
COMPUTER
PROGRAMMING

withMATLAB

Sold to
jonnybellavance@hotmail.com

Computer Programming with MATLAB
J. Michael Fitzpatrick and Ákos Lédeczi
1st Revised PDF Edition
June, 2015

Copyright © 2013-2015 J. Michael Fitzpatrick and Ákos Lédeczi

All rights reserved. No part of the material protected by this copy-
right notice may be reproduced in any form or by any means for
redistribution without the written permission of one or both of the
copyright owners.

The authors make no warranty regarding the programs within this
book and are not liable for any damages resulting from their use.

i

COMPUTER PROGRAMMING WITH MATLAB

J. MICHAEL FITZPATRICK AND ÁKOS LÉDECZI

This book is dedicated to our wives,

Patricia Robinson and Barbara Lengyel,

for their patience and understanding while we were devoting so much

time to this book.

ii

DEDICATION

John Michael (Mike) Fitzpatrick, Professor Emeritus of Computer Science at
Vanderbilt University, retired from the classroom in 2011 after teaching at the
college level for thirty-five years, teaching computer science for twenty-nine
years, and teaching computer programming with MATLAB® for eleven years.
He received a BS in physics and an MS in computer science from the Univer-
sity of North Carolina at Chapel Hill and a PhD In physics from Florida State
University in Tallahassee. He has been a member of the Vanderbilt faculty
since 1982, where he uses MATLAB in his research in computer-assisted sur-
gery. He is married with two children and lives in Nashville, Tennessee.

J. Michael Fitzpatrick

Ákos Lédeczi, Associate Professor of Computer Engineering and Senior Re-
search Scientist at the Institute for Software Integrated Systems at Vanderbilt
University, has been doing research on model-integrated computing and wire-
less sensor networks for a couple of decades. He has been teaching computer
programming with MATLAB for eight years now. He received an MS from
the Technical University of Budapest in Hungary and a PhD from Vanderbilt
University, both in electrical engineering. He has been a member of the fac-
ulty at Vanderbilt University since 1998. He is married with three children
and lives in Nashville, Tennessee.

Ákos Lédeczi

iii

THE AUTHORS

http://engineering.vanderbilt.edu/bio/michael-fitzpatrick
http://engineering.vanderbilt.edu/bio/michael-fitzpatrick
http://www.isis.vanderbilt.edu/akos
http://www.isis.vanderbilt.edu/akos

iv

Table of Contents

Preface . v

Chapter 1. Getting Started . 10

Introduction to MATLAB. 11

Matrices and Operators . 33

Chapter 2. Procedural Programming 62

Functions . 63

Programmer’s Toolbox. 85

Selection . 113

Loops. 139

Data Types . 196

File Input/Output. 228

Functions Reloaded. 263

Chapter 3. Advanced Concepts 285

Linear Algebra .286

Searching and Sorting. .296

Object-Oriented Programming311

Graphical User Interfaces 333

Index. 351

v

Preface

Ph
ot

o
cr

ed
it:

 A
nn

a
Le

de
cz

i

The primary purpose of this book is to teach computer programming to those
with little to no previous experience. It uses the programming system and lan-
guage called MATLAB® to do so because MATLAB is easy to learn and, at the
same time, is an extremely versatile and useful programming language and
programming environment. MATLAB is a special-purpose language that is
an excellent choice for writing moderate-size programs (let’s say, fewer than
a thousand lines) that solve problems involving the manipulation of num-
bers. The design of the language makes it possible to write a powerful pro-
gram in a few lines. The problems may be relatively complex, while the
MATLAB programs that solve them are relatively simple: relative, that is, to
the equivalent program written in a general-purpose language, such as C++
or Java. As a result, MATLAB is being used worldwide in a great variety of
domains from the natural sciences through all disciplines of engineering to
finance and beyond, and it is heavily used in industry. Hence, a solid back-
ground in MATLAB is an indispensable skill in today’s job market.

Nevertheless, this book is not merely a reference manual for MATLAB or a
MATLAB tutorial. It is an introductory programming textbook that happens
to use MATLAB to illustrate general concepts in computer science and pro-
gramming. As a side effect, the reader will gain a solid foundation in
MATLAB, but an experienced computer programmer who wants merely to
learn MATLAB should probably look elsewhere.

This book is a good fit for an introductory college-level course in computer
programming for engineering and science students. In fact, it is being used as
the textbook for such a course at Vanderbilt University. It serves the dual pur-
pose of teaching computer programming and providing a background in
MATLAB, which is used in higher-level courses in many majors.

This book is also suitable to teach programming to high school students. The
material assumes no background in mathematics that is not part of standard
high school curricula, and MATLAB is much more accessible as an introduc-

tion to programming to the average student than Java, C, C++, or other
general-purpose languages.

Logistics

A disadvantage of using MATLAB as the language of choice for this book is
that the MATLAB programming environment is not free. However, a student
version is available for the reasonable price of $99. It can be ordered directly
from MathWorks®, the company who develops and distributes MATLAB. Fur-
thermore, many colleges have site licenses for the software. Note that
MATLAB comes with many additional products, such as Simulink®,
Stateflow®, and a number of specialized “Toolboxes” that add to its power.
None of these is required for this book.

This eBook comes with a companion website (http://cs103.net) that contains
program listings from this book, as well as solutions to selected practice prob-
lems. The website also provides links to 11 hours worth of video lectures by
the authors. All sections in Chapter 2 include practice problems at the end.
Each odd-numbered problem is followed by a red question mark. Clicking on
it takes you to the solution on the website. Note that problems come in pairs:
each one with a solution is followed by a similar, typically somewhat more
difficult problem with no solution.

Style

Two distinct stylistic features have been employed in writing this textbook to
make it more useful.

First, this book places more emphasis on the general concepts from the disci-
pline of computer science than does the typical introduction to MATLAB.
Both the terminology (e.g., “polymorphism”, “stack frame”) and some of the
topics (e.g., recursion, object-oriented programming) allow the student to be-
come conversant in the language of the computer scientist while learning the
MATLAB approach to numerical problem solving (e.g., matrix and array op-

vi

http://www.mathworks.com/academia/student_version/index.html
http://www.mathworks.com/academia/student_version/index.html
http://cs103.net
http://cs103.net
http://cs103.net/solutions/
http://cs103.net/solutions/
http://cs103.net/video-lectures/
http://cs103.net/video-lectures/

erations, vectorization). Care has been taken to keep the usage of terminology
consistent. As a result, the student who moves from engineering or the physi-
cal sciences into computer science or vice versa, does not have as much new
to learn and does not have to “unlearn” anything. A list of specialized terms
is provided in a combined index and glossary at the end of the book, each
such term is highlighted in blue when it is introduced in the text itself.

Second, much of the material in this book is presented in a graduated tutorial
style, i.e., concepts are illustrated by means of practical examples. The early
sections include lots of introductory tutorial material to help the reader get
started. As readers gain experience with MATLAB and with the concepts of
computer science and move into later sections, they will be able to absorb
new material more readily. As that happens, the style becomes less tutorial,
and the rate at which new material is introduced increases, but from begin-
ning to end, this book emphasizes the approach of teaching via examples.

A wise Chinese proverb says, “I hear and I forget; I see and I remember; I do
and I understand.” Nowhere is this adage more true than in computer pro-
gramming. The only way to understand it is to do it. The sets of worked ex-
amples and practice problems within each section provide ample opportu-
nity for the reader to practice the new material.

About The PDF Edition
The original eBook upon which this edition is based was created using Ap-
ple’s iBooks® Author. As not everybody owns an iPad or a Mac computer, we
decided to create a PDF edition so that the book can be enjoyed on any com-
puter. Unfortunately, PDF does not support all the interactive feature that an
Apple textbook does. The most significant limitation is that links that al-
lowed the user to jump from one place in the book to another, do not work in
this edition. These missing links would be most problematic for navigating
from the table of contents to specific chapters and sections and from the glos-
sary entries to the pages on which they appear in the text. To solve that prob-
lem, we have done two things: (1) We have added bookmarks at the begin-

ning of each chapter and section, so that the PDF bookmarks panel now
serves as an electronic table of contents with the same facility as that of the
Apple textbook for navigation to chapters and sections. (2) We replaced the
glossary with a combined Index and Glossary that includes both page num-
bers and definitions. Also, video clips and animations that play inside the
original book are available on YouTube and are properly linked from this
PDF edition. Also, links that point to outside resources work just fine from
this book as well.

Software Versions
The MATLAB examples shown in this book were tested using MATLAB Ver-
sions R2012a and R2012b. The operating systems used include both Windows
7®and OS X® 10.7.

Acknowledgements
Material for this eBook was developed at Vanderbilt University for a course
for freshmen in the School of Engineering. We would like to acknowledge the
late John D. Crocetti, who co-wrote with one of us (JMF) an earlier, traditional
textbook on the same subject. He was a good friend and a great teacher, and
he will be missed. We would also like to thank over two thousand students at
Vanderbilt who, during the years from 2000 through 2012, used that textbook
and provided valuable feedback that has contributed to this eBook. We are
grateful to Bill Hilton, Jose Santos, Barry Duncan, John Cardoza, Marko
Rokvic, Madison Stott, Maria Linn, Charles Gagne and other students who
found typos and other mistakes in the first edition of this book.

We are indebted to Szabolcs Kövi, who granted permission to use his wonder-
ful song, Secret Garden, from the album, Cycle - Best of Szabolcs Kövi, to ac-
company the introductory slideshow. Anna Ledeczi has contributed her voice
to Movie 3.3. Finally, we gratefully acknowledge Tamás Fodor who designed
the cover art for this book.

vii

http://koviszabolcs.hu/
http://koviszabolcs.hu/
https://itunes.apple.com/us/artist/kovi-szabolcs/id157020369
https://itunes.apple.com/us/artist/kovi-szabolcs/id157020369
http://www.low-glow-flow.com/
http://www.low-glow-flow.com/

viii

An invitation...

akos
Rectangle

https://www.youtube.com/watch?v=jhc7pm0Ja_Y

It is time to embark on our journey to learn computer programming and MATLAB at the same time.
The only way to learn programming is by doing. You are encouraged to try out each new concept as it
is introduced in the book. By doing so, you will understand the material more quickly and more
deeply, you will discover common mistakes early on, and you will remember how to avoid them.

CHAPTER 1

10

Getting Started

SECTION 1

To gain the most from this book, you should, as you read
it, be continually writing and testing examples in
MATLAB. To run the examples in this book you should
ideally have MATLAB version R2012a or later installed
on your computer. MathWorks calls each new version a
new “Release”. R2012a is Release 2012a, R2012b is Re-
lease 2012b, R2013a is Release 2013a, etc. Recently two
versions have been released each year—first a, then b,

Earlier versions can be used as well with this book but
may, in a few cases, not behave as expected.

When MATLAB is installed on your computer, the
MATLAB icon above should appear on your Mac®

launchpad or your Windows desktop. Clicking (Mac) or
double clicking (Windows) it will start MATLAB.

Objectives

MATLAB is both a powerful
programming language and a
convenient programming
environment. We will
introduce both in this section:
(1) We will learn how to start

MATLAB and how to
specify folders to work in.

(2) We will learn how to use
MATLAB as a sophisticated
calculator by entering
commands into its
Command Window and
how to get help with
unfamiliar commands.

(3) We will encounter
terminology from computer
science involving the rules
for writing statements and
methods of execution.

(4) We will use MATLAB’s
editor to write programs
and save them in “M-files” .

(5) We will be introduced to
MATLAB’s powerful data
visualization facilities.

If you are into engineering, mathematics, economics or the natural sciences, chances are that you are familiar with the MATLAB
logo above. It is time to learn what MATLAB is all about!

Introduction to MATLAB

11

When you start MATLAB, the "MATLAB Desktop" will appear. Its layout will
vary according to the operating system and version of MATLAB. Figure 1.1
shows versions R2012a and earlier; Figure 1.2 shows version R2012b and
later. In both figures MATLAB is running on a Mac using the OS X operating
system. MATLAB’s layout changed in only minor ways for many years until
the advent of R2012b, which replaced the menus and toolbars at the top of
the Desktop with a “ribbon”, much as Microsoft did when it brought out its
new Office® applications in 2007. Version R2013a continued the ribbon inter-
face. There are other changes too, but almost all the changes are cosmetic; the
basic MATLAB functionality remains unchanged. All the functionality previ-
ously available in the toolbar and menus is still there in the ribbon, but it is
distributed among three tabs, named Home, Plots, and Apps. The Home tab
is by far the most useful tab for programming purposes. We will focus on
this tab in this book.

The Desktop displays four windows: the “Workspace” at the upper right, the
“Command History” at the lower right, the “Current Folder” at the left and
the “Command Window” in the middle. Commands are typed into the Com-
mand Window. In fact, if you click inside that window, as we have done in
Figure 1.2, you will see a blinking vertical bar (|) just to the right of the >>
showing you where your first command will appear. Before you start, you
should know that when you are ready to quit MATLAB, you can type quit
in that window, like this,

>> quit

and hit Enter. MATLAB will then close all open windows and quit. If you
have files open, you will be asked about saving them and given a chance to
save them. You can also quit by clicking with the mouse on the red button at

12

Figure 1.1 The MATLAB desktop (R2012a and earlier) Figure 1.2 The MATLAB desktop (R2012b and later)

the top left corner of the MATLAB window on a Mac or the × at the top right
of the MATLAB window on Windows.

Current Folder

When MATLAB is running, there is a special folder, called the "Current
Folder" where MATLAB expects to find files that you want to open and
where it will store files that you want to save. You should change this folder
from the one selected by MATLAB to the one in which you want to keep your
files. Some people call a folder a “directory”, which is a synonymous term.
We will therefore sometimes refer to a folder as a folder-directory.

Changing the current folder in versions R2012a and earlier
To change the current folder in versions R2012a and earlier, move your
mouse cursor over the button with three dots, pointed at in Figure 1.3 by the
red arrow and click.

A window will pop up showing the folder structure that is accessible from
your computer. Click on the folder you wish to use and then click OK. You
will then see that the name of the current folder that appears in the space to
the left of the button with the three dots has now changed to the one that you
chose and so has the name at the top of the “Current Folder” window on the
left side of the MATLAB desktop (green arrow). Any folders and files within
the current folder will simultaneously appear in the Current Folder window.
You can also change the current folder by typing the name directly into that
box in the Current Folder window.

Changing the current folder in versions R2012b and later
To change the current folder in versions R2012b and later, move your mouse
cursor over the File icon with the green arrow indicating the opening of a file,
pointed at by the large red arrow in Figure 1.4, and click.

13

Figure 1.3 Changing the current folder (R2012a and earlier) Figure 1.4 Changing the current folder (R2012b and later)

A window will pop up showing the folder structure that is accessible from
your computer. Click on the folder you wish to use and then click OK. You
will then see that the name of the current folder that appears in the space to
the right of the file icon has now changed to the one that you chose. Any fold-
ers and files within the current folder will simultaneously appear in the Cur-
rent Folder window.

And speaking of the Current Folder window, if there are subfolders in that
window, then you can make any one of those become the current folder by
simply double-clicking it. This method works for all versions of MATLAB.

The Path
When MATLAB fails to find a file that it is looking for in the current folder, it
does not give up. It looks in other folders. It follows a path searching in one
folder after another. A “path”, in this context, is a list of folders through
which a program searches for a file. The notion of a search path occurs in op-
erating systems such as Unix, Windows, and Mac OS and in many program-
ming environments. MATLAB comes with a path already set up, but you can
change it by adding or removing folders.

Adding folders to your path and removing them from your path.
You should add to your path any folders in which you keep files that you
have created for use with MATLAB. You may choose to use only one folder
for this purpose, or you may wish, for example, to have a different one for
each project you are involved in, or for each homework assignment in a pro-
gramming course. In any case, you should put the names of these folders at
the bottom of the list, i.e., at the end of the path, not the top. Let’s add a
folder to the end of your path. First, create a new folder using your operating
system (e.g., Windows, Mac OS) and then, within MATLAB, add the folder
that you have created to your path as follows:

First, you need to open the “Set Path” window. To open that window in ver-
sions R2012a and earlier, click on File menu at the top left of the MATLAB

desktop and then click on Set Path command. The window will pop up. To
open it it in versions R2012b and later, click the Set Path button in the HOME
ribbon, pointed at by the red arrow in Figure 1.5. When the Set Path window
pops up which is shown in Figure 1.6, you will see some buttons on the left
and a display of the path on the right. The beginning of your path is at the

14

Figure 1.6 Setting the path (same for most versions)

Figure 1.5 Opening the Set Path window (R2012b and later)

top of the display. The entire path can be viewed by using the scrollbar at the
right. Click “Add Folder…” and a window will pop up called “Select a Direc-
tory” or “Browse for Folder”. Inside this window, click on the folder that you
wish to add and then click “Open” or “OK”. The folder will appear at the top
of the path. Finally, click “Move to Bottom” to move the folder to the end of
the path. If you wish to remove a folder from the path click (at the risk of be-
ing obvious) “Remove”. While you are in that window you can add and/or
remove as many folders as you wish.

 If you are running MATLAB on your own machine and you want to have
this folder appear on your path the next time you run MATLAB, click “Save”
to save this path for the next time your run MATLAB. If you want to leave
this window open you can click on the “Minimize” button in the upper left
(Mac) or upper right (Windows) corner of the window. Otherwise, click
“Close”. If you have changed the path but have not saved the path, a box will
appear saying "Do you wish to save the path for use in future MATLAB ses-
sions?" Again, if you are running MATLAB on your own machine and you
want to have this folder appear on your path the next time you run
MATLAB, click “Yes”. Otherwise, click “No”.

The Command Window

The symbol >> in the Command Window (the window in the middle of the
MATLAB desktop) indicates that the genie inside MATLAB is ready to obey
your every command. In computer-science parlance, this symbol is called a
“prompt”. A prompt is a symbol, or symbols, used by a program (MATLAB
is a program) while it is running to request an action from the user−such as
typing a command. Thus, MATLAB is using the double “greater-than sign”
>> as its command prompt. As mentioned at the beginning of this section,
when you are ready to quit MATLAB, you can type quit in the Command
Window or click on the red button at the top left corner of the MATLAB win-

dow on a Mac or on the × at the top right of the MATLAB window on Win-
dows.

Alternatively, you can quit on a Mac by typing ⌘q (while depressing the
Command key, press q), and you can quit on Windows by typing Ctrl-q
(while depressing the Ctrl key, press q). Finally, in version R2012a, you can
select Exit MATLAB from the File Menu at the top left.

Regaining control
When you issue a command to MATLAB, it takes control and begins its
work. Sometimes that work takes a long time, longer perhaps than you want
to wait. So, before you learn how to give commands, it is important to know
how to abort them. On both Mac OS and Windows, if you ever find MATLAB
taking too long to execute a command, you may type Ctrl-c to abort the com-
mand. MATLAB will not quit. Instead it will merely end the execution of the
command and give you control of the Command Window once again. And it
will present you with a fresh command prompt, ready once more to do your
bidding.

Issuing commands
When you type a command into the Command Window and then hit the En-
ter key, MATLAB immediately executes your command and prints its re-
sponse. For example, the command

>> x = 1 + 2

produces the response

x =

 3

>>

Our command told MATLAB to add 1 to 2 and then assign the result to a vari-
able called x. MATLAB executes that command and then shows you the new

15

value of x followed by its prompt to let you know it is ready for another com-
mand. If you wish at any later time to learn the value of x, you simply type it,
and MATLAB will respond as follows,

>> x

x =

 3

This value will not change until x is assigned a new value by a later state-
ment. If you ask for the value of a variable that has not yet been given a
value, MATLAB complains,

>> y
??? Undefined function or variable 'y'.

The act of assigning a value to x caused a new variable named x to be de-
fined and caused a location in memory to be designated where its value is to
be stored. While you might not think about it at first, the value of the variable
x must be stored in some location in the computer’s memory, and that loca-
tion cannot be used for any other purpose until MATLAB exits or the variable
is removed with the command clear x or the command clear (i.e.,
with no x), which clears all variables that have been defined up to that point
in time in the Command Window. The definition of variable (in computer sci-
ence, as opposed to mathematics) is in fact a named location in memory. Each
time you assign a value to a new variable, MATLAB puts the name of that
variable into a table and sets aside enough room to hold its value.

You may have noticed that MATLAB includes blank lines before and after the
x = line above, and after the last line of the values in x. That can get annoy-
ing after a while. Fortunately MATLAB allows you to suppress the printing
of those extra lines by using a command named “format” and telling it that
you want a compact notation, in which there are no spaces between lines:

>> format compact

The mauve color of the word compact is interesting. We will see this color
repeatedly. It means that the word “compact” does not stand for a variable,
as x does above and that it is not a command, like format. It is just a string
of characters that means something to the command. We’ll find out more
about this distinction in subsection Commands and Strings of the first section
of Chapter 2.

Now let’s ask MATLAB for the value of x again:

>> x
x =
 3

If you like blank lines, you can have them again by issuing the command for-
mat loose, which returns to the default spacing that MATLAB is set to
when it is installed.

Suppressing printing
Unless you tell it otherwise, MATLAB will print the result of a command in
the Command Window, as it did with the x = 3 above. If you do not want
the result printed, you can type a semicolon (;) after the command. With the
semicolon, the command will still assign the value 3 to x, but it will not print
the value of x. This feature is essential when x is a matrix of numbers. We
will study matrices in great detail in the next section, which is entitled, Matri-
ces and Operators), and we will use them throughout this book, but for now
we will simply note that a matrix is a set of numbers arranged rectangularly
that can be stored in a single variable and that there may a lot of them in that
variable−possibly tens of thousands, or even more! Let’s try using the semico-
lon:

>> XMen=5;
>>

16

We showed the following >> prompt to emphasize that the value of XMen is
not printed after the semicolon. If we want to see its value, we can type its
name and hit Enter:

>> XMen
XMen =
 5

Note that we have used uppercase letters in XMen. Uppercase not only looks
different to us but is treated differently by MATLAB. XMen is a different vari-
able from xmen, xMen, Xmen, etc. You may also have noticed that in the XMen
example, there is no space before or after the equal sign, while in the x = 1
+ 2 example there were spaces. The spacebar can be used to put spaces
where they would occur naturally without having any effect, other than to
make the command easier to read. Variables in MATLAB can have more than
one letter and, as we will see in the next example, can even include digits, but
the letters and digits cannot have spaces between them. Thus, examples of
legal names, are SNOBOL and Wat4, but SNO BOL and Wat 4 are illegal be-
cause they include spaces. That should not be surprising. You might expect to
see spaces around an equal sign (or not), but you would not expect to find
spaces inside a name. Whenever possible, MATLAB, and all reasonable lan-
guages, follow the same rules that people use. We give more precise rules for
MATLAB’s variable names below in the subsection named (what else?) Vari-
able names.

Using the Command Window as a calculator
Let’s define some more variables:

>> y45 = 2*x
y45 =
 6
>> c = y45^2
c =
 36

>> rock = c/x
rock =
 12

The expression 2*x means “two times x”; the expression y45^2 means “y45
raised to the power of two”; and c/x means “c divided by x”. The variable
named rock shows that a variable can have a name with more than one char-
acter. You can see from these simple examples that the MATLAB Command
Window is a nifty (if somewhat expensive) calculator. This calculator can han-
dle any number you are likely to need, large or small. Want a big number?
Let’s set a variable named “earth” equal to 5972000000000000000000000.
That’s a pretty big number that happens to be the mass of the earth in kilo-
grams:

>> earth = 5972000000000000000000000
earth =
 5.972e+24

MATLAB chooses not to echo the number back to you with all those zeros.
Instead, for numbers equal to one billion or larger, it uses scientific notation,
which means that a number is written followed by “e” followed by a positive
integer. That positive integer is the power of ten that must be multiplied by
the number that is written before the e. In this case the number is
5.972 × 1024. Scientific notation is handy for us too when we want to enter big
numbers:

>> earth = 5.972e24
earth =
 5.9720e+24

Note that we don’t have to include four digits to the right of the decimal
point or put a plus sign in the exponent, as MATLAB does. Furthermore,
MATLAB always picks a power of 10 so that the number to the left of the deci-
mal is nonzero, but we can write numbers in scientific notation any way we
want as long as we put an integer after the e:

17

>> earth = 0.5972e25
earth =
 5.9720e+24
>> earth = 0.0005972e28
earth =
 5.9720e+24
>> earth = 0.000597200000e28
earth =
 5.9720e+24

Let’s use our calculator and scientific notation to calculate something as an
illustration: the weight of a cell phone. According to Motorola’s website, the
mass of its Droid RAZR HD is 140 grams, which is 0.140 kilogram. That is not
its weight. It’s weight is the force with which the earth pulls on its mass. We
could use a conversion formula to determine that force, but we are going to
calculate it from basic principles of physics by using Newton’s formula for

Mm
universal gravitation. The formula is w = G

r2
, where w is the force, G is

Newton’s universal gravity constant, M is the mass of the earth, m is the mass
of the cellphone, and r is the distance of the cellphone from the center of the
earth. MATLAB does not know this formula. Finding the formula is our re-
sponsibility. Nor does it know the values of the quantities in the formula.
Here is the calculation as it appears in the Command Window beginning
with setting the of G:

>> G = 6.6738e-11
G =
 6.6738e-11

The specification of the value of G utilizes scientific notation, this time to pro-
duce a very small number, which like very large numbers must otherwise be
written with lots of zeros, 0.0000000000667384. Now we need to assign val-
ues to the rest of the variables in the expression on the right side of Newton’s
equation:

>> M = 5.972e24
M =
 5.972e+24
>> m = 0.140
m =

0.14
>> r = 6378e3
r =
 6378000

The value we have chosen for r is the radius of the earth, because we are as-
suming that we want to know the cellphone’s weight when we are holding it
and standing on the ground. Finally, we use the expression to calculate the
weight:

w_in_newtons = G*M*m/r^2

w_in_newtons =
1.3717

The asterisks (*) on the right side of the equal sign signify multiplication; the
slash (/) signifies division, and the caret (^) signifies exponentiation. Thus,

G*M*m/r^2 has the same meaning in MATLAB that G
Mm
r2

 has in algebra.

The variable name, w_in_newtons, shows that the underscore character (_)
can be used in the name of a variable. It is often used, as we have used it
here, to separate words within a variable name, in this case words that indi-
cate the units of calculated force. MATLAB handles the numerical calcula-
tions for us, but it is up to us to keep track of the units in the results of those
calculations. If we want to know the weight in units of pounds, we can per-
form a direct conversion. For that we need to know the conversion factor,
which is 0.2248:

>> w_in_pounds = 0.2248*w_in_newtons
w_in_pounds =

0.30835

18

Now, thanks to MATLAB (and Isaac Newton) we know that the Droid RAZR
HD (and every other object whose mass is 140 grams that is near the surface
of the earth) weighs 0.308 pounds. We round our answer to three digits be-
cause the mass is given to only three digits accuracy. As with the determina-
tion of the units of calculations, MATLAB leaves decisions about round off to
us.

This simple example is meant to give a glimpse of the power of the MATLAB
Command Window as a calculator. Many other examples can serve the same
purpose, and all of them include the operations of assigning values to vari-
ables and then performing arithmetic operations on those variables to calcu-
late new values, which are in turn assigned to other variables.

As we use more variables, we use more memory space. MATLAB, in fact,
calls a collection of defined variables a workspace. If at any time, you wish to
see the variables that you have brought into existence by assigning values to
them, you can either look at the Workspace Window or use the whos com-
mand. For example, as a result of the commands we have entered in this sub-
section, whos would show us this:

>> whos
 Name Size Bytes Class Attributes

 G 1x1 8 double
 M 1x1 8 double
 XMen 1x1 8 double
 c 1x1 8 double
 earth 1x1 8 double
 m 1x1 8 double
 r 1x1 8 double
 w_in_newtons 1x1 8 double
 w_in_pounds 1x1 8 double
 x 1x1 8 double
 y45 1x1 8 double

The left column gives the variable names in alphabetical order (uppercase
first). The columns labeled Size, Class, and Attributes (Attributes may be
omitted in your version of MATLAB) will mean more to you later. The col-

umn labeled Bytes shows how much memory space MATLAB has allocated
for each variable. Computer memory is measured in terms of bits and bytes.
A byte is 8 bits, and a bit is the smallest unit of memory. A bit can store only
one of two values: 0 or 1. The number of values that can be stored in N bits is
equal to the number of ways that 0s an 1s can occur in N bits, which is 2N.
Therefore one byte can hold 28 = 256 different values. As indicated in the
Bytes column each these variables occupies eight bytes, which is 64 bits, so
each of them can store 264 = 1.8447 × 1019 values. We will see what particular
values can be stored in the section entitled, Data Types.

Saving variables
As seen from the output of the whos command, we have defined eleven vari-
ables. If we now exit from MATLAB, all these variables will be lost. Suppose
we need to calculate additional weights, perhaps for a homework assign-
ment, and we get a call from a friend asking us to lunch. If we shut down our
computer, we will lose everything and will have to start from scratch after
lunch. Alternatively, we might put our computer to sleep or in hibernation so
that MATLAB will start up in the state we left it in with our variables intact.
Sleeping and hibernating are not bad solutions, but MATLAB provides an
even better way. Simply type the command save:

>> save

Saving to:
/Users/fitzpajm/Documents/Fitzpatrick&Ledeczi/matlab.mat

>>

This command causes all the variable names and their values to be saved in a
file named matlab.mat, and it also tells us where that file is being saved: in
the current folder. As can be seen in its response above, it gives the name of
the current folder, Fitzpatrick&Ledeczi, before the name matlab.mat
separated by a forward slash (/). It gives the name of the folder that contains
the current folder before that, also separated by a forward slash, and so forth
back to the top-level directory, which in this case is Users. Now that we

19

have saved our work, we can exit MATLAB and lose nothing, whether we
shut down our computer or not, and head off to lunch. When we return and
are ready to continue our work, we can restart MATLAB as we would nor-
mally. When it starts, our variables will be missing, but we can get them back
easily with the command load:

>> load

Loading from: matlab.mat

which tells us the name of the file from which it retrieved our data. By the
way, because of its file extension, mat, this file is called by the MATLAB com-
munity a MAT-file. We will learn more about MAT-files and other types of
files for storing and retrieving data in Chapter 2 in the section entitled, File
Input/Output.

Continuing a command to the next line
Sometimes a command is so long that it won’t fit on one line. When that hap-
pens, you must tell MATLAB that the command is to be continued to the fol-
lowing line by means of the “line-continuation” operator (also known as an
“ellipsis” operator), which is symbolized by three dots (periods, full stops):

>> dime = 2 + ...
8

dime =
 10

Putting more than one command on a line
You can indicate to MATLAB that a command is completed by typing either a
comma or a semicolon. After that, you can begin another command on the
same line. The comma indicates that a result should be printed. The semico-
lon suppresses printing. For example,

>> weight = 4, acceleration = 9.8; velocity = 4.5;

weight =
 4

>> acceleration, velocity

acceleration =
 9.8000
velocity =
 4.5000

Repeating a command
Hitting the up-arrow key (↑) will cause the previous command line to appear.
Hitting Enter (Return) will then cause it to be executed. Repeated pressing of
the up-arrow will cause earlier and earlier lines to appear. Pressing the
down-arrow key will then cause later commands to appear. When a com-
mand has appeared, it may be altered by moving the cursor with the left-
arrow and right-arrow keys and then using Backspace and/or Delete, and/or
typing new characters. The resulting command is executed only when Enter
is pressed. As an example, you might try typing x = 4+1 without hitting En-
ter and then altering it to x = 4-1 and then hitting Enter.

You can also repeat commands by double clicking them in the Command His-
tory window at the lower right of the MATLAB desktop. You can also high-
light, drag, and drop commands into the Command Window from anywhere
and then execute them by hitting Enter.

Interpreting versus compiling
In the language of computer science, executing a command by a computing
environment, such as MATLAB, is termed interpreting the command.
MATLAB interprets (i.e., executes) the command typed in the command win-
dow as soon as you have completed the command and have hit the Enter key.
This immediate response is different from the situation with a so-called “com-
piled” language, such as Java, C, C++, or FORTRAN, in which you write a

20

program from beginning to end and then run it all at once. In these lan-
guages, unlike MATLAB, before the commands that you type can be run,
they must all be translated from the language that you are using (e.g., C++)
into a language that the computer hardware uses. Such translating is called
compiling. Note that the word "interpret", which roughly means "translate"
outside the computer science community, in fact means "execute" when com-
puter scientists use it in reference to a computer language. Outside the com-
puting community, the word “compile" means gather and organize, but it
means "translate" when computer scientists use it in reference to a computer
language. MATLAB provides options that allow for compiling, but MATLAB
is primarily used as an interactive language, which means a language in
which users continually see the results of their commands as soon as they are
issued. An interactive language is always an interpreted language.

Syntax and Semantics
The form of MATLAB's commands must obey certain rules. If they do not,
then MATLAB cannot interpret them, and it gives an error message in bright
red:

>> 1 = x
1 = x

 |
Error: The expression to the left of the equals
sign is not a valid target for an assignment.

>>

MATLAB is trying to tell us what is wrong. In this case, the user probably
does not realize that the equal sign does not mean "is equal to". This is an as-
signment statement, which means instead, "Assign the value of the expres-
sion on the right side of the equal sign to the variable that is on the left side."
Constants, such as 1, 2, or –18.9, cannot be assigned values. Thus, constants
cannot appear on the left side of an equal sign.

This error is a good example of the violation of the proper form of a
MATLAB statement. The form of a statement is its syntax. Any violation of
the form is called a “syntax error”. In fact violations with regard to the form
of any computer language (and any spoken language for that matter) are
called syntax errors. The reason for this particular syntactical rule (“syntacti-
cal” is another adjective form of “syntax”) is that only named variables can
be assigned values. Putting a constant on the left side of an equals sign does
not fit the definition of the assignment statement, and it is not allowed. Thus,
it is a syntax error.

We call the meaning of a statement (as opposed to the form of a statement),
the semantics of the statement. So here we have an error that violates both
the syntax and the semantics of the assignment statement in MATLAB. (The
word “semantics” is a singular noun. Thus we might say, “The semantics is
simple, or, “The semantics needs to be well understood”.) Note that despite
the error, MATLAB forgives us (we are, after all, its master) and indicates its
readiness for the next command by typing another prompt (>>).

Variable names
The syntax of MATLAB allows a variable’s name, more formally known in
computer science as a variable’s “identifier”, to be a single letter, such as x, or
a word, such as weight. In mathematical expressions, as opposed to pro-
gramming expressions, we are restricted to single-letter names for variables.
Because of that restriction we allow consecutively written letters to indicate
multiplication. Thus, in mathematics x = cat would mean that the values of c,
a, and t should be multiplied together and that the value of x would be equal
to the resulting product. We will see below that multiplication must be indi-
cated explicitly in MATLAB by typing an asterisk between the two variables
to be multiplied. Thus x = cat in mathematics would translate to x = c*a*t
in MATLAB. The use of the asterisk to indicate multiplication is very com-
mon in programming languages. It was used for that purpose in the very first
major programming language FORTRAN (“an acronym for “Formula Transla-
tor”), which was invented in the late 1950s. The asterisk is still used today in

21

most programming languages including both C++ and Java. Because pro-
gramming languages use a symbol to indicate multiplication, they can allow
an identifier to consist of more than one letter.

MATLAB provides wide latitude in variable naming. In the version of
MATLAB used in writing this book, the name of a variable may include up to
63 characters, which may be upper or lower case letters. Longer names are
legal but characters after the 63rd are simply ignored. The command

>> namelengthmax

gives the maximum for the version that you are using. As mentioned above,
MATLAB distinguishes between upper and lower case, so, for example, X
and x are two different variables, as are hOmEr and HoMeR. Additionally, any
of the characters in the name, other than the first one, may be a digit or the
underscore (_). These rules are almost identical to those for identifiers in C,
C++, and Java. Here are some examples of legal MATLAB, C, C++, and Java
identifiers:

• mass145square
• weight_with_shoes_on
• Init_velocity
• hA_RDt_oR_ead_bUt_LeGAl

Getting Help With MATLAB From MATLAB Itself

MATLAB stores values in a form that includes more than the mere 5 digits
that you see in the examples above. If you want to see more of those digits
printed on the screen, you can use the command format:

>> X = [1 2; 3.4 pi]

X =
 1.0000 2.0000
 3.4000 3.1416

>> format long
>> X

X =
 1.000000000000000 2.000000000000000
 3.400000000000000 3.141592653589793

>>

As you can see, the numbers are now printed with more digits, which in
MATLAB’s terminology is a longer “format”. There is another option with
the format command. If you now decide that don’t want the extra digits, you
can issue the command format short to drop the digits. It won’t effect the
line spacing:

>> format short
>> X
X =
 1.0000 2.0000
 3.4000 3.1416
>>

 
There are other formatting options as well. To learn what they are, you can
use the "help" facility. The most direct way to use it is to type the command
help followed by a space followed by the name of the command that you
want help with. For example,

>> help format

 format Set output format.
 format with no inputs sets the output format to the default appropriate
 for the class of the variable. For float variables, the default is
 format SHORT.

 format does not affect how MATLAB computations are done. Computations
 on float variables, namely single or double, are done in appropriate
 floating point precision, no matter how those variables are displayed.

22

 Computations on integer variables are done natively in integer. Integer
 variables are always displayed to the appropriate number of digits for
 the class, for example, 3 digits to display the INT8 range -128:127.
 format SHORT and LONG do not affect the display of integer variables.

 format may be used to switch between different output display formats
 of all float variables as follows:
 format SHORT Scaled fixed point format with 5 digits.
 format LONG Scaled fixed point format with 15 digits for double
 and 7 digits for single.
. . .

The help command always responds by repeating the command name (for-
mat, in this case) giving a short summary of its meaning (Set output for-
mat, in this case) and then giving a more detailed description. (We did not
show all of the output from the help command above.) The help command
will be of great value to you as you learn MATLAB. Whenever you forget
how some command c works, type help c at the command prompt. There
is a fancier version too: the doc command. The command doc c gives the
same information as help c, but it gives it in a much nicer format with bet-
ter fonts.

If you don’t know the name of command or can't remember it, the command
lookfor might come to the rescue. The command lookfor xyz searches
through the command summaries (first part of the help output) given for all
the commands, searching for the word xyz, and it shows you the associated
commands. For example,

>> lookfor pseudoinverse
pinv - Pseudoinverse.

This response lists all the commands, in this case just pinv, for whose sum-
maries include the word “pseudoinverse”. To learn what pinv does, you
could then type help pinv, or you can simply click on pinv. The blue let-
tering and underlining means that clicking on the term is the same as using
help. To learn more about lookfor and to see the names of some other
helpful commands, type help lookfor.

In addition to the help available with the commands help, doc, and
lookfor in the Command Window, there is an even more elaborate help
documentation available. In version R2012a and earlier versions, this system
can be accessed as follows: click on the Help menu and select the Product
Help command. Alternatively with these versions, you can click on the Start
button at the bottom left of the MATLAB window. A menu will pop up. Se-
lect the Help command. The Help window will pop up with a “Help Naviga-
tor” on the left and helpful links in a panel on the right.

For version R2012b and later, you can click on the question mark in the small
circle in the Home Ribbon, click MATLAB in the two-column list that ap-
pears, and then click MATLAB Functions at the bottom of the window that
pops up. At this point you can click “By Category” or “Alphabetical List” (as
shown in Figure 1.7 for version R2012a) (at the right of the window in
R2012b). At this point in either system, you can click the link of any function
that appears interesting. This help facility is very intuitive and easy to navi-
gate.

There are animated demonstrations with voice-over in the help system. In
version R2012a, select Demos in the Help Navigator. In version R2012b, after
clicking the question mark in the circle and clicking MATLAB as above, click
Examples.

Figure 1.7 MATLAB Help Navigator

23

The Edit Window And M-files
So far we have focused on the Command Window. The Command Window
acts like a calculator---a really (really!) powerful calculator. You type a com-
mand and MATLAB interprets it (i.e., executes it) and shows you the result
immediately (or complains that you made a syntax error!). The Command
Window provides the interaction that makes MATLAB an interactive lan-
guage. It is a great way to try simple commands, but it is a poor way to do
anything that involves more than, say, 5-10 steps. To accomplish more compli-
cated tasks, you should write your commands into a file. That is done by us-
ing an Edit Window.

In each version of MATLAB there are two ways (and more) to pop-up an edit
window. In Versions R2012 and earlier you can:

(1) Click the little white blank-page icon at the left end of the Toolbar at
the top of the MATLAB window and then click File/New/Script

or

(2) Type edit in the Command Window and hit Enter.

Either of these two methods will cause the Edit Window to pop up, as shown
in Figure 1.8.

In Versions R2012b and later, you can

(1) Click New Script at the left of the HOME ribbon and then click New
and select Script

or

(2) Type edit in the Command Window and hit Enter.

Either of these two methods will cause the Edit Window to pop up as shown
in Figure 1.9.

Figure 1.8 The Edit Window in Version R2012a and earlier

24

Figure 1.9 The Edit Window in Versions R2012b and later

Once you have the Edit Window open, you can type into it and text will ap-
pear, but unlike the situation in the Command Window, hitting Enter will
cause nothing to happen except that the cursor will move to the next line.
Nothing else happens because MATLAB does not interpret (execute) com-
mands as you type them into the editor. Type the command

x = 5

inside this window. Now save what you have typed into a file. The first step
to do that in versions R2012a and earlier is to click File/Save As... The first
step in versions R2012b and later is to click Save. In both cases you will be
presented with a familiar file-saving window for your operating system in
which you can choose an appropriate folder to hold the file and an appropri-
ate name for the file. In this case, you should choose the same folder that you
chose earlier for your "current" folder, and you should use the file name,
myfirst.m. When you click Save in this window, you will have created an
M-file. The “M” stands for MATLAB, and the file extension used by the
MATLAB editor is always .m, which is pronounced “dot m”. It is because of
that extension that the file is called an M-file. Because of the dot, another com-
monly used name for an M-file is a “Dot-m-file”. Now go back to the Com-
mand Window and type myfirst (not myfirst.m). You should see this:

>> myfirst
x =
 5
>>

(assuming that you have previously given the command format compact,
to avoid the blank lines). MATLAB has checked to see whether you have de-
fined a variable named myfirst (you haven’t), then it looked inside its cur-
rent folder to see whether you have created a file named myfirst.m, (you
have), and interpreted (i.e., executed) the commands it found inside that file.

Congratulations! You are a computer programmer, and you have proved it:
You have written a (somewhat shortish) MATLAB program, stored it in a file,
and run it. You ran it by simply typing the name of the file without the .m ex-
tension. Having a preferred filename extension for files that contain its pro-
grams is not particular to MATLAB. Conventions regarding filename exten-
sions are common for all programming languages. Other languages, such as
Fortran, C, C++, and Java, are less strict, but it is very common for program-
mers to use the extensions .f, .c, .cpp, and .java., respectively for these lan-
guages.

Within the Edit Window type a semicolon after x = 5. Save the file again,
this time by clicking on the blue diskette icon. That icon will turn gray, indi-
cating that the file has been saved since the last key you typed in that win-
dow, and it turns gray regardless of the method by which you save the file.
Now return to the Command Window and type myfirst again. This time,
all you see is this:

>> myfirst

As with commands issued in the Command Window, the output that was
originally produced by the command x = 5 is now suppressed because of
the semicolon at the end of the line. The command still executed; x was still
set (again) to 5. The only difference is that the value of x after the assignment
is not printed in the Command Window. You can prove that by typing x in
the Command Window:

>> x
x =
 5

This suppression of output is much more important for programs written in
M-files than for commands issued in the Command Window, because typi-
cally only the final result of a long set of commands in an M-file should be
printed. In fact, typically every line in the typical M-file will include a semico-
lon to suppress printing.

25

Using the path to find an M-file
Inside the edit window, change the 5 to a 6, hit enter and type y = -9. Then
save the result to a new file called mysecond.m in the folder that you added
to your path in the section above entitled, The Path. Make sure that the
current folder is not this same folder, changing folders if necessary, as
described before. Type the name mysecond into the Command Window.
The command in the file will be executed. Even though your current folder
does not contain this M-file, MATLAB has found it by looking through every
folder on your path until it found it in the folder that you added to that path.
It does that with the help of your operating system, and it happens so quickly
that there is no noticeable delay. After it found it, it ran it. If you check the
values of x and y, you will see that they are now equal to 6 and −9:

>> x
x =
 6

>> y
y =

-9

There is one more name for the M-files that we have written: “scripts”. They
are called that because when an M-file like myfirst.m or mysecond.m is
run, the MATLAB slavishly executes the commands in it, as if it were an actor
following a script. We will learn much more about scripts

Source code versus executable code
Computer science provides some precise terminology for what we produce
when we write a program. A program is any sequence of symbols that de-
scribes an algorithm. An algorithm is a step-by-step procedure for solving a
problem. A computer program is a program that describes an algorithm in a
language that can be executed on a computer. The text that you enter into an
M-file by using the edit window is a sequence of symbols that describes an
algorithm in a language that can be executed on a computer, and therefore, it

is a computer program, but it is sometimes also called code or source code or
source. This strange use of the word “code” comes from the fact that the earli-
est programs (i.e., in the 1940s and 50s) were written in a language that resem-
bled a code because it was very difficult for a human to decipher. The reason
for the modifier “source” is that, before the computer runs the code that a pro-
grammer writes, it typically must translate it into an equivalent program
called executable code that is written in language that, unlike source code,
can be executed directly by the computer..

Thus, the program that a human writes is not the program that the machine
runs, but it is the source of the program that the machine runs, and that is
why it is called “source” code. The language of the executable code is as diffi-
cult to decipher as the early languages were, and for that reason it is very
hard to determine how a program works by looking at the executable code
and even more difficult to modify it. Companies who produce programs for
sale are eager to distribute their executable code (also known as the “executa-
bles”) but rarely their source code, thereby making more difficult for others
to learn their proprietary programming secrets. Similarly, your instructors in
a programming course might give you an executable version of a solution to
a programming assignment so that you can run it and see first-hand how it is
supposed to behave without your being able to see how it works.

When you write a program, such as the one in the file myfirst.m, the text
that you type is called alternately the “program” or the “code”, and writing
such a program is called alternately computer programming, programming
or coding. The person who writes the program is the programmer (but, for
some reason, not the “coder”). It is interesting to note that despite the fact
that we tend to think otherwise, the program that the programmer writes is
never executed by any computer; it is merely the source of the executable
computer program, and almost no one ever sees a program that actually runs
on a computer.

26

Software
A set of files containing source code or executable code or both that describes
a single program or a set of programs is called software to distinguish it from
the hardware that makes up the physical part of a computer. The disciplines
of Computer Science and Computer Engineering each deal with software and
hardware, with the former emphasizing the software and the latter emphasiz-
ing the hardware. The software written by scientists and engineers to solve
the problems of their disciplines tends to be focused on numerical applica-
tions describing or governing the behavior of physical systems, such as build-
ings, bridges, chemical plants, automobiles, aircraft, audiovisual systems,
medical devices, or even kitchen appliances. Their programs tend to be writ-
ten in a special-purpose language, like MATLAB, that is tailored to their ap-
plications. Because of the design of such languages, powerful programs can
be written in a few hundred lines of source code and can be written by one
person. With these programming languages, the programmer is able to focus
on the physical aspects of the physical system instead of the logical aspects of
the computer program. The software written by computer scientists and com-
puter engineers to solve the problems of their disciplines tends, on the other
hand, to be written in languages like C++, or Java, which are designed to han-
dle more general applications, often describing non-physical systems, such as
insurance policies, bank accounts, spreadsheets, databases, payroll systems,
reservation systems, or general document processors (e.g., iBooks Author ,
which was used to write the words that you are reading). Because of the de-
sign of these languages and the complexity of the programs, hundreds of
thousands of lines of source code are typically required. Such programs are
rarely written by one person. A subfield of Computer Science, called Software
Engineering, studies the problems that arise when large groups of people de-
sign large programs and the equally important problem of identifying and
correcting the many unfortunate, but inevitable, errors, or bugs, that are pre-
sent in the code that they write.

P-code
As we pointed out above under Interpreting versus compiling , the MATLAB
system interprets (i.e., executes) the code that you type into the Command
Window as soon as you complete a command and hit the Enter key. What we
did not mention there is that the first phase of the interpretation is a transla-
tion into another language. This language is more efficiently executed, but it
is not the language of the hardware, which varies with the type of computer,
such as, for example, a Mac or a Windows machine,. Instead, it is a language
that is interpreted by the MATLAB system and as a result is portable from
one type of computer to another (as long as MATLAB is supported on it). The
computer-science term for such a language is “portable code” or p-code.
Java works in much the same way (it’s p-code is also called “bytecode”). For-
tran, C, and C++, and many other languages, on the other hand, are usually
compiled, in which case there is no executing of p-code for those languages.

When an M-file is executed in the Command Window, the entire contents of
the file is translated into p-code before the execution phase begins. For effi-
ciency, the p-code is also saved in memory as long as MATLAB is running
and until the M-file is modified, so that the next execution of the program (be-
fore modification) does not require the translation step. You can translate the
contents of any M-file into p-code and save it into a file for distribution by
giving the command,

>> pcode name

where name is the name of the M-file without its .m extension. The program
will be translated into p-code and written into a P-file that has the same name
as the M-file but with the .m extension replaced by .p. The P-file will be
placed into the current folder.

One important aspect of p-code is that it is version dependent. Thus, while an
M-file written in one version of MATLAB will run under another version, a
P-file written under one version may not run under another version. Another

27

important aspect of a P-file is that, if the files name.p and name.m (i.e., two
files with the same name except for different extension) are present in the
same folder, MATLAB will always run the .p file instead of the .m-file. This
can cause great confusion if the programmer modifies the .m-file and fails to
remove the .p-file. When the command name is issued, the .p-file will be run,
ignoring the changes in the .m-file. A final aspect of p-code is that it is en-
crypted, meaning that during its translation MATLAB uses a secret code (i.e.,
the other kind of code－like spies use) so that others cannot read it. This al-
lows the distribution of p-code in the same way that executable code is dis-
tributed, so that it can be used without the user seeing how it works.

Comments
MATLAB understands commands that are given it in proper syntax. Humans
can understand them too, but you can help other humans understand what
you are doing by including additional text that is meant to be read only by
humans. As an example, you might type in your name at the top of the M-file
to show that you are the author. If you do that, MATLAB will complain that
you have made a syntax error (unless your name happens also to be the
name of an active variable or a function!). To keep that from happening, you
must tell MATLAB to ignore the line that contains your name. That is done
by starting the line with a percent sign (%). It is customary to include such in-
formation about the production of the file in a set of multiple comment lines
at the top. For example, for submitting homework solutions in a class, you
might be required to include the following information, in this order:

Your name
Your section and the registrar’s label for the class
The date of submission
The name of the assignment

such as a student has done below for a class called “CS 103”,

% Author: Nicholas S. Zeppos
% Section 1, CS 103
% September 22, 2013
% HW Assignment 1

Text such as this, which is included in the program but is ignored by the sys-
tem that is interpreting it, such as MATLAB, or compiling it, such as a C++
compiler, is called a comment or “comments”. We are showing the comment
text in a green font because the MATLAB editor shows it in a green font as
well. MATLAB uses color to make it easier to read the text, but color has no
effect on the meaning of the text. Comments can also be included on the same
line as a MATLAB command. The rule is that everything following the % up
to the end of the line is ignored by MATLAB:

number = 6 % number of eggs in one basket

MATLAB provides a way to comment consecutive lines of comments without
putting a percent sign on every line. Here is the same block of comments as
above using the block-comment option:

%{
Author: Nicholas S. Zeppos
Section 1, CS 103
January 22, 2012
HW Assignment 1
%}

Both %{ and %} must appear alone on their own lines. Every line between
those two lines will be highlighted in green as a comment and will otherwise
be ignored by MATLAB. Every modern language provides some means for
including comments, and there is always some character or characters used
to indicate those parts of the program that are comments. C, C++, and Java,
for example, all use /* to begin a block comment and */ to end it. C++ and
Java also use // for a single-line comment. Surprisingly, comments may be
more important to a program than the executable commands! That is because
most programs must eventually be changed, and humans, who rely on com-
ments to make sense of the code, must make those changes.

28

The Figure Window

So far, the output that MATLAB has produced has been simple text inside the
Command Window. Graphical output is more fun. To get graphical output,
you simply use a command that produces it, such as plot. To try out plot,
go back to the Command Window and create two vectors with the com-
mands,

>> x = [1 2 3 4 5 6 7 8];
>> y = [1 2 3 5 8 13 21 34];

A vector in mathematics and in computer science is simply an ordered list of
numbers, and each number is called an element of the vector. As we will see
in the next section, a vector can be created in MATLAB, as shown above, by
using a pair of brackets ([]) to enclose a list of numbers separated by
spaces, commas, or both. The two commands above set x and y equal respec-
tively to two 8-element vectors. Now give the following command:

>> plot(x,y)

A plot appears in a “Figure” window, which pops up automatically when
you give the plot command, as shown in Figure 1.10.

If you want to close the figure window, either click with the mouse on the red
button at the top left corner of the window on a Mac or on the × at the top
right of the window on Windows or type the command close in the Com-
mand Window. If you want to keep your figure window open and put your
next plot into a new figure window, give the command figure before the
next plot command. If you have more than one figure window open, close
will remove only the last one that appeared. If you want to get rid of all fig-
ure windows, give the command

>> close all

It should be clear that plot(x,y) plots the vector y vertically versus the vec-
tor x horizontally. These vectors must be of the same length. For each value of
the index, n, from n = 1 to n = 8, x(n) is equal to the horizontal position
of the point that is plotted, and y(n) is equal to the vertical position. We
note that we have introduced a new term, “index”, which in MATLAB
terminology means a positive integer that enumerates the elements of a vec-
tor.

There are many variations possible to this simple plot. Dotted or dashed lines
may be used, individual dots may be plotted without being connected by
straight lines, symbols other than dots may be plotted, various colors may be

Figure 1.10 A MATLAB figure window showing a plot

29

used, labels may be put on the axes, etc. You can get an idea of its versatility
by trying help plot. We will give more examples in the Programmer’s Tool-
box section.

Figure windows are used whenever graphical output is required. There are
many commands in addition to plot that produce graphical output, but all
of them put their graphical output into a figure window. As an example, let’s
display a picture. The US National Aeronautics and Space Administration
(NASA) is a source of many beautiful images, not the least of which are those

taken of the earth from space. The images are available from the Internet at
www.nasa.gov and are stored digitally in standard formats. A common for-
mat on that website and many other websites is the so-called JPEG format
(Joint Photographic Experts Group), and files containing images in that for-
mat are typically named with the extension jpg. If we download the file
named globe_west_540.jpg, which contains a satellite image of the west-
ern hemisphere of the earth, into the current folder or into a folder that is on
the MATLAB path and issue the following commands, the picture shown in
Figure 1.11 will pop up.

>> west_earth = imread('globe_west_540.jpg');
>> image(west_earth);
>> truesize;
>> axis off;

The first command causes an array of numbers to be read from the file and
stored in the variable west_earth. An array is a three-dimensional version
of matrix, and we will study them in detail in the next section. This particular
one is a 540x540x3 array of numbers. The second command, im-
age(west_earth), causes the array in west_earth to be displayed.

The display screen of a computer is divided up into hundreds of thousands
of tiny pixels. The word pixel means “picture element”, and a pixel is the
smallest region of an image that can be controlled individually. Each pixel is
one square piece of a digital image, like a tile in a mosaic, and each piece is
capable of displaying only one color at a time. Each color is determined by
three numbers, and there are 540x540 = 291,600 sets of three numbers in the
array west_earth, each of which determines the color of one pixel.

The last two commands make the picture look its best. The command true-
size causes each color in the array to be displayed by exactly one pixel, so
that the shape of the earth is correct (i.e., circular). Finally, the coordinate tick
marks and labels that can be seen in Figure 1.10, at the edges of the plot are
removed by the command axis off.

Figure 1.11 Displaying an image file

30

http://www.nasa.gov
http://www.nasa.gov

To explore the possibilities of image display further, you can use the com-
mand help imread. We will learn much more about images, colors, and pix-
els and will learn how images can be altered by means of image processing
when we get to the Loops section of Chapter 2.

Additional Online Resources

• Introducing MATLAB, a video by MathWorks

• Getting Started with MATLAB, a video tutorial by MathWorks

• Introducing MATLAB Mobile, a video tutorial by MathWorks

• Video lectures by the authors:

" Lesson 1.1 Introduction (11:43)

" Lesson 1.2 The MATLAB Environment (20:41)

" Lesson 1.3 MATLAB as a Calculator (14:25)

" Lesson 1.4 Syntax and Semantics (5:01)

" Lesson 1.5 Help (8:37)

" Lesson 1.6 Plotting (19:06)

Concepts From This Section

Computer Science and Mathematics:
search path
prompt
variable
scientific notation
interpreting versus compiling
interactive language
identifier
syntax
semantics
assignment statement
program, programmer
computer program, code
algorithm
source code
executable code
bugs
portable code (p-code)
comments
vector, vector element  

MATLAB:
current folder and path
Command Window
prompt
variable
suppressing printing with semicolon
scientific notation
identifier
workspace
the whos command
Mat-files

31

http://www.mathworks.com/videos/matlab-overview-61923.html
http://www.mathworks.com/videos/matlab-overview-61923.html
http://www.mathworks.com/videos/getting-started-with-matlab-68985.html
http://www.mathworks.com/videos/getting-started-with-matlab-68985.html
http://www.mathworks.com/videos/matlab-mobile-overview-69045.html
http://www.mathworks.com/videos/matlab-mobile-overview-69045.html
https://www.youtube.com/watch?v=6iN56l7dEMY
https://www.youtube.com/watch?v=6iN56l7dEMY
http://youtu.be/s2kaCethOXk
http://youtu.be/s2kaCethOXk
https://www.youtube.com/watch?v=ZEOubc5i_n8
https://www.youtube.com/watch?v=ZEOubc5i_n8
https://www.youtube.com/watch?v=Aco4yDvse0I
https://www.youtube.com/watch?v=Aco4yDvse0I
https://www.youtube.com/watch?v=_wxLhQy__6o
https://www.youtube.com/watch?v=_wxLhQy__6o
https://www.youtube.com/watch?v=DlzzX_MOXCk
https://www.youtube.com/watch?v=DlzzX_MOXCk

the commands save and load
one command on multiple lines
multiple commands on one line
assignment statement
the commands help and doc
the lookfor command
the format command
Edit Window
M-file
P-file
comments
figure window
vector and vector element
plot
image display

32

SECTION 2

The primary purpose of this book is to teach computer
programming with MATLAB. MATLAB is a good tool
for learning about computer programming because it in-
cludes all the major computer-programming constructs
used by all major languages, including C, C++, and Java,
and MATLAB is easier to learn than those languages.
Moreover, MATLAB includes additional features that
make it especially useful for numerical applications. The

most notable such features are the ones that involve spe-
cial operations on arrays of numbers. The most common
array of numbers is called a “matrix”, and the basic unit
with which we work in MATLAB is the matrix. In com-
parison to general-purpose programming languages,
MATLAB makes it far easier to add one matrix to an-
other, to subtract them, and to multiply them, and it al-
lows us to perform many other operations on them as

Objectives

The basic unit with which we
work in MATLAB is the
matrix. We solve problems by
manipulating matrices, and
operators are the primary
means by which we
manipulate them.
(1) We will learn how to define

matrices, extract parts of
them and combine them to
form new matrices.

(2) We will learn how to use
operators to add, subtract,
multiply, and divide
matrices, and we will learn
that there are several
different types of
multiplication and division.

(3) Finally, we will learn
MATLAB’s rules for
determining the order in
which operators are carried
out when more than one of
them appear in the same
expression.

The matrix is the basic unit of MATLAB.

Matrices and Operators

33

Image by Tamas Fodor

well. This focus on matrices is apparent from the name, “MATLAB”, which is
an abbreviation of the phrase “Matrix Laboratory”. Its matrix operations are
to a large extent what makes MATLAB such a good language for program-
ming solutions to problems in engineering and science, each of which often
involves matrices, and they are also a distinguishing feature that makes MAT-
LAB—well—MATLAB. In this section, we will introduce the basic idea of the
matrix, and we will show how MATLAB allows you to define matrices and to
operate on them.

Matrices And Arrays
A matrix is a two-dimensional, rectangular arrangement of numbers, such as
this 2-by-3, matrix, which has 2 rows and 3 columns:

We should note that, while we have called this a “2-by-3” matrix above, it is
also common to see “2-by-3” written this way: “2x3”. A matrix whose num-
ber of rows equals its number of columns, as for example, 7-by-7, is called a
square matrix. A matrix is useful for dealing with sets of numbers and also
with sets of equations involving sets of variables, a situation that arises re-
peatedly in all branches of science and engineering. A matrix is a special case
of an array, which can have more than two dimensions. A scalar, which is a
single number in mathematics, is treated in MATLAB, surprisingly perhaps,
as a 1-by-1 matrix or array! To see the size of a matrix or array in MATLAB,
we can use the function called size:

>> x = 5
x =
 5
>> size(x)
ans =
 1 1

A function in mathematics is any operation that produces a result that de-
pends only on its input. In MATLAB, as in most other programming lan-
guages (e.g., C, C++, Java, Fortran), a function, like size or plot, which was
introduced in the previous section, is any operation that is invoked by giving
its name. The major distinction between mathematical and programming defi-
nitions of “function” is that a mathematical function will always produce the
same output for a given input, whereas a programming function may not
(e.g., rand, which we will meet in the next chapter). Our input to size was
x, but in general the input to a function is given as a list of values separated
by commas inside a pair of parentheses that follows the name, as in
plot(x,y). Each such value is called an argument. This term is used this
way in both mathematics and computer science. However, as we will see
later in this section, computer science expands the definition to include out-
put from functions as well. In the example above, size was given only one
argument, x, (so no commas were needed), and it produced as its result two
numbers—1 and 1. The first 1 represents the number of rows, or height, of
the matrix x, and the second 1 is its number of columns, or width. It is possi-
ble to make larger matrices by using brackets and semicolons (;). To see how,
let’s create with MATLAB the matrix that we gave at the beginning of this sec-
tion, assign it to the variable X, and then call size using X as an argument, as
follows:

>> X = [1 2 3; 3.4 pi -4]
X =
 1.0000 2.0000 3.0000
 3.4000 3.1416 -4.0000

The square brackets ([]) indicate that we are asking MATLAB to form a
matrix, and they mark its beginning and its end. Individual elements are sepa-
rated by spaces (one or more). A semicolon marks the end of a row (instead
of causing printing to be suppressed as it does when it comes at the end of a
command). So, in the example above, 1 2 3; means that the first three ele-
ments are 1, 2, and 3, and that is the end of the row. The next element after
the semicolon, which is 3.4, starts the next row. The second element on the

34

second row may be a bit of a surprise: pi is actually a function call that re-
turns π, showing us that, if no argument is being input, the parentheses can
be omitted. To be specific, since π is an irrational number, pi gives an ap-
proximation to π. It’s a pretty good approximation: 3.141592653589793.
MATLAB displays only the first four digits to the right of the decimal be-
cause format short is in effect (format was introduced in the previous
section), but all digits are used in calculations. Since a matrix is by definition
rectangular, there must be the same number of elements on the second row as
on the first row. Thus it must have one more: The third, and final, element on
the second row is -4. The size function tells us what we already know in
this case:

>> size(X)
ans =
 2 3

namely, that there are 2 rows and 3 columns. Here is a larger example:

>> Y = [1 2 3 6 4 1 12; 3.4 -8 3 3 0 pi .2]
Y =
 Columns 1 through 5

 1.0000 2.0000 3.0000 6.0000 4.0000
 3.4000 -8.0000 3.0000 3.0000 0

 Columns 6 through 7

 1.0000 12.0000
 3.1416 0.2000

Note that, since there was not enough room for an entire row of the matrix to
fit on one line of the Command Window, the 6th and 7th columns were
grouped after columns 1 through 5, and the range of column numbers is
given for each group. The default in MATLAB is that a matrix is printed in
column-major order, meaning that all the elements of one column are proc-
essed, in this case printed, before the elements of the next column. The other
order is called, imaginatively enough, row-major order. Column-major order

is the default throughout MATLAB; for other languages, such as C++, the de-
fault is row-major order. If the end of the Command Window is reached be-
fore all the columns have been printed, a new group of columns is begun be-
low the current group.

There are two alternate ways of doing things when entering the elements of a
matrix. First, an optional comma can be typed after any element:

>> Z = [1 2,3, 4; 5, 6 7, 8,]
Z =
 1 2 3 4
 5 6 7 8

and second, hitting the Enter key (i.e., instead of typing a semicolon) also in-
dicates the end of the row:

Enter key was hit after the 4>> Z = [1 2, 3, 4

5 6 7 8]

Z =
 1 2 3 4
 5 6 7 8

Here, we hit the Enter key after the 4, which moved the cursor to the next
line and ended the first row.

A vector in MATLAB is simply a matrix with exactly one column or exactly
one row. These two types of vectors are called, respectively, a column vector
and a row vector. The command

>> x = [1 4 7]
x =
 1 4 7

produces a row vector, and the command

35

>> y = [1; 4; 7]
y =
 1
 4
 7

produces a column vector, as can be seen by the vertical display of the ele-
ments.

When its argument is a vector, the size function always gives one dimen-
sion equal to 1:

>> size(x)
ans =
 1 3

>> size(y)
ans =
 3 1

A leading 1 indicates a row vector; a trailing 1 indicates a column vector.

As mentioned at the beginning of this section, matrices are also called arrays.
For most programming languages, the term “array” is used exclusively, but
for MATLAB the choice of term depends on the sort of operations that are per-
formed on them—matrix operations or array operations. Array operations
and matrix operations are listed in the subsection entitled, Arithmetic with
matrices and vectors. The appropriate operations—array or matrix—are de-
termined by the meaning of the set of numbers being operated on. For exam-
ple, when the numbers represent values in the cells of a spreadsheet, array
operations are appropriate, and so we call the set of numbers an “array”.
When the numbers represent the colors of pixels in an image, array opera-
tions are again appropriate, and the term “array” is again used. The term
“matrix” is strictly appropriate only when the numbers represent the coeffi-
cients in a set of linear equations, but both “matrix” and “array” are often
used interchangeably.

It is possible to have three-dimensional arrays (not properly called “matri-
ces”) in MATLAB. Such arrays are said to have rows, columns, and “pages”.
So, for example, the element A(2,3,4) is on the second row of the third col-
umn of the fourth page of the array A. Even higher dimensions are available
as well. In fact, there is no limit on the number of dimensions, but few pro-
grams employ more than three.

Figure 1.12 shows that the set of arrays includes all matrices, the set of matri-
ces includes all vectors, and the set of vectors includes all scalars. In some ap-
plications, three dimensions are used to model the three-dimensional space
that we live in. In medical imaging, for example, a computed tomography
(CT) image of the human body is a three-dimensional array of intensity val-
ues that are relatively large positive numbers for bone, lower positive num-
bers for soft tissue, approximately zero for water, and a negative value for air.
(typically -1024). Magnetic resonance (MR) imaging similarly produces
three-dimensional arrays of intensities, and in some cases MR values are com-
plex numbers. A time sequence of CT or MR images may be combined into a
four-dimensional array. Medical image researchers throughout the world em-
ploy MATLAB programs to manipulate CT and MR images, but many of
their programs deal with two-dimensional slices of three-dimensional vol-

36

Figure 1.12 Arrays, matrices, vectors and scalars

umes. One reason for this simplification is that humans can visualize two-
dimensional arrangements much more readily than higher dimensions.
MATLAB handles all dimensions, but it is focused on two-dimensional ar-
rays and provides special operations for handling them. Fortunately, most
engineering and science applications do not require arrays of three or more
dimensions. We will, therefore, focus primarily (but not exclusively) on the
two-dimensional ones, and, when we deal with a two-dimensional array, we
will typically call it a matrix.

Complex Numbers
MATLAB is fully capable of dealing with complex numbers. A scalar can be
complex, a vector can have complex elements, and matrices and arrays can
have them as well. Having complex elements does not affect the dimension
of an array. A 3-by-4-by-5 array has the same shape whether some, all, or
none of the numbers are complex. A complex number is a number that in-
cludes, −1 , the square root of –1, which is imaginary and is symbolized by
the letter i in mathematics. In MATLAB, the imaginary part of a complex
number is indicated by the suffix i or the suffix j:

>> z = 3 + 4j
z =
 3.0000 + 4.0000i

>> z*z
ans =
-7.0000 +24.0000i

Note that MATLAB responds with i, instead of j, to indicate the imaginary
part of the complex number.

MATLAB also provides two functions, i and j, whose outputs are −1. Like
the function pi, which we met in the previous section, they require no input.

Here are examples of how these functions can be used to produce complex
numbers:

>> a = i
a =

0 + 1.0000i

>> b = 3 - pi*j
b =
 3.0000 - 3.1416i

>> c = 16*j
c =

0 +16.0000i

We can, however, override these functions by assigning values, real or com-
plex, to variables named i and/or j:

>> i = 23
i =
 23

>> d = 3 + 4*i
d =
 95

>> j = 10i
j =

0 +10.0000i

>> e = 3 + j
e =
 3.0000 +10.0000i

Because of the confusion that can be caused by assigning values other than
the square root of –1 to i and/or j, most MATLAB programmers completely
avoid assigning values to these variables. However, i and j are very com-
monly used as real integers in mathematics, so, when variables are needed to
hold integers in MATLAB, most programmers substitute the variables ii and
jj in place of i and j. In keeping with this double-letter style, it is common
also to see kk, ll, mm, and nn used to hold integers as well.

37

The “Colon Operator”
The elements of the vector x = [1 4 7] are regularly spaced: they increase
regularly by 3. MATLAB provides a convenient way to produce this vector:
x = 1:3:7, which means, "Assign x to be the vector whose elements begin
with 1, increase by 3, and go no higher than 7." This expression is an exam-
ple of the use of a special MATLAB operator. An operator is a function that is
invoked by a symbol, the most familiar examples of operators being +, -, *,
and /. Operators are similar to ordinary functions except that they do not sur-
round their input arguments with parentheses, and their symbols typically sit
between their arguments. There is also a special name for their input argu-
ments: An input argument to an operator is called an operand. The action of
an operator on its operands is called an operation (not to be confused with
surgery). We have just introduced a new operator, :, which is called the co-
lon operator. A colon operator specifies a regularly spaced list of numbers.
Most people find the regular spacing to be intuitive but will at first misunder-
stand the rule at the upper end of the list. Let’s explore this rule by compar-
ing the outputs of some examples:

>> x = 1:3:7
x =

1 4 7

>> x = 1:3:8
x =

1 4 7

To see why these two different expressions produce exactly the same se-
quence, note that the second one could not require that the sequence end at 8.
That would be impossible for a sequence that begins with 1 and increases by
3, because, after hitting 7, it would hop over 8 and land at 10. To resolve such
a mismatch between the early part of the sequence and the upper end,
MATLAB uses the Price is Right® rule: The sequence stops at the number
that comes the closest to 8 without going over. The rule might be made

clearer with a few more examples. First, let’s increase the limiting number to
9:

>> x = 1:3:9
x =

1 4 7

Upping the limit to 9 has had no effect here. Ending the sequence at 9 would
have the same problem as ending it with 8. The sequence would hop over 9,
just as it would hop over 8. Now let’s increase it to 9.9:

>> 1:3:9.9
ans =

1 4 7

There is no problem with using a fractional number like 9.9 as the limiting
value, but 9.9 produces the same result as 8 and 9, because the sequence
would hop over 9.9, just as it would hop over 8 or 9. Now let’s increase the
upper limit to 10:

>> x = 1:3:10
x =

1 4 7 10

At last! When we raise the limiting value to 10, we finally get an additional
number in the sequence, because we can add 3 to 7 without going over 10.

The colon operator can be used anywhere that a row vector of equally
spaced numbers is needed (we’ll see how to change a row vector into a col-
umn vector later in the subsection entitled The Transposition Operator). It is
especially useful for very long lists, for which an explicit enumeration would
require way too much typing, such as 0:2:9999, which produces five thou-
sand even numbers or 1:2:9999, which produces five thousand odd num-
bers.

The most common spacing used with the colon operator is 1, as for example:

38

>> x = 1:1:7
x =
 1 2 3 4 5 6 7

For this spacing, there is an abbreviated version of the colon operator avail-
able, in which the :1: in the middle is abbreviated simply as, :. Here is an
example:

>> x = 1:7
x =
 1 2 3 4 5 6 7

Any of the operands of the colon operator can be fractional and/or negative.
Here is an example: .354:.067:4. This expression produces a list of 65
numbers starting with 0.354 and ending with 3.972. The only restriction on
the numbers used as operands with the colon operator is that they not be
complex.

When the middle operand is negative, the numbers decrease, for example:

>> x = 7:-3:1
x =
 7 4 1

This expression means, "Assign x to be the vector whose elements begin with
7, decrease by 3, and go no lower than 1." Thus, when the middle number is
negative, MATLAB uses the opposite of the Price is Right rule to stop the se-
quence: The sequence stops at the number that comes the closest to 1 without
going under.

Many people are surprised to see what happens when they use expressions
like the following one, in an effort to produce a decreasing sequence:

>> x = 7:3:1
x =
 Empty matrix: 1-by-0

Empty matrix? 1-by-0? What is all this? You might have expected the result to
be x = [7 4 1], as it was for the previous example. This example high-
lights a very common programming error made even by experienced pro-
grammers (such as the authors of this book), when a decreasing sequence is
desired.

Let’s look more closely at what we have asked MATLAB to do for us here:
We have asked it to form a row vector that includes all the numbers that start
with 7, increase by 3 and are no larger than 1. Well, there are no such num-
bers! Even 7 is higher than 1. So this is a non-starter. Instead of telling us that
we have made an error, that we have asked for the impossible, or that we are
chasing rainbows, MATLAB simply sets x to an empty matrix. An empty ma-
trix is a matrix with no elements. Note that this is not a matrix that contains a
zero. This is a matrix that contains nothing. Nothing at all. Not a zero, not a
one, not anything. It is empty. It could have been called an “empty array”
too, instead of an empty matrix. Either name would work, but this is
MATLAB, not ARRLAB, so an empty matrix it is.

What MATLAB has done is follow our instructions to the letter. By using the
colon operator, we asked for a row vector, and by giving 7 as the starting ele-
ment and 1 as the upper limit, we gave constraints that are satisfied by no ele-
ments. So MATLAB gave us a row vector with no elements. The size func-
tion proves that:

>> size(x)
ans =
 1 0

The answer that size gives is that the number of elements in each column is
one and the number of elements in each row is zero. This is the size func-
tion’s way of saying there is one row, which contains zero elements. There are
other empty matrices as well. The one that seems the emptiest is the one with
no rows and no columns. Here is how to get it:

39

>> x = []
x =
 []

and here is what size says about its dimensions:

>> size(x)
ans =
 0 0

We will see uses for empty matrices later. For now, they are useless objects
that pop up when you have made a mistake. Here are other mistakes that pro-
duce empty matrices:

>> x = 1:-3:7
x =
 Empty matrix: 1-by-0

There are no numbers that start with 1 decrease by 3 and go no lower than 7.

>> x = 1:0:7
x =
 Empty matrix: 1-by-0

One might argue that a sequence consisting of elements that start at one, in-
crease by zero, and go no higher than 7 would be an infinite set of ones, but
MATLAB chooses to define any sequence that increases (or decreases) by
zero as empty.

Accessing Parts Of A Matrix
An element of a matrix can be accessed by giving its row index to specify its
row, which is the position in the first dimension of the matrix, and its column
index to specify the column, which is the position in the second dimension.
These are two positive integers in parentheses separated by commas. An inte-
ger used in this way is also commonly called a subscript. Again, using the
example matrix, X = [1 2 3; 3.4 pi -4] that we used above, we have

>> X(2,3)
ans =
 -4

showing that the element of X on the 2nd row and 3rd column is −4. We can
also use this access method to assign a value to one element of a matrix:

>> X(2,3) = 7;

If we now check the value of X, we see that third element on the second row
has been changed:

>> X
X =
 1.0000 2.0000 3.0000
 3.4000 3.1416 7.0000

This notation is closely related to standard mathematical notation, in which
the two indices of a matrix are typeset as subscripts. Thus the mathematical
version of MATLAB’s X(2,3) is X2,3 . In general, X(i,j) is the same as Xij
(commas are not needed in mathematical notation when the indices are let-
ters instead of numbers). If x is a row vector, then x(1,i) is equivalent to
x(i), which in mathematical notation would be xi . If x is a column vector
than x(i,1) is equivalent to x(i). (Remember to use ii and jj in
MATLAB to avoid confusion with imaginary numbers. Here we only used i
and j because mathematical notation uses single letters only.)

An interesting question is this: What happens, if a value is assigned to an ele-
ment of a matrix when the matrix does not yet exist? Let’s try it. First, let’s
establish that the matrix Dumbledore does not (yet) exist:

>> Dumbledore
Undefined function or variable 'Dumbledore'.

This is MATLAB’s quaint way of telling us that Dumbledore does not exist.
It can’t know whether we are trying to call a function named Dumbledore or
trying to read the value of a matrix named Dumbledore, but it has checked

40

its inventory of currently defined functions and variables, and there is noth-
ing there with this name. Now that we know that there is no such thing as
Dumbledore, let’s try to assign a value to an element of it:

>> Dumbledore(2,2) = 1881
Dumbledore =

0 0
0 1881

Like magic, Dumbledore is there before us! How did he do that, and why
did MATLAB not give us an error message again? Giving an error is exactly
what the languages C, C++, or Java, would do in this case, but MATLAB
takes a different approach. It instantly defines a matrix named Dumbledore
for us with the minimum number of rows (two) and the minimum number of
columns (which happens also to be two in this case) required to provide a
place for element (2,2), and it fills it with zeros. Then it does what we
asked it to do: It assigns the value 1881 to element (2,2).

Why did the engineers at the MathWorks decide to adopt this approach, i.e.,
creating Dumbledore instead of chastening us with a red error message for
not creating it before we wrote something into it? They did this because,
while C, C++, and Java have special statements for defining new variables,
the only way to bring a variable into existence in MATLAB is to assign a
value to it, and that is exactly what we asked MATLAB to do. Since we chose
to assign a value to an element other than (1,1), and since matrices must be
rectangular, MATLAB had to fill in some values to earlier elements in the ma-
trix to avoid leaving “holes” in it. Zero seems to be a sensible value to use,
and MathWorks engineers are exceptionally sensible.

OK. So we have a 2-by-2 Dumbledore. What happens if we now tell
MATLAB to assign a value to an element of the existing Dumbledore out-
side the range of its rows and/or columns?

>> Dumbledore(3,4) = 1998
Dumbledore =

0 0 0 0
0 1881 0 0
0 0 0 1998

No problem. MATLAB immediately enlarges the matrix and fills in some
more zeros, but it leaves the existing elements alone. This is exactly what we
want it to do, because, when we are assigning elements to a matrix one by
one, we do not want a fixed order in which we need to do it. We would not
want to lose the values already in there when we later caused the matrix to
grow by putting new values into it. Of course, if we decide to put, say, pi,
into an element that already exists, say, element (1,1), we can do that also
without affecting the rest of the matrix:

>> Dumbledore(1,1) = pi
Dumbledore =
 3.1416 0 0 0

0 1881 0 0
0 0 0 1998

WARNING! There is a pitfall here. Since, as we learned in the beginning of
this section, a scalar is treated in MATLAB as if it were a 1-by-1 matrix, we
might be tempted to think that the following command is equivalent to the
previous command:

>> Dumbledore = pi
Dumbledore =

3.1416

It is not! We have just overwritten the matrix with a single scalar. The Dum-
bledore we had grown to love has been replaced by a new Dumbledore.
The old one is dead. We cannot get it back. The Command Window has no
undo for commands once they are entered.

41

Accessing multiple elements
More than one element can be specified at a time by using the subarray opera-
tions. A subarray operation accesses rectangular parts of an array. It is in-
voked by specifying a vector of integers for each index. The result is that ele-
ments from multiple rows and/or multiple columns can be read or written.
Here are three examples of reading elements with subarray operations based
on the same X that we have used before:

>> X = [1 2 3; 3.4 pi -4]
X =
 1.0000 2.0000 3.0000
 3.4000 3.1416 -4.0000

Example 1. Multiple columns

>> X(2,[1 3])
ans =
 3.4000 -4.0000

The [1 3] is the new part of the command. It means that we want to see col-
umns 1 and and 3. Since we specified a 2 for the first index, we get elements
only from row 2. By the way, the comma is required here. Without it,
MATLAB will not process a subarray command:

>> X(2 [1 3])
X(2 [1 3])

 |
Error: Unbalanced or unexpected parenthesis or bracket.

Example 2. Multiple rows can be specified too:

>> X([2,1], 2)
ans =
 3.1416
 2.0000

And, as can be seen from this example, the rows do not have to be in order.
Here we requested the order to be row 2, followed by row 1.The same holds
for columns.

Example 3. Both multiple rows and multiple columns can be specified:

>> Y = X([2,1,2],[3,1,1,2])
Y =

-4.0000 3.4000 3.4000 3.1416
3.0000 1.0000 1.0000 2.0000

-4.0000 3.4000 3.4000 3.1416

And, as this example shows, rows and/or columns can be repeated.

Subarrays are more often specified by means of the colon operator. Here are
some examples:

>> X(2,1:3)
ans =
 3.4000 3.1416 -4.0000

>> Y = X(1:2,1:2:3)
Y =
 1.0000 3.0000
 3.4000 -4.0000

>> Z = X(2,:)
Z =
 3.4000 3.1416 -4.0000

This last example introduces a handy new feature. When the colon is given
alone in the second position, as in X(2,:) above, it means “all columns.”
When it is in the first position, e.g., X(:,2), it means “all rows”:

>> X(:,2)
ans =
 2.0000
 3.1416

A convenient notation is provided for specifying the last row or column in a
subarray operation. Instead of giving the number of the last row or column,
we use a keyword. A keyword is a word that is defined by the language to
have special meaning, and in this case the keyword is end:

42

>> X(1,2:end)
ans =

2 3

It works for direct element specification too:

>> X(end,1)
ans =
 3.4000

Arithmetic can be used with end , to specify a position relative to the end as
in this example:

>> X(1,end-1)
ans =

2

Since there are 3 columns in X, the expression end-1 represents 3 – 1, which
equals 2, so the command above is equivalent to X(1,2). This trick is more
commonly used in specifying a subarray:

>> X(:,end-1)
ans =

2
3.1416

>> X(:,1:end-1)
ans =

1 2
3.4 3.1416

Fancier expressions are fine as long as (a) the result is an integer and (b) the
integer is within the range of indices of the array:

>> X(1,(end+1)/2)
ans =

2

In the command above (end + 1)/2 = (3 + 1)/2 = 4/2 = 2.

The colon operator can be used on the left side of the equal sign as well, al-
lowing us to assign values to rectangular parts of the matrix. For example,

>> X(1:end,1) = -4.444
X =

-4.4440 2.0000 3.0000
-4.4440 3.1416 -4.0000

Note that, although we referenced only the first column of X in the statement,
the entire matrix is printed (unless we use the semicolon to suppress print-
ing, in which case nothing is printed).

Note also the single scalar value, -4.444, given on the right of the equal sign
was copied into each of the two elements specified by the colon operator.
There is no limit on the number of replications of a single element that
MATLAB will use to fill a subarray:

>> X(1:end,2:3) = 9
X =

-4.4440 9.0000 9.0000
-4.4440 9.0000 9.0000

If, instead of giving a single scalar value, we specify an array on the right that
matches the shape of the subarray on the left, the array on the right will re-
place the subarray on the left:

>> X(1:2,2:3) = [10 12; 100 120]
X =

-4.4440 10.0000 12.0000
-4.4440 100.0000 120.0000

If we fail to match the dimensions exactly, MATLAB complains:

>> X(1:2,2:3) = [10 12]
Subscripted assignment dimension mismatch.

Here we specified a 2-by-2 subarray on the left but gave a 1-by-2 array on the
right. Tsk, tsk!

43

Finally, when we specify, on the left of an assignment statement, a subarray
of a matrix that does not exist, MATLAB will instantly define a new matrix
for us just as when in the previous subsection we specified a single element
of a non-existent matrix:

>> ultimate_answer(2,4:5) = 42
ultimate_answer =

0 0 0 0 0
0 0 0 42 42

Also, as in the previous section, when we specified a single element outside
the range of an existing matrix, MATLAB will immediately enlarge a matrix
if elements are added to a subarray outside its range:

>> ultimate_answer(1:2,5:6) = [6 28; 496 8128]
ultimate_answer =
 0 0 0 0 6 28
 0 0 0 42 496 8128

Here is an example in which we use this enlargement feature of the subarray
operation to form a three-dimensional array:

>> A3d(:,:,3) = [1 2 3;4 5 6]
A3d(:,:,1) =
 0 0 0
 0 0 0
A3d(:,:,2) =
 0 0 0
 0 0 0
A3d(:,:,3) =
 1 2 3
 4 5 6

Before this command was issued, the array named A3d had not been defined.
In the command, on the left of the equals sign, we used three indices, which
means that A3d must be treated as a three-dimensional array. We used a co-
lon for the row index, we used another colon for the column index, and we
we used a 3 for the third index. As we mentioned at the beginning of this sec-
tion in subsection Matrices and Arrays, like “row”, and “column”, the third

dimension has a name too. It is called the page of the three-dimensional ar-
ray. Thus, we specified page 3 of A3d. Said another way, we have told
MATLAB to assign something to the third page of A3d. Since we used colons
for the other dimensions, we have provided MATLAB with values to the en-
tire third page.

MATLAB defines A3d for us and it assigns the value that we specified on the
right, which is a 2x3 array. We can see from the result that MATLAB displays
a three-dimensional array a bit differently from a matrix (i.e., two-
dimensional array) or vector (i.e., one-dimensional array). It gives each page
separately, printing the page in the same 2x3 tableau form that it uses for a
matrix. It can also be seen, that, as always, it fills in zeros to maintain a rectan-
gular shape, in this case a hyper-rectangular, 2x3x3 shape.

Combining Matrices To Build New Ones
MATLAB allows us to combine matrices in order to build new matrices, and
it gives us four options:

1. Matrices that have the same size and shape (same number of rows and
same number of columns) can be placed together in any arrangement that
forms a rectangular array just as can be done with scalars. They can be
placed on the same rows or in the same columns, as long as the result is rec-
tangular. For example, if A1 = [1 1 1; 1 1 1], A2 = [2 2 2; 2 2
2], and A3 = [3 3 3; 3 3 3] (all have 2 rows and three columns),
then the following combinations are legal:

>> [A1 A2 A3]
ans =
 1 1 1 2 2 2 3 3 3
 1 1 1 2 2 2 3 3 3

44

>> [A1; A2; A3]
ans =
 1 1 1
 1 1 1
 2 2 2
 2 2 2
 3 3 3
 3 3 3

>> [A1 A2 A3; A2 A2 A1]
ans =
 1 1 1 2 2 2 3 3 3
 1 1 1 2 2 2 3 3 3
 2 2 2 2 2 2 1 1 1
 2 2 2 2 2 2 1 1 1

2. Matrices that have the same number of rows can be placed side-by-side on
the same row. For example, if we construct these three matrices, all of
which have two rows:

>> B1 = [1;1]
B1 =
 1
 1

>> B2 = [2 2; 2 2]
B2 =
 2 2
 2 2

>> B3 = [3 3 3; 3 3 3]
B3 =
 3 3 3
 3 3 3

then the following combinations are legal:

>> [B1 B2]
ans =
 1 2 2
 1 2 2

>> [B1 B2 B3]
ans =
 1 2 2 3 3 3
 1 2 2 3 3 3

However, since it does not lead to a rectangular array, stacking them verti-
cally is illegal:

>> [B1;B2;B3]
Error using vertcat
CAT arguments dimensions are not consistent.

Here is a picture of what we were trying to create:

It looks nice, and it might be even useful (somehow), but it is not a rectangu-
lar arrangement, and so MATLAB will not make it into an array.

(NOTE: vertcat , which appears in the error message above, is a function
that MATLAB calls behind the scenes to stack matrices vertically. The suffix
“cat” stands for “catenate”, which, like “concatenate” means “to link to-
gether”.)

3. Matrices that have the same number of columns can be placed atop one
another in the same column. For example, if we construct these matrices,
all of which have two columns:

45

>> C1 = [1 1]
C1 =

1 1

>> C2 = [2 2; 2 2]
C2 =
 2 2
 2 2

>> C3 = [3 3; 3 3; 3 3]
C3 =
 3 3
 3 3
 3 3

then the following combinations are legal

>> [C1; C2]
ans =
 1 1
 2 2
 2 2

>> [C1; C2; C3]
ans =
 1 1
 2 2
 2 2
 3 3
 3 3
 3 3  

However, since it does not lead to a rectangular array, putting them on the
same row is illegal:

>> [C1 C2 C3]
Error using horzcat
CAT arguments dimensions are not consistent.

(NOTE: horzcat, which appears in this error, is function that MATLAB calls
behind the scenes to place matrices side-by-side. See also vertcat above.)

Combinations of rules 2 and 3 may be used simultaneously as long as the re-
sult is rectangular. For example, if we define these arrays:

A1 = [1; 1],
B2 = [2 2; 2 2],
C3 = [3 3 3; 3 3 3],
D4 = [4 4; 4 4; 4 4]
E5 = [5 5 5 5; 5 5 5 5; 5 5 5 5]

then the following combination is legal:

>> [A1 B2 C3; D4 E5]

ans =
 1 2 2 3 3 3
 1 2 2 3 3 3
 4 4 5 5 5 5
 4 4 5 5 5 5
 4 4 5 5 5 5  

Below we have drawn boxes around the assembled parts to show how they
fit together:

The Transposition Operator
A matrix may be changed by transposing it, or taking its transpose, which
means to interchange all its elements so that X(m,n) is replaced by X(n,m).
The results are that

• Each row of the new matrix is a column of the old matrix and vice versa.

• The number of rows of the new matrix equals the number of columns of
the old matrix and vice versa.

46

The operator that is used to transpose a matrix is the transposition operator,
and its symbol is an apostrophe, ', or single quote (usually found on the
same key as the double quote). This operator, which is called the transposi-
tion operator , the transpose operator, or the apostrophe operator comes af-
ter its operand, which is the matrix that is to be transposed:

>> H = [1 2 3; 4 5 6]
H =
 1 2 3
 4 5 6

>> H'
ans =
 1 4
 2 5
 3 6

You might have to look close to see this operator:

So, we might say that H' is the transposition of H, or H' equals H transposed.

The H in the expression H' is the operand which the transposition operator op-
erates on. An operator, such as the transposition operator, that takes only one
operand is called a unary operator, while an operator, like + (plus), which op-
erates on two operands (e.g., 1 + 2) is called a binary operator. The phrase
“binary operator” has nothing to do with the fact that the numbers are en-
coded in the computer in binary (though that is true). In this context the adjec-
tive “binary” instead describes the fact that there are two operands involved.
Unary operators are less common than binary operators, other examples be-
ing the unary minus, -H, which negates its operand and the unary plus, +H,

which, unlike the binary plus, does nothing(!). When the symbol for the op-
eration comes after the operand, as in H', the operator is said to be a postfix
operator. When it comes before the operand as in -H, the operator is said to be
a prefix operator. When it comes between operands, it is called an infix opera-
tor, as for example the plus operator in 1 + 2.

Note that that transposition of a row vector changes it to a column vector:

>> x = [1 4 7]
x =
 1 4 7

>> x'
ans =
 1
 4
 7

and, vice versa,

>> y = [1;4;7]
y =
 1
 4
 7

>> y'
ans =
 1 4 7

By employing the transposition operator, we can change the row vectors that
are always produced by the colon operator into column vectors:

>> x = (1:3:7)'
x =
 1
 4
 7

The parentheses are important here. If we omit them, nothing happens:

47

>> x = 1:3:7'
x =
 1 4 7

The reason that nothing happened is that only 7 is transposed when the pa-
rentheses are omitted, and 7’ = 7, because interchanging row and column
for a scalar, for which they are both equal to one, does nothing. The parenthe-
ses force the transposition operator to operate on the entire row vector, chang-
ing it to a column vector.

We need to point out a peculiar detail regarding the transposition operator: If
any of the elements of the original array are complex, meaning that they have
a nonzero imaginary component, then, during the transposition, each such
element will be replaced by its complex conjugate, which means that the sign
of the imaginary part is changed. If we alter the example above to include a
complex element, then the transpose will reveal this behavior:

>> H = [1 + 2i 2 3; 4 5 6]
H =

1 + 2i 2 3
4 5 6

>> H'
ans =

1 - 2i 4
2 5
3 6

The imaginary component of element (1,1) has been changed from +2i to
-2i. To take the transpose without taking any complex conjugates, it is neces-
sary to precede the prime (') by a period (.), or “dot”, as follows:

>> H.'
ans =

1 + 2i 4
2 5
3 6

This version of the transposition operator is called the dot-apostrophe opera-
tor. Of course if all the elements are real, these two versions of the transpose
operator do the same thing.

Arithmetic And Matrix Arithmetic
Arithmetic is the manipulation of numbers with addition, subtraction, multi-
plication, division, and exponentiation (raising a number to a power). The op-
erations are ordinarily thought of as applying to scalars, but they also apply
to arrays.

Addition and subtraction
You can add and subtract matrices (and vectors, which are just special cases
of matrices) that have the same size (i.e., same number of rows and columns),
producing a resulting matrix of the same size. Thus, for example, if Y is the
same size as X, then Z = X+Y is legal. The meaning of addition, which is also
called both “array addition” and “matrix addition”, for two dimensional ar-
rays is as follows:

Z = X + Y means that for each m and n,

$ Z(m,n) = X(m,n) + Y(m,n)

which means that

48

Here is a simple example involving only integer elements:

>> X = [1 5 -2; 3 0 7]
X =
 1 5 -2
 3 0 7

>> Y = [6 0 6; 2 2 1]
Y =
 6 0 6
 2 2 1

>> Z = X + Y
Z =
 7 5 4
 5 2 8

A separate addition is carried out for each of the six pairs of elements as de-
picted here:

Array addition works for arrays with any number of dimensions, as long as
the two operands have the same dimensions. Subtraction works similarly.

Both of the operators + and – operate on two operands. As mentioned in the
previous section, we call such operators binary operators, and now we have
seen that their operands can be arrays. Furthermore, both are infix operators,
as they are in ordinary algebraic notation and in most other programming lan-
guages, (i.e., X+Y, instead of XY+ or +XY). In fact all binary operators in
MATLAB, as in algebra and most other programming languages, are infix op-
erators.

Multiplication
Other binary operators include multiplication and division. There are two
types of multiplication in MATLAB—array multiplication, which multiplies
corresponding elements of the operands, and matrix multiplication, which
performs the standard multiplication operation used in linear algebra. As we
have mentioned before, MATLAB, like almost all computer languages, uses
the asterisk to indicate multiplication. Array multiplication is specified this
way, Z = X.*Y. Note the period, or “dot”, before the *. As with addition
and subtraction, array multiplication requires that the two matrices be of the
same size. The definition of array multiplication for two-dimensional arrays
is as follows:

Z = X.*Y means that for each m and n,

$ Z(m,n) = X(m,n)*Y(m,n)

Array multiplication is useful for the sort of operations that occur in spread-
sheets, where the cells of a sheet correspond to the elements of the array. Like

49

array addition and subtraction, array multiplication works for arrays with
any number of dimensions.

Matrix multiplication is different from array multiplication, as we mentioned
above. It is specified as follows: Z = X*Y (no dot this time). The require-
ments on the dimensions of its operands is different from array multiplica-
tion as well. It requires that its operands have no more than two dimensions,
and that the number of columns in X be equal to the number of rows in Y.
The resulting matrix, Z, has the same number of rows as X and the same num-
ber of columns as Y. These relationships are illustrated in the schematic equa-
tion that follows, where the arrows of the same color have equal dimensions:

The blue lines are the “inner” dimensions of X and Y in the multiplication.
The inner dimensions must be equal or multiplication is impossible. The red
and green lines show the “outer” dimensions of X and Y in the multiplication.
The outer dimensions determine the dimensions of the result.

