordinate and
decreasing with respect to the variance coordinate. On the other hand, in the
case where there is no riskless asset, satiation can lead to the non-existence
of equilibrium.

Let (S , θi ; i = 1, . . . , m) be an equilibrium. Let us consider the linear
functional ϕ defined on C by

ϕ(z) = S · θ for z =
d∑

j=1

θjdj .

(i.e., if z is the value of the portfolio at time 2, ϕ(z) is its price at time 1).

Note that this linear functional is well-defined, as the dj are linearly inde-
pendent. It follows from Riesz’s theorem, that there exists ϕ ∈ C such that
ϕ(z) = 〈ϕ, z〉.
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Since, by assumption, agent i behaves with aversion to variance, for a given
expectation , at equilibrium, he minimizes

Var

⎛⎝ei +
d∑

j=1

θj
i d

j

⎞⎠ under the constraints

S · θi ≤ 0 and

E

⎛⎝ei +
d∑

j=1

θj
i d

j

⎞⎠ = E

⎛⎝ei +
d∑

j=1

θ
j

id
j

⎞⎠ .

(6.21)

We set ci = ei+
∑d

j=1 θj
i d

j , and ci = ei+
∑d

j=1 θ
j

id
j . We have 〈ϕ, ci−ei〉 =

S · θi. Since the expectation is taken to be fixed, the minimization problem
comes down to

minimize ‖ci‖2 under the constraints
〈ϕ, ci〉 ≤ 〈ϕ, ei〉 = a0

〈1, ci〉 = 〈1, ci〉 = a1

ci ∈ c .

(6.22)

Therefore, for any i, there are two Lagrange multipliers µi ≥ 0 and λi ∈ R

such that
ci = λi − µiϕ a.s. .

Hence we deduce the existence of λ ∈ R and µ ≥ 0 such that

e =
m∑

i=1

ci = λ − µϕ a.s. . (6.23)

As by assumption e is not constant, µ is strictly positive. Therefore for all
i, there exist ai ≥ 0 and bi ∈ R such that

ci = aie + bi a.s. . (6.24)

We can rewrite (6.23) in the form

ϕ = −ae + b a ≥ 0 , b ∈ R . (6.25)

Hence there exists K ∈ R such that

ϕ(z) = −a Cov(e, z) + KE(z) , z ∈ C , (6.26)

and in particular

S
j

= −a Cov(e, dj) + KE(dj) for all j = 1, . . . , d . (6.27)

As the price S is viable, S
1

= ϕ(1) is strictly positive.
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Let us set S
1

=
1

1 + r
. We can then rewrite formula (6.27) as:

S
j

= −a Cov (e, dj) +
E(dj)
1 + r

. (6.28)

Hence we can deduce, for example, that the price of an asset that is positively
correlated with aggregate wealth, is lower than the discounted expectation of
its returns.

Given a portfolio θ ∈ R
d such that S · θ �= 0, we define its return Rθ by

Rθ =
d∑

j=1

θjdj

S · θ
. (6.29)

Let M = (M1, . . . , M j) be such that e =
∑d

j=1 M jdj . We call M the

“market portfolio”. We have RM =
e

S · M
. Let us assume that S · M =

ϕ(e) > 0.

We now deduce the traditional beta formula from (6.28). We can rewrite
(6.28) as

E(Rθ) = (1 + r)[1 + a Cov (e,Rθ)] . (6.30)

Hence, in particular,

E(RM ) = (1 + r)[1 + a Cov (e,RM )] . (6.31)

Hence,

E(Rθ) − (1 + r) = [E(RM ) − (1 + r)]
Cov (e,Rθ)
Cov (e,RM )

= [E(RM ) − (1 + r)]
Cov (RM , Rθ)

Var RM
.

(6.32)

We define the “beta” of a portfolio with respect to the market by the formula:

βθ =
Cov (Rθ, RM )

Var RM
. (6.33)

Hence we derive what is called the beta formula:

E(Rθ) − (1 + r) = βθ[E(RM ) − (1 + r)] . (6.34)

Now,
E(RM ) − (1 + r) =

a

1 + r
Cov(e,RM ) > 0 .

Therefore, if θ is a portfolio such that βθ > 0 then E(Rθ) > 1 + r. We call
E(Rθ)− (1 + r) the risk premium of the portfolio. We summarize expressions
(6.24) and (6.34) in the following theorems.
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Theorem 6.7.3 (The Mutual Fund Theorem). At equilibrium, the agents’
demand can be split into a strictly positive demand for the market portfolio
and a demand for the riskless asset.

Theorem 6.7.4. The risk premium of a portfolio is a linear function of its
beta to aggregate endowment. If the market portfolio has a positive price, and
if the return on a portfolio is positively (respectively negatively) correlated with
aggregate endowment, the risk premium is positive (respectively negative). If
it is not correlated with aggregate endowment, the expectation of its return is
equal to the riskless return.

Remark 6.7.5. When there is no riskless asset, we can carry out the same proof
but replacing the function equal to one in every state, by its projection h onto
the vector space generated by the dj . Indeed, at equilibrium, agent i

minimizes ‖ci‖2 under the constraints
〈ϕ, ci〉 ≤ a0

E(ci) = 〈1, ci〉 = 〈h, ci〉 = a1 .

Expression (6.24) becomes

For all i, there exist ai ≥ 0 and bi such that
ci = aie + bih ,

(6.24bis)

and hence we obtain the mutual fund result.

Equation (6.25) becomes

ϕ = −ae + bh , a ≥ 0 , b ∈ R . (6.25bis)

Recall expression (6.26), which remains unchanged

ϕ(z) = −a Cov(e, z) + KE(z) . (6.26)

Under the assumption that 0 < ϕ(e) , we have K > 0, for if K ≤ 0, we
would have

0 < ϕ(e) = −a Var (e) + K E(e) < 0 ,

and hence a contradiction.

Using the formula

K E(Rθ) = 1 + a Cov(e,Rθ) , (6.35)

we can easily show that assets that are not correlated with e have the same

expected return R′ =
1
K

. We obtain a new beta formula:

E(Rθ) − R′ = βθ[E(RM ) − R′] , (6.36)

which shows that there is a linear relationship between the expected return
on a portfolio and its beta to the market portfolio.
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Notes

In this chapter, we have merely touched upon the theory of general equi-
librium. The interested reader can refer to the classic works of Debreu [91],
(1959) and Arrow and Hahn [14], (1971), or to more recent books by Eke-
land [135], (1979), Hildenbrand–Kirman [191], (1989) and the article of Mas-
Colell–Winston–Green [268], (1995). For the geometric approach to the theory
of equilibrium, we reference the books by Balasko [20], (1988) and the arti-
cle Mas-Colell [267], (1985). For problems linked to the computation of an
equilibrium, we can look for example to articles by Scarf [323, 324], (1967).
The book Border [38], (1985) is a classic reference for fixed point methods in
general equilibrium theory.

For the theory of contingent markets, one can turn to the papers Ar-
row [12], (1953) and Debreu [91], (1959).

In this chapter, we have limited ourselves to the case of nominal assets, or
of real assets in a world with a single consumption good. This case has been
studied by Cass [49], (1984), Duffie [111], (1987), and Werner [364], (1985).
When there are several consumption goods, the case described as the real case
(where the gains from assets are expressed in terms of the consumption goods)
is much more delicate. The first results were obtained by Duffie–Shafer [122,
123], (1985). We only obtain the generic existence of an equilibrium. For the
theory of equilibrium with financial markets with either nominal or real assets,
the reader can consult Tallon [354], (1995), for an introduction, the book
Magill and Quinzii [262], (1994) and Magill and Shafer [264], (1991).

The classic version of the CAPM, in which the market contains a riskless
asset, comes from Sharpe [333], (1964) and Lintner [256], (1965). The assump-
tion of the existence of a riskless asset was relaxed by Black [36], (1972). The
idea of using a method of projection is due to Chamberlain [52], (1985). Un-
der the assumption that the utility function is Von Neumann–Morgenstern,
Chamberlain [51], (1983) characterizes distributions for which the utility func-
tion has the “mean–variance” property. The econometric aspects of estimat-
ing the CAPM are covered by Huang–Litzenberger [197], (1988), which also
provides an abundant bibliography of the subject. Nielsen [290, 291], (1989),
Allingham [6], (1991) and Dana [83], (1999) give presentations of the CAPM as
an equilibrium, as well as discussions of sufficient conditions for the existence
of an equilibrium. One can also consult Leroy and Werner [252].

Factor pricing is discussed in Leroy and Werner [252], (2001). Sect. 6.7 dif-
fered from the others in that the agents could choose to have either positive or
negative wealth (in general, agents choose to have non-negative consumption).
As the set of agents’ choice is unbounded, it is harder to prove the existence
of an equilibrium. In particular, there is no reason to limit prices to being
positive. The articles Page [296], (1996) and Dana et al [86], (1999), cover the
problems that this kind of model presents, and gives a abundant bibliography
of the subject.
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ANNEX 6

The Theorem of the Maximum

Let X ⊆ IRl and Y ⊆ IRm, let f : X × Y → IR be a function such that
f(x, ·) is continuous for all x, and let Γ : X → Y be a non-empty compact
valued correspondence. The aim of this section is to give sufficient conditions
for the function defined by

h(x) = max
y∈Γ (x)

f(x, y) (1)

to be continuous, and to study the properties of the correspondence defined
by

G(x) = {y ∈ Γ (x) , f(x, y) = h(x)} . (2)

Definition A correspondence Γ : X → Y is lower semi-continuous (l.s.c.) at
x if for all y ∈ Γ (x) and any sequence xn → x, there exists a sequence (yn),
yn ∈ Γ (xn) for all n, such that yn → y.

Definition A non-empty compact valued correspondence Γ : X → Y is upper
semi-continuous (u.s.c.) at x, if for any sequence xn → x and for any sequence
(yn), yn ∈ Γ (xn) for all n, the sequence (yn) has a limit point y ∈ Γ (x).

Definition A correspondence Γ : X → Y is continuous at x if it is upper
and lower semi-continuous at x.

Remark

1. When Γ is a function, Γ is continuous if and only if Γ is upper or lower
semi-continuous (as a correspondence) .

2. If X is compact, Γ is upper semi-continuous at any point of X if and only
if Γ has a closed graph.

Example

1. Γ (x) = A for all x, where A is a non-empty compact set. Then Γ is obvi-
ously continuous.

2. Γ : IR+ → IR+ is defined by Γ (x) = [0, x]. Then Γ is continuous.
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3. Γ : IR+ → IR+ is defined by Γ (x) = [0, f(x)] with f continuous. Then Γ
is continuous.

4. Γ : IR → IR is defined by

Γ (x) = {{−1}, {+1}} if x > 0
Γ (x) = [−1, 1] if x = 0
Γ (x) = 0 if x < 0 .

Then Γ is u.s.c. but not l.s.c. at zero.

5. Let Γ : IR → IR be defined by Γ (x) = [−1, 1] if x > 0, Γ (x) = {0} if
x ≤ 0. Then Γ is l.s.c. at zero but is not u.s.c. at zero.

Theorem Let f : X × Y → IR be a continuous function and let Γ : X → Y
be a continuous correspondence taking non-empty compact values. Then the
function h defined in (1) is continuous, and the correspondence G defined in
(2) is non-empty, compact valued, and upper semi-continuous.

Example X = IR, Y = [−1,+1], f(x, y) = xy2, Γ (x) = Y for all x. Then:

• h(x) = max {xy2 , −1 ≤ y ≤ 1} = x+,

• G(x) = {(−1), (1)} if x > 0, G(0) = [−1, 1] and G(x) = {0} if x < 0,

• G is not lower semi-continuous at zero.

Corollary If f : X × Y → IR is a continuous function such that f(x, ·)
is strictly concave for all x, and if Γ : X → Y is a non-empty compact and
convex valued continuous correspondence then G defined by (2) is a continuous
function.



7

Equilibrium of Financial Markets in
Continuous Time. The Complete Markets Case

As we saw in the previous chapter, in discrete time the CAPM assumes very
particular specifications for agents’ preferences. Originally, continuous-time
equilibrium models were introduced to relax these assumptions. The first
models considered had one agent, and the methods used to analyze them were
essentially those of dynamic programming (see for example Merton [273], Cox
et al [70], Breeden [43]). It is only in the last decade that the problem of the
existence of equilibrium in continuous time with financial markets has been
addressed, and that various properties of the CAPM have been proven. Note
that there is no existence result in the incomplete markets case.

In this chapter, we study only the case in which information is generated
by a d-dimensional Brownian motion (this assumption can be relaxed). Un-
der the assumption of complete markets, we show that analogous results to
those in discrete time hold for equilibria in continuous time, i.e., there is an
equivalence theorem for the Radner and Arrow–Debreu equilibria. This is a
fundamental result, as it enables us on the one hand to transform the prob-
lem of the existence of a Radner equilibrium into that of the existence of an
Arrow–Debreu equilibrium, and on the other hand, it shows that asset prices
are fully determined at equilibrium. In the case of additively separable util-
ity functions, we prove the existence of Arrow–Debreu equilibria, using the
Negishi method. Thence we deduce the existence of Radner equilibria, and
provide a characterize for them.

Finally, we show that we can recover the formulae given by Lucas [259],
Cox–Ingersoll–Ross [70] and by Breeden [43].

7.1 The Model

As in Chaps. 3 and 4, we work on a finite time interval [0, T ] and a probability
space (Ω,F , P ) on which a standard d-dimensional Brownian motion Bt is
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given. As usual, information is modeled by the filtration of the Brownian
motion, i.e., by Ft = σ(Bs , s ≤ t), completed by the addition of the null sets.

We consider an exchange economy with financial markets. In each state of
the world, there is a single consumption good, which we take as numéraire.

7.1.1 The Financial Market

There are d + 1 real securities (their dividends are expressed in terms of the
consumption good).

The first asset is riskless. Its price S0 evolves according to the equation

dS0(t) = S0(t) r(t) dt, S0(0) = 1 .

We write R(t) = exp[−
∫ t

0
r(s) ds

]
for the discount factor. In this chapter, we

do not assume r to be positive.

The other d assets are characterized by their cumulative dividend process
D = (D1, . . . , Dd), which we assume to follow an Itô process, and by their
price S, which we also assume to follow an Itô process. These processes are
then, in particular, continuous. We write S̃ = (S0, S) = (S0, S1, . . . , Sd) for
the stock prices. We define the “discounted cumulative dividend process” Dd

by dDd(t) = R(t)dD(t) and Dd(0) = 0.

The process Gd = SR+Dd, which is an Itô process, is called the discounted
gains process. (This process was introduced in Sect. 3.4.4). In this chapter we
make the following hypothesis:

H1 There exists on (Ω,FT ) a probability measure Q, equivalent to P with
density ξ = dQ

dP , such that

dGd
t = σd

G(t) dB̃t , (7.1)

where B̃t is a Ft-Q Brownian motion and where the process ξR is uni-
formly bounded. We assume that σd

G(t) is Ft-measurable and invertible.

Under (H1), any continuous Q-Ft-martingale can be written as a stochas-
tic integral with respect to Gd. In what follows, we will use the notation

Θ(Gd) =
{

θ̃ = (θ0, θ) , θ̃ predictable and
[∫ T

0

‖θ(t)σd
G(t)‖2 dt

]
< ∞ a.s.

}
,

H(Gd) =
{

θ̃ ∈ Θ(Gd)
∣∣∣ ∫ t

0

θ(s) dGd(s) is a Q-Ft -martingale
}

.
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Remark 7.1.1. We could have proceeded by noticing that the discounted gains
process is an Itô process, and constructing a probability measure Q equivalent
to P , and a Brownian motion B̃ such that dGt = σd

G(t) dB̃t, using Girsanov’s
theorem. We do not take this route however, so as not to introduce additional
assumptions and problems of measurability.

Remark 7.1.2. If θ̃ ∈ H(Gd), then
∫ t

0
θ(s) dGd(s) is a Q-Ft-martingale that is

zero at time zero. Therefore EQ

(∫ t

0
θ(s) dGd(s)

)
= 0, for all t ∈ [0, T ].

Let us customize some of the definitions introduced in Chaps. 3 and 4 to
the context of our model.

Let Z be a FT -measurable random variable. A trading strategy θ̃ ∈ H(Gd)
finances Z if

(i) R(t)(θ̃t · S̃t) = θ̃0 · S̃0 +
∫ t

0
θ(s) dGd(s) for all t ∈ [0, T ],

(ii) θ̃T · S̃T = Z.

An “arbitrage opportunity” is a strategy θ̃ ∈ H(Gd) with non-positive
initial value θ̃0 ·S̃0 ≤ 0 and a non-negative terminal value Z of strictly positive
expectation.

In the model that we are studying, there are no arbitrage opportunities.
Indeed, if θ̃ ∈ H(Gd), then

∫ t

0
θ(s) dGd(s) is a Q-martingale that is zero at

time zero, and therefore EQ

[∫ T

0
θ(s) dGd(s)

]
= 0. Hence EQ(R(T )Z) = 0,

and this contradicts the conditions for an arbitrage opportunity.

7.1.2 The Economy

We consider a single consumption good and m agents described by the list:
(L1

+, (Ui, ei) , i = 1, . . . , m) where the space

L1
+ =

{
c : Ω × [0, T ] → R+ Ft-adapted | EP

[∫ T

0

c(t)dt

]
< ∞

}

represents the set of consumption processes available to agents, where Ui :
L1

+ → R+ is the utility function of agent i, and where ei ∈ L1
+ is his endow-

ment stream.

Though, with regard to the existence of an equilibrium, it would be possible
to consider much more general preferences, we restrict ourselves here to the
additively separable utility functions,

Ui(c) = EP

[∫ T

0

ui(t, c(t)) dt

]
.

We make the following assumptions concerning the functions ui:
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U1 ui(t, ·) is strictly concave and strictly increasing for all t.

U2 ui belongs to C0,1([0, T ]×[0,∞[) and ∂ui

∂c : [0, T ]×R+ → R+ is continuous.

U3 ui is of class C1,4 and ∂ui

∂c (t, 0) = ∞ for all t.

7.1.3 Admissible Pairs

Agent i holds a portfolio of stocks θ̃i = (θ0
i , θi). We suppose that θ̃i ∈ H(Gd).

Definition 7.1.3. Given the discounted gains process of the stocks, the pair
(θ̃i, ci) ∈ H(Gd) × L1

+ is admissible for agent i if it satisfies

R(t)(θ̃i(t) · S̃t) =
∫ t

0

θi(s)dGd(s) −
∫ t

0

R(s)[ci(s) − ei(s)]ds

Q a.s. for all t ∈ [0, T ] ,

(7.2)

and
θ̃i(T ) · S̃T = θ0

i (T )S0(T ) + θi(T ) · ST ≥ 0 a.s. . (7.3)

Equation (7.2) says that the discounted wealth at time t is the sum of
the discounted gains or losses produced by the exchange of stocks and of
consumption goods. Equation (7.3) supposes there no debt remains at the
end of the period. We note firstly that the wealth of an agent is not required
to be positive at each instant in time, and secondly that Gd(t), which is a priori
a d + 1 dimensional process, has a constant first component, so that it will
later be considered as a d dimensional process for the purpose of integration.

Remark 7.1.4. If we disregard issues of integrability for a moment, it is natural
to define admissible portfolios by

θ̃i(t) · S̃t =
∫ t

0

θ̃i(s)dG̃(s) −
∫ t

0

(ci(s) − ei(s))ds ,

where G̃ = (S0, S + D), and by (7.3). Let dZt = R(t)(θ̃i(t) · S̃t). Itô’s lemma
leads to

dZt = R(t)θ̃i(t)dG̃t − R(t)[ci(t) − ei(t)]dt + θ̃i(t) · S̃tdRt .

As RtdS0
t + S0

t dRt = 0,

dZt = θi(t)dGd
t − R(t)[ci(t) − ei(t)]dt .
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Proposition 7.1.5. We have:

a) If (θ̃i, ci) is admissible, then ci satisfies

EQ

[∫ T

0

R(s)[ci(s) − ei(s)] ds

]
≤ 0 . (7.4)

b) Conversely, if ci satisfies (7.4), then there exists θ̃i ∈ H(Gd) such that
(θ̃i, ci) is admissible.

Proof. The first implication is obvious, since if θ̃i ∈ H(Gd), then
∫ t

0
θi(s) dGa(s)

is a Q-martingale that is zero at time zero, and so EQ

[∫ T

0
θi(s) dGd(s)

]
= 0.

Therefore we have

EQ

[∫ T

0

R(s)[ei(s) − ci(s)]ds

]
= EQ

[
θ0

i (T )S0(T ) + θi(T ) · ST

]
≥ 0 .

To prove the converse, we first note that

EQ

[∫ T

0

R(s)[ei(s) − ci(s)] ds

]
= EP

[∫ T

0

ξ(s)R(s)[ei(s) − ci(s)] ds

]
< ∞ .

We introduce the Q-martingale :

Yt = EQ

[∫ T

0

R(s)[ei(s) − ci(s)] ds

]
+ EQ

[∫ T

0

R(s)[ci(s) − ei(s)]ds|Ft

]
.

(7.5)
As EQ(YT ) = 0, we have EQ(Yt) = 0, for all t.

From the predictable representation theorem (cf. annex to Chap. 4), there
exists θi = (θ1

i , . . . , θd
i ) with

∫ T

0
‖θi(t)σd

G(t)‖2 dt < ∞ a.s., such that

Yt =
∫ t

0

θi(s) dGd(s) . (7.6)

Let us consider the process Xi(t) defined by

R(t)Xi(t) =
∫ t

0

θi(s) dGd(s) +
∫ t

0

R(s)[ei(s) − ci(s)] ds .

Let θ0
i (t) be defined by θ0

i (t)S0(t) = Xi(t) − θi(t) · St and θ̃i = (θ0
i , θi). By

construction, (θ̃i) ∈ H(Gd). It follows from (7.5) and (7.6) that

R(T )Xi(T ) = EQ

[∫ T

0

R(s)[ei(s) − ci(s)] ds

]
≥ 0 .

(θ̃i, ci) satisfies (7.2) and (7.3), and is therefore admissible. �
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7.1.4 Definition and Existence of a Radner Equilibrium

Definition 7.1.6. For a given S̃ and D, the pair (θ̃, c) ∈ H(Gd) × L1
+ is

optimal for agent i if it is admissible and if it maximizes the utility of the
agent over the set of admissible strategies.