The semantics of matrix multiplication in MATLAB (i.e., the meaning of ma-
trix multiplication) is the same as the standard definition from linear algebra:
If the inner dimensions are equal (so that multiplication is possible), then the
definition of matrix multiplication is as follows:

$ Z = X*Y means that for each row m and column n,

$ Z(m,n) = ∑
k

X(m,k)Y(k,n)

where the summation extends over all columns of X (and corresponding rows
of Y).

Here is an example:

>> X = [1 2 3;4 5 6;6 1 1;0 1 -3]
X =
 1 2 3
 4 5 6
 6 1 1
 0 1 -3

>> Y = [2 -2; 3 8; 7 4]
Y =
 2 -2
 3 8
 7 4

Z = X*Y
Z =
 29 26
 65 56
 22 0

-18 -4

A separate summation is carried out for each of the eight elements as de-
picted below:

An important special case of matrix multiplication X*Y occurs when Y is a
vector. In that case, the rule that the inner dimensions must match requires
that Y be a column vector and that its number of elements be equal to the

50

number of columns of X. The result will be a column vector whose length is
equal to the number of rows of X. This case will be especially important when
we take up problems in linear algebra in the Linear Algebra section of Chap-
ter 3. Here is an example of this special case using the same X as above with
lower case letters being used for vectors, as is customary:

>> y = [2;3;7]
y =
 2
 3
 7

>> z = X*y
z =
 29
 65
 22

-18

We note that y is equal to the first column of Y, and therefore the operations
performed in calculating X*y are shown in the first column of the depiction
of X*Y above.

Division
Division in MATLAB has four forms—two array forms and two matrix
forms. For the array forms, the operands must be of equal size and shape, as
for addition, subtraction, and array multiplication. The syntax includes a pe-
riod, as it does for array multiplication. Once again we use two-dimensional
arrays to illustrate:

Z = X./Y means that for each m and n,

 Z(m,n) = X(m,n)/Y(m,n)

! Z = X.\Y means that for each m and n,

$ Z(m,n) = Y(m,n)/X(m,n)

MATLAB is using the backslash operator in an interesting way here. Note
that in this second example of division the elemental operation is Y(m,n) di-
vided by X(m,n), while in the first example, it was the other way around.
You might say that X./Y means “X over Y”, while X.\Y means “X under
Y”, and in fact it even looks a bit like the X is sliding under the Y with the
backslash. At the least it is an easy way to remember which one is on top.

As with addition, subtraction, and array multiplication, array division works
for any number of dimensions.

The two forms of matrix division involve the inverse (or “pseudoinverse”) of
a matrix and are a bit more complicated. Well, actually they are a lot more
complicated. We will take them up in Chapter 3, which covers advanced con-
cepts, in the section entitled Linear Algebra.

Exponentiation
Finally, there are exponentiation operations, also called “power operations”.
Array exponentiation, Z = X.^Y , requires that X and Y have the same
shape. It means that for each m and n, Z(m,n) = X(m,n)^Y(m,n), where
the caret, ^, means “raised to the power of”. Matrix exponentiation, Z =
X^p , has several meanings depending on the shapes of Z and p, but we will
consider only the case in which p is a scalar with an integer value, in which
case X must be a square matrix (same number of rows and columns, as de-
fined at the beginning of this section). In this case, Z is defined to be equal to
the result of multiplying X by itself p times, using matrix multiplication.
Thus,

Z = X^p means that Z = X*X*X...*X

The reason that X must be a square matrix can be seen by noting that matrix
multiplication requires that the inner dimensions be equal (see the subsection

51

Multiplication above), and when X is multiplied by X, the inner dimensions
are in fact the rows and columns of X .

Operations involving scalars
The rules given above about the required shapes of the arrays and matrices
for various operations were actually overstated just a bit. There is a special
case in which one of the operands of addition, subtraction, multiplication, or
array division is a scalar. For that case, the other operand may have any
shape. Furthermore, in that case, array and matrix operations are the same!
For example, Z = c + Y, where c is a scalar. For each operation the result
is that Z has the same shape as Y and each element of Z is equal to c plus
the corresponding element of Y. Here is a depiction for two-dimensions:

Y + c is equal to c + Y. Here is an example of each:

Y = [1 2 3; -4 5 0]
 1 2 3

-4 5 0

>> c = 6
c =
 6

>> Z = c + Y
Z =
 7 8 9
 2 11 6

>> Z = Y + c
Z =
 7 8 9
 2 11 6

Subtraction works similarly, and likewise multiplication: c.*Y, c*Y, Y.*c,
and Y*c each mean that every element of Y is multiplied by c. There are
even more ways to do division involving an array and a constant: c.\Y,
Y./c, Y/c, and c\Y each mean that every element of Y is divided by c,
while c./Y and Y.\c each mean that c is divided by every element of Y to
(neither c/Y nor Y\c is legal).

Combining the colon and arithmetic operators
By combining the colon and arithmetic operators you can specify matrices
with complicated patterns. Here are some examples,

>> even = 2*[1:5]
even =
 2 4 6 8 10

>> odd_even = [2*[1:3]+1, 2*[1:3]]
odd_even =
 3 5 7 2 4 6

52

>> aaa = [[1:3]'*[1:3] , 0*[[1:3];[1:3];[1:3]]]
aaa =
 1 2 3 0 0 0
 2 4 6 0 0 0
 3 6 9 0 0 0

Functions For Transforming Arrays
MATLAB provides built-in functions for transforming existing matrices into
new ones. Table 1.1 lists some handy ones.

These functions can most easily be understood by means of some simple ex-
amples. They all work with input arrays of any number of dimensions, but
their behavior can all be illustrated, as usual, with two-dimensional inputs.
We begin with circshift:

>> A = [1 2 3 4;5 6 7 8;9 10 11 12; 13 14 15 16;17 18 19 20]
A =
 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16
 17 18 19 20

>> circshift(A,1)
ans =
 17 18 19 20
 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16

It can be seen that all but the last row of A has been shifted down; the last row
was moved to the top. The name circshift means “circular shift”, and the
meaning should be clear. The values move in a circular way with the values
shifted down from the top row replaced by the ones at the bottom, which “cir-
cle” around to the top. This function is sometimes needed when an array of
data is produced by one function in the right order to be processed by an-
other function but beginning at the wrong place. For example, a function may
produce weather data for days of the week on successive rows beginning
with Monday, while the function to process it expects the week to start with
Sunday.

The shift can be increased by increasing the second argument:

>> circshift(A,3)
ans =
 9 10 11 12
 13 14 15 16
 17 18 19 20
 1 2 3 4
 5 6 7 8

A negative shift goes the other way:

>> circshift(A,-3)
ans =
 13 14 15 16
 17 18 19 20
 1 2 3 4
 5 6 7 8
 9 10 11 12

And what if we want to shift horizontally, instead of vertically? That is only a
bit more difficult. We specify that the shift is for the second dimension, by
making the second argument a vector, and putting the desired shift in the sec-
ond element:

53

Table 1.1 Functions for transforming matrices

FUNCTION DESCRIPTION
circshift shifts existing values along rows or columns, leaving shape the same

permute permute the dimensions of an array

repmat makes an array consisting of copies of an existing array

reshape produces a new shape by reorganizing elements of an existing array

>> circshift(A,[0,1])
ans =
 4 1 2 3
 8 5 6 7
 12 9 10 11
 16 13 14 15
 20 17 18 19

It is possible to shift in both directions at the same time:

>> circshift(A,[1,1])
ans =
 20 17 18 19
 4 1 2 3
 8 5 6 7
 12 9 10 11
 16 13 14 15

Note that the order in which MATLAB carries out the two shifts is unimpor-
tant; it has no effect on the result.

Now, let’s look at permute, which allows you to turn rows into columns and
columns into rows, just as the transpose operator does for two-dimensional
arrays and also allows you to interchange dimensions for three-dimensional
arrays and higher. First, just to get acquainted with it, let’s use it to do some-
thing that we would never need to do: Let’s see how we can use it to dupli-
cate the action of the transpose operator. We start with a 2x3 matrix:

>> A = [1 2 3; 4 5 6]
A =
 1 2 3
 4 5 6

We first transpose it with the transpose operator:

>> A_transpose = A'
A_transpose =
 1 4
 2 5
 3 6

As expected, the dimensions have been swapped to 3x2.

Now we do the same thing using permute:

>> A_permute = permute(A,[2,1])
A_permute =
 1 4
 2 5
 3 6

The function permute takes two input arguments. The first argument is the
array to be transformed; the second one is a vector of numbers representing
the new order of dimensions. The 2 in the vector [2,1] means “change the
2nd dimension to be the 1st (change rows to columns), and the 1 means
“change the 1st dimension to be the 2nd (change columns to rows). The sec-
ond number is redundant when only two dimensions are involved, but not
for higher dimensions. OK. Transpose is a perfectly good operator, so we
don’t need permute for transposing matrices, but we will see that it comes up
short for higher-dimensional arrays. Let’s suppose we have defined this
2x3x4 array:

>> A = randi(89,2,3,4)+10
A(:,:,1) =
 42 91 45
 50 85 76
A(:,:,2) =
 36 37 92
 37 13 72
A(:,:,3) =
 31 81 30
 55 44 75
A(:,:,4) =
 79 66 56
 72 78 40

We might want to transpose each of the pages. Let’s try that with the trans-
pose operator:

54

>> A'
Error using '
Transpose on ND array is not defined.

MATLAB complains that its transpose operator does not work for an “ND
array”, which means an n-dimensional array in which n is greater than 2. So
let’s put permute to work on the problem:

>> A_permute = permute(A,[2,1,3])
A_permute(:,:,1) =
 42 50
 91 85
 45 76
A_permute(:,:,2) =
 36 37
 37 13
 92 72
A_permute(:,:,3) =
 31 55
 81 44
 30 75
A_permute(:,:,4) =
 79 72
 66 78
 56 40

We have gone from a 2x3x4 array to a 3x2x4 array. Finally, let’s scramble all
three dimensions. We’ll put the 3rd dimension first, the 1st dimension sec-
ond, and the 2nd dimension third:

>> A_permute = permute(A,[3,1,2])
A_permute(:,:,1) =
 42 50
 36 37
 31 55
 79 72
A_permute(:,:,2) =
 91 85
 37 13
 81 44
 66 78
A_permute(:,:,3) =
 45 76
 92 72
 30 75
 56 40

We now have a 4x2x3 array.

Next we look at examples for repmat, whose name means “replicate ma-
trix”:

>> A = [1 2 3; 4 5 6]
A =
 1 2 3
 4 5 6

>> repmat(A,1,2)
ans =
 1 2 3 1 2 3
 4 5 6 4 5 6

It can be seen from this example that repmat has returned a matrix that con-
tains two copies of A, arranged side by side. The second and third arguments
instructed repmat to make one copy in the first dimension of A (vertical di-
rection) and two copies in the second dimension (the horizontal direction).
Here is an example of its use. Suppose we have measured a set of three-
dimensional positions on a rigid object, and each point is stored in one col-
umn of the array P—like this:

55

>> P = [1 5 2 7 5 4; 3 5 3 6 7 0; 4 3 5 4 3 8]
P =
 1 5 2 7 5 4
 3 5 3 6 7 0
 4 3 5 4 3 8

Now, suppose the object is nudged by the following displacement vector

>> nudge = [0.2; 0.1; 0.3]
nudge =

0.2
0.1
0.3

To change the points to their new positions, maybe we can add nudge to P:

> P_nudged = P + nudge
Error using +
Matrix dimensions must agree.

As we have seen above, MATLAB will let us add a scalar to an array but not
a vector. The only acceptable shape of non-scalar array we can add to P is one
with the same shape as P itself—3-by-6. What we need is to put six copies of
shift side-by-side into an array, and repmat can do just that:

>> P_nudged = P + repmat(nudge,1,6)
ans =
 1.2 5.2 2.2 7.2 5.2 4.2
 3.1 5.1 3.1 6.1 7.1 0.1
 4.3 3.3 5.3 4.3 3.3 8.3

Mission accomplished! There is a second option for specifying the degree of
replication along the dimensions of A:

>> repmat(A,[1,2])
ans =
 1 2 3 1 2 3
 4 5 6 4 5 6

With this second option, the replication numbers are listed in a vector. This
option is handy when the number of dimensions of A is not known until the

repmat is called. It is also the more general option as can be seen when we
try to specify replication in three dimensions:

>> repmat(A,2,2,3)
Error using repmat
Too many input arguments.

Three dimensions is too many for the first option, but it is no problem for the
second one:

>> repmat(A,[2,2,3])
ans(:,:,1) =
 1 2 3 1 2 3
 4 5 6 4 5 6
 1 2 3 1 2 3
 4 5 6 4 5 6
ans(:,:,2) =
 1 2 3 1 2 3
 4 5 6 4 5 6
 1 2 3 1 2 3
 4 5 6 4 5 6
ans(:,:,3) =
 1 2 3 1 2 3
 4 5 6 4 5 6
 1 2 3 1 2 3
 4 5 6 4 5 6

We see from this result that repmat has the ability to increase the number of
dimensions—in this case from two to three.

The next function is reshape. Like repmat, it can change the number of di-
mensions, but like circshift , it does not change the number of elements,
as can be seen in this example:

56

>> B = [11 12 13 14; 21 22 23 24;
31 32 33 34; 41 42 43 44;
51 52 53 54; 61 62 63 64]

B =
 11 12 13 14
 21 22 23 24
 31 32 33 34
 41 42 43 44
 51 52 53 54
 61 62 63 64

>> C = reshape(B,8,3)
C =
 11 32 53
 21 42 63
 31 52 14
 41 62 24
 51 13 34
 61 23 44
 12 33 54
 22 43 64

B is a 6-by-4 array, which has 24 elements, and reshape has created a new
array, C, which is an 8-by-3 array, which also contains 24 elements. The ele-
ments are taken by reshape from its input matrix in column-major order
and they are inserted into its output matrix in column-major order. Thus,
B(1,1) is copied into C(1,1), B(2,1) is copied into C(2,1), …, B(6,1)
is copied into C(6,1), and we have reached the end of the first column of B.
The sequence then moves to the first element of the second column of B—
B(1,2), which is copied into C(7,1), then B(2,2) is copied into C(1,8),
and we have reached the end of the first column of C. Copying into C contin-
ues from the beginning of its second column with B(3,2) being copied into
C(1,2), etc.

In the example above, the number of dimensions—two—was left un-
changed, but in the next example, reshape produces a three-dimensional
output array D from the two-dimensional input array B:

>> D = reshape(B,2,3,4)
D(:,:,1) =
 11 31 51
 21 41 61
D(:,:,2) =
 12 32 52
 22 42 62
D(:,:,3) =
 13 33 53
 23 43 63
D(:,:,4) =
 14 34 54
 24 44 64

Any combination of input and output dimensions is possible as long as the
number of elements, which equals the product of the dimensions, is the
same for the input and output matrices. This rule allows reshape to provide
a shorthand version of dimension specifications. If one of the dimensions is
the empty matrix, [], then that empty matrix will be replaced by the num-
ber that will cause the output array to have the same number of elements as
the input:

>> D = reshape(B,2,[],4)
D(:,:,1) =
 11 31 51
 21 41 61
D(:,:,2) =
 12 32 52
 22 42 62
D(:,:,3) =
 13 33 53
 23 43 63
D(:,:,4) =
 14 34 54
 24 44 64

In this case [] was replaced by 3, and the result is the same as the example in
which all three dimensions were given explicitly.

Like repmat, reshape also accepts its dimensions in vector form. For exam-
ple, reshape(B,[2,3,4]) is equivalent to reshape(B,2,3,4).

57

We conclude with one final example:

>> A = [1 2 3;4 5 6]
A =
 1 2 3
 4 5 6

>> v = reshape(A,6,1)
v =
 1
 4
 2
 5
 3
 6

In this case reshape returns a column vector of the elements in A. An equiva-
lent result is produced by the command v = reshape(A,[],1), which
means put all the elements of A into a column vector v. There is an even sim-
pler way to get this job done:

>> A = [1 2 3;4 5 6]
A =
 1 2 3
 4 5 6

>> v = A(:)
v =
 1
 4
 2
 5
 3
 6

One might have expected MATLAB to issue an error message, since only one
index was given for a two-dimensional array, but it is not an error. This is an
example of linear indexing, which is the specification of just one index for an
array, regardless of its number of dimensions. The meaning is that the array
is treated as a column vector and the indexing is in column-major order. If the

successive indices are written out, then the row index changes fastest. For an
M-by-N matrix X, column-major order would be as follows:

(1,1), (2,1), (3,1), ..., (M,1), (1,2), (2,2), (3,2), ...,
(M,2), (1,3), (2,3), (3,3), ..., (M,3),..., (1,N), (2,N),
(3,N), ..., (M,N),

as is illustrated in Figure 1.13.

When the symbol : is used as a linear-index, it means “all the elements” in
column-major order, just as it does for an ordinary vector. The number 5,
when used as a linear index, means the fifth element in column-major order,
and all other linear indexing works in the same way: 1:3 means the first 3
elements, end-3:end means the last four elements, etc., in column-major
order, as the following excerpts from the Command Window illustrate:

>> A(5)

ans =
 3

58

Figure 1.13 Column-major order

>> A(1:3)
ans =
 1 4 2

>> A(end-3:end)
ans =
 2 5 3 6

Operator Precedence And Associativity
We have seen that matrices, vectors, and scalars can be operated on by +, -,
, /, \, ^, and the “dotted” versions of these operators (e.g., .). Arbitrarily
complicated expressions can be formed by combining more than one opera-
tion, e.g.,

>> x = a*b + c;
>> y = c + a*b;
>> z = a*(b + c);

It is clear from our experience with algebra that in the first command above,
a and b are multiplied first. Their product is then added to c. The same se-
quence is followed for the second command, even though the plus sign pre-
cedes the multiplication sign. On the other hand, in the third command, be-
cause of the parentheses, b and c are added first, and their sum is then multi-
plied by a.

We know intuitively what to expect because of our familiarity with these op-
erations, but MATLAB has no intuition. It must follow a set of rules to deter-
mine the order in which to apply operations.

Precedence
It is clear from the first two commands that the order in which the operations
are carried out is not necessarily determined by the order in which they occur
in the command. Instead, the operators are ranked so that some act before
others, regardless of the order in which they appear. From this example, it is
clear that * ranks above + because it acts before + in the expression c +

a*b. An operator’s ranking relative to other operators to determine the order
in which they are applied within an expression is called its precedence.
MATLAB uses operator precedence to determine the order in which to apply
operators in an expression that includes more than one type of operator. The
highest precedence belongs to parentheses. The precedence of the arithmetic
operators, transposition, and the colon operator is given in Table 1.2. A lower
number indicates higher precedence and means that the operator is applied
earlier in the expression. The complete table for all MATLAB operators is
given in Chapter 2 in Table 2.13 of the section entitled Selection.

If a pair of parentheses occurs in an expression, as, for example in z =
8*(4+2), then the expression inside the parentheses is evaluated first. So 4
+ 2 is evaluated to get 6 before the multiplication is carried out, and the re-
sult is 8*6, which produces 48. If more than one set of parentheses occur,
then more deeply nested sets operate earlier than less deeply nested sets, as
in ordinary arithmetic expressions.

While we are familiar enough with the precedences of the arithmetic opera-
tors that we can guess what will happen when they are combined, we have
no experience outside MATLAB with the colon operator, so we may not
know how to interpret 1:3 + 10, which combines the colon operator and
the plus operator. If the colon were to operate first, then the result would be
[1,2,3] + 10, which equals [11,12,13]. If instead the plus operates

59

Table 1.2 Operator Precedence

PRECEDENCE OPERATOR
0 Parentheses: (...)

1 Exponentiation ^ and Transpose '

2 Unary +, Unary –, and logical negation: ~

3 Multiplication and Division (array and matrix)
4 Addition and Subtraction

5 Colon operator :

first, then the result will be [1:13] , which equals
[1,2,3,4,5,6,7,8,9,10,11,12,13]. MATLAB follows its precedence
table slavishly, so we can consult it to find out which answer is correct. When
we do, we find that the precedence of the plus operator is 2, while the prece-
dence of the colon operator is 5. Lower numbers means higher precedence, so
plus has the higher precedence and will operate first. Let’s check it out in the
Command Window:

>> 1:3 + 10
ans =
 1 2 3 4 5 6 7 8 9 10 11 12 13

As expected, MATLAB has followed its precedence rules: the plus operation
was carried out before the colon operation.

Associativity
If more than one binary operator of the same precedence occurs in an expres-
sion, then the precedence table is no help. For example, in the expression 4-
8-2, the table does not tell us whether the left - acts first or the right -. In
other words, the table does not tell us whether this expression means (4-
8)-2, for which the lefthand - acts first and which equals -6, or 4-(8-2),
for which the righthand - acts first and which equals – 2. In fact, the first one
is correct. MATLAB’s rule for the order for applying multiple operators of the
same precedence is that the order is left-to-right. The order in which opera-
tors of equal precedence are applied is called the associativity of the opera-
tors. Operators that operate from left-to-right, like all those in MATLAB, are
called left-to-right associative or left-associative. As a second example, con-
sider 8/4*2, which involves two operators, * and /, that have the same
precedence. It is very tempting to think that this expression means 8/(4*2),
which equals 1, but, in fact, since the order of application of operators of the
same precedence is always left-to-right in MATLAB, the meaning is in fact
(8/4)*2, which equals 4. Here are some more examples of the left-to-right
rule:

2^3^4 equals (2^3)^4 , which equals (23)4 , which equals 4096

2/8*4 equals (2/8)*4, which equals 0.25 * 4, which equals 1

2-3+4 equals (2-3)+4, which equals 3

Left-to-right associativity for operators of the same precedence is common in
computer programming languages. Fortran, however, employs right-to-left
associativity for exponentiation. Its exponentiation operator is **. Thus the
MATLAB expression 2^3^4 , which MATLAB evaluates left-to-right as
4096, would be written in Fortran this way: 2**3**4, but it would be equal
to 2**(3**4), which equals a somewhat larger number:
2417851639229258349412352. There is no exponentiation operation in C, C++,
or Java. In these languages x^y is achieved by calling a function called
“pow”, for “power”: pow(x,y). Thus, for example, in C and C++, the first
expression above must be written as pow(pow(2,3),4). This expression
looks confusing (and sounds dangerous!). MATLAB’s syntax is much more
natural.

Associativity has another meaning as well. It is a property that some opera-
tors possess. If an operator has associativity, then the order of application of
operators does not change the outcome. Consider multiplication, for exam-
ple. (A*B)*C is equal to A*(B*C), and so multiplication has the property of
associativity. It is said to be associative. Addition is associative as well. Con-
sider subtraction, on the other hand, for which A-(B-C) is not equal to (A-
B)-C. Subtraction is not associative, nor are division and exponentiation. In
other words, neither division nor exponentiation possesses associativity.

60

Additional Online Resources

• Video lectures by the authors:

" Lesson 2.1 Introduction to Matrices and Operators (11:25)

" Lesson 2.2 The Colon Operator (8:45)

" Lesson 2.3 Accessing Parts of a Matrix (21:33)

" Lesson 2.4 Combining and Transforming Matrices (10:06)

" Lesson 2.5 Arithmetic Part 1 (17:49)

" Lesson 2.6 Arithmetic Part 2 (11:52)

" Lesson 2.7 Operator Precedence (13:31)

Concepts From This Section
Computer Science and Mathematics:

matrix
scalar
function
argument
column-major order
vector

column vector
row vector

complex numbers
operand
unary operators
postfix and prefix operators
transposition
matrix arithmetic
operator precedence and associativity

MATLAB:
matrix
empty matrix
scalar
function
argument
vector

column vector
row vector

complex numbers
colon operator
subarray operations
combining matrices
transposition
matrix operations and array operations
operator precedence and associativity

61

https://www.youtube.com/watch?v=3T4reHaJtXE
https://www.youtube.com/watch?v=3T4reHaJtXE
https://class.coursera.org/matlab-001/lecture/17
https://class.coursera.org/matlab-001/lecture/17
https://www.youtube.com/watch?v=H_DIbljMpZs
https://www.youtube.com/watch?v=H_DIbljMpZs
https://www.youtube.com/watch?v=EZY53PMmlZA
https://www.youtube.com/watch?v=EZY53PMmlZA
https://www.youtube.com/watch?v=p7sBHhmdVf0
https://www.youtube.com/watch?v=p7sBHhmdVf0
https://www.youtube.com/watch?v=vDQHJUn2LyU
https://www.youtube.com/watch?v=vDQHJUn2LyU
https://www.youtube.com/watch?v=x_RuZzu-0L8
https://www.youtube.com/watch?v=x_RuZzu-0L8

This chapter will show you how to create programs. The title, Procedural Programming, refers to the
most common programming paradigm, the one that MATLAB supports also. It means that the
program is organized into procedures (also called functions) that solve parts of the problem.
Functions can be invoked from the Command Window or each other to create complex programs.

CHAPTER 2

62

Procedural Programming

SECTION 1

So far, we have worked primarily in the MATLAB Com-
mand Window. We have performed simple computa-
tions, created matrices, applied various operators and
used built-in functions, such as size or plot. You may
have asked yourself a couple of questions. What if I
want to issue more than a single command at a time?
How can I create my own functions? This section an-
swers both of these questions.

MATLAB, just like other programming languages,
comes with hundreds of built-in functions. Still it cannot
possibly contain all functions that would be useful to
carry out any given programming task. It is, therefore, a
very important characteristic of programming languages
to support the creation of user-defined functions. In fact,
a procedural computer program is nothing more than a
collection of functions that call each other.

Objectives

Functions let us break up
complex problems into
smaller, more manageable
parts.
(1) We will learn how functions

let you create reusable
software components that
can be applied in many
different programs.

(2) We will learn how the
environment inside a
function is separated from
the outside via a well
defined interface through
which the outside world
communicates with it.

(3) We will learn how to define
a function to allow input to
it when it initiates its
execution and output from
it when it is done.

(4) We will learn how scripts
serve as a collection of
commands that execute as
if they were typed into the
Command Window.

Wouldn’t it be great if you could build a set of useful programs that you could use and reuse whenever you needed them? This is
exactly what functions let you do. With functions, you can create your own toolbox!

Functions

63

Without further ado, let’s create our first MATLAB function. The built-in
MATLAB function rand, generates a set of pseudorandom numbers that are
greater than 0 and smaller than 1.0. When we call rand, we can provide pa-
rameters that specify how many numbers rand will generate. For example,
rand(n) will create an n-by-n matrix of numbers, while rand(n,m) gener-
ates an n-by-m matrix of numbers. For more information, type help rand in
the Command Window. Let’s say that we often want to create a 3-by-4 matrix
of random numbers that are between 1 and 10. The code would look some-
thing like this:

>> a = 9 * rand(3,4) + 1

a =
 6.1586 3.6185 4.6575 5.2354
 5.5691 5.5103 6.3379 7.0671
 2.3099 2.2768 8.2844 7.8146

We call rand with 3 and 4 specifying that we need a 3-by-4 matrix. The func-
tion returns numbers between 0 and 1, so multiplying by 9 and adding 1 cre-
ates exactly what we want: numbers between 1 and 10.

While not terribly complicated, it is still error-prone to type this line in the
Command Window every time we need it. Let’s create a function instead, so
that we need only to remember the function’s name when we need the func-
tionality. Type edit myRand in the Command Window. This opens a text edi-
tor with which we can enter our code:

function myRand
a = 9* rand(3,4) + 1

According to the syntax rules, a function always starts with the word func-
tion followed by the name of the function. The word “function” is a key-
word. As we learned in the section Matrices and Operations of Chapter 1, a
keyword is a word that is defined by the language to have special meaning.
In most cases, a keyword is also a reserved word, meaning that it cannot be
used as a variable name or a function name. A list of all reserved keywords

can be gotten by typing the command iskeyword in the Command Win-
dow. By default, MATLAB highlights all keywords in blue. We will introduce
other keywords in later sections.

The same rules apply to selection of function names that apply to the selec-
tion of variable names. It is very important to come up with meaningful
names, so that just from the name you have a pretty good idea of what the
function does. We chose myRand, but rand1to10 or rand3by4_1to10
might have been more descriptive if a bit cumbersome. Following the first
line of the function, we can simply enter our code line-by-line. MATLAB’s
syntax rules allow an optional “end” statement at the end of the function, as
for example:

function myRand
a = 9* rand(3,4) + 1  
end
 
which, as far as MATLAB is concerned is exactly the same function as our
first version. As can be seen by its color, end is a keyword. (When it is used as
an index, it is not blue.) This option is convenient for programmers who fre-
quently program in languages in which each function must be terminated by
end, who will tend to type it by habit, and to whom it just looks wrong to
leave it off. MATLAB allows an optional semicolon after end. MATLAB pro-
vides additional latitude in spacing also. Blank lines can be put anywhere,
and leading spaces or tabs on individual lines are ignored. Here is a third,
completely equivalent version of the function with all three options:

function myRand

 a = 9* rand(3,4) + 1

end
 
The end is required to terminate a function only in special situations (the nest-
ing of functions inside other functions, which is not covered in this book). In
the end, end is rarely used by MATLAB programmers to end functions. And

64

that ends that! Indentation of all commands in a function and blank lines be-
fore and after them are also uncommon, but they are sometimes seen, so this
book shows examples both with these options and without them.

We execute the function by simply typing its name in the Command Win-
dow:

>> myRand

a =
 2.1782 5.6458 1.6019 9.0056
 4.0917 8.1700 3.2363 9.9083
 6.9675 6.1894 9.1781 3.9129

>> myRand

a =
 9.8868 6.4121 4.3951 2.3712
 6.5248 8.1801 2.5718 4.4508
 6.8687 6.4940 1.5392 1.1178

The function seems to be working well. It creates a 3-by-4 array of random
numbers between 1 and 10. For more complex functions, much more testing
would be needed, but for this one, we can be satisfied. Or can we?

Let’s try it again:

>> clear
>> myRand

a =
 9.6884 1.2606 4.2567 1.5158
 3.8637 4.5746 8.0241 1.4319
 9.6004 3.5003 5.0110 5.7773

>> a
Undefined function or variable 'a'.

What is going on? We cleared all variables from the memory with the clear
command (a description of clear was given previously), but after that it
was redefined while myRand was running. So why is a undefined?

The reason is that a function is like Las Vegas. What happens in a function
stays in the function. The code inside the function is separated from the out-
side world. It has its own workspace and cannot access the workspace of the
Command Window (recall the MATLAB Workspace Window that shows all
the variables that are defined and accessible). Furthermore, the variables in-
side the function are not visible from the outside, so they do not appear in the
Command Window workspace.

This is a very important and useful concept. The code you write in a function
lives in its own sandbox. It cannot mess up the workspace of the Command
Window and, if it was called from another function, it cannot do anything to
that function’s workspace either. For example, if you have a variable x de-
fined in the Command Window and you have a function that uses a variable
x also, those are two different variables. So, calling the function will not
change the value of the x in the workspace of the Command Window. Imag-
ine for a second that it could change x or any other Command-Window vari-
able for that matter. After a function call, you would have no idea which vari-
ables in the Command Window were changed by it. It would be a disaster.

So, why was variable a undefined in the workspace? Because a was defined
only in the function myRand and consequently, it had no effect on the
Command-Window workspace. But then how did we see the value of a in
the Command Window when we called myRand? We tricked you! There is
no semicolon at the end of the line inside the function, so we did not sup-
press printing. The function simply printed out the value of a inside the func-
tion! Although a is hidden inside myRand, printout is allowed.

Variables inside functions are called “local variables”. A local variable is ac-
cessible only by statements inside the function, and they exist only during
the function call. Once the function finishes its execution (or returns, using
computer science terminology), all local variables cease to exist.

65

Function Output
The question then is: how can we get anything out of a function and into a
variable in the Command Window? Functions would not be very useful if
they were not able to propagate their results back to the caller. The answer is
that functions can provide results through output arguments. An output argu-
ment is a local variable that you designate to hold a value that is passed to
the caller by the function. Let’s see how it’s done:

function a = myRand
a = 9* rand(3,4) + 1

Do you see the difference? We changed the first line slightly. After the func-
tion keyword we inserted a variable name (a in this case) and an equal sign
before the function name. What this means is that a is the output of the
myRand function and when the function returns, its value will be the value of
a. Let’s try it:

>> myRand

a =
 1.7733 5.3673 7.9170 4.5759
 4.7141 6.5068 7.6740 3.3631
 9.8676 1.1010 2.9561 1.7077

ans =
 1.7733 5.3673 7.9170 4.5759
 4.7141 6.5068 7.6740 3.3631
 9.8676 1.1010 2.9561 1.7077

>> a
Undefined function or variable 'a'.  

Notice how we still print the value of a inside the function due to the lack of
a semicolon, but now we also have a value returned by the function that
MATLAB stores in the ans variable by default. Of course, a is still undefined
in the workspace of the Command Window, but now we know why.

Let’s add the semicolon inside the function:

function a = myRand
a = 9* rand(3,4) + 1;

and try again:

>> b = myRand

b =
 2.9811 8.5511 9.5742 7.2589
 5.3649 4.7184 4.0159 9.3050
 5.6377 4.6196 2.2038 5.3877

>> b

b =
 2.9811 8.5511 9.5742 7.2589
 5.3649 4.7184 4.0159 9.3050
 5.6377 4.6196 2.2038 5.3877

>> a
Undefined function or variable 'a'.

Notice that we do not have a printed anymore due to the semicolon. Also, we
assigned the output of the function to the variable b which is created in the
Command-Window workspace. The a in the Command Window is still unde-
fined. If we want a variable a to contain the output of the function, we have
to do this:

>> a = myRand

a =
 6.1722 6.5330 7.3249 9.8977
 1.1449 7.0172 5.2363 5.3673
 9.4135 4.7960 4.6800 2.0554

>> a

a =
 6.1722 6.5330 7.3249 9.8977
 1.1449 7.0172 5.2363 5.3673
 9.4135 4.7960 4.6800 2.0554

66

A very important point is, however, that this variable a is a brand new vari-
able that has been just created. After its creation, it was assigned the return
value of the function myRand. The local variable a inside the myRand func-
tion supplied the return value of the function, but it is a completely different
variable, and it does not exist anymore. It disappeared when the function re-
turned.

Function Input
Our little myRand function works fine, but what if you wanted a 3-by-4 array
of random numbers between 2 and 22 instead of 1 and 10? How about 10 and
100? Or −10 and 10? Writing a new function for every possible combination is
not really a good solution. Wouldn’t it be great, if we could tell our myRand
function the lower and upper limit somehow and let it supply the correct an-
swer?

Fortunately, it is quite easy to do just that. We can supply parameters to the
function when we call it. These parameters are called “input arguments”. An
input argument is a local variable that you designate to receive a value that
is input into the function. Let’s modify myRand, so that it works with user
supplied lower and upper limits:

function a = myRand(low, high)
a = (high-low) * rand(3,4) + low;

The syntax to specify input arguments is to put them in a comma-separated
list in parenthesis after the name of the function. The input arguments, low
and high in this case, become local variables inside myRand. The only differ-
ence between them and regular local variables is that input arguments are as-
signed the values that the caller of the function specifies in the actual func-
tion call.

For example, when we call myRand like this

>> myRand(10,100)
ans =
 29.3030 43.5362 33.7959 82.2776
 54.5405 42.1009 77.0064 37.3963
 12.9701 34.7236 21.8515 40.8562

the variable low will be assigned 10, while variable high will get the value
100. Inside myRand, we call the rand function, multiply the resulting array
by 90, add 10, and assign the result to the local variable a which happens to
be the output argument too. The value of a is returned to the caller as the re-
sult of the function call and all local variables—a, low, high—disappear.

The caller can also use variables as input arguments. Consider this:

>> x = 0.5
x =
 0.5000

>> y = 0.6
y =
 0.6000

>> z = myRand(x,y)
z =
 0.5541 0.5043 0.5777 0.5834
 0.5099 0.5142 0.5358 0.5363
 0.5857 0.5217 0.5025 0.5789

>> x
x =
 0.5000

>> low
Undefined function or variable 'low'.

We defined variables x and y and passed them as input arguments to func-
tion myRand. What happened was that the value of variable x was assigned
to the input argument (and local variable) of myRand called low. Similarly,
the value of y was assigned to high. The function myRand computed the re-
sult in output argument (and local variable) a, and the value of a was re-

67

turned as the result of the function and assigned to variable z in the
Command-Window workspace. Inside the function, the variable x, y and z
are not visible or accessible. Again, once the function returned, all its local
variables ceased to exist.

Multiple Outputs
We have seen how easy it is to provide multiple input arguments to a func-
tion. But can we return multiple results? Fortunately, MATLAB, unlike many
other programming languages (e.g., C, C++, Java), allows you to do that.
Let’s modify our myRand function so that it also returns the sum of the ele-
ments of the generated random array.

There is a built-in MATLAB function called sum. It computes a sum, as its
name implies, but there is one important point to remember about sum (and
many other frequently used built-in MATLAB functions that work on arrays
such as min, max, mean, etc.). As expected, sum returns the sum of the ele-
ments of a vector:

>> sum(1:100)
ans =

5050

>> sum((1:100)')
ans =

5050

and it does not matter whether the input argument is a column or row vector.
However, if we pass a matrix to sum, it returns a vector: the sum of the ele-
ments in each column of the matrix. Check this out:

>> z = [1:5;5:-1:1]
z =
 1 2 3 4 5
 5 4 3 2 1

>> sum(z)
ans =
 6 6 6 6 6

To figure out how sum works with higher dimensional arrays, try it or check
out MATLAB’s help (type, help sum). In order to get the sum of all the ele-
ments of an array, say A, then we can sum all the elements this way:
sum(A(:)), since A(:) is a vector of all the elements of A. But it only
works with vectors. To get the sum of all the elements of two-dimensional
array returned by a function, say rand, we can call sum twice, like this:

>> sum(sum(rand(1e3,1e3)))
ans =
 4.9973e+05

Here, we first created a 1000-by-1000 matrix of random numbers. The first
call of sum produces as output a 1000-element vector that contains that sums
of each column of the matrix. Finally, the second call to sum adds up the ele-
ments of that vector, giving us the sum of the elements of the original matrix,
that is, the sum of one million random numbers.

It is interesting to see that the sum is close to 500,000. The reason is that rand
generates random numbers of uniform distribution. What this means is that
any number between 0 and 1 has the same probability of being returned by
rand. Hence, if we call rand a large number of times, the average of the num-
bers returned should be close to 0.5. Hence, their sum should be close to the
half of the number of random numbers we added up. Run this code a few
times. You will see that the sum will be pretty close to 5.000e+05 every
time.

Now we are ready to modify myRand to provide not just the random matrix
but also the sum of its elements:

68

function [a, s] = myRand(low, high)
a = (high-low) * rand(3,4) + low;
s = sum(a(:));

As you can see, the syntax rules call for a comma-separated list of output ar-
guments enclosed inside square brackets. Inside the function, the new output
argument, s, is just another local variable, except that its value will be re-
turned by the function. Or will it?

>> myRand(1,2)
ans =
 1.7298 1.2376 1.7623 1.6364
 1.1760 1.2047 1.3377 1.1386
 1.1159 1.0868 1.8096 1.2190

Seemingly nothing different happened. The reason is that we did not supply
a variable to catch the second output, the sum. In fact, we did not supply any-
thing to catch even the random matrix. However, MATLAB always assigns
the first returned output to the ans variable when the output is not assigned
to a variable explicitly by the user. Hence, we got to see the matrix, but not
the sum. Try this instead:

>> x = myRand(-1,1)
x =

-0.7877 -0.2177 0.3730 0.7976
0.2124 0.3709 0.4674 0.1676
0.0071 -0.2833 -0.9711 0.5832

It happened again. Still we don’t get the sum! The reason is that we supplied
only one variable to receive the output of the function. If we want to get both
results, we have to do it the right way:

>> [x y] = myRand(0,1)
x =
 0.7677 0.6132 0.5389 0.8967
 0.5453 0.6289 0.1370 0.4115
 0.1004 0.9295 0.6304 0.4258
y =
 6.6252

The required syntax is to put the variables that we want the results assigned
to in squared brackets separated by spaces and/or commas. Now we get
both results, the matrix and the sum of its elements.

You may be wondering about what happens to output arguments that are not
assigned to variables when the function returns. These values are simply dis-
carded. Remember that input and output arguments, that is, the variables in-
side the function, vanish when the function returns in any case. Only the val-
ues of the output arguments are returned—not the variables themselves.
Those returned values are either assigned to variables at the place where the
function is being called, or they are not. The choice is up to the caller of the
function. If they are not assigned, these values are lost forever.

What happens if we define an output argument, but forget to assign a value
to it inside the function? Let’s try it:

function [a, s, w] = myRand(low, high)
a = (high-low) * rand(3,4) + low;
s = sum(a(:));

Here we declared three output arguments, but never did anything with w. If
we use the function without trying to get the third output, everything works
fine:

>> [x y] = myRand(0,1)
x =
 0.4731 0.0118 0.0690 0.3181
 0.7879 0.9779 0.7480 0.4995
 0.3759 0.0077 0.7134 0.8289
y =
 5.8113

No problem. (The reason the result is different from before is that each time
we use rand, we get a different set of numbers.) But if we tried this:

69

>> [x y z] = myRand(0,1)
Error in myRand (line 3)
 a = (high-low) * rand(3,4) + lower;
Output argument "w" (and maybe others) not assigned dur-
ing call to
"/Textbook/code/functions/myRand.m>myRand".

You have to be careful when using multiple outputs. Make sure that you in-
deed provide a value for each of them. (You may be wondering about the
error message above. Why line 3? When an error occurs because an output
argu-ment has not been assigned a value, MATLAB picks the closest
executable line of the function to the output argument.)

What if a function returns multiple output arguments, but you are interested
in only the last one? For example, let’s say that you need only the sum of the
random numbers generated by the function myRand and not the actual array.
If you call the function with one argument, MATLAB will return the first one
in the output list, that is, the array (a) and not the sum (s). It seems that you
need to call the function with two arguments (as we did above with x and y),
even though you do not need x at all. In this case, it is not a big deal, but if
another function returns a huge array that you do not need, it takes more
time and wastes memory to return the value and assign it to a variable. A few
years ago (in release 2009b), MATLAB introduced new syntax to handle this
situation. When calling a function with multiple output arguments, you can
simply provide a ~ symbol (tilde) in place of each argument that you do not
need. For example, you can call myRand this way:

>> [~, y] = myRand(10,20)
y =
 173.8006

Note, however, that you must supply the comma in this case, otherwise
MATLAB will report a syntax error. Actual output arguments and the ~ sym-
bol can be used in any combination. The following is another example of a
function call:

>> [a, ~, ~, c, ~, d] = myFunc(x,y);

The last argument should be a real variable and not a ~ symbol, because the
~ can be simply omitted in that case.

Finally, remember that it is an error to call a function with fewer or more than
the required number of input arguments. For example:

>> myRand(2)
Error using myRand (line 3)
Not enough input arguments.

>> myRand(2,3,4)
Error using myRand
Too many input arguments.

Later we will learn how to write functions that handle missing input and/or
output arguments.

Formal Definition
Now that we have played with functions a little bit, we can treat the subject
somewhat more formally. A function declaration looks like this:

function [out_arg1, out_arg2, ...] = function_name (in_arg1, in_arg2, ...)

where function is a keyword. The form of function_name must satisfy
the same restrictions that are placed on variable names. Those restrictions are
given in subsection Variable names of Introduction to MATLAB in Chapter 2.
Note that, like variable names, function names are case sensitive! If there is
only one output argument, the square brackets are optional. If there is no out-
put argument, the output argument list including the square brackets and the
assignment operator (=) can all be omitted. Similarly, if there are no input ar-
guments, the parentheses can be omitted.

Each of the following is a valid function declaration:

70

function func
function func(in1)
function func(in1, in2)
function out1 = func
function out1 = func(in1)
function [out1, out2] = func
function [out1, out2] = func(in1, in2)

There are, of course, many more valid combinations.

Except for lines consisting entirely of comments, the function declaration
must appear on the first line of the file. Surprisingly perhaps, the function
name (i.e., func in the examples above) need not be the same as the name of
the M-file that contains it. This is an interesting feature because, when a call is
made to the function from the Command Window, MATLAB depends en-
tirely on the name of the M-file that contains the function to determine which
function to call. It pays no attention to the function name in the function definition!
And that holds for calls from other functions in other M-files. You can put
any name you want there without affecting these functions calls. You could in
fact use func, for every function declaration. It makes no difference to
MATLAB. It is dangerous, however, to use a name in the declaration that is
different form name of the M-file that contains it because it puts you in dan-
ger of debugging the wrong function and puts others in danger of calling the
wrong function.

If you name them differently, MATLAB, in an attempt to set you straight, will
highlight the function name in the edit window in a dark yellow (a rather
ugly yellow, probably not by accident). If you allow your mouse pointer to
hover over that name, MATLAB produces a “tip” window, reminding you
that MATLAB knows the function by its file name, AND it gives you a chance
to solve this problem easily by simply clicking on “Fix” in that window. If
you click it, then the name in the declaration will automatically change to the
name of the M-file (without the .m extension), and all will be well. It’s always
a good idea click “Fix” or just to make those names the same in the first
place. We recommend it strongly. In fact it would be a good idea to take the

pledge right now never to use different names for the declaration and the M-
file and never to text while driving. We’ll all be safer.

Function names
Henceforth, since MATLAB depends only on the name of the M-file (without
the .m extension) to identify a function, when we say “function name”, we
will always mean the filename (we took the pledge). The naming rules allow
you a great deal of flexibility in naming your functions’ M-files, but not as
much flexibility as your operating system does. For example, the operating
system will allow you to use a name that starts with a number. If you do that
for an M-file, you will not be able to call that function in MATLAB. The oper-
ating system will allow you to use characters other than letters, numbers, and
underscores, and it may allow you to include spaces in the name as well. Do
any of these things, and you will have a useless M-file, because MATLAB will
not call it.

In addition to the hard-and-fast rules above, there are a few rules of thumb
that you should follow when choosing the name for a function. As we men-
tioned before, you should come up with meaningful names. The name of the
function should give you a good idea about what the function does. Stay
away from names that are typically used for variables. As you progress
through this book, you’ll see many examples of frequently used variable
names. For example, x would be a bad choice for a function name, as would
A, which is commonly used to mean “array”. In fact, a single-letter is rarely a
good choice for a function name. Finally, you should never use names of
built-in MATLAB functions. While is it not illegal, it can create significant con-
fusion.

For example, if you defined a function called sum that does something differ-
ent from the built-in MATLAB function we have just seen, here is what can
happen. If your file, sum.m is in the current folder when you call sum, it is
your version that will be called. While that is probably what you wanted, if
somebody else is looking at your code, they may not realize that you have

71

your own function called sum and would assume that your program uses the
MATLAB sum function. This would be confusing indeed!

On the other hand, if your sum.M-file is not in the current folder and you
try to call it, in all likelihood, MATLAB will find its own version and not
yours. Your code will not work correctly, and you will have a hard time figur-
ing out why. If you name your function my_sum instead, MATLAB will not
find it if you are in the wrong folder and will give you a meaningful error
message. You will figure it out quickly what is wrong. The prefix “my_” is a
good choice, because no built-in MATLAB function name begins with “my_”.

Since MATLAB has hundreds of built-in functions and since we may write
large programs with many functions and many variables, how can we figure
out whether a name is already in use? Fortunately, the MathWorks engineers
thought of this problem. There is a built-in function called exist that tells
you whether a name is available. If it returns 0, the name is not in use.

>> exist my_sum
ans =
 0

>> exist sum
ans =
 5

A non-zero values means that it exists. The number 5 means “built-in func-
tion”. Other values have other meanings. To find out more type help exist
in the Command Window.

Another naming error is to define a variable using the name of a MATLAB
function. Probably the most common such error and one that has caused
many students to yell at MATLAB is the use of sum as a variable name. Sup-
pose you want to know the sum of the first five positive integers. You might
do this:

>> sum = 1 + 2 + 3 + 4 + 5
sum =
 15

The answer is correct. So far everything is rosy. But suppose that later in your
programming session you decide to use the built-in function sum, perhaps
even to find the same summation that you did before:

>> sum_to_5 = sum([1 2 3 4 5])
Index exceeds matrix dimensions.

The problem here is that when MATLAB sees sum, the first place it looks for
it is its list of variables (i.e., its workspace). It finds the variable sum there,
and it sees that it is a scalar. We have asked for the first 5 elements of a scalar,
but a scalar has only one element. That’s an error, and things have gone from
rosy to code red. And what is infuriating is that MATLAB’s error message
seems to make no sense. It’s complaining about the dimensions of a matrix
and there is no matrix anywhere to be found in the command. Yelling may
follow: “MATRIX! I didn’t say anything about any stinking matrix!!” (Note
for the future: MATLAB is deaf.)

Now what do we do? Well we can check to see whether the function sum still
exists:

>> exist sum
ans =
 1

Using help exist tell us that the answer 1 means that sum is a variable. Oh
yeah! We used sum as the name of a variable a while ago (feeling a bit sheep-
ish now). OK. We admit we made a mistake, but what can do we do about it
now? How do we undo a variable definition? Simple. We use the command
clear, which MATLAB provides for just such contingencies:

72

>> clear sum
>> sum_to_5 = sum([1 2 3 4 5])
sum_to_5 =
 15

Rosy again.

Function calls
The formal definition of a function call looks like this:

[out_arg1, out_arg2, ...] = function_name (in_arg1, in_arg2, ...)

This looks pretty similar to the function declaration itself except for the miss-
ing function keyword. Other similarities include that the square brackets
can be omitted if only one output argument is needed, that you do not need
to specify any output arguments if you do not need them, and that the paren-
theses can be omitted if no input arguments are needed.

Let’s take another look at myRand, shall we?

function [a, s] = myRand(low, high)
 a = (high-low) * rand(3,4) + low;
 s = sum(a(:));

and call it this way:

>> s = 2
s =
 2

>> mini = -5
mini =

-5

>> [randomMatrix s] = myRand(mini, 5)
randomMatrix =
 4.2011 -1.1247 0.6044 3.4558
 1.0711 -3.7297 0.7047 0.1309
 0.1346 0.7987 1.0683 -1.3066
s =
 6.0085

>> mini
mini =

-5

Let’s look at what happened step-by-step. Variable s was defined in the work-
space and was assigned the value 2. Variable mini was defined in the work-
space and was assigned -5. Then we called myRand with mini and the num-
ber 5 as input arguments and with randomMatrix and s as output argu-
ments.

Inside the function, before the first line of our code was executed, the input
argument (and local variable) low was created and assigned the value of
mini, that is, −5. Input argument (and local variable) high was created and
assigned the number 5. The function was then executed, and output argu-
ments (and local variables), a and s, were created and assigned the random
3-by-4 matrix and the sum of its elements, respectively. The function then re-
turned to the place from which it was called (in this case, the Command Win-
dow). The variable randomMatrix was created in the Command-Window
and got assigned the value of a. The variable s, which already existed there,
was assigned the value that s had in the function. All local variables of the
function myRand were then deleted. The variable mini in the workspace did
not change at all.

Strings and Commands
We noted in Chapter 1 in the subsection Issuing Commands of the section In-
troduction to MATLAB that the word “compact” appeared in a mauve color
when we used it with the format command:

>> format compact

This same color appeared in other two-word commands in that section, and it
most recently occurred above in the subsection Function names when we is-
sued the command

>> exist sum

73

We have also seen it in this function call

>> west_earth = imread('globe_west_540.jpg');

near the end of Introduction to MATLAB. It’s time to learn what this mauve-
ness is all about.

MATLAB is highlighting these words because it is treating them as strings.
The term string has a special meaning in computer science. It means “se-
quence of characters”. Of course sequences of characters are everywhere in
MATLAB and in every other computer language, but most of the time they
are used to stand for a value stored in a variable or for an operation defined
in a function. When the interpreter encountered mini in the previous subsec-
tion, for example, it looked into its list of defined variables (i.e., the work-
space), found mini, looked up its value, found that it equal replaced it with
the value −5, and when it encountered MyRand, it carried out the operation
defined by a function that we had defined. However, when a sequence of
characters is punctuated on each end with a single quote ('), it is not re-
placed with anything. Those quote marks indicate to the MATLAB inter-
preter that the sequence of characters is not to be interpreted as the name of a
variable or function. Instead it is treated literally as a string of characters. So,
for example, the string globe_west_540.jpg is passed directly to imread
as an input argument with nothing being looked up first. When imread re-
ceives that string, it treats it as the name of an image file. We will learn later
in the section Data Types that MATLAB stores a string as a special type of
row vector and that it provides many other built-in functions that take strings
as input arguments, and we will learn how to write our own functions that
take strings as input.

Was imread our first example of a function that takes a string as input? No.
Was globe_west_540.jpg our first example of a string used as input to a
function? No. Those distinctions belongs respectively to format and com-
pact. The “command” format is actually a function that requires a string as
an argument. Here is another example of its use:

>> format('compact')

This version looks like a normal function call with a normal string complete
with single quote delimiters, and that is exactly what it is. The other form,

>> format compact

is exactly equivalent semantically (i.e., with regard to the meaning). The only
difference is syntax. The first version uses parentheses and quote marks; the
second version uses neither. Here is another example:

>> help sqrt
>> help('sqrt') % same meaning as previous command

When we call a function that takes only strings as arguments and do not as-
sign its output to anything, we can always use either syntax, whether it is a
built-in function or is a function that we have written ourselves. When we
use the parentheses-free/quote-free method we tend to call the function a
“command”, but underneath it all every MATLAB command is just a plain
old function.

So now you know why MATLAB has been highlighting things here and there
in mauve. Don’t like mauve? You can change it. Start by clicking File/
Preferences... on the toolbar in version R2012a and earlier or by clicking Pref-
erences on the ribbon in versions R2012b and later. Then click Colors, and
you will see that you can change mauve to any color of the rainbow. (You can
change the color of comments too and any other color that MATLAB uses for
highlighting.)

74

Subfunctions
We have already used function calls inside functions. Recall how myRand re-
lies on rand and sum. The question then arises: can we call our own func-
tions from within each other? The answer is a resounding yes.

There are two ways of accomplishing this. If your function is quite complex
and long, you may want to break it up to smaller pieces. If those pieces are
not expected to be useful by themselves other than in the context of this com-
plicated function, then you should create them as “subfunctions”. An M-file
may contain more than one function. The first one is called the main func-
tion; each of the others is called a subfunction. A file can contain an unlim-
ited number of subfunctions. Let’s revisit myRand and move the summation
part to a subfunction. Of course, myRand is neither complex nor long, so you
would usually not go to the trouble of making two one-line functions from
one two-line function. But we will do it here as an illustrative example. We
change the contents of the file myRand.m to look like this:

function [a, s] = myRand(low, high)
a = (high-low) * rand(3,4) + low;
s = sumAllElements(a);

function summa = sumAllElements(M)
summa = sum(M(:));

As pointed out above, the first function in the file is always the main func-
tion. That is an important distinction because the main function is the one
that is executed when the command myRand is given. Since sumAllEle-
ments is not the first function in the file, it is a subfunction and cannot be
called outside the file. It is said to be “invisible” from the outside. It is, how-
ever, visible from inside the file, and so can be called from within other func-
tions in the file—in this case from within the main function myRand. Each
function in a file has its own set of input and output arguments and its own
set of local variables, independent from any of the other functions. Here
again, each function plays in its own sandbox. When we are inside the func-

tion sumAllElements, none of the variables of myRand are visible and vice
versa. That’s why we have to pass the matrix a from myRand to sumAllEle-
ments as an input argument and then pass the results, the value of summa,
back to myRand as an output argument. Instead of arguments summa and M,
we could have used the names s and a. It would have made no difference at
all. Just as variables in a function are different from variables with the same
names in the Command Window, if variables named s and a appeared inside
sumAllElements they would be different from the variables s and a in
myRand even though they would have exactly the same names.

When we call myRand from the Command Window, we get exactly the same
behavior as before. Again, what happens in a function, stays in the function.

One final note on subfunctions. The end keyword that concludes a function
is optional. However, you have to use the same convention throughout a
given file; you cannot mix conventions in the same file. You either put an
end at the end of the main function and every subfunction below it in that
file, or you do not put any ends at all in that file.

This is, therefore, legal:

function [a, s] = myRand(low, high)
 a = (high-low) * rand(3,4) + low;
 s = sumAllElements(a);
function summa = sumAllElements(M)
 summa = sum(sum(M));

But this is not:

function [a, s] = myRand(low, high)
 a = (high-low) * rand(3,4) + low;
 s = sumAllElements(a);
function summa = sumAllElements(M)
 summa = sum(sum(M));
end

Here is an example of what what happens when we use the first version:

75

>> myRand(-5,5)
ans =
 3.1472 4.1338 -2.2150 4.6489
 4.0579 1.3236 0.4688 -3.4239

-3.7301 -4.0246 4.5751 4.7059

but here is what happens when we try the second version:

>> myRand(-5,5)
Error: File: myRand.m Line: 9 Column: 4
The function "sumAllElements" was closed
 with an 'end', but at least one other function
 definition was not.
 To avoid confusion when using nested functions,
 it is illegal to use both conventions in the same
 file."

Whoa! Guess we shouldn’t do that! (Hey MATLAB, isn’t this an awful lot of
red for one tiny little extra end statement? Could we maybe lighten up a little
bit? And, hey, Mr. Perfect, while we are pointing out every itsy-bitsy mistake,
what about that orphaned double-quote mark at the end of your error mes-
sage? What about that? Huh?)

The other way of calling your own function from one of your other functions
is even simpler. If you think that a particular functionality that you need in
your function may be useful in other parts of your code, you can simply cre-
ate a separate function in a separate M-file. As long as you put the M-files in
the same folder or put them in folders that are on your path, you are good to
go.

In our particular case, you would keep the myRand function in myRand.m
and put the sumAllElements function in its own separate file called
sumAllElements.m. Nothing else needs to be changed and the code will
work exactly the same as before.

Scope
We have discussed how the input and output arguments and all other vari-
ables defined in a function are all local variables. Another way of saying this
is that these variables have local scope. The scope of a variable is the set of
statements that can access that variable. In other words, it is the set of state-
ments to which the variable is “visible”. So far, the scope of a variable is ei-
ther the statements within a single function, or the statements within the
Command Window. When a function is called, it gets a dedicated part of the
computer’s memory where its arguments and other variables are stored.
Nothing else, not the Command Window, nor any other function has access
to this memory. The program execution environment, in our case MATLAB,
makes sure that the memory is large enough so that the function has enough
space to store all of its variables.

When the function returns, the values of the output arguments are passed
back to the caller, and then this special local memory area is taken away and
all the local variables disappear and the memory that had been reserved for
them is now available to be allocated to variables in the Command Window
or to other functions.

Global Variables
In rare cases, some functions may need to share a variable due to some spe-
cial circumstances. Like most languages, MATLAB provides a way to do that.
It does it, just as other languages do, by providing the user the option of de-
claring a variable to be “global”. A global variable can be made visible in
more than one place. You can access it from the Command Window and from
within every function you want to. A global variable has so-called global
scope. Global scope is visibility in more than one function or in both the Com-
mand Window and one or more functions. The counter term is local scope,
which means accessibility in only one function or only in the Command Win-
dow and is the default scope. You can declare a variable to have global scope
by using the keyword global like this:

76

global x;

Unlike C++, Java, and some other languages, MATLAB does not allow you to
include an assignment in the same line, as shown in the following attempt to
declare x to be global while simultaneously assigning it the value 4:

>> global x = 4
global x = 4

|
Error: The expression to the left of the equals sign is
not a valid target for an assignment.

You have to make this declaration everywhere you wish to use the variable.
That is, you need to include the declaration, global x , in every function
and/or the Command Window, if you want to use the variable there. If you
try to use a variable inside a function and you have not yet declared it to be
global, MATLAB will either complain that it is an undefined variable (if you
tried to use its value before assigning it one) or create a new local variable
with the same name (if you assigned a value to it first).

You may be tempted to use global variables to take advantage of the fact that
with them you can avoid using arguments to pass values into and out of func-
tions. This may be convenient and (rarely) may even be justified, if you have
a variable that many functions need to modify. However, the use of global
variables is hardly ever a good idea, and it is strongly discouraged. Once a
function relies on a global variable, its correct operation depends on some-
thing that is outside of the function, and that dependence makes the function
less reusable. Once global variables are allowed, it is no longer enough to
know what the interface of the function is, that is, its list of input and output
arguments. You also need to remember that it uses one or more global vari-
ables.

Furthermore, relying on global variables is error-prone. You can accidentally
overwrite the value of a global variable in one part of the program that may

cause an error in another part. These kinds of programming errors are hard
to find.

Therefore, for the rest of this book, we shall not use global variables at all,
and we recommend that you avoid them as well, until you become an experi-
enced programmer. When that happens, we predict that you will rarely use
them in any case.

Advantages Of Functions
Functions allow you to break down your problem into smaller, more manage-
able and easier to solve sub-problems. When you try to assemble your shiny
new furniture from IKEA, the instructions are broken down into separate
steps. One step might tell you in detail how to assemble a leg. Then, instead
of repeating those detailed instructions three more times, it just says, “now
do this for the other three legs.” You can consider the leg assembly as a func-
tion that is defined once and called four times.

All but the most trivial problems are easier to solve when they are divided
into smaller chunks. Of course, how you decide to break down a problem
into parts can have a big impact. In general, you should group together
closely related tasks into a function and put unrelated issues into separate
functions. The process of dividing up a program into smaller functions is
called functional decomposition.

Another advantage of having functions is that you can work independently
on one function without having to remember the details of all your other
functions. Furthermore, a team of software developers can decide what func-
tions they need, and then everybody can work on separate ones without need-
ing to know how their teammates are implementing theirs. They can each de-
velop and test their code independently. As a result, multiple parts of the soft-
ware can be developed in parallel, greatly speeding up the development proc-

77

ess. Once everybody is ready, they can put their functions together to form
the program. Since each function represents a simpler sub-problem and since
they were tested separately, in all likelihood, there will be fewer program-
ming errors in the overall program, and those errors should be easier to find.
In this parallel development approach, it is crucial that each function uses
separate variables that are isolated from the other functions via local scope,
with no global variables or perhaps a very few whose names are mutually
agreed upon. In this way, the different parts of the program are well isolated
from each other preventing unwanted interactions that would happen if one
person’s function could overwrite somebody else’s variable by mistake.

Finally, functions support reusability. You should always strive to write func-
tions that are as flexible and general as possible. Then the same functions
may be applicable to different programs, and you will not have to write them
again, saving you time and effort. The built-in MATLAB functions serve as
good examples. MathWorks has noted the problems that come up most fre-
quently in various engineering and scientific domains and has provided a
large number of reusable functions to solve them so that we do not have to
solve the same problems that other people have already solved. Why rein-
vent the wheel?

In this spirit, let’s take a final look at our favorite myRand function. You did
not think we were done with it, did you? As you recall, it creates a 3-by-4 ma-
trix of random numbers between the limits specified by the input arguments
low and high. In our current particular problem, the numbers 3 and 4 may
be fixed, but in the future we may need a random matrix of different dimen-
sions. Therefore, we should write a more general version of the function that
gets the dimensions as input arguments also. Here is the final version (we
promise!):

function [a, s] = myRand(low, high, rows, cols)
 a = (high-low) * rand(rows, cols) + low;
 s = sum(a(:));
end

Let’s run it:

>> myRand(0,5,2,4)
ans =
 4.7241 0.8242 1.8092 1.4560
 2.0699 4.6375 0.1405 3.0297

>> myRand(10,20,1,3)
ans =
 18.4718 16.2541 12.4702

>> [R ss] = myRand(0.01,0.02,10,1)
R =
 0.0199
 0.0124
 0.0175
 0.0183
 0.0104
 0.0194
 0.0149
 0.0169
 0.0172
 0.0188
ss =
 0.1657

Scripts
In addition to functions, MATLAB allows the creation of another kind of M-
file, called the script. As we mentioned in Introduction to MATLAB, the first
section of Chapter 1, the first two M-files that we created were scripts. A
script is a collection of MATLAB commands in an M-file that does not con-
tain a function. The script can be executed by typing the name of the file with-
out the .m extension in the Command Window just like a function. But a
script is very different from a function. When MATLAB executes a script, it is
as if it is executing the script’s commands in the Command Window itself. A
script does not have its own local variables. If a new variable is created inside
a script or an existing variable is modified, the workspace of the Command

78

Window is affected directly. While a function creates its own sandbox, a
script offers no such isolation.

Consider this example script:

x = 12;
y = 23
z = rand(2,3);
x + y * z

Let’s save it in the current folder in a file called MyScript.m. Notice that the
name does not appear inside the script. Also notice that at the end of some
lines we used semicolons to suppress printing, but in some others we did not.
Suppose that before running the script, we have already defined two vari-
ables in the workspace named x and z:

>> whos
Name Size Bytes Class Attributes
x 1x1 8 double
z 1x1 8 double

>> x
x =
 45

>> z
z =
 0

Now, let’s run MyScript and see what happens to the various variables:

>> MyScript
y =
 23
ans =
 22.9391 13.4166 34.6482
 24.8927 14.0696 33.6026

>> whos

 Name Size Bytes Class Attributes

 ans 2x3 48 double
 x 1x1 8 double
 y 1x1 8 double
 z 2x3 48 double

>> x
x =
 12

>> y
y =
 23

>> z
z =
 0.4756 0.0616 0.9847
 0.5606 0.0900 0.9392

As you can see, the variable x and z changed, and a new variable y was cre-
ated. Again, everything happened as if we had typed in the lines of the script
in the Command Window one-by-one. And that is exactly the point. If you
have a set of commands that you frequently need to use in the Command
Window, you can save yourself a lot of typing by putting these frequently
used commands in a script.

The most important point though is that scripts are very different from func-
tions. You need to write a function when you need a reusable piece of code
that needs to work on some input parameters and provide results as outputs
without directly modifying the variables in the Command-Window work-
space.

79

Additional Online Resources

• Video lectures by the authors:

" Lesson 3.1 Introductions to Functions (5:39)

" Lesson 3.2 Function I/O (22:15)

" Lesson 3.3 Formal Definition of Functions (2:52)

" Lesson 3.4 Subfunctions (6:17)

" Lesson 3.5 Scope (5:24)

" Lesson 3.6 Advantages of Functions (2:39)

" Lesson 3.7 Scripts (4:27)

Concepts From This Section
Computer Science and Mathematics:

function
function call
argument
input argument
output argument
local variable
global variable
variable scope

MATLAB:
M-file
rand
sum
subfunction
script

80

https://www.youtube.com/watch?v=DrVQ7T8vR9I
https://www.youtube.com/watch?v=DrVQ7T8vR9I
https://www.youtube.com/watch?v=47YrEouBB8M
https://www.youtube.com/watch?v=47YrEouBB8M
https://www.youtube.com/watch?v=OwHx_EtAs1k
https://www.youtube.com/watch?v=OwHx_EtAs1k
https://www.youtube.com/watch?v=TlCGU4nLBog
https://www.youtube.com/watch?v=TlCGU4nLBog
https://www.youtube.com/watch?v=tNo3dQ9g47s
https://www.youtube.com/watch?v=tNo3dQ9g47s
https://www.youtube.com/watch?v=NjWPheOtdws
https://www.youtube.com/watch?v=NjWPheOtdws
https://www.youtube.com/watch?v=ApsoSE5oKxs
https://www.youtube.com/watch?v=ApsoSE5oKxs

Practice Problems

Problem 1. Write a function named blocks that takes two positive integers,
n and m, as input arguments (the function does not have to check the format
of the input) and returns one matrix as an output argument. The function
needs to return a 2n-by-2m matrix where the upper right and lower left n-by-
m sub matrices are all zeros and the rest of the matrix are all ones. For exam-
ple, here is an example run:

>> blocks(2,3)
ans =
 0 0 0 1 1 1
 0 0 0 1 1 1
 1 1 1 0 0 0
 1 1 1 0 0 0

The easiest solution utilizes the built-in function zeros and ones (use
help zeros and help ones to see how to use them). However, there is a
way to solve the problem with clever indexing. Do it both ways!

?

Problem 2. Write a function named custom_blocks that takes an n-by-m
matrix as an input argument (the function does not have to check the format
of the input) and returns a 2n-by-2m matrix as an output argument. The up-
per left n-by-m sub matrix of the output matrix is the same as the input ma-
trix. The elements of the upper right n-by-m sub matrix are twice as large as
the corresponding elements of the input matrix. Similarly, the lower left sub-
matrix is the input matrix multiplied by three and the lower right n-by-m sub-
matrix is four times the input matrix. For example, here is an example run:

>> custom_blocks([1:3;3:-1:1])

ans =
 1 2 3 2 4 6
 3 2 1 6 4 2
 3 6 9 4 8 12
 9 6 3 12 8 4

Problem 3. Write a function called even_indices that takes two positive
integers, n and m, as input arguments (the function does not have to check
the format of the input) and returns one matrix as an output argument. The
elements of the n-by-m output matrix are all zeros except for the ones for
which both indices are even: these need to be ones. For example, here is an
example run:

>> even_indices(5,6)
ans =
 0 0 0 0 0 0
 0 1 0 1 0 1
 0 0 0 0 0 0
 0 1 0 1 0 1
 0 0 0 0 0 0

Once again, using the zeros function can help, but it is not necessary. Do it
both ways!

?

81

http://cs103.net/wp-content/uploads/blocks.m
http://cs103.net/wp-content/uploads/blocks.m
http://cs103.net/wp-content/uploads/even_indices.m
http://cs103.net/wp-content/uploads/even_indices.m

Problem 4. Write a function called alternate that takes two positive inte-
gers, n and m, as input arguments (the function does not have to check the for-
mat of the input) and returns one matrix as an output argument. Each ele-
ment of the n-by-m output matrix for which the sum of its indices is even is 1.
All other elements are zero. For example, here is an example run:

>> alternate(4,5)

ans =
 1 0 1 0 1
 0 1 0 1 0
 1 0 1 0 1
 0 1 0 1 0

Once again, using the zeros function can help, but it is not necessary. Do it
both ways!

Problem 5. Write a function called sum_rows that takes a matrix as input ar-
gument (the function does not have to check the format of the input) and re-
turns a vector as an output argument. The elements of the vector are the
sums of the elements of the rows of the input matrix. Note that the built-in
MATLAB function sum returns the sum of the columns. Here is an example
run:

>> x = [1 2 3; -1 0 6]
x =
 1 2 3

-1 0 6

>> sum(x)

ans =
 0 2 9
>> sum_rows(x)

ans =
 6 5

?

Problem 6. Write a function called maxmin_rows that takes a matrix as input
argument (the function does not have to check the format of the input) and
returns two vectors as output arguments. The elements of the first vector are
the maximums of elements of the rows of the input matrix. The elements of
the second output vector are the minimums of elements of the rows of the
input matrix. Note that the built-in MATLAB functions max and min return
the maximum and minimum of the columns. Consider the following run,

>> x = [1 2 3; -1 0 6]

x =

 1 2 3
-1 0 6

>> max(x)

ans =

 1 2 6

>> min(x)

ans =

-1 0 3

>> [maxi mini] = maxmin_rows(x)

maxi =
 3 6

mini =
 1 -1

82

http://cs103.net/wp-content/uploads/sum_rows.m
http://cs103.net/wp-content/uploads/sum_rows.m

Problem 7. Write a function called pyth that takes two input arguments a
and b. The inputs are arrays of the same size. For example, if one is a scalar,
the other is a scalar, or if one is a 3-by-7 matrix, then the other is too. The func-
tion does not have to check the format and size of the input. The function re-
turns one output argument, c, which is also the same size as the inputs. Each
element of c is the hypotenuse of a right triangle, while the corresponding
elements of a and b are the other two sides of the same triangle. The function
needs to compute c according to the Pythagorean theorem. Note that the
built-in MATLAB functions sqrt computes the square root. Consider the fol-
lowing run,

>> b = [4 3;1 2]

b =
 4 3
 1 2

>> a = [3 4; 1 sqrt(5)]

a =
 3.0000 4.0000
 1.0000 2.2361

>> pyth(a,b)

ans =
 5.0000 5.0000
 1.4142 3.0000

?

Problem 8. Write a function called compound that takes three scalar input ar-
guments sum, interest and years (the function does not have to check the
format of the input). The function returns two output arguments, total and
gain. The function computes how much money we can get by investing
sum in the first year and then let it vest for years years while getting an an-
nual interest rate of interest percent. The output total is the final
amount we’ll have and the gain is the profit. For instance, by investing
$10,000 for 40 years at a rate of 15%, we’ll end up with over $2.6 million ac-
cording to the following run

>> [networth profit] = compound(10000,15,40)

networth =
 2.6786e+06

profit =
 2.6686e+06

Problem 9. Write a function called zero_middle that takes an n-by-m matrix
as an input where both n and m are odd numbers (the function does not have
to check the input). The function returns the input matrix with its center
element zeroed out. Check out the following run,

>> zero_middle(ones(5))

ans =
 1 1 1 1 1
 1 1 1 1 1
 1 1 0 1 1
 1 1 1 1 1
 1 1 1 1 1

?

83

http://cs103.net/wp-content/uploads/pyth.m
http://cs103.net/wp-content/uploads/pyth.m
http://cs103.net/wp-content/uploads/zero_middle.m
http://cs103.net/wp-content/uploads/zero_middle.m

Problem 10. Write a function called cancel_middle that takes A, an n-by-m
matrix, as an input where both n and m are odd numbers and k, a positive
odd integer that is smaller than both m and n (the function does not have to
check the input). The function returns the input matrix with its center k-by-
k matrix zeroed out. Check out the following run,

>> cancel_middle(ones(5),3)

ans =

 1 1 1 1 1
 1 0 0 0 1
 1 0 0 0 1
 1 0 0 0 1
 1 1 1 1 1

84

SECTION 2

Every programming language provides basic constructs
to create programs. You can create variables, assign val-
ues to them, perform arithmetic operations, organize
your program into functions, etc. Beyond these basic
building blocks, there are many more complex opera-
tions that are frequently needed, yet the programming
language itself does not provide them. These include
mathematical functions such as trigonometry, text ma-

nipulation, outputting text and graphics on the screen,
getting input from the user through either the keyboard
or the mouse, and many many others. It would be ex-
tremely wasteful if every programmer were to have to
recreate these from scratch. Instead, every programming
language comes with a large set of ready-to-use func-
tions for these frequently used operations. These sets of
functions are often referred to as libraries.

Objectives

MATLAB has many useful
built-in functions. We will
explore them in this section.
(1) We will introduce many

frequently used built-in
functions.

(2) We will learn about
polymorphism and how
MATLAB exploits it to
change a functions behavior
on the basis of the number
and type of its inputs.

(3) Because random numbers
play an important role in
computer programming,
we will learn how to use
the MATLAB random
number generator.

(4) We will learn how to get
input from the keyboard, to
print to the Command
Window, plot graphs in a
Figure window, and play
audio through the speakers.

MATLAB includes hundreds of built-in functions that make programmers’ lives much easier.

Programmer’s Toolbox

85

MATLAB is no exception. It provides many hundreds of built-in functions. In
the previous section, we have seen rand as one of the built-in functions
MATLAB provides. Table 2.1 lists a few more useful functions to create matri-
ces in MATLAB.

For example, zeros(n,m) returns an n-by-m matrix, all of whose elements
equal zero. Similarly, ones(n,m), returns n-by-m ones. An interesting func-
tion is eye(n,m), which returns an n-by-m matrix that has all zeros, except
for those elements on the diagonal, which are equal to one. The diagonal of a
matrix is the set of elements whose indices are equal to each other. Thus, in
the matrix M, the diagonal elements are M(1,1), M(2,2), …. Why is it called
“eye”? Well, that’s because eye(n,n) produces an identity matrix, whose
symbol in mathematics is I (pronounced “eye”, get it?). An n-by-n identity
matrix can be multiplied by any other n-by-n matrix X, and the result is X:

I = eye(3,3)

I =
 1 0 0
 0 1 0
 0 0 1

>> X = [1 2 3;4 5 6;7 8 9]

X =
 1 2 3
 4 5 6
 7 8 9

>> I*X

ans =
 1 2 3
 4 5 6
 7 8 9

>> X*I

ans =
 1 2 3
 4 5 6
 7 8 9

Polymorphism
Another useful function takes the square root of its argument:

>> sqrt(9)

ans =
 3

In the example above, the argument to sqrt is a scalar, which is a 1-by-1 ar-
ray (Note: We will use the terms array and matrix interchangeably when refer-
ring to two-dimensional arrays). We could have given sqrt an array of any
size and shape as an argument. Its behavior in that case is to return an array
of the same size and shape, such that each element of the result is equal to the
square root of the corresponding element of the argument. Thus, if X is a 3-
by-4 array, then Y = sqrt(X) results in Y(m,n) = sqrt(X(m,n)) for all
elements of X:

86

Table 2.1 Matrix-building functions

FUNCTION RETURNS AN N-BY-M MATRIX OF
zeros(N,M) zeros

ones(N,M) ones

eye(N,M) zeros except for the diagonal elements that are ones

rand(N,M) random numbers uniformly distributed in the range from 0 to 1

>> X = [1 4 9; 16 25 36]

X =
 1 4 9
 16 25 36

>> sqrt(X)

ans =
 1 2 3
 4 5 6

In the general study of programming languages, when the type of an argu-
ment used in a function can vary (as for example, from a scalar to a vector to
a matrix) from one call of the function to the next, the function is said to be
polymorphic. And polymorphism, which is the title of this subsection, is the
property of being polymorphic. As we will see below, polymorphic function
may even allow varying numbers of arguments. (The term polymorphic
means “having multiple forms”, which matches its definition, since it means
that the function call can have more than one form.) The characteristic of be-
ing polymorphic is called polymorphism. (An alternate terminology is to say
that the function’s arguments are polymorphic, but the idea is the same.) As
can be seen from the sqrt example above, MATLAB's support for polymor-
phism is very powerful, and it makes it possible to handle a huge variety of
situations (e.g., a huge variety of different matrix shapes) with relatively few
functions. It makes it possible for MATLAB to do a great deal of work very
efficiently (i.e., quickly) with very few statements. Polymorphism is not sup-
ported by the most popular older languages, such as Fortran, C, Pascal, and
Basic. Many modern languages, on the other hand, such as Ada, C++, Java,
and other so-called "object-oriented" languages (and even a few of the older
languages, such as LISP, which was one of the very first programming lan-
guages and remains in use today) do provide support for polymorphism. It is
in fact a major feature of these languages, just as it is a major feature of
MATLAB.

Unlike most of the other modern languages that support polymorphism,
MATLAB’s typical function returns an object that is the same shape as the ar-
gument that it is given. For example, if f is a typical function, then for y =
f(x), if the value of x is a scalar, then a scalar value will be returned into y.
If x contains a matrix of dimensions m-by-n, the value returned into y will
also be an m-by-n matrix. When the function allows multiple arguments of
different types in a single call, the returned type will vary according to the
function.

Returning an object whose shape is the same as the argument is not always
appropriate however. For example, the function sum, when given a row or
column vector, returns a scalar−not a row or column vector−that is equal to
the sum of the elements of the vector:

>> v = [1 -3 5 10];
>> sum(v)

ans =
 13

When sum is given a two-dimensional matrix, it calculates the sum for each
column of the matrix and returns a row vector−not a two-dimensional ma-
trix−of those elements:

>> M = [1 10 100; 2 20 200; 3 30 300]

M =
 1 10 100
 2 20 200
 3 30 300

>> sum(M)

ans =
 6 60 600

87

Thus, sum is certainly polymorphic, since it accepts either a vector or a two-
dimensional matrix as its argument, but it does not behave typically by re-
turning an object whose shape is different than that of the argument.

So far we have concentrated on polymorphism that allows variation in the
types of the arguments. There is a second type of polymorphism. A function
is also polymorphic if it accepts varying numbers of arguments. So, for exam-
ple, if a function can be called with one argument or with two arguments, it
is polymorphic. The function sum exhibits this second aspect of polymor-
phism as well, as shown by the following call:

>> sum(M,2)

ans =
 111
 222
 333

The argument M in this call is the same matrix as used above, but this time the
summation is carried out along each row, and the resulting sums are put into
a column vector. The second argument tells sum which dimension it is to sum
over and whether to return a row vector (second argument equal to 1) or col-
umn vector (second argument equal to 2). Since the second dimension is the
row index, the call sum(M,2) means to sum across the rows. The call
sum(M,1) means to sum over the column index, so it returns the same vec-
tor as that returned by sum(M) above. Thus, the second argument is optional,
and if it is omitted, the default dimension is 1. When we describe functions in
this book, we will not always list all the optional variables, but you can al-
ways learn whether there are optional arguments and their meanings by us-
ing help.

Returning more than one object
Some MATLAB functions can return more than one object. A good example is
the function max. This function can be used to find the largest element in a
vector, as in the following example:

>> a = max([1 4 -5 0])
a =
 4

In this example, max returned one object, the number 4, which is the largest
element, but max can do more, as shown in the next example:

>> [a b] = max([1 4 -5 0])
a =
 4
b =
 2

In this example, max returned two objects. The first one is the maximum
value; the second one is the index of the first element that contains the maxi-
mum value. The two variables, a and b, in brackets on the left side of the
equal sign in the call to max are called output arguments in MATLAB, as we
have seen in the previous section. This ability to return more than one object
is an important feature of MATLAB, and that feature is lacking in the major
general-purpose languages: Ada, C, C++, Fortran, Java, and Pascal. Further-
more, the ability to call such a function in different ways so that it returns dif-
ferent numbers of output arguments is a third type of polymorphism, and
MATLAB is one of very few languages that provide that.

Note that some MATLAB functions return a vector that contains more than
one element. Returning a vector is not equivalent to returning more than one
object. The vector, despite its multiple values is one object. If one variable can
hold it, it is one object. The size function, which we encountered before, is
such a function. It returns one object, which is a two-element vector. The first

88

element is the number of rows of the argument; the second is the number of
columns. When only one object is returned by a function, it is possible to cap-
ture it in one variable, as in the following example, in an individual variable.
The syntax is obvious from the following example,

>> v = size([1 2 3; 4 5 6]);
>> v
v =
 2 3

As can be seen from the examples above, because max returns two objects, it
is not possible with max to capture both the maximum value and the index in
a single variable. MATLAB does, on the other hand, make it possible to cap-
ture the two elements of the vector returned by size in two separate vari-
ables, as follows;

>> [m n] = size([1 2 3; 4 5 6])
m =
 2
n =
 3

Here we see polymorphism in regard to the output arguments. If one output
is requested, size returns a vector; if two are requested, size returns two
scalars.

The number of functions provided with a MATLAB installation is huge, and
many more are available from the Internet. You have seen a few of them in
this book and in Table 2.1. In the following tables (Table 2.2, Table 2.3, Table 2.
4), you will find some more of them. To learn more about them and to learn
the names of many more functions it is a good idea to use MATLAB’s help
facility.

89

Table 2.2 Trigonometric functions

FUNCTION RETURNS
acos(x) Angle in radians whose cosine equals x

acot(x) Angle in radians whose cotangent equals x

asin(x) Angle in radians whose sine equals x

atan(x) Angle in radians whose tangent equals x

atan2(y,x) Four-quadrant angle in radians whose tangent equals y/x

cos(x) Cosine of x (x in radians)

cot(x) Cotangent of x (x in radians)

sin(x) Sine of x (x in radians)

tan(x) Tangent of x (x in radians)

Table 2.3 Exponential functions

FUNCTION RETURNS
exp(x) e raised to the x power
log(x) Natural logarithm x

log2(x) Base-2 logarithm of x

log10(x) Base-10 logarithm of x

sqrt(x) Square root of x

Table 2.4 Functions that work on complex numbers

FUNCTION RETURNS
abs(z) Absolute value of z

angle(z) Phase angle of z

conj(z) Complex conjugate of z

imag(z) Imaginary part of z

real(z) Real part of z

figure:0C0D2F1D-C19F-42EE-98FD-433EE0E167CE
figure:0C0D2F1D-C19F-42EE-98FD-433EE0E167CE
figure:630CCF7D-DEAA-403C-A3C3-038BDE6474CE
figure:630CCF7D-DEAA-403C-A3C3-038BDE6474CE
figure:407EEA3D-36B9-4E48-AA19-CB834CAC585D
figure:407EEA3D-36B9-4E48-AA19-CB834CAC585D
figure:10FB5965-58FF-4378-9688-AB72B4ACFD08
figure:10FB5965-58FF-4378-9688-AB72B4ACFD08
figure:10FB5965-58FF-4378-9688-AB72B4ACFD08
figure:10FB5965-58FF-4378-9688-AB72B4ACFD08

Additional useful functions are listed in Table 2.5, Table 2.6, and Table 2.7. Random Number Generation
In many scientific and engineering problems random numbers play an impor-
tant role. MATLAB, like most programming languages, has built-in support
for generating random numbers. To be precise, the numbers provided by a
random number generator are not truly random since a deterministic algo-
rithm computes them. Hence, they are called “pseudo random” numbers. But
for most practical problems, they are sufficient.

We have already introduced the most frequently used MATLAB function for
random number generation, rand, in the previous section. This is another
polymorphic function. Calling rand without an argument returns a single
random number, while rand(n) returns an n-by-n matrix of random num-
bers. Similarly, rand(m,n) provides an m-by-n matrix of random numbers.

>> rand

ans =
 0.8147

>> rand(3)

ans =
 0.9058 0.6324 0.5469
 0.1270 0.0975 0.9575
 0.9134 0.2785 0.9649

>> rand(3,5)

ans =
 0.1576 0.4854 0.4218 0.9595 0.8491
 0.9706 0.8003 0.9157 0.6557 0.9340
 0.9572 0.1419 0.7922 0.0357 0.6787

Notice that all the numbers generated by rand above are between 0 and 1.
That is no accident. The function returns numbers strictly larger than 0 and
smaller than 1 that are uniformly distributed. What this means is that any
number between 0 and 1 has the exact same probability to appear as an out-
put of rand. To demonstrate this, let’s try this:

90

Table 2.5 Rounding and remainder functions

FUNCTION RETURNS
fix(x) Round x towards zero

floor(x) Round x towards minus infinity

ceil(x) Round x towards plus infinity

round(x) Round x towards nearest integer

rem(x,n) Remainder of x/n (see help for case of noninteger n)

sign(x) 1 if x>0; 0 if x equals 0; -1 if x<0

Table 2.6 Descriptive functions applied to a vector

FUNCTION RETURNS
length(v) Number of elements of v
max(v) Largest element of v

min(v) Smallest element of v
mean(v) Mean of v

median(v) Median element of v
sort(v) Sorted version of v in ascending order
std(v) Standard deviation of v
sum(v) Sum of the elements of v

Table 2.7 Descriptive functions applied to a two-dimensional matrix

FUNCTION RETURNS A ROW VECTOR CONSISTING OF
max(M) Largest element of each column
min(M) Smallest element of each column

mean(M) Mean of each column
median(M) Median of each column
size(M) Number of rows, number of columns
sort(M) Sorted version, in ascending order, of each column
std(M) Standard deviation of each column
sum(M) Sum of the elements of each column

>> hist(rand(1,1000))

The function hist plots a histogram of the elements in its argument. A histo-
gram shows how many elements fall into given value intervals, and hist
does this graphically (and other ways too−see help). We should see a win-
dow like the one in Figure 2.1 pop up.

First, we generated a vector of 1000 pseudo random numbers using rand
and then we plotted its histogram using hist. In this case, MATLAB gener-
ated 10 evenly spaced intervals between 0 and 1 and plotted the results as a
bar chart. The expected value for each interval is 100, since the output of
rand is uniformly distributed. As we can see, the numbers are close to 100,
but there is considerable variance. That is because, 1000 is not a high enough
number to give a clear idea of the real distribution. Let’s try a million instead:

>> hist(rand(1,1000000))

As you can see in Figure 2.2, the height of the bars have nicely evened out.

How can one get pseudo numbers that fall into an interval other than (0, 1),
one might ask? It is quite easy. You need to call rand and simply use arithme-
tic operators to modify the results. For example, if you need a 5-by-5 matrix
of random numbers between 2 and 8, simply do this:

91

Figure 2.1 Histogram of 1000 pseudo random numbers produced by rand

Figure 2.2 Histogram of a million pseudo random numbers produced by rand

>> rand(5) * 6 + 2

ans =
 4.3534 7.2712 5.6778 4.7812 4.3273
 4.8132 2.9664 3.0216 4.2961 7.1422
 2.6214 5.8898 5.9265 6.9743 2.0767
 6.8485 6.1651 3.9047 3.6829 5.3122
 4.6050 2.5022 4.5134 3.4277 5.1772

The interval (2 , 8) is 6 wide, so we need to multiple by 6, and since it needs
to start 2 above 0, we add 2.

Normal distribution
In science and engineering, the normal distribution is a very important con-
cept. It is also referred to as Gaussian distribution or the Bell Curve due to its

distinctive shape. MATLAB has a function called randn that provides
pseudo random numbers with a normal distribution with a mean of zero.
The output of the function can be any positive or negative floating point num-
ber (or zero), but the smaller the absolute value of the number, the higher
probability it has of being produced by randn. Consider this MATLAB com-
mand:

>> hist(randn(1,1000000),100)

The input arguments to randn work exactly the same way as to rand. The
extra input argument of 100 to the hist function above specifies that this
time we want 100 intervals as opposed to the default of 10. The result is
shown in Figure 2.3.

Random integers
We can use rand to generate uniformly distributed, pseudo random integers
like this:

>> fix(rand(6) * 10) + 1

ans =

 9 10 10 3 2 4
 8 2 1 2 9 5
 1 1 2 6 4 4
 4 2 5 6 3 4
 8 5 1 5 4 3
 4 7 2 8 4 2

The function fix rounds toward zero. Multiplying the output of rand by 10
will give us numbers greater than 0 and smaller than 10, so fix will return
integers between 0 and 9 inclusive. Hence, adding 1 will generate integers in
the range from 1 to 10.

As usual, MATLAB makes our life easier by providing a special function for a
common task. In this case, it is the function randi, which supplies uniformly

92

Figure 2.3 The distribution of one million numbers generated by randn

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution

distributed pseudo random integers. The following function is equivalent to
the more complicated command above:

>> randi(10,6)

ans =
 5 3 9 6 4 6
 1 3 2 5 2 9
 2 10 3 2 6 5
 2 7 4 2 8 1
 1 4 2 9 1 1
 1 5 6 10 9 2

The arguments to randi are a bit different from those of rand. The first argu-
ment specifies the interval of the values. In the call above, we wanted inte-
gers in the range from 1 to 10, hence we used 10. If we want the interval to
start not at 1, but somewhere else, we have to call randi like this:

>> randi([2,8],4,5)

ans =
 5 5 3 3 5
 3 2 6 8 6
 6 8 4 2 5
 2 8 2 2 8

Here, we generated a 4-by-5 matrix of pseudo random integers falling in the
range from 2 to 8. The first argument is a vector containing the minimum and
maximum values we want. As you can see, the second and third arguments
specify the size of the output array similarly to rand.

Initializing the random number generator
If we start MATLAB and call rand and then restart MATLAB and call rand
again, we get the exact same “random” number. In fact, if we keep calling
rand after restarting MATLAB, we will always get the exact same sequence
of numbers. At first, this seems pretty bad. What good is a random number

generator if it always produces the same numbers? Repeatability is an impor-
tant concept: many times if you run the same program, you want to get the
exact same result. This is especially true while you are developing your code
and trying to find you programming errors. If the behavior of the code
changes simply because the random number generator gave different num-
bers, you would have a much harder time finding your coding mistakes. On
the flip side, once your code works you may very well want to get different
numbers from the random number generator every time you run your pro-
gram.

Fortunately, there is a simple way. The function rng is provided to initialize
the pseudo random number generator of MATLAB. It takes an integer argu-
ment and once it is called, the sequence of random numbers will immediately
change. On the other hand, if you call rng with the same argument again, it
will initialize the random numbers the same way and you will get the very
same sequence. For example,

>> rand

ans =
 0.6723

>> rng(1)
>> rand

ans =
 0.4170

>> rand(4)

ans =
 0.7203 0.0923 0.5388 0.8781
 0.0001 0.1863 0.4192 0.0274
 0.3023 0.3456 0.6852 0.6705
 0.1468 0.3968 0.2045 0.4173

93

>> rng(1)
>> rand

ans =
 0.4170

>> rand(4)

ans =
 0.7203 0.0923 0.5388 0.8781
 0.0001 0.1863 0.4192 0.0274
 0.3023 0.3456 0.6852 0.6705
 0.1468 0.3968 0.2045 0.4173

>> rng(10)
>> rand

ans =
 0.7713

>> rand(4)

ans =
 0.0208 0.2248 0.0883 0.5122
 0.6336 0.1981 0.6854 0.8126
 0.7488 0.7605 0.9534 0.6125
 0.4985 0.1691 0.0039 0.7218

As you can see, different arguments to rng initialize (or “seed”) the random
number generator differently. Also, note that the various functions rand,
randi and randn use the same random number generator. They use the
same sequence of random numbers (but they may change it, for example,
randi converts it to an integer).

Of course, we are still not generating truly random numbers: If our code calls
rng with the same seed, it will generate the same sequence again. Again, this
is good for repeatability, for example, we do not have to restart MATLAB to
get the same set of numbers, but what if we want our code to behave differ-
ently every time we call it? Fortunately, rng helps with that too:

>> rng('shuffle')
>> randi(10,5)

ans =
 8 4 10 7 1
 3 7 9 8 3
 5 8 4 3 8
 1 5 9 4 10
 7 5 3 2 6

>> rng('shuffle')
>> randi(10,5)

ans =
 10 10 5 2 4
 2 4 3 3 7
 8 2 2 8 3
 5 5 4 6 1
 7 5 10 4 2

Calling rng with 'shuffle' uses the system time as the seed. Since it has
millisecond resolution, the random number generator will be guaranteed to
have been seeded differently. This will create a different random number se-
quence every time.

Keyboard Input

Some MATLAB programs require input from the user through the keyboard.
In a typical situation, the user gives input in response to a message that is
printed by the program requesting input from the user. As we have learned,
this message is called a prompt. We have already seen that MATLAB’s Com-
mand Window uses a very simple prompt: >>. In the programs that you will
write, a prompt may be any sequence of characters you like. It may range
from one or two characters to a phrase or complete sentence, but regardless
of the form of the prompt, the user must respond to it by typing something

94

and hitting the Enter key. All this is accomplished by means of the input
function. For example, suppose an M-file includes the command,

fave = input('Type your favorite vector: ');

When this command is executed, the program will print this in the Com-
mand Window,

Type your favorite vector: |

with the vertical bar at the right blinking, and it will wait in this state until
the user types something and hits Enter. The sequence of characters that be-
gins with the “T” in “Type” and ends with a space after the colon, is a
prompt. Whatever prompt you want input to print must be given as an
input argument.

While MATLAB patiently waits for input from the keyboard, that blinking
vertical bar shows where the first character that the user types will appear.
Note that the prompt above ended with a blank character (the space between
the colon and the single quote). This blank is "printed" after the colon, mean-
ing that when the user types in a response, there will be one space between
the colon and the first character of the response. Why? Well, it just looks bet-
ter to the user that way (for some reason). If that space is omitted, MATLAB
will not include it for you.

Let’s suppose the user types in the vector [1 2 3 4]. Then the interaction
would look like this:

Type your favorite vector: [1 2 3 4]

Suppose the user types, not a vector, but the matrix [1 2; 3 4]. Then the
interaction would look like this:

Type your favorite vector: [1 2; 3 4]

The result is that fave would be given the value [1 2; 3 4]. Note that
MATLAB pays no attention to what is written in the prompt string. Regard-
less of the type of the object that the user types in—a scalar, a complex num-
ber, a vector, a matrix, or even a string—it will be accepted. The fact that the
prompt tells the user to type a vector is of no consequence.