Definition 7.1.7. For a given dividend process D, the list {(θ̃i, ci) ∈ H(Gd)×
L1

+ , (i = 1, . . . , m) ; S̃} is a Radner equilibrium if:

(i) the pair (θ̃i, ci) is optimal for all i = 1, . . . , m,
(ii) markets clear, that is to say that

(a)
∑m

i=1 θ̃i = 0 P ⊗ dt− a.s..
(b)

∑m
i=1 ci =

∑m
i=1 ei P ⊗ dt− a.s..

Remark 7.1.8. As in Chap. 6, Remark 6.5.2, we can see that if (i) and (ii)(b)
hold, then necessarily (ii)(a) is also satisfied.

Indeed, let θ̃(t) =
∑m

i=1 θ̃i(t). Define θ by θ̃ = (θ0, θ). By summing the
equalities (7.2) over all the agents, we obtain for all t ∈ [0, T ],

R(t)(θ̃(t) · S̃t) =
∫ t

0

θ(s) dGd(s) +
∫ t

0

[ m∑
i=1

R(s)[ei(s) − ci(s)]
]
ds

=
∫ t

0

θ(s) dGd(s) .

At the final date T , as preferences are monotonous, constraints are binding
thus θ̃T · S̃T = 0, and consequently

0 =
∫ T

0

θ(s) dGd(s) .

As the process 0 =
∫ t

0
θ(s) dGd(s) is a martingale, its increasing process is

zero. Hence θ(t) · σd
G(t) = 0, Q ⊗ dt a.e. and so also P ⊗ dt a.e.. Since σd

G is
invertible, θ(t) = 0 , P ⊗ dt a.s.. Hence θ̃(t) · S̃t = 0 and so θ0(t) = 0, P ⊗ dt
a.s..

In what follows:

L∞
+ =

{
p : Ω × [0, T ] → R+ Ft-adapted

∣∣∣
∃ M such that p < M P ⊗ dt -a.s.

}
.

Let us recall the following definition:

Definition 7.1.9. The list [ci , (i = 1, . . . , m) ; p ] ∈ (L1
+)m × L∞

+ is a con-
tingent Arrow–Debreu P -equilibrium if



7.1 The Model 223

(i) ci maximizes the utility of agent i under the constraint

EP

[∫ T

0

p(s)(ci(s) − ei(s)) ds

]
≤ 0 ,

(ii)
∑m

i=1 ci =
∑m

i=1 ei = : e P ⊗ dt a.s..

Using Proposition 7.1.5 and Remark 7.1.8, we now prove an analogous
theorem to Theorem 6.6.4.

Theorem 7.1.10. If
(
(θ̃i, ci) , i = 1, . . . , m ; S̃

)
is a Radner equilibrium such

that (H1) holds, then (ci , i = 1, . . . , m ; Rξ) is a contingent Arrow–Debreu
equilibrium.

Conversely, suppose that (ci , i = 1, . . . , m ; p) is a contingent Arrow–
Debreu P -equilibrium such that p is an Itô process dpt = µp(t) dt +
σp(t) dBt with strictly positive values and satisfying p(0) = 1 and such that

EP

(
exp 1

2

∫ T

0
‖σp‖2(t)

p2(t) dt
)

< ∞ . Then there exists a strictly positive P -Ft-
martingale ξ and a discount process R, which are unique and such that p = Rξ.
Let Q be the probability measure on (Ω,FT ) that is equivalent to P and of den-
sity ξT . For any set of prices S̃ such that (H1) is satisfied under Q, there
exists

(
θ̃i ∈ H(Gd) , i = 1, . . . , m

)
such that ((θ̃i, ci) , i = 1, . . . , m ; S̃) is a

Radner equilibrium.

Proof. The first part of the theorem follows from Proposition 7.1.5.
To prove the second part, we suppose that there exists ξ, a strictly positive

P -Ft-martingale and R a discount process, such that p = Rξ. As ξ is a posi-
tive P -martingale, there exists a unique predictable process qt that satisfies1∫ T

0
q2
t dt < ∞ P a.s. and dξt = qtξt dBt. We have

d(Rξ)t = −r(t)R(t)ξtdt + R(t)dξt

= −r(t)R(t)ξt dt + R(t)qtξtdBt = µp(t)dt + σp(t)dBt .

By identifying the coefficients of the drift and diffusion terms, we obtain
−rtRtξt = µp(t) and Rtqtξt = σp(t) , and hence rt = −µp(t)

p(t) and qt = σp(t)
p(t) .

We suppose that p is an Itô process dpt = µp(t) dt + σp(t) dBt with

strictly positive values and such that EP

(
exp 1

2

∫ T

0
‖σp‖2(t)

p2(t) dt
)

< ∞ and

p(0) = 1. We define r = −µp

p , R(t) = exp
[
−
∫ t

0
r(s) ds

]
and q = σp

p . Let us
show that p

R is a positive P -martingale. Indeed,

d
( p

R

)
t
=

1
Rt

(µp(t) dt + ptqt dBt) + rtpt
dt

R(t)
= qt

( p

R

)
t
dBt .

1 See for example Revuz–Yor [307] p. 304.
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(Cf. annex to Chap. 3.) For any price set S̃ such that (H1) is satisfied under
Q, since ci satisfies (7.4) for any i, there exists (θ̃i ∈ H(Gd) , i = 1, . . . , m)
such that the pair (θ̃i, ci) is optimal for all i = 1, . . . , m. Finally, according to
Remark 7.1.8, it is enough to check that

∑m
i=1 ci =

∑m
i=1 ei, which follows

from the definition of an Arrow–Debreu equilibrium. �

7.2 Existence of a Contingent Arrow–Debreu
Equilibrium

As is often the case in infinite dimensional economies, we use the Negishi
method. Under the assumption of the separability of the utility functions, the
calculations below are a straightforward transposition of those of Sect. 6.3.
We assume here that (U1) and (U2) hold for all i.

7.2.1 Aggregate Utility

We introduce the following notation. Let α ∈ ∆m−1 and c ∈ R++.

u(t, c, α) = max

⎧⎨⎩
m∑

j=1

αjuj(t, xj) |
m∑

j=1

xj ≤ c , xj ≥ 0 for all j

⎫⎬⎭ (7.7)

and

(Ci(t, c, α))m
i=1 = arg max

{
m∑

j=1

αjuj(t, xj) |

m∑
j=1

xj ≤ c , xj ≥ 0 for all j

}
. (7.8)

First of all, we obtain the following result.

Proposition 7.2.1.

1. If ui satisfies (U1) for all i, then u(t, ·, α) satisfies (U1) .
2. If ui satisfies (U2) for all i, then u(t, ·, α) satisfies (U2) .
3. If ui satisfies (U3) for all i, then u(·, ·, α) is of class C1,3.

Proof. The proof of 1 is left to the reader.
Assuming that ∂ui

∂c (t, 0) = ∞ for all t and for all i, the proof of 2 follows
that of Proposition 6.3.4. Note that in this case, ∂u

∂c (t, c, α) = αi
∂ui

∂c [t, Ci(t, c, α)]
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for all i such that αi > 0. The proof can be extended to the case of a gen-
eral ∂ui

∂c (t, 0). However as the extension is a little technical, we will admit the
result (the proof can be found in Dana–Pontier [85]).

To show that 3 holds, note that as in Proposition 6.3.4, there exists λ ∈ R+

such that when α1 > 0, α2 > 0, αp > 0 and αp+1 = 0 = · · · = αm, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
∂u1

∂c
[t, C1(t, c, α)] = λ

...
...

αp
∂up

∂c
[t, Cp(t, c, α)] = λ

m∑
i=1

Ci(t, c, α) = c .

(7.9)

As in the proof of Proposition 6.3.4, it follows from the implicit function
theorem that (Ci(·, ·, α))m

i=1 is of class C1,3. Hence u(·, ·, α) is also of class
C1,3. �

Remark 7.2.2. Let us write ui,cc for the second derivative of ui, and ucc(t, ·, α)
for that of u(t, ·, α). We will obtain explicit expressions for them later. As we
showed in Proposition 6.3.4,

∂u

∂c
(t, c, α) = λ .

Hence

−ucc(t, c, α) = −∂λ

∂c

= − 1∑m
i=1

1
αi

1
ui,cc(t,Ci(t,c,α))

≤ −αiui,cc(t, Ci(t, c, α)) ∀ i

and

∂Ci

∂c
(t, c, α) =

1
αiui,cc[t, Ci(t, c, α)]

∂λ

∂c
=

ucc(t, c, α)
αiui,cc[t, Ci(t, c, α)]

.

In particular, we note that ∂Ci

∂c (t, c, α) > 0.

7.2.2 Definition and Characterization of Pareto Optima

Let us recall the two following definitions:

Definition 7.2.3. The consumption vector (ci)m
i=1 ∈ (L1

+)m is admissible if
it satisfies

m∑
i=1

ci ≤ e P ⊗ dt a.s. .
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Let A be the set of admissible consumption vectors.

Definition 7.2.4. An admissible consumption vector (ci)m
i=1 is Pareto-optimal

if there does not exist a vector (ci)m
i=1 ∈ A satisfying:

Uj(cj) ≥ Uj(cj) for all j and Uj0(cj0) > Uj0(cj0) for at least one j0 .

We can characterize Pareto-optimal allocations as follows:

Proposition 7.2.5. An admissible consumption vector (ci)m
i=1 is Pareto-optimal

if and only if there exists α ∈ ∆m−1 such that

ci(t, ω) = Ci(t, e(t, ω), α) P ⊗ dt a.s. for all i = 1, . . . , m .

Proof. As in the proof of Proposition 6.3.3, we show that (ci)m
i=1 is Pareto-

optimal if and only if there exists α ∈ ∆m−1 such that (ci)m
i=1 is an optimal

solution to the problem:

Maximize
m∑

i=1

αi Ui(xi) under the constraint x = (xi)m
i=1 ∈ A .

As the utility functions are additively separable,

max
x∈A

m∑
i=1

αi Ui(xi) = EP

[∫ T

0

u(t, e(t), α) dt

]
,

and hence ci(t, ω) = Ci(t, e(t, ω), α) P ⊗ dt a.s.. �

As in equation (6.10) of Sect. 6.3, we set

p(t, α) =
∂u

∂c
[t, e(t), α] . (7.10)

We have the following result:

Proposition 7.2.6. If there exists a constant k > 0 such that k ≤ e, P ⊗ dt
a.s., then p(t, α) belongs to L∞

+ . For all α0 � 0 and for all i, there exists
ki > 0 such that Ci [t, e(t), α0] ≥ ki, P ⊗ dt a.s..

Proof. Let us assume that there exists k > 0 such that k ≤ e, P ⊗ dt a.s.. As
∂u
∂c (t, ·, α) is a decreasing function, we have:

p(t, α) ≤ ∂u

∂c
(t, k, α) ≤ max

s,β

∂u

∂c
(s, k, β) .

Under (U2), the maximum in the expression above exists, since according to
2 of Proposition 7.2.1 the function ∂u

∂c (·, k, ·) is continuous, and since the set
[0, T ] × ∆m−1 is compact.
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Moreover, if ∂ui

∂c (t, 0) = ∞ for all t and for all i, and if the functions ui are
of class C1,2, it follows from Proposition 7.2.1 and from Remark 7.2.2 that
Ci(t, ·, α) is an increasing function. We then have:

Ci (t, e(t), α0) ≥ Ci(t, k, α0) ≥ ki ,

with
ki = inf

s
Ci(s, k, α0) > 0 .

We can show that the monotonicity of Ci(t, ·, α) still holds when the ui are of
class C1,1. Thus the lower bound given above is still valid. �

Proposition 7.2.7. If (ci)m
i=1 is Pareto-optimal, then there exists α ∈ ∆m−1

such that ci(t) = Ci(t, e(t), α) for all i and ci, is the optimal solution to the
problem Pi⎧⎪⎨⎪⎩

maximize Ui(xi) under the constraint

EP

[∫ T

0

p(t, α)xi(t) dt

]
≤ EP

[∫ T

0

p(t, α)ci(t) dt

]
.

(Pi)

where p is defined as in (7.10).

Proof. As in the proof of Proposition 7.2.1 assertion 2, we make the assump-
tion, which can later be relaxed, that ∂ui

∂c (t, 0) = ∞ for all t and all i. Accord-
ing to Proposition 7.2.5, there exists α ∈ ∆m−1 such that ci(t) = Ci[t, e(t), α].

In addition,

if αi > 0 Ci[t, e(t), α] > 0 and
if αi = 0 Ci[t, e(t), α] = 0 .

First note that the statement of the proposition holds trivially in the case
where αi = 0. When αi > 0, as p(t, α) = αi

∂ui

∂c [t, Ci(t, e(t), α)], we have for
all xi ∈ L1

+,

ui[t, ci(t)] − ui[t, xi(t)] ≥ ∂ui

∂c
[t, ci(t)] [ci(t) − xi(t)]

≥ p(t, α)
αi

[ci(t) − xi(t)] .

Hence by integrating with respect to (t, ω), we obtain

Ui(ci) − Ui(xi) ≥ EP

[∫ T

0

p(t, α)
αi

[ci(t) − xi(t)] dt

]
,

and hence the result. �
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7.2.3 Existence and Characterization of a Contingent
Arrow–Debreu Equilibrium

Theorem 7.2.8. Suppose that ui satisfies (H1) and (H2) for all i. If there ex-
ists k > 0 such that k ≤ e P ⊗dt a.s., then there exists a contingent Arrow–
Debreu equilibrium of the form

(
Ci[t, e(t), α0] , i = 1, . . . , m; ∂u

∂c (t, e(t), α0)
)

with α0 � 0.

Proof. As in the proof of Theorem 6.3.5, we introduce the transfer function
Φ : ∆m−1 → R

m defined by

Φi(α) = EP

[∫ T

0

p(t, α) (Ci(t, e(t), α) − ei(t)) dt

]
.

As Ci[t, e(t), ·] and p(t, ·) are continuous functions, and as Ci[t, e(t), α] ≤
e(t) for all i and p(t, α) ∈ L∞, it follows from the dominated convergence
theorem that Φi is a continuous function for all i. As

∑m
i=1 Ci[t, e(t), α] =

e(t), we have
∑m

i=1 Φi = 0, and if αi = 0, Φi(α) < 0. The transfer function
Φ = (Φi)m

i=1 therefore satisfies the conditions of Theorem 6.3.5. From this, we
deduce the existence of a zero α0 � 0 for Φ, and hence the existence of an
equilibrium of the form

(
Ci[t, e(t), α0], i = 1, . . . , m; p(t, α0)

)
. �

Remark 7.2.9. The equilibrium allocations being Pareto-optimal, a conse-
quence of this section is that all the equilibrium allocations take this same
form. We can show that the same is true of equilibrium prices. Furthermore,
we can show that when we fix k and fix the utility functions generically with
respect to endowments, then the transfer function has a finite number of zeros.

7.2.4 Existence of a Radner Equilibrium

Henceforth, we make the following hypotheses:

H2 e is an Itô process of the form det = µe(t) dt + σe(t) dBt.

H3 There exist k > 0 such that k ≤ e a.s., and M such that
∫ T

0
‖σe(s)‖2 ds <

M a.s..

Recall that ki is a lower bound on the equilibrium consumption of agent i
(see Proposition 7.2.6).

U4 There exist i and Ai > 0 such that

−ui,cc(t, c)
ui,c(t, c)

≤ Ai , t ∈ [0, T ] , c ∈ [ki,∞[ .
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Let (ci, i = 1, . . . , m; p) be a contingent Arrow–Debreu equilibrium.
From Theorem 7.1.10, it can be implemented as a Radner equilibrium if
p is a strictly positive Itô process dpt = µp dt + σp dBt satisfying

EP

[
exp 1

2

∫ T

0
‖σp(t)‖2

p(t)2 dt

]
< ∞. We now show that these conditions are

in fact satisfied.

Proposition 7.2.10. Under the assumptions (H1 − H3,U1 − U4),

(i) pt is a strictly positive Itô process belonging to L∞
+ ,

(ii) EP

[
exp 1

2

∫ T

0
‖σp(t)‖2

p2
t

dt

]
< ∞.

Proof. From Theorem 7.2.8, there exists α0 ∈ ∆m−1 such that
pt = ∂u

∂c (t, e(t), α0). According to Proposition 7.2.1, ∂u
∂c (·, ·, α0) is of class C1,2.

It follows from Itô’s formula that pt is an Itô process of the form:

dpt = µp(t) dt + ucc[t, e(t), α0]σe(t) dBt . (7.11)

As we showed in Remark 7.2.2,

−ucc(t, e(t), α0)
uc(t, e(t), α0)

≤ mini −
ui,cc(t, Ci(t, e(t), α0))
ui,c(t, Ci(t, e(t), α0))

≤ Ai ,

hence EP

[
exp 1

2

∫ T

0
‖σp‖2

p2 dt

]
< ∞. �

Notice that we recover the results of the Cox–Ingersoll–Ross [70] inter-
est rate model with one agent. Indeed, as we showed in the proof of Theo-
rem 7.1.10, we have

rt = −µp(t)
pt

. (7.12)

By substituting in for µp(t), and writing uccc for the third derivative of u,
we obtain:

µp(t)
p(t)

= − 1
pt

[
uct[t, e(t), α0] + µe(t)ucc[t, e(t), α0]

+
1
2
‖σe(t)‖2 uccc[t, e(t), α0]

]
. (7.13)

There is no reason for the interest rate −µp

p to be positive. Also, we notice
that the framework for this section is much more general than the one con-
sidered by Cox–Ingersoll–Ross. Indeed, here we consider a model with several
agents, and furthermore, we do not assume the processes for asset prices to
be Markov.

As a summary, we give the following theorem:
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Theorem 7.2.11. Under the assumptions (H1 − H3,U1 − U4), there exists
a Radner equilibrium.

For any Radner equilibrium {(θ̃i, ci), (i = 1, . . . , m) ; S̃}, there exists
α0 � 0 such that ci(t) = Ci[t, e(t), α0] , i = 1, . . . , m . Moreover, { ci, i =
1, . . . , m } is Pareto-optimal, and there is a representative agent characterized
by an additively separable utility function and by endowments that are equal
to the aggregate endowment.

The interest rate is equal to the inverse of the expectation of the relative
variation of its instantaneous marginal utility. The probability measure Q,
which is is equivalent to P, has density ξt = 1

Rt

∂u
∂c (t, e(t), α0) on Ft.

We conclude these last two sections by giving the formula for asset prices:

St =
1

R(t)
EQ

[∫ T

t

dDd(s) | Ft

]
+

1
R(t)

EQ

[
R(T )S(T ) | Ft

]
.

As stated in Remark 7.2.9, if we fix k and if we fix the utility functions
generically with respect to endowments, then there are a finite number of
equilibrium utility weights, and hence of “equilibrium” measures Q. Prices
are not fully determined by the equality between supply and demand. Their
final value is arbitrary. As we have seen over the course of this book, and as
will be shown in the next section: what matters in the calculations are the
risk-neutral measure and the interest rate.

7.3 Applications

We are going to show that we can obtain a continuous version with a finite
horizon, of the Lucas [259] one-agent model, and of the Breeden [43] CCAPM
(Consumption-based Capital Asset Pricing Model).

In the following, we assume that we have a Radner equilibrium (θ̃i, ci, (i =
1, . . . , m); S̃) satisfying the conditions of Theorem 7.2.11. We consider the
probability measure Q that is equivalent to P and has density
ξt = 1

Rt

∂u
∂c (t, e(t), α0). We have that Rtξt is uniformly bounded.

7.3.1 Arbitrage Price of Real Secondary Assets. Lucas’ Formula

We use martingale theory to give an arbitrage price for secondary assets.

Definition 7.3.1. Let Y be a dividend process of the form

dYt = µY (t) dt + σY (t) dBt . (7.14)

We say that Y is “attainable” if
∫ t

0
R(s) dY (s) is Q-integrable, or equivalently,

if
∫ t

0
p(s) dY (s) is P-integrable. A trading strategy θ̃ ∈ H(Gd) finances2 Y at
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an initial cost of V0 if

(i) θ̃0 · S̃0 = V0,

(ii) R(t)(θ̃t · S̃t) = θ̃0 · S̃0 +
∫ t

0
θ(s) dGd(s) −

∫ t

0
R(s)dY (s) for t ∈ [0, T ],

(iii) θ̃T · S̃T = 0.

The value θ̃t · S̃t =: Vt of the trading strategy at time t, is the “arbitrage
price” of Y at time t.

Proposition 7.3.2. Any attainable dividend process Y is financed at an ini-
tial cost

V0 = EP

[∫ T

0

p(s) dY (s)
]

, (7.15)

and its arbitrage price is

Vt =
1
pt

EP

[∫ T

t

p(s) dY (s) | Ft

]
. (7.16)

Proof. As in the proof of Proposition 7.1.5, we introduce the martingale

Mt = EQ

[∫ T

0

R(s)dY (s) | Ft

]
.

It follows from the predictable representation theorem that there exists
θ = (θ1, . . . , θd) with

∫ t

0
‖θ(t)σd

G(t)‖2 dt < ∞ P a.s., such that,

Mt = V0 +
∫ t

0

θ(s) dGd(s) .

Hence V0 = EQ(MT ) = EP

[∫ T

0
p(s)dY (s)

]
is uniquely determined.

Let us define θ0 by:

R(t)S0
t θ0

t = Mt −
∫ t

0

R(s)dY (s) − R(t)
d∑

i=1

θi
tS

i
t .

By definition, θ̃ = (θ0, θ) ∈ H(Gd) and θ̃ finances Y at an initial cost V0

defined by (7.15), and we have

Vt = θ̃t·S̃t =
1

R(t)
EQ

[∫ T

t

R(s)dY (s) | Ft

]
=

1
p(t)

EP

[∫ T

t

p(s)dY (s) | Ft

]
.

�
2 See also Sect. 3.4.4.
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Remark 7.3.3. Here we assume that the final value of the asset is zero.

Remark 7.3.4. Suppose that the asset also yields a final consumption δ, which
is assumed to be a random variable such that p(T )δ is P -integrable. Then
expression (7.16) can be generalized to

Vt =
1
pt

EP

[∫ T

t

p(s) dY (s) + p(T )δ | Ft

]
, t ∈ [0, T ] . (7.17)

To reproduce Lucas’ valuation formula in continuous time and with a
finite horizon, it is enough to assume that there is a single agent, and that
u(t, c) = e−βt ϕ(c). We then obtain:

Vt =
1

ϕ′(et)
EP

[∫ T

t

e−β(s−t) ϕ′[e(s)] dYs | Ft

]
.

Remark 7.3.5. Formula (7.16) holds more generally in the case where Y is
a semi-martingale such that

∫ t

0
p(s) dY (s) is well-defined. In particular, the

process Y can include jumps. Indeed, suppose we want to calculate the price
of a zero coupon bond maturing at time τ . This means that Yt = 0 for t < τ
and Yt = 1 for t ≥ τ . The process Y has a jump at time τ . We deduce from
(7.16) that the price of the zero coupon bond is zero after time τ , and for
t < τ , equals

Vt =
1
pt

EP (p(τ) | Ft) .

7.3.2 CCAPM (Consumption-based Capital Asset Pricing Model)

We recover Breeden’s formula.

Proposition 7.3.6. For Y an attainable Itô process,

(i) The process Zt =
∫ t

0
p(s) dY (s) + ptVt is a P -martingale.

(ii) The process Vt is an Itô process.

Proof. Notice that

Zt =
∫ t

0

p(s) dY (s) + ptVt =
∫ t

0

p(s) dY (s) + EP

[∫ T

t

p(s) dY (s) | Ft

]
= EP

[∫ T

0

p(s) dY (s) | Ft

]
.

Hence Zt is a continuous P -martingale and therefore an Itô process (apply
the predictable representation theorem).
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Consequently, ptVt = Zt−
∫ t

0
p(s) dY (s) is an Itô process. As, according to

Proposition 7.2.6, pt is a strictly positive Itô process, it follows from Itô’s for-
mula that Vt = ptVt

pt
is an Itô process that can be written µV (t)dt+σV (t) dBt.

�

Henceforth, we will be looking at the rate of real excess return on stocks.
According to Proposition 7.3.6, for a given asset Y , the process Zt =∫ t

0
p(s) dY (s) + ptVt is a P -martingale.
By applying Itô’s lemma, we get,

dZt =
[
ptµY (t) + ptµV (t) + Vtµp(t) + ucc[t, c(t), α0]

σe(t) · σV (t)
]

dt + σZ(t) dBt , (7.18)

where σe(t) · σV (t) denotes the matrix product σe(t)σV (t)T .

As Z is a martingale, it has zero drift. Therefore, we have a.e.,

pt[µY (t) + µV (t)] + Vtµp(t) + ucc[t, e(t), α0]σe(t) · σV (t) = 0 . (7.19)

If we assume that Vt �= 0, and divide through by ptVt, we obtain, from formula
(7.13),

µV (t) + µY (t)
Vt

− rt = −ucc[t, e(t), α0]σV (t) · σe(t)
∂u
∂c [t, e(t), α0]Vt

. (7.20)

We can associate with each asset Y , the “real rate of return” Γ , which
solves the stochastic differential equation

dΓt =
(

µV (t) + µY (t)
Vt

)
dt +

σV (t)
Vt

dBt . (7.21)

We interpret the term µV (t)+µY (t)
Vt

= µΓ (t) as the expectation of the in-
stantaneous real rate of return. First of all, it follows from (7.20) that the
interest rate rt is the instantaneous real rate of return of an asset whose price
has zero volatility σV (t) (a riskless asset).

Let us set

σΓ (t) =
σV (t)

Vt
. (7.22)

We can rewrite (7.20) in the form:

Γ t − rt = −ucc[t, e(t), α0]
∂u
∂c [t, e(t), α0]

σΓ (t) · σe(t) . (7.23)

The term −ucc[t, e(t), α0]
∂u
∂c [t, e(t), α0]

can be interpreted as the coefficient of risk aversion

of the representative agent, and the term σΓ (t) · σe(t) as the instantaneous
covariance between the real rate of return and the aggregate consumption.
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In order to finally obtain a beta formula, we construct the real price process
V ∗, whose diffusion coefficient can be written σV ∗(t) = k(t)σe(t) where k is
a predictable real-valued process. There are different ways of doing this. For
example, if we assume that we have an asset whose final dividend δ equals

1
p(T )

∫ T

0
σe(s) dB(s), then according to (7.17) its real arbitrage price is then

V ∗
t =

1
pt

EP

[∫ T

0

σe(s) dB(s) | Ft

]
=

1
pt

∫ t

0

σe(s) dB(s) .

Using Itô’s formula, we then obtain

dV ∗
t = µ∗

V (t) dt + σe(t)
[

1
pt

−
∫ t

0
σe(s) dBs

p2
t

ucc[t, e(t), α0]
]

dBt

= µ∗
V (t) dt + k(t)σe(t) dBt ,

with

kt =
1
pt

− 1
p2

t

ucc[t, e(t), α0]
∫ t

0

σe(s) dBs .

We now set σΓ∗(t) = σV ∗ (t)
V ∗(t) .

By rewriting (7.23) for this asset, we obtain:

Γ
∗
t − rt = −ucc[t, e(t), α0]

uc[t, e(t), α0]
σΓ∗(t) · σe(t) . (7.24)

Let us now define the beta of a real asset with respect to aggregate consump-
tion by:

βΓ (t) =
σΓ (t) · σΓ∗(t)
σΓ∗(t) · σΓ∗(t)

, (7.25)

(assuming that σΓ∗(t) �= 0). We then obtain:

(Γ t − rt) = βΓ (t) (Γ
∗
t − rt) . (7.26)

Hence the excess rate of return on stocks is proportional to the “consumption
betas”.

Notes

As we said in the introduction, the first continuous time equilibrium models
had one agent, and the methods used to analyze them were essentially the
methods of dynamic programming. In particular, this is the case for Merton
[273], (1973), which introduced the CAPM property in continuous time, Bree-
den [43], (1979) and finally Cox, Ingersoll and Ross [70], (1985), which deals
with determining the interest rate at equilibrium.
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The problem of the existence of an equilibrium with financial markets in
continuous time is linked to two currents in the literature.
The first one goes back to the end of the sixties (see for example the articles Be-
wley [30, 31], (1969, 1972)), and deals with the existence of an Arrow–Debreu
equilibrium in infinite dimension. Very general spaces were considered and
a wide range of analytical methods were used. The literature in this area is
plentiful. The interested reader can consult either the article Mas-Colell and
Zame [269], (1991), which is based mainly on the Negishi method, or the book
Aliprantis, Brown and Burkinshaw [5], (1989). The case of Lp spaces and ad-
ditively separable utility functions has been studied by Araujo and Monteiro
[10, 11], (1989, 1992) and Dana [81, 82], (1993). The issue of uniqueness (or
local uniqueness) of an Arrow–Debreu equilibrium is discussed in Dana [84],
(2001), and the references therein.
The second current deals with the existence of a Radner equilibrium. Tra-
ditionally, and in applications, the utility functions are often assumed to be
additively separable. The idea of using martingale theory to implement an
Arrow–Debreu equilibrium as a Radner equilibrium was introduced by Duffie
and Huang [119], (1985), in a model where agents consumed at time 0 and
at the final date. The idea was later generalized by Duffie [110], (1986) to
a model allowing for a consumption process. Huang [196], (1987) uses the
idea that any Arrow–Debreu equilibrium is Pareto-optimal, to give sufficient
conditions for asset prices to be functions of a state variable given by a dif-
fusion process. Karatzas, Lehoczky and Shreve [232], (1990) were the first to
take the consumption good as the numéraire. The real prices of the reference
risky assets are then Itô processes. Their paper shows that when agents have
coefficients of relative risk aversion that are smaller than one, there exists a
unique equilibrium measure, under which discounted prices are martingales.
Finally, Dana and Pontier [85], (1992) show that very general informational
structures can be considered. The case of two agents is considered in Dumas
[127], (1989) and Wang [363], (1996).

Duffie and Epstein [116], (1992) extend the results of Sect. 7.3 to “re-
cursive” utility functions in the setting of a representative agent model. The
existence of equilibrium allocations with recursive utilities is proved in Duffie
et al [118], (1994). The existence of a representative agent with recursive util-
ities is discussed in Dumas et al [129], (2000). Epstein and Miao [151], (2002)
consider a two-agent model, where agents have different sets of multiple priors
to solve the equity home bias and the consumption home bias puzzles.

Basak and Cuoco [25], (1998) analyse a model in which agents have hetero-
geneous investment opportunities. Models containing heteregeneous beliefs or
information are developed by Detemple and Murthy [101], (1994), Basak [24],
(2000), De Marzo and Skiadas [99, 100], (1998, 1999), Jouini and Napp [219]
(2006), Riedel [309], (2002), and Zapatero [377], (1998), Serrat [332] (2001).

Finally, Cuoco [73], (1997), extends Breeden’s CCAPM to the case of port-
folio constraints.
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Incomplete Markets

The valuation and hedging of options in incomplete and in imperfect markets
is an issue that concerns both academics and practitioners. This brief chapter
is an introduction to the topic. A more complete study is beyond the scope of
this book. As in previous chapters, we work with continuous processes built
on a space (Ω,F , P ).

8.1 Incomplete Markets

The framework is that of a market with d + 1 assets, including one riskless
asset, where asset prices are modeled by:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dS0(t) = r(t)S0(t)dt, S0(0) = 1

dSi(t) = Si(t)[bi(t) dt +
∑n

j=1 σi,j(t) dWj(t)] , i = 1, . . . , d

= Si(t)[bi(t) dt + σi(t) dWj(t)] ,

(8.1)

for σi(t), a row vector (σi,j , j = 1, . . . , n). Here, the dimension of the Brown-
ian motion W = (W1,W2, . . . , Wn) is no longer equal to the number of risky
assets. If d > n, there is an excess of assets, and the possibility of arbitrage.
In what follows, we assume that n > d and that the matrix σσT is invertible.
Recall that a market is complete if any positive, square-integrable r.v. ζ ∈ FT

can be written as the final value of a self-financing strategy. In a complete
no-arbitrage market, the equivalent martingale measure is unique.

8.1.1 The Case of Constant Coefficients

We must be careful not to be too hasty in describing a market as incomplete.
For example, consider a market consisting of one riskless asset with constant
rate of return r, and one risky asset whose price follows the dynamics



238 8 Incomplete Markets

dSt = St

(
µdt + σ1dB

(1)
t + σ2dB

(t)
t

)
(8.2)

where σi are non-zero constants and where B(i) are independent Brownian
motions. With this formulation, there exist an infinity of risk-neutral proba-
bility measures R, given by

dR

dP
= exp

(∫ t

0

[
θ1(s)dB(1)

s − 1
2

(θ1(s))
2 ds + θ2(s)dB(2)

s − 1
2

(θ2(s))
2 ds

])
with σ1θ1 + σ2θ2 + µ = r. There exist non-replicable contingent claims: for
example, the random variable B

(2)
T cannot be written as the final value of a

self-financing portfolio. However, this market is complete if we restrict our-
selves to contingent claims that are measurable with respect to the price
filtration.

To check this is the case, introduce the process B(3) defined by

B
(3)
t =

1√
σ2

1 + σ2
2

[
σ1B

(1)
t + σ2B

(2)
t

]
.

This process is a Brownian motion (as it is a martingale and ([B(3)
t ]2−t, t ≥ 0)

is also a martingale). Using this process, and setting σ3 =
√

σ2
1 + σ2

2 , the
dynamics of the risky asset’s price become

dSt = St

(
µdt + σ3dB

(3)
t

)
. (8.3)

We need to specify which are the filtrations being used. The initial fil-
tration was generated by the two Brownian motions B(i). The price fil-
tration is F̃t = σ (Ss, s ≤ t) = σ

(
B

(3)
s , s ≤ t

)
. Indeed, from (8.3), we

have σ (Ss, s ≤ t) ⊂ σ
(
B

(3)
s , s ≤ t

)
. Moreover, equation (8.3) implies that

dB
(3)
t = (dSt − Stµdt) /Stσ3, which shows that the reverse inclusion also

holds. Under this new form, the price dynamics are “Black–Scholes”, and there
exists a unique measure Q, such that (St e−rt, t ≥ 0) is a

(
F̃t

)
-Q-martingale,

satisfying d (St e−rt) = St e−rtσ3dWt, with the process(
Wt = B

(3)
t − µ−r

σ3
t, t ≥ 0

)
being a

(
F̃t

)
-Q-Brownian motion.

Any random variable ζ, which is square integrable and measurable with
respect to F̃T , is also replicable; this is the statement of the representation
theorem under Q. Indeed, the

(
F̃t

)
-Q-martingale Vt e−rt = EQ

(
e−rT ζ

∣∣Ft

)
can be represented as a stochastic integral with respect to W :

EQ

(
e−rT ζ

∣∣Ft

)
= b +

∫ t

0

ψsdW (s) = b +
∫ t

0

πsd
(
Sse−rs

)
where πs = ψs/ (Sse−rsσ3). From this, it can be deduced that Vt is the value at
time t of a self-financing portfolio which replicates ζ, i.e., that Vt = αtS

0
t +πtSt
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with αt = e−rt (Vt − πtSt) . So we have checked that a contingent claim that
is measurable with respect to the information contained in market prices, is
replicable. This no longer holds for a random variable U that is measurable
with respect to FT = σ

(
B

(1)
t , B

(2)
t , t ≤ T

)
, which is a larger σ-field than

F̃T . In this case, the representation theorem yields

E
(
e−rT U

∣∣Ft

)
= u +

∫ t

0

ψ1(s)dB(1)
s +

∫ t

0

ψ2(s)dB(2)
s ,

which can no longer be written as u +
∫ t

0
πsd [e−rsSs]. However, from a fi-

nancial point of view, the valuation of such claims holds little interest. The
model with two Brownian motions is not satisfactory. It requires too much
irrelevant information. All this can be generalized to the case of deterministic
coefficients, but not to the case of stochastic coefficients.

8.1.2 No-Arbitrage Markets

Under some regularity assumptions, which we specify later, without however
aiming for the most refined possible set of assumptions, the market described
in (8.1) does not present any arbitrage opportunities. To prove this is the case,
we show that there exists an equivalent martingale measure. Let

θt
def= σT

t [σtσ
T
t ]−1[b1 − rt1] .

Assume that σ and θ are bounded. We use the following notation: Rt =
exp

(
−
∫ t

0
rsds

)
,

L0
t

def= exp
(
−
∫ t

0

θT
s dWs −

1
2

∫ t

0

‖θs‖2ds

)
,

and H0
t

def= RtL
0
t , for the state price process satisfying

dH0
t = −H0

t (rtdt + θT
t dWt) .

The process L0 is a strictly positive P -(Ft) martingale. Let Q be the proba-
bility measure defined on Ft by dQ = L0

t dP .

Proposition 8.1.1. Under the measure Q, discounted prices are martingales.

Proof. A very simple method involves checking that the processes SiH
0 are

martingales under P . This follows from Itô’s lemma, with the formula for
integration by parts leading to:

d
(
SiH

0
)
(t) = H0

t dSi(t) + Si(t)dH0(t) − Si(t)H0
t d〈σiW, θT W 〉t

= H0
t Si [bi − r − σiθ] dt + Mt
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where M is a martingale. By definition of θ, the drift term is zero. �
However, it is not possible to replicate every FT -measurable random

variable. Let us explain why, in the case r = 0. According to the repre-
sentation theorem, there exists a family (φk, k ≤ n) of processes such that
ζ = x +

∑n
k=0 φk(t) dWk(t). For ζ to be replicable, we require the existence

of (πi, i ≤ d) such that

n∑
k=0

∫ T

0

φk(t)dWk(t) =
d∑

i=1

∫ T

0

πi(t)dSi(t)

=
n∑

k=1

∫ T

0

d∑
i=1

[πi(t)σi,k(t)] dWk(t) .

By identification of dWk terms, this leads to a system of n equations with
d unknowns.

8.1.3 The Price Range

In an incomplete market, there exist non-replicable assets. That is, square-
integrable FT -measurable random variables ζ, for which there exists no self-
financing portfolio with final value ζ. However, replicable variables exist, as
the assets themselves and all random variables of the form ζ = x +

∫ T

0
πsdSd

s

(where Sd denotes the discounted prices). As often mentioned previously, if a
contingent claim ζ is replicable, its price is EQ

(
e−rT ζ

)
. If there exist several

martingale measure exists, then the values of EQ

(
e−rT ζ

)
across the different

measures Q are all equal. When the claim is not replicable, we refer to any
value of EQ

(
e−rT ζ

)
as a viable price. Such a price precludes the possibility

of arbitrage, as will be seen later. When the final payoff is not replicable, we
can approach the problem in two different ways, just as we did in the first
chapter:

• by finding the smallest value x, such that there exists a self-financing
portfolio with initial value x and final value greater than ζ,

• by considering the set of “viable” prices, that is the set of values of
EQ

(
e−rT ζ

)
given when Q describes the set of risk-neutral probability

measures.

We should emphasize the fact that the set of risk-neutral probability mea-
sures is convex; if this set contains more than one probability measure, then
it contains an infinity of probability measures.

If a claim is replicable, then all the values of EQ

(
e−rT ζ

)
are equal.

Firstly, we look at the set of equivalent martingale measures, and secondly,
we study superhedging strategies, before making the link between the two. It
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is not possible to give all the proofs involved, as these require mathematical
developments that are beyond the scope of this book. Instead, we refer the
reader to the papers El Karoui and Quenez [144, 145], Cvitanić and Karatzas
[75], Kramkov [241], and Cvitanić, Pham and Touzi [78].

Equivalent Martingale Measures

To determine all the equivalent martingale measures, we look for their Radon–
Nykodym densities.

Let K(σ) be the kernel of σ. For ν ∈ K(σ), we notice that 〈ν, θ〉 = 0, and
define, for a bounded ν, the exponential martingale

Lν
t

def= exp
(
−
∫ t

0

(
θT

s + νT
s

)
dWs −

1
2

∫ t

0

(
‖θs‖2 + ‖νs‖2

)
ds

)
,

and the process Hν
t = Lν

t Rt satisfying

dHν
t = − Hν

t

(
rt dt +

(
θT

t + νT
t

)
dWt

)
Hν

0 = 1 .
(8.4)

Lemma 8.1.2. For all ν ∈ K(σ), the processes (Hν(t)Si(t), t ≥ 0) are mar-
tingales under the measure P .

Proof. The proof is straightforward. As before, it is enough to apply Itô’s
formula. �

The result can be stated by saying that the probability measures Qν with
densities Lν with respect to P are equivalent martingale measures. Next,
we need to check that in this manner, we have obtained all the equivalent
martingale measures.

Lemma 8.1.3. The set of equivalent martingale measures is the set Q defined
by

Q =
{
Qν

∣∣ dQν |Ft
= Lν

t dP |Ft
, ν ∈ K(σ)

}
with

dLν(t) = −Lν(t)
(
θT (t) + νT (t)

)
dWt, Lν(0) = 1 .

Proof. If Q is an equivalent martingale measure, the density (Lt, t ≥ 0) is a
strictly positive Ft martingale, which, thanks to the predictable representation
theorem, admits the representation

dLt = Ltϕ
T
t dW (t) .

The process HνS is a P -martingale if and only if σ(t)ϕ(t)+(b(t) − r(t)1) =
0. Then the various ϕ can be written as θ + ν, for ν ∈ K(σ). �

The range of viable prices at time 0 is given by:
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]
inf
ν

E (Hν(T )ζ) , sup
ν

E (Hν(T )ζ)
[

.

We will write p(ζ) = sup
ν

E (Hν(T )ζ) and p(ζ) = inf
ν

E (Hν(T )ζ).

In general, this price range is very wide. In the case of European option
hedging, the upper bound is often equal to the trivial bound (i.e., equal to the
value of the underlying). The reader can refer to the work of Eberlein–Jacod
[133] and Bellamy–Jeanblanc [26]. It is easy to obtain price ranges of this form
for any time t.

If the contingent claim ζ is sold at a price p(ζ) ∈ ]p(ζ), p(ζ)[, then an
arbitrage cannot be constructed. Indeed, if we sell ζ at price p(ζ), then we
can invest the proceeds in the market by creating a portfolio θ. This portfolio
would be an arbitrage opportunity if its final value VT were greater than ζ.
However, under any equivalent martingale measure, the portfolio’s discounted
value is a martingale. It follows that

p(ζ) = V0 = Eν (VT R(T )) = E (Hν(T )VT ) > E (Hν(T )ζ) .

We can give an analogous proof to show that a no-arbitrage price must
be greater than infν (Hν(T )ζ). The value p(ζ) = supν (Hν(T )ζ) is referred
to as the selling price of ζ. This choice of terminology will be justified later.
El Karoui–Quenez [144, 145] established the following result.

Proposition 8.1.4. The three following properties are equivalent:

1. There exists λ ∈ K(σ) such that E (Hν(T )ζ) = x.
2. The price range is reduced to a single element:

E (Hν(T )ζ) = x, ∀ν ∈ K(σ) .

3. There exists an admissible portfolio π such that Xx,π(T ) = ζ.

8.1.4 Superhedging

We now consider portfolios that superhedge a contingent claim ζ. The seller
is willing to sell the contingent claim at a price of x if he can invest x in a
portfolio whose final value is greater than the value of the claim, i.e., V x,π

T ≥ ζ.
The selling price is then the smallest amount x that can be used to hedge the
claim.

Using the notation of the previous section, it can be shown that p(ζ) =
inf {x : ∃π, V x,π

T ≥ ζ}. Similarly, reasoning from the buyer’s point of view, we
define the purchase price, and show that p(ζ) = sup

{
x : ∃π, V −x,π

T ≥ −ζ
}
.

The essential tool here is the smallest supermartingale (for any given martin-
gale measure equivalent to P ) equal to ζ at time T . This supermartingale is
equal to J∗

0 = supEQν (R(T )ζ) at time 0, and to J∗
t = supEQν

(
R(T )ζ

∣∣Ft

)
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at time t, with the last equality requiring a particular definition of “sup” to
avoid difficulties due to null sets (and this leads to the notion of essential sup).