Formatted Output

A program’s work is of no use to anyone unless it communicates its results to
the outside world. So far, we have taken advantage of the fact that a com-
mand that is not followed by a semicolon automatically prints any value it
computes to the Command Window. We have also seen that it is possible to
change the way in which computed results are displayed by using the for-
mat command.

This method of communication is workable for simple programs, but
MATLAB provides a far more sophisticated way for printing information by
means of a function, borrowed from the languages C and C++, called
fprintf. Its name stands roughly for “formatted printing to a file”, and the
function is versatile enough to allow us to print either to the Command Win-
dow or, as we will learn in the File Input/Output section, to a file. It requires
at least one argument. Its first argument (when it is being used to print to a
file, it is the second argument) is a format string, which is a string that speci-
fies the way in which printing is to be done, such as words that must be
printed, spacing, the number of decimal places to be used for printing
numbers, etc. In the format string, the format of each value that is to be
printed is specified individually. So, for example, one value may be printed
with four decimal places and another with nine. Additionally, any text that is
to be printed along with the values is included in the format string. Follow-
ing the format string there are typically additional input arguments to

95

fprintf. These are the values that are to be printed and they must ap-
pear as arguments in the order that they are to be printed. For example,

> x = 3; y = 2.71; z = x*y;
> fprintf('%d items at $%.2f\nTot = $%5.2f\n',x,y,z)
3 items at $2.71
Tot = $ 8.13

Conversion characters and escape characters
In this particular format string, the %d, %.2f, and %5.2f are conversion char-
acters. Instead of being printed, a percent sign (%) and the characters immedi-
ately after the percent sign indicate to MATLAB that the value of one argu-
ment after the format string, is to be printed in a specific format. The percent
sign acts as a so-called escape character , which is a term used in other com-
puter languages as well as MATLAB and which means that the character or
characters that follow it have a special meaning. The meaning of the d in %d,
for example, is "If the value is an integer, print it without a decimal point;
otherwise print it in scientific notation." For each percent sign, there will usu-
ally be exactly one argument after the format string to go with it. One argu-
ment's value is printed for each percent sign in the order that they appear.
The f in %.2f is a format specifier, which is a character specifying the for-
mat in which an object is to be printed (or read, as we will learn in File
Input/Output).

See Table 2.8 for additional format specifiers. The format specifier f means
"Print using fixed-point notation,” which in turn means that the number is
printed as digits with a decimal point. The 2 after the decimal point specifies
the precision. It means that exactly two digits must be included to the right of
the decimal point (even if they are all zeros). The 5 in the format %5.2f
means "Print using at least five spaces.” Since f is the format specifier, these
spaces will include a minus sign if the number is negative, the digits before
the decimal place, the decimal point itself, and the digits after the decimal

point. The 2 in %5.2f has the same meaning as it did in %.2f. A meaning-
ful sequence of characters, such as %5.2f, that begins with an escape charac-
ter is called an escape sequence. Another escape sequence is \n, which
means "go to a new line". The backslash, which is one of the division opera-
tors, has a different meaning when it occurs inside a string. Here it is an es-
cape character. The special meaning of n is "newline". To print a backslash,
use two of them with no intervening space: \\. To print a single quote, use
two of them: ''. To print a single percent sign, use two of them: %%. 

Partial use and recycling of the format string and matrix arguments
If the number of arguments to be printed (i.e., those after the format string) is
smaller than the number of percent signs in the format string, then the print-
ing will stop just before the first unused percent sign is encountered. If there
are more arguments to be printed than percent signs, the format string will be
recycled repeatedly until all of the arguments are printed. If any or all of the
arguments is a matrix, then the printing will behave as if the matrix were re-

96

Table 2.8 Format specifiers of fprintf

FORMAT SPEC DESCRIPTION
c single character

d decimal notation (but no decimal if integral)

e exponential notation

E exponential notation with an upper case E

f fixed-point notation

g shorter of e or f

G shorter of e or f but with an upper case E

o unsigned octal notation

s string

u unsigned decimal notation

x hexadecimal notation

X hexadecimal notation with uppercase

placed by its elements written as separate arguments in column-major order.
Thus, the matrix A will be printed in the same way that the column vector
A(:) would be printed or if all of its elements were provided as separate ar-
guments to fprintf. 

Imaginary parts ignored
A limitation of fprintf is that it cannot be used to print complex numbers
properly. If a complex argument is given to it, fprintf will ignore the imagi-
nary part! To print complex numbers, you may use another function called
disp. For example,

>> z = 2 + 3i;
>> fprintf('z = '); disp(z);
z = 2.0000 + 3.0000i

Alternatively, you can extract the real and imaginary parts of a complex num-
ber by using the functions real and imag. The following example reveals
how it can be done:

>> fprintf('z = %.2f + %.2fi',real(z),imag(z))
z = 2.00 + 3.00i

Plotting

MATLAB has an extremely powerful plotting facility, which is supported by
functions, including

• plot
• title
• xlabel
• ylabel
• grid
• semilogx
• semilogy
• loglog

and many others. With these functions it is possible to (a) plot more than one
function at a time on a given plot, (b) select distinct symbols, called "mark-
ers", for distinct plots, (c) select distinct colors for distinct plots, (d) print a ti-
tle with a plot, (e) label the axes, (f) provide a "graph-paper" grid, (g) change
one or both axes to be scaled according to the logarithms of the values. Many
other options are available, including three-dimensional plotting.

The simplest approach to plotting is simply passing plot a vector:

>> a = (1:10).^ 2;
>> plot(a)

A figure window labeled Figure 1 pops up and the plot appears in it, as
shown in Figure 2.4.

97

We got the left side of a parabola as expected. Let’s get the other side as well.
We do that by squaring negative numbers as well:

>> b = (-10:10).^2;
>> plot(b)

The previous plot is replaced and the result is shown in Figure 2.5.

While the shape looks fine, the axes do not. The square of 11, for example,
should not be shown as 0. What happened is that plot simply uses the index
of the vector for the x axis if it receives only a single input argument.

The better approach to plotting is to create two vectors of the same length
and give them as arguments to plot. Thus, if x and y are two vectors of
length N, then plot(x,y) produces a plot of N points with x giving the hori-
zontal positions and y giving the vertical positions. For example,

>> t = -10:10;
>> b = t.^2;
>> plot(t,b);

which is shown in Figure 2.6.

Figure 2.4 Plotting a simple quadratic Figure 2.5 Plotting both sides of the parabola

98

It is easy to extend this idea to put more than one plot in a figure because
plot is polymorphic. It accepts a varying number of arguments. For exam-
ple,

>> x1 = 0:0.1:2*pi; y1 = sin(x1);
>> x2 = pi/2:0.1:3*pi; y2 = cos(x2);
>> plot(x1,y1,x2,y2)

produces the plot shown in Figure 2.7.

The vector y1 is plotted versus the vector x1 and the vector y2 is plotted ver-
sus the vector x2, separately on the same set of axes. The ranges of the x and
y axes are automatically chosen to encompass all the values in the vectors.

So far, we have allowed MATLAB to replace each previous plot with our new
one. This is the default, and each one appears in a figure window with the
label Figure 1. If we wish to leave the previous plot in Figure 1 and plot the
next plot in Figure 2, we can do that by issuing the command,

>> figure

Figure 2.7 A plot of a sine and cosineFigure 2.6 The correct way of plotting a quadratic

99

before calling plot. A blank figure will appear with a number one greater than
that of the last figure, and the next call of plot will cause plotting to appear in
the new figure.

A number of pairs of vectors may be given to plot. It will plot them all on
the same set of axes.

It can be seen in Figure 2.7 that the color blue is used for the first plot and the
color green for the second plot. It is possible to alter the appearance of the
plots by using additional arguments in the form of strings. For example, the
command

>> plot(x1,y1,'r',x2,y2,'k:')

produces the version in Figure 2.8.

The string 'r' means “red line”. The string 'k:' means “black dotted line”.
The k means black; the colon means dotted (why not b for black? Answer: b
means blue). One, two, or three characters can be included optionally for
every pair of vectors to be plotted. Table 2.9 gives a list of possible symbols
and their meanings. Additional line styles can be found by help plot.

It is also possible to plot more than one function on the same axes by means
of sequential plot functions using the command hold. Once the command
hold on has been issued, all subsequent plots will be made on the same axes
with the ranges of the axes being adjusted accordingly. When the command
hold off is issued, all subsequent calls to plot will employ a new figure.
The command hold (not followed by on or off) can be used as a toggle to
turn plot holding on or off. Thus, the following commands could be used to
produce the same plot:

>> hold on
>> plot(x1,y1,'r')
>> plot(x2,y2,'k:')
>> hold off

Figure 2.8 Plotting with different colors and markers

100

Table 2.9 Symbols used to alter plot format

SYMBOL COLOR SYMBOL LINE STYLE
b blue . point

c cyan o circle

g green x cross

k black + plus

m magenta * star

r red s square

y yellow d diamond

w white - solid (default)

: dotted

-. dashdot

-- dashed

There are additional options, not reachable through the plot function, that
will enhance the visual quality of a plot. The command grid turns on a
graph-paper like grid. Repeating the command turns it off (and, like hold, it
may be used with off and on as well). The grid command affects only the
currently active figure. (The “active” figure is the one most recently created
or the one which has received the most recent mouse click, whichever hap-
pens last.)

A plot can be adorned with a title at the top and labels along the x and y axes
by means of the functions,

>> title(string)
>> xlabel(string)
>> ylabel(string)

each of which takes a single string (the label) as an argument. So, for exam-
ple, the string might be 'My nifty title', or it might be the name of a
variable that contains a string as its value. It is also possible to change the
ranges of the axes with the function axis, which accepts a single four-
element vector as its argument:

>> axis([xmin xmax ymin ymax])

To return the range to its original value the command

>> axis auto

can be used. Notice that this command does not have the form of the normal
function with arguments in parenthesis. Another use of the axis command is
to alter the relative lengths of the x and y axes match. The command

>> axis square

will make the length of the axes be equal, resulting in a square plot area. The
command

>> axis equal

will adjust the axes so that equal tick mark increments on the x-,y- and z-axis
are equal in for x and y. To see other uses of the command use help axis.

Here is an example of the use of all these functions after a plot has been dis-
played (the result is shown in Figure 2.9):

>> grid
>> title('A Sine Plot and a Cosine Plot');
>> xlabel('The argument of sine and cosine');
>> ylabel('The value of the sine or cosine');
>> axis([-2 12 -1.5 1.5])

Figure 2.9 The result of using the title, xlabel, ylabel and axis commands

101

Playing Audio
MATLAB supports playing audio through your computer’s speakers. The
built-in function sound takes a vector as an input argument and considers it
digitized sound assuming a sample rate provided as a second input argu-
ment. To illustrate how to use the function, the following function generates a
one second long pure tone:

function play_tone(f)
Fs = 8192;
t = 0 : 1/Fs : 1;
tone = sin(f * 2 * pi * t);
sound(tone,Fs);

The function takes an input argument f that specifies the frequency of the de-
sired tone. First, we set the sampling rate to a typical 8192 Hz. Then we gener-
ate a time series: the time between any two sound samples needs to be 1/Fs.
Next we create a pure tone of frequency f, that is, a simple sine wave. Finally,
we call the sound function using the tone and the sampling rate. You can test
the function by running it like this:

>> play_tone(147)

which is roughly the D below middle C on the piano (called D3, whose exact
frequency is 146.832) which is a pretty low-pitched sound or (better turn
down your speaker a bit for this next one one)

> play_tone(2093)

which is the C that is three octaves above middle C on the piano (C7). This is
a high-pitched sound.

The MATLAB distribution comes with a few saved sound files that we can
replay using the sound function. Since these files are in the path, we can sim-
ply load them and play them. Try this:

>> load gong;
>> sound(y,Fs);

What is this y and Fs? Let’s look at it with whos:

>> whos
Name Size Bytes Class Attributes

Fs 1x1 8 double
y 42028x1 336224 double

The load function, which we will learn more about in the File Input/Output
section, has caused y and Fs to be loaded from a file called gong.mat that
is provided with the MATLAB installation and placed in one of the folders on
the MATLAB path, which was described in Introduction MATLAB in the sub-
section Path.

The following video clip (Movie 2.1) demonstrates this with an additional ex-
ample.

102

Movie 2.1 Playing sound from MATLAB

http://tinyurl.com/MATLAB-Movie2-01
http://tinyurl.com/MATLAB-Movie2-01
http://tinyurl.com/MATLAB-Movie2-01

Debugging
The sad fact of life is that it is very easy to make mistakes when writing com-
puter programs. Many of these mistakes are syntactical. We saw examples of
that when we introduced Syntax and Semantics in Introduction to MATLAB,
where we learned that syntactical errors happen when the program text is
not valid according to the rules of the programming language syntax. For ex-
ample, if we type

>> 23 = x;
23 = x;

 |
Error: The expression to the left of the equals sign is
not a valid target for an assignment.

It is not allowed in MATLAB to assign a value to another value! Values can
be assigned only to variables. Another example is when we simply mistype a
name:

>> ramd(2)
Undefined function 'ramd' for input arguments of type
'double'.

There is no function called ramd defined. We meant to type rand of course.
The good news is that MATLAB will immediately complain when we try to
execute a command using illegal syntax. The error message is typically very
informative, and hence, the error is easy to fix.

The errors that are more difficult to find involve the logic in our program.
These are errors of meaning, known more formally as errors of semantics,
and known less formally as “bugs”. A bug is simply an error in a program
that causes it to behave incorrectly. The program text abides by all the syntac-
tical rules of the language, but the program either produces an incorrect re-
sult or causes MATLAB to report a runtime error. The latter means that
MATLAB tried to execute a command and it caused an error. For example, if

we tried to access the sixth element of a vector of five, MATLAB will com-
plain:

>> y = rand(1,5)

y =
 0.7577 0.7431 0.3922 0.6555 0.1712

>> y(6)
Index exceeds matrix dimensions.

When MATLAB provides such an error message, it makes it easier to find the
error. When we simply get an incorrect result, that is typically the hardest
type of bug to find.

The procedure of finding and correcting programming errors is called debug-
ging. How can we go about doing it? Let’s consider a simple example. Here
is a function that was meant to create and return an n-by-m matrix of random
integers and print out the last element as well:

function x = rand_int(n,m)

x = randi(n,m);
fprintf('The last element is %d\n',x(n,m));

If we run it like this, everything seems fine:

>> rand_int(3,3)
The last element is 3

ans =
 3 3 1
 3 2 2
 1 1 3

It is somewhat suspicious that the largest integer in the matrix is only 3, but
let’s set that aside for a moment. However, if we try the function with differ-
ent arguments, we run into trouble:

103

>> rand_int(3,2)
Index exceeds matrix dimensions.

Error in rand_int (line 4)
fprintf('The last element is %d\n',x(n,m));

What is going on here?! In this simple example, we should be able to figure
this out just by looking at the two lines of code, but let’s say that we can’t.
What can we do? The simplest approach is to remove the semicolon in key
lines of the function and thereby let MATLAB print out the corresponding
values. In this case, let us remove the semicolon from the line x = ran-
di(n,m) and see what happens:

>> rand_int(3,2)

x =

 1 3
 2 3

Index exceeds matrix dimensions.

Error in rand_int (line 4)
fprintf('The last element is %d\n',x(n,m));

To our surprise we see that the x is a 2-by-2 matrix as opposed to the 3-by-2
we expected. This should be enough information to realize that we are using
the built-in MATLAB function randi incorrectly. We can type help randi
to see that the first argument it expects is the maximum value of the random
integers we wish to generate and not the number of rows of the matrix. The
solution is to either add an extra argument to our own rand_int function to
supply to randi or to simply have a fixed value like this:

x = randi(10,n,m);

Our new and improved function now works correctly:

>> rand_int(3,2)

x =
 10 2
 6 3
 2 9

The last element is 9

ans =
 10 2
 6 3
 2 9

It returns a matrix of the correct dimensions with positive integer elements
up to 10. It also prints the last element as expected. Of course, we should run
the function with many different argument combinations to verify that it in-
deed is correct. We should also remember to put the semicolon back to sup-
press printing.

The simple technique of removing semicolons from key lines in our functions
does not always work. If the function creates large matrices, for example, we
may get thousands of lines of numbers on the screen making finding the prob-
lem difficult. Fortunately, there is a better way.

MATLAB, just like most other programming environments, has a built-in tool
called the debugger to assist in finding bugs. The debugger let’s you stop
your program in the midst of its execution, so you can look at variables, and
it allows you to step through your code line-by-line. Let’s see how it works!

The most important feature of any debugger is the ability to put breakpoints
in your program. You use a breakpoint to mark a line in your code that you
want the debugger to stop executing the code at. The following figures show
our rand_int function (the erroneous version) in the MATLAB text editor
with a breakpoint specified at the line

x = randi(n,m);

104

Figures Figure 2.10 and Figure 2.11 show how MATLAB shows the location
of a break point in the Edit window in version R2012a (and earlier versions)
and in version R2012b.

The red circle indicates the location of the breakpoint. To create a breakpoint,
you simply click in the gray area between the line number and the given line.
To remove a breakpoint, simply click on the red circle. Note that if you mod-
ify a function, all breakpoints turn gray. This is MATLAB’s way of indicating
that the breakpoints are inactive and you need to save you function first be-
fore running it.

If we run the function, we will see the following in the Command Window:

>> rand_int(3,2)
3 x = randi(n,m);
K>>

The letter K in the prompt indicates that execution is being controlled by the
debugger and is stopped. The 3 indicates that the next line to execute will be
Line 3, and the command on that line is shown as well. At the same time as
this prompt appears in the Command Window, we’ll simultaneously see the
text editor pop up: In Figure 2.12, and Figure 2.13 the tiny green arrow just to
the right of the red circle on Line 3 indicates that execution has stopped at the
third line because there is a breakpoint there. To be precise, it stopped before
executing the command that the green arrow is pointing at.

105

Figure 2.10 Breakpoint in Edit window (R2012a)

Figure 2.12 Execution stopped at the breakpoint (R2012a)

Figure 2.13 Execution stopped at the breakpoint (R2012b)

Figure 2.11 Breakpoint in Edit window (R2012b)

Let’s look at the circled buttons in the toolbar of Figure 2.12, which we have
magnified in Figure 2.14 .

If you allow the mouse cursor to hover on top of the buttons in version
R2012a one at a time, a little yellow “tip” box will pop up showing the action
of each given button. They are:

1. Set/clear breakpoint: toggles the breakpoint at the current line.

2. Clear breakpoints in all files: removes all breakpoints.

3. Step: executes the command in the current line.

4. Step in: if the current line has a call to a user-defined function, it calls the
function and stops on its first line.

5. Step out: leaves the current function and stops at next line after the func-
tion was called (or returns to the Command Window if the function was
called directly from there).

6. Continue: continues the execution of the function until the next break-
point is encountered or until completion if no more breakpoints are en-
countered.

7. Exit debug mode: stops the debugger and does not finish the current func-
tion.

The same actions are available in version R2012b, but are reached in a some-
what different way. We click the “Breakpoints” button, which is circled in Fig-
ure 2.13. We show the result in a magnified the view in Figure 2.15.

Actions 1 and 2 along with others are available by clicking icons in the pop-
down menu. Actions 4 through 6 are available via icons with the green ar-
rows in the gray “ribbon”, and Action 7 is achieved by clicking the red square
with the label “Quit Debugging”.

To continue debugging our rand_int function, let’s press the “Step” button.
The little green arrow will now indicate that we have stepped to Line 4 (not
shown). Take a look at the MATLAB Desktop at this point, shown in Figure 2.
16

106

Figure 2.14 Magnified view part of Edit window (R2012a)
Figure 2.15 Magnified view of part of Edit window (R2012b)

(Note: We have closed the Current Folder and History windows). Look
closely at the Workspace window, which we have magnified in Figure 2.17.

The Workspace window shows something very interesting. The variables
listed there are the local variables of our function, and this is the workspace
of the function in which execution has been stopped! This is the default work-
space that is shown whenever execution is stopped at a break point, and be-
ing able to see that workspace with the function’s local variables is extremely
useful in debugging. From the Value column we can see that the variable x is
a 2-by-2 matrix, which is not what we expected.

The Command Window is interesting too. We can type commands in the
Command Window while we are in debug mode. For example, we can type
whos:

K>> whos
 Name Size Bytes Class Attributes

 m 1x1 8 double
 n 1x1 8 double
 x 2x2 32 double

which shows the same variables in the workspace as are shown in the Work-
space window, as it must. We can, in fact, type any commands we wish. We
can call any function we wish, we can assign values to any variables we wish,
we can plot functions, display images―anything! The only difference from
the normal situation we have seen before when we are issuing commands in
the Command Window is that the workspace now belongs to the active func-
tion rand_int, and when rand_int returns, all the variables in it will van-
ish!

For this debugging session we might want to print the values of m, n, or x,
but the most useful thing to do is probably to use the command size to
check the dimensions of the array stored in the variable x, which shows more
clearly that x is a 2-by-2 array, as shown in Figure 2.18.

107

Figure 2.16 Command Window in debug mode

Figure 2.17 Magnified view of Workspace window

At this point, we should be able to solve the simple problem in our simple
function. Once we have done that, we can quit debugging. For more compli-
cated cases, we can continue stepping through the function line by line or hit
the “Continue” button. When we want to really finish debugging, we can
click the “Exit debug mode” button in version R2012a or the Stop Debugging
button in version R2012b. Alternatively, we could type dbquit in the Com-
mand Window (Make sure not to type quit because it will exit MATLAB al-
together!). Once we exit the debugger, the workspace will show the variables
at the Command Window level as expected. Now we can clear all the break-
points, and we are now ready to run the function normally.

From calculator to computer
With this introduction to the Debugger, you have seen the most important
tool in the Programmers Toolbox. It is the one we use to correct the errors
that we we will inevitably make with the other tools in the box. So far, the
tools we have examined are the ones that make MATLAB a very versatile cal-
culator. In the next two sections, we will look at the tools that make MATLAB
a true programming language, a language that allows you to write code that
can make a computer act like a computer. It’s time to get out the power tools.

Additional Online Resources

• Video lectures by the authors:

" Lesson 4.1 Introduction to programmer’s Toolbox (7:06)

" Lesson 4.2 Matrix Building (15:11)

" Lesson 4.3 Input / Output (20:47)

" Lesson 4.4 Plotting (17:47)

" Lesson 4.5 Debugging (22:17)

108

Figure 2.18 Inspecting variables of the function from the Command Window

https://www.youtube.com/watch?v=JDCEM1P3s5c
https://www.youtube.com/watch?v=JDCEM1P3s5c
https://www.youtube.com/watch?v=rETK7sklPRI
https://www.youtube.com/watch?v=rETK7sklPRI
https://www.youtube.com/watch?v=F8jZcqcpbKk
https://www.youtube.com/watch?v=F8jZcqcpbKk
https://www.youtube.com/watch?v=Mc5h70afoIU
https://www.youtube.com/watch?v=Mc5h70afoIU
https://www.youtube.com/watch?v=bpTqpQS8bMM
https://www.youtube.com/watch?v=bpTqpQS8bMM

Concepts From This Section

Computer Science and Mathematics:
library
bug
debugger
breakpoint
step
step in
step out

MATLAB:
important functions
$ building matrices
$ trigonometric
$ exponential
$ random number generation
$ complex number analysis
$ rounding and remainder
$ descriptive
input
Formatted output: fprintf

format string
conversion characters
escape characters

disp
plot

multiple functions on one plot
selecting colors and markers
titles, labels, log plotting

Practice Problems
Problem 1. Write a function called minmax that takes a two-dimensional ar-
ray (matrix) as an input argument (you do not have to check the input argu-
ment) and returns the minimum and the maximum element in the matrix. It
also needs to print out these values to two decimal point precision according
to this example run:

>> [x y] = minmax(randn(20,20))
The minimum of the matrix is -3.00
The maximum of the matrix is 2.71

x =
-2.9962

y =
2.7081

?

Problem 2. Write a function called my_size that takes a two-dimensional ar-
ray (matrix) as an input argument (you do not have to check the input argu-
ment) and returns the size of the matrix just as the built-in size function
would do. However, my_size also prints out the dimensions of the matrix as
illustrated by this run:

>> s = my_size(randi(10,20,30))
This is a 20-by-30 matrix
s =
 20 30

Problem 3. Write a function called print_square that does not take any
input arguments, nor does it return any output arguments. Instead it requests
the user to input a number and then it proceeds to print it and its square ac-
cording to this:

>> print_square
Give me a number: 5
The square of 5 is 25

?

109

http://cs103.net/wp-content/uploads/minmax.m
http://cs103.net/wp-content/uploads/minmax.m
http://cs103.net/wp-content/uploads/print_square.m
http://cs103.net/wp-content/uploads/print_square.m

Problem 4. Write a function called print_product that does not take any
input arguments, nor does it return any output arguments. Instead it requests
the user to input two numbers one by one and then it proceeds to print them
and their product according to this:

>> print_product
Give me a number: 4
Give me another number: 7
The product of 4 and 7 is 28

Problem 5. Write a function called rand_test that takes one scalar positive
integer input argument n (you do not have to check the input argument) and
returns two output arguments: a column vector of n2 elements and an n-by-n
matrix. The two output arguments must contains the exact same set of ran-
dom numbers (use rand). Here is a sample run:

>> [m v] = rand_test(2)
m =
 0.4170
 0.7203
 0.0001
 0.3023
v =
 0.4170 0.0001
 0.7203 0.3023

?

Problem 6. Write a function called randi_test that takes two scalar posi-
tive integer input arguments maxi and n (you do not have to check the input
arguments) and returns two output arguments: a row vector of n2 elements
and an n-by-n matrix. The two output arguments must contains the exact
same set of random integers that fall between 1 and maxi. Here is a sample
run:

>> [m v] = randi_test(5,3)

m =
 3 4 1 2 1 1 1 2 2
v =
 3 2 1
 4 1 2
 1 1 2

Problem 7. Write a function called uniform_hist that takes two scalar posi-
tive integer input arguments n and bins (you do not have to check the input
arguments). The function does not have any output arguments. It needs to
generate n random numbers using rand and plot their histogram using
bins intervals. For example, the following run generates Figure 2.19 below
(yours may not be exactly the same since the random number generator may
have been initialized differently):

>> uniform_hist(1e6,1000);

?

Figure 2.19 Problem 7

110

http://cs103.net/wp-content/uploads/rand_test.m
http://cs103.net/wp-content/uploads/rand_test.m
http://cs103.net/wp-content/uploads/uniform_hist.m
http://cs103.net/wp-content/uploads/uniform_hist.m

Problem 8. Write a function called uniform_test that takes two scalar posi-
tive integer input arguments n and bins (you do not have to check the input
arguments). The function does not have any output arguments. It needs to
generate n random numbers using rand and save their histogram using
bins intervals in a variable. Note that the hist function can provide the his-
togram in a vector as the output argument. It does not plot the histogram
when its output is assigned to a variable. Plot the histogram of this vector us-
ing bins/50 intervals. This will show how uniformly the numbers gener-
ated rand are distributed. For example, the following run generates Figure
2.20 below (yours may not be exactly the same since the random number gen-
erator may have been initialized differently):

>> uniform_test(1e6,1000);

Problem 9. Write a function called mix_sines that takes two positive scalar
input arguments f1 and f2 (you do not have to check the input arguments)
that represent the frequency of two sines waves. The function needs to gener-
ate these sines waves, add them together and plot the result. If the function is
called like this: mix_sines(1,0) then it displays three full periods of a regu-
lar sine wave with amplitude 1. If it is called like this: mix_sines(20,21),
then it plots Figure 2.21 below (note that if you add a phase shift of pi to one
of the sines, then the result will start at 0 as shown below). Notice that the am-
plitude is 2. Also, notice that signal has three times 21 periods, but the enve-
lope signal has three times 1 periods. That is because the difference of the two
frequencies (21 and 20) is 1.

?

Figure 2.20 Problem 8

Figure 2.21 Problem 9

111

http://cs103.net/wp-content/uploads/mix_sines.m
http://cs103.net/wp-content/uploads/mix_sines.m

Problem 10. Write a function called mul_sines that takes two positive sca-
lar input arguments f1 and f2 (you do not have to check the input argu-
ments) that represent the frequency of two sines waves. The function needs
to generate three full periods of these sines waves, multiply them together
and plot the result. If the function is called like this: mul_sines(20,21),
then it plots Figure 2.22 (note that if you add a phase shift of pi to one of the
sines, then the result will start at -1 as shown below). Notice that signal has
three times 21+20 = 41 periods. Also, notice that the envelope signal has
three times 1 periods. That is because the difference of the two frequencies
(21 and 20) is 1.

Figure 2.22 Problem 10

112

SECTION 3

So far, every piece of MATLAB code that we have en-
countered, whether it has been in the Command Win-
dow or inside a function, has comprised a sequence of
commands, each one of which has been executed imme-
diately after the command that was written immediately
before it. This flow of control is handled behind the
scenes by the MATLAB interpreter, which is a program
running in the background that reads the statements that

you write and carries them out one by one, allocating
space for variables, writing values into those variables,
and reading values from them, accessing elements of ar-
rays, calling functions, and displaying results on the
screen. All this behind the scenes work is necessary to
the execution of statements, and the interpreter’s normal
approach to the flow of control is to do this work in a

Objectives

Selection is means by which
MATLAB makes decisions.
(1) We will learn how to use

MATLAB’s two versions of
selection—the if-statement
and the switch-statement.

(2) We will learn how to nest
selection statements, which
is the placement of if-
statements and switch-
statements inside each
other.

(3) We will learn the relational
operators, ==, ~=, >, <, >=,
and <=, and the logical
”and”, “or”, and “not”
operators.

(4) We will see the complete
precedence table for all
MATLAB operators.

Choosing the path to follow through a MATLAB program is called “selection”.

Selection

113

way that results in its executing the statements that you give it in the order
that you give them.

Executing the statements in the order that they were written by the program-
mer is called sequential control. Sequential control is the most natural and
the most common sequence that occurs in any program written in any pro-
gramming language, and it is the primary example of a control construct. A
control construct is simply a method by which the interpreter selects the next
statement to be executed after the execution of the current statement has con-
cluded. The programmer tells the interpreter which construct to use by
means of the presence or absence of special keywords. So far, such keywords
have been absent from our code, and as a result we have been utilizing only
one type of control construct—sequential control. In this section we will intro-
duce keywords that signal the interpreter to base its decision as to which
statement is to be executed next not only on the order in which the state-
ments are written but also on the basis of the values of expressions. This new
control construct is called selection, or alternatively, branching.

if-statements
The most common selection construct is the if-statement. An if-statement is
used when the programmer wishes to have the interpreter choose whether or
not to executed a statement or set of statements on the basis of the values of
variables. We illustrate this idea with a very simple example. Suppose we
write a function called guess_my_number that requires one input and con-
gratulates us when we call it with the ”right” input. Here are some example
runs:

>> guess_my_number(7)
>> guess_my_number(13)
>> guess_my_number(0)
>> guess_my_number(2)
Congrats! You guessed my number.

Here is the function:

function guess_my_number(x)
if x == 2
 fprintf('Congrats! You guessed my number.\n');
end

We have introduced a new keyword here—if—and a new operator—the
double equals, ==. We will take up the new keyword first. It indicates that we
are using an if-statement, which is the simplest selection construct. Like
every selection construct, it begins with a control statement, which in this
case is the statement, if x == 2, and ends with the statement, end. A con-
trol statement is a statement that controls the execution of another statement
or a set of statements. In this case, it controls the execution of just one state-
ment—the fprintf function call statement. The meaning should be clear
from the code itself: If the value of the variable x is equal to 2, then the
fprintf statement is executed; otherwise, it is not.

The new operator is symbolized by a sequence of two equal signs (with no
space allowed between them), and it means “is equal to”. This operator will
be examined more closely later in this section, in subsection Relational Opera-
tors, but for now it is enough to know that (a) it is a binary operator, which
means, as we may recall from Matrices and Operators, that it takes two oper-
ands and (b) that it determines whether its first operand, which in this case is
the variable x, is equal to its second operand, which in this case is the num-
ber 2.

114

The if-statement is depicted schematically in Figure 2.23. The black dots repre-
sent statements that precede and follow the if-statement. The lines show the
possible flow of control from one statement to another with arrows to show
the direction. The statement, if x == 2, is located at the dot labeled “con-
trol statement”. The left branch is labeled x == 2, meaning that, if x is equal
to 2, then the flow follows this branch. A block is a set of contiguous state-
ments, and each block in the figure is controlled by a control statement. In the
example code that we showed above, there is just one statement (the
fprintf function call statement), but in general there can be any number of
statements in a block. In Figure 2.23, (a) shows the layout, while (b) shows
the flow of control in red when x is equal to 2, and (c) shows the flow of con-
trol in red for all other values of x.

Let’s improve our function just a bit by trying to cheer up the poor user who
fails to pick the correct number:

>> guess_my_number(7)
Not right, but a good guess.
>> guess_my_number(13)
Not right, but a good guess.
>> guess_my_number(0)
Not right, but a good guess.
>> guess_my_number(2)
Congrats! You guessed my number.

Here is what the improved function looks like:

function guess_my_number(x)
if x == 2
 fprintf('Congrats! You guessed my number!\n');
else
 fprintf('Not right, but a good guess.\n');
end

We have used another selection construct—the if-else-statement—and to do
that we’ve introduced another keyword—else. This statement selects one of
two statements to be executed but, as in the case of the if-statement above,
each of these statements could be replaced by a block of two or more state-
ments. We depict our if-else statement schematically in Figure 2.24.

115

Figure 2.23 Schematic of if-statement. The flow of control of an if-statement is shown. The
black dots represent code before and after the if-statement. Control flows along the lines in
the direction of the arrows. The control statement (labeled) is if x == 2. There are two
possible paths as shown in (a) : one labeled x == 2, in which a block of statements, la-
beled “block”, is executed, and one for every other possibility (the unlabeled vertical line) in
which no statements are executed. If x equals 2, then the left branch is followed and the
block of statements is executed, as shown by the red path in (b). Otherwise, the vertical
path is followed, as shown in red in (c), and no statements are executed.

Let’s improve our example even more. Let’s change the name of the function
to ultimate_question and pick a different answer, say 42. That answer is
so obscure that we ought to give the user a hint to make it easier to find it.
Here is how we want our improved function to behave:

>> ultimate_question(7)
Too small. Try again.
>> ultimate_question (13)
Too small. Try again.
>> ultimate_question(100)
Too big. Try again.
>> ultimate_question(35)
Too small. Try again.
>> ultimate_question(50)
Too big. Try again.
>> ultimate_question(40)
Too small. Try again.
>> ultimate_question(45)
Too big. Try again.
>> ultimate_question(42)
Wow! You answered the ultimate question.

It took a bit longer, but it is a lot more fun! Well, maybe it’s not all that much
fun, but it gives us a chance to sneak in a new keyword. Here is the new im-
proved function:

function ultimate_question(x)
if x == 42
 fprintf('Wow! You answered the ultimate question.\n');
elseif x < 42
 fprintf('Too small. Try again.\n');
else
 fprintf('Too big. Try again.\n');
end

The new keyword is elseif . It is used in a new construct−the if-elseif-else-
statement, and it allows us to check a second condition. In addition to the pre-
vious condition, whether or not x equals 42, we have chosen to additionally
check to see whether the value of x is less than 42. If it is, then the second
fprintf statement is executed; if not, then the third one is executed. This
construct is depicted schematically in Figure 2.25.

116

Figure 2.24 Schematic of if-else statement. The flow of control of an if-else statement is
shown. This figure is similar to Figure 2.23, except that there are two blocks of code, instead
of one. There are two possible paths as shown in (a): one for x == 2, and one for every
other possibility. If x equals 2, then the left branch is followed and block1 is executed, as
shown by the red path in (b). Otherwise, the vertical path is followed and block2 is exe-
cuted, as shown in red in (c).

There is one more construct that starts with the keyword if, the if-elseif-
statement. It is simply an if-elseif-else statement with the else branch re-
moved. So, for example, if we wanted to require a bit more thinking on the
part of the person trying to answer the ultimate question, we could omit the
else clause from our last example to get a harder ultimate_question as
follows:

function ultimate_question(x)
if x == 42
 fprintf('Wow! You answered the ultimate question.\n');
elseif x < 42
 fprintf('Too small. Try again.\n');
end

Now the user who tries to answer the ultimate question would need to real-
ize, that, if the function does not tell us that the answer is too small and
doesn’t tell us that the answer is correct, then the only remaining possibility
is that the number is too big. Here is how it would behave with the same
input:

>> ultimate_question(7)
Too small. Try again.
>> ultimate_question (13)
Too small. Try again.
>> ultimate_question(100)
>> ultimate_question(35)
Too small. Try again.
>> ultimate_question(50)
>> ultimate_question(40)
Too small. Try again.
>> ultimate_question(45)
>> ultimate_question(42)
Wow! You answered the ultimate question.

Note that nothing is printed for the inputs 100, 50, and 45, because none of
them is equal to or less than 42.

So far, our examples have selected from among one, two, or three blocks of
code, but any number of blocks can be included by including additional
elseif keywords. Here is a function called day_of_week, that contains an if-
elseif-else-statement that selects from among seven blocks. It performs the
following simple task: Given the number of the day of the week, print the
name of the day and identify it as either a week day or a weekend day:

117

Figure 2.25 Schematic of if-elseif-else The flow of control of an if-elseif-else-statement is
shown. This figure is similar to the previous figure except that there are three blocks of
code (labeled 1, 2, and 3), instead of two. There are three possible paths as shown in (a):
one for x == 42, one for x < 42, and one for every other possibility. If x equals 42,
then the left branch is followed and block 1 is executed, as shown by the red path in (b). If
x neither equals 42, nor is less than 42 (i.e., x is greater than 42), then block 3 is exe-
cuted, as shown in (c). The red path for x < 42 is not shown.

function day_of_week(n)
if n == 1
 fprintf('Sunday,');
 day_type = 2;
elseif n == 2
 fprintf('Monday,');
 day_type = 1;
elseif n == 3
 fprintf('Tuesday,');
 day_type = 1;
elseif n == 4
 fprintf('Wednesday,');
 day_type = 1;
elseif n == 5
 fprintf('Thursday,');
 day_type = 1;
elseif n == 6
 fprintf('Friday,');
 day_type = 1;
elseif n == 7
 fprintf('Saturday,');
 day_type = 2;
else
 fprintf('Number must be from 1 to 7.\n');
 return
end
if day_type == 1
 fprintf(' which is a week day\n');
else
 fprintf(' which is a weekend day\n');
end

Note also that the blocks in the if-elseif-else-statement above comprise two
statements—an fprintf statement and an assignment statement, illustrat-
ing that a block can indeed include more than one statement.

The return-statement
We have sneaked in a new keyword in the code above. Did you notice it? The
new keyword is return. This keyword comprises MATLAB’s return-
statement. When a return-statement is executed (in any programming lan-
guage), it halts the function in which it appears, in this case day_of_week,
and returns control to the caller of the function. (When return is executed in

the Command Window, it does nothing; in a script, it causes the script to halt,
and control is returned to the Command Window) If day_of_week was
called from inside another function, then control will return to the calling
function. If day_of_week was called from the Command Window, then con-
trol will return to the Command Window. When a return-statement is exe-
cuted, output arguments (there are none in day_of_week) behave as usual:
The most recent value assigned to each before the return-statement is exe-
cuted will be passed to the caller, just as it is when the function ends in the
normal way by executing its last statement.

Let’s look at examples of this function in action.

>> day_of_week(1)
Sunday, which is a weekend day
>> day_of_week(4)
Wednesday, which is a week day
>> day_of_week(-2)
Number must be from 1 to 7.

The inputs 1 and 4 are legitimate inputs and result in the expected behavior.
The input -2 is caught by the else-clause of the if-elseif-else-statement, which
executes its fprintf with the error message and then executes the return-
statement, which halts the function and returns control to the Command Win-
dow. If that return-statement had been omitted, then execution would have
continued to the final if-else-statement, and this is what would have hap-
pened:

>> day_of_week(-2)
Number must be from 1 to 7.
Undefined function or variable "day_type".
Error in day_of_week (line 27)
if day_type == 1

This ugly result happens because day_type is not assigned a value when
the input is out of range, so, when the if-statement at the end of the code tries
to compare its value against 1, it discovers that day_type has no value, and
MATLAB is forced to step in and take charge—an embarrassment for any

118

self-respecting programmer. The return-statement is a convenient way to han-
dle this situation, and indeed it is a convenient way to handle any situation
for which there is nothing more that a function can do or needs to do.

The conditional
There is a name for the expression that follows the keywords if and
elseif. It is called a conditional. A conditional is the expression that deter-
mines whether or not a block in an if-statement is executed. It can have one
of two values—true or false. If it is true, the block is executed; if it is false, the
block is not executed. We have seen several simple examples already: x ==
2, x == 42, x < 42, n == 1, n == 2, ..., and day_type == 1. We will
see more complex examples below in the subsections, Relational Operators
and Logical Operators, and we will learn that they play an important role in
another construct, the “while-loop”, which we will learn about in the Loops
section of this chapter.

If-statement summary
We have introduced these four selection constructs:

• if-statement

• if-else-statement

• if-elseif-statement

• if-elseif-else-statement

We refer to these constructs collectively as “if-statements”, with the addi-
tional branches in the last three referred to as “else-clauses” or elseif-clauses”.
We might for example say, “The if-statement had an elseif-clause, but it did
not have an else-clause.” Or, “The error message was printed by the else-
clause,” etc.

Here is a summary of the syntax for these four selection constructs:

if-statement:

if conditional
 block
end

if-else-statement:

if conditional
 block
else
 block
end

if-elseif-statement:

if conditional
 block
elseif conditional
 block
end

if-elseif-else statement:

if conditional
 block
elseif conditional
 block
else
 block
end

Each clause of an if-statement must begin on a new line or be separated from
the previous section by a comma or semicolon. The semicolon suppresses
printing as usual. Additional elseif-clauses may be inserted without limit, but
there can be only one if and one else per if-statement with if coming first
and else, if there is one, coming last.

119

Note that only one of the blocks of any of these statements will be executed.
This is a rule for if-statements of all forms: When an if-statement is encountered,
no more than one block of statements within that if-statement will be executed. Ei-
ther nothing will be executed, as when we guessed a number other than 2 in
our very first example above, or exactly one of the blocks will be executed,
and it will be executed one time. If the first conditional is true, then the first
block will be executed once. If there are elseif-clauses and the first conditional
is false then the block associated with the first true conditional among the
elseif-clauses will be executed once. If there is no else-clause and none of the
conditionals is true, all of the blocks will be skipped and the if-statement will
do nothing. If there is an else clause, however, it is guaranteed that one block
will be executed.

switch-statements

In addition to the many forms of the if-statement, MATLAB provides one ad-
ditional selection construct—the switch-statement. We will introduce the
switch-statement by using it to performing a task that we performed above
with if-statements. Let’s revisit the function from the previous section:
day_of_week, which names the day of the week corresponding to the num-
ber we input to it and tells us whether it is a weekday or a weekend day.
Here is the switch-statement version:

function day_of_week_switch(n)
switch n
 case 1
 fprintf('Sunday,');
 day_type = 2;
 case 2
 fprintf('Monday,');
 day_type = 1;
 case 3
 fprintf('Tuesday,');
 day_type = 1;
 case 4
 fprintf('Wednesday,');
 day_type = 1;
 case 5
 fprintf('Thursday,');
 day_type = 1;
 case 6
 fprintf('Friday,');
 day_type = 1;
 case 7
 fprintf('Saturday,');
 day_type = 2;
 otherwise
 fprintf('Number must be from 1 to 7.\n');
 return
end
if day_type == 1
 fprintf(' which is a week day\n');
else
 fprintf(' which is a weekend day\n');
end

There are three new keywords in this switch-statement: switch, case, and
otherwise. The keyword, switch, signifies the beginning of a switch-
statement, and that keyword is followed on the same line by the variable n.
Following the switch line is a series of case-clauses, each beginning with
the keyword, case, followed on the same line by a number. For each case-
clause there follows a block of statements, in this case, an fprintf function
call statement and an assignment statement. The switch line is the control
statement. It determines which block of statements will be executed by com-

120

paring n to the number that follows each case keyword. The flow of the
switch-statement is just like that of the if-elseif-else-statement. The first case
whose number matches the value of n will have its block of statements exe-
cuted. When a switch-statement is encountered, no more than one block of
statements within that switch-statement will be executed. Either nothing will
be executed, or exactly one of the blocks will be executed. In the code above,
if none of the numbers after the case keywords matches n, then the block of
statements following the otherwise keyword will be executed. The
otherwise-clause may, however, be omitted. If there is no otherwise-clause,
then, if none of the numbers matches n, then none of the blocks in the switch-
statement would be executed. If there is an otherwise-clause, however, it is
guaranteed that one block will be executed (just as when there is an else-
clause in an if-statement). Regardless of whether or not there is an otherwise-
clause, the switch-statement must be be terminated with the keyword end.

The switch-statement is actually more flexible than our example might indi-
cate. There are in fact three additional options. First, a simple expression,
such as n+2 or a more complicated one, such as sqrt(n^3 – 1/n + pi),
can replace the simple variable n. Furthermore, the number following each
case keyword can also be an expression. The following summary of the
switch-statement syntax shows that expressions can appear in each of these
positions.

switch switch-expression
case case-expression,
 block
case case-expression,
 block
. . .
otherwise
 block
end

Here switch-expression is any scalar expression, and case-expression is any
expression at all. Oddly, an array is allowed as a case-expression, but it will

never match the switch-expression because the switch-expression must al-
ways be a scalar and only a scalar can match a scalar. The commas may be
replaced by semicolons. If a block starts on a new line, as in the layout above,
neither a comma nor a semicolon is required after the case-expression.

Switch expressions can be strings
The second option for expressions in switch-statements is the string. Here is
an example in a function called number_of_day, which does the opposite of
the function day_of_week_switch above. This new function gives us the
number of the day when we input the name of the day:

function n = number_of_day(day_name)
switch day_name
 case 'Sunday'
 n = 1;
 case 'Monday'
 n = 2;
 case 'Tuesday'
 n = 3;
 case 'Wednesday'
 n = 4;
 case 'Thursday'
 n = 5;
 case 'Friday'
 n = 6;
 case 'Saturday'
 n = 7;
 otherwise
 fprintf('Unrecognized day\n');
 return
end

Note that, unlike day_of_week_switch, our new function returns some-
thing. It returns the number of the day via the variable n. Here are some ex-
amples of this function being used:

121

>> day_number = number_of_day('Sunday')
This is a weekend day

day_number =
 1
>> day_number = number_of_day('Wednesday')
This is a week day

day_number =
 4
>> day_number = number_of_day('Halloween')
Unrecognized day
day_number =
 0
>> day_number = number_of_day('friday')
Unrecognized day
day_number =
 0

It works well as long as we give it strings, like 'Sunday' and 'Wednes-
day', that we have included as cases in our code, and it is not surprising that
it does not recognize 'Halloween' as the name of a day of the week. It may,
however, be surprising that it does not recognize 'friday'. The problem
here is that the 'f' is not upper case, and as a result 'friday' does not
match 'Friday' exactly. There is no wiggle room here. The strings must be
exactly the same or there is no match. We will see later how to allow variation
between upper and lower case.

A case expression can be a set
The third option is the use of a set as a case-expression. A case-expression can
be a set of values or a set of expressions. The set is known as a “cell array”,
and we will learn about them in the section entitled Data Types, but for now,
we will note that a set can be denoted simply by delimiting a vector with
braces, instead of brackets, as shown in this formal specification:

case {case-expression1,case-expression2,...},
 block

The meaning is that, if the switch-expression matches any of the case-
expressions in the list, the block will be executed.

Here is an example that includes a set:

function weekday_or_weekend(n)
switch n
 case 1
 fprintf('Sunday\n');
 case {2,3,4,5,6}
 fprintf('Weekday\n');
 case 7
 fprintf('Saturday\n');
 otherwise
 fprintf('Number must be from 1 to 7.\n');
end

This function prints the name of the day, if we give it 1 or 7 as input, and for
the numbers 2, 3, 4, 5, and 6, it prints the word 'Weekday'. The weekday
case is handled by giving as the case-expression a set of numbers delimited
by braces, instead of a single number. As for a normal vector, the commas
separating the numbers between the braces can be replaced by spaces.

Here is the function in action:

>> weekday_or_weekend(1)
Sunday
>> weekday_or_weekend(4)
Weekday
>> weekday_or_weekend(9)
Number must be from 1 to 7.

As usual, the values can be replaced by expressions. So, for example,
{2,3,4,5,6} could have been {2,2+1,5-1,5 2*5-4}.

Switch-statements versus if-statements
The switch-statement and the if-statement are equally powerful (each can do
what the other can do), but the switch-statement is especially well suited to
handle cases with only a finite set of choices. Here is an example of an if-
statement and a switch-statement that do the same thing:

122

if x == 1
 fprintf('One\n');
elseif x == 2
 fprintf('Two\n');
elseif x == 3
 fprintf('Three\n');
else
 fprintf('%d\n', x);
end

switch x
 case 1
 fprintf('One\n');
 case 2
 fprintf('Two\n');
 case 3
 fprintf('Three\n');
 otherwise
 fprintf('%d\n', x);
end

Each of these statements—the if-statement and the switch-statement—prints
the name of the value of x, if it equals 1, 2, or 3, and prints digits otherwise.
The switch-statement is more appropriate because it avoids the needless repe-
tition of the == operator.

Just for fun, here is an example that shows how to construct a switch-
statement that handles continuous ranges of values. It proves the power of
the switch-statement to duplicate the functionality of the if-statement, but it
is a very poor programming example! When a range of values is involved, an
if-statement is the right choice.

if x < 1
 fprintf('x is small\n');
elseif x > 10
 fprintf('x is large\n');
elseif x > 1
 fprintf('x is medium\n');
else
 fprintf('x equals 1\n');
end

switch true
 case x < 1
 " fprintf('x is small\n');
 case x > 10
 " fprintf('x is large\n');
 case x > 1
 " fprintf('x is medium\n');
 otherwise
 " fprintf('x equals 1\n');
end

Relational Operators

The operators, ==, and <, which we have seen in if-statements above, are ex-
amples of relational operators. A relational operator produces a value that
depends on the relation between the values of its two operands. As we noted
above, the operator == is symbolized by two equal signs (a notation bor-
rowed from C/C++). It is the “is-equal-to” operator, or “equals” operator,
and it means exactly what both names imply. When we use it as a conditional
in an if-statement, it causes the block it governs to be executed if and only if
its first operand is equal to its second operand. Note that this operator is very
different from the assignment operator, which is symbolized by just one
equal sign and which causes the value of the variable at its left to be set to the
value at its right. The operator symbolized by < is the “is-less-than” or “less-
than” operator, and it also has the meaning we would expect. When we use
it as a conditional in an if-statement, it causes the block it governs to be exe-
cuted if and only if its first operand is less than its second operand.

There are four additional relational operators, and all six of them are given in
Table 2.10.

While relational operators usually appear in the conditional expressions of if-
statements, when we reach the section entitled Loops, we will find them in
another control construct, called the “while-statement” as well. That’s not the

123

only other place they can appear. Newcomers to MATLAB usually find it sur-
prising to learn that relational operators can appear outside control statements
and even more surprising that a relational operation in fact produces a value!
Here are two simple examples in the Command Window:

>> 10 == 20
ans =
 0

>> 3 == 35-32
ans =
 1

In the first of these two examples, we asked MATLAB to calculate the value
of 10==20, and it told us that the value is 0. In MATLAB, when the operator
== finds that its first operand is not equal to its second operand, it returns the
value zero, which means “false”. In the second example, we found that the
value of the expression 3 == 35-32 is 1. When the == operator finds that its
first operand is equal to its second operand, it returns the value 1, which
mean “true”. (The ideas of using 1 to stand for truth and 0 to represent false-
ness and of having relational operators produce values is borrowed from the
C language.)

In fact, every relational operator returns 0 when its expression is false and 1
when its expression is true. Here is another example:

>> x = (45*47 > 2105) + 9
x =
 10

In this expression, 45*47, which equals 2115, is greater than 2105, so the
relational expression in parentheses evaluates to 1 (true). We then add 9 to 1
and get 10.

The parentheses have an important effect here. If we omit them, we get a dif-
ferent answer:

>> x = 45*47 > 2105 + 9
x =
 1

This time, the addition operator is executed before the greater-than operator,
because the precedence of + is higher in than the precedence of > so it is car-
ried out first. In fact all the arithmetic operators have higher precedence than
all the relational operators. (See the precedence table in Table 2.13.) The result
of the addition is 2114, but the value of the operand on the left of the >,
which as before is 2115, is still greater than the value of the operand on the
right of the >, so the relational operator produces the value 1 (true), as before.
Since nothing is added to it this time, the result of the entire expression is 1.

Here is an example of a meaningful use of relational operators in arithmetic
expressions (i.e., not in the conditional of an if-statement, for example). First
we note that sometimes, when an expression involves division, there is a dan-
ger that we may divide by zero, as in this example:

>> x = 16;
>> y = 0;
>> z = x/y
z =
 Inf

124

Table 2.10 Relational Operators

OPERATOR MEANING
== is equal to
~= is not equal to
> is greater than
< is less than
>= is greater than or equal to
<= is less than or equal to

Most languages show little patience for division by zero and will merely stop
everything, print an error, and wait for the user to change the code and rerun
the program. MATLAB is far more forgiving (another of its advantages). It
simply says that the result is infinity by giving it a special value—Inf. Let’s
suppose, however, that the programmer would rather that z be set to x, in-
stead of x/y when y equals zero. We could handle that with an if-statement
in the following way:

if y ~= 0
 z = x/y;
else
 z = x;
end

Using an if-statement is a perfectly good solution, but it is also possible to ac-
complish the same thing with a single arithmetic expression involving a rela-
tional operator as follows:  

z = x/(y + (y==0)) .

Here is a demonstration, using a nonzero value for y first and then a value of
zero for y:

>> x = 16;
>> y = 2;
>> z = x/(y + (y==0))
z =
 8
>> y = 0;
>> z = x/(y + (y==0))
z =
 16

As with the if-statement version, when y is non-zero, z is set to x/y, and
when y is zero, z is set to x. Here is another example. This one sets z to 0, in-
stead of x, when y is zero:

z = (y~=0)*x / (y + (y==0)) .

A convenient feature of the relational operators is that they are array opera-
tors, like, for example, .*, which was introduced in the Section, Matrices and
Operators, and they obey the same rules as the other array operators. Thus,
by giving them two operands that are arrays of the same size and shape, we
can compare many pairs of values with just one expression. Here are a couple
examples:

>> [4 -1 7 5 3] > [5 -9 6 5 -3]
ans =
 0 1 1 0 1

which says that 4 is not greater than 5, -1 is greater than -9, 7 is greater than
6, 5 is not greater than 5, and 3 is greater than -3,

>> [4 -1 7 5 3] ~= [5 -9 6 5 -3]
ans =
 1 1 1 0 1

which says that only the 4th elements are equal.

Also, like the array operators, if one operand is a scalar, then the other oper-
and can have any size and shape, allowing us to compare many values to one
value, as in these examples:

>> [4 -1 7 5 3] <= 4
ans =
 1 1 0 0 1

>> [14 9 3 14 8 3] == 14
ans =
 1 0 0 1 0 0

>> sum([14 9 3 14 8 3] == 14)
ans =
 2

125

The last expression shows an easy way to determine how many elements of a
vector are equal to a given value. It is easy to see how to change this example
to handle questions like, “How many elements of the vector v are greater
than pi?”

Logical Operators

We have seen that by employing relational operators in conditional expres-
sions, if-statements can be used to determine the flow of control on the basis
of the values of variables. This is a powerful idea, but it can be made much
more powerful by the addition of another set of operators—the logical opera-
tors. A logical operator produces a value that depends on the truth of its two
operands. There are three of these operators and they are given in Table 2.11.

To understand how they work, let’s consider a simple problem. Suppose we
want a function that takes three inputs, and it returns 1 if they are in increas-
ing order, -1 if they are in decreasing order, and zero otherwise. Here is a
function that does that and uses the logical “and” operator to get it done:

function a = order3(x,y,z)
if x <= y && y <= z
 a = 1;
elseif x >= y && y >= z
 a = -1;
else
 a = 0;
end

The “and” operator, symbolized by the double ampersand, &&, makes its first
appearance in the first conditional: x <= y && y <= z. Here is how it
works: The && operator takes two operands. If both are true (values are nonz-
ero), then it returns true (value of 1). Otherwise, it returns false (value of 0).
To be clear, if either one of its operands is false (value of 0), it returns false
(value of 0). No real surprise here. This is the normal, everyday meaning of
the word “and”. However, there is one interesting feature about this operator
that we will take up in the next subsection.

Short Circuiting
In the expression, x <= y && y <= z , the first operand of the logical
“and” operator && (i.e., the operand to its left), x <= y, is evaluated first,
and if that operand is false, then the && operator returns false (value of 0)—
without evaluating its second operand at all! It ignores its second operand
when its first operand is false because evaluating the second operand would
be a waste of time. Regardless of whether that second operand is true or
false, the answer will be false whenever the first operand is false. Skipping
the evaluation of the second operand because its value will have no effect on
an operator’s result is called short circuiting. Short circuiting is not always
possible. When the first operand is true, then the truth or falsehood of the
“and” expression is determined by the second operand. If that operand is
also true, then the && operator returns true (value of 1); if the second operand
is false, then the && operator returns false (value of 0).

126

Table 2.11 Logical Operators

OPERATOR MEANING
&& and

|| or

~ not

The flow of control within the logical “and” operation above is illustrated in
Figure 2.26. The logical “and” operation and its two operands are color coded
and their possible outputs—true or false—are shown. The actual outputs are
1 for true and 0 for false (not shown). The path taken when the first operand
is false is labeled “short circuit” because it avoids passing through the path of
the evaluation of the second operand and takes the direct (short) path (cir-
cuit) to false.

Here is a second example of the logical “and” operator:

function a = not_smallest(x,y,z)
if x < y && x < z
 a = 0;
else
 a = 1;
end

The job of this function is to determine whether its first input argument is
smaller than both of its other two input arguments. If it is not smaller than
both of them, then it returns 1, meaning it is not the smallest (hence the
name of the function); otherwise it returns 0. If the first operand is false, then
short-circuiting takes place.

There is a second short-circuiting logical operator—the logical “or” operator,
symbolized by ||. It returns true (value of 1) if at least one of its operands is
true—the first one, the second one, or both—and (value of 0) if both operands
are false. We illustrate its use by rewriting the function above, using || in-
stead of &&:

function a = not_smallest_version_2(x,y,z)
if x >= y || x >= z
 a = 1;
else
 a = 0;
end

127

Figure 2.26 Schematic of short-circuiting for &&. The flow of control is shown
within a short-circuiting logical “and” operation: &&. The first operand of && is
red, and its possible outputs–true or false—are outlined in red. The second
operand of && is green, and its possible outputs are outlined in green. The two
possible outputs of && are outlined in blue. If the output of the first operand is
false, then the path labeled “short-circuit” is followed, bypassing the evaluation
of the second operand.

This function performs exactly the same task as that performed by the “and”
version above. Short-circuiting takes place if the first operand is true, as
shown in Figure 2.27, because in that case, the ||operator will return 1, re-
gardless of the value of the second operand.

Short circuiting may seem of little importance, because it may seem to be a
trivial matter whether or not one operand is evaluated. However, it can save
a lot of time if the second operand requires a long time to evaluate. This can
happen if a function is involved the operand, as in this example:

function a = not_smallest_version_3(x,y,z)
if x >= f(y) || x >= f(z)
 a = 1;
else
 a = 0;
end

The only difference between the previous example and this one is that y and
z have been replaced by f(y) and f(z). Now x is being compared with the
result of the evaluation of the function f with inputs y or z. If the evaluation
of f requires, say, 30 minutes, then when x is greater than or equal to f(y),
we definitely do not want to wait around for half an hour while f(z) is
evaluated when we don’t care what the result is!

In Table 2.12 the outputs of the logical “and” operator && and the logical “or”
operator || are given for their four possible inputs and the outputs for the
related function xor (“exclusive or”) is given as well. There is no operator for
xor. It is a function that takes two inputs as for example: xor(x,y).

It should be noticed that the inputs are 0 and “nonzero”, instead of 0 and 1.
These are MATLAB’s denotations of the values that are treated as meaning
false and true when used as inputs to logical operations. Up to now, we have
seen only the number 1 used to mean true because that is the value that all
the relational and logical operators return when their expressions are true.
However, these operators allow any value to be used as input, and among all
possible input values, only zero means false. Here are examples of non-zero
values being used as input to && and ||:

128

Figure 2.27 Schematic of short-circuiting for ||. The flow of control is
shown within a short-circuiting logical “or” operation: ||. The first operand
of || is red, and its possible outputs –true or false—are outlined in red.
The second operand of || is green, and its possible outputs are outlined
in green. The possible outputs of ||are outlined in blue. If the output of the
first operand is true, then the path labeled “short-circuit” is followed, by-
passing the evaluation of the second operand

Table 2.12 Logical “and” and “or” input/output

INPUTSINPUTS && || XOR
0 0 0 0 0
0 nonzero 0 1 1

nonzero 0 0 1 1
nonzero nonzero 1 1 0

>> 1 && 1
ans =
 1
>> 17 && 1
ans =
 1
>> -1 && 1
ans =
 1
>> -1 || 0
ans =
 1
>> pi || 0
ans =
 1

In every case, a nonzero value as input has the same effect as 1.

The third operator in Table 2.11 is the logical “not” operator, symbolized by ~
(called “tilde” and pronounced “TILD-ah”, and usually found just above the
Tab key on the keyboard). The “not” operator is a unary prefix operator, like
the unary + and unary -, which, as we learned in Matrices and Operators,
means that it takes only one operand and it comes before its operand. Here is
an example of this operator being used in a fourth version of our not_small-
est function:

function a = not_smallest_version_4(x,y,z)
if ~(x < y && x < z)
 a = 1;
else
 a = 0;
end

The not-operator appears in the conditional of the if-statement, and its oper-
and is the logical expression in parentheses. The evaluation of the conditional
proceeds as follows: (1) the relational operation x < y is evaluated, (2) the
relational operation x < z is evaluated, (3) the logical “and” operation x <
y && x < z inside the parentheses is evaluated, and (4) the not-operator is

applied to the result. If the value produced by the “and” operation is 1
(meaning true), then the not-operation returns 0 (meaning false). If the value
of the “and” operation is 0 (meaning false), then the not-operation returns 1
(meaning true). In other words, ~ merely changes a zero to a 1 and a nonzero
value to a zero. It might win the award for being MATLAB’s simplest opera-
tor.

This version of our function seems to match the name of the function, “not_s-
mallest”, better than other versions, because it is the only version that uses
the “not” operator. This added clarity may seem to be a small thing, but writ-
ing logical expressions in an easily understandable form is important be-
cause, when we look at our functions later or when someone else looks at
them, it will require less time to decipher and will reduce the possibility of a
bug being introduced when new code is added. A good programmer always
tries to find a clear way to write logical expressions.

Here again, the parentheses are important. If we remove them, then we are
left with the expression, ~x < y && x < z. The precedence of the “not”
operator is higher than that of the “less-than” operator, so without the paren-
theses, the first operation that is carried out is ~x, which equals either zero or
one according to whether x is nonzero or zero. Then the “less-than” operator
will be carried out, and its first operand will be either one or zero, instead of
x. This is clearly not what we intended.

Like the relational operators, but unlike && and ||, the operator ~ is an array
operator: Thus, it can be applied to an array producing a “not” operation on
each element: Here are two examples:

>> ~[1 -1 0 0 pi 0 4]
ans =
 0 0 1 1 0 1 0

We have included some nonzero values other than one to emphasize the fact
that nonzero (even -1) means true.

129

>> ~[-1<1 4==4 2>3 2~=2 9~=4 6>=7 6<=7]
ans =
 0 0 1 1 0 1 0

The output elements are the same as in the previous example, but this time
the input elements are relational operations that happen to be true or false in
the same places where nonzero and zero values appeared in the input ele-
ments of the previous example.

There are two more logical operators—the so-called “element-wise” versions
of the logical “and” operator and the logical “or” operator. These operators
are symbolized by a single & and a single |. Like their double-symbol counter-
parts, they are both binary operators, and they perform the same logical op-
erations as they do, namely, “and” and “or”. However, these operators, like
the relational operators and ~, are array operators: They are the array ver-
sions of && and ||, each of which can be applied only to scalars. Like the
other binary array operators, they can also take one scalar operand and one
non-scalar operand. There is one strange wrinkle to & and |. When they ap-
pear in a conditional of an if-statement (or a while-statement, which we will
see in the next section), they short-circuit just like && and ||, but when they
appear outside, they do not.

Here are some examples of the use of & and | with arrays:

>> [4 0 pi -1 0 1/3] & [1 1 -2 0 0 8]
ans =
 1 0 1 0 0 1

>> [4 0 pi -1 0 1/3] | [1 1 -2 0 0 8]
ans =
 1 1 1 1 0 1

>> [1 0 2;0 4 -1] | [0 0 .3;0 4 0]
ans =
 1 0 1
 0 1 1

>> [1 0 2;0 4 -1] & 7
ans =
 1 0 1
 0 1 1

We have now introduced all ten of MATLAB’s operators. We gave the prece-
dence of the first five of them (along with parentheses) in the section entitled,
Matrices and Operators. Table 2.13 gives the complete precedences table for
all of them. Remember that a lower precedence number means higher prece-
dence, which means earlier evaluation in an expression: operators with lower
precedence numbers go first. However you can always override the order of
operations with parentheses. Before any operations within an expression are
carried out, the MATLAB interpreter finds all matching pairs of parentheses
(its zero precedence beats all the rest!), and it evaluates the expression inside
any matching pair of parentheses separately from the rest of the expression.

130

Table 2.13 Operator precedence

PRECEDENCE OPERATOR
0 Parentheses: (...)

1 Exponentiation ^ and Transpose '

2 Unary +, Unary –, and logical negation: ~

3 Multiplication and Division (array and matrix)
4 Addition and Subtraction

5 Colon operator :

6 Relational operators: <, <=, >, >=, ==, ~=

7 Element-wise logical “and”: &

8 Element-wise logical “or”: |

9 Short-circuit logical “and”: &&

10 Short-circuit logical “or”: ||

Also, as we learned in Matrices and Operators, when there are two or more
operators of the same precedence, left-to-right associativity is used, meaning
that the order of operation is from left to right. Parentheses can override this
associativity rule also.

Memorizing all these rules may seem daunting, but in fact, all of us who
have had experience with basic algebra have already learned the rules associ-
ated with addition, subtraction, multiplication, and division. For example,
you will know without looking at the precedence table when you see z/
3+y*z that z is divided by 3 and y is multiplied by z before the addition is
carried out, even though that is not the order in which they are written in,
and you will know, without peeking at the table, that adding parentheses like
this, z/(3+y)*z, will cause the addition to happen first. The rules for the
other operators will be less familiar, but they typically agree with intuition,
and if you are in doubt, then anyone who reads your code will probably be
in doubt too. In those cases, even if you know the rules, you would do well
to add redundant parentheses to make the order of operations perfectly clear.
MATLAB makes it easy to review the table. All you have to do is type help
precedence in the Command Window.

Nested Selection Statements

We have seen both types of selection statements: the if-statements and the
switch-statements. They have the common feature that each one chooses
whether or not a block of statements is executed or selects one block from
among two or more for execution. So far, in all our examples, the only state-
ments in these blocks have been assignment statements and fprintf func-
tion call statements, but there is in fact no restriction whatsoever on the type
of statements that can be included in those blocks. Other control statements
can be included too. We refer to the inclusion of one control construct inside

another construct as nesting. In this section, we look at examples of nesting
in which blocks inside selection statements contain other selection state-
ments.

For our first example, we will use nesting to rewrite a function that we wrote
earlier without nesting—ultimate_question. We repeat that function be-
low:

function ultimate_question(x)
if x == 42
 fprintf('Wow! You answered the ultimate question.\n');
elseif x < 42
 fprintf('Too small. Try again.\n');
else
 fprintf('Too big. Try again.\n');
end

We used this function to introduce the elseif clause, and that is the best
way to write it, but in order to show how nesting works, here is a version
with nesting that does not use elseif:

function ultimate_question_nested(x)
if x == 42
 fprintf('Wow! You answered the ultimate question.\n');
else
 if x < 42
 " fprintf('Too small. Try again.\n');
 else
 " fprintf('Too big. Try again.\n');
 end
end

This function provides an example of nesting because of the if-else statement
that begins with “if x < 42”, which lies within the second block of the if-
else-statement that begins “if x == 42”. Thus, this is an example of an if-
else statement nested inside another if-else statement. This nesting occurred
in the second branch of the first if-statement, but nesting can occur in any
branch, as for example in the following re-write of this function, which we
call (for lack of a good name!) ultimate_question_nested2:

131

function ultimate_question_nested2(x)
if x <= 42
 if x == 42
 fprintf('Wow! You answered the ultimate question.\n');
 else
 fprintf('Too small. Try again.\n');
 end
else
 fprintf('Too big. Try again.\n');
end

This time, the nesting is in the first branch of the first if-else statement.

So far, we have nested if-statements in each other, but, as we mentioned
above, there is no limit on what can go inside what. Here is an function,
named write_digit, that prints the name of a digit, and before it does that,
it checks its input to be certain that it is a positive, single-digit integer:

function write_digit(x)

if floor(x) ~= x % x is not an integer
 fprintf(' %f is not an integer',x);
else
 if x < 1 || x > 9
 fprintf('%d is not in the range 1..9',x)
 else
 switch x

case 1
fprintf('one');

case 2
fprintf('two');

case 3
fprintf('three');

case 4
fprintf('four');

case 5
fprintf('five');

case 6
fprintf('six');

case 7
fprintf('seven');

case 8
fprintf('eight');

case 9
fprintf('nine');

 end
 end
end
fprintf('\n');

Here is a look at write_digit in action:

132

>> write_digit(3)
three

>> write_digit(5)
five

>> write_digit(9)
nine

>> write_digit(4.9)
 4.900000 is not an integer

>> write_digit(10)
10 is not in the range 1..9

>> write_digit(-2)
-2 is not in the range 1..9

This example shows that a switch-statement can be nested inside an if-
statement, and it also shows that nesting can be deeper than one level. The
outer if-else-statement, which begins “if floor(x) ~= x”, has another if-
else statement within its else-clause, which constitutes the first level of nest-
ing. Furthermore, that inner if-else statement has a switch-statement within
its else-clause, which constitutes the second level of nesting.

There is no limit to the depth of nesting allowed, and, we will see other types
of control constructs nested in one another in the next section. This flexibility
in nesting is an important aspect of all modern programming languages, and
MATLAB supports it unconditionally.

Additional Online Resources

• Video lectures by the authors:

" Lesson 5.1 Selection (11:53)

" Lesson 5.2 If-Statements, continued (8:33)

" Lesson5.3 Relational and Logical Operators (34:51)

" Lesson 5.4 Nested If-Statements (2:12)

" Lesson 5.5 Variable Number of Function Arguments (6:40)

" Lesson 5.6 Robustness (8:37)

" Lesson 5.7 Persistent Variables (6:54)

Concepts From This Section

Computer Science and Mathematics:
control constructs

sequential control
selection

conditionals
relational operators
logical operators

MATLAB:
selection statements

if-statement
else clause
elseif clause

switch-statement
case
otherwise

nesting of control constructs
relational operators
logical operators

133

https://www.youtube.com/watch?v=rzm_FyZ9SmA
https://www.youtube.com/watch?v=rzm_FyZ9SmA
https://www.youtube.com/watch?v=rEarTHsM5dY
https://www.youtube.com/watch?v=rEarTHsM5dY
https://www.youtube.com/watch?v=Rt2kUq5Hyr4
https://www.youtube.com/watch?v=Rt2kUq5Hyr4
https://www.youtube.com/watch?v=vJpeMFfwpTM
https://www.youtube.com/watch?v=vJpeMFfwpTM
https://www.youtube.com/watch?v=Lt8cqZC2JnQ
https://www.youtube.com/watch?v=Lt8cqZC2JnQ
https://www.youtube.com/watch?v=X5F9ba12uR0
https://www.youtube.com/watch?v=X5F9ba12uR0
https://www.youtube.com/watch?v=BAFRAE-ylKM
https://www.youtube.com/watch?v=BAFRAE-ylKM

Practice Problems

Problem 1. [Answer in English] Which type of control construct is most ap-
propriate for determining which operation to perform when the user selects
from a menu of operations?

?

Problem 2. [Answer in English] Which type of control construct is most ap-
propriate for determining which operation to perform based on whether an
angle is greater than π/2?

Problem 3. [Answer in English] Name the three keywords that are used with
if-statements.

?

Problem 4. [Answer in English] Name the four keywords that are used with
switch-statements.

Problem 5. Write a function called two_rows that takes one input argument
and checks its format. If the argument is a two-dimensional array with two
rows, it returns the array; otherwise, it prints “I must have two dimensions
and two rows!” and returns an array of the same size and shape, but with all
its values set to zero. NOTE: A column vector is a two-dimensional array. If it
has two elements, then it is a two-dimensional array with two rows. HINT:
The function ndims may be helpful.

?

Problem 6. Write a function called chop that takes a 3-element column vector
as an input and returns three output arguments. The function must check the
format of its input. Namely, it must determine whether the input satisfies the
following two restrictions: (1) it is a column vector and (2) it contains exactly
three elements. If either or both of these restrictions are violated, then the
function prints “Invalid input!” and returns three zeros. Otherwise, it sets
each of the output arguments equal to the value of one of the 3-elements of
the input vector in the order that they occur in the vector and prints nothing.

Problem 7. In this section a function was defined named not_smallest.
Write a function called not_smallest_expression that takes three sca-
lars as input arguments (the function does not have to check the format of the
input) and returns the same scalar value as output that not_smallest does
but without using an if-statement or a switch-statement.

?

Problem 8. Write a function called unequal4_expression that takes one
four-element vector as an input argument (the function does not have to
check the format of the input) and returns 1 if all the elements are unequal
and 0 otherwise. You must accomplish this feat with a single expression, not
with an if-statement or a switch-statement. NOTE: The expression may be
long. To continue the expression onto a second line, type three successive
dots (also known as periods or full stops).

134

http://cs103.net/solutions/selection/
http://cs103.net/solutions/selection/
http://cs103.net/solutions/selection/
http://cs103.net/solutions/selection/
http://cs103.net/wp-content/uploads/two_rows.m
http://cs103.net/wp-content/uploads/two_rows.m
http://cs103.net/wp-content/uploads/not_smallest_expression.m
http://cs103.net/wp-content/uploads/not_smallest_expression.m

Problem 9. Write a function called even_odd that takes one scalar argument
as input (the function does not have to check the format of the input), returns
no output arguments, and uses a switch-statement with three branches to
print “Odd” if the argument is 1, 3, or 5, “Even” if the argument is 0, 2, or 4,
and “Let me get back to you on that one.” for any other value. The output
should be printed on a line by itself.

?

Problem 10. Write a function called ablmt that takes one character as an
input argument (the function does not have to check the format of the input),
returns one string as an output argument. It uses a three-branch switch-
statement to set its output argument to “MATLAB”, if the input character is
one of the characters in the string, “MATLAB”, or set its output argument to
“matlab” if the character is one of the characters in the string, “matlab”, or set
its output argument to “I just don’t have it in me”, if the character is in nei-
ther name.

Problem 11. Write a function called inside_outside that takes three scalar
arguments as input (the function does not have to check the format of the
input) and uses an if-else-statement to print “Inside” if the value of the sec-
ond argument lies between the values of the other two arguments or equals
one of them, and “Outside” otherwise.

?

Problem 12. Write a function called less3 that takes two three-element vec-
tors as input arguments (the function does not have to check the format of
the input) and returns one output argument. It uses an if-else-statement to
return 1 if each element of the first vector is less than the corresponding ele-
ment of the second vector, and zero otherwise. Thus, it would return 1 for the
call less3([1 -9 0],[99,-8,0.001]) but would return 0 for the call
less3([8,8,7],[9,8,9]) because the second element of the first argu-
ment (8) is not less than the second argument (8) of the second argument.

Problem 13. Write a function called sort2 that takes two unequal scalar ar-
guments (the function does not have to check the format of the input or the
inequality of the arguments). It uses one or more if-statements to return the
two values of these arguments in a two-element row vector in increasing or-
der, i.e., element one of the output vector equals the smaller input argument
and element two of the output vector equals the larger input argument.
NOTE: The function may not use the built-in function sort.

?

Problem 14. Write a function called sort3 that takes three unequal scalar ar-
guments (the function does not have to check the format of the input or the
inequality of the arguments). It uses if-statements, possibly nested, to return
the three values of these arguments in a single row vector in increasing order,
i.e., element one of the output vector equals the smallest input argument and
element three of the output vector equals the largest input argument. NOTE:
The function may not use the built-in function sort.

135

http://cs103.net/wp-content/uploads/even_odd.m
http://cs103.net/wp-content/uploads/even_odd.m
http://cs103.net/wp-content/uploads/inside_outside.m
http://cs103.net/wp-content/uploads/inside_outside.m
http://cs103.net/wp-content/uploads/sort2.m
http://cs103.net/wp-content/uploads/sort2.m

Problem 15. Write a function called over_pi that takes one vector as an
input argument and returns one scalar output argument. If it is called this
way, n = over_pi(v), then it uses a single expression, without using an if-
statement or switch-statement (or loop), to set n equal to the number of ele-
ments in v that are greater than pi.

?

Problem 16. Write a function called between that takes one scalar and two
vectors of the same length as input arguments (the function does not have to
check the format of the input) and returns one scalar output argument. If it is
called like this, n = between(a,u,v), then n is equal to the number of indi-
ces ii for which the scalar a is between u(ii) and v(ii) or a is equal to
u(ii) or v(ii). Here are some examples for the case in which the length of
the vectors is 4:

>> n = between(4,[5,0 -7 6], [3, 9, 4, 4])
n =
 4
>> n = between(5,[5,0 -7 6], [3, 9, 4, 4])
n =
 3
>> n = between(6,[5,0 -7 6], [3, 9, 4, 4])
n =
 2
>> n = between(9,[5,0 -7 6], [3, 9, 4, 4])
n =
 1
>> n = between(10,[5,0 -7 6], [3, 9, 4, 4])
n =
 0

Problem 17. Write a function called bolt_check that takes one scalar input
argument (the function does not have to check the format of the input) and
returns one scalar output argument. The input represents the measured
length of a machine screw during the quality-assurance phase of its manufac-
turing. The purpose of the function is to categorize the measured length into
one of six categories. If the measured length is within two percent of one of
its five nominal lengths—3/8, 1/2, 5/8, 3/4, or 1 (inch), then the nominal
length is returned. Otherwise 0 is returned, signifying that the bolt failed the
test.

?

Problem 18. Write a function called coin_value that takes two scalar input
arguments (the function does not have to check the format of the input) and
returns one scalar output argument. This function is part of a program used
in a coin-operated vending machine that determines the value of a single
coin. This function uses the measured diameter and mass of a coin to deter-
mine its value. If both the diameter and the mass fall within 5% of their nomi-
nal values than the worth of the coin as a fraction of a dollar is returned;
otherwise 0 is returned to indicate that the coin failed the test. Here is a table
of the nominal diameters, weights, and values of the coins that must be in-
cluded (copper-alloy coins only):

Name Value ($) Diameter (mm) Mass (g)
Small Cent 0.01 19.05 2.50

Nickel 0.05 21.21 5.00

Dime 0.10 17.91 2.50

Quarter 0.25 24.26 6.25

Half-dollar 0.50 30.61 11.34

Dollar 1.00 26.50 8.10

136

http://cs103.net/wp-content/uploads/over_pi.m
http://cs103.net/wp-content/uploads/over_pi.m
http://cs103.net/wp-content/uploads/bolt_check.m
http://cs103.net/wp-content/uploads/bolt_check.m

Problem 19. Write a function named day_of_month that takes three scalar
integer input arguments (the function does not have to check that the inputs
are scalars), returns no output arguments, and prints the day of the month to
the Command Window. The day of the month must be printed in the form

<ordinal> <day> in <month>

where <ordinal> is one of the words, “first”, “second”, “third”, “fourth”, or
“fifth”, <day> is one of the words “Sunday”, “Monday”, …, or “Saturday”,
and <month> is one of the words “January”, “February”, …, or “December”.
If the function is called like this, day_of_month(n,d,m), then n determines
<ordinal>, d determines <day>, and m determines <month>. In this Section,
the function day_of_week_switch is given. A function very similar to
day_of_week_switch must be used as a subfunction in the M-file
day_of_month.m to print <day>. The function day_of_month must check
the validity of the values of its three inputs. Unless the first argument falls
within the range 1 to 5, the second argument falls within the range 1 to 7, and
the third argument falls within the range 1 to 12, the function must print an
error message and return. HINT: The built-in function floor can be used to
determine whether a number is a whole number (the function isinteger
cannot be used for this purpose). If the numbers are all in range, then the
printout must be consistent with the following examples:

>> day_of_month(4,1,1)
Fourth Sunday of January
>> day_of_month(1,3,11)
First Tuesday of November
>> day_of_month(3.4,3,9)
Inputs must be whole numbers
>> day_of_month(3.4,3,9.1)
Inputs must be whole numbers
>> day_of_month(7,3,9)
1st argument must be in the range 1 to 5
>> day_of_month(1,2,13)
3rd argument must be in the range 1 to 12
>> day_of_month(7,33,9)
1st argument must be in the range 1 to 5
2nd argument must be in the range 1 to 7
>> day_of_month(7,33,13)
1st argument must be in the range 1 to 5
2nd argument must be in the range 1 to 7
3rd argument must be in the range 1 to 12

?

137

http://cs103.net/wp-content/uploads/day_of_month.m
http://cs103.net/wp-content/uploads/day_of_month.m

Problem 20. Write a function named write_two_digits that takes one
scalar input argument (the function does not have to check that the input is a
scalar), returns no output arguments, and prints to the Command Window
the name of the value of the input. The function must check to determine
whether the input is a whole number in the range, -99 to +99. If the number is
out of range, the function prints an error message and returns. If the number
is in range, then the function prints the integer’s name (examples of names
are given below). If the input falls in the range -9 to +9, then the printout
must be the same as that of write_digit, which is given in this Section,
and that function must be used as a subfunction in the M-file
write_two_digits.m. HINT: The built-in function floor can be helpful.
It can be employed to determine whether a number is a whole number, and it
can also be employed to determine the value of the digit in the tens place and
the value of the digit in the ones place. The printout of write_two_digits
must be consistent with these examples:

>> write_two_digits(0)
zero
>> write_two_digits(3)
three
>> write_two_digits(-3)
minus three
>> write_two_digits(10)
ten
>> write_two_digits(12)
twelve
>> write_two_digits(18)
eighteen
>> write_two_digits(23)
twenty-three
>> write_two_digits(-99)
minus ninety-nine
>> write_two_digits(113)
Input must be an integer from -99 to +99.
>> write_two_digits(24.7)
Input must be an integer from -99 to +99.

138

SECTION 4

The former tech journalist and Microsoft Bing Apps pro-
gram manager, Mitch Ratcliffe, once wrote, “A computer
lets you make more mistakes faster than any invention
in human history—with the possible exception of hand-
guns and tequila.”1 Why does it let you make mistakes
so fast? The answer is simple: because of loops. Without
loops computers would still give you opportunities to
make mistakes, but not very many or very fast. So loops

are bad, right? Well, not all bad. In fact they are very
good. Without loops, computers would be little more
than fancy calculators. Loops give a computer its great-
est power—whether that computer is your laptop, your
cell phone, or your automobile’s automatic braking sys-
tem. If we took their loops away, these computers could
still consume information, could still do calculations,
and could still produce output, but they would lose their

Objectives

Loops give computers their
power.
(1) We will learn how to use

the for-loop and the while-
loop.

(2) We will learn how the break
and continue-statements
work, and we will use
nested loops.

(3) We will learn how to make
loops more efficient and
will learn about MATLAB’s
powerful implicit loop
system.

(4) We will learn about logical
indexing and see how to
use it to produce implicit
loops that are efficient and
easy to read.

Loops add excitement to roller-coasters and add power to MATLAB.

Loops

139

 1"The Pleasure Machine," MIT Technology Review, Spring 1992.

M
ar

co
 S

ilv
a,

 O
lin

da
, B

ra
zi

l,
D

re
am

st
im

e.
co

m
, P

ho
to

 ta
ke

n
A

pr
il

15
th

, 2
00

8.

ability to do these things on such an enormous scale in such tiny fractions of
a second. Is it important to get the calculation done in tiny fractions of a sec-
ond, instead of, say, a minute? Ask yourself that question the next time you
hit the brakes at 60 mph and the computer in your car adjusts them quickly
enough to stop you from skidding over an embankment or when you use
Google to find the address of the office for your job interview from among a
billion addresses, just as you leave your apartment.

The mistakes that Mr. Ratcliffe was writing about are loop errors, and those
errors come from us—the programmers. What we do with guns and tequila
is beyond the scope of this book, but what we do with loops is exactly the sub-
ject of this section. We are about to learn how to make a computer go fast—re-
ally fast.

The Loop Concept
The loop is a new control construct, and we are about to add it to the con-
structs already introduced in the previous section Selection. There we learned
about the control constructs—if, if-else, if-elseif, if-elseif-else,
and switch, each of which stipulates whether a block of statements is to be
executed one time or zero times. The loop construct, as we are about see, in-
volves a far more powerful idea: It is a control construct that can stipulate
whether a block of statements is to be executed zero, one, a hundred, a hun-
dred thousand, or any other number of times. We are going to see in this
chapter just what “loop” means. However, before we look closely at the loop
idea, let’s look at the speed-up it can provide with an example. Suppose we
want to add up the numbers 1 through 10. You have already seen two simple
ways to do this calculation using MATLAB. Here are those two methods as
they would be typed into the Command Window:

>> 1+2+3+4+5+6+7+8+9+10
ans =
 55

>> sum(1:10)
ans =
 55

The first method is the basic calculator approach—type in all the numbers to
be added with plus signs between them and hit Enter. The second example is
a bit less laborious because it uses loops. In fact it includes two MATLAB fea-
tures that use loops. The first feature is the expansion of 1:10 into the vector
[1 2 3 4 5 6 7 8 9 10] by means of the colon operator. The second fea-
ture is the addition of all the elements in that vector by means of the function
named sum. Each of these two features is implemented inside MATLAB (i.e.,
hidden from the user) by means of a loop. Each loop causes a set of state-
ments to be executed repeatedly, but each loop is an implicit loop. It is im-
plicit because you don’t explicitly tell MATLAB what instructions to repeat.
When MATLAB sees 1:10, it starts a loop that generates the vector [1 2 3
4 5 6 7 8 9 10], which it then uses as the argument in the call of the
function sum. Then, when it evaluates sum([1 2 3 4 5 6 7 8 9 10]),
it starts a loop that adds together all the elements in the argument to the func-
tion sum. This simple example gives a hint as to the power of loops, because
it is clearly easier to type the nine characters of the command, sum(1:10),
i.e., s u m (1 : 1 0), than it is to type the twenty charac-
ters of the command, 1+2+3+4+5+6+7+8+9+10.

It is also quicker. The use of the sum(1:10) method is more than twice as
fast as the 1+2…+10 method, because 20 characters take more than twice as
long to type as do nine characters. And the advantage gets a lot more impor-
tant when there are more numbers involved. If we want to add, say, 1
through 10,000, then it would take 13½ hours to type in all the numbers and
plus signs (at 1 character per second), but it would take only 12 seconds to
type sum(1:10000). That’s a speed-up factor of four thousand. It also takes

140

MATLAB about a half second longer to do the first calculation after it’s typed
in than the second because it has to process so many characters, but the big
savings here is in the human typing time.

You have been using the colon operator and the function sum since the sec-
tion entitled Functions, so you have already seen the power of loops, al-
though you may not have thought about the looping aspect until now.
Every expression that involves the colon operator is evaluated with a loop
that employs a small set of statements—repeatedly executing them over and
over, perhaps hundreds or thousands of times. Every array operation is evalu-
ated with loops; every matrix operation is evaluated with loops; the functions
max and min use loops; sqrt(…) uses a loop. In fact almost every MATLAB
operator or built-in function that carries out a numerical calculation uses one
or more loops. They are implicit loops, so they are hidden, but they are every-
where.

So, what is a loop? Figure 2.28 illustrates a loop for the addition of the inte-
gers from 1 to 10. That figure shows a flowchart for the operations required to
carry out the addition on a computer, and that flowchart includes a loop,
which is outlined in a blue box. The flow of operations enters at the top of the
figure, follows the arrows and exits at the bottom of the figure. After the first
operation—”total = 0”—is executed, the loop is entered. Inside this loop are
two statements. The first is “Repeat for n = 1 to 10”. This statement is a con-
trol statement, which, as we learned in the Selection, means that it controls
the execution of another statement or statements. The second statement in the
loop is “Add n to total”, which we have highlighted in light green. This state-
ment is the body of the loop. The body of a loop contains the statements that
are repeated. There can be many operations in the body, but we are keeping it
simple here by having only one. The green statement is repeated 10 times,
and then the loop is over. The reason for calling this repetition a “loop”
should be obvious from the shape of the lines of flow in the figure: They form
a loop. While our green statement is executing over and over, the flow travels
around and around through the path that emerges from the side of the green

box and re-enters at the top of the box. The flow is forced to loop back
through the green box over and over. After the loop ends, the last opera-
tion—“Print total”—is executed. There may be many other operations taking
place in the program before and/or after those shown in this figure, but we
are focusing here on the loop. In fact, the only reason we include “total = 0”
and “Print total” is that they show how the loop might be used. They are not
part of the loop itself.

141

Figure 2.28 Illustration of a loop. A flowchart is
shown for a sequence of operations that calcu-
lates and prints the sum: 1 + 2 + 3 + … + 10.
Each small box encloses a single operation.
The section enclosed in the blue box is a loop.
The green box contains the “body” of the loop,
which is repeated 10 times before the loop is
completed.

The repetition of the body of the loop in Figure 2.28 continues until a condi-
tion has been met: The condition is specified by the control statement, “Re-
peat for n = 1 to 10”, and the condition is that the variable n be set succes-
sively to each of the values, 1, 2, 3, …, 10. Here is a formal definition of the
word “loop” as it is used in computer programming:

loop :
1a. (noun) a set of statements that is repeated until some condition is
met.
1b. (noun) a control construct that causes a block of statements to be
executed repeatedly (i.e., zero, one, two, or more times).
2. (non-transitive verb) repeat a set of statements until some condition
is met.

Here are examples of each use: 1. “The program that she wrote includes a
loop whose statements calculate the voltage for each point in time. 2. “The
statements that calculate the voltages will continue to loop until a voltage has
been calculated for each point in time.”

One execution of the body of a loop is called an iteration of the loop. Itera-
tion can also be used to mean looping, as in “Iteration is employed in the cal-
culation of the voltages.” Various forms of this word are used to describe a
program. We may say that a loop is iterated 10 times or that a loop iterates 10
times, i.e., the verb iterate may be transitive or intransitive, and we may de-
scribe code that contains a loop as iterative code. For example, “Carrying out
two hundred calculations requires iterative code to avoid having to type two
hundred statements.”

As we mentioned above, the body of the loop in Figure 2.28 is controlled by
the statement—“Repeat for n = 1 to 10”. The body is the workforce of the
loop; the control statement is more like the supervisor who keeps the laborers
in the workforce repeating their tasks until the job is done. This control state-
ment does something else too. It repeatedly changes the value of the variable
n. Here is exactly the sequence of operations it causes to happen:

Set n to 1
	 Execute Add n to total
	 Set n to 2
	 Execute Add n to total
	 Set n to 3
	 Execute Add n to total
	 Set n to 4
	 Execute Add n to total
	 Set n to 5
	 Execute Add n to total
	 Set n to 6
	 Execute Add n to total
	 Set n to 7
	 Execute Add n to total
	 Set n to 8
	 Execute Add n to total
	 Set n to 9
	 Execute Add n to total
	 Set n to 10
	 Execute Add n to total

Boring, isn’t it? Welcome to the life of a control statement. It tirelessly, roboti-
cally, and VERY rapidly repeats statements for you as many times as you ask
it to. If we change 10 to 10,000, it will keep executing that same boring state-
ment (i.e., the green one in Figure 2.28) and setting n to the next boring value
until it gets to the boring end, and all we have to do to tell MATLAB to carry
out all 10,000 of those tedious iterations is to write a couple statements.

The variable n, which is being updated each time through the loop, is a criti-
cal part of the loop, and it has a special name. A variable that is changed by
the control statement of a loop is called a loop index. This is a new use of the
word “index”, which, up until now, has been used in the programming sense
to denote a positive integer that enumerates the elements of a vector or ma-

142

trix. For example, we might have said, “In the expression y(n) + 17, the
index n specifies a specific element in the vector y.” That was the old use.
We’ll continue to use it that way, but here is an example of the new use of “in-
dex”: “In Figure 2.28, the loop index n starts out equal to 1 and ends up equal
to 10.” We will use both meanings from now on. Having two meanings for
the same word may seem confusing, and sometimes we will find that both
meanings apply to the same variable in the same loop, but the context will
make the meanings clear, and usually, when we refer to the index of a loop,
we will say “loop index” instead of simply “index”.

The for-loop
Now we are ready to learn how to write a loop using MATLAB. We will use a
control construct called a for-loop. The construct works just like the one illus-
trated in Figure 2.28, and the name “for-loop” is based on the presence of the
word “for” in the control statement. The name “for loop” was not invented
for MATLAB. It was introduced by the inventors of a language named AL-
GOL (ALGOrithmic Language) in 1960, and both the construct and the name
became so popular that almost every subsequent programming language pro-
vides it and uses the same name (e.g., MATLAB, C++, Java all have for-
loops). We will later in this section introduce the only other type of loop pro-
vided by MATLAB—the “while”-loop.

Here (at last) is the MATLAB implementation of the loop of Figure 2.28:

and here is the result of running it:

total = 55

With this code we have introduced a new MATLAB keyword—for. This key-
word signifies the beginning of a for-loop. The keyword end signifies the end
of the loop. The first line of the loop, for n = 1:10, is the control statement
of the loop. It controls the statement, total = total + n, which is the
body of the for-loop, and it is forced by the control statement to repeat its
task ten times, exactly as in Figure 2.28. Note that there is no semicolon after
the control statement. MATLAB never prints the result of the assignment of
an element to the loop index, so there is no need for a semicolon here.

The phrase, n = 1:10, in the control statement can be a bit confusing at
first. It does not mean “Assign the vector [1 2 3 4 5 6 7 8 9 10] to
n, even though that is exactly what the statement n = 1:10 would mean if it
were to appear by itself (i.e., without the keyword for in front of it). When
n = 1:10 appears in the control statement of a for-loop, it means this:

Assign the first element of [1 2 3 4 5 6 7 8 9 10] to n.
Execute the body of the for-loop.
Assign the next element of [1 2 3 4 5 6 7 8 9 10] to n.
Execute the body again.
Assign the next element of [1 2 3 4 5 6 7 8 9 10] to n.
Execute the body again.
. . .
Assign the last element of [1 2 3 4 5 6 7 8 9 10] to n.
Execute the body for the last time.

The general form of the for-loop is as follows:

for index = values
 block
end

The block is the body of the for-loop. The for-loop example above conforms
to this general form, as Table 2.14 shows.

143

It might be helpful to note the similarities between the syntax of the for-loop
and the syntax of the if-statement. Both constructs begin with a control state-
ment and end with the keyword end. The control statement for each of them
begins with a keyword—for in the for-loop and if in the if-statement. The
semantics of the two constructs are similar as well in that each one has a
body that is controlled by the control statement and each one has a control
statement that stipulates the number of times that the body will be executed.
The difference is that in the case of the if-statement that number is limited to
zero or one, whereas in the case of the for-loop the number is zero or some
positive integer.

Let’s look at second example:

N = 5;
list = rand(1,N); % assigns a row vector of random numbers
for x = list
 if x > 0.5
 fprintf('Random number %f is large.\n',x)
 else
 fprintf('Random number %f is small.\n',x)
 end
end

It can be seen that this loop conforms to the general form as well, as all for-
loops must. First, x is the index; second, list contains the values; and third,
the if-statement is the block. Here is a sample run of this example:

Random number 0.141886 is small.
Random number 0.421761 is small.
Random number 0.915736 is large.

Random number 0.792207 is large.
Random number 0.959492 is large.

(Note that, if you run this same code, you will probably get a different result
because the function rand will probably return a different set of values.)
Here is what happened:

1. N was assigned the number 5.
2. rand was called with the arguments 1 and 5, causing it to generate a row

vector of five random numbers, [0.14189 0.42176 0.91574
0.79221 0.95949], and that row vector was assigned to list.

3. The control statement assigned the 1st element of list, 0.14189, to x.
4. The if-statement found that 0.14189 is less than 0.5, triggering the 1st

fprintf

5. The end was reached and the flow of execution returned to the beginning
of the loop.

6. The control statement assigned the 2nd element of list, 0.42176, to x.
7. The if-statement found that 0.42176 is less than 0.5, triggering the 1st

fprintf .
8. The end was reached and the flow of execution returned to the beginning

of the loop.
9. The control statement assigned the 3rd element of list, 0.91574, to x.
10. The if-statement found that 0.91574 is greater than 0.5, triggering the

2nd fprintf.
11. The end was reached and the flow of execution returned to the beginning

of the loop.
12. The control statement assigned the 4th element of list, 0.79221, to x.
13. The if-statement found that 0.79221 is greater than 0.5, triggering the

2nd fprintf .
14. The end was reached and the flow of execution returned to the beginning

of the loop.
15. The control statement assigned the 5th element of list, 0.95949, to x.

144

Table 2.14 Parts of the for-loop

EXAMPLE PHRASE GENERAL FORM
n index

1:10 values

total = total + n block

16. The if-statement found that 0.95949 is greater than 0.5, triggering the
2nd fprintf .

17. The end was reached and the loop ended because the last element of
list had been assigned to x.

We can learn some things from this second example:

(1) The values assigned to the loop index do not have to be
• integers,
• regularly spaced, or
• assigned in increasing order.

(2) Another control construct can be used in the body of the for-loop.

The first point can be made stronger: Not only do the values assigned to the
loop index not have to be integers, they do not even have to be real. And it
can be made stronger still: The values do not have to be scalars. If the list of
values in the control statement of a for-loop is not a vector, then the index
will be assigned the columns of the array, from first to last.

The second point can be made stronger too: ANY control construct can ap-
pear in the body of the loop. In our example, an if-statement is used in the
body of the for-loop, but a for-loop can be used in the body of another for-
loop as well, as we will see in the next section. We refer to the inclusion of
one control construct inside another control construct as nesting. In the exam-
ple above, the if-statement is nested inside a for-loop. We will return to nest-
ing in the following section.

An interesting question arises when the loop index is assigned a value not
only by the control statement but also by a statement within the body of the
loop: What is the new value of the index on the next iteration? The answer is
that it is the next value in the list of values given in the control statement. As-
signments to the loop index inside the body of a loop are temporary. They
last only during the iteration in which they take place. There is no effect on

that list of values or on the next value to be assigned to the loop index by the
control statement for the next iteration. Here is an example:

total = 0;
for n = 1:10
 n
 n = n + 1;
 total = total + n;
end
fprintf('%d\n',total);

Here we have altered our previous example so that (a) the loop index is
printed immediately after the control statement (n without a print-
suppressing semicolon) to allow us to see its value, and (2) the loop index is
incremented by 1. Here is the resulting output to the Command Window
from the first three iterations:

n =
 1
n =
 2
n =
 3

We don’t need to see the rest of the output, because our question is answered
by the time we see the second output, n = 2. It is clear that, despite the fact
that the statement n = n + 1 had incremented the loop index to 2 during
the first iteration, the control statement behaved just as it would have be-
haved if the index had not been incremented: It set it to the next value in the
list, which is 2. As we can see, the same thing happens at the next iteration,
where n is set to 3. (Note, however, that the result is no longer the sum of the
first ten positive integers!)

This rule is ironclad. At the beginning of the nth iteration of every for-loop,
the loop’s control statement will assign the loop index the nth term in its list
of values, regardless of any value that may have been assigned to the loop index
within the body of the loop during the previous iteration.

145

Now that we have handled that question, we move on to another example
involving random numbers just to give you a chance to check your under-
standing:

N = 1000;
list = rand(1,N); % list gets a row vector of random numbers
N_larger = 0; % initializes a counter
for x = list
 if x > 0.5
 N_larger = N_larger + 1;
 end
end
fprintf('fraction over 0.5 = %f\n', N_larger/N);

Try to determine for yourself what this loop will do. (Spoiler alert: The an-
swer is given in the very next paragraph!)

When the loop starts, the index x will first be set equal to list(1). As the
iterations proceed, it will be assigned successive elements from list, a new
element at the beginning of each iteration of the loop, ending with
list(1000) at the thousandth iteration. However, we cannot know what
those values will be by looking at the code because they come from the func-
tion rand , and the output of that function is determined only at run time
(i.e., at the time that the function runs). The body of the for-loop, which
corre-sponds to block in the general form, is executed once at each iteration.
It consists of one if-statement. This if-statement will cause N_larger to be
incremented if and only if x is larger than 0.5. Since rand produces
numbers that are spread uniformly over the interval from 0 to 1, we can
expect that about half of them will be greater than 0.5. Thus, after the loop
has ended,
N_larger will equal approximately ½ of N. Since N is 1000, we can expect
N_larger to be about 500, so the fraction N_larger/N, which is printed
by the fprintf statement, should be about 0.5.

Let’s run it and see what happens. Here is the output from one run:

fraction over 0.5 = 0.514000

As expected, the fraction is close to 0.5. It is only slightly larger. Here is an ex-
ample of another run:

fraction over 0.5 = 0.497000

Again, the fraction is close to 0.5. This time it is slightly smaller. Since the set
of random numbers is different each time, we should not be surprised to find
that the fraction is different each time. (Whether these differences lie within
the expected range is a matter for a statistical analysis.)

Translating an array operation into a for-loop
As we mentioned before, every array operation involves looping. Let’s look
at an example. Consider these operations:

>> u = [5 4 8 8 2];

>> v = [5 5 7 8 8];

>> w = u - v

w =
 0 -1 1 0 -6

Here we formed two 5-element row vectors u and v. We then used array sub-
traction to subtract the elements of v from the corresponding elements of u
and assigned the resulting vector to w. Since u and v each have five elements,
the array operation required that five subtractions be carried out. Let’s write
a for-loop that performs the same five operations without array subtraction:

for ii = 1:length(u)
 w(ii) = u(ii) - v(ii);
end

So what can we learn from this very simple example? First, it is easy to see
that every array operation and every matrix operation can be translated into
an equivalent for-loop version. There is no reason to do it though, because
the array operation will typically run faster and it is easier to program than

146

the equivalent version using explicit looping, but it does drive home the fact
that an array operation always requires looping. Second, we see that, even if
MATLAB had omitted one of those handy array or matrix operations that we
learned about previously, we could still use explicit loops to force it to carry
out the same calculation. It’s a good thing that explicit loops can do array and
matrix operations, because, if explicit looping could not do them, then lan-
guages like C++ and Java, which do not provide any array or matrix opera-
tors, could not do them at all! In those languages, writing loops is the only
way a programmer can get array operations done. You are lucky. You have
MATLAB to save you all that typing and debugging by providing implicit
looping when an array operation is what you need.

Array operations and matrix operations are very convenient. However, for-
loops are more powerful than these operations. In addition to being able to
do everything that array and matrix operations can do, for-loops can do
many things that array and matrix operations cannot do, and, since we often
need to do those additional things, MATLAB includes for-loops as part of its
language. Our very second loop example above does something that cannot
be done with an array operation: It calls fprintf.

Here is another example of something that cannot be done with array opera-
tions. Suppose we want do produce this series:

1, 1, 2, 3, 5, 8 ….

The numbers in the series go on forever, and each one can be generated eas-
ily. After the two ones at the beginning, each number in the series is the sum
of the two preceding numbers. The resulting sequence, 1, 1, 2, 3, 5,
8, 13, . . . is called the Fibonacci sequence, and we will see it again
when we study recursion in Functions Reloaded. There is more than one way
to produce this sequence, but we want to do it by the method of adding two
successive numbers to get the next. Here is code that uses that method to gen-
erate the sequence and puts the first 10 numbers of the Fibonacci sequence
into the vector f2:

N = 10;
f2(1) = 1;
f2(2) = 1;
for ii = 3:N
 f2(ii) = f2(ii-1) + f2(ii-2);
end

The result is: f2 = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55].

Nested for-loops
As mentioned in the previous section, MATLAB allows the nesting of any
control construct inside any other construct. In this section we look at the
case in which for-loops are nested. Nested for-loops often occur when we are
doing things with two-dimensional arrays. We already know how to do some
things with two-dimensional arrays, such as, for example, the calculations we
performed with the array operations that were introduced previously. Here is
an example of an array operation on a two-dimensional array. First we gener-
ate an array:

>> A = randi(10,3,4)

A =
 10 2 8 1
 1 10 9 4
 5 1 9 3

Here we used the function randi to produce a 3-by-4 array of random inte-
gers between 1 and 10 and assigned it to A. Now we perform the array opera-
tion:

147

>> P = A.*A

P =
 100 4 64 1
 1 100 81 16
 25 1 81 9

We have used array multiplication to calculate the product of each element of
A with itself and have assigned that product to the corresponding element of
a new array P. This code is an excellent way to do that calculation, but sup-
pose we want to do it without using array multiplication (we have no good
reason to avoid array multiplication except to show how nested for-loops
work!). Here is code that uses explicit loops to accomplish the same thing for
the same array:

There are two loops here. The first for begins the “outer loop”, so called be-
cause the second loop lies inside it. We call that second loop, the “inner loop”
because it is inside another loop. As indicated, the inner loop is the body of
the outer loop. The outer loop uses the loop index m. It sets m to the values
given by 1:size(A,1). The function call size(A,1) returns the number of
elements in the first dimension of A, which is the number of rows in A and
equals 3. So m is set to 1, 2, 3, respectively. Let’s look at the first iteration
of this loop, when m = 1. The body of the outer loop is executed with m = 1.
The body of the outer loop is itself a for-loop. Its loop index is n. It sets n to
the values given by 1:size(A,2). The function call size(A,2) returns the
number of elements in the second dimension of A, which is the number of
columns in A and equals 4. So m is set to 1, 2, 3, 4 respectively. The body

of this inner for-loop is the statement , P(m,n) = A(m,n)*A(m,n); and it
does the hard work. In the first iteration of the inner loop, n equals 1, and
since the index m of the outer loop is also 1, the body of this inner loop carries
out this operation:

P(1,1) = A(1,1)*A(1,1);

The next iteration of the inner loop has n = 2, and since the index m of the
outer loop is still 1, the body of the inner loop carries out this operation:

P(1,2) = A(1,2)*A(1,2);

The inner loop continues, updating its index n and executing its body two
more times:

P(1,3) = A(1,3)*A(1,3);
P(1,4) = A(1,4)*A(1,4);

Now the inner loop is done, but the outer loop continues its iteration: the con-
trol statement of the outer loop sets its loop index m to its next value, which is
2 and forces its body, which is the inner loop to execute again. That inner
loop sets its loop index n to 1, 2, 3, 4 as before and carries out these op-
erations:

P(2,1) = A(2,1)*A(2,1);
P(2,2) = A(2,2)*A(2,2);
P(2,3) = A(2,3)*A(2,3);
P(2,4) = A(2,4)*A(2,4)

The inner loop is done once again, the outer loop continues its iteration once
again, this time setting its loop index m to 3, and the inner loop caries out
these operations:

P(3,1) = A(3,1)*A(3,1);
P(3,2) = A(3,2)*A(3,2);
P(3,3) = A(3,3)*A(3,3);
P(3,4) = A(3,4)*A(3,4);

148

(and you thought the first example was boring!). Again the inner loop is
done, but this time the outer loop is done too. If we now print P, we find that
it has the same elements as it did when we calculated them with the array op-
eration P = A.*A, namely:

P =
 100 4 64 1
 1 100 81 16
 25 1 81 9

So what have we learned? We have learned that, even if MATLAB had not
provided array operations to carry out operations on two-dimensional (i.e.
non-vector) arrays, we could still use nested for-loops to carry out the same
calculations. In fact, we can always write an explicit loop to do anything that
an array operation does, regardless of the number of dimensions of the ar-
rays.

In the example above, the inner loop is the only statement in the body of the
outer loop, but the body can contain more than one statement. Here is code
that accomplishes the same array operation as the one above but also informs
us at each iteration of the outer loop which row it is operating on:

for m = 1:size(A,1);
 fprintf('Working on row %d...\n', m);
 for n = 1:size(A,2)
 P(m,n) = A(m,n)*A(m,n);
 end
end

Here is what we see when we run it:

Working on row 1...
Working on row 2...
Working on row 3...

As we mentioned above, for-loops can do things that array operations cannot
do, such as call fprintf, as this example does. Here is another example.
This time fprintf occurs in both an outer and inner loop:

N = 7;
for mm = 1:N
 for nn = 1:mm
 fprintf('*');
 end
 fprintf('\n');
end

Running this program produces this output in the Command Window:

*
**

The first fprintf prints one asterisk each time it is executes. Note that the
inner loop in which this fprintf lies has an index nn that goes from 1 to mm.
Thus, as mm gets larger, the inner loop is repeated more times, and as a result
more asterisks get printed in each successive row. The second fprintf,
which executes only after the inner loop is completed, causes a new-line char-
acter to be “printed” to the Command Window, which means that a new line
is begun and a new row of asterisks can be printed for this new value of mm.

An important area in which array operations are typically too limited to do
everything we want to do is image processing. Image processing is the gen-
eration of a new image from one or more existing images. It is the sort of
thing that is done by Photoshop®. Image processing can make new images
that are brighter or darker than the input images, increase their contrast, en-
hance their colors, change their colors entirely, remove noise, make them
sharper or more blurry, or rotate them, mirror them, squeeze, or stretch them,
combine parts of two images into one new image, and manipulate them in
countless other ways. There is almost no limit to the operations that Pho-
toshop can perform, but for-loops can do everything that Photoshop can
do—and far more. We will illustrate the idea with a couple examples.

149

MATLAB makes it easy to work with images by providing some basic func-
tions that allow you to read and write images in standard image-file formats,
such as JPEG (Joint Photographic Experts Group), which is a format typically
stored in a file named with the extension jpg, PNG (Portable Network Graph-
ics), which is typically stored with the filename extension, png, GIF (Graphic
Interchange Format), stored with the extension gif, and several others as
well. A complete list can be easily seen by giving the command help
imwrite.

Suppose we have a photo of a bluebird stored in JPEG format in the file
bluebird_photo.jpg. We can view the image this way:

>> bluebird = imread('bluebird_photo.jpg');
>> image(bluebird)
>> axis equal
>> axis tight

The image appears in Figure 2.29, and we see a bluebird about to enter his
house.

The first command reads the image from the file into an array named blue-
bird. The second command displays the image, then axis equal forces the
display to have the correct aspect ratio, and finally axis tight forces the dis-
play to omit “empty” white areas above, below, left, or right of the image.
The aspect ratio is the ratio of horizontal to vertical distances, and axis
equal sets them properly so that circles in the image file look like circles in
the display, instead of ellipses.

It is interesting to look at the dimensions of bluebird:

>> dims = size(bluebird)

dims =
1246 1276 3

It can be seen that bluebird is a three-dimensional array. So, to look at indi-
vidual values within the array, we need three indices. For example,

>> bluebird(526,582,1)
ans =
 50

>> bluebird(526,582,2)
ans =
 78

>> bluebird(526,582,3)
ans =
 141

150

Figure 2.29 Displaying an image in MATLAB

These three numbers give the values of the red component, the green compo-
nent, and the blue component of the color of the pixel at location 526, 582
(row 526 from the top, column 582 from the left). These components are com-
monly called the red channel, the green channel, and the blue channel. As we
learned at the end of the Introduction to MATLAB, in Chapter 1, a pixel is
one square piece of a mosaic of colors that make up a digital image, in this
case a 1246-by-1276 image, and every pixel consists of three numbers, repre-
senting the intensities of red, green, and blue light that together create the
color of the pixel in the human eye. Each of these numbers falls in the range 0
to 255, with higher values meaning higher intensity. A black pixel has the val-
ues 0,0,0, the brightest pure red pixel has the values 255,0,0, the brightest
pure green has the values, 0,255,0, the brightest pure blue pixel has the values
0,0,255, and the brightest pure yellow pixel has the values 255,255,0. Gray
pixels have all three channels with equal values, and a pure white pixel has
the values 255,255,255. The pixel at location 526, 582, whose three color chan-
nels we looked at above, is located within the blue area of the bird, and, not
surprisingly, the blue value, 141, is considerably higher than the red and
green values of 50 and 78.

Bluebirds are beautiful, but suppose we wanted a red bird. We can do a little
image processing to change the bluebird into a red bird. All it takes is a
nested for-loop:

redbird = bluebird;
dims = size(bluebird);
for ii = 1:dims(1)
 for jj = 1:dims(2)
 if bluebird(ii,jj,3) > ...

1.2*mean(bluebird(ii,jj,:))
redbird(ii,jj,1) = bluebird(ii,jj,3);
redbird(ii,jj,2:3) = 0;

 end
 end
end

Let’s see how this code works. The first statement copies all the pixels of
bluebird into redbird. Then, the nested for-loops allow us to inspect each
pixel to see whether it is blue enough to be part of the bluebird’s blue feath-
ers. We use the if-statement to determine how blue a pixel is. That if-
statement determines whether the blue channel is more than 20% larger than
the mean of the three color channels:

if bluebird(ii,jj,3) > 1.2*mean(bluebird(ii,jj,:))

If so, it sets the red channel’s value in redbird’s pixel to be equal to the blue
channel of bluebird’s pixel:

redbird(ii,jj,1) = bluebird(ii,jj,3);

It then sets the green and blue channels in redbird’s pixel to zero, so that
there no hint of green or blue (we want some serious red!):

redbird(ii,jj,2:3) = 0;

These loops take a bit of time to complete—a few seconds depending on your
computer. We can display the new image similarly to the old image:

151

>> image(redbird), axis equal, axis tight

Note that we have put the two axis commands on the same line with the im-
age command, using commas to separate them. The effect is the same as that
of issuing commands on separate lines.

The result is shown in Figure 2.30.

Now, we can save our work into a standard PNG image file using another
handy MATLAB function:

>> imwrite(redbird,'red_bluebird.png','png')

Caution! This function will overwrite a file that already exists without warn-
ing! The first argument to imwrite is the image matrix, the second is the file
name in single quotes, and the third is the desired file format, also in single
quotes. In this case, we decided to use the Portable Network Graphic for-
mat—just to show that we can.

This blue-bird-to-red-bird operation can in fact be accomplished with implicit
array operations, which we will learn about later in the subsection, Logical
Indexing, but it is a bit tricky. It is included as an exercise at the end of this
section. If you implement it, you will find that it runs about 30 times faster
than the for-loop version, but it is important to understand the for-loop ver-
sion, because this is the way more sophisticated image processing operations
must be handled. Either way, we can alter this simple example to make green
birds, yellow birds, black birds, or white birds. In fact we can give that bird
any of the 16,777,216 possible colors that can be gotten with the 256 x 256 x
256 combinations of red, blue, and green intensities that are available in the
standard image-encoding scheme.

And we can do far more than that. For example, we can perform geometrical
operations. A simple operation that is often handy when images are used in
publications, is stretching. Suppose, for example, that we have a picture of a
flower and we want it to be 20 % wider. Figure 2.31 is the input image show-
ing a tulip, while Figure 2.32 is the output.

152

Figure 2.30 Changing colors in nested for-loops

In the output image we have a nice fat tulip, and everything else is wider as
well—except for the picture itself. Its pixel dimensions (683 x 1024) are the
same as those of the input image. Here is the code that fattened things up:

dims = size(flower);
for ii = 1:dims(1)
 for jj = 1:dims(2)
 wide_flower(ii,jj,:) = ...

flower(ii,round(jj/1.2),:);
 end
end

The outer loop with index ii runs through each horizontal line of the image.
The inner loop copies one pixel from flower into wide_flower at each hori-
zontal position on the line. That horizontal position is indexed by jj, and the
pixel that is copied into wide_flower at that position is a pixel from another
position on that line of flower. It is a pixel that is a bit to the left. Here is an
example. Suppose we are on line 10 (ii = 10), and we are at horizontal po-
sition 120 (jj = 120) on that line. The pixel we choose to copy from
flower is the one on line 10 at horizontal position 100. We get that position
by dividing 120 by 1.2 (jj/1.2), which gives 100, and then rounding 100
to the nearest integer, which is 100. No rounding was necessary in this case,
but for most pixels rounding is necessary. For example, if we are at horizontal
position 200 (jj = 200), dividing by 1.2 (jj/1.2) gives 166.67. If we
were to try to use 166.67 as an index, we would get a MATLAB error, be-
cause all array indices must be integers. When we give 166.67 to the func-
tion round, it returns the value 167, which is a perfectly good index. So, the
three-element color that is copied into the pixel at position 10,200 of
wide_flower is the color of the pixel found at position 10,167 of flower.

Here again, it is possible to produce this result with array operations, but as
in the example above, it is important understand the nested for-loop ap-
proach to these problems, not only because it will help you see how to design
the more efficient array-operation approach but also because it is the only
way to perform more sophisticated image-processing tasks.

153

Figure 2.31 Input image

Figure 2.32 Output image

We have seen two image processing operations here—color changing and
size changing, but the number of image-processing operations that we can do
is unimaginably large: For a one mega-pixel color image, which is relatively
small by today’s standards, merely writing down the number of possible op-
erations would require over 100 million digits! Clearly, when it comes to im-
age processing, we are limited only by our imaginations, and we can produce
any image we imagine with nested for-loops.

The while-loop
As we have seen, the for-loop is more powerful than array and matrix opera-
tions. Now, we are about to meet an even more powerful construct—the
while-loop. Let’s return to the addition of integers that we started with in
this section. In our first example, we wanted to know the sum of the first 10
positive integers. The sum turned out to be 55. Suppose instead we wanted to
sum the positive integers until we reached the first sum that is greater than
50. Unless we knew that we needed to stop at 10, we could not do this with a
for-loop. What we need to solve this problem is a while-loop. Figure 2.33
shows how a while-loop works.

As in the case of the for-loop in Figure 2.28, the while-loop in Figure 2.33 has
a control statement, which in this case is “While total <= 50”. Once again we
have highlighted the body of the loop in green. The two statements in the
body are repeated as long as the value of the variable total remains less than
or equal to 50. Also, as in Figure 2.28, after the loop ends, the last opera-
tion—“Print total”—is executed. In Figure 2.33, however, a second print state-
ment is included. That statement prints the final value of n, which is not
known for the while-loop until it has completed its execution. This situation
is different from that of the Figure 2.28 because the final value of n can be
seen for the for-loop simply by noting the last value in the list of values that it
is assigned by the for-loop’s control-statement. The value of total that is
printed after the while-loop terminates is 55. The value printed for n is 10.

A comparison between the for-loop of Figure 2.28 and the while-loop of Fig-
ure 2.33 reveals the major difference between the two: Unlike the for-loop,
the while-loop has no formal loop index. While we have chosen to use the
same variable n in both the for-loop and the while-loop, it is formally a loop
index only in the for-loop. In the while-loop, it may be convenient to think of
n as a loop index, and we will sometimes refer to a counter like n that enu-
merates the number of iterations as a “loop index”, but it is not part of the
syntax of the while-loop, as it is for the for-loop. In particular, it is not a re-
quired part of the control-statement of the while-loop. As a result, there are
three important differences between the two types of loops concerning a
counter, such as n: (1) n must be initialized before the while-loop is entered,

154

Figure 2.33 Illustration of a while-loop. A flowchart is
shown for a sequence of operations that calculates
and prints the smallest sum of the form: 1 + 2 + 3 + …
that exceeds 50. Each small box encloses a single op-
eration. The section enclosed in the blue box is a loop.
The green box contains the “body” of the loop, which is
repeated while the sum is less than or equal to 50.

whereas initialization is unnecessary for the for-loop; (2) n must be incre-
mented in the body of the while-loop, whereas incrementing is unnecessary
in body of the for-loop; (3) the control-statement of the while-loop does not
assign values to n, whereas the control-statement of the for-loop does.

Here is the MATLAB implementation of the loop in Figure 2.33:

and here is the result of running it:

total = 55  
n = 10

With this code we have introduced a new MATLAB keyword—while. This
keyword signifies the beginning of a while-loop. The keyword end signifies
the end of the loop. The first line of the loop, “while total <= 50”, is the
control statement of the loop. It controls the body of the loop, which com-
prises the two statements “n = n + 1;” and “total = total + n;”.
The general form of the while-loop is as follows:

while conditional
 block
end

where block is the body of the loop. This form is very similar to the simple if-
statement, whose form was given in the previous section and is repeated
here:

if conditional
 block
end

As for the if-statement, the conditional in the while-statement determines
whether the statements in the body will be executed. The key difference be-
tween the if-statement and the while-statement is that, after the body is exe-
cuted, the if-statement ends, whereas in the while-statement, the conditional
is evaluated again. As long as the conditional is true (i.e., is nonzero), the
body will be executed, and re-executed, and re-executed, etc.

While-loops often have nothing that resembles a loop index. Here is an exam-
ple:

y = x
while abs(y^2 - x) > 0.001*x
 y = (x/y + y)/2
end

We have omitted semicolons so that the values assigned to y will be printed
to the Command Window. Let’s set format long so that we can see lots of
digits and run the code when the value of x is 43:

y =

 43

y =
 22

y =
 11.977272727272727

y =
 7.783702777298602

y =
 6.654032912679918

y =
 6.558139638647883

155

To understand what this loop has accomplished, we compute the square of
the last y:

>> y^2

ans =
 43.009195520004582

Since the square of y is approximately equal to x, we see that the loop sets y
equal to an approximation of the square root of x. The quality of the approxi-
mation is determined by the conditional. It calculates the absolute value of
the difference between y-squared and x, which should be close to zero if y is
close to the square root of x, and it compares that absolute value to 0.001*x.
If the absolute value of the difference is greater than 0.001*x., which means
that y-square differs from x by more than one-thousandth part of x, then it
continues to the next iteration. If not, it stops. We can improve the approxima-
tion by reducing the acceptable error from one-thousandth of x to, say, one-
ten millionth of x, i.e. from 0.001*x to, say, 0.0000001*x. To do that, we
change the control statement to this:

while abs(y^2 - x) > 0.0000001*x

and rerun. The result is:

y =
 43
y =
 22
y =
 11.977272727272727
y =
 7.783702777298602
y =
 6.654032912679918
y =
 6.558139638647883
y =
 6.557438561779193

Again calculating the square of the last y, we get:

>> y^2

ans =
 43.000000491508771

which is closer to x than the previous y-square. Thus, this new final y is a bet-
ter approximation to the square root of x, as we had hoped.

Infinite Loops And Control-c
In the previous section, we got better approximations to the square root by
reducing the acceptable level of error. We might hope to get an ideal square
root by setting the acceptable level to zero. We can try that by changing the
control statement to this:

while abs(y^2 - x) > 0

Unfortunately, this idea does not work because the value of abs(y^2 – x)
will never get to zero. What happens is that the value of y gets to
6.557438524302000 and then repeats forever, because, when the com-
mand, y = (x/y + y)/2, is carried out, the result of the calculation on the
right of the assignment statement, (43/6.557438524302000 +
6.557438524302000)/2 is 6.557438524302000. As a result, y is as-
signed the same value that it had before. The value remains the same instead
of getting closer to the exact square root because of the limited accuracy
(about 16 decimal places) of the numbers stored in the computer, and it will
happen again and again and again. So y does not change, and it never will.

MATLAB continues gamely to carry out the body of the loop over and over
and over, hundreds of thousands of times, or, if nothing is done to stop it,
hundreds of millions of times, for hours, for days, for as long as the power
remains on and the computer doesn’t wear out, until the sun expands to be-
come a red giant.... Well, you get the picture. A loop that continues iterating

156

without any possibility of stopping is called an infinite loop. When MATLAB
is caught in an infinite loop and nothing is being printed to the Command
Window, it may at first glance appear that the MATLAB system has died. As
a result, the user may attempt to close its window by clicking the icon to
close it down. That usually will not work. Of course, there are more extreme
steps one can take, such as shutting MATLAB down using the Task Manager
in Windows or use Force Quit from the Apple® menu on a Mac. However,
such harsh measures are rarely necessary. Typically MATLAB is still alive and
working properly, but it has a long (possibly infinitely long) task to perform
and is performing its work silently.

Fortunately, in this circumstance MATLAB displays a small sign of life that
shows that is still with us. While MATLAB is working on your program,
whether it is making good progress or is caught in an infinite loop, it displays
the word “Busy” just to the right of the Start button at the bottom left of the
Command Window as a signal that it is working. Figure 2.34 is a screenshot
of the bottom part of the Command Window while the infinite loop above is
being processed. This infinite loop causes repeated printing to the Command
Window, but because the same value is printed in exactly the same position
over and over, the screen appears to be static, and once again the only way to
see that something is happening inside that MATLAB brain is to notice that
little word “Busy”.

Now that we know MATLAB is not dead, what can we do to get control of it
again? Well, any time that we suspect that it is wasting time instead of mak-
ing progress, we can tell MATLAB to stop running the program that we have
given it without killing MATLAB itself. It is done with a control-c. A control-
c command is issued by holding the Ctrl key and hitting the c key. Its mean-
ing is roughly, “Abort!”.

An infinite while-loop is actually a common occurrence during program de-
velopment because of programming errors. The most common error being
that the programmer forgets to include a statement to increment a counter in

the body of the loop. For example, if the statement n = n + 1 had been in-
advertently omitted in Figure 2.33 , the loop would continue indefinitely, this
time without anything being printed, and once again we would know that
MATLAB was working because of that telltale word “Busy”. For either of
these infinite loops or for any infinite loop, or if you just want to stop for
lunch before MATLAB completes a long program and you need to take your
laptop with you—for any case in which MATLAB is busy and you want it to
tell it to stop what it is doing, you can do it with control-c.

Changing The Loop Flow With break And continue
Sometimes during an iteration of a for-loop or a while-loop, part of the calcu-
lation should be skipped. Suppose, for example, that we want to set all the
values in the vector named readings to zero until we reach the first value
that exceeds 100. This might be the situation when a sequence of outputs
from some device are small values of random noise until a true reading is en-
countered. For example, suppose the vector has these values:

readings = [32 100, 0, 8, 115, 123, 277 92, 14, 87 0 8];

The first value that exceeds 100 is 115, so in this case we would want to set
the values before 115 to zero:

readings = [0, 0, 0, 0, 115, 123, 277 92, 14, 87 0 8];

157

Figure 2.34 MATLAB may be stuck in an infinite loop

We could do this with a while-loop as follows:

ii = 1;
while ii < length(readings) && readings(ii) <= 100
 readings(ii) = 0;
 ii = ii + 1;
end

but there is better approach.

The break-statement
The above while-statement works, but it seems a bit awkward. Here is a for-
loop approach that uses a new construct called the break-statement.

for ii = 1:length(readings)
 if readings(ii) > 100
 break;
 else
 readings(ii) = 0;
 end
end

Here, it appears that we are going to process each element of the vector be-
cause of the phrase ii = 1:length(readings) at the beginning, but that
does not happen. As long as the if-statement finds that the value of read-
ings(ii) is less than or equal to 100, the else-clause dutifully sets that ele-
ment to zero, but when it reaches the element 115, it enters its if-clause, and
there we find a new keyword: break. The break-statement can appear only
inside a loop. In fact, MATLAB will stop the program and print an error mes-
sage, if it encounters the keyword break anywhere that is not inside a loop.
(This strict rule is in contrast to C++, which uses the keyword “break” both
as a means to stop a loop and as part of the syntax of its switch-statement).
The meaning of the break-statement is that the loop is ended and control con-
tinues at the next statement following that loop. In this case, the loop ends
while ii equals 5, and ii maintains that value after the loop terminates. So if
we wanted merely to know where the first value greater than 100 occurred,
we could use this code:

for ii = 1:length(readings)
 if readings(ii) > 100
 break;
 end
end
fprintf('First reading above 100 is at index %d.\n', ii);

The break-statement can be used in a while-statement as well. Here is an al-
teration of the while-statement above that incorporates a break-statement to
accomplish the same goal:

ii = 1;
while ii <= length(readings)
 if readings(ii) <= 100
 readings(ii) = 0;
 else
 break;
 end
 ii = ii + 1;
end

The difference between this while-statement and the previous while-
statement is that the break-statement handles the checking for the magnitude
of the readings, instead of the conditional phrase in the first line of the
while-statement. The semicolon after break is optional.

A common misunderstanding involving the break-statement appears when it
is used in nested-loops. The break applies only to the innermost loop, mean-
ing that it will cause the loop it appears in to terminate, but the outer loop
will continue. Here is an example. Suppose we have the following array.

A =
 81 10 16 15 65 76 70 82
 90 28 97 42 4 74 4 69
 13 55 95 91 85 39 28 32
 91 95 49 79 93 65 5 95
 63 96 80 95 68 17 10 4

We wish to look at each element in row-major order, and set them to zero un-
til we find the first value that is greater than 90. Here is the result we want:

158

A =
 0 0 0 0 0 0 0 0
 0 0 97 42 4 74 4 69
 13 55 95 91 85 39 28 32
 91 95 49 79 93 65 5 95
 63 96 80 95 68 17 10 4

It can be seen that, since there are no numbers greater than 90 on the first
row, we must set all of its values to 0. When we get to the second row, we set
the first and second elements on the row to zero, and then we encounter 97
at A(2,3). Since this value is greater than 90, we are done. We leave all the
rest of that row and all the following rows as they were.

To look at each element in row-major order, we need a nested for-loop, so
let’s write one and include a break-statement to stop the processing when we
reach a value greater than 90:

for ii = 1:size(A,1)
 for jj = 1:size(A,2)
 if A(ii,jj) <= 90
 A(ii,jj) = 0;
 else
 break;
 end
 end
end

The outer loop moves from one row to the next; the inner loop moves across
each row, and when we hit a value greater than 90, we break out of the loop.
Sounds good, but which loop do we break out of? Only the inner loop. This
does not accomplish what we wanted. Here is the result:

A =
 0 0 0 0 0 0 0 0
 0 0 97 42 4 74 4 69
 0 0 95 91 85 39 28 32
 91 95 49 79 93 65 5 95
 0 96 80 95 68 17 10 4

How did those erroneous zeros on the third and fifth row get there? Here is
what happened: The outer loop starts with ii = 1, and the inner loop sets
each element of the first row to zero. The outer loop then sets ii = 2, and
the inner loop sets each element of the second row to zero until the 97 is en-
countered, causing the break-statement to be executed, which terminates the
inner loop. At this point we want the changes to the array to stop, but unfor-
tunately control continues to the next statement after the inner loop, which is
the end-statement of the outer loop. The outer loop then loops back to its con-
trol statement, which sets ii to to 3. Then the inner loop runs again, setting
the first two elements of the third row to zero, after which the break-
statement is hit again at 95. Then ii becomes 4 and the break-statement is
hit immediately when the value 91 is encountered, leaving the fourth row
unchanged. Finally ii is set to 5, and the first element of the fifth row is set
to zero, after which the value 96 is encountered, the break-statement termi-
nates the inner loop again, and the outer loop is complete.

What we need to do is terminate both loops when the inner loop encounters
that 97 on the second row. MATLAB has no mechanism for specifying that
multiple loops be terminated when a break-statement is encountered. The
only way to cause the outer loop to terminate is to include a statement in the
inner loop that writes a note and another statement in the outer loop that
reads it. That note, which in common programming terminology is called a
flag, which is a value indicating a special condition. In this case the special
condition is that the value we have been looking for has been found. Here is
how we do it:

159

found = false;
for ii = 1:size(A,1)
 for jj = 1:size(A,2)
 if A(ii,jj) <= 90
 A(ii,jj) = 0;
 else
 found = true;
 break;
 end
 end
 if found
 break;
 end
end

We have introduced the built-in functions false and true. Neither takes
any arguments; false returns 0; true returns 1.They are used to show that the
values 0 and 1 are being used to signify false and true, and they are often
used to set flags. Our flag here is called found, and we begin by setting it to
false, since nothing has been found before we start looking for it. Then, af-
ter we have found the first value that is greater than 90 in the inner loop, but
just before we break out of the inner loop, we set that flag to true. A new if-
statement, which we have added just after the inner loop, includes a second
break-statement, which terminates the outer loop, and we get the result we
want.

This flag-setting scheme will always work for you when you want to break
out of more than one loop. If the loops are nested three deep, then you need
two additional if-statements containing break-statements; deeper nesting re-
quires more if-statements and break-statements, but only one flag is needed,
no matter how deep the nesting.

The continue-statement
The break-statement has a complementary construct, called the continue-
statement. The continue-statement, which consists of the single keyword con-
tinue, causes the innermost loop to continue to the next iteration without
completing the current one. It is used when it is determined, while executing

the statements in the body of the loop, that all the subsequent statements in
the body of the loop should be skipped. Unlike the break-statement, the
continue-statement has no effect on the number of iterations that are carried
out. As with the break-statement, the semicolon after continue is optional.

Suppose, for example, that we want to print five powers of each of the num-
bers in a list. For each number x we wish to print x, x2, x4, x1/2, and x1/4.
However, we are not interested in complex numbers (for some reason), so, if
the number is negative, since the last two values would be complex, we do
not want to print (or calculate) them. Here is way to do it without using a
continue-statement:

for ii = 1:length(numbers)
 x = numbers(ii);
 fprintf('x = %d\n', x);
 fprintf(' x^2 = %d\n', x^2);
 fprintf(' x^4 = %d\n', x^4);
 if x >= 0
 fprintf(' x^(1/2) = %f\n', x^(1/2));
 fprintf(' x^(1/4) = %f\n', x^(1/4));
 end
end

In this simple example, the first three fprintf statements will be executed
for each number in the list, but the last two will be executed only if x is non-
negative. Here is how we do it with a continue-statement:

for ii = 1:length(numbers)
 x = numbers(ii);
 fprintf('x = %d\n', x);
 fprintf(' x^2 = %d\n', x^2);
 fprintf(' x^4 = %d\n', x^4);
 if x < 0
 continue;
 end
 fprintf(' x^(1/2) = %f\n', x^(1/2));
 fprintf(' x^(1/4) = %f\n', x^(1/4));
end

160

This difference is that, instead of putting the last two fprintf statements
inside an if-statement that checks to see whether x is non-negative, we have
used a continue-statement inside an if-statement that checks to see whether x
is negative. If it is negative, then the rest of the statements in the body of the
for-loop (i.e., the last two fprintf statements) are skipped.

For example suppose we have this vector,

numbers = [7 -2 0 -4 5];

Here is what is printed (the version without the continue-statement gives
identical output):

x = 7
 x^2 = 49
 x^4 = 2401
 x^(1/2) = 2.645751
 x^(1/4) = 1.626577
x = -2
 x^2 = 4
 x^4 = 16
x = 0
 x^2 = 0
 x^4 = 0
 x^(1/2) = 0.000000
 x^(1/4) = 0.000000
x = -4
 x^2 = 16
 x^4 = 256
x = 5
 x^2 = 25
 x^4 = 625
 x^(1/2) = 2.236068
 x^(1/4) = 1.495349

For the non-negative elements—the first, third, and fifth elements—all four
powers of x were printed. For the negative elements—the second and fourth
elements—the continue-statement causes the remainder of the body of the
loop—the printing of x^(1/2) and x^(1/4)—to be skipped.

Logical Indexing
Many loop applications involve performing the same operation on each of
the elements of an array or on selected elements of it. For-loops and while-
loops provide highly versatile means for carrying out such tasks, but those
tasks can often be implemented far more simply and more efficiently by
means of logical indexing. With logical indexing, the programmer can in-
struct MATLAB to carry out the equivalent of a for-loop or while-loop with-
out explicitly using the loop syntax at all and with a far simpler set of state-
ments that are easier to program, easier to read, and less prone to error. And
they run faster. These simpler statements cause MATLAB to execute an
equivalent loop, but in these statements there is no “for” or “while” key-
word, no loop index, no loop body, not even an end-statement. A loop like
this, which is invoked without the use of explicit for-loop or while-loop syn-
tax, is called an implicit loop, and in this subsection we show how to imple-
ment implicit loops via a new concept called logical indexing and a new type
of array called the logical array.

Logical indexing with vectors
Logical indexing is a bit easier with vectors than with non-vectors, so we will
use only vectors at the beginning. We’ll start with an example. Suppose we
are given two vectors of the same length, speed and valid. The elements of
speed are speeds measured by means of radar of cars selected at random on
a busy highway; the elements of valid are ones and zeros. Because of the
limitations of the radar detector, only some of the readings in speed are cor-
rect, and the vector valid identifies the correct readings. If the value of an
element of valid is 1, then the corresponding value at that position in
speed is a true reading; if the value of the element in valid is 0, then the
corresponding speed at that position in speed is a false reading and should
be discarded. We wish to produce a vector valid_speed that contains only
the true readings from speed.

161

Let’s assign some values to speed and valid:

>> speed = [67, 13, 85];
>> valid = [1, 0, 1];

According to the meaning that we have chosen for valid, since only the first
an third elements of valid have the value 1, only the first and the third val-
ues in the vector speed are true readings, so we would want to put only
those values into the vector valid_speed. For such a small list of speeds,
we could do that explicitly without any fancy loops as follows:

valid_speed = [67, 85]

It is important to note that the vector valid_speed can be shorter than the
vector speed. We are not setting invalid speeds to zero here; we are omitting
them entirely. Thus, if there are any invalid speeds (at least one value in
valid is zero), valid_speed will be shorter than speed. If all of the ele-
ments in valid had been zeros, then we would have set valid_speed =
[] (the empty matrix), which has a length of zero. If all of them had been
ones, we would have set valid_speed = speed, which has a length of
three. Any other combination of zeros and ones in valid would have re-
sulted in valid_speed having an intermediate length.

Here is a first attempt at a for-loop to perform this task:

for ii = 1:length(speed)
 if valid(ii)
 valid_speed(ii) = speed(ii);
 end
end

Let’s check the result:

>> valid_speed

valid_speed =
 67 0 85

This is not what we wanted. Instead of omitting the invalid speed at the sec-
ond position, we simply set it to zero. How did this happen? There is no zero
anywhere inside the for-loop, so we certainly did not set the second element
of valid_speed to zero on purpose. In fact, we didn’t set the second ele-
ment to anything at all. Since valid(2) is equal to zero, the if-statement did
nothing on the second iteration. So, we assigned values to only the first and
third values of valid_speed. However, since we assigned a value to the
third element, there must be three elements in this vector and each element
must have a value, so MATLAB filled in the missing value. As we saw previ-
ously in Chapter 1, it fills in missing values with zeros.

Here is a second attempt:

count = 0;
for ii = 1:length(speed)
 if valid(ii)
 count = count + 1;
 valid_speed(count) = speed(ii);
 end
end

This time, we added the variable count to keep track of the number of ele-
ments that we have put into valid_speed. When we find a valid entry, we
increment count and use it as an index in valid_speed so that we place
the new value immediately after the last element in valid_speed.

To check the result, we clear valid_speed from the memory, so that we
will not be confused by the values that the previous execution gave it
(clear valid_speed) and then run the new code. Checking the result,

>> valid_speed
valid_speed =
 67 85

shows that we got what we wanted. However, there is still a subtle bug in
our code. What happens if there are no valid speeds? According to our de-
scription, valid_speed should be an empty matrix. Let’s see what happens

162

in that case by keeping the same speeds, but declaring all of them to be inva-
lid.

>> speed = [67, 13, 85];
>> valid = [0, 0, 0];

Again we clear valid_speed from the memory. Then we run the code
again and check the results:

>> valid_speed
Undefined function or variable 'valid_speed'.

The problem is that, since there are no non-zero values in valid, the body of
the if-statement is never executed, so the assignment statement

valid_speed(count) = speed(ii);

is never executed, so nothing is assigned to valid_speed. Since we have
cleared valid_speed from the memory and since variables remain unde-
fined until something is assigned to them, valid_speed is left undefined in
this case. We solve this problem easily by adding one line before the loop be-
gins that sets valid_speed to the empty matrix, and we include a comment
to explain what would otherwise seem to be a useless command:

valid_speed = []; % in case there are no valid speeds
count = 0;
for ii = 1:length(speed)
 if valid(ii)
 count = count + 1;
 valid_speed(count) = speed(ii);
 end
end

Let’s clear valid_speed from the memory again, run the code, and check
the results for the case in which there are no valid speeds:

>> valid_speed
valid_speed =
 []

To be sure that the other case works, we rerun with the original valid = [1,
0, 1] and check again:

>> valid_speed
valid_speed =
 67 85

At last we have a loop that works correctly, and it is relatively simple, but
here is an even simpler, two-command solution that is much easier to write
and much less prone to error:

valid_new = logical(valid);
valid_speed = speed(valid_new);

There is no for-loop; there is no special case when there are no valid speeds. It
seems too simple to work! Let’s run this code and check the result:

valid_speed =
 67 85

So far so good. Now to check the case of no valid speeds. First we clear
valid_speed from the memory again and set all elements of valid to zero
again:

>> valid = [0, 0, 0];

We run the code again and check the result:

>> valid_speed

valid_speed =
 Empty matrix: 1-by-0

Success! And success came much easier this time, because we used an im-
plicit loop instead of an explicit one. Here is how it works

valid_new = logical(valid);

163

This command converts valid into a logical array of the same size and
shape as valid by using the function logical, and it assigns the logical
array to valid_new. The conversion does two things:

1. It replaces any non-zero value in valid with the value 1, leaving only
ones and zeros in the array. (Both nonzero values in our example were
equal to one, so this step accomplished nothing in this case.)

2. It changes the “type” of the array to logical.

We will discuss types a bit more below, and we will learn about types in de-
tail when we get to the section entitled Data Types. For the moment though,
we note only that the conversion to the type logical is required before the
next command is executed.

>> valid_speed = speed(valid_new);

The syntax of this command makes it appear to be using valid_new as a set
of indices in speed, but, since the type of valid_new is logical, MATLAB
instead treats valid_new as a set of indicators to tell it which values of
speed are wanted. Each 0 in valid_new causes the corresponding element
in speed to be ignored; each 1 in valid_new causes the corresponding ele-
ment in speed to be used.

It might be tempting to try logical indexing with the vector valid instead of
valid_new with its fancy new logical type:

>> valid_speed = speed(valid);

Subscript indices must either be real positive integers
or logicals.

We got our hands slapped. Let’s look in detail at what happened here. Since
valid is equal to [1, 0, 1], this command is equivalent to

valid_speed = speed([1, 0, 1]);

The syntax is fine. As we learned in the section entitled Matrices and Opera-
tors, it is equivalent to

valid_speed = [speed(1), speed(0), speed(1)].

The problem is not with the syntax but with the value of the second in-
dex—0. There is no such thing in MATLAB as speed(0) because in
MATLAB all indices of all arrays must be real positive integers, and 0 is not
positive. However, if we use an array whose type is logical, then we are
telling MATLAB not to use the values of its elements directly as indices, but
instead to use logical indexing, which means that a subset of speed is se-
lected according to which of the logical indices are zeros and which are ones.

There are other ways to create logical arrays. The most important method
is the use of the relational operators, <, >, ==, <=, >=, and the logical opera-
tors, &&, &, ||, |, and ~, which are most commonly used in if-statements
(see the section entitled Selection). For example, the command:

>> c = [2>1, 2<1, ~(3>2 && 4>5)]

c =
 1 0 1

makes c equal to [1, 0 1], and its type is logical. The type of c is logi-
cal because every relational and logical operator produces the logical value
1 when its expression is true and produces the logical value 0 when its ex-
pression is false. For the purposes of logical indexing, the type that these op-
erators produce is as important as the value. The type of the values produced
by relational and logical operators is always logical.

The type of a variable determines the way in which it can be used, as we
have seen above when we tried to use the variable value, whose type is not
logical, for logical indexing. Up until now all the variables that we have
dealt with have been of a type called double. The name “double” has histori-
cal origins that are explained in later in the section entitled Data Types, which

164

is devoted to types and provides detailed definitions of all the standard
MATLAB types, but the meaning of double in MATLAB is roughly “num-
ber”. Since MATLAB’s applications are typically numerical, its variables typi-
cally hold numbers, so most of the time we want variables whose type is
double, and most of the time that is what MATLAB gives us. It is easy to de-
termine a variable’s type by using the function named class, as, for exam-
ple,

>> class(c)

ans =
logical

>> class(speed)

ans =
double

MATLAB responds by spelling out the type: double.

Logical indexing and logical and relational operators
The operators & and && each signify the “and” operation and the operators |
and || each signify the “or” operation, but there are three differences:

As we have already learned in the subsection Short Circuiting of Selection,
the operators &, and | unlike && and ||, do not short-circuit.

Now we will learn another difference: Both & and | can operate on arrays,
whereas && are and || can operate only on scalars:

>> [1 0 1] & [0 0 1]

ans =
 0 0 1

>> [1 0 1] && [0 0 1]

Operands to the || and && operators must be convertible
to logical scalar values.

>> [1 0 1] | [0 0 1]

ans =
 1 0 1

>> [1 0 1] || [0 0 1]
Operands to the || and && operators must be convertible
to logical scalar values.

In fact both & and | are array operators, meaning that they obey the same
rules given in Matrices and Operators for the “dot operators”, .*, ./, .^, etc.
regarding the required shapes of their operands, the element-by-element
method of evaluation, and the shapes of their outputs. For example, [1 0
1] & [0 0 1] above returned [0 0 1], because, according to the rules of
array operations, it is equivalent to the element-by-element operation, [1&0,
0&0, 1&1], and 1 and 0 are treated as being equivalent to true and false.
Similarly, [1 0 1] | [0 0 1] returned [1 0 1], because, according to
the rules of array operations, it is equivalent to the element-by-element opera-
tion, [1|0, 0|0, 1|1].

A common use of logical indexing is illustrated by the next example. Suppose
we have a vector a = [12, 3, 45]. We wish to form a new vector consist-
ing of those elements of a that are greater than 10. We do it as follows:

>> b = b(a > 10)
b =
 12 45

What has happened is that a new vector is formed by the operation a > 10.
That vector looks like this [1, 0, 1] and it is a logical vector (i.e., its type is
logical). That vector then provides logical indexing into a, and the result is
that a new vector is formed, as in the example speed(valid_new), consist-
ing of the two elements of a that appear at those indices where the values of
the logical vector are nonzero (positions 1 and 3). The result, b, is not a logical
vector. It is of the same type as a, which in this case is double.

165

It can be seen from this example how logical indexing can simplify the code.
Here is a loop version of b = a(a>10):

b = [];% in case no values are greater than 10
jj = 0;
for ii = 1:length(x)
 if a(ii) > 10
 jj = jj + 1;
 b(jj) = a(ii);
 end
end

Logical indexing can be used on the left side of the equal sign as well. We in-
troduce left-side logical indexing with a simple example. Once again, we let
a = [12, 3, 45]. Now we execute the following command:

>> a(a>10) = 99

a =
 99 3 99

The meaning here is that all elements of a that are greater than 10 are set to
99. The rest are unchanged. Here we note a difference between righthand
logical indexing (i.e., to the right of the equal sign) and lefthand logical index-
ing. With righthand logical indexing, the number of elements may be re-
duced; with lefthand indexing, the number of elements remains the same.

Once again logical indexing is much simpler than explicit looping, as can be
seen by comparing a(a>10) = 99 with the following semantically equiva-
lent loop:

for ii = 1:length(a)
 if a(ii) > 10
 a(ii) = 99;
 end
end

In each of the last two examples—one with logical indexing on the right of
the equal sign and one with logical indexing on the left of the equal sign, this

explicit loop reveals something that is hidden by the far more succinct form
of logical indexing: namely, that each element of the vector must be accessed
and operated on. With the syntax of logical indexing, it appears that an entire
vector is being operated on at once. That is not true. It is not possible with
conventional computers, such as the ones that MATLAB typically runs on.
MATLAB commands may appear to operate on entire vectors, but in fact
they cause hidden loops to be activated by the MATLAB interpreter behind
the scenes, and these loops operate on each element of the array−one-by-one.

Logical indexing with arrays
So far, we have used logical indexing only with vectors. Let’s look at an exam-
ple of logical indexing with an array. Our task is to find the elements in the
matrix M that are greater than 0.1 and replace each one with its square root.
First we give a version employing explicit looping:

[m,n] = size(M);
for ii = 1:m
 for jj = 1:n
 if M(ii,jj) > 0.1

M(ii,jj) = sqrt(M(ii,jj));
 end
 end
end

Here is a version using logical indexing:

M(M > 0.1) = sqrt(M(M > 0.1));

This example shows both that logical indexing works with arrays and that
logical indexing can be used on both sides of the equal sign in the same com-
mand. Note, however, that the number of elements selected on the left must
equal the number of elements selected on the right. Equality is guaranteed
when the logical expression is identical on both sides, as it is in this example,
where the expression is M > 0.1.

166

So far, we have used logical indexing to compare each element in an array
against a single scalar value, for example, 0.1 above. We can also compare
arrays of elements against arrays of the same size, as in this example:

>> A
A =
 89 82 11 53
 33 5 59 42
>> B
B =
 34 44 52 64
 62 73 58 99
>> A((A>B)) = A(A>B) - B(A>B)
A =
 55 38 11 53
 33 5 1 42

where each element in A that is larger than the element at the corresponding
position in B is replaced by the difference between the two elements. At this
point, it may seem that differences when performing logical indexing are mi-
nor between vectors and non-vector arrays (i.e., arrays that are not not two-
dimensional with one dimension equal to 1). Unfortunately they are not.
With logical indexing, the situation with arrays is more complicated, as can
be seen with the following example:

>> A = [1 2 3; 4 5 6]

A =
 1 2 3
 4 5 6

>> B = A(A>2)

B =
 4
 5
 3
 6

As expected, only those elements of A that are greater than 2 made it into B,
but surprisingly, we find that B is a column vector! What is the reason for this

change of shape, and how did MATLAB choose the order of the elements in
B? The answers have to do with the requirement that arrays must be rectangu-
lar. In other words, each row must have the same length. If that were not re-
quired, then we might well have seen something like this:

In this fictitious output, the first row of B has only one element and it is “sit-
ting” at the far right (whatever sitting means!), and the second row of B has
three elements. This scenario cannot work because later operations with B
would be poorly defined, so MATLAB does not behave this way. Instead,
when logical indexing is applied to an array on the right side of the equal
sign, if the array is not a vector, then that array is treated as a column vector
in which the elements of the array occur in column-major order. As we
learned in subsection Functions for transforming matrices in Matrices and
Operators column-major order means that all elements in one column of an
array are processed before the elements of the next column. We also learned
that linear indexing could be used to access the elements of an array in
column-major order and that the index : enumerates all of them in that order,
as for example,

>> A(:)

ans =
 1
 4
 2
 5
 3
 6

167

In the command B = A(A>2), A is treated as just such a column vector, and
it is this column vector from which elements are selected for B. Only those
elements that are greater than 2 are selected. Thus 1 is omitted, 4 is selected,
2 is omitted, and 5, 3, and 6 are selected. The result is, as we saw above, is

B =
 4
 5
 3
 6

A difficulty arises when logical indexing is used to compare elements within
the array to other elements in it. Of course, we can easily set to zero all the
elements in some matrix X that are smaller than, say, the second element on
the third row, as in this example:

X =
 35 35 34 23 17
 18 3 31 6 10
 37 31 30 41 31

>> X(X<X(2,3)) = 0

X =
 35 35 34 0 0
 0 0 31 0 0
 37 31 0 41 31

But, if you wish to use logical indexing to set every element of the array A to
zero that is the smaller than, say, the second element in its own row, you are
going to need help from a built-in function. Here is a way do it by using the
function repmat, which we introduced in the section Matrices and Operators
of Chapter 1:

function A = zero_small(A)

A2ii = repmat(A(:,2),1,size(A,2));
A(A<A2ii) = 0;

The variable A2ii is an array containing only copies of the second column of
A. The copying is done by repmat, which makes its living by copying vectors
and arrays (replicating matrices). It is helpful in situations like this where it
is necessary to compare every element in a matrix to elements in one column
of the same matrix or of another matrix, or to elements in one row or in some
rectangular tile of a matrix. This code is much simpler than that required to
solve the problem with nested for-loops, and it is shorter, but it can be even
shorter than this. One line is all that is required:

A(A<repmat(A(:,2), 1, size(A,2))) = 0;

For comparison, here is a version that uses explicit loops:

function A = zero_small_explicit(A)
for ii = 1:size(A,1)
 for jj = 1:size(A,2)
 if A(ii,jj) < A(ii,2)

A(ii,jj) = 0;
 end
 end
end

There is no appreciable savings in execution time realized by using implicit
looping for this problem, but the implicit version can save both programming
time and debugging time, which in many cases is more important to the pro-
grammer. Of course, as this example shows, in order to avoid explicit loop-
ing, we sometimes have to be resourceful, and that requires experience and a
facility with vectorization.

Vectorization
As we mentioned at the beginning of this section, MATLAB provides many
methods for invoking an implicit loop, including the colon operator, array
and matrix operations, and built-in functions that operate on arrays. Logical
indexing is just our latest example of implicit looping.

168

In the previous subsection, we encountered commands that operate on entire
vectors and entire arrays. Examples include b = a(a>10), B = A(A>2),
and our latest example, A(A<repmat(A(:,2), 1, size(A,2))) = 0. A
command that operates on an entire vector or entire array is said to be a vec-
tor command (the more general term “array” command is not used), and the
translation of code from a version that uses explicit looping into one that uses
implicit looping via a vector command is called vectorization. In every case
of vectorization, at least one explicit loop is avoided. Looping is still happen-
ing, because, unless parallel processing is used, only one element of an array
can be accessed by the CPU at a time (the interested reader can look up
MATLAB’s versatile parallel-processing capability via help parfor and
help gpu). However, implicit looping via vectorization can save consider-
able execution time relative to explicit looping because the MATLAB inter-
preter does not have to slavishly follow the programmer’s explicit loop. In-
stead, it parcels out the task into one or more built-in functions that have
been optimized to run very efficiently on the CPU.

As we saw in the last example of the previous subsection, the function rep-
mat can be very helpful when we want to vectorize our code. Another func-
tion that helps with vectorization is ndgrid. To see how it works, we will use
an extended example. Let’s start with the picture of a dog and some flowers
shown in Figure 2.35.

Let’s suppose the dog’s name is Obie. If we wanted to focus the viewer’s at-
tention on Obie, we might want to crop the picture, which means that we
would remove all of the picture except, say, the portion around Obie’s face.
Let’s suppose that we have determined that the center of his face is on row
900 and column 2500, and that we want to get a rectangular region whose top
and bottom edges are a vertical distance of 850 pixels from that center posi-
tion and whose left and right edges are a horizontal distance of 650 pixels
from it. That can be done easily by loading the picture, which, as noted in Fig-
ure 2.35, is stored in a file named dog_and_flowers.jpg, into an array, which

we might call dog_flowers, and then copying a rectangular portion of that
array into another array, which we might call dog_cropped, as follows:

>> dog_flowers = imread('dog_and_flowers.jpg');
>> c1 = 900; c2 = 2500; r1 = 850; r2 = 650;
>> dog_cropped = dog_flowers(c1-r1:c1+r1, c2-r2:c2+r2, :);
>> figure(1); image(dog_cropped);
>> axis equal; axis tight;

Here, c1 and c2 are the row and column indices of the center pixel, r1 is the
distance of the top and bottom of the cropped rectangle we want from the
center pixel, and r2 is the distance of its left and right edges from the center.
pixel.

(Note that axis equal and axis tight have been explained earlier in this
chapter). The result is shown in Figure 2.36.

Not bad, but this is just not artistic enough for us. If we were to use a fancy
image-processing tool like, say, Photoshop, we could put an elliptically
shaped mask around Obie. But wait! Didn’t we say that we can do anything

169

Figure 2.35 dog_and_flowers.jpg

with MATLAB that we can do with Photoshop? Well, here is a function that
does elliptical masking:

function im = elliptical_masker(im,c1,c2,r1,r2)
[M,N,K] = size(im);
for i1 = 1:M
 for i2 = 1:N
 if ((i1-c1)/r1)^2 + ((i2-c2)/r2)^2 >= 1

im(i1,i2,:) = 0;
 end
 end
end

Let’s use it first and then explain what it does:

>> dog_masked = elliptical_masker(dog_flowers,c1,c2,r1,r2);
>> figure(2); image(dog_masked);
>> axis equal; axis tight;

The result is shown in Figure 2.37. What we have done is set all pixels to
black (red, green, and blue channels equal to zero) outside an ellipse centered

on element 900,2500 of the array dog_flowers using a vertical radius (semi-
major axis), r1, of 850 and a horizontal radius, r2, of 650. (By the way,
MATLAB, like Photoshop, will let you click on the image to specify positions
and shapes, instead of forcing you enter numbers. You can do do it easily
with a built-in function called ginput, which is introduced in the Practice
Problems at the end of this section). The determination that we are outside is
done by calculating ((i1-c1)/r1)^2 + ((i2-c2)/r2)^2. If the result is
greater than or equal to 1, then we are outside the ellipse. That determination
is made by the if-statement. We can now crop, as we did before, and save the
result:

170

Figure 2.36 dog_cropped

Figure 2.37 dog_masked

>> dog_masked_cropped = dog_masked(c1-r1:c1+r1,c2-r2:c2+r2,:);
>> imwrite(dog_masked_cropped,'Obie.jpg');

and we end up with the nice result displayed in Figure 2.38.

We chose a black background, but we could make it white too, by changing
im(i1,i2,:) = 0 to im(i1,i2,:) = 255 (any color is possible). So,
MATLAB ≈ Photoshop.

There is just one small problem. This code is a bit slow. For the array
dog_flowers, whose dimensions are 3000-by-4000-by-3, ellipti-
cal_masker takes 15.4 seconds on a MacBook Air with a 1.7 GHz CPU and
4 GB of memory running Mac OS X. This is a tolerable length of time, given
that we are processing a 12-megapixel image, but we can speed it up. One
trick would be to crop first and mask second. That would exploit vectoriza-
tion (fast) to reduce the size of the array that we need to send to ellipti-
cal_masker, thereby reducing the number of iterations of its explicit loops
(slow). Instead, we will keep the order the same and completely vectorize el-

liptical_masker, thereby eliminating all explicit looping.

We wish to assign zero to a subset of array elements without using explicit
loops. Well, we have done just that via logical indexing in the previous sub-
section, in the function zero_small. In that function, we employed vectori-
zation in the statement A(A<A2ii) = 0, which zeroed every element in the
array A that was smaller than the element at the corresponding position in
the array A2ii. That statement fits a common vectorization pattern using
logical indexing: (1) A(B) = x, where x is some scalar value, (2) A and B
have the same dimensions, and (3) B is a logical array. For the specific state-
ment, A(A<A2ii) = 0, we have B equal to A<A2ii, and therefore the value
of B(i1,i2) (true or false) is determined by whether or not the value of
A(i1,i2) is less than A2ii(ii,jj). In our image-processing problem, we
want to do a similar thing: (1) im(B) = 0, where (2) im and B have the same
dimensions and (3) B is a logical array. So what’s new? Plenty!

There is an important difference between this problem and the problem
solved by zero_small, and, for that matter, all the previous logical-
indexing problems that we have seen. In our current problem, the value of
the element B(i1,i2) (true or false) has nothing whatever to do with the
value of the corresponding element im(i1,i2). Instead, it depends only on
the position of the element in A. In other words, it depends only on i1, and
i2.

What we need is a matrix B, that is the same size as im and for which
B(i1,i2) equals true if ((i1-c1)/r1)^2 + ((i2-c2)/r2)^2 >= 1 and
equals false otherwise. This is where ndgrid, comes in. We can make
ndgrid return arrays whose element have values that depend only on their
positions within the array. Before we do that, though, let’s look at an example
that demonstrates the basic functionality of ndgrid:

171

Figure 2.38 Obie.jpg

>> [a1, a2] = ndgrid([4, 2, 56, 5], [-9, 0.3, 8])

a1 =
 4 4 4
 2 2 2
 56 56 56
 5 5 5
a2 =

-9.0000 0.3000 8.0000
-9.0000 0.3000 8.0000
-9.0000 0.3000 8.0000
-9.0000 0.3000 8.0000

The function ndgrid takes any number of vectors (row or column) as input
arguments, in this case two, and it returns the same number of arrays as out-
put arguments by duplicating the input vectors. The output arguments all
have identical dimensions, and those dimensions are equal to the lengths of
the input vectors, in this case 4-by-3, because the lengths of the input vectors
are 4 and 3. Let’s call those input vectors v1 and v2. Then the output arrays,
a1 and a2, have these values:

a1(i1,i2) = v1(i1).

a2(i1,i2) = v2(i2).

By looking at a1 and a2 printed above, we can see how ndgrid gets its
name: for n dimensions it produces a grid from each input vector. Pretty sim-
ple. And, as we about to see, we can use this simple functionality to make
ndgrid give us arrays, each of whose elements has a value that depends on
its position in the array. Let’s look at an example that moves us further in that
direction:

>> [I1,I2,I3] = ndgrid(1:5,1:7,1:2)

I1(:,:,1) =
 1 1 1 1 1 1 1
 2 2 2 2 2 2 2
 3 3 3 3 3 3 3
 4 4 4 4 4 4 4
 5 5 5 5 5 5 5
I1(:,:,2) =
 1 1 1 1 1 1 1
 2 2 2 2 2 2 2
 3 3 3 3 3 3 3
 4 4 4 4 4 4 4
 5 5 5 5 5 5 5
I2(:,:,1) =
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7
I2(:,:,2) =
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7
I3(:,:,1) =
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
I3(:,:,2) =
 2 2 2 2 2 2 2
 2 2 2 2 2 2 2
 2 2 2 2 2 2 2
 2 2 2 2 2 2 2
 2 2 2 2 2 2 2

This time we gave ndgrid three input vectors, and, since the dimensions of
each output array comprise the lengths of three input vectors, the output ar-
rays are three-dimensional: 5-by-7-by-2. We made another change from our
first ndgrid example too: The input arguments are vectors of the form 1:N.

172

The significance of this choice is that the elements of such vectors can repre-
sent sequenced array indices. Let’s look at the outputs. I1 , I2, and I3 are
each 5-by-7-by-2 arrays because 5, 7, and 2 are the lengths of the three input
vectors. Let’s denote the input vectors by v1, v2, and v3. Then, since v1 =
1:5, v2 = 1:7, and v2 = 1:2, we find that

I1(i1,i2,i3) is equal to v1(i1), which equals i1.

I2 (i1,i2,i3) is equal to v2(i2), which equals i2.

I3 (i1,i2,i3) is equal to v3(i3), which equals i3.

So, we have achieved our goal of producing arrays whose values depend on
their positions in the array, and, as we will see, this particular dependence is
very versatile. Let’s use it on an array of random numbers:

>> rng(0); A = randi(99,5,7,2)
A(:,:,1) =
 81 10 16 15 65 76 70
 90 28 97 42 4 74 4
 13 55 95 91 85 39 28
 91 95 49 79 93 65 5
 63 96 80 95 68 17 10
A(:,:,2) =
 82 44 49 28 50 75 95
 69 38 45 68 96 26 55
 32 76 64 65 34 51 14
 95 79 71 17 58 70 15
 4 19 75 12 23 89 26

We have used randi to produce a 5-by-7-by-2 array A of random integers
chosen from the range 0 to 99. It is no coincidence that we gave A the same
dimensions as the output arrays I1, I2, and I3. We chose the inputs to
ndgrid carefully to produce output arrays that would have exactly the same
dimensions that we had planned to use for A. Now, without further ado, let’s
use these arrays to put vectorization to work on A.

First vectorization example: Set all the elements of the first four columns
on both pages of A equal to 0:

>> A(I2<=4) = 0

A(:,:,1) =
 0 0 0 0 65 76 70
 0 0 0 0 4 74 4
 0 0 0 0 85 39 28
 0 0 0 0 93 65 5
 0 0 0 0 68 17 10
A(:,:,2) =
 0 0 0 0 50 75 95
 0 0 0 0 96 26 55
 0 0 0 0 34 51 14
 0 0 0 0 58 70 15
 0 0 0 0 23 89 26

Perhaps you are not impressed, since A(:,1:4,:) = 0 would accomplish
the same thing via the colon operator and is also vectorized. Granted. But
let’s see you do our second vectorization example with the colon operator.

Second vectorization example:

>> rng(0); A = randi(99,5,7,2);
>> A(I2<I1) = 0

A(:,:,1) =
 81 10 16 15 65 76 70
 0 28 97 42 4 74 4
 0 0 95 91 85 39 28
 0 0 0 79 93 65 5
 0 0 0 0 68 17 10
A(:,:,2) =
 82 44 49 28 50 75 95
 0 38 45 68 96 26 55
 0 0 64 65 34 51 14
 0 0 0 17 58 70 15
 0 0 0 0 23 89 26

The logical expression I2<I1 produces a 5-by-7-by-2 array whose elements

173

have the value true only if they are located at a position in the array for
which the first index is less than the first. Using it in A(I2<I1) = 0 allows
us to set all the elements in the lower triangle below the diagonal to zero, a
feat that the colon operator cannot match. Still not impressed? Man, you are a
tough audience. OK, our third example has got to impress you (hopefully!):

Third vectorization example:

>> c1 = 3; c2 = 4;
>> D = (I1-c1).^2 + (I2-c2).^2
D(:,:,1) =
 13 8 5 4 5 8 13
 10 5 2 1 2 5 10
 9 4 1 0 1 4 9
 10 5 2 1 2 5 10
 13 8 5 4 5 8 13
D(:,:,2) =
 13 8 5 4 5 8 13
 10 5 2 1 2 5 10
 9 4 1 0 1 4 9
 10 5 2 1 2 5 10
 13 8 5 4 5 8 13

To set the values of the 5-by-7-by-2 array D, we have used the formula for the
square of the distance of each element within a page from the element in the
center of that page (whose first two indices are c1 = 3 and c2 = 4). That
squared distance starts at zero at the center of the page and gets larger as we
radiate outward from the center making it all the way up to 13 at the cor-
ners. Now we form a logical array by comparing each value in D to 1:

>> D>1
ans(:,:,1) =
 1 1 1 1 1 1 1
 1 1 1 0 1 1 1
 1 1 0 0 0 1 1
 1 1 1 0 1 1 1
 1 1 1 1 1 1 1
ans(:,:,2) =
 1 1 1 1 1 1 1
 1 1 1 0 1 1 1
 1 1 0 0 0 1 1
 1 1 1 0 1 1 1
 1 1 1 1 1 1 1

The array returned by the expression D>1 is a logical array for which ele-
ments that are within one unit of distance from the center of the page have
the value false (0), while the elements greater than one unit of distance away
have the value true (1). Now let’s use logical indexing to set the distant ele-
ments of our matrix A to 0:

>> rng(0); A = randi(99,5,7,2);
>> A(D>1) = 0

A(:,:,1) =
 0 0 0 0 0 0 0
 0 0 0 42 0 0 0
 0 0 95 91 85 0 0
 0 0 0 79 0 0 0
 0 0 0 0 0 0 0
A(:,:,2) =
 0 0 0 0 0 0 0
 0 0 0 68 0 0 0
 0 0 64 65 34 0 0
 0 0 0 17 0 0 0
 0 0 0 0 0 0 0  

We have “masked” the elements outside a circle. That is almost what we
wanted to do with the image of Obie. The only differences are that (a) the ar-
ray holding the image is a lot bigger than A and (b) we want our mask to be
elliptical. Let’s extend our third example to our image-processing problem by

174

rewriting elliptical_masker to use ndgrid, incorporating a formula for
an ellipse:

function im = elliptical_masker(im,c1,c2,r1,r2)
[M,N,K] = size(im);
[I1,I2] = ndgrid(1:M,1:N,1:K);
D = ((I1-c1)/r1).^2 + ((I2-c2)/r2).^2;
im(D >= 1) = 0;

Here again we form arrays of appropriate dimensions by giving ndgrid
input vectors, 1:M, 1:N, and 1:K, that correspond to the dimensions M, N,
and K, of the array, im, that we wish to mask. The masking formula is just a
bit more complicated, because an ellipse is just a bit more complicated than a
circle, but, other than that, the process is exactly the same as the one we ap-
plied above to A. Let’s use our vectorized version of elliptical_masker:

>> dog_masked = elliptical_masker(dog_flowers,c1,c2,r1,r2);
>> figure(2); image(dog_masked);
>> axis equal; axis tight;

The result is exactly the same as before (Figure 2.37), but this time, because we
have used vectorized code, the execution time is 4 seconds instead of the 15.4
seconds that was required with the explicit looping of the non-vectorized co-
de—a speed-up factor of 3.85.

Before we leave this dog, let’s use ndgrid to apply a second popular embel-
lishment: vignetting. Vignetting is the gradual reduction of the intensity of an
image with the increase in distance from some point in the image. We will ap-
ply vignetting to the dog image using the same center as before and with the
same elliptically shaped pattern for the reduction of intensity. Here are two
versions of a function that accomplishes this vignetting—the first one using
explicit looping and the second one using vectorization via ndgrid to avoid
explicit looping.

function im = vignetter(im,c1,c2,r1,r2)
[M,N,K] = size(im);
for i1 = 1:M
 for i2 = 1:N
 d = ((i1-c1)/r1).^2 + ((i2-c2)/r2).^2;
 dim_factor = exp(-1.5*d);
 im(i1,i2,:)= ...

uint8(double(im(i1,i2,:))*dim_factor);
 end
end

function im = vignetter(im,c1,c2,r1,r2)
[M,N,K] = size(im);
[I1,I2] = ndgrid(1:M,1:N,1:K);
D = ((I1-c1)/r1).^2 + ((I2-c2)/r2).^2;
Dim_factor = exp(-1.5*D);
im = uint8(double(im).*Dim_factor);

The output is identical for the two functions and is shown in Figure 2.39. The
final cropped version, saved in JPEG format, is displayed in Figure 2.40.

175

Figure 2.39 dog_vignetted

We must briefly digress from our explanation of the vectorization aspect of
these functions to provide a note of explanation for the appearance of uint8
and double in these two functions. These are so-called conversion functions,
which are used to convert a number from one “data type” to another. These
functions are formally introduced in Data Types, where we will learn that
there are many types of numbers and that multiplication of two different
types is not allowed. Ordinary numbers, like those in dim_factor and
Dim_factor, are of the type double, which we discussed in the previous
subsection, while the type of image arrays like im is called “uint8”, so, be-
fore the multiplication can be done, one of them must be converted. The type
uint8 allows only whole numbers, so the best choice is to convert im to
double. The resulting double type must be converted back to uint8 before
it is stored back into im.

We have used the same formula for the ellipse that we used in ellipi-
cal_masker above, but, instead of masking by means of logical indexing,
we have multiplied the values in im by a dimming factor. In the first version
of vignetter, that factor is a scalar, dim_factor, which is calculated for

176

each pixel and applied to it inside nested for-loops, whereas in the second ver-
sion it is an array Dim_factor, which contains all the factors and is applied
to the entire image by means of array-multiplication. The speed-up factor is
more dramatic here: the vectorized version requires 5.26 seconds, while the
version with explicit looping requires 78.1 seconds. Here vectorization has
produced a sped-up factor of 14.9.  
Before we leave ndgrid, we will point out that it has a sister function called
meshgrid, which behaves the same, except that the output arguments are
transposed. It is a bit of a weak sister, because it works only with two-
dimensional and three-dimensional arrays. However, since higher dimen-
sional arrays are rare, its weakness is not serious. Its (slight) advantage is that
the transposed outputs allow the programmer to use the first input argument
to represent the horizontal direction and the second to represent the vertical
direction, which is the traditional x-y order for images.

The functions ndgrid and meshgrid are not the only functions that will
help you vectorize your code. MATLAB provides an assortment of functions
to assist you. Some of the more helpful ones are listed in Table 2.15.

Table 2.15 Helpful functions for vectorization

FUNCTION DESCRIPTION
all determine whether all elements are zero

any determine whether any elements are zero

find find indices and values of nonzero elements

ind2sub convert linear index to multidimensional indices (subscripts)

meshgrid generage arrays by duplicating vectors

ndgrid generate arrays by duplicating vectors

permute rearrange dimensions of an array

repmat replicate an array

reshape rearrange the elements of an array into a new shape

shifdim shift the dimensions of an array

Figure 2.40 Obie vignette.jpg

Limitations of vectorized commands
Code that relies on vectorized commands can provide dramatic speed-ups,
but such commands share one common limitation: They cannot replace com-
mands whose results depend on the order in which the elements are proc-
essed. Thus, for example, in sqrt([1 2 3]) the CPU may find the square
root of 1, then 2, and then 3, or it may find them in the reverse order—3, 2,
1—or in any order—with exactly the same result. The order in which they are
presented when they are returned is important (1, 2, 3), but not the order
in which the operations on them are performed. Another way to look at this
limitation is that it must be permissible (if not practical) to perform all the op-
erations simultaneously—each one on a separate CPU. This restriction means
that operations on arrays in which the results depend on the order in which
the elements are processed must be carried out with explicit loops. A simple
example is a while-loop to find the first element in a vector that is greater
than 10. Each element must be compared with 10, but the determination of
the first one that is greater requires sequential operations, not simultaneous
operations. In fact, while there are many for-loops that cannot be replaced by
an implicit loop, it is a good rule of thumb that while-loops are a bit less
likely than for-loops to be replaceable by implicit loops.

While there are limitations to vectorization, there are many instances in
which it results in a significant simplification in the code required to accom-
plish a task. Furthermore, the vectorized version typically runs faster than
the loop version, because the vectorized version takes advantage of highly
efficient, built-in, implicit looping and also takes advantage of multiple proc-
essors (cores), when they are available. Because of the simplification in code
and the resulting speed-up in programming, the easy accessibility to vectori-
zation in MATLAB represents a major advantage of this language in numeri-
cal applications. Skill at writing vectorized MATLAB code is essential for
time-consuming applications, and that skill comes both with practice and by
the observation of experienced MATLAB programmers. (A slight disadvan-
tage of vectorized code is that it sometimes requires more memory.)

Saving Memory Allocation Time
Often during the execution of a loop, an array is built up one element at a
time, as in the following example, which creates an array of products of inte-
gers:

N = 3000;
for ii = 1:N
 for jj = 1:N
 A(ii,jj) = ii*jj;
 end
end

There are nine million multiplications here. That’s a lot of work for a human,
but it is a mere trifle for MATLAB running on a typical computer. On even a
low-end laptop, which carries out billions of operations in a second, nine mil-
lion multiplications should take much less than a second. However, on a 2.67
GHz Dell Latitude E6410 with 7.8 gigabytes of usable memory (used for tim-
ings throughout this subsection), these six lines required almost 25 seconds!
Something seems very wrong here, and indeed something is very wrong.
This code is very inefficient. The problem has to do with memory allocation
for the two-dimensional array. It is a very common problem, and to avoid it,
we must understand it. We will see what is happening in the next subsection,
and then we will learn two ways to avoid the problem, not only in this exam-
ple but in any application involving two-dimensional arrays.

Wasting time with re-allocation
Let’s examine what happens each time the command A(ii,jj) = ii*jj is
executed. First, the values of ii and jj must be retrieved from memory,
then they must be multiplied, and finally, the result must be stored at the posi-
tion A(ii,jj) in the array. Nine million of those operations would take only
about one-tenth second, but there is another matter that must be attended to
each time a new value is stored in A(ii,jj): the array must get larger, and
that is what is taking so much time. Let’s consider what happens after, say,

177

the second row is completed. At this point the array is laid out in the memory
in the order shown by the blue line below,

where N = 3000.

In other words, the elements of the two-row array are laid out in consecutive
memory locations in this order:

(1,1)
(2,1)
(1,2)
(2,2)
(1,3)
(2,3)
...
(1,3000)
(2,3000)

Now we are ready to add element (3,1), the first element on the third row.
But where does it go? To see where it belongs, we must look at the layout of
an array with three rows. An array with three rows is laid out like this:

In other words, the three-row array is laid out in consecutive memory loca-
tions in this order:

(1,1)
(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3,3)
...
(1,3000)
(2,3000)
(3,3000)

where the red type indicates places where new elements should be inserted
between the existing elements of the two-row array. Unfortunately such inser-
tions are impossible because there is no room between consecutive memory
locations. Instead, space must be re-allocated for the array. To do that, it is nec-
essary to set aside enough room for a new 3000-by-3 array and then to copy
all 6,000 elements of the 3,000-by-2 array into the new array. Only after that is
done can the newly calculated first element on the third row be written into
its appropriate position, followed by the other elements on the third row.
This process must be repeated for each iteration of the outer loop. In other
words, in addition to the calculations that are obvious in the code, a 3000-
column array must be copied to a new array, not once, not twice, but 2,999
times!

There are two ways to make this process more efficient—far more efficient:
(1) Change the order of the for-loops or (2) Pre-allocate the array A (or both).
We will take up these two approaches in turn.

Re-organizing to reduce re-allocation time
The insertion problem above happened because the array is stored in
column-major order while in the code the new elements are added in row-
major order. We can very easily re-organize the loops to switch to column-
major order, and that can be accomplished as follows:

178

N = 3000;
for jj = 1:N
 for ii = 1:N
 A(ii,jj) = ii*jj;
 end
end

All we did was change ii to jj in the control statement of the first for-loop
and jj to ii in the control statement of the second for-loop. As a result of
this simple change, the code takes just over one-half second—a speed-up by a
factor of about 45. To see why, we note that this time, the inner loop is mov-
ing down the columns. Let’s consider what happens after the second column
is completed. At this point the array is laid out in the memory like this:

In other words, the two-column array is laid out in consecutive memory loca-
tions in this order:

(1,1)
(2,1)
(3,1)
...
(3000,1)
(1,2)
(2,2)
(3,2)
...
(3000,2)

Now we are ready to add element (1,3). Let’s see where it goes. A three-
column array is laid out like this:

In other words, the three-column array is laid out in consecutive memory lo-
cations in this order:

(1,1)
(2,1)
(3,1)
...
(3000,1)
(1,2)
(2,2)
(3,2)
...
(3000,3)
(1,3)
(2,3)
(3,3)
...
(3000,3)

where the red type indicates places where new elements must be inserted. So
in this case, no insertion of new elements between the existing elements is
required, because each new element is added at the end. Space is easier to
add at the end of the array, and there is no need to copy the old array into a
new one. Avoiding all that copying saves all that copying time.

179

Pre-allocation
Sometimes it may not be feasible to re-arrange nested loops for more efficient
space allocation. Fortunately there is an easier way, and it is even more effi-
cient: pre-allocation. Pre-allocation is the allocating of space for an entire ar-
ray before calculating the values to put into the array. It is done in MATLAB
by calling a function, typically the function named zeros, which was intro-
duced at the beginning of Programmer’s Toolbox. Here is pre-allocation in
action:

N = 3000;
A = zeros(N);
for ii = 1:N
 for jj = 1:N
 A(ii,jj) = ii*jj;
 end
end

Except for the insertion of the statement A = zeros(N), this code is identi-
cal to our original code for this problem (i.e., with the original inefficient
loop-index order). The function zeros allocates space for an array and sets
each element to zero. As we learned before, if there is one input argument, as
in this case, the allocated array is square, in this case N-by-N. If there are two
arguments, M and N, it returns an M-by-N array of zeros. Thanks to this pre-
allocation of the entire array A before our calculations begin, there is no need
whatever for re-allocation during the loop iterations. This code runs even
faster than the code above—about 0.19 seconds, which is a speed-up factor of
about 130. The use of zeros is the most common (by far) way to accomplish
pre-allocation. Its use is a hallmark of the experienced MATLAB program-
mer.

Combining pre-allocation with the efficient for-loop indexing order produces
the fastest code, because there is greater efficiency in the way that MATLAB
accesses arrays in column-major order (i.e., even when no re-allocation is nec-
essary). The code looks like this:

N = 3000;
A = zeros(N);
for jj = 1:N
 for ii = 1:N
 A(ii,jj) = ii*jj;
 end
end

and it runs in 0.06 seconds for a speed-up factor of almost 400.

Pre-allocation is always a good idea, and it is crucial when large arrays are
involved, but it is not always possible, because it is not always possible to
know in advance (i.e., before the loops run) what the size of the array will be.
This can happen when an array is being constructed inside a while-loop, as in
the following example:

N = 3000;
ii = 0;
while rand > 1/N
 ii = ii + 1;
 for jj = 1:N
 A(ii,jj) = ii + jj^2;
 end
end

Here, the outer loop continues to iterate as long as the random numbers re-
turned by rand are greater than 1/3000, and each of those iterations adds a
new row to the matrix, causing the problem of re-allocation inefficiency that
we faced for the nested for-loop examples. We had two ways to solve the
problem then—(1) re-order the loops and (2) pre-allocation. This time we can
do (1), but we cannot do (2) because, while we know that each row of the ma-
trix A will have 3,000 elements, we cannot know how many rows it requires.
Thus, we know that we need to allocate a matrix of size M-by-3000, but we
don’t know M. The conditional rand > 1/3000 in this example has no spe-
cial meaning. It merely represents an unpredictable conditional—one whose
outcome cannot be known until the code runs. When the command rng(2)
is issued to initialize the random-number generator before this code is exe-

180

cuted, there are 7,810 iterations of the while loop, meaning that we would
have needed to use A = zeros(7810,3000) as our pre-allocation state-
ment. Unfortunately, for an unpredictable conditional, we cannot know what
to allocate until the program has ended. Without pre-allocation, this loop
takes over two and a half minutes (160 seconds)! Clearly we are having alloca-
tion problems again!

When pre-allocation is not possible and allocation inefficiency rears its head,
it is even more important to order the loops to employ column-major order if
possible. It is possible here, and here is how to do it:

N = 3000;
ii = 0;
while rand > 1/N
 ii = ii + 1;
 for jj = 1:N
 A(jj,ii) = ii + jj^2;
 end
end
A = A';

The only differences are that (a) A(ii,jj) has been changed to A(jj,ii) , to
change re-allocations to column-major-order but produces a transposed ver-
sion of the matrix and (b) the matrix is transposed after the looping is done.
This version runs in 1.5 seconds—a speed-up factor over 100. Thus, even
when pre-allocation is not possible, understanding the re-allocation problem
allows us to alter our code to reduce that problem dramatically.

In this last example, we managed to get our computer to do 46.9 million
arithmetic operations done and stored in 1.5 seconds—a rate of over 31 mil-
lion per second, and when we were able to do pre-allocation, in our double
for-loop example, we managed to get nine million multiplication done and
stored in 0.06 second. That’s a stunning rate of 150 million operations per sec-
ond! Loops are clearly a powerful way to get things done, but, as we have
seen, to get the most efficient code, it is necessary to understand a bit of what

is going on behind the scenes and then to know how to take advantage of
that knowledge. Now that we have done that, we know how, as promised at
the beginning of this section, to make a computer go fast—really fast.

Additional Online Resources

• Video lectures by the authors:

" Lesson 6.1 For-Loops (38:50)

" Lesson 6.2 While-Loops (20:16)

" Lesson 6.3 Break Statement (29:31)

" Lesson 6.4 Logical Indexing (37:29)

" Lesson 6.5 Preallocation (8:59)

181

https://www.youtube.com/watch?v=aU7ua641z0E
https://www.youtube.com/watch?v=aU7ua641z0E
https://www.youtube.com/watch?v=mb8LwYAil4o
https://www.youtube.com/watch?v=mb8LwYAil4o
https://www.youtube.com/watch?v=Fg2F2xTsDG4
https://www.youtube.com/watch?v=Fg2F2xTsDG4
https://www.youtube.com/watch?v=wA8f6k2rST4
https://www.youtube.com/watch?v=wA8f6k2rST4
https://www.youtube.com/watch?v=5ug1o9yZr8U
https://www.youtube.com/watch?v=5ug1o9yZr8U

Concepts From This Section
Computer Science and Mathematics:
! loops
$ iteration
$ implicit looping
$ loop index
$ for-loop
$ while-loop
$ infinite loop
$ nested loops
$ break-statement
$ continue-statement
$ vectorization
$ row-major order
$ column-major order
$ re-allocation of arrays
$ preallocation of arrays

MATLAB:
$ for-loop
 while-loop
 break-statement
 continue-statement
 logical arrays
 the logical function
 logical indexing
 column vector version of A using A(:)

Practice Problems
for-loops

Problem 1. Write a function called vector_square that takes one vector as
an input argument (the function does not have to check the format of the
input) and returns one row vector as output. If it is called like this,

v2 = vector_square(v1)

then v2 = v1.^2. However, this function must not use an array operation.
It must instead use a for-loop.

?

Problem 2. Write a function called vector_multiply that takes two vec-
tors of the same length as input arguments (the function does not have to
check the format of the input) and returns one row vector as output. If it is
called like this, v3 = vector_multiply(v1,v2), then v3 = v1.*v2.
However, this function must not use an array operation. It must instead use a
for-loop.

Problem 3. Write a function called vector_algebra that takes three vectors
of the same length as an input arguments (the function does not have to
check the format of the input) and returns one row vector as output. If it is
called like this, a = vector_algebra(x,y,z), then a = x.^2 + y.*z.
However, this function must not use any array operations. It must instead
use a for-loop.

?

182

http://cs103.net/wp-content/uploads/vector_square.m
http://cs103.net/wp-content/uploads/vector_square.m
http://cs103.net/wp-content/uploads/vector_algebra.m
http://cs103.net/wp-content/uploads/vector_algebra.m

Problem 4. Write a function called summit that takes three vectors of the
same length as input arguments (the function does not have to check the for-
mat of the input) and returns a scalar as output. If it is called like this,

a = summit (x,y,z)

 then

a = x(1)^2 + y(1)*z(1) + x(2)^2 + y(2)*z(2) + . . . +
x(N)^2 + y(N)*z(N),

where N equals the length of x. This function must not use an array opera-
tion, and it must not use the function sum. Instead, it must instead use a for-
loop.

Problem 5. Write a function called is_between that takes three vectors of
the same length as input arguments (the function does not have to check the
format of the input) and returns 1 or 0 as output. If it is called like this, a =
is_between (x,y,z), then a equals 1, if each element of y lies between
the corresponding elements of x and z and a equals 0 otherwise. The func-
tion must use a for-loop and must include either a break-statement or a
return-statement to make the loop efficient. Here are four examples of the
function in action:

>> is_between([5 -33 9],[5.5 2 40],[6, 2.3, 41])
ans =
 1
>> is_between([5 -33 9],[4.5 -34 8],[0 -34.6 5])
ans =
 1
>> is_between([5 -33 9],[5.5 3 40],[6, 2.3, 41])
ans =
 0
>> is_between([5 -33 9],[5 2 40],[6, 2.3, 41])
ans =
 0

?

Problem 6. Write a function called exp_approx that takes two scalars as
input arguments, the second of which is a non-negative integer (the function
does not have to check the format of the input) and returns a scalar as output.
If it is called like this, ea = exp_approx(x,N), then ea is equal to the fol-
lowing approximation of exp(x):

ea = sum(x.^(0:N)./factorial((0:N))).

However, this function must not use an array operation. It must instead use a
for-loop.

Problem 7. Write a function called cosine_approx that takes two scalars
as input arguments, the second of which is a non-negative integer (the func-
tion does not have to check the format of the input) and returns a scalar as
output. If it is called like this, ca = cosine_approx (a,N), then ca is
equal to the following approximation of cos(a):

ca = sum((-1).^(0:N).*a.^(2*(0:N))./ ...
factorial(2*(0:N)))

However, this function must not use an array operation. It must instead use a
for-loop.

?

183

http://cs103.net/wp-content/uploads/is_between.m
http://cs103.net/wp-content/uploads/is_between.m
http://cs103.net/wp-content/uploads/cosine_approx.m
http://cs103.net/wp-content/uploads/cosine_approx.m

Problem 8. Write a function called nat_log_approx that takes two scalars
as input arguments, the first of which is positive and is less than two and the
second of which is a non-negative integer (the function does not have to
check the format of the input) and returns a scalar as output. If it is called like
this, nla = nat_log_approx(x,N), then nla is equal to the following
approximation of log(x):

 nla = sum((-1).^(2:N+1).*(x-1).^(1:N)./(1:N))

However, this function must not use an array operation. It must instead use a
for-loop.

Problem 9. Write a function called sine_approx that takes two scalars as
input arguments, the second of which is a positive integer (the function does
not have to check the format of the input) and returns a scalar as output. If it
is called like this, sa = sine_approx (a,N), then sa is equal to the fol-
lowing approximation of sin(a):

 sa = sum((-1).^(0:N).*a.^(2*(0:N)+1)./ ...
 factorial(2*(0:N)+1))

However, this function must not use an array operation. It must instead use a
for-loop.

?

Problem 10. Write a function called point_cloud that takes one scalar as an
input argument (the function does not have to check the format of the input)
and has no output argument. If it is called like this, point_cloud (100),
then it plots 100 points. Each point has a random x coordinate and a random
y coordinate, each of which is gotten by a call to randn , which uses a normal
distribution with a standard deviation equal to 1. The range of the plot axes
should be −5 to 5 in both the x and y dimensions. The grid should be turned

off. The points should be plotted and displayed one at a time by calling plot
with only one point specified and, following the call of plot, by a call of
drawnow, which causes the point to be plotted immediately. The command
hold on should be included so that all previous points are retained when a
new point is plotted. Figure 2.41 shows an example view of the plot after
point_cloud(100000) has completed its point-by-point plotting on a
Mac. (Note that on Windows the points are much larger. Also note that it
takes a long time to plot this many points with drawnow. Finally, try zoom-
ing in the middle.)

Figure 2.41 Problem 10

184

http://cs103.net/wp-content/uploads/sine_approx.m
http://cs103.net/wp-content/uploads/sine_approx.m

while-loops

Problem 11. Write a function called steps that takes one scalar as an input
argument (the function does not have to check the format of the input) and
returns one scalar as an output argument. If it is called this way, n =
steps(d), then it sets n equal to the minimum number of steps required to
move from a distance of one foot away from a wall to a distance less than d
feet from the wall. The first step is ½ foot. If a second step is required, it is ¼
foot. If a third step is required, it is 1/8 foot, and so forth, with each subse-
quent step being half the distance of the step before. Here is a sample run:

>> n = steps(0.001)
n =
 10

?

Problem 12. Write a function called leaps that takes one scalar as an input
argument (the function does not have to check the format of the input) and
returns one scalar as an output argument. If it is called this way, n =
leaps(d), then it sets n equal to the minimum number of leaps required to
move from a wall to a distance at least d feet from the wall. The first step is 1
foot. If a second step is required, it is 2 feet. If a third step is required, it is 3
feet. If a fourth step is required, it is 4 feet, and so forth. Here are some sam-
ple runs:

>> leaps(0)
ans =
 0
>> leaps(1)
ans =
 1
>> leaps(100)
ans =
 14

Problem 13. Write a function called just_enough that takes one scalar as
an input argument (the function does not have to check the format of the
input) and returns one scalar as an output argument. If it is called this way,
n = just_enough(x,N), then it sets n equal to the smallest non-zero inte-
ger such that n*exp(x) ≥ N^x. Here are two sample runs:

>> n = just_enough(1,10)

n =
 4

>> n = just_enough(4.5,10)

n =
 352

?