We refer the reader to the papers El Karoui and Quenez [144], and
Kramkov [241], as well as to the lecture notes Touzi [355] and Pham [299], for
proofs of these results.

8.1.5 The Minimal Probability Measure

One method, which is frequently used to price financial products, involves
choosing one specific probability measure, amongst all the different risk-
neutral measures available. Different criteria exist for this choice in the litera-
ture, and the links between the different probability measures are themselves
an area of study.

The Minimal Measure

This probability measure is linked to minimizing quadratic cost. It was in-
troduced by Föllmer and Sondermann [163], and was exhaustively studied
by Schweizer [330]. The chosen criterion is the minimization of E (ζ − Xπ,x

T )2.

The associated dual to the problem is minν E
[(

e−rT Lν
T

)2], where the param-
eter ν varies in such a way that the set of risk-neutral probability measures is
described.

The Optimal Variance Martingale Measure

The idea here is to choose Q close to the historic probability measure, selecting

the equivalent martingale measure that minimizes EP

[(
R(T )dQ

dP

)2
]

. Further

details are to be found in Schweizer [331], and in Delbaen and Schachermayer
[96, 97].

The Minimal Entropy Martingale Measure

Miyahara [280] on the other hand chooses the equivalent martingale measure
that is closest to the historic measure, in the sense of a distance that is linked
to “entropy”, and which minimizes EP

[
dQ
dP ln dQ

dP

]
. Fritelli [166] has devoted

numerous articles to this topic, and the dual approach has been studied by
Delbaen et al [95]

Risk

This new approach consists in accepting that the hedge will not be perfect,
and that only 95% of the risk will be hedged. So we look for a portfolio, with a
minimal initial value x, such that P (Xx,π

T ≥ ξ) = 0.95. (Föllmer and Leukert
[161]; Cvitanić and Karatzas, [76]).
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8.1.6 Valuation Using Utility Functions

Let U be a utility function that is strictly increasing, strictly concave, and
satisfies Inada’s conditions. An investor puts his initial wealth x into the
markets for the risky assets and for the riskless asset, and seeks to maximize
E (U (Xx,π

T )), where the expectation is taken under the historic measure. Davis
[87] determines the fair price of a contingent claim ζ using an argument based
on the marginal rate of substitution. We suppose that the claim ζ is sold at a
price of p(ζ). If the agent invests an amount δ in the contingent claim ζ, and
if he keeps this position in place until expiry, his final wealth will be given by
Xx−δ,π

T + δ
p(ζ)ζ. His optimization problem consists in achieving

W (δ, x, p) = sup
π

E

(
U

(
Xx−δ,π

T +
δ

p(ζ)
ζ

))
.

Definition 8.1.5. Suppose that the equation

∂W

∂δ
(0, p, x) = 0

has a unique solution p∗. Then the fair price for the contingent claim ζ is p∗.

An “infinitesimal” investment in the contingent claim has a neutral effect
on the agent’s optimization problem.

Theorem 8.1.6. Let V (x) = sup
π

E (U (Xπ,x
T )) = E

(
U
(
Xπ∗,x

T

))
.

We assume that V is differentiable and that V ′(x) > 0. Then p∗ is given by

p∗ =
E
(
U ′

(
Xπ∗,x

T

)
ζ
)

V ′(x)
.

In the complete market case, or when the contingent claim is replicable, the
value of p∗ is the same as the one obtained by the usual approach: the fair price
is then the expectation of R(T )ζ under a risk-neutral measure. Indeed, when
ζ is replicable, p̃ = EQ (R(T )ζ) is the initial value of the replicating portfolio:
the initial wealth p̃ can be used to construct a self-financing portfolio made
up of the market assets (θt, 0 ≤ t ≤ T ), and having initial value V0(θ) = p̃,
and final value VT (θ) = ζ. If the contingent claim ζ is for sale at price p, an
investor can, for any choice of δ, buy an amount δ/p of the contingent claim
at price p, and invest his remaining wealth x − δ in a portfolio of market
assets. Initially, he seeks the optimal strategy for a given fixed δ, and next he
optimizes his choice of δ. As the contingent claim is replicable, the optimal
solution is to choose δ = 0.

Let us implement the first part of the optimization scheme, with δ fixed.
The δ/p shares in the contingent claim have a final value δζ/p, and the port-
folio δθ/p has initial value V0 (δθ/p) = p̃δ/p, and final value VT (δθ/p) = δζ/p.
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It is easy to see that the optimal way of investing the wealth x − δ is to sell
the portfolio δθ/p and invest the wealth x − δ + V0 (δθ/p) = x − δ + p̃δ/p,
in an optimal manner, in the complete market. The optimal solution to our
initial problem is then to choose δ = 0. The marginal rate of substitution is
d
dδ V

(
δp
p̃ + x − δ

) ∣∣∣
δ=0

=
(

p̃
p−1

)
V ′(x), and this is zero only if p = p̃.

Davis’ price is a viable price in that the fair price is within the price
range determined previously, and thus it does not give rise to any arbitrage
opportunities. We do not reproduce the proof here (see for example Pham
[299]).

Hodges and Neuberger [194] suggest the following method. For a given
utility function, the “reservation price” is the value of p such that

max
π

E (U (Xx,π
T )) = max

π
E
(
U
(
Xx−p,π

T + ξ
))

.

The reader can refer to El Karoui–Rouge [147].

8.1.7 Transaction Costs

Valuation in the case where transactions incur costs is an interesting topic,
as it is very close to what happens in the real world. The results however
are often disappointing. In the case of proportional transaction costs and of a
European option, Shreve et al. [341] show that the minimal superhedge is the
trivial hedge, which involves buying the underlying.

8.2 Stochastic Volatility

Models with stochastic volatility are such that

dSt = St (µtdt + σtdWt)

where the volatility follows a stochastic process. Numerous studies have been
carried out in the case where the volatility dynamics are specified using a
noise process that is different from that of the underlying:

dσt = b(t, σt)dt + Σ(t, σt)dBt .

Models in which dSt = St (µtdt + σ (t, St) dWt), where σ : R
+ × R is

a deterministic function are not considered to be of stochastic volatility. In
such models, there exists a sole risk-neutral measure, given by dQ

dP

∣∣∣Ft = Lt

with Lt = exp
[∫ t

0
θsdWs − 1

2

∫ t

0
θ2

sds
]

and θs = µs−r
σ(s,Ss) . Nonetheless, it is not

straightforward to provide explicit valuation calculations in these models.
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8.2.1 The Robustness of the Black–Scholes Formula

As stated earlier, the price of a European call in the Black–Scholes model is
increasing with respect to volatility. This property can be extended to the
stochastic volatility case as follows. Let dSt = St(rdt + σtdBt) be the price
process for the risky asset under a risk-neutral measure Q. We use the notation
BS(t, x, σ) for the Black–Scholes function defined by

BS (t, x, σ) = E
(
e−r(T−t) (XT − K)+ |Xt = x

)
,

where X is the geometric Brownian motion with constant drift r and con-
stant volatility σ. The function gives the price of a European option in the
Black–Scholes model with volatility σ. Now we examine the error a financial
agent makes if he does not know the exact value of (σt, t ≥ 0), but knows
that this volatility remains between two bounds, which are either constant or
deterministic. He evaluates the price of the option using the Black–Scholes
function, and hedges using the delta obtained by applying the Black–Scholes
formula.

Theorem 8.2.1. If σ1 ≤ σt ≤ σ2 for all t and for almost all ω, where the
σi’s are constants,

BS (t, St, σ1) ≤ EQ

(
e−r(T−t) (ST − K)+ |Ft

)
≤ BS (t, St, σ2) .

Proof. The proof is very simple and uses the fundamental properties of the
Black–Scholes function, in the shape of the its PDE and its convexity. We
apply Itô’s formula to the discounted Black–Scholes function e−rtBS (t, St, σ2)
evaluated at the “real” market levels. We obtain:

e−rtBS (t, St, σ2) = BS (0, S0, σ2) +
∫ t

0

e−rs ∂BS
∂t

(s, Ss, σ2) ds

+
∫ t

0

e−rs ∂BS
∂x

(s, Ss, σ2) dSs +
1
2

∫ t

0

e−rs ∂2BS
∂x2

(s, Ss, σ2) S2
sσ2

sds

−
∫ t

0

re−rtBS (s, Ss, σ2) ds

= BS (0, S0, σ2) +
∫ t

0

e−rs ∂BS
∂x

(s, Ss, σ2) σsSsds

+
∫ t

0

e−rs

[
∂BS
∂t

+
∂BS
∂x

rSs +
1
2

∂2BS
∂x2

S2
sσ2

s − re−rsBS
]

(s, Ss, σ2) ds .

The Black–Scholes function BS (t, x, σ2) satisfies

∂BS
∂t

+ xr
∂BS
∂x

+ x2σ2
2

1
2

∂2BS
∂x2

− rBS = 0 .
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It follows that

e−rtBS (t, St, σ2) = BS (0, S0, σ2)

+
1
2

∫ t

0

e−rs ∂2BS
∂x2

(s, Ss, σ2) S2
s

(
σ2

s − σ2
2

)
ds + Mt

where M is a martingale under the risk-neutral measure. Now it is enough to
use the same formula at time T , and take expectations under the risk-neutral
measure, to obtain

EQ

[
e−rTBS (T, ST , σ2)

]
= EQ

(
e−rT (ST − K)+

)
= BS (0, S0, σ2) +

1
2

∫ T

0

e−rs ∂2BS
∂x2

(s, Ss, σ2) S2
s

(
σ2

s − σ2
2

)
ds

≤ BS (0, S0, σ2) .

�
To hedge himself, the agent calculates the hedging “delta” using the Black–

Scholes methodology, that is using the function ∂BS
∂x (t, x, σ2) evaluated at

the observed levels, and constructs a portfolio containing ∆ = ∂BS
∂x (t, St, σ2)

shares. The value of this self-financing portfolio is Π∆(t) and its price dynam-
ics are given by

dΠ∆(t) = rΠ∆(t)dt + ∆ [dSt − rStdt] .

The value of this portfolio is always greater than the estimated value of
the contingent claim ζ. Indeed, if we write e(t) = Π∆(t)−BS (t, St, σ2), Itô’s
formula shows that

e(t) =
1
2
ert

∫ t

0

e−ru
[
σ2

2 − σ2
u

]
S2

u

∂BS
∂x2

(u, Su, σ2) du .

So the agent is superhedged. A counter-example in the case of a stochastic σ2

is provided by El Karoui and Jeanblanc-Picqué [138].
This study is carried out in a more general setting in Avellaneda, Levy

and Parás [17] and in Gozzi and Vargioglu [176].

8.3 Wealth Optimization

One approach to the problem of portfolio optimization in the case of incom-
plete markets, is to complete the market by adding fictitious assets that the
agent is not allowed to use in his portfolio.
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Let ρ(t) be a (n − d) × n matrix whose row vectors are orthogonal and
such that σ(t)ρT (t) = 0. We complete the market with the assets

dSi(t) = Si(t)

⎡⎣βi(t)dt +
n∑

j=1

ρij(t)dWj(t)

⎤⎦ , i = d + 1, . . . , n .

The matrix ρ is taken to be fixed, and the vector β is adjusted in such
a way that the optimal trading strategy in the completed market is given
by a portfolio that does invest in any of the fictitious assets. The idea is an
intuitive one: if β is large, the investor would prefer to have a long position
in the fictitious assets in his portfolio, and if β is small he would prefer to
have a short position. It must be possible to adjust the β coefficient in such
a way that the agent does not have a position in the fictitious assets, in his
portfolio. Karatzas [230] provides further details, as well as a rigorous proof.

Another approach is to complete the market and work with constrained
portfolios. Duality techniques are then very effective, and can also be applied
to other types of constraints. The reader can consult Cvitanić’s lecture notes,
published in [32], and Karatzas [230].

Notes

Pricing in an incomplete market remains a challenge for practitioners. One
can refer to Bingham and Kiesel [33], (1998), and Björk [34], (1998), for a
general presentation, to Miyahara [280], (1997), and Frittelli [166], (2000), for
the minimal entropy measure, and to Cvitanić [32, 74], (2001), for a utility
approach.
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Exotic Options

The valuation and hedging of the ever increasing number of exotic options, is
a topic that interests many practitioners seeking to answer their customers’
need to hedge risk (in particular in the foreign exchange markets). This last
chapter is devoted to the mathematical problems related to these products.

Exotic options, or “path-dependent” options, are options whose payoff de-
pends on the behaviour of the price of the underlying between time 0 and the
maturity (here assumed to be fixed), rather than merely on the final price of
the underlying. We only deal with the case of European options here. Ameri-
can options (with which the buyer can exercise his right at any time between
0 and the maturity) are covered in Lamberton–Lapeyre [250], as well as in
Elliott and Kopp [149]. The paper Myneni [287] is also good reference, though
it is less accessible. One can also consult Jarrow and Rudd [213], Bensoussan
[28], Karatzas [229]. Path-dependent options of the American type are traded,
though their pricing formulae are not known explicitly.

Path-dependent options are traded mainly in the foreign exchange mar-
kets. Numerous authors have studied them in discrete time. One can look to
Willmott et al. [371], Chesney et al. [57], Musiela–Rutkowski [285], Zhang
[379], Pliska [301] and to the references therein. These works also tackle the
continuous time case, to which we devote the final part of this chapter.

As in the Black–Scholes framework, let us assume that the price of the
underlying follows, under the risk-neutral measure Q, the dynamics

dSt = St(rdt + σdBt)

with B a Brownian motion. We suppose that σ > 0. This is not a very
restrictive assumption: if it did not hold, we would only need to change B
into −B, which is also a Brownian motion.

Our first section is devoted to the probability distributions associated with
the Brownian motion and its supremum. The results will serve later on in the
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chapter. In the following section, we study the valuation problem for barrier
options, and subsequent sections touch upon other exotic options.

For all that follows, we take a space (Ω,F ,Ft, P ) and a Brownian motion
(Bt, t ≥ 0) starting at zero and constructed on this space.

We write N (x) =
1√
2π

∫ x

−∞
e−

u2
2 du for the standard cumulative normal

distribution.

9.1 The Hitting Time and Supremum for Brownian
Motion

We study the distribution of the pair of random variables (Bt,Mt), where M

is the process for the Brownian motion’s maximum, i.e., Mt
def= sups≤t Bs.

From this distribution, we deduce the distribution of the hitting time: the
first time that the Brownian motion B hits a given level.

9.1.1 Distribution of the Pair (Bt, Mt)

Theorem 9.1.1. Let B be a Brownian motion starting at 0 and let Mt =
sup (Bs, 0 ≤ s ≤ t). Then:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

for y ≥ 0, x ≤ y P (Bt ≤ x,Mt ≤ y) = N
(

x√
t

)
−N

(
x − 2y√

t

)
,

for y ≥ 0, x ≥ y P (Bt ≤ x,Mt ≤ y) = N
(

y√
t

)
−N

(−y√
t

)
,

for y ≤ 0 P (Bt ≤ x,Mt ≤ y) = 0 .
(9.1)

Proof. Calculating the law of the pair (Mt, Bt) depends on which area of the
plane we are in.

• The Reflection Principle
Let us show that

for 0 ≤ y, x ≤ y, P (Bt ≤ x , Mt ≥ y) = P (Bt ≥ 2y − x) . (9.2)

Let Ty = inf{t : Bt ≥ y} be the hitting time for level y. It is a stopping
time and, trivially, (Ty ≤ t) = (Mt ≥ y); also, for y ≥ 0, by continuity of
the Brownian motion’s paths, we have Ty = inf{t : Bt = y} and BTy

= y.
Hence

P (Bt ≤ x , Mt ≥ y) = P (Bt ≤ x , Ty ≤ t) = P (Bt −BTy
≤ x− y , Ty ≤ t) .
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We introduce conditioning with respect to Ty, and to simplify the notation
we write P (A|Ty) = EP (11A|Ty). Using the strong Markov property, the
previous expression becomes

E(11Ty≤t P (Bt − BTy
≤ x − y |Ty)) = E(11Ty≤t Φ(Ty))

with Φ(u) = P (B̃t−u ≤ x − y ) where B̃ = (B̃t = Bt+Ty
− BTy

, t ≥ 0) is
a Brownian motion that is independent of (Bt, t ≤ Ty), and has the same
distribution as −B̃. It follows that Φ(u) = P (B̃t−u ≥ y − x ). Going back
to our previous computations, we get

E(11Ty≤t Φ(Ty)) = E(11Ty≤tP (Bt − BTy
≥ y − x |Ty))

= P (Bt ≥ 2y − x , Ty ≤ t) ,

where this last term equals P (Bt ≥ 2y − x), since 2y − x ≥ x.

• In the area of the plane 0 ≤ y ≤ x, as Mt ≥ Bt, we have

P (Bt ≤ x,Mt ≤ y) = P (Bt ≤ y,Mt ≤ y) = P (Mt ≤ y) ,

where the last term can be evaluated using the previous calculations.

• Finally, for y ≤ 0, P (Bt ≤ x,Mt ≤ y) = 0 as Mt ≥ M0 = 0.

�

9.1.2 Distribution of Sup and of the Hitting Time

Proposition 9.1.2. The random variable Mt has the same distribution as
|Bt|.

Proof. Indeed, for x ≥ 0:

P (Mt ≥ x) = P (Mt ≥ x,Bt ≥ x) + P (Mt ≥ x,Bt ≤ x) .

Using (9.2) (with x = y ), we obtain:

P (Mt ≥ x) = P (Bt ≥ x) + P (Bt ≥ x)
= P (Bt ≥ x) + P (Bt ≤ −x) = P (|Bt| ≥ x) .

�
We obtain the distribution of Tx = inf{s : Bs ≥ x} by noting that

P (Tx ≤ t) = P (Mt ≥ x) .

Hence, the density of Tx is, for x > 0,
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P (Tx ∈ dy)
x√
2πt3

exp
(
−x2

2t

)
11t≥0 dt . (9.3)

It is worth noting that the process M does not have the same distribution
as the process |B|. The former is increasing, the latter is not. The reader can
refer to Revuz–Yor [307] for more information.

9.1.3 Distribution of Inf

The distribution of inf is obtained using the same principles as above, or by
noticing that

mt
def= inf

s≤t
Bs = − sup

s≤t
(−Bs) ,

where −B is a Brownian motion. Hence

for y ≤ 0, x ≥ y P (Bt ≥ x,mt ≥ y) = N
(−x√

t

)
−N

(
2y − x√

t

)
for y ≤ 0, x ≤ y P (Bt ≥ x,mt ≥ y) = N

(−y√
t

)
−N

(
y√
t

)
for y ≥ 0 P (Bt ≥ x,mt ≥ y) = 0 .

(9.4)
In particular, P (mt ≥ y) = N

(
−y√

t

)
−N

(
y√
t

)
.

9.1.4 Laplace Tranforms

We know that for any λ, the process
(

exp
(

λBt −
λ2

2
t

)
, t ≥ 0

)
is a mar-

tingale. Let y ≥ 0, λ ≥ 0 and let Ty be the hitting time for level y. The
martingale

exp
(

λBt∧Ty
− λ2

2
(t ∧ Ty)

)
is bounded by eλy, so is uniformly integrable, and the optimal stopping theo-
rem (see annex) yields

E

[
exp

(
λBTy

− λ2

2
Ty

)]
= 1

i.e.,

E

[
exp

(
−λ2

2
Ty

)]
= exp(−yλ) .
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9.1.5 Hitting Time for a Double Barrier

Let a < 0 < b, let Ta and Tb be the corresponding hitting times, and let
T ∗ = Ta ∧ Tb be the hitting time for the double barrier. We continue to use
the notation M for the Brownian motion’s maximum, and m for its minimum.

Proposition 9.1.3. The Laplace transform of T ∗ is

E

[
exp

(
−λ2

2
T ∗

)]
=

cosh[λ(a + b)/2]
cosh[λ(b − a)/2]

.

The joint distribution of (Mt,mt, Bt) is given by

P (a ≤ mt < Mt ≤ b,Bt ∈ E) =
∫

E

k(x) dx

where, for E ⊂ [a, b],

k(x) =
1√
2πt

∞∑
k=−∞

[
exp

(
− 1

2t
(x + 2k(b − a))2

)

− exp
(
− 1

2t
(x − 2b + 2k(b − a))2

)]
. (9.5)

Proof. The Laplace transform of T ∗ can be obtained by applying the optimal
stopping theorem. Indeed,

exp
[
−λ

(
a + b

2

)]
= E

[
exp

(
λ

(
BT∗ − a + b

2

)
− λ2 T ∗

2

)]
= exp

(
λ

b − a

2

)
E

[
exp

(
−λ2 T ∗

2

)
11T∗=Tb

]
+ exp

(
λ

a − b

2

)
E

[
exp

(
−λ2 T ∗

2

)
11T∗=Ta

]
and, using −B,

exp
[
−λ

(
a + b

2

)]
= E

[
exp

(
λ

(
−BT∗ − a + b

2

)
− λ2 T ∗

2

)]
= exp

(
λ
−3b − a

2

)
E

[
exp

(
−λ2 T ∗

2

)
11T∗=Tb

]
+ exp

(
λ
−b − 3a

2

)
E

[
exp

(
−λ2 T ∗

2

)
11T∗=Ta

]
.

By solving this system of two equations with two unknowns, we find:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E

[
exp

(
−λ2 T ∗

2

)
11T∗=Tb

]
=

sinh(−λa)
sinh(λ(b − a))

E

[
exp

(
−λ2 T ∗

2

)
11T∗=Ta

]
=

sinh(λb)
sinh(λ(b − a))

.
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The first assertion follows by noting that

E

[
exp

(
−λ2

2
T ∗

)]
= E

[
exp

(
−λ2 T ∗

2

)
11T∗=Tb

]
+ E

[
exp

(
−λ2 T ∗

2

)
11T∗=Ta

]
.

The density can then be obtained by inverting the Laplace transform. A direct
proof of (9.5) appears as an exercise in Revuz–Yor [307]. �

9.2 Drifted Brownian Motion

9.2.1 The Laplace Transform of a Hitting Time

Let X be the process defined by Xt = µt+Bt and let Tµ
a = inf{t ≥ 0;Xt = a}.