185

http://cs103.net/wp-content/uploads/steps.m
http://cs103.net/wp-content/uploads/steps.m
http://cs103.net/wp-content/uploads/just_enough.m
http://cs103.net/wp-content/uploads/just_enough.m

Problem 14. Write a function called just_enough_logs that takes one sca-
lar as an input argument (the function does not have to determine whether
the input is a scalar) and returns two scalars as output arguments. If it is
called this way, [n, total] = just_enough_logs(x), it checks the
value of x, and if it is not greater than 1, it prints an error message (see be-
low), sets n and total equal to zero, and returns; otherwise, it sets n equal
to the smallest integer such that n*log x > 5 and sets total equal to
n*log x. Here are two sample runs:

>> [n,total] = just_enough_logs(0.4)
Input must be > 1.

n =
 0

total =
 0

>> [n,total] = just_enough_logs(2.1)

n =
 7

total =
 5.1936

Problem 15. Write a function called big_abs_normal that takes one scalar
as an input argument (the function does not have to check the format of the
input) and returns one integer as an output argument. If it is called this way,

n = big_abs_normal(d)

then it repeatedly calls the function randn counting the number of calls it
must make until the absolute value of the random number is at least as large
as d. Here are some sample calls. Before the sample calls are made, the ran-
dom number generator is initialized by means of rng. In this case, it is initial-
ized with the number 41 (non-negative integer). The purpose of this use of
rng is to make it possible to compare your results with those below.

>> rng(41)
>> big_abs_normal(0)

ans =
 1

>> big_abs_normal(3)

ans =
 686

>> big_abs_normal(4)

ans =
 1494
>> big_abs_normal(5)

ans =
 94520

?

186

http://cs103.net/wp-content/uploads/big_abs_normal.m
http://cs103.net/wp-content/uploads/big_abs_normal.m

Problem 16. Write a function called one_so_small that takes no input argu-
ments and returns three scalars as output arguments. If it is called this way,
[a,b,c] = one_so_small, then it repeatedly gets three numbers from the
function rand until the numbers pass this test: ten times one of the numbers
is smaller than the product of the other two numbers. For example, if the
three random numbers are 0.4, 0.03, and 0.9, then ten times the second num-
ber is 0.3 and the product of the first and third numbers is 0.36, so ten times
one of these three numbers is smaller than the product of the other two num-
bers. On the other hand, if the second number were 0.038, these three num-
bers would not pass the test. Here are two sample calls. Before the sample
calls are made, the random number generator is initialized by means of rng.
In this case, it is initialized with the number 12 (non-negative integer). The
purpose of this use of rng is to make it possible to compare your results with
those below.

>> rng(12)
>> [a,b,c] = one_so_small
a =
 0.014575
b =

0.91875
c =

0.53374
>> [a,b,c] = one_so_small
a =
 0.033421
b =

0.95695
c =

0.90071
>>

Problem 17. Write a function called guess_my_number that takes no input
arguments and returns no output arguments. Instead, it gets it input via the
function input. It repeatedly asks for a number with the phrase, “Try to
guess my number: ” until the user enters the number 42. If the number is low,
the message “Higher” is printed on one line. If the number is high, the mes-
sage, “Lower” is printed on line. If the user enters 42, the message “That’s
it!” is printed, the loop is ended, and the function returns. Here is an example
run:

>> guess_my_number
Try to guess my number: 32
Higher
Try to guess my number: 45
Lower
Try to guess my number: 42.000000001
Lower
Try to guess my number: 42
That's it!

? 

187

http://cs103.net/wp-content/uploads/guess_my_number.m
http://cs103.net/wp-content/uploads/guess_my_number.m

Problem 18. Write a function called number_pattern that takes no input
arguments and returns no output arguments. Instead it gets it input via the
function input. It asks for a number repeatedly until the user puts in the
same number twice in a row. The loop that it uses must be a while-loop. Here
is an example run:

>> matching_number
Please input a number: 4
Please input number (I'm looking for a pattern): 5
Sorry, that's not what I'm looking for.
Please input number (I'm looking for a pattern): 6
Sorry, that's not what I'm looking for.
Please input number (I'm looking for a pattern): 7
Sorry, that's not what I'm looking for.
Please input number (I'm looking for a pattern): 7
That's it. Well done!

The function should behave just as in the example, using exactly the same
phrasing in its output (e.g., “That’s it. Well done!”)

Problem 19. Write a function called click_and_plot that takes no input
arguments and returns no output arguments. Instead it gets it input via the
function ginput, which does nothing until the user either clicks the mouse
or hits a key on the keyboard. The help function gives detailed information
about ginput, but for this problem, it should be called this way:
[x,y,button] = ginput(1). After each call, when the user moves the
mouse into an active figure and clicks the left mouse button, button is set to
1, and x and y are set to the horizontal and vertical positions in the figure.
When the user moves the mouse into an active figure and clicks a key on the
keyboard, button is set equal to the character for that key. For example, if
the G-key is hit, then button will be set equal to 'g'. If Shift is held down
while the G-key is hit, button will be set equal to 'G'. So, if it is necessary to
determine whether the G-key has been hit, this if-statement will do the
trick:

if button == 'g' || button == 'G'

 . . . % do something

end

188

The function click_and_plot must first use the function axis to set the
horizontal and vertical range of a figure each to be 0 to 100 and give the com-
mand, hold on, so that points will be added cumulatively to the plot. Then,
it must enter a while-loop to repeatedly plot one point, via the function
plot, using the plot symbol 'o' (plot symbols are explained by
help plot) every time the user clicks somewhere inside the figure, until the
user hits the Q-key (with or without pressing the Shift-key) while the mouse
is inside the figure. The loop must then end, and the function must return.
Figure 2.42 shows the result after the user has clicked the mouse twelve times
before hitting the Q-key.

?

Figure 2.42 Problem 19

189

http://cs103.net/wp-content/uploads/click_and_plot.m
http://cs103.net/wp-content/uploads/click_and_plot.m

Problem 20. Write a function called draw_constellations that takes no
input arguments and returns no output arguments. Instead, it obtains its
input via the function ginput. See the previous problem for an explanation
of how ginput works. Like the function in the previous problem, this func-
tion allows the user to plot points by clicking in a figure whose horizontal
and vertical ranges are set to be 0 to 100, but with this function the plot sym-
bol '*' is used, and the points are joined by straight lines. Furthermore, the
color of the plotted symbols and lines must be white, and before plotting be-
gins, the function must use the following two commands to set the back-
ground to black: set(gcf,'color','k') and set(gca,'col-
or','k'), and it must issue the command axis square. Then, the func-
tion must enter a while-loop to plot the first point and then plot subsequent
points with lines joining each point to the previous point. These connected
points represents a constellation (more precisely, a star pattern). If the user

clicks the N-key, with or without the Shift key depressed, then a new set of
connected points is begun—points that are not connected by a line o the previ-
ous connected pattern. Finally, when the user hits the Q-key (with or without
Shift), the loop must end and the function must return. Figure 2.43 is an exam-
ple of the result of the use of draw_constellations to draw the constella-
tions Ursa Major and Ursa Minor.

Nested loops

Problem 21. Write a function called mult_table that takes one positive inte-
ger as an input argument (it does not have to check the format of the input)
and returns a two-dimensional array. If it is called like this, A = mult_ta-
ble(N), then A is an N-by-N multiplication table, which means the entry
with indices ii and jj is equal to the product of ii and jj. The function
must not use array operations but instead must use nested loops.

?

Problem 22. Write a function called div_table that takes one positive inte-
ger as an input argument (it does not have to check the format of the input)
and returns a two-dimensional array. If it is called like this, A = div_ta-
ble(N), then A is an N-by-N division table, which means the entry with
indices ii and jj is equal to ii divided by jj. The function must not use
array operations but instead must use nested loops.

Figure 2.43 Problem 20

190

http://cs103.net/wp-content/uploads/mult_table.m
http://cs103.net/wp-content/uploads/mult_table.m

Problem 23. Write a function called make_waves that takes two positive inte-
gers as input arguments (it does not have to check the format of the input)
and returns a two-dimensional array. If it is called like this,
A = make_waves(M,N), then A is an N-by-N array of products of sine
waves whose amplitude is 1 and whose period is N/M . The result can be
achieved by means of the following expression:

A = sin(2*M*pi/N*(1:N))'*sin(2*M*pi/N*(1:N))

However, the function must instead use nested loops. The result can be visu-
alized by means of the function surf, which renders a surface whose dis-
tance above the x-y plane is equal at each x = ii and y = jj to
A(ii,jj). Here is an example:

>> surf(make_waves(2,50));axis square

which produces Figure 2.44.

?

Problem 24. Write a function called make_square_waves that takes two
positive integers as input arguments (it does not have to check the format of
the input) and returns a two-dimensional array. If it is called like this
A = make_square_waves(M,N), then A is an N-by-N array (not M-by-N) of
products of square waves whose amplitude is 1 and whose period is N/M .
The result can be achieved by modifying the function make_waves, which is
described in the previous problem. The modification involves the use of the
built-in function sign. Here is an example:

>> surf(make_square_waves(2,50));axis square

which produces Figure 2.45.

Figure 2.44 Problem 23 Figure 2.45 Problem 24

191

http://cs103.net/wp-content/uploads/make_waves.m
http://cs103.net/wp-content/uploads/make_waves.m

Problem 25. Write a function called exp_approx_sequence that takes a
vector as input (the function does not have to check the format of the input)
and returns vector as output. If it is called like this, 
[v,max_ns] = exp_approx_sequence(u), then v(ii) = an approxi-
mation of exp(u(ii)). The approximation is obtained by means of a
while-loop that adds terms in the sequence:

x0 + x1 + x2/2! + x3/3! + x4/4! + ... xn/n! + ... ,

where x = u(ii). The while-loop must stop when it has added a term xn/
n! whose absolute value is smaller than 1/10,000. For each ii,
max_ns(ii) equals the value of n in the last term of the sequence in the
while-loop’s calculation of the approximation. The while-loop must be nested
inside a for-loop that progresses through the elements of u.

?

Problem 26. Write a function called sine_approx_sequence that takes a
vector as input (the function does not have to check the format of the input)
and returns vector as output. If it is called like this,

[v,max_ns] = sine_approx_sequence(u),

then v(ii) = an approximation of sin(u(ii)). The approximation is ob-
tained by means of a while-loop that adds terms in the sequence:

x1 – x3/3! + x5/5! – x7/7! + ... + (–1)nx2n+1/(2n+1)! + ...,

where x = u(ii). The while-loop must stop when it has added a term

(–1)nx2n+1/(2n+1)!

whose absolute value is smaller than 1/10,000. For each ii, max_ns(ii)
equals the value of n in the last term of the sequence in the while-loop’s calcu-

lation of the approximation. The while-loop must be nested inside a for-loop
that progresses through the elements of u.

Problem 27. Write a function called forward_backward that takes two posi-
tive integers as input arguments (it does not have to check the format of the
input) and returns a two-dimensional array. If it is called like this,

A = forward_backward(M,N)

then A is an M-by-N array with the numbers 1 to N in forward order on the
first row. If there is a second row, then it has the numbers from N down to 1
(i.e., backward order) on the second row. For subsequent rows, the numbers
1 to N are in forward order on odd-numbered rows and in backward order on
even-numbered rows. The function must use nested loops, as opposed to a
single loop that uses a colon operator to generate a row.

?

192

http://cs103.net/wp-content/uploads/exp_approx_sequence.m
http://cs103.net/wp-content/uploads/exp_approx_sequence.m
http://cs103.net/wp-content/uploads/forward_backward.m
http://cs103.net/wp-content/uploads/forward_backward.m

Problem 28. Write a function called double_fibonacci that takes two inte-
gers, each greater than one, as input arguments (it does not have to check the
format of the input) and returns a two-dimensional array. If it is called like
this, A = double_fibonacci(M,N), then A is an M-by-N array that has
the Fibonacci series on its first row, has the same series in its first column, and
for rows n = 2 to M , row n contains the Fibonacci numbers that begin with
nth number in the series. Here is an example showing the output when the
input integers are 6 and 9, A = double_fibonacci(6,9):

A =
 1 1 2 3 5 8 13 21 34
 1 2 3 5 8 13 21 34 55
 2 3 5 8 13 21 34 55 89
 3 5 8 13 21 34 55 89 144
 5 8 13 21 34 55 89 144 233
 8 13 21 34 55 89 144 233 377

The first row of A gives the first nine numbers in the Fibonacci series. The se-
ries starts with two ones, and each subsequent number is equal to the sum of
the two numbers that precede it.

Problem 29. Write a function called blue_to_red that takes two input argu-
ments and returns one output argument. The first input argument is a string
containing the name of a file (it does not have to check the format of the
input). That file should contain a color image (i.e., a three dimensional array
with three pages containing the red, green and blue intensities) in one of the
image formats, such as JPEG, supported by imread, which is the built-in
function that should be used to read the image from the file into an array. A
list of these formats can be found with the command help imwrite. Sup-
pose the file, 'bluebird_photo.jpg', contains such an image. If the function is
called like this: 
new_image = blue_to_red('bluebird_photo.jpg'),  
then new_image will contain an image that is identical to the one in the file,
except that every pixel whose blue intensity is more than 120 percent of the
mean of the red, green, and blue intensities will be changed to a pixel whose
red channel is equal to the blue channel of the input image and whose red
and green channels are equal to zero. Use explicit, nested loops. Check your
work by displaying the input image and the output image, as in the follow-
ing example:

>> old_image = imread('bluebird_photo.jpg');
>> figure(1); image(old_image); axis equal; axis tight;
>> new_image = blue_to_red('bluebird_photo.jpg');
>> figure(2); image(new_image); axis equal; axis tight;

NOTE: The solution was given previously in this section.

?

193

http://cs103.net/solutions/loops/
http://cs103.net/solutions/loops/

Problem 30. Write a function called replace_blue that takes two input ar-
guments and returns one output argument. The first input argument is a
string containing the name of a file (it does not have to check the format of
the input). That file should contain a color image (i.e., a three dimensional ar-
ray with three pages containing the red, green and blue intensities) in one of
the image formats, such as JPEG, supported by imread (listed by help
imread). The second input argument is a three-element vector containing val-
ues in the range 0 to 255. Suppose the file, 'bluebird_photo.jpg', contains such
an image. If the function is called like this,
blue_replaced=replace_blue('bluebird_photo.jpg',[r,g,b]),
then blue_replaced will contain an image that is identical to the one in
the file, except that every pixel whose blue intensity is more than 120 percent
of the mean of the red, green, and blue intensities will be changed to a pixel
with the red channel equal to r, the green channel equal to g, and the blue
channel equal to b. Use explicit, nested loops. Check your work by display-
ing the input image and the output image, as in the following example:

>> old_image = imread('bluebird_photo.jpg');
>> figure(1); image(old_image); axis equal; axis tight;
>> new_image =
blue_replaced('bluebird_photo.jpg',[255,255,0]);
>> figure(2); image(new_image); axis equal; axis tight;

Logical Indexing

Problem 31. Write a function called picking_nits that takes one vector as
an input argument (it does not have to check the format of the input) and re-
turns one vector as an output argument. If it is called like this,
[v_clean,nits]= picking_nits(v) then v_clean is identical to v ex-
cept that every element whose absolute value is less than 1/100 has been
removed (not set to zero), and nits contains the elements that have been re-
moved from v. The function must use logical indexing instead of explicit
looping.

?

Problem 32. Write a function called trim10 that takes two vectors of the
same length as input arguments (it does not have to check the format of the
input) and returns two row vectors of the same length as the input vectors. If
it is called like this, [v_trimmed,trimmings] = trim10(v1,v2), then
v_trimmed is identical to v1 except that every element v1(ii) that is
greater than v2(ii)+10 must be trimmed, which means that it must be re-
placed by v2(ii)+10. Each element of trimmings is equal to the amount
by which each element has been trimmed. The function must use logical in-
dexing instead of explicit looping. Here is an example of the function being
used:

>> v1
v1 =
 36 26 4 17 -100 90

>> v2
v2 =
 34 15 -20 0 6 80  

194

http://cs103.net/wp-content/uploads/picking_nits.m
http://cs103.net/wp-content/uploads/picking_nits.m

>> [v_trimmed,trimming] = trim10(v1,v2)
v_trimmed =
 36 25 -10 10 -100 90
trimming =
 0 1 14 7 0 0

Problem 33. Write a function called blue_to_red_implicit that per-
forms the same operation as the function blue_to_red described in Prob-
lem 29 above but uses logical indexing instead of explicit looping.

?

Problem 34. Write a function called replace_blue_implicit that per-
forms the same operation as the function replace_blue described in Prob-
lem 30 above but uses logical indexing instead of explicit looping. 

Making explicit loops efficient

Problem 35. Write a function called so_fast that takes one positive integer
as an input argument (it does not have to check the format of the input) and
returns one two-dimensional, square array as an output argument. If it is
called like this A = so_fast(N), then A is an N-by-N array of random num-
bers gotten from the built-in function rand. Such an array can be produced
most simply and quickly as follows A = rand(N). However, so_fast is
required to make a separate call, rand(1) (the argument is optional), for
each element of A and to use nested for-loops to handle all N2 elements. This
function must use both of the techniques given in this section to save mem-
ory allocation time. On a Dell Latitude E6410, with 7.8 gigabytes of usable
memory, the difference between using both techniques and using neither is a
factor of 78 in execution time.

?

Problem 36. Consider the following function:

function A = plodding(N,d)
for ii = 1:N
 jj = 1;
 A(ii,jj) = randn;
 while abs(A(ii,jj)) < d
 jj = jj + 1;
 A(ii,jj) = randn;
 end
end

Rewrite this function to eliminate the allocation problem that is slowing it
down. Call the new function, cruising. On a Dell Latitude E6410, with 7.8
gigabytes of usable memory, eliminating the allocation problem produces a
speed-up factor of 7.

195

http://cs103.net/wp-content/uploads/blue_to_red_implicit.m
http://cs103.net/wp-content/uploads/blue_to_red_implicit.m
http://cs103.net/wp-content/uploads/so_fast.m
http://cs103.net/wp-content/uploads/so_fast.m

SECTION 5

Every modern programming language provides various
means for storing numbers in variables, operating on
them, and printing them. MATLAB is no exception, and
we have seen many examples of numbers being stored,
operated on, and printed. The examples suggest that
these numbers are equivalent to the real numbers and
complex numbers of mathematics, where there is no up-
per limit to the absolute value of any number and no

smallest absolute value of a non-zero number. On the
other hand, since the space of mathematical numbers is
infinite, while the memory of a computer is finite, it is
clear that the use of a computer must impose some limits
on the numbers it can store. It does. There is an upper
limit to the size of a number on the computer, and there
is a smallest value for the absolute value of a non-zero

Objectives

Computers operate on bits, but
humans think in terms of
numbers, words, and other
types of data. Like any good
language, MATLAB organizes
bits into convenient data types.
We will study those types in
this section.
(1) We will learn that there are

ten types of numbers and
that there are conversion
functions to change one
type into another.

(2) We will learn much more
about strings and how the
characters in them are
encoded as numbers.

(3) We will learn how to
produce heterogeneous
collections of data via data
types called structs and
cells.

(4) We will learn two new
concepts from computer
science: the symbol table
and the pointer.

Data comes in all shapes and sizes.

Data Types

196

Inkaphotoimage, Dreamstime.com, Photo taken February 15th, 2010.

number. The set of numbers that can be represented by a MATLAB variable is
finite.

We are about to learn that that there are many types of numbers in MATLAB
and that each of these types provides its own set of allowed values. We will
also learn that there are types that hold non-numeric data. These other types
cannot be used in arithmetic operations but do allow other operations. A data
type is in fact completely determined by the set of all possible values it can
have and the set of operations that can be performed on it. Indeed, in the for-
malism of computer science, a data type, or simply, a type, is defined as a set
of values and a set operations that can be performed on those values.

It is common to employ variables of several different types in a single func-
tion. It is even possible to use variables of different types in the same opera-
tion. MATLAB does however enforce one rule of uniformity: All elements of
a given array must be of the same type. We call the type of these elements the
elementary type of the array. Thus, when we speak of the type of a variable
that is not a scalar, it is not necessary to specify the type of each element in
the array. We need to specify only one elementary type because an array has
only one elementary type. However, to specify the type of an array, more in-
formation is required than its elementary type. A complete description of the
type of an array must include these things: its number of dimensions, its size
in each dimension, and its elementary type. In MATLAB, the number of di-
mensions is always greater than or equal to two, so there are always two or
more sizes (in MATLAB even a scalar is a one-by-one matrix!). Example de-
scriptions of types are

• x is a 1-by-1 matrix with elements of type double
• x is a scalar of type double
• y is a row vector with 10 elements of type single
• y is a 1-by-10 vector with elements of type single
• A is a 2-by-3 matrix with elements of type int8
• B is a 2-by-3-by-4 by-5 array with elements of type logical

The class function
To determine the data type of a MATLAB variable, you can use the function
class. For example,

>> x = 14
x =
 14
>> class(x)
ans =
double

(Why class instead of type? Well, MATLAB reserves the name type for a
command that prints out the contents of a file.)

Values have types, even when they are not stored in a variable. Thus,

>> class(14)
ans =
double

>> class('Mary had a little lamb.')
ans =
char

>> class(class(14))
ans =
char

The first example shows that the type of a number is by default double. The
second, shows that the type of a string is char (It is a matter of taste, whether
“char” is pronounced like the first syllable of “charcoal” or like the word
“care”). The third example shows that the type that is returned by class it-
self is of type char. That is because class returns a string that spells out the
name of the type.

While MATLAB supports complex numbers, it does not distinguish among
real, imaginary, and complex numbers when classifying them into types.

197

>> class(sqrt(-1))
ans =
double

Here we see that a clearly imaginary number, i = −1, is classified as type
double.

Numeric Types
MATLAB uses many different internal representations to store numbers.
Each representation is a numeric type. Most of the time a MATLAB program-
mer need not be concerned with the specifics of the types of numbers used in
a calculation. The default data type used by MATLAB to store a number is
double, and double is so versatile that it is capable of handling almost any
numerical problem that comes up in engineering and science applications.
The name “double” has historical roots. It was introduced as the name of a
numeric data type in the 1960s in programming languages that supported
two types of numbers, one of which required twice as much memory space
per number as the other. The one with twice the space was called “double pre-
cision”. The other one was called “real” and was said to employ “single preci-
sion”. In the 1970s these two types were renamed “double” and “float” in
some new languages. The latter name is meant to indicate that a “floating-
point” format is used to represent the number. (The specifics of the numeric
formats is beyond the scope of this book.) Double uses floating-point repre-
sentation as well, and, thanks to increases in memory sizes and CPU speeds,
it is now the default representation in most languages. The language C uses
this name, and C++ and Java use it as well. Today, if a computer supports any
of these languages—MATLAB C, C++, and/or Java—it will use the same
amount of memory space for a number stored using the double type for pro-
grams written in any of these languages. C, C++, and Java employ the name
“float” for single-precision numbers, but MATLAB has adopted the more spe-
cific term “single” for them.

Table 2.16 includes all of MATLAB’s numeric data types along with the range
of values that each supports. The names are mnemonic: The word int em-
bedded in all but two of the names means “integer”; a leading “u” means
unsigned, so uint means “unsigned integer”. The numbers in the names in-
dicate the number of bits used for storage, as explained below.

If you don’t have this table handy, the maximums and minimums can always
be gotten from MATLAB by using these four functions: intmax, intmin,
realmax, and realmin. Each takes one string as input. The string for the
first two is the name of the integer type of interest. The string for the last two
is ’double’ or ’single’. Note, however, that realmin gives the number with
the smallest absolute value that can be represented and not the negative num-
ber with the greatest absolute value. For example,

>> intmax('int32')
ans =
 2147483647

>> intmin('int32')
ans =
 -2147483648

198

Table 2.16 Numeric data types

DATA TYPE RANGE OF VALUES
int8 -27 to 27-1

int16 -215 to 215-1

int32 -231 to 231-1

int64 -263 to 263-1

uint8 0 to 28-1

uint16 0 to 216-1

uint32 0 to 232-1

uint64 0 to 264-1

single -3.4x1038 to 3.4x1038 , Inf, NaN

double -1.79x10308 to 1.79x10308, Inf, NaN

>> realmax('single')
ans =
 3.4028e+038

>> realmin('single')
ans =
 1.1755e-038

The “is” functions
MATLAB provides a set of functions that allow the user to check for a spe-
cific type. The name of each function begins with “is”. Examples include is-
integer, isfloat, issingle, isnumeric, and ischar. Each of these
functions takes an array as an input argument and returns either true or false.
The name of the function reveals its meaning: isinteger(x) returns true if
and only if x is of one of the integer types; isfloat(x) returns true if and
only if x is of floating point type (i.e., single or double); isnumeric(x)
returns true if and only if x is one of the types in Table 2.16. There is also a
generic function called isa. It takes two input arguments, an array whose
type is being checked and a string that spells out the type. For example
isa(x,'uint32') returns true if and only if the type of x is uint32. A
complete list of the “is” functions is given by help isa.

Conversion functions
To produce a numeric value of a specific type MATLAB provides conversion
functions. The conversion function for a given data type has the same name
as that type. A conversion function takes one input argument of any numeric
type and returns one output argument of its specified type. Let’s see some ex-
amples of conversion functions:

>> x = 10
x =
 10

>> class(x)
ans =
double

From the commands above, we see that the default numeric data type is
double. Let’s convert x to another type:

>> x = int8(10)
x =
 10
>> class(x)
ans =
int8

From the two commands above, we see how the conversion function int8
can be used to produce the numeric type int8 as output when given an
input type of double.

>> y = x
y =
 10

>> class(y)
ans =
int8

From the two commands above, we see, as we would expect, that the data
type of y becomes the same as the data type of the value that is assigned to it.
If we want y to be of type double, we must convert it:

>> y = double(y)
y =
 10

>> class(y)
ans =
double

From the two commands above, we see that the conversion function double
can be used to produce an output of type double.

With the exception of int64 and uint64, the advantage of each of the first 9
data types over double is that they require less memory space per number.

199

As we learned at the end of the subsection, Issuing commands in Introduc-
tion to MATLAB, computer memory is measured in bits and bytes, where a
bit is the smallest unit of memory on a computer and a byte is a group of
eight bits. All but the last two of the data types in Table 2.16 include a num-
ber as part of their names. As mentioned above, that number designates the
number of bits required to store a single number of that type. The last two
types do not include a number in their names, but single requires 32 bits
and double requires 64 bits. Computers manipulate their memories most effi-
ciently by accessing a byte at a time or a number of bytes that is equal to a
power of two, and most computers perform comparisons between objects
and arithmetic operations on them most efficiently when the power is 0, 1, 2,
or 3. For that reason each type in MATLAB and all other modern program-
ming languages supports these numerical variable sizes—1 byte, 2 bytes, 4
bytes, and 8 bytes.

All but two of the data types include “int” as part of their names. These are
integer types, which means that they are capable of storing only integers.
Thus, the integer types cannot store fractional parts. An attempt to convert a
number with a fractional part to an integer type will result in rounding, as in
the following examples:

>> int8(9.5)
ans =
 10

>> int8(9.4)
ans =
 9

>> int8(-9.4)
ans =
 -9

>> int8(-9.5)
ans =
 -10

Furthermore, if a conversion function is given a value outside its range, it
will return the value that lies at the closest end of its range. For example,

>> int8(128)
ans =
 127

>> int8(-1000)
ans =
 -128

As mentioned above, some of the integer types have names that begin with
the letter “u”, which stands for “unsigned”. These types can store only non-
negative integers, so converting a negative number to an unsigned type al-
ways results in zero, which is the value at the end of any unsigned range that
is closest to all the negative numbers:

>> uint8(-13)
ans =
 0

Arithmetic operations
We have seen many examples of arithmetic in MATLAB, all involving the op-
erators, +, −, *, /, \, ^, .*, ./, .\, and .^. However, up to now, the oper-
ands have always been of double type. All other numeric types can be used
in arithmetic operations in MATLAB as well. However, there are important
restrictions on these operations. When the two operands of a binary arithme-
tic operator (recall that “binary” means “taking two operands”) are of differ-
ent types, the resulting operation is called mixed-mode arithmetic. In
MATLAB there are severe restrictions on mixed-mode arithmetic. For the ex-
pression x op y, where op is an arithmetic operator, the following list of
categories gives in braces the set of allowed operators for each given pair of
operand types:

200

1. x and y are of floating-point types: {any arithmetic operator}

2. x is of integer type and y is a floating-point scalar: {+, −,.*,./,.\,.^, *, /}

3. x is a floating-point scalar and y is of integer type : {+, −,.*,./,.\,.^, *,\}

4. x and y are of the same integer type: { +, -, .*, ./, .\, .^ }

5. Category 4 when y is a scalar: { +, −,.*,./,.\,.^, *, / }

6. Category 4 when x is a scalar: { +, −,.*,./,.\,.^, *, \ }

7. x and y are of different integer types: NONE!

The last category shows that arithmetic operations involving differing integer
types are always illegal.

A question arises immediately in mixed-mode operations: What is the type of
the result? The answer has two cases: When an operation of Category 1 is car-
ried out, the result has the type,

• double, if both operands are of type double.
• single, if either of the operands is of type single.

When an operation involves an operand of integer type, which includes all
categories from 2 to 6, the result has that same integer type. Note from these
two cases that MATLAB uses the rule that the output type of an arithmetic
operation is the same as the type of the input type with the smaller range.
(This behavior is opposite that of C, C++, and Java. Their rule is that the out-
put type is the same as the type of the input with the larger range.)

Clearly, since the output of a mixed-mode operation in MATLAB has the type
with the narrower range, the likelihood is increased, relative to C, C++, and
Java, that the result will fall outside the range supported by the type of the
output. So we are led to the next question: What is the benefit?

The answer is that it saves memory space—in some cases a lot of it—because
types with narrower ranges can be stored in fewer bytes. Let’s suppose that

you have decided to use an array A with the type int16. You may have cho-
sen that type because each element of an array of that type requires only two
bytes of storage, A is going to be very large, and the numbers in A will never
lie out of the range −215 to 215−1 (Table 2.16). This is exactly the case, for exam-
ple, if you are writing image-processing algorithms for medical images, such
as computed tomography (CT) or magnetic resonance images. These arrays
are three-dimensional, their values fall within this range, and they are big. A
typical CT, for example, might have the dimensions 512-by-512-by-100,
which will occupy 512x512x100x2 bytes. That’s 50 megabytes for one array!
At some step in your algorithm you might need to increase all the values in A
by, say 50, which can easily be done this way: A = A + 50. If MATLAB
gave the output the type with the wider range, it would in this case be of
type double, because that is the type of any literal number, i.e., a number
like 50 that is typed in. The assignment of that output back to A would
change it to a double, increasing its size by a factor of four. A would now
weigh in at a whopping 200 megabytes! Of course, this problem could be
avoided by writing A = A + int16(50), but this would make the pro-
gram hard to write and hard to read. Instead, since in MATLAB the output of
the addition operation has the narrower type, A remains the same size in
memory.

A third question pops up: What value is given when the correct answer is out
of range of the type? The answer to that one is that it depends. It depends on
the correct answer and on the type. MATLAB gives the expression a special
value according to the type of the result (Inf represents “infinity”):

For the types double and single, if the correct answer is positive, the value
is Inf. If the correct answer is negative, the value is –Inf.

For any integer type, if the correct answer is greater than the maximum of the
range, the value is the maximum of the range. If the correct answer is smaller
than the minimum of the range, the value is the minimum of the range. For
example, if x is of type int8, and x equals 100, then x + 50 yields 127, be-

201

cause 127 is the maximum of the range of int8. If x equals 100, then x -
250 yields -128 because -128 is the minimum of the range of int8. If x is of
type uint8, and x equals 100, then x + 500 yields 255 because 255 is the
maximum of the range of uint8, and if x equals 100, then x - 500 yields 0,
because 0 is the minimum of the range of uint8.

One question remains: What value is given when the result is undefined, as,
for example in x = 0/0, y = Inf/Inf, or z = 0*Inf? For integer types,
the result is 0, for single and double, the result is a special value named
NaN, which means “Not a Number”.

Relational operations
The relational operators, ==, ~=, <, >, <=, and >= all allow mixed-mode oper-
ands of any numeric types. They return a value of type logical. For exam-
ple,

>> int8(4) < single(4)
ans =
 0

>> class(ans)
ans =
logical

Strings
Strings were introduced in this book in the very first section of Chapter 1 and
have been used repeatedly after that, for example to provide a prompt to the
user, to hold filenames, to specify plotting styles in plot, or to hold the for-
mat string in fprintf, which tells fprintf what to print and how to print
it. There is, however, much more to strings. Strings contain numeric values,
that can be assigned to a variable and manipulated by functions.

The ASCII encoding scheme
As we saw in an example at the very beginning of this section, a string is of
type char. More specifically a string is a row vector of numbers of type
char, each number being a code that represents one character. Part of the
scheme for encoding characters as numbers is shown in Table 2.17. This part
of the scheme is called ASCII (American Standard Code for Information Inter-

202

Table 2.17 ASCII codes

(nul) 0 (sp) 32 @ 64 ` 96
(soh) 1 ! 33 A 65 a 97
(stx) 2 " 34 B 66 b 98
(etx) 3 # 35 C 67 c 99
(eot) 4 $ 36 D 68 d 100
(enq) 5 % 37 E 69 e 101
(ack) 6 & 38 F 70 f 102
(bel) 7 ' 39 G 71 g 103
(bs) 8 (40 H 72 h 104
(ht) 9) 41 I 73 i 105
(nl) 10 * 42 J 74 j 106
(vt) 11 + 43 K 75 k 107
(np) 12 , 44 L 76 l 108
(cr) 13 - 45 M 77 m 109
(so) 14 . 46 N 78 n 110
(si) 15 / 47 O 79 o 111

(dle) 16 0 48 P 80 p 112
(dc1) 17 1 49 Q 81 q 113
(dc2) 18 2 50 R 82 r 114
(dc3) 19 3 51 S 83 s 115
(dc4) 20 4 52 T 84 t 116
(nak) 21 5 53 U 85 u 117
(syn) 22 6 54 V 86 v 118
(etb) 23 7 55 W 87 w 119
(can) 24 8 56 X 88 x 120
(em) 25 9 57 Y 89 y 121
(sub) 26 : 58 Z 90 z 122
(esc) 27 ; 59 [91 { 123
(fs) 28 < 60 \ 92 | 124
(gs) 29 = 61] 93 } 125
(rs) 30 > 62 ^ 94 ~ 126
(us) 31 ? 63 _ 95 (del) 127

change). It was designed in the 1960s to encode the so-called “Latin alpha-
bet”, the 10 decimal digits, and punctuation. In that table the abbreviations in
parentheses have special meanings to computer systems that use communica-
tion protocols that are of no interest here, except for these: (nl) means
“newline”, (ht) means “horizontal tab”, and (sp) means space. These have
meaning to fprintf, and there is a special escape sequence for each of them:
\n produces (nl), and \t produces (ht). We saw the first one in the subsection
Conversion characters and escape characters in Programmer’s Toolbox. The
encoding scheme assigns a number from 0 to 127 to each character. In the ta-
ble the encoding number is given to the right of each character. For example,
the number that encodes an uppercase “A” is 65, while the number that en-
codes a lowercase “a” is 97.

ASCII was augmented in subsequent years to include non-Latin characters.
Those augmented versions must be stored in two or more bytes. Today, there
are several standards, but all of them include ASCII as a subset. MATLAB
uses a two-byte code that varies with the installation. The name of the encod-
ing scheme can be gotten with the command  
feature('DefaultCharacterSet'),  
which returns the name of the scheme as a string.

A string is a vector
The sequence of numbers that encode a string is stored as a standard row vec-
tor. The length of the vector is equal to the number of characters in it, and it
can be determined by using the same length function that we have applied
before to numeric vectors. Furthermore, each individual element can be ac-
cessed using the usual indexing scheme. Here is an example:

>> book_title = 'MATLAB for Smarties'
book_title =
MATLAB for Smarties

Note that, when MATLAB prints the value of a string, it omits the quotes.
Thus, it prints MATLAB for Smarties, instead of 'MATLAB for Smarties'.

>> length(book_title)
ans =
 19

There are 19 characters in 'MATLAB for Smarties', and that is the value re-
turned by length. Among these characters are two spaces, and, if there were
any punctuation marks, they would have been counted too. Spaces and punc-
tuation marks are all part of the string, and each one is encoded with its own
number.

>> book_title(1)
ans =
M

>> book_title(4:16)
ans =
lab for Smart

>> book_title(7:11)
ans =
 for

 Note that the word for on the last line is shifted slightly to the right. That is
because the first character printed by the last command is a space. There is a
trailing space there too, but it is invisible. Checking the ASCII table above we
see that the number that encodes a space (sp) is 32. We can use that informa-
tion to look for spaces in a string. We can easily see the numerical codes of
any of the characters in any string. MATLAB enables us to do that by convert-
ing from the type char to a numeric type, such as double. Let’s do that by
using the conversion function double:

>> double(' ')
ans =
 32

Here, we have given double an argument that is a one-element character
string consisting of one space. Now let’s look for spaces in book_title:

203

>> double(book_title)
ans =
 Columns 1 through 9
 77 97 116 108 97 98 32 102 111
 Columns 10 through 18
 114 32 83 109 97 114 116 105 101
 Column 19
 115

As expected there are two 32s. The first one is followed by 102, which is the
ASCII code for the letter “f”. The second one is followed by 83, which is the
code for “S”. Digits and punctuation marks are treated no differently. If they
occur in a string, they are encoded in ASCII:

>> pi_digits = '3.14159'
pi_digits =
3.14159

>> double(pi_digits)
ans =
 51 46 49 52 49 53 57

Here we have assigned the 7-character string '3.14159' to pi_digits.
These are the first digits of the number π, but, in this case, instead of assign-
ing the number 3.14159, which would be of type double, we have, by enclos-
ing 3.14159 in quotes, assigned a vector consisting of seven elements, each of
which is the ASCII code for one character. Since there are seven elements in
this vector, the result of applying the function length to my_number should
not be surprising:

>> length(my_number)
ans =
 7

Like other vectors, new strings can be made from parts of existing ones:

>> s = 'Two is company, three a crowd.';
>> ssub = s(13:end)
ssub =
ny, three a crowd.

Also, new strings can be made by concatenating existing strings:

>> a = 'Three, two, one';
>> b = ', ';
>> c = 'BLASTOFF!';
>> count_down = [a,b,c]
count_down =
Three, two, one, BLASTOFF!

Strings can even be put together to make arrays with more than one row and
column:

>> first = 'abcdefgh'
first =
abcdefgh

>> second = '12345678'
second =
12345678

>> both = [first;second]
both =
abcdefgh
12345678

>> double(both)
ans =
 97 98 99 100 101 102 103 104
 49 50 51 52 53 54 55 56

>> both'
ans =
a1
b2
c3
d4
e5
f6
g7
h8

Here we have made an array with two rows in which all the elements are of
type char. It is important, though, to remember that arrays must be rectangu-

204

lar. That is, each row must have the same number of elements. In this case,
the variables first and second are both of length 8, so each row of both
has 8 elements. It is not possible to make a “ragged” array, in which rows con-
tain strings of differing lengths, as the following attempt shows:

>> long = 'MATLAB'; short = 'Java';
>> languages = [long; short]
??? Error using ==> vertcat
All rows in the bracketed expression must have the same
number of columns.

(We’ve seen this same error involving vertcat on earlier occasion in which
we also tried to produce a non-rectangular array.)

Arithmetic operators
It may seem odd at first, but, like the numeric data types, strings can be used
in arithmetic operations! When we do arithmetic on them, MATLAB treats
them as a vector of ASCII numbers, instead of a string of characters. Like the
integer types, a string can be used in mixed-mode arithmetic, and, also like
the integer types, they can be used in this way, if and only if the other oper-
and is one of the floating point types: single or double. A major difference,
though, is that when a string is used in mixed-mode arithmetic, the result of
the operation is of type single or double, corresponding to the type of the
other operand, whereas, as pointed out before, when an integer variable is
used in mixed-mode arithmetic, the result is of the same integer type. Here is
an example of arithmetic on strings:

>> language = 'MATLAB'
language =
MATLAB

>> double(language)
ans =
 77 65 84 76 65 66

>> MATLABplus = language + 1
MATLABplus =
 78 66 85 77 66 67

>> class(MATLABplus)
ans =
double

We see that when we add 1, which is of type double, to language, which
is of type char, the result is of type double, as predicted above. Thus, arith-
metic operations involving the char type produce an output of the wider
type, instead of the narrower one, as happens for the integer types.

>> char(MATLABplus)
ans =
NBUMBC

>> char(MATLABplus - 1)
ans =
MATLAB

This last command produces the original string again by subtracting the incre-
mental 1 and converting once again to the type char. We have our favorite
language back.

This forward-backward conversion suggests a simple (and easy to crack) cod-
ing scheme for secret messages: Any operation that can be undone is suitable
to encode a message. Here is another example,

>> secret_plans = '1pm: Stairs behind door at right to
basement';

>> coded_plans = char(158 - secret_plans)
coded_plans =
m.1d~K*=5,+~<9650:~://,~=*~,576*~*/~<=+9190*

Well, this is certainly a nice, cryptic mess! Decrypting it is easy though:

>> decoded_plans = char(158-coded_plans)
decoded_plans =
1pm: Stairs behind door at right to basement

We are back to our original message again.

205

Relational operations
MATLAB’s relational operators, ==, ~=, <, >, <=, and >=, all allow mixed-
mode operands of any numeric type and of type char, and they treat a string
as a vector of ASCII numbers, instead of a string of characters. For example,

>> int8(97) < 'a'
ans =
 0

>> single([97 97]) < 'ab'
ans =
 0 1

Here each element of the vector [97 97] is compared in turn with the corre-
sponding element of the vector of ASCII numbers [97 98] that encode “a”
and “b”. The following example shows how this ability to compare on the
basis of ASCII codes might be useful:

>> 'agbe' < 'ah f'
ans =
 0 1 0 1

Thanks to the sensible order of the ASCII codes, letters that come earlier in
the alphabet also have smaller numbers. Thus, a program that is required to
alphabetize words can compare the ASCII numbers in order to determine
which letters come first. It is interesting to note that the upper case letters all
precede the lower case ones. It is for this reason that many computer-sorted
word lists put all capitalized words before all the uncapitalized words. It may
not be the preferred order for a given application, and it is not necessary to
order them that way. However it is the way that requires the least compli-
cated program. For good or ill, programmers have often done it that way.

String functions
While it is possible to do almost anything we wish with strings simply by us-
ing the ordinary tools for manipulating vectors, such as indexing, the colon

operator, concatenation, arithmetic, relational operators, etc., there are many
tasks that have already been written as functions for us by the MathWorks
programmers. MATLAB provides a number of built-in functions that include
strings as input arguments and/or output arguments. Table 2.18 gives a par-
tial list.

One of these functions is sprintf. It is similar in functionality to fprintf,
a function that we have already learned about. Both functions permit you to
stipulate in detail how values stored in variables are to be represented with
letters and digits. The difference is that, while fprintf causes its output to

206

Table 2.18 String functions

FUNCTION DESCRIPTION
char converts type to char

findstr finds the positions of a substring in a string

ischar returns 1 if argument is a character array and 0 otherwise

isletter finds letters in string

isspace finds spaces, newlines, and tabs in string

isstrprop finds characters of specified type in string

num2str converts number to string

length determines the number of letters in string

lower converts string to lower case

sprintf writes formatted data to string (compare with fprintf)

strcmp compares strings

strcmpi like strcmp but independent of case

strmatch search array for rows that begin with specified string

strncmp like strcmp but compares only first n characters

strncmpi like strncmp but independent of case

str2num converts string to number

upper converts string to upper case

appear directly in the Command Window, sprintf puts its output into a
string. Here is a simple example that reveals the difference:

>> x = pi;

>> fprintf('x:\npi to three decimals: %6.3f\n', x);
x:
pi to three decimals: 3.142

>> s = sprintf('x:\npi to three decimals: %6.3f\n', x);

>> s
s =
x:
pi to three decimals: 3.142

We see by this example that fprintf itself forms a string, but it is not possi-
ble to capture the string in a variable, as it is with sprintf. We see also that
with both fprintf and sprintf, it is possible to use the escape characters
\n to produce the newline character.

The following example makes that clearer:

>> x = 7;
>> s1 = sprintf('hello'), x = 7
s1 =
hello
x =
 7
>> s2 = sprintf('hello\n'), x = 7
s2 =
hello

x =
 7

From this example we note that a line is skipped in the second command. If
we were to check the last element of s2 we would see why. Its value is 10,
which, as can be seen by checking Table 2.17 is the ASCII code for newline
(nl).

For the remaining functions in Table 2.18, it is recommended that, when you
have a task to perform with strings, such as alphabetizing a list, looking some-
thing up in a database of strings, or using strings in a graphical-user-
interface, you consult this table, find possibly useful functions, and use the
MATLAB help command to learn the details of their operations.

Structs
An array in MATLAB, C++, Java, Fortran, and most other languages, consists
of a collection of elements, each of which has the same elementary data type.
The array is said to be homogeneous with regard to the types of its element.
It is not possible, therefore, to have a matrix whose first element is of type
int16 and whose second element is of type char. Such an array, were it le-
gal, would be heterogeneous with respect to the types of its elements. An at-
tempt to set up any heterogeneous array will be thwarted by MATLAB. Here
is an example of what happens,

>> A = [int8(1),int16(2);int32(3),uint32(4)]

A =
 1 2
 3 4

>> class(A)
ans =
int8

>> class(A(1,1)),class(A(1,2))
ans =
int8

ans =
int8

207

>> class(A(2,1)),class(A(2,2))
ans =
int8

ans =
int8

MATLAB imposes its homogeneity restriction by converting all but the first
element in the list to be of the same class as that first element, which in this
particular case is int8. The homogeneity restriction is actually quite reason-
able because of the important feature of arrays that allows an operation to be
specified simultaneously for all elements of the array, as for example x =
int8(2)*A. This operation would be legal for A above, since the elements of
A are all of type int8, but it would legal for only A(1,1), if MATLAB al-
lowed heterogeneous arrays.

One might argue about the importance of homogeneity with respect to the
functionality of arrays, but it is also important from an efficiency standpoint.
Accessing individual elements of an array can be handled internally by
MATLAB, or any other language for that matter, in an especially efficient
way, if the types of the array’s elements are all the same. However, efficiency
of the inner workings of MATLAB is beyond the scope of this book, and
when array-wide operations are not important, then the homogeneity restric-
tion becomes onerous. If, for example, we wish to store information about a
person in an array, we might want to put both their social security number
and their name in the same data structure. In this case, a first row of type
int16 and a second of type char would work very well−if it weren’t illegal!
Fortunately, for applications in which array-wide operations are not required
and heterogeneous elements are desired, MATLAB (like C, C++, and Java)
supports a perfect data type. It is called a struct. Like an array, a struct con-
sists of a set of elements, but unlike an array those elements can be of differ-
ing data types. There is another important difference as well. Each element is
indexed by user-defined name instead of a numerical index. Let’s look at our
first example of a struct:

>> r.ssn = 568470008
r =
 ssn: 568470008

>> class(r)
ans =
struct

>> class(r.ssn)
ans =
double

Here we have created a user-defined name, ssn, to serve as an index for an
element of a variable r. The dot between r and ssn indicates that the name
to the right of it is the name of an element of the variable to the left of it. A
name used as an index is called a field name, and the element of the struct
associated with that field name is a field. The variable r is now a struct. It has
one field, whose name is ssn and whose type is double. We can add as many
fields as we like:

>> r.name = 'Homer Simpson'
r =
 ssn: 568470008
 name: 'Homer Simpson'
>> r
r =
 ssn: 568470008
 name: 'Homer Simpson'

Each field can be of any type. It can, for example, be another struct:

>> r.address.street = '742 Evergreen Terrace'
r =
 ssn: 568470008
 name: 'Homer Simpson'
 address: [1x1 struct]

We have added a new field to r, called address and we have made the type
of that field be a struct. That inner struct has one field, called street, and its
value is the string '742 Evergreen Terrace'. Notice that when the

208

structure gets this complex and MATLAB is commanded to display the con-
tents, it resorts to abbreviating the inner structure a bit. Thus, instead of show-
ing the structure of the inner struct, it simply shows that it is a struct. It
shows that by means of the word struct in the phrase, [1x1 struct].
(The “1x1” does not mean that the struct has just one field. Its meaning will
be made clear below.) We can add an additional field to the inner struct:

>> r.address.city = 'Springfield'
r =
 ssn: 568470008
 name: 'Homer Simpson'
 address: [1x1 struct]

There is no visible change in MATLAB’s display of the contents of r because,
while we have added another field to the struct within the third field of r, we
have not changed the fact that the third field of r is a struct. If we want to
look at the inner struct itself, we can do it as follows:

>> r.address
ans =
 street: '742 Evergreen Terrace'
 city: 'Springfield'

Arrays and structs
The value of any field of a struct can be an array of any dimension. Thus, for
example,

>> r.years_on_air = 1989:2012;
>> r
r =
 ssn: 568470008
 name: 'Homer Simpson'
 address: [1x1 struct]
 years_on_air: [1x17 double]

Here we see that, when MATLAB displayed the contents of the last field, it
shows only that it is a 1-by-17 array of type double. The contents of the field

address is shown as a 1-by-1 array of type struct. MATLAB chooses to
show only the types when the values would occupy too much space on the
Command Window. Smaller arrays are displayed in full, as for example:

>> pixel.position = [567, 688];
>> pixel.rgb = [145, 155, 134];
>> pixel
pixel =
 position: [567 688]
 rgb: [145 155 134]

Since short numeric vectors fit conveniently on one line, they are displayed in
full. As a special case of this sort of display, strings, which are stored as row
vectors of type char, are displayed in full, as was, for example 'Homer Simp-
son' above.

Accessing individual elements of an array that is a field of a struct is done
as usual. Thus,

>> pixel.rgb(1:2)
ans =
 145 155

Structs can themselves be elements of an array, as long as the homogeneity
of the array is maintained. Thus, if an element of an array is a struct, then
all elements of that arrays must be structs and all must have exactly the
same structure:

>> clear pict;

>> pict(2,2) = pixel
pict =
2x2 struct array with fields:
 position
 rgb

The clear command is included above to show that pict is non-existent
before the second command assigns it a value. As we saw in the subsection of

209

Matrices and Operators entitled, Accessing Parts of a Matrix, when a value is
assigned to an element of variable on a column or row that did not previ-
ously exist for that variable, then a new row and column is created along
with all the rows and columns necessary to produce a rectangular array of
values. In doing that, MATLAB creates elements in addition to the one speci-
fied in the command, and it gives each of them an initial value. If the type of
the array is numeric, the initial value is zero. If the type is struct, then the ini-
tial value is a struct with the value for each field set to the empty matrix, and
that is what we find in the elements other than the one to which we assigned
a value. For example,

>> pict(1,2)
ans =
 position: []
 rgb: []

We have seen that structs can have fields that are structs or arrays and that
arrays can have elements that are structs. In fact, such nesting involving ar-
rays of structs can extend to any depth.

Arithmetic and Relational operations
Objects of type struct cannot be used as operands by any of the arithmetic op-
erators or relational operators or as the arguments of a functions that expect
numeric arguments. However, it is perfectly legal to apply these operators or
functions to any field of a struct, if it is of numeric type. Here are two exam-
ples:

>> pict(1,2).position = pict(2,2).position + 1;

>> pict(1,2).position
ans =
 568 689

>> pict(1,2).rgb = round(pict(2,2).rgb./[1 2 3])

>> pict(1,2).rgb
ans =
 145 78 45

Dynamic Field Names
When writing functions that manipulate structs, it is sometimes desirable to
create field names during the execution of the function. Creation of field
names during execution requires additional functionality. One convenient ap-
proach is to use MATLAB’s dynamic field-naming operation. Here is an exam-
ple of this operation,

>> zoo.lions = 3;

>> zoo.('tigers') = 2;

>> zoo
zoo =
 lions: 3
 tigers: 2

The first command is a conventional struct assignment. The second one is the
dynamic operation. Note the dot before the left parenthesis. The string 'ti-
gers', is read by the “dot-parentheses” operator and converted into a field
name. To see how this operator might be used in a program, consider the fol-
lowing function, which allows the user to create a customized structure dur-
ing its execution,

210

function s = create_struct_dynamic
% S = CREATE_STRUCT_DYNAMIC Create a struct from field names
% and values that are input by the user
while 1
 field_name = ...

input('Enter a field name (zero to quit): ');
 if field_name == 0

break;
 end
 field_value = ...

input('Enter value for this field: ');
 s.(field_name) = field_value;
end

Then, we use create_struct_dynamic to create a structure,

>> birth_years = create_struct_dynamic;
Enter a field name (zero to quit): 'Katherine'
Enter value for this field: 1984
Enter a field name (zero to quit): 'John'
Enter value for this field: 1986
Enter a field name (zero to quit): 0

and we check to see that the fields that we input are indeed the names of the
fields of our new struct:

>> birth_years
birth_years =
 Katherine: 1984

John: 1986

Struct functions
There are a number of useful functions designed specifically for working
with structs. A list of the most useful ones is given in Table 2.19.

Several of the descriptions in the table include the phrase, “a field whose
name is specified by a string”. Like the dynamic field-naming operation,
these functions allow for the possibility of a string that is formed during the
execution of a program to be used with structures . Here is a function that pro-
duces the same result as create_struct_dynamic above, but it does it by

means of two of the functions in the table, instead of the dot-parentheses op-
erator:

function s = create_struct
% S = CREATE_STRUCT Create a structure from field names
% and values that are input by the user
first_field = 1;
while 1
 field_name = ...

input('Enter a field name (zero to quit): ');
 if field_name == 0

break;
 end
 field_value = ...

input('Enter value for this field: ');
 if first_field

s = struct(field_name, field_value);
first_field = 0;

 else
s = setfield(s, field_name, field_value);

 end
end

Note that we must use the function struct to create the struct initially, but
once the struct has been created, we must use setfield to add fields to it.

211

Table 2.19 Struct functions

FUNCTION DESCRIPTION
getfield returns the value of a field whose name is specified by a string

isfield true if a struct has a field whose name is specified by a string

isstruct returns true if argument is of type struct

orderfields changes the order of the fields in a struct

rmfield removes from a struct a field whose name is specified by a string

setfield assigns a value to a field whose name is specified by a string  
-or- if the field is not present, adds it and assigns it the value

struct create a struct with fields whose name are specified by strings

Cells
We noted above that structs and arrays can be nested within each other and
structs can be nested within structs. What about arrays within arrays?
MATLAB provides that option as well, albeit indirectly. It is provided by
means of a new data type, called a “cell”. To understand the cell, we must
first understand a bit about the way in which a program references its vari-
ables.

The symbol table
As we saw in the subsection Variable Scope of the section entitled, Functions,
when we were discussing the idea of local variables, each variable has its
own location in the computer’s memory. The operating system (e.g., Mac OS,
Linux, or Windows) allocates portions of the computer memory for
MATLAB’s exclusive use while it is running, and MATLAB, in turn allocates
subparts of its portion to variables as they are used. Each time MATLAB en-
counters a name in a command, either in the Command Window or during
the running of a function, it consults a table that is in computer-science termi-
nology called a “symbol table”, to determine whether it has already been de-
fined. A symbol table is simply a table maintained automatically during the
execution of code in some programming languages, including MATLAB, in
which the names (or “symbols”) of functions and variables and information
about them is kept. If the name is not in the symbol table, then it checks the
command to see whether it requires that the variable’s value be looked up or
a function be executed, as it would for x in an expression, such as, for exam-
ple, x + 5. If no such variable appears in the table and no function named x
can be found on the path, then MATLAB halts execution of the program and
issues an error message, as for example,

??? Undefined function or variable 'x'.

If, on the other hand, the command assigns a value to a variable that has not
already been defined, for example in x = 5, it defines it immediately by plac-
ing its name into the symbol table and choosing an area of memory in which
to store the variable’s values. This is how MATLAB brings a variable into “ex-
istence”. The area of memory chosen for the variable is a set of bytes, and
each byte in the memory has its own unique address. MATLAB will choose a
contiguous set of bytes and will put the address of the first byte into the ta-
ble. In that contiguous set of bytes it puts the value 5, but it also writes a de-
scriptor, which in MATLAB terminology is called a “header”, that encodes
the type, number of dimensions (two in this case) and the lengths of each di-
mension (one row and one column in this case). It reserves this area for this
variable. Every variable, while it exists, has its own unique area of memory.

You can look at part of the contents of the symbol table. You see it by issuing
the command whos. For example,

>> a = 5;
>> b = int8([5 6 + 2i;-9 9]);
>> c = 'Tiger';
>> whos
 Name Size Bytes Class Attributes

 a 1x1 8 double
 b 2x2 8 int8 complex
 c 1x5 10 char

Here we see that three variables are defined. In the terminology of computer
science the set of defined variables is called a “stack frame” or “activation re-
cord”, or in MATLAB terminology, a workspace, as we learned in Chapter 1.
All these terms mean the same thing—either the set of variables that are visi-
ble during the execution of statements in the Command Window or the set of
variables that are visible during the execution of the statements in a function.
What is displayed above is the workspace of the Command Window. Each
function also has its own workspace (“stack frame”, “activation record”)
while it is running. We will return to the concept of multiple workspaces in

212

the section named Functions Reloaded when we study recursion. The dimen-
sions of the array stored for each variable in the table are given in the second
column of the printout from whos, labeled “Size”; the total amount of mem-
ory occupied by the all the values in the variable (more than one value unless
the variable is a scalar) is given in the “Bytes” column, and its type is given
under “Class”. The number of bytes in the variable’s header is not included
in its byte count. If the variable has a special feature it is listed under Attrib-
utes. The addresses in the symbol table are not shown by the whos com-
mand.

When a command includes a variable that is already in the table, MATLAB
finds the name in the table, obtains the elemental type, the dimensions, and
address associated with the name, and either uses the value that it finds at
that address or, if the variable appears on the left side of an assignment state-
ment, gives the variable a new value. The following command gives an exam-
ple of both uses,

>> c = a
c =
 5
>> whos
 Name Size Bytes Class Attributes

 a 1x1 8 double
 b 2x2 8 int8 complex
 c 1x1 8 double  

Here, MATLAB looks up the variable a, finds it in the table, uses the address
that it finds there for that variable to find its header, discovers that a is a 1-
by-1 array of type double, and uses that information to interpret the bytes
that are located after the header to find that its value is 5. It then looks up the
variable c, finds it in the table, discovers that it is a 1-by-5 array of type char,
and replaces that value by a scalar 5 of type double and changes its header
to reflect that new type, shape, and value. (Notes to experts: First, we hope you
are enjoying this book! Second, we are knowingly and purposely omitting some eso-

teric details in this model, such as reference copying, which are beyond the scope of
an introductory text and would be of no help to the non-expert.) If the new value is
too large to fit within the space already reserved for that variable, then
MATLAB allocates for c enough new space to hold the new value or values,
puts the value(s) there, and changes the address in the symbol table for c to
that of the new space. That would happen, for example, if the new value
were a 10-by-10 array of type double, as in the command,

>> c = rand(10);

>> whos c
 Name Size Bytes Class Attributes

 c 10x10 800 double

It is possible at any time, both while issuing commands in the Command Win-
dow, and within a running function, to determine whether a variable exists in
the table by using the function exist, which returns 1, meaning true, if and
only if the variable whose name is input as a string is found in the symbol ta-
ble, as for example,

>> exist('c')
ans =
 1

It is also possible to remove a variable from the table at any time using the
command clear:

>> clear('c')
>> exist('c')
ans =
 0

213

Pointers
As mentioned above, a very important piece of information about each vari-
able is missing form the printout provided by the command whos: the vari-
able’s address. That information is never revealed by whos or by any other
MATLAB command. MATLAB is different in this regard from some lan-
guages, such as C and C++, which provide an operator that returns the ad-
dress of any variable whose name is given an operand. These languages also
permit one variable to hold the address of another variable, which is another
practice that MATLAB does not allow. In these languages the former variable
is said to hold a “pointer” to the other variable. In fact, in the parlance of pro-
gramming languages the term pointer means simply the address of an object
in memory. A variable that holds an address is called a pointer variable.

Secret addresses
In C and C++ a pointer’s value can be set to any desired value, printed, as-
signed as the value of a variable, and generally treated like any other num-
ber. MATLAB’s implementation is a bit more like that of Java. They both keep
the addresses of their variables secret. There are debates about language de-
signers’ decisions to reveal or sequester the addresses used during the run-
ning of a program. When they are revealed, the program has the power to se-
lect specific addresses for special uses, as for example input and output to
hardware devices using hardware registers with specific addresses. The abil-
ity to specify in the code a specific address is a particularly important feature
for “embedded” applications, which are applications that run on special-
purpose computers in appliances, cars, etc. Having addresses open to direct
manipulation is advantageous in these applications, but there are disadvan-
tages too. When addresses are inaccessible to the programmer, it is far less
likely that a change in the portion of memory addresses allocated to a pro-
gram while it runs will affect the outcome of that program. Thus, a MATLAB
or Java program that runs properly on one computer is made more likely to
run properly on another computer because changes in the address space from
one computer to another cannot affect its behavior.

Indirect implementation of heterogeneous arrays
MATLAB uses pointers as a means to provide an indirect implementation of
heterogeneous arrays. The indirect implementation is accomplished through
the use of the “cell” data type. The cell is the type of pointer variables in
MATLAB, and only a variable of type cell can hold a pointer. The name
“cell” is used because a single memory location is often called a memory cell.
A cell variable may be created in one of three ways. The first way is by means
of the function called cell:

>> p = cell(2,3)

p =
 [] [] []
 [] [] []  

>> class(p)
ans =
cell

The function cell creates an array of type cell and initializes each element
to contain the address of an empty matrix. (This operation is analogous to the
use of the function zeros to produce a numeric array of zeros.) The result is
depicted schematically in Figure 2.46.

Like any matrix in MATLAB, p is homogeneous: All its elements are of the
same type, and in this case the type is cell. Also, like any matrix, we can ac-
cess any element of p by putting the indices of the element in parentheses:

>> p(1,2)
ans =
 {[]}

214

The set of curly braces around the empty matrix indicates that p(1,2) is, as
we know it must be, of type cell. Those braces are MATLAB’s way of telling
us that p(1,2) contains the address of the empty matrix. The value inside
the braces, in this case the empty matrix, is the object whose address is stored
in p(1,2).

Curly braces are featured in much of the syntax involving arrays of type
cell, as we will now see. For example, curly braces are part of the syntax
that allows us to gain access to the object to which p(1,2) points. We do that
by replacing the parentheses by curly braces in the indexing operation,

>> p{1,2}
ans =
 []

The phrase (ii,jj) refers to the pointer that is stored at position ii,jj,
while the phrase {ii,jj} refers to the object to which it points.

Each of the six elements of p contains a value that represents a pointer to a
location in memory that stores an empty matrix, as Figure 2.46 shows. A
more useful array would include pointers to matrices with something in
them. Let’s put a single scalar into the first element,

>> p(1,1) = 17
??? Conversion to cell from double is not possible.

Oops. MATLAB caught us trying to set the address that is stored at p(1,1)
to 17. Nice try, but it is not going to happen. As mentioned above, MATLAB
does not allow us to choose the value of a pointer (or even to know that value
that MATLAB chooses). The notation that we use to let MATLAB choose the
address, while letting us tell MATLAB what to put at the address, is a pair of
curly braces

>> p{1,1} = 17
p =
 [17] [] []
 [] [] []

This example shows syntax for assigning a value to an element of a cell ar-
ray. The value that is assigned is not the number 17. Instead, as is illustrated
by Figure 2.47, it is a pointer to a secret location in memory where MATLAB
will put the number 17.

We get to stipulate what array the element points at, but we must leave it to
MATLAB to choose the address at which to place that array and to write that
address into p(1,1). MATLAB does not reveal the address at which the new

215

Figure 2.46 Depiction of pointers to an empty matrix

Figure 2.47 Pointer to a scalar array assigned

array is stored, but it will tell us how much memory it requires. We can do
that with another whos command,

>> whos p
Name Size Bytes Class Attributes

p 2x3 160 cell

The number of bytes depends on the memory model used by the particular
MATLAB installation. This example was run on a 64-bit model. Why are so
many bytes needed? Well, a detailed look at memory management is beyond
the scope of this book, but we will give a glimpse of what is involved. First
there are 8 bytes required to hold the value 17, because it is by default of type
double. Then, there are 112 bytes required to hold the header for the element
(1,1) (32-bit installations require only 60). Finally, 8 bytes were reserved for
each of the empty-matrix entries by the cell command, and there are five of
those remaining: 8+112+5*8 = 160.

Now, let’s put a pointer to something else at element (1,2), say a two-element
row vector of type double,

>> p{1,2} = [-8 pi]
p =

[17] [1x2 double] []
[] [] []

This time, MATLAB gives an abbreviated description of the object that is
pointed at by the second element, just as it did when it abbreviated the fields
of a struct in the previous subsection, entitled, Structs.

Now, just to get an idea of the great variety of possible objects that can be
pointed at by elements of a cell array, let’s make the first element on the sec-
ond row a pointer to a uint16, the second element a pointer to a 2-by-4 ar-
ray of int8, and the last element on the second row a pointer to a string,

>> p{2,1} = uint16(34978);
>> p{2,2} = int8([1 10;2 20;3 30;4 40])
>> p{end,end} = 'Awesome!'

p =
[17] [1x2 double] []
[34978] [4x2 int8] 'Awesome!'

With this example we can see clearly how MATLAB achieves its “indirect”
implementation of heterogeneous arrays. Figure 2.48 illustrates the situation.
The array p is certainly not heterogeneous, since all its element are of the
same type, cell, (a point that is debatable, since pointers to different types
are themselves considered to be of different types in C, C++, and Java), but
the pointers in those elements point to objects of differing types, and that is
why we say that the cell array is an indirect version of a heterogeneous array.
In this regard MATLAB is more flexible than C, C++, or Java. These three lan-
guages certainly provide for arrays of pointers, but they each require that all

216

Figure 2.48 Cell array pointing to multiple types

pointers in the same array point to objects of the same type (can be overrid-
den in C and C++ but not in Java).

Throughout this subsection, we have been using curly braces to manipulate a
cell array that we created by means of the cell function. There are three
other ways to create a cell array, each involving curly braces. Here are exam-
ples showing the syntax of each,

First:

>> A = {1, 'hello'; int8(7), [1 2; 3 4]};

Second:

>> A(1,1) = {1};
>> A(1,2) = {'hello'};
>> A(2,:) = {int8(7), [1 2; 3 4]};

Third:

>> A{1,1} = 1;
>> A{1,2} = 'hello';
>> A{2,1} = int8(7);
>> A{2,2} = [1 2; 3 4];

All three of these examples produce the same cell array,

>> A
A =

[1] 'hello'
[7] [2x2 double]

Accessing subparts of cell arrays
As we have seen, we can access individual elements of cell arrays by using
subscripting, and there are two options for enclosing the subscripts—paren-
theses and curly braces. The first option gives us a pointer; the second gives
us the object pointed at. What if that object is an array, and we wish to access
individual elements within it? We use a concatenation of indices in curly

braces followed by indices in parentheses. Here is an example, which is de-
picted in Figure 2.49,

>> p{2,2}(3,2)
ans =
 30

The first set of indices, which are enclosed in curly braces, identify element
2,2 in the cell array. The second set of indices, which are enclosed in paren-
theses, identify element 3,2 within the array pointed at by cell element 2,2.

The colon operator can be used to assign a subarray, as usual. It can be used
directly, as for example,

>> q = p(1:2,2:3)
q =
 [1x2 double] []
 [4x2 int8] 'Awesome!'

and it can be used in the concatenated parentheses,

217

Figure 2.49 Concatenation of subscripts

>> q{2,2}(2:4)
ans =
wes

Pointer model forbids two cells from pointing at the same object.
The MATLAB pointer model differs from pointers in other languages, such as
C, C++, and Java (and many others), in an important way: It does not allow
two cells to point to the same object. (Note to experts: We are talking about the
MATLAB pointer model.) Here is an example to show what that means:

First we produce a cell object called c1:

>> c1 = {[1 2],[10,20]}
c1 =
 [1x2 double] [1x2 double]

It consists of two elements, each pointing to a 1-by-2 array of type double.
Now consider the following statement:

>> c2 = c1
c2 =
 [1x2 double] [1x2 double]

It looks like a simple assignment operation, so we might assume that the
pointers contained in c2 are the same as those in c1. This would mean that
they both point to the same objects. Indeed that is how it appears if we look
at those objects:

>> c1{1,1}
ans =
 1 2
>> c2{1,1}
ans =
 1 2
>> c1{1,2}
ans =
 10 20
>> c2{1,2}
ans =
 10 20

But what happens if we change one of the objects? Let’s change object at
which c1(1,1) is pointing:

>> c1{1,1} = 'Cupcakes'
c1 =
 'Cupcakes' [1x2 double]

The first element of c1 is now pointing at some nice cupcakes. If c2(1,1)
contains the same pointer as c1(1,1), then when we ask MATLAB to show
us what it is pointing at we should find those same cupcakes:

>> c2{1,1}
ans =

 1 2

Instead, we find that the object pointed at by c2(1,1) is unchanged. What
happened?

The answer is that the pointer model enforced by MATLAB does not allow
c2 to point to the same object as c1. In its version of pointer assignments,
when MATLAB carries out the assignment c2 = c1, it makes copies of all
the objects pointed at by c1, and makes c2 point at the copies. As a result it is
impossible to change an object pointed at by one cell by manipulating it via
another cell. This is a very stringent limitation. It means that cells are not use-
ful for applications involving so-called “linked lists”, in which chains or net-
works of pointers are formed from one object to another (typically involving
structs as well as pointers). However, (1) linked lists are not typically needed
or encountered in numerical applications, so it is not a serious drawback for
this language, which is after all designed primarily for numerical applica-
tions, and (2) MATLAB supports linked-lists via its Object-Oriented Program-
ming feature, which we will see in Chapter 3 in the section entitled, appropri-
ately enough, Object-Oriented Programming.

218

Distinguishing between a pointer and the object at which it points
MATLAB uses various notations to indicate that the elements of a cell array
are not actually matrices, but instead are pointers to matrices. In its depiction
of the contents of p above, for example, it encloses all numeric matrices in
square brackets and it encloses a string in single quotes. That notation is sup-
posed to say to the reader, “pointer to” the respective objects. The distinction
is a bit clearer in the following examples:

>> q = p(1,1)
q =
 [17]

Here we have copied the pointer in p(1,1) into the variable q, making q of
type cell. MATLAB indicates that the value stored in q is a pointer by en-
closing 17 in square brackets. We can verify the type of q with the class func-
tion,

>> class(q)
ans =
cell

If we want access the object that is pointed at by p(1,1), instead of the
pointer that is stored in p(1,1), we use curly braces:

>> r = p{1,1}
r =
 17

The type of the object retrieved by the using p{1,1} is double, and it is as-
signed to r. Therefore, r is of type double , not cell, as can also be verified
with the function class,

>> class(r)
ans =
double

Finally, compare the way MATLAB displays the contents of p(2,3),

>> p(2,3)
ans =
 'Awesome!'

This element contains a pointer to a string. To indicate that it is a pointer to a
string, and not a string, MATLAB encloses the string in single quotes. When
we access the string itself, MATLAB omits the quotes. Thus,

>> p{2,3}
ans =
Awesome!

The characters in the string are printed without quotes and without indenta-
tion, as they are for the display of any string,

>> s = 'Simply amazing!'
s =
Simply amazing!

Uses for cell arrays
Cell arrays are useful when it is necessary to combine sets of data of differ-
ing types and/or sizes and it is desired to use numerical indices instead of
field names, as are required for structs. For example, if a user is inputting a
set of strings that will later be operated on, it is convenient to put pointers to
each of them in a cell vector:

219

n = 0;
while 1
 s = input('Name please: ');
 if isempty(s)
 break;
 else
 n = n+1;
 name_list{n} = s;
 end
end
fprintf('Here is a numbered list\n');
for ii = 1:n
 fprintf('%3d: %s\n', ii, name_list{ii});
end

Here is an example of this code in action,

Name please: 'Marge'
Name please: 'Homer'
Name please: 'Maggie'
Name please: 'Lisa'
Name please: 'Bart'
Name please: []
Here is a numbered list
 1: Marge
 2: Homer
 3: Maggie
 4: Lisa
 5: Bart

Arithmetic and relational operators
Neither arithmetic operators nor relational operators allow the type cell for
their operands.

Cell functions
MATLAB provides a number of functions designed to assist you in using cell
arrays. Table 2.20 gives a partial list.

Additional Online Resources

• Video lectures by the authors:

" Lesson 7.1 Introduction to Data Types (20:27)

" Lesson 7.2 Strings (29:04)

" Lesson 7.3. Structs (14:51)

" Lesson 7.4 Cells (21:47)

220

Table 2.20 Cell functions

FUNCTION DESCRIPTION
cell create an array of type cell

celldisp show all the objects pointed at by a cell array

cellfun apply a function to all the objects pointed at by a cell array

cellplot show a graphical depiction of the contents of a cell array

cell2struct convert a cell array into a struct array

deal copy a value into output arguments
iscell returns true if argument is of type cell

num2cell convert a numeric array into a cell array

figure:49E20B46-9116-4076-8F45-85A413034EB6
figure:49E20B46-9116-4076-8F45-85A413034EB6
https://www.youtube.com/watch?v=V8kmahQ-kd4
https://www.youtube.com/watch?v=V8kmahQ-kd4
https://www.youtube.com/watch?v=6f7urGg_ghg
https://www.youtube.com/watch?v=6f7urGg_ghg
https://www.youtube.com/watch?v=5Flse3h-Fag
https://www.youtube.com/watch?v=5Flse3h-Fag
https://www.youtube.com/watch?v=glDaeLS3MRc
https://www.youtube.com/watch?v=glDaeLS3MRc

Concepts From This Section

Computer Science and Mathematics:
data type, or type
mixed-mode arithmetic
strings

encoded characters
ASCII encoding

structs
heterogeneous structure
element is called a field
indexed by field names

symbol table
pointers

MATLAB:
the function class returns the type of its argument
conversion functions
numeric types

floating point
double, single

integer
int8, int16, int32, and int64
uint8, uint, uint, and uint

string
a row vector
type is char

struct type
cell type

holds pointers
created with function cell
syntax of commands employs curly braces
cell array may hold pointers to arrays of differing types

Practice Problems
Problem 1. Write a function named safe_int8 that takes one array as an
input argument and returns one array as an output argument. If it is called
like this: B = safe_int8(A), then B is set equal to an array of the same
size and shape as A, and, if all the elements of A are integers and all of them
fall within the range of int8, then B is of type int8. Otherwise, B has the
same type as A. Here are some examples of its behavior:

>> A
A =
 1 0 3
 4 5 6
>> B = safe_int8(A),class(B)
B =
 1 0 3
 4 5 6
ans =
int8
>> A
 1 0 345
 4 5 6

>> B = safe_int8(A),class(B)
B =
 1 0 345
 4 5 6
ans =
double
>> A
A =
 1 1.05 3
 4 5 6	
>> B = safe_int8(A),class(B)
B =
 1 1.05 3
 4 5 6
ans =
double

?

221

http://cs103.net/wp-content/uploads/safe_int8.m
http://cs103.net/wp-content/uploads/safe_int8.m

Problem 2. Write a function named safe_int that takes one array as an
input argument (the function does not have to check the format of the input)
and returns one array as an output argument. If it is called like this:

B = safe_int(A)

then B is set equal to an array of the same size and shape as A, and, if all the
elements of A are integers and all of them fall within the range of one or more
of the signed integer types, then the type of B is the signed integer type that
has the smallest range that contains all the values of A. Otherwise, B has the
same type as A. Here are some examples of its behavior:

>> B = safe_int([1 345]),class(B)
B =

1 345
ans =
int16
>> B = safe_int([1 -2^31]),class(B)

B =
1 -2147483648

ans =
int32

>> B = safe_int([1 2^31]),class(B)
B =

1 2147483648
ans =
int64

>> B = safe_int([1 2^63]),class(B)
B =
 1.0e+18 *
 0.0000 9.2234
ans =
double

Problem 3. Write a function named odd_shift that takes one string and
one integer as input arguments (the function does not have to check the for-
mat of the input) and returns one string as an output argument. If it is called
like this:

s2 = odd_shift(s1,shift)

then s2 is a string that is the same as s1 except that the characters with odd
indexes have their codes increased by shift. Here is an example,

>> s2 = odd_shift('Conrad_and_Bean',12)
s2 =
OozrmdkazdkBqaz

>> double('Conrad_and_Bean')
ans =
 Columns 1 through 12
 67 111 110 114 97 100 95 97 110
100 95 66
 Columns 13 through 15
 101 97 110

>> double(s2)
ans =
 Columns 1 through 12
 79 111 122 114 109 100 107 97 122
100 107 66
 Columns 13 through 15
 113 97 122

? 

222

http://cs103.net/wp-content/uploads/odd_shift.m
http://cs103.net/wp-content/uploads/odd_shift.m

Problem 4. Write a function named cyclic_shift that takes one string
and one vector of integers as input arguments (the function does not have to
check the format of the input) and returns one string as an output argument.
If it is called like this: a = cyclic_shift(s,shifts), then a is a string
whose characters are the result of adding numbers to the codes of the charac-
ters in s. Suppose s is of length M and shifts is of length N. If M <= N, then
for m = 1 to M the code of a(m) has been shifted from that of s(m) by
shifts(m). Otherwise, for m = 1 to N the code of a(m) has been shifted
from that of s(m) by shifts(m) and then shifts is recycled, a(N+1) has
been shifted by shifts(1), a(N+2) has been shifted by shifts(2), etc.
Here are two examples:

>> a = cyclic_shift('Isaac',[1,6,4,2,1,7,2,7])
a =
Jyecd

>> double('Isaac')
ans =
 73 115 97 97 99

>> double(a)
ans =
 74 121 101 99 100

>> a = cyclic_shift('Principia',[2, -3, 0, 7])
a =
Roiuefppc

>> int16('Principia')
ans =
 80 114 105 110 99 105 112 105
97

>> int16(a)
ans =
 82 111 105 117 101 102 112 112
99

Problem 5. Write a function called raising_the_bar that takes one string
(i.e., a row vector of type char) as an input argument (it does not have to
check the format of the input) and returns one string as an output argument.
If it is called like this, s2 = raising_the_bar(s1) then s2 is identical to
s1 except that every underscore (_) has been changed to a dash (-). Here
is an example of the function being used:

>> raising_the_bar('1966_12_18--A Day in the Life')
ans =
1966-12-18--A Day in the Life

? 

Problem 6. Write a function called jumping_the_shark that takes one
string (i.e., a row vector of type char) as an input argument (it does not
have to check the format of the input) and returns one string as an output ar-
gument. If it is called like this, s2 = jumping_the_shark(s1) then s2 is
identical to s1 except that every occurrence of the string 'shark' has been
removed. Here is an example of the function in action:

>> s1
s1 =
The only good shark is a dead shark, excepting sand
sharks.
>> safe_to_go_in = jumping_the_shark(s1)
safe_to_go_in =
The only good is a dead excepting sand.  

223

http://cs103.net/wp-content/uploads/raising_the_bar.m
http://cs103.net/wp-content/uploads/raising_the_bar.m

Problem 7. Write a function called mean_max that takes one two-
dimensional array as an input argument (it does not have to check the for-
mat of the input) and returns one column vector of structs as an output argu-
ment. If it is called like this, mm = mean_max(A) then there is one element
of mm for each row of A, and each element of mm has two fields with the field
names mean and max. The type of the field named mean is double regard-
less of the type of A, and mm(ii).mean equals the mean of row ii of A. The
type of the field named max is the same as the type of A, and mm(ii).max is
equal to the maximum value on row ii of A. Here is an example of the func-
tion in action:

>> A
A =
 69 123 11 116 111 80 31 7 43
 127 1 51 24 74 45 16 115 115
 10 99 34 34 70 66 24 120 47
 57 104 102 19 19 52 31 63 15
 14 111 55 18 109 10 53 63 100
>> mm = mean_max(A);
mm =
5x1 struct array with fields:
 mean
 max	
>> class(mm(1).mean)
ans =
double

>> class(mm(2).max)
ans =
int8

>> mm(1),mm(2),mm(3),mm(4),mm(5)
ans =
 mean: 65.6667
 max: 123
ans =
 mean: 63.1111
 max: 127
ans =
 mean: 56
 max: 120
ans =
 mean: 51.3333
 max: 104
ans =
 mean: 59.2222
 max: 111

?

224

http://cs103.net/wp-content/uploads/mean_max.m
http://cs103.net/wp-content/uploads/mean_max.m

Problem 8. Write a function called sparse_array_struct that takes one
two-dimensional array as an input argument (it does not have to check the
format of the input) and returns one column vector of structs as an output ar-
gument. If it is called like this,

As = sparse_array_struct(A)

then each element of the output vector As , represents one of the non-zero
elements of A. Each element of As has three fields: row, which is of type
int16 and contains the row number of a non-zero element of A, col, which
is also of type int16 and contains the column number of the same non-zero
element of A, and val, which is of the same type as A and contains the value
of that non-zero element of A. The non-zero values of A appear in column-
major order in As. If A is empty, then As is empty. Here is an example of the
function in action:

>> A
A =
 81 28 0 0 0 0
 90 55 49 0 0 0
 0 95 80 65 0 0
 0 0 15 4 39 0
 0 0 0 85 65 10
 0 0 0 0 17 82

>> As = sparse_array_struct(A);

>> size(As)
ans =
 16 1

>> As(1),As(2),As(3),As(4),As(5)
ans =
 row: 1
 col: 1
 val: 81
ans =
 row: 2
 col: 1
 val: 90
ans =
 row: 1
 col: 2
 val: 28
ans =
 row: 2
 col: 2
 val: 55
ans =
 row: 3
 col: 2
 val: 95

225

Problem 9. Write a function called price_list that takes no input argu-
ments and returns one two-dimensional cell vector as an output argument. If
it is called like this, items = price_list , then each row of items con-
tains the name and the price of one item on a price list. The names and the
prices are entered by the user. The function gives a general prompt and then
repeatedly prompts for the name, which is entered without single quotes,
and the price. The required form of the prompts is given in the example be-
low. The user hits Enter after each entry. If after either of the prompts, the
user hits Enter without typing anything, the function stops and returns
items. HINT: The following format of the call of the function input, as
shown in the help system, will be helpful: STR = input(PROMPT,'s').
Here is an example of the function in action:

>> items = price_list
Enter items and prices (empty item ends list)
Item name: Ink jet paper 500 sheets
Price of Ink jet paper 500 sheets: 11.49
Item name: Lexmark Black Ink Cartridge
Price of Lexmark Black Ink Cartridge: 19.99
Item name: Manila folders, pack of 100
Price of Manila folders, pack of 100: 6.99
Item name: Stapler
Price of Stapler: 13.99
Item name: Desk tape dispenser
Price of Desk tape dispenser: 3.99
Item name:
items =
 'Ink jet paper 500 sheets' [11.4900]
 'Lexmark Black Ink Cartridge' [19.9900]
 'Manila folders, pack of 100' [6.9900]
 'Stapler' [13.9900]
 'Desk tape dispenser' [3.9900]

? 

226

http://cs103.net/wp-content/uploads/price_list.m
http://cs103.net/wp-content/uploads/price_list.m

Problem 10.$ Write a function called sparse_array_cell that takes one
two-dimensional array as an input argument (it does not have to check the
format of the input) and returns one column vector of structs as an output
argument. If it is called like this, Ac = sparse_array_cell(A) then each
element of the output vector Ac , represents one of the non-zero elements of
A. Each row of Ac has three elements: The first, which is of type int16, con-
tains the row number of a non-zero element of A. The second, which is also of
type int16, contains the column number of the same non-zero element of A.
The third, which is of the same type as A, contains the value of that non-zero
element of A. The non-zero values of A appear in column-major order in Ac. If
A is empty, then Ac is empty. Here is an example of the function in action:

>> A
A =
 81 28 0 0 0 0
 90 55 49 0 0 0
 0 95 80 65 0 0
 0 0 15 4 39 0
 0 0 0 85 65 10
 0 0 0 0 17 82

>> Ac = sparse_array_cell(A);

>> class(Ac)
ans =
cell>> size(Ac)
ans =
 16 3

>> Ac{1,:}
ans =

1
ans =

1
ans =
 81

>> Ac{2,:}
ans =

2
ans =

1
ans =
 90

>> Ac{3,:}
ans =

1
ans =

2
ans =
 28

>> Ac{4,:}
ans =

2
ans =

2
ans =
 55

>> Ac{5,:}
ans =

3
ans =

2
ans =
 95

227

SECTION 6

So far, whenever we have needed to supply input to a
function, we have passed data to it via its input argu-
ments or, in rare cases, by means of the function input,
through which data is entered by the user typing on the
keyboard. Similarly, when we wanted a function to pro-
duce output, we used output arguments, or in rare cases,
employed fprintf to send the output to the Command
Window for the user to read. This sort of input/output

scheme works well for many self-contained projects, but
it is often desirable to get input from files and to send
output to them. A file is an area in permanent storage,
typically residing on a disk drive, that can be named, re-
named, moved from one folder to another and from one
computer to another, inspected by users, and accessed
by other programs, and it is all managed by the operat-
ing system. The key word in this long description is “per-

Objectives

Files are named areas in
permanent memory for storing
data that can be used as input
or output to MATLAB and to
other programs.
(1) We will be introduced to

MATLAB’s most important
methods for reading and
writing files.

(2) We will learn how to create,
read from, and write to
MAT-files, Excel® files, text
files, and binary files.

(3) We will learn how to
navigate among folders
with MATLAB commands. Reading and writing data in permanent memory is an essential task for many programs.

File Input /Output

228

manent”, by which we mean that the data in a file is not lost when the com-
puter is shut down—unless disaster strikes and there is no backup! (Nothing
after all is truly permanent.) When referring to input and output, it is com-
mon to abbreviate them as I/O, which stands for input/output. Since this sec-
tion deals with input and output to files, it is entitled, “File Input/Output”.

Input from files is important not only because it is permanent but also be-
cause the data to be processed can come from another program that has writ-
ten its data into files. Output to files also has an importance beyond perma-
nence: output written into a file by MATLAB programs can serve as input to
other programs that read their input from files. MATLAB supports several
approaches to file I/O, and we will learn how to exploit the most important
ones in this section. Each approach is defined by the type of file used for I/O,
and MATLAB provides sets of functions to work with several types, the most
important being Mat-files, Excel files, text files, and binary files. We treat each
of these file types in separate sections below, but first we will learn how to
find the files we need.

Moving Around
Files are created, named, renamed, moved, and deleted by the Operating Sys-
tem of the computer on which they reside. The three most common operating
systems are Windows®, Mac OS®, OS X®, which is the name for Mac OS 2012,
and Linux®. These operating systems are different in many respects, but they
behave very similarly with regard to files. One difference is that, while Win-
dows and Mac OS (we will use “Mac OS” for all versions including OS X) re-
fer to a named collection of files as a “folder”, Linux refers to it as a “direc-
tory”. MATLAB uses both terms, and so does this book. We will often use the
unbiased term “folder-directory” to emphasize their equivalence.

As we saw in Introduction to MATLAB, when MATLAB is run without chang-
ing the default layout of its Desktop, the Command Window is situated be-

tween a “Current Folder” window on its left and a vertical stack of two win-
dows on its right—“Workspace” and “Command History”. An example is
shown in Figure 2.50.

That window on the left gives the name of the “Current Folder”, known as
the “Current Directory” in Linux, and it displays a list of files in that folder-
directory. You already know that the current folder is the first place that
MATLAB looks to find M-files (it looks in the list of folders in the Path if it
doesn’t find what it is looking for there). The current folder has another im-
portant meaning: It is the first folder-directory in which MATLAB looks for
files that are to be read for input, and, it is the place that it will put any new
file that is created to hold output data (unless we tell it explicitly to put the
new file elsewhere).

229

Figure 2.50 MATLAB desktop with the Current Folder window on the left side.

It is possible to change directories using the Current Folder window, using
mouse clicks just as you would when using your operating system’s normal
folder-directory navigation windows, but it is also possible to do it by means
of the MATLAB command cd , which stands for “change directory”. Further-
more, it is possible to see the name of the current folder-directory with the
command pwd (“print working directory”, where “working” means the same
thing as “current”), and it is possible to list the names of the files in the cur-
rent directory using the command ls (“list files). Here is an example of the
use of these commands:

>> pwd

ans =

/Users/akos/Documents/MATLAB/utilities/statistics

The command pwd returns a string containing the complete path of the cur-
rent folder. The slashes separate names of folder-directories, and this string
tells us that the current drive contains the folder-directory Users, which con-
tains the folder-directory akos, which contains Documents, which contains
MATLAB, which contains the folder-directory utilities, which (finally!)
contains the folder-directory statistics. A parent-child metaphor is often
used instead of the “container” description: Thus, we may say for example
that the folder utilities is the “parent” of statistics, and
statistics is the “child” of utilities. A parent folder-directory can
have any number of children, as with real parents and children, but a child
can have only one parent folder-directory. In that sense, the analogy to the
real world isn’t perfect. Also, there is a metaphor involving altitude. Since the
parent is a step higher in the hierarchy than the child, we tend to think of
utility as being a step higher than statistics with the drive itself sit-
ting at the very top. Note that on Windows, drives are named by letters, such
as C or D, so the path above will look like this if MATLAB is running under
Windows:

>> pwd

ans =

C:/Users/akos/Documents/MATLAB/utilities/statistics

Since statistics is the last name in the string, it is the name of the current
folder-directory.

It is common to say that “we” are “in” the current folder-directory (the “con-
tainer” metaphor), so, let’s say it: We are now in statistics. Now let’s
have a look around. We can do that with the command ls:

>> ls
.
..
confidenceinterval.m
matlab.mat
power_curve.m
rsquare.m
student_t.m

This example was run on Windows, for which the command ls returns a
two-dimensional array of characters, with one name on each row in alpha-
betical order (padded with blanks on the right where necessary) with each
filename that it finds in the current folder-directory (in this case in statistics)
occupying one row. On Mac OS, the output looks similar, but it is a row vec-
tor of characters as opposed to a two-dimensional array.

The list of names also includes the names of any folder-directories that it
finds in there. There happen to be no folders inside statistics, so there
are none listed. If there were, they would look like files with no dot and no
file extension after the dot. Some files have no dot in the name. In that case
there is no indicator to tell us whether a name belongs to a file or not. If we
compare the list returned by ls with the list of files shown for the Current
Folder in Figure 2.50, we see that they agree, but the first two lines returned
by ls, the single dot and the double dot, are absent from the list in the figure.

230

The single dot stands for the current directory, and the double dot stands for
the parent directory, which in this case is the directory named utilities.

Suppose that we decide that we would rather be up in the parent directory
utilities instead of in statistics. We have a couple options: the hard
way and the easy way. The hard way looks like this:

>> cd '/Users/akos/Documents/MATLAB/utilities'

Note that we used single quotes around the string this time. They are neces-
sary only when the filename includes one or more blank characters. Let’s go
back down into statistics for a minute, so we can go back up again:

cd statistics

Now let’s move up to the parent directory the easy way. We still use cd, but
we specify .. (two dots) instead of a name:

>> cd ..

This command moved us up to the parent directory, and to prove it, we use
pwd again:

>> pwd

ans =

/Users/akos/Documents/MATLAB/utilities

As expected, we are now in utilities.

As you might have guessed, since the single dot stands for the current folder-
directory, the command cd . accomplishes nothing! Its presence in the list
returned by ls makes little sense in another way too: it suggests that a direc-
tory is inside itself. We will leave this deep philosophical question to those
who like to work on deep philosophical questions.

Other commands allow the creation of a new folder-directory—mkdir, the
deletion of a directory—rmdir, the moving of a file from one place to an-
other—movefile, the copying of a file—copyfile, and the deletion of a
file—delete. Each of these commands is relatively simple to use, as can be
seen by reading their descriptions with the help command.

That is all we need to know about moving around in folder-directories. It’s
time to learn how to manipulate the files inside them.

MAT-files
As we found in the very first section of Chapter 1, Introduction to MATLAB,
in the subsection named, Saving variables, when we complete a session of
programming with MATLAB, we often find that there are numerous vari-
ables in the Workspace with values that we would like to save for our next
session. We can see the names of these variables with the command whos,
and we can look at the values of the individual variables by typing their
names into the Command Window, or printing them with fprintf, but un-
less we write those numbers down on paper or type them into some file, they
will be lost when we shut down MATLAB. For example, suppose we type
whos and see this:

>> whos
Name Size Bytes Class Attributes

A 1x5 40 double
B 1x5 40 double
C 1x5 40 double
a 140x42 11760 char
ans 1x61 122 char
b 1x1 8 double
c 1x1 8 double
d 1x1 8 double
ii 1x1 8 double
x 1x1 8 double
y 1x1 8 double

231

As in Saving variables, we can save these variables into a MAT-file simply by
issuing the command save,

>> save
Saving to:
/Users/akos/Documents/MATLAB/Project 8/Plan 9/matlab.mat

MATLAB responds with a comforting message that tells us that it has saved
all our variables. Specifically, it has created a MAT-file, named it,
imaginatively enough, matlab.mat, placed it in the current folder-
directory, which happens to be called Plan 9, and saved every variable
including the variable’s name, type, size and shape, and the values of all its
elements, in that file. We can now exit MATLAB and, if we want to, shut
down our computer, and when we restart MATLAB, we can get these
variables back by putting MATLAB back into the directory

 /Users/akos/Documents/MATLAB/Project 8/Plan 9/

and typing the command load, which, as we also saw in Saving variables,
tells us that it read the data from a MAT-file,

>> load
Loading from: matlab.mat

All our variables are right back in the workspace, as can easily be verified
with whos, and they all have the same values they had when we last used
save in this directory.

If you try to inspect a MAT-file with any word processor or editor, including
the MATLAB editor, you will see nothing but a hodgepodge of strange charac-
ters. That happens because, in order to save space, MATLAB uses a com-
pressed format that is not compatible with word processors and text editors.
Many word processors use their own special formats, while text editors, like
MATLAB’s m-file editor, TextEdit on OS X, or Notepad on Windows work
with text files. We will see that MATLAB can save data into text files, and we
will learn what text files are in a subsection below, aptly entitled, “Text files”.

You can repeat this process as many times as you wish: work, save, load…. It
is important to know though that each time you save into matlab.mat, all
previous variables recorded in that file are removed and replaced by the cur-
rent set. It is not a cumulative save. On the other hand, load is cumulative.
When you load from a MAT-file, the current variables in the workspace are
not removed. If, for example only the variables Eros and Tanna exist in the
workspace and only the variables Jeff and Paula exist in matlab.mat,
then load will cause Jeff and Paula to be added to the workspace, and
Eros and Tanna will still be there. There is no danger of losing a variable
from the workspace. The only caveat is that if the same variable exists in both
the MAT-file and the workspace, then the current value of the variable and its
type, shape, and size in the workspace will be lost. They will be replaced by
the value, type, shape, and size that they have in the MAT-file.

Many options are available with the two commands, save and load. You
can read about them in the Help facility, but we will look at the two handiest
ones.

First, you can specify a specific MAT-file name.

>> save Plan9

This time, MATLAB saves the workspace to a file named Plan9.mat in the
current directory, but it does not tell us what it did (because we do not need
to be told a name that we just typed). The workspace in Plan9 can be re-
stored with the command

>> load Plan9

Second, when you specify the MAT-file name, you can also specify that only
a subset of the variables in the workspace be saved into the MAT-file by list-
ing them (without commas). For example,

>> save Plan9 x y

232

Excel® Files
The program Microsoft Excel® is a widely used data-analysis tool that organ-
izes data into spreadsheets, also known as “worksheets”. Excel utilizes spe-
cial file formats that allow the user to store a set of these spreadsheets, which
is called a “workbook,” in one file. There are ten or so formats in which Excel
can store a workbook, partly to allow different features to be supported, but
also to maintain backward compatibility with previous versions of the pro-
gram. Excel is used so heavily throughout the world that many other data-
analysis application programs now provide the option of storing their results
in one or more of Excel’s formats, and of reading files written by Excel and
Excel files written by other applications. MATLAB is one such application.