Then we have

E

(
exp

(
−λ2

2
Tµ

a

))
= exp

(
µa − |a|

√
µ2 + λ2

)
.

To see this is the case, we use Girsanov’s theorem. Let Q be the probability

measure defined by dQ|Ft
= exp

(
−µBt −

1
2
µ2t

)
dP |Ft

, which can also be

written

dP |Ft
= exp

(
µXt −

1
2
µ2t

)
dQ|Ft

.

Under Q, the process X is a Brownian motion, and Ta is a.s. finite. Further-
more,

EP

(
exp

(
−λ2

2
Ta

))
= EQ

[
exp

(
µXTa

− 1
2
µ2Ta

)
exp

(
−λ2

2
Ta

)]
,

where on the LHS as on the RHS, Ta = inf{t ≥ 0;Xt = a}. The RHS equals

EQ

[
exp

(
µa − 1

2
(µ2 + λ2)Ta

)]
= eµaEQ

[
exp

(
−1

2
(µ2 + λ2)Ta

)]
,

which we know how to calculate since under Q, Ta is the hitting time of level
a for a Brownian motion.

If X is defined by Xt = µt+σBt, it is enough to note that inf {t |Xt = a} =
inf

{
t | µ

σ
t + Bt =

a

σ

}
, in order to obtain the transform of the hitting time for

level 0.
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9.2.2 Distribution of the Pair (Maximum, Minimum)

Let Xt = µt + σBt with σ > 0, and let MX
t = sup (Xs, s ≤ t), and

mX
t = inf (Xs, s ≤ t). Girsanov’s theorem enables us to transform σ−1X

into a Brownian motion. Let Q be defined by dP = L dQ, where Lt =

exp
[
−µ

σ
Bt −

1
2

µ2

σ2
t

]
. Then dP = L−1dQ with L−1

t = exp
[
µ

σ
Bt +

1
2

µ2

σ2
t

]
=

exp
[
µ

σ
Wt −

1
2

µ2

σ2
t

]
where Wt = Bt +

µ

σ
t is a Q-Brownian motion, and

P (Xt ≤ x,MX
t ≤ y) = EQ

⎡⎣exp
[
µ

σ
Wt −

µ2

2σ2
t

]
11{

Wt ≤
x

σ
,MW

t ≤ y

σ

}⎤⎦ .

Straightforward but lengthy calculations lead to

- for y ≥ 0, y ≥ x,

P (Xt ≤ x,MX
t ≥ y) = e

2µy

σ2 P (Xt ≥ 2y − x + 2µt)

P (Xt ≤ x,MX
t ≤ y) = N

(
x − µt

σ
√

t

)
− e

2µy

σ2 N
(

x − 2y − µt

σ
√

t

)
- and for y ≤ 0, y ≤ x,

P (Xt ≥ x,mX
t ≥ y) = N

(−x + µt

σ
√

t

)
− e

2µy

σ2 N
(−x + 2y + µt

σ
√

t

)
.

In particular, we can deduce from above the distribution of the maximum
as well as that of the minimum:

P (MX
t ≤ y) = N

(
y − µt

σ
√

t

)
− e

2µy

σ2 N
(−y − µt

σ
√

t

)
, y ≥ 0 ,

P (mX
t ≥ y) = N

(−y + µt

σ
√

t

)
− e

2µy

σ2 N
(

y + µt

σ
√

t

)
, y ≤ 0 .

(9.6)

Let y > 0 and let Ty = inf{t ≥ 0 |Xt ≥ y}. The density of Ty can be
computed by using the equality {Ty ≥ t} = {MX

t ≤ y}. In particular, by

letting t → ∞ in the expression P (Ty ≥ t) = N
(

y−µt

σ
√

t

)
− e

2µy

σ2 N
(

−y−µt

σ
√

t

)
,

we find that if µ ≤ 0 and y > 0, then P (Ty = ∞) = 1 − e
2µy

σ2 , which is zero
only when µ = 0.

9.2.3 Evaluation of E(e−rTy11Ty<a)

Let Xt = µt + Bt. We write

E
(
e−µTy11Ty<a

)
= e−y

√
2µE

(
eBTy

√
2µ−µTy11Ty<a

)
.
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Applying Girsanov’s theorem with Q̃ defined by dQ̃ = Lt dP for Lt =
eBt

√
2µ−µt, yields EP

(
eBTy

√
2µ−µTy11Ty<a

)
= EQ̃

(
11Ty<a

)
, with B̃t = Bt −

√
2µt, a Brownian motion under Q̃. The stopping time Ty can be written as

Ty = inf{t : Bt = y} = inf{t , B̃t +
√

2µt = y} .

Calculating EQ(11Ty<a) depends on the density of the hitting time for a Brow-
nian motion with drift. Making use of formula (9.6), we obtain

E(e−µTy11Ty<a) = e−y
√

2µN
(
− y√

a
+
√

2aµ

)
+ ey

√
2µN

(
− y√

a
−
√

2aµ

)
. (9.7)

9.3 Barrier Options

For this kind of option, a level (the barrier) L is fixed in the same way that
the strike price of an option is fixed. Both calls (options to buy) and puts
(options to sell) can be associated with a barrier. We give explicit workings
only for call options with strike K; in the case of a put the calculations are
very similar.

9.3.1 Down-and-Out Options

The buyer of the option looses his right of exercise if the price of the underlying
(St, t ≥ 0) falls beneath the level L before maturity (we assume that L < S0).
Otherwise, the option holder receives a payoff φ(ST ), with φ(x) = (x − K)+

for a call option (respectively (K −x)+ for a put), where K is the fixed strike
price.

The price of a down-and-out call is:

DOC(S0,K, L) def= EQ(e−rT (ST − K)+11TL>T )

where TL is the stopping time at which the underlying price crosses the barrier
for the first time:

TL
def= inf{t |St ≤ L} = inf{t |St = L} ,

with the last equality being a consequence of the assumption L < S0 and of
path continuity.

We can also consider the case where the option holder receives a compen-
sation F if the barrier is crossed. This compensation is agreed upon when
the contract is signed, and is received either when the barrier is crossed or
at maturity. The compensation is bounded above by F EQ(e−rTL11TL≤T ) for
the first mode of payment, and by F EQ(e−rT 11TL≤T ) for the second. These
two expressions only involve the distribution of TL, which is known; we will
provide explicit calculations later.
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9.3.2 Down-and-In Options

The buyer of a down-and-in call receives the payoff only in the case where the
level L is reached before time T . The price of such an option is:

DIC(S0,K, L) def= EQ

(
e−rT (ST − K)+11TL<T

)
.

It is then obvious that:

DOC(S,K,L) + DIC(S,K,L) = C(S,K)

where C(S,K) is the price of a call with strike K on an underlying that has
initial value S. The relation above enables us to limit ourselves to the study
of down-and-in options.

9.3.3 Up-and-Out and Up-and-In Options

An up-and-out option becomes worthless if the level H > S0 is reached before
time T , whereas the up-and-in option is activated when the underlying crosses
the barrier on its way up.

The price of an up-and-out option is

EQ(e−rT (ST − K)+11T<TH
) ,

and that of an up-and-in option is

EQ(e−rT (ST − K)+11T>TH
) ,

where
TH = inf{t |St ≥ H} = inf{t |St = H} .

9.3.4 Intermediate Calculations

• Evaluating the Integrals

We start by evaluating the integrals that will appear in subsequent cal-
culations. Let a < b, m and c be real numbers. Elementary calculations
using a change of variable yield

I(a, b;m, c) def=
1√
2πT

∫ b

a

exp
(

mx − 1
2T

(x − c)2
)

dx

= (N (β) −N (α)) exp
(

m2 T

2
+ mc

)
with
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α =
a − (c + mT )√

T
, β =

b − (c + mT )√
T

.

Another integral that we will need later is, for a > 0, x > 0 and y > 0,

J(a, x, y) def=
∫ a

0

e−xt 1√
t3

e−y/t dt ,

which can be written as
1√
y
J̃

(
a

y
, xy

)
with

J̃(a, x) def=
∫ a

0

e−xt 1√
t3

e−1/t dt .

We can evaluate the integral above by introducing the change of variable

v =
√

2
t
, and then v −

√
x

v
= u, so that v =

1
2

(
u +

√
u2 + 4

√
x

)
, and

finally t =
√

u2 + 4
√

x. A more elegant approach involves using proba-
bilistic representations of the integrals above. Firstly, using the density of
Tz (see formula (9.3)), we find that

E
(
e−rTz11Tz≤a

)
=

z√
2π

J

(
a, r,

z2

2

)
=

1√
π

J̃

(
2a

z2
,
rz2

2

)
.

It follows from (9.7) that

J̃(a, x) =
√

π
[
e−2

√
x N (α) + e2

√
x N (β)

]
with

α = −
√

2
a

+
√

xa ; β = −
√

2
a
−
√

xa .

This brings us back to the Laplace transform of the hitting time for level
z > 0 :

E
(
e−rTz

)
=

1√
2π

z J

(
∞, r,

z2

2

)
= e−z

√
2r .

The integral

K(x, z) def=
∫ ∞

0

e−xt

√
2πt

e−z2/2tdt

is obtained by differentiating J

(
∞, x,

z2

2

)
with respect to x:

K(x, z) =
1√
2x

exp
(
−|z|

√
2x
)

.



9.3 Barrier Options 259

• Change of Measure

We express the various terms we need to evaluate to price barrier options
as functions of the Brownian motion B, and then of the process (Wt =

Bt + mt, t ≤ T ) where m =
1
σ

(
r − σ2

2

)
.

The price of the underlying asset can be written as

St = S0 exp
(

σBt + rt − 1
2
σ2t

)
= S0 exp(σWt) ,

and the hitting time TL can be expressed as a function of S or as a function
of W by

TL = inf {t : St ≤ L} = inf
{

t : σWt ≤ ln
L

S0

}
= inf{t : Wt ≤ �} def= T


where we have set � =
1
σ

ln
L

S0
. Similarly, setting h =

1
σ

ln
H

S0
, we have

TH = inf
{

t : σWt ≥ ln
H

S0

}
= inf{t : Wt ≥ h} def= Th .

An expression of the form EQ(Φ(ST )11TL<T ) can be evaluated either by
using Girsanov’s theorem and transforming the process W into a Brown-
ian motion, or by using the density distribution of the pair (W,M) when
W is a Brownian with drift, and M is its maximum. Here we elaborate on
the method that uses Girsanov’s Theorem.

Let R be the probability measure defined by

dR

dQ
= exp

(
−mBT − 1

2
m2T

)
,

i.e., by
dQ

dR
= exp

(
mWT − 1

2
m2T

)
.

It follows that

EQ (Φ(ST )11TL<T ) = ER

(
Φ(S0eσWT ) exp

(
mWT − m2T

2

)
11T�<T

)
where W is a R-Brownian motion. Therefore, we need to evaluate R(WT ∈
dx, T
 < T ), which can be done using the reflection principle.
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• The Resolvent Operator

Let γ be a given function, and let B be a Brownian motion starting at x.
To evaluate the Laplace transform of the function t → γ(Bt), i.e.,

Γ (λ) = E

(∫ ∞

0

exp
[
−λ2 t

2

]
γ(Bt) dt

)
,

let us use our preliminary calculations and the density of Bt given by
1√
2πt

exp− (y − x)2

2t
dy :

Γ (λ) =
∫ ∞

−∞
dy γ(y)

∫ ∞

0

dt
1√
2πt

exp
(
− (y − x)2

2t

)
exp

(
−λ2t

2

)
=

1
λ

∫ ∞

−∞
dy γ(y) exp(−λ|x − y|) .

The last equality uses the function K from the previous section. The func-
tion Γ is known in the literature as the resolvent operator of Brownian
motion.

9.3.5 The Value of the Compensation

• If the compensation is paid when the barrier is touched, we need to cal-
culate EQ(11TL<T e−rTL) = Φ(L, T ). To do this, we express it under the
probability measure R:

Φ(L, T ) = ER

[
exp

(
mWT�

− m2

2
T


)
e−rT� 11T�<T

]
= em
ER

[
11T�<T exp−2r + m2

2
T


]
=

em


√
π

J̃

(
2T

�2
,
2r + m2

2
�2

2

)
.

Using the earlier integral calculations, and noting that 2r+m2 =
( r

σ
+ σ2

)2

,
we obtain:

Φ(L, T ) = e−
σN (γ1) + e2
r/σN (γ2)

with

γ1 =
1

σ
√

T

(
rT − �σ +

σ2T

2

)
, γ2 = − 1

σ
√

T

(
rT + �σ +

σ2T

2

)
.

• If the compensation is paid at maturity, it is enough to calculate EQ(11TL<T ),
which has already been done above. Specifically:
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EQ(11TL<T ) =
em


√
π

J̃

(
2T

�2
,
m2�2

4

)
= N (γ3) + e2m
N (γ4)

with

γ3 =
1

σ
√

T

(
rT − �σ − σ2T

2

)
, γ4 = − 1

σ
√

T

(
rT + �σ +

σ2T

2

)
.

9.3.6 Valuation of a DIC Option

Since S0 > L, the value of ln
L

S0
is negative. Setting S0 = x, the price of the

option DIC(S0, L,K) can be written

erT DIC(x, L,K) = EQ((ST − K)+11TL<T )

= ER

(
(xeσWT − K)+ exp

(
mWT − m2T

2

)
11T�<T

)
.

The payoff can be decomposed into:

(xeσWT − K)+ = (xeσWT − K)11{xeσWT − K ≥ 0}
= xeσWT 11WT ≥k − K11WT ≥k

where k =
1
σ

ln
K

x
. Substituting this expression into that for the DIC, we

obtain

erT DIC(L,K) = exp
(
−m2T

2

) [
x ER

(
e(σ+m)WT 11WT ≥k11{T�<T}

)
−KER

(
emWT 11{WT ≥k}11T�<T

) ]
= exp

(
−m2T

2

)
[xΨ(σ + m) − KΨ(m)]

where Ψ(y) = ER

(
eyWT 11WT ≥k11T�<T

)
. To evaluate the last expression

above, we use the reflection principle for Brownian motion and the elementary
fact that

{T
 < T} = {mT
def= inf

s≤T
Ws ≤ �} .

• Hence, in the case k ≤ � (that is K ≤ L) we deduce that
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Ψ(y) =
∫ ∞

−∞
eyu 11u≥kR(WT ∈ du, T
 < T )

=
1√
2πT

[∫ 


k

exp(yx − 1
2T

x2) dx

+
∫ ∞




exp(yx − 1
2T

(2� − x)2) dx

]
= exp

[
Ty2

2

]
[N (y1) −N (y2)] + exp

[
Ty2

2
+ 2y�

]
N (y3) ,

where the last equality makes use of some basic calculations, and where
we have set

y1 =
1√
T

[� − yT ] , y2 =
1√
T

[k − yT ] , y3 =
1√
T

[y + �] .

Once the computations are done, we find that for K ≤ L

DIC(L,K) = S0

⎡⎢⎣N (z1) −N (z2) +
(

L

S0

) 2r

σ2
+ 1

N (z3)

⎤⎥⎦

− Ke−rT

⎡⎢⎣N (z4) −N (z5) +
(

L

S0

) 2r

σ2
− 1

N (z6)

⎤⎥⎦
where

z1 =
1

σ
√

T

[
(r +

1
2
σ2)T + ln(x/K)

]
z4 = z1 − σ

√
T

z2 =
1

σ
√

T

[
(r +

1
2
σ2)T + ln(x/L)

]
z5 = z2 − σ

√
T

z3 =
1

σ
√

T

[
(r +

1
2
σ2)T − ln(x/L)

]
z6 = z3 − σ

√
T .

• In the case K ≥ L, we find that

DIC(L,K) = S0

(
L

S0

) 2r

σ2
+ 1

N (z7) − Ke−rT

(
L

S0

) 2r

σ2
− 1

N (z8)

where

z7 =
1

σ
√

T

[
ln(L2/S0K) + (r +

1
2
σ2)T

]
z8 = z7 − σ

√
T .
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The formula can also be written as

DIC(S0, L,K) =
(

L

S0

)1 +
2r

σ2
[
S0 N (z7) −

KS2
0

L2
N (z8)

]
,

or, if we use the notation C(x,K) for the price of a European call with
strike K on an underlying with initial value x, as

DIC(S0, L,K) =
(

L

S0

)1 +
2r

σ2
C

(
S0,

KS2
0

L2

)
.

This expression enables us to give a strategy for hedging barrier options
with European calls.

9.3.7 Up-and-In Options

Their value is given by UIC(S0,K, L) = e−rT EQ[(ST − K)+11TH<T ] with
TH = inf{t : St ≥ H}, in the case S0 < H.

• Before we go into the calculations, we note that if K ≥ H, then it follows
from the equality {ST > K} ∩ {TH < T} = {ST > K} that the option price
is the Black–Scholes price.

• In the case K ≤ H, we proceed as we did previously, and establish that

E
[
(ST − K)+11TH<T

]
= exp

(
−m2T

2

)
[S0Φ(m + σ) − KΦ(m)]

where, setting h =
1
σ

ln
H

x
,

Φ(y) =
∫

eyu11u≥kR (WT ∈ du, Th < T )

=
1√
2πT

[∫ h

k

exp
(

yx − 1
2T

(2h − x)2
)

dx

+
∫ ∞

h

exp
(

yx − 1
2T

x2

)
dx

]
= exp

[
Ty2

2

]
[N (a1) −N (a2)] + exp

[
Ty2

2
+ 2yh

]
N (a3) ,

and where the numbers ai depend on the various parameters involved. Once
we are done, we find that for K ≤ H,
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UIC(S0, L,K) = S0

⎡⎢⎣(H

S0

) 2r

σ2
+ 1

(N (b1) −N (b2)) + N (b3)

⎤⎥⎦

− Ke−rT

⎡⎢⎣(H

S0

) 2r

σ2
− 1

(N (b4) −N (b5)) + N (b6)

⎤⎥⎦
with

b1 =
1

σ
√

T

[
(r + σ2/2)T − ln(Kx/H2)

]
b4 = b1 − σ

√
T

b2 =
1

σ
√

T

[
(r + σ2/2)T + ln(H/x)

]
b5 = b2 − σ

√
T

b3 =
1

σ
√

T

[
(r + σ2/2)T − ln(H/x)

]
b6 = b3 − σ

√
T .

The case in which coefficients depend on time in a deterministic way is
much more complicated, and no explicit formula is known. The problem in-
volves studying the distribution of (BT , T ∗) with T ∗ = inf{t, Bt ≥ g(t)}
where g is a deterministic function. The calculation is straightforward if g is
an affine function, but few other cases yield explicit solutions. Roberts and
Shortland [311] transform the problem by conditioning on the final value of
the Brownian motion, and writing

EQ (Φ(ST )11TL≤T ) = EQ (EQ (Φ(ST )11TL≤T |BT )) .

This comes down to considering a Brownian bridge, and yields numerical
procedures for obtaining an approximation.

9.3.8 P. Carr ’s Symmetry

The formula obtained in the case of a DIC option when K > L is particularly
simple, and can in fact be obtained by another approach, which involves less
mathematics, and uses the symmetry formula of Peter Carr [47]. The formula
(see the following proposition) can be explained in a very intuitive way in
the case of the foreign exchange markets, when the exchange rate has the
dynamics

dXt = Xt[(rd − rf )dt + σdWt]

where rd is the rate in the domestic country, and rf is the rate in the foreign
country.

Let us consider a call on the foreign currency, with maturity T and an
exercise price of K euro. The option guarantees the purchase of $1, at a max-
imum rate of K. Its price in domestic currency terms at time t is written
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Calld(t,Xt,K, T, rd, rf ).

For the foreign investor, the same option guarantees the sale of K euro
at time T at a maximum price of $1. Thus we have K foreign puts on
the euro-dollar rate Yt = X−1

t , with strike K−1, and a price at time t of
KPutf (t,X−1

t ,K−1, T, rf , rd).

The absence of arbitrage implies that there is a symmetry between these
two markets (domestic and foreign):

Calld(t,Xt,K, T, rd, rf ) = KXtPutf (t,X−1
t ,K−1, T, rf , rd) (9.8)

In the special case where rd = rf , the homogeneity of the price of a put

aPut(t, x,K, T ) = Put(t, ax, aK, T ) ,

leads to the following symmetry formula. (We have used the notation
Put(t, x, y, T ) for the price of a put with strike y: the strike is given as the
third variable, and the price of the underlying as the second.)

Proposition 9.3.1. If the underlying asset has the dynamics dSt = StσdWt

under the risk-neutral measure, then we have the relationship

Call(t, St,K, T ) = KStPut(t, S−1
t ,K−1, T ) = Put(t,K, St, T ) ,

which is called the symmetry formula.

Proof. We give a proof that uses Girsanov’s Theorem. The price of a call is

Call(t, St,K, T ) = EQ((ST − K)+|Ft) .

By taking out ST K as a factor within the expectation, we get

Call(t, St,K, T ) = KEQ(ST (K−1 − S−1
T )+|Ft) .

Under Q, we can write St = xMt where M is the martingale dMt =
MtσdWt, M0 = 1; moreover M−1 has the dynamics dM−1

t = −σM−1
t (dBt −

σdt). Next, EQ(ST (K−1 − S−1
T )+|Ft) can be evaluated by changing measure

(and numéraire), and introducing the density

dR

dQ

∣∣∣∣
Ft

= Mt = exp
(

σBt −
σ2

2
t

)
.

Under the new measure R, the process B̃t = Bt − σt is a Brownian motion,
and the dynamics of Z = M−1 are given by dZt = −σZtdB̃t = σZtdW t,
where W is an R-Brownian motion. Using Bayes’ formula, MtER(A|Ft) =
EQ(AMT |Ft), we obtain
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Call(t, St,K, T ) = KxMt ER

((
K−1 − ZT

x

)+

|Ft

)
.

The term ER

(
(K−1 − ZT

x
)+|Ft

)
corresponds to the price of a put with strike

1/K, on an asset Z following the process dZt = −σZtdW t and with initial
value 1/x. The last equality in the statement of the proposition follows from
the homogeneity of the put. �

In the case where K > L, and for an underlying that is a martingale under
the risk-neutral measure,

E((ST − K)+11TL<T ) = E(11TL<T E((ST − K)+)|FTL
) .

The term E((ST −K)+|FTL
) corresponds to the value of a European call with

strike K, initial value of the underlying L, and maturity T − TL. Using the
symmetry formula, it is equal to Put(TL,K, L, T ). From the homogeneity of
the put,

E
[
11TL<T E((ST − K)+| FTL

)
]

= E

[
11TL<T

K

L
Put

(
TL, L,

L2

K
,T

)]
.

At maturity, the put with strike price L2/K is worth
(

L2

K
− ST

)+

, and only

has strictly positive value if the underlying is below
L2

K
, which in turn is

smaller than L, as K > L. If the payoff is non-zero, it must be the case that
the barrier L has been reached between times 0 and T , and it follows that

K

L
E

[
11TL<T Put

(
TL, L,

L2

K
,T

)]
=

K

L
E

[(
L2

K
− ST

)+
]

=
K

L
Put

(
x,

L2

K

)
It remains to employ Carr’s symmetry formula once again to obtain

DIC(x,K,L) = Call
(

L,
Kx

L

)
.

By differentiating this expression with respect to K, we obtain

Q(ST > K,min St ≤ L) =
x

L
Q

(
ST >

Kx2

L2

)
.

Indeed, Call
(

L,
Kx

L

)
= E

((
ST

L

x
− Kx

L

)+
)

, and we know that

d
dK

EQ

(
(ST − K)+

)
= −KQ(ST > K) .
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The General Case

In the Black–Scholes case, we revert to the martingale case by using the
following result.

Proposition 9.3.2. Let X have the dynamics

dXt = Xt(rdt + σdBt)

and let γ−1 def
= 1 − 2r

σ2
. Then, Xt = X0(Mt)γ where M is such that dMt =

Mtγ
−1σdBt.

Proof. The proof is a direct application of Itô’s formula, from which we de-
duce:

Q(ST > K,min
t≤T

St ≤ L) = Q

(
MT >

(
K

S0

)1/γ

, min
t≤T

Mt ≤
(

L

S0

)1/γ
)

=
( x

L

)1/γ

Q

(
MT >

(
Kx

L2

)1/γ
)

=
( x

L

)1/γ

Q

(
ST >

Kx2

L2

)
.

By integrating the last equality with respect to K, we obtain:∫ ∞

K

dk Q

(
ST > k,min

t≤T
St ≤ L

)
= E

(
(ST − K)+11TH≤T

)
=
( x

L

)1/γ

EQ

((
ST

L2

x2
− K

)+
)

.

Hence we obtain the same formula as before. �

9.4 Double Barriers

The reader can also refer to the papers Kunimoto and Ikeda [248] and Geman
and Yor [173].

The payoff of a double barrier option is (ST−K)+ if the underlying remains
within the range [L,H] between time 0 and the maturity of the option. The
option’s price is therefore EQ(e−rT (ST − K)+11T∗>T ) where T ∗ def= TH ∧ TL.
Instead of evaluating EQ(e−rT (ST −K)+11T∗>T ), we calculate EQ(e−rT (ST −
K)+11T∗<T ), as the sum of these two terms is EQ(e−rT (ST − K)+), which
is known from the Black–Scholes formula. We can use the same change of
measure as before, and put this expression in the form
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e
−
(

r +
m2

2

)
T

ER

(
(xeσWT − K)+emWT 11T∗<T

)
.

Evaluating this expression requires explicit knowledge of the distribution of
the pair (WT , T ∗). The distribution is not a simple one, as it is given by the
double series in (9.5).

We can use a different approach (Geman–Yor). We can evaluate the
Laplace transform of Σ(t) = ER

[
emWt(xeσWt − K)+11T∗<t

]
. Thus, using the

Markov property, we evaluate

Φ(λ) =
∫ ∞

0

exp
[
−λ2t

2

]
Σ(t) dt = ER

(∫ ∞

T∗
exp

[
−λ2t

2

]
ϕ(Wt) dt

)
= ER

(
exp

[
−λ2T ∗

2

] ∫ ∞

0

exp
[
−λ2t

2

]
ϕ(W̃t + WT∗) dt

)
where ϕ(y) = emy(xeσy − K)+ and where W̃ is a Brownian motion that is
independent of W . We can simplify the expression for the expectation in the
last line, by separating it into two and using hitting times:

Φ(λ) = ER

[
exp

[
−λ2T ∗

2

]
11T∗=Th

]
Ψ(h) + ER

[
exp

[
−λ2T ∗

2

]
11T∗=T�

]
Ψ(�)

where

Ψ(y) = Ey

[∫ ∞

0

exp
[
−λ2t

2

]
ϕ(W̃t) dt

]
,

and where the notation Ey specifies that the Brownian motion W̃ starts from

y. The values of the expressions of the form ER

[
exp

[
−λ2T ∗

2

]
11T∗=Th

]
were

given previously, in the proof of Proposition 9.1.3.

• Let K ∈ [L,H]. Using the results on the Brownian motion’s resolvent
operator, and for values of λ such that m + σ − λ < 0, we get

Ψ(h) =
e−λh

λ

[
x(Ψh(σ + m + λ)

−Ψk(σ + m + λ)) − K[Ψh(m + λ) − Ψk(m + λ)]
]

+
eλh

λ
[KΨh(m − λ) − xΨh(σ + m − λ)]

Ψ(�) =
eλ


λ
[KΨk(m − λ) − xΨk(σ + m − λ)]

with Ψa(u) =
1
u

eua.
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• For K < L, taking z = � or z = k, we get

Ψ(z) =
e−λh

λ

[
x(Ψh(σ + m + λ) − Ψk(σ + m + λ))

−K[Ψh(m + λ) − Ψk(m + λ)]
]

+
eλh

λ
[KΨh(m − λ) − xΨh(σ + m − λ)] .

It then remains to invert the Laplace Transform.

9.5 Lookback Options

A standard lookback option pays out ST −mT
0 where mT

0 = inf{St, t ∈ [0, T ]}.
The amount ST −mT

0 is positive. The price of this option can be expressed as

Look = e−rT EQ(ST − mT
0 )

and its price at an interim time t is Lookt where

Lookte−rt = e−rT EQ

(
ST − mT

0 |Ft

)
.

We note that mT
0 = mt

0 ∧ mT
t , with mt

s = inf{Su, u ∈ [s, t]}, which allows us
to write

Lookte−rt = EQ(e−rT ST |Ft) − e−rT EQ(mt
0 ∧ mT

t |Ft) .

• The first term equals e−rtSt, as discounted prices are Q-martingales.

• To evaluate the second term, we decompose the expectation into two parts.

EQ

(
mt

0 ∧ mT
t |Ft

)
= EQ

(
mt

011mt
0<mT

t
|Ft

)
+ E

(
mT

t 11mT
t <mt

0
|Ft

)
.

– The first term above can be calculated using the fact that for u > t
the price process can be written

Su = St exp
(

r(u − t) + σ(Bu − Bt) −
σ2

2
(u − t)

)
= St exp

(
r(u − t) + σB̃u−t −

σ2

2
(u − t)

)
def= StZt−u

where B̃ is independent of Ft, and where Zu
def= exp

(
ru + σB̃u − σ2

2
u

)
.

Now EQ(mt
011mt

0<mT
t
|Ft) = mt

0Φ(mt
0, St) where Φ(m,x) = Q(m <

xmT−t) with mT−t = inf{Zu, u ∈ [0, T − t]}. An explicit expression
can be obtained for Φ either by using the results on the distribution of
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the minimum for a Brownian motion with drift, or by using the results
proved in the section on barrier options.

Φ(m,x) = N

⎛⎝ ln
x

m
+ (r − σ2/2)(T − t)

σ
√

T − t

⎞⎠
− exp

[
−(1 − 2r

σ2
) ln

m

x

]
N

⎛⎝ ln
m

x
+ (r − σ2/2)(T − t)

σ
√

T − t

⎞⎠ ,

which by setting

d =
ln

x

m
+ (r + σ2/2)(T − t)

σ
√

T − t
,

becomes

Φ(m,x) = N (d − σ
√

T − t) −
(

x

m

)1−
2r

σ2
N (−d +

2r

σ

√
T − t) .

– It remains to evaluate the second term

E(mT
t 11mT

t <mt
0
|Ft)

which can be written as Ψ(mt
0, St) where

Ψ(m,x) = EQ(xmT−t11xmT−t<m) .

Once again, the relevant computations were given in the section on
barrier options.

Proposition 9.5.1. The price of a lookback option is

Lookt = StN (dt) − e−r(T−t)mt
0 N

(
dt − σ

√
T − t

)

+ e−r(T−t) Stσ
2

2r

⎡⎢⎣( St

mt
0

)−
2r

σ2
N (−dt +

2r
√

T − t

σ
) − erTN (−dt)

⎤⎥⎦
where

dt =
1

σ
√

T − t
ln
(

St

mt
0

+ r(T − t) +
1
2
σ2(T − t)

)
.

Further lookback options are to be found in Conze and Viswanathan [65,
66].
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9.6 Other Options

We give examples of a few more options that are traded in the markets. We
do not go into the details of the calculations, which are often tedious. Nor do
we deal with the crucial issue of hedging, which is even more complex than
that of valuation.

9.6.1 Options Linked to the Hitting Time of a Barrier

Digital Options

• Asset-or-nothing options are linked to an “exercise price”K. The final pay-
off is equal to the price of the underlying if the underlying is “in the money”
at maturity, i.e., equal to ST 11ST ≥K , and to 0 otherwise. The “exercise price”
plays the role of a barrier. The value of such an option is e−rT EQ(ST 11ST ≥K),
and is easily obtained (it is the first term in the Black–Scholes price).

• Digital options (or binary options or cash-or-nothing options) are associated
with a barrier. The payoff of an up-and-out digital option is 1 if the underlying
does not go through the barrier before maturity, and 0 otherwise. The price
of this option is e−rT EQ(11TL>T ) = e−rT Q(TL > T ). The distribution of TL

under Q is the distribution of the hitting time for the barrier � =
1
σ

ln
L

S0
by

the Brownian motion with drift
r

σ
t + Bt. The relevant workings were carried

out when we evaluated the compensation from barrier options.

• Asset-or-nothing options can also have an up-and-in feature linked to a
barrier. Their price is then given by e−rT EQ(ST 11ST ≥K 11TL

> T ). These
options are used to build hedging portfolios for barrier options.

Forward-Start Barrier Options

For this type of option, the barrier is only put into place at time t < T where
T is the maturity. The payoff is (ST − K)+11T t

H≥T where T t
H = inf{u ≥ t :

Su ≥ H}. Meanwhile, early-ending options have a barrier that is only active
between the emission of the contract, and a time t.

Boost Options

A boost option is associated with two barriers: an upper barrier H and a
lower barrier L. The payoff of the option is proportional to the amount of
time spent between the barriers, before the first exit from the range.
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The price of a boost option can be calculated using the Laplace Transform
of T ∗ = TH,L ∧T , where TH,L is the first exit time from the range, and where

TH,L
def= TH ∧ TL. This Laplace transform is defined by Ψ(λ) = EQ(e−λT∗

).
Knowledge of the transform will give us the solution we are after, as differen-
tiating the transform with respect to λ leads to −Ψ ′(λ) = EQ(T ∗e−λT∗

).

To evaluate Ψ , we can split EQ(e−λT∗
) into two parts:

EQ(e−λT∗
) = EQ(e−λTH,L11TH,L<T ) + e−λT Q(TH,L > T ) .

We know the distribution of TH,L: it is given by a double series.

• If payments are made before maturity, the price of a boost option is, up
to a coefficient of proportionality, EQ(e−rT T ∗) = −e−rT Ψ ′(0).

• If payments are made “at hit”, the price is EQ(e−rT∗
T ∗) = −Ψ ′(r).

9.6.2 Options Linked to Occupation Times

Cumulative Options

These options become worthless if the underlying spends more than a certain
amount of time (specified in the contract) above a barrier. If L is the barrier
and D is the maximum duration of time allowed above the barrier, the payoff

is given by (ST − K)+11AT ≤D where AT =
∫ T

0

11St≥Ldt is a measure of the

amount of time that the underlying spends above the barrier L. The prob-
lem is then solved by evaluating the distribution of the pair (AT , ST ). This
requires calculations that we cannot reproduce here. The reader can refer to
Chesney et al. [55, 56] and Hugonnier [199].

Cumulative–Boost Options

Unilateral cumulative boost options have a payoff that is proportional to the

amount of time spent above the barrier, that is, proportional to
∫ T

0

11St≥L dt.

Their value is then

BC = EQ

(
e−rT

∫ T

0

11St≥Ldt

)
,

which can be easily evaluated under the form

BC = e−rT

∫ T

0

Q(St ≥ L)dt

where, as for the Black–Scholes formula, the term Q(St ≥ L) can be expressed
using the cumulative normal distribution.
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Step Options

These options were introduced by Linetzky [255] in 1997, and have the payoff

e−νAL
T (ST −K)+ where AL

T =
∫ T

0

11St≤Ldt and where ν is a positive coefficient

that is agreed upon, along with the other parameters K and L, at the signing of
the contract. This payoff is smaller that the payoff of a European option with
identical strike, with equality occurring when the underlying remains under
the barrier throughout the life of the option. Linetzky prices these options
by obtaining the distribution of the pair (ST , AL

T ). We can also transform the
expression for the price by using the Brownian motion W and the distribution

of the pair

(
WT ,

∫ T

0

11Wt≤
 dt

)
, which appears in Borodin–Salminen [39].

Quantile Options

These were introduced by Akahori [3] in 1995, and have the payoff (Aα
T −K)+

where

Aα
T = inf

{
x ∈ IR :

∫ T

0

11St≤xdt ≥ αT

}
.

Parisian Options

These options bear similarities to the cumulative options, but here time does
not cumulate. The option becomes worthless if the underlying remains over a
certain level L for an interval of time of length D. This option is much harder
to price. The first step is to write the payoff in a mathematical form. To do
this, we introduce the last instant before time t when the underlying reaches
level L, written gt = sup{s ≤ t|Ss = L}, and the stopping time H, at which
the option disappears, given by

H = inf{t|(t − gt) ≥ D,St ≤ L} .

In the expression above, t − gt ≥ D means that between times gt and t, the
underlying does not take the value L, and the inequality St ≤ L specifies that
at the instant t (i.e., between times gt and t) the value of the underlying is
below the level L. The value of the option is then

EQ

(
e−rT (ST − K)+11H≥T

)
.

To evaluate this expression, we need to know the distribution of the pair
(ST ,H), which is not easy to obtain. We calculate the Laplace transform of
the price with respect to time (Chesney et al. [55, 56] and Yor et al. [376]),
i.e., ∫ ∞

0

dt e−λt EQ(e−rt(St − K)+11H≥t)) .
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In fact, it is easier to calculate∫ ∞

0

dt e−λt EQ(e−rt(St − K)+11H≤t))

=
∫ ∞

0

dt e−λt EQ(e−rt(St − K)+)) −
∫ ∞

0

dt e−λt EQ(e−rt(St − K)+11H≥t)) .

The first term of the line above can be given explicitly, using the Black–Scholes
formula. This technique allows us to apply the Markov property at time H.

9.7 Other Products

9.7.1 Asian Options or Average Rate Options

These options have a fixed maturity T at which the final payoff is(
1
T

∫ T

0

Su du − K

)+

. Exact pricing formulae are known, but to present

them, we would need material that is beyond the scope of this book. In-
stead, we refer the reader Geman–Yor [171, 172], which make intensive use of
the Bessel process. The idea is to evaluate the Laplace transform with respect
to time of the price, rather than the price itself. That is:∫ ∞

0

e−λtEQ

[
1
t

∫ t

0

Su du − K

]+

dt .

It is possible to calculate this, using the result, owed to Lamperti1, that ex-
presses St as a function of a Bessel process evaluated at a time other than t
(the time-change formula).

Another approach, developed by Stanton [344], Rogers and Shi [313] and
Alziary, Decamps and Koehl [7], involves writing down the valuation PDE.
The value of an Asian option is given by CAs

t = X(t)A(t, Yt) where

Yt
def=

1
X(t)

(
1
T

∫ t

0

X(u) du − K

)
,

and where A solves

∂A
∂t

+
(

1
T

− ry

)
∂A
∂y

+
1
2

σ2y2 ∂2A
∂y2

= 0

with the boundary condition A(T, y) = y+.

The markets trade simpler products, which are based on the arithmetic

average

⎛⎝payoff
1
n

n∑
j=1

S jT
n

⎞⎠ or on the geometric average
(
payoff Πn

j=1S
1/n
jT
n

)
.

1 See Revuz–Yor [307].
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9.7.2 Products Depending on an Interim Date

For the following products, we consider the maturity T and a fixed date t1
such that t1 < T .

Compound Options

They are also called options on options. We distinguish the underlying option
and the dependent option. At time 0, the buyer purchases an option with
maturity t1 and strike K1, on an option with maturity T > t1 and strike K.
The dependent option can be priced by noting that its payoff at time t1 is,
for a call on a call, (C(t1,K, T ) − K1)+.

Chooser Options

The buyer of the option can decide at a fixed time t1 < T on the nature of
the product that he has bought: is it a call or a put? By using put–call parity,
it is easy to show that the payoff of this option, in the case where the put and
call have identical strikes and maturities, is given by

max(C(t1), P (t1)) = C(t1) + (Ke−r(T−t1) − St1)
+

and it is then easy to valuate the option.

Cliquet Options

Their payoff is max(ST − K,St1 − K, 0). It would be possible to have cliquet
options involving several interim dates.

Bermudan Options

These are mid-way between European and American options, hence their
name. The holder of such an option can exercise his right before maturity,
but only at certain predetermined dates.

9.7.3 Still More Products

In this section, we content ourselves with giving some product definitions. Our
list is by no means exhaustive, and new products will no doubt have appeared
by the time this book is on the shelves.
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Quanto Options

Quanto options involve two countries and the exchange rate between their
currencies. These options have been studied by Chérif [54]. Their valuation is
based on the principle that a foreign asset becomes a domestic asset once its
price is transcribed into the domestic currency.

Take for example a call on a foreign asset with a strike given in the foreign
currency. The payoff is (Sf

T − Kf )+ where we use f to denote prices in the
foreign country. This payoff is converted into the domestic currency, by using
the exchange rate X, and can then be valued using the domestic risk-neutral
measure, which is indexed by d. This leads us to evaluate Ed(XT (Sf

T −Kf )+).
Another approach involves valuating the product in the foreign currency,

using the foreign risk-neutral measure, and then transcribing its value into
the domestic currency using the rate of exchange: we get XtE

f ((Sf
T −Kf )+).

The two approaches are identical according to the assumption of no-arbitrage.
Thus the risk-neutral measures of the two countries are linked.

Russian Options

These are American-style options. If they are exercised at time τ their payoff
is Zτ

def= K ∨ maxt≤τ St. The point is to determine τ∗ such that it optimizes
E(Zτer(τ−t)).

Rainbow Options

They are based on two underlyings. Their payoff is max(S1(T ), S2(T ),K).

Notes

The reader can consult the following articles: Rubinstein and Reiner [319],
Bowie and Carr [42], Rich [308], Heynen and Kat[190], Carr and Chou [48].

Recent studies have been carried out when the underlying process is a
general Lévy process. In this case, the market is incomplete and the valua-
tion is done under a particular risk-neutral measure. The reader can refer to
Shiryaev [336] and to the collective book [295], which also give wide choice of
references.

We also mention here some recent books on exotic options and derivative
products. The two Deutsche Bank volumes [46, 295] present the practitioner’s
view point. Jarrow and Turnbull, [214], (1996), Kat [235], (2001), Haug [180],
(1998), and Hull [200], (2000), contain an extensive study of various options.
Lipton [257], (2001), on the other hand, is devoted to the financial engineer’s
approach. The mathematics of derivatives can be found in Hunt and Kennedy
[203], (2000), and Kallianpur and Karandikar [228], (1999).
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ANNEX 9

1 The Laplace Transformation

Let E be the set of real-valued functions f defined on IR such that:

(i) f(x) = 0, ∀x < 0,

(ii) there exists a > 0 such that
∫ a

0

|f(x)|dx < ∞,

(iii) ∃λ0 , |f(x)|e−λ0x → 0 when x → ∞.

If f ∈ E, the integral L(f)(λ) =
∫ ∞

0

f(x)e−λxdx exists for all λ > λ0. We

introduce the notation

σ(f) = inf{λ ∈ IR : lim
x→∞

f(x)e−λx = 0} .

Examples

• Let Y be the Heaviside function given by Y (t) = 0, t < 0 and Y (t) = 1, t ≥
0. Then L(Y )(λ) =

1
λ

.

• Let f ∈ E, a ∈ IR and let af be defined by af(t) = f(t)eat. Then
L(af)(λ) = L(f)(λ − a).

• Let f ∈ E, a > 0 and let fa be defined by fa(t) = f(t−a). Then L(fa)(λ) =
e−aλL(f)(λ).

• Let f(t) = Y (t)tneat. Then L(f)(λ) =
n!

(λ − a)n+1
.

• An important example in probability is the hitting time of a Brownian
motion.

Let a > 0 and f(t) =
a√
2πt3

exp−a2

2t
. Then L(f)(λ) = exp−(a

√
2λ).

Properties

• Let f ∈ E. Then limλ→∞ L(f)(λ) = 0.
• If fn(t) = (−1)ntnf(t), then L(fn)(λ) = [L(f)](n)(λ).
• If f is continuous to the right at 0 and if f ′ exists, is continuous on ]0,∞[

and belongs to E, then L(f ′)(λ) = λL(f)(λ) − f(0).

• If f, g ∈ E and h(x) =
∫ x

0

f(x − t)g(t)dt, then L(h) = L(f)L(g).

• The Laplace transformation is injective.
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2 The Optional Stopping Theorem

Let (Mt, t ≥ 0) be a martingale and let T be a finite stopping time. The
process (MT = (Mt∧T ; t ≥ 0) is a martingale that is called the martingale
stopped at T .
If M is a uniformly integrable martingale and S, T are two stopping times
with S ≤ T , then

MS = E(MT |FS) = E(M∞|FS), a.s.