Reading Excel files
Let’s suppose that some application has generated an Excel file containing a
workbook with just one spreadsheet containing the average monthly high
and low temperatures and average monthly precipitation for Nashville, Ten-
nessee, or that we have used Excel to enter the information by hand. Figure 2.
51 shows how the spreadsheet appears while it is open in Excel.

We can tell MATLAB to read the data in that file by using the function
xlsread. Here is an example session:

>> [num,txt,raw] =
xlsread('Nashville_climate_data.xlsx');

The input argument is the name of the Excel file in the form of a string. Note
that the file name in this example has the file extension xlsx. This extension
identifies the version of Excel file being read. The version is xlsx, and it is
stored in an xlxs-file. MATLAB can read all xlsx-files and xls-files, and, if
Excel is installed on the computer, then MATLAB can read any version of
Excel file that is supported by the installed version of Excel.

The first output argument, num, will receive the values of only those cells that
contain numbers; the second argument, txt, will receive the values of only
those cells that contain text. The last argument, raw, will receive all the data
in the spreadsheet. The types of these output arguments differ. The first argu-
ment is always of type double:

>> class(num)
ans =
double

233

Figure 2.51 Excel spreadsheet

The other two are of type cell:

>> class(txt)
ans =
cell

>> class(raw)
ans =
cell

Let’s take a look at the contents of the outputs, starting with the first output
variable, num:

>> num
num =

46 28 3.98
51 31 3.7
61 39 4.88
70 47 3.94
78 57 5.08
85 65 4.09

NaN NaN NaN
NaN NaN NaN
89 69 3.78
88 68 3.27
82 61 3.58
71 49 2.87
59 40 4.45
49 31 4.53

The size of num is 14-by-3. MATLAB determines these dimensions by finding
the smallest rectangular array of cells that contains all the numbers in the
spreadsheet, ignoring cells that contain non-numeric values. In this case the
rectangle comprises the cells in rows 5 through 18 and columns C through E.
It then copies the contents of the cell in the upper left corner of that rectangle,
which is cell C5, into num(1,1), and copies the rest of the cells in that rec-
tangle into elements in the array that have the corresponding horizontal and
vertical offsets from their respective upper left corners. If a cell within this rec-
tangle does not contain numeric data, either because there is non-numeric
data in it or because it is empty, then the value put into the corresponding

element of num is NaN, which, as we learned in Data Types, means “Not a
Number”. In this case, the NaNs in num(7,:) are there because of the empty
cells of Row 11 of the spreadsheet, and the NaNs in num(8,:) are there be-
cause the values in the cells of Row 12 are the strings, “High temp (F)”, “Low
temp (F)”, and “Precip (in)” and hence, are non-numeric.

Next, we look at the second output variable, txt:

>> txt
txt =
 [1x30 char] '' '' '' ''
 [1x40 char '' '' '' ''
 '' '' '' '' ''
 '' '' 'High temp (F)' 'Low temp (F)' 'Precip (in)'
 '' 'Jan' '' '' ''
 '' 'Feb' '' '' ''
 '' 'March' '' '' ''
 '' 'April' '' '' ''
 '' 'May' '' '' ''
 '' 'June' '' '' ''
 '' '' '' '' ''
 '' '' 'High temp (F)' 'Low temp (F)' 'Precip (in)'
 '' 'July' '' '' ''
 '' 'Aug' '' '' ''
 '' 'Sep' '' '' ''
 '' 'Oct' '' '' ''
 '' 'Nov' '' '' ''
 '' 'Dec' '' '' ''

The variable txt is an 18-by-5 array of cells, and MATLAB determines these
dimensions in a manner similar to the way it determined them for num, but
this time it finds the smallest rectangular array of cells that contains all the
strings in the spreadsheet, ignoring cells that do not contain strings. It copies
the string in the upper left corner of the rectangle into txt(1,1) and places
the rest of the strings in the corresponding relative positions in txt. If a cell
within this rectangle does not contain a string, either because it contains non-
string data or because it is empty, then an empty string is placed in the corre-
sponding element.

234

Finally, we look at the third output variable, raw:

>> raw
raw =
 [1x30 char] [NaN] [NaN] [NaN] [NaN]
 [1x40 char] [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] 'High temp (F)' 'Low temp (F)' Precip (in)'
 [NaN] 'Jan' [46] [28] [3.98]
 [NaN] 'Feb' [51] [31] [3.7]
 [NaN] 'March' [61] [39] [4.88]
 [NaN] 'April' [70] [47] [3.94]
 [NaN] 'May' [78] [57] [5.08]
 [NaN] 'June' [85] [65] [4.09]
 [NaN] [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] 'High temp (F)' 'Low temp (F)' 'Precip (in)'
 [NaN] 'July' [89] [69] [3.78]
 [NaN] 'Aug' [88] [68] [3.27]
 [NaN] 'Sep' [82] [61] [3.58]
 [NaN] 'Oct' [71] [49] [2.87]
 [NaN] 'Nov' [59] [40] [4.45]
 [NaN] 'Dec' [49] [31] [4.53]

This variable, which contains all the data in the spreadsheet, is an 18-by-5 ar-
ray of cells. (Its dimensions happen to be the same as those of txt, but that is
not always the case.) MATLAB determines these dimensions by finding the
smallest rectangle that contains all the data in the spreadsheet (the rectangle
does not necessarily start with cell A1. In fact, it will include that cell if and
only if there is data in the first column and/or the first row). In this case the
rectangle is the one whose upper left cell is A1 and whose lower right cell is
F19. After forming raw, MATLAB copies the contents of every cell in the
spreadsheet into the corresponding cell in raw, placing NaN where ever the
corresponding spreadsheet cell is empty.

If only one of the second or third outputs is desired, one of the following for-
mats can be used,

>> num = xlsread(filename);
>> [~,txt] = xlsread(filename);
>> [~,~,raw] = xlsread(filename);

Often, we want to read from a specified area within an Excel workbook. That
can be done by including an optional second argument, or optional second

and third input arguments, to specify the spreadsheet within the workbook
and the place within the spreadsheet that the data are to be written. Here is
an example:

>> num = xlsread('Nashville_climate_data',1,'D15')
num =
 61

The second argument instructs xlsread to read sheet 1, which is always the
first sheet in a workbook. The third argument instructs xlsread to read
only the contents of cell D15 in that sheet. We note that Excel specifies the col-
umn of a cell first (via one or more letters), and the row second. For example,
D15 means column four and row fifteen, whereas MATLAB uses the opposite
order: (15,4) means row fifteen and column four.

The third argument can also specify a range of cells, using the same notation
that is used in Excel. For example,

>> num = xlsread('Nashville_climate_data',1,'D15:E17')
num =

61 3.58
49 2.87
40 4.45

Note that the colon in the third argument is not MATLAB’s colon operator,
but merely a character in the string. It indicates that 'D15:E17' specifies a
rectangular array whose upper left corner is the cell D15 and whose lower
right corner is E17.

A modification of the second argument is allowed. Instead of a number (posi-
tive integer) it may be a string. In that case it is treated as the name of a work-
sheet. Since the user has not renamed the first sheet in
Nashville_climate_data.xlsx, it has the default name, Sheet1. Here is
an example, in which the sheet name is used:

235

>> num =
xlsread('Nashville_climate_data','Sheet1','D15:E17')
num =

61 3.58
49 2.87
40 4.45

If a non-existent sheet is specified, MATLAB returns the empty matrix ([]).
There is no error message, because specifying a non-existent sheet is not an
error. There is nothing there, so nothing is returned.

Writing Excel files
If Excel is installed on a Windows computer in which MATLAB is being run,
then MATLAB can generate an Excel spreadsheet with the function
xlswrite. (For Macbook users, MATLAB provides a somewhat limited alter-
native: xlswrite writes text files instead of Excel files. Only numeric arrays
can be written. Each row is written on a separate line and the numbers on a
row are separated by commas. This format, which is called the “comma-
separated value” format, or CSV format, is written and read by many applica-
tions including Excel. More general writing of text files is taken up in the next
section.)

>> xlswrite('foo.xlsx',raw)

As for xlsread, the first input argument is a file name. It is the name of the
Excel file into which we wish to write data. The second input argument is a
cell array. In this case we are using raw, which is the same cell array that we
just generated above with our call to the function xlsread. If the file,
foo.xlsx, does not exist in the current folder-directory, it will be created
there, and the data in raw will be written into it. If the file foo.xlsx does
exist in the current folder-directory, then the data in raw will be written into
it with no need to create a new file. Only those elements in raw that do not
contain NaN will be written, and each such element in raw will be written
into the cell located at the same position relative to the upper left corner of
the spreadsheet (cell A1) as the corresponding element in raw relative to

raw(1,1). The rest of the cells in the spreadsheet will remain as they were
before this call of xlswrite.

For example, if raw is the same cell array that we saw in the previous section,
then the cell A1 (column 1, row 1) in foo.xlsx will receive the value stored
in raw(1,1) (row 1, column 1), which happens to be a 1x30 string. If there is
data there already, it will be replaced. The cell B2 (column 2, row 1) will re-
main unchanged, because the element of raw at that cell’s corresponding po-
sition, raw(1,2) (row 1, column 2) contains NaN. Thus, if there is data there
already, it will remain there, and if it is empty, it will remain empty.

If the spreadsheet being written into is empty, as it would be if the file
foo.xlsx did not exist before it was created by xlswrite, then the con-
tents of foo.xlsx will be identical to that of the spreadsheet
Nashville_climate_data.xlsx, from which raw was obtained using
xlsread.

To understand better what happens when we overwrite data, let’s assume
that the command above has been carried out. The resulting spreadsheet will
look like that of Figure 2.51, except that there will be no formatting of the
cells, such as the grid of lines drawn around some of the cells in that original
spreadsheet. Suppose we now give this command:

>> xlswrite('foo.xlsx', {'Hello',45});

The resulting spreadsheet is shown in Figure 2.52

236

It can be seen that the string that originally appeared in cell A1 has been re-
placed by the string, “Hello” and that the formerly empty cell, B1 now con-
tains the number 45. The rest of the cells remain as they were written by the
previous command.

When we write a file with xlswrite, we may want to write only into a speci-
fied area. That can be done with optional input arguments three and four,
which specify the spreadsheet within the workbook and the upper left corner
of the rectangular area to be written. These arguments have the same form
and meaning as the optional second and third arguments of xlsread: argu-
ment three is either a positive integer that gives the sheet number or a string
that gives the sheet name, and argument four is a string that specifies the
range of cells to be written in the spreadsheet. There is an important differ-

ence, however. If there is no colon (:) in the fourth argument, then it is inter-
preted to mean the upper left corner of the range that will be written. In other
words, when there is no colon, the third argument specifies the starting point
of the range to be written instead of the range itself. For example, if we
wished to write Hello, 45 into cells C20 and C21 of the first sheet, we could
give this command:

xlswrite('foo.xlsx',{'Hello',45},1,'C20');

If a colon is included and the range is smaller than required to accommodate
the array being written, then only that part of the array that fits into the speci-
fied range will be written. Thus, the following function call has the same ef-
fect as the one above.

xlswrite('foo.xlsx',{'Hello',45},1,'C20:D20');

The following results in only Hello being written into cell C20:

xlswrite('foo.xlsx',{'Hello',45},1,'C20:C20');

The third argument specifies that we wish to write into the first sheet in the
workbook. As with xlsread, this argument can also be a string containing a
sheet name. If a sheet with that name exists, the data will be written into it. If
not, a new sheet will be created in the workbook foo.xlsx with the speci-
fied name, and the data will be written into that new sheet.

There are other variations on the use of xlsread and xlswrite, which
can be found by consulting MATLAB’s Help system, but the approaches that
we have shown here will handle most tasks quite well. After trying an exam-
ple or two, you should find not only that Excel spreadsheets provide an easy
way to communicate with other applications but also that with the help of
Excel itself, you can do additional analysis of the data between MATLAB ses-
sions.

237

Figure 2.52 Generated Excel spreadsheet

Text Files
A text file is a file that contains characters (i.e., letters, numbers, and punctua-
tion marks) encoded in a standard format, such as ASCII, Unicode, or UTF-8.
We discuss the ASCII encoding scheme in detail in the subsection named The
ASCII encoding scheme within the section Data Types. Fortunately, however,
it is not necessary to know the encoding scheme in order to read and write
text files with MATLAB because the encoding is handled for you behind the
scenes. ASCII is the oldest of the schemes for encoding characters and is a
subset of all of the other commonly used schemes. Because it is always part
of any encoding scheme for text files, it is common to refer to a text file as “an
ASCII file”, even if the particular encoding scheme is unknown or is known
to be different from ASCII. Newer encoding schemes provide thousands of
codes, whereas ASCII is limited to only 128 codes. Each of these codes can be
stored in a single byte (with the first bit always equal to zero). A mere 128
codes was enough for those who developed ASCII originally because they
used only the English alphabet, but it is inadequate for handling other lan-
guages, and, as a result, new schemes have been developed over the interven-
ing years, involving two, three, four, or more bytes. MATLAB uses the de-
fault scheme provided by the operating system on which it is running. (You
can determine the name of that scheme with this command, feature
DefaultCharacterSet.)

Opening a text file
A key difference between text files and both MAT-files and Excel files is that,
before you read or write into a text file, you must “open” the file, and when
you are through reading and writing to it, you must “close” it. As usual
MATLAB provides a function for everything you need to do, including open-
ing and closing files. These functions are easy to use. However, they mean lit-
tle in isolation from the functions for writing and reading text files, so we will
explain the functionality of opening, writing, reading, and closing text files
via examples that show how to use all of these functions together. Our first
example is a function named write_temp_precip_txt, which opens a

text file whose name is passed to the function as an argument, and which
writes climate data into that text file. Here is an example of the function in
action:

>> write_temp_precip_txt('Climate.txt')
>>

We show the Command prompt after the command to make it clear that it
writes nothing to the Command Window. Instead, it has written data into a
file named 'Climate.txt'. We chose the file extension txt, not because
the function requires it, or because it means anything special to MATLAB,
but because it is universally recognized as an extension that means that the
file is a text file. So, how can we look at the contents? Well, we will see below
how to do that with MATLAB, but we can also do it with any other applica-
tion designed to read text files. On Mac OS, TextEdit is the default program
for looking at .txt files. When we open the file, we see the window shown
in Figure 2.53.

If you look carefully at the data being written, you might recognize it as the
climate data used in the Excel examples above. Now lets look at the code that
generated this file:

238

Figure 2.53 Text file open in TextEdit

function write_temp_precip_txt(filename)

Title_1 = 'Climate Data for Nashville, TN';
Title_2 = '(Average highs (F), lows (F), and precip (in)';
Label_1 = ' High ';
Label_2 = ' Low ';
Label_3 = 'Precip';
Mo_1 = {'Jan','Feb','March','April','May','June'};
Mo_2 = {'July','Aug','Sep','Oct','Nov','Dec'};

Data_1 = [
 46 28 3.98
 51 31 3.7
 61 39 4.88
 70 47 3.94
 78 57 5.08
 85 65 4.09
];
Data_2 = [
 89 69 3.78
 88 68 3.27
 82 61 3.58
 71 49 2.87
 59 40 4.45
 49 31 4.53
];
fid = fopen(filename,'w+t');
if fid < 0
 fprintf('error opening file\n');
 return;
end
fprintf(fid,'%s\n',Title_1);
fprintf(fid,'%s\n',Title_2);
fprintf(fid,'\n');
fprintf(fid,' %s%s%s\n', ...

Label_1,Label_2,Label_3);
for ii = 1:size(Data_1,1)
 fprintf(fid,'%5s: ',Mo_1{ii});
 fprintf(fid,'%5.2f,%5.2f,%5.2f\n',Data_1(ii,:));
end
fprintf(fid,'\n');
fprintf(fid,' %s%s%s\n', ...

Label_1,Label_2,Label_3);
for ii = 1:size(Data_2,1)
 fprintf(fid,'%5s: ',Mo_2{ii});
 fprintf(fid,'%5.2f,%5.2f,%5.2f\n',Data_2(ii,:));
end
fclose(fid);

The first new feature in this example is the statement, fid = fopen(file-
name,'w+t'). The function fopen requires at least one input argument,
and it must be a string. That string contains the name of the file to be opened.
The returned value is an integer. We have captured this integer in the vari-
able fid, which is mnemonic for “file identifier”. This number is needed
when we call functions to write to this file or read from it.

The second input argument tells fopen whether the file is going to be writ-
ten into or not. If there is no second argument, then the file will be opened as
a “read-only” file. In that case, MATLAB will not allow any writing to the
file. This is a good rule, because there is often precious data in a file to be
read, and it might be disastrous to change its contents by accidentally calling
a function that will write over the current contents. In this case, however, we
want to write into the file, so we give as a second argument 'w+t'. The sec-
ond argument to fopen is called the file “permission”, and it tells us whether
the file will be read or written, whether its previous contents will be erased,
whether a non-existent file should be created, and whether the file should be
treated as a text file or a binary file. In this case, the ‘w’ means that we want to
be permitted to write to the file, discarding any previous contents, the ‘+’
means that if the file does not exist we want it to be created, and the ‘t’
means that we want the file to be treated as a text file.

239

Table 2.21 Permissions for opening text files indicated by second argument to fopen

2ND
ARGUMENT

PERMISSION

'rt' open text file for reading

'wt' open text file for writing; discard existing contents

'at' open or create text file for writing; append data to end of file

'r+t' open (do not create) text file for reading and writing

'w+t' open or create text file for reading and writing; discard existing contents
'a+t' open or create text file for reading and writing; append data to end of file

Table 2.21 shows six important file permissions that can be requested for text
files with fopen. They all end with ‘t’, which is mnemonic for “textfile.”

The permission argument actually represents a request—which may not be
granted! When the MATLAB interpreter executes fopen, it passes the re-
quested permission over to the operating system. If the operating system can,
it will grant the request, if not, it will not. Success or failure can be deter-
mined by examining the value of the returned file identifier (fid in this
case). If the file exists in the current directory, or in any directory on the
MATLAB search path, it will be found and opened for writing. If the file is
found or if the file is created, and if the operating system allows the file to be
opened with the requested permission, then the open is successful and a posi-
tive integer will be returned as the file identifier. If not, then the file name
may be illegal (contains a character that the operating system does not allow
in file names), the operating system may have locked the directory against
file writing or creation, or some other operating-system-level problem may
be keeping fopen from procuring the right to write to the file.

If the file is not opened successfully, then fopen will return the number −1,
which is not a file identifier, but instead is a signal denoting that no file was
opened. It is always a good idea to check for this event, as we have done
above with the if-statement: if fid < 0. Otherwise, the behavior of the pro-
gram will often be quite mysterious, and a long debugging sessions may be
required before it is realized that the problem is that no file was ever opened,
so nothing was written or read.

If the file is opened successfully, then an integer greater than 2 will be re-
turned: 3 for the first file that is opened, 4 for the second one, etc. The value 1
means Command Window. The values 0, and 2 are reserved.

Writing to a text file
Now it is time to learn how to write data into a text file. Good news! You al-
ready know how to do it! Well, almost. Writing to a text file is done with

fprintf, and all you have to do in order to tell it to write to a text file in-
stead of the Command Window is to give it one extra argument. The extra
argument is given first. It is the file identifier, which in our example is con-
tained in the variable fid. It can be seen that in the example above every
fprintf statement includes fid as the first argument, and therefore, every-
thing will be written into the file that was opened with this file identifier,
which in our case is Climate.txt. Everything else is the same. In fact,
while you are developing an application that writes to a text file, it is possible
to see how the text is formatted without having to look in a file by temporar-
ily setting fid = 1, which means that the “file” being written is not a file at
all, but is the Command Window.

Closing a text file
Once we are through writing or reading a text file, we must “close” it. Clos-
ing a file is done with the function fclose. It requires one argument. In the
example above, it can be seen that the argument is fid, which means that we
are closing the file opened with the file identifier stored in fid. Any file that
has been opened must be closed, because, if we leave it open, then some
other applications may not be able to access it. For example, if we want to
look at our text file with TextEdit, and we have omitted the call to fclose,
we will see an error saying that it is locked by another user or is open in an-
other application. In the event that this happens, you can determine which
files are open in MATLAB by calling fopen with the argument 'all'. It will
return a list of the open files. You can then close them one at a time with
fclose. Alternatively, fclose('all') will close all open files.

Displaying a text file with MATLAB
We saw above how to display the contents of a text file using a program pro-
vided by the operating system (TextEdit). It is also easy to display a text file
in MATLAB. That can be done with a simple command named type, as fol-
lows:

240

>> type Climate.txt

Climate Data for Nashville, TN
(Average highs (F), lows (F), and precip (in)

High Low Precip
 Jan: 46.00,28.00, 3.98
 Feb: 51.00,31.00, 3.70
March: 61.00,39.00, 4.88
April: 70.00,47.00, 3.94
 May: 78.00,57.00, 5.08
 June: 85.00,65.00, 4.09

High Low Precip
 July: 89.00,69.00, 3.78
 Aug: 88.00,68.00, 3.27
 Sep: 82.00,61.00, 3.58
 Oct: 71.00,49.00, 2.87
 Nov: 59.00,40.00, 4.45
 Dec: 49.00,31.00, 4.53

The function type prints one blank line followed by the line-by-line contents
of the file. To get an idea of how this process of reading from a text file to the
Command Window works, we provide a simple function that we have
adapted from an example provided by the MATLAB Help system, which pro-
duces exactly the same output to the Command Window as the command
type:

function view_text_file(filename)
fid = fopen(filename,'rt');
if fid < 0
 fprintf('error opening file\n');
 return;
end
fprintf('\n');

% Read file as a set of strings, one string per line:
oneline = fgets(fid);
while ischar(oneline)
 fprintf('%s',oneline) % display one line
 oneline = fgets(fid);
end
fclose(fid);

As can be seen from the second line of the function, we are using the permis-
sion string 'rt' in fopen, meaning that we are requesting that the file be
opened for reading (r) as a text file (t). Before the contents of the file are
read, the command prints a blank line, just as the function type does. The
actual reading is then done by the function fgets. This function gets one
line from the file and returns it as a string, which we have captured in the
variable oneline. The first line is read just before the while-statement be-
gins, then fgets is called repeatedly in the body of the loop. Without our tell-
ing it to do so, fgets skips to the next line of the file each time we call it,
moving line-by-line through the file putting the most recent line read into
oneline, until it gets to the end of the file. When it finds that it is at the end
of file, it returns the number -1, encoded as a double precision number in-
stead of a string, so the type of oneline is double instead of char. This
change of type is used by the control statement of the while-loop—while

ischar(oneline)— to determine whether the end of file has been reached.

The only task remaining after a line is read is to display it in the Command
Window. That is done with fprintf. In the body of the loop, oneline is
printed to the Command Window using the format string '%s'.

Reading data from a text file into variables
As we have seen, it is simple to display the contents of a text file. However, if
it is desired to store data from the file into MATLAB variables for processing,
things are more complicated. Many people are surprised to discover that read-
ing the contents of a text file into variables (other than copying lines as
strings directly into oneline as in the previous example) can be much more
difficult than going the other way, i.e., writing the contents of variables into a
text file! The reason for the difference is that, when we are writing the con-
tents of variables into a text file, we have much more information readily
available. The information we have comprises the type, size, and shape of the
variables that we are writing to the file, but when we wish to the read the con-
tents of a text file into variables, all we have is a stream of characters from the

241

file. The text file, unlike, say, an Excel file, contains no other information. We
must have additional information to know how to parse that stream of charac-
ters into meaningful parts: strings and numbers. It is impossible to know
where the boundaries are between one datum and the next in the file or what
types of variable they should be stored in. Reading the text file into variables
requires detailed knowledge of the order of types of data in the file, and that
knowledge must be incorporated into the code that reads the file. We will
show an example that exploits such knowledge to read parts of a text file into
strings and parts of it into variables of a numeric type.

Our example is a function designed specifically to read files in the format of
Climate.txt. Here is what we mean by “format”:

• Lines 1-4: each contains a string, the third line being blank.

• Lines 5-10: each contains a string followed by three numbers.

• Lines 11 and 12: each contains a string, the first being blank.

• Lines 13-18: each contains a string followed by three numbers.

Our function for reading a file written in this format is shown below. The
lines are numbered for easier reference:

1. function contents = read_temp_precip_txt(filename)
2. fid = fopen(filename,'rt');
3. if fid < 0
4. fprintf('error opening file\n');
5. return;
6. end
7.
8. % Read file as a set of strings, one per line:
9. line_number = 1;
10. oneline{line_number} = fgetl(fid);
11. while ischar(oneline{line_number})
12. line_number = line_number + 1;
13. oneline{line_number} = fgetl(fid);
14. end
15. fclose(fid);
16.
17. % Parse the lines:
18. Title_1 = oneline{1};
19. Title_2 = oneline{2};
20. Labels = oneline{4};
21. for ii = 1:6
22. [Mo_1{ii},~,~,n] = sscanf(oneline{ii+4},'%s:');
23. Data_1(ii,1:3) = sscanf(oneline{ii+4}(n:end),'%f,');
24. end
25. for ii = 1:6
26. [Mo_2{ii},~,~,n] = sscanf(oneline{ii+12},'%s:');
27. Data_2(ii,1:3) = sscanf(oneline{ii+12}(n:end),'%f,');
28. end
29.
30. % Put the parsed data into one output argument:
31. contents{1} = Title_1;
32. contents{2} = Title_2;
33. contents{3} = Labels;
34. contents{4} = Mo_1;
35. contents{5} = Data_1;
36. contents{6} = Mo_2;
37. contents{7} = Data_2;

We run it like this:

>> contents = read_temp_precip_txt('Climate.txt');

If we check the contents of the individual cells in contents, we find the fol-
lowing:

242

contents{1} =
'Climate Data for Nashville, TN'
contents{2} =
' (Average highs (F), lows (F), and precip (in) '
contents{3} =
' High Low Precip'
contents{4} =
'Jan:' 'Feb:' 'March:' 'April:' 'May:' 'June:'
contents{5} =
[

46 28 3.98
51 31 3.7
61 39 4.88
70 47 3.94
78 57 5.08
85 65 4.09

]
contents{6} =
'July:' 'Aug:' 'Sep:' 'Oct:' 'Nov:' 'Dec:'
contents{7} =
[

89 69 3.78
88 68 3.27
82 61 3.58
71 49 2.87
59 40 4.45
49 31 4.53

]

The code in read_temp_precip_txt starts out like that of
view_text_file. In fact, lines 2-6 are identical to those of
view_text_file. Lines 9-15 are similar, but there are three differences.
First, there is no printing (no fprintf). Second, oneline is now a cell vec-
tor, and each line is read into a separate element of it. After the entire file has
been read, it is closed on line 15. After it is closed parsing of information be-
gins. Third, fgets has been replaced by fgetl, which discards new-line
characters.

This function separates the reading of the information in the file from the
parsing of the information in the file. While these operations can be com-
bined, it is easier to keep them separate, so we first capture every line of the
file in oneline and then close the file and begin parsing the contents of
oneline. At this point each element n of oneline contains the correspond-

ing line n of the file, except that the last element oneline(end) contains the
number -1, which, is returned by fgetl(fid) when it has reached the end
of the file whose file identifier is stored in fid, just as fgets(fid) does.

Parsing begins on line 18 of the function. Lines 18-20 of the function copy ele-
ments 1, 2, and 4 of oneline, which contain lines 1, 2, an 4 of the file, as
strings in the variables, Title_1, Title_2, and Labels. Line 3 is blank ac-
cording to our format, so we ignore it.

Lines 21 through 24 of the function parse the contents of elements 5 through
10 of oneline, with lines 22 and 23 parsing each line into two parts. We look
at these two lines separately.

Line 22: [Mo_1{ii},~,~,n] = sscanf(oneline{ii+4},'%s:');

This line extracts the first part of oneline{ii+4}. That first part is the
month abbreviation followed by a colon (':') and it is assigned to Mo_1{ii}.
This parsing is accomplished with the help of a MATLAB function named
sscanf, which means “string scan (i.e., read) using a format”. This func-
tion reads a string, which is its first input argument, and compares it with a
format string, which is its second input argument. The format string tells
sscanf how to interpret the characters in its first argument to produce val-
ues to place into its first output argument. A similar function named fscanf
does the same thing, but takes as its first input argument a file identifier. It
interprets the file as a text file and interprets the characters in the file in the
same manner that sscanf interprets the characters in its first input argu-
ment. In their format strings, both sscanf and fscanf use the same escape
characters and the same format specifiers with roughly the same meanings
that are used by fprintf, whose functionality is described in Programmer’s
Toolbox, when it prints the values of variables to the screen. The meanings of
the most useful format specifiers for sscanf and fscanf are given in Table
2.22.

243

For example, the percent sign in '%s:' means that the next character—in
this case the s—signifies the format of the data. In fprintf, the format speci-
fies the manner in which the data is printed, while in sscanf, the format
specifies the manner in which the data is read (scanned). Here,'%s:' means
that sscanf is looking for a string followed by white space. This pattern
matches the input string up to and including its colon, so we used a colon
here, but we could have used any character. For example, '%sg' would have
the same effect! The matched pattern excluding the white space but including
the colon is assigned to Mo_1{ii}. The white space is very important here. It
serves as a delimiter that separates the string we want (the month abbrevia-
tion plus colon) from the first number. A delimiter is a character or string that
allows a program to know where one part of a sequence ends and the next
part begins without knowing the expected lengths of any of the parts. There
are additional options available for the format string, including field-width
specifiers, number digits to the right of the decimal, and an asterisk to indi-
cate that reading is to be done but no value is to be output—all similar to the
options available with fprintf.

If there were no character after the s in the format string and no white space
in the input string, then sscanf would use %s to devour the digits, decimals,
and everything else in its path until it reached the end of oneline{ii+4}.
However, when it is followed by an ordinary, non-white-space character,
which excludes spaces, tabs, and newlines, it does a look-ahead on each

input character, and when it sees that the next character is white, it stops
shoving characters into Mo_1{ii}. Let’s look at what happens when there is
no character after the %s in the format string. Here is an example, showing
what happens:

>> str = sscanf(' April: 12 ', '%s')
str =
April:12

The leading white space before April , the white space between April:
and 12, and the trailing white space after 12 in the string read by sscanf
have all been discarded. The resulting output string is, therefore, April:12.
The behavior is different when %s is followed by a (non-white) character and
the input contains white space. Here are three examples, using the letter m as
a delimiter:

>> str = sscanf(' April: 12 ', '%sm')
str =
April:
>> str = sscanf(' Aprilm 12 ', '%sm')
str =
Aprilm
>> str = sscanf(' Aprilm12 ', '%sm')
str =
Aprilm12
>> length(str)
ans =
 8

In each case the leading space is skipped, but after any non-white space has
been read, the first subsequent white space causes reading to be suspended,
and whether or not there is a character in the input that matches the character
that follows %s (m in these examples) has no effect on the result. The length of
str, which is 8, shows that the trailing white space is excluded.

The function sscanf actually returns four output arguments (they are ex-
plained in the help system), but here we are using the tilde (~) to skip the sec-

244

Table 2.22 Format specifiers for sscanf and fscanf

SPECIFIER DESCRIPTION OF THE VALUE PRODUCED
c single character

d decimal notation drops fractional part

e, E, f, g, G exponential -or- fixed-point notation: for upper or lower case e

o unsigned octal notation

s string: reads characters up to (not including) first non-white-space

x, X unsigned hexadecimal notation

ond and third output arguments because we are interested only in the first,
which is the argument that receives the value that matches the format string,
and the fourth, which is the argument that receives a number that equals the
index of the next character in the string after the part that matched the format
string. In this case the next character is the first character after the colon. We
use the variable n to receive this index.

Line 23: Data_1(ii,1:3) = sscanf(oneline{ii+4}(n:end),'%f,');

In this line, we make use of n, whose value was set in line 22, in order to give
sscanf only the characters in oneline{ii+4} from its nth character to the
end. This is the part of the line that contains the three numbers separated by
commas. To capture these numbers, we use as the format string '%f,'. Let’s
analyze what happens when ii = 1, for which,

• oneline{ii+4} contains the string, Jan: 46.00, 28.00, 3.98

• n equals 7 (as it does for every value of ii), and

• oneline{ii+4}(n:end) contains the string, 46.00, 28.00, 3.98

When sscanf applies '%f,' to the string being parsed, namely 46.00,
28.00, 3.98, it finds that the %f in the format string matches the 46.00 in
the parsed string and the comma in the format string matches the comma
after the 46.00 in the parsed string. It converts 46.00 into a double-
precision number and copies it into Data_1(ii,1). The next thing that
sscanf does is very interesting (well, at least to people interested in this sort
of thing). It has not reached the end of the string, and yet it has reached the
end of its format string. Instead of issuing an error, it “recycles” its format
string. It continues from where it left off in the string being parsed, which
means that it is now parsing the remainder of the string, which is ' 28.00,
3.98', and it applies its format string, '%f,' again! This second application
of the format string results in 28 being assigned to the output argument’s
next element, Data_1(ii,2). This recycling is continued until sscanf has

reached the end of the string being parsed, which in our example is just one
more time. The result is that Data_1(ii,1:3) now equals [46.00,
28.00, 3.98]. Note that if we had used Data_1(ii,1:2) or
Data_1(ii,1:4) as the output argument, MATLAB would have declared an
error and written a note like this:

In an assignment A(I) = B, the number of elements in B
and I must be the same.

It does this because sscanf has produced a three-element vector as its out-
put, and we have specified a different number of elements for the output ar-
gument. This is not a new rule. It is MATLAB’s standard response for any as-
signment statement in which the number of elements on the two sides of the
equal sign do not agree.

Recycling of the format string allows us to force sscanf to place all the char-
acters in a string into its output argument by means of the format specifier c,
which has the meaning “read one character”, as shown in this example:

>> str = sscanf(' April 12 ','%c')
str =
 April 12
>> length(str)
ans =
 13

Because the reading of one character does not bring sscanf to the end of the
string ' April 12 ', it recycles ‘c’, again and again, putting the suc-
cessive single characters into successive elements of str. Comparing this ex-
ample with the earlier example in which %s was used to read a string with
space reveals the important difference that all the spaces are included in the
output with %c.

There is more to the recycling feature. If sscanf reaches the end of the for-
mat string AND the end of of the string being parsed, while there are ele-
ments of the output argument that have not been given values, sccanf recy-

245

cles both strings until it has reached the end of the argument. Here is an exam-
ple of this behavior:

>> x(1:2) = sscanf('12.1','%f')
x =
 12.1 12.1

Thus, sscanf, not wishing to waste anything, performs a dual recycling:
both strings are used repeatedly.

This recycling of the format string, both single and dual, is a special feature of
MATLAB’s version of sscanf. The name “sscanf” and most of the function-
ality of sscanf was borrowed by MATLAB from the language C, but that
profligate C does not recycle.

Before we leave sscanf, let’s examine one more feature, one that can be
very confusing if it is encountered before it is understood. Let’s suppose that
we had omitted the comma from the format string. Thus, we would have this
command:

Data_1(ii,1:3) = sscanf(oneline{ii+4}(n:end),'%f');

This small change would cause the second and third elements to be read in-
correctly with the result that Data_1(ii,1:3) would be assigned
[46.00, 46.00, 46.00]. Why is 46 assigned repeatedly despite the fact
that there are two additional numbers in oneline{ii+4}(n:end)? The an-
swer reveals the new feature. Since commas are not accepted by the '%f' for-
mat, when sscanf encounters a comma in 46.00, 28.00, 3.98, it stops
converting characters and assigns 46 to Data_1(ii,1). Since there remain
elements in the output argument that have not yet been assigned values,
sscanf then recycles its format string as before, so that it can produce a
value for the next element, which is Data_1(ii,2). So far the behavior is
the same as when there was comma in the format string. However, this time
sscanf is faced with parsing the rest of the string, which is ',28.00,

3.98'. Because the first character in this string is a comma and since the for-
mat string '%f' does not support commas, it is impossible to process the
rest of the string. What sscanf does in this situation is even more interest-
ing. In addition to recycling the format string, it recycles just the initial part of
the string being parsed! It returns to the beginning of 46.00, 28.00,
3.98 and re-applies its format string, which causes 46 to be assigned to Da-
ta_1(ii,2). It continues this dual, partial recycling until all elements have
been assigned values, which in our example is just one more time for Da-
ta_1(ii,3).

It might have been expected (and some might prefer) that instead of risking
the assignment of incorrect values to some of its output arguments, sscanf
would issue an error message and halt execution in this last situation. The
choices instead to resort to dual recycling and to the recycling of part of a
string, are examples of MATLAB’s tendency to continue processing when-
ever possible so that at least some usable results might be produced. This ap-
proach makes sense when a very long process might otherwise be halted just
before it does its most important work, and it also makes sense during debug-
ging, when it might be helpful to see the results of operations that take place
after an operation that would in other systems be halted. However, this be-
havior sometimes makes it possible for very wrong results to be produced.
Thus, it makes even more sense that the programmer should understand thor-
oughly the semantics of sscanf, or of any function, before relying on its re-
sults.

246

Binary Files
The phrase, binary file originally meant a file encoded using binary notation,
but since nowadays all files are encoded in binary notation, the name now
simply means “not a text file”. A binary file contains a stream of bits that can
be decoded directly into numbers the way the computer reads and writes
them, as opposed to being decoded into characters that represent digits in the
way that humans read and write them. Thus, for example, the string '37' con-
sists of two characters, a ‘3’ and a ‘7’, that represent digits which together
mean thirty plus seven, or thirty seven to us humans. In a text file, each char-
acter is encoded as eight bits. The character '3' is encoded as 00110011 and the
character '7' is encoded as 00110111. Thus the text-file encoding of the string
'37' would occupy two bytes, or sixteen bits, and looks like this:
0011001100110111. This is not, however, the way the number 37 is stored in
computer memory when it is assigned to a variable. For example, x = 37
would not put this pattern of zeros and ones into the memory location of x,
instead it would use an encoding scheme called “double-precision”, which
consists of 64 bits and looks like this:

01000000010000101000

We have never worried about either of these encodings—character or double
precision—or the encoding of any of the other types, and fortunately we
won’t have to because MATLAB takes care of those details for us, as do other
programming languages. The important thing to know here is that with bi-
nary files it is possible to copy the actual memory bit patterns directly into a
file, and it is possible to read those bit patterns from the file into variables,
which is a much more efficient way to store and retrieve numbers than using
text files. Fortunately, MATLAB uses standard encoding for all its types,
double precision being one example, which means that many other programs
can read binary files that MATLAB writes and that MATLAB can likewise
read binary files that the other programs write.

As with text files, binary files are best understood via examples. Our first ex-
ample is a function that writes the values from an array into a file, using
double-precision encoding:

function write_array_bin(A,filename)
fid = fopen(filename,'w+');
if fid < 0
 fprintf('error opening file\n');
 return;
end
fwrite(fid,A,'double');
fclose(fid);

Opening a binary file
A binary file must be opened before it can be written or read. The opening
process is almost identical to that of the text file. As can be seen from our ex-
ample, the same function is used to open a binary file as that used to open a
text file—fopen. The only difference is that for a binary file the second argu-
ment 'w+' does not have a 't' at the end, which, as will be recalled means
text file. Other than the fact that the file is to be treated as a binary file instead
of a text file, the meaning is the same: write to the file (w), and if the file does
not exist, create it (+). For binary files, as for text files, fopen returns a file
identifier, and once again it has a negative value if the file cannot be opened
with the requested permission. Table 2.23 shows six important file permis-
sions that can be requested for binary files with fopen.

Writing to a binary file
As for text files, the file identifier is used as an argument in any function that
accesses the data in the file. This time the accessing function is fwrite,
which is designed to write to a binary file. The file identifier is always its first
argument, and its second argument must be the array containing the data to
be written. Only one type of data can be written in a single call to fwrite,
and that data type is given by the third argument. We have chosen to write
the data in double precision, which we indicate by using the MATLAB string

247

'double'. While the type we have specified is the same as the type of the
array whose values we are writing into the file, it is not necessary for them to
be the same. We could, for example, have written the data into the file using
'single' or 'int16' or any other of the many available types (see Date
Types). MATLAB will convert the values in the array to the type we specify
before writing to the file. If no third argument is given, the default type
'uint8' is used. (See the help entry for fopen for other arguments and op-
tions.)

A question occurs when the array is not a vector: What is the order in which
the values are written into the file? The answer to the question about the or-
der of array elements is always the same in MATLAB: column-major order.
We demonstrate below that this order is used when writing binary files.

Closing a binary file
Once we are through writing or reading a binary file, we must “close” it, just
as with a text file. As before, it is closed with the function fclose. It requires
one argument—the file identifier.

Reading data from a binary file into variables
When reading data from a binary file, we face the same problem that we
faced when reading data from a text file: We need to know the format of the
file. However, the problem is usually simpler with binary files, because usu-
ally the file consists of variables that are all of the same type, so all we need
to know is that one type, with no concern about how values of varying types
are organized on a line-by-line basis and where the text ends and the numeri-
cal values begin. If there is more than one type, then we need to know the list
of types in the order they appear and the number of each. We will handle that
situation in the next subsection, but first we will show to handle the simplest,
and most common case. Here is a function that will read any binary file that
consists of just one type:

function A = read_array_bin(filename,data_type)

fid = fopen(filename,'r');
if fid < 0
 fprintf('error opening file\n');
 return;
end
A = fread(fid,inf,data_type);
fclose(fid);

The hard work is done for us by the function fread, which is designed for
binary files. As usual, its first argument is the file identifier. The second argu-
ment determines the maximum number of elements to be read from the file.
We have used inf, which is the default (this argument can be omitted regard-
less of whether there are additional arguments) and means that the maxi-
mum is infinity. In that case, reading continues to the end of file. The third
argument to fread specifies the data type in the file. As with fwrite, the
default type is uint8, but for this function, rather than force the type to be
'double', as in write_array_bin , we have allowed the caller of our func-
tion to specify the type via the input argument data_type. Here is where
the required knowledge of the format of the file being read is used. After the
data is read into A, the file is closed via fclose.

248

Table 2.23 Permissions for opening binary files
indicated by the second argument to fopen

2ND
ARGUMENT

PERMISSION

'r' open binary file for reading

'w' open binary file for writing; discard existing contents

'a' open or create binary file for writing; append data to end of file

'r+' open (do not create) binary file for reading and writing

'w+' open or create binary file for reading and writing; discard existing
contents

'a+' open or create binary file for reading and writing; append data to end of
file

Here is an example of the use of our two functions for accessing a binary file,
one to write it and one to read it (we have set format short):

>> Data_1
Data_1 =
 46.0000 28.0000 3.9800
 51.0000 31.0000 3.7000
 61.0000 39.0000 4.8800
 70.0000 47.0000 3.9400
 78.0000 57.0000 5.0800
 85.0000 65.0000 4.0900
>> write_array_bin(Data_1,'data.bin')
>> B = read_array_bin('data.bin','double')
B =
 46.0000
 51.0000
 61.0000
 70.0000
 78.0000
 85.0000
 28.0000
 31.0000
 39.0000
 47.0000
 57.0000
 65.0000
 3.9800
 3.7000
 4.8800
 3.9400
 5.0800
 4.0900

It might be noticed that Data_1 contains the same data that it did in our cli-
mate example above in the section on text files. The function call,
write_array_bin(Data_1,'data.bin'), specifies Data_1 as the array
to be written to a file and 'data.bin' as the file name. The function call,
B = read_array_bin('data.bin','double'), specifies 'data.bin'
as the file to read and 'double' as the format to use. The values returned by
read_array_bin are put into B, and when we look at B we find that it is a
column vector. An inspection of its values reveals that, as promised,

MATLAB used column-major order to write the elements of Data_1 into the
file.

Additional options for binary files
In some cases as new data is generated, it might make more sense to add the
data to an existing file than to write it to a new one. This might be the situa-
tion, for example, if we received the weather data in Data_2 after we had
written Data_1 into 'data.bin'. Nothing could be simpler! We simply
open 'data.bin' a second time and write the new data into it, BUT, when
we open it, we use a different second argument in fopen. Instead of 'w+'
we use 'a' (for append). Here is a function that does just that:

function append_array_bin(A,filename,data_type)

fid = fopen(filename,'a');
if fid < 0
 fprintf('error opening file\n');
 return;
end
fwrite(fid,A,data_type);
fclose(fid);

and here is the function being called:

>> append_array_bin(Data_2,'data.bin','double')

Now, when we read the file, we see both the data that was already there,
which we have already stored in B above plus the new data appended to it:

249

>> C = read_array_bin('data.bin','double')
C =
 46.0000
 51.0000
 61.0000
 70.0000
 78.0000
 85.0000
 28.0000
 31.0000
 39.0000
 47.0000
 57.0000
 65.0000
 3.9800
 3.7000
 4.8800
 3.9400
 5.0800
 4.0900
 89.0000
 88.0000
 82.0000
 71.0000
 59.0000
 49.0000
 69.0000
 68.0000
 61.0000
 49.0000
 40.0000
 31.0000
 3.7800
 3.2700
 3.5800
 2.8700
 4.4500
 4.5300

Sometimes a binary file contains more than one type of data. It might have
doubles and ints or chars and singles, for example. To read or write
such files, it is necessary to know how many of each type occur and their or-
der. As an example, suppose we want to write the following types into a file:

• three int16s
• some chars
• some singles
• some int32s
• some singles

in that order.

Suppose further that

• the first int16 tells us how many chars there are
• the second int16 tells us how many singles there are
• the third int16 tells us how many int32s there are.

We don’t need to know how many singles there are because they come last,
so we can simply read them until we get to the end of the file. Here is a
custom-made function to write data in that format, followed by a custom-
made function to read it in that same format:

function custom_write_bin(d1,d2,d3,d4,filename)
fid = fopen(filename,'w+');
if fid < 0
 fprintf('error opening file\n');
 return;
end
n1 = length(d1(:));
n2 = length(d2(:));
n3 = length(d3(:));
fwrite(fid,[n1,n2,n3],'int16');
fwrite(fid,d1,'char');
fwrite(fid,d2,'single');
fwrite(fid,d3,'int32');
fwrite(fid,d4,'single');
fclose(fid);  

The first four arguments d1, d2, d3, d4, are vectors containing data to be writ-
ten. Note that the types of these arguments are not specified. They can be any
type, but when they are written to the file, they will be converted, respec-

250

tively, into chars, singles, int32s, and singles. The conversion process
may cause some values to be changed if the new type does not include the
values stored in the arguments. For example, if d1 contains a negative num-
ber, which is outside the range of a char, it will be converted to 0; if d1 con-
tains a non-integer, which cannot be stored as a char, its fractional part (i.e.,
the part to the right of the decimal) will be dropped; if d1 contains a number
greater than 65,535, which it too large to be stored in a char, then it will be
converted to 65,535.

The lines:

n1 = length(d1(:));
n2 = length(d2(:));
n3 = length(d3(:));

determine the number of chars, singles, and int32s that need to be writ-
ten, and the function call

fwrite(fid,[n1,n2,n3],'int16')

writes these three numbers as three separate values of type int16. They be-
come the first three numbers in the binary file.

Once we have written our file, we may want to read it. Even if the file is de-
signed to be read by another application, we will want to read it in MATLAB
as a test to make certain that it is correct. Here is a function that will read a
file in the same format that is written by custom_write_bin:

function [o1,o2,o3,o4] = custom_read_bin(filename)
fid = fopen(filename,'r');
if fid < 0
 fprintf('error opening file\n');
 return;
end
nums = fread(fid,3,'int16');
o1 = char(fread(fid,nums(1),'char'))';
o2 = fread(fid,nums(2),'single');
o3 = fread(fid,nums(3),'int32');
o4 = fread(fid,'single');
fclose(fid);

A new feature of the function fread appears here: a numeric (non-char) ar-
gument after the file-identifier argument. This argument tells the function the
number of values it must read in. In the first instance,

nums = fread(fid,3,'int16');

it is told to read in three values. Since the next argument tells fread that
these values are encoded in the file using type int16, 48 bytes will be read (3
x 16) in three groups of 16 bytes, each of which is decoded as one int16. The
resulting three values are returned as a vector, which we have chosen to store
in the variable nums.

It may be surprising to see the conversion functions in the command,

o1 = char(fread(fid,nums(1),'char'))';

where we have used the char() function to convert the value returned by
fread to the type char. The reader might have expected that, since fread
was told to decode the bytes in the file as a char, that fread would return a
value of type char. Instead, fread by default returns values of type
double. We have used this default and then converted the returned value to
char. However, fread can be told to return values of any type by altering
the precision argument to include both the input type and the output type
separated by the string => (equals, greater-than). For example, we could
have written this statement as follows with the same result:

251

o1 = fread(fid,nums(1),'char=>char'))';

It is not necessary that the input and output values specified in this way be
the same. If, for example, we had wished to return the last values as int64s,
we would have given this command:

o4 = fread(fid,'single=>int64');

Now it is time to see these functions in action. First we make up some data:

>> header = 'Data requested from 4/17/2011';
>> Vega = [8, 7, -145];
>> VLA = [1000, 2000, 700, 0, 48];
>> W9GFO = [1.45e8, 34e6, 4e7, -1e8];

Then, we feed the data to custom_write_bin, which writes the data into a
file named 'Arecibo.dat':

>> custom_write_bin(header, Vega, VLA, W9GFO,
'Arecibo.dat');

At this point, if we use our operating system to look in the current directory,
we will see Arecibo.dat listed there.

Finally, we call custom_read_bin, which reads the data from
'Arecibo.dat' into the four variables o1, o2, o3, and o4:

>> [o1,o2,o3,o4] = custom_read_bin('Arecibo.dat')

o1 =
Data requested from 4/17/2011

o2 =
 8
 7
 -145

o3 =
 1000
 2000
 700
 0
 48

o4 =
 145000000
 34000000
 40000000
 -100000000

It is apparent that the type of o1 is char because, it was printed in character
form in the Command Window. To make certain of that fact we can use the
class function:

>> class(o1)
ans =
char

The other variables are, as expected, of class double:

>> class(o2),class(o3),class(o4)
ans =
double
ans =
double
ans =
double

252

There are other options available for reading and writing, and other functions
for dealing with files, as Table 2.24 shows, but the methods we have shown in
the four examples,

read_array_bin
write_array_bin
read_custonm_bin
write_custom_bin

should handle almost any task required when it comes to reading and writ-
ing binary files with MATLAB.

Additional Online Resources

• Video lectures by the authors:

" Lesson 8.1 Introduction to File Input/Output (15:00)

" Lesson 8.2 Excel Files (9:12)

" Lesson 8.3 Text Files (12:17)

" Lesson 8.4 Binary Files (25:23)

Concepts From This Section

Computer Science and Mathematics:
file
folder and directory
text files
binary files
opening and closing files

MATLAB:
navigating folder-directories

cd
pwd
ls

reading and writing MAT-files
save
load

reading and writing Excel files
opening and closing files:

fopen
permissions
fclose

reading text or binary files
fread
fwrite

253

Table 2.24 Functions for file I/O

FUNCTION FUNCTIONALITY
fclose close a text file or binary file

feof detect the end of a text file or binary file

ftell determine the current position in a text file or binary file

type display the contents of a text file in the Command Window

fseek move to a position in a text file or binary file

frewind move to the beginning of a text file or binary file

fopen open a text file or binary file

fread read from a binary file into variables

importdata read from a text file into variables

textscan read from a text file into variables

fscanf read from a text file into variables

ferror return the error string from the most recent file I/O operation

fwrite write from variables to a binary file

fprintf write from variables to a text file (or the Command Window)

figure:52B1C6A7-7E82-4920-AD40-F2A2D1FC25F1
figure:52B1C6A7-7E82-4920-AD40-F2A2D1FC25F1
https://youtu.be/pEmMrf1VLQY
https://youtu.be/pEmMrf1VLQY
https://youtu.be/MfB1YJR73LQ
https://youtu.be/MfB1YJR73LQ
https://youtu.be/vBm4iXfFbW4
https://youtu.be/vBm4iXfFbW4
https://www.youtube.com/watch?v=pY92LnwolZ8
https://www.youtube.com/watch?v=pY92LnwolZ8

Practice Problems
Problem 1. Write a function named xls_numbers_read that takes one
string as an input argument (the function does not have to check the format
of the input) and returns one array as an output argument. If it is called like
this: A = xls_numbers_read(filename), then it reads an Excel file
whose filename is stored in the input argument and copies only the numeric
data into the array A. For example, suppose the Excel file named
random_stuff.xls looks like this when opened in Excel:

Here is xls_numbers_read operating on this file:

>> Numbers = xls_numbers_read('random_stuff')
Numbers =

NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN

 0.69875 0.50002 0.61767 NaN NaN
 0.19781 0.47992 0.85944 NaN 4.382e+07
 0.030541 0.90472 0.80549 NaN 3.037e+07
 0.74407 0.60987 0.57672 NaN 2.449e+07

NaN NaN NaN NaN 1.784e+07
NaN NaN NaN NaN 1.372e+07
NaN NaN NaN NaN 1.018e+07
NaN 34 -19.567 NaN 9.0085e+06

?

Problem 2. Write a function named xls_strings_read that takes one
string as an input argument (the function does not have to check the format
of the input) and returns one array as an output argument. If it is called like
this: C = xls_strings_read(filename), then it reads an Excel file
whose filename is stored in the input argument and copies into the cell array
C only the contents of the cells that contain strings instead of numbers. For
example, here is the function operating on the Excel file,
random_stuff.xls, which is shown in the previous problem:

>> Strings = xls_strings_read('random_stuff')
Strings =
'' '' '' '' '' '' ''
'' 'First' 'Second' 'Third' '' '' ''
'' '' '' '' '' '' ''
'' '' '' '' '' '' 'A'
'' '' '' '' '' '' 'B'
'' '' '' '' '' '' ''
'' '' '' '' '' '' 'D'
'' '' '' '' '' '' ''
'Oranges' 'Apples' 'Cherries' 'Grapes' '' '' ''
'Potatoes' 'Tomatoes' '' '' '' '' ''

254

Figure 2.54 Problem 1

http://cs103.net/solutions/file-input-output/
http://cs103.net/solutions/file-input-output/

Problem 3. Write a function named xls_areas_read that takes one string
as an input argument (the function does not have to check the format of the
input) and returns one array as an output argument. If it is called like this:
[names,areas] = xls_areas_read (filename), then it reads an
Excel file whose filename is stored in filename and copies the names an areas
of land masses listed in the file, into names and areas. The output argument
names is a column vector of cells with each element pointing to one string;
the output argument areas is a column vector of doubles with the value of
each element equaling one area. The format of the Excel files that it must read
is illustrated by the file continent_areas.xlsx.

The names of landmasses are contiguous in a column, and each has its area
beside it in the neighboring column to the right. Note, that the exact location
in the spreadsheet is not part of the format, nor is the number of areas. Thus,
the function must work properly even if first name is not necessarily in cell
C4 and even if there are more than seven areas or fewer. The use of the func-
tion with continent_areas.xlsx looks like this:  

>> [names,areas] = xls_read_areas('continent_areas')
names =
 'Asia'
 'Africa'
 'North America'
 'South America'
 'Antarctica'
 'Europe'
 'Australia'

areas =
 43820000
 30370000
 24490000
 17840000
 13720000
 10180000
 9008500

?

255

Figure 2.55 Problem 3

http://cs103.net/solutions/file-input-output/
http://cs103.net/solutions/file-input-output/

Problem 4. Write a function named xls_areas_read_w_headings that
has the same input an output arguments as xls_areas_read, and reads
files of areas with the same format that it reads, but it its input file may con-
tain headings as well as names and areas. The only numeric data in the file
are the areas. HINT: Use the function isa to determine where the numeric
cells are an isnan to identify values equal to NaN. An example is given in Fig-
ure 2.56 of an input file displayed in Excel, followed by the application of the
function to that same file:

>> [names,areas] =
xls_read_areas_w_headings('continent_areas_w_headings');

This command has exactly the same output as that shown in the previous
problem. 

Problem 5. Write a function named xls_annotated_array_write that
takes one string and one numeric array as input arguments (the function
does not have to check the format of the input) and returns no output argu-
ment. If it is called like this: xls_annotated_array_write(filename,A),
then it writes A into the an Excel file whose file name is given by the first argu-
ment, and it labels each row and each column. Here is an example call of the
function on a Windows computer (This function will not work on an Apple
computer, nor will any function that writes strings into an Excel spreadsheet).

>> rng(0);  
>> xls_numbers_write('annotated_array.xls',rand(3,7))  

Under Windows the resulting file when opened in Excel is shown in the Fig-
ure.

The required format of the labels can be seen from this example. HINT: The
function num2str may be helpful. It returns a string in which a number
given it as an input argument is written out.

?

256

Figure 2.57 Problem 5

Figure 2.56 Problem 4

http://cs103.net/wp-content/uploads/xls_annotated_array_write.m
http://cs103.net/wp-content/uploads/xls_annotated_array_write.m

Problem 6. Write a function named xls_2_sheets_write that takes one
string and two numeric arrays as input arguments (the function does not
have to check the format of the input) and returns no output argument. If it is
called like this: xls_2_sheets_write(filename,A,B), then it writes A
into the first sheet and B into the second sheet of an Excel file whose file
name is given by the first argument. A and B must each begin on the third
row and second column of its spreadsheet. Here is an example call of the func-
tion on a Windows computer:

 
>> xls_2_sheets_write('results.xls',[123,456],
[1 2 3; 4 5 6])  

On the Windows computer an Excel file will be produced, whose first and sec-
ond sheets are shown below as displayed by Excel:

 

  

Here is an example call of the function on an Apple Macbook:

 
>> xls_2_sheets_write('results.xlsx',[123,456],
[1 2 3;4 5 6])
Warning: Could not start Excel server for export.
XLSWRITE will attempt to write file in CSV format.
> In xlswrite at 175
 In xls_2_sheets_write at 2
Warning: Could not start Excel server for export.
XLSWRITE will attempt to write file in CSV format.
> In xlswrite at 175
 In xls_2_sheets_write at 3  
 

On the MacBook, no Excel file is produced. Instead a text file named
results.csv will be produced. The extension csv stands for “comma-
separated values”. The meaning of comma-separated can be seen from the
file as displayed here by the MacBook’s text editor. Note that only the values
in second input argument made it into the file:

257

Problem 7. Write a function named txt_numbers_write that takes one
string and one numerical array as an input argument (the function does not
have to check the format of the input) and returns no output argument. If it is
called like this, txt_numbers_write(filename,A), then it writes the ele-
ments of A into a text file whose name is stored in filename using the for-
mat called Comma-Separated Values (CSV), in which numbers on the same
row in A appear on the same line of the file, and one number is separated
from the next by a comma and a space. Each number in A is written in fixed-
point decimal representation with at least three digits to the right of the deci-
mal point. If the text file does not exist, then txt_numbers_write must
cause the file to be created. Here is an example call with the resulting output
file displayed by the MacBook text editor:

>> rng(0)  
>> txt_numbers_write('numbers.csv',10*rand(4,7))

Files in CSV format can also be read by Excel, as shown in the Figure.

?

258

Figure 2.58 Problem 7

http://cs103.net/wp-content/uploads/txt_numbers_write.m
http://cs103.net/wp-content/uploads/txt_numbers_write.m

Problem 8. Write a function named txt_annotated_array_write that
takes one string and one numeric array as input arguments (the function
does not have to check the format of the input) and returns no output argu-
ment. If it is called like this:

txt_annotated_array_write(filename,A),

then it writes A into a text file whose name is stored in filename using an
elaborate format that includes labels for each row and each column, as in the
previous problem, but also uses the characters, | and – , to outline the labels
and the data. If the text file does not exist, then
txt_annotated_array_write must cause it to be created. Each number
in A is written in fixed-point decimal representation with at least three digits
to the right of the decimal point. The rest of the required format is shown in
the following example showing the function call and the resulting text file dis-
played by the MacBook text editor:

>> rng(0)  
>> txt_annotated_array_write('annotated_array.txt', 10*rand(7,8))

Problem 9. Write a function named txt_numbers_read that takes one
string as an input argument (the function does not have to check the format
of the input) and returns one array as an output argument. If it is called like
this: A = xls_numbers_read(filename), then it reads a text file whose
filename is stored in the input argument and whose format is identical to that
of the file written by txt_numbers_write, which is described in a problem
above and writes an array in comma-separated-value (CSV) format. After
reading the input file, txt_numbers_read copies the numeric data into the
array A. Here is an example that uses the text file numbers.csv that is
shown above in the same problem above.

>> A = txt_numbers_read('numbers.csv')
A =
 8.147 6.324 9.575 9.572 4.218 6.557 6.787
 9.058 0.975 9.649 4.854 9.157 0.357 7.577
 1.27 2.785 1.576 8.003 7.922 8.491 7.431
 9.134 5.469 9.706 1.419 9.595 9.34 3.922  

?

259

Figure 2.59 Problem 8

http://cs103.net/wp-content/uploads/txt_numbers_read.m
http://cs103.net/wp-content/uploads/txt_numbers_read.m

Problem 10. Write a function named txt_annotated_array_read that
takes one string as an input argument (the function does not have to check
the format of the input) and returns one array as an output argument. If it is
called like this: A = txt_annotated_array_read(filename), then it
reads a text file whose filename is stored in the input argument and whose
format is identical to that of the file written by
txt_annotated_array_write, which is described in an earlier problem
above. Then txt_annotated_array_read copies all the numeric data that
it finds in the file into the output array A. Here is an example that uses the
text file annotated_array.txt that is shown above in the earlier problem:

>> A = txt_annotated_array_read('annotated_array.txt')

A =
 Columns 1 through 7
8.147 9.706 8.491 0.462 1.869 4.984 5.472
9.058 9.572 9.34 0.971 4.898 9.597 1.386
1.27 4.854 6.787 8.235 4.456 3.404 1.493
9.134 8.003 7.577 6.948 6.463 5.853 2.575
6.324 1.419 7.431 3.171 7.094 2.238 8.407
0.975 4.218 3.922 9.502 7.547 7.513 2.543
2.785 9.157 6.555 0.344 2.76 2.551 8.143
5.469 7.922 1.712 4.387 6.797 5.06 2.435
9.575 9.595 7.06 3.816 6.551 6.991 9.293
9.649 6.557 0.318 7.655 1.626 8.909 3.5
1.576 0.357 2.769 7.952 1.19 9.593 1.966

 Column 8
2.511
6.16
4.733
3.517
8.308
5.853
5.497
9.172
2.858
7.572
7.537

Problem 11. Write a function named bin_numbers_write that takes one
string and one two-dimensional numerical array as an input argument (the
function does not have to check the format of the input) and returns no out-
put argument. If it is called like this, bin_numbers_write(filename,A),
then it uses binary format to write into a file whose name is stored in
filename. It writes the number of rows of A followed by the number of col-
umns using the type unint16, followed by the values of the elements of A in
column-major order using the type double. If the file does not exist, then
bin_numbers_write must cause the file to be created. Here is an example
call:

>> rng(0)

>> A = randi(99,8,6)

A =
 81 95 42 68 28 44
 90 96 91 76 5 38
 13 16 79 74 10 76
 91 97 95 39 82 79
 63 95 65 65 69 19
 10 49 4 17 32 49
 28 80 85 70 95 45
 55 15 93 4 4 64

>> bin_numbers_write('numbers.bin',A)

? 

260

http://cs103.net/wp-content/uploads/bin_numbers_write.m
http://cs103.net/wp-content/uploads/bin_numbers_write.m

Problem 12. Write a function named bin_numbers_stats_write that
takes one string and one two-dimensional numerical array as an input argu-
ment (the function does not have to check the format of the input) and re-
turns no output argument. If it is called like this:

bin_numbers_stats_write(filename,A)

then it uses binary format to write into a file whose name is stored in
filename. It writes the number of rows of A followed by the number of col-
umns using the type unint16, followed by the means of the values in each
column followed by the mean of the values in each row, followed by the val-
ues of the elements of A in column-major order with the means and the val-
ues all being written in the type double. If the file does not exist, then
bin_numbers_write must cause the file to be created. Here is an example
call using the same array A generated for bin_numbers_write in the imme-
diately preceding problem:

>> bin_numbers_stats_write('numbers_stats.bin',A)

Problem 13. Write a function named bin_numbers_read that takes one
string as an input argument (the function does not have to check the format
of the input) and returns one array as an output argument. If it is called like
this: A = bin_numbers_read(filename), then it reads a text file whose
filename is stored in the input argument and whose format is identical to that
of the file written by bin_numbers_write, which is described in an earlier
problem. The function reads the dimensions of the two-dimensional matrix
stored in the file and the values of its elements and it returns that matrix in A
such that it has the same dimensions. Here is an example call using the same
file that was generated in the example shown in the earlier problem of
bin_numbers_write being called:

>> A = bin_numbers_read('numbers.bin')

A =
 81 95 42 68 28 44
 90 96 91 76 5 38
 13 16 79 74 10 76
 91 97 95 39 82 79
 63 95 65 65 69 19
 10 49 4 17 32 49
 28 80 85 70 95 45
 55 15 93 4 4 64

?

261

http://cs103.net/wp-content/uploads/bin_numbers_read.m
http://cs103.net/wp-content/uploads/bin_numbers_read.m

Problem 14. Write a function named bin_numbers_stats_read that
takes one string as an input argument (the function does not have to check
the format of the input) and returns one array as an output argument. If it is
called like this:

[col_means,row_means,A] = bin_numbers_stats_read (filename),  

then it reads a text file whose filename is stored in the input argument and
whose format is identical to that of the file written by
bin_numbers_stats_write, which is described in an earlier problem.
The function reads the dimensions of the two-dimensional matrix stored in
the file, the means of its columns, the means of its rows, and the values of its
elements and it returns a row vector of the column means in col_means, a
column vector of the row means row_means, and the values of the matrix in
A such that it has the same dimensions as those read from the file. Further-
more, if the third output argument is omitted from the call, the values of the
matrix are not read from the file to save time. Here are two example calls us-
ing the same file that was generated in the example of shown above of
bin_numbers_write being called:

>> [col_means,row_means,A] =
bin_numbers_stats_read('numbers_stats.bin')

col_means =
 53.875 67.875 69.25 51.625 40.625 51.75

row_means =
 59.667
 66
 44.667
 80.5
 62.667
 26.833
 67.167
 39.167

A =
 81 95 42 68 28 44
 90 96 91 76 5 38
 13 16 79 74 10 76
 91 97 95 39 82 79
 63 95 65 65 69 19
 10 49 4 17 32 49
 28 80 85 70 95 45
 55 15 93 4 4 64  

 
>> [col_means,row_means] =
bin_numbers_stats_read('numbers_stats.bin')

col_means =
 53.875 67.875 69.25 51.625 40.625 51.75

row_means =
 59.667
 66
 44.667
 80.5
 62.667
 26.833
 67.167
 39.167

In the second call the values of the matrix are not read from the file.

262

SECTION 7

In this section, we will cover a number of concepts re-
lated to functions that we could not cover in the section
entitled Functions.

Variable Number Of Arguments
Robust programming requires that your functions be
able to handle function calls with the numbers of input
and/or output arguments varying from one call to an-

other. Sometimes that simply means returning an error
message to the user informing them that the function
needs additional arguments. Other times, it might sig-
nificantly change what your function does. MATLAB
has a series of built-in functions that will help you deter-
mine how your function has been called. The three most
important of these functions are:

Objectives

(1) MATLAB is very flexible
when it comes to the
number of input and
output arguments. We will
learn how this feature can
be utilized.

(2) We will learn how to use a
powerful technique called
“recursion” that makes it
possible to solve difficult
problems elegantly. We will
learn that recursive
functions call themselves!

(3) We will see classical
recursive problems, such as
the greatest common
divisor or the factorial and
will cover additional
recursive problems, such as
prime factorization, in the
practice problems.

(4) MATLAB makes it easy to
make dynamic plots. We
will learn how to employ
animation to create really
powerful visualizations.

Functions were introduced before selection and loops. Hence, some important aspects had to be postponed. This section will give
functions their full power.

Functions Reloaded

263

• nargin: Returns the number of actual input arguments used to call the
function.

• nargout: Returns the number of actual output arguments requested by
the function call.

• narginchk(min,max): Returns a standard error message if your func-
tion was called with fewer than min or more than max arguments.

These functions should be used to determine how many arguments have
been passed to the function in the function call and how many arguments
have been requested as output. The function you write should be able to ac-
commodate the varying possibilities.

The following example problem illustrates the use of nargin and nargout
to write robust functions. The task is to compute a multiplication table of size
either n-by-n or n-by-m. Also, if an optional input argument start is sup-
plied, we will start the multiplication table at that value as opposed to 1. The
default output variable table will contain the actual table, while the op-
tional second output argument will be assigned the sum of all the elements of
the multiplication table. The only way to decide that some of the inputs and
outputs are optional is to look at the code and see whether the function relies
on the nargin and/or nargout to adjust its behavior. Basically, we imple-
ment polymorphism using nargin and nargout.

function [table summa] = multable(n, m, start)
%MULTABLE multiplication table.
% T = MULTABLE(N) returns an N-by-N matrix
% containing the multiplication table for
% the integers 1 through N.
% MULTABLE(N,M) returns an N-by-M matrix.
% MULTABLE(N,M,S) returns a N-by-M matrix
% containing the multiplication table for
% the integers S through N+S-1 and M+S-1.
% [T SM] = MULTABLE(...) returns the matrix
% containing the multiplication table in T
% and the sum of all its elements in SM.
% All three input arguments must be positive
% integers.

if nargin < 1
 error('must have at least one input argument');
end

if nargin < 3
 start = 1;
elseif ~isscalar(start) || start < 1 || ...
 start ~= fix(start)
 error('start needs to be a positive integer');
end

if nargin < 2
 m = n;
elseif ~isscalar(m) || m < 1 || m ~= fix(m)
 error('m needs to be a positive integer');
end

if ~isscalar(n) || n < 1 || n ~= fix(n)
 error('n needs to be a positive integer');
end

table = (start : (n+start-1))' * ...
 (start : (m+start-1));

if nargout == 2
 summa = sum(table(:));
end

Notice that in this relatively long function, the actual work is done in just two
lines:

264

table = (start : (n+start-1))' * ...
(start : (m+start-1));

and

summa = sum(table(:));

The rest of the function are comments that provide information to the help
utility and code that makes sure that the inputs and outputs are correct.

Notice how we use the nargin and nargout functions. If nargin is smaller
than 3, that means that the input argument start was not supplied because,
as expected, MATLAB fills in the input arguments from left to right. In this
case, we initialize the variable start at 1. Otherwise, we make sure that
start is a positive scalar integer. Similarly, if nargin is smaller than 2, then
m was not provided either. In this case, we assign the value of n to m. The
input n is required, and we made sure that it was supplied at the very begin-
ning of the function, so at this point it is safe to use it to initialize m.

The variable number of output arguments is handled by checking whether
nargout equals to 2 or not. If so, the user wants the function to return the
sum of the elements of the multiplication table also, so we compute it.

Note that the value of nargout is always at least one, even if the user does
not assign the return value to a variable. That happens because MATLAB as-
signs the value of the first output argument to ans by default.

Let’s run the function a few different ways now:

>> multable
Error using multable (line 13)
must have at least one input argument

>> multable()
Error using multable (line 13)
must have at least one input argument

This second example shows that there are two ways to call a function without
giving arguments. The effect is the same. The first way is customary in
MATLAB. (It is illegal in many other languages!)

>> multable(4)
ans =
 1 2 3 4
 2 4 6 8
 3 6 9 12
 4 8 12 16

>> multable(4,6)
ans =
 1 2 3 4 5 6
 2 4 6 8 10 12
 3 6 9 12 15 18
 4 8 12 16 20 24

>> multable(4,6,3)
ans =
 9 12 15 18 21 24
 12 16 20 24 28 32
 15 20 25 30 35 40
 18 24 30 36 42 48

>> [x y] = multable(4,6,3)
x =
 9 12 15 18 21 24
 12 16 20 24 28 32
 15 20 25 30 35 40
 18 24 30 36 42 48
y =
 594

>> [x y] = multable(-3)
Error using multable (line 29)
input argument n needs to be a positive integer

If we run the help utility, this is what we see:

265

>> help multable
 multable multiplication table.
 T = multable(N) returns an N-by-N matrix
 containing the multiplication table for
 the integers 1 through N.
 multable(N,M) returns an N-by-M matrix.
 multable(N,M,S) returns a N-by-M matrix
 containing the multiplication table for
 the integers S through N+S-1 and M+S-1.
 [T SM] = multable(...) returns the matrix
 containing the multiplication table in T
 and the sum of all its elements in SM.
 All three input arguments must be positive
 integers.

Arbitrary number of input and/or output arguments
Sometimes it is desired to write a function that can take an arbitrary number
of input arguments or output arguments. We know how to write a function
that can take differing numbers of arguments, but not how to write one that
can take any number of arguments. MATLAB provides a facility for arbitrary
numbers of arguments through two special argument names: varargin (for
“variable number of arguments in”) and varargout (for “variable number
of arguments out”).

We will explain their uses through examples. Suppose we want a function
that will take one or more numbers as input arguments and print them each
on a separate line. We can write that function with the help of varargin, as
follows:

function print_all_args(first,varargin)
fprintf('%d\n', first);
for ii = 1:nargin-1
 fprintf('%d\n', varargin{ii});
end

The special argument varargin must be the last argument in the list. It can
also be the only argument. When the function is called with more input argu-

ments than there are “normal” arguments (i.e., not varargin) in the func-
tion header, varargin receives the surplus. It is a cell vector, and each ele-
ment points to one argument. Inside the function, it is treated as an ordinary
cell array. Furthermore, the function nargin, which returns a count of the
number of arguments used in the call, counts all arguments, both those that
are captured by the normal arguments in the header and those that are cap-
tured by varargin. Here is this function in action,

>> print_all_args(14)
14
>> print_all_args(14,15,16,17,18)
14
15
16
17
18

Now suppose we want a function that will take an input vector and copy the
value of each of its elements into separate output arguments. We can accom-
plish that with varargout. Here is a function that does it:

function [first,varargout] = distribute(v)
first = v(1);
for ii = 1:length(v)-1
 varargout{ii} = v(ii+1);
end

As is the rule with varargin, varargout must be the last output argument
in the list. Also, in analogy to varargin, it holds any excess output argu-
ments after the “normal” ones. Here is a function in the expected situation,
namely, the length of the input vector is equal to the number of output argu-
ments:

266

>> [a,b,c] = distribute([14,15,16])
a =
 14
b =
 15
c =
 16

If fewer output arguments are given, there is no error. The extra elements
placed into varargout are simply ignored:

>> [a,b] = distribute([14,15,16])
a =
 14
b =
 15

On the other hand, if there are not enough elements in varargout to handle
all the remaining output arguments, MATLAB complains and halts execu-
tion,

>> [a,b,c,d] = distribute_to_args([14,15,16])
??? Error using ==> distribute_to_args
Too many output arguments.

Persistent Variables
We have learned about local variables and global variables. In addition, there
is another kind of variable in-between these two, but for its meaningful use,
you need an if-statement that was not introduced until after the Functions sec-
tion. This special kind of variable is called a persistent variable, because
even though it is a local variable that is only accessible within the functions it
is defined in, its value persists across function calls. Variables are declared to
be persistent with the keyword persistent. Let us consider a quick example:

function total = accumulate(n)

persistent summa;

if isempty(summa)
 summa = n;
else
 summa = summa + n;
end
total = summa;

The function accumulate keeps adding up its input arguments as it is being
called repeatedly. The function returns the cumulative total. The key to the
function is the persistent variable summa, which is declared using the
persistent keyword. When a function is saved in the editor, any persistent
variables in it are initialized to the empty matrix. Hence, by means of the if-
statement above, we can determine whether this is the first time the function
has been called. If it is the first call, we set summa equal to the input argu-
ment n. Otherwise, we take the current value of summa and add n to it.

All persistent variables within a function can be re-initialized to the empty
matrix in any of these three ways:

• by re-saving the function in the editor

• by clearing the function with clear (e.g., clear accumulate)

• by exiting and restarting MATLAB

It is an error to declare a variable persistent that already exists in the current
workspace. That’s why we could not use the output argument total to store
the value inside accumulate; we needed to introduce the new variable,
summa.

It is clear that we could not accomplish what accumulate does with regular
local variables. The only other way would have been using a global variable.
As pointed out before, however, globals should be used only as a last resort
since they are error-prone because any other function and the workspace can

267

freely modify global variables. Persistent variables, on the other hand, are lo-
cal variables and are visible only inside the function in which they are de-
clared.

Recursion
It is time for you to learn a fundamental new method of programming called
“recursion”. Recursion is a powerful idea that makes it possible to solve
some problems easily that would otherwise be quite difficult. Recursion can-
not be used in all programming languages, but it is supported by most mod-
ern languages, including MATLAB.

The best way to show how recursion works is through an example. Let us
write a function that computes the greatest common divisor (GCD) of two
positive integers. A variant of Euclid's algorithm computes the GCD quite effi-
ciently. The underlying idea is quite simple: the GCD of two numbers is the
same as the GCD of the smaller number and the remainder of dividing the
larger number by the smaller number. The mathematical definition looks like
this:

gcd(a, b) = {a if b = 0
gcd(b, remainder(a, b)) if a ≥ b and b > 0

The interesting thing to notice is that the formula for computing GCD uses
GCD itself! A definition of a concept that uses the concept itself is called a re-
cursive definition, and the use of a concept in the definition of the concept is
called recursion. At first, this might seem to be nonsense because the defini-
tion seems to require that the concept already be defined! Looking more
closely at the formula, we see that it is only the second part that presents the
potential problem because it is only in that part that the function gcd shows
up in its own definition. It seems to be circular reasoning, but it is not. The

crucial aspect of the second part that avoids circular reasoning is that
gcd(a, b) is defined in terms of gcd(c, d) where it is guaranteed that c ≤ a and
d < b because a ≤ b and the remainder is always smaller than the divisor.
Thus, the definition of gcd(a, b) requires only that gcd be previously defined
for smaller numbers than a and b. Therefore, it is not circular reasoning. It is
more like spiral reasoning because, instead of going round and round in a cir-
cle, we are spiraling down from a and b towards 0. Conveniently, the first
part of the formula defines the value of gcd(a, b) when b is 0 without relying
on gcd at all.

Here is the MATLAB function that implements GCD:

function d = rgcd(x,y)

a = max([x y]);
b = min([x y]);

if b == 0
 d = a;
else
 d = rgcd(b,rem(a,b));
end

As you can see, we named the function rgcd for “recursive gcd”. First, we
make sure that the variable a is the larger of the two arguments (or at least
equal to b) and b is the smaller. Then we simply implement the recursive defi-
nition of the GCD given previously. If b is 0 then the gcd is a, so we assign a
to the output argument d. Otherwise, we call the rgcd function with the ar-
guments b and the remainder of a divided by b (relying on the built-in
MATLAB function rem).

Wait a minute! How can we call the function rgcd from itself? Is that legal?
What happens with variables? It turns out that it is completely legal. It is
called a recursive function call and it can be a very useful programming tool.
A function that makes a recursive function call is a recursive function.

268

http://en.wikipedia.org/wiki/Euclidean_algorithm
http://en.wikipedia.org/wiki/Euclidean_algorithm

To see what happens with the variables inside the function during a recursive
function call, we need to take a small detour. Remember that the input and
output arguments of a function and all its other variables have local scope,
that is, they exist only inside the function and are not accessible from the out-
side. That makes it possible to use the same variable names in the work-
spaces of multiple functions without a clash. How does this work? MATLAB,
just like most other programming languages, stores local variables and func-
tion arguments on the stack. The stack is an area of the computer’s memory
dedicated for this purpose. It is called a stack, because only its top is accessi-
ble: MATLAB puts variables on the top of the stack or takes them off from the
top. (Think of a deck of cards.) When a function is called, a new area on the
top of the stack is allocated for the function to store all of its arguments and
local variables. This area is called a stack frame. A stack frame is also known
as a frame and as an activation record. The function is free to use this mem-
ory area to access all these variables, modify their values, etc. When the func-
tion calls another function, a new stack frame is created for the use of this sec-
ond function. This function can use its frame, but it cannot access the stack
frame of the function that called it (or that of any other function). When the
function returns, its stack frame is discarded and the caller will have access to
the frame at the top of the stack which happens to be its own stack frame.

This is the reason that recursive functions work just fine: each call to a new
instance of the recursive function will get its own stack frame, that is, it will
have its very own set of arguments and local variables. These variable have
no relation to the variables of other instances of the same function, because
they sit in their very own stack frame.

Let’s look at our rgcd function again, this time inside the debugger window
(Figure 2.60).

Notice the breakpoints in lines 6 and 10. The first one is before the recursive
function call and the second is right after it. If we run the function like this,

>> rgcd(12,32)

we shall hit these breakpoints repeatedly. Figure 2.61 shows how the stack
will look as we go through the code.

The lower left corner shows the single stack frame on the stack after we call
the function the first time just when we hit the first breakpoint. The input ar-
guments x and y have the values 12 and 32 respectively, while the local vari-
ables a equals 32 and b equals 12. The output argument d has not been ini-
tialized yet. The next time we hit a breakpoint may seem surprising since it is
the first breakpoint again. This is because before we hit the second break-
point, we call rgcd again and hit the first one again inside the second in-
stance of the function. Notice that the stack now has a second stack frame on
it, with the input arguments x = 12 and y = 8. This is because we called
rgcd with b (which is 12) and the remainder of a/b (which is
rem(32,12) = 8). Repeating this pattern, we call rgcd a third time with 8
and 4 as input arguments and hit the first breakpoint again and finally, we
call rgcd a fourth time with 4 and 0 as inputs. This is where the recursion
ends, because the if-statement in line 6 finally gets a true condition and as-
signs a (which is 4) to the output argument d. This is when we hit the second

269

Figure 2.60 The rgcd function inside the debugger with two breakpoints

breakpoint for the very first time. Now the stack frame shows that d has fi-
nally been assigned a value (4).

As we return from the 4th call to rgcd, the stack frame is removed from the
top of the stack and we hit the second breakpoint again. The output argu-
ment d gets assigned 4, since that was the result of the 4th call to the rgcd
function. As we keep returning from the recursive function calls, the top
stack frame is removed and the result propagates to the caller. Finally, we re-
turn from the original call to rgcd to the Command Window with the result
4.

>> rgcd(12,32)

ans =
 4

We are almost done with the rgcd function. However, consider this call:

>> rgcd(12,-32)

Maximum recursion limit of 500 reached. Use set(0,'Recur-
sionLimit',N)to change the limit. Be aware that exceed-
ing your available stack space can crash MATLAB and/or
your computer.

Error in rgcd

What happened here? We ran into the problem called infinite recursion. In
our rgcd function, similarly to the recursive definition of the GCD, there is a
case when we do not rely on recursion any more. In this case, if b equals 0,
we do not need to call rgcd anymore, we simply return a as the result. This
is true for all recursive functions: there must be at least one base case, which
is a case in which there is no recursive call. A base case in a function always
corresponds to a base case in the definition that the function implements, and
there must also be a base case in any recursive definition for it to be valid.
There must also be at least one recursive case in order for a function or defini-
tion to earn the label “recursive”, which is a case that employs the function
itself or the concept that is being defined itself. Reaching the base case stops
the recursion, and without one, the chain of recursive function calls would
never stop. This is what happened above. The recursive definition of gcd is
valid for positive integers. Our function never checks whether the input argu-
ments are valid. When we call the function with a negative number, in the
chain of recursive function calls, b never becomes 0, hence, the recursion
never stops and stack frames keep getting added to the stack with none being
removed. MATLAB prevents true infinite recursion by setting a limit of 500

270

Figure 2.61 Evolution of the stack as recursion occurs after the rgcd(12,32) call

calls to be legal. Once we reach this limit, MATLAB notices, quits the func-
tion and returns with the error message above.

We have to be very careful when writing recursive functions and need to
make sure that we always reach the base case and do not get into infinite re-
cursion. So, let us make sure that our rgcd function is prepared for all possi-
ble cases of bad input arguments:

function d = rgcd(x,y)
if (~isscalar(x) || ~isscalar(y) || ...

x ~= fix(x) || y ~= fix(y) || ...
x < 0 || y < 0)

 error('x and y must be positive integers');
end

a = max([x y]);
b = min([x y]);

if b == 0
 d = a;
else
 d = rgcd(b,rem(a,b));
end

In the long if-statement at the beginning of the new version of the function,
we make sure that the inputs are scalar and not arrays, that they are integers
and also positive. This last characteristic is the one that guards against infi-
nite recursion. If we try to run the function with a negative input, we get a
different error message, one that we wrote expressly for this function−one
that is more informative about the nature of the problem:

>> rgcd(12,-32)
Error using rgcd (line 4)
x and y must be positive integers

Now our recursive rgcd function is ready.

From recursion to iteration
Every recursive function has an equivalent non-recursive version. For simple
problems, there is typically not much difference between the difficulty of writ-
ing the solution with recursion and the difficulty of writing it without recur-
sion. For more complex problems, a recursive solution is sometimes far sim-
pler than the equivalent non-recursive solution.

Consider, the non-recursive version of GCD below.

function d = igcd(x,y)
if (~isscalar(x) || ~isscalar(y) || ...

x ~= fix(x) || y ~= fix(y) || ...
x < 0 || y < 0)

 error('x and y most be positive integers');
end

a = max([x y]);
b = min([x y]);

while b > 0
 d = b;
 b = rem(a,b);
 a = d;
end

The function is called igcd for “iterative gcd”. As you can see, the recursion
was replaced by iteration (the while-loop), hence the name. The idea is to fol-
low the recursive definition as before, but instead of calling the function recur-
sively, we simply change the values of the variables a and b according to the
definition. Inside the loop, we use the output argument d to store the value of
b because we need to change b and we need to replace the value of a with
the value of b. So, we need to store the value of b temporarily. Using d for
this purpose has the side effect of it containing the result already when we hit
the stopping condition, that is, when b reaches 0. At that point, the previous
value of b is exactly what the GCD is.

271

In the case of the GCD problem, the recursive version is slightly easier to un-
derstand, since it follows the recursive definition to the letter. The iterative
version needs a bit of thinking figuring out how to change the variables
around.

Sometimes the iterative versions needs a lot of thinking, so it is not uncom-
mon for experienced programmers who tackle an inherently recursive prob-
lem to write and debug a recursive solution first. Once that version is done,
the programmer designs, writes, and debugs an iterative version. That itera-
tive version will always involve one or more while-loops, whereas the recur-
sive version will typically have no loops, and the iterative version will often
require more local variables than the recursive version. The iterative version
will typically be more difficult to understand than the recursive version as
well (for those who understand recursion).

So why not stick with the recursive version, avoid writing two programs to
solve one problem, and just move on? The answer is efficiency. A well written
iterative solution will almost always be more efficient than a well written re-
cursive version. The reason is the hidden overhead brought on by the need in
recursive functions for additional function calls. For each call, that overhead
includes (1) the creation of a new frame on the stack for every new instance
of the function as a recursive call is made, (2) the copying of values from the
local variables of one instance of the function to the input arguments of the
new instance of the function, (3) the copying of values from the output argu-
ments of an instance of the function to the local variables of the instance of
the function that called it, and (4) the removal of the frame from the stack
when the called function returns. This set of four actions takes time, and it
can take place many thousands of times for some recursive functions. All
those costly actions are eliminated when recursion is replaced by iteration. As
with so many problems in programming (and in life), the easy solution is not
always the best one, but it is often a very good first one. Before we leave re-
cursion, we will look at a second and third recursive problem, and, as we did
for GCD, we will give both recursive and iterative solutions for each of them.

The second one is an example of a problem whose recursive solution requires
multiple recursive calling points in the function that solves it. We will per-
form a detailed time comparison between the recursive solution and the itera-
tive solution for that one.

Factorial
Possibly the most frequently used function to illustrate recursion is the facto-
rial. The factorial, usually written in mathematics as n!, is defined as follows:

fact(n) = n! = 1 × 2 × 3 × … × (n − 2) × (n − 1) × n

For example,

fact(5) = 5! = 1 × 2 × 3 × 4 × 5 = 120

Here is the recursive way to define the factorial function:

fact(n) = {1 if n = 1
n × fact(n − 1) if n > 1 

It is pretty straightforward to understand why these definitions are equiva-
lent. The corresponding MATLAB code is also pretty simple:

function f = fact(n)
if (~isscalar(n) || n < 1 || n ~= fix(n))
 error('n must be a positive integer!');
end

if n == 1
 f = 1;
else
 f = n * fact(n-1);
end

The first if-statement makes sure that n is a positive integer. The second if-
statement checks for the base case (when n equals 1), and if it is true, it re-
turns 1. Otherwise, we call the function again, but using (n-1) as the argu-

272

ment this time. This makes sure that we are getting closer and closer to the
base case and will eventually stop the recursion. The return value of the recur-
sive call of fact is simply multiplied by n to get the correct result.

The key to this recursive function is again that each call to fact gets a new
stack frame where the new instance of the function stores its variables, n and
f. Therefore, the multiple active calls to the function do not interfere with
each other at all.

While the factorial is frequently used to illustrate recursive functions, its itera-
tive version, like that for the greatest common divisor, is equally simple:

function f = ifact(n)
if (~isscalar(n) || n < 1 || n ~= fix(n))
 error('n must be a positive integer!');
end

f = 1;
for ii = 2:n
 f = f * ii;
end

Multiple recursive calls
There is no reason why we could not make multiple recursive calls inside a
function. Let’s look at a famous example: The Fibonacci Series.

The Fibonacci Series is a famous series that can be generated by a function
that makes two recursive calls per activation. The series is named after the
13th century mathematician who invented it. Fibonacci posed this problem:

Suppose a pair of rabbits, one male and one female, is born on January 1. Suppose fur-
ther that this pair of rabbits gives birth to a new male and female on the last day of
their second month of life, their third month of life, their fourth month, etc., forever,
and that rabbits never die (mathematicians do not care about reality). Finally, sup-
pose that all new pairs of rabbits do the same. How many pairs of rabbits would be
alive on the first day of the Nth month (and who but a mathematician would care)?

To help us understand the problem, let’s consider the first few months. Fig-
ure 2.62 is a schematic representation of the development of the rabbit popula-
tion from January 1 through July 31. Each solid horizontal line is the life-line
of a pair of rabbits, with the first pair having the longest line. Each vertical
line represents the birth of a new pair.

The number of pairs of rabbits alive at the first day of a month is equal to the
number of solid horizontal lines that intersect the vertical dotted line for that
day. By counting the intersections we can see the following progression in the
number of pairs:

1, 1, 2, 3, 5, 8, 13

These numbers are a consequence of the rules Fibonacci gave for the births.
To see how these rules produce these numbers, we can look the changes,
month by month:

• January 1 and February 1: The first two months are simple. Since the first
pair requires two months to produce offspring, there is one pair on Janu-
ary 1 and still just one pair on February 1.

Figure 2.62 Fibonacci and rabbit reproduction

273

• March 1: On the last day of February, the first pair produces its first off-
spring, so there are two pairs on March 1.

• April 1: April is the first interesting month. It is interesting because some
rabbits reproduce and some do not. Only the rabbits that are at least two
months old reproduce, so only the pairs that were alive on February 1 will
produce a new pair. There was only one pair alive then, so one new pair is
added to the number alive March 1 to bring the total to three. Thus, the
number of pairs on April 1 is equal to the number of pairs on February 1
plus the number of pairs on March 1.

• May 1: May is interesting as well for the same reason. Again only those rab-
bits that are at least two months old will reproduce, so only the pairs that
were alive on March 1 will produce a new pair. There were two pairs alive
then, so two new pairs are added to the number that were alive on April 1.
Thus, the number of pairs on May 1 is equal to the number of pairs on
March 1 plus the number of pairs on April 1.

By now, we can see a pattern: To determine the number of pairs alive at the
beginning of month n, we add the number of pairs alive at the beginning of
month n − 2 to the number of pairs alive at the beginning of month n − 1 . Let-
ting F(n) stand for the number of pairs of rabbits alive on the first day of the
nth month, we have

F(n) = F(n − 2) + F(n − 1)

The corresponding recursive definition is

F(n) = {1 if n ≤ 2
F(n − 2) + F(n − 1) if n > 2

 

Here is a recursive MATLAB function that implements this definition:

function f = fibo(n)
if (~isscalar(n) || n < 1 || n ~= fix(n))
 error('n must be a positive integer!');
end

if n <= 2
 f = 1;
else
 f = fibo(n-2) + fibo(n-1);
end

Again, we first make sure that the input to our function is legal. The base case
handles both n equal to 1 and n equal to 2. The recursive case is used when-
ever n is greater than 2. We simply add together the results of calling the func-
tion with arguments 2 and 1 less than n, respectively.

Let’s test the function:

>> fibo(5)
ans =
 5
>> fibo(6)
ans =
 8
>> fibo(7)
ans =
 13
>> fibo(8)
ans =
 21

Everything works as expected. While the results are correct, the function is
kind of wasteful. Consider the recursive case:

f = fibo(n-2) + fibo(n-1);

Let’s say that n is equal to 8 at this point. We first compute fibo(n-2), that
is, fibo(6), and then fibo(n-1), that is fibo(7). But computing fi-
bo(7), will cause computing fibo(6) again in this case because we call
fibo(n-1) when n is equal to 7. So, we compute fibo(6) twice. But com-

274

puting fibo(6), results in computing fibo(4) twice also. That means that
fibo(4), in turn, is computed 4 times! In fact, fibo(7) calls fibo(5) once,
which will also call fibo(4). So computing fibo(8) results in calling fi-
bo(4) five times. And this goes on for almost every element until we reach
the base case. Effectively, we are computing almost all of the elements of the
series many times. How many times exactly? Here are the numbers for fi-
bo(8):

fibo(8): 1
fibo(7): 1
fibo(6): 2
fibo(5): 3
fibo(4): 5
fibo(3): 8
fibo(2): 13

These numbers should look familiar. Indeed, the number of times the func-
tion is called with the same argument form a Fibonacci series itself. The rea-
son for that is left as an exercise for the reader. (Don’t you just hate it when
authors do that?) Note that we left calling fibo(1) out of the list because fi-
bo(2) is one of the base cases already, and it does not call fibo(1).

As you can see, our recursive function is very inefficient; it carries out a lot of
unnecessary computation. The iterative version of the function does not do
that:

function f = ifibo(n)
if (~isscalar(n) || n < 1 || n ~= fix(n))
 error('n must be a positive integer!');
end

fv = ones(1,n);
for ii = 3:n
 fv(ii) = fv(ii-2) + fv(ii-1);
end
f = fv(n);

It turns out that it is easier to compute the entire series in a vector and return
the last element. The variable fv is used for this purpose. Initializing it with
all ones takes care of the first two elements, so it is enough to start the loop at
3. The new element is computed by adding together the previous two ele-
ments at every iteration step. Finally, we simply assign the nth element of fv
to the output argument f.

We can use the same idea for a different implementation of the recursive ver-
sion of the Fibonacci function. If we modify the requirement for the function
such that, instead of returning the nth element of the series, it returns the first
n elements of the series, we can create a more efficient implementation:

function fv = fiboseries(n)
if (~isscalar(n) || n < 1 || n ~= fix(n))
 error('n must be a positive integer!');
end

if n <= 2
 fv = ones(1,n);
else
 fv = fiboseries(n-1);
 fv = [fv fv(n-2)+fv(n-1)];
end

The base case simply creates a vector fv of either one or two ones. The recur-
sive case simply calls itself with n-1 as the input argument. Then we simply
append a new element at the end of the vector fv that has the value of the
sum of the last two elements of the current vector. Here is how it works:

>> fiboseries(1)
ans =
 1
>> fiboseries(2)
ans =
 1 1
>> fiboseries(3)
ans =
 1 1 2

275

>> fiboseries(4)
ans =
 1 1 2 3
>> fiboseries(5)
ans =
 1 1 2 3 5
>> fiboseries(6)
ans =
 1 1 2 3 5 8

On the other hand, if we do not want to modify the requirement and we need
a function that returns only the nth element of the Fibonacci series, we can
still use the more efficient implementation by using the fiboseries func-
tion as a subfunction like the following:

function f = fibo2(n)
 if (~isscalar(n) || n < 1 || n ~= fix(n))

error('n must be a positive integer!');
 end

 fv = fiboseries(n);
 f = fv(n);

function fv = fiboseries(n)

 if n <= 2
fv = ones(1,n);

 else
fv = fiboseries(n-1);
fv = [fv fv(n-2) + fv(n-1)];

 end

Here the main function fibo2 handles the checking of the input argument
and then simply calls the subfunction fiboseries. The result is then the nth
element of the series returned by fiboseries. The subfunction does not
even have to do the input argument checking, since we can only call it from
fibo2 and it already made sure that the input is correct. The function
fiboseries computes the first n elements of the series in a recursive man-
ner and passes it back to fibo2.

Let’s run this:

>> fibo2(1)
ans =
 1
>> fibo2(2)
ans =
 1
>> fibo2(3)
ans =
 2
>> fibo2(4)
ans =
 3
>> fibo2(5)
ans =
 5
>> fibo2(6)
ans =
 8

It works like a charm. Now let’s compare how long it takes to run the various
versions of the Fibonacci function. (Note the use of the built-in functions tic
and toc: tic starts/resets a clock, toc prints the elapsed time since the last
call to tic.)

>> tic; fibo(10); toc
Elapsed time is 0.000999 seconds.
>> tic; fibo2(10); toc
Elapsed time is 0.000235 seconds.
>> tic; ifibo(10); toc
Elapsed time is 0.000076 seconds.

>> tic; fibo(20); toc
Elapsed time is 0.069333 seconds.
>> tic; fibo2(20); toc
Elapsed time is 0.000409 seconds.
>> tic; ifibo(20); toc
Elapsed time is 0.000089 seconds.

>> tic; fibo(30); toc
Elapsed time is 5.898723 seconds.
>> tic; fibo2(30); toc
Elapsed time is 0.000576 seconds.
>> tic; ifibo(30); toc
Elapsed time is 0.000077 seconds.

276

>> tic; fibo(40); toc
Elapsed time is 731.346860 seconds.
>> tic; fibo2(40); toc
Elapsed time is 0.000757 seconds.
>> tic; ifibo(40); toc
Elapsed time is 0.000075 seconds.

As you can see, the original recursive version takes exponentially longer time
as n increases. It goes from one thousandth of a second to more than 12 min-
utes as n goes from 10 to 40. The time required by the more efficient recursive
implementation increases approximately linearly and it remains less than a
thousand of a second even for n equal to 40. As always, the fastest is the itera-
tive version. In fact, the running time hardly changes as the argument in-
creases. This is because it is so fast computing the series that other factors
dominate the time such as calling the function and allocating the memory for
the vector. The actual computation hardly takes any time in this case.

With this last example completed we now leave recursion. Hungry for more?
Well, you will be happy to know that there is more coming. It is coming in
the next chapter, entitled Advanced Concepts. There we will encounter recur-
sion again when we consider the problems of finding items in a database and
of putting a database in order in the section entitled, Searching and Sorting.

Animation
Previously we have seen how to create plots with MATLAB. It is also easy to
create animated plots. The basic idea is to plot repeatedly in the same figure.
The most important thing to remember is that we have to tell MATLAB when
to update the display using the drawnow function. The reason behind this is
that todays’ computers can process information much faster than it can be dis-
played on the screen. So, as we tell repeatedly MATLAB to plot something
very fast, it carries out all the instructions, but it only refreshes the screen oc-

casionally. The function drawnow tells MATLAB to update the screen imme-
diately. Consider the following example:

function anim(fmax)
t = 0:0.03: 2 * pi;
step = (fmax-1)/1000;
for ii = [(1:step:fmax) (fmax:-step:1)]
 ampl = ii - 1;
 v = ampl * sin(t * ii);
 plot(t,v);
 axis([0 2*pi -fmax+1 fmax-1]);
 drawnow;
 pause(0.005)
end

The function anim repeatedly generates a sine wave with increasing fre-
quency from 1 to fmax and then back down to 1. The amplitude of the sine
wave also increases as the frequency increases. The loop index ii goes from
1 to fmax and then back to 1. In each iteration of the for-loop, a new sine
wave is generated and plotted. Then drawnow is called to make sure that the

277

Movie 2.2 Sine wave with continuously changing frequency

http://tinyurl.com/MATLAB-Movie2-2

new plot appears on the screen immediately. Finally, we make MATLAB wait
a fraction of a second to slow down the animation using pause. On slower
computers, this may not be necessary. The result can be seen in Movie 2.2.

MATLAB also supports drawing surface plots with the built-in function
called surf. Similarly to plot, surf can be called a number of different
ways. The usual method is to call it with three matrices of the same size speci-
fying the x, y and z coordinates of the points of the service surface. The follow-
ing example uses this method also. Additionally, it animates the plot in a cou-
ple different ways:

function surf_anim

t = 0:0.1:pi;
[X, Y] = meshgrid(t);
s = 0.2;
for kk = [0:-s:-10 -10+s:s:0-s 0-s:-s:-10]
 surf(X,Y,kk *(sin(X) + sin(Y)));
 axis([0,pi,0,pi,-20,1]);
 drawnow;
end

for kk = -37.5:30
 view(kk,30);
 drawnow;
end
for kk = 30:-1:5
 view(30,kk);
 drawnow;
end

The function creates a surface that is the sum of a half period of a sine wave
in the x dimension and a half period of a sine wave in the y dimension. The
meshgrid built-in function creates a grid from the t vector and stores the x
and y coordinates in the X and Y matrices to be used by surf. (Type help
meshgrid to learn more.) The first for-loop, using index kk, animates the
plot by changing the amplitude of the surface in each step. It goes from 0

to -10, back to 0 and to -10 again. Notice that we call drawnow after surf
again.

The two for-loops at the end of the function do another kind of animation.
They change the viewpoint from which we view the picture by calling the
built-in view function. The default angles are -37.5 and 30 degrees of azi-
muth and elevation, respectively. In the first loop, we change the azimuth an-
gle from the default to positive 30 degrees. Then we we change the elevation
angle from 30 down to 5 by one degree at a time. Movie 2.3 shows what the
result looks like.

278

Movie 2.3 Surface plot animation

http://tinyurl.com/MATLAB-Movie2-2
http://tinyurl.com/MATLAB-Movie2-2
http://tinyurl.com/MATLAB-Movie2-3
http://tinyurl.com/MATLAB-Movie2-3
http://tinyurl.com/MATLAB-Movie2-3

Notice how MATLAB puts a grid on the surface that corresponds to the reso-
lution of the data we provided. If you look at the surf_anim function again
you can see that we had only 32 elements in the x and y vectors each. If we
want a higher resolution, then the grid on the surface may cover the colors
completely. Fortunately, you can turn off the grid by calling surf the follow-
ing way:

surf(t,t,s,'EdgeColor','none');

Once we eliminate the grid, we can increase the resolution as well. See, how
we change the vector t below:

function surf_anim

t = 0:0.01:pi;
[X, Y] = meshgrid(t);
s = 0.2;
for kk = [0:-s:-10 -10+s:s:0-s 0-s:-s:-10]
 surf(t,t,s,'EdgeColor','none');
 axis([0,pi,0,pi,-20,1]);
 drawnow;
end
for kk = -37.5:30
 view(kk,30);
 drawnow;
end
for kk = 30:-1:5
 view(30,kk);
 drawnow;
end

You can also change what colors MATLAB uses to display the plot. The
colormap function has a number of standard color palettes. For example, we
can call it like this:

colormap('cool');

Movie 2.4 shows the result:

The colormap function can also be called with a matrix that has three col-
umns. Each row of the matrix specifies one color. The columns correspond to
the red, green and blue components, respectively. Use the doc colormap
command in the Command Window of MATLAB for more information.

279

Movie 2.4 High resolution surface plot with no grid lines

http://tinyurl.com/MATLAB-Movie2-4
http://tinyurl.com/MATLAB-Movie2-4
http://tinyurl.com/MATLAB-Movie2-4

The colormap function can be called to change the colors on an existing fig-
ure as well. For example, once the previous animation ends, type the follow-
ing command in the Command Window:

>> colormap('autumn')

Figure 2.63 shows what you will see.

Concepts From This Section

Computer Science and Mathematics:
stack
stack frame
recursive definition
base case
recursive case
recursive function
recursive function call
recursion
animation

MATLAB:
nargin
nargout
varargin
varargout
surf
colormap

280

Figure 2.63 Surface plot using the autumn color map.

Practice Problems
Variable number of arguments

Problem 1. Write a function called arithmetic that takes two scalar input
arguments (the function does not have to check the format of the input) and
returns up to four output arguments. The outputs are the sum, difference,
product and ratio of the two inputs, respectively. If the second input argu-
ment is not provided, it is set to equal the first. Here are a few example runs:

>> arithmetic(3,2)

ans =
 5

>> [a b c] = arithmetic(3,2)

a =
 5
b =
 1
c =
 6

>> [a b c d] = arithmetic(3)

a =
 6
b =
 0
c =
 9
d =
 1

?

Problem 2. Write a function called random_test that takes three input argu-
ments and three output arguments. The function needs to demonstrate that
the built-in function randi and rand use the same random number genera-
tor. The function generates two arrays of equal size that contains random inte-
gers. The arrays must be identical, but the first must be generated using
randi and the second using rand. The input arguments to arithmetic
must behave like those of randi. That is, the first argument determines the
range of the desired random integers. If it is scalar, then it specifies the upper
limit (maximum) and in this case, the lower limit (minimum) is 1. If it is a vec-
tor, its first element specifies the lower limit, the second element sets the up-
per limit. The second input argument is the number of rows of the output ar-
rays, while the third is the number of columns. If the third argument is miss-
ing, it is assumed to be the same as the second. If the second argument is
missing, it is set to 1. The first argument must be provided by the caller. The
first and second output argument are the two identical arrays. The third out-
put argument is a logical value: true if the two arrays are really identical and
false otherwise. (Note that this needs to be a single logical value and not an
array.) The second and third output arguments are optional. Here is an exam-
ple run:

>>> [R1 R2 c] = random_test([2 5], 3, 8)

R1 =
 3 3 2 4 2 4 2 5
 4 2 3 3 5 3 2 3
 2 2 3 4 2 4 5 4
R2 =
 3 3 2 4 2 4 2 5
 4 2 3 3 5 3 2 3
 2 2 3 4 2 4 5 4
c =
 1

281

http://cs103.net/wp-content/uploads/arithmetic.m
http://cs103.net/wp-content/uploads/arithmetic.m

Problem 3. Write a function called add_all that takes any number of scalar
input arguments (the function does not need to check the format of the input)
and returns the sum of all its inputs. Here are a couple of runs:

>> add_all(1, 2)
ans =
 3
>> add_all(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
ans =
 55

?

Problem 4. Write a function called print_all that takes any number of sca-
lar input arguments (the function does not need to check the format of the
input) and prints them out one by one as illustrated by a few runs:

>> print_all()
We received no numbers.
>> print_all(34)
We received the following number: 34.
>> print_all(34, 56, 78, 90)
We received the following numbers: 34, 56, 78, and 90.

Make sure that the function handles the three cases (no input, one input,
more than one input) correctly, as illustrated above. The function has no out-
put arguments.

Recursion

Problem 5. Write a recursive function called vectflip that takes a single
vector input argument (the function does not need to check the format of the
input) and returns a single vector input argument that contains the elements
of the input vector in reverse order. Note that the MATLAB command
v(end:-1:1) does exactly what is required, but you need to write a recur-
sive function instead that flips the first element with the result of calling
vect_flip with the original input vector less its first element. The function
must not use a loop.

?

Problem 6. Write a recursive function called vectflip2 that does exactly
the same as vect_flip from the previous problem except that it flips the
last element with the result of calling vect_flip with the original input vec-
tor less its last element. The function must not use a loop.

Problem 7. Write a recursive function digit_sum that takes a single scalar
positive integer input argument (the function does not need to check the for-
mat of the input) and returns the sum of its digits. Here is a sample_run:

>> digit_sum(1234)

ans =
 10

The function must not use a loop.

?

282

http://cs103.net/wp-content/uploads/add_all.m
http://cs103.net/wp-content/uploads/add_all.m
http://cs103.net/wp-content/uploads/vectflip.m
http://cs103.net/wp-content/uploads/vectflip.m
http://cs103.net/wp-content/uploads/digit_sum.m
http://cs103.net/wp-content/uploads/digit_sum.m

Problem 8. Write a recursive function called flip that takes one scalar posi-
tive integer input argument (the function does not need to check the format
of the input) and returns a single scalar output that is the input with its digits
in the reverse order. For example, consider this run:

>> flip(1234)

ans =
4321

Note that it is allowed to write a subfunction that is the actual recursive func-
tion as opposed to flip itself. It may take more input arguments also.

Problem 9. Write a recursive function called prime_fact that takes a single
scalar positive integer input argument (the function does not need to check
the format of the input) and returns a vector whose element are the prime fac-
tors of the input. Each call to prime_fact should compute a single prime
factor and call prime_fact again. Here is an sample run:

>> prime_fact(60)

ans =
 2 2 3 5

?

Problem 10. Write a recursive function called connected that takes a square
matrix called G as an input argument and returns a single logical output argu-
ment. G represents a graph, a mathematical construct consisting of nodes
and edges between the nodes. You can think of it as a representation of a map
where the nodes are cities and the edges are roads connecting cities directly
together. Each row (and column) of G represents a city, its name is the index
of the row (column). If there is a direct road from city N to city M, G(M,N) and
G(N,M) are both 1, otherwise, they are both 0. Think of it as the roads being
two-way: if there is a road from M to N, then there is a road from N to M too.
The diagonal of G is 0 (there is no road from a city to itself). (The function
does not need to check that the matrix G is indeed correct.) The function
connected needs to decide whether we can get from any city to any other
city. For example, if there are four cities and there is a road from 1 to 2, from
2 to 3 and from 3 to 4, then we can get from any city to any other city. How-
ever, if there is a road from 1 to 2, and from 3 to 4, then we cannot visit 3 or
4 from either 1 or 2 and vice versa. The name of the function comes from the
mathematical term connected graph. The function needs to return 1, meaning
true, if the graph is connected (there is a way to get from any city to any
other) and 0, meaning false, otherwise. Note that it is allowed to write a sub-
function that is the actual recursive function as opposed to connected itself.
It may take more input arguments also.

283

http://cs103.net/wp-content/uploads/prime_fact.m
http://cs103.net/wp-content/uploads/prime_fact.m

Problem 11. There is a narrow bridge across a river. Four injured soldiers are
trying to cross in pitch dark. They have a single flashlight and they need it
not to fall in the river below. At most two soldiers can cross at the same time.
Due to their injuries, they need a different amount of time to make it. The
first soldier needs 1 minute, the rest 2, 5 and 10 minutes, respectively. When
two of them cross together, they progress at the speed of the slower soldier.
The bridge will be blown up in 18 minutes. Can they make it?

Write a recursive function called bridge that takes a single vector input argu-
ment whose elements are positive integers (you do not need to check the
input format). The elements represent the time each soldier needs to cross
the bridge. For example, using the numbers provided above, we would call
the function like this: bridge([1 2 5 10]). The function needs to work
for any number of soldiers and all possible crossing times. The function re-
turns a single scalar output argument that is equal to the minimum possible
cumulative time the group of soldiers need to cross the bridge.

Note that it is allowed to write a subfunction that is the actual recursive func-
tion as opposed to bridge itself. It may take more input arguments also.
This is a difficult problem.

?

Problem 12. Write a recursive function called bridge2. It does the same
thing as the function bridge in the previous problem, but it also returns the
strategy the soldiers need to follow to achieve the minimum time. Figure out
a suitable format for this second output argument.

Note that it is allowed to write a subfunction that is the actual recursive func-
tion as opposed to bridge2 itself. It may take more input arguments also.
This is an even more difficult problem than the previous one.

284

http://cs103.net/wp-content/uploads/bridge.m
http://cs103.net/wp-content/uploads/bridge.m

If you have gotten this far, then congratulations are in order. You know the basic concepts
of computer programming, and you have everything you need to write useful MATLAB
programs. You are ready to launch a career in MATLAB programming! This chapter builds
on this foundation to introduce advanced concepts that can take you even further.

CHAPTER 3

285

Advanced Concepts

Photo credit: NASA.

SECTION 1

Mathematical problems involving equations of the form
Ax=b, where A is a matrix and x and b are both column
vectors are problems in linear algebra, sometimes called
matrix algebra. Engineering and scientific disciplines are
rife with such problems. Thus, an understanding of their
set-up and solution is a crucial part of the education of
many engineers and scientists. As we will see in this
brief introduction, MATLAB provides a powerful and

convenient means for finding solutions to these prob-
lems, but, as we will also see, the solution is not always
what it appears to be.

Objectives

This section deals with
concepts in both mathematics
and MATLAB.
(1) We will learn how to use

MATLAB’s backslash
operator (\) to solve in one
simple command an entire
set of linear algebraic
equations.

(2) We will consider
inconsistent equations,
underdetermined
equations, and
overdetermined equations.

(3) We will study the errors
encountered in solving
these equations.

(4) We will introduce the
concept of ill-conditioned
equations and will show
how to use MATLAB’s
cond command to detect
them.

Problems involving multiple equations in multiple unknowns may seem overwhelming, but in many cases they can be solved
easily using MATLAB’s operators and built-in functions.

Linear Algebra

286

Solution Difficulties
The most common problems of importance are those in which the unknowns
are the elements of x or the elements of b. The latter problems are the simpler
ones. The former are fraught with many difficulties. In some cases, the “solu-
tion” x may in fact not be a solution at all! This situation surfaces when there
is conflicting information hidden in the inputs (i.e., A and b), and the non-
solution obtained is a necessary compromise among them. That compromise
may be a perfectly acceptable result, even though it is not in fact a solution to
the equations. In other cases, MATLAB may give a solution, but, because of
small errors in A or b, it may be completely different from the solution that
would be obtained were A and b exact. This situation can have a serious im-
pact on the application at hand. The elements of A and b are typically meas-
urements made in the field, and even though much time, effort, and expense
go into reducing the error of those measurements, the calculated x may have
an error that is so large as to render those measurements useless. This situa-
tion occurs when the solution x is highly sensitive to small changes in A and
b. This sensitivity issue is just as important, or in many cases more important,
than the problem of the non-solution.

Neither of these problems is MATLAB’s “fault”, nor would it be the fault of
any other automatic solver that you might employ. It is the nature of linear
algebra. The person who relies on a solution to Ax = b provided by MATLAB,
or by any other solver, without investigating the sensitivity of the solution to
errors in the input, is asking for trouble, and will often get it. When accuracy
is critical (and it usually is), the reliability of the solution must be investi-
gated, and that investigation requires some understanding of linear algebra.
The study of linear algebra can be life-long, and there are many books and
courses, both undergraduate and graduate, on the subject. While it is not pos-
sible for every engineer and scientist to master the subject, it is possible for
them to be aware of the nature of the difficulties and to learn how to recog-
nize them in their discipline. The goals of this section are to give you some
insight into the nature of the difficulties associated with the solution of Ax=b

when x is the unknown and to show you how to use MATLAB to find the so-
lution and to investigate its reliability.

Simultaneous Equations
Because of the definition of matrix multiplication, the matrix equation Ax = b
corresponds to a set of simultaneous linear algebraic equations: 

A11x1 + A12x2 + . . . + A1N xN = b1

A21x1 + A22x2 + . . . + A2N xN = b2
⋮ ⋮ ⋮ ⋮

AM1x1 + AM2x2 + . . . + AMN xN = bM

 ,

where the Aij are the elements of the M-by-N matrix A, the xj are the elements
of the N-by-1 column vector x, and the bi are the elements of the M-by-1 col-
umn vector b. This set of equations is sometimes written in tableau form to
indicate more clearly the relationship between the matrix form and the equa-
tion forms and to show the shapes of the arrays:  

A11 A12 ⋯ A1N

A21 A22 ⋯ A2N
⋮
⋮
⋮

AM1 AM2 ⋯ AMN

x1
x2
⋮
xN

=

b1

b2
⋮
⋮
⋮

bM

 .

Note that, despite the row-like arrangement of the xj in the non-tableau for-
mat, x is in fact a column vector, as made clear in the tableau form. Note also
that the length of x is N, which, as we have learned from the rules of matrix
multiplication, must equal the width (not the height) of A. The length of b is

287

M, which is always equal to the height of A. We have formed this tableau to
indicate that in this case, there are more equations than unknowns. In other
words, M > N. While it is more common to have M = N, in which case the
height of the x vector is the same as those of A and b, in many situations, M is
in fact larger than N. The third situation, in which N < M, is far less common.

Typically, the Aij and bi are given, and the xj are unknown. The equations are
“simultaneous” because one set of xj must satisfy all M equations simultane-
ously. They are “linear” because none of the xj is raised to any power other
than 1 (or 0) and there are no squares or products xj1xj2 of unknowns. When A
and x are given, the problem is relatively easy, because finding b requires
only matrix multiplication. The number of unknowns (i.e., the length of b) is
always equal to the number of equations (otherwise Ax cannot equal b), and
typically the elements of b are not highly sensitive to small errors in A or x.
More often, however, the problem confronting us is to find x when A and b
are given. This problem is much more difficult and is the primary subject of
this section of the book.

MATLAB’s Solutions
Most programming languages (e.g., C, C++, Fortran, Java) provide no com-
mands at all for solving either of these linear algebra problems. Instead, the
user of the languages must find a function written by other programmers or
write his own functions to solve the problem. Writing a function to find x is
in fact no simple matter, and the likelihood that a programmer unskilled in
linear algebra will produce a reliable one is negligible. By contrast, MATLAB
provides one simple operation to solve each of the two problems: When A
and x are given, the MATLAB solution is b = A*x; when A and b are given,
the MATLAB solution is x = A\b. There are amazingly few restrictions on A,
x, and b. As explained previously, in order for the matrix multiplication A*x
to make sense, the number of columns of A must equal the number rows of x.

There is different rule for matrix division: in order for the division A\b to
make sense, the number of rows of A must equal the number of rows of b.
That’s it. That’s the end of rules for * and \ in MATLAB!

Suppose, for example, we need to solve the equations:

4x1 + 5x2 = 6
3x1 − 2x2 = 14

$

Here we have Ax = b, where the matrix A and the vector b are as follows: 

A = [4 5
3 −2], b = [6

14] , 

and we are solving for x. Here M = 2 and N = 2. We can set up this problem
and solve it in MATLAB as follows:

>> A = [4 5; 3 -2]

A =
4 5
3 -2

>> b = [6; 14]

b =
6

 14

>> x = A\b

x =
 3.5652

-1.6522

288

Note that, as always, the number of rows of A is equal to the number of rows
of b. (In this example, the number of columns of A is also equal to the number
of rows of b, but that equality is not necessary).

We can check the result to make sure that it solves the equation:

>> A*x

ans =
 6
 14

Since the elements are the same as those of the vector b, we can see that the
equations have both been solved simultaneously by the two values
x1 = 3.5652 and x2 = − 1.6522. Another way to check is to look at the differ-
ence between A*x and b:

>> A*x - b

ans =
 0
 0

Since the difference between each element of A*x and the corresponding ele-
ment of b is zero, we see again that MATLAB has given us the solution.

As we mentioned at the beginning of this section, we will soon see that there
are some situations in which the result given by A\b does not solve the equa-
tions or, while it solves the equations, the solution is not trustworthy. In those
cases, MATLAB may warn you, but not always. Such situations can cause se-
rious trouble, if the user does not know what is going on. The trouble is not
the fault of MATLAB. It is the fault of the user who is solving problems in lin-
ear algebra without knowing enough about linear algebra, or perhaps the
fault of the instructor who failed to teach the user enough about linear alge-
bra! We will learn below when this will happen and why it happens, and we
will learn the meaning of the result that MATLAB gives us in these situations.

In the problem above, there were two equations in two unknowns. Because
there were two equations, there were also two rows in both A and b. Because
there were two unknowns, the number of columns of A was also 2 and the
resultant answer x had a length of two. Problems such as this one, in which
there are N equations and also N unknowns, are the most common linear alge-
braic problems that occur in all of engineering and science. They are solved
in MATLAB by setting up an N-by-N matrix A, and a column vector b of
length N.

Inconsistent Equations
In most cases for which M = N, a solution exists, but occasionally there is no
solution. The simplest example is given by two equations in which the left
sides are the same but the right sides are different, as for example,  

4x1 + 5x2 = 6
4x1 + 5x2 = 12

  

Clearly this pair of equations is inconsistent. A plot of the lines represented
by each of the equations will reveal that they are parallel. Thus, they never
intersect, or, to put it another way, they intersect at infinity. If we try to solve
this pair of equations using MATLAB, it will issue a warning that the matrix
is “singular” and will give as its answer Inf for each element of x. As we
learned in Chapter 2 in Data Types, Inf is a special value that means “infin-
ity”. Here it is simply a sign that no solution exists in our finite world.

Underdetermined Problems
Problems for which M = N are not the only problems of importance. In the
general case, the number of equations M need not be equal to the number of
unknowns N. For M < N, the problem is underdetermined, meaning that

289

there is not enough information provided by the equations to determine the
solution completely. The simplest example is a single equation in two un-
knowns:  

4x1 + 5x2 = 6

Here M = 1 and N = 2. If we solve this equation for x2 , we get
x2 = −(4x1 − 6)/5 . This relationship shows us that we can choose an infinite
set of values of x1 from −∞ to +∞ , as long as we choose the right x2 to go
with it. If MATLAB is asked to solve for x in this situation, it will find one,
and only one of this infinity of solutions, preferring one that includes as
many zeros as possible (one in this case):

>> A = [4 5]; b = 6;
>> x = A\b

x =
 0
 1.2000

Inadequate information can sometimes occur when M = N and even when
M>N. This happens when the information in some of the equations is redun-
dant. For example, it happens for these three equations

4x1 + 5x2 = 6
8x1 + 10x2 = 12

−2x1 − 5
2 x2 = −3

There is no more information in these three equations than in the first alone.
The reason is that each of the second and third equations can be obtained
from the first by multiplying all terms by the same number (2 for the second
equation and -1/2 for the second). Thus, any two of these equations are re-
dundant relative to the third. The set of solutions to these three equations is
the same infinite set of solutions that solve the previous example.

Overdetermined Problems
A more common situation when M > N, is that the problem is overdeter-
mined, meaning that there is too much information provided by the equa-
tions. The equations represented by Ax = b in this case cannot all be satisfied
simultaneously by any value of the vector x. The MATLAB command x =
A\b will still result in a value being calculated for x, even though that value
does not satisfy the equality A*x = b. Why does MATLAB give a so-called
“solution”, when no solution exists? Isn’t that a bad thing to do? Well, it is
actually a good thing to do, but to see that we need to understand better the
meaning of the “solution” that MATLAB gives when the equations are over-
determined. We will begin by looking at the following equations again:  

4x1 + 5x2 = 6
3x1 − 2x2 = 14

  

which are not over determined. It is helpful to plot the lines defined by the
equations. We begin by solving the first equation for x2 and get
x2 = −(4x1 − 6)/5 . To plot x2 versus x1, we set up a MATLAB variable called
x1 that contains an assortment of values. We pick –10, -9, -8, . . ., 9, 10. We
then set up a variable called x2a (the a indicates that we are plotting the first
equation), which we set equal to –(4*x1 – 6)/5. We do a similar thing for
the second equation, using x2b this time, and we plot both lines:

>> x1 = -10:10;
>> x2a = (-4*x1 + 6)/5;
>> x2b = (3*x1-14)/2;
>> plot(x1,x2a,x1,x2b)
>> grid on
>> xlabel('x1')
>> ylabel('x2')
>> legend('x2a','x2b')

290

The resulting plot is shown in Figure 3.1. It can be seen that the two lines
cross at approximately the point (3.6, −1.7). Their intersection is the lone
point at which both equations are satisfied. In other words, the pair of values,
3.6 and −1.7 are the approximate solution of the simultaneous equations. We
solved these equations when we encountered them before by using x =
A\b. We found that x(1), which corresponds to x1, equals 3.5652, and x(2),
which corresponds to x2, equals −1.6522. These more exact values can be seen
to agree with the intersection point in the plot.

Thus, for the case of two equations in two unknowns, MATLAB gives us the
exact (to within some small round-off error) solution. We now study an over-
determined problem, in which there are more equations than unknowns, by
considering the following set of equations,

4x1 + 5x2 = 6
3x1 − 2x2 = 14
7x1 − x2 = 25

 , 

which are the same as the previous example with one new equation added.
We can plot these three equations using the commands above plus these addi-
tional commands:

>> x2c = 7*x1 -25;
>> hold on
>> plot(x1,x2a,x1,x2b,x1,x2c)

The resulting plot is shown in Figure 3.2. The new line is plotted in red. The
blue and green lines are the same plots as before, but their slopes appear to
be different because the dimensions of the graph are different. MATLAB has
chosen a larger vertical range to accommodate the third line.

291

Figure 3.1 Solution to a system of two linear equations

Figure 3.2 Solution to a system of three linear equations

 While it appears that the three lines cross at a point, in fact, they do not. To
get a better look, we can click on the magnifying-glass icon with the “plus”
sign in the middle of the circular “glass” part (just below the words “Insert”
and “Tools” at the top of the figure window) and then click a few times near
the area where the lines appear to cross. The result is shown in the magnified
plot in Figure 3.3. At this level of magnification, we clearly see that the lines
do not all cross at the same point, which means that there is no solution to
these equations.

Nevertheless, we can ask MATLAB to try to “solve” them as follows:

>> A = [4 5; 3 -2; 7 -1]
A =
 4 5
 3 -2
 7 -1

>> b = [6; 14; 25]
b =
 6
 14
 25

>> x = A\b
x =
 3.4044
 -1.5610

The resulting solution point can be plotted on the same graph by means of
these commands:

>> hold on
>> plot(x(1),x(2),'k*')

The resulting plot (after magnification) is shown in Figure 3.4 and reveals
that MATLAB has chosen a point that comes close to all three lines.

292

Figure 3.4 Approximate solution provided by MATLABFigure 3.3 There is no exact solution to the equations

Of course, this “solution” is only an approximation, and since there is no ex-
act solution, there must be some errors in it. The errors in the solution can be
seen by comparing A*x to b:

>> error = A*x-b

error =
-0.1875
-0.6647
0.3920

If the solution were exact, all three elements of error would be zero. If an
exact solution did exist (i.e., if all three lines crossed at the same point),
MATLAB would have given us that solution. In all other cases, MATLAB
gives that solution for which the sum of the squares of the elements of error
is as small as possible. This value can be calculated using MATLAB’s built-in
function norm which gives the square root of the sum of the squares of the
elements of the input vector:

norm(x) = ∑
i

x2
i .

There are other “norms”, each of which measures the size of the vector in
some sense (try help norm), but this norm is the most common and most
useful one. In this case, we find that norm(error) gives the value 0.7941.
We can try other values for x. Each of them will produce a nonzero error, and
the norm of the error will always be greater than 0.7941. A solution for
which norm(error) is as small as possible is called “the optimum solution
in the least-squares sense”.

Ill-conditioned Problems
We have seen that MATLAB will solve problems of the form Ax = b when
they have exact solutions, and it will give an optimum solution in the least-
squares sense to problems that are overdetermined. In either of these situa-
tions, an important aspect of the problem is its stability to input error. While
there are several definitions of stability, we will concentrate on the most com-
mon one: the effect, for a given matrix A and a given vector b, that changes in
b have on x. This problem is confronted by engineers and scientists when (a)
a problem of the form Ax=b must be solved for x, (b) the values of A are calcu-
lated or known with high accuracy, and (c) the values of the elements of the
vector b are measured with limited accuracy. There is always some level of
error in the measurements, and if x changes drastically when small errors are
made in b, then the problem is said to be ill-conditioned. The ill conditioning
depends on both A and b, but it is possible to have a matrix A for which the
problem is well behaved for any b.

To study the phenomenon of ill conditioning, we will consider the following
two equations:

24x − 32y = 40 
31x − 41y = 53

We calculate a solution to these equations using x = A\b as usual and we
find that x equals 7 and y equals 4. If we perturb the values of b slightly to 40
and 53.1, we find that x equals 7.4 and y equals 4.3. While these may not
seem to be significant changes, it is interesting to make some relative compari-
sons. Let’s define the following convenient quantities:

bp: perturbed version of b
db: change in b: db = bp - b
xp: perturbed version of x: xp = A\bp
dx: change in x: dx = xp - x

293

We will use the norm as a measure of the size of some of these vectors, and
we will examine the ratio of some of them. In particular, we find that

relative_input_error = norm(db)/norm(b) = 0.0015

and

relative_output_error = norm(dx)/norm(x) = 0.0620.

These two quantities represent the fractional change, respectively, in the sizes
of b and x resulting from the addition of db to b. This addition represents a
possible imprecision or error in the measurement. Because b is given, we call
it the input (A is input as well, but, as we mentioned above, we are here treat-
ing the case in which its elements are measured with high accuracy, so we are
not considering the effects of errors in its measurement.) Because x is calcu-
lated, we call it the output. This is the situation that would arise if errors in
the measured values of the elements of b were to change by the amounts in
db. These errors would result in the changes in x represented by dx. The frac-
tional changes represent the seriousness of the changes in comparison to the
quantities that are changing. In this case a 0.15% change in b results in a 6.2%
change in x. Neither of these changes seems impressive, but their ratio is. The
relative change in x is 6.2/0.15, or 41 times larger than the change in b. Thus,
the error is increased by over four thousand percent! By comparison, if we
perturb b for the first set of equations that we studied in this section from 6
and 14 to 6 and 14.1 and do a similar calculation, we find that the percent er-
ror is increase by a factor of only 1.1. This second situation is far more stable
than the former one.

MATLAB provides a function to help you detect ill-conditioned problems.
The function is called cond. To use it, one simply calls cond on the matrix A.
If cond(A) returns a large value, then A is ill-conditioned; otherwise, it is
not. The number returned by cond is called the condition number of A. It is
the maximum possible percent change in the output for a one percent change

in the input. Its precise definition is as follows: For any input vector b and
any perturbed input vector bp:

relative_output_change ≤
cond(A) × relative_input_change

Returning to the two examples above, we find that cond([4 5; 3 -2])
returns 1.7888, while cond([24–32;31–41]) returns 530.2481. The inequal-
ity above is clearly satisfied for both cases, and it is clear that the former is far
more stable than the latter.

It is well to remember these examples when confronting any problem of the
form Ax=b when the unknown is x. If the condition number of A is large, the
problem probably needs to be reformulated with more and/or different meas-
urements taken to avoid having large errors in the output, even when the in-
puts are measured with relatively high accuracy.

294

Concepts From This Section

Computer Science and Mathematics:
$ linear algebra, matrix algebra
$ simultaneous linear algebraic equations
$ under determined
$ over determined
$ norm of a vector
$ ill-conditioning, ill-conditioned
$ relative input error and relative output error
$ condition number of a matrix

MATLAB:
 b = A*x
 x = A\b
 norm(x)
 cond(A)

295

SECTION 2

In this section, we will look at two closely related prob-
lems: searching and sorting. Both problems appear in ap-
plications involving databases, and without efficient so-
lutions to these problems, databases would be virtually
useless. They would be useless because databases that
are large enough to hold the information we need would
be too large to use. They would be too large to use be-
cause it would take too long to find what we are looking

for inside them. There is a large variety of specific appli-
cations of searching and sorting, but the most basic ones
involve locating an element in a vector whose value is
equal to a target value. We will use that simple problem
as our driving example throughout the section.

Objectives

Computer scientists expend a
great deal of effort designing
efficient algorithms and
analyzing their behavior. This
section will use two classic
problems to introduce
algorithm design and analysis.
(1) We will study the problem

of searching a list for a
specific value and the
problem of sorting a list of
values.

(2) We will learn two searching
algorithms: sequential
search and binary search.

(3) We will learn three sorting
algorithms: selection sort,
quicksort, and binary sort.

(4) We will learn how to
analyze algorithmic
behavior through the
concepts of worst case, time
complexity, dominance, and
big-O notation.

You probably use a search algorithm almost every day without thinking much about how Google can find your needle in the
world-wide-web haystack in a fraction of a second. Here we’ll introduce simple techniques for searching and sorting.

Searching and Sorting

296

Searching
Searching is important in many areas of computer science. Many large com-
puter systems include databases that must be searched when an inquiry is
made. For example, when you phone a credit-card company to inquire about
your bill, you will be asked for your card number. In a few seconds, the com-
pany representative will be looking at your data. Your data and that of tens of
millions of other customers are all stored in a database, and your information
is found by searching among all those card numbers. The target of the search
is your unique number. Furthermore, every day, millions of transactions,
each involving one of those unique numbers, take place, and each one re-
quires that your card number be located in a database of all credit cards. In
each of these examples and in many other situations, such as looking up ac-
count balances, finding plane reservations, retrieving on-line orders, checking
license plates, and many, many others, the first task is to find an entry in a da-
tabase that is indexed by a target number, and it is always accomplished by a
search algorithm.

Sequential search
The simplest search algorithm is sequential search, also known as linear
search. In this method, the target number that is being sought is compared
with the first member of the database, then with the second, etc., until either
the number is found, or the end of the database is reached, whichever comes
first. Instead of dealing with a real database, let’s work on the simplest ver-
sion of the search problem. We are given a vector of numbers and a target
value. Our task is to search for that target value in the vector. If we find it,
then the answer we give is the index of the element that we found.

If we do not find it, we return an impossible index, say, −1, as a flag that indi-
cates that the search failed. That flag is crucial to the search algorithm be-
cause there must be some means of informing the searcher that the target is
not there. As we learned in Chapter 2 in Loops, in computer science the term

“flag” means a value indicating a special condition. In this case, the condition
is “target not found”, or “search failure”.)

The function, sequential_search, below carries out the sequential search:

function index = sequential_search ...
(vector,target,first,last)

%SEQUENTIAL_SEARCH
% SEQUENTIAL_SEARCH(VECTOR,TARGET,FIRST,LAST) returns
% smallest index for which TARGET == VECTOR(index) or
% -1, if TARGET not found within VECTOR(FIRST:LAST).

found = false; % Assume the target is not in vector
for n = first:last
 if target == vector(n)
 found = true; % We found it...
 break; % so we quit looking for it!
 end
end
index = n;
if ~found
 index = -1;
end

First we note that we have used the line continuation operator (...) to con-
tinue a statement on to the next line. Such continuation has nothing to do
with functionality. Next we note that that there are four arguments. Argu-
ment 1 is the vector to be searched; Argument 2 is the target that we are
searching for; Arguments 3 and 4 give the beginning and the end, respec-
tively, of the range of indices over which we wish to search. Most of the time,
when we call the function, we will set first to 1 and last to the full length
of vector, but sometimes we may wish to search only a limited range. Argu-
ments 3 and 4 are there to provide this option. So for example, if we wish to
search all of a vector, named accounts, for the number stored in smith, we
would give the call,

>> sequential_search(accounts, smith, 1, length(accounts))

but, if we wish to search only within, say, accounts(450:5600), we would
give the call,

297

>> sequential_search(accounts, smith, 450, 5600)

 As promised, this function returns –1, as a flag indicating failure, where fail-
ure means that the target value is not equal to any of the elements in the vec-
tor. To assist in setting the flag, we have used an internal flag called found
and the built-in functions false and true, which were introduced in Chap-
ter 2 in section Loops.

It is customary in computer science to refer to a vector of numbers as a “list”,
and, if one of the elements of the list has a value equal to the target, it is cus-
tomary to say that the target is “on the list” or the target is “in the list”. If the
target is on the list, then sequential_search returns the first position at
which it finds the target. So, for example, suppose the function is applied to
the list [45 23 17 17 –2 100 34]. In that case, the number 17 would be
found at index 3 after the target had been compared with three numbers: 45,
23, and 17 (the first 17, that is). When searching for a target that is not on the
list, 82, for example, the function will have to compare the target with every
number on the list, requiring 7 comparisons. These few comparisons will not
take long, but if there are a million numbers on the list, time can become a sig-
nificant factor. If the target is not on the list, or if it is last on the list, a million
comparisons are required. Numbers close to the beginning will be found
quickly, numbers toward the end will take longer, but if all elements are
equally probable, the mean number of comparisons required will be about
half the length of the list: in this case, half a million. Faster searching methods
are available, but only if the list has been sorted before the search is under-
taken. For an unsorted list, the sequential search is the only possible choice.

Binary search
If a list has been sorted before the search is undertaken, searches can be car-
ried out much more quickly. The search method that should be used on a
sorted list is the binary search. It is more complicated than the sequential
search method, but the complication is well worth it: A binary search requires

no more than 40 comparisons to find a number in a list of one million num-
bers!

Recursive implementation of the binary search
If you have ever looked up a number in a phone book, the recursive ap-
proach to the binary search is one that you already know about. You don’t
look at every name sequentially, as in the sequential search algorithm. In-
stead, you look at a page near the middle of the phone book. You look at one
name on that page and note whether the target name that you are searching
for comes before or after it. If the target name comes before the name on that
page, then you have eliminated about half the names in the book. Then, you
go to a second place in the phone book closer to the beginning and repeat the
process.

The “process” that you are repeating is the process of finding a name in a list
by looking near the middle and eliminating about half the names in the list.
When you repeat the process at the second place in the book, you are apply-
ing the process to a smaller list (one half of the book), but otherwise the proc-
ess is the same. Since the process includes the application of itself (to a
smaller list), it is recursive. Near the end of the recursive process, you will
probably abandon the approach of eliminating sections of the book and just
scan through the names on a page or two, but the major work was done
when you eliminated large chunks of the book at the beginning with the first
recursive steps.

When you use this approach you are carrying out your own recursive ap-
proximation of the binary search, and that is the version of binary search that
we will consider first. Here is a recursive function that implements the binary
search algorithm, providing the same interface (arguments) as that used by
sequential_search:

298

1. function index = binary_search_recursive ...
2. (vector,target,first,last)
3. %BINARY_SEARCH_RECURSIVE
4. % BINARY_SEARCH_RECURSIVE(VECTOR,TARGET,FIRST,LAST)
5. % returns an index for which TARGET == VECTOR(index)
6. % or -1, if TARGET not found in VECTOR(FIRST:LAST).
7.
8. mid = fix((first + last)/2);
9. if ~(first <= last) % If first and last out of order..
10. index = -1; % ..then target not on the list!
11. elseif target == vector(mid)
12. index = mid; % found it!
13. elseif target < vector(mid)
14. index = binary_search_recursive ...
15. (vector,target,first, mid-1);
16. else
17. index = binary_search_recursive ...
18. (vector,target,mid+1, last);
19. end
 
The function works as follows:

Line 8: The middle of the range is determined. If first is odd and last
is even, or vice versa, then that average will not be an integer. Since mid must
be an integer in order to be an index, the fix() function is used to discard
the fractional part (which is always 0.5), if there is one.

Lines 9-10: If first and last are out of order, then the range is empty,
so target cannot possibly be in the range. Therefore, failure is flagged by
returning −1.

Lines 11-12: The value of target is compared to the element at the mid-
dle of the range. If the target and the element are equal, then the search is
successful, and the middle index is returned.

Line 13: If target is less than that middle number, then the middle ele-
ment and all the elements that come after the middle element can be elimi-
nated. The search can now be confined to the range of elements that come be-
fore the middle one.

Lines 14-15: A recursive call is made to search only the range of ele-
ments that come before the middle. Whatever index is received from this re-
cursive call is returned.

Line 16: If this statement is reached, then target must be greater than the
middle element. That means that the middle element and all the elements
that come before the middle element are eliminated. The search can now be
confined to the range of elements that come after the middle one.

Lines 17-18: A recursive call is made to search only the range of elements
that come after the middle. Whatever index is received from this recursive
call is returned.

It is important to note that during the first call of this function about half the
numbers are eliminated before the first recursive call is made. This search al-
gorithm is in fact named “binary” search because the list is repeatedly di-
vided into two parts. (Actually, it is divided into two big parts and one very
small one. The very small part is the single element in the middle.) The two
big parts are subranges of the list. Subsequent searching in one of those
subranges is accomplished by specifying the desired subrange via the third
and fourth arguments and applying the binary search to it. The elimination of
about half of the remaining elements happens again on the second recursive
call, and on the third, and on each successive recursive call. Thus, each call
cuts the size of the problem roughly in half.

This is a powerful approach to searching because relatively few divisions are
required to trim a large list down to one number. If, for example, we search a
list of one million elements for a target that is equal to the last number on the
list, which can be shown to be the worst case, then the successive numbers of
elements to be searched with this algorithm are 1000000, 500000, 250000,
125000, 62500, 31250, 15625, 7812, 3906, 1953, 976, 488, 244, 122, 61, 30, 15, 7, 3,
1. Thus, if the number is in the list, even in the worst case there will be only
20 calls of binary_search_recursive required to find a target number

299

within in a list of one million numbers. It takes no more than 21 calls to hit
failure when the target is not there. In either case (i.e., the target is on the list
or not on the list), during those 20 or 21 calls, no more than 40 comparisons
will be made between target and the elements of vector. This is a very small
number compared to the million comparisons required by the sequential
search for the worst case: a factor of 25,000 fewer, and it is a factor of 12,500
smaller than the average case for sequential search, when the numbers are all
equally probable, as they usually are.

The strategy of dividing a problem into smaller problems and then attacking
the smaller problems recursively is a standard approach in the field of algo-
rithms, which is the field of computer science that deals with the efficiency of
algorithms. This strategy is called divide-and-conquer. We will look more
closely at the idea of efficiency later in this section.

It is informative to follow the algorithm as it works its way through a few spe-
cific searches. Suppose we are searching for targets in a sorted vector named
A that contains 11 elements:

A = [2 17 17 18 24 43 74 77 80 88 97] .

In our first search let’s look for the target number 88:

>> binary_search_recursive(A,88,1,length(A))

ans =
 10

This search involves three calls of the function (the second two being recur-
sive calls). The following is a summary of the search progression showing the
search ranges for each successive function call along with the element
A(mid) in the middle of the range that was compared to the target:

Range= A(1)= 2 to A(11)= 97, mid element A(6)= 43
Range= A(7)= 74 to A(11)= 97, mid element A(9)= 80
Range= A(10)= 88 to A(11)= 97, mid element A(10)= 88

Thus, the three numbers, 43, 80, and 88, were compared with the target.

Now let’s search for 17:

>> binary_search_recursive(A,17,1,length(A))

ans =
 3

Here is the summary of this search:

Range= A(1)= 2 to A(11)= 97, mid element A(6)= 43
Range= A(1)= 2 to A(5)= 24, mid element A(3)= 17

Here, only the two numbers, 43 and 17, were compared with the target.

It should be noted that when there are duplicates on the list, the binary
search algorithm, unlike the sequential search algorithm, does not necessarily
find the first element on the list that is equal to the target. In this case the first ele-
ment that is equal to the target value 17 is A(2), but the binary search hap-
pened to encounter it first at A(3). So it returned 3.

It is interesting to note that in every case the first number compared with the
target for this list is 43. This is always the first number for this list, because,
when we ask the binary-search algorithm to search the entire list, it always
starts at the middle of the list, regardless of the value of the target.

Finally, let’s try one example in which the target is not on the list:

>> binary_search_recursive(A,90,1,length(A))

ans =
-1

The summary of this search looks like this:

300

Range= A(1)= 2 to A(11)= 97, mid element A(6)= 43
Range= A(7)= 74 to A(11)= 97, mid element A(9)= 80
Range= A(10)= 88 to A(11)= 97, mid element A(10)= 88
Range= A(11)= 97 to A(11)= 97, mid element A(11)= 97
Range= A(11)= 97 to A(10)= 88

This time, the numbers 43, 80, 88, and 97 were compared with the target. In
the last range, the first and last elements, 97 and 98, are out of order, so the
algorithm treats the range as empty. No element is compared with the target.
The algorithm halts and returns –1 to indicate that the target is not on the
list.

Iterative implementation of the binary search
As we learned in the previous chapter in the subsection entitled From Recur-
sion to Iteration in section Functions Reloaded, every recursive function can
be replaced by an iterative function that produces the same result. Here is an
iterative version of binary search:

function index = binary_search_iterative ...
(vector,target,first,last)

%BINARY_SEARCH_ITERATIVE
% BINARY_SEARCH_ITERATIVE(VECTOR,TARGET,FIRST,LAST)
% returns an index for which TARGET == VECTOR(index)
% or -1, if TARGET not found in VECTOR(FIRST:LAST).

found = false;
while first <= last && ~found
 mid = fix((first + last) /2);
 if target < vector(mid)

last = mid - 1;
 elseif target > vector(mid)

first = mid + 1 ;
 else

found = true;
 end
end

if found
 index = mid;
else
 index = -1;
end

As in the recursive version, the list is repeatedly divided into smaller and
smaller parts, but instead of executing a recursive call after each division, an-
other iteration of the while-loop is executed. As with the recursive version,
the variables first and last are set to be equal to the first and last indices,
respectively, of the range being searched. The dividing of the list into smaller
and smaller pieces is accomplished by changing, one at a time, either of these
two variables, first or last, either moving first closer to the end or mov-
ing last closer to the beginning. As with the recursive version, the index of
the element in the middle of the list is assigned to mid by taking the average
of first and last and using fix to remove any fractional part.

All this work is done in a while-loop. That loop will end when the target is
found because, in that case, the value of found , which is initialized to 0 with
the built-in function false, is changed to 1 using the built-in function true.
If the target value is not in the list, then the loop will still halt when the val-
ues of first and last become out of order (first>last), just as in the re-
cursive version because, once again, having first greater than last means
that the range is empty so the target cannot possibly be within it. Then the
number –1 is returned as a flag to mean that the number was not found. Let’s
apply this algorithm to the first example given above for the recursive ver-
sion:

>> binary_search_iterative(A,88,1,length(A))

ans =
 10

The search ranges and middle elements are exactly the same as for the recur-
sive version. In fact, the summaries given above for the recursive version ap-
ply to the iterative version as well as they do to the recursive version.

301

Sorting
Thanks to the advantage provided by the binary search algorithm over se-
quential search, it should be obvious that large lists that are going to be
searched repeatedly should first be sorted in order to make subsequent
searches more efficient. Sorting is another important task in computer applica-
tions, and it is carefully studied by students of that field. It is important be-
cause of the large savings in search time possible when using the binary
search instead of the sequential search. Many sorting methods have been de-
veloped, some of which are quite complicated (far more complicated than the
binary search algorithm given above, for example). The benefit in reduced
sorting time is, however, worth the programming effort. Students who
choose computer science or computer engineering as their major spend a
good deal of time mastering the concepts involved in efficient sorting algo-
rithms. The simplest form of the problem is to sort a vector of numbers into
ascending order. We will confine our attention to that problem.

Selection sort
A sorting algorithm that is not very efficient, but is simple enough to be read-
ily understood is the selection sort. Here is a function that implements the
selection-sort algorithm:

1. function v = selection_sort(v)
2.
3. %SELECTION_SORT sort in ascending order
4. % V = SELECTION_SORT(V) sorts vector V into
5. % ascending order. The method used is
6. % selection sort.
7. for m = 1:length(v)-1
8. m_min = m;
9. for n = m+1:length(v)
10. if v(n) < v(m_min)
11. m_min = n;
12. end
13. end
14. if m_min ~= m
15. temp = v(m);
16. v(m) = v(m_min);
17. v(m_min) = temp;
18. end
19.end

It is used as follows,

>> vs = selection_sort(vu);

where vu is the vector to be sorted and vs is a vector containing the same ele-
ments as vs but arranged in ascending order.

To learn how the selection sort works, we will follow an example all the way
through (laboriously!) step-by-step. Suppose selection_sort is given the
following list:

v = [28 27 86 15 28 64]

Step 1: Find (i.e., “select”, hence the name “selection sort”) the smallest ele-
ment, which in this case is v(4) and equals 15, and swap it with the first ele-
ment, v(1), which equals 28:

v = [28 27 86 15 28 64]

The result is

v = [15 27 86 28 28 64]

302

Now we have taken care of v(1), and all that remains is to sort the items in
v(2:end).

Step 2: Find the smallest element in v(2:end) and swap it with v(2). As
it happens in this case, the smallest element in v(2:end) is already in
v(2). So no swap is necessary. The list is still

v = [15 27 86 28 28 64]

Now we have taken care of v(1:2), and all that remains is to sort the items
in v(3:end).

Step 3: Find the smallest element in v(3:end) and swap it with v(3). As
it happens there are two smallest elements: both v(4) and v(5) have the
smallest value, 28. We choose to use the first of these, swapping with v(3):

v = [15 27 86 28 28 64]

The result is

v = [15 27 28 86 28 64]

Now we have taken care of v(1:3), and all that remains is to sort the items
in v(4:end).

Steps 4 and 5: We will spare you the details. Suffice it to say that 28 is
swapped with 86, and then 64 is swapped with 86. At that point the list is
sorted:

v = [15 27 28 28 64 86] .

Each of these five steps is carried out by one iteration of the outer for-loop in
lines 7-19 of selection_sort. To sort a list of length six (like this one) re-
quires exactly five iterations (one less than the length of the list), during
which m has taken on the values 1, 2, 3, 4, and 5. Each iteration of that loop
involves finding the smallest element in v(m:end) and swapping it with

v(m), as we have been doing above. When iteration m is over, v(1:m) has
the correct elements and v(m+1:end) remains to be sorted.

The work of finding the smallest element is done by lines 8-13. (We could use
MATLAB’s min function to find it, but that would hide some of the complex-
ity of the algorithm.) When those lines are completed, the variable m_min
holds the index of the smallest element of those in v(m:end). Those lines be-
gin with the “guess” on line 8 that the smallest element is at the beginning of
v(m:end). Thus, m_min is set equal to m. The inner loop in lines 9-13 then
compares that guess against the first element after m, namely, v(m+1). If it is
smaller, then m_min is set equal to m+1, which is the new guess. The loop in-
dex n holds the index of each element to be compared with the latest guess.
When n has reached the end of the vector, and element v(end) has been
checked, the guess has become a certainty. At this point, we know that
v(m_min) is the smallest element in the v(m:end) vector.

Now it is time to swap v(m) and v(m_min). That work is handled by lines
14-18. The if-statement checks to see whether a swap is necessary at all. It is
unnecessary if the smallest element is already at v(m), so the swapping is
avoided if m_min is equal to m. If a swap is required, lines 15-17 do the job.
These three lines are very common in computer programming. In order to
swap two numbers in MATLAB, it is necessary to hold one of them in a
temporary variable, often called temp, as in this example. The swap always
begins (line 15) by copying into temp the first one of the values to be
swapped, in this case v(m). The next step (line 16) copies the second of the
values to be swapped, in this case v(m_min) into the first variable. If it were
not for the fact that we have saved a copy of the original value of first variable
in temp, this copying (i.e., line 16) would cause it to be lost. The final step
(line 17) re-trieves that saved value and copies it into the second variable.

The selection sort continues in this way steadily whittling away at the list
with its outer loop incrementing m and working on a smaller and smaller part
of the list, v(m:end), each time using the inner loop to find the smallest ele-

303

ment in v(m:end), and using lines 14-18 to swap it with element v(m). The
outer loop stops one position short of the end of the vector when the index m
= length(v)-1. It can stop there because the previous step has established
that the last element is not smaller than the next-to-last element. Therefore,
the sort is complete. That is why our little six-element list v required only five
steps to sort.

Quicksort
A sorting method that is much more efficient for most lists than any imple-
mentation of the selection sort and is fairly easy to understand, is called
“quicksort”. Here is a function that implements the quicksort algorithm:

1. function v = quicksort(v)
2. % QUICKSORT sort in ascending order
3. % Uses vectorized operations and
4. % logical variables. The method
5. % used is quicksort.
6.
7. % Base case (empty or singleton)
8. if length(v)<=1, return, end
9.
10. % Recursive case
11. less = v<v(1);
12. smaller = v(less);
13. remainder = v(~less);
14. remainder = remainder(2:end);
15. left = quicksort(smaller);
16. right = quicksort(remainder);
17. v = [left v(1) right];

Quicksort employs the divide-and-conquer strategy. The central idea is to di-
vide the vector v that is to be sorted into three parts:

• v(1)

• smaller, a list that consists of all the elements in v that are smaller than
v(1)

• remainder, a list that holds the remainder of the elements in v., i.e.,
those elements in v[2:end] that were not copied into smaller.

Then, we apply quicksort recursively to smaller to produce a sorted list,
which we will call left, and then we apply quicksort recursively to
remainder to produce a second sorted list, which we call right. Finally, we
set

v = [left, v(1), right]

which shows why we named those sorted parts left and right. The result-
ing list is now sorted.

As an example, let’s start again with the list we sorted above with the selec-
tion sort—before it was sorted:

v = [28 27 86 15 28 64]

The first (non-recursive) call,

>> quicksort(v)

begins by dividing v into three parts, as described above,

• v(1), which equals 28

• smaller, which equals [27 15]

• remainder, which equals [86 28 64]

Creating the list smaller is accomplished by means of lines 11-12. Together
these two lines provide an example of MATLAB’s “logical indexing” feature,
which was introduced in subsection Logical Indexing of the Loops section,
but that was long ago and far away, so we will refresh your memory by ex-
plaining each of the aspects of this feature as they are encountered here. As
explained in that section, logical indexing is the use of a logical array to select
the desired elements of an array, instead of the normal method of listing the
indices of the desired elements of the array.

304

The right side of line 11 produces a vector whose elements each equal 1 or 0,
with 1 meaning it is true that the element is less than v(1) and 0 meaning
false. The resulting vector is then assigned to less. The true/false value of
each element less(ii) now indicates whether or not v(ii)<v(1), for ii
equal to 1, 2, The result is called a “logical array”, meaning that the
type of less is “logical” and can therefore be used in operations like the one
on the right side of line 12. The value that is assigned to less in this exam-
ple is [0 1 0 1 0 0], since v(2) and v(4) are the (only) elements that are
less than v(1).

The right side of line 12 produces a vector consisting of those elements of v
that are located at the same positions as the 1s in less. They are kept in the
same order too. Thus, the vector assigned to smaller is [27 15], since

 v(2) = 27 and v(4) = 15.

The total effect of lines 11-12 is to remove the elements of v that do not sat-
isfy the rule, v(ii) < v(1).

Creating the list remainder is accomplished by lines 13-14. Line 13 is simi-
lar to line 12, but the logical array less has been replaced by ~less, whose
value is “opposite” to that of less. Thus, it is equal to [1 0 1 0 1 1].
Thanks to the “not” operator ~, the vector assigned to smaller has 1s at
(only) the positions for which the elements v(ii) is not less than v(1)
(there are zeros elsewhere). These elements are v(1) = 28, v(3) = 86,
v(5) = 28, and v(6) = 64. Logical indexing causes each of these ele-
ments to be copied into remainder, which now equals [28 86 28 64].
Note that v(1) is on the list. While it is true that v(1) is not smaller than
v(1), we do not want it on this list.

Line 14 is responsible for removing v(1) from remainder. Because the logi-
cal indexing operation in line 13 does not change the order of the elements,
v(1) is still in the first position. Since remainder(2:end) contains every-

thing in remainder except its first element, we can be assured that v(1) has
been left off.

Now we carry out the recursive call on line 15:

left = quicksort(smaller)

which returns left equal to the sorted list, [15 27]. Our second recursive
call, line 16,

right = quicksort(remainder);

sets right equal to [28 64 86]. Finally, we combine the three parts into
one sorted list:

v = [left, v(1), right],

which equals [15 27 28 28 64 86].

The algorithm is completed and v has been sorted into ascending order.

Every recursive function must have a base case, and, as can be seen in line 8,
the base case here is determined by the length of the list. If the length is one,
then there is no work to do. The list is returned without change. The same
holds for an empty list (length equal to zero). For all other lengths, recursion
is employed.

The quicksort algorithm is much faster than selection sort for most lists. As
an example, on one rather standard laptop the selection sort took 19 times as
long as quicksort to sort one hundred thousand numbers.

Merge sort
While quicksort is much better than selection sort, it is not the best sorting
algorithm available. It has a weakness that keeps it from being best. The
weakness stems from the fact that when the list that it is given to sort hap-
pens to be almost sorted, its divide-and-conquer strategy no longer works

305

well. In that case, the list smaller is almost always empty, so the recursive
call on line 15 often does nothing. The recursive call,  
right = quicksort(remainder) is in that case given a list that is
shorter than the original list by only one element. As a result there is one re-
cursive call required for nearly every element on the list. For all but very
small lists (e.g., less than 500 elements) the stack grows too large and
MATLAB gives an error message. This stack-overflow problem can be solved
by using a non-recursive version of quicksort (remember that there is always
a non-recursive version of a recursive algorithm), but, because the division of
the list is so one-sided, the search is in this case no more efficient than selec-
tion sort.

Fortunately for the modern world in which huge lists abound, there are sorts
that do not suffer from this problem. One of them is the merge sort. Like
quicksort, it uses divide-and-conquer, but it is guaranteed to divide the list
into two approximately equal parts. So there is none of this one-sided search
business, even for almost-sorted lists, and there is no realistic chance of stack
overflow. Here is a recursive implementation of merge sort:

1. function v = merge_sort(v)
2. % MERGE_SORT sort in ascending order
3. % A = MERGE_SORT(V) puts the elements
4. % of the row vector V into ascending
5. % order in the row vector A. The
6. % algorithm used is the merge sort.
7.
8. N = length(v);
9. if N == 1, return; % already sorted
10. else
11. mid = fix(N/2);
12. v1 = merge_sort(v(1:mid));
13. v2 = merge_sort(v(mid+1:end));
14. v = merge_sorted_lists(v1,v2);
15. end

The algorithm is fairly simple, but this implementation hides a bit of the com-
plexity because of the call to to the function merge_sorted_lists. The

base case is determined by the length of the list, just as it is in quicksort: Lists
with 0 or 1 elements are already sorted, so the function simply returns with-
out changing the list. Line 11 begins the interesting part of the algorithm. The
midpoint is determined in line 11, and it is this line that guarantees that this
algorithm, unlike quicksort, will always divide the list into approximately
equal halves, regardless of the values of the elements in it.

In line 12 the elements from the first up to this midpoint are sorted. In line 13
the rest of the numbers are sorted. Line 14 does the rest of the work by call-
ing merge_sorted_lists. That function combines the two sorted lists into
one sorted list. We leave the writing of that function as an exercise for the
reader (because this is the Advanced-Concepts chapter!).

There are many other sorting algorithms available, and computer scientists
spend a good deal of time studying them. MATLAB provides an excellent
sorter called (what else?) sort. It uses varying strategies according to the
size of the list and the size of the available memory. A study of these strate-
gies and of sorting in general is beyond the scope of this textbook. But note
that the function sort employs a very fast algorithm.

Algorithmic Complexity
When a computer scientist says that an algorithm is fast, she means some-
thing very specific. A “fast” algorithm is not simply an algorithm that runs
fast. One problem with that definition is that the speed at which an algorithm
runs depends on the hardware that it runs on. Since computers are different,
and since computers improve every year, it is meaningless to measure the
speed of an algorithm by timing it. Furthermore, the relative speeds of two
algorithms that are running on the same machine may depend on the size of
the data set that they are working on. For example, for a list of 10 numbers,
the sequential search may take less time than the binary search, while for
larger lists the binary search will beat the sequential search (and beat it

306

soundly). Instead of evaluating algorithms by observing their behavior, com-
puter scientists predict their behavior by analyzing their description. The
analysis inevitably shows that the behavior depends on the characteristics of
the input, and since there is an almost infinite variety of inputs, it is necessary
to make predictions for classes of inputs. The most important class is the
worst-case input.

Worst-case analysis
A more important aspect of an algorithm than the time it takes on a particular
dataset on a particular computer is the way in which the number of opera-
tions that it must perform grows as the size of the dataset grows. That num-
ber may depend on the data involved. An example of that data dependence is
provided by the sequential search. The best case for the sequential search is
that in which the first item on the list is the one we are looking for. In this triv-
ial case, only one comparison is required. Its worst case happens when the
item is at the end of the list or is missing from it altogether. Similarly, the
quicksort works well most of the time, but fails when the list is almost sorted.
In designing algorithms, the worst case is usually of most concern. This
makes sense in the example of the search for credit-card information above,
for example, where we would want to minimize longest time that a customer
would have to wait.

Therefore, most algorithms are subjected to worst-case analysis, which is
evaluation of an algorithm based solely on inputs for which the algorithm ex-
hibits its worst behavior. For example, an analysis of the sequential search al-
gorithm above reveals that there are two worst cases (i.e., they are equally
bad and are worse than all other cases): (a) the target is not on the list at all or
(b) it occurs only once and is the last item on the list. In each of these cases,
the number of comparisons is equal to the number (N) of items on the list.
While comparisons are not the only work done by the algorithm, the number
of comparisons is a good measure of the algorithm’s work because, in the gen-
eral form of the algorithm, comparing a target to an item on the list is the

most time-consuming step and also because the number of other required op-
erations is approximately proportional to the number of comparisons.

For the binary search, there are also two worst cases: (a) the target is larger
than all the items on the list and (b) it occurs only once and is the last item on
the list. In each of these cases the number of comparisons is equal to
2*ceil(log2(N+1)), where log2(x) is the power to which 2 must be
raised to get x. Determining formulas like this is the sort of thing computer
scientists do, but it is fairly easy to see that this is likely to be the correct for-
mula by considering some specific worst-case examples.

As mentioned above, the time required to complete the search is approxi-
mately proportional to the number of comparisons required. Thus, the worst-
case time necessary to complete these algorithms on a list of length N are re-
lated to N as follows:

sequential: a + b*N

binary: a + b*ceil(log2(N+1)),

where the a and b represent constants that will be different for the two algo-
rithms (i.e., two different values for a and two different values for b). The
value of a equals the start-up time for the algorithm, including the time re-
quired to load the code (e.g., MATLAB’s M-file), to put a new stack frame on
the stack, and to assign initial values to some local variables. The value of b
equals the amount of time required per comparison in the sequential search
and equals twice the amount of time required per comparison in the binary
search. The plot in Figure 3.5 shows a sample behavior for these two func-
tions when a=100 and b=5 for the sequential search and a=200 and b=10
for the binary search. These plots are for fictitious implementations but they
are representative of the algorithms’ behaviors.

307

Note that our vaunted binary search actually requires more time then the se-
quential search for small lists (fewer than about 30 items), but after the size of
the list has grown to 100, it takes less than half the time. The advantage of bi-
nary search grows as N grows. For N = 1000, the advantage is 8 to 1, and for
N = one million the advantage is over 6000 to one.

Order Notation
The important difference between the two plots above lies in the difference
between their shapes. Both plots increase monotonically with the number of
items, but the red plot (the binary search) has a different shape from the blue
one (the sequential search). The red plot curves downward. Because of that
downward curve, it is inevitable that the straight-line blue plot (the sequen-
tial search) will eventually rise above it, and we can see that it does that just
beyond N = 30.

308

Figure 3.5 Time complexity of the sequential and binary searches There are three differences between the two formulas above. Each formula
has different values of a and of b and one has ceil(log2(N+1) where the
other has simply N. Of these, the difference that determines the shape of the
curve is the last one—the dependence on N. That is so because, for any values
of a and b in either or both formulas, the second formula will produce a plot
that curves downward and hence, will cross the straight line for some suffi-
ciently large N. That means that for a big enough problem the binary search
will win, even if its a and b are bigger than the a and b for the sequential
search (as they are in the example above). Furthermore, as Figure 3.6 shows,
there is little importance to either the ceil() or the +1 in
ceil(log2(N+1)). When we omit them, we are left with log2(N), and
the resultant plot (the dashed red line) is almost the same. Finally, the impor-
tance of log2(N) is the fact that we are taking the logarithm of N, regardless
of what the base is. It can be seen in Figure 3.6 that when we replace log2

Figure 3.6 Illustration of the order notation

with log10 (log base 10), the general shape of the plot (green line) remains
the same. It is curved downward, so it will cross the plot of the sequential
search somewhere. It crosses at a different place, but if we are comparing one
algorithm to another the important thing is not where it crosses, but the fact
that it crosses somewhere.

Thus, the important aspects of the worst-time behavior of the binary search
can be described simply by saying that the plot of the search time versus N
has the same shape as log(N) for any base. Likewise the important aspects
of the worst-time behavior of the sequential search are captured by saying
that the plot of the search time versus N has the same shape as N. These state-
ments are said more formally as follows: The worst-case behavior of the se-
quential sort is “order N”. The worst-case behavior of the binary sort is “or-
der log N”. The phrase “order N” is written in mathematical notation as
O(N). The phrase “order log(N)” is written O(log N). Usually a computer sci-
entist will simply write, “the binary search is O(log N)”, leaving out the word
“behavior”, which is to be understood. Sometimes we are interested in the
increase in memory required by an algorithm as N increases, as opposed to
the increase in time. In that case, we determine a formula for the number of
cells of memory required as a function of N. In either case, the notation is
called Order notation, Big-O notation, or sometimes, O notation.

The selection sort is O(N2). The quicksort algorithm is also O(N2), because of
its difficulties with its worst case, which is an almost sorted list. Merge sort,
and all the best sorting algorithms, MATLAB’s sort for example, are O(N
log N).

We have introduced four worst-case behavior classes: O(log N), O(N), O(N
log N), and O(N2). As the plots in Figure 3.7 show, they are listed here from
fastest to slowest. The relative sizes are so different that in order to show
them all on the same plot, we have multiplied the first three by 10,000, 500,
and 100, respectively.

Dominance
It is clear from the discussion above that the value of a in the formulas is un-
important. That is because the second term will dominate a for very large val-
ues of N. A similar thing happens for formulas like this: a*log(N) + b*N.
Here, the second term is the only important one because N dominates
log(N). The dominance of N over log(N) can be stated this way: the ratio,
N/log(N) can get as large as desired, provided N is made large enough. In
terms of algorithms, that means that if an algorithm’s time-behavior has the
form a*log(N) + b*N, then the algorithm is O(N), not O(log N + N). The
dominant term determines the order of the algorithm because the other terms
become insignificant for very large N.

Complexity definitions
We are now (finally) ready to give a definition for the term algorithmic com-
plexity, which is the name of this section. It is the shape of the plot of the al-

309

Figure 3.7 Comparison of four different complexities

gorithm’s resource requirements as a function of the size of its input. The re-
source of interest is typically time of execution, in which case the measure is
time complexity, but in some cases the resource of interest is size of required
memory, in which case the measure is space complexity. The shape is given
by means of order notation.

Algorithmic complexity is an essential concept in the branch of computer sci-
ence known as “Algorithms”. Practitioners of that field develop better and
better algorithms for harder and harder problems. When they evaluate an al-
gorithm, there is no concern for how complicated the algorithm is or how
hard it is to program, and no experiments are undertaken to measure speed.
This is a theoretical field, the only measure of quality is complexity, and the
quality is expressed using order notation. This very short introduction to that
concept provides only the barest glimpse of what is involved in the field of
Algorithms, but at the least it shows that it is possible to put the analysis of
algorithms on a firm footing.

Concepts From This Section

Computer Science and Mathematics:
$ sequential search, also called linear search
$ flag
$ binary search
$ algorithms (i.e., the field of study)
$ divide and conquer
$ selection sort
$ quicksort
$ merge sort
$ algorithmic complexity
$ worst-case analysis
$ time complexity
$ order notation
$ big-O
$ O(log N), O(N), O(N log N), O(N2)
$ dominance

MATLAB:
$ [No new concepts specific to MATLAB]

310

SECTION 3

What we have learned so far falls within the category of
procedural programming. We have organized our code
into functions, typically creating a main function that
utilizes helper functions to compute whatever we need
and then returns the results to the Command Window.
The data that our programs have worked on have been
passed around as function arguments and have been
stored in local variables and sometimes (rarely) in

global ones. This has worked just fine for us, but one rea-
son that it has worked is that the sample programs and
exercises in this book are all necessarily small and rela-
tively easy to comprehend. But what happens when we
have to write large, complex programs? Does this ap-
proach scale well?

Objectives

Object-Oriented Programming,
or OOP, is a robust approach
employed by professional
programmers for writing large
programs that is the subject of
entire books. This section
introduces OOP via an
extended tutorial example.  
 
We will learn:
(1) basic concepts to get started

with OOP in academic
studies or in work;

(2) the three most prominent
features of OOP:
inheritance, encapsulation,
and polymorphism;

(3) object references, which are
known as “handles” in
MATLAB terminology;

(4) the “linked list” and its
implementation via
handles.

Objects are everywhere in real life. It turns out that they are a very useful abstraction in computer programming also.

Object-Oriented Programming

311

The answer is sadly no. Procedural programming focuses on the operations
a program needs to do. But as the size and complexity of the program grow,
it becomes more and more difficult to manage the data that the program
works on. Having only global and local variables and function arguments at
our disposal makes it harder to keep track of the data, to make sure that we
do not make unintended changes to it, and to understand and modify exist-
ing programs. Object-Oriented Programming (OOP) helps with all of these
problems.

Object-Oriented Programming, unlike procedural programming, is centered
on data as opposed to functions. The object in Object-Oriented Program-
ming consists of one or more data fields similarly to a struct. But unlike
structs, an object also contains functions that operate on the data. A cool fea-
ture of an object is that you can control which data fields (and which func-
tions) are accessible outside of the object. Let’s say, for example, that you
need a sorted-vector data type. Using procedural programming, you would
create a regular vector v and write functions to insert a new element into it,
to remove an element from it, and to find and element within it. However,
the vector itself will be accessible from other functions as well, and it can be
inadvertently modified. There is, for example, nothing stopping you or
somebody else who uses and modifies your code from writing:

v(end+1) = 3;

If the variable v is in the current scope, MATLAB will happily increase the
size of v by one and assign 3 to the last element. In all likelihood, v is not
going to be sorted after that. With OOP, on the other hand, you can create
an object with this vector as a data field and make it inaccessible from the
outside. The only functions that can modify the vector are the insert, re-
move, and find functions that are part of the object. If you try to modify the
vector as we did above, MATLAB will generate an error message instead of
executing the assignment. Hence, once you have made sure that these func-

tions work correctly, you never need to worry about this sorted vector
again.

The OOP feature that we have just highlighted is called encapsulation or
information hiding. You have fine control over how an object can be used
by separating its implementation, which determines how an object works,
from its interface, which specifies how the object can be used. You can hide
(or encapsulate) the implementation details from the user of the object, who
will be utilizing only a limited set of functions that you have provided to
access the object. This hiding of implementation detail has the added advan-
tage that you can freely modify the implementation of the object as long as
the interface, which is the set of functions that users of the object can utilize,
does not change. Many times the designer and the user of the object is one
and the same person, you, but it is still a good idea to use these OOP fea-
tures when writing large programs. It will make your program less error
prone, easier to debug, and easier to maintain.

It is time to introduce some OOP notation. The definition of an object is
called a class. An object is an instance of a class. You can create as many in-
stances of a class as you want. A data field of a class is analogous to a field
of a struct, and like the struct field, is one of the variables specific to that
class. In OOP, it is called a data member. In MATLAB, it is called a property.
A function within a class is a member function or, using MATLAB notation,
a method. For the rest of the book, we will stick with MATLAB conventions.

You might have noticed that defining a class is equivalent to introducing a
new data type. You specify what data it consists of using properties and
what operations are supported using methods. OOP even allows you to de-
termine which operators and built-in functions can work on the new da-
tatype and how. The general concept of specifying that a function or opera-
tor can process a new data type is called overloading, and when an opera-
tor is overloaded it is specifically called operator overloading. This is an ex-
tension of the polymorphism that we defined in Section, Programmer’s Tool-

312

box: In addition to having a function behave differently depending on how
many and what kind of input and output arguments are used when calling
it, now we can have operators redefined to support user-defined data types.
This redefinition of operators is a very powerful feature that has the poten-
tial to make complex programs very intuitive and easy to understand.

Finally, one of the most useful OOP features is called inheritance. What it
means is that a class can build on another class and extend it to provide
more specialized functionality. For example, consider the problem of writ-
ing banking software that manages accounts. There are different kinds of
bank accounts, such as checking, savings, and credit card. Instead of mak-
ing three unrelated classes for these types of account, it makes sense to cap-
ture their common traits and behavior in a single class. Let’s call this class
BankAccount. It has properties for the account number, owner, institution,
balance, etc. Now, we can create a subclass of the BankAccount class that
inherits all the features of BankAccount and in addition implements the
extra functionality associated with the new kind of account. And we can cre-
ate multiple subclasses. For example, the CreditCardAccount class might
have a credit-limit property, while the CheckingAccount class has a list-of-
checks property. We say that the “subclasses” (CreditCardAccount,
CheckingAccount) “extend” the “base class” or “superclass” (BankAc-
count). From this example it should be clear that a subclass is a class that
has been defined via the mechanism of inheritance to be an extension of an-
other class., and a base class or superclass (yes, they are seemingly contra-
dictory terms for the same thing!) is a class whose properties have been in-
herited by another class. A very useful attribute of inheritance is that a sub-
class can behave like a superclass. For example, CheckingAccount has an
account number automatically. If a function is expecting a BankAccount
instance, we can supply instead a CreditCardAccount instance and the
program will work as expected. This is another form of polymorphism sup-
ported by OOP.

MATLAB
MATLAB is primarily a procedural language. That’s why we have been able
to cover all the material so far without OOP concepts. However, the lan-
guage designers at MathWorks decided to extend the original language
with OOP features a few years ago. Since they had to work with the existing
language and had to make sure that it remains backward compatible, that
is, that all existing programs remain operational, they had to make some
compromises on which OOP features to support and how to do it. Overall,
they did an excellent job of supporting most OOP concepts in an intuitive
and elegant manner.

An Extended Example
It is our experience that to appreciate the ingenuity of OOP, you need to see
it in action. You can read all about encapsulation and inheritance, but until
you see OOP actually being done and see through an example what it pro-
vides you, you will not understand what all the hoopla is about. So, let’s
consider a longer than usual example that illustrates many nice OOP con-
cepts.

Let’s a create a program that manages our contacts, which are people and
their phone numbers. The first thing to do is to define a class for a single
contact. For simplicity, it will have only the name of the person and a single
phone number. Here is our first class definition in MATLAB:

313

classdef contact
 properties
 firstname
 middlename
 lastname
 phonenumber
 end
 methods
 function obj = contact(lname, mname, ...

fname, phone)
 if nargin > 0 obj.lastname = lname; end
 if nargin > 1 obj.middlename = mname; end
 if nargin > 2 obj.firstname = fname; end
 if nargin > 3 obj.phonenumber = phone; end
 end
 function disp(obj)
 if isscalar(obj)

fprintf('Name: %s, %s %s\n',...
obj.lastname,...
obj.firstname,...
obj.middlename);

fprintf('Tel: %s\n\n',...
obj.phonenumber);

 else
fprintf('array of contacts\n');

 end
 end
 end
end

In MATLAB, the definition of a class needs to reside in its own M-file. The
class name and the file name must be the same. The class definition starts
with the classdef keyword followed by the name of the class. The rest of the
class definition consists of two sections: one introduced by the keyword prop-
erties, for the properties and one introduced by the keyword methods for the
methods. For our contact class, we defined four properties, three for the differ-
ent parts of one’s name and one for the phone number. We intend to store
these as strings, but since MATLAB does not require type specification, this
decision is not obvious from the code so far.

The first method bears the name of the class, contact. As you might have
guessed, this is a special function, called the constructor. MATLAB calls this
function when it needs to create a new contact object, that is, a new in-

stance of the contact class. You do not need to specify a constructor, al-
though there are exceptions, but if you do, it must return a single output argu-
ment, a valid instance of the class. It can have zero or more input arguments.
In our case, we have four input arguments serving as initial values for our
properties. As you can see, the syntax to access the properties of a class calls
for a period between the object name, i.e. the name of the variable holding
the object, and the property name, just as a period separates a struct from a
field name. For example, the line

obj.lastname = lname;

assigns the value of the input argument lname to the property lastname.

The second function of our class is also kind of special. MATLAB calls the
disp function whenever it needs to display the value of a variable. For exam-
ple, when we type in the name of a variable in the Command Window, the
disp function is called to print out the value, whether it be a scalar or a ma-
trix or anything else. Here we use overloading with the disp function pro-
vided by MATLAB (we “overload disp”) to print out a contact object the
way we want to. Notice how we handle the case when an entire array of con-
tacts are passed to disp. Instead of printing out every value, we simply
print the type of data.

Let’s test drive our shiny new class. Assuming we saved the contact.m file
in the current folder or that the folder is on the path, typing the following
lines in the Command Windows should get you the results below:

>> a = contact('Smith','K','John','123 555 1234')

a =
 Name: Smith, John K
 Tel: 123 555 1234

MATLAB realized that there was a contact class defined, so it called the
contact constructor, which created a new instance of the contact class
and, i.e., a new contact object, initialized all its properties and returned it in

314

the variable a. Since we did not use a semicolon when assigning a new con-
tact object to the variable a, MATLAB prints its value by calling the disp
function (as it has all along for non-OOP objects). If we had not overloaded
disp with our own function definition, this is what MATLAB would have
printed:

a =
 contact

 Properties:
 firstname: 'John'
 middlename: 'K'
 lastname: 'Smith'
 phonenumber: '123 555 1234'

 Methods

Note that we have written our constructor so that it can be called with zero to
four arguments (with all those statements that start with if nargin). For
example,

>> b = contact('Schwarzenegger')

b =
 Name: Schwarzenegger,
 Tel:

Notice that only the lastname property has a value. In that case the other
three are each assigned the empty matrix. Let’s try this:

>> b.firstname = 'Arnold'

b =
 Name: Schwarzenegger, Arnold
 Tel:

The firstname property is directly accessible from the outside of the object.
Many times, that is exactly what we want. How about:

b.phonenumber = 5551234567

b =
 Name: Schwarzenegger, Arnold
 Tel: 5.551235e+09

What happened there? We intended the phonenumber property to be a
string, but there is nothing in our code that enforces that. Users of our class
may easily assume that a phone number is a number and get the unexpected
behavior above. By the way, the choice of the string data type makes sense
here because phone numbers can be formatted in a number of different ways
with dashes, spaces, an parentheses. In fact, it would make a lot of sense to
design a separate class for phone numbers with properties for country code,
area code, number and extension. Then the phonenumber property in the
contact class would be an instance of that new class. But that would make
our example too long for a textbook, so we’ll stick with a string here.

How can we enforce the rule that a phone number in our class must be a
string? We need to start with the constructor, modifying it as shown below:

function obj = contact(lname,mname,fname,phone)
 if nargin > 0
 obj.lastname = lname;
 end
 if nargin > 1
 obj.middlename = mname;
 end
 if nargin > 2
 obj.firstname = fname;
 end
 if nargin > 3
 if ~ischar(phone)
 error('string expected for phone number');
 end
 obj.phonenumber = phone;
 end
end

This takes care of the problem when the constructor is called with a number
for the phone number. If we wanted to write a bulletproof class, we should

315

make the same check for the other three properties as well. However, it is less
likely that the user of the class will provide anything but a string for the
name properties, so we shall leave the constructor as it is.

Fixing the constructor is not enough. We need to make sure that the phon-
enumber field of an existing object cannot be changed to anything but a
string. At first this seems hard, since we would need to do something about
the assignment operator. Fortunately, MATLAB provides a way to change
how operators work on instances of a class. Basically, we can provide a
method for our class that will be called when a given operator is encountered
by MATLAB.

For the assignment operator, we need to write a function called
set.propertyname where propertyname is the name of the property we
want to set. This is what it looks like:

function obj = set.phonenumber(obj,value)
 if ~isempty(value) && ~ischar(value)
 error('string expected for phone number');
 end
 obj.phonenumber = value;
end

The first argument must be the object whose property is involved and the sec-
ond argument is the value that is to be assigned to the property. The function
has no output argument. Let’s try the same assignment again but this time
relying on our new overloaded assignment operator:

>> b.phonenumber = 5551234567
Error using contact/set.phonenumber (line 52)
string expected for phone number

We see an error message, but that is what we wanted to see, because it means
that our overloaded operator is protecting the phonenumber property from
getting assigned a value of the wrong type. By now, you might be seeing just
how powerful classdef is and how cool OOP is. We have just changed

MATLAB’s assignment operator! Let’s cross our fingers and try assigning the
proper type to the phonenumber property:

>> a.phonenumber = '123 555 9876'
a =
Name: Smith, John K
Tel: 123 555 9876

This thing is working!

Inheritance
At this point we have a nice class that is able to handle personal contacts. But
many of our contacts in real life are companies such as the car shop, the dry
cleaner’s, or the doctor’s office. Our contact class is not prepared to handle a
business contact well. Such a contact needs a business name, a phone number
and optionally a contact person. Instead of creating a new class from scratch,
it would be good to reuse our exiting contact class. Since it already has the
properties and methods to handle a personal contact, we can utilize it to store
that information and the phone number and only add the new features re-
quired for a business contact. Fortunately, inheritance in OOP was devised
for exactly these kinds of situations. It allows us to define a new class as an
extension of an existing class. The new class is a subclass of the existing class,
and the existing class is the baseclass (also called the “superclass”) of the sub-
class.

We are going to create a new subclass of the contact class called business-
Contact. Here is its definition:

316

classdef businessContact < contact
 properties
 companyname
 fax
 end
 methods
 function obj = businessContact(cname, contactobj, f)
 if nargin > 0

obj.companyname = cname;
 end
 if nargin > 1 && ~isempty(contactobj)

obj.lastname = contactobj.lastname;
obj.firstname = contactobj.firstname;
obj.middlename = contactobj.middlename;
obj.phonenumber = contactobj.phonenumber;

 end
 if nargin > 2

if ~ischar(f)
error('string expected for fax number');

end
obj.fax = f;

 end
 end
 function obj = set.fax(obj,value)
 if ~isempty(value) && ~ischar(value)

error('string expected for fax number');
 end
 obj.fax = value;
 end
 function disp(obj)
 if isscalar(obj)

fprintf(' Company: %s\n',obj.companyname);
if(~isempty(obj.lastname))

fprintf(' Contact: %s, %s %s\n', ...
obj.lastname, ...
obj.firstname, ...
obj.middlename);

end
fprintf(' Tel: %s\n',obj.phonenumber);
if ~isempty(obj.fax)

fprintf(' Fax: %s\n',obj.fax);
end

 else
fprintf('array of businessContacts\n');

 end
 end
 end
end

The first thing to notice is how the baseclass-subclass relationship is speci-
fied. No new keyword is required. Instead, simply using the < operator be-
tween the name of the new class and its baseclass does the trick!

The rest of the class definition looks familiar. In addition to the
companyname property, we have added a property to hold a fax number.
The subclass constructor takes three input arguments.

An important behind-the-scenes action of the constructor for any subclasses
is that MATLAB calls the constructor of its baseclass with no arguments right
before executing the first line of the subclass constructor. You can override
this behavior by calling the baseclass constructor yourself with arguments.
The required syntax is

obj = obj@SuperClass(ArgumentList);

where obj is the object to be created and SuperClass is the name of the
baseclass. Note that the superclass constructor must be called before the ob-
ject is ever used (e.g., before any of its properties are accessed). Also, the call
cannot be conditional (cannot be inside an if-statement).

The rest of our businessContact class consists of a set function to over-
load the assignment operator for the fax property and a new disp function.
Similarly to the phonenumber property of the contact class, we want to
protect the fax property from an assignment of anything other than a string.
The disp function we have written for businessContact implements a
different policy than the one we wrote for contact. It considers the com-
pany name as the most important property, so it prints it first.

This simple example illustrates the basic features of inheritance. All the prop-
erties of the baseclass exist in the subclass. You can safely overload existing
methods by creating a new function with the same name as it exists in the
baseclass. MATLAB will always call the correct method. For example, busi-
nessContact object will use their own disp function. On the other hand, if

317

disp were not defined in the businessContact class, MATLAB would sim-
ply call the one defined in the baseclass, that is, the contact class.

It’s time for another test drive:

>> b = contact('Schwarzenegger','','Arnold','555 123-
4567')

b =
 Name: Schwarzenegger, Arnold
 Tel: 555 123-4567

>> c = businessContact('Terminator Inc.',b,'555 987-
6543')

c =
 Company: Terminator Inc.
 Contact: Schwarzenegger, Arnold
 Tel: 555 123-4567
 Fax: 555 987-6543

Flawless! Impressed? Well you should be impressed by Object-Oriented Pro-
gramming, but before you get too awestruck by our programming abilities,
you should know that we made a few errors while writing these class defini-
tions (OK, maybe a lot of errors). We found them and correct them by using
the debugger—the same debugger that we introduced in Chapter 2, in sec-
tion Programmer’s Toolbox under Debugging. This is very good news, be-
cause you don’t have to master a new debugger when you employ Object-
Oriented Programming. You can use the same debugger to set break points
inside methods, that you have been using for normal (non-class) functions.
You can watch what happens by executing the code step-by-step, while look-
ing at the workspace and generally do all the things that you can do for any
other function.

Now that we have these two nice classes to store contact information, we
would like to organize our contacts into something like a phone book. What
data structure would be a good fit? A simple vector would not be the best

choice because we want to keep the contacts ordered alphabetically. While it
is possible to accomplish that with a vector, inserting a new element some-
where in the middle or removing one would mean moving a lot elements of
the vector which is inefficient. A very nice and flexible data structure that fits
the bill is called the linked list.

Linked list
A linked list consists of set of individual elements linked into a chain. Each
element stores some kind of data, for example, a contact object in a data
field, and it has in addition a field typically called next that points to the next
element in the list. The next field of the last element of the list is set to 0 in
most languages. In MATLAB it is an empty array. The next field makes it
easy to traverse a list. You start at the beginning (the head of the list using
computer science terminology) and follow the next field to move from ele-
ment to element until you encounter the element with a null next field. This
is the last element of the list called the tail.

 A variant of the linked list is the doubly linked list whose elements have an
additional field typically called prev that points to the previous element of
the list. Here is a visual depiction of a doubly linked list of three elements:

The labels next, DATA, and pref depict fields of individual elements on the
list. Each box with these three labels depicts one element of the list. The ele-
ment at the left is the head of the list. The element at the right is the tail. The
boxes labeled head and tail are not the head and tail of the list. In fact they

318

are not part of the list at all but instead are merely pointers to the head and
tail of the list.

The next field has a special data type. In most programming languages, for
instance in C++, next is a pointer. The value of a pointer is an address in
memory that specifies where the object pointed to by the pointer is located.
The MATLAB concept closest to a pointer is a cell as explained before. While
one might be tempted to try to implement a linked list with cells, any such
attempt would be dismal failure. The fundamental problem is that, as we
pointed out here in Chapter 2, in the section entitled Data Types, MATLAB
does not allow more than one cell to point at the same object.

Fortunately, while cells won’t work, MATLAB provides a special built-in
class called handle that works very well for our purposes. A handle object
represents an object reference, which holds information about the object in-
cluding the address of the object, also known as a pointer. If you copy a han-
dle object, for example,

handle2 = handle1;

the actual object is not copied and both variables now refer to the same ob-
ject. This is a very important distinction between handles and regular vari-
ables. Recall that, when a function is called, all arguments are passed by
value, meaning that a copy of the value to be passed to the object is created
and pushed on the call stack. The argument inside the function will behave
just like any other local variable. When the function returns, all local vari-
ables and input arguments are removed. This is true not just for scalars or ar-
rays, but for objects as well. You cannot modify an object by passing it to a
function through an input argument because the function works only on a
copy of the object and not the original one. The only approach you can use to
modify an object by using a function is to send a copy of the object to the func-
tion through an input argument, and then copy a value from an output argu-
ment into the object.

Handles, on the other hand, work differently. When you pass a handle to an
object as an input argument, the copy that is created on the stack and that is
stored in a local variable inside the function still refers to the original object.
Hence, any modification to the object inside the function will be visible from
the outside as well.

Note that the handle class is an abstract class. An abstract class is a class for
which you are not allowed to create instances of it, i.e., you cannot created
handle objects. However you can define subclasses of the class handle, and
you can create instances of those subclasses. Let’s use this idea to create a dou-
bly linked list where the elements are kept continually in order, meaning that
their DATA fields increase (or stay the same) as we go from one link to the
next. Here is a partial definition of the class that corresponds to the elements
of the list:

classdef orderedNode < handle

 properties
 id
 end
 properties (SetAccess = private)
 prev
 next
 end
 methods
 function node = orderedNode(n)
 node.id = 0;
 if nargin > 0 node.id = n; end
 end

 function disp(node)
 if isscalar(node)

if ~isempty(node.id) disp(node.id); end
disp(node.next);

else
disp('Array of ordered list nodes');

end
 end

 end
 end

319

First of all, notice that our orderedNode class is derived from the handle
class. We have three properties: id, next and prev. Notice how the latter
two are grouped together and have their SetAccess attribute set to pri-
vate. What does that mean?

The prev and next properties—you guessed it—will be used to organize
our ordered doubly linked list. We do not want the user of our class to mod-
ify those properties. We will enforce the correct behavior of our class, and to
do that these two properties are of crucial importance. Setting the access to a
property to be private means that it can be modified only from within the
class. So the methods of the class can freely manipulate them, but no code out-
side of this class can modify them. They are still visible from the outside and
can be read. If we wanted to avoid having them be visible from outside, we
could have set the GetAccess attribute to private as well. Note that these
two attributes default to public, meaning that properties can be accessed and
modified from outside the class at will unless we change their attributes in
the classdef file as shown above.

What is the role of the id property? We intend this class to be reusable by in-
heritance. In fact, right now it does not have a placeholder to store data other
than the properties for organizing the list, so it would not be very useful. The
id property serves two purposes: first, it will be the basis for the default or-
dering behavior of the list and second, it will be used in the disp function to
provide something to print on the screen. Both the ordering and the display
functionality are expected to be overridden by subclasses.

The two methods of the class so far are a constructor that does nothing but
set the id, and the disp method that prints the id and calls disp recur-
sively on the next element of the list. In effect, it displays the entire list start-
ing from the current element all the way to the last. (Note that MATLAB lim-
its the maximum number of recursions to 500 by default, so disp can only
handle lists of 500 elements or less. If that is a problem, we can either increase
the recursion limit or simply change disp to use a while-loop instead.)

The most important functionality provided by the list, i.e., the orderedNode
class, is to create and maintain a list of elements in an ordered fashion. For
that we need two functions, the insert and remove methods:

classdef orderedNode < handle
...
 methods
 function insert(node, head)
 if isempty(head)

error('no list provided');
 end
 cur = head;
 last = [];
 while ~isempty(cur) && node > cur

last = cur;
cur = cur.next;

 end
 if node == cur

error('Node already in the list');
 end
 if isempty(last)

node.next = head;
node.prev = [];
head.prev = node;

 else
last.next = node;
node.prev = last;
node.next = cur;
if ~isempty(cur)

cur.prev = node;
end

 end
 end
 end
...
end

The insert function takes a node and inserts it into the list whose first ele-
ment is head. Both of these arguments are assumed to be of orderedNode
type. After checking that there was a list provided as an input argument, it is
the task of the while-loop to find where in the list the new node needs to be
inserted. This is somewhat tricky, since we need to prepare for three different

320

cases: the insertion place is at the beginning of the list, at the end of the list or
anywhere else. The while-loop tracks two variables last and cur. The last
variable designates the node in the list that the new node needs to follow,
while cur is what the new node needs to precede. The loop ends when we
reach the end of the list or when the cur node becomes smaller than or equal
to the new node. The latter condition is checked by the following statement:

node > cur

How can MATLAB compare two orderedNode objects? Remember that
orderedNode is a subclass of the handle class. MATLAB does support the
isequal function or == operator for handles. They return 1, meaning true, if
the handles refer to the same object and 0, meaning false otherwise. However,
the result of the > or < operators on handles is arbitrary and does nor depend
on the actual objects. Fortunately, we can change that behavior using opera-
tor overloading. Here is the method we need to add to our orderedNode
class:

function t = gt(a,b)
 t = (a.id > b.id);
end

The gt function implements the > operator for our class. As we said previ-
ously, we will use the id property simply for comparison (ordering) by de-
fault, but we expect that subclasses will override this behavior.