In particular, if M is a bounded martingale, then

MS = E(MT |FS) = E(M∞|FS), a.s.

for any pair of stopping times S ≤ T .
This theorem often serves as a basic tool to determine quantities defined up

to a first hitting times and laws of hitting times. However, in many cases, the
u.i. hypothesis has to be checked carefully. For example, if W is a Brownian
motion and Ta the first hitting time of a, then E(WTa

) = a, while a blind
application of Doob’s theorem would lead to the equality between E(WTa

)
and W0 = 0. The process (Wt∧Ta

, t ≥ 0) is not uniformly integrable.



A

Brownian Motion

A.1 Historical Background

The botanist Robert Brown, in 1828, observed the irregular movements of par-
ticles of pollen suspended in water. In 1877, Delsaux explained the ceaseless
changes of direction in the particles’ paths by the collisions between the par-
ticles of pollen and the water molecules. A motion of this type was described
as being a “random motion”.

In 1900, Bachelier [18], with a view to studying price movements on the
Paris exchange, exhibited the “Markovian” nature of Brownian motion: the
position of a particle at time t + s depends on its position at time t, and does
not depend on its position before time t. It is worth emphasizing that Bachelier
was a forerunner in the field, and that the theory of Brownian motion was
developed for the financial markets before it was developed for physics.

In 1905, Einstein [134] determined the transition density function of Brow-
nian motion by means of the heat equation, and so linked Brownian motion
to partial differential equations of the parabolic type. That same year, Smolu-
chowski described Brownian motion as a limit of random walks.

The first rigorous mathematical study of Brownian motion was carried out
by N. Wiener [366] (1923), who also gave a proof of the existence of Brownian
motion. P. Lévy [254], (1948) worked on the finer properties of Brownian
paths, without any knowledge of concepts such as filtration or stopping time.
Since then, Brownian motion has continued to fascinate probabilists, for the
study of its paths just as much as for that of stochastic integration theory.
See for example the books Knight [238] and Yor [373, 374, 375].

A.2 Intuition

The easiest Brownian motion to imagine is probably Brownian motion in
the plane: at each instant in time, the particle randomly chooses a direction,
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and then makes a “step” in that direction. However, for an approach that is
both intuitive and rigorous, we must study the real Brownian motion: at each
instant that is a multiple of ∆t, the particle “randomly” chooses to move left
or right to a distance ∆x from its starting point. To model this “randomness”,
we turn to a sequence of independent identically distributed random variables

(Yi , i ≥ 1) such that P (Yi = ∆x) = P (Yi = −∆x) =
1
2
.

At time t, the particle will have made
[

t

∆t

]
moves (where [a] denotes the

integer part of a). The particle’s position will be Vt = Y1 + Y2 + · · · + Y[ t
∆t ].

All this takes place on a very small scale: we would like to let both ∆t and

∆x tend to zero in an appropriate way. Note that EV 2
t � (∆x)2

t

∆t
. In order

for this quantity to have a limit, we must impose that
(∆x)2

∆t
have a limit.

The increment ∆t will be “very small” and ∆x will be “small”, so that (∆x)2

will also be “very small”. The most straightforward choice is ∆x =
√

∆t and

∆t =
1
n

.

Let us now give a precise formulation of this approach.

A.3 Random Walk

On a probability space (Ω,F , P ), let

P (Xi = 1) = P (Xi = −1) =
1
2

, i ∈ N
∗ ,

be a family of independent identically distributed random variables (the Xi

are said to be independent Bernoulli variables). To this family, we associate
the sequence (Sn , n ≥ 0) defined by

S0 = 0

Sn =
n∑

i=1

Xi .
(A.1)

We have E(Sn) = 0, Var (Sn) = n. We say that the sequence Sn is a random
walk . We can interpret it as a game of tossing a coin: a player tosses a coin,
he wins one euro if it comes up tails, and loses one euro if it comes up heads.
He has no initial wealth (S0 = 0). His wealth at time n (after n games) is
Sn. We represent the series of the results obtained over N successive games
as a graph (see Fig. A.1).

We note that the sequence (Sm−Sn, m ≥ n) is independent of (S0, S1, . . . , Sn)
and that Sm −Sn has the same probability law as Sm−n (the binomial distri-
bution depends only on m − n).

We now proceed with a two-fold normalization. Let N be fixed.
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Fig. A.1. A random walk
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• We transform the time interval [0, N ] into the interval [0, 1],
• and we change the scale of values taken by Sn.

More precisely, we define a family of random variables indexed by real

numbers of the form
k

N
, k ∈ N:

U k
N

=
1√
N

Sk . (A.2)

We move from U k
N

to U k+1
N

in a “very small” interval of time equal to
1
N

,

by making a step of a “small length”
1√
N

(towards the left or towards the

right). We have

E
(
U k

N

)
= 0 and Var

(
U k

N

)
=

k

N
.

The independence and stationarity properties of the random walk still
hold, i.e.,

• if k ≥ k′, U k
N
− U k′

N
is independent of U p

N
for p ≤ k′;

• if k ≥ k′, U k
N
− U k′

N
has the same probability law as U k−k′

N

.



282 A Brownian Motion

We define a continuous-time process, that is, a family of random variables
(Ut , t ≥ 0) starting from U k

N
, by requiring the function t → Ut to be affine

between times
k

N
and

k + 1
N

. To do this, for N fixed, we note that for all

t ∈ R+, there exists a unique k(t) ∈ N such that
k(t)
N

≤ t <
k(t) + 1

N
, and we

set

UN
t = U k

N
+ N

(
t − k

N

) (
U k+1

N
− U k

N

)
where k = k(t).

(The process (Ut, t ≥ 0) does not have independent increments. However,

if t ≥ t′ and
k′ + 1

N
> t′ ≥ k′

N
, we have that

UN
t − UN

t′ is independent of UN
p
N

, p ≤ k′ ) .

Let us return for a brief moment to writing U as a function of the random
walk S.

For t = 1 we have UN
1 =

1√
N

SN . The central limit theorem then implies

that UN
1 converges in distribution to a standard normal random variable.

Exercise A.3.1.

1. Show that UN
t converges in distribution to a normal random variable with

mean 0 and variance t as N → ∞. Notice how 0 ≤ t − k(t)
N

≤ 1
N

, and
how ∣∣UN

k+1
N

− UN
k
N

∣∣ ≤ 1√
N

with k = k(t) .

2. Show that (UN
t1 , UN

t2 , . . . , UN
tn

) with t1 < t2 < · · · < tn converges in distri-
bution to a vector

(
Zt1 , Zt2 , . . . , Ztn

)
, such that Zti

−Zti−1 is independent
of
(
Zt1 , Zt2 , . . . , Ztn

)
and such that (Zti

−Zti−1) has a normal distribution
with mean 0 and variance (ti − ti−1) (use the central limit theorem for
vectors).

It can be shown that UN converges1 to a process B, which has continuous
paths (i.e., for almost all ω, the mapping t → Bt(ω) is continuous), and which
satisfies

(i) B0 = 0.

1 In the sense of convergence in distribution. This is stronger than the convergence
in distribution of finite families. See Karatzas and Shreve [233]. It is also possible
to construct a probability space on which all the random walks SN are defined, and
on which the normalized sums UN converge a.s. to a Brownian motion (Knight
[238]).
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(ii) Bt+s − Bt has the normal distribution N (0, s).
(iii) Bt+s − Bt is independent of Bti

− Bti+1 , for t0 < · · · < tn = t.

Remark A.3.2. We can show that Brownian motion is the only process satis-
fying (i), (iii) and

(ii)′ The distribution of Bt+s − Bt depends only on s.

We introduce the notation ∆B(t) = B(t + ∆t) − B(t) where B(t) = Bt

and ∆t > 0. The Brownian motion then satisfies:

• E[∆B(t)] = 0 Var[∆B(t)] = ∆t (using (ii))

• Et[∆B(t)] = 0 Et[(∆B(t))2] = ∆t (using (ii) and (iii))

where Et is the conditional expectation with respect to Ft = σ(Bs , s ≤ t).
The equality Et(∆B(t)) = 0 can be interpreted as follows: if the position of
the Brownian motion at time t is known, then the average move between times
t and t + ∆t is zero. This property is a result of the independence and of the
Gaussian nature of Brownian motion.

A.4 The Stochastic Integral

Brownian motion represents the path of a particle that incessantly changes
direction. The graph of such a path has many sharp peaks and troughs, and is
not differentiable at these points (the left and right derivatives are not equal).
We can prove the following result:

Theorem A.4.1. For almost all ω, the function t �→ Bt(ω) is a.s. nowhere
differentiable (i.e., the set of t for which Bt(ω) is differentiable has Lebesgue
measure zero).

The lack of differentiability of Brownian paths forbids the interpretation
of the symbol dBt as B′

t, and makes it impossible to define
∫

θ(t) dBt using
the usual methods (such as writing dBt = B′(t)dt).

As Brownian motion has unbounded variation, the Stieljes integration the-
ory cannot be applied. However, we can draw on the ideas of Riemann inte-
gration theory, as long as we carefully check each step along the way. The aim
is to define a new integral, in such a way that it is additive with respect to θ,
and satisfies ∫

[a,b]

dBt = B(b) − B(a) .
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Hence the idea of defining the integral for a step function2 θ (i.e., such
that θ(t) = θ(ti) , t ∈]ti, ti+1] , t0 = 0 < t1 · · · < tp = T ), as:∫ T

0

θ(s) dBs =
p−1∑
i=0

θ(ti)[B(ti+1) − B(ti)] .

When θ is a process, we impose conditions of measurability, which are
slightly stronger than assuming the process to be adapted to the Brownian
motion’s filtration. For technical reasons, we also impose integrability condi-
tions on the process θ, in order for

∑
θ(ti)(B(ti+1)−B(ti)) to converge when

the time-step tends to 0 (we approximate the process θ with a step process).

As seen in Chaps. 2 to 4, we are led to study Itô processes, i.e., processes
X of the form

Xt = x +
∫ t

0

µ(s) ds +
∫ t

0

σ(s) dBs . (A.3)

It is important to understand that the notation

dXt = µ(t) dt + σ(t) dBt , (A.4)

is only a symbolic notation, with which we can develop a stochastic cal-
culus. The exact meaning of (A.4) is given by writing X in the form of (A.3).

Still working symbolically, and interpreting dBt (and dXt) as small incre-
ments ∆Bt of B (or ∆Xt), we obtain

E(dXt) = µ(t)dt, Var(dXt) = σ2(t)dt

and similarly,

Et(dXt) = µ(t) dt

Vart (dXt) = Et[dXt − Et(dXt)]2 = σ2(t) dt .

(Exact calculations would lead to Et(∆Xt) =
∫ t+∆t

t
µ(s) ds and

Et

(
∆Xt −

∫ t+∆t

t
µ(s)ds

)2

=
∫ t+∆t

t
σ2(s)ds.)

It is worth emphasizing that whilst dt and dBt are both “small”, their sizes
are of different orders. Indeed, we have “E(dBt) = 0” and “E(dBt)2 = dt”.
This symbolic representation of (A.4) has an advantage: it suggests that if we
apply Taylor’s expansion to a function of Xt, and if we wish to keep the dt
terms, we will need to include terms from the expansion of “(dBt)2”, which
will have a role to play.
2 Taking functions that are left-continuous. This is a small technical difficulty that

we do not dwell upon here.
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A.5 Itô’s Formula

Using this very intuitive approach to Itô processes, we can persuade ourselves
(and persuade the reader) that Itô’s lemma is “quite natural”. Let

dXt = µ(t,Xt) dt + σ(t,Xt) dBt , (A.5)

be an Itô process, and let f be a function of class C2. We can apply Taylor’s
expansion to f :

f(Xt+∆t) − f(Xt) = (Xt+∆t − Xt) f ′(Xt) +
1
2
(Xt+∆t − Xt)2f

′′
(Xt)

+ o(Xt+∆t − Xt)2 .

Setting ∆Xt = Xt+∆t − Xt and identifying ∆Xt with dXt as we did before,
we obtain from the expression for ∆Xt given in (A.5)

∆f(Xt) = µ(t,Xt)f ′(Xt)∆t + σ(t,Xt)f ′(Xt)∆Bt

+
1
2
{µ2(t,Xt)(∆t)2 + σ2(t,Xt)(∆Bt)2

+ 2µ(t,Xt)σ(t,Xt)∆t ∆Bt}f ′′(Xt) + o(∆Xt)2 .

We saw above that the (∆Bt)2 term is “of the same order as” ∆t. There-
fore, we must keep it in this form. However the (∆t)2 and (∆t) (∆Bt) terms
are o(∆t). It is appropriate to keep only terms of order lesser than or equal
to that of ∆t. We obtain

∆f(Xt) = µ(t,Xt)f ′(Xt)∆t +
1
2

σ2(t,Xt)f ′′(Xt)∆t

+ σ(t,Xt)f ′(Xt)∆Bt .

Table A.1. Multiplication Table 1

dB 0 dt

dt 0 0

dt dB
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We remark that a rigorous proof of Itô’s lemma rests on the same idea.
Furthermore, we note that this intuitive approach to Itô’s formula makes

it easy to write down: we take Taylor’s expansion of order 2, and use the
“multiplication table” in Table A.1.

A similar technique can be used to move up the case of a multi-dimensional
Brownian motion. If B1 and B2 are two independent Brownian motions,
∆B1

t ∆B2
t has zero expectation, so we neglect these terms in the Taylor

expansion. This leads to the multiplication table in Table A.2.

Table A.2. Multiplication Table 2

dB2
t

dB2
t

0 0 dt

dt

0

0

0 0

0

dt

dt dB1
t

dB1
t

Example A.5.1.
dX1

t = µ1 dt + σ1 dB1
t

dX2
t = µ2 dt + σ2 dB2

t

d(X1
t X2

t ) = X1
t dX2

t + X2
t dX1

t + dX1
t dX2

t

= X1
t dX2

t + X2
t dX1

t + σ1σ2 dt .
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Numerical Methods

We present here several methods for approximating solutions to partial dif-
ferential equations (PDEs) of the parabolic type that are analogous to those
appearing in the Black–Scholes model. We have chosen to give our exposition
of these methods in a simple case, assuming the coefficients to be constant,
for example. In this case, we know an explicit solution to the Black–Scholes
equation, and numerical methods are of little interest. However, we hope to
show which are the difficulties that arise, and to make it easier for the reader
to access specialist works on the subject such as Cessenat et al. [50], Kloeden
and Platen [237], Dupuis and Kushner [131], and Rogers and Talay [314].

To simplify the exposition, we assume that the market includes one riskless
bond whose price is given by

dS0
t = S0

t r(t, St) dt ,

and a stock whose price satisfies

dSt = b(t, St) dt + σ(t, St) dBt ,

where B is a real-valued Brownian motion.

We showed in Chap. 3 (Sect. 3.4) that to calculate the value of the con-
tingent product g(ST ), we need to solve the following PDE:{

LC(t, x) − r(t, x)C(t, x) = 0
C(T, x) = g(x)

(B.1)

with

LC(t, x) = xr(t, x)
∂C

∂x
(t, x) +

1
2
σ2(t, x)

∂2C

∂x2
(t, x) +

∂C

∂t
(t, x) .

This solution can be written as
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C(t, x) = E

(
e−φ(T )g(W x,t

T )
)

(B.2)

with
φ(s) =

∫ s

t

r(u,W x,t
u ) du .

In this formulation, W x,t
u denotes the solution to the following stochastic dif-

ferential equation{
dW x,t

u = µ(u,W x,t
u )du + σ(u,W x,t

u )dBu ,

W x,t
t = x ,

where we have set µ(t, x) = x r(t, x).

We present two methods for approximating C, the first one using (B.1)
and techniques for approximating solutions to parabolic equations, and the
second using (B.2) and simulating the process W .

B.1 Finite Difference

We are going to use the fact that C is the unique solution to the partial
differential equation (B.1) satisfying conditions of regularity.

Let us give an example of regularity conditions in a particular case. Let
us assume that r(t, x) = r and σ(t, x) = xσ. In this case, we solve (B.1) on
[0, T ]×]0,∞[. We then have the following result (Karatzas et al. [233]): if ∆
is continuous on [0, T ]×]0,∞[, Hölder continuous in x uniformly with respect
to (t, x) on a compact set, if g is continuous, and if ∆ and g satisfy{ |g(x)| ≤ K(1 + xα + x−α)

max
0≤t≤T

|∆(t, x)| ≤ K(1 + xα + x−α) 0 < x < ∞ ,
(B.3)

then equation B.1 has a unique solution in the set of C1,2([0, T ]×]0,∞[) func-
tions satisfying (B.3).

Note that in this particular case, in order to solve

∂C

∂t
+ rx

∂C

∂x
+

1
2
σ2x2 ∂2C

∂x2
− rC = ∆

we first make a change of variable, setting H(t, x) = C(t, ex). We are thus led

to solve
∂H

∂t
+
(

r − 1
2
σ2

)
∂H

∂x
+

1
2
σ2 ∂2H

∂x2
− rH = ∆, which has constant

coefficients.
Let us suppose therefore that (B.1) has a unique solution
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The first difficulty is that the domain on which we are studying (B.1) is
unbounded. Therefore, let us first solve the problem on [0, T ] × [−K,+K].

To obtain the uniqueness of the solution, boundary conditions are needed.
Let us either impose Dirichlet conditions: we take a ∈ R and impose

C(t,K) = C(t,−K) = a t ∈ [0, T ] , (B.4)

or Neumann conditions:

∂C

∂x
(t,K) =

∂C

∂x
(t,−K) = b t ∈ [0, T ] , (B.4bis)

with b ∈ R.

In the case of constant coefficients, C(t, x) can be expressed as a function
of the normal distribution. In this case, it is easy to show that

C(t, x) −→
x→∞

∞ t ∈ [0, T ]

∂C

∂x
(t, x) −→

x→∞
1 t ∈ [0, T ] .

In this case, the Neumann conditions with b = 1 are best suited to the prob-
lem.

B.1.1 Method

We continue our exposition of the method in the cases of Dirichlet and Neu-
mann conditions.

We define a grid on the domain [0, T ] × [−K,+K], with steps of size

h =
2

N + 1
for the space variable x and of size ε for the time variable t.

We use the notation

tn = nε 0 ≤ n ≤ M with Mε = T ,

xi = −K + i
2K

N + 1
with 0 ≤ i ≤ N + 1 ;

(both the step sizes h and ε will tend to 0.)
The finite difference method is a means of obtaining an approximation to

the solution, by using the nodes (tn, xi) on the grid. Let C(t, x) be the solution
to (B.1). We are looking for a family M of vectors (Cn(i) , 1 ≤ i ≤ N)n<M

such that Cn(i) is close to C(tn, xi) for i = 1, . . . , N and n = 0, . . . , M − 1
(from our choice of the boundary condition in time, we know that C(tM , xi) =
g(xi) := CM (i)). If we are working with Dirichlet conditions, we impose

C(tn, x0) = C(tn, xN+1) = a n < M
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i.e.,
Cn(0) = Cn(N + 1) = a n < M .

If we are working with Neumann conditions with b = 0, we take

C(tn, xN+1) = C(tn, xN ) and C(tn, x0) = C(tn, x1)

i.e.,
Cn(N + 1) = Cn(N) and Cn(0) = Cn(1)

(if b �= 0 we take for example Cn(N + 1) = Cn(N) + bh).
Next, we approximate

∂C

∂t
(tn, xi) by

Cn+1(i) − Cn(i)
ε

(scheme 1)

or by
Cn(i) − Cn−1(i)

ε
(scheme 2)

∂C

∂x
(tn, xi) by

Cn(i + 1) − Cn(i − 1)
2h

∂2C

∂x2
(tn, xi) by

Cn(i + 1) − 2Cn(i) + Cn(i − 1)
h2

.

Exercise B.1.1. Why have we chosen these approximations?

B.1.2 The Implicit Scheme Case

By substituting the expressions above into the partial differential equation,
we obtain in the case of scheme 1 (called the implicit scheme)

Cn+1(i) − Cn(i)
ε

= − σ2(n, i)
2

Cn(i + 1) − 2Cn(i) + Cn(i − 1)
h2

− µ(n, i)
Cn(i + 1) − Cn(i − 1)

2h
+ r(n, i)Cn(i)

where σ(n, i) = σ(tn, xi), µ(n, i) = µ(tn, xi) and r(n, i) = r(tn, xi). Hence Cn

can be computed as a function of Cn+1 (remember that it is CM rather than
C0 that is known at the outset).

Let us carry through our analysis in the case where r, σ and µ depend
only on the space variable x. We can write the previous equation in the matrix
form:

1
ε
(Cn+1 − Cn) = ACn where Cn = Cn(i) ,

and where the matrix A is a tridiagonal matrix.

In the case of Dirichlet conditions, Cn(0) and Cn(N + 1) are known. It
remains to determine (Cn(i) , 1 ≤ i ≤ N), where Cn is a vector of R

N . In the
case a = 0, the matrix A has the form
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A =

⎡⎢⎢⎢⎢⎢⎣
a1 b1 0 0
c2 a2 b2 0
0 c3 a3 b3

0
. . . 0
cN aN

⎤⎥⎥⎥⎥⎥⎦
with

ai =
σ2(i)
h2

+ r(i)

bi = −σ2(i)
2h2

− µ(i)
2h

ci = −σ2(i)
2h2

+
µ(i)
2h

.

Exercise B.1.2. Modify A in order to study the case a �= 0.

We obtain Cn as a function of Cn+1 by solving the system
1
ε
(Cn+1−Cn) =

ACn.

In the case of Neumann conditions, we determine C(n, i) for 1 ≤ i ≤ N
from the equalities C(n, 0) = C(n, 1) and C(n,N + 1) = C(n,N). Matrix A
is written as

A =

⎡⎢⎢⎢⎢⎣
α1 b1 0
c2 a2 b2

c3 a3 b3

. . . . . . . . .
cN αN

⎤⎥⎥⎥⎥⎦
(only the first and last lines have changed) with

α1 =
σ2(1)
2h2

+
µ(1)
2h

+ r(1) αN =
σ2(N)
2h2

− µ(N)
2h

+ r(N) .

Scheme 2 seems more straightforward. We can obtain Cn−1 as a function of

Cn using
1
ε
(Cn−Cn−1) = ACn, so it is no longer necessary to solve a system.

This scheme is called explicit , but it is not as efficient as scheme 1, for reasons
of stability (see for example Ciarlet [60]). Let us return to scheme 1.