Now, let’s get back to the insert method. At the end of the while-loop, we
know where to insert the new node in the list. First, we need to check
whether the node is already in the list. If it is, inserting it one more time
would cause problems, so we do not allow it. Now, we are ready to make the
insertion. If the last variable does not refer to an object, that means that the
new node will go at the beginning of the list. We set up its next variable to
refer to the head, the previous first item of the list. Its prev will refer to noth-

ing because it is the new first element. Finally, the prev property of the head
object needs to refer to the new node. Check out Movie 3.1.

On the other hand, if the last variable does refer to an object, we need to in-
sert the new object right after it. So, we set the next property of last to the
new node, and the prev property of the new node to last. Now we need to
check whether we are at the end of the list or not. If the cur variable does not
refer to anything, we reached the end and we are done. Otherwise, we need
to set the prev property of cur to the new node. See Movie 3.2 for an illustra-
tion.

321

Movie 3.1 Inserting at the beginning of a doubly linked list

http://tinyurl.com/MATLAB-Movie3-1
http://tinyurl.com/MATLAB-Movie3-1
http://tinyurl.com/MATLAB-Movie3-2
http://tinyurl.com/MATLAB-Movie3-2
http://tinyurl.com/MATLAB-Movie3-1

Now, we are ready to try our new class:

>> a = orderedNode(12)
a =
 12
>> b = orderedNode(4)
b =
 4
>> c = orderedNode(6)
c =
 6
>> d = orderedNode(1)
d =
 1
>> a > d
ans =
 1
>> b > c
ans =
 0

We created four nodes with various id-s. We spot tested that the comparison
operator indeed works. Now, let’s try to create a list of these objects. We’ll
start by making the object b as the head of the list.

>> insert(a,b)
>> b

b =
 4
 12

We inserted object a into the list that starts at b. As you can see, the list b has
now two elements in ascending order. This tested the case when the new ob-
ject is added at the very end of the list. Let’s add another object:

>> insert(c,b)
>> b

b =
 4
 6
 12

We inserted c into the b list. This tested the case when the new object goes
somewhere in the middle of the list. Finally, let’s insert another object:

>> insert(d,b)
>> b

b =
 4
 6
 12

What has just happened??! Where is d? Well, d is the smallest of the four
nodes, so it got inserted at the beginning of the list. So b is no longer the head
of the list; d is. Let’s see:

322

Movie 3.2 Inserting in the middle of a doubly linked list

http://tinyurl.com/MATLAB-Movie3-2

>> d

d =
 1
 4
 6
 12

You may be wondering why we did not change b to refer to the new begin-
ning of the list. Why don’t we just update head in the insert method like this:

head = node;

We could not. The variable head is a local variable of the insert function.
Therefore, any change to the variable itself will remain inside the function
and will be lost upon return from it. There is a very important distinction be-
tween the object that head refers to and the head variable. We can use the
local variable head to update properties of the object it refers to (since it is a
handle object). But the head variable itself is a local variable, so the only way
to change it outside the function is to return its new value as an output argu-
ment. Then the caller of the function can decide to update the variable that
was passed in as head to refer to the new beginning of the list. Here is the
updated insert function:

classdef orderedNode < handle
...
 methods
 function head = insert(node, head)
 if isempty(head)

error('no list provided');
 end
 cur = head;
 last = [];
 while ~isempty(cur) && node > cur

last = cur;
cur = cur.next;

 end
 if node == cur

error('Node already in the list');
 end
 if isempty(last)

node.next = head;
node.prev = [];
head.prev = node;
head = node;

 else
last.next = node;
node.prev = last;
node.next = cur;
if ~isempty(cur)

cur.prev = node;
end

 end
 end
...
end

The insert method now returns head. It is changed only if the new
node is inserted at the beginning of the list. Otherwise, the method simply
returns the head it got as an input argument. Let’s try the new version:

323

>> a = orderedNode(12)

a =
 12

>> b = orderedNode(4)

b =
 4

>> c = orderedNode(6)

c =
 6

>> d = orderedNode(1)

d =
 1

>> b = insert(a,b)

b =
 4
 12

>> b = insert(c,b)

b =
 4
 6
 12

>> b = insert(d,b)

b =
 1
 4
 6
 12

Note that b changed only after the last insertion since that was the only time
when the new node was inserted at the beginning of the list.

Now let’s see how we can remove a node from the list.

classdef orderedNode < handle
...
 methods
 function remove(node)
 if isempty(node)

error('invalid node handle');
 end
 if ~isempty(node.prev)

node.prev.next = node.next;
 end
 if ~isempty(node.next)

node.next.prev = node.prev;
 end
 node.next = [];
 node.prev = [];
 end
 end
...
end

As you can see, removal is much simpler than insertion. First, we check that
the node to be removed does indeed exist. Then if the node is not the first ele-
ment of the list, we make the previous node’s (node.prev) next property
jump over the node, that is, we make it refer to node.next. If the node is not
the last element, we make the next element’s (node.next) prev property
jump over, that is, we make it refer to node.prev. Finally, we reset the
node’s own properties so that they do not refer to anything.

Let’s try it out, shall we?

324

>> b

b =
 1
 4
 6
 12

>> remove(a)

>> b

b =

 1
 4
 6

>> remove(d)
>> b

b =

 1

Oops, what happened there? It does not look like it, but the remove method
actually worked correctly. Remember, d was the first element of the list and
that is what b referred to since b is head of the list. So, when the remove
method got rid of d from the head of the list, the object that b also refers to
was orphaned. So while the object was removed correctly, our variable repre-
senting the list, got messed up as a side effect. The list is still OK, but it is
hard to get to:

>> c

c =
 6

>> c.prev

ans =
 4
 6

>> c.prev.prev

ans =
 []

The original b (with id 6) is no longer directly accessible because b was reas-
signed to refer to the head of the list. The object that c refers to is the last ele-
ment, and the one before it is the first element of the list at this point. So, the
list is indeed fine, but we do not have a direct reference (handle) to its begin-
ning.

How to fix this problem with the remove methods is a question of taste.
Clearly, the method needs to return the potentially new head handle as an
output argument just as insert does. But remove does not take the head
handle as an input argument (it does not need it). We either change the
method to take the head as an argument, or we follow the list backwards to
the head and return it that way. We choose the former to make remove sym-
metrical with insert. Here is the new and improved remove method:

325

classdef orderedNode < handle
...
 methods
 function head = remove(node,head)
 if isempty(node)

error('invalid node handle');
 end
 if ~isempty(node.prev)

node.prev.next = node.next;
 end
 if ~isempty(node.next)

node.next.prev = node.prev;
 else

head = node.next;
 end
 node.next = [];
 node.prev = [];
 end
 end
...
end

Looks like we have successfully fixed that problem:

>> b = remove(a,b)

b =
 1
 4
 6

>> b = remove(d,b)

b =
 4
 6

We are almost done with the orderedNode class. However, there is one
more danger lurking out there. Just as an object can be created, it can also be
destroyed. The delete method is reserved just for that. When you no longer
need an object, you can get rid of it, so it does not waste memory. Consider
this:

>> c

c =
 6

>> c.prev

ans =
 4
 6

>> b

b =
 4
 6

>> delete(b)
>> b

b =

Invalid or deleted object.

Error in orderedNode/disp (line 70)
if ~isempty(node.id)

>> c

c =
 6

>> c.prev

Invalid or deleted object.

Error in orderedNode/disp (line 70)
if ~isempty(node.id)

The first error message after we deleted b and tried to access it is fine. We are
not supposed to use b once we deleted it. In fact, it is a good practice to elimi-
nate the variable as well:

>> clear b

326

The second error message, however, is our fault. Deleting a node left our list
in a bad shape. How can we prevent it? Somehow we need to intercept that
delete function call. Fortunately, MATLAB allows us to do that. Just as we
can create our own constructor, which gets called when a new instance of a
class is to be created, we can write our own destructor that will be called
when an object is about to be deleted. Here is what we need to add to our
class definition:

classdef orderedNode < handle
...
 methods
 function delete(node)
 remove(node);
 end
 end
...
end

A destructor function must be named delete, and it takes exactly one input
argument, which is the object to be deleted, and it returns no output argu-
ments. In our case, we simply call the remove method to make sure that our
list remains intact after the given object is deleted. Notice that we do not
bother with passing the head of the list to the remove method. We do not
need to since we are not using what the methods returns anyways. Note that
calling remove in the destructor in this case can be considered error han-
dling. The user is not supposed to delete objects that are still part of a list.
The correct usage is removing the object first and then deleting it. The differ-
ence is subtle, but important. The function remove deletes an object from our
linked list; the function delete deletes is from the memory. If the user de-
letes the first element of the list without removing it first, we have no possi-
ble way of providing a variable that refers to the new head of the list since
the destructor cannot return an argument.

Contact list
Now that we have the contact, businessContact, and orderedNode
classes, we are ready to create our phone book, which is the contact list that

we set out to make. Get ready to be impressed! The only change we need to
make to the contact class is the very first line:

classdef contact < orderedNode

We simply add the orderedNode class as a base class of the contact class.
Check this out:

>> a = contact('Simpson','Bart','','555-1234')

a =
 Name: Simpson, Bart
 Tel: 555-1234

>> b = businessContact('Apple Inc.',[],'555-4321')

b =
 Company: Apple Inc.
 Tel:
 Fax: 555-4321

>> c = contact('Wolverine')

c =
 Name: Wolverine,
 Tel:

>> contacts = a;

>> contacts = insert(b,contacts);

>> contacts = insert(c,contacts);

327

>> contacts

contacts =
 Name: Wolverine,
 Tel:

>> contacts.next

ans =
 Company: Apple Inc.
 Tel:
 Fax: 555-4321

>> contacts.next.next

ans =
 Name: Simpson, Bart
 Tel: 555-1234

Voila. We have the list of contacts. Notice that the insert function and the
next property (as well as everything else from the orderedNode class) are
now automatically available in both the contact and businessContact
object. This is the beauty of inheritance. It took an effort to create a nice
linked-list data structure, but now it is freely reusable in other classes as we
wish.

Since the disp function of the contact class prints out only the current con-
tact information, not the entire list (which is probably what we want to do
since the list can get very long), let’s us write a simple method for the contact
class that prints out the list itself:

function dispList(node)
 while ~isempty(node)
 disp(node);
 node = node.next;
 if ~isempty(node)
 fprintf('|------------------------|\n');
 end
 end
end

We simply call the disp method for the current node and continue down the list
inside the while-loop until the end of the list. Now let’s see our list:

>> dispList(contacts)
 Name: Wolverine,
 Tel:

|--------------------------|
 Company: Apple Inc.
 Tel:
 Fax: 555-4321
|--------------------------|
 Name: Simpson, Bart
 Tel: 555-1234

Unfortunately, we are not quite done yet. Can you see the problem with our
contact list? It is not ordered alphabetically. The insert function put each and
every new object at the beginning of the list. Why? It is because the
orderedNode list only implements a default ordering done by the id prop-
erty. Since the id defaults to 0, every contact in our list has the same id,
hence, new nodes will go to the beginning of the list. It is the responsibility
of the subclass to provide the information about ordering.

It is actually quite simple to do; the subclass needs to overload the > operator.
In our case, it does get a bit complicated because string comparison in
MATLAB has somewhat limited built-in support and we have to combine sev-
eral properties in the decision (lastname, firstname, middlename,
companyname). So, we have a little bit of work to do. Let’s start by writing
our own string comparison function. The built-in MATLAB strcmp function
only tells whether two strings are equal or not. It does not specify which one
is “bigger,” that is, which one comes later in alphabetical order. So, here is
our own function to compare two strings:

328

function a = strgt(s1,s2)
% a == 1 when s1 > s2
% a == 0 otherwise

 a = 0;
 s1 = upper(s1);
 s2 = upper(s2);

 for ii = 1 : min(length(s1),length(s2))
if s1(ii) > s2(ii)

a = 1;
return;

elseif s1(ii) < s2(ii)
return;

end
 end
 if length(s1) > length(s2)

a = 1;
 end
end

Our strgt function takes two string inputs and returns 1 if the first one is
greater than the second and 0 otherwise. We set the default answer to be
false. Then we convert the strings to upper case, since we want our compari-
son to be case insensitive. The upper function comes with MATLAB.

The for-loop will run for the length of the shorter of the two strings. We com-
pare the corresponding characters in the two strings one by one. The very
first character that is not the same in the two strings decide the outcome of
the function, so we can immediately return. If we exit our the loop and we
are still in the function means that one of the strings starts with the other.
Then we simply say that the longer of the string is greater than the other. If
they are of equal length, that means they are the same string, so we return 0.

Let’s play with the function a bit:

>> strgt('abc','xyz')
ans =
 0

>> strgt('xyz','abc')
ans =
 1

>> strgt('ABC','def')
ans =
 0

>> strgt('abc','DEF')
ans =
 0

>> strgt('abc','abc')
ans =
 0

>> strgt('abcd','abc')
ans =
 1

While this was not an exhaustive test, it seems that our function works as ex-
pected. The question is how to “package” this function. Our contact class
will rely on it for ordering objects, but it cannot really be a regular method of
the class since it does not use objects at all. If we keep it in a separate file,
then we have to remember to keep it together with the class definition for the
contact class. It is usually a good practice to try to keep code that a class
uses together with the class even it is not a regular member method. Fortu-
nately, most object oriented languages including MATLAB provide an ele-
gant solution. Class definition can include so called class methods that are func-
tions that belong to the class and not to individual objects. The syntax to de-
fine such a beast is as follows:

329

classdef contact < orderedNode
...
 methods (Static)
 function a = strgt(s1,s2)
 % a == 1 when s1 > s2
 % a == 0 otherwise

 a = 0;
 s1 = upper(s1);
 s2 = upper(s2);

 for ii = 1 : min(length(s1),length(s2))
if s1(ii) > s2(ii)

a = 1;
return;

elseif s1(ii) < s2(ii)
return;

end
 end
 if length(s1) > length(s2)

a = 1;
 end
 end
 end
...
end

As you can see, the only thing that needs to be done is to include a separate meth-
ods section with the Static designation. The syntax to call a class method either
inside or outside the class is classname.methodname(arguments).

Now, we are ready to modify our contact and businessContact classes to
support ordered lists. First, we need to decide how to order the various contacts. It
seems logical to include the following properties in the following order:

lastname, firstname, middlename for contacts, and

companyname, lastname, firstname, middlename for businessCon-
tacts.

To handle both cases transparently, we’ll add a method to the contact class called
nameToCompare that constructs a single string according to the rule we specified
above. Then we override the method in the businessContact class. That way if

we have an instance of either class, we can simply call this method and the correct
one will be called automatically. Here they are:

classdef contact < orderedNode
...
 methods
 function name = nameToCompare(obj)
 name = [obj.lastname ' ' obj.firstname ' ' ...

 obj.middlename];
 end
 end
...
end

classdef businessContact < coontact
...
 methods
 function name = nameToCompare(obj)
 name = [obj.companyname ' ' obj.lastname ' ' ...

obj.firstname ' ' obj.middlename];
 end
 end
...
end

Notice how we include a space between the various properties. This is an important
point. Consider two persons: Joana Co and Ana Cojo. If we did not include a space
between the first and last names, both would be turned into “COJOANA” by the
nameToCompare and strgt methods. In turn, these would be considered equal
even though the last name Co comes before Cojo in alphabetical order. The spaces
between the various name properties solve this problem.

The only thing left now is to overload the > operator in the contact class. For
symmetry, we also overload the < operator using the lt method:

330

classdef contact < orderedNode
...
 methods
 function a = gt(o1,o2)
 a = contact.strgt(o1.nameToCompare(), ...

o2.nameToCompare());
 end

 function a = lt(o1,o2)
 a = contact.strgt(o2.nameToCompare(), ...

o1.nameToCompare());
 end
 end
...
end

We don't even need to touch the businessContact class since the nameTo-
Compare methods take care of the differences between the contact and busi-
nessContact classes. Let’s try our mini phonebook:

>> clear
>> a = contact('Simpson','Bart','','555-1234')

a =
 Name: Simpson, Bart
 Tel: 555-1234

>> b = businessContact('Apple Inc.',[],'555-4321')

b =
 Company: Apple Inc.
 Tel:
 Fax: 555-4321

>> c = contact('Wolverine')

c =
 Name: Wolverine,
 Tel:

>> contacts = a;

>> contacts = insert(b,contacts);

>> contacts = insert(c,contacts);

>> dispList(contacts)

Company: Apple Inc.
Tel:
Fax: 555-4321

|--------------------------|
 Name: Simpson, Bart
 Tel: 555-1234

|--------------------------|
 Name: Wolverine,
 Tel:

>> contacts = remove(b,contacts);

>> dispList(contacts)
 Name: Simpson, Bart
 Tel: 555-1234

|--------------------------|
 Name: Wolverine,
 Tel:

331

Concepts From This Section

Computer Science and Mathematics:
Object Oriented Programming (OOP)
class
instance
object
inheritance
polymorphism
encapsulation
constructor
destructor
operator overloading
object reference
linked list

MATLAB:
classdef
property
private
public
method
class method
handle

332

SECTION 4

Widely distributed programs typically interact with their
users not only through characters on the keyboard and
the screen but also through pictures, mouse clicks, and
screen touches. The scheme of interaction that such a pro-
gram presents to its user is called its Graphical User In-
terface (GUI). A GUI is often perceived by the user as
the most important aspect of distributed software be-

cause it acts as the gatekeeper through which the utility
of the program is made available. As you hold this elec-
tronic book, you are actually interacting with a GUI that
makes the content of the book available to you in a visu-
ally pleasing and informative manner. This GUI, just like
all other iPad GUIs, is based on multitouch, which is a
generic term meaning that input is accepted through

Objectives

A program’s user interaction
via pictures, mouse clicks, and
screen touches is called its
Graphical User Interface
(GUI). Programming
languages rarely have built-in
GUI support. Instead, GUIs are
programmed by calls to
functions provided by the
programming environment for
that purpose. This section will
introduce GUI concepts in an
extended tutorial example.
(1) We will study the event-

based programming model.
(2) We will learn how to use

GUIDE, MATLAB’s
versatile tool for building
an event-based GUI.

(3) We will study the callback
function model.

(4) We will learn how to use
callbacks to respond
graphically to events such
as mouse clicks and key
presses.

The most widely used programs have excellent Graphical User Interfaces (GUIs) to let the user interact with the software in a
natural way. The impression that the GUI makes on the user, known as its “look and feel”, is very important. If its GUI is hard
to use or visually unappealing, it does not matter how great a service your program provides. Few people will use it.

Graphical User Interfaces

333

multiple, simultaneous screen touches. More traditional GUIs running on
PCs and Macs utilize mouse and keyboard input to let you interact with but-
tons, menus and other GUI features. Such a feature, which provides output to
the user or allows the user to perform input with the mouse or through natu-
ral gestures with a touch screen that mimic the use of a mechanical device, is
called a GUI control or widget. The focus of this section is to teach you how
to build such traditional GUIs.

Event-based User Interfaces
GUI development has been traditionally operating-system dependent. This is
one of the reasons that programming languages typically do not have built-in
support for GUI development. Instead, the programmer utilizes an Inte-
grated Development Environment (IDE), which is a program with its own
GUI, function library and set of tools, such as the debugger, that serves as a
development environment to create programs (including GUIs) using the
given programming language and operating system. A representative exam-
ple is the Microsoft Visual Studio IDE or the MATLAB environment itself.
While many GUIs are operating system dependent, a more recent trend is to
try to support GUI development independently of the operating system. For
example, Java comes with the Abstract Window Toolkit (AWT) library that
works on all operating systems that Java runs on. MATLAB has its own built-
in support for GUI development, as we shall see shortly. It also works on all
platforms that support MATLAB.

 One shared characteristic of these example GUI libraries is the so called
event-based programming model. During normal operation, the GUI sits idle
waiting for events. An event is caused by a user action, such as clicking on a
button, pressing a key on the keyboard or even moving the mouse. Each of
these actions cause an event that the GUI will react to. How? Each event has
an event handler, a special function that gets called once the event occurs.
The GUI developer can implement her own event handler, also called a call-

back, and register it with the system. When the given event occurs, the user-
defined function gets called. In turn, the function can react to this event in
any way it pleases. For example, the callback function handling a button
press (i.e., a mouse click when the cursor is inside a picture of a button on the
screen) may want to update something on the screen, play a sound, or per-
form a short computation. Lengthy processing tasks should not be performed
in callback functions, because the GUI will not handle additional events
while a callback function is running and hence, your program may be be-
come irresponsive.

Most GUI development environments and libraries have the same kind of
widgets supported as well as similar events. On the other hand, how to cre-
ate the widgets and how to implement the event handlers are quite different
in different environments. The rest of the section will focus on MATLAB GUI
development exclusively.

The MATLAB GUIDE
GUIDE is a clever acronym for Graphical User Interface Development Envi-
ronment. Ironically, it is a MATLAB GUI for designing GUIs in MATLAB.
GUIDE lets you create a user interface, place various widgets on it, adjust the
properties of them and save your design. It creates two files. The first file is a
so-called Fig-file, which is a file whose name has the extension “.fig” and
which contains the graphical aspects of your GUI: what widgets you have,
where they are located within the GUI window, what properties they have,
etc. The second file is an M-file. That M-file contains the MATLAB code that
initializes the GUI, and it also has placeholders for the callback functions.
You can edit this second file by providing the bodies for these callback func-
tions. By writing code in those bodies, you implement the specific actions
you want your GUI to take as the user interacts with your software.

334

Let’s create our first MATLAB GUI then, shall we? Open MATLAB and type
guide in the Command Window. You should see the window in Figure 3.8
pop up.

Let’s select the Blank GUI option and press OK. Figure 3.9 shows what we
get:

This is the main GUIDE window, in which you can design your GUI. On the
top you have the usual menu and toolbars. The big gridded area on the right
is the “canvas”; this is where you, as the “artist”, create your GUI layout us-
ing the small buttons shown on the left hand side. These buttons represent
the various widgets that you can add to your canvas. Each has a name, but
you cannot see those names in this view. Let’s make the names visible.

Open the preferences dialog in the File menu and select “Show names in com-
ponent palette.” You now get a better indication of which button corresponds
to what kind of widget, as shown in Figure 3.10.

Let’s describe the widgets you can put into the canvas on the right when you
push the buttons on the left. From top to bottom:

Push Button. It is a standard button with a raised border. Clicking the button
calls the callback function. You have used push buttons many times: When-
ever a program asks you a question in a dialog box, you typically answer by
pressing the OK or the Cancel push button.

Slider. A slider looks like a scrollbar. Its typical use in MATLAB is to change a
numerical value in a continuous fashion. You can grab the pad within the
slider and drag it, or you can click on the slider’s background to cause the
pad to jump by a predefined amount. Any change to the location of the pad
generates a call to the callback function.

335

Figure 3.8 Starting GUIDE

Figure 3.9 Blank GUI design in GUIDE

Radio Button. A radio button has two states: on or off. Clicking it toggles the
state and calls the callback function. The on state is represented by a solid cir-
cle within a larger hollow circle, while in the off state only the hollow circle is
shown. Radio buttons are typically grouped together (see Button group be-
low) and if so, there can be only one button in the “on” state at a time. (They
are called “radio” buttons because old-fashioned car radios used to have a set
of mechanical buttons for selecting a station, and when you pushed one in,
the previously pushed button popped out.) When a button in an “off” state is
clicked, it is turned on and the current “on” button is turned off simultane-

ously. With grouped radio buttons, individual callback functions are not
used; instead, a single callback function for the button group should be used.

Check Box. The check box is self-explanatory. Like a radio button it has two
states, on and off, and the callback function is called whenever it is clicked.
Unlike the radio buttons, clicking one checkbox does not automatically un-
check another checkbox.

Edit Text Box. This control allows the user to provide text input using the key-
board. It displays a string and allows you to modify it. When the Enter key is
hit, or the user clicks anywhere else on the GUI, the callback function gets
called.

Static text. A better name for the static text control would be “label” because
that is what it is. It is the way to put textual information on the GUI that
never changes. Titles, labels, or any other text that you want on the GUI
should be displayed using static text. It has no callback function.

Pop-up Menu. The pop-up menu displays a list of choices when clicked. The
user can navigate the list using the arrow keys to change the current selec-
tion. Pressing the Enter key or clicking on one of the items picks the given
item, hides the menu, shows only the new selection, and calls the callback
function. Visually the pop-up menu looks similar to a button, but it has an
arrow on the right hand side.

Listbox. The listbox is similar to a pop-up menu in that it also allows you to
select an item from a list of choices. The main difference is that multiple
choices are visible all the time, so it takes up more room on the GUI. Making
a selection can be done by clicking or using the arrow keys and then hitting
Enter. The callback function is called when the selection changes.

Toggle Button. The toggle button is similar to a checkbox in that it also has
two states: on and off. Whenever the user clicks on it, it changes its state and

Figure 3.10 Blank GUI design in GUIDE with widget names displayed.

336

causes the callback function to be invoked. The main difference between a
check box and a toggle button is their look.

Table. The table control makes it possible to put a spreadsheet into your GUI.
The table displays a set of rows and columns of data. You can make the table
editable, in which case a callback gets called whenever the user modifies any
of the fields.

Axes. Axes are utilized to display images, charts or plots in your GUI. They
do not have callback functions.

Panel. Panels are used to group together other GUI controls. A panel is basi-
cally a box with a border and an optional title that you can draw around a set
of GUI components to indicate that they belong together. Panels are passive
components with no callbacks.

Button Group. A button group is used to group together radio buttons. It is
similar in appearance to a panel. However, if you add radio buttons to a but-
ton group, those buttons will behave in a synchronized manner. Only one ra-
dio button can be on at any one time. To handle the changing state of the ra-
dio buttons, the callback function of the button group must be used. It is im-
portant to create the button group first and then add the radio buttons to it
and not the other way around.

This nice variety of GUI components makes it possible to create quite com-
plex and nice looking GUIs with MATLAB. Let’s create one then, shall we?

Simple Example GUI
Open GUIDE and create a new blank GUI as described previously. Click on
the Push Button control. Now click and drag a rectangle in the canvas. Figure
3.11 shows what you should see.

Now, double click on the new Push Button (or alternatively, right click and
select Property Inspector, from the context menu). A new window comes up
that looks like the in Figure 3.12. What we are seeing is the properties of our
newly created Push Button.

337

Figure 3.11 Adding a push button to our GUI design

The terms objects and properties should be familiar to the reader by now. Indeed, GUI
controls are similar to objects in the OOP sense. They have properties and are typi-
cally accessed through handles from MATLAB code. Unfortunately, the MATLAB
GUI infrastructure is not implemented using MATLAB’s own OOP concepts, so
these similarities end at the terminology. This can be somewhat confusing at times.

Let’s modify a few properties. Change the String property to REFRESH, the
FontSize to 18.0, the FontWeight to bold, the ForegroundColor to red,
and the Tag to “refreshButton”. Once all this is done, Figure 3.13 shows what
we get:

The only property out of the ones that we changed that is not self explana-
tory is the Tag. The Tag is the name that we can use to access this push but-
ton object in our MATLAB code, as we shall see momentarily. Let’s click the
save button on the toolbar of GUIDE or select the Save command from the
File menu. In the dialog box provide “smooth” for the filename (leaving the
extension to remain as .fig), pick the folder in which you want MATLAB to be
when you use test the GUI, and save it there. When you click OK, MATLAB

Figure 3.12 Property inspector

338

Figure 3.13 Push button with modified properties

generates two files: smooth.fig and smooth.m. MATLAB opens up the M-
file immediately.

The fig-file contains all the necessary information of our GUI including the
kinds of GUI controls we have, their properties including where they are on
the canvas, how big they are etc. Most of the M-file is generic: it would look
the same for any GUI. The only specific information it has is the name
smooth that appears in a few places and the very last function:

function refreshButton_Callback(hObject, eventdata, handles)

You guessed it: it is the callback function that will be invoked when some-
body clicks the button in our GUI. Let’s add this line to the body of re-
freshButton_Callback:

fprintf('You have just pressed the REFRESH button!\n');

In the Command Window type in smooth (or click the green arrow in the
GUIDE toolbar) and watch the GUI popup as shown in Figure 3.14.

Now, click the REFRESH button. This is what you should see in the Command Win-
dow:

>> smooth

You have just pressed the REFRESH button!

Congratulations! You have just created your very first operational GUI in
MATLAB.

You may be wondering what all that cryptic code is in the smooth.M-file. It is
the implementation of the function called smooth that is the main function
of our GUI-based program. The good news is that we do not need to under-
stand most of what is in that file. MATLAB has lots of code that works be-
hind the scenes to make GUIs work. Only a tiny fraction of it needs to be in
the M-file where the callback functions reside, i.e., in smooth.m in this case.
As we revise this file to build more and more complex versions of this pro-

gram, we will explain the parts that you do need to understand in order to cre-
ate more complex and more useful GUIs.

Simple Plotting Example
You may have been wondering about why we named our GUI “smooth” and
why we labeled the button “REFRESH.” What we are building here is a nice
plotting program with a fancy GUI. It is called smooth because it will demon-
strate how to generate a smoother version of a ragged (noisy) signal. And the
REFRESH button will be used to redisplay the plot once the user has changed
its parameters. So, let’s continue.

The most important part of our GUI will be the plot area. Let’s add an Axes
widget and resize it so that it takes up the top two thirds of the window.

339

Figure 3.14 Our first running program with a GUI

Then let’s add a Slider, an Edit Text Box, a Panel, and a few Static Text Boxes.
After we have laid them out where we want them, we fire up the Property
Inspector and change the Tag property of each of these objects as follows:
Axes: “axes”, Slider: “freqSlider” and Text Edit Box: “amplEdit”. Let’s make
the layout of the objects in our GUI look similar to the layout in Figure 3.15.
As you can see, we have also used the Inspector to change font sizes, styles
and colors as well to type in the strings.

Saving this Fig-file regenerates the corresponding M-file smooth.m. Note
that MATLAB does not simply overwrite the file; our changes to callback
functions are preserved, so we do not need to worry about losing our work.
Let’s open the M-file to see what changed. We have two new callback func-
tions, one each for the Slider and the Text Edit Box as well as two new “cre-
ate” functions, one each for the same controls. The create function of an ob-
ject is called right after the object has been created and its properties have
been set, but before it is displayed on the screen. Create functions can be used

if additional initialization is needed for an object beyond simply setting the
properties specified in the Property Inspector. We will not use create func-
tions in this introductory section on GUIs.

We want our GUI to support this interaction: the user can specify the
frequency and amplitude of a sine wave using the slider and the edit box.
Then, hitting the REFRESH button will display the signal in the plot area of
the window.

How can we accomplish this? The heavy lifting will be done in the callback
function of the REFRESH button. What it needs to do is get the current fre-
quency setting from the Slider and the current amplitude value from the Text
Box and then plot the sine wave accordingly. This means that we do not even
need to use the callback function of the Slider. The callback of the Edit Box is
still needed because we need to do some error checking. The error checking
has to do with the string that the user types in. It must represent a number so
that we can use it to set the amplitude, so we’ll implement some validation
to make sure that we have a number there.

Let’s see the callback of the Text Edit Box then:

function amplEdit_Callback(hObject, eventdata, handles)
% hObject handle to amplEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of amplEdit as text
% str2double(get(hObject,'String')) returns contents of amplEdit as
a double
amp = str2double(get(hObject,'String'));
if isnan(amp) || ~isreal(amp)
 % isdouble returns NaN for non-numbers and we need a real number
 % Disable the REFRESH button
 set(hObject,'String','Error: NaN')
 set(handles.refreshButton,'Enable','off')
else
 set(handles.refreshButton,'Enable','on')
end

Figure 3.15 Multiple widgets in the GUI design

340

Consider the input arguments to our function. The comments generated by
MATLAB actually do a good job of explaining them. hObject is a handle to
the GUI widget that generated the event and caused the callback function to
be invoked. In this case, it is a handle referring to Text Edit Box. Remember,
we changed the Tag property of the edit box to amplEdit, so that’s why the
name of the function is amplEdit_Callback. The second argument, event-
data, is not used, but the third and last argument, handles, is very impor-
tant. It is a struct that contains many fields including one for each object
handle present in our GUI. It is through the handles structure that we can
access all other GUI components in a callback function. In this callback then

hObject == handles.amplEdit

would be true.

The first line of our callback function gets the value the user has just typed in
the Edit Text Box:

amp = str2double(get(hObject,'String'));

It calls the get function to get the String property of the hObject handle
and then calls str2double to (attempt to) convert the string value returned
by get into a double. Instead of calling the get function, why can we not get
it directly from the object this way: hObject.String? We cannot do that
because, as we mentioned earlier, GUIs do not use the MATLAB OOP infra-
structure. The value stored in the variable hObject is called a “handle”, but
it is not an object of a subclass of the handle class, which can have proper-
ties that can be accessed via the dot operator. The value stored in hObject is
simply a unique number that identifies to the GUI control system the widget
that caused the callback to be called. The get function then finds the data
structure with all the properties of the given GUI object identified by the
hObject and returns the value of requested property.

The important point to learn here is that, when we need to access properties
of an object of our GUI from within a callback function, we must use the get
function to read its properties and the set function to modify them.

Returning to the callback function, we check whether amp is a real number. If
not, we change the text it shows from whatever the user typed to
“Error:NaN” and disable the REFRESH button. Notice the syntax of the set
function. The first argument is the handle of the GUI object, the second is a
string that specifies the name of the property and the third argument is the
new value for that property. In this case, it is also a string.

Disabling the REFRESH button is simply setting its “Enable” property to off
using the set function. The handle is obtained using the handles struct. Its
refreshButton field is the correct handle, because we set the Tag property
of the REFRESH button to refreshButton previously.

If the amp is indeed a correct number (else branch), then we enable the RE-
FRESH button. This means that refreshing the plot will be possible only if the
amplitude specification is valid. Notice that amp is a local variable, that is, it
is not used outside this callback function. It is not needed outside because the
Text Edit Box contains the value we need, so we can use it elsewhere in our
program through the handles structure.

Notice that we do not need a similar error checking for the slider, since the
user cannot set it in an incorrect manner. Its value will always be correct.

The most involved part of the program is the callback function of the RE-
FRESH button, since it is here where we actually generate the data and plot it
on the GUI:

341

function refreshButton_Callback(hObject, eventdata, handles)
% hObject handle to refreshButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

minFreq = 1;
maxFreq = 10;
t = 0:0.001:1;

% Get parameters from GUI
fs = get(handles.freqSlider,'Value');
freq = minFreq + fs * (maxFreq - minFreq);
amp = str2double(get(handles.amplEdit,'String'));

% Calculate data
x = amp * sin(2*pi*freq*t);

% Create time plot in proper axes
plot(handles.axes,t,x)
set(handles.axes,'XMinorTick','on')
grid on

First, we set up three helper variables. The minimum and maximum frequen-
cies are set to 1 and 10 respectively. They will be used to translate the sliders
value to the desired frequency. The t vector will be used to generate the corre-
sponding sine values and help in plotting them.

Next we get the Slider’s value. We use the get function passing in the handle
of the Slider from the handles struct and access the Value property. The
value of property is a double and its default range is between 0 and 1. We
simply covert this value from the 0-1 range to the desired 1-10 range for our
frequency. (Note that we could have set the range in the Property Inspector
and save the conversion code.) Then we get the value of the amplitude from
the Text Edit Box. We do not need to check whether it is valid or not, since its
own callback function guarantees correctness.

Next we generate the data series for our sine wave using the specified fre-
quency and amplitude values. Finally, we plot the sine wave specifying the
handles.axes as the target plot area. Let’s test it. See Figure 3.16.

You can drag the slider or click on its white background to change its value,
but you will not notice any changes in the plot until you hit the REFRESH

button. We can play with different frequencies and amplitudes. Let’s test the
error checking code we implemented for the amplitude. If we type in some
non numerical text, Figure 3.17 shows what we see. Notice that the REFRESH
button is “greyed out”. We cannot press it until there is a valid number in the
amplitude Text Box.

Figure 3.16 The GUI in action

342

Figure 3.17 Disabled button in the GUI

Sharing data
While it is question of taste, most people would probably say that having to
press the REFRESH button is unnecessary; it would be better to replot the
data as soon as any of the parameters changed. This is doable, but the pro-
gram will be a bit more involved. Removing the REFRESH button eliminates
its callback function too. Therefore, we will need to implement the plotting
functionality of our GUI elsewhere. In fact, the callback functions of both the
Slider and the Edit Text Box will need to implement plotting.

While not strictly necessary in this case, an elegant approach to this problem
is to share the data that is needed for plotting among the various callback
functions. As we discussed before, global variables should be avoided when-
ever possible. So, how can we share data among various functions and pre-
serve it in-between function calls? There are various ways of doing this, but
the most common method with MATLAB GUIs is using the handles struc-
ture.

Recall that you can add new fields to structures dynamically during runtime.
This is exactly what we shall do. You might have noticed that there was an
extra function in the generated smooth.m-file called smooth_OpeningFcn.
This method is called just before the GUI is shown on the screen. This is a per-
fect place to add additional fields to the handles structure and initialize it
with the data that we need for plotting:

% --- Executes just before smooth is made visible.
function smooth_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to smooth (see VARARGIN)

% Choose default command line output for smooth
handles.output = hObject;

% add our own data fields
handles.minFreq = 1;
handles.maxFreq = 10;
handles.amp = 1;
handles.freq = 1;
handles.t = 0:0.001:1;
handles.x = handles.amp * sin(2*pi*handles.freq*handles.t);
plot(handles.axes,handles.t,handles.x);
set(handles.axes,'XMinorTick','on');
grid on

% Update handles structure
guidata(hObject, handles);

The hObject argument in this case is the handle of the GUI window. The
last argument, varargin is used if the program handles command line argu-
ments. Let us not worry about that.

The portion that we added to the code lies after the “add our own data fields
comment.” Basically we store all relevant data items that are needed for plot-
ting and set their default values. We also plot the data, so the GUI will not be
blank at startup as it was before; instead it will immediately show a plot.

The last line of the function

guidata(hObject, handles);

is very important. The handles structure is an input argument to the func-
tion. Like all arguments in all functions, it is a local variable. Therefore, any
modification we make to it inside the function will be lost upon returning
from the function. The guidata function supplied by MATLAB takes these

343

changes to the handles structure and stores them somewhere. (In a global
variable maybe? We’ll just apply the “Don’t ask, Don’t tell” policy here...)

Let’s delete the REFRESH button using GUIDE and update the callback func-
tions:

function freqSlider_Callback(hObject, eventdata, handles)
% hObject handle to freqSlider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range

fs = get(handles.freqSlider,'Value');
handles.freq = handles.minFreq + fs * (handles.maxFreq - handles.minFreq);
handles.x = handles.amp * sin(2*pi*handles.freq*handles.t);
plot(handles.axes,handles.t,handles.x);
set(handles.axes,'XMinorTick','on');
grid on

% Update handles structure
guidata(hObject, handles);

First, we obtain the current Slider value, compute the corresponding fre-
quency and recompute the sine wave. Then we display the new plot. Finally,
we call guidata again, since we made changes to the handles structure.

The callback function of the Edit Text Box needs to be adjusted too. First of
all, there is no REFRESH button to disable in case the input is invalid. There-
fore, we simply disregard any invalid values, display the previous (correct)
value and do not change the plot.

function amplEdit_Callback(hObject, eventdata, handles)
% hObject handle to amplEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of amplEdit as text
% str2double(get(hObject,'String')) returns contents of amplEdit as
a double
amp = str2double(get(hObject,'String'));
if isnan(amp) || ~isreal(amp)
 % isdouble returns NaN for non-numbers and f1 cannot be complex
 % Disable the Plot button and change its string to say why
 set(hObject,'String',num2str(handles.amp));
else
 if abs(amp) > 100

amp = 100;
set(hObject,'String',num2str(amp));

 end
 handles.amp = amp;
 handles.x = handles.amp * sin(2*pi*handles.freq*handles.t);
 plot(handles.axes,handles.t,handles.x);
 set(handles.axes,'XMinorTick','on');
 grid on
 guidata(hObject, handles);
end

Notice that we also limit the amplitude to 100 or less. In this case, we need to
set the value of the Edit Box, so that it displays the correct value. Finally, we
call guidata here also.

Now we save and run the program. Figure 3.18 shows the result. We can put
breakpoints in the various callback functions to see when they are actually
invoked. We find that the Edit Text Box calls its callback whenever the Return
key is pressed or the user clicks outside the box. But first we need to click in-
side the box for it to get the “focus.” There is always one GUI control that has
the “focus,” that is, one selected widget that is to receive the keyboard input.
If you think about it, it has to be this way because, if there were multiple Edit
Text Boxes, the GUI would need to know which one is to receive the input.
Once the Edit Box has the focus (caused by clicking on it) it handles the Re-
turn key and calls the callback. It also calls it when it loses the focus when the
user clicks outside the box (or presses the Tab key which cycles through all
GUI components passing the focus around).

344

The Slider calls its callback if you click on the white background or drag and
release the tab. However, during dragging, the callback is not called.

Advanced Plotting Example
You might have noticed all that unused space in the bottom right corner of
our GUI. Well, we are about to use every last pixel there. We are going to ex-
tend our example, and here is what our extended plotting GUI will do. We
will make it possible to add two different kinds of noise to the nice sine
wave: white noise obtained by adding random numbers with normal distribu-
tion to the data and/or an interference signal, that is, a sine wave with a fixed

60 Hz frequency simulating interference from a power line. We will also gen-
erate a smoothed version of this noisy data by using simple averaging. The
GUI will allow the user to change the window size, that is the number of data
points to be averaged. Finally, the user will have the option to plot the origi-
nal sine wave, the noisy signal, and/or the smoothed signal on a single plot.
Figure 3.19 shows our final GUI design as it appears in GUIDE.

There are quite a few controls in our final design that we have not used be-
fore. The rectangle labelled “Noise” is a Button Group. As we pointed out
above, it is important that you create it first and then add the individual Ra-
dio Buttons. This way, it will allow only one active choice at a time out of
“None,” “Random,” “Interference,” and “Both.” The other rectangles (“Sig-

Figure 3.18 The GUI without the Refresh button

345

Figure 3.19 Final GUI design in GUIDE

nal,“ “Smoothing,” and “Plot”) are simple Panels with no active role. They
only help in visually organizing the GUI. Notice that we have removed the
Static Text “Input Signal” and have added the Title property to the Panel
instead.

The “Smoothing” Panel contains a single Pop-up Menu where we can set the
“Window Size”. Finally, the Plot Panel has three Checkboxes. They can be on
or off independently from each other, in contrast with Radio Buttons.

In the updated smooth_OpeningFcn method, we create and set new fields
of the handles structure:

% add our own data fields
handles.minFreq = 1;
handles.maxFreq = 10;
handles.amp = 8;
handles.freq = 2.5;
handles.t = 0:0.001:1;
handles.x = handles.amp * sin(2*pi*handles.freq*handles.t);
handles.noise = randn(1,length(handles.t));
handles.interference = sin(2*pi*60*handles.t);
handles.window = NaN;
handles.windowIndex = 6;
handles.addRandom = true;
handles.addInterference = false;
handles.plotOriginal = false;
handles.plotNoisy = true;
handles.plotSmoothed = true;

Notice how we generate random noise by create a vector of random numbers
using the randn function. Recall that rand generates uniformly distributed
numbers, while we need a Gaussian distribution here. That is exactly what
randn does. (If you have not learned about various distributions, do not
worry, you can safely ignore this.) The interference signal is nothing but a 60
Hz sine wave with amplitude 1.

The window and windowIndex fields are both necessary for handling the
pop-up menu. The menu contains a list of strings in its String property
stored as a cell array of strings. Its value property is the index of the cur-

rently selected item. It is useful to store both in the handles struct, but ini-
tialize only the index at first. We’ll see shortly how we obtain the actual
value.

The addRandom and addInterference logical values store the current se-
lection of additional noise sources to be added to the sine wave. Finally, the
plotOriginal, plotNoisy and plotSmoothed fields specify the choices
for plotting. We have used the built-in functions false and true, which re-
turn the values 0 and 1, to emphasize that these are truth values.

So far, we have initialized only our own internal data. The state of the various
GUI controls are not set yet, that is, not set to correspond to the default val-
ues we selected for our variables. We need to do that carefully, so that they
are in complete sync. The rest of the smooth_OpeningFcn function looks
like this:

set(handles.amplEdit,'String',num2str(handles.amp));
fs = (handles.freq - handles.minFreq) / ...

(handles.maxFreq - handles.minFreq);
set(handles.freqSlider,'Value',fs);
set(handles.originalBox,'value',handles.plotOriginal);
set(handles.noisyBox,'value',handles.plotNoisy);
set(handles.smoothedBox,'value',handles.plotSmoothed);
set(handles.windowMenu,'Value',handles.windowIndex);
str = get(handles.windowMenu, 'String');
handles.window = str2double(str{handles.windowIndex});
set(handles.radiobutton2,'Value',1);

plotit(handles);

% Update handles structure
guidata(hObject, handles);

Setting the Edit Text Box and Slider values as well as the plot Checkboxes is
quite straightforward. The Pop-up Menu is a bit trickier. First we set its value
according to the default we set in handles.windowIndex previously. Then
we get its String property back and using the index, we obtain the actual
value specifying the window size. Why are we doing it in this convoluted

346

manner? The actual value for the choices in the menu were set using the Prop-
erty Inspector in GUIDE. These are non-consecutive,somewhat arbitrary num-
bers that seem to be good choices for the window size. If we set the actual
window property in the M-file and we accidentally chose a number that is
not a valid choice in our menu, we would be in trouble. We would have to
make sure that one of the values in the Property Inspector and the M-file
match. It would be error prone. It is always a good programming practice to
make sure that if you change something in one place in your code, you do
not have to change it somewhere else also. By setting the index only and then
obtaining the actual value from the Pop-up Menu, we ensure that any change
in either the Property Inspector or the M-file will not cause any trouble in the
other place. The only thing that we need to guarantee is that the Menu needs
to have at least six items, because the default index we chose was six.

Setting the Radio Button is also easy. Note that setting one Button to 1, will
automatically turn the others to 0 because they are part of a Button Group.
Note also that here we do not check programmatically whether the handles
fields addRandom and addInterference match the setting of the Radio
Buttons. The reason is that the corresponding code is in the same function
and selecting the correct radio button based on the two fields would have in-
volved a somewhat long if-elseif-else statement. Omitting it seems to be a rea-
sonable compromise. If we make a mistake here, it is easy to find and correct.

Once we are ready with all the initialization, we can plot the data according
to the default values. Since we will need to plot from multiple callback func-
tions, we moved the code to a separate function called plotit:

function plotit(handles)
 noisy = handles.x;
 if handles.addRandom

noisy = noisy + handles.noise;
 end
 if handles.addInterference

noisy = noisy + handles.interference;
 end
 smoothed = smoothit(noisy,handles.window);

 if ~(handles.plotOriginal ||
" " handles.plotNoisy ||
" " handles.plotSmoothed)

cla(handles.axes,'reset');
 else

if handles.plotOriginal
plot(handles.axes,handles.t,handles.x,'k');
hold(handles.axes,'on');

end
if handles.plotNoisy

plot(handles.axes,handles.t, noisy,'r');
hold(handles.axes,'on');

end
if handles.plotSmoothed

plot(handles.axes,handles.t,smoothed,'b');
end
set(handles.axes,'XMinorTick','on');
grid on
hold(handles.axes,'off');

 end

The first part of the function computes the various data series. Depending on
what options are selected on the user interface (stored in the handles struc-
ture as the addRandom and addInterference fields), we add the appropri-
ate data to the sine wave stored in the x field. The smoothed vector is com-
puted by the smoothit function that we’ll discuss soon.

Next we plot the chosen data. If none of the options are selected (stored in
handles in the plotOriginal, plotNoisy and plotInterference
fields), then we reset the plot to erase the previous plotted figure. The cla
built-in MATLAB method clears the axes by deleting all graphics objects
from it.

347

In the else-branch, that is, if at least one of the plots is selected, we plot each
that is desired with a different color: the original sine wave with black, the
noisy signal with red and the smoothed signal with blue. Note how a sepa-
rate if-statement (not nested!) is used for each plot since the conditions are
independent of each other. Notice how we use the hold command to include
all plots and not replace the previously drawn plot. Without the hold, only
the last signal plotted would be visible.

Here is the smoothit function:

function b = smoothit(a,n)
% a - input vector
% n - number of samples to average

 k = floor(n/2);
 for ii = 1:length(a)
 b(ii) = mean(a(max(1,ii-k) : ...
 min(length(a),ii+k)));
 end

It is pretty simple really. We take the average of n values: the current sample
and the k samples that precede and follow it, where k is about the half the
specified window size. We have to be careful at the beginning and end of the
vector where there are fewer samples available before or after the current
sample. That’s why the argument to mean seems a bit complicated at first.
Indexing a this way simply keeps track of how many actual samples are to be
included in the window (the minimum index is 1 and the maximum is the
length of vector a). Note that we cannot compute the new values in place in
a, since we need the original values to compute the subsequent smoothed val-
ues. That’s why we use a separate vector b for the output.

Now, let’s see what the callback functions look like for the various controls
we have not seen before. The callbacks for the frequency Slider and the ampli-
tude Edit Text Box changed very little. Instead of the various plot commands
that were used in the previous versions, now they simply call the plotit
function.

Here is how the plot Checkboxes are handled:

function originalBox_Callback(hObject, eventdata, handles)
% hObject handle to originalBox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of originalBox
handles.plotOriginal = get(hObject,'value');
plotit(handles);
guidata(hObject, handles);

It simply gets the value property of the Checkbox, sets the corresponding
field in the handles structure, calls plotit and makes sure to update the
handles struct by calling guidata. The other callback functions are equiva-
lent.

Handling the Pop-up Menu is somewhat more involved:

function windowMenu_Callback(hObject, eventdata, handles)
% hObject handle to windowMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns windowMenu con-
tents as cell array
% contents{get(hObject,'Value')} returns selected item from window-
Menu
sel = get(hObject,'String');
handles.window = str2double(sel{get(hObject,'Value')});
plotit(handles);
guidata(hObject, handles);

The first line gets the String property from the control, namely, the cell ar-
ray of strings containing all menu items, and assigns it to the variable sel.
The second line gets the Value property, namely, the index of the current se-
lection. It uses it to index into sel to get the string value of the current se-
lection. In turn, it converts it into a double and assigns it to the window field
of the handles struct. We do not need to do error checking once we make
sure that all the possible menu items we set up in GUIDE are indeed num-
bers. Finally, we call plotit and update handles with guidata.

348

As we mentioned before, if we use Radio Buttons inside a Button Group then
it is not the callback method of the Radio Buttons that we need to use, but
that of the Button Group. The function is called “SelectionChangeFcn.”
Here is what we need to do to handle the selection concerning adding noise
to our sine wave:

function signalControl_SelectionChangeFcn(hObject,eventdata,handles)
switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.
 case 'radiobutton1'
 handles.addRandom = false;
 handles.addInterference = false;
 case 'radiobutton2'
 handles.addRandom = true;
 handles.addInterference = false;
 case 'radiobutton3'
 handles.addRandom = false;
 handles.addInterference = true;
 case 'radiobutton4'
 handles.addRandom = true;
 handles.addInterference = true;
end
plotit(handles);
guidata(hObject, handles);

This looks a bit different from the callback functions we have seen before.
The important information is contained by the eventdata argument. It is a
structure whose OldValue field contains the handle of the Radio Button that
was selected before and NewValue that is the handle of the newly selected
button. The first line of the function with the switch-statement gets the Tag
property of the newly selected button using the NewValue field of the event-
data. The various case branches then simply set the two fields of handles
addRandom and addInterference according to the users’ selection. We
finish up by plotting and updating handles.

That is it. We have created a fairly complex graphical user interface. Let’s
check it out, shall we? We can do that either by typing smooth in the Com-
mand Window or by pressing the green arrow in the toolbar of GUIDE. The
result is shown in Movie 3.3.

There are a few interesting points worth discussing about this application.
Sometimes when changing something on the user interface, the plot seems to
jump. This is because MATLAB does autoscaling, that is, it automatically ad-
justs the axis to fit the plot to the window size. Watch the video or try the pro-
gram and see how the scale changes when such a jump occurs.

When using a large window size, the beginning and end of the smoothed sig-
nal looks different from the rest. This is because these parts of the signal are
smoothed using a smaller, asymmetrical window. For example, there is no
data before the very first data sample, so it is averaged only with samples
that follow it.

349

Movie 3.3 Our signal plotting GUI in action

http://tinyurl.com/MATLAB-Movie3-3
http://tinyurl.com/MATLAB-Movie3-3
http://tinyurl.com/MATLAB-Movie3-3

Concepts From This Section

Computer Science and Mathematics:
Graphical User Interface (GUI)
Event-based programming
Callback function
GUI control

MATLAB:
GUIDE
widget
property
Property Editor
Edit Text Box
Static Text Box
Slider
Push Button
Radio Button
Toggle Button
Button Group
Checkbox
Axes
Pop-up Menu
Panel
Table
List Box
handle

350

 INDEX AND GLOSSARY

351

NOTE TO READER: The entries below comprise a combined index and glossary of
the most important technical terms in this book. While it is easy to search for all uses
of any term in any electronic document via the “Find” functionality (e.g., with Ctrl-
f), this index provides the number of the page on which its definitive introduction
appears. On that page in the text, you will find that term highlighted in blue. In
addition, a definition is included below for each term plus a list of closely related
terms to which the reader can refer in this same index+glossary for additional
context.

Abstract class, 319

a class for which objects cannot be created in Object-Oriented
Programming.
Related Terms: Class, Object, Object-Oriented Programming

Activation record, 269
[a synonym for stack frame].

Related Terms: Stack frame
Algorithm, 26

step-by-step procedure for solving a problem.
Related Terms: Algorithms, Divide-and-conquer

Algorithmic complexity, 309
the shape of the plot of an algorithm's resource requirements as a
function of the size of its input.
Related Terms: O notation, Order annotation, Space complexity, Time
complexity, Worst-case analysis

Algorithms, 300
a branch of computer science that deals with the efficiency of
algorithms.
Related Terms: Algorithm, Divide-and-conquer

Apostrophe operator, 47
[synonym for transposition operator]
Related Terms: Transposition operator

Argument, 34
input to, or output from, a function.
Related Terms: Input argument, Output argument, Polymorphic,
Polymorphism

Array, 34
a multi-dimensional, rectangular arrangement of numbers.
Related Terms: Column-major order, Elementary type, End, Matrix,
Pre-allocation, Scalar, Subarray operation, Vector, Vector command

ASCII, 202
acronym for American Standard Code for Information Interchange,
which is a scheme for encoding characters into bit patterns involving
seven bits. It was designed in the 1960s to encode the so-called "Latin
alphabet", the 10 decimal digits, and punctuation. Newer encoding
schemes provide thousands of codes, whereas ASCII is limited to only
128 codes, but for backward compatibility each new code includes ASCII
as a subset. It is common to refer to a text file as "an ASCII file", even if
the particular character-encoding scheme used is unknown or is known
to be different from ASCII.
Related Terms: Text file

Assignment statement, 21
a statement of the form <variable> = <expression> that means "assign the
value of the expression on the right side of the equal sign to the variable
that is on the left side".
Related Terms: Variable

Associativity, 60
the order in which operators of equal precedence are applied within
an expression. The options are right-to-left and left-to-right. MATLAB
uses right-to-left associativity.
Related Terms: Operator, Precedence

Base case, 270
1. a part of a recursive definition that does not involve the concept
being defined. 2. a part of a recursive function that does not involve a
recursive function call.
Related Terms: Recursive case, Recursive definition, Recursive
function

Base class, 313
a class in Object-Oriented Programming whose properties have been
inherited by a new class. The new class is called a subclass of the base
class. [synonym is superclass]
Related Terms: Class, Inheritance, Object-Oriented Programming,
Subclass, Superclass

Big-O notation, 309
[synonym for Order notation]
Related Terms: O notation, Order notation

INDEX AND GLOSSARY

352

Binary file, 247
a file that contains a stream of bits that, as opposed to the stream of
bits of a text file, is not encoded into characters.
Related Terms: Bit, Text file

Binary operator, 47
an operator, such as * (multiplication), that operates on two operands.
Related Terms: Operator, Unary operator

Binary search, 298
a search method that is appropriate only for a sorted list, in which the
target value that is being sought is compared with an element in the
middle of the list first. If the target is less than the middle element,
then the method is applied recursively to the first half of the list,
otherwise it is applied to the last half of the list until a middle element
is found that is equal to the target value or the list to be searched is
empty, whichever comes first.
Related Terms: Sequential search

Bit, 19
the smallest unit of memory on a computer. The value of a bit is either
0 or 1.
Related Terms: Binary file, Byte

Block, 115
a set of contiguous statements.
Related Terms: Control statement

Branching, 114
[a synonym for "selection"]
Related Terms: Selection

break, 158
a MATLAB keyword that makes up the break-statement.
Related Terms: Break-statement, Keyword

Break-statement, 158
a control statement that causes a loop to stop. Execution continues at
the next statement following the loop.
Related Terms: Break, Continue-statement, Loop

Bugs, 27, 103
errors in programs that cause them to behave incorrectly.
Related Terms: Debugger, Debugging, Software

Byte, 200
a group of eight bits.
Related Terms: Bit

Callback, 334
a function that executes in response to a user-generated event, such as
a mouse motion or click, a screen touch, or a key press. Callbacks are
essential for the implementation of a Graphical User Interface.
[synonym: event handler]
Related Terms: Event handler, Event-based, Graphical User Interface

case, 120
a MATLAB keyword that introduces the beginning of a block of
statements in a switch-statement.
Related Terms: Keyword, Switch-statement

Cell, 214
the type of a pointer variable in MATLAB.
Related Terms: Pointer variable

Class, 312
the definition of an object in Object-Oriented Programming. It is
introduced by the keyword classdef. (also the name of a function in
MATLAB that returns the name of a built-in type)
Related Terms: Abstract class, Base class, Classdef, Constructor, Data
member, Destructor, Inheritance, Instance, Member function,
Methods, Object, Object-Oriented Programming, Operator over-
loading, Overloading, Private, Public, Subclass

classdef, 314
a MATLAB keyword that introduces a class definition in Object-
Oriented-Programming.
Related Terms: Class, Keyword, Object-Oriented Programming,
Properties

Code, 26
part or all of a program.
Related Terms: Executable code, Program, Source code

Coding, 26
writing a program
Related Terms: Computer programming, Program, Programmer,
Programming

 INDEX AND GLOSSARY

353

Colon operator, 38
an operator symbolized by a colon (:) whose output is a row vector
comprising a regularly spaced list of numbers determined by two or
three operands. The operands are an initial number, an optional
difference between successive numbers (default equals 1), and a final
number.
Related Terms: Row vector

Column, 40
position in the second dimension of a matrix or array
Related Terms: Page, Row

Column vector, 35
a vector whose elements are arranged vertically.
Related Terms: Linear algebra, Linear indexing, Vector

Column-major order, 35
an order of processing elements in an array, in which all the elements
of one column are processed before the elements of the next column.
Related Terms: Array, Row-major order

Comment, 28
text that is included in a program but is ignored by a system that is
interpreting the program, such as MATLAB, or a system that is
compiling the program, such as a C++ compiler. Such text is intended
to explain the operation of the code to a human reader.
Related Terms: Compiling, Interpreting

Compiling, 21
translating. Applies when a program is being translated from a
language in which a programmer writes it (e.g., C++) into a language
that the computer hardware uses.
Related Terms: Comment, Executable code, Interpreting

Complex conjugate, 48
a complex number in which the real part is the same as that of another
complex number and the imaginary part has the same magnitude, but
opposite sign. The two numbers are complex conjugates of each other.
Related Terms: Complex number

Complex number, 37
a number that includes the square root of -1, which is imaginary and is
symbolized by the letter i in mathematics. In MATLAB, the imaginary
part of a complex number is indicated by the suffix i or the suffix j.
Related Terms: Complex conjugate

Computer program, 26
a program that describes an algorithm to be executed on a computer.
Related Terms: Program, Software

Computer programming, 26
1. writing a program to run on a computer. 2. the subject of this book.
Related Terms: Coding, Programming

Condition number, 294
a number that gives the maximum possible percent change in output
relative to a one percent change in input.
Related Terms:

Conditional, 119
an expression that determines whether or not a block within an if-
statement or a while-statement is executed. It can have one of two
values—true or false. If it is true, the block is executed; if it is false, the
block is not executed.
Related Terms: Else-clause, If-else-statement, If-elseif-else-statement,
If-elseif-statement, If-statement, While-loop

Constructor, 314
a special class function in Object-Oriented Programming. It has the
same name as the class, and when it is called, it creates a new object as
an instance of the class.
Related Terms: Class, Destructor, Instance, Object, Object-Oriented
Programming

continue, 160
a MATLAB keyword that comprises the continue-statement.
Related Terms: Continue-statement, Keyword

Continue-statement, 160
a control statement that causes a loop to begin execution of the next
iteration without completing the current one.
Related Terms: Break-statement, Continue, Loop

Control construct, 114
a particular method by which the interpreter selects the next statement
to be executed after the execution of the current statement has
concluded.
Related Terms: End, Interpreter, Loop, Selection, Sequential control

Control statement, 114
a statement that controls the execution of another statement or a set of
statements.
Related Terms: Implicit loop

 INDEX AND GLOSSARY

354

Conversion function, 199
a function that takes an input argument of one type and returns an
output argument of a different type with a value as close as possible,
but not necessarily equal to, that of the input argument.
Related Terms: Type

Data member, 312
in Object-Oriented Programming, an encapsulated variable of the
class.
Related Terms: Class, Encapsulation, Object-Oriented Programming,
Property

Data type, 197
a set of values and a set of operations that can be performed on those
values.
Related Terms: Type

Debugger, 104
a tool to assist in finding and removing bugs.
Related Terms: Bug, Debugging

Debugging, 103
the procedure of finding and correcting programming errors, which
are also known as bugs.
Related Terms: Bug, Debugger

Delimiter, 244
a single character or a string that allows a program to determine where
one part of a character sequence ends and the next part begins without
knowing the expected lengths of any of the parts.
Related Terms:

Destructor, 327
a special class function in Object-Oriented Programming. When it is
called for a given object, it removes the object, possibly performing
further processing necessary to maintain consistency among the
remaining objects of the class.
Related Terms: Class, Constructor, Instance, Object, Object-Oriented
Programming

Diagonal, 86
noun. the set of elements of a matrix whose indices are equal to each
other. adjective. having non-zero elements only on the diagonal of a
matrix.
Related Terms: Matrix

Divide-and-conquer, 300
a strategy in which a problem is solved efficiently by applying an
algorithm to parts of the problem individually and achieving a
solution to the complete problem by combining the results of the
partial solutions.
Related Terms: Algorithm, Algorithms

Dominate, 309
get larger faster than. Example: N-cubed dominates N-squared as N
increases.
Related Terms:

Dot-apostrophe operator, 48
a MATLAB operator that produces that transposes a matrix without
taking the complex conjugate of its elements. It is a unary postfix
operator. Its symbol is a dot and an apostrophe (.').
Related Terms: Transposition operator

Doubly linked list, 318
a linked list each of whose elements has both a pointer to its next
element, if there is one, and a pointer to the previous element, if there
is one.
Related Terms: Head, Linked list, Next, Prev, Tail

Element, 29
a single item in a vector, matrix, or array.
Related Terms:

Elementary type, 197
the type of one element of an array. (All elements of a given array
must be of the same type.)
Related Terms: Array

else, 115
a MATLAB keyword used to introduce an else-clause.
Related Terms: Else-clause, If-else-statement, If-elseif-else-statement,
If-statement, Keyword

Else-clause, 119
an alternative with no conditional within an if-statement. It is executed
if the conditional in the if-statement is false (or none of the
conditionals in the if-elseif-statement is true).
Related Terms: Conditional, Else, If-else-statement, If-elseif-else-
statement, If-statement

 INDEX AND GLOSSARY

355

elseif, 116
a MATLAB keyword used to introduce an elseif-clause.
Related Terms: Elseif-clause, If-else-statement, If-elseif-else-statement,
If-elseif-statement, Keyword

Elseif-clause, 119
an alternative with a conditional within an if-statement. It is executed
if its conditional is true and none of the previous conditionals in the if-
statement is true.
Related Terms: Elseif, If-elseif-else-statement, If-elseif-statement

Empty matrix, 29
a matrix with no elements.
Related Terms: Matrix

Encapsulation, 312
prohibition of access of an object in Object-Oriented Programming by
all but a designated set of functions associated with that object. Those
designated function are known as "member functions" or "methods".
Related Terms: Data member, Member function, Method

end, 42
a MATLAB keyword that (a) stands for the last index in one
dimension of an array, (b) terminates a control construct and (c) is
optionally used to terminate a function definition.
Related Terms: Array, Control construct, Function, Keyword

Escape character, 96
a character signifying that the character or characters that follow it in a
format string have a special meaning.
Related Terms: Escape sequence, Format specifier, Format string

Escape sequence, 96
a meaningful sequence of characters that begins with an escape
character. For example, %5.2f, which begins with the escape character
% or \n, which begins with the escape character \.
Related Terms: Escape character, Format specifier, Format string

Event handler, 334
[synonym for callback]
Related Terms: Callback

Event-based, 334
having the ability to initiate function calls in response to a user-
generated event, such as a mouse motion or click, a screen touch, or a
key press. A function called in response to an event is termed a
"callback". Event-based programs are used to implement Graphical
User Interfaces, for example.
Related Terms: Callback, Graphical User Interface

Executable code, 26
part or all of a program that is written in a language that a computer
can execute directly. It is typically produced by compiling source code.
Related Terms: Code, Compiling, Program, Source, Source code

Field, 208
an element of a struct. It is designated by means of its field name.
Related Terms: Field name, Struct

Field name, 208
a name used as an index into a struct.
Related Terms: Field, Struct

File, 228
an area in permanent memory, typically residing on a disk drive, that
can be named, renamed, moved from one folder to another and from
one computer to another, inspected by users, accessed by other pro-
grams, and managed by the operating system.
Related Terms: Text file

Flag, 159
a value indicating a special condition or a variable that hold the value.
Related Terms:

for, 143
a MATLAB keyword that introduces the control-statement of a for-
loop.
Related Terms: For-loop, Keyword

For-loop, 143
a control construct that causes a block of statements to be executed
repeatedly: once for every one of a set of values. One value is assigned
to a "loop index" at the beginning of each iteration.
Related Terms: For, Implicit loop, Loop, Loop index, While-loop

Format specifier, 96
a character specifying the format in which an object is to be printed or
text is to be converted into an object.
Related Terms: Escape character, Escape sequence, Format string

 INDEX AND GLOSSARY

356

Format string, 95
a string that specifies the way in which either, (a) printing is to be
done, such as words that must be printed, spacing, the number of
decimal places to be used for printing numbers, etc., or (b) reading is
to be done, such as words that must be read, spacing, the number of
decimal places to be included when reading numbers, etc.
Related Terms: Escape character, Escape sequence, Format specifier

Frame, 269
[synonym for stack frame]
Related Terms: Stack frame

function, 34
1.an operation that is invoked by giving its name. This computer-
science definition is in contrast to the mathematical definition, which is
any operation that produces a result that depends only on its input. 2.
a MATLAB keyword that introduces the function declaration in the
function's M-file
Related Terms: End, Keyword, Libraries, M-file, Return-statement

Functional decomposition, 77
process of dividing up a program into functions.
Related Terms:

global, 76
a MATLAB keyword used to give a variable global scope.
Related Terms: Global scope, Keyword

Global scope, 76
visibility in more than one function and/or the Command Window.
Related Terms: Global, Local scope, Local variable, Scope

Graphical User Interface, 333
a program's scheme for interacting with the user through pictures,
mouse clicks, and screen touches as an adjunct to the input and output
of characters via the keyboard and the screen. GUI is its commonly
used acronym.
Related Terms: Callback, Event-based, GUI, Integrated Development
Environment, Widget

GUI, 333
acronym for Graphical User Interface.
Related Terms: Graphical User Interface

GUI control, 334
[synonym for widget]
Related Terms: Widget

Head, 318
the first element of a linear linked list, i.e., an element that is pointed at
by no other element on the list unless the list is a doubly linked list.
Related Terms: Doubly linked list, Linked list, Tail

I/O, 229
input/output, i.e., input to a program and/or output from a program.
Related Terms:

IDE, 334
the commonly used acronym for Integrated Development
Environment.
Related Terms: Integrated Development Environment

if, 114
a MATLAB keyword that introduces the control-statement of an if-
statement.
Related Terms: If-statement, Keyword

If-else-statement, 115
a selection construct. It causes the interpreter to choose which of two
statements or blocks of statements to execute on the basis of the truth
of a conditional.
Related Terms: Conditional, Else, Else-clause, Elseif, If-elseif-else-
statement, If-elseif-statement, If-statement, Selection

If-elseif-else-statement, 116
a selection construct. It causes the interpreter to choose which of three
or more statements or blocks of statements to execute on the basis of
the truth of two or more conditionals.
Related Terms: Conditional, Else, Else-clause, Elseif, Elseif-clause, If-
else-statement, If-elseif-statement, If-statement, Selection

If-elseif-statement, 117
a selection construct. It causes the interpreter to choose whether one or
neither of two or blocks of statements to execute on the basis of the
truth of two conditionals.
Related Terms: Conditional, Elseif, Elseif-clause, If-else-statement, If-
elseif-else-statement, If-statement, Selection

 INDEX AND GLOSSARY

357

If-statement, 114
the simplest selection construct. It causes the interpreter to choose
whether or not to execute a statement or block of statements on the
basis of the truth of a conditional. The term "if-statement" also refers
generically to if-else-statements, if-elseif statements, and if-elseif-else-
statements.
Related Terms: Conditional, Else, Else-clause, If, If-else-statement, If-
elseif-else-statement, If-elseif-statement, Selection

Ill-conditioned, 293
having the property that small changes in the inputs produce very
large changes in the outputs.
Related Terms:

Image processing, 149
the generation of a new image from one or more existing images.
Related Terms: Libraries

Implicit loop, 161
a loop that is invoked without the use of either a for-loop control
statement or a while-loop control statement.
Related Terms: Control statement, For-loop, Loop, While-loop

Inconsistent, 289
having constraints that are no more numerous than the number of
unknowns and yet cannot all be satisfied simultaneously. Applies, for
example, to a set of simultaneous linear algebraic equations
represented by Ax = b where A has no more rows than columns and
yet no solution vector x exists.
Related Terms: Linear algebra, Overdetermined, Underdetermined

Index, 29
1. a non-negative integer that enumerates the elements of a vector, a
matrix, or an array. In MATLAB the integer must be positive (i.e., 0 is
not allowed). Typically multiple indices are used―one for each
dimension of the array, but see also linear indexing, in which case the
term “subscript” is often used instead of “index”. In linear indexing,
only one index is used regardless of the number of dimensions. 2. a
field name in a struct.
Related Terms: Field name, Linear indexing, Loop index, Struct,
Subscript

Infinite loop, 157
a loop that continues iterating without any possibility of stopping.
Related Terms:

Infix, 47
description of an operator whose symbol for its operation comes
between its operands.
Related Terms: Postfix, Prefix

Inheritance, 313
the ability in Object-Oriented Programming to define a class as an
extension of an existing class.
Related Terms: Base class, Class, Object-Oriented Programming,
Subclass

Input argument, 67
a local variable that receives a value that is input into the function.
Related Terms: Argument, Local variable, Output argument

Instance, 312
an object in Object-Oriented Programming created by invoking its
class.
Related Terms: Class, Constructor, Destructor, Object-Oriented
Programming

Integrated Development Environment, 334
a program designed for a given programming language that is used to
develop programs in that language. It typically includes multiple tools
such as a text editor, debugger and others. IDE is its commonly used
acronym. The MATLAB environment itself is an IDE.
Related Terms: Graphical User Interface, IDE

Interpreter, 113
a program that executes statements. The simplest interpreter is the
central processing unit (CPU), which is a program implemented in
hardware. Interpreters, like that provided as part of the MATLAB
programming environment execute statements in far more complex
languages. It reads the statements in a program and carries them out
one by one, allocating space for variables, writing values into those
variables, and reading values from them, accessing elements of arrays,
calling functions, and displaying results on the screen.
Related Terms: Control construct, Interpreting

Interpreting, 20
executing. Applies to a command or statement executed by a
computing environment such as MATLAB.
Related Terms: Comment, Compiling, Interpreter, P-code

 INDEX AND GLOSSARY

358

Iterate, 142
repeatedly execute a block of statements. execute a loop.
Related Terms: Iteration, Iterative, Loop

Iteration, 142
1. the repeated execution of a block of statements. 2. one execution of
the body of a loop. 3. the act of executing a loop.
Related Terms: Iterate, Iterative, Loop

Iterative, 142
involving the repeated execution of a block of statements.
Related Terms: Iterate, Iteration, Loop

Keyword, 42
a word that is defined by a programming language to have special
meaning. The keywords for the language MATLAB are as follows
(catch, parfor, spmd and try are not covered in this book):

break enumeration parfor

case events persistent

catch for properties

classdef function return

continue global spmd

else if switch

elseif methods try

end otherwise while
Except for enumeration, events, methods, and properties, all of
these keywords are reserved words (see Reserved word).
Related Terms: Reserved word

Libraries, 85
sets of ready-to-use functions for frequently used operations. A given
library is typically targeted at a specific class of operations, e.g., an
image-processing library or a statistics library.
Related Terms: Function, Image processing

Linear algebra, 286
the manipulation and solution of equations of the form Ax=b, where A
is a matrix and x and b are both column vectors.
Related Terms: Column vector, Inconsistent, Matrix, Matrix algebra,
Overdetermined, Simultaneous linear algebraic equations,
Underdetermined

Linear indexing, 58
the specification of just one index for an array, regardless of its
number of dimensions. The meaning is that the array is treated as a
column vector and the indexing is in column-major order.
Related Terms: Column vector, Index, Subscript

Linear search, 297
[synonym for sequential search]
Related Terms: Sequential search

Linked list, 318
set of individual elements linked into a chain, meaning that every
element is linked to two other elements, except that two of the
elements (the head and tail) may be linked to only one other element.
If there is a head and tail, then the list is a linear linked list. If there is
no head and tail, the list is a circularly linked list. A link is typically
implemented by means of a pointer stored in the element that points at
another element. Each element other than a tail element points at the
"next" element. If the list is a doubly linked list, then each element
other than a head element also points at the "previous" element.
Related Terms: Doubly linked list, Head, Next, Prev, Tail

Local scope, 76
accessibility by statements in only one function or only in the
Command Window.
Related Terms: Global scope, Local variable, Scope

Local variable, 65
a variable that is accessible only by statements inside one function. A
local variable exists only during the function call.
Related Terms: Global scope, Input argument, Local scope, Output
argument, Scope

Logical, 164
a type that includes only two values: true and false, where true in
arithmetic expressions is treated as 1 and false is treated as 0.
Related Terms: Logical array, Logical indexing

Logical array, 164
an array of logical type.
Related Terms: Logical

 INDEX AND GLOSSARY

359

Logical indexing, 164
the use of logical values as indices into an array. Only those elements
for which the logical index has the value true are selected.
Related Terms: Logical

Logical operator, 126
an operator that produces a value that depends on the truth of its two
operands.
Related Terms: Short circuiting

Loop, 140
1a. (noun) a set of statements that is repeated until some condition is
met. 1b. (noun) a control construct that causes a block of statements to
be executed repeatedly (i.e., zero, one, two, or more times). 2. (non-
transitive verb) repeat a set of statements until some condition is met.
Related Terms: Break-statement, Continue-statement, Control
construct, For-loop, Implicit loop, Iterate, Iteration, Iterative, Loop
index, Sequential control, Vectorization, While-loop

Loop index, 142
a variable that is changed by the control statement of a for-loop. In
MATLAB, C, C++, and Java, a loop index, unlike an array index, need
not be an integer.
Related Terms: For-loop

M-file, 25
a file whose name has the extension .m. It contains either a MATLAB
script or a MATLAB function. Also called a "Dot-M-file", it is where
MATLAB looks to find a function or script. If the function foo is called,
MATLAB runs the code found in a file named foo.m. An M-file may
contain any number of functions. The first function in a given file is the
main function and the rest are subfunctions.
Related Terms: Function, Main function, MAT-file, Script, Subfunction

Main function, 75
the first function in an M-file. It is the only function that can be called
from outside the file. An M-file may contain more than one function.
Functions in the file other than the main function are called
subfunctions. A file can contain any number of subfunctions.
Related Terms: M-file, Subfunction

MAT-file, 20
a file format used by MATLAB to save a workplace via the load
command. Its extension is .mat.
Related Terms: M-file

MATLAB, vii
a programming language and programming environment designed for
writing programs that solve numerical problems. MATLAB stands for
"Matrix Laboratory". It is sold by The MathWorks, Inc., Natick,
Massachusetts.
Related Terms:

Matrix, 34
a two-dimensional, rectangular arrangement of numbers, also known
as a two-dimensional array.
Related Terms: Array, Diagonal, Empty matrix, Linear algebra, Square
matrix, Subarray operation, Vector

Matrix algebra, 286
[synonym for linear algebra]
Related Terms: Linear algebra, Simultaneous linear algebraic
equations

Member function, 312
a function within a class in Object-Oriented Programming. [synonym:
method].
Related Terms: Class, Encapsulation, Method, Methods, Object-
Oriented Programming

Method, 312
[MATLAB synonym for member function]
Related Terms: Encapsulation, Member function, Methods, Object-
Oriented Programming, Private, Public

methods, 314
a MATLAB keyword that introduces the methods section of a class
definition in Object-Oriented-Programming.
Related Terms: Class, Member function, Method, Object-Oriented
Programming, Properties

Mixed-mode arithmetic, 200
arithmetic operations involving two operands of different types.
Related Terms: Operand, Operation, Type

Nesting, 131
the inclusion of one control construct inside another control construct.
Related Terms: Control construct

 INDEX AND GLOSSARY

360

Next, 318
a common name for the field of an element of a linked list that
contains a pointer to the next element on the list.
Related Terms: Linked list

O notation, 309
[synonym for Order notation]
Related Terms: Algorithmic complexity, Big-O notation, Order
notation

Object, 312
in Object-Oriented-Programming, a set of variables and a set of
functions that can operate on those variables. An object is an instance
of a class.
Related Terms: Abstract class, Class, Constructor, Destructor,
Instance, Object-Oriented Programming, Operator overloading

Object reference, 319
an object that holds information about another object including the
address of the other object.
Related Terms: Pointer

Object-Oriented Programming, 312
an approach to programming that is centered on data as opposed to
functions.
Related Terms: Abstract class, Base class, Class, Classdef, Constructor,
Data member, Destructor, Inheritance, Instance, Member function,
Method, Methods, Object, Operator overloading, Private, Properties,
Property, Public, Subclass, Superclass

Operand, 38
an input argument to an operator.
Related Terms: Mixed-mode arithmetic, Operation, Operator

Operation, 38
the action of an operator on its operand(s).
Related Terms: Mixed-mode arithmetic, Operand, Operator

Operator, 38
a function that is invoked by a symbol, the most familiar examples
being +, -, *, and /.
Related Terms: Associativity, Binary operator, Operand, Operation,
Operator overloading, Precedence, Prefix

Operator overloading, 312
in Object-Oriented Programming, the defining of new functionality for
an operator inside a class definition that allows it to operate on an
instance of a user-defined class.
Related Terms: Class, Object, Object-Oriented Programming,
Operator, Overloading, Polymorphism

Order notation, 309
a method for categorizing the shape of growth curves used to specify
algorithmic complexity. synonyms: O notation, Big-O notation.
Related Terms: Algorithmic complexity, Big-O notation, O notation

otherwise, 120
a MATLAB keyword that introduces an optional block of statements in
a switch-statement. That block is executed if and only if none of the
case expressions matches the expression of the control-statement.
Related Terms: Keyword, Switch-statement

Output argument, 66
a local variable that holds a value that is output by the function.
Related Terms: Argument, Input argument, Local variable

Overdetermined, 290
having constraints that are more numerous than the number of
unknowns and that cannot all be satisfied simultaneously. Applies, for
example, to a set of simultaneous linear algebraic equations
represented by Ax = b where A has more rows than columns and no
solution vector x exists.
Related Terms: Inconsistent, Linear algebra, Underdetermined

Overloading, 312
in Object-Oriented Programming, the defining of new functionality for
a function or an operator inside a class definition that allows the
function or operator to process an instance of a user-defined class.

 Related Terms: Class, Operator overloading
P-code, 27

an abbreviation for "portable code", which is a program written in a
language that can be interpreted by programs on different types of
computers. Each interpreter must be tailored to run on a specific type
of computer, but a program written in p-code can be the same for all
computers and so is portable from one type of computer to another.
MATLAB uses a form of p-code.
Related Terms: Interpreting

 INDEX AND GLOSSARY

361

Page, 44
Position in the third dimension of an array
Related Terms: Column, Row

persistent, 267
a MATLAB keyword used to declare persistent variables.
Related Terms: Keyword, Persistent variable

Persistent variable, 267
a local variable within a function whose value persists across function
calls.
Related Terms: Persistent

Pixel, 30, 151
one square piece of a mosaic of colors that make up a digital image
(the word "pixel" is a shortening and alteration of the phrase "Picture
Element").
Related Terms:

Pointer, 214
the address of an object in memory.
Related Terms: Object reference, Pointer variable

Pointer variable, 214
a variable that holds an address.
Related Terms: Cell, Pointer

Polymorphic, 87
a term applied to a function. A polymorphic function allows the
number and/or type of its input and/or output arguments to vary
from one call of the function to the next. In many cases, the behavior of
a polymorphic function depends not only on the values of its input
arguments but also on the number and types of its arguments (both
input and output).
Related Terms: Argument, Polymorphism

Polymorphism, 87
the ability of a function to allow the number and/or type of its input
and/or output arguments to vary from one call of the function to the
next. Polymorphism allows for the behavior of a function to depend
not only on the values of its input arguments but also on the number
and types of its arguments (both input and output).
Related Terms: Argument, Operator overloading, Polymorphic

Postfix, 47
description of an operator whose symbol for its operation comes after
its operand(s).
Related Terms: Infix, Prefix

Pre-allocation, 180
the designation and reservation of space for an entire array before
calculating the values to put into the array.
Related Terms: Array

Precedence, 59
an operator's ranking relative to other operators which determines the
order in which they are applied within an expression. A lower ranking
means that an operator has higher precedence and so is applied
earlier.
Related Terms: Associativity, Operator, Precedence table

Precedence table, 130
a listing of operators along with a number indicating the precedence of
each operator. A lower number indicates a higher precedence.
Related Terms: Precedence

Prefix, 47
description of an operator whose symbol for its operation comes
before its operand(s).
Related Terms: Infix, Operator, Postfix

Prev, 318
a common name for the field of an element of a doubly inked list that
contains a pointer to the previous element on the list.
Related Terms: Doubly linked list, Linked list, Next

Price is Right, 38
a television game in which a prize is won by guessing the price that
comes closest to its actual retail value without exceeding it,
recognizable primarily by the way its contestants jump up and down
and scream.
Related Terms:

private, 320
in Object-Oriented Programming, visible and/or modifiable only by
methods within the class in which it is defined. Pertains to a property
of the class.
Related Terms: Class, Method, Object-Oriented Programming,
Property, Public

 INDEX AND GLOSSARY

362

Program, 26
a sequence of symbols that describes an algorithm.
Related Terms: Code, Coding, Computer program, Executable code,
Programmer, Programming

Programmer, 26
a person who writes a program.
Related Terms: Coding, Program, Programming

Programming, 26
writing a program.
Related Terms: Coding, Computer programming, Program,
Programmer

Prompt, 15
a symbol, or symbols, printed by a program (MATLAB is an example)
to indicate that it is ready for input from the user of the program.
MATLAB uses the prompt >>
Related Terms:

properties, 314
a MATLAB keyword that introduces the properties section of a class
definition in Object-Oriented Programming.
Related Terms: Classdef, Methods, Object-Oriented Programming

Property, 312
[synonym for data member]
Related Terms: Data member, Object-Oriented Programming, Private,
Public

public, 320
in Object-Oriented Programming, visible and/or modifiable not only
by methods within a class in which it is defined but also by functions
outside. Pertains to a property of the class. It is the default.
Related Terms: Class, Method, Object-Oriented Programming,
Private, Property

Recursion, 268
1. the use of a concept in the definition of the concept. 2. the calling of
a function by the function itself (e.g., f calls f). 3. the chaining of two or
more function calls that ends with the function that made the first call
(e.g., f calls g, g calls h, h calls f).
Related Terms: Recursive definition, Recursive function call

Recursive case, 270
1. part of a recursive definition that involves the concept being
defined. 2. part of a recursive function that involves a recursive
function call.
Related Terms: Base case, Recursive definition

Recursive definition, 268
a definition that defines a concept in terms of the concept itself.
Related Terms: Base case, Recursion, Recursive case

Recursive function, 268
a function that makes a recursive function call.
Related Terms: Base case, Recursive function call

Recursive function call, 268
a call of a function by the function itself (e.g., f calls f). 2. a function call
that begins a chain that ends with the function that made the first call
(e.g., f calls g, g calls h, h calls f).
Related Terms: Recursion, Recursive function

Relational operator, 123
an operator that produces a value that depends on the relation
between the values of its two operands. An example is “greater than”.
Related Terms:

Reserved word, 64
a keyword (see Keyword) that cannot be used as a variable name or
function name. It can however be used as a field name in a struct (see
Struct). A list of reserved words can be obtained with the command
iskeyword, which despite its name lists only reserved keywords.
Related Terms: Keyword

return, 118
a MATLAB keyword that comprises the return-statement.
Related Terms: Keyword, Return-statement

Return-statement, 118
a statement that causes the function in which it appears to be halted
and control passed to the caller, which may be another function or the
Command Window. If the function has output arguments, then the
most recent value assigned to each requested output argument will be
passed to the caller, just as it would be if the function had ended after
executing its last statement.
Related Terms: Function, Return

 INDEX AND GLOSSARY

363

Row, 40
position in the first dimension of a matrix or array.
Related Terms: Colum, Page

Row vector, 35
a vector whose elements are arranged horizontally.
Related Terms: Colon operator, Vector

Row-major order, 35
an order of processing elements in an array, in which all the elements
of one row are processed before the elements of the next row.
Related Terms: Column-major order

Scalar, 34
a single number. A scalar is treated by MATLAB as a 1-by-1 array.
Related Terms: Array

Scientific notation, 17
a technique for expressing a number. The number is written in the
form x × 10n, where x may be signed (+ or −) and is expressed as a
decimal number and n is an integer (which may be positive or
negative). In MATLAB, x × 10n is expressed in the form xen.
Related Terms:

Scope, 76
the set of statements that can access a variable.
Related Terms: Global scope, Local scope, Local variable

Script, 78
a collection of MATLAB commands in an M-file that does not contain
a function.
Related Terms: M-file

Selection, 114
a control construct in which the interpreter decides which statement or
block of statements is to be executed next on the basis of the value of
an expression.
Related Terms: Branching, Control construct, If-else-statement, If-
elseif-else-statement, If-elseif-statement, If-statement, Sequential
control, Switch-statement

Semantics, 21
the meaning of a statement or set of statements.
Related Terms: Syntax

Sequential control, 114
a control construct in which the interpreter executes the statements in
the order that they were written by the programmer.
Related Terms: Control construct, Loop, Selection

Sequential search, 297
a search method in which the target value that is being sought is
compared with the first member of the list, then with the second, etc.,
until either the number is found, or the end of the list is reached,
whichever comes first.
Related Terms: Binary search, Linear search

Short circuiting, 126
the skipping of the evaluation of a second operand by a logical
operator because its value will have no effect on the result.
Related Terms: Logical operator

Simultaneous linear algebraic equations, 287
equations of the form Ax=b, where A is a matrix and x and b are both
column vectors.
Related Terms: Linear algebra, Matrix algebra

Software, 27
a set of files containing source code, executable code, or both that
describes a single computer program or a set of programs. It is called
software to distinguish it from the hardware that makes up the
physical part of a computer on which the programs run.
Related Terms: Bugs, Computer program

Source, 26
shorthand for source code, which is part or all of a computer program,
written by a programmer that will be translated into executable code,
which is written in a language that a computer can execute directly.
Related Terms: Executable code, Source code

Source code, 26
part or all of a program, written by a programmer that will be
translated into executable code, which is written in a language that a
computer can execute directly.
Related Terms: Code, Executable code, Source

Space complexity, 310
the shape of the plot of the amount of memory space required by an
algorithm as a function of the size of its input.
Related Terms: Algorithmic complexity, Time complexity

 INDEX AND GLOSSARY

364

Square matrix, 34
a matrix whose number of rows equals its number of columns.
Related Terms: Matrix

Stack, 269
an area of the computer's memory organized so that only one element,
known as the element "on top of the stack", is accessible. Variables are
placed on the top of the stack or taken from the top, and no variables
are taken from the middle of the stack.
Related Terms: Stack frame

Stack frame, 269
an area in the computer's stack in which all the arguments and other
local variables of a function are stored during the time from its call to
its return. One stack frame is placed on the stack for each active func-
tion. [synonyms: frame, activation record]
Related Terms: Activation record, Frame, Stack

String, 74
a sequence of characters. In MATLAB, a string may be entered
explicitly by typing a single quote, followed by some number of
characters followed by a second single quote. A string is stored in
MATLAB as a row vector of numbers of type char, each number being
a code that represents one character.
Related Terms: Char

Struct, 208
a vector that is heterogeneous (elements may be of different types) and
is indexed by field names instead of numerical indices (see index).
Related Terms: Field, Field name

Subarray operation, 41
an operation that accesses a rectangular subarray within a matrix or
array. It is invoked by specifying a vector of integers for each index.
The result is that elements from multiple rows and/or multiple
columns (and for higher dimensional arrays, multiple pages, etc.) can
be read or written.
Related Terms: Array, Matrix

Subclass, 313
in Object-Oriented Programming, a class that has been defined via the
mechanism of inheritance to be an extension of some other class. The
other class is called the "base class" of the subclass.
Related Terms: Base class, Class, Inheritance, Object-Oriented
Programming

Subfunction, 75
a function in an M-file other than the first function in the file. It cannot
be called from outside the file, but it may be called from inside the file.
An M-file can contain any number of subfunctions.
Related Terms: M-file, Main function

Subscript, 40
a non-negative integer that enumerates the elements of a vector, a
matrix, or an array. In MATLAB the integer must be positive (i.e., 0 is
not allowed). One subscript is given for each dimension of the array,
but see also linear indexing, in which only one integer is used.
Related Terms: Index, Linear indexing

Superclass, 313
[synonym for base class in Object-Oriented Programming]
Related Terms: Base class, Object-Oriented Programming

switch, 120
a MATLAB keyword that introduces the control-statement of a switch-
statement.
Related Terms: Keyword, Switch-statement

Switch-statement, 120
a selection construct in which (a) the control-statement has an
expression that governs the selection, (b) a set of statements is
partitioned into blocks called "cases", each of which has its own
associated case expression, (c) the first block whose case expression
matches the value of the control-statement's expression is selected for
execution, and (d) if there is no such match, then, if there is an optional
block of statements introduced by the keyword otherwise, that block
is executed, and, if there is no optional block, none of the statements in
the set is executed. Alternative forms of the switch-statement are
described in the text.
Related Terms: Case, Otherwise, Selection, Switch

 INDEX AND GLOSSARY

365

Symbol table, 212
a table maintained automatically during the execution of code in some
programming languages, including MATLAB, in which are kept the
names (or "symbols") and addresses of variables that exist and are
accessible during the execution and possibly other information about
those variables, such as their types. In MATLAB, a collection of
variables in a symbol table is called a "workspace".
Related Terms: Type, Variable, Workspace

Syntax, 21
the form of a statement (as opposed to its meaning, which is its
semantics).
Related Terms: Semantics

Tail, 318
The last element of a linked list, i.e., an element that points at no other
element in the list unless the list is a doubly linked list.
Related Terms: Doubly linked list, Head, Linked list

Text file, 238
a file that contains characters (i.e., letters, numbers, and punctuation
marks) encoded in a standard format, such as ASCII, Unicode, or
UTF-8.
Related Terms: ASCII, Binary file, File

Time complexity, 310
the shape of the plot of an algorithm's execution time as a function of
the size of its input.
Related Terms: Algorithmic complexity, Space complexity

Transpose, 46
1. a matrix operation that interchanges all the elements of a matrix X so
that X(m,n) is replaced by X(n,m). 2. the result of the transpose
operation.
Related Terms: Transposing, Transposition operator

Transpose operator, 47
[synonym for transposition operator]
Related Terms: Transposition operator

Transposing, 46
performing the matrix operation that interchanges all the elements of a
matrix X so that X(m,n) is replaced by X(n,m).
Related Terms: Transpose

Transposition operator, 47
a MATLAB operator that produces that transposes of a matrix and
takes the complex conjugate of its elements. It is a unary postfix
operator. Its symbol is the apostrophe, or single quote, ('). synonyms:
transpose operator and apostrophe operator
Related Terms: Apostrophe operator, Dot-apostrophe operator,
Transpose, Transpose operator

Type, 197
a set values and a set of operations that can be performed on those
values [a synonym for "data type"].
Related Terms: Conversion function, Data type, Mixed-mode
arithmetic, Struct, Symbol table

Unary operator, 47
an operator, such as the transposition operator ('), that takes only one
operand.
Related Terms: Binary operator

Underdetermined, 289
having fewer constraints than unknowns with the result that there are
an infinite number of solutions. Applies, for example, to a set of
simultaneous linear algebraic equations represented by Ax = b where
A has fewer rows than columns with the result that the number of
solution vectors x is infinite.
Related Terms: Inconsistent, Linear algebra, Overdetermined

Variable, 16
a named location in memory into which values can be stored
(computer science definition, as opposed to mathematics definition)
Related Terms: Assignment statement, Symbol table

Vector, 29
an ordered list of numbers. In MATLAB, it is also a matrix or array
with exactly one column or exactly one row.
Related Terms: Array, Column vector, Matrix, Row vector, Vector
command

Vector command, 169
a command that operates on an entire vector or an entire array.
Related Terms: Array, Vector, Vectorization

 INDEX AND GLOSSARY

366

Vectorization, 169
the translation of code from a version that uses an explicit loop into
one that uses a vector command.
Related Terms: Loop, Vector command

while, 155
a MATLAB keyword that introduces the control-statement of a while-
loop.
Related Terms: Keyword, While-loop

While-loop, 154
a control construct that causes a block of statements to be executed
repeatedly as long as a conditional in the control-statement remains
true.
Related Terms: Conditional, For-loop, Implicit loop, Loop, While

Widget, 334
an element of a Graphical User Interface that provides output to the
user or allows the user to perform input with the mouse or through
natural gestures with a touch screen that mimic the use of a
mechanical device. synonym: graphical control.
Related Terms: Graphical User Interface, GUI control

Workspace, 19
the set of variables that exist and are accessible during the execution of
statements in the Command Window or the set of variables that exist
and are accessible during the execution of the statements in a function.
Related Terms: Symbol table

Worst-case analysis 307
evaluation of an algorithm based solely on inputs for which the
algorithm exhibits its worst algorithmic complexity.
Related Terms: Algorithmic complexity

	Preface
	Getting Started
	Introduction to MATLAB
	Matrices and Operators

	Procedural Programming
	Functions
	Programmer’s Toolbox
	Selection
	Loops
	Data Types
	File Input /Output
	Functions Reloaded

	Advanced Concepts
	Linear Algebra
	Searching and Sorting
	Object-Oriented Programming
	Graphical User Interfaces
	Index and Glossary