B.1.3 Solving the System

Solving the system
1
ε
(Cn+1 − Cn) = ACn calls on methods for solving the

equation
(I + εA)Cn = Cn+1

where I + εA is a tridiagonal matrix. We can then proceed using the pivot
method, which consists in writing I + εA as a product of two matrices L U ,
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where L is upper triangular and U is lower triangular, and in solving LU(X) =
B in two steps:

• solve LY = B

• solve UX = Y .

We can also solve (I+εA)X = Y by iterative methods. These are based on
the idea that I +εA can be written as C−D where C and D are two matrices,
with C being invertible (there are a number of possible decompositions).

We then need to solve CX = Y +DX. We construct a sequence of vectors
(Un, n ≥ 1) defined by recurrence for any fixed U0, with

Un+1 such that CUn+1 = Y + DUn .

We show that (if the spectral radius of C−1D is smaller than 1) the sequence
Un converges to X, the solution to (I + εA)X = Y .

B.1.4 Other Schemes

We can use other schemes than schemes 1 and 2. Let us assume that µ = r = 0
and that σ is constant, and describe some of the other possibilities. Scheme 1
is then written

Cn+1 − Cn

ε
=

σ2

2
AhCn

where Ah is the operator [AhC]i = − 1
h2

{C(i+1)−2C(i)+C(i−1)}, whose
matrix we already know.

We could use the Crank-Nicholson scheme:

Cn+1 − Cn

ε
=

σ2

2
Ah(θCn+1 + (1 − θ)Cn)

(In the case θ = 1, we are back to the implicit case of scheme 1, and the case
θ = 0 returns us to the explicit case).

The choice between the different schemes based on error estimation.

B.2 Extrapolation Methods

Let us assume that µ(t, x) = µx and σ(t, x) = σx. We have seen how a change
of variable can bring us back to an equation with constant coefficients. Assume
further that µ = 1/2, σ = 1 and r = 0 for our exposition of the method, and
that ∆ = 0.
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B.2.1 The Heat Equation

We want to approximate the solution of⎧⎨⎩
∂C

∂t
+

1
2

∂2C

∂x2
= 0

C(T, x) = g(x) ,

(B.5)

with boundary conditions of either the Dirichlet or Neumann type. This equa-
tion is known as the heat equation. Note however that the heat equation is
usually written as⎧⎪⎨⎪⎩

∂u

∂t
− 1

2
∂2u

∂x2
= 0

(
or in some cases without the coefficient of

1
2

)
u(0, x) = g(x) .

The two forms are equivalent under a change of the time variable.

B.2.2 Approximations

We start with a semi-discrete approximation, i.e., we discretize only the space
variable. Thus we replace (B.5) with⎧⎨⎩

∂C

∂t
+ AhC = 0

C(T, x) = g(x)
(B.6)

where
AhC =

1
2h2

{C(t, x + h) − 2C(t, x) + C(t, x − h)}

and where Ah is a matrix operator. We are led to solve system (B.6) for x =
x0, x1, . . . , xN+1. We can then apply methods that are specific to differential
systems (e.g. Euler, Runge–Kutta).

The exact solution to (B.6) is

C(t) = (exp−Aht)C(0) . (B.7)

[ When the µ, σ and r coefficients depend on t, this formula is no longer valid,
but other analogous methods can be employed. ]

To approximate the solution to (B.7), we need to approximate

C(t + ∆t) = (exp (−Ah ∆t)) C(t) ,

and thus to approximate exp (−Ah ∆t). We set Ah = A and ∆t = ε. An
approximation of e−εA is (1 + εA)−1 where
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C(t + ε) � (1 + εA)−1 C(t) .

We can check that we thus recover the implicit scheme.

Another approximation of e−εA is

e−εA �
(
1 +

ε

2
A
)−1 (

1 − ε

2
A
)

(Padé’s approximation). This leads to the Crank-Nicholson scheme.

We can also use mixed methods. Expanding the exponential e−2εA, we get

C(t + 2ε) � (1 − 2εA + 2ε2A2)C(t) .

The implicit scheme leads to an approximate solution γ where

γ(t + 2ε) = (1 + 2εA)−1 γ(t)

� (1 − 2εA + 4ε2A2) γ(t) .

If we apply the implicit scheme twice (to go from t to t+ ε, and then from
t + ε to t + 2ε), we obtain

Γ (t + 2ε) = (1 + εA)−2 Γ (t)

� (1 − 2εA + 3ε2A2)Γ (t) .

Hence the approximation of (1 − 2εA + 2ε2A2)C(t), by

2Γ (t + 2ε) − γ(t + 2ε) ,

which leads to the scheme⎧⎪⎪⎨⎪⎪⎩
Cn+1/3 = (1 + 2εA)−1 Cn

Cn+2/3 = (1 + 2εA)−2 Cn

Cn+1 = 2Cn+2/3 − Cn+1/3 .

B.3 Simulation

In this section, we give a brief overview of simulation methods that can be
used to approximate solutions to stochastic differential equations as well as
the expectations of random variables.
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B.3.1 Simulation of the Uniform Distribution on [0, 1]

The probability law of a random variable X that is uniformly distributed on
[0, 1] is defined by P (X ∈ [a, b]) = b − a for 0 ≤ a < b ≤ 1. A sequence of
“random numbers” is a series of random variables X1, X2, . . . , Xn, . . . that are
independent, identically distributed, and have the same distribution as X. We
would like to simulate this sequence, i.e., we would like to obtain a determin-
istic sequence of numbers in [0, 1] which has “the same statistical properties”
as the sequence (Xn)n≥1. We do not dwell on methods for simulating these
sequences of random numbers here. Most programming languages provide a
“random” procedure for generating random numbers. Another approach is to
use low discrepancy sequences.

We refer the interested reader to Bouleau [40], Niederreiter [289] and Rip-
ley [310]. These provide various programming methods, as well as a discussion
of the meaning of the expression “the same statistical properties”.

B.3.2 Simulation of Discrete Variables

To simulate a random variable X, which can take k values (a1,
a2, . . . , ak) with probabilities P (X = ai) = pi, we can use the random variable

Z = a11U<p1 + a21p1≤U<p1+p2 + · · · + ak1p1+···+pk−1≤U≤1

where 1α≤U<β is worth 1 if α ≤ U < β, and 0 otherwise, and where U is
a uniformly distributed random variable on [0, 1], which can be simulated as
outlined above.

B.3.3 Simulation of a Random Variable

Case of a Random Variable with a Continuous Density Function

Let X be a random variable with probability density function f , which is con-
tinuous. We denote by F (x) =

∫ x

−∞ f(t)dt its cumulative distribution func-
tion. If f is strictly positive, F has an inverse mapping F−1.

Exercise B.3.1. Show that, whatever the probability density function f , the
variable F (X) is uniformly distributed on [0, 1]. What is the distribution of
F−1(U), if U is uniformly distributed on [0, 1]?

Show that if F is the cumulative distribution function of a random variable
X (i.e., F (x) = P (X < x)) and if F−(y) = inf{x | y < F (x)}, then X has the
same distribution as F−(U) where U is uniformly distributed on [0, 1].

We can now simulate X by using F−(U). If we want to simulate
(X1, X2, . . . , Xn) where the Xi are independent and identically distributed,
we can use (F−(U1), F−(U2), . . . , F−(Un)) where the U1, U2, . . . , Un are inde-
pendent random variables that are uniformly distributed on [0, 1].

This method is often long, and requires a subroutine for calculating F−.
Therefore the accept/reject method is often used.
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The Accept/Reject Method

Suppose that X is a random variable with a bounded continuous density
function f with a compact support [a, b].

Consider a pair of random variables (U, V ) that are uniformly distributed
on the rectangle [a, b]× [0, k]. When the point with coordinates (U, V ) is below
the curve of f , we accept it, and set X = U . Otherwise, it is rejected and a
new point is drawn at random. It is easy to check that the variable X thus
defined, has probability density function f .

When the support of f is not contained in a compact set, this method is
no longer valid, as there is no uniform distribution on an unbounded interval.
We then use another density function g, such that

• the variable with probability density g is easy to simulate,
• kg(x) ≥ f(x) for a real constant k.

We then simulate a variable Y with density g and a variable U that is
uniformly distributed on [0, 1], and we set Z = kUg(Y ).

1. If Z < f(Y ) we set X = Y .
2. Otherwise, we simulate new Y and U , and go back to 1.

The Gaussian Case

Specific methods apply to this case.

Exercise B.3.2. Let U and V be two independent random variables that are
uniformly distributed on [0, 1]. Show that

X = (−2 log U)1/2 cos 2πU

Y = (−2 log U)1/2 sin 2πV

are independent random variables that have the standard normal distribution
N(0, 1).

The exercise immediately yields a simulation method. A normally dis-
tributed variable with mean m and variance σ2 can be written m + σX,
where X follows the distribution N(0, 1).

Further methods are to be found in Bouleau [40] and Ripley [310].

B.3.4 Simulation of an Expectation

Let X be a random variable. We would like to simulate E(X).
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Using the Simulation of X

If we have at our disposal a program for simulating independent random
variables with the same distribution as X, we can simulate E(X) by using
the law of large numbers, i.e.,

E(X) = lim
n

1
n

n∑
1

Xi .

The same method can be used to simulate E(ψ(X)). The stopping cri-
terion, which determines n in such a way as to get a small enough error, is
obtained via the Bienaymé–Chebyshev inequality.

When the Density of X is Known

We suppose for the sake of simplicity that the density function f of X has
support [0, 1]. We need to calculate

∫ 1

0
g(x)dx with g(x) = xf(x). The law

of large numbers shows that if x1, x2, . . . , xn is a sequence of numbers that
are evenly spread on [0, 1] (i.e., simulating a sequence of random numbers),
1
n

n∑
1

g(xi) →
∫ 1

0

g(x)dx (the measure
1
n

n∑
i=1

δxi
converges weakly to the

Lebesgue measure).

Meanwhile, note that there are sequences (x1, . . . , xn) that converge faster
by the method described above than when the xi are chosen “randomly” and
“independently”. This is the case with the Van der Corput sequences1.

B.3.5 Simulation of a Brownian Motion

Random Walks

Brownian motion can be approximated by a random walk2, i.e., the distribu-

tion of Bt can be approximated by the distribution of
1√
n

(X1 + X2 + · · · +
X[nt]) = Sn where the Xi are independent and identically distributed random

variables such that P (Xi = 1) = P (Xi = −1) =
1
2
, where [·] denotes the

integer part of a number. We can then approximate E(ψ(Bt)) by E(ψ(Sn))
for any continuous bounded function ψ.

1 See Bouleau [40] p. 228.
2 See Appendix A.
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Using Gaussian Variables

Another method involves using normal distributions: if (Xi , i ≤ n) are inde-
pendent standard Gaussian variables, and if

S0 = 0

Sn+1 = Sn + δXn where δ ∈ R
+

then (S0, S1, . . . , Sn) has the same distribution as (B0, Bδ, . . . , Bnδ).

B.3.6 Simulation of Solutions to Stochastic Differential Equations

Let Xt be the solution to the stochastic differential equation

dXt = µ(t,Xt) dt + σ(t,Xt) dBt

where Bt is a d-dimensional Brownian motion.

When µ and σ are constant, the solution is Xt = X0 + exp [
(
µ − 1

2σ2
)
t +

σBt], and we can then simply simulate the Brownian motion. In the general
case, we need to use approximation methods such as the following.

The Euler Scheme

We discretize the stochastic differential equation above, using a scheme of the
form

X̃tk+1 = f
(
X̃tk

, Btk+1 , Btk

)
k ∈ {0, . . . , N − 1}

where the tk subdivide [0, T ] into steps of size ∆t =
T

N
. The simplest scheme

is the Euler scheme,{
X̃tk+1 = X̃tk

+ µ(tk, X̃tk
)(tk+1 − tk) + σ(tk, X̃tk

)(Btk+1 − Btk
)

X̃0 = X0 .

We can show (Maruyama [266]) that this scheme converges on quadratic
average to the solution of the stochastic differential equation, in the sense that

∃ C > 0 , ∀ k ∈ {0, 1, . . . , N − 1} E
∣∣Xtk

− X̃N
tk

∣∣2 ≤ C∆t .

Numerous schemes have been introduced to improve the speed of con-
vergence. Moreover, other criteria of convergence can be used, for example
convergence in Lp spaces, or a.s. convergence.
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The Milshtein Scheme

Let us consider the one dimensional case where the coefficients µ and σ do
not depend on time, and where σ is of class C1. Using Taylor’s expansion to
approximate σ(Xt), we obtain

X(t) � µ(X(0))t + σ(X(0)) (Bt − B0)

+ σ(X(0))σT X(0))
∫ t

0

{B(s) − B(0)}dB(s) .

The stochastic integral is easy to evaluate (Exercice 3.1.12). This leads us
to the Milshtein scheme

Xtk+1 = Xtk
+µ(Xtk

) (tk+1 − tk)

+ σ(Xtk
) (Btk+1 − Btk

)

+
1
2
σ(Xtk

)σT (Xtk
)
[
B2

tk+1
− B2

tk
− (tk+1 − tk)

]
.

We can then show (Milstein [279], Talay [350]) that the scheme converges
a.s. and on quadratic average, with greater speed than the Euler scheme.

In higher dimensions than 1, the Milshtein scheme requires restrictions on
the matrix σ. The reader can refer to Talay [350], Pardoux and Talay [298] or
to the books Kloeden and Platen [237] and Dupuis and Kushner [131].

B.3.7 Calculating E(f(Xt))

We would like to give approximations of the term E(f(Xt)), when the process
X is a solution to a stochastic differential equation

dXt = µ(Xt) dt + σ(Xt) dBt .

The coefficients µ and σ do not depend on t. Notice that this not a restriction.
In the general case, it is enough to consider the process Yt = (t,Xt) and to
write down the SDE satisfied by Yt.

Calculating the Distribution of Xt

A first method for evaluating E(f(Xt)) consists in calculating the distribution
of Xt explicitly.

If the coefficients µ and σ are regular, and if X(0) has a density function
p0, then X(t) has a density distribution p(t, ·) that solves

d
dt

p = L∗p

p(0, ·) = p0
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where L∗ is the adjoint of L =
∑

bi(x)
∂

∂xi
+

1
2

∑
ai,j(x)

∂2

∂xi ∂xj
with

a = σσT , i.e., L∗p =
∑ ∂2

∂xi∂xj
(ai,j p) +

∑ ∂

∂xi
(bi p). We can try to solve

this equation numerically, but it is difficult, particularly in spaces of higher
dimensions.

The Euler and Milshtein Scheme

A second method consists in using a scheme (Euler’s or Milshtein’s) to sim-
ulate N independent occurrences Xt of Xt, which we denote Xt(ωi), and in
calculating

1
N

N∑
i=1

f(Xt(ωi)) ,

for a t of the form
kT

n
. According to the law of large numbers, this provides

an approximation of E(f(Xt)).
We can then show that

|E(f(XT )) − E(f(XT ))| ≤ C(T )
T

n
.

There also exist (Talay [352]) methods that lead to second order schemes.

The General Case

To approximate expressions of the form

E

(∫ T

0

∆(Xs) ds + g(XT )
)

,

we can use the process

Yt =
(∫ t

0

∆(Xs) ds , Xt

)
,

and then write down the stochastic differential equation that it satisfies, and
apply the methods covered in the previous subsection and described by Talay
([351] and [352]).
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Méthodes Probabilistes pour les Équations de la Physique. Eyrolles,
Paris

[51] Chamberlain, G. (1983): A characterisation of the distributions that im-
ply mean–variance utility functions. Journal of Economics Theory, 29,
185–201



304 References

[52] Chamberlain, G. (1985): Asset Pricing in Multiperiod Securities Mar-
kets. Working paper, Economics Department, University of Wisconsin,
Madison

[53] Chatelain, M., Stricker, C. (1994): On componentwise and vector
stochastic integration. Mathematical Finance, 4, 57–66
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Paris VI, Paris

[55] Chesney, M., Cornwall, J., Jeanblanc-Picqué, M., Kentwell, G., Yor, M.
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aggregate utility, 198, 224
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arbitrage interval, 20
arbitrage price, 94
Arrow–Debreu equilibrium, 202, 206,
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aversion, 31, 207, 208, 233

Bayes, 79
beta formula, 211, 212, 234
binomial model, 57
Black–Scholes formula, 60, 63, 81, 96,
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Breeden’s formula, 232
Brouwer’s theorem, 194
Brownian motion, 82, 277

call, 1, 103–106
European, 96

CAPM, 208, 232
certainty equivalent, 31, 166
change of numéraire, 175
compensation, 260
complete market, 18–19, 53, 205
conditional expectation, 78
consumption plans, 204
continuous process, 117
Cox–Ingersoll–Ross, 185

Debreu, 201, 207
delta, 7, 103
demand function, 193
Dirichlet conditions, 289
discount factor, 164
distribution

inf, 252
sup, 251

dividend, 107, 108
dividend process, 231
drift, 84
dynamic programming, 130, 131, 155

elasticity, 7
elementary process, 118
entropy, 243
equation

valuation, 183
equilibrium, 193, 209

contingent Arrow–Debreu, 202, 206,
222, 223, 228

Radner, 204–206, 222, 230
with transfer payments, 196

equilibrium weight, 200
equivalent martingale measure, see

martingale measure, 241
equivalent measure, 46
evolution equation, 180
exchange economy, 192
exercise price, 2
expected prices, 204

Farkas’ lemma, 13
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Feynman-Kac, 99, 110
filtration, 44, 82
financing strategy, 90
finite difference, 288
forward contract, 167
forward measure, 166
forward price, 159, 164, 170
forward spot rate, 164, 175
function

aggregate excess demand, 193
transfer, 200
value, 131, 144, 148

futures contract, 167
futures price, 170

gains process, 107
Gale–Nikaido–Debreu, 195
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Gaussian model, 174
Girsanov’s theorem, 84, 120–123

Hamilton–Jacobi–Bellman, 132
heat equation, 293
Heath–Jarrow–Morton, 172
hedging portfolio, 3, 100
hitting time, 250, 251, 253, 271

implicit price, 94, 100
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incomplete market, 8, 20, 28, 237
increasing process, 120
infinite horizon, 73
infinitesimal generator, 88, 124
instantaneous forward rate, 160
Itô process, 84
Itô’s formula, 285
Itô’s Lemma, 85, 88

Kakutani’s theorem, 194
Kuhn–Tucker, 41

Lagrange, 41
Laplace transformation, 277
left-continuous process, 83
Lindeberg’s theorem, 63
lognormal, 86

marginal utility, 23
market

complete, 18–19, 53, 205
incomplete, 8, 20, 28, 237

market portfolio, 105, 211
martingale, 79, 83, 117

local, 117, 118
martingale exponential, 123
martingale measure, 66, 70, 92
measure

equivalent, 46
equivalent martingale, 241
forward, 166
martingale, 66, 70
minimal, 243
optimal variance, 243
risk neutral, 4
risk-neutral, 33, 96, 111

minimal entropy, 243
minimal measure, 243
Minkowski’s theorem, 14
mutual fund theorem, 212

Neumann conditions, 289
no arbitrage opportunities, see arbitrage

optimal consumption, 23
optimal pair, 143
optimal portfolio, 150
optimal strategy, 65, 69
optimal variance measure, 243
optimal wealth, 66, 149
options

Asian, 274
asset-or-nothing, 271
average rate, 274
barrier, 256
Bermuda, 275
binary, 271
boost, 271
call, 1
chooser, 275
cliquet, 275
compound, 275
cumulative, 272
cumulative–boost, 272
digital, 271
double barrier, 267
down-and-in, 257
down-and-out, 256
forward-start barrier, 271



Index 325

lookback, 269
Parisian, 273
put, 2
quantile, 273
quanto, 276
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Russian, 276
step, 273

Ornstein–Uhlenbeck Process, 181

Pareto optimum, 196, 197
Pareto-optimal, 226
portfolio, 2

hedging, 3, 100
market, 105, 211

portfolio strategy, 44, 74
predictable, 83
predictable representation, 154
premium, 2
price

arbitrage, 94
forward, 159, 164, 170
futures, 170
implicit, 94, 100
purchase, 20
selling, 20
state, 14, 18

price range, 9, 240
process

adapted, 82
continuous, 117
dividend, 231
elementary, 118
gains, 107
increasing, 120
Itô, 84
left-continuous, 83
Ornstein–Uhlenbeck, 181
predictable, 83

purchase price, 20
put, 2, 102
put–call parity, 4

Radner equilibrium, 204–206, 222, 230
Radon–Nicodym, 79
Radon–Nikodym, 121
random walk, 280
rate

forward spot, 164, 175

instantaneous forward, 160
instantaneous spot, 164
spot, 160, 175

reflection principle, 250
replicable, 53
replication, 2
risk, 6, 243
risk premium, 31
risk-neutral measure, 4, 33, 96, 111
riskless asset, 12, 15, 44, 91, 128, 218
robustness of the Black–Scholes formula,

246

scheme
Crank-Nicholson, 292
Euler, 298
Euler and Milshtein, 300
explicit, 291
implicit, 290
Milshtein, 299

self-financing, 45, 92, 128
selling price, 20
semi-martingale, 118
sensitivity to volatility, 104
set of contingent prices, 202
simulation, 294
spot rate, 160, 175
state of the world, 1
state price, 14, 18
state variable, 108
stochastic differential equation, 123
stochastic integral, 83, 118–120
stochastic volatility, 245
stopping time, 117
strategy

optimal, 65, 69
strike, 2
superhedging, 242
supermartingale, 117
symmetry (P. Carr’s), 264

term structure of rates, 160
transfer function, 200
trees, 49, 58

uniformly integrable, 79
up-and-out and up-and-in, 257
utility

aggregate, 198, 224
function, 244
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marginal, 23
utility function, 23, 32, 64, 68, 130, 192,

219
utility weight vector, 197

valuation, 2
valuation equation, 183
valuation formula, 25
value function, 131, 144, 148
Vasicek, 181
volatility, 7

stochastic, 245

Von Neumann–Morgenstern, 30

wealth, 128
optimal, 66, 149

weight
equilibrium, 200
utility weight vector, 197

yield curve, 165
yield to maturity, 164

zero coupon bond, 159, 164, 187
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